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Résumé

Dans cette thèse, nous étudions le produit (dans le sens des distributions) de fonctions f

dans H1 et g dans BMO, désigné par f × g, et les problèmes connexes. En particulier,

nous prouvons qu’il existe deux opérateurs bornés bilinéaires S : H1(Rn)×BMO(Rn) →
L1(Rn) et T : H1(Rn) × BMO(Rn) → H log(Rn) de telle sorte que la décomposition

suivante bilinéaire

f × g = S(f, g) + T (f, g) ∈ L1(Rn) +H log(Rn) (1)

est vrai pour chaque (f, g) ∈ H1(Rn) × BMO(Rn). Ici, H log(Rn) est un nouveau type

d’espace de Hardy-Orlicz défini comme l’espace des distributions f dont la fonction ”grand

maximale” satisfait
∫

Rn

|Mf(x)|
log(e+ |x|) + log(e+ |Mf(x)|)dx <∞.

L’espaceH log(Rn) apparâıt comme un exemple d’une nouvelle classe de HardyHϕ(·,·)(Rn)

que nous introduisons et étudions ici. Ils sont appelés espaces de Hardy de type Musielak-

Orlicz. Ces espaces généralisent les espaces Hardy-Orlicz de Janson et les espaces de Hardy

à poids de Garćıa-Cuerva, Strömberg, et Torchinsky. Notant que l’espace H log(Rn) est

un cas particulier de ϕ(x, t) ≡ t
log(e+|x|)+log(e+t)

, nous prouvons que l’ensemble des mul-

tiplicateurs ponctuels de BMO(Rn) est en fait l’espace dual de L1(Rn) + H log(Rn). En

conséquence, nous montrons que, dans la décomposition bilinéaire (1), l’espace H log(Rn)

ne peut pas être remplacé par un espace plus petit dans un certain sens.

Soit b une BMO-fonction. Il est bien connu que le commutateur linéaire [b, T ] d’un

opérateur Calderón-Zygmund T n’est pas, en général, porné de H1(Rn) dans L1(Rn).

Cependant, Pérez a montré que si H1(Rn) est remplacé par un sous-espace approprié

atomique H1
b(R

n) alors le commutateur est continu de H1
b(R

n) à valeurs L1(Rn). Dans

cette thèse, nous trouvons le plus grand sous-espace H1
b (R

n) de telle sorte que tous

les commutateurs des opérateurs Calderón-Zygmund sont continus de H1
b (R

n) à valeurs

L1(Rn). Certaines caractérisations équivalentes de H1
b (R

n) sont également données. Nous
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étudions également les commutateurs [b, T ], où T est dans une classe K des opérateurs

sous-linéaire contenant presque tous les opérateurs importants de l’analyse harmonique.

Plus précisément, nous prouvons qu’il existe un opérateur borné sous-bilinéaire R = RT :

H1(Rn)×BMO(Rn) → L1(Rn) de telle sorte que pour tous (f, b) ∈ H1(Rn)×BMO(Rn),

nous avons

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|, (2)

où S est un opérateur borné bilinéaire de H1(Rn) × BMO(Rn) dans L1(Rn) qui ne

dépend pas de T . La décomposition sous- bilinéaire (4) nous permet de donner un apercu

général de toutes les estimations L1 faibles ou fortes connues. Ils expliquent pourquoi les

commutateurs avec des opérateurs fondamentaux sont de type faible (H1, L1), et quand

un commutateurs [b, T ] est de type fort (H1, L1). En particulier, la décomposition sous-

bilinéaire (4) permet de voir que, si pour tous les commutateurs avec les opérateurs

de Calderón-Zygmund [b, T ] est borné de H1(Rn) dans L1(Rn) alors b est une fonction

constante.

Soit L = −∆+V un opérateur Schrödinger sur Rn, n ≥ 3, où V est un potentiel positif,

V 6= 0, qui appartient à la classe inverse Hölder RHn/2. Etant donné b ∈ BMO(Rn), nous

prouvons que tous les commutateurs des opérateurs Schrödinger-Calderón-Zygmund [b, T ]

envoie H1
L(R

n) dans L1(Rn) si et seulement si b ∈ BMOlog
L (Rn), cela signifie que

‖b‖BMOlog
L

= sup
B(x,r)


log

(
e+

ρ(x)

r

) 1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)|dy


 <∞,

où ρ(x) = sup{r > 0 : 1
rn−2

∫
B(x,r)

V (y)dy ≤ 1}. En outre, le commutateur de la trans-

formée de Riesz [b,∇L−1/2] est continue sur H1
L(R

n) chaque fois que b ∈ BMOlog
L (Rn).

Enfin, nous prouvons une version analogue de la décomposition bilinéaire (3) et une

version analogue du théorème classique de Jones et Journé sur la convergence faible∗ dans

le cadre de l’opérateur de Schrödinger L qui a été mentionné ci-dessus.
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Abstract

In this thesis, we investigate the product (in the distribution sense) of functions f in

H1 and g in BMO, denoted by f × g, and related problems. In particular, we prove

that there are two bounded bilinear operators S : H1(Rn) × BMO(Rn) → L1(Rn) and

T : H1(Rn)× BMO(Rn) → H log(Rn) such that the following bilinear decomposition

f × g = S(f, g) + T (f, g) ∈ L1(Rn) +H log(Rn) (3)

holds for every (f, g) ∈ H1(Rn)×BMO(Rn). Here H log(Rn) is a new kind of Hardy-Orlicz

space defined as the space of distributions f whose grand maximal function Mf satisfies

∫

Rn

|Mf(x)|
log(e+ |x|) + log(e+ |Mf(x)|)dx <∞.

The space H log(Rn) appears as an example of a new class of Hardy spaces Hϕ(·,·)(Rn)

that we introduce and study here. They are called as Hardy spaces of Musielak-Orlicz

type, these spaces generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy

spaces of Garćıa-Cuerva, Strömberg, and Torchinsky. Noting that the space H log(Rn) is a

special case of ϕ(x, t) ≡ t
log(e+|x|)+log(e+t)

, we prove that the set of all pointwise multipliers

of BMO(Rn) is in fact the dual space of L1(Rn) +H log(Rn). As a consequence, we show

that, in the bilinear decomposition (3), the space H log(Rn) could not be replaced by a

smaller space in some sense.

Let b be a BMO-function. It is well-known that the linear commutator [b, T ] of

a Calderón-Zygmund operator T does not, in general, map continuously H1(Rn) into

L1(Rn). However, Pérez showed that if H1(Rn) is replaced by a suitable atomic subspace

H1
b(R

n) then the commutator is continuous from H1
b(R

n) into L1(Rn). In this thesis,

we find the largest subspace H1
b (R

n) such that all commutators of Calderón-Zygmund

operators are continuous from H1
b (R

n) into L1(Rn). Some equivalent characterizations

of H1
b (R

n) are also given. We also study the commutators [b, T ] for T in a class K
of sublinear operators containing almost all important operators in harmonic analysis.
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More precisely, we prove that there exists a bounded subbilinear operator R = RT :

H1(Rn)× BMO(Rn) → L1(Rn) such that for all (f, b) ∈ H1(Rn)× BMO(Rn), we have

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|, (4)

where S is a bounded bilinear operator from H1(Rn) × BMO(Rn) into L1(Rn) which

does not depend on T . The subbilinear decomposition (4) allows us to give a general

overview of all known weak and strong L1-estimates, which explain why commutators

with the fundamental operators are of weak type (H1, L1), and when a commutator [b, T ]

is of strong type (H1, L1). In particular, the subbilinear decomposition (4) yields that

all commutators of Calderón-Zygmund operators [b, T ] map continuously H1(Rn) into

L1(Rn) if and only if b is a constant function.

Let L = −∆+ V be a Schrödinger operator on Rn, n ≥ 3, where V is a nonnegative

potential, V 6= 0, and belongs to the reverse Hölder class RHn/2. Given b ∈ BMO(Rn),

we prove that all commutators of Schrödinger-Calderón-Zygmund operators [b, T ] map

continuously H1
L(R

n) into L1(Rn) if and only if b ∈ BMOlog
L (Rn), that is,

‖b‖BMOlog
L

= sup
B(x,r)


log

(
e+

ρ(x)

r

) 1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)|dy


 <∞,

where ρ(x) = sup{r > 0 : 1
rn−2

∫
B(x,r)

V (y)dy ≤ 1}. Furthermore, the commutator of the

Riesz transform [b,∇L−1/2] is bounded on H1
L(R

n) whenever b ∈ BMOlog
L (Rn).

Finally, we prove an analogous version of the bilinear decomposition (3) and an anal-

ogous version of the classical theorem of Jones and Journé on weak∗-convergence in the

setting of the Schrödinger operator L as mentioned above.
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Chapter 1

Overview and motivation of the

results

1.1 Paper I: Paraproducts and Products of functions

in BMO(Rn) and H1(Rn) through wavelets

For p and p′ two conjugate exponents, with 1 < p < ∞, when we consider two functions

f ∈ Lp(Rn) and g ∈ Lp
′
(Rn) = (Lp(Rn))∗, their product fg is integrable, which means

in particular that their pointwise product gives rise to a distribution. When p = 1 and

p = ∞, the right substitute to Lebesgue spaces is, for many problems, the Hardy space

H1(Rn) and the space BMO(Rn), respectively.

Let us recall that H1(Rn) is the space of all tempered distributions f ∈ S ′(Rn),

such that the grand maximal function Mf belongs to L1(Rn) equipped with the norm

‖f‖H1 := ‖Mf‖L1 , where

Mf(x) := sup
φ∈A

sup
|y−x|<t

t−n|f ∗ φ(y/t)| (1.1)

with

A =
{
φ ∈ S(Rn) : |φ(x)|+ |∇φ(x)| ≤ (1 + |x|2)−(n+1)

}
.

For a ball B ⊂ Rn, we denote by |B| the Lebesgue measure of B. The average of a

function f ∈ L1
loc(R

n) on B is denoted by

fB =
1

|B|

∫

B

f(x)dx.

9



A locally integrable function f is said to have bounded mean oscillation, say f ∈
BMO(Rn), if

‖f‖BMO := sup
B

1

|B|

∫

B

|f(x)− fB|dx <∞,

where the supremum is taken over all balls B ⊂ Rn.

A famous result of Fefferman (1971) states that BMO(Rn) is in fact the dual of

H1(Rn). So it is natural to ask for the right definition of the product of h ∈ H1(Rn)

and b ∈ BMO(Rn), denoted by h × b, so that this product gives rise to a distribution.

The investigation of such distributions are also motivated by recent developments in the

geometric function theory and nonlinear elasticity [4, 7, 69, 71, 72, 112]. A typical reason is

to study the H1-theory of Jacobians, the operator L (f) = f log |f |, and their relations to

the Rochberg-Weiss commutator, T logf = T (f log |f |)−Tf log |Tf |, where T is a singular

integral operator, see the seminal works of Iwaniec and Stein [68, 70, 72, 73, 128]. In this

context, the pointwise product is not integrable in general. In order to get a distribution,

one has to define the product in a different way. This question and related problems have

been studied by Bonami, Iwaniec, Jones and Zinsmeister in [15].

Before giving the definition of the products h×b, we need to recall the characterization

of the pointwise multipliers for BMO(Rn) due to Nakai and Yabuta [116].

Theorem A (Nakai and Yabuta, 1985). A function g is a pointwise multiplier for

BMO(Rn) if and only if g belong to L∞(Rn) ∩ BMOlog(Rn), where BMOlog(Rn) is the

space of locally integrable functions f such that

‖f‖BMOlog := sup
B(a,r)

| log r|+ log(e+ |a|)
|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)|dx <∞.

Now, for a function h ∈ H1(Rn) and a function b ∈ BMO(Rn), noting that the space

Schwartz S(Rn) is contained in L∞(Rn) ∩ BMOlog(Rn), Theorem A allows to define the

product h× b as the distribution

〈h× b, φ〉 := 〈φb, h〉,

where the second bracket stands for the duality bracket between H1(Rn) and BMO(Rn).

In [15], the authors proved that such a distribution can be written as a sum of an integrable

function and a function in a weighted Hardy-Orlicz space HΞ
σ (R

n), related to the Orlicz

function

Ξ(t) =
t

log(e+ t)
(1.2)

10



and the weight σ(x) = 1
log(e+|x|) , the space of distributions f such that

∫

Rn

Mf(x)

log(e+Mf(x))

dx

log(e+ |x|) <∞

with the Luxemburg norm

‖f‖HΞ
σ
:= inf



λ > 0 :

∫

Rn

Mf(x)
λ

log
(
e+ Mf(x)

λ

) dx

log(e+ |x|) ≤ 1



 .

More precisely, in [15] the authors established that for each f ∈ H1(Rn), there are

two bounded linear operators Lf : BMO(Rn) → L1(Rn) and Hf : BMO(Rn) → HΞ
σ (R

n)

such that for every g ∈ BMO(Rn),

f × g = Lf (g) +Hf (g).

A question (see [15], Conjecture 1.7) by Bonami, Iwaniec, Jones and Zinsmeister is to find

two operators Lf and Hf depending linearly on f . Motivated by this question, in Paper

I, Bonami, Grellier and the author proved the following result:

Theorem 1. There exist two continuous bilinear operators on the product space H1(Rn)×
BMO(Rn), respectively S : H1(Rn)×BMO(Rn) → L1(Rn) and T : H1(Rn)×BMO(Rn) →
H log(Rn) such that

f × g = S(f, g) + T (f, g).

Here H log(Rn) is a new kind of Hardy-Orlicz space consisting of all distributions f

such that ∫

Rn

Mf(x)

log(e+Mf(x)) + log(e+ |x|)dx <∞

with the Luxemburg norm

‖f‖Hlog := inf



λ > 0 :

∫

Rn

Mf(x)
λ

log
(
e+ Mf(x)

λ

)
+ log(e+ |x|)

dx ≤ 1



 .

The operators S and T , in Theorem 1, are defined in terms of a wavelet decomposition.

The operator T is defined in terms of paraproducts. There is no uniqueness, of course. In

fact, the same decomposition of the product fg has already been considered by Dobyinsky

and Meyer (see [41, 42, 43], and also [26, 28]). The action of replacing the product by the

operator T was called by them a renormalization of the product. Namely, T preserves the

11



cancellation properties of the factor, while S does not. Dobyinsky and Meyer considered

L2-data for both factors, and showed that T (f, g) is in the Hardy space H1(Rn). What is

surprising in our context is that both terms inherit some properties of the factors. Even if

the product fg is not integrable, the function S(f, g) is, while T (f, g) inherits cancellation

properties of functions in Hardy spaces without being integrable. So, in some way each

term has more properties than expected at first glance.

Theorem 1 not only gives an answer for Conjecture 1.7 of [15] but also improves it by

showing that the space HΞ
σ (R

n) can be replaced by the smaller space H log(Rn).

Another implicit conjecture of [15] concerns bilinear operators with cancellations, such

as the ones involved in the div -curl lemma for instance. In this case it is expected that

there is no L1-term.

The second main result of Paper I concerns endpoint estimates for the div -curl lemma.

Let us first recall that the theory of compensated compactness initiated and developed

by Tartar [135] and Murat [114] has been largely studied and extended to various setting.

The famous paper of Coifman, Lions, Meyer and Semmes [33] gives an overview of this

theory in the context of Hardy spaces in the Euclidean space Rn. They prove in particular,

that, for n
n+1

< p, q <∞ such that 1
p
+ 1

q
< 1+ 1

n
, when F is a vector field belonging to the

Hardy space Hp(Rn,Rn) with curlF = 0 and G is a vector field belonging to Hq(Rn,Rn)

with divG = 0, then the scalar product F ·G can be given a meaning as a distribution of

Hr(Rn) with

‖F ·G‖Hr(Rn) ≤ C‖F‖Hp(Rn,Rn)‖G‖Hq(Rn,Rn),

where 1
r
= 1

p
+ 1

q
.

We shall consider here the endpoint q = ∞. In 2003, Auscher, Russ and Tchamitchian

noted firstly in [5] that, for p = 1, one has, under the same assumptions of being respec-

tively curl free and divergence free,

‖F ·G‖H1(Rn) ≤ C‖F‖H1(Rn,Rn)‖G‖L∞(Rn,Rn).

Recently, another interesting endpoint estimate has been obtained by Bonami, Feuto

and Grellier in [11]. They showed that when G ∈ L∞(Rn,Rn) is replaced by G ∈
bmo(Rn,Rn), then the scalar product F ·G is in the weighted Hardy-Orlicz space HΞ

σ (R
n)

mentioned before (in fact there is an additional assumption on the bmo-factor). Here

bmo(Rn), the dual of the local Hardy h1(Rn) studied by Goldberg [56], is the space of

locally integrable functions f such that

‖f‖bmo := sup
|B|≤1

1

|B|

∫

B

|f(x)− fB|dx+ sup
|B|≥1

1

|B|

∫

B

|f(x)|dx <∞,

12



where the supremums are taken over all balls B ⊂ Rn.

More precisely, they proved in [11] that

‖F ·G‖HΞ
σ (Rn) ≤ C‖F‖H1(Rn,Rn)‖G‖bmo(Rn,Rn). (1.3)

By using the same technique as Dobyinsky and Meyer [41, 42, 43] to deal with the

terms coming from the operator S in Theorem 1, we improve the estimate (1.3), and give

a new proof without any additional assumption. More precisely, the second main result

of Paper I can be stated as follows:

Theorem 2. Let F and G be two vector fields, one of them in H1(Rn,Rn) and the other

one in BMO(Rn,Rn), such that curlF = 0 and divG = 0.Then their scalar product F ·G
(in the distribution sense) is in H log(Rn), moreover,

‖F ·G‖Hlog(Rn) ≤ C‖F‖H1(Rn,Rn)‖G‖BMO+(Rn,Rn).

Here, for a function f in BMO(Rn),

‖f‖BMO+ := ‖f‖BMO + |fQ|

with Q := [0, 1)n the unit cube in Rn. This is a norm, while the BMO norm is only a

norm on equivalent classes modulo constants. Furthermore, it is easy to see that for any

f ∈ bmo(Rn), we have

‖f‖BMO ≤ ‖f‖BMO+ ≤ C‖f‖bmo.

1.2 Paper II: New Hardy spaces of Musielak-Orlicz

type and boundedness of sublinear operators

Motivated by the results of Paper I, an interesting question arises:

Question 1. Could one replace H log(Rn) by a smaller space?

To answer this question, we introduce a new class of Hardy spaces.

Since Lebesgue theory of integration has taken a center stage in concrete problems of

analysis, the need for more inclusive classes of function spaces than the Lp(Rn)-families

naturally arose. It is well known that the Hardy spaces Hp(Rn) when p ∈ (0, 1] are good

substitutes of Lp(Rn) when studying the boundedness of operators: for example, the

Riesz operators are bounded on Hp(Rn), but not on Lp(Rn) when p ∈ (0, 1]. The theory

of Hardy spaces Hp on the Euclidean space Rn was initially developed by Stein and Weiss

13



[129]. Later, Fefferman and Stein [48] systematically developed a real-variable theory for

the Hardy spaces Hp(Rn) with p ∈ (0, 1], which now plays an important role in various

fields of analysis and partial differential equations; see, for example, [32, 33, 113]. A

key feature of the classical Hardy spaces is their atomic decomposition characterizations,

which were obtained by Coifman [27] when n = 1 and Latter [86] when n > 1. Later, the

theory of Hardy spaces and their dual spaces associated with Muckenhoupt weights have

been extensively studied by Garćıa-Cuerva [52], Strömberg and Torchinsky [131] (see also

[111, 22, 53]); there the weighted Hardy spaces was defined by using the nontangential

maximal functions and the atomic decompositions were derived. On the other hand, as

another generalization of Lp(Rn), the Orlicz spaces were introduced by Birnbaum-Orlicz

in [10] and Orlicz in [117], since then, the theory of the Orlicz spaces themselves has been

well developed and the spaces have been widely used in probability, statistics, potential

theory, partial differential equations, as well as harmonic analysis and some other fields

of analysis; see, for example, [4, 70, 104]. Moreover, the Hardy-Orlicz spaces are also

good substitutes of the Orlicz spaces in dealing with many problems of analysis, say, the

boundedness of operators.

Recall that Ψ : [0,∞) → [0,∞) is an Orlicz function if it is nondecreasing and Ψ(0) =

0; Ψ(t) > 0, t > 0; limt→∞ Ψ(t) = ∞. We also say that Ψ is of positive lower type if there

exists p > 0 and a positive constant C = C(p) such that

Ψ(st) ≤ CspΨ(t), (1.4)

for all t ≥ 0 and s ∈ (0, 1).

Let Ψ be a Orlicz function which is (quasi-)concave and of positive lower type. In

[75], Janson has considered the Hardy-Orlicz space HΨ(Rn) the space of all distributions

f such that the grand maximal function of f defined by

f ∗(x) = sup
φ∈AN

sup
|x−y|<t

|f ∗ φt(y)|, x ∈ Rn, (1.5)

belongs to the Orlicz space LΨ(Rn). Here φt(·) := t−nφ(t−1·) and

AN =
{
φ ∈ S(Rn) : sup

x∈Rn

(1 + |x|)N |∂αxφ(x)| ≤ 1 for α ∈ Nn, |α| ≤ N
}

with N = N(n,Ψ) taken large enough. Remark that these Hardy-Orlicz type spaces

appear naturally when studying the theory of nonlinear PDEs [57, 71, 73] since many

cancellation phenomena for Jacobians cannot be observed in the usual Hardy spaces

Hp(Rn). For instance, let f = (f 1, ..., fn) in the Sobolev class W 1,n(Rn,Rn) and the

Jacobians J(x, f)dx = df 1 ∧ · · · ∧ dfn, then (see [73], Theorem 10.2)

T (J(x, f)) ∈ L1(Rn) +HΞ(Rn)
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where the Orlicz function Ξ is defined as in (1.2) and T (f) = f log |f |, since J(x, f) ∈
H1(Rn) (cf. [33]) and T is well defined on H1(Rn). We refer the reader to [72, 121] for

this interesting nonlinear operator T .

Now, let us return to Question 1. By duality with Theorem 1, functions f that are

bounded and in the dual of H log(Rn) are multipliers of BMO(Rn), i.e. f belongs to

L∞(Rn) ∩ BMOlog(Rn) from the theorem of Nakai and Yabuta. Consequently, we can

conclude that H log(Rn), in some sense, could not be replaced by a smaller space, once

established that the dual space of H log(Rn) is BMOlog(Rn).

Motivated by this, in Paper II, we introduce a new class of Hardy spaces Hϕ(·,·)(Rn),

so-called Hardy spaces of Musielak-Orlicz type, which generalize the Hardy-Orlicz spaces

of Janson and the weighted Hardy spaces of Garćıa-Cuerva, Strömberg, and Torchinsky.

Here, ϕ : Rn × [0,∞) → [0,∞) is a function such that ϕ(x, ·) is an Orlicz function and

ϕ(·, t) is a Muckenhoupt A∞ weight, namely, either

sup
B

1

|B|

∫

B

ϕ(x, t)dx
( 1

|B|

∫

B

(ϕ(x, t))−1/(q−1)dx
)q−1

<∞

for some q ∈ (1,∞) or

sup
B

1

|B|

∫

B

ϕ(x, t)dx
(
ess-inf
x∈B

ϕ(x, t)
)−1

<∞.

More precisely, we define Hϕ(·,·)(Rn), or Hϕ(Rn) for simplicity, as the space of dis-

tributions f such that x 7→ ϕ(x, |f ∗(x)|) is integrable, where f ∗ is the grand maximal

function of f defined as in (1.5) with N = N(ϕ) large enough. We equip Hϕ(Rn) with

the norm ‖f‖Hϕ := ‖f ∗‖Lϕ . Here, for a measurable function f ,

‖f‖Lϕ := inf



λ > 0 :

∫

Rn

ϕ(x, |f(x)|/λ)dx ≤ 1



 . (1.6)

Note thatH log(Rn) is just a special case of these new Hardy spaces related to the Musielak-

Orlicz function ϕ(x, t) ≡ t
log(e+|x|)+log(e+t)

. We then establish their atomic characteri-

zations, which are new even for the classical weighted Hardy-Orlicz spaces related to

Musielak-Orlicz functions ϕ(x, t) = w(x)Ψ(t). In order to state the atomic decomposition

theorem, we need some new notations.

For B a ball in Rn and q ∈ [1,∞], define Lqϕ(B) as the space of all measurable functions

f supported in B such that

‖f‖Lq
ϕ(B) :=





sup
t>0

(∫
Rn |f(x)|qϕ(x,t)dx∫

B ϕ(x,t)dx

)1/q
<∞ , 1 ≤ q <∞,

‖f‖L∞ <∞ , q = ∞.
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Definition 1.2.1. Let 1 < q <∞ and s ∈ Z+. A measurable function a is a (ϕ, q, s)-atom

if it satisfies the following three conditions

i) a ∈ Lqϕ(B) for some ball B,

ii) ‖a‖Lq
ϕ(B) ≤ ‖χB‖−1

Lϕ,

iii)
∫
Rn a(x)x

αdx = 0 for any |α| ≤ s.

We now define the atomic Hardy space of Musielak-Orlicz type Hϕ,q,s
at (Rn) as those dis-

tributions f ∈ S ′(Rn) such that f =
∑

j bj (in the sense of S ′(Rn)), where bj
,s are multiples

of (ϕ, q, s)-atoms supported in the balls Bj
,s, with the property

∑
j ϕ(Bj, ‖bj‖Lq

ϕ(Bj)) <∞;

and define the norm of f by

‖f‖Hϕ,q,s
at

= inf
{
Λq({bj}) : f =

∑

j

bj in the sense of S ′(Rn)
}
,

where Λq({bj}) = inf
{
λ > 0 :

∑
j ϕ
(
Bj,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1
}
.

When q and s are large enough, we prove that

Theorem 3. Hϕ(Rn) ≡ Hϕ,q,s
at (Rn) with equivalent norms.

We are also interested in duality results. To state them, we introduce BMO type

spaces BMOϕ(Rn). Precisely, a function f ∈ L1
loc(R

n) is said to belong to BMOϕ(Rn) if

‖f‖BMOϕ := sup
B

1

‖χB‖Lϕ

∫

B

|f(x)− fB|dx <∞, (1.7)

where the supremum is taken over all balls B in Rn.

Theorem 4. The dual of the space Hϕ(Rn) is BMOϕ(Rn).

When ϕ(x, t) ≡ t
log(e+|x|)+log(e+t)

, we prove that BMOϕ(Rn) is just BMOlog(Rn). As

a consequence of Theorem 4, this gives:

Theorem 5. The dual of the space H log(Rn) is BMOlog(Rn).

As mentioned above, Theorem 5 allows to give an answer for Question 1: H log(Rn),

in some sense, could not be replaced by a smaller space.

The last main theorem of this part concerns the boundedness of operators on Hardy

spaces. Usually, in order to establish the boundedness of operators on Hardy spaces, one

usually appeals to the atomic decomposition characterization, see [27, 86, 133], which

means that a function or a distribution in Hardy spaces can be represented as a linear

combination of functions of an elementary form, namely, atoms. Then, the boundedness
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of operators on Hardy spaces can be deduced from their behavior on atoms or molecules in

principle. However, caution needs to be taken due to an example constructed in Theorem

2 of [19]. There exists a linear functional defined on a dense subspace of H1(Rn), which

maps all (1,∞, 0)-atoms into bounded scalars, but however does not extend to a bounded

linear functional on the whole H1(Rn). This implies that the uniform boundedness of

a linear operator T on atoms does not automatically guarantee the boundedness of T

from H1(Rn) to a Banach space B. Nevertheless, by using the grand maximal function

characterization of Hp(Rn), Meda, Sjögren, and Vallarino [105, 106] proved that if a

sublinear operator T maps all (p, q, s)-atoms when q <∞ and continuous (p,∞, s)-atoms

into uniformly bounded elements of Lp(Rn) (see also [144, 20] for quasi-Banach spaces),

then T uniquely extends to a bounded sublinear operator from Hp(Rn) to Lp(Rn). In this

paper, we study boundedness of sublinear operators in the context of these new Hardy

spaces of Musielak-Orlicz type which generalize the main results in [105, 106]. More

precisely, under additional assumption on ϕ(·, ·), we prove that finite atomic norms on

dense subspaces ofHϕ(Rn) are equivalent with the standard infinite atomic decomposition

norms. As an application, we prove that if T is a sublinear operator and maps all atoms

into uniformly bounded elements of a quasi-Banach space B, then T uniquely extends to

a bounded sublinear operator from Hϕ(Rn) to B.
Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm ‖ · ‖B

which is nonnegative, non-degenerate (i.e., ‖f‖B = 0 if and only if f = 0), homogeneous,

and obeys the quasi-triangle inequality, i.e., there exists a positive constant κ not less

than 1 such that for all f, g ∈ B, we have ‖f + g‖B ≤ κ(‖f‖B + ‖g‖B).
Definition 1.2.2. Let γ ∈ (0, 1]. A quasi-Banach space Bγ with the quasi-norm ‖ · ‖Bγ

is said to be a γ-quasi-Banach space if there exists a positive constant κ not less than 1

such that for all fj ∈ Bγ, j = 1, 2, ...,m, we have

∥∥∥
m∑

j=1

fj

∥∥∥
γ

Bγ

≤ κ
m∑

j=1

‖fj‖γBγ
.

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces

ℓp, Lpw(R
n) and Hp

w(R
n) with p ∈ (0, 1] are typical p-quasi-Banach spaces. Also, when ϕ

is of uniformly lower type p ∈ (0, 1], the space Hϕ(Rn) is a p-quasi-Banach space.

For any given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and a linear space Y , an

operator T from Y to Bγ is called Bγ-sublinear if there exists a positive constant κ not

less than 1 such that for all fj ∈ Y , λj ∈ C, j = 1, ...,m, we have

∥∥∥T
( m∑

j=1

λjfj

)∥∥∥
γ

Bγ

≤ κ

m∑

j=1

|λj|γ‖T (fj)‖γBγ
.
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We remark that if T is linear, then T is Bγ-sublinear. We should point out that if

the constant κ, in Definition 3.2.5, equal 1, then we obtain the notion of γ-quasi-Banach

spaces introduced in [144] (see also [20]).

Under some assumptions on q, s, ϕ, we get the last main theorem of Paper II as follows:

Theorem 6. Let Bγ be a γ-quasi-Banach space for some γ ∈ (0, 1]. Suppose that ϕ is of

uniformly upper type γ, and one of the following holds:

i) T : Hϕ,q,s
fin (Rn) → Bγ, q <∞, is a Bγ-sublinear operator such that

A = sup{‖Ta‖Bγ : a is a (ϕ, q, s)−atom} <∞;

ii) T is a Bγ-sublinear operator defined on continuous (ϕ,∞, s)-atoms such that

A = sup{‖Ta‖Bγ : a is a continuous (ϕ,∞, s)−atom} <∞.

Then there exists a unique bounded Bγ-sublinear operator T̃ from Hϕ(Rn) to Bγ which

extends T .

Here a Orlicz function ϕ is said to be of uniformly upper type γ if there exists a

constant C > 0 such that

ϕ(x, st) ≤ Csγϕ(x, t)

for all x ∈ Rn, t > 0 and s ∈ [1,∞).

Very recently, many authors have studied and generalized the theory of new Hardy

spaces of Musielak-Orlicz type to many setting, see for example [66, 93, 140, 141, 142]. To

be more precise, using the theory of tent spaces, introduced by Coifman, Meyer and Stein

[30], together with the classical Calderón reproducing formula, the authors [66, 93] have es-

tablished the Lusin area function and the molecular characterizations for Hϕ(Rn). Under

some additional mild restrictions on ϕ, they also obtained some real-variable characteriza-

tions of Hϕ(Rn) in terms of the vertical and the non-tangential maximal functions and in

terms of the Littlewood-Paley functions. The Carleson-type measure characterization for

BMOϕ(Rn) is also considered, and many applications of these new Hardy spaces are also

given. Besides, in [140, 141, 142] the authors have also considered these new spaces in the

setting of nonnegative selfadjoint operators in L2 satisfying the Davies-Gaffney estimates

and in the setting of local Hardy spaces related to the class of local weights introduced

by V. S. Rychkov [123]. Some applications are also given in [140, 141, 142].
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1.3 Paper III: Bilinear decompositions and commu-

tators of singular integral operators

By using the results of Paper I and Paper II, we investigate the endpoint theory for

commutators of singular integral operators. Let us first recall that giving a function b

locally integrable on Rn, and a Calderón-Zygmund operator T , the linear commutator

[b, T ] is defined for smooth, compactly supported functions f by

[b, T ](f) = bT (f)− T (bf).

A classical result of Coifman, Rochberg and Weiss (see [31]), states that the commu-

tator [b, T ] is continuous on Lp(Rn) for 1 < p < ∞, when b ∈ BMO(Rn). Unlike the

theory of Calderón-Zygmund operators, the proof of this result does not rely on a weak

type (1, 1) estimate for [b, T ]. In fact, it was shown in [119] and [62] that, in general, the

linear commutator is neither of weak type (1, 1) nor of strong type (H1, L1), when b is in

BMO(Rn). Instead of this, the weak type estimate (H1, L1) for [b, T ] is well-known, see

for example [96, 101, 139]. More precisely, one has:

Theorem B. Let b ∈ BMO(Rn) and T be a Calderón-Zygmund operator. Then, the

commutator [b, T ] is bounded from H1(Rn) into weak-L1(Rn).

It should be pointed out that intuitively one would like to write

[b, T ](f) =
∞∑

j=1

λj(b− bBj
)T (aj)− T

( ∞∑

j=1

λj(b− bBj
)aj

)
,

where f =
∑∞

j=1 λjaj a atomic decomposition of f . This is equivalent to ask for a

commutation property
∞∑

j=1

λjbBj
T (aj) = T

( ∞∑

j=1

λjbBj
aj

)
. (1.8)

To prove Theorem B, most authors, for instance in [96, 101, 139, 146, 90, 137, 95], im-

plicitely use (4.3). As pointed out in the subsection 1.2, one must be careful at this point.

Indeed, Equality (4.3) is not clear since the two series
∑∞

j=1 λjbBj
T (aj) and

∑∞
j=1 λjbBj

aj

are not yet well-defined, in general. Furthermore, acceptting equalities like Equality (4.3)

would follow in particular that boundedness of T on atoms implies boundedness of T

which is not true, in general. We refer the reader to [19], Section 3, for a counterexample.

Although the commutator [b, T ] does not map continuously, in general, H1(Rn) into

L1(Rn), following Pérez [119] one can find a subspace H1
b(R

n) of H1(Rn) such that [b, T ]

maps continuously H1
b(R

n) into L1(Rn). Recall that a function a is a b-atom if
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i) supp a ⊂ Q for some cube Q,

ii) ‖a‖L∞ ≤ |Q|−1,

iii)
∫
Rn a(x)dx =

∫
Rn a(x)b(x)dx = 0.

The space H1
b(R

n) consists of the subspace of L1(Rn) of functions f which can be written

as f =
∑∞

j=1 λjaj where aj are b-atoms, and λj are complex numbers with
∑∞

j=1 |λj| <∞.

Then, one has:

Theorem C. Let b ∈ BMO(Rn) and T be a Calderón-Zygmund operator. Then, the

commutator [b, T ] is bounded from H1
b(R

n) into L1(Rn).

To prove Theorem C, in [119], the author showed that the commutator [b, T ] is bounded

from H1
b(R

n) into L1(Rn) by establishing that

sup{‖[b, T ](a)‖L1 : a is a b−atom} <∞. (1.9)

As we already emphasized this leaves a gap in the proof which we fill here. Note that this

difficulty has been mentioned as a question in the paper of Hu, Meng and Yang (see [67],

page 1132). Actually, in [19], a linear operator U defined on the space of all finite linear

combination of (1,∞)-atoms satisfies

sup{‖U(a)‖L1 : a is a (1,∞)−atom} <∞,

but does not admit an extension to a bounded operator from H1(Rn) into L1(Rn). From

this result, we see that Inequality (4.4) does not suffice to conclude that [b, T ] is bounded

from H1
b(R

n) into L1(Rn). In the setting of H1(Rn), it is well-known (see [105] or [144]

for details) that a linear operator U can be extended to a bounded operator from H1(Rn)

into L1(Rn) if for some 1 < q <∞, we have

sup{‖U(a)‖L1 : a is a (1, q)−atom} <∞.

It follows from the fact that the finite atomic norm on H1,q
fin (R

n) is equivalent to the

standard infinite atomic decomposition norm on H1,q
ato(R

n) through the grand maximal

function characterization of H1(Rn). However, one can not use this method in the context

of H1
b(R

n). In order to give a correct proof for Theorem 1.3, we use a different approach.

Now, a natural question arises:

Question 2. Can one find the largest subspace of H1(Rn) such that all commutators of

Calderón-Zygmund operators are bounded from this space into L1(Rn)?
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In order to answer this question, in Paper III, we consider the class K of all sublinear

operators T , bounded from H1(Rn) into L1(Rn), satisfying the condition

‖(b− bQ)Ta‖L1 ≤ C‖b‖BMO

for all BMO-function b, H1-atom a related to the cube Q. This class K contains almost

all important operators in harmonic analysis: Calderón-Zygmund type operators, strongly

singular integral operators, multiplier operators, pseudo-differential operators, maximal

type operators, the area integral operator of Lusin, Littlewood-Paley type operators,

Marcinkiewicz operators, maximal Bochner-Riesz operators, etc...

We then study the commutators [b, T ] for T in the class K. In particular, we prove

the following:

Theorem 7 (Subbilinear decomposition). Let T ∈ K. There exists a bounded subbilinear

operator R = RT : H1(Rn) × BMO(Rn) → L1(Rn) such that for all (f, b) ∈ H1(Rn) ×
BMO(Rn), we have

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|. (1.10)

Here S is the bounded bilinear operator from H1(Rn)×BMO(Rn) into L1(Rn) which

does not depend on T . It is defined by

S(f, b) := −
∑

I

∑

σ∈E
〈f, ψσI 〉〈b, ψσI 〉(ψσI )2.

Furthermore, when T is linear and belongs to K, we obtain the bilinear decomposition

for the linear commutator [b, T ] of f , [b, T ](f) = bT (f)−T (bf), instead of the subbilinear

decomposition as stated in Theorem 4.3.1.

Theorem 8 (Bilinear decomposition). Let T be a linear operator in K. Then, there exists

a bounded bilinear operator R = RT : H1(Rn) × BMO(Rn) → L1(Rn) such that for all

(f, b) ∈ H1(Rn)× BMO(Rn), we have

[b, T ](f) = R(f, b) + T (S(f, b)). (1.11)

The bilinear decomposition (1.10) and the subbilinear decomposition (1.11) not only

completes the proofs for Theorem B and Theorem C but also allow us to give a general

overview of all known weak and strong L1-estimates. They explain why almost all com-

mutators of the fundamental operators (Calderón-Zygmund operators, strongly singular

integral operators, multiplier operators, pseudo-differential operators, maximal type oper-

ators, the area integral operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz
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operators, maximal Bochner-Riesz operators, etc...) are of weak type (H1, L1), and when

a commutator [b, T ] is of strong type (H1, L1).

As a consequence, we find the largest subspace H1
b (R

n) such that all commutators

of Calderón-Zygmund operators are continuous from H1
b (R

n) into L1(Rn). More pre-

cisely, for b ∈ BMO(Rn), a non-constant function, we define H1
b (R

n) as the space

consisting of all f ∈ H1(Rn) such that the (sublinear) commutator [b,M] of f be-

longs to L1(Rn), where [b,M](f)(x) := M(b(x)f(·) − b(·)f(·))(x). Recall that M is

the grand maximal function given in (1.1). The norm on H1
b (R

n) is then defined by

‖f‖H1
b
:= ‖f‖H1‖b‖BMO + ‖[b,M](f)‖L1 . Here we just consider b a non-constant BMO-

function since the commutator [b, T ] = 0 if b is a constant function. Then, we prove

that [b, T ] is bounded from H1
b (R

n) into L1(Rn) for every Calderón-Zygmund singular

integral operator T (in fact it holds for all T ∈ K, see below). Furthermore, H1
b (R

n) is

the largest space having this property, in particular it contains H1
b(R

n) of Pérez, which

answers Question 2.

In Paper III, we also consider Hardy estimates for commutators by giving two sufficient

conditions for the boundedness from H1
b (R

n) into h1(Rn) and from H1
b (R

n) into H1(Rn) of

commutators [b, T ]. More precisely, the last two main theorems of this part are as follow:

Theorem 9. Let b be a non-constant BMOlog-function and T be a Calderón-Zygmund

operator with T1 = T ∗1 = 0. Then, the linear commutator [b, T ] maps continuously

H1
b (R

n) into h1(Rn).

Theorem 10. Let b be a non-constant BMO-function and T be a Calderón-Zygmund

operator with T ∗1 = T ∗b = 0. Then, the linear commutator [b, T ] maps continuously

H1
b (R

n) into H1(Rn).

Observe that the condition T ∗b = 0 is ”necessary” in the sense that if the linear

commutator [b, T ] maps continuously H1
b (R

n) into H1(Rn), then
∫
Rn b(x)Ta(x)dx = 0

holds for all (q, b)-atoms a, 1 < q ≤ ∞.

Let us give some examples of operators T satisfying the assumption T ∗1 = T ∗b = 0.

To have many examples, let us consider Euclidean spaces Rn, n ≥ 2. Now, consider all

Calderón-Zygmund operators T such that T ∗1 = 0. As the closure of T (H1(Rn)) is a

proper subset of H1(Rn), by the Hahn-Banach theorem (note that BMO(Rn) is the dual

of H1(Rn)), one may take b a non-constant BMO-function such that
∫
Rn bTadx = 0 for

all H1-atoms a, i.e. T ∗b = 0, and thus b and T satisfy the sufficient condition in Theorem

10.
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1.4 Paper IV: Endpoint estimates for commutators

of singular integrals related to Schrödinger oper-

ators

A natural question related to Paper III is whether there exist non-constant functions

b ∈ BMO(Rn) such that the space H1
b (R

n) coincides with H1(Rn). Particularly, whether

there exist non-constant functions b ∈ BMO(Rn) such that the commutators [b,Rj] are

bounded from H1(Rn) into L1(Rn), where the Rj, j = 1, ..., n, are the classical Riesz

transforms. The answer, in this setting, is negative. Actually, by the decomposition

(1.10), it is not hard to see that the commutators [b,Rj] are bounded from H1(Rn) into

L1(Rn) if and only if b is a constant function. It should be pointed out that when n = 1,

the above result was mentioned in the paper of Harboure, Segovia and Torrea [62], see

also Remark 4.1 in the paper of Janson, Peetre and Semmes [76]. There, they proved that

the commutator of the Hilbert transform [b,H] is bounded from H1(R) into L1(R) if and

only if b is a constant function.

In contrast with the Euclidean space Rn, the situation is different in the setting of

the unit circle T = {z ∈ C : |z| = 1}. Janson, Peetre and Semmes showed in [76] that

the commutator of the Hilbert transform [b,H] is bounded on the Hardy space H1(T)

whenever b ∈ BMOlog(T), that is,

‖b‖BMOlog(T) =
1

2π

∣∣∣
∫

T

b(z)|dz|
∣∣∣+ sup

I

log 4
|I|

|I|

∫

I

∣∣∣b(η)− 1

|I|

∫

I

b(z)|dz|
∣∣∣|dη| <∞,

where the supremum is taken over all arcs I of T and |I| is the length of I.

In this paper, we consider this problem in the setting of Hardy spaces and the Riesz

transforms related to Schrödinger operators.

Let L = −∆+ V be a Schrödinger operator on Rn, n ≥ 3, where V is a nonnegative

potential, V 6= 0, and belongs to the reverse Hölder class RHn/2. Recall that a nonnegative

locally integrable function V is said to belong to a reverse Hölder class RHq, 1 < q <∞,

if there exists C > 0 such that

( 1

|B|

∫

B

(V (x))qdx
)1/q

≤ C

|B|

∫

B

V (x)dx (1.12)

holds for every balls B in Rn. According to [46], we define H1
L(R

n) as the space of all func-

tions f ∈ L1(Rn) such that ‖f‖H1
L
:= ‖MLf‖L1 <∞, where MLf(x) = supt>0 |e−tLf(x)|

for all x ∈ Rn.
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We look for non-constant functions b ∈ BMO(Rn) such that the commutators [b, Rj]

are bounded fromH1
L(R

n) into L1(Rn), where the Rj = ∂xjL
−1/2, j = 1, ..., n, are the Riesz

transforms associated with the Schrödinger operator L. Also, we discuss the conditions

on functions b ∈ BMO(Rn) which ensure the commutators [b, Rj] to be bounded from

H1
L(R

n) into itself.

According to [17], for θ ≥ 0, we define BMOL,θ(R
n) and BMOlog

L,θ(R
n), respectively,

as the spaces of locally integrable functions f satisfying

‖f‖BMOL,θ
:= sup

B(x,r)




1
(
1 + r

ρ(x)

)θ
1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy


 <∞

and

‖f‖BMOlog
L,θ

:= sup
B(x,r)



log
(
e+ ρ(x)

r

)

(
1 + r

ρ(x)

)θ
1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy


 <∞,

respectively, where ρ(x) := sup{r > 0 : 1
rn−2

∫
B(x,r)

V (y)dy ≤ 1}. When θ = 0, we write

BMOlog
L (Rn) instead of BMOlog

L,0(R
n).

Note that the space BMOL,∞(Rn) is in general larger than the space BMO(Rn).

Indeed, when V (x) ≡ |x|2, it is easy to check that the functions bj(x) = |xj|2, j = 1, ..., n,

belong to BMOL,∞(Rn) but not to BMO(Rn).

In this paper, we prove the following.

Theorem 11. Let b ∈ BMOL,∞(Rn) = ∪θ≥0BMOL,θ(R
n). Then, the commutators [b, Rj]

are bounded on H1
L(R

n) if and only if b ∈ BMOlog
L,∞(Rn) = ∪θ≥0BMOlog

L,θ(R
n). Further-

more, if b ∈ BMOlog
L,θ(R

n) for some θ ≥ 0, we have

‖b‖BMOlog
L,θ

≈ ‖b‖BMOL,θ
+

n∑

j=1

‖[b, Rj]‖H1
L→H1

L
.

Remark that the above constants depend on θ.

Next, let us recall the notation of Schrödinger-Calderón-Zygmund operators.

Let δ ∈ (0, 1]. According to [103], a continuous function K : Rn × Rn \ {(x, x) : x ∈
Rn} → C is said to be a (δ, L)-Calderón-Zygmund singular integral kernel if for each

N > 0,

|K(x, y)| ≤ C(N)

|x− y|n
(
1 +

|x− y|
ρ(x)

)−N
(1.13)
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for all x 6= y, and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|δ
|x− y|n+δ (1.14)

for all 2|x− x′| ≤ |x− y|.
A linear operator T : S(Rn) → S ′(Rn) is said to be a (δ, L)-Calderón-Zygmund oper-

ator if T can be extended to a bounded operator on L2(Rn) and if there exists a (δ, L)-

Calderón-Zygmund singular integral kernel K such that for all f ∈ C∞
c (Rn) and all x /∈

supp f , we have

Tf(x) =

∫

Rn

K(x, y)f(y)dy.

We say that T is a L-Calderón-Zygmund operator (or Schrödinger-Calderón-Zygmund

operator related to L) if it is a (δ, L)-Calderón-Zygmund operator for some δ ∈ (0, 1]. We

say also that T satisfies the condition T ∗1 = 0 if there are q ∈ (1,∞] and ε > 0 so that∫
Rn Ta(x)dx = 0 holds for every generalized (H1

L, q, ε)-atoms a. Here, a function a is

called a generalized (H1
L, q, ε)-atom related to the ball B(x0, r) if

(a) supp a ⊂ B(x0, r),

(b) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

(c) |
∫
Rn a(x)dx| ≤

(
r

ρ(x0)

)ε
.

Remark 1.4.1. i) By Lemma 1.4 of [125], Inequality (5.14) is equivalent to

|K(x, y)| ≤ C(N)

|x− y|n
(
1 +

|x− y|
ρ(y)

)−N

for all x 6= y.

ii) By Theorem 0.8 of [125] and Theorem 1.1 of [126], the Riesz transforms Rj are

L-Calderón-Zygmund operators satisfying R∗
j1 = 0 whenever V ∈ RHn.

iii) If T is a L-Calderón-Zygmund operator then it is also a classical Calderón-

Zygmund operator, and thus T is bounded on Lp(Rn) for 1 < p < ∞ and bounded from

L1(Rn) into L1,∞(Rn).

Our second main theorem concerns the H1
L-estimates for commutators of Schrödinger-

Calderón-Zygmund operators.
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Theorem 12. i) Let b ∈ BMOlog
L (Rn) and T be a L-Calderón-Zygmund operator satis-

fying T ∗1 = 0. Then, the linear commutator [b, T ] is bounded on H1
L(R

n).

ii) When V ∈ RHn, the converse holds. Namely, if b ∈ BMO(Rn) and [b, T ] is

bounded on H1
L(R

n) for every L-Calderón-Zygmund operator T satisfying T ∗1 = 0, then

b ∈ BMOlog
L (Rn). Furthermore,

‖b‖BMOlog
L

≈ ‖b‖BMO +
n∑

j=1

‖[b, Rj]‖H1
L→H1

L
.

Recently, the authors in [23, 92, 134, 138] considered endpoint estimates for commu-

tators of singular integral operators [b, T ] with functions b ∈ BMO(Rn). In particular,

when b ∈ BMO(Rn), they proved that the commutators of the Riesz transforms [b, Rj]

are bounded from H1
L(R

n) into weak-L1(Rn) and from H1
b(R

n) into L1(Rn), where H1
b(R

n)

is the atomic Hardy space introduced by Pérez (see Paper III before).

This paper explains why, when b is in BMO(Rn), commutators of singular integral

operators related to L (containing the Riesz transforms Rj), say [b, T ], are of weak type

(H1
L, L

1), and when a commutator [b, T ] is of strong type (H1
L, L

1). To be more precise,

we investigate commutators of singular integral operators T related to the Schrödinger

operator L, where T is in the class KL of all sublinear operators T , bounded from H1
L(R

n)

into L1(Rn) and that there are q ∈ (1,∞] and ε > 0 such that

‖(b− bB)Ta‖L1 ≤ C‖b‖BMO

for every b ∈ BMO(Rn), any generalized (H1
L, q, ε)-atom a related to the ball B, where

C > 0 is a constant independent of b, a. The class KL contains the fundamental operators

(see Paper III for the classical case L = −∆) related to the Schrödinger operator L: the

Riesz transforms Rj, Schrödinger-Calderón-Zygmund operators, L-maximal operators,

L-square operators, etc... Remark that the Riesz transforms Rj are just, in general,

Schrödinger-Calderón-Zygmund operators when V ∈ RHn. In this work, we consider all

potentials V which belong to the reverse Hölder class RHn/2.

Although Schrödinger-Calderón-Zygmund operators map H1
L(R

n) into L1(Rn) (see

Proposition 4.1 of the paper), it was observed in [92] that, when b ∈ BMO(Rn), the com-

mutators [b, Rj] do not map, in general, H1
L(R

n) into L1(Rn). Thus, when b ∈ BMO(Rn),

it is natural to ask for subspaces of H1
L(R

n) such that all commutators of Schrödinger-

Calderón-Zygmund operators and the Riesz transforms map continuously these spaces

into L1(Rn). Here, we are interested in the following two questions.
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Question 3. For b ∈ BMO(Rn). Find the largest subspaceH1
L,b(R

n) ofH1
L(R

n) such that

all commutators of Schrödinger-Calderón-Zygmund operators and the Riesz transforms

are bounded from H1
L,b(R

n) into L1(Rn).

Question 4. Characterize the functions b in BMO(Rn) so that H1
L,b(R

n) ≡ H1
L(R

n).

Let X be a Banach space. We say that an operator T : X → L1(Rn) is a sublinear

operator if for all f, g ∈ X and α, β ∈ C, we have

|T (αf + βg)(x)| ≤ |α||Tf(x)|+ |β||Tg(x)|.

Obviously, a linear operator T : X → L1(Rn) is a sublinear operator. We also say

that a operator T : H1
L(R

n) × BMO(Rn) → L1(Rn) is a subbilinear operator if for

every (f, g) ∈ H1
L(R

n) × BMO(Rn), the operators T(f, ·) : BMO(Rn) → L1(Rn) and

T(·, g) : H1
L(R

n) → L1(Rn) are sublinear operators.

To answer Question 3 and Question 4, we study commutators of sublinear operators in

KL. More precisely, when T ∈ KL is a sublinear operator, we prove the following theorem.

Theorem 13. Let T ∈ KL. Then, there exists a bounded subbilinear operator R = RT :

H1
L(R

n)× BMO(Rn) → L1(Rn) so that for all (f, b) ∈ H1
L(R

n)× BMO(Rn),

|T (SL(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (SL(f, b))|, (1.15)

where SL is a bounded bilinear operator from H1
L(R

n) × BMO(Rn) into L1(Rn) which

does not depend on T (see Proposition 5.2 of the paper)

When T is linear and belongs to KL, we obtain the bilinear decomposition for the linear

commutator [b, T ] of f , [b, T ](f) = bT (f)−T (bf), instead of the subbilinear decomposition

as stated in Theorem 13.

Theorem 14. Let T be a linear operator in KL. Then, there exists a bounded bilinear

operator R = RT : H1
L(R

n) × BMO(Rn) → L1(Rn) such that for all (f, b) ∈ H1
L(R

n) ×
BMO(Rn), we have

[b, T ](f) = R(f, b) + T (SL(f, b)),

where SL is as in Theorem 13.

The above theorem gives a general overview and explains why almost commutators of

the fundamental operators are of weak type (H1
L, L

1), and when a commutator [b, T ] is of

strong type (H1
L, L

1).
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Let b be a non-constant BMO-function (otherwise [b, T ] = 0). We define the space

H1
L,b(R

n) as the set of all f inH1
L(R

n) such that [b,ML](f)(x) = ML(b(x)f(·)−b(·)f(·))(x)
belongs to L1(Rn), and the norm on H1

L,b(R
n) is defined by ‖f‖H1

L,b
= ‖f‖H1

L
‖b‖BMO +

‖[b,ML](f)‖L1 . Then, using the subbilinear decomposition (5.2), we prove the following.

Theorem 15. Let b be a non-constant BMO-function. Then, the following statements

hold:

i) For every T ∈ KL, the commutator [b, T ] is bounded from H1
L,b(R

n) into L1(Rn).

ii) Assume that X is a subspace of H1
L(R

n) such that all commutators of the Riesz

transforms are bounded from X into L1(Rn). Then, X ⊂ H1
L,b(R

n).

iii) H1
L,b(R

n) ≡ H1
L(R

n) if and only if b ∈ BMOlog
L (Rn).

The above theorem allows that all commutators of Schrödinger-Calderón-Zygmund

operators and the Riesz transforms are bounded from H1
L,b(R

n) into L1(Rn), moreover,

H1
L,b(R

n) is the largest space having this property. Also, it allows to characterize functions

b in BMO(Rn) so that H1
L,b(R

n) ≡ H1
L(R

n). This answers Question 3 and Question 4.

As another interesting application of the subbilinear decomposition (5.2), we find some

subspaces of H1
L(R

n) which do not depend on b ∈ BMO(Rn) and T ∈ KL, such that [b, T ]

maps continuously these spaces into L1(Rn). For instance, when L = −∆ + 1, Theorem

7.4 of the paper state that for every b ∈ BMO(Rn) and T ∈ KL, the commutator [b, T ]

is bounded from H1,1
L (Rn) into L1(Rn). Here H1,1

L (Rn) is the (inhomogeneous) Hardy-

Sobolev space considered by Hofmann, Mayboroda and McIntosh in [65], defined as the

set of functions f in H1
L(R

n) such that ∂x1f, ..., ∂xnf ∈ H1
L(R

n) with the norm

‖f‖H1,1
L

= ‖f‖H1
L
+

n∑

j=1

‖∂xjf‖H1
L
.

Finally, we give an open question.

Open question. Find the set of all functions b such that the commutators [b, Rj], j =

1, ..., n, are bounded on H1
L(R

n).

1.5 Paper V: Bilinear decompositions for the product

space H1
L(R

n)× BMOL(R
n)

Let L = −∆+ V be a Schrödinger operator as in Paper IV. Namely, V is a nonnegative

potential, V 6= 0, and belongs to the reverse Hölder class RHn/2. In [45], Dziubański et
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al. showed that the dual of H1
L(R

n) can be identified with the space BMOL(R
n) which

consists of all functions f ∈ BMO(Rn) with

‖f‖BMOL
:= ‖f‖BMO + sup

ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞.

As for the classical spaces H1(Rn) and BMO(Rn), the pointwise products fg of func-

tions f ∈ H1
L(R

n) and functions g ∈ BMOL(R
n) maybe not integrable. However, similarly

to the classical setting, Li and Peng showed in [91] that such products can be defined in

the sense of distributions which action on the Schwartz function ϕ ∈ S(Rn) is

〈f × g, ϕ〉 := 〈ϕg, f〉, (1.16)

where the second bracket stands for the duality bracket between H1
L(R

n) and its dual

BMOL(R
n). Moreover, they proved that f × g can be written as the sum of two distribu-

tions, one in L1(Rn), the other in HΞ
L,σ(R

n) the weighted Hardy-Orlicz space associated

with L related to the Orlicz function Ξ(t) ≡ t
log(e+t)

and the weight σ(x) ≡ 1
log(e+|x|) .

Namely, HΞ
L,σ(R

n) is the completion of

{f ∈ L2(Rn) : MLf ∈ LΞ
σ(R

n)}

in the norm

‖f‖HΞ
L,σ

:=



λ > 0 :

∫

Rn

MLf(x)
λ

log
(
e+ MLf(x)

λ

) 1

log(e+ |x|)dx ≤ 1



 .

More precisely, in [91], the authors proved the following.

Theorem D. For each f ∈ H1
L(R

n), there are two bounded linear operators Lf : BMOL(R
n) →

L1(Rn) and Hf : BMOL(R
n) → HΞ

L,σ(R
n) such that for every g ∈ BMOL(R

n), we have

f × g = Lf (g) +Hf (g) (1.17)

and the uniform bound

‖Lf (g)‖L1 + ‖Hf (g)‖HΞ
L,σ

≤ C‖f‖H1
L
‖g‖BMO+

L
, (1.18)

where ‖g‖BMO+
L
= ‖g‖BMOL

+ |gB|, gB denotes the mean value of g over the unit ball B.

In Paper V, we prove the following theorem.
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Theorem 16. There are two bounded bilinear operators SL : H1
L(R

n) × BMOL(R
n) →

L1(Rn) and TL : H1
L(R

n)×BMOL(R
n) → H log(Rn) such that for every (f, g) ∈ H1

L(R
n)×

BMOL(R
n), we have

f × g = SL(f, g) + TL(f, g) (1.19)

and the uniform bound

‖SL(f, g)‖L1 + ‖TL(f, g)‖Hlog ≤ C‖f‖H1
L
‖g‖BMOL

. (1.20)

Note that H log(Rn) ⊂ HΞ
σ (R

n) ⊂ HΞ
L,σ(R

n) with continuous embeddings. Compared

with the main result of [91] (Theorem D), Theorem 16 makes an essential improvement

in two directions as in the classical case (Theorem 1). The first one consists in proving

that the space HΞ
L,σ(R

n) can be replaced by a smaller space H log(Rn). Secondly, we give

the bilinear decomposition (6.7) for the product space H1
L(R

n) × BMOL(R
n) instead of

the linear decomposition (6.5) depending on f ∈ H1
L(R

n). Moreover, we just need the

BMOL-norm (see (6.8)) instead of the BMO+
L -norm as in (6.6).

In applications to nonlinear PDEs, the distribution f × g ∈ S ′(Rn) is used to justify

weak continuity properties of the pointwise product fg. It is therefore important to

recover fg from the action of the distribution f × g on the test functions. An idea that

naturally comes to mind is to look at the mollified distributions

(f × g)ǫ = (f × g) ∗ φǫ, (1.21)

and let ǫ→ 0. Here φ ∈ S(Rn) with
∫
Rn φ(x)dx = 1.

In the classical setting of f ∈ H1(Rn) and g ∈ BMO(Rn), Bonami et al. proved in

[15] that the limit (6.10) exists and equals fg almost everywhere. An analogous result is

also true for the Schrödinger setting. Namely, we prove the following.

Theorem 17. Let f ∈ H1
L(R

n) and g ∈ BMOL(R
n). Then, for almost every x ∈ Rn,

lim
ǫ→0

(f × g)ǫ(x) = f(x)g(x).

1.6 Paper VI: On weak∗-convergence in H1
L(R

n)

A famous and classical result of Fefferman [47] states that the John-Nirenberg space

BMO(Rn) is the dual of the Hardy space H1(Rn). It is also well-known that H1(Rn) is

one of the few examples of separable, nonreflexive Banach space which is a dual space.

In fact, let VMO(Rn) denote the closure of the space C∞
c (Rn) in BMO(Rn), where

C∞
c (Rn) is the set of C∞-functions with compact support, Coifman and Weiss showed in
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[32] that H1(Rn) is the dual space of VMO(Rn), which gives H1(Rn) a richer structure

than L1(Rn). For example, the classical Riesz transforms ∇(−∆)−1/2 are not bounded on

L1(Rn), but bounded on H1(Rn). In addition, the weak∗-convergence is true in H1(Rn),

which is useful in the application of Hardy spaces to compensated compactness (see [33]).

More precisely, in [78], Jones and Journé proved the following.

Theorem E. Suppose that {fj}j≥1 is a bounded sequence in H1(Rn), and that fj(x) →
f(x) for almost every x ∈ Rn. Then, f ∈ H1(Rn) and {fj}j≥1 weak∗-converges to f , that

is, for every ϕ ∈ VMO(Rn), we have

lim
j→∞

∫

Rn

fj(x)ϕ(x)dx =

∫

Rn

f(x)ϕ(x)dx.

Let L = −∆+ V be the Schrödinger operators as in Paper IV. Recently, Deng et al.

[37] introduced and developed new function spaces of VMO-type VMOA(R
n) associated

with some operators A which have a bounded holomorphic functional calculus on L2(Rn).

When A ≡ L, their space VMOL(R
n) is just the set of all functions f in BMOL(R

n) such

that γ1(f) = γ2(f) = γ3(f) = 0, where

γ1(f) = lim
r→0


 sup
x∈Rn,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,

γ2(f) = lim
R→∞


 sup
x∈Rn,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,

γ3(f) = lim
R→∞


 sup
B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 .

The authors in [37] further showed that H1
L(R

n) is in fact the dual of VMOL(R
n), which

allows us to study the weak∗-convergence in H1
L(R

n). This is useful in the study of

the Hardy estimates for commutators of singular integral operators related to L, see for

example Theorem 7.1 and Theorem 7.3 of [82].

In this paper, we prove the following.

Theorem 18. The space C∞
c (Rn) is dense in the space VMOL(R

n).

Furthermore, the weak∗-convergence is true in H1
L(R

n).
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Theorem 19. Suppose that {fj}j≥1 is a bounded sequence in H1
L(R

n), and that fj(x) →
f(x) for almost every x ∈ Rn. Then, f ∈ H1

L(R
n) and {fj}j≥1 weak∗-converges to f , that

is, for every ϕ ∈ VMOL(R
n), we have

lim
j→∞

∫

Rn

fj(x)ϕ(x)dx =

∫

Rn

f(x)ϕ(x)dx.
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Chapter 2

Paraproducts and Products of

functions in BMO(Rn) and H1(Rn)

through wavelets

Ce chapitre est l’article en collaboration avec Aline Bonami and Sandrine Grellier paru

dans Journal de Mathématiques Pures et Appliquées. Voir ”A. Bonami, S. Grellier and

L. D. Ky, Paraproducts and products of functions in BMO(Rn) and H1(Rn) through

wavelets. J. Math. Pure Appl. 97 (2012), 230–241.”

Résumé

Dans cet article, nous prouvons que le produit (dans le sens des distributions) de deux

fonctions, qui sont respectivement dans BMO(Rn) et H1(Rn), peut être écrit comme la

somme de deux opérateurs bilinéaires continus, l’un de H1(Rn)×BMO(Rn) dans L1(Rn),

l’autre de H1(Rn)×BMO(Rn) à valeurs dans un nouveau type d’espace de Hardy-Orlicz

désigné par Hlog(Rn). Plus précisément, l’espace Hlog(Rn) est l’ensemble des distributions

f dont la fonction ”grand maximale” Mf satisfait

∫

Rn

|Mf(x)|
log(e+ |x|) + log(e+ |Mf(x)|)dx <∞.

Les deux opérateurs bilinéaires peuvent être définis en termes de paraproduits. En

conséquence, nous obtenons un lemme div -curl impliquant l’espace Hlog(Rn).
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2.1 Introduction

Products of functions in H1 and BMO have been considered by Bonami, Iwaniec, Jones

and Zinsmeister in [15]. Such products make sense as distributions, and can be written as

the sum of an integrable function and a function in a weighted Hardy-Orlicz space. To be

more precise, for f ∈ H1(Rn) and g ∈ BMO(Rn), we define the product (in the distribution

sense) fg as the distribution whose action on the Schwartz function ϕ ∈ S(Rn) is given

by

〈fg, ϕ〉 := 〈ϕg, f〉 , (2.1)

where the second bracket stands for the duality bracket between H1(Rn) and its dual

BMO(Rn). It is then proven in [15] that

fg ∈ L1(Rn) +HΦ
ω (R

n). (2.2)

Here HΦ
ω (R

n) is the weighted Hardy-Orlicz space related to the Orlicz function

Φ(t) :=
t

log(e+ t)
(2.3)

and with weight ω(x) := (log(e+ |x|))−1.

Our aim is to improve this result in many directions. The first one consists in proving

that the space HΦ
ω (R

n) can be replaced by a smaller space. More precisely, we define the

Musielak-Orlicz space Llog(Rn) as the space of measurable functions f such that

∫

Rn

|f(x)|
log(e+ |x|) + log(e+ |f(x)|)dx <∞.

The space Hlog(Rn) is then defined, as usual, as the space of tempered distributions for

which the grand maximal function is in Llog(Rn). This is a particular case of a Hardy

space of Musielak-Orlicz type, with a variable (in x) Orlicz function that is also called a

Musielak-Orlicz function (see [81]). This kind of space had not yet been considered. A

systematic study of Hardy spaces of Musielak-Orlicz type has been done separately by

the last author [81]. It generalizes the work of Janson [75] on Hardy-Orlicz spaces. In

particular, it is proven there that the dual of the space Hlog(Rn) is the generalized BMO

space that has been introduced by Nakai and Yabuta (see [116]) to characterize multipliers

of BMO(Rn). Remark that by duality with our result, functions f that are bounded and

in the dual of Hlog(Rn) are multipliers of BMO(Rn). By the theorem of Nakai and Yabuta

there are no other multipliers, which, in some sense, indicates that Hlog(Rn) could not be

replaced by a smaller space.
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Secondly we answer a question of [15] by proving that there exists continuous bilinear

operators that allow to split the product into an L1(Rn) part and a part in this Hardy-

Orlicz space Hlog(Rn). More precisely we have the following.

Theorem 20. There exists two continuous bilinear operators on the product space H1(Rn)×
BMO(Rn), respectively S : H1(Rn)×BMO(Rn) 7→ L1(Rn) and T : H1(Rn)×BMO(Rn) 7→
Hlog(Rn) such that

fg = S(f, g) + T (f, g). (2.4)

The operators S and T are defined in terms of a wavelet decomposition. The operator

T is defined in terms of paraproducts. There is no uniqueness, of course. In fact, the

same decomposition of the product fg has already been considered by Dobyinsky and

Meyer (see [43, 41, 42], and also [28, 26]). The action of replacing the product by the

operator T was called by them a renormalization of the product. Namely, T preserves the

cancellation properties of the factor, while S does not. Dobyinsky and Meyer considered

L2-data for both factors, and showed that T (f, g) is in the Hardy space H1(Rn). What is

surprising in our context is that both terms inherit some properties of the factors. Even if

the product fg is not integrable, the function S(f, g) is, while T (f, g) inherits cancellation

properties of functions in Hardy spaces without being integrable. So, in some way each

term has more properties than expected at first glance.

Another implicit conjecture of [15] concerns bilinear operators with cancellations, such

as the ones involved in the div -curl lemma for instance. In this case it is expected that

there is no L1-term. To illustrate this phenomenon, it has been proven in [11] that,

whenever F and G are two vector fields respectively in H1(Rn,Rn) and BMO(Rn,Rn)

such that F is curl -free and G is div -free, then their scalar product F ·G is in HΦ
w(R

n,Rn)

(in fact there is additional assumption on the BMO-factor). By using the same technique

as Dobyinsky to deal with the terms coming from S, we give a new proof, without any

additional assumption. Namely, we have the following.

Theorem 21. Let F and G be two vector fields, one of them in H1(Rn,Rn) and the other

one in BMO(Rn,Rn), such that curlF = 0 and divG = 0.Then their scalar product F ·G
(in the distribution sense) is in Hlog(Rn).

In Section 2 we introduce the spaces Llog(Rn) and Hlog(Rn) and give the generalized

Hölder inequality that plays a central role when dealing with products of functions respec-

tively in L1(Rn) and BMO(Rn). In Sections 3 and 4 we give prerequisites on wavelets and

recall the L2-estimates of Dobyinsky. We prove Theorem 20 in Section 5 and Theorem 21

in Section 6.
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2.2 The space Hlog(Rn) and a generalized Hölder in-

equality

We first define the (variable) Orlicz function

θ(x, t) :=
t

log(e+ |x|) + log(e+ t)

for x ∈ Rn and t > 0. For fixed x it is an increasing function while t 7→ θ(x, t)/t decreases.

We have p < 1 in the following inequalities satisfied by θ.

θ(x, st) ≤ Cps
pθ(x, t) 0 < s < 1 (2.5)

θ(x, st) ≤ sθ(x, t) s > 1. (2.6)

These two properties are among the ones that are usually required for (constant) Orlicz

functions in Hardy Theory, see for instance [75, 12, 81]. They guarantee, in particular,

that Llog(Rn), defined as the set of functions f such that

∫

Rn

θ(x, |f(x)|)dx <∞

is a vector space. For f ∈ Llog(Rn), we define

‖f‖Llog := inf{λ > 0 ;

∫

Rn

θ(x, |f(x)|/λ)dx ≤ 1}.

It is not a norm, since it is not sub-additive. In place of sub-additivity, there exists a

constant C such that, for f, g ∈ Llog(Rn),

‖f + g‖Llog ≤ C(‖f‖Llog + ‖g‖Llog).

On the other hand, it is homogeneous.

The space Llog(Rn) is a complete metric space, with the distance given by

dist (f, g) := inf{λ > 0 ;

∫

Rn

θ(x, |f(x)− g(x)|/λ)dx ≤ λ}

(see [120], from which proofs can be adapted, and [81]). Because of (2.5), a sequence fk

tends to 0 in Llog(Rn) for this distance if and only if ‖fk‖Llog tends to 0.
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Before stating our first proposition on products, we need some notations related to

the space BMO(Rn). For Q a cube of Rn and f a locally integrable function, we note fQ

the mean of f on Q. We recall that a function f is in BMO(Rn) if

‖f‖BMO := sup
Q

1

|Q|

∫

Q

|f − fQ|dx <∞.

We note Q := [0, 1)n and, for f a function in BMO(Rn),

‖f‖BMO+ := |fQ|+ ‖f‖BMO.

This is a norm, while the BMO norm is only a norm on equivalent classes modulo con-

stants.

The aim of this section is to prove the following proposition, which replaces Hölder

Inequality in our context.

Proposition 1. Let f ∈ L1(Rn) and g ∈ BMO(Rn). Then the product fg is in Llog(Rn).

Moreover, there exists some constant C such that

‖fg‖Llog ≤ C‖f‖L1‖g‖BMO+ .

Proof. It is easy to adapt the proof given in [15], which leads to a weaker statement. We

prefer to give a complete proof here, which has the advantage to be easier to follow than

the one given in [15]. We first restrict to functions f of norm 1 and functions g such

that gQ = 0 and ‖g‖BMO ≤ α for some uniform constant α. Let us prove in this case the

existence of a uniform constant δ such that
∫

Rn

θ(x, |f(x)g(x)|)dx ≤ δ. (2.7)

The constant α is chosen so that, by John-Nirenberg inequality, one has the inequality

∫

Rn

e|g|

(e+ |x|)n+1
dx ≤ κ,

with κ a uniform constant that depends only of the dimension n (see [128]). Our main

tool is the following lemma.

Lemma 1. Let M ≥ 1. The following inequality holds for s, t > 0,

st

M + log(e+ st)
≤ et−M + s. (2.8)
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Proof. By monotonicity it is sufficient to consider the case when s = et−M . More precisely,

it is sufficient to prove that

t

M + log(e+ tet−M)
≤ 1.

This is direct when t ≤ M . Now, for t ≥ M , the denominator is bounded below by

M + t−M , that is, by t.

Let us go back to the proof of the proposition. We choose M := (n + 1) log(e + |x|).
Then

|f(x)g(x)|
(n+ 1)(log(e+ |x|) + log(e+ |f(x)g(x)|)) ≤ e|g(x)|

(e+ |x|)n+1
+ |f(x)|.

After integration we get (2.7) with δ = (n+ 1)(κ+ 1). Let us then assume that |gQ| ≤ α

while the other assumptions on f and g are the same. We then write fg = fgQ+f(g−gQ)
and find again the estimate (2.7) with δ = (n+1)(κ+1)+α. Using (2.5), this means that,

for ‖f‖L1 = 1 and ‖g‖BMO+ = α and for p < 1, we have the inequality ‖fg‖Llog ≤ (δCp)
1/p.

The general case follows by homogeneity, with C = δα−1.

Remark that we only used the fact that g is in the exponential class for the weight

(e+ |x|)−(n+1).

Finally let us define the space Hlog(Rn). We first define the grand maximal function

of a distribution f ∈ S ′(Rn) as follows. Let F be the set of functions Φ in S(Rn) such

that |Φ(x)|+ |∇Φ(x)| ≤ (1 + |x|)−(n+1). For t > 0, let Φt(x) := t−nΦ(x
t
). Then

Mf(x) := sup
Φ∈F

sup
t>0

|f ∗ Φt(x)|. (2.9)

By analogy with Hardy-Orlicz spaces, we define the space Hlog(Rn) as the space of tem-

pered distributions such that Mf in Llog(Rn). We need the fact that Hlog(Rn) is a

complete metric space. Convergence in Hlog(Rn) implies convergence in distribution. The

space H1(Rn), that is, the space of functions f ∈ L1(Rn) such that Mf in L1(Rn), is

strictly contained in Hlog(Rn).

2.3 Prerequisites on Wavelets

Let us consider a wavelet basis of R with compact support. More explicitly, we are first

given a C1(R) wavelet in Dimension one, called ψ, such that {2j/2ψ(2jx − k)}j,k∈Z form

an L2(R) basis. We assume that this wavelet basis comes for a multiresolution analysis

(MRA) on R, as defined below (see [107]).
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Definition 2.3.1. A multiresolution analysis (MRA) on R is defined as an increasing

sequence {Vj}j∈Z of closed subspaces of L2(R) with the following four properties

i)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R),

ii) for every f ∈ L2(R) and every j ∈ Z, f(x) ∈ Vj if and only if f(2x) ∈ Vj+1,

iii) for every f ∈ L2(R) and every k ∈ Z, f(x) ∈ V0 if and only if f(x− k) ∈ V0,

iv) there exists a function φ ∈ L2(R), called the scaling function, such that the family

{φk(x) = φ(x− k) : k ∈ Z} is an orthonormal basis for V0.

It is classical that, when given an (MRA) on R, one can find a wavelet ψ such that

{2j/2ψ(2jx − k)}k∈Z is an orthonormal basis of Wj, the orthogonal complement of Vj in

Vj+1. Moreover, by Daubechies theorem (see [36]), it is possible to find a suitable (MRA)

so that φ and ψ are C1(R) and compactly supported, ψ has mean 0 and
∫
xψ(x)dx = 0,

which is known as the moment condition. We could content ourselves, in the following

theorems, to have φ and ψ decreasing sufficiently rapidly at ∞, but proofs are simpler

with compactly supported wavelets. More precisely we assume that φ and ψ are supported

in the interval 1/2 + m(−1/2,+1/2), which is obtained from (0, 1) by a dilation by m

centered at 1/2.

Going back to Rn, we recall that a wavelet basis of Rn is found as follows. We call E

the set E = {0, 1}n \ {(0, · · · , 0)} and, for λ ∈ E, state ψλ(x) = φλ1(x1) · · ·φλn(xn),
with φλj(xj) = φ(xj) for λj = 0 while φλj(xj) = ψ(xj) for λj = 1. Then the set

{2nj/2ψλ(2jx− k)}j∈Z,k∈Zn,λ∈E is an orthonormal basis of L2(Rn). As it is classical, for I

a dyadic cube of Rn, which may be written as the set of x such that 2jx− k ∈ (0, 1)n, we

note

ψλI (x) = 2nj/2ψλ(2jx− k).

We also note φI = 2nj/2φ(0,1)n(2
jx − k), with φ(0,1)n the scaling function in n variables,

given by φ(0,1)n(x) = φ(x1) · · ·φ(xn). In the sequel, the letter I always refers to dyadic

cubes. Moreover, we note kI the cube of same center dilated by the coefficient k. Because

of the assumption on the supports of φ and ψ, the functions ψλI and φI are supported in

the cube mI.

The wavelet basis {ψλI }, obtained by letting I vary among dyadic cubes and λ in

E, comes from an (MRA) in Rn, which we still note {Vj}j∈Z, obtained by taking tensor

products of the one dimensional ones. The functions φI , taken for a fixed length |I| = 2−jn,

form a basis of Vj. As in the one dimensional case we noteWj the orthogonal complement

of Vj in Vj+1. As it is classical, we note Pj the orthogonal projection onto Vj and Qj the
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orthogonal projection onto Wj. In particular,

f =
∑

i∈Z
Qif

= Pjf +
∑

i≥j
Qif.

2.4 The L2-estimates for the product of two functions

We summarize here the main results of Dobyinsky [42].

Let us consider two L2-functions f and g, which we express through their wavelet

expansions, for instance

f =
∑

λ∈E

∑

I

〈f, ψλI 〉ψλI .

Then, when f and g have a finite wavelet expansion, we have

fg =
∑

j∈Z
(Pjf)(Qjg) +

∑

j∈Z
(Qjf)(Pjg) +

∑

j∈Z
(Qjf)(Qjg) (2.10)

:= Π1(f, g) + Π2(f, g) + Π3(f, g).

The two operators Π1 and Π2 are called paraproducts. A posteriori each term of Formula

(2.10) can be given a meaning for all functions f, g ∈ L2(Rn). Indeed the two operators

Π1 and Π2, which coincide, up to permutation of f and g, extend as bilinear operators

from L2(Rn)× L2(Rn) to H1(Rn), see [42], while the operator Π3 extends to an operator

from L2(Rn)× L2(Rn) to L1(Rn).

The two L2 estimates are given in the following two lemmas. We sketch their proof

for the convenience of the reader as this will be the basis of our proofs in the context of

H1(Rn) and BMO(Rn). Details may be found in [42].

Lemma 2. The bilinear operator Π3 is a bounded operator from L2(Rn) × L2(Rn) into

L1(Rn).

Proof. The series
∑

j∈ZQjfQjg is normally convergent in L1(Rn), with

∑

j∈Z
‖QjfQjg‖L1 ≤

∑

j∈Z
‖Qjf‖L2‖Qjg‖L2

≤
(∑

j∈Z
‖Qjf‖2L2

)1/2(∑

j∈Z
‖Qjg‖2L2

)1/2

≤ C‖f‖L2‖g‖L2 .

This concludes for Π3.
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Lemma 3. The bilinear operator Π1, a priori well defined for f and g having a finite

wavelet expansion, extends to L2(Rn)× L2(Rn) into a bounded operator to H1(Rn).

Proof. Let us recall that one can write

Pjf =
∑

|I|=2−jn

〈f, φI〉φI .

This means that PjfQjg can be written as a linear combination of ψλI φI′ , with |I| = |I ′| =
2−jn. As before, for fixed I, this function is non zero only for a finite number of I ′. More

precisely, such I ′s can be written as k2−j + I, with k ∈ K, where K is the set of points

with integer coordinates contained in (−m,+m]n. So Π1(f, g) can be written as a sum in

λ ∈ E and k ∈ K of

Fλ,k :=
∑

j∈Z

∑

|I|=2−jn

〈f, φk2−j+I〉〈g, ψλI 〉φk2−j+Iψ
λ
I .

At this point, we use the fact that the functions |I|1/2φk2−j+Iψ
λ
I are of mean zero because

of the orthogonality of Vj and Wj. Moreover they are of class C1(Rn) and are obtained

from the one for which I = (0, 1)n through the same process of dilation and translation

as the wavelets. So they form what is called a system of molecules. It is well-known (see

Meyer’s book [107]) that such a linear combination of molecules has its H1-norm bounded

by C times the H1-norm of the linear combination of wavelets with the same coefficients.

Namely, we are linked to prove that

‖
∑

j

∑

|I|=2−jn

∑

λ∈E
〈f, φk2−j+I〉〈g, ψλI 〉2nj/2ψλI ‖H1 ≤ C‖f‖L2 ‖g‖L2 .

We use the characterization of H1(Rn) through wavelets to bound this norm by the L1-

norm of its square function, given by


∑

j

∑

|I|=2−jn

∑

λ∈E
|〈f, φk2−j+I〉〈g, ψλI 〉|22nj|I|−1χI




1/2

.

This function is bounded at x by

sup
I∋x

|〈f, |I|−1/2φI〉| ×



∑

j

∑

|I|=2−jn

∑

λ∈E
|〈g, ψλI 〉|2|I|−1χI(x)




1/2

.

The first factor is bounded, up to a constant, by the Hardy Littlewood maximal function

of f , which we note Mf . We conclude by using Schwarz inequality, then the maximal

theorem to bound the L2-norm ofMf by the L2-norm of f , then the fact that the L2-norm

of the second factor is the L2-norm of g.
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We will need the expression of Π1(f, g) and Π2(f, g) when f has a finite wavelet

expansion while g in only assumed to be in L2(Rn). The following lemma is immediate

for g with a finite wavelet expansion, then by passing to the limit otherwise.

Lemma 4. Assume that f has a finite wavelet expansion and Qjf = 0 for j /∈ [j0, j1).

For g ∈ L2(Rn), one has

Π1(f, g) =

j1−1∑

j=j0

PjfQjg + f
∑

j≥j1
Qjg (2.11)

Π2(f, g) = fPj0g +

j1−1∑

j=j0

Qjf

(
∑

j0≤i≤j−1

Qig

)
. (2.12)

2.5 Products of functions in H1(Rn) and BMO(Rn)

Let us first recall the wavelet characterization of BMO(Rn): if g is in BMO(Rn), then for

all (not necessarily dyadic) cubes R , we have that

(
|R|−1

∑

λ∈E

∑

I⊂R
|〈g, ψλI 〉|2

)1/2
≤ C‖g‖BMO,

and the supremum over all cubes R of the left hand side is equivalent to the BMO-norm

of g.

Remark that the wavelet coefficients of a function g in BMO(Rn) are well defined

since g is locally square integrable. The 〈g, φI〉’s are well defined as well. So Qjg makes

sense, as well as Pjg. Indeed, they are sums of the corresponding series in ψλI or φI with

|I| = 2−jn, and at each point only a finite number of terms are non zero.

Moreover, we claim that (2.11) and (2.12) are well defined for f with a finite wavelet

expansion and g in BMO(Rn). This is direct for Π2(f, g). For Π1(f, g), it is sufficient to

see that the series
∑

j≥j1 Qjg converges in L2(R), where R is a large cube containing the

support of f . This comes from the wavelet characterization of BMO(Rn). Indeed, on R

one has ∑

j1≤j≤k
Qjg =

∑

λ∈E

∑

I⊂mR,2−nk≤|I|≤2−nj1

〈g, ψλI 〉ψλI .

This is the partial sum of an orthogonal series, that converges in L2(Rn).

As a final remark, we find the same expressions for Π1(f, g), Π2(f, g), Π3(f, g) and fg

when g is replaced by ηg, where η is a smooth compactly supported function such that η

is equal to 1 on a large cube R. Just take R sufficiently large to contain the supports of f ,

Qjf , and all functions φI and ψ
λ
I that lead to a non zero contribution in the expressions
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of the four functions under consideration. Since ηg is in L2(Rn), we have the identity

(2.10). This leads to the identity

fg = Π1(f, g) + Π2(f, g) + Π3(f, g). (2.13)

So Theorem 20 will be a consequence of the boundedness of the operators Π1(f, g), Π2(f, g)

and Π3(f, g).

Before considering this boundedness, we describe the atomic decomposition of the

Hardy space H1(Rn), which will play a fundamental role in the proofs.

We recall that a function a is called a (classical) atom of H1(Rn) related to the (not

necessarily dyadic) cube R if a is in L2(Rn), is supported in R, has mean zero and is such

that ‖a‖L2 ≤ |R|−1/2.

For simplicity we will consider atoms that are adapted to the wavelet basis under

consideration. More precisely, we call the function a a ψ-atom related to the dyadic cube

Q if it is an L2-function that may be written as

a =
∑

I⊂R

∑

λ∈E
aI,λψ

λ
I (2.14)

such that, moreover, ‖a‖L2 ≤ |R|−1/2. Remark that a is compactly supported in mR and

has mean 0, so that it is a classical atom related to mR, up to the multiplicative constant

mn/2. It is standard that an atom is in H1(Rn) with norm bounded by a uniform constant.

The atomic decomposition gives the converse.

Theorem 2.5.1 (Atomic decomposition). There exists some constant C such that all

functions f ∈ H1(Rn) can be written as the limit in the distribution sense and in H1 of

an infinite sum

f =
∑

ℓ

µℓaℓ (2.15)

with aℓ ψ-atoms related to some dyadic cubes Rℓ and µℓ constants such that

∑

ℓ

|µℓ| ≤ C‖f‖H1 .

Moreover, for f with a finite wavelet series, we can choose an atomic decomposition with

a finite number of atoms aℓ, which have also a finite wavelet expansion extracted from the

one of f .

This theorem is a small variation of a standard statement. The second part may be

obtained easily by taking the atomic decomposition given in [63], Section 6.5. Remark
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that the interest of dealing with finite atomic decompositions has been underlined recently,

for instance in [105, 106].

We want now to give sense to the decomposition (2.10) for f ∈ H1(Rn) and g ∈
BMO(Rn). We will do it when f has a finite wavelet expansion.

Let us first consider that two operators Π1 and Π3.

Theorem 2.5.2. Π3 extends into a bounded bilinear operator from H1(Rn) × BMO(Rn)

into L1(Rn).

Proof. We consider f with a finite wavelet expansion and g ∈ BMO(Rn), so that Π3(f, g)

is well defined as a finite sum in j. Let us give an estimate of its L1-norm. We use the

atomic decomposition of f given in (2.15), that is, f =
∑L

ℓ=1 µℓaℓ where each aℓ is a

ψ-atom related to the dyadic cube Rℓ and
∑L

ℓ=1 |µℓ| ≤ C‖f‖H1 . Recall that each atom

has also a finite wavelet expansion extracted from the one of f . From this, it is sufficient

to prove that, for a ψ-atom a, which is supported in R and has L2-norm bounded by

|R|−1/2, we have the estimate

‖Π3(a, g)‖L1 ≤ C‖g‖BMO. (2.16)

We claim that Π3(a, g) = Π3(a, b), where b :=
∑

λ∈E
∑

I∈2mR〈g, ψλI 〉ψλI . Indeed, in the

wavelet expansion of g we only have to consider at each scale j the terms ψλI for which

ψλIψ
λ′

I′ is not identically 0 for all I ′ contained in R such that |I| = |I ′| = 2−jn. In other

words we want mI ∩mI ′ 6= ∅, which is only possible for I in 2mR. Now let us recall the

wavelet characterization of BMO(Rn): for all cubes Q, we have that

(
|Q|−1

∑

λ∈E

∑

I⊂Q
|〈g, ψλI 〉|2

)1/2
≤ C‖g‖BMO,

and the supremum on all cubes Q of the left hand side is equivalent to the BMO-norm

of g. It follows that the L2-norm of b is bounded by Cmn/2|R|1/2‖g‖BMO. This allows to
conclude for the proof of (2.16), using Lemma 2.

Next we look at Π1.

Theorem 2.5.3. Π1 extends into a bounded bilinear operator from H1(Rn)×BMO(Rn)

into H1(Rn).

Proof. Again, we consider Π1(f, g) for f with a finite wavelet expansion, so that it is well

defined by (2.11). As in the previous theorem we can consider separately each atom. So,
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as before, let a be such a ψ-atom. One can estimate Π1(a, g) as in the previous theorem.

We again claim that Π1(f, g) = Π1(f, b), where b :=
∑

λ∈E
∑

I∈2mR〈g, ψλI 〉ψλI . We then

use Lemma 3 to conclude that

‖Π1(a, g)‖H1 ≤ C‖g‖BMO, (2.17)

which we wanted to prove.

We now consider the last term.

Theorem 2.5.4. Π2 extends into a bounded bilinear operator from H1(Rn)×BMO+(Rn)

into Hlog(Rn).

Proof. The main point is the following lemma.

Lemma 5. let a be a ψ-atom with a finite wavelet expansion related to the cube R and

g ∈ BMO(Rn). Then we can write

Π2(a, g) = h(1) + κgRh
(2) (2.18)

where ‖h(1)‖H1 ≤ C‖g‖BMO and h(2) is an atom related to mR. Here gR is the mean of g

on R and κ a uniform constant, independent of a and g.

Let us conclude from the lemma, which we take for granted for the moment. Let

f =
∑L

ℓ=1 µℓaℓ be the atomic decomposition of the function f , which has a finite wavelet

expansion. Let us prove the existence of some uniform constant C such that

∥∥∥∥∥M
(

L∑

ℓ=1

µℓΠ2(aℓ, g)

)∥∥∥∥∥
Llog

≤ C‖g‖BMO+

(
L∑

ℓ=1

|µℓ|
)
. (2.19)

With obvious notations, we conclude directly for terms h
(1)
ℓ , using the fact that L1(Rn) is

contained in Llog(Rn). So it is sufficient to prove that

∥∥∥∥∥M
(

L∑

ℓ=1

µℓgRℓ
h
(2)
ℓ

)∥∥∥∥∥
Llog

≤ C‖g‖BMO+

(
L∑

ℓ=1

|µℓ|
)
.

At this point we proceed as in [15]. We use the inequality

M
(

L∑

ℓ=1

µℓgRℓ
h
(2)
ℓ

)
≤

L∑

ℓ=1

|µℓ||gRℓ
|M

(
h
(2)
ℓ

)
.
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Then we write gRℓ
= g + (gRℓ

− g). For the first term, that is,

|g|
(

L∑

ℓ=1

|µℓ|M
(
h
(2)
ℓ

))
,

we use the generalized Hölder inequality given in Proposition 1. Indeed, g is in BMO(Rn)

and the function M(a), for a an atom, is uniformly in L1(Rn), so that
∑L

ℓ=1 |µℓ|M
(
h
(2)
ℓ

)

has norm in L1(Rn) bounded by C
∑L

ℓ=1 |µℓ|. To conclude for (2.19), it is sufficient to

prove that ∥∥∥∥∥

L∑

ℓ=1

|µℓ||g − gRℓ
|M

(
h
(2)
ℓ

)∥∥∥∥∥
L1

≤ C

L∑

ℓ=1

|µℓ|.

This is a consequence of the following uniform inequality, valid for g ∈ BMO(Rn) and a

an atom adapted to the cube R:
∫

Rn

|g − gR|M (a) dx ≤ C‖g‖BMO.

To prove this inequality, by using invariance through dilation and translation, we may

assume that R is the cube Q. We conclude by using the following classical lemma.

Lemma 6. Let a be a classical atom related to the cube Q and g be in BMO(Rn). Then
∫

Rn

|g − gQ|M (a) dx ≤ C‖g‖BMO.

Proof. We cut the integral into two parts. By Schwarz Inequality and the boundedness

of the operator M on L2(Rn), we have

∫

|x|≤2

|g − gQ|M (a) dx ≤ C



∫

2Q

|g − gQ|2dx




1/2

‖a‖L2

≤ C‖g‖BMO,

here one used |g2Q − gQ| ≤ C‖g‖BMO. Next, for |x| > 2 we have the inequality

M (a) (x) ≤ C

(1 + |x|)n+1
,

and the classical inequality (see Stein’s book [128])
∫

Rn

|g − gQ|
(1 + |x|)n+1

dx ≤ C‖g‖BMO.

We have proven (2.19).
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It remains to prove Lemma 5, which we do now.

Proof of Lemma 5. Let a be a ψ-atom which is related to the dyadic cube R. Let j0 be

such that |R| = 2−nj0 . We assume that a has a finite wavelet expansion, so that Π2(a, g) is

given by (2.11) for some j1 > j0. As before, we can write Π2(a, g) = aPj0g+Π2(a, b), where

b is defined by b :=
∑

λ∈E
∑

I∈2mR〈g, ψλI 〉ψλI . It follows again from the characterization

of BMO-function through wavelets that the L2-norm of b is bounded by C‖g‖BMO|R|1/2.
We use the L2-estimate given by Lemma 3 to bound uniformly the H1-norm of Π2(a, b).

This term goes into h(1).

It remains to consider aPj0g. By definition of Pj0g, it can be written as a
∑

I〈g, φI〉φI ,
where the sum in I is extended to all dyadic cubes such that |I| = 2−nj0 andmI∩mR 6= ∅.
There are at most (2m)n such terms in this sum, and it is sufficient to prove that each

of them can be written as h1 + κ|gR|h2, with h2 a classical atom related to mQ and h1

such that ‖h1‖H1 ≤ C‖g‖BMO. Let us first remark that for each of these (2m)n terms, the

function h := |I|1/2φIa is (up to some uniform constant) a classical atom related to mR:

indeed, it has mean value 0 because of the orthogonality of φI and ψI′ when |I ′| ≤ |I|
and the norm estimate follows at once. In order to conclude, it is sufficient to prove that

h1 = (gR − |I|−1/2〈g, φI〉)h has the required property. We conclude easily by showing

that gR − |I|−1/2〈g, φI〉 is bounded by C‖g‖BMO. But this difference may be written as

〈γ, g〉, where γ := |R|−1χR − |I|−1/2φI . The function γ has zero mean, is supported in

2mR and has L2-norm bounded by 2|R|−1/2. Thus, up to multiplication by some uniform

constant, it is a classical atom related to the cube 2mR. It has an H1-norm that is

uniformly bounded and its scalar product with g is bounded by the BMO-norm of g, up

to a constant, as a consequence of the H1 − BMO duality.

This concludes for the proof.

We have finished the proof of Theorem 2.5.4, and also of the one of Theorem 20. Just

take S = Π3.

2.6 Div-Curl Lemma

The aim of this section is to prove Theorem 21. The methods that we develop are inspired

by the papers of Dobyinsky in the case of L2(Rn). They are generalized in a forthcoming

paper of the last author [82].
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Let us first make some remarks. By using the decomposition of each product FjGj into

S(Fj, Gj) + T (Fj, Gj), we already know that all terms T (Fj, Gj) are in Hlog(Rn). So we

claim that it is sufficient to prove that
∑n

j=1 S(Fj, Gj) is also in Hlog(Rn). We first assume

that F is in H1(Rn,Rn) and G in BMO(Rn,Rn). Since F is curl -free, we can assume that

Fj is a gradient, or, equivalently, Fj = Rjf , where Rj is the j-th Riesz transform and

f = −∑n
j=1Rj(Fj) ∈ H1(Rn) since H1(Rn) is invariant under Riesz transforms. Next,

since G is div -free, we have the identity
∑n

j=1RjGj = 0. So it is sufficient to prove that

S(Rjf,Gj) + S(f,RjGj) is in Hlog(Rn) for each j. So Theorem 21 is a corollary of the

following proposition.

Proposition 2. Let A be an odd Calderón-Zygmund operator. Then, the bilinear operator

S(Af, g) + S(f, Ag) maps continuously H1(Rn)× BMO(Rn) into H1(Rn).

Proof. We make a first reduction, which is done by Dobyinsky in [42]. When considering

S(f, g) on H1(Rn)×BMO(Rn), we can write it as S(f, g) = h+S0(f, g) with h ∈ H1(Rn),

where

S0(f, g) =
∑

λ∈E

∑

I

〈f, ψλI 〉〈g, ψλI 〉|ψλI |2. (2.20)

Indeed, S(f, g) − S0(f, g) may be written in terms of products ψλIψ
λ′

I′ , with |I| = |I ′|,
(I, λ) 6= (I ′, λ′). These functions are of mean 0 because of the orthogonality of the

wavelet basis, have L2 norm bounded, up to a constant, by |I|−1/2, and are supported

in mI. So they are C times atoms of H1(Rn). Recall that they are non zero only if

I ′ = k|I|1/n + I, with k ∈ K, where K is the set of points with integer coordinates

contained in (−m,+m]n. So, to prove that S(f, g)− S0(f, g) is in H1(Rn) it is sufficient

to use the fact that, for fixed λ, λ′ and k,

∑

I

|〈f, ψλI 〉| |〈g, ψλ
′

k|I|1/n+I〉| ≤ C‖f‖H1‖g‖BMO.

This is a consequence of the wavelet characterization of f in H1(Rn) and g in BMO(Rn)

and the following lemma, which may be found in [49].

Lemma 7. There exists a uniform constant C, such that, for (aI)I∈D and (bI)I∈D two

sequences that are indexed by the set D of dyadic cubes , one has the inequality

∑

I∈D
|aI ||bI | ≤ C

∥∥∥∥∥∥

(
∑

I∈D
|aI |2|I|−1χI

)1/2
∥∥∥∥∥∥
L1

× sup
R∈D

(
|R|−1

∑

I⊂R
|bI |2

)1/2

.
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Let us come back to the proof of the proposition. From this first step, we conclude

that it is sufficient to prove that B(f, g) := S0(Af, g) + S0(f, Ag) is in H1(Rn). Using

bilinearity as well as the fact that A∗ = −A, we have

B(f, g) :=
∑

λ∈E

∑

λ′∈E

∑

I,I′

〈f, ψλI 〉〈g, ψλ
′

I′ 〉〈AψλI , ψλ
′

I′ 〉(|ψλ
′

I′ |2 − |ψλI |2).

From this point, the proof is standard. An explicit computation gives that |ψλ′I′ |2 − |ψλI |2
is in H1(Rn), with

‖|ψλ′I′ |2 − |ψλI |2‖H1 ≤ C
(
log(2−j + 2−j

′

)−1 + log(|xI − xI′ |+ 2−j + 2−j
′

)
)
.

Here |I| = 2−jn and |I ′| = 2−j
′n, while xI and xI′ denote the centers of the two cubes.

Next we use the well-known estimate of the matrix of a Calderón-Zygmund operator (see

[18, Proposition 1]): there exists some δ ∈ (0, 1], such that

|〈AψλI , ψλ
′

I′ 〉| ≤ Cpδ(I, I
′)

with

pδ(I, I
′) = 2−|j−j′|(δ+n/2)

( 2−j + 2−j
′

2−j + 2−j′ + |xI − xI′ |
)n+δ

.

So, by using the inequality

log
(2−j + 2−j

′
+ |xI − xI′ |

2−j + 2−j′

)
≤ 2

δ

(2−j + 2−j
′
+ |xI − xI′ |

2−j + 2−j′

)δ/2
,

we obtain

‖B(f, g)‖H1 ≤ C
∑

λ,λ′∈E

∑

I,I′

|〈f, ψλI 〉| |〈g, ψλ
′

I′ 〉|pδ′(I, I ′)

where δ′ = δ/2 > 0. We conclude by using the fact that the almost diagonal matrix

pδ′(I, I
′) defines a bounded operator on the space of all sequences (aI)I∈D such that(∑

I |aI |2|I|−1χI

)1/2
∈ L1(Rn), which may be found in [49].

This is the end of the proof of Theorem 21 for F ∈ H1(Rn,Rn) and G ∈ BMO(Rn,Rn)

with curlF = 0 and divG = 0. Assume now that divF = 0 and curlG = 0. Similarly as

above, we have
∑n

j=1RjFj = 0 and Gj = Rjg where g = −∑n
j=1RjGj ∈ BMO(Rn) since

BMO(Rn) is invariant under Riesz transforms. Hence,

F ·G =
n∑

j=1

(T (Fj, Gj) + S(Fj, Gj)) =
n∑

j=1

T (Fj, Gj) +
n∑

j=1

(S(Fj, Rjg) + S(RjFj, g)).

We conclude as before from the proposition.
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Chapter 3

New Hardy spaces of

Musielak-Orlicz type and

boundedness of sublinear operators

Ce chapitre est un prépublication (soumise).

Résumé

Nous introduisons une nouvelle classe d’espaces de Hardy Hϕ(·,·)(Rn),

appelés espaces de Hardy de type Musielak-Orlicz, qui généralisent les espaces de

Hardy-Orlicz de Janson et les espaces Hardy à poids de Garćıa-Cuerva, Strömberg, et

Torchinsky. Ici, ϕ : Rn× [0,∞) → [0,∞) est une fonction telle que ϕ(x, ·) est une fonction
Orlicz et ϕ(·, t) est un poids Muckenhoupt A∞. Une fonction f appartient à Hϕ(·,·)(Rn)

si et seulement si sa fonction maximale f ∗ est de telle sorte que x 7→ ϕ(x, |f ∗(x)|) est

intégrable. Un tel espace se pose tout naturellement, par exemple dans la descrip-

tion du produit des fonctions dans H1(Rn) et BMO(Rn). Nous caractérisons ces es-

paces grâce à la fonction de ”grand maximale” et nous établissons leur décomposition

atomique. Nous caractérisons aussi leurs espaces duaux. La classe de multiplicateurs

ponctuels pour BMO(Rn) caractérisée par Nakai et Yabuta peut être vu comme le dual

de L1(Rn) + H log(Rn) où H log(Rn) est l’espace Hardy de type Musielak-Orlicz liée à la

fonction Musielak-Orlicz θ(x, t) =
t

log(e+ |x|) + log(e+ t)
.

En outre, sous certaines hypothèses supplémentaires sur ϕ(·, ·), nous montrons que si T

est un opérateur sous-linéaire qui envoie tous les atomes dans les éléments uniformément

bornés d’un quasi-espace de Banach B, alors T se prolonge de manière unique à un

opérateur borné sous-linéaire deHϕ(·,·)(Rn) à valeurs dans B. Ces résultats sont nouveaux,
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même pour les espaces de Hardy-Orlicz classiques.
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3.1 Introduction

Since Lebesgue theory of integration has taken a center stage in concrete problems of

analysis, the need for more inclusive classes of function spaces than the Lp(Rn)-families

naturally arose. It is well known that the Hardy spaces Hp(Rn) when p ∈ (0, 1] are good

substitutes of Lp(Rn) when studying the boundedness of operators: for example, the

Riesz operators are bounded on Hp(Rn), but not on Lp(Rn) when p ∈ (0, 1]. The theory

of Hardy spaces Hp on the Euclidean space Rn was initially developed by Stein and Weiss

[129]. Later, Fefferman and Stein [48] systematically developed a real-variable theory for

the Hardy spaces Hp(Rn) with p ∈ (0, 1], which now plays an important role in various

fields of analysis and partial differential equations; see, for example, [32, 33, 113]. A

key feature of the classical Hardy spaces is their atomic decomposition characterizations,

which were obtained by Coifman [27] when n = 1 and Latter [86] when n > 1. Later, the

theory of Hardy spaces and their dual spaces associated with Muckenhoupt weights have

been extensively studied by Garćıa-Cuerva [52], Strömberg and Torchinsky [131] (see also

[111, 22, 53]); there the weighted Hardy spaces was defined by using the nontangential

maximal functions and the atomic decompositions were derived. On the other hand, as

another generalization of Lp(Rn), the Orlicz spaces were introduced by Birnbaum-Orlicz

in [10] and Orlicz in [117], since then, the theory of the Orlicz spaces themselves has been

well developed and the spaces have been widely used in probability, statistics, potential

theory, partial differential equations, as well as harmonic analysis and some other fields

of analysis; see, for example, [4, 70, 104]. Moreover, the Hardy-Orlicz spaces are also

good substitutes of the Orlicz spaces in dealing with many problems of analysis, say, the

boundedness of operators.

Let Φ be a Orlicz function which is of positive lower type and (quasi-)concave. In

[75], Janson has considered the Hardy-Orlicz space HΦ(Rn) the space of all tempered

distributions f such that the nontangential grand maximal function of f is defined by

f ∗(x) = sup
φ∈AN

sup
|x−y|<t

|f ∗ φt(y)|,

for all x ∈ Rn, here and in what follows φt(x) := t−nφ(t−1x), with

AN =
{
φ ∈ S(Rn) : sup

x∈Rn

(1 + |x|)N |∂αxφ(x)| ≤ 1 for α ∈ Nn, |α| ≤ N
}

with N = N(n,Φ) taken large enough, belongs to the Orlicz space LΦ(Rn). Remark that

these Hardy-Orlicz type spaces appear naturally when studying the theory of nonlinear

PDEs (cf. [57, 71, 73]) since many cancellation phenomena for Jacobians cannot be
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observed in the usual Hardy spaces Hp(Rn). For instance, let f = (f 1, ..., fn) in the

Sobolev class W 1,n(Rn,Rn) and the Jacobians J(x, f)dx = df 1 ∧ · · · ∧ dfn, then (see

Theorem 10.2 of [73])

T (J(x, f)) ∈ L1(Rn) +HΦ(Rn)

where Φ(t) = t/ log(e + t) and T (f) = f log |f |, since J(x, f) ∈ H1(Rn) (cf. [33]) and

T is well defined on H1(Rn). We refer readers to [121, 72] for this interesting nonlinear

operator T .

In this paper we want to allow generalized Hardy-Orlicz spaces related to generalized

Orlicz functions that may vary in the spatial variables. More precisely the Orlicz function

Φ(t) is replaced by a function ϕ(x, t), called Musielak-Orlicz function (cf. [115, 38]).

We then define Hardy spaces of Musielak-Orlicz type. Apart from interesting theoretical

considerations, the motivation to study function spaces of Musielak-Orlicz type comes

from applications to elasticity, fluid dynamics, image processing, nonlinear PDEs and the

calculus of variation (cf. [38, 39]).

A particular case of Hardy spaces of Musielak-Orlicz type appears naturally when con-

sidering the products of functions in BMO(Rn) and H1(Rn) (see [14]); and the endpoint

estimates for the div-curl lemma (see [11, 14]). More precisely, in [14] the authors proved

that product of a BMO(Rn) function and a H1(Rn) function may be written as a sum

of an integrable term and of a term in H log(Rn), a Hardy space of Musielak-Orlicz type

related to the Musielak-Orlicz function θ(x, t) = t
log(e+|x|)+log(e+t)

. Moreover, the corre-

sponding bilinear operators are bounded. This result gives in particular a positive answer

to the Conjecture 1.7 in [15]. By duality, one finds pointwise multipliers for BMO(Rn).

Recall that a function g on Rn is called a pointwise multiplier for BMO(Rn), if the

pointwise multiplication fg belongs to BMO(Rn) for all f in BMO(Rn). In [116], Nakai

and Yabuta characterize the pointwise multipliers for BMO(Rn): they prove that g is

a pointwise multiplier for BMO(Rn) if and only if g belong to L∞(Rn) ∩ BMOlog(Rn),

where

BMOlog(Rn) =

=




f ∈ L1

loc(R
n) : ‖f‖BMOlog := sup

B(a,r)

| log r|+ log(e+ |a|)
|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)|dx <∞




.

By using the theory of these new Hardy spaces and dual spaces, we establish that the class

of pointwise multipliers for BMO(Rn) is just the dual of L1(Rn)+H log(Rn). Remark that

the class of pointwise multipliers for BMO(Rn) have also recently been used by Lerner
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[88] for solving a conjecture of Diening (see [38]) on the boundedness of the Hardy-

Littlewood maximal operator on the generalized Lebesgue spaces Lp(x)(Rn) (a special

case of Musielak-Orlicz spaces, for the details see [38, 88]).

Motivated by all of the above mentioned facts, in this paper, we introduce a new

class of Hardy spaces Hϕ(·,·)(Rn), called Hardy spaces of Musielak-Orlicz type, which

generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy spaces of Garćıa-

Cuerva, Strömberg, and Torchinsky. Here, ϕ : Rn×[0,∞) → [0,∞) is a function such that

ϕ(x, ·) is an Orlicz function and ϕ(·, t) is a Muckenhoupt weight A∞. In the special case

ϕ(x, t) = w(x)Φ(t) with w in the Muckenhoupt class and Φ an Orlicz function, our Hardy

spaces are weighted Hardy-Orlicz spaces but they are different from the ones considered

by Harboure, Salinas, and Viviani [60, 61].

As an example of our results, let us give the atomic decomposition with bounded

atoms. Let ϕ be a growth function (see Section 2). A bounded function a is a ϕ-atom if

it satisfies the following three conditions

i) supp a ⊂ B for some ball B,

ii) ‖a‖L∞ ≤ ‖χB‖−1
Lϕ ,

iii)
∫
Rn a(x)x

αdx = 0 for any |α| ≤ [n( q(ϕ)
i(ϕ)

− 1)],

where q(ϕ) and i(ϕ) are the indices of ϕ (see Section 2). We next define the atomic

Hardy space of Musielak-Orlicz type H
ϕ(·,·)
at (Rn) as those distributions f ∈ S ′(Rn) such

that f =
∑

j bj (in the sense of S ′(Rn)), where bj
,s are multiples of ϕ-atoms supported in

the balls Bj
,s, with the property

∑
j ϕ(Bj, ‖bj‖Lq

ϕ(Bj)) <∞; and define the norm of f by

‖f‖
H

ϕ(·,·)
at

= inf
{
Λ∞({bj}) : f =

∑

j

bj in the sense of S ′(Rn)
}
,

where Λ∞({bj}) = inf
{
λ > 0 :

∑
j ϕ
(
Bj,

‖bj‖L∞

λ

)
≤ 1

}
with ϕ(B, t) :=

∫
B
ϕ(x, t)dx for

all t ≥ 0 and B is measurable. Then we obtain:

Theorem 3.1.1. H
ϕ(·,·)
at (Rn) = Hϕ(·,·)(Rn) with equivalent norms.

The fact that Λ∞({bj}), which is the right expression for the (quasi-)norm in the

atomic Hardy space of Musielak-Orlicz type, plays a central role in this paper. It should

be emphasized that, even if the steps of the proof of such a theorem are standard, the

adaptation to this context is not standard.

On the other hand, to establish the boundedness of operators on Hardy spaces, one

usually appeals to the atomic decomposition characterization, see [27, 86, 133], which

means that a function or distribution in Hardy spaces can be represented as a linear

combination of functions of an elementary form, namely, atoms. Then, the boundedness

54



of operators on Hardy spaces can be deduced from their behavior on atoms or molecules in

principle. However, caution needs to be taken due to an example constructed in Theorem

2 of [19]. There exists a linear functional defined on a dense subspace of H1(Rn), which

maps all (1,∞, 0)-atoms into bounded scalars, but however does not extend to a bounded

linear functional on the whole H1(Rn). This implies that the uniform boundedness of

a linear operator T on atoms does not automatically guarantee the boundedness of T

from H1(Rn) to a Banach space B. Nevertheless, by using the grand maximal function

characterization of Hp(Rn), Meda, Sjögren, and Vallarino [105, 106] proved that if a

sublinear operator T maps all (p, q, s)-atoms when q <∞ and continuous (p,∞, s)-atoms

into uniformly bounded elements of Lp(Rn) (see also [144, 20] for quasi-Banach spaces),

then T uniquely extends to a bounded sublinear operator from Hp(Rn) to Lp(Rn). In this

paper, we study boundedness of sublinear operators in the context of new Hardy spaces of

Musielak-Orlicz type which generalize the main results in [105, 106]. More precisely, under

additional assumption on ϕ(·, ·), we prove that finite atomic norms on dense subspaces of

Hϕ(·,·)(Rn) are equivalent with the standard infinite atomic decomposition norms. As an

application, we prove that if T is a sublinear operator and maps all atoms into uniformly

bounded elements of a quasi-Banach space B, then T uniquely extends to a bounded

sublinear operator from Hϕ(·,·)(Rn) to B.
In a forecoming paper, using the theory of these new Hardy spaces and ideas from

[14], we study and establish some new interesting estimates of endpoint type for the

commutators of singular integrals and fractional integrals on Hardy-type spaces.

Our paper is organized as follows. In Section 2 we give the notation and definitions

that we shall use in the sequel. For simplicity we write ϕ for ϕ(·, ·). One then intro-

duces Hardy spaces of Musielak-Orlicz type Hϕ(Rn) via grand maximal functions, atomic

Hardy spaces Hϕ,q,s
at (Rn), finite atomic Hardy spaces Hϕ,q,s

fin (Rn) for any admissible triplet

(ϕ, q, s), BMO-Musielak-Orlicz-type spaces BMOϕ(Rn), and generalized quasi-Banach

spaces Bγ for γ ∈ (0, 1]. In Section 3 we state the main results: the atomic decomposi-

tions (Theorem 3.3.1), the duality (Theorem 3.3.2), the class of pointwise multipliers for

BMO(Rn) (Theorem 3.3.3), the finite atomic decomposition (Theorem 3.3.4), and the

criterion for boundedness of sublinear operators in Hϕ(Rn) (Theorem 3.3.5). In Section

4 we present and prove the basic properties of the growth functions ϕ since they provide

the tools for further work with this type of functions. In Section 5 we generalize the

Calderón-Zygmund decomposition associated to the grand maximal function on Rn in the

setting of the spaces of Musielak-Orlicz type. Applying this, we further prove that for

any admissible triplet (ϕ, q, s), Hϕ(Rn) = Hϕ,q,s
at (Rn) with equivalent norms (Theorem

3.3.1). In Section 6 we prove the dual theorem. By Theorem 2 in [19], one has to be care-
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ful with the argument ”the operator T is uniformly bounded in Hp
w(R

n) (Hϕ(Rn) here

ϕ(x, t) = w(x).tp in our context) on w-(p,∞)-atoms, and hence it extends to a bounded

operator on Hp
w(R

n)” which has been used in [52] and [22]. In Section 7 we introduce

log-atoms and consider the particular case of H log(Rn). Finally, in Section 8 we prove

that ‖ · ‖Hϕ,q,s
fin

and ‖ · ‖Hϕ are equivalent quasi-norms on Hϕ,q,s
fin (Rn) when q < ∞ and on

Hϕ,q,s
fin (Rn) ∩ C(Rn) when q = ∞, here and in what follows C(Rn) denotes the set of all

continuous functions. Then, we consider generalized quasi-Banach spaces which gener-

alize the notion of quasi-Banach spaces in [144] (see also [20]), and obtain criterious for

boundedness of sublinear operators on Hϕ(Rn).

Throughout the whole paper, C denotes a positive geometric constant which is inde-

pendent of the main parameters, but may change from line to line. The symbol f ≈ g

means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf), and [·] denotes the integer func-

tion. By X∗ we denote the dual of the (quasi-)Banach space X. In Rn, we denote by

B = B(x, r) an open ball with center x and radius r > 0. For any measurable set E, we

denote by χE its characteristic function, by |E| its Lebesgue measure, and by Ec the set

Rn \ E.
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3.2 Notation and definitions

3.2.1 Musielak-Orlicz-type functions

First let us recall notations for Orlicz functions.

A function φ : [0,∞) → [0,∞) is called Orlicz if it is nondecreasing and φ(0) = 0;

φ(t) > 0, t > 0; limt→∞ φ(t) = ∞. An Orlicz function φ is said to be of lower type (resp.,

upper type) p, p ∈ (−∞,∞), if there exists a positive constant C so that

φ(st) ≤ Cspφ(t),

for all t ≥ 0 and s ∈ (0, 1) (resp., s ∈ [1,∞)). One say that φ is of positive lower type

(resp., finite upper type) if it is of lower type (resp., upper type) p for some p > 0 (resp.,

p finite).

Obviously, if φ is both of lower type p1 and of upper type p2, then p1 ≤ p2. Moreover,

if φ is of lower type (resp., upper type) p then it is also of lower type (resp., upper) p̃ for
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−∞ < p̃ < p (resp., p < p̃ <∞). We thus write

i(φ) := sup{p ∈ (−∞,∞) : φ is of lower type p}

I(φ) := inf{p ∈ (−∞,∞) : φ is of upper type p}

to denote the critical lower type and the critical upper type of the function φ.

Let us generalize these notions to functions ϕ : Rn × [0,∞) → [0,∞).

Given a function ϕ : Rn × [0,∞) → [0,∞) so that for any x ∈ Rn, ϕ(x, ·) is Orlicz.

We say that ϕ is of uniformly lower type (resp., upper type) p if there exists a positive

constant C so that

ϕ(x, st) ≤ Cspϕ(x, t), (3.1)

for all x ∈ Rn and t ≥ 0, s ∈ (0, 1) (resp., s ∈ [1,∞)). We say that ϕ is of positive

uniformly lower type (resp., finite uniform upper type) if it is of uniformly lower type

(resp., uniform upper type) p for some p > 0 (resp., p finite), and denote

i(ϕ) := sup{p ∈ (−∞,∞) : ϕ is of uniformly lower type p}

I(ϕ) := inf{p ∈ (−∞,∞) : ϕ is of uniformly upper type p}.

We next need to recall notations for Muckenhoupt weights.

Let 1 ≤ q < ∞. A nonnegative locally integrable function w belongs to the Mucken-

houpt class Aq, say w ∈ Aq, if there exists a positive constant C so that

1

|B|

∫

B

w(x)dx
( 1

|B|

∫

B

(w(x))−1/(q−1)dx
)q−1

≤ C, if 1 < q <∞,

and
1

|B|

∫

B

w(x)dx ≤ C ess-inf
x∈B

w(x), if q = 1,

for all balls B in Rn. We say that w ∈ A∞ if w ∈ Aq for some q ∈ [1,∞).

It is well known that w ∈ Aq, 1 ≤ q <∞, implies w ∈ Ar for all r > q. Also, if w ∈ Aq,

1 < q <∞, then w ∈ Ar for some r ∈ [1, q). One thus write qw := inf{q ≥ 1 : w ∈ Aq} to

denote the critical index of w.

Now, let us generalize these notions to functions ϕ : Rn × [0,∞) → [0,∞).

Let ϕ : Rn × [0,∞) → C be so that x 7→ ϕ(x, t) is measurable for all t ∈ [0,∞). We

say that ϕ(·, t) is uniformly locally integrable if for all compact set K in Rn, the following

holds ∫

K

sup
t>0

|ϕ(x, t)|∫
K
|ϕ(y, t)|dydx <∞

57



whenever the integral exists. A simple example for such uniformly locally integrable

functions is ϕ(x, t) = w(x)Φ(t) with w a locally integrable function on Rn and Φ an

arbitrary function on [0,∞). Our interesting examples are uniformly locally integrable

functions ϕ(x, t) = tp

(log(e+|x|)+log(e+tp))p
, 0 < p ≤ 1, since they arise naturally in the study

of pointwise product of functions in Hp(Rn) with functions in BMO(Rn) (cf. [14]).

Given ϕ : Rn × [0,∞) → [0,∞) is a uniformly locally integrable function. We say

that the function ϕ(·, t) satisfies the uniformly Muckenhoupt condition Aq, say ϕ ∈ Aq,

for some 1 ≤ q <∞ if there exists a positive constant C so that

1

|B|

∫

B

ϕ(x, t)dx.
( 1

|B|

∫

B

ϕ(x, t)−1/(q−1)dx
)q−1

≤ C, if 1 < q <∞,

and
1

|B|

∫

B

ϕ(x, t)dx ≤ C ess-inf
x∈B

ϕ(x, t), if q = 1,

for all t > 0 and balls B in Rn. We also say that ϕ ∈ A∞ if ϕ ∈ Aq for some q ∈ [1,∞),

and denote

q(ϕ) := inf{q ≥ 1 : ϕ ∈ Aq}.

Now, we are able to introduce the growth functions which are the basis for our new

Hardy spaces.

Definition 3.2.1. We say that ϕ : Rn × [0,∞) → [0,∞) is a growth function if the

following conditions are satisfied.

1. The function ϕ is a Musielak-Orlicz function that is

(a) the function ϕ(x, ·) : [0,∞) → [0,∞) is an Orlicz function for all x ∈ Rn,

(b) the function ϕ(·, t) is a Lebesgue measurable function for all t ∈ [0,∞).

2. The function ϕ belongs to A∞.

3. The function ϕ is of positive uniformly lower type and of uniformly upper type 1.

For ϕ a growth function, we denote m(ϕ) :=
[
n
(
q(ϕ)
i(ϕ)

− 1
)]

.

Clearly, ϕ(x, t) = w(x)Φ(t) is a growth function if w ∈ A∞ and Φ is of positive lower

type and of upper type 1. Of course, there exists growth functions which are not of

that form for instance ϕ(x, t) = tα

[log(e+|x|)]β+[log(e+t)]γ
for α ∈ (0, 1]; β, γ ∈ (0,∞). More

precisely, ϕ ∈ A1 and ϕ is of uniformly upper type α with i(ϕ) = α. In this paper, we
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are especially interested in the growth functions ϕ(x, t) = tp

(log(e+|x|)+log(e+tp))p
, 0 < p ≤ 1,

since the Hardy spaces of Musielak-Orlicz type Hϕ(Rn) arise naturally in the study of

pointwise product of functions in Hp(Rn) with functions in BMO(Rn) (see also [12] in the

setting of holomorphic functions in convex domains of finite type or strictly pseudoconvex

domains in Cn).

3.2.2 Hardy spaces of Musielak-Orlicz type

Throughout the whole paper, we always assume that ϕ is a growth function.

Let us now introduce the Musielak-Orlicz-type spaces.

The Musielak-Orlicz-type space Lϕ(Rn) is the set of all measurable functions f such

that
∫
Rn ϕ(x, |f(x)|/λ)dx <∞ for some λ > 0, with Luxembourg (quasi-)norm

‖f‖Lϕ := inf
{
λ > 0 :

∫

Rn

ϕ(x, |f(x)|/λ)dx ≤ 1
}
.

As usual, S(Rn) denote the Schwartz class of test functions on Rn and S ′(Rn) the

space of tempered distributions (or distributions for brevity). For m ∈ N, we define

Sm(Rn) =
{
φ ∈ S(Rn) : ‖φ‖m = sup

x∈Rn,|α|≤m+1

(1 + |x|)(m+2)(n+1)|∂αxφ(x)| ≤ 1
}
.

For each distribution f , we define the nontangential grand maximal function f ∗
m of f

by

f ∗
m(x) = sup

φ∈Sm(Rn)

sup
|y−x|<t

|f ∗ φt(y)|, x ∈ Rn.

When m = m(ϕ) we write f ∗ instead of f ∗
m(ϕ).

Definition 3.2.2. The Hardy space of Musielak-Orlicz type Hϕ(Rn) is the space of all

distributions f such that f ∗ ∈ Lϕ(Rn) with the (quasi-)norm

‖f‖Hϕ := ‖f ∗‖Lϕ .

Observe that, when ϕ(x, t) = w(x)Φ(t) with w a Muckenhoupt weight and Φ an Orlicz

function, our Hardy spaces are weighted Hardy-Orlicz spaces which include the classical

Hardy-Orlicz spaces of Janson [75] (w ≡ 1 in this context) and the classical weighted

Hardy spaces of Garćıa-Cuerva [52], Strömberg and Torchinsky [131] (Φ(t) ≡ tp in this

context), see also [111, 22, 53] . Recently, the weighted anisotropic Hardy spaces (see [20])

and the Hardy-Orlicz spaces associated with operators (see [77]) have also been studied.

Next, to introduce the atomic Hardy spaces of Musielak-Orlicz type below, we need

the following new spaces.
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Definition 3.2.3. For each ball B in Rn, we denote Lqϕ(B), 1 ≤ q ≤ ∞, the set of all

measurable functions f on Rn supported in B such that

‖f‖Lq
ϕ(B) :=





sup
t>0

( ∫
Rn |f(x)|qϕ(x,t)dx

ϕ(B,t)

)1/q
<∞ , 1 ≤ q <∞,

‖f‖L∞ <∞ , q = ∞,

(3.2)

here and in the future ϕ(B, t) :=
∫
B
ϕ(x, t)dx.

Then, it is straightforward to verify that (Lqϕ(B), ‖ · ‖Lq
ϕ(B)) is a Banach space.

Now, we are able to introduce the atomic Hardy spaces of Musielak-Orlicz type.

Definition 3.2.4. A triplet (ϕ, q, s) is called admissible, if q ∈ (q(ϕ),∞] and s ∈ N

satisfies s ≥ m(ϕ). A measurable function a is a (ϕ, q, s)-atom if it satisfies the following

three conditions

i) a ∈ Lqϕ(B) for some ball B,

ii) ‖a‖Lq
ϕ(B) ≤ ‖χB‖−1

Lϕ,

iii)
∫
Rn a(x)x

αdx = 0 for any |α| ≤ s.

In this setting we define the atomic Hardy space of Musielak-Orlicz type Hϕ,q,s
at (Rn) as

those distributions f ∈ S ′(Rn) that can be represented as a sum of multiples of (ϕ, q, s)-

atoms, that is,

f =
∑

j

bj in the sense of S ′(Rn),

where bj
,s are multiples of (ϕ, q, s)-atoms supported in the balls Bj

,s, with the property
∑

j

ϕ(Bj, ‖bj‖Lq
ϕ(Bj)) <∞.

We introduce a (quasi-)norm in Hϕ,q,s
at (Rn). Given a sequence of multiples of (ϕ, q, s)-

atoms, {bj}j, we denote

Λq({bj}) = inf
{
λ > 0 :

∑

j

ϕ
(
Bj,

‖bj‖Lq
ϕ(Bj)

λ

)
≤ 1
}

(3.3)

and define

‖f‖Hϕ,q,s
at

= inf
{
Λq({bj}) : f =

∑

j

bj in the sense of S ′(Rn)
}
. (3.4)

Let (ϕ, q, s) be an admissible triplet. We denote Hϕ,q,s
fin (Rn) the vector space of all

finite linear combinations of (ϕ, q, s)-atoms, that is,

f =
k∑

j=1

bj,
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where bj’s are multiples of (ϕ, q, s)-atoms supported in balls Bj’s. Then, the norm of f

in Hϕ,q,s
fin (Rn) is defined by

‖f‖Hϕ,q,s
fin

= inf
{
Λq({bj}kj=1) : f =

k∑

j=1

bj

}
. (3.5)

Obviously, for any admissible triplet (ϕ, q, s), the set Hϕ,q,s
fin (Rn) is dense in Hϕ,q,s

at (Rn)

with respect to the quasi-norm ‖ · ‖Hϕ,q,s
at

.

We should point out that the theory of atomic Hardy-Orlicz spaces have been first

introduced by Viviani [136] in the setting of spaces of homogeneous type. Later, Serra

[124] generalized it to the context of the Euclidean space Rn and obtained the molecular

characterization. In the particular case, when ϕ(x, t) ≡ Φ(t) the space Hϕ,q,s
at (Rn) is

the space considered in [124]. We also remark that when ϕ(x, t) ≡ w(x).tp, 0 < p ≤
1, w a Muckenhoupt weight, the space Hϕ,q,s

at (Rn) is just the classical weighted atomic

Hardy space Hp,q,s
w (Rn) which has been considered by Garćıa-Cuerva [52], Strömberg and

Torchinsky [131].

3.2.3 BMO-Musielak-Orlicz-type spaces

We also need BMO type spaces, which will be in duality of the Hardy spaces of Musielak-

Orlicz type defined above. A function f ∈ L1
loc(R

n) is said to belong to BMOϕ(Rn) if

‖f‖BMOϕ := sup
B

1

‖χB‖Lϕ

∫

B

|f(x)− fB|dx <∞,

where fB = 1
|B|
∫
B
f(x)dx and the supremum is taken over all balls B in Rn.

Our typical example isBMOϕ(Rn), calledBMOlog(Rn), related to ϕ(x, t) = t
log(e+|x|)+log(e+t)

.

Clearly, when ϕ(x, t) ≡ t, then BMOϕ(Rn) is just the well-known BMO(Rn) of John and

Nirenberg. We remark that when ϕ(x, t) = w(x).t with w ∈ A(n+1)/n, then BMOϕ(Rn) is

just BMOw(R
n) was first introduced by Muckenhoupt and Wheeden [110, 111]. There,

they proved that BMOw(R
n) is the dual of H1

w(R
n) (see also [22]).

3.2.4 Quasi-Banach valued sublinear operators

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm ‖ · ‖B
which is nonnegative, non-degenerate (i.e., ‖f‖B = 0 if and only if f = 0), homogeneous,

and obeys the quasi-triangle inequality, i.e., there exists a positive constant κ no less than

1 such that for all f, g ∈ B, we have ‖f + g‖B ≤ κ(‖f‖B + ‖g‖B).
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Definition 3.2.5. Let γ ∈ (0, 1]. A quasi-Banach space Bγ with the quasi-norm ‖ · ‖Bγ is

said to be a γ-quasi-Banach space if there exists a positive constant κ no less than 1 such

that for all fj ∈ Bγ, j = 1, 2, ...,m, we have

∥∥∥
m∑

j=1

fj

∥∥∥
γ

Bγ

≤ κ

m∑

j=1

‖fj‖γBγ
.

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces

ℓp, Lpw(R
n) and Hp

w(R
n) with p ∈ (0, 1] are typical p-quasi-Banach spaces. Also, when ϕ

is of uniformly lower type p ∈ (0, 1], the space Hϕ(Rn) is a p-quasi-Banach space.

For any given γ-quasi-Banach space Bγ with γ ∈ (0, 1] and a linear space Y , an

operator T from Y to Bγ is called Bγ-sublinear if there exists a positive constant κ no less

than 1 such that for all fj ∈ Y , λj ∈ C, j = 1, ...,m, we have

∥∥∥T
( m∑

j=1

λjfj

)∥∥∥
γ

Bγ

≤ κ
m∑

j=1

|λj|γ‖T (fj)‖γBγ
.

We remark that if T is linear, then T is Bγ-sublinear. We should point out that if

the constant κ, in Definition 3.2.5, equal 1, then we obtain the notion of γ-quasi-Banach

spaces introduced in [144] (see also [20]).

3.3 Statement of the results

Our main theorems are the following.

Theorem 3.3.1. Let (ϕ, q, s) be admissible. Then Hϕ(Rn) = Hϕ,q,s
at (Rn) with equivalent

norms.

Denote by L∞
0 (Rn) the set of all bounded functions with compact support and zero

average. As a consequence of Theorem 3.3.1, we have the following.

Lemma 3.3.1. Let ϕ be a growth function satisfying nq(ϕ) < (n+1)i(ϕ). Then, L∞
0 (Rn)

is dense in Hϕ(Rn).

We now can present our dual theorem as follows

Theorem 3.3.2. Let ϕ be a growth function satisfying nq(ϕ) < (n + 1)i(ϕ). Then, the

dual space of Hϕ(Rn) is BMOϕ(Rn) in the following sense

i) Suppose b ∈ BMOϕ(Rn). Then the linear functional Lb : f → Lb(f) :=
∫
Rn f(x)b(x)dx,

initially defined for L∞
0 (Rn), has a bounded extension to Hϕ(Rn).

ii) Conversely, every continuous linear functional on Hϕ(Rn) arises as the above with

a unique element b of BMOϕ(Rn). Moreover ‖b‖BMOϕ ≈ ‖Lb‖(Hϕ)∗.
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Next result concerns the class of pointwise multipliers for BMO(Rn).

Theorem 3.3.3. The class of pointwise multipliers for BMO(Rn) is the dual of L1(Rn)+

H log(Rn) where H log(Rn) is a Hardy space of Musielak-Orlicz type related to the Musielak-

Orlicz function θ(x, t) = t
log(e+|x|)+log(e+t)

.

In order to obtain the finite atomic decomposition, we need the notion of uniformly

locally dominated convergence condition. A growth function ϕ is said to be satisfy uni-

formly locally dominated convergence condition if the following holds:

Given K compact set in Rn. Let {fm}m≥1 be a sequence of measurable functions

s.t fm(x) tends to f(x) a.e x ∈ Rn. If there exists a nonnegative measurable func-

tion g s.t |fm(x)| ≤ g(x) and supt>0

∫
K
g(x) ϕ(x,t)∫

K ϕ(y,t)dy
dx < ∞, then supt>0

∫
K
|fm(x) −

f(x)| ϕ(x,t)∫
K ϕ(y,t)dy

dx tends 0.

We remark that the growth functions ϕ(x, t) = w(x)Φ(t) and ϕ(x, t) = tp

(log(e+|x|)+log(e+tp))p
,

0 < p ≤ 1, satisfy the uniformly locally dominated convergence condition.

Theorem 3.3.4. Let ϕ be a growth function satisfying uniformly locally dominated con-

vergence condition, and (ϕ, q, s) be an admissible triplet.

i) If q ∈ (q(ϕ),∞) then ‖·‖Hϕ,q,s
fin

and ‖·‖Hϕ are equivalent quasi-norms on Hϕ,q,s
fin (Rn).

ii) ‖ · ‖Hϕ,∞,s
fin

and ‖ · ‖Hϕ are equivalent quasi-norms on Hϕ,∞,s
fin (Rn) ∩ C(Rn).

As an application, we obtain criterions for boundedness of quasi-Banach valued sub-

linear operators in Hϕ(Rn).

Theorem 3.3.5. Let ϕ be a growth function satisfying uniformly locally dominated con-

vergence condition, (ϕ, q, s) be an admissible triplet, ϕ be of uniformly upper type γ ∈
(0, 1], and Bγ be a quasi-Banach space. Suppose one of the following holds:

i) q ∈ (q(ϕ),∞), and T : Hϕ,q,s
fin (Rn) → Bγ is a Bγ-sublinear operator such that

A = sup{‖Ta‖Bγ : a is a (ϕ, q, s)−atom} <∞;

ii) T is a Bγ-sublinear operator defined on continuous (ϕ,∞, s)-atoms such that

A = sup{‖Ta‖Bγ : a is a continuous (ϕ,∞, s)−atom} <∞.

Then there exists a unique bounded Bγ-sublinear operator T̃ from Hϕ(Rn) to Bγ which

extends T .

63



3.4 Some basic lemmas on growth functions

We start by the following lemma.

Lemma 3.4.1. i) Let ϕ be a growth function. Then ϕ is uniformly σ-quasi-subadditive

on Rn × [0,∞), i.e. there exists a constant C > 0 such that

ϕ(x,
∞∑

j=1

tj) ≤ C

∞∑

j=1

ϕ(x, tj),

for all (x, tj) ∈ Rn × [0,∞), j = 1, 2, ...

ii) Let ϕ be a growth function and ϕ̃(x, t) :=
∫ t
0
ϕ(x,s)
s
ds for (x, t) ∈ Rn × [0,∞).

Then ϕ̃ is a growth function equivalent to ϕ, moreover, ϕ̃(x, ·) is continuous and strictly

increasing.

iii) A Musielak-Orlicz function ϕ is a growth function if and only if ϕ is of positive

uniformly lower type and uniformly quasi-concave, i.e. there exists a constant C > 0 such

that

λϕ(x, t) + (1− λ)ϕ(x, s) ≤ Cϕ(x, λt+ (1− λ)s),

for all x ∈ Rn, t, s ∈ [0,∞) and λ ∈ [0, 1].

Proof. i) We just need to consider the case when
∑∞

j=1 tj > 0. Then it follows from the

fact that
tk∑∞
j=1 tj

ϕ(x,
∞∑

j=1

tj) ≤ Cϕ(x, tk)

by ϕ is of uniformly upper type 1.

ii) Since ϕ is a growth function, it is easy to see that ϕ̃(x, ·) is continuous and strictly

increasing. Moreover, there exists p > 0 such that ϕ is of uniformly lower type p. Hence,

ϕ̃(x, t) =

t∫

0

ϕ(x, s)

s
ds ≤ C

ϕ(x, t)

tp

t∫

0

1

s1−p
ds ≤ Cϕ(x, t). (3.6)

On the other hand, since ϕ is of uniformly upper type 1, we get

ϕ̃(x, t) =

t∫

0

ϕ(x, s)

s
ds ≥ C−1

t∫

0

ϕ(x, t)

t
ds ≥ C−1ϕ(x, t). (3.7)

Combining (3.6) and (3.7), we obtain ϕ̃ ≈ ϕ, and thus ϕ̃ is a growth function.

iii) Suppose ϕ is a growth function. By (ii), ϕ is equivalent to ˜̃ϕ. On the other hand,
∂ ˜̃ϕ
∂t
(x, t) = ϕ̃(x,t)

t
is uniformly quasi-decreasing in t. Hence, ˜̃ϕ is uniformly quasi-concave,

and thus is ϕ.

The converse is easy by taking s = 0. We omit the details.
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Remark 3.4.1. Let us observe that the results stated in Section 3 are invariant under

change of equivalent growth functions. By Lemm 3.4.1, in the future, we always consider

a growth function ϕ of positive uniformly lower type, of uniformly upper type 1 (or, equiv-

alently, uniformly quasi-concave), and so that ϕ(x, ·) is continuous and strictly increasing

for all x ∈ Rn.

Lemma 3.4.2. Let ϕ be a growth function. Then

i)

∫

Rn

ϕ
(
x,

|f(x)|
‖f‖Lϕ

)
dx = 1 for all f ∈ Lϕ(Rn) \ {0}.

ii) limk→∞ ‖fk‖Lϕ = 0 if and only if limk→∞
∫
Rn ϕ(x, |fk(x)|)dx = 0.

Proof. Statement (i) follows from the fact that the function

ϑ(t) :=

∫

Rn

ϕ(x, t|f(x)|)dx,

t ∈ [0,∞), is continuous by the dominated convergence theorem since ϕ(x, ·) is continuous.
Statement (ii) follows from the fact that

‖f‖Lϕ ≤ Cmax
{∫

Rn

ϕ(x, |f(x)|)dx,
(∫

Rn

ϕ(x, |f(x)|)dx
)1/p}

,

and ∫

Rn

ϕ(x, |f(x)|)dx ≤ Cmax
{
‖f‖Lϕ , (‖f‖Lϕ)p

}

for some p ∈ (0, i(ϕ)).

Lemma 3.4.3. Given c is a positive constant. Then, there exists a constant C > 0 such

that

i) The inequality
∫
Rn ϕ

(
x, |f(x)|

λ

)
dx ≤ c, for λ > 0, implies

‖f‖Lϕ ≤ Cλ.

ii) The inequality
∑

j ϕ
(
Bj,

tj
λ

)
≤ c, for λ > 0, implies

inf
{
α > 0 :

∑

j

ϕ
(
Bj,

tj
α

)
≤ 1
}
≤ Cλ.

Proof. The proofs are simple since we may take C = (1+ c.Cp)
1/p, for some p ∈ (0, i(ϕ)),

where Cp is such that (3.1) holds.
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Lemma 3.4.4. Let (ϕ, q, s) be an admissible triplet. Then there exists a positive constant

C such that ∞∑

j=1

‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ ≤ CΛq({bj}),

for all f =
∑∞

j=1 bj ∈ Hϕ,q,s
at (Rn) where bj’s are multiples of (ϕ, q, s)-atoms supported in

balls Bj’s.

Proof. Since ϕ is of uniformly upper type 1, there exists a positive constant c > 0 such

that

ϕ
(
x,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c

‖bi‖Lq
ϕ(Bi)‖χBi

‖Lϕ

∑∞
j=1 ‖bj‖Lq

ϕ(Bj)‖χBj
‖Lϕ

ϕ
(
x,

1

‖χBi
‖Lϕ

)

for all x ∈ Rn, i ≥ 1. Hence, for all i ≥ 1,

ϕ
(
Bi,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c

‖bi‖Lq
ϕ(Bi)‖χBi

‖Lϕ

∑∞
j=1 ‖bj‖Lq

ϕ(Bj)‖χBj
‖Lϕ

since
∫
Bi
ϕ
(
x, 1

‖χBi
‖Lϕ

)
dx = 1 by Lemma 3.4.2. It follows that

∞∑

i=1

ϕ
(
Bi,

‖bi‖Lq
ϕ(Bi)∑∞

j=1 ‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ

)
≥ c.

We deduce from the above that
∞∑

j=1

‖bj‖Lq
ϕ(Bj)‖χBj

‖Lϕ ≤ CΛq({bj}),

with C = (Cp/c)
1/p for some p ∈ (0, i(ϕ)), where Cp is such that (3.1) holds.

Lemma 3.4.5. Let ϕ ∈ Aq, 1 < q < ∞. Then, there exists a positive constant C such

that

i) For all ball B(x0, r), λ > 0, and t ∈ [0,∞), we have

ϕ(B(x0, λr), t) ≤ Cλnqϕ(B(x0, r), t).

ii) For all ball B(x0, r) and t ∈ [0,∞), we have
∫

Bc

ϕ(x, t)

|x− x0|nq
dx ≤ C

ϕ(B, t)

rnq
.

iii) For all ball B, f measurable and t ∈ (0,∞), we have

( 1

|B|

∫

B

|f(x)|
)q

≤ C
1

ϕ(B, t)

∫

B

|f(x)|qϕ(x, t)dx.
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iii) For all f measurable and t ∈ [0,∞), we have
∫

Rn

Mf(x)qϕ(x, t)dx ≤ C

∫

Rn

|f(x)|qϕ(x, t)dx,

where M is the classical Hardy-Littlewood maximal operator defined by

Mf(x) = sup
x∈B−ball

1

|B|

∫

B

|f(y)|dy , x ∈ Rn.

In the setting ϕ(x, t) = w(x)Φ(t), w ∈ A∞ and Φ a Orlicz function, the above lemma

is well-known as a classical result in the theory of Muckenhoupt weight (see [54]). Since

ϕ satisfies uniformly Muckenhoupt condition, the proof of Lemma 3.4.5 is a slight modi-

fication of the classical result. We omit the details.

3.5 Atomic decompositions

The purpose of this section is prove the atomic decomposition theorem (Theorem 3.3.1).

The construction is by now standard, but the estimates require the preliminary lemmas.

For the reader convenience, we give all steps of the proof, even if only the generalization

to our framework is new.

We first introduce a class of Hardy spaces that the Hardy space of Musielak-Orlicz

type Hϕ(Rn) containing as a particular case.

Definition 3.5.1. For m ∈ N, we denote by Hϕ
m(R

n) the space of all distributions f such

that f ∗
m ∈ Lϕ(Rn) with the (quasi-)norm

‖f‖Hϕ
m
:= ‖f ∗

m‖Lϕ .

Clearly, Hϕ(Rn) is a special case associated with m = m(ϕ).

3.5.1 Some basic properties concerning Hϕ
m(R

n) and Hϕ,q,s
at (Rn)

We start by the following proposition.

Proposition 3.5.1. For m ∈ N, we have Hϕ
m(R

n) ⊂ S ′(Rn) and the inclusion is contin-

uous.

Proof. Let f ∈ Hϕ
m(R

n). For any φ ∈ S(Rn), and x ∈ B(0, 1), we write

〈f, φ〉 = f ∗ φ̃(0) = f ∗ ψ(x),
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where ψ(y) = φ̃(y − x) = φ(x− y) for all y ∈ Rn.

It is easy to verify that sup
x∈B(0,1),y∈Rn

1+|y|
1+|y−x| ≤ 2. Consequently,

| 〈f, φ〉 | = |f ∗ ψ(x)| ≤ 2(m+2)(n+1)‖φ‖Sm inf
x∈B(0,1)

f ∗
m(x)

≤ 2(m+2)(n+1)‖φ‖Sm‖χB(0,1)‖−1
Lϕ‖f‖Hϕ

m
.

This implies that f ∈ S ′(Rn) and the inclusion is continuous.

The following proposition gives the completeness of Hϕ
m(R

n).

Proposition 3.5.2. The space Hϕ
m(R

n) is complete.

Proof. In order to prove the completeness of Hϕ
m(R

n), it suffices to prove that for every

sequence {fj}j≥1 with ‖fj‖Hϕ
m
≤ 2−j for any j ≥ 1, the series

∑
j fj converges in H

ϕ
m(R

n).

Let us now take p > 0 such that ϕ is of uniformly lower type p. Then, for any j ≥ 1,

∫

Rn

ϕ(x, (fj)
∗
m(x))dx ≤ C(2−j)p

∫

Rn

ϕ
(
x,

(fj)
∗
m(x)

2−j

)
dx ≤ C2−jp. (3.8)

Since {∑j
i=1 fi}j≥1 is a Cauchy sequence in Hϕ

m(R
n), by Proposition 3.5.1 and the

completeness of S ′(Rn), {∑j
i=1 fi}j≥1 is also a Cauchy sequence in S ′(Rn) and thus con-

verges to some f ∈ S ′(Rn). This implies that, for every φ ∈ S(Rn), the series
∑

j fj ∗ φ
converges to f ∗ φ pointwisely. Therefore f ∗

m(x) ≤
∑

j(fj)
∗
m(x) and (f −∑k

j=1 fj)
∗
m(x) ≤∑

j≥k+1(fj)
∗
m(x) for all x ∈ Rn, k ≥ 1. Combining this and (3.8), we obtain

∫

Rn

ϕ(x, (f −
k∑

j=1

fj)
∗
m(x))dx ≤ C

∑

j≥k+1

∫

Rn

ϕ(x, (fj)
∗
m(x))dx

≤ C
∑

j≥k+1

2−jp → 0,

as k → ∞, here we used Lemma 3.4.1. Thus, the series
∑

j fj converges to f in Hϕ
m(R

n)

by Lemma 3.4.2. This completes the proof.

Corollary 3.5.1. The Hardy space of Musielak-Orlicz type Hϕ(Rn) is complete.

The following lemma and its corollary show that (ϕ, q, s)-atoms are in Hϕ(Rn). Fur-

thermore, it is the necessary estimate for proving that Hϕ,q,s
at (Rn) ⊂ Hϕ(Rn) and the

inclusion is continuous, see Theorem 3.5.1 below.
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Lemma 3.5.1. Let (ϕ, q, s) be an admissible triplet and m ≥ s. Then, there exists a

constant C = C(ϕ, q, s,m) such that
∫

Rn

ϕ(x, f ∗
m(x))dx ≤ Cϕ(B, ‖f‖Lq

ϕ(B)),

for all f multiples of (ϕ, q, s)-atom associated with ball B = B(x0, r).

Proof. The case q = ∞ is easy and will be omitted. We just consider q ∈ (q(ϕ),∞). Now

let us set B̃ = B(x0, 9r), and write
∫

Rn

ϕ(x, f ∗
m(x))dx =

∫

B̃

ϕ(x, f ∗
m(x))dx+

∫

(B̃)c

ϕ(x, f ∗
m(x))dx

= I + II.

Since ϕ is of uniformly upper type 1, by Hölder inequality, we get

I =

∫

B̃

ϕ(x, f ∗
m(x))dx ≤ C

∫

B̃

( f ∗
m(x)

‖f‖Lq
ϕ(B)

+ 1
)
ϕ(x, ‖f‖Lq

ϕ(B))dx

≤ Cϕ(B̃, ‖f‖Lq
ϕ(B))

+ C
1

‖f‖Lq
ϕ(B)

(∫

B̃

|f ∗
m(x)|qϕ(x, ‖f‖Lq

ϕ(B))dx
)1/q

ϕ(B̃, ‖f‖Lq
ϕ(B))

(q−1)/q

≤ Cϕ(B, ‖f‖Lq
ϕ(B)) + C

1

‖f‖Lq
ϕ(B)

‖f‖Lq
ϕ(B̃)ϕ(B̃, ‖f‖Lq

ϕ(B))

≤ Cϕ(B, ‖f‖Lq
ϕ(B)).

We used the fact f ∗
m(x) ≤ C(m)Mf(x) and Lemma 3.4.5.

To estimate II, we note that since m ≥ s, there exists a constant C = C(m) such that
∣∣∣φ
(x− y

t

)
−
∑

|α|≤s

∂αφ(x−x0
t

)

α!

(x0 − y

t

)α∣∣∣ ≤ Ctn
|y − x0|s+1

|x− x0|n+s+1

for all φ ∈ Sm(Rn), t > 0, x ∈ (B̃)c, y ∈ B. Therefore

|f ∗ φt(x)| =
1

tn

∣∣∣
∫

B

f(y)
[
φ
(x− y

t

)
−
∑

|α|≤s

∂αφ(x−x0
t

)

α!

(x0 − y

t

)α]
dy
∣∣∣

≤ C

∫

B

|f(y)| |y − x0|s+1

|x− x0|n+s+1
dy

≤ C
rs+1

|x− x0|n+s+1

(∫

B

|f(y)|qϕ(y, λ)dy
)1/q(∫

B

[ϕ(y, λ)]−1/(q−1)dy
)(q−1)/q

≤ C‖f‖Lq
ϕ(B)

( r

|x− x0|
)n+s+1

.
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For any λ > 0, we used that
∫
B
ϕ(y, λ)dy(

∫
B
[ϕ(y, λ)]−1/(q−1)dy)q−1 ≤ C|B|q since ϕ ∈ Aq.

As a consequence, we get

f ∗
m(x) ≤ C(m) sup

φ∈Sm(Rn)

sup
t>0

|f ∗ φt(x)| ≤ C‖f‖Lq
ϕ(B)

( r

|x− x0|
)n+s+1

.

By s ≥ m(ϕ), there exists p ∈ (0, i(ϕ)) such that (n+ s+1)p > nq(ϕ). Hence, by Lemma

3.4.5,

II =

∫

(B̃)c

ϕ(x, f ∗
m(x))dx ≤ C

∫

(B̃)c

( r

|x− x0|
)(n+s+1)p

ϕ(x, ‖f‖Lq
ϕ(B))dx

≤ Cr(n+s+1)p
ϕ(B̃, ‖f‖Lq

ϕ(B))

(9r)(n+s+1)p

≤ Cϕ(B, ‖f‖Lq
ϕ(B)).

This completes the proof.

Corollary 3.5.2. There exists a constant C = C(ϕ, q, s) > 0 such that

‖a‖Hϕ ≤ C,

for all (ϕ, q, s)-atom a.

Theorem 3.5.1. Let (ϕ, q, s) be an admissible triplet and m ≥ s. Then

Hϕ,q,s
at (Rn) ⊂ Hϕ

m(R
n),

moreover, the inclusion is continuous.

Proof. For any 0 6= f ∈ Hϕ,q,s
at (Rn). Let f =

∑
j bj be an atomic decomposition of f ,

with supp bj ⊂ Bj, j = 1, 2, ... For all φ ∈ S(Rn), the series
∑

j bj ∗ φ converges to f ∗ φ
pointwise since f =

∑
j bj in S ′. Hence f ∗

m(x) ≤
∑

j(bj)
∗
m(x). By applying Lemma 3.5.1,

we obtain
∫

Rn

ϕ
(
x,

f ∗
m(x)

Λq({bj})
)
dx ≤ C

∑

j

∫

Rn

ϕ
(
x,

(bj)
∗
m(x)

Λq({bj})
)
dx

≤ C
∑

j

ϕ
(
Bj,

‖bj‖Lq
ϕ(Bj)

Λq({bj})
)

≤ C.

This implies that ‖f‖Hϕ
m
≤ CΛq({bj}) (see Lemma 3.4.3) for any atomic decomposition

f =
∑

j bj, and thus, ‖f‖Hϕ
m
≤ C‖f‖Hϕ,q,s

at
.
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3.5.2 Calderón-Zygmund decompositions

Throughout this subsection, we fix m and s so that m, s ≥ m(ϕ). For a given λ > 0, we

set Ω = {x ∈ Rn : f ∗
m(x) > λ}. Observe that Ω is open. Hence by Whitney’s Lemma ,

there exists x1, x2, ... in Ω and r1, r2, ... > 0 such that

(i) Ω = ∪jB(xj, rj),

(ii) the balls B(xj, rj/4), j = 1, 2, ..., are disjoint,

(iii) B(xj, 18rj) ∩ Ωc = ∅, but B(xj, 54rj) ∩ Ωc 6= ∅, for any j = 1, 2, ...,

(iv) there exists L ∈ N (depending only on n) such that no point of Ω lies in more

than L of the balls B(xj, 18rj), j = 1, 2, ...

We fix once for all, a function θ ∈ C∞
0 (Rn) such that supp θ ⊂ B(0, 2), 0 ≤ θ ≤ 1, θ = 1

on B(0, 1), and set θj(x) = θ((x − xj)/rj), for j=1,2,... Obviously, supp θj ⊂ B(xj, 2rj),

j = 1, 2, ..., and 1 ≤ ∑j θj ≤ L for all x ∈ Ω. Hence if we set ζj(x) = θj(x)/
∑∞

i=1 θi(x)

if x ∈ Ω and ζj(x) = 0 if x ∈ Ωc, j = 1, 2, ..., then supp ζj ⊂ B(xj, 2rj), 0 ≤ ζj ≤ 1,∑
j ζj = χΩ, and L

−1 ≤ ζj ≤ 1 on B(xj, rj). The family {ζj}j forms a smooth partition of

unity of Ω. let s ∈ N be some fixed natural number and Ps(Rn) (or simply Ps) denote the
linear space of polynomials in n variables of degree less than s. For each j, we consider the

inner product 〈P,Q〉j = 1∫
Rn ζj(x)dx

∫
Rn P (x)Q(x)ζj(x)dx for P,Q ∈ Ps. Then (Ps, 〈·, ·〉j)

is a finite dimensional Hilbert space. Let f ∈ S ′. Since f induces a linear functional on

Ps via Q → 1∫
Rn ζj(x)dx

∫
Rn f(x)Q(x)ζj(x)dx, by the Riesz theorem, there exists a unique

polynomial Pj ∈ Ps such that for all Q ∈ Ps, 〈Pj, Q〉j = 1∫
Rn ζj(x)dx

∫
Rn f(x)Q(x)ζj(x)dx.

For each j, j = 1, 2, ..., we define bj = (f−Pj)ζj, and note Bj = B(xj, rj), B̃j = B(xj, 9rj).

Then, it is easy to see that
∫
Rn bj(x)Q(x)dx = 0 for all Q ∈ Ps. It turns out, in the case of

interest, that the series
∑

j bj converges in S ′. In this case, we set g = f −∑j bj, and we

call the representation f = g +
∑

j bj a Calderón-Zygmund decomposition of f of degree

s and height λ associated to f ∗
m.

For any j = 1, 2, ..., we denote Bj = B(xj, rj) and B̃j = B(xj, 9rj). Then we have the

following lemma.

Lemma A (see [17, Chapter 3). There are four constant c1, c2, c3, c4, independent of f, j,

and λ, such that

i)

sup
|α|≤N,x∈Rn

r
|α|
j |∂αζj(x)| ≤ c1.

ii)

sup
x∈Rn

|Pj(x)ζj(x)| ≤ c2λ.
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iii)

(bj)
∗
m(x) ≤ c3f

∗
m(x), for all x ∈ B̃j.

iv)

(bj)
∗
m(x) ≤ c4λ(rj/|x− xj|)n+ms , for all x /∈ B̃j,

where ms = min{s+ 1,m+ 1}.

Lemma 3.5.2. For all f ∈ Hϕ
m(R

n), there exists a geometric constant C, independent of

f, j, and λ, such that,

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx.

Moreover, the series
∑

j bj converges in Hϕ
m(R

n), and

∫

Rn

ϕ
(
x, (
∑

j

bj)
∗
m(x)

)
dx ≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

Proof. As m, s ≥ m(ϕ), ms = min{s + 1,m + 1} > n(q(ϕ)/i(ϕ)− 1). Hence, there exist

q > q(ϕ) and 0 < p < i(ϕ) such that ms > n(q/p − 1), deduce that (n + ms)p > nq.

Therefore, ϕ ∈ A(n+ms)p/n and ϕ is of uniformly lower type p. Thus, there exists a positive

constant C, independent of f, j, and λ, such that

∫

(B̃j)c

ϕ(x, λ(rj/|x− xj|)n+ms)dx ≤ C

∫

(B̃j)c

( rj
|x− xj|

)(n+ms)p

ϕ(x, λ)dx

≤ C(rj)
(n+ms)p

ϕ(B̃j, λ)

(9rj)(n+ms)p

≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx,

since rj/|x− xj| < 1 and f ∗
m > λ on B̃j. Combining this and Lemma A, we get

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

[ ∫

B̃j

ϕ(x, f ∗
m(x))dx+

∫

(B̃j)c

ϕ(x, λ(rj/|x− xj|)n+ms)dx
]

≤ C

∫

B̃j

ϕ(x, f ∗
m(x))dx.
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As a consequence of the above estimate, since
∑

j χB̃j
≤ L and Ω = ∪jB̃j, we obtain

∑

j

∫

Rn

ϕ
(
x, (bj)

∗
m(x)

)
dx ≤ C

∑

j

∫

B̃j

ϕ(x, f ∗
m(x))dx

≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

This implies that the series
∑

j bj converges in Hϕ
m(R

n) by completeness of Hϕ
m(R

n).

Moreover, ∫

Rn

ϕ
(
x, (
∑

j

bj)
∗
m(x)

)
dx ≤ C

∫

Ω

ϕ(x, f ∗
m(x))dx.

Let q ∈ [1,∞]. We denote by Lqϕ(·,1)(R
n) the usually weighted Lebesgue space with

the Muckenhoupt weight ϕ(x, 1). Then, we have the following.

Lemma B (see [20], Lemma 4.8). Let q ∈ (q(ϕ),∞]. Assume that f ∈ Lqϕ(·,1)(R
n), then

the series
∑

j bj converges in Lqϕ(·,1)(R
n) and there exists a constant C, independent of

f, j, and λ such that ‖∑j |bj|‖Lq
ϕ(·,1)

≤ C‖f‖Lq
ϕ(·,1)

.

Remark 3.5.1. By Lemma B, the series
∑

j |bj|, and thus the series
∑

j bj, converges

almost everywhere on Rn.

Lemma C (see [51], Lemma 3.19). Suppose that the series
∑

j bj converges in S ′(Rn).

Then, there exists a positive constant C, independent of f, j, and λ, such that for all

x ∈ Rn,

g∗m(x) ≤ Cλ
∑

j

( rj
|x− xj|+ rj

)n+ms

+ f ∗
m(x)χΩc(x).

Lemma 3.5.3. For any q ∈ (q(ϕ),∞) and f ∈ Hϕ
m(R

n). Then g∗m ∈ Lqϕ(·,1)(R
n), and

there exists a positive constant C, independent of f, j, and λ, such that
∫

Rn

[g∗m(x)]
qϕ(x, 1)dx ≤ Cλqmax{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx.

Proof. For any j = 1, 2, ... and x ∈ Rn, we have

( rj
|x− xj|+ rj

)n
=

1

|B(xj, |x− xj|+ rj)|

∫

B(xj ,|x−xj |+rj)

χBj
(y)dy ≤ M(χBj

)(x)

since Bj ⊂ B(xj, |x− xj|+ rj).
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Therefore, by Lrqϕ(·,1)-boundedness of vector-valued maximal functions (see [3], Theorem

3.1), where r := (n+ms)/n > 1, we obtain that

∫

Rn

[∑

j

( rj
|x− xj|+ rj

)n+ms
]q
ϕ(x, 1)dx ≤

∫

Rn

[(∑

j

(M(χBj
)(x))r

)1/r]rq
ϕ(x, 1)dx

≤ Cs,q

∫

Rn

[(∑

j

(χBj
(x))r

)1/r]rq
ϕ(x, 1)dx

≤ Cs,qL

∫

Ω

ϕ(x, 1)dx

≤ Cmax{1/λ, 1/λp}
∫

Rn

ϕ(x, f ∗
m(x))dx

for some p ∈ (0, i(ϕ)) since ϕ ∈ Aq ⊂ Arq and f
∗
m > λ on Ω. Combine this, Lemma C and

Hölder inequality, we obtain
∫

Rn

[g∗m(x)]
qϕ(x, 1)dx ≤ Cλqmax{1/λ, 1/λp}

∫

Rn

ϕ(x, f ∗
m(x))dx+ C

∫

Ωc

[f ∗
m(x)]

qϕ(x, 1)dx

≤ Cλqmax{1/λ, 1/λp}
∫

Rn

ϕ(x, f ∗
m(x))dx,

since f ∗
m ≤ λ on Ωc, here one used ϕ(x, λ)/λq ≤ Cϕ(x, f ∗

m(x))/[f
∗
m(x)]

q on Ωc.

Proposition 3.5.3. For any q ∈ (q(ϕ),∞) and m ≥ m(ϕ). The subspace Lqϕ(·,1)(R
n) ∩

Hϕ
m(R

n) is dense in Hϕ
m(R

n).

Proof. Let f be an arbitrary element in Hϕ
m(R

n). For each λ > 0, let f = gλ +
∑

j b
λ
j be

the Calderon-Zygmund decomposition of f of degree m(ϕ), and height λ associated with

f ∗
m. Then by Lemma 3.5.2 and Lemma 3.5.3, gλ ∈ Lqϕ(·,1)(R

n) ∩Hϕ
m(R

n), moreover,

∫

Rn

ϕ(x, (gλ − f)∗m(x))dx ≤ C

∫

f∗m(x)>λ

ϕ(x, f ∗
m(x))dx→ 0,

as λ→ ∞. Consequently, ‖gλ−f‖Hϕ
m
→ 0 as λ→ ∞ by Lemma 3.4.2. Thus Lqϕ(·,1)(R

n)∩
Hϕ
m(R

n) is dense in Hϕ
m(R

n).

3.5.3 The atomic decompositions Hϕ
m(R

n)

Recall that m, s ≥ m(ϕ), and f is a distribution such that f ∗
m ∈ Lϕ(Rn). For each k ∈ Z,

let f = gk+
∑

j b
k
j be the Calderón-Zygmund decomposition of f of degree s and height 2k
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associated with f ∗
m. We shall label all the ingredients in this construction as in subsection

3.5.2, but with superscript k′s: for example,

Ωk = {x ∈ Rn : f ∗
m(x) > 2k}, bkj = (f − P k

j )ζ
k
j , Bk

j = B(xkj , r
k
j ).

Moreover, for each k ∈ Z, and i, j, let P k+1
i,j be the orthogonal projection of (f−P k+1

j )ζki
onto Ps with respect to the norm associated to ζk+1

j , namely, the unique element of Ps
such that for all Q ∈ Ps,

∫

Rn

(f(x)− P k+1
j (x))ζki (x)Q(x)ζ

k+1
j (x)dx =

∫

Rn

P k+1
i,j (x)Q(x)ζk+1

j (x)dx.

For convenience, we set B̂k
j = B(xkj , 2r

k
j ). Then we have the following lemma.

Lemma D (see [51], Chapter 3). i) If B̂k+1
j ∩ B̂k

i 6= ∅, then rk+1
j < 4rki and B̂k+1

j ⊂
B(xki , 18r

k
i ).

ii) For each j there are at most L (depending only on n as in last section) values of i such

that B̂k+1
j ∩ B̂k

i 6= ∅.
iii) There is a constant C > 0, independent of f, i, j, and k, such that

sup
x∈Rn

|P k+1
i,j (x)ζk+1

j (x)| ≤ C2k+1.

iv) For every k ∈ Z,
∑

i(
∑

j P
k+1
i,j ζk+1

j ) = 0, where the series converges pointwise and in

S ′(Rn).

We now give the necessary estimates for proving that Hϕ
m(R

n) ⊂ Hϕ,∞,s
at (Rn), m ≥

s ≥ m(ϕ), and the inclusion is continuous.

Lemma 3.5.4. Let f ∈ Hϕ
m(R

n), and for each k ∈ Z, set

Ωk = {x ∈ Rn : f ∗
m(x) > 2k}.

Then for any λ > 0, there exists a constant C, independent of f and λ, such that

∞∑

k=−∞
ϕ
(
Ωk,

2k

λ

)
≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx.

Proof. Let p ∈ (0, i(ϕ)) and Cp is such that (3.1) holds. We now set N0 = [(log2Cp)/p]+1

so that 2N0p > Cp. For each ℓ ∈ N, 0 ≤ ℓ ≤ N0 − 1, we consider the sequence U ℓ
m =
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∑m
k=−m ϕ

(
ΩN0k+ℓ, 2

N0k+ℓ

λ

)
. Obviously, {U ℓ

m}m∈N is an increasing sequence. Moreover, for

any m ∈ N,

U ℓ
m =

m∑

k=−m
ϕ
(
ΩN0(k+1)+ℓ,

2N0k+ℓ

λ

)
+

m∑

k=−m

{
ϕ
(
ΩN0k+ℓ,

2N0k+ℓ

λ

)
− ϕ

(
ΩN0(k+1)+ℓ,

2N0k+ℓ

λ

)}

≤ Cp
1

2N0p

{
U ℓ
m + ϕ

(
ΩN0(m+1)+ℓ,

2N0(m+1)+ℓ

λ

)
+ ϕ

(
ΩN0(−m)+ℓ,

2N0(−m)+ℓ

λ

)}
+

+
m∑

k=−m

∫

ΩN0k+ℓ\ΩN0(k+1)+ℓ

ϕ
(
x,
f ∗
m(x)

λ

)
dx

≤ Cp
2N0p

U ℓ
m +

(
2
Cp
2N0p

+ 1
)∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx.

This implies that U ℓ
m ≤ 3

1−Cp/(2N0p)

∫
Rn ϕ

(
x, f

∗
m(x)
λ

)
dx. Consequently,

∞∑

k=−∞
ϕ
(
Ωk,

2k

λ

)
=

N0−1∑

ℓ=0

lim
m→∞

U ℓ
m ≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx,

where C = 3N0

1−Cp/(2N0p)
independent of f and λ.

Theorem 3.5.2. Let m ≥ s ≥ m(ϕ). Then, Hϕ
m(R

n) ⊂ Hϕ,∞,s
at (Rn) and the inclusion is

continuous.

Proof. Suppose first that f ∈ Lqϕ(·,1)(R
n) ∩ Hϕ

m(R
n) for some q ∈ (q(ϕ),∞). Let f =

gk +
∑

j b
k
j be the Calderón-Zygmund decompositions of f of degree s with height 2k, for

k ∈ Z associated with f ∗
m. By Proposition 3.5.3, gk → f in Hϕ

m(R
n) as k → ∞, while

by Lemma 4.10 of [20], gk → 0 uniformly as k → −∞ since f ∈ Lqϕ(·,1)(R
n). Therefore,

f =
∑∞

−∞(gk+1 − gk) in S ′(Rn). Using Lemma 3.27 of [51] together with the equation∑
i ζ

k
i b
k+1
j = χΩkbk+1

j = bk+1
j by suppbk+1

j ⊂ Ωk+1 ⊂ Ωk, we get

gk+1 − gk = (f −
∑

j

bk+1
j )− (f −

∑

i

bki )

=
∑

i

bki −
∑

j

bk+1
j +

∑

i

∑

j

P k+1
i,j ζk+1

j

=
∑

i

[
bki −

∑

j

(
ζki b

k+1
j − P k+1

i,j ζk+1
j

)]

=
∑

i

hki
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where all the series converge in S ′(Rn) and almost everywhere. Furthermore,

hki = (f − P k
i )ζ

k
i −

∑

j

(
(f − P k+1

j )ζki − P k+1
i,j

)
ζk+1
j . (3.9)

From this formula it is obvious that
∫
Rn h

k
i (x)P (x)dx = 0 for all P ∈ Ps. Moreover,

hki = ζki fχ(Ωk+1)c − P k
i ζ

k
i + ζki

∑
j P

k+1
j ζk+1

j +
∑

j P
k+1
i,j ζk+1

j , by
∑

j ζ
k+1
j = χΩk+1 . But

|f(x)| ≤ C(m)f ∗
m(x) ≤ C2k+1 for almost every x ∈ (Ωk+1)c, so by Lemma 3.8 and (3.26)

of [51], and
∑

j ζ
k+1
j ≤ L,

‖hki ‖L∞ ≤ C2k+1 + C2k + CL2k+1 + CL2k+1 ≤ C2k, (3.10)

Lastly, since P k+1
i,j = 0 unless B̂k

i ∩ B̂k+1
j 6= ∅, it follows from (3.9) and Lemma 3.24

of [51], that hki is supported in B(xki , 18r
k
i ). Thus hki is a multiple of (ϕ,∞, s)-atom.

Moreover, by (3.10) and Lemma 3.5.4, for any λ > 0,

∑

k∈Z

∑

i

ϕ
(
B(xki , 18r

k
i ),

‖hki ‖L∞

λ

)
≤

∑

k∈Z
Lϕ(Ωk, C2k/λ)

≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

λ

)
dx <∞.

Thus the series
∑

k∈Z
∑

i h
k
i converges in Hϕ,∞,s

at (Rn) and defines an atomic decompo-

sition of f . Moreover,

∑

k∈Z

∑

i

ϕ
(
B(xki , 18r

k
i ),

‖hki ‖L∞

‖f‖Hϕ
m

)
≤ C

∫

Rn

ϕ
(
x,
f ∗
m(x)

‖f‖Hϕ
m

)
dx

≤ C.

Consequently, ‖f‖Hϕ,∞,s
at

≤ Λ∞({hki }) ≤ C‖f‖Hϕ
m
by Lemma 3.4.3.

Now, let f be an arbitrary element of Hϕ
m(R

n). There exists a sequence {fℓ}ℓ≥1 ⊂
Lqϕ(·,1)(R

n) ∩ Hϕ
m(R

n) such that f =
∑∞

ℓ=1 fℓ in H
ϕ
m(R

n) (thus in S ′(Rn)) and ‖fℓ‖Hϕ
m
≤

22−ℓ‖f‖Hϕ
m

for any ℓ ≥ 1. For any ℓ ≥ 1, let fℓ =
∑

j bj,ℓ be the atomic decomposition

of fℓ, with supp bj,ℓ ⊂ Bj,ℓ constructed above. Then f =
∑∞

ℓ=1

∑
j bj,ℓ is an atomic

decomposition of f , and

∞∑

ℓ=1

∑

j

ϕ
(
Bj,ℓ,

‖bj,ℓ‖L∞

‖f‖Hϕ
m

)
≤

∞∑

ℓ=1

∑

i

ϕ
(
Bj,ℓ,

‖bj,ℓ‖L∞

2ℓ−2‖fℓ‖Hϕ
m

)

≤
∞∑

ℓ=1

Cp
1

(2ℓ−2)p
=: C,
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where Cp is such that (3.1) holds. Thus f ∈ Hϕ,∞,s
at (Rn), moreover,

‖f‖Hϕ,∞,s
at

≤ Λ∞({bj,ℓ}) ≤ C‖f‖Hϕ
m

by Lemma 3.4.3. This completes the proof.

Proof of Theorem 3.3.1. By Theorem 3.5.1 and Theorem 3.5.2, we obtain

Hϕ,∞,s
at (Rn) ⊂ Hϕ,q,s

at (Rn) ⊂ H
ϕ,q,m(ϕ)
at (Rn) ⊂ Hϕ(Rn) ⊂ Hϕ

s (R
n) ⊂ Hϕ,∞,s

at (Rn)

and the inclusions are continuous. Thus Hϕ(Rn) = Hϕ,q,s
at (Rn) with equivalent norms.

3.6 Dual spaces

In this section, we give the proof of Theorem 3.3.2. In order to do this, we need the below

lemma, which can be seen as a consequence of the fact that ϕ(·, t) is uniformly locally

integrable. We omit the details here.

Lemma 3.6.1. Given a ball B, and {Bj}j be a sequence of measurable subsets of B such

that lim
j→∞

|Bj| = 0. Then the following holds

lim
j→∞

sup
t>0

ϕ(Bj, t)

ϕ(B, t)
= 0.

We next note that if b ∈ BMOϕ(Rn) is real-valued and

bN(x) =





N if b(x) > N,

b(x) if |b(x)| ≤ N,

−N if b(x) < −N,

then by using the fact

‖f‖BMOϕ ≤ sup
B−ball

1

‖χB‖Lϕ

1

|B|

∫

B

∫

B

|f(x)− f(y)|dxdy ≤ 2‖f‖BMOϕ ,

we obtain that ‖bN‖BMOϕ ≤ 2‖b‖BMOϕ for all N > 0.

Proof of Theorem 3.3.2. i) It is sufficient to prove it for b ∈ BMOϕ(Rn) real-valued

since b ∈ BMOϕ(Rn) iff b = b1+ib2 with bj ∈ BMOϕ(Rn) real-valued, j = 1, 2, moreover

‖b‖BMOϕ ≈ ‖b1‖BMOϕ + ‖b2‖BMOϕ .
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Suppose first that b ∈ BMOϕ(Rn) ∩ L∞(Rn). Then, the functional

Lb(f) =

∫

Rn

f(x)b(x)dx

is well defined for any f ∈ L∞
0 (Rn) since b ∈ L1

loc(R
n).

Furthermore, since f ∈ L∞
0 (Rn) ⊂ L2(Rn) ∩ H1(Rn), we remark that the atomic

decomposition f =
∑

k∈Z
∑

i h
k
i in the proof of Theorem 3.5.2 is also the classical atomic

decomposition of f in H1(Rn), so that the series converge in H1(Rn) and thus in L1(Rn).

Combining this with the fact b ∈ L∞(Rn), we obtain

Lb(f) =

∫

Rn

f(x)b(x)dx =
∑

k∈Z

∑

i

∫

Rn

hki (x)b(x)dx.

Therefore, by Lemma 3.4.4 and the proof of Theorem 3.5.2,

|Lb(f)| =
∣∣∣
∫

Rn

f(x)b(x)dx
∣∣∣ ≤

∑

k∈Z

∑

i

∣∣∣
∫

Rn

hki (x)b(x)dx
∣∣∣

=
∑

k∈Z

∑

i

∣∣∣
∫

B(xki ,18r
k
i )

hki (x)(b(x)− bB(xki ,18r
k
i )
(x))dx

∣∣∣

≤ ‖b‖BMOϕ

∑

k∈Z

∑

i

‖hki ‖L∞‖χB(xki ,18r
k
i )
‖Lϕ

≤ C‖b‖BMOϕΛ∞({hki })
≤ C‖b‖BMOϕ‖f‖Hϕ .

Now, let b be an arbitrary element in BMOϕ(Rn). For any f ∈ L∞
0 (Rn), it is clear

that |fbℓ| ≤ |fb| ∈ L1(Rn) for every ℓ ≥ 1, and f(x)bℓ(x) → f(x)b(x), as ℓ → ∞, for

almost every x ∈ Rn. Therefore, by the dominated convergence theorem of Lebesgue, we

obtain

|Lb(f)| =
∣∣∣
∫

Rn

f(x)b(x)dx
∣∣∣ = lim

ℓ→∞

∣∣∣
∫

Rn

f(x)bℓ(x)dx
∣∣∣ ≤ C‖b‖BMOϕ‖f‖Hϕ ,

since ‖bℓ‖BMOϕ ≤ 2‖b‖BMOϕ for all ℓ ≥ 1.

Because of the density of L∞
0 (Rn) in Hϕ(Rn), the functional Lb can be extended to a

bounded functional on Hϕ(Rn), moreover, ‖Lb‖(Hϕ)∗ ≤ C‖b‖BMOϕ .

ii) Conversely, suppose L is a continuous linear functional on Hϕ(Rn) ≡ Hϕ,q,0
at (Rn)

for some q ∈ (q(ϕ),∞). For any ball B, denote by Lqϕ,0(B) the subspace of Lqϕ(B) defined

by

Lqϕ,0(B) :=
{
f ∈ Lqϕ(B) :

∫

Rn

f(x)dx = 0
}
.
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Obviously, if B1 ⊂ B2 then

Lqϕ(B1) ⊂ Lqϕ(B2) and Lqϕ,0(B1) ⊂ Lqϕ,0(B2). (3.11)

Moreover, when f ∈ Lqϕ,0(B) \ {0}, a(x) = ‖χB‖−1
Lϕ‖f‖−1

Lq
ϕ(B)

f(x) is a (ϕ, q, 0)-atom, thus

f ∈ Hϕ,q,0
at (Rn) and

‖f‖Hϕ,q,0
at

≤ ‖χB‖Lϕ‖f‖Lq
ϕ(B).

Since L ∈ (Hϕ,q,0
at (Rn))∗, by the above,

|L(f)| ≤ ‖L‖(Hϕ,q,0
at )∗‖f‖Hϕ,q,0

at
≤ ‖L‖(Hϕ,q,0

at )∗‖χB‖Lϕ‖f‖Lq
ϕ(B),

for all f ∈ Lqϕ,0(B). Therefore, L provides a bounded linear functional on Lqϕ,0(B) which

can be extended by the Hahn-Banach theorem to the whole space Lqϕ(B) without increas-

ing its norm. On the other hand, by Lemma 3.6.1 and Lebesgue-Nikodym theorem, there

exists h ∈ L1(B) such that

L(f) =

∫

Rn

f(x)h(x)dx,

for all f ∈ Lqϕ,0(B), and thus f ∈ L∞
ϕ,0(B) since L∞

ϕ,0(B) ⊂ Lqϕ,0(B).

We now take a sequence of balls {Bj}j≥1 such that B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂ · · · and

∪jBj = Rn. Then, there exists a sequence {hj}j≥1 such that

hj ∈ L1(Bj) and L(f) =

∫

Rn

f(x)hj(x)dx,

for all f ∈ L∞
ϕ,0(Bj), j = 1, 2, ... Hence, for all f ∈ L∞

ϕ,0(B1) ⊂ L∞
ϕ,0(B2) (by (3.11)),

∫

Rn

f(x)(h1(x)− h2(x))dx =

∫

Rn

f(x)h1(x)dx−
∫

Rn

f(x)h2(x)dx = L(f)− L(f) = 0.

As fB1 = 0 if f ∈ L∞
ϕ,0(B1), we have

∫

Rn

f(x)
(
(h1(x)− h2(x))− (h1 − h2)B1

)
dx = 0

for all f ∈ L∞
ϕ,0(B1), and thus for f ∈ L∞

ϕ (B1). Hence,

h1(x)− h2(x) = (h1 − h2)B1 , a.e x ∈ B1.

By the similar arguments, we also obtain

hj(x)− hj+1(x) = (hj − hj+1)Bj
(3.12)
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a.e x ∈ Bj, j = 2, 3, ... Consequently, if we define the sequence {h̃j}j≥1 by




h̃1 = h1

h̃j+1 = hj+1 + (h̃j − hj+1)Bj
, j = 1, 2, ...

then it follows from (3.12) that

h̃j ∈ L1(Bj) and h̃j+1(x) = h̃j(x)

a.e x ∈ Bj, j = 1, 2, ... Thus, we can be define the function b on Rn by

b(x) = h̃j(x)

if x ∈ Bj for some j ≥ 1 since B1 ⊂ B2 ⊂ · · · ⊂ Bj ⊂ · · · and ∪jBj = Rn.

Let us now show that b ∈ BMOϕ(Rn) and

L(f) =

∫

Rn

f(x)b(x)dx,

for all f ∈ L∞
0 (Rn).

Indeed, for any f ∈ L∞
0 (Rn), there exists j ≥ 1 such that f ∈ L∞

ϕ,0(Bj). Hence,

L(f) =

∫

Rn

f(x)h̃j(x)dx =

∫

Bj

f(x)h̃j(x)dx =

∫

Rn

f(x)b(x)dx.

On the other hand, for all ball B, one consider f = sign(b− bB) where signξ = ξ/|ξ|
if ξ 6= 0 and sign0 = 0. Then,

a =
1

2
‖χB‖−1

Lϕ(f − fB)χB

is a (ϕ,∞, 0)-atom. Consequently,

|L(a)| =
1

2
‖χB‖−1

Lϕ

∣∣∣
∫

Rn

b(x)(f(x)− fB)χB(x)dx
∣∣∣

=
1

2

1

‖χB‖Lϕ

∣∣∣
∫

B

(b(x)− bB)f(x)dx
∣∣∣

=
1

2

1

‖χB‖Lϕ

∫

B

|b(x)− bB|dx

≤ ‖L‖(Hϕ)∗‖a‖Hϕ ≤ C‖L‖(Hϕ)∗
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since L ∈ (Hϕ(Rn))∗ and Corollary 5.2. As B is arbitrary, the above implies b ∈
BMOϕ(Rn) and

‖b‖BMOϕ ≤ C‖L‖(Hϕ)∗ .

The uniqueness (in the sense b = b̃ if b − b̃ = const) of the function b is clear. And

thus the proof is finished.

3.7 The class of pointwise multipliers for BMO(Rn)

In this subsection, we give as an interesting application that the class of pointwise multi-

pliers for BMO(Rn) is just the dual of L1(Rn)+H log(Rn) where H log(Rn) is a Hardy space

of Musielak-Orlicz type related to the Musielak-Orlicz function θ(x, t) = t
log(e+|x|)+log(e+t)

.

We first introduce log-atoms. A measurable function a is said to be log-atom if it

satisfies the following three conditions

• a supported in B for some ball B in Rn,

• ‖a‖L∞ ≤
log(e+ 1

|B|) + supx∈B log(e+ |x|)
|B| ,

•
∫
Rn a(x)dx = 0.

To prove Theorem 3.3.3, we need the following two propositions.

Proposition 3.7.1. There exists a positive constant C such that if f is a θ-atom (resp.,

log-atom) then C−1f is a log-atom (resp., θ-atom).

Proposition 3.7.2. On BMOlog(Rn), we have

‖f‖BMOlog ≈ sup
B−ball

log(e+ 1
|B|) + supx∈B log(e+ |x|)

|B|

∫

B

|f(x)− fB|dx <∞.

We first note that θ is a growth function that satisfies nq(θ) < (n+1)i(θ) in Theorem

3.3.2. More precisely, θ ∈ A1 and θ(x, ·) is concave with i(θ) = 1.

Proof of Proposition 3.7.1. Let f be a log-atom. By the above remark, to prove that

there exists a constant C > 0 (independent of f and which may change from line to line)

such that C−1f is a θ-atom, it is sufficient to show that there exists a constant C > 0

such that ∫

B

θ
(
x,

log(e+ 1
|B|) + supx∈B log(e+ |x|)

|B|
)
dx ≤ C
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or, equivalently,

log(e+ 1
|B|

)+supx∈B log(e+|x|)
|B|

log(e+
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B| ) + supx∈B log(e+ |x|)
|B| ≤ C,

since θ ∈ A1. However, the last inequality is obvious.

Conversely, suppose that f is a θ-atom. Similarly, we need to show that there exists

a constant C > 0 such that
∫

B

θ
(
x, C

log(e+ 1
|B|) + supx∈B log(e+ |x|)

|B|
)
dx ≥ 1

or, equivalently,

C
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B|

log(e+ C
log(e+ 1

|B|
)+supx∈B log(e+|x|)

|B| ) + supx∈B log(e+ |x|)
|B| ≥ 1.

However it is true. For instance we may take C = 3.

Proof of Proposition 3.7.2. It is sufficient to show that there exists a constant C > 0

such that

C−1(| log r|+log(e+|x|)) ≤ log
(
e+

1

|B(x, r)|
)
+ sup
y∈B(x,r)

log(e+|y|) ≤ C(| log r|+log(e+|x|)).

The first inequality is easy and shall be omited. For the second, one first consider the

1 dimensional case. Then by symmetry, we just need to prove that

log(e+ 1/(b− a)) + sup
x∈[a,b]

log(e+ |x|) ≤ C(| log(b− a)/2|+ log(e+ |a+ b|/2))

for all b > 0, a ∈ [−b, b) ⊂ R. However, this follows from the basic two inequalities:

log(e+ 1/(b− a)) ≤ 2(| log(b− a)/2|+ log(e+ |a+ b|/2))

and

log(e+ b) ≤ 5 log(e+ b)/2 ≤ 5(| log(b− a)/2|+ log(e+ |a+ b|/2)).
For the general case Rn, by the 1-dimensional result, we obtain

log
(
e+

1

|B(x, r)|
)

≤ 2n

cn

n∑

i=1

log
(
e+

1

|[xi − r, xi + r]|
)

≤ C
n∑

i=1

(| log r|+ log(e+ |xi|))

≤ C(| log r|+ log(e+ |x|))
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where cn = |B(0, 1)|, and

sup
y∈B(x,r)

log(e+ |y|) ≤
n∑

i=1

sup
yi∈[xi−r,xi+r]

log(e+ |yi|)

≤ C
n∑

i=1

(| log r|+ log(e+ |xi|))

≤ C(| log r|+ log(e+ |x|))

where x = (x1, ..., xn), y = (y1, ..., yn) ∈ Rn. This finishes the proof.

Proof of Theorem 3.3.3. By Theorem 3.3.1, Theorem 3.3.2, Proposition 3.7.1, and

Proposition 3.7.2, we obtain (H log(Rn))∗ ≡ BMOlog(Rn). We deduce that, the class of

pointwise multipliers for BMO(Rn) is the dual of L1(Rn) +H log(Rn).

3.8 Finite atomic decompositions and their applica-

tions

We first prove the finite atomic decomposition theorem.

Proof of Theorem 3.3.4. Obviously, Hϕ,q,s
fin (Rn) ⊂ Hϕ(Rn) and for all f ∈ Hϕ,q,s

fin (Rn),

‖f‖Hϕ ≤ C‖f‖Hϕ,q,s
fin

.

Thus, we have to show that for every q ∈ (q(ϕ),∞) there exists a constant C > 0 such

that

‖f‖Hϕ,q,s
fin

≤ C‖f‖Hϕ

for all f ∈ Hϕ,q,s
fin (Rn) and that a similar estimate holds for q = ∞ and all f ∈ Hϕ,∞,s

fin (Rn)∩
C(Rn).

Assume that q ∈ (q(ϕ),∞], and by homogeneity, f ∈ Hϕ,q,s
fin (Rn) with ‖f‖Hϕ = 1.

Notice that f has compact support. Suppose that supp f ⊂ B = B(x0, r) for some ball

B. Recall that, for each k ∈ Z,

Ωk = {x ∈ Rn : f ∗(x) > 2k}.

Clearly, f ∈ Lqϕ(·,1)(R
n)∩Hϕ(Rn) where q = q if q <∞, q = q(ϕ)+1 if q = ∞. Hence,

by Theorem 3.5.2, there exists a atomic decomposition f =
∑

k∈Z
∑

i h
k
i ∈ Hϕ,∞,s

at (Rn) ⊂
Hϕ,q,s

at (Rn) where the series converges in S ′(Rn) and almost everywhere. Moreover,

Λq({hki }) ≤ Λ∞({hki }) ≤ C‖f‖Hϕ = C. (3.13)
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On the other hand, it follows from the second step in the proof of Theorem 6.2 of [20]

that there exists a constant C̃ > 0, depending only onm(ϕ), such that f ∗(x) ≤ C̃ inf
y∈B

f ∗(y)

for all x ∈ B(x0, 2r)
c. Hence, we have

f ∗(x) ≤ C̃ inf
y∈B

f ∗(y) ≤ C̃‖χB‖−1
Lϕ‖f ∗‖Lϕ ≤ C̃‖χB‖−1

Lϕ

for all x ∈ B(x0, 2r)
c. We now denote by k′ the largest integer k such that 2k < C̃‖χB‖−1

Lϕ .

Then,

Ωk ⊂ B(x0, 2r) for all k > k′. (3.14)

Next we define the functions g and ℓ by

g =
∑

k≤k′

∑

i

hki and ℓ =
∑

k>k′

∑

i

hki ,

where the series converge in S ′(Rn) and almost everywhere. Clearly, f = g + ℓ and supp

ℓ ⊂ ∪k>k′Ωk ⊂ B(x0, 2r) by (3.14). Therefore, g = f = 0 in B(x0, 2r)
c, and thus supp

g ⊂ B(x0, 2r).

Let 1 < q̃ < q
q(ϕ)

, then ϕ ∈ Aq/q̃. Consequently,

( 1

|B|

∫

B

|f(x)|q̃dx
)1/q̃

≤ C


 1

ϕ(B, 1)

∫

B

|f(x)|qϕ(x, 1)dx




1/q

<∞

by Lemma 3.4.5 if q < ∞ and it is trivial if q = ∞. Observe that supp f ⊂ B and that

f has vanishing moments up to order s. By the above, we obtain that f is a multiple of

a classical (1, q̃, 0)-atom and thus f ∗ ∈ L1(Rn). Hence, it follows from (3.14) that

∫

Rn

∑

k>k′

∑

i

|hki (x)xα|dx ≤ C(|x0|+ 2r)s
∑

k>k′

2k|Ωk| ≤ C(|x0|+ 2r)s‖f ∗‖L1 <∞,

for all |α| ≤ s. This together with the vanishing moments of hki implies that ℓ has

vanishing moments up to order s and thus so does g by g = f − ℓ.

In order to estimate the size of g in B(x0, 2r), we recall that

‖hki ‖L∞ ≤ C2k , supp hki ⊂ B(xki , 18r
k
i ) and

∑

i

χB(xki ,18r
k
i )
≤ C. (3.15)

Combining the above and the fact ‖χB‖Lϕ ≈ ‖χB(x0,2r)‖Lϕ , we obtain

‖g‖L∞ ≤ C
∑

k≤k′
2k ≤ C2k

′ ≤ CC̃‖χB‖−1
Lϕ ≤ C‖χB(x0,2r)‖−1

Lϕ .
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This proves that (see Definition 3.2.4)

C−1g is a (ϕ,∞, s)−atom. (3.16)

Now, we assume that q ∈ (q(ϕ),∞) and conclude the proof of (i). We first verify∑
k>k′

∑
i h

k
i ∈ Lqϕ(B(x0, 2r)). For any x ∈ Rn, since Rn = ∪k∈Z(Ωk \ Ωk+1), there exists

j ∈ Z such that x ∈ Ωj \ Ωj+1. Since supp hki ⊂ Ωk ⊂ Ωj+1 for k ≥ j + 1, it follows from

(3.15) that ∑

k>k′

∑

i

|hki (x)| ≤ C
∑

k≤j
2k ≤ C2j ≤ Cf ∗(x).

Since f ∈ Lqϕ(B) ⊂ Lqϕ(B(x0, 2r)), we have f ∗ ∈ Lqϕ(B(x0, 2r)). As ϕ satisfies uni-

formly locally dominated convergence condition, we further obtain
∑

k>k′

∑
i h

k
i converges

to ℓ in Lqϕ(B(x0, 2r)).

Now, for any positive integer K, set FK = {(i, k) : k > k′, |i| + |k| ≤ K} and

ℓK =
∑

(i,k)∈FK
hki . Observe that since

∑
k>k′

∑
i h

k
i converges to ℓ in Lqϕ(B(x0, 2r)),

for any ε > 0, if K is large enough, we have ε−1(ℓ − ℓK) is a (ϕ, q, s)-atom. Thus,

f = g+ ℓK+(ℓ− ℓK) is a finite linear atom combination of f . Then, it follows from (3.13)

and (3.16) that

‖f‖Hϕ,q,s
fin

≤ C(C + Λq({hki }(i,k)∈FK
) + ε) ≤ C,

which ends the proof of (i).

To prove (ii), assume that f is a continuous function in Hϕ,∞,s
fin (Rn), and thus f

is uniformly continuous. Then, hki is continuous by examining its definition. Since f

is bounded, there exists a positive integer k′′ > k′ such that Ωk = ∅ for all k > k′′.

Consequently, ℓ =
∑

k′<k≤k′′
∑

i h
k
i .

Let ε > 0. Since f is uniformly continuous, there exists δ > 0 such that if |x− y| < δ,

then |f(x)− f(y)| < ε. Write ℓ = ℓε1 + ℓε2 with

ℓε1 ≡
∑

(i,k)∈F1

hki and ℓε2 ≡
∑

(i,k)∈F2

hki

where F1 = {(i, k) : Crki ≥ δ, k′ < k ≤ k′′} and F2 = {(i, k) : Crki < δ, k′ < k ≤ k′′}
with C > 36 the geometric constant (see [106]). Notice that the remaining part ℓε1 will

then be a finite sum. Since the atoms are continuous, ℓε1 will be a continuous function.

Furthermore, ‖ℓε2‖L∞ ≤ C(k′′ − k′)ε (see also [106]). This means that one can write ℓ as

the sum of one continuous term and of one which is uniformly arbitrarily small. Hence, ℓ

is continuous, and so is g = f − ℓ.

To find a finite atomic decomposition of f , we use again the splitting ℓ = ℓε1 + ℓε2. By

(3.13), the part ℓε1 is a finite sum of multiples of (ϕ,∞, s)-atoms, and

‖ℓε1‖Hϕ,∞,s
fin

≤ Λ∞({hki }) ≤ C‖f‖Hϕ = C. (3.17)
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By ℓ, ℓε1 are continuous and have vanishing moments up to order s, and thus so does

ℓε2 = ℓ− ℓε1. Moreover, supp ℓε2 ⊂ B(x0, 2r) and ‖ℓε2‖L∞ ≤ C(k′′ − k′)ε. So we can choose

ε small enough such that ℓε2 into an arbitrarily small multiple of a continuous (ϕ,∞, s)-

atom. Therefore, f = g + ℓε1 + ℓε2 is a finite linear continuous atom combination of f .

Then, it follows from (3.16) and (3.17) that

‖f‖Hϕ,∞,s
fin

≤ C(‖g‖Hϕ,∞,s
fin

+ ‖ℓε1‖Hϕ,∞,s
fin

+ ‖ℓε2‖Hϕ,∞,s
fin

) ≤ C.

This finishes the proof of (ii) and hence, the proof of Theorem 3.4.

Next we give the proof for Theorem 3.3.5.

Proof of Theorem 3.3.5. Suppose that the assumption (i) holds. For any f ∈ Hϕ,q,s
fin (Rn),

by Theorem 3.3.4, there exists a finite atomic decomposition f =
∑k

j=1 λjaj, where aj’s

are multiples of (ϕ, q, s)-atoms with supported in balls Bj’s, such that

Λq({λjaj}kj=1) = inf

{
λ > 0 :

k∑

j=1

ϕ
(
Bj,

|λj|‖χBj
‖−1
Lϕ

λ

)
≤ 1

}
≤ C‖f‖Hϕ .

Recall that, since ϕ is of uniformly upper type γ, there exists a constant Cγ > 0 such

that

ϕ(x, st) ≤ Cγs
γϕ(x, t) for all x ∈ Rn, s ≥ 1, t ∈ [0,∞). (3.18)

If there exist j0 ∈ {1, ..., k} such that Cγ|λj0 |γ ≥
∑k

j=1 |λj|γ, then
k∑

j=1

ϕ

(
Bj,

|λj|‖χBj
‖−1
Lϕ

C
−1/γ
γ (

∑k
j=1 |λj|γ)1/γ

)
≥ ϕ(Bj0 , ‖χBj0

‖−1
Lϕ) = 1.

Otherwise, it follows from (3.18) that

k∑

j=1

ϕ

(
Bj,

|λj|‖χBj
‖−1
Lϕ

C
−1/γ
γ (

∑k
j=1 |λj|γ)1/γ

)
≥

k∑

j=1

|λj|γ∑k
j=1 |λj|γ

ϕ(Bj, ‖χBj
‖−1
Lϕ) = 1.

The above means that

( k∑

j=1

|λj|γ
)1/γ

≤ C1/γ
γ Λq({λjaj}kj=1) ≤ C‖f‖Hϕ .

Therefore, by assumption (i), we obtain that

‖Tf‖Bγ =

∥∥∥∥∥T
( k∑

j=1

λjaj

)∥∥∥∥∥
Bγ

≤ C
( k∑

j=1

|λj|γ
)1/γ

≤ C‖f‖Hϕ .
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Since Hϕ,q,s
fin (Rn) is dense in Hϕ(Rn), a density argument gives the desired result.

The case (ii) is similar by using the fact thatHϕ,∞,s
fin (Rn)∩C(Rn) is dense inHϕ,∞,s

fin (Rn)

in the quasi-norm ‖ · ‖Hϕ , see the below lemma.

We end the paper by the following lemma.

Lemma 3.8.1. Let ϕ be a growth function satisfying uniformly locally dominated conver-

gence condition, and (ϕ,∞, s) be an admissible triplet. Then, Hϕ,∞,s
fin (Rn) ∩ C∞(Rn) is

dense in Hϕ,∞,s
fin (Rn) in the quasi-norm ‖ · ‖Hϕ.

Proof. We take q ∈ (q(ϕ),∞) and φ ∈ S(Rn) satisfying supp φ ⊂ B(0, 1),
∫
Rn φ(x)dx = 1.

Then, the proof of the lemma is simple since it follows from the fact that for every

(ϕ,∞, s)-atom a supported in ball B(x0, r),

lim
t→0

‖a− a ∗ φt‖Lq
ϕ(B(x0,2r)) = 0

as ϕ satisfies uniformly locally dominated convergence condition.
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Chapter 4

Bilinear decompositions and

commutators of singular integral

operators

Ce chapitre est un article qui a été accepté à ”Transactions of the American Mathematical

Society”.

Résumé

Soit b une BMO-fonction. Il est bien connu que le commutateur linéaire [b, T ] d’un

opérateur de Calderón-Zygmund T ne constitue pas, en général, un opérateur borné de

H1(Rn) dans L1(Rn). Cependant, Pérez a montré que si H1(Rn) est remplacé par un sous-

espace approprié atomique H1
b(R

n), alors le commutateur est continu de H1
b(R

n) à valeurs

L1(Rn). Dans cet article, nous trouvons le plus grand sous-espace H1
b (R

n) telle que tous

les commutateurs des opérateurs Calderón-Zygmund sont continus de H1
b (R

n) à valeurs

L1(Rn). Certaines caractérisations équivalentes de H1
b (R

n) sont également données. Nous

étudions également les commutateurs [b, T ] pour T dans une classe K des opérateurs

sous-linéaire contenant presque tous les opérateurs importants dans l’analyse harmonique.

Lorsque T est linéaire, nous montrons qu’il existe des opérateurs bilinéairesR = RT borné

de H1(Rn)×BMO(Rn) à valeurs L1(Rn) tels que pour tout (f, b) ∈ H1(Rn)×BMO(Rn),

nous avons

[b, T ](f) = R(f, b) + T (S(f, b)), (4.1)

oùS est un opérateur borné bilinéaire deH1(Rn)×BMO(Rn) à valeurs L1(Rn), indépendant

de T . Dans le cas particulier où T est un opérateur de Calderón-Zygmund satisfaisant

T1 = T ∗1 = 0 et b dans BMOlog(Rn)– l’espace généralisé de type BMO qui a été introduit

89



par Nakai et Yabuta pour caractériser les multiplicateurs de BMO(Rn)–nous démontrons

que le commutateur [b, T ] est continu de H1
b (R

n) à valeurs h1(Rn). En outre, si b est dans

BMO(Rn) et T ∗1 = T ∗b = 0, alors le commutateur [b, T ] envoie H1
b (R

n) dans H1(Rn).

Lorsque T est sous-linéaire, nous montrons qu’il existe un opérateur borné sous-bilinéaire

R = RT : H1(Rn)×BMO(Rn) → L1(Rn) tel que pour tout (f, b) ∈ H1(Rn)×BMO(Rn),

nous avons

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|. (4.2)

La décomposition bilinéaire (4.1) et la décomposition sous-bilinéaire (4.2) nous perme-

ttent de donner un apercu général de toutes les estimations L1 faibles ou fortes connues.
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4.1 Introduction

Given a function b locally integrable on Rn, and a Calderón-Zygmund operator T , we

consider the linear commutator [b, T ] defined for smooth, compactly supported functions

f by

[b, T ](f) = bT (f)− T (bf).

A classical result of R. Coifman, R. Rochberg and G. Weiss (see [31]), states that

the commutator [b, T ] is continuous on Lp(Rn) for 1 < p < ∞, when b ∈ BMO(Rn).

Unlike the theory of Calderón-Zygmund operators, the proof of this result does not rely

on a weak type (1, 1) estimate for [b, T ]. In fact, it was shown in [119] that, in general,

the linear commutator fails to be of weak type (1, 1), when b is in BMO(Rn). Instead,

an endpoint theory was provided for this operator. It is well-known that any singular

integral operator maps H1(Rn) into L1(Rn). However, it was observed in [62] that the

commutator [b,H] with b in BMO(R), where H is Hilbert transform on R, does not map,

in general, H1(R) into L1(R). Instead of this, the weak type estimate (H1, L1) for [b, T ]

is well-known, see for example [96, 101, 139]. Remark that intuitively one would like to

write

[b, T ](f) =
∞∑

j=1

λj(b− bBj
)T (aj)− T

( ∞∑

j=1

λj(b− bBj
)aj

)
,

where f =
∑∞

j=1 λjaj a atomic decomposition of f and bBj
the average of b on Bj. This

is equivalent to ask for a commutation property
∞∑

j=1

λjbBj
T (aj) = T

( ∞∑

j=1

λjbBj
aj

)
. (4.3)

Even if most authors, for instance in [96, 101, 139, 146, 90, 137, 95], implicitely use

(4.3), one must be careful at this point. Indeed, the equality (4.3) is not clear since the

two series
∑∞

j=1 λjbBj
T (aj) and

∑∞
j=1 λjbBj

aj are not yet well-defined, in general. We

refer the reader to [19], Section 3, to be convinced that one must be careful with Equality

(4.3).

Although the commutator [b, T ] does not map continuously, in general, H1(Rn) into

L1(Rn), following Pérez [119] one can find a subspace H1
b(R

n) of H1(Rn) such that [b, T ]

maps continuously H1
b(R

n) into L1(Rn). Recall that (see [119]) a function a is a b-atom if

i) supp a ⊂ Q for some cube Q,

ii) ‖a‖L∞ ≤ |Q|−1,

iii)
∫
Rn a(x)dx =

∫
Rn a(x)b(x)dx = 0.

The space H1
b(R

n) consists of the subspace of L1(Rn) of functions f which can be written

as f =
∑∞

j=1 λjaj where aj are b-atoms, and λj are complex numbers with
∑∞

j=1 |λj| <∞.
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In [119] the author showed that the commutator [b, T ] is bounded from H1
b(R

n) into

L1(Rn) by establishing that

sup{‖[b, T ](a)‖L1 : a is a b−atom} <∞. (4.4)

This leaves a gap in the proof which we fill here (see below). Indeed, as it is pointed out in

[19], there exists a linear operator U defined on the space of all finite linear combination

of (1,∞)-atoms satisfying

sup{‖U(a)‖L1 : a is a (1,∞)−atom} <∞,

but which does not admit an extension to a bounded operator from H1(Rn) into L1(Rn).

From this result, we see that Inequality (4.4) does not suffice to conclude that [b, T ] is

bounded from H1
b(R

n) into L1(Rn). In the setting of H1(Rn), it is well-known (see [105]

or [144] for details) that a linear operator U can be extended to a bounded operator from

H1(Rn) into L1(Rn) if for some 1 < q <∞, we have

sup{‖U(a)‖L1 : a is a (1, q)−atom} <∞.

It follows from the fact that the finite atomic norm on H1,q
fin (R

n) is equivalent to the

standard infinite atomic decomposition norm on H1,q
ato(R

n) through the grand maximal

function characterization of H1(Rn). However, one can not use this method in the context

of H1
b(R

n).

Also, a natural question arises: can one find the largest subspace of H1(Rn) (of

course, this space contains H1
b(R

n), see also Theorem 4.5.2) such that all commutators

[b, T ] of Calderón-Zygmund operators are bounded from this space into L1(Rn)? For

b ∈ BMO(Rn), a non-constant function, we consider the space H1
b (R

n) consisting of all

f ∈ H1(Rn) such that the (sublinear) commutator [b,M] of f belongs to L1(Rn) where

M is the nontangential grand maximal operator (see Section 2). The norm on H1
b (R

n)

is defined by ‖f‖H1
b
:= ‖f‖H1‖b‖BMO + ‖[b,M](f)‖L1 . Here we just consider b is a non-

constant BMO-function since the commutator [b, T ] = 0 if b is a constant function. Then,

we prove that [b, T ] is bounded from H1
b (R

n) into L1(Rn) for every Calderón-Zygmund

singular integral operator T (in fact it holds for all T ∈ K, see below). Furthermore,

H1
b (R

n) is the largest space having this property (see Remark 4.5.1). This answers the

question above. Besides, we also consider the class K of all sublinear operators T , bounded

from H1(Rn) into L1(Rn), satisfying the condition

‖(b− bQ)Ta‖L1 ≤ C‖b‖BMO
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for all BMO-function b, H1-atom a related to the cube Q. Here bQ denotes the average

of b on Q, and C > 0 is a constant independent of b, a. This class K contains almost all

important operators in harmonic analysis: Calderón-Zygmund type operators, strongly

singular integral operators, multiplier operators, pseudo-differential operators, maximal

type operators, the area integral operator of Lusin, Littlewood-Paley type operators,

Marcinkiewicz operators, maximal Bochner-Riesz operators, etc... (See Section 4). When

T is linear and belongs to K, we prove that there exists a bounded bilinear operators

R = RT : H1(Rn)×BMO(Rn) → L1(Rn) such that for all (f, b) ∈ H1(Rn)×BMO(Rn),

we have the following bilinear decomposition

[b, T ](f) = R(f, b) + T (S(f, b)), (4.5)

where S is a bounded bilinear operator from H1(Rn)×BMO(Rn) into L1(Rn) which does

not depend on T (see Section 3). This bilinear decomposition is strongly related to our

previous result in [14] on paraproduct and product on H1(Rn)× BMO(Rn).

We then prove that [b, T ] is bounded from H1
b (R

n) into L1(Rn) (see Theorem 4.3.3) via

Bilinear decomposition (4.5) (see Theorem 4.3.2) and some characterizations of H1
b (R

n)

(see Theorem 4.5.1). Furthermore, by using the weak convergence theorem in H1(Rn) of

Jones and Journé, we prove that H1
b(R

n) ⊂ H1
b (R

n) (see Theorem 4.5.2). These allow us

to fill the gap mentioned above in [119].

On the other hand, as an immediate corollary of Bilinear decomposition (4.5), we also

obtain the weak type estimate (H1, L1) for the commutator [b, T ], where T is a Calderón-

Zygmund type operator, a strongly singular integral operator, a multiplier operator or

a pseudo-differential operator. We also point out that weak type estimates and Hardy

type estimates for the (linear) commutators of multiplier operators and of strongly sin-

gular Calderón-Zygmund operators have been studied recently (see [146, 90, 137] for the

multiplier operators and [95] for strongly singular Calderón-Zygmund operators).

Next, two natural questions for Hardy-type estimates of the commutator [b, T ] arised:

when does [b, T ] map H1
b (R

n) into h1(Rn) and when does [b, T ] map H1
b (R

n) into H1(Rn)?

This paper gives two sufficient conditions for the above two questions. Recall that

BMOlog(Rn) –the generalized BMO type space that has been introduced by Nakai and

Yabuta [116] to characterize multipliers of BMO(Rn)– is the space of all locally integrable

functions f such that

‖f‖BMOlog := sup
B(a,r)

| log r|+ log(e+ |a|)
|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)|dx <∞.

We obtain that if T is a Calderón-Zygmund operator satisfying T1 = T ∗1 = 0 and

b is in BMOlog(Rn), then the linear commutator [b, T ] maps continuously H1
b (R

n) into
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h1(Rn). This gives a sufficient condition to the first problem. For the second one, we

prove that if T is a Calderón-Zygmund operator satisfying T ∗1 = T ∗b = 0 and b is in

BMO(Rn), then the linear commutator [b, T ] maps continuously H1
b (R

n) into H1(Rn).

A difficult point to prove the first result is that we have to deal directly with f ∈
H1
b (R

n). It would be easier to do it for atomic type Hardy spaces as in the case of

H1
b(R

n). However, we do not know whether there exists an atomic characterization for

the space H1
b (R

n). This is still an open question.

Let X be a Banach space. We say that an operator T : X → L1(Rn) is a sublinear

operator if for all f, g ∈ X and α, β ∈ C, we have

|T (αf + βg)(x)| ≤ |α||Tf(x)|+ |β||Tg(x)|.

Obviously, a linear operator T : X → L1(Rn) is a sublinear operator. We also say

that a operator T : H1(Rn) × BMO(Rn) → L1(Rn) is a subbilinear operator if for all

(f, g) ∈ H1(Rn) × BMO(Rn) the operators T(f, ·) : BMO(Rn) → L1(Rn) and T(·, g) :

H1(Rn) → L1(Rn) are sublinear operators.

In this paper, we also obtain the subbilinear decomposition for sublinear commutator.

More precisely, when T ∈ K is a sublinear operator, we prove that there exists a bounded

subbilinear operator R = RT : H1(Rn) × BMO(Rn) → L1(Rn) so that for all (f, b) ∈
H1(Rn)× BMO(Rn), we have

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|. (4.6)

Then, the strong type estimate (H1
b , L

1) and the weak type estimate (H1, L1) of the com-

mutators of Littlewood-Paley type operators, of Marcinkiewicz operators, and of maximal

Bochner-Riesz operators, can be viewed as an immediate corollary of (4.6). When H1
b (R

n)

is replaced by H1
b(R

n), these type of estimates have also been considered recently (see for

example [97, 25, 102, 99, 100, 98]).

Let us emphasize the three main purposes of this paper. First, we want to give the

bilinear (resp., subbilinear) decompositions for the linear (resp., sublinear) commutators.

Second, we find the largest subspace of H1(Rn) such that all commutators of Calderón-

Zygmund operators map continuously this space into L1(Rn). Finally, we obtain the

(H1
b , h

1) and (H1
b , H

1) type estimates for commutators of Calderón-Zygmund operators.

Our paper is organized as follows. In Section 2 we present some notations and prelim-

inaries about the Calderón-Zygmund operators, the function spaces we use, and a short

introduction to wavelets, a useful tool in our work. In Section 3 we state our two de-

composition theorems (Theorem 4.3.1 and Theorem 4.3.2), the (H1
b , L

1) type estimates

for commutators (Theorem 4.3.3), and some remarks. The bilinear type estimates for
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commutators of Calderón-Zygmund operators (Theorem 4.3.4) and the boundedness of

commutators of Calderón-Zygmund operators on Hardy spaces are also given in this sec-

tion. In Section 4 we give some examples of operators in the class K and recall our result

from [14] which decomposes a product of f in H1(Rn) and g in BMO(Rn) as a sum of

images by four bilinear operators defined through wavelets. These operators are funda-

mental for the two decomposition theorems. In Section 5 we study the space H1
b (R

n).

Section 6 and 7 are devoted to the proofs of the two decomposition theorems, the (H1
b , L

1)

type estimates of commutators [b, T ] with T ∈ K, and the boundedness results of commu-

tators of Calderón-Zygmund operators. Finally, in Section 8 we present without proofs

some results for commutators of fractional integrals.

Throughout the whole paper, C denotes a positive geometric constant which is inde-

pendent of the main parameters, but may change from line to line. In Rn, we denote

by Q = Q[x, r] := {y = (y1, ..., yn) ∈ Rn : sup1≤i≤n |yi − xi| ≤ r} a cube with center

x = (x1, ..., xn) and radius r > 0. For any measurable set E, we denote by χE its charac-

teristic function, by |E| its Lebesgue measure, and by Ec the set Rn \ E. For a cube Q

and f a locally integrable function, we denote by fQ the average of f on Q.

Acknowledgements. The author would like to thank Prof. Aline Bonami for many

very valuable suggestions, discussions and advices to improve this paper. Specially, The-

orem 4.3.6 is an improvement from the previous version through her ideas. He would also

like to thank Prof. Sandrine Grellier for many helpful suggestions, her carefully reading

and revision of the manuscript. The author is deeply indebted to them.

4.2 Some preliminaries and notations

As usual, S(Rn) denotes the Schwartz class of test functions on Rn, S ′(Rn) the space of

tempered distributions, and C∞
0 (Rn) the space of C∞-functions with compact support.

4.2.1 Calderón-Zygmund operators

Let δ ∈ (0, 1]. A continuous function K : Rn ×Rn \ {(x, x) : x ∈ Rn} → C is said to be a

δ-Calderón-Zygmund singular integral kernel if there exists a constant C > 0 such that

|K(x, y)| ≤ C

|x− y|n

for all x 6= y, and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|δ
|x− y|n+δ
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for all 2|x− x′| ≤ |x− y|.
A linear operator T : S(Rn) → S ′(Rn) is said to be a δ-Calderón-Zygmund operator

if T can be extended to a bounded operator on L2(Rn) and if there exists a δ-Calderón-

Zygmund singular integral kernel K such that for all f ∈ C∞
0 (Rn) and all x /∈ supp f , we

have

Tf(x) =

∫

Rn

K(x, y)f(y)dy.

We say that T is a Calderón-Zygmund operator if it is a δ-Calderón-Zygmund operator

for some δ ∈ (0, 1].

We say that the Calderón-Zygmund operator T satisfies the condition T ∗1 = 0 (resp.,

T1 = 0) if
∫
Rn Ta(x)dx = 0 (resp.,

∫
Rn T

∗a(x)dx = 0) holds for all classical H1-atoms a.

Let b be a locally integrable function on Rn. We say that the Calderón-Zygmund operator

T satisfies the condition T ∗b = 0 if
∫
Rn b(x)Ta(x)dx = 0 holds for all classical H1-atoms

a.

4.2.2 Function spaces

We first consider the subspace A of S(Rn) defined by

A =
{
φ ∈ S(Rn) : |φ(x)|+ |∇φ(x)| ≤ (1 + |x|2)−(n+1)

}
,

where ∇ = (∂/∂x1, ..., ∂/∂xn) denotes the gradient. We then define

Mf(x) := sup
φ∈A

sup
|y−x|<t

|f ∗ φt(y)| and mf(x) := sup
φ∈A

sup
|y−x|<t<1

|f ∗ φt(y)|,

where φt(·) = t−nφ(t−1·). The space H1(Rn) is the space of all tempered distribu-

tions f such that Mf ∈ L1(Rn) equipped with the norm ‖f‖H1 = ‖Mf‖L1 . The

space h1(Rn) denotes the space of all tempered distributions f such that mf ∈ L1(Rn)

equipped with the norm ‖f‖h1 = ‖mf‖L1 . The space H log(Rn) (see [81, 14]) denotes the

space of all tempered distributions f such that Mf ∈ Llog(Rn) equipped with the norm

‖f‖Hlog = ‖Mf‖Llog . Here Llog(Rn) is the space of all measurable functions f such that∫
Rn

|f(x)|
log(e+|x|)+log(e+|f(x)|)dx <∞ with the (quasi-)norm

‖f‖Llog := inf



λ > 0 :

∫

Rn

|f(x)|
λ

log(e+ |x|) + log(e+ |f(x)|
λ

)
dx ≤ 1



 .

Clearly, for any f ∈ H1(Rn), we have

‖f‖h1 ≤ ‖f‖H1 and ‖f‖Hlog ≤ ‖f‖H1 .
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We remark that the local real Hardy space h1(Rn), first introduced by Goldberg [56],

is larger than H1(Rn) and allows more flexibility, since global cancellation conditions are

not necessary. For example, the Schwartz space is contained in h1(Rn) but not in H1(Rn),

and multiplication by cutoff functions preserves h1(Rn) but not H1(Rn). Thus it makes

h1(Rn) more suitable for working in domains and on manifolds.

It is well-known (see [48] or [128]) that the dual of H1(Rn) is BMO(Rn) the space of

all locally integrable functions f with

‖f‖BMO := sup
B

1

|B|

∫

B

|f(x)− fB|dx <∞,

where the supremum is taken over all balls B. We note Q := [0, 1)n and, for f a function

in BMO(Rn),

‖f‖BMO+ := ‖f‖BMO + |fQ|.

We should also point out that the space H log(Rn) arises naturally in the study of

pointwise product of functions inH1(Rn) with functions inBMO(Rn), and in the endpoint

estimates for the div-curl lemma (see for example [11, 14, 81]).

In [56] it was shown that the dual of h1(Rn) can be identified with the space bmo(Rn),

consisting of locally integrable functions f with

‖f‖bmo := sup
|B|≤1

1

|B|

∫

B

|f(x)− fB|dx+ sup
|B|≥1

1

|B|

∫

B

|f(x)|dx <∞,

where the supremums are taken over all balls B.

Clearly, for any f ∈ bmo(Rn), we have

‖f‖BMO ≤ ‖f‖BMO+ ≤ C‖f‖bmo.

We next recall that the space VMO(Rn) (resp., vmo(Rn)) is the closure of C∞
0 (Rn) in

(BMO(Rn), ‖ · ‖BMO) (resp., (bmo(R
n), ‖ · ‖bmo)). It is well-known that (see [32] and [35])

the dual of VMO(Rn) (resp., vmo(Rn)) is the Hardy space H1(Rn) (resp., h1(Rn)). We

point out that the space VMO(Rn) (resp., vmo(Rn)) considered by Coifman and Weiss

(resp., Dafni [35]) is different from the one considered by Sarason. Thanks to Bourdaud

[18], it coincides with the space VMO(Rn) (resp., vmo(Rn)) considered above.

In the study of the pointwise multipliers for BMO(Rn), Nakai and Yabuta [116] in-

troduced the space BMOlog(Rn), consisting of locally integrable functions f with

‖f‖BMOlog := sup
B(a,r)

| log r|+ log(e+ |a|)
|B(a, r)|

∫

B(a,r)

|f(x)− fB(a,r)|dx <∞.
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There, the authors proved that a function g is a pointwise multiplier for BMO(Rn) if and

only if g belongs to L∞(Rn)∩BMOlog(Rn). Furthermore, it is also shown in [81] that the

space BMOlog(Rn) is the dual of the space H log(Rn).

Definition 4.2.1. Let b be a locally integrable function and 1 < q ≤ ∞. A function a is

called a (q, b)-atom related to the cube Q if

i) supp a ⊂ Q,

ii) ‖a‖Lq ≤ |Q|1/q−1,

iii)
∫
Rn a(x)dx =

∫
Rn a(x)b(x)dx = 0.

The space H1,q
b (Rn) consists of the subspace of L1(Rn) of functions f which can be

written as f =
∑∞

j=1 λjaj, where aj’s are (q, b)-atoms, λj ∈ C, and
∑∞

j=1 |λj| < ∞. As

usual, we define on H1,q
b (Rn) the norm

‖f‖H1,q
b

:= inf
{ ∞∑

j=1

|λj| : f =
∞∑

j=1

λjaj

}
.

Observe that when q = ∞, then the space H1,∞
b (Rn) is just the space H1

b(R
n) con-

sidered in [119]. Furthermore, H1,∞
b (Rn) ⊂ H1,q

b (Rn) ⊂ H1(Rn) and the inclusions are

continuous.

We next introduce the space H1
b (R

n) as follows.

Definition 4.2.2. Let b be a non-constant BMO-function. The space H1
b (R

n) consists

of all f in H1(Rn) such that [b,M](f)(x) = M(b(x)f(·)− b(·)f(·))(x) belongs to L1(Rn).

We equipped H1
b (R

n) with the norm ‖f‖H1
b
:= ‖f‖H1‖b‖BMO + ‖[b,M](f)‖L1.

4.2.3 Prerequisites on Wavelets

Let us consider a wavelet basis of R with compact support. More explicitly, we are first

given a C1(R)-wavelet in Dimension one, called ψ, such that {2j/2ψ(2jx − k)}j,k∈Z form

an L2(R) basis. We assume that this wavelet basis comes for a multiresolution analysis

(MRA) on R, as defined below (see [107]).

Definition 4.2.3. A multiresolution analysis (MRA) on R is defined as an increasing

sequence {Vj}j∈Z of closed subspaces of L2(R) with the following four properties

i)
⋂
j∈Z Vj = {0} and

⋃
j∈Z Vj = L2(R),

ii) for every f ∈ L2(R) and every j ∈ Z, f(x) ∈ Vj if and only if f(2x) ∈ Vj+1,

iii) for every f ∈ L2(R) and every k ∈ Z, f(x) ∈ V0 if and only if f(x− k) ∈ V0,

iv) there exists a function φ ∈ L2(R), called the scaling function, such that the family

{φk(x) = φ(x− k) : k ∈ Z} is an orthonormal basis for V0.
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It is classical that, given an (MRA) on R, one can find a wavelet ψ such that

{2j/2ψ(2jx − k)}k∈Z is an orthonormal basis of Wj, the orthogonal complement of Vj in

Vj+1. Moreover, by Daubechies Theorem (see [36]), it is possible to find a suitable (MRA)

so that φ and ψ are C1(R) and compactly supported, ψ has mean 0 and
∫
xψ(x)dx = 0,

which is known as the moment condition. We could content ourselves, in the following

theorems, to have φ and ψ decreasing sufficiently rapidly at ∞, but proofs are simpler

with compactly supported wavelets. More precisely we can choose m > 1 such that φ and

ψ are supported in the interval 1/2 +m(−1/2,+1/2), which is obtained from (0, 1) by a

dilation by m centered at 1/2.

Going back to Rn, we recall that a wavelet basis of Rn is constructed as follows. We call

E the set E = {0, 1}n \{(0, · · · , 0)} and, for σ ∈ E, put ψσ(x) = φσ1(x1) · · ·φσn(xn), with
φσj(xj) = φ(xj) for σj = 0 while φσj(xj) = ψ(xj) for σj = 1. Then the set {2nj/2ψσ(2jx−
k)}j∈Z,k∈Zn,σ∈E is an orthonormal basis of L2(Rn). As it is classical, for I a dyadic cube

of Rn, which may be written as the set of x such that 2jx− k ∈ (0, 1)n, we note

ψσI (x) = 2nj/2ψσ(2jx− k).

We also note φI = 2nj/2φ(0,1)n(2
jx − k), with φ(0,1)n the scaling function in n variables,

given by φ(0,1)n(x) = φ(x1) · · ·φ(xn). In the sequel, the letter I always refers to dyadic

cubes. Moreover, we note kI the cube of same center dilated by the coefficient k. Because

of the assumption on the supports of φ and ψ, the functions ψσI and φI are supported in

the cube mI.

The wavelet basis {ψσI }, obtained by letting I vary among dyadic cubes and σ in

E, comes from an (MRA) in Rn, which we still note {Vj}j∈Z, obtained by taking tensor

products of the one-dimensional ones.

The following theorem gives the wavelet characterization of H1(Rn) (cf. [107, 63]).

Theorem 4.2.1. There exists a constant C > 0 such that f ∈ H1(Rn) if and only if

Wψf :=
(∑

I

∑
σ∈E |〈f, ψσI 〉|2|I|−1χI

)1/2
∈ L1(Rn), moreover,

C−1‖f‖H1 ≤ ‖Wψf‖L1 ≤ C‖f‖H1 .

A function a ∈ L2(Rn) is called a ψ-atom related to the (not necessarily dyadic) cube

R if it may be written as

a =
∑

I⊂R

∑

σ∈E
aI,σψ

σ
I

with ‖a‖L2 ≤ |R|−1/2. Remark that a is compactly supported in mR and has mean 0,

so that it is a classical atom related to mR, up to the multiplicative constant mn/2. It
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is standard that an atom is in H1(Rn) with norm bounded by a uniform constant. The

atomic decomposition gives the converse.

Theorem 4.2.2 (Atomic decomposition). There exists a constant C > 0 such that all

functions f ∈ H1(Rn) can be written as the limit in the distribution sense and in H1(Rn)

of an infinite sum

f =
∞∑

j=1

λjaj

with aj ψ-atoms related to some dyadic cubes Rj and λj constants such that

C−1‖f‖H1 ≤
∞∑

j=1

|λj| ≤ C‖f‖H1 .

This theorem is a small variation of a standard statement which can be found in [63],

Section 6.5. Remark that the interest of dealing with finite atomic decompositions has

been underlined recently, for instance in [105, 81].

Now, we denote by H1
fin(R

n) the vector space of all finite linear combinations of ψ-

atoms, that is,

f =
k∑

j=1

λjaj,

where aj’s are ψ-atoms. Then, the norm of f in H1
fin(R

n) is defined by

‖f‖H1
fin

= inf
{ k∑

j=1

|λj| : f =
k∑

j=1

λjaj

}
.

By the atomic decomposition theorem, the set H1
fin(R

n) is dense in H1(Rn) for the

norm ‖ · ‖H1 .

The following two wavelet characterizations of Lp(Rn), 1 < p < ∞, and BMO(Rn)

are well-known (see [107]).

Theorem 4.2.3. Let 1 < p <∞. Then the norms

‖f‖Lp , ‖(
∑

I

∑

σ∈E
|〈f, ψσI 〉|2|I|−1χI)

1/2‖Lp and ‖(
∑

I

∑

σ∈E
|〈f, ψσI 〉|2(ψσI )2)1/2‖Lp

are equivalent on Lp(Rn).

Theorem 4.2.4. A function g ∈ BMO(Rn) if and only if

1

|R|
∑

I⊂R

∑

σ∈E
|〈g, ψσI 〉|2 <∞
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for all (not necessarily dyadic) cubes R. Moreover, there exists a constant C > 0 such

that for all g ∈ BMO(Rn),

C−1‖g‖BMO ≤ sup
R

( 1

|R|
∑

I⊂R

∑

σ∈E
|〈g, ψσI 〉|2

)1/2
≤ C‖g‖BMO,

where the supremum is taken over all cubes R.

By Theorem 4.2.3, Theorem 4.2.4 and John-Nirenberg inequality, we obtain the fol-

lowing lemma. The proof is easy and will be omitted.

Lemma 4.2.1. Let f be a ψ-atom related to the cube R and b ∈ BMO(Rn). Then,∑
I⊂R

∑
σ∈E〈f, ψσI 〉〈b, ψσI 〉(ψσI )2 ∈ Lq(Rn) for any q ∈ (1, 2).

4.3 Bilinear, subbilinear decompositions and commu-

tators

Recall that K is the set of all sublinear operators T bounded from H1(Rn) into L1(Rn)

satisfying

‖(b− bQ)Ta‖L1 ≤ C‖b‖BMO,

for all b ∈ BMO(Rn), any H1-atom a supported in the cube Q, where C > 0 a constant

independent of b, a. This class K contains almost all important operators in harmonic

analysis: Calderón-Zygmund type operators, strongly singular integral operators, multi-

plier operators, pseudo-differential operators, maximal type operators, the area integral

operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz operators, maximal

Bochner-Riesz operators, etc... (See Section 4).

Here and in what follows the bilinear operator S is defined by

S(f, g) = −
∑

I

∑

σ∈E
〈f, ψσI 〉〈g, ψσI 〉(ψσI )2.

In [14], the authors show that S is a bounded bilinear operator from H1(Rn) ×
BMO(Rn) into L1(Rn).

4.3.1 Two decomposition theorems and (H1
b , L

1) type estimates

Let b be a locally integrable function and T ∈ K. As usual, the (sublinear) commutator

[b, T ] of the operator T is defined by [b, T ](f)(x) := T
(
(b(x)− b(·))f(·)

)
(x).
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Theorem 4.3.1 (Subbilinear decomposition). Let T ∈ K. There exists a bounded sub-

bilinear operator R = RT : H1(Rn) × BMO(Rn) → L1(Rn) such that for all (f, b) ∈
H1(Rn)× BMO(Rn), we have

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|.

Corollary 4.3.1. Let T ∈ K be such that T is of weak type (1, 1). Then, the bilinear

operator P(f, g) = [g, T ](f) maps continuously H1(Rn) × BMO(Rn) into weak-L1(Rn).

In particular, the commutator [b, T ] is of weak type (H1, L1) if b ∈ BMO(Rn).

We remark that the class of operators T ∈ K of weak type (1, 1) contains Calderón-

Zygmund operators, strongly singular integral operators, multiplier operators, pseudo-

differential operators whose symbols in the Hörmander class Sm̺,δ with 0 < ̺ ≤ 1, 0 ≤
δ < 1,m ≤ −n((1− ̺)/2+max{0, (δ− ̺)/2}), maximal type operators, the area integral

operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz operators, maximal

Bochner-Riesz operators T δ∗ with δ > (n− 1)/2, etc...

When T is linear and belongs to K, we obtain the bilinear decomposition for the linear

commutator [b, T ] of f , [b, T ](f) = bT (f)−T (bf), instead of the subbilinear decomposition

as stated in Theorem 4.3.1.

Theorem 4.3.2 (Bilinear decomposition). Let T be a linear operator in K. Then, there

exists a bounded bilinear operator R = RT : H1(Rn)×BMO(Rn) → L1(Rn) such that for

all (f, b) ∈ H1(Rn)× BMO(Rn), we have

[b, T ](f) = R(f, b) + T (S(f, b)).

The following result gives (H1
b , L

1)-type estimates for commutators [b, T ] when T be-

longs to the class K.

Theorem 4.3.3. Let b be a non-constant BMO-function and T ∈ K. Then, the commu-

tator [b, T ] maps continuously H1
b (R

n) into L1(Rn).

Remark that in the particular case of T a 1-Calderón-Zygmund operator and H1
b (R

n)

replaced by H1
b(R

n), Pérez [119] proved

sup{‖[b, T ](a)‖L1 : a is a (∞, b)−atom} <∞. (4.7)

Then he concludes that the (linear) commutator [b, T ] maps continuously H1
b(R

n) into

L1(Rn). Notice that H1
b(R

n) ⊂ H1,q
b (Rn) ⊂ H1

b (R
n), 1 < q ≤ ∞, and the inclusions

are continuous (see Section 5). However, as mentioned in the introduction, Inequality
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(4.7) does not suffice to conclude that the (linear) commutator [b, T ] is bounded from

H1
b(R

n) to L1(Rn). We should also point out that the (H1, L1) weak type estimates and

the (H1
b , L

1) type estimates for the (linear) commutators of multiplier operators (see [146,

90, 137]), strongly singular Calderón-Zygmund operators (see [95]) and for the (sublinear)

commutators of Littlewood-Paley type operators (see [97]), Marcinkiewicz operators (see

[102]), maximal Bochner-Riesz operators (see [99, 100, 98]) have been studied recently.

However, the authors just prove Inequality (4.4) (that is Inequality (4.7)) and use Equality

(4.3) which leaves a gap as pointed out in the introduction.

4.3.2 Boundedness of linear commutators on Hardy spaces

Analogously to Hardy estimates for bilinear operators of Coifman and Grafakos [29] (see

also [42]), we obtain the following strongly bilinear estimates which improve Corollary

5.3.1.

Theorem 4.3.4. Let T be a linear operator in K. Assume that Ai, Bi, i = 1, ..., K, are

Calderón-Zygmund operators satisfying Ai1 = A∗
i 1 = Bi1 = B∗

i 1 = 0, and for every f

and g in L2(Rn),
∫

Rn

( K∑

i=1

Aif.Big
)
dx = 0.

Then, the bilinear operator T, defined by

T(f, g) =
K∑

i=1

[Big, T ](Aif),

maps continuously H1(Rn)× BMO(Rn) into L1(Rn).

We now give a sufficient condition for the linear commutator [b, T ] to map continuously

H1
b (R

n) into h1(Rn).

Theorem 4.3.5. Let b be a non-constant BMOlog-function and T be a Calderón-Zygmund

operator with T1 = T ∗1 = 0. Then, the linear commutator [b, T ] maps continuously

H1
b (R

n) into h1(Rn).

The last theorem gives a sufficient condition for the linear commutator [b, T ] to map

continuously H1
b (R

n) into H1(Rn).

Theorem 4.3.6. Let b be a non-constant BMO-function and T be a Calderón-Zygmund

operator with T ∗1 = T ∗b = 0. Then, the linear commutator [b, T ] maps continuously

H1
b (R

n) into H1(Rn).
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Observe that the condition T ∗b = 0 is ”necessary” in the sense that if the linear

commutator [b, T ] maps continuously H1
b (R

n) into H1(Rn), then
∫
Rn b(x)Ta(x)dx = 0

holds for all (q, b)-atoms a, 1 < q ≤ ∞.

Also, let us give some examples to illustrate the sufficient conditions in Theorem 4.3.6.

To have many examples, let us consider Euclidean spaces Rn, n ≥ 2. Now, consider all

Calderón-Zygmund operators T such that T ∗1 = 0. As the closure of T (H1(Rn)) is a

proper subset of H1(Rn), by the Hahn-Banach theorem (note that BMO(Rn) is the dual

of H1(Rn)), one may take b a non-constant BMO-function such that
∫
Rn bTadx = 0 for

all H1-atoms a, i.e. T ∗b = 0, and thus b and T satisfy the sufficient condition in Theorem

4.3.6.

4.4 The class K and four bilinear operators on H1(Rn)×
BMO(Rn)

4.4.1 The class K
The purpose of this subsection is to give some examples of operators in the class K.

More precisely, the class K contains almost all important operators in Harmonic anal-

ysis: Calderón-Zygmund type operators, strongly singular integral operators, multiplier

operators, pseudo-differential operators with symbols in the Hörmander class Sm̺,δ with

0 < ̺ ≤ 1, 0 ≤ δ < 1,m ≤ −n((1 − ̺)/2 + max{0, (δ − ̺)/2}) (see [2, 1]), maxi-

mal type operators, the area integral operator of Lusin, Littlewood-Paley type operators,

Marcinkiewicz operators, maximal Bochner-Riesz operators T δ∗ with δ > (n − 1)/2 (cf.

[87]), etc... It is well-known that these operators T are bounded from H1(Rn) into L1(Rn).

So, in order to establish that these ones are in the class K, we just need to show that

‖(b− bQ)Ta‖L1 ≤ C‖b‖BMO (4.8)

for all BMO-function b, H1-atom a related to a cube Q = Q[x0, r] with constant C > 0

independent of b, a.

Observe that the nontangential grand maximal operator M belongs to K since it

satisfies Inequality (4.8) (cf. [128]). We refer also to [62] for the (sublinear) commutators

[b,Mϕ,α] of the maximal operators Mϕ,α –note that Mϕ,0 lies in K–.

Here we just give the proofs for Calderón-Zygmund operators (linear operators) and

the area integral operator of Lusin (sublinear operator). For the other operators, we leave

the proofs to the interested reader.

104



First recall that P (x) = 1
(1+|x|2)(n+1)/2 is the Poisson kernel and uf (x, t) := f ∗ Pt(x) is

the Poisson integral of f . Then the area integral operator S of Lusin is defined by

S(f)(x) =



∫

Γ(x)

|∇uf (y, t)|2t1−ndydt




1/2

,

where Γ(x) is the cone {(y, t) ∈ Rn+1
+ : |y − x| < t} with vertex at x, while ∇uf =

(∂uf/∂x1, ..., ∂uf/∂x1, ∂uf/∂t) is the gradient of uf on Rn+1
+ = Rn × (0,∞).

Proposition 4.4.1. Let δ ∈ (0, 1] and T be a δ-Calderón-Zygmund operator. Then T

satisfies Inequality (4.8), and thus T belongs to K.

Proof. We cut the integral of |(b− bQ)Ta| into two parts. By Schwarz inequality and the

boundedness of T on L2(Rn), we have

∫

2Q

|b(x)− bQ||Ta(x)|dx ≤ C



∫

2Q

|b(x)− bQ|2dx




1/2

‖a‖L2

≤ C‖b‖BMO

here one used the fact |b2Q − bQ| ≤ C‖b‖BMO. Next, for x /∈ 2Q,

|Ta(x)| =

∣∣∣∣∣∣

∫

Q

(K(x, y)−K(x, x0))a(y)dy

∣∣∣∣∣∣

≤ C

∫

Q

|y − x0|δ
|x− x0|n+δ

|a(y)|dy

≤ C
rδ

|x− x0|n+δ
.

Therefore,

∫

(2Q)c

|b(x)− bQ||Ta(x)|dx ≤ C

∫

Qc

|b(x)− bQ|
rδ

|x− x0|n+δ
dx ≤ C‖b‖BMO,

since the last inequality is classical (cf. [128]). This finishes the proof.

Corollary 4.4.1. Let Rj, j = 1, ..., n, be the classical Riesz transforms. Then, Rj belongs

to K for all j = 1, ..., n.
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Proposition 4.4.2. The area integral operator S satisfies Inequality (4.8), and thus S

belongs to K.

Proof. We also cut the integral of |(b − bQ)S(a)| into two parts. By Schwarz inequality

and the boundedness of S on L2(Rn), we have

∫

2Q

|b(x)− bQ||S(a)(x)|dx ≤ C



∫

2Q

|b(x)− bQ|2dx




1/2

‖a‖L2

≤ C‖b‖BMO.

Next, for x /∈ 2Q, by using the equality

ua(y, t) =

∫

Rn

1

tn

(
P
(y − z

t

)
− P

(y − x0
t

))
a(z)dz,

since
∫
Rn a(z)dz = 0, it is easy to establish that

S(a)(x) =



∫

Γ(x)

|∇ua(y, t)|2t1−ndydt




1/2

≤ C
r

|x− x0|n+1
.

Therefore,
∫

(2Q)c

|b(x)− bQ||S(a)(x)|dx ≤ C

∫

Qc

|b(x)− bQ|
r

|x− x0|n+1
dx ≤ C‖b‖BMO,

which ends the proof.

We should point out that the Littlewood-Paley type operators can be viewed as vector-

valued Calderón-Zygmund operators (see [122]). See also [62] in the context of vector-

valued commutators.

4.4.2 Four bilinear operators on H1(Rn)× BMO(Rn)

We now consider four bilinear operators on H1(Rn)× BMO(Rn) which are fundamental

for our bilinear decomposition theorem.

We first state some lemmas whose proofs can be found in [14].

Lemma 4.4.1. The bilinear operator Π3 defined on H1(Rn)× BMO(Rn) by

Π3(f, g) =
∑

I

∑

σ∈E
〈f, ψσI 〉〈g, ψσI 〉(ψσI )2

is a bounded bilinear operator from H1(Rn)× BMO(Rn) into L1(Rn).
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Observe that S(f, g) = −Π3(f, g) for all (f, g) ∈ H1(Rn)× BMO(Rn).

Lemma 4.4.2. The bilinear operator Π4, defined on H1(Rn)× BMO(Rn) by

Π4(f, g) =
∑

I,I′

∑

σ,σ′∈E
〈f, ψσI 〉〈g, ψσ

′

I′ 〉ψσI ψσ
′

I′ ,

the sums being taken over all dyadic cubes I, I ′ and σ, σ′ ∈ E such that (I, σ) 6= (I ′, σ′),

is a bounded bilinear operator from H1(Rn)× BMO(Rn) into H1(Rn).

Lemma 4.4.3. The bilinear operator Π1 defined by

Π1(a, g) =
∑

|I|=|I′|

∑

σ∈E
〈a, φI〉〈g, ψσI′〉φIψσI′ ,

where a is a ψ-atom and g ∈ BMO(Rn), can be extended into a bounded bilinear operator

from H1(Rn)× BMO(Rn) into H1(Rn).

Lemma 4.4.4. The bilinear operator Π2 defined by

Π2(a, g) =
∑

|I|=|I′|

∑

σ∈E
〈a, ψσI 〉〈g, φI′〉ψσI φI′ ,

where a is a ψ-atom related to the cube R and g ∈ BMO(Rn), can be extended into a

bounded bilinear operator from H1(Rn) × BMO+(Rn) into H log(Rn). Furthermore, we

can write

Π2(a, g) = h(1) + κgRh
(2) (4.9)

where ‖h(1)‖H1 ≤ C‖g‖BMO, h(2) is an atom related to mR, and κ a uniform constant,

independent of a and g.

The following remarks are useful in our proofs in Section 6 and Section 7.

Remark 4.4.1. 1. If g ∈ BMO(Rn) and f ∈ H1(Rn) such that fg ∈ L1(Rn), then
∫

Rn

fgdx = −
∫

Rn

S(f, g)dx =
∑

I

∑

σ∈E
〈f, ψσI 〉〈g, ψσI 〉.

2. For any (f, g) ∈ H1(Rn)× BMO(Rn) and c a constant, we have

Πi(f, g) = Πi(f, g + c) , i = 1, 3, 4.

3. As a consequence of Lemma 4.4.4, if gR = 0 then Equality (4.9) gives that Π2(a, g) ∈
H1(Rn). Moreover, ‖Π2(a, g)‖H1 ≤ C‖g‖BMO.
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In [14], the authors have shown the following decomposition theorem for the product

space H1(Rn)× BMO(Rn).

Theorem 4.4.1 (Decomposition theorem). Let f ∈ H1(Rn) and g ∈ BMO(Rn). Then,

we have the following decomposition

fg = Π1(f, g) + Π2(f, g) + Π3(f, g) + Π4(f, g),

that is

fg = Π1(f, g) + Π2(f, g) + Π4(f, g)−S(f, g).

4.5 The space H1
b (R

n)

Let b be a non-constant BMO-function. In this section, we study the space H1
b (R

n). In

particular, we give some characterizations of the space H1
b (R

n) (see Theorem 4.5.1), and

the comparison with the space H1
b(R

n) of Pérez (see Theorem 4.5.2).

First, let us consider the class K̃ of all T ∈ K such that T characterizes the space

H1(Rn), that means f ∈ H1(Rn) if and only if Tf ∈ L1(Rn). Clearly, the class K̃ contain

the maximal operator M, the area integral operator S of Lusin, the Littlewood-Paley

g-operator (see [48]), the Littlewood-Paley g∗λ-operator with λ > 3n (see [67]), etc...

Here and in what follows, the symbol f ≈ g means that C−1f ≤ g ≤ Cf for some

constant C > 0. We obtain the following characterization of H1
b (R

n).

Theorem 4.5.1. Let b be a non-constant BMO-function and T ∈ K̃. For f ∈ H1(Rn),

the following conditions are equivalent:

i) f ∈ H1
b (R

n).

ii) S(f, b) ∈ H1(Rn).

iii) [b,Rj](f) ∈ L1(Rn) for all j = 1, ..., n.

iv) [b, T ](f) ∈ L1(Rn).

Furthermore, if one of these conditions is satisfied, then

‖f‖H1
b

= ‖f‖H1‖b‖BMO + ‖[b,M](f)‖L1

≈ ‖f‖H1‖b‖BMO + ‖S(f, b)‖H1

≈ ‖f‖H1‖b‖BMO +
n∑

j=1

‖[b,Rj](f)‖L1

≈ ‖f‖H1‖b‖BMO + ‖[b, T ](f)‖L1 ,

where the constants are independent of f and b.
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Remark 4.5.1. Theorem 4.3.3 and Theorem 4.5.1 give that [b, T ] is bounded from H1
b (R

n)

to L1(Rn) for every T a Calderón-Zygmund singular integral operator. Furthermore,

H1
b (R

n) is the largest space having this property.

Proof of Theorem 4.5.1. (i) ⇔ (ii) By Theorem 4.3.1, there exists a bounded subbilinear

operator R : H1(Rn)× BMO(Rn) → L1(Rn) such that

M(S(f, b))−R(f, b) ≤ |[b,M](f)| ≤ R(f, b) +M(S(f, b)).

Consequently, S(f, b) ∈ H1(Rn) if and only if [b,M](f) ∈ L1(Rn). Moreover,

‖f‖H1
b
≈ ‖f‖H1‖b‖BMO + ‖S(f, b)‖H1 .

(ii) ⇔ (iii). By Theorem 4.3.2, there exist n bounded bilinear operatorsRj : H
1(Rn)×

BMO(Rn) → L1(Rn), j = 1, ..., n, such that

[b,Rj](f) = Rj(f, b) +Rj(S(f, b)).

Consequently, S(f, b) ∈ H1(Rn) if and only if [b,Rj](f) ∈ L1(Rn) for all j = 1, ..., n.

Moreover,

‖f‖H1‖b‖BMO + ‖S(f, b)‖H1 ≈ ‖f‖H1‖b‖BMO +
n∑

j=1

‖[b,Rj](f)‖L1 .

(ii) ⇔ (iv). By Theorem 4.3.1, there exists a bounded subbilinear operator R :

H1(Rn)× BMO(Rn) → L1(Rn) such that

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|.

Consequently, S(f, b) ∈ H1(Rn) if and only if [b, T ](f) ∈ L1(Rn) since T ∈ K̃. Moreover,

‖f‖H1‖b‖BMO + ‖S(f, b)‖H1 ≈ ‖f‖H1‖b‖BMO + ‖[b, T ](f)‖L1 .

Remark that the constants in the last equivalence depend on T .

The following lemma is an immediate corollary of the weak convergence theorem in

H1(Rn) of Jones and Journé. See also [35] in the setting of h1(Rn).

Lemma 4.5.1. Let {fk}k≥1 be a bounded sequence in H1(Rn) (resp., in h1(Rn)) such that

fk tends to f in L1(Rn). Then f in H1(Rn) (resp., in h1(Rn)), and

‖f‖H1 ≤ lim
k→∞

‖fk‖H1 (resp., ‖f‖h1 ≤ lim
k→∞

‖fk‖h1).
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Theorem 4.5.2. Let b be a non-constant BMO-function and 1 < q ≤ ∞. Then,

H1,q
b (Rn) ⊂ H1

b (R
n) and the inclusion is continuous.

Proof. Let a be a (q, b)-atom related to the cube Q. We first prove that (b − bQ)a is

C‖b‖BMO times a classical (q̃ + 1)/2-atom. One has supp (b − bQ)a ⊂ supp a ⊂ Q

and
∫
Rn(b(x) − bQ)a(x)dx =

∫
Rn b(x)a(x)dx − bQ

∫
Rn a(x)dx = 0. Moreover, by Hölder

inequality and John-Nirenberg inequality, we get

‖(b− bQ)a‖L(q̃+1)/2 ≤ ‖(b− bQ)χQ‖Lq̃(q̃+1)/(q̃−1)‖a‖Lq̃ ≤ C‖b‖BMO|Q|(−q̃+1)/(q̃+1),

where q̃ = q if 1 < q < ∞, q̃ = 2 if q = ∞, and C > 0 is independent of b, a. Hence,

(b− bQ)a is C‖b‖BMO times a classical (q̃ + 1)/2-atom, and ‖(b− bQ)a‖H1 ≤ C‖b‖BMO.

We now prove that S(a, b) belongs to H1.

By Theorem 4.3.2, there exist n bounded bilinear operatorsRj : H
1(Rn)×BMO(Rn) →

L1(Rn), j = 1, ..., n, such that

[b,Rj](a) = Rj(a, b) +Rj(S(a, b)),

since Rj is linear and belongs to K (see Corollary 4.4.1). Consequently, for all j = 1, ..., n,

as Rj ∈ K,

‖Rj(S(a, b))‖L1 = ‖(b− bQ)Rj(a)−Rj((b− bQ)a)−Rj(a, b)‖L1

≤ ‖(b− bQ)Rj(a)‖L1 + ‖Rj‖H1→L1‖((b− bQ)a)‖H1 + ‖Rj(a, b)‖L1

≤ C‖b‖BMO.

This proves that S(a, b) ∈ H1(Rn) since ‖S(a, b)‖L1 ≤ C‖b‖BMO, and moreover that

‖S(a, b)‖H1 ≤ C‖b‖BMO. (4.10)

Now, for any f ∈ H1,q
b (Rn), there exists an expansion f =

∑∞
j=1 λjaj where the aj’s

are (q, b)-atoms and
∑∞

j=1 |λj| ≤ 2‖f‖H1,q
b
. Then the sequence {∑k

j=1 λjaj}k≥1 converges

to f in H1,q
b (Rn) and thus in H1(Rn). Hence, Lemma 4.4.1 implies that the sequence{

S
(∑k

j=1 λjaj, b
)}

k≥1
converges to S(f, b) in L1(Rn). In addition, by (4.10),

∥∥∥S
( k∑

j=1

λjaj, b
)∥∥∥

H1
≤

k∑

j=1

|λj|‖S(aj, b)‖H1 ≤ C‖f‖H1,q
b
‖b‖BMO.

We then use Lemma 4.5.1 to conclude that S(f, b) ∈ H1(Rn), and thus f ∈ H1
b (R

n) (see
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Theorem 4.5.1). Moreover,

‖f‖H1
b

≤ C(‖f‖H1‖b‖BMO + ‖S(f, b)‖H1)

≤ C
(
‖f‖H1,q

b
‖b‖BMO + lim

k→∞

∥∥∥S
( k∑

j=1

λjaj, b
)∥∥∥

H1

)

≤ C‖f‖H1,q
b
‖b‖BMO,

which ends the proof.

From Theorem 4.3.3 and Theorem 4.5.1, we get the following corollary.

Corollary 4.5.1. Let b be a BMO-function, T ∈ K and 1 < q ≤ ∞. Then the linear

commutator [b, T ] maps continuously H1,q
b (Rn) into L1(Rn).

4.6 Proof of Theorem 4.3.1, Theorem 4.3.2, Theorem

4.3.3

In order to prove the decomposition theorems (Theorem 4.3.2 and Theorem 4.3.1), we

need the following two lemmas.

Lemma 4.6.1. Let T ∈ K and a be a classical H1-atom related to the cube mQ. Then,

there exists a positive constant C = C(m) such that

‖(g − gQ)Ta‖L1 ≤ C‖g‖BMO, for all g ∈ BMO(Rn).

Proof. Since T ∈ K and since |gQ − gmQ| ≤ C(m)‖g‖BMO, we have

‖(g − gQ)Ta‖L1 ≤ C(m)‖g‖BMO‖Ta‖L1 + ‖(g − gmQ)Ta‖L1 ≤ C‖g‖BMO.

Lemma 4.6.2. The norms ‖ · ‖H1 and ‖ · ‖H1
fin

are equivalent on H1
fin(R

n).

We point out that in the proof below we use the results and notations of Theorem

5.12 of [63]. Even though the proofs in [63] are in the one-dimensional case, they can be

easily carried out in higher dimension as well.

The proof of Lemma 4.6.2. Obviously, H1
fin(R

n) ⊂ H1(Rn) and for all f ∈ H1
fin(R

n), we

have ‖f‖H1 ≤ C‖f‖H1
fin
. We now have to show that there exists a constant C > 0 such

that for all f ∈ H1
fin(R

n),

‖f‖H1
fin

≤ C‖f‖H1 .
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By homogeneity, we can assume that ‖f‖H1 = 1. We write f =
∑N0

j=1 λjaj, where the

aj’s are ψ-atoms related to the cubes Rj’s. Since f ∈ L2(Rn) ∩ H1(Rn), there exists a

ψ-atomic decomposition (see [63], Theorem 5.12)

f =
∑

I

∑

σ∈E
〈f, ψσI 〉ψσI =

∑

k∈Z

∑

i∈Λk




∑

I⊂Ĩik,I∈Bk

∑

σ∈E
〈f, ψσI 〉ψσI




where
∑

I⊂Ĩik,I∈Bk

∑
σ∈E〈f, ψσI 〉ψσI = λ(k, i)ak,i with ak,i ψ-atoms related to the cubes mĨ ik

and ∑

k∈Z

∑

i∈Λk

|λ(k, i)| ≤ C‖f‖H1 = C. (4.11)

We note that supp ak,i ⊂
⋃N0

j=1mRj for all k ∈ Z, i ∈ Λk. Recall that

Wψf =
(∑

I

∑

σ∈E
|〈f, ψσI 〉|2|I|−1χI

)1/2

=
( N0∑

j=1

∑

I⊂Rj

∑

σ∈E
|〈f, ψσI 〉|2|I|−1χI

)1/2

and Ωk = {x ∈ Rn : Wψf(x) > 2k} for any k ∈ Z. Clearly, supp Wψf ⊂ ⋃N0

j=1mRj. So,

there exists a cube Q such that Ωk ⊂ suppWψf ⊂ ⋃N0

j=1mRj ⊂ Q for all k ∈ Z. We now

denote by k′ the largest integer k such that 2k ≤ |Q|−1. Then, we define the functions g

and ℓ by

g =
∑

k≤k′

∑

i∈Λk




∑

I⊂Ĩik,I∈Bk

∑

σ∈E
〈f, ψσI 〉ψσI


 and ℓ =

∑

k>k′

∑

i∈Λk




∑

I⊂Ĩik,I∈Bk

∑

σ∈E
〈f, ψσI 〉ψσI


 .

Obviously, f = g + ℓ, moreover, supp g ⊂ Q and supp ℓ ⊂ Q. On the other hand, it

follows from Theorem 5.12 of [63] that
∑

I⊂Ĩik,I∈Bk

∑
σ∈E |〈f, ψσI 〉|2 ≤ C22k|Ĩ ik∩Ωk|. Hence,

as the dyadic cubes Ĩ ik are disjoint (see also [63]), we get

‖g‖2L2 ≤ C
∑

k≤k′

∑

i∈Λk

∑

I⊂Ĩik,I∈Bk

∑

σ∈E
|〈f, ψσI 〉|2

≤ C
∑

k≤k′

∑

i∈Λk

22k|Ĩ ik ∩ Ωk| ≤ C
∑

k≤k′
22k|Ωk|

≤ C22k
′ |Q| ≤ C|Q|−1.

This proves that C−1/2g is a ψ-atom related to the cube Q.
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Now, for any positive integer K, set FK = {(k, i) : k > k′, |k| + |i| ≤ K} and

ℓK =
∑

(k,i)∈FK

(∑
I⊂Ĩik,I∈Bk

∑
σ∈E〈f, ψσI 〉ψσI

)
. Observe that since f ∈ L2(Rn), the series

∑
k>k′

∑
i∈Λk

(∑
I⊂Ĩik,I∈Bk

∑
σ∈E〈f, ψσI 〉ψσI

)
converges in L2(Rn). So, for any ε > 0, if K is

large enough, ε−1(ℓ−ℓK) is a ψ-atom related to the cubeQ. Therefore, f = g+ℓK+(ℓ−ℓK)
is a finite linear combination of atoms for f , and thus

‖f‖H1
fin

≤ C(‖g‖H1
fin
+ ‖ℓK‖H1

fin
+ ‖ℓ− ℓK‖H1

fin
)

≤ C
(
C +

∑

k∈Z

∑

i∈Λk

|λ(k, i)|+ ε
)
≤ C

by (4.11). It ends the proof.

Proof of Theorem 4.3.1. We define the subbilinear operator R by

R(f, b)(x) :=
∣∣∣T
(
b(x)f(·)− Π2(f, b)(·)

)
(x)
∣∣∣+ |T (Π1(f, b))(x)|+ |T (Π4(f, b))(x)|

for all (f, b) ∈ H1(Rn)× BMO(Rn). Then, by Theorem 4.4.1, we obtain that

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|.

By Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, it is sufficient to show that the

subbilinear operator

U(f, b)(x) :=
∣∣∣T
(
b(x)f(·)− Π2(f, b)(·)

)
(x)
∣∣∣

is bounded from H1(Rn)× BMO(Rn) into L1(Rn).

We first consider b ∈ BMO(Rn) and f a ψ-atom related to the cube Q. Then, by

Remark 4.4.1, we have

U(f, b)(x) = U(f, b− bQ)(x) ≤ |(b(x)− bQ)Tf(x)|+ |T (Π2(f, b− bQ))(x)|.

Consequently, by Remark 4.4.1, Lemma 4.6.1 and the fact f is C times a classical

atom related to the cube mQ, we obtain that

‖U(f, b)‖L1 ≤ ‖(b− bQ)Tf‖L1 + ‖T‖H1→L1‖Π2(f, b− bQ)‖H1 ≤ C‖b‖BMO, (4.12)

where C > 0 independent of f, b.

Now, let b ∈ BMO(Rn) and f ∈ H1
fin(R

n). By Lemma 4.6.2, there exists a finite

decomposition f =
∑k

j=1 λjaj such that
∑k

j=1 |λj| ≤ C‖f‖H1 . Consequently, by (4.12),

we obtain that

‖U(f, b)‖L1 ≤
k∑

j=1

|λj|‖U(aj, b)‖L1 ≤ C‖f‖H1‖b‖BMO,
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which ends the proof as H1
fin(R

n) is dense in H1(Rn) for the norm ‖ · ‖H1 .

Proof of Theorem 4.3.2. We define the bilinear operator R by

R(f, b) =
(
bTf − T (Π2(f, b))

)
− T (Π1(f, b) + Π4(f, b)),

for all (f, b) ∈ H1(Rn) × BMO(Rn). Then, it follows from Theorem 4.4.1 and the proof

of Theorem 4.3.1 that

[b, T ](f) = R(f, b) + T (S(f, b)),

where the bilinear operator R is bounded from H1(Rn) × BMO(Rn) into L1(Rn). This

completes the proof.

Proof of Theorem 4.3.3. Theorem 4.3.3 is an immediate corollary of Theorem 4.3.1 and

Theorem 4.5.1.

4.7 Proof of Theorem 4.3.4, Theorem 4.3.5 and The-

orem 4.3.6

First we recall the following well-known result.

Theorem A (see [29] or [42]). Let T be a Calderón-Zygmund operator satisfying T1 =

T ∗1 = 0, 1 < q <∞ and 1/p+1/q = 1. Then, fTg−gT ∗f ∈ H1(Rn) for all f ∈ Lp(Rn),

g ∈ Lq(Rn).

Now, in order to prove the bilinear type estimates and the Hardy type theorems for

the commutators of Calderón-Zygmund operators, we need the following three technical

lemmas.

Lemma 4.7.1. Let δ ∈ (0, 1], and A,B be two δ-Calderón-Zygmund operators such that

A1 = A∗1 = B1 = B∗1 = 0. Then, there exists a constant C = C(n, δ) such that

∑

I,I′,I′′

∑

σ,σ′,σ′′∈E
|〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AψσI , ψσ
′′

I′′ 〉〈Bψσ
′

I′ , ψ
σ′′

I′′ 〉| ≤ C‖f‖H1‖g‖BMO

for all f ∈ H1(Rn), g ∈ BMO(Rn).
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Lemma 4.7.2. Let δ ∈ (0, 1], and Ai, Bi, i = 1, ..., K, be δ-Calderón-Zygmund operators

satisfying Ai1 = A∗
i 1 = Bi1 = B∗

i 1 = 0, and for every f and g in L2(Rn),

∫

Rn

( K∑

i=1

Aif.Big
)
dx = 0.

Then, the bilinear operator P, defined by P(f, g) =
∑K

i=1 S(Aif, Big), maps continuously

H1(Rn)× BMO(Rn) into H1(Rn).

Corollary 4.7.1. Let T be a Calderón-Zygmund operator satisfying T1 = T ∗1 = 0. Then

the bilinear operator P, defined by P(f, g) = S(Tf, g) − S(f, T ∗g), maps continuously

H1(Rn)× BMO(Rn) into H1(Rn).

Lemma 4.7.3. Let b be a non-constant BMO-function and T be a Calderón-Zygmund

operator with T1 = T ∗1 = 0. Assume that f ∈ H1
b (R

n) has the wavelet decomposition f =∑∞
j=1

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI where the Rj’s are dyadic cubes and

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI

are multiples of ψ-atoms related to the cubes Rj. Set fk =
∑k

j=1

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI ,

k = 1, 2, ... Then, the sequence {[b, T ](fk)}k≥1 tends to [b, T ](f) in the sense of distribu-

tions S ′(Rn).

Proof of Lemma 4.7.1. We first remark (see [108], Proposition 1) that there exists a con-

stant C > 0 such that for all dyadic cubes I, I ′ and σ, σ′ ∈ E, we have

max{|〈AψσI , ψσ
′

I′ 〉|, |〈BψσI , ψσ
′

I′ 〉|} ≤ C2−|j−j′|(δ+n/2)
( 2−j + 2−j

′

2−j + 2−j′ + |xI − xI′ |
)n+δ

. (4.13)

Consequently,

max{|〈AψσI , ψσ
′

I′ 〉|, |〈BψσI , ψσ
′

I′ 〉|} ≤ Cpδ(I, I
′) (4.14)

with

pδ(I, I
′) =

2−|j−j′|(δ/2+n/2)

1 + |j − j′|2
( 2−j + 2−j

′

2−j + 2−j′ + |xI − xI′ |
)n+δ/2

.

Here |I| = 2−jn and |I ′| = 2−j
′n, while xI and xI′ denote the centers of the two cubes.

On the other hand, it follows from Lemma 1.3 in [42] that there exists a constant C =

C(n, δ) > 0 such that ∑

I′′

pδ(I, I
′′)pδ(I

′, I ′′) ≤ Cpδ(I, I
′). (4.15)

Combining (4.14) and (4.15), we obtain

∑

I,I′,I′′

∑

σ,σ′,σ′′∈E
|〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AψσI , ψσ
′′

I′′ 〉〈Bψσ
′

I′ , ψ
σ′′

I′′ 〉| ≤ C
∑

I,I′

∑

σ,σ′∈E
pδ(I, I

′)|〈f, ψσI 〉||〈g, ψσ
′

I′ 〉|.
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It is easy to establish that the matrix {pδ(I, I ′)}I,I′ is almost diagonal (by taking

ε = δ/4 in the definition (3.1) of Frazier and Jawerth [49]) and thus is bounded on ḟ 0,2
1

the space of all sequences (aI)I such that
(∑

I |aI |2|I|−1χI

)1/2
is in L1(Rn). We then use

the wavelet characterization of H1(Rn) (see Theorem 4.2.1) and the fact that (cf. [49])

∑

I′

∑

σ′∈E
|〈h, ψσ′

I′ 〉||〈g, ψσ
′

I′ 〉| ≤ C‖h‖H1‖g‖BMO,

for all h ∈ H1(Rn), to conclude that

∑

I,I′,I′′

∑

σ,σ′,σ′′∈E
|〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AψσI , ψσ
′′

I′′ 〉〈Bψσ
′

I′ , ψ
σ′′

I′′ 〉| ≤ C‖f‖H1‖g‖BMO.

Proof of Lemma 4.7.2. By Lemma 4.7.1, we have

P(f, g) =
K∑

i=1

S(Aif, Big)

=
K∑

i=1

∑

I,I′,I′′

∑

σ,σ′,σ′′∈E
〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AiψσI , ψσ
′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉(ψσ
′′

I′′ )
2

where all the series converge in L1(Rn). For any dyadic cubes I, I ′, σ, σ′ ∈ E, we have

K∑

i=1

∑

I′′

∑

σ′′∈E
〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AiψσI , ψσ
′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉(ψσ
′′

I′′ )
2

=
K∑

i=1

∑

I′′

∑

σ′′∈E
〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AiψσI , ψσ
′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉
(
(ψσ

′′

I′′ )
2 − (ψσI )

2
)

since (see Remark 4.4.1)

K∑

i=1

∑

I′′

∑

σ′′∈E
〈AiψσI , ψσ

′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉 =
∫

Rn

( K∑

i=1

Aiψ
σ
I .Biψ

σ′

I′

)
dx = 0.

An explicit computation gives that |ψσ′′

I′′ |2 − |ψσI |2 is in H1(Rn), with

‖|ψσ′′

I′′ |2 − |ψσI |2‖H1 ≤ C
(
log(2−j + 2−j

′′

)−1 + log(|xI − xI′′ |+ 2−j + 2−j
′′

)
)
.
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Here |I| = 2−jn and |I ′′| = 2−j
′′n, while xI and xI′′ denote the centers of the two cubes.

Consequently, by (4.13) and (4.15), we get

∥∥∥
K∑

i=1

∑

I′′

∑

σ′′∈E
〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AiψσI , ψσ
′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉(ψσ
′′

I′′ )
2
∥∥∥
H1

≤
K∑

i=1

∑

I′′

∑

σ′′∈E
|〈f, ψσI 〉〈g, ψσ

′

I′ 〉〈AiψσI , ψσ
′′

I′′ 〉〈Biψ
σ′

I′ , ψ
σ′′

I′′ 〉|
∥∥∥(ψσ′′

I′′ )
2 − (ψσI )

2
∥∥∥
H1

≤ C

K∑

i=1

∑

I′′

∑

σ′′∈E
|〈f, ψσI 〉〈g, ψσ

′

I′ 〉|pδ(I, I ′′)pδ(I ′, I ′′)

≤ Cpδ(I, I
′)|〈f, ψσI 〉||〈g, ψσ

′

I′ 〉|,

here we used the fact that

(1+ |j − j′′|2) log
( |xI − xI′′ |+ 2−j + 2−j

′′

2−j + 2−j′′

)
≤ C(δ)2|j−j

′′|δ/2
( |xI − xI′′ |+ 2−j + 2−j

′′

2−j + 2−j′′

)δ/2
.

Thus, the same argument as in the proof of Lemma 4.7.1 allows to conclude that

‖P(f, g)‖H1 ≤ C
∑

I,I′

∑

σ,σ′∈E
pδ(I, I

′)|〈f, ψσI 〉||〈g, ψσ
′

I′ 〉|

≤ C‖f‖H1‖g‖BMO,

which ends the proof.

Before giving the proof of Lemma 4.7.3, let us recall the following lemma. It can be

found in [50].

Lemma A. (see [50], Lemma 2.3) Let T be a Calderón-Zygmund operator satisfying

T1 = 0. Then T maps S(Rn) into L∞(Rn). Moreover, there exists a constant C > 0,

depending only on T , such that for any φ ∈ S(Rn) with supp φ ⊂ B(x0, r), we have

‖Tφ‖L∞ ≤ C(‖φ‖L∞ + r‖|∇φ|‖L∞).

Proof of Lemma 4.7.3. By Theorem 4.3.2, it is sufficient to prove that

lim
k→∞

∫

Rn

T (S(fk, b))hdx =

∫

Rn

T (S(f, b))hdx,

for all h ∈ S(Rn). Because of the hypothesis, we observe that S(f, b) ∈ H1(Rn) and

S(fk, b) ∈ Lq(Rn), k = 1, 2, ..., for some q ∈ (1, 2) (see Lemma 4.2.1).
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Let S(f, b) =
∑∞

j=1 λjaj be a classical Lq-atomic decomposition of S(f, b). Then,

T (
∑k

j=1 λjaj) tends to T (S(f, b)) in L1(Rn) (in fact, it also holds in H1(Rn) since T ∗1 =

0). Hence, as h ∈ S(Rn) ⊂ L∞(Rn)∩Lq′(Rn) where 1/q+1/q′ = 1, S(fk, b), aj ∈ Lq(Rn)

and T ∗h ∈ L∞(Rn) since T ∗1 = 0 (see Lemma A), by Theorem A we get

∫

Rn

T (S(f, b))hdx = lim
k→∞

∫

Rn

T
( k∑

j=1

λjaj

)
hdx = lim

k→∞

∫

Rn

( k∑

j=1

λjaj

)
T ∗hdx

=

∫

Rn

S(f, b)T ∗hdx = lim
k→∞

∫

Rn

S(fk, b)T
∗hdx

= lim
k→∞

∫

Rn

T (S(fk, b))hdx,

since S(fk, b) tends to S(f, b) in L1(Rn) as fk tends to f in H1(Rn) (see Theorem 4.3.2).

This finishes the proof.

Proof of Theorem 4.3.4. Let (f, g) ∈ H1(Rn)×BMO(Rn). By Theorem 4.3.2 and Lemma

4.7.2, we obtain T(f, g) =
∑K

i=1[Big, T ](Aif) ∈ L1(Rn), moreover,

‖T(f, g)‖L1 ≤
K∑

i=1

‖R(Aif, Big)‖L1 +
∥∥∥T
( K∑

i=1

S(Aif, Big)
)∥∥∥

L1

≤ C

K∑

i=1

‖Aif‖H1‖Big‖BMO + ‖T‖H1→L1

∥∥∥
K∑

i=1

S(Aif, Big)
∥∥∥
H1

≤ C‖f‖H1‖g‖BMO.

This completes the proof.

Proof of Theorem 4.3.5. Let f ∈ H1
b (R

n), we prove [b, T ](f) ∈ h1(Rn) using the fact that

BMOlog(Rn) is the dual of H log(Rn) (see [81]). Indeed, by Theorem 4.2.2, there exists a

decomposition f =
∑∞

j=1

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI where

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI are multi-

ples of ψ-atoms related to the dyadic cubes Rj. Set fk =
∑k

j=1

∑
I⊂Rj

∑
σ∈E〈f, ψσI 〉ψσI ,

k = 1, 2, ... Then, the sequence [b, T ](fk) tends to [b, T ](f) in the sense of distributions

S ′(Rn) (see Lemma 4.7.3), and thus

lim
k→∞

∫

Rn

[b, T ](fk)hdx =

∫

Rn

[b, T ](f)hdx, (4.16)

for all h ∈ C∞
0 (Rn). Notice that [b, T ](fk) ∈ L2(Rn) and [b, T ](f) ∈ L1(Rn).
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Let h ∈ C∞
0 (Rn). By Lemma 4.4.2, Lemma 4.4.3, Lemma 4.4.4, Remark 4.4.1 and

Corollary 4.7.1, we have hT (fk)− fk

(
T ∗h− (T ∗h)Q

)
∈ H log(Rn). More precisely,

∥∥∥hT (fk)− fk

(
T ∗h− (T ∗h)Q

)∥∥∥
Hlog

≤ C

{∥∥∥S(T (fk), h)−S
(
fk, T

∗h− (T ∗h)Q
)∥∥∥

H1
+

+
∑

j=1,4

(
‖Πj(T (fk), h)‖H1 +

∥∥∥Πj

(
fk, T

∗h− (T ∗h)Q
)∥∥∥

H1

)
+

+‖Π2(T (fk), h)‖Hlog +
∥∥∥Π2

(
fk, T

∗h− (T ∗h)Q
)∥∥∥

Hlog

}

≤ C

{
‖fk‖H1‖h‖BMO + ‖T (fk)‖H1‖h‖BMO + ‖fk‖H1

∥∥∥T ∗h− (T ∗h)Q

∥∥∥
BMO

+

+‖T (fk)‖H1‖h‖BMO+ + ‖fk‖H1‖T ∗h− (T ∗h)Q‖BMO+

}

≤ C(‖fk‖H1‖h‖bmo + ‖fk‖H1‖T ∗h‖BMO) ≤ C‖f‖H1‖h‖bmo,

here one used S
(
f, T ∗h− (T ∗h)Q

)
= S(f, T ∗h), ‖T ∗h− (T ∗h)Q‖BMO+ = ‖T ∗h‖BMO and

‖fk‖H1 ≤ C‖f‖H1 . As the L2- functions fk have compact support, b ∈ BMOlog(Rn) ⊂
BMO(Rn), we deduce that bhT (fk), hT (bfk), bfkT

∗h ∈ L1(Rn). Moreover,
∫
Rn hT (bfk)dx =∫

Rn bfkT
∗hdx since hT (bfk)−bfkT ∗h ∈ H1(Rn) (see Theorem A). Therefore, asBMOlog(Rn)

is the dual of H log(Rn) (see [81]), we get
∣∣∣∣∣∣

∫

Rn

[b, T ](fk)hdx

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∫

Rn

b(hT (fk)− fkT
∗h)dx

∣∣∣∣∣∣

≤

∣∣∣∣∣∣

∫

Rn

b
(
hT (fk)− fk

(
T ∗h− (T ∗h)Q

))
dx

∣∣∣∣∣∣
+ |(T ∗h)Q|

∣∣∣∣∣∣

∫

Rn

bfkdx

∣∣∣∣∣∣

≤ C‖b‖BMOlog

∥∥∥hT (fk)− fk

(
T ∗h− (T ∗h)Q

)∥∥∥
Hlog

+ |(T ∗h)Q|

∣∣∣∣∣∣

∫

Rn

bfkdx

∣∣∣∣∣∣

≤ C‖b‖BMOlog‖f‖H1‖h‖bmo + |(T ∗h)Q|
∣∣∣

k∑

j=1

∑

I⊂Rj

∑

σ∈E
〈f, ψσI 〉〈b, ψσI 〉

∣∣∣.

The above inequality and (4.16) imply that for all h ∈ C∞
0 (Rn), we obtain

∣∣∣∣∣∣

∫

Rn

[b, T ](f)hdx

∣∣∣∣∣∣
≤ C‖b‖BMOlog‖f‖H1‖h‖bmo
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since S(f, b) ∈ H1(Rn) (see Theorem 4.5.1) and thus (see Remark 4.4.1)

lim
k→∞

k∑

j=1

∑

I⊂Rj

∑

σ∈E
〈f, ψσI 〉〈b, ψσI 〉 =

∫

Rn

S(f, b)dx = 0.

This proves that [b, T ](f) ∈ h1(Rn) since h1(Rn) is the dual of vmo(Rn) (see Section 2).

Furthermore,

‖[b, T ](f)‖h1 ≤ C‖b‖BMOlog‖f‖H1 ≤ C‖b‖BMOlog‖b‖−1
BMO‖f‖H1

b
,

which ends the proof of Theorem 4.3.5.

Proof of Theorem 4.3.6. By Theorem 4.3.2 and Theorem 4.5.1 together with Lemma 4.4.2

and Lemma 4.4.3, it is sufficient to prove that the linear operator

f 7→ U(f, b) := bTf − T (Π2(f, b))

is bounded from H1(Rn) into itself. Similarly to the proof of Theorem 4.3.1, we first

consider f a ψ-atom related to the cube Q = Q[x0, r] and note that

U(f, b) = U(f, b− bQ) = (b− bQ)Tf − T (Π2(f, b− bQ)). (4.17)

Let ε ∈ (0, 1), recall that (see [133]) g is an ε-molecule for H1(Rn) centered at y0 if
∫

Rn

g(x)dx = 0 and ‖g‖1/2Lq ‖g| · −y0|2nε‖1/2Lq =: N(g) <∞,

where q = 1/(1 − ε). It is well known that if g is an ε-molecule for H1(Rn) centered at

y0, then g ∈ H1(Rn) and ‖g‖H1 ≤ CN(g) where C > 0 depends only on n, ε.

We now prove that (b− bQ)Tf is an ε-molecule for H1(Rn) centered at x0 when T is a

δ-Calderón-Zygmund operator for some δ ∈ (0, 1] and ε = δ/(4n) < 1/2. Note first that f

is C times a classical L2-atom related to the cubemQ. It is clear that
∫
Rn(b−bQ)Tfdx = 0

since T ∗1 = T ∗b = 0. As q = 1/(1 − ε) < 2, the fact |bQ − b2mQ| ≤ C‖b‖BMO together

with Hölder inequality and John-Nirenberg inequality, give

‖(b− bQ)Tf.χ2mQ‖Lq ≤ C|Q|1/q−1‖b‖BMO. (4.18)

It is well-known that |Tf(x)| ≤ C rδ

|x−x0|n+δ , for all x ∈ (2mQ)c, since T is a δ-Calderón-

Zygmund operator. Hence

‖(b− bQ)Tf.χ(2mQ)c‖Lq ≤ C



∫

(2mQ)c

|b− bQ|q
( rδ

|x− x0|n+δ
)q
dx




1/q

≤ C|Q|1/q−1‖b‖BMO.
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The last inequality, which can be found in [128], is classical. Combining this and (6.24),

we obtain

‖(b− bQ)Tf‖Lq ≤ C|Q|1/q−1‖b‖BMO. (4.19)

Similarly, we also have

‖(b− bQ)Tf.| · −x0|2nε.χ2mQ‖Lq ≤ C|Q|2ε+1/q−1‖b‖BMO

and as 2nε = δ/2,

‖(b− bQ)Tf.| · −x0|2nε.χ(2mQ)c‖Lq ≤ C



∫

(2mQ)c

|b− bQ|q
( rδ

|x− x0|n+δ/2
)q
dx




1/q

≤ C|Q|2ε+1/q−1‖b‖BMO.

Consequently,

‖(b− bQ)Tf.| · −x0|2nε‖Lq ≤ C|Q|2ε+1/q−1‖b‖BMO.

Combining this and (4.19), we get (b− bQ)Tf is an ε-molecule for H1(Rn) centered at x0,

moreover,

N((b− bQ)Tf) ≤ C|Q|ε+1/q−1‖b‖BMO ≤ C‖b‖BMO,

since q = 1/(1− ε). Thus, by (6.22) and Remark 4.4.1,

‖U(f, b)‖H1 ≤ CN((b− bQ)Tf) + ‖T (Π2(f, b− bQ))‖H1 ≤ C‖b‖BMO. (4.20)

Now, let us consider f ∈ H1
fin(R

n). By Lemma 4.6.2, there exists a finite decomposition

f =
∑k

j=1 λjaj such that
∑k

j=1 |λj| ≤ C‖f‖H1 . Consequently, by (4.20), we obtain that

‖U(f, b)‖H1 ≤
k∑

j=1

|λj|‖U(aj, b)‖H1 ≤ C‖f‖H1‖b‖BMO,

which ends the proof as H1
fin(R

n) is dense in H1(Rn) for the norm ‖ · ‖H1 .

4.8 Commutators of Fractional integrals

Given 0 < α < n, the fractional integral operator Iα is defined by

Iαf(x) =

∫

Rn

f(y)

|x− y|n−αdy.
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Let b be a locally integrable function. We consider the linear commutator [b, Iα] defined

by

[b, Iα](f) = bIαf − Iα(bf).

We end this article by presenting some results related to commutators of fractional

integrals as follows.

Theorem 4.8.1. Let 0 < α < n. There exist a bounded bilinear operator R : H1(Rn) ×
BMO(Rn) → Ln/(n−α)(Rn) and a bounded bilinear operator S : H1(Rn)× BMO(Rn) →
L1(Rn) such that

[b, Iα](f) = R(f, b) + Iα(S(f, b)).

Corollary 4.8.1. Let 0 < α < n and b ∈ BMO(Rn). Then, the linear commutator [b, Iα]

maps continuously H1(Rn) into weak-Ln/(n−α)(Rn).

Theorem 4.8.2. Let 0 < α < n, b ∈ BMO(Rn), and 1 < q ≤ ∞. Then, the linear

commutator [b, Iα] maps continuously H1
b (R

n) into Ln/(n−α)(Rn).

The results above can be proved similarly to Theorem 4.3.2 and Theorem 4.3.3. We

leave the proofs to the interested readers. When H1
b (R

n) is replaced by H1
b(R

n), Theorem

4.8.2 was considered by the authors in [40]. There, they proved that

sup{‖[b, Iα](a)‖Ln/(n−α) : a is a (∞, b)−atom} <∞.

However, as pointed out before, this argument does not suffice to conclude that [b, Iα] is

bounded from H1
b(R

n) into Ln/(n−α)(Rn).
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Chapter 5

Endpoint estimates for commutators

of singular integrals related to

Schrödinger operators

Ce chapitre est une prépublication (soumise).

Résumé

Soit L = −∆ + V un opérateur Schrödinger sur Rd, d ≥ 3, où V est un potentiel

positif, V 6= 0, et appartient à la classe Hölder inverse RHd/2. Dans cet article, nous

étudions les commutateurs [b, T ] pour T dans une classe KL des opérateurs sous-linéaire

contenant les opérateurs fondamentaux en analyse harmonique liée à L. Plus précisément,

lorsque T ∈ KL, nous prouvons qu’il existe un opérateur borné sous-bilinéaire R = RT :

H1
L(R

d)× BMO(Rd) → L1(Rd) tell que

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|, (5.1)

oùS est un opérateur borné bilinéaire deH1
L(R

d)×BMO(Rd) à valeurs L1(Rd), indépendant

de T . La décomposition sous-bilinéaire (5.1) nous permet d’expliquer pourquoi les com-

mutateurs avec les opérateurs fondamentaux sont de type faible (H1
L, L

1), et quand un

commutateur [b, T ] est de type fort (H1
L, L

1).

En outre, nous étudions les estimations H1
L des commutateurs de la transformée de

Riesz associée à l’opérateur de Schrödinger L.

123



5.1 Introduction

Given a function b locally integrable on Rd, and a (classical) Calderón-Zygmund operator

T , we consider the linear commutator [b, T ] defined for smooth, compactly supported

functions f by

[b, T ](f) = bT (f)− T (bf).

A classical result of Coifman, Rochberg and Weiss (see [31]), states that the commutator

[b, T ] is continuous on Lp(Rd) for 1 < p < ∞, when b ∈ BMO(Rd). Unlike the theory of

(classical) Calderón-Zygmund operators, the proof of this result does not rely on a weak

type (1, 1) estimate for [b, T ]. Instead, an endpoint theory was provided for this operator.

A general overview about these facts can be found for instance in [82].

Let L = −∆ + V be a Schrödinger operator on Rd, d ≥ 3, where V is a nonnegative

potential, V 6= 0, and belongs to the reverse Hölder class RHd/2. We recall that a

nonnegative locally integrable function V belongs to the reverse Hölder class RHq, 1 <

q <∞, if there exists C > 0 such that

( 1

|B|

∫

B

(V (x))qdx
)1/q

≤ C

|B|

∫

B

V (x)dx

holds for every balls B in Rd. In [46], Dziubański and Zienkiewicz introduced the Hardy

space H1
L(R

d) as the set of functions f ∈ L1(Rd) such that ‖f‖H1
L
:= ‖MLf‖L1 < ∞,

where MLf(x) := supt>0 |e−tLf(x)|. There, they characterized H1
L(R

d) in terms of atomic

decomposition and in terms of the Riesz transforms associated with L, Rj = ∂xjL
−1/2,

j = 1, ..., d. In the recent years, there is an increasing interest on the study of commutators

of singular integral operators related to Schrödinger operators, see for example [17, 22,

58, 92, 134].

In the present paper, we consider commutators of singular integral operators T related

to the Schrödinger operator L. Here T is in the class KL of all sublinear operators

T , bounded from H1
L(R

d) into L1(Rd) and satisfying for any b ∈ BMO(Rd) and a a

generalized atom related to the ball B (see Definition 5.2.1), we have

‖(b− bB)Ta‖L1 ≤ C‖b‖BMO,

where bB denotes the average of b on B and C > 0 is a constant independent of b, a.

The class KL contains the fundamental operators (we refer the reader to [82] for the

classical case L = −∆) related to the Schrödinger operator L: the Riesz transforms Rj,

L-Calderón-Zygmund operators (so-called Schrödinger-Calderón-Zygmund operators), L-

maximal operators, L-square operators, etc... (see Section 5.4). It should be pointed out
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that, by the work of Shen [125] and Definition 5.2.2 (see Remark 5.2.3), one only can

conclude that the Riesz transforms Rj are Schrödinger-Calderón-Zygmund operators if

V ∈ RHd. In this work, we consider all potentials V which belong to the reverse Hölder

class RHd/2.

Although Schrödinger-Calderón-Zygmund operators map H1
L(R

d) into L1(Rd) (see

Proposition 5.4.1), it was observed in [92] that, when b ∈ BMO(Rd), the commuta-

tors [b, Rj] do not map, in general, H1
L(R

d) into L1(Rd). Thus, when b ∈ BMO(Rd),

it is natural (see the paper of Pérez [119] for the classical case) to ask for subspaces of

H1
L(R

d) such that all commutators of Schrödinger-Calderón-Zygmund operators and the

Riesz transforms map continuously these spaces into L1(Rd). Here, we are interested in

the following two questions.

Question 5. For b ∈ BMO(Rd). Find the largest subspace H1
L,b(R

d) of H1
L(R

d) such that

all commutators of Schrödinger-Calderón-Zygmund operators and the Riesz transforms

are bounded from H1
L,b(R

d) into L1(Rd).

Question 6. Characterize the functions b in BMO(Rd) so that H1
L,b(R

d) ≡ H1
L(R

d).

Let X be a Banach space. We say that an operator T : X → L1(Rd) is a sublinear

operator if for all f, g ∈ X and α, β ∈ C, we have

|T (αf + βg)(x)| ≤ |α||Tf(x)|+ |β||Tg(x)|.

Obviously, a linear operator T : X → L1(Rd) is a sublinear operator. We also say

that an operator T : H1
L(R

d) × BMO(Rd) → L1(Rd) is a subbilinear operator if for

every (f, g) ∈ H1
L(R

d) × BMO(Rd), the operators T(f, ·) : BMO(Rd) → L1(Rd) and

T(·, g) : H1
L(R

d) → L1(Rd) are sublinear operators.

To answer Question 5 and Question 6, we study commutators of sublinear operators

in KL. More precisely, when T ∈ KL is a sublinear operator, we prove (see Theorem 5.3.1)

that there exists a bounded subbilinear operatorR = RT : H1
L(R

d)×BMO(Rd) → L1(Rd)

so that for all (f, b) ∈ H1
L(R

d)× BMO(Rd),

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|, (5.2)

where S is a bounded bilinear operator from H1
L(R

d)×BMO(Rd) into L1(Rd) which does

not depend on T (see Proposition 5.5.2). When T ∈ KL is a linear operator, we prove

(see Theorem 5.3.2) that there exists a bounded bilinear operator R = RT : H1
L(R

d) ×
BMO(Rd) → L1(Rd) such that for all (f, b) ∈ H1

L(R
d)× BMO(Rd),

[b, T ](f) = R(f, b) + T (S(f, b)). (5.3)
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The decompositions (5.2) and (5.3) give a general overview and explains why almost

commutators of the fundamental operators are of weak type (H1
L, L

1), and when a com-

mutator [b, T ] is of strong type (H1
L, L

1).

Let b be a function in BMO(Rd). We assume that b non-constant, otherwise [b, T ] = 0.

We define the space H1
L,b(R

d) as the set of all f in H1
L(R

d) such that [b,ML](f)(x) =

ML(b(x)f(·) − b(·)f(·))(x) belongs to L1(Rd), and the norm on H1
L,b(R

d) is defined by

‖f‖H1
L,b

= ‖f‖H1
L
‖b‖BMO + ‖[b,ML](f)‖L1 . Then, using the subbilinear decomposition

(5.2), we prove that all commutators of Schrödinger-Calderón-Zygmund operators and the

Riesz transforms are bounded from H1
L,b(R

d) into L1(Rd). Furthermore, H1
L,b(R

d) is the

largest space having this property, and H1
L,b(R

d) ≡ H1
L(R

d) if and only if b ∈ BMOlog
L (Rd)

(see Theorem 5.7.2), that is,

‖b‖BMOlog
L

= sup
B(x,r)


log

(
e+

ρ(x)

r

) 1

|B(x, r)|

∫

B(x,r)

|b(y)− bB(x,r)|dy


 <∞,

where ρ(x) = sup{r > 0 : 1
rd−2

∫
B(x,r)

V (y)dy ≤ 1}. This space BMOlog
L (Rd) arises

naturally in the characterization of pointwise multipliers for BMOL(R
d), the dual space

of H1
L(R

d), see [9, 103].

The above answers Question 5 and Question 6. As another interesting application of

the subbilinear decomposition (5.2), we find subspaces of H1
L(R

d) which do not depend

on b ∈ BMO(Rd) and T ∈ KL, such that [b, T ] maps continuously these spaces into

L1(Rd) (see Section 5.7). For instance, when L = −∆ + 1, Theorem 5.7.4 state that

for every b ∈ BMO(Rd) and T ∈ KL, the commutator [b, T ] is bounded from H1,1
L (Rd)

into L1(Rd). Here H1,1
L (Rd) is the (inhomogeneous) Hardy-Sobolev space considered by

Hofmann, Mayboroda and McIntosh in [65], defined as the set of functions f in H1
L(R

d)

such that ∂x1f, ..., ∂xdf ∈ H1
L(R

d) with the norm

‖f‖H1,1
L

= ‖f‖H1
L
+

d∑

j=1

‖∂xjf‖H1
L
.

Recently, similarly to the classical result of Coifman-Rochberg-Weiss, Gou et al.

proved in [58] that the commutators [b, Rj] are bounded on Lp(Rd) whenever b ∈ BMO(Rd)

and 1 < p < dq
d−q where V ∈ RHq for some d/2 < q < d. Later, in [17], Bongioanni et al.

generalized this result by showing that the space BMO(Rd) can be replaced by a larger

space BMOL,∞(Rd) = ∪θ≥0BMOL,θ(R
d), where BMOL,θ(R

d) is the space of locally inte-
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grable functions f satisfying

‖f‖BMOL,θ
= sup

B(x,r)




1
(
1 + r

ρ(x)

)θ
1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy


 <∞.

Let R∗
j be the adjoint operators of Rj and BMOL(R

d) be the dual space of H1
L(R

d).

In [16], Bongioanni et al. established that the operators R∗
j are bounded on BMOL(R

d),

and thus from L∞(Rd) into BMOL(R
d). Therefore, it is natural to ask for a class of

functions b so that the commutators [b, R∗
j ] are bounded from L∞(Rd) into BMOL(R

d).

In [17], the authors found such a class of functions. More precisely, they proved in [17]

that the commutators [b, R∗
j ] are bounded from L∞(Rd) into BMOL(R

d) whenever b ∈
BMOlog

L,∞(Rd) = ∪θ≥0BMOlog
L,θ(R

d), where BMOlog
L,θ(R

d) is the space of locally integrable

functions f satisfying

‖f‖BMOlog
L,θ

= sup
B(x,r)



log
(
e+ ρ(x)

r

)

(
1 + r

ρ(x)

)θ
1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy


 <∞.

A natural question arises: can one replace the space L∞(Rd) by BMOL(R
d)?

Question 7. Are the commutators [b, R∗
j ], j = 1, ..., d, bounded on BMOL(R

d) whenever

b ∈ BMOlog
L,∞(Rd)?

Motivated by this question, we study the H1
L-estimates for commutators of the Riesz

transforms. More precisely, given b ∈ BMOL,∞(Rd), we prove that the commutators

[b, Rj] are bounded on H1
L(R

d) if and only if b belongs to BMOlog
L,∞(Rd) (see Theorem

5.3.4). Furthermore, if b ∈ BMOlog
L,θ(R

d) for some θ ≥ 0, then there exists a constant

C > 1, independent of b, such that

C−1‖b‖BMOlog
L,θ

≤ ‖b‖BMOL,θ
+

d∑

j=1

‖[b, Rj]‖H1
L→H1

L
≤ C‖b‖BMOlog

L,θ
.

As a consequence, we get the positive answer for Question 7.

Now, an open question is the following:

Open question. Find the set of all functions b such that the commutators [b, Rj], j =

1, ..., d, are bounded on H1
L(R

d).

Let us emphasize the three main purposes of this paper. First, we prove the two

decomposition theorems: the subbilinear decomposition (5.2) and the bilinear decompo-

sition (5.3). Second, we characterize functions b in BMOL,∞(Rd) so that the commutators
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of the Riesz transforms are bounded on H1
L(R

d), which answers Question 7. Finally, we

find the largest subspace H1
L,b(R

d) of H1
L(R

d) such that all commutators of Schrödinger-

Calderón-Zygmund operators and the Riesz transforms are bounded from H1
L,b(R

d) into

L1(Rd). Besides, we find also the characterization of functions b ∈ BMO(Rd) so that

H1
L,b(R

d) ≡ H1
L(R

d), which answer Question 5 and Question 6. Especially, we show that

there exist subspaces of H1
L(R

d) which do not depend on b ∈ BMO(Rd) and T ∈ KL,

such that [b, T ] maps continuously these spaces into L1(Rd).

This paper is organized as follows. In Section 2, we present some notations and pre-

liminaries about Hardy spaces, new atoms, BMO type spaces and Schrödinger-Calderón-

Zygmund operators. In Section 3, we state the main results: two decomposition theorems

(Theorem 5.3.1 and Theorem 5.3.2), Hardy estimates for commutators of Schrödinger-

Calderón-Zygmund operators and the commutators of the Riesz transforms (Theorem

5.3.3 and Theorem 5.3.4). In Section 4, we give some examples of fundamental operators

related to L which are in the class KL. Section 5 is devoted to the proofs of the main

theorems. Section 6 is devoted to the proofs of the key lemmas. Finally, in Section 7,

we give some subspaces of H1
L(R

d) which do not necessarily depend on b ∈ BMO(Rd)

and T ∈ KL (see Theorem 5.7.3 and Theorem 5.7.4), such that the commutator [b, T ]

maps continuously these spaces into L1(Rd). Especially, we find in this section the largest

subspace H1
L,b of H

1
L(R

d) so that all commutators of Schrödinger-Calderón-Zygmund op-

erators and the commutators of the Riesz transforms map continuously this space into

L1(Rd) (see Theorem 5.7.2).

Throughout the whole paper, C denotes a positive geometric constant which is inde-

pendent of the main parameters, but may change from line to line. The symbol f ≈ g

means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf). In Rd, we denote by B = B(x, r)

an open ball with center x and radius r > 0, and tB(x, r) := B(x, tr) whenever t > 0. For

any measurable set E, we denote by χE its characteristic function, by |E| its Lebesgue

measure, and by Ec the set Rd \ E.
Acknowledgements. The author would like to thank Aline Bonami, Sandrine Grel-

lier and Frédéric Bernicot for many helpful suggestions and discussions. He would also

like to thank Sandrine Grellier for many helpful suggestions, her carefully reading and
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5.2 Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

L = −∆+ V

on Rd, d ≥ 3, where V is a nonnegative potential, V 6= 0. As in the works of Dziubański

et al [45, 46], we always assume that V belongs to the reverse Hölder class RHd/2. Recall

that a nonnegative locally integrable function V is said to belong to a reverse Hölder class

RHq, 1 < q <∞, if there exists C > 0 such that

( 1

|B|

∫

B

(V (x))qdx
)1/q

≤ C

|B|

∫

B

V (x)dx

holds for every balls B in Rd. By Hölder inequality, RHq1 ⊂ RHq2 if q1 ≥ q2 > 1. For

q > 1, it is well-known that V ∈ RHq implies V ∈ RHq+ε for some ε > 0 (see [55]).

Moreover, V (y)dy is a doubling measure, namely for any ball B(x, r) we have
∫

B(x,2r)

V (y)dy ≤ C0

∫

B(x,r)

V (y)dy. (5.4)

Let {Tt}t>0 be the semigroup generated by L and Tt(x, y) be their kernels. Namely,

Ttf(x) = e−tLf(x) =

∫

Rd

Tt(x, y)f(y)dy, f ∈ L2(Rd), t > 0.

We say that a function f ∈ L2(Rd) belongs to the space H1
L(R

d) if

‖f‖H1
L
:= ‖MLf‖L1 <∞,

where MLf(x) := supt>0 |Ttf(x)| for all x ∈ Rd. The space H1
L(R

d) is then defined as the

completion of H1
L(R

d) with respect to this norm.

In [45] it was shown that the dual ofH1
L(R

d) can be identified with the spaceBMOL(R
d)

which consists of all functions f ∈ BMO(Rd) with

‖f‖BMOL
:= ‖f‖BMO + sup

ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞,

where ρ is the auxiliary function defined as in [125], that is,

ρ(x) = sup
{
r > 0 :

1

rd−2

∫

B(x,r)

V (y)dy ≤ 1
}
, (5.5)
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x ∈ Rd. Clearly, 0 < ρ(x) <∞ for all x ∈ Rd, and thus Rd =
⋃
n∈Z Bn, where the sets Bn

are defined by

Bn = {x ∈ Rd : 2−(n+1)/2 < ρ(x) ≤ 2−n/2}. (5.6)

The following proposition plays an important role in our study.

Proposition 5.2.1 (see [125], Lemma 1.4). There exist two constants κ > 1 and k0 ≥ 1

such that for all x, y ∈ Rd,

κ−1ρ(x)
(
1 +

|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ κρ(x)

(
1 +

|x− y|
ρ(x)

) k0
k0+1

.

Throughout the whole paper, we denote by CL the L-constant

CL = 8.9k0κ (5.7)

where k0 and κ are defined as in Proposition 7.2.1.

Given 1 < q ≤ ∞. Following Dziubański and Zienkiewicz [46], a function a is called a

(H1
L, q)-atom related to the ball B(x0, r) if r ≤ CLρ(x0) and
i) supp a ⊂ B(x0, r),

ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

iii) if r ≤ 1
CLρ(x0) then

∫
Rd a(x)dx = 0.

A function a is called a classical (H1, q)-atom related to the ball B = B(x0, r) if it

satisfies (i), (ii) and
∫
Rd a(x)dx = 0.

The following characterization of H1
L(R

d) is due to Dziubański and Zienkiewicz [46].

Theorem 5.2.1 (see [46], Theorem 1.5). Let 1 < q ≤ ∞. A function f is in H1
L(R

d) if

and only if it can be written as f =
∑

j λjaj, where aj are (H
1
L, q)-atoms and

∑
j |λj| <∞.

Moreover,

‖f‖H1
L
≈ inf

{
∑

j

|λj| : f =
∑

j

λjaj

}
.

Note that a classical (H1, q)-atom is not a (H1
L, q)-atom in general. In fact, there

exists a constant C > 0 such that if f is a classical (H1, q)-atom, then it can be written

as f =
∑n

j=1 λjaj, for some n ∈ Z+, where aj are (H1
L, q)-atoms and

∑n
j=1 |λj| ≤ C, see

for example [145]. In this work, we need a variant of the definition of atoms for H1
L(R

d)

which include classical (H1, q)-atoms and (H1
L, q)-atoms. This kind of atoms have been

used in the work of Chang, Dafni and Stein [24, 34].
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Definition 5.2.1. Given 1 < q ≤ ∞ and ε > 0. A function a is called a generalized

(H1
L, q, ε)-atom related to the ball B(x0, r) if

i) supp a ⊂ B(x0, r),

ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

iii) |
∫
Rd a(x)dx| ≤

(
r

ρ(x0)

)ε
.

The space H
1,q,ε
L,at (R

d) is defined to be set of all functions f in L1(Rd) which can be

written as f =
∑∞

j=1 λjaj where the aj are generalized (H1
L, q, ε)-atoms and the λj are

complex numbers such that
∑∞

j=1 |λj| < ∞. As usual, the norm on H
1,q,ε
L,at (R

d) is defined

by

‖f‖
H

1,q,ε
L,at

= inf
{ ∞∑

j=1

|λj| : f =
∞∑

j=1

λjaj

}
.

The space H
1,q,ε
L,fin(R

d) is defined to be set of all f =
∑k

j=1 λjaj, where the aj are

generalized (H1
L, q, ε)-atoms. Then, the norm of f in H

1,q,ε
L,fin(R

d) is defined by

‖f‖
H

1,q,ε
L,fin

= inf
{ k∑

j=1

|λj| : f =
k∑

j=1

λjaj

}
.

Remark 5.2.1. Let 1 < q ≤ ∞ and ε > 0. Then, a classical (H1, q)-atom is a generalized

(H1
L, q, ε)-atom related to the same ball, and a (H1

L, q)-atom is CLε times a generalized

(H1
L, q, ε)-atom related to the same ball.

Throughout the whole paper, we always use generalized (H1
L, q, ε)-atoms except in the

proof of Theorem 5.3.4. More precisely, in order to prove Theorem 5.3.4, we need to use

(H1
L, q)-atoms from Dziubański and Zienkiewicz (see above).

The following gives a characterization of H1
L(R

n) in terms of generalized atoms.

Theorem 5.2.2. Let 1 < q ≤ ∞ and ε > 0. Then, H1,q,ε
L,at (R

d) = H1
L(R

d) and the norms

are equivalent.

In order to prove Theorem 5.2.2, we need the following lemma.

Lemma 5.2.1 (see [91], Lemma 2). Let V ∈ RHd/2. Then, there exists σ0 > 0 depends

only on L, such that for every |y − z| < |x− y|/2 and t > 0, we have

|Tt(x, y)− Tt(x, z)| ≤ C
( |y − z|√

t

)σ0
t−

d
2 e−

|x−y|2

t ≤ C
|y − z|σ0
|x− y|d+σ0 .
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Proof of Theorem 5.2.2. As ML is a sublinear operator, by Remark 5.2.1 and Theorem

7.2, it is sufficient to show that

‖ML(a)‖L1 ≤ C (5.8)

for all generalized (H1
L, q, ε)-atom a related to the ball B = B(x0, r).

Indeed, from the Lq-boundedness of the classical Hardy-Littlewood maximal operator

M, the estimate ML(a) ≤ CM(a) and Hölder inequality,

‖ML(a)‖L1(2B) ≤ C‖M(a)‖L1(2B) ≤ C|2B|1/q′‖M(a)‖Lq ≤ C, (5.9)

where 1/q′ + 1/q = 1. Let x /∈ 2B and t > 0, Lemma 6.3.2 and (3.5) of [46] give

|Tt(a)(x)| =
∣∣∣
∫

Rd

Tt(x, y)a(y)dy
∣∣∣

≤
∣∣∣
∫

B

(Tt(x, y)− Tt(x, x0))a(y)dy
∣∣∣+ |Tt(x, x0)|

∣∣∣
∫

B

a(y)dy
∣∣∣

≤ C
rσ0

|x− x0|d+σ0
+ C

rε

|x− x0|d+ε
.

Therefore,

‖ML(a)‖L1((2B)c) = ‖ sup
t>0

|Tt(a)|‖L1((2B)c)

≤ C

∫

(2B)c

rσ0

|x− x0|d+σ0
dx+ C

∫

(2B)c

rε

|x− x0|d+ε
dx

≤ C. (5.10)

Then, (5.8) follows from (5.9) and (5.10).

By Theorem 5.2.2, the following can be seen as a direct consequence of Proposition

3.2 of [145] and remark 5.2.1.

Proposition 5.2.2. Let 1 < q < ∞, ε > 0 and X be a Banach space. Suppose that

T : H1,q,ε
L,fin(R

d) → X is a sublinear operator with

sup{‖Ta‖X : a is a generalized (H1
L, q, ε)− atom} <∞.

Then, T can be extended to a bounded sublinear operator T̃ from H1
L(R

d) into X , moreover,

‖T̃‖H1
L→X ≤ C sup{‖Ta‖X : a is a generalized (H1

L, q, ε)− atom}.
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Now, we turn to explain the new BMO type spaces introduced by Bongioanni, Har-

boure and Salinas in [17]. Here and in what follows fB := 1
|B|
∫
B
f(x)dx and

MO(f, B) :=
1

|B|

∫

B

|f(y)− fB|dy. (5.11)

For θ ≥ 0, following [17], we denote by BMOL,θ(R
d) the set of all locally integrable

functions f such that

‖f‖BMOL,θ
= sup

B(x,r)




1
(
1 + r

ρ(x)

)θMO(f, B(x, r))


 <∞,

and BMOlog
L,θ(R

d) the set of all locally integrable functions f such that

‖f‖BMOlog
L,θ

= sup
B(x,r)



log
(
e+ ρ(x)

r

)

(
1 + r

ρ(x)

)θ MO(g, B(x, r))


 <∞.

When θ = 0, we write BMOlog
L (Rd) instead of BMOlog

L,0(R
d). We next define

BMOL,∞(Rd) =
⋃

θ≥0

BMOL,θ(R
d)

and

BMOlog
L,∞(Rd) =

⋃

θ≥0

BMOlog
L,θ(R

d).

Observe that BMOL,0(R
d) is just the classical BMO(Rd) space. Moreover, for any

0 ≤ θ ≤ θ′ ≤ ∞, we have

BMOL,θ(R
d) ⊂ BMOL,θ′(R

d), BMOlog
L,θ(R

d) ⊂ BMOlog
L,θ′(R

d) (5.12)

and

BMOlog
L,θ(R

d) = BMOL,θ(R
d) ∩ BMOlog

L,∞(Rd). (5.13)

Remark 5.2.2. The inclusions in (5.12) are strict in general. In particular:

i) The space BMOL,∞(Rd) is in general larger than the space BMO(Rd). Indeed,

when V (x) ≡ |x|2, it is easy to check that the functions bj(x) = |xj|2, j = 1, ..., d, belong

to BMOL,∞(Rd) but not to BMO(Rd).

ii) The space BMOlog
L,∞(Rd) is in general larger than the space BMOlog

L (Rd). Indeed,

when V (x) ≡ 1, it is easy to check that the functions bj(x) = |xj|, j = 1, ..., d, belong to

BMOlog
L,∞(Rd) but not to BMOlog

L (Rd).
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Next, let us recall the notation of Schrödinger-Calderón-Zygmund operators.

Let δ ∈ (0, 1]. According to [103], a continuous function K : Rd × Rd \ {(x, x) : x ∈
Rd} → C is said to be a (δ, L)-Calderón-Zygmund singular integral kernel if for each

N > 0,

|K(x, y)| ≤ C(N)

|x− y|d
(
1 +

|x− y|
ρ(x)

)−N
(5.14)

for all x 6= y, and

|K(x, y)−K(x′, y)|+ |K(y, x)−K(y, x′)| ≤ C
|x− x′|δ
|x− y|d+δ (5.15)

for all 2|x− x′| ≤ |x− y|.
As usual, we denote by C∞

c (Rd) the space of all C∞-functions with compact support,

by S(Rd) the Schwartz space on Rd.

Definition 5.2.2. A linear operator T : S(Rd) → S ′(Rd) is said to be a (δ, L)-Calderón-

Zygmund operator if T can be extended to a bounded operator on L2(Rd) and if there exists

a (δ, L)-Calderón-Zygmund singular integral kernel K such that for all f ∈ C∞
c (Rd) and

all x /∈ supp f , we have

Tf(x) =

∫

Rd

K(x, y)f(y)dy.

An operator T is said to be a L-Calderón-Zygmund operator (or Schrödinger-Calderón-

Zygmund operator) if it is a (δ, L)-Calderón-Zygmund operator for some δ ∈ (0, 1].

We say that T satisfies the condition T ∗1 = 0 (see for example [8]) if there are q ∈
(1,∞] and ε > 0 so that

∫
Rd Ta(x)dx = 0 holds for every generalized (H1

L, q, ε)-atoms a.

Remark 5.2.3. i) Using Proposition 7.2.1, Inequality (5.14) is equivalent to

|K(x, y)| ≤ C(N)

|x− y|d
(
1 +

|x− y|
ρ(y)

)−N

for all x 6= y.

ii) By Theorem 0.8 of [125] and Theorem 1.1 of [126], the Riesz transforms Rj are

L-Calderón-Zygmund operators satisfying R∗
j1 = 0 whenever V ∈ RHd.

iii) If T is a L-Calderón-Zygmund operator then it is also a classical Calderón-

Zygmund operator, and thus T is bounded on Lp(Rd) for 1 < p < ∞ and bounded from

L1(Rd) into L1,∞(Rd).
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5.3 Statement of the results

Recall that KL is the set of all sublinear operators T bounded from H1
L(R

d) into L1(Rd)

and that there are q ∈ (1,∞] and ε > 0 such that

‖(b− bB)Ta‖L1 ≤ C‖b‖BMO

for all b ∈ BMO(Rd), any generalized (H1
L, q, ε)-atom a related to the ball B, where C > 0

is a constant independent of b, a.

5.3.1 Two decomposition theorems

Let b be a locally integrable function and T ∈ KL. As usual, the (sublinear) commutator

[b, T ] of the operator T is defined by [b, T ](f)(x) := T
(
(b(x)− b(·))f(·)

)
(x).

Theorem 5.3.1 (Subbilinear decomposition). Let T ∈ KL. There exists a bounded sub-

bilinear operator R = RT : H1
L(R

d) × BMO(Rd) → L1(Rd) such that for all (f, b) ∈
H1
L(R

d)× BMO(Rd), we have

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ R(f, b) + |T (S(f, b))|,

where S is a bounded bilinear operator from H1
L(R

d)×BMO(Rd) into L1(Rd) which does

not depend on T .

Using Theorem 5.3.1, we obtain immediately the following result.

Proposition 5.3.1. Let T ∈ KL so that T is of weak type (1, 1). Then, the subbilinear

operator T(f, g) = [g, T ](f) maps continuously H1
L(R

d)× BMO(Rd) into L1,∞(Rd).

Recall that Rj = ∂xjL
−1/2, j = 1, ..., d, are the Riesz transforms associated with L.

As the Riesz transforms Rj are of weak type (1, 1) (see [89]), the following can be seen as

a consequence of Proposition 5.3.1 (see also [92]).

Corollary 5.3.1 (see [92], Theorem 4.1). Let b ∈ BMO(Rd). Then, the commutators

[b, Rj] are bounded from H1
L(R

d) into L1,∞(Rd).

When T is linear and belongs to KL, we obtain the bilinear decomposition for the linear

commutator [b, T ] of f , [b, T ](f) = bT (f)−T (bf), instead of the subbilinear decomposition

as stated in Theorem 5.3.1.
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Theorem 5.3.2 (Bilinear decomposition). Let T be a linear operator in KL. Then, there

exists a bounded bilinear operator R = RT : H1
L(R

d)×BMO(Rd) → L1(Rd) such that for

all (f, b) ∈ H1
L(R

d)× BMO(Rd), we have

[b, T ](f) = R(f, b) + T (S(f, b)),

where S is as in Theorem 5.3.1.

5.3.2 Hardy estimates for linear commutators

Our first main result of this subsection is the following theorem.

Theorem 5.3.3. i) Let b ∈ BMOlog
L (Rd) and T be a L-Calderón-Zygmund operator

satisfying T ∗1 = 0. Then, the linear commutator [b, T ] is bounded on H1
L(R

d).

ii) When V ∈ RHd, the converse holds. Namely, if b ∈ BMO(Rd) and [b, T ] is

bounded on H1
L(R

d) for every L-Calderón-Zygmund operator T satisfying T ∗1 = 0, then

b ∈ BMOlog
L (Rd). Furthermore,

‖b‖BMOlog
L

≈ ‖b‖BMO +
d∑

j=1

‖[b, Rj]‖H1
L→H1

L
.

Next result concerns the H1
L-estimates for commutators of the Riesz transforms.

Theorem 5.3.4. Let b ∈ BMOL,∞(Rd). Then, the commutators [b, Rj], j = 1, ..., d, are

bounded on H1
L(R

d) if and only if b ∈ BMOlog
L,∞(Rd). Furthermore, if b ∈ BMOlog

L,θ(R
d)

for some θ ≥ 0, we have

‖b‖BMOlog
L,θ

≈ ‖b‖BMOL,θ
+

d∑

j=1

‖[b, Rj]‖H1
L→H1

L
.

Remark that the above constants depend on θ.

Note that BMOlog
L (Rd) is in general proper subset of BMOlog

L,∞(Rd) (see Remark 5.2.2).

When V ∈ RHd, although the Riesz transforms Rj are L-Calderón-Zygmund operators

satisfying R∗
j1 = 0, Theorem 5.3.4 cannot be deduced from Theorem 5.3.3.

As a consequence of Theorem 5.3.4, we obtain the following interesting result.

Corollary 5.3.2. Let b ∈ BMO(Rd). Then, b belongs to LMO(Rd) if and only if the

vector-valued commutator [b,∇(−∆+1)−1/2] maps continuously h1(Rd) into h1(Rd,Rd) =

(h1(Rd), ..., h1(Rd)). Furthermore,

‖b‖LMO ≈ ‖b‖BMO + ‖[b,∇(−∆+ 1)−1/2]‖h1(Rd)→h1(Rd,Rd).
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Here h1(Rd) is the local Hardy space of D. Goldberg (see [56]), and LMO(Rd) is the

space of all locally integrable functions f such that

‖f‖LMO := sup
B(x,r)

(
log
(
e+

1

r

)
MO(f, B(x, r))

)
<∞.

It should be pointed out that LMO type spaces appear naturally when studying the

boundedness of Hankel operators on the Hardy spaces H1(Td) and H1(Bd) (where Bd is

the unit ball in Cd and Td = ∂Bd), characterizations of pointwise multipliers for BMO

type spaces, endpoint estimates for commutators of singular integrals operators and their

applications to PDEs, see for example [13, 21, 75, 76, 82, 118, 127, 132].

5.4 Some fundamental operators and the class KL

The purpose of this section is to give some examples of fundamental operators related to

L which are in the class KL.

5.4.1 Schrödinger-Calderón-Zygmund operators

Proposition 5.4.1. Let T be any L-Calderón-Zygmund operator. Then, T belongs to the

class KL.

Proposition 5.4.2. The Riesz transforms Rj are in the class KL.

The proof of Proposition 5.4.2 follows directly from Lemma 5.5.7 and the fact that

the Riesz transforms Rj are bounded from H1
L(R

d) into L1(Rd).

To prove Proposition 5.4.1, we need the following two lemmas.

Lemma 5.4.1. Let 1 ≤ q < ∞. Then, there exists a constant C > 0 such that for every

ball B, f ∈ BMO(Rd) and k ∈ Z+,
( 1

|2kB|

∫

2kB

|f(y)− fB|qdy
)1/q

≤ Ck‖f‖BMO.

The proof of Lemma 5.4.1 follows directly from the classical John-Nirenberg inequality.

See also Lemma 5.6.6 below.

Lemma 5.4.2. Let 1 < q ≤ ∞ and ε > 0. Assume that T is a (δ, L)-Calderón-Zygmund

operator and a is a generalized (H1
L, q, ε)-atom related to the ball B = B(x0, r). Then,

‖Ta‖Lq(2k+1B\2kB) ≤ C2−kδ0 |2kB|1/q−1

for all k = 1, 2, ..., where δ0 = min{ε, δ}.
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Proof. Let x ∈ 2k+1B \ 2kB, so that |x− x0| ≥ 2r. Since T is a (δ, L)-Calderón-Zygmund

operator, we get

|Ta(x)| ≤
∣∣∣
∫

B

(K(x, y)−K(x, x0))a(y)dy
∣∣∣+ |K(x, x0)|

∣∣∣
∫

Rd

a(y)dy
∣∣∣

≤ C

∫

B

|y − x0|δ
|x− x0|d+δ

|a(y)|dy + C
1

|x− x0|d
(
1 +

|x− x0|
ρ(x0)

)−ε( r

ρ(x0)

)ε

≤ C
rδ

|x− x0|d+δ
+ C

rε

|x− x0|d+ε
≤ C

rδ0

|x− x0|d+δ0
.

Consequently,

‖Ta‖Lq(2k+1B\2kB) ≤ C
rδ0

(2kr)d+δ0
|2k+1B|1/q ≤ C2−kδ0 |2kB|1/q−1.

Proof of Proposition 5.4.1. Assume that T is a (δ, L)-Calderón-Zygmund for some δ ∈
(0, 1]. Let us first verify that T is bounded from H1

L(R
d) into L1(Rd). By Proposition

5.2.2, it is sufficient to show that

‖Ta‖L1 ≤ C

for all generalized (H1
L, 2, δ)-atom a related to the ballB. Indeed, from the L2-boundedness

of T and Lemma 5.4.2, we obtain that

‖Ta‖L1 = ‖Ta‖L1(2B) +
∞∑

k=1

‖Ta‖L1(2k+1B\2kB)

≤ C|2B|1/2‖T‖L2→L2‖a‖L2 + C

∞∑

k=1

|2k+1B|1/22−kδ|2kB|−1/2

≤ C.

Let us next establish that

‖(f − fB)Ta‖L1 ≤ C‖f‖BMO

for all f ∈ BMO(Rd), any generalized (H1
L, 2, δ)-atom a related to the ball B = B(x0, r).
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Indeed, by Hölder inequality, Lemma 5.4.1 and Lemma 5.4.2, we get

‖(f − fB)Ta‖L1

= ‖(f − fB)Ta‖L1(2B) +
∑

k≥1

‖(f − fB)Ta‖L1(2k+1B\2kB)

≤ ‖(f − fB)χ2B‖L2‖T‖L2→L2‖a‖L2 +
∑

k≥1

‖f − fB‖L2(2k+1B)‖Ta‖L2(2k+1B\2kB)

≤ C‖f‖BMO +
∑

k≥1

C(k + 1)‖f‖BMO|2k+1B|1/22−kδ|2kB|−1/2

≤ C‖f‖BMO,

which ends the proof.

5.4.2 Some L-maximal operators

Recall that {Tt}t>0 is heat semigroup generated by L and Tt(x, y) are their kernels.

Namely,

Ttf(x) = e−tLf(x) =

∫

Rd

Tt(x, y)f(y)dy, f ∈ L2(Rd), t > 0.

Then the ”heat” maximal operator is defined by

MLf(x) = sup
t>0

|Ttf(x)|,

and the ”Poisson” maximal operator is defined by

MP
Lf(x) = sup

t>0
|Ptf(x)|,

where

Ptf(x) = e−t
√
Lf(x) =

t

2
√
π

∞∫

0

e−
t2

4u

u
3
2

Tuf(x)du.

Proposition 5.4.3. The ”heat” maximal operator ML is in the class KL.

Proposition 5.4.4. The ”Poisson” maximal operator MP
L is in the class KL.

Here we just give the proof of Proposition 5.4.3. For the one of Proposition 5.4.4, we

leave the details to the interested reader.
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Proof of Proposition 5.4.3. Obviously, ML is bounded from H1
L(R

d) into L1(Rd).

Now, let us prove that

‖(f − fB)ML(a)‖L1 ≤ C‖f‖BMO

for all f ∈ BMO(Rd), any generalized (H1
L, 2, σ0)-atom a related to the ball B = B(x0, r),

where the constant σ0 > 0 is as in Lemma 6.3.2. Indeed, by the proof of Theorem 5.2.2,

for every x /∈ 2B,

ML(a)(x) ≤ C
rσ0

|x− x0|d+σ0
.

Therefore, using Lemma 5.4.1, the L2-boundedness of the classical Hardy-Littlewood max-

imal operator M and the estimate ML(a) ≤ CM(a), we obtain that

‖(f − fB)ML(a)‖L1

= ‖(f − fB)ML(a)‖L1(2B) + ‖(f − fB)ML(a)‖L1((2B)c)

≤ C‖f − fB‖L2(2B)‖M(a)‖L2 + C

∫

|x−x0|≥2r

|f(x)− fB(x0,r)|
rσ0

|x− x0|d+σ0
dx

≤ C‖f‖BMO,

where we have used the following classical inequality

∫

|x−x0|≥2r

|f(x)− fB(x0,r)|
rσ0

|x− x0|d+σ0
dx ≤ C‖f‖BMO,

which proof can be found in [48]. This completes the proof of Proposition 5.4.3.

5.4.3 Some L-square functions

Recall (see [45]) that the L-square funcfions g and G are defined by

g(f)(x) =




∞∫

0

|t∂tTt(f)(x)|2
dt

t




1/2

and

G(f)(x) =




∞∫

0

∫

|x−y|<t

|t∂tTt(f)(y)|2
dydt

td+1




1/2

.
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Proposition 5.4.5. The L-square function g is in the class KL.

Proposition 5.4.6. The L-square function G is in the class KL.

Here we just give the proof for Proposition 5.4.5. For the one of Proposition 5.4.6, we

leave the details to the interested reader.

In order to prove Proposition 5.4.5, we need the following lemma.

Lemma 5.4.3. There exists a constant C > 0 such that

|t∂tTt(x, y + h)− t∂tTt(x, y)| ≤ C
( |h|√

t

)δ
t−d/2e−

c
4

|x−y|2

t , (5.16)

for all |h| < |x−y|
2

, 0 < t. Here and in the proof of Proposition 5.4.5, the constants

δ, c ∈ (0, 1) are as in Proposition 4 of [45].

Proof. One only needs to consider the case
√
t < |h| < |x−y|

2
. Otherwise, (5.16) follows

directly from (b) in Proposition 4 of [45].

For
√
t < |h| < |x−y|

2
. By (a) in Proposition 4 of [45], we get

|t∂tTt(x, y + h)− t∂tTt(x, y)| ≤ Ct−d/2e−c
|x−y−h|2

t + Ct−d/2e−c
|x−y|2

t

≤ C
( |h|√

t

)δ
t−d/2e−

c
4

|x−y|2

t .

Proof of Proposition 5.4.5. The (H1
L − L1) type boundedness of g is well-known, see for

example [45, 64]. Let us now show that

‖(f − fB)g(a)‖L1 ≤ C‖f‖BMO

for all f ∈ BMO(Rd), any generalized (H1
L, 2, δ)-atom a related to the ball B = B(x0, r).

Indeed, it follows from Lemma 5.4.3 and (a) in Proposition 4 of [45] that for every t > 0,

x /∈ 2B,

|t∂tTt(a)(x)|

=
∣∣∣
∫

B

(t∂tTt(x, y)− t∂tTt(x, x0))a(y)dy + t∂tTt(x, x0)

∫

B

a(y)dy
∣∣∣

≤ C
( r√

t

)δ
t−d/2e−

c
4

|x−x0|
2

t ‖a‖L1 + Ct−d/2e−c
|x−x0|

2

t

(
1 +

√
t

ρ(x)
+

√
t

ρ(x0)

)−δ( r

ρ(x0)

)δ

≤ C
( r√

t

)δ
t−d/2e−

c
4

|x−x0|
2

t .
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Therefore, as 0 < δ < 1, using the estimate e−
c
2

|x−x0|
2

t ≤ C(c, d)( t
|x−x0|2 )

d+2,

g(a)(x) ≤ C





∞∫

0

(r2
t

)δ
t−de−

c
2

|x−x0|
2

t
dt

t





1/2

≤ C





|x−x0|2∫

0

(r2
t

)δ
t−d
( t

|x− x0|2
)d+2dt

t
+

∞∫

|x−x0|2

(r2
t

)δ
t−d

dt

t





1/2

≤ C
rδ

|x− x0|d+δ
.

Therefore, the L2-boundedness of g and Lemma 5.4.1 yield

‖(f − fB)g(a)‖L1

= ‖(f − fB)g(a)‖L1(2B) + ‖(f − fB)g(a)‖L1((2B)c)

≤ ‖f − fB‖L2(2B)‖g(a)‖L2 + C

∫

|x−x0|≥2r

|f(x)− fB(x0,r)|
rδ

|x− x0|d+δ
dx

≤ C‖f‖BMO,

which ends the proof.

5.5 Proof of the main results

In this section, we fix a non-negative function ϕ ∈ S(Rd) with supp ϕ ⊂ B(0, 1) and∫
Rd ϕ(x)dx = 1. Then, we define the linear operator H by

H(f) =
∑

n,k

(
ψn,kf − ϕ2−n/2 ∗ (ψn,kf)

)
,

where ψn,k, n ∈ Z, k = 1, 2, ... is as in Lemma 2.5 of [46] (see also Lemma 7.3.2).

Remark 5.5.1. When V (x) ≡ 1, we can define H(f) = f − ϕ ∗ f .

Let us now consider the set E = {0, 1}d \ {(0, · · · , 0)} and {ψσ}σ∈E the wavelet with

compact support as in Section 3 of [14] (see also Section 2 of [82]). Suppose that ψσ is

supported in the cube (1
2
− c

2
, 1
2
− c

2
)d for all σ ∈ E . As it is classical, for σ ∈ E and I a

dyadic cube of Rd which may be written as the set of x such that 2jx − k ∈ (0, 1)d, we

note

ψσI (x) = 2dj/2ψσ(2jx− k).

142



In the sequel, the letter I always refers to dyadic cubes. Moreover, we note kI the cube

of same center dilated by the coefficient k.

Remark 5.5.2. For every σ ∈ E and I a dyadic cube. Because of the assumption on the

support of ψσ, the function ψσI is supported in the cube cI.

In [14] (see also [82]), Bonami et al. established the following.

Proposition 5.5.1. The bounded bilinear operator Π, defined by

Π(f, g) =
∑

I

∑

σ∈E
〈f, ψσI 〉〈g, ψσI 〉(ψσI )2,

is bounded from H1(Rd)× BMO(Rd) into L1(Rd).

5.5.1 Proof of Theorem 5.3.1, Theorem 5.3.2

In order to prove Theorem 5.3.1 and Theorem 5.3.2, we need the following key two lemmas

which proofs will given in Section 5.6.

Lemma 5.5.1. The linear operator H is bounded from H1
L(R

d) into H1(Rd).

Lemma 5.5.2. Let T ∈ KL. Then, the subbilinear operator

U(f, b) := [b, T ](f − H(f))

is bounded from H1
L(R

d)× BMO(Rd) into L1(Rd).

By Proposition 5.5.1 and Lemma 5.5.1, we obtain:

Proposition 5.5.2. The bilinear operator S(f, g) := −Π(H(f), g) is bounded from H1
L(R

d)×
BMO(Rd) into L1(Rd).

We recall (see [82]) that the class K is the set of all sublinear operators T bounded

from H1(Rd) into L1(Rd) so that for some q ∈ (1,∞],

‖(b− bB)Ta‖L1 ≤ C‖b‖BMO,

for all b ∈ BMO(Rd), any classical (H1, q)-atom a related to the ball B, where C > 0 a

constant independent of b, a.

Remark 5.5.3. By Remark 5.2.1 and as H1(Rd) ⊂ H1
L(R

d), we obtain that KL ⊂ K,

which allows to apply the two classical decomposition theorems (Theorem 3.1 and Theorem

3.2 of [82]). This is a key point in our proofs.
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Proof of Theorem 5.3.1. As T ∈ KL ⊂ K, it follows from Theorem 3.1 of [82] that there

exists a bounded subbilinear operator V : H1(Rd) × BMO(Rd) → L1(Rd) such that for

all (g, b) ∈ H1(Rd)× BMO(Rd), we have

|T (−Π(g, b))| − V(g, b) ≤ |[b, T ](g)| ≤ V(g, b) + |T (−Π(g, b))|. (5.17)

Let us now define the bilinear operator R by

R(f, b) := |U(f, b)|+ V(H(f), b)

for all (f, b) ∈ H1
L(R

d) × BMO(Rd), where U is the subbilinear operator as in Lemma

5.5.2. Then, using the subbilinear decomposition (5.17) with g = H(f),

|T (S(f, b))| −R(f, b) ≤ |[b, T ](f)| ≤ |T (S(f, b))|+R(f, b),

where the bounded bilinear operator S : H1
L(R

d) × BMO(Rd) → L1(Rd) is given in

Proposition 5.5.2.

Furthermore, by Lemma 5.5.2 and Lemma 5.5.1, we get

‖R(f, b)‖L1 ≤ ‖U(f, b)‖L1 + ‖V(H(f), b)‖L1

≤ C‖f‖H1
L
‖b‖BMO + C‖H(f)‖H1‖b‖BMO

≤ C‖f‖H1
L
‖b‖BMO,

where we used the boundedness of V on H1(Rd)×BMO(Rd) into L1(Rd). This completes

the proof.

Proof of Theorem 5.3.2. The proof follows the same lines except that now, one deals with

equalities instead of inequalities. Namely, as T is a linear operator in KL ⊂ K, Theorem

3.2 of [82] yields that there exists a bounded bilinear operator W : H1(Rd)×BMO(Rd) →
L1(Rd) such that for every (g, b) ∈ H1(Rd)× BMO(Rd),

[b, T ](g) = W(g, b) + T (−Π(g, b))

Therefore, for every (f, b) ∈ H1
L(R

d)× BMO(Rd),

[b, T ](f) = R(f, b) + T (S(f, b)),

where R(f, b) := U(f, b) + W(H(f), b) is a bounded bilinear operator from H1
L(R

d) ×
BMO(Rd) into L1(Rd). This completes the proof.
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5.5.2 Proof of Theorem 5.3.3 and Theorem 5.3.4

First, recall that VMOL(R
d) is the closure of C∞

c (Rd) in BMOL(R
d). Then, the following

result due to Ky [83].

Theorem 5.5.1. The space H1
L(R

d) is the dual of the space VMOL(R
d).

In order to prove Theorem 5.3.3, we need the following key lemmas, which proofs will

be given in Section 5.6.

Lemma 5.5.3. Let 1 ≤ q <∞ and θ ≥ 0. Then, for every f ∈ BMOlog
L,θ(R

d), B = B(x, r)

and k ∈ Z+, we have

( 1

|2kB|

∫

2kB

|f(y)− fB|qdy
)1/q

≤ Ck

(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)

2kr
)k0+1

)‖f‖BMOlog
L,θ
,

where the constant k0 is as in Proposition 7.2.1.

Lemma 5.5.4. Let 1 < q < ∞, ε > 0 and T be a L-Calderón-Zygmund operator. Then,

the following two statements hold:

i) If T ∗1 = 0, then T is bounded from H1
L(R

d) into H1(Rd).

ii) For every f, g ∈ BMO(Rd), generalized (H1
L, q, ε)-atom a related to the ball B,

‖(f − fB)(g − gB)Ta‖L1 ≤ C‖f‖BMO‖g‖BMO.

Proof of Theorem 5.3.3. (i). Assume that T is a (δ, L)-Calderón-Zygmund operator. We

claim that, as, by Lemma 5.5.4, it is sufficient to prove that

‖(b− bB)a‖H1
L
≤ C‖b‖BMOlog

L
(5.18)

and

‖(b− bB)Ta‖H1
L
≤ C‖b‖BMOlog

L
(5.19)

hold for every generalized (H1
L, 2, δ)-atom a related to the ball B = B(x0, r) with the

constants are independent of b, a. Indeed, if (5.18) and (5.19) are true, then

‖[b, T ](a)‖H1
L

≤ ‖(b− bB)Ta‖H1
L
+ C‖T ((b− bB)a)‖H1

≤ C‖b‖BMOlog
L

+ C‖T‖H1
L→H1‖(b− bB)a‖H1

L

≤ C‖b‖BMOlog
L
.

Therefore, Proposition 5.2.2 yields that [b, T ] is bounded on H1
L(R

d), moreover,

‖[b, T ]‖H1
L→H1

L
≤ C,
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where the constant C is independent of b.

The proof of (5.18) is similar to the one of (5.19) but uses an easier argument, we

leave the details to the interested reader. Let us now establish (5.19). By Theorem 5.5.1,

it is sufficient to show that

‖φ(b− bB)Ta‖L1 ≤ C‖b‖BMOlog
L
‖φ‖BMOL

(5.20)

for all φ ∈ C∞
c (Rd). Besides, from Lemma 5.5.4,

‖(φ− φB)(b− bB)Ta‖L1 ≤ C‖b‖BMO‖φ‖BMO ≤ C‖b‖BMOlog
L
‖φ‖BMOL

.

This together with Lemma 2 of [45] allow us to reduce (5.20) to showing that

log
(
e+

ρ(x0)

r

)
‖(b− bB)Ta‖L1 ≤ C‖b‖BMOlog

L
. (5.21)

Setting ε = δ/2, it is easy to check that there exists a constant C = C(ε) > 0 such

that

log(e+ kt) ≤ Ckε log(e+ t)

for all k ≥ 2, t > 0. Consequently, for all k ≥ 1,

log
(
e+

ρ(x0)

r

)
≤ C2kε log

(
e+

(ρ(x0)
2k+1r

)k0+1
)
. (5.22)

Then, by Lemma 5.4.2 and Lemma 5.5.3, we get

log
(
e+

ρ(x0)

r

)
‖(b− bB)Ta‖L1

= log
(
e+

ρ(x0)

r

)
‖(b− bB)Ta‖L1(2B) +

+
∑

k≥1

log
(
e+

ρ(x0)

r

)
‖(b− bB)Ta‖L1(2k+1B\2kB)

≤ C log

(
e+

(ρ(x0)
2r

)k0+1
)
‖b− bB‖L2(2B)‖Ta‖L2 +

+C
∑

k≥1

2kε log

(
e+

(ρ(x0)
2k+1r

)k0+1
)
‖b− bB‖L2(2k+1B)‖Ta‖L2(2k+1B\2kB)

≤ C|2B|1/2‖b‖BMOlog
L
‖a‖L2 + C

∑

k≥1

2kε(k + 1)|2k+1B|1/2‖b‖BMOlog
L
2−kδ|2kB|−1/2

≤ C‖b‖BMOlog
L
,

where we used δ = 2ε. This ends the proof of (i).

(ii). By Remark 5.2.3, (ii) can be seen as a consequence of Theorem 5.3.4 that we are

going to prove now.
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Next, let us recall the following lemma due to Tang and Bi [134].

Lemma 5.5.5 (see [134], Lemma 3.1). Let V ∈ RHd/2. Then, there exists c0 ∈ (0, 1)

such that for any positive number N and 0 < h < |x− y|/16, we have

|Kj(x, y)| ≤
C(N)

(
1 + |x−y|

ρ(y)

)N
1

|x− y|d−1

( ∫

B(x,|x−y|)

V (z)

|x− z|d−1
dz +

1

|x− y|
)

and

|Kj(x, y + h)−Kj(x, y)| ≤
C(N)

(
1 + |x−y|

ρ(y)

)N
hc0

|x− y|c0+d−1

( ∫

B(x,|x−y|)

V (z)

|x− z|d−1
dz +

1

|x− y|
)
,

where Kj(x, y), j = 1, ..., d, are the kernels of the Riesz transforms Rj.

In order to prove Theorem 5.3.4, we need also the following two technical lemmas,

which proofs will be given in Section 5.6.

Lemma 5.5.6. Let 1 < q ≤ d/2 and c0 be as in Lemma 5.5.5. Then, Rj(a) is C times

a classical (H1, q, c0)-molecule (e.g. [126]) for all generalized (H1
L, q, c0)-atom a related to

the ball B = B(x0, r). Furthermore, for any N > 0 and k ≥ 4, we have

‖Rj(a)‖Lq(2k+1B\2kB) ≤
C(N)

(
1 + 2kr

ρ(x0)

)N 2−kc0 |2kB|1/q−1, (5.23)

where C(N) > 0 depends only on N .

Lemma 5.5.7. Let 1 < q ≤ d/2 and θ ≥ 0. Then, for every f ∈ BMO(Rd), g ∈
BMOL,θ(R

d) and (H1
L, q)-atom a related to the ball B = B(x0, r), we have

‖(g − gB)Rj(a)‖L1 ≤ C‖g‖BMOL,θ

and

‖(f − fB)(g − gB)Rj(a)‖L1 ≤ C‖f‖BMO‖g‖BMOL,θ
.

Proof of Theorem 5.3.4. Suppose that b ∈ BMOlog
L,∞(Rd), i.e. b ∈ BMOlog

L,θ(R
d) for some

θ ≥ 0. By Proposition 3.2 of [145], in order to prove that [b, Rj] are bounded on H1
L(R

d), it

is sufficient to show that ‖[b, Rj](a)‖H1
L
≤ C‖b‖BMOlog

L,θ
for all (H1

L, d/2)-atom a. Similarly

to the proof of Theorem 5.3.3, it remains to show

‖(b− bB)a‖H1
L
≤ C‖b‖BMOlog

L,θ
(5.24)
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and

‖(b− bB)Rj(a)‖H1
L
≤ C‖b‖BMOlog

L,θ
(5.25)

hold for every (H1
L, d/2)-atom a related to the ball B = B(x0, r), where the constants C

in (5.24) and (5.25) are independent of b, a.

As before, we leave the proof of (5.24) to the interested reader.

Let us now establish (5.25). Similarly to the proof of Theorem 5.3.3, Lemma 5.5.7

allows to reduce (5.25) to showing that

log
(
e+

ρ(x0)

r

)
‖(b− bB)Rj(a)‖L1 ≤ C‖b‖BMOlog

L,θ
. (5.26)

Setting ε = c0/2, there is a constant C = C(ε) > 0 such that for all k ≥ 1,

log
(
e+

ρ(x0)

r

)
≤ C2kε log

(
e+

(ρ(x0)
2k+1r

)k0+1
)
. (5.27)

Note that r ≤ CLρ(x0) since a is a (H1
L, d/2)-atom related to the ball B(x0, r). In

(5.23) of Lemma 5.5.6, we choose N = (k0 + 1)θ. Then, Hölder inequality, (5.27) and

Lemma 5.5.3 allow to conclude that

log
(
e+

ρ(x0)

r

)
‖(b− bB)Rj(a)‖L1

= log
(
e+

ρ(x0)

r

)
‖(b− bB)Rj(a)‖L1(24B) +

+
∑

k≥4

log
(
e+

ρ(x0)

r

)
‖(b− bB)Rj(a)‖L1(2k+1B\2kB)

≤ C log

(
e+

(ρ(x0)
24r

)k0+1
)
‖b− bB‖

L
d

d−2 (24B)
‖Rj(a)‖Ld/2 +

+C
∑

k≥4

2kε log

(
e+

(ρ(x0)
2k+1r

)k0+1
)
‖b− bB‖

L
d

d−2 (2k+1B)
‖Rj(a)‖Ld/2(2k+1B\2kB)

≤ C‖b‖BMOlog
L,θ

+ C‖b‖BMOlog
L,θ

∑

k≥4

k2−kε

≤ C‖b‖BMOlog
L,θ

where we used c0 = 2ε. This proves (5.26), and thus [b, Rj] are bounded on H1
L(R

d).

Conversely, assume that [b, Rj] are bounded on H1
L(R

d). Then, although b belongs to

BMOlog
L,∞(Rd) from a duality argument and Theorem 2 of [17], we would also like to give

a direct proof for completeness.

As b ∈ BMOL,∞(Rd) by assumption, there exist θ ≥ 0 such that b ∈ BMOL,θ(R
d).
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For every (H1
L, d/2)-atom a related to some ball B = B(x0, r). By Remark 5.2.1 and

Lemma 5.5.7,

‖Rj((b− bB)a)‖L1 ≤ ‖(b− bB)Rj(a)‖L1 + C‖[b, Rj](a)‖H1
L

≤ C‖b‖BMOL,θ
+ C‖[b, Rj]‖H1

L→H1
L

hold for all j = 1, ..., d. In addition, noting that r ≤ CLρ(x0) since a is a (H1
L, d/2)-atom

related to some ball B = B(x0, r), Hölder inequality and Lemma 1 of [17] (see also Lemma

5.6.6 below) give

‖(b− bB)a‖L1 ≤ ‖b− bB‖
L

d
d−2 (B)

‖a‖Ld/2(B) ≤ C‖b‖BMOL,θ
.

By the characterization of H1
L(R

d) in terms of the Riesz transforms (see [46]), the

above proves that (b− bB)a ∈ H1
L(R

d), moreover,

‖(b− bB)a‖H1
L
≤ C

(
‖b‖BMOL,θ

+
d∑

j=1

‖[b, Rj]‖H1
L→H1

L

)
(5.28)

where the constant C > 0 is independent of b, a.

Now, we prove that b ∈ BMOlog
L,θ(R

d). More precisely, the following

log
(
e+ ρ(x0)

r

)

(
1 + r

ρ(x0)

)θ MO(b, B(x0, r)) ≤ C

(
‖b‖BMOL,θ

+
d∑

j=1

‖[b, Rj]‖H1
L→H1

L

)
(5.29)

holds for any ball B(x0, r) in Rd. In fact, we only need to establish (5.29) for 0 < r <

ρ(x0)/2 since b ∈ BMOL,θ(R
d).

Indeed, in (5.28) we choose B = B(x0, r) and a = (2|B|)−1(f −fB)χB, where f = sign

(b− bB). Then, it is easy to see that a is a (H1
L, d/2)-atom related to the ball B. We next

consider

gx0,r(x) = χ[0,r](|x− x0|) log
(ρ(x0)

r

)
+ χ(r,ρ(x0)](|x− x0|) log

( ρ(x0)

|x− x0|
)
.

Then, thanks to Lemma 2.5 of [103], one has ‖gx0,r‖BMOL
≤ C. Moreover, it is clear that

gx0,r(b − bB)a ∈ L1(Rd). Consequently, (5.28) together with the fact that BMOL(R
d) is

the dual of H1
L(R

d) allows us to conclude that

149



log
(
e+ ρ(x0)

r

)

(
1 + r

ρ(x0)

)θ MO(b, B(x0, r)) ≤ 3 log
(ρ(x0)

r

)
MO(b, B(x0, r))

= 6
∣∣∣
∫

Rd

gx0,r(x)(b(x)− bB)a(x)dx
∣∣∣

≤ 6‖gx0,r‖BMOL
‖(b− bB)a‖H1

L

≤ C

(
‖b‖BMOL,θ

+
d∑

j=1

‖[b, Rj]‖H1
L→H1

L

)
,

where we used r < ρ(x0)/2 and
∫

Rd

(b(x)− bB)a(x)dx =
1

2|B(x0, r)|

∫

B(x0,r)

|b(x)− bB(x0,r)|dx.

This ends the proof.

5.6 Proof of the key lemmas

First, let us recall some notations and results due to Dziubański and Zienkiewicz in [46].

These notations and results play an important role in our proofs.

Let P (x) = (4π)−d/2e−|x|2/4 be the Gauss function. For n ∈ Z, the space h1n(R
d)

denotes the space of all integrable functions f such that

Mnf(x) = sup
0<t<2−n

|P√
t ∗ f(x)| = sup

0<t<2−n

∣∣∣
∫

Rd

pt(x, y)f(y)dy
∣∣∣ ∈ L1(Rd),

where the kernel pt is given by pt(x, y) = (4πt)−d/2e−
|x−y|2

4t . We equipped this space with

the norm ‖f‖h1n := ‖Mnf‖L1 .

For convenience of the reader, we list here some lemmas used in our proofs.

Lemma 5.6.1 (see [46], Lemma 2.3). There exists a constant C > 0 and a collection of

balls Bn,k = B(xn,k, 2
−n/2), n ∈ Z, k = 1, 2, ..., such that xn,k ∈ Bn, Bn ⊂ ⋃k Bn,k, and

card {(n′, k′) : B(xn,k, R2
−n/2) ∩ B(xn′,k′ , R2

−n/2) 6= ∅} ≤ RC

for all n, k and R ≥ 2.
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Lemma 5.6.2 (see [46], Lemma 2.5). There are nonnegative C∞-functions ψn,k, n ∈
Z, k = 1, 2, ..., supported in the balls B(xn,k, 2

1−n/2) such that
∑

n,k

ψn,k = 1 and ‖∇ψn,k‖L∞ ≤ C2n/2.

Lemma 5.6.3 (see (4.7) in [46]). For every f ∈ H1
L(R

d), we have
∑

n,k

‖ψn,kf‖h1n ≤ C‖f‖H1
L
.

To prove Lemma 5.5.1, we need the following.

Lemma 5.6.4. There exists a constant C = C(ϕ, d) > 0 such that

‖f − ϕ2−n/2 ∗ f‖H1 ≤ C‖f‖h1n , for all n ∈ Z, f ∈ h1n(R
d). (5.30)

The proof of Lemma 5.6.4 can be found in [56]. In fact, in [56], Goldberg proved

it just for n = 0, however, by dilations, it is easy to see that (5.30) holds for every

n ∈ Z, f ∈ h1n(R
d) with an uniform constant C > 0 depends only on ϕ and d.

Proof of Lemma 5.5.1. It follows from Lemma 5.6.4 and Lemma 7.3.4 that

‖H(f)‖H1 =
∥∥∥
∑

n,k

(ψn,kf − ϕ2−n/2 ∗ (ψn,kf))
∥∥∥
H1

≤
∑

n,k

∥∥∥ψn,kf − ϕ2−n/2 ∗ (ψn,kf)
∥∥∥
H1

≤ C
∑

n,k

‖ψn,kf‖h1n ≤ C‖f‖H1
L

for every f ∈ H1
L(R

d). This completes the proof.

For 1 < q ≤ ∞ and n ∈ Z. Recall (see [46]) that a function a is said to be a

(h1n, q)-atom related to the ball B(x0, r) if r ≤ 21−n/2 and

i) supp a ⊂ B(x0, r),

ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

iii) if r ≤ 2−1−n/2 then
∫
Rd a(x)dx = 0.

In order to prove Lemma 5.5.2, we need the following lemma.

Lemma 5.6.5. Let 1 < q ≤ ∞, n ∈ Z and x ∈ Bn. Suppose that f ∈ h1n(R
d) with supp

f ⊂ B(x, 21−n/2). Then, there are (H1
L, q)-atoms aj related to the balls B(xj, rj) such that

B(xj, rj) ⊂ B(x, 22−n/2) and

f =
∑

j

λjaj,
∑

j

|λj| ≤ C‖f‖h1n

with a positive constant C independent of n and f .
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Proof. By Theorem 4.5 of [46], there are (h1n, q)-atoms aj related to the balls B(xj, rj)

such that B(xj, rj) ⊂ B(x, 22−n/2) and

f =
∑

j

λjaj,
∑

j

|λj| ≤ C‖f‖h1n .

Now, let us establish that the aj’s are (H1
L, q)-atoms related to the balls B(xj, rj).

Indeed, as xj ∈ B(x, 22−n/2) and x ∈ Bn, Proposition 7.2.1 implies that rj ≤ 22−n/2 ≤
CLρ(xj), where CL is as in (6.13). Moreover, if rj <

1
CLρ(xj), then Proposition 7.2.1 implies

that rj ≤ 2−1−n/2, and thus
∫
Rd aj(x)dx = 0 since aj are (h

1
n, q)-atoms related to the balls

B(xj, rj). These prove that the aj’s are (H1
L, q)-atoms related to the balls B(xj, rj).

Proof of Lemma 5.5.2. As T ∈ KL, there exist q ∈ (1,∞] and ε > 0 such that

‖(b− bB)Ta‖L1 ≤ C‖b‖BMO (5.31)

for all b ∈ BMO(Rd) and generalized (H1
L, q, ε)-atom a related to the ball B.

From H
1,q,ε
L,fin(R

d) is dense in H1
L(R

d), we need only prove that

‖U(f, b)‖L1 = ‖[b, T ](f − H(f))‖L1 ≤ C‖f‖H1
L
‖b‖BMO

holds for every (f, b) ∈ H
1,q,ε
L,fin(R

d)× BMO(Rd).

For any (n, k) ∈ Z × Z+. As xn,k ∈ Bn and ψn,kf ∈ h1n(R
d), it follows from Lemma

5.6.5 and Remark 5.2.1 that there are generalized (H1
L, q, ε)-atoms an,kj related to the balls

B(xn,kj , rn,kj ) such that B(xn,kj , rn,kj ) ⊂ B(xn,k, 2
2−n/2) and

ψn,kf =
∑

j

λn,kj an,kj ,
∑

j

|λn,kj | ≤ C‖ψn,kf‖h1n (5.32)

with a positive constant C independent of n, k and f .

Clearly, supp ϕ2−n/2 ∗ an,kj ⊂ B(xn,k, 5.2
−n/2) since supp ϕ ⊂ B(0, 1) and supp an,kj ⊂

B(xn,k, 2
2−n/2); the following estimate holds

‖ϕ2−n/2 ∗ an,kj ‖Lq ≤ ‖ϕ2−n/2‖Lq‖an,kj ‖L1 ≤ (2−n/2)d(1/q−1)‖ϕ‖Lq ≤ C|B(xn,k, 5.2
−n/2)|1/q−1.

Moreover, as xn,k ∈ Bn,
∣∣∣
∫

Rd

ϕ2−n/2 ∗ an,kj dx
∣∣∣ ≤ ‖ϕ2−n/2‖L1‖an,kj ‖L1 ≤ C

(5.2−n/2
ρ(xn,k)

)ε
.

These prove that ϕ2−n/2∗an,kj is C times a generalized (H1
L, q, ε)-atom related toB(xn,k, 5.2

−n/2).

Consequently, (5.31) yields

‖(b− bB(xn,k,5.2−n/2))T (ϕ2−n/2 ∗ an,kj )‖L1 ≤ C‖b‖BMO. (5.33)
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By an analogous argument, it is easy to check that (ϕ2−n/2 ∗ an,kj )(b − bB(xn,k,5.2−n/2))

is C‖b‖BMO times a generalized (H1
L,

q+1
2
, ε)-atom related to B(xn,k, 5.2

−n/2). Hence, it

follows from (5.32) and (5.33) that

‖[b, T ](ϕ2−n/2 ∗ (ψn,kf))‖L1 ≤ ‖(b− bB(xn,k,5.2−n/2))T (ϕ2−n/2 ∗ (ψn,kf))‖L1

+
∥∥∥T
(
(b− bB(xn,k,5.2−n/2))(ϕ2−n/2 ∗ (ψn,kf))

)∥∥∥
L1

≤ C‖ψn,kf‖h1n‖b‖BMO, (5.34)

where we used the fact that T is bounded from H1
L(R

d) into L1(Rd) since T ∈ KL.

On the other hand, by f ∈ H
1,q,ε
L,fin(R

d), there exists a ball B(0, R) such that supp

f ⊂ B(0, R). As B(0, R) is a compact set, Lemma 7.3.1 allows to conclude that there is

a finite set ΓR ⊂ Z× Z+ such that for every (n, k) /∈ ΓR,

B(xn,k, 2
1−n/2) ∩B(0, R) = ∅.

It follows that there are N,K ∈ Z+ such that

f =
∑

n,k

ψn,kf =
N∑

n=−N

K∑

k=1

ψn,kf.

Therefore, (5.34) and Lemma 7.3.4 yield

‖U(f, b)‖L1 ≤
∥∥∥∥∥

N∑

n=−N

K∑

k=1

∣∣∣[b, T ](ϕ2−n/2 ∗ (ψn,kf))
∣∣∣
∥∥∥∥∥
L1

≤ C‖b‖BMO

∑

n,k

‖ψn,kf‖h1n ≤ C‖f‖H1
L
‖b‖BMO,

which ends the proof.

Proof of Lemma 5.5.3. First, we claim that for every ball B0 = B(x0, r0),

( 1

|B0|

∫

B0

|f(y)− fB0 |qdy
)1/q

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
. (5.35)
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Assume that (5.35) holds for a moment. Then,

( 1

|2kB|

∫

2kB

|f(y)− fB|qdy
)1/q

≤
( 1

|2kB|

∫

2kB

|f(y)− f2kB|qdy
)1/q

+
k−1∑

j=0

|f2j+1B − f2jB|

≤

(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)

2kr
)k0+1

)‖f‖BMOlog
L,θ

+
k−1∑

j=0

2d

(
1 + 2j+1r

ρ(x)

)θ

log
(
e+ ρ(x)

2j+1r

)‖f‖BMOlog
L,θ

≤ Ck

(
1 + 2kr

ρ(x)

)(k0+1)θ

log
(
e+ (ρ(x)

2kr
)k0+1

)‖f‖BMOlog
L,θ
.

Now, it remains to prove (5.35).

Let us define the function h on Rd as follows

h(x) =





1, x ∈ B0,

2r0−|x−x0|
r0

, x ∈ 2B0 \B0,

0, x /∈ 2B0,

and remark that

|h(x)− h(y)| ≤ |x− y|
r0

. (5.36)

Setting f̃ := f − f2B0 . By the classical John-Nirenberg inequality, there exists a

constant C = C(d, q) > 0 such that

( 1

|B0|

∫

B0

|f(y)− fB0 |qdy
)1/q

=
( 1

|B0|

∫

B0

|h(y)f̃(y)− (hf̃)B0 |qdy
)1/q

≤ C‖hf̃‖BMO.

Therefore, the proof of the lemma is reduced to showing that

‖hf̃‖BMO ≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
,

namely, for every ball B = B(x, r),

1

|B|

∫

B

|h(y)f̃(y)− (hf̃)B|dy ≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
. (5.37)
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Now, let us focus on Inequality (5.37). Noting that supp h ⊂ 2B0, Inequality (5.37)

is obvious if B ∩ 2B0 = ∅. Hence, we only consider the case B ∩ 2B0 6= ∅. Then, we have

the following two cases:

The case r > r0: the fact B ∩ 2B0 6= ∅ implies that 2B0 ⊂ 5B, and thus

1

|B|

∫

B

|h(y)f̃(y)− (hf̃)B|dy ≤ 2
1

|B|

∫

B

|h(y)f̃(y)|dy

≤ 2.5d
1

|2B0|

∫

2B0

|f(y)− f2B0 |dy

≤ C

(
1 + 2r0

ρ(x0)

)θ

log
(
e+ ρ(x0)

2r0

)‖f‖BMOlog
L,θ

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
.

The case r ≤ r0: Inequality (5.36) yields

1

|B|

∫

B

|h(y)f̃(y)− (hf̃)B|dy ≤ 2
1

|B|

∫

B

|h(y)f̃(y)− hB f̃B|dy

≤ 2
1

|B|

∫

B

|h(y)(f̃(y)− f̃B)|dy+

+ 2|f̃B|
1

|B|

∫

B

1

|B|
∣∣∣
∫

B

(h(x)− h(y))dy
∣∣∣dx

≤ 2
1

|B|

∫

B

|f(y)− fB|dy + 4
r

r0
|fB − f2B0 |. (5.38)

By r ≤ r0, B = B(x, r) ∩ B(x0, r0) 6= ∅, Proposition 7.2.1 gives

r

ρ(x)
≤ r0
ρ(x)

≤ κ
r0

ρ(x0)

(
1 +

|x− x0|
ρ(x0)

)k0
≤ C

(
1 +

r0
ρ(x0)

)k0+1

.

Consequently,

1

|B|

∫

B

|f(y)− fB|dy ≤

(
1 + r

ρ(x)

)θ

log(e+ ρ(x)
r
)
‖f‖BMOlog

L,θ

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
, (5.39)
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and

1

|B(x, 23r0)|

∫

B(x,23r0)

|f(y)− fB(x,23r0)|dy ≤

(
1 + 23r0

ρ(x)

)θ

log(e+ ρ(x)
23r0

)
‖f‖BMOlog

L,θ

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
. (5.40)

Noting that for every k ∈ N with 2k+1r ≤ 23r0,

|f2k+1B − f2kB| ≤ 2d
1

|2k+1B|

∫

2k+1B

|f(y)− f2k+1B|dy

≤ C

(
1 + 23r0

ρ(x)

)θ

log(e+ ρ(x)
23r0

)
‖f‖BMOlog

L,θ

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
,

allows us to conclude that

|fB(x,r) − fB(x,23r0)| ≤ C log
(
e+

r0
r

)
(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
. (5.41)

Then, the inclusion 2B0 ⊂ B(x, 23r0) together with the inequalities (5.38), (5.39),

(5.40) and (5.41) yield

1

|B|

∫

B

|h(y)f̃(y)− (hf̃)B|dy ≤ 2
1

|B|

∫

B

|f(y)− fB|dy +

+4
r

r0

(
|fB(x,r) − fB(x,23r0)|+ 4dMO(f, B(x, 23r0))

)

≤ C
(
1 +

r

r0
log(e+

r0
r
)
)
(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ

≤ C

(
1 + r0

ρ(x0)

)(k0+1)θ

log
(
e+ (ρ(x0)

r0
)k0+1

)‖f‖BMOlog
L,θ
,

we have used r
r0
log(e+ r0

r
) ≤ supt≤1 t log(e+ 1/t) <∞. This ends the proof.
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By an analogous argument, we can also obtain the following, which was proved by

Bongioanni et al (see Lemma 1 of [17]) through another method.

Lemma 5.6.6. Let 1 ≤ q <∞ and θ ≥ 0. Then, for every f ∈ BMOL,θ(R
d), B = B(x, r)

and k ∈ Z+, we have

( 1

|2kB|

∫

2kB

|f(y)− fB|qdy
)1/q

≤ Ck
(
1 +

2kr

ρ(x)

)(k0+1)θ

‖f‖BMOL,θ
.

Proof of Lemma 5.5.4. i) Assume that T is a (δ, L)-calderón-Zygmund operator for

some δ ∈ (0, 1]. For every generalized (H1
L, 2, δ)-atom a related to the ball B, as T ∗1 = 0,

Lemma 5.4.2 implies that Ta is C times a classical (H1, 2, δ)-molecule (see for example

[126]) related to B, and thus ‖Ta‖H1 ≤ C. Therefore, Proposition 5.2.2 yields T maps

continuously H1
L(R

d) into H1(Rd).

ii) By Lemma 5.4.1, Lemma 5.4.2 and Hölder inequality, we get

‖(f − fB)(g − gB)Ta‖L1

= ‖(f − fB)(g − gB)Ta‖L1(2B) +
∑

k≥1

‖(f − fB)(g − gB)Ta‖L1(2k+1B\2kB)

≤ ‖f − fB‖L2q′ (2B)‖g − gB‖L2q′ (2B)‖T (a)‖Lq +

+
∑

k≥1

‖f − fB‖L2q′ (2k+1B)‖g − gB‖L2q′ (2k+1B)‖T (a)‖Lq(2k+1B\2kB)

≤ C‖f‖BMO‖g‖BMO +
∑

k≥1

C(k + 1)2‖f‖BMO‖g‖BMO|2k+1B|1/q′2−kδ|2kB|1/q−1

≤ C‖f‖BMO‖g‖BMO,

where 1/q + 1/q′ = 1.

Proof of Lemma 5.5.6. It is well-known that the Riesz transforms Rj are bounded from

H1
L(R

d) into H1(Rd), in particular, one has
∫
Rd Rj(a)(x)dx = 0. Moreover, by the Lq-

boundedness of Rj (see [125], Theorem 0.5) one has ‖Rj(a)‖Lq ≤ C|B|1/q−1. Therefore, it

is sufficient to verify (5.23). Thanks to Lemma 5.5.5, as a is a generalized (H1
L, q, c0)-atom
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related to the ball B, for every x ∈ 2k+1B \ 2kB,

|Rj(a)(x)| ≤
∣∣∣
∫

B

(Kj(x, y)−Kj(x, x0))a(y)dy
∣∣∣+ |Kj(x, x0)|

∣∣∣
∫

B

a(y)dy
∣∣∣

≤
∫

B

C(N)
(
1 + |x−x0|

ρ(x0)

)N+4N0

|y − x0|c0
|x− x0|d+c0−1

{ ∫

B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

1

|x− x0|
}
|a(y)|dy

+
C(N)

(
1 + |x−x0|

ρ(x0)

)N+4N0+c0

1

|x− x0|d−1

( ∫

B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

1

|x− x0|
)( r

ρ(x0)

)c0

≤ C(N)
(
1 + 2kr

ρ(x0)

)N




1
(
1 + 2k+2r

ρ(x0)

)N0

rc0

(2kr)d+c0−1

∫

B(x,|x−x0|)

V (z)

|x− z|d−1
dz +

2−kc0

|2kB|


 . (5.42)

Here and in what follows, the constants C(N) depend only on N , but may change from

line to line. Note that for every x ∈ 2k+1B \ 2kB, one has B(x, |x− x0|) ⊂ B(x, 2k+1r) ⊂
B(x0, 2

k+2r). The fact V ∈ RHd/2, d/2 ≥ q > 1, and Hölder inequality yield
∥∥∥∥∥∥∥

∫

B(x,|x−x0|)

V (z)

|x− z|d−1
dz

∥∥∥∥∥∥∥
Lq(2k+1B\2kB,dx)

≤ C(2k+1r)1−
2
d





∫

2k+1B\2kB

( ∫

B(x,2k+1r)

|V (z)|d/2
|x− z|d−1

dz
) 2q

d
dx





1/q

≤ C(2kr)1−
2
d |2k+1B| 1q− 2

d





∫

B(z,2k+1r)

dx

∫

B(x0,2k+2r)

|V (z)|d/2
|x− z|d−1

dz





2/d

≤ C2kr|2kB|1/q−1

∫

B(x0,2k+2r)

V (z)dz. (5.43)

Combining (5.42), (5.43) and Lemma 1 of [58], we obtain that

‖Rj(a)‖Lq(2k+1B\2kB)

≤ C(N)
(
1 + 2kr

ρ(x0)

)N



rc02kr|2kB|1/q−1

(2kr)d+c0−1

1
(
1 + 2k+2r

ρ(x0)

)N0

∫

B(x0,2k+2r)

V (z)dz +
2−kc0

|2kB| |2
k+1B|1/q




≤ C(N)
(
1 + 2kr

ρ(x0)

)N 2−kc0 |2kB|1/q−1,
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where N0 = log2C0 + 1 with C0 the constant in (5.4). This completes the proof.

Proof of Lemma 5.5.7. Note that r ≤ CLρ(x0) since a is a (H1
L, q)-atom related to the

ball B = B(x0, r); and a is CLc0 times a generalized (H1
L, q, c0)-atom related to the ball

B = B(x0, r) (see Remark 5.2.1). In (5.23), we choose N = (k0 + 1)θ. Then, Hölder

inequality and Lemma 5.6.6 give

‖(g − gB)Rj(a)‖L1

= ‖(g − gB)Rj(a)‖L1(24B) +
∞∑

k=4

‖(g − gB)Rj(a)‖L1(2k+1B\2kB)

≤ ‖g − gB‖Lq′ (24B)‖Rj‖Lq→Lq‖a‖Lq +
∞∑

k=4

‖g − gB‖Lq′ (2k+1B\2kB)‖Rj(a)‖Lq(2k+1B\2kB)

≤ C‖g‖BMOL,θ
+

+C
∞∑

k=4

(k + 1)|2k+1B|1/q′
(
1 +

2k+1r

ρ(x)

)(k0+1)θ

‖g‖BMOL,θ

1
(
1 + 2kr

ρ(x)

)(k0+1)θ
2−kc0 |2kB|1/q−1

≤ C‖g‖BMOL,θ
,

where 1/q + 1/q′ = 1. Similarly, we also obtain that

‖(f − fB)(g − gB)Rj(a)‖L1

= ‖(f − fB)(g − gB)Rj(a)‖L1(24B) +
∞∑

k=4

‖(f − fB)(g − gB)Rj(a)‖L1(2k+1B\2kB)

≤ ‖f − fB‖L2q′ (24B)‖g − gB‖L2q′ (24B)‖Rj(a)‖Lq +

+
∞∑

k=4

‖f − fB‖L2q′ (2k+1B)‖g − gB‖L2q′ (2k+1B)‖Rj(a)‖Lq(2k+1B\2kB)

≤ C‖f‖BMO‖g‖BMOL,θ
,

which ends the proof.

5.7 Some applications

The purpose of this section is to give some applications of the decomposition theorems

(Theorem 5.3.1 and Theorem 5.3.2). To be more precise, we give some subspaces of

H1
L(R

d), which do not necessarily depend on b and T , such that all commutators [b, T ],

for b ∈ BMO(Rd) and T ∈ KL, map continuously these spaces into L1(Rd).
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Especially, using Theorem 5.3.1 and Theorem 5.3.2, we find the largest subspace

H1
L,b(R

d) of H1
L(R

d) so that all commutators of Schrödinger-Calderón-Zygmund opera-

tors and the Riesz transforms are bounded from H1
L,b(R

d) into L1(Rd). Also, it allows to

find all functions b in BMO(Rd) so that H1
L,b(R

d) ≡ H1
L(R

d).

5.7.1 Atomic Hardy spaces related to b ∈ BMO(Rd)

Definition 5.7.1. Let 1 < q ≤ ∞, ε > 0 and b ∈ BMO(Rd). A function a is called

a (H1
L,b, q, ε)-atom related to the ball B = B(x0, r) if a is a generalized (H1

L, q, ε)-atom

related to the same ball B and
∣∣∣
∫

Rd

a(x)(b(x)− bB)dx
∣∣∣ ≤

( r

ρ(x0)

)ε
. (5.44)

As usual, the space H1,q,ε
L,b (Rd) is defined as H1,q,ε

L,at (R
d) with generalized (H1

L, q, ε)-atoms

replaced by (H1
L,b, q, ε)-atoms.

Obviously, H1,q,ε
L,b (Rd) ⊂ H

1,q,ε
L,at (R

d) ≡ H1
L(R

d) and the inclusion is continuous.

Theorem 5.7.1. Let 1 < q ≤ ∞, ε > 0, b ∈ BMO(Rd) and T ∈ KL. Then, the

commutator [b, T ] is bounded from H1,q,ε
L,b (Rd) into L1(Rd).

Remark 5.7.1. The space H1
b (R

d) which has been considered by Tang and Bi [134] is a

strict subspace of H1,q,ε
L,b (Rd) in general. As an example, let us take 1 < q ≤ ∞, ε > 0,

L = −∆+ 1, and b be a non-constant bounded function, then it is easy to check that the

function f = χB(0,1) belongs to H
1,q,ε
L,b (Rd) but not to H1

b (R
d). Thus, Theorem 5.7.1 can be

seen as an improvement of the main result of [134].

We should also point out that the authors in [134] proved their main result (see [134],

Theorem 3.1) by establishing that

‖[b, Rj](a)‖L1 ≤ C‖b‖BMO

for all H1
b -atom a. However, as pointed in [19] and [82], such arguments are not sufficient

to conclude that [b, Rj] is bounded from H1
b (R

d) into L1(Rd) in general.

Proof of Theorem 5.7.1. Let a be a (H1
L,b, q, ε)-atom related to the ball B = B(x0, r).

We first prove that (b − bB)a is C‖b‖BMO times a generalized (H1
L, (q̃ + 1)/2, ε)-atom,

where q̃ ∈ (1,∞) will be defined later and the positive constant C is independent of b, a.

Indeed, one has supp (b − bB)a ⊂ supp a ⊂ B. In addition, from Hölder inequality and

John-Nirenberg (classical) inequality,

‖(b− bB)a‖L(q̃+1)/2 ≤ ‖(b− bB)χB‖Lq̃(q̃+1)/(q̃−1)‖a‖Lq̃ ≤ C‖b‖BMO|B|(−q̃+1)/(q̃+1),
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where q̃ = q if 1 < q < ∞ and q̃ = 2 if q = ∞. These together with (5.44) yield that

(b−bB)a is C‖b‖BMO times a generalized (H1
L, (q̃+1)/2, ε)-atom, and thus ‖(b−bB)a‖H1

L
≤

C‖b‖BMO.

We now prove that S(a, b) belongs to H1
L(R

d).

By Theorem 5.3.2, there exist d bounded bilinear operatorsRj : H
1
L(R

d)×BMO(Rd) →
L1(Rd), j = 1, ..., d, such that

[b, Rj](a) = Rj(a, b) +Rj(S(a, b)),

since Rj is linear and belongs to KL (see Proposition 5.4.2). Consequently, for every

j = 1, ..., d, as Rj ∈ KL,

‖Rj(S(a, b))‖L1 = ‖(b− bB)Rj(a)−Rj((b− bB)a)−Rj(a, b)‖L1

≤ ‖(b− bB)Rj(a)‖L1 + ‖Rj‖H1
L→L1‖(b− bB)a‖H1

L
+ ‖Rj(a, b)‖L1

≤ C‖b‖BMO.

This together with Proposition 5.5.2 prove that S(a, b) ∈ H1
L(R

d), and moreover that

‖S(a, b)‖H1
L
≤ C‖b‖BMO. (5.45)

Now, for any f ∈ H1,q,ε
L,b (Rd), there exists an expansion f =

∑∞
k=1 λkak where the

ak are (H
1
L,b, q, ε)-atoms and

∑∞
k=1 |λk| ≤ 2‖f‖H1,q,ε

L,b
. Then, the sequence {∑n

k=1 λkak}n≥1

converges to f in H1,q,ε
L,b (Rd) and thus in H1

L(R
d). Hence, Proposition 5.5.2 implies that the

sequence
{
S
(∑n

k=1 λkak, b
)}

n≥1
converges to S(f, b) in L1(Rd). In addition, by (5.45),

∥∥∥∥∥S
( n∑

k=1

λkak, b
)∥∥∥∥∥

H1
L

≤
n∑

k=1

|λk|‖S(ak, b)‖H1
L
≤ C‖f‖H1,q,ε

L,b
‖b‖BMO.

We then use Theorem 5.3.1 and the weak-star convergence in H1
L(R

d) (see [83]) to

conclude that

‖[b, T ](f)‖L1 ≤ ‖RT (f, b)‖L1 + ‖T‖H1
L→L1‖S(f, b)‖H1

L

≤ C‖f‖H1
L
‖b‖BMO + C‖f‖H1,q,ε

L,b
‖b‖BMO

≤ C‖f‖H1,q,ε
L,b

‖b‖BMO,

which ends the proof.
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5.7.2 The spaces H1
L,b(R

d) related to b ∈ BMO(Rd)

In this section, we find the largest subspace H1
L,b(R

d) of H1
L(R

d) so that all commutators

of Schrödinger-Calderón-Zygmund operators and the Riesz transforms are bounded from

H1
L,b(R

d) into L1(Rd). Also, we find all functions b in BMO(Rd) so that H1
L,b(R

d) ≡
H1
L(R

d).

Definition 5.7.2. Let b be a non-constant BMO-function. The space H1
L,b(R

d) consists

of all f in H1
L(R

d) such that [b,ML](f)(x) = ML(b(x)f(·)−b(·)f(·))(x) belongs to L1(Rd).

We equipped H1
L,b(R

d) with the norm

‖f‖H1
L,b

= ‖f‖H1
L
‖b‖BMO + ‖[b,ML](f)‖L1 .

Here, we just consider non-constant functions b in BMO(Rd) since [b, T ] = 0 if b is a

constant function.

Theorem 5.7.2. Let b be a non-constant BMO-function. Then, the following statements

hold:

i) For every T ∈ KL, the commutator [b, T ] is bounded from H1
L,b(R

d) into L1(Rd).

ii) Assume that X is a subspace of H1
L(R

d) such that all commutators of the Riesz

transforms are bounded from X into L1(Rd). Then, X ⊂ H1
L,b(R

d).

iii) H1
L,b(R

d) ≡ H1
L(R

d) if and only if b ∈ BMOlog
L (Rd).

To prove Theorem 5.7.2, we need the following lemma.

Lemma 5.7.1. Let b be a non-constant BMO-function and f ∈ H1
L(R

d). Then, the

following conditions are equivalent:

i) f ∈ H1
L,b(R

d).

ii) S(f, b) ∈ H1
L(R

d).

iii) [b, Rj](f) ∈ L1(Rd) for all j = 1, ..., d.

Furthermore, if one of these conditions is satisfied, then

‖f‖H1
L,b

= ‖f‖H1
L
‖b‖BMO + ‖[b,ML](f)‖L1

≈ ‖f‖H1
L
‖b‖BMO + ‖S(f, b)‖H1

L

≈ ‖f‖H1
L
‖b‖BMO +

d∑

j=1

‖[b, Rj](f)‖L1 ,

where the constants are independent of b and f .
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Proof. (i) ⇔ (ii). As ML ∈ KL (see Proposition 5.4.3), by Theorem 5.3.1, there is a

bounded subbilinear operator R : H1
L(R

d)× BMO(Rd) → L1(Rd) such that

ML(S(f, b))−R(f, b) ≤ |[b,ML](f)| ≤ ML(S(f, b)) +R(f, b).

Consequently, [b,ML](f) ∈ L1(Rd) iff S(f, b) ∈ H1
L(R

d), moreover,

‖f‖H1
L,b

≈ ‖f‖H1
L
‖b‖BMO + ‖S(f, b)‖H1

L
.

(ii) ⇔ (iii). As the Riesz transforms Rj are in KL (see Proposition 5.4.2), by Theorem

5.3.2, there are d bounded subbilinear operator Rj : H1
L(R

d) × BMO(Rd) → L1(Rd),

j = 1, ..., d, such that

[b, Rj](f) = Rj(f, b) +Rj(S(f, b)).

Therefore, S(f, b) ∈ H1
L(R

d) iff [b, Rj](f) ∈ L1(Rd) for all j = 1, ..., d, moreover,

‖f‖H1
L
‖b‖BMO + ‖S(f, b)‖H1

L
≈ ‖f‖H1

L
‖b‖BMO +

d∑

j=1

‖[b, Rj](f)‖L1 .

Proof of Theorem 5.7.2. By Theorem 5.3.1, there is a bounded subbilinear operator RT :

H1
L(R

d)× BMO(Rd) → L1(Rd) such that

|T (S(f, b))| −RT (f, b) ≤ |[b, T ](f)| ≤ |T (S(f, b))|+RT (f, b).

Applying Lemma 5.7.1 gives for every f ∈ H1
L,b(R

d),

‖[b, T ](f)‖L1 ≤ ‖T‖H1
L→L1‖S(f, b)‖H1

L
+ ‖RT (f, b)‖L1

≤ C‖f‖H1
L,b

+ C‖f‖H1
L
‖b‖BMO ≤ C‖f‖H1

L,b
.

Therefore, [b, T ] is bounded from H1
L,b(R

d) into L1(Rd). This ends the proof of (i).

The proof of (ii) follows directly from Lemma 5.7.1.

The proof of (iii) follows directly from Theorem 5.3.4 and Lemma 5.7.1.

5.7.3 Atomic Hardy spaces H log
L,α(R

d)

Definition 5.7.3. Let α ∈ R. We say that the function a is a H log
L,α-atom related to the

ball B = B(x0, r) if

i) supp a ⊂ B,

ii) ‖a‖L2 ≤
(
log(e+ ρ(x0)

r
)
)α

|B|−1/2,

iii)
∫
Rd a(x)dx = 0.
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As usual, the space H log
L,α(R

d) is defined as H
1,q,ε
L,at with generalized (H1

L, q, ε)-atoms

replaced by H log
L,α-atoms.

Clearly, H log
L,0(R

d) is just H1(Rd) ⊂ H1
L(R

d). Moreover, H log
L,α(R

d) ⊂ H log
L,α′(Rd) for all

α ≤ α′. It should be pointed out that when L = −∆ + 1 and α ≥ 0, then H log
L,α(R

d) is

just the space of all distributions f such that

∫

Rd

Mf(x)
λ(

log(e+ Mf(x)
λ

)
)αdx <∞

for some λ > 0, moreover (see [81] for the details),

‖f‖Hlog
L,α

≈ inf



λ > 0 :

∫

Rd

Mf(x)
λ(

log(e+ Mf(x)
λ

)
)αdx ≤ 1



 .

Theorem 5.7.3. For every T ∈ KL and b ∈ BMO(Rd), the commutator [b, T ] is bounded

from H log
L,−1(R

d) into L1(Rd).

Proof. Let a be a H log
L,−1-atom related to the ball B = B(x0, r). Let us first prove that

(b − bB)a ∈ H1
L(R

d). As H1
L(R

d) is the dual of VMOL(R
d) (see Theorem 5.5.1), it is

sufficient to show that for every g ∈ C∞
c (Rd),

‖(b− bB)ag‖L1 ≤ C‖b‖BMO‖g‖BMOL
.

Indeed, using the estimate |gB| ≤ C log
(
e+ ρ(x0)

r

)
‖g‖BMOL

(see Lemma 2 of [45]), Hölder

inequality and classical John-Nirenberg inequality give

‖(b− bB)ag‖L1 ≤ ‖(g − gB)(b− bB)a‖L1 + |gB|‖(b− bB)a‖L1

≤ ‖(g − gB)χB‖L4‖(b− bB)χB‖L4‖a‖L2 +

+C log
(
e+

ρ(x0)

r

)
‖g‖BMOL

‖(b− bB)χB‖L2‖a‖L2

≤ C‖b‖BMO‖g‖BMOL
,

which proves that (b− bB)a ∈ H1
L(R

d), moreover, ‖(b− bB)a‖H1
L
≤ C‖b‖BMO.

Similarly to the proof of Theorem 5.7.1, we also obtain that

‖S(f, b)‖H1
L
≤ C‖f‖Hlog

L,−1
‖b‖BMO

for all f ∈ H log
L,−1(R

d). Therefore, Theorem 5.3.1 allows to conclude that

‖[b, T ](f)‖L1 ≤ C‖f‖Hlog
L,−1

‖b‖BMO,

which ends the proof.
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As a consequence of the proof of Theorem 5.7.3, we obtain the following result.

Proposition 5.7.1. Let T ∈ KL. Then, T(f, b) := [b, T ](f) is a bounded subbilinear

operator from H log
L,−1(R

d)× BMO(Rd) into L1(Rd).

5.7.4 The Hardy-Sobolev space H1,1
L (Rd)

Following Hofmann et al. [65], we say that f belongs to the (inhomogeneous) Hardy-

Sobolev H1,1
L (Rd) if f, ∂x1f, ..., ∂xdf ∈ H1

L(R
d). Then, the norm on H1,1

L (Rd) is defined

by

‖f‖H1,1
L

= ‖f‖H1
L
+

d∑

j=1

‖∂xjf‖H1
L
.

It should be pointed out that the authors in [65] proved that the space H1,1
−∆(R

d) is

just the classical (inhomogeneous) Hardy-Sobolev H1,1(Rd) (see for example [6]), and can

be identified with the (inhomogeneous) Triebel-Lizorkin space F 1,2
1 (Rd) (see [79]). More

precisely, f belongs to H1,1(Rd) if and only if

Wψ(f) =

{
∑

I

∑

σ∈E
|〈f, ψσI 〉|2(1 + |I|−1/d)2|I|−1χI

}1/2

∈ L1(Rd),

moreover,

‖f‖H1,1 ≈ ‖Wψ(f)‖L1 . (5.46)

Here {ψσ}σ∈E is the wavelet as in Section 4.

Theorem 5.7.4. Let L = −∆ + 1. Then, for every T ∈ KL and b ∈ BMO(Rd), the

commutator [b, T ] is bounded from H1,1
L (Rd) into L1(Rd).

Remark 5.7.2. When L = −∆ + 1, we can define H(f) = f − ϕ ∗ f instead of H(f) =∑
n,k(ψn,kf − ϕ2−n/2 ∗ (ψn,kf)) as in Section 5.5. In other words, the bilinear operator S

in Theorem 5.3.1 and Theorem 5.3.2 can be defined as S(f, g) = −Π(f − ϕ ∗ f, g). As

H(f) = f − ϕ ∗ f , it is easy to see that

∂xj(H(f)) = H(∂xjf).

Here and in what follows, for any dyadic cube Q = Q(y, r) := {x ∈ Rd : −r ≤ xj−yj <
r for all j = 1, ..., d}, we denote by BQ the ball

BQ :=
{
x ∈ Rd : |x− y| < 2

√
dr
}
.

To prove Theorem 5.7.4, we need the following lemma.
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Lemma 5.7.2. Let L = −∆ + 1. Then, the bilinear operator Π maps continuously

H1,1(Rd)× BMO(Rd) into H1
L(R

d).

Proof. Note that ρ(x) = 1 for all x ∈ Rd since V (x) ≡ 1. We first claim that there exists

a constant C > 0 such that

‖(1 + |I|−1/d)−1(ψσI )
2‖H1

L
≤ C (5.47)

for all dyadic I = Q[x0, r) and σ ∈ E . Indeed, it follows from Remark 5.5.2 that supp (1+

|I|−1/d)−1(ψσI )
2 ⊂ cI ⊂ cBI , and it is clear that ‖(1+ |I|−1/d)−1(ψσI )

2‖L∞ ≤ |I|−1‖ψ‖L∞ ≤
C|cBI |−1. In addition,

∣∣∣
∫

Rd

(1 + |I|−1/d)−1(ψσI (x))
2dx
∣∣∣ = (1 + |I|−1/d)−1 ≤ C

r

ρ(x0)
.

Hence, (1 + |I|−1/d)−1(ψσI )
2 is C times a generalized (H1

L,∞, 1)-atom related to the ball

cBI , and thus (5.47) holds.

Now, for every (f, g) ∈ H1,1(Rd)× BMO(Rd), (5.47) implies that

‖Π(f, g)‖H1
L

= ‖
∑

I

∑

σ∈E
〈f, ψσI 〉〈g, ψσI 〉(ψσI )2‖H1

L

≤ C
∑

I

∑

σ∈E

(
|〈f, ψσI 〉|(1 + |I|−1/d)

)
|〈g, ψσI 〉|

≤ C‖Wψ(f)‖L1‖g‖Ḟ 0,2
∞

≤ C‖f‖H1,1‖g‖BMO,

where we have used the fact that BMO(Rd) ≡ Ḟ 0,2
∞ (Rd) is the dual of H1(Rd) ≡ Ḟ 0,2

1 (Rd),

we refer the reader to [49] for more details.

Proof of Theorem 5.7.4. Let (f, b) ∈ H1,1
L (Rd) × BMO(Rd). Thanks to Lemma 5.7.2,

Remark 5.7.2 and Lemma 5.5.1, we get

‖S(f, b)‖H1
L

≤ C‖H(f)‖H1,1‖b‖BMO

≤ C‖f‖H1,1
L
‖b‖BMO.

Then we use Theorem 5.3.1 to conclude that

‖[b, T ](f)‖L1 ≤ ‖RT (f, b)‖L1 + ‖T‖H1
L→L1‖S(f, b)‖H1

L

≤ C‖f‖H1,1
L
‖b‖BMO,

which ends the proof.
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As a consequence of the proof of Theorem 5.7.4, we obtain the following result.

Proposition 5.7.2. Let L = −∆+1 and T ∈ KL. Then, T(f, b) := [b, T ](f) is a bounded

subbilinear operator from H1,1
L (Rd)× BMO(Rd) into L1(Rd).
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Chapter 6

Bilinear decompositions for the

product space H1
L × BMOL

Ce chapitre est une prépublication (soumise).

Résumé

Dans cet article, nous améliorons un résultat récent de Li et Peng sur les produits de

fonctions dansH1
L(R

d) etBMOL(R
d), où L = −∆+V est un opérateur Schrödinger avec V

satisfaisant une inégalité Hölder inverse appropriée. Plus précisément, nous prouvons que

ces produits peuvent être écrit comme la somme de deux opérateurs bilinéaires continus,

l’un de H1
L(R

d)×BMOL(R
d) à valeurs L1(Rd), l’autre de H1

L(R
d)×BMOL(R

d) à valeurs

H log(Rd), où l’espace H log(Rd) est l’ensemble des distributions f dont la fonction ”grand-

maximale” Mf satisfait

∫

Rd

|Mf(x)|
log(e+ |Mf(x)|) + log(e+ |x|)dx <∞.
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6.1 Introduction

Products of functions in H1 and BMO have been firstly considered by Bonami, Iwaniec,

Jones and Zinsmeister in [15]. Such products make sense as distributions, and can be

written as the sum of an integrable function and a function in a weighted Hardy-Orlicz

space. To be more precise, for f ∈ H1(Rd) and g ∈ BMO(Rd), we define the product (in

the distribution sense) f × g as the distribution whose action on the Schwartz function

ϕ ∈ S(Rd) is given by

〈f × g, ϕ〉 := 〈ϕg, f〉 , (6.1)

where the second bracket stands for the duality bracket between H1(Rd) and its dual

BMO(Rd). It is then proven in [15] that

f × g ∈ L1(Rd) +HΞ
σ (R

d). (6.2)

Here HΞ
σ (R

d) is the weighted Hardy-Orlicz space related to the Orlicz function

Ξ(t) :=
t

log(e+ t)
(6.3)

and with weight σ(x) := 1
log(e+|x|) .

Let L = −∆ + V be a Schrödinger operator on Rd, d ≥ 3, where V is a nonnega-

tive potential, V 6= 0, and belongs to the reverse Hölder class RHd/2. In [45] and [46],

Dziubański et al. introduced two kinds of function spaces associated with L. One is the

Hardy space H1
L(R

d), the other is the space BMOL(R
d). They established in [45] that

the dual space of H1
L(R

d) is just BMOL(R
d). Unfortunately, as for the classical spaces

H1(Rd) and BMO(Rd), the pointwise products fg of functions f ∈ H1
L(R

d) and functions

g ∈ BMOL(R
d) maybe not integrable. However, similarly to the classical setting, Li and

Peng showed in [91] that such products can be defined in the sense of distributions which

action on the Schwartz function ϕ ∈ S(Rd) is

〈f × g, ϕ〉 := 〈ϕg, f〉, (6.4)

where the second bracket stands for the duality bracket between H1
L(R

d) and its dual

BMOL(R
d). Moreover, they proved that f × g can be written as the sum of two distri-

butions, one in L1(Rd), the other in HΞ
L,σ(R

d) the weighted Hardy-Orlicz space associated

with L related to the Orlicz function Ξ(t) ≡ t
log(e+t)

and the weight σ(x) ≡ 1
log(e+|x|) , see

Definition 6.2.3.

More precisely, in [91], the authors proved the following.
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Theorem 6.1.1. For each f ∈ H1
L(R

d), there are two bounded linear operators Lf :

BMOL(R
d) → L1(Rd) and Hf : BMOL(R

d) → HΞ
L,σ(R

d) such that for every g ∈
BMOL(R

d), we have

f × g = Lf (g) +Hf (g) (6.5)

and the uniform bound

‖Lf (g)‖L1 + ‖Hf (g)‖HΞ
L,σ

≤ C‖f‖H1
L
‖g‖BMO+

L
, (6.6)

where ‖g‖BMO+
L
= ‖g‖BMOL

+ |gB|, gB denotes the mean value of g over the unit ball B.

Our main theorem is as follows.

Theorem 6.1.2. There are two bounded bilinear operators SL : H1
L(R

d)×BMOL(R
d) →

L1(Rd) and TL : H1
L(R

d)×BMOL(R
d) → H log(Rd) such that for every (f, g) ∈ H1

L(R
d)×

BMOL(R
d), we have

f × g = SL(f, g) + TL(f, g) (6.7)

and the uniform bound

‖SL(f, g)‖L1 + ‖TL(f, g)‖Hlog ≤ C‖f‖H1
L
‖g‖BMOL

. (6.8)

Here H log(Rd) is a new kind of Hardy-Orlicz space consisting of all distributions f

such that
∫
Rd

Mf(x)
log(e+Mf(x))+log(e+|x|)dx <∞ with the norm

‖f‖Hlog = inf



λ > 0 :

∫

Rd

Mf(x)
λ

log
(
e+ Mf(x)

λ

)
+ log(e+ |x|)

dx ≤ 1



 .

Recall that the grand maximal operator M is defined by

Mf(x) = sup
φ∈A

sup
|y−x|<t

|f ∗ φt(y)|, (6.9)

where A = {φ ∈ S(Rd) : |φ(x)|+ |∇φ(x)| ≤ (1 + |x|2)−(d+1)} and φt(·) := t−dφ(t−1·).
Note that H log(Rd) ⊂ HΞ

L,σ(R
d) with continuous embedding, see Section 6.3. Com-

pared with the main result of [91] (Theorem 6.1.1), our main result makes an essential

improvement in two directions. The first one consists in proving that the space HΞ
L,σ(R

d)

can be replaced by a smaller space H log(Rd). Secondly, we give the bilinear decomposition

(6.7) for the product space H1
L(R

d)×BMOL(R
d) instead of the linear decomposition (6.5)

depending on f ∈ H1
L(R

d). Moreover, we just need the BMOL-norm (see (6.8)) instead

of the BMO+
L -norm as in (6.6).
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In applications to nonlinear PDEs, the distribution f × g ∈ S ′(Rd) is used to justify

weak continuity properties of the pointwise product fg. It is therefore important to

recover fg from the action of the distribution f × g on the test functions. An idea that

naturally comes to mind is to look at the mollified distributions

(f × g)ǫ = (f × g) ∗ φǫ, (6.10)

and let ǫ→ 0. Here φ ∈ S(Rd) with
∫
Rd φ(x)dx = 1.

In the classical setting of f ∈ H1(Rd) and g ∈ BMO(Rd), Bonami et al. proved in

[15] that the limit (6.10) exists and equals fg almost everywhere. An analogous result is

also true for the Schrödinger setting. Namely, the following is true.

Theorem 6.1.3. Let f ∈ H1
L(R

d) and g ∈ BMOL(R
d). Then, for almost every x ∈ Rd,

lim
ǫ→0

(f × g)ǫ(x) = f(x)g(x).

Throughout the whole paper, C denotes a positive geometric constant which is inde-

pendent of the main parameters, but may change from line to line.

The paper is organized as follows. In Section 2, we present some notations and pre-

liminaries about Hardy type spaces associated with L. Section 3 is devoted to prove that

H log(Rd) ⊂ HΞ
L,σ(R

d) with continuous embedding. Finally, the proofs of Theorem 6.1.2

and Theorem 6.1.3 are given in Section 4.

Acknowledgements. The author would like to thank Aline Bonami and Sandrine

Grellier for many helpful suggestions and discussions.

6.2 Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

L = −∆+ V

on Rd, d ≥ 3, where V is a nonnegative potential, V 6= 0. As in the works of Dziubański

et al [45, 46], we always assume that V belongs to the reverse Hölder class RHd/2. Recall

that a nonnegative locally integrable function V is said to belong to a reverse Hölder class

RHq, 1 < q <∞, if there exists C > 0 such that

( 1

|B|

∫

B

(V (x))qdx
)1/q

≤ C

|B|

∫

B

V (x)dx

holds for every balls B in Rd.
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Let {Tt}t>0 be the semigroup generated by L and Tt(x, y) be their kernels. Namely,

Ttf(x) = e−tLf(x) =

∫

Rd

Tt(x, y)f(y)dy, f ∈ L2(Rd), t > 0.

We say that a function f ∈ L2(Rd) belongs to the space H1
L(R

d) if

‖f‖H1
L
:= ‖MLf‖L1 <∞,

where MLf(x) := supt>0 |Ttf(x)| for all x ∈ Rd. The space H1
L(R

d) is then defined as the

completion of H1
L(R

d) with respect to this norm.

In [45] it was shown that the dual ofH1
L(R

d) can be identified with the spaceBMOL(R
d)

which consists of all functions f ∈ BMO(Rd) with

‖f‖BMOL
:= ‖f‖BMO + sup

ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞,

where ρ is the auxiliary function defined as in [125], that is,

ρ(x) = sup
{
r > 0 :

1

rd−2

∫

B(x,r)

V (y)dy ≤ 1
}
, (6.11)

x ∈ Rd. Clearly, 0 < ρ(x) <∞ for all x ∈ Rd, and thus Rd =
⋃
n∈Z Bn, where the sets Bn

are defined by

Bn = {x ∈ Rd : 2−(n+1)/2 < ρ(x) ≤ 2−n/2}. (6.12)

The following proposition is due to Shen [125].

Proposition 6.2.1 (see [125], Lemma 1.4). There exist C0 > 1 and k0 ≥ 1 such that for

all x, y ∈ Rd,

C−1
0 ρ(x)

(
1 +

|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ C0ρ(x)

(
1 +

|x− y|
ρ(x)

) k0
k0+1

.

Here and in what follows, we denote by CL the L-constant

CL = 8.9k0C0 (6.13)

where k0 and C0 are defined as in Proposition 7.2.1.

Definition 6.2.1. Given 1 < q ≤ ∞. A function a is called a (H1
L, q)-atom related to the

ball B(x0, r) if r ≤ CLρ(x0) and
i) supp a ⊂ B(x0, r),

ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

iii) if r ≤ 1
CLρ(x0) then

∫
Rd a(x)dx = 0.
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The following atomic characterization of H1
L(R

d) is due to Dziubański and Zienkiewicz

[46].

Theorem A. Let 1 < q ≤ ∞. A function f is in H1
L(R

d) if and only if it can be written

as f =
∑

j λjaj, where aj are (H1
L, q)-atoms and

∑
j |λj| < ∞. Moreover, there exists

C > 1 such that for every f ∈ H1
L(R

d), we have

C−1‖f‖H1
L
≤ inf

{
∑

j

|λj| : f =
∑

j

λjaj

}
≤ C‖f‖H1

L
.

Let 1 ≤ q < ∞. A nonnegative locally integrable function w belongs to the Mucken-

houpt class Aq, say w ∈ Aq, if there exists a positive constant C so that

1

|B|

∫

B

w(x)dx
( 1

|B|

∫

B

(w(x))−1/(q−1)dx
)q−1

≤ C, if 1 < q <∞, (6.14)

and
1

|B|

∫

B

w(x)dx ≤ C ess-inf
x∈B

w(x), if q = 1, (6.15)

for all balls B in Rd. We say that w ∈ A∞ if w ∈ Aq for some q ∈ [1,∞).

Remark 6.2.1. The weight σ(x) ≡ 1
log(e+|x|) belongs to the class A1.

It is well known that w ∈ Ap, 1 ≤ p < ∞, implies w ∈ Aq for all q > p. For a

measurable set E, we note w(E) =
∫
E
w(x)dx its weighted measure.

Definition 6.2.2. Let 0 < p ≤ 1. A function Φ is called a growth function of order p if

it satisfies the following properties:

i) The function Φ is a Orlicz function, that is, Φ is a nondecreasing function with

Φ(t) > 0, t > 0, Φ(0) = 0 and limt→∞ Φ(t) = ∞.

ii) The function Φ is of lower type p, that is, there exists a constant C > 0 such that

for every s ∈ (0, 1] and t > 0,

Φ(st) ≤ CspΦ(t).

iii) The function Φ is of upper type 1, that is, there exists a constant C > 0 such that

for every s ∈ [1,∞) and t > 0,

Φ(st) ≤ CsΦ(t).

We will also say that Φ is a growth function whenever it is a growth function of some

order p < 1.
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Remark 6.2.2. i) Let Φ be a growth function. Then, there exists a constant C > 0 such

that

Φ
( ∞∑

j=1

tj

)
≤ C

∞∑

j=1

Φ(tj)

for every sequence {tj}j≥1 of nonnegative real numbers. See Lemma 4.1 of [81].

ii) The function Ξ(t) ≡ t
log(e+t)

is a growth function of order p for any p ∈ (0, 1).

Now, let us define weighted Hardy-Orlicz spaces associated with L.

Definition 6.2.3. Given w ∈ A∞ and Φ a growth function. We say that a function

f ∈ L2(Rd) belongs to HΦ
L,w(R

d) if
∫
Rd Φ(MLf(x))w(x)dx < ∞. The space HΦ

L,w(R
d) is

defined as the completion of HΦ
L,w(R

d) with respect to the norm

‖f‖HΦ
L,w

:= inf



λ > 0 :

∫

Rd

Φ
(MLf(x)

λ

)
w(x)dx ≤ 1



 .

Remark that when w(x) ≡ 1 and Φ(t) ≡ t, the space HΦ
L,w(R

d) is just H1
L(R

d). We

refer the reader to the recent work of D. Yang and S. Yang [142] for a complete study of

the theory of weighted Hardy-Orlicz spaces associated with operators.

6.3 The inclusion H log(Rd) ⊂ HΞ
L,σ(R

d)

The purpose of this section is to establish the following embedding.

Proposition 6.3.1. H log(Rd) ⊂ HΞ
L,σ(R

d) and the inclusion is continuous.

Recall (see [81]) that the weighted Hardy-Orlicz space HΞ
σ (R

d) is defined as the space

of all distributions f such that
∫
Rd

Mf(x)
log(e+Mf(x))

1
log(e+|x|)dx <∞ with the norm

‖f‖HΞ
σ
= inf



λ > 0 :

∫

Rd

Mf(x)
λ

log
(
e+ Mf(x)

λ

) 1

log(e+ |x|)dx ≤ 1



 .

Clearly, H log(Rd) ⊂ HΞ
σ (R

d) and the inclusion is continuous. Consequently, the proof

of Proposition 6.3.1 can be reduced to showing that for every f ∈ HΞ
σ (R

d),

‖f‖HΞ
L,σ

≤ C‖f‖HΞ
σ
. (6.16)

Let 1 < q ≤ ∞. Recall (see [81]) that a function a is called a (HΞ
σ , q)-atom related to

the ball B if
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i) supp a ⊂ B,

ii) ‖a‖Lq
σ
≤ σ(B)1/qΞ−1(σ(B)−1), where Ξ−1 is the inverse function of Ξ,

iii)
∫
Rd a(x)dx = 0.

In order to prove Proposition 6.3.1, we need the following lemma.

Lemma 6.3.1. Let 1 < q <∞. Then,
∫

Rd

Ξ(MLf(x))σ(x)dx ≤ Cσ(B)Ξ(σ(B)−1/q‖f‖Lq
σ
) (6.17)

for every f multiples of (HΞ
σ , q)-atom related to the ball B = B(x0, r),

To prove Lemma 6.3.1, let us recall the following.

Lemma 6.3.2 (see [91], Lemma 2). Let V ∈ RHd/2. Then, there exists δ > 0 depends

only on L, such that for every |y − z| < |x− y|/2 and t > 0, we have

|Tt(x, y)− Tt(x, z)| ≤ C
( |y − z|√

t

)δ
t−

d
2 e−

|x−y|2

t ≤ C
|y − z|δ
|x− y|d+δ .

Proof of Lemma 6.3.1. First, note that σ ∈ A1 and Ξ is a growth function of order p for

any p ∈ (0, 1), see Remark 6.2.1 and Remark 6.2.2. Denote by M the classical Hardy-

Littlewood maximal operator. Then, the estimate MLf ≤ CMf , the Lqσ-boundedness of

M and Hölder inequality give
∫

B(x0,2r)

Ξ(MLf(x))σ(x)dx

≤ C

∫

B(x0,2r)

Ξ(Mf(x) + σ(B)−1/q‖f‖Lq
σ
)σ(x)dx

≤ C

∫

B(x0,2r)

(Mf(x) + σ(B)−1/q‖f‖Lq
σ

σ(B)−1/q‖f‖Lq
σ

)
Ξ(σ(B)−1/q‖f‖Lq

σ
)σ(x)dx

≤ Cσ(B)Ξ(σ(B)−1/q‖f‖Lq
σ
), (6.18)

where we used the facts that t 7→ Ξ(t)
t

is nonincreasing and σ(B(x0, 2r)) ≤ Cσ(B).

Let x /∈ B(x0, 2r) and t > 0. By Lemma 6.3.2 and (6.14),

|Ttf(x)| =
∣∣∣
∫

Rd

Tt(x, y)f(y)dy
∣∣∣ =

∣∣∣
∫

B

(Tt(x, y)− Tt(x, x0))f(y)dy
∣∣∣

≤ C

∫

B

|y − x0|δ
|x− x0|d+δ

|f(y)|dy

≤ Cσ(B)−1/q‖f‖Lq
σ

rd+δ

|x− x0|d+δ
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Therefore, as Ξ is of lower type 2d+δ
2(d+δ)

< 1,
∫

(B(x0,2r))c

Ξ(MLf(x))σ(x)dx

≤ CΞ(σ(B)−1/q‖f‖Lq
σ
)

∫

(B(x0,2r))c

( rd+δ

|x− x0|d+δ
) 2d+δ

2(d+δ)
σ(x)dx

≤ Cσ(B)Ξ(σ(B)−1/q‖f‖Lq
σ
), (6.19)

where we used (see [54], page 412)
∫

(B(x0,2r))c

rd+δ/2

|x− x0|d+δ/2
σ(x)dx ≤ Cσ(B(x0, 2r)) ≤ Cσ(B).

Then, (6.17) follows from (6.18) and (6.19). This completes the proof.

Proof of Proposition 6.3.1. As mentioned above, it is sufficient to show that

‖f‖HΞ
L,σ

≤ C‖f‖HΞ
σ

for every f ∈ HΞ
σ (R

d). By Theorem 3.1 of [81], there are multiples of (HΞ
σ , 2)-atoms bj,

j = 1, 2, ..., related to balls Bj such that f =
∑∞

j=1 bj and

Λ2({bj}) ≤ C‖f‖HΞ
σ
, (6.20)

where

Λ2({bj}) := inf

{
λ > 0 :

∞∑

j=1

σ(Bj)Ξ
(σ(Bj)

−1/2‖bj‖L2
σ

λ

)
≤ 1

}
.

On the other hand, the estimate MLf ≤ ∑∞
j=1 ML(bj), Remark 6.2.2 and Lemma

6.3.1 give
∫

Rd

Ξ
(MLf(x)

Λ2({bj})
)
σ(x)dx ≤ C

∞∑

j=1

∫

Rd

Ξ
(ML(bj)(x)

Λ2({bj})
)
σ(x)dx

≤ C

∞∑

j=1

σ(Bj)Ξ
(σ(Bj)

−1/2‖bj‖Lq
σ

Λ2({bj})
)

≤ C,

which implies that ‖f‖HΞ
L,σ

≤ CΛ2({bj}). Therefore, (6.20) yields

‖f‖HΞ
L,σ

≤ C‖f‖HΞ
σ
,

which completes the proof of Proposition 6.3.1.
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6.4 Proof of Theorem 6.1.2 and Theorem 6.1.3

Let P (x) = (4π)−d/2e−|x|2/4 be the Gauss function. For n ∈ Z, following [46], the space

h1n(R
d) denotes the space of all integrable functions f such that

Mnf(x) = sup
0<t<2−n

|P√
t ∗ f(x)| = sup

0<t<2−n

∣∣∣
∫

Rd

pt(x, y)f(y)dy
∣∣∣ ∈ L1(Rd),

where the kernel pt is given by pt(x, y) = (4πt)−d/2e−
|x−y|2

4t . We equipped this space with

the norm ‖f‖h1n := ‖Mnf‖L1 .

For convenience of the reader, we list here some lemmas used in our proofs.

Lemma 6.4.1 (see [46], Lemma 2.3). There exists a constant C > 0 and a collection of

balls Bn,k = B(xn,k, 2
−n/2), n ∈ Z, k = 1, 2, ..., such that xn,k ∈ Bn, Bn ⊂ ⋃k Bn,k, and

card {(n′, k′) : B(xn,k, R2
−n/2) ∩ B(xn′,k′ , R2

−n/2) 6= ∅} ≤ RC

for all n, k and R ≥ 2.

Lemma 6.4.2 (see [46], Lemma 2.5). There are nonnegative C∞-functions ψn,k, n ∈
Z, k = 1, 2, ..., supported in the balls B(xn,k, 2

1−n/2) such that

∑

n,k

ψn,k = 1 and ‖∇ψn,k‖L∞ ≤ C2n/2.

Lemma 6.4.3 (see (4.7) in [46]). For every f ∈ H1
L(R

d), we have

∑

n,k

‖ψn,kf‖h1n ≤ C‖f‖H1
L
.

In this section, we fix a non-negative function ϕ ∈ S(Rd) with supp ϕ ⊂ B(0, 1) and∫
Rd ϕ(x)dx = 1. Then, we define the linear operator H by

H(f) =
∑

n,k

(
ψn,kf − ϕ2−n/2 ∗ (ψn,kf)

)
.

In order to prove Theorem 6.1.2, we need two key lemmas.

Lemma 6.4.4. The operator H maps continuously H1
L(R

d) into H1(Rd).

The proof of Lemma 6.4.4 can be found in [82] (see Lemma 5.1 of [82]).
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Lemma 6.4.5. There exists a constant C = C(ϕ, d) > 0 such that for all (n, k) ∈ Z×Z+,

g ∈ BMOL(R
d) and f ∈ h1n(R

d) with supp f ⊂ B(xn,k, 2
1−n/2), we have

∥∥∥(ϕ2−n/2 ∗ f)g
∥∥∥
H1

L

≤ C‖f‖h1n‖g‖BMOL
.

To prove Lemma 6.4.5, we need the following.

Lemma 6.4.6 (see [82], Lemma 6.5). Let 1 < q ≤ ∞, n ∈ Z and x ∈ Bn. Suppose that

f ∈ h1n(R
d) with supp f ⊂ B(x, 21−n/2). Then, there are (H1

L, q)-atoms aj related to the

balls B(xj, rj) such that B(xj, rj) ⊂ B(x, 22−n/2) and

f =
∑

j

λjaj,
∑

j

|λj| ≤ C‖f‖h1n

with a positive constant C independent of n and f .

Here and in what follows, for any B a ball in Rd and f a locally integrable function,

we denote by fB the average of f on B.

Proof of Lemma 6.4.5. As xn,k ∈ Bn, it follows from Lemma 7.3.3 that there are (H1
L, 2)-

atoms an,kj related to the balls B(xn,kj , rn,kj ) ⊂ B(xn,k, 2
2−n/2) such that

f =
∑

j

λn,kj an,kj and
∑

j

|λn,kj | ≤ C‖f‖h1n , (6.21)

where the positive constant C is independent of f, n, k.

Now, let us establish that ϕ2−n/2 ∗ an,kj is C times a (H1
L, 2)-atom related to the ball

B(xn,k, 5.2
−n/2). Indeed, it is clear that 1

CLρ(xn,k) < 5.2−n/2 < CLρ(xn,k) since xn,k ∈
Bn; and supp ϕ2−n/2 ∗ an,kj ⊂ B(xn,k, 5.2

−n/2) since supp ϕ ⊂ B(0, 1) and supp an,kj ⊂
B(xn,k, 2

2−n/2). In addition,

‖ϕ2−n/2 ∗ an,kj ‖L2 ≤ ‖ϕ2−n/2‖L2‖an,kj ‖L1 ≤ (2−n/2)−d/2‖ϕ‖L2 ≤ C|B(xn,k, 5.2
−n/2)|−1/2.

These prove that ϕ2−n/2 ∗ an,kj is C times a (H1
L, 2)-atom related to B(xn,k, 5.2

−n/2).

By an analogous argument, it is easy to check that (ϕ2−n/2 ∗ an,kj )(g − gB(xn,k,5.2−n/2))

is C‖g‖BMO times a (H1
L, 3/2)-atom related to B(xn,k, 5.2

−n/2).

Therefore, (6.21) yields
∥∥∥(ϕ2−n/2 ∗ f)g

∥∥∥
H1

L

≤ C
∑

j

|λj|‖(ϕ2−n/2 ∗ aj)(g − gB(xn,k,5.2−n/2))‖H1
L

+C
∑

j

|λj|‖ϕ2−n/2 ∗ aj‖H1
L
|gB(xn,k,5.2−n/2)|

≤ C‖f‖h1n‖g‖BMOL
,
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where we used |gB(xn,k,5.2−n/2)| ≤ ‖g‖BMOL
since ρ(xn,k) ≤ 5.2−n/2.

Our main results are strongly related to the recent result of Bonami, Grellier and Ky

[14]. In [14], the authors proved the following.

Theorem 6.4.1. There exists two continuous bilinear operators on the product space

H1(Rd) × BMO(Rd), respectively S : H1(Rd) × BMO(Rd) 7→ L1(Rd) and T : H1(Rd) ×
BMO(Rd) 7→ H log(Rd) such that

f × g = S(f, g) + T (f, g).

Before giving the proof of the main theorems, we should point out that the bilinear

operator T in Theorem 6.4.1 satisfies

‖T (f, g)‖Hlog ≤ C‖f‖H1(‖g‖BMO + |gQ|) (6.22)

where Q := [0, 1)d is the unit cube. To prove this, the authors in [14] used the generalized

Hölder inequality (see also [15])

‖fg‖Llog ≤ C‖f‖L1‖g‖Exp

and the fact that ‖g − gQ‖Exp ≤ C‖g‖BMO. Here, Llog(Rd) denotes the space of all

measurable functions f such that
∫
Rd

|f(x)|
log(e+|f(x)|)+log(e+|x|)dx <∞ with the norm

‖f‖Llog = inf



λ > 0 :

∫

Rd

|f(x)|
λ

log(e+ |f(x)|
λ

) + log(e+ |x|)
dx ≤ 1





and Exp(Rd) denotes the space of all measurable functions f such that
∫
Rd(e

|f(x)| −
1) 1

(1+|x|)2ddx <∞ with the norm

‖f‖Exp = inf



λ > 0 :

∫

Rd

(
e|f(x)|/λ − 1

) 1

(1 + |x|)2ddx ≤ 1



 .

In fact, Inequality (6.22) also holds when we replace the unit cube Q by B(0, r) for

every r > 0 since ‖g − gB(0,r)‖Exp ≤ C‖g‖BMO. More precisely, there exists a constant

C > 0 such that

‖fg‖Llog ≤ C‖f‖L1(‖g‖BMO + |gB(0,ρ(0))|) ≤ C‖f‖L1‖g‖BMOL
(6.23)
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for all f ∈ L1(Rd) and g ∈ BMOL(R
d). As a consequence, we obtain

‖T (f, g)‖Hlog ≤ C‖f‖H1‖g‖BMOL
(6.24)

for all f ∈ H1(Rd) and g ∈ BMOL(R
d).

Now, we are ready to give the proof of the main theorems.

Proof of Theorem 6.1.2. We define two bilinear operators SL and TL by

SL(f, g) = S(H(f), g) +
∑

n,k

(
ϕ2−n/2 ∗ (ψn,kf)

)
g

and

TL(f, g) = T (H(f), g)

for all (f, g) ∈ H1
L(R

d)×BMOL(R
d). Then, it follows from Theorem 6.4.1, Lemma 7.3.4,

Lemma 6.4.4 and Lemma 6.4.5 that

‖SL(f, g)‖L1 ≤ ‖S(H(f), g)‖L1 + C
∑

n,k

∥∥∥
(
ϕ2−n/2 ∗ (ψn,kf)

)
g
∥∥∥
H1

L

≤ C‖g‖BMO‖H(f)‖H1 + C‖g‖BMOL

∑

n,k

‖ψn,kf‖h1n

≤ C‖f‖H1
L
‖g‖BMOL

,

and as (6.24),

‖TL(f, g)‖Hlog = ‖T (H(f), g)‖Hlog ≤ C‖H(f)‖H1‖g‖BMOL

≤ C‖f‖H1
L
‖g‖BMOL

.

Furthermore, in the sense of distributions, we have

SL(f, g) + TL(f, g)

=

(
∑

n,k

(
ψn,kf − ϕ2−n/2 ∗ (ψn,kf)

))
× g +

∑

n,k

(
ϕ2−n/2 ∗ (ψn,kf)

)
g

=

(
∑

n,k

ψn,kf

)
× g = f × g,

which ends the proof of Theorem 6.1.2.
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Proof of Theorem 6.1.3. By the proof of Theorem 6.1.2, the function
∑

n,k(ϕ2−n/2∗(ψn,kf))g
belongs to H1

L(R
d) ⊂ L1(Rd). This implies that

(∑
n,k(ϕ2−n/2 ∗ (ψn,kf))g

)
∗ φǫ tends to∑

n,k(ϕ2−n/2 ∗ (ψn,kf))g almost everywhere, as ǫ → 0. Therefore, applying Theorem 1.8

of [15], we get

lim
ǫ→0

(f × g)ǫ(x) = lim
ǫ→0

(H(f)× g)ǫ(x) + lim
ǫ→0

(∑

n,k

(ϕ2−n/2 ∗ (ψn,kf))g
)
∗ φǫ(x)

= H(f)(x)g(x) +

(
∑

n,k

(ϕ2−n/2 ∗ (ψn,kf))(x)
)
g(x)

= f(x)g(x)

for almost every x ∈ Rd, which completes the proof of Theorem 6.1.3.
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Chapter 7

On weak∗-convergence in H1
L(R

d)

Ce chapitre est une prépublication (soumise).

Résumé

Soit L = −∆ + V un opérateur Schrödinger sur Rd, d ≥ 3, où V est une fonction

positive, V 6= 0, qui appartient à la classe Hölder inverse RHd/2. Dans cet article, nous

prouvons une version du théorème classique de Jones et Journé sur la convergence faible∗

dans l’espace de Hardy H1
L(R

d).
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7.1 Introduction

A famous and classical result of Fefferman [47] states that the John-Nirenberg space

BMO(Rd) is the dual of the Hardy space H1(Rd). It is also well-known that H1(Rd) is

one of the few examples of separable, nonreflexive Banach space which is a dual space.

In fact, let VMO(Rd) denote the closure of the space C∞
c (Rd) in BMO(Rd), where C∞

c

is the set of C∞-functions with compact support, Coifman and Weiss showed in [32] that

H1(Rd) is the dual space of VMO(Rd), which givesH1(Rd) a richer structure than L1(Rd).

For example, the classical Riesz transforms ∇(−∆)−1/2 are not bounded on L1(Rd), but

bounded on H1(Rd). In addition, the weak∗-convergence is true in H1(Rd), which is useful

in the application of Hardy spaces to compensated compactness (see [33]). More precisely,

in [78], Jones and Journé proved the following.

Theorem 7.1.1. Suppose that {fj}j≥1 is a bounded sequence in H1(Rd), and that fj(x) →
f(x) for almost every x ∈ Rd. Then, f ∈ H1(Rd) and {fj}j≥1 weak∗-converges to f , that

is, for every ϕ ∈ VMO(Rd), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.

The aim of this paper is to prove an analogous version of the above theorem in the

setting of function spaces associated with Schrödinger operators.

Let L = −∆ + V be a Schrödinger differential operator on Rd, d ≥ 3, where V is a

nonnegative potential, V 6= 0, and belongs to the reverse Hölder class RHd/2. In the recent

years, there is an increasing interest on the study of the problems of harmonic analysis

associated with these operators, see for example [37, 45, 46, 82, 98, 125, 145]. In [46],

Dziubański and Zienkiewicz considered the Hardy space H1
L(R

d) as the set of functions

f ∈ L1(Rd) such that ‖f‖H1
L
:= ‖MLf‖L1 < ∞, where MLf(x) := supt>0 |e−tLf(x)|.

There, they characterized H1
L(R

d) in terms of atomic decomposition and in terms of the

Riesz transforms associated with L. Later, in [45], Dziubański et al. introduced a BMO-

type space BMOL(R
d) associated with L, and established the duality between H1

L(R
d)

and BMOL(R
d). Recently, Deng et al. [37] introduced and developed new function

spaces of VMO-type VMOA(R
d) associated with some operators A which have a bounded

holomorphic functional calculus on L2(Rd). When A ≡ L, their space VMOL(R
d) is just

the set of all functions f in BMOL(R
d) such that γ1(f) = γ2(f) = γ3(f) = 0, where

γ1(f) = lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,
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γ2(f) = lim
R→∞


 sup
x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,

γ3(f) = lim
R→∞


 sup
B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 .

The authors in [37] further showed that H1
L(R

d) is in fact the dual of VMOL(R
d), which

allows us to study the weak∗-convergence in H1
L(R

d). This is useful in the study of

the Hardy estimates for commutators of singular integral operators related to L, see for

example Theorem 7.1 and Theorem 7.3 of [82].

Our main result is the following theorem.

Theorem 7.1.2. Suppose that {fj}j≥1 is a bounded sequence in H1
L(R

d), and that fj(x) →
f(x) for almost every x ∈ Rd. Then, f ∈ H1

L(R
d) and {fj}j≥1 weak∗-converges to f , that

is, for every ϕ ∈ VMOL(R
d), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.

Throughout the whole paper, C denotes a positive geometric constant which is inde-

pendent of the main parameters, but may change from line to line. In Rd, we denote by

B = B(x, r) an open ball with center x and radius r > 0. For any measurable set E, we

denote by |E| its Lebesgue measure.

The paper is organized as follows. In Section 2, we present some notations and pre-

liminary results. Section 3 is devoted to the proof of Theorem 7.1.2. In the last section,

we prove that C∞
c (Rd) is dense in the space VMOL(R

d).

Acknowledgements. The author would like to thank Aline Bonami and Sandrine

Grellier for many helpful suggestions and discussions.

7.2 Some preliminaries and notations

In this paper, we consider the Schrödinger differential operator

L = −∆+ V

on Rd, d ≥ 3, where V is a nonnegative potential, V 6= 0. As in the works of Dziubański

et al [45, 46], we always assume that V belongs to the reverse Hölder class RHd/2. Recall
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that a nonnegative locally integrable function V is said to belong to a reverse Hölder class

RHq, 1 < q <∞, if there exists a constant C > 0 such that for every ball B ⊂ Rd,

( 1

|B|

∫

B

(V (x))qdx
)1/q

≤ C

|B|

∫

B

V (x)dx.

Let {Tt}t>0 be the semigroup generated by L and Tt(x, y) be their kernels. Namely,

Ttf(x) = e−tLf(x) =

∫

Rd

Tt(x, y)f(y)dy, f ∈ L2(Rd), t > 0.

Since V is nonnegative, the Feynman-Kac formula implies that

0 ≤ Tt(x, y) ≤
1

(4πt)d/2
e−

|x−y|2

4t . (7.1)

According [46], the space H1
L(R

d) is defined as the completion of

{f ∈ L2(Rd) : MLf ∈ L1(Rd)}

in the norm

‖f‖H1
L
:= ‖MLf‖L1 ,

where MLf(x) := supt>0 |Ttf(x)| for all x ∈ Rd.

In [45] it was shown that the dual space of H1
L(R

d) can be identified with the space

BMOL(R
d) which consists of all functions f ∈ BMO(Rd) with

‖f‖BMOL
:= ‖f‖BMO + sup

ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞, (7.2)

where ρ is the auxiliary function defined as in [125], that is,

ρ(x) = sup
{
r > 0 :

1

rd−2

∫

B(x,r)

V (y)dy ≤ 1
}
, (7.3)

x ∈ Rd. Clearly, 0 < ρ(x) <∞ for all x ∈ Rd, and thus Rd =
⋃
n∈Z Bn, where the sets Bn

are defined by

Bn = {x ∈ Rd : 2−(n+1)/2 < ρ(x) ≤ 2−n/2}. (7.4)

The following fundamental property of the function ρ is due to Shen [125].

Proposition 7.2.1 (see [125], Lemma 1.4). There exist C0 > 1 and k0 ≥ 1 such that for

all x, y ∈ Rd,

C−1
0 ρ(x)

(
1 +

|x− y|
ρ(x)

)−k0
≤ ρ(y) ≤ C0ρ(x)

(
1 +

|x− y|
ρ(x)

) k0
k0+1

.
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Let VMOL(R
d) be the subspace of BMOL(R

d) consisting of those functions f satis-

fying γ1(f) = γ2(f) = γ3(f) = 0, where

γ1(f) = lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,

γ2(f) = lim
R→∞


 sup
x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 ,

γ3(f) = lim
R→∞


 sup
B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 .

In [37] it was shown that H1
L(R

d) is the dual space of VMOL(R
d).

In the sequel, we denote by CL the L-constant

CL = 8.9k0C0

where k0 and C0 are defined as in Proposition 7.2.1.

Following Dziubański and Zienkiewicz [46], we define atoms as follows.

Definition 7.2.1. Given 1 < q ≤ ∞. A function a is called a (H1
L, q)-atom related to the

ball B(x0, r) if r ≤ CLρ(x0) and
i) supp a ⊂ B(x0, r),

ii) ‖a‖Lq ≤ |B(x0, r)|1/q−1,

iii) if r ≤ 1
CLρ(x0) then

∫
Rd a(x)dx = 0.

We have then the following atomic characterization of H1
L(R

d).

Theorem A (see [46], Theorem 1.5). Let 1 < q ≤ ∞. A function f is in H1
L(R

d) if and

only if it can be written as f =
∑

j λjaj, where aj are (H1
L, q)-atoms and

∑
j |λj| < ∞.

Moreover, there exists a constant C > 0 such that

‖f‖H1
L
≤ inf

{
∑

j

|λj| : f =
∑

j

λjaj

}
≤ C‖f‖H1

L
.

Let P (x) = (4π)−d/2e−|x|2/4 be the Gauss function. According to [46], the space h1n(R
d),

n ∈ Z, denotes the space of all integrable functions f such that

Mnf(x) = sup
0<t<2−n/2

|Pt ∗ f(x)| ∈ L1(Rd),
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where Pt(·) := t−dP (t−1·). The norm on h1n(R
d) is then defined by

‖f‖h1n := ‖Mnf‖L1 .

It was shown in [56] that the dual space of h1n(R
d) can be identified with bmon(R

d)

the space of all locally integrable functions f such that

‖f‖bmon = ‖f‖BMO + sup
x∈Rd,2−n/2≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy <∞.

Here and in what follows, for a ball B and a locally integrable function f , we denote

by fB the average of f on B. Following Dafni [35], we define vmon(R
d) as the subspace

of bmon(R
d) consisting of those f such that

lim
σ→0


 sup
x∈Rd,r<σ

1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy


 = 0

and

lim
R→∞


 sup
B(x,r)∩B(0,R)=∅,r≥2−n/2

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy


 = 0.

Recall that C∞
c (Rd) is the space of all C∞-functions with compact support. Then, the

following was established by Dafni [35].

Theorem B (see [35], Theorem 6 and Theorem 9). Let n ∈ Z. Then,

i) The space vmon(R
d) is the closure of C∞

c (Rd) in bmon(R
d).

ii) The dual of vmon(R
d) is the space h1n(R

d).

Furthermore, the weak∗-convergence is true in h1n(R
d).

Theorem C (see [35], Theorem 11). Let n ∈ Z. Suppose that {fj}j≥1 is a bounded

sequence in h1n(R
d), and that fj(x) → f(x) for almost every x ∈ Rd. Then, f ∈ h1n(R

d)

and {fj}j≥1 weak∗-converges to f , that is, for every ϕ ∈ vmon(R
d), we have

lim
j→∞

∫

Rd

fj(x)ϕ(x)dx =

∫

Rd

f(x)ϕ(x)dx.
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7.3 Proof of Theorem 7.1.2

We begin by recalling the following two lemmas due to [46]. These two lemmas together

with Proposition 7.2.1 play an important role in our study.

Lemma 7.3.1 (see [46], Lemma 2.3). There exists a constant C > 0 and a collection of

balls Bn,k = B(xn,k, 2
−n/2), n ∈ Z, k = 1, 2, ..., such that xn,k ∈ Bn, Bn ⊂ ⋃k Bn,k, and

card {(n′, k′) : B(xn,k, R2
−n/2) ∩ B(xn′,k′ , R2

−n/2) 6= ∅} ≤ RC

for all n, k and R ≥ 2.

Lemma 7.3.2 (see [46], Lemma 2.5). There are nonnegative C∞-functions ψn,k, n ∈
Z, k = 1, 2, ..., supported in the balls B(xn,k, 2

1−n/2) such that
∑

n,k

ψn,k = 1 and ‖∇ψn,k‖L∞ ≤ C2n/2.

The following corollary is useful, which proof follows directly from Lemma 7.3.1. We

leave the details to the reader (see also Corollary 1 of [45]).

Corollary 7.3.1. i) Let K be a compact set. Then, there exists a finite set Γ ⊂ Z × Z+

such that K ∩ B(xn,k, 2
1−n/2) = ∅ whenever (n, k) /∈ Γ.

ii) There exists a constant C > 0 such that for every x ∈ Rd,

card {(n, k) ∈ Z× Z+ : B(xn,k, 2
1−n/2) ∩ B(x, 2ρ(x)) 6= ∅} ≤ C.

iii) There exists a constant C > 0 such that for every ball B(x, r) with ρ(x) ≤ r, we

have

|B(x, r)| ≤
∑

B(xn,k,2−n/2)∩B(x,r) 6=∅

|B(xn,k, 2
−n/2)| ≤ C|B(x, r)|.

The key point in the proof of Theorem 7.1.2 is the theorem.

Theorem 7.3.1. The space C∞
c (Rd) is dense in the space VMOL(R

d).

The proof of Theorem 7.3.1 will be given in the last section.

To prove Theorem 7.1.2, we need also the following two lemmas.

Lemma 7.3.3 (see [82], Lemma 6.5). Let 1 < q ≤ ∞, n ∈ Z and x ∈ Bn. Suppose that

f ∈ h1n(R
d) with supp f ⊂ B(x, 21−n/2). Then, there are (H1

L, q)-atoms aj related to the

balls B(xj, rj) such that B(xj, rj) ⊂ B(x, 22−n/2) and

f =
∞∑

j=1

λjaj,
∞∑

j=1

|λj| ≤ C‖f‖h1n

with a positive constant C independent of n and f .
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Lemma 7.3.4 (see (4.7) in [46]). For every f ∈ H1
L(R

d), we have

∑

n,k

‖ψn,kf‖h1n ≤ C‖f‖H1
L
.

Now, we are ready to give the proof of the main theorem.

Proof of Theorem 7.1.2. By assumption, there exists M > 0 such that

‖fj‖H1
L
≤ M , for all j ≥ 1.

Let (n, k) ∈ Z×Z+. Then, for almost every x ∈ Rd, ψn,k(x)fj(x) → ψn,k(x)f(x) since

fj(x) → f(x). By Theorem C, this yields that ψn,kf belongs to h1n(R
d) and {ψn,kfj}j≥1

weak∗-converges to ψn,kf in h1n(R
d), that is,

lim
j→∞

∫

Rd

ψn,k(x)fj(x)φ(x)dx =

∫

Rd

ψn,k(x)f(x)φ(x)dx, (7.5)

for all φ ∈ C∞
c (Rd). Furthermore,

‖ψn,kf‖h1n ≤ lim
j→∞

‖ψn,kfj‖h1n . (7.6)

As xn,k ∈ Bn and supp ψn,kf ⊂ B(xn,k, 2
1−n/2), by Lemma 7.3.3, there are (H1

L, 2)-

atoms an,kj related to the balls B(xn,kj , rn,kj ) ⊂ B(xn,k, 2
2−n/2) such that

ψn,kf =
∑

j

λn,kj an,kj ,
∑

j

|λn,kj | ≤ C‖ψn,kf‖h1n .

Let N,K ∈ Z+ be arbitrary. Then, the above together with (7.6) and Lemma 7.3.4

follow that there exists mN,K ∈ Z+ such that

N∑

n=−N

K∑

k=1

∑

j

|λn,kj | ≤
N∑

n=−N

K∑

k=1

C
(

M

(1 + n2)(1 + k2)
+ ‖ψn,kfmN,K

‖h1n
)

≤ C
∑

n,k

M

(1 + n2)(1 + k2)
+ C‖fmN,K

‖H1
L

≤ CM ,

where the constants C are independent of N,K. By Theorem A, this allows to conclude

that

f =
∑

n,k

ψn,kf ∈ H1
L(R

d) and ‖f‖H1
L
≤
∑

n,k

∑

j

|λn,kj | ≤ CM .
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Finally, we need to show that for every φ ∈ VMOL(R
d),

lim
j→∞

∫

Rd

fj(x)φ(x)dx =

∫

Rd

f(x)φ(x)dx. (7.7)

By Theorem 7.3.1, we only need to prove (7.7) for φ ∈ C∞
c (Rd). In fact, by (i) of

Corollary 7.3.1, there exists a finite set Γφ ⊂ Z× Z+ such that

fφ =
∑

(n,k)∈Γφ

ψn,kfφ and fjφ =
∑

(n,k)∈Γφ

ψn,kfjφ

since supp ψn,k ⊂ B(xn,k, 2
1−n/2). This together with (7.5) give

lim
j→∞

∫

Rd

fj(x)φ(x)dx = lim
j→∞

∫

Rd

∑

(n,k)∈Γφ

ψn,k(x)fj(x)φ(x)dx

=
∑

(n,k)∈Γφ

lim
j→∞

∫

Rd

ψn,k(x)fj(x)φ(x)dx

=
∑

(n,k)∈Γφ

∫

Rd

ψn,k(x)f(x)φ(x)dx

=

∫

Rd

f(x)φ(x)dx,

which ends the proof of Theorem 7.1.2.

7.4 Proof of Theorem 7.3.1

The main point in the proof of Theorem 7.3.1 is the theorem.

Theorem 7.4.1. Let CMOL(R
d) be the closure of C∞

c (Rd) in BMOL(R
d). Then, H1

L(R
d)

is the dual space of CMOL(R
d).

To prove Theorem 7.4.1, we need the following three lemmas.

Lemma 7.4.1. There exists a constant C > 0 such that

2−n/2 ≤ Cr

whenever B(xn,k, 2
1−n/2) ∩ B(x, r) 6= ∅ and ρ(x) ≤ r.
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The proof of Lemma 7.4.1 follows directly from Proposition 7.2.1. We omit the details.

Lemma 7.4.2. Let ψn,k, (n, k) ∈ Z × Z+, be as in Lemma 7.3.2. Then, there exists a

constant C independent of n, k, ψn,k, such that

‖ψn,kf‖bmon ≤ C‖f‖bmon (7.8)

for all f ∈ bmon(R
d), and

‖ψn,kφ‖BMOL
≤ C‖φ‖bmon (7.9)

for all φ ∈ C∞
c (Rd).

Lemma 7.4.3. For every f ∈ BMOL(R
d), we have

‖f‖BMOL
≈ sup

r≤ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)− fB(x,r)|dy + sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy.

Proof of Lemma 7.4.2. Noting that ψn,k is a multiplier of bmon(R
d) and ‖ψn,k‖L∞ ≤ 1,

Theorem 2 of [116] allows us to reduce (7.8) to showing that

log
(
e+ 2−n/2

r

)

|B(x, r)|

∫

B(x,r)

∣∣∣ψn,k(y)−
1

|B(x, r)|

∫

B(x,r)

ψn,k(z)dz
∣∣∣dy ≤ C (7.10)

holds for every ball B(x, r) which satisfies r ≤ 2−n/2. In fact, from ‖∇ψn,k‖L∞ ≤ C2n/2

and the estimate r
2−n/2 log

(
e+ 2−n/2

r

)
≤ sup0<t≤1 t log(e+ 1/t) <∞,

log
(
e+ 2−n/2

r

)

|B(x, r)|

∫

B(x,r)

∣∣∣ψn,k(y)−
1

|B(x, r)|

∫

B(x,r)

ψn,k(z)dz
∣∣∣dy

≤
log
(
e+ 2−n/2

r

)

|B(x, r)|2
∫

B(x,r)

∫

B(x,r)

|ψn,k(y)− ψn,k(z)|dzdy

≤ log
(
e+

2−n/2

r

)
‖∇ψn,k‖L∞2r

≤ C
r

2−n/2
log
(
e+

2−n/2

r

)
≤ C,

which proves (7.10), and thus (7.8) holds.

As (7.8) holds, we get

‖ψn,kφ‖BMO ≤ ‖ψn,kφ‖bmon ≤ C‖φ‖bmon .

191



Therefore, to prove (7.9), we only need to show that

1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φ(y)|dy ≤ C‖φ‖bmon (7.11)

holds for every x ∈ Rd and r ≥ ρ(x). Since supp ψn,k ⊂ B(xn,k, 2
1−n/2), (7.11) is obvious

if B(x, r) ∩ B(xn,k, 2
1−n/2) = ∅. Otherwise, as ρ(x) ≤ r, Lemma 7.4.1 gives 2−n/2 ≤ Cr.

As a consequence, we get

1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φ(y)|dy ≤ C sup
2−n/2≤r

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy

≤ C‖φ‖bmon ,

which proves (7.11), and hence (7.9) holds.

Proof of Lemma 7.4.3. Clearly, it is sufficient to prove that

sup
ρ(x)≤r

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy ≤ C sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy. (7.12)

In fact, for every ball B(x, r) which satisfies ρ(x) ≤ r, setting

G = {(n, k) ∈ Z× Z+ : B(xn,k, 2
−n/2) ∩ B(x, r) 6= ∅},

one has

B(x, r) ⊂ ∪(n,k)∈GB(xn,k, 2
−n/2) and

∑

(n,k)∈G
|B(xn,k, 2

−n/2)| ≤ C|B(x, r)|

since Rd = ∪n∈ZBn ⊂ ∪n,kB(xn,k, 2
−n/2) and (iii) of Corollary 7.3.1. Therefore,

1

|B(x, r)|

∫

B(x,r)

|f(y)|dy ≤ 1

|B(x, r)|

∫

∪(n,k)∈GB(xn,k,2−n/2)

|f(y)|dy

≤ 1

|B(x, r)|
∑

(n,k)∈G
|B(xn,k, 2

−n/2)| sup
ρ(z)≤s≤2ρ(z)

1

|B(z, s)|

∫

B(z,s)

|f(y)|dy

≤ C sup
ρ(z)≤s≤2ρ(z)

1

|B(z, s)|

∫

B(z,s)

|f(y)|dy,

which implies that (7.12) holds.
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Proof of Theorem 7.4.1. Since CMOL(R
d) is a subspace of BMOL(R

d), which is the

dual of H1
L(R

d), every function f in H1
L(R

d) determines a bounded linear functional on

CMOL(R
d) of norm bounded by ‖f‖H1

L
.

Conversely, given a bounded linear functional T on CMOL(R
d). Then, for every

(n, k) ∈ Z × Z+, from (7.9) and density of C∞
c (Rd) in vmon(R

d), the linear functional

Tn,k(g) 7→ T (ψn,kg) is continuous on vmon(R
d). Consequently, by Theorem B, there exists

fn,k ∈ h1n(R
d) such that for every φ ∈ C∞

c (Rd),

T (ψn,kφ) = Tn,k(φ) =
∫

Rd

fn,k(y)φ(y)dy, (7.13)

moreover,

‖fn,k‖h1n ≤ C‖Tn,k‖, (7.14)

where C is a positive constant independent of n, k, ψn,k and T .

Noting that supp ψn,k ⊂ B(xn,k, 2
1−n/2), (7.13) implies that supp fn,k ⊂ B(xn,k, 2

1−n/2).

Consequently, as xn,k ∈ Bn, Lemma 7.3.3 yields that there are (H1
L, 2)-atoms an,kj related

to the balls B(xn,kj , rn,kj ) such that

fn,k =
∞∑

j=1

λn,kj an,kj ,

∞∑

j=1

|λn,kj | ≤ C‖fn,k‖h1n (7.15)

with a positive constant C independent of ψn,k and fn,k.

Since supp fn,k ⊂ B(xn,k, 2
1−n/2), by Lemma 7.3.1, the function

x 7→ f(x) =
∑

n,k

fn,k(x)

is well defined, and belongs to L1
loc(R

d). Moreover, for every φ ∈ C∞
c (Rd), by (i) of

Corollary 7.3.1, there exists a finite set Γφ ⊂ Z× Z+ such that

T (φ) =
∑

(n,k)∈Γφ

T (ψn,kφ) =
∑

(n,k)∈Γφ

∫

Rd

fn,k(y)φ(y)dy =

∫

Rd

f(y)φ(y)dy.

Next, we need to show that f ∈ H1
L(R

d).

We first claim that there exists C > 0 such that
∑

n,k

‖fn,k‖h1n ≤ C‖T ‖. (7.16)

Assume that (7.16) holds for a moment. Then, from (7.15), there are (H1
L, 2)-atoms an,kj

and complex numbers λn,kj such that

f =
∑

n,k

∑

j

λn,kj an,kj and
∑

n,k

∑

j

|λn,kj | ≤ C
∑

n,k

‖fn,k‖h1n ≤ C‖T ‖.
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By Theorem A, this proves that f ∈ H1
L(R

d), moreover, ‖f‖H1
L
≤ C‖T ‖.

Now, we return to prove (7.16).

Without loss of generality, we can assume that T is a real-valued functional. By (7.14),

for each (n, k) ∈ Z× Z+, there exists φn,k ∈ C∞
c (Rd) such that

‖φn,k‖vmon ≤ 1 and ‖fn,k‖h1n ≤ CT (ψn,kφn,k). (7.17)

For any Γ ⊂ Z × Z+ a finite set, let φ =
∑

(n,k)∈Γ ψn,kφn,k ∈ C∞
c (Rd). We prove that

‖φ‖BMOL
≤ C. Indeed, let B(x, r) be an arbitrary ball satisfying r ≤ 2ρ(x). Then, by

(ii) of Corollary 7.3.1, we get

card {(n, k) ∈ Z× Z+ : B(xn,k, 2
1−n/2) ∩B(x, r) 6= ∅} ≤ C.

This together with (7.8) and (7.17) give

1

|B(x, r)|

∫

B(x,r)

|φ(y)− φB(x,r)|dy ≤ C sup
(n,k)∈Γ

‖ψn,kφn,k‖BMO

≤ C sup
(n,k)∈Γ

‖ψn,kφn,k‖bmon

≤ C sup
(n,k)∈Γ

‖φn,k‖bmon ≤ C

if r ≤ ρ(x), and as (7.11),

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy ≤ C sup
(n,k)∈Γ

1

|B(x, r)|

∫

B(x,r)

|ψn,k(y)φn,k(y)|dy

≤ C sup
(n,k)∈Γ

‖φn,k‖bmon ≤ C

if ρ(x) ≤ r ≤ 2ρ(x). Therefore, Lemma 7.4.3 yields

‖φ‖BMOL
≤ C

{
sup
r≤ρ(x)

1

|B(x, r)|

∫

B(x,r)

|φ(y)− φB(x,r)|dy +

+ sup
ρ(x)≤r≤2ρ(x)

1

|B(x, r)|

∫

B(x,r)

|φ(y)|dy
}

≤ C

since B(x, r) is an arbitrary ball satisfying r ≤ 2ρ(x). This implies that

∑

(n,k)∈Γ
‖fn,k‖h1n ≤ C

∑

(n,k)∈Γ
T (ψn,kφn,k) = CT (φ)

≤ C‖T ‖‖φ‖BMOL
≤ C‖T ‖.
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Consequently, (7.16) holds since Γ ⊂ Z × Z+ is an arbitrary finite set and the constants

C are dependent of Γ. This ends the proof of Theorem 7.4.1.

To prove Theorem 7.3.1, we need to recall the following lemma.

Lemma 7.4.4 (see [46], Lemma 3.0). There is a constant ε > 0 such that for every C ′

there exists C > 0 such that for every t > 0 and |x− y| ≤ C ′ρ(x),

∣∣∣
1

(4πt)d/2
e−

|x−y|2

4t − Tt(x, y)
∣∣∣ ≤ C

1

|x− y|d
( |x− y|
ρ(x)

)ε
.

Proof of Theorem 7.3.1. As H1
L(R

d) is the dual space of VMOL(R
d) (see Theorem 4.1

of [37]), by Theorem 7.4.1 and Hahn-Banach theorem, it suffices to show that C∞
c (Rd) ⊂

VMOL(R
d). In fact, for every f ∈ C∞

c (Rd) with supp f ⊂ B(0, R0), one only needs to

establish the following three steps:

Step 1. By (7.1), one has ‖e−tLf‖L2 ≤ ‖f‖L2 for all t > 0. Therefore,

1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy ≤ 1

|B(x, t)|4‖f‖
2
L2

for all x ∈ Rd and t > 0. This implies that

γ2(f) = lim
R→∞


 sup
x∈Rd,t≥R

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 = 0.

Step 2. For every R > 2R0 and B(x, t) ∩B(0, R) = ∅, by (7.1) again,

1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy

≤ 1

|B(x, t)|

∫

B(x,t)

( 1

(4πt)d/2

∫

B(0,R0)

e−
(R−R0)

2

4t |f(z)|dz
)2
dy

≤ (4π)−d‖f‖2L1

1

td
e−

R2

8t ≤ (4π)−d‖f‖2L1

( 8d
R2

)d
e−d.

Therefore,

γ3(f) = lim
R→∞


 sup
B(x,t)∩B(0,R)=∅

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 = 0.
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Step 3. Finally, we need to show that

γ1(f) = lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

|f(y)− e−tLf(y)|2dy
)1/2


 = 0. (7.18)

For every x ∈ Rd and t > 0, we have




1

|B(x, t)|

∫

B(x,t)

∣∣∣f(y)− 1

(4πt)d/2

∫

Rd

e−
|y−z|2

4t f(z)dz
∣∣∣
2

dy





1/2

≤ sup
|y−z|<t1/4

|f(y)− f(z)|+ 2‖f‖L∞

1

(4πt)d/2

∫

|z|≥t1/4

e−
|z|2

4t dz.

By the uniformly continuity of f , the above implies that

lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

∣∣∣f(y)− 1

(4πt)d/2

∫

Rd

e−
|y−z|2

4t f(z)dz
∣∣∣
2

dy
)1/2


 = 0.

Therefore, we can reduce (7.18) to showing that

lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

[ ∫

Rd

∣∣∣
1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣∣∣|f(z)|dz

]2
dy
)1/2


 = 0.

(7.19)

From supp f ⊂ B(0, R0) and Rd ≡ ∪n,kB(xn,k, 2
−n/2), there exists a finite set Γf ⊂

Z × Z+ such that supp f ⊂ ∪(n,k)∈Γf
B(xn,k, 2

−n/2). As a consequence, (7.19) holds if we

can prove that for each (n, k) ∈ Γf ,

lim
r→0


 sup
x∈Rd,t≤r

( 1

|B(x, t)|

∫

B(x,t)

[ ∫

B(xn,k,2−n/2)

∣∣∣
1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣∣∣|f(z)|dz

]2
dy
)1/2


 = 0.

(7.20)

We now prove (7.20). Let x ∈ Rd and 0 < t < 2−2n. As xn,k ∈ Bn, by Proposition 7.2.1,

there is a constant C > 1 such that C−12−n/2 ≤ ρ(z) ≤ C2−n/2 for all z ∈ B(xn,k, 2
−n/2).

This together with (7.1) and Lemma 7.4.4, give




1

|B(x, t)|

∫

B(x,t)

[ ∫

B(xn,k,2−n/2)

∣∣∣
1

(4πt)d/2
e−

|y−z|2

4t − Tt(y, z)
∣∣∣|f(z)|dz

]2
dy





1/2

≤ 2‖f‖L∞

1

(4πt)d/2

∫

|z|≥t1/4

e−
|z|2

4t dz + C2nε/2‖f‖L∞

∫

|z|<t1/4

1

|z|d−εdz,

196



which implies that (7.20) holds. The proof of Theorem 7.3.1 is thus completed.
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Dang Ky LUONG
Décomposition bilinéaire du produit H1-BMO et problèmes liés

Résumé :

Dans cette thèse, nous étudions le produit (au sens des distributions) des fonctions de l’espace

de Hardy H1 par des fonctions à variations moyennes bornées BMO ainsi que des problèmes

connexes. En particulier, nous démontrons qu’il existe deux opérateurs bilinéaires S et T tels

que f × g = S(f, g) + T (f, g), f dans H1, g dans BMO où S est continu de H1 ×BMO à

valeurs dans L1 et T est continu de H1 × BMO et à valeurs dans un nouvel espace de type

Hardy-Orlicz noté H log. Ce nouvel espace H log appartient à une classe plus large d’espaces de

Hardy de type Musielak-Orlicz que nous introduisons et étudions. En utilisant une méthode

analogue à celle de la décomposition du produitH1-BMO, nous établissons une décomposition

bilinéaire des commutateurs [b, T ], T dans une large classe d’opérateurs sous-linéaires– classe

contenant tous les opérateurs classiques de l’analyse harmonique. Nous généralisons ensuite

nos résultats aux espaces de Hardy associés à un opérateur de Schrödinger.

Mots clés: espaces de Hardy, ondelettes, BMO, commutateur, opérateur de Schrödinger.

Bilinear decompositions for the product space H1 × BMO and related problems

Abstract:

In this thesis, we investigate the product (in the distribution sense) of functions f in H1 and

g in BMO, denoted by f × g, and related problems. In particular, we prove that there are

two bounded bilinear operators S : H1×BMO → L1 and T : H1×BMO → H log such that

f × g = S(f, g) + T (f, g) ∈ L1 +H log holds for every (f, g) ∈ H1 × BMO. Here H log is a

new kind of Hardy-Orlicz space. This new space H log appears as an example of a new class

of Hardy spaces of Musielak-Orlicz type which we introduce and study. As an application,

we give (sub)bilinear decompositions for commutators of singular integral operators which

include almost all fundmental operators in harmonic analysis. Some Hardy estimates for

commutators are also studied here. Finally, we investigate some related problems in the

setting of Schrödinger harmonic analysis.

Keywords: Hardy spaces, wavelet, BMO, commutator, Schrödinger operator.
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