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Chapter 1

Introduction

A lot of computational and combinatorial geometry problems consist in studying

subsets of k elements among n. So, if V is a set of n points in the plane, a k-set

of V is a subset of k points of V that are separable from the rest by a straight

line.

Since the 1970s, combinatorial geometry is concerned with the number of k-

sets in a set of n points. The first results were obtained by Lovász in 1971 in the

case where k = n/2 (also called halving lines problem) [Lov71]. He showed that

every set of n points admits at most O(n
√
n) n/2-sets. In 1973, this result was

extended to all the values of k by Erdös, Lovász, Simmons and Straus [ELSS73].

They showed that the maximum number of k-sets is in O(n
√
k). They have

also shown that there exist sets of points having Ω(n log k) k-sets. Since then,

better results were found by different authors. The best known results to the day,

were given by Dey [Dey98] and Tóth [Tót01]. Dey reduced the upper bound to

O(nk
1

3 ) while Tóth increased the lower bound to Ω(n2Ω(
√
log k)). Reducing the gap

between these two bounds remains an important open problem in combinatorial

geometry.

A more precise result was obtained by summing the numbers of k-sets of the

same set V on different values of k. So, a (≤ k)-set is an i-set with i ≤ k. In

1985, Peck showed that the number of (≤ k)-sets is bounded by kn [Pec85]. Note

that this value is reached when the points are in convex position. Moreover,

Edelsbrunner, Hasan, Seidel and Shen showed that every set of n points admits

at least 3
(

k+1
2

)

(≤ k)-sets when k ≤ n/3 [EHSS89].

The first contribution of this dissertation from the combinatorial point of

view, is a novel summation invariant of the number of k-sets. Contrary to pre-

vious work, we fix the value of k and add the number of k-sets over subsets

of the set of points V . The subsets are obtained using the following method:

Let V = (v1, . . . , vn) be a sequence of the points of V ordered such that, for all
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i ∈ {1, . . . , n − 1}, vi+1 does not belong to the convex hull of Vi = {v1, . . . , vi}.
Such a sequence is called a convex inclusion chain of V . Every k-set of Vi, for all

i ∈ {k + 1, . . . , n}, is called k-set of the convex inclusion chain V . We show that

the number of k-sets of a convex inclusion chain of V is an invariant of V , that

is, it does not depend on the chosen convex inclusion chain V . More precisely, we

show that this number is equal to 2kn − n − k2 + 1 −∑k−1
i=1 γ

i(V ), where γi(V )

is the number of i-sets of V .

The previous result is obtained using the so called k-set polygon of V . This

polygon is one of the numerous objects that are linked to k-sets and that con-

tributed to their reputation. The k-set polygon of a point set V in the plane

(called k-set polytope in arbitrary dimension) was introduced by Edelsbrunner,

Valter and Welzl in 1997 [EVW97]. It consists of the convex hull of the centroids

of all subsets of k points of V . Andrzejak and Fukuda showed that the vertices

of the k-set polygon of V are precisely the centroids of the k-sets of V [AF99].

Hence, counting the k-sets of V comes to count the number of vertices of the k-set

polygon of V . More precisely in our case, the number of k-sets of a convex inclu-

sion chain V = (v1, . . . , vn) of V is equal to the total number of distinct vertices

of the k-set polygons of Vk+1, . . . , Vn, that is, the total number of distinct vertices

found by an algorithm that successively builds the k-set polygons of Vk+1, . . . , Vn.

k-set construction problem was studied extensively in computational geom-

etry. In 1986, Edelsbrunner and Welzl gave an algorithm that allows the con-

struction of the k-sets of a set of n points in O(m log2 n) time, where m is the

size of the output. This result was enhanced (for smaller values of k) by Cole,

Sharir, and Yap [CSY87]. After sorting the set of points, they determine ev-

ery k-set in O(log2 k) time per k-set and so reaching the total complexity of

O(n log n +m log2 k), where m is the size of the output. This algorithm is cur-

rently the best algorithm known. It should be noted that the log2 k factor comes

from using the dynamic convex hull data structure by Overmars and von Leeuwen

[OvL81]. Replacing this data structure by the data structure of Brodal and Jacob

[BJ02], this factor can be then reduced to log k amortized time. Everett, Robert

and van Kreveld showed that the (≤ k)-sets can be found in O(n log n+nk) time,

which is optimal in the worst case [ERvK93].

In this dissertation, we propose an on-line algorithm that constructs the k-sets

of particular convex inclusion chains: The ones that form simple polygonal lines.

This comes to give an on-line algorithm to construct the k-set polygon of a simple

polygonal line which is such that every point of this line is outside the convex hull

of the points preceding it. This algorithm generalizes, in some way, the on-line

algorithm of Melkman, that builds the convex hull of a simple polygonal line in

linear time [Mel87]. The complexity of our algorithm is in O(c log2 k) where c
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is the total number of constructed k-sets. The complexity per k-set, is then the

same as the one in the algorithm of Cole, Sharir and Yap.

Since the k-set polygon of a set of points is a convex hull, we can then adapt

other convex hull construction algorithms to determine the k-sets. It is important

to note that the algorithm of Cole, Sharir and Yap is inspired by the gift-wrapping

algorithm of Chand and Kapur [CK70], also called the Jarvis march [Jar73] that

builds the convex hull of n points in O(mn) time, where m is the size of the

constructed convex hull. Another classical algorithm for constructing the convex

hull is the divide and conquer algorithm by Preparata and Hong [PH77]. This

algorithm has a complexity of O(n log n) and presents the advantage that it can

be extended to the third dimension, with the same complexity.

We adapt here this algorithm to find the k-sets in the plane. The algorithm we

propose has a complexity in O(n log n+c log2 k log(n/k)), where c is the maximum

number of k-sets of a set of n points. We will see that the log(n/k) factor comes

from an overestimation done while computing the complexity.

Among the other notions closely related to k-sets in an arbitrary dimension,

we can cite the k-levels in the hyperplane arrangements in the dual space [Ede87,

CGL85], the k-hulls [CSY87], the order-k Voronoi diagrams [Aur91, SS98], the

order-k Delaunay diagram [SS06], half-space range searching [CP86], orthogonal

L1-line fitting [YKII88], corner cuts (notably used in the field of computer vision)

[OS99], . . .

Given a set V of points in the plane, the order-k Voronoi diagram of V is a

partition of the plane whose every region is associated to a subset T of k points

of V . More precisely, the order-k Voronoi region associated to T is the subset of

points in the plane that are closer to each of the elements of T than to any other

element of V \ T . A first relation between the k-sets and the order-k Voronoi

diagrams is that the k-sets of V are the subsets of V associated to the unbounded

order-k Voronoi regions of V . Moreover, every order-k Voronoi region in the plane

(resp. in dimension d) corresponds to a k-set in the third dimension (resp. in

dimension d+ 1) [Ede87].

In 1982, Lee proposed an iterative algorithm that builds the order-k Voronoi

diagram in the plane from the order-(k − 1) Voronoi diagram [Lee82]. Starting

with the order-1 Voronoi diagram, the algorithm builds the order-k Voronoi dia-

gram in O(k2n log n) time. In the same article, Lee showed that the number of

order-k Voronoi regions of a set V of n points in the plane, no four of them being

co-circular, is equal to 2kn−n− k2 +1−∑k−1
i=1 γ

i(V ) where γi(V ) is the number

of i-sets of V . Now, this number is the same as the number of k-sets of a convex

inclusion chain of V , that we have found in this dissertation. In a surprising way,
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this gives us a new relation between k-sets and the order-k Voronoi diagram. In

the rest of this dissertation, we try to understand this result.

In 1991, Schmitt and Spehner showed that the order-k Voronoi diagram ad-

mits a dual whose vertices are the centroids of the k-subsets of V associated

to the order-k Voronoi regions [SS91]. This dual is called the order-k Delaunay

diagram of V , or order-k Delaunay triangulation when V does not contain four

co-circular points. Aurenhammer and Schwarzkopf showed that this dual is actu-

ally a projection of a three dimensional convex polyhedral surface [AS92]. More

precisely, the order-k Delaunay triangulation is a projection of the lower part of

a k-set polytope of dimension 3 [SS06]. In the plane, the order-k Delaunay trian-

gulation decomposes the k-set polygon of V into two types of triangles: So called

territory triangles and domain triangles. The order-1 Delaunay triangulation is

the classical Delaunay triangulation; it contains only territory triangles. These

observations allow the adaptation of Lee’s iterative algorithm to the construction

of order-k Delaunay triangulation [SS91]. For k ≥ 2, the method consists, at

the first step, in deducing the order-(k + 1) domain triangles from the order-k

territory triangles. The order-(k + 1) territory triangles are obtained in a sec-

ond step by computing the constrained order-1 Delaunay triangulation of the

(k + 1)-set polygon of V deprived of the order-(k + 1) domain triangles. Being

inside “nearly-convex” polygons, the constrained Delaunay triangulations can be

built by the linear algorithm of Aggarwal, Guibas, Saxe and Shor [AGSS89]. The

order-k Delaunay triangulation is then built iteratively in O(n log n+ k2(n− k))
time [Sch95].

In 2004, Neamtu showed how the order-k Delaunay triangulation can be used

to generate multivariate splines [Nea04]. Liu and Snoeyink, noticed though that

the types of splines generated in such a way are limited [LS07]. They proposed

to define a larger triangulation family called order-k centroid triangulations, that

contains the order-k Delaunay triangulation. The order-k centroid triangulations

of a set of points V are also triangulations of the k-set polygon of V whose vertices

are the centroids of subsets of k points of V and whose triangles are territory and

domain triangles. A centroid triangulation is defined in a constructive way using

a generalization of the iterative order-k Delaunay construction algorithm. The

essential difference with this algorithm is that the second step constructs arbi-

trary constrained triangulations (and not necessarily Delaunay ones). Moreover,

the algorithm does not start from an order-1 Delaunay triangulation, but from

any triangulation of V . However, Liu and Snoeyink were not successful in proving

the validity of their algorithm for k > 3. Experimental results indicates that the

algorithm also works for the cases where k ≥ 4. Nevertheless, the only triangula-
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tions we actually have the proof that they belong to centroid triangulation family

for all k, are the order-k Delaunay triangulations.

In this dissertation, we show that, for every convex inclusion chain V of V , the

centroids of the k-sets of V are the vertices of an order-k centroid triangulation,

enlarging by the occasion the family of centroid triangulations. The result is

actually a first step toward the understanding of the fact that the number of

k-sets of a convex inclusion chain of V is equal to the number of order-k Voronoi

regions of V . Indeed, the centroids of the k-sets of a convex inclusion chain of V ,

on the one hand, and the centroids of the subsets of k points associated to the

order-k Voronoi regions of V , on the other hand, are the vertices of an order-k

centroid triangulation of V . To complete the argument, one needs to prove that

all the order-k centroid triangulations of V , as defined by Liu and Snoeyink, have

the same number of vertices.

We give here one sufficient condition so that the property is verified: It suf-

fices that every maximal edge-connected set of domain triangles in a centroid

triangulation is convex.

In this case, every order-k centroid triangulation has a size in O(k(n−k)) and
is built by the algorithm of Liu and Snoeyink in at least O(n log n+k2(n−k)) time.

We show here that a particular order-k centroid triangulation can be constructed

in O(n log n+ k(n− k) log2 k) time.

This dissertation is composed of five chapters in addition to the introduction

and the conclusion.

In the second chapter, we recall some important results on the convex hulls,

the k-set polygons, the order-k Voronoi diagrams, the order-k Delaunay triangu-

lations, and the centroid triangulations.

In the third chapter, we introduce the convex inclusion chains and show that

their number of k-sets, is an invariant of the considered point set.

In the fourth chapter, we give an on-line construction algorithm of the k-sets

of a convex inclusion chain that forms a simple polygonal line.

In the fifth chapter, we propose a divide and conquer algorithm to find the

k-sets of a set of points in the plane.

In the sixth chapter, we show that the centroids of the k-sets of a convex

inclusion chain are the vertices of an order-k centroid triangulation. We give also

an algorithm to construct a particular centroid triangulation. Finally, we give a

sufficient condition so that all the order-k centroid triangulations of the same set

of points have the same number of vertices.
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Chapter 2

k-sets and related objects

2.1 Introduction

This chapter assembles some generalizations on the k-element subsets taken from

a finite set of points V in the plane. It also contains properties that will be used

in the next chapters.

To every subset T of k points of V in the plane, we associate its centroid

g(T ). The convex hull of the set of these centroids is called the k-set polygon

of V . We prove that the vertices of this polygon are the centroids of the sets of

points that are separable from the others by a straight line. We start by recalling

some properties on the convex sets to apply them later on the k-set polygons.

By selecting subsets of k points of V , we can also define a triangulation of the

k-set polygon of V .

A typical example is the order-k Delaunay triangulation of V that is dual to

the order-k Voronoi diagram of V . This triangulation is obtained by selecting

the subsets of k points of V that are separable from the rest of the points of V

by circles. An algorithm for building the order-k Delaunay triangulation is also

given.

This algorithm is then generalized to other types of triangulations of the k-set

polygon whose vertices are also centroids of subsets of k points of V . These types

of triangulations are called the order-k centroid triangulations and will be the

subject of the last chapter in this dissertation.

2.2 Convex sets and convex hulls

We recall here some definitions and properties of the convex sets used in the

sections that follow. In addition, we should note that the convex hull of a set of

points V in the plane is the k-set polygon with k = 1.
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The following symbols and conventions are used through the whole disserta-

tion.

Given a finite point set V in the plane, we suppose that no three points of V

are collinear.

For every subset P of the plane, we denote by P̊ the relative interior of P , by
P the closure of P , and by δ(P) = P \ P̊ the boundary of P .

Given two points s and t in the plane, st denotes the closed oriented line

segment going from s to t and (st) denotes the oriented straight line spanned by

st.

Given an oriented straight line ∆, ∆+ (resp. ∆−) is the closed half plane on

the left (resp. right) side of ∆.

Definition 2.1 (of Convex Set). Let C be a set of points in the Euclidean space.

C is said to be convex if, for all points s and t in C and for every real number µ

such that 0 ≤ µ ≤ 1, the point (1− µ)s+ µt is in C (see Figure 2.1).

Figure 2.1: An example of a convex set (left) and a non-convex set (right)

Property 2.2. (i) The intersection of a non-empty family of convex sets is convex

if it is not empty.

(ii) For every non empty subset V of the Euclidean space, there exists a small-

est convex subset of the space that contains V .

Proof. (i) Let (Ci)i∈I be a non-empty family of convex subsets such that C =

∩i∈ICi 6= ∅. For all s and t of C and for every i ∈ I, s and t belong to Ci. Since

Ci is convex, for every µ ∈ [0, 1], (1−µ)s+µt ∈ Ci. It results that (1−µ)s+µt ∈ C
and that C is convex.

(ii) Since the Euclidean space is convex and contains the set V , the family

of all convex sets that contain V is not empty and its intersection C contains

V . From (i), C is convex. C is then the smallest convex subset of the Euclidean

space containing V .

Definition 2.3 (of Convex Hull). For every subset V 6= ∅ of the Euclidean space

E, the smallest convex subset of E which contains V is called the convex hull of

V and is denoted by conv(V ) (see Figure 2.2).

7



By Property 2.2, the convex hull of V in the Euclidean space is the intersection

of all convex sets containing V .

Then, it is not hard to prove:

Property 2.4. For every set V = {v1, v2, ...vn},

conv(V ) =

{

n
∑

i=1

λivi for λi ≥ 0 and
n

∑

i=1

λi = 1

}

.

Figure 2.2: The point set V and its convex hull

Definition 2.5 (of Extreme Point). A point v of a convex set V is said to be an

extreme point if conv(V \ {v}) does not contain v. Every extreme point v of a

convex set V is also called a vertex of δ(conv(V )) and, for the sake of simplicity,

we will say that this vertex is also a vertex of conv(V ).

One can also prove that:

Property 2.6. Let v be a point of a finite set V . The following properties are

equivalent (see Figure 2.3):

(i) v is a vertex of conv(V );

(ii) There exists a straight line ∆ that separates v from V \ {v};
(iii) There exists a straight line ∆′ that passes through v and such that ∆′ ∩

conv(V ) = {v};

Property 2.7. Let s and t be two points of V . The line segment st is an edge

of conv(V ) if, and only if, V is included in one of the half planes on the left or

on the right of the straight line st.

Remark 2.8. Let p1, p1, ...pm be the vertices of δ(conv(V )) in the counter clock-

wise direction. It results from Property 2.7 that, for every edge pipi+1 of conv(V ),

V ⊂ (pipi+1)
+.
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Figure 2.3: The point v (black) can be separated from V \ v (white points) by an

oriented straight line ∆, such that v ∈ ∆̊−. If ∆′ is parallel to ∆ passing through

v, oriented as ∆, conv(V ) ⊂ ∆′+.

Figure 2.4: conv(V ), its vertices p1, p2, ..., p8, and its oriented edges

p1p2, p2p3, ..., p8p1.

2.3 k-set polygon

Let V be a set of n points in the plane and k an integer such that k ∈ {1, . . . , n}.
By associating to each subset T of k points of V its centroid g(T ) we find a set

of points whose convex hull is called the k-set polygon of V noted by gk(V ) (see

Figure 2.5). We characterize here, the vertices and the edges of a k-set polygon.

We show that a subset T of k points of V defines a vertex of the k-set polygon if

and only if T is separable from V \ T by a straight line. In this case, the set T is

called a k-set of V .

In the particular case where k = n, V is the unique k-set of V and gk(V ) is

reduced to the center of gravity of V .

For the rest of this chapter we suppose that k < n and we study the relations

between k-sets and k-set polygons in this case. For this, we need the following

two technical lemmas:
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Figure 2.5: The centers of gravity for all 3-element subsets of a set V , and the

3-set polygon of V , g3(V )

Lemma 2.9. Let T be a non-empty subset of k elements of V , U a non-empty

subset of T , and ∆ an oriented straight line such that U ⊂ ∆+. Let ∆′ be the

straight line parallel to ∆, with the same orientation as ∆, and that passes through

g(T ).

(i) For every subset R of V \ T with same cardinality as U and included in

∆−, the centroid of T ′ = (T \ U) ∪R belongs to ∆′−.

(ii) Moreover, if at least one point of U belongs to ∆̊+ or one point of R

belongs to ∆̊−, then g(T ′) ∈ ∆̊′−.

Proof. (i) Let π be a straight line orthogonal to ∆ oriented from ∆+ to ∆−.

Consider now the abscissae of the points of the plane on π: The abscissa of g(T )

on π is the average of the abscissae of the points of T on π (see Figure 2.6). Since

the abscissae of the points of R on π are greater than or equal to the abscissae of

the points of U on π, the average of the abscissae of the points of T ′ = (T \U)∪R
is greater than or equal to the abscissa of g(T ). Thus g(T ′) belongs to ∆′−.

(ii) Moreover, if at least one point of U belongs to ∆̊+ or one point of R

belongs to ∆̊−, the abscissa of at least one point of R is strictly greater than the

abscissa of one point of U . The abscissa of g(T ′) is then strictly greater than the

abscissa of g(T ) and g(T ′) belongs to ∆̊′−.

Lemma 2.10. A subset T of k points of V is strictly separable from the other

points of V by a straight line ∆ if and only if g(T ) is strictly separable from

the centers of gravity of the other subsets of k points of V by a straight line ∆′

parallel to ∆. Moreover, if ∆ and ∆′ have the same orientation and if T ⊂ ∆̊−

then g(T ) ∈ ∆̊′−.

Proof. (i) Let T be a subset of k points of V such that there exists an oriented

straight line ∆ such that T ⊂ ∆̊− and V \T ⊂ ∆̊+. Let ∆′′ be an oriented straight
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Figure 2.6: illustration of the proof for lemma 2.9 with T = {1, 2, 3, 5, 6, 7, 8}

line parallel to ∆, with the same direction as ∆, and that passes through g(T ).

Every subset T ′ of k points of V distinct from T admits at least one point that

belongs to ∆̊+. From lemma 2.9, it results that g(T ′) belongs to ∆̊′′+. Hence,

gk(V )∩∆′′ = {g(T )} and, from Property 2.6, g(T ) is separable from all the other

centroids of sets of k points of V by a straight line ∆′ parallel to ∆′′ and ∆.

Moreover, if ∆′ is oriented as ∆, g(T ) ⊂ ∆̊′−.

(ii) Conversely, let T be a subset of k points of V such that there exists an

oriented straight line ∆′ that strictly separates g(T ) from the other centers of

gravity of the k-point subsets of V and such that g(T ) ⊂ ∆̊′−.

Let ∆′′ be a straight line parallel to ∆′ that passes through g(T ) and oriented

in the same direction as ∆′. From Property 2.6, gk(V ) ∩ ∆′′ = {g(T )} and

gk(V ) ⊂ ∆′′−. Let ∆′′′ be the straight line parallel to ∆′, that passes through a

point t of T , oriented in the same direction as ∆′ and such that T ⊂ ∆′′′−. There

exists then a straight line ∆ parallel to ∆′′′, oriented in the same direction as ∆′′′

such that ∆ ⊂ ∆̊′′′+ and such that ∆−∩ ∆̊′′′+ does not contain any point of V . If

(V \ T ) ∩ ∆̊− 6= ∅, there exists a point s in (V \ T ) ∩∆− and this point belongs

also to ∆′′′−. Hence, from Lemma 2.9, g((T \ {t}) ∪ {s}) belongs to ∆′′′− which

contradicts the previous results. It results that T is strictly separable from V \T
by ∆ and belongs to ∆̊−.

The following result is a direct consequence of this lemma (see Figure 2.7):

Proposition 2.11. T is a k-set of V if and only if its centroid g(T ) is a vertex

of gk(V ).

Moreover if two k-sets T and T ′ are distinct then g(T ) and g(T ′) are distinct

vertices.
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Figure 2.7: The 3-set T (bold black points) and its centroid g(T )

The edges of gk(V ) can be characterized using the following proposition:

Proposition 2.12. T and T ′ are two k-sets of V such that g(T )g(T ′) is a counter

clockwise oriented edge of gk(V ), if and only if there exist two points s and t of

V and a subset P of k− 1 points of V such that T = P ∪ {s}, T ′ = P ∪ {t}, and
V ∩ (s̊t)− = P .

Proof. (i) Let s and t be two points of V such that |V ∩ (s̊t)−| = k − 1 and let

P = V ∩ (s̊t)− (see Figure 2.8). Let ∆′ be the straight line parallel to (st), with

the same direction as (st), and that passes through g(P ∪ {s}). ∆′ is then the

image of (st) by an homothety of center g(P ) and of ratio 1/k. It results that

g(P ∪ {t}) also belongs to ∆′ and that the segments st and g(P ∪ {s})g(P ∪ {t})
have the same direction.

Let U be a subset of k points of V distinct from P ∪{s} and from P ∪{t}. If
U 6⊂ P ∪ {s, t}, U contains at least one point of (s̊t)+ and otherwise, at least one

point of P (i.e of V ∩ (s̊t)−) does not belong to U . In both cases, from Lemma

2.9, g(U) belongs to ∆̊′+. It results that gk(V ) ⊂ ( ˚g(P ∪ {s})g(P ∪ {t}))+ and

therefore, g(P ∪ {s})g(P ∪ {t}) is a counter clockwise oriented edge of gk(V ).

(ii) Now, let g(T )g(T ′) be a counter clockwise oriented edge of gk(V ) and ∆′

the oriented straight line spanned by g(T )g(T ′) and oriented from g(T ) to g(T ′).

Let ∆ be the oriented straight line parallel to ∆′, with the same direction as ∆′,

that passes through a point of T ∪T ′, and such that T ∪T ′ ⊂ ∆−. If there exists

a subset U of k points of V in ∆̊−, g(U) belongs to ∆̊′− from lemma 2.9. This

is impossible because gk(V ) ⊂ ∆′+ by construction. Hence |(T ∪ T ′) ∩ ∆̊−| < k.

Now, since T 6= T ′, we have |T ∪T ′| > k. Since no three points of V are collinear,

it results that P = T ∩T ′ contains exactly k−1 points. Hence, ∆ passes through

exactly two points s and t of T ∪T ′. By choosing s and t such that (st) is oriented

as ∆′, it results from (i) that T = P ∪ {s} and T ′ = P ∪ {t}.

12



Figure 2.8: Illustration of the proof of Proposition 2.12 with k = 3 and P =

{p0, p1}

The closed oriented edge g(P ∪ {s})g(P ∪ {t}) of gk(V ) is denoted hereafter

by eP (s, t).

Note that, in the particular case where k = 1, gk(V ) is the convex hull of V

and its edges are of the form e∅(s, t). When V is reduced to two points s and t,

g1(V ) admits exactly two oriented edges e∅(s, t) = st and e∅(t, s) = ts.

Corollary 2.13. If ePi
(si, ti) is an edge of gk(V ) and ePi+1

(si+1, ti+1) is its suc-

cessor on δ(gk(V )), then Pi ∪ {ti} = Pi+1 ∪ {si+1}, siti ∩ si+1ti+1 6= ∅, and

si+1 ∈ (siti)
−.

Proof. Since g(Pi ∪ {ti}) = g(Pi+1 ∪ {si+1}), from proposition 2.11, Pi ∪ {ti} =
Pi+1 ∪ {si+1} and, from proposition 2.12, Pi ∪ {ti} ⊂ (siti)

− (see Figure 2.9).

Thus si+1 ∈ Pi ∪ {ti} ⊂ (siti)
−. Moreover, since ti+1 /∈ Pi+1 ∪ {si+1} = Pi ∪ {ti},

ti+1 ∈ (siti)
+. Thus (siti) ∩ si+1ti+1 6= ∅. In the same way siti ∩ (si+1ti+1) 6= ∅

and thus siti ∩ si+1ti+1 6= ∅.

Figure 2.9: Illustration of the proof of corollary 2.13 using 9-set polygon edges

13



2.4 Order-k Voronoi diagram

We are still working on the set V of n points in the plane and an integer k ∈
{1, . . . , n− 1}. For every subset T of k points of V , let R(T ) be the set of points
in the plane that are strictly closer to each of the points of T than to any point

of V \ T . If R(T ) is not empty, R(T ) is called an order-k Voronoi region of V ,

and more precisely, the order-k Voronoi region of T (see Figure 2.10).

Figure 2.10: The order-3 Voronoi region R({v0, v1, v2}) (grey color). All the

points in this region are closer to the points {v0, v1, v2} than to any point of

{v3, . . . , v6}.

The set of the order-k Voronoi regions of V , their edges and their vertices

form a partition of the plane called the order-k Voronoi diagram of V .

Note that R(T ) is not empty if and only if T is strictly separable from V \ T
by a circle. R(T ) is then the set of centers for such circles.

Note also that a region R(T ) is unbounded if and only if some of these circles

have centers that tend toward infinity, that is, if and only if T is a k-set of V .

The order-k Voronoi edges can also be characterized by empty circles in the

following way:

14



Property 2.14. R(T ) and R(T ′) are two order-k Voronoi regions of V , sharing

a common edge if and only if there exist two distinct points s and t of V , a subset

P of k−1 points of V \{s, t}, and a circle σ such that T = P ∪{s}, T ′ = P ∪{t},
s and t are on σ, P is inside σ, and all the other points of V \ (P ∪ {s, t}) are

outside σ.

The common edge of R(T ) and R(T ′) is then the set of centers of such circles

σ (see Figure 2.11).

Figure 2.11: Two adjacent order-3 Voronoi regions R({v0, v1, v2}) and

R({v0, v2, v6}). Their common edge is the set of centers of the circles σ that

contain P = {v0, v2} and pass through s = v1 and t = v6.

Remark 2.15. Note that such an order-k Voronoi edge is unbounded if and only

if some of the circles σ have centers that tend toward infinity, that is, if and only

if the straight line (st) strictly separates P from V \ P . In this case, the line

segment that links g(P ∪ {s}) to g(P ∪ {t}) is an edge of the k-set polygon of V

from Proposition 2.12.

In the same way, for the vertices of the order-k Voronoi diagram we have the

following characterization:
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Property 2.16. Every order-k Voronoi vertex of V is the center of a circle that

passes through three points r, s, t of V , that contains a set P of either k − 1 or

k − 2 points of V inside, and such that all the other points of V are outside the

circle.

Conversely, every point in the plane that is the center of such a circle is an

order-k Voronoi vertex of V .

In addition, if |P | = k− 1, the vertex is common to the three order-k Voronoi

regions R(P ∪ {r}), R(P ∪ {s}), R(P ∪ {t}) and if |P | = k − 2, the vertex

is common to the three order-k Voronoi regions R(P ∪ {r, s}), R(P ∪ {s, t}),
R(P ∪ {r, t}) (see Figure 2.12).

Figure 2.12: The order-3 Voronoi vertex adjacent to the three regions R(P ∪
{r, s}), R(P ∪ {s, t}), R(P ∪ {r, t}) with P = {v2}, r = v0, s = v1, and t = v6.

The circle σ centred at this vertex contains P = {v2} and passes through r, s, t.

Remark 2.17. Note that when |P | = k − 1, such a Voronoi vertex is also an

order-(k + 1) Voronoi vertex common to the three order-(k + 1) Voronoi regions

R(P ∪ {r, s}), R(P ∪ {s, t}), R(P ∪ {r, t}), and when |P | = k − 2, it is an

order-(k − 1) Voronoi vertex common to the three order-(k − 1) Voronoi regions

R(P ∪ {r}), R(P ∪ {s}), R(P ∪ {t}).
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By convention, when |V | = k, the order-k Voronoi diagram of V is composed

of the unique region R(V ) that is the whole plane.

In the particular case where V = {s, t} and k = 1, the order-k Voronoi

diagram of V is composed of the two regions R(s) and R(t) that are two half

planes delimited by the bisector of line segment st. This bisector is the unique

edge of the diagram.

In the general case where |V | > 2 and |V | > k, the order-k Voronoi diagram

of V admits at least one vertex (we have supposed that no three points of V are

collinear). Moreover, the edges of this diagram are line segments and half lines.

Lee [Lee82] proved that the number of regions of this diagram is equal to

2kn− n− k2 + 1−∑k−1
i=1 γ

i(V ), where n = |V | and γi(V ) is the number of i-sets

of V .

2.5 Order-k Delaunay triangulation

We show that for every subset T that defines an order-k Voronoi region, the

centroid g(T ) is a vertex of a dual diagram called the order-k Delaunay trian-

gulation of V . This diagram is a particular triangulation of the k-set polygon.

We will give an algorithm that constructs the order-k Delaunay triangulation by

iterations over k.

2.5.1 Definitions

• For every order-k Voronoi region R(T ), the centroid g(T ) of T is called an

order-k Delaunay vertex (see Figure 2.13).

• For every order-k Voronoi edge common to two regions R(P ∪ {s}) and

R(P ∪ {t}), the line segment g(P ∪ {s})g(P ∪ {t}) is called an order-k

Delaunay edge (see Figure 2.13).

• For every order-k Voronoi vertex common to three regions R(P ∪ {r}),
R(P ∪ {s}), R(P ∪ {t}), the triangle g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}) is

called an order-k Delaunay triangle. We will also call this triangle an order-

k Delaunay territory triangle (see Figure 2.14).

• For every order-k Voronoi vertex common to the regions R(P ∪ {r, s}),
R(P∪{s, t}), R(P∪{r, t}), the triangle g(P∪{r, s})g(P∪{s, t})g(P∪{r, t})
is also called an order-k Delaunay triangle. We will also call this triangle

an order-k Delaunay domain triangle (see Figure 2.15).
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Figure 2.13: The order-3 Delaunay vertex g({v1, v4, v5}) is dual to the order-

3 Voronoi region R({v1, v4, v5}). The order-3 Delaunay edge g({v1, v3} ∪
{v0})g({v1, v3} ∪ {v4}) is dual to the edge shared by the order-3 Voronoi re-

gions R({v1, v3} ∪ {v0}) and R({v1, v3} ∪ {v4}). Note that the two edges are

orthogonal.

Proposition 2.18. The order-k Delaunay vertices, the open order-k Delaunay

edges, and the open order-k Delaunay triangles are pairwise disjoint.

Proof. From the properties of the order-k Voronoi regions, edges and vertices,

every order-k Delaunay vertex, edge or triangle ψ of V can be characterized by

a couple (P,Q) of subsets of V such that:

• P ∩Q = ∅,

• there exists a closed disk ω such that ω̊ ∩ V = P and δ(ω) ∩ V = Q,

• |P | = k and Q = ∅, if ψ is a vertex,

• |P | = k − 1 and |Q| = 2, if ψ is an edge,

• k − 2 ≤ |P | ≤ k − 1 and |Q| = 3, if ψ is a triangle.
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Figure 2.14: The order-3 Delaunay territory triangle is dual to the order-3

Voronoi vertex common to the regions R({v4, v5} ∪ {v1}), R({v4, v5} ∪ {v3}),
and R({v4, v5} ∪ {v6})

In addition, the vertices of ψ are the centroids of the subsets of k points of

P ∪Q that contain P .

Let ψ′ be an order-k Delaunay vertex, edge or triangle of V distinct from ψ,

(P ′, Q′) the couple of subsets of V that characterizes ψ′, and ω′ a closed disk such

that ω̊′ ∩ V = P ′ and δ(ω′) ∩ V = Q′. Since ψ′ 6= ψ, we have (P ′, Q′) 6= (P,Q)

and, hence, ω′ 6= ω.

(i) Obviously, when ω and ω′ are disjoint, ψ and ψ′ are disjoint as well since

ψ ⊆ conv(P ∪Q) ⊂ ω and ψ′ ⊆ conv(P ′ ∪Q′) ⊂ ω′.

(ii) Let us now prove by contradiction that none of the disks ω and ω′ contains

the other. Within a permutation of ω and ω′, let us suppose that ω′ ⊂ ω.

If δ(ω)∩δ(ω′)∩V = ∅, P ′∪Q′ ⊆ P . Then, from the cardinality constraints on

P , Q, P ′, and Q′, we necessarly have Q = Q′ = ∅ and P = P ′. This is impossible

since (P,Q) 6= (P ′, Q′).

In the same way, if δ(ω)∩δ(ω′)∩V = {q} then P ′∪(Q′\{q}) ⊆ P . Now, since

Q and Q′ are not empty, we have |P ′ ∪Q′| > k and |P | < k, which is impossible.
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Figure 2.15: The order-3 Delaunay domain triangle is dual to the order-3 Voronoi

vertex common to the regionsR({v4}∪{v1, v3}), R({v4}∪{v3, v5}), andR({v4}∪
{v1, v5})

(iii) The remaining case to study is the case where δ(ω) intersects δ(ω′) in

one or two points and where none of ω and ω′ is inside the other. Let ∆ be

the oriented straight line such that ∆ ∩ δ(ω) = ∆ ∩ δ(ω′) = δ(ω) ∩ δ(ω′) and

ω ∩∆− ⊂ ω′ (i.e. ω′ ∩∆+ ⊂ ω). Since ω ∩ V = P ∪Q and ω′ ∩ V = P ′ ∪Q′, we

then have (P ∪Q) \ P ′ ⊂ ∆+ and (P ′ ∪Q′) \ P ⊂ ∆− (see Figure 2.16).

Let us show by contradiction that ((P ∪ Q) \ P ′) ∪ ((P ′ ∪ Q′) \ P ) 6⊂ ∆.

Indeed, since ∆∩ ω̊ = ∆∩ ω̊′, P = ω̊ ∩ V , and P ′ = ω̊′ ∩V , we have ∆∩ ω̊ ∩ V =

∆ ∩ ω̊′ ∩ V ⊆ P ∩ P ′. If we suppose that ((P ∪ Q) \ P ′) ∪ ((P ′ ∪ Q′) \ P ) ⊂ ∆

then (P \ P ′) ∪ (P ′ \ P ) ⊂ ∆ and this implies that (P \ P ′) ∪ (P ′ \ P ) ⊆ P ∩ P ′

and therefore, P = P ′ = ∅. ((P ∪ Q) \ P ′) ∪ ((P ′ ∪ Q′) \ P ) ⊂ ∆ becomes then

Q ∪ Q′ ⊂ ∆. Now, Q = δ(ω) ∩ V , Q′ = δ(ω′) ∩ V and δ(ω) ∩∆ = δ(ω′) ∩∆. It

results that Q = Q′, which is impossible from the hypothesis (P,Q) 6= (P ′, Q′).

We can then suppose, within a permutation of (P,Q) and (P ′, Q′), that there

exists a point p of (P ∪ Q) \ P ′ that does not belong to ∆. This point then

necessarily belongs to ∆+. Let ∆′ be a straight line parallel to ∆, with the same

direction as ∆, and that passes through the vertex g(T ′) of ψ′ and such that

20



Figure 2.16: An order-3 Delaunay territory triangle ψ characterized by the couple

(P,Q) such that P = {p0, p1} and Q = {q0, q1, q2} that is disjoint from an order-3

Delaunay edge ψ′ characterized by the couple (P ′, Q′) such that P ′ = {p′0, p′1}
and Q′ = {q′0, q′1}.

ψ′ ⊂ ∆′−. For every vertex g(T ) of ψ, since T ⊆ P ∪ Q and since P ′ ⊆ T ′, we

have T \ T ′ ⊆ (P ∪ Q) \ P ′ ⊂ ∆+. Likewise, T ′ ⊆ P ′ ∪ Q′ and P ⊆ T implies

that T ′ \ T ⊆ (P ′ ∪ Q′) \ P ⊂ ∆−. It results from Lemma 2.9 that g(T ) ∈ ∆′+.

Moreover, for at least one of the vertices g(T ) of ψ, p ∈ T \ T ′ and, therefore,

g(T ) ∈ ∆̊+, from Lemma 2.9. It results that ψ̊ ⊂ ∆̊+ and, since ψ′ ⊂ ∆−,

ψ̊ ∩ ψ̊′ = ∅.

Theorem 2.19. The order-k Delaunay vertices, edges and triangles of V form a

triangulation of the k-set polygon gk(V ) of V .

Proof. (i) First, let us consider the general case where |V | > 2 and |V | > k. In

this case, from Section 2.4, the order-k Voronoi diagram of V admits at least

one vertex. Hence, there exists at least one Delaunay triangle. Moreover, by

definition, the order-k Delaunay vertices and edges are the vertices and edges of

the order-k Delaunay triangles. Since these vertices are centroids of subsets of k

points of V , all the triangles are inside the k-set polygon of V . In addition, from

proposition 2.18, the open order-k Delaunay triangles, the open order-k Delaunay

edges and the order-k Delaunay vertices are pairwise disjoint.

It remains to prove that the set of the order-k Delaunay triangle covers gk(V ).

From Remark 2.15, every order-k Delaunay edge c that is not an edge of gk(V ) is

dual to a bounded edge c′ of the order-k Voronoi diagram. By duality, c is then

an edge common to two order-k Delaunay triangles that are dual to both ends

of c′. This proves that the triangles of the order-k Delaunay triangulation cover

gk(V ).
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(ii) By definition, in the particular case where |V | = k, the order-k Voronoi

diagram of V is composed of the unique region R(V ). g(V ) is then the unique

order-k Delaunay vertex and is equal to the k-set polygon of V .

If V = {s, t} and k = 1, the order-k Voronoi diagram of V is composed of the

two regions R(s) and R(t) and of their unique common edge. By duality, s and

t are then the two unique order-k Delaunay vertices and the line segment that

links them is the unique order-k Delaunay edge. In this case the k-set polygon

of V is equal to the convex hull of V and is also reduced to this segment.

The obtained triangulation is called the order-k Delaunay triangulation (see

Figure 2.17). Note that in the particular case where k = 1, we recognize the

definition of the (classical) Delaunay triangulation whose triangles have their

vertices in V and are inscribed in circles containing k − 1 = 0 points inside.

Figure 2.17: The order-3 Delaunay triangulation partitions the 3-set polygon and

is dual to the order-3 Voronoi diagram. Gray triangles are domain triangles and

white triangles are territory triangles.
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2.5.2 Construction

We will show now how the order-k Delaunay triangulation can be constructed

from the order-(k − 1) Delaunay triangulation when k ≥ 2. Since the order-k

Delaunay triangles are dual to the order-k Voronoi vertices, it results from Remark

2.17 that the order-k Delaunay domain triangles can be constructed from the

order-(k−1) Delaunay territory triangles. Hence, g(P ∪{r, s})g(P ∪{s, t})g(P ∪
{t, r}) is an order-k domain triangle if and only if g(P ∪{r})g(P ∪{s})g(P ∪{t})
is an order-(k − 1) territory triangle.

Moreover, the set of order-k Delaunay vertices is determined in this way as

shown by the following lemma:

Lemma 2.20. If k ≥ 2, every order-k Delaunay vertex is a vertex of an order-k

Delaunay domain triangle.

Proof. If g(T ) is an order-k Delaunay vertex, R(T ) is an order-k Voronoi region

and, by definition, there exists a circle that strictly separates T from V \ T . By
reducing the circle radius while keeping the center, we can find a circle σ that

passes through a point s of T and such that the rest of the points of T are on σ

or inside σ. Then, there exists a circle σ′ tangent to σ in s, that passes through

a second point t of T and such that all the other points of T are on σ′ or inside

σ′. Clearly, all the points of V \ T are outside σ′. Since |V | > |T |, we can

suppose within a permutation of s and t, that (s̊t)+ contains at least one point of

V \T . Hence, there exists necessarily a circle σ′′ that passes through s and t (i.e.

whose center is on the bisector of st), that passes also, either through a point r

of (V \ T ) ∩ (s̊t)+ (Case 1) or through a point t′ of T ∩ (s̊t)− (Case 2), and such

that all the other points of T are on or inside σ′′ and all the points of V \ T are

on or outside σ′′.

Case 1 (Figure 2.18): In this case, from the definition of the order-k Delaunay

triangles, g((T \{s, t})∪{r, s}), g((T \{s, t})∪{s, t}) = g(T ) and g((T \{s, t})∪
{r, t}) are the vertices of an order-k Delaunay domain triangle.

Case 2 (Figure 2.19): In the second case, within a permutation of (st′) and

(tt′), (st′)+ contains a point of V \ T (since (s̊t)+ ⊂ (s̊t′)+ ∪ (t̊t′)+). We can

then restart the previous process by replacing (st) with (st′). Since (s̊t′)− ∩ T ⊂
(s̊t)− ∩ T , after at most k − 2 iterations of this process, we necessarily end up

finding a circle that passes through two points s and t of T , through one point

r of V \ T , and such that all the other points of T \ {s, t} are inside the circle

and the points of V \ (T ∪ {r}) are outside the circle. Thus, g(T ) is a vertex of

a domain triangle, from Case 1.
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Figure 2.18: Illustration of the proof of Lemma 2.20: Case 1 with k = 6 (the

points of T are in white)

From this lemma, the vertices of the order-k Delaunay territory triangles are

vertices of the order-k Delaunay domain triangles. It results that, if τ is the set of

order-k Delaunay domain triangles then, the order-k Delaunay territory triangles

form a constrained triangulation of gk(V ) \ τ .
Recall that a constrained triangulation of gk(V ) \ τ is a partition of gk(V ) \ τ

in triangles such that the vertices of gk(V ) \ τ are the vertices of the partition

and that each edge of gk(V ) \ τ is also an edge of the partition.

If for some subset P of k − 1 points of V , the set formed by the order-k

Delaunay edges that are of the form g(P ∪ {s})g(P ∪ {t}) and by the order-k

Delaunay territory triangles that are of the form g(P ∪ {r})g(P ∪ {s})g(P ∪ {t})
is not empty, then this set is called the territory of P .

Proposition 2.21. Let C be the closure of a connected component of gk(V ) \ τ .
The order-k Delaunay triangles inside C belong to the same territory and form a

constrained (order-1) Delaunay triangulation of C.

Proof. (i) By definition, the edges of a triangle g(P ∪{s})g(P ∪{r})g(P ∪{t}) of
the territory of P , belong also to the territory of P . Since every order-k Delaunay

edge belongs to one and only one territory, two territory triangles cannot have a

common edge unless they belong to the same territory. Since, by construction,

all the order-k Delaunay triangles belonging to C are territory triangles, it results

that these triangles belong to the same territory.

(ii) From (i), there exists a subset P of k − 1 points of V and a set S =

{s1, . . . , sm} of points of V \ P such that g(P ∪ {s1}), . . . , g(P ∪ {sm}) are the
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Figure 2.19: Case 2 of the proof of Lemma 2.20. σ′′ is found in two iterations of

the process.

vertices of C. For every order-k Delaunay triangle g(P∪{si})g(P∪{sj})g(P∪{sl})
the points of S \ {si, sj, sl} are outside the circle that passes through si, sj, sl. It

results that the triangle sisjsl is an (order-1) Delaunay triangle of S. By an

homothety of center g(P ) and of ratio 1/k, g(P ∪ {si})g(P ∪ {sj})g(P ∪ {sl})
is then an (order-1) Delaunay triangle of {g(P ∪ {s1}), . . . , g(P ∪ {sm})}. If, in

addition, this triangle is inside C, then it is a triangle of the constrained (order-1)

Delaunay triangulation of C.

It results from this proposition that, when the set τ of order-k Delaunay do-

main triangles is known, the territory triangles can be obtained by computing

the constrained (order-1) Delaunay triangulation of gk(V ) \ τ . Hence, the algo-

rithm that constructs the order-k Delaunay triangulation from the order-(k − 1)

Delaunay triangulation:

� �

function bu i ld order k De launay

{
1 . foreach ( order−(k − 1) Delaunay t e r r i t o r y t r i a n g l e

g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}))
{

compute the t r i a n g l e g(P ∪ {r, s})g(P ∪ {s, t})g(P ∪ {r, t}) ;
}

25



2 . compute the cons t ra ined ( order−1) Delaunay t r i a n gu l a t i o n

o f gk(V ) \ τ ( where τ i s the s e t o f the t r i a n g l e s b u i l t i n

loop 1) ;

}
� �

In Figures 2.20 and 2.21, we can see the two steps of the algorithm in the

cases k = 2 and k = 3.

Figure 2.20: Illustration of the order-2 Delaunay triangulation construction: For

each order-1 Delaunay triangle we build its corresponding order-2 Delaunay do-

main triangle (A and B). We later compute the constrained Delaunay triangu-

lation of the 2-set polygon without the domain triangles and we get the order-2

Delaunay triangulation (C and D).

Before giving the complexity of this algorithm, recall that the (order-1) De-

launay triangulation inside a convex polygon, can be computed in linear time

with the algorithm of Aggarwal et al. [AGSS89]. Using the results of Lee [Lee82]
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Figure 2.21: Illustration of the order-3 Delaunay triangulation construction: For

each order-2 Delaunay triangle we build its corresponding order-3 Delaunay do-

main triangle (A and B). We later compute the constrained Delaunay triangu-

lation of the 3-set polygon without the domain triangles and we get the order-3

Delaunay triangulation (C and D).

on the order-k Voronoi diagram, Aggarwal et al. have also proved that each

territory, even if it is not convex and not simple, has enough interesting proper-

ties that makes it possible for their algorithm to be used. It results then from

proposition 2.21 that the above algorithm constructs the order-k Delaunay tri-

angulation from the order-(k − 1) Delaunay triangulation in time linear with its

size. Now, as we have seen in the previous section, the order-k Voronoi diagram

of V admits O(k(n−k)) regions and, by duality, the size of the order-k Delaunay

triangulation of V is also in O(k(n− k)).
Thus, given a set of points V , its order-k Delaunay triangulation can be

constructed iteratively in O(n log n + k2(n − k)) time, by first constructing the
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order-1 Delaunay triangulation of V in O(n log n) time and then applying k − 1

times the previous algorithm.

2.6 Order-k centroid triangulations

We have seen in Section 2.3, that the vertices of the k-set polygon of V are

the centroids of the k-sets of V and that these centroids are pairwise disjoint.

Moreover, the edges of gk(V ) are of the form g(T )g(T ′) with |T ∩ T ′| = k − 1.

In the previous section, we have seen that the order-k Delaunay triangulation

of V is a triangulation of gk(V ) whose vertices are the centroids of the k-point

subsets of V that are separable from the others by circles. Here again, these

centroids are pairwise disjoint and the order-k Delaunay triangulation edges are

of the form g(T )g(T ′) with |T ∩ T ′| = k − 1.

More generally, we call k-neighbor triangulation of V every triangulation T
of gk(V ) such that:

• there exists a set P of k-point subsets of V such that every vertex of T is

the centroid of a unique element of P .

• every edge of T is of the form g(T )g(T ′) with {T, T ′} ⊆ P and |T ∩ T ′| =
k − 1.

From this definition, if V admits different k-point subsets that have the same

centroid, then at most one of these subsets is in P .
Afterwards, when we say that g(T ) is a vertex of a k-neighbor triangulation,

this will mean that T belongs to P .
Moreover, if the centroid of every element of P is a vertex of T , we say that

P determines the vertices of T .

Property 2.22. If T is a k-neighbor triangulation of V then:

(i) T admits only two types of triangles:

• triangles of the form g(P ∪{r})g(P ∪{s})g(P ∪{t}), where P is a (k− 1)-

point subset of V and where r, s, t are three distinct points of V \ P ,

• triangles of the form g(P ∪ {r, s})g(P ∪ {s, t})g(P ∪ {r, t}), where P is a

(k−2)-point subset of V and where r, s, t are three distinct points of V \P .

(ii) Moreover, when k = 1 (resp. k = n− 1), all the triangles of T are of the

first (resp. second) type.
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Proof. (i) Let g(T )g(T ′)g(T ′′) be a triangle of T . Since |T ∩ T ′| = |T ′ ∩ T ′′| =
|T ∩ T ′′| = k − 1, we have necessarily k − 2 ≤ |T ∩ T ′ ∩ T ′′| ≤ k − 1 and

k+1 ≤ |T ∪T ′∪T ′′| ≤ k+2. Thus, there exist a subset P of V and three distinct

points r, s, t of V \ P such that:

• either T = P ∪ {r}, T ′ = P ∪ {s}, T ′′ = P ∪ {t},

• or T = P ∪ {r, s}, T ′ = P ∪ {s, t}, T ′′ = P ∪ {r, t}.

(ii) When k = 1, every triangle of T is of the form rst (with {r, s, t} ⊆ V )

and is then of the first type (with P = ∅).
When k = n−1, every triangle of T is of the form g(V \{r})g(V \{s})g(V \{t})

(with {r, s, t} ⊆ V ) and is then of the second type (with P = V \ {r, s, t}).

As in the case of the order-k Delaunay triangulation, we call these two types

of triangles territory triangles and domain triangles respectively.

It is important to note that Property 2.22 is wrong if the set P that determines

the vertices of T contains two elements that have the same centroid (see Figure

2.22).

Figure 2.22: The three edges g({1, 3})g({1, 2}), g({5, 6})g({5, 7}), and

g({8, 9})g({8, 10}) of the triangle are of the form g(T )g(T ′) with |T ∩ T ′| = 1.

However, the triangle is neither an order-2 territory triangle nor an order-2 do-

main triangle.

In the case of the order-k Delaunay triangulations, the bijection between ter-

ritory triangles at the order k − 1 and domain triangles at the order k, allowed

us to give an algorithm that constructs the order-k Delaunay triangulation from

the order-(k − 1) Delaunay triangulation. We can now extend this algorithm to

the k-neighbor triangulations.

Let us note first that every triangulation of V is a 1-neighbor triangulation of

V . So, we also call the triangulations of V order-1 (centroid) triangulations of V .
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Now, let k > 1 and let T be a (k − 1)-neighbor triangulation of V . Consider

the following generalization of the algorithm build_order_k_Delaunay:
� �

function bu i l d o r d e r k t r i a n gu l a t i o n

{
1 . foreach ( t e r r i t o r y t r i a n g l e g(P ∪ {r})g(P ∪ {s})g(P ∪ {t}) o f T )

{
compute the t r i a n g l e g(P ∪ {r, s})g(P ∪ {s, t})g(P ∪ {r, t}) ;

}

2 . compute a cons t ra ined t r i a n gu l a t i o n o f gk(V ) \ τ ( where τ i s

the s e t o f the t r i a n g l e s b u i l t i n loop 1) ;

}
� �

Let us study the result of the application of this algorithm on an order-1

triangulation T 1 of V (see Figure 2.23).

From Property 2.22, every triangle of T 1 is a territory triangle. τ is then the

set of triangles obtained by constructing, for each triangle rst of T 1, a triangle

whose vertices are the midpoints g({r, s}), g({s, t}), g({r, t}) of the edges of rst.

These triangles are pairwise disjoint except at their vertices. Note also that every

vertex of the 2-set polygon g2(V ) is a vertex of such a triangle. Indeed, if g({s, t})
is a vertex of g2(V ), then from proposition 2.11, {s, t} is strictly separable from

V \ {s, t} by a straight line. Therefore, the line segment st is an edge of every

(order-1) triangulation of V . It results that, if P is the set of pairs {s, t} such that

st is an edge of T 1, the vertices built by the algorithm above are the centroids of

the elements of P . Moreover, since the edges of T 1 are pairwise disjoint except

at their endpoints, these centroids are pairwise disjoint.

We will study now the connected components of g2(V ) \ τ . For this, let us

consider an arbitrary point s of V . Let t1, . . . , tm be the neighbors of s in T 1 in

counter-clockwise direction around s, such that, if s is a vertex of conv(V ), t1 and

tm are respectively the successor and the predecessor of s on δ(conv(V )) (in the

counter-clockwise direction). The midpoints of the line segments st1, st2, . . . , stm

are the vertices a the polygonal line Ls whose edges are edges of triangles of τ .

In the case where s is not a vertex of conv(V ), Ls is closed and is the boundary

of a connected component of g2(V ) \ τ .
When s is a vertex of conv(V ), Ls links the two points g({s, t1}) and g({s, tm}).

Since st1 and stm are edges of conv(V ), {s, t1} and {s, tm} are respectively sepa-

rable from V \{s, t1} and from V \{s, tm} by a straight line and, hence, g({s, t1})
and g({s, tm}) are vertices of g2(V ). The part of g2(V ) on the left of the polyg-

onal line Ls, oriented from g({s, t1}) to g({s, tm}), forms then, either an empty
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Figure 2.23: Illustration of the application of the build order k triangulation

algorithm on an (order-1) triangulation: For each triangle we build its corre-

sponding 2-neighbor domain triangle (A and B). We later compute a constrained

triangulation of the 2-set polygon without these domain triangles and we get an

order-2 triangulation (C and D).

set, or one or more connected components of g2(V ) \ τ . Moreover, since all the

vertices of g2(V ) are vertices of τ , all the vertices of these connected components

are vertices of Ls.

Conversely, every connected component of g2(V ) \ τ is delimited by a part of

such a line Ls, with s a point of V . It results that every triangle of a con-

strained triangulation of a connected component of g2(V ) \ τ is of the form

g({s, th})g({s, ti})g({s, tj}) and is then a territory triangle.

We can then give the following result:

Proposition 2.23. When the algorithm build_order_k_triangulation is ap-

plied to an order-1 triangulation T 1 of V , it constructs a 2-neighbor triangulation
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T 2 of V . Moreover, the triangles of τ are the domain triangles of T 2 and g({s, t})
is a vertex of T 2 if, and only if, st is an edge of T 1.

Every triangulation built this way is called an order-2 (centroid) triangulation

of V .

Remark 2.24. Not every 2-neighbor triangulation is an order-2 triangulation,

that is, it cannot be constructed from an order-1 triangulation using the algorithm

build_order_k_triangulation (see Figure 2.24).

Figure 2.24: The set V = {1, 2, 3, 4} admits a unique order-1 triangulation and

a unique order-2 triangulation (left figure). The right figure shows a 2-neighbor

triangulation of V that is not an order-2 triangulation of V .

Liu and Snoeyink proved that by applying the build order k triangulation

algorithm to an order-2 triangulation of V , we obtain in the same way a 3-neighbor

triangulation of V whose domain triangles are triangles of τ (see Figure 2.25).

Practical experimentations done independently by Liu and Snoeying and by

ourselves showed that by applying algorithm build_order_k_triangulation

successively, we always obtain triangulations of the same type. However, this

result is not proven for k > 3. So, we state the conjecture of Liu and Snoeying

[LS07]:

Conjecture 2.25. Starting with an arbitrary (order-1) triangulation of V and

applying k− 1 times the algorithm build_order_k_triangulation, we obtain a

k-neighbor triangulation of V from which τ is the set of domain triangles.

Every triangulation obtained this way is called an order-k centroid triangula-

tion of V .

Note that, from Property 2.22, all the triangles of an order-(n − 1) triangu-

lation are domain triangles. Since, in addition, gn(V ) is reduced to the unique
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Figure 2.25: An order-3 triangulation obtained from an order-2 triangulation by

algorithm build order k triangulation.

point g(V ), the algorithm build_order_k_triangulation when applied to an

order-(n− 1) triangulation does not generate any triangle. We will say then that

V has a unique order-n triangulation which is reduced to gn(V ) = g(V ).

Liu and Snoeyink have also conjectured that the size of every order-k trian-

gulation of a set V of n points is in O(k(n − k)), like the size of the order-k

Delaunay triangulation.

Thus, since the construction of an (order-1) triangulation takes Ω(n log n) time

at least, we cannot hope building an order-k triangulation in less than O(n log n+

k2(n − k)) time, if we apply k − 1 times the build_order_k_triangulation

algorithm.
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Chapter 3

k-sets of convex inclusion chains

3.1 Introduction

In this chapter, a new k-set invariant is given. To this aim we introduce the

convex inclusion chain of the set of points V as a sequence of the points of V

such that no point is in the convex hull of the previous ones. The set of k-sets

of a convex inclusion chain is the set of k-sets of all initial subsequences of this

chain. We show that the number of these k-sets does not depend on the convex

inclusion chain of V . Moreover, this number is equal to the number of regions of

the order-k Voronoi diagram: 2kn− n− k2 + 1−∑k−1
i=1 γ

i(V ).

To get this result we use the k-set polygon introduced in Chapter 2. We show

that, when a new point is added outside of the convex hull, the edges to remove

from the current k-set polygon form a polygonal line and the edges to create to

obtain the new k-set polygon form also a polygonal line.

We study first the particular case k = 1 where the k-set polygon is reduced

to the convex hull. This case will serve us as a model for the general case.

3.2 Adding a point to a convex hull

We will start by giving a formal definition of a convex inclusion chain:

Definition 3.1. A convex inclusion chain of the point set V is a sequence (v1, v2,

..., vn) of the points of V , such that for every integer i ∈ {1, . . . , n − 1}, vi+1 /∈
conv({v1, . . . , vi}).

From here on, we denote by Vi the set {v1, . . . , vi}, for i ∈ {1, . . . , n}.

If k = 1 the k-set polygon is equal to the convex hull.

Note that in the case of the convex hull of two points, the convex hull is made

of two oriented edges, linking the vertices in both directions.
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Assume that, for i ≥ 2 the convex hull conv(Vi−1) of Vi−1 is constructed. What

we want to do now, is to add the new point vi to conv(Vi−1) to get conv(Vi). This

update process, requires two essential steps:

First, we need to remove some edges from conv(Vi−1). Afterward, we will

prove that what remains of δ(conv(Vi−1)) after this step, forms a polygonal line.

The second step, involves adding some edges to what remained of δ(conv(Vi−1))

to get conv(Vi).

Eventually, once we know how to do these two steps, we can add the points

one after the other to finally get conv(Vn).

So the first thing to do is to characterize which are the edges to remove, and

which ones to keep, once the point vi+1 is added.

Lemma 3.2. An edge vrvl of conv(Vi−1) is an edge of conv(Vi) if and only if

vi ∈ ( ˚vrvl)
+.

Proof. From Property 2.7, vrvl is an edge of conv(Vi) if and only if (vrvl) has all

the points of Vi \ {vr, vl} on its left. Hence, since vi is the only new point, an

edge vrvl of conv(Vi−1) is an edge of conv(Vi) if and only if vi ∈ ( ˚vrvl)
+.

Another important property is needed:

Lemma 3.3. (i) Exactly two edges are going to be created to get conv(Vi) from

conv(Vi−1) and these two edges are consecutive on δ(conv(Vi)).

(ii) The edges of δ(conv(Vi−1)) that are not edges of δ(conv(Vi)) form a polyg-

onal line.

Proof. (i) Obviously, since vi belongs to Vi and not to conv(Vi−1), vi is then a

vertex of conv(Vi). All other vertices of conv(Vi) are vertices of conv(Vi−1) and

every edge of conv(Vi) is either an edge of conv(Vi−1), or links vi to a vertex of

conv(Vi−1). It results that exactly two consecutive edges are created when build-

ing conv(Vi) and that all the other edges of conv(Vi) form a connected polygonal

line on δ(conv(Vi−1)).

(ii) It follows that, the removed edges of δ(conv(Vi−1)) form also a connected

polygonal line.

Now that we have everything we need, the number of created edges can be

obtained.

Theorem 3.4. Any algorithm that incrementally constructs the convex hull of a

convex inclusion chain (v1, . . . , vn) creates 2(n− 1) edges.

Proof. conv(V1) is a single point. From Lemma 3.3, for any added point vi (for

i > 1), two edges are constructed. Summing all constructed edges for the the

remaining n− 1 points will give us 2(n− 1) created edges.
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3.3 A new k-set invariant

In the previous section, we computed the number of edges we have to create if

we add the points to a convex hull incrementally. What we have done before will

serve us as a model to compute the total number of created k-sets if we add the

points incrementally as well.

Similarly to what we have done previously, it will be assumed that the k-set

polygon gk(Vi−1) is constructed, for an i ≥ k and k < n. We update gk(Vi−1) to

get gk(Vi) and to this aim, the edges to remove from gk(Vi−1) once the point vi is

added, are characterized. The newly created edges are characterized as well (see

Figure 3.1).

Figure 3.1: The updating of gk(Vi−1) when vi is added: The edges to be removed

are in dashed lines and the edges to create are in bold lines.

Lemma 3.5. An edge eP (s, t) of gk(Vi−1) is an edge of gk(Vi) if and only if

vi ∈ (s̊t)+.

Proof. From Proposition 2.12, any edge eP (s, t) of the k-set polygon must have

k − 1 points (the subset P ) on the right of (st). If vi is also on the right of (st),

then the edge eP (s, t) is not an edge of gk(Vi).

In the opposite case, if vi is on the left of (st) then, in this case eP (s, t) is an

edge of gk(Vi) because (st) still has k − 1 points on its right (from Proposition

2.12).

Lemma 3.6. (i) An edge eP (s, t) of g
k(Vi) is not an edge of gk(Vi−1) if and only

if vi ∈ P ∪ {s, t}.
(ii) gk(Vi) admits one and only one edge eP (s, t) that has s = vi (resp. t = vi).
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Proof. (i) Obviously, if vi ∈ P ∪ {s, t} then P ∪ {s, t} 6⊆ Vi−1 and eP (s, t) is not

an edge of gk(Vi−1). On the other hand, if vi /∈ P ∪ {s, t} then P ∪ {s, t} ⊆ Vi−1,

Vi−1 ∩ (s̊t)− = P and eP (s, t) is an edge of gk(Vi−1).

(ii) Since vi /∈ conv(Vi−1) and no three points of Vi are collinear, there is one

and only one point t of Vi−1 such that |(v̊it)+ ∩ Vi−1| = k − 1 (see Figure 3.2).

Thus, from Proposition 2.12, there is one and only one edge eP (s, t) of gk(Vi)

such that s = vi. In the same way there is one and only one edge of the form

eP (s, vi).

Figure 3.2: Illustration of the proof for Lemma 3.6

The new added point vi can be separated from Vi−1 by a straight line. There

exists another important property that relates this straight line to the k-set poly-

gon gk(Vi−1).

Lemma 3.7. (i) For any straight line ∆ that strictly separates vi from Vi−1 and

that is not parallel to any straight line passing through any two points of Vi−1,

there is a unique vertex g(Tmin) (resp. g(Tmax)) of gk(Vi−1) closest to (resp.

farthest from) ∆.

(ii) If |Vi−1| > k, at least one of the edges of gk(Vi−1) incident to g(Tmin)

(resp. g(Tmax)) is not (resp. is) an edge of gk(Vi).

Proof. (i) Let ∆ be oriented such that vi ∈ ∆−. Let ∆1 be a straight line parallel

to ∆, oriented in the same direction as ∆, and such that ∆1 ∩ Vi−1 = ∅ and

|∆−
1 ∩Vi−1| = k (see Figure 3.3). Let Tmin = ∆−

1 ∩Vi−1 and let ∆2 be the straight

line parallel to ∆1, passing through g(Tmin), and oriented in the same direction

as ∆1. For every subset T 6= Tmin of k points of Vi−1, at least one point of T

belongs to ∆̊+
1 and g(T ) belongs to ∆̊+

2 from Lemma 2.9. Thus g(Tmin) is the

point of gk(Vi−1) closest to ∆ and is unique.

Let ∆′
1 be an oriented straight line parallel to ∆ such that ∆′

1 ∩Vi−1 = ∅ and
|∆′+

1 ∩Vi−1| = k. Let Tmax = ∆′+
1 ∩Vi−1. In the same way, we can prove that the

point g(Tmax) of g
k(Vi−1) is farthest from ∆ and is unique.
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Figure 3.3: Illustration of Lemma’s 3.7 proof with k = 8

(ii) Let ePj
(sj, tj) and ePj+1

(sj+1, tj+1) be the two edges of gk(Vi−1) with end-

point g(Tmin) such that Pj ∪ {tj} = Pj+1 ∪ {sj+1} = Tmin. Since {sj+1, tj} ⊆
Tmin ⊂ ∆−

1 , since {sj, tj+1} ⊆ S \ Tmin ⊂ ∆+
1 , and since sjtj ∩ sj+1tj+1 6= ∅

from Corollary 2.13, the straight line ∆3 parallel to ∆1, oriented in the same

direction as ∆1, and that passes through sjtj ∩ sj+1tj+1, is such that ∆−
3 ⊂

(sjtj)
− ∪ (sj+1tj+1)

− (see Figure 3.3). Since vi ∈ ∆− ⊂ ∆̊3
−
, it follows that vi

belongs to at least one of the half planes ( ˚sjtj)
− or ( ˚sj+1tj+1)

− and thus, from

Proposition 2.12, at least one of the edges ePj
(sj, tj) and ePj+1

(sj+1, tj+1) is not

an edge of gk(Vi).

In the same way, let eP ′

j
(s′j, t

′
j) and eP ′

j+1
(s′j+1, t

′
j+1) be the two edges of g

k(Vi−1)

with the endpoint g(Tmax) such that P ′
j ∪ {t′j} = P ′

j+1 ∪ {s′j+1} = Tmax. Let ∆′
3

be the straight line parallel to ∆ and with the same direction, passing through

s′jt
′
j ∩ s′j+1t

′
j+1. Since ∆′−

3 ⊂ (s′jt
′
j)

+ ∪ (s′j+1t
′
j+1)

+ and since vi ∈ ∆̊−
3 ⊂ ∆̊′−

3 , then

vi belongs to at least one of the half planes ( ˚s′jt
′
j)

+ or ( ˚s′j+1t
′
j+1)

+. Thus at least

one of the edges eP ′

j
(s′j, t

′
j) and eP ′

j+1
(s′j+1, t

′
j+1) is an edge of gk(Vi).

Now, we have proved the existence of at least one removed edge of gk(Vi−1),

and the existence of at least one new created edge to get gk(Vi). This makes it

possible for us, to characterize the newly created edges and the removed ones on

gk(Vi−1) to get gk(Vi).

For the next proposition, we will assume that |Vi−1| > k.

Proposition 3.8. (i) The edges of gk(Vi) that are not edges of gk(Vi−1) form an

open connected polygonal line with at least two edges, whose first (resp. last) edge

in counter clockwise direction is the unique edge of gk(Vi) of the form eP (s, t)

with t = vi (resp. s = vi).

(ii) The edges of gk(Vi−1) that are not edges of gk(Vi) form an open connected

and non empty polygonal line.
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Proof. From Lemma 3.6, the set C of edges of δ(gk(Vi)) that are not edges of

δ(gk(Vi−1)) admits at least two edges. Also from Lemma 3.7 there exists at least

one edge of δ(gk(Vi−1)) that is an edge of δ(gk(Vi)) too. Thus, C admits at least

one edge eP (s, t) whose first endpoint is a vertex of δ(gk(Vi−1)) (i.e. vi /∈ P ∪{s}).
Hence, from Lemma 3.6, t = vi and eP (s, t) is the only edge of δ(gk(Vi)) of the

form eP (s, vi). In the same way, there is a unique edge of C whose second endpoint

is a vertex of δ(gk(Vi−1)) and this edge is of the form eP (vi, t).

Since there is a unique edge of δ(gk(Vi)) that links, in the counter clockwise

direction, a vertex of δ(gk(Vi)) \ δ(gk(Vi−1)) to a vertex of δ(gk(Vi))∩ δ(gk(Vi−1))

and a unique edge of δ(gk(Vi)) that links a vertex of δ(gk(Vi)) ∩ δ(gk(Vi−1)) to a

vertex of δ(gk(Vi)) \ δ(gk(Vi−1)), it follows that every other edge of gk(Vi), either

links two vertices of δ(gk(Vi)) ∩ δ(gk(Vi−1)) between them, or links two vertices

of δ(gk(Vi)) \ δ(gk(Vi−1)) between them.

As a result, the edges of δ(gk(Vi)) \ δ(gk(Vi−1)) form a connected polygonal

line. Moreover, from Lemma 3.7 this polygonal line is connected. It follows that

the edges of δ(gk(Vi−1)) \ δ(gk(Vi)) form a connected polygonal line.

This proposition generalizes the Lemma 3.3 which corresponds to the case

k = 1.

For every k ∈ {1, ..., n− 1} and for every i ∈ {k + 1, ..., n}, let cki denote the

number of edges of gk(Vi) that are not edges of g
k(Vi−1), i.e. the number of edges

to create while constructing the k-set polygon of Vi = Vi−1 ∪ {vi} from the k-set

polygon of Vi−1. Since the number of edges of gk(Vk) is zero, ck =
∑n

i=k+1 c
k
i

is the total number of edges to be created by an algorithm that incrementally

constructs gk(V ) by successively determining gk(Vk), g
k(Vk+1), ..., g

k(Vn).

For every j ∈ {1, ..., n− 1}, the number of edges of the j-set-polygon of V is

equal to the number of its vertices and thus to the number γj(V ) of k-sets of V ,

from Proposition 2.11.

Proposition 3.9. c1 = 2(n−1) and ck= k(2n−k−1)−∑k−1
j=1 γ

j(V ) if 1 < k < n.

Proof. From Lemma 3.6, for every i ∈ {k + 1, ..., n}, gk(Vi) admits at least two

edges that are not edges of gk(Vi−1). These two edges are of the form eQ(vi, t)

and eP (s, vi). All other edges of gk(Vi) that are not edges of gk(Vi−1) are of the

form eP ′(s′, t′) with vi ∈ P ′. If k = 1, no such other edge exists since P = ∅.
Thus c1i = 2, for every i ∈ {2, ..., n}, and

c1 =
n

∑

i=2

c1i = 2(n− 1) .
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If k ∈ {2, ..., n− 1}, from Lemma 3.5, eP ′(s′, t′) is an edge of gk(Vi) with vi ∈ P ′

if and only if eP ′\{vi}(s
′, t′) is an edge of gk−1(Vi−1) and is not an edge of gk−1(Vi).

Thus, denoting by dk−1
i the number of edges of gk−1(Vi−1) that are not edges of

gk−1(Vi), we have cki = 2 + dk−1
i . It follows that

ck =
n

∑

i=k+1

cki = 2(n− k) +
n

∑

i=k+1

dk−1
i .

Now, since the number of edges of gk−1(Vk−1) is zero, we have dk−1
k = 0 and

∑n
i=k+1 d

k−1
i is the total number of edges to be deleted by an algorithm that in-

crementally constructs gk−1(V ) by successively determining gk−1(Vk−1), g
k−1(Vk),

... , gk−1(Vn). And since γk−1(V ) is equal to the total number of created edges

minus the number of the removed ones:

n
∑

i=k+1

dk−1
i = ck−1 − γk−1(V )

and

ck = 2(n− k) + ck−1 − γk−1(V ) .

Solving this induction relation, the following is obtained

ck = (k − 1)(2n− k − 2) + c1 −
k−1
∑

j=1

γj(V ) = k(2n− k − 1)−
k−1
∑

j=1

γj(V ) .

This proposition shows that the number of edges that have to be created

for the incremental construction of a k-set polygon -provided that every new

inserted point does not belong to the convex hull of the previously inserted ones-

does not depend on the order in which the points are treated. In addition, since
∑k−1

j=1 γ
j(V ) is the number of (≤ (k−1))-sets of V and since this number is known

to be bounded by (k − 1)n (see [Pec85]), it follows that:

Corollary 3.10. Any algorithm that incrementally constructs the k-set polygon

of n points, so that no point belongs to the convex hull of the points inserted before

him, has to create Ω(k(n− k)) edges.

The set of k-sets of Vk, Vk+1, . . . , Vn is called the set of k-sets of the convex

inclusion chain (v1, . . . , vn) of V . Note that Vk is the unique k-set of Vk and since

vk+1 /∈ conv(Vk) when k < n, Vk is also a k-set of Vk+1.

Lemma 3.11. T is a k-set of the convex inclusion chain (v1, . . . , vn) if and only

if there exists an integer i ∈ {k, . . . , n} such that g(T ) is a vertex of gk(Vi).

Moreover, if T ′ is a k-set of (v1, . . . , vn) distinct from T then g(T ) 6= g(T ′).
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Proof. By definition, T is a k-set of (v1, . . . , vn) if and only if there exists an

integer i ∈ {k, . . . , n} such that T is a k-set of Vi, that is, from Proposition 2.11,

if and only if g(T ) is a vertex of gk(Vi).

If T ′ is a k-set of (v1, . . . , vn) distinct from T , there exists an integer j ∈
{k, . . . , n} such that T ′ is a k-set of Vj, that is g(T ′) is a vertex of gk(Vj). We

can suppose, without loss of generality, that j ≥ i and in this case T ⊆ Vj. If T

is a k-set of Vj, g(T ) is a vertex of gk(Vj) distinct from g(T ′), from Proposition

2.11. Otherwise, from the same proposition, g(T ) is not a vertex of gk(Vj) and is

also distinct from g(T ′).

Using the previous results, it is easy to find the number of k-sets of a convex

inclusion chain of V :

Theorem 3.12. Any convex inclusion chain of a planar set V of n points admits

2kn− n− k2 + 1−∑k−1
j=1 γ

j(V ) k-sets (with
∑0

1 = 0).

Proof. From Lemma 3.11, the number of k-sets of a convex inclusion chain

(v1, . . . , vn) of V is equal to the number of distinct k-set polygon vertices cre-

ated by an incremental algorithm that successively constructs gk(Vk+1), ... ,

gk(Vn). The number of vertices of gk(Vk+1) is equal to the number ckk+1 of its

edges. Moreover, from proposition 3.8, for every i ∈ {k + 2, ..., n}, the edges

of gk(Vi) that are not edges of gk(Vi−1) form an open connected and non empty

polygonal line. Thus, the number of vertices of this line that are not vertices of

gk(Vi−1) is c
k
i − 1, where cki is the number of edges of the line. It follows that the

number of k-sets of V is ckk+1 +
∑n

i=k+2 (c
k
i − 1), that is, from Proposition 3.9,

2kn− n− k2 + 1−∑k−1
j=1 γ

j(V ) since ck =
∑n

i=k+1 c
k
i .

According to this theorem, the number of k-sets of a convex inclusion chain

of a set V only depends on the set V and not on the chosen chain. An even more

intriguing consequence of the theorem arises from its connection with order-k

Voronoi diagrams. Actually, as we have seen in Chapter 2, the number of regions

in the order-k Voronoi diagram of V is also equal to 2kn−n−k2+1−∑k−1
j=1 γ

j(V ).

Since a subset of k points of V generates an order-k Voronoi region if and only if

it can be separated from the remaining points by a circle, it follows that:

Corollary 3.13. Given a set V of points in the plane, no three of them being

collinear and no four of them being co-circular, the number of k-sets of a convex

inclusion chain of V is equal to the number of subsets of k points of V that can

be separated from the remaining by a circle.

This result is very surprising since the set of k-sets of a convex inclusion chain

depends on the chosen chain. One might wonder if the subsets of k points of V
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separable from the rest by a circle are the k-sets of a particular convex inclusion

chain of V . In other words, does every set V have a convex inclusion chain whose

every k-set is separable from the rest of the points of V by a circle?

The following example proves that it is not always the case (see Figure. 3.4).

Figure 3.4: This point set admits no convex inclusion chain whose every 2-set

can be separated from the other points by a circle

Let V be a set of six points, five of them being the vertices of a regular

pentagon P and the sixth being placed in the center of the circle circumscribed

to P . We can slightly move the vertices of P so that we do not have more than

three co-circular vertices.

By definition, the last element of every convex inclusion chain V of V is a

vertex of conv(V ), that is, a vertex s of P . The two neighbors r and t of s on P
form then an edge of conv(V \ {s}) and, therefore, a 2-set of V \ {s}. The set

{r, t} is then a 2-set of V but it is not separable from V by a circle. It results

that V has no convex inclusion chain whose every 2-set is separable from the rest

of points of V by a circle.

In chapter 6, we will try to explain the result of Corollary 3.13, by estab-

lishing other links between k-sets of convex inclusion chains and order-k Voronoi

diagrams.
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Chapter 4

Incremental construction

algorithm

4.1 Introduction

The incremental construction of the convex hull of a set of points in the plane is a

simple algorithm which seems to have existed long time before it was mentioned

by Preparata and Shamos [PS85] and by Kallay [Kal84] where it was generalized

to higher dimensions.

In [Mel87], Melkman showed that the convex hull of a simple polygonal line

can be constructed on-line in linear time. In this chapter we give an on-line

algorithm that incrementally constructs the k-set polygon of a special convex

inclusion chain that is also a simple polygonal line.

This chapter starts by illustrating the idea of the algorithm for the special case

k = 1 where the k-set polygon is the convex hull. This algorithm is a particular

case of Melkman’s algorithm.

Later on, the algorithm is generalized for the case k ≥ 1. The results obtained

in the previous chapter are going to be used to compute the complexity of the

algorithm.

4.2 Convex hull of a special convex inclusion

chain

We first give an incremental convex hull construction algorithm for a special

convex inclusion chain (v1, . . . , vn) of V that is also a simple polygonal line.

There are two steps involving the update of the convex hull of the set Vi−1 =

{v1, . . . , vi−1} to get the convex hull of the set Vi = Vi−1 ∪ {vi}. The first step is
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about finding the two extrema vertices on δ(conv(Vi−1)), the first extremum in the

clockwise direction and the other extremum in the counter clockwise direction.

In the second step, we connect the point vi to both extrema via two edges.

Since the edges to remove from δ(conv(Vi−1)) form a connected polygonal line,

it suffices to find one vertex of the edges to remove. Once such a vertex is found

we iterate through the edges that have the point vi on their right and remove

them.

To find a first vertex, we prove that the vertex vi−1 is actually a vertex on the

removed polygonal line.

Lemma 4.1. If i ≥ 3, the vertex vi−1 of conv(Vi−1) and at least one edge of

conv(Vi−1) incident in vi−1 are visible from the point vi.

Proof. Suppose that the line segment vi−1vi cuts an edge vsvt of conv(Vi−1). Then,

the point vi−1, which is also a vertex of conv(Vi−1), is not visible from vi and,

therefore, it is also a vertex of conv(Vi). Since vi is also a vertex of conv(Vi) and

since the part of the polygonal line (v1, . . . , vi) between the two vertices vs and vt

lies inside conv(Vi−1) then, vi−1vi cuts necessarily an edge of the polygonal line

but this is impossible. This means that vi−1 is visible from vi and it is the same

for at least one edge of conv(Vi−1) incident in vi−1.

This means that we can find a first vertex on the polygonal line to remove

in constant time. This also implies that we can find the whole polygonal line to

remove in a time proportional to the number of edges to remove on δ(conv(Vi−1)).

Thus the algorithm:
� �

function c on s t ru c t c onvex hu l l (v1, . . . , vn )

{
cons t ruc t the convex hu l l o f V2 ;

for ( i = 3 to n )

{
Remove a l l the edges o f conv(Vi−1) v i s i b l e from vi s t a r t i n g

by the edges i n c i d en t i n the po int vi−1 ;

Link vi t o the endpoints o f the remaining po lygona l l i n e ;

}
return the convex hu l l ;

}
� �

Theorem 4.2. The algorithm that constructs incrementally the convex hull of

a convex inclusion chain that is also a simple polygonal line, performs in O(n)

time.

44



Proof. Finding the polygonal line to remove once vi is added, requires iterating

through the edges of conv(Vi−1) and testing them against vi, starting from the

edges incident in vi−1. This is done in two steps: In the first step we start looking

for the edges that have the point vi on their right, in the counter clockwise

direction, and in the second one, we restart the same process from vi−1 in the

clockwise direction this time. These two steps require a time proportional to the

the total number of edges to remove. However, we cannot remove more edges

than we can create. Since we create exactly two edges at each step, the total

running time of the algorithm is O(n).

Remark 4.3. If we want to generalize the algorithm in the case where Vn is a

convex inclusion chain without being a simple polygonal line, we cannot find a

first vertex visible from the point vi in constant time.

4.3 Incremental construction of k-sets

In this section we further study the edges to remove and create to update the

k-set polygon when a new point is added outside the convex hull of the current

set of points.

To this aim, we need to generalize the notion of separability.

Given an oriented straight line ∆ and a set V , we say that a set T is ∆-

separable from V if T is a subset of V such that ∆̊− ∩ V = T . Moreover, T is

said to be //∆-separable from V if there exists a straight line ∆′, parallel to ∆

and oriented as ∆, such that T is ∆′-separable from V .

For the sake of simplicity we say that a vertex of a convex polygon P is ∆-

separable (resp. //∆-separable) from P if it is ∆-separable (resp. //∆-separable)

from the vertices of P .
Let (v1, . . . , vn) be a convex inclusion chain of V and, for all i ∈ {1, . . . , n} let

Vi = {v1, . . . , vi}. For all i ∈ {k + 2, . . . , n}, we will note by Di the set of edges

of gk(Vi−1) that are not edges of gk(Vi), and by Ci the set of edges of gk(Vi) that

are not edges of gk(Vi−1). Di and Ci are actually polygonal lines from Proposition

3.8. In the particular case i = k + 1, Di is reduced to the centroid gk(Vk) and Ci
is the whole boundary of gk(Vk+1).

Also we note by T1, . . . , Tm the k-sets of Vi−1 such that (g(T1), . . . , g(Tm)) is

the sequence of vertices of Di in the counter clockwise direction (see Figure 4.1).

For every vertex g(Tj) of Di, let Ci,j be the set:

• of vertices g(T ) of Ci such that g(T ) and g(Tj) are respectively //∆-separable

from gk(Vi) and from gk(Vi−1), for some straight line ∆ (see Figure 4.2 and

4.3)
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Figure 4.1: The polygonal line Di to remove from g4(Vi−1) and the polygonal line

to create Ci when building g4(Vi), once the point vi is added to g4(Vi−1).

• and of edges of Ci that connect these vertices (see Figure 4.2).

Figure 4.2: g(Tj) and g(T ) are //∆-separable from g4(Vi−1) and g
4(Vi) respectively.

Lemma 4.4. For every j ∈ {1, . . . ,m}, Ci,j is a connected polygonal line.
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Figure 4.3: The part Ci,j of Ci associated with the vertex g(Tj) of Di.

Proof. (i) If gk(Vi−1) is not reduced to the single vertex g(Tj), let ∆j and ∆j+1 be

the two oriented straight lines that support the two edges respectively entering

and leaving g(Tj). The oriented straight lines ∆ for which g(Tj) is ∆-separable

from gk(Vi−1) are the ones that cut the open edges of gk(Vi−1) incident in g(Tj)

and such that g(Tj) ∈ ∆−. Hence, g(Tj) is //∆-separable from gk(Vi−1) if and

only if 0 < ∡(∆j,∆) < ∡(∆j,∆j+1). Since the vertices of Ci,j are the vertices of

the convex polygonal line Ci that are //∆-separable from gk(Vi), for these same

oriented straight lines ∆, it results that Ci,j is a connected part of Ci.
(ii) If gk(Vi−1) is reduced to the single vertex g(Tj), this vertex is //∆-separable

from gk(Vi−1) no matter how ∆ is positionned in the plane. It results that Ci,j =
Ci = δ(gk(Vi)) is connected.

Lemma 4.5. If Ci,j is oriented in the counter clockwise direction on Ci then:
(i) g(T1) is the first vertex of Ci,1,
(ii) g(Tm) is the last vertex of Ci,m,
(iii) for every j ∈ {2, . . . ,m}, if ePj

(sj, tj) is the edge of Di that links g(Tj−1)

and g(Tj), then g(Pj ∪ {vi}) is the last vertex of Ci,j−1 and the first vertex of Ci,j.

Proof. (i) Since g(T1) is a vertex of gk(Vi), there exists an oriented straight line

∆ such that g(T1) is ∆-separable from gk(Vi). Since T1 ⊆ Vi−1 ⊂ Vi, g(T1) is

also ∆-separable from gk(Vi−1). It results that g(T1) is a vertex of Ci,1 and, since

g(T1) is the first vertex of Ci, it is also the first vertex of Ci,1.
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(ii) In the same way, there exists an oriented straight line ∆ such that g(Tm)

is ∆-separable from gk(Vi) and from gk(Vi−1). g(Tm) is then the last vertex of

Ci,m.
(iii) Since ePj

(sj, tj) is an edge of Di, vi ∈ ( ˚sjtj)
−, from Lemma 3.5. It results

that Pj ∪ {vi} is (sjtj)-separable from Vi and thus g(Pj ∪ {vi}) is a vertex of Ci.
Since Vi is finite, Pj∪{vi} is also //∆-separable from Vi for every oriented straight

line ∆ such that the angle ∡((sjtj),∆) tends toward 0. From the Proposition 2.11,

g(Pj ∪ {vi}) is also //∆-separable from gk(Vi). Now, for such oriented straight

lines ∆ with ∡((sjtj),∆) > 0, g(Pj∪{tj}) = g(Tj) is //∆-separable from gk(Vi−1),

since (sjtj) is parallel to ePj
(sj, tj). It results that g(Pj ∪ {vi}) is a vertex of Ci,j.

Moreover, since all oriented straight lines ∆′ such that g(Tj) is //∆′-separable

from gk(Vi−1) are such that ∡((sjtj),∆
′) > 0, g(Pj ∪ {vi}) is the first vertex of

Ci,j.
In the same way, g(Pj ∪ {vi}) and g(Tj−1) = g(Pj ∪ {sj}) are //∆-separable

from gk(Vi) and gk(Vi−1) respectively when ∡((sjtj),∆) < 0. It results that

g(Pj ∪ {vi}) is also the last vertex of Ci,j−1 (see Figure 4.4).

Figure 4.4: Ci is the sequence of polygonal lines Ci,1, Ci,2, Ci,3, Ci,4

Corollary 4.6. Ci is the sequence of polygonal lines Ci,1, . . . , Ci,m, which do not

overlap (except at their endpoints).

Before proceeding on how to obtain Ci, we need the following technical lemma:
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Lemma 4.7. Let U and W be two subsets of points strictly separable from each

other by a straight line and let (uw) and (u′w′) be the two inner bi-tangents

of conv(U) and conv(W ), such that u and u′ are in U , and that the angle

∡((uw), (w′u′)) between the two oriented straight lines (uw) and (w′u′) is pos-

itive. If w 6= w′, for every edge wiwi+1 of conv(W ) between w and w′ in counter

clockwise direction, U ⊂ ( ˚wiwi+1)
−.

Proof. (i) Since no three points are collinear, all the points ofW belong to (uw)−

and (u′w′)+, and all the points of U belong to (uw)+ and (u′w′)−. The intersection

point c of (uw) and (u′w′) belongs then to the line segments uw and u′w′. Let

(w1, w2, . . . , wm) be the polygonal line extracted from δ(conv(W )) between the

points w1 = w and wm = w′ in the counter clockwise direction (see Figure 4.5).

When m = 2, c and all the other points of U are then on the right of the

oritented straight line w1w2 = ww′.

(ii) Let us show now, that for m > 2, for every i ∈ {2, . . . ,m−1}, the point wi

is inside the triangle cw1wm. From (i), wi is on the right of (cw1) and on the left

of (cwm). Moreover, since w1 = w and wm = w′ are extremal vertices of conv(W ),

w1w2, . . . , wm is the boundary of the convex hull of conv(W ) ∩ (w1wm)
−. wi is

then on the right of (w1wm). This shows that wi is inside cw1wm.

(iii) For all i ∈ {2, . . . ,m − 2}, the edge (wiwi+1) of conv(W ) is such that

w1 and wm are on the left of (wiwi+1). It results from (ii) that the straight line

(wiwi+1) cuts each of the segments cw1 and cwm. Moreover, this is also true for

i = 1 and for i = m − 1. It results that, for each i ∈ {1, . . . ,m − 1}, c and the

vertices of U are on the right of wiwi+1.

Figure 4.5: The edges wiwi+1 have the points of U on their right side.

49



Lemma 4.8. Let |Vi−1| > k and let ePj
(sj, tj) and ePj+1

(sj+1, tj+1) be the edges

of gk(Vi−1) that respectively enters and leaves the vertex g(Tj) of Di.

(i) The first and the last vertices of Ci,j are the respective images by an homo-

thety Hj of center g(Tj ∪ {vi}) and of ratio −1/k of the following two vertices of

conv(Tj ∪ {vi}):

• vi and sj+1 when j = 1,

• tj and sj+1 when j ∈ {2, . . . ,m− 1},

• tj and vi when j = m.

(ii) If Ci,j is not reduced to a unique point, Ci,j is the image by Hj of the part

of δ(conv(Tj ∪ {vi})) that links these two vertices in counter clockwise direction.

Proof. (i.1) Since, by the definition of a convex inclusion chain, vi is separable

from Vi−1 by a straight line, vi is a vertex of conv(Tj∪{vi}), for all j ∈ {1, . . . ,m}.
Now, vi is also the image of g(T1) by the homothety H

−1
1 of center g(T1 ∪ {vi})

and of ratio −k and is also the image of g(Tm) by the homothety H −1
m .

From Lemma 4.5, vi is then the image of the first vertex of Ci,1 by the homo-

thety H
−1
1 and the image of the last vertex of Ci,m by the homothety H −1

m of

center g(Tm ∪ {vi}) and ratio −k.
(i.2) From Proposition 2.12, Tj = Pj ∪ {tj} ⊂ (sjtj)

− and, since for every

j ∈ {2, . . . ,m} ePj
(sj, tj) is not an edge of gk(Vi), vi ∈ ( ˚sjtj)

− from Lemma 3.6.

It results that tj is a vertex of conv(Tj ∪ {vi}), for every j ∈ {2, ...,m}. Now, tj
is also the image of g((Tj ∪ {vi}) \ {tj}) = g(Pj ∪ {vi}) by the homothety H

−1
j

of center g(Tj ∪ {vi}) and ratio −k. Moreover, from Lemma 4.5, g(Pj ∪ {vi}) is
the first vertex of Ci,j.

(i.3) In the same way, for every j ∈ {1, . . . ,m − 1}, Tj = Pj+1 ∪ {sj+1} ⊂
(sj+1tj+1)

− and, since ePj+1
(sj+1, tj+1) is not an edge of gk(Vi), vi ∈ ( ˚sj+1, tj+1)

−.

sj+1 is then a vertex of conv(Tj ∪ {vi}), for every j ∈ {1, . . . ,m− 1}. Now, sj+1

is also the image of g((Tj ∪ {vi}) \ {sj+1}) = g(Pj+1 ∪ {vi}) by the homothety

H
−1
j of center g(Tj ∪{vi}) and ratio −k. Hence, g(Pj+1 ∪{vi}) is the last vertex

of Ci,j.
(ii.1) Let us study first the case where j ∈ {2, . . . ,m − 1} (see Figure 4.7).

Ci,j is not reduced to a single point and from Proposition 3.8 it is not equal

to the whole boundary of gk(Vi). Hence the endpoints of Ci,j are distinct, i.e.

g((Tj \ {tj}) ∪ {vi}) is distinct from g((Tj \ {sj+1}) ∪ {vi}), and so tj 6= sj+1.

Moreover, from (i.2) and (i.3), Tj ∪ {vi} ⊂ (sjtj)
− ∩ (sj+1tj+1)

− and, from

Proposition 2.12, Vi \ Tj ⊂ (sjtj)
+ ∩ (sj+1tj+1)

+. (sjtj) and (sj+1tj+1) are then

two inner bi-tangents of conv(Tj ∪ {vi}) and conv(Vi−1 \ Tj). Furthermore, since
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{tj, sj+1} ⊆ Tj and since ∡((sjtj), (sj+1tj+1)) > 0, the edges of conv(Tj ∪ {vi})
between tj and sj+1 in counter clockwise direction have all the points of Vi−1 \ Tj
on their right, from Lemma 4.7. For such an oriented edge qq′ of conv(Tj ∪ {vi})
we then have (Tj∪{vi})\{q, q′} ⊂ (q̊q′)+ and Vj−1\Tj ⊂ (q̊q′)−. From Proposition

2.12, it results that e(Tj∪{vi})\{q,q′}(q
′, q) is an edge of gk(Vi) and this edge belongs

to Ci, from Lemma 3.6. Moreover, 0 < ∡((sjtj), (q
′q)) < ∡((sjtj), (sj+1tj+1)) and

since the edge e(Tj∪{vi})\{q′,q}(q
′, q) is parallel to (q′q), it results that this edge

links two vertices of Ci,j and is thus an edge of Ci,j. Since e(Tj∪{vi})\{q,q′}(q
′, q)

is the image of q′q by the homothety Hj, it follows that the image by H
−1
j of

the part of δ(conv(Tj ∪ {vi})) that links ti−1 to sj in counter clockwise direction,

is a subset of a polygonal line included in Ci,j. Now, from (i.2) and (i.3), this

polygonal line links both endpoints of Ci,j and thus is equal to Ci,j.
(ii.2) Let us discuss now, the case where j = 1 (see Figure 4.6). As in (ii.1),

from Proposition 2.12, T1 ⊂ (s1t1)
− ∩ (s2t2)

− and Vi−1 \ T1 ⊂ (s1t1)
+ ∩ (s2t2)

+.

Since eP1
(s1, t1) is an edge of gk(Vi−1) and of gk(Vi), vi ∈ ( ˚s1t1)

+ from Lemma

3.5. Thus, since conv(T1) ⊂ (s1t1)
− and t1 ∈ T1, t1 is a vertex of conv(T1) visible

from vi. Moreover, since eP2
(s2, t2) is not an edge of gk(Vi), vi ∈ ( ˚s2t2)

− from

Lemma 3.5. Thus, since conv(T1) ⊂ (s2t2)
− and since s2 ∈ T1, s2 is a vertex of

conv(T1 ∪ {vi}).
If t1 = s2, vis1 is necessarily an edge of conv(T1 ∪ {vi}). Since vi ∈ ( ˚s1t1)

+ ∩
( ˚s2t2)

−, we have 0 < ∡((s1t1), (s2vi)) < ∡((s1t1), (s2t2)). Thus, T1 ∪ {vi} ⊂
(vis2)

+ and Vi−1 \ T1 ⊂ ( ˚vis2)
−. It results that eT1\{s2}(s2, vi) is an edge of gk(Vi)

that belongs to Ci. From (i.1) and (i.3), its endpoints g(T1) and g((T1∪{vi})\{s2})
are also the endpoints of Ci,1 and are the images of vi and of s2 by H1.

If t1 6= s2, conv(T1 ∪ {vi}) admits necessarily an edge that links vi to a vertex

q of conv(T1) that is between t1 and s2 in counter clockwise direction (t1 and s2

included). Moreover, conv(T1 ∪ {vi}) ⊂ (viq)
+. Since t1 and s2 belong to T1 and

since vi ∈ ( ˚s1t1)
+ ∩ ( ˚s2t2)

−, it results that 0 < ∡((s1t1), (qvi)) < ∡((s1t1), (s2t2)).

Thus, Vi−1\T1 ⊂ (v̊iq)
− and eT\{q}(q, vi) is an edge of Ci. This edge is furthermore

the image by H1 of viq. Every other edge q′q′′ of conv(T1∪{vi}) bewteen vi and s2
in the counter clockwise direction is also an edge of conv(T1) and is between the

vertices t1 and s2 in counter clockwise direction. Now, since T1 ⊂ (s1t1)
−∩(s2t2)−

and since Vi−1 \T1 ⊂ (s1t1)
+ ∩ (s2t2)+, (s1t1) and (s2t2) are the inner bi-tangents

of conv(Tj) and conv(Vi−1 \ T1). Thus, the edges of conv(T1) between t1 and

s2 in counter clockwise direction, have all the points of Vi \ T1 on their right,

from Lemma 4.7. Hence, (T1 ∪ {vi}) \ {q′, q′′} ⊂ ( ˚q′q′′)+ and Vi−1 \ T1 ⊂ ( ˚q′q′′)−.

e(T1∪{vi})\{q′,q′′}(q
′′, q′) is then an edge of gk(Vi) and, as in (ii.1), this edge belongs

to Ci,1 and is an image of q′′q′ by the homothety H1. It results that the image

by H1 of the part of δ(conv(T1 ∪ {vi})) that links vi to s2 in counter clockwise
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direction is a polygonal line within Ci,1. Moreover, from (i.1) and (i.3), this

polygonal line links the endpoints of Ci,1 and is thus equal to Ci,1.
(ii.3) A symmetric proof, shows that, when j = m, Ci,m is the image by Hm of

the part of δ(conv(Tm ∪ {vi})) between tm and vi in counter clockwise direction

(see Figure 4.8).

Figure 4.6: Building eT1\{q}(q, vi)

Figure 4.7: Building e(Tj∪{vi})\{q,q′}(q
′, q)

Remark 4.9. Since ePj
(sj, tj) and ePj+1

(sj+1, tj+1) are edges of gk(Vi−1), then

sj+1 6= vi and tj 6= vi. It then results from Lemma 4.8 that Ci,1 and Ci,m are not

reduced to points. Now, from Proposition 3.8, the first edge and the last edge of

Ci are of the form eP (s, vi) and eP ′(vi, t
′) respectively. Hence, these two edges are

also the first edge of Ci,1 and the last edge of Ci,m respectively. All the other edges

of Ci,1 and Ci,m and all the edges of Ci,j, with j ∈ {2, . . . ,m− 1} are of the form

eP ′′(s′′, t′′), with vi ∈ P ′′.
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Figure 4.8: Building eTm\{q}(vi, q)

4.4 Incremental construction of k-sets of a spe-

cial convex inclusion chain

The results in the previous section are going to be used now to develop an in-

cremental construction algorithm of the k-set polygon of V . Actually, we will be

interested in the case where all the points of V are ordered as a convex inclusion

chain that is also a simple polygonal line.

4.4.1 Data structure

First the data structure to implement is described.

From Proposition 2.12, for every set S, two k-sets of S whose centers of gravity

define an edge of gk(S) differ from each other by one site. Assuming that we know

a k-set T of S and its center of gravity g(T ), we get to the next vertex g(T ′) of

gk(S) by simply replacing a point s of T by a point t to get T ′. Thus, it suffices

to know one k-set T , and the points s and t for each edge to be able to generate

all the k-sets of S while traversing the boundary of gk(S). Every edge eP (s, t) of

gk(S) can then be represented by the following data structure:
� �

structure edge

{
s , t ; // The po in t s s and t t h a t t o g e t h e r wi th P

// cha r a c t e r i z e eP (s, t) .

next , prev ; // The next and prev ious edges o f eP (s, t)

// on δ(gk(S))

}
� �

53



Lemma 4.8 proves that our algorithm will not only need the set of k-sets but

also their convex hulls. Moreover, we need to add and remove points from these

convex hulls while traversing the boundary of the k-set polygon.

To this purpose, we employ a data structure that allows dynamic convex hull

maintenance. Using results given by Overmars and van Leeuwen [OvL81] (see

also Overmars [Ove83]), this structure needs O(h) size to store the convex hull of

h points of the plane and allows to get the predecessor and the successor of any

edge in constant time. It can also be updated in O(log2 h) time after inserting or

deleting a point. Thus the data structure to store the k-set polygon.
� �

structure k se t po l ygon

{
CH ; // The convex h u l l o f a k−s e t T s t o r ed in a dynamic

// convex h u l l data s t r u c t u r e

e ; // The edge o f the k−s e t po lygon en t e r ing in g(T ) .

// This edge s e r v e s as f i r s t edge in the edge l i s t .

}
� �

Theorem 4.10. A k-set polygon with c edges can be stored in a data structure

of size O(c+ k).

Proof. The dynamic convex hull data structure of Overmars and van Leeuwen

[OvL81], needs only an O(k) space to store the convex hull of k points. Moreover,

the edge list requires O(c) space to store the c edges of the k-set polygon, thus

the total space needed to store the k-set polygon is in O(c+ k).

4.4.2 Constructing gk(Vk+1)

Let (v1, . . . , vn) be a convex inclusion chain of V that forms a simple polygonal

line. For all i ∈ {1, . . . , n}, let Vi = {v1, . . . , vi}. In the following, the k-set

polygon of Vi, will also be called the k-set polygon of (v1, . . . , vn).

Since the k-set polygon of a set of k-points is reduced to their center of gravity,

the first case where we need to construct a k-set polygon, is when we have a set

of k + 1 points.

Lemma 4.11. ts is a counter-clockwise oriented edge of conv(Vk+1) if and only if

eVk+1\{s,t}(s, t) is an edge of gk(Vk+1). Moreover, if eVk+1\{s′,t′}(s
′, t′) is the succes-

sor of eVk+1\{s,t}(s, t) on δ(g
k(Vk+1)), t

′s′ is the successor of ts on δ(conv(Vk+1)).

Proof. If ts is an edge of conv(Vk+1), all the points of Vk+1\{t, s} belong to (st)−.

From Proposition 2.12, eVk+1\{s,t}(s, t) is then an edge of gk(Vk+1). Conversely,
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from this same proposition, all the edges of gk(Vk+1) are of this form. In addition,

if eVk+1\{s′,t′}(s
′, t′) is the successor of eVk+1\{s,t}(s, t) on δ(g

k(Vk+1)), then (Vk+1 \
{s, t}) ∪ {t} = (Vk+1 \ {s′, t′}) ∪ {s′}, that is, s = t′. ts and t′s′ are therefore two

consecutive edges of conv(Vk+1).

It follows that constructing gk(Vk+1) comes to construct conv(Vk+1) and this

can be done with the algorithm described in Section 4.2. We also initialize the

dynamic convex hull data structure CH with the convex hull of the k-set Vk. The

first edge e is thus the edge eVk+1\{vk+1,t}(vk+1, t) that enters in g(Vk). Thus the

algorithm that initializes the k-set polygon data structure with gk(Vk+1):

� �

function k s e t po lygon : : i n i t i a l i z e (v1, . . . , vk+1 )

{
this = con s t ru c t c onvex hu l l (v1, . . . , vk+1 ) ;

// The k s e t p o l y g on data s t r u c t u r e i s i n i t i a l i z e d

// wi th the convex h u l l o f Vk+1 , the f i e l d e

// bee ing i n i t i a l i z e d wi th the edge o f t h i s

// convex h u l l en t e r ing in i t s r i gh tmos t v e r t e x vk+1

Let e′ = e ;

do {
swap (e′ . s , e′ . t ) ;

e′ = e′ . next ;

} while ( e′ 6= e ) ;

// e i s now the edge en t e r ing in the l e f tmo s t

// v e r t e x g(Vk) o f gk(Vk+1)

CH = dynamic convex hul l (Vk ) ;

}
� �

Proposition 4.12. The previous algorithm builds gk(Vk+1) in O(k log
2 k) time.

Proof. From Theorem 4.2, the function construct_convex_hull takes O(k) time

to build the convex hull of Vk+1. Next, the do-while loop traverses the at most

k+1 edges of conv(Vk+1). Finally, the dynamic convex hull data structure of the

k-points is constructed in O(k log2 k) time [OvL81]. Thus, the whole previous

algorithm runs in O(k log2 k) time.
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4.4.3 Finding an extremum of Di

Using Lemma 3.5, we can easily find the polygonal line of the edges to remove

once we add vi, provided that we have at least one edge e of Di.

Lemma 4.13. At least one edge of Ci−1 is an edge of Di.

Proof. Since (v1, . . . , vi) is a convex inclusion chain that is also a simple polygonal

line, vi−1 is a vertex of conv(Vi−1) and from Lemma 4.1, vi−1 is also visible from

vi. Thus, there exists an oriented straight line ∆ passing through vi−1, that is

not parallel to any straight line passing through any two points of Vi−1, and such

that conv(Vi−1) ⊂ ∆+ and vi ∈ ∆̊− (see Figure 4.9). Let ∆′ be a straight line

parallel to ∆, oriented in the same direction as ∆ and such that |∆̊′−∩Vi−1| = k.

Let V ′ = ∆̊′− ∩ Vi−1. Let (st) and (s′t′) be the oriented straight lines tangent to

both conv(V ′) and conv(Vi−1 \ V ′) such that {s′, t} ⊆ V ′, conv(V ′) ⊂ (st)−, and

conv(Vi−1 \ V ′) ⊂ (st)+ (resp. conv(V ′) ⊂ (s′t′)−, and conv(Vi−1 \ V ′) ⊂ (s′t′)+).

Thus, from Proposition 2.12 and Lemma 3.6, eV ′\{t}(s, t) and eV ′\{s′}(s
′, t′) are

edges of gk(Vi−1) that belong to Ci−1, since vi−1 ∈ V ′.

Since ∆̊′+ contains s and t′ and ∆̊′− contains s′ and t, ∆′ cuts all the straight

line segments st, s′t′, ss′ and tt′. Let p and p′ be the respective intersection points

of ∆′ with st and s′t′ and let c be the intersection point of st with s′t′. Since ∆′

cuts the edge ss′ of the triangle css′, it cuts exactly one of the edges cs and cs′ or

it contains c. Similarly ∆′ cuts exactly one of the edges ct and ct′ of the triangle

ctt′ or it contains c.

Assume that both edges eV ′\{t}(s, t) and eV ′\{s′}(s
′, t′) belong to gk(Vi). Thus,

by Lemma 3.5, vi belongs to (s̊t)+ ∩ (s̊′t′)+ and, since vi belongs also to ∆̊′−,

(s̊t)+ ∩ (s̊′t′)+ ∩ ∆̊′− 6= ∅. It follows that c belongs to ∆̊′− and that the points p

and p′ belong respectively to the straight line segments ct and ct′. Thus (s̊t)+ ∩
(s̊′t′)+ ∩ ∆̊′− is contained in the triangle cpp′. But conv(Vi−1) contains the points

c, p and p′ and hence the triangle cpp′ but this is impossible since vi does not

belong to conv(Vi−1). This proves that at least one of the edges eV ′\{t}(s, t) and

eV ′\{s′}(s
′, t′) of Ci−1 belongs to Di.

This lemma shows that it suffices to know one edge of Ci−1 to find and get

an edge of Di by only traversing the edges of Ci−1. Similarly to what we have

done in the previous subsection, after the insertion of every point vi−1, we store

in the first edge e of the current k-set polygon data structure the unique edge

of the polygonal line Ci−1 that is of the form eP (vi−1, t). The data structure

CH contains then the convex hull of P ∪ {t}. Note that, in the case where
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Figure 4.9: Illustration of the proof of Lemma 4.13 in the case where k = 4

i− 1 ≥ k + 2, eP (vi−1, t) and g(P ∪ {t}) are the last edge and the last vertex of

Ci−1 in the clockwise direction.

Let us suppose that for an integer i ∈ {k + 2, ..., n − 1}, we have a k-set

polygon data structure initialized in this way and that represents the boundary

of gk(Vi−1). To find an edge of Di, when inserting the point vi, it suffices then to

use the results of Lemma 3.5 which states that the edges of Di are the edges of

gk(Vi−1) of the form eP ′(s′, t′) with vi ∈ (s̊′t′)−.

This leads to the following algorithm that stores in CH the convex hull of T1,

where g(T1) is the first vertex of Di in the clockwise direction. The algorithm also

stores in e the edge of gk(Vi−1) entering in g(T1), i.e. the last edge of g
k(Vi−1) (in

the counter clockwise direction) that has not been removed.

� �

function k s e t po lygon : : f i nd conv t 1 (vi )

{
// f i nd an edge o f Di

while ( vi i s on the l e f t o f (e.s, e.t) )

{
CH . remove (e . t ) ;

CH . add (e . s ) ;

e = e . prev ;

}
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// f i nd conv(T1)

while ( vi i s on the r i g h t o f (e.s, e.t) )

{
CH . remove (e . t ) ;

CH . add (e . s ) ;

e = e . prev ;

}
}
� �

Denote now by |L| the number of edges of any polygonal line L.

Lemma 4.14. The function find_conv_t1 runs in O((|Ci−1|+ |Di|)log2k) time.

Proof. Since e is initialized with the last edge of Ci−1, from Lemma 4.13, the first

loop visits at most all the edges of Ci−1. The second loop visits at most all the

edges of Di.

Moreover, CH always contains the convex hull of k or k− 1 points. Thus the

insertion or removal of a point in CH is in O(log2 k). It results that the total

complexity of the function is in O((|Ci−1|+ |Di|)log2k) time.

4.4.4 Constructing Ci
From Corollary 4.6, building the polygonal line Ci comes down to building the

polygonal lines Ci,1, ..., Ci,m and to link them together in this order. From Lemma

4.8, each polygonal line Ci,j, can be obtained by extracting a boundary part of

the convex hull of Tj ∪ {vi}. Thus, once we have the k-set polygon of Vi−1 and

vi, the following algorithm can build the k-set polygon of Vi:

� �

function k s e t po lygon : : b u i l d c i (vi )

{
// b u i l d i n g conv(T1) in CH and s t o r i n g in e the edge o f

gk(Vi−1) en t e r ing in g(T1)

f i nd conv t 1 (vi ) ;

CH . add (vi ) ;

Let eD = e . next ; // f i r s t edge eP2
(s2, t2) o f Di

// cons t ruc t i on o f Ci,1
Let sj+1 = eD . s ;

1 . foreach ( edge qq′ between vi and sj+1 on CH i n counter

c l o ckw i s e d i r e c t i o n )
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{
Let enew be a new edge ;

enew . s = q′ ;

enew . t = q ;

enew . prev = e ;

eD . next = enew ;

eD = enew ;

}

CH . remove (sj+1 ) ;

Let tj = eD . t ;

CH . add (tj ) ; // CH = conv(Tj ∪ {vi})
eD = eD . next ; // eD = ePj+1

(sj+1, tj+1)

// cons t ruc t i on o f Ci,j , f o r a l l j ∈ {2, ...,m− 1} , i . e . wh i l e

ePj+1
(sj+1, tj+1) i s an edge o f Di

2 . while ( vi i s on the r i gh t o f (eD.s, eD.t) )

{
sj+1 = eD . s ;

i f ( sj+1 6= tj )

3 . foreach ( edge qq′ between tj and sj+1 on CH i n counter

c l o ckw i s e d i r e c t i o n )

{
Let enew be a new edge ;

enew . s = q′ ;

enew . t = q ;

enew . prev = e ;

eD . next = enew ;

eD = enew ;

}

CH . remove (sj+1 ) ;

tj = eD . t ;

CH . add (tj ) ;

eD = eD . next ;

}

// cons t ruc t i on o f Ci,m
4 . foreach ( edge qq′ between tj and vi on CH i n counter

c l o ckw i s e d i r e c t i o n )

{
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Let enew be a new edge ;

enew . s = q′ ;

enew . t = q ;

enew . prev = e ;

eD . next = enew ;

eD = enew ;

}

e . next = eD ;

eD . prev = e ;

CH . remove (vi ) ; // CH = conv(Tm)

}
� �

Notice that at the end of this algorithm CH contains the convex hull of Tm,

with g(Tm) the last point of Ci. Moreover, e is the edge of Ci entering g(Tm), i.e.,
the last edge of Ci.

Proposition 4.15. The previous function builds Ci in O((|Ci−1| + |Di|) log2 k +
|Ci|) time.

Proof. From Lemma 4.14, the complexity of find_conv_t1 is in O((|Ci−1| +
|Di|) log2 k).

Let us consider now the other instructions of the function. The number of

insertions and removals in CH is equal (within a margin of one) to the number

of visits in the loop 2. Since each insertion and removal is done in a convex hull

of k or k + 1 points, the total number of insertions and removals in CH is in

O(|Di| log2 k).
On each visit in one of the foreach loops 1, 3 and 4, a new edge of Ci is created.

The number of other instructions that we run in each of these loops is constant.

It results that the total complexity of the foreach loops 1, 3 and 4 is in O(|Ci|).
The total complexity of the function is then in O((|Ci−1|+ |Di|) log2 k + |Ci|)

time.

4.4.5 On-line algorithm

An on-line construction algorithm of the k-set polygon of the convex inclusion

chain (v1, . . . , vn) that is also a simple polygonal line requires the construction

of the k-set polygon of Vk+1 then adding the points vk+2, ..., vn one by one and

updating the k-set polygon after each insertion.
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� �

function k s e t po lygon : : bu i ld (v1, . . . , vn )

{
i n i t i a l i z e (v1, . . . , vk+1 ) ;

for ( i = k + 2 to n )

b u i l d c i (vi ) ;

}
� �

Theorem 4.16. The k-set polygon of a convex inclusion chain which is a simple

polygonal line can be constructed on-line in O(k(n− k) log2 k) time.

Proof. The k-set polygon of Vk+1 is constructed in O(k log2 k) time from Propo-

sition 4.12. From Proposition 4.15, gk(Vi) is computed from gk(Vi−1) in O((|Di|+
|Ci−1|) log2 k + |Ci|) time, for every i ∈ {k + 2, ..., n}.

It follows that the k-set polygon of Vn is constructed on-line in time

O(k log2 k +
n

∑

i=k+2

((|Di|+ |Ci−1|) log2 k + |Ci|)

As in Chapter 3, ck =
∑n

i=k+1 |Ci|, so we have

n
∑

i=k+2

((|Di|+ |Ci−1|) log2 k + |Ci|) ≤ 2ck log2 k + ck

since the total number
∑n

i=k+2 |Di| of removed edges is less than the total number

ck of created edges. From Proposition 3.9, ck is in O(k(n − k)). Thus the time

complexity of the algorithm is O(k(n− k) log2 k).

From Corollary 3.10, any algorithm that incrementally constructs the k-set

polygon of a set of n points, in such a way that every newly inserted point

is outside of the convex hull of the previously inserted ones, has to generate

Ω(k(n−k)) edges. It follows that the time complexity of our on-line algorithm is

O(log2 k) per edge that has to be created. In the introduction we have seen that

the algorithm of Cole, Sharir and Yap [CSY87] finds the set of k-sets of n points

in the plane in O(n log n+ c log2 k) time, where c is the number of k-sets of these

n points. The n log n factor comes from a preprocessing step that computes the

convex hull of n points. From theorem 4.2, this factor can be brought down to n

in the case of a convex inclusion chain that is also a simple polygonal line. Thus,

the algorithm of Cole, Sharir and Yap can build the k-set polygon of such a chain

in O(c log2 k) time, where c is the number of edges of the final k-set polygon. The

complexity of our algorithm per created edge is then the same as the one of the
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algorithm of Cole, Sharir and Yap. However, their algorithm can only be used

when the whole point set is known in advance. In this case their algorithm is

more interesting than ours as it creates less edges.
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Figure 4.10: Illustration of how the polygonal line part Ci,1 gets constructed: In

A, we start by taking the edges eP1
(s1, t1) and eP1

(s2, t2) incident in g(T1). In B,

we build the convex hull of T1 ∪ {vi}. In C, we take the edges of conv(T1 ∪ {vi})
between vi and s2 and finally in D we build their corresponding images by H1 to

get Ci,1
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Figure 4.11: Illustration of how the polygonal line part Ci,j gets constructed: In A,
we start by taking the edges ePj

(sj, tj) and ePj+1
(sj+1, tj+1) incident in g(Tj). In

B, we build the convex hull of Tj ∪{vi}. In C, we take the edges tju and usj+1 of

conv(Tj ∪{vi}) between tj and sj+1 and finally in D we build their corresponding

images eTj∪{vi}\{tj ,u}(tj, u) and eTj∪{vi}\{u,sj+1}(u, sj+1) by Hj to get Ci,j
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Chapter 5

Divide and conquer construction

of k-set polygons

5.1 Introduction

This chapter extends another classical convex hull construction method to the

k-set polygon, namely the divide and conquer method. The algorithm works

similarly in that it starts by dividing the set of points V recursively into subsets of

relatively equal size, then recursively constructs their k-set polygons, and merges

the polygons two by two.

We first recall how the merging works in the case of the convex hulls. The

algorithm presented here does not necessarily correspond to the usual way to

merge two convex hulls, but it allows introducing the method that will be used

later to construct a k-set polygon.

Afterwards, we characterize the merging of two k-set polygons. We show that,

as for convex hulls, the edges to remove form two connected polygonal lines. The

main difference with the convex hull construction comes from the fact that new

vertices have to be created when two k-set polygons are merged. We show that

these vertices can be obtained by considering k-set polygons of only 2k points.

This leads to an algorithm that constructs the k-set polygon of n points in

O(n log n+m log2 k log(n/k)) time, where m is the worst case size of the output.

5.2 Divide and conquer construction of the con-

vex hull

Let P be a convex polygon. By P (∩) we note the edges of P in the counter

clockwise direction going from the rightmost vertex of P to the leftmost vertex
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of P , and by P (∪) we note the edges of the convex hull in the counter clockwise

direction from the leftmost vertex of P to the rightmost vertex of P (see Figure

5.1).

Figure 5.1: The convex polygon P , the upper polygonal line P (∩), and the lower

polygonal line P (∪)

It is assumed in the whole chapter that no two points of V belong to a same

vertical line (the line can always be chosen in that way). Moreover, for the sake of

simplicity of the exposition, we suppose that no four distinct points of V belong

to two parallel lines.

We assume that the points of the set V are sorted according to their x-

coordinates in lexicographical order. We divide the set V into two different sets

Vl and Vr of relatively equal size, such that the x-coordinates of the points of

the set Vl are less than the x-coordinates of the points of Vr. Let π be a vertical

oriented straight line that separates the set Vl from the set Vr and such that

Vr ⊂ π̊− and Vl ⊂ π̊+ (see Figure 5.2).

Figure 5.2: The straight line π that separates the set Vl = {1, 2, 3, 4, 5, 6} from
the set Vr = {7, 8, 9, 10, 11, 12}
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We show now how to build conv(V = Vr∪Vl) from both conv(Vr) and conv(Vl),

assuming that conv(Vr) and conv(Vl) exist.

5.2.1 Edge removal

Similarly to what has been done previously in the case of the incremental con-

struction of conv(V ), the edges to remove from both conv(Vr) and conv(Vl) are

going to be characterized.

First we prove that:

Lemma 5.1. (i) If conv(Vl) and conv(Vr) are not reduced to single points, at

least one edge incident in the rightmost vertex of conv(Vl) and at least one edge

incident in the leftmost vertex of conv(Vr) are not edges of conv(Vl ∪ Vr).
(ii) The leftmost vertex of conv(Vl) and the rigthmost vertex of conv(Vr) are

vertices of conv(Vl ∪ Vr).

Proof. (i) Let st and s′t′ be the edges of conv(Vl) incident in the rightmost vertex

t = s′. Since conv(Vl) ⊂ π̊+ and conv(Vr) ⊂ π̊−, it follows that π̊− ⊂ (st)−∪(s′t′)−
and Vr ⊂ (st)− ∪ (s′t′)−. This means that at least one of the edges st or s′t′ has

a point of Vr on its right, thus at least one of these edges is not an edge of

conv(Vl ∪ Vr).
Symmetrically, at least one edge incident in the leftmost vertex of conv(Vr) is

not an edge of conv(Vl ∪ Vr).
(ii) Since the leftmost vertex of conv(Vl) is an extreme point of the set Vl∪Vr,

the leftmost vertex can be separated from the set Vl ∪ Vr by a straight line.

Thus, the leftmost vertex of conv(Vl) is a vertex of conv(Vl ∪ Vr). Similarly, the

rightmost vertex of conv(Vr) is an extreme point of Vl ∪ Vr, and thus is a vertex

of conv(Vl ∪ Vr).

Now we can characterize which edges to keep, and which ones to remove.

Lemma 5.2. Let st and s′t′ be two consecutive edges of conv(Vl)
(∩) in the counter-

clockwise direction, and let vr be a point of Vr.

If vr ∈ (s′t′)− then vr ∈ (st)−, that is, if vr ∈ (st)+ then vr ∈ (s′t′)+.

Proof. Since (s′t′)− ∩ π̊− ⊂ (st)− ∩ π̊− and since vr ∈ π̊− ∩ (s′t′)− then vr ∈ (st)−

(see Figure 5.3).

Similar results also hold for conv(Vr)
(∩), conv(Vl)

(∪), and conv(Vr)
(∪). With

these results we can finally prove that:
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Figure 5.3: Since vr is on the right of (s′t′) and of π it is also on the right of (st).

Proposition 5.3. The edges of conv(Vl)
(∩) (resp. conv(Vr)

(∩)) that are not edges

of conv(Vl∪Vr) form a connected polygonal line that contains the rightmost (resp.

leftmost) vertex of Vl (resp. Vr).

Proof. (i) From Lemma 5.2 if an edge of conv(Vl)
(∩) has a point of Vr on its right

side, its predecessor edge in counter clockwise direction also has this point on its

right side. Recursively, the predecessor of the predecessor also has this point on

its right side and so on till we reach the edge incident in the rightmost vertex

of conv(Vl)
(∩). This implies that the edges of conv(Vl)

(∩) that are not edges of

conv(Vl ∪ Vr) form a connected polygonal line starting from the rightmost vertex

of conv(Vl).

(ii) Symmetrically, the edges of conv(Vr)
(∩) that are not edges of conv(Vl∪Vr)

form a connected polygonal line that contains the leftmost vertex of conv(Vr).

Lemma 5.4. An edge st of conv(Vl)
(∩) is also an edge of conv(Vl ∪ Vr) if and

only if the vertex vr of conv(Vr) that is //(st)-separable from Vr belongs to (s̊t)+.

Proof. Let ∆ be a straight line parallel to st, in the same direction as st and that

separates the vertex vr of conv(Vr) from the rest of the points of Vr.

(i) If vr ∈ (s̊t)+ then ∆ ⊂ (s̊t)+ and thus, Vr ⊂ (s̊t)+. It follows that st is an

edge of conv(Vr ∪ Vl) since all the points of Vr are on the left of st.

(ii) Obviously, if vr ∈ (s̊t)− then st is not an edge of conv(Vr ∪ Vl) since the

edge st has a point on its right.

So now, finding the edges to remove on conv(Vl)
(∩) comes down to finding the

first edge of conv(Vl)
(∩) (in counter clockwise direction) that satisfies the previous

property.

Obviously, an edge st precedes an edge s′t′ in counter clockwise direction on

conv(V )(∩) if and only if the angle θ(st) of the oriented line (st) with the x-axis
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(oriented from left to right) is smaller than the angle θ(s′t′) of (s′t′) with the

x-axis.

The three following notations will be equivalent: θ(st) < θ(s′t′), (st) <
θ
(s′t′),

and st <
θ
s′t′.

Given a straight line ∆, we can easily find whether a vertex v of conv(V ) is

//∆-separable from V using the following straightforward lemma:

Lemma 5.5. If the convex hull conv(V ) is not reduced to a unique vertex, let

v0, . . . , vm be the vertices of conv(V )(∩), given in counter clockwise direction. Let

∆ be an oriented straight line with θ(∆) ∈ [π/2, 3π/2]. vi is //∆-separable from

V if and only if,

- either i = 0 and ∆ <
θ
(v0v1),

- either i ∈ {1, . . . ,m− 1} and (vi−1vi) <θ
∆ <

θ
(vivi+1),

- or i = m and (vm−1vm) <θ
∆.

To avoid dealing with i = 0 and i = m as special cases, we only have to add

two anchor-edges to conv(V )(∩). Both edges are vertical, with one ending at the

leftmost vertex of conv(V )(∩) and oriented in the negative y-direction and the

other ending at the rightmost vertex of conv(V )(∩) and oriented in the positive

y-direction.

Armed with these results we can easily conceive an algorithm that finds the

first edge to keep on conv(Vl)
(∩). We start by testing the edge sltl incident in the

rightmost vertex of conv(Vl)
(∩) against the leftmost vertex t of conv(Vr)

(∩). If t is

on the left of (sltl), then from Lemma 5.2, it is also on the left of all the successors

of sltl, so the next vertex to test is the vertex that precedes t on conv(Vr)
(∩). If t

is on the right of (sltl) then we advance to the successor of sltl to test it against t.

We repeat these steps till we meet the first couple (sltl, tr) such that tr is on the

left of (sltl) and srtr <θ
sltl, with srtr the edge of conv(Vr)

(∩) ending at tr. sltl

is then the first edge of conv(Vl)
(∩) (in counter clockwise direction) that is not

to be removed. Indeed, by construction, every edge preceding sltl is invalidated

by a vertex of conv(Vr)
(∩). Moreover, if srtr <θ

sltl, the vertex vr of conv(Vr)
(∩)

that is //(sltl)-separable from Vr, follows sr on conv(Vr)
(∩), from Lemma 5.5. By

construction, vr is then on the left of an edge of conv(Vl)
(∩) preceding tl. From

Lemma 5.2, vr is also on the left of (sltl) and from Lemma 5.4, sltl has not to

be removed. Note that the algorithm stops at the latest when sltl or srtr is an

anchor-edge.

Finally the algorithm:
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� �

function f i n d u p p e r l e f t (conv(Vl) , conv(Vr))

{
Let sltl be the edge s t a r t i n g at the r ightmost ver tex o f

conv(Vl)
(∩) ;

Let srtr be the edge ending at the l e f tmos t ver tex o f

conv(Vr)
(∩) ;

1 . while ( tr ∈ (sltl)
− )

{
sltl ← s u c c e s s o r o f sltl on conv(Vl)

(∩) ;

}

2 . while ( sltl <θ
srtr )

{
srtr ← predec e s s o r o f srtr on conv(Vr)

(∩) ;

3 . while ( tr ∈ (sltl)
− )

{
sltl ← s u c c e s s o r o f sltl on conv(Vl)

(∩) ;

}
}

return sltl ;

}
� �

Proposition 5.6. Within a margin of two, only edges to remove are traversed

by the algorithm.

Proof. As already noted, all the edges traversed on conv(Vl)
(∩), except the last

one, have to be removed.

Moreover, by construction, for every edge srtr of conv(Vr)
(∩) traversed by the

algorithm, except for the last one, there exists an edge sltl of conv(Vl)
(∩) such that

sltl <θ
srtr (loop (2) condition) and tr ∈ (s̊ltl)

+ (loops (1) and (3) conditions).

Furthermore, since tr ∈ π̊−, (sltl)∩π̊+ ⊂ ( ˚srtr)
−, and since {sl, tl} ⊂ π̊+, {sl, tl} ⊂

( ˚srtr)
−. Hence, srtr is not an edge of conv(Vl ∪ Vr) and, within a margin of one,

only edges to remove are traversed on conv(Vr)
(∩).

Obviously, the edges to remove on conv(Vr)
(∩), conv(Vl)

(∪), and conv(Vr)
(∪)

can be found in the same way.
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5.2.2 Edge construction

Now that we know what edges to remove on conv(Vl) and conv(Vr) we can try

joining the remaining polygonal lines to form conv(Vl ∪ Vr).
In the previous section we found the polygonal lines to keep on both conv(Vl)

and conv(Vr). Moreover, we showed that the remaining polygonal line on conv(Vl)

is connected and so is the case for the remaining polygonal line on conv(Vr). All

the other edges were to remove. Thus, the vertices of the convex hull conv(Vl∪Vr)
are the vertices of the remaining polygonal lines on conv(Vl) and conv(Vr).

Let l0, l1, . . . lm be the set of the vertices on the remaining polygonal line of

conv(Vl) in the counter clockwise direction and let r0, r1, . . . rm′ be the set of

the vertices on the remaining polygonal line of conv(Vr) in the counter clockwise

direction as well. Since r0 ∈ (lm−1lm)
+ and lm ∈ (r0r1)

+, lm−1lm <
θ
lmr0 <θ

r0r1

and conv(Vl) ∪ conv(Vr) ⊂ (lmr0)
+. lmr0 is then an edge of conv(Vl ∪ Vr). In

the same way, rm′l0 is an edge of conv(Vl ∪ Vr) (see Figure 5.4). Finally we can

deduce the following Lemma:

Lemma 5.7. Joining the remaining edges on conv(Vl) and conv(Vr) to create

conv(Vl ∪ Vr) requires the creation of 2 edges only.

Figure 5.4: Joining conv(Vl) and conv(Vr) to get conv(Vl ∪ Vr).

5.2.3 Construction of conv(V )

The properties and algorithms given previously can be exploited to create a divide

and conquer algorithm to construct the convex hull of a set of points V .

First, the points of V are sorted in a certain lexicographical order (for example

according to their x-coordinates). The sorted set V is going to be subdivided

71



into two subsets Vl and Vr of relatively equal size such that the vertices of Vl

precede the vertices of Vr in the chosen lexicographical order. The subdivision

will continue recursively on Vl and Vr till we have subsets of two or three points.

If the size of a subset is two or three we compute the convex hull of this subset

otherwise we divide it again into two subsets and then we remove the polygonal

lines of the returned convex hulls. Once the remaining polygonal lines are found

we can join them and return the resulting convex hull. See the following algorithm

for an illustration about the process:
� �

function d iv ide and conquer (V )

{
i f ( |V | ≤ 3 )

return conv(V ) ;

else {
subd iv ide V i n t o Vl and Vr ;

conv(Vl) = d iv ide and conquer (Vl ) ;

conv(Vr) = d iv ide and conquer (Vr ) ;

u pp e r l e f t e d g e = f i n d u p p e r l e f t (conv(Vl) , conv(Vr)) ;

uppe r r i gh t edge = f i nd upp e r r i g h t (conv(Vl) , conv(Vr)) ;

l ow e r l e f t e d g e = f i n d l o w e r l e f t (conv(Vl) , conv(Vr)) ;

l owe r r i gh t edg e = f i n d l ow e r r i g h t (conv(Vl) , conv(Vr)) ;

connect the upp e r l e f t e d g e t o the uppe r r i gh t edge ;

connect the l ow e r l e f t e d g e t o the l owe r r i gh t edg e ;

return conv(V ) ;

}
}
� �

Theorem 5.8. Computing the convex hull of a set V of n sorted points using the

divide and conquer algorithm takes O(n) time.

Proof. The only operations performed by the algorithm are creating, deleting, and

traversing edges. The total number Nb(n) of created edges verifies the relation:

Nb(n) = Nb(⌊n/2⌋) +Nb(⌈n/2⌉) + 2 if n > 3

Nb(n) = O(1) if n ≤ 3

Thus Nb(n) = O(n). The total number of deleted edges is then also bounded

by O(n) and, from Proposition 5.6, it is the same with the number of traversed

edges.
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5.3 Divide and conquer construction of the k-

set polygon

Suppose now that we are given two subsets Vl and Vr of at least k points of V

having at most k − 1 common points and such that there exists a vertical strip

containing Vl ∩ Vr, and that Vl \ Vr and Vr \ Vl are respectively on the left and

on the right side of the strip. More precisely, there exist two vertical straight

lines πl and πr oriented upwards such that πl ⊂ π̊+
r , Vr ⊂ π̊−

l , Vl ⊂ π̊+
r , and

Vl ∩ Vr = (̊π−
l ∩ π̊+

r ) ∩ (Vl ∪ Vr). Suppose furthermore that gk(Vl) and g
k(Vr) are

given (see Figure 5.5). Constructing gk(Vl ∪ Vr) consists, as in the construction

of the classical convex hull, in finding the edges to remove on the given k-set

polygons gk(Vl) and g
k(Vr) and afterwards determining the new edges to create

in order to construct gk(Vl ∪ Vr).

Figure 5.5: The 6-set polygons g6(Vl = {1, 2, 3, 4, 5, 6, 7, 8, 9}), g6(Vr =

{5, 6, 7, 8, 9, 10, 11, 12}), and g6(Vl ∪ Vr) .

5.3.1 Edge removal

In this subsection the focus is on the edges to remove. Notably, the characteristics

of the two connected lines which they form on gk(Vl) and g
k(Vr) are given.

Property 5.9. (i) If gk(Vl) (resp. gk(Vr)) is not reduced to a unique vertex, at

least one of the edges incident in its rightmost (resp. leftmost) vertex is to be

removed.

(ii) The leftmost vertex of gk(Vl) and the rightmost vertex of gk(Vr) are vertices

of gk(Vl ∪ Vr).
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Proof. (i) Since |Vl∩Vr| < k, there exists an oriented vertical straight line ∆ such

that gk(Vl) ⊂ ∆̊+ and gk(Vr) ⊂ ∆̊−. If ∆1 and ∆2 are the oriented straight lines

generated by the edges incident in the rightmost vertex of gk(Vl), ∆̊
− ⊂ ∆̊−

1 ∪∆̊−
2 .

Thus, at least one of these edges is not an edge of gk(Vl∪Vr). Symmetrically, one

of the edges incident in the leftmost vertex of gk(Vr) is not an edge of gk(Vl∪Vr).
(ii) The leftmost vertex of gk(Vl) is the centroid of the k leftmost points of

Vl ∪ Vr. They can thus be separated from the rest by a vertical straight line and

their centroid is a vertex of gk(Vl ∪ Vr), according to Proposition 2.11. In the

same way, the rightmost vertex of gk(Vr) is a vertex of gk(Vl ∪ Vr).

From now on, gk(V )
(∩)

(resp. gk(V )
(∪)

) is considered to be the oriented polyg-

onal line of the edges of gk(V ) that connects the rightmost to the leftmost (resp.

leftmost to rightmost) vertex of gk(V ) in counter clockwise direction.

Similarly to the convex hull’s simple case, an edge eP (s, t) precedes an edge

eP ′(s′, t′) in counter clockwise direction on gk(V )
(∩)

if, and only if, the edges are

such that eP (s, t) <θ
eP ′(s′, t′). Thus, since eP (s, t) and eP ′(s′, t′) are parallel to

and oriented in the same directions as st and s′t′, eP (s, t) precedes eP ′(s′, t′) if,

and only if, st <
θ
s′t′.

Lemma 5.10. Let eP (s, t) and eP ′(s′, t′) be two edges of the line gk(Vl)
(∩)

such

that eP (s, t) <θ
eP ′(s′, t′) and let r be a point of Vr\Vl. If r ∈ (s̊′t′)− then r ∈ (s̊t)−,

that is, if r ∈ (s̊t)+ then r ∈ (s̊′t′)+.

Proof. If eP (s, t) and eP ′(s′, t′) are two consecutive edges of gk(Vl)
(∩)

, then from

Corollary 2.13, the line segments st and s′t′ intersect and, since Vl ⊂ π̊+
r , their

intersection point belongs to π̊+
r . Moreover, since st <

θ
s′t′, (s̊′t′)− ∩ π̊−

r ⊂ (s̊t)−.

Since every site r of Vr \ Vl belongs to π̊−
r , it follows that, if r belongs to (s̊′t′)−,

it also belongs to (s̊t)− (see Figure 5.6).

By an elementary induction, the result holds for any edges eP (s, t) and eP ′(s′, t′)

of gk(Vl)
(∩)

such that eP (s, t) <θ
eP ′(s′, t′).

Similar results hold for gk(Vl)
(∪)

, gk(Vr)
(∩)

, and gk(Vr)
(∪)

, and thus the follow-

ing theorem:

Theorem 5.11. The edges to remove from gk(Vl) (resp. g
k(Vr)) form a connected

line which contains the rightmost vertex of gk(Vl) (resp. leftmost vertex of gk(Vr)).

Proof. From Proposition 2.12, the edges to remove from gk(Vl) are the edges

eP (s, t) that have at least one point v of Vr \ Vl such that v ∈ (s̊t)−, because the

straight line (st) has more than k − 1 points on its right.

Thus, from Lemma 5.10, if an edge of gk(Vl)
(∩)

is to remove then all its

predecessors on gk(Vl)
(∩)

are also to remove. Hence, the edges to remove on
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Figure 5.6: The point r is on the right of (s′t′) and thus on the right of (st).

Hence both edges eP (s, t) and eP ′(s′, t′) are to remove from gk(Vl)
(∩)

.

gk(Vl)
(∩)

form a connected polygonal line starting at the rightmost vertex of

gk(Vl).

Similarly, the edges to remove from gk(Vl)
(∪)

form a connected polygonal

ending in the rightmost vertex of gk(Vl). Thus, the edges to remove from gk(Vl)

form a connected polygonal line containing the rightmost vertex of gk(Vl).

Using a symmetric proof, we can also find that the polygonal line to remove

from gk(Vr) is also connected and contains the leftmost vertex of gk(Vr).

Denote respectively by Dl
(∩) and Dr

(∩) the lines to remove on gk(Vl)
(∩)

and

gk(Vr)
(∩)

, oriented in counter clockwise direction. That is, the rightmost vertex

of gk(Vl) and the leftmost vertex of gk(Vr) are respectively the start vertex of

Dl
(∩) and the end vertex of Dr

(∩) (see Figure 5.7).

Figure 5.7: The polygonal line Dl
(∩) to remove from gk(Vl)

(∩)
and the polygonal

line Dr
(∩) to remove from gk(Vr)

(∩)
.
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Now, it will be shown that the edges of Dl
(∩) can be found efficiently by only

traversing the edges to remove on the k-set polygons.

Property 5.12. An edge eP (s, t) of g
k(Vl)

(∩)
is also an edge of gk(Vl ∪Vr) if and

only if the k-set Tr which is //(st)-separable from Vr is such that Tr \ Vl ⊂ (s̊t)+.

Proof. Since |Tr| = k and |Vl ∩ Vr| ≤ k − 1, |Tr \ Vl| ≥ 1. It follows, from

Proposition 2.12, that if (Tr \ Vl) ∩ (s̊t)− 6= ∅, then eP (s, t) is not an edge of

gk(Vl ∪ Vr).
Suppose now that Tr\Vl ⊂ (s̊t)+. There exists a straight line ∆ parallel to (st),

oriented as (st), and such that Tr ⊂ ∆̊− and Vr \ Tr ⊂ ∆̊+. Since Tr \ Vl ⊂ (s̊t)+

and |Tr \ Vl| ≥ 1, at least one point of Tr belongs to (s̊t)+. Thus ∆ ⊂ (s̊t)+

and Vr \ Tr ⊂ (s̊t)+. From Proposition 2.12, it follows that eP (s, t) is an edge of

gk(Vl ∪ Vr) (see Figure 5.8).

Figure 5.8: The subset Tr \Vl that is //(st)-separable from Vr is on the left of (st),

thus the edge eP (s, t) is an edge of gk(Vl ∪ Vr).

Thus, finding the edges of Dl
(∩) comes down to finding the first edge eP (s, t) of

gk(Vl)
(∩)

that verifies Property 5.12. Now, given a straight line ∆, the k-element

set T //∆-separable from Vr can be found thanks to the following lemma:

Lemma 5.13. If the k-set polygon gk(Vr) is not reduced to a unique vertex, let

g(T0), ..., g(Tm) and eP1
(s1, t1), ..., ePm

(sm, tm) be the vertices and the edges of

gk(Vr)
(∩)

, given in counter clockwise direction. Let ∆ be an oriented straight line

with θ(∆) ∈ [π/2, 3π/2]. Ti is //∆-separable from Vr if and only if,

- either i = 0 and ∆ <
θ
(s1t1),

- either i ∈ {1, . . . ,m− 1} and (siti) <θ
∆ <

θ
(si+1ti+1),

- or i = m and (smtm) <θ
∆.
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Proof. Since g(T0) is the rightmost vertex of gk(Vr), T0 can be separated from Vr

with a straight line ∆0 such that θ(∆0) = π/2. The same, Tm can be separated

from Vr with a straight line ∆m+1 such that θ(∆m+1) = 3π/2. For every i ∈
{1, . . . ,m}, let ∆i = (siti). Then, from Proposition 2.12, for every i ∈ {0, . . . ,m},
Ti ⊂ ∆−

i ∩ ∆−
i+1 and Vr \ Ti ⊂ ∆+

i ∩ ∆+
i+1. For every straight line ∆ such that

∆i <θ
∆ <

θ
∆i+1, the line ∆′ parallel to ∆, oriented as ∆, and passing through

x = ∆i ∩∆i+1 is such that ∆−
i ∩∆−

i+1 ⊂ ∆′− and ∆+
i ∩∆+

i+1 ⊂ ∆′+ (see Figure

5.9). It follows that Ti is //∆-separable from Vr (if x ∈ Vr, it suffices to move

slightly ∆′ parallely to itself such that it strictly separates Ti from Vr).

The converse follows directly from the fact that, for a given straight line ∆

with θ(∆) ∈ [π/2, 3π/2], there exists at most one set Ti of k points //∆-separable

from Vr.

Figure 5.9: The set Ti (in gray) is ∆-separable from Vr and the vertex g(Ti) is

//∆-separable from gk(Vr).

5.3.2 Edge removal algorithm

To store the k-set polygon of any subset U of V , we use a data structure similar to

the one in Chapter 4 but we store independently the lines gk(U)
(∩)

and gk(U)
(∪)

.

For each edge eP (s, t) of g
k(U)

(∩)
, only the points s and t need to be referenced.

Also, a reference to the next and previous edge on gk(U)
(∩)

are stored in the edge

data structure.

To avoid dealing with the special cases i = 0 and i = m of Lemma 5.13

in the algorithm, we add two anchor-edges to the upper line gk(U)
(∩)

in the

following way (see Figure 5.10): If g(T ) is the rightmost vertex of gk(U)
(∩)

, insert

an anchor-edge eP (s, t) with end vertex g(T ), such that t is the leftmost point

of T and s is any point in the plane having the same x-coordinate as t and a
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smaller y-coordinate (note that, from the assumptions on V , s /∈ V ). Clearly,

θ(st) = π/2. In the same way, if g(T ) is the leftmost vertex of gk(U)
(∩)

, insert an

anchor-edge eP (s, t) with start vertex g(T ), such that s is the rightmost point of

T and t is any point in the plane having the same x-coordinate as s and a smaller

y-coordinate (i.e. θ(st) = 3π/2). Note that if gk(U)
(∩)

is reduced to a unique

vertex, this vertex will be incident to both anchor-edges.

Figure 5.10: The set U (in gray) and its corresponding upper k-set polygon

gk(U)
(∩)

. The two anchor edges are inserted in the leftmost and the rightmost

vertices of gk(U)
(∩)

.

Moreover, the k-sets whose centroids are the leftmost and rightmost vertices

of gk(U)
(∩)

are both stored in the data structure. gk(U)
(∪)

is represented in a

symetric way.

The results of subsection 5.3.1, allow us now to give an algorithm that can

find Dl
(∩), by only walking the edges to remove on gk(Vl)

(∩)
and gk(Vr)

(∩)
. The

idea consists in starting from the leftmost vertex g(Tr0) of g
k(Vr)

(∩)
and from the

edge out of the rightmost vertex of gk(Vl)
(∩)

. First, we try to find the first edge

ePli
(sli , tli) of g

k(Vl)
(∩)

that is not invalidated by g(Tr0), that is, such that Tr0\Vl ⊂
( ˚slitli)

+. From Lemma 5.10, no edge of gk(Vl)
(∩)

that succeeds ePli
(sli , tli) is

invalidated by g(Tr0). Thus, the points of Tr0 do not have to be considered

afterward by the algorithm and we can pass to the predecessor g(Tr1) of g(Tr0)

on gk(Vr)
(∩)

. As in the previous step, we seek now the first edge of gk(Vl)
(∩)

that

succeeds ePli
(sli , tli) and that is not to be invalidated by g(Tr1). g(Tr1) invalidate

none of the next edges on gk(Vl)
(∩)

and we can pass to the predecessor of g(Tr1)

on gk(Vr)
(∩)

. And so on.

Suppose now that the algorithm has just found the first edge ePlj
(slj , tlj) not

invalidated by a given vertex g(Trh) of g
k(Vr)

(∩)
and that the edge ePrh

(srh , trh)
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entering in g(Trh) is such that slj tlj <θ
srhtrh . In this case, the algorithm can stop

because ePlj
(slj , tlj) is the first edge that should not be removed from gk(Vl)

(∩)
.

Indeed, by construction, all the edges preceding ePlj
(slj , tlj) on gk(Vl)

(∩)
are in-

validated by at least one vertex of gk(Vr)
(∩)

. Moreover, from Lemma 5.13, if

slj tlj <θ
srhtrh , the vertex of gk(Vr)

(∩)
that is //(slj tlj )-separable from gk(Vr) is one

of the vertices g(Trf ) that was already checked by the algorithm. Then ePlj
(slj , tlj)

is not invalidated by g(Trf ), that is Trf \ Vl ⊂ (slj tlj)
+. From Property 5.12,

ePlj
(slj , tlj) is not to be removed.

Note that the algorithm will necessarily stop, at the latest when ePlj
(slj , tlj) is

the anchor edge incident in the leftmost vertex of gk(Vl)
(∩)

or when ePrh
(srh , trh)

is the anchor edge incident in the rightmost vertex of gk(Vr)
(∩)

. In the first case,

the angle θ(slj tlj) = 3π/2 is greater than the angles θ of all the edges of gk(Vr)
(∩)

and all the points of Vr \ Vl are on the left of (slj tlj). In the second case, the

angle θ(srhtrh) = π/2 is smaller than the angles θ of all the edges of gk(Vl)
(∩)

.

The general form of the algorithm that obtains Dl is then the following:
� �

function f i n d Dl
(∩)

{
l e t eP (s, t) be the edge o f gk(Vl)

(∩)
with s t a r t ver tex the

r ightmost ver tex o f gk(Vl)
(∩)

;

l e t g(T ) be the l e f tmos t ver tex o f gk(Vr) ;

l e t eP ′(s′, t′) be the edge o f gk(Vr)
(∩)

with end ver tex g(T ) ( i.e.

P ′ ∪ {t′} = T ) ;

1 . while (T \ Vl 6⊂ (st)+ )

eP (s, t)←− s u c c e s s o r o f eP (s, t) on gk(Vl) ;

2 . while (st <
θ
s′t′ )

{
eP ′(s′, t′)←− pr edec e s s o r o f eP ′(s′, t′) on gk(Vr) ;

3 . while (P ′ ∪ {t′}) \ Vl 6⊂ (st)+

eP (s, t)←− s u c c e s s o r o f eP (s, t) on gk(Vl) ;

}
return eP (s, t) ;

}
� �

Proposition 5.14. The function find_Dl
(∩) can be implemented to run in time

O(k + |Dl
(∩)| log k + |Dr

(∩)|).

Proof. (i) As explained above, from Lemmas 5.10 and 5.13 and from Property

5.12, within a margin of one, only the edges to remove are traversed on gk(Vl)
(∩)

.

Moreover, for every edge eP ′(s′, t′) of gk(Vr)
(∩)

traversed by the algorithm, except
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for the last one, there exists an edge eP (s, t) of g
k(Vl)

(∩)
such that st <

θ
s′t′ (loop

(2) condition) and (P ′ ∪ {t′}) \ Vl ⊂ (s̊t)+ (loops (1) and (3) conditions). Since,

(P ′∪{t′})\Vl contains at least one point and since this point belongs to π̊−
r ∩(s̊t)+,

(st)∩(s′t′) ∈ π̊−
r . Thus (st)

−∩ π̊+
l ⊂ (s̊′t′)− and, since (st)−∩ π̊+

l contains at least

one point of (P ∪ {s, t}) \ Vr, eP ′(s′, t′) is not an edge of gk(Vl ∪ Vr). It follows

that, within a margin of one, only the edges to remove are traversed on gk(Vr)
(∩)

.

(ii) In loop 1, g(T ) is the leftmost vertex of gk(Vr) and, by hypothesis, T is

stored in the data structure containing gk(Vr). To check whether T \ Vl ⊂ (s̊t)+,

it suffices to compute the straight line passing through s, tangent to the convex

hull conv(T \ Vl) at a point r, and such that conv(T \ Vl) ⊂ (rs)+ (see Figure

5.11). (T \ Vl) ⊂ (s̊t)+ is then equivalent to r ∈ (s̊t)+. Since the points of V are

sorted from left to right, T \ Vl can be obtained in O(k) time and conv(T \ Vl)
can also be computed in O(k) time. Any tangent to conv(T \ Vl) can then be

found in O(log k) time (see for example [OvL81]). The time complexity of loop

1 of the algorithm can thus be bounded by O(k + |Dl
(∩)| log k).

Figure 5.11: Illustration of the proof of Proposition 5.14 (ii).

(iii) From (i), the test (P ′ ∪ {t′}) \ Vl 6⊂ (s̊t)+ in loop 3 condition is done at

most |Dl
(∩)| + |Dr

(∩)| + 2 times. From Lemma 5.10, given a set P ′ ∪ {t′}, if an
edge eP (s, t) of g

k(Vl)
(∩)

is such that (P ′∪{t′})\Vl ⊂ (s̊t)+, then all its successors

verify the same inclusion. Furthermore, if eP ′′(s′′, t′′) is the predecessor of an edge

eP ′(s′, t′) of gk(Vr), then P ′′ ∪ {t′′} = P ′ ∪ {s′}, from Proposition 2.12. It follows

that, for two consecutive passes in loop 2, the considered sets (P ′∪{t′})\Vl differ
from each other by at most one point and the test (P ′ ∪ {t′}) \ Vl 6⊂ (s̊t)+ can be

achieved in constant time. It is the same with all the other instructions of loop

2, which are all together in O(|Dl
(∩)|+ |Dr

(∩)|).

Obviously, Dr
(∩) can be found in a symmetric way and it is the same with the

lines to remove on gk(Vl)
(∪)

and gk(Vr)
(∪)

. Hence the theorem:
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Theorem 5.15. The edges to remove on gk(Vl) and g
k(Vr) can be found in time

O(k + d log k), where d is the total number of edges to remove.

5.3.3 Edge construction

In the preceding section, it has been shown that the edges to remove form two

connected lines on the left and on the right k-set polygons. Since the k-set

polygon to construct is convex, the edges to create form also two connected lines,

an upper and a lower one. C(∩) denotes the oriented upper line to create and C(∪)
denotes the lower line (see Figure 5.12). C(∩) connects the start vertex of Dr

(∩)

to the end vertex of Dl
(∩) (obtained by Algorithm find_Dl

(∩)).

We show now that the vertices of C(∩) can be found by considering k-set

polygons of at most 2k points of Vl ∪ Vr.

Figure 5.12: Uppon joining gk(Vl) and gk(Vr) two polygonal lines are created:

C(∩) and C(∪).

Property 5.16. (i) Let g(T ) be a vertex of C(∩) and let ∆ be an oriented straight

line that is not parallel to any other straight line passing through two points of

Vl ∪ Vr and such that T is //∆-separable from Vl ∪ Vr.
The subsets Tl and Tr of k points that are //∆-separable from Vl and Vr re-

spectively are such that g(Tl) is a vertex of Dl
(∩), g(Tr) is a vertex of Dr

(∩), and

g(T ) is the vertex of gk(Tl ∪ Tr)(∩) that is //∆-separable from gk(Tl ∪ Tr).
(ii) Conversely, let g(Tl) be a vertex of Dl

(∩) and g(Tr) be a vertex of Dr
(∩)

such that there exists a straight line ∆ that is not parallel to any straight line

passing through two points of Vl ∪ Vr and such that Tl and Tr are //∆-separable

from Vl and from Vr respectively. If T is the k-point subset that is //∆-separable

from Tl ∪ Tr then g(T ) is a vertex of C(∩) and is //∆-separable from gk(Vl ∪ Vr).

Proof. (i) Let ∆′ and ∆l be two straight lines parallel to ∆ and such that T and

Tl are respectively ∆′-separable from Vl ∪ Vr and ∆l-separable from Vl. Suppose

that there exists v ∈ T \ (Tl ∪ Tr). Within a permutation of Vr and Vl, we can
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assume that v ∈ Vl. Since v 6∈ Tl, ∆l ⊂ ∆̊′− and, therefore, Tl ∪ {v} ⊂ ∆̊′− and

Tl∪{v} ⊆ T which is absurd since |T | = |Tl| = k. It follows that T ⊆ Tl∪Tr. T is

then a set ∆′-separable from Tl ∪ Tr and, from Proposition 2.11, g(T ) is a vertex

of gk(Tl ∪ Tr) //∆-separable from gk(Tl ∪ Tr). It follows that g(T ) is a vertex of

gk(Tl ∪ Tr)(∩).
Moreover, if g(Tr) is the leftmost vertex of gk(Vr), from Property 5.9, it belongs

to Dr
(∩). Otherwise, from Lemma 5.13, the edge eP (s, t) of gk(Vr) with start

vertex g(Tr) is such that ∆ <
θ
(st). Then eP (s, t) cannot be an edge of gk(Vl∪Vr)

since it should precede g(T ) on gk(Vl ∪ Vr)(∩). It follows that g(Tr) is a vertex of

Dr
(∩). In the same way, g(Tl) is a vertex of Dl

(∩).

(ii) Conversely, let ∆′ be the straight line parallel to ∆, with the same ori-

entation as ∆, that passes through a point of T , and such that T ⊂ ∆′−. By

construction, (Vl ∪ Vr) \ T is then in ∆̊′+. Let ∆l be an oriented straight line

parallel to ∆ and such that Tl is ∆l-separable from Vl.

Since |Tl| = |T |, at least one point of Tl belongs to ∆′+ and it results that

∆l ⊂ ∆̊′+. Hence Vl \ Tl ⊂ ∆̊′+. In the same way Vr \ Tr ⊂ ∆̊′+. Since, by

construction, Tl \ T and Tr \ T are also in ∆̊′+, it results that g(T ) is a vertex of

gk(Vl ∪ Vr) that is //∆-separable from gk(Vl ∪ Vr). It follows that g(T ) is a vertex

of gk(Vl ∪ Vr)(∩).
Moreover, since g(Tr) is a vertex of Dr

(∩), every edge ePl
(sl, tl) of gk(Vl)

(∩)

that is also an edge of gk(Vl ∪ Vr) is such that (sltl) <θ
∆. In the same way, for

every edge ePr
(sr, tr) of g

k(Vr)
(∩)

that is also an edge of gk(Vl ∪ Vr), ∆ <
θ
(srtr).

It results that g(T ) is a vertex of C(∩) (see Figure 5.13).

Figure 5.13: The set T that is ∆-separable from V = Vl ∪ Vr and the vertices

g(Tl) of Dl
(∩) and g(Tr) of Dr

(∩) that are //∆-separable from gk(Vl) and gk(Vr)

respectively.

It follows from this proposition that, to construct C(∩), we have to consider all

the couples of vertices (g(Tl), g(Tr)), where g(Tl) and g(Tr) belong to Dl
(∩) and
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Dr
(∩) respectively and such that Tl and Tr are //∆-separable from Vl and Vr with

a same straight line ∆. Then it suffices, for each of these couples, to compute the

k-set polygon of Tl ∪ Tr and to extract some of its vertices. These couples can be

generated efficiently by using the result of Lemma 5.13.

Indeed, let g(Tmin) be the first vertex of Dr
(∩) and g(Tmax) be the last vertex

of Dl
(∩). g(Tmin) and g(Tmax) are then also the first and the last endpoints of

C(∩) (see Figure 5.14).

Figure 5.14: The vertices g(Tmin) and g(Tmax); also the edges ePmin
(smin, tmin)

entering g(Tmin) and ePmax
(smax, tmax) leaving g(Tmax).

From Lemma 5.13, if ePmin
(smin, tmin) and ePmax

(smax, tmax) are the edges

(may be anchor edges) respectively entering g(Tmin) on gk(Vr)
(∩)

and leaving

g(Tmax) on g
k(Vl)

(∩)
, then the vertices of C(∩) are the vertices //∆-separable from

gk(Vl∪Vr), with (smintmin) <θ
∆ <

θ
(smaxtmax). To find all the vertices of C(∩), we

need then to generate all the couples of vertices (g(Tl), g(Tr)) such that Tl and Tr

are //∆-separable from Vl and Vr respectively, with (smintmin) <θ
∆ <

θ
(smaxtmax).

For every vertex g(Tl) of Dl
(∩) let ePl

(sl, tl) and eP ′

l
(s′l, t

′
l) be the edges of

gk(Vl)
(∩)

entering and leaving g(Tl). For every vertex g(Tr) of Dr
(∩) let ePr

(sr, tr)

and eP ′

r
(s′r, t

′
r) be the edges of gk(Vr)

(∩)
entering and leaving g(Tr).

From Lemma 5.13, Tl and Tr are then //∆-separable from Vl and Vr (with the

same straight line ∆), if and only if, the intervals Il = [θ(sltl), θ(s
′
lt
′
l)] associated

with Tl (or g(Tl)) and Ir = [θ(srtr), θ(s
′
rt

′
r)] associated with Tr (or g(Tr)) have

a non empty intersection (note that in the case of the first vertices and of the

last vertices of Dl
(∩) and of Dr

(∩), the anchor edges may be used to form the

intervals). We note by θ(g(Tl)g(Tr)) this intersection i.e.,

θ(g(Tl)g(Tr)) = [max(θ(sltl), θ(srtr)),min(θ(s
′
lt
′
l), θ(s

′
rt

′
r))].

Let (Il1 , . . . , Ilm) be the sequence of intervals associated to the vertices g(Tl)

of Dl
(∩) in the ascending order and such that the vertices g(Tl) are //∆-separable
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from Dl
(∩) by straight lines ∆ such that smintmin <θ

∆ <
θ
smaxtmax. Similarly, let

(Ir1 , . . . , Irm′
) be the sequence of intervals associated to the vertices g(Tr) of Dr

(∩)

in the ascending order and such that the vertices g(Tr) are //∆-separable from

Dl
(∩) by the same straight lines ∆. Obviously both (Il1 , . . . , Ilm) and (Ir1 , . . . , Irm′

)

are monotonous and the non empty intersections of the sets Il1∩Ir1 , Il1∩Ir2 , . . . , Il2∩
Ir1 , Il2∩Ir2 , . . . , Ilm∩Irm′

−1
, Ilm∩Irm′

form also a monotonous ascending partition

of [θ(smintmin), θ(smaxtmax)]. Let (θ1, . . . , θm′′) be the sequence of these intersec-

tions in the ascending order. Note that θ1 = θ(g(Tl)g(Tmin)) with g(Tl) the vertex

of Dl
(∩) that is //(smintmin)-separable from Dl

(∩) and that θm′′ = θ(g(Tmax)g(Tr))

with g(Tr) the vertex of Dr
(∩) that is //(smaxtmax)-separable from Dr

(∩).

We start constructing the polygonal line C(∩) in the clockwise direction. For

that, we need to obtain the intervals (θ1, . . . , θm′′) in this order. The first vertex to

appear on C(∩) is the vertex g(Tmin). Since g(Tmin) is a vertex of Dr
(∩) we need to

find the first vertex g(Tl) on Dl
(∩) that is //∆-separable from gk(Vl) by a straight

line ∆ that separates g(Tmin) from gk(Vr). We start looking for the vertex g(Tl)

starting from the rightmost vertex of gk(Vl)
(∩)

and advancing till we reach a vertex

g(Tl) such that θ(g(Tl)g(Tmin)) 6= ∅. The interval θ(g(Tl)g(Tmin)) defines the first

interval θ1. Using Property 5.16, all the vertices g(T ) of gk(Tl ∪ Tmin)
(∩)

that

are //∆-separable from gk(Tl ∪ Tmin)
(∩)

by some straight line ∆ with θ(∆) ∈ θ1
are vertices of C(∩). It suffices then to take these vertices as they appear on

gk(Tl ∪ Tmin)
(∩)

and add them to C(∩) starting from g(Tmin). We say that the

interval θ1 generates these vertices.

Now we need to find the next interval θ2, or to put it in another way, the next

couple (g(Tl), g(Tr)). If the edges s
′
lt
′
l and s

′
rt

′
r leaving g(Tl) and g(Tr) respectively

are such that s′lt
′
l <θ

s′rt
′
r then we keep for g(Tr) the vertex g(Tmin) and we move to

the next vertex g(Tl) on Dl
(∩), otherwise we keep g(Tl) and we move to the next

vertex g(Tr) on Dr
(∩). Similarly to what we have done earlier, all the vertices of

gk(Tl ∪ Tr)(∩) that are //∆-separable from gk(Tl ∪ Tr) with θ(∆) ∈ θ2 are vertices
of C(∩), from Property 5.16. We walk in this way on Dl

(∩) and Dr
(∩) till we

reach the last interval θm′′ with the last couple (g(Tmax), g(Tr)). This interval

will generate the last part of C(∩).
We show now how to find efficiently the first vertex generated by every interval

θi:

Lemma 5.17. (i) g(Tmin) is the first vertex generated by the interval θ1.

(ii) Given two successive intervals θi and θi+1, the last vertex generated by θi is

equal to the first vertex generated by θi+1.

Proof. (i) From Lemma 5.13, since ePmin
(smin, tmin) is an edge of gk(Vl ∪ Vr)(∩),

Tmin = Pmin ∪ {tmin} is //∆-separable from Vl ∪ Vr by a straight line ∆ that
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tends toward (smintmin) and such that (smintmin) <θ
∆. Since θ(smintmin) is the

lower bound of θ1, it follows that θ(∆) ∈ θ1 and that g(Tmin) is the first vertex

generated by θ1.

(ii) By construction, there exists an edge eP (s, t) of g
k(Vl) or g

k(Vr) such that

θ(st) is the limit value between θi and θi+1. If g(T ) is the last vertex generated by

θi, T is //∆-separable from Vl ∪ Vr with a straight line ∆ that tends toward (st)

and such that ∆ <
θ
(st). In the same way, for the first vertex g(T ′) generated by

θi+1, T
′ is //∆′-separable from Vl ∪ Vr with a straight line ∆′ that tends toward

(st) and such that (st) <
θ
∆′. Since no four points of V are supposed to belong to

tow parallel lines, it follows that T and T ′ are both //(st)-separable from Vl ∪ Vr
and, hence, g(T ) = g(T ′).

It results from this lemma that, if (Tl, Tr) and (T ′
l , T

′
r) are two consecutively

treated couples, then the last vertex extracted from gk(Tl ∪ Tr) is equal to the

first vertex to extract from gk(T ′
l ∪T ′

r). Thus it suffices to maintain a link to this

vertex in the algorithm while constructing gk(T ′
l ∪ T ′

r) from gk(Tl ∪ Tr).
Hence, we can give the whole algorithm that constructs C(∩):

� �

function c on s t ru c t C(∩)
{

l e t ePmin
(smin, tmin) be the edge o f gk(Vr)

(∩)
ending at the s t a r t

ver tex o f Dr
(∩) ;

l e t ePmax(smax, tmax) be the edge o f gk(Vl)
(∩)

s t a r t i n g at the end

ver tex o f Dl
(∩) ;

l e t ePl
(sl, tl) be the edge o f gk(Vl)

(∩)
s t a r t i n g at the s t a r t

ver tex o f Dl
(∩) ;

1 . while (sltl <θ
smintmin )

ePl
(sl, tl)←− s u c c e s s o r o f ePl

(sl, tl) on gk(Vl)
(∩)

;

Tl ←− Pl ∪ {sl} ;
ePr(sr, tr)←− s u c c e s s o r o f ePmin

(smin, tmin) on gk(Vr)
(∩)

;

Tr ←− Pr ∪ {sr} ;
T ←− Tr ;

2 . do

{
l e t Θ be the i n t e r v a l θ(g(Tl), g(Tr)) ;

3 . l e t eP (s, t) be the edge o f gk(Tl ∪ Tr) s t a r t i n g at g(T ) ;

85



4 . while (θ(st) ∈ Θ)

{
i n s e r t eP (s, t) i n gk(Vl ∪ Vr)

(∩)
such that i t s t a r t s at

g(T ) ;

5 . T ←− P ∪ {t} ;
l e t eP (s, t) be the edge o f gk(Tl ∪ Tr) s t a r t i n g at g(T ) ;

}
6 . i f (sltl <θ

srtr )

{
ePl

(sl, tl)←− s u c c e s s o r o f ePl
(sl, tl) on gk(Vl)

(∩)
;

Tl ←− Pl ∪ {tl} ;
} else

{
ePr(sr, tr)←− s u c c e s s o r o f ePr(sr, tr) on gk(Vr)

(∩)
;

Tr ←− Pr ∪ {sr} ;
}

} while (θ(smaxtmax) /∈ Θ) ;

}
� �

Proposition 5.18. The algorithm which constructs C(∩) can be implemented to

run in O((k + |Dr
(∩)|+ |Dl

(∩)|+ |C(∩)|) log2 k) time.

Proof. The essential step of the algorithm, given a vertex g(T ) of gk(Tl ∪ Tr), is
to determine the edge eP (s, t) of g

k(Tl ∪ Tr) starting at g(T ). If the convex hulls

of T and (Tl ∪ Tr) \ T are given, it suffices to find the common oriented tangent

∆ of these convex hulls such that T ⊂ ∆−, (Tl ∪ Tr) \ T ⊂ ∆+, and s = T ∩∆

precedes t = ((Tl ∪ Tr) \ T ) ∩∆ on ∆. Indeed, from Proposition 2.12, eT\{s}(s, t)

is then the edge of gk(Tl ∪ Tr) starting at g(T ). We have thus to maintain the

convex hulls of T and (Tl ∪ Tr) \ T all along the algorithm.

At the beginning of the algorithm, g(T ) = g(Tr) is the start vertex of Dr
(∩).

The convex hull of T can then be obtained in the following way: If g(T ′) is the

leftmost vertex of gk(Tr), the convex hull of T ′ can be directly computed since the

points of T ′ are stored in the data structure containing gk(Tr). Let CH be this

convex hull. Dr
(∩) can then be traversed from g(T ′) to g(T ) and, for each traversed

edge eP (s, t), t is removed from CH and s is inserted in CH. When arriving in

g(T ), CH contains the convex hull of T . Using the fully dynamic convex hull

data structure of Overmars and van Leeuwen [OvL81], the convex hull of T ′ can

be stored in CH in O(k log2 k) time and every insertion or deletion in CH can

be done in O(log2 k) time. The convex hull of the set T at the beginning of

the algorithm can thus be obtained in O((k + |Dr
(∩)|) log2 k) time. Since, at the
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beginning of the algorithm, T = Tr, the convex hull of (Tl∪Tr)\T = Tl\T can be

computed in the same way (in a dynamic structure CH ′) while traversing Dl
(∩) in

loop 1. In order to place in CH ′ only the points of Tl that are not in T , it suffices to

mark the points of T (for example, while constructing their convex hull). During

the execution of the algorithm, the set T is only modified by instruction 5. To

update CH, we have just to remove s and to insert t. Since instruction 5 happens

exactly once per edge created on C(∩), the overall complexity of all the updates

of CH is O(|C(∩)| log2 k). The set (Tl ∪ Tr) \ T is modified by instructions 5 and

6. In the same way, for each of these instructions, at most one point is removed

from CH ′ and at most one point is inserted (a point that already belongs to CH

is neither removed nor inserted in CH ′). Since the total number of passes in loop

2 is at most |Dr
(∩)| + |Dl

(∩)| and since the total number of passes in loop 4 is

equal to the number of edges of C(∩), it follows that the overall complexity of the

updates of CH ′ is O((|Dr
(∩)| + |Dl

(∩)| + |C(∩)|) log2 k). Since a common tangent

of T and (Tl ∪ Tr) \ T can also be found in O(log2 k) time using CH and CH ′,

C(∩) can be constructed in O((k + |Dr
(∩)|+ |Dl

(∩)|+ |C(∩)|) log2 k) time.

Obviously, the lower polygonal line can be constructed similarly and we get

the following result:

Theorem 5.19. The edges to construct while merging gk(Vl) and gk(Vr) can be

found in O((k + d + c) log2 k) time, where d and c are the numbers of edges to

delete and to create.

The divide and conquer construction of the k-set polygon of a set V of at least

k points is then as follows:
� �

function d iv ide and conquer ksp

{
i f ( |V | ≤ k + 1)

{
cons t ruc t d i r e c t l y gk(V ) ;

}
else

{
i f ( |V | < 2(k + 1))

{
d iv id e V i n t o two non−d i s j o i n t subse t s Vl and Vr o f k o

r k + 1 po in t s each such that Vl ∩ Vr belong t o a

v e r t i c a l s t r i p s epa ra t ing Vl \ Vr and Vr \ Vl ;

}
else
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{
d iv id e V i n t o two d i s j o i n t subse t s Vl and Vr o f ⌈|V |/2⌉

and ⌊|V |/2⌋ po in t s s epa rab l e by a v e r t i c a l s t r a i g h t

l i n e ;

}
cons t ruc t r e c u r s i v e l y gk(Vl) and gk(Vr) ;

merge gk(Vl) and gk(Vr) with the prev ious a lgor i thms ;

}
}
� �

Theorem 5.20. Algorithm divide_and_conquer_ksp constructs the k-set poly-

gon of n points in O(n log n+m log2 k log(n/k)) time, where m is the worst case

size of the output.

Proof. If n ≤ k + 1, the algorithm directly constructs the k-set polygon of V . If

n = k, this k-set polygon is reduced to the centroid g(V ). If n = k + 1, from

Proposition 2.11, a vertex of the k-set polygon of V is the centroid of a subset

of k points of V separable from the last one by a straight line. This last point is

then a vertex of the convex hull of V and it follows that constructing the k-set

polygon of V comes to constructing its convex hull. This can be done in O(k)

time since V is sorted.

If n > k + 1, V is divided into two subsets Vl and Vr such that |Vl| = ⌈n/2⌉
and |Vr| = ⌊n/2⌋ if n ≥ 2(k+1), and |Vl| ≤ k+1 and |Vr| ≤ k+1 otherwise. The

k-set polygons of Vl and Vr are then recursively constructed and, finally, merged

in O((k+d+c) log2 k) time, where d and c are the total numbers of edges deleted

and constructed in the merging step (Theorem 5.19).

Now, Dey [Dey98] and Tóth [Tót01] have shown that the size of a k-set

polygon of n points is in O(nβ(k)), with 2Ω(
√
log k) ≤ β(k) ≤ O(k1/3). It follows

that d and c are bounded by O(nβ(k)) and that the complexity of the merging

is O(nβ(k) log2 k). Hence the induction relation that gives the complexity T (n)

of the algorithm (without the sorting step):

T (n) ≤ T (⌈n/2⌉) + T (⌊n/2⌋) +O(nβ(k) log2 k) if n ≥ 2(k + 1)

T (n) ≤ 2T (k + 1) +O(nβ(k) log2 k) if k + 1 < n < 2(k + 1)

T (n) = O(k) if n ≤ k + 1

Solving this relation, we get T (n) = O(nβ(k) log2 k log(n/k)). The overall

complexity of the algorithm divide_and_conquer_ksp, including sorting, is then

O(n log n + m log2 k log(n/k)), where m = O(nβ(k)) is the worst case size of a

k-set polygon of n points.
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In the worst-case time complexity of the final divide and conquer algorithm ap-

pears an additional log(n/k) factor, in comparison with the algorithm of [CSY87].

This factor is suspected to come from over-estimates in the complexity computa-

tion. Indeed, in this computation, the number of edges removed and created is

supposed to be at each merging step linear with the worst case sizes of the merged

k-set polygons. Applied to the recursive convex hull construction (i.e. for k = 1),

this way of computing leads to a complexity of O(n log n) after sorting whereas

it has been shown in Theorem 5.8 that the algorithm is only in O(n).
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Chapter 6

New results on centroid

triangulations

6.1 Introduction

In Chapter 3, we discovered that the number of k-sets of a convex inclusion chain

of a set of points V in the plane, is equal to the number of order-k Voronoi regions

of V . The purpose of this chapter is to try to understand the link between these

two notions.

Recall that the order-k Voronoi diagram of V admits a dual, called the order-k

Delaunay triangulation of V , whose vertices are the centroids of k-point subsets

of V that define the order-k Voronoi regions. The order-k Delaunay triangulation

of V forms a triangulation of the k-set polygon of V and each edge in this trian-

gulation links the centroids of two k-point subsets of V that have k− 1 points in

common. Such a triangulation is called a k-neighbor triangulation of V .

Using the results of Chapter 4, we show first that it is possible to create a

k-neighbor triangulation of V whose vertices are the centroids of the k-sets of a

convex inclusion chain of V . We show next, that this k-neighbor triangulation

is, as the order-k Delaunay triangulation, an order-k centroid triangulation of V ;

that is, it can be defined recursively from an order-(k − 1) triangulation of V .

By using the incremental k-set polygon construction algorithm of Chapter 4,

we give an algorithm that constructs a particular order-k centroid triangulation

in O(n log n+ k(n− k) log2 k) time. The used method is close to the incremental

construction of a (classical) triangulation of a set of points in the plane, where

the points are processed by their increasing x-coordinates.

The order-k Delaunay triangulations remained the only triangulations that

verify the recursive definition of a centroid triangulation until we found our new

type of triangulations. Moreover, we know that both types of triangulations have
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the same number of vertices. A natural question is to know if all order-k centroid

triangulations of V have the same number of vertices. As we have seen in Chapter

2, all centroid triangulations are composed of two types of triangles: Territory

triangles and domain triangles. In the last section of this chapter, we show that

it suffices that the domain triangles of an order-k centroid triangulation of V

form convex subsets so that this triangulation has the same number of vertices as

the order-k Delaunay triangulation of V , that is, 2kn− n− k2 + 1−∑k−1
i=1 γ

i(V )

vertices (where γi(V ) is the number of i-sets of V ).

6.2 Convex inclusion chains and centroid trian-

gulations

We recall first, some of the notations used in Chapter 4, and we extend them.

Let V = (v1, . . . , vn) be a convex inclusion chain of V = {v1, . . . , vn}. For

every integer i ∈ {1, . . . , n}, we note Vi = {v1, . . . , vi} and Vi = (v1, . . . , vi).

From the results of Chapter 3, if i > k + 1, the edges of gk(Vi−1) that are

not edges of gk(Vi) form a non empty polygonal line, which we will note Dk
i (see

Figure 6.1). In the case where i = k + 1, gk(Vi−1) is reduced to a unique point

and in this case we set Dk
i = gk(Vi−1).

Figure 6.1: The polygonal line D4
i = g(T1) . . . g(T4) and the polygonal line C4i =

(C4i,1, . . . C4i,4).

In the same way, the edges of gk(Vi) that are not edges of g
k(Vi−1) form a non

empty polygonal line denoted by Cki . By noting g(T1), . . . , g(Tm), the vertices of

Dk
i , Cki is decomposed into a sequence (Cki,1, . . . , Cki,m) of m polygonal lines that
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are disjoint (except at their ends) and which may be reduced to points. For every

j ∈ {1, . . . ,m}, the vertices of Cki,j are the vertices g(T ) of Cki for which there

exits an oriented straight line ∆ such that g(T ) and g(Tj) are //∆-separable from

gk(Vi+1) and of gk(Vi) respectively.

From Remark 4.9, Cki,1 is not reduced to a point and its first edge is the

unique edge of Cki of the form eP (s, vi). In the same way, the last edge of Cki,m is

the unique edge of Cki of the form eP ′(vi, t
′). From now on, we note by C ′ki,1 the

line Cki,1 without its first edge and by C ′ki,m the line Cki,m without its last edge. For

every j ∈ {2, . . . ,m− 1}, we note C ′ki,j = Cki,j. Each of these lines can be reduced

to a single point. The line C ′ki = (C ′ki,1, . . . , C
′k
i,m) is then composed of the edges

eP ′′(s′′, t′′) of Cki with vi ∈ P ′′. If no such edge exists, C ′ki is then reduced to a

unique point (see Figure 6.2).

Figure 6.2: The polygonal line C ′4i = (C ′4i,1, . . . C ′4i,4).

Remark 6.1. Note that from Lemma 3.5, eP ′′(s′′, t′′) is an edge of C ′ki , if and
only if, eP ′′\{vi}(s

′′, t′′) is an edge of Dk−1
i . Now, from Proposition 3.8, if k > 1,

Dk−1
i contains at least one edge. Hence, the same holds for C ′ki .

Lemma 6.2. (i) For every vertex g(Tj) of Dk
i and for every vertex g(T ) of C ′ki,j,

there exists a point s of Tj such that T = (Tj \ {s}) ∪ {vi}.
(ii) Moreover, the segment g(Tj)g(T ) is included in gk(Vi) \ gk(Vi−1).

Proof. (i) By definition, for every vertex g(T ) of C ′ki,j, there exist two parallel

straight lines ∆ and ∆′, with the same direction, such that ∆̊− ∩ Vi−1 = Tj and

∆̊′− ∩ (Vi−1 ∪ {vi}) = T . Hence, since vi ∈ T , there is exactly one point s of Vi−1

between ∆ and ∆′. It results that T = (Tj \ {s}) ∪ {vi} (see Figure 6.3).
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Figure 6.3: The vertices g(T ) and g(Tj) are such that T = (Tj \ {s}) ∪ {vi}.

(ii) Let ∆′′ be the straight line parallel to ∆, with the same direction as ∆

and that passes through g(Tj). Since vi ∈ ∆̊′− and s ∈ ∆̊′+, g(T ) = g((Tj \{s})∪
{vi}) ∈ ∆̊′′−, from Lemma 2.9.

In the same way, every subset U of Vi−1 with |U | = k is of the form U =

(Tj \ A) ∪ B with A ⊂ ∆̊− and B ⊂ ∆̊+. From Lemma 2.9, we then have

g(U) ∈ ∆′′+. It results that gk(Vi−1) ⊂ ∆′′+ and that the segment g(Tj)g(T )

intersects gk(Vi−1) only in g(Tj). In addition, since g(Tj) and g(T ) belong to

gk(Vi), g(Tj)g(T ) ⊂ gk(Vi) \ gk(Vi−1) (see Figure 6.4).

Figure 6.4: The edge g(Tj)g(T ) is inside g4(Vi) \ g4(Vi−1).
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From now on, we note by Eki the set of segments g(Tj)g(T ) obtained using the

preceding lemma when j runs over {1, . . . ,m} (see Figure 6.5).

Figure 6.5: The set E4i of segments g(Tj)g(T ) obtained using Lemma 6.2

Remark 6.3. By definition, the line segment that links g(T1) to the first vertex

g(T ) of C ′ki,1 is the first edge of Cki . If ∆ is the oriented straight line spanned

by the oriented edge g(T1)g(T ), g(T1) is //∆-separable from gk(Vi−1). By slightly

rotating ∆ in the positive direction, we get an oriented line ∆′ such that g(T1)

is //∆′-separable from gk(Vi−1) and g(T ) is //∆′-separable from gk(Vi). It results

that g(T1)g(T ) is an edge of Eki .
In the same way, the line segment that links the last vertex of C ′ki,m to g(Tm) is

an edge of Cki and an edge of Eki at the same time. The boundary of gk(Vi)\gk(Vi−1)

is then made of the edges of Dk
i , of the edges of C ′ki , and of two edges of Eki . Note

that, when k = 1 and i = 2, these two edges are geometrically the same since Dk
i

and C ′ki are reduced to points. gk(Vi)\gk(Vi−1) is then reduced to a single segment.

Lemma 6.4. (i) The line segments of Eki induce a triangulation of gk(Vi) \ gk(Vi−1).

(ii) The triangles of this triangulation are:

• the triangles g(Tj)g(T )g(T
′), where g(Tj) is a vertex of Dk

i and where

g(T )g(T ′) is an edge of C ′ki,j,

• the triangles g(Tj)g(Tj+1)g(T ), where g(Tj)g(Tj+1) is an edge of Dk
i and

where g(T ) is the common vertex of C ′ki,j and C ′ki,j+1.

The first triangles are domain triangles and the second ones are territory

triangles.
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Proof. (i.1) Let us show first that the segments of Eki are pairwise disjoint (except

at their endpoints). Let g(Tj) and g(Tj′) be two vertices of Dk
i , g(T ) a vertex

of C ′ki,j, and g(T ′) a vertex of C ′ki,j′ such that we do not have j = j′ and T = T ′

simultaneously.

If j = j′, g(T ) and g(T ′) are two distinct vertices of gk(Vi). Therefore,
˚g(Tj)g(T ) and ˚g(Tj′)g(T ′) are disjoint.

If j 6= j′, we can suppose that, within a permutation of j and j′, j < j′, i.e.

g(Tj) precedes g(Tj′) on Dk
i . In this case, from Corollary 4.6, Cki,j precedes Cki,j′

on Cki and both of these lines have at most one common vertex. Since C ′ki,j ⊆ Cki,j
and C ′ki,j′ ⊆ Cki,j′ , it results that ˚g(Tj)g(T ) and ˚g(Tj′)g(T ′) are disjoint.

(i.2) When gk(Vi) \ gk(Vi−1) is reduced to a single segment, this segment

belongs to Eki , from Remark 6.3. Otherwise, the boundary of gk(Vi) \ gk(Vi−1)

is made of the edges of Dk
i and of C ′ki and of two edges of Eki . Since every line

segment of Eki links a point of Dk
i to a point of C ′ki , the boundary Γ of every

connected component of ( ˚gk(Vi) \ gk(Vi−1)) \ Eki is also composed of edges of Dk
i ,

of C ′ki and of exactly two edges of Eki . If Γ contains an edge g(T )g(T ′) of C ′ki , then
from Corollary 4.6, there exists one and only one vertex g(Tj) of Dk

i such that

g(T )g(T ′) is an edge of C ′ki,j. By definition, the edges g(T )g(Tj) and g(T
′)g(Tj)

belong then to Eki and Γ is the triangle g(T )g(T ′)g(Tj). In the same way, if Γ

contains an edge g(Tj)g(Tj+1) of Dk
i , then from Corollary 4.6, Cki,j and Cki,j+1 have

a vertex g(T ) in common. By definition, g(Tj)g(T ) and g(Tj+1)g(T ) are also line

segments of Eki then, and Γ is the triangle g(Tj)g(Tj+1)g(T ).

It results that every connected component of ( ˚gk(Vi)\gk(Vi−1))\Eki is a triangle

and therefore, Eki induces a triangulation of gk(Vi) \ gk(Vi−1).

(ii) From the proof of (i.2), the triangulation induced by Eki admits exactly two

types of triangles: The first type of triangles is of the form γ = g(T )g(T ′)g(Tj),

where g(T )g(T ′) is an edge of C ′ki,j. From Lemma 6.2, there exist two points s

and s′ of Tj such that T = (Tj \{s})∪{vi} and T ′ = (Tj \{s′})∪{vi}. By setting

P = Tj \{s, s′}, γ is the domain triangle g(P ∪{s, vi})g(P ∪{s′, vi})g(P ∪{s, s′}).
The second type of triangles is of the form γ = g(Tj)g(Tj+1)g(T ), where g(T )

is the common vertex of C ′ki,j and C ′ki,j+1. From Lemma 6.2, there exist s ∈ Tj

and s′ ∈ Tj+1 such that Tj = (T \ {vi}) ∪ {s} and Tj+1 = (T \ {vi}) ∪ {s′}. By

setting P = T \ {vi}, γ is the territory triangle g(P ∪ {s})g(P ∪ {s′})g(P ∪ {vi})
(see Figure 6.6).

Proposition 6.5. For all the integers i of {k + 1, . . . , n}, the set of edges of

the k-set polygons gk(Vi) and of the sets Eki form a k-neighbor triangulation of V

whose vertices are determined by the set of k-sets of the convex inclusion chain

(v1, . . . , vn).
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Figure 6.6: The domain triangles (in gray) and the territory triangles (in white)

once g4(Vi) \ g4(Vi−1) is triangulated

Proof. The k-set polygon gk(Vk) is reduced to a unique point. From Lemma 6.4,

if i ∈ {k + 1, . . . , n}, Eki induces a triangulation of gk(Vi) \ gk(Vi−1). It results

that, when i runs over {k + 1, . . . , n}, the set of edges of all the gk(Vi) and of all

the Eki forms a triangulation T of gk(Vn) = gk(V ) (see Figure 6.7).

Moreover, from Proposition 2.12, every edge of gk(Vi) is of the form g(T )g(T ′),

with |T ∩ T ′| = k − 1. From Lemma 6.2, the same holds for the edges of Eki .
Since the vertices of T are the vertices of all the k-set polygons gk(Vi), for

i ∈ {k, . . . , n}, then from Lemma 3.11, these vertices are the centroids of the

k-sets of the convex inclusion chain (v1, . . . , vn). Also from Lemma 3.11, these

centroids are pairwise disjoint. It results that T is a k-neighbor triangulation of

V whose vertices are determined by the k-sets of (v1, . . . , vn).

For every convex inclusion chain V of V , the triangulation defined by Propo-

sition 6.5 is noted by T k(V). In the particular case where k = n, we note

T n(V) = gn(V ) = g(V ).

We show now that T k(V) is an order-k triangulation of V as defined in Chapter

2, that is, it can be obtained from a triangulation of V after k − 1 applications

of the order-k triangulation construction algorithm. For every set V of n points,

we call sequence of centroid triangulations of V , every sequence (A1, . . . ,An) of

centroid triangulations of V such that A1 is a triangulation of V and, for every

integer i ∈ {2, . . . , n}, Ai is obtained from Ai−1 using the order-k triangulation

construction algorithm. Recall that An = gn(V ) is reduced to the unique point

g(V ).
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Figure 6.7: The 4-neighbor triangulation determined by the k-sets of the convex

inclusion chain (v1, . . . , v7)

Theorem 6.6. For every convex inclusion chain V = (v1, . . . , vn) of V , (T 1(V),
. . . , T n(V)) is a sequence of centroid triangulations of V .

Proof. The set V1 = {v1} admits a unique convex inclusion chain V1 = (v1). The

triangulation T 1(V1) is reduced to the point v1 and (T 1(V1)) is an (elementary)

sequence of centroid triangulations of V1.

Now, let i be an integer of {2, . . . , n} and Vi−1 be the convex inclusion chain

(v1, . . . , vi−1) of Vi−1 = {v1, . . . , vi−1}. Suppose that the following induction hy-

pothesis holds: (T 1(Vi−1), . . . , T i−1(Vi−1)) is a sequence of centroid triangula-

tions of Vi−1. We show now that if Vi is the convex inclusion chain (v1, . . . , vi) of

Vi = {v1, . . . , vi} then (T 1(Vi), . . . , T i(Vi)) is also a sequence of centroid triangu-

lations of Vi. From Proposition 6.5, T 1(Vi) is a triangulation of Vi and is then the

first element of a centroid triangulation sequence of Vi. Suppose also that this

second induction hypothesis holds: For an integer k ≤ i, (T 1(Vi), . . . , T k−1(Vi))
is the beginning of a centroid triangulation sequence of Vi.

If k = i, by definition, T k(Vi) is reduced to the unique point gk(V ) = g(V ).

Therefore, (T 1(Vi), . . . , T k(Vi)) is a centroid triangulation sequence of Vi.

We show now, that when k < i, T k(Vi) can be obtained from T k−1(Vi) using
the order-k triangulation construction algorithm.

By construction, T k(Vi) is the union of T k(Vi−1) and of T k(Vi) \ T k(Vi−1).

(i) From the first induction basis, T k(Vi−1) is obtained from T k−1(Vi−1) us-

ing the order-k triangulation construction algorithm. In particular, the domain

triangles of T k(Vi−1) are obtained from the territory triangles of T k−1(Vi−1) by

the first step of the order-k triangulation construction algorithm.
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(ii) From Lemma 6.4, every domain triangle of T k(Vi) \ T k(Vi−1) has one and

only one edge on C ′ki . Conversely, every edge of C ′ki is an edge of such a triangle.

Moreover, from Lemma 6.2, these triangles are of the form g(P ∪ {s, s′})g(P ∪
{vi, s})g(P ∪{vi, s′}), where g(P ∪{vi, s})g(P ∪{vi, s′}) is the edge on C

′k
i . Now,

as recalled in Remark 6.1, g(P ∪{vi, s})g(P ∪{vi, s′}) is an edge of C ′ki if, and only

if, g(P ∪ {s})g(P ∪ {s′}) is an edge of Dk−1
i . Moreover, from Lemma 6.4, every

territory triangle of T k−1(Vi) \ T k−1(Vi−1) has one, and only one, edge on Dk−1
i ,

and every edge of Dk−1
i is an edge of such a triangle. From Lemma 6.2, g(P ∪{vi})

is then the third vertex of the territory triangle that has g(P∪{s})g(P∪{s′}) as an
edge. It results that g(P ∪{s, s′})g(P ∪{vi, s})g(P ∪{vi, s′}) is a domain triangle

of T k(Vi) \ T k(Vi−1) if, and only if, g(P ∪{s})g(P ∪{s′})g(P ∪{vi}) is a territory

triangle of T k−1(Vi) \ T k−1(Vi−1). The domain triangles of T k(Vi) \ T k(Vi−1) can

be obtained then from the territory triangles of T k−1(Vi) \ T k−1(Vi−1) in the first

step of the order-k triangulation construction algorithm.

(iii) It results from (i) and (ii) that all the domain triangles of T k(Vi) are

obtained from the territory triangles of T k−1(Vi) in the first step of the order-k

triangulation construction algorithm.

(iv) Let us show now that each vertex of T k(Vi) is a vertex of a domain

triangle of T k(Vi). By construction, the vertices of T k(Vi) are the vertex g(Vk)

and, for every h ∈ {k + 1, . . . , i}, the vertices of C ′kh. Since g(Vk) is also a vertex

of T k(Vk+1) and since all the triangles of T k(Vk+1) are domain triangles from

Lemma 6.2, then g(Vk) is a vertex of a domain triangle of T k(Vi). From Remark

6.1, for every h ∈ {k + 1, . . . , i}, C ′kh is not reduced to a unique point. Every

vertex of C ′kh is then the endpoint of an edge of C ′kh. It follows, from Lemma 6.4,

that every vertex of C ′kh is a vertex of a domain triangle of T k(Vh) and, therefore,
of T k(Vi).

(v) By noting τ , the set of domain triangles of T k(Vi), the territory triangles

of T k(Vi) form then a constrained triangulation of gk(Vi) \ τ and can be obtained

using the second step of the order-k triangulation construction algorithm.

(vi) It results from (iii) and from (v) that T k(Vi) can be obtained from

T k(Vi−1) using the order-k triangulation construction algorithm. It follows,

from the second induction hypothesis that (T 1(Vi), . . . , T k(Vi)) is the begin-

ning of a centroid triangulation sequence of Vi, for every k ≤ i. It results

that (T 1(Vi), . . . , T i(Vi)) is a centroid triangulation sequence of Vi, for every

i ∈ {2, . . . , n}. (T 1(V), . . . , T n(V)) is then a centroid triangulation sequence of

V .
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6.3 Construction of a centroid triangulation

Now we give an algorithm and the associated data structure for building the

centroid triangulation T k(V), for some particular convex inclusion chain V . This
algorithm is an extended version of the algorithm given in Chapter 4.

6.3.1 Data structure

To store a centroid triangulation we will use a map as data structure. This map

is a graph where the edges are ordered around each vertex in a circular list based

on the trigonometric order they appear in.

Similarly to Chapter 4, every edge in this triangulation is of the form g(P ∪
{s})g(P ∪ {t}). It suffices to store in each edge in the data structure references

to the points s and t. Also the set T of one vertex g(T ) of this triangulation

is stored and all the other vertices can be found when walking along the edges

of this triangulation, starting at the vertex g(T ). Here we will chose for g(T ) a

vertex of the boundary of the triangulation.

Clearly, the algorithms of Chapter 4, can be adapted easily to work with k-set

polygons stored using this map.

6.3.2 Algorithm

As in Chapter 4, let V = (v1, . . . , vn) be a convex inclusion chain of V that forms a

simple polygonal line. The functions k_set_polygon::initialize(v1, . . . , vk+1)

and k_set_polygon::build_ci(vi) of Chapter 4 can be used as such to construct

the subset of the edges of T k(V) that are also the edges of the k-set polygons

gk(Vi), i ∈ {k + 1, . . . , n}. It remains to show how to construct the edges Eki , for
all i ∈ {k + 1, . . . , n}.

Since gk(Vk) is reduced to the unique vertex g(Vk), which is also a vertex

of gk(Vk+1), constructing Ekk+1 comes from Lemma 6.2, to triangulate gk(Vk+1)

by connecting g(Vk) to all the other vertices of gk(Vk+1). This can be done

while constructing gk(Vk+1) in function initialize(v1, . . . , vk+1). For all i ∈
{k + 2, . . . , n}, the edges of Eki link one vertex of C ′ki to a vertex of Dk

i . More

precisely, the edges of Eki are the edges that link the vertices of C ′ki,j to the vertex

g(Tj) of Dk
i , when j runs over {1, . . . ,m}.

Now, the set Tj and the vertex g(Tj) precisely are used by the function

build_ci(vi) to build the line part C ′ki,j of Cki . It suffices then, while build-

ing each vertex of C ′ki,j in the function build_ci(vi), to create a link between

this vertex and the vertex g(Tj).
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Theorem 6.7. The given algorithm constructs T k(V) in O(k(n−k) log2 k) time.

Proof. The edges of T k(V) that are edges of the k-set polygons gk(Vi), i ∈ {k +
2, . . . , n}, are built by the algorithm k_set_polygon::build whose complexity

is in O(k(n− k) log2 k), from Theorem 4.16.

For each created vertex of a k-set polygon gk(Vi), i ∈ {k + 1, . . . , n}, one and

only one edge of Eki is created in O(1) time. The construction time for all the

edges of Eki is then proportional to the number of k-sets of the convex inclusion

chain V , that is O(k(n− k)) from Theorem 3.12.

Given a set V of n points, a particular convex inclusion chain of V can be

obtained by sorting all the points of V according to their x-coordinates in the

increasing order. It then results:

Corollary 6.8. Given a set V of n points, a particular order-k centroid triangu-

lation of V can be obtained in O(n log n+ k(n− k) log2 k) time.

6.4 Centroid triangulation size

Let V be a set of n points and let (T 1, . . . , T n) be a centroid triangulation se-

quence of V .

If, for some subset T of k+1 ≥ 2 points of V , the set composed of the edges of

T k of the form g(T \{s})g(T \{t}) and of the domain triangles of T k of the form

g(T \ {r})g(T \ {s})g(T \ {t}) is not empty, then this set is called the domain of

T in T k.

Note that every edge and every domain triangle of T k belongs to one and

only one domain, since a unique set of k points is associated to each vertex of

T k. Moreover, the edges of a domain triangle belong to the same domain as the

triangle. We claim now the following conjecture:

Domain convexity conjecture. Every domain is either reduced to a line

segment or is a triangulation of a convex polygon.

This conjecture results from various experimentations that we have done.

Note that the result of this conjecture has already been proved in the case of

order-k Delaunay triangulations [Sch95].

We show now that this result is sufficient to find the size of the centroid

triangulations.

Lemma 6.9. For every integer k ∈ {2, . . . , n}, if the subset T of k points admits

a domain in T k−1 then g(T ) is a vertex of T k.
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Proof. In the particular case where k = n, from Property 2.22, T k−1 is made of

a unique domain and this domain is necessarily the domain of V . On the other

hand, g(V ) is the unique vertex of T k = gn(V ).

We deal now with the general case where k ∈ {2, . . . , n− 1}.
(i) Let us show first that T k−1 admits at least two distinct domains.

Let eP (s, t) be an edge of gk−1(V ). Since |(s̊t)− ∩ V | = |P | = k − 2 and since

k < n, (st)+ contains at least one point of V . Moreover, at least one of the points

of V ∩ (st)+ is a vertex of conv(V ). Let r be such a point. There exists then a

point q of V \ {r} such that |V ∩ (rq)−| = k − 2. It follows that eV ∩(rq)−(r, q) is

an edge of gk−1(V ). Since r /∈ P , this edge does not belong to the same domain

as eP (s, t).

(ii) Let T be a subset of k points of V that admits a domain in T k−1. Since

the edges of a domain triangle belong to the same domain as the triangle and

since every edge belongs to a unique domain, an edge cannot be common to two

triangles belonging to two distinct domains. Moreover, from (i), T k−1 admits at

least two distinct domains. It results that the domain of T admits at least one

edge that is also an edge of a territory triangle of T k−1. This edge is of the form

g(T \ {s})g(T \ {t}) and the third vertex of the territory triangle is of the form

g(T \{s, t}∪{r}). By applying the order-k triangulation construction algorithm,

g(T )g((T \ {t})∪ {r})g((T \ {s})∪ {r}) is then a domain triangle of T k. g(T ) is

then a vertex of T k.

Lemma 6.10. If the domain convexity conjecture is verified then, for every k ∈
{2, . . . , n}, if g(T ) is an extreme point of gk(V ) then T admits a domain in T k−1.

Proof. (i) For every l ∈ {1, . . . , k−1}, let Gl be the subgraph of T l whose vertices

are the centroids of subsets of l points of T . Let us show first that Gl is connected
(see Figures 6.8 and 6.9).

Since g(T ) is an extreme point of gk(V ), there exists a straight line ∆ that

strictly separates T from V \ T . Within a rotation of V , we can suppose that ∆

is horizontal, is not parallel to any straight line that passes through two points of

V , and that T is above ∆. If P is the set of l points of T of maximal ordinates,

then from Lemma 2.10, g(P ) is the unique vertex of gl(V ) with maximal ordinate.

Therefore, it is also the unique vertex of maximal ordinate of Gl. Every other

vertex g(R) of Gl admits then at least one neighbor g(R′) in T l whose ordinate is

greater than the one of g(R). From the properties of the edges of T l, there exist

r ∈ R \ R′ and r′ ∈ R′ \ R such that R′ = (R \ {r}) ∪ {r′} and so g(R)g(R′) is

the image of rr′ by an homothety of ratio 1/l. Hence, the abscissa of r′ is greater

than the abscissa of r, which proves that g(R′) is also a vertex of Gl. Gl is then
a connected graph.
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Figure 6.8: A subset of T 1 with k = 6 and T = {1, . . . , 6}. The graph G1 (full

lines) admits 6 vertices, 7 edges, and 2 territory triangles

Figure 6.9: A subset of an order-2 triangulation T 2 corresponding to the trian-

gulation T 1 of Figure 6.8. The graph G2 (full lines) contains 8 vertices, 10 edges,

2 domain triangles (gray) corresponding to the territory triangles of T 1, and 2

territory triangles (white)

(ii) Let us show now by contradiction that every face of Gl is a face of T l.

Suppose that Γ is a subset of the plane bounded by a face of Gl that is not

a triangle of T l. There exists then an edge of T l that is not an edge of Gl,
that has a vertex g(T ) of Γ as an end point, and that is inside Γ. The other

endpoint g(Q1) of this edge does not belong then to Gl and is inside Γ. Now,

every vertex of T l other than the vertices of minimal ordinate, admits a neighbor

in T l whose ordinate is less than its own. It results that there exists a path

L = (g(Q1), g(Q2), . . . , g(Qm)) that links g(Q1) to one of the vertices g(Qm) of

T l with minimal ordinate and such that, ∀i ∈ {2, . . . ,m}, the ordinate of g(Qi)

is less than the one of g(Qi−1). Since two edges of T l can only intersect at their

endpoints, Γ and L have one vertex g(Qi) in common, with i ∈ {2, . . . ,m}. This
vertex belongs to Gl as all the vertices of Γ. Since g(Qi−1) has a greater abscissa

than g(Qi), it results from the proof of (i) that g(Qi−1) belongs also to Gl. In the
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same way, g(Qi−2), . . . , g(Q1) belong to Gl, which is impossible. It results that

all the faces of Gl are triangles of T l.

(iii) We show now that Gk−1 contains at least one edge. For every l ∈
{1, . . . , k}, let gl, el, tlter, and tldom be the respective numbers of vertices, of edges,

of territory triangles, and of domain triangles of T l that are in Gl. Since Gl is a
planar graph and since, from (i), all of its faces are triangles of T l, we have from

Euler’s relation:

gl = el − (tlter + tldom) + 1 (6.1)

If P is a subset of l + 1 points of T that admits a domain in T l then, from

the definition of domains and of Gl, the edges and triangles of the domain of

P are edges and triangles of Gl. Let elP and tlP be the numbers of these edges

and triangles. Since the domain of T is either reduced to a line segment or is a

triangulation of a convex polygon from the domain convexity conjecture, we have

for every l ∈ {1, . . . , k − 1},
elP = 2tlP + 1

Now, every edge and every domain triangle of T l belongs to one, and only one,

domain. By summing the previous relation over the set of domains of T l that

belong to Gl, we find that the number of domains in Gl is equal to el − 2tldom.

Now, from Lemma 6.9, if P admits a domain in Gl then g(P ) is a vertex of T l+1

and, since P ⊆ T , g(P ) is also a vertex of Gl+1. Hence:

gl+1 ≥ el − 2tldom (6.2)

From (6.1) and (6.2) it results that:

gl+1 ≥ gl + tlter − tldom − 1

From Conjecture 2.25, there exists a bijection between the territory triangles

of T l and the domain triangles of T l+1. Moreover, from the definition of Gl, a
territory triangle belongs to Gl if, and only if, the domain triangle to which it is

associated belongs to Gl+1. Hence, tlter = tl+1
dom and the previous relation becomes,

for every l ∈ {1, . . . , k − 1},

gl+1 ≥ gl + tl+1
dom − 1

We then have:

gk−1 ≥ gk−2 + tk−1
dom − tk−2

dom − 1

gk−2 ≥ gk−3 + tk−2
dom − tk−3

dom − 1

...

g2 ≥ g1 + t2dom − t1dom − 1

103



By summing these equations we obtain:

gk−1 ≥ tk−1
dom + g1 − t1dom − (k − 2)

Since T 1 is a triangulation of V , g1 is the number k of points of T . Moreover, from

Property 2.22, T 1 does not admit any domain triangle, i.e., t1dom = 0. Hence:

gk−1 ≥ tk−1
dom + 2 ≥ 2

The graph Gk−1 admits then at least two vertices and, since it is connected from

(i), it admits at least one edge. From the definition of Gk−1, this edge is of the

form g(T \ {s})g(T \ {t}) and is thus an edge of the domain of T in T k−1.

Proposition 6.11. If the domain convexity conjecture is verified then, for every

k ∈ {2, . . . , n}, g(T ) is a vertex of T k if, and only if, T admits a domain in T k−1.

Proof. (i) From Lemma 6.10, if g(T ) is an extreme point of gk(V ) then T admits

a domain in T k−1. By construction, every other vertex g(T ) of T k is obtained in

the first step of the order-k triangulation construction algorithm. g(T ) is then the

vertex of a domain triangle of T k of the form g(T )g((T \{t})∪{r})g((T \{s})∪{r})
that has been generated from a territory triangle g(T \ {s})g(T \ {t})g((T \
{s, t}) ∪ {r}) of T k−1. It results that the domain of T contains at least the edge

g(T \ {s})g(T \ {t}) in T k−1.

(ii) Conversely, from Lemma 6.9, if T admits a domain in T k−1 then g(T ) is

a vertex of T k.

Theorem 6.12. If the domain convexity conjecture is verified then, for every

k ∈ {1, . . . , n − 1}, every order-k triangulation of V admits 2kn − n − k2 +

1 −∑k−1
i=1 γ

i(V ) vertices (where γi(V ) is the number of i-sets of V and where
∑0

i=1 = 0).

Proof. Let (T 1, . . . , T n) be a sequence of centroid triangulations of V and, for

every k ∈ {1, . . . , n}, let gk, ek, tk, tkter, and tkdom the numbers of vertices, of edges,

of triangles, of territory triangles, and of domain triangles of T k respectively.

Since, for every k ∈ {1, . . . , n − 1}, T k is a triangulation of gk(V ), each edge of

T k that is (resp. is not) an edge of gk(V ) is adjacent to exactly two (resp. one)

triangle(s) of T k. Since γk(V ) is also the number of vertices of gk(V ), we have:

3tk = 2ek − γk(V )

Moreover, from Euler’s relation:

gk = ek − tk + 1

104



It results from the two previous relations that, for every k ∈ {1, . . . , n− 1},

ek = 3gk − γk(V )− 3 (6.4)

tk = 2gk − γk(V )− 2 (6.5)

For every subset T of k + 1 ≥ 2 points of V that admits a domain in T k, let ekT
and tkT be the numbers of edges and of triangles of this domain. Since, from the

domain convexity conjecture, the domain of T is either reduced to a line segment

or is a triangulation of a convex polygon, we have, for every k ∈ {1, . . . , n− 1},

ekT = 2tkT + 1 (6.6)

Now, every edge and every domain triangle of T k belongs to one, and only one,

domain. Moreover, from Proposition 6.11, the number of domains of T k is equal

to the number of vertices of T k+1.

By summing relation (6.6) over the set of domains of T k we then obtain, for

every k ∈ {1, . . . , n− 1},
ek = 2tkdom + gk+1

Hence, for every k ∈ {2, . . . , n− 1},

ek + ek−1 = 2(tkdom + tk−1
dom) + gk+1 + gk

Now, by construction and from Conjecture 2.25,

tkdom = tk−1
ter

Since on the other hand,

tk−1 = tk−1
ter + tk−1

dom

it results that, for every k ∈ {2, . . . , n− 2},

ek + ek−1 = 2tk−1 + gk+1 + gk (6.7)

Using relations (6.4), (6.5), (6.7) we obtain then, for every k ∈ {2, . . . , n− 2},

gk+1 − 2gk + gk−1 = −γk(V ) + γk−1(V )− 2

We can resolve this equation in the following way:

gk+1 − 2gk + gk−1 = −γk(V ) + γk−1(V )− 2

gk − 2gk−1 + gk−2 = −γk−1(V ) + γk−2(V )− 2

gk−1 − 2gk−2 + gk−3 = −γk−2(V ) + γk−3(V )− 2

...

g4 − 2g3 + g2 = −γ3(V ) + γ2(V )− 2

g3 − 2g2 + g1 = −γ2(V )− γ1(V )− 2
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By multiplying the second equation by 2, the third by 3, . . . , the last one by

k − 1, and by summing all of them we obtain:

gk+1− kg2+(k− 1)g1 = −γk(V )− γk−1(V ) . . .− γ2(V )+ (k− 1)γ1(V )− k(k− 1)

(6.9)

Now, the number of vertices of an order-1 triangulation is equal to the number

of points of V , and, from Proposition 2.23, the number of vertices of an order-2

triangulation is equal to the number of edges of an order-1 triangulation. Thus,

by using relation (6.4):

g1 = n (6.10)

g2 = e1 = 3n− γ1(V )− 3 (6.11)

By replacing these values in (6.9), we obtain, for every k ∈ {2, . . . , n− 1},

gk+1 = 2(k + 1)n− n− (k + 1)2 + 1−
k

∑

i=1

γi(V )

From (6.10) and (6.11) the relation still holds for k = 0 and k = 1, by setting
∑0

i=1 = 0.
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Chapter 7

Conclusion

The first result in this dissertation is the finding of a new invariant of the number

of k-sets of a set of points V in the plane. To obtain this result, we have introduced

the notion of convex inclusion chain of V , that is an ordering of the points of V

such that every point is outside the convex hull of the points that precede it. We

have shown that the total number of k-sets of all the initial subsequences of a

convex inclusion chain of V is an invariant of V , that is, it does not depend on

the choice of the convex inclusion chain. Moreover, this number of k-sets is equal

to the number of order-k Voronoi regions of V .

This result leads to compute the size of an order-k Voronoi diagram using

a completely different method than the usual one. We can hope then, that the

study of convex inclusion chains in a higher dimensions (> 2) can help us resolving

the open problem of the size of order-k Voronoi diagrams in higher dimensions.

The previous result on the number of k-sets was obtained using the k-set

polygon of the considered point set. This k-set polygon is the convex hull of the

centroids of all k-point subsets of V . Moreover, we have extended two classical

convex hull construction algorithms to the construction of the k-set polygon: An

incremental algorithm and a divide and conquer algorithm.

The incremental algorithm was studied in the case where the points were

added in the order they appear in a convex inclusion chain; that is, the new

added point is separable by a straight line from the previously inserted points.

Moreover, this algorithm was efficiently implemented when the convex inclusion

chain formed a simple polygonal line.

In the divide and conquer algorithm, the set of points was divided into two left

and right subsets, not necessarily disjoint, but such that the points that do not

belong to one of the subsets are separable from the others by a vertical straight

line.

107



The straight line separability constraint imposed in both algorithms put us in

the situation where the edges to remove from a k-set polygon form a polygonal

line. This property is not verified in the general case.

Now, it would be interesting to extend other classical convex hull construction

algorithms to the construction of the k-set polygon; in particular, the Quick Hull

algorithm known to be the most efficient algorithm in practice. However, the

general case for most of these algorithms must be studied, that is, the case where

a point appears inside the convex hull of the already processed points.

In the complexity study of our divide and conquer algorithm, a supplementary

log(n/k) factor appeared in comparison to the best known k-set finder algorithm.

This factor comes from an overestimation while analyzing the complexity. We

think that this factor can be removed by a refined analysis of the number of edges

created by the algorithm.

In the last chapter, we tried to understand why the number of k-sets of a

convex inclusion chain of a set of points in the plane is equal to the number of

order-k Voronoi regions of the same point set. To this aim, we used the dual of the

order-k Voronoi diagram, called order-k Delaunay triangulation, whose vertices

are the centroids of the subsets of k points that define the order-k Voronoi regions.

This triangulation belongs to a family of triangulations called order-k centroid

triangulations. An order-k centroid triangulation is defined in a constructive way

from an order-(k − 1) centroid triangulation (where the order-1 triangulation is

an arbitrary triangulation of the considered point set).

We have shown that the centroids of the k-sets of a convex inclusion chain of

a set V of points in the plane are the vertices of an order-k centroid triangulation

of V , thereby establishing a link between the k-sets of a convex inclusion chain

and the order-k Voronoi regions. To complete the argument, it remains to prove

that all order-k centroid triangulations have the same number of vertices. The

problem is that, for k > 3, we do not know which are the other triangulations

that belong to the family of centroid triangulations. In fact, there is no proof

showing that the method that builds an order-k triangulation from an order-

(k − 1) triangulation works for k > 3, for triangulations other than the order-k

Delaunay and the triangulations obtained from the convex inclusion chains as

defined in this dissertation.

However, we were successful in giving a sufficient condition that needs to be

verified by all centroid triangulations so they all have the same number of vertices:

All their triangles that are defined using the same k+1 points must form a convex

set.

The difficulty in proving the existence of other centroid triangulations comes

from the recursive definition of these triangulations. Thereby, the existence of an
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order-k centroid triangulation depends on the existence of a sequence of order-i

centroid triangulations, for every i < k. We deem it necessary to find a direct

geometrical characterization of an order-k centroid triangulation that does not

depend on the lower order triangulations. The practical experimentations that we

have made seem to indicate that every vertex of an order-k centroid triangulation

of V is the centroid of a subset of k points of V that is separable from the rest of

the points of V by a convex curve.

Finally, we have proved that by pre-sorting the set of points, it is possible

to construct a particular order-k centroid triangulation without constructing the

lower orders. Thus, we have obtained a more efficient algorithm than the one

deduced from the definition of the centroid triangulations.

The algorithmic question that arises now, is to know if it is possible to trans-

form an order-k centroid triangulation into an order-k Delaunay triangulation by

a sequence of local modifications (by only generating intermediate triangulations

that are centroid triangulations as well). In the case of classical triangulations

such an algorithm is called a flip algorithm. The reason that allows us to think

that such an algorithm can exist is that, as in the case of classical triangulations,

the order-k Delaunay triangulation is the projection of a convex surface of dimen-

sion 3. More precisely, the order-k Delaunay triangulation of V is the projection

in the plane of the lower part of the k-set polytope of the points of V lifted

on a 3-dimensional paraboloid. It results that the lifting of an order-k centroid

triangulation that is not Delaunay is above the lifting of the order-k Delaunay

triangulation. For a flip algorithm to work as in the case of classical triangula-

tions, it suffices then to perform local improvements that bring the lifting down,

thereby becoming closer to the order-k Delaunay triangulation.
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