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Résumé

Dans cette these, nous étudions le produit (dans le sens des distributions) de fonctions f
dans H' et g dans BMO, désigné par f x g, et les problémes connexes. En particulier,
nous prouvons qu’il existe deux opérateurs bornés bilinéaires S : H'(R") x BMO(R™) —
LYR™) et T : HY(R") x BMO(R") — H'“&(R") de telle sorte que la décomposition

suivante bilinéaire
fxg=_5(f9)+T(f g) € L"R") + H"3(R") (1)

est vrai pour chaque (f,g) € H'(R") x BMO(R"). Ici, H'°8(R") est un nouveau type
d’espace de Hardy-Orlicz défini comme 'espace des distributions f dont la fonction ”grand
maximale” satisfait

/ |9 f ()]
log(e + []) + log(e + [M [ (x)])

Rn

dr < o0.

L’espace H'°¢(R") apparait comme un exemple d'une nouvelle classe de Hardy H*()(R")
que nous introduisons et étudions ici. Ils sont appelés espaces de Hardy de type Musielak-
Orlicz. Ces espaces généralisent les espaces Hardy-Orlicz de Janson et les espaces de Hardy

A poids de Garcia-Cuerva, Stromberg, et Torchinsky. Notant que l'espace H'&(R™) est

un cas particulier de p(x,t) = log(e+|:c|)t+10g(e+t), nous prouvons que l’ensemble des mul-
tiplicateurs ponctuels de BMO(R") est en fait I'espace dual de L'(R") + H'°8(R"). En
conséquence, nous montrons que, dans la décomposition bilinéaire (1), I'espace H'°&(R™)
ne peut pas étre remplacé par un espace plus petit dans un certain sens.

Soit b une BM O-fonction. Il est bien connu que le commutateur linéaire [b, 7] d’un
opérateur Calderén-Zygmund T n’est pas, en général, porné de H'(R") dans L'(R").
Cependant, Pérez a montré que si H'(R™) est remplacé par un sous-espace approprié
atomique H}(R") alors le commutateur est continu de Hj(R") & valeurs L'(R™). Dans
cette theése, nous trouvons le plus grand sous-espace H}(R™) de telle sorte que tous
les commutateurs des opérateurs Calderén-Zygmund sont continus de H} (R") & valeurs

L*(R™). Certaines caractérisations équivalentes de Hj (R") sont également données. Nous



étudions également les commutateurs [b, 7], ou T est dans une classe K des opérateurs
sous-linéaire contenant presque tous les opérateurs importants de I'analyse harmonique.
Plus précisément, nous prouvons qu’il existe un opérateur borné sous-bilinéaire R = R :
H'(R")x BMO(R") — L*(R™) de telle sorte que pour tous (f,b) € H'(R") x BMO(R"),

nous avons

IT(S(f,0))| = R(f,0) < |[b, TS| < R(f,0) + |T(S(f,b))]; (2)

ot & est un opérateur borné bilinéaire de H*(R") x BMO(R") dans L'(R") qui ne
dépend pas de T'. La décomposition sous- bilinéaire (4) nous permet de donner un apercu
général de toutes les estimations L' faibles ou fortes connues. Ils expliquent pourquoi les
commutateurs avec des opérateurs fondamentaux sont de type faible (H!, L'), et quand
un commutateurs [b, 7] est de type fort (H', L'). En particulier, la décomposition sous-
bilinéaire (4) permet de voir que, si pour tous les commutateurs avec les opérateurs
de Calderén-Zygmund [b, T] est borné de H'(R") dans L'(R") alors b est une fonction
constante.

Soit L = —A+4V un opérateur Schrodinger sur R™, n > 3, ou V est un potentiel positif,
V' # 0, qui appartient a la classe inverse Holder RH,, ». Etant donné b € BMO(R™), nous
prouvons que tous les commutateurs des opérateurs Schrodinger-Calderén-Zygmund [b, T']
envoie H}(R") dans L'(R™) si et seulement si b € BMOY®#(R™), cela signifie que

p(x) 1 /
1 b(y) —b d
Og <6 + r ) |B(fL‘,’I")| | (y) B($7T‘)| y < OO?
B(w,r)

”bHBMo‘LOg = sup
(z,r)

ol p(z) = sup{r > 0: = fB(a:,r) V(y)dy < 1}. En outre, le commutateur de la trans-

formée de Riesz [b, VL™'/?] est continue sur H}(R") chaque fois que b € BMOY(R™).
Enfin, nous prouvons une version analogue de la décomposition bilinéaire (3) et une

version analogue du théoreme classique de Jones et Journé sur la convergence faible* dans

le cadre de l'opérateur de Schrédinger L qui a été mentionné ci-dessus.



Abstract

In this thesis, we investigate the product (in the distribution sense) of functions f in
H' and ¢ in BMO, denoted by f x g, and related problems. In particular, we prove
that there are two bounded bilinear operators S : H'(R") x BMO(R") — L*(R") and
T : HY(R") x BMO(R") — H™(R") such that the following bilinear decomposition

fxg=5(f9) +T(fyg)€L"(R")+ H*R") (3)

holds for every (f,g) € H'(R") x BMO(R"). Here H'8(R") is a new kind of Hardy-Orlicz

space defined as the space of distributions f whose grand maximal function 9 f satisfies

/ |90 ()]
log(e + |x]) + log(e + [Mf(z)])

R

dx < oo.

The space H'°5(R") appears as an example of a new class of Hardy spaces H#(~)(R")
that we introduce and study here. They are called as Hardy spaces of Musielak-Orlicz
type, these spaces generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy
spaces of Garcfa-Cuerva, Stromberg, and Torchinsky. Noting that the space H'°8(R") is a
special case of ¢(x,t) = log(e+|x|)t+10g(e 5> We prove that the set of all pointwise multipliers
of BMO(R") is in fact the dual space of L*(R™) + H'°8(R™). As a consequence, we show

that, in the bilinear decomposition (3), the space H'8(R") could not be replaced by a

smaller space in some sense.

Let b be a BMO-function. It is well-known that the linear commutator [b,T] of
a Calderén-Zygmund operator T' does not, in general, map continuously H'(R") into
L'(R™). However, Pérez showed that if H'(R™) is replaced by a suitable atomic subspace
Hi(R") then the commutator is continuous from H;(R™) into L'(R™). In this thesis,
we find the largest subspace H}(R™) such that all commutators of Calderén-Zygmund
operators are continuous from H}(R") into L'(R™). Some equivalent characterizations
of H}(R™) are also given. We also study the commutators [b,T] for T in a class K

of sublinear operators containing almost all important operators in harmonic analysis.



More precisely, we prove that there exists a bounded subbilinear operator R = Ry :
HY(R™) x BMO(R") — L*(R") such that for all (f,b) € H(R™) x BMO(R"), we have

IT(S(f,0)] = R(Sf,0) < b, TI(HI <R, 0) +|T(S(f,0))], (4)

where & is a bounded bilinear operator from H'(R™) x BMO(R") into L'(R™) which
does not depend on 7. The subbilinear decomposition (4) allows us to give a general
overview of all known weak and strong L!-estimates, which explain why commutators
with the fundamental operators are of weak type (H', L'), and when a commutator [b, T
is of strong type (H', L'). In particular, the subbilinear decomposition (4) yields that
all commutators of Calderén-Zygmund operators [b, 7] map continuously H'(R") into
L*(R™) if and only if b is a constant function.

Let L = —A + V be a Schrédinger operator on R™, n > 3, where V is a nonnegative
potential, V' # 0, and belongs to the reverse Holder class RH, ;. Given b € BMO(R"),
we prove that all commutators of Schrodinger-Calderén-Zygmund operators [b, 7] map
continuously H}(R") into L'(R") if and only if b € BMOY#(R™), that is,

Bl = sup {108 (e 220 s [ o) = bl | <o
B(z,r)
where p(z) = sup{r > 0: = fB(m) V(y)dy < 1}. Furthermore, the commutator of the
Riesz transform [b, VL™'/?] is bounded on H}(R") whenever b € BMOYS(R").
Finally, we prove an analogous version of the bilinear decomposition (3) and an anal-
ogous version of the classical theorem of Jones and Journé on weak*-convergence in the

setting of the Schrodinger operator L as mentioned above.
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Chapter 1

Overview and motivation of the

results

1.1 Paper I: Paraproducts and Products of functions
in BMO(R") and H'(R") through wavelets

For p and p’ two conjugate exponents, with 1 < p < 0o, when we consider two functions
f € LP(R") and g € LP (R") = (LP(R"))*, their product fg is integrable, which means
in particular that their pointwise product gives rise to a distribution. When p = 1 and
p = 00, the right substitute to Lebesgue spaces is, for many problems, the Hardy space
H'(R") and the space BMO(RR"), respectively.

Let us recall that H'(R") is the space of all tempered distributions f € S'(R"),
such that the grand maximal function 9f belongs to L'(R") equipped with the norm
|1l = 900111, where

MSf(x) :==sup sup t"|fxd(y/t)] (1.1)

PEA |y—z|<t

with
A={peS®):[o(x)] +[Vo(@)] < (1+ |~V .

For a ball B C R", we denote by |B| the Lebesgue measure of B. The average of a
function f € LL _(R™) on B is denoted by

loc
1
fB= EB/f(x)dx-



A locally integrable function f is said to have bounded mean oscillation, say f €
BMO(R™), if

1o = Sgpé B/ (@) — falde < oo,

where the supremum is taken over all balls B C R".

A famous result of Fefferman (1971) states that BMO(R™) is in fact the dual of
H'(R"). So it is natural to ask for the right definition of the product of h € H'(R")
and b € BMO(R"), denoted by h x b, so that this product gives rise to a distribution.
The investigation of such distributions are also motivated by recent developments in the
geometric function theory and nonlinear elasticity [4, 7, 69, 71, 72, 112]. A typical reason is
to study the H'-theory of Jacobians, the operator .Z(f) = flog|f]|, and their relations to
the Rochberg-Weiss commutator, 7% f = T'(f log | f|) — T'f log |T f|, where T is a singular
integral operator, see the seminal works of Iwaniec and Stein [68, 70, 72, 73, 128]. In this
context, the pointwise product is not integrable in general. In order to get a distribution,
one has to define the product in a different way. This question and related problems have
been studied by Bonami, Iwaniec, Jones and Zinsmeister in [15].

Before giving the definition of the products h x b, we need to recall the characterization
of the pointwise multipliers for BMO(R™) due to Nakai and Yabuta [116].

Theorem A (Nakai and Yabuta, 1985). A function g is a pointwise multiplier for
BMO(R") if and only if g belong to L=(R™) N BMO™%(R™), where BMO"%(R™) is the

space of locally integrable functions f such that

logr +log e—l— a
|l Barores := sup | | la)) / |f(x) = fB(am]de < c0.

B(a,r) |

Now, for a function h € H'(R") and a function b € BMO(R™), noting that the space
Schwartz S(R") is contained in L>°(R"™) N BMO"%(R"), Theorem A allows to define the
product h x b as the distribution

(h X b, ¢) := (o, h),

where the second bracket stands for the duality bracket between H'(R™) and BMO(R™).
In [15], the authors proved that such a distribution can be written as a sum of an integrable
function and a function in a weighted Hardy-Orlicz space H=(R™), related to the Orlicz

function .

log(e + t)

(1]

(t) = (1.2)

10



1

and the weight o(x) L the space of distributions f such that

= log(etal)
/ Mf(z) dx “
J log(e +Mf(x))log(e + |z|)

with the Luxemburg norm

Mf(x)
= d
| fllg= = inf /\>0:/ A ’ >§1

More precisely, in [15] the authors established that for each f € H'(R"), there are
two bounded linear operators L; : BMO(R") — LY(R") and H; : BMO(R") — HZ(R"™)
such that for every g € BMO(R"),

fxg=1L(g)+ Hyg)

A question (see [15], Conjecture 1.7) by Bonami, Iwaniec, Jones and Zinsmeister is to find
two operators Ly and Hy depending linearly on f. Motivated by this question, in Paper

I, Bonami, Grellier and the author proved the following result:

Theorem 1. There exist two continuous bilinear operators on the product space H*(R™) x
BMO(R™), respectively S : H'(R™) x BMO(R") — L*(R") and T : H'(R") x BMO(R™) —
H™8(R") such that

fxg=58(f9)+T(f9).

Here H'“8(R") is a new kind of Hardy-Orlicz space consisting of all distributions f

such that imf( )
i
/ log(c + MF(x)) + logle + o) ™ =

R”

with the Luxemburg norm

Mf(z)

HfHHlog = lnf )\ > O . / o A dx S 1
2 log <e + #) + log(e + |z])

The operators S and T', in Theorem 1, are defined in terms of a wavelet decomposition.
The operator T is defined in terms of paraproducts. There is no uniqueness, of course. In
fact, the same decomposition of the product fg has already been considered by Dobyinsky
and Meyer (see [41, 42, 43], and also [26, 28]). The action of replacing the product by the

operator T' was called by them a renormalization of the product. Namely, T preserves the

11



cancellation properties of the factor, while S does not. Dobyinsky and Meyer considered
L2-data for both factors, and showed that T'(f, g) is in the Hardy space H!(R"). What is
surprising in our context is that both terms inherit some properties of the factors. Even if
the product fg is not integrable, the function S(f, g) is, while T'(f, g) inherits cancellation
properties of functions in Hardy spaces without being integrable. So, in some way each
term has more properties than expected at first glance.

Theorem 1 not only gives an answer for Conjecture 1.7 of [15] but also improves it by
showing that the space HZ(R™) can be replaced by the smaller space H'°8(R").

Another implicit conjecture of [15] concerns bilinear operators with cancellations, such
as the ones involved in the div-curl lemma for instance. In this case it is expected that
there is no L'-term.

The second main result of Paper I concerns endpoint estimates for the div-curl lemma.

Let us first recall that the theory of compensated compactness initiated and developed
by Tartar [135] and Murat [114] has been largely studied and extended to various setting.
The famous paper of Coifman, Lions, Meyer and Semmes [33] gives an overview of this
theory in the context of Hardy spaces in the Euclidean space R™. They prove in particular,
that, for 2= < p,q < oo such that L —i— <1 + , when F'is a vector field belonging to the
Hardy space HP(R",R"™) with curlF = 0 and G is a vector field belonging to H?(R", R™)
with div G = 0, then the scalar product F'- G can be given a meaning as a distribution of
H"(R™) with

el

H'r(Rn) S CHFHHP(R",R") GHHq(RnJRn),

where 1 = é + %.
We shall consider here the endpoint ¢ = co. In 2003, Auscher, Russ and Tchamitchian
noted firstly in [5] that, for p = 1, one has, under the same assumptions of being respec-

tively curl free and divergence free,
HF ° GHHl(R") S CHFHHI(R"JR")HGHLOO(R",R")'

Recently, another interesting endpoint estimate has been obtained by Bonami, Feuto
and Grellier in [11]. They showed that when G € L>*(R" R") is replaced by G €
bmo(R"™,R™), then the scalar product F -G is in the weighted Hardy-Orlicz space H=(R™)
mentioned before (in fact there is an additional assumption on the bmo-factor). Here
bmo(R™), the dual of the local Hardy h'(R™) studied by Goldberg [56], is the space of
locally integrable functions f such that

| fllomo := sup /]f — fpldx + sup /]f )dx < oo,
[B] |B|

|B|<1 |B|>1

12



where the supremums are taken over all balls B C R".

More precisely, they proved in [11] that
HF : GHHE(R") S CHFHHI(R",R")HGHme(R",R”)' (13)

By using the same technique as Dobyinsky and Meyer [41, 42, 43] to deal with the
terms coming from the operator S in Theorem 1, we improve the estimate (1.3), and give
a new proof without any additional assumption. More precisely, the second main result

of Paper I can be stated as follows:

Theorem 2. Let F' and G be two vector fields, one of them in H'(R™, R"™) and the other
one in BMO(R"™, R"), such that curl F' = 0 and div G = 0. Then their scalar product F - G

(in the distribution sense) is in H'*(R™), moreover,

HF : GHHlog(Rn) S CHFHHl(R”,R”)“G’|3M0+(R",R")'
Here, for a function f in BMO(R"),

| fllBazo+ == || fllBaro + | fol

with @ := [0,1)™ the unit cube in R™. This is a norm, while the BMO norm is only a
norm on equivalent classes modulo constants. Furthermore, it is easy to see that for any
[ € bmo(R™), we have

| fllao < 1fllsmo+ < CIf |lbmeo-

1.2 Paper II: New Hardy spaces of Musielak-Orlicz

type and boundedness of sublinear operators

Motivated by the results of Paper I, an interesting question arises:
Question 1. Could one replace H'*5(R™) by a smaller space?

To answer this question, we introduce a new class of Hardy spaces.

Since Lebesgue theory of integration has taken a center stage in concrete problems of
analysis, the need for more inclusive classes of function spaces than the LP(R™)-families
naturally arose. It is well known that the Hardy spaces H?(R"™) when p € (0, 1] are good
substitutes of LP(R™) when studying the boundedness of operators: for example, the
Riesz operators are bounded on HP(R"), but not on LP(R"™) when p € (0,1]. The theory
of Hardy spaces H? on the Euclidean space R™ was initially developed by Stein and Weiss
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[129]. Later, Fefferman and Stein [48] systematically developed a real-variable theory for
the Hardy spaces HP(R"™) with p € (0, 1], which now plays an important role in various
fields of analysis and partial differential equations; see, for example, [32, 33, 113]. A
key feature of the classical Hardy spaces is their atomic decomposition characterizations,
which were obtained by Coifman [27] when n = 1 and Latter [86] when n > 1. Later, the
theory of Hardy spaces and their dual spaces associated with Muckenhoupt weights have
been extensively studied by Garcia-Cuerva [52], Stromberg and Torchinsky [131] (see also
[111, 22, 53]); there the weighted Hardy spaces was defined by using the nontangential
maximal functions and the atomic decompositions were derived. On the other hand, as
another generalization of LP(R"), the Orlicz spaces were introduced by Birnbaum-Orlicz
in [10] and Orlicz in [117], since then, the theory of the Orlicz spaces themselves has been
well developed and the spaces have been widely used in probability, statistics, potential
theory, partial differential equations, as well as harmonic analysis and some other fields
of analysis; see, for example, [4, 70, 104]. Moreover, the Hardy-Orlicz spaces are also
good substitutes of the Orlicz spaces in dealing with many problems of analysis, say, the
boundedness of operators.

Recall that U : [0, 00) — [0, 00) is an Orlicz function if it is nondecreasing and W(0) =
0; W(t) > 0,t > 0; limy_,o, ¥(t) = co. We also say that W is of positive lower type if there
exists p > 0 and a positive constant C' = C'(p) such that

U(st) < CsPU(t), (1.4)

for all t > 0 and s € (0, 1).

Let ¥ be a Orlicz function which is (quasi-)concave and of positive lower type. In
[75], Janson has considered the Hardy-Orlicz space HY (R™) the space of all distributions
f such that the grand maximal function of f defined by

fr(@) = sup sup |fx¢(y)], v € R, (1.5)

PEAN |z—y|<t
belongs to the Orlicz space LY (R™). Here ¢;() :=t"¢(t~!-) and
Ay = {qb € S(R™ : sup (1 + |2|)¥|0%(x)| < 1 for @ € N", |a| < N}
zeR"
with N = N(n, V) taken large enough. Remark that these Hardy-Orlicz type spaces
appear naturally when studying the theory of nonlinear PDEs [57, 71, 73] since many
cancellation phenomena for Jacobians cannot be observed in the usual Hardy spaces

H?(R™). For instance, let f = (f',...,f™) in the Sobolev class Wm(R™ R") and the
Jacobians J(z, f)dz = df' A --- Adf™, then (see [73], Theorem 10.2)

T(J(z, f)) € LY(R™) + H=(R"™)

14



where the Orlicz function = is defined as in (1.2) and T(f) = flog|f|, since J(z, f) €
H'(R™) (cf. [33]) and T is well defined on H'(R™). We refer the reader to [72, 121] for
this interesting nonlinear operator 7.

Now, let us return to Question 1. By duality with Theorem 1, functions f that are
bounded and in the dual of H' 8(R") are multipliers of BMO(R"), i.e. f belongs to
L®(R") N BMO"™&(R") from the theorem of Nakai and Yabuta. Consequently, we can
conclude that H'°#(R"), in some sense, could not be replaced by a smaller space, once
established that the dual space of H'*(R") is BMO"8(R").

Motivated by this, in Paper II, we introduce a new class of Hardy spaces H#()(R"),
so-called Hardy spaces of Musielak-Orlicz type, which generalize the Hardy-Orlicz spaces
of Janson and the weighted Hardy spaces of Garcia-Cuerva, Stromberg, and Torchinsky.
Here, ¢ : R" x [0,00) — [0,00) is a function such that ¢(z,-) is an Orlicz function and

(-, t) is a Muckenhoupt A., weight, namely, either

1 / ]_ 1 71) q—1
sup — [ ¢(x,t)dx —/(gp(x,t)) /a=D) dy < 00
71/ (121 )

for some ¢ € (1, 00) or
1 -1
s%pg/gp(m,t)da:(esxse—%gnfgo(:v,tw < 0.
B
More precisely, we define H¢(:)(R™), or H?(R") for simplicity, as the space of dis-

tributions f such that z — (x,|f*(x)|) is integrable, where f* is the grand maximal
function of f defined as in (1.5) with N = N(¢) large enough. We equip H¥(R") with

the norm || f||ge := || f*|| . Here, for a measurable function f,
| fllLe := inf /\>0:/<p(x,|f(x)|/)\)da:§1 . (1.6)
Rn

Note that H'°%(R") is just a special case of these new Hardy spaces related to the Musielak-

— t
= Tog(ete) Hlog(etD) "

zations, which are new even for the classical weighted Hardy-Orlicz spaces related to

We then establish their atomic characteri-

Orlicz function ¢(z,t)

Musielak-Orlicz functions ¢(z,t) = w(x)¥(¢). In order to state the atomic decomposition
theorem, we need some new notations.

For B aball in R™ and ¢ € [1, c0], define L (B) as the space of all measurable functions
f supported in B such that

T sup (fR" }J;(¢)(Zf)(d;t)d ) <o , 1<g<oo,
L&(B) = t>0 ’
| fllLee < o0 ,  q=o00.
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Definition 1.2.1. Let 1 < ¢ < 0o and s € Z". A measurable function a is a (@, q, s)-atom
iof it satisfies the following three conditions
i) a € LL(B) for some ball B,

i) llall o) < lIxalze.
i) [on a(z)z®dz =0 for any |af < s.

We now define the atomic Hardy space of Musielak-Orlicz type Hi"°(R™) as those dis-
tributions f € &'(R") such that f =}~ b; (in the sense of S'(R")), where b;’s are multiples
of (¢, ¢, s)-atoms supported in the balls B;’s, with the property Zj ©(Bj, 1651l L (8,)) < o0;
and define the norm of f by

[ fll g0 = inf {Aq({bj}) Cf= Z b; in the sense of S'(Rn)},
J

. HijLq (B)
where A, ({b;}) = mf{)\ >0 ZJ.@(BJ-, T) < 1}.
When ¢ and s are large enough, we prove that

Theorem 3. H?(R") = H?*(R") with equivalent norms.

We are also interested in duality results. To state them, we introduce BMO type
spaces BMO#?(R"). Precisely, a function f € L] _(R") is said to belong to BMO?(R™) if

1
I llpsior = sup = B/ £(2) = falde < oo, (1.7)

where the supremum is taken over all balls B in R".

Theorem 4. The dual of the space H¥(R"™) is BMO?(R™).

When ¢(z,t) = 10g(e+|:c|)t+log(e+t)’ we prove that BMO?(R™) is just BMO™8(R"). As

a consequence of Theorem 4, this gives:
Theorem 5. The dual of the space H8(R") is BMO"8(R").

As mentioned above, Theorem 5 allows to give an answer for Question 1: H"@8(R"),
in some sense, could not be replaced by a smaller space.

The last main theorem of this part concerns the boundedness of operators on Hardy
spaces. Usually, in order to establish the boundedness of operators on Hardy spaces, one
usually appeals to the atomic decomposition characterization, see [27, 86, 133], which
means that a function or a distribution in Hardy spaces can be represented as a linear

combination of functions of an elementary form, namely, atoms. Then, the boundedness
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of operators on Hardy spaces can be deduced from their behavior on atoms or molecules in
principle. However, caution needs to be taken due to an example constructed in Theorem
2 of [19]. There exists a linear functional defined on a dense subspace of H'(R"), which
maps all (1, 0o, 0)-atoms into bounded scalars, but however does not extend to a bounded
linear functional on the whole H'(R"). This implies that the uniform boundedness of
a linear operator T' on atoms does not automatically guarantee the boundedness of T
from H'(R") to a Banach space B. Nevertheless, by using the grand maximal function
characterization of HP(R™), Meda, Sjogren, and Vallarino [105, 106] proved that if a
sublinear operator 7" maps all (p, ¢, s)-atoms when ¢ < oo and continuous (p, 0o, s)-atoms
into uniformly bounded elements of LP(R™) (see also [144, 20] for quasi-Banach spaces),
then 7" uniquely extends to a bounded sublinear operator from H?(R™) to LP(R™). In this
paper, we study boundedness of sublinear operators in the context of these new Hardy
spaces of Musielak-Orlicz type which generalize the main results in [105, 106]. More
precisely, under additional assumption on ¢(-,-), we prove that finite atomic norms on
dense subspaces of H#(R") are equivalent with the standard infinite atomic decomposition
norms. As an application, we prove that if T" is a sublinear operator and maps all atoms
into uniformly bounded elements of a quasi-Banach space B, then T uniquely extends to
a bounded sublinear operator from H?(R™) to B.

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm || - |5
which is nonnegative, non-degenerate (i.e., || f||z = 0 if and only if f = 0), homogeneous,
and obeys the quasi-triangle inequality, i.e., there exists a positive constant x not less
than 1 such that for all f,g € B, we have ||f + gllzs < «(||fllz + llgll5)-

Definition 1.2.2. Let v € (0,1]. A quasi-Banach space B., with the quasi-norm || - ||z,
1s said to be a y-quasi-Banach space if there exists a positive constant k not less than 1
such that for all f; € By,j =1,2,...,m, we have

m v m
> 5], =#> im0,
j=1 K j=1

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces
¢ LP (R™) and HP(R™) with p € (0,1] are typical p-quasi-Banach spaces. Also, when ¢

is of uniformly lower type p € (0, 1], the space H?(R™) is a p-quasi-Banach space.

For any given 7-quasi-Banach space B, with v € (0,1] and a linear space ), an
operator T" from Y to B, is called B,-sublinear if there exists a positive constant x not
less than 1 such that for all f; € Y, \; € C,j =1,...,m, we have

(S0

v m
5 = £ INPIT U,
v =
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We remark that if 7" is linear, then 7" is B,-sublinear. We should point out that if
the constant x, in Definition 3.2.5, equal 1, then we obtain the notion of y-quasi-Banach
spaces introduced in [144] (see also [20]).

Under some assumptions on ¢, s, i, we get the last main theorem of Paper II as follows:

Theorem 6. Let B, be a y-quasi-Banach space for some v € (0,1]. Suppose that ¢ is of
uniformly upper type v, and one of the following holds:
i) T : HY"(R™") — B,, ¢ < 00, is a B,-sublinear operator such that

A =sup{||Tal|s, : ais a (¢,q,s)—atom} < oo;
ii) T is a B.-sublinear operator defined on continuous (p, 00, s)-atoms such that
A =sup{||Tal|, : ais a continuous (p, o0, s)—atom} < oo.

Then there exists a unique bounded B.-sublinear operator T from H¥?(R"™) to B, which
extends T

Here a Orlicz function ¢ is said to be of uniformly upper type v if there exists a
constant C' > 0 such that
p(x, st) < CsTo(z,t)

for all z € R", ¢ >0 and s € [1, 00).

Very recently, many authors have studied and generalized the theory of new Hardy
spaces of Musielak-Orlicz type to many setting, see for example [66, 93, 140, 141, 142]. To
be more precise, using the theory of tent spaces, introduced by Coifman, Meyer and Stein
[30], together with the classical Calderén reproducing formula, the authors [66, 93] have es-
tablished the Lusin area function and the molecular characterizations for H¥(R™). Under
some additional mild restrictions on ¢, they also obtained some real-variable characteriza-
tions of H¥(R") in terms of the vertical and the non-tangential maximal functions and in
terms of the Littlewood-Paley functions. The Carleson-type measure characterization for
BMO?¥(R") is also considered, and many applications of these new Hardy spaces are also
given. Besides, in [140, 141, 142] the authors have also considered these new spaces in the
setting of nonnegative selfadjoint operators in L? satisfying the Davies-Gaffney estimates
and in the setting of local Hardy spaces related to the class of local weights introduced
by V. S. Rychkov [123]. Some applications are also given in [140, 141, 142].
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1.3 Paper III: Bilinear decompositions and commu-

tators of singular integral operators

By using the results of Paper I and Paper II, we investigate the endpoint theory for
commutators of singular integral operators. Let us first recall that giving a function b
locally integrable on R™, and a Calderén-Zygmund operator 7', the linear commutator

[b, T is defined for smooth, compactly supported functions f by

[b, T](f) = 0T (f) = T(bf).

A classical result of Coifman, Rochberg and Weiss (see [31]), states that the commu-
tator [b,T] is continuous on LP(R"™) for 1 < p < oo, when b € BMO(R"). Unlike the
theory of Calderén-Zygmund operators, the proof of this result does not rely on a weak
type (1, 1) estimate for [b, T|. In fact, it was shown in [119] and [62] that, in general, the
linear commutator is neither of weak type (1, 1) nor of strong type (H', L'), when b is in
BMO(R"). Instead of this, the weak type estimate (H', L') for [b, T] is well-known, see
for example [96, 101, 139]. More precisely, one has:

Theorem B. Let b € BMO(R") and T be a Calderén-Zygmund operator. Then, the
commutator [b, T] is bounded from H'(R™) into weak-L'(R").

It should be pointed out that intuitively one would like to write

o

0.T1(F) = 3- My(b = b, )T(a) = T( 3 A0~ by ).

where f = Zj; Aja; a atomic decomposition of f. This is equivalent to ask for a

commutation property
> b, Tag) = T( 3 Abaya;). (1.8)
j=1 j=1

To prove Theorem B, most authors, for instance in [96, 101, 139, 146, 90, 137, 95], im-
plicitely use (4.3). As pointed out in the subsection 1.2, one must be careful at this point.
Indeed, Equality (4.3) is not clear since the two series > 2| A\jbp,T'(a;) and Y 72, \;bp;a;
are not yet well-defined, in general. Furthermore, acceptting equalities like Equality (4.3)
would follow in particular that boundedness of T" on atoms implies boundedness of T
which is not true, in general. We refer the reader to [19], Section 3, for a counterexample.

Although the commutator [b,T] does not map continuously, in general, H!(R") into
L'(R™), following Pérez [119] one can find a subspace H; (R™) of H'(R"™) such that [b, T

maps continuously H} (R") into L'(R™). Recall that a function a is a b-atom if
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i) supp a C @ for some cube @,

i) Jlall - < 1Q1,

iii) [ a(z)dz = [, a(x)b(z)dz = 0.
The space H}(R™) consists of the subspace of L'(R™) of functions f which can be written
as f =) 7, A\ja; where a; are b-atoms, and \; are complex numbers with > 772, |A;] < .

Then, one has:

Theorem C. Let b € BMO(R") and T be a Calderon-Zygmund operator. Then, the
commutator [b, T] is bounded from Hi(R") into L*(R™).

To prove Theorem C, in [119], the author showed that the commutator [b, T'] is bounded
from H}(R") into L'(R™) by establishing that

sup{|[|[b, T](a)||z1 : ais a b—atom} < oo. (1.9)

As we already emphasized this leaves a gap in the proof which we fill here. Note that this
difficulty has been mentioned as a question in the paper of Hu, Meng and Yang (see [67],
page 1132). Actually, in [19], a linear operator U defined on the space of all finite linear

combination of (1, 00)-atoms satisfies
sup{||U(a)]||z1 : ais a(1,00)—atom} < oo,

but does not admit an extension to a bounded operator from H!(R") into L'(R"™). From
this result, we see that Inequality (4.4) does not suffice to conclude that [b, T is bounded
from H;(R™) into L'(R™). In the setting of H'(R"), it is well-known (see [105] or [144]
for details) that a linear operator U can be extended to a bounded operator from H'(R")

into L'(R™) if for some 1 < ¢ < oo, we have
sup{||U(a)||z: : ais a(1,q)—atom} < oo.

It follows from the fact that the finite atomic norm on Hg?(R") is equivalent to the

standard infinite atomic decomposition norm on H, 1’q(]R") through the grand maximal

ato
function characterization of H'(R™). However, one can not use this method in the context
of H{(R™). In order to give a correct proof for Theorem 1.3, we use a different approach.

Now, a natural question arises:

Question 2. Can one find the largest subspace of H'(R™) such that all commutators of

Calderdn-Zygmund operators are bounded from this space into L'(R™)?
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In order to answer this question, in Paper III, we consider the class I of all sublinear
operators T, bounded from H!(R™) into L'(R™), satisfying the condition

(b = bg)Tal|Lr < C|bllBrmo

for all BMO-function b, H'-atom a related to the cube (). This class K contains almost
all important operators in harmonic analysis: Calderén-Zygmund type operators, strongly
singular integral operators, multiplier operators, pseudo-differential operators, maximal
type operators, the area integral operator of Lusin, Littlewood-Paley type operators,
Marcinkiewicz operators, maximal Bochner-Riesz operators, etc...

We then study the commutators [b, T| for T in the class . In particular, we prove

the following:

Theorem 7 (Subbilinear decomposition). Let T € K. There exists a bounded subbilinear
operator R = Ry : HY(R") x BMO(R™) — L'(R") such that for all (f,b) € H'(R") x
BMO(R™), we have

IT(S(f,0)] = R(f,0) < |Ib, TN <R, 0) +|T(S(f,0))]. (1.10)

Here & is the bounded bilinear operator from H'(R™) x BMO(R") into L'(R") which
does not depend on T'. It is defined by

S(f,b) ==Y > (f07) (b, v7) (7).

I o€k

Furthermore, when 7' is linear and belongs to I, we obtain the bilinear decomposition
for the linear commutator [b, '] of f, [b, T|(f) = bT(f) —T(bf), instead of the subbilinear
decomposition as stated in Theorem 4.3.1.

Theorem 8 (Bilinear decomposition). Let T' be a linear operator in IKC. Then, there exists
a bounded bilinear operator R = Ry : H'(R") x BMO(R") — LY(R") such that for all
(f,b) € HY(R™) x BMO(R™), we have

[b, T1(f) = R(f,b) + T(S(f,0)). (1.11)

The bilinear decomposition (1.10) and the subbilinear decomposition (1.11) not only
completes the proofs for Theorem B and Theorem C but also allow us to give a general
overview of all known weak and strong L'-estimates. They explain why almost all com-
mutators of the fundamental operators (Calderén-Zygmund operators, strongly singular
integral operators, multiplier operators, pseudo-differential operators, maximal type oper-

ators, the area integral operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz
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operators, maximal Bochner-Riesz operators, etc...) are of weak type (H', L'), and when
a commutator [b, T is of strong type (H!, L!).

As a consequence, we find the largest subspace H}(R") such that all commutators
of Calderén-Zygmund operators are continuous from H}(R™) into L'(R™). More pre-
cisely, for b € BMO(R"), a non-constant function, we define H}(R™) as the space
consisting of all f € H'(R") such that the (sublinear) commutator [b,9] of f be-
longs to L'(R™), where [b,M](f)(x) := M(b(x)f(-) — b(-)f(-))(x). Recall that M is
the grand maximal function given in (1.1). The norm on H}(R™) is then defined by
[ f ey == [z 1ol Baro + ([0, 9 (f)||zr. Here we just consider b a non-constant BMO-
function since the commutator [b,T] = 0 if b is a constant function. Then, we prove
that [b,T] is bounded from H}(R™) into L'(R") for every Calderén-Zygmund singular
integral operator T (in fact it holds for all T' € K, see below). Furthermore, H}(R") is
the largest space having this property, in particular it contains H}(R") of Pérez, which
answers Question 2.

In Paper III, we also consider Hardy estimates for commutators by giving two sufficient
conditions for the boundedness from H}(R") into A'(R™) and from H}(R") into H'(R™) of

commutators [b, T']. More precisely, the last two main theorems of this part are as follow:

Theorem 9. Let b be a non-constant BMO"%-function and T be a Calderén-Zygmund
operator with T1 = T*1 = 0. Then, the linear commutator [b,T] maps continuously
H}(R™) into h'(R™).

Theorem 10. Let b be a non-constant BMO-function and T be a Calderon-Zygmund
operator with T*1 = T*b = 0. Then, the linear commutator [b,T] maps continuously
H}(R™) into H'(R").

Observe that the condition 7%b = 0 is "necessary” in the sense that if the linear
commutator [b,T] maps continuously H;(R") into H'(R"), then [;, b(z)Ta(z)dz = 0
holds for all (g, b)-atoms a, 1 < ¢ < 0.

Let us give some examples of operators T' satisfying the assumption 7%1 = T*b = 0.
To have many examples, let us consider Euclidean spaces R",n > 2. Now, consider all
Calderén-Zygmund operators T' such that 7%1 = 0. As the closure of T(H*(R")) is a
proper subset of H'(R™), by the Hahn-Banach theorem (note that BMO(R") is the dual
of H'(R")), one may take b a non-constant BMO-function such that [;, bTadz = 0 for
all H'-atoms a, i.e. T*b = 0, and thus b and T satisfy the sufficient condition in Theorem
10.
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1.4 Paper IV: Endpoint estimates for commutators
of singular integrals related to Schrodinger oper-

ators

A natural question related to Paper III is whether there exist non-constant functions
b € BMO(R") such that the space H}(R") coincides with H'(R"). Particularly, whether
there exist non-constant functions b € BMO(R™) such that the commutators [b, R;] are
bounded from H'(R") into L'(R™), where the R;,j = 1,...,n, are the classical Riesz
transforms. The answer, in this setting, is negative. Actually, by the decomposition
(1.10), it is not hard to see that the commutators [b, R;] are bounded from H'(R") into
LY(R™) if and only if b is a constant function. It should be pointed out that when n =1,
the above result was mentioned in the paper of Harboure, Segovia and Torrea [62], see
also Remark 4.1 in the paper of Janson, Peetre and Semmes [76]. There, they proved that
the commutator of the Hilbert transform [b, H] is bounded from H'(R) into L'(R) if and
only if b is a constant function.

In contrast with the Euclidean space R", the situation is different in the setting of
the unit circle T = {z € C : |z| = 1}. Janson, Peetre and Semmes showed in [76] that
the commutator of the Hilbert transform [b, H] is bounded on the Hardy space H'(T)
whenever b € BMO™8(T), that is,

[bllpssoesce) = 5 / S / o) m b(2) =l n] < oo,

where the supremum is taken over all arcs I of T and |I| is the length of I.

In this paper, we consider this problem in the setting of Hardy spaces and the Riesz
transforms related to Schrodinger operators.

Let L = —A + V be a Schrodinger operator on R", n > 3, where V is a nonnegative
potential, V' # 0, and belongs to the reverse Holder class RH,, /5. Recall that a nonnegative
locally integrable function V' is said to belong to a reverse Holder class RH,, 1 < ¢ < oo,
if there exists C' > 0 such that

)4 Ve Q x)dx
|B|/ dx < |B|/V< )d (1.12)

B

holds for every balls B in R™. According to [46], we define H} (R™) as the space of all func-
tions f € L'(R") such that || f|| ;1 := [MLf]|l11 < 0o, where My f(z) = sup,.q ™ f(2)]
for all z € R™.
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We look for non-constant functions b € BMO(R") such that the commutators [b, R;]
are bounded from H} (R") into L'(R™), where the R; = aij*1/2,j =1,...,n, are the Riesz
transforms associated with the Schrodinger operator L. Also, we discuss the conditions
on functions b € BMO(R™) which ensure the commutators [b, R;] to be bounded from
H} (R™) into itself.

According to [17], for > 0, we define BM Oy, o(R"™) and BMOILO%(R"), respectively,
as the spaces of locally integrable functions f satisfying

||f||BMOL,G ‘= sup

1 1 /
|f(y) - fB(x,r)|dy < o0
B(a) (1 n ﬁ)a |B(x,7)]

B(z,r)

and

log (e + @) 1
1] log 1= SUpP
BMOL,Q B(z,r) <1+ T )0 |B<I7T)|

p(x)

/ f(y) = fB@ndy | < oo,

B(z,r)

respectively, where p(z) := sup{r > 0 : -1 fB(xvr) V(y)dy < 1}. When 6 = 0, we write
BMOY®(R") instead of BMOy%(R").

Note that the space BM Oy »(R") is in general larger than the space BMO(R™).
Indeed, when V' (z) = |z|?, it is easy to check that the functions b;(x) = |z;|*, j = 1,...,n,
belong to BM Oy, «(R™) but not to BMO(R™).

In this paper, we prove the following.

Theorem 11. Letb € BMOp o(R™) = Up>0BM Oy ¢(R"™). Then, the commutators [b, R;]
are bounded on H}(R™) if and only if b € BMOin(R”) = UQZOBMOILO%(Rn). Further-
more, if b € BMOILO%(R”) for some 6 > 0, we have

n
||b||BMOlL°% ~ ”bHBMOL,e + Z ||[ba R]]||H£—>Hi

j=1
Remark that the above constants depend on 6.

Next, let us recall the notation of Schrodinger-Calderén-Zygmund operators.

Let 6 € (0,1]. According to [103], a continuous function K : R" x R™\ {(z,z) : z €
R"} — C is said to be a (¢, L)-Calderén-Zygmund singular integral kernel if for each
N >0,

C(N) [z —y[\~N
K (2,y)| < p— (1+ e ) (1.13)
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for all z # y, and
jz — '’

K — K2 K ~K(y,2")| < C—rs
‘ (x,y) (x,y)H—] (y,x) (y’x)‘—c|x_y|n+5

(1.14)
for all 2|z — 2’| < |z —y|.

A linear operator T': S(R") — S'(R") is said to be a (9, L)-Calderén-Zygmund oper-
ator if T' can be extended to a bounded operator on L?(R™) and if there exists a (6, L)-
Calder6n-Zygmund singular integral kernel K such that for all f € C°(R™) and all = ¢
supp f, we have

Tf) = [ Ko fw)dy
Rn

We say that T"is a L-Calderén-Zygmund operator (or Schrodinger-Calderén-Zygmund
operator related to L) if it is a (9, L)-Calderén-Zygmund operator for some 6 € (0,1]. We
say also that T satisfies the condition T*1 = 0 if there are ¢ € (1,00] and € > 0 so that
Jgn Ta(z)dz = 0 holds for every generalized (H},q,¢)-atoms a. Here, a function a is

called a generalized (H},q,€)-atom related to the ball B(zg,r) if
(a) supp a C B(zg, 1),

(b) llallza < |B(xo, r)[V/7,

(©) | o ale)de| < (55)

Remark 1.4.1. i) By Lemma 1.4 of [125], Inequality (5.14) is equivalent to

C(N) [z —yl\N
Kl y)l < |z =yl (H p(y) >

for all x # y.
ii) By Theorem 0.8 of [125] and Theorem 1.1 of [126], the Riesz transforms R; are

L-Calderdn-Zygmund operators satisfying R;1 =0 whenever V € RH,.
iir) If T is a L-Calderdn-Zygmund operator then it is also a classical Calderdon-

Zygmund operator, and thus T is bounded on LP(R™) for 1 < p < oo and bounded from
LY(R™) into LM*>°(R").

Our second main theorem concerns the H}-estimates for commutators of Schrodinger-

Calderén-Zygmund operators.

25



Theorem 12. i) Let b € BMOYS(R") and T be a L-Calderén-Zygmund operator satis-
fying T*1 = 0. Then, the linear commutator [b,T) is bounded on Hi(R™).

it) When V. € RH,, the converse holds. Namely, if b € BMO(R™) and [b,T] is
bounded on H}(R™) for every L-Calderén-Zygmund operator T satisfying T*1 = 0, then
b€ BMOYE(R"). Furthermore,

n
101l pasoies = bl aco + Y I11b, Bslll s -
j=1

Recently, the authors in [23, 92, 134, 138| considered endpoint estimates for commu-
tators of singular integral operators [b, T'] with functions b € BMO(R"). In particular,
when b € BMO(R"), they proved that the commutators of the Riesz transforms [b, R}]
are bounded from H} (R") into weak-L*(R™) and from H} (R") into L*(R"), where H} (R")
is the atomic Hardy space introduced by Pérez (see Paper III before).

This paper explains why, when b is in BMO(R"™), commutators of singular integral
operators related to L (containing the Riesz transforms R;), say [b, 1], are of weak type
(HL,LY), and when a commutator [b,T] is of strong type (H},L'). To be more precise,
we investigate commutators of singular integral operators T' related to the Schrodinger
operator L, where T is in the class Ky, of all sublinear operators T', bounded from H} (R")
into L'(R™) and that there are ¢ € (1,00] and € > 0 such that

[(b—bp)Talr < Cblsrmo

for every b € BMO(R"), any generalized (H},q,)-atom a related to the ball B, where
C' > 0 is a constant independent of b, a. The class K, contains the fundamental operators
(see Paper III for the classical case L = —A) related to the Schrodinger operator L: the
Riesz transforms R;, Schrodinger-Calderén-Zygmund operators, L-maximal operators,
L-square operators, etc... Remark that the Riesz transforms R; are just, in general,
Schrodinger-Calderén-Zygmund operators when V' € RH,,. In this work, we consider all
potentials V' which belong to the reverse Holder class RH,, ;.

Although Schrodinger-Calderén-Zygmund operators map Hj (R™) into L'(R") (see
Proposition 4.1 of the paper), it was observed in [92] that, when b € BMO(R"), the com-
mutators [b, R;] do not map, in general, H} (R") into L'(R™). Thus, when b € BMO(R"),
it is natural to ask for subspaces of H}(R") such that all commutators of Schrodinger-
Calderén-Zygmund operators and the Riesz transforms map continuously these spaces

into L'(R"). Here, we are interested in the following two questions.

26



Question 3. Forb € BMO(R"). Find the largest subspace H} ,(R") of H} (R™) such that
all commutators of Schrodinger-Calderon-Zygmund operators and the Riesz transforms
are bounded from Hy ,(R") into L*(R™).

Question 4. Characterize the functions b in BMO(R") so that Hj ,(R") = H(R™).

Let X be a Banach space. We say that an operator T : X — L'(R"™) is a sublinear
operator if for all f,¢g € X and «, 8 € C, we have

T(ef + Bg)(@)| < lal[Tf(x)] + [Bl|Tg(x)].

Obviously, a linear operator T : X — L!'(R") is a sublinear operator. We also say
that a operator € : H}(R") x BMO(R") — L'(R") is a subbilinear operator if for
every (f,g) € H}(R") x BMO(R"), the operators T(f,-) : BMO(R") — L'(R") and
(-, 9) : H(R") — L'(R") are sublinear operators.

To answer Question 3 and Question 4, we study commutators of sublinear operators in

K. More precisely, when T" € Ky, is a sublinear operator, we prove the following theorem.

Theorem 13. Let T' € K. Then, there exists a bounded subbilinear operator R = Ry :
H} (R™) x BMO(R"™) — LY(R") so that for all (f,b) € H}(R") x BMO(R"),

T(SL(f; ) = R(f,0) < b, TI()] < R(f,0) + |T(SL(f,0))], (1.15)

where &y, is a bounded bilinear operator from HL(R™) x BMO(R™) into L*(R™) which
does not depend on T (see Proposition 5.2 of the paper)

When T is linear and belongs to K, we obtain the bilinear decomposition for the linear
commutator [b, T'] of f, [b, T|(f) = bT'(f)—T(bf), instead of the subbilinear decomposition

as stated in Theorem 13.

Theorem 14. Let T be a linear operator in Kr. Then, there exists a bounded bilinear
operator R = Ry : HE (R") x BMO(R™) — LY(R") such that for all (f,b) € Hi(R™) x
BMO(R"™), we have

b, T](f) = R(f, ) + T(SL(f,))),

where &y, is as in Theorem 18.

The above theorem gives a general overview and explains why almost commutators of
the fundamental operators are of weak type (H}, L'), and when a commutator [b, T is of

strong type (H}, L').
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Let b be a non-constant BM O-function (otherwise [b,7] = 0). We define the space
Hj (R") as the set of all f in H} (R™) such that [b, ML](f)(z) = Mr(b(z)f(-)=b(-)f(-))(x)
belongs to L'(R™), and the norm on #} ,(R") is defined by 11l , = N g 10l Baso +
I[6, ML](f)||z:- Then, using the subbilinear decomposition (5.2), we prove the following.

Theorem 15. Let b be a non-constant BMO-function. Then, the following statements
hold:

i) For every T € Ky, the commutator [b,T] is bounded from HJ ,(R") into L'(R™).

i) Assume that X is a subspace of H}(R") such that all commutators of the Riesz
transforms are bounded from X into L*(R™). Then, X C Hy ,(R").

ii) Hy ,(R") = HL(R™) if and only if b € BMOE(R™).

The above theorem allows that all commutators of Schrodinger-Calderén-Zygmund
operators and the Riesz transforms are bounded from #} ,(R") into L'(R"™), moreover,
H};b(Rn) is the largest space having this property. Also, it allows to characterize functions
bin BMO(R") so that H} ,(R") = H}(R"). This answers Question 3 and Question 4.

As another interesting application of the subbilinear decomposition (5.2), we find some
subspaces of Hj (R™) which do not depend on b € BMO(R") and T' € K, such that [b, T
maps continuously these spaces into L!'(R"). For instance, when L = —A + 1, Theorem
7.4 of the paper state that for every b € BMO(R") and T € Kp, the commutator [b, T
is bounded from H,'(R") into L'(R"™). Here H,'(R") is the (inhomogeneous) Hardy-
Sobolev space considered by Hofmann, Mayboroda and McIntosh in [65], defined as the
set of functions f in H}(R") such that 9, f, ..., 0, f € H}(R™) with the norm

1F Lz = 1Az + D 18e; fllas
j=1

Finally, we give an open question.

Open question. Find the set of all functions b such that the commutators [b, R;], j =
1,...,n, are bounded on H}(R").

1.5 Paper V: Bilinear decompositions for the product
space H}(R") x BMOy(R")

Let L = —A +V be a Schrédinger operator as in Paper IV. Namely, V' is a nonnegative
potential, V' # 0, and belongs to the reverse Holder class RH, ;. In [45], Dziubanski et
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al. showed that the dual of Hj(R") can be identified with the space BMOp(R") which
consists of all functions f € BMO(R"™) with

1
I fllBreoy, = [l fllBrvo + sup / |f(y)|dy < oo.
" o()<r | B(z, T)!B(

x,r)

As for the classical spaces H'(R™) and BMO(R"), the pointwise products fg of func-
tions f € H}(R") and functions g € BMOp(R") maybe not integrable. However, similarly
to the classical setting, Li and Peng showed in [91] that such products can be defined in

the sense of distributions which action on the Schwartz function ¢ € S(R") is

(f xg,9) = (vg, ), (1.16)

where the second bracket stands for the duality bracket between H}(R") and its dual
BMOL(R™). Moreover, they proved that f x g can be written as the sum of two distribu-
tions, one in L'(R"), the other in Hf ,(R") the weighted Hardy-Orlicz space associated
with L related to the Orlicz function =(t) = ; and the weight o(z) = .

t
* log(e+t) — log(etz])
Namely, Hf ,(R") is the completion of

{f € L*(R") : M f € L7(R")}

in the norm

My f(z) 1
Iz, = {2 =00 [ — dr <1
o Mrf()) 1
2. log (e—l— L ) og(e + [x[)

More precisely, in [91], the authors proved the following.

Theorem D. For each f € H}(R™), there are two bounded linear operators Ly : BMOL(R"™) —
LY(R™) and Hy : BMOL(R") — H} (R™) such that for every g € BMOL(R"), we have

fxg=1Lig)+ Hyg) (1.17)

and the uniform bound

1Ll + [ Hp(Dlz | < Cllf a9l sror (1.18)

where ||gl[garor = ll9llro, + |gsl. g8 denotes the mean value of g over the unit ball B.

In Paper V, we prove the following theorem.
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Theorem 16. There are two bounded bilinear operators Si, : Hi (R") x BMOL(R™) —
LYR™) and Ty, : HL(R™) x BMOr(R") — H"°8(R"™) such that for every (f,g) € H}(R™) x
BMOL(R"™), we have

f>xg=_8.f9)+Tu(f 9) (1.19)

and the uniform bound

ISL(f ol + I1TL(f, 9 eos < Clllla lgll Basor. (1.20)

Note that H'8(R") C H(R") C Hf ,(R") with continuous embeddings. Compared
with the main result of [91] (Theorem D), Theorem 16 makes an essential improvement
in two directions as in the classical case (Theorem 1). The first one consists in proving
that the space Hf ,(R") can be replaced by a smaller space H'*#(R"). Secondly, we give
the bilinear decomposition (6.7) for the product space H} (R™) x BMOpr(R"™) instead of
the linear decomposition (6.5) depending on f € H;(R"™). Moreover, we just need the
BMOp-norm (see (6.8)) instead of the BM O -norm as in (6.6).

In applications to nonlinear PDEs, the distribution f x g € §’'(R") is used to justify
weak continuity properties of the pointwise product fg. It is therefore important to
recover fg from the action of the distribution f X g on the test functions. An idea that

naturally comes to mind is to look at the mollified distributions

(f x g)e=(f x g) * o, (1.21)

and let € — 0. Here ¢ € S(R™) with [;, ¢(z)dz = 1.
In the classical setting of f € H'(R™) and ¢ € BMO(R"), Bonami et al. proved in
[15] that the limit (6.10) exists and equals fg almost everywhere. An analogous result is

also true for the Schrodinger setting. Namely, we prove the following.

Theorem 17. Let f € H}(R™) and g € BMOr(R"). Then, for almost every x € R",

lim(f x g)e(x) = f(z)g(x).

1.6 Paper VI: On weak*-convergence in H}(R")

A famous and classical result of Fefferman [47] states that the John-Nirenberg space
BMO(R") is the dual of the Hardy space H'(R"). It is also well-known that H'(R") is
one of the few examples of separable, nonreflexive Banach space which is a dual space.
In fact, let VMO(R"™) denote the closure of the space C°(R™) in BMO(R"), where

C(R™) is the set of C*°-functions with compact support, Coifman and Weiss showed in
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[32] that H'(R™) is the dual space of VMO(R™), which gives H'(R") a richer structure
than L'(R™). For example, the classical Riesz transforms V(—A)~!/2 are not bounded on
L'(R™), but bounded on H!(R"). In addition, the weak*-convergence is true in H'(R"),
which is useful in the application of Hardy spaces to compensated compactness (see [33]).

More precisely, in [78], Jones and Journé proved the following,.

Theorem E. Suppose that {f;};>1 is a bounded sequence in H*(R™), and that f;j(x) —
f(z) for almost every x € R™. Then, f € H'(R™) and {f;};>1 weak*-converges to f, that
is, for every o € VMO(R™), we have

jli_>n§o/fj dx—/f

Let L = —A 4+ V be the Schrodinger operators as in Paper IV. Recently, Deng et al.
[37] introduced and developed new function spaces of VM O-type VMO 4(R™) associated

with some operators A which have a bounded holomorphic functional calculus on L?(R™).
When A = L, their space VMO (R") is just the set of all functions f in BMOp(R") such

that v1(f) = 72(f) = 73(f) = 0, where

/
win)=tim | s (o [ @ - tPa) .
Bazt

r—0 xG]R",t<r

R—oo | zeRn >R

/
wlf) = Jim | s (s [ @ = rwka)”
B(z,t)

)

73(f) = lim Sup
R—00 \ B(z#)NB(0,R)= @ :
:L‘t

The authors in [37] further showed that H} (R™) is in fact the dual of VMO (R"), which
allows us to study the weak*-convergence in H1(R™). This is useful in the study of
the Hardy estimates for commutators of singular integral operators related to L, see for
example Theorem 7.1 and Theorem 7.3 of [82].

In this paper, we prove the following.
Theorem 18. The space C°(R") is dense in the space VMO (R™).

Furthermore, the weak*-convergence is true in Hj (R™).
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Theorem 19. Suppose that {f;};>1 is a bounded sequence in Hj(R"), and that f;(xz) —
f(x) for almost every x € R™. Then, f € HJ(R") and {f;};>1 weak*-converges to f, that
is, for every p € VMOL(R™), we have

j—00

iim [ fi(@)plaids = [ fla)o(e)ds
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Chapter 2

Paraproducts and Products of
functions in BMO(R") and #H'(R")

through wavelets

Ce chapitre est I'article en collaboration avec Aline Bonami and Sandrine Grellier paru
dans Journal de Mathématiques Pures et Appliquées. Voir ”A. Bonami, S. Grellier and
L. D. Ky, Paraproducts and products of functions in BMO(R") and H*(R™) through
wavelets. J. Math. Pure Appl. 97 (2012), 230-241.”

Résumé

Dans cet article, nous prouvons que le produit (dans le sens des distributions) de deux
fonctions, qui sont respectivement dans BMO(R") et H'(R"), peut étre écrit comme la
somme de deux opérateurs bilinéaires continus, 'un de H'(R™) x BMO(R") dans L'(R"),
lautre de H!(R™) x BMO(R™) & valeurs dans un nouveau type d’espace de Hardy-Orlicz
désigné par H'°5(R"). Plus précisément, I'espace H!°5(R") est 1’ensemble des distributions

f dont la fonction ”grand maximale” M f satisfait

/ (Mf(2)]
log(e + [x]) +log(e + [M f(x)])

Rn

dr < oo.

Les deux opérateurs bilinéaires peuvent étre définis en termes de paraproduits. En

conséquence, nous obtenons un lemme div-curl impliquant I'espace H!°8(R"™).
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2.1 Introduction

Products of functions in H! and BMO have been considered by Bonami, Iwaniec, Jones
and Zinsmeister in [15]. Such products make sense as distributions, and can be written as
the sum of an integrable function and a function in a weighted Hardy-Orlicz space. To be
more precise, for f € H'(R™) and g € BMO(R"), we define the product (in the distribution
sense) fg as the distribution whose action on the Schwartz function ¢ € S(R™) is given
by

(fg,0) = (g, ), (2.1)

where the second bracket stands for the duality bracket between H!'(R") and its dual
BMO(R™). It is then proven in [15] that

fg € L'R™) +HS(R). (2.2)
Here H2(R") is the weighted Hardy-Orlicz space related to the Orlicz function

B(t) L (2.3)

. log(e + t)
and with weight w(z) := (log(e + |z))".

Our aim is to improve this result in many directions. The first one consists in proving
that the space H2(R") can be replaced by a smaller space. More precisely, we define the

Musielak-Orlicz space L'°8(R™) as the space of measurable functions f such that

/ |/ ()]
log(e + |x]) +log(e + [ f(x)])

R

dr < o0.

The space H'°8(R") is then defined, as usual, as the space of tempered distributions for
which the grand maximal function is in L'°¢(R™). This is a particular case of a Hardy
space of Musielak-Orlicz type, with a variable (in x) Orlicz function that is also called a
Musielak-Orlicz function (see [81]). This kind of space had not yet been considered. A
systematic study of Hardy spaces of Musielak-Orlicz type has been done separately by
the last author [81]. It generalizes the work of Janson [75] on Hardy-Orlicz spaces. In
particular, it is proven there that the dual of the space H!°8(R") is the generalized BMO
space that has been introduced by Nakai and Yabuta (see [116]) to characterize multipliers
of BMO(R™). Remark that by duality with our result, functions f that are bounded and
in the dual of H!°8(R™) are multipliers of BMO(R"). By the theorem of Nakai and Yabuta
there are no other multipliers, which, in some sense, indicates that #'°¢(R") could not be

replaced by a smaller space.
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Secondly we answer a question of [15] by proving that there exists continuous bilinear
operators that allow to split the product into an L!(R") part and a part in this Hardy-
Orlicz space H!°8(R™). More precisely we have the following.

Theorem 20. There exists two continuous bilinear operators on the product space H'(R™)x
BMO(R™), respectively S : H'(R™) x BMO(R") — L'(R") and T : H'(R™) x BMO(R") +>
H'°8(R") such that

fa=5(f9)+T(f,9) (2.4)

The operators S and T are defined in terms of a wavelet decomposition. The operator
T is defined in terms of paraproducts. There is no uniqueness, of course. In fact, the
same decomposition of the product fg has already been considered by Dobyinsky and
Meyer (see [43, 41, 42], and also [28, 26]). The action of replacing the product by the
operator T" was called by them a renormalization of the product. Namely, T" preserves the
cancellation properties of the factor, while S does not. Dobyinsky and Meyer considered
L2-data for both factors, and showed that T'(f, g) is in the Hardy space H!(R"). What is
surprising in our context is that both terms inherit some properties of the factors. Even if
the product fg is not integrable, the function S(f, g) is, while T'(f, g) inherits cancellation
properties of functions in Hardy spaces without being integrable. So, in some way each
term has more properties than expected at first glance.

Another implicit conjecture of [15] concerns bilinear operators with cancellations, such
as the ones involved in the div-curl lemma for instance. In this case it is expected that
there is no L'-term. To illustrate this phenomenon, it has been proven in [11] that,
whenever F' and G are two vector fields respectively in H!'(R",R") and BMO(R", R")
such that F is curl-free and G is div-free, then their scalar product F'-G is in H2(R", R")
(in fact there is additional assumption on the BMO-factor). By using the same technique
as Dobyinsky to deal with the terms coming from S, we give a new proof, without any

additional assumption. Namely, we have the following.

Theorem 21. Let F and G be two vector fields, one of them in H*(R™,R") and the other
one in BMO(R™,R"™), such that carl F = 0 and divG = 0. Then their scalar product F' - G

(in the distribution sense) is in H°8(R™).

In Section 2 we introduce the spaces L'°¢(R") and H°¢(R") and give the generalized
Holder inequality that plays a central role when dealing with products of functions respec-
tively in L'(R™) and BMO(R™). In Sections 3 and 4 we give prerequisites on wavelets and
recall the L?-estimates of Dobyinsky. We prove Theorem 20 in Section 5 and Theorem 21

in Section 6.
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2.2 The space H"°3(R") and a generalized Holder in-
equality

We first define the (variable) Orlicz function

0(a,t) = t
L= log(e + |z]) + log(e + t)

for z € R™ and t > 0. For fixed z it is an increasing function while ¢ — 6(x,t)/t decreases.
We have p < 1 in the following inequalities satisfied by 6.
O(x,st) < CpsPO(x,t) 0<s<1 (2.5)
O(x,st) < sb(x,t) s> 1. (2.6)
These two properties are among the ones that are usually required for (constant) Orlicz

functions in Hardy Theory, see for instance [75, 12, 81]. They guarantee, in particular,
that L'°8(R"), defined as the set of functions f such that

/ (. | f(2)])dz < oo

R

is a vector space. For f € L1°(R"), we define

£ = imf{A > 0 /e(x, ()] /\)dz < 1},
J

It is not a norm, since it is not sub-additive. In place of sub-additivity, there exists a
constant C such that, for f, g € L°8(R"),

1+ gllpes < C| fllres + 1|9l roe)-

On the other hand, it is homogeneous.

The space L'°6(R") is a complete metric space, with the distance given by
dist (1.9) =t (3> 05 [ 6(z.|7(z) = gla)|N)dx < )
RTL

(see [120], from which proofs can be adapted, and [81]). Because of (2.5), a sequence fy
tends to 0 in L1°8(R™) for this distance if and only if || fi|| s tends to 0.
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Before stating our first proposition on products, we need some notations related to
the space BMO(R™). For @) a cube of R" and f a locally integrable function, we note fg
the mean of f on ). We recall that a function f is in BMO(R") if

1
| fllBmo = SEP@Q/U — foldr < .

We note Q :=[0,1)" and, for f a function in BMO(R™),

1 lBro+ == |fel + [I.fllsmo-

This is a norm, while the BMO norm is only a norm on equivalent classes modulo con-
stants.
The aim of this section is to prove the following proposition, which replaces Holder

Inequality in our context.

Proposition 1. Let f € L'(R") and g € BMO(R"). Then the product fg is in L'°(R").

Moreover, there exists some constant C such that

£ gllzros < Cll.f |z lgll a0

Proof. 1t is easy to adapt the proof given in [15], which leads to a weaker statement. We
prefer to give a complete proof here, which has the advantage to be easier to follow than
the one given in [15]. We first restrict to functions f of norm 1 and functions g such
that go = 0 and ||g|| o < « for some uniform constant a. Let us prove in this case the

existence of a uniform constant 6 such that

/ 0. | f (x)g(x) ) < 6 (2.7)

The constant « is chosen so that, by John-Nirenberg inequality, one has the inequality

/ eldl e <
(e + Jart " =1
Rn

with s a uniform constant that depends only of the dimension n (see [128]). Our main

tool is the following lemma.
Lemma 1. Let M > 1. The following inequality holds for s,t > 0,

st <
M +log(e + st) —

M 4. (2.8)
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Proof. By monotonicity it is sufficient to consider the case when s = e!~*. More precisely,
it is sufficient to prove that
t
M + log(e + tet=M) =1
This is direct when t < M. Now, for ¢ > M, the denominator is bounded below by
M +t — M, that is, by t. O

Let us go back to the proof of the proposition. We choose M := (n + 1)log(e + |z|).
Then .y
f(2)a(x) c B
(n + 1)(log(e + |2]) +log(e + [f(z)g(x)])) — (e + |])m+

After integration we get (2.7) with 6 = (n+ 1)(k + 1). Let us then assume that |gg| < a
while the other assumptions on f and g are the same. We then write fg = fgo+ f(9—g0)
and find again the estimate (2.7) with 6 = (n+1)(k+1)4a. Using (2.5), this means that,
for || f||z1 = 1 and ||g|| puo+ = a and for p < 1, we have the inequality || fg|| s < (5C,)Y/?.

The general case follows by homogeneity, with C' = da .
]

Remark that we only used the fact that g is in the exponential class for the weight
(€ + fa]) 0.

Finally let us define the space H'°¢(R"). We first define the grand maximal function
of a distribution f € S'(R") as follows. Let F be the set of functions ® in S(R™) such
that |®(z)| + |V®(z)| < (14 |z[)~*V. For ¢ > 0, let ®y(z) := ¢t "®(%). Then

Mf(x) ;= supsup |f * Dy(x)]. (2.9)

PeF >0
By analogy with Hardy-Orlicz spaces, we define the space H!'°¢(R") as the space of tem-
pered distributions such that Mf in L'°8(R"). We need the fact that H'°¢(R") is a
complete metric space. Convergence in H!°6(R") implies convergence in distribution. The
space H'(R™), that is, the space of functions f € L'(R™) such that Mf in L'(R"), is
strictly contained in H°8(R™).

2.3 Prerequisites on Wavelets

Let us consider a wavelet basis of R with compact support. More explicitly, we are first
given a C*(R) wavelet in Dimension one, called v, such that {2//%)(2/z — k)}, rez form

an L*(R) basis. We assume that this wavelet basis comes for a multiresolution analysis
(MRA) on R, as defined below (see [107]).
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Definition 2.3.1. A multiresolution analysis (MRA) on R is defined as an increasing
sequence {V;}jez of closed subspaces of L*(R) with the following four properties

i) ﬂjeZ V; ={0} and Ujez Vi= L*(R),

i) for every f € L*(R) and every j € Z, f(x) € V; if and only if f(2x) € Vi1,

iii) for every f € L*(R) and every k € Z, f(x) € Vi if and only if f(x — k) € V,

iv) there exists a function ¢ € L*(R), called the scaling function, such that the family
{or(x) = ¢p(x — k) : k € Z} is an orthonormal basis for Vj.

It is classical that, when given an (MRA) on R, one can find a wavelet ¢ such that
{29/24(27x — k) }rez is an orthonormal basis of W, the orthogonal complement of V; in
Vit1. Moreover, by Daubechies theorem (see [36]), it is possible to find a suitable (MRA)
so that ¢ and ¢ are C'(R) and compactly supported, ¢ has mean 0 and [ 21 (z)dz = 0,
which is known as the moment condition. We could content ourselves, in the following
theorems, to have ¢ and v decreasing sufficiently rapidly at oo, but proofs are simpler
with compactly supported wavelets. More precisely we assume that ¢ and v are supported
in the interval 1/2 + m(—1/2,+1/2), which is obtained from (0,1) by a dilation by m
centered at 1/2.

Going back to R™, we recall that a wavelet basis of R" is found as follows. We call £
the set £ = {0,1}"\ {(0,---,0)} and, for X € E, state v*(z) = ¢M(z1) - ™ (2,),
with ¢ (z;) = ¢(x;) for A; = 0 while ¢ (z;) = ¢(x;) for A; = 1. Then the set
{2m2y N2 1 — k) }jezrezn rer is an orthonormal basis of L2(R™). As it is classical, for [
a dyadic cube of R", which may be written as the set of x such that 27z — k € (0,1)", we
note

Y (x) = 22N — k).

We also note ¢; = 2"/2¢ 1)n (272 — k), with ¢ 1)» the scaling function in n variables,
given by ¢y (z) = ¢(x1) -~ d(x,). In the sequel, the letter I always refers to dyadic
cubes. Moreover, we note kI the cube of same center dilated by the coefficient k. Because
of the assumption on the supports of ¢ and v, the functions 17 and ¢; are supported in
the cube mI.

The wavelet basis {17}, obtained by letting I vary among dyadic cubes and A in
E, comes from an (MRA) in R", which we still note {V;};ez, obtained by taking tensor
products of the one dimensional ones. The functions ¢y, taken for a fixed length |I| = 2797,
form a basis of V;. As in the one dimensional case we note W; the orthogonal complement

of V; in Vj;1. As it is classical, we note P; the orthogonal projection onto V; and @); the
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orthogonal projection onto W;. In particular,
fo= > Qf
1EZ
= Pif+)_Qif.

2]

2.4 The L*-estimates for the product of two functions

We summarize here the main results of Dobyinsky [42].

Let us consider two L?-functions f and g, which we express through their wavelet

F=Y0 (e

NeE 1

expansions, for instance

Then, when f and g have a finite wavelet expansion, we have

fg = Z(ij)(ng)+Z(ij)(1%g)+Z(ij)(ng) (2.10)

= Hl(fag) +H2(f7g) + H3(f’g)

The two operators II; and I, are called paraproducts. A posteriori each term of Formula
(2.10) can be given a meaning for all functions f,g € L?(R"). Indeed the two operators
[Ty and IIy, which coincide, up to permutation of f and g, extend as bilinear operators
from L*(R™) x L*(R") to H'(R"), see [42], while the operator I3 extends to an operator
from L*(R™) x L*(R") to L*(R™).

The two L? estimates are given in the following two lemmas. We sketch their proof
for the convenience of the reader as this will be the basis of our proofs in the context of
H'(R") and BMO(R™). Details may be found in [42].

Lemma 2. The bilinear operator 3 is a bounded operator from L*(R™) x L*(R™) into
LY(R™).

Proof. The series ), Q;fQ;g is normally convergent in LY(R™), with

Qi Qg < D 11Qifll2l|Qigllze

= jez
1/2 1/2
< (X hQifl:) (X Qi)
jez jez
< Cllfllzellgl 2
This concludes for II5. O
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Lemma 3. The bilinear operator 11y, a priori well defined for f and g having a finite
wavelet expansion, extends to L*(R™) x L?(R™) into a bounded operator to H'(R™).

Proof. Let us recall that one can write

Pif= > (f,¢nor.
j1|=2-5m
This means that P;fQ;g can be written as a linear combination of ¢3¢/, with |I| = |I'| =
279m As before, for fixed I, this function is non zero only for a finite number of I’. More
precisely, such I’s can be written as k277 + I, with k € K, where K is the set of points
with integer coordinates contained in (—m, +m]™. So II;(f, g) can be written as a sum in
A€ FE and k € K of

k= Z Z (fs br-311)(9: U7) Pra—s.4 107
JEL |I|=2~in
At this point, we use the fact that the functions |I|1/2¢k2—j+1¢}\ are of mean zero because
of the orthogonality of V; and W;. Moreover they are of class C!(R") and are obtained
from the one for which I = (0,1)" through the same process of dilation and translation
as the wavelets. So they form what is called a system of molecules. It is well-known (see
Meyer’s book [107]) that such a linear combination of molecules has its H'-norm bounded
by C times the H!-norm of the linear combination of wavelets with the same coefficients.

Namely, we are linked to prove that
1> D DU Bramren) g, )20 s < CIfllz Nl 2
J |I|=2-n X\eE

We use the characterization of H!'(R") through wavelets to bound this norm by the L!-
norm of its square function, given by
1/2
Z Z Z |<f7 ¢k2_j+l><ga ¢?>|22nj|]|_1XI
J |[I|=2-9" AeE

This function is bounded at x by
1/2
sup [(F, 1117260 < { D D> > Hg en)PHI xa()
> j |I|=2-in \eE

The first factor is bounded, up to a constant, by the Hardy Littlewood maximal function
of f, which we note M f. We conclude by using Schwarz inequality, then the maximal
theorem to bound the L?-norm of M f by the L?-norm of f, then the fact that the L?-norm

of the second factor is the L?-norm of g. m
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We will need the expression of II1(f,g) and IIy(f,g) when f has a finite wavelet
expansion while ¢ in only assumed to be in L?(R"). The following lemma is immediate

for g with a finite wavelet expansion, then by passing to the limit otherwise.

Lemma 4. Assume that f has a finite wavelet expansion and Q;f = 0 for j & [jo, j1)-
For g € L*(R™), one has

Jji—1
(f9) = Y PfQig+f> Qg (2.11)
J=jo J2n
J1—1
Ma(f,g) = [Pug+ > Qif ( 3 @ig> . (2.12)
J=Jjo Jo<i<j—1

2.5 Products of functions in #!(R") and BMO(R")

Let us first recall the wavelet characterization of BMO(R™): if ¢ is in BMO(RR"), then for

all (not necessarily dyadic) cubes R , we have that

/
(RSl )" < Clgliomo.

ANEICR

and the supremum over all cubes R of the left hand side is equivalent to the BMO-norm
of g.

Remark that the wavelet coefficients of a function g in BMO(R") are well defined
since ¢ is locally square integrable. The (g, ¢r)’s are well defined as well. So ();¢g makes
sense, as well as P;g. Indeed, they are sums of the corresponding series in ¢} or ¢; with
|I| = 27", and at each point only a finite number of terms are non zero.

Moreover, we claim that (2.11) and (2.12) are well defined for f with a finite wavelet
expansion and g in BMO(R™). This is direct for II5(f, g). For II;(f,g), it is sufficient to
see that the series >,

support of f. This comes from the wavelet characterization of BMO(R"). Indeed, on R

Y Qig=>_ > (9, 97)97

J1<5<k AeE ICcmR,2- "k <|I|<2- ™1

Q;g converges in L*(R), where R is a large cube containing the

one has

This is the partial sum of an orthogonal series, that converges in L*(R™).

As a final remark, we find the same expressions for I1;(f, g), I2(f, g), II3(f, g) and fg
when g is replaced by ng, where 1 is a smooth compactly supported function such that n
is equal to 1 on a large cube R. Just take R sufficiently large to contain the supports of f,

Q;f, and all functions ¢; and ¥} that lead to a non zero contribution in the expressions
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of the four functions under consideration. Since ng is in L*(R™), we have the identity
(2.10). This leads to the identity

So Theorem 20 will be a consequence of the boundedness of the operators Iy (f, g), IIa2(f, g)
and H3<f7 g)

Before considering this boundedness, we describe the atomic decomposition of the
Hardy space H!(R™), which will play a fundamental role in the proofs.

We recall that a function a is called a (classical) atom of H!'(R™) related to the (not
necessarily dyadic) cube R if a is in L*(R"), is supported in R, has mean zero and is such
that ||a|z: < |R|7Y2.

For simplicity we will consider atoms that are adapted to the wavelet basis under
consideration. More precisely, we call the function a a -atom related to the dyadic cube

Q if it is an L?-function that may be written as

a=> Y aiy (2.14)

ICR)XeE

such that, moreover, ||a||z: < |R|~'/2. Remark that a is compactly supported in mR and
has mean 0, so that it is a classical atom related to m R, up to the multiplicative constant
m™?. Tt is standard that an atom is in #!(R™) with norm bounded by a uniform constant.

The atomic decomposition gives the converse.

Theorem 2.5.1 (Atomic decomposition). There exists some constant C' such that all
functions f € HY(R™) can be written as the limit in the distribution sense and in H' of

an infinite sum

f= ZWOL@ (2.15)
¢

with ap -atoms related to some dyadic cubes Ry, and p, constants such that

> luel < Cllf .
¢

Moreover, for f with a finite wavelet series, we can choose an atomic decomposition with

a finite number of atoms ap, which have also a finite wavelet expansion extracted from the

one of f.

This theorem is a small variation of a standard statement. The second part may be

obtained easily by taking the atomic decomposition given in [63], Section 6.5. Remark
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that the interest of dealing with finite atomic decompositions has been underlined recently,
for instance in [105, 106].

We want now to give sense to the decomposition (2.10) for f € H'(R™) and g €
BMO(R™). We will do it when f has a finite wavelet expansion.

Let us first consider that two operators II; and IIs.

Theorem 2.5.2. I13 extends into a bounded bilinear operator from H'(R™) x BMO(R™)
into L'(R™).

Proof. We consider f with a finite wavelet expansion and g € BMO(R"), so that II3(f, g)
is well defined as a finite sum in j. Let us give an estimate of its L'-norm. We use the
atomic decomposition of f given in (2.15), that is, f = Zle [eap, where each ay is a
y-atom related to the dyadic cube Ry and S+ |ue] < C||f]ls:. Recall that each atom
has also a finite wavelet expansion extracted from the one of f. From this, it is sufficient
to prove that, for a ¢-atom a, which is supported in R and has L?-norm bounded by

|R|~'/2, we have the estimate

1TT3(a, )|+ < CllgllBumo- (2.16)

We claim that II3(a, g) = Is(a,b), where b := >\ > co,r(0, ¥7)¥7. Indeed, in the
wavelet expansion of g we only have to consider at each scale j the terms 97 for which

Mp7 is not identically 0 for all I’ contained in R such that |I| = |I’| = 277", In other
words we want mI N'ml’ # (), which is only possible for I in 2mR. Now let us recall the
wavelet characterization of BMO(R™): for all cubes @), we have that

1/
(1017 S o wd) " < Clgllo

AEEICQ
and the supremum on all cubes @) of the left hand side is equivalent to the BMO-norm
of g. It follows that the L?-norm of b is bounded by Cm™?|R|'/?| g|| pmo. This allows to
conclude for the proof of (2.16), using Lemma 2. O

Next we look at I1;.

Theorem 2.5.3. I, extends into a bounded bilinear operator from H*(R™) x BMO(R")
into H*(R™).

Proof. Again, we consider II;(f, g) for f with a finite wavelet expansion, so that it is well

defined by (2.11). As in the previous theorem we can consider separately each atom. So,
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as before, let a be such a t-atom. One can estimate I1;(a, g) as in the previous theorem.
We again claim that IT,(f,g) = II;(f,b), where b := >\ p > rcomp(9, ¥1)¥7. We then
use Lemma 3 to conclude that

11 (a, 9)|l < CllglBvo, (2.17)

which we wanted to prove. O
We now consider the last term.

Theorem 2.5.4. II, extends into a bounded bilinear operator from H'(R™) x BMO™(R")
into H'°&(R").
Proof. The main point is the following lemma.
Lemma 5. let a be a -atom with a finite wavelet expansion related to the cube R and
g € BMO(R™). Then we can write

y(a,g) = KV + kgrh® (2.18)
where ||hV| < Cllgllzmo and b is an atom related to mR. Here g is the mean of g
on R and k a uniform constant, independent of a and g.

Let us conclude from the lemma, which we take for granted for the moment. Let
f= Zle teap be the atomic decomposition of the function f, which has a finite wavelet

expansion. Let us prove the existence of some uniform constant C' such that

HM (Z /Leﬂz(%g)) < Cllgll srmo+ <Z ’/M\) : (2.19)

=1
With obvious notations, we conclude directly for terms hgl), using the fact that L'(R") is

[log

contained in L1°8(R™). So it is sufficient to prove that

L L
HM (Z Mngghé2)> < Cl|glpro+ (Z |W|> :
=1

=1
At this point we proceed as in [15]. We use the inequality

L L
M (Z uzgmhf)) <> lellgr,IM (hf)) :
/=1 (=1

[log
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Then we write gr, = g + (gr, — ¢). For the first term, that is,

9 (Z el M (hé”)) ,

we use the generalized Holder inequality given in Proposition 1. Indeed, g is in BMO(R")
and the function M(a), for a an atom, is uniformly in L'(R"), so that 31, |11,| M (hf))

has norm in L'(R") bounded by C' 3>+, |i|. To conclude for (2.19), it is sufficient to
prove that

L L
> g = gr M (hf)) <Ol
/=1 1 (=1

This is a consequence of the following uniform inequality, valid for g € BMO(R") and a

an atom adapted to the cube R:

[19-9lM@ds < Clglmo.
R”L

To prove this inequality, by using invariance through dilation and translation, we may

assume that R is the cube Q. We conclude by using the following classical lemma.

Lemma 6. Let a be a classical atom related to the cube Q and g be in BMO(R™). Then

[ 19 galM () dz < Clglmo
]Rn

Proof. We cut the integral into two parts. By Schwarz Inequality and the boundedness
of the operator M on L*(R"), we have

1/2

/ 9 golM(a)dr < C / 19— goPde | allze
Q

< Cllgllzmo,

here one used |g20 — 90| < C||g||smo- Next, for |z| > 2 we have the inequality

¢
(T

and the classical inequality (see Stein’s book [128])

|9 — ga
/de < CllglBmo-

M (a) (z) <

R"

We have proven (2.19). O
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It remains to prove Lemma 5, which we do now.

Proof of Lemma 5. Let a be a 1-atom which is related to the dyadic cube R. Let jy be
such that |R| = 270, We assume that a has a finite wavelet expansion, so that II,(a, g) is
given by (2.11) for some j; > jo. As before, we can write Ily(a, g) = aP;,g+115(a, b), where
b is defined by b := >\ 5 > compr(9, ¥1)¥}. Tt follows again from the characterization
of BMO-function through wavelets that the L2norm of b is bounded by C||g|| suo| R|*/?.
We use the L?-estimate given by Lemma 3 to bound uniformly the H'-norm of II,(a, b).
This term goes into AV,

It remains to consider aPj,g. By definition of P; g, it can be written as a Y _,(g, ¢1)¢1,
where the sum in [ is extended to all dyadic cubes such that |I| = 27 and mINmR # (.
There are at most (2m)™ such terms in this sum, and it is sufficient to prove that each
of them can be written as hy + k|gr|h2, with hy a classical atom related to m@ and hy
such that ||h]l41 < CllgllBmo- Let us first remark that for each of these (2m)™ terms, the
function h := |I|*/?¢;a is (up to some uniform constant) a classical atom related to mR:
indeed, it has mean value 0 because of the orthogonality of ¢; and ¢y when |I'| < |I|
and the norm estimate follows at once. In order to conclude, it is sufficient to prove that
hi = (gr — |I|7*/%(g, ¢1))h has the required property. We conclude easily by showing
that gr — |I|7'/%(g, ;) is bounded by C||g||suo. But this difference may be written as
(v,g), where v := |R|"*xr — |I|7"/2¢;. The function ~ has zero mean, is supported in
2mR and has L?*-norm bounded by 2|R|~'/2. Thus, up to multiplication by some uniform
constant, it is a classical atom related to the cube 2mR. It has an H!'-norm that is
uniformly bounded and its scalar product with g is bounded by the BMO-norm of g, up
to a constant, as a consequence of the H! — BMO duality.

This concludes for the proof.
]

We have finished the proof of Theorem 2.5.4, and also of the one of Theorem 20. Just
take S = II;.
O

2.6 Div-Curl Lemma

The aim of this section is to prove Theorem 21. The methods that we develop are inspired
by the papers of Dobyinsky in the case of L?(R™). They are generalized in a forthcoming
paper of the last author [82].
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Let us first make some remarks. By using the decomposition of each product F;G; into
S(F;,G;) + T(F;,G,), we already know that all terms T'(F}, G;) are in H'°5(R"). So we
claim that it is sufficient to prove that > 7, S(Fj, G;) is also in Hg(R™). We first assume
that F is in H'(R™,R") and G in BMO(R",R"). Since F is curl-free, we can assume that
F; is a gradient, or, equivalently, F; = R;f, where R; is the j-th Riesz transform and
f == Rj(F;) € H'(R") since H'(R") is invariant under Riesz transforms. Next,
since GG is div-free, we have the identity Z;‘:l R;G; = 0. So it is sufficient to prove that
S(R;f,G;) + S(f, R;jG;) is in H&(R") for each j. So Theorem 21 is a corollary of the

following proposition.

Proposition 2. Let A be an odd Calderon-Zygmund operator. Then, the bilinear operator
S(Af,g) + S(f, Ag) maps continuously H'(R™) x BMO(R") into H'(R™).

Proof. We make a first reduction, which is done by Dobyinsky in [42]. When considering
S(f,g) on HY(R™) x BMO(R"), we can write it as S(f, g) = h+ So(f, g) with h € H}(R"),

where

So(f.9) = DY (Lt (g, v wr ] (2.20)

AeE 1

Indeed, S(f,g) — So(f,g) may be written in terms of products 17, with |I| = |I'],
(I,\) # (I')N). These functions are of mean 0 because of the orthogonality of the

|=1/2, and are supported

wavelet basis, have L? norm bounded, up to a constant, by |/
in mI. So they are C times atoms of H'(R™). Recall that they are non zero only if
I' = k|I|M™ + I, with k € K, where K is the set of points with integer coordinates
contained in (—m, +m]™. So, to prove that S(f,g) — So(f,g) is in H'(R") it is sufficient

to use the fact that, for fixed A\, \" and k,

D LD Ym0 < Cllf a9l mvo-
I

This is a consequence of the wavelet characterization of f in H'(R") and g in BMO(R")

and the following lemma, which may be found in [49].

Lemma 7. There exists a uniform constant C, such that, for (ar)jep and (br)rep two

sequences that are indexed by the set D of dyadic cubes , one has the inequality

1/2 1/2
> laillbr] < € <Z|a1|2|f\_1X1> < sup (|R|—1Z!bf|2> .
€

IeD IeD I ICR
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Let us come back to the proof of the proposition. From this first step, we conclude
that it is sufficient to prove that B(f,g) := So(Af,g) + So(f, Ag) is in H'(R™). Using
bilinearity as well as the fact that A* = —A, we have

=55 SN g ) AGH X)X P — ).

AeENeE II'

From this point, the proof is standard. An explicit computation gives that [ |? — [¢}|?
is in H'(R™), with

”W |2 W}\P”Hl =¢ <log(2*j + 27]'/)71 +log(|zr — zp| + 277 4 2’]'/)) )

Here |I| = 277" and |I'| = 279", while x; and x; denote the centers of the two cubes.
Next we use the well-known estimate of the matrix of a Calderén-Zygmund operator (see
[18, Proposition 1]): there exists some ¢ € (0, 1], such that

(A7, ¥3)| < Cps(I, 1)

with

ps(I, 1) = ﬂﬂmm)( 279 427 |)n+5

277 + 2-7 + |l’[ — Xy
So, by using the inequality

log (22 Al —anly 20277 4277 + fuy —ap |\ 02
Og( 97 4+ 27 >—S< 277 + 277 > ’

we obtain

IBU 9l <C Y > HKFD g, 7)) lpsr (1, 1)

ANEE LI
where ¢’ = §/2 > 0. We conclude by using the fact that the almost diagonal matrix
psr(I,1') defines a bounded operator on the space of all sequences (as)rep such that
<ZI ]a;ﬂ[\_l)g) v € L'(R™), which may be found in [49].

This is the end of the proof of Theorem 21 for F' € H!'(R",R") and G € BMO(R", R")
with curl F' = 0 and divG = 0. Assume now that div F' = 0 and curl G = 0. Similarly as
above, we have » ", R;I; =0 and G; = R;g where g = — 37 | R;G; € BMO(R") since

BMO(R"™) is invariant under Riesz transforms. Hence,

F.G= Z (F;,G;) + S(Fy, Gy)) ZTE,G Z<S<Fj,Rjg>+S<Rjﬂ,g>>-

j=1

We conclude as before from the proposition. ]
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Chapter 3

New Hardy spaces of
Musielak-Orlicz type and

boundedness of sublinear operators

Ce chapitre est un prépublication (soumise).

Résumé

Nous introduisons une nouvelle classe d’espaces de Hardy H*)(R"),

appelés espaces de Hardy de type Musielak-Orlicz, qui généralisent les espaces de
Hardy-Orlicz de Janson et les espaces Hardy a poids de Garcia-Cuerva, Stromberg, et
Torchinsky. Ici, ¢ : R" % [0,00) — [0, 00) est une fonction telle que ¢(z, -) est une fonction
Orlicz et (-, ) est un poids Muckenhoupt A. Une fonction f appartient a H*)(R™)
si et seulement si sa fonction maximale f* est de telle sorte que = +— @(z,|f*(z)|) est
intégrable. Un tel espace se pose tout naturellement, par exemple dans la descrip-
tion du produit des fonctions dans H'(R™) et BMO(R™). Nous caractérisons ces es-
paces grace a la fonction de "grand maximale” et nous établissons leur décomposition
atomique. Nous caractérisons aussi leurs espaces duaux. La classe de multiplicateurs
ponctuels pour BMO(R™) caractérisée par Nakai et Yabuta peut étre vu comme le dual
de L*(R"™) + H'"8(R"™) ot H'8(R") est l’espaie Hardy de type Musielak-Orlicz liée a la

fonction Musielak-Orlicz 0(x,t) = :
’ log(e + |z|) + log(e + 1)

En outre, sous certaines hypotheses supplémentaires sur ¢(-, -), nous montrons que si 7'

est un opérateur sous-linéaire qui envoie tous les atomes dans les éléments uniformément
bornés d'un quasi-espace de Banach B, alors T se prolonge de maniére unique a un

opérateur borné sous-linéaire de H#(+)(R") & valeurs dans B. Ces résultats sont nouveaux,
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méme pour les espaces de Hardy-Orlicz classiques.
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3.1 Introduction

Since Lebesgue theory of integration has taken a center stage in concrete problems of
analysis, the need for more inclusive classes of function spaces than the LP(R™)-families
naturally arose. It is well known that the Hardy spaces H?(R"™) when p € (0, 1] are good
substitutes of LP(R™) when studying the boundedness of operators: for example, the
Riesz operators are bounded on H?(R"), but not on LP(R"™) when p € (0,1]. The theory
of Hardy spaces H? on the Euclidean space R" was initially developed by Stein and Weiss
[129]. Later, Fefferman and Stein [48] systematically developed a real-variable theory for
the Hardy spaces HP(R"™) with p € (0, 1], which now plays an important role in various
fields of analysis and partial differential equations; see, for example, [32, 33, 113]. A
key feature of the classical Hardy spaces is their atomic decomposition characterizations,
which were obtained by Coifman [27] when n = 1 and Latter [86] when n > 1. Later, the
theory of Hardy spaces and their dual spaces associated with Muckenhoupt weights have
been extensively studied by Garcia-Cuerva [52], Stromberg and Torchinsky [131] (see also
[111, 22, 53]); there the weighted Hardy spaces was defined by using the nontangential
maximal functions and the atomic decompositions were derived. On the other hand, as
another generalization of LP(R"), the Orlicz spaces were introduced by Birnbaum-Orlicz
in [10] and Orlicz in [117], since then, the theory of the Orlicz spaces themselves has been
well developed and the spaces have been widely used in probability, statistics, potential
theory, partial differential equations, as well as harmonic analysis and some other fields
of analysis; see, for example, [4, 70, 104]. Moreover, the Hardy-Orlicz spaces are also
good substitutes of the Orlicz spaces in dealing with many problems of analysis, say, the
boundedness of operators.

Let ® be a Orlicz function which is of positive lower type and (quasi-)concave. In
[75], Janson has considered the Hardy-Orlicz space H®(R") the space of all tempered

distributions f such that the nontangential grand maximal function of f is defined by

fH(x) = sup sup |f* ¢u(y)],

PEAN |z—y|<t

for all z € R", here and in what follows ¢;(x) := t™"¢(t~'z), with

Ay = {¢ € S(R") : sup (1 + |z)V|0%(x)] < 1 for o € N*, o] < N}

z€R™

with N = N(n, ®) taken large enough, belongs to the Orlicz space L*(R"). Remark that
these Hardy-Orlicz type spaces appear naturally when studying the theory of nonlinear

PDEs (cf. [57, 71, 73]) since many cancellation phenomena for Jacobians cannot be
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observed in the usual Hardy spaces HP(R"). For instance, let f = (f', ..., f™) in the
Sobolev class W1"(R™ R™) and the Jacobians J(z, f)dr = df' A --- A df", then (see
Theorem 10.2 of [73])

T(J(z, f)) € L'(R") + H*(R")

where ®(t) = t/log(e + t) and T(f) = flog|f]|, since J(z, f) € H'(R™) (cf. [33]) and
T is well defined on H'(R"). We refer readers to [121, 72] for this interesting nonlinear
operator 7.

In this paper we want to allow generalized Hardy-Orlicz spaces related to generalized
Orlicz functions that may vary in the spatial variables. More precisely the Orlicz function
®(t) is replaced by a function ¢(z,t), called Musielak-Orlicz function (cf. [115, 38]).
We then define Hardy spaces of Musielak-Orlicz type. Apart from interesting theoretical
considerations, the motivation to study function spaces of Musielak-Orlicz type comes
from applications to elasticity, fluid dynamics, image processing, nonlinear PDEs and the
calculus of variation (cf. [38, 39]).

A particular case of Hardy spaces of Musielak-Orlicz type appears naturally when con-
sidering the products of functions in BMO(R") and H'(R™) (see [14]); and the endpoint
estimates for the div-curl lemma (see [11, 14]). More precisely, in [14] the authors proved
that product of a BMO(R") function and a H'(R™) function may be written as a sum
of an integrable term and of a term in H'°¢(R"), a Hardy space of Musielak-Orlicz type

related to the Musielak-Orlicz function 6(z,t) = oale +|$|)t+10g(e e Moreover, the corre-
sponding bilinear operators are bounded. This result gives in particular a positive answer
to the Conjecture 1.7 in [15]. By duality, one finds pointwise multipliers for BMO(R™).
Recall that a function g on R" is called a pointwise multiplier for BMO(R"), if the
pointwise multiplication fg belongs to BMO(R™) for all f in BMO(R"). In [116], Nakai
and Yabuta characterize the pointwise multipliers for BMO(R™): they prove that g is
a pointwise multiplier for BMO(R") if and only if g belong to L>*(R") N BMO"&(R"),

where

BMO™#(R") =

|log 7| + log(e + |al)
= S feLL (R :|f log 1= SUp
: ( ) || ||BMO B(a,r) |B(6L,’f‘)|

/ |f(x) = fB(am|de < 00

B(a,r)

By using the theory of these new Hardy spaces and dual spaces, we establish that the class
of pointwise multipliers for BMO(R") is just the dual of L'(R")+ H'°&(R"). Remark that
the class of pointwise multipliers for BMO(R™) have also recently been used by Lerner
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[88] for solving a conjecture of Diening (see [38]) on the boundedness of the Hardy-
Littlewood maximal operator on the generalized Lebesgue spaces LP®)(R") (a special
case of Musielak-Orlicz spaces, for the details see [38, 88]).

Motivated by all of the above mentioned facts, in this paper, we introduce a new
class of Hardy spaces H¥(+)(R"), called Hardy spaces of Musielak-Orlicz type, which
generalize the Hardy-Orlicz spaces of Janson and the weighted Hardy spaces of Garcia-
Cuerva, Stromberg, and Torchinsky. Here, ¢ : R" %[0, 00) — [0, 00) is a function such that
o(z,-) is an Orlicz function and ¢(-,t) is a Muckenhoupt weight A.. In the special case
o(x,t) = w(x)®(t) with w in the Muckenhoupt class and ® an Orlicz function, our Hardy
spaces are weighted Hardy-Orlicz spaces but they are different from the ones considered
by Harboure, Salinas, and Viviani [60, 61].

As an example of our results, let us give the atomic decomposition with bounded
atoms. Let ¢ be a growth function (see Section 2). A bounded function a is a p-atom if
it satisfies the following three conditions

i) supp a C B for some ball B,

i) flall~ < lxslzh,

iii) [gn a(x)zdz =0 for any |of < [n(‘j((z)) —1)],
where ¢(¢) and i(p) are the indices of ¢ (see Section 2). We next define the atomic
Hardy space of Musielak-Orlicz type H;("')(]R”) as those distributions f € S'(R") such
that f =3, b; (in the sense of S'(R")), where b;’s are multiples of yp-atoms supported in
the balls Bj’s, with the property > ¢(Bj, [|bjl[12(p,)) < o0; and define the norm of f by

11l =it {Asc(83) - f = Dby in the sense of S'(R")},
J

where Ao ({b;}) = inf {)\ >0: Zj@<Bj, %) < 1} with p(B,t) := [, ¢(z,t)dz for
all t > 0 and B is measurable. Then we obtain:

Theorem 3.1.1. HZ")(R") = H?()(R™) with equivalent norms.

The fact that A ({b;}), which is the right expression for the (quasi-)norm in the
atomic Hardy space of Musielak-Orlicz type, plays a central role in this paper. It should
be emphasized that, even if the steps of the proof of such a theorem are standard, the
adaptation to this context is not standard.

On the other hand, to establish the boundedness of operators on Hardy spaces, one
usually appeals to the atomic decomposition characterization, see [27, 86, 133], which
means that a function or distribution in Hardy spaces can be represented as a linear

combination of functions of an elementary form, namely, atoms. Then, the boundedness
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of operators on Hardy spaces can be deduced from their behavior on atoms or molecules in
principle. However, caution needs to be taken due to an example constructed in Theorem
2 of [19]. There exists a linear functional defined on a dense subspace of H'(R"), which
maps all (1, 0o, 0)-atoms into bounded scalars, but however does not extend to a bounded
linear functional on the whole H'(R"). This implies that the uniform boundedness of
a linear operator T' on atoms does not automatically guarantee the boundedness of T
from H'(R") to a Banach space B. Nevertheless, by using the grand maximal function
characterization of HP(R™), Meda, Sjogren, and Vallarino [105, 106] proved that if a
sublinear operator 7" maps all (p, ¢, s)-atoms when ¢ < oo and continuous (p, 0o, s)-atoms
into uniformly bounded elements of LP(R™) (see also [144, 20] for quasi-Banach spaces),
then 7" uniquely extends to a bounded sublinear operator from H?(R™) to LP(R™). In this
paper, we study boundedness of sublinear operators in the context of new Hardy spaces of
Musielak-Orlicz type which generalize the main results in [105, 106]. More precisely, under
additional assumption on ¢(-, -), we prove that finite atomic norms on dense subspaces of
H?C)(R™) are equivalent with the standard infinite atomic decomposition norms. As an
application, we prove that if T is a sublinear operator and maps all atoms into uniformly
bounded elements of a quasi-Banach space B, then T uniquely extends to a bounded
sublinear operator from H¥(+)(R") to B.

In a forecoming paper, using the theory of these new Hardy spaces and ideas from
[14], we study and establish some new interesting estimates of endpoint type for the
commutators of singular integrals and fractional integrals on Hardy-type spaces.

Our paper is organized as follows. In Section 2 we give the notation and definitions
that we shall use in the sequel. For simplicity we write ¢ for ¢(-,-). One then intro-
duces Hardy spaces of Musielak-Orlicz type H?(R™) via grand maximal functions, atomic
Hardy spaces Hiy?*(R™), finite atomic Hardy spaces H{**(R™) for any admissible triplet
(p,q,s), BMO-Musielak-Orlicz-type spaces BMO¥(R™), and generalized quasi-Banach
spaces B, for v € (0,1]. In Section 3 we state the main results: the atomic decomposi-
tions (Theorem 3.3.1), the duality (Theorem 3.3.2), the class of pointwise multipliers for
BMO(R"™) (Theorem 3.3.3), the finite atomic decomposition (Theorem 3.3.4), and the
criterion for boundedness of sublinear operators in H#(R™) (Theorem 3.3.5). In Section
4 we present and prove the basic properties of the growth functions ¢ since they provide
the tools for further work with this type of functions. In Section 5 we generalize the
Calderén-Zygmund decomposition associated to the grand maximal function on R™ in the
setting of the spaces of Musielak-Orlicz type. Applying this, we further prove that for
any admissible triplet (¢, q,s), H?(R") = HZ"°(R") with equivalent norms (Theorem

3.3.1). In Section 6 we prove the dual theorem. By Theorem 2 in [19], one has to be care-
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ful with the argument “the operator T is uniformly bounded in H?(R™) (H¥(R™) here
o(z,t) = w(x).t? in our context) on w-(p,o0)-atoms, and hence it extends to a bounded
operator on HP(R™)” which has been used in [52] and [22]. In Section 7 we introduce
log-atoms and consider the particular case of H'°8(R"). Finally, in Section 8 we prove
that || - | gz and || - [|[g» are equivalent quasi-norms on Hg:**(R") when ¢ < oo and on
HZ*(R™) N C(R™) when ¢ = oo, here and in what follows C'(R™) denotes the set of all
continuous functions. Then, we consider generalized quasi-Banach spaces which gener-
alize the notion of quasi-Banach spaces in [144] (see also [20]), and obtain criterious for
boundedness of sublinear operators on H¥(R").

Throughout the whole paper, C' denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line. The symbol f ~ g
means that f is equivalent to g (i.e. C71f < g < Cf), and [-] denotes the integer func-
tion. By X* we denote the dual of the (quasi-)Banach space X. In R"™, we denote by
B = B(x,r) an open ball with center z and radius r > 0. For any measurable set E, we
denote by g its characteristic function, by |F| its Lebesgue measure, and by E° the set
R™\ E.

Acknowledgements. The author would like to thank Prof. Aline Bonami and Prof.
Sandrine Grellier for many helpful suggestions and discussions. He would also like to
thank Prof. Sandrine Grellier for her carefully reading and revision of the manuscript.
The author is deeply indebted to them.

3.2 Notation and definitions

3.2.1 Musielak-Orlicz-type functions

First let us recall notations for Orlicz functions.

A function ¢ : [0,00) — [0,00) is called Orlicz if it is nondecreasing and ¢(0) = 0;
o(t) > 0,t > 0; limy o ¢(t) = 0o. An Orlicz function ¢ is said to be of lower type (resp.,
upper type) p, p € (—00,00), if there exists a positive constant C' so that

¢(st) < Cs"o(t),

for all ¢ > 0 and s € (0,1) (resp., s € [1,00)). One say that ¢ is of positive lower type
(resp., finite upper type) if it is of lower type (resp., upper type) p for some p > 0 (resp.,
p finite).

Obviously, if ¢ is both of lower type p; and of upper type po, then p; < ps. Moreover,
if ¢ is of lower type (resp., upper type) p then it is also of lower type (resp., upper) p for
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—00 < p < p (resp., p < p < oo). We thus write
i(¢) := sup{p € (—00, ) : ¢ is of lower type p}

I(¢) := inf{p € (—o0,00) : ¢ is of upper type p}
to denote the critical lower type and the critical upper type of the function ¢.
Let us generalize these notions to functions ¢ : R x [0, 00) — [0, 00).
Given a function ¢ : R" x [0,00) — [0,00) so that for any z € R", ¢(x,-) is Orlicz.
We say that ¢ is of uniformly lower type (resp., upper type) p if there exists a positive

constant C so that
oz, st) < CsPo(x,t), (3.1)

for all z € R® and ¢ > 0,5 € (0,1) (resp., s € [1,00)). We say that ¢ is of positive
uniformly lower type (resp., finite uniform upper type) if it is of uniformly lower type

(resp., uniform upper type) p for some p > 0 (resp., p finite), and denote
i(p) :=sup{p € (—o00,00) : ¢ is of uniformly lower type p}

I(p) := inf{p € (—o0, 00) : ¢ is of uniformly upper type p}.

We next need to recall notations for Muckenhoupt weights.
Let 1 < ¢ < 0co. A nonnegative locally integrable function w belongs to the Mucken-

houpt class A,, say w € A, if there exists a positive constant C' so that
i/w(m)dac(L /(w(x))_l/(q_l)dw>q_1 <O, ifl <q< oo,
51/ 51/

and

reB

1
E /w(x)dq: < Cess-infw(z), ifqg=1,
B

for all balls B in R™. We say that w € A if w € A, for some ¢ € [1, 00).

It is well known that w € A;, 1 < ¢ < oo, implies w € A, for all r > ¢q. Also, if w € A,
1 < ¢ < o0, then w € A, for some r € [1,¢q). One thus write ¢, :=inf{g > 1:w € A,} to
denote the critical index of w.

Now, let us generalize these notions to functions ¢ : R" x [0, 00) — [0, c0).

Let ¢ : R™ x [0,00) — C be so that = — ¢(x,t) is measurable for all ¢ € [0,00). We
say that o(-,t) is uniformly locally integrable if for all compact set K in R™, the following

holds "

J 0 [ Loy, t)|dy
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whenever the integral exists. A simple example for such uniformly locally integrable
functions is p(z,t) = w(z)®(t) with w a locally integrable function on R™ and & an
arbitrary function on [0,00). Our interesting examples are uniformly locally integrable
functions ¢(x,t) = (log(eﬂx')fflog(eﬂp))p,0 < p < 1, since they arise naturally in the study
of pointwise product of functions in H?(R") with functions in BMO(R™) (cf. [14]).

Given ¢ : R" x [0,00) — [0,00) is a uniformly locally integrable function. We say

that the function ¢(-,t) satisfies the uniformly Muckenhoupt condition A,, say ¢ € A,

for some 1 < g < oo if there exists a positive constant C' so that
1 1 q-1
—/gp(m,t)dx.(—/gp(x,t)_l/(q_l)dx) <C, ifl<qg<oo,
51 51

and

reB

1
E/(p(x,t)d:c < Cess-info(z,t), ifqg=1,
B

for all t > 0 and balls B in R". We also say that ¢ € Ay if ¢ € A, for some ¢ € [1, 00),

and denote
qlp) =inf{g>1: ¢ € A }.
Now, we are able to introduce the growth functions which are the basis for our new

Hardy spaces.

Definition 3.2.1. We say that ¢ : R™ x [0,00) — [0,00) is a growth function if the

following conditions are satisfied.
1. The function ¢ is a Musielak-Orlicz function that is

(a) the function (x,-) : [0,00) — [0,00) is an Orlicz function for all x € R™,

(b) the function p(-,t) is a Lebesgue measurable function for all t € [0,00).
2. The function ¢ belongs to A.

3. The function ¢ is of positive uniformly lower type and of uniformly upper type 1.

For ¢ a growth function, we denote m(yp) := [n(% — 1)]

Clearly, ¢(x,t) = w(x)®(t) is a growth function if w € A, and ® is of positive lower

type and of upper type 1. Of course, there exists growth functions which are not of
. . ta .
that form for instance o(2,t) = oy maeror o @ € (0,1];8,7 € (0,00). More

precisely, ¢ € A; and ¢ is of uniformly upper type o with i(¢) = . In this paper, we
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tP

Toa(erTaD flogereyr 0 <P = L,
since the Hardy spaces of Musielak-Orlicz type H¥(R") arise naturally in the study of

pointwise product of functions in HP(R™) with functions in BMO(R™) (see also [12] in the

setting of holomorphic functions in convex domains of finite type or strictly pseudoconvex

are especially interested in the growth functions ¢(x,t) = (

domains in C").

3.2.2 Hardy spaces of Musielak-Orlicz type

Throughout the whole paper, we always assume that ¢ is a growth function.

Let us now introduce the Musielak-Orlicz-type spaces.

The Musielak-Orlicz-type space L¥(R") is the set of all measurable functions f such
that [,. ¢(z, |f(x)]/A)dz < co for some A > 0, with Luxembourg (quasi-)norm

190 = int {3 > 05 [ (o @)l /N)do < 1},
Rn
As usual, S(R") denote the Schwartz class of test functions on R" and S’'(R™) the
space of tempered distributions (or distributions for brevity). For m € N, we define
Su®) = {0 S®): o= swp (L4 )0 jopo()] < 1),
z€R",|a|<m+1

For each distribution f, we define the nontangential grand maximal function f;, of f

by

fu(z) = sup sup [fx@i(y)], z € R™
PESm (R™) |y—z|<t

When m = m(yp) we write f* instead of f, .

Definition 3.2.2. The Hardy space of Musielak-Orlicz type H?(R™) is the space of all
distributions f such that f* € L¥(R™) with the (quasi-)norm

[V zze = 17" ]z
Observe that, when ¢(z,t) = w(z)®(t) with w a Muckenhoupt weight and ® an Orlicz

function, our Hardy spaces are weighted Hardy-Orlicz spaces which include the classical
Hardy-Orlicz spaces of Janson [75] (w = 1 in this context) and the classical weighted
Hardy spaces of Garcia-Cuerva [52], Stromberg and Torchinsky [131] (®(¢) = t? in this
context), see also [111, 22, 53] . Recently, the weighted anisotropic Hardy spaces (see [20])
and the Hardy-Orlicz spaces associated with operators (see [77]) have also been studied.

Next, to introduce the atomic Hardy spaces of Musielak-Orlicz type below, we need

the following new spaces.

29



Definition 3.2.3. For each ball B in R™, we denote Lg(B),l < q < o0, the set of all

measurable functions f on R™ supported in B such that

xT x T l/q
- <fRn HCIEC ) <oo , l<g<oo,
1 fllzas) = 4 0 ’ 52
[fllze < o0 4709

here and in the future p(B,t) := [, ¢(x,t)dz.

Then, it is straightforward to verify that (LL(B), || - [|¢(s)) is a Banach space.

Now, we are able to introduce the atomic Hardy spaces of Musielak-Orlicz type.

Definition 3.2.4. A triplet (¢, q,s) is called admissible, if ¢ € (q(p), 00| and s € N
satisfies s > m(p). A measurable function a is a (@, q, s)-atom if it satisfies the following

three conditions
i) a € LL(B) for some ball B,

i) llall o) < lIxalze.
i) [on a(z)z®dz =0 for any |af < s.

In this setting we define the atomic Hardy space of Musielak-Orlicz type Hy?*(R™) as
those distributions f € S’(R™) that can be represented as a sum of multiples of (¢, ¢, s)-
atoms, that is,

f= ij in the sense of S'(R"),
J
where b;’s are multiples of (g, g, s)-atoms supported in the balls B;’s, with the property

> 0B, bl s,)) < 0.
J

We introduce a (quasi-)norm in H7"*(R™). Given a sequence of multiples of (p,q, s)-

atoms, {b;};, we denote
. 1651l g (5,
A ({b;}) = int {)\ >0 Z@(Bj, %”) < 1} (3.3)
J
and define

1f | se = inf {Aq({bj}) . £ =Y b in the sense of S’(R”)}. (3.4)

Let (¢,q,s) be an admissible triplet. We denote HZ**(R™) the vector space of all

finite linear combinations of (¢, ¢, s)-atoms, that is,

k
F=> b
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where b;’s are multiples of (¢, ¢, s)-atoms supported in balls B;’s. Then, the norm of f
in H"*(R™) is defined by

k
[l = inf {A({b}m)  f = Dy} (3.5)

Obviously, for any admissible triplet (¢, ¢, s), the set H¥*(R™) is dense in H;**(R")
with respect to the quasi-norm || - [| ye.as.

We should point out that the theory of atomic Hardy-Orlicz spaces have been first
introduced by Viviani [136] in the setting of spaces of homogeneous type. Later, Serra
[124] generalized it to the context of the Euclidean space R™ and obtained the molecular
characterization. In the particular case, when ¢(z,t) = ®(t) the space Hi"°(R") is
the space considered in [124]. We also remark that when p(z,t) = w(z).t?,0 < p <
1, w a Muckenhoupt weight, the space H7%°(R") is just the classical weighted atomic
Hardy space HP%*(R™) which has been considered by Garcia-Cuerva [52], Stromberg and
Torchinsky [131].

3.2.3 BMO-Musielak-Orlicz-type spaces

We also need BM O type spaces, which will be in duality of the Hardy spaces of Musielak-
Orlicz type defined above. A function f € Ll _(R") is said to belong to BMO?(R") if

loc

1
1 lsatoe = sup —~— / (@) — fslde < oo,
> Txsle- J

where fp = |—]13| [ f(z)dz and the supremum is taken over all balls B in R".

Our typical example is BMO?(R"), called BMO"8(R"), related to p(x,t) = log(e+|m|)t+10g(e+t) :
Clearly, when ¢(z,t) = t, then BMO?(R") is just the well-known BMO(R™) of John and
Nirenberg. We remark that when ¢(z,t) = w(z).t with w € Agi1y/m, then BMO?(R") is
just BMO,,(R™) was first introduced by Muckenhoupt and Wheeden [110, 111]. There,

they proved that BMO,,(R") is the dual of H} (R™) (see also [22]).

3.2.4 Quasi-Banach valued sublinear operators

Recall that a quasi-Banach space B is a vector space endowed with a quasi-norm || - ||z
which is nonnegative, non-degenerate (i.e., || f||z = 0 if and only if f = 0), homogeneous,
and obeys the quasi-triangle inequality, i.e., there exists a positive constant x no less than
1 such that for all f,g € B, we have || f + glls < &(||f|lz + llgll5)-
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Definition 3.2.5. Let v € (0,1]. A quasi-Banach space B., with the quasi-norm || - ||z, is
said to be a y-quasi-Banach space if there exists a positive constant k no less than 1 such
that for all f; € By,j =1,2,...,m, we have

m ~ m
> 5], =#> im0,
j=1 K j=1

Notice that any Banach space is a 1-quasi-Banach space, and the quasi-Banach spaces

¢ LP (R™) and HP(R™) with p € (0,1] are typical p-quasi-Banach spaces. Also, when ¢
is of uniformly lower type p € (0, 1], the space H?(R™) is a p-quasi-Banach space.

For any given 7-quasi-Banach space B, with v € (0,1] and a linear space ), an
operator T" from Y to B, is called B,-sublinear if there exists a positive constant x no less
than 1 such that for all f; € Y, \; € C,j =1,...,m, we have

[T (ZAH)[L < v WrPITU I
j=1 K j=1

We remark that if 7" is linear, then 7" is B,-sublinear. We should point out that if
the constant x, in Definition 3.2.5, equal 1, then we obtain the notion of y-quasi-Banach

spaces introduced in [144] (see also [20]).

3.3 Statement of the results

Our main theorems are the following.

Theorem 3.3.1. Let (p,q,s) be admissible. Then H?(R™) = HZ"*(R™) with equivalent

norms.

Denote by LF(R™) the set of all bounded functions with compact support and zero

average. As a consequence of Theorem 3.3.1, we have the following.

Lemma 3.3.1. Let ¢ be a growth function satisfying nq(p) < (n+1)i(p). Then, LF(R™)
is dense in H?(R™).

We now can present our dual theorem as follows

Theorem 3.3.2. Let ¢ be a growth function satisfying nq(v) < (n+ 1)i(¢). Then, the
dual space of H?(R™) is BMO¥(R™) in the following sense

i) Suppose b € BMO?(R™). Then the linear functional Ly : f — Ly(f) := [g. f(x)b(x)dz,
initially defined for L°(R™), has a bounded extension to H¥(R™).

it) Conversely, every continuous linear functional on H?(R™) arises as the above with
a unique element b of BMO?(R™). Moreover ||b||gros = || Lo || (e -
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Next result concerns the class of pointwise multipliers for BAM O(R™).

Theorem 3.3.3. The class of pointwise multipliers for BMO(R") is the dual of L'(R™)+
H"“8(R™) where H'#(R™) is a Hardy space of Musielak-Orlicz type related to the Musielak-

Orlicz function 0(x,t) = 1og(e+|x\)t+1og(e+t)'

In order to obtain the finite atomic decomposition, we need the notion of uniformly
locally dominated convergence condition. A growth function ¢ is said to be satisfy uni-
formly locally dominated convergence condition if the following holds:

Given K compact set in R". Let {f,}m>1 be a sequence of measurable functions
st fm(x) tends to f(x) a.e x € R™ If there exists a nonnegative measurable func-
tion g s.t |fn(z)] < g(z) and sup,., ng(x)%dx < 00, then sup,oq [, [fm(®) —
f(z) %dm tends 0.

We remark that the growth functions p(z,t) = w(z)®(t) and p(z,t) = (log(e+|x|)flog(e+tp))p :

0 < p <1, satisfy the uniformly locally dominated convergence condition.

Theorem 3.3.4. Let ¢ be a growth function satisfying uniformly locally dominated con-
vergence condition, and (p,q,s) be an admissible triplet.
i) If g € (q(p), 00) then || ||ggas and ||-||ge are equivalent quasi-norms on HZ " (R™).

i) || - \lzgeos and || - ||me are equivalent quasi-norms on Hg>>"(R™) N C(R™).

As an application, we obtain criterions for boundedness of quasi-Banach valued sub-

linear operators in H¥(R").

Theorem 3.3.5. Let ¢ be a growth function satisfying uniformly locally dominated con-
vergence condition, (¢, q,s) be an admissible triplet, ¢ be of uniformly upper type v €
(0,1], and B, be a quasi-Banach space. Suppose one of the following holds:

i) q € (q(p),00), and T : HOP*(R™) — B, is a B,-sublinear operator such that

A =sup{||Tal|s, : ais a (¢,q,s)—atom} < oo;
ii) T is a B.-sublinear operator defined on continuous (p, 00, s)-atoms such that
A =sup{||Tal|, : ais a continuous (p, o0, s)—atom} < oo.

Then there exists a unique bounded B.-sublinear operator T from H?(R"™) to B, which
extends T'.
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3.4 Some basic lemmas on growth functions

We start by the following lemma.

Lemma 3.4.1. i) Let ¢ be a growth function. Then ¢ is uniformly o-quasi-subadditive

on R" x [0,00), i.e. there exists a constant C' > 0 such that

(L th) < CZSD(%%‘),
j=1 J=1

for all (z,t;) € R" x [0,00), 7 =1,2,.

ii) Let ¢ be a growth function and @(x,t) := fo ’;8 ds for (z,t) € R" x [0,00).
Then & is a growth function equivalent to ¢, moreover, @(x,+) is continuous and strictly
INCTeasing.

iti) A Musielak-Orlicz function ¢ is a growth function if and only if ¢ is of positive
uniformly lower type and uniformly quasi-concave, i.e. there exists a constant C' > 0 such
that

Ao(x,t) + (1 — Np(z,s) < Co(z, M+ (1 —N)s),

for all x € R™t,s € [0,00) and X € [0, 1].

Proof. i) We just need to consider the case when 3 "%, ¢; > 0. Then it follows from the

fact that
ty,

oo ; ¥
Zj:l tj

by ¢ is of uniformly upper type 1.

(z, Y ;) < Cop(x,ty)

Jj=1

ii) Since ¢ is a growth function, it is easy to see that ¢(z,-) is continuous and strictly
increasing. Moreover, there exists p > 0 such that ¢ is of uniformly lower type p. Hence,

t t
~ o [ PEs) pla,t) [ 1
oz, t) = / . ds < C " / S1—pd5 < Co(x,t). (3.6)
0 0

On the other hand, since ¢ is of uniformly upper type 1, we get

B t) /< d>C’/ PE) 4o > o1 1), (3.7)

Combining (3.6) and (3.7), we obtain ¢ =~ ¢, and thus ¢ is a growth function.
_ iii) Suppose ¢ is a growth function. By (ii), ¢ is equivalent to ¢. On the other hand,
aaf (x,t) = @ is uniformly quasi-decreasing in ¢. Hence, ¢ is uniformly quasi-concave,
and thus is ¢.

The converse is easy by taking s = 0. We omit the details. O
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Remark 3.4.1. Let us observe that the results stated in Section 3 are invariant under
change of equivalent growth functions. By Lemm 3.4.1, in the future, we always consider
a growth function @ of positive uniformly lower type, of uniformly upper type 1 (or, equiv-
alently, uniformly quasi-concave), and so that p(z,-) is continuous and strictly increasing
for all x € R™.

Lemma 3.4.2. Let ¢ be a growth function. Then
i) /gp(x |f(x)|>dx =1 for all f € L¥(R") \ {0}.
R

Al
i) iy o0 || fillze = 0 if and only if imy oo [p. @(2, | fr()])dz = 0.

Proof. Statement (i) follows from the fact that the function

mw:/ﬁuﬂﬂmwa

]Rn

t € [0, 00), is continuous by the dominated convergence theorem since ¢(x, -) is continuous.
Statement (i7) follows from the fact that

£l < Cmax{ [ ot f@dz. ( [ oo ls@niz) "}

R" R™

and
[ et r@)ds < Cmax {7l (1712}
4
for some p € (0,i(p)). O

Lemma 3.4.3. Given c is a positive constant. Then, there exists a constant C > 0 such
that
i) The inequality fRn go(x, |f(x)‘>dx <vc¢, for A >0, implies

A

| fllee < CA

it) The inequality Zj go(Bj, %) <, for A >0, implies
. t;
inf {a >0: ng(Bj,EJ> < 1} < CA.
j

Proof. The proofs are simple since we may take C' = (1 + ¢.C,)/?, for some p € (0,i(¢)),
where C,, is such that (3.1) holds. O
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Lemma 3.4.4. Let (p,q, s) be an admissible triplet. Then there exists a positive constant
C' such that

> billzas,)lxs, e < CA({b;}),
j=1
or all f =572 b; € HP(R"™) where b;’s are multiples of (p,q, s)-atoms supported in
j=1Yj at j
balls B;’s.

Proof. Since ¢ is of uniformly upper type 1, there exists a positive constant ¢ > 0 such
that

@(x 10: 1| o, (8,) >>C 1ill 22,3y I xB: | e w(x 1 )
e bl llxs e/ = 3252 Ibillce sy llxs e ™ N Xl Le

for all z € R™,7 > 1. Hence, for all + > 1,

(Bl __y Wizl
P il ) = T Tl e

since [, gp(w, 1 >dx =1 by Lemma 3.4.2. Tt follows that

”XBiHUP
. 15il] 2. (5,)
> e (B Tl 2
)Y

— o 1051l ze s, x5 || e

We deduce from the above that
> lIbsllzs sy lIxs, e < CAL({Ds}),
j=1

with C' = (C,/c)Y/? for some p € (0,i(¢)), where C,, is such that (3.1) holds. O

Lemma 3.4.5. Let ¢ € A,,1 < q < oo. Then, there exists a positive constant C' such
that
i) For all ball B(xg,7),A >0, and t € [0,00), we have

o(B(xg, Ar),t) < CAX"p(B(xg,7),t).
ii) For all ball B(xg,r) and t € [0,00), we have
B
olet) , _ elB.l)

J |z — xo|ma rnd

iii) For all ball B, f measurable and t € (0,00), we have
1

(& / @) < 0= B/ F@)lot,
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iii) For all f measurable and t € [0,00), we have
[ Mi@reta s < € [ If@ee.
R" R"

where M s the classical Hardy-Littlewood mazximal operator defined by

x€B—ball

Mf(z) = sup |%| / fWldy, zeR"

In the setting p(z,t) = w(z)®(t), w € Ay, and ® a Orlicz function, the above lemma
is well-known as a classical result in the theory of Muckenhoupt weight (see [54]). Since
@ satisfies uniformly Muckenhoupt condition, the proof of Lemma 3.4.5 is a slight modi-

fication of the classical result. We omit the details.

3.5 Atomic decompositions

The purpose of this section is prove the atomic decomposition theorem (Theorem 3.3.1).
The construction is by now standard, but the estimates require the preliminary lemmas.
For the reader convenience, we give all steps of the proof, even if only the generalization
to our framework is new.

We first introduce a class of Hardy spaces that the Hardy space of Musielak-Orlicz
type H¥?(R™) containing as a particular case.

Definition 3.5.1. For m € N, we denote by H? (R") the space of all distributions f such
that f} € L?(R™) with the (quasi-)norm

1Lz, = Nl e

Clearly, H?(R") is a special case associated with m = m(yp).

3.5.1 Some basic properties concerning H? (R") and H " (R")
We start by the following proposition.

Proposition 3.5.1. For m € N, we have H? (R") C 8'(R™) and the inclusion is contin-

uous.

Proof. Let f € HZ(R"). For any ¢ € S(R"), and z € B(0, 1), we write

(f,0) = f % 0(0) = f (),
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where ¢(y) = ¢(y — z) = ¢(z — y) for all y € R™.
1+]y|

It is easy to verify that sup Try—a]

z€B(0,1),yeR™

[(f, o) = If* ()] < 200 HD|g|ls,  inf (@)

zGB(O,l
< 2(m+2)(n+1)”Qﬁ”SmHXB(oJ)”Z;||fHH;¢L‘

< 2. Consequently,

This implies that f € S’'(R™) and the inclusion is continuous. O
The following proposition gives the completeness of H? (R").
Proposition 3.5.2. The space H? (R™) is complete.

Proof. In order to prove the completeness of Hf (R"™), it suffices to prove that for every

sequence { f;},>1 with || f;]
Let us now take p > 0 such that ¢ is of uniformly lower type p. Then, for any 7 > 1,

me <279 for any j > 1, the series > fj converges in H (R").

*

/ o, (f;): (2))dz < C2T) / o (fj2)+f‘”))dx < o, (3.9)
Rn Rn
Since {327_, fi};>1 is a Cauchy sequence in H#(R"), by Proposition 3.5.1 and the
completeness of S'(R™), {3>7_, f;};>1 is also a Cauchy sequence in &'(R") and thus con-
verges to some f € §'(R™). This implies that, for every ¢ € S(R"), the series >, f; * ¢
converges to f * ¢ pointwisely. Therefore fy (z) <3>_:(f;);,(z) and (f — Z;?:l fi)i(x) <
> jski1(fi)m(x) for all z € R™, k > 1. Combining this and (3.8), we obtain

[ew =S tnds < € Y [l (Bl

Bn F2k 1

< C >y 2770

Jj2k+1

as k — 0o, here we used Lemma 3.4.1. Thus, the series ), f; converges to f in Hp (R")
by Lemma 3.4.2. This completes the proof. O]

Corollary 3.5.1. The Hardy space of Musielak-Orlicz type H?(R™) is complete.

The following lemma and its corollary show that (i, ¢, s)-atoms are in H?(R"). Fur-
thermore, it is the necessary estimate for proving that H73%°(R") C H¥(R™) and the
inclusion is continuous, see Theorem 3.5.1 below.
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Lemma 3.5.1. Let (p,q,s) be an admissible triplet and m > s. Then, there erists a
constant C = C(p,q,s,m) such that

[ e ful@)de < Co(B. | s
Rn
for all f multiples of (v, q, s)-atom associated with ball B = B(xq,T).

Proof. The case ¢ = oo is easy and will be omitted. We just consider g € (¢(¢),o0). Now
let us set B = B(z, 9r), and write

[etgionis = [ si@der [ oo g

R™ B (E)c
= I+11.

Since ¢ is of uniformly upper type 1, by Holder inequality, we get

_ : (@)
P [t s o [ (e I )
B

B
CSO(B HfHL;é(B

)
/ @l Fllm)dz)  o(B |l )

IA

Hf“Lq

< Co(B, [[fllrem) +

< Co(B 1fllcsm)-
We used the fact f(z) < C(m)Mf(z) and Lemma 3.4.5.

To estimate 11, we note that since m > s, there exists a constant C' = C(m) such that

("

for all ¢ € S,,,(R"),t > 0,z € (é)c, y € B. Therefore

HfH @B 1)

1) -3 2 |

al<s

s+1

|y 1’0’
n
Ot |£If _ xo‘n+s+1

Fra@l = o /f<y>[¢<¥>—Zaaﬁ?ﬁ”(“;yf}dy\
la|<s
< / e ;y__xf‘i:;dy
<o /|f et V) ([t o)
B
< C||JC||L$,,(B)<|I_T—xo|>n+s+1
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For any A > 0, we used that [, ¢(y, \)dy([5[e(y, N)] /@ Ddy)?=! < C|B| since ¢ € A,.

As a consequence, we get

r n+s+1
fi(@) < Cm) swp sup|f (@) < Clfllugi (=)

HESm (R t>0 |z — 20|

By s > m(p), there exists p € (0,i(p)) such that (n+s+1)p > nq(yp). Hence, by Lemma
3.4.5,

= [ et tanas < ¢ [ ()" et W g

J J |z — x0]

(B)e (B)e
< oy Bollflrym)
< (gr)(n+s+1)
< Co(B, | fllza(m)-

This completes the proof. n
Corollary 3.5.2. There exists a constant C = C(¢,q,s) > 0 such that
lallge < C,
for all (v, q, s)-atom a.
Theorem 3.5.1. Let (¢, q,s) be an admissible triplet and m > s. Then
HE™(R") € Hy (R"),
moreover, the inclusion is continuous.

Proof. For any 0 # f € HZ* (R"). Let f = >, b; be an atomic decomposition of f,
with supp b; C Bj, j = 1,2,... For all ¢ € S(R"), the series } . b; * ¢ converges to f * ¢
pointwise since f = 3_;b; in §'. Hence f; (z) < >_;(b;);,(x). By applying Lemma 3.5.1,

we obtain
/@0<wf?fé)}>>dw < 3 [l {b} )d

Rn J R

H]HL
= CZ (85 A, (b, }))>

< C.

This implies that || f||ze < CA,({b;}) (see Lemma 3.4.3) for any atomic decomposition
f= Zj bj, and thus, || f||ge < CHf”H;';W- o
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3.5.2 Calderén-Zygmund decompositions

Throughout this subsection, we fix m and s so that m,s > m(y). For a given A\ > 0, we
set Q = {z € R": f*(x) > A}. Observe that €2 is open. Hence by Whitney’s Lemma ,

m

there exists x1, xq,... in Q and rq, 79, ... > 0 such that

(i) € =U;B(z;, 1),

(ii) the balls B(xj,7;/4), j = 1,2, ..., are disjoint,

(iii) B(z;, 18r;) N Q¢ =0, but B(z;, 54r;) N Q° # (), for any j = 1,2, ...,

(iv) there exists L € N (depending only on n) such that no point of 2 lies in more
than L of the balls B(x;,18r;), j =1,2, ...

We fix once for all, a function § € C3°(R™) such that supp  C B(0,2),0<60<1,0=1
on B(0,1), and set 0;(z) = 6((z — x;)/r;), for j=1,2.... Obviously, supp 6; C B(z;,2r;),
j=12,.,and 1 < 37.0; < L for all x € Q. Hence if we set (;(x) = 0;(x)/ >2;2, bi(x)
if v € Qand (j(z) =0if z € Q°, j = 1,2,..., then supp (; C B(z;,2r;), 0 < ; < 1,
>-; G = Xa, and L' < ¢; < 1on B(xj,r;). The family {¢;}; forms a smooth partition of
unity of €. let s € N be some fixed natural number and Ps(R") (or simply Ps) denote the
linear space of polynomials in n variables of degree less than s. For each j, we consider the
inner product (P,Q); = m Jan P(2)Q(2)(j(2)dx for P,Q € Py. Then (Py, (-,-),)
is a finite dimensional Hilbert space. Let f € S’. Since f induces a linear functional on
P, via Q — m Jan f(@)Q(x)¢;(x)dx, by the Riesz theorem, there exists a unique
polynomial P; € Py such that for all @ € Py, (P}, Q); = m Jan f(il:)Q(x)Cj(x)dx.
Foreach j, j = 1,2, ..., we define b; = (f—P;)(;, and note B; = B(x;,7;), B; = B(z;,9r;).
Then, it is easy to see that [p, b;(2)Q(x)dx = 0 for all Q € P,. It turns out, in the case of
interest, that the series Zj b; converges in §’. In this case, we set g = f — Z]‘ b;, and we
call the representation f =g+ ), ;b a Calderén-Zygmund decomposition of f of degree
s and height A associated to f .

For any j = 1,2, ..., we denote B; = B(xj,r;) and Ej = B(z;,9r;). Then we have the

following lemma.

Lemma A (see [17, Chapter 3). There are four constant ¢y, ca, c3, ¢4, independent of f, j,
and X\, such that
i)
\QISSJ\I;,EGRH T}a“aag @l < e
i)
sup |P;(z)((x)] < e

zeR™
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iii)
(b)) <csfr(x), forall x € Ej.
i)
(b)) (@) < caX(rs /| — 2y )"t™, for all x ¢ B;,

m

where mg = min{s + 1, m + 1}.

Lemma 3.5.2. For all f € H?(R™), there exists a geometric constant C, independent of
f,7, and X, such that,

/ o (. (b)), (@) Jdr < € / o(x, f1(x))da.

R™ B

‘ ' R —
Moreover, the series Zj b; converges in H? (R™), and

[ (e wim)is < [ o s @)is
R™ J Q
Proof. As m,s > m(yp), ms = min{s + 1,m + 1} > n(q(¢)/i(¢) — 1). Hence, there exist
q > q(p) and 0 < p < i(yp) such that mg > n(q/p — 1), deduce that (n + mg)p > ng.
Therefore, ¢ € A(4m,)p/m and ¢ is of uniformly lower type p. Thus, there exists a positive
constant C', independent of f,j, and A, such that

T'j

|z — ]

[ ewrtn o= < o [ ()T vy

(Bj)e (Bj)e

N\ (n+ms)p (p(éj’)‘)
S C(TJ) (97°j)(n+m3)p

< ¢ [ el o)
B;
since r;/|x — x;| <1 and f} > X on Ej. Combining this and Lemma A, we get

[e(w0p@)is < of [elosi@yiss [ owryla -zl

R B (Bj)°

O/gp(x, > (z))dx.

Bj

IN
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As a consequence of the above estimate, since ) i XE, < L and Q) = Ujéj, we obtain

Z/ dl’SC;/s@(w

J RrRn

< ¢ [ota s @)in

Q

This implies that the series ), b; converges in HJ (R") by completeness of Hy (R").

Moreover,
[ ol 2 b (@))do < C [ (o fr @)

R Q

[]

Let ¢ € [1,00]. We denote by Li(,71)(R") the usually weighted Lebesgue space with
the Muckenhoupt weight ¢(x,1). Then, we have the following.

Lemma B (see [20], Lemma 4.8). Let q € (q(y),00]. Assume that f € L7 ) (R"), then
the series Z b; converges in Lq( )(R”) and there exists a constant C, independent of
f:3y and A such that || 32 [bjll[zz < Cllfllze,

o(-,1) — 1)
Remark 3.5.1. By Lemma B, the series Zj |bj|, and thus the series Zj b;, converges

almost everywhere on R™.

Lemma C (see [51], Lemma 3.19). Suppose that the series ) _;b; converges in S'(R").
Then, there exists a positive constant C, independent of f,j, and X, such that for all

r € R,
il +7;

@) <Y (— )" @)vac (o).
7

Lemma 3.5.3. For any q € (q(¢),00) and f € HH(R"). Then g; € L7 ,,(R"), and

there exists a positive constant C', independent of f, 7, and X\, such that
i@t de < Cxrmax(1/0 1/} [ ol fifa)ds
Rn R"

Proof. For any j =1,2,... and = € R", we have

e on e e M IRCCL RO

B(xj,|lx—xj|+r;)

since B; C B(zj, |x — ;| + ;).
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Therefore, by L (1) -boundedness of vector-valued maximal functions (see [3], Theorem
3.1), where 7 : (n +ms)/n > 1, we obtain that

JIZ ()] etenas < [[(Emes)@y) ] etw s

Cuo [ [(S 0, 0) "] ot 1y

Rn J

IN

IA

Cs oL / o(x, 1)dx

Q

< Cmax{l/)\ 1/)7) / oz, [ (2))dz

for some p € (0,i(yp)) since p € A, C A,y and £ > X on Q. Combine this, Lemma C and

Holder inequality, we obtain

/ g (@), Ddr < CNmax{1/), 1/X7} / (e, f2(@))dz + C / F2.(@)op (e, 1)da

R™ Qe

< CMNmax{1/),1/3) / oz, [ (2))da

since f < X on Qf here one used p(z, \)/\? < Co(z, fi(x))/1f;(x)]? on Q°. O

Proposition 3.5.3. For any q € (¢(¢),00) and m > m(p). The subspace L?p(.,l)(R") N
Hf(R™) is dense in HE (R™).

Proof. Let f be an arbitrary element in H%(R"). For each A > 0, let f = ¢* + > b? be
the Calderon-Zygmund decomposition of f of degree m(y), and height A associated with

f#. Then by Lemma 3.5.2 and Lemma 3.5.3, g* € L7 (R") N Hy (R"), moreover,

[etw 6~ ez [ ot fwpa o

R fr(x)>A

as A — oo. Consequently, ||g* — f||z2 — 0 as A = oo by Lemma 3.4.2. Thus L7 RN
Hf (R™) is dense in HE (R™). O

3.5.3 The atomic decompositions H? (R")

Recall that m,s > m(p), and f is a distribution such that f} € L?(R"™). For each k € Z,
let f=g"+> ; bé? be the Calderén-Zygmund decomposition of f of degree s and height 2*
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associated with f;. We shall label all the ingredients in this construction as in subsection

3.5.2, but with superscript k's: for example,

QF = {x e R™: f*(z) > 2*}, bf:(f—Pf) j’»“, B]l-“:B(:E]? )

m J7° 7

Moreover, for each k € Z, and i, j, let Pf;’l be the orthogonal projection of (f—Pf“)Cf
onto Py with respect to the norm associated to Cf“, namely, the unique element of P,
such that for all Q € P,

k1 k k+1 _ k+1 k+1
(@) - P @)t @@ @ = [ P @)Q@)e @)
R™ R"
For convenience, we set 3;“ = B(a%,2rF). Then we have the following lemma.

Lemma D (see [51], Chapter 3). i) If f?;““ N BF #£ 0, then r?’“ < 4rF and Bf“ C
B(x¥ 18rF).

it) For each j there are at most L (depending only on n as in last section) values of i such
that B¥*1  BF # 0.

iii) There is a constant C' > 0, independent of f,i,7, and k, such that

sup [Pl (@) ()] < 029

w) For every k € Z, 3 ,(3_; PEFICE) = 0, where the series converges pointwise and in

S'(R™). ’

We now give the necessary estimates for proving that H?(R™) c HZ°°(R"), m >

s > m(yp), and the inclusion is continuous.

Lemma 3.5.4. Let f € H?(R"™), and for each k € Z, set

OF = {z e R™: fr(z) > 2F}.

m

Then for any XA > 0, there exists a constant C', independent of f and X\, such that

kz @(Qk,%> < Cﬂ!@(m, fﬁz)(\x)>dx

=—o00

Proof. Let p € (0,i(¢)) and C, is such that (3.1) holds. We now set Ny = [(log, C,)/p]+1
so that 2MoP > (. For each ¢ € N,0 < ¢ < Ny — 1, we consider the sequence Uf, =
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Nok+2£ . . .
S go(QNok“ 20 ) Obviously, {U’ }.en is an increasing sequence. Moreover, for
any m € N,

= 3 el ) ¢ 38 (e ) (e B0
m k:_m ) A — Y A ) A
2No(m+1)+£ 2N0(—m)+€
< Cogp{ Ut + o (@004, S g (@200, T o
I B WL
k=— mQN0k+1f\QNO(k+1)+e
<

ng:prl + <2% + 1) /gp(:v, f*mT@)>dx

Rn

This implies that U, < W Jan ( Im /\(x)>dx. Consequently,

S 2y = fon()
k 4 < m
3o F) = X m i< [o(n )i
— oo i
where C' = #]\g,\,@ independent of f and A. O]

Theorem 3.5.2. Let m > s > m(yp). Then, HZ(R™) C HZ**(R™) and the inclusion is

continuous.

Proof. Suppose first that f € L7 | (R") N Hy (R") for some ¢ € (q(p),00). Let f =
g* + >, b be the Calderén-Zygmund decompositions of f of degree s with height 2%, for
k € Z associated with f*. By Proposition 3.5.3, ¢* — f in H?(R") as k — oo, while
by Lemma 4.10 of [20], ¢* — 0 uniformly as k — —oo since f € Li(.71)(R”). Therefore,
f=3%_(¢"" —g¢*) in &'(R"). Using Lemma 3.27 of [51] together with the equation
> CEVET = xub T = B! by suppbi Tt € QFFL C QF, we get

g =gt = (- ) - —Zb’?
- Zblf ]_ Zbk+1 +Zzpk+1 k+1
_ Z [bf _ Z (Ci b?“ Rk;rlcjkﬂﬂ
i J
= > uf
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where all the series converge in §'(R™) and almost everywhere. Furthermore,
BE = (f = PO =30 ((f = PEFGE = Pl (3.9)
J
From this formula it is obvious that [, hf(z)P(z)dz = 0 for all P € P,. Moreover,
hf — CkfX Qi) Pka + Ckz Pk+1ck+1 + Z Pk+1ck+1 by Zj g]k-‘rl = Yokt But

|f(2)| < C(m)fr(z) < O2F+ for almost every z € (2571)¢, so by Lemma 3.8 and (3.26)
of [51], and Y. M1 < L,

|hE || Lo < C2FHY 4 C2F + CL2M + O L2M < O2F, (3.10)

Lastly, since P/ = 0 unless B¥ N B # (, it follows from (3.9) and Lemma 3.24
of [51], that h¥ is supported in B(z¥,18rF). Thus hF is a multiple of (i, 0o, s)-atom.
Moreover, by (3.10) and Lemma 3.5.4, for any A > 0,

PN ( o, 18r%) ”hi”””) < N Lp(QF, 025/

keZ i keZ
< C/w(x,fme>dw<oo.
RTL

Thus the series Y, >, k¥ converges in H7°*(R") and defines an atomic decompo-
sition of f. Moreover,

k - *
>3 o(Blk 180} |:|]}||”§w> < CR[“"@’%)“

k€EZ 1

< C.

Consequently, || f| geoos < Aso({R]}) < C||f|l e, by Lemma 3.4.3.

Now, let f be an arbitrary element of Hf (R™). There exists a sequence {f;}r>1 C
Le oy (R") N HE(R™) such that f = Yoy foin HZ(R™) (thus in S'(R™)) and || fel|ge <
2274 f|l e for any ¢ > 1. For any ¢ > 1, let f, = > bje be the atomic decomposition
of f;, with supp b;, C Bj, constructed above. Then f = > °, Zj bj¢ is an atomic

decomposition of f, and

10.6l| = 1.¢l]
ZZ <”’ s ) = ZZ“<Bj’Z’2f—2||fe||Hﬁ>

IN
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)
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where C), is such that (3.1) holds. Thus f € HZ°°(R™), moreover,

[fllmges < Asc({bjie}) < Cllfmg,
by Lemma 3.4.3. This completes the proof. n
Proof of Theorem 3.3.1. By Theorem 3.5.1 and Theorem 3.5.2, we obtain
HES(RT) € HE™(R) € HZ"™ 7 (RY) € HP(R") € HE(R") C HE™"(R")

and the inclusions are continuous. Thus H¥(R") = HZ"*(R") with equivalent norms. []

3.6 Dual spaces

In this section, we give the proof of Theorem 3.3.2. In order to do this, we need the below
lemma, which can be seen as a consequence of the fact that o(-,t) is uniformly locally

integrable. We omit the details here.

Lemma 3.6.1. Given a ball B, and {B;}; be a sequence of measurable subsets of B such
that lim |B;| = 0. Then the following holds
Jj—o0

Bt
llmsupso( I )zO
] >0 (p(Bat)

We next note that if b € BMO?(R") is real-valued and

N if b(z) >N
by(z) = ¢ b(z) if |b(z)] <N,
—N if b(z) < —N,

then by using the fact

1]l sat0e < sup (//u y)ldedy < 2| f |l saro-.
nmmwm

B—ball

we obtain that ”bNHBMO“’ < 2||bHBMO9° for all N > 0.

Proof of Theorem 3.3.2. i) It is sufficient to prove it for b € BMO¥(R") real-valued
since b € BMO?(R"™) iff b = by +iby with b; € BMO?(R") real-valued, j = 1, 2, moreover

6]l Brroe = [|b1]| Broe + [|b2]| Baros-
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Suppose first that b € BMO¥(R™) N L>°(R"). Then, the functional

/f

is well defined for any f € LF(R™) since b € L{ .(R™).

Furthermore, since f € L°(R™) C L*(R"™) N H'(R"), we remark that the atomic
decomposition f =", , > h¥ in the proof of Theorem 3.5.2 is also the classical atomic
decomposition of f in H*(R™), so that the series converge in H'(R") and thus in L'(R"™).
Combining this with the fact b € L>*(R™), we obtain

= [ e = 33 [ i
R keZ ? R"
Therefore, by Lemma 3.4.4 and the proof of Theorem 3.5.2,

Ll =| [f@p@i| < 30| [#e

keEZ 1 R

- Z Z ‘ / hf(x)(b(@ - bB(foSrf)@))dx

ez B(z¥,18rF)

< 6llsaor D B Xk 15 lle
keZ 1
< C|lbllsmorAsc({h]})

< Clbllpasor| f e

Now, let b be an arbitrary element in BMO?(R™). For any f € LF(R"™), it is clear
that |fbs| < |fb| € L'(R") for every ¢ > 1, and f(z)b,(z) — f(z)b(z), as £ — oo, for
almost every x € R". Therefore, by the dominated convergence theorem of Lebesgue, we

obtain

Ll |—{/f dx—hm\/f Jor(a)da| < Clolsrorl Sl

since ||bel| srroe < 2[|b|| paow for all £ > 1.

Because of the density of Li°(R") in H¥(R"), the functional L, can be extended to a
bounded functional on H¥(R™), moreover, ||Lg| ey < C/||b|lsrmoe.

ii) Conversely, suppose L is a continuous linear functional on H?(R") = HH*°(R")
for some ¢ € (g(),00). For any ball B, denote by L ;(B) the subspace of L(B) defined
by

LY o(B) == feLq /f :z:—()
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Obviously, if By C By then
Li(Bl) - L?O(BQ) and L?O,O(Bl) - L(,qo,O(BZ)' (311)

Moreover, when f € LI ((B) \ {0}, a(z) = ||XB||Z;||f||Zé(B)f(x) is a (¢, ¢,0)-atom, thus
f e H7"(R™) and

1l geeo < lIxsllzelflles)-
Since L € (HS*°(R™))*, by the above,

L] < 1Ll ooy 1 Lo < 1l grsoo- Ixallzel Flza,

for all f € LY ,(B). Therefore, L provides a bounded linear functional on L ,(B) which
can be extended by the Hahn-Banach theorem to the whole space L (B) without increas-

ing its norm. On the other hand, by Lemma 3.6.1 and Lebesgue-Nikodym theorem, there
exists h € L'(B) such that

L(f) = [ f(z)h(x)dz,
/
for all f € LY ((B), and thus f € L, (B) since Ly (B) C LY (B).

We now take a sequence of balls {B,};>; such that By C By C --- C B; C --- and
U;B; = R". Then, there exists a sequence {h;};>1 such that

hye L'(B;) and L(f) = / F(@)hy(2)da,
for all f € L=(B;),j = 1,2, .. Hence, for all f € i;‘fo(Bl) C L%0(By) (by (3.11)),
[ F@ (o) = bata)ds = [ f@hi(e)ds ~ [ fahalade = L(7) - () =0.
As H;Bl — 0if f € LZ(By), we Eave R
[ ) () = ) = (s~ By Yo =0

for all f € Ly (B1), and thus for f € L(B;). Hence,
hi(z) — ho(z) = (b1 — h2)pB, , a.e x € By.
By the similar arguments, we also obtain

hj(x) = hjyi(x) = (hj — hjt1)B, (3.12)
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a.e x € Bj,j = 2,3, ... Consequently, if we define the sequence {Ej}jzl by

7L1 = hl
%j—l—l = hjq1 + (ﬁ] —hj)s, , J=1,2,..

then it follows from (3.12) that

Ej < Ll(B]) and hj+1($) = h](x)

a.ex € Bj,j=1,2,... Thus, we can be define the function b on R" by

if x € B; for some j > 1 since By C By C--- C B; C --- and U;B; = R".
Let us now show that b € BMO?(R™) and

:/f(x)b(m)dm
R
for all f € LF(R™).

Indeed, for any f € L§°(R"), there exists j > 1 such that f € L(B;). Hence,

/f dx—/f dx—/f

On the other hand, for all ball B, one consider f = sign(b — bp) where sign¢ = £/[¢|
if £ # 0 and sign0 = 0. Then,

o= 3l (f — fo)xs

is a (p, 00, 0)-atom. Consequently,

L@l = Sl / b(x)(f(2) — o) (x)de]

S / (b(2) — bi) f(2)de]

2 |Ixsllze
B

1 1 /
= ———— [ |b(x) — bp|dz
3Tl ) 07

IN
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since L € (H?(R"))* and Corollary 5.2. As B is arbitrary, the above implies b €
BMO?¥(R"™) and
16l Basoe < Cl[ Ll zrey--

The uniqueness (in the sense b = bifb—b= const) of the function b is clear. And
thus the proof is finished. n

3.7 The class of pointwise multipliers for BMO(R")

In this subsection, we give as an interesting application that the class of pointwise multi-
pliers for BMO(R") is just the dual of L!(R™)+ H'¢(R") where H'°8(R") is a Hardy space
. . . . . . t
of Musielak-Orlicz type related to the Musielak-Orlicz function 6(z,t) = ToaeT o) ToaerD) "

We first introduce log-atoms. A measurable function a is said to be log-atom if it

satisfies the following three conditions

e ¢ supported in B for some ball B in R”,
log(e + ﬁ) + sup,p log(e + |z|)

o llafl < 5 ,

o [ona(z)dz =0.

To prove Theorem 3.3.3, we need the following two propositions.

Proposition 3.7.1. There exists a positive constant C' such that if f is a 0-atom (resp.,

log-atom) then C~1f is a log-atom (resp., 0-atom,).

Proposition 3.7.2. On BMO"8(R"™), we have

log(e + ) + sup,ep log(e + |z[)
| flBarores = sup

B—ball ]B‘ /|f(~’17) - fB|d£U < 00.

B

We first note that 6 is a growth function that satisfies ng(6) < (n+1)i(¢) in Theorem
3.3.2. More precisely, # € A; and 6(z, -) is concave with i(0) = 1.

Proof of Proposition 3.7.1. Let f be a log-atom. By the above remark, to prove that
there exists a constant C' > 0 (independent of f and which may change from line to line)
such that C~1f is a f-atom, it is sufficient to show that there exists a constant C' > 0
such that .

/9(:]5, log(e + ) + S;)'xeg log(e + |z)

)deC

B
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or, equivalently,

log(e-i—ﬁ)—ﬁ—supzeB log(e+|x|)
|B|

log(e+ 17 )+sup, ¢ g log(e+|z|

|B| < C,

since # € A,. However, the last inequality is obvious.
Conversely, suppose that f is a §-atom. Similarly, we need to show that there exists
a constant C' > 0 such that
log(e + \Ta) + sup, log(e + |z])
e(x, C 5

>d:r >1
B
or, equivalently,

log(e+ 557)+sup,.c g log(e+|x])

¢ |B]

log(e+157)+sup,¢ g log(e+|x|)
5] |B|€B ) + sup,cp log(e + |z])

|B| > 1.
log(e +C

However it is true. For instance we may take C' = 3. O]

Proof of Proposition 3.7.2. It is sufficient to show that there exists a constant C' > 0
such that

1
———— |+ sup log(e+]|y|) < C(|logr|+log(e+|z|)).
B )t S los(etly) < C(|logr+log(e[o])

The first inequality is easy and shall be omited. For the second, one first consider the

C~Y(|log r|+log(e+|z])) < log (e—l—

1 dimensional case. Then by symmetry, we just need to prove that

log(e +1/(b—a)) + sup log(e + |z) < C(|log(b — a)/2| + log(e + |a + b]/2))

z€[a,b]

for all b > 0,a € [—b,b) C R. However, this follows from the basic two inequalities:
log(e +1/(b—a)) < 2(|log(b — a)/2[ + log(e + |a + b] /2))

and
log(e +b) < 5log(e +b)/2 < 5(]log(b — a)/2| + log(e + |a + b]/2)).

For the general case R™, by the 1-dimensional result, we obtain

log <€+Wl’r)’> = C—:;bg <6+ [ —r,la:i+7“]|>

< C) (|logr|+log(e + [zi]))
i—1
< C(|logr| + log(e + |x|))
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where ¢, = |B(0,1)|, and

sup log(e+[y)) < > sup  log(e+ |u)
yeB(z,r) i—1 yi€lzi—r,mi+7]

< C’Z(| log r| + log(e + |z4]))
i=1

< C(|logr| +log(e + |z[))
where © = (z1,...,x,),y = (Y1, ..., Yn) € R"™. This finishes the proof. O

Proof of Theorem 3.3.3. By Theorem 3.3.1, Theorem 3.3.2, Proposition 3.7.1, and
Proposition 3.7.2, we obtain (H'8(R"))* = BMO"8(R"). We deduce that, the class of
pointwise multipliers for BMO(R") is the dual of L'(R™) + H"8(R"). O

3.8 Finite atomic decompositions and their applica-

tions

We first prove the finite atomic decomposition theorem.

Proof of Theorem 3.3.4. Obviously, HY**(R™) C H?(R") and for all f € HZ"*(R"),

1 fllzre < Ol fll o

Thus, we have to show that for every ¢ € (¢(¢),00) there exists a constant C' > 0 such
that

[z < ClLF e
for all f € HZ"°(R™) and that a similar estimate holds for ¢ = co and all f € HZ>*(R")N
C(R™).
Assume that ¢ € (¢(p),o0], and by homogeneity, f € HE*(R™) with ||f||ge = 1.

Notice that f has compact support. Suppose that supp f C B = B(zg,r) for some ball
B. Recall that, for each k € Z,

O = {z e R™: f*(x) > 2"}

Clearly, f € LZ(‘ 1)(R") NH?(R"™) where § = q if ¢ < 00, § = q(p)+ 1 if ¢ = co. Hence,
by Theorem 3.5.2, there exists a atomic decomposition f =Y, , > h¥ € HL™*(R") C

HZ"*(R™) where the series converges in S’'(R") and almost everywhere. Moreover,

A ({h}) < Asc({Ri}) < Cllfllme = C. (3.13)
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On the other hand, it follows from the second step in the proof of Theorem 6.2 of [20]
that there exists a constant C' > 0, depending only on m(y), such that f*(z) < C ing f*(y)
ye

for all x € B(xo,2r)°. Hence, we have
fz) < 5;22 () < Clxsl g1 llze < Clixsllz!

for all € B(xo, 2r)¢. We now denote by k the largest integer k such that 2% < C||x 572
Then,
O C B(wg,2r) forall k > k. (3.14)

Next we define the functions g and ¢ by

g:Zth and EzZth,

k<k' i k> i

where the series converge in §’'(R"™) and almost everywhere. Clearly, f = ¢g + ¢ and supp
0 C Upsi C B(xo,2r) by (3.14). Therefore, g = f = 0 in B(xo,2r)¢, and thus supp
g C B(xg,2r).

Let 1 <g< ﬁ, then ¢ € A,;/7. Consequently,

1/q

(g [ )" < | s [1r@ppte i | <o

by Lemma 3.4.5 if ¢ < oo and it is trivial if ¢ = co. Observe that supp f C B and that
f has vanishing moments up to order s. By the above, we obtain that f is a multiple of
a classical (1, ¢, 0)-atom and thus f* € L'(R"). Hence, it follows from (3.14) that

[ X3 b @)atlde < Caal +20)° 3 2440 < Ol + 207l < o0,

Rn k>E 4 k>E

for all |o] < s. This together with the vanishing moments of h¥ implies that ¢ has
vanishing moments up to order s and thus so does g by g = f — (.

In order to estimate the size of g in B(xg, 2r), we recall that

|AF|| e < C2% | supp h¥ € B(2¥, 187%) and ZXB(xf,lSrf) < C. (3.15)

Combining the above and the fact || xg||ze = [|[XB(zo,2r)|| ¢, We obtain

lgllz < €Y 2" < C2% < CClIxalizt < Cllixsieoenllzh:
k<K'
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This proves that (see Definition 3.2.4)
C~'g is a (p,00,s)—atom. (3.16)

Now, we assume that ¢ € (g(¢),00) and conclude the proof of (i). We first verify
> how 2o by € LL(B(x0,2r)). For any 2 € R", since R" = Ugez(Q \ Qiq1), there exists
J € Z such that x € Q; \ Q;11. Since supp h¥ C Q C Q41 for k > j + 1, it follows from
(3.15) that

SN @) <0 2h < 02 < Cf(a).
k>k i k<j

Since f € LL(B) C LL(B(wo,2r)), we have f* € Li(B(w,2r)). As ¢ satisfies uni-
formly locally dominated convergence condition, we further obtain ), _,, > h¥ converges
to £ in LL(B(wo,2r)).

Now, for any positive integer K, set Fx = {(i,k) : k > K,|i| + |k|] < K} and
Uk = X iner h;. Observe that since Y, ., >, hy converges to ¢ in L&(B(xo,2r)),
for any ¢ > 0, if K is large enough, we have e }(¢ — () is a (p,q,s)-atom. Thus,
f=g+lx+({—Lk) is a finite linear atom combination of f. Then, it follows from (3.13)
and (3.16) that

[ fllzz.0e < C(C+ Ag({hi Y imer) +€) < C,
which ends the proof of (i).

To prove (ii), assume that f is a continuous function in H{**(R™), and thus f
is uniformly continuous. Then, h¥ is continuous by examining its definition. Since f
is bounded, there exists a positive integer k” > k' such that €, = 0 for all & > k”.
Consequently, £ =Y, > hE.

Let € > 0. Since f is fmiforrnly continuous, there exists ¢ > 0 such that if |z —y| <,
then |f(x) — f(y)| < e. Write £ = {5 + (5 with

6= > b and L= > N
(i,k)EF1 (i,k)EF>

where Fy = {(i,k) : CrF > 5K < k <K'} and Fy = {(i,k) : CrF < 6,k < k < K"}
with C' > 36 the geometric constant (see [106]). Notice that the remaining part ¢5 will
then be a finite sum. Since the atoms are continuous, ¢ will be a continuous function.
Furthermore, [[£5]|L~ < C(k” — k')e (see also [106]). This means that one can write ¢ as
the sum of one continuous term and of one which is uniformly arbitrarily small. Hence, ¢
is continuous, and so is g = f — /.

To find a finite atomic decomposition of f, we use again the splitting ¢ = ¢ + (5. By

(3.13), the part ¢5 is a finite sum of multiples of (p, 00, s)-atoms, and

165 mg=e < Ao({Ri}) < Cllfllme = C. (3.17)
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By ¢, ¢5 are continuous and have vanishing moments up to order s, and thus so does
05 = ¢ — (5. Moreover, supp (5 C B(xo,2r) and ||[f5||z~ < C(k” — k')e. So we can choose
¢ small enough such that ¢§ into an arbitrarily small multiple of a continuous (i, 0o, s)-
atom. Therefore, f = g+ ¢] + 5 is a finite linear continuous atom combination of f.
Then, it follows from (3.16) and (3.17) that

[fllzzgoes < CUllgllagos + 16llagees + 1]l gees) < C.

This finishes the proof of (ii) and hence, the proof of Theorem 3.4.

Next we give the proof for Theorem 3.3.5.

Proof of Theorem 3.3.5. Suppose that the assumption (i) holds. For any f € HZ**(R"),
by Theorem 3.3.4, there exists a finite atomic decomposition f = 2521 Aja;, where a;’s

are multiples of (¢, ¢, s)-atoms with supported in balls B;’s, such that

A(Dya Yy = mf{»o > el %)gl}gcwnm.

Recall that, since ¢ is of uniformly upper type v, there exists a constant C,, > 0 such
that
o(z,st) < C,s7p(z,t) forallz € R", s > 1,t € [0, 00). (3.18)

If there exist jo € {1,..., k} such that C,|\;)|7 > 2?21 |A;|7, then

k _
S (B milmlie ) s o, 1) - 1.
— 0—1/7(2521 |>\J|’y)1/7 — Joo Jo L

j=1

Otherwise, it follows from (3.18) that

k -1 k
M1l Iz ) ] o
) >N (B, x|k = 1.
> ( k >

—1
CN S I ) T

The above means that

b 1/
(S l) " <Ayt < Cllflue.
j=1
Therefore, by assumption (i), we obtain that

r(Ye)| <e(S )" <l
j=1 Jj=1

1T flls, =

B
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Since H{#*(R™) is dense in H?(R"), a density argument gives the desired result.
The case (ii) is similar by using the fact that HY”"°(R")NC(R™) is dense in HZ*™*(R")

in the quasi-norm || - | g, see the below lemma. O
We end the paper by the following lemma.

Lemma 3.8.1. Let ¢ be a growth function satisfying uniformly locally dominated conver-
gence condition, and (¢,00,s) be an admissible triplet. Then, HZ™°(R™) N C*(R™) is

dense in HEO°(R™) in the quasi-norm || - || me.

Proof. We take g € (q(y),00) and ¢ € S(R") satisfying supp ¢ C B(0,1), [g. ¢(z)dz = 1.
Then, the proof of the lemma is simple since it follows from the fact that for every

(i, 00, s)-atom a supported in ball B(zg, ),

1151_{% la = a* ¢l L3,(B(zo.2r)) =0

as ( satisfies uniformly locally dominated convergence condition. O]
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Chapter 4

Bilinear decompositions and
commutators of singular integral

operators

Ce chapitre est un article qui a été accepté a " Transactions of the American Mathematical

Society”.

Résumé

Soit b une BM O-fonction. II est bien connu que le commutateur linéaire [b, 7] d'un
opérateur de Calderén-Zygmund T’ ne constitue pas, en général, un opérateur borné de
H'(R") dans L*(R™). Cependant, Pérez a montré que si H'(R") est remplacé par un sous-
espace approprié atomique Hj (R"), alors le commutateur est continu de H; (R™) & valeurs
L'(R™). Dans cet article, nous trouvons le plus grand sous-espace Hj (R") telle que tous
les commutateurs des opérateurs Calderén-Zygmund sont continus de H} (R™) & valeurs
L*(R™). Certaines caractérisations équivalentes de Hj (R") sont également données. Nous
étudions également les commutateurs [b, 7] pour T dans une classe K des opérateurs
sous-linéaire contenant presque tous les opérateurs importants dans I’analyse harmonique.
Lorsque T est linéaire, nous montrons qu’il existe des opérateurs bilinéaires R = 9 borné
de HY(R") x BMO(R") a valeurs L'(R™) tels que pour tout (f,b) € H'(R") x BMO(R"),
nous avons

[b, T](f) = R(f,b) + T(&(f,b)), (4.1)
olt & est un opérateur borné bilinéaire de H'(R™)x BMO(R") & valeurs L' (R"), indépendant

de T'. Dans le cas particulier ou 7" est un opérateur de Calderén-Zygmund satisfaisant
T1=T*1=0etbdans BMO"(R")-'espace généralisé de type BMO qui a été introduit
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par Nakai et Yabuta pour caractériser les multiplicateurs de BMO(R™)-nous démontrons
que le commutateur [b, T'] est continu de H}(R") a valeurs h'(R"). En outre, si b est dans
BMO(R") et T*1 = T*b = 0, alors le commutateur [b, 7] envoie H}(R") dans H'(R").
Lorsque T est sous-linéaire, nous montrons qu’il existe un opérateur borné sous-bilinéaire
R =Ry : H(R") x BMO(R™) — L'(R"™) tel que pour tout (f,b) € H'(R") x BMO(R™),

nous avomns

IT(S(f,0)| = R(f,0) < [[b, TI(N)] < R(S,0) + [T(S(f,))]. (4.2)

La décomposition bilinéaire (4.1) et la décomposition sous-bilinéaire (4.2) nous perme-

ttent de donner un apercu général de toutes les estimations L' faibles ou fortes connues.
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4.1 Introduction

Given a function b locally integrable on R", and a Calderén-Zygmund operator 1T', we
consider the linear commutator [b, T'| defined for smooth, compactly supported functions
f by

b, T|(f) =bT(f) = T(bf).

A classical result of R. Coifman, R. Rochberg and G. Weiss (see [31]), states that
the commutator [b, 7] is continuous on LP(R") for 1 < p < oo, when b € BMO(R").
Unlike the theory of Calderén-Zygmund operators, the proof of this result does not rely
on a weak type (1,1) estimate for [b,T]. In fact, it was shown in [119] that, in general,
the linear commutator fails to be of weak type (1,1), when b is in BMO(R™). Instead,
an endpoint theory was provided for this operator. It is well-known that any singular
integral operator maps H'(R") into L!'(R"). However, it was observed in [62] that the
commutator [b, H] with b in BMO(R), where H is Hilbert transform on R, does not map,
in general, H'(R) into L'(R). Instead of this, the weak type estimate (H', L') for [b, T
is well-known, see for example [96, 101, 139]. Remark that intuitively one would like to

write
0.71(F) = 3- My(b = b3, )T(a) = T( 3 A0~ by ).

where f = Zj; Aja; a atomic decomposition of f and bp; the average of b on B;. This

is equivalent to ask for a commutation property

> AsbiT(a;) = T(D- Aba,as). (4.3)
p =1

Even if most authors, for instance in [96, 101, 139, 146, 90, 137, 95], implicitely use
(4.3), one must be careful at this point. Indeed, the equality (4.3) is not clear since the
two series » 22 Ajbp,T(a;) and Y 77, A\jbp;a; are not yet well-defined, in general. We
refer the reader to [19], Section 3, to be convinced that one must be careful with Equality
(4.3).

Although the commutator [b, T does not map continuously, in general, H'(R") into
L'(R™), following Pérez [119] one can find a subspace H; (R™) of H'(R"™) such that [b, T
maps continuously H; (R") into L*(R™). Recall that (see [119]) a function a is a b-atom if

i) supp a C @ for some cube @,

if) flallz~ < |QI7

iii) [p. a(z)dz = [, a(x)b(z)dz = 0.

The space H} (R™) consists of the subspace of L'(R") of functions f which can be written

as f =) 7, \ja; where a; are b-atoms, and \; are complex numbers with 3 77 | [A;] < oo.
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In [119] the author showed that the commutator [b, T] is bounded from Hj(R") into
L'(R™) by establishing that

sup{||[b, T|(a)||z: : ais a b—atom} < oo. (4.4)

This leaves a gap in the proof which we fill here (see below). Indeed, as it is pointed out in
[19], there exists a linear operator U defined on the space of all finite linear combination

of (1, 00)-atoms satisfying
sup{||U(a)||z1 : ais a(1,00)—atom} < oo,

but which does not admit an extension to a bounded operator from H'(R") into L'(R™).
From this result, we see that Inequality (4.4) does not suffice to conclude that [b, T is
bounded from H}(R") into L*(R™). In the setting of H'(R™), it is well-known (see [105]
or [144] for details) that a linear operator U can be extended to a bounded operator from
H'(R") into L'(R") if for some 1 < ¢ < oo, we have

sup{||U(a)||z: : ais a(1,q)—atom} < oo.

It follows from the fact that the finite atomic norm on Hy(R") is equivalent to the

standard infinite atomic decomposition norm on H,;?(R™) through the grand maximal

ato

function characterization of H'(R™). However, one can not use this method in the context
of H(R™).

Also, a natural question arises: can one find the largest subspace of H'(R") (of
course, this space contains Hj (R™), see also Theorem 4.5.2) such that all commutators
b, T] of Calderén-Zygmund operators are bounded from this space into L'(R™)? For
b € BMO(R™), a non-constant function, we consider the space H}(R") consisting of all
f € HY(R") such that the (sublinear) commutator [b, 9] of f belongs to L*(R™) where
9 is the nontangential grand maximal operator (see Section 2). The norm on H}(R™)
is defined by |||z := |/l z: 16| Baro + (1[0, 9)(f)[| 1. Here we just consider b is a non-
constant BM O-function since the commutator [b, 7] = 0 if b is a constant function. Then,
we prove that [b, T] is bounded from H}(R") into L'(R™) for every Calderén-Zygmund
singular integral operator T' (in fact it holds for all T" € K, see below). Furthermore,
H}(R™) is the largest space having this property (see Remark 4.5.1). This answers the
question above. Besides, we also consider the class IC of all sublinear operators 7', bounded
from H'(R") into L'(R"), satisfying the condition

1(b = bg)Tall < Clbllsaro
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for all BMO-function b, H'-atom a related to the cube (). Here by denotes the average
of bon (), and C > 0 is a constant independent of b, a. This class K contains almost all
important operators in harmonic analysis: Calderén-Zygmund type operators, strongly
singular integral operators, multiplier operators, pseudo-differential operators, maximal
type operators, the area integral operator of Lusin, Littlewood-Paley type operators,
Marcinkiewicz operators, maximal Bochner-Riesz operators, etc... (See Section 4). When
T is linear and belongs to K, we prove that there exists a bounded bilinear operators
R =Ry : H(R") x BMO(R") — L'(R") such that for all (f,b) € H'(R") x BMO(R"),

we have the following bilinear decomposition

[b, T1(f) = R(f,b) + T(&(f,0)), (4.5)
where & is a bounded bilinear operator from H'(R") x BMO(R") into L'(R"™) which does

not depend on T (see Section 3). This bilinear decomposition is strongly related to our
previous result in [14] on paraproduct and product on H'(R™) x BMO(R™).

We then prove that [b, T] is bounded from H}(R") into L'(R") (see Theorem 4.3.3) via
Bilinear decomposition (4.5) (see Theorem 4.3.2) and some characterizations of H}(R")
(see Theorem 4.5.1). Furthermore, by using the weak convergence theorem in H'(R™) of
Jones and Journé, we prove that H}(R") C H}(R") (see Theorem 4.5.2). These allow us
to fill the gap mentioned above in [119].

On the other hand, as an immediate corollary of Bilinear decomposition (4.5), we also
obtain the weak type estimate (H', L') for the commutator [b, T'|, where T is a Calderén-
Zygmund type operator, a strongly singular integral operator, a multiplier operator or
a pseudo-differential operator. We also point out that weak type estimates and Hardy
type estimates for the (linear) commutators of multiplier operators and of strongly sin-
gular Calderén-Zygmund operators have been studied recently (see [146, 90, 137] for the
multiplier operators and [95] for strongly singular Calderén-Zygmund operators).

Next, two natural questions for Hardy-type estimates of the commutator [b, T| arised:
when does [b, T] map H}(R") into h'(R") and when does [b, T| map H}(R") into H'(R™)?

This paper gives two sufficient conditions for the above two questions. Recall that
BMO"8(R"™) ~the generalized BMO type space that has been introduced by Nakai and
Yabuta [116] to characterize multipliers of BMO(R")- is the space of all locally integrable

functions f such that

1 Fllparoes = sup 110871+ 1os(e + |al)

’f([E) - f a,r |d[E < Q.
B(a,r) |B(CI,, T)| / Blar)

B(a,r)
We obtain that if 7" is a Calderén-Zygmund operator satisfying 71 = 7T*1 = 0 and
b is in BMO"8(R"), then the linear commutator [b,7] maps continuously H}(R") into
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h'(R™). This gives a sufficient condition to the first problem. For the second one, we
prove that if T is a Calderén-Zygmund operator satistying 7*1 = T7*b = 0 and b is in
BMO(R™), then the linear commutator [b, 7] maps continuously H}(R") into H*(R").

A difficult point to prove the first result is that we have to deal directly with f &
H}(R™). Tt would be easier to do it for atomic type Hardy spaces as in the case of
Hi(R"). However, we do not know whether there exists an atomic characterization for
the space H} (R™). This is still an open question.

Let X be a Banach space. We say that an operator 7' : X — L'(R") is a sublinear
operator if for all f,g € X and a, 8 € C, we have

[T (eef + Bg)(@)| < lal[Tf(x)] + [B]|Tg(x)].

Obviously, a linear operator T' : X — L!(R") is a sublinear operator. We also say
that a operator T : H'(R") x BMO(R") — L*(R™) is a subbilinear operator if for all
(f,9) € HY(R") x BMO(R"™) the operators T(f,-) : BMO(R") — L'(R") and %(-, ) :
H'(R") — L'(R") are sublinear operators.

In this paper, we also obtain the subbilinear decomposition for sublinear commutator.
More precisely, when T" € K is a sublinear operator, we prove that there exists a bounded
subbilinear operator R = Ry : H'(R") x BMO(R") — L'Y(R") so that for all (f,b) €
H'(R") x BMO(R™), we have

IT(S(f,0))| = R(f,0) < [[b, TI(N)] < RS, 0) + [T(S(f,b))]. (4.6)

Then, the strong type estimate (H}, L') and the weak type estimate (H', L') of the com-
mutators of Littlewood-Paley type operators, of Marcinkiewicz operators, and of maximal
Bochner-Riesz operators, can be viewed as an immediate corollary of (4.6). When H}} (R")
is replaced by H; (R™), these type of estimates have also been considered recently (see for
example [97, 25, 102, 99, 100, 98]).

Let us emphasize the three main purposes of this paper. First, we want to give the
bilinear (resp., subbilinear) decompositions for the linear (resp., sublinear) commutators.
Second, we find the largest subspace of H'(R") such that all commutators of Calderén-
Zygmund operators map continuously this space into L'(R"). Finally, we obtain the
(H},h') and (H}, H') type estimates for commutators of Calderén-Zygmund operators.

Our paper is organized as follows. In Section 2 we present some notations and prelim-
inaries about the Calderén-Zygmund operators, the function spaces we use, and a short
introduction to wavelets, a useful tool in our work. In Section 3 we state our two de-
composition theorems (Theorem 4.3.1 and Theorem 4.3.2), the (H}, L') type estimates

for commutators (Theorem 4.3.3), and some remarks. The bilinear type estimates for
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commutators of Calderén-Zygmund operators (Theorem 4.3.4) and the boundedness of
commutators of Calderén-Zygmund operators on Hardy spaces are also given in this sec-
tion. In Section 4 we give some examples of operators in the class I and recall our result
from [14] which decomposes a product of f in H'(R") and g in BMO(R") as a sum of
images by four bilinear operators defined through wavelets. These operators are funda-
mental for the two decomposition theorems. In Section 5 we study the space H}(R").
Section 6 and 7 are devoted to the proofs of the two decomposition theorems, the (H}}, L')
type estimates of commutators [b, 7] with T € K, and the boundedness results of commu-
tators of Calderon-Zygmund operators. Finally, in Section 8 we present without proofs
some results for commutators of fractional integrals.

Throughout the whole paper, C' denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line. In R", we denote
by Q@ = Qz,7] == {y = (y1,..,yn) € R" : sup;;c,, [ys — ;| < r} a cube with center
x = (x4, ...,z,) and radius r > 0. For any measurable set E, we denote by x g its charac-
teristic function, by |F| its Lebesgue measure, and by E° the set R" \ E. For a cube @
and f a locally integrable function, we denote by fo the average of f on Q).

Acknowledgements. The author would like to thank Prof. Aline Bonami for many
very valuable suggestions, discussions and advices to improve this paper. Specially, The-
orem 4.3.6 is an improvement from the previous version through her ideas. He would also
like to thank Prof. Sandrine Grellier for many helpful suggestions, her carefully reading

and revision of the manuscript. The author is deeply indebted to them.

4.2 Some preliminaries and notations

As usual, S(R™) denotes the Schwartz class of test functions on R", §'(R"™) the space of

tempered distributions, and C§°(R™) the space of C*°-functions with compact support.

4.2.1 Calderéon-Zygmund operators

Let § € (0,1]. A continuous function K : R” x R"\ {(x,z) : z € R"} — C is said to be a

0-Calderén-Zygmund singular integral kernel if there exists a constant C' > 0 such that

K z,y S I
|ZL‘ —fL’/|(s

, /
— - < 1y — of|n46
K (o) = K@)l + K () = Ky o) < Op =
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for all 2|x — /| < |x — y|.

A linear operator 7' : S(R™) — S’(R") is said to be a J-Calderén-Zygmund operator
if T can be extended to a bounded operator on L*(R™) and if there exists a §-Calderén-
Zygmund singular integral kernel K such that for all f € C§°(R"™) and all = ¢ supp f, we
have

Tf(z) = / K (2, 9)f(y)dy.

We say that T is a Calderén-Zygmund operator if it is a d-Calderéon-Zygmund operator
for some 0 € (0, 1].

We say that the Calderén-Zygmund operator T satisfies the condition T7%1 = 0 (resp.,
T1=0)if [, Ta(z)dr =0 (resp., [y, T*a(x)dz = 0) holds for all classical H'-atoms a.
Let b be a locally integrable function on R™. We say that the Calderéon-Zygmund operator
T satisfies the condition T*b = 0 if [, b(z)Ta(x)dz = 0 holds for all classical H'-atoms
a.

4.2.2 Function spaces
We first consider the subspace A of S(R™) defined by

A= {¢ € S(R™) : |p(x)| + |[Vo(z)| < (1 + ‘xyz)f(nﬂ)},
where V = (9/0xy, ...,0/0x,) denotes the gradient. We then define

Mf(x):=sup sup |f*x¢(y)] and mf(z):=sup sup |f*di(y)l,

PEA ly—z|<t oA |y—z|<t<l

where ¢;(-) = t™"¢(t7!:). The space H'(R") is the space of all tempered distribu-
tions f such that Mf € L'(R") equipped with the norm ||f| gz = ||9f||z:. The
space h'(R™) denotes the space of all tempered distributions f such that mf € L'(R")
equipped with the norm || f|[,1 = ||mf||z:. The space H'°5(R") (see [81, 14]) denotes the
space of all tempered distributions f such that M f € L°¢(R") equipped with the norm

| Il oz = |9 f || poe. Here L1°8(R™) is the space of all measurable functions f such that

f £ ()]
R™ log(e+[x[)+log(e+|f(z

ypde < oo with the (quasi-)norm

|f ()]

| £l prog := inf /\>0:/ A dr <1

' log(e + |z|) + log(e + @) <

Clearly, for any f € H'(R"), we have

[ llnr < [ flle and (L fllges < (111
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We remark that the local real Hardy space h'(R™), first introduced by Goldberg [56],
is larger than H'(R") and allows more flexibility, since global cancellation conditions are
not necessary. For example, the Schwartz space is contained in A*(R™) but not in H*(R"™),
and multiplication by cutoff functions preserves h'(R™) but not H'(R"). Thus it makes
h*(R™) more suitable for working in domains and on manifolds.

It is well-known (see [48] or [128]) that the dual of H'(R") is BMO(R™) the space of
all locally integrable functions f with

Hﬂmm:w?éﬂ!U@%ﬁﬂﬂ<m%

where the supremum is taken over all balls B. We note Q := [0,1)" and, for f a function
in BMO(R"),
IfllBaro+ = [l fllBrro + | fal-

We should also point out that the space H'°8(R") arises naturally in the study of
pointwise product of functions in H'(R") with functions in BMO(R"), and in the endpoint
estimates for the div-curl lemma (see for example [11, 14, 81]).

In [56] it was shown that the dual of h'(R") can be identified with the space bmo(R"),

consisting of locally integrable functions f with

1
ummﬂw—/m ~ folda + sup /uumm
Bl<1 | B J L 1B|

where the supremums are taken over all balls B.

Clearly, for any f € bmo(R"), we have

| fllevo < | fllsaro+ < C|l f |lbmeo-

We next recall that the space VMO(R") (resp., vmo(R™)) is the closure of C§°(R™) in
(BMO(R™), || - llBao) (resp., (bmo(R™), |- [|mo))- It is well-known that (see [32] and [35])
the dual of VMO(R™) (resp., vmo(R")) is the Hardy space H'(R") (resp., h'(R™)). We
point out that the space VMO(R") (resp., vmo(R™)) considered by Coifman and Weiss
(resp., Dafni [35]) is different from the one considered by Sarason. Thanks to Bourdaud
[18], it coincides with the space VMO(R™) (resp., vmo(R")) considered above.

In the study of the pointwise multipliers for BMO(R"), Nakai and Yabuta [116] in-
troduced the space BMO"8(R"), consisting of locally integrable functions f with

logr +log e—l— a
|l Barores := sup | | lal) / |f(x) = fB(am]de < o0.

B(a,r) |
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There, the authors proved that a function g is a pointwise multiplier for BMO(R") if and
only if g belongs to L>®(R™) N BMO™8(R"). Furthermore, it is also shown in [81] that the
space BMO"8(R") is the dual of the space H'°8(R").

Definition 4.2.1. Let b be a locally integrable function and 1 < g < oo. A function a is
called a (gq,b)-atom related to the cube Q if

i) supp a C @,

i) |lal|ze < QYT

i1) [p a(x)de = [, a(z)b(z)dr = 0.

The space 'H;’Q(R”) consists of the subspace of L'(R") of functions f which can be
written as f = Y77, Aja;, where a;s are (g,b)-atoms, \; € C, and 377, [\j| < 0o. As
usual, we define on H,*(R") the norm

[l i=inf {371 £ =D Nas
Jj=1 j=1

Observe that when ¢ = oo, then the space H,(R") is just the space H,(R") con-
sidered in [119]. Furthermore, H, > (R") C H,(R") C H'(R") and the inclusions are
continuous.

We next introduce the space Hj} (R") as follows.

Definition 4.2.2. Let b be a non-constant BMO-function. The space H}(R") consists
of all f in HY(R™) such that [b, M](f)(z) = M(b(z)f(-) — b(-)f(-))(x) belongs to L*(R™).
We equipped H}(R™) with the norm [ f ey = [ f |l 1Bl azo + ([0, ()| 2

4.2.3 Prerequisites on Wavelets

Let us consider a wavelet basis of R with compact support. More explicitly, we are first
given a C*(R)-wavelet in Dimension one, called v, such that {2//2¢)(2/x — k)}; rez form
an L*(R) basis. We assume that this wavelet basis comes for a multiresolution analysis
(MRA) on R, as defined below (see [107]).

Definition 4.2.3. A multiresolution analysis (MRA) on R is defined as an increasing
sequence {V;}jez of closed subspaces of L*(R) with the following four properties

i) mjeZ Vi = {0} and UjeZ Vi = LQ(R)J

i) for every f € L*(R) and every j € Z, f(x) € V; if and only if f(2x) € Vj i1,

iii) for every f € L*(R) and every k € Z, f(x) € Vy if and only if f(x — k) € Vj,

iv) there exists a function ¢ € L*(R), called the scaling function, such that the family
{or(x) = ¢p(x — k) : k € Z} is an orthonormal basis for Vj.
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It is classical that, given an (MRA) on R, one can find a wavelet ¢ such that
{29/24)(27x — k) }rez is an orthonormal basis of Wj, the orthogonal complement of V; in
Vit1. Moreover, by Daubechies Theorem (see [36]), it is possible to find a suitable (MRA)
so that ¢ and ¢ are C'(R) and compactly supported, ¢ has mean 0 and [ 21 (z)dz = 0,
which is known as the moment condition. We could content ourselves, in the following
theorems, to have ¢ and 1 decreasing sufficiently rapidly at oo, but proofs are simpler
with compactly supported wavelets. More precisely we can choose m > 1 such that ¢ and
¢ are supported in the interval 1/2 +m(—1/2,+1/2), which is obtained from (0,1) by a
dilation by m centered at 1/2.

Going back to R™, we recall that a wavelet basis of R is constructed as follows. We call
E theset £ ={0,1}"\{(0,---,0)} and, for ¢ € E, put ¢?(z) = ¢7*(21) - - - ¢"*(x,), with
¢%(z;) = ¢(z;) for o; = 0 while ¢ (x;) = ¥p(z;) for o; = 1. Then the set {2%/2¢)7 (2/z —
k)}jez kezn ek is an orthonormal basis of L*(R™). As it is classical, for I a dyadic cube
of R", which may be written as the set of z such that 27z — k € (0,1)", we note

Y9 (x) = 2M/27 (2 — k).

We also note ¢; = 2”j/2¢(071)n(2jx — k), with ¢(g1)» the scaling function in n variables,
given by ¢ 1) (2) = ¢(x1) - ¢(x,). In the sequel, the letter I always refers to dyadic
cubes. Moreover, we note kI the cube of same center dilated by the coefficient k. Because
of the assumption on the supports of ¢ and 1, the functions ¢f and ¢; are supported in
the cube m1.

The wavelet basis {17}, obtained by letting I vary among dyadic cubes and o in
E, comes from an (MRA) in R", which we still note {V}},cz, obtained by taking tensor
products of the one-dimensional ones.

The following theorem gives the wavelet characterization of H*(R™) (cf. [107, 63]).

Theorem 4.2.1. There exists a constant C > 0 such that f € H'(R™) if and only if
1/2
Wyf = <Z[ > oer I {f) ¢?>|2|I\_1X1) e L'(R"), moreover,

CHf e < (Vo fllee < Cllf e

A function a € L*(R") is called a t-atom related to the (not necessarily dyadic) cube

a=>Y > af

ICRoeFE

R if it may be written as

with ||a||z2 < |R|~'/2. Remark that a is compactly supported in mR and has mean 0,

so that it is a classical atom related to mR, up to the multiplicative constant m™2. Tt
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is standard that an atom is in H'(R") with norm bounded by a uniform constant. The

atomic decomposition gives the converse.

Theorem 4.2.2 (Atomic decomposition). There exists a constant C > 0 such that all

functions f € HY(R™) can be written as the limit in the distribution sense and in H'(R™)

of an infinite sum
f=2_ N
j=1

with a; Y-atoms related to some dyadic cubes R; and A\; constants such that
CHI Al <D NI ClLf
j=1

This theorem is a small variation of a standard statement which can be found in [63],
Section 6.5. Remark that the interest of dealing with finite atomic decompositions has
been underlined recently, for instance in [105, 81].

Now, we denote by H} (R™) the vector space of all finite linear combinations of -

atoms, that is,
k
f=2_Naj,
j=1

where a;’s are ¢-atoms. Then, the norm of f in H} (R") is defined by

k k
1F 11z, = inf { DNl f= ZAjaj}.
Jj=1 j=1

By the atomic decomposition theorem, the set Hi (R™) is dense in H'(R™) for the
norm || - || g1.

The following two wavelet characterizations of LP(R"), 1 < p < oo, and BMO(R™)
are well-known (see [107]).

Theorem 4.2.3. Let 1 < p < oo. Then the norms

ey QD WD P X)) e and 1Y K09 PF)7) e

I o€k I o€k

are equivalent on LP(R™).

Theorem 4.2.4. A function g € BMO(R") if and only if

|—j%|22|<g,¢;’>|2<oo

ICRoeE
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for all (not necessarily dyadic) cubes R. Moreover, there exists a constant C' > 0 such

that for all g € BMO(R"),

B 1 i 1/2
CMgllswo < 5w (7 32 3" o071 ) < Clgllswo,

ICRo€E

where the supremum is taken over all cubes R.

By Theorem 4.2.3, Theorem 4.2.4 and John-Nirenberg inequality, we obtain the fol-

lowing lemma. The proof is easy and will be omitted.

Lemma 4.2.1. Let f be a v-atom related to the cube R and b € BMO(R"™). Then,
2 rcr 2aoenll VD)0, V7)) (7)? € LYR™) for any q € (1,2).

4.3 Bilinear, subbilinear decompositions and commu-

tators

Recall that K is the set of all sublinear operators 7' bounded from H'(R") into L'(R")
satisfying
1(b = bg)Tallr < Clbllsmo,

for all b € BMO(R"), any H'-atom a supported in the cube @, where C' > 0 a constant
independent of b,a. This class K contains almost all important operators in harmonic
analysis: Calderén-Zygmund type operators, strongly singular integral operators, multi-
plier operators, pseudo-differential operators, maximal type operators, the area integral
operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz operators, maximal
Bochner-Riesz operators, etc... (See Section 4).

Here and in what follows the bilinear operator & is defined by

S(f,9) ==Y {f D) (g, ) (¥5)*.

I o€cFE

In [14], the authors show that & is a bounded bilinear operator from H'(R™) x
BMO(R™) into L'(R").

4.3.1 Two decomposition theorems and (H}, L') type estimates

Let b be a locally integrable function and 7' € K. As usual, the (sublinear) commutator
[b, T7 of the operator T is defined by [b, T](f)(x) := T((b(:c) — () f(-))(x).
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Theorem 4.3.1 (Subbilinear decomposition). Let T € K. There ezists a bounded sub-
bilinear operator R = Ry : H'(R") x BMO(R") — LY(R") such that for all (f,b) €
H'(R") x BMO(R"), we have

T(&(f,0)| = R(f,0) <o, TN < RS, 0) + [T(S(f,b))]-

Corollary 4.3.1. Let T € K be such that T is of weak type (1,1). Then, the bilinear
operator B(f,qg) = g, T)(f) maps continuously H'(R") x BMO(R") into weak-L'(R™).
In particular, the commutator [b, T is of weak type (H', L') if b € BMO(R™).

We remark that the class of operators T' € KC of weak type (1,1) contains Calderén-
Zygmund operators, strongly singular integral operators, multiplier operators, pseudo-
differential operators whose symbols in the Hormander class S7’s with 0 < p < 1,0 <
d<1,m < —n((1-p)/2+max{0, (6 — 0)/2}), maximal type operators, the area integral
operator of Lusin, Littlewood-Paley type operators, Marcinkiewicz operators, maximal
Bochner-Riesz operators T? with § > (n —1)/2, etc...

When T is linear and belongs to K, we obtain the bilinear decomposition for the linear
commutator [b, T] of f, [b, T|(f) = bT(f)—T(bf), instead of the subbilinear decomposition
as stated in Theorem 4.3.1.

Theorem 4.3.2 (Bilinear decomposition). Let T be a linear operator in K. Then, there
exists a bounded bilinear operator R = Ry : H'(R") x BMO(R™) — LY(R"™) such that for
all (f,b) € HY(R™) x BMO(R"), we have

[b, T1(f) = R(f,b) + T(S(f,0)).

The following result gives (H}, L')-type estimates for commutators [b, T] when T be-
longs to the class .

Theorem 4.3.3. Let b be a non-constant BM O-function and T € KC. Then, the commu-
tator [b, T maps continuously H}(R™) into L'(R™).

Remark that in the particular case of T a 1-Calderén-Zygmund operator and H} (R™)
replaced by Hi(R"), Pérez [119] proved

sup{||[b, T]|(a)||1 : ais a (oo, b)—atom} < co. (4.7)

Then he concludes that the (linear) commutator [b, 7] maps continuously H;(R™) into
L'(R™). Notice that Hi(R™) C H,Y(R*) ¢ H}R"), 1 < ¢ < oo, and the inclusions

are continuous (see Section 5). However, as mentioned in the introduction, Inequality

102



(4.7) does not suffice to conclude that the (linear) commutator [b, 7] is bounded from
Hi(R") to L'(R™). We should also point out that the (H', L') weak type estimates and
the (H;, L') type estimates for the (linear) commutators of multiplier operators (see [146,
90, 137]), strongly singular Calderén-Zygmund operators (see [95]) and for the (sublinear)
commutators of Littlewood-Paley type operators (see [97]), Marcinkiewicz operators (see
[102]), maximal Bochner-Riesz operators (see [99, 100, 98]) have been studied recently.
However, the authors just prove Inequality (4.4) (that is Inequality (4.7)) and use Equality

(4.3) which leaves a gap as pointed out in the introduction.

4.3.2 Boundedness of linear commutators on Hardy spaces

Analogously to Hardy estimates for bilinear operators of Coifman and Grafakos [29] (see
also [42]), we obtain the following strongly bilinear estimates which improve Corollary
5.3.1.

Theorem 4.3.4. Let T be a linear operator in K. Assume that A;, B;, i = 1,..., K, are
Calderon-Zygmund operators satisfying A;1 = Afl = B;1 = Bf1 = 0, and for every f
and g in L*(R"),
K
/ (ZAif.Big> dz = 0.
pni=1
Then, the bilinear operator T, defined by

K

T(f,9) =Y _[Big, TI(A:f),

i=1
maps continuously H'(R™) x BMO(R") into L'(R").

We now give a sufficient condition for the linear commutator [b, T'] to map continuously
H}(R™) into h'(R™).

Theorem 4.3.5. Let b be a non-constant BMO"%-function and T be a Calderdén-Zygmund

operator with T1 = T*1 = 0. Then, the linear commutator [b,T] maps continuously
H}(R™) into h'(R™).

The last theorem gives a sufficient condition for the linear commutator [b, 7] to map
continuously H} (R™) into H'(R").

Theorem 4.3.6. Let b be a non-constant BMO-function and T' be a Calderon-Zygmund

operator with T*1 = T*b = 0. Then, the linear commutator [b,T] maps continuously
H}(R™) into H'(R™).
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Observe that the condition 7%b0 = 0 is "necessary” in the sense that if the linear
commutator [b,T] maps continuously H,(R") into H'(R"), then [;, b(z)Ta(z)dz = 0
holds for all (g, b)-atoms a, 1 < ¢ < 0.

Also, let us give some examples to illustrate the sufficient conditions in Theorem 4.3.6.
To have many examples, let us consider Euclidean spaces R™,n > 2. Now, consider all
Calderén-Zygmund operators T' such that T*1 = 0. As the closure of T(H(R")) is a
proper subset of H!(R"), by the Hahn-Banach theorem (note that BMO(R™) is the dual
of H'(R™)), one may take b a non-constant BMO-function such that [, bTadzr = 0 for
all H'-atoms a, i.e. T*b = 0, and thus b and T satisfy the sufficient condition in Theorem
4.3.6.

4.4 The class K and four bilinear operators on H*(R")x
BMO(R")

4.4.1 The class K

The purpose of this subsection is to give some examples of operators in the class K.
More precisely, the class K contains almost all important operators in Harmonic anal-
ysis: Calderén-Zygmund type operators, strongly singular integral operators, multiplier
operators, pseudo-differential operators with symbols in the Hormander class S}’ with
0 <o<10<6<1m< —n((l-0)/2+ max{0,(d — 0)/2}) (see [2, 1]), maxi-
mal type operators, the area integral operator of Lusin, Littlewood-Paley type operators,
Marcinkiewicz operators, maximal Bochner-Riesz operators T? with § > (n — 1)/2 (cf.
87]), ete... Tt is well-known that these operators T are bounded from H'(R") into L*(R™).

So, in order to establish that these ones are in the class K, we just need to show that
1(b = bo)Tallr < Cllbllsmo (4.8)

for all BMO-function b, H'-atom a related to a cube Q = Q[zo,r] with constant C' > 0
independent of b, a.

Observe that the nontangential grand maximal operator )1 belongs to K since it
satisfies Inequality (4.8) (cf. [128]). We refer also to [62] for the (sublinear) commutators
b, M, ] of the maximal operators M, , —note that M, lies in K.

Here we just give the proofs for Calderén-Zygmund operators (linear operators) and
the area integral operator of Lusin (sublinear operator). For the other operators, we leave

the proofs to the interested reader.

104



First recall that P(x) = W is the Poisson kernel and uy(z,t) := f * Py(x) is

the Poisson integral of f. Then the area integral operator S of Lusin is defined by

1/2

S(f)(x) = / Vgl P " dydt |

()

where ['(x) is the cone {(y,t) € R : |y — x| < t} with vertex at z, while Vu; =
(Oug /Oy, ..., Ous/Ox1, Ous/Ot) is the gradient of uy on R =R™ x (0, 00).

Proposition 4.4.1. Let 6 € (0,1] and T be a §-Calderén-Zygmund operator. Then T
satisfies Inequality (4.8), and thus T belongs to K.

Proof. We cut the integral of |(b — bg)T'a| into two parts. By Schwarz inequality and the
boundedness of T on L?*(R™), we have

1/2
/ b@) — bol|Ta(0)lde < C / b@) — boldz | allze
2Q Q
< C|b||Brao

here one used the fact |bog — bg| < C||b||prmo- Next, for x ¢ 2Q),

Ta(z)| = / (K () — K (2, 0))a(y)dy
<
< / et
C‘x_x0|n+6
Therefore,
5
/ b(x) — bo||Ta(z |dx<C/|b e <l o,
To
(2Q)¢

since the last inequality is classical (cf. [128]). This finishes the proof.
[

Corollary 4.4.1. Let R;,j = 1,...,n, be the classical Riesz transforms. Then, R; belongs
to IC forallj=1,...,n

105



Proposition 4.4.2. The area integral operator S satisfies Inequality (4.8), and thus S
belongs to K.

Proof. We also cut the integral of |(b — bg)S(a)| into two parts. By Schwarz inequality
and the boundedness of S on L?(R"), we have

1/2
/ b(z) — bol|S(@)(@)ldz < C / bz) — b2z | Jallz:
2Q Q
< C||b| Baro-

Next, for z ¢ 2@Q), by using the equality

= [ S5 - P52 o

Rn

since [p, a(z)dz = 0, it is easy to establish that

1/2
- 2,1-n r
S(a)(z) = / |Vug(y, t)|*t " dydt < Cm.
I'(z)
Therefore,
r
/ b(x) — bgl|S(a)(z)|dx < C/ b(x) ’n+1d$ < C||bl|Bamo,

(2Q)°

which ends the proof. O

We should point out that the Littlewood-Paley type operators can be viewed as vector-
valued Calderén-Zygmund operators (see [122]). See also [62] in the context of vector-

valued commutators.

4.4.2 Four bilinear operators on H!'(R") x BMO(R")

We now consider four bilinear operators on H'(R") x BMO(R") which are fundamental
for our bilinear decomposition theorem.

We first state some lemmas whose proofs can be found in [14].

Lemma 4.4.1. The bilinear operator 113 defined on H'(R™) x BMO(R") by

=D (LeDlg v ()

I o€k

is a bounded bilinear operator from H'(R™) x BMO(R™) into L'(R™).
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Observe that &(f,g) = —II3(f, g) for all (f,g) € H'(R") x BMO(R").

Lemma 4.4.2. The bilinear operator Iy, defined on HY(R™) x BMO(R") by

D DD IR ORI T

I,I' 0,0'cE

the sums being taken over all dyadic cubes I,I' and o,0" € E such that (I,0) # (I',0'),
is a bounded bilinear operator from H'(R™) x BMO(R") into H'(R").

Lemma 4.4.3. The bilinear operator 11, defined by

= > > (a6 {g. V7)o,

I|=|I'| c€EE

where a is a Y-atom and g € BMO(R"™), can be extended into a bounded bilinear operator
from H'(R™) x BMO(R") into H'(R").

Lemma 4.4.4. The bilinear operator Iy defined by

= > ] g, o) br,

\[|=|I'| c€E

where a is a Y-atom related to the cube R and g € BMO(R™), can be extended into a
bounded bilinear operator from H'(R™) x BMO™T(R"™) into H(R"). Furthermore, we

can write

y(a,g) = r 4 K,th(Q) (4.9)

where ||hV || < Cllgllzuo, ' is an atom related to mR, and x a uniform constant,
independent of a and g.

The following remarks are useful in our proofs in Section 6 and Section 7.

Remark 4.4.1. 1. Ifg € BMO(R") and f € H'(R™) such that fg € L'(R"), then

/fgd:c— /Gfgd:c—ZwaI ).

I o€k
2. For any (f,g) € H'(R") x BMO(R") and c a constant, we have
Hz(fag) = Hl(f?.g_l_c)a 1= 17374-

3. As a consequence of Lemma 4.4.4, if gr = 0 then Equality (4.9) gives that I1y(a, g) €
HY(R™). Moreover, ||Usy(a, g)||m < C|lgllBro-
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In [14], the authors have shown the following decomposition theorem for the product
space H'(R™) x BMO(R™).

Theorem 4.4.1 (Decomposition theorem). Let f € H'(R") and g € BMO(R™). Then,

we have the following decomposition

fg - Hl(f7g) +H2(f7g) +H3(f7g) +H4(f7g)7

that 1s

4.5 The space H}(R")

Let b be a non-constant BMO-function. In this section, we study the space H}(R"). In
particular, we give some characterizations of the space H}(R") (see Theorem 4.5.1), and
the comparison with the space H}(R") of Pérez (see Theorem 4.5.2).

First, let us consider the class K of all T € K such that T characterizes the space
H*(R"), that means f € H'(R") if and only if Tf € L'(R"). Clearly, the class K contain
the maximal operator 91, the area integral operator S of Lusin, the Littlewood-Paley
g-operator (see [48]), the Littlewood-Paley gi-operator with A > 3n (see [67]), etc...

Here and in what follows, the symbol f ~ ¢ means that C~1f < g < Cf for some
constant C' > 0. We obtain the following characterization of H}(R™).

Theorem 4.5.1. Let b be a non-constant BMO-function and T € K. For f € HY(R™),
the following conditions are equivalent:

i) f € H(R).

i) &(f,b) € H'(R™).

i) [b,R;](f) € LY(R™) for all j =1,...,n.

) (b, T)(f) € L (R").

Furthermore, if one of these conditions is satisfied, then

Il = W e 1ol saso =+ (116, M)
[f |z 1ol Baro + 1S (F; 0) || e

~ Sl bl Baco + Z 116, R ()l

~ NSl bl saco + 1[0, Iz

Q

where the constants are independent of f and b.
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Remark 4.5.1. Theorem 4.3.3 and Theorem 4.5.1 give that [b, T is bounded from H}}(R™)
to LY(R™) for every T a Calderén-Zygmund singular integral operator. Furthermore,

HL(R™) is the largest space having this property.

Proof of Theorem 4.5.1. (i) < (ii) By Theorem 4.3.1, there exists a bounded subbilinear
operator R : H'(R™) x BMO(R™) — L*(R™) such that

M(S(f,b)) = R(/,b) < [[b,M()] < R(f,0) + M(S(S,b))-
Consequently, &(f,b) € H'(R") if and only if [b, M](f) € L*(R™). Moreover,
1 ez = L Lz 16l sazo + 1SCF, 0) |-

(ii) < (it7). By Theorem 4.3.2, there exist n bounded bilinear operators R, : H*(R")x
BMO(R") — L*(R™), j = 1,...,n, such that

[0, R5](f) = R;(f,0) + R;(&(f,))-

Consequently, &(f,b) € H'(R™) if and only if [b,R,|(f) € L'(R™) for all j = 1,...,n.

Moreover,

I e 10l maco + IS (. 0) 1 ~ Il llbllsaro + D Ib, R o

=1
(17) < (iv). By Theorem 4.3.1, there exists a bounded subbilinear operator R :
H'(R™) x BMO(R™) — L*(R™) such that

IT(S(f, )] = R(f,0) <16, TI()] <R(Sf,0) +|T(S(f,0))].
Consequently, &(f,b) € H(R") if and only if [b, T](f) € L*(R™) since T € K. Moreover,

[ F |z 10 Baro + (1S (F, 0) | = ([ [ 1Bl aso + 1[0, TICH) -

Remark that the constants in the last equivalence depend on T

The following lemma is an immediate corollary of the weak convergence theorem in
H'(R") of Jones and Journé. See also [35] in the setting of h'(R™).

Lemma 4.5.1. Let {fy}x>1 be a bounded sequence in H'(R™) (resp., in h*(R™)) such that
fx tends to f in L*(R™). Then f in H'(R™) (resp., in h*(R™)), and

[l < L (| fif[mn (respe [ fllw < Lm [ felln).

k—o0 k—o00
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Theorem 4.5.2. Let b be a non-constant BMO-function and 1 < q < oo. Then,
H,yU(R™) € HE(R™) and the inclusion is continuous.

Proof. Let a be a (gq,b)-atom related to the cube (). We first prove that (b — bg)a is
C’||b||BMO times a classical (¢ + 1)/2-atom. One has supp (b — bg)a C supp a C @
and [p. (b(z) — bg)a(z)dxr = [g, b(z)a(x)dz — by [y, a(x)dz = 0. Moreover, by Holder
mequahty and John-Nirenberg inequality, we get

16— ba)all sz < 10— o)Xy laller < Clbllmarol@lCT/ T,

where ¢ = qif 1 < ¢ < 00, ¢ = 21if ¢ = 0o, and C > 0 is independent of b, a. Hence,
(b—bg)a is C||b|| pmo times a classical (¢ + 1)/2-atom, and ||(b — bg)al|lmr < C||b|| smo-
We now prove that &(a,b) belongs to H'.
By Theorem 4.3.2, there exist n bounded bilinear operators R; : H*(R")x BMO(R") —
LY(R™), j = 1,...,n, such that

[b; R;](a) = R;(a,b) + R;(S(a, b)),

since R is linear and belongs to KC (see Corollary 4.4.1). Consequently, forall j =1,...,n
as Rj € K,

IRj(&(a,0))llr = [[(b—0g)R;(a) — R;((b—bg)a) — R;(a,b)||
< (0 =bg)Rj(a)l[r + IRl a2t [I((b = bg)a) | + |9 (a, b)]| 11
< C||bl|samro-

This proves that &(a,b) € H'(R") since [|&(a,b)||z1 < Cbl|garo, and moreover that
16 (a,b)||mr < CllbllBro- (4.10)

Now, for any f € H,?(R"), there exists an expansion f = > ;-1 Aja; where the a;’s
are (g, b)-atoms and 3%, [\ < 2||fHH1q Then the sequence {Z 1 Aja;}e>1 converges
to f in Hy?(R") and thus in H'(R"). Hence, Lemma 4.4.1 implies that the sequence
{(‘5<ij1 Aja;, b) }k>1 converges to &(f,b) in L'(R"). In addition, by (4.10),

Hﬁ(iwb)\\f, iwe 45Dl < Cllflgellblvio:
j=1 =1

We then use Lemma 4.5.1 to conclude that &(f,b) € H(R™), and thus f € H} (R") (see
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Theorem 4.5.1). Moreover,

1l < UM Iblsaro + 1S D))
k

< C(Mfllgelbllasio+ tim (3" vas.0)]
—00 =1

< Clflzgpalibllzmo,

)

which ends the proof. n
From Theorem 4.3.3 and Theorem 4.5.1, we get the following corollary.

Corollary 4.5.1. Let b be a BMO-function, T € K and 1 < q < oo. Then the linear

commutator [b, T maps continuously H,*(R") into L*(R").

4.6 Proof of Theorem 4.3.1, Theorem 4.3.2, Theorem
4.3.3

In order to prove the decomposition theorems (Theorem 4.3.2 and Theorem 4.3.1), we

need the following two lemmas.

Lemma 4.6.1. Let T € K and a be a classical H-atom related to the cube m@Q. Then,

there exists a positive constant C = C(m) such that
Itg = 9@)Tallr < Cllgllzmo, for allg € BMO(R®).

Proof. Since T' € K and since |gg — gmo| < C(m)||g||Bamo, we have

(g = 90)Tallr < C(m)llgllsmolTallr + (9 = gme)Tallr < Cllgllzaro-

Lemma 4.6.2. The norms || - [|m and || - ||z are equivalent on HL (R™).

We point out that in the proof below we use the results and notations of Theorem
5.12 of [63]. Even though the proofs in [63] are in the one-dimensional case, they can be

easily carried out in higher dimension as well.

The proof of Lemma 4.6.2. Obviously, H} (R") C H'(R") and for all f € Hi (R"), we
have || fllm < C|f|[zz, - We now have to show that there exists a constant C' > 0 such
that for all f € Hf (R™),

[z, < ClF Nl

fin
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By homogeneity, we can assume that || f||g1 = 1. We write f = Zj\/:ol Aja;, where the
a;’s are i-atoms related to the cubes R;’s. Since f € L*(R™) N H'(R™), there exists a

y-atomic decomposition (see [63], Theorem 5.12)

F=Y 0 0ner = D> 1 Do D (e

I o€k kEZ i€Ay ICT,i,IGBk el

where Zlc'f,g,lesk Y ooerlfo VT = Ak, i)ar; with ay,; ¥-atoms related to the cubes ml!
and

D> kD <Ol fllm = C. (4.11)

keZ i€y

We note that supp ay; C UjV:ol mR; for all k € Z,i € Aj. Recall that

wof = (S eneu )

I o€k

(2 S i)

j=1 ICR; 0€E

and Qp, = {z € R": W, f(z) > 2} for any k € Z. Clearly, supp W, f C U;V:Ol mR;. So,
there exists a cube @ such that 2, C supp W, f C UjV:Ol mR; C Q for all k € Z. We now
denote by k' the largest integer & such that 2¥ < |Q|~!. Then, we define the functions g
and ¢ by

g=>_ > 1 Do Drenws | ande=> Y| > > (fuDf

k<k’ i€A\y ICT};,IEBI@ oceFE k>k' i€y, ICTi,IEBk ceE

Obviously, f = g + ¢, moreover, supp g C ) and supp ¢ C ). On the other hand, it
follows from Theorem 5.12 of [63] that 3=/ 7 rep, X oer (S, P)|* < C22%|1i N€Y|. Hence,

as the dyadic cubes I are disjoint (see also [63]), we get

lglz: < €Y > > > KL

k<K' icAg ICT;i,IEBk ocl

< O Y PMLENQ S CY 2%y
k<K’ i€Ag k<K’

< 2| < Q™

This proves that C~/2g is a 1-atom related to the cube Q.
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Now, for any positive integer K, set Fr = {(k,i) : k > K, |k| + |i| < K} and
b = Z(k,i)eFK <Zld}i,166k Y werlf ¢?>@/J?> Observe that since f € L*(R"™), the series

D ks DieA, <Zlcfi’168k Y ooerlfs ¢j’>¢}’> converges in L?(R"). So, for any € > 0, if K is
large enough, e 71 (/— () is a 1-atom related to the cube Q). Therefore, f = g+ +({—{k)

is a finite linear combination of atoms for f, and thus

Iy, < Cllgllm, + Moxllay, + 16— Ll

< c(C+ XY Mk +e) <C

kEZ i€y

by (4.11). It ends the proof.

Proof of Theorem 4.5.1. We define the subbilinear operator R by
RS b)) = T (b(@)F() = (£, 0)()) ()] + [T B)@)] + [T, 5) @)
for all (f,b) € H'(R") x BMO(R™). Then, by Theorem 4.4.1, we obtain that
T(S(f,b)] = R(f,6) < [[6.T)(F)| < R(L) + [T(S(,0))].

By Lemma 4.4.1, Lemma 4.4.2 and Lemma 4.4.3, it is sufficient to show that the

subbilinear operator

UL B)(@) = | T (b)) = T(£B)()) @)

is bounded from H'(R") x BMO(R") into L'(R").
We first consider b € BMO(R™) and f a i-atom related to the cube Q. Then, by
Remark 4.4.1, we have

U(S,0) () = U(f, b = bo)(w) < [(b(z) = b)T'f ()] + |T(I2(f, b = b)) (x)]-

Consequently, by Remark 4.4.1, Lemma 4.6.1 and the fact f is C' times a classical

atom related to the cube m(@), we obtain that

(S D)l < N0 = bQ) T fllr + 1T\ 1o [Ma(f; 0 = bQ) 1 < Cllbl[Baro, — (4.12)

where C' > 0 independent of f,b.
Now, let b € BMO(R"™) and f € Hi (R"). By Lemma 4.6.2, there exists a finite
decomposition f = ij:l Aja; such that Z?:1 IAj| < O f||m. Consequently, by (4.12),

we obtain that

k
(D) <> NIz, 0) e < ClLF e 1b] saso,

j=1
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which ends the proof as H} (R") is dense in H'(R") for the norm || - || 1.

Proof of Theorem 4.3.2. We define the bilinear operator R by

R(f,6) = (VTf = T(Ia(£,5))) = T(L (£ ) + (£ b)),

for all (f,b) € H'(R™) x BMO(R™). Then, it follows from Theorem 4.4.1 and the proof
of Theorem 4.3.1 that

[b, T1(f) = R(f,b) + T(&(f,0)),

where the bilinear operator R is bounded from H'(R™) x BMO(R") into L'(R"). This
completes the proof.
[l

Proof of Theorem 4.3.3. Theorem 4.3.3 is an immediate corollary of Theorem 4.3.1 and
Theorem 4.5.1. ]

4.7 Proof of Theorem 4.3.4, Theorem 4.3.5 and The-

orem 4.3.6

First we recall the following well-known result.

Theorem A (see [29] or [42]). Let T be a Calderdn-Zygmund operator satisfying T1 =
T*1=0,1<g<ooand1/p+1/q=1. Then, fTg—gT*f € H'(R") for all f € LP(R"),
g € LY(R™).

Now, in order to prove the bilinear type estimates and the Hardy type theorems for
the commutators of Calderén-Zygmund operators, we need the following three technical

lemmas.

Lemma 4.7.1. Let § € (0,1], and A, B be two 0-Calderdn-Zygmund operators such that
Al = A*1 = Bl = B*1 = 0. Then, there exists a constant C' = C(n, ) such that

S KA g v ) (AT 5 W BYE U5 < Cllflla gl sao

LI'1" o0, 0"ckE

for all f € HY(R™),g € BMO(R™).
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Lemma 4.7.2. Let § € (0,1], and A;, B;, i = 1, ..., K, be 6-Calderén-Zygmund operators
satisfying A;1 = Af1 = B;1 = Bf1 =0, and for every f and g in L*(R"),

/ <iAif.Big> dz = 0.

Rn

Then, the bilinear operator B3, defined by B(f,g) = Zfil S(A;f, Big), maps continuously
H'(R") x BMO(R") into H'(R").

Corollary 4.7.1. Let T be a Calderon-Zygmund operator satisfying Tl = T*1 = 0. Then
the bilinear operator B, defined by B(f,q) = &(Tf,q9) — &(f,T*g), maps continuously
HY(R") x BMO(R"™) into H'(R™).

Lemma 4.7.3. Let b be a non-constant BMO-function and T' be a Calderon-Zygmund
operator with T1 = T*1 = 0. Assume that f € H}(R") has the wavelet decomposition f =
P > o1cr; 2ooepl VTV where the R;’s are dyadic cubes and 3 p 3, ep(f, UT)UT

are multiples of 1-atoms related to the cubes R;. Set f = 2521 >o1cr; 2oert /S VTIVT
k =1,2,... Then, the sequence {[b, T](fx)}x>1 tends to [b,T|(f) in the sense of distribu-

tions S'(R™).

Proof of Lemma 4.7.1. We first remark (see [108], Proposition 1) that there exists a con-
stant C' > 0 such that for all dyadic cubes I, I" and 0,0’ € E, we have

o .0 o o —|j—3" n 2_j + 2_j/ n+é
max{[(Av7, of ), (B, )|} < O 0 (oo m ) (3)
Consequently,
max{[(A¢7, 7)), [(BYF, 7))} < Cps(1,1') (4.14)
with

o-li—4'l(6/24n/2)

1.7 = - (
pall, T) 145 =412

27y 9=J' n+4/2
277 4277 + |y — xﬂ)
Here |I| = 27" and |I'| = 277", while 2; and x;» denote the centers of the two cubes.
On the other hand, it follows from Lemma 1.3 in [42] that there exists a constant C' =
C(n,d) > 0 such that

> ps(I1")ps(I', 1") < Cps(1,1'). (4.15)

I//
Combining (4.14) and (4.15), we obtain

ST AU g i (AT W5 BUT i < CY Y ps (LI (g, 5.

LI 1" o0, 0"cE 1,I' o,0'€E
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It is easy to establish that the matrix {ps(/,!’)}; is almost diagonal (by taking
£ = /4 in the definition (3.1) of Frazier and Jawerth [49]) and thus is bounded on f}

1/2
the space of all sequences (ar); such that (Z[ ]a1|2|I|_1X1> is in L'(R™). We then use
the wavelet characterization of H'(R") (see Theorem 4.2.1) and the fact that (cf. [49])

D Wheillig, vi)| < Clibllmllgllsao,

I' o'€eE

for all h € H'(R™), to conclude that

DD LD e, ve (AT, 05 ) (BYE 45| < Cllfllllgl sao-

LI'I" 0,0’ ,0c"€E

Proof of Lemma 4.7.2. By Lemma 4.7.1, we have

=

B(fg9) = Ze (Aif, Big)

K
= D > D> (LD U AT 00 (B 5 ) (5 )
i=1 II'I" 0,0/ 0" €E
where all the series converge in L'(R"). For any dyadic cubes I,I’, 0,0’ € E, we have

K
SO g U7 (AR T B 5 ) ()

i 1 I// NGE

—ZZ > (£ g i AT i ) (B i) (670)? — (7)?)

1/_1 I// // GE

since (see Remark 4.4.1)

K K
DD D AW ) (BT b)) = / (> Aws.Bwg )de =0,
=1

i=1 1" o/cE i
An explicit computation gives that |7, |* — [¢¢]? is in H'(R"), with

195712 = 1652l < C (tog(27 +279") 1 +log(lay — oo + 279 +277"))
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Here |I| = 277" and |I”| = 277", while z; and x;» denote the centers of the two cubes.
Consequently, by (4.13) and (4.15), we get

K
| S5 3 (humtg ur s, vg) (B vi ) (i |

i=1 [" o'"eFE

H1

IA

K
SO S U g v A ) (Bat || (w52

i=1 [" o¢'€eFE

CY D> D Wi g wi)lps (L I"ps(I', 1)

i=1 1" ¢'"eFE

< Cps(L,T)|(f, 49 (g. ¥5),

here we used the fact that

H1

IN

. |Il_xl,,|+2*j+27ju
) log (

| 2y = ap| + 27 4 279 \o

) < C(8)2V- J"W( L

Thus, the same argument as in the proof of Lemma 4.7.1 allows to conclude that

1B )l < CY > ps(L I g, 07|

LI o,0'€E
< Clflla gl Bao,

which ends the proof.
O

Before giving the proof of Lemma 4.7.3, let us recall the following lemma. It can be

found in [50].

Lemma A. (see [50], Lemma 2.3) Let T" be a Calder6n-Zygmund operator satisfying
T1 = 0. Then T maps S(R") into L>(R™). Moreover, there exists a constant C' > 0,
depending only on 7', such that for any ¢ € S(R") with supp ¢ C B(xg,r), we have

1Tl < Cl@llz + [V L)

Proof of Lemma 4.7.3. By Theorem 4.3.2, it is sufficient to prove that

k—o00
Rn R

hm T(&(fr,b))hdr = /T(G(f, b))hdz,

for all h € S(R™). Because of the hypothesis, we observe that &(f,b) € H'(R") and
S(f,b) € LY(R™), k=1,2, ..., for some ¢ € (1,2) (see Lemma 4.2.1).
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Let &(f,b) = >_72, Aja; be a classical Li-atomic decomposition of &(f,b). Then,
T(Z?Z1 Aja;) tends to T(S(f,b)) in L'(R™) (in fact, it also holds in H'(R") since T*1 =
0). Hence, as h € S(R") € L®(R") N LY (R") where 1/q+1/¢ =1, &(f,b),a; € LI(R")
and T*h € L*(R") since T*1 = 0 (see Lemma A), by Theorem A we get
k
<Z )\jaj)T*hdx
=1

Rn J=

k—o0
R™ R™

= /G(f, b)T"hdz = lim /G(fk,b)T*hdx
R™ Rn

k
/T(G(f,b))hdm — lim T(;Ajaj>hdxzklggo

= lim [ T(S(fg,b))hdx,
k—o0
Rn

since &(fi,b) tends to &(f,b) in L'(R") as fi tends to f in H'(R™) (see Theorem 4.3.2).
This finishes the proof.
[

Proof of Theorem 4.3.4. Let (f,g) € H'(R")x BMO(R™). By Theorem 4.3.2 and Lemma
4.7.2, we obtain Z(f,g9) = I, [Big, T](A: f) € L'(R™), moreover,

ol < Y IR Bl + (S4B,
i=1 =1

K K
< OX NSl IBigllso + Tl Y- S(Aif, Big)|

ey i—1
< Clfllallgllzaro-

This completes the proof.
O

Proof of Theorem 4.3.5. Let f € H}(R™), we prove [b, T](f) € h'(R™) using the fact that
BMO"8(R"™) is the dual of H'™¢(R") (see [81]). Indeed, by Theorem 4.2.2, there exists a
decomposition f =7, > o1cr; 2ooept S VTIVT where 3o p >0 g (f,¥7)¢] are multi-

ples of 1-atoms related to the dyadic cubes R;. Set f; = Z§:1 >o1cr; 2oert S VINVT,
k = 1,2,... Then, the sequence [b, T](fx) tends to [b, T|(f) in the sense of distributions

S'(R™) (see Lemma 4.7.3), and thus

k—o0
R Rn

lim [ [b, 7] fo) hdz = / b, T)(f)hdz, (4.16)

for all h € C$°(R™). Notice that [b, T)(fx) € L*(R") and [b, T](f) € L*(R™).

118



Let h € C§°(R™). By Lemma 4.4.2, Lemma 4.4.3, Lemma 4.4.4, Remark 4.4.1 and
Corollary 4.7.1, we have hT'(fi) — fx (T*h — (T*h)@> € H"8(R™). More precisely,

|75 = s(rn = @ ye)|

Hlog

+
H1

< 0{ |s@ (). m) — & (feTh— (T"R)g))|

T Z <HHJ'(T(fk)7h)HH1 n ’

11, (fk,T*h _ (T*h)@)‘

)+
H1

Hlog }

Th — (T*h)@HBMO +

T (), 1) s + [T (S T*h = (T*R)q) |

A

< C{Ilfkl\HIIIhIIBMo HITU ekl Byvo + (1 fill

HIT Sl bl Brror + [ fill I Th — (T*h)@IIBMo+}

< CUfella Inllomo + Lfella I TRl Brio) < Cllf [ m2[7]]omo.
here one used G(f, T*h — (T*h)@> = &(f,T*h), |T*h — (T*h)g| mro+ = ||T*h| sao and
| fellzr < C||fllgr. As the L2 functions f;, have compact support, b € BMOYs(R") C
BMO(R"), we deduce that bhT(fi,), hT(bfy), bfs T*h € L'(R"). Moreover, [o, hT(bfy)dz =
Jgn 0fxT*hdzx since KT (bfy,)—bfyT*h € H'(R™) (see Theorem A). Therefore, as BMO"&(R")
is the dual of H'"%8(R™) (see [81]), we get

Jrigonds| = | [o01(80) - ST by

n [R™

IN

[o (1) = (70 = () ) o + (T )el | [ bfude

RTL n

< Clbllsyores

W)~ (T = (@) |, + [Tl | [ bhda

k
< Clpllpaoes| fllm 1 Allomo + |(T*h)@|‘ DO D (AU,
j=1ICRj ocE

The above inequality and (4.16) imply that for all h € C§°(R"™), we obtain

Hlog

/ b, T)(f)hedz| < Cllbll paroes 1t |l

n
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since &(f,b) € H'(R™) (see Theorem 4.5.1) and thus (see Remark 4.4.1)

k
tim 3 57 SR b.0f) = [ S(b)de =0,

j=1 ICR; c€E Bn

This proves that [b, T](f) € h*(R™) since h!(R") is the dual of vmo(R") (see Section 2).

Furthermore,

116, 1Al < Cllbllsaores |l < ClOlparors 101 Barol.f 1l

which ends the proof of Theorem 4.3.5.
]

Proof of Theorem 4.3.6. By Theorem 4.3.2 and Theorem 4.5.1 together with Lemma 4.4.2

and Lemma 4.4.3, it is sufficient to prove that the linear operator
F s U(f,b) = BT f — T(IL,(1, 1))

is bounded from H'!'(R") into itself. Similarly to the proof of Theorem 4.3.1, we first
consider f a t-atom related to the cube Q = Q[zo, 7] and note that

U(F0) = U(f,0 = bg) = (b= bo)T'f = T(T2(f, 0 = bg)). (4.17)
Let € € (0,1), recall that (see [133]) g is an e-molecule for H'(R") centered at yq if

[ o@is =0 and gl —u I =) < .

Rn
where ¢ = 1/(1 — ¢). It is well known that if g is an e-molecule for H'(R™) centered at
Yo, then g € HY(R™) and ||g||;n < CN(g) where C' > 0 depends only on n,e.

We now prove that (b—bg)T f is an e-molecule for H'(R") centered at zo when T is a
d-Calderén-Zygmund operator for some ¢ € (0,1] and € = 6/(4n) < 1/2. Note first that f
is C times a classical L*-atom related to the cube m@. It is clear that [, (b—bg)T fdz =0
since T%1 = T*b = 0. As ¢ = 1/(1 —¢) < 2, the fact |bg — bamg| < C||b||mo together
with Holder inequality and John-Nirenberg inequality, give

10 = bQ)T f-xomellze < QY [b]l Baso- (4.18)
It is well-known that |Tf(z)| < C%, for all x € (2mQ)¢, since T is a §-Calderén-
Zygmund operator. Hence

1/q
10~ b T xmarllen < €[ [ 0=bolt(—t Y
Q X@emQ)<llLe > Q ‘l’ _wo‘nJra xr
(2mQ)°
< ORI bl o
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The last inequality, which can be found in [128], is classical. Combining this and (6.24),

we obtain
1(b = bQ)T flle < ClQ[V|bl[ Brro- (4.19)

Similarly, we also have

16— b)T .| - — o™ Xomallzs < CIQP 4 b 3aro

and as 2ne = 0/2,

1/q

7“6

q
wos C L/'“”d%ﬁtzmmﬁ)w
(2mQ)©

C|QI*= bl suro.

16 = bQ)Tf-| - —0[*™ X2ma)e

IN

Consequently,
16— bQ)T .| - =20l [110 < CIQP/1[b] o

Combining this and (4.19), we get (b—bg)T'f is an e-molecule for H'(R") centered at zy,
moreover,

N((b—bg)Tf) < CIRITY ! |Ibl o < Clb]lsaro,
since ¢ = 1/(1 — ). Thus, by (6.22) and Remark 4.4.1,

IS, D)l < O = bo)Tf) + [T (M2 (f, b = b))l < Clbllsaso- (4.20)

Now, let us consider f € Hi (R"). By Lemma 4.6.2, there exists a finite decomposition
f= 2521 Aja; such that Z?Zl Xl < C| fllg:. Consequently, by (4.20), we obtain that

k
IUCE D) e < NIz, 0) [ < ClF e 1B]l Baso,

j=1

which ends the proof as H} (R") is dense in H'(R") for the norm || - ||z.

4.8 Commutators of Fractional integrals

Given 0 < a < n, the fractional integral operator I, is defined by

o) = [
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Let b be a locally integrable function. We consider the linear commutator [b, I,,] defined
by
[ba [a](f) = b[af - Ia<bf)

We end this article by presenting some results related to commutators of fractional

integrals as follows.

Theorem 4.8.1. Let 0 < a < n. There exist a bounded bilinear operator R : H'(R™) x
BMO(R™) — L™=)(R") and a bounded bilinear operator & : H'(R™) x BMO(R") —
LY(R™) such that

b, 1(f) = R(f,0) + 1.(S(£,1)).

Corollary 4.8.1. Let 0 < o < n and b € BMO(R™). Then, the linear commutator [b, I,
maps continuously H*(R™) into weak-L™ =) (R™).

Theorem 4.8.2. Let 0 < a < n, b € BMO(R"), and 1 < q < oo. Then, the linear

commutator [b, I,] maps continuously H}(R™) into L™ =) (R™).

The results above can be proved similarly to Theorem 4.3.2 and Theorem 4.3.3. We
leave the proofs to the interested readers. When H}(R") is replaced by H;(R"), Theorem
4.8.2 was considered by the authors in [40]. There, they proved that

sup{||[b, Io](@)]| fn/(n—a) = ais a (00, b)—atom} < oo.

However, as pointed out before, this argument does not suffice to conclude that [b, [,,] is
bounded from H}(R™) into L™/~ (R™).
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Chapter 5

Endpoint estimates for commutators
of singular integrals related to

Schrodinger operators

Ce chapitre est une prépublication (soumise).

Résumé

Soit L = —A + V un opérateur Schrodinger sur R%, d > 3, oit V est un potentiel
positif, V' # 0, et appartient a la classe Holder inverse RHg/,. Dans cet article, nous
étudions les commutateurs [b, 7| pour T dans une classe K, des opérateurs sous-linéaire
contenant les opérateurs fondamentaux en analyse harmonique liée a L. Plus précisément,

lorsque T € K, nous prouvons qu’il existe un opérateur borné sous-bilinéaire R = R :
Hi(R?) x BMO(RY) — LY(R?) tell que

T(S(f,0)| = R(f,0) < |[b, TINI < R(f,0) + |T(S(S,b))]; (5.1)

o1 & est un opérateur borné bilinéaire de H} (R?)x BMO(RR?) & valeurs L!(R?), indépendant
de T. La décomposition sous-bilinéaire (5.1) nous permet d’expliquer pourquoi les com-
mutateurs avec les opérateurs fondamentaux sont de type faible (H1, L'), et quand un
commutateur [b, T] est de type fort (H}, L').

En outre, nous étudions les estimations H} des commutateurs de la transformée de

Riesz associée a 'opérateur de Schrodinger L.

123



5.1 Introduction

Given a function b locally integrable on R?, and a (classical) Calderén-Zygmund operator
T, we consider the linear commutator [b,T] defined for smooth, compactly supported
functions f by
b, T|(f) =bT(f) = T(bf).

A classical result of Coifman, Rochberg and Weiss (see [31]), states that the commutator
[b,T] is continuous on LP(RY) for 1 < p < oo, when b € BMO(R?). Unlike the theory of
(classical) Calderén-Zygmund operators, the proof of this result does not rely on a weak
type (1, 1) estimate for [b, T]. Instead, an endpoint theory was provided for this operator.
A general overview about these facts can be found for instance in [82].

Let L = —A 4V be a Schrodinger operator on RY, d > 3, where V is a nonnegative
potential, V' # 0, and belongs to the reverse Holder class RHg/,. We recall that a
nonnegative locally integrable function V' belongs to the reverse Holder class RH,, 1 <

q < 0o, if there exists C' > 0 such that

L S wvapa) < S [ vy
31 E

B

holds for every balls B in R% In [46], Dziubanski and Zienkiewicz introduced the Hardy
space H}(R?) as the set of functions f € L'(R?) such that [|f|ly; = [|Mrfllm < oo,
where My f(z) := sup,~q |e X f(z)|. There, they characterized H}(R?) in terms of atomic
decomposition and in terms of the Riesz transforms associated with L, R; = 8%[71/ 2
7 =1,...,d. In the recent years, there is an increasing interest on the study of commutators
of singular integral operators related to Schrédinger operators, see for example [17, 22,
58, 92, 134].

In the present paper, we consider commutators of singular integral operators T related
to the Schrodinger operator L. Here T is in the class K of all sublinear operators
T, bounded from H}(R?) into L'(R?) and satisfying for any b € BMO(R?) and a a

generalized atom related to the ball B (see Definition 5.2.1), we have
I(b = bp)Talr < Cllbllsyo,

where bg denotes the average of b on B and C' > 0 is a constant independent of b, a.
The class K contains the fundamental operators (we refer the reader to [82] for the
classical case L = —A) related to the Schrédinger operator L: the Riesz transforms R;,
L-Calderén-Zygmund operators (so-called Schrodinger-Calderén-Zygmund operators), L-

maximal operators, L-square operators, etc... (see Section 5.4). It should be pointed out
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that, by the work of Shen [125] and Definition 5.2.2 (see Remark 5.2.3), one only can
conclude that the Riesz transforms R; are Schrodinger-Calderén-Zygmund operators if
V € RH,. In this work, we consider all potentials V' which belong to the reverse Holder
class RH)s.

Although Schrédinger-Calderén-Zygmund operators map H}(RY) into LY(R?) (see
Proposition 5.4.1), it was observed in [92] that, when b € BMO(R?), the commuta-
tors [b, R;] do not map, in general, H}(R?) into L'(R?). Thus, when b € BMO(R?),
it is natural (see the paper of Pérez [119] for the classical case) to ask for subspaces of
H}(R?) such that all commutators of Schrodinger-Calderén-Zygmund operators and the
Riesz transforms map continuously these spaces into L'(R?). Here, we are interested in

the following two questions.

Question 5. Forb € BMO(RY). Find the largest subspace Hj ,(R?) of H} (R?) such that
all commutators of Schrodinger-Calderon-Zygmund operators and the Riesz transforms
are bounded from Hj ,(R?) into L'(RY).

Question 6. Characterize the functions b in BMO(R?) so that H} ,(RY) = Hj(R?).

Let X be a Banach space. We say that an operator T : X — L!'(R%) is a sublinear
operator if for all f,¢g € X and «, 5 € C, we have

[ T(f + Bg) ()| < lal[Tf(z)| + |Bl[Tg(x)].

Obviously, a linear operator T' : X — L*(R%) is a sublinear operator. We also say
that an operator T : Hi(R?) x BMO(RY) — L'(R?) is a subbilinear operator if for
every (f,g) € Hi(R?) x BMO(R?), the operators T(f,-) : BMO(RY) — L'(R?) and
T(-,9) : H:(RY) — L*(RY) are sublinear operators.

To answer Question 5 and Question 6, we study commutators of sublinear operators
in Kp,. More precisely, when T' € K, is a sublinear operator, we prove (see Theorem 5.3.1)
that there exists a bounded subbilinear operator R = Ry : H} (RY) x BMO(RY) — L*(R?)
so that for all (f,b) € Hi(RY) x BMO(R?),

IT(S(f,0)| = R(f,0) < |[b, TI(N)| < R(f,0) + |T(S(S,b))]; (5.2)

where & is a bounded bilinear operator from H}(R%) x BMO(R?) into L' (R?) which does
not depend on 7' (see Proposition 5.5.2). When T € Ky, is a linear operator, we prove
(see Theorem 5.3.2) that there exists a bounded bilinear operator R = Ry : H}(RY) x
BMO(RY) — L'(R?) such that for all (f,b) € H}(R?) x BMO(R?),

[b, T1(f) = R(f,b) + T(S(f,0)). (5-3)
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The decompositions (5.2) and (5.3) give a general overview and explains why almost
commutators of the fundamental operators are of weak type (H}, L), and when a com-
mutator [b, T] is of strong type (H1, L').

Let b be a function in BMO(R?). We assume that b non-constant, otherwise [b, 7] = 0.
We define the space Hj ,(R?) as the set of all f in Hj(R?) such that [b, M.](f)(z) =
Myp((z)f(-) = b(-)f(-))(x) belongs to L'(R?), and the norm on Hj ,(R?) is defined by
||f||be = [[fllz Ibllzaro + [|[b; ML](f)l[zr. Then, using the subbilinear decomposition
(5.2), we prove that all commutators of Schrodinger-Calderén-Zygmund operators and the
Riesz transforms are bounded from H} ,(R?) into L'(R?). Furthermore, Hj ,(R?) is the
largest space having this property, and H} ,(R?) = H}(R?) if and only if b € BMO®(R?)
(see Theorem 5.7.2), that is,

p(z) 1 /
b(y) — bpzm|d ,
’ )’B(I,Tﬂ | (y) Bz, )| Yyl <oo
B(z,r)

16l pase = sup | 1og (e +

(z,r)

where p(z) = sup{r > 0 : 5 fB(M) V(y)dy < 1}. This space BMOY5(R?) arises
naturally in the characterization of pointwise multipliers for BMOp(R?), the dual space
of H}(R?), see [9, 103].

The above answers Question 5 and Question 6. As another interesting application of
the subbilinear decomposition (5.2), we find subspaces of Hi(R?) which do not depend
on b € BMO(RY) and T € Ky, such that [b,T] maps continuously these spaces into
LY(R?) (see Section 5.7). For instance, when L = —A + 1, Theorem 5.7.4 state that
for every b € BMO(R?) and T € Ky, the commutator [b,T] is bounded from H,'(R%)
into L'(R%). Here H;"'(R?) is the (inhomogeneous) Hardy-Sobolev space considered by
Hofmann, Mayboroda and McIntosh in [65], defined as the set of functions f in H}(R?)
such that 0,, f, ..., 0., f € H}(R?) with the norm

d
I s = 0y + D 18s; f e -
j=1

Recently, similarly to the classical result of Coifman-Rochberg-Weiss, Gou et al.
proved in [58] that the commutators [b, R;] are bounded on L?(R?) whenever b € BMO(R?)
and 1 < p < dquq where V € RH, for some d/2 < ¢ < d. Later, in [17], Bongioanni et al.
generalized this result by showing that the space BMO(R?) can be replaced by a larger
space BM Oy, oo(R?) = UpsgBM Oy, 9(R?), where BMOp,9(R?) is the space of locally inte-
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grable functions f satisfying

[ 156) = foelay | <o

B(z,r)

T ! !
BMO; , = Sup
" B <1 4 )9 |B(z, )]

p(z)

Let R} be the adjoint operators of R; and BMOL(R?) be the dual space of Hj(R?).
In [16], Bongioanni et al. established that the operators R} are bounded on BMOL(R?),
and thus from L*°(RY) into BM Oy (R?). Therefore, it is natural to ask for a class of
functions b so that the commutators [b, R}] are bounded from L>(R?) into BMOL(R?).
In [17], the authors found such a class of functions. More precisely, they proved in [17]
that the commutators [b, R;] are bounded from L*(R?) into BMOL(R?) whenever b €
BMOlLOiO(Rd) = UQZOBMOII?%(RL{), where BMOf%(Rd) is the space of locally integrable

functions f satisfying

log (e + @) 1
17l pasosms, = sup [ 1) = ol | < .

9
B(z,r) r |B(£L‘, T)|
<1 + p(x>> B(r.r)

A natural question arises: can one replace the space L>°(RY) by BM Oy (R%)?

Question 7. Are the commutators [b, R;], j = 1,...,d, bounded on BMO(RY) whenever
be BMOy® (RY)?

Motivated by this question, we study the H}-estimates for commutators of the Riesz
transforms. More precisely, given b € BMOp, .(R?), we prove that the commutators
b, R;] are bounded on H}(R?) if and only if b belongs to BM OlLoio(Rd) (see Theorem
5.3.4). Furthermore, if b € BM OILO%(]Rd) for some 6 > 0, then there exists a constant
C > 1, independent of b, such that

d

C Wl oy < IBllrions + DB Billloiry < Clolpasors.
j=1

As a consequence, we get the positive answer for Question 7.

Now, an open question is the following:

Open question. Find the set of all functions b such that the commutators [b, R;], j =
1,...,d, are bounded on Hj(R?).

Let us emphasize the three main purposes of this paper. First, we prove the two
decomposition theorems: the subbilinear decomposition (5.2) and the bilinear decompo-

sition (5.3). Second, we characterize functions b in BM Oy, o.(R?) so that the commutators
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of the Riesz transforms are bounded on H}(R?), which answers Question 7. Finally, we
find the largest subspace M} ,(R?) of Hj(R?) such that all commutators of Schrodinger-
Calderén-Zygmund operators and the Riesz transforms are bounded from #j ,(R?) into
L*(R?). Besides, we find also the characterization of functions b € BMO(R?) so that
Hj,(R?) = Hj(R?), which answer Question 5 and Question 6. Especially, we show that
there exist subspaces of H}(R?) which do not depend on b € BMO(R?) and T € Ky,
such that [b, T] maps continuously these spaces into L!(R).

This paper is organized as follows. In Section 2, we present some notations and pre-
liminaries about Hardy spaces, new atoms, BM O type spaces and Schrodinger-Calderdn-
Zygmund operators. In Section 3, we state the main results: two decomposition theorems
(Theorem 5.3.1 and Theorem 5.3.2), Hardy estimates for commutators of Schrodinger-
Calderén-Zygmund operators and the commutators of the Riesz transforms (Theorem
5.3.3 and Theorem 5.3.4). In Section 4, we give some examples of fundamental operators
related to L which are in the class K. Section 5 is devoted to the proofs of the main
theorems. Section 6 is devoted to the proofs of the key lemmas. Finally, in Section 7,
we give some subspaces of H:(R?) which do not necessarily depend on b € BMO(R?)
and T € K, (see Theorem 5.7.3 and Theorem 5.7.4), such that the commutator [b, T
maps continuously these spaces into L'(R?). Especially, we find in this section the largest
subspace 7—[}471) of H}(R?) so that all commutators of Schrodinger-Calderén-Zygmund op-
erators and the commutators of the Riesz transforms map continuously this space into
L*(R?) (see Theorem 5.7.2).

Throughout the whole paper, C' denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line. The symbol f ~ g
means that f is equivalent to g (i.e. C71f < g < Cf). In R¢, we denote by B = B(z,r)
an open ball with center x and radius r > 0, and ¢t B(x,r) := B(xz, tr) whenever ¢ > 0. For
any measurable set E, we denote by xg its characteristic function, by |E| its Lebesgue
measure, and by E¢ the set R?\ E.

Acknowledgements. The author would like to thank Aline Bonami, Sandrine Grel-
lier and Frédéric Bernicot for many helpful suggestions and discussions. He would also
like to thank Sandrine Grellier for many helpful suggestions, her carefully reading and

revision of the manuscript. The author is deeply indebted to them.
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5.2 Some preliminaries and notations

In this paper, we consider the Schrédinger differential operator
L=-A+V

on RY, d > 3, where V is a nonnegative potential, V # 0. As in the works of Dziubanski
et al [45, 46], we always assume that V' belongs to the reverse Hélder class RH/o. Recall
that a nonnegative locally integrable function V is said to belong to a reverse Holder class
RH,, 1 < q < oo, if there exists C' > 0 such that

L S wvemas)” < £ [ vieyds
<|B| B/ ) | B J

holds for every balls B in RY. By Holder inequality, RH,, C RH,, if ¢ > ¢, > 1. For
q > 1, it is well-known that V € RH, implies V € RH,,. for some ¢ > 0 (see [55]).

Moreover, V(y)dy is a doubling measure, namely for any ball B(z,r) we have
| vwasa [ v (5.4
B(z,2r) B(z,r)
Let {T}}i~0 be the semigroup generated by L and T}(x,y) be their kernels. Namely,
Tf(e) = f @) = [ Tio.)f)dy, € LR, t>0
R4
We say that a function f € L*(R?) belongs to the space H} (R?) if
1f [ == MLl < oo,

where My, f(x) := sup,., |1 f ()| for all z € R%. The space H}(R?) is then defined as the
completion of H} (R?) with respect to this norm.

In [45] it was shown that the dual of H} (R?) can be identified with the space BM Oy (R?)
which consists of all functions f € BMO(R?) with

p(z)<r

1
| fllBaro, == [ fllBro + sup ——— / |f(y)|dy < oo,
" |B(ﬂ7,7“)|B( )

where p is the auxiliary function defined as in [125], that is,

1
p(x) = sup {T >0: s V(y)dy < 1}, (5.5)
B(z,r)
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z € R% Clearly, 0 < p(z) < oo for all z € R?, and thus R = |, ., B,, where the sets B,
are defined by
B, ={z e R?: 27 ("D/2 < p(z) < 272}, (5.6)

The following proposition plays an important role in our study.

Proposition 5.2.1 (see [125], Lemma 1.4). There exist two constants k > 1 and ko > 1
such that for all x,y € R4,

o) (14 )™ < i) < o) (14 £ [yt

Throughout the whole paper, we denote by C;, the L-constant
Cr = 8.9k (5.7)

where ky and x are defined as in Proposition 7.2.1.

Given 1 < ¢ < oco. Following Dziubanski and Zienkiewicz [46], a function a is called a
(H!1,q)-atom related to the ball B(xz,r) if r < Crp(zo) and

i) supp a C B(zq, 1),

ii) [lallze < |B(zo, )[4,

iii) if r < ép(mo) then [, a(z)dr = 0.

A function a is called a classical (H', ¢)-atom related to the ball B = B(xg,r) if it
satisfies (1), (ii) and [, a(x)dz = 0.

The following characterization of H}(R?) is due to Dziubaiiski and Zienkiewicz [46].

Theorem 5.2.1 (see [46], Theorem 1.5). Let 1 < q < oco. A function f is in Hi(RY) if
and only if it can be written as f = 3, Nja;, where a; are (Hp, q)-atoms and 37| \j| < oo.

Moreover,
[ £l =~ inf {Z Al f = ZAJ%} :
J J

Note that a classical (H', g)-atom is not a (H},q)-atom in general. In fact, there
exists a constant C' > 0 such that if f is a classical (H?, ¢)-atom, then it can be written
as f = Y7, Aja;, for some n € ZF, where a; are (H}, g)-atoms and Y 7 | |\;| < O, see
for example [145]. In this work, we need a variant of the definition of atoms for H}(R?)
which include classical (H', ¢)-atoms and (Hj,q)-atoms. This kind of atoms have been
used in the work of Chang, Dafni and Stein [24, 34].
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Definition 5.2.1. Given 1 < ¢ < 0o and € > 0. A function a is called a generalized
(H},q,¢e)-atom related to the ball B(xg,r) if

i) supp a C B(xg, 1),

ii) lallpa < |B(zo, )[4,

i) | Ja afe)da] < (555)

p(@o)

The space Hiif (R%) is defined to be set of all functions f in L'(R?) which can be
written as f = Z;’il Aja; where the a; are generalized (Hj,q,¢)-atoms and the ); are
complex numbers such that > 7 [Aj| < co. As usual, the norm on HlL‘flf (RY) is defined
by

o0

| Fllpoe =i { 3701 £ =D Nas |-
P j=1

The space Hy%:(RY) is defined to be set of all f = Zle Aja;, where the a; are
generalized (H},q,)-atoms. Then, the norm of f in HlL’}fl(Rd) is defined by

k k
Il = inf {371 £ =7 Nas
j=1 j=1

Remark 5.2.1. Let 1 < ¢ < oo ande > 0. Then, a classical (H', q)-atom is a generalized
(H},q,e)-atom related to the same ball, and a (H;},q)-atom is C1° times a generalized
(H},q,¢e)-atom related to the same ball.

Throughout the whole paper, we always use generalized (H}, q, €)-atoms except in the
proof of Theorem 5.3.4. More precisely, in order to prove Theorem 5.3.4, we need to use

(H},q)-atoms from Dziubariski and Zienkiewicz (see above).
The following gives a characterization of H}(R") in terms of generalized atoms.

Theorem 5.2.2. Let 1 < ¢ < oo and e > 0. Then, HlL’zl’f(Rd) = H1(RY) and the norms

are equivalent.
In order to prove Theorem 5.2.2, we need the following lemma.

Lemma 5.2.1 (see [91], Lemma 2). Let V' € RHgysy. Then, there exists g > 0 depends
only on L, such that for every |y — z| < |z —y|/2 and t > 0, we have

ly —z[\o0,_a _le? ly — 2|
Ti(x,y) — Ty(x, z SC’( > t72ze” t < (C
Ty (x,y) 1(z, 2)| NG

|z — y|*teo
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Proof of Theorem 5.2.2. As My is a sublinear operator, by Remark 5.2.1 and Theorem
7.2, it is sufficient to show that
My (@) < C (5.8)

for all generalized (H},q,¢)-atom a related to the ball B = B(zg,r).
Indeed, from the L?-boundedness of the classical Hardy-Littlewood maximal operator
M, the estimate My (a) < CM(a) and Hélder inequality,

IML(@)]lp12m) < CIM(@)|l112m) < C12B[M | M(a)l|zs < C, (5.9)

where 1/¢' +1/g=1. Let © ¢ 2B and t > 0, Lemma 6.3.2 and (3.5) of [46] give

T = | [T gata]

< | [ @) - Tea)awds] + a0 [ o)y

B

770 re
< C C .
Therefore,
[IMr(a)lliepy) = |l Sup T (a)lll L (2m)e)
770 re
<C —————dx+ C —d
<c | 2=zl / 7= o
(2B)e (2B)e

<cC. (5.10)

Then, (5.8) follows from (5.9) and (5.10). O

By Theorem 5.2.2, the following can be seen as a direct consequence of Proposition
3.2 of [145] and remark 5.2.1.

Proposition 5.2.2. Let 1 < g < o0, € > 0 and X be a Banach space. Suppose that
T: Hi’%’i(Rd) — X is a sublinear operator with

sup{||Tal|x : a is a generalized (H},q,¢) — atom} < oco.
Then, T can be extended to a bounded sublinear opemtorf from H}(R?) into X, moreover,

||f||H£_>X < Csup{||Tallx : ais a generalized (H},q,c) — atom}.
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Now, we turn to explain the new BMO type spaces introduced by Bongioanni, Har-

boure and Salinas in [17]. Here and in what follows fp := 18] BI [ f(z)dz and
1
O(f. B) := @/!f(y) — faldy. (5.11)
B

For § > 0, following [17], we denote by BM Oy, 4(R%) the set of all locally integrable
functions f such that

1
HfHBMOL,e = Ssup —QMO(f,B(l',T)) < 00,

B(z,r) <1+$>

and BM OILO%(Rd) the set of all locally integrable functions f such that

log (e 4ol ))
£ 1 sasotes, = S|

-

When 6 = 0, we write BMO%(R?) instead of BM OlLO%(Rd). We next define

MO(g, B(z,r)) | < oo0.

BMOp.(RY) = | BMO.4(R?)
>0
and
BMOY® (RY) = | ] BMOYS(RY).
>0
Observe that BM Oy o(R?) is just the classical BMO(R?) space. Moreover, for any
0 <6 <60 < oo, we have

BMOy4(R?) € BMOpg(RY), BMolgg(Rd) C BMofge, (RY) (5.12)
and
BMOY%(R?) = BMOLo(R*) N BMOP® (RY). (5.13)

Remark 5.2.2. The inclusions in (5.12) are strict in general. In particular:

i) The space BM Oy, o(R?) is in general larger than the space BMO(R?). Indeed,
when V(x) = |z|?, it is easy to check that the functions bj(x) = |z;], j = 1,...,d, belong
to BMOp o (R%) but not to BMO(R?).

it) The space BMOIL‘)%OO(Rd) is in general larger than the space BMOY2(RY). Indeed,
when V(z) =1, it is easy to check that the functions b;(z) = |x;|, j = 1,...,d, belong to
BMO?® _(RY) but not to BMOP®(R?).
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Next, let us recall the notation of Schrodinger-Calderén-Zygmund operators.

Let 6 € (0,1]. According to [103], a continuous function K : R? x R\ {(z,z) : x €
R} — C is said to be a (4, L)-Calderén-Zygmund singular integral kernel if for each
N >0,

C(N) |z —y|\ =N

K(z,y)| < 1+ 5.14
) Ifc—yld< p(x)> o1y

for all z # y, and

|z — ')

K y) = K )|+ K ) = Ky o) < 07—

(5.15)

for all 2|z — 2'| < |z —y|.
As usual, we denote by C°(R%) the space of all C*°-functions with compact support,
by S(R?) the Schwartz space on R?.

Definition 5.2.2. A linear operator T : S(RY) — S'(RY) is said to be a (3, L)-Calderdn-
Zygmund operator if T can be extended to a bounded operator on L*(R?) and if there exists
a (6, L)-Calderén-Zygmund singular integral kernel K such that for all f € C2(R?) and
all x & supp f, we have

Tf(a) = [ Kw)fwd.
Rd
An operator T is said to be a L-Calderdn-Zygmund operator (or Schrédinger-Calderén-
Zygmund operator) if it is a (6, L)-Calderdn-Zygmund operator for some 6 € (0, 1].

We say that T satisfies the condition 7%1 = 0 (see for example [8]) if there are ¢ €
(1,00] and & > 0 so that [;, Ta(x)dz = 0 holds for every generalized (H},q,¢)-atoms a.

Remark 5.2.3. i) Using Proposition 7.2.1, Inequality (5.14) is equivalent to

C(N) |z — y|\ N
eyl < Iflf—yld(H p(y) )

for all x # y.
ii) By Theorem 0.8 of [125] and Theorem 1.1 of [126], the Riesz transforms R; are

L-Calderdn-Zygmund operators satisfying R;1 =0 whenever V € RH,.
iii) If T is a L-Calderdn-Zygmund operator then it is also a classical Calderdon-

Zygmund operator, and thus T is bounded on LP(R?) for 1 < p < oo and bounded from
LY(RY) into L1>°(RY).
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5.3 Statement of the results

Recall that Ky, is the set of all sublinear operators 7' bounded from H}(R?) into L*(R?)
and that there are g € (1, 00] and & > 0 such that

I(b = bp)Tallr < Clbllsrmo

for all b € BMO(R?), any generalized (H}, q,€)-atom a related to the ball B, where C' > 0

is a constant independent of b, a.

5.3.1 Two decomposition theorems

Let b be a locally integrable function and T" € K. As usual, the (sublinear) commutator
[b, T] of the operator T is defined by [b, T|(f)(z) := T((b(m) — b())f())(x)

Theorem 5.3.1 (Subbilinear decomposition). Let T € K. There ezists a bounded sub-
bilinear operator R = Ry : HL(RY) x BMO(R?Y) — LY(R?) such that for all (f,b) €
Hi(R?) x BMO(RY), we have

T(&(f, )| = R(f,0) < |[b, TN < R(f,0) + |T(S(S,b))];

where & is a bounded bilinear operator from H3i(R?) x BMO(R?) into L'(R?) which does
not depend on T

Using Theorem 5.3.1, we obtain immediately the following result.

Proposition 5.3.1. Let T € Ky, so that T is of weak type (1,1). Then, the subbilinear
operator T(f, g) = [g, T](f) maps continuously Hi(R?) x BMO(RY) into L»*°(RY).

Recall that R; = 9,,L7"/2, j = 1,...,d, are the Riesz transforms associated with L.
As the Riesz transforms R; are of weak type (1, 1) (see [89]), the following can be seen as

a consequence of Proposition 5.3.1 (see also [92]).

Corollary 5.3.1 (see [92], Theorem 4.1). Let b € BMO(R?). Then, the commutators
b, R;] are bounded from H}(R?) into LV>°(R?).

When T is linear and belongs to K, we obtain the bilinear decomposition for the linear
commutator [b, T'] of f, [b, T|(f) = bT'(f)—T(bf), instead of the subbilinear decomposition
as stated in Theorem 5.3.1.
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Theorem 5.3.2 (Bilinear decomposition). Let T' be a linear operator in K. Then, there
exists a bounded bilinear operator R = Ry : Hi (R?) x BMO(RY) — L'(R?) such that for
all (f,b) € HE(RY) x BMO(R?), we have

[0, T](f) = R(f,0) + T(&(f, b)),

where & is as in Theorem 5.3.1.

5.3.2 Hardy estimates for linear commutators

Our first main result of this subsection is the following theorem.

Theorem 5.3.3. i) Let b € BMOILOg(Rd) and T be a L-Calderdn-Zygmund operator
satisfying T*1 = 0. Then, the linear commutator [b, T| is bounded on Hj(R?).

ii) When V. € RHy, the converse holds. Namely, if b € BMO(R?) and [b,T] is
bounded on HL(R?) for every L-Calderén-Zygmund operator T satisfying T*1 = 0, then
b e BMOY(R?Y). Furthermore,

d
10l pasores = NbllBrco + Y 110, Byl g o -

j=1
Next result concerns the Hj-estimates for commutators of the Riesz transforms.

Theorem 5.3.4. Let b € BMOp o (R?). Then, the commutators [b, R;], j = 1,...,d, are
bounded on H}(RY) if and only if b € BMOfio(Rd). Furthermore, if b € BMO?%(Rd)
for some 6 > 0, we have

d
1bll saroies, = 1ol aio, o + 3 N1b, Billl iy -y -

j=1
Remark that the above constants depend on 6.
Note that BM O 5(R?) is in general proper subset of BM OlLof)o(Rd) (see Remark 5.2.2).
When V' € RHy, although the Riesz transforms R; are L-Calderén-Zygmund operators
satisfying R;1 = 0, Theorem 5.3.4 cannot be deduced from Theorem 5.3.3.

As a consequence of Theorem 5.3.4, we obtain the following interesting result.

Corollary 5.3.2. Let b € BMO(RY). Then, b belongs to LMO(R?) if and only if the
vector-valued commutator [b, V(—A+1)"Y2] maps continuously h*(R?) into h'(R?, RY) =
(RY(RY), ..., h*(RY)). Furthermore,

16l Laro = |16l Bao + ||[b, V(—=A + 1)71/2]th(Rd)—>h1(Rd,]Rd)~
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Here h'(R?) is the local Hardy space of D. Goldberg (see [56]), and LMO(R?) is the

space of all locally integrable functions f such that
1
IFllzato = sup (10g (e+ 1) MO, Bar) ) < o
B(z,r)

It should be pointed out that LM O type spaces appear naturally when studying the
boundedness of Hankel operators on the Hardy spaces H'(T9) and H'(B?) (where B? is
the unit ball in C? and T? = 9B?), characterizations of pointwise multipliers for BMO
type spaces, endpoint estimates for commutators of singular integrals operators and their
applications to PDEs, see for example [13, 21, 75, 76, 82, 118, 127, 132].

5.4 Some fundamental operators and the class K;,

The purpose of this section is to give some examples of fundamental operators related to

L which are in the class Kr.

5.4.1 Schrodinger-Calderon-Zygmund operators

Proposition 5.4.1. Let T be any L-Calderon-Zygmund operator. Then, T belongs to the

class Ky,
Proposition 5.4.2. The Riesz transforms R; are in the class Kp,.

The proof of Proposition 5.4.2 follows directly from Lemma 5.5.7 and the fact that
the Riesz transforms R; are bounded from Hj}(R?) into L'(RY).

To prove Proposition 5.4.1, we need the following two lemmas.

Lemma 5.4.1. Let 1 < q < oo. Then, there exists a constant C > 0 such that for every
ball B, f € BMO(RY) and k € Z7,

1 /a
<|2kB|/|f<y>_fB|qdy>l < Ck| fllsmo-

2kB

The proof of Lemma 5.4.1 follows directly from the classical John-Nirenberg inequality.

See also Lemma 5.6.6 below.

Lemma 5.4.2. Let 1 < ¢ < 00 and € > 0. Assume that T is a (0, L)-Calderén-Zygmund

operator and a is a generalized (H} , q,€)-atom related to the ball B = B(xq,r). Then,
HTa”Lq(QkHB\QkB) < CQ*k50’2kB‘1/q71

for all k =1,2,..., where §y = min{e,d}.
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Proof. Let z € 2" B\ 2* B so that |z — x| > 2r. Since T is a (0, L)-Calderén-Zygmund

operator, we get

Ta@)] < | [(.0) - Kea)ato)dy] + 1K o) [ atw)ay

|y — @0l 1 z—wo|\—F/ T\
< 0/—ay dy + C (1+ ) ( >
1 e 8o
T r r
C C
’$ — 950]6”5 + ’[B _ x0|d+5 ‘.I' B $0’d+50
Consequently,
00
r
||Ta/||Lq(2k+1B\2kB) S CW|2]€+1B|1/Q S 02—k50|2kB|1/q—1‘

]

Proof of Proposition 5.4.1. Assume that T is a (6, L)-Calder6n-Zygmund for some § €
(0,1]. Let us first verify that T is bounded from Hj(R?) into L'(R?). By Proposition
5.2.2, it is sufficient to show that

[Tallz: < C

for all generalized (H},2,0)-atom a related to the ball B. Indeed, from the L2-boundedness
of T"and Lemma 5.4.2, we obtain that

|Tal[zn = HTa”Ll(QB)+Z”Ta||L1(2’“+1B\2’“B)
k=1
< C|QB|1/2||:’7||L2—>L2||a||L2JrCz:|2k+119|1/22_k(5|2k19|_1/2
k=1
< C.

Let us next establish that

I(f = fe)Tallr < Cllflsmo

for all f € BMO(R?), any generalized (H},?2,)-atom a related to the ball B = B(xg,r).
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Indeed, by Holder inequality, Lemma 5.4.1 and Lemma 5.4.2, we get

<

<

I(f = f5)Tal
I1(f = f8)Tallrem + Y I = fo)Tall s mae )
E>1
I(F = fe)xesllez Tl 2o rellall e + ) Nf = follizem | Tal e pocs)
k>1
Cllflsao + Y Clk+ V)| fllsaol2 B2 |2 B|~/2

k>1

CHfHBMOa

which ends the proof.

5.4.2 Some L-maximal operators

Recall that {T;}¢~o is heat semigroup generated by L and T;(z,y) are their kernels.

Namely,

Tof(x) = et f(x) = / T(w.y)f()dy, feL*RY, t>0.

R4

Then the "heat” maximal operator is defined by

My f(x) = sup [T, f(x)],

t>0

and the ”Poisson” maximal operator is defined by

where

M f(x) = sup | P f(z)],

t>0

Pf(x) = eVEf(z) = # / %T f(x)du.
0

Proposition 5.4.3. The “heat” maximal operator My, is in the class Ky,

Proposition 5.4.4. The "Poisson” mazimal operator MY is in the class Kr.

Here we just give the proof of Proposition 5.4.3. For the one of Proposition 5.4.4, we

leave the details to the interested reader.
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Proof of Proposition 5.4.3. Obviously, M, is bounded from H}(R%) into L'(R?).

Now, let us prove that

I(f = fe)Mer(a)llr < CllfllBamo

for all f € BMO(RY), any generalized (H},2, 0¢)-atom a related to the ball B = B(z, 1),
where the constant oy > 0 is as in Lemma 6.3.2. Indeed, by the proof of Theorem 5.2.2,
for every x ¢ 2B,

roo0

|z — xq|dtoo’

Mip(a)(z) < C

Therefore, using Lemma 5.4.1, the L2-boundedness of the classical Hardy-Littlewood max-
imal operator M and the estimate My (a) < CM(a), we obtain that

I(f — fB)Mr(a)|
= |[[(f = feIMr(a)lr@s) + (f = fB)ML(a)| L (@2B))

< Ol = follan M@ +C [ 1@ = fonl =

$0|d+00 x

790

|x—x0|>2r

< C|fllBmo,

where we have used the following classical inequality

o0
| 1@ = fatean =" < Cll o

|x—x0|>2r

which proof can be found in [48]. This completes the proof of Proposition 5.4.3.

5.4.3 Some L-square functions

Recall (see [45]) that the L-square funcfions g and G are defined by

- 1/2
o) = | [1am@rs
and 1/2
6w = [ [ remowris
0 |z—yl<t

140



Proposition 5.4.5. The L-square function g is in the class K.
Proposition 5.4.6. The L-square function G is in the class Kp,.

Here we just give the proof for Proposition 5.4.5. For the one of Proposition 5.4.6, we
leave the details to the interested reader.

In order to prove Proposition 5.4.5, we need the following lemma.

Lemma 5.4.3. There exists a constant C > 0 such that

_clz—y?

)
BT,y + h) — t0Ti(x,y)| < 0(%) it (5.16)

for all |h| < @, 0 < t. Here and in the proof of Proposition 5.4.5, the constants

d,c € (0,1) are as in Proposition 4 of [45].

Proof. One only needs to consider the case vt < |h| < Ix_;y\ Otherwise, (5.16) follows
directly from (b) in Proposition 4 of [45].
For v/t < |h| < @ By (a) in Proposition 4 of [45], we get

le—y—h|2 la—y|?

to, Ty (x,y + h) —td,Ty(x,y)| < Ct¥2e 1  +Ct Y% <

< c(m)at‘d/ze—i‘”?'?
- Vit

]

Proof of Proposition 5.4.5. The (H} — L') type boundedness of g is well-known, see for
example [45, 64]. Let us now show that

1(f = fB)a(a)llzr < Clifllsaro

for all f € BMO(R?), any generalized (H},2,)-atom a related to the ball B = B(x, 7).
Indeed, it follows from Lemma 5.4.3 and (a) in Proposition 4 of [45] that for every ¢ > 0,
x ¢ 2B,

10,7 (a) )
= | [0 a.y) ~ 0T (o 20)alu)dy + 0T (o) [ alw)i]

o(%)étmeZ T o+ O T (14 péf) " p£>>_6<p<;o>)6

T 4 c\x_WO‘Q
o( LY et
Vit
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|z —aq|?

Therefore, as 0 < § < 1, using the estimate e™ 2~ 7 ~ < C(c,d)(~Lt—)%*?,

— |lz—z0]2
00 1/2
2 6 clr—x 2 dt
gla)(x) < C / (%) t—de—a%7
0
oo o0 1/2
2.5 d+2 2.5
<ol [ Yot ] ayes
t | — 0? t t t
0 |z—z0|2
5
r
C—— .
|z — 2o|d+0
Therefore, the L?-boundedness of g and Lemma 5.4.1 yield
I(f = fB)a(a)] L
= |I(f - fB)B(a)HLl(zB) +[[(f = fB)g(a)HLl((QB)c)
5
,
< f = folzenlle(a)lz + C / @) = Toon | s 4o

|x—zo|>2r

< C| fllzamo,

which ends the proof.

5.5 Proof of the main results

In this section, we fix a non-negative function ¢ € S(R?) with supp ¢ C B(0,1) and
Jga p(x)dz = 1. Then, we define the linear operator $ by

9(1) = 3 (nsf = prre + Wui)),

n,k

where ¥, 1, n € Z, k = 1,2, ... is as in Lemma 2.5 of [46] (see also Lemma 7.3.2).
Remark 5.5.1. When V(z) =1, we can define H(f) = f —ox* f.

Let us now consider the set & = {0,1}¢\ {(0,---,0)} and {17 },c¢ the wavelet with

compact support as in Section 3 of [14] (see also Section 2 of [82]). Suppose that 97 is

supported in the cube (% — g,% — g)d for all 0 € £. As it is classical, for 0 € £ and I a

dyadic cube of R? which may be written as the set of x such that 27z — k € (0,1)4, we

note

W9 (x) = 2927 (2 x — k).
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In the sequel, the letter I always refers to dyadic cubes. Moreover, we note kI the cube

of same center dilated by the coefficient k.

Remark 5.5.2. For every o € £ and I a dyadic cube. Because of the assumption on the

support of Y7, the function V¢ is supported in the cube cl.
In [14] (see also [82]), Bonami et al. established the following.

Proposition 5.5.1. The bounded bilinear operator 11, defined by

I(f.9) =Y > (f 9 {g. ) (F)?,

I oe&

is bounded from H'(R?) x BMO(RY) into L*(R?).

5.5.1 Proof of Theorem 5.3.1, Theorem 5.3.2

In order to prove Theorem 5.3.1 and Theorem 5.3.2, we need the following key two lemmas

which proofs will given in Section 5.6.
Lemma 5.5.1. The linear operator §) is bounded from H}(R?) into H'(R?).
Lemma 5.5.2. Let T' € K. Then, the subbilinear operator
Uf,b) ==, T1(f — H(/))
is bounded from H1(R?) x BMO(R?) into L'(R?).
By Proposition 5.5.1 and Lemma 5.5.1, we obtain:

Proposition 5.5.2. The bilinear operator S(f, g) := —IL(H(f), g) is bounded from H} (R?)x
BMO(R?) into L'(R?).

We recall (see [82]) that the class K is the set of all sublinear operators 7' bounded
from H'(R%) into L'(R?) so that for some ¢ € (1, 00],

”(b - bB)TaHLl < OHbHBMOa

for all b € BMO(RY), any classical (H!, g)-atom a related to the ball B, where C' > 0 a

constant independent of b, a.

Remark 5.5.3. By Remark 5.2.1 and as H'(R?) C Hi(RY), we obtain that K C K,
which allows to apply the two classical decomposition theorems (Theorem 3.1 and Theorem
3.2 of [82]). This is a key point in our proofs.
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Proof of Theorem 5.5.1. As T € K, C K, it follows from Theorem 3.1 of [82] that there
exists a bounded subbilinear operator V : H'(R?) x BMO(R?) — L'(R?) such that for
all (g,b) € H'(R?) x BMO(R?), we have

[ T(=1L(g,0))| = V(g,b) < [b,T](9)| < V(g,b) + |T(—1L(g,0))| (5.17)
Let us now define the bilinear operator R by

R(S,0) = Uf,b)[+V(H(f),b)

for all (f,b) € H}(RY) x BMO(R?), where U is the subbilinear operator as in Lemma
5.5.2. Then, using the subbilinear decomposition (5.17) with g = H(f),

IT(S(f,0))| = R(f,0) < |[b, TINI < T(S(f,0))] + R(Sb),

where the bounded bilinear operator & : Hj(R?) x BMO(R?Y) — LY(R?) is given in
Proposition 5.5.2.

Furthermore, by Lemma 5.5.2 and Lemma 5.5.1, we get

IR0 < U D)l + VS, )]z
< Clf a0l Baro + CIHH) 16l Baro
< Cllfla 16l 2aro,

N

where we used the boundedness of V on H!(R?) x BMO(R?) into L'(R%). This completes
the proof.
O]

Proof of Theorem 5.3.2. The proof follows the same lines except that now, one deals with
equalities instead of inequalities. Namely, as T is a linear operator in K; C K, Theorem
3.2 of [82] yields that there exists a bounded bilinear operator W : H(R?) x BMO(R?) —
LY(R%) such that for every (g,b) € H(RY) x BMO(R?),

[0, T1(g) = W(g,b) + T(~11(g,0))
Therefore, for every (f,b) € HL(RY) x BMO(R?),
[b, T1(f) = R(f,b) + T(&(f,0)),

where R(f,b) := U(f,b) + W($H([),b) is a bounded bilinear operator from H}(R?) x
BMO(RY) into L*(R?). This completes the proof.
[l
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5.5.2 Proof of Theorem 5.3.3 and Theorem 5.3.4

First, recall that V MO (R?) is the closure of C>°(R%) in BMOr(R?). Then, the following
result due to Ky [83].

Theorem 5.5.1. The space Hi(R?) is the dual of the space VMO (R?).

In order to prove Theorem 5.3.3, we need the following key lemmas, which proofs will

be given in Section 5.6.

Lemma 5.5.3. Let1 < ¢ < oo and @ > 0. Then, for every f € BMO?%(Rd), B = B(z,r)
and k € Z*, we have

1 + ok, (k:0+1)0
v (14 55)
<|2le‘ / |f(y) — fB’qdy> ! <Ck A )p(x) Hf“BMOlLO%;
el e

where the constant ko s as in Proposition 7.2.1.

Lemma 5.5.4. Let 1 < g< o0, e >0 and T be a L-Calderon-Zygmund operator. Then,

the following two statements hold:
i) If T*1 =0, then T is bounded from HL(R?) into H'(R?).
ii) For every f,g € BMO(RY), generalized (H},q,¢)-atom a related to the ball B,
1(f = fe)lg — gp)Talr < CllfllBmollgllzro-

Proof of Theorem 5.3.3. (i). Assume that T is a (d, L)-Calderén-Zygmund operator. We

claim that, as, by Lemma 5.5.4, it is sufficient to prove that
16— bB)aHHi < CHb”BMOILOg (5.18)

and
16— bs)Tally, < ClIbl o (5.19)

hold for every generalized (H},2,d)-atom a related to the ball B = B(xzg,r) with the
constants are independent of b, a. Indeed, if (5.18) and (5.19) are true, then

16, TI(a)lr; < [I(b—bg)Talm + CIIT((b—bg)a)|m
< CHbHBMolL% + CI T a1 |(b = bp)al 2
< CHbHBMolL"g'

Therefore, Proposition 5.2.2 yields that [b, T'] is bounded on H}(R¢), moreover,

1o, T s~y < C,
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where the constant C' is independent of b.
The proof of (5.18) is similar to the one of (5.19) but uses an easier argument, we
leave the details to the interested reader. Let us now establish (5.19). By Theorem 5.5.1,

it is sufficient to show that
[6(b = bp)Tal[rr < Clbll gprorsll @l Baror (5.20)
for all ¢ € C°(R%). Besides, from Lemma 5.5.4,
(¢ = ¢5)(b—bp)TallLr < Cl|bllsaroll¢ll saro < Cllbll gyrorsllll aso, -

This together with Lemma 2 of [45] allow us to reduce (5.20) to showing that

log (e | Pl )) (b = bs)Tal| 2 < Cbl] gy (5.21)

Setting € = /2, it is easy to check that there exists a constant C' = C'(¢) > 0 such
that
log(e + kt) < Ck®log(e + t)

for all £ > 2,t > 0. Consequently, for all £k > 1,

log <e + p(r >) < C2*log (e + (p<x0)>ko+l> . (5.22)

ok+1)

Then, by Lemma 5.4.2 and Lemma 5.5.3, we get

10g< p<x0)>||(b—bB)TaHL1

—|—Zlog(
T ko-+1
(e * <p(2r0)> ) 16— bsllL2ep | Tall L2 +

p T ko+1
+C Z 2k5 log (6 + (2£+(1)7)ﬂ) ) ”b — bB||L2(2k+1B) ||Ta||L2(2k+1B\2kB)

k>1

90 16— bs) Tl s s

IA
Q
<)

0

< CLBI"b o lall i + O3 2k + D25 B bl gy en2 125 B] 2
k>1
< CHbHBMofg?

where we used § = 2¢. This ends the proof of (7).
(77). By Remark 5.2.3, (i7) can be seen as a consequence of Theorem 5.3.4 that we are

going to prove now.

]
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Next, let us recall the following lemma due to Tang and Bi [134].

Lemma 5.5.5 (see [134], Lemma 3.1). Let V. € RHyjs. Then, there exists ¢y € (0,1)
such that for any positive number N and 0 < h < |z — y|/16, we have

|Kj(z,y)] < C) : 1( / E V(Z‘)dldz+ yg;iyy>

N d—
o=y \" |7 — Yl
(1 T p(y) )

B(z,|z—yl|)
and
C(N) heo V(z) 1
Kj(w,y+ h) — Kj(z,y)| < ( / dx + ).
o+ o] € e e
o(y) B(z,|z—y|)

where K;(z,y), j =1,...,d, are the kernels of the Riesz transforms R;.

In order to prove Theorem 5.3.4, we need also the following two technical lemmas,

which proofs will be given in Section 5.6.

Lemma 5.5.6. Let 1 < ¢ < d/2 and ¢y be as in Lemma 5.5.5. Then, R;(a) is C times
a classical (H', q, co)-molecule (e.g. [126]) for all generalized (H},q,co)-atom a related to
the ball B = B(xo,r). Furthermore, for any N > 0 and k > 4, we have

C(N)

e PAYZ{ AR (5.23)
2ky
<1 - P(Io)>

| Rj(a) || parr1pr2r ) <

where C(N) > 0 depends only on N.

Lemma 5.5.7. Let 1 < ¢ < d/2 and 0 > 0. Then, for every f € BMO(RY), g €
BMOy ¢(R?) and (H},q)-atom a related to the ball B = B(zg,r), we have

(g = 98)R; (@)l < Cligllrmo,,

and
1(f = fe)(9 — 9)Ri(a) |l < Cllfllsmollgllzmo,,-

Proof of Theorem 5.3.4. Suppose that b € BMOILOiO(]Rd), ie be BMOLO%(]Rd) for some

6 > 0. By Proposition 3.2 of [145], in order to prove that [b, R;] are bounded on H} (R?), it

is sufficient to show that [|[b, R;](a)||m < OHbHBMologe for all (H},d/2)-atom a. Similarly
L,

to the proof of Theorem 5.3.3, it remains to show

16 = bs)ally < Cllolpaos (5.24)
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and
100 = bp)Rj(a)llmy < Clibll prrores (5.25)

hold for every (H},d/2)-atom a related to the ball B = B(xg,r), where the constants C
in (5.24) and (5.25) are independent of b, a.

As before, we leave the proof of (5.24) to the interested reader.

Let us now establish (5.25). Similarly to the proof of Theorem 5.3.3, Lemma 5.5.7
allows to reduce (5.25) to showing that

tog (e + 2Z2) (6 — ba) Ry(a) 11 < bl 0, (5.26)

Setting ¢ = ¢y /2, there is a constant C' = C(¢) > 0 such that for all £ > 1,
p(o) c p(g) \ kot
log < . ) < C2"log (e + <2k+1r> . (5.27)

Note that r < Cpp(xg) since a is a (H},d/2)-atom related to the ball B(zg,r). In
(5.23) of Lemma 5.5.6, we choose N = (ko + 1)6. Then, Holder inequality, (5.27) and

Lemma 5.5.3 allow to conclude that

o (e + M) 16— be) By (@)

)||<b — bp) By (@)l 12 iy

p(o) \ kot
Clog (e+( o)) 16— bl g V@l +
. plro) \ Fot
+CY 2 log (e—l— ( Q,Sg;) )||b—bB|| o Ry(@) | parr o)

La%2 (gk+1)
k>4

IN

—ke
< Clll pasoies, + Cllbllpasops D k2

k>4
< Clbllspros

where we used ¢y = 2. This proves (5.26), and thus [b, R;] are bounded on H} (R?).
Conversely, assume that [b, R;] are bounded on H}(R?). Then, although b belongs to
BM OILOiO (R%) from a duality argument and Theorem 2 of [17], we would also like to give
a direct proof for completeness.
As b € BMOp o (RY) by assumption, there exist # > 0 such that b € BMOp, 4(R?).
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For every (Hj,d/2)-atom a related to some ball B = B(xzg,r). By Remark 5.2.1 and
Lemma 5.5.7,

17;((b = bp)a)llor < [I(b = bp)R;(a)l|lLr + C[[b; B;](a)||my
< CllbllBaoy o + ClNbs Billl sy~

hold for all j = 1,...,d. In addition, noting that r < Crp(xg) since a is a (H},d/2)-atom
related to some ball B = B(zy, ), Holder inequality and Lemma 1 of [17] (see also Lemma
5.6.6 below) give

16 = bp)allr < [|b—bsll lallpar2(m) < Clibllroy o

_d_
2 (B)

By the characterization of H}(R?) in terms of the Riesz transforms (see [46]), the

above proves that (b — bg)a € H} (R?), moreover,

d
16— bp)all gy < C (anBMoL,g +>1I, Rj]nHM%) (5.28)
j=1
where the constant C' > 0 is independent of b, a.
Now, we prove that b € BM OlLO%(Rd). More precisely, the following

log <e + @) d
( >9 MO(b, B(xo,7)) < C ( bl Baso,, + Y b Rilllary it (5.29)
1 + _r

P(z0) =1

holds for any ball B(zg,7) in R% In fact, we only need to establish (5.29) for 0 < r <
p(x0)/2 since b € BM Oy, o(R%).

Indeed, in (5.28) we choose B = B(xg,7) and a = (2|B|)"*(f — f8)xB, where f = sign
(b—0bp). Then, it is easy to see that a is a (H},d/2)-atom related to the ball B. We next

consider

p(x0) p(zo) )

) + X(r.p(a0)) (|7 — Zo]) log <|x 0]

Ganr(2) = X1 (|7 = o]) log (

Then, thanks to Lemma 2.5 of [103], one has ||gx,.||Brmo, < C. Moreover, it is clear that
Geor(b—bp)a € L'(RY). Consequently, (5.28) together with the fact that BM Oy (R?) is
the dual of H}(R?) allows us to conclude that
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log (e + @)
0

MO, B(zo,r)) < 310g<p(f°))M0(b,B(xo,r))

= 6‘/%077«@)(6@) —bB)a(x)dx‘

IN

6[| gz, | Ba10, | (0 — b )al|

d
C'<WMBMOL9+_§:HU%EQNH%%Hi>7

j=1

IN

where we used r < p(x¢)/2 and

1
/(b(:v) —bp)a(zr)dr = S[Blaor| / 1b(x) — bB(wo,m |d.

R4 B(zo,r)

This ends the proof.

5.6 Proof of the key lemmas

First, let us recall some notations and results due to Dziubanski and Zienkiewicz in [46].
These notations and results play an important role in our proofs.
Let P(z) = (4m) %2e71"*/4 be the Gauss function. For n € Z, the space hl(R?)

denotes the space of all integrable functions f such that

Mf(x) = sup |Py*f(x)] = sup

0<t<2—n o<t<2—n

/ pile, ) f(y)dy| € LR,

Rd

_d/a _le=
d/2,

2
where the kernel p; is given by p,(z,y) = (4nt) . We equipped this space with

the norm || | := || M, fl11.

For convenience of the reader, we list here some lemmas used in our proofs.

Lemma 5.6.1 (see [46], Lemma 2.3). There exists a constant C > 0 and a collection of
balls B, x = B(znr, 27 n€Zk=1,2,..., such that T € B, B, C U, Bng, and

card{(n', k) : B(xpx, R27"?) 0 B(x o, R27?) # 0} < R¢

for alln,k and R > 2.
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Lemma 5.6.2 (see [46], Lemma 2.5). There are nonnegative C*®-functions ¥, , n €
Z,k = 1,2, ..., supported in the balls B(z,1,2'""?) such that

Y k=1 and ||V x|~ < C2"7

n,k

Lemma 5.6.3 (see (4.7) in [46]). For every f € Hi(R?), we have
D Mnsfllng < Cllf .-
n,k

To prove Lemma 5.5.1, we need the following.
Lemma 5.6.4. There exists a constant C' = C(p,d) > 0 such that
1f = @gnrex flln S C|fllns,  for alln € Z, f € h}(RY). (5.30)

The proof of Lemma 5.6.4 can be found in [56]. In fact, in [56], Goldberg proved
it just for n = 0, however, by dilations, it is easy to see that (5.30) holds for every
n € Z, f € h:(R?) with an uniform constant C' > 0 depends only on ¢ and d.

Proof of Lemma 5.5.1. It follows from Lemma 5.6.4 and Lemma 7.3.4 that
19 = || S @nkd = @amore * W)
n,k

H1
B IR
nk
< CY IWnrflln, < Cl Sl
.k
for every f € Hj(R"). This completes the proof. -

For 1 < ¢ < oo and n € Z. Recall (see [46]) that a function a is said to be a
(R}, q)-atom related to the ball B(xzg,r) if r < 2'7/2 and

i) supp a C B(zq,r),

ii) [lallze < |B(zo, )[4,

iii) if 7 <2717/ then [y, a(z)dz = 0.

In order to prove Lemma 5.5.2, we need the following lemma.
Lemma 5.6.5. Let 1 < ¢ < oo, n € Z and x € B,,. Suppose that f € hL(R?) with supp
f C B(x,2'=2). Then, there are (H},q)-atoms a; related to the balls B(x;,7;) such that
B(z;,7;) C B(z,227/%) and

f = Z)\j@j, Z |)‘]| < OHf”h?lz
j J

with a positive constant C' independent of n and f.
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Proof. By Theorem 4.5 of [46], there are (h},q)-atoms a; related to the balls B(z;,7;)
such that B(x;,7;) C B(z,227/%) and

f = ZA]‘CL]‘, Z |)‘j| < C||f“h}L
j J

Now, let us establish that the a;’s are (Hj, ¢)-atoms related to the balls B(z;,7;).

Indeed, as z; € B(x,22""?) and = € B,, Proposition 7.2.1 implies that r; < 227"/2 <
Crp(x;), where Cp, is as in (6.13). Moreover, if r; < ép(xj), then Proposition 7.2.1 implies
that r; < 27172 and thus [y, a;(z)dz = 0 since a; are (h), g)-atoms related to the balls
B(xzj,r;). These prove that the a;’s are (H}, q)-atoms related to the balls B(x;,r;). O

Proof of Lemma 5.5.2. As T € K, there exist ¢ € (1, 00| and € > 0 such that
(6 — bs)Tallss < Clbllsaro (5:31)

for all b € BMO(R?) and generalized (H},q,¢)-atom a related to the ball B.

From Hj % (RY) is dense in H}(R?), we need only prove that

[UACE,0) e = 1[0, TI(f = H(Der < Cllf bl aco

holds for every (f,b) € HIL’%E(R”I) X BMO(R?).

For any (n,k) € Z x Z*. As z,; € B, and ¥, f € hl(R?), it follows from Lemma
5.6.5 and Remark 5.2.1 that there are generalized (H}, q, )-atoms a?’k related to the balls
B(«*, r*) such that B(z",r!"*) C B(zpy,27"/?) and

j g
Unif =D XN TN < Clldbnif I (5.32)
J

J

with a positive constant C' independent of n, k and f.
Clearly, supp @y-n/2 * a?’k C B(wyy,5.27"?) since supp ¢ C B(0,1) and supp a;-l’k C
B(2px, 227™?); the following estimate holds

a2 % @ | a < lpa-nrzllzallaf llr < (272D g] 2o < C|B(2n, 5.272) Y07

Moreover, as z,; € B,

5.2"/2>E

& ok
’/‘Pz—n/z *a? dz| < ||802—"/2||L1||a? Iz < C(p(xnk)

R4

These prove that @g—n/2 *a?’k is C times a generalized (H}, ¢, ¢)-atom related to B(z,, , 5.27/2).
Consequently, (5.31) yields

16— by 2 T2 -wa % )11 < Clbllsaso. (5.33)
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By an analogous argument, it is easy to check that (pq-n/2 * a"’k)(b — bpa, v5.2-7/2))
is C||bl|sao times a generalized (H}, %%, e)-atom related to B(w,x,5.272). Hence, it
follows from (5.32) and (5.33) that

H[bv T](@Q*"/Q * Wn,kf))HLl < H(b - bB(xn,k,aQ*n/?))T(SOQ*n/? * Wn,kf))”Ll

7 (0~ bage, w2 * Wi D)
< Clltnifllng bl Brro, (5.34)

where we used the fact that T is bounded from H}(R¢) into L'(R?) since T' € K.

On the other hand, by f € HlL’%fl(Rd), there exists a ball B(0, R) such that supp
f € B(0,R). As B(0,R) is a compact set, Lemma 7.3.1 allows to conclude that there is
a finite set ['r C Z x Z* such that for every (n, k) ¢ I'g,

B(x,1,2"*) 0 B(0, R) = 0.

It follows that there are N, K € Z* such that

—N k=1

Therefore, (5.34) and Lemma 7.3.4 yield

U D) < Z Z]b T)(y o2 * (nif))
—N k=1
< C||b||BMOZ [nefllny < CHfHHiHbHBMOa
n,k

which ends the proof.

O
Proof of Lemma 5.5.3. First, we claim that for every ball By = B(xq, ),
1 1a (1+525) o
(mllf(y) - fBo|qdy> < Clog <e+ (@)le) ||f||BMOf%. (5.35)
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Assume that (5 35) holds for a moment. Then,

|2kB| /'f fB|qd?/> v

2k B

R
< (g [ 1100~ funtay) # 3l fosl

2k B

(ko+1)0 ) 0
2 - 27ty
(1 + p(x>> . (1 + 5@ )

”f“BMol(’g + sz
log (e + ('02(5))]“0 1)

ok ) (ko+1)0

log (e + (2

IN

log <e + %

)ko 1) ”fHBMolL‘)fg'

Now, it remains to prove (5.35).

Let us define the function h on R? as follows

1, x € Bo,
h(z) = { 2e=le=sl - 4 € 2B, \ By,
O, x ¢ 230,

and remark that

Ih(a) — hy)| < 24

To

/ >|rf\|BMogg9

(5.36)

Setting f = f — fap,- By the classical John-Nirenberg inequality, there exists a

constant C' = C(d, q) > 0 such that

|B|/|f — anloay) " = ( |B|/|h )~ (e lidy)

< Ol fl suo.
Therefore, the proof of the lemma is reduced to showing that

70
p(zo)

)(k0+1)9

_ (1
|hfllBmo < C
log <6 + (P(ZO))ko-',—l
o

) ||f||BMOT%7

namely, for every ball B = B(x,r),

) k0+1)6'
p(zo

)k’o +1

(1+
|B| /Ih hf)pldy < clog (H >||f||BMOILO§.
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Now, let us focus on Inequality (5.37). Noting that supp h C 2By, Inequality (5.37)
is obvious if BN 2By = (. Hence, we only consider the case B N 2By # (). Then, we have
the following two cases:

The case r > rq: the fact BN 2By # () implies that 2B, C 5B, and thus

1 ~ ~
5 B/ ) Fl) = (b ldy < 2o / (o) Fw)ldy

< |2B|/|f f2Bo|dy

2By

2r
C (1 + p(ﬂﬂ%))

o (e ) et
2ro

(1 . (ko+1)0
ey
< C p(z0)

£(20) Yko+1
log<e—|—( - )0+>

IN

11 maso,

The case r < ry: Inequality (5.36) yields

ﬁB/!h(y)f(y) ]dy<2‘B’ /,h ~ hTuldy
|B|/|h — f5)ldy+
|fB||B|/|B|\/ Ddlds
\B!/|f fB|dy+4 |5 = fonol- (5.38)

By r <rg, B= B(z,r) N B(xg,10) # 0, Proposition 7.2.1 gives

— k ko+1
r < T ro)<1+|a: xo’>0§0<1+i)>0 |

p(z) = plz) = plzo p(xo) p(zo
Consequently,
(14 5)
7 [ 15 = sl < e oM vt
B <1+ . >(k0+1)6
<C p(zo)

£l gasore (5.39)
log (e + ( plzo ))k +1> BMO 4
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and

1 <1 + 2?”3)
p(z
/ 150) = Faony 9 < 2l

e log(e + 43)
( >(k0+1
<C HfHBMolog‘ (5.40)
log (e—l—( £Lz0) Y ko+ 1) b
Noting that for every k € N with 2k+1y < 23,
1
| forrip — faep| < Qdm / |f(y) = faesrpldy
2k+13
L \#
(1+53)
< C———5fllgasore
oate + 22y ooz
o (ko+1)0
PGS ), 1/ saros
log (e + (& plzo ))k0+1> Lo
allows us to conclude that
k0+1)9
(1+785)
i) = Fatany | < Clog (¢4 22) ( sy Mllowots: G4
og (¢ )

Then, the inclusion 2By C B(xz,2%r,) together with the inequalities (5.38), (5.39),
(5.40) and (5.41) yield

|B|/|h hF)sldy < |B|/|f ~ faldy +

4 (|fB<z,r> ~ fowasn| + MO, B(x, 2'r0)) )
0

ro (k:()-i-l)e
<1 T P(wo))

log <e+( ))ko+1

< C(l + Llog(e+ %))

To

ro (k0+1)9
- o <1+m>

log <e + ( (mo))k(’“)

we have used = log(e + %) < sup,, tlog(e + 1/t) < oo. This ends the proof.

)HfHBMolL"i,

||f||BMOf%’
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By an analogous argument, we can also obtain the following, which was proved by

Bongioanni et al (see Lemma 1 of [17]) through another method.

Lemma 5.6.6. Let 1 < g < oo andf > 0. Then, for every f € BMOp4(R?), B = B(x,7)
and k € Z*, we have

(|2’le| / ‘f(y) - fB\qdy)l/q < Ck(l X %)(koﬂ)e

2kB

| fllBrroy 4-

Proof of Lemma 5.5.4. i) Assume that 7" is a (d, L)-calderén-Zygmund operator for
some § € (0,1]. For every generalized (Hj,2,d)-atom a related to the ball B, as T*1 = 0,
Lemma 5.4.2 implies that Ta is C' times a classical (H',2,§)-molecule (see for example
[126]) related to B, and thus ||T'al|z: < C. Therefore, Proposition 5.2.2 yields 7" maps
continuously H}(R?) into H'(R?).

ii) By Lemma 5.4.1, Lemma 5.4.2 and Hoélder inequality, we get

I(f = fB)(g — gB)Tal|
= |I(f = f8)(g — g8)TallLr2p) + Z |(f = fB)(g — gB)Tal| L1 2r+1 372 B)

k>1
1f = fBHL?q’(QB)”g - QB||L2q’(QB)||T(a)||Lq +

+ Z 1f = IBllr2e @enip) 19 — 98l 20 41 5) | T (@) || Lo+ B2 )
E>1

< Clfllsmollgllizmo + Y Ck+ 1) flsuollgllsaol|2 B2 |2k Bt/

k>1

IN

< CfllsmollgllBao,

where 1/g+1/¢' = 1.
[l

Proof of Lemma 5.5.6. It is well-known that the Riesz transforms R; are bounded from
H}(RY) into H'(R?), in particular, one has [, R;(a)(x)dz = 0. Moreover, by the L
boundedness of R; (see [125], Theorem 0.5) one has ||R;(a)||« < C|B[*47L. Therefore, it

is sufficient to verify (5.23). Thanks to Lemma 5.5.5, as a is a generalized (H1, q, c)-atom
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related to the ball B, for every x € 2871 B\ 28 B,

R @@ < | [0 - Ko z)awds] + |0 | [ atw)ad]

B
C(N) |y — o[ / V(2) 1
< d } d
- / 1 |z—xo| N+4No ‘:C — Io‘d+co_1{ ’x — Z|d_1 z+ ‘ZC _ IO‘ ‘a’(y)‘ Yy
B ( * o) ) B(,|z—wo))

C(N) (2) .
+ (1 . M];N+4No+co z — i,0|d_1 ( / |z ‘_/ ZZ|d—1 dz + z _1%') <p(;0)) 0

(o) B(z,|z—wo])

C(N) 1 reo V(2) 9—keo
< % o T / dz + (5.42)
(1 + 2Fr ) (1 + 2 T)
p(zo) plzo)

B(z,|lx—x0])

Here and in what follows, the constants C'(N) depend only on N, but may change from
line to line. Note that for every z € 2" B\ 2B, one has B(z,|r — zo|) C B(x,2%1r) C
B(zo,2""2r). The fact V € RHy/2, d/2 > q > 1, and Holder inequality yield

(@,lz—ol) La(2++1B\2k B dx)
1/q
< C(2Mp)-d / ( / [V (2)]%? dz)%fdx
- |z — 2|41
2k+1B\2kB  B(z,2k+1r)
2/d

/2
< C(25r) a2 Bl / dz / V@I,

|z — z|d-1
B(z,2k+1r) B(z0,2k12r)
< C2kp |2k B|Y /a1 / V(2)dz. (5.43)

B(z0,2k+2r)

Combining (5.42), (5.43) and Lemma 1 of [58], we obtain that

HRJ' (a) ||Lq(2k+1B\2kB)

C(N) reo2ky|2k B|/a—1 1 2~ keo
< ~ (@) N / V(z)dz + WukﬂBll/q
1+ 2kr_ T) 1+ 2k+2p ‘ ‘
p(zo) p(zo) B(wo,2kF2r)
< C(N) N2fk00’2kB|1/q71’
2k
1+ 560
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where Ny = log, Cy + 1 with C the constant in (5.4). This completes the proof.
O

Proof of Lemma 5.5.7. Note that r < Cpp(zg) since a is a (Hj, q)-atom related to the
ball B = B(xg,r); and a is C1 times a generalized (H},q, cy)-atom related to the ball
B = B(xzg,r) (see Remark 5.2.1). In (5.23), we choose N = (ko + 1)0. Then, Hélder

inequality and Lemma 5.6.6 give
1(g — 98)R;(a)]|r

= |l(g - gB)Rj(a)HL1(243) + Z (g — gB)Rj(a)HLl(zkﬂB\sz)
k=4

< llg- QB|’Lq’(24B)”RjHLHLq lallra + Z lg — gBHLfZ'(2’€+1B\2kB)“Rj(a)"Lq(2k+lB\2kB)

k=4
< Cllglizmor, +
00 / k414 (ko+1)0 1 e B
+Cz(k+ 1)]2k+1B|1/q (1 4 (x) ) HgHBMOL,e (k0+1)92 k °|2kB]1/q 1
k=4 P (1 + %)

< CHQHBMOL,W

where 1/q+ 1/¢' = 1. Similarly, we also obtain that
I(f = fB)(9 — 9B)R;(a)]| 1

= |[(f = fB)(9 — gB)Rj(a)|| L1 (24m) + Z I(f = fB)(9 — 9B)Rj(a)|| 1 (2041 B\2¢ B

k=4
If = fB||L2q’(24B)||g - 9B||L2q’(24B)||Rj(a)||Lq +

IN

+ D F = follaw ey 19 = 98l 120 i) | Ry (@) | Lagors oy
k=4

< C|fllsmollgllBrmoy.

which ends the proof.

5.7 Some applications

The purpose of this section is to give some applications of the decomposition theorems
(Theorem 5.3.1 and Theorem 5.3.2). To be more precise, we give some subspaces of
Hi(R?), which do not necessarily depend on b and T, such that all commutators [b, T1,
for b € BMO(R?) and T € K1, map continuously these spaces into L!(R?).
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Especially, using Theorem 5.3.1 and Theorem 5.3.2, we find the largest subspace
H1L7b(Rd) of H}(R?) so that all commutators of Schrodinger-Calderén-Zygmund opera-
tors and the Riesz transforms are bounded from #j ,(R?) into L'(R?). Also, it allows to
find all functions b in BMO(R?) so that Hj ,(R?) = H} (R?).

5.7.1 Atomic Hardy spaces related to b € BMO(R?)

Definition 5.7.1. Let 1 < ¢ < 00, € > 0 and b € BMO(RY). A function a is called
a (H}p,,q,¢)-atom related to the ball B = B(xo,r) if a is a generalized (Hyp,q,<)-atom
related to the same ball B and

‘/ z) — by) dx‘ <( (7;0))5. (5.44)

As usual, the space Hi’fé’a(Rd) is defined as HlL‘gf (RY) with generalized (H}, q,¢)-atoms
replaced by (H} ,, g, )-atoms.
Obviously, Hé’g’s(Rd) C Hiif (RY) = H}(R%) and the inclusion is continuous.

Theorem 5.7.1. Let 1 < ¢ < o0, ¢ > 0, b € BMO(R?) and T € Ky. Then, the
commutator [b, T| is bounded from Hi:Z’E(Rd) into L*(RY).

Remark 5.7.1. The space H}(RY) which has been considered by Tang and Bi [134] is a
strict subspace of Hé:%g(Rd) in general. As an example, let us take 1 < ¢ < o0, € > 0,
L=—-A+1, and b be a non-constant bounded function, then it is easy to check that the
function f = xp,1) belongs to Hé’f{)’a(]Rd) but not to H(R?). Thus, Theorem 5.7.1 can be

seen as an improvement of the main result of [184).

We should also point out that the authors in [134] proved their main result (see [134],
Theorem 3.1) by establishing that

116, ByJ(a)l[ o < Clbl[Baro

for all H}-atom a. However, as pointed in [19] and [82], such arguments are not sufficient
to conclude that [b, R;] is bounded from H}(R?) into L'(R?) in general.

Proof of Theorem 5.7.1. Let a be a (H},,q,¢)-atom related to the ball B = B(x,7).
We first prove that (b — bg)a is C||b||pao times a generalized (H}, (g + 1)/2,¢)-atom,
where ¢ € (1, 00) will be defined later and the positive constant C' is independent of b, a.
Indeed, one has supp (b — bg)a C supp a C B. In addition, from Hoélder inequality and

John-Nirenberg (classical) inequality,

H(b - bB)a”L(Hl 2 < H(b - bB)XBHLq (@+1)/(a-1) HCLHLq < CHbHBMO‘Bl —qt+l /(Q+1)
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where ¢ = ¢ if 1 < ¢ < oo and ¢ = 2 if ¢ = oo. These together with (5.44) yield that
(b—bg)ais C||b||paro times a generalized (H;, (¢+1)/2,¢)-atom, and thus [(b=bp)allm <
Clbl| saro-

We now prove that &(a,b) belongs to H} (R?).

By Theorem 5.3.2, there exist d bounded bilinear operators R; : H} (RY)x BMO(R?) —
LY(RY), j =1,...,d, such that

[b, Bj](a) = R;(a,b) + R;(S(a, b)),

since R; is linear and belongs to ICp (see Proposition 5.4.2). Consequently, for every
j=1,..,d,as R; € Ky,

|R;(S(a,b)l[zr = [[(b—bp)R;(a) — R;((b—bg)a) —R;(a,b)]|
< [0 =bp)Rj(a)llcr + | Rjll gzt | (0 = bp)allm + [[R(a, b)| e
< CbllBro-

This together with Proposition 5.5.2 prove that &(a,b) € H; (R?), and moreover that
16(a,0)llmy < Cl|bllBaro- (5.45)

Now, for any f € Hi:%’e(Rd), there exists an expansion f = ) . Aa, where the
ay are (HJ ,, q,€)-atoms and 37, [Ax] < 2||f||Hi%€ Then, the sequence {d,_; Mgy }n>1
converges to f in Hé:Z’E(Rd) and thus in H} (R?). Hence, Proposition 5.5.2 implies that the
sequence {6(27,2:1 Ak, b> }n>1 converges to S(f,b) in L'(R?). In addition, by (5.45),

s( Xn: Neap, )
k=1

<D IS (ar, b)llmy < Cll Nl raellbll Baro-
k=1

Hy

We then use Theorem 5.3.1 and the weak-star convergence in Hi(R?) (see [83]) to
conclude that

116, Tz

IN

932 (F.B) s + 1T 20 1SCF. )
CNflly ellsaco + Il Lgge Bl o
< Ollflgge

IN

b||BMO>

which ends the proof.
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5.7.2 The spaces H ,(R") related to b € BMO(R?)

In this section, we find the largest subspace H} ,(R?) of H}(R?) so that all commutators
of Schrodinger-Calderén-Zygmund operators and the Riesz transforms are bounded from
Hi,(RY) into L'(R?). Also, we find all functions b in BMO(R?) so that H} ,(R?) =
Hi (RY).

Definition 5.7.2. Let b be a non-constant BMO-function. The space Hp ,(R?) consists
of all f in H}(R?) such that [b, Mr](f)(x) = My (b(z) f(-)=b(-)f(:))(x) belongs to L*(R?).
We equipped ’be(]Rd) with the norm

£z, = 1f ez 1ol saco + [[[b, M] ()]

Here, we just consider non-constant functions b in BMO(R?) since [b,T] = 0 if b is a

constant function.

Theorem 5.7.2. Let b be a non-constant BMO-function. Then, the following statements
hold:

i) For every T € Ky, the commutator b, T] is bounded from M} ,(R?) into L'(R?).

ii) Assume that X is a subspace of H}(RY) such that all commutators of the Riesz
transforms are bounded from X into L'(R?). Then, X C Hj ,(R?).

iii) 1} ,(RY) = HL(R?) if and only if b € BMOy®(R?).

To prove Theorem 5.7.2, we need the following lemma.

Lemma 5.7.1. Let b be a non-constant BMO-function and f € Hi(R?). Then, the
following conditions are equivalent:

i) [ € HL (R,

i) G(f,b) € Hi(R?).

iii) [b, R;](f) € L"(RY) for all j =1,...,d.

Furthermore, if one of these conditions is satisfied, then

1l = 1A 1ol Baco + [[[b; MLI(f)l]zs
1f [z 1]l 5azo + (1S (S, )]l a2

Q

d
~ 1l bllsao + > b, B (F)l| e,

J=1

where the constants are independent of b and f.
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Proof. (i) < (ii). As My € K (see Proposition 5.4.3), by Theorem 5.3.1, there is a
bounded subbilinear operator R : Hi (R?) x BMO(R?Y) — L'(R%) such that

ML(S(f,0)) — R(f,0) < |[b, ML](f)] < ML(S(f,b)) +R(f,b).
Consequently, [b, M](f) € L*(RY) iff &(f,b) € H}(R?), moreover,

11z, = W g 10l Baso + 1S(f, 0)] -

(17) < (7it). As the Riesz transforms R; are in K, (see Proposition 5.4.2), by Theorem
5.3.2, there are d bounded subbilinear operator R; : H}(RY) x BMO(R?) — L'(R?),
7 =1,....d, such that

[b, R;1(f) = R;(f,b) + R;(S(f,b)).
Therefore, &(f,b) € HL(R?) iff [b, Rj](f) € L'(R?) for all j = 1, ..., d, moreover,

d
1z 0]l aro + 1S (F.0) e ~ [1LF Lz 18]l aso + D 1 Ry ()l

Jj=1

[]

Proof of Theorem 5.7.2. By Theorem 5.3.1, there is a bounded subbilinear operator Ry :
H}(RY) x BMO(R?) — LY(R?) such that

IT(S(f, )| = Re(f,0) < [[b, TI(/)] < |T(S(f, b)) + Rer(f, D).
Applying Lemma 5.7.1 gives for every f € Hj ,(R?),
10, 71 < 1T IS 0) [ mr + (1B (f, 0) |
< Cllflle, + Cllf 1ol 3aro < ClF Ny, -

Therefore, [b,T| is bounded from H} ,(R?) into L'(R?). This ends the proof of (7).
The proof of (ii) follows directly from Lemma 5.7.1.
The proof of (iii) follows directly from Theorem 5.3.4 and Lemma 5.7.1. O

5.7.3 Atomic Hardy spaces HlLo,i(]Rd)

Definition 5.7.3. Let o € R. We say that the function a is a Hchii-atom related to the
ball B = B(xo, 1) if

i) supp a C B,

ii) e < (log(e + 2222)) " B2,

i) [qaa(x)dz = 0.
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As usual, the space Hp%(R?) is defined as H}% with generalized (H},q,s)-atoms
replaced by Hchii-atoms.

Clearly, H%(R?) is just H'(R?) C H}(R?). Moreover, H,%(R%) C H;%,(R?) for all
a < o'. It should be pointed out that when L = —A 4+ 1 and a > 0, then HILO,%[(Rd) is
just the space of all distributions f such that

Mf(x)
/ )\D:Itf( ) ~dx < 00
(log(e + %))

for some A > 0, moreover (see [81] for the details),

Rd

Mmf(z)

T )\>O:/ <1
b 2 (log(e + _931];(93)))

Theorem 5.7.3. For every T € Ky, and b € BMO(R?), the commutator [b,T] is bounded
from H}ig_l(Rd) into L'(RY).

Proof. Let a be a H}-jg_l—atom related to the ball B = B(xg,r). Let us first prove that
(b—bp)a € H}(RY). As H}(R?) is the dual of VMOL(R?) (see Theorem 5.5.1), it is
sufficient to show that for every g € C°(R?),

||(b — bB)agHLl < OHb“BMOHgHBMOL'

p(z
=

Indeed, using the estimate |gp| < C'log (e—l— °)> llgllzaro, (see Lemma 2 of [45]), Holder

inequality and classical John-Nirenberg inequality give

I(b=bg)agllr < (g = 98)(b—bp)allrr + |g5ll|(b — bp)al| 1

< g — gB)xBllsl|(b = bp)Xx Bl L1]|lal| L2 +

P(I’O)
T
Clbl|arollgllBrroy ,

+C'og e+ 252 ) gl zat0, (5 = bs)xall oz |

IA

which proves that (b — bg)a € H}(R?), moreover, ||(b— bp)allg < C[b] prro-
Similarly to the proof of Theorem 5.7.1, we also obtain that

ISCF )y < Cllfll s 10l Baro
for all f € Hlﬁg_ L (RY). Therefore, Theorem 5.3.1 allows to conclude that

116, TIN e < Cllfll s 116l Bar0,

which ends the proof. O
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As a consequence of the proof of Theorem 5.7.3, we obtain the following result.

Proposition 5.7.1. Let T € Kr. Then, T(f,b) := [b,T|(f) is a bounded subbilinear
operator from HIL()’g_l(Rd) x BMO(R?) into L*(R?).

5.7.4 The Hardy-Sobolev space H,"'(R?)
Following Hofmann et al. [65], we say that f belongs to the (inhomogeneous) Hardy-

Sobolev H} ' (RY) if f,0,, f, ..., 0, f € HL(RY). Then, the norm on H;"(R?) is defined
by

d
1 Lz = 1z + > 1102, fllas
j=1

It should be pointed out that the authors in [65] proved that the space Hi’i (RY) is
just the classical (inhomogeneous) Hardy-Sobolev H(R9) (see for example [6]), and can
be identified with the (inhomogeneous) Triebel-Lizorkin space F}"*(R?%) (see [79]). More
precisely, f belongs to H%'(R?) if and only if

1/2
Wy(f) = {ZZ ()21 + |f|1/d>2u|1xf} e L'(RY),

I o€&

moreover,

Lf e~ (Ve ()2 (5.46)

Here {97 },c¢ is the wavelet as in Section 4.

Theorem 5.7.4. Let L = —A + 1. Then, for every T € Ky and b € BMO(R?), the
commutator [b, T is bounded from H,"(RY) into L*(R?).

Remark 5.7.2. When L = —A + 1, we can define H(f) = f — @ * [ instead of H(f) =
Dok Unkf — Ponrz ¥ (Y f)) as in Section 5.5. In other words, the bilinear operator &
in Theorem 5.3.1 and Theorem 5.3.2 can be defined as &(f,g) = —II(f — ¢ f,g). As

N(f) = f—px* [, itis easy to see that
0:;,(9(f)) = 9H(0s, f)-

Here and in what follows, for any dyadic cube Q = Q(y,7) :={z € R?: —r < z;—y; <
rforall j =1,...,d}, we denote by B the ball

Bg = {xeRd: |z —y| <2\/;lr}.

To prove Theorem 5.7.4, we need the following lemma.
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Lemma 5.7.2. Let L = —A + 1. Then, the bilinear operator I maps continuously
HYY(RY) x BMO(R?) into Hi (R?).

Proof. Note that p(x) = 1 for all x € R? since V(z) = 1. We first claim that there exists
a constant C' > 0 such that

I+ YD @) m < C (5.47)
for all dyadic I = Q[xo,r) and o € €. Indeed, it follows from Remark 5.5.2 that supp (1+

[I|7Y =1 (4p9)2 C el C By, and it is clear that ||(1+ 1|7~ (9)?||pe < |70z <
CleB;|™'. In addition,

| [ ey ) ds] = el < oo
Rd

Hence, (1 + [I|7Y4)~1(49)? is C times a generalized (H}, o0, 1)-atom related to the ball

¢By, and thus (5.47) holds.

Now, for every (f,g) € H"(R?) x BMO(R?), (5.47) implies that
0Dl =123 w9 D@7 Il

I o€&

< XN (A eDIa+ 7)) e, v

I o€€

< CIWu(Hllllgll o
< Cllflarallgllzro,

where we have used the fact that BMO(R?) = F2?(R?) is the dual of H'(R?) = F*(R%),

we refer the reader to [49] for more details.

p(z0)

]

Proof of Theorem 5.7.4. Let (f,b) € H;'(R?) x BMO(R?). Thanks to Lemma 5.7.2,
Remark 5.7.2 and Lemma 5.5.1, we get

IS8y, < CISDllmalbllmro
< Ol blmaro-

Then we use Theorem 5.3.1 to conclude that

16 TT(Hze < R (0l + 1T a2 o S, 0) 112
< Clfllglbllzro,

which ends the proof.
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As a consequence of the proof of Theorem 5.7.4, we obtain the following result.

Proposition 5.7.2. Let L = —A+1 and T € K. Then, T(f,b) := [b,T|(f) is a bounded
subbilinear operator from H'(R?) x BMO(R?) into L'(R?).
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Chapter 6

Bilinear decompositions for the
product space Hi x BMOyp

Ce chapitre est une prépublication (soumise).

Résumé

Dans cet article, nous améliorons un résultat récent de Li et Peng sur les produits de
fonctions dans Hi (RY) et BMOp(R?), ot L = —A+V est un opérateur Schrodinger avec V
satisfaisant une inégalité Holder inverse appropriée. Plus précisément, nous prouvons que
ces produits peuvent étre écrit comme la somme de deux opérateurs bilinéaires continus,
I'un de Hi (R?) x BMOL(RY) & valeurs L' (R?), Pautre de H}(R?) x BMOy,(R?) & valeurs
H™8(R%), o1 'espace H'°8(R?) est 'ensemble des distributions f dont la fonction ”grand-

maximale” 9N f satisfait

(M ()]
/ log(e + 0Lf(x)]) +log(e + o) = ™

Rd
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6.1 Introduction

Products of functions in H! and BM O have been firstly considered by Bonami, Iwaniec,
Jones and Zinsmeister in [15]. Such products make sense as distributions, and can be
written as the sum of an integrable function and a function in a weighted Hardy-Orlicz
space. To be more precise, for f € H'(R?) and g € BMO(R?), we define the product (in
the distribution sense) f x g as the distribution whose action on the Schwartz function
¢ € S(RY) is given by

(f xg,0) = (eg, f), (6.1)

where the second bracket stands for the duality bracket between H'(R?) and its dual
BMO(RY). It is then proven in [15] that

fxge LYRY + HFRY). (6.2)

Here HZ(R?) is the weighted Hardy-Orlicz space related to the Orlicz function

t
~ log(e +1)

[1]

(t) : (6.3)

and with weight o(x) := m.

Let L = —A 4+ V be a Schrodinger operator on R?, d > 3, where V is a nonnega-
tive potential, V' # 0, and belongs to the reverse Holder class RHy/o. In [45] and [46],
Dziubanski et al. introduced two kinds of function spaces associated with L. One is the
Hardy space Hi(R?), the other is the space BMOp(R?). They established in [45] that
the dual space of Hi(R?) is just BMOr(R?). Unfortunately, as for the classical spaces
H'(R?) and BMO(R?), the pointwise products fg of functions f € H}(R?) and functions
g € BMOy(R?) maybe not integrable. However, similarly to the classical setting, Li and
Peng showed in [91] that such products can be defined in the sense of distributions which

action on the Schwartz function ¢ € S(R?) is

(f X g,9) = (g, f), (6.4)

where the second bracket stands for the duality bracket between H}(R?Y) and its dual
BMOp(R?). Moreover, they proved that f x g can be written as the sum of two distri-
butions, one in L'(R?), the other in Hf ,(R?) the weighted Hardy-Orlicz space associated
with L related to the Orlicz function Z(t)
Definition 6.2.3.

More precisely, in [91], the authors proved the following.

7 and the weight o(x) see

— t — 1
— log(e+t — log(e+|x|)’
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Theorem 6.1.1. For each f € H}(R?), there are two bounded linear operators Ly :
BMOL(RY) — LY (RY) and Hy : BMOL(RY) — Hf,(R?) such that for every g €
BMOL(R?), we have

fxg=1Lig)+ Hyg) (6.5)
and the uniform bound
1Ll + [ Hp(Dlaz , < Cllf gl prror (6.6)
where HQHBMoz = |l9llBmo, + 98|, g8 denotes the mean value of g over the unit ball B.

Our main theorem is as follows.

Theorem 6.1.2. There are two bounded bilinear operators Sy, : H} (R?Y) x BMOp(RY) —
LYRY) and Ty, : HE(RY) x BMOr(RY) — H'"8(R?) such that for every (f,g) € H}(R?) x
BMO(R?), we have

fxg=5u(f9)+Tu(f 9) (6.7)

and the uniform bound

ISL(f Dl + NTL(f, 9)l[mes < Cllf |z gl Baro, - (6.8)

Here H'°5(R9) is a new kind of Hardy-Orlicz space consisting of all distributions f

Mf(x) :
such that [p, s (e T () Tlea(e e @€ < 00 with the norm

Mf(x)
I Fll e = int )\>O:/ o dr <1
Za log (e - Tx> + log(e + |x)

Recall that the grand maximal operator 91 is defined by

Mf(z) =sup sup |f *di(y)l, (6.9)
PEA ly—z|<t
where A = {¢ € S(RY) : [¢(2)] +[Vo(2)] < (1 +|2*)~*V} and ¢y() ==t~ p(t ™).
Note that H'°5(R?) C Hf ,(R?) with continuous embedding, see Section 6.3. Com-
pared with the main result of [91] (Theorem 6.1.1), our main result makes an essential
improvement in two directions. The first one consists in proving that the space HEU(Rd)
can be replaced by a smaller space H'°8(R?). Secondly, we give the bilinear decomposition
(6.7) for the product space H} (R?) x BMOp(R?) instead of the linear decomposition (6.5)
depending on f € H}(RY). Moreover, we just need the BMOy-norm (see (6.8)) instead
of the BMO7}-norm as in (6.6).
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In applications to nonlinear PDEs, the distribution f x g € S'(R?) is used to justify
weak continuity properties of the pointwise product fg. It is therefore important to
recover fg from the action of the distribution f X g on the test functions. An idea that

naturally comes to mind is to look at the mollified distributions

(f xg)e=(f x g) * ¢, (6.10)

and let € — 0. Here ¢ € S(RY) with [, ¢(2)dz = 1.
In the classical setting of f € H'(R?) and ¢ € BMO(R?), Bonami et al. proved in
[15] that the limit (6.10) exists and equals fg almost everywhere. An analogous result is

also true for the Schrodinger setting. Namely, the following is true.

Theorem 6.1.3. Let f € Hi(R?) and g € BMOL(R?). Then, for almost every x € RY,

lin(f % g)e(x) = f(x)g(z).

Throughout the whole paper, C' denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line.

The paper is organized as follows. In Section 2, we present some notations and pre-
liminaries about Hardy type spaces associated with L. Section 3 is devoted to prove that
H"“8(R?) C Hf ,(RY) with continuous embedding. Finally, the proofs of Theorem 6.1.2
and Theorem 6.1.3 are given in Section 4.

Acknowledgements. The author would like to thank Aline Bonami and Sandrine

Grellier for many helpful suggestions and discussions.

6.2 Some preliminaries and notations
In this paper, we consider the Schrodinger differential operator
L=-A+4+V

on RY, d > 3, where V is a nonnegative potential, V # 0. As in the works of Dziubanski
et al [45, 46], we always assume that V' belongs to the reverse Hélder class RHg/,. Recall
that a nonnegative locally integrable function V is said to belong to a reverse Holder class
RH,, 1 < q < oo, if there exists C' > 0 such that

holds for every balls B in R¢.
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Let {T}}i~0 be the semigroup generated by L and T;(x,y) be their kernels. Namely,

Tmm:wwmz/ﬂmwmm%feﬁ®%t>o

R4

We say that a function f € L*(R?) belongs to the space H} (R?) if

[1f ey, := [IMLfllzr < o0,
where My, f(x) := sup,., |1 f ()| for all z € R%. The space H} (R?) is then defined as the

completion of H} (R?) with respect to this norm.
In [45] it was shown that the dual of H} (R?) can be identified with the space BMOp(R?)
which consists of all functions f € BMO(R?) with

p(z)<r

1
|mmm:ﬂmmm+am————/Wﬂmw<m,
z Bl )

where p is the auxiliary function defined as in [125], that is,

1
p(x) = sup {7’ >0: 2 / V(y)dy < 1}, (6.11)
B(z,r)

z € R% Clearly, 0 < p(z) < oo for all z € R?, and thus R? = |, ., B,,, where the sets B,
are defined by
B, = {zx € R¥: 27 D/2 < p(g) < 272, (6.12)

The following proposition is due to Shen [125].

Proposition 6.2.1 (see [125], Lemma 1.4). There exist Cy > 1 and ko > 1 such that for
all x,y € RY,

Co’lp(:v)(l + lxp&fl)_ko < p(y) < Cop(z) (1 + ‘a;(_x;y‘)kgil-

Here and in what follows, we denote by Cp the L-constant
Cr = 8.9"C, (6.13)
where kg and Cy are defined as in Proposition 7.2.1.

Definition 6.2.1. Given 1 < q < co. A function a is called a (H}, q)-atom related to the
ball B(xg,r) if r < Crp(zo) and

i) supp a C B(zo,1),

i) llallze < |B(zo, )V,

iii) if 1 < g-p(ao) then [p,a(x)dr =0.
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The following atomic characterization of H} (R?) is due to Dziubanski and Zienkiewicz
[46].

Theorem A. Let 1 < ¢ < oo. A function f is in Hi (R?) if and only if it can be written
as f = Y7, Nja;, where a; are (Hp,q)-atoms and ). |\;| < oo. Moreover, there exists
C > 1 such that for every f € Hi(R?), we have

C_1||f||H£ < inf {Z Al f = Z/\jaj} <O flla -
J J

Let 1 < ¢ < co. A nonnegative locally integrable function w belongs to the Mucken-

houpt class A, say w € A, if there exists a positive constant C' so that

/ da: / 1/(q’1)dx) ! <(C, ifl<g<oo (6.14)
1Bl |B| T ’
and
< i =
Bl / z)dr < C ess- Enfw( x), ifqg=1, (6.15)

for all balls B in R?. We say that w € A, if w € A, for some ¢ € [1, 00).

Remark 6.2.1. The weight o(x) =

1
= Toale 7] belongs to the class A;.

It is well known that w € Ap, 1 < p < oo, implies w € A, for all ¢ > p. For a

measurable set E, we note w(E) = [, w  W(r)dw its weighted measure.

Definition 6.2.2. Let 0 < p < 1. A function ® is called a growth function of order p if
it satisfies the following properties:
i) The function ® is a Orlicz function, that is, ® is a nondecreasing function with
O(t) > 0,t >0, P(0) =0 and limy_,o, P(t) = 0.
it) The function ® is of lower type p, that is, there exists a constant C' > 0 such that
for every s € (0,1] and t > 0,
O(st) < CsPD(1).

iii) The function ® is of upper type 1, that is, there exists a constant C' > 0 such that
for every s € [1,00) and t > 0,
P (st) < Csd(t).

We will also say that ® is a growth function whenever it is a growth function of some

order p < 1.
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Remark 6.2.2. i) Let ® be a growth function. Then, there exists a constant C > 0 such
that

o0

@(Z@) < Cicb(tj)

j=1
for every sequence {t;};>1 of nonnegative real numbers. See Lemma 4.1 of [81].

it) The function Z(t) is a growth function of order p for any p € (0,1).

— t
— log(e+t)

Now, let us define weighted Hardy-Orlicz spaces associated with L.

Definition 6.2.3. Given w € A, and ® a growth function. We say that a function
f € L*(RY) belongs to HY ,(R?) if [pu P(Myf(z))w(x)dr < co. The space HY,,(R?) is
defined as the completion of HqL’vw(Rd) with respect to the norm

||f”wa =inf A >0: /CID(MLTf(x))w(x)dx <1

Rd

Remark that when w(z) = 1 and ®(t) = ¢, the space H} , (R?) is just Hj(R?). We
refer the reader to the recent work of D. Yang and S. Yang [142] for a complete study of

the theory of weighted Hardy-Orlicz spaces associated with operators.

6.3 The inclusion H“¢(RY) C HF (RY)
The purpose of this section is to establish the following embedding.
Proposition 6.3.1. H"3(R?) ¢ Hf (R?) and the inclusion is continuous.

Recall (see [81]) that the weighted Hardy-Orlicz space H=(R?) is defined as the space

of all distributions f such that fRd log(ﬁfggf ;(I)) log(el+|x|)dx < oo with the norm

Iflla= = inf )\>0:/ dr < 1
o Mf(=) \ 1
Za log (e—i— 3 > og(e + |x])

Clearly, H'°8(RY) ¢ HZ(RY) and the inclusion is continuous. Consequently, the proof
of Proposition 6.3.1 can be reduced to showing that for every f € HZ(RY),

1 llez < Cllf [z (6.16)

Let 1 < ¢ < co. Recall (see [81]) that a function a is called a (HZ, q)-atom related to
the ball B if
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i) supp a C B,
i) llalle < o(B)Y9="Y(o(B)™t), where =71 is the inverse function of =,
iil) [pa a(x)dz = 0.

In order to prove Proposition 6.3.1, we need the following lemma.

Lemma 6.3.1. Let 1 < g < oo. Then,

/E(MLf(iU))U(f’?)dx < Co(B)Z(o(B) || fls) (6.17)
Rd
for every f multiples of (HZ,q)-atom related to the ball B = B(xg,T),

To prove Lemma 6.3.1, let us recall the following.

Lemma 6.3.2 (see [91], Lemma 2). Let V. € RHgyjy. Then, there exists 6 > 0 depends
only on L, such that for every |y — z| < |x —y|/2 and t > 0, we have

_ 2 — |0
ITy(x,y) — Ti(x,2)| < o(’y ﬁz')ét—%e—x?” < C%
Proof of Lemma 6.5.1. First, note that ¢ € A; and = is a growth function of order p for
any p € (0,1), see Remark 6.2.1 and Remark 6.2.2. Denote by M the classical Hardy-
Littlewood maximal operator. Then, the estimate M f < CMf, the LZ-boundedness of

M and Holder inequality give

/ =(Mf(2))o(2)de

B(zo,2r)
< c / (M (2) + o(B) V1| fll10)o(x)dx
B(zo,2r)
M B) /4 q
<o [ (P s o
B(zo,2r) 7
< Co(B)E(0(B) | f]l1y). (6.18)

where we used the facts that t — @ is nonincreasing and o(B(xg,2r)) < Co(B).

Let @ ¢ B(xo,2r) and ¢ > 0. By Lemma 6.3.2 and (6.14),

15w =| [ Tawt@s] = | [T - Tz )y

|?/—I0’6
c | —— d
|x—x0|d+5‘f(y)’ Y

Td+6

-1/ -
< Co(B) q||fHLg|x_x0|d+5
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2d+9

Therefore, as = is of lower type 2(d+0)

<1,

/ EMrf(x))o(z)d

(B(zo,2r))°

1 Td+6 _2d+43
< CE(a(B)~Yf| 1a) / (‘x

2(d+3)
Tld“> o(w)du
(B(wo,2r))°

< Co(B)E(a(B) " fll1s), (6.19)
where we used (see [54], page 412)

d+6/2
/ Wa(x)dx S OO'(B(.T(),2T’)) S CO'(B)

(B(z0,2r))°
Then, (6.17) follows from (6.18) and (6.19). This completes the proof.

Proof of Proposition 6.3.1. As mentioned above, it is sufficient to show that

1l <

for every f € HZ(R?). By Theorem 3.1 of [81], there are multiples of (HZ,2)-atoms b;,
j=1,2,..., related to balls B; such that f =77, b; and

As({b}) < C|fllaz; (6.20)

where

As({b;}) := inf {)\ >0 ia(Bj)E<a(Bj)_1;2Hbj|lL%) < 1} .

On the other hand, the estimate My f < 7%, My(b;), Remark 6.2.2 and Lemma

6.3.1 give

R4

[1]

<AM2<LTJ;§3}C§>"(“W : CZ/ {b} >"<"””>d°””

(o) blss
C;"<B”:( oy )
< C?

IN

nz . < CAs({b;}). Therefore, (6.20) yields

ez, < Cllflluz,
which completes the proof of Proposition 6.3.1.
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6.4 Proof of Theorem 6.1.2 and Theorem 6.1.3

Let P(x) = (47)~%2¢~1?F/4 he the Gauss function. For n € Z, following [46], the space
hl(R?) denotes the space of all integrable functions f such that

Muf(@)= sup |Pgxf@)|= sup

o<t<2—n o<t<2—m

/pt(%y)f(y)dy e L'(RY),

Rd

)2
where the kernel p; is given by p,(z,y) = (4nt)~% 2~ We equipped this space with
the norm || f{|p: := || M, fl11.

For convenience of the reader, we list here some lemmas used in our proofs.

Lemma 6.4.1 (see [46], Lemma 2.3). There exists a constant C' > 0 and a collection of
balls By = B(xp1,27"%), n € Z,k = 1,2, ..., such that v, € By, B, C Uy Bng, and

card{(n', k') : B(zpx, R27"?) N B(xp o, R27V?) # 0} < R¢
for alln,k and R > 2.

Lemma 6.4.2 (sce [46], Lemma 2.5). There are nonnegative C*-functions Y, x, n €
Z,k =1,2,..., supported in the balls B(x,,2'"?) such that

S e =1 and ||V~ < C2V2
n,k

Lemma 6.4.3 (see (4.7) in [46]). For every f € Hi(R?), we have

S s fllng, < ClFllas
n,k

In this section, we fix a non-negative function ¢ € S(R?) with supp ¢ C B(0,1) and
Jga p(x)dz = 1. Then, we define the linear operator $ by

5(0) =D (Ynsd = Prmvsa * i),

n,k

In order to prove Theorem 6.1.2, we need two key lemmas.
Lemma 6.4.4. The operator $ maps continuously Hi(R?) into H'(R?).

The proof of Lemma 6.4.4 can be found in [82] (see Lemma 5.1 of [82]).
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Lemma 6.4.5. There exists a constant C = C(p,d) > 0 such that for all (n,k) € ZXZT,
g € BMOL(RY) and f € h(RY) with supp f C B(xn,217"%), we have

@2 D9, < CllAlialiglimaron
L

To prove Lemma 6.4.5, we need the following.

Lemma 6.4.6 (see [82], Lemma 6.5). Let 1 < ¢ < oo, n € Z and x € B,,. Suppose that
f € hL(RY) with supp f C B(x,2'"™?2). Then, there are (H},q)-atoms a; related to the
balls B(x;j,r;) such that B(x;,7;) C B(z,227/%) and

F=Y Nag, >IN Clflln
7

J

with a positive constant C' independent of n and f.

Here and in what follows, for any B a ball in R? and f a locally integrable function,

we denote by fg the average of f on B.

Proof of Lemma 6.4.5. As x,, € By, it follows from Lemma 7.3.3 that there are (H},2)-
atoms a}"* related to the balls B(z""*,r"*) C B(z,x,227/2) such that

f=3o Xt and 3TN < flny (6.21)
J J

where the positive constant C' is independent of f,n, k.

Now, let us establish that ¢g-n/2 * a?’k is C' times a (H},2)-atom related to the ball
B(zpr,5.277/%). Indeed, it is clear that %p(mnvk) < 5272 < Cpp(Tny) since ), €
B,; and supp @g-n/2 * a?’k C B(wpg,5.27/2) since supp ¢ C B(0,1) and supp a?’k -
B(zpx,227?). In addition,

a2 % a2 < Npg-nrellzllaf Nl < (272) 2|0l < C|B(wnx, 5.272) 712

These prove that @y—n/2 * a?’k is C times a (H},?2)-atom related to B(z,, 5.27"/2).

By an analogous argument, it is easy to check that (@g-n/2 * a?’k)(g — 9B(ap45.2-7/2))
is C||gllBao times a (H},3/2)-atom related to B(z,x, 5.27/2).

Therefore, (6.21) yields

|z s Plg| < O alllore % )9 = 90y 52002 iy

Hl
L J

+C > Nl a-nre % a5l 111 |95 (e, 5272
J

< ClfllnllgllBroy

A\
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where we used |gp (., 50-n2)| < l9llBro, since p(z,x) < 5.27772.

O

Our main results are strongly related to the recent result of Bonami, Grellier and Ky
[14]. In [14], the authors proved the following.

Theorem 6.4.1. There exists two continuous bilinear operators on the product space
HY(R?) x BMO(RY), respectively S : H'(R?) x BMO(R?) — LY(R?) and T : H*(R?) x
BMO(RY) — H™"8(RY) such that

fxg=S(f.9)+T(f 9g).

Before giving the proof of the main theorems, we should point out that the bilinear

operator T in Theorem 6.4.1 satisfies

IT(f, 9l os < ClIf [ (gl Baso + 1gal) (6.22)

where Q := [0, 1) is the unit cube. To prove this, the authors in [14] used the generalized
Hoélder inequality (see also [15])

£ gllzrox < ClIf ]|z g /lmsp

and the fact that [|g — gollexp < Cll9llBro. Here, L'°8(RY) denotes the space of all

[/ ()]
e+|f(@)])+log(e+|z|

measurable functions f such that fRd Toa( )dx < oo with the norm

lf ()|

1f |l s = inf )\>0:/ 3 dr < 1
log(e + 2y - 1og(e + |2])

R4

and Exp(R?) denotes the space of all measurable functions f such that [p,(el/®)! —

1)de < 0o with the norm

1

o —inf : <|f<x>|/A_1> - dr <1
| fllgxp = inf ¢ A >0 / e (1+\x|)2dd$_

Rd

In fact, Inequality (6.22) also holds when we replace the unit cube Q by B(0,r) for
every r > 0 since ||g — 9o ||exe < C|lgllBro. More precisely, there exists a constant
C > 0 such that

1 9llpes < Cl[fllcr (gl Baro + 19B0.p00]) < Cllf et lgllBrro, (6.23)
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for all f € L'(RY) and g € BMOL(R?). As a consequence, we obtain

IT(f, 9)l[mes < Cllf [l llgll Baron, (6.24)

for all f € H'(R?) and g € BMOL(R?).

Now, we are ready to give the proof of the main theorems.

Proof of Theorem 6.1.2. We define two bilinear operators Sy and T, by

Su(f,9) = S(B().9)+ Y (9ae % (W)
n,k

and
Te(f.9) =T®H(f):9)

for all (f,g) € H}(R?) x BMOp(R?). Then, it follows from Theorem 6.4.1, Lemma 7.3.4,
Lemma 6.4.4 and Lemma 6.4.5 that

ISu(F )l < US®E) )l +C Y || (2 * W) gl

Hp,

< Clgllsaoll BNl + Cligllsro, Y 1nnfln
n,k

< Clifllmlgllzumo,

and as (6.24),

IN

ITL(fs D)o = T (F), 9)l| e ClIHN N allgllrror,

OHfHHngHBMOL-

IN

Furthermore, in the sense of distributions, we have
Su(f.9) +Ti(f,9)

= <Z <¢n,kf — Po-n/j2 ¥ (wn,kf)>> X g+ Z (@w/? * (wn,kf))g

n,k

= (Zw,w) xg=fxg,

n,k

which ends the proof of Theorem 6.1.2.
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Proof of Theorem 6.1.3. By the proof of Theorem 6.1.2, the function )}, ; (0g-n/2%(¥n1.f))g

belongs to Hi(R?) c L'(R?). This implies that (Zn,k(wzw/z * (lbn,kf))g) * ¢ tends to
> oni(Ponsz ¥ (Ynif))g almost everywhere, as € — 0. Therefore, applying Theorem 1.8

of [15], we get
lim(f x g)e(x) = Em(O(F) x g)ela) +lim (3 (o ¢ (Wi g ) # 62)
= H(f)(2)g(x) + (Z(%—n/z * (%,M))(l‘)) 9(x)

= f(z)g(x)

for almost every x € RY, which completes the proof of Theorem 6.1.3.
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Chapter 7

On weak™-convergence in Hi(Rd)

Ce chapitre est une prépublication (soumise).

Résumé

Soit L = —A + V un opérateur Schrodinger sur R?, d > 3, o V est une fonction
positive, V' # 0, qui appartient a la classe Holder inverse RHy/,. Dans cet article, nous
prouvons une version du théoreme classique de Jones et Journé sur la convergence faible*
dans l'espace de Hardy H}(RY).
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7.1 Introduction

A famous and classical result of Fefferman [47] states that the John-Nirenberg space
BMO(RY) is the dual of the Hardy space H'(RY). It is also well-known that H!(R%) is
one of the few examples of separable, nonreflexive Banach space which is a dual space.
In fact, let VM O(R?) denote the closure of the space C>°(RY) in BMO(R?), where C°
is the set of C'*°-functions with compact support, Coifman and Weiss showed in [32] that
H'(R?) is the dual space of VM O(R?), which gives H!(R?) a richer structure than L'(R?).
For example, the classical Riesz transforms V(—A)~/2 are not bounded on L'(R?), but
bounded on H!(R?). In addition, the weak*-convergence is true in H*(R?), which is useful
in the application of Hardy spaces to compensated compactness (see [33]). More precisely,

in [78], Jones and Journé proved the following.

Theorem 7.1.1. Suppose that {f;};>1 is a bounded sequence in H'(R?), and that f;(z) —
f(z) for almost every x € R%. Then, f € H'(RY) and {f;};>1 weak*-converges to f, that
is, for every ¢ € VMO(R?), we have

jli_)rgo/f] dx—/f

The aim of this paper is to prove an analogous version of the above theorem in the
setting of function spaces associated with Schrédinger operators.

Let L = —A + V be a Schrodinger differential operator on R%, d > 3, where V is a
nonnegative potential, V' # 0, and belongs to the reverse Holder class RH /5. In the recent
years, there is an increasing interest on the study of the problems of harmonic analysis
associated with these operators, see for example [37, 45, 46, 82, 98, 125, 145]. In [46],
Dziubatiski and Zienkiewicz considered the Hardy space H}(R?) as the set of functions
f e L'R?) such that ||flly = [Mpflln < oo, where My f(z) := sup,.q|e"" f(z)].
There, they characterized Hi(R?) in terms of atomic decomposition and in terms of the
Riesz transforms associated with L. Later, in [45], Dziubanski et al. introduced a BMO-
type space BMOp(R?) associated with L, and established the duality between Hj(R?)
and BMO(R?). Recently, Deng et al. [37] introduced and developed new function
spaces of VM O-type VMO 4(R?) associated with some operators A which have a bounded
holomorphic functional calculus on L*(RY). When A = L, their space VMO (RY) is just
the set of all functions f in BMOL(R?) such that v, (f) = y2(f) = 13(f) = 0, where

r—0 xERd,t<r

/
7 (f) =1lim | sup /If ‘th(y)lgdy>12 ,
B(z,t)
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/
wlh) = Jim | s (o [ = trwpa) .

R—oo | yerd >R
B(z,t)

1/2
f) = lim sup / fly) — et fly 2cly)
(/) R—oo | B(z)nB(0,R)= ‘BQ?t )‘ W)l
(z,t

The authors in [37] further showed that H}(R?) is in fact the dual of V MOy (R?), which
allows us to study the weak*-convergence in H}(R9). This is useful in the study of
the Hardy estimates for commutators of singular integral operators related to L, see for
example Theorem 7.1 and Theorem 7.3 of [82].

Our main result is the following theorem.

Theorem 7.1.2. Suppose that { f;};>1 is a bounded sequence in H} (R?), and that f;(z) —
f(z) for almost every x € RY. Then, f € HL(R?) and {f;};>1 weak*-converges to f, that
is, for every ¢ € VMOL(R?), we have

tin [ fi@)pade = [ f@)ps

Throughout the whole paper, C' denotes a positive geometric constant which is inde-
pendent of the main parameters, but may change from line to line. In R¢, we denote by
B = B(x,r) an open ball with center x and radius » > 0. For any measurable set E, we
denote by |E| its Lebesgue measure.

The paper is organized as follows. In Section 2, we present some notations and pre-
liminary results. Section 3 is devoted to the proof of Theorem 7.1.2. In the last section,
we prove that C>°(R?) is dense in the space VMO (R?).

Acknowledgements. The author would like to thank Aline Bonami and Sandrine

Grellier for many helpful suggestions and discussions.

7.2 Some preliminaries and notations
In this paper, we consider the Schrédinger differential operator
L=-A+V

on R? d > 3, where V is a nonnegative potential, V # 0. As in the works of Dziubaniski
et al [45, 46], we always assume that V belongs to the reverse Hélder class RHg/o. Recall
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that a nonnegative locally integrable function V' is said to belong to a reverse Holder class
RH,, 1 < q < oo, if there exists a constant C' > 0 such that for every ball B C R,

TACUDEES TAC
IL'
(31 =15l

Let {T}}i~0 be the semigroup generated by L and Tj(x,y) be their kernels. Namely,

Tif(e) = e f@) = [ Tie.)f)dy, € LR, t>0
R4
Since V' is nonnegative, the Feynman-Kac formula implies that
1 _l=—y)?

< -
= (4mt)?/ 2¢
According [46], the space H3(R?) is defined as the completion of

0 < Ty(z,y) (7.1)

{f e (RY) : M, f € L'(RY)}
in the norm
[l o= [IMLflze,

where My, f(x) := sup,~, |T; f(x)| for all = € RY.
In [45] it was shown that the dual space of H}(R?) can be identified with the space
BMOp(R?) which consists of all functions f € BM O(]Rd with

1£le3i0n = Ifllzaro + sup / )|y < oo, (7.2)

p(x)<r
where p is the auxiliary function defined as in [125], that is,

p()—sup 7“>0 —/ y<1 (7.3)

z € R% Clearly, 0 < p(z) < oo for all z € R?, and thus R? =, ., B,., where the sets B,
are defined by
B, ={z e R: 27("D/2  p(z) < 272}, (7.4)

The following fundamental property of the function p is due to Shen [125].

Proposition 7.2.1 (see [125], Lemma 1.4). There exist Cy > 1 and ko > 1 such that for
all x,y € RY,

Citote)(1+ 2 (x)y')"“” < ply) < Copla) 1+ 'xp(‘j')’“ﬁ?
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Let VMOL(RY) be the subspace of BMOp(R?) consisting of those functions f satis-
fying v1(f) = 72(f) = 73(f) = 0, where

r—0 zeR t<r

wh) =tim | sw (s [ 1s@ = wka) |
B(x,t)

2

_ T _—tL

Y2(f) _1%520 x€;3g>R(‘B o] / |f(y) — e ™ f(y)] dy) ,
N B(mt

R—0c0 | B(,)nB(0,R)=

W)= Jm | s (e [ 1w e w)Rd)”
B(z,t)

In [37] it was shown that H1(R?) is the dual space of VMO (R?).
In the sequel, we denote by Cj, the L-constant

C, = 8.9%C,

where ko and Cy are defined as in Proposition 7.2.1.

Following Dziubanski and Zienkiewicz [46], we define atoms as follows.

Definition 7.2.1. Given 1 < q < co. A function a is called a (H}, q)-atom related to the
ball B(xg,r) if r < Crp(zo) and

i) supp a C B(zo,1),

i) lallan < Bleo.

iii) if r < g-p(xo) then Jga a(z)dz = 0.

We have then the following atomic characterization of H}(RY).

Theorem A (see [46], Theorem 1.5). Let 1 < q < oo. A function f is in Hr(R?) if and
only if it can be written as f = Y. \ja;, where a; are (Hp,q)-atoms and Y |\;| < oo.

Moreover, there exists a constant C' > 0 such that
1 f1lmy < inf {Z Al f = Z/\jaj} < Ol -
J J
Let P(z) = (47)~%2e~1#*’/4 be the Gauss function. According to [46], the space hl (R?),

n € 7, denotes the space of all integrable functions f such that

Muf(z)= sup |Px f(z)] € L'(RY),

0<t<2—n/2
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where P;(+) :=t=4P(t7!.). The norm on hl(R?) is then defined by

“f”h}l = ||Mnf||Ll

It was shown in [56] that the dual space of hl(R?) can be identified with bmo,(R?)
the space of all locally integrable functions f such that

z€R4,2—1/2<y

1
1 lbmon = /00— sup o / F(y)ldy < oo.
Bl )

Here and in what follows, for a ball B and a locally integrable function f, we denote
by fp the average of f on B. Following Dafni [35], we define vmo, (R?) as the subspace
of bmo, (R?) consisting of those f such that

1
lim | sup ———
o—0 z€R4 r<o |B(SL’, T) | 5

(z,r)

and

1
lim sup Gy | @] =o
R—o0 B(z,r)NB(0,R)=0,r>2-"/2 ‘B(Q?,T‘)’B( )

Recall that C>°(R?) is the space of all C*°-functions with compact support. Then, the
following was established by Dafni [35].

Theorem B (see [35], Theorem 6 and Theorem 9). Let n € Z. Then,
i) The space vmo, (R?) is the closure of C°(R?) in bmo,(R?).
ii) The dual of vmo,(R?) is the space hl(R?).

Furthermore, the weak*-convergence is true in hl(R9).

Theorem C (see [35], Theorem 11). Let n € Z. Suppose that {f;};>1 is a bounded
sequence in h:(R?), and that f;(z) — f(z) for almost every x € R, Then, f € hl(R?)

and {f;};>1 weak*-converges to f, that is, for every ¢ € vmo,(R?), we have

J—00

i [ fy(@)ota)ds = [ fo)pla)do.
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7.3 Proof of Theorem 7.1.2

We begin by recalling the following two lemmas due to [46]. These two lemmas together

with Proposition 7.2.1 play an important role in our study.

Lemma 7.3.1 (see [46], Lemma 2.3). There exists a constant C > 0 and a collection of

balls Bpy = B(xnx,27"?), n € Z,k = 1,2, ..., such that v, € B, B, C U, Bur, and
card{(n', k") : B(zpx, R27"?) N B(x o, R27V?) # 0} < R¢

for alln,k and R > 2.

Lemma 7.3.2 (sece [46], Lemma 2.5). There are nonnegative C™-functions i, x, n €
Z,k =1,2,..., supported in the balls B(xy, 21=1/2) such that

D k=1 and ||V~ < C2V2
n,k

The following corollary is useful, which proof follows directly from Lemma 7.3.1. We
leave the details to the reader (see also Corollary 1 of [45]).

Corollary 7.3.1. i) Let K be a compact set. Then, there exists a finite set T C Z x Z*
such that KN B(x,x, 217?) = ) whenever (n, k) ¢ T.
ii) There exists a constant C' > 0 such that for every x € R?,

card {(n,k) € Z x 7" : B(xnz,2"""*) N B(x,2p(x)) # 0} < C.

iii) There exists a constant C > 0 such that for every ball B(x,r) with p(z) < r, we
have
Bz, r)| < >, B2, 277%)] < C|B(z, 7).
B(%p 1,2~/ 2)NB(x,r)#0

The key point in the proof of Theorem 7.1.2 is the theorem.
Theorem 7.3.1. The space C°(R?) is dense in the space VMOL(RY).

The proof of Theorem 7.3.1 will be given in the last section.

To prove Theorem 7.1.2, we need also the following two lemmas.

Lemma 7.3.3 (see [82], Lemma 6.5). Let 1 < ¢ < oo, n € Z and x € B,. Suppose that
f € hL(RY) with supp f C B(x,2'"™?2). Then, there are (H},q)-atoms a; related to the
balls B(x;j,r;) such that B(x;,7;) C B(z,22™/%) and

F=Y Nag, >IN ClS
j=1 j=1

with a positive constant C' independent of n and f.
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Lemma 7.3.4 (see (4.7) in [46]). For every f € H}(R?), we have

> Mnefllng < Cllf Nl
n,k

Now, we are ready to give the proof of the main theorem.

Proof of Theorem 7.1.2. By assumption, there exists .# > 0 such that
I filly < A, forall j > 1,

Let (n,k) € Z x Z*. Then, for almost every z € R, v, () fi(x) — Vo r(z) f(z) since
fi(r) = f(z). By Theorem C, this yields that v, f belongs to h:(R?) and {tnxf;}j>1
weak*-converges to ¥, . f in hL(R?), that is,

lim [ ¥nk(2)f; dx/wnk o(z)dz, (7.5)

j—0o0
R4

for all ¢ € C°(R?). Furthermore,
[onpfllng, < Hm ([4hnnf5llny - (7.6)
j—00

As ., € B, and supp ¥ 1f C B(xn,2'7?), by Lemma 7.3.3, there are (H},2)-
atoms a;”’k related to the balls B(x?’k, 7“;““) C B(wy, 1, 2%7/2) such that

Unif =D Nl Y TN < Ol Sl
J J

Let N, K € Z* be arbitrary. Then, the above together with (7.6) and Lemma 7.3.4

follow that there exists my x € Z* such that

N

K
n ///
:N;Z |Aj7k| < Z ZC< 1+n 1 T kg) + ||7vbn,kme,KHh}L)

J —N k=1

< 1
>~ CZ ].‘l’ 1+l€2) +C||me,K||HL

< c.///,

where the constants C' are independent of N, K. By Theorem A, this allows to conclude
that

= tarf € HIRY) and |flm <D D NI <ca.
n,k nk j
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Finally, we need to show that for every ¢ € VMOL(R?),

Jj—00

iin [ fy(@)o()ds = [ f@)o()ds (7.7)

By Theorem 7.3.1, we only need to prove (7.7) for ¢ € C®(R?). In fact, by (i) of
Corollary 7.3.1, there exists a finite set I'y C Z x Z" such that

fo=Y_ tunfé and fio= > turfio

(n,k)€F¢ (n,k)€F¢
since supp ¥, C B(7,4,27™/2). This together with (7.5) give

Jj—00

hm/fj(x)gb(x)da: = hm/ Z Yni(x) fi(x)p(x)d

which ends the proof of Theorem 7.1.2.

7.4 Proof of Theorem 7.3.1

The main point in the proof of Theorem 7.3.1 is the theorem.

Theorem 7.4.1. Let CMO(R?) be the closure of C=°(RY) in BMOp(R?). Then, H} (R?)
is the dual space of CMOL(RY).

To prove Theorem 7.4.1, we need the following three lemmas.

Lemma 7.4.1. There exists a constant C > 0 such that
2~"2 < O

whenever B(x,x, 272N B(x,r) # 0 and p(z) < 7.
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The proof of Lemma 7.4.1 follows directly from Proposition 7.2.1. We omit the details.

Lemma 7.4.2. Let ¢, (n,k) € Z x Z*, be as in Lemma 7.3.2. Then, there exists a
constant C independent of n, k, Y, , such that

H@Z)n,kfnbmon < C||f||bm0n (7-8)

for all f € bmo,(R?), and
[ k0l 810, < Cll¢lbmo, (7.9)

for all € C*(RY).

Lemma 7.4.3. For every f € BMOr(R?), we have

| fllBro, = sup |B:m~ / | f(y fB(x,r)|dy+ sup ’er / |f(y)|dy.
er

r<p(z) z)<r<2p(z)
B(z,r)

Proof of Lemma 7.4.2. Noting that 1), is a multiplier of bmo,(R?) and ||t x|z~ < 1,
Theorem 2 of [116] allows us to reduce (7.8) to showing that

loe#
e

|B(x,r

1
Vi (y) — Bl / @/Jn,k(z)dz‘dy <C (7.10)

B(x,r) B(z,r)

holds for every ball B(z,r) which satisfies r < 27%/2. In fact, from ||V, 4|~ < C27/2
2771/2) < supg<; tlog(e + 1/t) < oo,

and the estimate ;=77 log (

log (e + ik

|B(5U>7“)| > /

B(x r)
log (

1
¢n,k(y)—m / %,k(Z)dZ‘dy

B(z,r)
27"/
< log (e + ) |V k|| Lo 2r
r —n/2
< Cm10g<€+ )SO,

which proves (7.10), and thus (7.8) holds.
As (7.8) holds, we get

Hwn,k¢HBMO S Hwn,k(ﬁubmon S CH¢”bmon'
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Therefore, to prove (7.9), we only need to show that

/ i ()W) < CllDllomo, (7.11)
l’ 7"

holds for every # € R? and r > p(x). Since supp ¥nx C B(z,4,2'7™2), (7.11) is obvious
if B(x,7) N B(xp,2'7?) = (. Otherwise, as p(z) < r, Lemma 7.4.1 gives 27"/2 < Cr.

As a consequence, we get

1
n )dy < C sup ——— / d
IL’ 7" / W k ‘ Y 2_n/£§r ‘B(l‘, T')| ‘¢(y)| Yy

B(g; r) B(z,r)
< CHQS”bmon’

which proves (7.11), and hence (7.9) holds.

O
Proof of Lemma 7.4.3. Clearly, it is sufficient to prove that
su )dy < C su / )|d 7.12
p@)ETIB:M / | f(y)ldy <r<p2p($),er |f(y)ldy. (7.12)
In fact, for every ball B(x,r) which satisfies p(x) < 7, setting
G ={(n,k) €Z xZ" : B(xps,27"%) N B(z,r) # 0},
one has
B(z,7) C UpnpecB(@nr,27"?) and Y |B(zns, 27%)| < C|B(w, )]
(n,k)eG
since R? = Uy,ezB, C Uy, 1 B(Tp i, 27"/2) and (iii) of Corollary 7.3.1. Therefore,
[ Il < e [ i
TN Yy = v~ y)ay
| B(z,7)| |B(x,r)|
B(a,r) Un,k)eaB(@n x,277/2)
1 1
< o O B2 sw o [l
|B(‘T7 ’I“)| (n%;G p(2)<s5<2p(z) |B(Za S) | B(z.5)
1
<c sp oo [ 1wl
p(2)<s<2p(z) |B(Z7 S)|
B(z,s)
which implies that (7.12) holds.
O
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Proof of Theorem 7.4.1. Since CMOL(R?) is a subspace of BMOL(R?), which is the
dual of H}(R%), every function f in H}(R?) determines a bounded linear functional on
CMOL(R?) of norm bounded by [ f |-

Conversely, given a bounded linear functional 7 on CMOr(R?). Then, for every
(n,k) € Z x Z*, from (7.9) and density of C®(R?) in vmo,(R?), the linear functional
Tri(9) = T (¥ rg) is continuous on vmo, (R?). Consequently, by Theorem B, there exists
fox € hL(R?) such that for every ¢ € C°(R?),

moreover,

[ fnnllng, < ClI Tkl (7.14)

where C' is a positive constant independent of n, k, 1, and 7.

Noting that supp ¥, x C B(@n, 217/2), (7.13) implies that supp f,x C B(z, 1, 277/2).
Consequently, as z,,; € B,,, Lemma 7.3.3 yields that there are (H},2)-atoms a?’k related
to the balls B(:c?’k, T;Lk) such that

[e.o]

fn,kz = Z )‘?7]6&?7]2 Z M?’k| S Can,k’Hh}L (715)
j=1

j=1
with a positive constant C' independent of 1, ,, and f,, .
Since supp for C B(xpx, 2'7?), by Lemma 7.3.1, the function

L (RY). Moreover, for every ¢ € C®(R%), by (i) of
Corollary 7.3.1, there exists a finite set I'y, C Z x Z* such that

= 3 T = X [ oty = [ fw)ot)dy

(n,k)ely (n,k)€ly pa

is well defined, and belongs to L

Next, we need to show that f € H}(R?).
We first claim that there exists C' > 0 such that

> N fuillny < CIT- (7.16)
n,k

Assume that (7.16) holds for a moment. Then, from (7.15), there are (H},2)-atoms a?’k

and complex numbers )\?’k such that

F=Y"5S ket and SOSTINR < O S sl < CITL
nk J nk J n,k
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By Theorem A, this proves that f € H}(R?), moreover, | |z < C||T].

Now, we return to prove (7.16).

Without loss of generality, we can assume that 7 is a real-valued functional. By (7.14),
for each (n, k) € Z x Z*, there exists ¢, € C>(R?) such that

||¢n7k||vmon S 1 and ||fn,k:||h}l S CT(wn,kQSn,k:) (717)

For any I' C Z x Z* a finite set, let ¢ = 37, 11 Unkbni € CZ(R?). We prove that
|ollBro, < C. Indeed, let B(x,r) be an arbitrary ball satisfying » < 2p(z). Then, by
(17) of Corollary 7.3.1, we get

card{(n, k) € Z x 7" : B(zp4, 2 *) N B(z,r) # 0} < C.

This together with (7 8) and (7.17) give

@) / |6(Y) — ¢B@Emldy < C sup || UnipdnklBro

(n,k)el
B(z r)

IN

C sup | | 77Z)n,k: ¢nk‘ || bmon,

(n,k)el’
< C sup ||¢nk||bm0n<c

— s —

(n,k)el

if r < p(z), and as (7.11),

! I / o(y)ldy < C sup

’B(ZB,T Blor) (n,k)er |B Z, T

/ () (9)

S C sup H¢nk“bmon SC
(n,k)el

if p(z) <r < 2p(x). Therefore, Lemma 7.4.3 yields

lollawo, < €{ swp s / 6(0) — e ldy +

r<p(z

+ su )|d
)<r<pr (z) ‘B T, 7ﬂ / |¢ | y}
B (z,r)
< C
since B(x,r) is an arbitrary ball satisfying r < 2p(z). This implies that
ST il < C Y TWastnr) = CT(9)

(n,k)el’ (n,k)el

< CTIellsmo, < C|TH.
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Consequently, (7.16) holds since I' C Z x Z* is an arbitrary finite set and the constants
C are dependent of I'. This ends the proof of Theorem 7.4.1.
O

To prove Theorem 7.3.1, we need to recall the following lemma.

Lemma 7.4.4 (see [46], Lemma 3.0). There is a constant € > 0 such that for every C’
there ezists C' > 0 such that for every t > 0 and |z —y| < C'p(z),

1 |z—y|? 1 T — Y|\
e+ o] <o (G
Proof of Theorem 7.3.1. As H}(R?) is the dual space of VMO (R?) (see Theorem 4.1
of [37]), by Theorem 7.4.1 and Hahn-Banach theorem, it suffices to show that C>°(R%) C
VMOL(RY). In fact, for every f € C(R?Y) with supp f C B(0, Ry), one only needs to
establish the following three steps:

Step 1. By (7.1), one has || f||z2 < || f]|z2 for all ¢ > 0. Therefore,

L
ey B/t ) = )Py < s

for all z € R? and t > 0. This implies that

Y2(f) = lim sup
R—o0 | Lerd >R

/
y) = fPy) | =0

B(x,t)

Step 2. For every R > 2R, and B(xz,t) N B(0, R) = (), by (7.1) again,

B /|f et f(y)Pdy

1 1 (R—Rq)* 2
S B TAnn\d2 T d ) d
— Bz, 1) / <(47rt)d/2 / e |f(2)ldz) dy

B(x,t) B(0,Ro)

- L 8d

< @n) e < (A1 () e
Therefore,
. —tL 2 1/2
()= lim [ sup If f)Pay) " | =o.

R—o0 | B(2,)nB(0,R)=0
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Step 3. Finally, we need to show that

wi)=tim | s (o [ i@ twka) | <o @

r—0 zeR4 t<r
B(z,t)

For every x € R? and ¢t > 0, we have

1/2
_ly—=? d 2d
IB 7 1)] ‘f (dnt) d/2 e e Z‘ Y
Rd
1 El
< - 2 o0 ——r T dz.
< s 1) SO AW e g [
|2 >t1/4
By the uniformly continuity of f, the above implies that
1i f 7Iyzfl2f d 2d 1/2 -0
iy | s (g | V0~ g [ sl ) ™ | <o

(z,t) R4

Therefore, we can reduce (7.18) to showing that

) 1 Lyl /2
i | s (a1 0rie] @)™ <o
T B(zt) R4

(7.19)

From supp f C B(0, Ry) and RY = U, x B(w,, 4, 27™/?), there exists a finite set I'; C

Z x 7 such that supp f C Ugyer; B(Tnk, 27"/2). As a consequence, (7.19) holds if we
can prove that for each (n,k) € I'y,

1 1 e Z\ 1/2
l (o | | / e T~ T, 2)| d}d) =0.
20 | i, \[B(z, 0)] / (drt) Wy, 2)[[7(=)ldz] dy

B(zt)  B(znk27"/?)

(7.20)

We now prove (7.20). Let z € R?and 0 < t < 272", As z,, € B, by Proposition 7.2.1,

there is a constant C' > 1 such that C7127"/2 < p(z) < 0272 for all z € B(x,x,27™?).
This together with (7.1) and Lemma 7.4.4, give

e | | NG - nwaliseie] 4

B(at)  B(xnk27"/?)

1 e , 1
< QHfHLOO<47Tt)d/2 / e wdz+C2 /ZHf“LOO / ‘Z|T_€d2,

2|22t/ |2|<tt/4

1/2
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which implies that (7.20) holds. The proof of Theorem 7.3.1 is thus completed.
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Dang Ky LUONG

Décomposition bilinéaire du produit H!'-BMO et problémes liés

Résumé :

Dans cette these, nous étudions le produit (au sens des distributions) des fonctions de I'espace
de Hardy H' par des fonctions a variations moyennes bornées BM O ainsi que des problémes
connexes. En particulier, nous démontrons qu'il existe deux opérateurs bilinéaires S et T tels
que f x g=S(f,9)+T(f,g), f dans H', g dans BMO ou S est continu de H' x BMO a
valeurs dans L! et T est continu de H! x BMO et a valeurs dans un nouvel espace de type
Hardy-Orlicz noté H'°¢. Ce nouvel espace H'°¢ appartient a une classe plus large d’espaces de
Hardy de type Musielak-Orlicz que nous introduisons et étudions. En utilisant une méthode
analogue a celle de la décomposition du produit H'-BMO, nous établissons une décomposition
bilinéaire des commutateurs [b, 7], T" dans une large classe d'opérateurs sous-linéaires— classe
contenant tous les opérateurs classiques de |'analyse harmonique. Nous généralisons ensuite
nos résultats aux espaces de Hardy associés a un opérateur de Schrodinger.

Mots clés: espaces de Hardy, ondelettes, BM O, commutateur, opérateur de Schrodinger.

Bilinear decompositions for the product space H'! x BMO and related problems

Abstract:

In this thesis, we investigate the product (in the distribution sense) of functions f in H' and
g in BMO, denoted by f x g, and related problems. In particular, we prove that there are
two bounded bilinear operators S : H' x BMO — L' and T : H' x BMO — H'"® such that
fxg=2S(fg)+T(f, g) € L'+ H"8 holds for every (f,g) € H' x BMO. Here H"® is a
new kind of Hardy-Orlicz space. This new space H'°% appears as an example of a new class
of Hardy spaces of Musielak-Orlicz type which we introduce and study. As an application,
we give (sub)bilinear decompositions for commutators of singular integral operators which
include almost all fundmental operators in harmonic analysis. Some Hardy estimates for
commutators are also studied here. Finally, we investigate some related problems in the

setting of Schrodinger harmonic analysis.

Keywords: Hardy spaces, wavelet, BMO, commutator, Schrodinger operator.

MAPMO UMR 6628 - CNRS
d p Rue de Chartres - BP6759
45067 ORLEANS CEDEX 2 FRANCE



