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The learning and knowledge that we have, is, at the most,
but little compared with that of which we are ignorant.
Plato
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Preface

This thesis represents a culmination of work and learning that has taken place over a period of
almost three years (2009 - 2012). It has been written on the basis of experiments conducted in
the scientific group of Professor Stéphane Viville at the IGBMC in Strasbourg in France. The
overall objective is to identify autosomal genes implicated in idiopathic human male
infertility which will contribute to a better understanding of human spermatogenesis. The
project has three main goals: 1) to strengthen the patient recruitment network, 2) to analyse
the patients by whole genome scanning techniques in order to identify genes responsible for
infertility, 3) to perform a functional analysis in order to confirm the pathogenicity of the
identified mutations and to investigate the role of these genes in the physiopathology of
gametogenesis. Two phenotypes are studied: globozoospermia and non-obstructive
azoospermia with maturation arrest.

The first five chapters describe the background, methods and literature, with the remaining
four chapters each presenting an analysis of data. The first chapter gives a broad overview of
testicular histology and organization, with the second chapter providing descriptions of
spermatogenesis. In chapter three, some mechanisms of DNA double strand break (DSB)
repair are discussed. Chapter four presents a description of genomic rearrangements that can
occur during DNA DSB repair and which are responsible for some genomic disorders. In
chapter five, | introduce the genetics of human male infertility, describing the established
causes. | focus on the autosomal mutations associated with spermatogenic failure and on the
techniques used to find them. The following four chapters concern the results of my thesis,
which are divided into two sections evoking the two studied aspects of infertility. In total, two
consanguineous families, as well as 92 isolated cases, have been analyzed. Chapters six and
seven concern the identification of DPY19L2: the major gene implicated in human
globozoospermia. This study started by performing a genome-wide scan analysis of a
Jordanian family, using 10K SNP arrays (Affymetrix Genechip). In chapter eight,
pathogenicity of SPATA16 mutations are confirmed by identifying a second mutation: a
deletion of exon2 in an additional patient. Localization of the protein at the acrosome is
confirmed by immunofluorescence using a generated polyclonal antibody. Furthermore,

interactors of Spatal6 were determined by GST pulldown allowing the identification of



Preface

putative candidate genes implicated in globozoospermia. In chapter nine, | discuss the
preliminary results obtained concerning azoospermia. Since a linkage analysis strategy has
been shown to be a powerful technique, a 10K SNP array was performed on a Turkish
consanguineous family including two azoospermic brothers, a sister and an aunt who both
underwent repetitive hidatidiform moles and two unaffected sisters. We hypothesised that a
common mutation perturbs meiosis, but with a different impact on female and male
gametogenesis. A unique homozygous region located on chromosome 11 was shared only
with the affected siblings. This region of 27 Mb contains almost 477 genes. Thus whole

exome sequencing was performed on the genome of the two azoospermic brothers in order to

determine the causative gene. Finally, I present conclusions and some perspectives.
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Chapter 1

Testicular histology

1-An overview

For all sexual organisms, spermatogenesis is one of the essential biological events without
which, life as we know it would perish. It is defined as a developmental process by which
spermatozoa are generated from male germ cells within the seminiferous tubule of the testes.
In mammals, testes are paired organs that perform two functions: production of spermatozoa
and synthesis of steroids, especially the androgen testosterone. Each testis is encased by a
connective tissue, the tunica albuginea, from which the mediastinum testis extends (Clermont
1972). A radial fibrous, called the septa testis, diffuses from the mediastinum testis. The radial
fibrous radiates towards the tunica albuginea and divides the parenchyma of the human testis
into about 300 lobuli which communicate peripherally. Each lobule contains 2 to 3
convoluted seminiferous tubules i.e. coiled structures forming hairpin loops that fuse with
straight tubules, which continue into the rete testis, a labyrinthine system of cavities (Huckins
and Clermont 1968). The head of each testis is covered by an epididymis, a tightly-coiled tube
connecting the efferent ducts to the vas deferens which in turn connects the epididymis to
the ejaculatory ducts (Figure 1). The human epididymis can be divided into three main
regions (i) the head (Caput), (ii) the body (Corpus) and (iii) the tail (Cauda). The head
receives spermatozoa via the efferent ducts of the mediastinum testis, while the tail absorbs
fluid to make the sperm more concentrated (Setchell, Sanchez-Partida et al. 1993). In the
following sections, gonad organization and meiosis concerns the human, in other cases, | will

define what species is concerned.

Human genetics of male infertility 16


http://en.wikipedia.org/wiki/Spermatozoa�
http://en.wikipedia.org/wiki/Efferent_ducts�
http://en.wikipedia.org/wiki/Mediastinum�
http://en.wikipedia.org/wiki/Testis�

Chapter I - Testicular histology

2- Cellular components of the seminiferous tubule

The seminiferous tubules, composed of a peritibular tissue and a stratified epithelium, are
enclosed by the tunica propria. The peritibular tissue is made of myoid cells interposed
between several layers of collagens and elastic fibers and separated from the seminiferous
epithelium by the basement membrane (Figure 1). This membrane is one of the main
components of the tubular tissue in addition to the tunica propria. Peristaltic contractions of
the seminiferous tubule are caused by the myofibroblasts triggering the transport of the
immotile spermatozoa to the rete testis (Dym and Fawcett 1970; Hermo and Clermont 1976).
The epithelium consists of Sertoli and germ cells that are intimately associated and form an
epithelium bordering a lumen. Sertoli cells separate germ cells from the basement membrane
and are arranged in a specific way to form concentric layers with immature germ cells (Fritz
1994).

The germinal epithelium consists of cells that comprise germ cells at different developmental
stages, namely spermatogonia, primary and secondary spermatocytes and spermatids. These
are located within invaginations of Sertoli cells (mitotically inactive in adults) which are
known to provide nutritional and structural support to developing germ cells (Figure 1) (Fritz
1994). At the terminal part of seminiferous tubules, where they connect into the rete testis,
modified Sertoli cells predominate with the presence of occasional germ cells. The tall
elongated modified Sertoli cells are self-oriented in a downstream direction and their apices
converge together distally in the direction of the rete testis (Hermo and Dworkin 1988). Here,
they form a plug-like structure with a narrow lumen acting as a valve, preventingfrex of
substances from the rete testis back into the tubular lumen (Hermo and Dworkin 1988). The
interstitial tissue between the convoluted seminiferous tubules contains Leydig cells,
macrophages, blood and lymphatic vessels as well as nerves and constitutes the endocrine part
of the testis.

Germ cells develop in cellular associations known as stages of the seminiferous epithelium
cycle which are indicated by Roman numerals by Lebond and Clermont (Leblond and
Clermont 1952). Six possible stages were described in human (Heller and Clermont 1963),
but twelve in mice and fourteen in rat (Oakberg 1956; Oakberg 1957). In a round cross
section of human seminiferous tubule, two to four cellular associations are observed (Roosen-
Runge 1952). Each association contains many generations of germ cells (Figure 2).

A generation is defined as numerous germ cells at the same developmental step. The
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annotation of the stage depends on the content of different generations of germ cells. In
human, cellular associations | and Il contain 2 generations of spermatids whereas cellular
associations I11-V contain 2 generations of primary spermatocytes (Amann 2008). Cellular
association VI is defined by the presence of metaphase plates of the first or the second meiotic
divisions, or both (Amann 2008). The precise sequential occurrence of the six cellular
associations that happens over time in a given area of the tubule is fieed as a cycle of the

seminiferous epithelium (Leblond and Clermont 1952). The duration of a cycle is constant
and is about 16 days in humans, 8.65 days in mice and 13 days in rats (Leblond and Clermont
1952; Oakberg 1956; Oakberg 1957; Amann 2008). Spermatogenesis in human requires 4.6

cycles over 74 days.
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Figure 1: Organization of the testis. A) A cross-section through a testis, showing the location of the
seminiferous tubules, the vas deferens and the epididymis. B) A diagrammatic cross-section through a
testicular tubule, showing the germ cells (green) at different stages of maturation developing
embedded in somatic Sertoli cells (each Sertoli cell is outlined in red). Leydig cells (LC) — where
testosterone is synthesized — are present in the interstitium. Maturing sperm are shown in the lumen
of the tubules. PTM, peritubular myoid cell. C) A single Sertoli cell with its associated germ cells. Note
that tight juctions between Sertoli cells (arrowhead) define two compartments: the stem cells and the
pre-meiotic cells (spermatogonia) are found on one side of the junction, whereas the meiotic
(spermatocytes) and the post-meiotic (round and elongating spermatids) cells are found organized in
strict order of maturation towards the lumen (cytoplasm is shown in dark green, DNA is shown in pink,
Sertoli cell nucleus is shown in orange).

(According to Howard J. Cooke et al. ; 2002)
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Spermatogenesis

Spermatogenesis is the development of the male gametes that occurs in the germinal
epithelium of the testes. It begins at puberty and is divided into three major stages (i)

proliferation, (ii) maturation of spermatocytes and (iii) spermiogenesis.
1-Proliferation phase

The male gamete or spermatozoa results from the differentiation of spermatogonial stem cells
(SSC) characterized by two properties: their self-renewal capability and their ability to divide
into differentiating daughter cells (Robey 2000). The latter do not derive directly from the
adult stem cell but through progenitor cells, intermediate populations inserted between stem
and differentiated cells that cannot generate new stem cells but can self-renew for a limited
number of cycles.

In men, several types of spermatogonia have been identified A-dark, A-pale and B-
spermatogonia (Clermont 1966; Aponte, van Bragt et al. 2005). They can be distinguished
by their morphologies. For instance, A-dark cells are recognized by their dark staining in
tissue sections, A-pale by their less dense staining and B-spermatogonia by their large
spherical shape with less dense cytoplasm and a round nucleus containing one or two irregular
nucleoli (Ehmcke and Schlatt 2006).

According to the Clermont model, A-spermatogonia are usually found in pairs. One member
of an A-dark pair splits to give two A-dark cells, while the other member gives two A-pale
cells (Clermont 1966; Clermont 1966). Each A-pale undergoes just one division to produce
two B-spermatogonia. In this model, A-pale spermatogonia do not self-renew; their pool is
replenished by proliferating A-dark spermatogonia which according to Clermont must
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undergo regular mitotic divisions.

Later stage, Ehmcke and Schatt proposed a new scheme of human spermatogonial
proliferation taking into account their findings in the monkey (Figure 2). In their model,
spermatogenesis starts from a pair or quadruplet of A-pale spermatogonia that enter a first
division (Ehmcke, Luetjens et al. 2005; Ehmcke, Simorangkir et al. 2005). These cell clones
split and enter a second division which gives rise not only to pairs, quadruplets or eight cells
of B-spermatogonia, but also a pair or quadruplet of A-pale spermatogonia. Hence, A-pale
show cyclic proliferation leading to a high number of differentiating daughters, while
renewing themselves to maintain a constant supply, whereas A-dark show low mitotic
activity throughout their lifetime to maintain genome integrity (Ehmcke, Wistuba et al. 2006).
In contrast, A-dark show high proliferative activity during pre-pubertal testicular
development, when the pool of both A-types is expanding or when most A-pale and B-
spermatogonia have been abolished and need to be restored (Ehmcke and Schlatt 2006).

To summarize, A-dark, known as testicular stem cells, are considered as a reserve that
maintains spermatogonia population. They do not directly participate in producing sperm and
simply ensure a supply of stem cells. However, A-pale show typical characteristics of
progenitors. Thus, spermatogonial stem cells maintain a pool of diploid germ cells and
guarantee a constant high sperm output. This combination is the ideal system in male germ
line in order to preserve genome integrity and to produce millions of gametes in adult primate
males. In fact, the presence of low mitotic cells (A-dark) with the progenitors (A-pale)
decrease the risk for germline mutations and vulnerability to cytotoxic events and correlate
with the lifespan of the species (Ehmcke, Wistuba et al. 2006). Indeed, primates, contrary to
rodents, have a long lifespan with a low number of offspring per individual leading to intense
environmental exposure and thus need to protect and preserve their reproductive capability.

Therefore, the presence of progenitors is primordial in primates, but not in rodents.
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Figure 2 : The cycle of Human seminiferous epithelium. Examination of cross sections of human
testes reveals 6 cellular associations (Clermont, 1963; designated I-VI on the x axis). The types of germ
cells that should be present in each cellular association are illustrated in the 6 columns (upward from
basement membrane to tubule lumen) as generations of progressively more differentiated cells.
Reinterpretations (Ehmcke and Schlatt, 2006; Ehmcke et al, 2006) of Clermont’s (1966a,b) data led to
conclusions that Adark-spermatogonia indeed are stem cells, to allow repopulation of a testis, and that
Apale-spermatogonia might undergo an unreported division (designated by ?) near the start of cell
association Il. If it is established that Apale-spermatogonia produced in cell association Il (designated ?)
are the first cells committed to differentiate, as suggested by Ehmcke and Schlatt (2006) then the
duration of spermatogenesis would be close to 4.2 cycles or ,68 days.

(According to RUPERT P. AMANN, 2008)

The difference between the Clermont and Ehmcke models is due to the fact that Clermont
missed a second division of A-pale spermatogonia that occurs in stage I-11 of the
spermatogenic cycle. His model is based on the numeric ratio between cell types present at
different spermatogenic stages (Ehmcke and Schlatt 2006). He combined stages I-11 to
calculate the ratio (1:2) of A- and B-spermatogonia. This combination accounts for 50% of
the spermatogenic cycle which lasts 16 days in human. This long period of time,
corresponding to 8 days (16/2), allows more than one cell division to occur which is missed in

this approach. Actually, Clermont’s model is based on cell counts, which will always be
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proportional values in any model. If the two divisions of A-pale which give rise to B-
spermatogonia and A-pale (according to Ehmcke) occur with the same kinetics, a temporary
increase of A-spermatogonia in stages I-11 will be provoked. Consequently, the Clermont
counts resulted in a 1:2 ratio of A-pale with respect to B-spermatogonia, which in fact might
be a 1:3 ratio (Ehmcke and Schlatt 2006).

The types and numbers of spermatogonial stem cells are not the same in all mammals (Figure
3). They vary widely in different species and in some, the self-renewing progenitors are not
detected. In mice and rats, seven types of A-spermatogonia are described (A-single, A-pair,
A-aligned, Al, A2, A3 and A4) with Intermediate and B-spermatogonia with no progenitors
(Dettin, Ravindranath et al. 2003). In non-human primates, the situation is different. Two
types of A spermatogonia are present (A-dark and A-pale) associated with four types of
differentiated B-spermatogonia (B1, B2, B3, and B4) (Simorangkir, Marshall et al. 2005).

In fact, rodents, in contrast to primates, have no need for progenitors since A-single acts as a
regenerative and functional reserve. A-single self-renews (low mitotic division) and gives rise
to A-pair via clonal expansion, meaning that all germ cells derive from an initial stem cell
division (Ehmcke, Wistuba et al. 2006).
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Figure 3: Schematic overview of the premeiotic steps of spermatogenesis in different species

of mammals. The number given in brackets underneath the cells indicates the total number of
daughter cells derived from any one progenitor cell that enters differentiation.

(According to Jens Ehmcke et al. ; 2006)
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2-Spermatocyte’s maturation

Proliferation of differentiated B-spermatogonia gives rise to primary spermatocytes that enter
the meiotic division. Meiosis consists of two successive divisions preceded by a single phase
of DNA replication. The first is a reductional division, involving the separation of the
duplicated homologs from each other and the second is an equational division that concerns
the segregation of sister chromatids. As a result, haploid gametes are produced from a diploid
cell. The first meiotic cell division involves tremendous changes and comprises prophase I,
metaphase |, anaphase | and telophase I.

90% of the time for meiosis is spent in prophase I, traditionally divided into five stages -
leptotene, zygotene, pachytene, diplotene and diakinesis- that combines complex events
classified in three processes: chromosome pairing, synapsis and meiotic recombination
(Figure 6) (Cobb and Handel 1998; Pawlowski and Cande 2005).
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sites of £
SC formation

end of premeictic S leptotene zygotene

; bivalent
s, sister
meiosis | spindle P "\ kinetochares

\/ *
%
o

“sc nuclear envelope \_/

pachytene diplotene/diakinesis metaphase |

chiasmata . _

Figure 4: Prophase | stages. During prophase of meiosis |, chromosomes accomplish the three
basic steps of pairing, synapsis, and recombination. Interactions between one pair of homologous
chromosomes (red and blue) within a nucleus during prophase of meiosis are schematically
represented. Sister chromatids produced during premeiotic S phase are shown as different shades of
red or blue. Meiotic prophase is classically subdivided into five stages: leptotene, zygotene,
pachytene, diplotene, and diakinesis. Chromosomes begin to condense, homologs become aligned
along their lengths, and axial elements form between sister chromatids during leptotene. Zygotene is
marked by the initiation of synapsis and building the Synaptonemal Complex (yellow) between the
paired homologs. By pachytene, synapsis is completed to produce a mature bivalent. Chiasmata
resulting from interhomolog recombination that occurs during the zygotene and pachytene stages are
evident during the diplotene and diakinesis stages and serve to connect the homologs. Breakdown of
the nuclear envelope signals the end of prophase and is followed by formation of the meiosis | spindle
(green) at metaphase I.

(According to Scott L. Page et al.; 2003)
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A/ Chromosome pairing

The diploid nucleus of primary spermatocytes contains two versions of each autosomal
chromosome called homologs and a pair of sex chromosomes. Before entering meiosis, DNA
replication occurs. Thus, each chromosome is duplicated and is formed by two sister
chromatids linked by a centromere. At the leptotene stage, sister chromatids attach to the
nuclear envelope, begin to condense their chromatin and simultaneously start to recognize
their homolog partners (Figure 4) (Bhalla and Dernburg 2008). Chromosomes are anchored
to the nuclear envelope by the telomeres and are polarized within the nucleus as parallel arms
leading to the description of a meiotic bouquet (Zickler and Kleckner 1998). This process
known as alignment is followed by a pairing mechanism. It involves the stabilization of
homolog interactions that results in the juxtaposition of the homolog chromosomes physically
connected side by side along their entire length (Peoples-Holst and Burgess 2005). They form
a structure called the bivalent, composed of two chromosomes (Figure 4). Concerning sex
chromosomes, pairing is also primordial. In female mammals, pairing can occur as for other
homologs since they have two X chromosomes. Nevertheless, in males that have one X and
one Y chromosome which are not homologous, pairing occurs because of the small region of

homology between the X and the Y at the two ends of these chromosomes.
B/ Synapsis

At the zygotene stage, the synaptonemal complex begins to develop between the two sets of
sister chromatids in each bivalent (Cobb and Handel 1998). The synaptonemal complex
consists of two axial elements, a central element and transverse filaments (Zickler and
Kleckner 1999). The sister chromatids of each homolog are close together by the axial
element. Once the pair chromatids of each bivalent are well assembled, a central element
begins to form between the two homologs and connects to the two axial elements, now
referred to as lateral elements by transverse filaments (Figure 5) (Cohen, Pollack et al. 2006).
The assembly of the synaptonemal complex is called synapsis (Bhalla and Dernburg 2008).
Pachytene, the long stage of prophase I, begins when synapsis is complete. It involves
thickening and shortening of the chromosomes and results in a zipper-like structure.
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Figure 5: Synaptonemal complex structure. During zygotene, lateral elements are formed from
axial elements located along homologous chromosomes. Transverse filaments interact with lateral
elements and with each other, forming the central element as well.

(Adapted from Scott L. Page et al.; 2003)
C/ Homologous recombination

Homologous recombination occurs at the end of the pachytene stage, after which desynapsis
begins. Thus, spermatocytes enter the diplotene stage, in which chromosomes are partially
separated but still connected by chiasma (i.e. connection between two non-sister chromatids).
More than one connection (chiasmata) can be detected in each bivalent, indicating that several
crossing overs (i.e. DNA exchange) can occur between homologs. At least, one crossing over
must occur in order to ensure accurate chromosome segregation. Crossing overs are preceded
by double strand breaks (DSBSs) in the genome in order to initiate homologous recombination
between the non-sister chromatids of the homologs (Richardson, Horikoshi et al. 2004). This
is catalyzed by two types of recombination nodules: (i) early nodules (present before
pachytene) are numerous and mark the sites of the initial DNA strand exchange and (ii) late
nodules (arising later in meiosis) are few and mark the sites of crossing overs (Moens, Kolas
et al. 2002) (Figure 6). DSBs can occur anywhere along a chromosome; however they are not
distributed uniformly but preferentially induced by recombination hot spots. These
mechanisms are detailed in a separate chapter.

In the last stage of prophase I, diakenesis continues and involves shortening of chromosomes
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and is marked by the disappearance of the synaptonemal complex with the dispersion of the
nuclear membrane and the organization of fibers of the meiotic spindle.

Prophase | is followed by metaphase | which is marked by chiasmata alignment at the equator
of the spindle. All bivalents are lined up at the metaphase plate in such a way that
kinetochores of each homolog attach microtubules in the opposite direction. At anaphase I,
the two duplicated homologs separate from each other due to cohesin degradation along the
chromosome arms except at the centromere (to ensure sister partnership), move to opposite
poles of the spindle caused by microtubule degradation, and then the cell divides in
spermatocyte Il. Each daughter cell produced contains one of the two homologous
chromosomes, consisting of two sister chromatids which are identical except where
recombination has occurred. During Anaphase |, sister chromatids remain attached by
meiosis-specific cohesins introduced during DNA replication. At this stage, kinetochores on
both sister chromatids act as a single unit, as they attach microtubules pointed in the same
direction, allowing them to stay together during the separation of the homologs (Dej and Orr-
Weaver 2000).

At the end of this reductional division, daughter cells are haploid since each contains half of
the chromosomes, but in diploid amounts of DNA. Thus, in order to produce haploid gametes,
daughter cells undergo a second division without further DNA replication. The interphase
period between the two meiotic divisions is short and the events of the second equational
division take place rapidly. The duplicated chromosomes align to a second spindle during
metaphase 1l. At anaphase Il, kinetochore microtubules function separately on each sister
chromatids, and point in opposite directions (Dej and Orr-Weaver 2000). As a result, sister
chromatids separate and move to opposite poles to produce cells with a haploid DNA content.
Four haploid cells called spermatids are therefore produced from each spermatocyte that
entered meiosis (Figure 6).

Meiosis produces progeny that differ from the parent in their genetic make-up. A first factor
of diversity comes from the random segregation of each homolog chromosome. At the time of
metaphase | of meiosis, chromosomes arrange themselves randomly on either side of the
equatorial plate. Each chromosome of a pair then migrates to a pole (anaphase 1), without
influencing the direction of migration of the chromosomes of the other pairs. Each daughter
cell thus possesses a different set of chromosomes from that of the mother cell. Diversity is
increased by the homologous recombination that took place during prophase | thus generating

recombined chromatids that differ from parental chromatids.
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Figure 6: Diagram showing the stages and main events in meiosis. Only one pair of
chromosomes is shown, and each homolog is depicted in a different color. Early and late
recombination nodules are depicted as dots of different size. The two upper panels show the extended
meiotic prophase |. Major events during prophase | are depicted, including DNA double-strand break
(DSB) formation and repair, crossover formation, homologous chromosome pairing and synapsis.
Interactions between homologous chromosomes during prophase | lead to formation of homolog pairs
(bivalents) and reciprocal exchanges of chromatid arms, as a result of crossing-over. Homologous
chromosomes segregate in anaphase |. During the second division of meiosis (meiosis Il), the
chromatids segregate, like during a hormal mitotic division.

(According to Sabrina Z. Jane et al. ; 2012)
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3-Spermiogenesis

Spermiogenesis involves a complex series of functional and structural changes that spermatids
undergo to form spermatozoa. They do not divide further but they go through a differentiation
process that involves cytoplasmic and nucleic modifications. Early spermatids are round cells
with spherical nucleus associated with a prominent golgi and with mitochondria arranged
peripherically near the plasma membrane (Abou-Haila and Tulsiani 2000). They also contain
an endoplasmic reticulum, two centrioles and dispersed ribosomes.

During differentiation, the size and the shape of the nucleus change from a sphere to a
fusiform body and the nucleus shifts to the cell surface, while the chromatin condenses. This
nuclear condensation is accomplished by histone modification, leading to a high degree of
DNA packaging inside the sperm head. Somatic and testis-specific histones are replaced by
transition proteins (TP1 and TP2) and protamines (PRM1 and PRM2) (Carrell 2012). As a
result, the sperm DNA is stable and completely inactive and does not replicate until after the
sperm enters the egg.

Changes in the cytoplasm concern the formation of the midpiece and the flagellum,
accompanied by reorganization of several cytoplasmic organelles and even creation of novel
ones. A significant cytological feature is the formation of the acrosome and the flagellum
(Yan 2009). Concerning the flagellum synthesis, organelles undergo several modifications.
Centrioles migrate to the opposite end of the acrosomal pole and lodge in a small depression
of the nuclear envelope, where it gives rise to a thin flagellum during nucleus elongation.
While one of the centrioles does not change, the other gives rise to microtubules responsible
for the formation of the flagellar axoneme and the fibrous sheath of the sperm (Hermo,
Pelletier et al. 2010). The central core of the axoneme, consists of nine doublet microtubules
surrounding two single central microtubules, which represents a common pattern found in
cilia. This basic structure is modified at the region of its contact with the nucleus through the
formation of a complex structure known as the connecting piece (Hermo, Pelletier et al.
2010). Mitochondria are organized at the connecting piece, generating ATP responsible for
flagellum movement. The cytoplasm moves behind the nucleus and forms the flagellum that
extends very quickly. Mitochondria migrate and take position in a helical arrangement at the
midpiece to provide energy to the flagellum. A thin cytoplasm surrounds the nucleus, whereas
the excess cytoplasm and organelles form the residual body, which is eliminated and

phagocytosed by Sertoli cells later, leaving behind a small mass called the cytoplasmic
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droplet (Hermo, Pelletier et al. 2010).

The acrosome is a lysosome-like structure located over the anterior part of the spermatozoa
nucleus, allowing the sperm to penetrate the zona pellucida in order to reach the cytoplasmic
membrane of the oocyte (Moreno, Ramalho-Santos et al. 2000). It contains the oocyte
activation factor PLC¢ responsible for repeated oscillation of free cytosolic calcium leading to
meiosis resumption (Heytens, Parrington et al. 2009). It originates from the golgi apparatus
with an acidic pH that contains hydrolytic enzymes responsible of the interaction with the
zona pellucida. It is comparable to lysosome, since both are derived from the golgi apparatus
with an acidic pH and contain several common enzymes such as Acid glycohydrolases,
Proteases, Esterases, Acid phosphatases and Aryl sulfatases, although; the acrosome presents
distinctive characteristics (Berruti and Paiardi 2011). Its membrane is divided into (i) the
outer acrosomal membrane (OAM), lying directly underneath the plasma membrane and (ii)
the inner acrosomal membrane (IAM), overlying the nuclear envelop (Toshimori and Ito
2003). The acrosome is also distinguished by unique enzymes, such as Acrosin, Acrinl,
Acrogranin and others (Moreno and Alvarado 2006). The synthesis of many proteins involved
in acrosome biogenesis starts at the pachytene stage and continues until the last steps of
spermiogenesis throughout the elongated spermatids (Anakwe and Gerton 1990). These
proteins are packed in pro-acrosomiales vesicule that remain at the Golgi apparatus until their
transportation to the acroplaxome, where they fuse. The acroplaxome is a medullary region
located between the acrosomal membrane and nucleus membrane, allowing the binding of the
acrosome to the top of the nucleus (Toshimori and Ito 2003).

According to Moreno & al, the formation of the acrosome can be divided into four phases:
Golgi, Cap, Acrosome and Maturation (Abou-Haila and Tulsiani 2000). During the golgi
phase, the proacrosomic granules formed from trans-golgi bind to the surface of the nuclear
envelope at the acroplaxome and then fuse with each other to form a single sack covering the
anterior part of the nuclear membrane (Moreno and Alvarado 2006). The dense microtubule
array present at the cortical part of spermatids disappears. During the cap phase, the
acrosomic granule increases in volume due to the merging of new acrosomic vesicules arising
from the golgi apparatus, and flattens over the surface of the nucleus (Figure 7) (Moreno,
Ramalho-Santos et al. 2000). The centriole giving rise to the flagellum moves to the opposite
site of the acrosome, near the nucleus and the complex acrosome-nucleus turns upside down
so that the acrosome faces the plasma membrane (Figure 7) (Ramalho-Santos, Schatten et al.
2002). Microtubules start to assemble on the nuclear surface on the opposite side of the
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acrosome. The acrosomic sack diffuses over two-thirds of the nucleus during the acrosome
phase. Microtubules are now oriented parallel to the main axis of the spermatid around the
nucleus. This array of microtubules is known as the manchette, which remains attached to the
nucleus until the maturation phase (Moreno, Palomino et al. 2006). Finally, at the maturation
phase, the acrosome acquires functional modifications corresponding to an increase in
fertilizing capacity of spermatozoa. At the end of the acrosome biogenesis, the golgi apparatus
migrates to the caudal portion of elongating spermatids and is eliminated in the cytoplasmic
droplet (Clermont and Leblond 1955).

Acrosomal
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Fibrous sheath
Annulus

Mitochondrial
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Figure 7: Steps of spermatid differentiation. (1) Immature spermatid with round shaped nucleus.
The acrosome vesicle is attached to the nucleus; the tail anlage fails contact to the nucleus. (2) The
acrosome vesicle is increased and flattened over the nucleus. The tail contacted the nucleus. (3—-8)
Acrosome formation, nuclear condensation and development of tail structures take place. The mature
spermatid (8) is delivered from the germinal epithelium.

(According to Faycal Boussouar et al.; 2004)
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The transport of acrosomial vesicles across the cytoplasm depends on two major
intramanchette pathways: one via microtubules and the second via F-actin (Kierszenbaum and
Tres 2004). The microtubule-based pathway requires motor proteins (kinesin/dynein) attached
to vesicules via a linker, while F-actin-based traffic requires motor proteins (myosin
V/myosinVII) that are attached to vesicles by a vesicle receptor (Rab27a/b) via motor
recruiter proteins (MyRIP) (Figure 8). Acrosomal vesicles are transported by these two
pathways to the acroplaxome, where they fuse to form the acrosome. Also non acrosomal
vesicles are transported to the centrosome region and the developing spermatid tail using the

same traffic.
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Figure 8 : Representation of the two intramanchette vesicule pathways. 1: The acrosome
biogenesis vesicle pathway includes transporting vesicles form the endoplasmic reticulum to the Golgi.
The Golgi generates two types of vesicles: pro-acrosomal and non-acrosomal vesicles. Proacrosomal
vesicles are transported to the acroplaxome by actin-based and microtubule-based molecular motors,
where they fuse and organize the acrosome. 2: non-acrosomal vesicles associate with microtubules of
the manchette and are transported by microtubule-based molecular motors to the centrosome region
and the developing spermatid tail (not shown). 3: Non acrosomal vesicles 