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1 Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets 

Introduction

This thesis consists of two parts.

The first part deals with the uniqueness problems of meromorphic mappings under some conditions on the inverse images of divisors which was started by R. Nevanlinna [START_REF] Nevanlinna | Einige Eindeutigkeitssätze in der Theorie der meromorphen Funktionen[END_REF] in 1926. He showed that for two nonconstant meromorphic functions f and g on the complex plane C, if they have the same inverse images for five distinct values then f ≡ g, and that g is a special type of linear fractional transformation of f if they have the same inverse images counted with multiplicities for four distinct values.

In 1975, H. Fujimoto generalized Nevanlinna's results to the case of meromorphic mappings of C n into P N (C). He showed [START_REF] Fujimoto | The uniqueness problem of meromorphic maps into the complex projective space[END_REF] that for two linearly nondegenerate meromorphic mappings f and g of C into P N (C), if they have the same inverse images counted with multiplicities for 3N + 2 hyperplanes in general position in P N (C), then f ≡ g and there exists a projective linear transformation L of P N (C) onto itself such that g = L.f if they have the same inverse images counted with multiplicities for 3N +1 hyperplanes in general position in P N (C). After that, this problem has been studied

intensively by a number of mathematicans as H. Fujimoto( [START_REF] Fujimoto | The uniqueness problem of meromorphic maps into the complex projective space[END_REF], [START_REF] Fujimoto | Uniqueness problem with truncated multiplicities in value distribution theory[END_REF],...), W. Stoll([58]), L. Smiley([57]), M. Ru([55]), G. Dethloff -T. V. Tan([12], [START_REF] Dethloff | An extension of uniqueness theorems for meromorphic mappings[END_REF], [START_REF] Dethloff | Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets[END_REF]...), D. D. Thai -S.

D. Quang([63], [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF]) and so on.

Here we introduce the necessary notations to state the results.

Let f : C n -→ P N (C) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates (w 0 : • • • : w N ) on P N (C), we take a reduced representation f = (f 0 : • • • : f N ), which means that each f i is a holomorphic function on C n and

f (z) = f 0 (z) : • • • : f N (z) outside the analytic set {f 0 = • • • = f N = 0} of codimen- sion ≥ 2.
Let H be a hyperplane in P N (C) given by H = {a 0 ω 0 + ... + a N ω N = 0}, where A := (a 0 , ..., a N ) = (0, ..., 0). We set (f, H) = N i=0 a i f i . Then we can define the corresponding divisor ν (f,H) (z) which is rephrased as the intersection multiplicity v of the image of f and H at f (z).

For every z ∈ C n , we set

ν (f,H),≤k (z) = 0 if ν (f,H) (z) > k, ν (f,H) (z) if ν (f,H) (z) ≤ k, ν (f,H),>k (z) = ν (f,H) (z) if ν (f,H) (z) > k, 0 if ν (f,H) (z) ≤ k.
Take a meromorphic mapping f of C n into P N (C) which is linearly nondegenerate over C, a positive integer d, a positive integer k or k = ∞ and q hyperplanes H 1 , ...., H q in P N (C) located in general position with dim{z ∈ C n : ν (f,H i ), k (z) > 0 and ν (f,H j ), k (z) > 0} ≤ n -2 (1 ≤ i < j ≤ q), and consider the set F(f, {H j } q j=1 , k, d) of all meromorphic maps g : C n → P N (C) satisfying the conditions (a) g is linearly nondegenerate over C, (b) min (ν (f,H j ),≤k , d) = min (ν (g,H j ),≤k , d) (1 ≤ j ≤ q), (c) f (z) = g(z) on q j=1 {z ∈ C n : ν (f,H j ),≤k (z) > 0}.

When k = ∞, for brevity denote F(f, {H j } q j=1 , ∞, d) by F(f, {H j } q j=1 , d). Denote by ♯ S the cardinality of the set S.

The unicity problem of meromorphic mappings means that one gives an estimate for the cardinality of the set F(f, {H j } q j=1 , k, d). Some natural questions arise and we state the following. Question 1. How about the number of hyperplanes (or fixed targets) in P N (C) are used? Question 2. How about the truncated multiplicities (d and k)? Question 3. Whether the fixed targets (hyperplanes) can be generalized to moving targets (moving hyperplanes) or hypersurfaces?

On the question 1 and 2, we list some known results:

Smiley [57] ♯ F(f, {H i } 3N +2
i=1 , 1) = 1, Thai-Quang [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF] ♯ F(f, {H i } 3N +1 i=1 , 1) = 1, N ≥ 2, Dethloff-Tan [START_REF] Dethloff | Uniqueness theorems for meromorphic mappings with few hyperplanes[END_REF] ♯ F(f, {H i } [2.75N ] i=1

, 1) = 1 for N ≥ N 0 (where the number N 0 can be explicitly calculated) and Chen-Yan [START_REF] Chen | Uniqueness theorem of meromorphic mappings from C n into P N (C) sharing 2N + 3 hyperplanes in P N (C) regardless of multiplicities[END_REF] ♯ F(f, {H i } 2N +3 i=1 , 1) = 1.

vi When q < 2N + 3, there are some results which were given by Tan [START_REF] Tan | Uniqueness Problem of Meromorphic Mappings of C m into CP n[END_REF] and Quang [START_REF] Quang | Unicity problem of meromorphic mappings sharing few hyperplanes[END_REF], [START_REF] Quang | A finiteness theorem for meromorphic mappings sharing few hyperplanes[END_REF]. Those results lead us to the question.

What can we say about the unicity theorems with truncated multiplicities in the case where q ≤ 2N + 2?

The first purpose of this thesis is to study these problems. Firstly, we will give a new aspect for the unicity problem with q = 2N + 2, and we also study the unicity theorems with ramification of truncations.

The second purpose of this thesis is to give some answers relative to the question 3. Our results are following the results of Ru [START_REF] Ru | A uniqueness theorem with moving targets without counting multiplicity[END_REF], Dethloff-Tan [START_REF] Dethloff | Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets[END_REF], Thai-Quang [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables for moving targets[END_REF].

On the other hand, there are many interesting unicity theorems for meromorphic functions on C given by certain conditions of derivations. We would like to study the unicity problems of such type in several complex variables for fixed and moving targets.

Parallel to the development of Nevanlinna theory, the value distribution theory of the Gauss map of minimal surfaces immersed in R m was studied by many mathematicans, such as R. Osserman [START_REF] Osserman | Global properties of minimal surfaces in E 3 and E n[END_REF], S.S. Chern [START_REF] Chern | An elementary proof of the existence of isothermal parameters on a surface[END_REF], F. Xavier [START_REF] Xavier | The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere[END_REF], H. Fujimoto [START_REF] Fujimoto | On the number of exceptional values of the Gauss map of minimal surfaces[END_REF]- [START_REF] Fujimoto | On the Gauss curvature of minimal surfaces[END_REF], S. J. Kao [START_REF] Kao | On values of Gauss maps of complete minimal surfaces on annular ends[END_REF], M. Ru [START_REF] Ru | On the Gauss map of minimal surfaces immersed in R n[END_REF]- [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF] and others.

Let M now be a non-flat minimal surface in R 3 , or more precisely, a connected oriented minimal surface in R 3 . By definition, the Gauss map G of M is the map which maps each point p ∈ M to the unit normal vector G(p) ∈ S 2 of M at p.

Instead of G, we study the map g := π • G : M → C := C ∪ {∞}(= P 1 (C)) for the stereographic projection π of S 2 onto P 1 (C). By associating a holomorphic local coordinate z = u + √ -1v with each positive isothermal coordinate system (u, v), M is considered as an open Riemann surface with a conformal metric ds 2 and by the assumption of minimality of M, g is a meromorphic function on M. After that, we can generalize to the definition of Gauss map of minimal surfaces in R m . So there are many analogous results between the Gauss maps and meromorphic mappings. One of them is the small Picard theorem.

In 1965, R. Osserman [START_REF] Osserman | Global properties of minimal surfaces in E 3 and E n[END_REF] showed that the complement of the image of the Gauss map of a nonflat complete minimal surface immersed in R 3 is of logarithmic capacity zero in P 1 (C). In 1981, a remarkable improvement was given by F. Xavier [START_REF] Xavier | The Gauss map of a complete non-flat minimal surface cannot omit 7 points of the sphere[END_REF] that the Gauss map of a nonflat complete minimal surface immersed in R 3 can omit at most six points in P 1 (C). In 1988, H. Fujimoto [START_REF] Fujimoto | On the number of exceptional values of the Gauss map of minimal surfaces[END_REF] reduced the number six to four and this bound is sharp: In fact, we can see that the Gauss map of Scherk's surface omits four points in P 1 (C). In 1991, S. J. Kao [START_REF] Kao | On values of Gauss maps of complete minimal surfaces on annular ends[END_REF] showed that the Gauss map of an end of a non-flat complete minimal surface in R 3 that is conformally an annulus {z|0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions. In 2007, Jin-Ru [START_REF] Jin | Algebraic curves and the Gauss map of algebraic minimal surfaces[END_REF] generalized Kao's results for the case m > 3.

On the other hand, in 1993, M. Ru [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF] studied the Gauss map of minimal surface in R m with ramification. That are generalizations of the above-mentioned results. A natural question is that how about the Gauss map of minimal surfaces on annular ends with ramification. The last purpose of this thesis answer to this question for the case m = 3, 4. We refer to Dethloff-Ha-Thoan [START_REF] Dethloff | Ramification of Gauss map of complete minimal surfaces in R m on annular ends[END_REF] for the case m > 3. We would like to note that the aspect of results in this thesis are different from their results.

We now sketch the content of each chapter of the present thesis

In chapter 1, we study the unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets. In particular, we give a new unicity theorem for the above-mentioned first purpose of this thesis.

After that we study the unicity theorems with ramification of truncations which is an improvement of Thai-Quang's results in [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF]. The last of this chapter we give a unicity theorem of meromorphic mappings with a conditions on derivations.

In chapter 2, we study the unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing few moving targets. In particular, we improve strongly the results of Dethloff-Tan [START_REF] Dethloff | Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets[END_REF]. Beside that, we also give a unicity theorem of meromorphic mappings for moving targets with a conditions on derivations.

In chapter 3, we introduce the Gauss map of minimal surfaces in R m and we study the ramification of the Gauss map on annular ends in minimal surfaces in R 3 , R 4 . In particular, we improve the results of S. J. Kao [START_REF] Kao | On values of Gauss maps of complete minimal surfaces on annular ends[END_REF] by using the ideas of H. Fujimoto [START_REF] Fujimoto | On the number of exceptional values of the Gauss map of minimal surfaces[END_REF] and M. Ru [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF].
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Chapter 1

Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets

The unicity theorems with truncated multiplicities of meromorphic mappings of C n into the complex projective space P N (C) sharing a finite set of fixed hyperplanes in With the notations in §1.1, we report here briefly the unicity problems with multiplicities of meromorphic mappings Theorem A. (Smiley [57])

P N (C)
If q ≥ 3N + 2 then ♯ F(f, {H i } q i=1 , 1) = 1. Theorem B.(Thai-Quang [64]) If N ≥ 2 then ♯ F(f, {H i } 3N +1 i=1 , 1) = 1.
Theorem C.(Dethloff-Tan [START_REF] Dethloff | Uniqueness theorems for meromorphic mappings with few hyperplanes[END_REF])There exists a positive integer N 0 (which can be

explicitly calculated) such that ♯ F(f, {H i } q i=1 , 1) = 1 for N ≥ N 0 and q = [2.75N ]. Theorem D.(Chen-Yan [6]) If N ≥ 1 then ♯ F(f, {H i } 2N +3 i=1 , 1) = 1.
Theorem E. (Tan [62]) For each mapping g ∈ F(f, {H i } 2N +2 i=1 , N + 1), there exist a constant α ∈ C and a pair (i, j) with 1 ≤ i < j ≤ q, such that

(H i , f ) (H j , f ) = α (H i , g) (H j , g) .
Theorem F. (Quang [START_REF] Quang | Unicity problem of meromorphic mappings sharing few hyperplanes[END_REF]) Let f 1 and f 2 be two linearly nondegenerate meromorphic mappings of C n into P N (C) (N ≥ 2) and let H 1 , ...., H 2N +2 be hyperplanes in P N (C)

located in general position such that dim{z ∈ C n : ν (f 1 ,H i ) (z) > 0 and ν (f 1 ,H j ) (z) > 0} ≤ n -2
for every 1 ≤ i < j ≤ 2N + 2. Assume that the following conditions are satisfied.

(a) min{ν (f 1 ,H j ),≤N , 1} = min{ν (f 2 ,H j ),≤N , 1} (1 ≤ j ≤ 2N + 2), (b) f 1 (z) = f 2 (z) on 2N +2 j=1 {z ∈ C n : ν (f 1 ,H j ) (z) > 0}, (c) min{ν (f 1 ,H j ),≥N , 1} = min{ν (f 2 ,H j ),≥N , 1} (1 ≤ j ≤ 2N + 2), Then f 1 ≡ f 2 . Theorem G. (Quang [52]) If N ≥ 2 then ♯ F(f, {H i } 2N +2 i=1 , 1) ≤ 2.
In the first part of this chapter, we would like to study the unicity theorems for the case q ≤ 2N + 2. In particular, we shall prove Theorem 1.2 (Ha-Quang [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets[END_REF]) which gives a new aspect of them in the first part of this chapter.

In [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF], the authors showed that

Theorem H. (Thai-Quang [64]) (a) If N = 1, then ♯ F(f, {H i } 3N +1 i=1 , k, 2) ≤ 2 for k ≥ 15. (b) If N ≥ 2, then ♯ F(f, {H i } 3N +1 i=1 , k, 2) ≤ 2 for k ≥ 3N + 3 + 4 N -1 . (c) If N ≥ 4, then ♯ F(f, {H i } 3N i=1 , k, 2) ≤ 2 for k > 3N + 7 + 24 N -3 . (d) If N ≥ 6, then ♯ F(f, {H i } 3N -1 i=1 , k, 2) ≤ 2 for k > 3N + 11 + 60 N -5 .
The second part of this chapter studies the unicity problems of meromorphic mapping with ramification of truncations. We are going to improve Theorem H by Theorem 1.3 (Ha [31]). In particular, we use different truncations k i for each hyperplanes

H i (1 ≤ i ≤ q)
, and we then give its corollaries.

As far as we know, there are many interesting unicity theorems for meromorphic functions on C given by certain conditions of derivations. We will give a unicity theorem of such type in several complex variables for fixed targets. That is a unicity theorem with truncated multiplicities in the case where N + 4 ≤ q < 2N + 2. We will prove Theorem 1.4 (Ha-Quang [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets[END_REF]) in the last part of this chapter.

1.1 Basic notions and auxiliary results from Nevanlinna theory

1.1.1. We set ||z|| = |z 1 | 2 + • • • + |z n | 2 1/2 for z = (z 1 , . . . , z n ) ∈ C n and define B(r) := {z ∈ C n : ||z|| < r}, S(r) := {z ∈ C n : ||z|| = r} (0 < r < ∞). Define v n-1 (z) := dd c ||z|| 2 n-1 and σ n (z) := d c log||z|| 2 ∧ dd c log||z|| 2 n-1 on C n \ {0}.
1.1.2. Let F be a nonzero holomorphic function on a domain Ω in C n . For a multi-

index α = (α 1 , ..., α n ), we set |α| = α 1 + ... + α n and D α F = ∂ |α| F ∂ α 1 z 1 ...∂ αn z n . We define the mapping ν F : Ω → Z by ν F (z) := max {m : D α F (z) = 0 for all α with |α| < m} (z ∈ Ω).
We mean by a divisor on a domain Ω in C n a mapping ν : Ω → Z such that, for each a ∈ Ω, there are nonzero holomorphic functions F and G on a connected neighborhood 

U of a (⊂ Ω) such that ν(z) = ν F (z) -ν G (z)
ϕ = F G on U and dim(F -1 (0) ∩ G -1 (0)) ≤ n -2, and we define the divisors ν ϕ , ν ∞ ϕ by ν ϕ := ν F , ν ∞ ϕ := ν G ,
ν (d) (z) = min {d, ν(z)}, ν (d) ≤k (z) = 0 if ν(z) > k, ν (d) (z) if ν(z) ≤ k. ν (d) >k (z) = ν (d) (z) if ν(z) > k, 0 if ν(z) ≤ k.
We define n(t) by

n(t) =      |ν| ∩B(t) ν(z)v n-1 (z) if n ≥ 2 |z|≤t ν(z) if n = 1 , where v n-1 (z) := dd c ||z|| 2 n-1 .
Similarly, we define

n (d) (t), n (d) ≤k (t), n (d) >k (t). Define N (r, ν) = r 1 n(t) t 2n-1 dt (1 < r < ∞).
Similarly, we define N (r, ν (d) ), N (r, ν

(d) ≤k ), N (r, ν (d)
>k ) and denote them by

N (d) (r, ν), N (d) ≤k (r, ν), N (d) >k (r, ν) respectively. Let ϕ : C n -→ C be a nonzero meromorphic function. Define N ϕ (r) = N (r, ν ϕ ), N (d) ϕ (r) = N (d) (r, ν ϕ ), N (d) ϕ,≤k (r) = N (d) ≤k (r, ν ϕ ), N (d) ϕ,>k (r) = N (d) >k (r, ν ϕ ).
For brevity we will omit the superscript (d) if d = ∞. Now, take a meromorphic mapping f of C n into P N (C) which is linearly nondegenerate over C and q hyperplanes H 1 , ...., H q in P N (C) located in general position

with dim{z ∈ C n : ν (f,H i ), k (z) > 0 and ν (f,H j ), k (z) > 0} ≤ n -2 (1 ≤ i < j ≤ q),
and consider the set F(f, {H j } q j=1 , k, d) of all meromorphic maps g :

C n → P N (C) satisfying the conditions (a) g is linearly nondegenerate over C, (b) min (ν (f,H j ),≤k , d) = min (ν (g,H j ),≤k , d) (1 ≤ j ≤ q), (c) f (z) = g(z) on q j=1 {z ∈ C n : ν (f,H j ),≤k (z) > 0}.
When k = ∞, for brevity denote F(f, {H j } q j=1 , ∞, d) by F(f, {H j } q j=1 , d). Denote by ♯ S the cardinality of the set S.

1.1.4. Let f : C n -→ P N (C) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates (w 0 : • • • : w N ) on P N (C), we take a reduced representation

f = (f 0 : • • • : f N ), which means that each f i is a holomorphic function on C n and f (z) = f 0 (z) : • • • : f N (z) outside the analytic set {f 0 = • • • = f N = 0} of codimen- sion ≥ 2. Set f = |f 0 | 2 + • • • + |f N | 2 1/2 .
The characteristic function of f is defined by

T (r, f ) = S(r) log f σ n - S(1) log f σ n .
Let H be a hyperplane in P N (C) given by H = {a 0 ω 0 + ... + a N ω N = 0}, where A := (a 0 , ..., a N ) = (0, ..., 0). We set (f, H) = N i=0 a i f i . Then we can define the corresponding divisor ν (f,H) which is rephrased as the intersection multiplicity of the image of f and H at f (z). Moreover, we define the proximity function of H by

m f,H (r) = S(r) log ||f || • ||H|| |(f, H)| σ n - S(1) log ||f || • ||H|| |(f, H)| σ n , where ||H|| = ( N i=0 |a i | 2 ) 1 2 .
Let ϕ be a nonzero meromorphic function on C n , which are occasionally regarded as a meromorphic mapping into P 1 (C). The proximity function of ϕ is defined by

m(r, ϕ) := S(r)
log max (|ϕ|, 1)σ n .

1.1.5. Consider a vector-valued meromorphic function F = (f 0 , ..., f N ). For each a ∈

C n , we denote by M a the set of all germs of meromorphic functions at a and, for

κ = 1, 2, ..., by F κ the M a -submodule of M N +1 a which is generated by the set {D α F := (D α f 0 , ..., D α f N ); |α| ≤ κ}. Set l F (κ) := rank Ma F κ , which does not depend on each a ∈ C n . For a meromorphic map f = (f 0 : f 1 : • • • : f N ) : C n → P N (C), we set l f (κ) := l (f 0 ,••• ,f N ) (κ).
Assume that meromorphic functions f 0 , ..., f N are linearly independent over C.

For N + 1 vectors α i := (α i1 , ..., α in )(0 ≤ i ≤ N ) composed of nonnegative inte- gers α ij , we call a set α = (α 0 , α 1 , ..., α N ) an admissible set for F = (f 0 , ..., f N ) if {D α 0 F, ..., D α l F (κ) F } is a basis of F κ for each κ = 1, 2, ..., κ 0 := min{κ ′ ; l F (κ ′ ) = N +1}.
By definition, for an admissible set (α 0 , α 1 , ..., α N ) we have det D α 0 F, ..., D α N F ≡ 0.

1.1.6. As usual, by the notation ′′ || P ′′ we mean the assertion P holds for all r ∈ [0, ∞)

excluding a Borel subset E of the interval [0, ∞) with E dr < ∞.
The following results play essential roles in Nevanlinna theory (see Noguchi-Ochiai [START_REF] Noguchi | Introduction to Geometric Function Theory in Several Complex Variables[END_REF], Stoll [START_REF] Stoll | Introduction to value distribution theory of meromorphic maps[END_REF], [START_REF] Stoll | Value distribution theory for meromorphic maps[END_REF]).

1.1.7. The first main theorem. Let f : C n → P N (C) be a linearly nondegenerate meromorphic mapping and H be a hyperplane in P N (C). Then

N (f,H) (r) + m f,H (r) = T (r, f ) (r > 1).
1.1.8. The second main theorem. Let f : C n → P N (C) be a linearly nondegenerate meromorphic mapping and H 1 , ..., H q be hyperplanes in general position in P N (C). Then

|| (q -N -1)T (r, f ) ≤ q i=1 N (N ) (f,H i ) (r) + o(T (r, f )).
1.1.9. Lemma. (Thai-Quang [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF]) Let f : C n → P N (C) be a linearly nondegenerate meromorphic mapping. Let H 1 , H 2 , ..., H q be q hyperplanes in P N (C) located in general position. Assume that k ≥ N -1. Then

q -N -1 - N q k + 1 T (r, f ) ≤ q j=1 1 - N k + 1 N (N ) (f,H j ),≤k (r) + o(T (r, f )) .
1.1.10. Logarithmic derivative lemma. Let f be a nonzero meromorphic function

on C n . Then m r, D α (f ) f = O(log + T (r, f )) (α ∈ Z n + ).
1.1.11. Denote by M * n the abelian multiplicative group of all nonzero meromorphic functions on C n . Then the multiplicative group M * n /C * is a torsion free abelian group. Let G be a torsion free abelian group and A = (a 1 , a 2 , ..., a q ) a q-tuple of elements a i in G. Let q ≥ r > s > 1. We say that the q-tuple A has the property (P r,s ) if any r elements a l(1) , ..., a l(r) in A satisfy the condition that for any given i 1 , ..., i s (1 ≤ i 1 < ... < i s ≤ r), there exist j 1 , ..., j s (1 ≤ j 1 < ... < j s ≤ r) with {i 1 , ..., i s } = {j 1 , ..., j s } such that a l(i 1 ) ...a l(is) = a l(j 1 ) ...a l(js) .

1.1.12. Proposition. (Fujimoto [18]) Let G be a torsion free abelian group and A = (a 1 , ..., a q ) a q-tuple of elements a i in G. If A has the property (P r,s ) for some r, s with q ≥ r > s > 1, then there exist i 1 , ..., i q-r+2 with 1 ≤ i 1 < ... < i q-r+2 ≤ q such that a i 1 = a i 2 = ... = a i q-r+2 . Take 3 mappings f 1 , f 2 , f 3 with reduced representations f k := (f k 0 : ... : f k N ) and set

T (r) := 3 k=1 T (r, f k ). For each c = (c 0 , ..., c N ) ∈ C N +1 \ {0}, we define (f k , c) := N i=0 c i f k i (0 ≤ k ≤ N ). Denote by C the set of all c ∈ C N +1 \ {0} such that dim{z ∈ C n : (f k , H j )(z) = (f k , c)(z) = 0} ≤ n -2 1.1.13. Lemma.
Let H 1 , H 2 , ..., H q be q hyperplanes in P N (C) located in general position. Assume that min(ν

(f k ,H i ) , d) = min(ν (f 1 ,H i ) , d)(1 ≤ k ≤ 3), 1 ≤ d ≤ N and q ≥ N + 2. Then || T (r, f k ) = O(T (r, f 1 )) for each (1 ≤ k ≤ 3).
Proof. By the Second Main Theorem, we have

(q -N -1)T (r, f k ) ≤ q i=1 N (N ) (f k ,H i ) (r)+o(T (r, f k )) ≤ q i=1 N d •N (d) (f k ,H i ) (r)+o(T (r, f k )) = q i=1 N d • N (d) (f 1 ,H i ) (r) + o(T (r, f k )) ≤ q N d T (r, f 1 ) + o(T (r, f k )). Hence || T (r, f k ) = O(T (r, f 1 )). Q.E.D.
1.1.14. Lemma. (Ji [START_REF] Ji | Uniqueness problem without multiplicities in value distribution theory[END_REF]) C is dense in C N +1 .

1.1.15. Lemma. (Fujimoto [START_REF] Fujimoto | Uniqueness problem with truncated multiplicities in value distribution theory[END_REF]) For every c ∈ C, we put

F jk c = (f k , H j ) (f k , c) . Then T (r, F jk c ) ≤ T (r, f k ) + o(T (r)).
1.1.16. Definition. (Fujimoto [START_REF] Fujimoto | Uniqueness problem with truncated multiplicities in value distribution theory[END_REF]) Let F 0 , ..., F M be meromorphic functions on C n , where M ≥ 1. Take a set α := (α 0 , ..., α M -1 ) whose components α k are composed of n nonnegative integers, and set |α| = |α 0 | + ... + |α M -1 |. We define Cartan's auxiliary function by

Φ α ≡ Φ α (F 0 , ..., F M ) := F 0 F 1 •••F M 1 1 • • • 1 D α 0 ( 1 F 0 ) D α 0 ( 1 F 1 ) • • • D α 0 ( 1 F M ) . . . . . . . . . . . . D α M -1 ( 1 F 0 ) D α M -1 ( 1 F 1 ) • • • D α M -1 ( 1 F M ) 1.1.17. Proposition. (Fujimoto [19]) Let α = (α 0 , • • • , α N ) be an admissible set for F = (f 0 , • • • , f N ) and let h be a holomorphic function. Then, det D α 0 (hF ), • • • , D α N (hF ) = h N +1 det D α 0 (F ), • • • , D α N (F ) 1.1.18. Lemma. (Fujimoto [28]) If Φ α (F, G, H) = 0 and Φ α ( 1 F , 1 G , 1
H ) = 0 for all α with |α| ≤ 1, then one of the following assertions holds :

(i) F = G, G = H or H = F. (ii) F G , G
H and H F are all constant.

1.1.19. Lemma. Suppose that Φ α (F 0 , ..., F M ) ≡ 0 with |α| ≤ M (M -1) 2 . If ν ([d]) := min {ν F 0 ,≤k 0 , d} = min {ν F 1 ,≤k 1 , d} = • • • = min {ν F M ,≤k M , d} for some d ≥ |α|, then ν Φ α (z 0 ) ≥ min {ν ([d]) (z 0 ), d-|α|} for every z 0 ∈ {z : ν F 0 ,≤k 0 (z) > 0} \ A, where A is an analytic subset of codimension ≥ 2.
Proof. Set H s := {z : ν Fs,≤ks (z) > 0}, then by the assumption we have H 0 = H 1 = ... = H M := H. Denote by A the set of all singularities of H. Then A is an analytic set of dimension at most n -2. We assume that z 0 ∈ H \ A. We choose a nonzero holomorphic function h on a neighborhood U of z 0 such that dh has no zero and

H ∩ U = {z ∈ U ; h(z) = 0}. Set m s := ν Fs (z 0 ) and ϕ s := 1 F s for 0 ≤ s ≤ M.
We can write ϕ s = h -ms ϕ s on a neighborhood V (⊂ U ) of z 0 , where ϕ s are nowhere vanishing holomorphic functions on V .

We first consider the case ν ([d]) (z 0 ) = d. We have

Φ α = F 0 F 1 • • • F M F 0 .D α 0 ( 1 F 0 ) F 1 .D α 0 ( 1 F 1 ) • • • F M .D α 0 ( 1 F M ) . . . . . . . . . . . . F 0 .D α M -1 ( 1 F 0 ) F 1 .D α M -1 ( 1 F 1 ) • • • F M .D α M -1 ( 1 F M ) = M i=0 (-1) i F i ψ i ,
where

ψ i := det D α l ϕ k ϕ k ; k = 0, ..., i -1, i + 1, ..., M ; l = 0, 1, ..., M -1 are meromor- phic functions.
By induction on | α l |, we can write each

D α l ϕ k ϕ k as D α l ϕ k ϕ k = ψ k,l h |α l |
, where ψ k,l is a holomorphic function, and

ψ i = l=(l 1 ,...,l M ) ǫ(l) D α l 1 ϕ 0 ϕ 0 ... D α l i ϕ i-1 ϕ i-1 . D α l i+1 ϕ i+1 ϕ i+1 ... D α l M ϕ M ϕ M ,
where l = (l 1 , ..., l M ) runs through all permutations of {0, 1, ..., M -1} and ǫ(l) denotes the signature of a permutation l. This implies that ν ∞ ψ i ≤| α | . By the assumption

ν F i ,≤k i (z 0 ) ≥ ν ([d]) (z 0 ) = d, we have ν Φ α (z 0 ) ≥ d-| α | .
After that, we consider the case 1 ≤ ν ([d]) (z 0 ) < d. Then, by the assumption, we get

m * := m 0 = m 1 = • • • = m M = ν ([d]) (z 0 ). We now write Φ α = 1 ϕ 0 ϕ 1 • • • ϕ M det D α l (ϕ k -ϕ 0 ); k = 1, ..., M ; l = 0, 1, ...., M -1 ,
and ϕ k -ϕ 0 = h -m * ( ϕ k -ϕ 0 )
, where ϕ kϕ 0 is a holomorphic function.

By applying Proposition 1.1.17, it implies that

Φ α = h m * (M +1) ϕ 0 ϕ 1 ... ϕ M . 1 h m * M det D α l ( ϕ k -ϕ 0 ); k = 1, ..., M ; l = 0, 1, ...., M -1 ,
and hence

Φ α = h m * ϕ 0 ϕ 1 ... ϕ M det D α l ( ϕ k -ϕ 0 ); k = 1, ..., M ; l = 0, 1, ...., M -1 .
This yields that ν Φ α (z 0 ) ≥ m * . The proof is completed.

1.1.20. Lemma. Suppose that the assumptions in Lemma 1.1.19 are satisfied. If

F 0 = • • • = F M ≡ 0, ∞ on an analytic subset H, which is defined in the proof of Lemma 1.1.19, then ν Φ α (z 0 ) ≥ M, ∀ z 0 ∈ H.
Proof. By using the same proof of Lemma 1.1.19, we now must only show that ν Φ α (z 0 ) ≥ M for all regular points z 0 of H with F k (z 0 ) = 0, ∞ (0 ≤ k ≤ M ). Taking a holomorphic function h on a neighborhood U of z 0 such that dh has no zero and

H ∩ U = {z ∈ U | h(z) = 0}, we write ψ k := 1 F k - 1 F 0 = h ψ k (1 ≤ k ≤ M ) with nonzero
holomorphic functions ψ k on a neighborhood of z 0 . We now use Proposition 1.1.17 to have

Φ α = F 0 F 1 ...F M det D α l ψ k ; k = 1, ..., M ; l = 0, 1, ...., M -1 = F 0 F 1 ...F M h M det D α l ψ k ; k = 1, ..., M ; l = 0, 1, ...., M -1 .
Thus, we get ν Φ α (z 0 ) ≥ M.

1.1.21. Lemma. Let f : C n → P N (C) be a linearly nondegenerate meromorphic mapping. Let H 1 , H 2 , ..., H q be q hyperplanes in P N (C) located in general position.

Assume that k j ≥ N -1 (1 ≤ j ≤ q). Then

q -N -1 - q j=1 N k j + 1 T (r, f ) ≤ q j=1 1 - N k j + 1 N (N ) (f,H j ),≤k j (r) + o(T (r, f )) .
Proof. By the Second Main Theorem, we have

(q-N -1)T (r, f ) ≤ q j=1 N (N ) (f,H j ) (r)+o(T (r, f )) = q j=1 N (N ) (f,H j ),≤k j (r)+ q j=1 N (N )
(f,H j ),>k j (r)+o(T (r, f ))

≤ q j=1 N (N ) (f,H j ),≤k j (r)+ q j=1 N k j + 1 N (f,H j ),>k j (r)+o(T (r, f )) = q j=1 N (N ) (f,H j ),≤k j (r)+ q j=1 N k j + 1 N (f,H j ) (r)-N (f,H j ),≤k j (r) +o(T (r, f )) ≤ q j=1 1 - N k j + 1 N (N ) (f,H j ),≤k j (r) + q j=1 N k j + 1 T (r, f ) + o(T (r, f )).
Thus, we have a desired inequality. Q.E.D.

1.1.22. Lemma. Assume that there exists

Φ α = Φ α (F j 0 0 c , ..., F j 0 M c ) ≡ 0 for some c ∈ C, |α| ≤ M (M -1) 2 
, 2 ≥ |α| and the assumptions in Lemma 1.1.19 are satisfied.

Then, for each 0 ≤ i ≤ M, the following holds:

N (2-|α|) (f i ,H j 0 ),≤k ij 0 (r)+M j =j 0 N (1) 
(f i ,H j ),≤k ij (r) ≤ N (r, ν Φ α ) ≤ T (r)+ M l=0 N ( M (M -1)
2 ) (f l ,H j 0 ),>k lj 0 (r)+o(T (r)).

Proof. The first inequality is deduced immediately from Lemmas 1.1.19 and 1.1.20.

On the other hand, we also have

N (r, ν Φ α ) ≤ T (r, Φ α ) + O(1) = N (r, ν ∞ Φ α ) + m(r, Φ α ) + O(1). (1.1.1)
We easily see that a pole of Φ α is a zero or a pole of some F j 0 l c and Φ α is holomorphic at all zeros with multiplicities ≤ k lj 0 of F j 0 l c because of Lemma 1.1.19 (l ∈ {0, ..., M }).

Assume that z 0 is a zero of F j 0 l c with multiplicity > k lj 0 . We also see that if z 0 is a pole of

D α i (1/F j 0 l c ) (1/F j 0 l c ) , then it has multiplicity ≤ |α i |. Thus, if z 0 is a pole of Φ α then it has multiplicity ≤ |α| = M -1 i=0 |α i | ≤ M (M -1)

2

. This implies that

N (r, ν ∞ Φ α ) ≤ M i=0 N ( M (M -1)
2

) (f i ,H j 0 ),>k ij 0 (r) + M i=0 N (r, ν ∞ F j 0 i c ) (1.1.2) and m(r, Φ α ) ≤ M i=0 m(r, F j 0 i c ) + O m r, D α i (ϕ j 0 k c ) ϕ j 0 k c +O(1) ≤ M i=0 m(r, F j 0 i c ) + o(T (r)) (1.1.3),
where ϕ j 0 k c = 1/F j 0 k c . By (1.1.1), (1.1.2) and (1.1.3), we get

N (r, ν Φ α ) ≤ M i=0 N ( M (M -1)
2

) (f i ,H j 0 ),>k ij 0 (r) + M i=0 T (r, F j 0 i c ) + o(T (r)) ≤ T (r) + M i=0 N ( M (M -1)
2

) (f i ,H j 0 ),>k ij 0 (r) + o(T (r)). Q.E.D.

1.2

A unicity theorem with truncated multiplicities of meromorphic mappings in several complex variables sharing 2N + 2 hyperplanes Theorem 1.2. (Ha-Quang [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets[END_REF]) Let f 1 and f 2 be two linearly nondegenerate meromorphic mappings of C n into P N (C) (N ≥ 2) and let H 1 , ...., H 2N +2 be hyperplanes in

P N (C) located in general position such that dim{z ∈ C n : ν (f 1 ,H i ) (z) > 0 and ν (f 1 ,H j ) (z) > 0} ≤ n -2 for every 1 ≤ i < j ≤ 2N + 2. Let m be a positive integer such that m > 2N + 2 N + 1 2N + 2 N + 1 -2 .
Assume that the following conditions are satisfied.

(a) min{ν (f 1 ,H j ) , 1} = min{ν (f 2 ,H j ) , 1} (1 ≤ j ≤ 2N + 2), (b) f 1 (z) = f 2 (z) on 2N +2 j=1 {z ∈ C n : ν (f 1 ,H j ) (z) > 0}, (c) min{ν (f 1 ,H j ) (z), ν (f 2 ,H j ) (z)} > N or ν (f 1 ,H j ) (z) ≡ ν (f 2 ,H j ) (z) (mod m) for all z ∈ (f 1 , H j ) -1 (0) (1 ≤ j ≤ 2N + 2). Then f 1 ≡ f 2 .
Proof. Suppose that f 1 ≡ f 2 . For each i ∈ {1, ..., q}, we define a divisor ν i as follows

ν i (z) :=      1 if min{ν (f 1 ,H i ) (z), ν (f 2 ,H i ) (z)} > N, 1 if ν (f 1 ,H i ) (z) = ν (f 2 ,H i ) (z)) < N, 0 otherwise. Claim 1.2.1. Assume that i, j ∈ {1, 2, ..., 2N + 2} such that P ij = (f 1 , H i ) (f 1 , H j ) - (f 2 , H i ) (f 2 , H j ) ≡ 0.
Then, we have

2 s=1 v=i,j 2N (N ) (f s ,Hv) (r) -N N (1) (f s ,H j ) (r) + N (r, ν v ) + 2 s=1 2N +2 v=1 v =i,j N (1) (f s ,Hv) (r) ≤ 2 2 s=1 T (r, f s ) + O(1) (1.2.1)
Proof . For each z ∈ (f 1 , H v ) -1 (0), we consider the three following cases.

Case 1: min (ν (f 1 ,Hv) (z), ν (f 2 ,Hv) (z)) > N .
We have

min{ν (f 1 ,Hv) (z), ν (f 2 ,Hv) (z)} ≥ N + 1 = 2 s=1 min{ν (f s ,Hv) (z), N } -N + ν v (z). Case 2: ν (f 1 ,Hv) (z) = ν (f 2 ,Hv) (z) < N .
We have

min{ν (f 1 ,Hv) (z), ν (f 2 ,Hv) (z)} = 2 s=1 min{ν (f s ,Hv) (z), N } -ν (f 1 ,Hv) (z) ≥ 2 s=1 min{ν (f s ,Hv) (z), N } -N + ν v (z).
Case 3: z is not satisfied Case 1 and Case 2.

Then ν v (z) = 0. We have

min{ν (f 1 ,Hv) (z), ν (f 2 ,Hv) (z)} ≥ 2 s=1 min{ν (f s ,Hv) (z), N } -N = 2 s=1 min{ν (f s ,Hv) (z), N } -N + ν v (z).
From the above cases, for every z

∈ (f 1 , H v ) -1 (0), we have min{ν (f 1 ,Hv) (z), ν (f 2 ,Hv) (z)} ≥ 2 s=1 min{ν (f s ,Hv) (z), N } -N + ν v (z).
By this inequality and by the definition of P ij , it is easy to see that

ν P ij (z) ≥ min{ν (f 1 ,H i ) (z), ν (f 2 ,H i ) (z)} + 2N +2 v=1 v =i,j ν (1) (f 1 ,Hv) (z) ≥ 2 s=1 ν (N ) (f s ,H i ) (z) - N 2 ν (1) (f s ,H i ) (z) + ν i + 1 2 2 s=1 2N +2 v=1 v =i,j ν (1) 
(f s ,Hv) (z).

This yields that

2N P ij (r) ≥ 2 s=1 2N (N ) (f s ,H i ) (r) -N N (1) (f s ,H i ) (r) + N (r, ν i ) + 2 s=1 2N +2 v=1 v =i,j N (1) 
(f s ,Hv) (r) (1.2.2).
On the other hand, we have

m(r, P ij ) m r, (f 1 , H i ) (f 1 , H j ) +m r, (f 2 , H i ) (f 2 , H j ) +O (1) 
T r, 1)

(f 1 , H i ) (f 1 , H j ) -N r, (f 1 , H j ) (f 1 , H i ) +T r, (f 2 , H i ) (f 2 , H j ) -N r, (f 2 , H i ) (f 2 , H j ) +O(
T (r, f 1 ) + T (r, f 2 ) -N (f 1 ,H j ) (f 1 ,H i ) (r) -N (f 2 ,H j ) (f 2 ,H i ) (r) + O(1) = T (r, f 1 ) + T (r, f 2 ) -N (f 1 ,H j ) (r) -N (f 2 ,H j ) (r) + O(1)
and

N 1 P ij (r) ≤ N (r, µ j ), where µ j (z) = max {ν (f 1 ,H j ) (z), ν (f 2 ,H j ) }(z).
For every z ∈ (f 1 , H j ) -1 (0), it is easy to see that

ν (f 1 ,H j ) (z) + ν (f 2 ,H j ) (z) -µ j (z) = min{ν (f 1 ,H j ) (z), ν (f 2 ,H j ) (z)} ≥ min{ν (f 1 ,H j ) (z), N } + min{ν (f 2 ,H j ) (z), N } -N + ν j (z). Hence 2 s=1 2N (N ) (f s ,H i ) (r) -N N (1) 
(f s ,H i ) (r) + N (r, ν i ) + 2 s=1 2N +2 v=1 v =i,j N (1) 
(f s ,Hv) (r)

≤ 2N P ij (r) ≤ 2T (r, P ij ) = 2N 1 P ij (r) + 2m(r, P ij ) + O(1). ≤ 2 2 s=1 T (r, f s ) + 2(N (r, µ j ) -N (f 1 ,H j ) (r) -N (f 2 ,H j ) (r)) + O(1) ≤ 2 2 s=1 T (r, f s ) -2(N (N ) (f 1 ,H j ) (r) + N (N ) (f 2 ,H j ) (r) -N N (1) (f 1 ,H j ) (r) + N (r, ν j )) + O(1) ≤ 2 2 s=1 T (r, f s ) - 2 s=1 2N (N ) (f s ,H j ) (r) -N N (1) (f s ,H j ) (r) + N (r, ν j ) + O(1).
This implies that

2 s=1 v=i,j 2N (N ) (f s ,Hv) (r) -N N (1) (f s ,H j ) (r) + N (r, ν v ) + 2 s=1 2N +2 v=1 v =i,j N (1) (f s ,Hv) (r) ≤ 2 2 s=1 T (r, f s ) + O(1).
This concludes Claim 1.2.1.

Claim 1.2.2. For every

1 ≤ i ≤ 2N + 2, we have N (r, ν i ) = o( 2 s=1 T (r, f s )).
Proof . By changing indices if necessary, we may assume that

(f 1 , H 1 ) (f 2 , H 1 ) ≡ (f 1 , H 2 ) (f 2 , H 2 ) ≡ • • • ≡ (f 1 , H k 1 ) (f 2 , H k 1 ) group 1 ≡ (f 1 , H k 1 +1 ) (f 2 , H k 1 +1 ) ≡ • • • ≡ (f 1 , H k 2 ) (f 2 , H k 2 ) group 2 ≡ (f 1 , H k 2 +1 ) (f 2 , H k 2 +1 ) ≡ • • • ≡ (f 1 , H k 3 ) (f 2 , H k 3 ) group 3 ≡ • • • ≡ (f 1 , H k s-1 +1 ) (f 2 , H k s-1 +1 ) ≡ • • • ≡ (f 1 , H ks ) (f 2 , H ks ) group s ,
where k s = 2N + 2.

For each 1 ≤ i ≤ 2N + 2, we set

χ(i) = i + N if i ≤ N + 2, i -N -2 if i > N + 2. Since f 1 ≡ f 2 , the number of elements of every group is at most N . Hence (f 1 , H i ) (f 2 , H i ) and (f 1 , H χ(i) ) (f 2 , H χ(i) ) belong to distinct groups. This means that (f 1 , H i ) (f 2 , H i ) ≡ (f 1 , H χ(i) ) (f 2 , H χ(i) ) (1 ≤ i ≤ 2N + 2). Hence P χ(i)i = (f 1 , H χ(i) ) (f 1 , H i ) - (f 2 , H χ(i) ) (f 2 , H i ) ≡ 0 (1 ≤ i ≤ 2N + 2).
Summing up both sides of (1.2.1) over all pairs (i, χ(i)), we have

s=1,2 2N +2 i=1 4N (N ) (f s ,H i ) (r) + 2N (r, ν i ) ≤ 2(2N + 2) 2 s=1 T (r, f s ) + O(1) (1.2.3)
Then, by the Second Main Theorem we have

|| 2(2N + 2) 2 s=1 T (r, f s ) ≥ s=1,2 2N +2 i=1 4N (N ) (f s ,H i ) (r) + 2N (r, ν i ) +O(1) ≥ 4(N + 1) s=1,2 T (r, f s ) + 4 2N +2 i=1 N (r, ν i ) + o( s=1,2 T (r, f s )) (1.2.4).
This implies that

|| N (r, ν i ) = o( s=1,2 T (r, f s )). Claim 1.2.2 is proved.
Claim 1.2.3. For i = 1, ..., 2N + 2, the following assertions hold

(i) || 2 s=1 v=χ(i),i 2N (N ) (f s ,Hv) (r) -N N (1) 
(f s ,H j ) (r)) + 2 s=1 2N +2 v=1 v =χ(i),i N (1) 
(f s ,Hv) (r) = 2 2 s=1 T (r, f s ) + o( 2 s=1 T (r, f s )) (1.2.5) (ii) || 2N P χ(i)i (r) = 2 s=1 2N (N ) (f s ,H χ(i) ) (r) -N N (1) (f s ,H χ(i) ) (r) + 2 s=1 2N +2 v=1 v =χ(i),i N (1) 
(f s ,Hv) (r) + o( 2 s=1 T (r, f s )) (1.2.6)
Proof. Since the inequality (1.2.4) becomes an equality, the inequalities (1.2.1) and

(1.2.2) must become equalities for all P χ(i)i . Moreover, we have

|| N (r, ν χ(i) ) = N (r, ν i ) = o( 2 s=1 T (r, f s )). Then Claim 1.2.3 is proved.
Claim 1.2.4. For i, j ∈ {1, ..., 2N + 2} with P ij ≡ 0, the following assertions hold

(i) || 2 s=1 v=i,j 2N (N ) (f s ,Hv) (r) -N N (1) (f s ,Hv) (r)) + 2 s=1 2N +2 v=1 v =i,j N (1) (f s ,Hv) (r) = 2 2 s=1 T (r, f s ) + o( 2 s=1 T (r, f s )) (1.2.7) (ii) || 2N P ij (r) = 2 s=1 2N (N ) (f s ,H i ) (r) -N N (1) (f s ,H i ) (r)) + 2 s=1 2N +2 v=1 v =i,j N (1) 
(f s ,Hv) (r) + o( 2 s=1 T (r, f s )) (1.2.8) Proof . Since P ij ≡ 0, (f 1 ,H i ) (f 1 ,H j ) and (f 2 ,H i ) (f 2 ,H j )
belong to two distinct groups. Therefore, by changing indices again we may assume that i = χ(j). Then Claim 1.2.4 is deduced from Claim 1.2.3. Now we return to prove the theorem. We consider two arbitrary indices i, j ∈ {1, ..., 2N + 2}. Since f 1 ≡ f 2 , there exists an index k such that P ik ≡ 0 and P jk ≡ 0.

By (1.2.7), we have

|| 2 s=1 v=i,k 2N (N ) (f s ,Hv) (r) -N N (1) (f s ,Hv) (r)) + 2 s=1 2N +2 v=1 v =i,k N (1) (f s ,Hv) (r) = 2 s=1 v=j,k 2N (N ) (f s ,Hv) (r) -N N (1) (f s ,Hv) (r)) + 2 s=1 2N +2 v=1 v =j,k N (1) (f s ,Hv) (r) + o( 2 s=1 T (r, f s )) = 2 2 s=1 T (r, f s ) + o( 2 s=1 T (r, f s )). Thus || 2 s=1 2N (N ) (f s ,H i ) (r) -(N + 1)N (1) (f s ,H i ) (r)) = 2 s=1 2N (N ) (f s ,H j ) (r) -(N + 1)N (1) (f s ,H j ) (r)) + o( 2 s=1 T (r, f s )) (1.2.9)
Combining (1.2.7) and (1.2.9), we get

|| 2 2 s=1 2N (N ) (f s ,H i ) (r) -(N + 1)N (1) (f s ,H i ) (r)) + 2 s=1 2N +2 v=1 N (1) (f s ,Hv) (r) = 2 2 s=1 T (r, f s ) + o( 2 s=1 T (r, f s )) (1.2.10) Assume that H i = {a i0 ω 0 + • • • + a iN ω N = 0}. We set h i = (f 1 , H i ) (f 2 , H i ) (1 ≤ i ≤ 2N + 2). Then h i h j = (f 1 , H i ) • (f 2 , H j ) (f 1 , H j ) • (f 2 , H i )
does not depend on representations of f 1 and

f 2 respectively. Since N k=0 a ik f 1k -h i • N k=0 a ik f 2k = 0 (1 ≤ i ≤ 2N + 2), it implies that det(a i0 , ..., a iN , a i0 h i , ..., a iN h i ; 1 ≤ i ≤ 2N + 2) = 0.
For each subset I ⊂ {1, 2, ..., 2N + 2}, put h I = i∈I h i . Denote by I the set of all

combinations I = (i 1 , ..., i N +1 ) with 1 ≤ i 1 < ... < i N +1 ≤ 2N + 2.
For each I = (i 1 , ..., i N +1 ) ∈ I, define

A I = (-1) (N +1)(N +2) 2 +i 1 +...+i N +1 • det(a irl ; 1 ≤ r ≤ N + 1, 0 ≤ l ≤ N )• det(a jsl ; 1 ≤ s ≤ N + 1, 0 ≤ l ≤ N ),
where J = (j 1 , ..., j N +1 ) ∈ I such that I ∪ J = {1, 2, ..., 2N + 2}.

Then I∈I A I h I = 0.

Take I 0 ∈ I. Then

A I 0 h I 0 = - I∈I,I =I 0 A I h I , i.e. h I 0 = - I∈I,I =I 0 A I A I 0 h I .
Remark that for each I ∈ I, then

A I A I 0 ≡ 0.

Denote by t the minimal number satisfying the following:

There exist t elements I 1 , ..., I t ∈ I \ {I 0 } and t nonzero constants b i ∈ C such that

h I 0 = t i=1 b i h I i . It is easy to see that t ≤ 2N + 2 N + 1 -1.
Since h I 0 ≡ 0 and by the minimality of t, it follows that the family {h I 1 , ..., h It } is linearly independent over C.

Assume that t ≥ 2.
Consider the meromorphic mapping h : C n → P t-1 (C) with a reduced representation h = (dh I 1 : ... : dh It ), where

d is meromorphic on C n . If z is a zero (a pole, resp.) of h i , then ν (f 1 ,H i ) (z) = ν (f 2 ,H i ) (z). Hence max{ν (f 1 ,H i ) (z), ν (f 2 ,H i ) (z)} > N or |ν (f 1 ,H i ) (z) -ν (f 2 ,H i ) (z)| > m. Therefore, ν i (z) = 1
or z is either zero or pole of h i with multiplicity at least m. This easily implies that if z is a zero of dh I then ν i (z) = 1 with one of indices i ∈ {1, ..., 2N + 2} or z is zero of dh I with multiplicity at least m. We thus have, for every z

∈ (f 1 ) -1 (H i ) ∩ (f 1 ) -1 (H j )(1 ≤ i < j ≤ 2N + 2). min{1, ν dh I (z)} ≤ 2N +2 i=1 ν i (z) + 1 m ν dh I (z).
This implies that || N

(1)

dh I (r) ≤ 2N +2 i=1 N (r, ν i )(r) + 1 m N dh I (r) ≤ 1 m T (r, h) + o( 2 s=1 T (r, f s ))
for each I ∈ I.

By the Second Main Theorem, we have

|| T (r, h) ≤ t i=1 N (t-1) dh I i (r) + N (t-1) dh I 0 (r) + o(T (r, h)) ≤ (t -1) t i=1 N (1) dh I i (r) + N (1) dh I 0 (r) + o(T (r, h)) ≤ (t -1)(t + 1) m T (r, h) + o(T (r, h)) + o( 2 s=1 T (r, f s )). This yields that || T (r, h) = o( 2 s=1 T (r, f s )). Consider the hyperplanes H1 = {w 1 = 0}, H2 = {w 2 = 0}, H3 = {b 1 w 1 +...+b t w t = 0} in P t-1 (C). Then T (r, h) ≥ T r, (h, H1 ) (h, H2 ) +O(1) = T r, h I 1 h I 2 +O(1) ≥ N (1) h I 1 h I 2 -1 + O(1), T (r, h) ≥ T r, (h, H2 ) (h, H3 ) +O(1) = T r, h I 2 h I 0 +O(1) ≥ N (1) h I 2 h I 0 -1 + O(1), T (r, h) ≥ T r, (h, H3 ) (h, H1 ) +O(1) = T r, h I 0 h I 1 +O(1) ≥ N (1) 
h I 0 h I 1 -1 (r) + O(1). Hence 3T (r, h) ≥ N (1) h I 1 h I 2 -1 (r) + N (1) h I 2 h I 0 -1 (r) + N (1) 
h I 0 h I 1 -1 (r) + O(1). Since h I h J = 1 on the set j∈((I∪J)\(I∩J)) c E j ,
where

E j = {z ∈ C n : ν (f,H j ) (z) > 0} and ((I 1 ∪ I 2 ) \ (I 1 ∩ I 2 )) c ∪ ((I 2 ∪ I 0 ) \ (I 2 ∩ I 0 )) c ∪ ((I 0 ∪ I 1 ) \ (I 0 ∩ I 1 )) c = {1, ..., 2N + 2}), it implies that N (1) h I 1 h I 2 -1 (r) + N (1) h I 2 h I 0 -1 (r) + N (1) h I 0 h I 1 -1 (r) ≥ 2N +2 i=1 N (1) (f s ,H i ) (r). Hence || 3T (r, h) ≥ 2N +2 i=1 N (1) 
(f s ,H i ) (r)+O(1) = N + 1 N •T (r, f s )+o(T (r, f s )) (s = 1, 2).
Then || T (r, f s ) = 0 (s = 1, 2). This is a contradiction. Thus, t = 1. Then 

h I 0 h I 1 = constant = 0.
], [h 2 ], such that [h 1 ] = [h 2 ]. Then h 1 h 2 = χ ∈ C * . Suppose that χ = 1. Since h 1 (z) h 2 (z) = 1 for each z ∈ 2N +2 i=3 (f 1 ) -1 (H i )\((f 1 ) -1 (H 1 )∪(f 1 ) -1 (H 2 ), it implies that 2N +2 i=3 (f 1 ) -1 (H i ) = ∅.
By the Second Main Theorem, we have

|| (2N -N -1)T (r, f 1 ) ≤ 2N +2 i=3 N (N ) (f 1 ,H i ) (r) + o(T (r, f 1 )) = o(T (r, f 1 )).
This is a contradiction. Thus, χ = 1, i.e, h 1 = h 2 . By changing reduced represen-

tations of f 1 , f 2 if necessary, we may assume that (f 1 , H 1 ) = (f 2 , H 1 ). This yields that (f 1 , H 2 ) = (f 2 , H 2 ) (1.2.11).

Now we consider

P χ(N +3)(N +3) = P 1(N +3) = (f 1 , H 1 ) (f 1 , H N +3 ) - (f 2 , H 1 ) (f 2 , H N +3 ) = (f 1 , H 1 )((f 2 , H N +3 ) -(f 1 , H N +3 )) (f 1 , H N +3 )(f 2 , H N +3 ) ≡ 0. Since (f 1 , H i )(z) = (f 2 , H i )(z) on 2N +2 j=1 (f 1 ) -1 (H j ) \ ((f 1 ) -1 (H 1 ) ∩ (f 1 ) -1 (H 2 )) for each 1 ≤ i ≤ 2N + 2, it implies that 2N P 1(N +3) (r) ≥ 2N (f 1 ,H 1 ) (r) + 2N +2 v=1 v =N +3 2N (1) 
(f 1 ,Hv) (r) ≥ 2 s=1 (2N (f s ,H 1 ) (r) -N N (1) (f s ,H 1 ) (r)) + 2 s=1 2N +2 v=1 v =N +3 N (1) (f s ,Hv) (r) (1.2.12)
Combining (1.2.8) and (1.2.12), we get

||N (1) (f 1 ,H 1 ) (r) = N (1) (f 2 ,H 1 ) (r) = o( 2 s=1 T (r, f s )) (1.2.13)
From (1.2.9) and (1.2.13), for each i ∈ {1, ..., 2N + 2} we have

|| 2 s=1 2N (N ) (f s ,H i ) (r) -(N + 1)N (1) (f s ,H i ) (r)) = o( 2 s=1 T (r, f s )) (1.2.14)
On ther other hand, for every z

∈ (f 1 , H i ) -1 (0), if ν i (z) = 0 then either ν (f 1 ,H i ) (z) = ν (f 2 ,H i ) (z) = N or |ν (f 1 ,H i ) (z) -ν (f 2 ,H i ) (z)| ≥ m, hence ν (f 1 ,H i ) (z) + ν (f 2 ,H i ) (z) ≥ 2N. Thus || 2 s=1 2N (N ) (f s ,H i ) (r) ≥ 2 s=1 2N N (1) (f s ,H i ) (r) + 2N N (r, ν i ) = 2 s=1 2N N (1) (f s ,H i ) (r) + o( 2 s=1 T (r, f s )).
This implies that

|| 2 s=1 2N (N ) (f s ,H i ) (r) -(N + 1)N (1) (f s ,H i ) (r) ≥ (N -1) 2 s=1 N (1) 
(f s ,H i ) (r) + o( 2 s=1 T (r, f s )).
From this inequality and (1.2.14), it follows that

2 s=1 N (1) 
(f s ,H i ) (r) = o( 2 s=1 T (r, f s )) (1 ≤ i ≤ 2N + 2).
By the Second Main Theorem, we have

|| 2 s=1 (N + 1)T (r, f s ) ≤ 2 s=1 2N +2 v=1 N (N ) (f s ,Hv) (r) + o( 2 s=1 T (r, f s )) = o( 2 s=1 T (r, f s )).
This is a contradiction. Hence f 1 ≡ f 2 . Theorem 1.2 is proved.

A unicity theorem for meromorphic mapping sharing few fixed targets with ramification of truncations

Theorem 1.3. (Ha [START_REF] Ha | A unicity theorem with truncated counting function for meromorphic mappings[END_REF]) Let f 1 , f 2 , f 3 : C n -→ P N (C) be three meromorphic mappings and let {H i } q i=1 be hyperplanes in general position. Let d, k, k 1i , k 2i , k 3i be integers with

1 ≤ k 1i , k 2i , k 3i ≤ ∞ (1 ≤ i ≤ q). We set M = max{k ji }, m = min{k ji } (1 ≤ j ≤ 3, 1 ≤ i ≤ q), k = max{♯{i ∈ {1, 2 • • • , q} | k ji = m} | 1 ≤ j ≤ 3}. Define by d = 0 if M = m and d = min{k ji -m > 0 | 1 ≤ j ≤ 3; 1 ≤ i ≤ q} if M = m. Assume that the following conditions are satisfied (i) dim{z ∈ C n : ν (f j ,H i ),≤k ji > 0 and ν (f j ,H l ),≤k jl > 0} ≤ n -2 (1 ≤ j ≤ 3; 1 ≤ i < l ≤ q) (ii) min(ν (f j ,H i ),≤k ji , 2) = min (ν (f t ,H i ),≤k ti , 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ q) (iii) f 1 ≡ f j on q α=1 {z ∈ C n : ν (f 1 ,Hα),≤k 1α (z) > 0} (1 ≤ j ≤ 3). Then f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1 if one of the following conditions is satisfied 1) N ≥ 2, 3N -1 ≤ q ≤ 3N + 1, m > 3N + 1 + 16 3(N -1)
and

(2q -5N -3) > 2N k m + 1 + 2N (q -k) m + d + 1 - 3N 2 + N M + 1 . 
2) N = 1, q = 4 and 3(2k + 1)

m + 1 + 6(4 -k) m + d + 1 + 6k M (m + 1) + 24 -6k M (m + d + 1) < 1 + 12 M .
Before proving, we now give some corollaries that are given directly from Theorem 1. 

(i) dim{z ∈ C n : ν (f j ,H i ),≤k i > 0 and ν (f j ,H l ),≤k l > 0} ≤ n -2 ( 1 ≤ i < l ≤ 3N + 1) (ii) min(ν (f j ,H i ),≤k i , 2) = min (ν (f t ,H i ),≤k i , 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 3N + 1) (iii) f 1 ≡ f j on 3N +1 α=1 {z ∈ C n : ν (f 1 ,Hα),≤kα (z) > 0} (1 ≤ j ≤ 3). Then f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1 if one of the following conditions is satisfied a) N ≥ 2, k j = k 1 + 1 for every 2 ≤ j ≤ 3N + 1 and k 1 > 3N + 2 + 14 3(N -1) . b) N ≥ 2, k j = k 1 + 2 for every 2 ≤ j ≤ 3N + 1 and k 1 > 3N + 1 + 16 3(N -1)
.

*) When k = 1 and M = m + d, by using the proof for the case 2 of Theorem 1.3, we have the following Corollary 2. Let f 1 , f 2 , f 3 : C n -→ P 1 (C) be three meromorphic functions and let

{H i } 4 i=1 be distinct points. Let k i (1 ≤ i ≤ 4
) be positive integers satisfying the following conditions

(i) dim{z ∈ C n : ν (f j ,H i ),≤k i > 0 and ν (f j ,H l ),≤k l > 0} ≤ n -2 ( 1 ≤ j ≤ 3; 1 ≤ i < l ≤ 4) (ii) min(ν (f j ,H i ),≤k i , 2) = min (ν (f t ,H i ),≤k i , 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 4) (iii) f 1 ≡ f j on 4 α=1 {z ∈ C n : ν (f 1 ,Hα),≤kα (z) > 0} (1 ≤ j ≤ 3) Assume that one of the following conditions is satisfied a) k 1 = 9, k 2 = k 3 = k 4 = 66. b) k 1 = 10, k 2 = k 3 = k 4 = 36. c) k 1 = 11, k 2 = k 3 = k 4 = 26. d) k 1 = 12, k 2 = k 3 = k 4 = 21. e) k 1 = 13, k 2 = k 3 = k 4 = 18. f ) k 1 = 14, k 2 = k 3 = k 4 = 16.
Then

f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1 . Proof. Case 1. N ≥ 2, 3N -1 ≤ q ≤ 3N + 1, m > 3N + 1 + 16 3(N -1)
and

(2q -5N -3) > 2N k m + 1 + 2N (q -k) m + d + 1 - 3N 2 + N M + 1 .
Firstly, we need the following.

Claim 1.3.1. Denote by Q the set of all indices j 0 ∈ {1, 2, ..., q} satisfying the following:

There exist c ∈ C and α = (α 0 , α 1 ) with |α| ≤ 1 such that Φ α (F j 0 1 c , F j 0 2 c , F j 0 3 c ) ≡ 0. Then Q is an empty set.
Proof. Assume that Q is non-empty. For every 1 ≤ i ≤ 3 and j 0 ∈ Q, by Lemma 1.1.22, we have

N (1) (f i ,H j 0 ),≤k ij 0 (r) + 2 j =j 0 N (1) (f i ,H j ),≤k ij (r) ≤ T (r) + 3 l=1 N (1) (f l ,H j 0 ),>k lj 0 (r) + o(T (r)),
and hence

N (N ) (f i ,H j 0 ),≤k ij 0 (r)+2 j =j 0 N (N ) (f i ,H j ),≤k ij (r) ≤ N •T (r)+N 3 l=1 N (1) (f l ,H j 0 ),>k lj 0 (r)+o(T (r)).
This implies that

3 i=1 N (N ) (f i ,H j 0 ),≤k ij 0 (r) + 2 j =j 0 N (N ) (f i ,H j ),≤k ij (r) ≤ 3N T (r) + 3N 3 i=1 N (1) (f i ,H j 0 ),>k ij 0 (r) + o(T (r)) ≤ 3N T (r) + 3 i=1 3N k ij 0 + 1 N (f i ,H j 0 ),>k ij 0 (r) + o(T (r)) ≤ 3N T (r) + 3 i=1 3N k ij 0 + 1 N (f i ,H j 0 ) (r) -N (f i ,H j 0 ),≤k ij 0 (r) +o(T (r)) (1.3.1)
Hence we see

3 i=1 2 q j=1 N (N ) (f i ,H j ),≤k ij (r) ≤ 3N T (r) + 3 i=1 3N k ij 0 + 1 N (f i ,H j 0 ) (r)+ + 3 i=1 (1 - 3N k ij 0 + 1 )N (N ) (f i ,H j 0 ),≤k ij 0 (r) + o(T (r)) (1.3.2)
On the other hand, since 1 -

3N k ij 0 + 1 > 0 and max{N (N ) (f i ,H j 0 ),≤k ij 0 (r); N (f i ,H j 0 ) (r)} ≤ T (r, f i ) + o(T (r, f i )) for every 1 ≤ i ≤ 3, (1.3.3) 
we have

2 3 i=1 q j=1 N (N ) (f i ,H j ),≤k ij (r) ≤ (3N + 1)T (r) + o(T (r)). (1.3.4) 
Using Lemma 1.1.21, we have

q -N -1 - q j=1 N k ij + 1 T (r, f i ) ≤ q j=1 1 - N k ij + 1 N (N ) (f i ,H j ),≤k ij (r) + o(T (r, f i )) q -N -1 - N k m + 1 - N (q -k) m + d + 1 T (r, f i ) ≤ 1 - N M + 1 q j=1 N (N ) (f i ,H j ),≤k ij (r) + o(T (r, f i )) q -N -1 - N k m + 1 - N (q -k) m + d + 1 T (r) ≤ 1 - N M + 1 3 i=1 q j=1 N (N ) (f i ,H j ),≤k ij (r) + o(T (r)).
(1.3.5)

From (1.3.4) and (1.3.5), we have

2 q -N -1 - N k m + 1 - N (q -k) m + d + 1 T (r) ≤ (3N + 1)(1 - N M + 1 )T (r) + o(T (r)).
Letting r → +∞, we get

2 q -N -1 - N k m + 1 - N (q -k) m + d + 1 ≤ (3N + 1)(1 - N M + 1 ),
and hence

(2q -5N -3) ≤ 2N k m + 1 + 2N (q -k) m + d + 1 - 3N 2 + N M + 1 (1.3.6).
This is a contradiction. So we have ♯Q = 0

Claim 1.3.2. If ♯ {1, 2, ..., q} \ Q ≥ 3N -1 and N ≥ 2 then f 1 ≡ f 2 , or f 2 ≡ f 3 , or f 3 ≡ f 1 .
Proof Indeed, assume that 1, ..., 3N -1 / ∈ Q. By the density of C, it implies that

Φ α (F i1 j , F i2 j , F i3 j ) = 0 (1 ≤ i, j ≤ 3N -1, |α| ≤ 1).
Thus, there exists

χ ij = 0 such that F i1 j = χ ij F i2 j , or F i2 j = χ ij F i3 j or F i3 j = χ ij F i1 j .
We may assume that F i1 j = χ ij F i2 j . Suppose χ ij = 1. Then we have the following:

If ν (f 1 ,H l ),≤k 1l (z) > 0 (l = i, j), then ν (f 1 ,H i ) (z) > 0 or ν (f 1 ,H j ) (z) > 0. So we get l =i,j ν (1) (f 1 ,H l ),≤k 1l (z) ≤ ν (1) (f 1 ,H i ),>k 1i (z) + ν (1) (f 1 ,H j ),>k 1j (z) outside a finite union of an- alytic sets of dimension ≤ n -2. Hence l =i,j N (1) (f 1 ,H l ),≤k 1l (r) ≤ N (1) (f 1 ,H i ),>k 1i (r) + N (1) (f 1 ,H j ),>k 1j (r) ≤ 1 k 1i + 1 N (f 1 ,H i ),>k 1i (r) + 1 k 1j + 1 N (f 1 ,H j ),>k 1j (r) ≤ 1 k 1i + 1 N (f 1 ,H i ) (r) + 1 k 1j + 1 N (f 1 ,H j ) (r) ≤ 2 m + 1 T (r, f 1 ).
By Lemma 1.1.21 and since k 1l ≥ N -1, we have

q -N -3 - l =i,j N k 1l + 1 T (r, f 1 ) ≤ l =i,j 1 - N k 1l + 1 N (N ) (f 1 ,H l ),≤k 1l (r) + o(T (r, f 1 )).
This yields that

q -N -3 - l =i,j N m + 1 T (r, f 1 ) ≤ l =i,j 1 - N M + 1 N (N ) (f 1 ,H l ),≤k 1l (r) + o(T (r, f 1 )) ≤ N 1 - N M + 1 l =i,j N (1) 
(f 1 ,H l ),≤k 1l (r) + o(T (r, f 1 )) ≤ 1 - N M + 1 2N m + 1 T (r, f 1 ) + o(T (r, f 1 )).
Hence

q -N -3 - N (q -2) m + 1 ≤ 1 - N M + 1 2N m + 1 .
This means that

q -N -3 - N (q -2) m + 1 ≤ 2N m + 1 - 2N 2 (m + 1)(M + 1)
.

Thus

q -N -3 ≤ N q m + 1 - 2N 2 (m + 1)(M + 1) (1.3.7)
Moreover, since N ≥ 2, 3N + 1 ≥ q and m > 3N + 1 + 16 3(N -1)

, we have

(3N -3) 2 ≥ N q m + 1 and N k m + 1 + N (q -k) m + d + 1 ≥ N q m + d + 1 ≥ N q M + 1 ≥ 3N 2 + N 2(M + 1
) .

This implies that

5N + 3 2 + N k m + 1 + N (q -k) m + d + 1 - 3N 2 + N 2(M + 1) > N + 3 + N q m + 1 - 2N 2 (m + 1)(M + 1)
.

Combining the hypothesis and (1.3.7), we get a contradiction. Hence χ ij = 1.

We define the subsets I 1 , I 2 and I 3 by

I 1 = {i : 1 ≤ i ≤ 3N -2 and F i1 3N -1 = F i2 3N -1 }, I 2 = {i : 1 ≤ i ≤ 3N -2 and F i2 3N -1 = F i3 3N -1 }, I 3 = {i : 1 ≤ i ≤ 3N -2 and F i3 3N -1 = F i1 3N -1 }.
Then one of them contains at least N indices. We may assume that ♯I 1 ≥ N . Then

f 1 ≡ f 2 .
Thus the Claim is proved.

From Claim 1.3.1 and Claim 1.3.2 and q ≥ 3N -1, Case 1 is proved.

Case 2. Assume that N = 1 and q = 4.

For each j 0 ∈ Q, from (1.3.1), we get

3 i=1 2 q j=1 N (1) (f i ,H j ),≤k ij (r) ≤ 3T (r)+ + 3 i=1 3 k ij 0 + 1 (N (f i ,H j 0 ) (r) -N (1) (f i ,H j 0 ),≤k ij 0 (r)) + 3 i=1 N (1) (f i ,H j 0 ),≤k ij 0 (r) + o(T (r))
and

N (1) (f i ,H j 0 ),≤k ij 0 (r) ≤ N (f i ,H j 0 ) (r) ≤ T (r, f i ) + o(T (r)) (1 ≤ i ≤ 3). Hence 2 3 i=1 4 j=1 N (1) 
(f i ,H j ),≤k ij (r) ≤ 3(1+ 1 m j 0 + 1 )T (r)+ 3 i=1 (1- 3 m j 0 + 1 )N (1) (f i ,H j 0 ),≤k ij 0 (r)+o(T (r)) ≤ 3(1 + 1 m j 0 + 1 )T (r) + 3 i=1 (1 - 3 m j 0 + 1 )N (1) (f i ,H j 0 ),≤k ij 0 (r) + o(T (r)), (1.3.8)
where

m j = min{k ij | 1 ≤ i ≤ 3}(1 ≤ j ≤ 4).
On the other hand, from Lemma 1.1.21, we have 2 -

4 j=1 1 k ij + 1 T (r, f i ) ≤ 4 j=1 1 - 1 k ij + 1 N (1) 
(f i ,H j ),≤k ij (r) + o(T (r, f i )). It implies that 2 - k m + 1 - 4 -k m + d + 1 T (r, f i ) ≤ 4 j=1 1 - 1 M + 1 N (1) 
(f i ,H j ),≤k ij (r) + o(T (r, f i )).
Hence

2 - k m + 1 - 4 -k m + d + 1 T (r) ≤ 3 i=1 4 j=1 1 - 1 M + 1 N (1) 
(f i ,H j ),≤k ij (r) + o(T (r)) (1.3.9)
From (1.3.8) and (1.3.9), we have

2 2 - k m + 1 - 4 -k m + d + 1 ( M + 1 M )T (r) ≤ 3(1 + 1 m j 0 + 1 )T (r) + 3 i=1 (1 - 3 m j 0 + 1 )N (1) (f i ,H j 0 ),≤k ij 0 (r) + o(T (r)).
This yields that

3 i=1 N (1) (f i ,H j 0 ),≤k ij 0 (r) ≥ m j 0 + 1 m j 0 -2 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M )- -3(1 + 1 m j 0 + 1 ) T (r) + o(T (r)).
Hence

3 i=1 N (1) (f i ,H j 0 ),≤k ij 0 (r) ≥ m j 0 + 1 m j 0 -2 × × 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 m j 0 + 1 ) T (r) + o(T (r)) (1.3.10)
Assume that ♯Q ≥ 3, i.e, Q ⊃ {j 0 , j 1 , j 2 }.

By (1.3.10), we get

3 i=1 2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≥ 2 s=0 m js + 1 m js -2 × 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 m js + 1
) T (r) + o(T (r)). (1.3.11) Since there exists c ∈ C such that

F j 0 1 c -F j 0 2 c ≡ 0, it implies that 2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≤ N F j 0 1 c -F j 0 2 c (r) ≤ T (r, f 1 ) + T (r, f 2 ) + O(1).
Similarly, we have

2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≤ T (r, f 2 ) + T (r, f 3 ) + O(1)
and

2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≤ T (r, f 3 ) + T (r, f 1 ) + O(1).
Hence

2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≤ 2 3 • T (r) + O(1) (1 ≤ i ≤ 3) and 3 i=1 2 s=0 N (1) 
(f i ,H js ),≤k ijs (r) ≤ 2.T (r) + O(1) (1.3.12)
From (1.3.11) and (1.3.12), we have

2.T (r) ≥ 2 s=0 m js + 1 m js -2 2(2- k m + 1 - 4 -k m + d + 1 )( M + 1 M )-3(1+ 1 m js + 1
) T (r)+o(T (r)).

Letting r → +∞, we get

2 ≥ 2 s=0 m js + 1 m js -2 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 m js + 1
) .

On the other hand, the following function is increasing for t > 2

f (t) = t + 1 t -2 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 t + 1 )
So we get

2 ≥ 3. m + 1 m -2 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 m + 1
) .

This means that

2(m -2) 3(m + 1) ≥ 2(2 - k m + 1 - 4 -k m + d + 1 )( M + 1 M ) -3(1 + 1 m + 1
) .

Thus, we get

3(2k + 1) m + 1 + 6(4 -k) m + d + 1 + 6k M (m + 1) + 24 -6k M (m + d + 1) ≥ 1 + 12 M .
This is a contradiction (remarking that the equality does not happen if max 1≤j≤4 {m j } > m ). Hence ♯Q ≤ 2.

We now use the same argument in [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables[END_REF] to complete Case 2.

Without loss of generality, we may assume that 1, 2 / ∈ Q. By the density of C in C 2 , it implies that Φ α (F i0 j , F i1 j , F i2 j ) = 0 for each 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 and for each α = (α 0 , α 1 ) with |α| ≤ 1, where

F ik j = (f k , H i ) (f k , H j ) .
Applying Lemma 1.1.18 for i = 1, j = 2, we have the following two cases.

(i) There exist 0

≤ l 1 < l 2 ≤ 2 such that F 1l 1 2 = F 1l 2 2 . Then f l 1 ≡ f l 2 .
(ii) There are two distinct constants α, β ∈ C \ {0, 1} such that F 10 2 = αF 11 2 = βF 12 2 . We may assume that

H 1 = {ω 0 = 0}, H 2 = {ω 1 = 0}, H 3 = {ω 0 -cω 1 = 0} (c ∈ C\{0}). Then f 0 0 f 0 1 = α f 1 0 f 1 1 = β f 2 0 f 2 1 , (f 1 , H 3 ) = 0 ⇔ f 1 0 -cf 1 1 = 0 ⇔ (f 0 0 -cαf 0 1 ) f 1 1 αf 0 1 = 0 (f 2 , H 3 ) = 0 ⇔ f 2 0 -cf 2 1 = 0 ⇔ (f 0 0 -cβf 0 1 ) f 2 1 βf 0 1 = 0. Hence {z ∈ C n : ν (f 0 ,H 3 ),≤k 03 (z) > 0} ⊂ 2 i=0 I(f i ). So that N (1) 
(f 0 ,H 3 ),≤k 03 (r) = 0, and

ν (f 1 ,H 3 ) (z) = ν f 0 0 -cαf 0 1 (z) and ν (f 2 ,H 3 ) (z) = ν f 0 0 -cβf 0 1 (z) for z / ∈ I(f 0 ) ∪ I(f 1 ) ∪ I(f 2 ) Thus, we have ν (f 1 ,H 3 ) (z) = ν f 0 0 -cαf 0 1 (z) (z ∈ C n ) and ν (f 2 ,H 3 ) (z) = ν f 0 0 -cβf 0 1 (z) (z ∈ C n ). Put H ′ 3 = {ω 0 -cαω 1 = 0}, H ′′ 3 = {ω 0 -cβω 1 = 0}.
Then we have the following:

• H 3 , H ′ 3 , H ′′ 3 are in general position. • ν (f 0 ,H ′ 3 ) = ν (f 1 ,H 3 ) . This yields ν (1) (f 0 ,H ′ 3 ),≤k 13 = ν (1) (f 1 ,H 3 ),≤k 13 = ν (1) (f 0 ,H 3 ),≤k 03 • ν (f 0 ,H ′′ 3 ) = ν (f 2 ,H 3 ) . This yields ν (1) (f 0 ,H ′′ 3 ),≤k 23 = ν (1) (f 2 ,H 3 ),≤k 23 = ν (1) (f 0 ,H 3 ),≤k 03
By Lemma 1.1.21, we have

3-1-1- 2 j=0 1 k j3 + 1 T (r, f 0 ) ≤ (1- 1 1 + k 03 )N (1) 
(f 0 ,H 3 ),≤k 03 (r)+(1-

1 1 + k 13 )N (1) (f 0 ,H ′ 3 ),≤k 13 (r)+ +(1 - 1 1 + k 23 )N (1) (f 0 ,H ′′ 3 ),≤k 23 (r) + o(T (r, f 0 )) ⇒ 1- 3 m + 1 T (r, f 0 ) ≤ 1- 1 M + 1 N (1) (f 0 ,H 3 ),≤k 03 (r)+N (1) (f 0 ,H ′ 3 ),≤k 13 (r)+N (1) (f 0 ,H ′′ 3 ),≤k 23 (r) +o(T (r, f 0 )) ⇒ 1- 3 m + 1 T (r, f 0 ) ≤ 1- 1 M + 1 N (1) (f 0 ,H 3 ),≤k 03 (r)+N (1) 
(f 0 ,H 3 ),≤k 03 (r)+N

(1)

(f 0 ,H 3 ),≤k 03 (r) +o(T (r, f 0 )) = 3(1 - 1 M + 1 )N (1) 
(f 0 ,H 3 ),≤k 03 (r) + o(T (r, f 0 ))

So we get

1 - 3 m + 1 T (r, f 1 ) ≤ o(T (r, f 0 ))
This is a contradiction. Case 2 of Theorem 1.3 is proved.

A unicity theorem for meromorphic mapping sharing few fixed targets with a conditions on derivations

Take a meromorphic mapping f of C n into P N (C) which is linearly nondegenerate over C, a positive integer d, a positive integer k or k = ∞ and q hyperplanes H 1 , ...., H q in

P N (C) located in general position with dim{z ∈ C n : ν (f,H i ) (z) > 0 and ν (f,H j ) (z) > 0} ≤ n -2 (1 ≤ i < j ≤ q),
and consider the set G(f, {H j } q j=1 , k, d) of all meromorphic maps g : C n → P N (C) satisfying the conditions (a) g is linearly nondegenerate over C, (b) min{ν (f,H j ),≤k , d} = min{ν (g,H j ),≤k , d} (1 ≤ j ≤ q), (c) Let f = (f 0 : • • • : f N ) and g = (g 0 : • • • : g N ) be reduced representations of f and g, respectively. Then, for each 0 j N and for each ω ∈ q i=1 {z ∈ C n : ν (f,H i ), k (z) > 0}, the following two conditions are satisfied: Remark that the condition (c) does not depend on the choice of reduced representations.

(i) If f j (ω) = 0 then g j (ω) = 0, (ii) If f j (ω)g j (ω) = 0 then D α f i f j (ω) = D α g i g j ( 
The last part of this chapter proves the following.

Theorem 1.4. (Ha-Quang [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables for few fixed targets[END_REF])

If N ≥ 4 and 2 d N -1, then ♯ G(f, {H i } 3N +2-2d i=1 , k, d) = 1 for each k > 3dN 2 -2N 2 + 2N d -2N d 2 2(d -1)N + d -2d 2 -1.
Proof. Suppose that there exists a mapping g ∈ G(f, {H i } 3N +2-2d i=1 , k, d) with reduced representation g = (g 0 : • • • : g N ) such that g ≡ f. Then there exist indices i and

j (0 i < j N ) such that P ij = (f, H i ) (f, H j ) - (g, H i ) (g, H j ) ≡ 0. Define I = I(f ) ∪ I(g) ∪ 1 t<s 3N +2-2d {z ∈ C n |ν (f,Ht), k (z)ν (f,Hs), k (z) > 0}.
Then I is an analytic set of codimension 2 or emptyset.

Claim 1.4.1. The following assertion holds

3N +2-2d v=1 N (d) (f,Hv), k (r) T (r, f ) + T (r, g) + o(T (r, f ) + T (r, g))
Proof . We fix a point z ∈ I satisfying ν (f,Ht), k (z) > 0 (t = j). Suppose that f l (z) • g l (z) = 0 (0 l N ). Then g l (z) = 0 (0 l N ). This means that z ∈ I(g). This is impossible. Hence, there exists an index l such that f l (z) • g l (z) = 0. This implies that

D α P ij (z) = D α (f, H i ) (f, H j ) - (g, H i ) (g, H j ) (z) = D α N v=0 fv f l a iv N v=0 fv f l a jv - N v=0 gv g l a iv N v=0 gv g l a jv (z) = 0, ∀|α| d. Hence ν P ij (z) ≥ d. We have ν P ij ≥ 3N +2-2d t=1 t =j d min{1, ν (f,Ht), k } outside an analytic
set of codimension 2. This yields that

N P ij (r) ≥ 3N +2-2d t=1 t =j N (d) (f,Ht), k (r).
Using the argument in the proof of Theorem 1.2, we have

m(r, P ij ) T (r, f ) + T (r, g) -N (f,H j ) (f,H i ) (r) -N (g,H j ) (g,H i ) (r) + O(1)
and

N 1 P ij (r) N (r, ν j ), where ν j = max {ν (f,H j ) (f,H i ) , ν (g,H j ) (g,H i ) }. Hence 3N +2-2d v=1 v =j N (d) (f,Hv), k (r) N P ij (r) T (r, P ij ) = N 1 P ij (r) + m(r, P ij ) + O(1) T (r, f ) + T (r, g) + N (r, ν j ) -N (f,H j ) (f,H i ) (r) -N (g,H j ) (g,H i ) (r) + o(T (r, f ) + T (r, g)).
This gives

N (f,H j ) (f,H i ) (r) + N (g,H j ) (g,H i ) (r) -N (r, ν j ) + 3N +2-2d v=1 v =j N (d) (f,Hv), k (r) T (r, f ) + T (r, g) + o(T (r, f ) + T (r, g)).
On the other hand, we have

ν j (z) -ν (f,H j ) (f,H i ) (z) -ν (g,H j ) (g,H i ) (z) + ν (d) (f,H j ), k (z) = ν (d) (f,H j ), k (z) -min {ν (f,H j ) (f,H i ) (z), ν (g,H j ) (g,H i ) (z)} 0
ouside an analytic set of codimension 2. Hence

N (r, ν i ) -N (f,H j ) (f,H i ) (r) -N (g,H j ) (g,H i ) (r) + N (d) (f,H j ), k (r) 0.
This yields that

3N +2-2d v=1 N (d) (f,Hv), k (r) T (r, f ) + T (r, g) + o(T (r, f ) + T (r, g)).
This concludes Claim 1.4.1.

From Claim 1.4.1 we have the following

3N +2-2d v=1 N (N ) (f,Hv), k (r) N d (T (r, f ) + T (r, g)) + o(T (r, f ) + T (r, g)).
By using Lemma 1.1.9 , we also have

3N +2-2d i=1 N (N ) (f,H i ), k (r) ≥ (2N + 1 -2d)(k + 1) -N (3N + 2 -2d) k + 1 -N T (r, f ) + o(T (r, f )) and 3N +2-2d i=1 N (N ) (g,H i ), k (r) ≥ (2N + 1 -2d)(k + 1) -N (3N + 2 -2d) k + 1 -N T (r, g) + o(T (r, g)).
This implies that

2N d ((T (r, f ) + T (r, g)) ≥ (2N + 1 -2d)(k + 1) -N (3N + 2 -2d) k + 1 -N × (T (r, f ) + T (r, g)) + o((T (r, f ) + T (r, g))).
Letting r -→ ∞, we have

2N d ≥ (2N + 1 -2d)(k + 1) -N (3N + 2 -2d) k + 1 -N ,
and hence

k + 1 3dN 2 -2N 2 + 2N d -2N d 2 2(d -1)N + d -2d 2 .
This is a contradiction. Thus, we have

♯ G(f, {H i } 3N +2-2d i=1 , k, d) = 1 and Theorem 1.4 is proved.
Chapter 2

Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets

The unicity theorems with truncated multiplicities of meromorphic mappings of C n into the complex projective space P N (C) sharing a finite set of fixed (or moving) hyperplanes in P N (C) have received much attention in the last few decades, and they are related to many problems in Nevanlinna theory and hyperbolic complex analysis .

For moving targets and truncated multiplicites, the following results are best and due to Dethloff-Tan [START_REF] Dethloff | Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets[END_REF]. They proved the following (see §2.1 for notations).

Theorem of Dethloff-Tan [START_REF] Dethloff | Uniqueness problem for meromorphic mappings with truncated multiplicities and moving targets[END_REF] Let f, g : C n -→ P N (C) (N ≥ 2) be two nonconstant meromorphic mappings, and let {a j } 3N +1 j=1 be "small" (with respect to f ) meromorphic

mappings of C n into P N (C) in general position such that (f, a i ) ≡ 0, (g, a i ) ≡ 0 (1 i 3N + 1) and f is linearly nondegenerate over R({a j } 3N +1 j=1 ). Set M = 3N (N + 1) 2N +2 N +1 2 2N +2 N +1 -1 +N (3N +4
). Assume that the following conditions are satisfied.

(i) dim{z ∈ C n : ν (f,a i ), M (z) > 0 and ν (f,a j ), M (z) > 0} n -2 (1 i N + 3, 1 j 3N + 1). (ii) min{ν (f,a i ) , M } = min{ν (g,a i ) , M } ((1 i 3N + 1). (iii) f (z) = g(z) on j∈D {z ∈ C n : ν (f,a j ), M (z) > 0}, where D is an arbitrary subset of {1, • • • , 3N + 1} with ♯D = N + 4.
Then f ≡ g.

We would like to emphasize here that the assumption ♯D = N + 4 in the abovementioned theorem is essential in their proofs. It seems to us that some key techniques in their proofs could not be used for ♯D < N + 4.

The first main purpose of the present chapter is to give a unicity theorem with truncated multiplicities of meromorphic mappings in several complex variables sharing N + 2 moving targets. In particular, we prove Theorem 2.2 (Ha-Quang-Thai [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets[END_REF]). It is an improvement of the above-mentioned theorem of Dethloff-Tan.

In this chapter, we also would like to study the unicity problems of meromorphic mappings in several complex variables for moving targets with conditions on derivations. We will prove Theorem 2.3 (Ha-Quang-Thai [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets[END_REF]) in the last part of this chapter.

Preliminaries

2.1.1. Let f : C n -→ P N (C) be a meromorphic mapping. For arbitrarily fixed homogeneous coordinates (w 0 : • • • : w N ) on P N (C), we take a reduced representation

f = (f 0 : • • • : f N ), which means that each f i is a holomorphic function on C n and f (z) = f 0 (z) : • • • : f N (z) outside the analytic set {f 0 = • • • = f N = 0} of codimension ≥ 2. Set f = |f 0 | 2 + • • • + |f N | 2 1/2 .
The characteristic function of f is defined by

T (r, f ) = S(r) log f σ n - S(1) log f σ n .
Let a be a meromorphic mapping of C n into P N (C) with reduced representation a = (a 0 : • • • : a N ). The proximity function m f,a (r) is defined by

m f,a (r) = S(r) log ||f || • ||a|| |(f, a)| σ n - S(1) log ||f || • ||a|| |(f, a)| σ n , where a = |a 0 | 2 + • • • + |a N | 2 1/2 .
If f, a : C n → P N (C) are meromorphic mappings such that (f, a) ≡ 0, then the First Main Theorem for moving targets in value distribution theory (see Ru-Stoll [START_REF] Ru | The second main theorem for moving targets[END_REF]) states

T (r, f ) + T (r, a) = m f,a (r) + N (f,a) (r).
2.1.2. Let a 1 , . . . , a q (q ≥ N + 1) be q meromorphic mappings of C n into P N (C) with reduced representations a j = (a j0 : • • • : a jN ) (1 j q). We say that a 1 , . . . , a q are located in general position if det(a j k l ) ≡ 0 for any 1 j 0 < j 1 < ... < j N q.

We also say that a 1 , . . . , a q are located in pointwise general position if the hyperplanes a 1 (z), . . . , a q (z) are in general position as a set of fixed hyperplanes at every point

z ∈ C n .
Let M n be the field of all meromorphic functions on C n . Denote by R a j q j=1 ⊂ M n the smallest subfield which contains C and all a jk a jl with a jl ≡ 0. Define R a j q j=1 ⊂ M n to be the smallest subfield which contains all h ∈ M n with h k ∈ R a j q j=1 for some positive integer k.

Let f be a meromorphic mapping of C n into P N (C) with reduced representation f = (f 0 : • • • : f N ). We say that f is linearly nondegenerate over R a j q j=1 R a j q j=1 if f 0 , . . . , f N are linearly independent over R a j q j=1 ( R a j q j=1 , respectively). Let f , a be two meromorphic mappings of C n into P N (C) with reduced representa-

tions f = (f 0 : • • • : f N ), a = (a 0 : • • • : a N ) respectively. Put (f, a) = N i=0 a i f i . We say that a is "small" with respect to f if T (r, a) = o(T (r, f )) as r → ∞.
Let f and a be nonconstant meromorphic mappings of C n into P N (C). For every

z ∈ C n , we set ν (f,a),≤k (z) = 0 if ν (f,a) (z) > k, ν (f,a) (z) if ν (f,a) (z) ≤ k, ν (f,a),>k (z) = ν (f,a) (z) if ν (f,a) (z) > k, 0 if ν (f,a) (z) ≤ k.
2.1.3. The second main theorem for moving targets. (Thai-Quang [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables for moving targets[END_REF]) Let f : C n → P N (C) be a meromorphic mapping. Let {a j } q j=1 (q ≥ N + 2) be meromorphic mappings of C n into P N (C) in general position such that f is linearly nondegenerate over R({a i } q i=1 ). Then

|| q N + 2 T (r, f ) ≤ q j=1 N (N ) (f,a j ) (r) + o(T (r, f )) + O( max 1≤j≤q 
T (r, a j )).

A unicity theorem with truncated multiplicities of meromorphic mappings in several complex variables sharing few moving targets

In this section, we prove the following.

Theorem 2.2. (Ha-Quang-Thai [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets[END_REF]) Let k be a positive integer or k = ∞ and d be a positive integer or d = ∞ such that the following is satisfied

3 d + 1 + 6 k + 1 2N + 2 N + 1 2N + 2 N + 1 -2 < N + 2 N (N + 2)(N (N + 2) + 1) - 2N + 2 k + 1 .
Let f, g : C n → P N (C) (N ≥ 2) be two nonconstant meromorphic mappings, and let

{a j } 3N +1 j=1
be "small" (with respect to f ) meromorphic mappings of

C n into P N (C) in general position such that dim{z ∈ C n : ν (f,a i ), k (z)ν (f,a j ), k (z) > 0} n -2 (1 i < j 3N + 1).
Assume that f, g are linearly nondegenerate over R({a j } 3N +1 j=1 ) and the following are satisfied.

(i) min (ν (f,H j ), k , d) = min (ν (g,H j ), k , d) (1 j 3N + 1). (ii) f (z) = g(z) on j∈D {z ∈ C n : ν (f,a j ), N (N +2) (z) > 0}, where D is an arbitrary subset of {1, • • • , 3N + 1} with ♯D = N + 2.
Then f ≡ g.

Proof. Assume that f, g, a i have reduced representations f = (f 0 : ... : f N ), g = (g 0 : ... : g N ), a i = (a i0 : ... : a iN ).

(i) Consider any 2N +2 meromorphic mappings of {a 1 , ..., a 3N +1 }, to say, a 1 , ..., a 2N +2 .

Define h i = (f, a i ) (g, a i ) (1 i 2N + 2). Then h i h j = (f, a i ) • (g, a j ) (g, a i ) • (f, a j ) does not depend on representations of f and g . Since N k=0 a ik f k -h i • N k=0 a ik g k = 0 (1 i 2N + 2), it implies that det (a i0 , ..., a iN , a i0 h i , ..., a iN h i ; 1 i 2N + 2) = 0.
For each subset I ⊂ {1, 2, ..., 2N + 2}, put h I = i∈I h i . Denote by I the set of all

N + 1-tuples I = (i 1 , ..., i N +1 ) with 1 i 1 < ... < i N +1 2N + 2.
For each I = (i 1 , ..., i N +1 ) ∈ I, define

A I = (-1) (N +1)(N +2) 2 +i 1 +...+i N +1 • det(a irl ; 1 r N + 1, 0 l N )• det(a jsl ; 1 s N + 1, 0 l N ),
where J = (j 1 , ..., j N +1 ) ∈ I such that I ∪ J = {1, 2, ..., 2N + 2}.

Then I∈I A I h I = 0.

(ii) Take I 0 ∈ I. Then A I 0 h I 0 = -I∈I,I =I 0 A I h I , and hence h I 0 = -I∈I,I =I 0

A I A I 0 h I .

Notice that

A I ≡ 0 (I ∈ I) and

A I A I 0 ∈ R({a i } 3N +1 i=1 ) (I ∈ I).

Denote by t the minimal number satisfying the following:

There exist t elements I 1 , ..., I t ∈ I \ {I 0 } and t nonzero meromorphic functions

b i ∈ R({a i } 3N +1 i=1 ) such that h I 0 = t i=1 b i h I i (2.2.

1).

Since h I 0 ≡ 0 and by the minimality of t, it follows that the family {b

1 h I 1 , ..., b t h It } is linearly independent over C. Assume that t ≥ 2. Put b 0 = -1. Then t i=0 b i h I i = 0. Put I = t i=0 I i , I ′ i = I i \ I = ∅ (0 i t) and Ĩ = t i=0 I ′ i , I ′ = t i=1 I ′ i , I ′′ i = I ′ i \ I ′ = ∅ (1 i t).
We have

h I ′ 0 h I ′ = t i=1 b i h I ′′ i (2.2.2).
Consider the meromorphic mapping h : C n → P t-1 (C) with a reduced representation h = ( hh I ′′ 1 : ... : hh

I ′′ t )
, where h is meromorphic on C n satisfying ν h i∈∪ t j=1 I ′′ j ν ∞ h i . Consider the meromorphic mapping b : C n → P t-1 (C) with a reduced representation b = (ψb 1 : ... : ψb t ), where ψ is meromorphic on C n . We get 

T (r, b) = o(T (r, f )) and N ψb i (r) N ψb 1 (r) + N b i b 1 (r) = o(T (r, f )) (0 i t). If z is a zero (a pole, respectively) of h i , then ν (f,a i ) (z) = ν (g,a i ) (z). Hence ν (f,a i ) (z) > d or ν (g,a i ) (z) > d. Thus, we have min{1, ν ∞ h i (z)}+min{1, ν h i (z)} min{1, ν (f,a i ),>d (z)}. This yields that N (1) h i (r) + N (1) 1 h i (r) N (1) (f,a i ),>d (r) + N (1) (g,a i ),>d (r) (2.

2.3). Consider the meromorphic mapping h

′ : C n → P t-1 (C)
1 h′ ψb i hh I ′′ i (r) + N (t-1) 1 h′ ψ h h I ′ 0 h I ′ (r) + o(T (r, h ′ )) (t -1) • t i=1 N (1) hh I ′′ i (r) + (t -1) • N (1) h• h I ′ 0 h I ′ (r) + o(T (r, f )) + o(T (r, h ′ )) (2.2.4). Since N (1) hh I ′′ i (r) O(T (r, f )) and N (1) h• h I ′ 0 h I ′ (r) O(T (r, f )), we have || T (r, h ′ ) O(T (r, f )). Define I ′′ = t i=1 I ′′ i . Denote by W the set i∈I ′′ {z : ν (f,a i ),>k (z) > 0}. Then N (1) hh I ′′ i (r) = N (1) h I ′′ i (r) + N ( 1 
)
1 h I ′′ \I ′′ i (r) + j∈I ′′ (N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r))

and

N (1) h. h I ′ 0 h I ′ (r) = N (1) h I ′ 0 (r) + N (1) 1 h (I ′′ ∪I ′ )\I ′ 0 (r) + j∈I ′′ (N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r)).

For each J ⊂ {1, 2, ..., 2N + 2}, put J c = {1, 2, ..., 2N + 2} \ J. It is easy to see that

I ′′ i ⊂ I i and I ′′ \ I ′′ i ⊂ I c i (1 i t), I ′ 0 ⊂ I 0 and (I ′′ ∪ I ′ ) \ I ′ 0 = Ĩ \ I ′ 0 = Ĩ \ (I 0 \ I) = ( Ĩ ∪ I) \ I 0 ⊂ I c 0 .
Hence

N (1) hh I ′′ i (r) N (1) h I i (r) + N ( 1 
)
1 h I c i (r) + 2N +2 j=1 (N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r))

and N

(1) h.

h I ′ 0 h I ′ (r) N (1) h I 0 (r) + N (1)
1 h I c 0 (r) + 2N +2 j=1 (N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r)).

Combining with (2.2.4), we deduce that

|| T (r, h ′ ) (t -1) t i=0 N (1) h I i (r) + N (1)
1 h I c i (r) + 2N +2 j=1 N (1) 
(f,a j ),>k (r)

+ N (1) 
(g,a j ),>k (r) +o(T (r, f ))

= (t -1) t i=0 j∈I i N ( 1 
)
h j (r) + j∈I c i N ( 1 
)
1 h j (r) + 2N +2 j=1 N (1) 
(f,a j ),>k (r)

+ N (1) 
(g,a j ),>k (r) +o(T (r, f ))

2N + 2 N + 1 -2 I∈I i∈I N ( 1 
)
h i (r) + N ( 1 
)
1 h i (r) + 2N +2 j=1 N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r) +o(T (r, f ))

= 1 2 2N + 2 N + 1 2N + 2 N + 1 -2 2N +2 i=1 N (1) 
h i (r) + N (1) 
1 h i (r) + 2 2N +2 j=1 N (1) 
(f,a j ),>k (r) + N

(g,a j ),>k (r) +o(T (r, f )) (2.2.5).

From (2.2.3) and (2.2.5) we get

|| T (r, h ′ ) 1 2 2N + 2 N + 1 2N + 2 N + 1 -2 2N +2 i=1 N (1) 
(f,a i ),>d (r) + N

(g,a i ),>d (r)

+ 2N (1) 
(f,a i ),>k (r) + 2N

(1) (g,a i ),>k (r) +o(T (r, f )) (2.2.6)

Consider the hyperplanes

H 1 = {w 1 = 0}, H 2 = {w 2 = 0}, H 3 = {w 1 +...+w t = 0} in P t-1 (C). Then || T (r, h ′ ) ≥ T r, (h ′ , H 1 ) (h ′ , H 2 ) +O(1) = T r, b 1 h I ′′ 1 b 2 h I ′′ 2 +O(1) = T r, b 1 h I 1 b 2 h I 2 +O(1) = T r, h I 1 h I 2 +o(T (r, f )) ≥ N (1) h I 1 h I 2 -1 (r) + o(T (r, f )), || T (r, h ′ ) ≥ T r, (h ′ , H 2 ) (h ′ , H 3 ) +O(1) = T r, b 2 h I 2 h I 0 +O(1) = T r, h I 2 h I 0 +o(T (r, f )) ≥ N (1) h I 2 h I 0 -1 (r) + o(T (r, f )), || T (r, h ′ ) ≥ T r, (h ′ , H 3 ) (h ′ , H 1 ) +O(1) = T r, h I 0 b 1 h I 1 +O(1) = T r, h I 0 h I 1 +o(T (r, f ))
≥ N

(1)

h I 0 h I 1 -1 (r) + o(T (r, f )). Hence || 3T (r, h ′ ) ≥ N (1) h I 1 h I 2 -1 (r) + N (1) h I 2 h I 0 -1 (r) + N (1) h I 0 h I 1 -1 (r) + o(T (r, f )). Since h I h J = 1 on the set j∈D\((I∪J)\(I∩J)) E j \W, where E j = {z ∈ C n : ν (f,a j ), N (N +2) (z) > 0} and (D \ ((I 1 ∪ I 2 ) \ (I 1 ∩ I 2 ))) ∪ (D \ ((I 2 ∪ I 0 ) \ (I 2 ∩ I 0 ))) ∪ (D \ ((I 0 ∪ I 1 ) \ (I 0 ∩ I 1 ))) = D,
we have that

N (1) h I 1 h I 2 -1 (r) + N (1) h I 2 h I 0 -1 (r) + N (1) h I 0 h I 1 -1 (r) ≥ i∈D N (1) 
(f,a i ), N (N +2) (r)

- 2N +2 i=1 (N (1) 
(f,a i ),>k (r) + N

(g,a i ),>k (r)).

Hence

|| 3T (r, h ′ ) ≥ i∈D N (1) (f,a i ), N (N +2) (r) - 2N +2 i=1 (N (1) 
(f,a i ),>k (r) + N

(g,a i ),>k (r))

+ o(T (r, f )) (2.2.7).
On the other hand, we have

i∈D N (1) (f,a i ), N (N +2) (r) = i∈D (N (1) (f,a i ) (r) -N (1) 
(f,a i ),>N (N +2) (r))

≥ N + 2 N (N + 2) T (r, f ) - N + 2 N (N + 2) + 1 T (r, f ) + o(T (r, f )) = N + 2 N (N + 2)(N (N + 2) + 1) T (r, f ) + o(T (r, f )).
By the same way, we have

i∈D N (1) (g,a i ), N (N +2) (r) ≥ N + 2 N (N + 2)(N (N + 2) + 1) T (r, g) + o(T (r, g))
From (2.2.6) and (2.2.7) we get

3 2N + 2 N + 1 2N + 2 N + 1 -2 2N +2 i=1 (N (1) 
(f,a i ),>d (r) + N

(g,a i ),>d (r)

+ 2N (1) 
(f,a i ),>k (r) + 2N

(g,a i ),>k (r))

≥ N + 2 N (N + 2)(N (N + 2) + 1) (T (r, f ) + T (r, g)) - 2N +2 i=1 (N (1) 
(f,a i ),>k (r) + N

(g,a i ),>k (r

)) + o(T (r, f ) + T (r, g)) (2.2.8).
From (2.2.8) we also obtain

3 d + 1 + 6 k + 1 2N + 2 N + 1 2N + 2 N + 1 -2 (T (r, f ) + T (r, g)) N + 2 N (N + 2)(N (N + 2) + 1) - 2N + 2 k + 1 (T (r, f ) + T (r, g)) + o(T (r, f ) + T (r, g)).
Letting r → ∞, we get

3 d + 1 + 6 k + 1 2N + 2 N + 1 2N + 2 N + 1 -2 N + 2 N (N + 2)(N (N + 2) + 1) - 2N + 2 k + 1 .
This is a contradiction. Thus, t = 1. Then

h I 0 h I 1 = b 1 ∈ R({a i } 3N +1 i=1 ).
Hence, for each I ∈ I, there is

J ∈ I \ {I} such that h I h J ∈ R({a i } 3N +1 i=1 ). (iii) Denote by M *
n the abelian multiplicative group of all nonzero meromorphic functions on C n . Define J ⊂ M * n to be the smallest subgroup which contains all h ∈ M * n with h k ∈ R({a i } q i=1 ) for some positive integer k. Then the multiplicative group M * n /J is a torsion free abelian group. Consider the free abelian subgroup generated by the family

{[h 1 ], ..., [h 3N +1 ]} of the torsion free abelian group M * n /J , where h i = (f, a i ) (g, a i ) (1 i 3N + 1). Then the family {[h 1 ], ..., [h 3N +1 ]} has the property P 2N +2,N +1 . It implies that there exist 3N + 1 -2N = N + 1 elements, to say, [h 1 ], ..., [h N +1 ], such that [h 1 ] = ... = [h N +1 ]. Then h i h j ∈ J (1 i < j N + 1)
, and hence

T (r, h i h j ) = o(T (r, f )) (1 i < j N + 1) .
Consider the following four cases.

Case 1. Suppose that there exist three indices {i, j, k},

(1 i < j < k N + 1) such that h i ≡ h j ≡ h k ≡ h i .
We have

T (r, h i h j ) ≥ N h i h j -1 (r) + O(1) ≥ l∈D\{i,j} N (1) 
(f,a l ), N (N +2) (r) - s∈{i,j} N (1) 
(f,as),>k (r) + O(1).

Hence N

(f,a l ), N (N +2) (r) s∈{i,j} N (1) 
(f,as),>k (r) + o(T (r, f )), ∀l ∈ D \ {i, j}. Similarly, we also have

N (1) (f,a l ), N (N +2) (r) s∈{j,k} N (1) 
(f,as),>k (r) + o(T (r, f )) for each l ∈ D \ {j, k} and

N (1) (f,a l ), N (N +2) (r) s∈{i,k} N (1) 
(f,as),>k (r) + o(T (r, f )) for each l ∈ D \ {i, k}. So, we have

N (1) (f,a l ), N (N +2) (r) s∈{i,j,k} N (1) (f,as),>k (r) + o(T (r, f )) for each l ∈ D. This implies that || T (r, f ) l∈D N (N ) (f,a l ) (r) + o(T (r, f )) l∈D N (N ) (f,a l ),>N (N +2) (r) + N (2N + 2) s∈{i,j,k} N (1) 
(f,as),>k (r) + o(T (r, f ))

N (N + 2) N (N + 2) + 1 + 3N (2N + 2) k + 1 T (r, f ) + o(T (r, f )).
Then || T (r, f ) = o(T (r, f )). This is a contradiction.

Case 2. Assume that there exist two subsets I and J of the set

{1, • • • , N + 1} with I ∩ J = ∅, I ∪ J = {1, • • • , N + 1}, ♯I ≥ 2, ♯J ≥ 2 such that h i = h j ∀i, j ∈ I and h i = h j ∀i, j ∈ J and h k ≡ h l ∀k ∈ I, ∀l ∈ J.
Choose elements i, k ∈ I and j, t ∈ J.We have

T (r, h i h j ) ≥ N h i h j -1 (r) + O(1) ≥ l∈D\{i,j} N (1) 
(f,a l ), N (N +2) (r) - s∈{i,j} N (1) 
(f,as),>k (r) + O(1).

Hence N

(f,a l ), N (N +2) (r) s∈{i,j} N

(f,as),>k (r) + o(T (r, f )), ∀l ∈ D \ {i, j}.

Similarly, we also have N

(f,a l ), N (N +2) (r) s∈{k,t} N

(f,as),>k (r) + o(T (r, f )) for each l ∈ D \ {k, t}. So, we have

N (1) (f,a l ), N (N +2) (r) s∈{i,j,k,t} N (1) (f,as),>k (r) + o(T (r, f )) ∀l ∈ D.
Repeating the argument in Case 1, we have T (r, f ) = o(T (r, f )). This is a contradition.

Case 3. Assume that

h 1 = • • • = h N ≡ h N +1 .
By the condition (i) in the hypothesis of Theorem 2, we see that h i is a holomorphic function for each 1 i N.. Without loss of generality, we may assume that 1 =

h 1 = • • • = h N ≡ h N +1 .
It is easy to see that there exist meromorphic functions

c li (N + 2 l 3N + 1, 1 i N + 1) such that a l = N +1 i=1 c li a i (N + 2 l 3N + 1) and N c li (r) + N 1 c li (r) = o(T (r, f )). Hence (f, a l ) = N +1 i=1 c li (f, a i ), (g, a l ) = N i=1 c li (f, a i ) + c li h N +1 (f, a N +1 ) = (f, a l ) + c li ( 1 h N +1 -1)(f, a N +1 ) (N + 2 l 3N + 1).
By the conditions (i) and (ii), it is easy to see that if ν

(f,a l ), k (z) = 1 and (f,

a N +1 )(z) = 0 then (c li ( 1 h N +1 - 1 
))(z) = 0. This implies the following

N (1) (f,a l ), k (r) -N (1) 
(f,a N +1 ),>k (r) N 1 h N +1 -1 (r) + o(T (r, f )) = o(T (r, f )) (N + 2 l 3N + 1).
Thus, we have

N (1) (f,a l ), k (r) N (1) (f,a N +1 ),>k (r) + o(T (r, f )) 1 k + 1 T (r, f ) + o(T (r, f )).
On the other hand, we have

|| T (r, f ) 2N N + 2 3N +1 l=N +2 N (N ) (f,a l ) (r) + o(T (r, f )) 2N 2 N + 2 3N +1 l=N +2 (N (1) 
(f,a l ), k (r) + N

(f,a l ),>k (r)) + o(T (r, f ))

8N 3 (N + 2)(k + 1) T (r, f ) + o(T (r, f )). Then || T (r, f ) = o(T (r, f ))
. This is a contradiction.

Case 4. h 1 = • • • = h N +1 .
This yields f ≡ g. The Theorem 2.2 is proved.

A unicity theorem for meromorphic mapping with a conditions on derivations

In the present section, we will prove the following.

Theorem 2.3. (Ha-Quang-Thai [START_REF] Ha | Unicity theorems with truncated multiplicities of meromorphic mappings in several complex variables sharing small identical sets for moving targets[END_REF]) Let f, g : C n → P N (C) be two meromorphic mappings, and k be a positive integer with k > 2N 3 + 12N 2 + 6N -1. Let {a t } N +2 t=1 be "small" (with respect to f ) meromorphic mappings of

C n into P N (C) in general position such that dim{z ∈ C n : ν (f,as), k (z)ν (f,at), k (z) > 0} n -2 (1 s < t N + 2).
Assume that f, g are linearly nondegenerate over R({a t } N +2 t=1 ) and the following are satisfied.

(i) min (ν (f,at), k , 1) = min (ν (g,at), k , 1) (1 t N + 2). (ii) Let f = (f 0 : • • • : f N ) and g = (g 0 : • • • : g N )
be reduced representations of f and g, respectively. Then, for each 0 j N and for each ω ∈ N +2 t=1 {z ∈ C n : ν (f,at), k (z) > 0}, the following two conditions are satisfied:

(a) If f j (ω) = 0 then g j (ω) = 0, (b) If f j (ω)g j (ω) = 0 then D α f i f j (ω) = D α g i g j (ω) for each n-tuple α = (α 1 , ..., α n ) of nonnegative integers with |α| = α 1 + ... + α n 2N and for each i = j, where D α = ∂ |α| ∂ α 1 z 1 ...∂ αn z n .
We set

I = I(f ) ∪ I(g) ∪ ∪ 1 t<s N +2 {z ∈ C n |ν (f,at), k (z) • ν (f,as), k (z) > 0}. Then
I is an analytic subset of codimension 2 or an empty set.

Denote by ν 0 the divisor

ν 0 := (max{0, (2N + 1) -ν (f,a j ) -ν (g,a j ) }) • (min{1, ν (f,a j ), k }).
We show that ν

P ij ≥ N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k }+ν 0 -(2N + 1)ν (1) 
(f,a j ),>k outside an analysis set of codimension 2.

Indeed, we fix a point z ∈ ∪ N +2 i=1 {w : ν (f,a i ), k (w) > 0} \ I. If (f, a j )(z) = 0, suppose that f l (z) • g l (z) = 0 (0 l N ). Then g l (z) = 0 (0 l N )
. This means that z ∈ I(g). This is impossible. Hence, there exist an index l such that f l (z)g l (z) = 0. This implies that

D α P ij (z) = D α (f, a i ) (f, a j ) - (g, a i ) (g, a j ) (z) = D α N v=0 fv f l a iv N v=0 fv f l a jv - N v=0 gv g l a iv N v=0 gv g l a jv (z) = 0 (|α| 2N ).
Hence, in this case ν P ij (z) ≥ 2N + 1. (

Similarly, if (f, a j )(z) = 0 then

D α (f, a i )(g, a j ) -(g, a i )(f, a i ) (z) = D α (f l g l )( N v=0 f v f l a iv N v=0 g v g l a jv - N v=0 g v g l a iv N v=0 f v f l a jv ) (z) = 0 (|α| 2N ).
So, in this case we have ν

((f,a i )(g,a j )-(f,a j )(g,a i )) (z) ≥ 2N + 1. (2.3.2)
Suppose that ν (f,a j ),>k (z) = 0. We now consider two cases.

Case 1. Assume that ν (f,at), k (z) > 0 for some t with t = j.

Then ν (f,as), k (z) = 0 (s = t), especially ν (f,a j ), k (z) = 0. Hence ν 0 (z) = 0 and

N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} = 2N + 1. From (2.
3.1), we have

ν P ij (z) ≥ N +2 t=1 t =j (2N + 1) min{1, ν (f,at), k (z)} + ν 0 (z) -(2N + 1)ν 1 (f,a j ),>k (z) (2.3.3) Case 2. Assume that ν (f,a j ), k (z) > 0.
This follows that ν (f,at), k (z) = 0 for each t = j.

Then N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} = 0.
On the other hand, since

P ij = (f, a i )(g, a j ) -(f, a j )(g, a i ) (f, a j )(g, a j )
and by (2.3.2), we have

ν P ij (z) = ν ((f,a i )(g,a j )-(f,a j )(g,a i )) (z) -ν (f,a j ) (z) -ν (g,a j ) (z) ≥ (2N + 1) -ν (f,a j ) (z) -ν (g,a j ) (z).
Combining with ν P ij (z) ≥ 0, we have

ν P ij (z) ≥ max{0, (2N + 1) -ν (f,a j ) (z) -ν (g,a j ) (z)} ≥ (max{0, (2N + 1) -ν (f,a j ) (z) -ν (g,a j ) (z)}) • (min{1, ν (f,a j ), k (z)}) = ν 0 (z) = N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} + ν 0 (z) -(2N + 1)ν (1) 
(f,a j ),>k (z) (2.3.4)

If ν (f,a j ),>k (z) > 0 then ν 0 (z) = 0 and

N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} 2N + 1.
It implies that

ν P ij (z) 0 N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} + ν 0 (z) -(2N + 1)ν (1) 
(f,a j ),>k (z) (2.3.5)

Combining (2.3.4) with (2.3.5), we have

ν P ij (z) ≥ N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} + ν 0 (z) -(2N + 1)ν (1) 
(f,a j ),>k (z) (2.3.6)

for each z ∈ ∪ N +2 i=1 {w : ν (f,a i ), k (w) > 0} \ I. We also see that if z ∈ ∪ N +2 i=1 {w : ν (f,a i ), k (w) > 0}, then N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} + ν 0 (z) = 0.
It implies that

ν P ij (z) ≥ N +2 s=1 s =j (2N + 1) min{1, ν (f,as), k (z)} + ν 0 (z) -(2N + 1)ν (1) 
(f,a j ),>k (z) (2.3.7) Hence (2N + 1)

N +2 v=1 v =j N (1) (f,av), k (r) + N (r, ν 0 ) -(2N + 1)N (1) 
(f,a j ),>k (r)

N P ij (r) T (r, P ij ) = N 1 P ij (r) + m(r, P ij ) + O(1) T (r, f ) + T (r, g) + N 1 P ij (r) -N (f,a j ) (f,a i ) (r) -N (g,a j ) (g,a i ) (r) + o(T (r, f ) + T (r, g)) T (r, f ) + T (r, g) -(2N + 1)N (1) 
(f,a j ), k (r) + N (r, ν 0 ) + (2N + 1)N

(1) (f,a i ),>k (r) + o(T (r, f ) + T (r, g)).

This implies that (2N + 1)

N +2 v=1 N (1) (f,av), k (r) (1 + 4N + 2 k + 1 )(T (r, f ) + T (r, g)) + o(T (r, f ) + T (r, g)).
The Claim 2.3.2 is proved.

From Claim 2.3.2, we have

N +2 v=1 N (N ) (f,av), k (r) ( N 2N + 1 + 2N k + 1 )(T (r, f ) + T (r, g)) + o(T (r, f ) + T (r, g)).
Similarly, we also have

N +2 v=1 N (N ) (g,av), k (r) N N +2 v=1 N (1) (g,av), k (r) = N N +2 v=1 N (1) 
(f,av), k (r)

N 2N + 1 + 2N k + 1 T (r, f ) + T (r, g) +o(T (r, f ) + T (r, g)).
Hence

N +2 v=1 (N (N ) (f,av), k (r) + N (N ) (g,av), k (r)) 2N 2N + 1 + 4N k + 1 T (r, f ) + T (r, g) +o(T (r, f ) + T (r, g)).
On the other hand, by Claim 2.3.1, it implies that

N +2 i=1 N (N ) (f,a i ), k (r) ≥ (k + 1) -N (N + 2) k + 1 -N T (r, f )
and

N +2 i=1 N (N ) (g,a i ), k (r) ≥ (k + 1) -N (N + 2) k + 1 -N T (r, g). Hence ( 2N 2N + 1 + 4N k + 1
)((T (r, f ) + T (r, g))

≥ (k + 1) -N (N + 2) k + 1 -N (T (r, f ) + T (r, g)) + o((T (r, f ) + T (r, g))).
Letting r -→ ∞, we have

2N 2N + 1 + 4N k + 1 ≥ (k + 1) -N (N + 2) k + 1 -N . Then 2N 2N + 1 ≥ (k + 1) -N (N + 6) k + 1 -N . Hence k + 1 2N 3 + 12N 2 + 6N
. This is a contradiction. Thus, f ≡ g and Theorem 2.3 is proved. In 1988, H. Fujimoto [START_REF] Fujimoto | On the number of exceptional values of the Gauss map of minimal surfaces[END_REF] proved Nirenberg's conjecture that if M is a complete nonflat minimal surface in R 3 , then its Gauss map can omit at most 4 points, and the bound is sharp. In 1991, S. J. Kao [START_REF] Kao | On values of Gauss maps of complete minimal surfaces on annular ends[END_REF] showed that the Gauss map of an end of a non-flat complete minimal surface in R 3 that is comformally an annulus {z|0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions.

On the other hand, in 1993, M. Ru [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF] studied the Gauss map of minimal surface in R m with ramification. In this chapter, we shall study the Gauss map of minimal surfaces in R 3 , R 4 on annular ends with ramification. In particular, we prove Theorem 3.4.6, Theorem 3.4.7 ). We would like to refer the case R m (m > 3)

with another aspect to Dethloff-Ha-Thoan [START_REF] Dethloff | Ramification of Gauss map of complete minimal surfaces in R m on annular ends[END_REF].

Minimal surface in R m

We recall some basic facts in differential geometry.

Let M be a connected oriented real 2-dimentional differential manifold and x = (x 1 , ..., x m ) : M -→ R m an immersion.

For each point p ∈ M , take a system of local coordinates (u 1 , u 2 ) around p which are positively oriented. The tangent plane of M at p is given by

T p (M ) := λ ∂x ∂u 1 + µ ∂x ∂u 2 |λ, µ ∈ R
and the normal space of M at p is given by

N p (M ) := N ∈ T p R m | N, ∂x ∂u 1 = N, ∂x ∂u 2 = 0 ,
where (X, Y ) denotes the inner product of vectors X and Y.

The metric ds 2 on M induced from the standard metric on R m , called the first fundamental form on M , is given by The second fundamental form of M with respect to a unit normal vector N is given by

ds 2 =
dσ 2 := 1 i,j 2 b ij (N )du i du j ,
where b ij (N ) := ∂ 2 x ∂u i ∂u j , N , (1 i, j 2).

3.1.1 Proposition. (Fujimoto [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]) For an arbitrary given regular curve in M, γ :

(a, b) -→ M, γ(t) = (u 1 (t), u 2 (t)). it holds that k γ (N ) := d 2 x ds 2 , N = dσ 2 ds 2 = ij b ij u ′ i u ′ j ij g ij u ′ i u ′ j ∀N ∈ N γ(t) (M ).
Then we may see that k γ (N ) depends only on N and the tangent vector of γ at p. Take a nonzero vector N ∈ N p (M ) and a unit tangent vector T ∈ T p (M ). Choose a curve

x(s) in M with arclength parameter s such that x(0) = p and (dx/ds)(0) = T, and define the normal curvature of M in the direction T with respect to the normal vector N by k(N, T ) := d 2 x ds 2 , N . We note α the plane which includes the vectors N and T and let γ be the curve which is defined as the intersection of α and M. By elementary calculation, we can show that k(N, T ) is the reciprocal of radius of curvature for the curve γ in the plane α. Set

k 1 (N ) := min{k(N, T ); T ∈ T p (M ), |T | = 1}, k 2 (N ) := max{k(N, T ); T ∈ T p (M ), |T | = 1},
The mean curvature of M for the direction N at p is defined by

H p (N ) := k 1 (N ) + k 2 (N ) 2 
We remark that we may prove the following for the calculation of the mean curvature (see Fujimoto [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF] for example). Let M be a surface with a metric ds 2 . A system of local coordinates (u 1 , u 2 ) on an open set U in M is called a system of isothermal coordinates on U if ds 2 can be represented as

H p (N ) =
ds 2 = λ 2 (du 2 1 + du 2 2 ),
for some positive C ∞ function λ on U.

3.1.3 Theorem. (S. S. Chern, [START_REF] Chern | An elementary proof of the existence of isothermal parameters on a surface[END_REF]) For every surface M, there is a system of isothermal local coordinates whose domains cover the whole M. 

ds 2 = λ 2 z (du 2 + dv 2 ),
where λ z 2 = ∂x ∂u , ∂x ∂u = ∂x ∂v , ∂x ∂v .

Set complex differentiations

∂x i ∂z := 1 2 ∂x i ∂u - √ -1 ∂x i ∂v , ∂x i ∂z := ∂x i ∂z ,
Then

λ z 2 = n i=1 ∂x i ∂u 2 = n i=1 2 1 4 
∂x i ∂u 2 + 1 4 
∂x i ∂v 2 = 2 n i=1 1 2 ∂x i ∂u - √ -1 ∂x i ∂v 1 2 ∂x i ∂u + √ -1 ∂x i ∂v = 2 n i=1 ∂x i ∂z . ∂x i ∂z = 2 ∂x 1 ∂z 2 + ∂x 2 ∂z 2 + • • • + ∂x n ∂z 2
So we can rewrite the metric as

ds 2 = 2 ∂x 1 ∂z 2 + ∂x 2 ∂z 2 + • • • + ∂x n ∂z 2 dz 2 Define the Laplacian ∆ z = ∂ 2 ∂u 2 + ∂ 2
∂v 2 in terms of the complex local coordinate z = u + √ -1v. If we take another complex local coordinate ξ, then we have ∆ ξ = |dz/dξ| 2 ∆ z . Since λ ξ = λ z |dz/dξ|, the operator ∆ = (1/λ 2 z )∆ z does not depend on the choice of complex local coordinate z, which is called the Laplace-Bertrami operator.

3.1.5 Proposition. (Fujimoto [25]) It holds that (i) ∆x, X = 0, for each X ∈ T p (M ), (ii) ∆x, N = 2H(N ), for each N ∈ N p (M ).

3.1.6 Theorem. (Fujimoto [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]) Let x = (x 1 , ..., x n ) : M -→ R m be a surface immersed in R m , which is considered as a Riemann surface. Then M is minimal if and only if each x i is a harmonic function on M, namely

∆ z x i = ∂ 2 ∂u 2 + ∂ 2 ∂v 2 x i = 0, (1 ≤ i ≤ n)
for every holomorphic local coordinate z = u + √ -1v.

Corollary.

There exists no compact minimal surface without boundary in R m .

This shows that the value φ(P ) does not depend on the choice of a positive basis of P satisfying 3.2.1 but only on P. On the other hand, φ(P ) is contained in the quadric

Q m-2 (C) := {(w 1 , • • • , w m ); w 2 1 + • • • + w 2 m = 0)} ⊂ P m-1 (C).
We can show that φ is bijective and we identify Π with Q m-2 .

We consider a surface x :

= (x 1 , • • • , x m ) : M → R m immersed in R m .
For each point P ∈ M, the oriented plane T p (M ) is canonically identified with an element of Π after the parallel translation which maps p to the origin. [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF] for example) Let M be an open Riemann surface and let ω 1 , ω 2 , ..., ω m be holomorphic forms on M such that they have no common zero, no real periods and locally satisfy the identity

Theorem. (Fujimoto

f 2 1 + f 2 2 + • • • + f 2 n = 0 for holomorphic function f i with ω i = f i dz. Set x i = 2Re z z 0 ω i ,
for an arbitrarily fixed point z 0 of M. Then, the surface x = (x 1 , ..., x m ) : M -→ R m is a minimal surface immersed in R m such that the Gauss map is the map G = (ω 1 :

• • • : ω m ) : M -→ Q m-2 (C)
and the induced metric is given by

ds 2 = 2(|ω 1 | 2 + • • • + |ω m | 2 ). (3.2.2)
Now, let M be a Riemann surface with a metric ds 2 which is conformal, namely, represented as

ds 2 = λ 2 z |dz| 2
with a positive C ∞ function λ z in term of a holomorphic local coordinate z.

Definition.

For each point p ∈ M we define the Gaussian curvature of M at p by

K ≡ K ds 2 := -∆ log λ z = - ∆ z log λ z λ 2 z .
For a minimal surface M immersed in R m , using (3.2.2), we can show that

K ≡ K ds 2 = -4 |g ∧ g′ | 2 |g| 6 = -4 j<k |g j g ′ k -g k g ′ j | 2 ( m j=1 |g j | 2 ) 3 (3.2.3)
where g = (g 1 , ..., g m ), g j = ∂x j ∂z , 1 ≤ j ≤ m. This implies that the curvature of a minimal surface is always non-positive.

If a minimal surface is flat (i.e., the Gauss curvature vanishes everywhere ), then (3.2.3) implies that g i /g i 0 = const.(1 ≤ i ≤ n) for some i 0 with g i 0 ≡ 0 and, therefore, that the Gauss map g is a constant map. [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]) For a minimal surface M immersed in R m , M is flat, or equivalently, the Gauss map of M is a constant if and only if it lies in a plane.

Proposition. (Fujimoto

Meromorphic functions with ramification

Let f be a nonconstant holomorphic map of a disc ∆ R := {z ∈ C; |z| < R} into P 1 (C), where 0 < R < ∞. Take a reduced representation f = (f 0 : f 1 ) on ∆ R and define

||f || := (|f 0 | 2 + |f 1 | 2 ) 1/2 , W (f 0 , f 1 ) := f 0 f ′ 1 -f 1 f ′ 0 .
Let a j (1 ≤ j ≤ q) be q distinct points in P 1 (C). We may assume a j = (a j 0 : a j 1 ) with

|a j 0 | 2 + |a j 1 | 2 = 1(1 ≤ j ≤ q)
, and set 

F j := a j 0 f 1 -a j 1 f 0 (1 ≤ j ≤ q).
∆ log ||f || ǫ Π q j=1 log(µ||f || 2 /|F j | 2 ) ≥ C 1 ||f || 2q-4 |W (f 0 , f 1 )| 2 Π q j=1 |F j | 2 log 2 (µ||f || 2 /|F j | 2 )
3.3.3 Lemma. Suppose that q -2 -q j=1 1 m j > 0 and f is ramified over a j with multiplicity at least m j for each j(1 ≤ j ≤ q). Then there exist positive constants C and µ(> 1) depending only on a j and m j (1 ≤ j ≤ q) which satisfy that if we set

v := C||f || q-2-q j=1 1 m j |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j log(µ||f || 2 /|F j | 2 ) on ∆ R -{F 1 ...F q = 0} and v = 0 on ∆ R ∩ {F 1 ...F q = 0}, then v is continuous on ∆ R
and satisfies the condition ∆ log v ≥ v 2 in the sense of distributions.

Proof. First, we prove the continuousness of v.

Obviously, v is continuous on ∆ R -{F 1 ...F q = 0}.

Take a point z 0 with F i (z 0 ) = 0 for some i. Then F j (z 0 ) = 0 for all j = i and

ν F i (z 0 ) ≥ m i .
Changing indices if necessary, we may assume that f 0 (z 0 ) = 0, then

a i 0 = 0. Hence, we get ν W (z 0 ) = ν (a i 0 f 1 f 0 -a i 1 ) ′ a i 0 (z 0 ) = ν (F i /f 0 ) ′ a i 0 (z 0 ) = ν F i (z 0 ) -1. Thus, ν vΠ q j=1 log(µ||f || 2 /|F j | 2 ) (z 0 ) = ν W (z 0 ) - q j=1 (1 - 1 m j )ν F j (z 0 ) = ν F i (z 0 ) -1 -(1 - 1 m i )ν F i (z 0 ) = ν F i (z 0 ) m i -1 ≥ 0. ( * )
So, lim z→z 0 v(z) = 0. This implies that v is continuous on ∆ R . Now, we choose constants C and µ such that C 2 and µ satisfy the inequality in Proposition 3.3.2 for the case ǫ = q -2 -q j=1 1 m j . Then we have

∆ log v ≥ ∆ log ||f || q-2-q j=1 1 m j Π q j=1 log(µ||f || 2 /|F j | 2 ) ≥ C 2 ||f || 2q-4 |W (f 0 , f 1 )| 2 Π q j=1 |F j | 2 log 2 (µ||f || 2 /|F j | 2 ) ≥ C 2 ||f || 2q-4-2 q j=1 1 m j |W (f 0 , f 1 )| 2 Π q j=1 |F j | 2-2 m j log 2 (µ||f || 2 /|F j | 2 ) = v 2 (by |F j | ≤ ||f ||(1 ≤ j ≤ q)).
Lemma 3.3.3 is proved. 

v(z) ≤ 2R R 2 -|z| 2 .
3.3.5 Lemma. For every δ with q -2 -q j=1 1 m j > qδ > 0 and f is ramified over a j with multiplicity at least m j for each j(1 ≤ j ≤ q), there exists a positive constant C 0

such that ||f || q-2-q j=1 1 m j -qδ |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j -δ ≤ C 0 2R R 2 -|z| 2 .
Proof. By using an argument as in (*) of the proof of Lemma 3.3.3, the above inequality is correct on {F 1 ...F q = 0} for every C 0 > 0 (the left hand side of the above inequality is zero).

If z ∈ {F 1 ...F q = 0}, using Lemma 3.3.3 and Lemma 3.3.4, we get

C||f || q-2-q j=1 1 m j |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j log(µ||f || 2 /|F j | 2 ) ≤ 2R R 2 -|z| 2 ,
where C and µ are the constants given in Lemma 3.3.3.

On the other hand, for a given δ > 0, it holds that lim x→0

x δ log(µ/x 2 ) < +∞ so we can set

C := sup 0<x≤1 x δ log(µ/x 2 )(< +∞). Then we have ||f || q-2-q j=1 1 m j -qδ |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j -δ = ||f || q-2-q j=1 1 m j |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j q j=1 |F j | ||f || δ = ||f || q-2-q j=1 1 m j |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j log(µ||f || 2 /|F j | 2 ) q j=1 ( |F j | ||f || ) δ log(µ||f || 2 /|F j | 2 ) ≤ C q ||f || q-2-q j=1 1 m j |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j log(µ||f || 2 /|F j | 2 ) ≤ C q C 2R R 2 -|z| 2 .
This gives Lemma 3.3.5.

For our purpose, we shall give the following result which is contained in a classical results of Nevanlinna (Nevanlinna [44]). We give here a direct proof of this result by using Lemma 3.3.5.

3.3.6

Proposition. Let f : C → P 1 (C) be a holomorphic map. For arbitrary distinct points a 1 , ..., a q ∈ P 1 (C) suppose that f is ramified over a j with multiplicity at least m j for each j, (1

≤ j ≤ q) satisfying q j=1 (1 - 1 m j ) > 2.
Then f is constant.

Proof. Assume that f is non-constant. Without loss of generality, we may assume F j (0) = 0(1 ≤ j ≤ q) and W (f 0 , f 1 )(0) = 0. By our assumptions, for every R > 0 and

δ with q j=1 (1 - 1 m j ) -2 > qδ > 0, we apply Lemma 3.3.5 to the map f | ∆ R : ∆ R → P 1 (C) to show that ||f || q-2-q j=1 1 m j -qδ |W (f 0 , f 1 )| Π q j=1 |F j | 1-1 m j -δ ≤ C 0 2R R 2 -|z| 2 .
By substituting z = 0 into the above inequality we conclude that R has to be bounded by a constant depending only on a j , m j and on the values of f, F j , W (f 0 , f 1 ) at the origin. This is a contradiction. ) is a reduced representation of g. If the image of g omits H, one will say that g is ramified over H with multiplicity ∞.

3.4.2 Theorem. (Ru [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF]) Let M be a complete minimal surface immersed in R m and assume that the Gauss map g of M is k-nondegenerate (that is g(M ) is contained in a k-dimensional linear subspace of P m-1 (C), but none of lower dimension), 1 ≤ k ≤ m -1. Let {H j } q j=1 be hyperplanes in general position in P m-1 (C). If g is ramified over H j with multiplicity at least m j for each j, then

q j=1 (1 - k m j ) ≤ (k + 1)(m - k 2 -1) + m.
On the other hand, when m = 3, then the following holds.

3.4.3 Theorem. (Ru [START_REF] Ru | Gauss map of minimal surfaces with ramification[END_REF]) Let M be a non-flat complete minimal surface in R 3 . If there are q (q > 4) distinct points a 1 , ..., a q ∈ P 1 (C) such that the Gauss map of M is ramified over a j with multiplicity at least m j for each j, then q j=1 (1 -1 m j ) ≤ 4. 3.4.4 Corollary. The Gauss map g of a non-flat complete minimal surface in R 3 assumes every value on the unit sphere with the possible exception of at most four values. [START_REF] Kao | On values of Gauss maps of complete minimal surfaces on annular ends[END_REF]) Let M be a non-flat complete minimal surface in R 3 with the Gauss map g and let A be an annular end of M which is conformal to {z| 0 < 1/r < |z| < r}, where z is a conformal coordinate. The Gauss map g assumes every value on the unit sphere infinitely often, with the possible exception of at most four values on A.

Theorem. (Kao

3.4.6 Theorem. (Dethloff-Ha [START_REF] Dethloff | Ramification of Gauss map of complete minimal surfaces in R 3 and R 4 on annular ends[END_REF]) Let M be a non-flat complete minimal surface in R 3 and let A be an annular end of M which is conformal to {z| 0 < 1/r < |z| < r}, where z is a conformal coordinate. If there are q (q > 4) distinct points a 1 , ..., a q ∈ P 1 (C) such that the Gauss map of M is ramified over a j with multiplicity at least m j for each j on A, then q j=1 (1 -1 m j ) ≤ 4.

Proof. For convenience, we recall some notations on the Gauss map of minimal surfaces in R 3 .

Let x = (x 1 , x 2 , x 3 ) : M → R 3 be a non-flat complete minimal surface and g : M → P 1 (C) the Gauss map. Let A be an annular end of M, that is, A = {z|0 < 1/r ≤ |z| < r < ∞}, where z is a conformal coordinate. Set φ i := ∂x i /∂z (i = 1, 2, 3) and

φ := φ 1 - √ -1φ 2 .
Then, the (classical) Gauss map g : M → P 1 (C) is given by

g = φ 3 φ 1 - √ -1φ 2 ,
and the metric on M induced from R 3 is given by ds 2 = |φ| 2 (1 + |g| 2 ) 2 |dz| 2 (see Fujimoto [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]).

Take a reduced representation g = (g 0 : g 1 ) on M and set ||g|| = (|g 0 | 2 + |g 1 | 2 ) 1/2 . Then we can rewrite ds 2 = |h| 2 ||g|| 4 |dz| 2 , where h := φ/g 2 0 . In fact, h is a holomorphic map without zeros.

Since by assumption M is not flat, g is not constant.

Assume that the theorem does not hold. Without loss of generality we may assume that g is ramified over a j with multiplicity at least m j ≥ 2 for all 1 ≤ j ≤ q on A for given q distinct points a 1 , ..., a q in P 1 (C) and

q j=1 (1 - 1 m j ) > 4.
Take δ with q -4 -q j=1 1 m j q > δ > q -4 -q j=1 1 m j q + 2 , and set p = 2/(q -2 -q j=1 1 m jqδ). Then 

Consider the open subset

A 1 = Int(A) -{z|W (g 0 , g 1 )(z).W (g 0 , g 1 )(1/z) = 0}

of A and we define a new metric on A 1 , where G j := a j 0 g 1a j 1 g 0 : We can show that dτ is continuous and nowhere vanishing on A 1 . Indeed, h is without zeroes on A 1 and for each z 0 ∈ A 1 with G j (z 0 ) = 0 for all j = 1, ..., q then dτ is continuous at z 0 . Now, suppose there exists a point z 0 ∈ A 1 with G j (z 0 ) = 0 for some j. Then G i (z 0 ) = 0 for all i = j and ν G j (z 0 ) ≥ m j . Changing the indices if necessary, we may assume that g 0 (z 0 ) = 0 then a j 0 = 0. So, we get ν W (g 0 ,g 1 ) (z 0 ) = ν (a j 0 g 1 g 0a j 1 ) ′ a j 0

dτ 2 = |h|
(z 0 ) = ν (G j /g 0 ) ′ a j 0 (z 0 ) = ν G j (z 0 ) -1 > 0.
This is a contradition with z 0 ∈ A 1 .Thus, dτ is continuous and nowhere vanishing on A 1 . Now, it is easy to see that dτ is flat.

We now prove the following claim. Claim 1. dτ 2 is complete on the set {z||z| = r} ∪ {z|W (g 0 , g 1 )(z) = 0}, i.e., the set {z||z| = r} ∪ {z|W (g 0 , g 1 )(z) = 0} is at infinite distance from any interior point in A 1 .

If W (g 0 , g 1 )(z 0 ) = 0, then we have two cases.

Case 1. G j (z 0 ) = 0 for some j ∈ {1, 2, ..., q}.

Then we have G i (z 0 ) = 0 for all i = j and ν G j (z 0 ) ≥ m j . By the same argument as above we can show that ν W (g 0 ,g 1 ) (z 0 ) = ν G j (z 0 ) -1. Thus,

ν dτ (z 0 ) = p 1 -p ((1 - 1 m j -δ)ν G j (z 0 ) -ν W (g 0 ,g 1 ) (z 0 )) = p 1 -p (1 -( 1 m j + δ)ν G j (z 0 )) ≤ - 2δp 1 -p .
Case 2. G j (z 0 ) = 0 for all 1 ≤ j ≤ q.

It is easily to see that ν dτ (z 0 ) ≤ -p 1p .

So we can find a positive constant C such that |dτ | ≥ C |zz 0 | δp/(1-p) |dz| in a neighborhood of z 0 and combining with (3.4.1) then dτ is complete on {z|W (g 0 , g 1 )(z) = 0}. Now assume that dτ is not complete on {z||z| = r}. There exists γ : [0, 1) → A 1 , where γ(1) ∈ {z||z| = r}, so that |γ| < ∞. Furthermore, we may also assume dist(γ(0); {z||z| = 1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since dτ is flat, ∆ is isometric to an ordinary disk in the plane. Let Φ : {|w| < η} → ∆ be the isometry. Extend Φ, as a local isometry into A 1 , to the largest disk {|w| < R} = ∆ R .

Then R ≤ |γ|. The reason that Φ cannot be extended to a larger disk is that the image goes to the outside boundary {z||z| = r} of A 1 . More precisely, there exists a point w 0 with |w 0 | = R so that Φ(0, w 0 ) = Γ 0 is a divergent curve on A.

The map Φ(w) is locally biholomorphic, and the metric on ∆ R induced from ds We now define

dτ 2 = |h(z)h( 1 z )|. Π q j=1 |G j (z)G j ( 1 z )| (1-1 m j -δ)p
|W (g 0 , g 1 )(z)W (g 0 , g 1 )( 1 z )| p We now recall some notations on the Gauss map of minimal surfaces in R 4 .

Let x = (x 1 , x 2 , x 3 , x 4 ) : M → R 4 be a non-flat complete minimal surface in R 4 . As is well-known, the set of all oriented 2-planes in R 4 is canonically identified with the quadric Q 2 (C) := {(w 1 : ... : w 4 )|w 2 1 + ... + w 2 4 = 0} in P 3 (C). By definition, the Gauss map g : M → Q 2 (C) is the map which maps each point p of M to the point of Q 2 (C) corresponding to the oriented tangent plane of M at p. The quadric Q 2 (C) is biholomorphic to P 1 (C) × P 1 (C)(e.g. Fujimoto [START_REF] Fujimoto | Value Distribution Theory of the Gauss map of Minimal Surfaces in R m[END_REF]). By suitable identifications we may regard g as a pair of meromorphic functions g = (g 1 , g 2 ) on M. Let A be an annular end of M, that is, A = {z|0 < 1/r ≤ |z| < r < ∞}, where z is a conformal coordinate.

Set φ i := ∂x i /dz for i = 1, ..., 4. Then, g 1 and g 2 are given by

g 1 = φ 3 + √ -1φ 4 φ 1 - √ -1φ 2 , g 2 = -φ 3 + √ -1φ 4 φ 1 - √ -1φ 2
and the metric on M induced from R 4 is given by

ds 2 = |φ| 2 (1 + |g 1 | 2 )(1 + |g 2 | 2 )|dz| 2 ,
where φ := φ 1 -√ -1φ 2 .

Take reduced representations g l = (g l 0 : g l where h := φ/(g 1 0 g 2 0 ). 3.4.7 Theorem. (Dethloff-Ha [START_REF] Dethloff | Ramification of Gauss map of complete minimal surfaces in R 3 and R 4 on annular ends[END_REF]) Suppose that M is a complete non-flat minimal surface in R 4 and g = (g 1 , g 2 ) is the Gauss map of M. Let A be an annular end of M which is conformal to {z|0 < 1/r < |z| < r}, where z is the conformal coordinate. Let a 11 , ..., a 1q 1 , a 21 , ..., a 2q 2 be q 1 + q 2 (q 1 , q 2 > 2) distinct points in P 1 (C).

(i) In the case g l ≡ constant (l = 1, 2), if g l is ramified over a lj with multiplicity at least m lj for each j (l = 1, 2) on A, then

γ 1 = q 1 j=1 (1 -1 m 1j ) ≤ 2, or γ 2 = q 2 j=1 (1 -1 m 2j ) ≤ 2, or 1 γ 1 -2 + 1 γ 2 -2 ≥ 1.
(ii) In the case where one of g 1 and g 2 is constant, say g 2 ≡ constant, if g 1 is ramified over a 1j with multiplicity at least m 1j for each j, we have the following

γ 1 = q 1 j=1 (1 - 1 m 1j ) ≤ 3.
Define dτ 2 = λ 2 (z)|dz| 2 on A 2 , where We now use the same arguments as the latter part of the proof of Theorem 3.4.6. This implies Theorem 3.4.7(i).

λ(z) = |h(z)| Π q 1 j=1 |G 1 j (z)| (1-1 m 1j -δ)p 1 Π q 2 j=1 |G 2 j (z)| (1-1 m 2j -δ)p 2 |W (g 1 0 , g 1 
We finally consider the case where g 2 ≡ constant and g 1 ≡ constant. Suppose that γ 1 > 3. We can choose δ with

γ 1 -3 q 1 > δ > γ 1 -3 q 1 + 1 ,
and set p = 1/(γ 1 -2q 1 δ). Then

0 < p < 1, p 1 -p > δp 1 -p > 1.
Set

dτ 2 = |h| 2 1-p Π q 1 j=1 |G 1 j | 1-1 m 1j -δ |W (g 1 0 , g 1 1 )| 2p 1-p |dz| 2 .
By exactly the same arguments as in the proof of Theorem 3.4.6, we get Theorem 3.4.7(ii).
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  have been studied intensively by H. Fujimoto, L. Smiley, S. Ji, M. Ru, D.D. Thai, G. Dethloff, T.V. Tan, S.D. Quang, Z. Chen, Q. Yan and others. The unicity problem has grown into a huge theory.

  for each z ∈ U outside an analytic set of dimension ≤ n -2. Two divisors are regarded as the same if they are identical outside an analytic set of dimension ≤ n -2. For a divisor ν on Ω we set |ν| := {z : ν(z) = 0}, which is a purely (n -1)-dimensional analytic subset of Ω or empty. Take a nonzero meromorphic function ϕ on a domain Ω in C n . For each a ∈ Ω, we choose nonzero holomorphic functions F and G on a neighborhood U ⊂ Ω such that

1 . 1 . 3 .

 113 which are independent of the choices of F and G. Hence, they are globally well-defined on Ω. For a divisor ν on C n and for positive integers k, d (or k, d = ∞), we define the counting functions of ν as follows. Set

  3. *) Theorem 1.3 is deduced immediately from the theorem 1.3 by choosing M = m and k = q . *) When k = 1, M = m + d and d = 1 or d = 2 , by using the case 1 of Theorem 1.3, we have the following Corollary 1. Let f 1 , f 2 , f 3 : C n -→ P N (C) be three meromorphic mappings and let {H i } 3N +1 i=1 be hyperplanes in general position. Let k i be positive integers with 1 ≤ i ≤ 3N + 1 satisfying the following conditions

  ω) for each n-tuple α = (α 1 , ..., α n ) of nonnegative integers with |α| = α 1 + ... + α n d and for each i = j, where D α = ∂ |α| ∂ α 1 z 1 ...∂ αn z n .

Chapter 3 Value

 3 distribution of the Gauss map of minimal surfaces on annular ends Let M be a non-flat minimal surface in R 3 , or more precisely, a connected oriented minimal surface in R 3 . By definition, the Gauss map G of M is the map which maps each point p ∈ M to the unit normal vector G(p) ∈ S 2 of M at p. Instead of G, we study the map g := π • G : M → C := C ∪ {∞}(= P 1 (C)) for the stereographic projection π of S 2 onto P 1 (C). By associating a holomorphic local coordinate z = u + √ -1v with each positive isothermal coordinate system (u, v), M is considered as an open Riemann surface with a conformal metric ds 2 and by the assumption of minimality of M, g is a meromorphic function on M.

g 11 b 22

 22 (N ) + g 22 b 11 (N ) -2g 12 b 12 (N ) 2 g 11 g 22g 2 12.

3. 1 . 2

 12 Definition. A surface M is called a minimal surface in R m if H p (N ) = 0 for all p ∈ M and N ∈ N p (M ).

3. 1 . 4

 14 Proposition. For an oriented surface M with a metric ds 2 , if we take two positively oriented isothermal local coordinates (u, v) and (x, y), then w = u + √ -1v is a holomorphic function in z = x + √ -1y on the common domain. Let x : M -→ R m be an oriented surface with a Riemannian metric ds 2 . With each positive isothermal local coordinate system (u, v) we associate the complex function z = u + √ -1v. By Proposition 3.1.4, we may regard M as a Riemann surface. Then the metric ds 2 is given by

3. 2 . 1

 21 Definition. The (generalized) Gauss map of a surface M is defined as the map of M into Q m-2 (C) which maps each point p ∈ M to φ(T p (M )). For a system of positively oriented isothermal local coordinates (u, v) the vectors X = ∂x ∂u , Y = ∂x ∂v give a positive basis of T p (M ) satisfying the condition (3.2.1). Therefore, the Gauss map of M is locally given byG = φ(X -√ -1Y ) = ( ∂x 1 ∂z : • • • : ∂x m ∂z )where z = u + √ -1v. We may write G = (ω 1 : • • • : ω m ) with globally defined holomorphic forms ω i := dx i ≡ ∂x i ∂z dz (1 ≤ i ≤ m).
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 2200 Proposition. (Fujimoto [25]) A surface x : M → R m is minimal if and only if the Gauss map G : M → P m-1 (C) is holomorphic. We say that a holomorphic 1-form ω on a Riemann surface M has no real periods if Re γ ω = 0 for every closed cycle in M. If ω has no real period, then the quantity x(z) = Re γ depends only on z and z 0 for a piecewise smooth curve γ z z 0 in M joining z 0 and z and so x is a well-defined function of z on M, which we denote by x(z) = Re z z from here on. Related to Proposition 3.2.2, we recall here the following construction theorem of minimal surfaces.

3. 3 . 1

 31 Definition. One says that the meromorphic function f is ramified over a point a = (a 0 : a 1 ) ∈ P 1 (C)with multiplicity at least e if all the zeros of the function F := a 0 f 1a 1 f 0 have orders at least e. If the image of f omits a, one will say that f is ramified over a with multiplicity ∞. 3.3.2 Proposition. (Fujimoto [19, Propostion 2.1]) For each ǫ > 0 there exist positive constants C 1 and µ depending only on a 1 , • • • , a q and on ǫ respectively such that

3. 3 . 4

 34 Lemma. (Generalized Schwarz Lemma [1]) Let v be a nonnegative real-valued continuous subharmonic function on ∆ R . If v satisfies the inequality ∆ log v ≥ v 2 in the sense of distributions, then

3. 4

 4 The Gauss map of minimal surfaces with ramification 3.4.1 Definition. One says that a holomorphic map g :A → P m-1 (C) of an open Riemann surface A into P m-1 (C) is ramified over a hyperplane H = {(w 0 : • • • : w m-1 ) ∈ P m-1 (C) : a 0 w 0 + ... + a m-1 w m-1 = 0}with multiplicity at least e if all the zeros of the function (g, H) := a 0 g 0 + ... + a m-1 g m-1 have orders at least e, where g = (g 0 : ... : g m-1

0

  < p < 1, p 1p > δp 1p > 1 (3.4.1).

- 2 . 2 -

 22 2 through Φ is given byΦ * ds 2 = |h • Φ| 2 ||g • Φ|| 4 | dz dw | 2 |dw| 2 (3.4.3).On the other hand, Φ is isometric, we have|dw| = |dτ | = |h|Π q j=1 |G j | |W (g 0 , g 1 )| p . Set f := g(Φ), f 0 := g 0 (Φ), f 1 := g 1 (Φ) and F j := G j (Φ). Since W (f 0 , f 1 ) = (W (g 0 , g 1 ) o Φ) and(3.4.4), therefore, we getΦ * ds 2 = ||f || 2 |W (f 0 , f 1 )| p qδ |W (f 0 , f 1 )| Π q j=1 |F j |Using the Lemma 3.3.5, we obtainΦ * ds 2 C 2p 0 .( 2R R 2 -|w| 2 ) 2p |dw| 2 .Since 0 < p < 1, it then follows that |w| 2 ) p |dw| < +∞, where d Γ 0 denotes the distance of the divergent curve Γ 0 in M, contradicting the assumption of completeness of M. Claim 1 is proved.

2 =

 2 λ 2 (z)|dz| 2 , on A 1 . Then dτ 2 is complete and flat on A 1 by Claim 1. Let u(z) = log λ(z). Then u(z) is a harmonic function on A 1 . Let D be the universal covering surface of A 1 . In a neighborhood of any point of D, we may introduce an analytic function k(z) whose real part is u(z), and the mapping w(z) = e k(z) dz satisfies | dw dz | = |e k(z) | = e u(z) = λ (3.4.5). Thus the length of any curve on D with respect to the metric dτ is equal to the length of its image in the w-plane. By the simple connectivity of D, there exists a global map of D into the w-plane which satisfies (3.4.5), and by the completeness of D, this map must be a one-to-one map of D onto the entire w-plane. Thus D is conformally equivalent to the plane, which is impossible by Proposition 3.3.6 . This proves Theorem 3.4.6.

1 )

 1 on M and set||g l || = (|g l 0 | 2 + |g l 1 | 2 ) 1/2 for l = 1, 2.Then we can rewriteds 2 = |h| 2 ||g 1 || 2 ||g 2 || 2 |dz| 2 (3.4.6),

1 )(z)| p 1 |W 2 .

 112 By Claim 2, dτ is complete and flat on A 2 .

  Hence, for each I ∈ I, there is J ∈ I \ {I} such that Consider the free abelian subgroup generated by the family {[h 1 ], ..., [h 2N +2 ]} of the torsion free abelian group M * n /C * . Then the family {[h 1 ], ..., [h 2N +2 ]} has the property P 2N +2,N +1 . It implies that there exist 2N + 2 -2N = 2 elements, without loss of generality we may assume that they are [h 1

	0.	h I h J	= constant =

  |dx| 2 := (dx, dx) =

					∂x ∂u 1	du 1 +	∂x ∂u 2	du 2 ,	∂x ∂u 1	du 1 +	∂x ∂u 2	du 2
					= g 11 du 2 1 + 2g 12 du 1 du 2 + g 22 du 2 2 ,
	where g ij :=	∂x ∂u i	,	∂x ∂u j	, 1 i, j 2.			
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Then f ≡ g.

Remark that the condition (ii) in Theorem 2.3 does not depend on the choice of reduced representations.

Proof. Assume that f ≡ g and f, g, a i have reduced representations f = (f 0 : ... : f N ), g = (g 0 : ... : g N ), a i = (a i0 : ... : a iN ).

Lemma 2.3.1. Let f : C n → P N (C) be a meromorphic mapping such that f is linearly nondegenerate over C. Let a 1 , a 2 , ..., a N +2 be N + 2 "small" (with respect to f ) meromorphic mappings of C n into P N (C) located in general position. Then, for each k ≥ N -1, we have

(f,a j ), k (r) + o(T (r, f )).

Proof . By the Second Main Theorem (see [START_REF] Thai | Uniqueness problem with truncated multiplicities of meromorphic mappings in several complex variables for moving targets[END_REF])

The following holds

Proof. Fix an index j (0 j N ). Since g ≡ f, there exists an index i (0 i N )

From (2.3.6) and (2.3.7), for each z ∈ I, we have

(f,a j ),>k (z).

This yields that

(f,at), k (r) + N (r, ν 0 ) -(2N + 1)N

(f,a j ),>k (r).

We now show that

(f,a i ),>k (z) for each z ∈ I.

Indeed, it is easy to see that

Fix z ∈ I. We consider two cases.

Case 1. Assume that (f, a i )(z) = 0.

If ν (f,a j ), k (z) > 0, then

So, we have

It implies that

From Case 1 and Case 2, we obtain

for each z ∈ I.

This yields that

We now have

Let x : M -→ R m be a minimal surface immersed in R m .

Definition.

A continuous curve γ(t) (0 ≤ t < 1) in M is said to be divergent in M if, for each compact set, there is some t 0 such that γ(t) ∈ K for any t ≥ t 0 .

3.1.9 Definition. We define the distance d(p) (≤ +∞) from a point p ∈ M to the boundary of M as the greatest lower bound of the lengths of all continuous curves which are divergent in M. 

The Gauss map of minimal surfaces

We consider the set of all oriented 2 -planes in R m which contain the origin and denote it by Π .

To clarify the set Π, we regard it as a subset of the (m -1)-dimensional complex projective space P m-1 (C) as follows. To each P ∈ Π, taking a positively oriented basis

we assign the point φ(P ) = π(X -√ -1Y ), where π denotes the canonical projection from C m -{0} onto P m-1 (C), namely, the map which maps each p = (w

For another positive basis { X, Ỹ } of P satisfying (3.2.1) we can find a real number θ such that

Proof. We first study the case g l ≡ constant, for l = 1, 2. If g l is ramified over a lj with multiplicity at least m lj for each j, (l = 1, 2) and γ 1 > 2, γ 2 > 2, and

Choose δ 0 (> 0) such that γ l -2q l δ 0 > 0 for all l = 1, 2, and

If we choose a positive constant δ(< δ 0 ) sufficiently near to δ 0 and set

Consider the open subset

of A and we now define a new metric

on A 2 , where G l j := a lj 0 g l 1a lj 1 g l 0 (l = 1, 2). Using the same arguments as in the proof of Theorem 3.4.6, we may see that dτ is flat and continuous on A 2 . We shall prove the following.

By the same method as the proof of Claim 1, we may show that dτ is complete on {z|Π l=1,2 W (g l 0 , g l 1 )(z) = 0}. In the case, dτ is complete on {z||z| = r}, we shall prove by reduction to absurdity.

Assume dτ is not complete on {z||z| = r}. There exists γ : [0, 1) → A 2 , where γ(1) ∈ {z||z| = r} so that |γ| < ∞. Furthermore, we may also assume dist(γ(0), {z||z| = 1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since dτ is flat, ∆ is isometric to an ordinary disk in the plane. Let Φ : {|w| < η} → ∆ be the isometry.

Extend Φ as a local isometry into A 2 , to the largest disk {|w| < R} = ∆ R . Then R ≤ |γ|. The reason that Φ cannot be extended to a larger disk is that the image goes to the outside boundary {z||z| = r} of A 2 . More precisely, there exists a point w 0 with |w 0 | = R so that Φ(0, w 0 ) = Γ 0 is a divergent curve on A.

The map Φ(w) is locally biholomorphic, and the metric on ∆ R induced from ds 2 through Φ is given by

On the other hand, Φ is isometric, we have

For each l = 1, 2, we set