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Résumé
RDF et SPARQL se sont imposés comme modèle de données et langage de requêtes

standard pour décrire et interroger les données sur la Toile. D’importantes quantités de
données RDF sont désormais disponibles, sous forme de jeux de données ou de méta-
données pour des documents semi-structurés, en particulier XML. La coexistence et l’in-
terdépendance grandissantes entre RDF et XML rendent de plus en plus pressant le besoin
de représenter et interroger ces données conjointement. Bien que de nombreux travaux
couvrent la production et la publication, manuelles ou automatiques, d’annotations pour
données semi-structurées, peu de recherches ont été consacrées à l’exploitation de telles
données.

Cette thèse pose les bases de la gestion de données hybrides XML-RDF. Nous présen-
tons XR, un modèle de données accommodant l’aspect structurel d’XML et la sémantique
de RDF. Le modèle est suffisamment général pour représenter des données indépendantes
ou interconnectées, pour lesquelles chaque nœud XML est potentiellement une ressource
RDF. Nous introduisons le langage XRQ, qui combine les principales caractéristiques des
langages XQuery et SPARQL. Le langage permet d’interroger la structure des documents
ainsi que la sémantique de leurs annotations, mais aussi de produire des données semi-
structurées annotées.

Nous introduisons le problème de composition de requêtes dans le langage XRQ et
étudions de manière exhaustive les techniques d’évaluation de requêtes possibles. Nous
avons développé la plateforme XRP, implantant les algorithmes d’évaluation de requêtes
dont nous comparons les performances expérimentalement. Nous présentons une appli-
cation reposant sur cette plateforme pour l’annotation automatique et manuelle de pages
trouvées sur la Toile. Enfin, nous présentons une technique pour l’inférence RDFS dans
les systèmes de gestion de données RDF (et par extension XR).

Mots clés : Web sémantique, XML, RDF, Linked Data, modèles de données, langages
de requêtes, composition de requêtes, réponse aux requêtes, optimisation de requêtes
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Abstract
Since the beginning of the Semantic Web, RDF and SPARQL have become the stan-

dard data model and query language to describe resources on the Web. Large amounts
of RDF data are now available either as stand-alone datasets or as metadata over semi-
structured documents, typically XML. The ability to apply RDF annotations over XML
data emphasizes the need to represent and query data and metadata simultaneously. While
significant efforts have been invested into producing and publishing annotations manually
or automatically, little attention has been devoted to exploiting such data.

This thesis aims at setting database foundations for the management of hybrid XML-
RDF data. We present a data model capturing the structural aspects of XML data and the
semantics of RDF. Our model is general enough to describe pure XML or RDF datasets,
as well as RDF-annotated XML data, where any XML node can act as a resource. We also
introduce the XRQ query language that combines features of both XQuery and SPARQL.
XRQ not only allows querying the structure of documents and the semantics of their
annotations, but also producing annotated semi-structured data on-the-fly.

We introduce the problem of query composition in XRQ, and exhaustively study query
evaluation techniques for XR data to demonstrate the feasibility of this data management
setting. We have developed an XR platform on top of well-known data management
systems for XML and RDF. The platform features several query processing algorithms,
whose performance is experimentally compared. We present an application built on top
of the XR platform. The application provides manual and automatic annotation tools, and
an interface to query annotated Web page and publicly available XML and RDF datasets
concurrently. As a generalization of RDF and SPARQL, XR and XRQ enables RDFS-type
of query answering. In this respect, we present a technique to support RDFS-entailments
in RDF (and by extension XR) data management systems.

Keywords: Semantic Web, XML, RDF, Linked Data, data models, query languages,
query composition, query answering, query optimization
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Résumé de la thèse en français

Introduction

Depuis plus d’une décennie, le format XML [www08c] (eXtensible Markup Lan-
guage) s’est imposé comme format de prédilection pour publier des données sur la Toile.
L’écrasante majorité des pages Web modernes sont des fichiers XHTML, une des nom-
breuses incarnations du format XML. Il est aussi couramment utilisé pour l’échange de
données sur les services Web (SOAP, XML-RPC), les flux de nouvelles (RSS, Atom), etc.
Son succès est en partie dû à sa simplicité et à sa lisibilité. Un document XML peut être vu
conceptuellement comme un arbre dont les nœuds sont étiquetés, ordonnés et d’arité non-
bornée. Il existe plusieurs langages pour interroger les données XML, par parmi lesquels
XPath et XQuery, qui sont recommandés par le W3C depuis 2007 [www10].

Développé à la même période qu’XML, le modèle de données RDF [www04b] (Re-
source Description Framework) est resté confidentiel à ses débuts. Il diffère d’XML en
plusieurs points. Tout d’abord, une instance de données RDF est un graphe orienté, aux
arêtes étiquetées et non-ordonnées, et dont les nœuds sont étiquetés différemment selon
leurs types. Un nœud d’un graphe RDF correspondant généralement à une ressource,
c’est-à-dire n’importe quel concept ou entité du monde réel. Une ressource peut être iden-
tifiée par une URI 1 (Universal Resource Identifier) ou être anonyme, auquel cas on parle
de nœud blanc (en anglais blank node). Un nœud peut également être un littéral. Dans ce
cas, il est étiqueté par une valeur, constante, éventuellement accompagnée d’un type ou
d’une langue (pour les chaînes de caractères en langue naturelle). On peut également voir
un jeu de données RDF comme un ensemble de faits de la forme (sujet, prédicat, objet).

Le modèle RDF est le substrat du Web Sémantique, un concept visant à permettre de
publier sur la Toile, des données manipulables de façon non-ambigüe par des machines.
Sa sémantique est définie en terme de règles d’inférences, permettant de dériver des nou-
veaux faits à partir de faits existants. Par exemple, les faits “Shakespeare est un écrivain”
et “un écrivain est un homme” permettent d’inférer le fait “Shakespeare est un homme”.
Le modèle a connu un essor phénoménal depuis 2006 avec l’avénement du mouvement
Linked Open Data [www06b], guidé par un ensemble de recommandations pour publier,
lier et découvrir des données RDF de façon ouverte. Un grand nombre d’entreprises et

1. http ://www.w3.org/TR/2001/NOTE-uri-clarification-20010921/
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d’institutions mettent aujourd’hui à disposition du public d’importants jeux de données
au format RDF [wwwh].

Peu de travaux ont, jusqu’à présent, tenté de réconcilier les modèles de données XML
et RDF, à l’exception de quelques études visant à convertir les données d’un modèle vers
l’autre. Les modèles RDF et XML étant particulièrement bien adaptés à des applications
distinctes, nous postulons que de nouvelles solutions peuvent émerger pour des problèmes
concrets, en particulier dans les domaines récents du data journalisme et de la vérification
de faits en ligne (en anglais online fact checking), si l’on tire parti des spécificités de cha-
cun de ces modèles, à savoir gérer et interroger conjointement la structure et la sémantique
des documents sur le Web.

Cette thèse vise à rendre ce type d’application possible, en jetant les bases d’outils
combinant des données XML et RDF en une instance commune. Nous proposons un mo-
dèle de données et son langage de requête, et présentons une plate-forme mettant en œuvre
ces idées. Celle-ci nous permet d’étudier de manière exhaustive les stratégies d’évaluation
et d’optimisation de requêtes rendues possibles lorsque des données XML et RDF sont
mises en présence. Les principales contributions de cette thèse sont les suivantes :

– un modèle de données pour documents XML annotés. Alors que la plupart des
travaux à ce jour se restreignent à représenter des données du modèle RDF au for-
mat XML ou vice versa, le modèle XR fournit le moyen de représenter des don-
nées XML et RDF interconnectées, c’est-à-dire des données pour lesquelles chaque
nœud XML est potentiellement une ressource RDF ;

– un langage de requête clos en terme de composition. Nous introduisons un lan-
gage de requêtes permettant d’appliquer des contraintes structurelle et sémantiques
sur des données. Le langage est présenté sous deux formes, (i) une forme simple
permettant de retourner des ensembles de tuples, (ii) une forme étendue, close en
terme de composition. En d’autres termes, le résultat d’une requête XR est une ins-
tance de données XR et peut à son tour être soumise à l’évaluation de requêtes ;

– une étude exhaustive des stratégies d’évaluation et d’optimisation de requêtes.
Nous étudions en détail les techniques possibles pour évaluer efficacement des re-
quêtes sur des données XR, en tenant compte, notamment des contraintes tech-
niques imposées par les systèmes de gestion de données existants ;

– une plateforme de gestion de données. Cette séparation claire entre données XML
et RDF dédouane l’administrateur de toute conversion, et permet de stocker les
données dans des sous-systèmes distincts. Nous avons développé un système de
stockage et d’interrogation de données pouvant être tirer partie de la plupart de
systèmes de gestion de données XML et RDF existant ;

– une étude expérimentale. Nous présentons une série d’expériences comparant les
performances de nos algorithmes d’évaluation et d’optimisation pour un large éven-
tail de requêtes et pour des volumes de données jamais atteints à ce jour pour des
données hybrides XML et RDF ;

– un outil pour le data journalisme. Le modèle de données XR fournit des bases
solides pour un ensemble d’applications qui ont récemment fait leur apparition sur
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la Toile, comme le data-journalisme. Pour démontrer l’utilité du modèle et de son
langage pour ce type d’applications, nous avons développé FactMinder, un outil
d’aide à la vérification de faits sur la Toile. L’outil se présente sous la forme d’une
extension pour navigateur Web et repose sur la plateforme développée dans le cadre
de nos travaux.

– une approche alternative pour la réponse aux requêtes. Comme évoqué précé-
demment, la sémantique d’RDF impose de tenir compte des faits implicites dans
les réponses aux requêtes. Notre modèle de données étant un sur-ensemble du mo-
dèle RDF, il en préserve la sémantique. Toutefois, les techniques existantes pour
la réponse aux requêtes RDF présentent des inconvénients. Nous introduisons une
technique basée sur l’utilisation d’index bitmaps, qui minimise les problèmes inhé-
rents à ces techniques ;

Cette thèse est structurée de la façon suivante. Dans un premier temps, nous dressons
au chapitre 2 un état de l’art des standards XML, RDF et des travaux à leur jonction. Le
chapitre 3 présente de façon formelle le modèle de données, le langage et en détail les
propriétés. Le chapitre 4 étudie les techniques d’évaluation et d’optimisation de requêtes
pour ce modèle, présente la plateforme de gestion de données, ainsi qu’une série d’expé-
riences validant nos techniques. Le chapitre 5 présente notre outil d’aide à la vérification
sur la Toile. Le chapitre 6 s’attarde sur la réponse aux requêtes RDFS. Enfin, le chapitre 7
clôt cette thèse en évoquant les directions vers lesquels ces travaux pourront mener.

État de l’art & motivation

Les recherches en gestion de données annotées s’articulent autour de deux axes : d’une
part la conception d’outils pour l’annotation de données structurées, d’autre part l’étude
de combinaisons des modèles XML et RDF.

Outils d’annotation pour les données du web. Dès les débuts du modèle RDF, plu-
sieurs solutions ont été proposées pour faciliter l’annotation des pages web, que ces an-
notations soient créées manuellement par des utilisateurs [Yee02, HS02] ou de façon au-
tomatique et semi-automatique [VVMD+02, DEG+03]. à cet égard, [RH05] dressent un
tour d’horizon des systèmes d’annotations mis au point à ce jour. Ces travaux sont princi-
palement orientés vers le stockage et l’interrogation des documents annotés et ne tiennent
pas compte des requêtes portant à la fois sur leurs structures et leurs sémantiques.

Concernant l’intégration entre annotations et documents, plusieurs recommandations
ont récemment été faites pour la publication d’annotations RDF au sein de documents
XHTML. Ces solutions, incluant microformat 2, eRDF 3 et RDFa 4 du W3C, n’apportent

2. http ://microformats.org/
3. http ://research.talis.com/2005/erdf/wiki/Main/RdfInHtml
4. http ://www.w3.org/TR/xhtml-rdfa-primer/
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pas de solution au problème d’interrogation de données. En outre, elles supposent que
l’utilisateur qui désire annoter un document ait accès en écriture à ce document, ce qui
réduit considérablement leur utilité. Le modèle que nous proposons permet de créer et
gérer des annotations sémantiques sans impact sur la structure ou le contenu du document.

Une seconde perspective sur ce thème couvre l’interconnexion entre les modèles de
données XML et RDF.

Modèles de données hybrides. Dans ce contexte, la solution la plus courante, déjà
mentionnée, consiste à convertir les données du modèle RDF au format XML pour en
faire l’interrogation uniquement au moyen du langage XQuery, ou effectuer la transforma-
tion inverse pour mener l’interrogation à travers le langage SPARQL [RGN+01, PSS02,
DFG+07]. Il a aussi été imaginé d’inclure des fonctionnalités d’un langage comme com-
posants externes d’un autre [CKKC+09], par exemple une fonction d’extraction XPath
accessible depuis un environnement SPARQL. Certains travaux proposent de modéliser
plusieurs langages en un seul en partant d’un cadre plus général, comme les systèmes à
base de règles [FBB05]. Enfin, des langages hybrides ont été conçus pour extraire des
documents XML les annotations qui peuvent s’y trouver [AKKP08, BDK+11], comme
décrit dans la recommandation GRDDL du W3C 5.

Bien que ces solutions permettent d’interroger conjointement des données XML et
RDF, elles reposent généralement sur un principe de pré-traitement au cours duquel les
données ou les requêtes doivent être converties vers l’un ou l’autre des modèles. Cette
alternative comporte toutefois des inconvénients : (a) la réécriture peut aboutir à des re-
quêtes complexes et difficilement optimisables, (b) la conversion des données est généra-
lement coûteuse, qu’elle soit effectuée juste avant l’exécution des requêtes ou en amont
sur l’ensemble des données, et (c) aucune des approches précédentes ne considère les
nœuds XML comme des ressources RDF en tant que telles.

C’est pour pallier ces manques que nous avons orienté notre travail sur une solution
qui respecte les formats dans lesquels les données sont initialement créées.

Exemple d’utilisation. Illustrons notre propos par une situation dans laquelle les an-
notations jouent un rôle central, par l’exemple suivant. Lors d’une campagne électorale,
:Robert publie sur son site des transcriptions de ses discours, dans lesquelles il partage
ses opinions sur la situation en :Turquie et au :Japon, citant notamment le
:TauxDeChomageMensuel pour :Juillet2012 comme étant de 8% dans ces pays. En uti-
lisant des jeux de données ouverts, tels que http://data.gouv.fr, il devient pos-
sible de vérifier semi-automatiquement les chiffres cités. De plus, en archivant les discours
du candidat, il pourra déterminer, par exemple, “les dates de ses plus anciens et plus ré-
cents discours mentionnant un pays d’Asie” ou encore, si le calendrier officiel du candidat
est pris en compte, “pour chaque pays où le candidat a effectué une visite, les citations

5. http ://www.w3.org/TR/grddl/

http://data.gouv.fr
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subséquentes dans lesquelles ce pays est évoqué”. Si ce type de requêtes est trop ambigüe
pour obtenir des résultats exploitables à partir de techniques basées sur le traitement des
langues naturelles, elles peuvent être exprimées formellement dans un langage de requête
tel que SPARQL, sous la forme d’une requête ou d’une composition de requêtes.

Gestion de données semi-structurées annotées

Le modèle de données XR

Le modèle de données XR est conçu pour représenter des documents annotés. Un
des objectifs étant de préserver les propriétés des modèles de données standard XML et
RDF, une instance de données XR comprend deux sous-instances : (a) une sous-instance
XML, composée d’arbres XML, (b) et une sous-instance RDF, composée de triplets RDF.
L’association entre les deux est assurée par l’attribution d’une URI unique à chaque nœud
d’arbre XML. Ces URI peuvent ainsi apparaître dans des triplets RDF.

Formellement, considérons l’ensemble U des URI, etL l’ensemble des littéraux [www04b],
i.e., pour simplifier l’ensemble des chaînes de caractères. N est l’ensemble des noms
d’éléments et d’attributs XML possibles, auquel on ajoute le nom vide ε. Enfin, B est
l’ensemble des nœuds blancs, i.e., des littéraux ou URI indéfinis comme nous le détaille-
rons par la suite.

Définition (Arbre XML). Un arbre XML est un arbre, T = (N,E), fini, étiqueté, non
ordonné, d’arité non bornée, où N sont les nœuds et E les arêtes, et à chaque nœud
n ∈ N sont associés une étiquette λ(n) ∈ N et un type τ(n) ∈ {document, attribute,
element, text}.
Un nœud de type element ne peut avoir deux attributs fils ayant le même nom.
Un nœud de type attribute est nécessairement le fils d’un nœud de type element, il com-
porte une valeur appartenant à l’ensemble des littéraux L et n’a pas d’enfant.
Un nœud de type text n’a pas d’enfant.
Enfin, un arbre XML a au plus un nœud de type document. Le nœud document est la ra-
cine de l’arbre, a exactement un fils et a pour étiquette ε.

Définition (Instance XML). Une instance XML IX est un ensemble fini d’arbres XML.

Nous supposons maintenant l’existence d’une fonction furi : N → U attribuant une
URI unique à chaque nœud de l’instance XML. L’URI d’un nœud document est l’URI du
document lui-même.

La fonction d’attribution des URI est centrale pour connecter les sous-instances XML
et RDF. En effet, il est possible de faire référence dans la sous-instance RDF aux identi-
fiants attribués aux nœuds de la sous-instance XML. Dans la section 4, nous présentons
plusieurs approches possibles pour implémenter une telle fonction en pratique. En bref,
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il suffit de tenir compte d’une fonction retournant une nouvelle valeur pour toute entrée
présentée pour la première fois, et retournant cette même valeur à tout appel suivant pour
cette entrée.

La sous-instance RDF est définie comme un ensemble de triplets, pouvant faire no-
tamment référence aux URI des nœuds XML.

Définition (Instance RDF). Une instance RDF IR est un ensemble de triplets de la forme
(s, p, o), où s ∈ (U ∪ B), p ∈ U , et o ∈ (L ∪ U ∪ B).

Formellement, pour une instance RDF IR donnée, sa sémantique est l’instance RDF
I∞R , ou clôture de IR, contenant IR ainsi que tous les triplets pouvant être inférés à partir
d’IR et des règles d’inférences de la norme RDF. L’inférence RDF est cruciale pour l’éva-
luation de requêtes, puisque celle-ci doit tenir compte des triplets implicites de l’instance
pour être complète. Nous abordons sur ce sujet en section 3.2.2 et au chapitre 6.

Nous pouvons maintenant définir une instance XR comme suit :

Définition (Instance XR). Une instance XR est un couple (IX , IR), où IX et IR sont une
sous-instance XML et une sous-instance RDF respectivement, construites sur le même
ensemble d’URI.

Les instances XML et RDF étant formées sur le même ensemble d’URI U , les triplets
RDF peuvent être utilisés pour annoter n’importe quel nœud XML. L’exemple suivant
illustre cette interconnexion entre les deux sous-instances du système.

Le langage de requête XRQ

Les utilisateurs d’une instance XR doivent pouvoir interroger les données sur leur
structure (décrite dans l’instance XML) ainsi que sur leur sémantique (décrite dans l’ins-
tance RDF). C’est l’objectif d’XRQ, un langage permettant d’accéder aux données selon
ces deux perspectives. Dans la section 3.2, nous établissons tout d’abord la syntaxe du
langage, avant d’en détailler la sémantique dans la section 3.2.2. Enfin, les sections 3.2.3
et 3.2.4 présentent une extension du langage qui fournit les moyens de construire des
résultats complexes, produisant une instance XR et faisant ainsi de XRQ un langage clos.

À l’image du modèle de données, une requête XRQ est composée de deux parties :
un ensemble de motifs d’arbres permettant de filtrer les données XML, et un ensemble
de motifs de triplets portant sur les données RDF. Nous définissons ces deux types de
motifs ci-après. Notons tout de suite que des variables utilisées dans des motifs d’arbres
peuvent aussi être utilisées dans des motifs de triplets, ce qui rend possible l’interrogation
dépendante de la structure et des annotations sémantiques.

Définition (Motif d’arbre). Un motif d’arbre est un arbre fini, ordonné, d’arité non bornée
etN -étiqueté, comportant deux types d’arêtes : des arêtes enfant et des arêtes descendant.
À chaque nœud de l’arbre peuvent être adjointes au plus une variable uri, une variable
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〈$CA, $X〉 : −

Q1
R Q2

R Q3
R Q4

R

($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, :about, $A), ($X, rdf:type, :MemberOfCongress)

microblog

blogtitleval:$V C message

bodyuri:$A=#205
cont:$CA

Q1
X

html

div

h2uri:$C
val:$V C

divuri:$B
cont:“xyz′′

Q2
X

FIGURE 1 – Exemple de requête XRQ

val et une variable cont. Un nœud peut être également étiqueté par un prédicat d’égalité
de la forme [t=c] où c ∈ L, et t est une type parmi {uri, val, cont}.

Un motif d’arbre est semblable au motif d’arbre décrit dans la littérature [AYCLS01]
à une différence près, le fait de pouvoir adjoindre des variables typées aux nœuds. Ces va-
riables ont deux objectifs : (i) indiquer les jointures entre motifs d’arbres (ou de triplets)
(ii) indiquer quels éléments de la requête feront partie du résultat (à la manière des re-
quêtes conjonctives). Le type désigne quelle information du nœud XML sera affectée à la
variable. Lorsqu’un nœud nt d’un motif d’arbre est mis en correspondance avec un nœud
nd d’un arbre XML, la variable adjointe à nt recevra la valeur suivante en fonction de son
type : pour une variable uri, l’URI du nœud nd ; pour une variable val, la concaténation
des valeurs de tous les descendants de nd si nd est un élément, ou la valeur de nd si c’est
un attribut ; pour une variable cont, l’arbre enraciné à nd sous forme sérialisée.

Définition (Motif de triplet). Un motif de triplet est un triplet de la forme (s, p, o), où s, p
sont des URI ou des variables, et o est une URI, un littéral ou une variable.

En combinant motifs d’arbres et motifs de triplets et en leur ajoutant un ensemble de
variables projetées (variables de tête), on obtient une requête XRQ.

Définition (Requête XRQ). Une requête XRQ est composée d’une tête et d’un corps. Le
corps est un ensemble de motifs d’arbres et de motifs de triplets, construits sur le même
ensemble de variables. La tête est formée d’une liste de variables apparaissant aussi dans
le corps.

Les jointures sont formulées en utilisant une même variable à plusieurs reprises dans
la requête. Trois types de jointures sont donc possibles : entre motifs d’arbres, entre motifs
de triplets et entre motifs d’arbres et de triplets. C’est ce dernier type de jointure qui offre
au langage XRQ sa capacité à marier les données XML et RDF.

Le langage XRQ étendu. Une requête XRQ retourne un ensemble de tuples, bien
qu’elle prenne en entrée une instance XR. Idéalement, il devrait être possible de pro-
duire une instance XR comme résultat d’une requête. Nous nous proposons d’étendre le
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FIGURE 2 – Exemple de requête XRQ étendue

langage XRQ pour atteindre ce but en adjoignant au langage un constructeur permettant
de créer de nouveaux arbres et triplets. La suite de cette section donne la définition et la
sémantique de cette extension.

Définition (Requête XRQ étendue).
Une requête XRQ étendue, dénotée Q = (HX , HR, QX , QR, Sk), consiste en un corps
(QX , QR), semblable à celui d’une requête XRQ simple, une tête de la forme (HX , HR),
où HX est un ensemble de patrons d’arbres XML et HR est un ensemble de triplets, et une
application bijective Sk : HX → S, où S est un ensemble infini de fonctions de Skolem.

Soit VQ l’ensemble des variables apparaissant dans le corps de la requête, VH l’en-
semble de variables apparaissant uniquement dans la tête, et V = VQ ∪ VH . Pour chaque
arbre tx ∈ HX , chaque nœud nx ∈ tx peut être annoté de trois façons : (i) une étiquette
d’affectation est une variable v ∈ VH to type uri, (ii) une étiquette de valeur est une
variable v ∈ VQ ou une constante, et ne peut être appliqué qu’à une feuille, (iii) une éti-
quette de groupe est une liste ordonnée de constantes ou de variables de VQ, telle qu’elle
ne contienne aucune variable présente dans une étiquette de groupe d’un ancêtre du nœud
courant.

Les triplets tR ∈ SR peuvent contenir des variables de V dans n’importe quelle posi-
tion (s, p ou o).

La sémantique du langage dans sa forme simple et étendue est détaillée dans la sec-
tion 3.2.2.

Composition. Le language étendue permet notamment la composition de requêtes, c’est-
à-dire l’évaluation d’une requête à partir du résultat d’une autre requête (ou vue). Nous
présentons un algorithme qui construit, pour une requête q et une vue v passées en para-
mètres, une nouvelle requête q′ telle que pour toute instance I, q′(I) est correcte vis-à-vis
de (q ◦ v)(I).

La plate-forme XRP

Le modèle XR étant compatible avec les standards XML et RDF, on peut envisager
de stocker des données XR dans une plateforme native, ou s’appuyer sur des logiciels de
gestion de données XML et RDF existants, à la manière d’un intégrateur de données. Dans
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ce cas, le système de gestion de données XML doit être augmenté de manière à permettre
de la gestion d’URI de nœuds. Il est parfois possible de modifier directement le système
pour que celui-ci puisse interpréter ces URIs. Mais, lorsque le système est entièrement
fermé, il devient nécessaire d’avoir recours à une structure externe, par exemple un index,
pour stocker la correspondance entre URI et nœuds XML.

En tenant de tous ces cas de figures, nous avons établi une hiérarchie de techniques uti-
lisables pour évaluer des requêtes XR sur des systèmes existants. Celle-ci compte notam-
ment des stratégies de passage d’information horizontale, évaluant les motifs de triplets
(resp. d’arbre) en priorité, avant de transmettre et lier les variables des motifs d’arbres
(resp. triplets) restants pour les rendre plus sélectifs. Ces techniques ouvrent la voie à cer-
taines optimisations. Il devient par exemple possible d’éliminer certains candidats avant
de les transmettre, s’il est évident qu’ils rendront les prochaines requêtes insatisfiables.

Pour mettre en pratique cette famille d’algorithmes d’évaluation, nous avons déve-
loppé la plateforme XR, un moteur de stockage et d’évaluation de requêtes complets,
pouvant reposer sur n’importe quel système de gestion de données XML ou RDF exis-
tant. La plateforme comporte un optimiseur pour choisir, lors de l’évaluation de requêtes,
parmi différentes stratégies d’évaluations. Le moteur possède un ensemble d’opérateurs
physiques ; il peut notamment déléguer certaines sous-parties d’une requête aux moteurs
d’évaluations sous-jacents et compléter l’évaluation de lui même.

Le modèle XR, le langage XRQ et la plateforme XRP ont fait l’objet d’articles dans
une conférence nationale [GKK+11b], un workshop international [GKK+11a] et des re-
vues nationale [GKK+12] et internationale [GKK+13b].

Analyse et vérification de faits sur la Toile

L’Internet a remodelé le journalisme de nombreuses manières, en ouvrant les vannes
d’une dissémination d’information à grande échelle. Les professionnels de l’information
se sont soudain vus entrer en compétition avec de nouveaux acteurs, pour la plupart a-
mateurs (activistes, blogueurs ou simples citoyens engagés) qui se sont imposés comme
sources d’informations alternatives aux médias établis. La force de ce mouvement vient
pour part du nombre des parties en présence, lui permettant, collectivement, d’accumuler,
traiter et publier une quantité d’information beaucoup plus importante qu’un journal ou
une agence de presse ne pourrait espérer manipuler. Toutefois, quantité n’est pas syno-
nyme de qualité et ce phénomène a donné naissance à une nouvelle catégorie de journa-
listes. Les data-journalistes et vérificateurs de faits, parfois aussi qualifiés de désinto-
xicateurs 6, sont spécialisés dans l’analyse de faits publiés sur la Toile. Si la vérification
des sources fait partie d’intégrante du métier de journaliste, la nouveauté vient surtout des
méthodes et des moyens dont ceux-ci disposent aujourd’hui pour mener à bien leur tâche.

6. http://www.liberation.fr/desintox

http://www.liberation.fr/desintox
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Ces outils sont les services en ligne (tels que Twitter 7 ou Google Maps 8), mais surtout
les jeux de données publiques mis à disposition par des gouvernements 9 10, organismes
non-gouvernementaux 11 et entreprises privées 12. Ces métiers n’est restent pas moins lar-
gement manuels 13. L’écrasante majorité des informations publiées sur la Toile étant aux
formats XML ou RDF, nous postulons qu’XRP représente une plateforme de choix pour
assister ce type d’utilisateurs dans leurs tâches.

Nous présentons le logiciel FactMinder, un outil d’aide à l’analyse et la vérification
de faits sur la Toile. L’application est une extension pour navigateur connectée à une pla-
teforme XRP. Lors de l’activation de l’extension, l’écran du navigateur se scinde en deux
parties verticales. Lorsqu’un utilisateur accède à une page Web (partie gauche), celle-
ci est transmise à un système d’extraction d’entités nommées (dans notre cas, OpenCa-
lais [wwwi]). Ces entités, identifiant personnes, lieux, institutions, dates et citations, sont
intégrées à la page même. La partie droite du navigateur renferme un tableau de bord,
permettant de visualiser des informations liées à celles de la page. Le tableau de bord
est entièrement composé de vues XRQ, ou XIP (XR Information Panel), à savoir des re-
quêtes XR nommées. Ces vues sont évaluées sur la plateforme XR, sur laquelle sont sto-
ckées des données concernant les pages précédemment visitées, mais aussi un ensemble
de jeux de données ouvertes ou collectées sur la Toile. Les vues sont rafraîchies lorsque
certains événements-utilisateurs se produisent, par exemple, lorsqu’il sélectionne un item
à l’écran. Des dépendances peuvent être imposées entre les vues, de manière à ce que
celles-ci ne soient évaluées qu’à la condition que des informations supplémentaires soient
fournies.

Ce logiciel a été présenté dans une démonstration lors de la conférence SIGMOD
2013 [GKK+13a].

Réponse aux requêtes RDF à l’aide d’indexes bitmaps

Répondre aux requêtes SPARQL suppose de tenir compte de règles d’inférences comme
celles présentées en introduction. Les méthodes généralement utilisées à cet effet sont ap-
pelées chaînage avant et chaînage arrière. La première consiste à dériver exhaustivement
tous les faits possibles à partir de l’extension des données et des règles considérées. Ceci
permet d’obtenir la clôture des données, que l’on peut ensuite matérialiser avec les don-
nées initiales. Dans ce cas, le problème de réponse aux requêtes est réduit à celui de
l’évaluation de requêtes. L’inconvénient majeur de la méthode réside dans le fait qu’elle

7. http://twitter.com
8. http://maps.google.com
9. http://data.gov

10. http://data.gouv.fr
11. http://data.worldbank.org
12. http://google.com/publicdata/home
13. http://on.ted.com/MarkhamNolan

http://twitter.com
http://maps.google.com
http://data.gov
http://data.gouv.fr
http://data.worldbank.org
http://google.com/publicdata/home
http://on.ted.com/MarkhamNolan
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nécessite un espace de stockage potentiellement important. De plus, lorsque les données
sont dynamiques, leur consistance doit être maintenue. La seconde méthode n’affecte pas
les données, mais consiste à réécrire une requête conjonctive donnée en une union de
requêtes conjonctives dont le résultat, pour une instance I, sera équivalent à celui de la
requête initiale, si elle était évaluée sur la clôture de I. L’union de requêtes créée est expo-
nentielle dans la taille de la requête initiale, et de ce fait, difficile à optimiser en pratique.

Dans cette thèse, nous proposons une méthode de stockage des données et d’évalua-
tion de requêtes permettant des minimiser les problèmes liées à ces deux approches. En
observant la clôture RDFS d’un jeu de données, on remarque que le processus d’inférence
produit des résultats prévisibles. Ainsi, une ressource appartenant à une classe donnée ap-
partient aussi à toutes ses super-classes. De même, deux ressources liées par une propriété
sont aussi liées par toutes ses super-propriétés. L’idée principale est de raisonner en terme
d’appartenance à des ensembles. Par exemple, détecter le plus rapidement possible si une
classe donnée appartient à l’ensemble des super-classes d’une ressource donnée. Les opé-
rations ensemblistes sont couramment implantées en terme d’opérations bit-à-bit. Il suffit
pour cela de fixer un ordre pour les éléments de l’ensemble considéré. Chacun de ses
sous-ensembles peut être représenté par un mot dont les bits sont placés à un pour chaque
index d’éléments appartenant au sous-ensemble. Hormis la rapidité évidente des opéra-
tions ensemblistes sur des données binaires (par exemple l’intersection est obtenue par un
ET logique, l’union par un OU ), de nombreuses techniques de compression existent, y
compris des méthodes permettant d’effectuer ses opérations sur les données sans le dé-
compresser.

Nous présentons un modèle de stockage de données RDF dans lequel l’ensemble des
classes auxquelles appartiennent une ressource sont stockées sous forme de mots binaires
compressés. Grâce à cette méthode, matérialiser la clôture des données, obtenue par chaî-
nage avant, n’entraîne qu’une faible augmentation de la taille de stockage requise. De plus,
il reste possible de ne pas saturer les données, et d’avoir recours à une technique proche
de celle du chaînage arrière. Celle-ci ressemble de près au concept d’index sémantique
proposée dans des travaux précédents [MAYU05, RMC11]. Toutefois, dans notre cas,
les indexes sont des indexes bitmaps, qui présentent divers avantages sur les techniques
existantes. Tout d’abord, ces indexes, efficacement compressés requièrent peu d’espace et
peuvent notamment être stockés en mémoire vive. Ensuite, ils sont plus faciles à maintenir
en cas de mise à jour de la hiérarchie de classes et propriétés.

Nous présentons notre approche en détail, en expliquant notamment comment un sys-
tème de gestion de données classique peut tirer partie de ce modèle de stockage, et nous
présentons des résultats expérimentaux préliminaires qui en démontrant l’intérêt.

Cette approche a fait l’objet d’un article publié dans un workshop international [Leb12].



xviii

Conclusion

La nécessité de gérer efficacement des informations structurées et annotées sémanti-
quement se fait de plus en plus pressante. Dans cette étude, nous jetons les bases d’un
modèle de données et d’un langage de requêtes pour représenter et interroger des do-
cuments d’après leurs structures et la sémantique de leurs annotations. Nous étudions en
profondeur les techniques d’évaluation et d’optimisation de requêtes possibles tirant partie
d’application existante. Nous avons développé une plateforme complète pour le stockage
et l’interrogation de données XR. Nous avons mis en place un ensemble d’expériences
pour démontrer l’efficacité et la pertinence de notre approche. Nous présentons FactMin-
der, un logiciel pour l’aide à la vérification de faits en ligne. Enfin, nous introduisons une
technique alternative pour le réponse aux requêtes RDF.

Nous comptons prolonger ce travail selon les axes suivants : (i) étendre nos travaux
sur la composition, en introduisant des optimisations (élagage et minimisation) dans l’al-
gorithme de composition et en considérant le problème dans un contexte à plusieurs vues,
(ii) introduit un modèle de coût pour automatiser l’optimisation de requêtes, (iii) étendre
notre langage de requêtes, notamment en considérant des prédicats plus riches (négations,
inégalités), des opérations d’agrégation, et enfin (iv) étudier les interactions sociales entre
utilisateurs dans un contexte où les annotations peuvent être partagées et échangées.
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Chapter 1

Introduction

When the World Wide Web emerged in the early nineties, few people could have
guessed how fast it would come to be both ubiquitous and indispensable. In three decades,
it has become an invaluable part of our private and public lives. The so-called Big Data
era was spawned by the combined improvements of data collection and storage capacities
(e.g., sensors, portable devices), of means of publications (e.g., wikis, social networks)
and by the growing amount of people who have access to the Internet. Finding ways to
reach out for relevant information in the plethora of data is the center of the data manage-
ment community.

1.1 From Web 1.0 to Web 3.0

Originally, most documents published on the Internet complied to the markup lan-
guage HTML. What was retrospectively named the Web 1.0 was mainly a large set of
unstructured documents interconnected through hyperlinks. Seldom Internet users had
the technical tools and knowledge to publish simple documents on the Web, let alone
structured data.

In 1998, the W3C published the XML recommendation [www08c], a format for pub-
lishing data in a more principled manner than HTML. XML quickly became the substrate
of the Web 2.0, the Web of wikis and social networks, where exchanging data is within
reach of anyone. Its best-known incarnation, XHTML, is the format of virtually every
modern Web pages. Under other forms, it is also prevalent in data exchange, such as Web
services (SOAP), remote procedure calls (XML-RPC), news feeds (RSS/Atom), and so
on. The Web 2.0 was still human-centric, and a large part of the information contained in
Web pages remained opaque to computer programs.

In 2004, the W3C published the current RDF recommendation [www04b] as a means
to enable a more machine-processable “Semantic Web”. Briefly, RDF allows representing
knowledge as a graph, where nodes are resources or literal values and edges are predicates

1



1.2. MOTIVATION: STRUCTURE VERSUS SEMANTICS

Figure 1.1: The Linked Open Data cloud as of September 2011

indicating relationships between resources or assigning values to resources. Each pair of
nodes linked by an edge, can be seen as a statement (a.k.a. fact) of the form “Subject
Predicate Object”, the basic information unit of RDF. An essential feature to RDF is its
semantics. In short, some RDF statements can be used to described relationships among
concepts, to minimize the amount of data that is explicitly declared. For instance, it is
possible to derive the fact “Shakespeare is a person”, from two other facts: “A writer is a
person” and “Shakespeare is a writer”.

RDF started to take off from 2006 thanks to the Linked Data principles [www06b],
a set of simple rules proposed by Tim Berners-Lee, to encourage the publication, con-
sumption and discovery of data on the Web. Since then, a growing number of institutions,
governments and companies have adopted these practices and made data available to users
online. Data sets covering knowledge in a wide variety of domains (science, culture her-
itage, public services, etc.) have already been published. They also generally link to one
another. The diagram 1 depicted on Figure 1.1 shows a subset of publicly available RDF
data sets listed by the nonprofit organization Open Knowledge Foundation [wwwh] as of
2011. It estimated then that 31 billion statements were publicly available.

1.2 Motivation: Structure versus semantics

In some respect, XML and RDF could both be considered “success stories”, yet, they
are still the center of attention of the Web data management community. Data on the Web

1. http://lod-cloud.net/state/
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is inherently distributed, inconsistent and incomplete, and many problems pertaining to
XML and RDF are still, in isolation, keeping researchers busy. XML and RDF have some
fundamental differences, which push people to use them with distinct purposes in mind.
XML relies an unranked, node-labeled, ordered tree model. It is commonly used to give
structure to data, possibly constrained by some schema (DTD or XML Schema). RDF is
an unordered, node- and edge-labeled graph data model. It is particularly convenient for
representing knowledge or data that does not conform to a particular schema. Little has
been done in the way of considering the management of combined XML and RDF data.
This, however, would have the following advantages:

– The amount of data available in either formats is so large that converting data into
a single format is not feasible in practice. Because of the differences previously
mentioned, translating XML data to RDF (or the opposite) generally leads to overly
complex data instances and queries.

– By considering XML and RDF data together, some properties specific to one model
could carry over to the other. For instance, the reasoning capabilities offered by
RDF could be extended to XML data management.

– The concurrent management of XML and RDF would also bring about interesting
opportunities for query optimization, which deserve to be thoroughly explored.

– Beyond the traditional usages of XML and RDF, such as data exchange and knowl-
edge representation, there are emerging applications, such as fact checking and data
journalism, which require solid database foundations. We believe that looking at
both models through a common lens would support such applications in an elegant
way.

Below we present three scenarios that further highlight the interest of combining XML
with RDF data.

Scenario 1: semi-automated fact-checker. As a concrete example, consider an elec-
tion campaign, where candidate :Joe publishes on his Web site transcripts of his speeches,
expressing his opinions on the situation in :Turkey or :Japan, or the local economy, citing
a :MonthlyUnemploymentRate for :July2012 as being “8%”. Using an officially issued
database such as http://data.gov, one can automatically check whether the cited
number is correct. Moreover, archiving the candidate’s speeches allows finding, e.g., “the
earliest and latest date at which his discourses mentioned an Asian country”, or (if the can-
didate’s official agenda is also added to the analysis) “for each foreign country, the visits
the candidate received from or made to that country, and the mentions he subsequently
made of the country in his speeches”. Although such queries are too ambiguous to yield
any valuable results if posed in natural language, with proper knowledge of the datasets
in hand and their semantics, an expert should be able to express them in a structured
language through a single query or some composition of queries.

Scenario 2: focused Web warehouse. The ACME company wants to keep up with the
image of its products as reflected by content published on the Web (on news sites, blogs,
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social networks, etc.). To this end, it sets up a set of specialized feeds, one from each
source of content (e.g., one for crawling open Web content, others as subscriptions to
specific Twitter hashtags, etc.), and archives the XML results brought by these feeds in
a database. The documents are then parsed, analyzed, and compared with ACME’s RDF
knowledge database containing brands, models, clients, sales, information about ongoing
marketing campaigns, etc. The warehoused XML content is thus connected to the objects
and contents of the knowledge base, and can be subsequently exploited by asking, e.g., for
“the authors and affiliation (if any) of all blog posts from July 2012, mentioning ACME
:Prod1 products (regardless of their model)”. This query involves reasoning through an
RDF Schema to understand that :Prod1v1 and :Prod1v2 are all versions of ACME’s
:Prod1, querying the XML warehouse for blog posts mentioning :Prod1, :Prod1v1 or
:Prod1v2, and returning the desired blog author’s affiliation. Observe that if the authors’
affiliations (e.g., organizations they work for) are also recognized in the RDF database,
one may refine the query result by further exploring their links in this database, finding,
for instance, in which country each organization is located or how many employees it has.

Scenario 3: patient records. Another use case for annotated documents is in the area
of electronic patient records (EPR). French hospitals seeking more interoperability among
their respective patient files (partly paper-based, and partly electronic), set up systems
where paper-based records are scanned and then subjected to text recognition. Subse-
quently, they apply natural language processing techniques on these electronic files, an-
notate them with entities (diseases, symptoms, etc.) recognized from a domain ontology,
and index them accordingly. Physicians can then more easily find “admission dates of
female patients with heart problems” or “the list of drugs targeting eating disorders that
have been administered to patients diagnosed with diabetes”. These queries typically
touch upon data that may exist in different models.

This work aims at enabling such requirements, by proposing a unified model allowing
the combination of XML data with RDF data into a single instance.

1.3 Contributions and outline

This thesis addresses the management of mixed XML and RDF data and query an-
swering for RDF data. Since these two aspects are orthogonal, the solutions introduced
for the latter can in practice easily be applied to the former. The remaining chapters and
their respective contributions are described below:

Chapter 2 introduces XML, RDF and the approaches that have been proposed so far to
efficiently store and query data in these two models. At the end of this chapter, we present
prior works that considered such a setting in the past and in various contexts.
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Chapter 3 formally defines a data model and query language for managing data at the
junction of XML and RDF.

– We introduce XR, a model for representing interconnected XML and RDF data.
– We present XRQ, a query language, which comes in two version: a core language

returning tuples and an extended language producing XR data.
– We detail the syntaxes and semantics of the core and extended versions of the lan-

guage.
– We provide an algorithm for composing XRQ queries over views.

Chapter 4 presents the XR platform, and explores the space of query evaluation and
optimization strategies.

– We study the problems of evaluating and optimizing XRQ queries under a wide
range of storage systems.

– We present XRP, a full-fledged query evaluation engine that can run on the top of
virtually any existing XML and RDF data management system.

– We present an experimentation campaign for all the evaluation strategies and opti-
mizations previously introduced.

Chapters 3 and 4 were the main topic of four papers [GKK+11b, GKK+11a, GKK+12,
GKK+13b] published respectively in a national conference, an international workshop, a
national and an international journals.

Chapter 5 describes FactMinder, a W3C-standards compliant, rich browser interface
aimed at data journalism and online fact checkers. The system, implemented as a browser
extension, brings together the techniques presented in this thesis. This work was presented
as a demonstration [GKK+13a] in an international conference.

Chapter 6 focuses on efficient RDF query answering, i.e., query evaluation under RDFS
entailments, with an approach based on bitmap indexes. In particular:

– We introduce a storage model for RDF that minimizes space requirements over
classic approaches, especially in cases when saturation is used. The model can
conveniently be used on top of existing storage systems.

– We detail how query evaluation can be done under this model.
– We present a novel index that compiles the semantics of an RDF graph into a com-

pressed structure, removing the need for saturation and show how queries are eval-
uated in the presence of such indexes.

– We provide experimental evidence that the storage model and the index will be
valuable instruments in the toolkit of RDF management system implementors.

This work was the topic of a short paper [Leb12] published in an international work-
shop.
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Chapter 7 closes this thesis with a summary and a discussion on the directions in which
these topics could be further explored.
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Chapter 2

Background and state-of-the-art

This chapter describes XML and RDF in isolation and previous works that have stud-
ied the interaction thereof.

More precisely, in Sections 2.1 and 2.2, the data models and query languages associ-
ated with XML and RDF are respectively detailed. We present well-known complexity
results and a number of storage models that have been proposed for both formats. In Sec-
tion 2.3, we explore prior works that have considered the combined management of XML
and RDF data.

2.1 XML data management

The W3C introduced the XML recommendation in 1998 [www98], which has reach its
fifth edition in 2008 [www08c]. It was originally derived from SGML 1, an ISO-standard
markup language, and as such, one of its primary goals was to enforce a clean separation
between data and the way it should be processed.

Although it is best known for publishing documents on the Web, it is also commonly
used in data exchange, for example as a serialization format for other data models, includ-
ing RDF. Arguably, its success is partly due to its simplicity and flexibility. XML files
are, to a certain extent, easy to write and read for a human. Optionally, one can attach
a so-called DTD (Document Type Definition) or a Schema to an XML file to limit its
vocabularies, constrain its structure or enforce typing.

In this section, we introduce the XML data model, as well as the query languages
associated with it. We provide some formal results pertaining to query evaluation.

1. ISO-8879
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2.1. XML DATA MANAGEMENT

2.1.1 Data model and query languages

Multiple data models and query languages based on XML have been proposed such
as XML-QL [ADMFDF+98], XQL [IKKN99] relying on nested query syntaxes, or some
more user-friendly graphical languages, such as XML-GL [CCD+99], XGL [FFG02] and
XQBE [BCC05].

Yet, the XQuery and XPath data model [www10], a W3C recommendation, is the de
facto standard for managing XML data. The notions of tree and sequence are at the core
of the model. The nodes of a tree can be one of seven types: document, element, attribute,
text, namespace, processing instruction, and comment. Without loss of generality, in this
thesis, we focus on the first four types. An XML document is a node-labeled, unranked,
ordered tree, rooted at a document node. Elements can have children of any types other
than document. Attributes may feature at most a single text node as a child. Text nodes
are necessarily leaves. Figure 2.1 depicts a sample XML document in its serialized form
(top) and as a conceptual tree (bottom). The document represents information about the
book “Principles of Database” by Jeffrey D. Ullman of Stanford University, published in
1980.

As its name suggests, XPath is a language for selecting nodes in XML documents
based on their paths. The initial version of the language, XPath 1.0, allows navigating
along axes such as child, descendant, previous and next siblings. It also allows some
boolean predicates on nodes along a path. As an example, the query //author/name
evaluated on the document of Figure 2.1, where “/” and “//” represent child and descendant
axes respectively, returns the node labeled “name”. The combined complexity, i.e., when
both the input query and data vary, for XPath 1.0 is in PTIME [BK08]. The current XPath
2.0 extends its predecessor with set operators and iteration capabilities.

Although XPath can be used as stand-alone language, it is also a component of the
more powerful XQuery language. XQuery queries are nicknamed FLOWR expressions,
an acronym gathering initials of the language’s most important key words. Among them,
the for and let key words let one iterate over sequences and assign variables. The where
clauses allows one to impose constraints on those variables. The result defines how the
result of the query should be constructed. Queries can be nested, and functions (both
built-in and user-defined) can be used within the language. XQuery is a Turing-complete
functional language. The expressivity and complexity of various of its fragments are
studied in [BK09]. In this thesis, we also use the Unified Data Model [MPV09], an
extension of XQuery that allows sets, bags and lists of tuples.

2.1.2 Storing XML data

When a new data model emerges, researchers are first tempted to adapt it to the well-
established relational databases. This was also true for XML, where a host of works have
explored the ways to split XML documents to store them in relational tables [STZ+99,
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2.1. XML DATA MANAGEMENT

<book>
<title>Principles of Database Systems</title>
<year>1980</year>
<author>
<name>Jeffrey D. Ullman</name>
<affiliation>Standford University</affiliation>

</author>
</book>

book

title

“Principles of Database Systems”

year

“1980”

author

name

“Jeffrey D. Ullman”

affiliation

“Standford University”

Figure 2.1: Example of an XML document, serialized (top) and conceptual (bottom)

DFS99, YASU01, TVB+02]. These approaches use either DTDs, query workloads or
simply XML data as input information to shred the data into sets of tuples. Queries
are then translated into SQL, to be optimized and evaluated as in a conventional rela-
tional setting. Also originally a relational database, the column-store MonetDB was mod-
ified to support XQuery evaluations [BGvK+06]. Along the same line, most commercial
RDBMS systems, such as IBM DB2 [BCH+06], Microsoft SQL Server [PCS+04] and
Oracle [LM09b] have implemented extensions to support XML, XPath and XQuery.

Another set of XML-relational systems, that could be called XML mediators, includes
SilkRoute [FTS00], Xperanto [CKS+00] and XTables [FKS+02]. In those systems, data
that originally resides in relational tables is published as XML views, allowing to query
these tables with a XML query language such as XQuery. As with previously cited works,
queries are ultimately rewritten into SQL queries.

Native XML storage systems have also been proposed, among which Natix [FHK+03]
is one of the first. BaseX [wwwa] and eXist [Mei03] are open source systems that have
been extensively used in research.

Because XML data is pervasive and distributed in nature, distributed XML manage-
ment techniques have also been introduced, such as peer-to-peer systems [BC06, AMP+08,
MKK08, KKMZ12] and more recently Cloud-based systems [KCS11, CRCM12]. These
works explore problems such as data placement, distributed indexing, and cost amortiza-
tion.
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Storing node metadata. A number of XPath/XQuery operators allow to check certain
relationships between nodes, for instance, whether a node a follows b or is an ancestor
thereof. Such relationships are also useful when XML documents are shred into smaller
pieces, e.g., in a materialized view-based system such as ViP2P [KKMZ12]), and must be
combined back through structural joins at query time. A common practice, first advocated
in [YASU01], is to label node with prefix, postfix and depth positions obtained by a single
depth-first traversal of the document. This technique however is not sufficient when one
need to list the children of a node in order. A more fine-grained approach, Extended
Dewey IDs [LLCC05], labels each node with the positions of each of its ancestors among
siblings. A variant named Dynamic Dewey ID [XLWB09] makes the labeling amenable
to updates.

Those techniques are also useful to determine node identity, i.e., whether two nodes
are the same regardless of their serialization. This will be further discussed in Chapter 4.

2.2 RDF data management

The Resource Description Framework (RDF) [www04b] is a W3C recommendation
for representing and interchanging data on the Web. In recent years, notably with the
advent of the Linked Data movement, RDF has imposed itself as a prominent format,
with thousands of data sets publicly available and linking with one another [wwwh].

An RDF data instance can be seen a directed, node- and edge-labeled graph. It is not
required to comply with a schema. However, some edges of an RDF graph may belong
to a predefined vocabulary, allowing to derive additional knowledge from the graph and a
set of simple rules.

In section, we formally define the RDF data model and the conjunctive fragment of
SPARQL, the principle language for querying RDF. Next, we present various ways in
which RDF can be stored. Finally, we provide some details on SPARQL query evaluation
and query answering under RDFS entailment.

2.2.1 The data model

Let U be the set of URIs as defined in [www01], and L the set of literals. Literals are
terminal values used to assign properties to resources. Although literals can be been given
a language or a type, for simplicity, we can see L as the set of all strings. Finally, B is the
set of blank nodes (accounting for unknown resources).

Definition 2.2.1 (RDF Instance). An RDF instance IR is a set of triples of the form
(s, p, o), where s ∈ (U ∪ B), p ∈ U , and o ∈ (L ∪ U ∪ B).

The components of a triple (s, p, o) are usually referred to as subject, property (or
predicate) and object, respectively.
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{(:Obama, :presidentOf, _:x)
(:Obama, :name, “Barack Obama′′)
(_:x, :name, “United States′′)
(:presidentOf, rdfs:domain, :President)
(:President, rdfs:subClassOf, :Person)
(:Obama, rdf:type, :President)
(:Obama, rdf:type, :Person)} :Obama

_:x

“Barack Obama”

“United States”

:President

:presidentOf:Person

rdf:type

rdf:type :presidentOf

:name

:name

:domain

:subClassOf

(a) (b)

Figure 2.2: Example of an RDF data set, as a set of triples (a) and as a graph (b)

RDF is also commonly represented a graph, as shown in Figure 2.2, where the set
of triples in (a) is represented and as a graph in (b). Note that here and subsequently in
this work, we make the convention that strings starting with : are URIs. Formally, URIs
consist of two parts: a namespace, and a local name, separated by the : symbol. A URI
without a specified namespace is of the form :LocalName, and is interpreted to refer to
a default namespace. We also follow the usual convention of denoting blank nodes by
_:-prefixed names.

As defined above, the subject or the object of the triple can be bound to a so-called
blank node, i.e., unknown URIs or literals, similarly to labeled nulls in the database liter-
ature [AHV95]. For instance, in Figure 2.2, the blank node _:x in the triple
(_:x, :name, “United States′′) to state that the name of the resource _:x is “United
States”, without using a concrete URI.

2.2.1.1 RDF Semantics

The W3C’s RDF recommendation comes with a vocabulary, RDF Schema, i.e., a pre-
defined set of URIs whose semantics is fully described in [www04d]. Among these,
rdf:type, used as a property, assigns a type (or class) to a resource. This is a cen-
tral mechanism in RDF that sets rdf:type statements (or class assertions) apart from
other statements (property assertions). Other notable URIs include rdfs:subClassOf,
rdfs:subPropertyOf, rdfs:domain and rdfs:range.

The semantics of RDF is defined through sets of entailments rules to derive implicit
data from an RDF graph. In this work, we focus of RDFS-entailments, whose rules are
listed in Table 2.1. These rules enforce hierarchical constraints among classes and prop-
erties as well as typing constraints on the domain or range of a property.

As an example, the triple represented in gray in Figure 2.2 (a) (corresponding to
dashed edges in Figure 2.2 (b)) are not explicitly stored as part of the data. The fact
that “:Obama is a president” is inferred from the fact “:Obama is :presidentOf of some-
thing”, and that the “domain of the property :presidentOf is :President”. Moreover,
since “:President is a sub-class of :Person”, it can further be inferred that “:Obama is a
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Semantic relationship RDF notation FOL notation
Class inclusion (c1, rdfs:subClassOf, c2) ∀X(c1(X)⇒ c2(X))
Property inclusion (p1, rdfs:subPropertyOf, p2) ∀X∀Y (p1(X, Y )⇒ p2(X, Y ))
Domain typing of a property (p, rdfs:domain, c) ∀X∀Y (p(X, Y )⇒ c(X))
Range typing of a property (p, rdfs:range, c) ∀X∀Y (p(X, Y )⇒ c(Y ))

Table 2.1: Semantic relationships expressible in an RDF Schema

:Person”.

Given two RDF graphG andH , and a graphH ′ obtained by adding toH all triples that
can be derived through RDFS-entailments, the problem of determining whether a graph
G RDFS-entails H , i.e., G is a sub-graph of H ′, is NP-complete in the general case, and
polynomial in the absence blank nodes [tH05]. The problem remains however tractable if
blank nodes respect simple structures [PPWW08].

2.2.2 Querying & storing RDF

2.2.2.1 SPARQL

Queries on RDF data are usually expressed in SPARQL [www08b], a graph matching
language with strong ties to relational query languages. In fact, it has been shown that a
large fragment of SPARQL can be translated to SQL [CLF09] and datalog [Pol07].

In this thesis, we only consider the conjunctive fragment of SPARQL, a.k.a. Basic
Graph Pattern (BGP) queries. A BGP is a set of triple patterns, i.e., triples in which vari-
ables can appear in subject, property or object positions. Such queries can be expressed
as conjunctive queries over a single relation t(s, p, o). For instance, the following query
finds all resources typed as :Person, which have some relationship with a resource whose
:name is “United States”:

q(X) :- t(X, rdf:type, :Person), t(X, Y, Z), t(Z, :name, “United States′′)

The most recent SPARQL 1.1 recommendation [www13a] introduces the notion of
entailment regimes [www13b], allowing one to choose among different semantics under
which a query should be evaluated. In this context, the RDFS entailment regime corre-
sponds to the semantics earlier described. Under the RDFS entailment regime, this query
must return :Obama when evaluated over the data set of Figure 2.2.

2.2.2.2 Triple stores

Because RDF data can either be viewed as a graph or as a set of triples, various classes
of storage systems have been proposed to store RDF data.
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Relational approaches. Historically, relational approaches have been the first ones in-
troduced, as they allow to inherit a host of features available in legacy RDBM systems,
such as optimization and transaction management.

Among these, Jena [WSK+03] introduced so-called property tables, where each record
corresponds to a distinct subject while each attribute of a table corresponds to a distinct
property. Depending on the data distribution, such tables can be sparse. This can be
mitigated with proper clustering and partitioning of the tables [LM09a]. Vertically par-
titioned tables, a.k.a. binary tables, are a particular case of property tables, where each
table is made of two columns (subject, object) and stores all the triples of a given prop-
erty [AMMH07, SGK+08].

Triple tables are yet another relational approach to store RDF. Sesame [BKVH02],
Hexastore [WKB08] and RDF-3x [NW08] are proponent members of this class. As eval-
uating (even small) SPARQL queries on such tables leads to a large number of self-join
on a potential large relation, the latter two systems resort to multi-way indexing of the
three columns to maximize opportunities for merge joins. Index compression, cost-based
join-ordering, sideways information passing [NW09] and fine-grained cardinality estima-
tion [NM11] are among the ingredients used to minimize space consumption and maxi-
mize query evaluation performances.

As data sets grow in size, data compression has become in an important challenge
when storing RDF. A simple yet effective compression technique introduces with RDF-
3x is called dictionary encoded, whereby all distinct URIs and literals of a data instance
are stored in a dictionary table and assigned a unique key. The triple table in turn only
stores keys to the dictionary. This approach has been pushed further in the HDT sys-
tem [FMPG+13] where, in addition to dictionary encoding, authors propose various com-
pression schemes for the triple table itself.

Other approaches. As a graph data model, RDF can naturally be managed within
graph data management systems. These systems are generally based on Key-Value stores,
where keys are nodes and values are adjacency lists. This is the solution adopted in
gStore [ZMC+11]. Neo4J [wwwg], a Java-based graph database, has built-in support
for RDF. Another notable class of storage systems are known as RDF cubes, introduced
by [MPK07] and later explored by Atre et al. [ACZH10] and De Virgilio [Vir12]. Con-
ceptually, in an RDF cube, dictionary keys of each triple (s, p, o) are the coordinates of a
single point in a 3-dimensional discreet space. Each point in that space is a bit set to one
if the triple exists, zero otherwise. An RDF instance can thus been seen as a sparse, and
therefore highly compressible, bit tensor. At query evaluation time, bitwise operations
allow to quickly prune intermediate results to improve memory usage.

The growing size of available RDF data sets has pushed many to study distributed
storage schemes. Among them, Kaoudi et al. [KMK08] provides procedures to store RDF
and perform RDFS query answering over DHTs. Urbani et al. [UKOvH09, UvHSB11] ex-
plored RDFS reasoning techniques over a Map-Reduce architecture. Huang et al. [HAR11]
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use graph partitioning to distribute subparts of a large RDF dataset on nodes of a Map-
Reduce cluster, so as to maximize the chances of joining data within individual nodes,
and thus minimize data transfer.

Commercial systems are primarily based on relational back ends, such as Oracle [CDES05],
IBM DB2 [wwwb] and Virtuoso [wwwk], with AllegroGraph [www04a], a graph database-
backed system, as a notable exception.

2.2.2.3 Reasoning support in RDF data management systems

There are a variety of techniques to answer SPARQL queries under RDFS entail-
ments, among which forward chaining and backward chaining are the most common ones.
Briefly, the forward chaining approach consists in applying RDFS entailment rules onto
the data to derive new facts, until it reaches a fixpoint. The statements thus derived are
materialized along with the data. Query answering then amounts to query evaluation.
With backward chaining, the data remains unchanged, however queries are rewritten us-
ing the entailment rules backward. This results in a union of conjunctive queries whose
evaluation returns a complete answer w.r.t. the rules. These techniques are further detailed
in Section 6.1.

In practice, rewritings obtained through backward chaining grow exponentially in the
size of the input query, and are therefore generally hard to optimize. This is why most
research and commercial systems resort to forward chaining despite its obvious space
and maintenance overheads. Other techniques are in fact variations or optimizations of
forward and backward chaining. In chapter 6, we present a novel approach to mitigate the
pitfalls encountered with forward and backward chaining.

2.3 At the junction of RDF and XML

One objective of this work is to show that combining XML and RDF yields more
than the juxtaposition thereof. Recent initiatives such as the Open Annotation Collabora-
tion 2 (OAC) show that using RDF to compensate for the lack of semantics in XML is a
promising research direction.

Although, in theory, one could simply convert RDF into XML or vice-versa, the
tremendous amount of data available on the Web and the frequency at which it is updated
plead for efficient techniques for managing these data in their native formats. Moreover,
converting RDF to XML (or XML to RDF) would lose the opportunity to exploit existing
research and systems on efficiently storing and querying RDF (respectively XML).

There are three major contexts in which research have sought to bring XML and RDF
together. The first involves XML data integration using ontologies, the second covers

2. http://openannotation.org
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attempts to achieve interoperability between the XML and RDF data models, while the
third considers using RDF for annotating structured data.

2.3.1 XML data integration using ontologies

Although the idea of using ontologies to abstract the schema of distinct data sources
is not new, one of the first attempts to use ontologies for XML integration is OntoBro-
ker [DEFS99, ES01]. The system uses mapping rules from ontological concepts to DTD-
style snippets, to automatically extract facts about XML documents from their structures.
This allows later querying those documents on the concept derived from their structure,
rather than just the structure itself. In [AFS+01, ABFS02a, ABFS02b], authors focus on a
Local-As-View approach, where a global schema is expressed using domain ontology and
views are rules from concepts or relationships to XPath expressions. These rules are used
to rewrite queries on the global ontology to queries on the local XML documents, taking
into account the presence of relations between rules and the distribution of sources.

Although, for historical reasons, these works rely on a general ontological formalism,
RDF could trivially be used in the mapping definitions. They provide a means to convey
semantics to XML data, but ultimately ontologies are only use at a terminological level,
thus data instances are XML. In this works, we aim at bringing together RDF and XML
data instances. Moreover, as we introduce the concept of XRQ views (Section 3.3), we
will see that these can also be used in data integration scenarios, with the advantage that
mappings can be directly expressed using our query language.

2.3.2 Interoperability between XML and RDF

RDF has several serializations, the most popular of which has long been based on
XML. However, any particular way of encoding triples into trees must somehow arbitrar-
ily pick or create root elements without a clear RDF meaning, while a central RDF feature,
namely, joins on URIs appearing in multiple triples, is encoded by sharing XML attribute
values. Processing an RDF query on such XML-encoded data leads to XML queries with
numerous value joins, whose evaluation is still challenging for current XML query pro-
cessors [AM08], an observation confirmed also in [KZ10]. Thus, one can consider the
XML serialization of RDF as helpful for data sharing but not for human consumption, nor
for query processing.

Some works consider employing the language of one model to query the other. These
approaches imply two levels of translations: (i) converting the queries themselves, (ii)
converting the data ahead of query evaluation and/or the data from the query results. These
conversions bring either models to the level of the more complex one, which provides
sufficient generality, but loses the performance benefits attained by current XQuery and
SPARQL processors on many types of queries. This has been attempted to query RDF
using XQuery or XSLT [RGN+01, PSS02]. The most recent papers in this line of work
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are, to our knowledge [BGTC09] and [GGL+08], where performance evaluations show
that in addition the data conversion costs, queries run two to four times slower (with Saxon
and QuizX respectively) than the native SPARQL query engine Jena. The transformation
of XML into RDF, so that it can be queried with SPARQL, is studied in [DFG+07].

The RDF model provides a means for typing literals in object position of a triple.
Among those, the XMLLiteral type is a valid one. In [CKKC+09], authors have imple-
mented XPath/XPointer function into SPARQL, to access sub-part of such literals. In this
context, the XML content is belongs to the RDF instance, and therefore disconnected from
any XML document. Moreover, the RDF model, forbidding literals in subject position,
would prevent to connect XML nodes with a single triple. In [DFG+09], authors show
how to translate such XPath expression into SPARQL sub-queries. Their experimental
evaluation shows that the translation is detrimental to query evaluation.

Other works aimed at, as described in W3C’s GRDDL recommendation [www08a],
transforming XML data to RDF and vice versa. In the literature, these are known as lifting
and lowering, respectively. XSPARQL [AKKP08], a hybrid query language based on the
W3C recommendations for SPARQL and XQuery/XPath, is a proponent member of this
family. Its syntax is essentially an extension of XQuery allowing interleaved SPARQL
calls. Among other extensions, the language introduces for loops with multiple vari-
ables, e.g., to iterate over the results of a SPARQL query. The semantics of the language
is defined in terms of rewritings from XSPARQL queries to XQuery and SPARQL. Any
information passing between the two models is done through custom XQuery functions.
Queries take XML and RDF files as input and, in turn, output XML or RDF. The au-
thors detail an execution engine in-depth in [BDK+11]. Incoming queries are rewritten as
XQuery, executed on off-the-shelve systems (Saxon and Qexo in this case). User-defined
SPARQL functions access a Jena database. Because of its strong ties with XQuery, XS-
PARQL queries are by nature, made of nested loops. Authors presents some optimiza-
tions, also defined in terms of query rewritings, which attempt at unnesting queries as
much as possible. Experimental results are presented, showing query evaluation times
on RDF-translated of the XMark data. The largest dataset used in these experiments has
100M of data. Their results indicate that unnesting reduces the evaluation time by one to
three orders of magnitude. Queries are however optimized primarily at a syntactic level.
In this work, we will show it is also possible to optimize queries at the level of the physical
plan. We found that unnesting is not always the best solution in practice, and that a closer
look must be taken at the data and query structures, to make the best optimization choice.

Finally, a rule-based query language, Xcerpt [FBB05] allows to the management of
XML or RDF through a common syntax.

2.3.3 Document annotations

Since the emergence of RDF, a set of tools was proposed to exploit the model and en-
able users to attach semantic annotations to Web pages. The representation of annotations
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on XML documents has inspired projects focusing on a data model perspective such as
Annotea [KK01], which served as a basis for the OAC initiative [HSSVdS11]. The latter
model, currently a W3C community draft, is solely based on RDF. An annotation is a set
of triples with a body, representing the content of the annotation along with metadata, and
one or more targets that can be virtually of any type. In particular, targets can be defined
by selectors, a set of triples that define the way to access the object (or one of its part)
being annotated. Such selectors can be used to point to XML content, in which case, it is
expressed using XPath or XPointer.

From an end-user perspective, tools have been proposed to annotate Web pages man-
ually [HS02, Yee02] or in a semiautomatic fashion [DEG+03, VVMD+02]. A compre-
hensive overview of annotation systems can be found in [RH05]. However, these works
focus solely on the problem of representing, storing or querying RDF annotations, and
they do not consider the possibility to query simultaneously structured documents and the
annotations on top of them.

Many applications require smart warehousing of structured (or simple text) docu-
ments, notably on intranets, where one tries to make the most out of the documents created
by employees on projects that may be similar to each other. In the French R&D project
WebContent [AAC+08], authors have worked on building tools for warehousing seman-
tically annotated pages gathered from the Web. Web crawlers gathered pages on specific
topics, e.g., specialized press reviews of aircraft for the Airbus project partner; such pages
were then cleaned of unwanted banners etc., a natural language analysis was run and spe-
cific entities (such as e.g., “Airbus A320”) were localized in the text. Accordingly, the
documents were annotated with this named entity, allowing to connect them to specific
concepts in the ontology, such as “passenger airplane” or “EU-manufactured aircraft”.

A more recent addition to the family of frameworks for representing and querying doc-
uments with annotations is the QUASAR system [CBK12]. The data model relies on doc-
uments structured around three levels of granularity, paragraphs, sequence of sentences
and tokens. RDF annotations can be scoped over snippets, i.e., contiguous sequences of
blocks of any types. The query language is inspired from SQL, with additional syntactic
features to allow for simple RDFS type of reasoning.

The problem of publishing RDF annotations within XML documents has been tackled
by recent technology standards applied in the XHTML context: microformat [wwwf],
eRDF [www06a] and W3C’s RDFa [www04c] standard. The goal of these works is to
provide specific syntax enabling the publisher (author) of a Web page to embed some
semantic annotations in the page itself. However, only those having the right to modify
the page, which is restrictive, can use such models. Moreover, the models do not lend
themselves to the situation when users wish to keep their annotations private (or share
only specific annotations with specific users).
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2.3.4 Summary

XML and RDF are distinct data models, yet it was clear from RDF’s inception that
both models should complement one another. Data is now widely available in both models
and converting all data from one to the other is not a pragmatic option. To leverage the
benefits of XML and RDF, we need a model that works on existing data, while allowing
to represent and query interconnected XML and RDF data. Such a model should also
preserve all reasoning capabilities that RDF provides. It should be amenable to query
composition, such that the result of a query be seen a new data instance. Ideally, the
model should allow taking advantage of all existing query optimization techniques that
have been proposed for XML and RDF.

In the next chapter, we present XR and its query language XRQ, that bring all these
requirements together. After defining the model formally, we present the syntax and se-
mantics of its query language and provide an algorithm to compose an XRQ query over a
view.
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Chapter 3

The XR data model and query language
for semantics-rich documents

In this chapter, we present XR and XRQ, a data model and query language for Web
data management. XR combines the advantage of the XML and RDF frameworks, with-
out compromising any of the features defined in their respective recommendations. The
contributions gathered in this chapter are the following:

Data model (Section 3.1). Our data model naturally allows the representation of XML
data, RDF data and the union thereof, but more importantly it also allows for instances
where XML and RDF are interconnected (e.g., where an RDF triple may refer to an XML
node).

Query language (Section 3.2). To allow existing users of XML and RDF platforms to
easily transition to our combined platform, we designed a query language that not only
allows querying inter-connected XML and RDF instances, but does so by staying close to
the standard query languages employed for each of the data models in isolation.

Composition (Section 3.3). The query language is amenable to query/view composition,
by which a query is evaluated over the result of a view, rather than over an instance. We
present an algorithm to compose an XRQ query over a view and prove its soundness.

3.1 The XR data model

To represent annotated documents, we introduce the XR data model. In keeping with
the widely accepted standards for representing semi-structured data (i.e., XML) and se-
mantic relationships (i.e., RDF), an instance of the XR data model comprises two sub-
instances: an XML sub-instance, consisting of a set of XML trees, and an RDF sub-
instance, consisting of a set of RDF triples. The connection between the two sub-instances
is achieved by assigning to each XML node a unique Uniform Resource Identifier (URI),
which can then be referred to from an RDF triple, as we will explain below.
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Next, we formally define XR sub-instances. We rely on a set U of URIs as defined
in [www01], and a subset I ⊆ U of document URIs acting as document identifiers. We
denote by L the set of literals (which for simplicity can be seen as the set of all strings).
N is the set of possible XML element and attribute names, to which we add the empty
name ε. Finally, B is a set of blank nodes (accounting for unknown literals or URIs, as we
will explain later on). An XML tree is defined as usual:

Definition 3.1.1 (XML Tree). An XML tree is a finite, unranked, ordered, labeled tree
T = (N,E) with nodes N and edges E, where each node n ∈ N is assigned a label
λ(n) ∈ N and a type τ(n) ∈ {document, attribute, element, text}.

Most frequently, we are concerned with trees that are also documents, i.e., those rooted
in document nodes. However, we may also consider trees rooted at simple XML elements,
for instance, when XML trees are passed from the output of one query to the input of
another, without being permanently stored within a document.

A set of XML trees forms an XML instance:

Definition 3.1.2 (XML Instance). An XML instance IX is a finite set of XML trees.

We assume available a function assigning a unique URI to each node in an XML in-
stance. Notably, the URIs assigned to document nodes correspond to the aforementioned
document URIs. The URI assignment function is crucial for interconnecting the XML and
RDF sub-instances, since the URIs assigned to the nodes allow the RDF sub-instance to
refer to nodes of the XML sub-instance. While discussing our system implementation in
Section 4.2, we present URI assignment functions that can be used in practice. However,
for the purpose of the definitions, it suffices to consider any URI assignment function act-
ing like a Skolem function, i.e., returning a new (“fresh”) value every time it is called for
the first time with a given input, and consistently returning that value to any subsequent
call with the same input.

The RDF sub-instance is defined as a set of triples, which can among others refer to
the URIs of XML nodes:

Definition 3.1.3 (RDF Instance). An RDF instance IR is a set of triples of the form
(s, p, o), where s ∈ (U ∪ B), p ∈ U , and o ∈ (L ∪ U ∪ B).

Furthermore, RDF does not only model explicit triples, but also implicit (a.k.a. en-
tailed) triples. These can be derived from the former based on a set of entailment rules as
described in Section 2.2. For the purposes of our discussion though, we define the follow-
ing notion: Given an RDF instance IR, its semantics is the RDF instance I∞R , called the
saturation (or closure) of IR, consisting of IR plus all the implicit triples derived from IR
through RDF entailment. RDF entailment is central to RDF query answering, and thus to
XR (as discussed in Section 3.2.2), since we need to take into account the implicit answers
in order to guarantee the completeness of query answers.

We can now define an XR instance as follows:

20



3.1. THE XR DATA MODEL

(:Alice, :workedWith, :Bob), (:Bob, :follows, :Charlie), (:Charlie, :authorOf, _:x), (_:x, :date, “Sep. 5, 2012, 12pm”),
(_:x, rdf:type, :MicroBlogPost), (_:x, owl:sameAs, #205), (:Alice, :authorOf, #106), (:Bob, :authorOf, #305)),

(#106, :about, #305), (#305, :about, #205), (#305, rdf:type, :Story), (#205, rdf:type, :Story),
(:Charlie, :congressAttendance, :Low), (:Alice, :knows, :Bob), (:Charlie, rdf:type, :MemberOfCongress)

doc#100

html#101

div#102

. . .

div#103

h2#104

“The problem with Charlie”#105

div#106

“According ...”#107

doc#200

microblog#201

blogtitle#203 message#202

“Charlie’s campaign”#204 body#205

“Visiting Iowa today”#206

doc#300

html#301

div#302

h2#303

“Charlie’s campaign”#304

div#305

“. . . ”

div#306

“Comments”#307

Figure 3.1: XR instance representing annotated documents

Definition 3.1.4 (XR Instance). An XR instance is a pair (IX , IR), where IX and IR are
an XML and an RDF instance, respectively, built upon the same set of URIs.

It is important to note that the XML and the RDF sub-instances are defined over the
same set U of URIs, thus allowing RDF triples to annotate nodes of XML trees. The
following example illustrates such an interconnected XR instance.

Example. Figure 3.1 shows a sample XR instance corresponding to a political news
scenario, which we will use hereafter as our running example. The RDF sub-instance is
shown on the top part of the figure, while the XML sub-instance is shown at the bottom.
The instance consists of three XML trees linked through RDF annotations. The first XML
tree includes a post on a blog concerning a campaigning politician named :Charlie. The
second XML tree is :Charlie’s micro-blogging site, whereas the third is an article in an
online newspaper. XML node URIs are shown as subscripts next to each node. The dashed
edges in the XML tree denote some levels of XML hierarchy omitted for simplicity.

URIs are used to allow the RDF triples to annotate the XML trees. For instance, the
first two triples, coming from a social site, specify that :Alice worked with :Bob in the
past and that :Bob follows :Charlie’s micro-blog. The next three triples state that :Charlie
posted an entry on his blog at 12pm on Sept. 5, 2012.

The triple (_:x, owl:sameAs, #205) states that the blank node _:x and the XML node
#205 of the blog stream are the same (the owl:sameAs property is frequently used for
encoding such statements in RDF [wwwj]). The RDF sub-instance further states that
:Alice posted the blog entry found on the node #106 of the leftmost document, and that
:Bob is the author of the entry #305 on the newspaper page. The two following triples
specify that :Alice’s blog post (#106) refers to :Bob’s article for further information, using
the :about property. Similarly, :Bob’s article links to :Charlie’s post, as one source of his
report. The RDF instance also states that :Charlie’s attendance of Congress sessions is
low.

Finally, the triples in gray do not appear explicitly in the instance. They can be inferred
from an RDF Schema (the RDFS is not shown in the figure), and stating that: (i) if a
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resource A is about another resource B, then B is a story, (ii) if a person A worked with
a person B, then necessarily A knows B, and (iii) someone whose :congressAttendance
property is defined is a member of the Congress.

3.2 The XRQ query language

XRQ allows querying an XR instance w.r.t. its structure (described in the XML sub-
instance) and its semantic annotations (modeled in the RDF sub-instance). We first intro-
duce the syntax (Section 3.2.1) and semantics (Section 3.2.2) of a core language, returning
tuples of bindings. Next, we present an extended version of the language, which allows
the creation of XR data. Both the syntax (Section 3.2.3) and semantics (Section 3.2.3)
are described. The two languages essentially differ in the way results are returned and, as
such, the semantics of the extended language includes that of the core language.

The interest of separating the languages into two level is two-fold:
– when introducing the composition problem (Section 3.3), looking at the core se-

mantics of extended queries helps get better insight at the composition problem and
algorithm,

– the cost of constructing results in the extended language plays a minor role in the
overall query evaluation problem. Thus, for simplicity, we focus on the core lan-
guage in our query evaluation study (Chapter 4.1),

3.2.1 Core XRQ syntax

XRQ allows querying an XR instance based on commonly used primitives: XML tree
pattern queries, introduced, e.g., in [AYCLS01], and the BGP queries for RDF [www08b].
Tree patterns express structural constraints on the expected trees in the XML sub-instance,
while BGPs allow constraining the expected triples of the RDF sub-instance.

Definition 3.2.1 (Tree Pattern). A tree pattern is a finite, unordered, unranked,N -labeled
tree with two types of edges, namely child and descendant edges. We may attach to each
node at most one uri variable, one val variable and one cont variable. Variable labels are
of the form t : v, where t is the variable’s type, and v its name. We may also attach to a
node one equality predicate of the form t : v = c, where c ∈ L, denoting a selection on
the variable v. The variable name may be omitted if it is not used anywhere else in the
query, leading to a label of the form t = c.

A tree pattern may also have at most one ‘special’ document node. This node can only
appear as the root of the tree, has exactly one child, and has a uri variable constrained by
an equality predicate of the form [uri=u] for u ∈ I, denoting that the tree pattern must be
evaluated against the XML document of URI u.

Such variable-annotated patterns have been previously used, e.g., in [BÖB+04, ABM05]
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〈$CA, $X〉 : −

Q1
R Q2

R Q3
R Q4

R

($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, :about, $A), ($X, rdf:type, :MemberOfCongress)

microblog

blogtitleval:$V C message

bodyuri:$A=#205
cont:$CA

Q1
X

html

div

h2uri:$C
val:$V C

divuri:$B

Q2
X

Figure 3.2: Sample XRQ query

to represent XML queries and/or materialized views. The variables attached to nodes
serve three purposes: (i) to denote data items that are returned by the query (in the style
of distinguished variables in conjunctive queries), (ii) to express selections on the docu-
ment to query or on node values, and (iii) to express joins between tree (or triple) patterns.
The variable type specifies the exact information item from an XML node, to which the
variable will be bound. When a node nt of a tree pattern is matched against a node nd of
an XML tree, the variables attached to the node nt will be bound as follows, according to
the variable’s type. First, a uri variable is bound to the URI of nd. If nd is a document or
element node, a val variable is bound to the concatenation of all text descendants of nd; if
nd is an attribute node, a val variable is bound to the attribute value; if nd is a text node, a
val variable is bound to nd’s text value. Finally, a cont variable is bound to the serializa-
tion of the subtree rooted at nd. The semantics of val variables are copied from the XPath
(and XQuery) specification. Indeed, an XPath snippet of the form $x=“Paris”, where
$x is bound to some XML element, is interpreted as: check if the concatenation of all text
descendants of that element equals “Paris”. We represent such predicates by annotating a
tree pattern node with [val=“Paris”]. Similarly, a comparison of the form where $x=$y
is interpreted as: the value of $x (as we defined it above) is equal to the value of $y. Our
queries also allow expressing such comparisons, as we will explain later on.

Example. The bottom part of Figure 3.2 shows two tree patterns for our running example.
As usual, single (double) edges correspond to parent-child (ancestor-descendant, resp.)
relationships. For instance, the tree pattern on the left looks for a message node with a
descendant body node. For each match of the pattern against the tree, $A will be bound
to the URI of the matched body node, while $CA will be bound to the serialization of the
node itself and its entire subtree. Moreover, a selection on variable $A, which in this case
must match the URI #205.

Definition 3.2.2 (Triple Pattern). A triple pattern is a triple (s, p, o), where s, p are URIs
or variables, whereas o is a URI, a literal, or a variable.

A BGP is a conjunction of triple patterns.

Example. The top part of Figure 3.2 depicts four triple patterns. For instance, the left-
most triple pattern finds all pairs of resources connected via the property :authorOf.
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By combining tree and triple patterns and endowing them with a set of projected (head)
variables, we obtain an XRQ query:

Definition 3.2.3 (Core XRQ Query). An XRQ query consists of a head and a body. The
body is a setQX of tree and a setQR of triple patterns built over the same set of variables,
whereas the head h is a tuple of variables appearing also in the body or constants. We
denote such a query by Q = (h,QX , QR).

Note that by using variables in multiple places within the query, one can express joins.
In general, three types of joins are possible: (i) between tree patterns; (ii) between triple
patterns; (iii) between tree patterns and triple patterns. In particular, the latter type of
joins allows correlating structural and semantic constraints within queries. The following
example illustrates the expressivity of XRQ.

Example. Figure 3.2 shows an XRQ query, whose body (shown on the right) comprises
four triple patterns (shown on the top) and two tree patterns (shown at the bottom). It asks
for all authors of some resource (first triple pattern) that is known to be the same (second
triple pattern) as the body of a message from the micro-blog stream (first tree pattern). In
turn, the query filters html pages containing a div node, with a header (h2 node) equal
to the title of the micro-blog’s stream, and retrieves the div node containing the article
body (second tree pattern). The selected micro-blog posts must be referred by the article
(third triple pattern) and their authors must be congress members.

To sum up, the query returns the member of the congress who authored micro-blog
posts referred by articles of the same title, as well as the posts contents. Note the use of
variables for expressing joins. Three types of joins are illustrated in Figure 3.2: between
two tree patterns (through variable $V C), between two triple patterns (through variables
$A, $X and $Y ) and between a tree pattern and a triple pattern (through variables $A and
$B).

3.2.2 Core XRQ semantics

We now define the semantics of XRQ. To this end, we first define the notion of matches
and variable bindings for each of its components (i.e., tree patterns and triple patterns).

A match of a tree pattern against an XML instance is defined as usual through tree
embeddings [AYCLS01]:

Definition 3.2.4 (Match of a tree pattern against an XML instance). LetQ be a tree pattern
and IX an XML instance. A match of Q against IX is a mapping φ from the nodes of Q
to the nodes of IX that preserves (i) node labels, i.e., for every node n ∈ Q, φ(n) ∈ IX
has the same label as n, and (ii) structural relationships, that is: if n1 is a /-child of n2

in Q, then φ(n1) is a child of φ(n2), while if n1 is a //-child of n2, then φ(n1) must be a
descendant of φ(n2).
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Moreover, φ satisfies the equality predicates as follows: (i) if n is a document node
constrained with the predicate [uri=u], then φ(n) is the document node of the XML docu-
ment whose URI is u and (ii) if n is any node constrained with the predicate [val=c], then
the value of φ(n) equals to c.

A match of a tree pattern Q against an XML instance IX defines the mapping of nodes
of Q to nodes of IX . However, recall that a tree pattern, apart from nodes, contains also
variables for expressing selections on values or joins, which have to be bound to objects.
This mapping of such variables to objects, referred to as variable binding is formally
defined below:

Definition 3.2.5 (Variable binding of a tree pattern against an XML instance). Let φ be a
match of a tree patternQ against an XML instance IX and V the set of variables inQ. Let
v ∈ V be a variable associated with a node n. Then the variable binding f of Q against
IX corresponding to φ is a function over V such that: (i) if v is a uri variable, then f(v)
is the URI of φ(n) in IX , (ii) if v is a val variable, then f(v) is the value of φ(n) ∈ IX ,
and (iii) if v is a cont variable, then f(v) is the serialization of the subtree of IX rooted
at φ(n).

As explained above, a variable binding f of a tree pattern Q against IX is associated
with a match φ of Q against IX . For simplicity however, in the following we will assume
the existence of a match and refer to f simply as a variable binding of Q against IX .

Similarly, we also define matches and variable bindings for triple patterns:

Definition 3.2.6 (Match of a triple pattern against an RDF instance). Let Q be a triple
pattern (s, p, o), IR an RDF instance and I∞R the saturation of IR. A match of Q against
IR is a mapping from {s, p, o} to the components of a single triple tφ = (sφ, pφ, oφ) ∈ I∞R ,
such that φ(s) = sφ, φ(p) = pφ and φ(o) = oφ, and for any URI or literal ul appearing
in s, p or o, we have φ(ul) = ul (φ maps any URI or literal only to itself).

It is important to note that in accordance with the RDF semantics as specified by the
W3C, a triple pattern is matched not against an RDF instance IR, but against the saturation
of IR, denoted I∞R . As defined in Section 3.1, I∞R contains in addition to the explicit triples
of IR, a set of implicit triples.

We recall the notion of restriction of a function to a subset of its domain. Let f be a
function over a set A. The restriction of f to a subdomain A′ ⊆ A, denoted by f |A′ , is a
function f ′ over A′, s.t. f ′(x) = f(x),∀x ∈ A′. Based on this, we can define the variable
binding of a triple pattern as follows:

Definition 3.2.7 (Variable binding of a triple pattern against an RDF instance). Let φ be
a match of a triple pattern Q against an RDF instance IR. Then the variable binding of Q
against IR corresponding to φ is the function φ|V , where V is the set of variables in Q.

We now provide the semantics of an XRQ query:
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Definition 3.2.8 (Core XRQ Semantics). Let Q be an XRQ query, V its set of variables,
and 〈v1, v2, . . . , vn〉 the head variables of Q. Let I = (IX , IR) be an XR instance.

A variable binding f ofQ against I is a function over V , such that for every tree (resp.,
triple) pattern P ∈ Q whose variables we denote VP , where VP ⊆ V , f |VP is a variable
binding of P against IX (resp., IR).

The result of Q over I , denoted Q(I), is the set of tuples:

{〈f(v1), f(v2), ..., f(vn)〉 | f is a variable binding of Q against I}

In case of a boolean query, the singleton set {〈〉} containing the empty tuple corresponds
to true and the empty set of tuples {} to false.

The definition combines in the intuitive fashion the notion of variable bindings in the
RDF and XML sub-instances. When a variable is shared by a tree pattern and a triple
pattern, the XRQ semantics ensures that it is bound to the same value (URI or literal)
within the XML trees in IX and the RDF triples in IR.

Example. Applying the XRQ query of Figure 3.2 to the XR instance of Figure 3.1 yields
the result: ($CA=〈body〉Visiting Iowa today〈/body〉, $X= Charlie).

Figure 3.3 shows the match found for each tree/triple pattern and the variable binding
for the entire XRQ query.

All joins allowed. We stress that XRQ queries may feature all the types of joins one
may encounter within a conjunctive RDF query or within an XML query, in addition
to the aforementioned joins across the RDF and XML sub-instances (by sharing variables
within tree and triple patterns of an XR query). It is worth noticing that join variables may
be used in places having disjoint types. For instance, a variable may appear in the subject
of a triple pattern (denoting a URI value) and as the val of a tree pattern’s node (denoting
a literal). Rather than considering type mismatches as errors in queries, we adopt the
permissive approach of converting all variable bindings to literals and comparing their
string representations.

Cartesian products. XRQ enables users to specify queries comprising Cartesian prod-
ucts. The latter occurs when some tree (or triple) pattern(s) do not share any variable with
some other tree (or triple) pattern(s). At the same time, even when an XR query does
not feature such Cartesian products, the sub-query consisting only of its XML (or RDF)
patterns may have Cartesian products. For instance, consider a query Q consisting of two
XML tree patterns tx and ty and a triple pattern px,y, such that a variable $X is shared by
tx and px,y, a variable $Y is shared by px,y and ty, while tx and ty share no variable. In
this case, the restriction of Q to its XML sub-expression is tx × ty. This aspect requires
some extra care when evaluating XRQ queries, as we will discuss in the next chapter.
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QR Q1
X Q2

X

Patterns

($X, :authorOf, $Y),
($Y, owl:sameAs, $A),
($B, rdfs:seeAlso, $A),
($X, rdf:type, :MemberOfCongress)

microblog

blogtitleval:$V C message

bodyuri:$A=#205
cont:$CA

html

div

h2uri:$C
val:$V C

divuri:$B

Matches

(:Charlie, :authorOf, _:x),
(_:x, owl:sameAs, #205),
(#305, rdfs:seeAlso, #205),
(:Charlie, rdf:type, :MemberOfCongress)

doc(#200)

microblog#201

blogtitle#203 message#202

body#205

doc(#300)

div#302

h2#303 div#305

Variable {$A=#205, $CA=〈body〉Visiting Iowa today.〈/body〉, $B=#305, $C=#303, $VC=“Charlie’s campaign”,
bindings $X=:Charlie, $Y=_:x}

Figure 3.3: Pattern matches and variable bindings of the query of Figure 3.2 on the XR
instance of Figure 3.1

3.2.3 Extended XRQ syntax

As described above, applying an XRQ query returns a set of tuples. Since the input is
an XR instance, one should ideally be able to create such an instance as the output of the
query. To this end, we extend our query language by augmenting it with data constructors.

The head of an extended query not only allows the generation of trees and triples in
the output but also allows triples that annotate fresh nodes. The syntax and the semantics
of the extended language are presented below.

Definition 3.2.9 (Tree Constructor). A tree constructor is a finite, ordered, unranked,N -
labeled tree child edges only. We may attach to each node at most one assignment label
consisting of a single variable and one grouping label consisting of a tuple of variables
and constants. This tuple may not contain any variable already present in the grouping
label of an ancestor. When omitted, the empty tuple is assumed. We may also attach to
each leaf node a value label consisting of a single constant or variable.

In practice, value labels are presented in subscript, while assignment labels and group-
ing labels are in superscript, with the latter between angle brackets. When a node features
both an assignment label and a grouping label, the assignment label comes first and the
two labels are separated with the “:=” symbol. Note that the constraints imposed on
grouping labels imply that any variable may only appear once on a root-to-leaf path in a
tree.

Example. The trees at the bottom left hand side of Figures 3.4 and 3.5 are tree construc-
tors. The constructors are identical except in the way they are labeled. In Figure 3.4, the
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H1
R

: −

Q1
R Q2

R Q3
R Q4

R

($X, rdf:type, :Politician), ($X, :said, $R) ($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, :about, $A), ($X, rdf:type, :MemberOfCongress)

stories〈$V A,$CB〉

related

about$R$V A quote$CB

H1
X

microblog

blogtitleval:$V C
message

bodyuri:$A
val:$V A

Q1
X

html

div

h2uri:$C
val:$V C

divuri:$B
cont:$CB

Q2
X

Figure 3.4: Sample XRQext query a grouping label on the top node

H1
R

: −

Q1
R Q2

R Q3
R Q4

R

($X, rdf:type, :Politician), ($X, :said, $R) ($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, :about, $A), ($X, rdf:type, :MemberOfCongress)

stories

related〈$V A〉

about$R$V A quote$CB

H1
X

microblog

blogtitleval:$V C
message

bodyuri:$A
val:$V A

Q1
X

html

div

h2uri:$C
val:$V C

divuri:$B
cont:$CB

Q2
X

Figure 3.5: Sample XRQext query grouping labels on intermediate nodes

top stories node has a grouping label featuring variables $V A and $CB, the about node
at the bottom left is labeled with an assignment label $R and a value label $V A, while the
quote node at the bottom right has the value label $CB. In contrast, the top stories node
in Figure 3.5 does not have any label, but its child related has the grouping label featuring
variable $V A. The “about” and “quote” nodes are labeled similarly to Figure 3.4.

Definition 3.2.10 (XRQextquery head). An XRQext is a tuple (HX , HR, h), where HX is
a set of tree constructors, HR is a set of triple patterns, and h is a tuple of variables or
constants in {U ∪ L}.

For each tree constructor tX ∈ HX , and for each node nX ∈ tX:
– if nX has a assignment label v, then v is a variable of type URI s.t. v /∈ h,
– if nX has a grouping label of the form (l1, . . . , lk), then li ∈ {L ∪ U ∪ h},
– if nX has a value label l, then l ∈ {L ∪ U ∪ h}.
Finally, each triple pattern tR ∈ HR complies to Definition 3.2.2 with the restriction

that variables may only belong to h or be assignment labels appearing in HX .

Example. The left hand side of Figures 3.4 and 3.5 are both query heads made of two
triple patterns and a single tree constructor, with h = ($X, $V A, $CB) and the assign-
ment label $R. The head triple patterns feature $R and the variable $X appearing in h.

Let S be an infinite set of Skolem functions, such that ∀s ∈ S, s : (U ∪ L)N → U is a
function returning a fresh URI for any new input tuple of URIs or literals. As customary,
we impose that the ranges of Skolem functions in S are disjoint, i.e., ∀t, t′ ∈ (U ∪ L)N

and ∀si, sj ∈ S where si 6= sj , the following holds: si(t) 6= sj(t′).

Definition 3.2.11 (XRQext Syntax). An XRQext query, denotedQ = (HX , HR, h,QX , QR, SK),
consists of a head (HX , HR, h), a core query (h,QX , QR) and a bijective mapping SK :
HX → S, assigning a distinct Skolem function to each node of HX .
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Example. Figures 3.4 and 3.5 depicted XRQext queries whose body is similar to that of
the query in Figure 3.2. The two queries only differ in their grouping labels. Figure 3.4
has a grouping label 〈$V A, $CB〉 on the top node and none on the “related” node, while
Figure 3.5 has the grouping label 〈$V A〉 on the “related” node and none on the top node.

3.2.4 Extended XRQ semantics

We now formalize the semantics of the extended language. In the following definition,
a variable binding f of Q against an XR instance I is defined as for XRQ queries in
Definition 3.2.8.

Definition 3.2.12 (XRQext semantics). The result of an XRQext query
Q = (HX , HR, h,QX , QR, SK) over I = (IX , IR), is an XR instance (I ′X , I

′
R).

I ′X is a forest of XML trees resulting from the replication of HX for each binding f of
Q against I . The URI of a node nfX , corresponding to a binding f and a node nX ∈ HX ,
is given by the Skolem function SK(nX). The input tuple of the function is obtained by
appending constants and images of f for each variables appearing in grouping labels
of nX’s ancestors (from the root to nX), followed by the value bound to the node value
label’s variable, if any. Nodes with identical URIs coincide. If nX has an assignment
label $w, the URI of nfX is bound to $w in f . If nX has a value label $v,nX is endowed
with the text value f($v).

I ′R is a union of triples obtained by replicating HR for each binding f , replacing each
variable $v by f($v), and each blank node _:b with a fresh blank node.

Example. Figures 3.6 and 3.7 show the results of the queries depicted in Figures 3.4
and 3.5 respectively, with the following bindings (we omitted variables that do not appear
in the head):

f1 = {$X = :Alice, $V A = Message1, $CB = 〈div〉StoryA〈/〉}
f2 = {$X = :Alice, $V A = Message1, $CB = 〈div〉StoryB〈/〉}
f3 = {$X = :Bob, $V A = Message2, $CB = 〈div〉StoryB〈/〉}
f4 = {$X = :Alice, $V A = Message1, $CB = 〈div〉StoryB〈/〉}

XML node URIs are indicated in gray subscripts, each are prefixed with #ski: to
indicate that the URI was obtained through the ith Skolem function of S.

In Figure 3.4, the root node has grouping label 〈$V A, $CB〉. Its result is obtained
as follows. Let us consider the first binding f1. After copying the root node, its URI is
assigned through the function call sk1((f1($V A), f1($CB))), where sk1 is the Skolem
function assigned to the root node in HX . This returns URI #sk1:1. The URI of the node
label “related” will be obtained through the call sk2((f1($V A), f1($CB))), which returns
#sk2:1. Since the node has no grouping label, the empty list is assumed. The input of
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(:Alice, rdf:type, :Politician), (:Alice, :said, #sk3:1), (:Alice, :said, #sk3:2),
(:Bob, rdf:type, :Politician), (:Bob, :said, #sk3:3)

stories#sk1:1

related#sk2:1

about#sk3:1

“Message 1”

quote#sk4:1

div#sk5:1

“Story A”

R1

stories#sk1:2

related#sk2:2

about#sk3:2

“Message 1”

quote#sk4:2

div#sk5:2

“Story B”

R2

stories#sk1:3

related#sk2:3

about#sk3:3

“Message 2”

quote#sk4:3

div#sk5:3

“Story B”

R3

Figure 3.6: Result of an XRQext query without grouping nodes

sk2 is a concatenation of the variable bindings declared in the grouping label of all the
node’s ancestors down to the current one. Since the root node’s grouping label already
contained all possible variables, the input tuple of sk2 will be the same as the input tuple
of sk1. This applies to all nodes in HX , to produced R1, the left-most tree on Figure 3.6.
The second and third trees R2 and R3 are built in a similar manner. Since, the variable
bindings of f1, f2 and f3 are all different, the sets of URIs for nodes of each tree are
disjoint. However, the binding f4 is identical to f2, thus Skolem function calls for each
node of the tree associated with f4 return the same URIs as in R2, eventually merging the
two trees into a single one. The URIs of the “about” nodes, #sk3:1, #sk3:2, #sk3:3 and
#sk3:2, are bound to $R and added to bindings f1, f2, f3 and f4 respectively. These are
necessary to produce the triples shown at the top of Figure 3.6.

Next, we explain Figure 3.7, which represents the result of the query depicted on
Figure 3.5. Since no grouping label is defined on the root node, the empty list is assumed,
then sk1(()) is called to assign a URI to the first node as well as every subsequent copies
of the root node. Consequently, all the top nodes in the results will be merged into a single
one. Next, the “related” nodes are produced. Their corresponding grouping label includes
$VA, therefore the input of sk2 is (fi($V A)), for each finding fi, with 1 ≤ i ≤ 4. Calls to
Skolem function for this node with bindings f2 and f4 will return the same URIs, since the
same value is bound to $VA in those bindings. However, for binding f3 a fresh node will
be generated. The input of the Skolem function for every child of the “related” nodes will
be the same, as none of them specifies any additional variable. The node label “quote”
however, features the variable $CB as a value label, therefore the input of the Skolem
function for this node will be (fi($V A), fi($CB)), i.e., the concatenation of the input of
its ancestors and $CB, resulting in the grouping shown in the Figure.

The construction of XML nodes affects the construction RDF triples. In Figure 3.6,
the three distinct “related” nodes led to the creation of three corresponding triples. In
Figure 3.7, only two “related” nodes were ultimately generated. The variable $R was
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(:Alice, rdf:type, :Politician), (:Alice, :said, #sk3:1),
(:Bob, rdf:type, :Politician), (:Bob, :said, #sk3:2)

stories#sk1:1

related#sk2:1

about#sk3:1

“Message 1”

quote#sk4:1

div#sk5:1

“Story A”

quote#sk4:2

div#sk5:2

“Story B”

related#sk2:2

about#sk3:2

“Message 2”

quote#sk4:3

div#sk5:3

“Story B”

Figure 3.7: Result of an XRQext query with grouping nodes

bound to the same URI sk3:1 in the three bindings f1, f2 and f4, leading to three identical
triples (:Alice, :said, #sk3 : 1). Due to the set semantics of RDF, these coincide into a
single one in the RDF sub-instance.

Note that the type of nodes created from a value label v depends on the type of v. If
v is a uri or val variable, newly created nodes will be text nodes. If the v is a Cont vari-
able, the node will be an element or attribute node, possibly with descendant nodes itself.
Besides this difference, the semantics of value labels is essentially the same regardless of
the variable types and, wlog, we will only refer to uri and val variables hereafter.

We call XRQ∪
ext a variant of the query language allowing unions of XRQext queries.

Definition 3.2.13 (Unions of XRQext). An XRQ∪
ext query is a set of XRQext queries. For

any data instance I, the result of an XRQ∪
ext query is the union of the results of its sub-

queries over I.

Among others, the language allows the empty union, whose semantics is the empty
result.

The semantics of XRQ∪
ext follows that of XRQext. Note that although the node-to-

Skolem function mapping SK of Definition 3.2.12 is bijective, nodes from tree construc-
tors of distinct sub-queries in a union may map to the same Skolem function. As a conse-
quence, if data nodes yielded by distinct sub-queries have the same URI, they will coincide
in the result of the union. The interest of unions of XR queries will become clear when
we tackle the problem of composition in the next section.
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3.3 XRQ view-query composition

Extended XR queries yield XR data and as a consequence, they can be used to create
different perspectives on the data. Such views are an essential tool in the data management
literature and they are used in a wide range of applications. They can be used to hide
some of the complexity of the data or restrict visibility to the data depending on one’s
privileges. Views are widely used in data exchange and data integration, e.g., to describe
the relationship between local and global schemata. Once materialized, views can be seen
as pre-computed sub-queries and serve as powerful instruments for query optimization.

Many problems pertaining to view-based data management, such as answering queries
using views and view selection, are still actively studied today. In this section, we study
the problem of query-view composition in XR, i.e., evaluating a query over the result of a
view.

3.3.1 Motivations

We present three real-world scenarios, where the query-view composition problem
can arise.

Restricted access. A news agency uses a centralized XR instance featuring a large cor-
pus of annotated news articles. These articles are made available to the public and au-
tomatically integrated to the on-line issues. Some of the annotations, such as sources of
sensitive issues, are however hidden to the public and only accessible to the employees.
The public-facing annotated articles could, in this case, be expressed as XR views, by
careful pruning out source-related contents.

Data exchange. A Business Process Outsourcing (BPO) company manages payroll in-
formation for several clients using XR data. Payslips are typically represented as XML
data, while HR-related information is represented as RDF annotations. For historical
or regulatory reasons, each client relies on slightly different schema, e.g., weekly vs.
monthly income or country-specific social security information fields. All incoming data
must be converted to a common schema accommodating the specificities of each client.
These transformations can be done with XR views.

Data integration. There exists a large body of XML and RDF data on the Web that
cover related topics or contain complementary information. For instance, every year, the
OECD publishes very fine-grained economic and social data on a wide range of countries
in XML. This data does not, however, incorporate the historical background of these
countries or information about the current political situation. A RDF dataset such as
DBpedia does, however, contain that type of information. But since these data sets are
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stored in pure XML and RDF models, querying both of them concurrently requires insight
about the data on either side. For example, to join the data on the country, one would need
to know which OECD and DBpedia fields to use. An elegant way to simplify that type of
queries would be to integrate the two datasets into an XR-ready form, where each OECD
yearly record is annotated with country-specific data coming from DBpedia. We give a
concrete example of that kind of data integration at the end of this section.

3.3.2 Problem statement

Given a view v, without fresh blank nodes in the head, and a query q, the view
composition problem consists in finding a query q′ such that for any XR instance I,
q′(I) = (q ◦ v)(I).

The notations (q ◦ v)(I) and q(v(I)) are equivalent and may be used interchangeably
hereafter.

3.3.3 Preliminaries

We introduce the notion of normalization, which is used in the composition algorithm.
The normalization q of an XRQ query q is a First-Order formula, whose predicates are
among {Triple,Node, V al, Edge, Path,=}, where Triple is ternary predicate and all
others are binary predicates.

Normalization serves two purposes. On the one hand, it is used in the composition
algorithm to find matches between the query body and the view head at a fine granularity.
On the other hand, being based on First-Order Logic, it provides a very general framework
to reason about the algorithm. In particular, we prove the soundness of the algorithm using
the normalized form of the XR queries and instances.

The normalization procedure consists of a set of rules, described below, to be applied
to an XR query. Each rule looks at a particular syntactic item of the body or head of the
input XR query, and produces one or two atoms respectively in the body or head of the
normalized one. The rules are slightly different for the head and body of the input query.
First, we describe the normalization rules of the latter:

Definition 3.3.1 (Body normalization). Let Q = (HX , HR, QX , QR) be an XR query,
where n1, . . . , nn are XML nodes appearing in QX and (s1, p1, o1), . . . , (sm, pm, om) are
triples patterns appearing in QR.

ni ∈ QX

Node(x, ti)
, (3.1)

where ti is the tag of node ni, x is the URI variable labeling ni if any, a fresh variable
otherwise.
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ni ∈ QX , s.t. ni has a selection label of the form uri = c

x = c
(3.2)

ni ∈ QX , s.t. ni has a Val variable label of the form val : v

V al(x, v)
(3.3)

ni ∈ QX , s.t. ni has a selection label of the form val = c

V al(x, y), y = c
(3.4)

where x is the URI variable labeling ni if any, a fresh variable otherwise, and y is the Val
variable labeling ni if any, a fresh variable otherwise.

ni, nj ∈ QX , such that ni is a single-edge parent of nj
Edge(x, y)

(3.5)

ni, nj ∈ QX , such that ni is a double-edge parent of nj
Path(x, y)

(3.6)

where x (resp. y) matches the first attribute of the Node predicate produced by rule 3.1
for the node ni (resp. nj).

(si, pi, oi) ∈ QR

Triple(s′i, pi, o
′
i)

(3.7)

where pi is a variable or a constant and si = s′i (resp. oi = o′i) if si is a variable or a
constant and s′i (resp. o′i) is a fresh variable if si (resp. oi) is a blank node.

The restrictions on the rules impose that rule 3.1 be applied exhaustively before any
other rule.

Intuitively, normalizing the body of an XR query produces a Triple atom for each
triple pattern in the query body, a Node atom for each XML node, an Edge atom for each
parent-child edge and a Path for each ancestor-descendant edge. The presence of V al
variables and selections on tree patterns gives rise to V al and = predicates. The arguments
of the Edge and Path predicates, as well as the first argument of Node and V ar admit
a variable that represents a node’s URI. Since, all XML nodes of an XR instance have
distinct URIs, this allows our set of atoms to represent the relationships among the nodes
of tree patterns. The second arguments of the Node and V al act as selections on a node’s
tag and string value respectively.

Note that document nodes are not considered here. Adding normalization rules to
produce Document predicates is trivial, yet, document nodes are not allowed in the head
of views. Therefore in practice, this would render any composed query empty when the
input query has document nodes in the body.
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H1
R

: −

Q1
R Q2

R Q3
R Q4

R

($X, rdf:type, :Politician), ($X, :said, $R) ($X, :authorOf, $Y), ($Y, owl:sameAs, $A), ($B, rdfs:seeAlso, $A), ($X, rdf:type, :MemberOfCongress)

stories

related〈$V A〉

about$R$V A quote$V B

H1
X
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blogtitleval:$V C
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bodyuri:$A
val:$V A=“In Iowa′′

Q1
X

html

div

h2uri:$C
val:$V C

divuri:$B
val:$V B

Q2
X

Figure 3.8: Variant of the query depicted on Figure 3.5

XML nodes XML edges & Paths RDF triple patterns
Node($v1, microblog) Edge($v1, $v2) Triple($X , :authorOf , $Y )
Node($v2, blogtitle) Edge($v1, $v3) Triple($Y , owl:sameAs, $A)
Node($v3, message) Edge($v3, $A) Triple($B, rdfs:seeAlso, $A)
Node($A, body) Edge($v4, $v5) Triple($X , rdf:type, :MemberOfCongress)
Node($v4, html) Edge($v5, $C)
Node($v5, div) Edge($v5, $B)
Node($C, h2) Path($v3, $A)
Node($B, div) Path($v4, $v5)
Val($v2, $V C))
Val($A, “In Iowa”)
Val($B, $V B))
Val($C, $V C))

Table 3.1: Normalization for the body of the query described in Figure 3.8

Example. As an example, consider the query depicted on Figure 3.8, a variant of the
one depicted on 3.5, where a selection has been added on the body node of the rightmost
tree pattern. Table 3.1 lists the atoms obtained by normalizing its body. Fresh variables
are all of the form $vi. Constants and variables that appeared in the input query are left
intact and are all present in the normalization.

Definition 3.3.2 (Head normalization). Let Q = (HX , HR, QX , QR) be an XR query,
where n1, . . . , nn are XML nodes appearing in HX and (s1, p1, o1), . . . , (sm, pm, om) are
triples patterns appearing in HR.

ni ∈ HX

Node(x, ti)
, (3.8)

where ti is the tag of node ni, x is the assignment label of ni if any, a fresh variable
otherwise.

ni ∈ HX , s.t. ni
x = ski

(3.9)

where x is the assignment label of ni, if any, a fresh variable otherwise and ski is the URI
assignment Skolem function call for ni.

ni ∈ HX , s.t. ni has a value label y
V al(x, y)

(3.10)
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XML nodes & values XML paths & edges RDF triple patterns
Node(fstories(), stories) Edge(fstories(), frelated(“In Iowa′′)) Triple($X , rdf:type, :Politician)
Node(frelated(“In Iowa′′), related) Edge(frelated(“In Iowa′′), fabout(“In Iowa′′)) Triple($X , :said, fabout(“In Iowa′′))
Node(fabout(“In Iowa′′), about) Edge(frelated(“In Iowa′′), fquote(“In Iowa′′, $V B))
Node(fquote(“In Iowa′′, $V B), quote) Path(fstories(), frelated(“In Iowa′′))
Val(fabout(“In Iowa′′), “In Iowa′′) Path(frelated(“In Iowa′′), fabout(“In Iowa′′))
Val(fquote(“In Iowa′′, $V B), $V B) Path(frelated(“In Iowa′′), fquote(“In Iowa′′, $V B))

Path(fstories(), fabout(“In Iowa′′))
Path(fstories(), fquote(“In Iowa′′, $V B))

Table 3.2: Normalization for the head of the query depicted on Figure 3.8

ni, nj ∈ HX , such that ni is a single-edge parent of nj
Edge(x, y)

(3.11)

ni, nj ∈ HX , such that ni is an ancestor of nj
Path(x, y)

(3.12)

where x (resp. y) matches the first attribute of the Node predicate produced by rule 3.8
for the node ni (resp. nj).

(si, pi, oi) ∈ HR

Triple(si, pi, oi)
(3.13)

where si, pi and oi are variables or constants.

As for Procedure 3.3.1, rule 3.8 must be applied exhaustively before all the others.

After applying the normalization rules, the resulting expressions can be reduced by
propagating equality constraints, i.e., for each equality of the form var = const, replacing
all occurrences of var by const, then discard the constraint.

The main differences with body normalization procedure are the following: (i) Path
atoms are produced for all pairs of nodes that reside on the same path (top-down), (ii) the
Skolem function calls that happen implicitly upon query evaluation are revealed in every
places they effectively occur.

Example. In Table 3.2, we present the normalization of the query depicted on Fig-
ure 3.8. Equality constraints have already been propagated. Notice how the selection
applied in the body to variable $VA propagates to the body and head atoms. Like-
wise, although variable $R initially appears in the first stages of the normalization, it
was ultimately replaced by the constant fabout(“In Iowa′′), due to the equality constraint
$R = fabout(“In Iowa

′′) (generated by Rule 3.4).

We now extend the concept of normalization to XR instances.

Definition 3.3.3 (Instance normalization). We call I, the normalization of an instance I,
a set of atoms whose parameters are constants or blank nodes, obtained by applying the
following rules onto I:
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Head of q Body of q
# Triple predicates |HR| |QR|
# Node predicates |HX | |QX |
# V al predicates |HX | |QX |
# Edge predicates ≤ |HX | − 1 ≤ |QX | − 1

# Path predicates ≤
(|HX |

2

)
≤ |QX | − 1

Table 3.3: Number of atoms produced by normalizing of an XR query q into a FOL
formula q

(s, p, o) ∈ I
Triple(s′, p, o′)

, (3.14)

where p is a constant, and s = s′ (resp. o = o′) if s (resp. o) is a constant, s′ (resp. o′) is
a fresh variable if s (resp. o) is a blank node.

n ∈ I
Node(un, tn)

, (3.15)

where un is the URI of n and tn its tag.

n,m ∈ I, s.t. n and m are parent and child nodes of an edge
Edge(un, um)

, (3.16)

where un,um are the URIs of n and m respectively.

n,m ∈ I, s.t. n and m are ancestor / descendant node pair of any path
Path(un, um)

, (3.17)

where un,um are the URIs of n and m respectively.

n ∈ I, s.t. ni has a text child
V al(un, c)

, (3.18)

where c is the value of the text node.

Complexity of the normalization. The size of a normalized query is dominated by
the number of Path predicates generated by rule 3.12 making the normalization result
complexity quadratic in the size of the original query. Let q = (HX , HR, QX , QR) be
an XRQext query and q its normalization. We note |QR| and |HR| the number of triple
patterns in the head and body of q respectively, |QX | and |HX | the number of XML nodes
in q. The number of atoms produced by the normalization is given in Table 3.3.
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Substitution & unification. Recall that a substitution is a mapping from variables to
terms (i.e., in our case, variables, constants and function calls). Let σ be a substitution
and φ a FO formula, we write φσ to designate a copy of φ in which each variable v ∈ φ
has been replaced with σ(v). By extension, we note qσ the extended XR query q that has
undergone the substitution σ. We may use the set notation σ = {x1 → y1, . . . , xn → yn},
i.e., x1 maps to y1, . . . , xn maps to yn, to describe σ completely. Inconsistent mappings
are noted ⊥.

We call unification, the process of finding the most general unifier (MGU) between
two formulas φ1 and φ2, i.e., a unifier σ̂ such that φσ̂1 = φσ̂2 and @σ′ where σ′ is a unifier
and σ′ subsumes σ̂.

3.3.4 Composition algorithm

Algorithm 1 takes as input an XRQext view v and an XRQext query q, and returns an
XRQ∪

ext query q′. We briefly present the main functions used by the algorithm.

– head and body respectively return the head and body of the input query or view;
– normalize takes a query or view as input and returns its normalization;
– assignFreshVars replaces the name of each distinct variable of the input expression

with a fresh one;
– The function mgu takes two atoms as inputs and returns their MGU if one exists,

and ⊥ otherwise.

Algorithm 1 has two phases:

1. During the matching phase (lines 4-10), we attempt to unify each atom pi in the
body of the normalized query q, with each head atom from the normalized view v.
For each atom pi, we also keep a copy of v, whose variables have been replaced
with fresh ones. Whenever a valid substitution is found, it is added to a set of valid
substitutions Σi associated with pi. At the end of the matching phase, n sets of
substitutions have been created, one for each atom from the normalized query body.

2. During the building phase (lines 12-18), we iterate over the Cartesian product of
these sets, and we form the union of the substitutions in each entry. We call this
union a compound substitution, noted σ∪. Each compound substitution covers all
the atoms in the body of q. A compound substitution may be inconsistent, in which
case it is discarded. Consistency can be checked applying simple rules. For in-
stance, if a single variable maps to two distinct constants, the substitution is incon-
sistent.

For each consistent compound substitution σ∪, we build a sub-query q′σ, whose head
is obtained by applying σ∪ onto the head of q, and whose body is built by joining
body(v1) with body(v2), . . . , body(vn), and applying σ∪ on the join result. The final
query q′ is the union of the sub-queries obtained for all compound substitutions.
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Algorithm 1: XRCOMP

Input : view v, query q
Output: a composed query q′, such that for any instance I, q′(I) = (q ◦ v)(I)

1 v ← normalize(v)
2 q ← normalize(q)
3 Let n be the number of atoms in body(q)
//Matching stage

4 foreach atom pi ∈ body(q) do
5 vi ← assignedFreshVars(v)
6 let Σi be a set of substitutions, Σi ← ∅
7 foreach atom pj ∈ head(v) do
8 σij ← mgu(pi, pj)

9 if σij 6=⊥ then
10 Σi ← Σi ∪ {σij }

//Building stage
11 q′ ← ∅
12 foreach set σ ∈ Σ1 × · · · × Σn do
13 σ∪ =

⋃
σ′∈σ σ

′

14 if σ∪ 6=⊥ then
15 q′σ ← ∅
16 head(q′σ)← head(q)σ∪

17 body(q′σ)← (body(v1), . . . , body(vn))σ∪

18 q′ ← q′ ∪ q′σ
19 return q′

When two atoms feature distinct constants in a given position, they cannot be unified.
Hence, if an atom from the query cannot be unified with any normalized view head atoms,
the algorithm will return the empty union. In Algorithm 1, this is apparent in the fact that
if a single set Σi is empty, the Cartesian product in the build phase is also empty.

3.3.4.1 Properties

We now discuss the properties of Algorithm 1.

Theorem 1 (Soundness of Algorithm 1). For any instance I, q′(I) ⊆ q(v(I)).

Proof. Observe that the notions of mapping and variable binding defined in the semantics,
directly translate to the notion of homomorphism and substitution in normalized XR.

Given a query q, an instance I, a match µ of q over I and its associated binding β of
q variables into I, there exists a corresponding homomorphism µ : body(q) → I, and a

39



3.3. XRQ VIEW-QUERY COMPOSITION

substitution β mappings variables of q to constants of I, such that ∀a ∈ body(q), aβ =
µ(a).

From now on, we only consider normalized XR and therefore, we omitted the overline
previously used.

Let q be a query, v a view without fresh blank nodes in the head and q′ the union of
XR queries obtained by Algorithm 1 for q and v.

Consider the set of queries q1core, . . . , q
n
core, s.t. the body of each qicore is a single atom

from the body of qcore, while the head of qicore features all variables of body(qicore). For
any instance I, we have:

qcore(I) = πhead(qcore)(q
1
core(I) ./ . . . ./ qncore(I)) (3.19)

In particular, (3.19) holds for any instance I ′ = v(I), that is, for any image of an XR
instance I through v. Replacing I with v(I), we obtain:

qcore(v(I)) = πhead(qcore)(q
1
core(v(I)) ./ . . . ./ qncore(v(I))) (3.20)

which, by the definition of the view-query composition ◦, is equivalent to:

(qcore ◦ v)(I) = πhead(qcore)((q
1
core ◦ v)(I) ./ . . . ./ (qncore ◦ v)(I)) (3.21)

Let us now characterize the result of each sub-query (qicore ◦ v)(I). Let pi be the atom
in body(qicore); pi may be unifiable with multiple atoms in head(v); let Pi be the set of
those head(v) atoms, and for each pj ∈ Pi, θij is the MGU of pi and pj .

Then, it follows that:

(qicore ◦ v)(I) =
⋃
pj∈Pi

(pj :- body(v))θ
i
j(I) (3.22)

In the above, the equality follows from the fact that qicore may only produce results
from those atoms in the head of v into which the single atom in body(qicore) embeds.

Consider a single conjunctive XR query q′σ from the union q′, produced in the build
phase of Algorithm 1 (lines 12-18) from an entry σ ∈ {Σ1, . . . ,Σn}. As specified in the
Algorithm, q′σ is of the form:

head(q)σ∪ :- (body(v1))
σ∪ , . . . , (body(vn))σ∪ (3.23)

For every 1 ≤ i ≤ n, the sub-query body(vi)
σ∪ in q′σ corresponds to a match identified

by Algorithm 1 during its matching phase (lines 4-10) from an atom pi ∈ body(q), into an
atom from head(v). Observe that pi is precisely the atom in the body qicore.
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In the context of q′σ, pi matches a single atom pj of head(v), and σij is the MGU of
pi and pj . Note that θij from (3.22) is also defined as the MGU of pi and pj , thus it is
equivalent to σij . Therefore,

(pi :- body(vi))
σi
j(I) ⊆ (qicore ◦ v)(I) (3.24)

And since σij is included in σ∪:

(pi :- body(vi))
σ∪(I) ⊆ (qicore ◦ v)(I) (3.25)

Observe that although variables in v1, . . . , vn are disjoint, during the matching phase,
variables of each predicate in body(q) are matched against variables of a distinct view
among v1, . . . , vn. Therefore, joins that exist among any predicates pair pi, pj of body(q)
will be preserved in σ∪, and vi will necessarily join with vj . Therefore,

(p1 :- body(v1))
σ∪(I) ./ . . . ./ (pn :- body(vn))σ∪(I)

= (p1, . . . , pn :- body(v1), . . . , body(vn))σ∪(I) (3.26)

If we extend claim (3.25) to all the sub-queries of q′σ, we have:

(p1 :- body(v1))
σ∪(I) ./ . . . ./ (pn :- body(vn))σ∪(I)

⊆ (q1core ◦ v1)(I) ./ . . . ./ (qncore ◦ vn)(I) (3.27)

From (3.21) and (3.26), this reduces to:

πhead(qcore)(p1, . . . , pn :- body(v1), . . . , body(vn))σ∪)(I) ⊆ (q ◦ v)(I) (3.28)

Hence, the set of bindings upon which q′σ constructs a result is included in the set of
bindings given by qcore ◦ v.

Now, observe head(q)σ∪ , the head of q′σ, is a restriction of head(q). Suppose there is
a variable v ∈ head(q), such that σ∪(v) = c, where c is a constant and there is no binding
in the result of (q ◦ v)(I) for which c is bound to v. Then, since σ∪ is also applied to the
body of q′σ, necessarily q′σ(I) = ∅. Therefore, the following always holds:

q′σ(I) ⊆ (q ◦ v)(I) (3.29)

This extends to all sub-queries of the union q′, therefore:

q′(I) ⊆ (q ◦ v)(I) (3.30)
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Blank nodes. There are two reasons why blank nodes are not allowed in the head of
views in the composition algorithm. Firstly, blank nodes (which in our semantics are
defined as existential variables) may appear among the parameters of the Skolem functions
of XML node constructors. Secondly, by definition, fresh blank nodes in the head of a
view do not appear in its body. Fresh head blank nodes may take part in the matching
process and yield some substitutions, yet these substitutions will have no effect on the
final composed query, because it is formed by combining copies on the view’s body,
resulting in incorrect compositions.

Complexity of Algorithm 1. As we saw in Section 3.3.3, the complexity on the nor-
malization steps at lines 1 and 2 are respectively quadratic and linear in the size of q. It
directly follows that the nested loops of the matching phase (lines 4-10) run it cubic time.
The mgu function (line 6) operates in constant time since we only attempt to unify pairs
of atoms of arity 2 or 3. In the worst case, the size of the Cartesian product explored in the
building phase (lines 12-18) is exponential in the size of the q, i.e., O(|v||q|). The consis-
tency check performed at line 14 can be done in linear time in the size of q. Similarly, the
substitutions involved in the creation of the UCQ (lines 15-17) can be performed in linear
time. It follows that the time complexity of the building phase is overall exponential q and
v. Every entry in the Cartesian product of substitutions may yield a sub-query in the union
q′, each of which features a body of |q| × body(v), therefore the size of q′ is bounded by
O(|v||q| × (size(head(q)) + |q| × size(body(v)))).

3.3.5 Composition examples

Lifting and lowering examples. We now provide some examples of XRQ view, queries,
along with their compositions, in the context of social networks. Query Q1, depicted on
Figure 3.9, on the one hand, evaluates over an XML document featuring message feeds
between users. It retrieves the URIs and names of users who have sent messages to their
friends, along with the URIs of these messages, of their recipients and the content value
of the messages sent. It outputs roughly the same information in RDF, with additional
triples stating that the sender knows the recipients and vice versa.

($user, :name, $name)
($user, :knows, $friend)
($friend, :knows, $user)
($user, :said, $msg)
($msg, rdf:type, :Message)
($msg, :content, $body)
($msg, :recipient, $friend)

:-

useruri:$user

nameval:$name messageuri:$msg

touri:$friend bodyval:$body

Figure 3.9: Query Q1, lifting social network information from XML to RDF
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Query Q2, depicted on Figure 3.10, on the other hand, evaluates over an RDF sub-
instance. It retrieves users who have sent an identical message to pairs of people that
know each other. In turn, it builds an XML tree in which the top node groups each
distinct sender, and append their name as a child node. Then, under each sender, it groups
messages sent to multiple people, appends each recipient under a distinct child labeled
“to” and finally appends the message itself (once).

user〈$y〉

name$name message〈$body〉

to$x body$body

:-

($x, :knows, $z)
($y, :name, $name)
($y, :said, $msg1)
($msg1, :content, $body)
($msg1, :recipient, $x)
($y, :said, $msg2)
($msg2, :content, $body)
($msg2, :recipient, $z)

Figure 3.10: Query Q2, lowering social network information from RDF to XML

These types of queries are sometimes qualified as lowering and lifting queries, as they
respectively lower data from RDF to XML or lift it from XML to RDF. These two queries
happen to be composable on one another. Composing Q2 over Q1 produces a union of
two queries, whose respective bodies feature eight self-joins over copies of Q1 (as there
are eight atoms in the normalized body of Q2, thus eight variable-renamed copies of Q1

are used in the matching phase). These query bodies can be minimized. For readability,
Figure 3.11 shows the composition of Q2 over Q1, where each sub-query of the union has
been minimized and features only to three self-joins.

Figure 3.12 depicts the composition of Q1 over Q2. In this case, at the end of the
matching phase, only one entry of the Cartesian products of substitutions yields a con-
sistent substitutions after been unioned. This explains why the composed query is not
a union. The head of the composed query features multiple calls to Skolem functions.
These are the calls that would be used to assign URIs to XML node in the result of Q1,
e.g., if the view had to be materialized.

XR integration. The next scenario shows how one can query interconnected XR, in the
absence of such data, for example, on legacy XML and RDF data. Figure 3.13 shows a
view that combines data from an RDF data instance such as DBpedia and XML data in-
stance such as some OECD report, gathering data about countries productivity and GDP
per year. The query uses the country code to join data from both sub-instances, and con-
structs an XML tree, that is similar to the one filtered, up to XML node URIs. However,
the RDF sub-instance produced by the query features new RDF triples that directly link
countries to the XML nodes containing informations collected by the OECD.

QueryQ4 on Figure 3.14 attempts to find the productivity and GDP of France in 2010,
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user〈$u2〉

name$n2 message〈$m4〉

to$u1 body$m4

:- useruri:$u1

nameval:$n1 message

touri:$f1 bodyval:$m1

useruri:$u2

nameval:$n2 message

touri:$u1 bodyval:$m4

useruri:$u2

nameval:$n6 message

touri:$f1 bodyval:$m4

∪

user〈$u2〉

name$n2 message〈$m4〉

to$f1 body$m4

:- useruri:$u1

nameval:$n1 message

touri:$f1 bodyval:$m1

useruri:$u2

nameval:$n2 message

touri:$f1 bodyval:$m4

useruri:$u2

nameval:$n6 message

touri:$u1 bodyval:$m4

Figure 3.11: Composition of Q2 over Q1

(fuser($y), :name, $name)
(fuser($y), :knows, fto($y, $body, $x))
(fto($y, $body, $x), :knows, fuser($y))
(fuser($y), :said, fmsg($y, $body))
(fmsg($y, $body), rdf:type, :Message)
(fmsg($y, $body), :content, $body)
(fmsg($y, $body), :recipient, fto($y, $body, $x))

:-

($x, :knows, $z)
($y, :name, $name)
($y, :said, $msg1)
($msg1, :content, $body)
($msg1, :recipient, $x)
($y, :said, $msg2)
($msg2, :content, $body)
($msg2, :recipient, $z)

Figure 3.12: Composition of Q1 over Q2

($country, :gdp, $G),($G, :year, $year)
($country, :productivity, $P ),($P, :year, $year) ($country, rdf:type, dbpedia:Country), ($country, dbpedia:countryCode, $code)

countries

country〈$code〉

countryCode$code record〈$year,$prod,$gdp〉

year$year

productivity$P
$prod

gdp$G
$gdp

:-

countries

country

countryCodeval:$code record

yearval:$year

productivityval:$prod

gdpval:$gdp

Figure 3.13: Query Q3, integrating legacy XML and RDF into fresh XR

referring directly to its DBpedia URI.
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(dbpedia:France, :gdp, $G),($G, :year, ”2010”)
(dbpedia:France, :productivity, $P ),($P, :year, ”2010”)

〈$prod, $gdp〉 :-
countries

record

productivityuri:$P
val:$prod

gdpuri:$G
val:$gdp

Figure 3.14: Query Q4, retrieving information of a virtually integrated XR instance

Composing Query Q4 over Query Q3 yields the query depicted on Figure 3.15.

(dbpedia:France, rdf:type, dbpedia:Country), (dbpedia:France, dbpedia:countryCode, $code)

〈$prod, $gdp〉 :-

countries

country

countryCodeval:$code record

yearval=“2010′′

productivityval:$prod

gdpval:$gdp

Figure 3.15: Composition of Q4 over Q3

3.3.6 Discussion

In the relational data management literature [AHV95], composition is defined as fol-
lows: given a program P with a final rule S, i.e., a set of rules whose heads define inten-
sional predicates, and whose bodies are made of extensional and intensional predicates,
a composition is a query q, s.t. for any database I , q(I) = [P (I)]S. For non-recursive
programs, the problem is quite straightforward and amounts to expanding the body of the
final rule S, i.e., replacing intensional predicates with the body of the corresponding rule,
until it contains nothing but extensional predicates.

In XR, both the head and body of queries are made of triple and tree patterns or
constructs, preventing the mere expansions that relations allow. In fact, our composition
algorithms have strong connections with the problem of answering queries using views,
where solutions require matching atoms of the query body with that of the body of views.
Next, we discuss similarities between our approach and three well-known algorithms to
find maximally contained rewriting using materialized views.

The inverse rule algorithm [DG97] guarantees to find, for a given a (possibly recursive)
datalog program P and a set of views V , a maximally contained program P ′ whose rules
body solely relies on V . The central idea of the algorithm is to turn V into a set of rules
V ′, where for each view v ∈ V and each atom a ∈ v, there is a rule in V ′ featuring a as
head and the head of v as body. Skolem functions are used to replace non-distinguished
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variables revealed in the head of such rules. P ′ is obtained by removing from P all rules
using extensional predicates that do not appear in any view of V , and adding all rules of
V ′ whose head match with a body atom of P . The final step of the algorithm consists in
removing rules that rely on Skolem functions.

The bucket algorithm [LRO96] and its direct offspring, the MiniCon algorithm [PH01],
also share resemblance with ours. The first phase of these algorithms is essentially the
same as the matching phase, except that in those cases, body atoms of the query are
matched with body atoms of the views. A bucket of matching view atoms, similarly to
our substitutions sets Σi, is created for each query atom. Then, the algorithms diverge in
the way these buckets are combined into conjunctive queries that cover the whole query.
The bucket algorithm considers the whole Cartesian product of the buckets, while the
MiniCon algorithm performs additional checks to reduce the number of combinations to
explore. One of these optimizations consists in discarding candidates whose body may
match some subgoal of the query, but whose head does not features the variables that
would allow to join its results with that of views matching other subgoals of the query.
Although our algorithm iterates on the Cartesian product of buckets, as in MiniCon, many
entries can quickly be discarded by checking the consistency of σ∪.

This work also shares strong connections with an algorithm proposed by Le et al. [LDK+11],
to rewrite queries on SPARQL views. In particular, the algorithm also comprises two
phases, corresponding to our matching and building phases. An external algorithm is
proposed to prune unsatisfiable sub-queries in the resulting union.

3.4 Conclusion and perspectives

In this chapter, we introduced the XR data model, for representing interconnected
XML and RDF data and its query language XRQ. We detailed the syntax and semantics
for the core language, returning tuples of variable bindings, and the extended language
yielding XR data. The extended language enables composition for which we provide an
early algorithm. The algorithm takes a query and a view as inputs and returns a query,
which we proved correct w.r.t. the inputs.

The composition algorithm, along with tests, was implemented by Prachi Jain, who
pursued an internship in our team. The algorithm is exponential in the size of the in-
put query and would therefore require optimizations to be scalable in practice. We have
already started to consider two types of optimizations: (i) many sub-queries in the re-
sulting union can quickly be deemed unsatisfiable (e.g., when variable labels of a tree
pattern violate its structure), (ii) the body of each sub-queries is made of variants of the
view body, it should be possible in practice to minimize them, i.e., finding equivalent but
tighter sub-queries, simply by looking at the body’s variable labels. Finally, we believe
the composition algorithm can be extended rather easily to the problem of finding a com-
posed query in the presence of multiple views. These will be the focus of our attention in
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the immediate future.

Next, we focus on query evaluation and optimization in XRP, a fully implemented
storage and evaluation platform for XR.

47



3.4. CONCLUSION AND PERSPECTIVES

48



Chapter 4

The XR platform

This chapter focuses on the practical aspects of XRQ query evaluation.

Evaluation & optimizations (Section 4.1). We explore this space of possible query eval-
uation strategies and present optimizations to speed up query processing.

Implementation (Section 4.2). We implemented a system for annotated XML docu-
ments by leveraging existing XML and RDF engines. However, as we will explain, there
are multiple ways in which a query over a combined XML and RDF instance could be
decomposed into separate queries that are shipped to the XML and RDF engine.

Experimental results (Section 4.3). Our experiments highlight classes of query evalua-
tion strategies that are very inefficient and some that provide better performance and scale
linearly on datasets of an overall size of 17 GB, intelligently exploiting pre-existing XML
and RDF engines. We study the impact of our proposed optimizations and identify the
classes of problems where they have the biggest impact. It is worth noting that among
similar works focusing on the combined querying of XML and RDF, few provide exper-
imental results, and those that do [BDK+11] present query evaluation strategies that do
not scale beyond 100 MB. Thus, our experiments validate the interest of our techniques
for large-scale querying of annotated documents.

4.1 Query evaluation

This section discusses evaluation strategies for XRQ queries. Since there are by now
many platforms for handling XML and RDF separately, we aimed, whenever possible, to
reuse the functionalities developed by such platforms and develop our XRQ processor as a
layer on top. In the following, Section 4.1.1 introduces some preliminary notions, which
will help us present various query evaluation strategies. The remainder of the section
presents the set of strategies of this study. Note that the type of result construction that
XRQext allows can be achieved linearly in the size of queries heads. Hence, for simplicity,
in this section as well as the following one, we only consider core XRQ queries.
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4.1.1 Preliminaries

For the clarity of the discussion, we define the result of a set of tree patterns (resp.,
triple patterns) in isolation over an XML (resp., RDF) instance. Let QX be a set of tree
patterns and IX an XML instance. Then the result QX over IX , denoted QX(IX), intu-
itively corresponds to evaluating the set QX of tree patterns against the XML instance
IX and returning tuples of bindings for all variables appearing in QX . Formally, QX(IX)
equals to Q′(I ′), where Q′ = (hX , QX , ∅) is an XRQ query that contains in its body
only the set QX of tree patterns and in its head hX all variables appearing in QX and
I ′ = (IX , ∅) is an XR instance having IX as its XML sub-instance and the empty instance
as its RDF sub-instance. The result QR(IR) of a set of triple patterns QR over an RDF
instance IR can be defined in a similar way.

We now introduce a set of useful notions before presenting concrete query evaluation
algorithms.

XDM stands for an XML data management platform, i.e., any XML data management
system supporting tree pattern queries. Such queries can be expressed in XQuery, thus any
XQuery engine falls into this category. We denote by XEval(Q, I) a function provided by
the XDM, which returns the result of the XML queryQ, consisting of a set of tree patterns
possibly connected through joins, over the XML instance I .

RDM stands for an arbitrary RDF data management platform, i.e., any RDF data man-
agement system supporting at least (unions of) Basic Graph Pattern queries of SPARQL.
Similarly, we denote by REval(Q, I) a function provided by the RDM, which computes
the result of the RDF query Q (that is, a set of triple patterns) over the RDF instance I .

XURI denotes URIs [www01] of XML nodes. A deterministic method assigning an
XURI to every node from a given document is termed a labeling scheme.

QX and QR are the XML and RDF sub-queries, respectively, of a given XR query Q.
Let |QX | be the number of tree patterns in QX and |QR| the number of triple patterns in
QR. We will denote the XML tree patterns in Q by Q1

X , Q2
X , . . ., Q|QX |

X and, similarly, the
triple patterns of Q by Q1

R, Q2
R, . . ., Q|QR|

R .

IX and IR are the XML and RDF sub-instances, respectively, of an XR instance I .

XURI hypotheses. To facilitate the integration of any XML or RDF data management
system in our XR platform, we should interface with the XDM/RDM at the level of stan-
dardized data declaration and data manipulation languages, such as XQuery and SPARQL,
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avoiding more specific assumptions regarding their implementation. One crucial issue that
is specific to XR, however, is the support for XURIs within the XDM. While URIs are ex-
plicit in RDF data, in the XML data model [www10], the closest notion to XURIs is that
of node identity, which by default is implicit 1. Most XDMs [TVB+02, Rys05] (includ-
ing recent ones [CBC+12]) use internal node IDs, which can easily be mapped to XURIs
as soon as one gains access to the system internals. For the purpose of evaluating XR
queries, we identify two important properties that an XDM may have (or, alternatively,
hypotheses which may or may not hold about XEval):

XURI-out: the outputs of XEval include the XURI of each XML node participating in
this result.

XURI-in: given an XURI as input, XEval is capable of recognizing the (unique) XML
node having this XURI. In other words, XEval can perform selections on XURI
values, thus XEval understands the special semantics of XURIs.

These hypotheses are independent, i.e., an XDM may adhere to one, the other, none
or both. Concrete ways of implementing them will be discussed in Section 4.2. The
algorithms we present next have specific requirements in terms of XDM hypotheses, as
we explain in each case.

What to delegate? The XRQ processor delegates sub-queries for evaluation to the un-
derlying XML, respectively, RDF engines. As explained in Section 3.2.2, if we decide,
e.g., to send QX as such to the XDM, this may introduce Cartesian products whose eval-
uation may be very inefficient.

An alternative consists in sending to the XDM the connected components of QX , if
one considers QX as an undirected graph where (i) each tree pattern is a node; (ii) there
is an edge between two nodes if the corresponding tree patterns share some variable(s),
in the spirit of the classical Query Graph Model [HFLP89]. Each connected component
thus obtained is an XML query without Cartesian products, and is independently sent to
XEval. Clearly, the symmetric discussion holds regarding QR.

Going one step further, one could question the distribution of join operations between
XEval, REval and the XR platform itself. Intuitively, the native XDM engine should be
able to best optimize the computation of tree pattern queries, that is, if QX is of the form
tx1 ./$X tx2, we could sendQX as such to XEval. However, it turns out that XML queries
with numerous value joins are still challenging for current XML query processors, as was
initially noted in [AM08]. Therefore, it may be more efficient to send tx1 and tx2 to
XEval, and join the results outside the XDM, within the XR platform.

To mitigate such issues, we adopt the following approach. Whenever QX (respec-
tively, QR) must be delegated to XEval (respectively, REval), a specific optimizer is in-

1. The W3C’s xml:id recommendation [www05] makes node identity explicit as an xml:id attribute,
however, this has not been widely adopted. We explore the xml:id idea as one option in our implementation
(see Section 4.2).
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voked to determine which fragments of these queries to delegate; the remaining joins
are handled in the XR platform. This decomposition is achieved based on (i) heuristics
(e.g., never push unnecessary Cartesian products), (ii) query cardinality estimations, and
(iii) some empirical calibration tests to gauge how the XDM (respectively, RDM) perfor-
mance compares with XR’s own execution engine.

In the sequel, to simplify the presentation, we will just write XEval(· · · ), respectively
REval(· · · ), to denote: find out the best way to decompose the respective query between
the XDM (resp. RDM) and XR, and execute it according to that decomposition of work.

Our evaluation strategies include a simple approach where QX and QR can be paral-
lelized and a set of information-passing strategies, where bindings travel at query evalu-
ation time from QX to QR or vice versa. Strategies of this family can be further broken
down into three groups: (i) bindings are passed one-by-one to the target query, requiring
no particular rewriting, (ii) bindings are sent in a single pass, requiring the target query to
be rewritten into a union, (iii) bindings are materialized in the target sub-instance, in which
case, the rewritten target query does not feature any union and is thus more amenable to
query optimization.

4.1.2 Independent executions

The simplest approach for evaluating an XRQ query consists in evaluating indepen-
dently QX and QR, and then evaluating any remaining joins (on XURIs or values) outside
the XML and RDF engines. We denote this approach XML||RDF, for “independent eval-
uation of QX and QR”. To enable the join on XURIs outside the XDM, this approach
requires hypothesis XURI-out. Moreover, to the extent that XEval and REval can run in
parallel, this method has a good potential for parallelization. Algorithm 2 outlines the
XML||RDF strategy.

Algorithm 2: XML||RDF
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TX ← XEval(QX , IX);TR ← REval(QR, IR)
2 TXR ← πh(TX ./ TR)

Example. Recall the query in Figure 3.2, and assume we send the whole QX and QR,
respectively, for independent evaluation. XEval(QX , IX) produces two tuples of bindings:
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Algorithm 3: XML→RDF
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TX ← XEval(QX , IX)
2 UCQ← ∅
3 foreach tuple tX ∈ TX do
4 UCQ← UCQ ∪ PushJoins(tX , QR)

5 TXR ← πh(REval(UCQ, IR))

($A = #205, $B = #305, $C = #303,
$CA = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”),

($A = #205, $B = #306, $C = #303,
$CA = 〈body〉Visiting Iowa today〈/body〉,
$V C = “Charlie’s campaign”)

Moreover, REval(QR, IR) returns the following tuple:

($X =:Charlie, $Y = _:x, $A = #205, $B = #305)

Combining the two binding tuple sets through a natural join on $A, $B and projecting
on the head attributes of the query results in the single tuple:

($CA = 〈body〉Visiting Iowa today〈/body〉,
$X =:Charlie)

4.1.3 Information-passing algorithms

4.1.3.1 Bind XML, then RDF

The second approach consists in evaluating tree patterns first and, assuming XURI-
out, pushing the resulting variable bindings into QR, which is then handed to the RDM.

Algorithm 3, named XML→RDF, details the process. First, QX is evaluated, then for
each resulting tuple of variable bindings, the QR variables on which QR and QX join
are bound to the respective values (XURIs and literals). This substitution is achieved by
the function PushJoins. If there are several tuples in the result of QX , this substitution
transforms QR into a union of conjunctive queries (UCQ in the algorithm), one for each
tuple retrieved by QX .
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Example. Pushing the result of XEval(QX , IX) into QR results in the following union:

QR($X, $Y,“Visiting Iowa today”) :-
($X, :authorOf, $Y ),
($Y, owl:sameAs,#205),
(#305, rdfs:seeAlso,#205),
($X, rdf:type, :MemberOfCongress) ∪

QR($X, $Y,“Visiting Iowa today”) :-
($X, :authorOf, $Y ),
($Y, owl:sameAs,#205),
(#306, rdfs:seeAlso,#205),
($X, rdf:type, :MemberOfCongress)

whose evaluation is then delegated to the RDM. 2

Note that the SPARQL 1.1 recommendation [www13a] introduced the BIND and
VALUES operators to pass inline one or more sets of bindings to a SPARQL query.
The union of conjunctive queries described above can easily be rewritten using this new
syntax. However, the way such queries are evaluated and optimized remains platform-
dependent.

4.1.3.2 Bind RDF, then XML

The main idea of this approach is to evaluate QR first and inject the bindings thus ob-
tained into XEval. When considering concrete algorithms for implementing this approach,
two independent choices can be made, leading to a total of four possible algorithms. We
explain these choices first and then present the resulting four algorithms.

Does XURI-in hold? Observe that the bindings returned by QR may include XURIs.
To exploit these bindings in XEval we need the XURI-in assumption, that is, the engine
must be capable of retrieving an element having a specific XURI; this is generally not
possible with an off-the-shelf XDM, since the implicit XML node IDs are not visible in
the XML data and thus are not accessible to the XML queries.

When XURI-in does not hold, we may still exploit XURI bindings brought by QR as
follows.

We term dereferencing the process of obtaining from a node XURI, the URI of its
XML document, as well as the (unique) linear parent-child XPath expression (possibly
with positional predicates) from the root of the document, down to the node itself. For
instance, dereferencing the XURI #305 leads to the document URI “doc200.xml” and

2. As can be seen in the example, in practice PushJoins also extends the projection list of QR to include
the bindings for the variables of QX that exist in Q’s head but do not exist in QR (e.g., the binding for
variable $CA in this example). However, to keep the presentation simple, this detail is omitted from the
algorithm’s pseudocode.
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the linear XPath /microblog/message[12]/body[1]. Dereferencing is easily
supported if XURIs are implemented using some Dewey-style XML node identifiers, of
which [XLWB09] is a recent representative. Alternatively, an XURI-to-XPath index can
be materialized to support dereferencing through a look-up by the XURI.

When dereferencing is available, the RDF-then-XML approach can be implemented
by:

1. evaluating QR;

2. dereferencing any resulting XURIs to linear parent-child XPaths (XURIs corre-
spond to the bindings of the variables in QR that also appear as uri variables in
QX);

3. composing these XPaths with QX and sending the result to XEval.

One or several XML queries? A second dimension of choice concerns the way in
which we handle multiple tuples of bindings returned by the RDM. We could send several
XML queries to the XDM, one for each tuple of bindings (this approach can be seen as a
union of multiple queries); or, we could gather all these tuples in a collection (i.e., use the
union of these tuples) and issue a single query to the XDM, involving this collection.

The difference between these options boils down to the relative order between a union
and a join. One would expect the XDM to transparently pick the best evaluation order,
regardless of the query syntax used. In practice, however, we experienced significant dif-
ferences in performance, with the single XML query solution being much more efficient.

Algorithms. Based on the above analysis, we have devised four concrete algorithms:

– Algorithm RDF⇒XML-URI assumes XURI-in (i.e., pushes XURIs into the XDM)
and sends one XML query per tuple of bindings from QR;

– Algorithm RDF⇒XML-XPath uses dereferencing (i.e., pushes linear XPaths into
the XDM) and sends one XML query per tuple of bindings from QR;

– Algorithm RDF→XML-URI assumes XURI-in and sends a single query to the
XDM;

– Algorithm RDF→XML-XPath uses dereferencing and sends a single query sent to
the XDM.

Algorithm 4 details the RDF⇒XML-URI procedure. Here, the function PushJoins
propagates to QX values (XURIs and literals) from the tuples of bindings resulting from
QR.

Example (RDF⇒XML-URI). Recall the XR query from Figure 3.2, where for simplicity
we only consider the first XML tree patternQ1

X , and the fullQR. An XQuery serialization
of Q1

X is:

55



4.1. QUERY EVALUATION

Algorithm 4: RDF⇒XML-URI
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TR ← REval(QR, IR)
2 TXR ← ∅
3 foreach tR ∈ TR do
4 q ← PushJoins(tR, QX)
5 TXR ← TXR ∪ πh(XEval(q, IX))

for $x1 in collection("XMLDB")//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

return ($x2/text(), $x4)

Suppose that the evaluation of QR(IR) has led to the tuple of bindings with $A=#205,
and assume XURI-in holds. Then, Algorithm RDF⇒XML-URI pushes this XURI into
Q1
X , which turns into:

for $x1 in collection("XMLDB")//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)="#205"
return ($x2/text(), $x4)

where the function XURI($x4) is assumed to return the XURI of the node to which $x4
is bound.

Algorithm 5 outlines RDF⇒XML-XPath. Here, the function PushJoins is slightly
modified w.r.t. Algorithm 4: it adds where clause conditions to QX , stating that ev-
ery node labeled with a URI variable in QX and participating in a join between QX and
QR, should be on the path obtained by dereferencing the respective URI retrieved by QR.
Dereferencing is achieved in Algorithm 5 by the Deref function.

Example (RDF⇒XML-XPath). Continuing on the last example above, assume now
that XURI-in does not hold, and that dereferencing #205 has led to the document URI
doc200.xml and the XPath /microblog/ message[12]/body[1]. Algorithm RDF⇒XML-
XPath injects this XPath into Q1

X transforming it into:
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Algorithm 5: RDF⇒XML-XPath
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TR ← REval(QR, IR)
2 TXR ← ∅
3 foreach tuple tR ∈ TR do
4 t′R ← Deref(tR)
5 q ← PushJoins(t′R, QX)
6 TXR ← TXR ∪ πh(XEval(q, IX))

for $x1 in collection("XMLDB")//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where $x4 is doc("doc200.xml")/microblog/
message[12]/body[1]

return ($x2/text(), $x4)

where we used the XQuery predicate is to ensure that $x4 element is the one having the
XURI #205. Clearly, the query could have been written in a more compact manner as:

for $x1 in doc("doc200.xml")/microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message[12],
$x4 in $x3/body[1]

return ($x2/text(), $x4)

We leave the task of recognizing this equivalence to the XDM. Algorithms for simplifying
such “intersection” queries (in our example, node $x4 is reached by two different paths)
can be found in [CDO08, Kar12].

Algorithm 6 spells out RDF→XML-URI, which assumes XURI-in and sends a single XML
query to the XDM.

Example (RDF→XML-URI). Based on the previous example, assume XURI-in, and
that QR returns two tuples with $A=#205 and $A=#405. In this case, RDF→XML-URI
sends the single XQuery:

let $XURIList:=("#205", "#405")
for $x1 in collection("XMLDB")//microblog,
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Algorithm 6: RDF→XML-URI
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TR ← REval(QR, IR)
2 UCQ← ∅
3 foreach tuple tR ∈ TR do
4 UCQ← UCQ ∪ PushJoins(tR, QX)

5 TXR ← πh(XEval(UCQ, IX))

Algorithm 7: RDF→XML-XPath
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TR ← REval(QR, IR)
2 UCQ← ∅
3 foreach tuple tR ∈ TR do
4 t′R ← Deref(tR)
5 UCQ← UCQ ∪ PushJoins(t′R, QX)

6 TXR ← πh(XEval(UCQ, IX))

$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)=$XURIList
return ($x2/text(), $x4)

in which the existential XQuery semantics of the list comparison in the where clause,
ensures that the URI of $x4 belongs to the $URIList.

Our example assumed thatQR returns bindings for just one URI variable (namely $A).
Along the same lines, at the cost of more complex XQuery syntax (which we omit), this
single-XQuery approach generalizes to the case where QR returns tuples of bindings for
several URI variables.

Finally, Algorithm 7 describes RDF→XML-XPath, which uses dereferencing and issues a
single XQuery.

Example (RDF→XML-XPath). Consider XURI-in does not hold, and that QR returns
the two tuples with $A=#205 and $A=#405, dereferenced into /microblog/message[12]/body[1]
and /microblog/ message[22]/body[1], respectively. In this case, Algorithm
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Algorithm 8: RDF→XML-Data
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TR ← REval(QR, IR)
2 I ′X ←Materialize(TR, IX)
3 Q′

X ← TripleToTreePatterns(Q)
4 TXR ← XEval(Q′

X , I
′
X)

RDF→XML-XPath issues the query:

let $NodeList:=(/microblog/message[12]/body[1],
/microblog/message[22]/body[1])

for $x1 in collection("XMLDB")//microblog,
$x2 in $x1/blogtitle,
$x3 in $x1/message,
$x4 in $x3//body

where XURI($x4)=$NodeList
return ($x2/text(), $x4)

4.1.4 Materialization-based algorithms

4.1.4.1 Materialize RDF, then query XML

Other approaches to query joined XML and RDF data involve materializing data re-
trieved from one sub-instance into a temporary container of the other sub-instance. In
short, these approaches push bindings into the data itself, rather than pushing them into
the query. Although the materialization step may entail I/O costs, the advantage is that
the query sent to the target sub-instance does not contain any union and can be kept small
compared with those of the approaches previously described.

We first turn to the case where QR is evaluated first. Algorithm 8 details how this join
is executed. After extracting tuples that result from answering QR over IR (line 1), the
Materialize function stores these bindings into IX , creating a new sub-instance containing
the actual data and the newly added tuples (line 2). This new sub-instance, called I ′X ,
is temporary and ceases to exist at the end of the algorithm’s execution. Then, a new
query Q′

X is built (function TripleToTreePatterns) by turning all triple patterns in Q to
tree patterns (line 3). The last instruction of the algorithm (line 4) retrieves the final result
simply by evaluating Q′

X over I ′X . There are potentially many ways to materialize the
additional tuples in the I ′X , and converting triple patterns to tree patterns directly depends
on the representation used. The representation we chose is presented in the next example.
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constraints

constraint

Xval:$X Yval:$Y A

@xurival:$A

B

@xurival:$B

Figure 4.1: Additional tree pattern added to QX

Example (RDF→XML-Data). From our running example, suppose the bindings returned
by QR are:

($X =:Charlie, $Y = :x, $A = #205, $B = #305)
($X =:Charlie, $Y = :x, $A = #205, $B = #306)

These bindings are stored in the XDM as a new document such as:

<constraints>
<constraint>

<X>:Charlie</X><Y>:x</Y>
<A xuri="#205" /><B xuri="#305"/>

</constraint>
<constraint>

<X>:Charlie</X><Y>:x</Y>
<A xuri="#205" /><B xuri="#306"/>

</constraint>
</constraints>

Q′
X is obtained by removing all triple patterns from Q and adding the new tree pattern

depicted in Figure 4.1. Observe that, once extracted from the RDM, XURIs cannot be
stored strictly as XML node URIs anymore. If we did so, the XDM would contain distinct
XML nodes with identical URIs, which goes against our data model. To work around
this, we store XURIs as the value of a reserved attribute. URI variables are typed as
VAL variables in the newly added tree pattern and automatically cast to URI variables at
evaluation time. Another way to proceed would be to introduce an xuriref attribute
whose semantics would be inspired from ID/IDREF attributes. An element endowed
with an uriref attribute of value #x would act as a reference to the resource of URI
#x. In such a case, the variable of the tree pattern of Figure 4.1 would not need their type
to be modified.
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Algorithm 9: XML→RDF-Data
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TX ← XEval(QX , IX)
2 I ′R ←Materialize(TX , IR)
3 Q′

R ← TreeToTriplePatterns(Q)
4 TXR ← REval(Q′

R, I
′
R)

4.1.4.2 Materialize XML, then query RDF

Our last algorithm is the converse of the one presented above. In this case, QX is
evaluated first. The tuples thus obtained are stored in the RDM, then a single query made
of triple patterns only is answered from the newly created RDM sub-instance. Algorithm 9
details the process.

Example (XML→RDF-Data). Assuming the evaluation of QX over IX returns the fol-
lowing bindings,

($CA = <body>Visiting ..., $A = #205)

we store them in the RDM sub-instance as a set of triples, representing a specific tuple of
bindings:

(urn:1, urn:val_CA, "<body>Visiting ...")
(urn:1, urn:uri_A, #205)
...

where urn:1, urn:val_CA and urn:uri_A are URIs disjoint from those of the RDF
instance. The URIs and literals stored in object positions are the values bound to these
variables.

The function TreeToTriplePatterns in Algorithm 9 returns a query Q′
R made of the

triple patterns of Q to which we add the following ones:

($binding, urn:val_CA, $CA)
($binding, urn:uri_A, $X)
...

These patterns feature variables from the query $CA and $A, in object positions, form-
ing a join with the original triple patterns of Q. The variable $binding in subject position
joins the additional triple patterns together ensuring that bindings from the same original
tuple will be considered together.
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4.1.5 Pruning optimizations

We now describe an optimization that can be applied to the strategies binding first QR

and then QX . For those algorithms that use dereferencing (that is, RDF→XML-XPath and
RDF⇒XML-XPath), one may limit the amount of work sent to the XDM by pruning some
of the tuples tR as follows:

1. For each tree pattern of QX and tuple of bindings tR ∈ QR(IR), if tR contains
multiple variables bound (in QX) to nodes of the tree pattern, check the document
URIs obtained after dereferencing these variables’ values from tR. If two such URIs
are not identical, discard tR. The reason is that all XML nodes matching that QX

tree pattern must belong to the same document. Therefore, QR result tuples that
attempt to bind them in different documents cannot lead to valid matches.

2. Consider a variable $X , which appears in QX as an XURI variable, and bound
by QR to a URI which is subsequently dereferenced into an XPath expression xp.
Assume that the path on which $X appears in QX is incompatible with xp, that is:
for any XML sub-instanceDX , we have xp(DX)∩π$X(QX(DX)) = ∅. Algorithms
for statically detecting such query independence are provided, e.g., in [Hid03].

Algorithm 10 (RDF⇒XML-XPath-Pr) illustrates how to extend RDF⇒XML-XPath to
account for these two pruning criteria. Each tuple tR of bindings returned by QR is
checked for validity, according to the two criteria provided above. First, the XURIs be-
longing to tR are dereferenced into a new tuple t′R (line 5). Then, the document URIs
corresponding to XURI variables bound to the same tree pattern are checked for equality,
at line 10; then, path compatibility is checked between the linear XPath of each variable, at
line 13. Only for valid tuples of bindings, that is, those that pass successfully both pruning
criteria, do we push the joins into XEval as in the previous algorithms (lines 16-17).

Example (RDF⇒XML-XPath-Pr). Consider an XR query consisting of: QR as in Fig-
ure 3.2, and the tree pattern Q2

X of the same figure. Assume for the purpose of the ex-
ample, that QR returns a tuple of bindings tR with $B=#405 and $C=#303. Moreover,
assume that dereferencing returns:

– doc(#400)/html[1]/body[1]/div[1] for #405;
– doc(#300)/html[1]/div[5]/div[3] for #303.

Since the two nodes belong to distinct documents, tR is not used to solicit XEval.

As an illustration of the second pruning rule, assume that QR returns a tuple with
$B=#305 and $C=#405. In Q2

X , the variable $C is on the path html//div/div. This
path indicates that the parent of the node to which $C is bound is labeled div, whereas
the XPath resulting from dereferencing #405 indicates that the parent should be labeled
body. Thus, we have detected an incompatibility between the two, and tR is discarded.

In a similar way, RDF→XML-URI and RDF→XML-Data could be extended with the
same kind of pruning, leading to the respective variants RDF→XML-XPath-Pr and
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Algorithm 10: RDF⇒XML-XPath-Pr
Input : an XR instance I = (IX , IR),

an XRQ query Q = (h,QX , QR)
Output: TXR = Q(I), a set of tuples of bindings

1 TXR ← ∅
2 TR ← REval(QR, IR)
3 foreach tuple tR ∈ TR do
4 valid:=true
5 t′R ← Deref(tR)
6 foreach tree pattern txi of QX do
7 Let $V 1

i , $V
2
i , . . . , $V

ki
i be the XURI variables of txi which are bound in tR

to the XURIs v1i , v
2
i , . . . , v

ki
i , respectively

8 Assume dereferencing returns the document URI d1i and the linear
positional XPath xp1i for v1i , and similarly (d2i , xp

2
i ) for v2i , . . ., (dkii , xp

ki
i )

for vkii in tR
9 // Compare document URIs:

10 if d1i = d2i = . . . = dkii then
11 // Check compatibility between the linear XPaths and paths of the

respective variables in QX :
12 foreach $V j

i , 1 ≤ j ≤ ki do
13 if xpji is incompatible with the path on which $V j

i appears in txi
then

14 valid:=false;

15 if valid then
16 q ← PushJoins(t′R, QX)
17 TXR ← TXR ∪ πh(XEval(q, IX))

RDF→XML-Data-Pr.

When both XURI-in and dereferencing are supported, one may apply the same prun-
ing technique as presented in Algorithm 10, and push XURIs directly into the XML sub-
queries rather than the dereferenced nodes (lines 16 and 17). This variant comes in two
flavors, RDF→XML-URI-Pr and its tuple-at-a-time counterpart RDF⇒XML-URI-Pr.

Figure 4.2 systematizes the XRQ evaluation algorithms discussed so far.
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XURI-in holds

Deref holds

XURI-out holds

XML | | RDF

XML➝RDF-Data XML➝RDF

RDF➝XML-Data

RDF➝XML-Data-Pr

RDF⇒XML-URI

RDF⇒XML-URI-Pr

RDF➝XML-URI

RDF➝XML-URI-Pr

RDF⇒XML-XPath

RDF⇒XML-XPath-Pr

RDF➝XML-XPath

RDF➝XML-XPath-Pr

independent execution dependent executions

XML first RDF first

push to data push to query

push to data push to query

many queries single query many queries single query

Figure 4.2: Taxonomy of the proposed XRQ query evaluation algorithms

4.2 Implementation

We implemented the XR platform in Java 1.6 (16.000 lines); Figure 4.3 depicts its
architecture. The XR platform builds on pre-existing data management systems: one for
XML (XDM) and one for RDF (RDM). Such systems are integrated within through wrap-
pers that allow delegating them the evaluation of XML, respectively, RDF sub-queries of
XR queries. Since XRQ corresponds to well-established conjunctive subsets of XQuery
and SPARQL, most existing XDM and RDM may be plugged in our platform.

4.2.1 Existing wrappers

As RDF query engines, we have experimented with RDF-3X [NW10], established as
a very efficient RDF query processor; we used the version 0.3.7. We also implemented a
wrapper for Jena 2.6.4, a widely used open source suite. Our experiments with Jena have
shown that it does not scale beyond a few million triples, thus our experiments focus on
RDF-3X.

Concerning the XML query engine, our experiments use the BaseX platform (http:
//basex.org), version 7.3. BaseX is a recent XML store, which we found to be com-
petitive w.r.t. QizX and MonetDB in tests that we ran comparing them on the XMark [SWK+02]
and XPathMark [Fra05] benchmarks. We used BaseX “off-the-shelf”, and interacted with
it through its XPath- and XQuery-compliant query interface. Unless otherwise specified,
thus, BaseX is our XDM. It does not satisfy XURI-in nor XURI-out.
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Figure 4.3: Architecture of the XR platform

Given the importance of XURIs in the XR model, we also wanted to test the case
when we have access to the XDM’s internals, and in particular to its internal node IDs,
exposed as XURIs. For that purpose, we used the XML query engine of the ViP2P
project [KKMZ12] (see also http://vip2p.saclay.inria.fr), which we had
developed in the group. ViP2P supports the XML tree pattern dialect introduced in Sec-
tion 3.2.

The ViP2P XML engine is based on SAX, and evaluates tree patterns by traversing
the complete document, computing and returning node XURIs dynamically as required
by the query. Thus, ViP2P satisfies XURI-out.

ViP2P also satisfies XURI-in, but not efficiently: to find the XML element having a
given XURI, it traverses the complete corresponding document from the beginning and
stops upon encountering the respective element. To get more efficient support from ViP2P,
we exploited its built-in materialized view-based rewriting framework [MKVZ11], and
considered the optimistic case in which when processing a query Q = (h,QX , QR), each
tree pattern in QX is available as a materialized view. This is obviously not always
guaranteed; therefore, our experiments with ViP2P are aimed as a “lower bound” of sorts,
for the case when (i) we do have access to the XDM internals and (ii) we are able to tune
the store to a specific workload 3.

Wrappers for Jena and Virtuoso have been implemented later on to be used in the

3. One could further speed up ViP2P by (i) indexing its views on the XURI attributes that are passed as
bindings from the RDF query and/or (ii) pushing value joins among QX tree patterns within the materialized
views etc. We did not pursue these alternatives, as they are rather orthogonal to the main purpose of this
thesis.
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application described in Chapter 5. The main rationale for resorting to Virtuoso in this
case, was the relatively good support the system provides for updates compared with
RDF-3x.

4.2.2 XR query engine

To combine partial query results, the XR platform provides its own execution engine,
comprising selections, projections, hash joins etc. It also includes a generic fetch operator,
which, depending on the context, performs the function of REval and XEval introduced in
Section 4.1. The platform is currently single-site, but to exploit the parallelization oppor-
tunities provided by nowadays’ multicores, in our implementation, all the fetch operators
of an execution plan are launched simultaneously when the plan execution begins (as op-
posed to letting the implicit iterator-based scheduling [Gra90] of our operators trigger
them). Our tests have shown that such parallel, eager fetch execution significantly speeds
up the query evaluation. This is because the fetch operators ship potentially complex sub-
queries to the underlying XDM and RDM, thus their evaluation is a significant part of the
overall processing time.

4.2.3 URI management

For URI management (XURI-in, XURI-out and Deref), we resorted to the following
techniques.

When using BaseX, we store within the XML instance, the XURIs of only those XML
nodes, which are referred to by the RDF sub-instance. Specifically, let d be an XML
document and n ∈ d a node, and dURI:lnID be the XURI of n, where dURI is the URI of
d and lnID is the local identifier of n within d. If dURI:lnID appears within the RDF data
instance, then within d, we add a special attribute to n, of the form id=”lnID”, which
the run-time reassembles with dURI into n’s full XURI. The module inserting such IDs is
the embedder in Figure 4.3.

The advantages of this approach are: (i) both XURI-in and XURI-out can be sup-
ported through trivial XQuery rewritings, and (ii) some underlying systems can be tuned
to index these attributes and therefore improve the performance of (XR-specific) joins
between the XML and RDF data. One may also consider leveraging directly the internal
ID representation schemes specific to most XDMs, as we did in a previous version of this
work [GKK+11a].

For BaseX and ViP2P, to implement the Deref function, we store in a dedicated
index (materialized in the XR platform but outside the XML data management plat-
form), for each node URI, the parent-child XPath query (with positional predicates) lead-
ing from the document root to the respective node. For instance, this index associates
to doc1:node15 the corresponding node XPath, e.g., /a/b[1]/c[2]/d[1]. Once
stored, these XURI/XPath pairs can be indexed in one or two ways (e.g., in persistent

66



4.2. IMPLEMENTATION

hash tables provided by the BerkeleyDB library [BDB]) so as to perform the dereferenc-
ing in constant time. In our platform, we indexed the XPaths with the XURIs as look-up
keys. This approach for implementing Deref is non-intrusive and can be applied on the
top of any existing system.

The XR plan generator takes as input an XR query and a given query evaluation strat-
egy among those described in Section 4.1, and produces an execution plan implementing
the respective strategy for that query. As explained in Section 4.1.2, one needs to decide
how to group the XML sub-queries sent to XEval, i.e., whether to delegate value joins
among XML tree patterns to the underlying database or not. To determine this, the XR
platform includes a calibration module that sends to the XML database a set of fixed
queries whose performance it then compares with the case when value joins among XML
tree patterns are run in the XR platform and these tree patterns are run independently on
the XML database.

Finally, the XR platform includes an XR data generation module we devised, which
we further detail when presenting our experimental evaluation, in the next section.

4.2.4 Reasoner

In its first version, the XR platform reasoner exclusively relied on forward chaining
to take account of RDFS-entailed triples. Recall that in this context, query answering
amount to query evaluation. Thus, the techniques and algorithms described in Section 4.1
can directly be applied onto a saturated XR instance. Likewise, all experimental results
presented in the next section cover query evaluation only. We have studied other tech-
niques for query answering, based on bitmap indexes (detailed in Chapter 6) and materi-
alized views [GKLM11b], will be integrated to the platform in the future.

4.2.5 Endpoint

The platform features an endpoint, i.e., a Web interface to the query engine. In the
spirit of a SPARQL endpoint, the Web application allows a user to interact with the query
engine through a form, where she is invited to type in a query in a text area, specify the
name of the instance on which the query will be evaluated, and an output serialization
format. The application can also be accessed in a RESTful manner, in which case all
these parameters are passed through an HTTP request, and the results are written directly
to HTTP response. The endpoint was not use directly in the experiments described in
Section 4.3, but the application presented in Chapter 5 heavily relies on it.

67



4.3. EXPERIMENTAL EVALUATION

Figure 4.4: Screenshot of the XR endpoint

4.2.6 Composer

Finally, a query-view composition module, implementing Algorithm 1 (Section 3.3)
was last added to the platform.

4.3 Experimental evaluation

This section presents the findings of our experimental study. Section 4.3.1 describes
the experimental settings we used to test our algorithms. Section 4.3.2 provides an exten-
sive comparison of all our XR query evaluation algorithms on a small XR data instance,
illustrating their performance and allowing us to discard the most inefficient ones. Sec-
tion 4.3.3 focuses on the more efficient ones, and studies their scalability with respect to
the size of the data instance. In Section 4.3.4, we compare these algorithms based on two
quite different XDMs, then we conclude.

4.3.1 Experimental setting

Datasets. We have used a set of synthetic XR data sets, generated in two stages as
follows.
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First, we used the XMark [SWK+02] XML document generator to produce a set of
XML documents. Second, we generated a set of RDF triples, some of whose subject and
object values are URIs of nodes from the previously generated documents. Specifically,
1/2 of the subjects are URIs of XML nodes, while the others are synthetic URIs, picked
from a fixed pool using a uniform distribution; 1/3 of the objects are XML node URIs, 1/3
are picked from the fixed pool of subject URIs, while the last 1/3 are taken from a distinct
(disjoint) URI set. The values of properties in the RDF data are picked from a set of 1, 185
distinct properties present in the DBPedia database [wwwc], using a Zipf distribution.

This data generation approach aims at resembling actual settings where some RDF
triples annotate the XML nodes with properties from a given vocabulary, some triples
connect the nodes to each other, and finally some other triples are not related to the docu-
ment nodes (but may still join with those that are).

We moreover controlled:

– The size factor of the XMark XML generator, denoted i. We experimented with
size factors of 1, 10 and 100, which respectively lead to XML datasets of 100MB,
1GB and 10 GB.

– The splitting of the XML content across documents. This parameter matters, be-
cause each XML tree pattern can only match within a single document; moreover,
XML query processors often perform better on smaller documents. Thus, we gener-
ated the XML data: all in a single file; split in n files where n is the XMark input size
factor (thus, each file is of about 1MB); finally, split in XML files of approximately
1000 nodes each. Unless specified otherwise, in this chapter, we report on this last
option, which enabled us to best compare our algorithms. Results with other XML
segmentation sizes are provided on our online experimental site [wwwd].

– The ratio between the number of XML nodes and the number of RDF triples in
the instance, denoted j. We chose size ratios of 1/3, 1 and 3. This parameter was
introduced in order to control the amount of connections between the XML and
RDF parts of the data set.

We denote by Dij the dataset obtained by setting the XMark input size to i and the
RDF-to-XML ratio to j. For instance, D10

1/3 is a dataset generated with size factor 10
(approximately 1GB and 16M XML nodes), and 1 RDF triple for 3 XML nodes, i.e., ap-
proximately 5M triples in this case. The size of the datasets w.r.t. the input size factors
are reported in Table 4.1.

Workloads. We handcrafted four workloads of eight queries each. Queries are ordered
by increasing complexity, from one tree pattern joined with one triple pattern, to three tree
patterns joined with two triple patterns. On average, a tree pattern has 4.7 nodes. Each
query features joins: between the triple patterns, between the tree patterns, and between
triple and tree patterns, on node URIs.

We briefly explain what each query does in W1:
– Q1 filters on the type, quantity and price of featured items that appeared in closed
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Dataset #RDF edges #XML edges
sizes (millions) (millions)
D1

1/3 0.5 1.6
D1

1 1.5 1.6
D1

3 5 1.6
D10

1/3 5 16
D10

1 15 16
D10

3 50 16
D100

1/3 50 167

Table 4.1: XR datasets used in the experiments

auctions, where the auction nodes are annotated.
– Q2 filters on the type and seller of items with a quantity of one appearing in open

auctions, where the auction nodes are annotated with two distinct properties.
– Q3 filters on the ID, location and category of items (first tree pattern), and the names

of people in Germany who have an interest in the same category (second tree pat-
tern). Moreover, the item nodes have to be annotated.

– Q4 finds the type and bidder’s name of items in open auctions (first tree pattern),
and the age, name and email address of people in the United-States selling these
items (second tree pattern). The items must be annotated with a least one triple.

– Q5 has a three-way join between tree patterns. It retrieves the people who have been
both sellers and bidders, who bid on a fix date (10/14/2000) and whose bidder’s
node is annotated.

– Q6 has a chain-join between three patterns, finding names and locations of people
watching open “regular” auctions, where the items being sold are located in Africa.
In addition, the person’s node must have an annotated chain of length two.

– Q7 filters interests one hand, and watched auctions on the other hand, while these
nodes have to be linked with a chain annotated of length two. The query features a
Cartesian product in QX , but is connected when considered as a whole.

– Q8 on the contrary features a Cartesian product among QR triples. The two triple
patterns are non-selective, but they must annotated the item and category nodes of
items being sold.

All workloads share the tree and triple patterns of the first workload W1. To gauge
the impact of the selectivity of each sub-query, we have added selections in the other
workloads as follows. In the workload W2, selections have been added to the RDF triple
patterns only. In the workload W3, selections have been placed on XML tree patterns
only, while workload W4 features the selections of both W2 and W3, on the XML and
RDF patterns.

Encoding URIs for BaseX and consequences for querying. As explained in Sec-
tion 4.2, BaseX satisfies neither XURI-in nor XURI-out, and to be able to test all our
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QX QR

W1 LOW LOW
W2 LOW HIGH
W3 HIGH LOW
W4 HIGH HIGH

Table 4.2: Workload relative selectivities

algorithms on BaseX, we added xml:id attributes to only those XML nodes whose
XURIs appear in the RDF sub-instance. With this encoding of XURIs in the data, BaseX
can be considered as satisfying both XURI-in and XURI-out.

It turns out that this simple encoding improves the performance of QX evaluation,
even for simple strategies such as XML||RDF. The reason is that whenever XURI-out
is assumed, the XQuery syntax of QX involves the xml:id attribute. This attribute is
present only in those nodes, which appear as subjects or objects within the RDF sub-
instance. Thus, QX filters out of the XML instance the XML nodes whose URIs do not
appear in the RDF instance.

Methodology. To cover all possible configurations, we reused and adapted a method-
ology and tool set developed for a prior project [GKLM11b]. Our evaluation program
outputs logs at regular time intervals or on specific events (e.g., test failure). Each log
record contains information about the test being performed, e.g., the configuration used,
the start time or whether a timeout was reached. It also features data about the platform on
which it runs, like the amount of memory used. Finally, the logs contain context-specific
strings that can be used to filter the proper subset of records that is relevant to a given
aspect of the experiments. For instance, lines containing aggregate results, such as the
average run time of a given query over n executions, are prefixed with “CLUSTERED”,
while lines containing atomic information are prefixed with “SIMPLE”.

Tests were run on distinct machines, with identical software and hardware, in parallel
to minimize the overall time requirement. Logs from each machine produced in this
fashion can be easily merged for later treatment. After the tests completion, we collected
the samples and analyzed them with a set of scripts. The scripts are simple loops, in
which each test configurations were considered. We used each configuration to filter the
corresponding records from the logs, produced a visual chart with gnuplot 4, and finally
outputted the results into HTML/SVG pages [wwwd]. This procedure allowed producing
a large set of visualizations, to understand the overall behavior of our algorithms. In
the sequel, we present some selected results that we believe are the most relevant to our
discussion.

4. http://gnuplot.info
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Figure 4.5: XR query evaluation strategies compared on workloads W1 −W4 and dataset
D1

1
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4.3.2 Comparison of all strategies

Our first set of experiments compares all the strategies described in Section 4.1, on the
dataset D1

1 and on all workloads. In this experiment, we sent to the RDM the connected
components of QR one by one, whereas to the XDM we sent only isolated tree patterns,
and performed all the remaining joins using our own operators, at the level of the XR
engine and outside the XDM. Our calibration tests indicated that these choices allowed
us to maximize the performance of the RDM, respectively, XDM. Figure 4.5 presents
the running time (limited to our timeout of five minutes) for workloads W1 to W4 in this
setting.

A first remark is that the workload W1, with less selections in QX and QR, is the
hardest, that is, for each strategy and query Qi, the strategy’s running time is longest on
the Qi from W1. Similarly, W4, featuring selections both in the XML and RDF sub-
queries, is the easiest. The workloads W2 and W3, having selections only in the RDF,
respectively, the XML part, are in-between; the “harder” queries (Q5 to Q8) are poorly
handled in both workloads, while the “simpler” queries (Q1 to Q4) are evaluated more
efficiently in their W2 versions than in their W3 counterparts. This is because a selection
has a significant impact on the amount of data manipulated by QR, turning, for instance,
a triple of the form ($x, $y, $z) which matches the whole RDF sub-instance, into one of
the form ($x, :p1, $z) matching only a few triples. In contrast, a selection added to QX

may turn, e.g., /site//person into /site//person[age=”20”],
still a sizable reduction in the result size, but not as dramatic as in the case of RDF.

Our second remark concerns the tuple-at-a-time strategies from the RDF-to-XML
family, those whose names include RDF⇒XML (and which are shown in oblique dashed
bars in the Figure). Overall, these strategies perform poorly, for all but a few selec-
tive queries in W2 and W4. Among the worst are RDF⇒XML-URI (Algorithm 6) and
RDF⇒XML-XPath (Algorithm 7), running out of time for all but seven (respectively, two)
queries. The tuple-at-a-time RDF⇒XML algorithms are slow because of their numerous
calls to the XML engine. Moreover, RDF⇒XML-URI is better than RDF⇒XML-XPath.
This is because RDF⇒XML-URI assumes XURI-in and thus performs the join between
the RDF bindings and the XML database, on the xml:id attribute. RDF⇒XML-XPath
requires evaluating numerous linear XPath expressions, which slows down executions
significantly. Finally, tuple-at-a-time strategies with pruning, having names of the form
RDF⇒XML*Pr, bring only marginal performance improvements.

A third remark is that among the remaining strategies, pruning does help. For instance,
RDF→XML-XPath-Pr performs in many cases better than RDF→XML-XPath; the latter is
overall not competitive, thus we will omit it from further tests. Similarly RDF→XML-
URI-Pr is often better than RDF→XML-URI.

Based on these experiments and similar others, we decided to exclude RDF→XML-
XPathand the tuple-at-a-time RDF-to-XML strategies from further tests, and we only con-
sider the strategies showing acceptable performance in Figure 4.5, namely: XML||RDF,
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XML→RDF, RDF→XML-URI, RDF→XML-URI-Pr, RDF→XML-XPath-Pr, XML→RDF-
Data, RDF→XML-Data and RDF→XML-Data-Pr.

4.3.3 Scalability

In this second batch of experiments, we focus on the scalability of the competitive
strategies when the size of the XR data instance grows. For clarity, we needed an aggre-
gate measure to characterize the cumulated size of the XML and RDF sub-instances. We
chose the total number of edges in the data instance, that is: the number of XML nodes
(we can view each of them as being at the lower end of an edge in the respective tree)
plus the number of RDF triples (each triple can be seen as an edge between its subject and
object). We used datasets of varying sizes, ranging from D1

1/3 to D100
1/3 (the exact cardinal-

ity characteristics of these datasets are listed in Table 4.1). For instance, for D100
1/3 , 217 M

edges correspond to a total of 17 GB of data (11 GB of XML and 6 GB of RDF). We ran
the queries of workload W4, since its selections both in the XML and RDF sub-queries
made it closest to real-world scenarios.

Figure 4.6 shows the variation of the evaluation times when the dataset (measured
in edges) increase. Notice the logarithmic scale on both axes. As in the previous ex-
periments, we used a time-out of 5 minutes and did not plot the runs interrupted at the
time-out.

For the less complex queriesQ1−Q4, all strategies scale up to the largest data size and
roughly linearly. The algorithms from the RDF→XML family, namely RDF→XML-URI,
RDF→XML-URI-Pr and RDF→XML-XPath-Pr perform best for the most selective queries
(Q1 to Q4). The advantage of the pruning-based strategies against the plain RDF→XML-
URI fades out at large data scales, since the time spent comparing XURIs (or XPaths)
offsets the benefit of pruning the binding tuples sent to the XDM. Strategies XML||RDF
and XML→RDF exhibit similar behavior and also scale roughly linearly. While the con-
ceptual difference between independent and dependent execution is important, in practice
the difference may be smoothed out by the fact that for both XML||RDF and XML→RDF,
when encoding XURIs as XML attributes, the XQuery corresponding to QX operates
some filtering on the XML sub-instance, even in the absence of passed XURIs (as we
have explained in Section 4.3.1).

For the more complex queries Q5 − Q8, Figure 4.6 shows that RDF→XML-XPath-Pr
takes longer than the time limit in most cases. This is because in this strategy, derefer-
encing entails many individual XPath expressions packed into the single XQuery sent to
the XDM, which fails to process them. The other strategies fare better; remember that the
curves end before the first point that would cross the time limit. XML||RDF behaves well
up to the largest data size on Q8, the query with a Cartesian product within QR, thanks to
the optimization consisting of sending to the RDM connected queries only. As an exam-
ple, on the smallest data instance,Q8 is evaluated by joining the result of one triple pattern
(approximately 150 triples) with the XML tree pattern results (approx. 14.000 tuples), and
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Figure 4.6: Evaluation times for W4 with datasets of increasing sizes

then with the result of the second triple pattern (200.000 triples), leading to a result of 1
triple. This demonstrates the interest of carefully choosing the queries to be delegated to
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the XDM, respectively, RDM, as discussed in Section 4.1.1.

Each strategy involving data materialization presents a similar trend with its non-
materializing counterpart, but with slightly worse performance. For instance, RDF→XML-
Data is generally one order of magnitude slower than RDF→XML-URI, while RDF→XML-
Data-Pr tightly follows the performance of RDF→XML-URI-Pr. This is due to the materi-
alization cost, which involves disk I/O. The main advantage of those strategies, however,
lies in their robustness. As selectivity decreases, strategies that pass information at the
query level do not scale, while materialization pays off. Note that curves do not climb
monotonously due to the fact that each dataset was generated independently. Therefore
larger datasets do not necessarily include smaller ones. This is particularly obvious in
Q7 with strategy XML→RDF-Data where response time suddenly declines for the largest
dataset. In this case, not only no materialization takes place, but also RDF-3X statically
detects that the final query returns an empty result.

4.3.4 Experiments using VIP2P

The last experiments we present compare two different XDMs: on one hand BaseX
off-the-shelf, and on the other hand our own ViP2P engine, both of which were detailed in
Section 4.2.1. We recall that unlike BaseX, ViP2P natively supports XURI-out, simpli-
fying the implementation of the XML||RDF and XML→RDF strategies. Moreover, ViP2P
is able to exploit materialized views, expressed as joins over tree patterns, to efficiently
rewrite queries [MKVZ11].

To see if the benefits of such view-based techniques transfer to XR query evaluation,
prior to running an XR query Q, we materialized each tree pattern in QX as a separate
view. This admittedly puts ViP2P at an advantage compared to engines that do not support
XML materialized views; indeed, the latter are not as frequently provided as is the case
for XML indexes. Therefore, our motivation for including VIP2P with this configuration
in our tests was to illustrate the performance than can be achieved using an appropriately
set up XDM; view-based rewriting techniques, e.g. [BÖB+04, MKVZ11], are likely to be
gradually included in popular XML databases as they mature.

Figure 4.7 depicts the running times of strategies XML||RDF and XML→RDF on the
workloadW4, when the XDM is ViP2P and BaseX respectively (the BaseX times are from
Figure 4.5, re-plotted here as a reference). Overall, ViP2P performs better than BaseX for
both strategies, in particular more than an order of magnitude faster for Q6 and Q7. For
the other queries, the times differ by less than one order of magnitude, and overall the
trends are similar - “hard” queries for a strategy and system tend also to be comparatively
hard for the other system using the same strategy. This gives some support to the idea
that our XRQ evaluation strategies are not tied to the particulars of one engine and can
accommodate different underlying systems.

In Figure 4.7, we stopped execution at 5 minutes. All runs ended much faster, except
for XML→RDF on ViP2P, on the queries Q2, Q4, Q7 and Q8. We investigated this and
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Figure 4.7: Evaluation times for workloads W1 to W4 on dataset D1
1 using ViP2P and,

respectively, BaseX

found a surprising explanation. In these cases, XML→RDF sends to RDF-3X the XURIs
retrieved by ViP2P. Because ViP2P assigns XURIs to all nodes (whether or not these
XURIs appear in the RDF data), some of the XURIs ViP2P sends to RDF-3X are not
present in the RDF database. For reasons not yet clarified, RDF-3X is extremely slow on
queries where a variable must belong to a given set of URIs, if some of these URIs are
not in its RDF database. The difference w.r.t. the same query but using only URIs from
the RDF database is a factor of more than a hundred. We have isolated a small example
exhibiting this problem and contacted the system authors; when the problem is clarified or
solved, we will update the corresponding graphs on our online experiment site [wwwd].
Except for these cases, RDF-3X was overall fast and accurate in our tests, thus we kept it
as the RDM of choice for our experiments.

When XML→RDF times-out on ViP2P, XML→RDF on BaseX runs typically fast! This
is because, as explained in Section 4.3.1, the XURIs sent by BaseX to the RDM are only
those of nodes referred to by the RDF sub-instance. Therefore, the unexpected behavior
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of RDF-3X is not triggered 5.

4.3.5 Experiments wrap-up

Our experiments allow us to establish the following observations. First, naïve tuple-
at-a-time strategies for passing XURIs from the RDM to the XDM are prohibitively slow,
even when applying pruning optimizations; similar strategies which pass a single query to
the XDM perform much better. Second, XML||RDF and XML→RDF are the best on small
data instances (Figure 4.5), and are robust (especially XML||RDF) up to very large data
instances (Figure 4.6). Thus, if the XDM supports XURI-out, one can safely choose the
XML||RDF or XML→RDF strategies. This supports the idea that deploying XR based on
an XDM whose internal node IDs can be exposed as XURIs, leads to simple yet efficient
and robust XRQ evaluation strategies.

For queries and data instances of moderate size, however, the pruning-based strategies
RDF→XML-URI and RDF→XML-XPath-Pr can be faster by one order of magnitude than
XML||RDF and XML→RDF; RDF→XML-URI requires XML-in, whereas RDF→XML-
XPath-Pr does not. The advantages of RDF→XML-XPath-Pr are erased if many XURIs
are passed from the RDM to the XDM, e.g., in Q5 − Q8 in Figure 4.6, since the evalu-
ation of numerous linear XPath expressions (to check whether the nodes from the XML
and RDF sub-instances coincide) incurs high costs. Strategies involving materialization,
although generally slower than their information-passing counterparts, tend to scale well
beyond them.

Finally, we have shown that improvements to the performance of the underlying XDM,
in particular by means of storage tuning using VIP2P as the XDM, translate into respec-
tive gains for the overall XR query performance. This, as well as our XR platform design
which communicates with existing systems through wrappers, and our design of algo-
rithms depending on the hypotheses and capabilities of the underlying XDM, give us
confidence that the XR model can be efficiently deployed in a variety of settings.

4.4 Conclusion

In this chapter, we discussed query evaluation strategies available when XML and
RDF are considered together. We presented the XR platform, a XR storage and query
evaluation platform, implementing the full range of algorithms previously introduced. Fi-
nally, we presented an in-depth evaluation campaign for this family of algorithms. So far,
we have purposely kept the problem on RDF query answering under RDFS-entailments
out of the discussion. Chapter 6 specifically addresses this problem. The approach we
present applies to RDF in general. Our results, however, directly carry over to XR.

5. This interaction between XURI encoding and RDF-3X performance can be reasonably seen as an
“implementation accident”; we only explain it for completeness.
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Chapter 5

Fact checking and analyzing the Web
with XR

We introduce FactMinder, an application leveraging the XR platform to empower data
journalist and online fact checkers. The application is implemented as a browser plugin,
i.e., a special panel in the navigator featuring focused content, enabling users to better
understand, analyze and verify the claims made on pages they browse online. The focused
content area is mainly a hierarchical layout of XRQ views, which we nicknamed XR
Information Panel (or XIPs). XIPs can cross information from the pages browsed by the
users and any other openly available XML or RDF datasets. Users can also manually
annotated pages, e.g., to point to arguments supporting or disproving a claim, and publish
these annotations online for others to see.

In the next section, we detail our motivation for building FactMinder. Then, we present
its architecture (Section 5.2) before describing the user-facing modules (Section 5.3).

5.1 Motivation

The Internet has reshaped journalism in important ways, one of the most important be-
ing the instant dissemination capabilities of the Web. Moreover, journalists have suddenly
had to compete with bloggers, activists and other concerned citizens, establishing them-
selves as alternative sources of information, and reaching out, collectively, to a far wider
reality on the ground than a news agency (let alone a single journalist) could hope to have
access to. This has led to the emergence of new professionals, called data-journalists,
and online fact-checkers. These specialists are trained to examine and aggregate data
from many sources (“official" or not, such as Data.gov or WikiLeaks 1) and use online

1. http://wikileak.org
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services (such as Twitter 2 or Google Maps 3) to integrate and corroborate facts found on-
line. Journalists have become data publishers themselves as witnessed in sites such as
The Guardian 4, FactCheck 5, and Politifact 6. However, as skillful as these professionals
may be, their work is still very manual as demonstrated by Storyful 7 founder in a recent
presentation 8 and, as of today, they lack powerful tools for analyzing, consuming and
producing data.

The main intent behind FactMinder is to provide to such professionals with a first-
hand tool to help them search for information and crosscheck with openly available data
set. As they move forward into their investigation, users can publish the results of their
analysis for others to see, and reuse in the own work.

5.2 Architecture

FactMinder follows a client-server architecture, detailed in Figure 5.1. In this Figure,
boxes depict the FactMinder modules. Solid ovals represent the tasks performed by the
application automatically, whereas dashed ovals are the tasks performed by users inside
and outside the system.

The FactMinder client is made of three components, an information extractor, a rich
browser and a dashboard, illustrated by the screenshot in Figure 5.2, each playing a dif-
ferent role in the fact checking process. When a document is opened within the client,
the information extraction module (such as OpenCalais [wwwi]) automatically finds the
topics, entities and relationships it contains. Documents are opened in the rich browser,
where the user can manually add or edit annotations. The dashboard is made of views over
the XR database with the background information, each rendering a specific aspect of the
information at hand. These views are easily customizable; the user iteratively refines
them through the GUI when performing an analysis task. To pursue her investigation, the
user switches back and forth between the rich browser and the dashboard. Any insight
she gets from the interface may lead her to add some detail to the document as a new
annotation, or to refine a view and get a better understanding of the data. FactMinder
uses an XR server to integrate XML and RDF from the Web, and store the annotations
created both automatically and manually. The server runs on top of BaseX 7.3 [wwwa]
for managing XML data, and the open-source edition of Virtuoso 6.1.6 [wwwk] for the
RDF data. Bold arrows in Figure 5.1 denote data flows between each component of the
system. Content created during the investigation is stored in the database for future use.

2. http://twitter.com
3. http://maps.google.com
4. http://guardian.co.uk/data
5. http://www.factcheck.org
6. http://www.politifact.org
7. http://storyful.com
8. http://on.ted.com/MarkhamNolan
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Figure 5.1: FactMinder architecture

The analysis may lead the user to find related contents, run additional documents through
the same analytical process, etc.

Next, we detail how users interact with the application.

5.3 User Interface

The screenshot in Figure 5.2 exemplifies the main UI components assuming a scenario
where a prospective PhD student want to verify facts about the OAK research team before
applying for a position.

The rich browser. In this area, users can open documents by entering their location, ei-
ther on the local machine or on the Web. Unlike conventional browsers, it provides a rich
set of annotation tools. First, the annotations produced by the information extractor upon
opening the document are accessible to the user by hovering over the text. Second, the
user can add her own annotations in a faceted editor by selecting some content, specifying
comments and new knowledge, and enriching or correcting existing annotations. Com-
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Figure 5.2: Main FactMinder window

ments contain, e.g., a text body, creation date, author and category, such as “FalseClaim”,
“uri1 confirms this”, etc.

The dashboard. The dashboard area is composed of XR info panels (XIPs, for short).
These panels assist the user in understanding the content she is working on; each panel is
dedicated to one aspect of the information under scrutiny. The information content of an
XIP is gathered through an XRQ parameterized view over the data in the browsing panel
and/or the background information (the preexisting XR database). Semantic connections
may exist among XIPs used simultaneously (much in the way the content in part of a Web
page changes according to the user interaction with the rest of the page). For instance,
the default XIP, shown in Figure 5.2, comprises a “Concepts” XIP, at the center top of the
figure, featuring all the unique concepts appearing in the currently selected document.

XIPs are highly customizable, and users can add, delete, and rearrange them at any
time. Users define new XIPs by opening a “new panel” editor (detailed below), providing
the XIP name and the associated XR query.

Dependent XIPs. By default, a XIP is refreshed automatically when the user opens or
selects a new document. Moreover, the re-computation of an XIP can be governed by
the user interaction with another XIP; in this case, we call the former dependent, and
the latter parent. For instance, in Figure 5.2, the “Background”, “Consumer prices” and
“National currency” XIPs depend on the “Concepts” XIP. Selecting an item in the list,
here “Germany”, causes the XIPs to be displayed, presenting information gathered by
crossing data from the page itself with XML data from public OECD datasets and RDF
data from DBpedia.
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Figure 5.3: View editor

Editing XIPs. To create or edit an XIP, the user relies on a graphical editor, such as
the one illustrated in Figure 5.3. An XIP editor opens up, for building XR queries and
viewing them in a graphical form. To create dependent XIPs, the user simply needs to
designate an XIP among the list of existing ones at the bottom of the editor. The user is
then presented with the list of the variables returned by the parent XIP that can be reused
to establish connections among dependent views.

Semantic template XIPs. One can easily write concept-specific XIPs. For instance,
the default facts for a :Country may include the historical or economics background,
whereas for a :Person, the relevant facts may be the age, nationality and profession. XR’s
support for RDFS semantics (e.g., subclass relationships) allows one to adapt queries to
the context. Suppose that XIP “Concept” of Figure 5.2 has the following query definition:

($x, rdf:type, :Concept), ($x, rdfs:label, $label)

ul

li$label

:- html

spanuri:$x
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Next, one can define an XIP called “Background” depending on “Concept”, displaying
focused information about the item currently selected in “Concept” and referring to any
:Concept:

($x, rdf:type, :Concept),
($x, rdfs:label, $name),
($x, :description, $desc)
($x, :embled, $picture)

div

div$desc img

@src$picture

:-

Notice that variable $x appears in the queries of both XIPs. By selecting an item from
“Concept”, the value bound to $x in that item is passed to the dependent query before
executing it. The dependent query only yields a result if the resource bound to $x has
type :Concept.

Further, assume that the user wants to show specific information if the selected item
is a :Scientist. He can customize the template by creating a second XIP depending on
“Concept”, for instance to include information about scientists. The new XIP’s query
could look like this:

($x, rdf:type, :Scientist),
($paper, :hasAuthor, $x),
($paper, :hasAuthor, $coauthor)

ul

li$coauthor

:-

When the selected item in the parent XIP refers to a :Scientist, both dependent XIPs
will be refreshed, but only those returning a result will eventually be displayed. This is
illustrated in Figure 5.4. After selecting “François Goasdoué” from the list of concepts,
his co-authors and publications are displayed. In this case, the information is gathered
from DBLP, a dataset of Computer Science publications. However, there is currently no
information on the selected item in DBpedia, thus the “Background” panel is not displayed
as it yields no result.

5.4 Conclusion and perspectives

Growing computing power and storage capabilities are reshaping the profession of
journalists. The problems of finding, aggregating, visualizing and validating facts online
are making their ways into the Computer Science research community, as witnessed by
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Figure 5.4: FactMinder showing scientist-specific XIPs

recent publications [CHT11, CLYY11]. We believe that XR would be a powerful tool for
future research in the field.

To support this claim, we designed FactMinder, a rich browser application relying on
the XR platform, with the aims of breaking the barrier that stands between online content,
which is highly heterogeneous, incomplete and inconsistent in nature, and trusted XML
and RDF data sets.

An important part of the vision behind FactMinder is that annotations produced by
users should be shared among them. As users may express different opinions on similar
topics, confronting their views could bring valuable contributions to the area of sentiment
analysis and crowd-sourcing. A forthcoming PhD thesis will specifically focus on the
study of social interactions in XR.

Acknowlegements. FactMinder’s user interface was implemented by Stamatis Zam-
petakis, co-authors and PhD candidate of the OAK team. The background data used by
FactMinder was collected and curated by Andrés Aranda Andújar, engineer since 2011 in
our group.
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Chapter 6

Answering SPARQL queries with
bitmap indexes

In this chapter, we introduce a novel approach for SPARQL query answering under
RDFS entailments. It essentially consists in a storage model and query evaluation strate-
gies that can be used in a wide range of existing engines, while mitigating some of the
pitfalls associated of the traditional techniques of forward and backward chainings.

The key idea is to store as sets all classes a resource belongs to, and all properties
that exist between a pair of RDF nodes. These sets are stored in bitmap indexes. Single
synthetic facts that represent all classes a resource belongs to (resp. all properties between
two nodes) are stored in a relational table. When a query is evaluated, the bitmap indexes
are consulted to modify an execution plan such that it remains optimizable with existing
algorithms.

Section 6.1 introduces the methods that have been proposed to date for answering
queries under RDFS entailments. We detail our general approach in Section 6.2 under
the assumption that all implicit facts of a data instance have already been derived. In
Section 6.3, we discuss how additional indexes can be used to avoid such preprocessing of
the data. Section 6.5 shows how our technique affects storage space and query evaluation
time for commonly used data sets. Section 6.6 covers the related works. We conclude this
chapter by discussing future works in Section 6.7.

6.1 SPARQL query answering under RDFS entailments

Several approaches have been proposed for RDF query answering, some of them di-
rectly imported from deductive database research.

Forward chaining. The first, and arguably the most widely used technique in commer-
cial systems, consists in materializing the RDFS-closure of the data. By applying the
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RDFS entailments rules forward, new RDF triples are generated and added to the original
data set. Each newly created triple may in turn trigger entailment rules. Thus, the process
completes when the RDF instance reaches a fixpoint, i.e., no new fact can be derived.

The main advantages of this technique are that (i) once the closure is materialized,
query answering can take place using conventional evaluation and optimization tech-
niques, (ii) the materialization is performed off-line and thus does not interfere with the
query evaluation process. However, materializing the closure requires additional storage
space. As we will see, the space overhead is polynomial in the size of the schema. More-
over, in the presence of updates, the closure may become inconsistent in which case it
needs to be properly updated. The problem of maintaining the closure of an RDF instance
is still actively studied [SB05, BKO+11, GHV11, GMR13]. In the worst case, i.e., when
the schema is updated rather than the instance, the closure may have to be entirely recom-
puted.

Backward chaining. At the other end of the spectrum, it is possible to leave the data un-
touched and reason at query time. This is done by applying the entailment rules backward
onto a conjunctive query to form a reformulated query, i.e., a union of conjunctive queries
whose result will include all derivable data. Although this obviously saves from the space
and maintenance requirements of forward chaining, the query reformulations grow expo-
nentially in the size of the input query, making them hard to optimize and evaluation in
practice.

Depending on whether the data or schema changes over time, it may be advantageous
to choose one technique rather than the other. A recent work [GMR13] explores this kind
of trade-offs and proposes an efficient technique to maintain the RDFS-closure incremen-
tally, when updates occur.

Other approaches. Other techniques, such as magic sets [BMSU85] have been applied
to RDF [KMK08]. They lie in-between forward and backward chaining, by attempting
to derive a minimized set of intermediary facts that are relevant to the answer of an input
query.

Recent works [MAYU05, RMC11, UvHSB11] have shown there are other viable op-
tions between these forward and backward chaining for answering SPARQL queries. In
this chapter, we present a storage model that can be used in conjunction with a forward
chaining approach or with a variant of semantic indexes introduced in [RMC11]. A se-
mantic index is a table encoding the hierarchies in an ontology using a DAG labeling
scheme. At query evaluation time, the index is used to rewrite each atom to a SQL range
query retrieving all the classes (resp. properties) that are subsumed by a given class (resp.
property). They present the advantage being amenable to any relational database system.
In previous works however, certain types of atoms, such as triple patterns where a variable
stands in place of a class or a property, cannot be handled easily.

In this work, we redefine semantic indexes as bitmap indexes and explain how to create
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an execution plan that rely on them, e.g., in a context where using forward chaining is not
an option. Our method is a variant of the scheme proposed in [CPST03] but dismissed for
efficiency reasons. We mitigate this issue by storing bitmap indexes in structures separate
from the triple table itself.

6.2 Overview

6.2.1 Data storage

A described in Section 2.2.2.2, a dictionary-encoded triple table is a relational table
T with three attributes s, p and o (for subject, property and object) containing a record
for each fact of the data instance. RDF facts fall into two categories: (i) class assertion
of the form (:Alice, rdf:type, :Person), which assign a type to a resource, (ii) property
assertions of the form (:Alice, :knows, :Bob), which define a relationship between two
resources, or between a resource and a value. In practice, the triple table can be partitioned
along these two categories to reduce the time required to retrieve triples of either type, but
for simplicity, we will only refer to T hereafter.

Facts are atomic in nature, therefore, a resource “:Alice” belonging to n classes will
be stored as n records. Similarly, if resources “:Alice” and “:Bob” are linked with m
properties, there will be m records to represent those facts. This type of redundancy is
common in real-world datasets and the process of materializing the closure of the data
typically makes it worse. However, it is possible to mitigate this by storing a single syn-
thetic fact for all classes a resource belongs to (resp. for all property between two nodes).
Let D be an RDF data instance containing extensional and intensional facts w.r.t. RDFS
entailment rules.

Definition 6.2.1 (Concise class). Let C be an ordered set of all classes in D, and x a
resource in D. C[i] denotes the class at position i in C. The concise class of x is a bitmap
where every bit at position i is set to 1 if (x, rdf:type, C[i]) ∈ D and to 0 otherwise.

Definition 6.2.2 (Concise property). Let P be an ordered set of all properties in D, x a
resource in D and y a resource or a literal in D. P [i] denotes the property at position i in
P . The concise property of the pair (x, y) is a bitmap where every bit at position i is set
to 1 if (x, P [i], y) ∈ D and to 0 otherwise.

Note that the orders of C and P are arbitrary and fixed over time. We compute con-
cise classes for all resources in D and concise properties for all pairs of nodes in D, and
assign a unique ID number to each distinct concise class and property. We define a spe-
cial concise property representing the set {rdf:type} to which we assign the ID 0. We
store concise classes (resp. concise properties) and their IDs in a bitmap index, called
CLIDX (resp. PRIDX). Henceforth, we will write CLIDX[i] (resp. PRIDX[i]) to denote
the concise class (resp. property) obtained by looking up CLIDX (resp. PRIDX) for the
ID i.
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Figure 6.1: An RDF graph with the corresponding C, P , CLIDXand PRIDX.

Example. Figure 6.1 depicts a small RDF graph along with the corresponding C and
P tables, and CLIDX and PRIDX indexes. The graph contains the following knowledge:
Bob is a person, he is a friend of (and therefore knows) someone named Alice, who is
an artist (and therefore a person too). Classes are colored in green, properties in blue
and the remaining nodes in red. RDFS-related edges are left in black, and derived edges
are in light color. There are two distinct classes (:Person and :Artist), and four distinct
properties (rdf:type, :knows, :name and :friendOf). The sets on the right hand side of
CLIDX and PRIDX are those encoded in the bit vectors of the same line. Note that only
the subsets of classes and properties that appear in the graph are stored in CLIDX and
PRIDX.

Finally, we create a dictionary-encoded triple table T ′ containing for each resource r
with a non-empty concise class c, the triple (Key(r), 0, Id(c)), where Key(r) is the key
of r in the dictionary and Id(c) is the ID of c in CLIDX. Similarly, for each pair of nodes
(x, y) such that there exists a non-empty concise property p between x and y, we store the
triple (x, Id(p), y), where Id(p) is the ID of p in PRIDX. We call such records concise
facts.

Example. Figure 6.2 shows on the left hand side a raw triple table storing the knowledge
of the graph depicted in Figure 6.1. This table contains six records. On the right hand side,
we show the concise triple table T ′, containing four records, and its dictionary. T ′ contains
keys to either the dictionary, CLIDX or PRIDX. In fact, all keys of the p column refer to
PRIDX, and if the value of p for a given record is 0, then its object key refers to CLIDX,
the dictionary otherwise.

Advantages of using bitmaps. Each concise class (resp. concise property) represents
a subset of C (resp. P ). Bitmaps are commonly used in databases for representing sub-
sets as they can be efficiently compressed and set operations translate to simple bitwise
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Figure 6.2: Raw triple table representation of the graph depicted in Figure 6.1 (left) and
its final encoding (right).

operations. Many compression schemes are now available. In this work, we focused on
schemes that allow for bitwise operations without decompression [CDP10, DP10]. The
best compression ratios are usually obtained on sparse or dense bitmaps, as long chains
of zeros or ones can be drastically summarized. The sizes of C and P are generally small
compared with the size of the data instance. Moreover, concise classes and properties
represent small subsets of C and P , making for sparse bitmaps that easily fit in memory
once compressed, even when one considers the closure of the data instance. Since trailing
zeros are not stored at all, compression rates can be further improved by ordering C and
P by decreasing frequencies of classes and properties in the instance.

6.2.2 Query answering

The following query, which will be our running example, retrieves the names of artists,
by matching the first triple pattern with all statements with a :name property, the second
triple pattern with all statements typing the subject as an :Artist, and joining them by their
subjects:

SELECT ?x ?y ?z
WHERE { ?x :name ?y.

?y ?w ?z.
?x rdf:type :Artist.

}

In a relational setting, a typical execution plan for a conjunctive query is made of
selection, projection, join and scans operators, respectively Select, Project, Join and
Scan. Our example query would require three scan accesses to the same relation T , as
depicted in Figure 6.3, where the numbers in the projection and join operator are column
indexes to their respective children.
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⋈

Scan(T)

Scan(T)

Select p=:name Select p=rdf:type

Join 1=7 ⋀ 3=4

Select o=:Artist

Project [1, 3, 6]

⋈

Scan(T’)Scan(T’)

Select p∈{1} Select p=0 ⋀ o ∈ {1} 

Join 1=7 ⋀ 3=4

Project [1, 3]

⋈

Scan:Artist(T’)

Scan(T’)

Select p∈{1}

Join 1=7 ⋀ 3=4

Project [1, 3]

Scan(T) Scan’(T’)

Scan’’(T’)

Figure 6.3: An execution plan for our running example

We now define a new scan operator, Scan′, that traverses the triple table and recon-
structs the actual facts from the concise classes and properties read. For each record t of
the form (s, p, o) of T ′, Scan′(T ′) performs the following:

1. If p = 0, i.e., t is a class assertion, then for each class k ∈ CLIDX[o], the triple
(s, rdf:type, k) is returned.

2. If p 6= 0, then for each property k ∈ PRIDX[p], the triple (s, k, o) is returned.

Observe that executing Scan′(T ′) produces the same result as the Scan(T ), assuming
T contains no duplicate record.

Next, we explain how to produce a plan to execute over the concise triple table T ′,
rather than the triple table T . Let q be a conjunctive SPARQL query. For each triple
pattern r in q:

1. If r is of the form (?x, ?y, ?z), add the operator Scan′(T ′).

2. If r is of the form (?x, rdf:type, ?z), add the operator Scan′(T ′) as a child of a
selection Selectp=0.

3. If r is of the form (?x, rdf:type, k), add the operator Scan(T ′) as a child of a
selection Selectp=0∧o∈S , where S contains IDs of concise classes to which the class
k belongs, more formally S = {Id(i) | CLIDX[i] ∩ {k} 6= ∅}.

4. If r is of the form (?x, k, ?z), where k 6= rdf:type, add the operator Scan(T ′) as
a child of a selection Selectp∈S , where S is the set of IDs of concise properties to
which the property k belongs, formally S = {Id(i) | PRIDX[i] ∩ {k} 6= ∅}.
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Remaining selections, projections and joins are handled as usual. The construction of
S is achieved by a single traversal of CLIDX or PRIDX. The intersection operation trans-
lates to a bitwise AND between compressed bitmaps. Overall, these sets are inexpensive
to build and they can easily be cached.⋈

Scan(T)

Scan(T)

Select p=:name Select p=rdf:type

Join 1=7 ⋀ 3=4

Select o=:Artist

Project [1, 3, 6]

⋈

Scan(T’)Scan(T’)

Select p∈{1} Select p=0 ⋀ o ∈ {1} 

Join 1=7 ⋀ 3=4

Project [1, 3]

⋈

Scan:Artist(T’)

Scan(T’)

Select p∈{1}

Join 1=7 ⋀ 3=4

Project [1, 3]

Scan(T) Scan’(T’)

Scan’’(T’)

Figure 6.4: An execution plan relying on T ′

Example. Figure 6.4 shows a plan for our running query relying exclusively on T ′.

6.3 Semantic index-based approach

We now turn the cases when one cannot materialize the closure as part of the data,
e.g., due to space constraints or if the data is subject to frequent updates. The process is
reminiscent of semantic indexes [RMC11], however, in our setting, these are redefined as
bitmap indexes.

6.3.1 Data storage

The procedure to build the concise triple table, CLIDX and PRIDX is the same as
the one described in Section 6.2 except that D now only contains extensional facts. The
semantic indexes are built by computing the terminological closure, i.e., the closure on
the facts that belong to the schema. More precisely, we compute for each class, the sets of
its sub-classes, its super-classes, the properties of which the class is in the domain and the
properties of which it is in the range. The four sets associated with each class are encoded
into bitmaps using the procedure described in Section 6.2.

We store these sets in four new indexes, named SUBCL, SUPCL, DOMCL and RNGCL.
We proceed similarly for each property to obtain the sets of its sub-properties, super-
properties, domains and ranges, which we store in indexes SUBPR, SUPPR, DOMPR and
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RNGPR. We use the same notation as for CLIDX and PRIDX to refer to the sets contained
in these indexes. For example, SUBCL[c] is the set of sub-classes of c.

6.3.2 Query answering

First, we define two new scan operators Scan′′ and Scanc, where c is a constant passed
as parameter. For each record t of the form (s, p, o) of T ′, Scan′′(T ′) performs the fol-
lowing:

1. If p = 0, i.e., t is a class assertion, then for each k ∈ S
where S =

⋃
i∈CLIDX[o] SUPCL[i], the triple (s, rdf:type, k) is returned.

S is the union of super-classes of the classes encoded in o.
2. If p 6= 0, then

– for each k ∈ S1, where S1 =
⋃
i∈PRIDX[p] SUPPR[i],

the triple (s, k, o) is returned,
– for each k ∈ S2, where S2 =

⋃
i∈PRIDX[p] DOMPR[i],

the triple (s, rdf:type, k) is returned,
– for each k ∈ S3, where S3 =

⋃
i∈PRIDX[p] RNGPR[i],

the triple (o, rdf:type, k) is returned.

The operator Scanc behaves essentially like Scanwith the following exceptions. For each
triple t in T ′ of the form (s, p, o):

– if p = 0 ∧ o ∈ SUBCL[c], it returns the triple (s, rdf:type, c),
– if p ∈ DOMCL[c], it returns the triple (s, rdf:type, c),
– if p ∈ RNGCL[c], it returns the triple (o, rdf:type, c),
– otherwise, t is ignored.
Both Scan′′ and Scanc may produce duplicates. These can be avoided using simple

caching techniques.

Next, as we did in Section 6.2.2, we explain how to use these operators in the presence
of semantic indexes. Let q be a conjunctive SPARQL query. For each triple pattern r in q:

1. If r is of the form (?x, ?y, ?z), add the operator Scan′′(T ′).

2. If r is of the form (?x, rdf:type, ?z), add the operator Scan′′(T ′) as a child of a
selection Selectp=0

3. If r is of the form (?x, rdf:type, k), add the operator Scank(T ′).
4. If r is of the form (?x, k, ?z), where k 6= rdf:type, add the operator Scan(T ′) as

a child of a selection Selectp∈S , where S contains the IDs of concise properties to
which a sub-property of k belongs, i.e., S = {Id(i) | PRIDX[i]∩SUBPR[k] 6= ∅}.

Remaining selections, projections and joins are handled as usual.
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⋈

Scan(T)

Scan(T)

Select p=:name Select p=rdf:type

Join 1=7 ⋀ 3=4

Select o=:Artist

Project [1, 3, 6]

⋈

Scan(T’)Scan(T’)

Select p∈{1} Select p=0 ⋀ o ∈ {1} 

Join 1=7 ⋀ 3=4

Project [1, 3]

⋈

Scan:Artist(T’)

Scan(T’)

Select p∈{1}

Join 1=7 ⋀ 3=4

Project [1, 3]

Scan(T) Scan’(T’)

Scan’’(T’)

Figure 6.5: An execution plan relying on T ′ in the presence of semantic indexes

Index Max. length Max. width
CLIDX 2|C| |C|
PRIDX 2|P | |P |
SUBCL |C| |C|
SUPCL |C| |C|
SUBPR |P | |P |
SUPPR |P | |P |
DOMCL |C| |P |
RNGCL |C| |P |
DOMPR |P | |C|
RNGPR |P | |C|

Table 6.1: Upper bounds for indexes sizes

Example. Figure 6.5 shows a plan for our running query relying exclusively on T ′ in
the presence of semantic indexes.

6.4 Discussion

Time & space complexity of indexes construction. The upper bounds for the uncom-
pressed indexes sizes can be easily determined. They are listed in Table 6.1.

For all indexes other than CLIDX and PRIDX the length is in fact fixed, and given by
the cardinalities ofC and P . The upper bound for the length of CLIDX and PRIDX is large,
however in practice, it tends to be close the |C| and |P | respectively. The reason is that
resources generally belong to only a few classes at the same time. Hierarchies are graphs,
generally acyclic, and often simply trees. When a resource belongs to multiple classes
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that lie on a common branch of the hierarchy, only one records needs to be stored. When
the data is saturated, the bitmap representing the classes of a resource also contains all
their ancestors. Otherwise, if no derivable class is actually stored, only the most specific
classes of a resource are represented. Thus, the length of CLIDX is therefore identical in
both cases 1 (saturated or not). The same remark applies to PRIDX. A recent empirical
study [DKSU11] shows that |C| and |P | are often orders of magnitude smaller than data
instances themselves.

Compressing the indexes. In our setting, all bitmaps indexes are compressed, and in
most case, we can expect a good reduction of the total space required for storing them.
Since our operators rely heavily on set operations, we are particularly interested at com-
pression schemes that are amenable to bitwise operations without decompression. In our
implementation, we used Concise [CDP10] a word-aligned compression technique that
falls into this category. This compression scheme achieves its best performances for
sparse or dense bitmaps, but both bit density and distribution are important factors. In
the worst case, i.e., when a bitmap is partially filled and bits are evenly distributed, it
requires |C|/31 4-bytes words of space in CLIDX (resp. |P |/31 in PRIDX).

There are different reasons why this limit is unlikely to be reached. First, as we already
mentioned, resources tends to belong to few classes at a time, and any pair of resources
is in relation through few properties. Thus, one can expect bitmaps in both CLIDX and
PRIDX to be generally sparse. Hierarchies also tend to be broad rather than deep. For
indexes encoding the terminological closure, each bitmap contains either the ancestors or
descendant of a given class or property in the hierarchies. As a result, super-class and
super-property bitmaps are likely to be sparse, while sub-class and sub-property bitmaps
density is undetermined and can range from very sparse to very dense.

However, since the order C and P is fixed, but arbitrary, one can influence compres-
sion ratios simply by reordering them. For instance, by ordering classes in decreasing
order of frequency in the data instance, bitmaps in CLIDX will tend to be denser towards
the most significant bit with long sequences of trailing zeros that can easily be ignored.
This simple observation can also be applied to PRIDX.

6.5 Implementation and experiments

We implemented the storage model and the plan operators in Java 1.6.0_29 (64bits).
All our tests were performed on a single machine with 8 Intel Xeon CPUs running at
2.13GHz with 4096 KB of cache each. We allocated 2GB of RAM to the virtual machine.

1. This is not true anymore if the data is only partially saturated however
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Experimental Results
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Figure 6.6: Space usage (in MB) of the triple table for 3 datasets with plain facts (left)
and concise facts (right)

6.5.1 Space requirement for tables and indexes

We first compare the space required to store the triple table with three widely used
datasets: Barton, DBpedia and YAGO2. We chose these datasets for two main reasons.
First, they come with very different schemas. The terminological closure of the schema
used with Barton counts 201 statements, while the schemas of DBpedia and YAGO2 con-
tain 7,745 and 3,983,638 statements respectively. Second, after cleaning the data and com-
puting the core, i.e., the set of facts that cannot be derived through entailments [GHMP11],
each dataset featured approximately 33M facts. This allows comparing how materializing
the closure affects space usage. Figure 6.6 shows the amount of space (in MB) occu-
pied by the plain triple table (left), against the concise triple table along with CLIDX and
PRIDX (right) 2. The blue (dark solid) bars represent the core data, while the overhead
incurred by the materialization is shown in (light hatched) green. The size of the schema
has a clear impact on storage space with a conventional approach. For instance, YAGO2
almost doubles in size as a result of materialization, jumping from 33M to 64M triples.
On the other hand, the concise approach reduces this overhead to nearly 33% for YAGO2.
The core also occupies less space with a concise approach because groups of facts are
summarized into single ones. The space occupied by the closure of DBpedia is thus com-
parable to that occupied by the core dataset in a conventional triple store.

2. The dictionary tables are not included on the figure.
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Figure 6.7: Time (in seconds) and space (in KB) required to build and store indexes for
ontologies of varying sizes in memory

6.5.2 Semantic indexes construction

Next, we take a look at the space and time required to build the bitmap semantic
indexes. For this, we used a set of freely available ontologies of varying sizes. The table
in Figure 6.7 shows their sizes (first column), as the number of triples in the terminological
closure. The second and third columns detail the total space occupied by the compressed
indexes in memory (in KB) and the time to compute them (in seconds), respectively. The
graph on the right displays the same figures on a scatter plot. Notice the log scale on both
axes. The data shows that the time and space requirements grow sub-linearly in the size
of the schema and remain reasonable for nowadays systems. YAGO2, the largest schema,
loads in 72 seconds and fits in 45MB of memory only.

6.5.3 Impact on query evaluation

To assess how query evaluation performs in this model, we ran four queries on the
three datasets mentioned before. Each query comprised one of the triple patterns de-
scribed in Sections 6.2.2 and 6.3.2. Q1 andQ2 are of the form (?x, ?y, ?z) and (?x, rdf:type, ?z)
respectively. Q3 corresponds to (?x, rdf:type, k), and Q4 to (?x, k, ?y), where k is the
class (resp. property) that belongs to the most concise classes (resp. properties), i.e., the
most adverse cases for evaluation. Figure 6.8 reports evaluation times (in seconds) aver-
aged over 5 runs. Plain refers to the evaluation on a conventional triple table, Concise-1
refers to the concise triple table with materialized closure, Concise-2 to the semantic in-
dex approach. Tables were partitioned across typing and relationship statements. For
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barton-plain
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Figure 6.8: Query run times (in seconds) for 4 simple queries

most queries and datasets, Concise-1 performs better than a conventional approach, as
the size of the scanned tables dominates the processing cost of the new operators overall.
With Concise-2, Q2 and Q3 are penalized as they need to scan both partitions to collect
all possible results. However, this is amortized for Q3 with YAGO2 as the plain triple
table becomes prohibitively expensive to scan. We plan to explore optimizations in the
presence of B+tree indexes and with parallelization in future work.

6.6 Related works

In [CPST03], the idea using bit vectors as a labeling schema for RDFS subsumptions
checking is evoked, along with two others, a path-based and a Dewey labeling schemes.
The paper compares tradeoffs between the two latter schemes, for various hierarchies and
query types but dismisses the bitmap-based approach, considering it requires O(n) for
subsumption checking. In this work, we mitigate the problem as the bitmap index is not
placed on the triple table itself, but in external structures (CLIDX and PRIDX) containing
only the subsets of classes and properties that appear in the data. Although the space
upper bounds of these tables are large, we observed that in pratice they are much smaller
than the triple table. The triple table stored index keys pointing to those structures, and
can therefore be indexed as any integer column. To the best of our knowledge, the use of
bitmap index for RDFS query answering had not yet been studied in detail.

In [UvHSB11], Urbani et al. observed that by computing the terminological closure,
one can reduce the backward-chaining phase at query evaluation time. Semantic indexes,
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presented in [RMC11], go a step further by storing the terminological closure in indexes
and the assertion facts in relational tables. The indexes map each class (resp. property)
to pairs of integers obtained through a traversal of the schema hierarchies. Rewritings
of all possible triple patterns to SQL range queries are cached, by-passing the need for
backward chaining. This method is the closest to ours. The idea of path-based indexing
of an RDF terminology was introduced in [MAYU05].

Bitmaps have been used in other storage models. In [ACZH10], they are used to store
an RDF dataset as a cube and process joins with the objective of avoiding large interme-
diate results. Zou at al. [ZMC+11] used bitmaps in gStore to model an in-memory graph
database. Fernández et al. [FMPG+13] rely on bitmaps to compress RDF for data ex-
change over networks. In [Erl], Orri Erling explains how the commercial system Virtuoso
makes uses of bitmap indexes to speed up triples loading time, and reduce space usage.
The Virtuoso documentation also claims to support reasoning through backward chaining,
by means of special operators that include derivable data at execution time. A technique
that can be compared with the query answering approach presented in 6.3.2.

A series of works investigate ways to mitigate the pitfalls associated with these tech-
niques in a distributed setting, such as Peer-to-Peer [KMK08] or Map-Reduce [UKOvH09,
UKM+10, UvHSB11]. In a previous work, we explore an approach based materialized
view selection [GKLM10a, GKLM11a, GKLM10b, GKLM11b]. This was also one of the
main topics of a separate thesis [Kar12], which the interested reader is invited to check
for further details.

6.7 Conclusion and outlook

In this section, we introduced a storage model that (i) reduces the storage space re-
quired for an RDF data instance, (ii) suffers little space overhead when the closure is ma-
terialized in the instance, (iii) improves query evaluation time in the general case, (iv) can
be used in conjunction with semantic indexes when forward-chaining must be avoided.
Although we presented the model as a variant of a triple table setting, it could also be
applied to other storage types such as property tables [wwwe] or RDF cubes [ACZH10].

Our next focus will be on query optimization, e.g., in the presence of indexes, as de-
scribed in [NW08]. The method will be extended to support other entailment regimes
such as the OWL 2 EL Profile and queries on the terminology itself. We think our ap-
proach would be particularly well suited to answer queries on RDF data streams and for
analytical query processing.
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Chapter 7

Conclusion

Structured text, e.g., Web contents, electronic books or enterprise documents, is fre-
quently encoded in XML, and is often valuable in this structured, linear form, which
comprises not only facts (or data), but also a linear discourse building ideas from para-
graphs and metaphors from words; the original text also serves as reference and lends
its authority, e.g., as a proof or a citable source. Contemporary means of exploiting and
enriching electronic structured text require the ability to interconnect it with existing data-
and knowledge-bases, and to do so in a manner as automatic as possible. A database of
documents enriched with RDF annotations allows not only exploiting the text better, but
also illustrating and connecting the resources and concepts of the database.

7.1 Summary

While many works have focused on devising automatic and semiautomatic text anno-
tation tools, drawing on Natural Language Processing capabilities, we have considered the
problem of modeling and efficiently querying such corpora of interconnected documents,
facts and concepts. Our first goal was to reuse whenever possible, thus we devised the XR
data model that naturally extends the W3C’s existing XML and RDF model, connecting
them on the core idea that any XML node may have a URI, which in turn may appear in
the RDF database in any place where a URI is allowed to be. (This may be easily extended
to allow annotations at even finer granularity, e.g., a word appearing in a text node.) We
have accordingly proposed a core XR query language, combining the conjunctive cores of
XML and RDF standard query languages, i.e., triples and tree patterns possibly connected
through various flavors of joins. We have then investigated efficient ways of processing
XRQ queries, relying on existing XML, respectively RDF, storage and query engines. It
turns out that the central connection made in the XR model on XML node URIs requires
some care, given that XML node identity is implicit in the XML model and not necessar-
ily explicit. We identified the core hypothesis, which the XDM may or may not satisfy,
and accordingly devised and implemented thirteen XR query evaluation algorithms (Fig-
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ure 4.2), some of which exploit some simple optimizations.

We have built an XR platform which interfaces with various XML, respectively, RDF
systems by means of wrappers, and experimented with a variety of systems including
Jena, RDF-3X, MonetDB/XQuery, QizX, BaseX, and our in-house ViP2P XML query
processor. We present the results obtained with the most stable and efficient platforms,
which we found to be RDF-3X, BaseX, and ViP2P (the latter hand-tuned for perfor-
mance). Our experiments demonstrate that there are wide performance differences be-
tween strategies, and that the most efficient (XML||RDF and XML→RDF) scale up well.
Based on these observations, our next task is to devise a global XR optimizer capable
of automatically selecting the most appropriate strategy for a given XR instance and XR
query. As ingredients to this optimizer, we plan to plug the query cardinality estimation
components we have previously built and used in our prior works for conjunctive RDF
queries [GKLM11b] and conjunctive tree pattern queries [KMV12]. We introduced new
ways to answer queries under RDFS-entailments. The techniques, introduced for RDF,
naturally extend to the XR model.

We integrated the XR platform into a rich web browser interface, to enable online
fact checking and data journalism scenarios. We believe that annotated documents will
be increasingly adopted. The purpose of this work was to set database foundations for
expressively and efficiently exploiting such interconnected databases of structured docu-
ments, facts and knowledge.

7.2 Ongoing and future works

View composition. The most recent part of this work covers the extended language
and query-view composition problem (Sections 3.2.3, 3.2.4 and 3.3). As pointed in Sec-
tion 3.4, we are currently looking at improving the composition algorithm using some
pruning and query minimization techniques. To be more useful in practice, the com-
position algorithm will be extended to support composition w.r.t. multiple views. These
questions are still under scrutiny or we will be the subject of our attention in the immediate
future.

Cost-based optimization. Our experiments showed that, since the pruning algorithm
are costly, it is only worthwhile in cases when a large portion of the total result can be
skipped. A cost-model would help make systematic decisions on which strategies to use.
One should in practice be able to get some relevant statistics from the underlying XDM
and RDM themselves. Beside the conventional ingredients of a cost model, such as se-
lectivity estimation, one could pre-compute a summary of annotated XML nodes (e.g., a
probabilistic tree) to gauge whether pruning is likely to improve performances. Given a
path in a tree pattern ending with a URI-variable annotated node, if the likelihood of that
path in the probabilistic tree is low, then intuitively pruning should be amortized. In a
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context of Web data, other cost components such as network bandwidth and the reliability
of distant sources would be worth taking into account.

In our evaluation study, we put aside the problem of RDFS-entailments, consider-
ing the RDFS closure was materialized as part of the RDF instance. We would like to
extend the work described in Chapter 6, integrate to the physical operators devised for
this approach to the XR platform, and in doing so, incorporate entailed data as part of
selectivity estimation. Future evaluation campaigns would include a comparison on the
trade-offs between a pure forward-chaining approach, and our bitmap-index based storage
approaches.

OWL 2 & XR Rules. We have defined the semantics of an RDF sub-instances in terms
of RDFS-entailment rules. OWL 2 (Web Ontology Language) introduces the notion of
profiles, corresponding to fragments of the Description Logics with interesting properties.
Extending the semantics of XR to OWL 2 will also enable the study in XR of classic
Description Logics problems, such as consistency checking.

The problem of view composition also has applications in a deductive database per-
spective, where XRQ views are seen as rules. We could also delve further into data inte-
gration as described in Section 2.3.1. However, in our case, mapping rules between global
and locale schemata could be expressed directly in XRQ.

FactMinder 2.0 & Social XR. Scenarios like the ones described in Section 1 and Chap-
ter 5 are inherently human tasks, and may never be entirely automated. The current XRQ
language only allow unions of conjunctive queries. Adding a richer set of operations to the
language, such as negation, inequality predicates, outer joins, aggregate function, would
be an obvious direction to take.

As mentioned in Section 5.4, the study of social interactions in XR and FactMinder is
a natural evolution of the project. Letting users of social networks annotates content
on the Web is strong trend, as acknowledged by the popularity of Facebook 1 “Like”
and Google+ 2 “+1” functions, or more recent online services such as Medium 3, where
communities of twitter users can annotate fine-grained pieces of online blogs. Beyond
crowd-sourcing and sentiment analysis, such a setting would also open the door to areas
that are still actively studied in the relational literature, such as transactions, privacy or
provenance. This will be the topic of a separate PhD thesis.

1. facebook.com
2. plus.google.com
3. medium.com
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