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Résumeé :

Les cables sont utilisés de plus en plus pour le transport et la distribution de 1’électricité en
courant alternatif sur des distances de plus en plus longues. La prolifération de fermes
¢oliennes offshore qui nécessitent d’interconnexions avec le continent a aussi propulsé leur
utilisation sous-marine.

Modeles de cables sont disponibles dans le bien connu logiciel Electro Magnetic Transient
Program et sont destinés au domaine temporel. Ces modéles sont assemblés en utilisant
différentes techniques, mais tous nécessitent une connaissance précise des parametres des
cables dans le domaine fréquentiel.

Dans ce but, pour le calcul des impédances des cables tripolaires cette thése propose une
méthode qui améliore la prise en compte de la proximité entre tous les conducteurs : il s’agit
d’une méthode semi-analytique qui utilise le concept duale de fils minces et sous-conducteurs
pour décrire la densité de courant a I'intérieur des conducteurs et le calcul des
impédances.L’effet du retour par la mer est aussi analysé et une méthode quasi Monte Carlo
est proposé, afin de résoudre les intégrales qui décrivent la formulation des impédances pour
le sol a deux couches (la mer et son fond) sur lequel ces cables sont posés. L’effet du a la
présence des couches de semi-conducteur dans les cables est aussi traitéLa méthode de
collocation stochastique est aussi décrite et appliquée, afin de prendre en compte la variabilité
des parametres d’entrée.
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Abstract :

Cables are extensively used for underground alternating current electricity distribution and
progressively over longer distances; the proliferation of offshore wind farms which require
interconnections with the mainland has also increased their use underwater.

Models of cables are available in the well-known Electro Magnetic Transient Program
software and are designed to the time-domain. These models are assembled using different
techniques but all of them need a precise knowledge of the frequency domain parameters of
the cables.

Accordingly, for the calculation of the impedances of three-core submarine power cables this
thesis proposes an improved method to consider the proximity effect between all conductors.
The method, which is a semi-analytical, uses the dual concept of thin-wires and sub-
conductors to describe the current density inside the conductors and the calculation of the
impedances.The effect of the sea return 1s also analyzed and a quasi Monte Carlo method is
proposed, to solve the integrals describing the impedances formulations for the two layer soil
(the sea and seabed) upon which the submarine cables are laid. The effect due to the presence
of semi-conducting layers in the cables is also treated.

The stochastic collocation method is also described and applied, in order to account for the
variability of the input parameters.
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SUMMARY

Chapter 1. The introduction describes the motivation behind this doctoral research whose general
field is alternating current energy propagation in medium and high voltage cables with a focus on the
simulation of the propagation in submarine cable systems.

It is introduced that these cable systems need improved modelling with transient simulation softwares,
because though models have long been available, some of the effects intervening in the propagation of
electromagnetic waves have been described in an approximate way or altogether neglected.
Accordingly the thesis will concentrate in the description of the cable's parameters and in particular
that of the impedances since their frequency dependence makes their representation crucial in the
simulation of transient phenomena.

Chapter 2 is dedicated to the introduction of existing cable models.

In Section 2.1 introductory definitions are given which are to be used in the remainder of the
manuscript, namely the concept of TEM lines and per unit length parameters. Also introduced is the
software for which we develop cable models, namely the EMTP-RV. Follows a description of the
cable technologies of interest and an explanation of the different cable metallic and insulating layers
that have a bearing on the electromagnetic propagation and therefore impact on the description of the
cable parameters. The features described are mostly common to all medium and high voltage cables
but the interest of the thesis concentrates on the three-core submarine cables.

In Section 2.2 transmission line equations and relevant models derived from this description are
introduced. The propagation constant and characteristic admittance, derived from the transverse
parameters, are also introduced as their representation is the main objective of these models. Since in
multi-conductor lines the relationship between currents and voltage is a matricial one, the parameters
of interest are all in the form of vectors and matrices, and due to the presence of mutual parameters in
the impedance and admittance matrices, the derived matrices are all full matrices so that the solution
of the TL equations are not as simple as they are in the case of single conductor lines.

The modal domain is introduced for the scope of uncoupling these equations and transform the phase
parameters into modal parameters, doing this allows each mode of propagation to be solved as a single
phase line. The modes also express a decomposition of how the propagation can be represented
through different current and voltage propagation modes, be they coaxial, homo-polar, or inter-sheath.

After this description, in Section 2.2.3 we introduce the nodal equations that allow adapting the model
to the representation used in EMTP-RV: the line or cable system is represented with two nodes, the
entrance and the exit of the line, and described by the currents and voltages present at these two nodes
at a certain time. At each step of time, the currents and voltage at the previous step allow to represent
the propagation on the line. From this representation one can define the Constant Parameters, CP and
the Frequency Dependent (FD or FDQ) models. These models differ in the way they represent the
frequency dependent parameters; the FD models need complex fitting procedures in order to represent
the propagation constant, the characteristic admittance (and the transformation matrix Q in the FDQ
model) using rational functions. This representation is needed to perform convolutions that allow
taking into account for the previous values of currents and voltages at different nodes.

In Section 2.2.6 follows the description of phase domain models that operate directly in the phase
domain.

In Section 2.3 is described in much detail the evaluation of the parameters of a single-core cable. The
method used to evaluate the impedance, namely the loop theory, allows to take info account the
different effects present in the cable, be they resistive or inductive, and represent as well the skin
effect in surface impedances thus accounting for frequency dependence. The loop method splits the
fore-mentioned effects into partial impedances and partial admittances and in Section 2.3.2 the
derivation of these terms is obtained starting from Maxwell equations and illustrating the coaxial
theory developed by Schelkunoff.

In Section 2.4 a similar procedure is followed for three-core cables, where the parameters that are
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needed for this model are partly those obtained in Section 2.3, and the other parameters needed are
related to the armour. It is explained how these parameters related to the inner surface of the armour
partly include the proximity effect and in Section 2.4.3 the theory put forth by Tegopolous and Kriezis
is described. This theory introduces the concept of a filament to represent the current flowing in the
inner conductors and inducing a modification of the current density distribution inside the armour. The
hypothesis used that shall also be the starting point of the theory we developed: displacement currents
are neglected, the material is taken to be non ferro-magnetic, the filament described as source of
induction is infinitely long and axially parallel to the conductor of interest thus neglecting edge effects
and reducing the problem to a two dimensional one; the return of the current is through the conductor
of interest.

In Section 2.4.6 it is shown how the theory by Tegopoulos has been used, first by Brown Rocamora
and then by Kane, to obtain the impedances of solid and hollow conductors, with the inclusion of
proximity effect.

Chapter 3 is devoted to the original method we propose for the evaluation of internal impedances.

In Section 3.2 is treated a configuration of two cylindrical parallel conductors which proximity causes
induction to one another. The theoretical approach derived for this case is then extended to the case of
hollow conductors (such as cable sheaths and armours) in Section 3.3. The conductor, source of the
excitation, is represented by a number of sub-conductors considered as thin wires when they serve as
source, but acting as sub-conductors when target of the induction. This procedure allows representing
the mutual induction between conductors. The cwrent from conductor 1 is taken to be returning in
conductor 2, and furthermore the sum of the thin wires current intensities gives the total current
circulating in the conductor.

In a first step the current density and vector potential will be represented with expressions containing
the thin wires unknown current intensities. These current intensities will then be calculated in a
successive step.

The procedure used to calculate vector potential and current density is based on the following steps:
- Derivation of generic expressions for vector potential A and current density J;

- The currents in the above mentioned thin wires, which cause induction, have intensities
corresponding to the value of the current density calculated in the point occupied by the wire and
multiplied by the surface of the sub-conductor. The sum of these currents gives the total current I,
which is imposed as flowing in the conductors. This is also equivalent to the current density yet to be
determined, integrated on the surface of the conductor.

- The magnetic vector potential is calculated inside and outside the conductor and is due to different
contributions:

- Outside the conductor, we consider:

- The contribution of the thin wires in one of the conductors at a point in the dielectric
(this is when the conductor is considered to be the source of the induction);

- The contribution in the dielectric due to the expression of J that is established in the
second conductor as a consequence of the excitation by the thin wires in the first
conductor.

- Inside the conductor, the Helmholtz equation is solved.

From the confribution in terms of vector potential inside and outside the conductor that we have
derived, we can express the magnetic field radial and angular components and then write the
continuity condition of both at the conductor’s edge. This last step permits to obtain a system through
which the unknown coefficients for the generic expression of J and A are calculated. From this point
forth it is possible to explicitly express the current density inside the conductors.

The skin effect is accounted for in the Oth order terms; that remain the same as in the classical
Schelkunoff theory.

In order to calculate the current intensity in the thin wires, we suppose that the thin wire carries a
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current intensity equal to the value of the current density evaluated in the point where the wire is
located and multiplied by a the surface of the sub-conductor. This enables us to write a system of 2N
equations, where N is the number of wires in which the conductor has been split. The wire current
intensity allows writing the current density in each conductor and the vector potential everywhere.

In Section 3.4 the explicit expression of the internal impedance is inferred, that is a function of current
density and magnetic field inside the conductor.

In Section 3.5 some details are given for the filament distribution, and the method is validated using
the Finite Element software Comsol. Both the current density value in the conductors and the internal
impedance values are validated.

In Chapter 4, further effects to be included in cable modelling are represented.

In Section 4.1 the ground return impedance is handled and different formulations are compared. In
Section 4.1.2 the method put forth by Legrand for the solution of Pollaczek integral using quasi Monte
Carlo integration is explained.

In Section 4.1.3 this integration method is proposed as the solution of the integral of the sea return
impedance which is of interest in the case of submarine cables. The integral to be solved in this second
case is different, and so is the variable change utilised in order to adapt the integration bounds so that
Monte Carlo method can be used.

In Section 4.2 the semi-conducting layer effect on impedance and admittance is analysed, using a
modelling put forth by Ametani that adapt coaxial theory to this case.

Finally in Section 4.3 the terms of sea return impedance and admittance due to the semi-conducting
layer are looked at with a sensibility analysis, as their input values (electrical and geometrical
parameters) are to a certain extent uncertain. This is done using the stochastic collocation method,
presented in an Appendix.

In Chapter 5 the three-core cable global model is put together using the notions and the terms
discussed through the rest of the manuscript, assembling existing terms with original contributions.

In Section 5.2 simulations are carried out in order to compare the model we put forth with the existing
Pipe Type model, our point of departure for the development of our model.

In Appendix A, the stochastic collocation method is described. This method allows to analyze the
variation of a function and define its statistical parameters (mean and variance) when one or more of
the input variable are random but their distribution is known. This is similar to what can be obtained
with Monte Carlo techniques, but only very few iterations (less than 10 compared to thousands for
Monte Carlo methods are needed).

The derivation of this method, from Lagrange polynomial is discussed. It is shown how the method
allows obtaining some values of the input random variable(s) depending on its distribution.

The formula is evaluated for these values (called collocation points) and some weights (given as well
by the method depending on the distribution of the random variable) are used to evaluate mean and
variance of the observed function. This method can be employed, in our case, for sensibility analysis
of the impedance and admittance formulas to the variation of input parameters.

In Appendix B the impedances of the core and the armour, as evaluated using the proposed method
and the Pipe Type method are compared.






RESUME DETAILLE

Chapitre 1. L’introduction décrit les raisons qui ont motivé ces travaux de recherche centrés sur
I’étude de la propagation électromagnétique dans les cdbles en courant alternatif & haute et moyenne
tension, avec un intérét particulier pour la simulation de ces phénomenes dans les cables sous-marins.

On introduit la nécessité d’intégrer les modeles de ces cables aux logiciels de simulation transitoire :
quand bien méme certains sont disponibles depuis longtemps, certains effets intervenant dans la
propagation €lectromagnétique sont négligés ou décrits de facon approchée.

Par conséquent, cette thése se concentre sur 1’évaluation des impédances linéiques des cables,
I'importance de leur variation en fonction la fréquence conduisant & la nécessité d’une précision
accrue pour la simulation d’effets transitoires.

Le Chapitre 2 est consacré a la description des modéles de cables existants.

Dans la Section 2.1 , les concepts de ligne TEM et les définitions des parameétres linéiques, utilisés
tout au long du manuscrit, sont introduites:. Le logiciel EMTP-RV donnant lieu au développement de
modeles de cable, est également présenté.

On donne ensuite une description des technologies de céble et plus particuliéerement les différentes
couches conductrices et isolantes qui ont un effet sur la propagation, et ainsi, ont une influence sur les
valeurs des parametres linéiques. Les caractéristiques décrites sont communes a la plupart des cables
moyenne et haute tension, mais les travaux de thése portent principalement sur les cables tripolaires.

Dans la Section 2.2. on introduit la théorie des lignes de transmission puis les modéles principalement
utilisés pour 1’étude de la propagation par les cables. Les constante de propagation et impédance
caractéristique, qui se déduisent des paramétres transversaux et qui sont a la base des modeles de
ligne, sont rappelés. Dans le cas de lignes multi-conductrices, la relation entre tensions et courants est
matricielle, les configurations étudiées étant caractérisées par des matrices pleines dont les termes
extra diagonaux correspondent aux parameétres linéiques traduisant les couplages inter-conducteurs. La
résolution des équations est alors plus complexe. Leur principe de résolution dans une base modale est
introduit, afin de découpler ces équations et d’en transformer les parameétres de phase en parameétres
modaux, ce qui permet de déterminer chaque mode de propagation comme s’il s’agissait d’une ligne
monophasée. Les modes peuvent aussi exprimer une décomposition physique de la propagation de
courants et tensions en modes coaxiaux, homopolaires et inter-écran.

Apres ceci, dans la Section 2.2.3 on infroduit les équations nodales, permettant d'adapter les modéles a
la représentation utilisée dans EMTP-RV : la ligne de transmission considérée est représentée par deux
nceuds, a savoir I’entrée et la sortie du cdble, décrits par les courants et tension au niveau de ces nceuds
a chaque instant. A chaque pas de temps, les courants et les tensions a 1’instant précédent permettent
de représenter la propagation sur la ligne. De cette représentation on peut définir les modeles a
paramétres constants (CP) et les modéles variables avec la fréquence (FD et FDQ).

Ces modeles différent dans la maniére de représenter les paramétres, les modeles FD nécessitant des
procédures complexes de fitting pour représenter 1’évolution de la constante de propagation et
I’admittance caractéristique (et la matrice de transformation modale Q dans le modéle FDQ) en
fonction de la fréquence, en utilisant des fonctions rationnelles. Cette représentation est nécessaire
pour obtenir des convolutions qui permettent de prendre en compte les valeurs aux instants précédents
des courants et des tensions sur les différents nceuds.

Dans la Section 2.2.6 suit une description des modéles qui sont directement utilisés dans le domaine
des phases.

Dans la Section 2.3 on décrit dans le détail le calcul des parametres d’un cable unipolaire.

La méthode utilisée pour calculer I'impédance, basée sur la théorie des boucles, permet de prendre en
compte les différents effets présents dans les cables, qu’ils soient résistifs ou inductifs en représentant
en particulier 1I’effet de peau dans les impédances de surface, prenant ainsi en compte la dépendance
en fonction de la fréquence. L.a méthode des boucles divise les effets mentionnés en impédances et
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admittances partielles et dans la Section 2.3.2 on montre de quelle maniére, en partant des équations
de Maxwell et en employant la théorie coaxiale développé par Schelkunoff, ces grandeurs sont
évaluées.

Dans la Section 2.4. par une procédure similaire, ces grandeurs sont évaluées pour les cébles
tripolaires. Est notamment précisé comment les paramétres liés a la surface interne de 1’armure
incluent en partie 1’effet de proximité et dans la Section 2.4.3, la théorie proposée par Tegopolous et
Kriezis est décrite. Cette théorie introduit le concept de filament qui représente le courant qui circule
dans les conducteurs internes et induit une variation de la distribution de la densité de courant a
I’intérieur de I’armure. Les hypothéses, sur lesquelles s’appuie également la théorie proposée sont: les
courants de déplacement sont négliges, les conducteurs sont non ferromagnétiques, le filament décrit
est de longueur infinie et est parallele au conducteur considéré, ce dernier assurant le retour du
courant. Ces deux derniéres hypothéses impliquent une invariance axiale de la structure et permettent,
en négligeant les effets de bord, de ramener le probléme a deux dimensions.

Dans la Section 2.4.6 on montre comment la théorie de Tegopoulos a été utilisé par Brown Rocamora
et ensuite par Kane, pour obtenir les impédances des conducteurs solides et creux, en prenant en
compte 1’effet de proximité.

Le Chapitre 3 est consacré a la méthode originale proposée pour ’évaluation des impédances
internes.

Dans la Section 3.2 on traite une configuration de deux conducteurs cylindriques et paralléles, dont la
proximité conduit & I’apparition de phénoménes d’induction mutuels. L’approche théorique dérivée
pour ce type de cable est ensuite appliquée aussi au cas d’un conducteur creux (comme les écrans ou
les armures) en Section 3.3. Le conducteur source est représenté par un ensemble de sous-conducteurs
considérés comme des fils minces quand ils représentent la source, mais se comportent comme des
sous-conducteurs quand ils sont « victimes » des phénoménes d’induction. Cette procédure permet de
représenter 1’induction mutuelle entre conducteurs, faisant agir chaque conducteur a la fois comme
source et comme victime. C’est le second conducteur qui assure le retour du courant circulant dans
I’un des conducteurs,

La procédure utilisée pour évaluer le potentiel vecteur et la densité de courant repose sur les étapes
suivantes :

- Dans une premiere étape les solutions des équations d"Helmholtz pour la densité de courant et le
potentiel vecteur sont représentées sous forme de séries dont les coefficients sont déterminés dans
une étape ultérieure :

- Les courants dans les fils minces a 1’origine des phénoménes d’induction, ont des intensités qui
correspondent a la valeur de la densité du courant calculée au point correspondant au sous-conducteur,
multiplié par la surface de celui-ci. La somme de ces courants donne le courant total I, imposé comme
circulant dans les conducteurs, et équivalent a la densité de courant & déterminer, intégrée sur la
surface du conducteur.

- Le potentiel magnétique vecteur est évalué a I'intérieur et a I’extérieur du conducteur et est dii a
différentes contributions :

- A I’extérieur du conducteur on a :

- La contribution des fils minces dans 1'un des conducteurs en un point du
diélectrique;

- La confribution dans le diélectrique due a la densité de courant J dans le deuxiéme
conducteur dii a I’excitation par les fils minces dans le premier conducteur.

- A I"intérieur de chacun des conducteurs, 1’équation de Helmholtz est résolue.

A partir de 1’expression du potentiel vecteur obtenue, on peut exprimer le champ magnétique radial et
angulaire et écrire les équations de continuité a la frontiére de chaque conducteur. On obtient alors un
systéme a partir duquel il est possible d’écrire explicitement le courant a I’intérieur du conducteur.
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L’effet de peau est pris en compte dans le terme d’ordre 0 qui est identique & celui de la théorie
classique de Schelkunoff.

Afin d’évaluer I’intensité de courant dans les fils minces, on suppose que I’intensité de courant est
constant sur le fil mince et équivaut a la densité de courant, au point correspondant au conducteur,
multiplié par la surface du sous-conducteur. On obtient alors un systéme de 2N équations, N étant le
nombre de fils minces constituant le conducteur, permettant d’évaluer le courant, puis de déterminer la
densité de courant et le champ magnétique en tout point de chaque conducteur.

Dans la Section 3.4 une expression explicite de I'impédance interne, fonction de la densité de courant
et du champ magnétique, est obtenue.

Dans la Section 3.5 certains détails sont donnés pour la distribution des fils minces, et la méthode est
validée par le logiciel Comsol utilisant la méthode des Eléments Finis. L.a comparaison des résultats
obtenus avec I’approche proposée pour la densité de courant et pour I’impédance interne des
conducteurs est en effet satisfaisante.

Dans le Chapitre 4, d’autres effets a inclure dans les modeles de cdble sont représentés. Dans la
Section 4.1 I"impédance de retour par le sol est traitée et différentes formulations sont comparées.

Dans la Section 4.1.2 la méthode proposée par Legrand pour la résolution de 1’intégrale de Pollaczek
en utilisant I’intégration quasi Monte Carlo est présentée et appliquée a notre cas d’étude.

Dans la Section 4.1.3 cette méthode d’intégration est proposée, comme la solution de I’intégrale de
I’'impédance de retour par la mer, d’intérét pour les cables sous-marins. L intégrale a résoudre dans ce
deuxiéme cas est différente, comme 1’est le changement de variable utilisé, afin d’adapter les bornes
d’intégration afin que la méthode d’intégration quasi Monte Carlo puisse étre utilisée.

Dans la Section 4.2 I’effet de la couche de semi-conducteur, existante entre 1’isolant et les parties
conductrices, sur I’impédance et 1’admittance est analysé, en utilisant un modeéle proposé par Ametani
qui adapte la théorie coaxiale a ce cas.

Enfin dans la Section 4.3 une analyse de sensibilité est réalisée sur les termes décrits dans les deux
sections précédentes. Ceci est réalisé en utilisant une analyse de sensibilité, prenant en compte
I’incertitude des données d’entrée (électrique et géométrique) et son effet sur les valeurs des
paramétres linéiques de cables. Cette étude a donné lieu a I’application d’une méthode de collocation
stochastique, présenté dans I’ Annexe A.

Dans le Chapitre 5 le modéle global de céble tripolaire est assemblé en utilisant les notions et les
termes discutés le long du manuscrit, combinant des termes existants et des contributions originales.

Dans la Section 5.2 des simulations sont effectuées, afin de comparer le modéle proposé avec le
modele « Pipe Type » existant.

Dans 1I’Appendice A, la méthode de collocation stochastique est décrite. Cette méthode permet
d’analyser la variation d’une fonction et de déterminer ses moments statistiques (moyenne et variance)
quand une, ou davantage, des variables d’entrée sont aléatoires, leur loi de distribution étant connue.

Ceci est similaire & ce qui peut étre réalisé avec des techniques de type Monte Carlo, mais avec trés
peu d’itérations (moins de 10, comparé a des milliers pour la méthode Monte Carlo). La dérivation de
cette méthode consistant a développer la fonction d’une variable aléatoire sur une base de polynémes
de Lagrange est discutée. On montre comment la méthode permet d’obtenir les moments statistiques
de la fonction pour la (les) variable(s) d’entrée aléatoire selon sa(ses) loi(s) de distribution(s).

La formule est évaluée pour différentes valeurs (dits points de collocation) et poids (qui sont eux aussi
donnés par la méthode selon la distribution de la variable aléatoire utilisés pour évaluer la moyenne et
la variance de la fonction observée. Cette méthode peut étre employée dans notre cas, pour des
analyses de sensibilité de I’'impédance et de 1’admittance a la variation des données d’entrée.

Dans I'Appendice B on a comparé le calcul des impédances de l'dme et de l'armure entre la
formulation qu'on propose et le modéle Pipe Type dEMTP-RV.
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SOMMARIO

Capitolo 1. L’introduzione descrive la motivazione di questa ricerca dottorale che si svolge nel campo
generale della propagazione dell’energia a corrente alternata nei cavi a media ed alta tensione e si
concentra sulla simulazione della propagazione nei sistemi di cavi sottomarini.

Si premette che per tali sistemi occorre migliorare la modellazione dei programmi di simulazione dei
regimi transitori perché, sebbene modelli esistano gia da lungo tempo, alcuni degli effetti che
intervengono nella propagazione delle onde elettromagnetiche vi sono stati descritti in modo
approssimato o del tutto trascurati. Pertanto questa tesi si concentra nella descrizione dei parametri dei
cavi ed in particolare su quella delle impedenze in quanto la dipendenza dalla frequenza di esse
necessita la loro corretta rappresentazione perché fondamentale nella simulazione dei fenomeni
fransitori.

11 capitolo 2 & dedicato alla presentazione dei modelli di cavo esistenti.

Nella sezione 2.1 si danno definizioni introduttive, che saranno poi usate in tutto il lavoro, sul concetto
di linee TEM e sui parametri per unitd di lunghezza: si presenta inoltre il codice per quale
svilupperemo i modelli di cavo che ¢ 'EMTP-RV. Segue la descrizione della tecnologia impiegata nei
cavi dei quali ci si occupa, dell’influenza dei vari strati di copertura metallica e dielettrica sulla
propagazione elettromagnetica e pertanto dell’importanza di questi nella rappresentazione dei
parametri dei cavi. Le caratteristiche descritte sono per lo pit1 comuni a tufti i cavi a media ed a alta
tensione ma I’interesse dello studio si concentra su quelli sottomarini tripolari.

Nella sezione 2.2 sono introdotte le equazioni dei telegrafisti e ed i modelli da esse derivati. Si
introducono anche la costante di propagazione e I’ammettenza caratteristica derivate dai parametri
trasversali la cui rappresentazione costituisce 1’obiettivo principale di tali modelli. Siccome in linee a
piu conduttori la relazione tra correnti e tensione & di tipo matriciale, tutti i parametri che le riguardano
hanno forma di vettori o matrici e, data la presenza di parametri mutui nelle matrici di impedenza ed
ammettenza, tali matrici sono piene cosi che la soluzione delle equazioni TL sono meno semplici che
nel caso di linee con un solo conduttore.

Viene introdotto il dominio modale con lo scopo di disaccoppiare tali equazioni e di trasformare i
parametri di fase in parametri modali cosi che ogni modo di propagazione possa risolversi come in una
linea monofase. I vari modi consentono una decomposizione cosi che la propagazione pud essere
rappresentata da modi diversi sia coassiali, omopolari o inter-schermo.

Dopo questa descrizione, nella sezione 2.2.3 si introducono le equazioni modali che consentono di
adattare il modello alla rappresentazione usata nel codice EMTP-RV: la linea o il sistema di cavi sono
rappresentati con due nodi: I’ingresso e 1’uscita, e sono descritti dalle correnti e tensioni presenti a tali
due nodi in un certo istante. Ad ogni istante successivo, le correnti e le tensioni all’istante precedente
consentono di rappresentare la propagazione. Da questa rappresentazione possono ricavarsi i parametri
costanti CP ed i modelli variabili con la frequenza FD o FDQ. Tali modelli differiscono per il modo
con il quale essi rappresentano i parametri dipendenti dalla frequenza: i modelli FD richiedono
complesse procedure d’adattamento per riprodurre la costante di propagazione, 1’ammettenza
caratteristica (e, nel modello FDQ, la matrice di trasformazione Q) mediante 1’'impiego di funzioni
razionali. Questa rappresentazione € necessaria a consentire convoluzioni numeriche che permettono
di prendere in conto i precedenti valori delle correnti e tensioni ai diversi nodi.

Nella sezione 2.2.6 segue la descrizione dei modelli nel dominio delle fasi.

Nella sezione 2.3 & descritta la valutazione dei parametri d’un cavo coassiale. Il metodo usato per
valutare 1I’'impedenza, e cioe¢ quello della maglia, consente di prendere in conto i vari effetti presenti
nel cavo, resistivi ed induttivi, compreso 1’effetto pelle sulle impedenze superficiali cosi inglobando la
dipendenza dalla frequenza, Il metodo della maglia separa i predetti effetti in impedenze parziali ed
ammettenze parziali e, nella sezione 2.3.2 si derivano questi termini partendo dalle equazioni di
Maxwell ed illustrando la teoria coassiale sviluppata da Schelkunoff.
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Nella sezione 2.4 si segue un procedimento simile per i cavi tripolari per i quali i parametri necessari
per il modello sono in parte quelli ottenuti nella sezione 2.3, mentre diversi sono i parametri che
riguardano 1’armatura. Si spiega come tali parametri, riferiti alla superficie interna dell’armatura, in
parte comprendono 1’effetto di prossimita e nella sezione 2.4.3 si descrive la teoria di Tegopulos e
Kriezis. Tale teoria introduce il concetto di un filamento per rappresentare la corrente che cirola nei
conduttori interni e che induce una variazione della distribuzione della densitd di corrente
nell’armatura. Le ipotesi introdotte, che sono anche alla base della teoria sviluppata da noi sono: le
correnti di spostamento sono trascurate, il materiale e considerato non ferromagnetico, il filamento che
costituisce la fonte dell’induzione é di lunghezza infinita ed € assialmente parallelo al conduttore
interessato cosi che possono essere trascurati gli effetti di estremita riducendo il problema ad essere
bidimensionale, infine la corrente di ritorno avviene attraverso il conduttore interessato.

Nella sezione 2.4.6 ¢ mostrato come la teoria di Tegopulos & stata usata dapprima da Brown Rocamora
e poi da Kane per ottenere le impedenze di conduttori sia solidi sia cavi includendo I’effetto di
prossimita.

Il capitolo 3 é dedicato al metodo originale che proponiamo per la valutazione delle impedenze
interne.

Nella sezione 3.2 si tratta il caso di due conduttori cilindrici paralleli la cui prossimita da luogo ad
induzione reciproca. Nella sezione 3.3 1’approccio teorico derivato per questo caso & esteso a quello di
conduttori cavi (come le guaine e le armature di cavi); il conduttore fonte dell’eccitazione &
rappresentato da un numero di sub-conduttori che si considerano fili sottili quando si considerano
fonte di induzione ma che acquistano sezione dimensionale quando se ne considerano bersaglio.
Questo procedimento permette di rappresentare la mutua induzione tra i conduttori: la corrente nel
conduttore 1 si considera ritornare nel conduttore 2 e, di piu, la somma delle intensita di corrente nei
conduttori sottili da la corrente totale circolante nel conduttore.

In un primo tempo si rappresentano la densitd di corrente ed il vettore potenziale con espressioni
contenenti le intensitd di corrente nei fili sottili ancora ignote. Tali intensita di corrente sono poi
calcolate in un secondo tempo.

La procedura per calcolare intensita di corrente e vettore potenziale seguono i seguenti passi:

- Derivazione di una espressione generica per il vettore potenziale A e la densita di corrente J;

- le correnti nei fili sottili, sorgenti d’induzione, hanno intensita corrispondenti al valore della
densita di corrente calcolata nel punto occupato dal filo moltiplicata per la sezione del sub-
conduttore. L.a somma di tali correnti fornisce la corrente totale I che si impone come fluente
nei conduttori; questa & equivalente alla densita di corrente ancora da determinare integrata
sulla sezione del conduttore.

- Il vettore potenziale magnetico & calcolato interno ed esterno al conduttore ed ¢ dovuto a due
diversi contributi:

o All’esterno del conduttore si considera:

= il contributo dei fili sottili dei conduttori in un punto del dielettrico (cio
quando il conduttore & considerato come fonte dell’induzione);
= il contributo entro il dielettrico dovuto alla J nel secondo conduttore come
conseguenza della eccitazione da parte dei fili sottili nel primo conduttore.
o All’interno del conduttore si risolve 1’equazione di Helmholtz.

Conoscendo il contributo del potenziale vettore all’esterno e all’interno del conduttore, possiamo
esprimere le componenti di campo magnetico radiale ed angolare ed scrivere la condizione di
continuita di entrambi sul bordo del conduttore. Quest’ultimo passo consente di ottenere un sistema
dal quale si calcolano i coefficienti ignoti per I’espressione di J ed A. A partire da questo punto ¢
possibile esprimere esplicitamente la densita di corrente all’interno dei conduttori.

Dell’effetto pelle tengono conto i termini d’ordine O che sono gli stessi che nella teoria classica di
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Schelkunoff.

Per calcolare I'intensita di corrente nei fili sottili noi supponiamo che essa sia uguale al valore della
densita di corrente valutata nel punto nel quale si trova il filo moltiplicata per la sezione del sub-
conduttore. Ci0 consente di scrivere un sistema di 2N equazioni dove N ¢ il numero dei fili nel quale il
conduttore & stato suddiviso. L intensita di corrente nel filo permette di scrivere la densita di corrente
in ogni conduttore ed il vettore potenziale in ogni punto.

Nella sezione 3.4 si ricava il valore dell’impedenza interna in funzione della densita di corrente e del
campo magnetico nel conduttore.

In 3.5 si danno particolari sulla distribuzione dei filamenti ed il metodo é comparato con i risultati dati
dal programma Comsol. Vengono validati sia il valore della densitd di corrente nei conduttori sia i
valori dell’impedenza interna.

Nel capitolo 4 si presentano ulteriori effetti da includere nei modelli di cavo.

In 4.1 si tratta dell’impedenza del ritorno di terra e si confrontano diverse formulazioni. In 4.1.2 si
illustra il metodo proposto da ILegrand per la soluzione dell’integrale di Pollaczek usando
un’integrazione quasi Monte Carlo.

In 4.1.3 si propone tale metodo d’integrazione per risolvere 1’integrale dell’impedenza del ritorno via
mare che € d’interesse nel caso dei cavi sottomarini. In questo secondo caso 1’integrale da risolvere ¢
differente e cosi & il cambiamento di variabile utilizzato per adattare i limiti d’integrazione onde
consentire I’applicazione del metodo quasi Monte Carlo.

In 4.2 si analizza 1’effetto sull’impedenza ed ammettenza di uno strato semi-conduttore usando un
modello dovuto ad Ametani che adatta a questo caso la teoria coassiale.

Nella sezione 4.3 si esaminano i termini dell’impedenza del ritorno via mare e dell’ammettenza dovuti
allo strato semi-conduttore con un’analisi di sensibilita in quanto i dati (e cioé i parametri elettrici e
geometrici) sono in qualche modo incerti. Cid viene fatto impiegando il metodo di collocazione
stocastica presentato in un’ Appendice.

Nel capitolo 5 si mette assieme un modello globale di cavo tripolare impiegando le nozioni ed i
termini discussi nel resto del lavoro e ci0 utilizzando i termini gia esistenti ed i contributi originali.

Nella sezione 5.2 si svolgono simulazioni con lo scopo di confrontare il modello da noi proposto con
I’esistente modello Pipe Type che ¢ il punto di partenza per lo sviluppo del nostro modello.

Nell’Appendice A si descrive il metodo di collocazione stocastica. Questo metodo consente di
analizzare la variazione di una funzione e definire i suoi parametri statistici (media e varianza) quando
una o piu delle variabili d’ingresso sono casuali ma & nota la loro distribuzione. Cid € quanto pud
ottenersi anche con tecniche Monte Carlo ma con molte meno iterazioni (meno di 10 rispetto alle
migliaia richieste dal Monte Carlo).

Si discute la derivazione di questo metodo dai polinomi di Lagrange e si mostra come esso

permette d’ottenere alcuni valori delle variabili d’ingresso causali a seconda della loro distribuzione
statistica. Di questi valori (detti punti di collocazione) viene valutata la formula, ed alcuni pesi (forniti
dal metodo e anch’essi funzione della distribuzione della variabile casuale) vengono usati per valutare
la media e la varianza della funzione osservata.

11 metodo puod essere impiegato nel nostro caso per 1’analisi di sensibilita delle formule dell’impedenza
e dell’ammettenza alla variazione dei dati iniziali.

Nell'Appendice B i risultati ottenuti per le impedenze dell'anima e dell'armatura tramite il modello
proposto e il modello Pipe Type di EMTP-RV sono confrontati.
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1. INTRODUCTION

Cables are extensively used for underground alternating current electricity distribution and
progressively over longer distances. The proliferation of offshore wind farms which need
interconnections with the mainland has also extended their use underwater. For the latter application,
and for both low and high voltage, widespread use is made of three-core cables as their fabrication
and installation costs are lower than of single-core ones.

Cable networks are affected, though in ways quantitative and qualitative different from the overhead
ones, by many transient phenomena due to switching operations, lightning induced over-voltages,
presence of harmonic frequencies and others, all with complex wave shapes. A proper analysis of their
electromagnetic behaviour requires, therefore, the availability of models that can represent the cables
in a large band of frequencies ranging from the industrial ones up to the hundreds of kilohertz.

Models of cables are available in the well-known Electro Magnetic Transient Program software
(EMTP-RV) and are achieved in the time-domain. These models are assembled using different
techniques but all of them need a precise knowledge of the frequency domain parameters of the cables.
To obtain these parameters, namely the impedances and admittances, requires the analysis of the
various electromagnetic phenomena which take place inside the cables’ conductive and insulating
parts.

Now, when compared to overhead lines which are only composed of conductors, cables have a much
more complicated structure which also means a more complex geometrical and electromagnetic
description. Their impedance is also more frequency dependent, by reason of the presence of different
metallic layers.

Cables have been studied for a long time, first for the transmission of signals and then for that of
energy at industrial frequencies, therefore many analytical formulations have existed for almost a
century; though some effects like the proximity one have received secondary attention. Due to its
frequency dependent nature the proximity effect is one of the main focuses of this dissertation.

New technological solutions have also been introduced in their fabrication, such as semi-conducting
layers in the insulation and different types of armouring in submarine cables; the electromagnetic
effect due to these added materials needs also to be accounted for. Other effects, like the presence of
ground and water have been described using approximate formulations.

Much work on all these different subjects has been done in the last 30 years thanks also to the
introduction of novel numerical techniques, like for instance the Finite Element Method, facilitated by
ever more powerful computers.

The modelling of cable systems in the EMTP software follows two main steps, namely:

- the evaluation of the per unit length (p.u.l.) parameters in the frequency domain input for the
second step;:

- the representation of the cables systems in the time domain through the use of different
models and fitting techniques.

This thesis focuses on the first step and our scope is dual: (a) to analyse the effect of some phenomena
not accounted before, and (b) also try to improve the analysis of certain other phenomena already
described, an issue that requires the implementation and use of our improved cable in the EMTP-RV
environment.

Before dealing with these subjects we first mention the existing technology of cables: then we look at
the state of the art of modelling describing in detail the existing models present in the EMTP-RV
Cable Data module.

The EMTP-RV module Cable Data module calculates the cable parameters in the frequency domain;
these parameters are then adapted to obtain different models that solve Transmission Line equations.
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Every conductor (excepted the ground, that acts as zero volts reference) is described with phase
currents and voltages. This means that a single-core cable with sheath has two “phases™ and that those
with three cores, each having a metallic sheath, plus a common armour have seven “phases”. Some
line models use the modal domain approach that uncouples the different propagating modes: some
others operate directly on phase quantities.

Transmission line models. In Chapter 0 we show how the modal domain allows to uncouple
and solve the Transmission Line equations, the modes for an underground cable system are defined.
Finally transmission line models used in the EMTP-RV are discussed.

The loop method and single-core cables. In order to evaluate the impedances and
admittances, the loop method is used. First introduced in [1] [2], this method consists in applying
Kirchoff’s laws to the individual different loops formed between each pair of conductors and use for
this description loop voltages and currents; loop voltages are simply voltages between conductors,
loop currents are surface currents defined ad-hoc in order to separate the electromagnetic effects of the
different loops.

For a single-core cable, two loops are hence defined: one between core and sheath and a second
between sheath and ground. In this way the effect of the surface impedance of conductors, the external
inductance in the insulation and the admittance between conductors are correctly represented and
accounted for. Transforming the quantities to the phase domain is straightforward and permits the
evaluation of each term of the phase impedances and admittances matrices, as a sum of partial
impedances and partial admittances. We show the electromagnetic derivation of these partial terms
using electromagnetic notions and the coaxial theory introduced by Schelkunoff [3].

The Pipe Type cable model. The pipe type three-core cable model in the EMTP, first
introduced in [4] [2]. makes also use of the loop theory and since the inner cables contained into the
pipe are similar in construction to single-core cables, the same formulas are used to build the matrices
which in this case are restructured in one “internal matrix” where one additional loop represents the
pipe (or armour) conductor.

The effect of the pipe is accounted for in two additional matrices:

- a matrix representing the inner surface of the pipe, that also partly includes the proximity
effect due to the current circulating in the inner conductors;

- a matrix representing the shielding effect of the pipe and the skin effect present on its outer
surface.

As mentioned, the pipe inner surface matrix partly includes the proximity effect. A theory for this
effect was developed by Tegopoulos and Kriezis in [5] [6] and was further elaborated in [7] in order to
apply it to cables. At the end of Chapter 0 we detail this theory and illustrate how it can be applied to
the calculation of the matrix terms previously mentioned.

The proximity effect. This effect is of great interest to us, and we have developed a method,
inspired by the works just cited, that corrects some of the approximations presently used in the
literature on the subject, principally the use of one filament to represent a conductor. We also
introduce a sort of mutual effect, which accounts for the proximity effect between all conductors. The
method, which is semi-analytical, uses the dual concept of thin-wires and sub-conductors to describe
the current density inside the conductors and the eddy currents due to magnetic induction. It is fully
developed in Chapter 0 where we also explain how it is practically implemented.
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Other effects. The effect due to the presence of semi-conducting layers and that of the ground
return are treated in Chapter 4.

The effect of the ground return has been previously studied carefully in many publications, starting
with those by Pollaczek [8] but other formulations have been given [1] [9] [10]. as well for different
soil configurations. We illustrate the work of Legrand et al. [11] in solving the Pollaczek integral using
the Quasi Monte Carlo integration technique. This technique gives very accurate results, with fast
computing time.

Since a good model is needed in submarine cables to describe the sea return impedance, we adapt what
is described in [12] [13]. We show how quasi Monte Carlo method can also be used to solve the
integrals describing impedances formulations for a two layer soil (i.e. the sea and seabed) upon which
the submarine cables are laid.

We also infroduce the formulations given by Ametani in [14] for the semi-conducting layer and deal
with the effect they have on impedances and admittances; the effect on the latter is of greater
importance and therefore needs to be included in a global model for both single-core and three-core
cables.

The uncertainties. Inaccuracies in the models are introduced by uncertainties in the
knowledge of certain of the parameters used in the description of cable systems. Geometrical
parameters, like the thickness of insulation, and of metallic layers, are influenced by the manufacture
and can be described using a uniform distribution. Many other parameters can vary in real situations
and give rise to inaccuracies or uncertainties.

In order to understand how the different uncertainties affect the global model, and the simulations, a
probabilistic approach must be taken. To do that we present in the Appendix the technique of
stochastic collocation. This method is an alternative to the well known Monte Carlo method, and
allows a complex numerical analysis, but with a reduced number of simulations.

The three-core cable model. Chapter 5 summarizes the implementation of a three-core cable
model and gives recommendations for transient simulations: the model is then applied to real cable
system and some transient simulations are carried out comparing them to other existing ones, in order
to show its advantages.
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2.  Areview of existing models of underground cables

2.1. Preface

2.1.1. Introductory definitions

/ conductor 1
A A

V(z) V(z+dz)

;Y reference conductor y

Fig.1 — Single phase line with reference conductor

V(z) G’ C'—— |V(z+dz)

A
Y

adz

Fig.2 — Line parameters in a single-phase line

In Fig. 1 is shown a single conductor transmission line and the ground which acts as a reference
conductor for the voltage and as a return conductor for the current. In our study we shall consider a
Transverse Electromagnetic Mode of propagation (TEM). In Fig. 2 we present the equivalent circuit of
a transmission line (of infinitesimally longitudinal length dz); this circuital representation requires the
knowledge of the parameters represented in the figure, that describe the line, namely its per unit length
(p-u.l) series impedance Z =R'+ joL'and its per unit length shunt admittanceY = G'+ joC"'.

This representation is called the Transmission Line (TL) approach and the system represented here is a
single-phase one; a multi-phase system would generally consists of N line conductors plus the
reference one, the latter, in real systems, is either the ground or a perfectly conducting plane.

When a multiphase system is considered, its electrical description is given by a matrix representation:
currents and voltages are column vectors of dimension /NxI] with N being the number of phases, the
p-ul. impedance and admittance are [NxN] matrices. The extra-diagonal terms of these matrices
include mutual inductances and capacitances that lead to a coupled system to be solved in order to
determine currents and voltages on the different phases. Accurate models based on the Transmission
lines are introduced to solve this system and we analyse them in 2.2.

In the case of cable lines models exist of both the single core type that we examine in 0 and the three-
core one that we shall analyse in 2.4. The improvement of these models is the main objective of our
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thesis.

To evaluate currents and voltages on cables, we use EMTP-RV, namely the Electromagnetic Transient
Program Restructured Version, which is a software for the simulation of transients in power systems.
It allows representing complicated transmission and distribution networks, with different transmission
lines of both the overhead and underground type. For cables various models exist and these shall be
described in the next section.

We now give a brief overview of the different components of the cables that interest us, as they have
an effect on the evaluation of cable parameters.

2.1.2. Components and installation techniques of Medium and High
Voltage Cables

Fig.3 — Two single core cables with Milliken conductors and one submarine three-core cable
with double armour

Medium and High Voltage Alternating Current (HVAC) underground and submarine cables
generally consist of the following components (as shown in Fig.3 and Fig.4)

- Insulation

4 - Semiconducting layer
5 - Metallic sheath

6 - Insulating Jacket

7 - Metallic Armour

8- Extemﬁ_llmlaﬁng

Fig.4 — Components of a submarine three-core cable

Core
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Conductors of underground and submarine cables are made of either annealed copper or alumjm'uml;
they are solid, round or even oval for the smaller cross-sections, most frequently they are stranded
from round wires and submitted to compression in order to reduce the interstices between the strands;
for the larger cross sections (greater than at least 1.000 mm? for copper and 1.200 mm? for aluminium),
they are of a segmental-stranded (also known as Milliken) design. In the latter design the conductors
are composed of some 5 to 7 segment-shaped sub-conductors spirally laid up into a round conductor
and insulated from each other by means of semi-conductive or insulating tape: each sub-conductor is
the result of rolling into segment shape a stranded assembly of round wires: each individual wire, as it
proceeds along the sub-conductor changes its radial position from close to far of the centre and this
considerably reduces the skin effect at industrial frequencies. And an almost complete elimination of
the proximity effect at these frequencies is obtained by the spiral assembly of the segments as each
conducting wire follows a path alternating between areas close and far away to the other phase
conductors.

Solid conductor Stranded conductor Milliken conductor
Fig.5 — Different technologies for the core conductor
Insulation

The insulation must withstand the stress due to very high electric field present between core and
metallic screen.

In the past impregnated-paper cable has been used extensively, but its use is now limited to some
HVDC cables. Gaseous insulation is also possible, but not used in France.

Most cables for AC transmission used in France (both for medium and high-voltage, underground or
submarine applications) use Ethylene Propylene Rubber (EPR), Polyethylene (PE) or Cross Linked
Polyethylene (XLPE). Only slightly different in the chemical composition from PE, XIL.PE withstands
a higher operating temperature of 90°C. Its use is now more and more widespread for all voltage
levels.

Semi-conductive layer

Due to the high electric field, if small void are present between the insulating layer and the conductors
partial discharges develop that can permanently damage the cable. The semi-conductive layer is used
to avoid this problem, as well as to make the electric field perfectly radial. It is normally made of
XLPE doped with carbon-black [15].

Screen

The screen conductor or metallic sheath can be made out of copper wires, aluminium or lead, the latter
used in submarine cable for water-tightness. Its main function is to carry short-circuit current, and
provide protection from water and electromagnetic interference.

Armour

Present only in submarine cables, it has mainly a mechanical function to sustain the weight of the
cable during its laying, and to assure protection, from corrosion and from mechanical shocks. It is
normally made out of helical ionised steel wires and can be double in low depth water near shores, to
protect the cable from anchors.

! The choice depends on many technical and economic factors
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Jacket

A further protection layer normally made out of plastic materials like PVC (Polyvinyl Chloride) or
other plastics. In underground cables it is the layer in contact with the ground.

Further materials are used in the construction of submarine cables, like swelling tapes for water
absorption, metal tapes to allow electric contact between metallic sheaths and the armour, and space
fillers.

2.1.2.1. Installation techniques of MV and HV cables

Medium and High voltage cables can be installed in a conduit or laid in the ground.

When for three-phase systems three-single core cables are used two different installation techniques
are possible: a triangular configuration and a flat configuration. The different configurations cause a
difference in the electromagnetic and thermal coupling between the different cables.

Submarine cables are normally laid directly on the sea/seabed interface. In some cases robots are used
to dig in the seabed and bury the cables to protect them from external mechanical aggressions.
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2.2. Transmission line equations and relevant models

Models used for underground cables are generally based on transmission line theory and therefore the
assumption of transverse electromagnetic (TEM) propagation. The propagation is represented by a
propagation constant y that describes how current/voltage waveforms are attenuated and phase shifted
proportionally to the length of the line they cross.

A cable line section is represented by a block composed of two nodes that are the interfaces between
the EMTP and the cable model that we shall now describe.

As we shall see in a multiphase line, the relationship between currents and voltages on the different
“phases™ is not straightforward. If the modal transformation is used, it is possible to mathematically
decompose the propagation into a superposition of N modes (N being the number of phases in the
system) each one having a characteristic delay and attenuation; each one of these modes is represented

using a transfer function H =e ’'(where 7 is the propagation constant) and a characteristic
admittance Y, that links currents and voltages of each mode.

The more widespread models are the ones that use the modal transformation. A brief description of
phase models? is given nonetheless at the end of this chapter, as their use is more and more common.

Transient models need to be valid for a vast range of frequencies and in EMTP-like software two
models based on the modal transformation exist:

- A Constant Parameter (CP or Bergeron) model that is valid and correct at one frequency. In
the CP the line is supposed to be lossless (the propagation constant only consists in the phase
constant beta for each mode) and losses are reintroduced subsequently by lumped resistances.

- A Frequency Dependent (FD or FDQ) model that is valid for a wider range of frequencies. As
the propagation constant and characteristic admittance are taken to be frequency-dependent,
fitting techniques are employed to represent correctly H and ¥, in the time domain using
rational functions.

Since EMTP works in the domain of phases and the Cable Auxiliary routine (the component that
implements the cable models) operate in the modal domain, a transformation matrix, i.e. Q, is used
to go back and forth between phase and modal domain. In the same way as for the H and Y,
matrices, Q is constant in the CP and FD model, whereas it is considered frequency dependent and
fitted with rational functions in the FDQ model.

2.2.1. Multi-conductor transmission line equations

The propagation of current and voltage waves on transmission lines is described in the frequency
domain by the two differential equations

_ div] =[Z'1[1] (2.2.1)
dz
_ dg] =[Y"1[V] (22.2)

where [Z’] and [ Y] are the per unit length (p.u.l.) impedances and admittances matrices and [ 7] and [[]
are voltage and current vectors.

Deriving with respect to z and replacing they become

Phase models represent the propagation always using the transmission line equations, and propagation
constants, but without uncoupling these equations as done in the modal domain

25



o [Z[Y][V] (2:2.3)
-z (2.2.4)

In order to solve more easily the multi-conductor transmission line equations it is convenient to use the
modal domain approach, because in that domain the p.u.l. parameters are represented by diagonal
matrices and therefore the equations linking modal currents and modal voltages are uncoupled and can
be solved separately as if each mode equations were describing a single-conductor line.

2.2.2. Generic modal approach to determine propagation modes

In multi-conductor systems the uncoupling of transmission equations (2.2.3) and (2.2.4) makes their
solution easier. For this purpose we introduce a diagonalization matrix [4], such as the equations
become:

da’1v,]

= =[AllV,] 2.2.5)
dd[i,,,] ~[AJ[L,] (2.2.6)

The elements of [A] are the eigenvalues of the matrix product [Z°][Y’], whereas its eigenvectors
constitute the voltage transformation matrix [7;] which in turn allows the definition of the modal
voltages V,, and currents [,

V1=[7107,] V1= [LT'TV] (22.7)
1=[7]z,] [2,1=[L]"[1] (228)
where [T3]=[T,]"

Similarly, modal impedances and admittances can be defined:

[Z,1=[LUZILT" [L1=[GIYILT 229

The equations are now uncoupled, since matrix [4] is diagonal and its diagonal terms are the square of
the propagation constants y,,; of the different modes.

d’v,, _
o AV mWith 4, = Vi

The modal characteristic impedance can be obtained as

Z, =+Z,1Y,,and back in the phase domain the characteristic impedance matrix is
[Z]=[LZ T

2.2.2.1. Fortesque transform

The Fortesque transformation introduces symmetrical components. It can be applied only if the
matrices of the line parameters are symmetrical, i.e. that all self-impedances are the same and all
mutual impedances are the same; in this case the line is said to be balanced, and equations can be
transformed using a constant (frequency independent) transformation matrix.

The transformation matrix is complex and in three phase systems is:
1 1 1
1 2
S=—7|1 a a (2.2.10)

V3 :
a a
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2
isT .
where a=¢ 3 . The components can be obtained as:

V=5V,

o (22.11)
V=8

and the transmission equations expressed using the symmetrical components are uncoupled:

v,
B

dVP 3
e =Z.1 (2.2.12)
- dr/" :ZHIH

dx

where the 0, p and n stand for zero, positive and negative sequence.

Only overhead lines can be generally considered balanced, if their conductors are transposed regularly,
whereas due to the geometrical arrangement of their conductors, underground and submarine cable
lines cannot. For unbalanced overhead and cable lines, the modes have to be determined using a more
general approach.

2.2.2.2. Clarke tranforms

Another transformation method is the & , £ ., 0 method (or Clarke Method). This is the method used in
EMTP: its advantage compared to the symmetrical components is that the transformation matrix is real:

1 2

-1

0
=)
1
S=— V2 2 (2.2.13)
\E 1 __1 _‘/5
V2 2
The voltages can be transformed as
-1
V=1V Vygo=1TV
And the uncoupled equations are:
dv,
- —=Z,]
dx 00
_ =Z,1I, (2.2.14)
dx
dv
B _
- —==Z,
dx BB
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2.2.2.3. Propagation modes in underground cables

As a result of the decomposition mentioned before the total waves propagating on a multi-conductor
transmission line can be represented as the superposition of separate propagating modes, being current
and voltage waves with different propagation constants.

These modes can be individuated by observing the transformation matrices T; and T described in
section 2.2.2.

We add that these modes are only a mathematical representation and are precisely defined only in
ideal cases and, as we shall see, the voltage/current modal transformation matrices from which these
modes are defined are complex and frequency dependent. The frequency dependency is particularly
strong for underground cables (due to the frequency dependence of internal resistances and
inductances and to ground return impedance). The propagation also varies depending upon the
installation techniques of the cables (see 2.1.2) since the ground return mutual impedances are a
function of the mutual position of the individual cables.

We shall show that, in analogy with what is done with three-phase overhead lines, the current modes
of a set of three underground cables laid in a flat configuration can be divided in three types of modes,
each one representing the path followed by the currents flowing in the three phases of the transmission
system [16] [17]. Since each sheathed cable consists of 2 conductors, there are 6 possible modes which
give 6 possible configurations that could be used in practical measurements.

Table 1 — Characteristics of each single-core cable

Material Radius
Core Aluminium 19.6 mm
Insulation Cross-linked Polyethylene 36 mm
Sheath Aluminium 37.6 mm
Jacket Polyethylene 43.6 mm

For three single-core cables with characteristics given in Table 1 laid in both flat and trefoil formation,
the cables being 25 cm apart, the evaluation of the transformation matrix 7; and T, at IMHz clearly
show the different modes in each column.

1 0 0 0 ) 1 0 0 —0302 0398 —05
1 0 0 —-060 079 -1 0 0 0 —0302 0398 —0.5
- 0 1 0 0 0 0 - 01 0 0563 0427
0 -1 0 112 0854 0 0 0 0 0563 0427
0 0 1 0 0 0 0 0 1 —0302 0398 05
0 0 -1 -060 079 1 0 0 0 —0302 0398 05
1 0 0 0 0 o0 1 0 0 —0289 040 —0.5
1 0 0 -0578 0816 -1 0 0 0 —028 040 —05
01 0 0 0 o0 01 0 0577 040 0
Lewa =l 0 1 0 115 0816 0| |0 0 0 0577 040 0
0 0 1 0 0 o0 0 0 1 —028 040 05
0 0 -1 -0578 0816 1 0 0 0 —028 040 05

The current transformation matrices are the easier to interpret. We can see that we always find 3
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coaxial modes (one for each cable), one inter-sheath mode, one 0-sequence (or common) mode with
injection on the sheaths and one bifilar mode. A graphical representation of the different modes is
given in Fig.6.
I
P

Coaxial mode

N

Inter-sheath mode

0-sequence mode

Bifilar mode
Fig.6 — Current modes in three single-core cables laid together in flat or trefoil formation

2.2.3. Solution for one mode or single phase line

If we consider a single phase line, or one of the modal equations obtained before, phase voltages and
as a combination of a forward and a backward travelling wave:

V=Ve'""+Ve"

I p—

currents (or modal voltages and currents) are scalars and a solution to the TL equations can be found
Ie”" +1¢€"

(2.2.15)
can be rewritten as:

(2.2.16)
V=Y"(Le -1e")

here y =+/Z'Y"is the propagation constant, that can also be written as y=a + j£. a and p being
voltages and currents constants. Defining the characteristic admittance as Y, :.f(Y 'Z ')_IY ' (2.2.15)

termed the attenuation and the phase constants respectively; V; V. I, I are the forward and backward

These expressions can be manipulated in order to obtain YV +1 =2e "1,

(2.2.17)
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2.2.4. Nodal equations

k m
[ki [mi
% «— H, Y., Length — I,
—’ ‘—
I]Tl]'

Vk Ikr \'}m

A A

Reference

Fig.7 — Single phase line of length L. between two nodes (k and m) with impinging current waves,
adapted from [18]

We can see in the scheme of Fig.7 two nodes that allow us to set boundary conditions for a
transmission line of length 1.

Iy, I, Vi V, are currents and voltages at the two nodes; Iy, Iy, L, Ly are the incident and reflected
currents at nodes k and m; using this representation it is possible to obtain the two nodal equations.

I, =YV, -HQXYV,+1,) (2.2.18)
I. =YV, -HQXV, +1)) (2.2.19)
with H=¢"".

Analogue equations can also be written for nodal voltages, and their expression is:

V. =21 +H(ZI +V,) (2.2.20)
I,=Z1 +H (ZI, +V,) (2.2.21)

These are the two equations at the basis of the EMTP-RV distributed transmission line models.

2.2.5. Popular models used in the software EMTP-RV

We shall shortly describe the different time models used in the EMTP-RV (but as well in other
Electromagnetic transient simulation softwares) for underground cable description.

Of the two representations of a transmission line - that using distributed parameters and that using
lumped parameters - only the former is based upon the travelling wave theory [19] [20] and includes
therefore the notion of propagation. It is the one to be used for better accuracy. As a matter of fact the
use of a lumped model, shown in Fig. 8 would not permit the consideration of the frequency
dependence of the parameters.

Zseries

" I_ yzYShunt
' l_ %Yshunt

Fig.8 — PI model for a single phase transmission line
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The different distributed parameters models used in the EMTP, namely CP (Constant Parameters), FD
(Frequency Dependent) and FDQ differ in the way they treat the parameters.

All these model start though from the same assumptions and they work in the time domain.

Consequently, equations (2.2.18)(2.2.19) must be transformed in that domain, where they become
convolutions

=y — /L] u, 2222)
fm =y, v — E u, (2.2.23)

with u, =(y, *v, +i,) and u, =(y, *v, +i,). and the small letter designating the time domain
equivalent of the quantities denoted with capital letters in(2.2.18)(2.2.19).

Since the recursive convolution would need to keep in memory all the values of voltages and currents
at previous fime steps of the time simulation other models have been devised, based on
approximations of y. and A.

2.2.5.1. CP MODEL

I

- Q " ith

>
N
N

Fig.9 — Bergeron, or “Travelling wave” model
To develop this model nodal voltage equations are used; it is first assumed that the line be perfect, thus

having no losses R’= G’=0. If that is the case the surge impedance becomes purely real zZ_= ’£ and
C Ll

the function H = e //FC! only introduces a phase shift, which in the time domain results in a delay.
Nodal equations (2.2.20)(2.2.21) can be now written as:

v, O=Zi,0)+(Zi(t—1)+v,(—1)) (2.2.24)
(O =Zi ) +(Zi,t—1)+v,(—1)) (2.2.25)
Where the delay isz =+/L'C"'/, that is the time for the wave to travel along the line of length 1 at a

dv= .
Spee 1 }/m

This model is equivalent to what is shown in Fig.9 , namely the Bergeron model [21] where two
Norton equivalent generators represent the voltage and current values at the preceding time-step, i.e.
the “history” needed to calculate the actual values at the other end of the line. The values of the current
generators are
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e :[z‘k(r—r)+¥] (2.2.26)

C

(2.2.27)

v, (t—1)
Z

£

iz :(r’m(r—r)Jr

In the CP model the parameters are not supposed to be frequency dependent; they are in fact
calculated at a single frequency. Whereas the inductance and capacitance are distributed, as in the
lossless Bergeron model that we just described, the resistance is reintroduced after the model is
generated. To do that the line is split in two halves and the resistance is lumped in three points, namely
entrance, middle and end of the cable section; this resistance is calculated at a given frequency.

Since the model needs not to have some fitting procedures, but only modal transformations, it is faster
compared to the frequency dependent models, but only precise if the phenomena to be analysed do not
cover a too large bandwidth.

2.2.5.2. FDQ-Time domain

Firstly developed by Semlyen [22] and Ametani [23] and then by JR Marti [24]and L Marti [25] [26]
frequency dependent models allow to represent the variations of the cables parameters in the
frequency domain.

The basis of these models is always the Bergeron model, shown in section 2.2.5.1 but:

- The line is not supposed to be lossless.
- The Tv, ¥, and H matrices are not constant with the frequency.

The convolutions present in equations (2.2.22)(2.2.23) that appear in the time domain cannot be
avoided, nor can the simplification due to the lossless line present in the CP model; it is therefore
necessary to use recursive techniques in order to calculate them.

In the FD model, see [24], the transformation matrix 7, which allows to transform the quantities in the
modal domain (this matrix can also be called Q. thus the FDQ) is considered to be non-frequency-
dependent, but instead constant and real.

In the FDQ, the Transformation matrix 7, (or ) is also fitted and so are the propagation functions H
and Y. All these functions are approximated using rational functions obtained through Bode
asymptotic fitting techniques.

The fact of having approximated the propagation function and the admittance matrices using rational
functions permits to obtain the convolutions needed when integrating using the trapezoidal method.

The fitting has to be done in the modal domain, so that the matrices are diagonalized and have a
smooth form, since modes have different speeds, which combine themselves in the time domain.

The fitting introduces approximations errors, which, in the case of the FDQ, also affects the modal
transformation matrix. Details are given in [27].

2.2.6. Phase domain models

The fitting procedures used in modal domain models may introduce approximations. Models have
been developed that fit the parameters directly in the phase domain [28].

A phase domain method was implemented by Noda Nagoya and Ametani in [29]. In this method an
Auto-regressive moving average is used, which minimizes computation; here the elements of A and Z
are fitted in the z-domain (or delay domain) and time delays are obtained from the modes. The model
is dependent on the time step used in the simulation because the z domain is used.

A different model which is implemented in EMTP-RV together with the FDQ is the so called
Universal line model by Morched et al. [30] (named Wideband in the EMTP-RV implementation).
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This model uses vector fitting [31] in order to obtain a least square approximation, i.e. a function can
be approximated using the following form:

CH

X =i

FO=3

The quantities ¢, and a, being the residues and the poles and s the Laplace variable.

The model works in the phase domain. One of its peculiarities is the use of the same poles for each
mode and also to associate the mode introducing a similar propagation delay.

Some improvements to this model have been introduced by [27].

The accuracy of these models depends significantly on the precision of the estimation of the
impedance and admittance matrix in the phase domain. This is one of the reason which justifies
describing in detail the derivation of these matrices in the next sections.
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2.3. Single core cables parameters

In this section we present the calculation of the per unit length parameters of a single-core cable, and
this is already somewhat a complex task.

If the propagation in the cable only consists of a TEM mode, the Telegrapher’s equations (2.2.1)
(2.2.2) can be applied taking into account all conductors: the core, the screen if present and the
reference conductor, generally the ground.

The parameters of these equations, namely the series impedances Z and shunt admittances Y are
represented by matrices, which have a dimension [NxN] (IV being the number of conductors excluding
the reference), [2x2] in the case of a single core cable. The phase voltages, vectors of dimension [Nx!],
are referenced to the ground conductor.

Jacket
Screen

Insulation
Core

Fig.10: Transversal section of a single-core cable

For the case of a two conductor system (core + sheath) equations (2.2.1)(2.2.2) read:

i_Vc_ _ Zee Zes || Ie 23.1)
dz|\Vs | | Zse Zss || Is o
i_fc_ _ Yoo Yosl||Ve (232)
dz s | | Ye Y || Vs o

2.3.1. Determination principle for the phase impedances and admittances

Let us consider the cable of Fig.10. It has a core with radius a... an insulating layer, a sheath having
internal radius as., ; and external radius as. ... then another insulating layer with external radius ajgct-

In order to calculate its distributed parameters one possible approach is the one given by Wedepohl
[1]. This is partly derived from the coaxial line theory of Schelkunoff [3].

The parameters are not evaluated directly, but through the use of loops, that is the cable is split into its
layers, in order to account for the different electromagnetic phenomena present.
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Fig.11: Equivalent circuit for the longitudinal section of a single-core cable [ adapted from [2]].

ground

In this case, we consider two loops; these are seen in Fig.11: in one loop the current is injected in the
core and returns by the sheath, whereas in the other the current is injected on the sheath and returns by
the ground. We define loop currents and voltages, that is g, and Is,, , currents on the internal and
external surfaces of the sheath, as well as loop voltages Vs and Vs , which are the core-sheath and
sheath-ground voltages. The sheaths currents have a physical substance only at high frequency, when
the currents effectively flow on the conductors’ surfaces, but the loop quantities must always be
defined as means to evaluate phase quantities.

On each loop, applying Kirchoff voltage law, we consider the various terms, which take into account
different effects:

* z_ _the core internal impedance accounting for the resistive and inductive nature of the core

“int—¢

conductor and also for skin effect [3]. Calculations of this term will be shown later;

.z and =z, the impedances (purely inductive) due to the varying magnetic flux in the two

“iso—cs iso—sg

insulating layers (the one between core and sheath and the one between sheath and ground) ;

* z the sheath internal surface impedance which accounts for the voltage drop on the internal

“int—s

surface caused by the current circulating on it;

* z,  the mutual impedance of the sheath, or transfer impedance, representing the voltage drop on

the outer sheath surface due to the current circulating on the inner surface or vice versa, this term is
due to the imperfection of the sheath shielding;

* z_. . the sheath external surface impedance which accounts for the voltage drop on the external
surface caused by the current circulating on it;

* z, the ground return impedance. This term will be described in Section 4.1 in detail.

To construct the admittance matrix the Kirchoff current law is applied and only two terms are defined,
these are:
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* y,, core-sheath admittance:

* ¥, sheath-ground admittance.

The relation between currents and voltages, obtained with the application of Kirchoff’s law in the two
loops is:

dVes
T = IC :int—c + IC:i':D—cs - Ian zi.ul—s - ISourzr—s
- (2.3.3)
dVg
d_ = Sauf:ouf—s + ISouf :r'sa—:g _IE :g +1 in :f—s
Knowing that
I. =—I,
I,=-1, (2.3.4)
I 5= _(I ct I E)
V,=V. +V,
{ c cs TVsE 2.35)
Vs =V
The terms of the impedance matrix (2.3.1) can be found as:
ZOC = Zi.ut—r: + :r'so—r:s + :irr—s - 22}—: + Zauf—: + :fso—sg + Zg (236)
Zes = Zout—s + Ziso-sg T Zg — Zts (2.3.7)
Lss = Zpp g+ Zipgg T 24 (2.3.8)

In a similar way, writing the currents as a function of the voltages(with currents Kirchoff’s law) one
finds:

dlI
d_c = yr:s (VC - VS’)
a'; (2.3.9)
_S = .vc: (VS’ - VC ) + .v:g VS’

The terms of the admittance matrix (2.3.2) can be found as:
Yee = Ve (2.3.10)
Yoo =—v, (2.3.11)
Yoo = Ve + Vg (2.3.12)

2.3.2. Impedance evaluation

We consider a single-core cable and show, as earlier mentioned, how we can obtain the expressions of
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the various terms which form the impedance using the Schelkunoff approach [Shelk].

The evaluation starts with the consideration that the field present in the dielectric and on the surface of
the conductors of a coaxial cable can be expressed as a function of the currents circulating in the
conductors.

2.3.2.1. Evaluation of the impedances in the dielectric

The inductance can be decomposed in an internal and an external term. The external term derives from
the magnetic field flux, which is generated by the currents flowing in the conductors: this flux exists in
all the dielectric parts and can be expressed as a function of the magnetic field.

The external inductance can be written as:

y7, rmHédp '
I - L,, - :ﬁlog[’TﬂJ (2.3.13)
I 2T I8

int
This term allows to find directly Ziocs and ziosg that can be expressed as joL, . where in (2.3.13) Iex
and 1; are replaced respectively with as m acore to €valuate zi, s and with a@jack . Gsr our 10T Ziso s

2.3.2.2. Evaluation of the surface impedances in the conductors

The surface impedance is defined as the ratio between the axial electric field on the conductor’s
surface and the current flowing on it>. The losses in the conductors cause a voltage drop (and therefore
an electric field) in the axial direction of the conductor, which also implies an axial current density.

If we define E,;; and E.,, as the axial electric field on the inner and outer surface of the screen, it is
then possible to define:

o = Lem =L (2.3.14)
- Is—i.nl e Is—ouf

v

These are the surface impedances that link the current on the inner/outer surface of the screen
conductor with the electric field on the related surface.

- — Ez—our — E

- =3 (2.3.15)

Is—i}rf s—out
The transfer impedance instead links the current present on the conductor inner surface and the field
on the outer surface (or viceversa).This transfer impedance accounts, as earlier mentioned, for the
imperfection of the screen or its shielding properties.

Since the cable itself is invariant in the axial direction, the field on the transversal plane does not
depend on the = coordinate.

For purpose of clarity we resume the passages presented in [3]in order to obtain the expressions
needed for the surface impedances.

Maxwell equations in the conductive medium characterised by g, & o (namely its permeability,
permittivity and conductivity) can be written in cylindrical coordinates, in order to correctly
represent the cylindrical geometry of the conductor.

It must also be considered that:

*Tt must be stressed that the concept of surface current only has a physical meaning at higher frequencies where
the skin depth is very low, whereas at lower frequencies it is only a mathematical construct which allows the
calculation of the impedances.
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- the coaxial structure assures that the fields do not depend on the angular coordinate;
- the electric field does not have a component in the angular direction.

These considerations allow some simplifications and it is therefore only necessary to write the
following equations, as the angular electric field and the axial and radial magnetic field components
are null:

cH

6: =—(o+ jos)E, (2.3.16)
which is the projection of the Maxwell-Ampére law on the p axis, whereas
OE
OF, %o _ joum, 2.3.17)
op oz

is the Maxwell-Faraday equation projected on the ¢ axis.

l{a(r"Hes)

o\ ]:(0'+jw£)Ez (2.3.18)

which is the projection of the Maxwell-Ampére law on the z axis.

In order to obtain a differential equation for the magnetic field, substituting (2.3.16) and(2.3.18) into
(2.3.17) we obtain

apH,)) &H
ai(l (';) f’)}L a-; - KH, (23.19)
plp op 2

with &% = jou(o + joe)

The solution of (2.3.19) can be written, by means of variable separation as a purely radial and a purely
axial component as:

H,=R(p)Z(z) (2.3.20)
18’z

——= 2321
Z oz° r ( )

Imposing as a solution for the axial part equation (2.3.21) the constant gamma(that we shall see to be
the longitudinal propagation constant) is defined and replacing this in (2.3.19) we obtain

d( pR
1 .d(1d(pR) K- (23.22)
Rdp\p op

that is solution of (2.3.21) gives the exponential dependence of the axial components.

Now, as shown in [3], if every component of the field is written making the exponential dependence
explicit (for instance E, e ’* and so on), we obtain the equations

d(pH
jouH, = dE +yE (p d ) (o + joe)pE, (2.3.23)
0

e d,O

to analyze what is happening in the conductors we let the permittivity € be zero and define the intrinsic
propagation constant of the medium, namely &=./jouo . Since we are interested in the magnetic
field only, we substitute the first and the third equation in the central one, thus obtaining
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:(52_72)H¢

d [1@1

dp d
e (2.3.24)

this can be developed into
2
dH, 148, H,
dp* pdp p’
The solution of this differential equation in a circular/hollow conductor is given as

H, = AL (&p) + BK,(Sp)

(&-7)H, (2.3.25)

(2.3.26)

where I; and K; are the modified Bessel functions of first and second kind and first order. The
coefficients 4 and B will be determined later.

The axial electric field is related to the magnetic field through equation (2.3.23) and can be expressed

using Bessel functions properties and the intrinsic impedance of the conductor 7 = <
a

E, =n(A4l,(&p) - BK,(&p)) (2.3.27)

Previously, the surface impedance has been defined as the ratio between electric field on the surface of
the conductor and the current circulating on that surface.

We take Fig.10 as the reference, pertaining to the geometry of the system.

2.3.2.3. Core surface impedance

Concerning the solid core (the term zj,.), it must be noted that the modified Bessel function K
diverges as its argument goes to 0, therefore when adapting (2.3.26) to this case the coefficient B must
be zero.The magnetic field on the core surface can be expressed as:

I
H,(a.,) = 3 = AL (&a,,,) (2.3.28)
?racore
with I the current circulating in the core, 4 = I and, from (2.3.27), the electric field as:
2” J'Tl ("-Eacare )acore
I I,(&
E.(7) = n—t—10(0%e) (2.3.29)
23 }i Il (‘Jﬁac‘am)
which gives us the expression of Zjy .
£
— ?? Il) (‘5 acore) (2330)

“int—c

2'?:?1 J'Tl ("-facore)

This term accounts for the losses in the conductor as well as for the skin effect.

2.3.2.4. Screen surface impedances
The screen of the cable is a hollow conductor with internal and external radiuses a..,;, and @z our-

As shown in Fig.11 I, and s, are the screen inner/outer surface currents. We write the electric field
on these surfaces as:

Ez (ascr_in) = :i}rf—:Is—fnf + zr—sI:—our (2 33 1)
Ez (ascr_ouf) = :ouf—:Is—auf + :f—sIs—i'nr

If the magnetic field is written on the surface using Bessel functions and also Ampére’s Law we have:
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1

H{’ (ascr_i.n) L AII (_E.ascr_i.n) = BKI (é:ascr_fn) — _ﬁ (2332)
1
Hﬁ' (ascr_ouf ) = AII (é‘:asz‘r_our) & BKl (.f-ascr_our ) i ﬁ (2'3 33)
scr_out

(the minus in (2.3.32) is for the current circulation direction)

As before, the coefficients in (2.3.32)(2.3.33) can be found, and replacing them in the electric field
expression gives the surface impedances and the transfer impedances defined before:

Zim‘—s = 4 [Iﬂ(gascr fu)KI("_Eascr mf)+11(§ascr our)KO(‘:sga:cr i'n)] (2334)

27D - - - -

n
Zour—s = [IO (gasr:r_out )Kl (gasn'_fn)—i_fl (ga:n'_fn )KO ("_Sa:cr_out):l (2335)
2nnD
1

%= (2.3.36)

2rnca a

scr_in" scr_ouf

Wh‘el‘e D = Il (é:ascr_auf)Kl (é:ascr_fn) - Il (é:a:cr_in )Kl (_f.asr:r_aur)

2.3.3. Admittance evaluation

The electric potential between two coaxial cylinders (core and screen) is obtained by integrating the
radial electric field:

log[—rm ]
Fnt
m ) (2.3.37)

V[ Edp=rI
-Lm oOP=7 27(0 + joe)

This potential produces a transverse electric current, due to conduction and displacement phenomena.

1,=2mp(c + joe)=yI (2.3.38)
Therefore
log (KﬂJ
-y — \Tw) (2.3.39)

C P 27(0 + joE)
And the admittance can be then written as

) .
yo2rlo+ joe) (2.3.40)

log =t

Fint

Where Iex and Iy are respectively dse m Geore A0A  Gjack . Asa our If We want to evaluate either y. or ys,
and ¢ and ¢ are the conductivity and the permittivity of the dielectric. We can rewrite this formula
using the loss factor tan 6 (which is normally more used in the praxis).

y=g+ joc=(otans + jo)c (2.3.41)
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2.4. Three-core cables parameters

The scope of this section is to describe the existing models for three-core cables, and introduce part of
the theory on which our model is based.

The loop method we have described for the case of single-core cables is used as well in the case of
three-core cables. Three-core cables consist mainly in:

- pipe-type cables (oil and gas filled cables):
- some types of submarine cables;
- some types of low voltage cables.

Since a three-core cable is made out of coaxial cables inside a common armour (or pipe) the same
formulations developed by Schelkunoff can be used for the core-screen loop.

Armour

Core
Fig.12 — Geometry of a three-core cable

The armour adds a conductor and this implies globally a 7x7 or 4x4 matrix (depending if the inner
cables have or not a metallic screen). Voltages and currents referred to the different conductors follow
this relationship

[ Vcor\sl I Icor\sl
Kcmnl Ismml
VmZ ImZ
Veoreans | = Zm{?X?] Y S (24.1)
chmS ImS
Kcrm3 Iscrm}
| Vamour | _Iamour |

The global matrix Z,, for the cable of Fig.12 can be constructed, as is detailed in [2], summing the
following four matrices, Z,, =Z,, + Z +Z, +Z i

arm—in arm—out

All the terms contained in the following matrices are detailed in the next section.
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e

0 Z o] o

VAR [0] 0] [2.] o (2.4.2)
0 0 0 o0

with the sub-matrix being equal to (2.3.1), but without the ground-return term that is reintroduced
after.

[Zall] [Zau] [Zal3] 0
Zam_f” - [ZaIZ ] [2522] [2523] 0 (2‘43)
[Zal3] [ZaZS] [Za33] 0
0 0 0 0
with the sub-matrix [ij. ] = li"if i""’}
“aij “~aij
[ch] [ch] [ch] :r:Z
ot _ [ch] [ch] [ch] :r:Z (244)
[ch] [ch] [ch] :r:Z
202 :r:Z 202 253
With the sub-matrix[Z,, | = {fsl i‘l]
“cl “cl
these are
ch = Zam—our + zam—fso - 2 : Zr—anﬂ
ZCZ = —am—our + Zarm—isa - Zr—anﬂ (245)
Zc3 = zam—om‘ + Zam—fsa
Zarm-our A0d Z; 4y are obtained as in section 2.3.2.4 using instead the radiuses of the pipe
Zann—our = i[fﬁr ((gaCZ )KI (gacl) + Il (gacl )KD (gac2)] (246)
2rxc,0,D
1
= (2.4.7)
2rcc,0,D
With D= Il (_f.aCZ )KI (é:acl ) - Il (_f.acl )Kl (é:ac2 )
whereas z .50 1S Obtained as in section 2.3.2.1 and is
Zarmeiso = jﬂlog[ci] (2.4.8)
2r <y
Z ) ::g
Z ground = (2.4.9)
zg 3

The mutual terms (that is, the terms relating core and screen which are not part of the same cable) are
not purely inductive as one would expect; this is due to the fact that the phase voltages are referred to
the ground, passing through the armour reference, and when the loop method is applied to the global
armoured cable both the screen impedance, and the ground return impedance intervene.
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We feel now important to stress that whereas the terms of the matrix Z,,, are derived as in the
Schelkunoff theory, the same does not hold true in the Z,,, ;, matrix. The eccentric position of the
inner cables inside the armour implies an eddy current distribution which is not uniform along the
armour; this distribution depends upon the position of the cables and upon their distance from the
screen. This effect is one the main interest of our thesis, and is defined as proximity effect. This effect
has to be accounted, together with skin effect, in order to calculate correctly the terms of the Zg .
matrix.

We shall explain why the proximity effect is only relevant for the terms z,; and not for the terms in the
Z arm-our- When the loop between the conductors and inside the screen is considered, this is equivalent to
consider the potential reference, as being on the outer surface of the armour: if this is the case, the
current induced in the screen can only flow in the inner surface®. This current’s distribution on the
screen is the reason for the modified impedance of the screen.

As we shall describe later, also the term z;,. part of the matrix Z;, is modified due to the proximity
effect induced by other conductors, but this modification is not included in existing EMTP modelling
(based on Ametani’s model). We will show how Kane handled this problem with the concept of
filament, and in the next chapter we will present the theory that we developed to deal with eddy
currents and their effect on internal impedances.

We will show how the terms related to the screen are derived, in the following section, and therefore
also present the genesis of Ametani’s model and Kane’s improvement to it.

2.4.1.1. Armour inner surface parameters

We shall first detail the terms present in the matrix Z g -

]

Zaii = ::i{;fef + Zam-m—yj (2.4.10)
mut

:ax]' = Za-diel T :anﬂ—in—ij (24] 1)

As we see there are two terms for the matrix which represent the armour impedance terms, these are:

- A purely inductive term z, 4,7 , Whose derivation is detailed in [32]and represents the self and
mutual inductance between inner cables using the pipe as the reference conductor;
- A term z,,, ;» 5 Which represents the cable’s armour inner surface impedance.

The second term is the one which interest us, as it includes the proximity effect due to the inner cores.
The derivation of this term will be analyzed in the following paragraphs.

- 2 2
-~ — b

P B Y W ] (2.4.12)

2 aa;
i JOUy | B [(BD)’ +¢f —2bbc] cos6
el = In —— 3 (2.4.13)

27 o\ b)) +b —2bb; cosd,
- _ IOl | By K, (%) 4 S % 1 (2.4.14)

arm—in—if 27 x K (x ) - 62 K o (xl) o
! ! ! " ! ??(1 + zur—arm) + xl .
L Krr (rl)

with x, =¢,&,, & =./jou,0, and u, o, the permeability and conductivity of the armour conductor

* It must again be stressed that the hypothesis of currents circulating purely on the surface are physically only
valid at higher frequency, but conceptually these assumptions are used at all frequency to define surface
impedances.
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2.4.2. Derivation of the inner surface impedance of the armour

A current distribution circulating in the inner conductors induces some eddy currents in the armour,
and this in turn modifies the surface impedance of this conductor.

We will show how the current density is obtained in the armour, as well as the magnetic vector
potential both in the armour and in the dielectric inside it. This has been discussed starting with the
works of Tegopoulos and Kriezis [5] [6] who have derived the current densities and vector potential
expressions for different configurations; the expressions they have obtained have been used both by
Brown-Rocamora [4], Ametani [2] and Kane [33] [34] [7] to obtain impedance analytical formulas.

We shall now analyse into detail the theory of Tegopoulos and Kriezis, as a significant part of it will
be the basis of our study.



2.4.3. Description of Tegopoulus and Kriezis approach

2.4.3.1. Summary of the article [5] [6]
n |
O O .’
Fig.13 — Different cases treated in [5] [6] - First line: cases with one boundary; second line: cases
with two boundaries.

The article is divided into two parts (each subdivided into two sub-cases) that are explained in Fig.13.

- In the first part there is only one boundary between conductor and dielectric:
e In the second case of the first part a solid circular conductor with a current filament
parallel to it is described. This configuration is the basis for the first case treated by
Kane which we shall explain in the next paragraph.
e In the first case of the first part the situation is reversed, i.e. the conductor is taken as
infinite and with a hole in which the filamentary current is located. This configuration
is the starting point for Ametani’s Pipe Type model [2].
- In the second part a hollow conductor is described, therefore two boundaries are present; a
current filament is always the source of the induction; and more in detail:
e In the first case of the second part the filamentary current is located inside the hollow
conductor. This is the starting point for the second case treated by Kane, also detailed
later.

e In the second case of the second part the filamentary current is located outside the
conductor.

The starting hypotheses for the theory are:

- Displacement currents are neglected (low frequency and conductive domain) @€ K 0 ;

- The material is considered as non-ferromagnetic ( L is constant and not a function of the
magnetic field intensity) ;

- The exciting currents are supposed filamentary, with the current 7 concentrated in an
infinitesimal point;
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- Conductor and filament are parallel, of infinite length (edge effects which would be present
for a finite length are neglected), the problem is therefore simplified and can be treated in two
dimensions, on the transversal section of the conductor;

- Curent returns through the conductor, this is equivalent to treat the propagation mode of a
coaxial cable.

These hypotheses simplify the way in which the problem is handled.

In order to evaluate the eddy current distribution, the problem is approached using a formulation in
terms of vector potential, as with a quasi-TEM line the potential (as well as the current density and the
electric field in the conductive regions) has only one component that is oriented along the z direction.
The magnetic field angular and radial components are used only for writing continuity conditions.

The potential is evaluated in the different regions (conductive and dielectric medium) and some
boundary conditions are imposed on the separation surfaces between the regions: these conditions
allow to explicitly write the formulation of the current density in the conductors and to obtain the
surface impedance expression.

For our purposes we think it worth to detail two of the cases introduced by Tegopoulus and Kriezis
and used by Kane, namely case 2 of part 1 and case 1 of part 2.

Generic expression for the current density

The vector magnetic potential 4 and current density J inside the conductor are solution of the
following differential equation, which is written in the frequency domain, as sinusoidal conditions
have been assumed

?J 1a] 18T
R RN

o pp p P

Its solution can be obtained by use of variable separation as

J(r.¢) = J,(r)J, ($)e’ 2 (2.4.16)

the two differential equations are decomposed as

= jouc] (2.4.15)

6;31 +%%—UWG +:—2)JI =0 (2.4.17)
‘;;J} +n’J, =0 (2.4.18)
and their respective general solutions are

J(r) = E,I,(r[jouc) + C K, (r\jouc) (2.4.19)
J,(¢) = F, sin(ng) + C,, cos(ng) (2.4.20)

These equations can be recombined, in order to have a general solution which is adapted to the case
treated, as we shall see in the next paragraphs.

The generic point inside the conductive medium is described by coordinates (r,¢) whereas the points in
the dielectric are described using coordinates (0,6) .
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2.4.4. Study of the currents generated in a circular conductor of infinite
length, by a parallel current filament.

This paragraph considers the principal elements of the article by Tegopoulos et Kriezis[11] and
explains in detail the case of a solid conductor of infinite length having a current flowing parallel to it
outside the conductive medium.

Fig.14 — Transversal section of a circular conductor with a current filament parallel to it

As we see in Fig.14 a solid cylindrical conductor with radius a is taken; the current filament is located
at a distance b from the conductor’s centre in a dielectric medium having vacuum electrical properties.
The conductor has permeability x and conductivity o

Expression of the potential in the different regions.
Inside the conductive medium, the generic solution for the current density can be written as:

J(r.¢)= i E I (r&)cos(ng) (2.4.21)

F1, being an unknown coefficient to be determined and & =,/ jouc

In the dielectric there are two contributions to the magnetic field (and therefore to the potential),
namely.

- one due to the current filament, which writes itself:

;11 = ‘;LI In(r)z + const (2.4.22)
T

- one due to the current density distribution of the conductor, which is obtained by integrating
the contribution of an infinitesimal element of surface of the conductor, namely

d*4_(p.0) = ;iJ(r,@mMrd;a (2.4.23)
T

Expression (2.4.23)needs integrating on the surface of the conductor to have the global contribution of
the current density to the potential:

A(p.0) =223 [T 1, (Oin(p)cosngrdrdg+

ML Lm r&)(cos(mp)cos(mb) + sin(me)sin(mb))cos(ng)rdrd ¢ =
055 1) 2 L) R costnpios )+ sntondysinnt)cosurirdg = @4z

n=1 m=1
a . i a" I (a&
toLy Ein(p)(ad) - 2o 31, & 1009 o)
: 2 & p jouo
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and unknown coefficients F, have been changed to L, to account for the different medium.

The total potential in the dielectric is
A (0.0)= 4 + 4, =2 3L ET cos(nf) | +
) “ 2= i\ b

oo n I
+;10Lo§fn(,o)fl (a_f_)—%z}in ;7%603(??9)

n=1

Whereas in the conductive medium we have:

1
Apd ) =——— Z E I (r&)cos(ng)
joo i

Solution of system and determination of current density coefficients
The following continuity conditions are applied

_ r=p=a
Br—cond _Bp—dief =g

1 1 e
—B — —B - r=g=a
/J p—cond ‘uu G—diel l6=¢p
Which are defined as:
_ 1 aAcrmd _ ]' aAdieI
r—cond » a ¢ po—diel p a 9
a4 o4,
B cond == cond il = — diel
¢—cond 6—diel ap
Solving these gives the unknown coefficients as:
(ET i
&I b) a

" o[+ )l (&é) —#1,.4(ad)]

And the current density can be written as:

a1l
LD, S 1 [3] a
27 L(a&) G271 [+ p)L,(a8) ~ 1., (ad)]

The first term accounts for skin effect and the second one for proximity effect.

J(r.9) =

1,(r&)cos(ng)

The coefficient of the potential is:

M 4V -2 T (a
Lk (a}”l[af"( - 5)]
"l (aé)\ b

‘ [ff,, @)+ 21 (aé’)}
a 4,
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(2.4.29)
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(2.4.31)

(2.4.32)

(2.4.33)



2.4.5. Study of the currents generated in a hollow conductor of infinite
length, by a parallel current filament inside it

Fig.15 — Hollow conductor with filamentary current inside it

In this second case we consider a hollow conductor, having radiuses ¢; and ¢, as shown in Fig.15 and a
current filament inside of it and distant b from the centre of the conductor.

In this case the generic solution for the current density is
J(r.6) = Y [EL, (&) + C,K,(rE) |cos(ng) (2434)
n=0

The potential in the dielectric is different in the regions inside and outside the hollow conductor.
Inside the hollow conductor it is, as before, made up of two contributions:

- the one due to the current filament A4;

4,(p.0) =L i@y = L 1y p? + 5225 peos(6)) (2.4.35)
2 4z

- the one obtained by integrating the contribution of the current density due to the infinitesimal

surface element 7°4___, = ;—DJ (r.¢)InRrdrd ¢ between 0 and r and between ¢, and ¢, which
T

int
we write thisas 4___,
orresumedas A,, . =4, +A4 .,

Outside the hollow conductor there is only the contribution of the current density, but the logarithm

present in the potential expression has a different form: we write thisas 4, . =4 _,
Ay = LIy + Vg = 3 L, 25, cos(n6) = 3 ¥, £, cos(n6) (2436)
n=1 n n=1 n

with

49



L=-5 {clfn(cl)fc (@f) - & In(e, K, (6,6) K(c1§)+ K(cch)]

_o:%|: In(c;,)11(6;8) - aln(e) ] (6S) — §I (sz)"‘gf (Cz'-s)]

and
e :& Kn—l (le) _ Kn—l(cz_é) S :& In—l(cz_f) _ In—i(clf)
In 2‘;: C}n—l czn—l 2n 2;: Cg_n_l Cln—l
A,_ =L L, +VV,— ZL Y Y,, cos(né) — ZV Y —7Y,, cos(nb) (2.4.37)
Y :;1_2.|:CI”+1KH+I(CI§) 'CznﬂKuu(ng)_] Y, = ;{i [Czﬂlfuﬂ(czf) C1"+II +1(‘5'1§)]
]

Inside the conductor the potential is obtained from the current density as:

A, = ——Z [F,L,(r&) + C,K, (&) cos(ng) (2.4.38)

joa

As shown in the paragraph before, continuity conditions must be written, that leads to a system of
equations, which allows finding the expression for the unknown coefficients. In this case there are
twice the conditions as before, as the hollow conductor has an inner and an outer radius.

The conditions on the internal boundary are:

- Bp—diel—fnr = Br—crmd (2439)
) LB G—diel—int L B, cona (2.4.40)
0 1
The conditions on the external boundary are:
- B i =B s (2.4.41)
1 1
- By u = TBs—d‘ieI—err (2.4.42)
0
And these components are obtained as:
r—cond — 1 aACD"d diel — 1 aAdi@f (2443)
r o¢ - p o6
oA,
By cona = —a’iﬁ"" By i =~ a;“j (2.4.44)
The coefficients obtained for the current density of (2.4.34) are:
11 1.nK, (c
F=Lt1 2(B+0, ){ﬁ +K,(c 25)} (2445)
D n CZS
Z
€= 3a B0, )[7" “lig, (czﬁ)]
Qo (2.4.46)



WithP, =0, =l[3] B=10,-0

al\ G

D,,{if(ﬂ DI, (8) - I.,H(clf)]{ ZFU DK, @8- Kn+1(czh)}

ST &)

(2.4.47)

- |:—(ﬂ + I)I (Czé_’) n+l (sz):H: é_, ( r ]')Kn (CIC’.) +K n+l (le):|

1

which allows to write the expression of the current density, replacing (2.4.45) and (2.4.46) into
(2.4.34).

Also the potentials in the dielectric must be written, in order to be able, as we will show, to evaluate
impedances, using Faraday Law. The coefficients of the potential are:

1 L o =
(E 1 C.K TH—
;DECI" l[Sm};” K"Sn][clf[ (015)4— n n(('lf)) :|+ (2448)
1 a"s, ﬂ(FI(cfHCK(CE)) :
oul) @.?[Sln}fzu _YIHSZ ] ng n"aNY1D m e \V2T
1 }H—IS ,U n .
Vn = ‘u —1"|:; F;rIr: (C E'd) +CuKn (C é:) }—’_
(-f.: [Slnl72n = I711'182:'1] CZ- ( i ’ ) (2 449)

1 B ﬂurn
g 1 [ in EH_IflnSer] Cl_é

_;u (FI (Cl )"'CK;;(CLE))_%Q“]

2.4.6. Impedances’ evaluation

The method put forth by Tegopoulos and Kriezis in their publication has been used by Brown
Rocamora and successively Ametani to obtain impedance formulations, for the configuration of a
cable with an eccentric inner conductor.

In this case the authors considered the hollow conductor, which represents the pipe of a pipe-type
cable, as having an infinite outer layer (this is Case 1 of [5]) which we did not detail.
2.4.6.1. Two parallel circular conductors

We analyze here how the impedance is evaluated for the case of two parallel conductors, namely what
we detailed in paragraph 2.4.4 which has been developed by Kane [7].

51



| __,( conductor 1 (ED A

A Ey A
V(z) He V(z+dz) b
—( _ conduc:;z _ oY

>
o

Fig.16 — Description of the loop formed by the conductor of which we want to represent the
impedance, and conductor 2 which is represented by a filament

The loop described in Fig.16 allows writing the following expression

e,
dZ loop
” (2.4.50)
ZI::rop‘;'r = d;op + Ezl(af‘a)

that is Faraday law with the inclusion of the axial electric field which represents the losses in the
conductor and the voltage drop that it introduces. & is the generic angle.

This expression is developed in the frequency domain as

- “’Zﬁz) = jO[ A0(a.0)= 4, (5.0 P+ E ,(a.6) (2.4.51)

where the potential 44, is the total potential present in the dielectric from equation (2.4.25)

It must be noted that in the figure, conductor 2 corresponds to the one that is represented by a filament
in the situations described before; for this reason no losses are present on the second conductor in
equation (2.4.50). The axial electric field is obtained by the current density with the following relation

E (p.0)= éJ (0.0) (2.4.52)

Developing these expressions with the terms given before allows obtaining the expression

&I LGa) jou 5 1,(¢a) U

= - =+ J—
“* o2ral(éa) o H[n(1+u)1,(a)+Eal,, (Sa) ]\ b

L (2.4.53)
L Tk h{b —a J

27 ba

In this expression the first term is the classic Schelkunoff term, which expresses the skin effect, the
second term is the proximity effect, which is dependent on frequency, the electrical parameters and the
ratio of radius to distance; the last term is the external inductance.

In a similar manner it is possible to express the impedance in the other cases that have been described.

2.4.6.2. Eccentric solid conductor inside a hollow conductor
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Fig.17 — Loop for the evaluation of the impedance in a cable with eccentric inner conductor
represented by a filament

If equation (2.4.50) is applied to this case (described by Fig.17) in order to obtain the impedance of the
loop, again considering the inner conductor to be filamentary so that its impedance is null, one obtains:

VA

loop =

R0+ CRy ()]
+ li[ﬁ} [£,1,(c8)+C,K, ()] + (2.4.54)
oS\

+.)imful) In C12 _br'2
2 qa,

i

The first term is the skin effect part of the surface impedance of the armour/pipe; the second term the
proximity term part and the third the external inductance. The terms F), and C, have been detailed in
equations(2.4.45)(2.4.46).
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3. Improved method for the calculation of cable internal

impedances

3.1. Synthesis of the method proposed

As mentioned in the introduction the principal aim of this thesis is to present a method for the
calculation of cables impedances, which takes into account the eddy currents induction, and
consequently skin and proximity effect. The purpose is to improve the })resent method of
calculating these quantities, [1] where the proximity effect is taken into account’only partially.

As a matter of fact, the proximity effect may have a significant consequence on the value of the
self-impedances of the cables and particularly of submarine cables, since in these the various
conductors are very close to each other.

We shall proceed by first considering a configuration of two cylindrical parallel conductors which
proximity causes induction to one another. The theoretical approach which we derive for this case
will be then extended to the case of hollow conductors (such as cable sheaths and armours).

The proximity effect depends upon the same induction mechanism that causes skin effect and
therefore is dependent upon the conductive media electrical characteristics, the geometry of the
system and the frequency. It will be represented as additional terms which intervene in the
calculation of the self-impedance of a cylindrical conductor.

Maxwell's equations, adapted to our case, will include the magnetic flux variation and the axial
electric field, both written in terms of magnetic vector potential and current density: for this reason
we calculate the two latter quantities. This we do using an electromagnetic approach and the quasi-
TEM propagation assumption (two conductors are initially considered, and one is the return for the
current flowing in the other one).

Since Maxwell equations cannot be solved in the heterogeneous medium formed by the conductive
and dielectric ones, we need to express the magnetic field inside and outside the conductors and
write some continuity conditions on the boundary between each conductor and the dielectric.

In previous publications [2] [5] [6] [4] [7]. that we have described in some detail in the previous
chapters, the conductor, source of the excitation, is represented by a current filament, or thin wire,
that is a flow of current having no transversal dimensions and parallel to the conductor considered.
This allows the authors to obtain the current distribution density in the considered conductor as a
function of the current filament intensity: the current filament is purely the source of the induction.

In our approach, since we want to represent the mutual induction, we split the conductors in a
number of sub-conductors; these are small enough to be represented as thin wires when they serve
as source, but they act as sub-conductors with a surface and can be target of the induction.

> The proximity effect is considered by Ametani in the calculation of the impedance of the pipe with respect
to the inner conductor's proximity. This is done with two approximations, namely the use of the current
filament approximation. and the assumption that the pipe is thick enough (with respect to skin penetration
depth) and can be therefore be treated as having an infinite outside radius.
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Fig.18 — Dual nature of the conductors, being source and target of the induction

The approach is therefore dual as represented by Fig.18. When conductor / is considered to be the
target we represent it as whole, and the conductor 2, cause of the induction, is represented by a
multitude of thin wires, each filament “j” having an unknown current intensity 7,; Vice versa when
conductor 2 is considered the target, conductor 1 is represented by currents on a number of
filaments “7” having unknown current intensity /;;.

We shall impose the current from conductor 1 to be returning in conductor 2, furthermore the sum
of the thin wires current intensities gives the total current circulating in the conductor.

To proceed, in a first step the current density and vector potential will be represented with
expressions confaining thin wires unknown current intensities. These intensities will then be
calculated in a successive step.

The procedure used to calculate vector potential and current density is based on the following
steps:

- Generic expressions for vector potential 4 and current density J are derived.

- The currents in the above mentioned thin wires, which cause induction, have intensities
corresponding to the value of the current density, calculated in the point occupied by the wire, and
multiplied by the surface of the sub-conductor. The sum of these currents gives the total current I,
which is imposed as flowing in the conductors. This is also equivalent to the current density, yet to
be determined, integrated on the surface of the conductor.

- The magnetic vector potential is calculated inside and outside the conductor and is due to
different contributions:

Outside the conductor, we consider:

- The contribution of the thin wires in one of the conductors, at a point in the dielectric (this
is when the conductor is considered to be the source of the induction);

- The contribution in the dielectric, due to the expression of J that is established in the
second conductor as a consequence of the excitation by the thin wires in the first conductor.

Inside the conductor, the Helmholtz equation is solved.

From the confribution in terms of vector potential inside and outside the conductor that we have
derived, we can express the magnetic field radial and angular components and then write the
continuity condition of both at the conductor’s edge.
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This last step permits to obtain a system through which the unknown coefficients for the generic
expression of J and A are calculated.

From this point forth it is possible to write an explicit expression of the current density inside the
conductors, expressions which include the proximity effect, but these will be a function of the thin
wires current intensity.

The skin effect is accounted for in the 0 order terms; these terms, that contain the total current
circulating in the conductors, remain the same as in the classical Schelkunoff theory. We shall see
how the thin wires intensities (and therefore the coefficient representing proximity effect) depend
upon this 0® term. This is equivalent to considering the conductor as isolated and therefore only
subject to skin effect. The current distribution found this way is then employed as the source of
induction on the other conductor.

In order to calculate the current intensity in the thin wires, one assumption is made: we suppose
that the thin wire has a current intensity equal to the value of the current density evaluated in the
point where the wire is located and multiplied by the surface of the sub-conductor.

This assumption enables us to write a system of 2N equations, where N is the number of wires in
which the conductor has been split. The wire current intensity found from the system of equations,
which is a fraction of the total current, allows writing the current density in each conductor and the
vector potential everywhere.

Having obtained the intensity value of the current flowing in the thin wires as a fraction of the total
current flowing in the conductors, it is possible to infer the explicit expression of the impedance, as
a function of current density and vector potential on the edges of the conductor.



3.2.

Method for the calculation of induced currents based on thin-

wire approach: two solid conductors

In the following table we show the notation used in this following section.

Table 2 - Notations used in Section 3.2

A Magnetic vector potential ) /0 Angular coordinate inside/outside the conductor
A° 7 A° Magnetic vector potential in the dielectric due to I, I Total current / current of jth thin wire of ith
o q current density inside the conductor / thin wires conductor
Ay Magnetic vector potential due to jth thin wire of I, Bessel modified function of first kind and n-th
ith conductor order
a; Radius of ith conductor J Imaginary unity
B/H Magnetic flux density / magnetic field T/ Total current density / eddy current in ith
f conductor
e
J;
b Distances between conductors/sub-conductors U Uit Magnetic permeability , magnetic permeability
in vacuum, relative magnetic permeability
d Distance between a point of the dielectric and a r/p Radial coordinate inside / outside the conductor
generic thin wire
E Electric field o Conductivity
ey fn/ S Unknown coefficients of the current density / V Scalar potential
hy magnetic vector potential

3.2.1. Geometry description

We shall consider two circular conductors with radiuses a; and a, (Fig.19).

Two polar coordinate systems are used to define the internal points in the conductors: for the first
conductor the coordinate system is(7.¢) with its origin in the centre of the conductor, for the
second conductor the coordinates are (r,,¢, ) -

There are two more polar coordinate systems (p,.6,)and(p,.6,)used to identify point in the
dielectric medium surrounding the conductors.

An additional coordinate system (p,,6,) can be defined that allows to identify the absolute

position of the conductors and to indicate the origins of the before-mentioned coordinate systems,
in the points (p,,.6,;) and (p,,.6,,)-

The two conductors have a radius of a; and a, and the distance between their centres is b.
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Fig.19 — Geometry description for the section of two cylindrical conductors on the (p,0)
transversal plane.

Derivation of general equations for magnetic potential and current density

We want to obtain an expression for the magnetic vector potential A in all the regions and one for
the current density J in the conductive media.

Both expressions can be derived from Maxwell equations.

Derivation of A

Starting from Maxwell’s equations, and considering a generic conductor, in the conductive medium
we have:
6’xﬁ=jmgcfzjd+jc (3.2.1)

where ¢ :e+_i is the complex permittivity, used to account for displacement and conduction
jao
currents, J; and J, are respectively displacement and conduction currents.

Since V-H =0 the magnetic field can be expressed as:

H=—VxA4 (3.2.2)

= |~

Replacing in (3.2.1)we have:



G’x(le}i)zf (3.23)
yli

‘Where J is the sum of displacement and conduction currents.

The propagation is quasi-TEM. The magnetic vector potential only consists of the z-component
(the other components being equal to zero), but for simplicity is here called A instead of A,. the
same is true for J which represents .J..

If we consider the medium to be isotropic and apply the vector identity
VxVxA=V(V-4)-V>4 (3.2.4)
Using the Lorentz gauge

V-A=—joueV (3.2.5)
and the expression

E=-VV - jod (3.2.6)
Some terms simplify on both sides.

We then neglect displacement currents in the complex permittivity, since we are interested in the
current distribution in a conductive medium; and so we obtain an homogeneous Helmholtz
equation for the magnetic vector potential:

V2A— joucA=0 (3.2.7)
Derivation of J

We can obtain a similar expression for the cuirent density, if we apply the curl operator to the
Maxwell equation

VxE=—jouH (3.2.8)
We have:
Vx(VxE)=—jouV xH (3.2.9)

Applying again (3.2.4) to E on the left side, and applying (3.2.1) on the right side, we have:
V(V-E)-V’E =—jou(joe,E) (3.2.10)

Since we want the equations to be valid in a conductor we shall again neglect the displacement
currents and knowing that:

J=cE (3.2.11)
V(V-J)=V2] =—jouc(J) (3.2.12)
If we take the divergence of equation(3.2.1), neglecting displacement currents gives:

V-J=0 (3.2.13)
Rearranging equation (3.2.12) gives:

V2] - joucd =0 (3.2.14)
which is a Helmholtz equation for the current density.

This expression can be seen to be equivalent to the one found for the vector potential in
equation(3.2.7); this relation will be shown in the next section.

Expressions (3.2.7) and (3.2.14) can also be written in cylindrical coordinates, giving:
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27 7 27
0 J+ 1 & N = joucJ (3.2.16)

;w;JO'A (3.2.15)

It must be noted that the Laplace operator has been rewritten without the derivative along the =
direction: this is one of the hypotheses of the theory used to calculate distributed line parameters
(and generically valid for cylindrical structures). Since the structure is invariant along the z
direction, it is only necessary to see what happens on the transversal planes disregarding the
variations along z (which are represented by a factor of the kind ¢7), these variations can thus be
provisionally neglected and added again when we calculate the parameters and the transmission
line (TL) equations are written.

We shall show that there is a relationship between the current density and vector potential.

Using Maxwell equations and definition of vector potential :

VxE=—joB VxA=B (3.2.17)
VxE=—joVxA (3.2.18)
This can be rewritten as:

Vx(E+ jod)=0 (3.2.19)

We know E = i and we must remember that A, E and J in the problem we considered, only have
o3

the z component. If we write the curl in cylindrical coordinates we obtain
1 aJ, . B 8A _1aJ, Az ¢
fole a¢ 6(;5 o op

Now equating components

(3.2.20)

» a¢ p o (3221)

And therefore

J=—jocA (32.22)

For the geometry of interest, the solution for the current density inside the circular conductors,

namely J;(i=1,2)can be written as a function of some unknown coefficients g,, h,, etc.’.
J (. 8) = ngf .(&r)cos(ng,) + h,1,(Sr,)sin(ng,) 2 (3.2.23)

The magnetic vector potential inside the conductor has a solution of the same kind, and using
relation (3.2.22) it can be written using the same coefficients used for the current:

® The solution is obtained by firstly using variable separation and then combining the two solutions obtained
for the radial and angular part; the modified Bessel function Kn is not a part of the radial solution. It is
omitted because it diverges when its argument goes to zero and is therefore not a physical solution.
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A0 0 =——— gL, (E)co (1) + b, (En)sin(ng,) (3.224)
joo =

with & =,/jouc and I, the Bessel modified function of first kind and n-th order.

In order to find the unknown coefficients gz, h;; we need to express the potential (and from it the
magnetic field) in all the regions, following the same reasoning already detailed in[2]).

We proceed this way because Maxwell’s equations cannot be solved directly in an inhomogeneous
medium (that is a medium where the parameters y, ¢ o are not constant); instead a "perturbative"
approach must be used, which consists in writing the potential in the different regions, inferring
from that the magnetic field and writing continuity conditions at the boundary between the two
homogeneous media.

Evaluation of the different contributions to the potential
In the conductive mediums the potential is written as in the equation(3.2.24).

In the dielectric medium the potential is a function of the current density in the two conductors and
writes itself 4, = 43 + A¢, namely the sum of a source and induced (eddy) component.

If we have a current source, represented as a filament, with intensity I, the potential, evaluated in a
point which is located at a distance » from the current source is’:

4=4

d T

_ L s (3.2.25)
2

Where Z is a unitary vector which identifies the direction z.

The approach used in [2], and that we also use, is to define the potential in the same way than the
one due to an infinitesimal current element® and then integrate it over the whole conductive surface

in order to obtain the }4': term:
d*4;(p.0) = ;—”3 (r.@)InRrdrdg (3.2.26)
T

The current density here is still unknown. This approach will be employed for the contribution of
both conductors using a slightly different notation (for the different regions and contributions)
specified in the following paragraph.

The distance R between the infinitesimal element and the point where the potential is calculated,
which appears in equation (3.2.26), must be expressed using the coordinates (p,.6,) and (7;. ¢,) when

identifying points in the dielectric medium or inside the conductors respectively (using the sub-
index identifying the conductor).

3.2.2. Subdivision of the conductors in thin-wires and potentials
expression

We intend to write the expression of the potential in the dielectric as the sum of the potential due to

— N —
the independent current sources, namely 4; =>4, called thin wires, and the potential due to the
i=1

current density integrated upon the whole conductors, namely 4° .

Every conductor is subdivided in N thin wires that will be identified by coordinates (7;.4,) : the

7 This potential due to a filamentary current source can be derived from Biot-Savart Law
¥ It is a current because the current density is multiplied by the infinitesimal area of the element
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sub-index 7 (7=1,2)indicates the conductor in question, whereas the sub-index j indicates the j-th
sub-conductor (of conductor 7).

We treat at the same time two conductors, and use two cases, each conductor acts either as a source
(then represented by thin-wires and being the source of ;_i; ) or a target (then represented as solid
and being the source of 2: ,

In Fig.20 we show the notation used in both cases, to describe points inside the conductors, and the
position of the thin-wires, both from a conductor and from the other.

Target conductor Source conductor
described as whole described by thin-wires

* Generic
‘!ﬁh thin-wire

'
r

e m—m———

Source conductor Target conductor
described by thin-wires described as whole

Fig.20 — The geometric notation used in case 1 and case 2 to describe the conductors

In order to write a system of equations, we have to write continuity conditions on the edge of the
conductors. In order to do this, we will consider (see Fig.20 for the dual situation):

- Two equations for the edge of conductor 2 (in this case conductor / is replaced by a
number of thin wires that represent the source of the excitation on conductor 2, which is

the target and has a continuous current density);
- Two equations for the opposite situation (edge of conductor I, itself being whole while
conductor 2 is replaced by wires).
Definition of the potentials in the different regions and due to different contributions

The contribution to the external potential for each source thin wire is indicated with 4, and }1.2}. for

the first and for the second conductor, whereas the potential due to current density is indicated with
Af, and 4:, . Inside the conductors the potential will be indicated as 4, and A4, .

We know that in each conductor circulates a current I. This current corresponds to current density
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integrated upon the whole conductor, but is also the sum of the current on each thin wire:

I1=YI,= [ J(;.4)ds (3.2.27)

cond1

F=¥ 1. | Jlnb)yds (3.2.28)

cond 2

Contribution of the thin wire current sources

The contribution of the i-th (or j-th) thin wire of the first (or second) conductor can be written as:

‘:ilf(pln‘gl) :&Ilflndli z
27 (3.2.29)

~ Yz .
4,.(p,.6,) :—OIZJ. Ind,, z
2z (3.2.30)

with d;. dy the distances between the i-th (or j-th) wire and the generic point of the dielectric.

The logarithmic terms of equations (3.2.29) and (3.2.30) can be then written (as is demonstrated in

section 3.2.3.1 though using different coordinates) as:

Ind, =In(b,,) - Z [b—zJ cos(m(6, - 6,,))

(3.2.31)
d,; =In(b,;) - Z - [;—‘] cos(m(6; - 6'11-)) (3.2.32)
m=1 1j
with the condition that p, /5,; <1 and p, / b,, <1which is necessary for the series to converge.

We then have:

(S F)

(3.2.33)

=1 2

;Jli(pZ’QZ):;iIli[ln(bEf) i (_2J cos n(@ 92i))
T

[EH

4,(p.8)="21, | In(b,) - [ﬂ] cos(n(& -6,)) (3.234)
n=1 1

b,

1j

Here b5 is the distance between the centre of conductor 2 and the i-th wire of conductor 7 and &5
the angle which identifies it in the coordinate system of conductor 2, whereas bj; is the distance
between the centre of conductor / and the j-th wire of conductor 2 and & is the angle which
identifies it. All these quantities are defined in Fig.20.

To calculate the distances b;; and by; and the angles &;; .6, as a function of the coordinates of the
relative wires we can write the relations:

b=0b,cos(6,;) +r,;cos(¢,;)
bljsm(glj) = FZjSin((éZj)
b=Db,,cos(6,,) +r,cos(q,)
b,,sin(6,,) =r,sin(¢,,)

We obtain expressions allowing the calculation of these parameters as:
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b, = \/b2 + r;j —2br, cos(¢,;) (3.2.35)

r,.sing, .
6, = arctan Wy Sy (3.2.36)
’ b—r, cosg,,
b= \/bz +7; —2br,cos(d,) (3.2.37)
1;, Sin g,
6, = arctan TSI (3.2.38)
b- 1; €0S (‘ﬁif

Contribution of the current density in the “target conductors”
We know that the potential in the dielectric due to an infinitesimal surface element with a current
distribution J, (;.4,) is:

d*4,,(p.0)= 2> T r.§)inRrdrdy (3:2:39)
T

In order to find the potential due to a whole circular conductor this expression must be integrated
upon the whole section of the conductor

a 2
Ay :(301981):_‘- _‘-;_;Jl(r:@hmﬂid’i d¢z (3.2.40)
0 0
- a 2r ,U .
Li(p0)=[ | ﬁ.}z(r,qb)m}{g rydr,dg, 2 (3.2.41)
0 0

We shall develop only the calculation of one of the two expressions, namely the one on the first

conductor; to do this we integrate the following part of the current density (3.2.23), namely
T (5.6) = 2 g1, (&n;)cos(ngy) + I, I, (Er)sin(ng) 2 (3.242)
n=0

and use the development present in 3.2.3.1 obtaining’:

B p0) =23 [ [ el Erdeos(uh) + f T, Grdsinnin(pyrididd -+

NN i[;} (6,1, (En)c0s(i) + fo, (Eri)sinng)] coson(és — 6)Vricridh

n=0 m=1 (3243)
Concerning the first term of this equation, knowing that
cos(ny) = s
0 0 othwerwise
2r
j'o sin(ng) =0 Yn (3.2.45)

only the term with the coefficient ¢,y will remain.

°Here we have changed the coefficients, using e,, f, instead of g, h, because the medium has changed,
therefore the potential will follow the form of the current density in the conductive medium, but the
coefficients are dependent upon the medium properties.
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For the second term we know that

cos(m(p — 6)) = cos(mg)cos(m8) +sin (m¢)sin(mo) (3.2.46)

and

LZ’T.S'r'n(mg?))cos(ng?}) =0 Vn,m (3.247)
0 form=n

I:K cos(m@)cos(ng) =< form=n=0 (3.2.48)
27 form=n=0
0 form=n

j':”sm(m(ﬁ) sin(ng) = 7 form=n=0 (3.2.49)
0form=n=0

We can therefore eliminate the terms of 0™ order and (since the terms with n¥n are zero) we can

consider only one sum with index » starting from J.

The angular variable has been integrated (and therefore eliminated):

,(p.6) = meagn(p) 1, (& rdy 2 +
. (3.2.50)

1 . @ il A
_ f;o Z n_pl" [emc‘os(n@l) + f,,51n(n6, )”ﬂ (&) 2
n=1

In order to integrate the radial variable in both terms, a property of the modified Bessel functions

must be used, that is:
[x"1,(Ex)de="-1,(&%) (3.2.51)
This gives:

n+l

1(p0) =" In(p) 1 G —%Z"i,—p,,[emcos(n@+f;,,sfn(n91>]fn+l(«:al)£ (3.2:52)
> n=1 150

n+l

—. e, da . = . . N
A4(p2.0) =2 In(p ) ()~ 2D 2 e, cos(n0)) + foy S0, (0)F 3259

2
1 ”fpz

Continuity conditions on the interfuces between regions

We shall now write the continuity conditions on the interface conductor - dielectric, that is on the
conductors’ circumferences; these are the same as in [2], namely:

- the continuity of the radial component of the magnetic flux density B

B it =Byt o (3.2.54)

- the continuity of the angular component of the magnetic field A"’

10 Differently from the magnetic flux density, the magnetic field H is dependent upon the medium; that said
the relation expressed in equation(3.2.55), namely H=B/j1 , is only valid if the conductor is not ferromagnetic.
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LE WL (3.2.55)

g—imt

H Hy

These components can be obtained in all the regions from the magnetic vector potential by

derivation:
B = b B, = Lt (3.2.56)
r o¢ p 00
o4, oA,
B =—71 B =— 3.2.57
¢—int or E—ext ap ( )

— N —
We now have in the dielectric the total potential 45, + > 4, and, inside the material of the
i=1

— N — -, . .
conductor we have 4,and vice versa 4y, + » A4, outside and 4, inside when we consider the
i=1
second conductor to be the source (represented by thin-wires).

We can now write continuity conditions(3.2.54)(3.2.55) for both cases.

When we consider the first conductor as source and the second as target, the continuity conditions,
written on the edge of conductor 1 are:

i ot {Z—[b—J sm(ncez—ez,-))}

nlag 2i

r—int—2 p—ext—2

-B %{i e, @Smm@ — fon Lj’zg)cos(nﬁz)} - (3258)
1 = 5
1

= 2 (821, (Say)sin(nb,)n — hy, 1, (Sa,) cos(nb))n]

jooa, no

M=

LIn[i L[G_EJ cos(n(gz_ng)):l_ezoé‘ﬂ(_f.az)"‘

i=1 2T n=1 az 2

f—int—2

H, ,=H,_, —%i[ezn @cos(rﬂ%) + fon @sin(n@z)} = (3.2.59)

" joou ;[ghf“ (£ay)cos(nd)) + hy, 1, '($a,)sin(nd,)]

w

where I 'is the derivative of the Bessel modified function of the first kind.

‘When we consider the second conductor as source and the first as target, the continuity conditions,

written on the edge of conductor 2 are:
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b H sin(n(6, ~6,)) |+

ﬂ' "101 j

=B, a1+ { ““(E’: ‘)s in(n6) - £, "“(; ‘)cos(nﬁ)} (3.2.60)

e Z[gi,,f., (§a,)sin(n6)n ~ b1, (Za,) sin(n6] ]
1 n=0

Y1 o l& 1(q ) 1
Z Efzj ; a_l Tj cos(n(gl_glj)) _elogfl(é:al)—i_

o & =4
s = Hoco —éz{em %cos(wtﬂ) +f, wmm)} _ (3261)
n=1 =

- [0l (Ga)cos(n8) + 1, (Ga)sin(n6)]

3.2.3. Resolution of the system: evaluation of currents and potentials
coefficients
In order to solve the equations and find the expression for the generic coefficient we intend to find

a system of equations in which every equation resembles a Fourier series, that is:
f(O@)=a,+> a,cosnd+ f,sinnd =0 (3.2.62)
n=1

this will allow us to find an expression for the generic coefficient e;, , f,, gm. etc.

This can be done because a, .5, have to be zero for every n in order to satisfy equation (3.2.62),
which can be proved, by multiplying equation (3.2.62) respectively by cos(nf) and sin(n6) and
integrate each, between 0 and 2x. This allows showing the double implication that if the Fourier
coefficients are zero, so is the function, and vice-versa.

To obtain expressions of the kind of (3.2.62) we shall apply the following trigonometric properties
to equations (3.2.58)(3.2.59)(3.2.60)(3.2.61)

cos(a+b)=cosacosb—sinasinb

sin(a +b) =sinacosb +sinbcosa

which become

sin(n(6, — 6,,)) = sin(nb, ) cos(nb,,) — cos(n6,)sin(nb,,)
cos(1(6, —6,,)) = cos(nb,) cos(nb,,) + sin(nb, ) sin(nb,,)

The terms must be rearranged, inverting the sums and grouping together terms which multiply the
same Fourier base function. This gives:
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n

Z["' 03T (Dayo o5l + Lo, Tun(GD) gz,,f,,(fa»}smcneg)+

ol ’ : - (3.2.63)
& -

S| Loyl oy nng, Lo g, L8 Ny g (ca,) cos(ne) =0
| 2755 a, by, S Jooa,

1 {'.’
ey héa)———gxl(Ea)+

& joou

o 19 I,  a, 1 (&a,) 4
+ - cosnb,, — Lha(6a,) i ! cos(nf,) + 3.2.64
:Z[Zﬁlel (bg,-) nGy; 232:. £ ja)o:ugzn . (Eay) (n6,) ( )
S 1,.,(a,) &
T lr 2 - a+l A2 ™2 = S].ﬂ 6 0
§|:2 ; (12 (bh) 2|f‘2n f ch‘:ﬂ 2n n (902):| (” )
= My < IZJ‘ ) \n o 1,.,(8a) n :

—» —(—)"cosnl, . +— - I (& sin(né )+
HZ=1: 27r;z=1: a (bu) " 2 G & jooa gula(ca) (n 1) 265
i N I > -
_Z & ﬁ(i)ﬂsnl 9 _'_1‘{0 f n+l(sal) —— n hl,,I,,(é:al) COS(HQI)ZO

| 2753 4y b j 2 & Jjooaq,

1
—€— 1, (5“1)_ gl (a)) +

g ;

SR 2 1 I.,a) &
+ cosnl . —— s - I (& cos(né) + 3.2.66
;i:zﬁjzl (11 (blj) 1 zeln g j&)o’ﬂgln H (Sal) (n 1) ( )

+2{ 1 Z 2;( .) sinn _% : In+l(§al)_jj h,I,'(&a) ]sin(nq):

T ap by &

We can now consider the generic term, as we explained before in this section, that multiplies the

base functions cos(n8), sin(nf), eliminating the infinite sum. This gives two equation systems:

',uo 1, a auo I,..(&a,) n e
cosné — I (Ea,)=0
2}?; 0'2 (bﬂ) 2 2:4' _f jaJO'az an n(g 2)
Hy 1, a auo I1.,(a,) n
sinn — — a 0
2}1’; az( 2!_) 2 -f‘Zn Lf jwo_az Zn n(g 2)
&
<— I (Ea,) ———g,,1,($a,)=0 (3.2.67)
9' joou
1 =4
5Ly cosng, Lo, LSS g g a0
o a, by, 2 & joou
; 1. 1,,(¢q) :
_Z 1 ( 2) S 92i__-f;n : = — . g 2n n (902) 0
1273 a, b,, 2 £ joou
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N T T &
Hy 2;( iy COSMQ.—!—%Q n+1(‘:rai)_ n gL (£a)=0

275 a by, & jooa,
Hy "J a n+1(‘:az) n
sin n6, a 0
27..’; a, (b“.) f;n 5 on_ : ln n("! 1)
&
I (Ea)——g, I,(£a,)=0 (3.2.68)
" Jjooyt
N I I £
L2 Py cosng, ~Le, LB __E g 1 iga)—0
2;:' a b 2 & jool
1 N I 1 I & =
- 2J ( 1 ) Slll??91 ‘f;" n+1(Sal)_ . S hmfﬂ, '(5(11)20
12755 @ b, 2 £ Jjoou i

We shall now solve the system for n>0 and calculate the generic coefficient of n-th order,
subsequently we shall calculate the coefficient of zero-order

Evaluation of nth order coefficients
We can rewrite the first equation system (neglecting the third equation) as:

R+ Se,, —Tg,, =0
U~+5Sf,, —Th,, =0

(3.2.69)
X —-We, —Yg, =0
L-wf, —Yh, =0
with
Hy 1i n Hy 1i (@ \n
cosn@, U= sin né,,
2;7;“2(2;') ” J75'2—1:'5"2( 21') ”
1 1 &1, .a .
X= u(Lynoosng, L=—> (L ysinne,
2;121(12( 2:') " Zﬂ';az( 21') "
1, I . (Ea 11 ., (¢a .
:11_0 n+1(9 2) T = I(b 2)W— r.r+l(§ 2) Y = -é: I" (é:az)
2 & jooa, 2 £ joou
We can solve it'! obtaining the expressions of the generic coefficients symbolically as:
—RY + XT -UY +LT
eZn i — .f'Z}r P —
SY+WT SY +WT
_XS+RW .  LS+UW
& sy " T sy +wr
The expressions can be then written as:
I T 1
LT L= % )" cosnéb,, nl (&a,)— I '(éa,)
2‘?'? i=1 aZ 2i aZ r
e, = . (3.2.70)
1 11,.,(&a,) 1 gay .\ p
2 & — nIn(é:GZ)—'_—In (‘:raz)
- aZ )ur

" The same system is equally valid for the second set of equations, just changing the sub-indexes 2 with 1;
this will hold true also for the solution.
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N 1 :
LZ&(G_Z)" sinn6,, —[nfﬂ(é‘az)—&f,. '(_5(12)}
s 2w ay by, a, Hy (3.2.71)
n 1_[ " fﬂ' 4 -
Pl 1 o) 50 eay)
2 £ a, A,
N 3
&Zﬁ(a_z)n cosngm_ In+l(9a2)
e e, b, (4 (32.72)
"I 1LuGe) 1] e B
ja)O' 2 § 02 n n(‘:‘ (12)+ lur n (‘_'! 02)
N
?Zﬁ(“—h“ sinné,, ALY
by, = o a, by S (3.2.73)

U 1L.Ga) 1] . ey
joo2 & a_{ e, @zaz)]

2

We can now apply the Bessel function property xI, (x) =nl,(x) + xI,,(x) and simplify, obtaining:

N 1 £ |
lzﬂ(&)" COS?’IQQ,- n[l—— In(faz)_ﬂ‘{nﬂ(ga?)

e, = T3 a, by, Hy #y =
= 1,..(Say) |
Zra(5) o 1+ L)1 (a)+ £ 1 (2ay)

& u)" s ]

N 1 . f:a e

%Zﬁ(;_z)“ sinné,, [” 1_; In(faz)_;l‘{nﬂ(g%)
— a .

‘fz _ i=1 Y2 2i - r: r =

" I,,,(a,) 1

% {n 1+— Iﬂ(§a2)+%fn+l(‘§a2)

. N
%ZIM ;—2)” cosnb,,
i=1 2i

gZH = 1 P
|:?1[1 + —Jfﬁ(é:ag) + ﬂfﬂﬂ(f“Z)]
4 u

r

(OCLy ~ , 0y
AZ Ih_ (_2) sin ”92;
ho— = 2i

[n[l + L]In (&a,) + &Inﬂ (faz)]
M A

r

r

The coefficients for the other conductor are equally obtained and are:

N T 1
iZA(i)"cosnE{. n 1—L I“(gal)_ﬂfnﬂ(‘:{:al)
_ T i1 al blj J )u xulr

r

% Hl+LJI,,(§a1)+@fm(§al)}
. H

i r

(3.2.74)

(3.2.75)

(3.2.76)

(3.2.77)

(3.2.78)
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| By f s e

n+1( al) f"
7; HHLJI (§a)+5 ‘f,m(fal)}
H 1

r r

(3.2.79)
foley Tl &
%ZIU(!)—‘) cosnb,;
_ J=1 1j
gln T
|: { }r (&a)+ IJ‘r.u+1(‘:a'1):|
F a (3.2.80)
- N
JO% S 1, (1) sinng,
h, = = (3.2.81)

n[l + i}}ﬁ(gal) + ﬂfm (Ea,)
A, H,

Evaluation of zero-order coefficients

The zero order term, that we cannot infer from the generic expression, represents the classical skin
effect term, as derived by Schelkunoff [3], namely:

E
=

=5 (3.2.82)
S0 2ra 1y (Eay)

E
=

== (3.2.83)
£ 2ray) Iy (Eay)

The potential coefficients in the dielectric are related to the current density coefficient in the
conductor by the relation

,&
Lrgay-——— g1 (50,) =0 (3.2.84)

£ joot
L(a)-—— 201, (£0,) =0 (3.2.85)

" & Jjoor
og=—— (3.2.86)

2ral (a))
ey = (3.2.87)

2ra,I (&a,)

Expression for the current density and calculation of thin wires current intensities

Using the coefficients that we have just calculated (actually for writing J we just need g, and 4,) we
are able to write the current density in both conductors, as a function of the total current circulating
on the conductor, and the thin wire current intensity.

3 1 14(8n) . 5 A

J (r, 5 055 EL 7 E I, ()" (cosnb,; cosng +sinng, sinn 3.2.88
1(1 ¢1) 274, I(S 1) ;1' 1n n(S 1)}1 2_,(le) ( ¢1 ¢1) ( )
EI 1,(&n) . &

=- 022,42 Ep. I ()" cosné,; cosng, +sinné,  sinn (3.2.89)
2ra, I,(Ea,) :’rz S z)z 1'(b ) ( e sz)

n=l1 i=1 2i

jz(rzn(ﬁz):
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Here we regrouped all the terms which are not functions of i or j but only of # in the coefficients
Ly, Ly, this in order to obtain a more compact expression.

T 1 1 &a,
n[l+—]fn(§al)+ n+1(£”1)]
i A, ,
LG =T 1
[Hiﬂueg+2a4&4
i u, H

These expressions for the current densities are a function of the geometrical mutual positions of the
wires (expressed through distances and relative angles) and their amplitude.

The mutual positions being already known, we now need to find the current intensity on the thin
wires.

Having solved the continuity equations for the magnetic vector potential, we have calculated the
coefficients that allow writing the current density inside the conductors. These densities depend on
the intensity value of the thin wires, which are still unknown quantities.

In order to find these quantities, we express the thin wire sources as a function of the current
density in the sub-conductor which is identified by the thin wire.

To do that we can say that the thin wire current intensity corresponds to the value of the current
density at the point where the wire is, multiplied by the surface of the sub-conductor in which we
assume the current density to be constant, namely:

I, =J,(r..6,)dS, (3.2.90)
I, =J,(r,,.,,)dS,, (3.2.91)

dS); and dSy are the surfaces of the sub-conductors in whose midpoint is located the ith or jth thin
wire.

We now write the current density in one specific point where the wire is located as:

J.(n.0,) = 2? i; Esd?i,) 5 Z Llnfn(grh)z fzj(—) (cosn(8,, —4,))2 (3.2.92)
- 1¢& 1,(ény)) , R
JZ(}EJ,@I}_F‘:;L(Z%) i;l‘zu H(Srz_,)zfn(j) (COS”( 2 @))‘ (3.293)

And from the definitions given before:

Ié I,(&n,) &
lﬁ[mmgﬁo trhd @“Z U(m”( ﬂ”}' 6290

& I(Sn) &3
IZJ' :|:2;1'0'2 m+§§1‘2n n(‘ngJ)ZIlr (_) (COSH(QZI _¢2_; )):|dSZJ (3295)

Rewritten as

I& I,(8n)

2ral I(sal)dS lejidsl.-z LI n(§n,)(—) (cosn(6,, —g,)) -1, =0 (3.2.96)

Jj=1 T n=1 IJ
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I5 Io(frz;) l £ = a, ~ ~ N
2ra, I,(&a,) Aoy ZI dsziglz"f '“rh)(b ) (COS”( 2 ¢2;)) L, =0 (3.2.97)

2i

This last set of equations can be rewritten as a matrix [2Nx2N] of the sort:

i J
-1 0 0 | T4 [ 1,(¢3,)dS,,
0 -1 0 O | : I& :
i o . | 9, I; 2rad,(Sa)) | 1,(Sn,)dS,,
0 | : :
0 -1 | Ly I,(&ry)dS,y (3.2.98)
| -1 0 0 0 0} I, I (Ery)dSy
[ 0 -1 : :
J Rg- | IZj 1< Iu(é:rzj)dszj
| 0 . 27al (sa,) :
| | O 0 0 -1 Ly | _Iﬂ(é'FEN)dSZN_QN
where
0= f""‘“ ds ZL (&) [;"} (cosn(8, ~ ) (3.2.99)
1
joou a, )
R, = ds. ZLQ (&) [bz] (cosn(ﬂzf—@j)) (3.2.100)
Dy

Note that the sum with the index n must be limited to a finite value in order to be calculated.
It is possible to solve this system because the matrix is non singular and therefore invertible.
Once the thin wire current intensities have been calculated (they will all be a function of the total
current f) these can be used to calculate the impedances, as shown in the next paragraphs.
3.2.3.1. Development of logarithm as a series

We show here how we evaluate the logarithm that is used in the previous chapter in obtaining
equation(3.2.43).

The first step is to express the distance R; as a function of the coordinates (p;,6,) and to do that we

will use the equivalence

log, (R) = log, (p,) —fi[;—lj cos(n(¢, —6,) (3:2.10)

We now turn to the demonstration of this equivalence.
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Fig.21 — Description of the coordinate systems for the generic conductor section

If we consider Fig.21 and take into consideration the points P;(p,8), P,(r,¢p) we can rotate the
reference of — so that the points now have coordinates P;(p,0), P(r, ¢ 6).

Using a complex notation it is easy to demonstrate that, z being a complex number'?,

Re{In(z)} =In|z| since we can write
In(z)= fn|z| + j Arg(z)

Now we can write
In(R) =In(p—re’*?)= h{p[l — Lo n =In(p)+ m[1 - ief@-‘?)J (3.2.102)
P J. P

We can rewrite the second right term applying a series development for the logarithm:

Jn(l—x)z—iL for |4 <1 (3.2.103)
n=1 n
We have ]II(R) = l]l(p) - Z%[%] gn(#-8) (3.2.104)
n=1

And since we are interested only in the logarithm of the modulus of R we will take the real part and
obtain (3.2.101)

2 From now on we will indicate the neperian logarithm with In instead of the notation log.
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3.3:

Method for the calculation of induced currents based on thin-
wire approach: round core conductor inside a hollow screen

conductor

Fig.22 — Description of the geometry of cable considered, with relevant notations

In the following table we show the notation used in this section.

Table 3 - Notations used in Section3.3

AS 7 A Magnetic vector potential in the dielectric due to @ /0 Angular coordinate inside/outside the
s sd current density inside the screen conductor / thin conductor
wires
Af / Al_s Magnetic vector potential in the dielectric due to I, I; Total current / current of jth thin wire of ith
a d current density inside the ith conductor / thin conductor
wires
Ay g Magnetic vector potential due to jth thin wire of K, Bessel modified function of second kind and
ith conductor n-th order
a; Radius of ith conductor J Imaginary unity
b, Distance of ith conductor from the pipe’s centre J /T Total cwrrent density / eddy current in ith
£ conductor
cl/c2 Inner / outer radius of the pipe /i Magnetic permeability / permeability in
vacuum, relative permeability
d Distance between a point of the dielectric and a r/p Radial coordinate inside / outside the
generic thin wire conductor
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3.3.1. Methodology description

We shall use two different cases, as shown in Fig.23, in order to be able to calculate the mutual
effect of the conductors on each other’s expression of the curent density (and therefore
impedance). As in the earlier chapter the terms we find are only the corrections which account for
proximity effects, whereas the skin effect is evaluated using Schelkunoff precise formulas.

CASE1 CASE2

[[T]SOURCE
{represented bry
thin-wires)

[ |TARGET

{whole)

Fig.23 — Two cases (step) used for the calculation of current density distribution in the
conductors

The situations we analyse (see Fig.23) and solve in parallel, in order to evaluate the unknown
coefficients that are present in the expression of current density and vector potential, are the
following:

- InCASE1
o The inner core conductor is represented as the source of the induction, that is as a
multitude of thin wires, each of which induces a current density in the hollow
conductor and also a vector potential in the dielectric
o The “screen” hollow conductor is represented as solid, but it is considered as
having an infinite outer radius. This approximation, which allows us to obtain
simpler expressions, introduces an error, but this error should be compensated by
the thin wires distribution of case 2.
- InCASE2
o The outer screen conductor is represented by a multitude of thin wires. The
position of the wires follows the actual surface of the conductor; this should act as
a counterweight to compensate the approximation used before. This consideration
follows from the fact that the actual current density distribution depends upon the
intensity value of each thin wire, and this is determined by “uniting” case 1 and
case 2 with one another.
o The inner core conductor is represented as solid, and its current density / potential
is represented as in the prior chapter.
As before, we proceed by finding the vector potential in each region, but contrary to the two
conductor’s case, here the situation is not symmetrical; therefore we will treat the two cases
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separately.

Once the potential has been found, in each case the coefficients are calculated through the
resolution of a system of equation, deduced from the boundary conditions (on the screen’s inner
surface in case 1 and on the core’s outer surface in case 2).

The last step is exactly analogue to what has been done before for the case of the two wires.

The matrix equation system, which relates the thin wires of the two cases, allows solving their
intensities.

As for the case of two conductors, the current which is “injected” in the core conductor returns
entirely through the screen.

Finally the resistance and inductance are defined, using the “energetic method”.

Description of the notation
The core conductor has a radius a;, the screen conductor has inner and outer radiuses c¢; and c¢;.

Generic jth thin-wire
Generic ith thin-wire
of the

Fig.24 — Coordinates of filaments in the screen and core conductors

- InCASE1

-(b.y,) are the coordinates of the centre of the core conductor: (7;.¢ )are the generic
coordinates of the screen. (p,.6,) are the coordinates of a generic point in the dielectric and R
is the distance between a point in the screen and the generic point in the dielectric;

- (1,.¢,)are the coordinates of the ith thin-wire inside the core (identified in the core’s
coordinate system), whereas the same wire is identified as (p,,,6,,) in the screen coordinate
system (the transformation is detailed in the following).

-In CASE 2

(r,.¢)are the coordinates of the core conductor (centred in its centre).(p,.6,)are the
coordinates of the dielectric medium, coordinates which are centred in the core conductor.

(r,.¢,,) are the coordinates of the jth thin wire representing the screen conductor., whereas the
thin wire is represented as (p,;.6,,)When viewed from the coordinate system of the core
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conductor.

3.3.2. Case of core acting as a source (Case 1)

Generic expression for current and potential inside the conductor

We shall now write the generic expression for the current density and the vector potential inside the
screen, approximated as having an infinite outer layer.

Ts(r505) =X [o,cos(ny) + pysin(ng )] K, (E5r5) 2 (33.1)
A (rs.95) = ; ‘_1 i [o,cos(ngs) + p,sin(ngy)| K, (&r) 2 (33.2)

where o,p, are coefficients functions of n later to be determined, & =./jousog and K, the
modified Bessel function of second kind and »n-#h order.

Potential in the dielectric, due to current density in the screen

We consider that an infinitesimal element of the screen’s surface contributes, in terms of current
density, to the potential in the dielectric (inside the screen) as:

d*,A(p.6) = ;‘—"}S(r,@ In R, rdrd (33.3)
T
The logarithmic development, used in the previous chapter, is here again employed for the

calculation of the logarithm of the generic distances, which are:

n\ rg

In(R,,) =In(rs) - i 1 [&J cos(n(¢s —6,)) (3.3.4)

The integrals are’:

2

0 T

7]

_&ﬁ”il[&
2 7

q o0 m=a1 M\ T

P

In rs)i [s“cos(ngbs) + .f"s:'n(ngés)]K" (Errgdrdg, +

n=0

4, (py.6,) =

9]

J i [s“cos(ngés) +1 sin(ng; )]Kﬂ (&rg)- (3.3.5)

n=0

. [cos(mgbs ) cos(mé,) + sin(mdg, ) sin(mé, )] rydr.dg,
For simplicity we shall rewrite the potential as the sum of two parts:
A (p.6)=1,+1,

The trigonometric properties applied, the angular part is integrated, giving

1, = 1, [ In(r, )5, Ko ()7, dr (3.3.6)
q

BNote that the coefficients are not the same as in the expression of Js but are changed in order to account for
the medium discontinuity; we introduce s, and #, .
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Using integration by parts, namely judv =uv— jm’n with or dv =K (& )r,andu =In(r,) . whilst

applying Bessel function property _[ x"K_(Ex)dx = —%Kn (Ex)
=

We have
s i K. (& ]
I = £ ¢ In(q)K; (&5¢) - ACaey Z%OSUSO @37
Ay Ss S

with S, =| ¢ In(¢) K, (&5¢) + @

=5

For the other integral, applying trigonometric properties, only the terms with n=m result different
from zero, and this gives:

I=- .uoj'z

ﬁ[fo J [.5“ cos(n@,) +1t,sin(nb, )]K (&or ) rodr, (3.3.8)
1 E

Now in order to solve this integral we apply again Bessel’s function properties and we obtain

I, =~ 2 Z":: = l(f Cl){[s cos(n,) +1,sin(n6,)]} (339

and the final expression of the potential is

A2 (p.0) =s5,S, +

3.3.10
2é Zpo - l(f 1)[8 cos(ny) +1,sin(n6,)] o
5 n=1 n 1

Contribution of the thin wires representing the inner conductor.

The potential due to the thin wires is written in the same way as in the last chapter, namely for the
i-th wire:

A.(p,. a)_“ I, [m( £y)— Z ('O—"J cos(n(6,, 9))] (3.3.11)

The quantity (p,,.6,,) is evaluated as:

Poi = \/blz +77 +2br,cos(d, —7,) (3.3.12)
b siny, + 7, sin(gy,)

6,; =arctan \sinz; *1;, sin(h,) (3.3.13)
bycosy, + ’ifcos(@"u)_

Solution of Case 1

Continuity conditions (analogue to(3.2.54)(3.2.55)) are written on the screen inner boundary using
all the potentials contributions found for the two mediums.
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£ 3 K, (&) {[s, sin(n6,) — 1, cos(n6,)]} +
Ho o 1 [ Poi e
; o B I —| = | sin(n(8,, - 8,)) |= 3.3.14
po—imnt r—screen ; 27 1 |:§ Cl [ CI J (n( 0i O))} ( )
Z[o sin(ng;) - p, cos(”¢s)]K (&)
]C!J 561 n=0
[ 1& . :
2_§ 2. K (&) {[s" cos(nd,) +t, Sm(né’u)]} +
H, =H —iir. ii Pu "cos(n(t?.—ﬁ)) = (3.3.15)
&—int f—screen — 2 1i — Cl C‘l | 0i 0
Z [0 cos(ngs) + p, Sm(”¢s)] K, ')
J(QJS#S n=0
al — K, 1(9'561)5 o i i ”ﬁ) )_ K, (_f.scl) =0
2_5. Tia g JOOs¢
4 Mo S n
K, (&sa)t, + Z sin ”901 ) +——p.K,(&56)=0
29 FE Jjooq
) (3.3.16)
1 N ]- 9‘:3‘ '
—c, n— I(Sscl)s I COS(” OuKn (_f.scl) =0
28 i= G Jmo-sﬂs
1 , 1Y 1(p. ) . 3 §
— K, (&a)t, — _Z I, _[ Po ] sin(n6,) —— = P.K,'(s¢,)=0
| 255 213 al g JOCs s
The coefficients of the current density are found to be'*:
ZI —(&J cos(n6,,) _ Z [ Poi ] cos(n6,,)
S ala _ JOHsOs a_ (3.3.17)

n(l+ 1)K, (&sc,) + 86K, (E5¢,)

"7 1+ u)K, (&) + 1K, (Ee) @

ZI —[&J sin(n6,,) oo Z [p °'] sin(n6,,)

P, _ 5 a —— = : (3.3.18)
7 1+ p1,)K, ') + 1K, (S5¢) T n(1+ 11K, (55¢) + &6 K, (Ss56,)
whereas the coefficients for the vector potential are:
3 Poi ’ n
Z - | cos(nb;) é_,—c(,“rs DK, (&) + K, (8s5ep)
2\ 4 s (3.3.19)

1
T K, (Ssa) [: (1, —DK, (&) - 1(5561)]

o5™

14 The passage is found using Bessel functions properties, namely formula 116 at page 165 of [73]



Z I, {&] sin(n6,) {gic (s — DK, (&5q) + K, 1 (&5 )}

1=
A Bl = (3.3.20)
T K, (& n
st {— (s —DK, (&) - K, 4 (55‘("1):|
_f.scl
Term of zero-order for the current density in the screen
The term which accounts for the skin effect in the screen is found, from Schelkunoff as
I (r @) = Cs [Io (&K, (&s6y) + (56K, (‘fsr)] (321)

27¢, [1,(4:6,)K, (6:¢) — I, (&5 K, (456, )]

In evaluating this term, the finite thickness of the screen is taken into account.

3.3.3. Case of screen acting as a source (Case 2)

The expressions for the current density and potentials (obtained in the previous section) are:

J,(ret) = X @l (Er)cos(nd) + by I, (E)sin(ny) 2 (3322)
n=0
A(h.) = —M—Zgl,,fn (&.n)cos(ngy) + h, 1, (&.1)sin(ng) 2 (3.3.23)
¢ n=0
Integration of the potential due to J; as is found in the previous chapter is:
w 1 n+l
45,026 = e, () 2L (.a) - %Z L [,cos(n0) + fi,sin(nO)]| 1., (E.a)  (3.3.24)
C 1 C

Contribution of the thin wires representing the screen conductor.

We now need to account for the contribution of the thin wires inside the screen. Each wire gives a
contribution™:

A (po,ﬂu):;—;}'sjlndﬁ (3.3.25)

We need to express the distance dg; between each filament, and the generic point in the dielectric as
a function of the coordinate (p,.6,)this because continuity equations shall be written on the

screen/dielectric interface. The logarithm becomes:

-] 1 i "
Indg =In(p,)~ Y. —| 2| cos(m(6,-6,)) (3.3.26)
m=1 7 )o 1j
1 All these contributions will be summed to give a total potential, due to the superposition of the field given
Nwires
by the single wires, namely Z Aﬁ}.
Jj=1
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4,(0,.6,) :éirsj In(p;,) - il(ﬂJ cos(m(6,—6,)) (3327)
= _

m=1 1j

The distance vectors of the thin wires representing the screen, seen in the coordinate system of the
inner conductor are found using cosine law, namely:

pr; = b2 + 12 — 2rcos(r, — ) (3.3.28)
‘Whereas the angle is found as:

bsiny, —ry sin(dy)
.bl €os y, — rgcos(dg)

91}. = arctan (3.3.29)

Solution of CASE 2

The coefficients, in this case, will have the same expression as in the last case, therefore we do not
state again the whole procedure (continuity conditions — solution of the derived system of
equations), but just rewrite the coefficients. The only difference here is that the thin wires currents
are from the screen conductor (when it is represented as a source and split in thin wires).

v n
ZI’J" (&J cosn@,,

JOO [, 1 Py
L2 : 288 - (3.3.30)
[n[l + _JIH (é:cal) + 2e I}r+l (gr:al ):|
5 Fhe
N Y
. DI, [i] sinné
h Joo, i m Ay (3.331)
i
{n[l + —]I,. (S.a)+ 24 I,.+1(é’al)]
re 'u”"
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Expressions for the current density in the conductors
The current density in the infinite screen is written as:

—1¢ [L(ERK o)+ (K (6n)] ,

J (};"¢s) = =
: 27 [Il(é:sCZ K (&q) - L(qa)K (&, )] (33.32)
_ x - b 3.
LGS K (ER)D ["’—] [cos(nBl,)cos(ng,) + sin(n6,)sin(ng, )] 2
T aa i=1 (&1
_ 1
o n(l + nurs )Kr.r (gscl) + "_ESCIKH—I (gscl)
Whereas the current density in the core is:
~ I I,(Er
T,y = 2L o) -
27ay 1, (scal) 5333

: ® N "
L ZL“I” (&n )Z I, [&J (cos né,, cosng, +sinné,  sinng, )5
T Jj=1 £

n=1 i

N TN
|:n(1+_]fn(§cal)+ II+1(§C 1)]
M .

rc

Calculation of thin wires intensify
We follow the same procedure used for the case of two conductors, which allows to write:

g =Js(r,.0,)dS, (3.3.34)

S_j ?
I, = J,(r;,.4,)dS, (3.3.35)

with dSy; and dS); the surfaces of the i-th and j-th sub-conductor (centred in the corresponding thin
wire) of the screen and the core conductors respectively.

-I&

Js(ry-85) = e B
1
n (3.3.36)
“’“’“ : ZL K, (&r, )ZII, [ P J [ cos(ny)cos(ng,) +sin(n8,sin(nd, ) |
with
L GErK(66) + (&K (6 ] (3337
? [Il(‘D:CZ)KI(.f-sCI)_Il(.f-scl)Kl(é::CZ)] o
IE I (ER) j(o,u Yo ()
J, (5. 0,) = B e JERIDY T | — | (cosn(8,, —¢, (3.3.38)
(i 2ra I(fal) ZL] 1 ;Z=1: ’ Py ( ( Y ‘531))
Those are rearranged as:
IE I(Er) jouo. & X (aq)
I, =| 2tk << »L,I DI 6, —¢.))|ds, 3.3.39
1 Zﬂ'al Il((;"cal) + T "Z=1: 1n n(gcrlr); 5 plj (COS?’.’( 1) gﬁh)) 1 ( )
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-I
I, = s
2r¢

Ié:c IO (é:c?ii)

2ra; I(E.ap) Py

—JE
I‘Js

2rq

1

B.Sj + J f; ) Z LSH Kr: (gsrs_; )Z Ilf [ ’;‘:i ] (COS n(e(li T ¢sj )):| dS:_;
n=1 i=1

- o N "
dSir' At %Zﬁnf,@ﬁf)zfg [i] (COSH(QU = ¢1r’ )}JSIE - Ili =0
n=1 Jj=1

jmﬂso-s % 2 p i ‘
BdeS.ﬁ + TZ_I:LSHK}I (_f.s}:’j )2—1: Ilf( CO J (COS ”(‘gof 3 ¢sj))dssj _ISj =0

And that, considering each sub-conductor can be written in matrix form, as:

i j
-1 0 0 | T I,
0 -1 0 0 |
i 0 | Sy I,
.0
0 -1 | I,
| -1 0 0 0 0} I
| 0 -1
J L] | IS)
| 0 .
| | O 0 0 -1 Iy
where

s, :&fdsuianum)[i] (cosn(8, ~4,))

n=1 15

T, =19%% 45 S I K, (&, )[ Poi ] (cosn(8y, —4,))
T — q

-Ic,

27a 1, (S,qa,)

I

27e,

14(&n,)ds;

[ I1,(&.7,)dsS,, ]

1,(&.ny)dSy

(3.3.40)

(3.3.41)

(3.3.42)

(3.3.43)

12N

(3.3.44)

(3.3.45)

The solution of this system of equations gives the current density of both conductors, with the

inclusion of proximity effect.
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3.4. Numerical evaluation of the internal impedances of solid and
hollow conductors

The internal impedance of each sub-conductor is then calculated using the energetic definitions of
resistance and inductance.

R, = crli' ; [ [A[as (3.4.1)
1 condl

T le p|A[ ds (3.42)

L= [ Jds (3.4.3)

cond1

These definitions have to be applied to the current density and magnetic fields expression of core or

screen conductors, which are found to be:

15, Li(En)

J(.) = 2 L) + ;[gmcos(ngﬁl)+ hy,sin(ng)] I, (En) (3.4.4)
HH(.Vl,gﬂvl)—72[&,r sin(ng,) — hy, cos(ng)|1,(n) (34.5)
JOUO N na
I I,(EnR)
H,(.¢) :%I - Car) 2[81,.C03(”¢1)+ hy,sin(ng)|1,'(én) (3.4.6)
5 oy - 1 BoEnE ) + LG Kol
T e [LE K ) - LEKES)] 547
+2 [o.cos(ng,) + p,sin(ng,)]| K, (&7,) 2
H, (1.9, )—TZ[O sin(ng,) - p, cos(ng,)| K, (&7,) (3.4.8)
H, () ~— I [LEDK (Ga) - LGe)KEn)] |
Zma (LK ) -LEDKEe)] 549

w

+§i Z [oﬂcos(n(zi: )+ p,sin(ng, )] K '(¢r)

¢ n=0

It must be noted that the radial magnetic field has a null 0-th order term; the radial part of the
magnetic field in the case of a coaxial cable is zero, whereas here there exists a nonzero part which
intervenes as proximity effect terms.

In order to evaluate the integrals, they are approximated by finite sums, which are calculated for
each point in which the EM quantity has been calculated (that is, the position of each thin wire).
The expressions become therefore

N cond core J];‘z dSH
i=1 c’rc |I |2

R, = (3.4.10)
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R

L

screemint

‘screenint

Ll K N cond core #‘Hﬁ‘dsuz +‘H¢i‘dsh-2
it

= I

2
N cond screen “j.-;r ‘ dS‘“

i1 (078 |"ir|2

_ Vedgrom | |dS,? +|H,|dS,

|17

(3.4.11)

(3.4.12)

(3.4.13)
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3.4.1. Distribution of the filaments and validation of results

The filaments are distributed following a uniform law as in the examples given in the following
figures, Fig.25 and Fig.26:

Filament position r1
dS1i

Fig.25 — Distribution of the filaments inside the solid conductor

0.06

0.041

0.02f

-0.02

-0.04F

006 I I I I I ]
-0.06 -0.04 -0.02 0 0.02 0.04 0.06

Fig.26 — Distribution of the filaments for the conductor and for the screen using Matlab —
abscissa and ordinate are the distance from the centre of the screen

In our simulations we have seen that the number in the angular direction does not significantly
modify the convergence if a number between 6 and 10 is taken.

The radial direction instead is very important in the convergence; in order to have a convergence in
our code the number varies iteratively, at each frequency step, according to a convergence
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criterion, which is represented by

N

Il [~ ZIH

i=1

<&

The quantity ¢ is chosen between 1-10™ and 0.5-10™ in order to have a good degree of accuracy.

3.4.2. Validation of the results for the current density

The scope of this section is to validate the results obtained for the current density, comparing them
with those obtained using Comsol Multiphysics, a Finite Element Method program. We do this for
both configurations we studied.

3.4.2.1. Configuration of the two conductors

Here we considered the configuration of two conductors, having each a radius of Smm, the distance
between the centers of the conductors is 15mm, and the conductivity is 3.8-7 0’ S/m. We show on
the following graphs, the norm of the cwrrent density of the first conductor (as modified due to
proximity/skin effects) at the frequency of 10 kHz.

Fig.27 — Norm of the current density at 10 kHz in the two conductors, plotted in Matlab using
the method we propose (|J| from higher to lower, from red to blue)

In Fig.27 we see how the two opposite current flowing in the two conductors attract themselves due
to the proximity effect; the skin effect is also evident, as in the middle of the conductor the current
density is very low as compared to that at the conductor’s surface.

In the following figures we compare current density as evaluated in our method and using Comsol
AC/DC magnetic module; the comparison is done:
- looking at the radial direction and having fixed the angular position at 0, 90 and 180
degrees;
- looking at the angular direction and having fixed the radial position at the core surface (=5
mm), in the middle of the core (r= 2.5 mm) and in the centre of the core ( =0 mm).
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x 10" M| in the core in radial direction,®=0°, =10kHz
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Fig.28 - Norm of the current density in the core, in radial direction, at different angles,
comparing “wires” formulation and Comsol



x 10 M| in anguiar direction - core surface, f=10kHz
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Fig.29 - Norm of the current density in the core, in angular direction, at different depth of the
conductor, comparing “wires” formulation and Comsol

We can see from Fig.28 and Fig.29 that there is very good agreement between the formulation we
propose for the case of two conductors and the Finite Element program Comsol. Whereas Fig.28,
which details the norm of the current density following the radial direction, shows principally the
skin effect, Fig.29 makes the proximity effect well evident.

We chose the frequency of 10 kHz for this validation, because at this frequency proximity effect
becomes relevant, but the skin effect is not too intense and the current is not uniquely concentrated
on the conductors’ surface.
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3.4.2.2. Configuration of the conductor inside a screen

The inner conductor here has always a radius of 5 mm, the screen has inner/outer radiuses of 15/16
mm; the conductor is placed 5 mm from the centre of the screen. The conductor we consider in the
following two figures has a conductivity of 3.8-70” S/m and relative permeability s4=1.
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Fig.30 - Norm of the current density in the screen, in radial direction, at different angles,
comparing “wires” formulation and Comsol.
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Fig.31 - Norm of the current density in the screen, in angular direction, at different depth of
the conductor, comparing “wires” formulation and Comsol

We can see that the formulations we propose well agree with the Finite Element method also in this
second case, although some problems arise in the evaluation of cwrrent density in the screen at
10kHz. These problems are due to the approximation we used of semi-infinite screen, and this is

evident from the current density at 10 kHz in Fig.31. We consider this not being a very big problem
for two reasons:

The current density gives bad results toward the outer surface of the conductor, where the

current absolute value is much lower than on the inner surface; since the resistance is
evaluated globally on the whole conductor’s surface this causes only a small error
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- The types of screen which interest us are generally the armour of submarine cables that are
much thicker than the one we have shown here, and made out of steel, that has a much
lower penetration depth than the other conductors, due to its ferromagnetic behaviour.

We now show the validation for the current density in the same geometrical configuration, but with
the screen made out of steel (conductivity 3.3-70° S/m and relative permeability 44=300).
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Fig.32 - Norm of the current density in the screen, in radial direction, at different angles,
comparing “wires” formulation and Comsol.
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Fig.33 - Norm of the current density in the screen, in angular direction, at different depth of
the conductor, comparing “wires” formulation and Comsol

We can see from Fig.32 and Fig.33 that, since the skin depth is here much reduced, due to the high
permeability of steel, the formulation gives better results in this case.

To have a reference, we give here the different values of the skin depth for aluminium and steel.

Table 4 — Skin depth of aluminium and steel

Frequency | Skin depth aluminium | Skin depth steel (11,=300)
50 Hz 11.5 mm 2.25 mm
1kHz 2.58 mm 0.5 mm
10 kHz 0.81 mm 0.15 mm
100 kHz 0.258 mm 0.05 mm
1 MHz 0.081 mm 0.015 mm
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As a rule of thumb if the thickness of the screen is 4 times smaller than the skin depth then the error
given by the approximation of semi-infinite outer screen is very small.

3.4.3. Validation of the results for the internal resistance and

inductance
‘We consider here the core conductors and the screen (armour) of a submarine 90kV cable (that is a
realistic configuration) and we deal with the two configurations described in the previous sections.
In the following table are the characteristics and geometry of the cable used in the calculation of
the internal impedances.

Table 5 — Geometrical and electrical parameters of the cable

Diameter / Thickness | L, g c
Copper core | 23.5 mm 1 1 5.8-10" S/m
XLPE 14 mm 1 24 |-
insulation
Lead sheath | 2.5 mm 1 1 3.89-10°S/m
PE jacket 2 mm 1 23 |-
Steel armour | 5 mm 300 |1 3.271-10°S/m

We show the graphs of the internal per unit length (p.u.l.) resistances and inductances and we
compare them to those obtained with existing methods, and a FEM model implemented in the

Comsol Multiphysics simulation environment.
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Fig.34 — Internal p.u.lL resistance and inductance for the case of two solid conductors

Table 6 — Internal p.u.l. resistance for two solid conductors [€2/m]

Method\ Frequency | 50 Hz 1 kHz 10 kHz 100 kHz
Skin only 417-10° [ 122107 |3.63:10° | 1.12-10™
Kane 423-10° | 128107 |3.8410° | 1.19-107
Proposed 423-10° [ 128107 |3.82:107 | 1.1810"
FEM 423-10° | 1.28-10% |3.8510" | 1.19-107

Table 7 — Internal p.u.l. inductance for two solid conductors [H/m]

Method\ Frequency | 50 Hz 1 kHz 10 kHz 100 kHz
Skin only 4.87-10° |1.76:10° | 5.62:10° | 1.77-10”
Kane 5.37-10° | 1.87-10° [ 5.96:107 | 1.88-10~
Proposed 5.12:10° | 1.8510° [ 5.90-10° | 1.86:10
FEM 5.13:10° | 1.86:10° |5.96:10° | 1.89:10”
0.025
==i=e=t FEM
0.021 == proposed method
lEl e Kane
Somsf L Skin only
9
ﬁ 0.01f
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Fig.35 — Internal resistance and inductance for the screen, under the influence of an eccentric
core conductor

Table 8 — Internal resistance for the screen [£2/m]
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Method\ Frequency | 50 Hz 1 kHz 10 kHz 100 kHz
Skin only 2.70-10° |1.26:10° | 4.00-10° |2.01-10*
Kane 2.7410% | 1.42:10° |5.49-10° |3.56:10"
Proposed 2.74-10° | 1.36:10° |[549-10° |3.20-10*
FEM 2.7410% | 1.41-10° |5.52-10° | 3.32:10"
Table 9 — Internal inductance for the screen[H/m]

Method\ Frequency | 50 Hz 1kHz 10 kHz 100 kHz
Skin only 9.13-107 |[2.01-10° |6.36:10° |[2.01-10
Kane 1.03-10° |2.85-10° |1.05-107 |3.56:10°
Proposed 9.22:107 |[2.18-10° |8.7510"° [3.20-10°
FEM 9.24-107 |2.26:10° |8.80-10° |3.32:10"

These results altogether show the validity of our model. As we can see in Fig.34 and Table 8 the
fact of having a ferromagnetic armour and therefore very low penetration depth implies that the
results obtained even using the approximation of semi-infinite screen are acceptable, and this is
also due to the fact that this approximation is only used for the proximity effect term which is very
small at low frequencies where the approximation could be questionable.

It must be noted that the internal inductance, as evaluated by Kane gives results that are slightly
overestimations. This is probably due to the way the inductance is evaluated (that we have shown
in 2.4.6) and the fact that a single filament is used to represent a conductor, which may lead to
inaccuracies when the conductors are close.

The proximity is not the only effect to be accounted for in transient simulations, in fact additional
terms exist that are frequency dependent and impact the impedance matrix, as for instance the
ground return impedance, or the semi-conducting layer. We describe these two effects in the next
chapter.
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4. Additional effects to be included in cable modelling

4.1. Ground and Sea return impedance

When analyzing transient phenomena the presence of the ground implies some modes of
propagation (namely 0-sequence or homo-polar mode as we have seen in 2.2.2.3) for the current
flow in this conductor. It is therefore necessary to have an accurate description of the effects of the
ground upon the phase parameters of cables.

The same modes of propagation can be described for submarine cables, where the medium instead
of the ground is the sea, or the seabed.

These effects are described by the so called ground-return term (namely z,) that is:

- aself-impedance term for each cable (or a single three-core cable) (Zground-sels):
- amutual impedance term, to express the mutual induction between two cables laid near
one to the other (Zgrpund.omur)-

We shall detail in this section the existing formulation for the ground-return term, as well as for the
sea-return term.

4.1.1. Ground-return impedance

air
7 s T
| “;312 h, ground
h,
3,
X12

A
Y

Fig.36 — Configuration used by Pollaczek for the evaluation of ground return term

The ground-return impedance term has been derived, for the configuration we show in Fig.36 using
different formulas, derived from the rigorous approach described by Pollaczek [8] :

’ O, =4
Zgraund—mut = / ‘uo [KD (Sg ' x122 + (hl - ;32)2 ) - KD (zfg ' x122 + (hl + h2 )2 ) +

2T

wep[ 2 +h)\JdP +E] 4.1.1)
+.[ exp(joa)da)
- |a| +ﬁ
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: w exp[—2h\|a®
Z)trar = L Ky (ER) Ky (2[R + 412E) + [ PR NE o ey (s

2z la|+a’ +€,

where K,is the modified Bessel function of second kind, R is the external radius of the cable; in the
second integral the self-return impedance of cable 1 is calculated considering only cable 1 and
therefore its laying depth A; is used in the formulas, as well as its external radius R (which is the
radius of the layer of the cable in contact with the ground).

All the other geometrical quantities are shown in Fig.36: &, =,/ jou, o, with u, and o, permittivity
and conductivity of the ground, respectively.

Sunde has proposed [9] an expression similar to the one given by Pollaczek, but where
displacement currents are not neglected, instead the complete intrinsic constant

Ve = J Jjou, (o, + joe,) 1s used: this constant contains & the permeability of the soil. The integral

proposed by Sunde is the same as (4.1.1), where y, replaces &.

The Pollaczek integral has been approximated, as well, using different analytical formulas.

We can mention:

- Wedepohl in [1] has proposed an approximation obtained from an infinite series:

Z nisaif = ;":‘:ﬂ {_!”[%TRJ +0.5 —%] 4.13)
. - E h
Z it = 20 ;’j:“ {—fn (_}, "j‘z ]+ 0.5 —7298(’11; hz)} (4.1.4)

v is Euler’s constant;

- Vance [35] has also given an approximation, that utilizes Hankel functions

_jouy Hill(f}/gR)

Z i ound—salf = (4.1.5)
gomd=el 2z H{(jy,R)
- Petrache et al. [36] have given a formula easier to evaluate numerically:
_ Jo, 1+ 7R
Z = In 4.1.6
ground —self 2 }’g R ( )

- Saad et al. [10] have given an expression that is a very good approximation even at higher

frequencies:
. 5 “2dy,
. _JOH e
Z salf = K,(y,R)+—— 4.1.7
grownd—self ~ "~ { 0(7eR) 4+R2y§] (4.1.7)

- In the EMTP an approximation is used, see page 5-16 of the EMTP Theory Book [21] that
allows the use Carson series development [37] (normally employed for ground return
impedance of overhead lines) for the calculation of ground return impedance of
underground cables as well, as Carson and Pollaczek integrals are similar.

- Finally Legrand et al. [11] have shown an implementation of the quasi-Monte Carlo

method that allows solving the Pollaczek integral in a precise way. We shall deal with this
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method in more detail in the next section, as it will be the basis for the sea-impedance term

that we propose.
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Fig.37 — Resistance and reactance of the ground return impedance comparing different
formulations

We have shown in Fig.37 the results obtained with different formulations of ground return

impedance. Only the high frequency part of the curve has been shown, as it is only at higher
frequencies that the different formulations diverge. We have plotted the formulations for different
values of conductivity of the soil, namely from low conductive soils (0.001 S/m) up to sea

conductivity (1 S/m).

We can see that Wedepohl’s approximation is not valid for higher conductivities, and that the
formulation used in the EMTP is also not valid for very high frequency and higher conductivities.
We can see that Saad-Giroux’s formulation is in good agreement with the one proposed by
Legrand, the one we use in our modeling. This last method we describe in the next section in some

detail.

4.1.2. Quasi - Monte Carlo method for the solution of Pollaczek
integral

4.1.2.1. Quasi Monte Carlo method

We can write the mean value of a function f(x) on the interval [0,1] as:

fu = r)ax (418)

The evaluation of integrals using numerical approximations is a complicated task. In order to
overcome the difficulty, the properties of the Monte Carlo method [38] can be exploited.

The method consists in:
Define a domain of possible variable inputs for the function or process we are interested to;
- generate randomly a set of values in the input domain that follow a probability distribution;

- evaluate the simulation or the function at these inputs;
- combine together the results, for example calculating their mean value.

Through the use of the law of large numbers, one can say that, if the simulation is performed a
great number of times, and if the variables [x},x;...,x;] are independent and uniformly distributed on
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the domain of variation then the combination of the results will converge to the desired solution, if
N is a large number, we can then write:

of@d =3 1) @19

It is therefore possible, to evaluate the integral which defines a mean value, using a numerical
approximation. A confidence interval can also be defined, by defining the variance of the random
variables x,; but since this interval is probabilistic, it does not constitute an upper bound for the
error.

In order to evaluate the integral with Monte Carlo method, variables should be independent
uniform random variables. It is possible to use only certain variables, chosen because they have
good properties altogether in the interval of variation of interest, namely the interval [0,1]. When
that is the case, the Quasi Monte Carlo [39] method is defined.

The sequences of variables, which are then called quasi-random, are characterized using the
concept of discrepancy; this concept reflects the properties of the sub-sequences of being uniformly
distributed, a smaller value of the discrepancy D,(x) indicating quasi-random sequences.

One possible sequence to be used is the Van der Corput sequence, see [40].

In [11] the Pollaczek integral is solved, using the quasi-Monte Carlo method and the method is also
itself described.

4.1.2.2. Solution of the integral

We shall look here only at the self-ground-return impedance calculation. The same mathematical
considerations can be applied to the mutual term as well.

The Pollaczek integral for the calculation of the self-ground-return impedance as in (4.1.2) writes
itself as:

J:—jf—ef"g“da (4.1.10)

This integral needs must be transformed into an integral having as integration bounds [0,1] in order
that we be able to use the Quasi Monte Carlo method.

This can be done, as shown in [11] using some transformations, splitting the integral in two, and
finally using a variable change for the second integral.

One obtains

J=J,+J, (4.1.11)
Jy = j[\l!fz +J -u]e%':"‘f"!_”du (4.1.12)

b o 1 1
J, = _‘.[1{1-"2+ j -1-"] e 2N i where v =— dv =—du (4.1.13)
]

u u

Then we can rewrite the integral, defining a function f{u)
fu)= [Juz +7j- u]e’m‘k"ﬁ"_ﬂ (4.1.14)

Using the previously defined Van der Corput suite terms x; one can evaluate the integral, as a
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mean, namely

i ”%i[f(xf)] J, “li f[i]'(iJ (4.1.15)

= nga X X,

This allows a fast and simple calculation of the integral, with a good precision.

4.1.3. Sea return impedance

In the same way as Legrand et al. evaluated the Pollaczek integral, we shall show how this method

of solution can be applied to the integral described in [13] which allows calculating the sea-return
impedance.

air Mo, &

sea Mo &4 Oy

X12
-

N
' ® O,

semi-infinite ground / seabed Ug. €. O3

Fig.38 — Description of the two-layered soil formed by sea water and the seabed

4.1.4. Integral defining the ground return impedance

The authors in [12] describe a two-layer soil. An integral is derived, which describe the cables as
being in the first layer, with one semi-infinite second layer below it.

Lucca et Al. [13] applied the integral to the case of the sea and the seabed, with the cable at the
interface between them, as described in Fig.38.

When applied, the resulting integrals for self and mutual impedance are:

. —2 ek
7' jou, ¢+ o+, + () —ay)e ™

ground —self =

— - Cos(uR)du (4.1.16)
T (o) +ay)— (o — o)y —ay)e

—2eh

7' _ JOU, L*‘” &+ +(0) — A)e cos(ux;, )du (4.1.17)

gomdmmt = g (o +ap ) +ay)— (o —ap )y — )e_zalh

With af:\JIHZ—’_}/fZ yf:jmyo(ai+jw£,)
102



In order to solve these integrals, we want to apply the same methodology resumed in the previous
section, namely the Quasi Monte Carlo integration method.

To do that, first we need to have an integral that is bounded in the interval [0,1].
To accomplish that, we use a different change of variable than that used in the last chapter.
The change of variable is

v=exp(—u)
u =—log(v) (4.1.18)
du = —1dv

Vv

Applying this to(4.1.16), the integral of the self-impedance, we obtain:

—2ah

A _j@ﬂor a'\+a'y+(a'\—a'y)e
0

dv
_ _log(")R)— (4.1.19
ground —self T (apl_’_alo)(arl_’_alz)_(all_avu)(arl_arz)e COS( Ogﬁ) ) 3 ( )

2a'th

a' =(-1log()* +7;

‘We can define a function

o, +a, + (o —ap)e ™"
Soar ) = L2 ——cos(uR) (4.1.20)
a (al +a, )(051 + 0,'2) - (051 - ao)(al - az)e .
then
' o, 1.8 1
ngund—se{f = J ;D ;Z.f;e{f (H = _log(rl)); (4.].2].)
i=1 X;
In the same way, if we define
a, +ad, +(a, —ay)e” "
S ) = cos(yR) (4.122)

(al T )(051 + 0,'2) - (051 - ao)(al - arz)e_zalh

We obtain the mutual return impedance as:

: ol 1< 1 ;
ngund—se{f = J ‘uo _mer (“ = _log(xi))_ (4].23)
T nig X;
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4.2. Semi-conducting layer modelling

I's3
r52 F i

I's1

Os2, Hs2

Os1, Hs1, Eg

Fig. 39 — Description of a
coaxial cable with semi-
conducting layers, from inside
to outside:

a) core with radius rcl

b) semi-conducting layer
radius rc2

¢) dielectric

d) semi-conducting layer
radius rs1-rs2

e)screen with radius rs2-rs3

4.2.1. Core surface impedance

When the impedance calculation is considered, we can ignore the semi-conducting layer
permittivity and suppose it to be a good conductor; the calculation of these terms is carried out

using coaxial theory as shown in [3].

The electric and magnetic field are written on the different edges shown in the Figure, and
continuity conditions allow to obtain the expression of the impedance, as a function of the electric

field and currents.

Taking the formulation from [14] we have the surface impedance of a core in parallel with a semi-

conducting layer as

Z ‘;552 [ clpclR I (gcl cl)+"‘52pc:2'S I (Ecl 1):'
el 2 82 52 ‘:gclpchI ( cl )+ CE)OCZE ‘[ é.'clrcl ):I

where

E, =I1,(&,m)K (S0n0) + Ko (807 ) (S07,)
F, =K (Son) L (807n) — 1 (S0 DK (S07,)

R, =K\ (En )y (Satn) + 1, (E07 ) K (E07)
S, =Ko (&) (80a70) — 11 (8071 ) Ko (S07)

(4.2.1)

and &=./jouc with ¢ and p the conductivities and permeability of the different media, and

p= 1 with the different subscript as indicated in the Figure.
ag

104




4.2.2. Screen surface impedances

SaPs
in_sclls 27-?;’;_1,55 [‘Tf‘:slpsIF‘st + ‘fs2p52EsPs] (422)
fran_seclls p51p52 (423)
— 2arr,rsD,
gs 5 -
Zonr_:cf’."s 2”;}111): [g‘-::lple‘st + é:sZpsI!EsP:] (424)

D, =&,paF.G. + S, Pp0E H,

E, =1,($ar2)Ki(8ia7is) + Ko (a1 (Eatis)
F, = K (Sar2) 1 (Eatis) — L (Eia7n ) K (a7is)
G, =1,(S,7)K (Sar0) + Ko (Samn) L (S7)
H, =K, (&)1 (Sarn,) - L (Ean)K (E47:5)
P, =1,(San)K (Er0) + Ko (S L (S7:)
O, =1, (&7 Ky (Sary) — Ko (0010 (S070)
R, =1,(&,75)K (857,) + Ko (E,73) 1, (S07)
S, =11 (87:3) Ko (85572) — Ko (85575010 (S57:5)

4.2.3. Admittance

When the admittance is considered, one can see the semi-conducting layer as dielectric (having
some losses). It can be easily seen that the two semi-conducting layers admittances intervene in the
coaxial loop, and are in series with the admittance of the dielectric.

We can easily write the three admittances in the same way as done in section 2.3 and obtain:

: '
_ Jo27e,

g s (4.2.5)
il Tz
T
JO2TE 4,
L= %" (4.2.6)
il B
.cm !
Y, = % 4.2.7)
Inl 52
Ta
€CII:£SC+ . gsl':£:c+ .
JOPr Jjop,
The resulting total admittance is the series of the three terms.
Yoo = (1 Xy 41/ Yy +1/Y,)" (429)
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4.3. Application of stochastic collocation to sensibility analysis

4.3.1. Sensitivity analysis of the input parameters of sea return
impedance

We show here how the variation of the parameters of the formula of the sea-return impedance
impacts its values. The two variations that we consider are:

- That of the conductivities of the two layers involved in the simulation, that is two variables
at the same time;

- The depth of the first layer.

The statistical parameters (mean and variance / standard deviation) have been obtained in the
following way:

N

Zmean = Z 1”:‘2(0-11' » 0-21') (43 1)
i=1
Y 2
Val(Z) = Z xui' (Z(o-li » O-Zf )) - Zmean (432)
i=1
N
Zp = 2 MZ(H,) (43.3)
i=1
Y 2
Val'(Z) = Z)ul (Z(hlr)) - Zmear.r (434)

i=1
The standard deviation is defined as
stdev(Z) = \[var(Z) (4.3.5)

For each set of random variable(s) (1 or 2) z;is the weight used to evaluate the mean and
(oy,.0,,) or h,, are the collocation points.

We then obtain the following figures
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Fig. 40 — Mean resistance and reactance of the sea return impedance, when depth of cable is
fixed and conductivities are random variables
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Fig. 41 — Mean resistance and reactance of the sea return impedance, when depth of cable is a
random variable and conductivities are fixed

It is interesting to observe that, since this variation is limited, one can use the mean of the value of
the impedance as the entry value for the cable model, even when relative big uncertainties are
present in the input parameters.

In this case it also makes sense to think that a cable, when laid in the sea has a variable laying
depth. It is therefore interesting that the stochastic collocation allows very simply to calculate the
mean of the impedance.
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4.3.2. Sensibility analysis applied to the evaluation of the semi-
conducting layer admittance

The parameters of the semiconducting layer of the cable are not known with precision.
Its conductivity and permittivity can vary in a large range of values.

To analyze the impact of this variation on the value of the total admittance of the insulator
(evaluated as in equation(4.2.8)) we have applied the stochastic collocation technique to the
semiconducting layer, using two input variables:

- Its conductivity 6,=3.5+60% S/m

- Its relative permittivity &= 525 + 90 %
The method of stochastic collocation described in Appendix A allows to evaluate the statistical
variation of the admittance as a function of the variation of the input parameters.

As for the case treated in the section before, we have a set of collocation points (namely the value
of the input parameters) for which the function is evaluated. We have here a set of two random
variables (o; ;). For each set we have a corresponding weight u;.

This allow us to evaluate the mean value of the admittance as:

N
Yo = 2 1Y (£,.0,) (4.3.6)
i=1
Y 2
var(Y) =) 1,(Y(¢,.0,)) -1, (4.3.7)
i=1
stdev(Y) = yfvar(Y) (4.3.8)
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Fig. 42 — Mean of conductance and susceptance of the insulation evaluated when the
conductivity and permittivity of the semi-conducing layer are random variables

We show here the real and imaginary part of the admittance. Gmean and Bmean are the mean value
of the conductance and the susceptance, evaluated with the stochastic collocation. Stdev is the
standard deviation of this parameter. We also show in the figure the value of the conductance and
susceptance evaluated for the mean value of the input parameters in light blue. It is interesting to
see that the mean value of the output parameters is not obtained when the parameters is evaluated
in the mean value of the input parameters.

We also show, in green, the value of the conductance/susceptance, as it would be calculated using a
classic Cable routine, that is considering the semi-conducting layer to be part of the insulation; in
purple we show the value when the semi-conducting layer is not considered to be part of the
insulation (this can be accomplished in a classic routine modifying the value of the permittivity as
shown in section 5.1.3.2).

We have demonstrated that the semiconducting layer must be taken into account someway,
otherwise a mistake is committed in the evaluation of the admittance

We have also done a sensitivity analysis that has shown that even very big uncertainties in the
electrical parameters of the semi-conducting layer have small impact on the evaluation of the
admittance.

All the waveforms are practically superimposed, but it is evident that in this case the permittivity of
the semiconducting layer is so big that the admittance of the insulator has a much greater
importance as compared to the contribution of the semiconducting layer. As a reference we give in
the following table the value of these parameters, as it is not easy to see their variation in the
figures.
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Table 10 — Conductance and susceptance of the insulation layer

Parameter\Frequency | 50 Hz 1 kHz 10 kHz 100 kHz

G ¢ corrected 7.7237-107" | 1.5411-107 [ 1.5411-10" | 1.5411-10"
Girmean 7.6964:107" | 1.5354-10° [ 1.5354-10" | 1.5354-10"
Stdev of G/ Gean 031 % 034 % 0.34 % 034 %

G (Emean Omean) 76373107 [ 1.522-10° | 1.5219-10° |[1.5219-10”
G classic 6.1375-10"" | 1.2246-10° | 1.2246-10° | 1.2246-10"
Parameter\Frequency | 50 Hz 1 kHz 10 kHz 100 kHz

B ¢ corrected 9.6546 10" | 1.9263-10° | 1.9263-10 | 1.9263-10°
Bnean 9.6368-10° | 1.9228-10° | 1.923-10° |1.923-10°
Stdev of B/ Buean 0.17 % 0.17 % 0.17 % 0.17 %

B (Emean Omean) 9.5943-10° | 1.9143-10° | 1.9143-10° | 1.9143-10°
B classic 7.6718-10° | 1.5307-10° | 1.5307-10” | 1.5307-10°
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. EMTP-RYV simulations of three-core cables

In this manuscript we have detailed the derivation of different terms that are used for the
construction of the phase impedance and admittance matrices of underground and submarine
cables.

We have developed and shown a method for the calculation of the internal impedances of solid and
hollow conductors that also includes proximity effect. We have also analysed the effect of the
external current return upon impedances, as well as the effect of semi-conducting layers that are
present in medium and high voltage cables.

Scope of this chapter is to give a summary of how the three-core cable model (to be used for the
simulation of transients on three-core submarine cables, one of the focuses of this thesis), is
developed, putting together the various terms and therefore including all relevant electromagnetic
effects.

We also show how a complete model is generated using fitting procedures contained in the EMTP-
RV Cable Data module and how this model is employed in analysing fast transients, such as those
generated by lightning strikes.

5.1. Assembling the three-core cable model

Fig. 43 — Notation of the three-core cable with detail of the inner coaxial cable

5.1.1. Impedance calculation

We write again the matrix formulation which is the same that has been shown in Section 2.4:

Lt =Zis ¥ Lommin ¥ Larm-out + L carth—return (5.1.1)
We now explicit the terms of 5.1.1
[Za] [0] [0] ©
Zy= (0] [Zaa] [0] 0 (5.12)
[o] [0] [Zu] ©
0 0 0 0
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The sub-matrix here is Z_, = {d"‘““ ﬁ"’“} with

“intes ~int s5

:mtcc = :in‘l—c—nmd + :fso—c: e :fn—s - 2:f—: + ‘:our—s = ‘:i'so—sg (5 = 3)
:intcs = :our—s 3 :r—s + :fso—sg (514)
:i.ntss = zou.r—s + :fso—sg (515)

For simplicity we neglected subscript i indicating the inner cable whose parameters should be
considered when evaluating formulas (5.1.3)-(5.1.5) with the formulas detailed in Section 2.3.2.

We have replaced the term of the core’s surface impedance with a modified term including
proximity effects, that is evaluated as

Zint-c-mod — Zi.ut—c +2 :prox—c—:>c + :prax—am—:>c (516)

The proximity effect correction terms have all been obtained applying definitions (3.4.10)-(3.4.13)
which are the numerical integration needed in our code to evaluate impedances with our semi-
analytical formulations. The term z,ox~. accounts for the effect of one core upon another and has
been derived from the theory described in Section 3.2. The term z,,4x g~ accounts for the effect of
the armour upon the inner cores, and the term Zoxc~am Which accounts for the effect of a core
upon the armour (and used in construction of the following matrix) have been obtained following
the theory described in Section 3.3.

[Za] [Zan] [Zas]
| [Zae] [Zin] [Zens]

o © © O

arm—in (51?)
[Za13] [Za23] [Za33]
0 0 0
with the sub-matrix [Zm.j] = {:‘"j i‘"j }
-‘ﬂlj Aﬂlj
Zait < :zsri{‘ief + Zarm-in (518)
:arj = ::rﬂ—u;fef + Zarm—in (519)
- 2 2
s8l erxu ¢ — bi
2 = 111( . J (5.1.10)
2T G
. 2 4 2 .
me _ JOMo b, |(bb))" +¢ —2bbc cosb G.L1D
ol bb.)> +b* —2bb’ cosb o
2;1. cl ( iTj i iJ if .
The term of the armour, namely z,,,, 1, of (2.4.14) we replaced as follows
:arm—in = ::h'rr—mod + Zprax—c—:»am (5112)

The proximity effect correction terms, marked in bold, have all been obtained applying definitions
(3.4.10)-(3.4.13) which are the numerical integration needed in our code to evaluate impedances
with our semi-analytical formulations.

The term z,,,, . has been obtained with the part of the code that we obtained from the theory we
have described in Section 3.2 whereas the terms zporgm=c and Zporc-am have been obtained
following what is described in Section 3.3.

The term zgxmmoq is different from what Ametani uses in his pipe type model, since for this 0-order

112



term related to the armour; the semi-infinite pipe thickness approximation has not been used.

The connection matrix remains the same as in section 2.4, as follows:

[ch] [ch] [ch ]

= [ch] [ch] [ch] a2 (51]3)
i [ch ] [ch] [ch]
Z€2 ZcZ 25‘2 253

W].th [ch] :|::cl :c1:| [Zcz] :|:ZCQ :(,'2:|
:cl :cl 252 :c:Z
these are always

+z -2z

— “arm—out arm—iso t—arm

Zer = Zam-out T Zarm—iso ~ Zt-am (5.1.14)
2.3 = Zarm-out + Zarm—iso
T 5
Z arth—retum = (5.1.15)
Zg R Zg

Here the term z, is obtained as described in Section 4.1 depending on whether the return is the
ground or the sea.
5.1.2. Admittance calculation

We give here the matrices of the admittance for a three-core cable. The admittance is obtained,
inverting the potential matrix, namely

[7]=jo((R.])"

Similar to what happens with the impedance, the potential matrix is obtained summing different
matrices, namely

B,=P,+P,__.+P___. (5.1.16)
[B] © 0 0

= 0 [Be] 0 0 (5.1.17)
0 0 [Rs] O
0 0 0 0

where [B,,]= H ¥ Dl and [F,] = [y“ _vcjc;:j

In order to include the effect of the semi-conducting layer the term y. can be replaced with the
term y,,,, detailed by(4.2.8).

ar
Pee 5] 5] [

0 0 0

(5.1.18)

S © <o ©
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il [ Pa ,-J-:I ol |:pm_'} palff :|

pm_‘j .pmj
1 P-b]
Puy=——In| S0 (5.1.19)
2me G o
1 b. [(bb.)’ +c! —2bb.c] cosb,
Poy=——M|-L I~ y (5.1.20)
2z | ¢\ (Bb,) +b’ —2bb;cosb;
T—
andfinally P =| = (5.121)
P~ P
with
1
p.=—Mh|Z (5.1.22)
27\ ¢y

5.1.3. Recommendations for input parameters

Entry parameters of the simulations are very important, as they affect the results.

5.1.3.1. Resistivity of the core

One of the more important parameters for conductors is the conductivity (or its inverse the
resistivity).
1 R
g =— p = DC
P /
where S is the section of the conductor. One should use the surface given by the constructor, which
is smaller than the areazr,for stranded conductors because of the empty spaces between

.S

(5.1.23)

strands.The direct current resistance is also affected by temperature in the following way

Rpc = Rype[1+ a0 (6 —20)] (5.124)
where Ry is the DC resistance at 20°C (normally provided by the manufacturer), ay, is the
temperature coefficient which depends upon the material and & is the maximum operating
temperature (in degree Celsius).

5.1.3.2. Simplified semi-conducting layer inclusion

A simplified way to include the effect of the semi-conducting layer [41], using for instance the
existing Cable Auxiliary routines of EMTP is to replace the relative permittivity of the core-screen
insulation as follows:
Inls2
T
—pet (5.1.25)
In st

cm

mod

where the quantities inside the logarithm are detailed in Fig. 39 of section 4.2.
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5.2. Simulations using the three-core cable model

In order to compare the model here proposed (“Wires”) with the Pipe-Type model of EMTP (PT)
we analyze the simulations of different transient waveforms in the same three-core cable of 1 km
length, as used for the validation in Chapter 3

Fig. 44 — Cable used in the simulations

Its cores are symmetrical so that we can limit the analysis to the core and the screen A, where the
source is connected, and the core and screen B, which are the same as on the core and screen C.

We first give the 7; matrix, namely the current modal transformation matrix for the three-core
cable, both for the PT and Wires models, at 1 MHz.

0 0 0 0 0577 —0371 0813 ]
0 0816 1155 0 -0577 0371 —0813
0 0 0 0 0577 -0468 —0.571
T..o=| 0 0816 -0755 -1017 —0.577 0468 0.571
0 0 0 0 0577 -0839 —0242
0 0816 -0399 —-1017 —0577 0839 0242
2646 2449 0 0 0 0 0 |
10 0 0 0 0 0
-1 0 0 0 0816 0044 1119
01 0 0 0 0 0
T,=/0 -1 0 0 0816 -1.039 —0.588
00 1 0 0 0 0
0 -1 0 0816 0995 -0531
i 0 2646 —2449 0 0o |
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The modes described by the two matrices are not as straightforward to be identified as those that
are shown in section 2.2.2.3, but it is still possible to identify in these matrices T}y and T; pr:

- 1 bifilar mode (column 4 and 6 respectively) although for the second matrix, rather than a bifilar
mode it can be considered an inter-sheath mode;

- 1 inter-sheath mode (column 3 and 7 respectively):
- 3 coaxial modes (columns 5-7 and 1-3 respectively);

- 1 zero sequence mode (column 2 and 5 respectively), where the current is injected in the sheaths
and returns by the armour;

- 1 coaxial mode (column 1 and 4 respectively) between the armour and the ground.

5.2.1. Description of the simulation design

The 1 km three-core cable is connected at its ends to two cables with identical characteristics 100
km long. This is done to ensure matching conditions.

The source used for the simulations is a current ramp of 5 kA. It is connected between the core A
and the ground. It has a rise time of 100 ps and a fall time of 50 ps, as easily seen in the first
waveform of Fig. 46.

In order to facilitate the comparison, we have chosen for the ground-return term to use the
formulation described by equation (4.1.10), and although not realistic for a submarine cable, we
considered a conductivity of 0.001 S/m.

100 us current
+ ramp solrce
between core A
and ground

100km = core A 1krn 100km
screen A ' e ' b
core B
screen B
core C
screen C

armour

Cable of 100 km for
matching condition
and avoid reflexions

Cable of 1 km Cable of 100 km for
matching condition
and avoid reflexions

Fig. 45 — Design of the simulation in EMTP-RV

Here we show in order, Core A, Screen A, Core B, Screen B and Armour.
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Fig. 46 - Core A currents and voltages at cable entrance and exit — the source is a current

ramp between Core A and the ground, no grounding is used

117




Currents and voltages on screen A
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Fig. 47 - Screen A currents and voltages at cable entrance and exit — the source is a current
ramp between Core A and the ground, no grounding is used
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Currents and voltages on core B

T T ! |
i OB kasssems s _________________________________________________________________________________ -
2 :
g :
£ M : :
:5 : ;
5 [ 2 S .................... ................................. lcureB'PT atOkm e =
| | : —IcoreB-Wiresatl] km
e : .
0 50 100 150 200 250 300
Time [us]
T T T T
A0 | smssmmammsayan Poreirissiieiii S A AR 3 A T e SRS -
Vmax Wires=77 kV -
BD_ ................... ......................... .......................................................... ]
z Vmax PT=66 kV :
Pl | e e e R R R S N N R =
S : :
:_g [ SR i .................... __________ Reiin
ol ot . o Vooeen Yo PTatOkm | |
: VwreB 3 Varrn - Wires at0 km
20 | 1 1 T T
0 50 100 1580 200 260 300
Time [us]
5 _r ! T T 1
Y
£ E ; é |
g : 'z i 5
E : e ;
3 leoreg - PT at 1 km
[ | | —leored - Wires at 1 km
5 : :
0 50 100 180 200 250 300
Time [us]
T T T
Vmax Wi res':=?4 kv :
51l BEEETU R wl e s DL ................ T T N U T S L
) f f
D A s s LT SERT PP
-k : .
£ : !
= d :
0 b L e B A o S N PUSRLNL, L
} Vme = varm - Wires at 1 km
20 | i | T T
] 50 100 150 200 260 300
Time [us]

Fig. 48 - Core B currents and voltages at cable entrance and exit — the source is a current

ramp between Core A and the ground, no grounding
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Currents and voltages on screen B
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Fig. 49 — Screen B currents and voltages at cable entrance and exit — the source is a current
ramp between Core A and the ground, no grounding
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Currents and voltages of the armour
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Fig. 50 — Armour currents and voltages at cable entrance and exit — the source is a current
ramp between Core A and the ground, no grounding
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5.2.2. Discussion of the results of the simulation

For our simulation we have used a source connected between core A and the ground in order to
energize different modes of propagation.

The rise time used for the current ramp, 100 ps, is characteristic of switching / energization
transients for a cable.

The use of two very long cables connected to the 1 km cable of interest, and having the same surge
impedance, and the fact that no grounding has been used, has allowed to simplify the results
obtained in that:

- there are no reflections until the current/voltage waves have reached the end of the 100 km cables;

- at the entrance side of the cable (0 km) there is no current flowing in the conductors but only one
in the core A where the current is injected.

As we have shown in Appendix B, for the cable taken into consideration, the impedance of the
armour is bigger when evaluated with PT model as compared to Wires model, which explains that
when a current source is connected to core A, the voltage we see between this core and the armour
(see Fig.46) results bigger in the case of the PT model. The difference is about 5% between the
peak values of the models, and for the source considered.

The same happens, when looking at screen A in Fig.47: the difference between the model in this
case is about 7 %.

When looking at the core B we see the situation inversed, in that the voltage between core B and
the armour is bigger when using the Wires model by 14% and by 12 % on the Screen B in Fig. 49.

This can be possibly explained by looking at the current flowing in the armour at the exit of the
cable (1 km), see Fig. 50. This current is due to a coupling with the earth conductor, that acts as the
return for the current of the generator.

We can see that this current has a negative shape, and is different (lower) for the Pipe Type model,
which is consistent with difference in the characteristic impedance between the two models. The
difference between the currents in the negative peak is 12%.

Currents flowing in all screens and in core B all exhibit similar overall time behaviour as seen in
the armour.

It is interesting to see that the armour plays a role, similar to that of the earth in classical single-
cores cable installations; the precise representation of its impedance is of importance even at not so
high frequency.

The proximity effect upon the cores is in the examined case less important than the proximity effect
on the armour. The much higher resistance of the armour as compared to the cores, but also to the
frequency range, has an influence on that. Other cable configurations, for instance low or medium
voltage cables without an armour but close together could be more affected by the core proximity
effect, furthermore if the frequency is higher.
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5.2.3. Simulations with soils of different resistivity

100 us current

+ ramp source
& | | between core A
and ground
100Km = core A 1km 100Km
= e screen A * i iy W "
g core B -
screen B
. i core C_ i B .
: screen C :
armour
;z‘:.'j]ﬁ:g‘gg:cmlm - Cable of 1 km Cable of 100 km for
and avoid reflexions Grounding MENERInG contition
with 10 Ohm = and avoid reflexions
resistor

Fig. 51 — Design of the second simulation

In this second simulation, we limit the analysis to the cable model proposed, and consider two
different soil resistivities. We show the voltage between the armour and the ground. The design is
similar to that simulated before, but a grounding is added in the second figures. Furthermore the
source used here is always a current ramp with a 100 ps rise time, but unlike the other source, at
200 ps this one is switched off istantly.

We first compare the voltage at entrance and exit of the cable, when no grounding is used:

No grounding

Max Voltage p 1000 =72 kV
s _
% “ ‘ //" Max Yoltage p 0.2 =54 kV V, -atOkmp=020m
g // —_—V  , -at0kmp =10000Q m
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0 100 200 300 400 500 600 700 800 900 1000

Time [us]

Fig. 52 — Voltage on the armour of the cable without grounding used, comparing soil of
resistivity 0.2 and 1000 2 m

The effect of the higher resistivity is to increase the voltage at the armour.

When we simulate the same design, but adding a grounding, we can see in the following figure that
the voltage is much reduced due its effect, but the more resistive soil still increases the voltage at
the armour.
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Fig. 53 — Voltage on the armour of the cable using grounding, comparing soil of resistivity
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6. Conclusions

The main scope of this dissertation is to propose an improved method for the calculation of
impedances in three-core submarine power cables models. To do this we have adapted and
modified certain terms of some existing models and validated the resulfts.

The closeness of the various conductors of three-core power cables modifies the current
distribution inside them, and this proximity effect is, in these cables, more important than in other
transmission line systems, the effect being due to the same electromagnetic principle which causes
the skin effect, namely eddy currents: The magnetic fields due to the currents flowing in the
conductors induce electromotive forces that cause the current flowing in them to be either pushed
away or attracted (depending on the mutual current direction) and, since these e.m.f. vary with the
frequency so do the skin and proximity effects which become more pronounced the higher the
frequency. As shown in our work, the proximity effect less relevant at power frequency steady
states, becomes important starting from the kHz range and must therefore be taken into account in
all the models designed to simulate transient phenomena.

We have developed a theory, described in detail in chapter 3, to treat the proximity effect. This
theory originates from the works of Tegopoulos and Kriezis and is semi-analytical as the current
density, the magnetic field and the internal impedance are calculated using numerical techniques.

To accomplish that we have introduced a dual concept of thin-wires and sub-conductors, the first
are filaments of current and are used when the conductor is represented as the source of inductions,
the second have instead a surface and are target of the induction.

This method allows us to discretize the current density in the conductors, and to write continuity
conditions on the edge of both conductors. After resolution of a system of equation, it is possible to
find the values of the current density in many points of the conductors (which correspond to the
thin wires) and these values can be numerically integrated in order to obtain the impedances.

We have compared the formulation here proposed with other existing formulations and validated
the results obtained for the current density and the impedances using the Finite Element Method.

In order to obtain a complete model we have also shown how other terms needed in the
construction of cable parameters are obtained from Maxwell equations and electromagnetic theory
using the loop method to assemble the different effects. We have done this in detail in Chapter 2
where we have also explained how parameters are employed to build line models that permit
simulations of transient waveforms using EMTP; these models include the notion of propagation
and throughout this manuscript we have shown that the propagation constant and characteristic
admittance are also frequency dependent mainly due to the internal impedances of conductors. It is
also for this reason, and to complete the description of the cable model, that in Chapter 4 we have
explained more in detail how the ground return impedance is calculated both in the case of
underground and submarine cables; in the same chapter we have analysed the effect of semi-
conducting layer upon impedance and admittance calculation.

In the last chapter, after having described the three-core cable model, we have employed it in
transient simulations and compared it to the existing Pipe-Type model present in EMTP. These
simulations allow to understand the impact of proximity effect as well as of other effects on the
propagation of transients in a cable. We have seen how the proximity term is important and how,
even though the difference introduced by proximity effect is small at some frequencies, its
importance is amplified in mutual induced effects. It is off course difficult to fully comprehend the
propagation on complex multi-conductor transmission lines, because many different propagation
modes, with different attenuation constants and propagation speed, combine themselves.

The three-core cables are more and more common in power systems, and particularly in submarine
links and offshore energy production applications, and further studies should be carried out to
understand how transients over-voltages propagate in these transmission structures.
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A. Appendix - Handling uncertainties

A.1 Stochastic collocation

The input parameters used in electromagnetic simulations and in the evaluation of line parameters
are infrinsically uncertain. This is true for geometrical parameters of cables (for instance screen
thickness) that are affected by the industrial production process, but also holds true for certain
electrical quantities (for instance conductivity or permittivity of the soil) and for other quantities
that affect transient simulations (for instance the closing time of a switch).

A method is needed in order to quantify the effect of these uncertainties upon the simulations
results. Normally to do this Monte Carlo techniques are adopted that consist in iterating the same
simulation thousand or hundred of thousand times, each time choosing the random input quantities
in their domain of variation and calculating mean results. The disadvantage of this method is its
slow convergence

Another technique that has been developed lately and applied to many fields related to
Electromagnetic Compatibility [42] [43]is the Stochastic Collocation.

Due to our interest in this technique, we detail here how it originates and how it works.

A.1.1 Mathematical formulation of the problem

We consider X, a set of N independent random variables (X}, X5, ..., Xj) to which a set of densities
of probability (fx(.), fxo(.), ---, fxw(-)) can be associated. These independent random variables are the
various parameters to which uncertainties are associated.

(4, Z,du) constitutes a space of probability where :
A is the sample space, X'is a ¢ algebra, du is the measurement of probability.

The measurement of probability can be expressed using the basic variables:
du= fy(x)dx (A.1.1)

We have 4 c RY

We consider the vector space E of the continuous functions from A to R. On this space of functions
a scalar product is defined as:

<f.g >:j-f(x)g(x)d.1r (A12)

Z(x) is an element of E. The image of 4 by the function Z(.) allows to define a random variable Z
to which is associated a space of probability:

(Z(A4),Z(X),dp) where:

Z(A) is the sample space, image of 4 by the function Z, Z(X) is the image by Z of the ¢ algebra X
and dp is the measurement of probability, which can be expressed by dp = fzd-=.

The object of this chapter is to determine the average and the variance of the law of probability
followed the random variable Z. To do that a specific spectral stochastic method, namely the
method of stochastic collocation shall be employed.
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A.1.2 Principle of the spectral stochastic methods

The spectral stochastic methods are based on the construction of the dependency between the
solution Z(X) and the germ X = (X}, X5,...,Xy). This is expressed by a development of the type:

Z(X):iuigb‘}(){) (A13)

where ®; are some functions of the random variables X chosen appropriately and u; are the
coefficients of the spectral development of the solution.

When this development has been determined, the statistics of Z are evaluated analytically or based
on some sampling of X.

The method of stochastic collocation, which will be presented in the next part of the chapter, is one
of these methods.

A.1.3 Fundamentals on the methods of stochastic collocation

The methods of stochastic collocation are based on the interpolation of the stochastic solution. In
our particular case, an approximation Z,,(€) is looked for, such that:

Z.(e")=2(¢') Vje{l2...N} (A.14)

For N; interpolation points ¢ (collocation points).

This approximation can also be expressed by:
M

Z. (&)= ps(¢’) Vje{l2...N,} (A.15)
i=1

where the coefficients y; are chosen in order to satisfy this condition.

Usually, the base functions &i are interpolation polynomials, whose domain of variation is 4. In

other words, if 4 < R" Lagrange’s interpolation polynomial are chosen. The choice of the number
of collocation points and their location is essential for the quality of the approximation. The use of
equidistant points is considered as being, in most cases, not optimal.

A.1.4 Calculation of the average and variance using stochastic collocation

This paragraph shows the benefit of using a method of stochastic collocation, in which the base
functions are Lagrange’s interpolation polynomials, when estimating the average and the variance
of the random variable Z.

The average is given by the following formula:
<Z,, >= [fr(¥)Z,, (x)dx (A16)
A

If the base functions are used, this equation can also be written:
N, . X
<Zpp >= j fX(x)[ > i, (x)de =>u, j f(x)¢, (x)dx (A.17)
4 =l . =1 4
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The calculation of the variance is the following:
Var(Z,p ) =<Zip >—<Zzp > (A.1.8)

The calculation of the second term has been presented previously. The calculation of the first term
can be done this way:

<22, >=| fX(x)(Z':p,.@ )(ij (x))dx (A19)

This equation can also be written:

<Z, >_IfX(r){ZZ/fﬂquq9j )} (A.1.10)

J=li=1

In our application the integrals corresponding to <Z,,,> and ﬁZ@p2> are calculated with the method
of Gauss’ quadrature.

The method of Gauss quadrature comsists in replacing the calculation of an integral by the
calculation of a finite sum as shown below:

Ig x)h(x)d T—:Zg(xk)ak (A.1.11)

h(x) is a weight function and (x3a) are fixed for a given weight function, when N is chosen and
consequently do not depend on g(x).

One advantage of this method is that there is equality between both terms of the previous equation
if g is a polynomial of degree lower than 2N -1.

If the base functions &; are Lagrange’s polynomials at the points of collocation, then we have
#(x,)=5,

where X; is a point of collocation and 6,1 is the first symbol of Kronecker. This property allows
some 51mp11ﬁcat1011 of the expressions giving <Zpp,> and <Zp,>.

<Z,,>= ?qu( x;)a, _Zuq.tv a_Zua (A.1.12)

N,
<Zy,>=> lia, (A.1.13)
i=1

In our problem, u; and a; are respectively the value of the impedance Z and the weight of the
quadrature formula at the point of collocation x;.

It is noticeable that the use of the quadrature method does not introduce a supplementary error
when calculating the integrals, because the order of &; is N;— I and the order of &7 is 2N, - 2. They
are therefore lower than 2N; -1.
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B. Appendix - Impedances in the Wires and PT models

If we compare our formulations, the admittance matrix stays the same (in the example of the three-
core cable I did not include the effect of the semi-conducting layer).

The difference in the formulations are all due only to the way the impedance is evaluated.
The main differences are three, namely:

- The impedance of the core (I take into account proximity effect on the cores)
- The impedance of the armour (we treat differently the skin effect term and the proximity

effect term).
- The impedance of the ground (we use a different formulation than that coded in the Cable
Data of EMTP-RV)

If we look at high frequency (starting at kHz range and up) the proximity effect is what makes the
difference between our formulations.
The earth return term is different only at higher frequency, or with very conductive medium, but

- With a 100-1000 Ohm m soil
- In the transients with frequencies lower than 10 kHz

I think what differs mainly in this case is due to proximity effect (cores+armour).

This has an effect on the cuirent, as the impedance of the cable seen by the source is a bit different
in the two cases.

This also has a strong impact on the voltages, as the voltage drop depends upon the impedances.

We now show the inner surface impedances of the armour for different frequency ranges:
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Fig. 54 - Resistance of the inner surface of the pipe - range 10-100 Hz
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Fig. 55 - Reactance of the inner surface of the pipe - range 10-100 Hz

If we look at the same parameter, but at medium frequency 1 kHz — 10 kHz the two formulations
give practically the same results for the resistance, but not for the reactance
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Fig. 56 - Resistance of the inner surface of the pipe - range 1-10 kHz
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Fig. 57 - Reactance of the inner surface of the pipe - range 10-100 Hz

At even higher frequency, we start to have a difference between the two formulations, but this
should impact only very rapid transients.
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Fig. 58 - Resistance of the inner surface of the pipe - range 10-100 kHz
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Fig. 59 - Reactance of the inner surface of the pipe - range 10-100 Hz

We now show the inner impedances of the core that is much more different between the two
formulations, as we also take into account proximity effect as described in the manuscript.
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Fig. 60 - Resistance of the core with skin or proximity effect included
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Fig. 61 - Difference in core resistance due to the inclusion of proximity effect
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Fig. 62 - Reactance of the core with skin or proximity effect included
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Fig. 63 - Difference in core resistance due to the inclusion of proximity effect

The apparent contrast present in the reactance is due to the relative impact skin and proximity
effect have at different frequencies.
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