

Contributions to Large-Scale Learning for Image Classification

Zeynep Akata

PhD Defense, January 6th 2014

Rapporteur Rapporteur Examinateur Examinateur Directeur de Thése Co-directeur de Thése

Prof Matthieu Cord Prof Christoph Lampert Prof Vittorio Ferrari Dr Georges Quénot Dr Cordelia Schmid Dr Florent Perronnin

Motivation

Decrease in the cost of digital cameras

 Large personal visual data collections

The Internet and social networking websites

• Visual data shared with public

Motivation

How to process and access such big data?

- Manual management is impossible
- Classify data automatically for easy access
 - Assign keywords to images

Motivation

How to process and access such big data?

- Manual management is impossible
- Classify data automatically for easy access
 - Assign keywords to images

Focus of this thesis: image classification in large image sets

Standard classification pipeline

- Input: Image descriptors and labels $\{(\mathbf{x}_i, y_i)\}$ where $\mathbf{x}_i \in X$ and $Y = \{1, ..., C\}$
- **Goal:** Learn a prediction function $f : X \to [0, 1]^C$ that predicts the presence/absence of each label

Description: [Csurka *et al.*'04], [Lazebnik *et al.*'06], [Zhang *et al.*'07] Classification: [Boser *et al.*'92], [Cortes and Vapnik'95]

Dimensions of large-scale learning

Scale of a learning problem is measured through 3 dimensions:

- Descriptor dimensionality (d)
- Number of classes (k)
- Number of images (n)

Descriptor dimensionality

Fisher Vectors (FV) [Perronnin and Dance'07], [Perronnin *et al.*'10] USe high order statistics to map images into high dimensional space

Number of classes and images

ImageNet [Deng et al.'09] is an example of large scale datasets

• k = 21,841 classes and $n = 14 \times 10^6$ labeled images

State-of-the-art for large-scale learning

 Handling large descriptor dimensionality (d):
Linear classifiers and descriptor compression [Perronnin et al.'10], [Jégou et al.'11], [Sánchez et al.'11]

Pandling large number of classes (k): Train one classifier at a time with One-vs-Rest SVM [Rifkin and Klautau'04]

Handling large number of images (n):
Process one sample at a time
[Bottou and Bousquet'07], [Shalev-Shwartz et al.'07]

Good practices in large-scale learning

- Compare different objective functions for linear SVMs
- Analyze the effects of key parameters

Scarceness of labeled data

Fine-grained subsets of Imagenet are sparsely populated

- Difficult to harvest images, e.g. from the Internet
- Image labeling can only be done by experts which is costly

Spanish Fly:

Jerboa Kangaroo:

Argentinosaur:

(Some of the least populated classes in ImageNet)

State-of-the-art for learning with scarce labeled data

 Attributes enable parameter sharing between classes

[Ferrari et al.'07], [Lampert et al.'09]

2 Zero-shot learning:

Direct Attribute Prediction (DAP) [Lampert *et al.*'09]

Contribution 2

Label-embedding for image classification

- Learning with scarce training data
- Embed classes in a Euclidean space with side information

Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

Towards Good Practice in Large Scale Learning for Image Classification F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, *IEEE CVPR, 2012.* Good Practice in Large Scale Learning for Image Classification

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, to appear in IEEE TPAMI, 2013.

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels

Why is top-k accuracy useful?

- · Image has multiple objects but a single label is assigned
- k can be adjusted based on the recall target

Accuracy in ImageNet: top-k accuracy

• Correct if actual label appears in the first top-k labels

Why is top-k accuracy useful?

- · Image has multiple objects but a single label is assigned
- k can be adjusted based on the recall target

Top-k accuracy \implies rank annotations according to relevance

Alternatives for choosing the objective function

Alternatives for choosing the objective function

• "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]

Alternatives for choosing the objective function

- "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]
- "Ranking (WSABIE) outperforms all competing methods " [Weston *et al.*'10]

Alternatives for choosing the objective function

- "Simple one-vs-rest is as accurate as any other approach " [Rifkin and Klautau '04]
- "Ranking (WSABIE) outperforms all competing methods " [Weston *et al.*'10]

 \rightarrow Compare one-vs-rest and ranking algorithms on large-scale

Objective functions

•
$$S = \{(\mathbf{x}_i, y_i), i = 1..., N\}, \mathbf{x}_i \in \mathcal{X}, y_i \in \mathcal{Y} = \{1, ..., C\}$$

• Supervised learning:

$$\min_{\mathbf{W}} \frac{\lambda}{2} \Omega(\mathbf{W}) + L(S; \mathbf{W})$$

• Empirical risk:

$$L(S; \mathbf{W}) := \frac{1}{N} \sum_{i=1}^{N} L(\mathbf{x}_i, y_i; \mathbf{W})$$

• Regularization:

$$\Omega(\mathbf{W}) := \sum_{c=1}^{C} \|\mathbf{w}_c\|^2$$

One-vs-Rest SVM (OVR)

- Two classes: $\mathcal{Y} = \{-1, +1\}$
- 0/1 loss: $1(y_i \mathbf{w}^T \mathbf{x}_i < 0)$
- Upper-bounded by:

 $L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w}) = \max\{0, 1 - y_i \mathbf{w}^T \mathbf{x}_i\}$

• *C* classes: train *C* independent classifiers

 \rightarrow Training time scales linearly with the number of classes

Sample rebalancing

OVR: many more negative samples than the positives

Standard formulation of OVR without reweighting

$$\sum_{i \in I_+} L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w}) + \sum_{i \in I_-} L_{\mathsf{OVR}}(\mathbf{x}_i, y_i; \mathbf{w})$$

u-OVR

Sample rebalancing

OVR: many more negative samples than the positives

• Unbalance parameter ρ

$$\frac{\rho}{N_{+}}\sum_{i\in I_{+}}L_{\mathsf{OVR}}(\mathbf{x}_{i}, y_{i}; \mathbf{w}) + \frac{1-\rho}{N_{-}}\sum_{i\in I_{-}}L_{\mathsf{OVR}}(\mathbf{x}_{i}, y_{i}; \mathbf{w})$$

Ranking framework

Consider *C* classes at once: $\mathcal{Y} = \{1, \dots, C\}$

Goal:

• Enforce $\mathbf{w}_{y_i}^T \mathbf{x}_i > \mathbf{w}_y^T \mathbf{x}_i$ with $y_i = \text{correct label and } y \neq y_i$

Define:

- α_k = penalty of going from rank k to k + 1
- Cumulative penalty $\ell_k = \sum_{j=1}^k \alpha_j$ with $\alpha_1 \ge \alpha_2 \ge \dots \alpha_C \ge 0$

Objective function:

• $\ell_{r(\mathbf{x},y)}$ where $r(\mathbf{x},y) = \text{rank of label } y$ for sample \mathbf{x}

[Usunier et al.'09]

Ranking algorithms

Loss:
$$\ell_k = \sum_{j=1}^k \alpha_j$$

- 1 Multiclass SVM (MUL): $\alpha_1 = 1 \text{ and } \alpha_j = 0 \text{ for } j \ge 2$ [Crammer and Singer'01]
- 2 Ranking SVM (RNK): $\alpha_j = 1$, $\forall j$ [Joachims'02]
- 3 Weighted Approximate Ranking (WAR): $\alpha_i = 1/j$ [Weston *et al.*'10]

MUL and RNK use an upper bound of the loss while WAR uses an approximation.

Optimization

Stochastic Gradient Descent (SGD) for optimization:

- **1** Choose a sample z_t at random at step t
 - OVR & MUL: z_t is a pair (\mathbf{x}_i, y_i)
 - RNK & WAR: z_t is a triplet $(\mathbf{x}_i, y_i, \bar{y})$, where $\bar{y} \neq y_i$

2 Update the parameters **w** using a sample-wise estimate of the regularized risk $R(z_t; \mathbf{w})$

$$\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} - \eta_t \nabla_{\mathbf{w} = \mathbf{w}^{(t-1)}} R(z_t; \mathbf{w})$$

where η_t is the step size

[Bottou and Bousquet'07], [Shalev-Shwartz et al.'07]

Datasets used in experiments

	# images	# classes	Example Images
ILSVRC10	1.4M	1,000	
ImageNet10K	9M	10,184	

 \rightarrow We report results with Top-1 accuracy

[Deng et al.'09, Deng et al.'10]

Image descriptors used in experiments

- Local features (*D* = 128) with SIFT [Lowe'04] + PCA
- Visual vocabulary with Gaussian Mixture Models (G = 8, ..., 256)
- Aggregating features with BOV (4K-dim) [Csurka *et al.*'04] or FV (130K-dim) [Perronnin and Dance '07]
- Spatial Pyramids (*S* = 4) [Lazebnik *et al.*'06]
- Compression with Product Quantization [Jegou et al.'11]

Experiments

- **1** Regularization λ in $\min_{\mathbf{W}} \frac{\lambda}{2} \Omega(\mathbf{W}) + L(S; \mathbf{W})$
- 2 Step size η_t in $\mathbf{w}^{(t)} = \mathbf{w}^{(t-1)} \eta_t \nabla_{\mathbf{w} = \mathbf{w}^{(t-1)}} R(z_t; \mathbf{w})$
- **3** Unbalance parameter ρ in sample rebalancing
- 4 Descriptor dimensionality d
- 6 Comparison between different objective functions

Regularization and step size

- 1 Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?

Regularization and step size

- **1** Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?

a) $\lambda > 0$ and $\eta_t = 1/(\lambda(t + t_0))$ b) $\lambda > 0$ and $\eta_t = \eta$ c) $\lambda = 0$ and $\eta_t = \eta$

Regularization and step size

- Is explicit regularization better than implicit regularization?
- Is decreasing step size better than constant step size?

a) $\lambda > 0$ and $\eta_t = 1/(\lambda(t + t_0))$ b) $\lambda > 0$ and $\eta_t = \eta$

c)
$$\lambda = 0$$
 and $\eta_t = \eta$

- Implicit regularization with fixed step size is effective
- It requires one less parameter to tune
Data rebalancing

3 Is data rebalancing beneficial in OVR on large scale?

Data rebalancing

Is data rebalancing beneficial in OVR on large scale?

- $\beta = (1 \rho)/\rho$: number of negatives sampled for each positive
- Dashed lines = u-OVR

Data rebalancing

Is data rebalancing beneficial in OVR on large scale?

- $\beta = (1 \rho)/\rho$: number of negatives sampled for each positive
- Dashed lines = u-OVR
- Rebalancing is beneficial for small dimensional features [Bartlett *et al.*'03]

Descriptor dimensionality (d)

How do different methods behave with increasing descriptor dimensionality on large scale?

Descriptor dimensionality (d)

4 How do different methods behave with increasing descriptor dimensionality on large scale?

Descriptor dimensionality (d)

4 How do different methods behave with increasing descriptor dimensionality on large scale?

- Methods tend to converge
- With the increasing descriptor dimensionality
- Impact of surrogate loss is mitigated as capacity of the classifier increases

5 Which method works best on large scale?

- **5** Which method works best on large scale?
 - Comparison between methods on ILSVRC10

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	15.8	26.4	22.7	20.8	24.1
FV 130K	45.9	45.7	46.2	46.1	46.1

Comparison between methods on ImageNet10K

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	3.8	7.5	6.0	4.4	7.0
FV 130K	-	19.1	-	-	17.9

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

- **5** Which method works best on large scale?
 - Comparison between methods on ILSVRC10

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	15.8	26.4	22.7	20.8	24.1
FV 130K	45.9	45.7	46.2	46.1	46.1

Comparison between methods on ImageNet10K

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	3.8	7.5	6.0	4.4	7.0
FV 130K	-	19.1	-	-	17.9

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

- **5** Which method works best on large scale?
 - Comparison between methods on ILSVRC10

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	15.8	26.4	22.7	20.8	24.1
FV 130K	45.9	45.7	46.2	46.1	46.1

Comparison between methods on ImageNet10K

	u-OVR	w-OVR	MUL	RNK	WAR
BOV 4K	3.8	7.5	6.0	4.4	7.0
FV 130K	-	19.1	-	-	17.9

u-OVR: unweighted OVR, w-OVR: weighted OVR MUL: Multiclass, RNK: Ranking, WAR: Weighted Average Ranking

Qualitative examples from ImageNet10K

• Some classes with top-1 accuracy higher than 85%

Star Anise (92%)

Nest Egg (87%)

Geyser (86%)

• Some classes with 75% and 50% top-1 accuracy

Traction engine (77 %)

Ready to Wear (76 %)

Stonechat (50%)

Qualitative examples from ImageNet10K

• Some classes with 25% and 10% top-1 accuracy

Tortrix (25%)

Pyralid (25%)

Egyptian cobra (10%)

Some classes with 5% and 0% top-1 accuracy

Hare (5%)

Weasel (5%)

Felt fungus (0%)

Good practices for large-scale image classification

- 1 Early stopping: fast training and good generalization
- 2 Step-size: small constant step-size is sufficient
- 3 Sample rebalancing: a must in OVR
- 4 Sufficiently large descriptors: all methods tend to converge
- **5** OVR: efficient for large-scale classification

Towards Good Practice in Large Scale Learning for Image Classification F. Perronnin, Z.Akata, Z.Harchaoui, C.Schmid, *IEEE CVPR*, 2012.

Good Practice in Large Scale Learning for Image Classification Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *to appear in IEEE TPAMI, 2013.*

Outline

Good practices in large-scale learning

2 Label-embedding with attributes

3 Conclusion

Label-Embedding with Attributes

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, IEEE CVPR, 2013.

Attribute-Based Classification with Label-Embedding

Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

Label-Embedding with Attributes for Image Classification Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *Submitted to IEEE TPAMI*.

Large-scale datasets have fine-grained subsets

Hummingbirds

Introduction

Large-scale datasets have fine-grained subsets

Hummingbirds

Fine-grained images can only be distinguished by experts

Due to cost of image labeling: scarce labeled data

Attributes

Visual qualities of objects such as red or striped [Ferrari et al.'07]

Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes

Rufous Hummingbird	bill shape::dagger size::small wing color::rufous wing color::orange upperparts color::rufous underparts color::pink back color::grey
Ruby-throated Hummingbird	bill shape::dagger size::small underparts color::olive underparts color::green back color::grey upper tail color::rufous upper tail color::grey

Attributes

Visual qualities of objects such as red or striped [Ferrari et al.'07]

Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes

Attributes

Visual qualities of objects such as red or striped [Ferrari et al.'07]

Understandable by humans and interpretable by computers

Human-specified high-level description of objects [Lampert et al.'09]

• Enable parameter sharing between classes

Direct Attribute Prediction (DAP)

Image x is assigned to the class y with maximum

$$p(y|x) \propto \prod_{e=1}^{E} p(a_e = \rho_{y,e}|x)$$

where $\rho_{y,e}$ associates an attribute a_e and a class y

Direct Attribute Prediction (DAP)

State-of-the-art DAP has 3 potential shortcomings

- **1** Two-step procedure:
 - Learn attribute classifiers & combine attribute scores
- 2 Attributes are costly to obtain:
 - Not clear how to integrate other sources of side information
- 3 Difficult to leverage few additional labeled samples

IMAGE IMAGES FEATURES $\tilde{\mathcal{X}}$ \mathcal{X} x_i chimpanzee $\theta(x_i)$ $\theta(x_i)$ x_i

Define: $\mathcal{Y} = \{1, \dots, C\}$ and $\mathcal{A} = \{a_i, i = 1 \dots E\}$

Association between a class y and an attribute a_i : $\rho_{y,i}$

$$\varphi^{\mathcal{A}}(y) = [\rho_{y,1}, \ldots, \rho_{y,E}]$$

 $\varphi^{\mathcal{A}}(\mathbf{y})$ models

- Presence/absence of each attribute: $\rho_{y,i} \in \{0,1\}$ or $\{-1,1\}$
- Confidence level of each attribute: $\rho_{y,i} \in \mathcal{R}$

1 Optimizes directly the classification objective

Structured output learning [Tsochantaridis *et al.*'05]

$$f(x; w) = \arg \max_{y \in \mathcal{Y}} F(x, y; w)$$

Compatibility function:

$$F(x, y; W) = \theta(x)^T W \varphi(y)$$

Input: $\theta(x) =$ image features and $\varphi(y) =$ class attributes Output: W = mapping between $\theta(x)$ and $\varphi(y)$

Parameter learning

Strategies for optimization

a) Maximize correlation between input and output [Palatucci *et al.*'09, Socher *et al.*'13]

$$\frac{1}{N}\sum_{i=1}^{N}F(x_i, y_i; W)$$

- · Does not directly optimize object classification
- b) Maximize the ranking of the correct label
 - Use any ranking method [Joachims'02], [Crammer and Singer'02], [Weston *et al.*'10]

2 Other sources of side information easily integrated

HLE: Hierarchy Label-Embedding [Tsochantaridis *et al.*'05]

 $\Phi^{\mathcal{H}}(6) = [1 \ 0 \ 1 \ 0 \ 0 \ 1]$

Different sources can be combined

- Early fusion of output embeddings
- Late fusion of scores

3 Easy to leverage few additional labeled samples

Datasets used in experiments

	# classes	# attributes	Example images
Animals with Attributes (AWA) [Lampert <i>et al.</i> '09]	50	85	
Caltech UCSD Birds (CUB) [Wah <i>et al.</i> '11]	200	312	

Input and output embeddings

Input embeddings

- + 128-dim SIFT and 96-dim color \rightarrow 64-dim PCA
- GMM with 16 or 256 Gaussians \rightarrow FV(4K or 64K)

Output embeddings

- 1 Baselines: No side information
 - OVR: $\Phi = C \times C$ identity matrix
 - Gaussian LE: Φ is drawn from $\mathcal{N}(\mu, \sigma^2)$ [Hsu *et al.*'09]
 - WSABIE [Weston *et al.*'10]: Φ and *W* are learned

Input and output embeddings

Input embeddings

- + 128-dim SIFT and 96-dim color \rightarrow 64-dim PCA
- GMM with 16 or 256 Gaussians \rightarrow FV(4K or 64K)

Output embeddings

- 1 Baselines: No side information
 - OVR: $\Phi = C \times C$ identity matrix
 - Gaussian LE: Φ is drawn from $\mathcal{N}(\mu, \sigma^2)$ [Hsu *et al.*'09]
 - WSABIE [Weston *et al.*'10]: Φ and *W* are learned
- **2** Using side information:
 - ALE: continuous and discrete attributes (Φ^A)
 - HLE: hierarchical label embedding $(\Phi^{\mathcal{H}})$
 - AHLE: ALE and HLE concatenated ($\Phi^{\mathcal{A}}$ and $\Phi^{\mathcal{H}}$)

Experiments

- 1 Discrete vs continuous embeddings
- 2 Different objectives for learning in ALE
- **3** ALE vs DAP for object prediction
- 4 Attributes and Hierarchies for label embedding
- **5** Determine if side information is beneficial in few-shots

Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?

Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?

• ℓ_2 norm: each class is closest to itself \rightarrow dot product similarity
Discrete vs continuous embeddings

1 In zero-shot learning with ALE, how do discrete and continuous embeddings compare?

- ℓ_2 norm: each class is closest to itself \rightarrow dot product similarity
- Continuous embedding outperforms discrete embeddings

Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

	RR	MUL	WAR
AWA dataset	44.5	47.9	48.5
CUB dataset	21.6	26.3	26.3

RR: Ridge Regression [Hoerl and Kennard'70], MUL: Multiclass [Crammer and Singer'02], WAR: Weighted Average Ranking [Weston *et al.*'10]

Learning framework in ALE

2 Does learning framework make a difference in ALE for zero-shot learning?

	RR	MUL	WAR
AWA dataset	44.5	47.9	48.5
CUB dataset	21.6	26.3	26.3

• ALE: Ranking objective performs the best

RR: Ridge Regression [Hoerl and Kennard'70], MUL: Multiclass [Crammer and Singer'02], WAR: Weighted Average Ranking [Weston *et al.*'10]

ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

	DAP	ALE cont	ALE {0, 1}
AWA dataset	41.0	48.5	44.6
CUB dataset	12.3	26.3	22.3

- DAP: OVR with log loss for each attribute
- DAP [Lampert et al.'09]: different features + nonlinear kernels

ALE vs DAP

How do ALE and DAP compare for object prediction in zero-shot learning?

	DAP	ALE cont	ALE {0, 1}
AWA dataset	41.0	48.5	44.6
CUB dataset	12.3	26.3	22.3

- DAP: OVR with log loss for each attribute
- DAP [Lampert et al.'09]: different features + nonlinear kernels
- ALE: with continuous attributes performs the best

ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?

- HLE: Hierarchy Label-Embedding
- AHLE early: $\Phi^{\mathcal{H}}$ & $\Phi^{\mathcal{A}}$ concatenated
- AHLE late: ALE & HLE scores combined

ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?

- HLE: Hierarchy Label-Embedding
- AHLE early: $\Phi^{\mathcal{H}}$ & $\Phi^{\mathcal{A}}$ concatenated
- AHLE late: ALE & HLE scores combined

	ALE	HLE	AHLE early	AHLE late
AWA dataset	48.5	40.4	46.8	49.4
CUB dataset	26.9	18.5	27.1	27.3

ALE vs HLE

How do ALE and HLE compare for zero-shot learning and do they contain complementary information?

- HLE: Hierarchy Label-Embedding
- AHLE early: $\Phi^{\mathcal{H}}$ & $\Phi^{\mathcal{A}}$ concatenated
- AHLE late: ALE & HLE scores combined

	ALE	HLE	AHLE early	AHLE late
AWA dataset	48.5	40.4	46.8	49.4
CUB dataset	26.9	18.5	27.1	27.3

Side information in few-shots

5 Is side information beneficial for few-shots learning?

Side information in few-shots

5 Is side information beneficial for few-shots learning?

Side information in few-shots

5 Is side information beneficial for few-shots learning?

- · Side information is beneficial with scarce training data
- · All methods converge with more training data

Advantages of ALE over DAP

1 Solves directly image classification problem

- 2 Accommodates other sources of side information
 - · Improves zero-shot learning with continuous attributes
- 3 Leverages few additional labeled training data

Label-Embedding with Attributes Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *IEEE CVPR, 2013.*

Attribute-Based Classification with Label-Embedding Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, ORL Workshop at NIPS, 2013.

Label-Embedding with Attributes for Image Classification Z.Akata, F. Perronnin, Z.Harchaoui, C.Schmid, *Submitted to IEEE TPAMI*.

Outline

1 Good practices in large-scale learning

2 Label-embedding with attributes

Large-scale image classification

Conclusions

- Comparison of objective functions in large-scale learning
- Set of good practices for large-scale learning

Large-scale image classification

Conclusions

- Comparison of objective functions in large-scale learning
- Set of good practices for large-scale learning

Future work

- Hierarchical loss [Tsochantaridis et al.'05]
- ASGD [Polyak and Juditsky'92], [Bach and Moulines'13]
- Sampling [Loosli et al.'05], [Mineiro and Karampatziakis'13]

Label-embedding with attributes

Conclusions

- Novel approach for zero-shot learning using attributes
- · Several improvements over the state of the art

Label-embedding with attributes

Conclusions

- Novel approach for zero-shot learning using attributes
- · Several improvements over the state of the art

Future work

- Deep Embedding of ALE and HLE
- Beyond label trees in HLE [Yen et al.'08]
- Text from textual resources [Rohrbach'10], [Frome et al.'13]

Thank you for your attention!

Bag of Visual Words (BOV) [Csurka et al.'04]

- Dense sampling of local features from an image
- · Create visual vocabulary with k-means
- · Assign each local feature to a visual word
- · Calculate frequency of each visual word

Fisher Vectors (FVs) [Perronnin and Dance'07]

- · Dense sampling of local features from an image
- Create visual vocabulary with GMMs

$$p(\mathbf{x}|\lambda)$$
 with $\lambda = \{\pi_i, \boldsymbol{\mu}_i, \Sigma_i, i = 1, ..., k\}$

• Take gradients w.r.t mixture weight, mean and variance

$$G_{\lambda}^{\mathbf{x}} = \frac{1}{N} \nabla_{\lambda} \log p(\mathbf{x}|\lambda)$$

- Improves with power, ℓ_2 normalization and SPM
- · PQ compressed FVs have small memory fooprint

Multiclass SVM (MUL) [Crammer and Singer'04]

• Convex surrogate loss to $\Delta(y, \hat{y})$:

$$\hat{y}_i = \arg \max_y \mathbf{w}_y^T x_i$$

• Upper bound to misclassification loss:

$$L_{\mathsf{MUL}}(\mathbf{x}_i, y_i; \mathbf{w}) = \max_{y} \left\{ \Delta(y_i, y) + \mathbf{w}_{y}^T x_i \right\} - \mathbf{w}_{y_i}^T x_i$$

Ranking SVM (RNK) [Joachims'02]

- Ordering pairs of documents
- Sample (\mathbf{x}_i, y_i) and label $y \neq y_i$: enforce $\mathbf{w}_{y_i} \mathbf{x}_i > \mathbf{w}_y^T \mathbf{x}_i$
- Rank of label *y* for sample **x**:

$$r(\mathbf{x}, y) = \sum_{c=1}^{C} \mathbb{1}(\mathbf{w}_{c}^{T}\mathbf{x} \ge \mathbf{w}_{y}^{T}\mathbf{x})$$

• $1(\mathbf{w}_c^T \mathbf{x} \ge \mathbf{w}_y^T \mathbf{x})$ is upper-bounded by:

$$L_{\mathsf{tri}}(\mathbf{x}_i, y_i, y; \mathbf{w}) = \max\{0, \Delta(y_i, y) - \mathbf{w}_{y_i}^T \mathbf{x}_i + \mathbf{w}_y^T \mathbf{x}_i\}$$

• Overall loss of (\mathbf{x}_i, y_i) :

$$L_{\mathsf{RNK}}(\mathbf{x}_i, y_i; \mathbf{w}) = \sum_{y=1}^{C} \max\{0, \Delta(y_i, y) - (\mathbf{w}_{y_i} - \mathbf{w}_y)^T \mathbf{x}_i\}$$

Weighted Average Ranking (WAR) [Weston et al.'10]

- Give more weight to the top of the ranking list
- Ranking loss $\ell_{r(\mathbf{x}_i, y_i)}$: $\ell_k = \sum_{j=1}^k \frac{1}{j}$
- Regularized rank:

$$r_{\Delta}(\mathbf{x}, y) = \sum_{c=1}^{C} \mathbb{1}(\mathbf{w}_{c}^{T}x + \Delta(y, c) \ge \mathbf{w}_{y}^{T}x)$$

• Approximated upper bound to the loss:

$$L_{\text{WAR}}(\mathbf{x}_i, y_i; \mathbf{w}) = \sum_{y=1}^{C} \ell_{r_{\Delta}(\mathbf{x}_i, y_i)} \frac{L_{\text{tri}}(\mathbf{x}_i, y_i, y; \mathbf{w})}{r_{\Delta}(\mathbf{x}_i, y_i)}$$

Sampling and update equations

	Sampling	Update
R _{OVR}	Draw (\mathbf{x}_i, y_i) from S.	$\delta_i = 1$ if $L_{OVR}(\mathbf{x}_i, y_i; \mathbf{w}) > 0, 0$ otherwise.
		$\mathbf{w}^{(t)} = (1 - \eta_t \lambda) \mathbf{w}^{(t-1)} + \eta_t \delta_i \mathbf{x}_i y_i$
R _{MUL}	Draw (\mathbf{x}_i, y_i) from <i>S</i> .	$\bar{y} = \arg \max_{y} \Delta(y_i, y) + \mathbf{w}'_{y} \mathbf{x}_i \text{ and } \delta_i = \begin{cases} 1 & \text{if } \bar{y} \neq y_i \\ 0 & \text{otherwise.} \end{cases}$
		$\int \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) + \delta_{i}\eta_{t}\mathbf{x}_{i} \text{if } y = y_{i}$
		$\mathbf{w}_{y}^{(t)} = \left\{ \mathbf{w}_{y}^{(t-1)}(1 - \eta_{t}\lambda) - \delta_{i}\eta_{t}\mathbf{x}_{i} \text{if } y = \bar{y} \right.$
		$\mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda)$ otherwise.
R _{RNK}	Draw (\mathbf{x}_i, y_i) from S.	$\delta_i = 1$ if $L_{tri}(\mathbf{x}_i, y_i, \bar{y}; \mathbf{w}) > 0, 0$ otherwise.
		$\int \mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda) + \delta_{i}\eta_{t}\mathbf{x}_{i} \text{if } y = y_{i}$
	Draw $\bar{y} \neq y_i$ from \mathcal{Y} .	$\mathbf{w}_{y}^{(t)} = \left\{ \mathbf{w}_{y}^{(t-1)}(1 - \eta_{t}\lambda) - \delta_{i}\eta_{t}\mathbf{x}_{i} \text{if } y = \bar{y} \right\}$
		$\mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda)$ otherwise.
R _{WAR}	Draw (\mathbf{x}_i, y_i) from S.	$\delta_i = 1$ if \bar{y} s.t. $L_{tri}(\mathbf{x}_i, y_i, \bar{y}; \mathbf{w}) > 0$ was sampled, 0 otherwise.
	Earl 10 C 1 day	$\left(\mathbf{w}^{(t-1)}(1-m)\right) + \delta \ell = m\mathbf{v}$, if $\mathbf{v} = \mathbf{v}$
	$\int \mathbf{Draw} \ \bar{\mathbf{v}} \neq \mathbf{v}_i \ \text{from } \mathcal{V}_i$	(t) $\mathbf{w}_{y} = (1 - \eta_{t} \mathbf{x}) + b_{i} c_{\lfloor} \frac{c-1}{k} \eta_{t} \mathbf{x}_{i}$ if $y = y_{i}$
	If $L_{tri}(\mathbf{x}_i, y_i, \overline{y}; \mathbf{w}) > 0$, break.	$\mathbf{w}_{y}^{(r)} = \left\{ \mathbf{w}_{y}^{(r-1)}(1 - \eta_{t}\lambda) - \delta_{i}\ell_{\lfloor\frac{C-1}{k}\rfloor}\eta_{t}\mathbf{x}_{i} \text{if } y = \bar{y} \right\}$
		$\mathbf{w}_{y}^{(t-1)}(1-\eta_{t}\lambda)$ otherwise.

SGD vs Batch

• Is SGD better than Batch in large scale classification?

SGD vs batch experiments on Ungulate183

Comparison between methods on ILSVRC10

		u-OVR	w-OVR	MUL	RNK	WAR
Ton-1	BOV 4K EV 130K	15.8 45.9	26.4 45.7	22.7 46 2	20.8 46 1	24.1 46 1
		-0.0	+0.7	+0.2	44.0	+0.1
Ton-5	BOV 4K	28.8	46.4	38.4	41.2	44.2
	FV 130K	63.7	65.9	64.8	65.8	66.5

Despite its simplicity and suboptimality in theory, OVR performs the best

Attribute Label Embedding

- $S = \{(x_n, y_n), n = 1 \dots N\}$: $x_n \in \mathcal{X}$ and $y_n \in \mathcal{Y}$
- Learn $f : \mathcal{X} \to \mathcal{Y}$ with $\frac{1}{N} \sum_{n=1}^{N} \Delta(y_n, f(x_n))$
- 0/1 loss: $\Delta(y, z) = 0$ if y = z, 1 otherwise
- Compatibility function: $f(x; w) = \arg \max_{y \in \mathcal{Y}} F(x, y; w)$
- Rewrite in bilinear form: $F(x, y; W) = \theta(x)'W\varphi(y)$
- Attribute Label-Embedding with Attributes (ALE):

•
$$\mathcal{Y} = \{1, ..., C\}, \, \mathcal{A} = \{a_i, i = 1 ... E\}$$

- association measure between y and a_i: ρ_{y,i}
- embed class y in attribute space:

$$\varphi^{\mathcal{A}}(\mathbf{y}) = [\rho_{\mathbf{y},1},\ldots,\rho_{\mathbf{y},E}]$$

Zero-Shot Objective

• Φ fixed, W learned

$$\frac{1}{N}\sum_{n=1}^{N}\max_{y\in\mathcal{Y}}\ell(x_n,y_n,y)$$

• where $\ell(x_n, y_n, y)$ is defined as:

$$\Delta(y_n, y) + \theta(x)' W[\varphi(y) - \varphi(y_n)]$$

Few-Shots Objective

• Φ and W learned using $\Phi^{\mathcal{A}}$

$$R(\mathcal{S}; W, \Phi) + \frac{\mu}{2} ||\Phi - \Phi^{\mathcal{A}}||^2$$

• where $R(S; W, \Phi)$ is defined as:

$$\frac{1}{N}\sum_{n=1}^{N}\frac{\beta_{r_{\Delta}(x_{n},y_{n})}}{r_{\Delta(x_{n},y_{n})}}\sum_{y\in\mathcal{Y}}\max\{0,\ell(x_{n},y_{n},y)\}$$

• upper-bound on rank of label *y_n* for image *x_n*:

$$r_{\Delta}(x_n, y_n) = \sum_{y \in \mathcal{Y}} \mathbb{1}(\ell(x_n, y_n, y) > 0)$$

SGD optimization for ALE

- Intitialize $W^{(0)}$ randomly.
- Draw (x,y) randomly from S
- Draw $\bar{y} \neq y$ from \mathcal{Y}
- If $\ell(x, y, \overline{y}) > 0$
 - Update W

$$W^{(t)} = W^{(t-1)} + \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} \theta(x) [\varphi(y) - \varphi(\bar{y})]'$$

• Update Φ (not applicable to zero-shot)

$$\varphi^{(t)}(\mathbf{y}) = (1 - \eta_t \mu)\varphi^{(t-1)}(\mathbf{y}) + \eta_t \mu \varphi^{\mathcal{A}}(\mathbf{y}) + \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} W' \theta(\mathbf{x})$$
$$\varphi^{(t)}(\bar{\mathbf{y}}) = (1 - \eta_t \mu)\varphi^{(t-1)}(\bar{\mathbf{y}}) + \eta_t \mu \varphi^{\mathcal{A}}(\bar{\mathbf{y}}) - \eta_t \beta_{\lfloor \frac{C-1}{k} \rfloor} W' \theta(\mathbf{x})$$

Attribute prediction

• Are the attributes still interpretable for ALE?

 $\theta(x)'W$ can be interpreted as a vector of attribute scores of \mathbf{x}

	Attribute prediction		
	DAP ALE		
AWA	72.7	72.7	
CUB	64.8	59.4	

Attribute interpretability:

lives in ocean

is quadrapedal

is weak

56/56

Attribute Correlation

Are the attributes correlated for zero-shot learning?

- SVD vs random attribute sampling
- Significant correlation in output space