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conseils en informatique que m’a prodigués Adrien Vogt-Schilb).

J’adresse également ma plus vive gratitude aux gens qui ont rendu ces quelques
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remerciements et pour ne pas avoir payé mes trois derniers mois d’inscription.
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Résumé

Dans un contexte de tensions à venir sur la ressource foncière, l’objectif de cette thèse

est d’étudier l’influence des déterminants globaux, que sont la mondialisation et le

changement climatique, sur l’agriculture et les changements d’usages des sols. Pour

mener cette étude, un nouveau modèle d’usage des sols, appelé “Nexus Land-Use”,

est développé afin de permettre une vision cohérente du système socio-biosphérique.

Les modèles existants sont d’abord examinés, avec pour objectif d’évaluer leur

capacité à estimer les changements indirects d’affectation des terres liés aux biocar-

burants (CIAT). Les CIAT constituent un symptôme caractéristique de l’influence

des déterminants globaux en ce qu’ils résultent des flux internationaux d’échanges.

Leur estimation représente un défi pour les modélisateurs car elle nécessite une vision

intégrée du système agricole, avec une prise en compte au niveau global des côtés

offre et demande du secteur agricole. Il apparâıt que malgré des progrès significatifs

sur la représentation de l’offre de terres et du secteur de la bioénergie, les modèles ex-

istants ne parviennent pas encore à fournir une évaluation robuste des CIAT, du fait

notamment d’estimations divergentes des élasticité-prix des rendements agricoles et

de la demande alimentaire.

Pour répondre au défi posé par la modélisation des déterminants globaux, cette

thèse présente le modèle Nexus Land-Use. Fondé sur une représentation des mécanismes

d’intensification agricole, à la fois au niveau de la production végétale et animale,

ce modèle a pour caractéristiques de combiner au sein d’un seul outil l’économie et

la biophysique, et de représenter les effets multi-échelles en intégrant l’hétérogénéité

locale dans une architecture globale. La spécificité de ce modèle est également de

calculer la rente foncière de manière endogène, ce qui permet, en particulier, de

représenter l’effet de la substitution terre-engrais sur les usages des sols, compte

tenu de scénarios exogènes de prix des intrants chimiques.

A l’aide de ce modèle, l’influence de la mondialisation sur l’agriculture est ensuite

étudiée au travers du prisme des régimes alimentaires. A partir de trois scénarios de

consommation alimentaire représentatifs, l’analyse démontre l’importance de la con-
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vergence des régimes alimentaires comme facteur de tensions sur les usages des sols.

Nos résultats révèlent qu’une convergence de l’ensemble du monde sur le régime ali-

mentaire des Etats-Unis d’ici 2050 ne serait pas possible avec les tendances actuelles

en matières d’expansion agricole. Les interactions entre le scénario alimentaire et

les autres politiques affectant les usages des sols – soutien aux biocarburants et

réduction de la déforestation – sont aussi mises en lumière, et certaines options

permettant de réduire les tensions sur la ressource foncière testées.

Dans un dernier chapitre, deux perspectives de développement du modèle sont

présentées afin d’analyser la question du changement climatique. Elles concernent

en premier lieu le couplage avec Imaclim-R, dont l’objectif est d’intégrer une valeur

cohérente de la rente foncière dans le prix agricole et les courbes d’offre de biomasse

énergie. Il s’agit également d’inclure dans le Nexus Land-Use les variations de rende-

ment des cultures simulées par le modèle de végétation ORCHIDEE sous un scénario

de changement climatique. Sur ce dernier point, les premiers résultats montrent que

le changement climatique conduirait à une relocalisation partielle de la production

agricole des pays du Sud (Afrique, Amérique Latine) vers les pays du Nord (princi-

palement Canada et Russie).



Summary

In a context of future tensions on the land resource, the objective of this thesis is

to study the impact of global drivers, which are globalisation and climate change,

on agriculture and land-use. To conduct this study, a new global land-use model,

called “Nexus Land-Use”, is developed, to allow for a consistent vision of the socio-

biospheric system.

Existing land-use models are firstly reviewed, with the objective of assessing

their capacity to estimate indirect land-use changes (ILUC). Because they result

from international exchanges, ILUC can be viewed as characteristic symptoms of

the influence of global drivers. Their estimation is a challenge for modellers as they

require an integrated vision of the agricultural system, incorporating at the global

scale a representation of both the supply- and demand-side. In spite of significant

progress in the modelling of the land supply and the bioenergy sector, existing

models do not manage yet to provide a robust assessment of ILUC, due especially

to divergences on the price-elasticity of agricultural yields and food demand.

To meet the challenge of modelling global drivers, this thesis presents the Nexus

Land-Use model. Based on a representation of agricultural intensification mech-

anisms, its basic characteristics are to combine economics and biophysics into a

single modelling framework and to represent multi-scale effects by incorporating lo-

cal heterogeneity into a global architecture. The specificity of the model is also to

endogenously calculate the land rent, which makes it possible, with exogenous sce-

narios of chemical inputs, to model the land-fertiliser substitution and its effect on

land-use.

With this modelling framework, the influence of globalisation on agriculture is

studied through the lens of the food diets. Using three representative food scenarios,

we show the critical role of diet convergence as driver of tensions on land-use. Our

results reveal that a global convergence towards US diet to 2050 is not feasible with

ongoing trends of agricultural expansion. Interactions between food scenarios and

other land-use policies – support to biofuel production and reduction of deforestation
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– are enlightened, and some options for mitigating tensions on land-use are tested.

Two prospects for the model development are finally presented to analyse the

influence of climate change on land-use. The first one is the coupling to Imaclim-R

with the aim of incorporating consistent values of the land rent into the agricultural

price and the biomass supply curves. The second prospect is to include in the Nexus

Land-Use crop yields variations simulated by the vegetation model ORCHIDEE

under a climate change scenario. On this latter point, first results show that climate

change induces a partial relocation of agricultural production from Southern regions

– Africa and Latin America – to Northern ones, mainly Canada and Former Soviet

Union.
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Introduction

In the coming decades, patterns of agriculture and land-use are expected to be of

increasing concern across societies. Growing demand for food and biomass-based en-

ergy, spurred by rapid demographic evolutions and depleting fossil energy resources,

is likely to generate economic and social tensions, as was observed during the 2008

food crisis, whose intensity will heavily depend on the variations of agricultural

productivity. At the same time, agriculture and land-use will be a central element

in anthropogenic environmental changes. Historically the primary factor of human

impacts on the environment, they are today a major contributor to global climate

warming along CO2 emissions from deforestation, decay of biomass and peat fire,

and CH4 and NO2 emissions, which largely result from agricultural activities, ac-

counting globally for around 40% of global greenhouse gas emissions (GHG) (IPCC,

2007)1. Climate change mitigation should therefore rely in large part on the agri-

cultural sector. In addition to a change in practices, large areas of land will have to

be preserved for carbon storage in soil and plant in order to reach the lowest targets

in terms of greenhouse gas concentration.

This converging demand for land spurs competition for land-use, implying trade

offs between feeding the world, meeting energy needs and mitigating climate change.

To guide the political decisions, it is essential to have insights about the possi-

ble future of agriculture and land-use under various assumptions on demand and

production. This enterprise is however challenging because of the diversity of the

mechanisms at play. Habits, political intervention, biophysical features or economic

behaviours are some of the numerous drivers of agricultural productivity and land-

use changes, most of them being region-specific and interconnected via feedback

effects. As a result, such work is extremely data-demanding and was hindered for

1Changes in land-use also affect climate at a local scale because of the role of vegetation in

regulating local and regional temperatures and precipitations (Chase et al., 2000). They also directly

impact biotic diversity worldwide (Sala et al., 2000) and are the primary source of soil degradation

(Tolba et al., 1992).
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a long time by the lack of consistent database (Hertel et al., 2009). Recent devel-

opments of global land-use data, that have been made possible by the use satellite

imagery to detect land-use and land cover changes (Ramankutty et al., 2008; Fischer

et al., 2000) and by advances in dynamic global vegetation modelling (e.g., Bondeau

et al. (2007)), have stimulated research on global land economics, which is currently

vivacious.

With the data availability, focus of land-use science moved to finding out the

methods to forecast future evolutions of agriculture. Modelling based on past trends

will not provide an accurate picture of the food and agricultural system because of

the emergence of new drivers of land-use change. Among them, two global drivers are

particularly important: socio-economic globalisation and climate change. By facili-

tating diffusion of technology, influencing lifestyles and disconnecting consumption

and production sites, globalisation may affect demand as well as production condi-

tions (Lambin and Meyfroidt, 2009; Searchinger et al., 2008). For its part, climate

change may impact land-use both through its mitigation – necessitating larger land

areas to produce biomass energy or to store carbon – or its impact on crop yield

and land cover.

In this context, this thesis intends to bring light on the impact of global drivers,

namely globalisation and climate change, on agriculture and land-use. In this view,

this work seeks to detail the mechanisms governing intensification of agricultural

productivity and to determine its reaction in response to global drivers. To conduct

this study, a new world land-use model, called Nexus Land-Use, has been developed,

so as to ensure that the various components of the agricultural productivity, from

the decisions of farmers to the biophysical potentials, are consistently represented.

Beyond the representation of global drivers, the long-term purpose of this work

is to supplement the integrated assessment models architecture (IAM), which groups

together models from various disciplinary fields – from macroeconomy to climatology

– to simulate the evolutions of GHG emissions in response to human activity. In this

complex architecture, models that enable the dialogue between the various scientific

expertises are generally missing. The Nexus Land-Use aims at filling this gap by

providing variables that link economics and biophysics.

This thesis is comprised of four chapters, three research papers and a last chapter

outlining future working prospects. The first chapter is devoted to a review of

existing land-use models, with the objective of assessing their capacity to capture the

influence of global drivers. In the recent years, this influence manifests itself in the

expansion of agricultural lands indirectly triggered by the increased global demand
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for agrofuels through international trade and price channels (Searchinger et al.,

2008). Overall, it appears that in spite of substantial progress, land-use models did

not completely manage to provide a robust assessment of indirect effects. Moreover,

due to the larger set of features they incorporate, their structure is increasingly

complex making model inter-comparisons and evaluations more difficult.

Chapter 2 presents the modelling principles of the Nexus Land-Use. This model

is designed to integrate fundamental features of land-use dynamics: a global scale, a

multidisciplinary scientific basis and a flexible structure making it possible to com-

bine food, biomass energy and forests demands. In addition, particular attention is

given to agricultural intensification mechanisms that are often viewed as key drivers

to bridge conflicts over land-use. Following chapter one’s diagnosis, model features

are extensively described and an evaluation of its performance on a retrospective

period is provided in appendix.

Chapter 3 explores the possible futures of agriculture under a globalisation pro-

cess. Among the numerous and complex mechanisms by which globalisation could

potentially impact the food and agricultural system, this study concentrates on the

lifestyles convergence issue. Based on the Nexus Land-Use, this chapter details

the mechanisms by which shifts in food diets resulting from globalisation affect the

driving forces of land-use changes.

The effects of climate change on agriculture are studied in the last chapter both

from the mitigation and impacts perspective. As a minor economic sector in the in-

dustrialized countries, agriculture and land-use were often neglected in IAMs (Hertel

et al., 2009). Imaclim-R (Sassi et al., 2010) is no exception to this rule. To refine

the modelling of agriculture and biomass in this model, methodological guidelines

for the coupling of the Nexus Land-Use to Imaclim-R are provided in this chapter.

The main goal of this coupling is to account more precisely for the land constraint

and to provide insights on the land rent redistribution within the economy. Finally,

to evaluate the impacts of global warming on agriculture, crop yield variations sim-

ulated by the global vegetation model ORCHIDEE (Krinner, 2005) with a given

emissions scenario are incorporated in the Nexus Land-Use.
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Chapter 1

Assessing model capacity to

capture global drivers: the

indirect land-use change

example

1.1 Introduction

The emergence of transboundary environmental problems and the intensification

of international exchanges, linked to the globalisation of the world economy, have

modified the traditional framework for analysing questions related to agriculture and

ecosystems. Scale-specific analyses are no more sufficient as a modification of the

production in one region can impact the whole system through international trade

and price channels. In the same logic, decisions related to food, biomass energy, and

forest can’t be independently assessed as they can interact on each other for the use

of the limited land asset.

Such statements have motivated renewed efforts to understand and model agri-

culture and land-use dynamics (Heistermann et al., 2006). Two major issues have

also contributed to prompt studied on land-use change. First, ecosystems manage-

ment became a central element of emissions scenarios as it is now admitted that

the lowest objectives in terms of greenhouse gas concentration (less than 4 Wm2)

will be hardly feasible without important carbon storage in soil and plant (Vuuren

et al., 2007). Secondly, the environmental impact of agrofuels has been the subject

of an intense controversy in the scientific and political communities. Searchinger
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et al. (2008) and Fargione et al. (2008) actually demonstrated that by converting

existing croplands, agrofuels contribute indirectly to the expansion of arable lands,

which consequently generate important emissions of biospheric carbon. This effect

is generally referred to as indirect land-use change (ILUC). From a political point of

view, this conclusion is potentially of crucial importance, because including ILUC

emissions in the environmental assessment of agrofuels could call into questions poli-

cies promoting agrofuels that are currently implemented in Europe and USA. From

a scientific point of view, ILUC can be seen as a distinctive effect of transboundary

and mutli-scale processes that represent new challenge for modelers.

In this context, the purpose of this chapter is to assess the capacity of land-use

models to evaluate ILUC due to agrofuel production, with a particular focus on the

solutions adopted to extend the scope of the modelled mechanisms. Section 1.2 pro-

vides an overview of the studies conducted by Searchinger et al. (2008) and Fargione

et al. (2008) that have prompted an intense debate the controversy among sustain-

able development experts. Section 1.3 presents the various modelling innovations

capable of bringing solutions to traditional land-use models deficits. Section 1.4 re-

views the numerical studies initiated by the political decision-makers in Europe and

in the USA to evaluate ILUC and outlines the remaining limitations of numerical

models of land-use. The last section concludes.

1.2 Indirect land-use change and the controversy on the

agrofuels ecological assessment

1.2.1 A First diagnosis: Searchinger and Fargione’s articles

Attracted by the potential benefits of agrofuels to (1) mitigate greenhouse gases

(GHG) emissions, (2) support agricultural sector and (3) secure energy supply, the

large scale exploitation of biomass for energy has been implemented despite some

uncertainties regarding its effective environmental impact. Thus far, the principal

uncertainty concerned the emissions of nitrous oxide (Crutzen et al., 2008), resulting

from fertiliser use. Studies conducted by Searchinger et al. (2008), and Fargione

et al. (2008) introduced an additional potential factor of emissions related to indirect

land-use change. Assuming that food demand is price inelastic, any increase in the

production of biomass fuel generates a rise of crop prices and creates an incentive

to extend cultivated areas. From there, the indirect land-use change concept refers

to the displacement of crops (food and non-food) or pastures on uncultivated land,

such as fallow or forest, resulting from the use of feedstock for agrofuels production,
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and generating emissions of organic carbon stored in the vegetation and the soils.

Searchinger et al. (2008) provides an estimation of the emissions from ILUC

for an increase in US corn ethanol of 56 billion litters above a baseline scenario

up to 2016. By using the agricultural worldwide model developed by the Food

and Agricultural Policy Research Institute (FAPRI) (Devadoss et al., 1989), they

calculate that this increase would divert a significant amount of cropland in the US

(12.8 millions ha), and in turn trigger extension of cultivated areas, mainly in Brazil

(2.8 mha), China (2.3 mha), India (2.3 mha) and in the United States themselves

(2.2 mha).

Such a result leads to revalue the relevance of life cycle analysis (LCA), which

are generally used to provide a comprehensive ecological assessment of agrofuels. In

LCA, GHG emissions are computed at each step of the production process, from

“cradle-to-grave”, or in the case of agrofuels, from “field-to-tank”. This tool is in-

creasingly used by governments to assess the environmental efficiency and define

targets of new regulatory policies integrating agrofuel. The European Commis-

sion Renewable Energy Sources Directive, the US Energy Independency and Secu-

rity Act, the German Sustainable Biofuel Obligation Draft and the UK Renewable

Transport Fuel Obligation explicitly refer to this analytical instrument. LCA are

thus of prominent importance in the decision making. However they are made inside

system boundaries, focusing on the environmentally relevant physical flows inside

the production process, and do not capture emissions occurring outside the system

boundaries via price effects, such as indirect land-use change. From this point of

view, results of LCA may be biased.

Searchinger et al. (2008) evaluates the extent of this bias by comparing the

emissions profile of gasoline and corn ethanol (figure 1.1). Gasoline profile is char-

acterised by regular flows of GHG emissions stemming from refining and burning of

fuel, whereas corn ethanol profile is characterised by large upfront emissions caused

by land-use change (e.g, through forest clearing), followed by flows of GHG emissions

lower than those from gasoline, because growing agrofuel feedstocks removes carbon

dioxide from the atmosphere. In this manner, corn ethanol progressively offsets the

carbon debt it has generated with upfront emissions. This profile is also studied in

a second scenario, more favourable in terms of land-use change and emissions due

to land conversion: yield increases allow to supply 20% of the replacement grain,

emissions per hectare of converted land are only half of their initial estimate and

corn ethanol reduces GHG emissions compared with gasoline of 40% thanks to im-

proved technology. The authors calculate that corn ethanol would pay back carbon
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Figure 1.1: Emissions pathway of agrofuel compared to fossil fuel

emissions from land-use change in 167 years in the first scenario and 34 years in the

second one.

The agrofuel carbon debt is highly dependent on the type of ecosystem that

is converted. Fargione et al. (2008) calculates the amount of upfront emssions for

different ecosystems in Indonesia, Malaysia, Brazil and the United-States. The

results reveal that in most cases, land conversion due to agrofuel production entails

large carbon debts. The conversion of peatland or rainforest to palm agrofuel is

the worst case as 423 years are needed to offset land clearing emissions. In general,

the carbon debt amounts at least to 17 years for first- generation agrofuel. For this

reason, the authors conclude that “biofuels, if produced on converted land, could,

for long periods of time, be much greater net emitters of greenhouse gases than

the fossil fuels that they typically displace”. On the other hand, second-generation

agrofuels from perennials grown on degraded land or from waste biomass exhibit

much better results in terms of carbon debt, and could therefore effectively help to

mitigate GHG emissions.

On the whole, the two articles are very pessimistic about the future of the agro-

fuel industry. Though, their results rely on assumptions that have been highly

criticised in the expert community.
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1.2.2 The controversy

This first diagnosis has prompted an intense debate among sustainable development

experts. The sharpest contestation came from Michael Wang and Zia Haq (Wang

and Haq, 2008) and from the New Fuels Alliance1, a non profit-organization pro-

moting the advantages of non-petroleum fuel production and use. Their criticisms

can be summed up into four axes:

• The scenario employed in the projection is unrealistic. It actually consists in

an expansion in ethanol from 15 to 30 billions gallons by 2015 (56 to 111 billion

liters) while the 2007 Energy Independence and Security Act established an

annual corn ethanol production cap of 15 billions gallons by 2015 ;

• Estimations rely essentially on the continuation of current trends: predictions

of future land-use change in the Brazil, China, India and the US are based

on historical land-use change that occurred in the 1990s, not reflecting by the

way the decline of deforestation rate in Brazil and the efforts made in China

to convert marginal crop land into grassland and forest; yields both in the US

and in the rest of the world are also assumed to increase at present trends,

neglecting thus the yield response to crop price ;

• Finally, results are not corroborated by facts: corn exports have increased in

2007 though a higher corn ethanol production whereas Searchinger et al. (2008)

find that U.S. corn exports sharply decline with a growing ethanol production

; observed changes in land-use offer inconclusive results about ILUC, e.g., the

rate of Brazilian Amazon deforestation peaked in 2004, and has fallen since

then, yielding a negative correlation of 0.53 with soybean price during the four

years since 2004 (Liska and Perrin, 2009).

A response to each of this point is given in Searchinger (2008). In Searchinger

(2009), the question is tackled in a different angle by underlining the fact that di-

verting cropland to agrofuels can only be done either by reducing food consumption,

or by expanding agricultural surfaces, or by increasing yield. In the current context

of alimentary and environmental tensions, the first two options are not desirable.

Stimulating yield, as it has been done since the middle of the XXst century, is seen

as a promising solution, but Searchinger refutes this possibility on the basis of 3 ar-

guments: (1) only yield increases due to higher prices spurred by agrofuels must be

1Their letter entitled “Statement in Response to Science Articles on Biofuels” has been retrieved

on 2009-06-11
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taken into account. The remaining yield increase, that would occur with or without

agrofuels, change the baseline, but not the results; (2) agricultural intensification

usually requires high volumes of nitrogen which generates nitrous oxide, a powerful

greenhouse gas; (3) yield increase potential is not unlimited, and has already been

largely exploited.

On the whole, Searchinger acknowledges that some uncertainties remain, and

that most detailed studies are needed, particularly on agricultural features and prices

effect. For this reason and owing to the potential extent of ILUC emissions, this first

diagnosis has to be validated by further modelling works, so as to properly guide

agrofuel development policy.

1.3 Indirect land-use change assessment and the chal-

lenges of large scale integrated modelling

1.3.1 Specifications for ILUC modelling

Estimation of ILUC is a difficult task because such changes are not directly observ-

able. Furthermore, ILUC theoretical functioning is complex, as they result from

the interplay of various factors. Schematically, GHG emissions from ILUC can be

computed by multiplying (i) the area of uncultivated land that are converted to

cropland or pastures at the global scale due to increased agrofuel production by (ii)

a GHG factor estimated for each hectare of land converted. However, this appar-

ently simple calculation is challenging, as it involves four main disciplinary fields:

economics, agronomy, engineering and climatology.

The size of land conversion results from the interrelation between economic be-

haviours and agronomic parameters. Economic behaviour determines the effect of

farming an additional hectare of feedstock for agrofuels on agricultural prices, and

consequently, on the cultivation of new lands. As suggested by Searchinger et al.

(2008), the price-impact of agrofuel is greater when the demand for food is inelastic.

Its extent is also governed by agronomic mechanisms, such as crop yield response to

the incremental production of agrofuels and the substitution of agrofuel by-products

for feedgrains. These two mechanisms mainly depend on the type of plants used to

produce bioenergy. For example, some plants exhibit higher yield (e.g. sugar cane,

sugar beet) while others provide more by-products (e.g. soybean, wheat). For this

reason, it is necessary to account for these different plant types and for their speci-

ficities. Attention must also be given to the agrofuel production process – from

grain (first-generation) or from lignocellulosic materials (second-generation) – that
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naturally crucially impacts these mechanisms. Because ILUC relates to biomass pro-

duction leakage between the different regions of the world, a global representation

of processes encompassing a detailed description of international trade is necessary.

The GHG factor depends on two main drivers:

• The nitrogen fertiliser used in the production process that causes emissions of

nitrogen oxide (NO and NO2), a greenhouse gas with a high warming potential;

• The type of land converted that plays a prominent role in the extent of the

carbon debt. Tropical rainforests or peatland rainforests store high levels of

carbon, while the conversion of marginal croplands releases lower levels of

carbon into the atmosphere (Fargione et al., 2008).

These two elements vary greatly across the different regions of the world. Each

region may differ in its land cover, storing more or less carbon, as well as its climate

and technological itineraries, requiring more or less nitrogen fertiliser and irrigation.

For this reason, international flows of agricultural goods must be tracked as precisely

as possible and geographical specificities must be accounted for.

Beyond the representation of these various mechanisms, another difficulty re-

lates to the tensions already present in the agricultural system, which may influence

the effect of an increase of agrofuel production. These tensions essentially relate to

arable land availability, tensions on water, and energy and fertiliser prices. Agricul-

tural policies and global changes in food demand and diet composition, because they

determine pressure on land, must also be part of the analysis. Also, because agricul-

tural markets are not independent from the larger economy, particularly concerning

energy prices, or labour and capital availability, a link to a general equilibrium rep-

resentation provides a higher degree of relevance. Finally, in order to provide a

relevant accounting of GHG emissions, energy and physical fluxes have to be cor-

rectly accounted for, as it is performed in life-cycle assessments (LCA).

1.3.2 Limitations of traditional land-use models

Land-use change was traditionally represented by two types of tools: economic mod-

els, mostly inspired by the Ricardian theory, and geographic models linking land

cover changes to a definite number of explicative variables related to location and

characteristics of land. In these approaches, each type of model was designed within

the framework of particular disciplines, and economic and geographic features were

quite separately represented, focusing on one aspect and depicting roughly the other.
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Geographic models

Among large-scale geographic models, which are best suited to address the ILUC

issue, Heistermann et al. (2006) distinguish between empirical-statistical models and

rule-based models. The former category estimates the most important biogeophys-

ical and socio-economic drivers of land-use through multiple regression methods.

The CLUE model framework (Veldkamp and Fresco, 1996) is an example of a model

using this method. It is composed of several modules that estimate the total area

needed for different land-use types and the production of each country on the basis

of the gross domestic product (GDP), population size (which is estimated using a

specific module), consumption pattern and international prices. Subsequently, the

area of each land-use type in a given grid cell is the result of scale-specific regression

equations, where the biophysical and socio economic conditions, and the conditions

at higher grid scales are the explanatory variables.

Rule-based models relies on causal chains, elaborated based on theory or expert

knowledge, and linking land-use change to economic, geographic and biophysical

variables. The land-use module of the Integrated Model to Assess the Global En-

vironment (IMAGE) (A.F. Bouwman and Goldewijk, 2006) exploits this method.

Following a rule accounting for crop productivity, proximity to existing agricultural

land, distance to road and water, land-use types are allocated within a grid, at a

0.5 by 0.5 degree resolution, in each region of the world until the total demands,

resulting from economic and demographic variables, are satisfied.

Overall, this kind of model allows for an accurate analysis of the spatial struc-

ture of land-uses, by describing the neighbourhood effect or hierarchal organization

of land and by providing results at a high resolution level. However, land-use allo-

cation is generally based on the assumption that observed spatial relations between

land-use types and potential explanatory factors, representing currently active pro-

cesses, remain valid in the future (Heistermann et al., 2006). Economic behaviours,

implying potential modifications of allocation rules, rarely received particular atten-

tion. From this perspective, using spatially explicit models to explore future driving

forces of agricultural transitions is of limited interest.

Economic models

Economic model have been used because they take into account optimisation be-

haviours of agents in allocating land-use. Such models can be either in partial

equilibrium, considering only a subset of markets, where the remaining markets are

parameterised or in general equilibrium, where all markets are explicitly modelled
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and are assumed to be in equilibrium in every time step.

Partial equilibrium models (PEM) can provide an explicit description of the

agricultural sector while accounting for adjustments of land-use allocation in reaction

to price signals. To do so, they generally calculate endogenous prices resulting

either from supply demand equilibrium – see, e.g. FASOM (Adams et al., 1996),

AGLINK (Adenauer, 2008), AGLU (Sands and Leimbach, 2003) or IMPACT (Ryan,

2003) - or from the effect of policy instruments, as in the ESIM model (Banse

et al., 2007). Then, they determine the reaction of agents to prices in two ways:

by maximising consumer and producer surpluses (FASOM, AGLU) or by solving

a system of behavioural equations, relying on elasticity parameters and response

functions linking crop yields, cultivated areas and food demand to prices (ESIM,

AGLINK, and IMPACT).

This detailed representation allows for a great flexibility in modelling the impact

on agriculture of structural variations, but it lacks coherence with respect to the

rest of the economy. The computable general equilibrium model (CGE) can include

additional details at the macroeconomic level by connecting agricultural markets to

the rest of the economy. This provides a more relevant representation of intensifica-

tion possibilities in the agricultural sector by computing labour and capital scarcity

costs, as well as employment opportunities in other sectors. Macroeconomic closure

is also of great interest to describe features that are closely related to energy mar-

kets, such as agrofuel production or exploitation costs (fermentation, machines...).

Golub et al. (2010) finally stress the importance of general equilibrium insights to

represent the by-products channel.

However, the integration of agrofuels in CGE presents two major difficulties.

First, in the classic CGE representation, land is modelled as homogeneous and per-

fectly mobile production factor. Hence, any increase in demand for land for one

specific use (e.g., crop or forestry) is met as long as land remains, but without con-

sideration of their adequacy for the intended use. This assumption tends to overes-

timate the potential for heterogeneous land to move across uses, or, in an equivalent

formulation, the land supply elasticity. Second, unlike macro econometric models,

CGEs are not estimated, but calibrated using a social accounting matrix (SAM). A

SAM is a balanced matrix that summarises all economic transactions taking place

between different actors of the economy in a given period (typically one year). It is

assumed that a SAM of a certain year represents an equilibrium of the economy and

that the model is calibrated in such a way that the SAM is a result of the optimising

behaviour of firms and consumers in the model. These SAMs are generally provided
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by the Global Trade Analysis Project (GTAP), but with regards to agrofuels, the

data are not as precise as for the other sectors for two reasons. First, they are not

represented explicitly in the SAMs, but aggregated with other sectors (e.g., fossil

fuels) ; second, bioenergy production was until recently not widespread, and was

primarily driven by a variety of governmental supports that are not well represented

in the SAMs (Kretschmer and Peterson, 2010). For these reasons, these matrices do

not give the appropriate information from which realistic agrofuel trends could be

projected, and as such, they cannot be used for the study of ILUC.

1.3.3 Solutions to meet ILUC modelling challenges: towards inte-

grated land-use models

Representing agrofuel in CGE

To solve the problem of misrepresentation of agrofuels, the MIT Emissions Predic-

tion and Policy Analysis (EPPA), a recursive-dynamic multi-regional CGE model,

uses an innovative methodology for incorporating biomass production (Reilly and

Paltsev, 2008; Melillo et al., 2009). Based on the GTAP dataset, EPPA uses addi-

tional data for greenhouse gas and air pollutant emissions based on EPA inventory

and projects. The GTAP data are further disaggregated to include latent technology,

i.e., energy supply technologies that exist but are not active in the base year of the

model, generally because they are not yet fully profitable (e.g., second-generation

agrofuel). Two technologies that use biomass are introduced: electricity production

from biomass and liquid fuel production from biomass. They are described by their

cost structure (composed of capital, labour, land and intermediate inputs from other

industries), and their competitiveness level with existing technologies - endogenously

computed by the model - determines their market share.

Agrofuels are represented in the DART model (Kretschmer et al., 2008) using a

comparable methodology. This model is a recursive dynamic CGE model, solving a

sequence of static one-period equilibria for future time periods connected through

capital accumulation and relying on GTAP 6. In this database, the refined oil prod-

ucts category has been disaggregated into motor gasoline and motor diesel to better

account for the substitution possibilities between these two products and agrofuels

(Kretschmer and Peterson, 2010). Corn production has also been separated from

the “cereal grains neglected” category because corn is an important feedstock for the

production of bioethanol. Bioenergy technologies are modelled as latent technology.

As it is performed in Reilly and Paltsev (2008), technologies are described through

their cost structure, including feedstock, electricity, and a value-added composite of
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capital and labour. Mark-ups are also added to account for the difference between

production and prices. This methodology allows for a fairly realistic representation

of the agrofuel sector but can be problematic as the technologies being only latent,

there are few exchanges at the calibration year. For this reason, the projection

of future trends can only be performed using strong assumptions. For example,

Kretschmer et al. (2008) assumed that bioethanol trade takes place only between

Brazil and the industrialised countries and small initial shares of biodiesel exports

are included in Malaysia and Indonesia, where they believe that export potentials

exist.

Following an alternative solution, improvement of agrofuels representation has

been brought to standard CGE model GTAP (Powell et al., 1997). In this version de-

signed for the analysis of energy markets and environmental policies, called GTAP-E

(Burniaux and Truong, 2002), the nested production structure has been modified to

include a capital-energy composite factor amongst the other traditional production

factors of labour, land and natural resources. This factor is further disaggregated to

represent all substitution possibilities (modelled by elasticity parameters) between

biomass ethanol and petroleum products.

This implicit representation of agrofuels, through the production factor, with-

out an explicit economic sector, has rapidly been refined. In subsequent modelling

experiments, the SAM has been directly disaggregated to add new bioenergy sec-

tors. Using International Energy Agency sources, the GTAP-BIO model (Taheripour

et al., 2007) introduces three new commodities (ethanol from food grains, ethanol

from sugarcane and biodiesel from oilseeds) into the GTAP database.

The Mirage model (Decreux and Valin, 2007), developed at CEPII for trade pol-

icy analysis, was also modified to explicitly address agrofuels issues and their conse-

quences on land-use change (Bouet et al., 2009). Like the EPPA model, MIRAGE

is a general equilibrium model relying on the GTAP database. From this database,

six new sectors were added: the liquid agrofuel sectors (ethanol and biodiesel), the

major feedstocks sector (maize, oilseeds used for biodiesel), the fertiliser sector, and

the transport fuels sector.

CGE have also been refined to account for the use of by-products. In Taheripour

et al. (2008), the GTAP-E model is modified to incorporate the possibility of produc-

ing multiple products. Hence, the grain ethanol and biodiesel industries can produce

both main- and by-products (dried distillers grains with solubles for ethanol and soy

and rapeseed meals for biodiesel), the latter goods being substitutes for feed grains

in the livestock industry. Trade offs between main- and by-products are represented
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in the supply and demand side, respectively, using constant elasticity of transforma-

tion and constant elasticity of substitution. By comparing model outputs with and

without by-products, Taheripour et al. show that their incorporation into GTAP-E

significantly reduces the impact of agrofuel production on agricultural production

and prices. The MIRAGE model was also modified to account for by-products from

ethanol and biodiesel production but, in contrast to GTAP-E, they are represented

as a fixed proportion of production.

Improving land supply representation in CGE

As mentioned in section 1.3.2, considering an homogenous and perfectible mobile

land factor prevents accurate representation of land supply. To overcome this is-

sue, CGE models have extensively used agro-ecological zoning (AEZ). This method

consists of disaggregating a parcel of land into smaller units according to its agro-

ecological characteristics, such as moisture and temperature regimes and soil type

(Batjes et al., 1997). The use of AEZ data by CGE has been facilitated by its in-

tegration in the GTAP database. The database now includes 18 AEZs, covering six

different lengths of growing period spread over three different climatic zones (trop-

ical, temperate and boreal). Land-use activities include crop production, livestock

raising, and forestry. This extension of the standard GTAP database permits a bet-

ter evaluation of the potential for shifting land-use amongst different activities (Lee

et al., 2005).

Golub et al. (2008) describe the integration of this extended database in the

recursive-dynamic framework of the GTAP model and its advantage for representing

land supply mechanisms. The land rent is firstly disaggregated in each region across

6 of the 18 AEZs and for 3 agricultural activities (crops, ruminants and forestry).

Then, the elasticity of land supply for each activity is computed based on these land

rent shares. Finally, the mobility of land across uses within an AEZ is constrained

via a constant elasticity of transformation frontier.

Other CGE models, such as MIRAGE, also use the GTAP-AEZ database. In

its modified version, land-use change arises from two effects: substitution, which

involves the modification of crops distribution on existing arable land, and extension,

which involves the conversion of non-arable lands (forests, savannah) into arable

lands. The substitution effect results from the optimisation behaviour of producers,

computed for each AEZ, while the extension effect is determined from an exogenous

land evolution trend based on historical data, cropland prices and the elasticity of

cropland extension.
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The LEITAP model uses an alternative method to improve the representation of

land supply (Eickhout et al., 2008; Verburg et al., 2009). This general equilibrium

model is an extended version of GTAP that includes an enhanced representation of

the land and agricultural markets. For example, some key features of the Common

Agricultural Policy are introduced (e.g., agricultural quota). More fundamentally,

LEITAP incorporates land supply curves computed by the Terrestrial Vegetation

Model (TVM) of IMAGE on a 0.5 degree resolution. These curves are a function of

land rental cost and are parameterised by price elasticity of land supply calibrated

on data from the IMAGE model. Land supply functions are such that if land is

abundant (resp. scarce), any increase in demand for agricultural land will lead to

rather large (resp. small) land conversion to agricultural use and to modest (resp.

large) increases in land rents.

Models coupling

A convenient way to overcome the problem of misrepresentation of agricultural sec-

tor specificities is to directly integrate the advantages of the various approaches (i.e.,

the precision of small scale models and coherence of large scale ones) into the same

modelling framework. This is usually done by coupling general or partial equilibrium

models with spatially explicit models that include insights on biophysical processes.

In such an architecture, the dedicated model computes patterns of agricultural pro-

duction and land allocation. These results are included in the economic model as

exogenous parameters, and are used to update the calibration data. In turn, the

economic model provides the spatially-explicit land-use model with information on

new production conditions.

The goal here is to break with the segmentation that exits amongst the economic,

geographic and biophysical analytic frameworks characterising traditional land-use

models and to build numerical models with a strong multidisciplinary orientation.

In contrast to pure CGE, which do not link economic values to physical quantities,

the advantages of such an approach is to establish a consistent relation between

both types of variables and to guarantee that projections will be realistic from both

points of view. In addition, coupled systems allow for a relevant representation of

multi-scale effects, as processes are represented at both high and small resolution.

The Model of Agricultural Production and its Impact on Environment (MAg-

PIE) is a distinctive example of such a multidisciplinary approach (Lotze-Campen

et al., 2008). This mathematical programming model describes economic behaviour

by minimising the total cost of production for a given amount of regional food en-
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ergy demand, and has been designed to be coupled with the Lund–Potsdam–Jena

dynamic global vegetation model (LPJmL) (Bondeau et al., 2007). In contrast

with CGE using an AEZ representation, which remains a coarse description of the

biophysical system, this integrated tool entails a full description of the dynamic pro-

cesses linking climate and soil conditions, water availability, and plant growth at a

detailed geographic scale worldwide. In addition, MAgPIE is able to endogenously

represent yield and water use evolution.

A comparable multidisciplinary methodology has been undertaken in the Global

Biomass Optimization Model (GLOBIOM) (Havlk et al., 2011). This model relies

on the recursive dynamic structure of FASOM (see section 1.3.2 for more detail), to

determine production and consumption levels, trade flows, and prices. These values

are then conveyed to the Global Forestry Model (G4M), which compares the net

present values of forestry and agriculture to determine land-use change decisions.

Crop yields and soil organic carbon stock are extracted from the Environmental

Policy Integrated Climate (EPIC) model according to 4 management systems (high

input, low input, irrigated, and, subsistence). The results are finally downscaled to

homogenous response units (HRU), i.e., spatial units (0.5 by 0.5 degree resolution)

where data on soil, climate/weather, topography, land cover/use and crop manage-

ment are assumed to be similar. This HRU concept assures consistent integration

of biophysical features into the economic land-use optimisation model.

The advantages of a coupling with CGE have been demonstrated by Ronneberger

et al. (2008), using the KLUM@GTAP model that combines the global agricultural

land-use model KLUM and GTAP-EFL. This latter model is refinement of GTAP-E

in terms of industrial and regional aggregation levels. The KLUM model allocates

land into spatial units (0.5x0.5 degree grid for Europe) by maximising the expected

profit per hectare under risk aversion, according to crop price and potential yield.

Geographic location and biophysical heterogeneity of land is represented by using

spatially explicit potential productivities, calculated by the crop growth model EPIC

(Erosion Productivity Impact Calculator). Thus, contrary to the AEZ methodology,

land is not classified by its differing productivity, but each spatial unit is associated

with a given productivity. This provides a more precise land allocation and a more

realistic representation of land transitions. For its part, GTAP-EFL provides crop

prices and management induced yield. The relevance of the coupling was tested by

comparing the results of the coupled system with those of each of its components

taken separately. This analysis reveals significant differences between the simulations

of KLUM@GTAP and of the standalone models, which according to the authors,
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“strongly supports the hypothesis that a purely economic, partial equilibrium anal-

ysis of land-use is biased; general equilibrium analysis is needed, taking into account

spatial explicit details of biophysical aspects.”

However, to bring general equilibrium insights, it is necessary to overcome some

inconsistencies within the coupled system. Equations in the general equilibrium

models are actually generally formulated in terms of value. In contrast, partial equi-

librium models address quantities to accurately reflect biophysical features. This

means that in this architecture, both models work with two separate price systems.

In KLUM@GTAP, this discrepancy has great practical consequences. Notably it

makes land quantity data incomparable between GTAP-EFL and KLUM. As a con-

sequence small absolute changes in the area of other crops in KLUM translate into

large absolute changes in GTAP-EFL. This problem can be solved by completely

recalibrating the coupled system. This is however a complex task that can face data

issues (e.g., lack of data on land prices). For this reason, Ronneberger et al. simply

decrease the responsiveness of GTAP-EFL to changes in land allocation.

Inclusion of land-use models outputs in LCA

Traditional models also suffer from a relative disconnection from engineering studies.

Examples in the literature of studies integrating outputs of land-use models in LCA

are scarce. This disconnection between the modelling and the environmental assess-

ment communities mainly stems from two reasons. First, LCA are typically static

simulation models describing a production system without regard for production

scale and time dimension, while land-use models perform a projection throughout

a certain period of time with a given evolution of the production. Second, LCA

usually describe the exchanges between a production system and its environment,

while land-use models are best equipped to describe the expected consequences of a

change of production on the environment.

In spite of these restraints, some initiatives attempt to reconcile LCA and land-

use modelling approaches. From the distinction made by Rebitzer et al. (2004)

between the attributional LCA, focusing on the exchanges between the production

system and its environment, and the consequential LCA, which estimate the change

in the environmental system resulting from a change of the production scale, the

EPA has developed a new methodology for assessing agrofuel environmental impacts.

This methodology is oriented towards the second definition, and links LCA and

land-use models (U.S. Environmental Protection Agency, 2009). It relies on a set of

numerical tools to provide a comprehensive estimate of GHG emissions:
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• The GREET model quantifies emissions at each step of the agrofuel production

process;

• Emissions due to land-use, exports and livestock market changes are estimated

using the FASOM model. This model actually presents the advantage of cov-

ering a wide range of production possibilities and accounts for the main GHG

emitted by agricultural activities;

• While FASOM predicts land-use change in the U.S. agricultural sector, FAPRI

estimates land-use change in other countries due to the response of interna-

tional agricultural production to changes in commodity prices and U.S. ex-

ports. These estimates are based on historic responsiveness to changes in

price in other countries. Using MODIS satellite data, FAPRI also predicts

the types of land that will be converted into crop land in each country, and

calculates GHG emissions associated with land conversions;

• The EPA-developed Motor Vehicle Emission Simulator (MOVES) estimates

vehicle tailpipe GHG emissions. It also represents the impact that greater

renewable fuel use may have on the prices and quantities of other sources of

energy, and the greenhouse gas emissions associated with these changes in the

energy sector.

As previously mentioned, the difficulty in accounting for ILUC emissions relates

to their time dependency, which does not fit with the traditional framework of LCA.

To overcome this difficulty, the EPA uses the net present value for emissions as a

common metric.

1.4 Models and decision-making

1.4.1 ILUC in agrofuel development policies

Most of industrialised countries have undertaken public support policies for agro-

fuel. Motivations behind these policies are numerous and complex, and environmen-

tal concerns and mitigation of climate change are often far from being their main

considerations. In a context of rising prices of crude oil and geopolitical tensions,

securing energy supply has been at centre of agrofuel support in many countries.

In the USA, the Renewable Fuel Standard program (commonly known as the RFS

program), setting requirements for agrofuel production until 2022, is integrated in
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the Clean Energy Act of 2007, which has been significantly renamed Energy Inde-

pendence and Security Act (EISA). Other concerns, such as reducing import depen-

dence of oil supplies; rural development and sustaining farm income have also been

an objective of agrofuel support policies. Altogether, these various motivations have

prompted the implementation of different policy measures, setting national targets

for renewable energy. With the rise to power of environmental concerns, and the

necessity to respect international commitments, the objective of GHG emissions re-

duction became more sensitive, and explicit environmental criteria were frequently

added to production targets. Since some doubts have arose on the real virtues

of agrofuels, national legislations now generally refer to broader concepts such as

renewable fuel (in the USA), or energy from renewable sources (in the European

Union), opening the field to every kind of clean energy.

In the USA, the RFS prescribed an increase of the volume of total renewable fuel

from 9.0 billion gallons (Bgal) in 2008 to 36 Bgal in 2022. These targets shall be met

under established eligibility criteria, including mandatory GHG reduction thresholds

for the various categories of fuels. Agrofuels GHG emissions are evaluated over the

full lifecycle, and compared to the lifecycle emissions of 2005 petroleum baseline

fuels. Table 1.1 presents performance reduction thresholds as established by EISA.

Eligibility criteria also concern land that can be used to grow agrofuel feedstocks.

For example, Agricultural land must have been cleared or cultivated prior to 2007

and actively managed or fallow, and non-forested.

Table 1.1: Lifecycle GHG thresholds specified in EISA

Fuel Category
Thresholds

(% reduction from 2005 baseline)

Renewable fuel 20%

Advanced biofuel 50%

Biomass-based diesel 50%

Cellulosic biofuel 60%

In Europe, agrofuel objectives in terms of production and sustainability are reg-

ulated through the directive on the promotion of the use of energy from renewable

sources adopted by the European Parliament and the Council on 2009. This direc-

tive establishes mandatory targets for an overall 20% share of renewable energy and

a 10% share of renewable energy in transport in the European Union’s consumption

in 2020. This formulation reveals the erosion of confidence in biomass fuel, as a
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previous commitment, announced by the Brussels Europe Council in March 2007,

planned a mandatory 10% minimum target for the share of agrofuels in transport

petrol and diesel consumption by 2020. The document also specifies sustainability

criteria for agrofuels and bioliquids. A mandatory GHG reduction threshold is set

and only agrofuels allowing for a GHG emissions saving of at least 35% is taken into

account for the European targets for renewable energy. It is furthermore stated that

biomass fuels shall not be made from raw material obtained from land with high

carbon stock, namely wetland, continuously forested areas and peatlands.

Both texts mention ILUC, but using a very cautious vocabulary, and without

enacting any concrete measures. They simply encourage the improvement and de-

velopment of analytical tools to facilitate the inclusion of ILUC emissions into LCA

(EISA) or the development of a methodology to minimise greenhouse gas emissions

caused by indirect land-use change (European directive). In addition, at the instiga-

tion of these various legislations, several numerical evaluations have been undertaken

with the help of the modelling tools previously described. The next sections present

the main results.

1.4.2 ILUC evaluations

The U.S. environmental protection agency lifecycle analysis

Following the indications of the EISA, the U.S. environmental protection agency has

developed a methodology to compute the aggregate quantity of greenhouse gas emis-

sions related to the full fuel lifecycle, including direct emissions as well as emissions

from land-use change (see section 1.3.3).

The results firstly indicate that ILUC emissions account for a significant part

of first-generation agrofuels (at least 35% of the total emissions). With the shorter

time period and smallest discount rate, cellulosic ethanol and waste grease biodiesel

are the only fuels to respect EISA criteria. Soy-based biodiesel and corn ethanol

processed in dry mill using natural gas or coal emits even more GHG than diesel

and gasoline references. Due to the time profile of agrofuel emissions, a longer

time period and a greater discount rate is more favourable for bioenergies. In this

case, corn ethanol processed in dry mill using biomass meets the EISA criteria, and

agrofuels emits generally less than gasoline and biodiesel references.

In addition to these results, a detailed evaluation of the payback period for

the different types of biomass fuels is provided. Corn ethanol entails the longer

payback period (33 years) while it takes only 3 years for switchgrass ethanol to

offset upfront emissions. These results are therefore close to the second and most
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favourable scenario of Searchinger et al. where the payback period for corn ethanol

lasts 34 years.

The study also provides confidence interval whose bounds correspond to the cases

where all land conversion occurs on forest areas (worst case) or on grassland areas

(best case). The range of this confidence appears to be quite large in some case,

revealing that a high level of uncertainty remains about these results.

The European Commission Review

As required in the directive on the promotion of the use of energy from renewable

sources, the Joint Research Centre - Institute of Energy of the European Commission

(JRC-IE) has launched a survey involving several models (described for the major-

ity in sections 1.3.2 1.3.2, 1.3.3 and 1.3.3). They are mainly partial equilibrium

models: AGLINK-COSIMO (Adenauer, 2008), CARD (Tokgoz and Elobeid, 2006),

IMPACT (Ryan, 2003) and CAPRI (Britz et al., 2007). Two general equilibrium

models are also used GTAP (Powell et al., 1997) and LEITAP (Verburg et al., 2009)

which integrates features from the land allocation module of the IMAGE model. In

addition, a complete study has been carried out by CEPII and IFPRI, based on the

general equilibirum model MIRAGE (Decreux and Valin, 2007). The upgraded ver-

sion of the model, presented in section 1.3.3, has been modified to introduce a more

detailed representation of biodiesel and ethanol sectors and co-products production

and uses.

Specific efforts have been made to facilitate models comparison. Each model were

asked to run scenarios corresponding as closely as possible to scenarios of marginal

extra demand of ethanol in EU and in the USA, of biodiesel in EU and palm oil

in EU2. Model outputs are considered to be mainly linear, i.e. area of additional

cropland is strictly proportional to the demand. As a consequence, and to facilitate

inter-comparisons, the results are expressed in hectares per tonne-of-oil-equivalent

(toe).

In the US ethanol scenarios total ILUC ranges from 107 to 863 kHa per Mtoe.

In the EU scenarios, the total estimated ILUC ranges from 223 to 743 kHa per Mtoe

for ethanol, and from 242 to 1928 kHa per Mtoe for biodiesel. As a comparison,

Searchinger et al. (2008) calculated that an U.S. ethanol production increase would

2The JRC-IE initiated an expert consultation to discuss the issue of model comparison and to

recommend standard scenarios to compare. However these recommendations have been issued after

research institutes already contracted scenarios in their work plans, and most of them did not have

the possibility to run extra scenarios.
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bring approximately 390 kha of additional land into cultivation per MJ of ethanol.

Hence, despite the controversy about their modelling choices, their results are on

the average of the different studies involved. This is though not sufficient to put an

end to the debate, as the range of the results remains too large to provide a definite

conclusion. While Searchinger et al. (2008) concluded that the environmental impact

of agrofuels is rather negative due to the length of the payback period, the CEPII

and IFPRI study, whose ILUC estimates constitute the lowest bound of the sample,

consider that the net greenhouse gas effect of agrofuel to 2020 is positive.

1.4.3 Remaining limitations of numerical models

To explain the discrepancy between models results, Laborde and Atlass Consortium

list a large panel of uncertainties surrounding ILUC estimates. Among them, the

estimations of the crop yield response to food price and of the price-elasticity of

demand for food appear to be of prominent importance3.

Yield reaction to price was one of the major bone of contention in the contro-

versy that followed the articles by Searchinger et al. and Fargione et al.. Agrofuel

proponents argued that higher production of biomass fuel would lead to higher crop

prices, which in turn would spur higher yield (see section 1.2.2).

However, though the literature provides evidence of a positive yield response in

the long run, there is no consensus on its magnitude: estimates range from 0.22

to 0.76 for corn in the U.S. over the period 1951-1988 (Feng and Babcock, 2010).

Moreover, these values cover a period too far in the past to be used in modern models

and should be updated to account for structural changes that affect agriculture since

the end of the eighties (e.g. growth in farm size...). There is also no consensus on the

effect of a positive yield response to crop price. Feng and Babcock (2010) actually

show that higher yields will not necessarily limit cropland expansion. Unless output

prices sharply decrease, yield growth increases profits in a given area and prompts

the cultivation of land of poorer quality. This assertion is corroborated by Keeney

and Hertel (2009) who demonstrate, using a modified version of GTAP (see section

1.3.3 for more details), that yield increases allows the U.S. agricultural export sector

to regain some of their competitiveness in foreign markets and may lead to more

land-use.

More work is also needed to assess the evolution of food consumption in response

to price. Within models, food consumption is driven by demand functions reflecting

3Edwards (2011) considers that most of the difference between models is due to divergent mea-

sures of the area saved (i) by the yield response to crop price and (ii) by less food consumption.
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price and income elasticities. The limitations of such functions are described in

Yu et al. (2003), which also propose a new type of demand function that could be

advantageously generalised to other models. In typical demand systems, the price

elasticity of plant food calories is assumed to be small and negative, while for animal

products, it is set to be negative and greater than that of plant food. A meta-analysis

of price elasticity of meat estimations confirms that it is significantly smaller than

zero; the median price elasticity across the 4 142 recorded estimates is −0.77 (Gallet,

2009). However, this analysis also suggests that with a standard deviation of 1.28,

such estimations are surrounded by large uncertainties.

Beyond these issues, the development of comprehensive models incorporating a

large number of parameters raises the question of data quality. Well-designed models

are actually not sufficient if they are based on flawed data. Meta-analysis of elastic-

ity parameters estimations are frequent and provide interesting insights. However,

evaluations or comparisons of databases are scarce, so there is little information on

their effective quality.

1.5 Discussion and conclusion

Modelling indirect effects of bioenergy is a major challenge for land-use science

because of its complexity and its potential influence on decision-making. In re-

cent years, numerical models have been significantly improved to provide a com-

prehensive vision of the agricultural system. This has been performed by improv-

ing the representation of land supply and the agrofuel production process in gen-

eral equilibrium models (e.g., GTAP, MIRAGE, DART). At the same time, mod-

elling systems coupling partial equilibrium models with CGE (e.g., KLUM@GTAP)

or economic modules with spatially explicit models (e.g., MAgPIE, GLOBIOM,

LEITAP), and modelling architecture combining land-use and LCA models (e.g.,

FASOM/FAPRI/GREET) have been developed. Both methodologies have advan-

tages and drawbacks. Coupled systems guarantee a coherent relation between eco-

nomic values and physical quantities but lose the price consistency that characterises

CGE.

Despite these efforts, numerical models do not completely provide a robust assess-

ment of ILUC, as their results are surrounded by large confidence intervals reflecting

the numerous sources of uncertainty. Among them, the yield and food demand re-

sponses to price appear to be of particular importance and need specific attention

from modellers.
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A precise understanding of lack of robustness of models remains elusive, as the

mechanisms at play in such models are complex, and their interaction with exogenous

assumptions are less explicit as they become increasingly sophisticated. A pitfall of

current modelling practices is that numerical tools become a black box. For this

reason, transparency and simplicity should be privileged as much as possible. Addi-

tionally, the great variety of parameters used in the models makes inter-comparison

more difficult. For this reason, each model should provide an extensive description

of its methodology and assumptions, along with a description of its strengths and

limitations. From there, meta-analysis and model inter-comparisons could be useful

to understand models divergence and to guide the political decisions. Finally, in

addition to evaluation of models’ performance, insights on the quality of underlying

database are also necessary.

More fundamentally, the role played by models in decision-making raises the

question of their appropriate use. Their value added is to provide a consistent

vision of the studied sector by combining complex equations and various databases.

In this context, they are able to represent interconnection between mechanisms

at different levels and to shed light on potential unintuitive system effects, such

as indirect land-use changes. However, to build a coherent framework each model

relies on a theoretical structure and on several categories of assumptions whose choice

requires some subjectivity (Peace and Weyant, 2008). The diversity of approaches to

modelling ILUC that were presented in this review is a stunning example. For this

reason, one should not expect from models robust predictions and definite answers

but rather policy assessments guaranteeing internal consistency with insights on

potential unexpected effects.



Bibliography

Adams, D., Alig, R., Callaway, J., McCarl, B., and Winnett, S. (1996). The For-

est and Agriculture Sector Optimization Model (FASOM): Model structure and

policy applications. Research Paper PNW-RP-495, USDA Forest Service, Pacific

Northwest Research Station, Portland, Oregon.

Adenauer, M. (2008). Capri versus aglink-cosimo: Two partial equilibrium models -

two baseline approaches. 2008 International Congress, August 26-29, 2008, Ghent,

Belgium 44120, European Association of Agricultural Economists.

A.F. Bouwman, T. K. and Goldewijk, K. K. (2006). Integrated modelling of global

environmental change: An overview of image 2.4. Reports, Netherlands Environ-

mental Assessment Agency.

Banse, M., Grethe, H., Nolte, S., and Balkhausen, O. (2007). European Simulation

Model (ESIM): Model documentation.

Batjes, N., Fischer, G., Stolbovoi, V., Nachtergaele, F., and van Velthuizen, H.

(1997). Soil data derived from wise for use in global and regional aez studies

(version 1.0). Working Papers ir97025, International Institute for Applied Systems

Analysis.

Bondeau, A., Smith, P. C., Saehle, S., Schaphoff, S., Lucht, W., Cramer, W., Gerten,

D., Lotze-Campen, H., Müller, C., Reichstein, M., and Smith, B. (2007). Mod-

elling the role of agriculture for the 20th century global terrestrial carbon balance.

Global Change Biology, 13(3):679–706.

Bouet, A., Dimaranan, B., and Valin, H. (2009). Biofuels in the world markets: A

computable general equilibrium assessment of environmental costs related to land

use changes. Working Papers 6, CATT - UPPA - Universit de Pau et des Pays de

l Adour.

43



44 CHAPTER 1

Britz, W., Perez, I., Zimmermann, A., and Heckelei, T. (2007). Definition of the capri

core modelling system and interfaces with other components of seamless-if. Re-

ports 9284, SEAMLESS: System for Environmental and Agricultural Modelling,

Linking European Science and Society.

Burniaux, J.-M. and Truong, T. (2002). Gtap-e: An energy-environmental version

of the gtap model. GTAP Technical Papers 923, Center for Global Trade Analysis,

Department of Agricultural Economics, Purdue University.

Crutzen, P. J., Mosier, A. R., Smith, K. A., and Winiwarter, W. (2008). N2o release

from agro-biofuel production negates global warming reduction by replacing fossil

fuels. Atmospheric Chemistry and Physics, 8(2):389–395.

Decreux, Y. and Valin, H. (2007). Mirage, updated version of the model for

trade policy analysis: Focus on agriculture and dynamics. Working Papers 7284,

TRADEAG - Agricultural Trade Agreements.

Devadoss, S., Westhoff, P. C., Helmar, M. D., Grundmeier, E., Skold, K. D., Meyers,

W. H., and Johnson, S. R. (1989). Fapri modeling system at card: A documen-

tation summary, the. Center for Agricultural and Rural Development (CARD)

Publications 89-tr13, Center for Agricultural and Rural Development (CARD) at

Iowa State University.

Edwards, R. (2011). Indirect land use change: comparison of economic models.

Presented at the Climate Action Network seminar. Paris. June 21st 2011.

Eickhout, B., van Meijl, H., Tabeau, A., and Stehfest, E. (2008). The impact of

environmental and climate constraints on global food supply. Technical report.

Fargione, J., Hill, J., Tilman, D., Polasky, S., and Hawthorne, P. (2008). Land

clearing and the biofuel carbon debt. Science, 319(5867):1235–1238.

Feng, H. and Babcock, B. A. (2010). Impacts of ethanol on planted acreage in

market equilibrium. American Journal of Agricultural Economics, 92(3):789–802.

Gallet, C. A. (2009). Meat meets meta: A quantitative review of the price elasticity

of meat. American Journal of Agricultural Economics, 92(1):258–272.

Golub, A., Hertel, T., and Sohngen, B. (2008). Land use modeling in recursively-

dynamic gtap framework. GTAP Working Papers 2609, Center for Global Trade

Analysis, Department of Agricultural Economics, Purdue University.



CHAPTER 1 45

Golub, A., Hertel, T., Taheripour, F., and Tyner, W. (2010). Modeling biofuels

policies in general equilibrium: Insights, pitfalls and opportunities. Technical

report.

Havlk, P., Schneider, U. A., Schmid, E., Bttcher, H., Fritz, S., Skalsk, R., Aoki, K.,

Cara, S. D., Kindermann, G., Kraxner, F., and Leduc, S. (2011). Global land-

use implications of first and second generation biofuel targets. Energy Policy,

39(10):5690–5702.

Heistermann, M., Müller, C., and Ronneberger, K. (2006). Land in sight? achieve-

ments, deficits and potentials of continental to global scale land-use modeling.

Agriculture, Ecosystems and Environment, 114(2):141–158.

Keeney, R. and Hertel, T. W. (2009). The indirect land use impacts of united states

biofuel policies: The importance of acreage, yield, and bilateral trade responses.

American Journal of Agricultural Economics, 91(4):895–909.

Kretschmer, B. and Peterson, S. (2010). Integrating bioenergy into computable

general equilibrium models – a survey. Energy Economics, 32(3):673–686.

Kretschmer, B., Peterson, S., and Ignaciuk, A. (2008). Integrating biofuels into the

dart model. Kiel Working Papers 1472, Kiel Institute for the World Economy.

Laborde, D. and Atlass Consortium (2011). Assessing the land use change conse-

quences of european biofuel policies. Technical report, IFPRI.

Lee, H.-L., Hertel, T., Sohngen, B., and Ramankutty, N. (2005). Towards an inte-

grated land use database for assessing the potential for greenhouse gas mitigation.

GTAP Technical Papers 1900, Center for Global Trade Analysis, Department of

Agricultural Economics, Purdue University.

Liska and Perrin (2009). Indirect land use emissions in the life cycle of biofuels:

regulation vs science.

Lotze-Campen, H., Müller, C., Bondeau, A., Rost, S., Popp, A., and Lucht, W.

(2008). Global food demand, productivity growth, and the scarcity of land and

water resources: a spatially explicit mathematical programming approach. Agri-

cultural Economics, 39(3):325–338.

Melillo, J. M., Reilly, J. M., Kicklighter, D. W., Gurgel, A. C., Cronin, T. W.,

Paltsev, S., Felzer, B. S., Wang, X., Sokolov, A. P., and Schlosser, C. A. (2009).

Indirect emissions from biofuels: How important? Science, 326(5958):1397–1399.



46 CHAPTER 1

Peace, J. and Weyant, J. (2008). Insights not numbers: The appropirate use of

economic models. Technical report, Pew Center on Global Climate Change.

Powell, A. A., Hertel, T. W., and Tsigas, M. E. (1997). Global Trade Analysis:

Modeling and Applications. Cambridge University Press.

Rebitzer, G., Ekvall, T., Frischknecht, R., Hunkeler, D., Norris, G., Rydberg, T.,

Schmidt, W. P., Suh, S., Weidema, B. P., and Pennington, D. W. (2004). Life cycle

assessment: Part 1: Framework, goal and scope definition, inventory analysis, and

applications. Environment International, 30(5):701 – 720.

Reilly, J. and Paltsev, S. (2008). Biomass energy and competition for land. Gtap

working papers, Center for Global Trade Analysis, Department of Agricultural

Economics, Purdue University.

Ronneberger, K., Berrittella, M., Bosello, F., and Tol, R. S. (2008). Klum@gtap:

Spatially-explicit, biophysical land use in a computable general equilibrium model.

Gtap working papers, Center for Global Trade Analysis, Department of Agricul-

tural Economics, Purdue University.

Ryan, J. G. (2003). Evaluating the impact of agricultural projection modeling using

the impact framework. Impact assessments 17, International Food Policy Research

Institute (IFPRI).

Sands, R. D. and Leimbach, M. (2003). Modeling agriculture and land

use in an integrated assessment framework. Climatic Change, 56:185–210.

10.1023/A:1021344614845.

Searchinger, T., Heimlich, R., Houghton, R. A., Dong, F., Elobeid, A., Fabiosa, J.,

Tokgoz, S., Hayes, D., and Yu, T.-H. (2008). Use of U.S. croplands for biofu-

els increases greenhouse gases through emissions from land-use change. Science,

319(5867):1238–1240.

Searchinger, T. D. (2008). Response to new fuels alliance and doe analysts criticisms

of science stuies of greenhouse gases and biofuels.

Searchinger, T. D. (2009). Evaluating biofuels: The consequences of using land to

make fuel. Paper series, The German Marshall Fund of the United States.

Taheripour, F., Birur, D., Hertel, T., and Tyner, W. (2007). Introducing liquid

biofuels into the gtap data base. GTAP Research Memoranda 2534, Center for

Global Trade Analysis, Department of Agricultural Economics, Purdue University.



CHAPTER 1 47

Taheripour, F., Hertel, T. W., Tyner, W. E., Beckman, J. F., and Birur, D. K.

(2008). Biofuels and their by-products: Global economic and environmental impli-

cations. 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6452, American

Agricultural Economics Association (New Name 2008: Agricultural and Applied

Economics Association).

Tokgoz, S. and Elobeid, A. (2006). Analysis of the link between ethanol, energy,

and crop markets, an. Center for agricultural and rural development (card) pub-

lications, Center for Agricultural and Rural Development (CARD) at Iowa State

University.

U.S. Environmental Protection Agency (2009). Draft regulatory impact analysis:

Changes to renewable fuel standard program. Technical Report EPA-420-D-09-

001, U.S. Environmental Protection Agency.

Veldkamp, A. and Fresco, L. O. (1996). CLUE: a conceptual model to study the

conversion of land use and its effects. Ecological Modelling, 85(2–3):253 – 270.

Verburg, R., Stehfest, E., Woltjer, G., and Eickhout, B. (2009). The effect of agri-

cultural trade liberalisation on land-use related greenhouse gas emissions. Global

Environmental Change, 19(4):434 – 446.

Vuuren, D., Elzen, M., Lucas, P., Eickhout, B., Strengers, B., Ruijven, B., Wonink,

S., and Houdt, R. (2007). Stabilizing greenhouse gas concentrations at low levels:

an assessment of reduction strategies and costs. Climatic Change, 81:119–159.

Wang, M. and Haq, Z. (2008). Ethanol’s effects on greenhouse gas emissions. Re-

sponse to Searchinger et al. (2008), available at http://www.transportation.

anl.gov/pdfs/letter_to_science_anldoe_03_14_08.pdf.

Yu, W., Hertel, T., Preckel, P., and Eales, J. (2003). Projecting world food demand

using alternative demand systems. GTAP Working Papers 1182, Center for Global

Trade Analysis, Department of Agricultural Economics, Purdue University.

http://www.transportation.anl.gov/pdfs/letter_to_science_anldoe_03_14_08.pdf
http://www.transportation.anl.gov/pdfs/letter_to_science_anldoe_03_14_08.pdf


48 CHAPTER 1



Chapter 2

The Nexus Land-Use model, an

approach articulating

biophysical potentials and

economic dynamics to model

competition for land-use

2.1 Introduction

In addition to their traditional role of feeding the world, services expected from

natural ecosystems and agriculture have recently extended to broader fields, such as

offering new energetic options, mitigating climate change or preserving biodiversity.

This increasing demand for services from a finite system may generate tensions on

natural resources. Decisions related to land-use must take several elements into

consideration to restore multiple and contradictive demands. First, due to global

environmental issues, such as climate change or loss of biodiversity, on the one

hand, and to the intensification of international exchange on the other hand, land-

use changes can no longer be considered as driven by local processes. Modifications

of the land cover in one region of the world have an increasing impact on land-use

changes in another region through price mechanisms, thus raising the need for global

studies. Secondly, because they use the same limited assets, decisions or behavioural

changes related to food, biomass energy, and forest preservation can interact and

must therefore be assessed conjointly.
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Figure 2.1: Nexus Land-Use modelling system. “Fertiliser and pesticide con-

sumption” includes also other consumption of chemical and mineral goods.

These considerations have profoundly affected land-use modelling orientations.

Originally essentially designed to evaluate local and specific issues, and characterised

by the segmentation between economic and geographic approaches (Heistermann

et al., 2006; Briassoulis, 2000), land-use models have progressively evolved to cap-

ture multi-scale phenomena and potential interactions with effects on land-use. To

do so, two methodologies have been used. The first one consists in adapting a

general equilibrium structure, mainly by improving the disaggregation of the pro-

duction factors, to introduce land heterogeneity and to facilitate the calibration of

the agrofuel sector (Golub et al., 2008). The second one consists in coupling partial

equilibrium or computable general equilibrium (CGE) models with spatially explicit

models including knowledge on biophysical processes (see e.g. Ronneberger et al.

(2008)).

In contrast with the traditional approach, theses two methods demonstrate a

strong multidisciplinary orientation. To provide a consistent vision of the socio-

biospheric system, they rely either on elasticity parameters estimated on sample

data by econometric methods (as e.g. implemented in MIRAGE, Decreux and Valin

(2007)), or on an explicit description of the agricultural sector both in economic and

biophysical terms as implemented in the Model of Agricultural Production and its

Impact on Environment (MAgPIE, Lotze-Campen et al., 2008). This model entails

a full description of the dynamic processes linking climate and soil conditions, water
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Figure 2.2: Nexus Land-Use regions. OECD Pacific includes Australia, New

Zealand, Japan and South Korea. FSU stands for Former Soviet Union and

Rest of LAM for Rest of Latin America

availability, and plant growth at a detailed geographic scale over the entire world

through its coupling with the Lund-Postdam-Jena dynamic global vegetation model

for managed Land (LPJmL, Bondeau et al., 2007).

Following those evolutions, this chapter provides a bio-economic modelling frame-

work which ensures at the global level consistency between economic behaviours and

spatial biophysical constraints in the manner of MAgPIE, and whose long term am-

bition is to be linked to the CGE model Imaclim-R (Crassous et al., 2006). To this

end, this chapter depicts the dynamic allocation of agricultural land-use over the

globe as a function of biophysical as well as economic parameters, assuming cost

minimisation for farmers. Land is split into 12 regions of the globe (figure 2.2, ta-

ble 2.1), and 5 land-use types: forests, croplands (2 types), and pastures (2 types).

The model external drivers are the calorie consumption per capita, the share of

animal products in food consumption, agrofuel consumption and evolution of for-

est areas (figure 2.1). Population and an index of fertiliser and pesticide prices are

forced by external scenarios. In future versions of the model, some of these variables

could be endogenously driven.

The principle of the model is simple. An external yearly demand of plant and

animal calories in quantity must be met by adequate supply. To do so, the yield of

crop plants can be increased by fertiliser and pesticide additions, up to a limit defined

as “potential yield”. The demand of animal calories is converted into different types

of feed, mainly: crops, grass from permanent pasture and fodder crops. The model
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calculates explicitly the crop yield and pastures and cropland areas, so as to minimise

farmers’ production costs. The evolution of these areas is determined by modelling a

Ricardian production frontier between an extensive system (extensive grazing only)

located on lands with the lowest potential yields and an intensive system (fertilised

grasslands and croplands).

The next section details our modelling strategy and the scope of analysis. Sec-

tion three describes the biophysical features of the Nexus Land-Use model. The

fourth section details economical principles governing land-use changes and their

parametrisations. The fifth section gives some insights on the calibration methodol-

ogy. In section six, sensitivity of the area of extensive pastures to energy price and

deforestation is shown. In the last section, the main hypotheses of the model are

discussed.

2.2 Scope and principles of the model

2.2.1 Modelling strategy

The suitability of land for a specific agricultural use depends on its capacity to

produce biomass for agriculture, which is itself determined by a large set of biophys-

ical parameters related to soil and climate characteristics. The way farmers make

use of these biophysical conditions through agronomic practices is largely driven by

the socio-economic environment (evolutions of inputs or outputs prices, regulations,

etc.). Although it is difficult to capture all the complex mechanisms governing farmer

decisions, economic theories provide some valuable tools to account for them. They

generally rely on the assumptions that agents are rational and manage their produc-

tion system so as to maximize profit. This is equivalent with a cost minimisation in

the agricultural sector while meeting a prescribed food demand.

In this context, the objective of the Nexus Land-Use is to combine these two

dimensions – biophysics and economics – in a single coherent modelling framework.

First, the representation of the production system is chosen to account for biophys-

ical features as well as agronomic practices. This representation relies on three

main components: (i) a detailed representation of the livestock production system

based on the Bouwman et al. (2005) model; (ii) potential crop yields from the

Lund-Postdam-Jena dynamic global vegetation model for managed Land (LPJmL,

Bondeau et al., 2007); and, (iii) a biomass production function inspired by the crop

yield response function to inputs (such as nitrogen fertilisers) asymptoting towards

the potential yield.
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Such a modelling strategy implies that among the four main production factors

of the agricultural sector, land and chemical inputs with embodied energy receive

particular attention while labour and capital are more roughly modelled. As a con-

sequence, The Nexus Land-Use is better suited to dealing with land-use and energy-

related issues, including or not the effect of carbon pricing, than e.g. sketching the

consequences of agricultural intensification on the labour markets. Irrigation is in-

corporated into the model through the differentiation of potential yields on rainfed

and irrigated lands (see section 2.3.1).

The economic principles governing farmer decisions are mostly inspired from

the Ricardian rent theory (Ricardo, 1817). Following this theory, we consider that

the poorer lands are the last to be cultivated. In the Nexus Land-Use modelling

framework, the Ricardian frontier is represented as a separation between an inten-

sive system, composed of a mosaic of crops and pastures, and an extensive system,

exclusively composed of pastures, the former progressively expanding into the latter

as the pressure on land rises. Hence, unlike the original Ricardian vision in which

the agricultural system reacts to a growing pressure on land by expanding the size

of arable lands over natural ecosystems, adjustments result from reallocations in-

side the boundaries of the system between intensive and extensive agriculture. This

vision is consistent with the report made by Bouwman et al. (2005) that “most of

the increase in meat and milk production during the past three decades has been

achieved by increasing the production in mixed and industrial production systems

and much less so in pastoral systems. Despite the fast increase of ruminant produc-

tion by 40% in the 1970-1995 period, the global area of grassland has increased by

only 4%.”

In the modelling approach presented here, deforestation is not derived from eco-

nomic trade offs, and is exogenously set. We actually consider, following Scouvart

and Lambin (2006), that the use of forest areas could be increasingly regulated, and

that their evolution could subsequently result more from political decisions than

from economic ones. With the view to exploring different pathways, this assump-

tion could be relaxed in future development of the model.

2.2.2 Modelling architecture

At the base year, a representative potential yield is computed on a 0.5◦ × 0.5◦

grid from the potential yields given by the vegetation model LPJmL for 11 Crop

Functional Types (CFT). Land classes grouping together grid points with the same

potential yield are set up. Yield in each land class is determined by a function of
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chemical inputs, such as fertilisers and pesticides. This function asymptotes towards

the potential yield and exhibits decreasing returns.

Following Bouwman et al. (2005), the livestock production system is divided into

an extensive and an intensive system. The extensive system produces only ruminants

that are fed by grazing. The intensive system includes ruminants and monogastrics.

Here, ruminants are fed by a mix of grass, food crops, residues, fodder and other

roughages. In both systems, grass comes from permanent pastures according to the

Food and Agriculture Organisation (FAO) definition and can be grazed or cut for

hay. Two types of permanent pastures are distinguished – intensive and extensive –

according to the system to which they provide grass. Monogastric animals are fed

with food crops, residues and fodder and animal products. Croplands are assumed

to be exclusively located on the most productive lands, as well as pastures of the

intensive production system. Fodder for monogastric and intensive ruminant is

grown on cropland. Conversely, the extensive pastures are located on the least

productive lands. This split of agricultural land does not completely fit with the

data since a sizeable share of extensive pastures are located today on high-yield land

classes. Therefore we consider an additional category of extensive pastures, which

is called “residual pastures”.

Each type of land-use – forest, cropland, intensive, extensive and residual pas-

tures – is distributed among the land classes, giving for a land class of potential

yield j the area fractions fForestj , f cropj , fPintj , fPextj and fPresj . These variables are

regional as are all variables of the model except for the world calorie price.

At each time step, Nexus Land-Use calculates a global supply / demand balance

from exogenous calorie consumption of food crops for agrofuel Dfc
agrofuel, plant food

(food crops for humans) Dfc
h , ruminant Dr

h and monogastric products Dm
h . The

total land supply for agriculture – excluding croplands not represented in LPJmL –

Ssurf is deduced from the exogenously set annual evolution of the forest area. The

price of fertilisers and pesticides is also deduced from external drivers.

Given this forcing, the agricultural sector is supposed to minimise its production

costs by optimizing the consumption of fertilisers and pesticides, triggering subse-

quent variations of crop yield, and/or by modifying the repartition between intensive

and extensive livestock production systems. Regions can trade food crops with each

other (Expfc/ Impfc) as well as ruminant products (Expr/ Impr) on the basis of

relative prices and taking into account food sovereignty and market imperfections

(the trade of monogastric products – Expm, Impm – is held constant).

In each region, the model solves a global supply demand balance of ruminant
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(equations 2.1-2.3) and plant food calories (equations 2.4-2.7). Demand for land

Dsurf resulting from this equilibrium must be equal to the land supply Ssurf (equa-

tion 2.8):

Qr = (Dr
h + Expr − Impr)(1 + ωrswof ) (2.1)

Qr,ext = Dsurfρ
r,ext
past

∫
(fPextj + fPresj )dj (2.2)

Qr,int = Qr −Qr,ext (2.3)

Dfc
r,int = Qr,intβr,intφ

fc
r,int (2.4)

Dfc
m = (Dm

h + Expm − Impm)(1 + ωmswof )βmφ
fc
m (2.5)

Dfc = Dfc
h +Dfc

m +Dfc
r,int +Dfc

agrofuel + Expfc − Impfc(2.6)

Qfcother crop +Dsurf

∫
fcropj ρjdj = Dfc(1 + ωfcswo) (2.7)

Ssurf = Dsurf (2.8)

The ruminant production Qr is deduced from equation 2.1. Seed (s), waste (w)

at the farm level and other uses (o) are added by using coefficients ωfcswo for food

crops, ωrswof for ruminants and ωmswof for monogastrics (see section 2.5.1, “f” stand-

ing for feed use of animal products). Following our representation of the ruminant

production system, Qr results either from the extensive ruminant production system,

yielding Qr,ext, or from the intensive one, yielding Qr,int (equation 2.3). Production

of ruminant meat and milk in the extensive system is calculated by applying the

yield ρr,extpast to the areas of extensive and residual pastures (equation 2.2). The de-

mand for feed to produce ruminant Dfc
r,int or monogastric Dfc

m calories is deduced

from equations 2.4 and 2.5 using the conversion factors βr,int and βm and the feed

composition factor φfcr,int and φfcm (see section 2.3.3). Equation 2.6 gives the composi-

tion of the demand for food crops between food use (Dfc
h ), feed use (Dfc

r,int and Dfc
m ),

agrofuel (Dfc
agrofuel) and trade. Equation 2.7 corresponds to the supply / demand

equilibrium for food crops. A part of the cropland areas, yielding Qfcother crop, is not

modelled by the vegetation model LPJmL. Its evolution is forced by an external

scenario. The reader will find descriptions and units of main notations in table 2.9.

2.2.3 Biomass categories

Only edible biomass is accounted for, excluding fibbers, rubber, tobacco, etc. All

quantities are measured according to their energy content, and expressed in kilo-

calories (kcal), this unit being commonly used for nutrition. This measure allows

to deal with different types of biomass for human or animal consumption but it
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Figure 2.3: Links between food and agrofuel demand and land-use.

has some drawbacks. First, calories from different crops do not have the same eco-

nomical value, e.g. the price of a cereal calorie has less value than a coffee calorie.

From a nutritional point of view, the quantity of calories could be sufficient while the

quantity of macronutriments (protein, lipids and carbohydrates) or micronutriments

(vitamins, minerals) may be insufficient.

Four categories of agricultural products are represented (figure 2.3): first genera-

tion agrofuel, plant food for human consumption, monogastric animals (non-grazing

animals, producing eggs, poultry and pork meats) and ruminant animals (produc-

ing meat and milk from cattle, sheep, goats and buffalo). Other uses of edible crop

biomass correspond to non-food production such as lubricants, cosmetics (not rep-

resented in figure 2.3, see section 2.5.1 for more details). Demand for each of these

four categories is forced by exogenous scenarios (figure 2.1).

Plant food for human consumption is directly assigned to food use. Animal pro-

duction is modelled following Bouwman et al. (2005). According to this represen-
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tation, feed for ruminants and monogastric animals are divided into five categories:

(i) grass, including grazing, hay and silage grass; (ii) food crops and by-products

(such as cakes); (iii) crop residues and fodder crops, including straw and bran;

(iv) animal products, including whey, bone and fish meal; and, (v) scavenging, in-

cluding road-side grazing, household wastes, feedstuffs from backyard farming, etc.

Contrary to grass and food crops, the last two categories are not assigned to spe-

cific land-uses. The special case of the residues and fodder category is explained in

section 2.3.3.

First-generation biomass fuels are represented by using biomass to agrofuel con-

version factors from Johnston et al. (2009). By-products are accounted for using

coefficients from BIO Intelligence Service (2010) and are considered to be substi-

tutes for feed grains in the livestock industry. Second-generation agrofuels are not

integrated yet.

The balance of supply and demand of food crop products is established on the

basis of data from the global database Agribiom (Dorin, 2011). This database

provides, for each country, the biomass balances in kilocalories based on the FAO

annual country-level supply-utilisation accounts, ensuring consistency among the

annual flows of edible biomass which are produced, traded, and consumed. In Nexus

Land-Use, food crop production is modelled on the basis of crop yields computed by

the vegetation model LPJmL, explicitly accounting for biophysical constraints (see

section 2.3.1).

At base year 2001, crops modelled by LPJmL cover 749 Mha globally, repre-

senting 51% of the global cropland area inventoried by Ramankutty et al. (2008).

Yields modelled by LPJmL are calibrated on FAO data (see section 2.3.1). The

resulting production accounts for 75% of global food crops calorie production given

by Agribiom (table 2.2). The remaining area/production essentially concerns sugar

cane, palm oil, some roots and tubers, fruits and other vegetables. The produc-

tion covered by LPJmL and its corresponding cropland area are called “dynamic.”

The remaining production and area are referred to as “other” and their evolutions

are forced by external scenarios. Areas of permanent pastures are taken from Ra-

mankutty et al. (2008) and forests areas from Poulter et al. (2011). The forest

category includes managed and unmanaged forests. As the silvicultural sector is

not modelled, no distinction between the two forest types is made. Other non-

agricultural lands (deserts, ice, wetlands and built areas) are considered constant.

Except for three feed categories (residues and fodder, animal products and scav-

enging), each feedstock category corresponds to a given land-use. Production of



58 CHAPTER 2

fodder crop is an important land-use, but we consider that we have not enough data

to incorporate this feature in the model.

The modelling of pasture areas is related to ruminant production. In the Nexus

Land-Use model, ruminant products are assumed to stem either from an intensive

system or from an extensive one (see section 2.3.3). In the former system, ruminants

are fed with the five types of feed mentioned above, while in the latter system, they

are fed exclusively by scavenging and grazing on extensive pastures. Each system

is associated with its specific pastures (intensive or extensive) and with the amount

of grass that is consumed per hectare. Finally, the forced evolution of forest areas

determines the supply for croplands and pastures.

2.3 Modelling agricultural intensification and biophysi-

cal constraints

2.3.1 Land area classes of potential yields

Potential yields computation in LPJmL

To represent biophysical constraints affecting cultivation, yield in each region of the

Nexus Land-Use is parametrised on potential crop yields, and calibrated on actual

crop yields. Both values are calculated by the LPJmL vegetation model: “This

model simulates biophysical and biogeochemical processes impacting productivity of

the most important crops worldwide using a concept of crop functional types (CFTs).

[...] CFTs are generalized and climatically adapted plant prototypes designed to

capture the most widespread types of agricultural plant traits” (Bondeau et al.,

2007).

LPJmL describes crop production with 11 Crop Functional Types (CFT) on a

0.5◦ × 0.5◦ grid representing most of the cereals (4 CFT), oil seed crops (4 CFT),

pulses, sugar beet and cassava with irrigated and rainfed variants (table 2.3). Crops

not included in LPJmL CFTs (e.g. sugar cane, oil palm, fruits and vegetables, etc.)

are referred to as “other crops.” Climatic potential yields ymaxCFT,l in tons of Fresh

Matter per hectare and per year (tons FM/ha/yr) are computed by LPJmL for each

of the 11 CFTs with irrigated and rainfed variants, at each grid point of global land

area (l subscript), by setting management intensity parameters in LPJmL such that

crop yield is maximized locally. Climatic potential yields are taken as a mean of five

LPJmL simulation years between 1999 and 2003 in order to minimise the climatic

bias due to interannual variability.
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Management intensity is approximated in LPJmL via 3 parameters: (i) LAImax,

the maximum leaf area index potentially achievable by the crops, representing gen-

eral plant performance (fertilisation, pest-control), (ii) αa, a scaling factor between

leaf-level photosynthesis and stand-level photosynthesis, which accounts for planting

density and homogeneity of crop fields, and (iii) the harvest index HI, which deter-

mines the partitioning of accumulated biomass to the storage organs. These three

parameters are assumed to be interlinked, i.e. high-yielding varieties (large HI) are

used in intensively managed crop stands (Gosme et al., 2010). For details see Fader

et al. (2010).

Actual yields computation in LPJmL

CFT actual yields yactualCFT,l in tons FM/ha/yr are computed by LPJmL in the following

way. First, LPJmL yield is determined, with an arbitrary intensity level of 5 for each

grid point and averaged over the 1999-2003 period (intensity level is represented by

the parametrisation of LAImax, αa and HI and ranges from 1 (low) to 7 (high,

depending on the CFT)). Then, for each CFT and each country, a scaling coefficient

is computed, such that the mean country yield matches the FAO yield over the

same period. This mean country yield is calculated using annual fractional coverage

of each CFT in each grid point around the year 2000 fCFT,l from Portmann et al.

(2010). When the scaling coefficient was greater than ten, corresponding yields were

set to zero considering that LPJmL failed to model these CTFs in these countries.

For some CFTs (rice, maize, soybeans) on certain grid points the scaling on FAO

national yield led to actual yields greater than potential ones. This may be due to the

fact that the LPJmL version used here does not model multicropping (except for rice)

while there may be as much as 3 harvests annually in some parts of Asia (Portmann

et al., 2010). Moreover, the LPJmL CFTs may have failed to represent the dynamic

of the local variety of these crops in these regions. To correct this bias, the potential

yield of CFTs was set to actual yield on grid points where the actual yield was

higher. This led to the addition of 1 Pkcal (109 Mkcal) to the potential production,

corresponding to 7% of the total potential production on current croplands.

Aggregation of potential and actual yields into land area classes

One way to model food crop production is to dynamically allocate CFTs on grid

points according to their expected production costs. This methodology was used

by the land-use model MAgPIE where CFT choices are determined by minimizing

total cost of production (Lotze-Campen et al., 2008). A drawback is that only one
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optimal CFT is then grown in each location. In MAgPIE this drawback is overcome

by forcing rotational constraint, that is minimal and maximal shares of CFT groups

(pulses, cereals, etc.) within a grid cell. In Nexus Land-Use we use a different

methodology in which the potential yields of a fixed mix of CFTs are aggregated to

one representative crop.

To this end, potential yields are converted in the Nexus Land-Use into calories

with coefficients from Agribiom calCFT (see table 2.3). The resulting calorie yields

are then combined with the annual fractional coverage of each CFT in each grid

cell around the year 2000 fCFT,l, separately for irrigated and rainfed areas, and

aggregated into one representative potential yield ymax,aggl (in Mkcal/ha/yr). Frac-

tional coverages are derived from maximal monthly harvested areas of each CFT at

0.5◦resolution from Portmann et al. (2010). In the case of multi-cropping (more than

one crop cycle within a year in the same grid point) the fractions of each CFT were

adjusted to match the total cropland fraction given by Ramankutty et al. (2008)

(see Fader et al. (2010) for details on CFT fractions of cells). These representative

potentials yields must be interpreted as the maximum achievable yield on a grid cell

assuming the CFT fractional coverage around the year 2000, and not as the maxi-

mum achievable yield on a grid cell assuming 100% coverage by the most productive

CFT.

The representative potential yield on grid point l is given by:

ymax,aggl =

∑
CFT ymaxCFT,l × fCFT,l × calCFT∑

CFT fCFT,l
(2.9)

It is displayed in figure 2.4. The representative actual yield is computed likewise

and its spatial distribution is displayed in figure 2.5. In Nexus Land-Use, grid points

where LPJmL crops are grown (“dynamic cropland” in the following) are aggregated

into classes of iso-potential yields. From this aggregation, we define a land class as

the sum of grid point area associated with a potential yield value within a specific

range. For example, land class 15 includes grid points with a potential yield between

14 and 15 Mkcal/ha/yr in each region. Given this definition, the area of dynamic

croplands Scropj in the land class j is:

Scropj =
∑

l,ρ̃maxj <ymax,aggl <ρ̃maxj+1

Sl ×

(∑
CFT

fCFT,l

)
(2.10)

where ρ̃maxj are yields values regularly spaced every 1 Mkcal/ha/yr interval and

Sl is the surface of the grid point l. The potential yield ρmaxj of land class j is the
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Figure 2.4: Representative potential yield of crops modelled in the LPJmL

model (“dynamic crops”) in Mkcal/ha/year (average over the 1999-2003 period).

mean of the potential yield in all all grid points belonging to class j:

ρmaxj =

∑
l,ρ̃maxj <ymax,aggl <ρ̃maxj+1

ymax,aggl × (
∑

CFT fCFT,l) × Sl

Scropj

(2.11)

Sixty land classes of potential yields are considered (from 0 to 60 Mkcal/ha/yr).

Using the same method, actual yields of each land class ρactualj are computed. We also

calculate a representative potential yield on each grid point in case pasture or forests

are converted to cropland (figure 2.7). To this end, an hypothetical annual fractional

coverage of each CFT on each grid cell is set to the average distribution of CFTs

over each country, assuming that each CFT is equally distributed in each grid cell.

Only rainfed potential yields are used assuming no irrigation on newly converted

croplands. In the same way as ymax,aggl , these potential yields are the maximum

achievable yields in rainfed conditions considering a crop mix over the cropland area

of the grid cell representative of the country’s crop mix. This rainfed hypothetical

potential yield is used to distribute the area of forest, permanent pastures and

other croplands within land classes according to their hypothetical yield if they are

converted to dynamic croplands in our simulation (see section 2.2.3 for more details

on dynamic and other croplands).
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Figure 2.5: Representative actual yield of crops modelled in the LPJmL model

(“dynamic crops”) in Mkcal/ha/year (average over the 1999-2003 period).

In addition to the issue related to potential yields being lower than actual yields

handled above, another weakness concerns the value of potential yields that seems

to be too low in equatorial regions (India, equatorial Brazil). This may be related

to the lack of representation of perennial crops, which are the most productive crops

in these regions (sugar cane, palm oil) (figure 2.6 and 2.7).

2.3.2 Crop production function

Factors influencing crop yields are numerous and complex. In Nexus Land-Use, yield

in each land class is assumed to be a function of intermediate consumption (ICj)

from the chemical and mineral sectors, which mainly corresponds to the use of fer-

tilisers, pesticides and mineral enrichments. This function, shown on figure 2.8, is

defined by an initial slope 1
αIC

– the same for the sixteen land classes of a region –

and an asymptote equal to the potential yield of the land class ρmaxj specified above.

It corresponds to the yield that could be achieved with unlimited consumption of

fertiliser and pesticide inputs, and reflects the saturated response of the crop to

photosynthetically active radiation and climate characteristics, as well as agronomic

choices such as sowing date. Water use is also accounted for as potential yields are
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Figure 2.6: Difference between potential and actual yield of crops modelled

in the LPJmL model (“dynamic crops”) in Mkcal/ha/year (average over the

1999-2003 period).

aggregates of rainfed and irrigated crops. The Nexus Land-Use production func-

tion can be considered as a form of yield response function to fertiliser application

that can be simulated by crop models (Brisson et al., 2003; Godard et al., 2008),

and generalized to all types of fertilisers (nitrogen, phosphorus, potassium) and to

pesticides. The yield per unit of land is given by:

ρj(ICj) = ρmaxj − (ρmaxj − ρminj )
αIC(ρmaxj − ρminj )

ICj + αIC(ρmaxj − ρminj )
(2.12)

where the minimum yield ρminj is the y-intercept, defined as the no-inputs yield.

Its value is set to ten percent of the potential yield ρmaxj . This choice is somewhat

arbitrary but consistent with observations. Indeed, actual yields on the African

continent, thought to be close to the minimum yield, are approximately equal to 10%

of the potential yield (see figure 2.9). However it may lead to an underestimation

in temperate regions (Thierry Doré, pers. com.).

From an economic point of view, equation 2.12 is a production function represent-

ing the technical relationship between a quantity of output (yield) and a combination

of inputs (fertilisers and pesticides).
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Figure 2.7: Potential yield computed with national crop repartitions in rainfed

conditions (Mkcal/ha/yr) (average over the 1999-2003 period).

2.3.3 Livestock production system

The quantity and composition of feed needed to produce one unit of animal product

vary greatly around the world. This is modelled by two parameters: feed conversion

factors denoted β defined as the calories of feed needed to produce one calorie of

animal food, and feed composition factors denoted φ defined as the share of each

specific feed category in total feed. Feedstock categories are detailed in section 2.2.3.

β and φ differs amongst animals and regions but also amongst production systems.

The feed required by monogastrics and ruminants and its supply by pastures is

represented in figure 2.10 except for animal products and scavenging because they are

not associated with specific land-use. Feed conversion coefficients are quite different

for meat, diary products and eggs. They have been computed considering a constant

share of these different products in the ruminant and monogastric production.

Following Bouwman et al. (2005), we consider two farming systems for ruminant

production: (i) the extensive system where animals are fed mainly by grazing on

extensive pastures and to some extent by scavenging; and, (ii) the intensive system

or mixed-landless for which animals are fed not only with grass but also with residues

and fodder, food crops, animal products and by scavenging. For example, in Europe,
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Figure 2.8: Yield in a land class as a function of chemical input consumption

ICj. ρmaxj , ρactualj and ρminj are the potential, actual and minimum yields of the

land class j. pχ is the price index of chemical inputs.

ruminants are fed with 13% of food crops, 33% of residues and fodder crops and 53%

of grass (see table 2.5). Scavenging and animal products account for a small share of

the feed consumed by livestock except for scavenging in India – where it is assumed

to cover half of ruminant needs (Bouwman et al., 2005).

To separate pasturelands and ruminant heads in each production system, Bouw-

man et al. (2005) assumed that ruminant heads belonging to the intensive system

are located on a grid cell where the fraction of arable land is sufficiently high “to

ensure that the production of crops for feeding animals [...] are available at short

distance.” Indeed, even if some food crops are imported to feed ruminants, Bouw-

man et al. (2005) suppose that intensive animal farming almost always takes place

near croplands. Monogastrics are fed mainly with food crops, residues and fodder.

They are also fed with animal products but as for intensive ruminants they account

for less than 1% of the ration.

Representation of fodder crops in land-use models is usually rough. Though,

fodder crops in USA, Canada and Europe account for more than 15% of the total

cropland area and up to 21% in the Former Soviet Union (Monfreda et al., 2008).

Furthermore, the category “residue and fodder” constitutes an important share of

the intensive ruminant feed ration ranging from 15% in Canada to 34% in the Middle

East. Land-use for fodder production is not modelled due to an important deficit

of data. FAO statistics on fodder production are incomplete, only five crops are

inventoried: alfalfa, clover, silage maize, raygrass and sorghum. Although Monfreda

et al. (2008) enhanced data quality by using national inventories, statistics remain
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Figure 2.9: Actual yield versus potential yield of dynamic crops within each

potential yield class. Crosses are minimums and maximums, whiskers go from

the 20th to the 80th percentile. See figure 2.6 for a map of the difference between

potential and actual yields of dynamic crops.

unreliable, in particular for Brazil and Asia. Nevertheless, several fodder crops are

also included in the LPJmL CFTs (see table 2.3), and some areas for fodder pro-

duction are included in the Ramankutty et al. (2008) cropland map. Therefore, no

new cropland land-use is added when additional “residues and fodder” are required

by animals during a simulation, only cropland areas dedicated to fodder production

inventoried by the FAO at the base year are included in the model in the other

cropland category.

2.3.4 Distribution of agricultural areas over land classes

Cropland, pasture and forest areas are allocated to land classes according to the

representative potential yields described in section 2.3.1.

Based on the distinction between the extensive and intensive livestock produc-
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Figure 2.10: Links between animal calorie production, feed categories and pas-

ture areas. Reading: the amount of feed required to produce one calorie of

monogastric is βm, split into a share φfcm of food crops and φfodderm of crop residues

and fodder. Values are reported in tables 2.4, 2.5 and 2.6

tion systems, the Nexus Land-Use models the production frontier between the two

systems according to economic principles inspired by the Ricardian theory. In this

prospect, we consider a limit land class jlimit splitting agricultural lands in two parts:

a first one corresponding to the intensive system where land classes have the highest

potential yields and a second one corresponding to the extensive system, on lands

with lower productivity (see figure 2.11). In this theoretical framework, croplands

are supposed to be located on the intensive system where lands are more produc-

tive. Hence, at the base year, we assigned the least productive lands to the extensive

system until the proportion of dynamic croplands become significant, the remain-

ing part of the distribution being assigned to the intensive one. Cropland initially

located in the extensive system – representing between 0 to 11% of cropland area

– are assigned to the other cropland category. The limit land class separating the

two systems evolves during the simulation according to a cost minimisation criterion

considering calorie and energy prices in a given region.

At the calibration, the distribution of permanent pastures over land classes is

split into two land-use categories: extensive pastures are located at the left of the

limit land class and intensive pastures, the area of which is given by Bouwman et al.

(2005), are distributed into land classes proportionally to dynamic cropland (see

figures 2.12 and 2.13).
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Figure 2.11: Illustration of the production frontier (limit land class jlimit) on the

land area classes of potential yield histogram in the Former Soviet Union (black

vertical bar).

In most regions, the area covered by pastures on high potential yield lands (to

the right of the limit land class) is larger than the area of intensive pastures inven-

toried by Bouwman et al. (2005). The remaining pastures are referred to as residual

pastures. Despite being located on the potential intensive side of the land distribu-

tion, we assume that these pastures have the same features as extensive ones. In

the model, this use of land is assumed to be inefficient in the sense that production

cost is not minimised. The residual pastures may correspond in reality to lands

extensively managed because of geographic and institutional limitations (e.g. high

transport cost, inadequate topography or specific land property rights, Merry et al.,

2008).

2.4 Economic drivers and model dynamics

As a response to changes in the demand for agricultural biomass, with identified

animal and vegetal calorie demands, the agricultural sector can adjust its production

by either expanding agricultural lands over forest land or intensifying the production.

Because land supply function is not implemented yet in the model, the expansion

of agricultural land is constrained through prescribed deforestation scenarios in this

study.

In Nexus Land-Use, the intensification of the production is driven up by two
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Figure 2.12: Histogram of the land area classes of potential yield in the 12 Nexus

Land-Use regions at the base year.

mechanisms: (i) increase in chemical fertilisers and pesticide inputs, (ii) replacement

of biomass grazed by ruminants by concentrates, residues and fodder in animal feed

composition. The first mechanism comes down to an increase of crop yield, and the

second to a conversion of extensive into an intensive livestock production system.

The intensification level that is achieved results from the minimisation of the total

production cost.

2.4.1 Crop production

Crop yield increase with agricultural inputs (fertilisers and pesticides). Trade offs

between consumptions of labour and capital production factors are not represented

in the model. Optimization of costs thus results from our production function choice

(see section 2.3.2), which describes the biophysical dependency of yield on fertiliser

and pesticide inputs. This comes down to implicitly considering that the decisions

on labour and capital are independent from those on land and chemical inputs. In
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Figure 2.13: Share of different agricultural land-use types in the 12 regions of

the model at the base year.

that, we assume that two choices are made, one for labour and capital, another for

fertilisers, pesticides and land. In the model, we focus only on the second type of

choice. As a consequence, substitutions that may exist between capital or labour and

chemical inputs (e.g. herbicides reducing manual weed control) are not represented.

In each region, the annual cost function for a unit of cropland consists of:

• A fixed cost per year FC corresponding to capital, non-mobile labour, business

services and energy consumption for vehicles, buildings (heating, etc.) and

other on-farm operations (drying of crops, etc.).

• An aggregate cost for intermediate consumption of fertilisers and pesticides,

denoted for each land class j ICj(ρj) and exhibiting decreasing returns. ICj(ρj)

is defined as the inverse of the production function described in section 2.3.2

and shown in equation 2.12. It presents the following mathematical form:

ICj(ρj) = αIC(ρmaxj − ρminj )

(
ρmaxj − ρminj

ρmaxj − ρj
− 1

)
(2.13)

• pχ is the price index of fertilisers and pesticides intermediate consumption.
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This function is such that IC ′j(ρj) > 0 and IC ′′j (ρj) ≤ 0. Calibration of the

initial slope αIC (in $/Mkcal) is detailed in section 2.5.2.

2.4.2 Livestock production

The production of meat and eggs from monogastric animals is assumed to take

place exclusively in the intensive type of production system. On the other hand, the

production of ruminant meat and dairy takes place in either the extensive system

or the intensive one. In neither system is grass directly priced, but the calorie price

reflects its costs in terms of land or of fixed costs per hectare.

The area of extensive pasture on the land class j is equal to the fraction fPextj

of the total agricultural area. In the extensive system, animal feed composition

consists mainly of grass (and scavenging in India) and does not rely on any food

crops, fodder or residues. We assume that this grass is grown without using any

fertilisers or pesticides. As explained in section 2.3.4, a share of these extensive

pastures is also located on the most productive side of the distribution. On each

land class j, these residual pastures cover a fraction fPresj of the total agricultural

area.

By contrast, in the intensive ruminant production system, animals are fed by

food crops – in a proportion φfcr,int – grass, scavenging, animal products, residues

and fodder (see figure 2.10). Food crops grown for feeding ruminants are produced

in association with food crops production for human use on the fractions f cropj of agri-

cultural area and necessitate a consumption of fertilisers and pesticides pχICj(ρj)

in $/ha/yr.

To account for costs other than fertilisers or pesticides, we use a specific method

as no database distinguishes between the intensive and extensive livestock produc-

tion system costs. We define a variable FCtot that also incorporates the fixed cost

of crop production FC. This variable is used to compare the opportunity cost of

the intensive and extensive systems and can be interpreted either as the difference

between the fixed cost per hectare in the extensive and in the intensive system or as

the fixed cost in the intensive system, considering that this cost is negligible in the

extensive one. This cost determines the limit land class between the intensive and

extensive sectors. It is calibrated to meet the base year land distribution described

in section 2.3.4.



72 CHAPTER 2

2.4.3 Minimisation program

The limit land class index between the extensive system and the intensive one is

denoted jlimit and the upper bound of the land distribution is denoted jmax. Overall,

the cost minimisation of the total production yields:

Min
ρj ,jlimit,D

fc
r,int

Qr,int,Qr,ext,Dsurf

(∫ jmax

jlimit

(pχICj(ρj) + FCtot)f
crop
j dj

)
Dsurf (2.14)

Qfcother +

∫ jmax

jlimit

fcropj ρjdjDsurf = (Dfc
r,int +Dfc

h+m+agro)(1 + ωfcswo) (2.15)

Qr = Qr,int +Qr,ext (2.16)

Qr,ext =

(∫ jlimit

0

fPextj dj +

∫ jmax

jlimit

fPresj dj

)
ρr,extpast Dsurf(2.17)

Qr,int =
Dfc
r,int

βr,intφ
fc
r,int

(2.18)

Ssurf = Dsurf (2.19)

Variables are defined in section 2.2.2 and in table 2.9. As a reminder, all vari-

ables of this program are regional. Equations 2.15 to 2.19 display the constraints

of the minimisation program. Equation 2.15 relates to the constraint on food crop

production, Dfc
h+m+agro gathering the other types of demand than feed use for rumi-

nant animals (human, feed use for monogastrics, etc.). Equation 2.16 corresponds

to the constraint on global ruminant production. Equation 2.17 is the constraint

on ruminant production on extensive and residual pastures. Production of meat

and milk per hectare of extensive pasture ρr,extpast is considered to be constant over all

land classes without consideration of corresponding potential yields for crops (sec-

tion 2.5.4). Equation 2.18 is the constraint on the intensive ruminant production

from feed. Finally equation 2.19 provides the constraint on land availability.

The system is solved using the Lagrange multipliers method. The Lagrangian

multiplier associated with the first constraint corresponds to the calorie price. The

first order conditions on ρj is that the calorie price pcal must be equal to the deriva-

tive of the function ICj(ρj), linking fertilising and pesticide applications to yield,

times the cost of these inputs:

pcal = pχIC
′
j(ρj) (2.20)
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The multipliers associated with the second, the third and the fourth constraint

can be interpreted as the ruminant prices (global and for the extensive and intensive

system). The solving of the minimisation program yields that these three multipliers

are equal to each other. Hence, the price of a ruminant calorie is the same be it

produced in the extensive system or in the intensive one. In the following, we denote

it pr. First order conditions on Dfc
r,int leads to:

pr = pcal(1 + ωfcswo)βr,intφ
fc
r,int (2.21)

The limit between the intensive and the extensive system is given by the equality

of profits in both production systems obtained through the first order conditions on

jlimit:

(pcalρjlimit − pχICjlimit(ρjlimit) − FCtot)f
crop
jlimit

+ prf
Pres
jlimit

ρr,extpast = prf
Pext
jlimit

ρr,extpast(2.22)

This relation can be easily interpreted. The intensive livestock production system

is more productive than the extensive one because its productivity is linked to crop

yield. On the other hand, it is also more costly because it requires more inputs

and production factors. This sets a trade off between the two systems: on high

potential yield land classes, the productivity of the intensive system more than

offsets its costs, making it more profitable; on the contrary, on low potential yield

land classes, the extensive system will be more profitable, due to its costs and grass

yield less dependent on the quality of land. The limit land class index between both

systems jlimit is thus defined as the land (or land class in a discrete representation)

over which the profit is equivalent between producing intensively or extensively, and

where equation 2.22 holds.

To simplify the resolution, the fractions f cropjlimit
, fPresjlimit

and fPextjlimit
in equation 2.22

are taken to be the share of each land type in its corresponding production system

(fPextjlimit
is thus equal to one). Indeed, it avoids the computationally very expensive

sorting of profits of each land class. It is also consistent with a view in which the

trade off is made between each system as a whole.
The multiplier associated with equation 2.19 can be interpreted as the shadow

price of land or the land rent denoted lambda. The first order conditions yields the
following expression:

λ = pcal

∫ jmax

jlimit

fcropj ρjdj − (pχICj(ρj) + FCtot)f
crop + pr

(∫ jlimit

0

fPextj dj +

∫ jmax

jlimit

fPresj dj

)
ρr,extpast

Following the Ricardian theory, the land rent is as a surplus paying “the original

and indestructible powers of the soil” (Ricardo, 1817) that reflects the scarcity and

the heterogeneous quality of land.
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2.4.4 International trade

The trade of both food crops (for human as well as animal use) and ruminant calories

are considered in our model. Trade of monogastrics is considered constant at its

2001 level. Indeed, it essentially takes place in regions where monogastric animals

are industrially produced and where the share of residues and fodder in the feed

ration (φfodderm,k ) is small. Yet, in the Nexus Land-Use modelling framework – where

residues and fodder are considered to be free – the higher the φfodderm,k the lower the

price will be. Hence, the price of monogastric products does not account well for the

propensity of a region to export. We hypothesize that this simplification does not

significantly influence the results of the model because the demand for monogastric

products is converted into a demand for food crops for which trade is modelled.

The representations of trade for food crops and ruminant products rely on the

same modelling principles. For this reason, we detail only the trade for food crops

in this section.

Agricultural commodities can be considered to be perfect substitutes for mer-

chandise of the same kind supplied by any other country. Therefore, the interna-

tional trade is modelled by using a pool representation without any consideration of

the geographic origin of goods: the global demand for imports of calories is aggre-

gated into a single set of homogeneous goods and shared among regions according

to export functions.

Demand for imports is supposed to be driven by price ratios taking into account

food sovereignty considerations: the share of the domestic demand which is supplied

by imports is supposed to be a growing functions of price ratios between domestic

and world prices. Hence, even if domestic price happens to be higher than world

price, a share of the demand remains domestically produced.

Exports shares are solely determined by relative prices, using functions reflecting

the imperfect competition on the international markets of agricultural goods. As

previously mentioned, the sources of imperfect competition are not related with the

place of production of the goods, but to other reasons such as import barriers or

export tariffs.

More specifically, imports of food crops for each region are calculated by ad-

dressing the regional demand to a pool according to a share function based on the

regional calorie price pcalk and the world calorie price pwcal defined as follows:

pwcal =
∑

ShareExpk × pcalk (2.23)

where ShareExpk is the export share of region k in the pool. It is set equal to
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αexpk p−γcalk∑
k α

exp
k p−γcalk

. Import and export functions for region k are thus given by:

Impfck = αimpk × pcalk
pwcal

×Dfc
k (2.24)

Expfck =
αexpk p−γcalk∑
k α

exp
k p−γcalk

×
∑
k

Impfck (2.25)

(2.26)

αexpk and αimpk are regional coefficients calibrated on actual import and export vol-

umes from the Agribiom database in 2001. γ is the price-elasticity of exports.

Following Hertel and Tsigas (1988), this parameter is set at 4 for plant food and

at 1 for ruminant products. Exports of agricultural goods present the particular

feature that they are all the more restricted than there is tension on food security.

Export bans that occurred during the 2008 food crisis in several countries (India,

Brazil, Kenya, etc.), or more recently in Russia after the heatwave of summer 2010,

are characteristic examples (Demeke et al., 2009). To reflect such food security con-

cerns on long term, export capacities for food crops are incorporated and defined

as the gap between the potential production
∑
ρmaxj,k f cropj,k Ssurf,k and the domestic

demand for plant food.

In accordance with the facts, this representation allows a region to simultane-

ously import and export a same category of goods, and countries facing different

production costs may be present on the market. Another consequence of this mod-

elling choice for international trade is related to the aggregation in calories. Indeed,

the simultaneous imports and exports may also be interpreted as underlying fluxes

of different commodities that we do not try to model separately.

2.4.5 Rules of land-use change

The distribution of the six land-use types over land classes (forest, residual, ex-

tensive and intensive pastures, dynamic and other croplands, see figure 2.11) is

modified each year according to specific rules. This is carried out in two steps: first,

the amount of forest areas is updated according the prescribed scenario. Varia-

tions of agricultural surfaces are deduced from exogenous evolutions of forest areas,

neglecting phenomenons such as extension of urban areas (the sum of all land-use

types is supposed to be constant throughout the projection period). The increase

or decrease of forest surfaces is distributed proportionally to the size of forest area

present in each land class. Finally, the supply demand equilibrium (equation 2.1 to

2.8) is calculated for each region and provide the other land-uses.
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Residual pastures are considered to be an “inefficient” use of land, therefore its

area in each land class get reduced as soon as the pressure on land is higher than

its reference level for year 2001. The conversion speed is linearly related with the

pressure on land.

As the pressure on land grows, in response to – all other things being equal –

an increase of energy price and/or food crops domestic demand and/or a reduction

of agricultural area (afforestation, etc.), the limit land class jlimit shifts towards

less and less fertile land classes. Hence, extensive pastures become converted into

dynamic croplands, intensive and residual pastures, according to their average area

fraction on land classes of the intensive system.

The area of intensive pasture is set such as to meet the grass demand from

ruminants in the intensive system:∑
j

fPintj Dsurfρ
grass
past,int = Qr,intβr,intφ

grass
r,int (2.27)

When intensive pasture area needs to be increased, land is taken from residual

pastures if possible. Otherwise, land is taken from or given to dynamic cropland.

2.5 Model calibration

Unless otherwise specified, the model parameters are calibrated against agricultural

and economical statistics (Agribiom, GTAP) for base year 2001 in each region (see

table 2.9 for a list of calibrated parameters). This section describes the Agribiom

dataset, which provides to the Nexus Land-Use data of food supply and use for the

base year.

2.5.1 World supply and use of crop calories

Each year, the Nexus Land-Use model calculates a global biomass balance (fig-

ure 2.3) equalizing the annual flows of edible biomass which are produced, traded

and consumed. The balance is expressed in kilocalories by aggregating many differ-

ent products according to their origin (plants, ruminants, etc.), and not in tons of

biomass for a range of commodities, as in most other economic models.

From a single country to the whole world, Agribiom generates synthetic and co-

herent estimates on the past (Dorin, 2011) and can be used to simulate and explore

future possible resource-use balances of edible biomass. Its construction was initi-

ated in 2006 with the aim of creating a tool for use in collective scenario-building

such as Agrimonde (Paillard et al., 2011) and in hybrid modelling exercises such as
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the one presented in this chapter. The basic principle of Agribiom is to link human

food diets with spaces (crops, pastures, freshwater, continental shelves, etc.) sup-

plying edible biomass (grain, tuber, fruit, vegetable, milk, meat, fish, etc.) through

resource-use balances in kilocalories that take into account trade between coun-

tries. Such balances were estimated since 1961 for five categories of edible products:

plant products from croplands, products from grazing (ruminant) and non-grazing

(monogastric) animals, products from freshwater or sea water. They aggregate 109

agricultural products (or group of products) edible in their primary form and for

which the FAO (2010b) provides annual country-level Supply-Utilization Accounts

(SUA) in metric tones (table 2.7).
The SUA volumes in tons are converted into kilocalories (kcal) via a process

which uses nutritional coefficients provided by the FAO (2001) or Gebhardt et al.
(2006) and assumptions regarding the processing of “primary” products (e.g. soy-
bean) into “secondary” products (e.g. soya oil and oilcake). The output in kilocalo-
ries is similar to the supply-utilization accounts of FAO (FAO, 2010a), but without
a “Processed” column on the right side:

QiAB − ExpiAB + ImpiAB + δistock,AB = Di
h,AB + FeediAB + SeediAB +WasteiAB +OtheriAB(2.28)

where:

• AB subscript stands for Agribiom.

• i subscript is a category of food biomass: food crop (fc), ruminant (rumi) and

monogastric (monog).

• Q is the production (kcal).

• Exp is the exports (kcal).

• Imp is the imports (kcal).

• δistock,AB is the stock variation (negative sign if de-stocking) (kcal).

• Di
h,AB is the quantity used for feeding humans (kcal).

• Feed is the quantity used for feeding animals (kcal).

• Seed is the quantity used for reproductive purposes (seed, eggs, etc.) (kcal).

• Waste is the wasted quantity between the general available quantities (Pro-

duction - Exports + Imports + ∆Stocks) and their allocation to a specific use

(food, feed, etc.); note that this does not include losses occurring before and

during harvesting, or wastage occurring in the household (kcal).
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• Other is the quantity used for non-food purposes: lubricants, energy, etc.

(kcal).

In the Nexus model, δistock,AB is neglected. The share of seed, waste at the

agricultural stage and other non-food biomass is considered to be a constant fraction

of the total crop production for all the simulation. This fraction is denoted ωfcswo and

is defined in (2.29). Corresponding coefficients for monogastrics and ruminants are

ωmswof and ωrswof which also accounts for feed use (whey, bone and fish meal, etc.).

ωfcswo =
SeedfcAB +WastefcAB +OtherfcAB

Dfc
h,AB +Dfc

feed,AB + ExpfcAB − ImpfcAB
(2.29)

The consumption of crop products used as feed for livestock intensive systems

is calculated using the production of monogastric and ruminant animals in the in-

tensive system and Bouwman et al. (2005) conversion factors (see equation 2.30).

The monogastric production statistics are taken from Agribiom. The ruminant pro-

duction by the intensive system at the base year Q2001
r,int is diagnosed as a fraction of

the total ruminant production of Agribiom according to data from Bouwman et al.

(2005) on intensive grazing.

Qfcfeed,2001 = QABm βmφ
fc
m +Q2001

r,intβr,intφ
fc
r,int (2.30)

As previously mentioned in section 2.2.3, data from LPJmL do not cover all food

crop production. The rest of the production is denoted Qfcother crop. Evolution of the

quantity produced on the other croplands category as well as its corresponding yields

are forced by an external scenario. Its production at the base year is deduced from

equation 2.31, as given by:

Qfcdyn crop +Qfcother crop = (Dfc
h,AB +Dfc

feed,2001 + ExpfcAB − ImpfcAB)ωfcswo(2.31)

where Qfcdyn crop is the dynamic production calculated using actual yields.

2.5.2 Calibration of the production function and the regional price

of food crops calories for base year 2001

In this section, we describe the calibration of the initial slope of the production

function αIC and the calorie price pcal at base year 2001 in each region. This

calibration is done in two steps. The assumptions that the minimum yields are equal

to 10% of potential yield (see section 2.3.2), implies that the yield value minimizing

farmers’ cost is proportional to the potential yield values over each land class.

ρj(pcal)

ρmaxj

= 1 − (1 − 0.1)

√
αIC × pχ
pcal

(2.32)
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To make possible the calibration of the production function, yields are firstly

computed so that the total production remains equal to the base year production:∑
ρjf

crop
j Ssurf =

∑
ρactualj f cropj Ssurf (2.33)

To assess the validity of the resulting distribution of yields over land classes,

correlation coefficients between computed base year yields ρj and actual yields ρactualj

from LPJmL are computed for each region. They are generally above 0.8 except for

Brazil where the correlation coefficient is 0.69, meaning that our linear model gives a

good approximation of the reality. Then, the following system of equations is solved

in pcal and αIC :

IC ′j(ρj) = αIC

(
ρmaxj − ρminj

ρmaxj − ρj

)2

=
pcal
pχ

(2.34)∑
j

pχICj(ρj)f
crop
j Ssurf = ICχ (2.35)

Equation 2.34 results from the first order conditions for cost minimisation (see

section 2.4.3). In equation 2.35, the sum of the intermediate consumption of each

land class is set equal to the intermediate consumption from ICχ coming from the

GTAP 6 database (GTAP, 2006). ICχ is the regional consumption of the part of

the agricultural sector modelled in LPJmL from the chemical and mineral sectors

(table 2.8). GTAP categories corresponding to the chemical and mineral sectors

are: chemical, rubber, plastic products and mineral necessities. GTAP categories

corresponding to the agricultural sector modelled in LPJmL are wheat, oil seeds,

rice and cereal grain nec. Sugarbeet and sugar cane are aggregated into one single

GTAP category. As sugar cane is not modelled in LPJmL, this category was removed

in regions where sugar cane was believed to be in majority (India, Brazil, Rest of

Asia, Rest of Latin America, Middle East, OECD pacific and Africa) and added

elsewhere. The calibrated calorie price value in 2001 and the initial slope of the

production function are presented in table 2.8.

2.5.3 Calibration of fixed costs per hectare

The parameter FCtot is calibrated so as to ensure that at the base year the equality

between costs in the intensive system and in the extensive one at the frontier jlimit

holds (see section 2.4.3 equation 2.22). This yields:

FCtot = pcalρjlimit − pχICjlimit(ρjlimit) +
prρ

r,ext
past (fPextjlimit

− fPresjlimit
)

f cropjlimit

(2.36)
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2.5.4 Adjustments to the livestock model

In this section, we describe calculation of grass yield and modifications brought to

Bouwman et al. (2005) feed conversion factor of intensive and extensive ruminants.

FAO statistics on animal products include a category called “animal fat” for

which no breakdown between ruminant and monogastric animals is available. In

Agribiom, this “animal fat” was entirely added to the ruminant production while

Bouwman et al. (2005) ignore it. Therefore, to remain consistent with the Agribiom

database we modify the feed conversion factors for intensive and extensive ruminants

βr,ext and βr,int to add this production of fat. Parameters of the Nexus Land-Use

livestock production model are shown on tables 2.4 and 2.5.

Potential yields apply only to dynamic cropland and are not used to calculate

grass yields. In the Nexus Land-Use, the grass yields at the base year are calibrated

as the ratio between grass needs and pasture areas in each livestock production sys-

tem. The quantification of total permanent pasture area is highly uncertain due

to the unclear distinction between rangeland and grassland pastures in national

inventories (Ramankutty et al., 2008). The Ramankutty et al. (2008) data set is

believed to be more reliable than the FAO statistics used by Bouwman because it

combines satellite data and national inventories. For this reason, we calibrate the

sum extensive and residual pastures area as the difference between total pasture

area inventoried by Ramankutty et al. (2008) and the intensive pasture area from

Bouwman et al. (2005). For each region of the model, the resulting extensive pas-

ture area is combined with the total extensive ruminant grass consumption in the

region, given by Bouwman et al. (2005), to obtain the yield of extensive pasture.

In the same way, yield on intensive pastures is calculated by dividing the intensive

ruminants grass consumption from Bouwman et al. (2005) with intensive pasture

areas (table 2.6). These pastures yields are the quantity of grass grazed (as opposed

to total grass grown) on a unit of land.

2.6 Example of model outputs

2.6.1 Scope, parameters and scenarios

This section provides a sensitivity analysis giving some insights on the functioning

of the model. To this end, we run the Nexus Land-Use until 2050 for different evolu-

tions of the size of arable lands and of the values of energy and chemical inputs price

pχ. For each of these simulations, food consumption increases following a scenario
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Figure 2.14: Variations of the pro-

portion of extensive pastures in

function of chemical inputs price

and expansion rate of agricultural

lands

Figure 2.15: Variations of crop

yields in function of chemical inputs

price and expansion rate of agricul-

tural lands

inspired by the Millennium Ecosystem Assessment scenario “Global Orchestration”

(Millennium Ecosystem Assessment, 2005). Population grows according to the me-

dian scenario of the United Nations (United Nations, Department of Economic and

Social affairs, Population Division, 2004) and agrofuel production is set constant at

its 2001 level for the sake of simplicity. The maximal conversion speed of residual

pastures is set to 20% per year. The area of the “other cropland” category and its

corresponding production is fixed at its 2001 level.

In the model, adjustments to variations of production are governed by the evo-

lutions of crop yields and of extensive pastures area. Given their critical role, we

present on figure 2.14 and figure 2.15 the 2050 values of these two key drivers re-

sulting from each simulation. The evolutions of crop yields are represented using a

world crop yield defined as the mean of each regional crop yield weighted by regional

cropland areas. The area of extensive pastures is computed as the share of the area

of extensive pastures in the total area of agricultural lands.

To exhibit the consequences of relaxing land pressure in the most readable way,

we choose to crudely apply a same rate of expansion of agricultural lands to each

of the 12 regions of the model, even if in some cases this scenario is not coherent

with the actual evolution. In these simulations the selected expansion of agricultural

surfaces between 2001 and 2050 ranges from 0 to 20%.

The value of the fertiliser and pesticide price index pχ is set equal to one at

the base year in every regions of the model. For this sensitivity analysis, variations
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to 2050 range from 0% to + 200%. Here again, we aim only at exploring the

consequences of hypothetical variations of pχ on the key drivers of the model, without

particular regards to the realism of the envisaged evolutions.

2.6.2 Key results

In the Nexus Land-Use, crop yields result from the trade off between land and

chemical inputs prices. Hence, an increase of pχ disadvantages the use of chemical

inputs over land and generate a yield reduction ceteris paribus. This effect stands

out clearly in figure 2.15. Conversely, as arable land becomes scarcer, its shadow

costs λ increase, favouring all other things being equal the use of chemical inputs

and prompting up yield increase. The form of the layer indicates that land scarcity

tends to reduce the elasticity of yield with respect to pχ, showing that as land

pressure grows, the flexibility to choose yields considering chemical and energy prices

diminishes. When the pressure on land is low, the elasticity of yields to pχ is

such that it brings out the non-linear form of the crop production function (see

section 2.3.2). When the pressure on land peaks (at lowest rate of expansion of

agricultural lands), this elasticity diminishes, revealing a smaller non-linearity. The

volume of consumption of chemical inputs, also provided by the model, follows the

same pattern as the yields: a doubling of pχ induces a reduction of 4% of the 2050

chemical inputs consumption when the size of agricultural lands remains constant

and a reduction of 11% with expansion of agricultural lands of 20%.

Figure 2.14 shows that the proportion of extensive pastures diminishes as pχ rises

and as the deforestation rate drops. When pχ increases, it is actually necessary to

intensify the livestock production by converting extensive pastures into crop or in-

tensive pastures, in order to compensate the loss of production due to the fall of yield

resulting from the rise of pχ. Moreover, when the expansion of agricultural lands

decreases and the arable lands become scarcer, the production must be intensified

both by pushing up yields and by converting extensive pastures.

2.7 Discussion

The model presented in this chapter is at its first step of development and several

paths of improvement are possible. In the current version of the model, the mix

of cultivated crops is supposed to be constant over time. This implicitly accounts

for agronomic choices, local preferences, cropping system (rotations) and so on.

Nevertheless, this may lead to over- or under- estimation of the potential yield. For
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example a scenario with a high demand for animal products should trigger a shift in

production resulting in an increased share of a crop like maize in the crop mix. Such a

shift should feedback on the potential yield, because of the better caloric productivity

of this particular crop. Given the assumption of a constant mix of cultivated crops,

the Nexus Land-Use cannot account for this effect. As the crop mix is composed

of relatively homogeneous crops with respect to their yield, we consider that this

error is not greater than the one we would have made by computing another mix

of crops disconnected from the patterns previously mentioned. In future versions of

the model, this issue could be overcome by modifying the potential yield according

to the projected mix of crops.

The production function could be improved in several ways. This firstly con-

cerns the representation of capital and labour. Even if it is not the main focus

of the model, exploring the consequences of the agricultural intensification on the

labour market could be interesting, especially in developing countries where agri-

cultural manpower still constitutes an important share of the working population.

Some ameliorations could also be brought to model manure use, which is for the

moment simply incorporated in the calibration coefficients. Indeed, an increase of

animal production also means an increase in available manure which could be sub-

stitutable to industrial fertilisers and allow for a reduction of intensification costs.

Several solutions are possible, the simplest would be to index the coefficients of the

production function on the animal production per cultivated hectares.

The theoretical basis governing the Nexus Land-Use does not completely match

the reality. Inspired by Ricardian principles, the theory states that cropland and

intensive pastures should be located exclusively on the most productive lands, while

the remaining lands should be occupied by extensive pastures. This tends to intro-

duce a bias towards concentrating cropland too strongly on best lands. To mitigate

this effect, we introduce “residual pastures” that belongs to the extensive system

but are located on productive lands, and that can be converted into croplands or in-

tensive pastures with varying speeds. Using a Ricardian frontier, however, makes it

possible to represent the yield decrease resulting from the cultivation of lower quality

lands. In comparison to other models where yield evolution is exogenously set or

where the heterogeneity of land is not accurately accounted for, the simulation of

yields will thus be more consistent with the actual distribution of land productivity.

At the base year, the calibration data used for cropland and pasture area (Ra-

mankutty et al., 2008) shows that if only small amounts of cropland are located on

the least productive lands, the size of pastures on higher-yield lands is sometimes
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significantly greater than the areas of intensive pastures reported by Bouwman et al.

(2005). The gap is filled by the “residual pastures” category. Brazil appears to be

the country with the largest share of residual pastures in the model (see figure 2.13).

This country is characterised by some market imperfections limiting the efficient use

of land, such as an opaque land market (Merry et al., 2008) and a limited access

to credit by farmers (de Gouvello et al., 2010). Regions with the lowest share of

residual pastures are the USA, Europe, India and Asian countries. These regions

have actually been at the cutting edge of the Green Revolution, which has favoured

a more efficient use of land by e.g. improving the institutional environment (creation

of rural financial institutions, etc.).

Finally, agronomic representation used in the Nexus Land-Use is based on a

distribution of land into land classes of potential yields which may not match reality,

in part because they are based on a vegetation model, here LPJmL. As mentioned

in section 2.3.1, potential yields are not correct everywhere, notably because of

issues on multicropping representation, the lack of perennial crops and errors due

to the LPJmL CFT approach. Also, potential yields are a theoretical construct

based on many assumptions such as the variety parametrisation or photosynthetical

efficiencies. More fundamentally, the Nexus Land-Use is designed within the green

revolution paradigm based on the selection of varieties, use of chemical fertilisers and

pesticide inputs and low labour intensive production, but ignores other promising

possibilities such as agroecology (Francis et al., 2003; Wezel et al., 2009).

2.8 Conclusion

Interactions concerning food demand, biomass energy and forest at the global scale

are subject to growing interest, especially regarding indirect land-use changes (Searchinger

et al., 2008) and the consequences for food prices of agrofuel production and for-

est preservation (Baier et al., 2009; Tokgoz and Elobeid, 2006; Wise et al., 2009).

This study presents a new global model approach to tackling this issue by provid-

ing a detailed representation of agricultural intensification mechanisms – which are

viewed as a key driver to bridge conflicts on land-use (van Vuuren et al., 2009) – in

a structure accounting for the main types of demand for biomass at the global scale.

In contrast to most land-use models, intensification is described in the Nexus

Land-Use for food crops production, through an increase of chemical inputs, and

for livestock production as well, through conversion of pasture into cropland and

subsequent modifications of the animal feed composition. This description relies on
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a hybrid representation where intensification results from economic as well as bio-

physical processes. This methodology has several advantages. First, the integration

in the Nexus Land-Use model of regional land area distributions of potential yields

and the modelling of a Ricardian frontier of production make it possible to explicitly

represent the variations of yield induced by the expansion of cropland on marginal

lands. Secondly, technical change can be simulated both in agronomy – through a

prescribed increase of potential yields – and in zootechnics – through a change of

livestock production model parameters.

The Nexus Land-Use framework makes it possible to explore jointly the effect of

changes in diet with respect to total calories and animal share, agrofuel production

and deforestation in a context of changing energy price. Some sensitivity scenarios

were explored with a special focus on the effect of future deforestation and rising

energy prices on agricultural intensification. According to these results, an increase

of energy price induces a yield reduction and a diminution of extensive pastures

area. Reducing deforestation also decreases extensive pasture area but leads to a

growing consumption of agricultural inputs. Most importantly, these results show

that incorporating biophysical constraints in a land-use model generates a non-linear

response of crop yield and extensive pastures area to variations of energy price and

deforestation rate.
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Table 2.1: Main input data for each region of the model at the base year 2001.

Cropland and pasture areas are from Ramankutty et al. (2008). Forests areas

from Poulter et al. (2011). Other data are from Agribiom (Dorin, 2011). Popu-

lation is in millions. Diet is calorie consumption in kcal per capita and per day

followed by the fraction of animal products in brackets. Consumption for seed,

waste at the farm level and other consumption of food crops such as lubricants

and cosmetics in kcal/cap/day. Net imports of food crops and animal products

in kcal/cap/day. Food crops used as feed in kcal/cap/day (section 2.5.4). Areas

are in Mha.

Regions Population Diet Seed, waste Net imports of food Food crops

Other Crops Animal for animals

USA 311 4105 (30%) 861 -3344 -135 6939

Canada 31 4167 (30%) 1424 -7408 -435 9174

Europe 585 3875 (30%) 1053 930 -52 4248

OECD Pacific 197 2988 (20%) 364 1919 -165 2208

FSU 280 3101 (20%) 1010 138 62 2515

China 1284 3005 (17%) 598 254 19 1314

India 1060 2310 (8%) 284 34 -2 212

Brazil 177 3168 (22%) 1146 -2161 -72 2674

Middle East 146 3076 (12%) 488 2550 74 1626

Africa 826 2510 (6%) 438 636 26 458

Rest of Asia 884 2430 (8%) 502 -379 17 500

Rest of LAM 324 3067 (19%) 782 -721 94 1623

World 6106 2893 (16%) 603 - - 1644
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Table 2.1: Continued.

Regions Area

Cropland Pasture Forest

USA 180 224 334

Canada 42 19 458

Europe 154 77 220

OECD Pacific 34 277 276

FSU 205 332 894

China 141 272 209

India 169 11 65

Brazil 50 176 526

Middle East 29 88 36

Africa 213 764 788

Rest of Asia 154 130 359

Rest of LAM 108 325 553

World 1477 2694 4721
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Table 2.2: Mean of food crop production over the period 1999-2003 from

Agribiom and LPJmL production according to actual yields and annual frac-

tional coverage per grid cell CFT around the year 2000 from Fader et al. (2010).

Ramankutty cropland area in the year 2000 and LPJmL cropland area around

the year 2000. LPJmL cropland area and production are referred to as “dy-

namic” in the chapter.

Crop production (Pkcal) Croplands (Mha)

Region Agribiom LPJmL Ramankutty LPJmL

USA 1.61 1.60 (99%) 180.1 94.5 (52%)

Canada 0.23 0.20 (89%) 41.5 23.8 (57%)

Europe 1.52 1.32 (87%) 153.4 86.0 (56%)

OECD Pacific 0.24 0.16 (65%) 33.8 19.5 (58%)

FSU 0.61 0.54 (88%) 203.2 79.2 (39%)

China 1.87 1.32 (71%) 140.8 87.0 (62%)

India 1.06 0.72 (68%) 168.6 108.5 (64%)

Brazil 0.53 0.31 (58%) 49.7 28.4 (57%)

Middle East 0.13 0.09 (72%) 29.0 13.7 (47%)

Africa 0.83 0.46 (56%) 212.3 96.5 (45%)

Rest of Asia 1.24 0.67 (54%) 153.3 66.1 (43%)

Rest of LAM 0.67 0.45 (67%) 107.0 45.7 (43%)

World 10.52 7.84 (75%) 1472.7 748.8 (51%)
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Table 2.3: FAO and MIRCA2000 (Portmann et al., 2010) aggregates correspond-

ing to LPJmL CFTs. Calorie content calCFT in Mkcal/tons of fresh matter from

Agribiom, followed by the share of each CFT in global cropland area in percent

(1493 Mha in 2000, Ramankutty et al., 2008) and in global food crops production

(mean over the 1999-2003 period: 10.5 Pkcal, Agribiom).

FAO crops MIRCA2000 crops LPJmL CFTs calCFT % Area % Production

Wheat wheat

wheat 3.34 17.0 22.1
Barley barley

Rye

ryeRye grass for forage

and silage

Rice rice rice 3.6 6.7 13.6

Green corn (maize)

maize maize 3.56 9.2 21.8
Maize

Maize for forage

and silage

Millet millet

millet 3.4 4.7 1.9
Sorghum

sorghumSorghum for forage

and silage

Beans, dry

pulses field pea 3.46 4.1 2.0

Beans, green

Broad beans, dry

Broad beans, green

Chick peas

Cow peas, dry

Lentils

Lupins

Peas, dry

Peas, green

Pulses, other

Sugar beets sugar beets sugar beets 0.7 0.4 1.5

Cassava cassava cassava 1.09 1.3 2.1

Sunflower seed sunflower sunflower 5.7 1.3 1.3

Soybeans soybeans soybeans 4.16 4.6 6.1

Groundnuts
groundnuts

groundnuts 5.67 1.3 1.6
peanuts

Rapeseed
rapeseed

rapeseed 4.94 1.5 1.6
canola
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Table 2.4: Monogastic feed conversion factor βm (Mkcal of feed / Mkcal of mono-

gastric product). Share of food crops φfcm and fodder φfodderm in feed. Calories of

food crop needed to produce one calorie of monogastric meat and eggs βm×φfcm .

Feed conversion factor of extensive ruminants βr,ext. Share of grass in feed φgrassr,ext .

From Bouwman et al. (2005) and modified as explained in section 2.5.4

Regions βm φfcm φfodderm βm × φfcm βr,ext φgrassr,ext

USA 8.10 0.84 0.16 6.82 11.49 1.00

Canada 8.26 0.84 0.16 6.95 13.17 1.00

Europe 8.71 0.71 0.28 6.21 10.03 0.95

OECD Pacific 8.80 0.73 0.27 6.40 13.71 0.98

FSU 10.52 0.67 0.32 7.07 12.85 0.95

China 9.58 0.30 0.70 2.87 18.41 0.95

India 11.02 0.59 0.41 6.48 19.23 0.50

Brazil 9.85 0.70 0.30 6.88 38.23 0.95

Middle East 10.75 0.73 0.26 7.86 12.30 0.95

Africa 10.54 0.69 0.31 7.28 33.53 0.95

Rest of Asia 10.00 0.30 0.70 2.99 33.45 0.58

Rest of LAM 10.21 0.51 0.49 5.17 31.55 0.95
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Table 2.5: Feed conversion factor of intensive ruminants βr,int (Mkcal of feed /

Mkcal of ruminant product). Share of food crops φfcr,int, fodder φfodderr,int and grass

φgrassr,int in feed. Calories of food crop needed to produce one calorie of intensive

ruminant meat and milk βr,int×φfcr,int. From Bouwman et al. (2005) and modified

as explained in section 2.5.4

Regions βr,int φfcr,int φfodderr,int φgrassr,int βr,int × φfcr,int

USA 11.49 0.25 0.19 0.56 2.84

Canada 13.17 0.29 0.15 0.56 3.83

Europe 10.03 0.13 0.33 0.53 1.35

OECD Pacific 13.71 0.19 0.25 0.55 2.54

FSU 12.85 0.21 0.25 0.53 2.67

China 18.41 0.10 0.28 0.57 1.85

India 19.23 0.03 0.30 0.17 0.64

Brazil 38.23 0.02 0.28 0.65 0.75

Middle East 12.30 0.29 0.34 0.30 3.56

Africa 33.53 0.08 0.28 0.59 2.70

Rest of Asia 33.45 0.09 0.25 0.35 3.04

Rest of LAM 31.55 0.06 0.24 0.64 2.01
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Table 2.6: Consumed grass yield of intensive permanent pastures ρgrasspast,int in

Mkcal/ha/yr. Intensive permanent pasture area Spast,int in Mha. Production of

intensive ruminant meat and milk per hectare of intensive permanent pasture

ρr,intpast (= βr,intφ
grass
r,int ρ

grass
past,int) in Mkcal/ha/yr. Consumed grass yield of extensive

permanent pastures ρgrasspast,ext in Mkcal/ha/yr. Extensive permanent pasture area

Spast,ext in Mha and. Production of extensive ruminant meat and milk per

hectare of extensive permanent pasture ρr,extpast in Mkcal/ha/yr. Yield of pastures

are the quantity of grass grazed on a unit of land and not the total grass grown.

Regions ρgrasspast,int Spast,int ρr,intpast ρgrasspast,ext Spast,ext ρr,extpast

USA 4.29 121.24 0.67 0.76 104.24 0.07

Canada 18.88 4.65 2.54 0.84 15.63 0.06

Europe 11.28 72.24 2.02 1.77 2.41 0.18

OECD Pacific 5.00 24.16 0.61 1.23 253.23 0.08

FSU 5.52 48.40 0.81 0.10 289.62 0.01

China 4.43 73.66 0.43 1.36 196.19 0.08

India 45.80 4.46 14.67 0.29 6.38 0.03

Brazil 17.75 25.32 0.71 2.10 153.37 0.06

Middle East 4.58 7.13 1.23 0.13 78.21 0.01

Africa 5.54 64.31 0.27 0.50 696.25 0.02

Rest of Asia 20.17 11.71 1.92 1.61 115.92 0.09

Rest of LAM 10.61 43.49 0.52 1.08 272.99 0.04
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Table 2.7: Compartmentalisation of food biomasses in Agribiom.

Group Compartments SUA products lines (FAO Commodity Balances)

Plant

products

(terres-

trial)

Vege Wheat, rice & other grains of cereals; Bran;

Maize & rice bran oils; Beans, peas & other

pulses; Cassava, potatoes & other roots or tu-

bers; Tomatoes, onions & other vegetables; Ap-

ple, oranges & other fruit; Soya bean, cotton-

seeds, olives & other oilseeds or tree nuts with

their by-products (oils, cakes); Sugars & mo-

lasses; Wine, beer & other; Cocoa, coffee & tea;

Pepper, cloves & other spices.

Animal

products

(terrestrial)

Rumi (graz-

ing)

Bovine meat, mutton, goat meat & other meat;

Edible offal; Meat meal; Milk (excluding but-

ter), butter, ghee, cream; Raw animal fat.

Mono Eggs, pig meat, poultry meat.

Aquatic

products

Aqua Freshwater fish

Mari Demersal fish, pelagic fish & other marine fish

with their by products (oils , meals); Crus-

taceans, cephalopods & other molluscs, aquatic

meat & plants.
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Table 2.8: Calibrated calorie price pcal value in 2001 ($/Mkcal), calibrated initial

slope of the production function αIC in $/Mkcal and GTAP 2001 intermediate

consumption ICχ in billions of dollars

Regions pcal αIC ICχ

USA 13.45 1.66 6.46

Canada 17.30 3.60 1.32

Europe 15.79 3.33 8.00

OECD Pacific 27.96 12.44 2.28

FSU 17.64 7.37 4.73

China 15.76 2.53 7.10

India 7.56 2.27 2.41

Brazil 15.70 2.87 1.77

Middle East 31.61 20.30 1.49

Africa 5.93 3.79 1.43

Rest of Asia 12.38 2.44 3.13

Rest of LAM 13.14 4.12 2.67
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Table 2.9: Main notations. Except pwcal, they are all regional. (t) means evolving

through the simulation. j is the subscript of land classes.

Forcing

(t)

Dfc
h , Dm

h , Dr
h Demand of food crops (fc), monogastrics (m)

and ruminants (r) products for humans (h) in

kcal/yr.

Dfc
agrofuel Demand of food crops for agrofuel production in

kcal/yr.

Ssurf Supply of agricultural area excluding other crop-

lands, including dynamic croplands, extensive,

intensive and residual pastures in ha.

pχ Index of fertiliser and pesticide price.

Data for

calibration

ρactualj Actual yield per land class (mean through the

1999-2003 period) in kcal/ha/yr.

ICχ Consumption of the part of the agricultural sec-

tor modelled in LPJmL from the chemical and

mineral sectors in 2001 in $ (see section 2.5.2).

Calibrated

parameters

ωfcswo, ωmswof ,

ωrswof

Share of Seed, Waste at the farm level, Other

uses of food crops excluding agrofuel production

and Feed (only for monogastrics and ruminants)

in total production of Food Crop, Monogastric

and Ruminant products.

Qfcother crop Other production of food crops which is not

dynamically modelled (i.e. difference between

the total production from Agribiom and LPJmL

production in 2001).

αIC Initial slope of the intermediate consumption

function in $/kcal.

FCtot Globally calibrated fixed cost of the intensive

and the extensive system and aggregated with

the fixed cost on croplands in $/ha, used to com-

pare the opportunity cost of the intensive and

extensive systems.

ρgrasspast,int,

ρgrasspast,ext

Grazed grass per hectare of intensive and exten-

sive pastures in kcal/ha/yr.

ρr,intpast , ρ
r,ext
past Production of ruminant product per hectare of

intensive and extensive pastures in kcal/ha/yr

(ρ
r,int/ext
past =

ρgrass
past,int/ext

βr,int/extφ
grass
r,int/ext

).

Impm, Expm 2001 imports and exports of monogastric prod-

ucts in kcal/yr.
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Table 2.9: Continued.

Biophysical

parameters

ρmaxj , ρminj Potential yield and minimum (no inputs) yield

(ρminj = 0.1 × ρmaxj ) in kcal/ha/yr.

βm, βr,int,

βr,ext

Feed conversion factor for monogastrics, in-

tensive and extensive ruminants in ’kcal of

feed’/’kcal of animal product’.

φfcm , φfodderm ,

φfcr,int, φfodderr,int ,

φgrassr,int ,φgrassr,ext

Share of feed categories in animal rations (fc:

food crops, fodder: residues and fodder, grass:

pasture grass, monog: monogastrics, r, int: in-

tensive ruminants, r, ext: extensive ruminants).

Variables

depend-

ing on

land

classes

(t)

ρj Yield of the land class j minimizing farmer’s

production cost in kcal/ha/yr.

ICj Intermediate consumption of chemical and min-

eral inputs of the land class j in $/yr.

f cropj , fPintj ,

fPresj , fPextj

Area of dynamic cropland (i.e. where crops

modelled in the LPJmL model are grown), in-

tensive pastures, residual pastures, extensive

pastures of the land class j expressed as a frac-

tion of Dsurf .

pcal Food crop calorie price in $/kcal.

λ Land rent in $/ha/yr.

Variables

(t)

pr Price of ruminant calories in $/kcal (= pcal(1 +

ωfcswo)βr,intφ
fc
r,int).

pwcal World calorie price in $/kcal.

jlimit Limit land class.

Dsurf Demand of agricultural area excluding other

croplands, including dynamic croplands, exten-

sive, intensive and residual pastures in ha.

Qr,int, Qr,ext,

Qr

Intensive, extensive and total ruminant produc-

tion in kcal/yr.

Dfc
m , Dfc

r,int Demand of food crops for monogastrics and in-

tensive ruminant production in kcal/yr.

Dfc Total demand of food crops in kcal/yr.

Impfc, Expfc Imports and exports of food crops in kcal/yr.

Impr, Expr Imports and exports of ruminant products in

kcal/yr.
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Chapter 3

The impact of globalisation on

food and agriculture: lessons

from the Nexus Land-Use

3.1 Introduction

In the coming decades actors in the agriculture sector, especially policymakers, will

have to solve the complex equation of meeting growing food and energy needs,

driven by the demographic evolution and the depletion of fossil fuel sources, with

potentially higher input prices and smaller environmental footprint. This equation

could be even more complex due to the changing socio-economic and environmental

context. Thanks to rapid innovation in transport, communications technologies and

liberalisation of markets, the recent period has been characterised by increasing

cross-border flows of goods, services, money, people, information, and culture which

have contributed to globalisation.

Globalisation is an abstract concept used to describe a complex systemic phe-

nomenon. According to Guillén (2001), globalisation is a “fragmented, incomplete,

discontinuous, contingent, and in many ways contradictory and puzzling process”.

In this study, we will follow the definition provided by Lambin and Meyfroidt (2009),

which associates globalisation to “the worldwide interconnectedness of places and

people through markets, information and capital flows, human migrations, and social

and political institutions.”

Globalisation may affect agriculture mainly through three channels: the intensi-

fication of international trade, the diffusion of technology and the diffusion of norms
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and lifestyles with resulting shifts in diets. Until now, numerical assessments of the

effects of each of these channels on agriculture were rarely performed. To fill this

gap, this chapter uses the Nexus Land-Use model to explore mechanims linked to

globalisation that may become important influences on the future development and

sustainability of the global food and agriculture system. This study focuses specif-

ically on shifts toward convergence involving high share of meat calories in diets,

which may crucially influence the demand for biomass addressed to agriculture and

thus impact food prices and agricultural intensification. In addition, the sensitivity

of the results to assumptions regarding international trade and technology diffusion

will be tested.

The following section provides an overview of the challenges awaiting the food

and agricultural system in the XXIst century and reviews the literature on agricul-

ture and globalisation. Section 3.3 details the methodology used and presents the

scenarios of diet convergence on which this study is based. Results are presented in

section 3.4. Finally, a sensitivity analysis of the results to assumptions regarding de-

forestation, agrofuel production, potential crop yield, pasture yield and international

trade is provided in section 3.5.

3.2 Context and state of the art

3.2.1 The triple challenge of agriculture

During the second half of the XXth century, motorisation, chemicalisation and

progress in agronomy and plant genetics were at the origin of a strong increase

in global agricultural production. According to the Agribiom database, that gener-

ates synthetic and coherent historical estimates of biomass use and resource (Dorin,

2011), the caloric yield of the global production of plant food increase by 165%

between 1961 and 2007. Over the same period, the production of plant food and

animal calories globally grew by 185.6% and by 165.6% respectively, while popu-

lation grew only by 116%. Those changes have led to a significant improvement

in the caloric ration per habitant (+25.3% of plant food calories and +37.3% of

animal calories). The rise of agricultural production also contributed a shift in the

framework for analysing the causes of famine and malnutrition. Breaking with the

traditional model, which explains the food crisis by focusing on supply-related issues,

Sen (1981) developed an alternative analysis – called “the entitlement approach” –

according to which famines occur not from lack of food but from the incapacity of

people to buy food for economic or political reasons (e.g., unequal distribution of
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wealth, dictatorship, and wars).

However, Sen – as he himself acknowledged – does not have a long-term vision of

food policy. If we extend the analysis to the coming decades, tensions in the provision

of food could reappear because of the conjunction of three different constraints on

the agricultural production system.

The first constraint relates to the depletion of fossil fuel and the subsequent rise

of fossil energy prices. This rise could have two types of consequences:

(i) First, an increase in fossil energy prices may have an important impact on food

prices and on the choice of agricultural practices because energy is a major

input of agriculture e.g., for operating machinery, irrigation, drying of crops,

and heating infrastructures. Large amounts of energy are also used in the form

of fertilisers (nitrogen, phosphorus and potassium) and other chemical inputs

(e.g., pesticides). In addition to impacting food prices, growing energy prices

could also encourage farmers to save fertilisers, whose price is tightly linked

to those of energy, by extensifying their production. Therefore, an increase in

fossil energy prices could slow increases in yields and contribute to the clearing

of new lands where it is possible;

(ii) Second, higher fossil energy prices may spur the production of alternative fuels,

such as agrofuel. Anticipating future tensions on energy markets, regulating

authorities (such as the European Commission and Environmental Protection

Agency of the United States or US-EPA) have already adopted a series of mea-

sures promoting the use of biomass energy. The International Energy Agency

(IEA) provides projections of agrofuel production to 2030, which incorporate

the effects of governmental measures that were enacted or adopted up to mid-

2008 (IEA, 2008). These projections have been extrapolated to 2050 by Fischer

et al. (2009). According to these data, the final consumption of agrofuel will

grow by 180% over the period 2015-2050. More ambitious scenarios foresee a

faster development of agrofuel production up to a 360% growth of final con-

sumption over the same period.

The second constraint relates to climate change and other environmental con-

cerns such as biodiversity loss, soil erosion, and water pollution. These concerns

represent a particularly strong constraint, as agriculture is one of the few sectors to

be at the forefront of both impacts and mitigation of anthropogeniic environmental

change. Increases in the frequency of droughts and floods are projected to affect

local crop production negatively, especially in subsistence sectors at low latitudes
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(IPCC, 2007a). Using two crop models and a large array of time series on agronomic

and climate data, Brisson et al. (2010) conclude that climate change is also one of the

possible causes of the yield stagnation observed in Europe since the beginning of the

90s. Agriculture will have little room for managing these impacts. Indeed, due to its

important contribution to global anthropogenic GHG emissions (IPCC, 2007b) (see

Box 1), agriculture will at the same time have to strive to adopt less GHG-emitting

practices. Doing so will entail striking an accurate balance between reducing the

consumption of agricultural inputs and abandoning arable land to increase organic

carbon storage. According to Vuuren et al. (2007), a significant amount of agricul-

tural abandoned land – used in the form of “carbon plantations” – is required to

stabilise GHG to 2100 concentrations at low level: 260 Mha in the 450 ppm CO2eq

scenario and 220 Mha in the 550 ppm CO2 eq scenario, representing, respectively,

approximately 18% and 15% of the global cropland area.

Box 1: Greenhouse gas emissions from agriculture (source: IPCC

(2007b))

Agriculture releases significant amounts of greenhouse gases in the form of CO2,

CH4, and N2O into the atmosphere. CO2 is released largely from microbial

decay and the burning of plant litter and soil organic matter. CH4 is produced

when organic materials decompose in oxygen-deprived conditions, notably from

fermentative digestion by ruminant livestock, from stored manures, and from rice

grown under flooded conditions. N2O is generated by the microbial transformation

of nitrogen in soils and manures and is often enhanced where available nitrogen

(N) exceeds plant requirements, especially under wet conditions.

With an estimated global emission of non-CO2 GHGs from agriculture of between 5

120 MtCO2-eq/yr and 6 116 MtCO2-eq/yr in 2005, agriculture accounts for 10-12%

of total global anthropogenic emissions of GHGs. N2O emissions from soils and CH4

from enteric fermentation constitute the largest sources, 38% and 32%, respectively,

of total non-CO2 emissions from agriculture in 2005. There is however a wide

range of uncertainty in the estimates of both the agricultural contribution and the

anthropogenic total. Biomass burning (12%), rice production (11%), and manure

management (7%) account for the remainder. CO2 emissions from agricultural

soils are not normally estimated separately but are included in the land use, land

use change and forestry sector (e.g., in national GHG inventories). Consequently,

there are few comparable estimates of emissions of this gas in agriculture. US-EPA

estimated a net CO2 emission of 40 MtCO2-eq from agricultural soils in 2000, less

than 1% of global anthropogenic CO2 emissions.
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The third constraint concerns the rapidly increasing population and the resulting

growth of food needs. According to the median population scenario of the United

Nations (United Nations, Department of Economic and Social affairs, Population

Division, 2004), the world population will experience rapid growth during the first

part of the XXIst century, reaching almost nine billion by 2050. The demographic

growth will be mostly driven by developing countries, including China, Brazil and

India. Assuming dietary changes, these demographic evolutions will induce a 45.8%

increase in the demand for food between 2001 and 2050. Considering these figures,

dietary changes under the influence of globalisation, with a possible convergence

towards Western lifestyles and a heavier consumption of animal calories, could dra-

matically accentuate this increase, leading to dramatic consequences for agriculture

and land-use.

3.2.2 Agriculture and globalisation: insights from the literature

In addition to the previously mentioned constraints, the food and agricultural sector

may also be impacted by the effects of the globalisation process. A sign of this

process is the share of exports in food consumption, which has risen from 21.6% to

50.8% for plant food calories and from 10.5% to 17.5% for animal calories between

1961 and 2006 (Dorin, 2011) (figure 3.1).

Figure 3.1: Share of plant food and animal exports in consumption (source :

Dorin (2011))

The globalisation issue is a rather new research area for land-use science. Lam-

bin and Meyfroidt (2009) identify four drivers of land conversion that are amplified

by economic globalisation: (i) the displacement (or leakage) effect, which results,

for example, from land zoning policies, (ii) the rebound effect, which refers to the

response of consumer food demand to an increase in crop yields, (iii) the cascade

effect, which causes indirect land-use change, and finally (iv) the remittance effect,
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which depicts how rural activities are affected by the transfer of funds from migrants

to family members remaining in their country of origin. Verburg et al. (2009) study

the impact of agricultural trade liberalisation on land-use and greenhouse gas emis-

sion using the coupled LEITAP-IMAGE modelling system. Their results indicate

that liberalisation triggers a shift in production from North America and Europe

to Latin America leading to an overall expansion of agricultural area and a global

increase in total GHG emissions by about 6% compared to the reference scenario

value in 2015.

The issue of diet shifts has been extensively studied in the literature (e.g., Popp

et al. (2010); Bruinsma and FAO (2003)). However, this question has rarely been

linked to the issue of globalisation and to the possible convergence of lifestyles. For

example, Bruinsma and FAO (2003) do not consider the case of a future change

in dietary preferences under the influence of globalisation: for this reason, they

conjecture that India is not likely to emerge as a major meat-consuming country.

The link between globalisation and convergence in diets and its consequence for

agriculture are addressed in two main studies. The Millennium Ecosystem Assess-

ment explores possible future scenarios according to two axes inspired by the Special

Report on Emissions Scenarios (IPCC, 2000): the integration level – globalised or

regionalised – and the approach of environmental issues – reactive or proactive.

The study concludes that under all scenarios, “the projected changes in drivers re-

sult in significant growth in consumption of ecosystem services, continued loss of

biodiversity, and further degradation of some ecosystem services”. Nonetheless, in

most scenarios, especially in globalised ones, the negative consequences of growing

pressures on ecosystems may be mitigated by changes in policies, institutions, and

practices. However, this rather optimistic conclusion about the effect of globalisa-

tion on ecosystems rests in part on specific assumptions about demographic changes:

although economic growth is highest in the globalised scenarios, the population is

between 8.5% and 18% lower than in the regionalised scenarios.

In the foresight exercise Agrimonde (Paillard et al., 2011), the impact of the

diet shifts on agriculture is studied through two contrasting scenarios projecting

the world’s food and agricultural systems into 2050: Agrimonde GO, a business-

as-usual scenario assuming some convergence of diet habits, and Agrimonde 1, a

rupture scenario exploring a world that has been able to implement sustainable food

production and consumption (see section 3.3.2 for further details). This study relies

on a quantitative database and on experts knowledge rather than on the explicit

modelling of agriculture and land-use. From there, Paillard et al. infers that the
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convergence of diets towards the Western model would have serious consequences

for the preservation of ecosystems. They also conclude that trade regulations are

essential for economic, social and environmental reasons.

By contrast, there are several studies in the social science field on the conver-

gence of lifestyles. The intensification of exchanges between countries, spurring the

diffusion of technologies, material values and a “culture-ideology of consumerism”

(Sklair, 2002), is predicted to cause the standardisation of tastes and desires and

the spreading of Western lifestyles (Stephan et al., 2011). Mass media, the Inter-

net, travel and tourism, and international migration contribute to the creation of a

“global village” (McLuhan, 1964) where people are increasingly exposed to a global

culture and begin to adopt a common set of behaviours. However, the converging

effect of globalisation has however been highly contested among social scientists.

In a review of the key debates surrounding the question of globalisation, Guillén

(2001) cites the views of several political and social theorists, rejecting the concept

of “global culture” and underlining the possible “resurgent affirmation of identities”.

A retrospective analysis of diet trends in different regions of the world between

1961 and 2007 also provides a more complex picture than simple convergence to-

wards Western lifestyles (figure 3.2). Convergence in the consumption of plant food

calories, presenting a 30% reduction in the standard deviation, can be observed.

The conclusion is less clear for the consumption of animal calories. In this case,

a clustering around two sets of regions can be observed. Western countries (USA,

Europe and Canada) are converging towards a meat consumption of approximately

1200 kcal/cap/day. Diets in the rest of the world are characterised by growth in an-

imal consumption but at different speeds: meat consumption is progressing rapidly

in China whereas it is relatively steady in Latin American countries.

3.3 Data and methods

3.3.1 Assessing the sustainability of agriculture with the Nexus

Land-Use model

To provide quantitative insights on the issue of diet convergence, we use the Nexus

Land-Use model, which simulates the evolution of the agricultural system until 2050

under various assumptions regarding biomass demand. The Nexus Land-Use model

belongs to the generation of global models that capture multi-scale phenomena and

potential interactions among demands for food, biomass energy and forest preserva-

tion. It simulates the dynamic allocation of agricultural land-use over the globe as
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Figure 3.2: Evolutions of the consumption of plant food (up) and animal (low)

calories around the world (source : Dorin (2011))

a function of biophysical as well as economic parameters (see Chapter 2).

The sustainability of the food and agricultural sector in both social and envi-

ronmental terms is approximated by 3 variables: (i) the world calorie price which

is the mean of regional prices weighted by the share of each region in total export.

Regional prices are not set on food markets but are equal to the production costs

on the marginal land, following Ricardian theory. The world calorie price reflects

the social sustainability of the food and agricultural system: a price that is too high

increases the risk of food crisis. Conversely, a price that is too low may impover-

ish farmers and plunge them into a condition of starvation; (ii) the consumption

of chemical inputs (fertilisers and pesticides) that are used to increase yields. Such

consumption is responsible for various environmental problems: emissions of nitrous

oxide, which is a powerful greenhouse gas, eutrophication, and water pollution; and

(iii) the areas of pastures dedicated to extensive grazing. The latter must be distin-
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guished from intensive pastures, which are associated with crops to complete the feed

ration in intensive animal farming systems (Bouwman et al., 2005). In the model,

extensive pastures are located on the least productive or accessible lands and are

used to produce ruminant calories with relatively low yields. For this reason, they

can be considered as a reserve of lands that can be used more intensively. However,

using the reserves of extensive pastures may have adverse effects on biodiversity and

reduce the amount of carbon stored in the vegetation.

In addition to these three indicators, the value of the yield gap, defined as the

average gap on cropland area between the actual and the potential yield, is also

shown to provide insights into how effectively the productivity potential of soils is

exploited.

3.3.2 Scenario design

This study is based on the statement that globalisation opens new possible futures

beyond the simple continuation of past trends. The increased interconnectedness

of the world may actually contribute to the spreading of the Western lifestyles,

entailing larger share of animal products in diets. However, with for example, the

increase of the number of interest and pressure groups with ecological and social

mandates or the better diffusion of information on the anthropogenic environmental

changes, globalisation can also contribute to the spreading of more eco-friendly and

abstemious lifestyles. Between these two borders, a wide gradient of futures is

possible, making more or less room for particularistic identities.

From there, possible futures in terms of diets are explored through three different

illustrative scenarios (see figure 3.3). All scenarios are expressed in terms of food

availability. This availability reflects the quantity of calories available to consumers,

at both home and outside the home. This quantity of calories includes calories

that are lost between the purchase and ingestion of the products and should not be

confused with the quantity of calories actually ingested, which is difficult to estimate.

The first two scenarios are taken from the foresight exercise Agrimonde (Paillard

et al., 2011). The scenario “Agrimonde GO” is the translation of the Millennium

Ecosystem Assessment scenario “Global Orchestration” (Millennium Ecosystem As-

sessment, 2005) which depicts a “globally-driven economic development [...] with

a reactive approach to ecosystems.” In this scenario, globalisation rules unchal-

lenged and spreads throughout all sectors of the economy. It is associated with high

economic growth and a level of international trade that is no longer impeded by

national borders. Environmental problems are second-order concerns and are taken
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into account only when they become acute. From there, the scenario Agrimonde GO

assumes an increase of 84% of the global calorie consumption over the period 2001-

2050 with emphasis on the consumption of animal calories (+191%). Agrimonde GO

is considered by the authors of Agrimonde to be “business as usual”. The scenario

hypothesises convergence amongst regions to a certain extent, but some regional

specificities remain in 2050.

In contrast, the scenario “Agrimonde 1” corresponds to a world where the miti-

gation of environmental damages has the highest priority. All regions of the world

are assumed to farm based on agroecological principles and to combine agricultural

development and ecosystem preservation. As a consequence, this scenario assumes

a convergence towards sustainable feeding conditions, through reductions in mal-

nutrition and the excesses in nutritional intakes, a substitution of animal calories

to plant food calories, and the improved management of waste throughout the con-

sumption process. The global consumption of calories increases by 50% whereas

meat consumption increases by only 36%.

In addition to these two scenarios, a third scenario, called “US Convergence”, is

tested to study the hypothesis of a convergence of all regions towards US diets in

2001. This scenario is highly hypothetical, as it would suppose a major change in

food habits as well as the eradication of undernutrition in the next 40 years. The

realisation of these changes would be an unprecedented event in the world’s food

history. However, it does illustrate the upper bound of the range of the possible out-

comes of diets convergence, corresponding to a world where economic development

is the only concern of people, with the lower bound being the scenario Agrimonde 1.

In this study, Agrimonde GO is denoted as AGO, Agrimonde 1 as AG1, and the

scenario “US Convergence” as “USConv”.

For a relevant comparison, these three scenarios are studied with the same hy-

pothesis on demography, energy price, deforestation, agrofuel production and po-

tential yield. The population grows according to the median scenario projected by

the United Nations (United Nations, Department of Economic and Social affairs,

Population Division, 2004). The evolution of chemical input prices (fertilisers and

pesticides) is computed as the mean of the projections of oil and gas prices, com-

puted by the Imaclim-R model (Sassi et al., 2010) assuming no climate policy, and

weighted by their energetic content as provided by Giampietro (2001). Increases in

the calculated price of chemical inputs in different regions of the world range from

130% to 200% over the period 2001-2050. The deforestation rate is exogenously

set according to the observed trends over the period 2001-2010 (FAO, 2010), as-
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Figure 3.3: Food availability of plant food, monogastric and ruminants calories

in kcal/day/cap in 2001 and in the 3 scenarios studied
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suming that reforestation that occurs in some regions (such as in the US or China)

ceases after 2020. The evolution of arable surfaces is directly deduced from refor-

estation/deforestation rates, neglecting phenomena such as the expansion of urban

areas. Because it is difficult to sketch plausible agrofuel scenarios due to the issue

of indirect land-use changes (Searchinger et al., 2008), which have brought great

uncertainties in the development of agrofuel, and because we mainly focus on food

demand, agrofuel production is set constant at its 2001 level. Finally, potential crop

yields, which are used to parameterise the computation of actual yield, are set to be

constant over the simulation period, implicitly assuming no land degradation and

no genetic or agronomic progress.

The sensitivity of the results to assumptions on forest evolution, agrofuels pro-

duction, the price-elasticity of international trade, the potential crop yields and the

grass yield of intensive pastures is tested in section 3.5.

3.4 Results

3.4.1 The picture of food and agriculture in 2050 under the 3 sce-

narios

The design of the input scenarios results in a large range of possible futures in terms

of shifts in diets. From these scenarios, the outcomes of the simulations shown in

figure 3.4 correspond to even more contrasted pictures of the food and agricultural

system: whereas the gap between the lower and the higher scenario in terms of

food consumption amounts to 39.6% (plant food + animal calories), the gaps in the

resulting world food price and the consumption of inputs between the lower and the

upper bounds of the results are of several orders of magnitude.

The business-as-usual scenario, AGO, entails significant deterioration in the sus-

tainability of the food and agricultural system. The world calorie price increases on

average by 3% annually over the period 2001-2050. This increase is most pronounced

in India, China and the rest of Asia and is lowest in Brazil, the FSU and Africa.

In fact, the three former regions experience a strong increase in their food demand,

especially with regard to ruminant calories, with relatively few extensive pasture

areas to be converted into intensive agriculture. The stock of extensive pasture de-

creases substantially over the period 2001-2050 (-86.2% globally). The displacement

of the production frontier on lower-quality lands explains the decrease in the crop

yield at the beginning of the simulation period. In spite of this effect, the yield gap

slightly decreases over the period 2001-2050 (from 47.7% to 45.3%). To sustain the
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crop yield in spite of the decreased land quality, the consumption of fertilisers and

pesticides, expressed in dollars, rises sharply, especially in India, China and the rest

of Asia where the pressure on land is the most pronounced.

Figure 3.4: Trends in the world calorie price, the global yield, areas of extensive

pastures and the consumption of chemical inputs according to a range of diets

up to 2050

The convergence of diets towards sustainable consumption conditions, which

characterises the scenario AG1, allows for a significant reduction of the pressure on

the food and agricultural system. The increase in the world calorie price is lower than

in the business-as-usual scenario AGO (+1.3% per year over the period 2001-2050).

The stock of extensive pasture decreases moderately during the simulation period

(-42% globally). The yield gap rises from 47.7% to 62.4%. As a consequence, the

consumption of fertilisers and pesticides per year and per hectare is 26.3% smaller

in 2050 than in 2001.

In sharp contrast with this latter vision, the USConv scenario corresponds to

highly unsustainable conditions of production and consumption. According to the

model’s results, the pasture area is not sufficient to meet the demand for animal

calories from 2047 on, reason why we present the results only before this date.

The world calorie grows by 7.3% per year on average over the period 2001-2046.
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To support the strong increase in food consumption, the agricultural production

potential is nearly fully exploited. Almost all of the stock of extensive pastures is

used for intensive agriculture: only 7% of the initial stock of extensive pastures at

the base year 2001 remains in 2046. As in the previous scenarios, the displacement of

the production frontier on lower-quality lands explains the decrease in the crop yield

at the beginning of the simulation period. Over the period 2001-2046, the world crop

yield grows by 0.18% per year on average. This corresponds to a reduction in the

yield gap from 47.7% to 19%. To enable such a yield increase, the consumption of

fertilisers and pesticides per unit of land is 6.4 times higher in 2046 than in 2001.

3.4.2 Identifying amplifying mechanisms

The results tend to confirm the intuition of Lambin et al. (2001) that globalisa-

tion amplifies or attenuates the driving forces of land-use change. As far as diets

are concerned, several reasons explain this effect. First, globalisation affects the

consumption of animal products whose production process is heavily land-intensive.

Across the different regions of the world, between 10 and 37 feed calories (including

calories of plant food, fodder, grass and scavenging) are necessary to provide one

ruminant calorie (Bouwman et al., 2005). Consequently, the consumption of animal

products has a stronger impact than plant food consumption on agriculture and

land-use.

Figure 3.5: Global land-use in 2045 under the 3 globalisation scenarios

In the Nexus Land-Use model, livestock production can be intensified by replac-

ing grass with food crops, residues and other roughages in the animal feed rations
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(see Chapter 2). Nonetheless, even in the case of an intensive production, animal

feed in most regions of the world is mainly composed of grass. Figure 3.5 shows

the world land-use in 2050 disaggregated among cropland, intensive pastures and

extensive pastures, which provide grass respectively in the cases where livestock

production is intensified or not. In the AG1 scenario, the agricultural system is

weakly constrained by food demand and there is room for extensive agriculture. As

a result, there are large areas of pastures, which are primarily extensive. In the

AGO scenario, the increase in land pressure stimulates the intensification of live-

stock production. Grass is replaced by food crops and other roughages, leading to a

sharp reduction in extensive pastures and to an increase in cropland and intensive

pastures. In the USConv scenario, the pressure on land is such that there are almost

no more extensive pastures. The high demand for animal products requires corre-

sponding areas of intensive pastures. Because it is assumed in the Nexus Land-Use

model that, contrary to crop yield, pasture yield cannot be intensified, pasture areas

act as global constraints on land-use pushing up crop yields and the associated con-

sumption of fertilisers and pesticides as well as increasing land rents and food prices.

The assumption of a constant pasture yield thus crucially influences the results. In

the sensitivity analysis, the consequences of relaxing this assumption are explored.

Non-linear effects represent another amplifying mechanism. In the Nexus Land-

Use model, such effects are driven by two biophysical features of the agricultural

ecosystem. First, lands are of heterogeneous quality. According to Ricardian theory,

higher-quality lands are put into cultivation first. This effect is represented in the

Nexus Land-Use by modelling a production frontier that separates an extensive and

an intensive livestock production system, with the former system located on the

least productive lands and the latter located on the most productive lands. As the

pressure on land rises, this frontier moves toward lower-quality lands and the average

land productivity progressively decreases.

The second non-linear effect relates to the form of the function that determines

the actual crop yield. In the Nexus Land-Use, the actual crop yield is driven by the

consumption of pesticides and fertilisers. Farmers are assumed to trade off between

the use of chemical inputs and the expansion of agriculture on new lands. When the

price of land is high (in case of high demand with low land availability) in comparison

with the price of fertilisers and pesticides, farmers chose to increase the crop yield

per hectare. In the model, the crop yield function has the form of a yield response

function to fertiliser application that are simulated by crop models (Brisson et al.,

2003; Godard et al., 2008) generalised to all types of fertilisers (nitrogen, phospho-
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rus, potassium) and to pesticides. It is thus a non-linear function that asymptotes

towards a potential yield. In other words, increasing the yield further requires sig-

nificant chemical inputs as the actual yield approaches its biophysical asymptote,

significantly amplifying variables such as production costs and food prices.

3.5 Sensitivity analysis

For the sake of simplicity, in this sensitivity analysis, we focus on the value of the

world calorie price. This variable can actually be considered a good indicator of

the tensions on land-use and of the resulting issues for the sustainability of the food

and agricultural system. In the Nexus Land-Use modelling framework, an increase

in calorie price is associated with agricultural intensification, i.e., a reduction of the

yield gap, through the use of larger amount of chemical inputs and a diminution

of the areas of extensive pasture. Because the pasture area is not sufficient from

2047 onward to meet the demand for animal calories in the USConv scenario (see

section 3.4.1), thus obscuring the model’s results beyond this date, we consider the

values of the world calorie price in 2045. The sensitivity of the results is assessed

through 2 types of indicators:

• the difference in 2045 world calorie price between the scenarios AG1, AGO

and USConv;

• the average annual evolution of the world calorie price up to 2045.

3.5.1 Agrofuel

The development of agrofuel is motivated by various types of arguments. In recent

years, it has been mainly justified by environmental concerns and the mitigation

of climate change. However, several studies have contested the capacity of agrofuel

to reduce GHG emissions in comparison with a fossil fuel reference (Searchinger

et al., 2008; Melillo et al., 2009). Following these conclusions, modifications to the

regulation of the bioenergy sector are under way in Europe and in the US, casting

doubts on the future of the agrofuel industry. This is why the agrofuel production

has been set constant to its 2001 level in the reference scenarios.

However, other factors, such as energy security or fossil fuel depletion, could

renew interest in agrofuel. For this reason, we investigate two variants of first-

generation agrofuel development adapted from IEA (2008). In the first variant,
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named ”median”, agrofuel production reaches 150 Mtoe (2 Ecal) in 2050, represent-

ing respectively 14.7%, 10.5% and 7.9% of the total calorie production in the AG1,

AGO and USConv scenarios. The second variant, named ”high”, has an optimistic

expectation of agrofuel development, showing production reaching 300 Mtoe (4 Ecal)

in 2050, representing respectively 29.3%, 21% and 15.8% of the calorie production

in the AG1, in AGO and in USConv scenarios. In both variants, the US and Brazil

are the two main producers.

Table 3.1: Sensitivity of the results to assumptions regarding agrofuel produc-

tion

Default Median High

Difference in the AG1 / AGO 96.6% 124.5% 156.1%

2045 world calorie price AG1 / USConv 1 159.6% 2 464.8% 10 783.2%

Average annual AG1 1.30% 1.56% 1.78%

change in the AGO 3.02% 3.40% 3.93%

world calorie price USConv 7.26% 9.15% 12.96%

Although relatively marginal in both variants, the additional production of agro-

fuel leads to a doubling of the gap in the 2050 world calorie price between the AG1

and USConv scenarios in the median variant (1 159.6% compared to 2 464.8%),

whereas this gap is multiplied by around 9 in the high variant (1 159.6% compared

to 10 783.2%). Additionally, according to our results, agrofuel development accel-

erates the increase in the calorie price in all scenarios. This effect is all the more

important than the initial production is high: the increase in the world calorie price

amounts to 0.26 points in AG1 compared to 1.89 points in the USConv scenario

when using the median variant (and 0.49 points compared 5.7 points when using the

high variant).

3.5.2 Forest evolution

The causes of deforestation are both numerous and complex. Among them, an in-

crease in agricultural price is generally considered to be a strong incentive promoting

the clearing of new lands. Sharp price changes in the AGO and USConv scenarios

may thus trigger deforestation rates beyond those observed in recent decades. For



120 CHAPTER 3

this reason, we explore a variant in which every regions engages in deforestation up

to 2050, unlike what has been effectively observed over the period 2000-2010 in some

countries (e.g., the US, Europe, and China) (FAO, 2010). In this variant, called ”in-

creased deforestation”, agricultural surfaces increase by 22.2% over the simulation

period compared with 11% in the reference case. Contrasting with this vision, a

second variant can be considered where environmental concerns prevail, leading to

a halt in deforestation. In this variant, called ”no deforestation”, agricultural areas

are held constant over the simulation period.

Table 3.2: Sensitivity of the results to assumptions regarding deforestation

Default
No Increased

deforestation deforestation

Difference in the AG1 / AGO 96.6% 180.2% 66.6%

2045 world calorie price AG1 / USConv 1 159.6% 13 922.5% 329.4%

Average annual AG1 1.30% 1.53% 1.18%

change in the AGO 3.02% 3.88% 2.33%

world calorie price USConv 7.26% 23.92% 4.51%

The values displayed in table 3.2 show that the gap in the 2050 world calorie

price between the different scenarios studied is very sensitive to assumptions of

deforestation: the gap is reduced by two thirds in the “increased deforestation”

variant and multiplied by 12 in the “no deforestation” variant.

The results also reveal that policies aimed at reducing deforestation could have

major impacts on the food and agricultural system. First, halting deforestation

leads to an accelerated rise in calorie prices in comparison with the reference case:

+0.23 points in the AG1 scenario, +0.88 points in the AGO scenario and up to +16.6

points in the USConv scenario. Such a policy also entails the intensification of the

agricultural production: in the AGO scenario, the average per hectare consumption

of fertilisers and pesticides increases by 41% in comparison with the reference case,

and the area of extensive pastures decreases by 37%. For this reason, policies aimed

at reducing deforestation must be carefully designed so that the environmental gains

in terms of preserved forest areas are not counteracted by an increase in calorie prices
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or by the growing intensification of agriculture with its associated ecological impacts.

3.5.3 International Trade

As with shifts in diets, globalisation is viewed as being associated with the intensifi-

cation of international exchange and the progressive withdrawal of national barriers

to free trade. To explore the consequences of a relaxation of trade barriers, we run

the Nexus Land-Use for different values of the price elasticity of exports. This pa-

rameter accounts for the different sources of imperfect competition on international

markets, such as import barriers or export tariffs. The higher is this parameter, the

more exports are driven by relative prices.

In the model, trade in crops (including feed for animals) and trade in ruminant

products are represented separately. Following Hertel and Tsigas (1988), the price

elasticity of exports – denoted as ε in table 3.3 – is set at 4 for crop products and

at 1 for ruminant products. For this sensitivity analysis, two variants are studied.

The first of this variant sets the elasticity of crops and ruminants to be equal at 4,

and the second multiplies the initial values of both elasticities by 2.

Table 3.3: Sensitivity of the results to assumptions regarding international trade

Default
εveg = 4 εveg = 8

εrumi = 4 εrumi = 4

Difference in the AG1 / AGO 96.6% 103.9% 83.8%

2045 world calorie price AG1 / USConv 1 159.6% 1113.9% 1 071.0%

Average annual AG1 1.30% 1.39% 1.37%

change in the AGO 3.02% 3.01% 2.75%

world calorie price USConv 7.26% 7.18% 7.07%

The results shown in table 3.3 suggest that removing barriers to free trade slightly

reduces the gap in the 2045 world calorie price between AG1 and the USConv

scenarios. Increasing the price elasticity of trade has a slight impacts on the calorie

price over time in the AG1 scenario but strongly attenuates the increase in the

calorie price in the AGO and the USConv scenarios. Indeed, when international

trade reacts more strongly to relative prices, the production is allocated to the
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regions that are best suited for agriculture (i.e., those with the largest reserves of

agricultural productivity). International trade thus contributes to the mitigation of

the global pressures on land that induce increases in the world calorie price.

However, at a smaller scale, freer trade has some detrimental effects. According

to Ramankutty et al. (2008), the countries with the largest reserves of cultivable

croplands are located mainly in tropical South America and Africa. Additionally,

large amounts of farmlands have been abandoned since the collapse of the Com-

munist bloc (Vuichard et al., 2009). Accordingly, as the price elasticity increases,

exports grow in Africa, the Former Soviet Union and Brazil, but decrease in other

regions1 (see table 3.4).

Using the productivity reserve of tropical regions is hazardous, as it may trigger

either an expansion of the agricultural surfaces over pristine forests or an intensifi-

cation in the production with the subsequent conversion of pastures into croplands

and an increase in the consumption of fertilisers and pesticides. In tropical regions,

pastures as well as forests are valuable in terms of both their biodiversity and their

sequestration of organic carbon. For example, the Brazilian cerrado is a 200Mha sa-

vannah that can be used for raising cattle and whose biodiversity is estimated at 160

000 species of plants, fungi and animals (Dias et al., 1992). According to our results

(see table 3.4), Africa, the Former Soviet Union and Brazil experience a reduction

in their areas of extensive pastures2 with an increase (or a relative stagnation in the

case of Brazil) in the consumption of chemical inputs.

The analysis reveals that the overall gain in terms of sustainability brought by

a freer trade could be offset by large local losses in terms of either biodiversity or

terrestrial carbon sink.

3.5.4 Potential crop yield

Globalisation may also be associated with a greater diffusion of technical progress.

This could, for example, concern genetic progress and plant breeding. In the Nexus

Land-Use model, such progress will induce an increase in the potential crop yield.

We thus analyse two variants. The first variant assumes a 50% increase in potential

crop yields until 2050, and the second variant assumes a 100% increase over the

same period. The first variant corresponds to a 0.8% yearly average growth. By

1Exports also rise in Middle East, but this region represents a smaller share of international

trade.
2Areas of extensive pastures also fall in Europe, but in this region, the area of extensive pastures

is not significant.
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Table 3.4: Variation in the 2050 value of exports, consumption of chemical

inputs and extensive pasture areas when the default price elasticity of exports

is multiplied by 2

Regions Exports
Consumption of Extensive

chemical inputs pasture areas

USA -18.7% -12.1% 54.1%

Canada -13.2% -13.8% -

Europe -6.4% -62.3% -87.1%

Jap./Aus./NZ -1.1% -3.5% 14.1%

FSU 3.6% 0.9% -11.5%

China -77.0% -6.4% 5.9%

India -86.0% -5.4% 7.6%

Brazil -0.7% -0.8% -37.0%

Middle East 17.7% -0.8% 0.2%

Africa 29.1% 11.5% -12.5%

Rest of Asia -46.7% -9.3% 11.1%

Rest of Lat. Am. -1.8% -5.2% 13.8%

comparison, Evenson and Gollin (2003) estimates that an increase in the crop yield

due to modern varieties – which should be a good proxy for our increase in the

potential yield – amounted to 0.857% per year on average in the developing countries

over the period 1981-2000.

The projections of the potential crop yield simulated in the two variants generate

large reductions in the gaps in the 2045 world calorie price between the 3 scenarios

studied (table 3.5). In both cases, the increase in the calorie price diminishes greatly:

given a 50% increase in the potential crop yield, the annual increase in the calorie

price in the USConv scenario is close to the calorie price increase simulated for the

business-as-usual scenario AGO in the reference case.

3.5.5 Pasture yield

The results analysis carried out in section 3.4.2 revealed that pasture areas are a

crucial determinant of the pressure on land-use in the most meat-based diets. In the

reference case, pasture yield is assumed to be constant over the simulation period.

This assumption may overestimate the pasture areas required to satisfy animal food

demand. In some regions, the potential to increase pasture yield actually exists, as,
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Table 3.5: Sensitivity of the results to assumptions regarding potential crop

yield

Default +50% +100%

Difference in the AG1 / AGO 96.6% 58.6% 49.5%

2045 world calorie price AG1 / USConv 1 159.6% 202.9% 123.4%

Average annual AG1 1.30% 0.79% 0.39%

change in the AGO 3.02% 1.83% 1.29%

world calorie price USConv 7.26% 3.30% 2.20%

for example, in Brazil where the livestock density per hectare of pasture is relatively

low. For this reason, we test the sensitivity of the results to different assumptions

regarding the evolution of the yield for intensive pastures3. Two variants are ex-

plored. In the first variant, the pasture yield is multiplied by 2 up to 2050, and in

the second variant, the pasture yield is multiplied by 4 over the same period. The

growth rates of the pasture yield chosen for the two variants are mainly illustrative

and do not consider the actual potential to increase pasture yield, the assessment of

which is beyond the scope of this study.

Table 3.6: Sensitivity of the results to assumptions regarding pasture yield

Default x2 x4

Difference in the AG1 / AGO 96.6% 46.8% 32.8%

2045 world calorie price AG1 / USConv 1 159.6% 166.9% 95.7%

Average annual AG1 1.30% 1.29% 1.23%

change in the AGO 3.02% 2.16% 1.87%

world calorie price USConv 7.26% 3.52% 2.76%

3Yield on intensive pasture is defined as the production of intensive ruminant meat and milk per

hectare of intensive permanent pasture (see Chapter 2)
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According to the results shown in table 3.6, increasing the pasture’s productivity

appears to be an effective option to reduce the pressure on the food and agricultural

system in the scenarios with the highest share of meat consumption – AGO and

USConv. The gap in the 2045 world calorie price between the three scenarios studied

is strongly reduced due to the smaller increase of the calorie price in the scenarios

AGO and USConv. Because the consumption of meat is lower in AG1, variations in

the pasture yield have a lower impact in this case.

3.6 Conclusion

Due to the complexity of globalisation, assessing its impact on food and agriculture

in the first half of the XXIst century is a challenging task. Among the numerous and

complex mechanisms by which globalisation could impact the food and agricultural

system, this chapter concentrates on the issue of lifestyle convergence and on the

resulting shifts in diets.

The first conclusion that emerges from this study is that globalisation expands

the range of plausible futures, making it possible various types of diet scenarios to

2050, from a convergence toward healthy diets in a world where ecological concerns

predominate to a convergence towards US lifestyles and a higher proportion of animal

products. Integrating this set of scenarios into the Nexus Land-Use model provides

extremely contrasting visions of the 2050 food and agricultural system: whereas the

convergence towards the US diet entails large impacts and cannot be sustained by

the agricultural system to 2050 with current trends of expansion of arable land due

to a lack of pasture areas, the healthy diet scenario allows for a significant reduction

of the impacts on the food and agricultural system in comparison with the business-

as-usual diet scenario. On the whole, the different visions of the 2050 agriculture

system appears to depict an even larger range than the input scenarios.

The Nexus Land-Use modelling framework makes it possible to identify the mech-

anisms that amplify the gap between the different scenarios under study. Among

these mechanisms, the consumption of animal products is central. Because live-

stock production is particularly land-intensive, meat and milk consumption have a

stronger impact on agriculture than plant food consumption. In particular, pastures

providing grass to feed animals act as a constraint on land-use, leading to an in-

crease in crop yields and food prices. Finally, in the scenarios with some convergence

towards Western lifestyles, the production system progressively catches up with its

biophysical asymptotes in terms of the availability of productive lands and potential
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crop yield, triggering non-linear effects that further amplify the increase in calorie

price, the consumption of fertilisers and pesticides and the expansion of intensive

agriculture areas.

The sensitivity analysis of the results to assumptions regarding agrofuel pro-

duction, deforestation, international trade, potential crop yields and pasture yields

provides numerous insights. First, the consequences of agrofuel development and

policies of reducing deforestation on agriculture have larger detrimental side effects

on food and agriculture when the proportion of animal calories in diets is large.

Therefore, reorienting dietary habits toward plant food calories appears to be nec-

essary to mitigate the potential negative effects of agrofuel and forest preservation

policies.

Reducing trade distortions contributes to a slight easing of the global pressure on

land but produces some detrimental local effects, such as concentrating the produc-

tion in tropical regions with rich biodiversity and carbon content. In addition, by

disconnecting consumption and production places and by increasing the interdepen-

dency among regions, international trade raises the possibility of leakage or indirect

effects. Consequently, assessing the environmental impact of biomass products be-

comes increasingly complex. This has spurred intense controversy over agrofuel, but

all categories of goods produced from biomass that do not meet basic needs (meat,

coffee, tea, alcohols...) should be concerned as well.

Finally, increasing potential crop yields markedly reduces pressure on the food

and agricultural system. Interestingly, an increase in pasture yields allows for a sub-

stantial diminution of the impacts of all scenarios – especially the scenario assuming

the most meat-intensive diet – on agriculture. Given the doubts that exist on the

potential to increase crop yields (e.g., Searchinger (2009)), this increase in pastures

productivity thus appears to be a promising avenue to reduce land-use tensions.
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Chapter 4

Climate change mitigation and

global warming impacts on

agriculture: guidelines for

coupling the Nexus Land-Use to

Imaclim-R and ORCHIDEE

4.1 Introduction

The previous chapter explored the possible futures of the agricultural system in the

changing socio-economical context of globalisation. Due to rising concentration of

atmospheric greenhouse gases, it is increasingly probable that the climatic environ-

ment will change as well. This will have a direct impact on land-use and agriculture

as crop yields are highly dependent on climatic conditions. This could also have in-

direct consequences on the agricultural sector by spurring climate change mitigation

policies based on biomass energies.

To explore this issue, we present in this chapter the guidelines for 2 types of

model couplings. In the first one, we use the Nexus Land-Use to explicitly represent

the land constraint into the IMACLIM-R model (Sassi et al., 2010). At the core

of this coupling is the question of the land rent: how does it evolve when biomass

is used to stabilize emissions, and what is its influence on agricultural price and

gross domestic product (GDP)? The second example concerns the coupling between

the Nexus Land-Use and the vegetation model ORCHIDEE (Krinner, 2005). The
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objective is here to represent the consequences for the agricultural system of the

crop yield variations computed by ORCHIDEE under a climate change scenario.

This chapter is more about giving future prospects of the Nexus Land-Use than

presenting robust results, as all the features of the different types of coupling are

not integrated yet. However, they can help to give insights on the issues related to

the cost of mitigation policies under various assumptions of biomass development

and to the impact of climate change on the agricultural system.

In the following section, we present the IMACLIM-R model and its components

that relate to biomass. In section 4.3, the basic coupling methodology between

IMACLIM-R and the Nexus Land-Use is detailed. Section 4.4 is devoted to the

representation of the climatic feedback and the coupling with ORCHIDEE.

4.2 Projecting the economy throughout the XXIst cen-

tury: the IMACLIM-R model

4.2.1 The basic features of the IMACLIM-R model

The IMACLIM-R model aims at investigating climate, energy and development

inter-related issues. The model was built in an attempt to address three method-

ological challenges: (i) to incorporate knowledge from economics and engineering

sciences, (ii) to support the dialogue with and between stakeholders, (iii) to produce

scenarios with a strong consistency, especially concerning the interplay between de-

velopment patterns, technology and growth (Sassi et al., 2010). These goals led to

the development of a recursive structure articulating a static general equilibrium

framework, which includes sector-specific dynamic modules now concerning energy,

transportation and industry.

IMACLIM-R is based on an explicit description of the economy both in money

metric values and in physical quantities linked by a price vector. This dual vi-

sion of the economy, which comes back to the Arrow-Debreu theoretical framework,

is a precondition to guarantee that the projected economy is supported by a re-

alistic technical background and, conversely, that any projected technical system

corresponds to realistic economic flows and consistent sets of relative prices. The

existence of explicit physical variables allows for a rigorous incorporation of sector-

based information about how final demand and technical systems are transformed by

economic incentives, especially for very large departures from the reference scenario.

This information encompasses : (i) engineering-based analysis about economies of

scale, learning by doing mechanisms and saturation in efficiency progress; (ii) expert
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views about the impact of incentive systems, market or institutional imperfections

and the bounded rationality of economic behaviours.

Because it is almost impossible to find functions with mathematical properties

suited to cover large departures from a reference equilibrium over one century and

flexible enough to encompass different scenarios of structural change resulting from

the interplay between consumption styles, technologies and localisation patterns

(Hourcade, 1993), IMACLIM-R uses an innovative method where the production

function is replaced by a recursive structure that allows for a systematic exchange

of information between :

(i) An annual static equilibrium module, in which the production function mimics

the Leontief specification, with fixed equipment stocks and fixed intensity of

labour, energy and other intermediary inputs, but with flexible utilisation rate.

Solving this equilibrium at time step t provides a snapshot of the economy at

this date, a set of information about relative prices, levels of output, physical

flows and profitability rates for each sector and allocation of investments among

sectors;

(ii) Dynamic modules, including demography, capital dynamics and sector-specific

reduced forms of technology-rich models, which take into account the economic

values of the previous static equilibrium, assess the reaction of technical sys-

tems and send back this information to the static module in the form of new

input-output coefficients for calculating the equilibrium at t + 1. Each year,

technical choices are flexible but they modify only at the margin the input-

output coefficients and labour productivity embodied in the existing equip-

ments that result from past technical choices.

The static equilibrium is Walrasian in nature: domestic and international mar-

kets for all goods — not including factors such as capital and labour — are cleared

by a unique set of relative prices that depend on the behaviours of representative

agents on the demand and supply sides. Consumers final demand results from solv-

ing the utility maximisation program of a representative consumer. The distinctive

features of this program consist in the maximisation of a utility function under the

constraint of both an income and a time constraints (see Sassi et al. (2010) for more

details).

The utility function U is a Linear Expenditure System (LES) form incorpo-

rating basic needs (see 4.3.3). Its arguments are the goods Ck,i produced by the

agriculture, industry and services sectors, with basic needs bnk,i, and the services of
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mobility Sk,mobility (in passenger-km pkm) and housing Sk,housing (in square metres).

Households thus make a trade-off between the consumption of different goods and

services, including the purchase of new end-use equipment stocks.

U =
∏

goods i

(Ci − bni)
ξi · (Shousing − bnhousing)ξhousing · (Smobility − bnmobility)

ξhousing

Producers are assumed to operate under shortrun constraints of (i) a fixed max-

imal production capacity Capk,i, defined as the maximum level of physical output

achievable with the equipment built and accumulated previously, and (ii) fixed input-

output coefficients representing that, with the current set of embodied techniques,

producing one unit of a good i in region k requires fixed physical amounts ICj,i,k

of intermediate goods j and lk,i of labour. In this context, the only margin of free-

dom of producers is to adjust the utilisation rate
Qk,i
Capk,i

according to the relative

market prices of inputs and output, taking into account increasing costs when the

production capacities utilization rate approaches one.

4.2.2 Biomass modelling in Imaclim-R

Bioenergy can be used in two types of applications: (i) liquefaction to produce fuels

for transport or (ii) gasification in conjunction with or without carbon capture and

storage (CCS) to generate electricity.

Two categories of agrofuels are represented in IMACLIM-R, ethanol and biodiesel.

They are both directly usable in internal combustion vehicles and are supposed to

be perfectly substitutable with gasoline and diesel.

As things stand, this module consists simply in supply curves of ethanol and

biodiesel. These curves are calibrated on the results of sectoral modelling (IEA,

2006). They have been interpolated to integrate an annual continuum of the curves

between 2001 and 2100 into the IMACLIM-R model. Production potentials increase

with time simultaneously with cost reductions thanks to constant technical progress.

These production potential increases are mainly due to maturing, at middle term,

of so-called second-generation technologies: the cellulosic-lignite branch for ethanol

and the biomass liquefaction branch for biodiesel. The penetration of agrofuels on

the liquid fuels market depends on their competitiveness and availability. Both

aspects are calculated by equalling out the marginal production costs of each type

of agrofuel and the price of fossil fuel, with an eventual increase due to a carbon tax

in the case of climate policies. Global production is ventilated in the regions of the

model according to specific distribution keys.
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As for agrofuel, the biomass electricity sector is modelled using supply curves.

Following the modelling specifications of IMAGE described in Hoogwijk et al. (2009),

land resources available for biomass production dedicated to power generation are

restricted to abandoned agricultural land and rest land. To be consistent with this

vision, the biomass supply curves in the case of electricity production are derived

from those designed by Hoogwijk et al. (2009) for the four SRES scenarios (IPCC,

2000). Table 4.1 presents the biomass potential in 2050 in each of the scenarios

studied. A conservative assumption of 302 EJ/year corresponding to the A2 scenario

has been retained. Supply curves for each of the twelve regions of Imaclim and for

the whole world are shown in figure 4.1.

Table 4.1: Geographical biomass potential for energy in EJ/year in 2050. Source:

Hoogwijk et al. (2009)

Regions A1 A2 B1 B2

USA 53 33 36 49

Canada 18 12 14 13

Europe 23 22 17 25

Jap./Aus./NZ 55 34 35 30

FSU 127 68 88 78

China 107 23 77 46

India 27 14 14 6

Brazil 87 24 63 43

Middle East 13 8 4 3

Africa 139 53 81 15

Rest of Asia 10 7 3 4

Rest of LAM 17 4 11 5

World 676 302 443 317

It is assumed that short-rotation woody crops, such as willow and poplar, are

grown on abandoned agricultural land and rest land and are used to produce elec-

tricity. After being processed, biomass is fed to Integrated Gasification Combined

Cycle power plants (BIGCC plants) to produce electricity. The technology consid-

ered excludes combined heat and power production.
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Figure 4.1: Supply curves for biomass electricity in the twelve regions of Imaclim

(left graph) and in the whole world (right graph). Source: Hoogwijk et al. (2009)

4.2.3 The role of biomass and the rent issue

The Imaclim-R modelling framework is used to provide insights on the socio-economic

consequences of emissions scenarios that are considered for the fifth assessment re-

port of the international panel on climate changes (IPCC). In this respect, projec-

tions of the world economy have been carried out under the constraint of a reduction

of GHG emissions to 450 ppm and 550 ppm levels. Two sets of variants have been

considered: a first one in which the potential of biomass for electricity is set at its

default level of 302 EJ/yr, and a second one in which it is limited to 110 EJ/year.

In Imaclim-R, the use of biomass for electricity is supposed to be carbon-neutral, as

all the GHG emitted during the production and consumption cycles are supposed

to be offset by the storage of organic carbon during the growth of the biomass. This

assumption is crucial for the results but has been highly criticised by many authors

(Searchinger et al., 2008; Johnson, 2009).

Figure 4.2: GDP losses (left graph) and production of primary biomass energy

in exajoule (right graph) under different emissions scenarios

The results show that compared to a baseline scenario with no mitigation policy,
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the losses of the considered scenarios in terms of gross domestic product (GDP) in

2100 range within 21% and 41% (see figure 4.2). The use of energy from biomass

appears to be an effective option to reduce those losses: at the 550 ppm level, the gap

is slight (−21.8% compared to −22.4% without biomass), but at the 450 ppm level,

the use of biomass energy absorbs a sizable share of the losses (−24.8% compared

to −40.8%). Figure 4.2 provide the production of primary biomass energy (used for

electricity and as liquid fuel) that is associated with each variant. In the default

assumption of biomass availability, the production of energy from biomass in the 550

ppm and 450 ppm amounts to 135 EJ and 224 EJ respectively in 2100 compared to

107 EJ and 136 EJ in the low potential case.

The use of cost-supply curves of biomass energy from Hoogwijk et al. (2009)

and IEA (2006) guarantees that such a production is possible from a biophysical

point of view, considering the availability and productivity of land under different

development scenarios to 2050. The feedback between the whole economy and the

agricultural sector is however not complete because the value of the land rental

costs in Imaclim-R, that is incorporated in the mark-up, evolves without regard

to the actual land availability. As this is a component of agricultural prices, the

feedback of an increasing use of biomass energy on the agricultural markets is thus

not represented in a realistic way. As a consequence, the potential losses from

increased food prices in terms of consumer surplus are not fully accounted for.

To illustrate the potential influence of the land rental costs, we compute its value

in each of the 6 scenarios (baseline, 550 ppm, 450 ppm in either high or low biomass

potential) using the Nexus Land-Use model. In this model, the rent is Ricardian in

nature, hence it is the sum of a scarcity and a differential rent, the latter reflecting

the heterogeneous qualities of land.

To carry out these simulations, we use the Gross Annual Increment (GAI) per

hectare1 as a proxy of the yield of woody crops. Smeets et al. (2007) report an aver-

age value of the GAI of 39GJ/ha/yr. For these simulations, we hypothesize that an

improvement of technologies, practices and species selection will allow for a quadru-

pling of the woody crop yield until 2050. Without this very optimistic assumption,

an increased deforestation rate would be necessary to preserve enough agricultural

1Smeets et al. (2007) define the GAI as “the annual forest growth, excluding mortality. Mortality

is dependent on site characteristic (e.g., climate, slope, soil structure), age stand and management

system. In general, in undisturbed full-grown forests mortality offsets annual growth and the net

annual increment (NAI) is zero, while in managed forests mortality rate can be as low as 2-6% of

the GAI. Data on GAI are measured in m3/ha/yr for wood of a minimum diameter at breast height

of zero cm.”
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surfaces for non-energy use, conflicting thus with the the carbon-neutrality assump-

tion of biomass. In addition, the simulation horizon is limited to 2060. Beyond this

date, the surfaces dedicated to biomass electricity represents a share of the agricul-

tural areas that is so high (more than 50% in several regions even with our very

optimistic assumption on woody yield), that food and agrofuel demand cannot be

met given our assumptions on the agricultural production system.

We assume in addition that food diets follow the Agrimonde 1 scenario. Defor-

estation is set according to its observed trend during the 2000-2010 period, that is

around 0.2% per year. Finally, the values of energy prices are taken from Imaclim-R

and correspond to the various tested scenarios.

Figure 4.3: Evolution of fertilisers and pesticides prices (including carbon tax)

computed by the Nexus Land-Use under different emissions scenarios and as-

sumptions on biomass potential

The effect of bioenergy production on land rent is twofold. On the one hand,

for a given deforestation scenario, the land area that has to be devoted to bioenergy

production reduces the surfaces of land available for agricultural use. This increases

both the scarcity and the differential rent because this spurs farmers to put into

cultivation lower-quality lands. On the other hand, bioenergy production makes

it possible to partly offset the depletion of fossil fuel sources and to reduce the

subsequent rise of energy prices. In the Nexus Land-Use, the evolution of fertilisers
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and pesticides prices is computed as a weighted mean of oil, gas and electricity

prices evolutions – including a carbon tax in mitigation scenarios – according to

their energy content provided by Giampietro (2001). This evolution is shown on

figure 4.3 for the different scenarios studied. In each case, the rise of chemical

inputs price is lower in the high biomass scenario than in the corresponding low

biomass scenario. As a consequence, in their trade-off decisions between expanding

agricultural surfaces and using more chemical inputs, farmers are more willing to

intensify the production and spare land in the high biomass scenario than in the low

biomass scenario.

Figure 4.4: Evolution of the world land rental costs per hectare under different

emissions scenarios and assumptions on biomass potential

Our results reveal a clear segmentation between scenarios with and without re-

strictions on the biomass potential (see figure 4.4). The value of the land rent per

hectare in 2060 in the baseline and the 550 ppm scenario is between 5 and 10 higher

in the high biomass potential variant than in the low biomass one, and up to 35 times

higher for the 450 ppm scenario, showing a strong effect of the biomass production

on the land market. From there, several questions arise: what will be the conse-

quences on agricultural prices and how will be the land rent redistributed within

the economy? To tackle this issue, it is necessary to progress in the coupling of the

Nexus Land-Use to the Imaclim-R model.
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4.3 Coupling the Nexus Land-Use to IMACLIM-R: method-

ological guidelines

This section presents the basic methodology to incorporate the land rent calculated

by the Nexus Land-Use into Imaclim-R. This coupling is done in two steps. First,

a reduced-form of the Nexus Land-Use is inserted in the Imaclim-R architecture in

order to provide an evaluation of the cost of biomass. Then, the land rent that

is associated which each level of biomass demand is fed back into the Imaclim-R

agricultural price.

4.3.1 The demand for biomass energy

Within the Imaclim-R theoretical framework, the nexus are commonly designed as

submodels replacing sectoral production function (see section 4.2.1). They aim at

modifying the technical constraints applying to the economy in static equilibrium

by modelling the relations of production at a disagreggated level and taking into

account engineering-based knowledge.

In the current version of Imaclim-R, cost curves from IEA (2006) and Hoogwijk

et al. (2009) are used to model the production function of the bioenergy sector (see

section 4.2.2). To compute a land rent that is consistent with each level of biomass

demand several options are possible. The first one would be to endogeneously rep-

resent the biomass energy sector into the Nexus Land-Use. Such a modelling work

is however complex due to the lack of robust calibration data (Kretschmer et al.,

2008). In addition, the relevance of a model based on economic behaviours is not

granted as biomass energy production largely depends on public supports (see Chap-

ter 1). Therefore, a second option consists in simply replacing the cost curves for

primary biomass energy provided by IEA (2006) and Hoogwijk et al. (2009) by

curves from the Nexus Land-Use. In this option, the production of biomass energy

is not endogenously driven by prices but is exogenously set.

Figure 4.5 presents an example of the costs of primary bioenergy in 2050 cal-

culated by the Nexus Land-Use for each of the Imaclim regions and for the world.

These curves have been computed considering a zero deforestation rate, no techni-

cal progress on potential yields and the Agrimonde 1 food scenario (see Chapter 3).

These curves have been calculated for biomass used as fuel only, excluding biomass

used in the electricity sector.

These results can’t be directly compared with those of Hoogwijk et al. (2009)

for several reasons. First, the scenario used in those simulations is quite restric-
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Figure 4.5: Supply curves of primary biomass energy calculated by the Nexus

Land-Use in the twelve regions of Imaclim (left graph) and in the world (right

graph)

tive, especially in the extent that contrary to Hoogwijk et al. (2009), there is no

technological learning and only first-generation agrofuels are taken into account.

Secondly, our analysis remains quite rudimentary: the agrofuel sector is modeled

using parameters that are surrounded by a high range of uncertainties (see Chapter

2); sugarcane – one of the most effective plant to produce agrofuel – is not included in

the representative crop modeled by the Nexus Land-Use, leading thus to a probable

underestimation of agrofuel crop yields.

4.3.2 Incorporating the land rent into IMACLIM-R

The constraints faced by the agricultural sector are of various types. Among them,

land constraint will be of peculiar importance due to the increasing amount of land

required to satisfy the demands for food, biomass energy and carbon sequestration.

For this reason, the Nexus Land-Use has been especially designed to account for the

tensions on land. To this end, it calculates a Ricardian rent reflecting the scarcity

and the heterogeneous qualities of land (see Chapter 2).

Land rent computation relies on a detailed representation of intensification pro-

cesses, implying changes in livestock production systems and variations of fertilisers

and pesticides consumption with embodied energy. As a consequence, the Nexus

Land-Use also accounts for the constraint relating to the use of energy. However,

as already mentioned in Chapter 2, due to our focus on land and energy, labour

and capital are more roughly modelled and cannot be accurately used to update the

Imaclim-R values.

In Imaclim-R, prices are derived from the equality between the value added and
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the remuneration of the factors of production:

pk,iQk,i −
∑
j

pICk,j,iICk,j,iQk,j,i = Ωk,iwk,iLk,i(1 + taxwk,i) + πk,ipk,iQk,j,i + λImaclim

With Qk,i the ouput of the sector i and country k, wk,iLk,i(1 + taxwk,i) the labor

remuneration including taxes, Ωk,i the utilisation rate (
Qk,i
Capk,i

), πk,ipk,iQk,j,i the

capital remuneration (or the mark-up) and λImaclim the land rent computed by

IMACLIM-R. Here, this latter term is disconnected from any biophysical reality

and evolves without regard to the effective feedback on the land constraint.

To correct this bias, the coupling between Imaclim-R and the Nexus Land-Use

consists therefore in replacing λImaclim by the land rent per unit of output λNexus

as computed in the Nexus Land-Use. Then, chemical and energy intermediary con-

sumptions from Imaclim-R are updated using the values of the Nexus Land-Use

(ICk,ener,Nexus) to be consistent with the intensification level that it has been com-

puted. As the agricultural sector in Imaclim-R is larger than in the Nexus Land-Use

– because it incorporates the agroalimentary industry –, chemical and energy in-

termediary consumptions are shared according to distribution keys calibrated at

the base year using the GTAP database (αagro). Following this methodology, the

agricultural price in the coupled system gives:

pk,agr =
∑

j\ener pICk,j,agrICk,j,agr + pICk,ener,agr(αagroICk,ener,agr + (1 − αagro)ICk,ener,Nexus)

+Ωk,iwk,agrlk,agr(1 + taxwk,agr) + πk,agrpk,agr + λNexus

In response to land rent variations, the agricultural market will converge to new

price and quantity equilibrium (p*,Q*). For a price-elastic demand, as is the case

for bioenergy, the agricultural sector will arbitrate between passing the rise of land

rent on to prices but facing a decrease of demand, and maintaining prices at their

initial level to preserve demand. In both cases, the land rent will be paid to the

landowner mostly by the producers, through the decrease of their selling or of their

profit. Obviously, farmers could be assumed to own their land, in which case a rise

of land rent won’t have any noticeable effect on the economy. If the demand is rigid,

as is generally the case for food (see section 4.3.3), the land rent will be paid mostly

by consumers through higher prices and potential food crisis in the poorer region

of the world. In the various cases, tax system could be modified to redistribute the

land rent among producers and consumers in a specific way.

Because of the crucial role of the food demand response to prices and incomes on

the land rent redistribution, we analyse in the following section the various functional

forms that are used to model the food demand system.
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4.3.3 Selecting the food demand system

World economic development over the last sixty years have been followed by major

shifts in food consumption patterns with a strong increase of the animal share in

diets in lower income countries. This has shown the influence of income evolutions

on food diet composition. In the coming decades, emerging economies are projected

to keep growing with possible convergence towards Western references. At the same

time, tensions on food markets may reappear due to the conjunction of demographic

evolutions, increasing energy prices and environmental concerns, as it has already

been the case in 2008.

To compute plausible evolutions of the demand for food, we select a functional

form that reflects two important stylized facts:

(i) Engel’s Law that states that an increase in the income of a household involves

an increase in food consumption expenditures less than proportional than to

income increase. This implies an income elasticity less than one and a negative

value of the elasticity of the food budget share with respect to income (also

called “Engel elasticity”);

(ii) King’s Law that states that the demand for food is weakly elastic to prices.

This law applies nevertheless essentially to grains products, which can be

viewed as necessities, while consumption of animal calories appears to be re-

sponsive to prices to a larger extent, with resulting shifts in the food com-

position from plant food to animal calories and conversely. For this reason,

special attention should be devoted to cross-price elasticities that drive such

mechanisms.

In addition, any system of demand equations should satisfy the following con-

ditions of consumer demand theory in order to respect rationality assumption: (i)

homogeneity of degree zero in income and prices2 (no money illusion), (ii) symme-

try and negative definiteness of the compensated crossprice terms (cross-substitution

effect between good X and Y must be the same as the cross-substitution effect be-

tween Y and X), and (iii) share-weighted sum of income elasticities equal to 1 (so

that the total expenditure is equal to the sum of individual expenditures on different

commodities and goods).

Several functional forms can be used to compute the demand for food according

to income and price evolutions and consumer preferences: Cobb-Douglas, CES (Con-

2This condition holds only for Marshalian demand. Hicksian demand functions are homogenous

of degree zero in prices only
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stant Elasticity of Substitution), Double-log, Translog (Transcendant Logarithm),

and the AIDS (Almost Ideal Demand System). Their mathematical expressions as

well as their main features are presented in tables 4.2 and 4.3.

Due to its simplicity, the Cobb-Douglas was a popular functional form to simulate

demand systems. It was used for example in the old version of GTAP (Malcolm,

1998). This function is however extremely restrictive as it implies a proportional

variation between consumption and income due to the unitary income elasticity,

and as relative prices variations do not influence the consumption content due to

the absence of cross-price elasticities. For this reason, the Cobb-Douglas function is

less and less employed in partial or general equilibrium models.

The CES function has also a unitary income elasticity but allows for substitution

between goods to some extent. This function is frequently used in international

trade models to estimate substitution between domestic and imported goods as in

the MIRAGE model (Bchir et al., 2002). The double-log is a generalized form of

CES depicting the substitution possibilities between products with greater details.

However it implies a constant income elasticity which is hardly realistic for growing

economies where the budget shares devoted to food generally decrease. The double-

log is a widely used functional form in studies of food supply and demand models,

as for example the IMPACT model (Rosegrant et al., 2001).

The Linear Expenditure System (LES) function is a modified form of the Cobb-

Douglas function incorporating a subsistence or committed expenditure level de-

noted Cmini . Compared to the Cobb-Douglas or the CES (Constant Elasticity of

Substitution) functions, the LES function presents several advantages: it entails an

Engel elasticity, the income elasticity is not forced to one, and contrary to the Cobb-

Douglas, modifications in the composition of food diets in response to relative price

variations are possible. However, the form of the LES implies that as income in-

creases without bound, the income elasticities converge monotonically to unity, thus

contradicting the Engel’s Law. This function is currently used in the Imaclim-R

model (see section 4.2.1).

One can cite in addition two others functions that are referred to as flexible func-

tional forms as they provide a second-order approximation to any utility function.

The AIDS is derived from a particular cost function (see table 4.2) depicting a gra-

dient between subsistence (u=0) and bliss (u=1). The Transcendental Logarithmic

or translog is a closely related consumer demand system. It is usually derived by

applying Roys Identity to a quadratic, logarithmic specification of an indirect util-

ity function written in terms of expenditure-normalized prices (Holt and Goodwin,
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2009).

Results from projections using the previous functional forms show that they

tend globally to over-estimate food demand (Yu et al., 2003). This is mainly due to

the fact that income elasticities are not bounded. As a consequence, large income

variations, that characterised long-term projections, involve less and less realistic

changes along the simulation.

To overcome this problem, several solutions are possible. The first one consists of

using “An Implicitly Direct Additive Demand System” (AIDADS) Yu et al. (2003)

actually show that such a demand system has been shown to outperform competitors

in its ability to predict per capita food demand across the global income spectrum

and represents a substantial improvement, particularly in the case of rapidly growing

developing countries. An alternative strategy consists of using exogenous scenarios

in combination with a functional form. The scenarios would define the overall con-

sumption of calories while the functional form would specify the repartition between

plant food and animal calories according to consumer preferences, and price and

income evolutions. This solution also presents the advantage of providing a simple

solution for translating the IMACLIM-R variables expressed in values into quantities

to run the Nexus Land-Use model.

4.4 Modelling the climatic feedback

Land-use reacts to the evolutions of the economic system as well as to those of the

biospheric one. In the coming decades, climate changes could actually significantly

affect the conditions of agricultural production through the rise of temperatures and

the variations of precipitations. The actual effect is however difficult to assess due

to the complexity of the mechanisms at play.

4.4.1 Yield variations in a climate change scenario

To give some insights on this issue, Viovy et al. (2010) used the vegetation model

ORCHIDEE (Krinner, 2005) to simulate the yield changes for the A1B scenario of

the IPSL-CM4 climatic model. From an economic scenario depicting a future world

of very rapid economic growth, rapid introduction of new and more efficient tech-

nologies and a development of energy technologies balanced across energy sources

(IPCC, 2000), the IPSL-CM4 model simulates an increase in temperatures going

from +2 to +4 degrees in the North of Canada, a moderate rise in precipitations in

the North and at the equatorial level, and a fall in the south of Europe, in North
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Table 4.2: Comparison of the most used functional forms of demand

Specification Objective function Demand function

Cobb-Douglas U(c) =
∏
i C

αi
i Ci = αi

pi
R

CES U(c) =
[∑

i α
1/σ
i C

1−1/σ
i

] 1
1−1σ

Ci =
αip

σ
i∑

j αjp
1−σ
j

R

LES U(c) =
∏
i

(
Ci − Cmini

)αi Ci − Cmini = alphai
pi

(
R−

∑
i piC

min
i

)
Double-log U(c) =

∑
i αiC

1−1/σ
i lnCi = αi +

∑
γij ln pj + εiR

Translog lnV (p,R) = α0 +
n∑
i=1

ηiln
pi

R
+

1

2

n∑
i=1

n∑
j=1

ln
pi

R
ln
pj

R
ωi =

αi+
∑
i γij ln(pj/R)∑

i αi+
∑
i

∑
j γij ln(pj/R)

AIDS lnC(P, u) = (1− u) ln a(P ) + u ln b(P )

ln a(P ) = α0 +

n∑
i=1

ηi ln pi +
1

2

n∑
i=1

n∑
j=1

ηij ln pi ln pj ωi = αi +
∑
γij ln pj + εi ln R

P

ln b(P ) = ln a(P ) + β0

n∏
j=1

pj

Table 4.3: Elasticities and properties comparison for different functional forms

Specification Income Elasticity Cross price elasticity Engel elasticity

εi =
∂Ci/Ci
∂R/R

ηij =
∂Ci/Ci
∂pj/pj

Ei =
∂ωi/ωi
∂R/R

Cobb-Douglas unity null none

CES unity ηij = −(1− σ)
αip

1−σ
j∑

j αjp
(
j1σ)

none

LES εi = αiR

piC
min
i +αi(R−

∑
i piC

min
i )

ηij = −αi
pjC

min
j

Cminj +αi(R−Rmin) Ei =
(1−αi)

(1−αi)+αi R
Rmin

Double-log constant constant Ei = εi − 1

Translog εi = 1 +
−

∑
i γij/ωi+

∑
j γij

−1+
∑
i

∑
j γij ln(pj/R)

ηij = −δij +
γij/ωi−

∑
j γij

−1+
∑
i

∑
j γij ln(pj/R)

Ei = −1−
∑
i γij/ωi

AIDS εi = αi
ωi

+ 1 ηij = γij
R
pipj

Ei = αiP
ωiR
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America and on all the tropical tape (see figure 4.6).

Figure 4.6: Evolution of temperatures (left graph in ◦C) and precipitations

(right graph in mm/year) in the IPSL-CM4 A1B scenario

Three types of crops are considered in ORCHIDEE: wheat, maize and tropical

crops (millet and sorgho). For each type of culture, two simulations are carried out:

(i) in the first one, both the effects of CO2 and climate are taken into account. It

is furthermore assumed that the theoretical fertilisation effect of CO2 is not limited

by the availability of mineral nitrogen in the natural ecosystems; (ii) in the second

one, the CO2 is set constant to its current value (370 ppm) in order to separate the

CO2 fertilisation effect and the climate one.

Results of the simulations in the case of wheat are presented in figure 4.7. In the

first simulation with the CO2 fertilisation effect, we observe an overall increase in

yields with broad regional differences: an increase in Northern and Southern zones

of production and a reduction in Central Europe. In the North, the combined effect

of the increase in temperatures, precipitations and CO2 leads logically to a rise in

yields. The increase of yield in the South in spite of the fall of precipitations can be

explained by the fact that the annual cycle of crops begins earlier and is shortened by

the rise of temperatures3. The cycle shifts over one earlier period of spring when the

soil is in better condition in terms of water content. The hydrous stress is therefore

paradoxically reduced in spite of the fall of precipitation. Simulations without the

CO2 fertilisation effect shows a fall in yields in almost all the surfaces where wheat

production has been simulated. It appears thus clearly out that the CO2 fertilisation

effect is a potentially dominant factor of the yield increase.

These results must be analysed with caution for several reasons. First, the

evaluation of each type of effect – and especially the CO2 fertilisation effect – is

3the beginning of the cycle and its duration being dependent on the sums of temperature
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Figure 4.7: Evolution of wheat yield in % between the periods 2070-2100 and

2000-2030 with climate and CO2 fertilisation (left graph) and climate only (right

graph). Source: Viovy et al. (2010)

surrounded by large uncertainties. Secondly, the effect of climate variability, which

is likely to rise with climate change, is not accounted for, hampering so a large part

of the potential negative impacts of climate change.

4.4.2 The impact of climate change on crop yield, land rent and

agricultural trade

The design of the Nexus Land-Use, combining biophysical and economical knowledge

into a single coherent framework, makes it possible to give some insights on the

impacts of climate change and rise in CO2 concentration on the agricultural system.

The use of such a model to calculate the impact of climate change on agriculture

constitutes a new approach as this kind of analysis has been mainly carried out

so far by econometric models (see for example Seo et al. (2009)). Compared to the

econometric method, our approach will provide less precise results in terms of spatial

disaggregation, but enables to represent the evolutions of market conditions, through

food price and international trade. Our method also allows to better account for

the trend of the world demand of biomass and the food prices, which are generally

regarded as constant in econometric models.

In these prospects, we firstly compute the evolution rate of the Nexus Land-

Use potential yield δcc given the estimations provided by ORCHIDEE for the 3

crops – wheat (δwheatcc ), maize (δmaizecc ) and tropical crops (δtropcc ) – weighted by the

proportion of each crop type in the total of crop (
∑
l fwheat/maize/trop,l∑

CFT fCFT,l
), assuming that
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the potential yield of the other crops remains constant:

δcc =

∑
l fwheat,l∑

CFT fCFT,l
δwheatcc +

∑
l fmaize,l∑

CFT fCFT,l
δmaizecc +

∑
l ftrop,l∑

CFT fCFT,l
δtropcc

The resulting potential yield evolution (see table 4.4) is then incorporated into

the Nexus Land-Use production function by modifying its asymptote ρmaxj :

ρj(ICj) = ρ̂maxj − (ρ̂maxj − ρminj )
αIC(ρ̂maxj − ρminj )

ICj + αIC(ρ̂maxj − ρminj )

With

ρ̂maxj = (1 + δcc)ρ
max
j

An actual yield is deduced from the minimisation of the production cost (see Chapter

2). This yield is the result of biophysical constraints, embodied by the potential yield

and the form of the production function, and economic trade offs between the land

price and the fertilisers and pesticides price.

Using this method, we run the Nexus Land-Use until 2050 with the Agrimonde

GO food scenario (see Chapter 3) and a zero deforestation rate. Fertilisers and

pesticides prices are driven by Imaclim-R energy prices in the baseline scenario

with a low biomass potential. Agrofuel production is set constant to its 2001 level.

On figure 4.8, the resulting actual yield and land rent (including differential and

scarcity rents) are compared to a reference case where no climate and CO2 effects

are simulated. In most regions, climate change and the CO2 fertilisation effect lead

to an increase in the actual crop yield in comparison to the reference case. As

expected, Canada experiences the highest rise (+15.91% in 2050). Actual yield

strongly decreases in Africa (-8.03% in 2050) and to a lesser extent in Brazil and in

the rest of Latin American (-3.65% and -2.08% in 2050).

Climate change and the CO2 fertilisation effect lead to a reduction of the land

rent in all the regions of the world in comparison to the reference scenario. In terms

of surplus, this fall means a loss for producers and a gain for consumers. For most

regions, this is a mechanical consequence of the yield increase which depresses food

prices. On the other hand, this is a quite surprising result given the fall of the actual

yield in Africa, Brazil and Rest of Latin America. This can be nevertheless explained

when looking at the variations of the trade balance between the reference case and

the climate and CO2 effect case (see figure 4.9). In these three regions, the fall of

yields is responsible of a rise of their relative prices on the international food markets

which deteriorates in its turn the trade balance. Consequently, the production is
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Figure 4.8: Regional percentage change of yield (left graph) and land rent (right

graph) between the reference case and the climate and CO2 effects case

lower with the climate and CO2 fertilisation effect than in the reference scenario,

explaining the drop in land rent.

Figure 4.9 also shows that in comparison with the reference scenario, the trade

balance of Northern regions improves with climate change and the CO2 fertilisation

effect while the trade balance of Africa, Brazil and the rest of Latin America dete-

riorate. Therefore, the increase of CO2 concentration could lead to a relocation of

agricultural production from Southern regions – Africa, Brazil and the rest of Latin

America – to Northern ones, mainly in Canada, USA and the FSU. This results in

an increase in production in Canada, USA, and the FSU by respectively 13%, 6%

and 5% and to a fall in Africa, Brazil and Rest of Latin America by respectively 8%,

3.2% and 2%.

4.5 Conclusion

Two prospects for the development of the Nexus Land-Use have been presented in

this chapter. The first one relates to the coupling with the Imaclim-R model whose

purpose is to incorporate the land constraint in a general equilibrium structure. In

the assessment of mitigation policies, biomass energy appears to be an advantageous

option to stabilise emissions. However, the simulations carried out by the Nexus

Land-Use reveal that such scenarios lead to significant increase in land rent, which

is not fully taken into account in the Imaclim-R agricultural price. To improve

this point, a methodology is provided to incorporate the land cost calculated by

the Nexus Land-Use into the Imaclim-R model. The impact of land rent variations

on the GDP will largely depend on its redistribution within the economy. Such

a redistribution is driven both by tax system and market mechanisms. For this
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Figure 4.9: Variation of the regional trade balances-to-consumption ratio of

plant food and ruminant between the reference case and the climate and CO2

effects case

reason, the demand side of agricultural market must be refined as well, and the

mathematical form of the food demand system must be appropriately chosen.

Two additional issues must also be highlighted. First, the distributional impact

of food price variations must be carefully analysed. Costs of food price increases

are actually much higher for poorer people, who may be plunged them into famine.

Reasoning on averages could therefore hide important losses and skew results. Then,

it is important to refine the calculation of agricultural emissions to account for non-

CO2 gases – CH4 and NO2 – that are largely emitted by agriculture, and to validate

the carbon neutrality assumption of biomass, which can be questionable for large-

scale production.

The second prospect concerns the coupling of the Nexus Land-Use to the vegeta-

tion model ORCHIDEE. Including crop yield variations simulated by ORCHIDEE

with a climate change scenario in the Nexus Land-Use provides a picture of the

agricultural system in 2050 that contrasts with a reference case where the climate

and CO2 effects are not accounted for. By comparison with this reference case, the

global increase in crop yields due to climate change and to the CO2 effect generates
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a decrease in food prices. This results in a profit reduction, and in corollary way,

in an increase in consumers’ surplus. This conclusion contrasts with traditional as-

sessments of the impact of climate change on agriculture, which did not take into

account those latter benefits. However, this study does not consider the probable

rise of climate variability resulting from anthropogenic changes. This effect could

dramatically reduce benefits for consumers, as increases in the number of years with

poor yields should raise important issues in terms of food security. According to our

results, another important consequence of climate change and of the CO2 effect is

the relocation of agricultural production from Southern regions – Africa, Brazil and

Rest of Latin America – to Northern ones, mainly in Canada, USA and FSU.
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Table 4.4: Regional evolutions of the potential yield due to climate change and

CO2 fertilisation effect, proportion of crop in the total regional production and

aggregate coefficient of potential yield evolution used in the Nexus Land-Use

Wheat Maize Millet & Sorgho

Regions δWheat
cc % Wheat δMaize

cc % Maize δTropcc % Trop δcc

USA 13.00% 14.08% 13.50% 60.35% 15.90% 1.10% 10.18%

Canada 10.50% 54.59% 80.30% 17.24% 110.80% 0% 19.57%

Europe 11.80% 57.64% 22.50% 24.78% 28.20% 0.07% 12.40%

Jap./Aus./NZ 10.30% 58.2% 11.9% 1.38% 10.20% 1.83% 6.34%

FSU 12.40% 66.93% 37.90% 17.22% 47.50% 0.67% 15.14%

China 15.80% 23.68% 11.20% 25.72% 14.50% 0.97% 6.76%

India 17.50% 22.68% -1.75% 5.64% -8.17% 8.07% 3.21%

Brazil 4.50% 2.52% -3.71% 33.42% 1.30% 0.00% -1.13%

Middle East 12.70% 77.55% -1.27% 5.09% -8.91% 1.74% 9.63%

Africa 10.40% 11.49% -2.37% 24.18% 0.60% 18.25% 0.73%

Rest of Asia 10.20% 9.77% 10.80% 10.72% 18.20% 0.42% 2.23%

Rest of LAM 11.90% 15.65% 0.10% 37.62% 0.70% 3.02% 1.92%
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Conclusion

While they were one of the main focus of earlier economics, agriculture and land-

use have progressively attracted less interest in favour of the industrial and services

sectors. In spite of their declining role in economic growth, land-intensive sectors

remain one of the major drivers of anthropogenic changes. The combined effect of

rapid demographic evolutions and depleting fossil fuel, both spurring an increased

demand for biomass, will probably accentuate the environmental impact of land-use

changes in the coming decades. This relationship has motivated renewed efforts to

understand and model agriculture and land-use dynamics.

These efforts mainly focus on the representation of global drivers that drive land-

use changes. With the emergence of transboundary environmental problem, such as

climate change, and the intensification of international trade linked to the globalisa-

tion of the world economy, land-use modelling must be rethought. Indirect land-use

changes (ILUC) are an enlightening example as it shows that changes in production

or consumption pattern in one region of the world can induce land-use change in

other regions through international exchanges. Modelling such indirect effects is

a challenging task as this requires a comprehensive analysis of the mechanisms at

play, from consumption behaviours to production constraints. In spite of significant

progress in the process representation, it appears that models do not manage yet to

converge towards a robust estimation of ILUC. In particular, there is no consensus

on two crucial mechanisms of ILUC that are the crop yield response to food price

and the price-elasticity of demand for food. However, it should be noted that a

fine inquiry on the sources of disagreement between models is difficult because their

structures are less transparent as they become increasingly sophisticated.

More fundamentally the question regarding the appropriate use of models arises.

Their added value is to provide a consistent vision of the studied sector by combining

complex equations and various database. In this extent, they are able to represent

interconnections between mechanisms at different levels and to shed light on poten-

tial unintuitive system effects, such as indirect land-use changes. However, to build
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their coherent framework, each model relies on a theoretical structure and on sev-

eral subjective assumptions. Consequently, one should not expect robust predictions

from models but rather policy assessments guaranteeing internal consistency (Peace

and Weyant, 2008).

The land-use model presented in this thesis has been developed based on some

of these lessons. It aims at describing land-use dynamics with a high level of con-

sistency by combining biophysics and economics into a single modelling framework.

In addition, multi-scale effects are represented by incorporating local heterogene-

ity into a global architecture. For a relevant use, an extensive description of the

model is provided and its limitations are exposed and discussed. Among them, it

emerges that the theoretical basis from Ricardian inspiration does not completely

match the reality and necessitates the addition of a residual land category to the

model. This theoretical limitation can be related to the fact that the economics of

land-use still heavily relies on the Ricardian and von Thünen theories (Parks and

Hardie, 2003), developed in the XIXst century. Given recent evolutions of land-use

dynamics, further land-use modelling should be accompanied by renewed theoretical

development.

In spite of these limitations, the methodology undertaken herein presents several

advantages. First, the modelling of a Ricardian frontier of production and the

incorporation of regional land area distributions of potential yields make it possible

to represent from models the yield variations induced by the expansion of cropland

on marginal lands. In addition, the representation of intensification process both

for food crops and livestock production enables a corresponding analysis of changes

in diet and caloric origin (animal and plant). Finally, the integration of biophysical

limits into an economic framework allows us to highlight non-linear effects that

appear in the most constrained scenarios.

This modelling tool was then used to test the influence of global drivers on

agriculture and land-use: globalisation (chapter 3) and climate change (chapter 4).

Among the numerous and complex mechanisms by which globalisation could po-

tentially impact the food and agricultural system, this study concentrated on the

lifestyles convergence and the subsequent shifts in food diets. As suggested by Lam-

bin et al. (2001), the analysis shows that globalisation amplifies or attenuates the

driving forces of land-use change through the diet channel. The Nexus Land-Use

modelling framework makes it possible to identify some of the mechanisms of ampli-

fication or mitigation. Among them, the consumption of animal products appears

to be a central component. Because the livestock production process is particularly
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land-intensive, meat and milk consumption has a stronger impact on agriculture

than plant food consumption. In addition, in the scenarios converging the most

towards Western lifestyles, the production system catches up with its biophysical

asymptotes – in terms of availability of high quality lands and potential crop yield

– triggering non-linear effects that amplify some more the rise of calorie price, the

consumption of fertilisers and pesticides, and the expansion of intensive agriculture.

In addition to these findings, numerous insights emerge from the sensitivity analysis

on the main assumptions. First, the consequences of agrofuel development and re-

ducing deforestation policies on agriculture are all the greater than the proportion

of animal calories in food diets is large. Hence, reorienting dietary habits toward

plant food calories appears to be necessary to reduce the potential negative effects

of agrofuel and forest preservation policies. Reducing trade distortions contribute

to reduce the tensions on land-use, but entail some detrimental local effects such as

concentrating the production in tropical regions with rich biodiversity- and carbon-

content. Furthermore, trade intensification increases the possibility of leakage or

indirect effects and may complexify land-use analysis. This chapter finally reveals

that enhancing the productivity of pastures could be a promising avenue to reduce

tensions on land-use.

Climate change is the second global driver that was analysed. To this end, two

work prospects were presented. The first one is the coupling to the Imaclim-R

model (Sassi et al., 2010). According to its results, biomass energy appears to be an

advantageous option to stabilise emissions. However, the simulations carried out by

the Nexus Land-Use reveal that such scenarios lead to significant rise of land rent,

that is not fully taken into account in the Imaclim-R agricultural price. To address

this point, a methodology is provided to incorporate the land rent calculated by

the Nexus Land-Use into the Imaclim-R model. Insights are also provided in the

form of the food demand function, that appears to be a determinant factor of the

land rent redistribution within the economy. The distributional impact of food price

variations appears also to be a key question. Indeed, costs of increases in food prices

are much higher for poorer people who may be plunged into famine. Reasoning on

averages would therefore hide important losses and skew results.

The second development prospect relates to the coupling to the ORCHIDEE

model (Krinner, 2005). Including in the Nexus Land-Use crop yield variations sim-

ulated by this vegetation model with a climate change scenario provides interesting

insights on world agriculture in 2050. It appears that with the global rise of crop

yield, the land rent diminishes at the expense of the producers but for the benefit of
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consumers. This conclusion contrasts with traditional assessments of the impact of

climate change on agriculture that did not take into account those latter benefits.

However, this study does not consider the probable rise of climate variability result-

ing from anthropogenic changes. This effect could dramatically reduce benefits for

consumers, as increases in the number of years with poor yields should raise im-

portant issues in terms of food security. Another consequence of yield variations in

response to the rise of CO2 concentration is the relocation of agricultural production

from Southern regions – Africa, Brazil and the rest of Latin America – to Northern

ones, mainly in Canada, USA and the Former Soviet Union.

Advances in land-use science of this thesis are mainly methodological. This work

shows how various available models and databases can be combined to study how

economic and biophysical dynamics interact in land-use, and how these dynamics can

be influenced by external drivers. In particular, this study brings light on the way

global forces may reshuffle the cards of agriculture and land-use. Thanks to its global

scope and to its functioning at an aggregated level, the Nexus Land-Use has proven

its ability to account for such forces. Rise of uncertainty and complexity, relocation

of production and change of its conditions are some of the many consequences of

globalisation and climate change.

The model presented here is at its first step of development and several paths

of improvement are possible. First, emissions calculation must be incorporated to

assess the role of non-CO2 greenhouse gases and to compare trajectories based on

deforestation with those based on intensification.

Secondly, one could endogenise some of the external drivers of the model. Even

if they may result in a large extent from political decisions, it would be interesting

to compare policies with trajectories based on farmers optimal decisions. For ex-

ample, an endogenous representation of deforestation mechanisms would allow for

more detailed evaluation of food and biomass energy scenarios. In the same way, a

modelling of the bioenergy sector would give more insights on the impact of higher

oil prices on agriculture and land-use.

Variability and dispersion effects are another element to take better account of.

The consequences of an increase in food prices are not the same whether it is gradual

or sudden, since market actors will have difficulty planning ahead and adjusting to

the fluctuating market signals. In addition, higher food price will have a stronger

impact on poorer people as previously stressed. Food markets modelling in the

different regions of the Nexus Land-Use including data on income distribution will

enable to represent such effects. In the same way, climate variability is an important
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factor to correctly assess the impact of climate change on the food and agricultural

system (see supra) and could be usefully included in our modelling.

Finally, the couplings to Imaclim-R and ORCHIDEE will be the basis for meeting

the ambition of providing a model around which the dialogue between the different

components of integrated assessment models is possible. The value of the land rent

will be a key component of this dialogue, as it links the socio-economic and the

biophysical spheres by providing insights on the tensions on the biophysical system

spurred by the various options regarding food, bioenergy or deforestation policies.



162 CONCLUSION



Appendix: Model evaluation

To assess the validity of the methods and assumptions implemented in the Nexus

Land-Use, we run the model from 1990 to 2006 (last date for which actual data

on the supply-use biomass balance from the Agribiom database are available) and

compare its outcomes to the actual land-use reported by Ramankutty and Foley

(1999). Results are provided on figure 4.10.

Figure 4.10: Nexus Land-Use simulations over the period 1990-2006 against

actual land-use reported by Ramankutty and Foley (1999) (white dotted line)

For this simulation, we use retrospective data on biomass consumption from
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(Dorin, 2011) and the evolution of agricultural area from Ramankutty and Foley

(1999). Potential yields are supposed to be constant over all the simulation period,

assuming implicitly no degradation of land and no genetic or agronomic progress

over the 1990-2006 period. The regional evolutions of fertliser price index are taken

from the World Bank.

The model error on the pasture to cropland ratio amounts globally to 3% on

average per year. This global figure covers some regional discrepancies. While for

most countries, the error is below 9% on average per year, model performances are

less satisfactory for Brazil, Pacific OECD and Canada where the error amounts

respectively to 11%, 12% and 10% on average per year.

This result is not surprising for Brazil as the Nexus Land-Use theoretical frame-

work was seen to be less adapted to this country due to its important market imper-

fections (see Chapter 2). In the long term, we expect that these imperfections will

progressively disappear under the effect of a greater pressure on land-use spurring

farmers to rationalise their production. Agricultural surfaces in Canada are rela-

tively low (41 Mha of cropland and 19 Mha of pasture in 2001), so if the relative

error appears to be large, in absolute terms, the gap with the actual land-use is in

fact small. Finally, the poor performance for the Pacific OECD can be explained by

a bias related to the aggregation in a same region of Australia and Japan which are

characterised by very contrasted agricultural practices (notably concerning the use

of chemical inputs).
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