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Introduction

This thesis consists of two parts.

The first part deals with the uniqueness problems of meromorphic mappings under

some conditions on the inverse images of divisors which was started by R. Nevanlinna

[43] in 1926. He showed that for two nonconstant meromorphic functions f and g on

the complex plane C, if they have the same inverse images for five distinct values then

f ≡ g, and that g is a special type of linear fractional transformation of f if they have

the same inverse images counted with multiplicities for four distinct values.

In 1975, H. Fujimoto generalized Nevanlinna’s results to the case of meromorphic

mappings of Cn into PN(C). He showed [18] that for two linearly nondegenerate mero-

morphic mappings f and g of C into PN(C), if they have the same inverse images

counted with multiplicities for 3N + 2 hyperplanes in general position in PN(C), then

f ≡ g and there exists a projective linear transformation L of PN(C) onto itself such

that g = L.f if they have the same inverse images counted with multiplicities for 3N+1

hyperplanes in general position in PN(C). After that, this problem has been studied

intensively by a number of mathematicans as H. Fujimoto([18],[28],...), W. Stoll([58]),

L. Smiley([57]), M. Ru([55]), G. Dethloff - T. V. Tan([12], [13], [14]...), D. D. Thai - S.

D. Quang([63], [64]) and so on.

Here we introduce the necessary notations to state the results.

Let f : Cn −→ PN(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (w0 : · · · : wN) on PN(C), we take a reduced representation

f = (f0 : · · · : fN), which means that each fi is a holomorphic function on Cn and

f(z) =
(
f0(z) : · · · : fN(z)

)
outside the analytic set {f0 = · · · = fN = 0} of codimen-

sion ≥ 2. Let H be a hyperplane in PN(C) given by H = {a0ω0 + ... + aNωN = 0},
where A := (a0, ..., aN) 6= (0, ..., 0). We set (f,H) =

∑N
i=0 aifi. Then we can define

the corresponding divisor ν(f,H)(z) which is rephrased as the intersection multiplicity
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of the image of f and H at f(z).

For every z ∈ Cn, we set

ν(f,H),≤k(z) =

{
0 if ν(f,H)(z) > k,

ν(f,H)(z) if ν(f,H)(z) ≤ k,

ν(f,H),>k(z) =

{
ν(f,H)(z) if ν(f,H)(z) > k,

0 if ν(f,H)(z) ≤ k.

Take a meromorphic mapping f of Cn into PN(C) which is linearly nondegenerate over

C, a positive integer d, a positive integer k or k =∞ and q hyperplanes H1, ...., Hq in

PN(C) located in general position with

dim{z ∈ Cn : ν(f,Hi),6k(z) > 0 and ν(f,Hj),6k(z) > 0} ≤ n− 2 (1 ≤ i < j ≤ q),

and consider the set F(f, {Hj}qj=1, k, d) of all meromorphic maps g : Cn → PN(C)

satisfying the conditions

(a) g is linearly nondegenerate over C,

(b) min (ν(f,Hj),≤k, d) = min (ν(g,Hj),≤k, d) (1 ≤ j ≤ q),

(c) f(z) = g(z) on
⋃q
j=1{z ∈ Cn : ν(f,Hj),≤k(z) > 0}.

When k = ∞, for brevity denote F(f, {Hj}qj=1,∞, d) by F(f, {Hj}qj=1, d). Denote
by ♯ S the cardinality of the set S.

The unicity problem of meromorphic mappings means that one gives an estimate

for the cardinality of the set F(f, {Hj}qj=1, k, d). Some natural questions arise and we
state the following.

Question 1. How about the number of hyperplanes (or fixed targets) in PN(C)

are used?

Question 2. How about the truncated multiplicities (d and k)?

Question 3. Whether the fixed targets (hyperplanes) can be generalized to moving

targets (moving hyperplanes) or hypersurfaces?

On the question 1 and 2, we list some known results:

Smiley [57] ♯ F(f, {Hi}3N+2i=1 , 1) = 1, Thai-Quang [64] ♯ F(f, {Hi}3N+1i=1 , 1) = 1, N ≥ 2,

Dethloff-Tan [15] ♯ F(f, {Hi}[2.75N ]i=1 , 1) = 1 for N ≥ N0(where the number N0 can be

explicitly calculated) and Chen-Yan [6] ♯ F(f, {Hi}2N+3i=1 , 1) = 1.
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When q < 2N + 3, there are some results which were given by Tan [62] and Quang

[51],[52]. Those results lead us to the question.

What can we say about the unicity theorems with truncated multiplicities in the case

where q ≤ 2N + 2?

The first purpose of this thesis is to study these problems. Firstly, we will give a

new aspect for the unicity problem with q = 2N + 2, and we also study the unicity

theorems with ramification of truncations.

The second purpose of this thesis is to give some answers relative to the question

3. Our results are following the results of Ru [55], Dethloff-Tan [14], Thai-Quang [63].

On the other hand, there are many interesting unicity theorems for meromorphic

functions on C given by certain conditions of derivations. We would like to study the

unicity problems of such type in several complex variables for fixed and moving targets.

Parallel to the development of Nevanlinna theory, the value distribution theory of

the Gauss map of minimal surfaces immersed in Rm was studied by many mathemat-

icans, such as R. Osserman [47], S.S. Chern [7], F. Xavier [66], H. Fujimoto [20]-[24],

S. J. Kao [38], M. Ru [53]-[54] and others.

Let M now be a non-flat minimal surface in R3, or more precisely, a connected

oriented minimal surface in R3. By definition, the Gauss map G of M is the map

which maps each point p ∈ M to the unit normal vector G(p) ∈ S2 of M at p.

Instead of G, we study the map g := π ◦ G : M → C := C ∪ {∞}(= P1(C)) for

the stereographic projection π of S2 onto P1(C). By associating a holomorphic local

coordinate z = u +
√
−1v with each positive isothermal coordinate system (u, v), M

is considered as an open Riemann surface with a conformal metric ds2 and by the

assumption of minimality of M, g is a meromorphic function on M. After that, we can

generalize to the definition of Gauss map of minimal surfaces in Rm. So there are many

analogous results between the Gauss maps and meromorphic mappings. One of them

is the small Picard theorem.

In 1965, R. Osserman [47] showed that the complement of the image of the Gauss

map of a nonflat complete minimal surface immersed in R3 is of logarithmic capacity

zero in P1(C). In 1981, a remarkable improvement was given by F. Xavier [66] that

the Gauss map of a nonflat complete minimal surface immersed in R3 can omit at

most six points in P1(C). In 1988, H. Fujimoto [20] reduced the number six to four
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and this bound is sharp: In fact, we can see that the Gauss map of Scherk’s surface

omits four points in P1(C). In 1991, S. J. Kao [38] showed that the Gauss map of

an end of a non-flat complete minimal surface in R3 that is conformally an annulus

{z|0 < 1/r < |z| < r} must also assume every value, with at most 4 exceptions. In

2007, Jin-Ru [37] generalized Kao’s results for the case m > 3.

On the other hand, in 1993, M. Ru [54] studied the Gauss map of minimal surface

in Rm with ramification. That are generalizations of the above-mentioned results. A

natural question is that how about the Gauss map of minimal surfaces on annular ends

with ramification. The last purpose of this thesis answer to this question for the case

m = 3, 4. We refer to Dethloff-Ha-Thoan [10] for the case m > 3. We would like to

note that the aspect of results in this thesis are different from their results.

We now sketch the content of each chapter of the present thesis

In chapter 1, we study the unicity theorems with truncated multiplicities of mero-

morphic mappings in several complex variables for few fixed targets. In particular,

we give a new unicity theorem for the above-mentioned first purpose of this thesis.

After that we study the unicity theorems with ramification of truncations which is an

improvement of Thai-Quang’s results in [64]. The last of this chapter we give a unicity

theorem of meromorphic mappings with a conditions on derivations.

In chapter 2, we study the unicity theorems with truncated multiplicities of mero-

morphic mappings in several complex variables sharing few moving targets. In partic-

ular, we improve strongly the results of Dethloff- Tan [14]. Beside that, we also give

a unicity theorem of meromorphic mappings for moving targets with a conditions on

derivations.

In chapter 3, we introduce the Gauss map of minimal surfaces in Rm and we study

the ramification of the Gauss map on annular ends in minimal surfaces in R3,R4. In

particular, we improve the results of S. J. Kao [38] by using the ideas of H. Fujimoto

[20] and M. Ru [54].

Pham Hoang Ha

2013
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Chapter 1

Unicity theorems with truncated
multiplicities of meromorphic
mappings in several complex
variables for few fixed targets

The unicity theorems with truncated multiplicities of meromorphic mappings of Cn

into the complex projective space PN(C) sharing a finite set of fixed hyperplanes in

PN(C) have been studied intensively by H. Fujimoto, L. Smiley, S. Ji, M. Ru, D.D.

Thai, G. Dethloff, T.V. Tan, S.D. Quang, Z. Chen, Q. Yan and others. The unicity

problem has grown into a huge theory.

With the notations in §1.1, we report here briefly the unicity problems with multi-
plicities of meromorphic mappings

Theorem A.(Smiley [57]) If q ≥ 3N + 2 then ♯ F(f, {Hi}qi=1, 1) = 1.

Theorem B.(Thai-Quang [64]) If N ≥ 2 then ♯ F(f, {Hi}3N+1i=1 , 1) = 1.

Theorem C.(Dethloff-Tan [15])There exists a positive integer N0 (which can be

explicitly calculated) such that ♯ F(f, {Hi}qi=1, 1) = 1 for N ≥ N0 and q = [2.75N ].

Theorem D.(Chen-Yan [6]) If N ≥ 1 then ♯ F(f, {Hi}2N+3i=1 , 1) = 1.

Theorem E.(Tan [62]) For each mapping g ∈ F(f, {Hi}2N+2i=1 , N +1), there exist a

constant α ∈ C and a pair (i, j) with 1 ≤ i < j ≤ q, such that

(Hi, f)

(Hj, f)
= α

(Hi, g)

(Hj, g)
.
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Theorem F. (Quang [51]) Let f1 and f2 be two linearly nondegenerate meromorphic

mappings of Cn into PN(C) (N ≥ 2) and let H1, ...., H2N+2 be hyperplanes in PN(C)

located in general position such that

dim{z ∈ Cn : ν(f1,Hi)(z) > 0 and ν(f1,Hj)(z) > 0} ≤ n− 2

for every 1 ≤ i < j ≤ 2N + 2. Assume that the following conditions are satisfied.

(a) min{ν(f1,Hj),≤N , 1} = min{ν(f2,Hj),≤N , 1} (1 ≤ j ≤ 2N + 2),

(b) f1(z) = f2(z) on
⋃2N+2
j=1 {z ∈ Cn : ν(f1,Hj)(z) > 0},

(c) min{ν(f1,Hj),≥N , 1} = min{ν(f2,Hj),≥N , 1} (1 ≤ j ≤ 2N + 2),

Then f1 ≡ f2.

Theorem G. (Quang [52]) If N ≥ 2 then ♯ F(f, {Hi}2N+2i=1 , 1) ≤ 2.

In the first part of this chapter, we would like to study the unicity theorems for

the case q ≤ 2N +2. In particular, we shall prove Theorem 1.2 (Ha-Quang [33]) which

gives a new aspect of them in the first part of this chapter.

In [64], the authors showed that

Theorem H. (Thai-Quang [64]) (a) If N = 1, then ♯ F(f, {Hi}3N+1i=1 , k, 2) ≤ 2

for k ≥ 15.

(b) If N ≥ 2, then ♯ F(f, {Hi}3N+1i=1 , k, 2) ≤ 2 for k ≥ 3N + 3 +
4

N − 1
.

(c) If N ≥ 4, then ♯ F(f, {Hi}3Ni=1, k, 2) ≤ 2 for k > 3N + 7 +
24

N − 3
.

(d) If N ≥ 6, then ♯ F(f, {Hi}3N−1i=1 , k, 2) ≤ 2 for k > 3N + 11 +
60

N − 5
.

The second part of this chapter studies the unicity problems of meromorphic map-

ping with ramification of truncations. We are going to improve Theorem H by Theo-

rem 1.3 (Ha [31]). In particular, we use different truncations ki for each hyperplanes

Hi(1 ≤ i ≤ q), and we then give its corollaries.

As far as we know, there are many interesting unicity theorems for meromorphic

functions on C given by certain conditions of derivations. We will give a unicity theorem

of such type in several complex variables for fixed targets. That is a unicity theorem

with truncated multiplicities in the case where N + 4 ≤ q < 2N + 2. We will prove

Theorem 1.4 (Ha-Quang [33]) in the last part of this chapter.
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1.1 Basic notions and auxiliary results from Nevan-

linna theory

1.1.1. We set ||z|| =
(
|z1|2 + · · ·+ |zn|2

)1/2
for z = (z1, . . . , zn) ∈ Cn and define

B(r) := {z ∈ Cn : ||z|| < r}, S(r) := {z ∈ Cn : ||z|| = r} (0 < r <∞).

Define

vn−1(z) :=
(
ddc||z||2

)n−1
and

σn(z) := dclog||z||2 ∧
(
ddclog||z||2

)n−1
on Cn \ {0}.

1.1.2. Let F be a nonzero holomorphic function on a domain Ω in Cn. For a multi-

index α = (α1, ..., αn), we set |α| = α1 + ...+ αn and DαF =
∂|α|F

∂α1z1...∂αnzn
. We define

the mapping νF : Ω→ Z by

νF (z) := max {m : DαF (z) = 0 for all α with |α| < m} (z ∈ Ω).

We mean by a divisor on a domain Ω in Cn a mapping ν : Ω→ Z such that, for each

a ∈ Ω, there are nonzero holomorphic functions F and G on a connected neighborhood

U of a (⊂ Ω) such that ν(z) = νF (z)− νG(z) for each z ∈ U outside an analytic set of

dimension ≤ n− 2. Two divisors are regarded as the same if they are identical outside
an analytic set of dimension ≤ n− 2. For a divisor ν on Ω we set |ν| := {z : ν(z) 6= 0},
which is a purely (n− 1)-dimensional analytic subset of Ω or empty.

Take a nonzero meromorphic function ϕ on a domain Ω in Cn. For each a ∈ Ω, we
choose nonzero holomorphic functions F and G on a neighborhood U ⊂ Ω such that

ϕ =
F

G
on U and dim(F−1(0)∩G−1(0)) ≤ n− 2, and we define the divisors νϕ, ν

∞
ϕ by

νϕ := νF , ν
∞
ϕ := νG, which are independent of the choices of F and G. Hence, they

are globally well-defined on Ω.

1.1.3. For a divisor ν on Cn and for positive integers k, d (or k, d =∞), we define the

counting functions of ν as follows. Set

ν(d)(z) = min {d, ν(z)},

ν
(d)
≤k(z) =

{
0 if ν(z) > k,

ν(d)(z) if ν(z) ≤ k.
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ν
(d)
>k(z) =

{
ν(d)(z) if ν(z) > k,

0 if ν(z) ≤ k.

We define n(t) by

n(t) =





∫
|ν| ∩B(t)

ν(z)vn−1(z) if n ≥ 2

∑
|z|≤t

ν(z) if n = 1
, where vn−1(z) :=

(
ddc||z||2

)n−1
.

Similarly, we define n(d)(t), n
(d)
≤k(t), n

(d)
>k(t).

Define

N(r, ν) =

r∫

1

n(t)

t2n−1
dt (1 < r <∞).

Similarly, we define N(r, ν(d)), N(r, ν
(d)
≤k), N(r, ν

(d)
>k) and denote them by

N (d)(r, ν), N
(d)
≤k (r, ν), N

(d)
>k (r, ν) respectively.

Let ϕ : Cn −→ C be a nonzero meromorphic function. DefineNϕ(r) = N(r, νϕ), N
(d)
ϕ (r) =

N (d)(r, νϕ), N
(d)
ϕ,≤k(r) = N

(d)
≤k (r, νϕ), N

(d)
ϕ,>k(r) = N

(d)
>k (r, νϕ).

For brevity we will omit the superscript (d) if d =∞.

Now, take a meromorphic mapping f of Cn into PN(C) which is linearly nonde-

generate over C and q hyperplanes H1, ...., Hq in PN(C) located in general position

with

dim{z ∈ Cn : ν(f,Hi),6k(z) > 0 and ν(f,Hj),6k(z) > 0} ≤ n− 2 (1 ≤ i < j ≤ q),

and consider the set F(f, {Hj}qj=1, k, d) of all meromorphic maps g : Cn → PN(C)

satisfying the conditions

(a) g is linearly nondegenerate over C,

(b) min (ν(f,Hj),≤k, d) = min (ν(g,Hj),≤k, d) (1 ≤ j ≤ q),

(c) f(z) = g(z) on
⋃q
j=1{z ∈ Cn : ν(f,Hj),≤k(z) > 0}.

When k = ∞, for brevity denote F(f, {Hj}qj=1,∞, d) by F(f, {Hj}qj=1, d). Denote
by ♯ S the cardinality of the set S.

1.1.4. Let f : Cn −→ PN(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (w0 : · · · : wN) on PN(C), we take a reduced representation

f = (f0 : · · · : fN), which means that each fi is a holomorphic function on Cn and

4



f(z) =
(
f0(z) : · · · : fN(z)

)
outside the analytic set {f0 = · · · = fN = 0} of codimen-

sion ≥ 2.

Set ‖f‖ =
(
|f0|2 + · · ·+ |fN |2

)1/2
.

The characteristic function of f is defined by

T (r, f) =

∫

S(r)

log‖f‖σn −
∫

S(1)

log‖f‖σn.

Let H be a hyperplane in PN(C) given by H = {a0ω0 + ... + aNωN = 0}, where
A := (a0, ..., aN) 6= (0, ..., 0). We set (f,H) =

∑N
i=0 aifi. Then we can define the

corresponding divisor ν(f,H) which is rephrased as the intersection multiplicity of the

image of f and H at f(z). Moreover, we define the proximity function of H by

mf,H(r) =

∫

S(r)

log
||f || · ||H||
|(f,H)| σn −

∫

S(1)

log
||f || · ||H||
|(f,H)| σn,

where ||H|| = (
∑N

i=0 |ai|2)
1
2 .

Let ϕ be a nonzero meromorphic function on Cn, which are occasionally regarded as a

meromorphic mapping into P1(C). The proximity function of ϕ is defined by

m(r, ϕ) :=

∫

S(r)

logmax (|ϕ|, 1)σn.

1.1.5. Consider a vector-valued meromorphic function F = (f0, ..., fN). For each a ∈
Cn, we denote by Ma the set of all germs of meromorphic functions at a and, for

κ = 1, 2, ..., by Fκ theMa−submodule ofMN+1
a which is generated by the set {DαF :=

(Dαf0, ...,DαfN); |α| ≤ κ}. Set lF (κ) := rankMa
Fκ, which does not depend on each

a ∈ Cn. For a meromorphic map f = (f0 : f1 : · · · : fN) : Cn → PN(C), we set

lf (κ) := l(f0,··· ,fN )(κ).

Assume that meromorphic functions f0, ..., fN are linearly independent over C.

For N + 1 vectors αi := (αi1, ..., αin)(0 ≤ i ≤ N) composed of nonnegative inte-

gers αij, we call a set α = (α0, α1, ..., αN) an admissible set for F = (f0, ..., fN) if

{Dα0
F, ...,DαlF (κ)

F} is a basis of Fκ for each κ = 1, 2, ..., κ0 := min{κ′; lF (κ′) = N+1}.
By definition, for an admissible set (α0, α1, ..., αN) we have

det
(
Dα0

F, ...,DαN

F
)
6≡ 0.

1.1.6. As usual, by the notation ′′|| P ′′ we mean the assertion P holds for all r ∈ [0,∞)

excluding a Borel subset E of the interval [0,∞) with
∫
E
dr <∞.
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The following results play essential roles in Nevanlinna theory (see Noguchi-Ochiai

[46], Stoll [58],[59]).

1.1.7. The first main theorem. Let f : Cn → PN(C) be a linearly nondegenerate

meromorphic mapping and H be a hyperplane in PN(C). Then

N(f,H)(r) +mf,H(r) = T (r, f) (r > 1).

1.1.8. The second main theorem. Let f : Cn → PN(C) be a linearly nondegenerate

meromorphic mapping and H1, ..., Hq be hyperplanes in general position in PN(C). Then

|| (q −N − 1)T (r, f) ≤
q∑

i=1

N
(N)
(f,Hi)

(r) + o(T (r, f)).

1.1.9. Lemma. (Thai-Quang [64]) Let f : Cn → PN(C) be a linearly nondegenerate

meromorphic mapping. Let H1, H2, ..., Hq be q hyperplanes in PN(C) located in general

position. Assume that k ≥ N − 1. Then

∣∣∣∣
∣∣∣∣
(
q −N − 1− Nq

k + 1

)
T (r, f) ≤

q∑

j=1

(
1− N

k + 1

)
N

(N)
(f,Hj),≤k(r) + o(T (r, f)) .

1.1.10. Logarithmic derivative lemma. Let f be a nonzero meromorphic function

on Cn. Then ∣∣∣∣
∣∣∣∣ m

(
r,
Dα(f)

f

)
= O(log+ T (r, f)) (α ∈ Zn+).

1.1.11. Denote by M∗
n the abelian multiplicative group of all nonzero meromorphic

functions on Cn. Then the multiplicative groupM∗
n/C

∗ is a torsion free abelian group.

Let G be a torsion free abelian group and A = (a1, a2, ..., aq) a q−tuple of elements
ai in G. Let q ≥ r > s > 1. We say that the q−tuple A has the property (Pr,s) if any

r elements al(1), ..., al(r) in A satisfy the condition that for any given i1, ..., is (1 ≤ i1 <

... < is ≤ r), there exist j1, ..., js (1 ≤ j1 < ... < js ≤ r) with {i1, ..., is} 6= {j1, ..., js}
such that al(i1)...al(is) = al(j1)...al(js).

1.1.12. Proposition. (Fujimoto [18]) Let G be a torsion free abelian group and

A = (a1, ..., aq) a q−tuple of elements ai in G. If A has the property (Pr,s) for some

r, s with q ≥ r > s > 1, then there exist i1, ..., iq−r+2 with 1 ≤ i1 < ... < iq−r+2 ≤ q

such that ai1 = ai2 = ... = aiq−r+2 .

Take 3 mappings f 1, f 2, f 3 with reduced representations fk := (fk0 : ... : fkN) and set
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T (r) :=
∑3

k=1 T (r, f
k). For each c = (c0, ..., cN) ∈ CN+1 \ {0}, we define (fk, c) :=

∑N
i=0 cif

k
i (0 ≤ k ≤ N). Denote by C the set of all c ∈ CN+1 \ {0} such that

dim{z ∈ Cn : (fk, Hj)(z) = (fk, c)(z) = 0} ≤ n− 2

1.1.13. Lemma. Let H1, H2, ..., Hq be q hyperplanes in PN(C) located in general

position. Assume that min(ν(fk,Hi), d) = min(ν(f1,Hi), d)(1 ≤ k ≤ 3), 1 ≤ d ≤ N and

q ≥ N + 2. Then

|| T (r, fk) = O(T (r, f 1)) for each (1 ≤ k ≤ 3).

Proof. By the Second Main Theorem, we have

∣∣∣∣ (q−N−1)T (r, fk) ≤
q∑

i=1

N
(N)

(fk,Hi)
(r)+o(T (r, fk)) ≤

q∑

i=1

N

d
·N (d)

(fk,Hi)
(r)+o(T (r, fk))

=

q∑

i=1

N

d
·N (d)

(f1,Hi)
(r) + o(T (r, fk)) ≤ q

N

d
T (r, f 1) + o(T (r, fk)).

Hence || T (r, fk) = O(T (r, f 1)). Q.E.D.

1.1.14. Lemma. (Ji [35]) C is dense in CN+1.

1.1.15. Lemma. (Fujimoto [28]) For every c ∈ C, we put F jk
c =

(fk, Hj)

(fk, c)
. Then

T (r, F jk
c ) ≤ T (r, fk) + o(T (r)).

1.1.16. Definition. (Fujimoto [28]) Let F0, ..., FM be meromorphic functions on Cn,

where M ≥ 1. Take a set α := (α0, ..., αM−1) whose components αk are composed of

n nonnegative integers, and set |α| = |α0|+ ...+ |αM−1|. We define Cartan’s auxiliary

function by

Φα ≡ Φα(F0, ..., FM) := F0F1···FM

∣∣∣∣∣∣∣∣∣

1 1 · · · 1

Dα0
( 1
F0
) Dα0

( 1
F1
) · · · Dα0

( 1
FM

)
...

...
...

...

DαM−1
( 1
F0
) DαM−1

( 1
F1
) · · · DαM−1

( 1
FM

)

∣∣∣∣∣∣∣∣∣
1.1.17. Proposition. (Fujimoto [19]) Let α = (α0, · · · , αN) be an admissible set for

F = (f0, · · · , fN) and let h be a holomorphic function. Then,

det

(
Dα0

(hF ), · · · ,DαN

(hF )

)
= hN+1det

(
Dα0

(F ), · · · ,DαN

(F )

)
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1.1.18. Lemma. (Fujimoto [28]) If Φα(F,G,H) = 0 and Φα( 1
F
, 1
G
, 1
H
) = 0 for all α

with |α| ≤ 1, then one of the following assertions holds :

(i) F = G,G = H or H = F.

(ii) F
G
, G
H

and H
F

are all constant.

1.1.19. Lemma. Suppose that Φα(F0, ..., FM) 6≡ 0 with |α| ≤ M(M − 1)

2
. If

ν([d]) := min {νF0,≤k0 , d} = min {νF1,≤k1 , d} = · · · = min {νFM ,≤kM , d}

for some d ≥ |α|, then νΦα(z0) ≥ min {ν([d])(z0), d−|α|} for every z0 ∈ {z : νF0,≤k0(z) >

0} \ A, where A is an analytic subset of codimension ≥ 2.

Proof. Set Hs := {z : νFs,≤ks(z) > 0}, then by the assumption we have H0 = H1 =

... = HM := H. Denote by A the set of all singularities of H. Then A is an analytic

set of dimension at most n − 2. We assume that z0 ∈ H \ A. We choose a nonzero

holomorphic function h on a neighborhood U of z0 such that dh has no zero and

H ∩ U = {z ∈ U ;h(z) = 0}. Set ms := νFs
(z0) and ϕs :=

1

Fs
for 0 ≤ s ≤ M. We can

write ϕs = h−msϕ̃s on a neighborhood V (⊂ U) of z0, where ϕ̃s are nowhere vanishing

holomorphic functions on V .

We first consider the case ν([d])(z0) = d. We have

Φα =

∣∣∣∣∣∣∣∣∣

F0 F1 · · · FM
F0.Dα0

( 1
F0
) F1.Dα0

( 1
F1
) · · · FM .Dα0

( 1
FM

)
...

...
...

...

F0.DαM−1
( 1
F0
) F1.DαM−1

( 1
F1
) · · · FM .DαM−1

( 1
FM

)

∣∣∣∣∣∣∣∣∣

=
∑M

i=0(−1)iFiψi,

where ψi := det

(
Dαl

ϕk
ϕk

; k = 0, ..., i− 1, i+1, ...,M ; l = 0, 1, ...,M − 1

)
are meromor-

phic functions.

By induction on | αl |, we can write each D
αl

ϕk
ϕk

as
Dαl

ϕk
ϕk

=
ψk,l
h|αl| , where ψk,l is a

holomorphic function, and

ψi =
∑

l=(l1,...,lM )

ǫ(l)
Dαl1ϕ0
ϕ0

...
Dαliϕi−1
ϕi−1

.
Dαli+1

ϕi+1
ϕi+1

...
DαlMϕM
ϕM

,

where l = (l1, ..., lM) runs through all permutations of {0, 1, ...,M−1} and ǫ(l) denotes
the signature of a permutation l. This implies that ν∞ψi

≤| α | . By the assumption

νFi,≤ki(z0) ≥ ν([d])(z0) = d, we have νΦα(z0) ≥ d− | α | .
After that, we consider the case 1 ≤ ν([d])(z0) < d. Then, by the assumption, we get

m∗ := m0 = m1 = · · · = mM = ν([d])(z0).
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We now write

Φα =
1

ϕ0ϕ1 · · ·ϕM
det

(
Dαl

(ϕk − ϕ0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
,

and ϕk − ϕ0 = h−m
∗
(ϕ̃k − ϕ̃0), where ϕ̃k − ϕ̃0 is a holomorphic function.

By applying Proposition 1.1.17, it implies that

Φα =
hm

∗(M+1)

ϕ̃0ϕ̃1...ϕ̃M
.

1

hm∗M
det

(
Dαl

(ϕ̃k − ϕ̃0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
,

and hence

Φα =
hm

∗

ϕ̃0ϕ̃1...ϕ̃M
det

(
Dαl

(ϕ̃k − ϕ̃0); k = 1, ...,M ; l = 0, 1, ....,M − 1

)
.

This yields that νΦα(z0) ≥ m∗. The proof is completed.

1.1.20. Lemma. Suppose that the assumptions in Lemma 1.1.19 are satisfied. If

F0 = · · · = FM 6≡ 0,∞ on an analytic subset H, which is defined in the proof of Lemma

1.1.19, then νΦα(z0) ≥M, ∀ z0 ∈ H.
Proof. By using the same proof of Lemma 1.1.19, we now must only show that

νΦα(z0) ≥ M for all regular points z0 of H with Fk(z0) 6= 0,∞ (0 ≤ k ≤ M). Taking

a holomorphic function h on a neighborhood U of z0 such that dh has no zero and

H ∩U = {z ∈ U | h(z) = 0}, we write ψk :=
1

Fk
− 1

F0
= hψ̃k (1 ≤ k ≤M) with nonzero

holomorphic functions ψ̃k on a neighborhood of z0. We now use Proposition 1.1.17 to

have

Φα = F0F1...FM det

(
Dαl

ψ̃k; k = 1, ...,M ; l = 0, 1, ....,M − 1

)

= F0F1...FMh
M det

(
Dαl

ψk; k = 1, ...,M ; l = 0, 1, ....,M − 1

)
.

Thus, we get νΦα(z0) ≥M.

1.1.21. Lemma. Let f : Cn → PN(C) be a linearly nondegenerate meromorphic

mapping. Let H1, H2, ..., Hq be q hyperplanes in PN(C) located in general position.

Assume that kj ≥ N − 1 (1 ≤ j ≤ q). Then

∣∣∣∣
∣∣∣∣
(
q −N − 1−

q∑

j=1

N

kj + 1

)
T (r, f) ≤

q∑

j=1

(
1− N

kj + 1

)
N

(N)
(f,Hj),≤kj(r) + o(T (r, f)) .
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Proof. By the Second Main Theorem, we have

∣∣∣∣ (q−N−1)T (r, f) ≤
q∑

j=1

N
(N)
(f,Hj)

(r)+o(T (r, f))

=

q∑

j=1

N
(N)
(f,Hj),≤kj(r)+

q∑

j=1

N
(N)
(f,Hj),>kj

(r)+o(T (r, f))

≤
q∑

j=1

N
(N)
(f,Hj),≤kj(r)+

q∑

j=1

N

kj + 1
N(f,Hj),>kj(r)+o(T (r, f))

=

q∑

j=1

N
(N)
(f,Hj),≤kj(r)+

q∑

j=1

N

kj + 1

(
N(f,Hj)(r)−N(f,Hj),≤kj(r)

)
+o(T (r, f))

≤
q∑

j=1

(
1− N

kj + 1

)
N

(N)
(f,Hj),≤kj(r) +

q∑

j=1

N

kj + 1
T (r, f) + o(T (r, f)).

Thus, we have a desired inequality. Q.E.D.

1.1.22. Lemma. Assume that there exists Φα = Φα(F j00
c , ..., F j0M

c ) 6≡ 0 for some

c ∈ C, |α| ≤ M(M − 1)

2
, 2 ≥ |α| and the assumptions in Lemma 1.1.19 are satisfied.

Then, for each 0 ≤ i ≤M, the following holds:

∣∣∣∣ N (2−|α|)
(f i,Hj0

),≤kij0
(r)+M

∑

j 6=j0

N
(1)

(f i,Hj),≤kij(r) ≤ N(r, νΦα) ≤ T (r)+
M∑

l=0

N
(M(M−1)

2
)

(f l,Hj0
),>klj0

(r)+o(T (r)).

Proof. The first inequality is deduced immediately from Lemmas 1.1.19 and 1.1.20.

On the other hand, we also have

N(r, νΦα) ≤ T (r,Φα) +O(1) = N(r, ν∞Φα) +m(r,Φα) +O(1). (1.1.1)

We easily see that a pole of Φα is a zero or a pole of some F j0l
c and Φα is holomorphic

at all zeros with multiplicities ≤ klj0 of F
j0l
c because of Lemma 1.1.19 (l ∈ {0, ...,M}).

Assume that z0 is a zero of F
j0l
c with multiplicity > klj0 . We also see that if z0 is a

pole of
Dαi(1/F j0l

c )

(1/F j0l
c )

, then it has multiplicity ≤ |αi|. Thus, if z0 is a pole of Φα then it

has multiplicity ≤ |α| = ∑M−1
i=0 |αi| ≤ M(M−1)

2
. This implies that

N(r, ν∞Φα) ≤
M∑

i=0

N
(M(M−1)

2
)

(f i,Hj0
),>kij0

(r) +
M∑

i=0

N(r, ν∞
F

j0i
c
) (1.1.2)

and

m(r,Φα) ≤
M∑

i=0

m(r, F j0i
c ) +O

(∑
m

(
r,
Dαi(ϕj0kc )

ϕj0kc

))
+O(1)
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≤
M∑

i=0

m(r, F j0i
c ) + o(T (r)) (1.1.3),

where ϕj0kc = 1/F j0k
c . By (1.1.1), (1.1.2) and (1.1.3), we get

N(r, νΦα) ≤
M∑

i=0

N
(M(M−1)

2
)

(f i,Hj0
),>kij0

(r) +
M∑

i=0

T (r, F j0i
c ) + o(T (r))

≤ T (r) +
M∑

i=0

N
(M(M−1)

2
)

(f i,Hj0
),>kij0

(r) + o(T (r)). Q.E.D.

1.2 A unicity theorem with truncated multiplici-

ties of meromorphic mappings in several com-

plex variables sharing 2N + 2 hyperplanes

Theorem 1.2. (Ha-Quang [33]) Let f 1 and f 2 be two linearly nondegenerate mero-

morphic mappings of Cn into PN(C) (N ≥ 2) and let H1, ...., H2N+2 be hyperplanes in

PN(C) located in general position such that

dim{z ∈ Cn : ν(f1,Hi)(z) > 0 and ν(f1,Hj)(z) > 0} ≤ n− 2

for every 1 ≤ i < j ≤ 2N + 2. Let m be a positive integer such that

m >

(
2N + 2
N + 1

)[(
2N + 2
N + 1

)
−2

]
.

Assume that the following conditions are satisfied.

(a) min{ν(f1,Hj), 1} = min{ν(f2,Hj), 1} (1 ≤ j ≤ 2N + 2),

(b) f 1(z) = f 2(z) on
⋃2N+2
j=1 {z ∈ Cn : ν(f1,Hj)(z) > 0},

(c) min{ν(f1,Hj)(z), ν(f2,Hj)(z)} > N or ν(f1,Hj)(z) ≡ ν(f2,Hj)(z) (mod m) for all

z ∈ (f 1, Hj)
−1(0) (1 ≤ j ≤ 2N + 2).

Then f 1 ≡ f 2.

Proof. Suppose that f 1 6≡ f 2. For each i ∈ {1, ..., q}, we define a divisor νi as follows

νi(z) :=





1 if min{ν(f1,Hi)(z), ν(f2,Hi)(z)} > N,

1 if ν(f1,Hi)(z) = ν(f2,Hi)(z)) < N,

0 otherwise.

Claim 1.2.1. Assume that i, j ∈ {1, 2, ..., 2N + 2} such that

Pij =
(f 1, Hi)

(f 1, Hj)
− (f 2, Hi)

(f 2, Hj)
6≡ 0.
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Then, we have

2∑

s=1

∑

v=i,j

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hj)

(r) +N(r, νv)
)
+

2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r)

≤ 2
2∑

s=1

T (r, f s) +O(1) (1.2.1)

Proof . For each z ∈ (f 1, Hv)
−1(0), we consider the three following cases.

Case 1: min (ν(f1,Hv)(z), ν(f2,Hv)(z)) > N .

We have

min{ν(f1,Hv)(z), ν(f2,Hv)(z)} ≥ N + 1

=
2∑

s=1

min{ν(fs,Hv)(z), N} −N + νv(z).

Case 2: ν(f1,Hv)(z) = ν(f2,Hv)(z) < N .

We have

min{ν(f1,Hv)(z), ν(f2,Hv)(z)} =
2∑

s=1

min{ν(fs,Hv)(z), N} − ν(f1,Hv)(z)

≥
2∑

s=1

min{ν(fs,Hv)(z), N} −N + νv(z).

Case 3: z is not satisfied Case 1 and Case 2.

Then νv(z) = 0. We have

min{ν(f1,Hv)(z), ν(f2,Hv)(z)} ≥
2∑

s=1

min{ν(fs,Hv)(z), N} −N

=
2∑

s=1

min{ν(fs,Hv)(z), N} −N + νv(z).

From the above cases, for every z ∈ (f 1, Hv)
−1(0), we have

min{ν(f1,Hv)(z), ν(f2,Hv)(z)} ≥
2∑

s=1

min{ν(fs,Hv)(z), N} −N + νv(z).

By this inequality and by the definition of Pij, it is easy to see that

νPij
(z) ≥ min{ν(f1,Hi)(z), ν(f2,Hi)(z)}+

2N+2∑

v=1
v 6=i,j

ν
(1)

(f1,Hv)
(z)

≥
2∑

s=1

(
ν
(N)
(fs,Hi)

(z)− N

2
ν
(1)
(fs,Hi)

(z)

)
+ νi +

1

2

2∑

s=1

2N+2∑

v=1
v 6=i,j

ν
(1)
(fs,Hv)

(z).
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This yields that

2NPij
(r) ≥

2∑

s=1

(
2N

(N)
(fs,Hi)

(r)−NN
(1)
(fs,Hi)

(r) +N(r, νi)
)

+
2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r) (1.2.2).

On the other hand, we have

m(r, Pij) 6 m

(
r,
(f 1, Hi)

(f 1, Hj)

)
+m

(
r,
(f 2, Hi)

(f 2, Hj)

)
+O(1)

6 T

(
r,
(f 1, Hi)

(f 1, Hj)

)
−N

(
r,
(f 1, Hj)

(f 1, Hi)

)
+T

(
r,
(f 2, Hi)

(f 2, Hj)

)

−N

(
r,
(f 2, Hi)

(f 2, Hj)

)
+O(1)

6 T (r, f 1) + T (r, f 2)−N (f1,Hj)

(f1,Hi)

(r)−N (f2,Hj)

(f2,Hi)

(r) +O(1)

= T (r, f 1) + T (r, f 2)−N(f1,Hj)(r)−N(f2,Hj)(r) +O(1)

and

N 1
Pij

(r) ≤ N(r, µj), where µj(z) = max {ν(f1,Hj)(z), ν(f2,Hj)}(z).

For every z ∈ (f 1, Hj)
−1(0), it is easy to see that

ν(f1,Hj)(z) + ν(f2,Hj)(z)− µj(z) = min{ν(f1,Hj)(z), ν(f2,Hj)(z)}
≥ min{ν(f1,Hj)(z), N}+min{ν(f2,Hj)(z), N} −N + νj(z).

Hence
2∑

s=1

(
2N

(N)
(fs,Hi)

(r)−NN
(1)
(fs,Hi)

(r) +N(r, νi)
)
+

2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r)

≤ 2NPij
(r) ≤ 2T (r, Pij) = 2N 1

Pij

(r) + 2m(r, Pij) +O(1).

≤ 2
2∑

s=1

T (r, f s) + 2(N(r, µj)−N(f1,Hj)(r)−N(f2,Hj)(r)) +O(1)

≤ 2
2∑

s=1

T (r, f s)− 2(N
(N)

(f1,Hj)
(r) +N

(N)

(f2,Hj)
(r)−NN

(1)

(f1,Hj)
(r) +N(r, νj))

+O(1)

≤ 2
2∑

s=1

T (r, f s)−
2∑

s=1

(
2N

(N)
(fs,Hj)

(r)−NN
(1)
(fs,Hj)

(r) +N(r, νj)
)
+O(1).
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This implies that

2∑

s=1

∑

v=i,j

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hj)

(r) +N(r, νv)
)
+

2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r)

≤ 2
2∑

s=1

T (r, f s) +O(1).

This concludes Claim 1.2.1.

Claim 1.2.2. For every 1 ≤ i ≤ 2N + 2, we have

∣∣∣∣ N(r, νi) = o(
2∑

s=1

T (r, f s)).

Proof . By changing indices if necessary, we may assume that

(f 1, H1)

(f 2, H1)
≡ (f 1, H2)

(f 2, H2)
≡ · · · ≡ (f 1, Hk1)

(f 2, Hk1)︸ ︷︷ ︸
group 1

6≡ (f 1, Hk1+1)

(f 2, Hk1+1)
≡ · · · ≡ (f 1, Hk2)

(f 2, Hk2)︸ ︷︷ ︸
group 2

6≡ (f 1, Hk2+1)

(f 2, Hk2+1)
≡ · · · ≡ (f 1, Hk3)

(f 2, Hk3)︸ ︷︷ ︸
group 3

6≡ · · · 6≡ (f 1, Hks−1+1)

(f 2, Hks−1+1)
≡ · · · ≡ (f 1, Hks)

(f 2, Hks)︸ ︷︷ ︸
group s

,

where ks = 2N + 2.

For each 1 ≤ i ≤ 2N + 2, we set

χ(i) =

{
i+N if i ≤ N + 2,

i−N − 2 if i > N + 2.

Since f 1 6≡ f 2, the number of elements of every group is at most N . Hence
(f 1, Hi)

(f 2, Hi)

and
(f 1, Hχ(i))

(f 2, Hχ(i))
belong to distinct groups. This means that

(f 1, Hi)

(f 2, Hi)
6≡ (f 1, Hχ(i))

(f 2, Hχ(i))
(1 ≤

i ≤ 2N + 2). Hence

Pχ(i)i =
(f 1, Hχ(i))

(f 1, Hi)
− (f 2, Hχ(i))

(f 2, Hi)
6≡ 0 (1 ≤ i ≤ 2N + 2).

Summing up both sides of (1.2.1) over all pairs (i, χ(i)), we have

∑

s=1,2

2N+2∑

i=1

(
4N

(N)
(fs,Hi)

(r) + 2N(r, νi)

)
≤ 2(2N + 2)

2∑

s=1

T (r, f s) +O(1) (1.2.3)
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Then, by the Second Main Theorem we have

|| 2(2N + 2)
2∑

s=1

T (r, f s) ≥
∑

s=1,2

2N+2∑

i=1

(
4N

(N)
(fs,Hi)

(r) + 2N(r, νi)

)
+O(1)

≥ 4(N + 1)
∑

s=1,2

T (r, f s) + 4
2N+2∑

i=1

N(r, νi)

+ o(
∑

s=1,2

T (r, f s)) (1.2.4).

This implies that

|| N(r, νi) = o(
∑

s=1,2

T (r, f s)).

Claim 1.2.2 is proved.

Claim 1.2.3. For i = 1, ..., 2N + 2, the following assertions hold

(i) ||
2∑

s=1

∑

v=χ(i),i

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hj)

(r)) +
2∑

s=1

2N+2∑

v=1
v 6=χ(i),i

N
(1)
(fs,Hv)

(r)

= 2
2∑

s=1

T (r, f s) + o(
2∑

s=1

T (r, f s)) (1.2.5)

(ii) || 2NPχ(i)i
(r) =

2∑

s=1

(
2N

(N)
(fs,Hχ(i))

(r)−NN
(1)
(fs,Hχ(i))

(r)
)

+
2∑

s=1

2N+2∑

v=1
v 6=χ(i),i

N
(1)
(fs,Hv)

(r) + o(
2∑

s=1

T (r, f s)) (1.2.6)

Proof. Since the inequality (1.2.4) becomes an equality, the inequalities (1.2.1) and

(1.2.2) must become equalities for all Pχ(i)i. Moreover, we have ||N(r, νχ(i)) = N(r, νi) =

o(
∑2

s=1 T (r, f
s)). Then Claim 1.2.3 is proved.
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Claim 1.2.4. For i, j ∈ {1, ..., 2N + 2} with Pij 6≡ 0, the following assertions hold

(i) ||
2∑

s=1

∑

v=i,j

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hv)

(r)) +
2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r)

= 2
2∑

s=1

T (r, f s) + o(
2∑

s=1

T (r, f s)) (1.2.7)

(ii) || 2NPij
(r) =

2∑

s=1

(
2N

(N)
(fs,Hi)

(r)−NN
(1)
(fs,Hi)

(r))

+
2∑

s=1

2N+2∑

v=1
v 6=i,j

N
(1)
(fs,Hv)

(r) + o(
2∑

s=1

T (r, f s)) (1.2.8)

Proof . Since Pij 6≡ 0, (f1,Hi)
(f1,Hj)

and (f2,Hi)
(f2,Hj)

belong to two distinct groups. Therefore,

by changing indices again we may assume that i = χ(j). Then Claim 1.2.4 is deduced

from Claim 1.2.3.

Now we return to prove the theorem. We consider two arbitrary indices i, j ∈
{1, ..., 2N + 2}. Since f 1 6≡ f 2, there exists an index k such that Pik 6≡ 0 and Pjk 6≡ 0.

By (1.2.7), we have

||
2∑

s=1

∑

v=i,k

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hv)

(r)) +
2∑

s=1

2N+2∑

v=1
v 6=i,k

N
(1)
(fs,Hv)

(r)

=
2∑

s=1

∑

v=j,k

(
2N

(N)
(fs,Hv)

(r)−NN
(1)
(fs,Hv)

(r)) +
2∑

s=1

2N+2∑

v=1
v 6=j,k

N
(1)
(fs,Hv)

(r)

+ o(
2∑

s=1

T (r, f s)) = 2
2∑

s=1

T (r, f s) + o(
2∑

s=1

T (r, f s)).

Thus

||
2∑

s=1

(
2N

(N)
(fs,Hi)

(r)− (N + 1)N
(1)
(fs,Hi)

(r)) =
2∑

s=1

(
2N

(N)
(fs,Hj)

(r)

− (N + 1)N
(1)
(fs,Hj)

(r)) + o(
2∑

s=1

T (r, f s)) (1.2.9)

Combining (1.2.7) and (1.2.9), we get

|| 2
2∑

s=1

(
2N

(N)
(fs,Hi)

(r)− (N + 1)N
(1)
(fs,Hi)

(r)) +
2∑

s=1

2N+2∑

v=1

N
(1)
(fs,Hv)

(r)

= 2
2∑

s=1

T (r, f s) + o(
2∑

s=1

T (r, f s)) (1.2.10)
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Assume that Hi = {ai0ω0 + · · · + aiNωN = 0}. We set hi =
(f 1, Hi)

(f 2, Hi)
(1 ≤ i ≤

2N + 2). Then
hi
hj

=
(f 1, Hi) · (f 2, Hj)

(f 1, Hj) · (f 2, Hi)
does not depend on representations of f 1 and

f 2 respectively. Since
∑N

k=0 aikf1k − hi ·
∑N

k=0 aikf2k = 0 (1 ≤ i ≤ 2N + 2), it implies

that det(ai0, ..., aiN , ai0hi, ..., aiNhi; 1 ≤ i ≤ 2N + 2) = 0.

For each subset I ⊂ {1, 2, ..., 2N + 2}, put hI =
∏

i∈I hi. Denote by I the set of all
combinations I = (i1, ..., iN+1) with 1 ≤ i1 < ... < iN+1 ≤ 2N + 2.

For each I = (i1, ..., iN+1) ∈ I, define

AI = (−1) (N+1)(N+2)
2

+i1+...+iN+1 · det(airl; 1 ≤ r ≤ N + 1, 0 ≤ l ≤ N)·

det(ajsl; 1 ≤ s ≤ N + 1, 0 ≤ l ≤ N),

where J = (j1, ..., jN+1) ∈ I such that I ∪ J = {1, 2, ..., 2N + 2}.
Then

∑
I∈I AIhI = 0.

Take I0 ∈ I. Then

AI0hI0 = −
∑

I∈I,I 6=I0

AIhI , i.e. hI0 = −
∑

I∈I,I 6=I0

AI
AI0

hI .

Remark that for each I ∈ I, then AI

AI0
6≡ 0.

Denote by t the minimal number satisfying the following:

There exist t elements I1, ..., It ∈ I \ {I0} and t nonzero constants bi ∈ C such that

hI0 =
∑t

i=1 bihIi .

It is easy to see that t ≤
(
2N + 2
N + 1

)
−1.

Since hI0 6≡ 0 and by the minimality of t, it follows that the family {hI1 , ..., hIt} is
linearly independent over C.

Assume that t ≥ 2.

Consider the meromorphic mapping h : Cn → Pt−1(C) with a reduced representa-

tion h = (dhI1 : ... : dhIt), where d is meromorphic on Cn.

If z is a zero (a pole, resp.) of hi, then ν(f1,Hi)(z) 6= ν(f2,Hi)(z). Hence

max{ν(f1,Hi)(z), ν(f2,Hi)(z)} > N or |ν(f1,Hi)(z)− ν(f2,Hi)(z)| > m. Therefore, νi(z) = 1

or z is either zero or pole of hi with multiplicity at least m. This easily implies that if z

is a zero of dhI then νi(z) = 1 with one of indices i ∈ {1, ..., 2N +2} or z is zero of dhI
with multiplicity at least m. We thus have, for every z 6∈ (f 1)−1(Hi)∩ (f 1)−1(Hj)(1 ≤
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i < j ≤ 2N + 2).

min{1, νdhI (z)} ≤
2N+2∑

i=1

νi(z) +
1

m
νdhI (z).

This implies that

|| N (1)
dhI
(r) ≤

2N+2∑

i=1

N(r, νi)(r) +
1

m
NdhI (r) ≤

1

m
T (r, h) + o(

2∑

s=1

T (r, f s))

for each I ∈ I.
By the Second Main Theorem, we have

|| T (r, h) ≤
t∑

i=1

N
(t−1)
dhIi

(r) +N
(t−1)
dhI0

(r) + o(T (r, h))

≤ (t− 1)
( t∑

i=1

N
(1)
dhIi

(r) +N
(1)
dhI0

(r)
)
+ o(T (r, h))

≤ (t− 1)(t+ 1)

m
T (r, h) + o(T (r, h)) + o(

2∑

s=1

T (r, f s)).

This yields that || T (r, h) = o(
∑2

s=1 T (r, f
s)).

Consider the hyperplanes H̃1 = {w1 = 0}, H̃2 = {w2 = 0}, H̃3 = {b1w1+...+btwt =
0} in Pt−1(C). Then

T (r, h) ≥ T
(
r,
(h, H̃1)

(h, H̃2)

)
+O(1) = T

(
r,
hI1
hI2

)
+O(1) ≥ N

(1)
hI1
hI2

−1
+O(1),

T (r, h) ≥ T
(
r,
(h, H̃2)

(h, H̃3)

)
+O(1) = T

(
r,
hI2
hI0

)
+O(1) ≥ N

(1)
hI2
hI0

−1
+O(1),

T (r, h) ≥ T
(
r,
(h, H̃3)

(h, H̃1)

)
+O(1) = T

(
r,
hI0
hI1

)
+O(1) ≥ N

(1)
hI0
hI1

−1
(r) +O(1).

Hence 3T (r, h) ≥ N
(1)
hI1
hI2

−1
(r) +N

(1)
hI2
hI0

−1
(r) +N

(1)
hI0
hI1

−1
(r) +O(1).

Since
hI
hJ

= 1 on the set
⋃
j∈((I∪J)\(I∩J))c Ej,

where Ej = {z ∈ Cn : ν(f,Hj)(z) > 0} and ((I1∪ I2)\ (I1∩ I2))c∪ ((I2∪ I0)\ (I2∩ I0))c∪
((I0 ∪ I1) \ (I0 ∩ I1))c = {1, ..., 2N + 2}), it implies that

N
(1)
hI1
hI2

−1
(r) +N

(1)
hI2
hI0

−1
(r) +N

(1)
hI0
hI1

−1
(r) ≥

2N+2∑

i=1

N
(1)
(fs,Hi)

(r).

Hence || 3T (r, h) ≥∑2N+2
i=1 N

(1)
(fs,Hi)

(r)+O(1) =
N + 1

N
·T (r, f s)+o(T (r, f s)) (s = 1, 2).

Then || T (r, f s) = 0 (s = 1, 2). This is a contradiction. Thus, t = 1. Then
hI0
hI1

=
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constant 6= 0. Hence, for each I ∈ I, there is J ∈ I \ {I} such that hI
hJ

= constant 6=
0. Consider the free abelian subgroup generated by the family {[h1], ..., [h2N+2]} of

the torsion free abelian group M∗
n/C

∗. Then the family {[h1], ..., [h2N+2]} has the

property P2N+2,N+1. It implies that there exist 2N + 2 − 2N = 2 elements, without

loss of generality we may assume that they are [h1], [h2], such that [h1] = [h2]. Then
h1
h2

= χ ∈ C∗.

Suppose that χ 6= 1.

Since
h1(z)

h2(z)
= 1 for each z ∈ ⋃2N+2

i=3 (f 1)
−1
(Hi)\((f 1)−1(H1)∪(f 1)−1(H2), it implies

that
⋃2N+2
i=3 (f 1)

−1
(Hi) = ∅. By the Second Main Theorem, we have

|| (2N −N − 1)T (r, f 1) ≤
2N+2∑

i=3

N
(N)

(f1,Hi)
(r) + o(T (r, f 1)) = o(T (r, f 1)).

This is a contradiction. Thus, χ = 1, i.e, h1 = h2. By changing reduced represen-

tations of f 1, f 2 if necessary, we may assume that (f 1, H1) = (f 2, H1). This yields that

(f 1, H2) = (f 2, H2) (1.2.11).

Now we consider

Pχ(N+3)(N+3) = P1(N+3) =
(f 1, H1)

(f 1, HN+3)
− (f 2, H1)

(f 2, HN+3)

=
(f 1, H1)((f

2, HN+3)− (f 1, HN+3))

(f 1, HN+3)(f 2, HN+3)
6≡ 0.

Since (f 1, Hi)(z) = (f 2, Hi)(z) on
⋃2N+2
j=1 (f 1)

−1
(Hj)\ ((f 1)−1(H1)∩ (f 1)−1(H2)) for

each 1 ≤ i ≤ 2N + 2, it implies that

2NP1(N+3)
(r) ≥ 2N(f1,H1)(r) +

2N+2∑

v=1
v 6=N+3

2N
(1)

(f1,Hv)
(r)

≥
2∑

s=1

(2N(fs,H1)(r)−NN
(1)
(fs,H1)

(r)) +
2∑

s=1

2N+2∑

v=1
v 6=N+3

N
(1)
(fs,Hv)

(r) (1.2.12)

Combining (1.2.8) and (1.2.12), we get

||N (1)

(f1,H1)
(r) = N

(1)

(f2,H1)
(r) = o(

2∑

s=1

T (r, f s)) (1.2.13)

From (1.2.9) and (1.2.13), for each i ∈ {1, ..., 2N + 2} we have

||
2∑

s=1

(
2N

(N)
(fs,Hi)

(r)− (N + 1)N
(1)
(fs,Hi)

(r)) = o(
2∑

s=1

T (r, f s)) (1.2.14)
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On ther other hand, for every z ∈ (f 1, Hi)
−1(0), if νi(z) = 0 then either ν(f1,Hi)(z) =

ν(f2,Hi)(z) = N or |ν(f1,Hi)(z)− ν(f2,Hi)(z)| ≥ m, hence

ν(f1,Hi)(z) + ν(f2,Hi)(z) ≥ 2N.

Thus

||
2∑

s=1

2N
(N)
(fs,Hi)

(r) ≥
2∑

s=1

2NN
(1)
(fs,Hi)

(r) + 2NN(r, νi)

=
2∑

s=1

2NN
(1)
(fs,Hi)

(r) + o(
2∑

s=1

T (r, f s)).

This implies that

||
2∑

s=1

(
2N

(N)
(fs,Hi)

(r)− (N + 1)N
(1)
(fs,Hi)

(r)
)
≥ (N − 1)

2∑

s=1

N
(1)
(fs,Hi)

(r)

+ o(
2∑

s=1

T (r, f s)).

From this inequality and (1.2.14), it follows that

2∑

s=1

N
(1)
(fs,Hi)

(r) = o(
2∑

s=1

T (r, f s)) (1 ≤ i ≤ 2N + 2).

By the Second Main Theorem, we have

||
2∑

s=1

(N + 1)T (r, f s) ≤
2∑

s=1

2N+2∑

v=1

N
(N)
(fs,Hv)

(r) + o(
2∑

s=1

T (r, f s)) = o(
2∑

s=1

T (r, f s)).

This is a contradiction. Hence f 1 ≡ f 2. Theorem 1.2 is proved.

1.3 A unicity theorem for meromorphic mapping

sharing few fixed targets with ramification of

truncations

Theorem 1.3. (Ha [31]) Let f 1, f 2, f 3 : Cn −→ PN(C) be three meromorphic mappings

and let {Hi}qi=1 be hyperplanes in general position. Let d, k, k1i, k2i, k3i be integers with

1 ≤ k1i, k2i, k3i ≤ ∞ (1 ≤ i ≤ q). We set M = max{kji}, m = min{kji} (1 ≤ j ≤
3, 1 ≤ i ≤ q), k = max{♯{i ∈ {1, 2 · · · , q} | kji = m} | 1 ≤ j ≤ 3}. Define by d = 0 if

M = m and d = min{kji −m > 0 | 1 ≤ j ≤ 3; 1 ≤ i ≤ q} if M 6= m. Assume that the
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following conditions are satisfied

(i) dim{z ∈ Cn : ν(fj ,Hi),≤kji > 0 and ν(fj ,Hl),≤kjl > 0} ≤ n− 2

(1 ≤ j ≤ 3; 1 ≤ i < l ≤ q)

(ii) min(ν(fj ,Hi),≤kji, 2) = min (ν(f t,Hi),≤kti, 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ q)

(iii) f 1 ≡ f j on
⋃q
α=1{z ∈ Cn : ν(f1,Hα),≤k1α(z) > 0} (1 ≤ j ≤ 3).

Then f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1 if one of the following conditions is satisfied

1) N ≥ 2, 3N − 1 ≤ q ≤ 3N + 1,m > 3N + 1 +
16

3(N − 1)
and

(2q − 5N − 3) >
2Nk

m+ 1
+
2N(q − k)

m+ d+ 1
− 3N2 +N

M + 1
.

2) N = 1, q = 4 and
3(2k + 1)

m+ 1
+

6(4− k)

m+ d+ 1
+

6k

M(m+ 1)
+

24− 6k

M(m+ d+ 1)
< 1 +

12

M
.

Before proving, we now give some corollaries that are given directly from Theorem 1.3.

*) Theorem 1.3 is deduced immediately from the theorem 1.3 by choosing M = m

and k = q .

*) When k = 1,M = m + d and d = 1 or d = 2 , by using the case 1 of Theorem

1.3, we have the following

Corollary 1. Let f 1, f 2, f 3 : Cn −→ PN(C) be three meromorphic mappings and let

{Hi}3N+1i=1 be hyperplanes in general position. Let ki be positive integers with 1 ≤ i ≤
3N + 1 satisfying the following conditions

(i) dim{z ∈ Cn : ν(fj ,Hi),≤ki > 0 and ν(fj ,Hl),≤kl > 0} ≤ n− 2 ( 1 ≤ i < l ≤ 3N + 1)

(ii) min(ν(fj ,Hi),≤ki , 2) = min (ν(f t,Hi),≤ki , 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 3N + 1)

(iii) f 1 ≡ f j on
⋃3N+1
α=1 {z ∈ Cn : ν(f1,Hα),≤kα(z) > 0} (1 ≤ j ≤ 3).

Then f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1 if one of the following conditions is satisfied

a) N ≥ 2, kj = k1 + 1 for every 2 ≤ j ≤ 3N + 1 and k1 > 3N + 2 +
14

3(N − 1)
.

b) N ≥ 2, kj = k1 + 2 for every 2 ≤ j ≤ 3N + 1 and k1 > 3N + 1 +
16

3(N − 1)
.

*) When k = 1 and M = m+ d, by using the proof for the case 2 of Theorem 1.3,

we have the following

Corollary 2. Let f 1, f 2, f 3 : Cn −→ P1(C) be three meromorphic functions and let

{Hi}4i=1 be distinct points. Let ki (1 ≤ i ≤ 4) be positive integers satisfying the following

conditions

(i) dim{z ∈ Cn : ν(fj ,Hi),≤ki > 0 and ν(fj ,Hl),≤kl > 0} ≤ n− 2

( 1 ≤ j ≤ 3; 1 ≤ i < l ≤ 4)
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(ii) min(ν(fj ,Hi),≤ki , 2) = min (ν(f t,Hi),≤ki , 2) (1 ≤ j < t ≤ 3; 1 ≤ i ≤ 4)

(iii) f 1 ≡ f j on
⋃4
α=1{z ∈ Cn : ν(f1,Hα),≤kα(z) > 0} (1 ≤ j ≤ 3)

Assume that one of the following conditions is satisfied

a) k1 = 9, k2 = k3 = k4 = 66.

b) k1 = 10, k2 = k3 = k4 = 36.

c) k1 = 11, k2 = k3 = k4 = 26.

d) k1 = 12, k2 = k3 = k4 = 21.

e) k1 = 13, k2 = k3 = k4 = 18.

f) k1 = 14, k2 = k3 = k4 = 16.

Then f 1 ≡ f 2 or f 2 ≡ f 3 or f 3 ≡ f 1.

Proof. Case 1. N ≥ 2, 3N − 1 ≤ q ≤ 3N + 1,m > 3N + 1 +
16

3(N − 1)
and

(2q − 5N − 3) >
2Nk

m+ 1
+
2N(q − k)

m+ d+ 1
− 3N2 +N

M + 1
.

Firstly, we need the following.

Claim 1.3.1. Denote byQ the set of all indices j0 ∈ {1, 2, ..., q} satisfying the following:
There exist c ∈ C and α = (α0, α1) with |α| ≤ 1 such that Φα(F j01

c , F j02
c , F j03

c ) 6≡ 0.

Then Q is an empty set.

Proof. Assume that Q is non-empty. For every 1 ≤ i ≤ 3 and j0 ∈ Q, by Lemma

1.1.22, we have

∣∣∣∣
∣∣∣∣ N

(1)

(f i,Hj0
),≤kij0

(r) + 2
∑

j 6=j0

N
(1)

(f i,Hj),≤kij(r) ≤ T (r) +
3∑

l=1

N
(1)

(f l,Hj0
),>klj0

(r) + o(T (r)),

and hence

∣∣∣∣
∣∣∣∣ N

(N)

(f i,Hj0
),≤kij0

(r)+2
∑

j 6=j0

N
(N)

(f i,Hj),≤kij(r) ≤ N ·T (r)+N
3∑

l=1

N
(1)

(f l,Hj0
),>klj0

(r)+o(T (r)).

This implies that

∣∣∣∣
∣∣∣∣

3∑

i=1

(
N

(N)

(f i,Hj0
),≤kij0

(r) + 2
∑

j 6=j0

N
(N)

(f i,Hj),≤kij(r)

)

≤ 3NT (r) + 3N
3∑

i=1

N
(1)

(f i,Hj0
),>kij0

(r) + o(T (r))

≤ 3NT (r) +
3∑

i=1

(
3N

kij0 + 1

)
N(f i,Hj0

),>kij0
(r) + o(T (r))
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≤ 3NT (r) +
3∑

i=1

(
3N

kij0 + 1

)(
N(f i,Hj0

)(r)−N(f i,Hj0
),≤kij0 (r)

)
+o(T (r)) (1.3.1)

Hence we see

∣∣∣∣
∣∣∣∣

3∑

i=1

(
2

q∑

j=1

N
(N)

(f i,Hj),≤kij(r)

)
≤ 3NT (r) +

3∑

i=1

(
3N

kij0 + 1

)
N(f i,Hj0

)(r)+

+
3∑

i=1

(1− 3N

kij0 + 1
)N

(N)

(f i,Hj0
),≤kij0

(r) + o(T (r)) (1.3.2)

On the other hand, since 1− 3N

kij0 + 1
> 0 and

max{N (N)

(f i,Hj0
),≤kij0

(r);N(f i,Hj0
)(r)} ≤ T (r, f i) + o(T (r, f i)) for every 1 ≤ i ≤ 3,

(1.3.3)

we have

∣∣∣∣
∣∣∣∣ 2

3∑

i=1

q∑

j=1

N
(N)

(f i,Hj),≤kij(r) ≤ (3N + 1)T (r) + o(T (r)). (1.3.4)

Using Lemma 1.1.21, we have

∣∣∣∣
∣∣∣∣
(
q −N − 1−

q∑

j=1

N

kij + 1

)
T (r, f i) ≤

q∑

j=1

(
1− N

kij + 1

)
N

(N)

(f i,Hj),≤kij(r) + o(T (r, f i))

∣∣∣∣
∣∣∣∣
(
q −N − 1− Nk

m+ 1
− N(q − k)

m+ d+ 1

)
T (r, f i) ≤

(
1− N

M + 1

) q∑

j=1

N
(N)

(f i,Hj),≤kij(r) + o(T (r, f i))

∣∣∣∣
∣∣∣∣
(
q −N − 1− Nk

m+ 1
− N(q − k)

m+ d+ 1

)
T (r) ≤

(
1− N

M + 1

) 3∑

i=1

q∑

j=1

N
(N)

(f i,Hj),≤kij(r) + o(T (r)).

(1.3.5)

From (1.3.4) and (1.3.5), we have

∣∣∣∣
∣∣∣∣ 2

(
q −N − 1− Nk

m+ 1
− N(q − k)

m+ d+ 1

)
T (r) ≤ (3N + 1)(1− N

M + 1
)T (r) + o(T (r)).

Letting r → +∞, we get
∣∣∣∣
∣∣∣∣ 2

(
q −N − 1− Nk

m+ 1
− N(q − k)

m+ d+ 1

)
≤ (3N + 1)(1− N

M + 1
),

and hence

(2q − 5N − 3) ≤ 2Nk

m+ 1
+
2N(q − k)

m+ d+ 1
− 3N2 +N

M + 1
(1.3.6).
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This is a contradiction. So we have ♯Q = 0

Claim 1.3.2. If ♯

(
{1, 2, ..., q} \ Q

)
≥ 3N − 1 and N ≥ 2 then f 1 ≡ f 2, or f 2 ≡ f 3, or

f 3 ≡ f 1 .

Proof

Indeed, assume that 1, ..., 3N − 1 /∈ Q. By the density of C, it implies that

Φα(F i1
j , F

i2
j , F

i3
j ) = 0 (1 ≤ i, j ≤ 3N − 1, |α| ≤ 1).

Thus, there exists χij 6= 0 such that F i1
j = χijF

i2
j , or F

i2
j = χijF

i3
j or F i3

j = χijF
i1
j . We

may assume that F i1
j = χijF

i2
j .

Suppose χij 6= 1. Then we have the following:

If ν(f1,Hl),≤k1l(z) > 0 (l 6= i, j), then ν(f1,Hi)(z) > 0 or ν(f1,Hj)(z) > 0.

So we get
∑

l 6=i,j ν
(1)

(f1,Hl),≤k1l(z) ≤ ν
(1)

(f1,Hi),>k1i
(z) + ν

(1)

(f1,Hj),>k1j
(z) outside a finite union of an-

alytic sets of dimension ≤ n− 2. Hence

∑

l 6=i,j
N

(1)

(f1,Hl),≤k1l(r) ≤ N
(1)

(f1,Hi),>k1i
(r) +N

(1)

(f1,Hj),>k1j
(r)

≤ 1

k1i + 1
N(f1,Hi),>k1i(r) +

1

k1j + 1
N(f1,Hj),>k1j(r)

≤ 1

k1i + 1
N(f1,Hi)(r) +

1

k1j + 1
N(f1,Hj)(r) ≤

2

m+ 1
T (r, f 1).

By Lemma 1.1.21 and since k1l ≥ N − 1, we have
∣∣∣∣
∣∣∣∣
(
q −N − 3−

∑

l 6=i,j

N

k1l + 1

)
T (r, f 1) ≤

∑

l 6=i,j

(
1− N

k1l + 1

)
N

(N)

(f1,Hl),≤k1l(r) + o(T (r, f 1)).

This yields that

(
q −N − 3−

∑

l 6=i,j

N

m+ 1

)
T (r, f 1) ≤

∑

l 6=i,j

(
1− N

M + 1

)
N

(N)

(f1,Hl),≤k1l(r) + o(T (r, f 1))

≤ N

(
1− N

M + 1

)∑

l 6=i,j
N

(1)

(f1,Hl),≤k1l(r) + o(T (r, f 1))

≤
(
1− N

M + 1

)
2N

m+ 1
T (r, f 1) + o(T (r, f 1)).

Hence (
q −N − 3− N(q − 2)

m+ 1

)
≤

(
1− N

M + 1

)
2N

m+ 1
.
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This means that

q −N − 3− N(q − 2)

m+ 1
≤ 2N

m+ 1
− 2N2

(m+ 1)(M + 1)
.

Thus

q −N − 3 ≤ Nq

m+ 1
− 2N2

(m+ 1)(M + 1)
(1.3.7)

Moreover, since N ≥ 2, 3N + 1 ≥ q and m > 3N + 1 +
16

3(N − 1)
, we have

(3N − 3)

2
≥ Nq

m+ 1
and

Nk

m+ 1
+

N(q − k)

m+ d+ 1
≥ Nq

m+ d+ 1
≥ Nq

M + 1
≥ 3N2 +N

2(M + 1)
.

This implies that

5N + 3

2
+

Nk

m+ 1
+

N(q − k)

m+ d+ 1
− 3N2 +N

2(M + 1)
> N + 3 +

Nq

m+ 1
− 2N2

(m+ 1)(M + 1)
.

Combining the hypothesis and (1.3.7), we get a contradiction. Hence χij = 1.

We define the subsets I1, I2 and I3 by

I1 = {i : 1 ≤ i ≤ 3N − 2 and F i1
3N−1 = F i2

3N−1},
I2 = {i : 1 ≤ i ≤ 3N − 2 and F i2

3N−1 = F i3
3N−1},

I3 = {i : 1 ≤ i ≤ 3N − 2 and F i3
3N−1 = F i1

3N−1}.
Then one of them contains at least N indices. We may assume that ♯I1 ≥ N . Then

f 1 ≡ f 2. Thus the Claim is proved.

From Claim 1.3.1 and Claim 1.3.2 and q ≥ 3N − 1, Case 1 is proved.

Case 2. Assume that N = 1 and q = 4.

For each j0 ∈ Q, from (1.3.1), we get

∣∣∣∣
∣∣∣∣

3∑

i=1

(
2

q∑

j=1

N
(1)

(f i,Hj),≤kij(r)

)
≤ 3T (r)+

+
3∑

i=1

(
3

kij0 + 1

)
(N(f i,Hj0

)(r)−N
(1)

(f i,Hj0
),≤kij0

(r)) +
3∑

i=1

N
(1)

(f i,Hj0
),≤kij0

(r) + o(T (r))

and N
(1)

(f i,Hj0
),≤kij0

(r) ≤ N(f i,Hj0
)(r) ≤ T (r, f i) + o(T (r)) (1 ≤ i ≤ 3).

Hence

∣∣∣∣
∣∣∣∣2

3∑

i=1

4∑

j=1

N
(1)

(f i,Hj),≤kij(r) ≤ 3(1+
1

mj0 + 1
)T (r)+

3∑

i=1

(1− 3

mj0 + 1
)N

(1)

(f i,Hj0
),≤kij0

(r)+o(T (r))

≤ 3(1 +
1

mj0 + 1
)T (r) +

3∑

i=1

(1− 3

mj0 + 1
)N

(1)

(f i,Hj0
),≤kij0

(r) + o(T (r)), (1.3.8)
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where mj = min{kij | 1 ≤ i ≤ 3}(1 ≤ j ≤ 4).

On the other hand, from Lemma 1.1.21, we have

∣∣∣∣
∣∣∣∣
(
2−

4∑

j=1

1

kij + 1

)
T (r, f i) ≤

4∑

j=1

(
1− 1

kij + 1

)
N

(1)

(f i,Hj),≤kij(r) + o(T (r, f i)).

It implies that

(
2− k

m+ 1
− 4− k

m+ d+ 1

)
T (r, f i) ≤

4∑

j=1

(
1− 1

M + 1

)
N

(1)

(f i,Hj),≤kij(r) + o(T (r, f i)).

Hence

(
2− k

m+ 1
− 4− k

m+ d+ 1

)
T (r) ≤

3∑

i=1

4∑

j=1

(
1− 1

M + 1

)
N

(1)

(f i,Hj),≤kij(r)+o(T (r)) (1.3.9)

From (1.3.8) and (1.3.9), we have
∣∣∣∣
∣∣∣∣2
(
2− k

m+ 1
− 4− k

m+ d+ 1

)
(
M + 1

M
)T (r) ≤ 3(1 +

1

mj0 + 1
)T (r)

+
3∑

i=1

(1− 3

mj0 + 1
)N

(1)

(f i,Hj0
),≤kij0

(r) + o(T (r)).

This yields that

3∑

i=1

N
(1)

(f i,Hj0
),≤kij0

(r) ≥
(
mj0 + 1

mj0 − 2

)(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)−

− 3(1 +
1

mj0 + 1
)

)
T (r) + o(T (r)).

Hence

3∑

i=1

N
(1)

(f i,Hj0
),≤kij0

(r) ≥
(
mj0 + 1

mj0 − 2

)
××

(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)

− 3(1 +
1

mj0 + 1
)

)
T (r) + o(T (r)) (1.3.10)

Assume that ♯Q ≥ 3, i.e, Q ⊃ {j0, j1, j2}.
By (1.3.10), we get

∣∣∣∣
∣∣∣∣

3∑

i=1

2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≥

2∑

s=0

(
mjs + 1

mjs − 2

)
×
(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)

− 3(1 +
1

mjs + 1
)

)
T (r) + o(T (r)).(1.3.11)
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Since there exists c ∈ C such that F j01
c − F j02

c 6≡ 0, it implies that

2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ N

F
j01
c −F j02

c
(r) ≤ T (r, f 1) + T (r, f 2) +O(1).

Similarly, we have

2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ T (r, f 2) + T (r, f 3) +O(1)

and
2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ T (r, f 3) + T (r, f 1) +O(1).

Hence
2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ 2

3
· T (r) +O(1) (1 ≤ i ≤ 3)

and
3∑

i=1

2∑

s=0

N
(1)

(f i,Hjs ),≤kijs
(r) ≤ 2.T (r) +O(1) (1.3.12)

From (1.3.11) and (1.3.12), we have

2.T (r) ≥
2∑

s=0

(
mjs + 1

mjs − 2

)(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)−3(1+ 1

mjs + 1
)

)
T (r)+o(T (r)).

Letting r → +∞, we get

2 ≥
2∑

s=0

(
mjs + 1

mjs − 2

)(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)− 3(1 +

1

mjs + 1
)

)
.

On the other hand, the following function is increasing for t > 2

f(t) =

(
t+ 1

t− 2

)(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)− 3(1 +

1

t+ 1
)

)

So we get

2 ≥ 3.

(
m+ 1

m− 2

)(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)− 3(1 +

1

m+ 1
)

)
.

This means that

2(m− 2)

3(m+ 1)
≥
(
2(2− k

m+ 1
− 4− k

m+ d+ 1
)(
M + 1

M
)− 3(1 +

1

m+ 1
)

)
.

Thus, we get

3(2k + 1)

m+ 1
+

6(4− k)

m+ d+ 1
+

6k

M(m+ 1)
+

24− 6k

M(m+ d+ 1)
≥ 1 +

12

M
.
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This is a contradiction (remarking that the equality does not happen if max1≤j≤4{mj} >
m ). Hence ♯Q ≤ 2.

We now use the same argument in [64] to complete Case 2.

Without loss of generality, we may assume that 1, 2 /∈ Q. By the density of C in

C2, it implies that Φα(F i0
j , F

i1
j , F

i2
j ) = 0 for each 1 ≤ i ≤ 2, 1 ≤ j ≤ 2 and for each

α = (α0, α1) with |α| ≤ 1, where F ik
j =

(fk, Hi)

(fk, Hj)
.

Applying Lemma 1.1.18 for i = 1, j = 2, we have the following two cases.

(i) There exist 0 ≤ l1 < l2 ≤ 2 such that F 1l1
2 = F 1l2

2 . Then f l1 ≡ f l2 .

(ii) There are two distinct constants α, β ∈ C \ {0, 1} such that F 10
2 = αF 11

2 = βF 12
2 .

We may assume that H1 = {ω0 = 0}, H2 = {ω1 = 0}, H3 = {ω0− cω1 = 0} (c ∈
C\{0}). Then

f 00
f 01

= α
f 10
f 11

= β
f 20
f 21
,

(f 1, H3) = 0⇔ f 10 − cf 11 = 0⇔ (f 00 − cαf 01 )

(
f 11
αf 01

)
= 0

(f 2, H3) = 0⇔ f 20 − cf 21 = 0⇔ (f 00 − cβf 01 )

(
f 21
βf 01

)
= 0.

Hence {z ∈ Cn : ν(f0,H3),≤k03(z) > 0} ⊂ ⋃2
i=0 I(f

i). So that N
(1)

(f0,H3),≤k03(r) = 0,

and

ν(f1,H3)(z) = νf00−cαf01 (z) and ν(f2,H3)(z) = νf00−cβf01 (z) for z /∈ I(f 0) ∪ I(f 1) ∪ I(f 2)
Thus, we have ν(f1,H3)(z) = νf00−cαf01 (z) (z ∈ Cn) and ν(f2,H3)(z) = νf00−cβf01 (z) (z ∈

Cn).

Put H ′
3 = {ω0 − cαω1 = 0}, H ′′

3 = {ω0 − cβω1 = 0}. Then we have the following:
• H3, H

′
3, H

′′
3 are in general position.

• ν(f0,H′3) = ν(f1,H3). This yields ν
(1)

(f0,H′3),≤k13
= ν

(1)

(f1,H3),≤k13 = ν
(1)

(f0,H3),≤k03

• ν(f0,H′′3 ) = ν(f2,H3). This yields ν
(1)

(f0,H′′3 ),≤k23
= ν

(1)

(f2,H3),≤k23 = ν
(1)

(f0,H3),≤k03

By Lemma 1.1.21, we have

∣∣∣∣
∣∣∣∣
(
3−1−1−

2∑

j=0

1

kj3 + 1

)
T (r, f 0) ≤ (1− 1

1 + k03
)N

(1)

(f0,H3),≤k03(r)+(1−
1

1 + k13
)N

(1)

(f0,H′3),≤k13
(r)+

+(1− 1

1 + k23
)N

(1)

(f0,H′′3 ),≤k23
(r) + o(T (r, f 0))

⇒
(
1− 3

m+ 1

)
T (r, f 0) ≤

(
1− 1

M + 1

)(
N

(1)

(f0,H3),≤k03(r)+N
(1)

(f0,H′3),≤k13
(r)+N

(1)

(f0,H′′3 ),≤k23
(r)

)
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+o(T (r, f 0))

⇒
(
1− 3

m+ 1

)
T (r, f 0) ≤

(
1− 1

M + 1

)(
N

(1)

(f0,H3),≤k03(r)+N
(1)

(f0,H3),≤k03(r)+N
(1)

(f0,H3),≤k03(r)

)

+o(T (r, f 0)) = 3(1− 1

M + 1
)N

(1)

(f0,H3),≤k03(r) + o(T (r, f 0))

So we get (
1− 3

m+ 1

)
T (r, f 1) ≤ o(T (r, f 0))

This is a contradiction. Case 2 of Theorem 1.3 is proved.

1.4 A unicity theorem for meromorphic mapping

sharing few fixed targets with a conditions on

derivations

Take a meromorphic mapping f of Cn into PN(C) which is linearly nondegenerate over

C, a positive integer d, a positive integer k or k =∞ and q hyperplanes H1, ...., Hq in

PN(C) located in general position with

dim{z ∈ Cn : ν(f,Hi)(z) > 0 and ν(f,Hj)(z) > 0} ≤ n− 2 (1 ≤ i < j ≤ q),

and consider the set G(f, {Hj}qj=1, k, d) of all meromorphic maps g : Cn → PN(C)

satisfying the conditions

(a) g is linearly nondegenerate over C,

(b) min{ν(f,Hj),≤k, d} = min{ν(g,Hj),≤k, d} (1 ≤ j ≤ q),

(c) Let f = (f0 : · · · : fN) and g = (g0 : · · · : gN) be reduced representations of

f and g, respectively. Then, for each 0 6 j 6 N and for each ω ∈ ⋃q
i=1{z ∈ Cn :

ν(f,Hi),6k(z) > 0}, the following two conditions are satisfied:

(i) If fj(ω) = 0 then gj(ω) = 0,

(ii) If fj(ω)gj(ω) 6= 0 then Dα

(
fi
fj

)
(ω) = Dα

(
gi
gj

)
(ω) for each n-tuple α =

(α1, ..., αn) of nonnegative integers with |α| = α1 + ... + αn 6 d and for each

i 6= j, where Dα =
∂|α|

∂α1z1...∂αnzn
.

Remark that the condition (c) does not depend on the choice of reduced represen-

tations.
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The last part of this chapter proves the following.

Theorem 1.4. (Ha-Quang [33]) If N ≥ 4 and 2 6 d 6 N − 1, then

♯ G(f, {Hi}3N+2−2di=1 , k, d) = 1 for each k >
3dN2 − 2N2 + 2Nd− 2Nd2

2(d− 1)N + d− 2d2
− 1.

Proof. Suppose that there exists a mapping g ∈ G(f, {Hi}3N+2−2di=1 , k, d) with reduced

representation g = (g0 : · · · : gN) such that g 6≡ f. Then there exist indices i and

j (0 6 i < j 6 N) such that Pij =
(f,Hi)

(f,Hj)
− (g,Hi)

(g,Hj)
6≡ 0. Define

I = I(f) ∪ I(g) ∪16 t<s63N+2−2d {z ∈ Cn |ν(f,Ht),6k(z)ν(f,Hs),6k(z) > 0}.

Then I is an analytic set of codimension 2 or emptyset.

Claim 1.4.1. The following assertion holds

3N+2−2d∑

v=1

N
(d)
(f,Hv),6k

(r) 6 T (r, f) + T (r, g) + o(T (r, f) + T (r, g))

Proof . We fix a point z 6∈ I satisfying ν(f,Ht),6k(z) > 0 (t 6= j). Suppose that

fl(z) · gl(z) = 0 (0 6 l 6 N). Then gl(z) = 0 (0 6 l 6 N). This means that z ∈ I(g).
This is impossible. Hence, there exists an index l such that fl(z) · gl(z) 6= 0. This

implies that

DαPij(z) = Dα

(
(f,Hi)

(f,Hj)
− (g,Hi)

(g,Hj)

)
(z)

= Dα

(∑N
v=0

fv
fl
aiv

∑N
v=0

fv
fl
ajv

−
∑N

v=0
gv
gl
aiv

∑N
v=0

gv
gl
ajv

)
(z) = 0, ∀|α| 6 d.

Hence νPij
(z) ≥ d.We have νPij

≥∑3N+2−2d
t=1
t 6=j

dmin{1, ν(f,Ht),6k} outside an analytic
set of codimension 2. This yields that

NPij
(r) ≥

3N+2−2d∑

t=1
t 6=j

N
(d)
(f,Ht),6k

(r).

Using the argument in the proof of Theorem 1.2, we have

m(r, Pij) 6 T (r, f) + T (r, g)−N (f,Hj)

(f,Hi)

(r)−N (g,Hj)

(g,Hi)

(r) +O(1)

and

N 1
Pij

(r) 6 N(r, νj), where νj = max {ν (f,Hj)

(f,Hi)

, ν (g,Hj)

(g,Hi)

}.
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Hence

3N+2−2d∑

v=1
v 6=j

N
(d)
(f,Hv),6k

(r) 6 NPij
(r)

6 T (r, Pij)

= N 1
Pij

(r) +m(r, Pij) +O(1)

6 T (r, f) + T (r, g) +N(r, νj)−N (f,Hj)

(f,Hi)

(r)

−N (g,Hj)

(g,Hi)

(r) + o(T (r, f) + T (r, g)).

This gives

(
N (f,Hj)

(f,Hi)

(r) +N (g,Hj)

(g,Hi)

(r)−N(r, νj)
)
+

3N+2−2d∑

v=1
v 6=j

N
(d)
(f,Hv),6k

(r)

6 T (r, f) + T (r, g) + o(T (r, f) + T (r, g)).

On the other hand, we have

νj(z)− ν (f,Hj)

(f,Hi)

(z)− ν (g,Hj)

(g,Hi)

(z) + ν
(d)
(f,Hj),6k

(z) =

ν
(d)
(f,Hj),6k

(z)−min {ν (f,Hj)

(f,Hi)

(z), ν (g,Hj)

(g,Hi)

(z)} 6 0

ouside an analytic set of codimension 2. Hence

N(r, νi)−N (f,Hj)

(f,Hi)

(r)−N (g,Hj)

(g,Hi)

(r) +N
(d)
(f,Hj),6k

(r) 6 0.

This yields that

3N+2−2d∑

v=1

N
(d)
(f,Hv),6k

(r) 6 T (r, f) + T (r, g) + o(T (r, f) + T (r, g)).

This concludes Claim 1.4.1.

From Claim 1.4.1 we have the following

3N+2−2d∑

v=1

N
(N)
(f,Hv),6k

(r) 6
N

d
(T (r, f) + T (r, g)) + o(T (r, f) + T (r, g)).

By using Lemma 1.1.9 , we also have

∣∣∣∣
3N+2−2d∑

i=1

N
(N)
(f,Hi),6k

(r)
)
≥(2N + 1− 2d)(k + 1)−N(3N + 2− 2d)

k + 1−N
T (r, f)

+ o(T (r, f))
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and

∣∣∣∣
3N+2−2d∑

i=1

N
(N)
(g,Hi),6k

(r)
)
≥(2N + 1− 2d)(k + 1)−N(3N + 2− 2d)

k + 1−N
T (r, g)

+ o(T (r, g)).

This implies that

∣∣∣∣ 2N
d
((T (r, f) + T (r, g)) ≥

(
(2N + 1− 2d)(k + 1)−N(3N + 2− 2d)

k + 1−N

)
×

(T (r, f) + T (r, g)) + o((T (r, f) + T (r, g))).

Letting r −→∞, we have

2N

d
≥ (2N + 1− 2d)(k + 1)−N(3N + 2− 2d)

k + 1−N
,

and hence

k + 1 6
3dN2 − 2N2 + 2Nd− 2Nd2

2(d− 1)N + d− 2d2
.

This is a contradiction. Thus, we have ♯ G(f, {Hi}3N+2−2di=1 , k, d) = 1 and Theorem

1.4 is proved.
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Chapter 2

Unicity theorems with truncated
multiplicities of meromorphic
mappings in several complex
variables sharing small identical
sets

The unicity theorems with truncated multiplicities of meromorphic mappings of Cn into

the complex projective space PN(C) sharing a finite set of fixed (or moving) hyperplanes

in PN(C) have received much attention in the last few decades, and they are related

to many problems in Nevanlinna theory and hyperbolic complex analysis .

For moving targets and truncated multiplicites, the following results are best and

due to Dethloff-Tan [14]. They proved the following (see §2.1 for notations).

Theorem of Dethloff-Tan [14] Let f, g : Cn −→ PN(C) (N ≥ 2) be two nonconstant

meromorphic mappings, and let {aj}3N+1j=1 be ”small” (with respect to f) meromorphic

mappings of Cn into PN(C) in general position such that (f, ai) 6≡ 0, (g, ai) 6≡ 0 (1 6

i 6 3N + 1) and f is linearly nondegenerate over R({aj}3N+1j=1 ). Set M = 3N(N +

1)
[(

2N+2
N+1

)]2[(
2N+2
N+1

)
−1
]
+N(3N+4). Assume that the following conditions are satisfied.

(i) dim{z ∈ Cn : ν(f,ai),6M(z) > 0 and ν(f,aj),6M(z) > 0} 6 n− 2

(1 6 i 6 N + 3, 1 6 j 6 3N + 1).

(ii) min{ν(f,ai),M} = min{ν(g,ai),M} ((1 6 i 6 3N + 1).

(iii) f(z) = g(z) on
⋃
j∈D{z ∈ Cn : ν(f,aj),6M(z) > 0}, where D is an arbitrary subset

of {1, · · · , 3N + 1} with ♯D = N + 4.
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Then f ≡ g.

We would like to emphasize here that the assumption ♯D = N + 4 in the above-

mentioned theorem is essential in their proofs. It seems to us that some key techniques

in their proofs could not be used for ♯D < N + 4.

The first main purpose of the present chapter is to give a unicity theorem with

truncated multiplicities of meromorphic mappings in several complex variables sharing

N + 2 moving targets. In particular, we prove Theorem 2.2 (Ha-Quang-Thai [34]). It

is an improvement of the above-mentioned theorem of Dethloff-Tan.

In this chapter, we also would like to study the unicity problems of meromorphic

mappings in several complex variables for moving targets with conditions on deriva-

tions. We will prove Theorem 2.3 (Ha-Quang-Thai [34]) in the last part of this chapter.

2.1 Preliminaries

2.1.1. Let f : Cn −→ PN(C) be a meromorphic mapping. For arbitrarily fixed ho-

mogeneous coordinates (w0 : · · · : wN) on PN(C), we take a reduced representation

f = (f0 : · · · : fN), which means that each fi is a holomorphic function on Cn and

f(z) =
(
f0(z) : · · · : fN(z)

)
outside the analytic set {f0 = · · · = fN = 0} of codimension

≥ 2. Set ‖f‖ =
(
|f0|2 + · · ·+ |fN |2

)1/2
.

The characteristic function of f is defined by

T (r, f) =

∫

S(r)

log‖f‖σn −
∫

S(1)

log‖f‖σn.

Let a be a meromorphic mapping of Cn into PN(C) with reduced representation

a = (a0 : · · · : aN). The proximity function mf,a(r) is defined by

mf,a(r) =

∫

S(r)

log
||f || · ||a||
|(f, a)| σn −

∫

S(1)

log
||f || · ||a||
|(f, a)| σn,

where ‖a‖ =
(
|a0|2 + · · ·+ |aN |2

)1/2
.

If f, a : Cn → PN(C) are meromorphic mappings such that (f, a) 6≡ 0, then

the First Main Theorem for moving targets in value distribution theory (see

Ru-Stoll [56]) states

T (r, f) + T (r, a) = mf,a(r) +N(f,a)(r).

34



2.1.2. Let a1, . . . , aq (q ≥ N + 1) be q meromorphic mappings of Cn into PN(C)

with reduced representations aj = (aj0 : · · · : ajN) (1 6 j 6 q). We say that a1, . . . , aq

are located in general position if det(ajkl) 6≡ 0 for any 1 6 j0 < j1 < ... < jN 6 q.

We also say that a1, . . . , aq are located in pointwise general position if the hyperplanes

a1(z), . . . , aq(z) are in general position as a set of fixed hyperplanes at every point

z ∈ Cn.

LetMn be the field of all meromorphic functions on Cn. Denote by R
({
aj
}q
j=1

)
⊂

Mn the smallest subfield which contains C and all
ajk
ajl

with ajl 6≡ 0.Define R̃
({
aj
}q
j=1

)
⊂

Mn to be the smallest subfield which contains all h ∈ Mn with h
k ∈ R

({
aj
}q
j=1

)
for

some positive integer k.

Let f be a meromorphic mapping of Cn into PN(C) with reduced representation f =

(f0 : · · · : fN).We say that f is linearly nondegenerate overR
({
aj
}q
j=1

) (
R̃
({
aj
}q
j=1

))

if f0, . . . , fN are linearly independent over R
({
aj
}q
j=1

)
(R̃

({
aj
}q
j=1

)
, respectively).

Let f , a be two meromorphic mappings of Cn into PN(C) with reduced representa-

tions f = (f0 : · · · : fN), a = (a0 : · · · : aN) respectively. Put (f, a) =
N∑
i=0

aifi. We say

that a is ”small” with respect to f if T (r, a) = o(T (r, f)) as r →∞.

Let f and a be nonconstant meromorphic mappings of Cn into PN(C). For every

z ∈ Cn, we set

ν(f,a),≤k(z) =

{
0 if ν(f,a)(z) > k,

ν(f,a)(z) if ν(f,a)(z) ≤ k,

ν(f,a),>k(z) =

{
ν(f,a)(z) if ν(f,a)(z) > k,

0 if ν(f,a)(z) ≤ k.

2.1.3. The second main theorem for moving targets. (Thai-Quang [63]) Let

f : Cn → PN(C) be a meromorphic mapping. Let {aj}qj=1 (q ≥ N +2) be meromorphic

mappings of Cn into PN(C) in general position such that f is linearly nondegenerate

over R({ai}qi=1). Then

|| q

N + 2
T (r, f) ≤

q∑

j=1

N
(N)
(f,aj)

(r) + o(T (r, f)) +O(max
1≤j≤q

T (r, aj)).
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2.2 A unicity theorem with truncated multiplicities

of meromorphic mappings in several complex

variables sharing few moving targets

In this section, we prove the following.

Theorem 2.2. (Ha-Quang-Thai [34]) Let k be a positive integer or k =∞ and d be a

positive integer or d =∞ such that the following is satisfied
(

3

d+ 1
+

6

k + 1

)(
2N + 2

N + 1

)[(2N + 2

N + 1

)
−2
]
<

(
N + 2

N(N + 2)(N(N + 2) + 1)
− 2N + 2

k + 1

)
.

Let f, g : Cn → PN(C) (N ≥ 2) be two nonconstant meromorphic mappings, and let

{aj}3N+1j=1 be ”small” (with respect to f) meromorphic mappings of Cn into PN(C) in

general position such that dim{z ∈ Cn : ν(f,ai),6k(z)ν(f,aj),6k(z) > 0} 6 n− 2 (1 6 i <

j 6 3N + 1).

Assume that f, g are linearly nondegenerate over R({aj}3N+1j=1 ) and the following are

satisfied.

(i) min (ν(f,Hj),6k, d) = min (ν(g,Hj),6k, d) (1 6 j 6 3N + 1).

(ii) f(z) = g(z) on
⋃
j∈D{z ∈ Cn : ν(f,aj),6N(N+2)(z) > 0}, where D is an arbitrary

subset of {1, · · · , 3N + 1} with ♯D = N + 2.

Then f ≡ g.

Proof. Assume that f, g, ai have reduced representations

f = (f0 : ... : fN), g = (g0 : ... : gN), ai = (ai0 : ... : aiN).

(i) Consider any 2N+2 meromorphic mappings of {a1, ..., a3N+1}, to say, a1, ..., a2N+2.
Define hi =

(f, ai)

(g, ai)
(1 6 i 6 2N+2). Then

hi
hj

=
(f, ai) · (g, aj)
(g, ai) · (f, aj)

does not depend on

representations of f and g . Since
∑N

k=0 aikfk − hi ·
∑N

k=0 aikgk = 0 (1 6 i 6 2N + 2),

it implies that det (ai0, ..., aiN , ai0hi, ..., aiNhi; 1 6 i 6 2N + 2) = 0.

For each subset I ⊂ {1, 2, ..., 2N + 2}, put hI =
∏

i∈I hi. Denote by I the set of all
N + 1-tuples I = (i1, ..., iN+1) with 1 6 i1 < ... < iN+1 6 2N + 2.

For each I = (i1, ..., iN+1) ∈ I, define

AI = (−1) (N+1)(N+2)
2

+i1+...+iN+1 · det(airl; 1 6 r 6 N + 1, 0 6 l 6 N)·

det(ajsl; 1 6 s 6 N + 1, 0 6 l 6 N),
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where J = (j1, ..., jN+1) ∈ I such that I ∪ J = {1, 2, ..., 2N + 2}.
Then

∑
I∈I AIhI = 0.

(ii) Take I0 ∈ I. ThenAI0hI0 = −
∑

I∈I,I 6=I0 AIhI , and hence hI0 = −
∑

I∈I,I 6=I0
AI

AI0
hI .

Notice that

AI 6≡ 0 (I ∈ I) and
AI
AI0

∈ R({ai}3N+1i=1 ) (I ∈ I).

Denote by t the minimal number satisfying the following:

There exist t elements I1, ..., It ∈ I \ {I0} and t nonzero meromorphic functions

bi ∈ R({ai}3N+1i=1 ) such that

hI0 =
t∑

i=1

bihIi (2.2.1).

Since hI0 6≡ 0 and by the minimality of t, it follows that the family {b1hI1 , ..., bthIt}
is linearly independent over C.

Assume that t ≥ 2.

Put b0 = −1. Then
∑t

i=0 bihIi = 0.

Put I =
⋂t
i=0 Ii, I

′
i = Ii \ I 6= ∅ (0 6 i 6 t) and Ĩ =

⋃t
i=0 I

′
i, I

′ =
⋂t
i=1 I

′
i, I

′′
i =

I ′i \ I ′ 6= ∅ (1 6 i 6 t). We have
hI′0
hI′

=
∑t

i=1 bihI′′i (2.2.2).

Consider the meromorphic mapping h : Cn → Pt−1(C) with a reduced representa-

tion h = (h̃hI′′1 : ... : h̃hI′′t ), where h̃ is meromorphic on C
n satisfying νh̃ 6

∑
i∈∪t

j=1I
′′
j
ν∞hi .

Consider the meromorphic mapping b : Cn → Pt−1(C) with a reduced representation

b = (ψb1 : ... : ψbt), where ψ is meromorphic on Cn. We get

T (r, b) = o(T (r, f)) and Nψbi(r) 6 Nψb1(r) +N bi
b1

(r) = o(T (r, f)) (0 6 i 6 t).

If z is a zero (a pole, respectively) of hi, then ν(f,ai)(z) 6= ν(g,ai)(z). Hence ν(f,ai)(z) >

d or ν(g,ai)(z) > d. Thus, we have min{1, ν∞hi (z)}+min{1, νhi(z)} 6 min{1, ν(f,ai),>d(z)}.
This yields that N

(1)
hi
(r) +N

(1)
1
hi

(r) 6 N
(1)
(f,ai),>d

(r) +N
(1)
(g,ai),>d

(r) (2.2.3).

Consider the meromorphic mapping h′ : Cn → Pt−1(C) with a reduced representa-

tion

h′ =
( 1
h̃′
ψb1h̃hI′′1 : ... :

1

h̃′
ψbth̃hI′′t

)
.

By (2.2.1), the mapping h′ is linearly nondegenerate over C. By the Second Main
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Theorem for hyperplanes, it follows that

|| T (r, h′) 6
t∑

i=1

N
(t−1)
1
h̃′
ψbih̃hI′′

i

(r) +N
(t−1)
1
h̃′
ψh̃

h
I′0

h
I′

(r) + o(T (r, h′))

6 (t− 1) ·
t∑

i=1

N
(1)

h̃hI′′
i

(r) + (t− 1) ·N (1)

h̃·
h
I′0

h
I′

(r) + o(T (r, f))

+ o(T (r, h′)) (2.2.4).

Since N
(1)

h̃hI′′
i

(r) 6 O(T (r, f)) and N
(1)

h̃·
h
I′0

h
I′

(r) 6 O(T (r, f)), we have

|| T (r, h′) 6 O(T (r, f)).

Define I ′′ =
⋃t
i=1 I

′′
i . Denote by W the set

⋃
i∈I′′{z : ν(f,ai),>k(z) > 0}. Then

N
(1)

h̃hI′′
i

(r) = N
(1)
hI′′

i

(r) +N
(1)

1
h
I′′\I′′

i

(r) +
∑

j∈I′′
(N

(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r))

and

N
(1)

h̃.
h
I′0

h
I′

(r) = N
(1)
hI′0
(r) +N

(1)
1

h
(I′′∪I′)\I′0

(r) +
∑

j∈I′′
(N

(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r)).

For each J ⊂ {1, 2, ..., 2N +2}, put J c = {1, 2, ..., 2N +2}\J . It is easy to see that

I ′′i ⊂ Ii and I
′′ \ I ′′i ⊂ Ici (1 6 i 6 t),

I ′0 ⊂ I0 and (I
′′ ∪ I ′) \ I ′0 = Ĩ \ I ′0 = Ĩ \ (I0 \ I) = (Ĩ ∪ I) \ I0 ⊂ Ic0.

Hence

N
(1)

h̃hI′′
i

(r) 6 N
(1)
hIi
(r) +N

(1)
1

hIc
i

(r) +
2N+2∑

j=1

(N
(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r))

and N
(1)

h̃.
h
I′0

h
I′

(r) 6 N
(1)
hI0
(r) +N

(1)
1

hIc0

(r) +
2N+2∑

j=1

(N
(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r)).
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Combining with (2.2.4), we deduce that

|| T (r, h′) 6 (t− 1)
t∑

i=0

(
N

(1)
hIi
(r) +N

(1)
1

hIc
i

(r) +
2N+2∑

j=1

(
N

(1)
(f,aj),>k

(r)

+N
(1)
(g,aj),>k

(r)
))

+o(T (r, f))

= (t− 1)
t∑

i=0

(
∑

j∈Ii

N
(1)
hj
(r) +

∑

j∈Ici

N
(1)
1
hj

(r) +
2N+2∑

j=1

(
N

(1)
(f,aj),>k

(r)

+N
(1)
(g,aj),>k

(r)
))

+o(T (r, f))

6

[(
2N + 2

N + 1

)
− 2

]
∑

I∈I

(
∑

i∈I

(
N

(1)
hi
(r) +N

(1)
1
hi

(r)
)

+
2N+2∑

j=1

(
N

(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r)
))

+o(T (r, f))

=
1

2

(
2N + 2

N + 1

)[(
2N + 2

N + 1

)
− 2

](2N+2∑

i=1

(
N

(1)
hi
(r) +N

(1)
1
hi

(r)
)

+ 2
2N+2∑

j=1

(
N

(1)
(f,aj),>k

(r) +N
(1)
(g,aj),>k

(r)
))

+o(T (r, f)) (2.2.5).

From (2.2.3) and (2.2.5) we get

|| T (r, h′) 61
2

(
2N + 2

N + 1

)[(
2N + 2

N + 1

)
− 2

]
2N+2∑

i=1

(
N

(1)
(f,ai),>d

(r) +N
(1)
(g,ai),>d

(r)

+ 2N
(1)
(f,ai),>k

(r) + 2N
(1)
(g,ai),>k

(r)

)
+o(T (r, f)) (2.2.6)

Consider the hyperplanes H1 = {w1 = 0}, H2 = {w2 = 0}, H3 = {w1+...+wt = 0}
in Pt−1(C). Then

|| T (r, h′) ≥ T
(
r,
(h′, H1)

(h′, H2)

)
+O(1) = T

(
r,
b1hI′′1
b2hI′′2

)
+O(1)

= T
(
r,
b1hI1
b2hI2

)
+O(1) = T

(
r,
hI1
hI2

)
+o(T (r, f))

≥ N
(1)
hI1
hI2

−1
(r) + o(T (r, f)),
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|| T (r, h′) ≥ T
(
r,
(h′, H2)

(h′, H3)

)
+O(1) = T

(
r,
b2hI2
hI0

)
+O(1)

= T
(
r,
hI2
hI0

)
+o(T (r, f))

≥ N
(1)
hI2
hI0

−1
(r) + o(T (r, f)),

|| T (r, h′) ≥ T
(
r,
(h′, H3)

(h′, H1)

)
+O(1) = T

(
r,

hI0
b1hI1

)
+O(1)

= T
(
r,
hI0
hI1

)
+o(T (r, f))

≥ N
(1)
hI0
hI1

−1
(r) + o(T (r, f)).

Hence || 3T (r, h′) ≥ N
(1)
hI1
hI2

−1
(r) +N

(1)
hI2
hI0

−1
(r) +N

(1)
hI0
hI1

−1
(r) + o(T (r, f)).

Since
hI
hJ

= 1 on the set
⋃
j∈D\((I∪J)\(I∩J))Ej\W , where Ej = {z ∈ Cn : ν(f,aj),6N(N+2)(z) >

0} and

(D \ ((I1∪ I2) \ (I1∩ I2)))∪ (D \ ((I2∪ I0) \ (I2∩ I0)))∪ (D \ ((I0∪ I1) \ (I0∩ I1))) = D,

we have that

N
(1)
hI1
hI2

−1
(r) +N

(1)
hI2
hI0

−1
(r) +N

(1)
hI0
hI1

−1
(r) ≥

∑

i∈D
N

(1)
(f,ai),6N(N+2)

(r)

−
2N+2∑

i=1

(N
(1)
(f,ai),>k

(r) +N
(1)
(g,ai),>k

(r)).

Hence

|| 3T (r, h′) ≥
∑

i∈D
N

(1)
(f,ai),6N(N+2)

(r)−
2N+2∑

i=1

(N
(1)
(f,ai),>k

(r) +N
(1)
(g,ai),>k

(r))

+ o(T (r, f)) (2.2.7).

On the other hand, we have
∣∣∣
∣∣∣
∑

i∈D
N

(1)
(f,ai),6N(N+2)

(r) =
∑

i∈D
(N

(1)
(f,ai)

(r)−N
(1)
(f,ai),>N(N+2)

(r))

≥ N + 2

N(N + 2)
T (r, f)− N + 2

N(N + 2) + 1
T (r, f) + o(T (r, f))

=
N + 2

N(N + 2)(N(N + 2) + 1)
T (r, f) + o(T (r, f)).

By the same way, we have
∣∣∣
∣∣∣
∑

i∈D
N

(1)
(g,ai),6N(N+2)

(r) ≥ N + 2

N(N + 2)(N(N + 2) + 1)
T (r, g) + o(T (r, g))
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From (2.2.6) and (2.2.7) we get
∣∣∣∣∣

∣∣∣∣∣ 3

(
2N + 2

N + 1

)[(2N + 2

N + 1

)
− 2
]2N+2∑

i=1

(N
(1)
(f,ai),>d

(r) +N
(1)
(g,ai),>d

(r)

+ 2N
(1)
(f,ai),>k

(r) + 2N
(1)
(g,ai),>k

(r))

≥ N + 2

N(N + 2)(N(N + 2) + 1)
(T (r, f) + T (r, g))

−
2N+2∑

i=1

(N
(1)
(f,ai),>k

(r) +N
(1)
(g,ai),>k

(r)) + o(T (r, f) + T (r, g)) (2.2.8).

From (2.2.8) we also obtain
∣∣∣∣∣

∣∣∣∣∣

(
3

d+ 1
+

6

k + 1

)(
2N + 2

N + 1

)[(2N + 2

N + 1

)
− 2
]
(T (r, f) + T (r, g))

>

(
N + 2

N(N + 2)(N(N + 2) + 1)
− 2N + 2

k + 1

)
(T (r, f) + T (r, g))

+ o(T (r, f) + T (r, g)).

Letting r →∞, we get

(
3

d+ 1
+

6

k + 1

)(
2N + 2

N + 1

)[(
2N + 2

N + 1

)
−2
]
>

(
N + 2

N(N + 2)(N(N + 2) + 1)
−2N + 2

k + 1

)
.

This is a contradiction. Thus, t = 1. Then
hI0
hI1

= b1 ∈ R({ai}3N+1i=1 ).

Hence, for each I ∈ I, there is J ∈ I \ {I} such that hI
hJ
∈ R({ai}3N+1i=1 ).

(iii) Denote byM∗
n the abelian multiplicative group of all nonzero meromorphic

functions on Cn. Define J ⊂ M∗
n to be the smallest subgroup which contains all

h ∈ M∗
n with h

k ∈ R({ai}qi=1) for some positive integer k. Then the multiplicative

groupM∗
n/J is a torsion free abelian group.

Consider the free abelian subgroup generated by the family {[h1], ..., [h3N+1]} of the
torsion free abelian group M∗

n/J , where hi =
(f, ai)

(g, ai)
(1 6 i 6 3N + 1). Then the

family {[h1], ..., [h3N+1]} has the property P2N+2,N+1. It implies that there exist 3N +

1 − 2N = N + 1 elements, to say, [h1], ..., [hN+1], such that [h1] = ... = [hN+1]. Then
hi
hj
∈ J (1 6 i < j 6 N + 1), and hence

T (r,
hi
hj
) = o(T (r, f)) (1 6 i < j 6 N + 1) .

Consider the following four cases.
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Case 1. Suppose that there exist three indices {i, j, k}, (1 6 i < j < k 6 N + 1)

such that hi 6≡ hj 6≡ hk 6≡ hi.

We have

T (r,
hi
hj
) ≥ Nhi

hj
−1
(r) +O(1)

≥
∑

l∈D\{i,j}
N

(1)
(f,al),6N(N+2)

(r)−
∑

s∈{i,j}
N

(1)
(f,as),>k

(r) +O(1).

Hence N
(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{i,j}N
(1)
(f,as),>k

(r) + o(T (r, f)), ∀l ∈ D \ {i, j}.
Similarly, we also have N

(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{j,k}N
(1)
(f,as),>k

(r) + o(T (r, f)) for

each l ∈ D \ {j, k} and N (1)
(f,al),6N(N+2)

(r) 6
∑

s∈{i,k}N
(1)
(f,as),>k

(r) + o(T (r, f)) for each

l ∈ D \ {i, k}. So, we have

N
(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{i,j,k}
N

(1)
(f,as),>k

(r) + o(T (r, f))

for each l ∈ D. This implies that

|| T (r, f) 6
∑

l∈D
N

(N)
(f,al)

(r) + o(T (r, f))

6
∑

l∈D
N

(N)
(f,al),>N(N+2)

(r) +N(2N + 2)
∑

s∈{i,j,k}
N

(1)
(f,as),>k

(r) + o(T (r, f))

6

(
N(N + 2)

N(N + 2) + 1
+
3N(2N + 2)

k + 1

)
T (r, f) + o(T (r, f)).

Then || T (r, f) = o(T (r, f)). This is a contradiction.

Case 2. Assume that there exist two subsets I and J of the set {1, · · · , N + 1}
with I ∩ J = ∅, I ∪ J = {1, · · · , N + 1}, ♯I ≥ 2, ♯J ≥ 2 such that

hi = hj ∀i, j ∈ I and hi = hj ∀i, j ∈ J and hk 6≡ hl ∀k ∈ I, ∀l ∈ J.

Choose elements i, k ∈ I and j, t ∈ J .We have

T (r,
hi
hj
) ≥ Nhi

hj
−1
(r) +O(1)

≥
∑

l∈D\{i,j}
N

(1)
(f,al),6N(N+2)

(r)−
∑

s∈{i,j}
N

(1)
(f,as),>k

(r) +O(1).

Hence N
(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{i,j}N
(1)
(f,as),>k

(r) + o(T (r, f)), ∀l ∈ D \ {i, j}.
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Similarly, we also have N
(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{k,t}N
(1)
(f,as),>k

(r) + o(T (r, f)) for

each l ∈ D \ {k, t}. So, we have

N
(1)
(f,al),6N(N+2)

(r) 6
∑

s∈{i,j,k,t}
N

(1)
(f,as),>k

(r) + o(T (r, f)) ∀l ∈ D.

Repeating the argument in Case 1, we have T (r, f) = o(T (r, f)). This is a contra-

dition.

Case 3. Assume that h1 = · · · = hN 6≡ hN+1.

By the condition (i) in the hypothesis of Theorem 2, we see that hi is a holomorphic

function for each 1 6 i 6 N.. Without loss of generality, we may assume that 1 =

h1 = · · · = hN 6≡ hN+1. It is easy to see that there exist meromorphic functions

cli (N + 2 6 l 6 3N + 1, 1 6 i 6 N + 1) such that

al =
N+1∑

i=1

cliai (N + 2 6 l 6 3N + 1) and Ncli(r) +N 1
cli

(r) = o(T (r, f)).

Hence

(f, al) =
N+1∑

i=1

cli(f, ai),

(g, al) =
N∑

i=1

cli(f, ai) +
cli
hN+1

(f, aN+1)

= (f, al) + cli(
1

hN+1
− 1)(f, aN+1) (N + 2 6 l 6 3N + 1).

By the conditions (i) and (ii), it is easy to see that if ν
(1)
(f,al),6k

(z) = 1 and (f, aN+1)(z) 6=
0 then (cli(

1

hN+1
− 1))(z) = 0. This implies the following

N
(1)
(f,al),6k

(r)−N
(1)
(f,aN+1),>k

(r) 6 N 1
hN+1

−1(r) + o(T (r, f))

= o(T (r, f)) (N + 2 6 l 6 3N + 1).

Thus, we have

N
(1)
(f,al),6k

(r) 6 N
(1)
(f,aN+1),>k

(r) + o(T (r, f)) 6
1

k + 1
T (r, f) + o(T (r, f)).
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On the other hand, we have

|| T (r, f) 6
2N

N + 2

3N+1∑

l=N+2

N
(N)
(f,al)

(r) + o(T (r, f))

6
2N2

N + 2

3N+1∑

l=N+2

(N
(1)
(f,al),6k

(r) +N
(1)
(f,al),>k

(r)) + o(T (r, f))

6
8N3

(N + 2)(k + 1)
T (r, f) + o(T (r, f)).

Then || T (r, f) = o(T (r, f)) . This is a contradiction.

Case 4. h1 = · · · = hN+1.

This yields f ≡ g. The Theorem 2.2 is proved.

2.3 A unicity theorem for meromorphic mapping

with a conditions on derivations

In the present section, we will prove the following.

Theorem 2.3. (Ha-Quang-Thai [34]) Let f, g : Cn → PN(C) be two meromorphic

mappings, and k be a positive integer with k > 2N3 + 12N2 + 6N − 1. Let {at}N+2t=1

be ”small” (with respect to f) meromorphic mappings of Cn into PN(C) in general

position such that

dim{z ∈ Cn : ν(f,as),6k(z)ν(f,at),6k(z) > 0} 6 n− 2 (1 6 s < t 6 N + 2).

Assume that f, g are linearly nondegenerate over R({at}N+2t=1 ) and the following are

satisfied.

(i) min (ν(f,at),6k, 1) = min (ν(g,at),6k, 1) (1 6 t 6 N + 2).

(ii) Let f = (f0 : · · · : fN) and g = (g0 : · · · : gN) be reduced representations of f and g,

respectively. Then, for each 0 6 j 6 N and for each ω ∈ ⋃N+2
t=1 {z ∈ Cn : ν(f,at),6k(z) >

0}, the following two conditions are satisfied:

(a) If fj(ω) = 0 then gj(ω) = 0,

(b) If fj(ω)gj(ω) 6= 0 then Dα

(
fi
fj

)
(ω) = Dα

(
gi
gj

)
(ω) for each n-tuple α =

(α1, ..., αn) of nonnegative integers with |α| = α1 + ... + αn 6 2N and for each

i 6= j, where Dα =
∂|α|

∂α1z1...∂αnzn
.
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Then f ≡ g.

Remark that the condition (ii) in Theorem 2.3 does not depend on the choice of reduced

representations.

Proof. Assume that f 6≡ g and f, g, ai have reduced representations

f = (f0 : ... : fN), g = (g0 : ... : gN), ai = (ai0 : ... : aiN).

Lemma 2.3.1. Let f : Cn → PN(C) be a meromorphic mapping such that f is lin-

early nondegenerate over C. Let a1, a2, ..., aN+2 be N + 2 ”small” (with respect to f)

meromorphic mappings of Cn into PN(C) located in general position. Then, for each

k ≥ N − 1, we have

∣∣∣∣
∣∣∣∣
(
1− N(N + 2)

k + 1

)
T (r, f) 6

N+2∑

j=1

(
1− N

k + 1

)
N

(N)
(f,aj),6k

(r) + o(T (r, f)).

Proof . By the Second Main Theorem (see [63])

∣∣∣∣ T (r, f) 6
N+2∑

j=1

N
(N)
(f,aj)

(r) + o(T (r, f))

6

N+2∑

j=1

N
(N)
(f,aj),6k

(r) +
N+2∑

j=1

N

k + 1
N(f,aj),>k(r) + o(T (r, f))

6

N+2∑

j=1

(
1− N

k + 1

)
N

(N)
(f,aj),6k

(r) +
N(N + 2)

k + 1
T (r, f) + o(T (r, f)).

Hence

∣∣∣∣
∣∣∣∣
(
1− N(N + 2)

k + 1

)
T (r, f) 6

N+2∑

j=1

(
1− N

k + 1

)
N

(N)
(f,aj),6k

(r) + o(T (r, f)).

Claim 2.3.2 The following holds

(2N + 1)
N+2∑

v=1

N
(1)
(f,av),6k

(r) 6

(
1 +

4N + 2

k + 1

)
(T (r, f) + T (r, g))

+ o(T (r, f) + T (r, g))

Proof. Fix an index j (0 6 j 6 N). Since g 6≡ f, there exists an index i (0 6 i 6 N)

such that Pij =
(f,ai)
(f,aj)

− (g,ai)
(g,aj)

6≡ 0.

45



We set I = I(f)∪ I(g)∪∪16 t<s6N+2{z ∈ Cn |ν(f,at),6k(z) · ν(f,as),6k(z) > 0}. Then
I is an analytic subset of codimension 2 or an empty set.

Denote by ν0 the divisor

ν0 := (max{0, (2N + 1)− ν(f,aj) − ν(g,aj)}) · (min{1, ν(f,aj),6k}).

We show that νPij
≥ ∑N+2

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k}+ν0 − (2N + 1)ν
(1)
(f,aj),>k

outside

an analysis set of codimension 2.

Indeed, we fix a point z ∈ ∪N+2i=1 {w : ν(f,ai),6k(w) > 0} \ I.
If (f, aj)(z) 6= 0, suppose that fl(z) · gl(z) = 0 (0 6 l 6 N). Then gl(z) = 0 (0 6

l 6 N). This means that z ∈ I(g). This is impossible. Hence, there exist an index l

such that fl(z)gl(z) 6= 0. This implies that

DαPij(z) = Dα
( (f, ai)
(f, aj)

− (g, ai)

(g, aj)

)
(z)

= Dα
(
∑N

v=0
fv
fl
aiv

∑N
v=0

fv
fl
ajv

−
∑N

v=0
gv
gl
aiv

∑N
v=0

gv
gl
ajv

)
(z) = 0 (|α| 6 2N).

Hence, in this case νPij
(z) ≥ 2N + 1. (2.3.1)

Similarly, if (f, aj)(z) = 0 then

Dα
(
(f, ai)(g, aj)− (g, ai)(f, ai)

)
(z) = Dα

(
(flgl)(

N∑

v=0

fv
fl
aiv

N∑

v=0

gv
gl
ajv

−
N∑

v=0

gv
gl
aiv

N∑

v=0

fv
fl
ajv)

)
(z) = 0 (|α| 6 2N).

So, in this case we have ν((f,ai)(g,aj)−(f,aj)(g,ai))(z) ≥ 2N + 1. (2.3.2)

Suppose that ν(f,aj),>k(z) = 0. We now consider two cases.

Case 1. Assume that ν(f,at),6k(z) > 0 for some t with t 6= j.

Then ν(f,as),6k(z) = 0 (s 6= t), especially ν(f,aj),6k(z) = 0. Hence ν0(z) = 0 and
∑N+2

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)} = 2N + 1. From (2.3.1), we have

νPij
(z) ≥

N+2∑

t=1
t 6=j

(2N + 1)min{1, ν(f,at),6k(z)}+ ν0(z)− (2N + 1)ν1(f,aj),>k(z) (2.3.3)

Case 2. Assume that ν(f,aj),6k(z) > 0.

This follows that ν(f,at),6k(z) = 0 for each t 6= j.

Then
∑N+2

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)} = 0.
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On the other hand, since Pij =
(f, ai)(g, aj)− (f, aj)(g, ai)

(f, aj)(g, aj)
and by (2.3.2), we have

νPij
(z) = ν((f,ai)(g,aj)−(f,aj)(g,ai))(z)− ν(f,aj)(z)− ν(g,aj)(z)

≥ (2N + 1)− ν(f,aj)(z)− ν(g,aj)(z).

Combining with νPij
(z) ≥ 0, we have

νPij
(z) ≥ max{0, (2N + 1)− ν(f,aj)(z)− ν(g,aj)(z)}
≥ (max{0, (2N + 1)− ν(f,aj)(z)− ν(g,aj)(z)}) · (min{1, ν(f,aj),6k(z)})
= ν0(z)

=
N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z)− (2N + 1)ν
(1)
(f,aj),>k

(z) (2.3.4)

If ν(f,aj),>k(z) > 0 then ν0(z) = 0 and

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)} 6 2N + 1.

It implies that

νPij
(z) > 0 >

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z)− (2N + 1)ν
(1)
(f,aj),>k

(z) (2.3.5)

Combining (2.3.4) with (2.3.5), we have

νPij
(z) ≥

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z)− (2N + 1)ν
(1)
(f,aj),>k

(z) (2.3.6)

for each z ∈ ∪N+2i=1 {w : ν(f,ai),6k(w) > 0} \ I.
We also see that if z 6∈ ∪N+2i=1 {w : ν(f,ai),6k(w) > 0}, then

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z) = 0.

It implies that

νPij
(z) ≥

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z)− (2N + 1)ν
(1)
(f,aj),>k

(z) (2.3.7)
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From (2.3.6) and (2.3.7), for each z 6∈ I, we have

νPij
(z) ≥

N+2∑

s=1
s 6=j

(2N + 1)min{1, ν(f,as),6k(z)}+ ν0(z)− (2N + 1)ν
(1)
(f,aj),>k

(z).

This yields that

NPij
(r) ≥ (2N + 1)

N+2∑

j 6=t=1
N

(1)
(f,at),6k

(r) +N(r, ν0)− (2N + 1)N
(1)
(f,aj),>k

(r).

We now show that

ν 1
Pij

(z)− ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z)

+ (2N + 1)ν
(1)
(f,ai),>k

(z)

for each z 6∈ I.
Indeed, it is easy to see that

ν 1
Pij

(z)− ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6 max{ν (f,aj)

(f,ai)

(z), ν (g,aj)

(g,ai)

(z)}

− ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6 0.

Fix z 6∈ I. We consider two cases.

Case 1. Assume that (f, ai)(z) 6= 0.

If ν(f,aj),6k(z) > 0, then

ν 1
Pij

(z) =max{0, ν(f,aj) + ν(g,aj) − ν((f,ai)(g,aj)−(f,aj)(g,ai))}(z)
6ν(f,aj)(z) + ν(g,aj)(z)− (2N + 1) + ν0(z)

=ν (f,aj)

(f,ai)

(z) + ν (g,aj)

(g,ai)

(z)− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z)

+ (2N + 1)ν
(1)
(f,ai),>k

(z).

If ν(f,aj),6k(z) = 0, then

ν 1
Pij

(z)−ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6 0

6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z) + (2N + 1)ν
(1)
(f,ai),>k

(z).

So, we have

ν 1
Pij

(z)− ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z)

+ (2N + 1)ν
(1)
(f,ai),>k

(z).
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Case 2. Assume that (f, ai)(z) = 0.

If ν(f,ai),6k(z) > 0, then ν(f,aj),6k(z) = 0. It implies that

ν 1
Pij

(z)−ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6 0

6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z) + (2N + 1)ν
(1)
(f,ai),>k

(z).

If ν(f,ai),>k(z) > 0, then

(2N + 1)min{1, ν(f,aj),6k(z)} 6 (2N + 1)ν
(1)
(f,ai),>k

(z).

It implies that

ν 1
Pij

(z)−ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6 0

6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z) + (2N + 1)ν
(1)
(f,ai),>k

(z).

From Case 1 and Case 2, we obtain

ν 1
Pij

(z)− ν (f,aj)

(f,ai)

(z)− ν (g,aj)

(g,ai)

(z) 6− (2N + 1)min{1, ν(f,aj),6k(z)}+ ν0(z)

+ (2N + 1)ν
(1)
(f,ai),>k

(z)

for each z 6∈ I.
This yields that

N 1
Pij

(r)−N(f, aj)

(f, ai)

(r)−N(g, aj)

(g, ai)

(r) 6− (2N + 1)N
(1)
(f,aj),6k

(r) +N(r, ν0)

+ (2N + 1)N
(1)
(f,ai),>k

(r).

We now have

m(r, Pij) 6 m

(
r,
(f, ai)

(f, aj)

)
+m

(
r,
(g, ai)

(g, aj)

)
+o(T (r, f) + T (r, g))

6 T (r, f) + T (r, g)−N

(
r,
(f, aj)

(f, ai)

)
−N

(
r,
(g, aj)

(g, ai)

)
+o(T (r, f))

+ o(T (r, g))

6 T (r, f) + T (r, g)−N (f,aj)

(f,ai)

(r)−N (g,aj)

(g,ai)

(r) + o(T (r, f) + T (r, g)).
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Hence

(2N + 1)
N+2∑

v=1
v 6=j

N
(1)
(f,av),6k

(r) +N(r, ν0)− (2N + 1)N
(1)
(f,aj),>k

(r)

6 NPij
(r) 6 T (r, Pij) = N 1

Pij

(r) +m(r, Pij) +O(1)

6 T (r, f) + T (r, g) +N 1
Pij

(r)−N (f,aj)

(f,ai)

(r)−N (g,aj)

(g,ai)

(r) + o(T (r, f) + T (r, g))

6 T (r, f) + T (r, g)− (2N + 1)N
(1)
(f,aj),6k

(r) +N(r, ν0)

+ (2N + 1)N
(1)
(f,ai),>k

(r) + o(T (r, f) + T (r, g)).

This implies that

(2N + 1)
N+2∑

v=1

N
(1)
(f,av),6k

(r) 6 (1 +
4N + 2

k + 1
)(T (r, f) + T (r, g)) + o(T (r, f) + T (r, g)).

The Claim 2.3.2 is proved.

From Claim 2.3.2, we have

N+2∑

v=1

N
(N)
(f,av),6k

(r) 6 (
N

2N + 1
+

2N

k + 1
)(T (r, f) + T (r, g)) + o(T (r, f) + T (r, g)).

Similarly, we also have

N+2∑

v=1

N
(N)
(g,av),6k

(r) 6 N
N+2∑

v=1

N
(1)
(g,av),6k

(r) = N
N+2∑

v=1

N
(1)
(f,av),6k

(r)

6

(
N

2N + 1
+

2N

k + 1

)(
T (r, f) + T (r, g)

)
+o(T (r, f) + T (r, g)).

Hence
N+2∑

v=1

(N
(N)
(f,av),6k

(r) +N
(N)
(g,av),6k

(r))

6

(
2N

2N + 1
+

4N

k + 1

)(
T (r, f) + T (r, g)

)
+o(T (r, f) + T (r, g)).

On the other hand, by Claim 2.3.1, it implies that

∣∣∣∣
N+2∑

i=1

N
(N)
(f,ai),6k

(r) ≥ (k + 1)−N(N + 2)

k + 1−N
T (r, f)

and
∣∣∣∣

N+2∑

i=1

N
(N)
(g,ai),6k

(r) ≥ (k + 1)−N(N + 2)

k + 1−N
T (r, g).
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Hence
∣∣∣∣ ( 2N

2N + 1
+

4N

k + 1
)((T (r, f) + T (r, g))

≥ (k + 1)−N(N + 2)

k + 1−N
(T (r, f) + T (r, g)) + o((T (r, f) + T (r, g))).

Letting r −→∞, we have

2N

2N + 1
+

4N

k + 1
≥ (k + 1)−N(N + 2)

k + 1−N
.

Then
2N

2N + 1
≥ (k + 1)−N(N + 6)

k + 1−N
. Hence k + 1 6 2N3 + 12N2 + 6N. This is a

contradiction. Thus, f ≡ g and Theorem 2.3 is proved.

51



Chapter 3

Value distribution of the Gauss map
of minimal surfaces on annular ends

Let M be a non-flat minimal surface in R3, or more precisely, a connected oriented

minimal surface in R3. By definition, the Gauss map G of M is the map which maps

each point p ∈ M to the unit normal vector G(p) ∈ S2 of M at p. Instead of G, we

study the map g := π ◦G :M → C := C∪{∞}(= P1(C)) for the stereographic projec-

tion π of S2 onto P1(C). By associating a holomorphic local coordinate z = u+
√
−1v

with each positive isothermal coordinate system (u, v), M is considered as an open

Riemann surface with a conformal metric ds2 and by the assumption of minimality of

M, g is a meromorphic function on M.

In 1988, H. Fujimoto [20] proved Nirenberg’s conjecture that ifM is a complete non-

flat minimal surface in R3, then its Gauss map can omit at most 4 points, and the bound

is sharp. In 1991, S. J. Kao [38] showed that the Gauss map of an end of a non-flat

complete minimal surface in R3 that is comformally an annulus {z|0 < 1/r < |z| < r}
must also assume every value, with at most 4 exceptions.

On the other hand, in 1993, M. Ru [54] studied the Gauss map of minimal surface

in Rm with ramification. In this chapter, we shall study the Gauss map of minimal

surfaces in R3,R4 on annular ends with ramification. In particular, we prove Theorem

3.4.6, Theorem 3.4.7 (Dethloff-Ha [9]). We would like to refer the case Rm(m > 3)

with another aspect to Dethloff-Ha-Thoan [10].
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3.1 Minimal surface in Rm

We recall some basic facts in differential geometry.

Let M be a connected oriented real 2-dimentional differential manifold and x =

(x1, ..., xm) :M −→ Rm an immersion.

For each point p ∈ M , take a system of local coordinates (u1, u2) around p which are

positively oriented. The tangent plane of M at p is given by

Tp(M) :=

{
λ
∂x

∂u1
+ µ

∂x

∂u2
|λ, µ ∈ R

}

and the normal space of M at p is given by

Np(M) :=

{
N ∈ TpRm|

(
N,

∂x

∂u1

)
=

(
N,

∂x

∂u2

)
= 0

}
,

where (X, Y ) denotes the inner product of vectors X and Y.

The metric ds2 on M induced from the standard metric on Rm, called the first funda-

mental form on M , is given by

ds2 = |dx|2 := (dx, dx) =

(
∂x

∂u1
du1 +

∂x

∂u2
du2,

∂x

∂u1
du1 +

∂x

∂u2
du2

)

= g11du
2
1 + 2g12du1du2 + g22du

2
2,

where gij :=

(
∂x

∂ui
,
∂x

∂uj

)
, 1 6 i, j 6 2.

The second fundamental form of M with respect to a unit normal vector N is given by

dσ2 :=
∑

16i,j62

bij(N)duiduj,

where bij(N) :=

(
∂2x

∂ui∂uj
, N

)
, (1 6 i, j 6 2).

3.1.1 Proposition. (Fujimoto [25]) For an arbitrary given regular curve in M, γ :

(a, b) −→M, γ(t) = (u1(t), u2(t)). it holds that

kγ(N) :=

(
d2x

ds2
, N

)
=
dσ2

ds2
=

∑
ij biju

′
iu
′
j∑

ij giju
′
iu
′
j

∀N ∈ Nγ(t)(M).

Then we may see that kγ(N) depends only on N and the tangent vector of γ at p. Take

a nonzero vector N ∈ Np(M) and a unit tangent vector T ∈ Tp(M). Choose a curve

x(s) in M with arclength parameter s such that x(0) = p and (dx/ds)(0) = T, and
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define the normal curvature of M in the direction T with respect to the normal vector

N by

k(N, T ) :=

(
d2x

ds2
, N

)
.

We note α the plane which includes the vectors N and T and let γ be the curve which

is defined as the intersection of α and M. By elementary calculation, we can show that

k(N, T ) is the reciprocal of radius of curvature for the curve γ in the plane α. Set

k1(N) := min{k(N, T );T ∈ Tp(M), |T | = 1},
k2(N) := max{k(N, T );T ∈ Tp(M), |T | = 1},

The mean curvature of M for the direction N at p is defined by

Hp(N) :=
k1(N) + k2(N)

2

We remark that we may prove the following for the calculation of the mean curvature

Hp(N) =
g11b22(N) + g22b11(N)− 2g12b12(N)

2
(
g11g22 − g212

) .

(see Fujimoto [25] for example).

3.1.2 Definition. A surface M is called a minimal surface in Rm if Hp(N) = 0 for

all p ∈M and N ∈ Np(M).

Let M be a surface with a metric ds2. A system of local coordinates (u1, u2) on

an open set U in M is called a system of isothermal coordinates on U if ds2 can be

represented as

ds2 = λ2(du21 + du22),

for some positive C∞ function λ on U.

3.1.3 Theorem. (S. S. Chern, [7]) For every surfaceM, there is a system of isothermal

local coordinates whose domains cover the whole M.

3.1.4 Proposition. For an oriented surface M with a metric ds2, if we take two

positively oriented isothermal local coordinates (u, v) and (x, y), then w = u+
√
−1v is

a holomorphic function in z = x+
√
−1y on the common domain.

Let x :M −→ Rm be an oriented surface with a Riemannian metric ds2.With each

positive isothermal local coordinate system (u, v) we associate the complex function

z = u +
√
−1v. By Proposition 3.1.4, we may regard M as a Riemann surface. Then

the metric ds2 is given by

ds2 = λ2z(du
2 + dv2),
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where λz
2 =

(
∂x

∂u
,
∂x

∂u

)
=

(
∂x

∂v
,
∂x

∂v

)
.

Set complex differentiations

∂xi
∂z

:=
1

2

(
∂xi
∂u

−
√
−1∂xi

∂v

)
,
∂xi
∂z

:=

(
∂xi
∂z

)
,

Then

λz
2 =

n∑

i=1

(
∂xi
∂u

)2

=
n∑

i=1

2

(
1

4

(
∂xi
∂u

)2
+
1

4

(
∂xi
∂v

)2)

= 2
n∑

i=1

1

2

(
∂xi
∂u

−
√
−1∂xi

∂v

)
1

2

(
∂xi
∂u

+
√
−1∂xi

∂v

)

= 2
n∑

i=1

∂xi
∂z

.
∂xi
∂z

= 2

(∣∣∣∣
∂x1
∂z

∣∣∣∣
2

+

∣∣∣∣
∂x2
∂z

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∂xn
∂z

∣∣∣∣
2)

So we can rewrite the metric as

ds2 = 2

(∣∣∣∣
∂x1
∂z

∣∣∣∣
2

+

∣∣∣∣
∂x2
∂z

∣∣∣∣
2

+ · · ·+
∣∣∣∣
∂xn
∂z

∣∣∣∣
2)∣∣dz

∣∣2

Define the Laplacian ∆z =
∂2

∂u2
+

∂2

∂v2
in terms of the complex local coordinate

z = u +
√
−1v. If we take another complex local coordinate ξ, then we have ∆ξ =

|dz/dξ|2∆z. Since λξ = λz|dz/dξ|, the operator ∆ = (1/λ2z)∆z does not depend on the

choice of complex local coordinate z, which is called the Laplace-Bertrami operator.

3.1.5 Proposition. (Fujimoto [25]) It holds that

(i)
(
∆x,X

)
= 0, for each X ∈ Tp(M),

(ii)
(
∆x,N

)
= 2H(N), for each N ∈ Np(M).

3.1.6 Theorem. (Fujimoto [25]) Let x = (x1, ..., xn) : M −→ Rm be a surface im-

mersed in Rm, which is considered as a Riemann surface. Then M is minimal if and

only if each xi is a harmonic function on M, namely

∆zxi =

(
∂2

∂u2
+

∂2

∂v2

)
xi = 0, (1 ≤ i ≤ n)

for every holomorphic local coordinate z = u+
√
−1v.

3.1.7 Corollary. There exists no compact minimal surface without boundary in Rm.
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Let x :M −→ Rm be a minimal surface immersed in Rm.

3.1.8 Definition. A continuous curve γ(t) (0 ≤ t < 1) in M is said to be divergent

in M if, for each compact set, there is some t0 such that γ(t) 6∈ K for any t ≥ t0.

3.1.9 Definition. We define the distance d(p) (≤ +∞) from a point p ∈ M to the

boundary of M as the greatest lower bound of the lengths of all continuous curves

which are divergent in M.

3.1.10 Definition. A minimal surface M immersed in Rm is said to be complete

if the image in Rm of every divergent curve on M has infinite length (equivalently,

d(p) = +∞ for all p ∈M).

3.2 The Gauss map of minimal surfaces

Let x := (x1, · · · , xm) :M → Rm be a surface immersed in Rm.

We consider the set of all oriented 2 -planes in Rm which contain the origin and

denote it by Π .

To clarify the set Π, we regard it as a subset of the (m − 1)-dimensional complex

projective space Pm−1(C) as follows. To each P ∈ Π, taking a positively oriented basis
{X, Y } of P such that

| X |=| Y |, (X, Y ) = 0, (3.2.1)

we assign the point φ(P ) = π(X −
√
−1Y ), where π denotes the canonical projection

from Cm − {0} onto Pm−1(C), namely, the map which maps each p = (w1, · · · , wm) 6=
(0, · · · , 0) to the equivalence class

(w1, · · · , wm) := {(cw1, · · · , cwm); c ∈ C− {0}}.

For another positive basis {X̃, Ỹ } of P satisfying (3.2.1) we can find a real number θ

such that

X̃ = r(cos θ ·X + sin θ · Y ),
Ỹ = r(− sin θ ·X + cos θ · Y ),

where r :=
| X̃ |
| X | . Therefore, we can write

X̃ −
√
−1Ỹ = re

√
−1θ(X −

√
−1Y ).
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This shows that the value φ(P ) does not depend on the choice of a positive basis of P

satisfying 3.2.1 but only on P. On the other hand, φ(P ) is contained in the quadric

Qm−2(C) := {(w1, · · · , wm);w2
1 + · · ·+ w2

m = 0)} ⊂ Pm−1(C).

We can show that φ is bijective and we identify Π with Qm−2.

We consider a surface x := (x1, · · · , xm) : M → Rm immersed in Rm. For each

point P ∈M, the oriented plane Tp(M) is canonically identified with an element of Π

after the parallel translation which maps p to the origin.

3.2.1 Definition. The (generalized) Gauss map of a surface M is defined as the map

of M into Qm−2(C) which maps each point p ∈M to φ(Tp(M)).

For a system of positively oriented isothermal local coordinates (u, v) the vectors X =
∂x

∂u
, Y =

∂x

∂v
give a positive basis of Tp(M) satisfying the condition (3.2.1). Therefore,

the Gauss map of M is locally given by

G = φ(X −
√
−1Y ) = (

∂x1
∂z

: · · · : ∂xm
∂z

)

where z = u +
√
−1v. We may write G = (ω1 : · · · : ωm) with globally defined

holomorphic forms ωi := dxi ≡
∂xi
∂z

dz (1 ≤ i ≤ m).

3.2.2 Proposition. (Fujimoto [25]) A surface x : M → Rm is minimal if and only if

the Gauss map G :M → Pm−1(C) is holomorphic.

We say that a holomorphic 1−form ω on a Riemann surface M has no real periods

if

Re

∫

γ

ω = 0

for every closed cycle in M. If ω has no real period, then the quantity

x(z) = Re

∫

γzz0

ω

depends only on z and z0 for a piecewise smooth curve γ
z
z0
in M joining z0 and z and

so x is a well-defined function of z on M, which we denote by

x(z) = Re

∫ z

z0

ω

from here on. Related to Proposition 3.2.2, we recall here the following construction

theorem of minimal surfaces.

3.2.3 Theorem. (Fujimoto [25] for example) Let M be an open Riemann surface and
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let ω1, ω2, ..., ωm be holomorphic forms on M such that they have no common zero, no

real periods and locally satisfy the identity

f 21 + f 22 + · · ·+ f 2n = 0

for holomorphic function fi with ωi = fidz. Set

xi = 2Re

∫ z

z0

ωi,

for an arbitrarily fixed point z0 of M. Then, the surface x = (x1, ..., xm) : M −→ Rm

is a minimal surface immersed in Rm such that the Gauss map is the map G = (ω1 :

· · · : ωm) :M −→ Qm−2(C) and the induced metric is given by

ds2 = 2(|ω1|2 + · · ·+ |ωm|2). (3.2.2)

Now, let M be a Riemann surface with a metric ds2 which is conformal, namely,

represented as

ds2 = λ2z|dz|2

with a positive C∞ function λz in term of a holomorphic local coordinate z.

3.2.4 Definition. For each point p ∈ M we define the Gaussian curvature of M at

p by

K ≡ Kds2 := −∆ log λz

(
= −∆z log λz

λ2z

)
.

For a minimal surface M immersed in Rm, using (3.2.2), we can show that

K ≡ Kds2 = −4
|g̃ ∧ g̃′|2
|g̃|6 = −4

∑
j<k |gjg′k − gkg

′
j|2

(
∑m

j=1 |gj|2)3
(3.2.3)

where g̃ = (g1, ..., gm), gj =
∂xj
∂z
, 1 ≤ j ≤ m.

This implies that the curvature of a minimal surface is always non-positive.

If a minimal surface is flat (i.e., the Gauss curvature vanishes everywhere ), then (3.2.3)

implies that gi/gi0 = const.(1 ≤ i ≤ n) for some i0 with gi0 6≡ 0 and, therefore, that

the Gauss map g is a constant map.

3.2.5 Proposition. (Fujimoto [25]) For a minimal surface M immersed in Rm, M is

flat, or equivalently, the Gauss map of M is a constant if and only if it lies in a plane.
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3.3 Meromorphic functions with ramification

Let f be a nonconstant holomorphic map of a disc ∆R := {z ∈ C; |z| < R} into P1(C),

where 0 < R <∞. Take a reduced representation f = (f0 : f1) on ∆R and define

||f || := (|f0|2 + |f1|2)1/2,W (f0, f1) := f0f
′
1 − f1f

′
0.

Let aj(1 ≤ j ≤ q) be q distinct points in P1(C). We may assume aj = (aj0 : a
j
1) with

|aj0|2 + |aj1|2 = 1(1 ≤ j ≤ q), and set

Fj := aj0f1 − aj1f0 (1 ≤ j ≤ q).

3.3.1 Definition. One says that the meromorphic function f is ramified over a point

a = (a0 : a1) ∈ P1(C)with multiplicity at least e if all the zeros of the function F :=

a0f1 − a1f0 have orders at least e. If the image of f omits a, one will say that f is

ramified over a with multiplicity ∞.

3.3.2 Proposition. (Fujimoto [19, Propostion 2.1]) For each ǫ > 0 there exist positive

constants C1 and µ depending only on a1, · · · , aq and on ǫ respectively such that

∆ log

( ||f ||ǫ
Πq
j=1 log(µ||f ||2/|Fj|2)

)
≥ C1||f ||2q−4|W (f0, f1)|2
Πq
j=1|Fj|2 log2(µ||f ||2/|Fj|2)

3.3.3 Lemma. Suppose that q − 2 −∑q
j=1

1
mj

> 0 and f is ramified over aj with

multiplicity at least mj for each j(1 ≤ j ≤ q). Then there exist positive constants C

and µ(> 1) depending only on aj and mj(1 ≤ j ≤ q) which satisfy that if we set

v :=
C||f ||q−2−

∑q
j=1

1
mj |W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj log(µ||f ||2/|Fj|2)

on ∆R − {F1...Fq = 0} and v = 0 on ∆R ∩ {F1...Fq = 0}, then v is continuous on ∆R

and satisfies the condition ∆ log v ≥ v2 in the sense of distributions.

Proof. First, we prove the continuousness of v.

Obviously, v is continuous on ∆R − {F1...Fq = 0}.
Take a point z0 with Fi(z0) = 0 for some i. Then Fj(z0) 6= 0 for all j 6= i and

νFi
(z0) ≥ mi. Changing indices if necessary, we may assume that f0(z0) 6= 0, then

ai0 6= 0. Hence, we get

νW (z0) = ν
(ai0

f1
f0
− ai1)

′

ai0

(z0) = ν(Fi/f0)
′

ai0

(z0) = νFi
(z0)− 1.

59



Thus,

νvΠq
j=1 log(µ||f ||2/|Fj |2)(z0) = νW (z0)−

q∑

j=1

(1− 1

mj

)νFj
(z0)

= νFi
(z0)− 1− (1− 1

mi

)νFi
(z0) =

νFi
(z0)

mi

− 1 ≥ 0. (∗)

So, limz→z0 v(z) = 0. This implies that v is continuous on ∆R.

Now, we choose constants C and µ such that C2 and µ satisfy the inequality in Propo-

sition 3.3.2 for the case ǫ = q − 2−∑q
j=1

1
mj
. Then we have

∆ log v ≥ ∆ log
||f ||q−2−

∑q
j=1

1
mj

Πq
j=1 log(µ||f ||2/|Fj|2)

≥ C2 ||f ||2q−4|W (f0, f1)|2
Πq
j=1|Fj|2 log2(µ||f ||2/|Fj|2)

≥ C2 ||f ||
2q−4−2∑q

j=1
1

mj |W (f0, f1)|2

Πq
j=1|Fj|

2− 2
mj log2(µ||f ||2/|Fj|2)

= v2 (by |Fj| ≤ ||f ||(1 ≤ j ≤ q)).

Lemma 3.3.3 is proved.

3.3.4 Lemma. (Generalized Schwarz Lemma [1]) Let v be a nonnegative real-valued

continuous subharmonic function on ∆R. If v satisfies the inequality ∆ log v ≥ v2 in

the sense of distributions, then

v(z) ≤ 2R

R2 − |z|2 .

3.3.5 Lemma. For every δ with q − 2−∑q
j=1

1
mj

> qδ > 0 and f is ramified over aj

with multiplicity at least mj for each j(1 ≤ j ≤ q), there exists a positive constant C0

such that

||f ||q−2−
∑q

j=1
1

mj
−qδ|W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj
−δ ≤ C0

2R

R2 − |z|2 .

Proof. By using an argument as in (*) of the proof of Lemma 3.3.3, the above

inequality is correct on {F1...Fq = 0} for every C0 > 0 (the left hand side of the above

inequality is zero).

If z 6∈ {F1...Fq = 0}, using Lemma 3.3.3 and Lemma 3.3.4, we get

C||f ||q−2−
∑q

j=1
1

mj |W (f0, f1)|
Πq
j=1|Fj|

1− 1
mj log(µ||f ||2/|Fj|2)

≤ 2R

R2 − |z|2 ,
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where C and µ are the constants given in Lemma 3.3.3.

On the other hand, for a given δ > 0, it holds that

lim
x→0

xδ log(µ/x2) < +∞

so we can set

C := sup
0<x≤1

xδ log(µ/x2)(< +∞).

Then we have

||f ||q−2−
∑q

j=1
1

mj
−qδ|W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj
−δ

=
||f ||q−2−

∑q
j=1

1
mj |W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj

q∏

j=1

( |Fj|
||f ||

)δ

=
||f ||q−2−

∑q
j=1

1
mj |W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj log(µ||f ||2/|Fj|2)

q∏

j=1

(
|Fj|
||f ||)

δ log(µ||f ||2/|Fj|2)

≤ C
q||f ||q−2−

∑q
j=1

1
mj |W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj log(µ||f ||2/|Fj|2)

≤ C
q

C

2R

R2 − |z|2 .

This gives Lemma 3.3.5.

For our purpose, we shall give the following result which is contained in a classical

results of Nevanlinna (Nevanlinna [44]). We give here a direct proof of this result by

using Lemma 3.3.5.

3.3.6 Proposition. Let f : C → P1(C) be a holomorphic map. For arbitrary distinct

points a1, ..., aq ∈ P1(C) suppose that f is ramified over aj with multiplicity at least mj

for each j, (1 ≤ j ≤ q) satisfying

q∑

j=1

(1− 1

mj

) > 2.

Then f is constant.

Proof. Assume that f is non-constant. Without loss of generality, we may assume

Fj(0) 6= 0(1 ≤ j ≤ q) and W (f0, f1)(0) 6= 0. By our assumptions, for every R > 0 and

δ with
q∑

j=1

(1− 1

mj

)− 2 > qδ > 0,
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we apply Lemma 3.3.5 to the map f |∆R
: ∆R → P1(C) to show that

||f ||q−2−
∑q

j=1
1

mj
−qδ|W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj
−δ ≤ C0

2R

R2 − |z|2 .

By substituting z = 0 into the above inequality we conclude that R has to be bounded

by a constant depending only on aj,mj and on the values of f, Fj,W (f0, f1) at the

origin. This is a contradiction.

3.4 The Gauss map of minimal surfaces with ram-

ification

3.4.1 Definition. One says that a holomorphic map g : A → Pm−1(C) of an open

Riemann surface A into Pm−1(C) is ramified over a hyperplane H = {(w0 : · · · :
wm−1) ∈ Pm−1(C) : a0w0 + ... + am−1wm−1 = 0} with multiplicity at least e if all the

zeros of the function (g,H) := a0g0 + ... + am−1gm−1 have orders at least e, where

g = (g0 : ... : gm−1) is a reduced representation of g. If the image of g omits H, one will

say that g is ramified over H with multiplicity ∞.

3.4.2 Theorem. (Ru [54]) Let M be a complete minimal surface immersed in Rm and

assume that the Gauss map g of M is k−nondegenerate (that is g(M) is contained in

a k−dimensional linear subspace of Pm−1(C), but none of lower dimension), 1 ≤ k ≤
m−1. Let {Hj}qj=1 be hyperplanes in general position in Pm−1(C). If g is ramified over

Hj with multiplicity at least mj for each j, then

q∑

j=1

(1− k

mj

) ≤ (k + 1)(m− k

2
− 1) +m.

On the other hand, when m = 3, then the following holds.

3.4.3 Theorem. (Ru [54]) Let M be a non-flat complete minimal surface in R3. If

there are q (q > 4) distinct points a1, ..., aq ∈ P1(C) such that the Gauss map of M is

ramified over aj with multiplicity at least mj for each j, then
∑q

j=1(1− 1
mj
) ≤ 4.

3.4.4 Corollary. The Gauss map g of a non-flat complete minimal surface in R3

assumes every value on the unit sphere with the possible exception of at most four

values.

3.4.5 Theorem. (Kao [38]) Let M be a non-flat complete minimal surface in R3 with

the Gauss map g and let A be an annular end of M which is conformal to {z| 0 < 1/r <
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|z| < r}, where z is a conformal coordinate. The Gauss map g assumes every value on

the unit sphere infinitely often, with the possible exception of at most four values on A.

3.4.6 Theorem. (Dethloff-Ha [9]) Let M be a non-flat complete minimal surface in R3

and let A be an annular end of M which is conformal to {z| 0 < 1/r < |z| < r}, where
z is a conformal coordinate. If there are q (q > 4) distinct points a1, ..., aq ∈ P1(C)

such that the Gauss map of M is ramified over aj with multiplicity at least mj for each

j on A, then
∑q

j=1(1− 1
mj
) ≤ 4.

Proof. For convenience, we recall some notations on the Gauss map of minimal surfaces

in R3.

Let x = (x1, x2, x3) :M → R3 be a non-flat complete minimal surface and g :M →
P1(C) the Gauss map. Let A be an annular end of M, that is, A = {z|0 < 1/r ≤
|z| < r < ∞}, where z is a conformal coordinate. Set φi := ∂xi/∂z (i = 1, 2, 3) and

φ := φ1 −
√
−1φ2. Then, the (classical) Gauss map g :M → P1(C) is given by

g =
φ3

φ1 −
√
−1φ2

,

and the metric on M induced from R3 is given by

ds2 = |φ|2(1 + |g|2)2|dz|2 (see Fujimoto [25]).

Take a reduced representation g = (g0 : g1) on M and set ||g|| = (|g0|2+ |g1|2)1/2. Then
we can rewrite ds2 = |h|2||g||4|dz|2, where h := φ/g20. In fact, h is a holomorphic map

without zeros.

Since by assumption M is not flat, g is not constant.

Assume that the theorem does not hold. Without loss of generality we may assume

that g is ramified over aj with multiplicity at least mj ≥ 2 for all 1 ≤ j ≤ q on A for

given q distinct points a1, ..., aq in P1(C) and

q∑

j=1

(1− 1

mj

) > 4.

Take δ with
q − 4−∑q

j=1
1
mj

q
> δ >

q − 4−∑q
j=1

1
mj

q + 2
,

and set p = 2/(q − 2−∑q
j=1

1
mj
− qδ). Then

0 < p < 1,
p

1− p
>

δp

1− p
> 1 (3.4.1).
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Consider the open subset

A1 = Int(A)− {z|W (g0, g1)(z).W (g0, g1)(1/z) = 0}

of A and we define a new metric

dτ 2 = |h| 2
1−p

(
Πq
j=1|Gj|

1− 1
mj
−δ

|W (g0, g1)|

) 2p
1−p

|dz|2 (3.4.2)

on A1, where Gj := aj0g1 − aj1g0 :

We can show that dτ is continuous and nowhere vanishing on A1. Indeed, h is without

zeroes on A1 and for each z0 ∈ A1 with Gj(z0) 6= 0 for all j = 1, ..., q then dτ is

continuous at z0.

Now, suppose there exists a point z0 ∈ A1 with Gj(z0) = 0 for some j. Then Gi(z0) 6= 0

for all i 6= j and νGj
(z0) ≥ mj. Changing the indices if necessary, we may assume that

g0(z0) 6= 0 then aj0 6= 0. So, we get

νW (g0,g1)(z0) = ν
(aj0

g1
g0
− aj1)

′

aj0

(z0) = ν(Gj/g0)
′

aj0

(z0) = νGj
(z0)− 1 > 0.

This is a contradition with z0 ∈ A1.Thus, dτ is continuous and nowhere vanishing on

A1. Now, it is easy to see that dτ is flat.

We now prove the following claim.

Claim 1. dτ 2 is complete on the set {z||z| = r} ∪ {z|W (g0, g1)(z) = 0}, i.e., the set

{z||z| = r}∪{z|W (g0, g1)(z) = 0} is at infinite distance from any interior point in A1.

If W (g0, g1)(z0) = 0, then we have two cases.

Case 1. Gj(z0) = 0 for some j ∈ {1, 2, ..., q}.
Then we have Gi(z0) 6= 0 for all i 6= j and νGj

(z0) ≥ mj. By the same argument as

above we can show that

νW (g0,g1)(z0) = νGj
(z0)− 1.

Thus,

νdτ (z0) =
p

1− p
((1− 1

mj

− δ)νGj
(z0)− νW (g0,g1)(z0))

=
p

1− p
(1− (

1

mj

+ δ)νGj
(z0))

≤ − 2δp

1− p
.
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Case 2. Gj(z0) 6= 0 for all 1 ≤ j ≤ q.

It is easily to see that νdτ (z0) ≤ −
p

1− p
.

So we can find a positive constant C such that

|dτ | ≥ C

|z − z0|δp/(1−p)
|dz|

in a neighborhood of z0 and combining with (3.4.1) then dτ is complete on {z|W (g0, g1)(z) =

0}.
Now assume that dτ is not complete on {z||z| = r}. There exists γ : [0, 1) → A1,

where γ(1) ∈ {z||z| = r}, so that |γ| < ∞. Furthermore, we may also assume

dist(γ(0); {z||z| = 1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since dτ

is flat, ∆ is isometric to an ordinary disk in the plane. Let Φ : {|w| < η} → ∆ be the

isometry. Extend Φ, as a local isometry into A1, to the largest disk {|w| < R} = ∆R.

Then R ≤ |γ|. The reason that Φ cannot be extended to a larger disk is that the image

goes to the outside boundary {z||z| = r} of A1. More precisely, there exists a point w0

with |w0| = R so that Φ(0, w0) = Γ0 is a divergent curve on A.

The map Φ(w) is locally biholomorphic, and the metric on ∆R induced from ds2 through

Φ is given by

Φ∗ds2 = |h◦Φ|2||g◦Φ||4|
dz

dw
|2|dw|2 (3.4.3).

On the other hand, Φ is isometric, we have

|dw| = |dτ | =
( |h|Πq

j=1|Gj|
(1− 1

mj
−δ)p

|W (g0, g1)|p
) 1

1−p

|dz|

⇒ |dw
dz
|1−p =

|h|Πq
j=1|Gj|

(1− 1
mj
−δ)p

|W (g0, g1)|p
.

Set f := g(Φ), f0 := g0(Φ), f1 := g1(Φ) and Fj := Gj(Φ). Since

W (f0, f1) = (W (g0, g1)oΦ)
dz

dw
,

we obtain

| dz
dw
| = |W (f0, f1)|p

|h(Φ)|Πq
j=1|Fj|

(1− 1
mj
−δ)p (3.4.4).

By (3.4.3) and (3.4.4), therefore, we get

Φ∗ds2 =

( ||f ||2|W (f0, f1)|p

Πq
j=1|Fj|

(1− 1
mj
−δ)p

)2
|dw|2

=

( ||f ||q−2−
∑q

j=1
1

mj
−qδ|W (f0, f1)|

Πq
j=1|Fj|

1− 1
mj
−δ

)2p
|dw|2.
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Using the Lemma 3.3.5, we obtain

Φ∗ds2 6 C2p
0 .(

2R

R2 − |w|2 )
2p|dw|2.

Since 0 < p < 1, it then follows that

dΓ0 6

∫

Γ0

ds =

∫

0,w0

Φ∗ds 6 Cp
0 .

∫ R

0

(
2R

R2 − |w|2 )
p|dw| < +∞,

where dΓ0 denotes the distance of the divergent curve Γ0 in M, contradicting the as-

sumption of completeness of M. Claim 1 is proved.

We now define

dτ̃ 2 =

(
|h(z)h(1

z
)|.
Πq
j=1|Gj(z)Gj(

1
z
)|(1−

1
mj
−δ)p

|W (g0, g1)(z)W (g0, g1)(
1
z
)|p
) 2

1−p

|dz|2

= λ2(z)|dz|2,

on A1. Then dτ̃
2 is complete and flat on A1 by Claim 1. Let u(z) = log λ(z). Then

u(z) is a harmonic function on A1. Let D be the universal covering surface of A1. In

a neighborhood of any point of D, we may introduce an analytic function k(z) whose

real part is u(z), and the mapping

w(z) =

∫
ek(z)dz

satisfies

|dw
dz
| = |ek(z)| = eu(z) = λ (3.4.5).

Thus the length of any curve on D with respect to the metric dτ̃ is equal to the length

of its image in the w−plane. By the simple connectivity of D, there exists a global

map of D into the w−plane which satisfies (3.4.5), and by the completeness of D, this
map must be a one-to-one map of D onto the entire w−plane. Thus D is conformally

equivalent to the plane, which is impossible by Proposition 3.3.6 . This proves Theorem

3.4.6.

We now recall some notations on the Gauss map of minimal surfaces in R4.

Let x = (x1, x2, x3, x4) :M → R4 be a non-flat complete minimal surface in R4. As

is well-known, the set of all oriented 2-planes in R4 is canonically identified with the

quadric

Q2(C) := {(w1 : ... : w4)|w2
1 + ...+ w2

4 = 0}
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in P3(C). By definition, the Gauss map g : M → Q2(C) is the map which maps each

point p of M to the point of Q2(C) corresponding to the oriented tangent plane of M

at p. The quadric Q2(C) is biholomorphic to P1(C) × P1(C)(e.g. Fujimoto [25]). By

suitable identifications we may regard g as a pair of meromorphic functions g = (g1, g2)

on M. Let A be an annular end of M, that is, A = {z|0 < 1/r ≤ |z| < r <∞}, where
z is a conformal coordinate.

Set φi := ∂xi/dz for i = 1, ..., 4. Then, g1 and g2 are given by

g1 =
φ3 +

√
−1φ4

φ1 −
√
−1φ2

, g2 =
−φ3 +

√
−1φ4

φ1 −
√
−1φ2

and the metric on M induced from R4 is given by

ds2 = |φ|2(1 + |g1|2)(1 + |g2|2)|dz|2,

where φ := φ1 −
√
−1φ2.

Take reduced representations gl = (gl0 : g
l
1) on M and set ||gl|| = (|gl0|2 + |gl1|2)1/2 for

l = 1, 2. Then we can rewrite

ds2 = |h|2||g1||2||g2||2|dz|2 (3.4.6),

where h := φ/(g10g
2
0).

3.4.7 Theorem. (Dethloff-Ha [9]) Suppose that M is a complete non-flat minimal

surface in R4 and g = (g1, g2) is the Gauss map of M. Let A be an annular end of M

which is conformal to {z|0 < 1/r < |z| < r}, where z is the conformal coordinate. Let

a11, ..., a1q1 , a21, ..., a2q2 be q1 + q2 (q1, q2 > 2) distinct points in P1(C).

(i) In the case gl 6≡ constant (l = 1, 2), if gl is ramified over alj with multiplicity at

least mlj for each j (l = 1, 2) on A, then

γ1 =
∑q1

j=1(1− 1
m1j

) ≤ 2, or γ2 =
∑q2

j=1(1− 1
m2j

) ≤ 2, or

1

γ1 − 2
+

1

γ2 − 2
≥ 1.

(ii) In the case where one of g1 and g2 is constant, say g2 ≡ constant, if g1 is

ramified over a1j with multiplicity at least m1j for each j, we have the following

γ1 =

q1∑

j=1

(1− 1

m1j

) ≤ 3.

67



Proof. We first study the case gl 6≡ constant, for l = 1, 2. If gl is ramified over alj with

multiplicity at least mlj for each j, (l = 1, 2) and γ1 > 2, γ2 > 2, and

1

γ1 − 2
+

1

γ2 − 2
< 1.

Choose δ0(> 0) such that γl − 2− qlδ0 > 0 for all l = 1, 2, and

1

γ1 − 2− q1δ0
+

1

γ2 − 2− q2δ0
= 1.

If we choose a positive constant δ(< δ0) sufficiently near to δ0 and set

pl := 1/(γl − 2− qlδ), (l = 1, 2),

we have

0 < p1 + p2 < 1,
δpl

1− p1 − p2
> 1(l = 1, 2) (3.4.7).

Consider the open subset

A2 = Int(A)− {z|Πl=1,2W (gl0, g
l
1)(z).W (gl0, g

l
1)(1/z) = 0}

of A and we now define a new metric

dτ 2 =

(
|h|
Πq1
j=1|G1

j |
(1− 1

m1j
−δ)p1

Πq2
j=1|G2

j |
(1− 1

m2j
−δ)p2

|W (g10, g
1
1)|p1 |W (g20, g

2
1)|p2

) 2
1−p1−p2

|dz|2

on A2, where G
l
j := alj0 g

l
1 − alj1 g

l
0(l = 1, 2).

Using the same arguments as in the proof of Theorem 3.4.6, we may see that dτ is flat

and continuous on A2. We shall prove the following.

Claim 2. dτ 2 is complete on the set {z||z| = r} ∪ {z|Πl=1,2W (gl0, g
l
1)(z) = 0},i.e., the

set {z||z| = r} ∪ {z|Πl=1,2W (gl0, g
l
1)(z) = 0} is at infinite distance from any interior

point in A2.

By the same method as the proof of Claim 1, we may show that dτ is complete on

{z|Πl=1,2W (gl0, g
l
1)(z) = 0}.

In the case, dτ is complete on {z||z| = r}, we shall prove by reduction to absurdity.
Assume dτ is not complete on {z||z| = r}. There exists γ : [0, 1) → A2, where γ(1) ∈
{z||z| = r} so that |γ| < ∞. Furthermore, we may also assume dist(γ(0), {z||z| =
1/r}) > 2|γ|. Consider a small disk ∆ with center at γ(0). Since dτ is flat, ∆ is

isometric to an ordinary disk in the plane. Let Φ : {|w| < η} → ∆ be the isometry.
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Extend Φ as a local isometry into A2, to the largest disk {|w| < R} = ∆R. Then

R ≤ |γ|. The reason that Φ cannot be extended to a larger disk is that the image goes

to the outside boundary {z||z| = r} of A2. More precisely, there exists a point w0 with

|w0| = R so that Φ(0, w0) = Γ0 is a divergent curve on A.

The map Φ(w) is locally biholomorphic, and the metric on ∆R induced from ds2 through

Φ is given by

Φ∗ds2 = |h◦Φ|2||g1◦Φ||2||g2◦Φ||2|
dz

dw
|2|dw|2 (3.4.8).

On the other hand, Φ is isometric, we have

|dw| = |dτ | =
(
|h|
Πq1
j=1|G1

j |
(1− 1

m1j
−δ)p1

Πq2
j=1|G2

j |
(1− 1

m2j
−δ)p2

|W (g10, g
1
1)|p1 |W (g20, g

2
1)|p2

) 1
1−p1−p2

|dz|

⇒ |dw
dz
|1−p1−p2 = |h|

Πq1
j=1|G1

j |
(1− 1

m1j
−δ)p1

Πq2
j=1|G2

j |
(1− 1

m2j
−δ)p2

|W (g10, g
1
1)|p1 |W (g20, g

2
1)|p2

.

For each l = 1, 2, we set f l := gl(Φ), f l0 := gl0(Φ), f
l
1 := gl1(Φ) and F

l
j := Gl

j(Φ). Since

W (f l0, f
l
1) = (W (gl0, g

l
1)◦Φ)

dz

dw
, (l = 1, 2),

we obtain

| dz
dw
| = Πl=1,2|W (f l0, f

l
1)|pl

|h(Φ)|Πl=1,2Π
ql
j=1|F l

j |
(1− 1

mlj
−δ)pl

(3.4.9).

By (3.4.8) and (3.4.9), we get

Φ∗ds2 =

(
Πl=1,2

||f l||(|W (f l0, f
l
1)|)pl

Πql
j=1|F l

j |
(1− 1

mlj
−δ)pl

)2
|dw|2

= Πl=1,2

( ||f l||ql−2−
∑ql

j=1
1

mlj
−qlδ|W (f l0, f

l
1)|

Πq
j=1|F l

j |
1− 1

mlj
−δ

)2pl
|dw|2.

Using the Lemma 3.3.5, we obtain

Φ∗ds2 6 C
2(p1+p2)
0 .(

2R

R2 − |w|2 )
2(p1+p2)|dw|2.

Since 0 < p1 + p2 < 1 by (3.4.7), it then follows that

dΓ0 6

∫

Γ0

ds =

∫

0,w0

Φ∗ds 6 Cp1+p2
0 .

∫ R

0

(
2R

R2 − |w|2 )
p1+p2 |dw| < +∞,

where dΓ0 denotes the distance of the divergent curve Γ0 in M, contradicting the as-

sumption of completeness of M. Claim 2 is proved.
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Define dτ̃ 2 = λ2(z)|dz|2 on A2, where

λ(z) =

(
|h(z)|

Πq1
j=1|G1

j(z)|
(1− 1

m1j
−δ)p1

Πq2
j=1|G2

j(z)|
(1− 1

m2j
−δ)p2

|W (g10, g
1
1)(z)|p1 |W (g20, g

2
1)(z)|p2

) 1
1−p1−p2

×
(
|h(1/z)|

Πq1
j=1|G1

j(1/z)|
(1− 1

m1j
−δ)p1

Πq2
j=1|G2

j(1/z)|
(1− 1

m2j
−δ)p2

|W (g10, g
1
1)(1/z)|p1 |W (g20, g

2
1)(1/z)|p2

) 1
1−p1−p2

.

By Claim 2, dτ̃ is complete and flat on A2.

We now use the same arguments as the latter part of the proof of Theorem 3.4.6.

This implies Theorem 3.4.7(i).

We finally consider the case where g2 ≡ constant and g1 6≡ constant. Suppose that

γ1 > 3. We can choose δ with

γ1 − 3

q1
> δ >

γ1 − 3

q1 + 1
,

and set p = 1/(γ1 − 2− q1δ). Then

0 < p < 1,
p

1− p
>

δp

1− p
> 1.

Set

dτ 2 = |h| 2
1−p

(
Πq1
j=1|G1

j |
1− 1

m1j
−δ

|W (g10, g
1
1)|

) 2p
1−p

|dz|2.

By exactly the same arguments as in the proof of Theorem 3.4.6, we get Theorem

3.4.7(ii).
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