
HAL Id: tel-00874865
https://theses.hal.science/tel-00874865

Submitted on 18 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards automatic recovery in protocol-based Web
service composition

Nardjes Menadjelia

To cite this version:
Nardjes Menadjelia. Towards automatic recovery in protocol-based Web service composition. Other.
Université Blaise Pascal - Clermont-Ferrand II, 2013. English. �NNT : 2013CLF22370�. �tel-00874865�

https://theses.hal.science/tel-00874865
https://hal.archives-ouvertes.fr

No d’ordre: D.U: 2370

E D S P I: 617

Université Blaise Pascal - Clermont-Ferrand II

École Doctorale des Sciences pour l’Ingénieur de Clermont-Ferrand

Thèse de Doctorat

Présentée par

Nardjes MENADJELIA

pour obtenir le grade de

Docteur d’Université

Spécialité: Informatique

Towards Automatic Recovery

in Protocol-based Web Service Composition

Soutenue publiquement le 15 Juillet 2013 devant le jury:

Mme. Marianne HUCHARD U. Montpellier II Présidente

M. Mohand-Said HACID U. Claude Bernard, LIRIS, Lyon 1 Rapporteur

M. Abdelkader HAMEURLAIN U. Paul Sabatier, IRIT, Toulouse Rapporteur

M. Franck MORVAN U. Paul Sabatier, IRIT, Toulouse Examinateur

Mme. Marinette BOUET U. Blaise Pascale, Clermont-Ferrand Examinatrice

M. Farouk TOUMANI U. Blaise Pascale, Clermont-Ferrand Directeur de thèse

M. Lhouari NOURINE U. Blaise Pascale, Clermont-Ferrand Directeur de thèse

Abstract

In a protocol-based Web service composition, a set of available component services

collaborate together in order to provide a new composite service. Services export their pro-

tocols as finite state machines (FSMs). A transition in the FSM represents a task execution

that makes the service moving to a next state. An execution of the composite corresponds

to a sequence of transitions where each task is delegated to a component service. During

composite run, one or more delegated components may become unavailable due to hard or

soft problems on the Network. This unavailability may result in a failed execution of the

composite. We provide in this thesis a formal study of the automatic recovery problem in

the protocol-based Web service composition. Recovery consists in transforming the failed

execution into a recovery execution. Such a transformation is performed by compensat-

ing some transitions and executing some others. The recovery execution is an alternative

execution of the composite that still has the ability to reach a final state. The recovery

problem consists then in finding the best recovery execution(s) among those available. The

best recovery execution is attainable from the failed execution with a minimal number of

visible compensations with respect to the client. For a given recovery execution, we prove

that the decision problem associated with computing the number of invisibly-compensated

transitions is NP-complete. Thus, we conclude that deciding of the best recovery execution

is in ΣP
2 .

Key words web service protocol, web service composition, recovery, failure, self-healing

systems, dependability of systems, complexity, NP-completeness, finite state machines.

Résumée

Dans une composition de services Web basée protocole, un ensemble de services com-

posants se collaborent pour donner lieu à un service Composite. Chaque service est représenté

par un automate à états finis (AEF). Au sein d’un AEF, chaque transition exprime l’exécution

d’une opération qui fait avancer le service vers un état suivant. Une exécution du com-

posite correspond à une séquence de transitions où chacune est déléguée à un des com-

posants. Lors de l’exécution du composite, un ou plusieurs composants peuvent devenir

indisponibles. Ceci peut produire une exécution incomplète du composite, et de ce fait

un recouvrement est nécessaire. Le recouvrement consiste à transformer l’exécution in-

complète en une exécution alternative ayant encore la capacité d’aller vers un état final. La

transformation s’effectue en compensant certaines transitions et exécutant d’autres. Cette

thèse présente une étude formelle du problème de recouvrement dans une composition

de service Web basée protocole. Le problème de recouvrement consiste à trouver une

meilleure exécution alternative parmi celles disponibles. Une meilleure alternative doit tre

atteignable à partir de l’exécution incomplète avec un nombre minimal de compensations

visibles (vis-à-vis le client). Pour une exécution alternative donnée, nous prouvons que le

problème de décision associé au calcul du nombre de transitions invisiblement compensées

est NP-Complet. De ce fait, nous concluons que le problème de décision associé au recou-

vrement appartient à la classe ΣP
2 .

Mots clés Protocole de service Web, composition de services Web, recouvrement, échecs,

systèmes à auto-recouvrement, fiabilité des systèmes, complexité, NP-complétude, auto-

mates à états finis.

iv

Dedication

A la mémoire de mon frère Abdelbaki.

A tous ceux qui m’aiment et tous ceux que j’aime.

Je dédie ce modeste travail.

Nardjes MENADJELIA

v

Acknowledgements

Avant tout, j’exprime ma profonde reconnaissance à mon Pays l’Algérie, qui a assuré

le financement de ma thèse de Doctorat, et m’a donné l’occasion de l’accomplir dans les

meilleurs conditions.

Je tiens à remercier toutes les personnes qui, de près ou de loin, m’ont aidé dans la

réalisation de ce travail de thèse de doctorat.

Tout d’abord, mes remerciements s’adressent aux personnes qui m’ont encadré tout au

long de ces années d’étude: M. Farouk TOUMANI et M. Lhouari NOURINE. J’apprécie

leurs efforts, patience, conseils, et compétence.

Je tiens à exprimer ma profonde gratitude à Mme. Marianne HUCHARD, qui m’a fait

l’honneur de présider mon jury de thèse. A mes rapporteurs M. Mohand-Said HACID et

M. Abdelkader HAMEURLAIN, et à mes examinateurs Mme. Marinette BOUET et M.

Franck MORVAN.

Je souhaite remercier Mme. Séridi HASSINA pour l’intérêt et le soutien chaleureux

dont il a toujours fait preuve.

Je tiens à exprimer ma reconnaissance à M. Boualem BENATALLAH, pour sa collab-

oration et ses conseils précieux qui m’ont bien guidé dans mon travail de recherche.

Je suis très reconnaissante à M. Alain QUILLOT, qui a accepté de m’accueillir dans son

laboratoire LIMOS, et à tous les membres et personnels de ce laboratoire qui ont toujours

fait preuve de professionnalisme et gentillesse.

Nardjes MENADJELIA

Contents

Abstract ii

Résumée iii

Dedication iv

Acknowledgements v

List of Figures ix

1 Introduction 1

1.1 Context . 1

1.2 Problematic and contribution . 3

1.3 Thesis outline . 7

2 Unavailability failure and recovery problem in Web service composition 8

2.1 Unavailability failure in composite Web services 10

2.2 Fault tolerance mechanism for composite Web services 11

2.3 State-of-the-art analysis dimensions . 13

2.3.1 Composition methods . 13

CONTENTS vii

2.3.2 Compile time vs. runtime-based recovery approach 16

2.3.3 Recovery operations . 16

2.3.4 Transactional aspect . 17

2.4 Related work . 18

2.4.1 compile time-based recovery approaches 19

2.4.2 Runtime-based recovery approaches 23

2.4.3 Discussion . 26

3 Preliminaries 30

3.1 Finite State Machines [31] . 30

3.2 Partial orders and ideals [17] . 33

4 Web Service Composition Model 35

4.1 Protocol-based Web service modeling . 36

4.2 Automatic composition synthesis . 41

4.2.1 The target service . 42

4.2.2 The Delegator . 43

4.2.3 Delegator generation . 46

4.2.4 Discussion . 48

4.3 Relaxing executions with dependencies 49

4.4 Summary . 52

5 Automatic recovery in Web service composition 53

5.1 Formalizing unavailability failure in Web service composition 54

5.1.1 Unavailability failure occurrence 54

CONTENTS viii

5.1.2 Delegator cleaning . 55

5.2 Formalizing the recovery problem . 61

5.2.1 Candidate recovery executions . 62

5.2.2 Recovery operations and recovery plans 63

5.2.3 The replacement problem . 66

5.2.4 The recovery problem . 74

5.3 Summary and discussion . 75

6 Conclusion 76

Bibliography 79

A NP-completeness of the Strict-Replacement problem 87

B NP-completeness of the Loose-Replacement problem 91

List of Figures

2.1 Automatic Web Services composition methods [11] 15

3.1 Asynchrounous product of two protocols 32

3.2 An ideal of a poset . 34

4.1 The business protocol of the retailer service 38

4.2 A repository of services . 40

4.3 A private train booking Web service (the target service) 42

4.4 Possible Delegators . 44

4.5 Simulation-based composition . 47

4.6 Execution vs. relaxed execution . 51

5.1 Unavailability failure occurrence . 56

5.2 A Delegator cleaning . 57

5.3 Applied recovery operations . 64

5.4 Obtained recovery executions . 65

5.5 A Search-Hotel composite service . 67

5.6 A failed and a candidate recovery executions 71

5.7 A first possible strict replacement . 72

LIST OF FIGURES x

5.8 A second possible strict replacement . 72

B.1 A graph G and its corresponding posets 93

Chapter 1

Introduction

1.1 Context

Nowadays, the trend in software development field is to design self-healing applications

[26]. They are applications with an ability to perceive operating anomalies and to recover

from execution errors automatically [18]. In a self-healing system, a monitoring layer is

added to the functional layer. The functional layer implements the main function for which

the system is designed. The monitoring layer should have the ability to detect errors occur-

ring in the functional layer, explain and correct them without a human intervention. The

procedure of correcting errors in a self-healing system is called an automatic recovery or

shortly a recovery. The recovery guarantees the continuity of the system execution despite

the presence of faults. It prevents the system failure by making it fault tolerant. In this

work, we focus on the recovery step in a special kind of systems, which is composite Web

services.

1.1 Context 2

Web services are self-contained, self-describing and modular applications that can be

published, located, and invoked across the Web [48]. In our work, a Web service is de-

scribed by its behavior, also called the business protocol [5, 42]. A service protocol

describes the valid order of operations invocation. This order specifies, thereby, all pos-

sible conversations that a service can have with its partners [1, 5]. We use state machines

to model a service protocol where states represent the different phases a service may go

through and transitions represent the performed tasks.

Despite the huge number of already published services, it may happen that no single

service can meet a specific client requirement. In this case, the need for Web service com-

position raises. Composing services consists to combining a set of available ”component

services” in order to fulfill the client request. The collaboration of these components pro-

vides a composite Web service. At each execution step of the composite, it makes call to

an available service that can perform the actual requested task. This fact raises challenging

issue about availability of component services during runtime. Being on-line applications,

the availability of components cannot be guaranteed because of the vulnerable nature of

the Web (e.g., broken connection mediums, crashed servers, etc.). A well designed com-

posite Web service should take this fact into account. However, ensuring the availability of

component services seems a very hard challenge for the composite designer because of the

privacy and the autonomy of each component service. To this fact, a good solution consists

to tolerate such faults at the composite level by designing a recovery mechanism. The

goal behind the recovery is to enable the composite execution continuity in case a compo-

nent service becomes unavailable at runtime. The execution continuity can be ensured, for

instance, by providing an alternative service to the failed one.

1.2 Problematic and contribution 3

1.2 Problematic and contribution

This thesis presents a formal study of the recovery problem in the protocol-based Web

service composition. We consider a scenario of failure in which one or more component

services become unavailable at runtime. This may result in an incomplete execution that

needs to be repaired. A lot of the works dealing with recovery (e.g., [9], [12], [22], [24],

[29], [49], [50], [56] and [62]) provide heuristics to build recovery plans. In some cases

(e.g., [29] and [49]), the established recovery plans focus on how to reconfigure the com-

posite structure far from the faulty component(s). In the other cases (e.g., [9], [12], [22],

[24], [50], [56] and [62]), recovery plans are used to guide the resulting faulty execution to-

wards a recovery state. A recovery state is either an ”acceptable” termination state (from a

client’s viewpoint), or a state from which the execution can be continued naturally. Differ-

ently to these works, we present in this thesis a formal study of a specific form of recovery

problems. We focus on the case where the recovery goal is to repair the faulty composite

execution with a minimal number of visible compensations. Therefore, the recovery plan

should guide, as transparent as possible, the faulty execution towards a recovery state. The

contributions of this thesis are presented in the following sections.

Formal framework for Web service composition

We consider in this work the protocol-based Web service composition model [8, 41] where

services export their protocols as finite state machines. States represent different phases a

service may go through and transitions represent tasks (or, operations) performed by this

service. In the protocol-based composition model, the automatic composition process con-

sists to generate a Delegator. From a client’s viewpoint, the Delegator mimics the target

1.2 Problematic and contribution 4

service behavior by coordinating available services [8, 46]. Formally, the Delegator is an

FSM where each transition is annotated with the name of the service delegated to perform

the corresponding operation.

In several composition models, component services are considered as atomic elements

(e.g., [24], [9], [62], [2] and [12]). Therefore, a component service can be substituted

only by another component having the same functionality (e.g., [24], [2] and [9]). In the

protocol-based composition model, details about services operations are available. Conse-

quently, the substitution can be defined between operations. This may help to find more

substitutes by combining operations belonging to different services. That is, a single faulty

service may be substituted by a set of operations belonging to different services. In the

same way, a set of faulty services may be substituted by a single service.

A second advantage of the protocol-based representation of services is the presence of

semi-final states. A semi-final state expresses a possible partial rollback on the correspond-

ing protocol. A partial rollback cannot be performed on an atomic component.

In the protocol-based composition model, an execution of the Delegator corresponds to

a totally ordered set of transitions. To better meet the requirements of this work, we relaxed

the execution to a partially ordered set (see [38] for example) using data dependencies.

Such a vision to the execution concept allows to characterize the recovery transparency and

then formalize the recovery problem.

1.2 Problematic and contribution 5

Formalizing unavailability failure in Web service composition

The runtime unavailability of component services in the protocol-based composition model

constitutes the failure scenario considered by this work. We formalize the unavailability

failure as a set of unavailable (non-executable) transitions where each transition may be-

long to a different component service. This allows a better generalization by considering all

unavailability cases. Those cases include the partial unavailability of one component and

the partial/total unavailability of multiple components at the same time. The set of unavail-

able transitions may have two impacts on the running composition. Firstly, an unsuccessful

delegation may occur resulting in a failed (incomplete) execution of the composite. Sec-

ondly, a set of branches on the Delegator can no more lead to a final state. To deal with such

an effect, we propose to clean the Delegator by removing faulty branches. The cleaning

allows putting out risky alternatives during recovery.

Formalizing the recovery problem

Formalizing the recovery problem in the protocol-based composition model is the main

contribution of this work. As already mentioned, a failed execution cannot lead to a final

state. Therefore, the recovery is a process transforming the failed execution into a recovery

execution. The transformation is performed using a recovery plan. The recovery execu-

tion is an alternative execution of the Delegator that still has the ability to reach a final state.

The recovery problem is defined as:

the problem of finding the recovery execution(s) to which the transformation from the

failed execution is made with a minimal number of visible compensations.

1.2 Problematic and contribution 6

A compensation is invisible if the compensated transition is replaced by a second tran-

sition performing the same operation. Furthermore, the set of substitute transitions must

correspond to an ideal in the poset associated with the recovery execution. Similarly, the

set of replaced transitions must correspond to an ideal in the poset associated with the failed

execution. Therefore, minimizing the number of visible compensations amounts to max-

imize the number of replaced transitions. Indeed, the Replacement problem is defined

as:

the problem of computing the number of replaced transitions that can be ensured by some

candidate recovery execution.

Solving the recovery problem requires solving the replacement problem for each can-

didate recovery execution. In this work, we study two variants of the replacement problem:

the strict replacement problem and the loose replacement problem. In the former, the

order among the substitute transitions is required to be isomorphic to the order among

substituted transitions. In the latter, this constraint is relaxed. Both strict and loose replace-

ment problems have been proven NP-complete. The hardness of the replacement comes

from the fact that a transition in the failed execution may have several possible substitutes

in the candidate recovery execution. Thus, the choice of one substitute among candidates

should be made in a way to maximize the total number of substituted transitions. Based on

the complexity results related to the replacement problem, the automatic recovery problem

in a protocol-based Web service composition is proven ΣP
2 .

1.3 Thesis outline 7

1.3 Thesis outline

Chapter 2 The main goal of this chapter is to overview a set of relevant works dealing

with recovery in Web service composition area and neighbor areas such as workflow sys-

tems. To better understand the presented state-of-the-art, this chapter is started with a set of

clarifications related to key concepts used in this context such as dependability, failures,

faults, fault tolerance, etc.

Chapter 3 A set of formal definitions is presented in this chapter. These definitions are

essentially related to state machines and partial orders.

Chapter 4 In a first part of this chapter, we describe the protocol-based Web service

composition model. In the second part, we introduce our extension by relaxing executions

to posets.

Chapter 5 This chapter is the core of this work where both the unavailability failure

and the recovery problem in the protocol-based Web service composition are detailed and

formalized. The main concepts related to the recovery are defined and the complexity

issues related to the recovery are discussed.

Chapter 6 Concludes the thesis with the summary of contribution and the major perspec-

tives of this work.

Chapter 2

Unavailability failure and recovery

problem in Web service composition

The W3C1 defines a ”Web service” as ”a software system designed to support interoper-

able machine-to-machine interaction over a network. It has an interface described in a

machine-processable format (specifically Web Services Description Language, known by

the acronym WSDL). Other systems interact with the Web service in a manner prescribed

by its description using SOAP messages, typically conveyed using HTTP with an XML se-

rialization in conjunction with other Web-related standards.” Web service composition

means taking advantage of the great number of already published services by composing

or combining them. Such a composition provides a new web service with a new ”richer”

functionality. Such services are called the composite web services. A composite service

could be defined as an orchestration (or a coordination) of a set of services in order to

satisfy a client requirement that cannot be satisfied by a single service alone [7, 43, 46].

1http://www.w3.org/TR/2004/NOTE-ws-gloss-20040211/

9

Services participating in a composition are called component services. The greatest ben-

efit of Web service composition is to gain time and development effort by using already

published services in creating new richer ones instead of creating them from scratch.

Given the vulnerable nature of the Web, a Web service may encounter failures that are

characteristic to the special environment supporting it (the Web) in addition to the tradi-

tional failures encountered in any software application. A typical example of such failures

is the broken connection to the server due to network problems. A severe form of Web

service failure is its total unavailability. If this service is participating in a composition

then its unavailability failure constitutes a fault for the composite. It affects the composi-

tion consistency and needs to be handled using a recovery mechanism. The recovery is a

way to implement the fault tolerance of a system. The fault tolerance is a system attribute

telling whether the failure of the system can be avoided in the presence of faults. In this

research work, our interest is focused on the unavailability failure of component services

and the associated effects of such a failure on the composite service.

The goal of this chapter is to give an overview of the recovery problem in Web ser-

vice composition field and some relevant research works that have tackled this problem,

especially those dealing with the unavailability failure. For this purpose, this chapter is

structured as follows: first of all, we describe the reasons behind web service unavailabil-

ity failure in Section 2.1. Then, we introduce the ”fault tolerance” concept in Section 2.2.

Section 2.3 lists the set of important dimensions serving analysis of the related work. Fi-

nally, we resume the related work in Section 2.4 and we briefly compare our vision to the

recovery problem to some of the presented works.

2.1 Unavailability failure in composite Web services 10

2.1 Unavailability failure in composite Web services

From a client’s view point, if a system response time is too long with respect to his ex-

pectations, then this system is considered unavailable. Availability is one attribute of De-

pendability of systems besides other attributes including reliability, safety, security, sur-

vivability and maintainability [3, 4, 34, 35, 36, 40]. Dependability is a system property

defined in [3] as ” the ability of a computing system to deliver service that can justifiably

be trusted. The service delivered by a system is its behavior as it is perceived by its user(s).”

A system failure is an event that occurs when the service delivered by the system does

not implement the expected system function [3, 4, 15, 34, 35, 36, 44, 45, 47]. Unavailabil-

ity failure, therefore, is a severe form of system failures which occurs when no service is

delivered.

Due to their distributed nature, composite Web services greatly face the problem of un-

availability failure of component services. Such a failure may be caused by physical defects

on the network medium or on the server side [16]. It can also be caused by a software bug

at the server level, which makes its response time very long with respect to the requester

expectation. Unavailability failure of some service may be perceived as, for instance, a lost

message sent to the server, a broken connection to this server or a busy server. In any way,

the service cannot be accessed at that time.

Unavailability of component services may affect the composition consistency, which

highlights the need for designing a recovery mechanism. It is worth noting that dealing with

2.2 Fault tolerance mechanism for composite Web services 11

unavailability reasons is out of the scope of this work. We rather deal with components’

unavailability effects on the composition and we study the recovery from a failed execution.

2.2 Fault tolerance mechanism for composite Web services

A fault is the adjudged or hypothesized cause of the failure [4, 34, 35, 36]. It may be an

abnormal condition or defect at the component, equipment, or sub-system level that leads

to the failure2. Fault tolerance (also called: self-repair, self-healing and resilience) for a

system is its ability to avoid service failure in presence of faults [4, 34, 35, 36]. A ”service”

here is defined as in Section 2.1.

It is quite important to note that the fault tolerance in a composite Web service is not

to avoid ”components failure”; it is rather to avoid the ”composite failure”. A component

failure may be caused, for instance, by a physical fault on the network medium (tolerating

such faults is beyond the scope of this thesis). A component failure is a fault for the com-

posite. Thus, avoiding the composite failure consists of tolerating components failure. This

can be done by finding, for example, alternative services to the failed ones.

The specifics of Web services and of their composition require special care in the design

of supporting fault tolerance mechanisms. They have high dependability requirements due

to the following reasons:

(i) The loosely coupled interactions between peers in Web service architecture, which

become even more uncontrollable in case of Web service-based conversations [10].

2Defined in document ISO/CD 10303-226

2.2 Fault tolerance mechanism for composite Web services 12

(ii) The autonomy of component Web services (each service is designed to work in-

dependently of the others). They run on heterogeneous platforms and they have different

characteristics (transactional supports, concurrency policies, etc.). This raises challenging

issues in specifying the behavior of composite services in the presence of faults [55].

(iii) The interaction with Web services requires dealing with limitations of the Internet.

Long responses-time delays of Web service servers and unavailability of components are

major issues for composite Web services [55].

Developing fault tolerant mechanisms for composite Web services has been an active

area of research over the last couple of years [54, 55]. There exist two basic ways to im-

plement fault tolerance: backward error recovery and forward error recovery [37, 47].

The backward error recovery has been inspired by transactions principal (the all-or-nothing

semantics). It attempts to restore the system state after error occurrence by rolling system

components back to a previous correct state [37]. This requires some kind of checkpoints

or saved states to which the system can be rolled back. The rollback to a given checkpoint

is performed by compensating all operations having been executed after. Compensating an

operation means cleaning its effects by executing an operation producing reverse effects.

The forward error recovery involves transforming the system components into any correct

state [37]. This is done by correcting errors without resorting to reversing the previous

operations. The forward error recovery, thereby, usually relies on an exception handling

mechanism [10, 15, 19, 24, 28] which requires some kind of fault prediction. The excep-

tion handling may substitute failed tasks in order to allow the system to move forward.

For composite Web services, the recovery may combine both the backward and the

2.3 State-of-the-art analysis dimensions 13

forward error recovery in two manners:

(i) If a failed task cannot be retried or no alternative task is found for it, then the execu-

tion of this service is aborted and the executed tasks are compensated [61].

(ii) Failed tasks are first compensated and the system is rolled back to a previous con-

sistent state, then the execution is resumed using alternatives to the failed tasks.

In this work, we define a recovery that exploits both backward and forward approaches.

We do not use the exception handling mechanism to make a forward recovery but rather,

alternatives in our model can be found automatically and dynamically following the failure

occurrence. For this purpose, the fault prediction step is not required.

2.3 State-of-the-art analysis dimensions

The main goal of this chapter is to discuss some relevant research works that have tackled

the unavailability problem in Web service composition field or neighboring related fields

such as workflow systems. This requires highlighting the important dimensions against

which different works can be compared with each other and with our work. This section

lists our dimensions for analysis and provides definitions to the main concepts related to

each of them.

2.3.1 Composition methods

Web services can be composed either (1) manually (in cooperation with domain experts); or

(2) automatically (by software programs). We discuss here only the automatic composition

methods, summarized in Figure 2.1, and that have been inspired by AI planning in addition

2.3 State-of-the-art analysis dimensions 14

to the workflow models. The automatic composition can be done statically or dynamically.

• Static Web service composition: It takes place during design time when the ar-

chitecture and the design of the software system are planned [21]. The requester

should build an abstract process model which includes a set of tasks and the data

dependencies among them. This model is carried-out during execution time so that

the real atomic Web services fulfilling model tasks are searched. Therefore, only

the selection and binding of atomic Web services is done automatically by the pro-

gram [48]. Two possible approaches exist for the static service composition: Web

services orchestration and Web services choreography (see [11] for a survey). In the

former, a central coordinator (also called ”orchestrator”) invokes and combines a set

of available services. In the latter, Web services choreography does not use a central

coordinator, it rather defines an inter-participant conversation and the overall activity

is achieved as the composition of peer-to-peer interactions among the collaborating

services [11, 13].

The most commonly used static method is to specify the process model by a graph

representation such as Petri nets, finite state machines, etc. For instance, the work

presented in [5] uses state machines such that the states represent the different phases

that a service may go through during its execution and transitions corresponds to the

invocation of a service operation or to its reply.

• Dynamic Web service composition: In the dynamic composition, the creation of

the process model is done automatically as well as the selection of atomic services

[48]. Dynamic composition may be useful when services are discovered at runtime,

2.3 State-of-the-art analysis dimensions 15

���������

	ABCA��D�AE

F���

�������� �D�D��

	ABCA��D�AE

��������D�AE 	�A��A���C��

��E�B���

	ABCA��D�AE

��B�ED��

	ABCA��D�AE

��B�ED���F��

��������

Figure 2.1: Automatic Web Services composition methods [11]

and services’ interfaces are unknown [21].

The problem of dynamic Web service composition has been seen as an AI-planning

problem (see [20, 21, 48] for a survey), where the user can subscribe for a defined

goal, then the composition problem consists of matching the goal with Web services

capabilities. In other words, services should be located based on their capabilities and

matched together to create the composition i.e., to achieve the goal requested by the

user. To this end, services have to provide the abstract descriptions to be discovered

which can be overcome using semantic web technologies [11].

2.3 State-of-the-art analysis dimensions 16

2.3.2 Compile time vs. runtime-based recovery approach

This criterion studies whether the recovery approach is fully reactive (at runtime) to failures

or if it relies on predefined recovery strategies (during the design phase). In other words,

if the recovery plan is fully or partially specified during the design phase of the composite

process structure then the recovery approach is compile time-based. Otherwise, it comes

to the runtime-based recovery approach. For instance, one way used in the compile time-

based recovery approaches is to predefine one (or more) alternative component service to

replace another service in case this last fails. In a runtime-based recovery approach, the

choice of alternative component services should be done automatically and dynamically

following failure occurrence. Generally, the recovery plans can be specified during the

process design phase where a lot of information about process execution is available, such

as used component services, expected failures, branching probabilities, etc.

2.3.3 Recovery operations

A recovery operation, or a ”recovery strategy” as called in [25], can be simply defined as

an elementary step, in the recovery process. According to the used composition model, a

recovery operation may be applied either on a component service or on an operation within

a component service. In both cases, and without loss of generality, we will designate

by ”activity” an element in the composite process, on which a recovery operation can be

applied. In literature, most of works dealing with composition failures use some or all of

the following recovery operations:

• Retry (Redo): Is the simplest way to keep a process running by retrying the failed

activity. This operation cannot be applied in case the activity becomes unavailable.

2.3 State-of-the-art analysis dimensions 17

• Compensate: When a crucial error occurs during composition, the process will need

to go back to a previous consistent state. If some already performed activity is con-

cerned by the rollback then all its generated effects on data should be cleaned or

compensated.

• Cancel (Undo): Is the simplest form of compensation, when an activity needs to be

rolled back without any need to clean its effects on data (because it has no effect).

• Substitute (replace): An activity may require to be replaced in case it can no more

be used in the process. The alternative activity should be equivalent to the failed one.

In some proposals, the alternative can even be richer (in terms of functionality) than

the failed one.

• Abort: When two activities are executed in parallel (their results will be joined after

achieving) and one of them fails then the execution of the second is aborted. Unlike

compensation and cancellation, the abortion applies to an activity, still running.

• Skip: Skipping a failed activity in a process means bypassing it to its immediate

successor. This is generally done by designing for each activity in the process a

backup path that avoids its direct successor (if exists). This will allow continuing

execution in case the successor fails.

2.3.4 Transactional aspect

In the transactional aspect, we study the atomicity of the composite application besides the

presence of transactional properties on this application model.

2.4 Related work 18

Atomicity influences the way in which the recovery plan is designed. In some works,

the whole composite service is considered as an atomic application. Therefore, the commit-

or-abort decision should be ensured by the recovery plan. In some other works, the atomic-

ity is relaxed such that the composite structure is divided into a sequence of atomic regions.

Each atomic region is delimited by two checkpoints. In case of faults during execution, a

rollback to the last reached checkpoint is performed ensuring, thereby, a partial commit-

ment of the application. A checkpoint can also serve to look for alternative branches.

A transactional property, if taken into account, may prevent an application from making

a rollback or to move forward. It tells whether an element of the composition is compens-

able, and whether it is retriable. This element can be either a component service or an

operation within a component service. Clearly, if some element is not compensable then

it cannot be rolled back. In the other hand, if it is not retriable and its first run does not

succeed then the application cannot move forward. To this fact, taking the transactional

properties into account in some recovery procedure is an important dimension.

2.4 Related work

This section presents some relevant works that addressed the issue of failures in composite

behaviors and workflow systems. We discuss, if it is provided, how these works deal with

unavailability as a type of failure. We try to provide a description with respect to the above

listed analysis dimensions by refining firstly according to the compile time vs. runtime-

based recovery approaches.

2.4 Related work 19

2.4.1 compile time-based recovery approaches

In the area of Web service composition, Friedrich et al. [24] described a two-steps model-

based approach to repair the faulty activities in the process. The first step acts before

process execution (at compile time) by studying its repairability using information about

process structure, data dependencies and available repair actions for each activity among:

retry, compensate and substitute. The process structure is modeled as a directed graph in

which nodes represent activities and edges represent the control flow where patterns like

AND, OR, and AND-split are used. In addition, branching probabilities of activities are

modeled in order to be exploited for repairability analysis. The authors propose a heuristic

for reasoning about repairability of process activities. The result of this step is a set of

non-repairable activities and their impacts on the repairability of the process. For instance,

if the branching probability of a non-repairable activity is just 0.1 then its effect on the

process repairability can be considered marginal. Note that an activity is repairable if there

is an execution of a set of repair actions that produces a correct state of the outputs of this

activity. In the second step, the faulty instance of the process is repaired, at run time, by

constructing firstly a generic repair plan, then the final repair plan is concluded by apply-

ing pruning rules on the generic one, using heuristics. This approach requires hypothesis

about availability of some information concerning branching probabilities within the pro-

cess structure and the failure probability of each of its activities. If a substitution of an

activity is required then the designer should specify at least one equivalent activity.

Bhiri et al. [9] proposed an approach that ensures user-defined failure atomicity of

composite services. Based on composite service skeleton, the proposed approach computes

2.4 Related work 20

(at compile time) a set of different kinds of dependencies, namely abortion dependencies,

compensation dependencies, cancellation dependencies and alternative dependencies. The

composite service skeleton is defined using workflow-like patterns just like [24] previously

described. The recovery plan is therefore constructed using the process structure itself. For

instance, an AND−Split pattern connecting two component services engenders a cancella-

tion and/or compensation dependency between joint services. Meaning that, if one service

among them is aborted or canceled then even the other should be canceled or compensated

depending on its effects following its execution. Each kind of dependency influences, then,

the way in which a rollback, following a failure, is executed in order to achieve an accepted

termination state of the composite. In the aforementioned example, an accepted termina-

tion state of the composite is one in which the joint services are aborted together (it is not

accepted that only one of them is aborted while the other is achieved naturally).

In the area of workflow, Hamadi and Benatallah [29] suggested a Self Adaptive Recov-

ery Net. It is an extended Petri net model for specifying exceptional behavior in workflow

systems at compile time. The Petri net is enriched with a set of recovery policies (plans)

such that each policy is designed for a specific type of failure. Each recovery policy is

stored inside a transition in the Petri Net and fired at runtime following the occurrence of

such a failure. They defined eight recovery policies, some of them are designed to recover

from a single transition while the others are designed to recover from a whole region. A

region contains a set of related transitions.

Another interesting work is that presented in [62] where authors used a transition sys-

tem to model a static Web service composition. The transition system has a start and an

2.4 Related work 21

end node. Each path linking the start node to the end node is a possible execution path.

A Web service may have different service levels and may be applied in different execution

paths at different levels. A level is a trade-off between the amount of resources a service

uses and the output quality such as the result precision. This trade-off is represented as a

utility value on each outgoing edge from the node representing a service level on the graph.

As a result, each execution path will have a different global utility value which is computed

from edges utilities and the optimal path will be chosen for execution. In case a node fails

in the current running instance of the process, the approach is to switch to a backup path

that bypasses the failed service node. Backup paths are computed for all nodes off-line.

Authors use this skip recovery strategy only for the running instance, but they propose to

recompute, for the future instances, another globally optimal path without using the failed

service in case this failure persists. The backup path cannot be still used in the future since

it may achieve only a local optimality. This work handles a single case of failure and cannot

deal with multiple faulty nodes. This is also the reason why no compensation mechanism

is designed for the case where no backup path is found. Since backup paths are computed

at compile time, the designers have the opportunity to ensure that each node has, at least,

one backup path that will surely reach the end node successfully (because the first and only

failure has already occurred) then no compensation is needed.

Urban et al. [56, 60] detailed the Assurance Point model for consistency and recovery

in Web service composition. This model is based on the Delta-Grid service composition

model deeply described in [59, 57]. The concept of Atomic Group is a basic element in

the delta grid model. An atomic group is composed of an operation, its optional compen-

sation and its optional contingency (alternative). A composite group contains, at least, one

2.4 Related work 22

atomic and/or composite group. A composite group may have its own compensation and/or

contingency activity. The authors distinguish, thereby, the shallow from the deep compen-

sation strategy for a composite group. The former is to execute the global and unique

compensation activity defined for the whole group while the latter is to go deeply inside

the composite group and to execute the compensation activity of each atomic and/or com-

posite group inside. The concept of Assurance Point enriches the delta grid model with the

checkpoints. An assurance point, therefore, is a logical and physical checkpoint for storing

data and checking conditions at critical points in the execution of the process. The recovery

approach within this model is compile time-based such that recovery plans are stored inside

the assurance points. In fact, each time the execution of the process reaches an assurance

point, a set of conditions is checked; if they are true a recovery plan is launched. The set

of checked conditions are called Integration Rules and they are true only if a failure has

occurred. Three possible recovery activities may appear in a recovery plan: retry, rollback

and contingency. Note that, a recovery plan may order to recover until the precedent assur-

ance point or even earlier.

In the work presented in [12], authors focused on the fault-tolerant composition of Web

services that, in case of some component’s failure, it is recovered with a minimal cost in

term of compensation. They describe a method to automatically build a fault-tolerant work-

flow based on rollback dependencies. The authors in [12] restrict the semantics behind a

rollback dependency. In fact, their rollback dependency imposes neither an execution order

nor a compensation order among concerned services. It just indicates an ”all-or-nothing”

policy. Each service is associated with a rollback cost that indicates the amount of impact

on the whole composition in case this service is rolled-back. For instance, if the ”Flight

2.4 Related work 23

Reservation” is not a rollback supporting service, its rollback cost will be equal to the

whole ticket price. Clearly, the cost is equal to zero if rolling-back a service has no impact.

Both costs and rollback dependencies participate in building a workflow that sequences

the execution of the services in a way that on a service failure, the mean rollback cost of

the service composition becomes minimal. Building this sequencing may also require a

supposed-available information about the probability of the service failure at a given posi-

tion. From which, each permutation of Web services has a distinct recovery cost.

2.4.2 Runtime-based recovery approaches

Simmonds et al. in their series of works [50, 51, 52] proposed a framework for runtime

monitoring and recovery of BPEL applications. The monitoring is performed against be-

havioral correctness properties specified as transition systems. A correctness property is

violated only when a failure occurs. Following the failure, the proposed framework takes

as inputs both the BPEL application (formalized also as a transition system) and the vio-

lated property then it outputs a set of ranked recovery plans according to user preferences

(in terms of time, cost, etc.). Depending on the type of violated property, a recovery plan

may include just the ”going back” until an alternative path that avoids the fault can be

found. Another violated property may require replanning the achievement of the goal state.

Re-planning makes call to the rollback, execution and re-execution of tasks in the applica-

tion.

Sardina et al. [27, 49] proposed a behavior composition model (clearly, a behavior can

be a Web service), based on finite state machines and simulation preorder. In simulation-

2.4 Related work 24

based composition, both the composite and the components export their behaviors as finite

state automata. Indeed, the automaton representing the composite is just a virtual descrip-

tion of the protocol that we want to compose. For each operation requested by the compos-

ite at a certain level of execution, the computed simulation preorder has the role to show

all the components that can perform the current requested operation, in their current states.

The composition, thereby, consists in delegating each requested operation to a service al-

ready proven capable of performing it, according to the computed simulation. More details

about simulation preorder and simulation-based composition are provided in Chapters 3

and 4 respectively.

Following the approach proposed in [27, 49], if a given behavior momentarily freezes

(i.e., stops responding) while the simulation suggests an alternative behavior in the current

level of execution, then the composition can be continued naturally hoping that the frozen

behavior resumes. In case of a permanent unavailability of a participant service, simulation

refinement is computed so as to take into account its unavailability. However, the presented

work in [49, 27] does not consider the impact of permanent unavailability failure on ex-

ecution history in case the computed composition has already run partially and the failed

service has already participated. In other words, they focus on the impact of unavailability

on the already computed simulation and provide an efficient manner to refine it, without

studying the possibly happening changes in the executed part of the composition. This

works well only if all operations within all behaviors are considered independent, i.e., all

states are final and whenever the moment in which a used service fails, it leaves the com-

position legally.

2.4 Related work 25

Another interesting work is [22, 23], where the authors used state machines-based

model as well. They consider essentially the problem of the runtime substitution of one

service by another, in case the former becomes unavailable. A set of candidate substi-

tutes is firstly selected based on their ontological annotations. They are services having a

functionality similar of richer than that provided by the failed service (the service to be sub-

stituted). Secondly, one of the candidates is selected based on its ability to be synchronized

with the failed service state. Therefore, the failed service state should be proactively stored

in order to be provided to the selected substitute. Measuring the ability of a substitute to

be synchronized relies on computing its compatibility degree with the service to be substi-

tuted. The compatibility degree expresses the ability of the candidate to interpret and use

a state provided by the failed service. If the substitute cannot be fully synchronized with

the latest state of the unavailable service; the synchronization is then tried using an earlier

state than the last stored one.

In this work, authors consider also the case where no synchronization is possible. In

such a case, the sequence of messages that have been exchanged between the unavailable

service and the client is transparently adapted and replayed on the substitute in order to

reproduce the same computation effect (avoiding thereby the user intervention).

In their work, Angarita et al. [2] detailed a framework, so called ”FaCETa”, that com-

bines both backward and forward recovery in handling transactional composite failures.

They consider transactional-QoS driven composition of Web services where the composite

ensures an all-or-nothing semantics and components selection takes into account QoS at-

tributes further than functional and transactional attributes. Transactional attributes of some

2.4 Related work 26

component service are expressed in terms of ”compensatable”, ”retriable” and ”pivot”.

Their composition model is detailed in [14]. Following failure occurrence, the proposed

approach reacts at runtime by trying firstly a forward recovery. In the forward recovery, if

the faulty service is retriable then it will be re-executed. If it is not retriable, a substitute

service is searched among a set of candidate services. Clearly, the substitute is selected

if its functional and non-functional attributes are adequate compared to the faulty service.

Finally, if no substitute is found, a backward recovery will ensure to run the system com-

ponents back until the initial state.

2.4.3 Discussion

In this work, we are interested in a scenario where recovery plans are built at runtime

and alternatives to the failed component services are found automatically and dynamically

following failure occurrence. We do not provide technical solutions in this thesis. We

rather provide a formal study of the recovery problem in the protocol-based Web service

composition model. Thereafter, we briefly compare our vision to the recovery problem

to some of the works presented above. The comparison is made with respect to the used

composition model, the unavailability failure instance, and the recovery problem definition.

Composition model In many works, the composite structure is described by the se-

quencing over component services which are considered as atomic elements such as in

[9, 12, 24, 62]. To better meet the requirements of the recovery problem, we shared with

[49] the behavior composition model based on state machines and simulation preorder.

Component services export their protocols as finite state machines. Such a model has es-

sentially two advantages:

2.4 Related work 27

• It allows reasoning about services operations. The presence of services operations

increases substitution possibilities. That is, if no direct alternative is found for some

failed service, then some combination of transitions belonging to different services

may substitute the failed service. Similarly, a set of failed services may be substituted

by a single service.

• The presence of semi-final (or, hybrid) states allows the partial rollback on compo-

nent services. This possibility is not offered if component services are seen as atomic

elements.

Compared to the model described in [7, 8, 49], we consider an additional feature that

better serves the recovery process. More specifically, we use information about data de-

pendencies with some differences regarding [9], [12] and [24]:

• The generalization from inter-services dependencies to inter-transitions dependen-

cies. Two dependent transitions may belong to the same service or to different

services. Furthermore, to each composite execution corresponds a set of data de-

pendencies that relaxes the execution form to a partially ordered set of transitions.

Therefore, the compensation order over executed transitions is relaxed. That is, in a

total order, the rollback should be made in the reverse execution sense (last in, first

out). In a partial order, the rollback can be made in several senses; as long as no data

dependency is violated.

• Compared to [9], we do not differentiate compensation and cancellation dependen-

cies. They are all represented by one sort of dependency that, if it goes from a

transition t1 to another t2, then t2 must always be compensated (or, canceled) before

t1.

2.4 Related work 28

• In [24], the Web service designer should specify, at least, one alternative activity

to that failed. This is equivalently replaced by defining alternative dependencies in

[9]. In the work presented by Fredj et al. [22, 23], they used services signatures

to identify services that offer a functionality similar or richer than that provided by

the failed one. This allows choosing candidate substitutes. In our work, we use

services protocols for doing so. Substitute transitions can be selected automatically

due to the composition model we are using. Concretely, a transition may substitute a

second transition if they are labeled by a same operation name. Note that in our work,

substituted transitions as well as compensated transitions are not necessarily failed

however, this may be applied when needed depending on the computed recovery

plan.

Unavailability failure instance In several works (such as in [23] and [49]), the unavail-

ability failure occurs as a set of non-useful component services. Actually, a component

service may disappear partially i.e., only a subset of its transitions becomes non-useful.

This may happen, for instance, if the component service is itself a composite and some of

its own components disappear. To this fact and for a better generalization, we formalize the

unavailability failure instance as a set of non-useful transitions. An unavailable transition

may belong to any of the component services.

Recovery problem definition All the works presented in sections 2.4.1 and 2.4.2 pro-

vide heuristics to build recovery plans. In some cases (such as in [29] and [49]), recovery

plans are used to reconfigure the composite structure far from the faulty components. For

instance, the reconfiguration is done in [49] by refining the computed simulation preorder

2.4 Related work 29

so that all delegations to unavailable services are cleaned out. In some other cases (such as

in [9], [12], [22], [24], [50], [56] and [62]), the recovery plan is used to repair the resulting

faulty execution by orienting the current execution towards an accepted termination state

(from the client’s perspective). The goal of the above-cited works is then to specify con-

crete solutions with respect to their model constraints and chosen quality criteria. Unlike

these works, the goal behind our work is mainly to formalize the recovery problem and

study its complexity. To this fact, we do not present a concrete or technical solution in this

report.

We use the simulation-based composition model such as in [49]. However, we address

the repair of a failed execution rather than the computed simulation. We define the recovery

as the process of transforming the failed execution into an alternative execution of the

composite, using a recovery plan. Clearly, the alternative execution should not make call to

an unavailable service in all its possible future evolutions. We define the recovery problem

as the problem of finding the alternative execution(s) to which the transformation is made

with a minimal number of visible compensations towards the client.

Chapter 3

Preliminaries

In this chapter, we present some formal concepts that will be used later in this thesis. These

concepts are essentially related to finite state machines (FSMs) and partially ordered sets

(posets). In a first part, Section 3.1 defines concepts related to FSMs. In a second part,

Section 3.2 focuses on posets and some concepts connected thereto.

3.1 Finite State Machines [31]

A finite state machine (FSM) is a tuple A = 〈Σ,S,s0,F,λ〉, where :

• Σ is a finite set of alphabet,

• S is the finite set of states,

• s0 ∈ S is the initial state,

• F ⊆ S is the set of final states and,

• λ⊆ S×Σ×S is the transition function of the FSM.

3.1 Finite State Machines [31] 31

An FSM is said to be deterministic (DFSM) if whenever (s,a,si)∈ λ and (s,a′,s j)∈ λ

with si 6= s j then a 6= a′. Otherwise, it is said non-deterministic.

Executions An execution of an FSM A is a sequence σ = s0
a1−→ s1 . . .

an−→ sn alternating

states si and operations ai such that: for i ∈ [0,n−1], we have (si,ai+1,si+1) ∈ λ. We say

that the execution σ starts at state s0 and ends at state sn. The set {a1, . . . ,an} is denoted

Op(σ). We also have Op(si−1
ai−→ si) = ai. The transition sn−1

an−→ sn is denoted last(σ).

The set Path(A) denotes all possible executions on A. We denote by trans(σ) ⊆ λ the

set of transitions appearing on σ i.e., all (si,ai+1,si+1)∈ λ such that σ = s0
a1−→ s1 . . .si

ai+1
−→

si+1 . . .
an−→ sn.

Simulation preorder Let A = 〈Σ,S,s0,F,λ〉 and A′ = 〈Σ′,S′,s′0,F
′,λ′〉, be two FSMs. A

state s1 ∈ S is simulated by a state s′1 ∈ S′, noted s1 � s′1, iff:

• ∀a ∈ Σ and ∀s2 ∈ S s.t. (s1,a,s2) ∈ λ there is (s′1,a,s
′
2) ∈ λ′ s.t. s2 � s′2 and,

• if s1 ∈ F , then s′1 ∈ F ′.

We say that A is simulated by A′, noted A� A′ iff s0 � s′0.

Note that, a state within A can be simulated by more than one state within A′. The

largest simulation relation of A by A′ is the relation that associates to each state s ∈ S the

set of all states that simulate it.

Asynchronous product Let R= {A1, . . . ,Ak} be a set of k FSMs with Ai = 〈Σi,Si,s
i
0,Fi,λi〉,

i∈ [1,k]. The asynchronous product (or, shuffle) of the Ais, denoted⊙(R) =A1× . . .×Ak,

is the FSM 〈ΣR,SR,s
0
R,FR,λR〉 with :

3.1 Finite State Machines [31] 32

�����������	A�BC	CD��EBCFDA��C��������

����
��

�

����
��

�

����
��

�

����
��

�

����
��

�

����
��

�

���

�

�

���

�

�

�������������� �

�
�����
��

������������
��

�

�

� �

�
�

�

�

��

��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

�����
��

������������
��

�

Figure 3.1: Asynchrounous product of two protocols

• ΣR =
⋃k

i=1 Σi,

• SR = S1× . . .×Sk,

• sR
0 = (s1

0, . . . ,s
k
0),

• FR = F1× . . .×Fk,

• λR is the transition function defined as follows: λR = {((s1
i1
, . . . ,sv

j, . . . ,s
k
ik
),a,(s1

i1
, . . . ,

sv
j′
, . . . ,sk

ik
)) s.t. (sv

j,a,s
v
j′
) ∈ λv, for some v ∈ [1,k].

Note that the product is asynchronous in the sense that at each transition of the FSM

A1× . . .×Ak, only one transition of one FSM Ai is moved. An example is depicted in

Figure 3.1.

3.2 Partial orders and ideals [17] 33

Projection Let R = {A1, . . . ,Ak} be set of FSMs with Av = 〈Σv,Sv,s
0
v ,Fv,λv〉,v ∈ [1,k]

and let σ be an execution of ⊙(R) with ⊙(R) = 〈ΣR,SR,s
R
0 ,FR,λR〉. A projection of σ

on the FSM Av,v ∈ [1,k], denoted by πAv
(σ), is the execution σ′ ∈ Path(Av) such that:

∀((s1
i1
, . . . ,sv

j, . . . ,s
k
ik
),a,(s1

i1
, . . . ,sv

j′
, . . . ,sk

ik
)) ∈ trans(σ)⇔ (s j,a,s j′) ∈ trans(σ′),v ∈ [1,k].

Informally, an execution of ⊙(R) involves a set of executions on participant FSMs. Then,

the projection of σ on Av is the execution of Av involved by σ.

3.2 Partial orders and ideals [17]

A partial order (or, a poset) is a binary relation ”≤” over a set X , denoted P = (X ,≤),

which is reflexive, antisymmetric, and transitive, i.e., for all a, b, and c in X , we have:

• a≤ a (reflexivity),

• if a≤ b and b≤ a then a = b (antisymmetry),

• if a≤ b and b≤ c then a≤ c (transitivity).

In other words, a partial order is an antisymmetric preorder.

A totally ordered set (also called a linearly ordered set or a chain) is a poset P =

(X ,≤) in which ∀a,b∈X , a≤ b or b≤ a, means that any pair of elements in X are mutually

comparable under the relation ≤.

Ideals Let P = (X ,≤) be a partial order. I ⊆ X is said to be an ideal of P if for every

y ∈ I, if x≤ y then x ∈ I. The set of all ideals of P is denoted I(P). An example of an ideal

of a poset P is depicted in Figure 3.2.

3.2 Partial orders and ideals [17] 34

�����

�

Figure 3.2: An ideal of a poset

Chapter 4

Web Service Composition Model

The need for Web service composition raises when no available service can meet a specific

client requirement. The composition consists in combining a set of available services, that

we call component services, with the purpose of building a desired service, referred to as

the target service [8, 46]. A lot of models for Web services and their composition have

been developed [11, 21, 48, 53]. In this work, we adopt a protocol-based composition

model [8, 41]. In such a model, services export their protocols as FSMs. The composition

process results in a Delegator. It coordinates available services executions so to mimicking

the target service behavior [8, 46].

4.1 Protocol-based Web service modeling 36

A composition of Web services may encounter problems due to the vulnerable nature

of the Web. Component services may disappear at runtime resulting in an incomplete exe-

cution of the composite. In this work, we focus on the recovery of an incomplete execution.

The recovery may use the compensation in order to set back the execution in a consistent

state. In the protocol-based composition model, an execution of the Delegator corresponds

to a totally ordered set of transitions. To better meet the requirements of this work, we

relaxed the execution to a partially ordered set using data dependencies. This relaxes

the compensation order among the transitions of a given execution. That is, the rollback

in a total order should always be made in the reverse execution sense (last in, first out).

In a partial order, the rollback can be made in several senses; as long as no precedence

constraint is violated.

The goal of this chapter is to describe the composition model used in this work. Section

4.1 describes the protocol-based representation of Web services. Then, Section 4.2 details

the protocol-based composition model. In Section 4.3, we re-formalize the execution con-

cept using partial orders.

4.1 Protocol-based Web service modeling

In a protocol-based representation [5, 6, 7, 8, 46], a Web service exports its conversational

behavior i.e., the sequences of atomic interactions that services can potentially have with

clients. A client can be a human or another service. Behaviors are represented by means of

deterministic finite state machines (DFSMs), where each transition label refers to a possible

atomic interaction between a client and an available service, also referred to as operation.

4.1 Protocol-based Web service modeling 37

The states indicate the phases that a service can go through while final states indicate cor-

rect haltings. Note that final states are surrounded by a circle in the subsequent figures.

Typically, an atomic interaction results from the following steps [46]:

• According to its current state, the available service proposes a choice of operations

the client can ask for;

• the client selects one of such operations;

• the available service executes client’s selection, moves to a new state, according to

its behavioral specification, and iterates the procedure.

An execution of a service protocol formalized by means of a DFSM A = 〈Σ,S,s0,F,λ〉

(Σ symbolizes service operations) is an execution of A. We consider deterministic protocols

so as to capture their full controllability and, hence, the result of executing an operation in

a given state is a certain successor state. In other words, by assigning operation execution,

one can fully control available services’ transitions.

Example 1. (A service protocol) Consider the Retailer service in Figure 4.1. Its protocol

deals with two types of clients: regular and premium. In the former case, a regular client

asks for a product catalog then he makes an order. Clearly, a client can directly makes the

order without going through the catalog. An invoice is sent to the client then a payment

phase is required. Finally, the requested goods will be shipped. If the client is premium

then goods may be shipped immediately after placing an order (the invoice is sent later).

The Repository of available services A repository, denoted R, of available services is

a set of services that are directly available to the client and can be used for the compo-

sition. Formally, it is a set of protocols, each of which is represented by a DFSM i.e.,

4.1 Protocol-based Web service modeling 38

�����
��

�����
��

�����
��

����������	

A��BC�DEF��

A��BC�DEF��

A�F��F��C��E

�����
��

�����
��

�����
��

A���F	��EB��	��B��

�����
	�

��	��	��E���

�����
A�

A�F��F��C��E

�����
B�

����������	

A���F	��EB��	��B��

Figure 4.1: The business protocol of the retailer service

4.1 Protocol-based Web service modeling 39

R = {A1,A2, . . . ,Ak}. All the services in R share a common understanding over the set of

operations in the alphabet ΣR with ΣR =
⋃k

i=1 Σi. This means, two operations labeled sim-

ilarly are performing the same task whatever these operations belong to same or different

services. In the subsequent paragraphs, we use shortly the term ”repository” to designate a

repository of available services.

Example 2. (Repository) Consider the repository depicted in Figure 4.2. Four services

are available: an authentication service, two equivalent services for the train booking

(deployed by different companies) and, finally, a flight booking service.

The authentication service is a common service that allows a user to login. Once done,

the user can close his session and go to a final state.

The train and flight booking services are a simplified form of the travel booking on

the Web. The user is firstly asked to find among the available travels the one meeting his

requirements. These requirements can include the departure city, the arrival city and the

date. Once found, the service asks the user to pay for his booking before going to a final

state. The final state, in this service, reflects the booking validation.

The repository R can be associated to an FSM that formalizes its ”global” behavior.

Such a global behavior is the result of combining in all possible ways the available be-

haviors in R. Formally, it consists in the asynchronous product of all DFSMs in R i.e.,

⊙(R) = 〈ΣR,SR,s
R
0 ,FR,λR〉. Thus, an execution of R is some execution of⊙(R). Informally,

an execution of ⊙(R) is some evolution of its services i.e., a possible ”legal” alternation

between transitions belonging to the services of R.

4.1 Protocol-based Web service modeling 40

���������	��A�BC�DE���

F�����CC�A�

��AC���CC�A�

������������	AB�	C��DE��
F�

�����
��

F

�����
F�

F

�����
��

F

������B�AA����

�������	�����CC�	���DE��
� �

�����D	E���

�����
��

�

�����
F�

�

�����
��

�

�	������

�D	��B�AA�����B�A��	��B�

�������B	���CC�	���DE��
� �

�����D	E���

�����
��

�

�����
F�

�

�����
��

�

�	������

�D	��B�AA�����B�A��	��B�

�������B	���CC�	���DE��
� �

�����D	E���

�����
��

�

�����
F�

�

�����
��

�

�	������

Figure 4.2: A repository of services

4.2 Automatic composition synthesis 41

Example 3. (Repository execution) Consider the repository of Figure 4.2. If we use the

authentication service and the train booking service (take company 1) to run executions

then we can have, for instance:

1. 〈s1
0,s

2
0,s

3
0,s

4
0〉

OpenSession
−→ 〈s1

1,s
2
0,s

3
0,s

4
0〉

CloseSession
−→ 〈s1

2,s
2
0,s

3
0,s

4
0〉

2. 〈s1
0,s

2
0,s

3
0,s

4
0〉

OpenSession
−→ 〈s1

1,s
2
0,s

3
0,s

4
0〉

FindTravelT
−→ 〈s1

1,s
2
0,s

3
1,s

4
0〉

PaymentT
−→ 〈s1

1,s
2
0,s

3
2,s

4
0〉

3. 〈s1
0,s

2
0,s

3
0,s

4
0〉

OpenSession
−→ 〈s1

1,s
2
0,s

3
0,s

4
0〉

FindTravelT
−→ 〈s1

1,s
2
0,s

3
1,s

4
0〉

PaymentT
−→ 〈s1

1,s
2
0,s

3
2,s

4
0〉

CloseSession
−→ 〈s1

2,s
2
0,s

3
2,s

4
0〉

Assumption 1. Each service in R has one instance in run.

4.2 Automatic composition synthesis

When no available behavior meets the client specification, the automatic composition

synthesis can be used to compose the requested behavior. It consists to synthesize a new

behavior, using existing behaviors. The role of the synthesized behavior is to delegate each

requested operation (in some execution level) to an available service that can perform it.

From a client’s viewpoint, the synthesized behavior will be similar to the firstly requested

behavior. The synthesized behavior is called a Delegator and the requested behavior is

called a target service. In the following, we firstly define the target and the Delegator

concepts independently in sections 4.2.1 and 4.2.2. Then, we show in Section 4.2.3 that the

Delegator can be generated using simulation preorder.

4.2 Automatic composition synthesis 42

4.2.1 The target service

It is the desired service i.e., it needs to be composed in order to meet client requirements.

Its specification is provided by the client as a deterministic FSM, denote by AT . Example

4 provides a description of a target service.

Example 4. (A Target service)

����������	AB���C�DEEF�C������
B �

�����������

�����
��

B

�����
��

B

�����
��

B

	��ABCDE�FB

�D�����B

�����
��

B

�����
��

B

�F����������

Figure 4.3: A private train booking Web service (the target service)

Let us reconsider the repository of Figure 4.2. Assume we need a private train booking

service. The private booking ensures train booking but only to registered customers. For

this purpose, the desired service has firstly to go through an authentication phase. Then the

booking phase must proceed within a session that opens only for registered users. At the

4.2 Automatic composition synthesis 43

end, the user has to close his session. The protocol corresponding to such a specification is

depicted in Figure 4.3. It is not directly available in the repository of Figure 4.2. Therefore,

it becomes a target service that needs to be composed using already available services.

4.2.2 The Delegator

Informally, the Delegator (also called ”orchestrator”) [8, 27, 41, 46] is a component able to

delegate the execution of each requested operation to an available service. It has full ob-

servability on available services’ states. That is, it can keep track (at runtime) of the current

state available services are in. The Delegator coordinates available services executions in

order to mimic the target service behavior [46].

A Delegator can be seen as an FSM where the transitions are annotated with suitable

delegations in order to specify to which component each operation of the target service is

delegated (see Example 5). Formally, the Delegator can be defined as follows:

Definition 1. (The Delegator) Let R= {A1, . . . ,Ak} be a repository with Ai = 〈Σi,Si,s
i
0,Fi,λi〉

, i ∈ [1,k] and AT = 〈ΣT ,ST ,s
T
0 ,FT ,λT 〉 is a target protocol. A Delegator using R for syn-

thesizing AT is a tuple D(AT ,R) = 〈ΣD,SD,s
D
0 ,FD,λD,delegatesD〉, such that:

• 〈ΣD,SD,s
D
0 ,FD,λD〉 is an FSM and,

• delegatesD : λD−→ R; is a function indicating to which protocol in R each transition

in λD is delegated.

Example 5. (Delegator) Consider the example of Figure 4.4. Delegators in Figures

4.4(3) and 4.4(4) are two possibilities to synthesize the behavior of the Target specified

4.2 Automatic composition synthesis 44

���
�����	ABBC��DE	FB�����	�

�����������	AAB��C�DE��
F �

�����������

�����
��

F

�����
��

F

�����
��

F

��������

�����	ABBC��DE	FB�����	�

�����������	AAB��C�DE��
� �

�����������

�����
��

�

�����
��

�

�����
��

�

��������

������������B�	�������

 ���!����B�

F�B��!����B�

�����������������A��DE��
��

�����
��

�

�����
��

�

�����
F�

�

���

������������������	AAB��C�DE��
� �

 ���!����B�

�����
��

�

�����
��

�

�����
F�

�

�����������

��������

�����
��

�

�����
��

�

F�B��!����B�

������� ��
��

����
��
"	 ���!����B�

�����
��

�

�����
��

�

�����
F�

�

�����
��

�

�����
��

�

"	���������������
F�

"	������������
F�

"	F�B��!����B�����
��

�#�

�!������ ��
��

����
��
"	 ���!����B�

�����
��

�!

�����
��

�!

�����
F�

�!

�����
��

�!

�����
��

�!

"	���������������
��

"	������������
��

"	F�B��!����B�����
��

�$�

�"������ ��
��

����
��
"	 ���!����B�

�����
��

�"

�����
��

�"

�����
F�

�"

�����
��

�"

�����
��

�"

�����
F�

�"

"	���������������
��

"	������������
��

"	F�B��!����B�����
��

"	���������������
F�

"	������������
F�

�%�

Figure 4.4: Possible Delegators

4.2 Automatic composition synthesis 45

in Figure 4.4(2), using available services in Figure 4.4(1). The ”largest” Delegator that

can be obtained is depicted in figure 4.4(5) and it consists in gathering all delegation

possibilities in a single FSM.

Definition 2. (Delegator execution) Let R = {A1, . . . ,Ak} be a repository and D(AT ,R) =

〈ΣD,SD,s
D
0 ,FD,λD,delegatesD〉 is a Delegator using R. An execution of D(AT ,R) is a

sequence σ = s0

(a1,Av1
)

−→ s1 . . .
(an,Avn)−→ sn such that:

• s0 = sD
0 , and

• for i∈ [0,n−1], we have (si,ai+1,si+1)∈ λD and delegatesD((si,ai+1,si+1)) = Avi+1
.

Example 6. (Delegator execution) Continuing with the example of Figure 4.4. One pos-

sible execution of the Delegator in Figure 4.4(3) is σ = sD
0

(OpenSession,A1)
−→ sD

1

(FindTravelT,A2)
−→

sD
2

(PaymentT,A2)
−→ sD

3 .

An execution of the Delegator corresponds to a sequence of delegations. Each delega-

tion involves the execution of some transition within the corresponding delegated service.

We say that the moved service transition is inherited from the Delegator transition. There-

fore, to each Delegator execution corresponds to a set of inherited services’ transitions that

we define by the following.

Definition 3. (Inherited transitions) Let R be a repository, D(AT ,R)= 〈ΣD,SD,s
D
0 ,FD,λD,

delegatesD〉 is a Delegator using R and σ = s0

(a1,Av1
)

−→ . . .
(an,Avn)−→ sn is a Delegator execu-

tion. Let σ 7→tD denote a prefix of σ such that last(σ 7→tD) = tD. We say that the service

transition t ∈ λi, i ∈ [1,k] is an inherited transition of tD and we write inh(tD) = t if and

only if last(πAi
(σ 7→tD)) = t.

4.2 Automatic composition synthesis 46

Example 7. (Inherited transitions) Take the Delegator at Figure 4.4(3). We have:

• inh(sD
0

(OpenSession,A1)
−→ sD

1) = (s1
0,OpenSession,s1

1),

• inh(sD
1

(FindTravelT,A2)
−→ sD

2) = (s2
0,FindTravelT,s2

1), and

• inh(sD
2

(PaymentT,A2)
−→ sD

3) = (s2
1,PaymentT,s2

2).

In this work, the Delegator is one input to our problem which is supposed to be correct.

That is, a protocol A is delegated to execute an operation a (requested by the target AT)

only under the following conditions:

• (1) A is in a state allowing it to execute a and,

• (2) If AT reaches a final state then A has to do same.

It is out of the scope of this thesis to check Delegator correctness. Nevertheless, we

provide in the following a small overview of the simulation-based composition process

that allows generating correct Delegators.

4.2.3 Delegator generation

The Delegator results from a composition process that uses simulation preorder to check

whether the behavior of the Target can be ”simulated” by a possible combination of services

in R. Such a simulation-based method is called composition synthesis [7, 8, 27, 30, 41].

Theorem 1 [8] below is reformulated in our context. It shows that checking for the existence

of a service composition i.e., a Delegator, can be reduced to checking whether the target

FSM AT is simulated by ⊙(R).

4.2 Automatic composition synthesis 47

Theorem 1. [8] Let R be a repository of services and AT a target service. A Delegator

D(AT ,R) exists if and only if AT �⊙(R).

Example 8. (Simulation-based composition) In the example of Figure 4.5, we dropped

���

�

�

�

�

������

�����	�AB��

���C��

���DE�

���FE�

��B�

�

� �

� �

�

�

��

��

�

A

��B�

�E�

�

�

���

�

�

�A������	����� E ��B� �EB�

Figure 4.5: Simulation-based composition

states for simplicity reasons. Figure 4.5(1) represents a simple repository that contains two

4.2 Automatic composition synthesis 48

FSMs. Figure 4.5(2) is the FSM of the target AT . In order to check whether the behavior

of AT can be simulated by the behaviors in R, ⊙(R) is computed and depicted at Figure

4.5(3). It is clear that AT is simulated by ⊙(R) (see dashed arrows within ⊙(R)). Then

a Delegator D(AT ,R) is generated based on the computed simulation and is depicted in

Figure 4.5(4).

4.2.4 Discussion

The composition synthesis problem of services that export their protocols has raised a lot

of research work such as [6, 7, 41]. In [41], Muscholl and Walukiewicz reduce the protocol

synthesis problem to the problem of testing a simulation relation between the target proto-

col and the product of component protocols. They also show the Exptime completeness of

the bounded instances protocol synthesis problem in which each service protocol that can

be involved in a composition is bounded by a constant k fixed a priori. This case can be

trivially reduced to the case where k = 1 for each protocol by duplicating each service k

times and allowing each service to run just one instance. The complexity of the unbounded

case has been studied in [30]. In [8], it is proven that checking for the maximal (or, the

largest) simulation preorder is still Exptime hard.

Following [8, 46, 49], using the maximal simulation has a very interesting property: it

contains enough information to allow for extracting every possible composition, through

a suitable choice function. This property opens the possibility of devising composition in

a ”just-in-time” fashion: the maximal simulation is computed a priori then, equipped with

such a simulation, the composition is started, choosing the next step in the composition

4.3 Relaxing executions with dependencies 49

according to the criteria that can depend on information that is available only at run-time

(actual availability of services). Indeed, it suffices that the next step chosen for execution

leads to service states that remain in the simulation relation.

In this work, we assume that our Delegator is correct i.e., generated using simulation-

based method. Clearly, if the concerned Delegator was built on the basis of a maximal

simulation preorder then its set of possible executions may be richer. Therefore, the recov-

ery process may deal with more candidate recovery executions.

4.3 Relaxing executions with dependencies

In the protocol-based Web service composition model, an execution of the composite cor-

responds to a totally ordered set (a chain) of transitions. In this section, we relax the

execution to a partially ordered set (poset). We essentially exploit information about

data dependencies over transitions. That is, for a given Delegator execution σ, a data de-

pendency goes from a transition tD ∈ trans(σ) to a transition t ′D ∈ trans(σ) if, at least, one

output of tD is an input to t ′D. This is translated to tD≤ t ′D in the order relation over trans(σ).

This novel vision to the execution concept will help to characterize the recovery trans-

parency, given a failed and a candidate recovery execution. Actually, the more the failed

execution is similar to the candidate recovery execution, the more the recovery is transpar-

ent. The similarity between two executions can not be measured solely in terms of shared

operations, but also must take into account the direction of data flow between shared oper-

ations. This last constraint is captured by the partial order concept since it is constructed

4.3 Relaxing executions with dependencies 50

using data dependencies.

A lot of works (e.g., [9]) deal with data dependencies as an available knowledge that can

be exploited offline to design a recovery mechanism. A second direction (e.g., [58]) deals

with data dependencies as a discovered knowledge that becomes available only at runtime.

Without loss of generality, we deal with data dependencies as an available knowledge. In-

deed, the unavailability of information about data dependencies can simply be considered

as a total order over Delegator executions.

Definition 4. (Data dependencies and relaxed executions) Let σ be a Delegator ex-

ecution. We define data dependencies on σ as a partial order over trans(σ) denoted

P(σ) = (trans(σ),≤σ). P(σ) is a relaxed execution.

Note that, for an execution σ, we assume that P(σ) is transitively reduced. The example

in Figure 4.6 illustrates the difference between an execution and a relaxed execution.

We make a hypothesis about intra-service dependencies; we suppose that each two suc-

cessive transitions within a same service and belonging to a possible Delegator execution

are related by a data dependency. Formally, if P(σ) = (trans(σ),≤σ) is a relaxed execution

then we have ∀tD, t
′
D ∈ trans(σ) such that inh(tD) = (sv

j,a,s
v
j′
) and inh(t ′D) = (sv

j′
,a′,sv

j′′
)⇒

tD≤σ t ′D in P(σ), with v∈ [1,k]. In fact, this assumption tells to respect services protocols in

the sense that we cannot decompose the order defined by the designer of some component

service.

4.3 Relaxing executions with dependencies 51

�
�

�

�
�

�

�
�

�

�
�

�

�
�
���

�
�
���

�
�
���

�
�
���

�
�

�

	
�

�

	
�

�

	
�

�

	
�

�

AB�C	CBDEFE�DE���E�BBB
B

AB	�C���	����B����DC��E�BBB
B

	
�

�

	
�

�

	
�

�

	
�

�

������

Figure 4.6: Execution vs. relaxed execution

4.4 Summary 52

4.4 Summary

This chapter described mainly the composition model adopted in this work. A first part

presented an existing protocol-based composition model where services export their con-

versational behaviors as FSMs. The composition process results in a Delegator that mimics

the target service behavior. It delegates its requested operations to component services at

runtime. In such a model, an execution is a totally ordered set of transitions. In a second

part of this chapter, we relaxed the execution form to a partially ordered set by exploiting

information about data dependencies. The order among transitions will serve to character-

ize the transparency level of the recovery process. This will be detailed in the next chapter.

Chapter 5

Automatic recovery in Web service

composition

The unavailability of component services is a common failure that may encounter a Web

service composition. Ensuring the availability of components is a hard challenge because

of their autonomy and privacy. Therefore, a recovery mechanism is required in order to

preserve the composite service consistency. In this work, we consider the unavailability

failure in the protocol-based composition model. The unavailability failure results in an

incomplete execution of the composite. Thus, the recovery process should transform the

failed execution into a recovery execution. The recovery execution is an alternative execu-

tion of the composite that still has the ability to reach a final state. Clearly, several candidate

recovery executions may be available. Therefore, we present in this work a formal study

of the recovery problem where the goal is to find the best recovery execution(s). A best

recovery execution must be attainable from the failed execution with a minimal number of

visible compensations in the recovery plan.

5.1 Formalizing unavailability failure in Web service composition 54

We provide in this chapter a formal and detailed description to the unavailability fail-

ure and the recovery problem. In Section 5.1, our focus is made on the unavailability

failure. We deeply describe the event of unavailability and its side-effects on the running

composition. In Section 5.2, we turn our attention to the recovery problem. The main con-

cepts related to the recovery are defined, the core theorems and lemmas of this work are

announced and the complexity issues are discussed.

5.1 Formalizing unavailability failure in Web service com-

position

In this section we give a closer look at the unavailability failure in the protocol-based Web

service composition. First of all, we intuitively describe the unavailability failure event

in Section 5.1.1. Then, we deal with the unavailability failure effects on the Delegator in

Section 5.1.2.

5.1.1 Unavailability failure occurrence

In the protocol-based Web service composition, the Delegator makes call to component

services to perform requested operations. It may happen that soft or hard problems cause

the runtime unavailability of one or more component services. When the Delegator makes

call to an unavailable service then an unsuccessful delegation occurs. This results in a

failed execution of the Delegator that will need to be repaired. In the sequel, a failed exe-

cution is denoted σF . To generalize, we assume that unavailability failure occurs as a set

5.1 Formalizing unavailability failure in Web service composition 55

of unavailable transitions over the repository. Each unavailable transition may belong to a

different component service. By doing this, we allow all cases of unavailability including

the partial unavailability of a single service (only a subset of its transitions becomes un-

available) and the total/partial unavailability of multiple services at the same time. The set

of all unavailable transitions within the repository is assumed discovered the moment of

the first unsuccessful delegation.

Each unavailable transition on the repository may result in an invalid delegation. This

effect is expressed as a set of invalid transitions on the automaton corresponding to the

Delegator, such as depicted in the example of Figure 5.1. We present in the next section

an algorithm that allows cleaning the Delegator automaton by removing the set of invalid

transitions.

5.1.2 Delegator cleaning

We deal in this section with the effect of unavailability failure on the Delegator structure.

Clearly, the occurrence of an unavailability failure decreases the number of possible exe-

cutions of the Delegator. Consequently, some branches on the Delegator can no more be

useful and should be removed such as depicted in Figure 5.2. A branch is removed if:

• It no longer leads to a final state because of some future invalid transitions. For

instance, the branch leading to the state sD
5 on Figure 5.2(1) should be removed.

• It is no longer reachable from the initial state because of some past invalid transitions

such as the branch leading to the state sD
10 on Figure 5.2(1). In this case, the branch

need not be cleaned since it is unreachable.

5.1 Formalizing unavailability failure in Web service composition 56

�����

�

�

�����

�

�

�

�

�

�����

�

�

�����

�

�

�����

�

�

�

�

�

�����

�

�

�

�

	A�����
��

�

�����
��

�

�����
��

�

�����
	�

�

�����
A�

�

�����
B�

�

	A�����
��

�����
��

� �����
C�

�

�����
��

�

�����
D�

�

�����
E�

�

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

�����
���

�

�

�����
��

�

�����
��

�

�����
	�

�

�����
A�

�

�����
B�

�

	A�����
��

�����
��

� �����
C�

�

�����
��

�

�����
D�

�

�����
E�

�

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

�����
���

�

BC�D�EF��EFE��A��EF���A�������C��

���

���
�ABC�D�EF��F�A���C�E�E�C �A�CD�FE�A���C�E�E�C

�F���������
�

�

�F���������
�

�

Figure 5.1: Unavailability failure occurrence

5.1 Formalizing unavailability failure in Web service composition 57

�����

�

�

�����

�

�

�

�

�

�����

�

�

�

�

�����
��

�

�����
��

�

�����
	�

�

�����
A�

�

�����
B�

�

	A�����
��

�����
��

� �����
C�

�

�����
��

�

�����
D�

�

�����
E�

�

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

	A�����
��

�����
���

�

B�C���DEFA�C������

�

�����
��

�

�����
��

�

�����
A�

�

�����
B�

�

	A�����
��

�����
��

�

�����
��

�

	A�����
��

	A�����
��

	A�����
��

	A�����
��

���

���

�A������C��C�ADF����D�E� �A����C��ADF����D�E�

�F���������
�

�

��F���������
�

Figure 5.2: A Delegator cleaning

5.1 Formalizing unavailability failure in Web service composition 58

We use the cleaning Algorithm 1, described below, to create a cleaned version of

D(AT ,R) = 〈ΣD,SD,s
D
0 ,FD,λD,delegatesD〉 in which all non-useful branches are deleted.

The resulting Delegator, denoted D′(AT ,R) = 〈ΣD,SD′,s
D′

0 ,FD′,λD′,delegatesD〉, will be

used in the recovery process when looking for alternatives to the failed execution. Indeed,

it reduces the search space by putting out risky executions.

Let IT denotes the set of invalid transitions on the Delegator. Then Algorithm 1 essen-

tially goes through two steps:

• Lines 2→6: We create an initial cleaned Delegator. It is a copy of the original

Delegator except for the set of transitions i.e., λD′ ← λD \ IT .

• Lines 7: All transitions of λD′ that no more can serve to reach a final state are re-

moved using the Procedure Clean. We base on the following property: Each tran-

sition which the arrival state has no successors and does not belong to final states

should be removed. To deal with loops and cycles, each state s is set to visited when

calling Clean(s). However, the state s may be successor to other states belonging to

branches not yet traversed. Therefore, the state s is reset to nonvisited at the end of

each call to Clean(s).

In Algorithm 1, succ(s) and pred(s) denote respectively the set of all successors and

predecessors of a state s ∈ SD. succi(s) and predi(s) are respectively the ith successor and

the ith predecessor of s.

Both automata corresponding to the initial and the cleaned Delegators are given by ad-

jacency matrix. The set FD′ is a binary table where each state i receives 1 if i ∈ FD′ and

5.1 Formalizing unavailability failure in Web service composition 59

receives 0 otherwise. Therefore, the worst-case computational complexity of the Algo-

rithm 1 is O(|λD′ |). This corresponding to the complexity of the depth-first traversing of

D′(AT ,R).

Algorithm 1: Delegator Cleaning

input : D(AT ,R), IT

output: D′(AT ,R)

1 begin

2 λD′ ← λD \ IT ;

3 SD′ ← SD;

4 sD′

0 ← sD
0 ;

5 FD′ ← FD;

// Creating the initial cleaned Delegator

6 D′(AT ,R)← 〈ΣD,SD′,s
D′

0 ,FD′,λD′ ,delegatesD〉;

// Cleaning branches not leading to final states

7 Clean(sD′

0);

8 return D′(AT ,R);

The automaton corresponding to the cleaned Delegator D′(AT ,R) may not simulate

the target behavior for which the original Delegator D(AT ,R) was generated i.e., AT �

〈ΣD,SD′,s
D′

0 ,FD′ ,λD′〉. Nevertheless, still-possible executions on D′(AT ,R) can be exploited

for the recovery. That is, a target specification may contain different but close execution

paths i.e., they semantically attempt to reach similar goals but with different manners. Such

specification is designed in order to offer to the client a range of choices and preferences

via possible execution paths. If the running execution cannot be continued then the client

is oriented towards another choice.

5.1 Formalizing unavailability failure in Web service composition 60

Procedure Clean(s)

begin

Set s as visited;

if |succ(s)| 6= /0 then

forall the s′ ∈ succ(s) do

if s′ is nonvisited then

if |succ(s′)|= 0 and s′ /∈ FD then

λD′ ← λD′ \{(s,a,A,s
′)};

else

Clean(s′);

if |succ(s′)|= 0 and s′ /∈ FD then

λD′ ← λD′ \{(s,a,A,s
′)}

else

if s′ /∈ FD′ then

λD′ ← λD′ \{(s,a,A,s
′)}

Set s as nonvisited;

5.2 Formalizing the recovery problem 61

5.2 Formalizing the recovery problem

In section 5.1, our focus was made on the unavailability failure. In this section, we focus on

the recovery problem. Firstly, we try to explain intuitively what ”recovery” means before

going deep into formal details.

Given a failed execution, a recovery is a process enabling to transform (or, to migrate)

the failed execution into a second execution so called a recovery execution. The recovery

execution is selected among available executions of the cleaned Delegator D′(AT ,R) in or-

der to guarantee its ability to reach a final state. Furthermore, it must share, at least, one

operation name with the failed execution. This is used to limit the number of candidate

recovery executions in case the cleaned Delegator contains loops or cycle.

Transforming a failed execution into a recovery execution is performed using a se-

quence of recovery operations including execution and compensation. Such a sequence

of recovery operations builds a recovery plan. Some candidate recovery executions may

be better than the others with respect to a given quality criterion. One major goal of this

work is to characterize best recovery executions with respect to the number of invisibly-

compensated transitions. In fact, if the recovery replaces (or, substitutes) compensated

transitions then the compensations are invisible from a client’s perspective. A transition

can replace another one if it is performing the same operation and respecting some order

constraints.

5.2 Formalizing the recovery problem 62

The present section formalizes the recovery problem. We firstly characterize candidate

recovery executions in Section 5.2.1. We define in Section 5.2.2 both recovery operations

and recovery plans. We formalize the ”replacement” concept in Section 5.2.3. Finally, in

Section 5.2.4, we properly formalize the recovery problem.

5.2.1 Candidate recovery executions

As already discussed, the recovery consists to find the best recovery execution(s) among

those available. They are executions ensuring a minimal number of visible compensations.

We know that an execution may be candidate if, at least, it shares its last operation label

with the failed execution. However, this is insufficient to limit the number of candidates.

Actually, the number of possible executions on the Delegator may be infinite because of

the loops and the cycles. Therefore, we limit the number of candidates by traversing loops

and cycles only once. In the following, we characterize candidate recovery executions.

Definition 5. (Candidate recovery executions) Let σF be a failed execution and let

D′(AT ,R) = 〈ΣD,SD′ ,s
D′

0 ,FD′,λD′,delegatesD〉 be a cleaned Delegator. An execution σ ∈

Path(〈ΣD,SD′,s
D′

0 ,FD′ ,λD′〉) is a candidate recovery execution and denoted σR if and only

if:

• Op(last(σR)) ∈ Op(σF), and

• If tD ∈ trans(σR) then |tD|= 1 (each transition occurs just one time).

In the case where no candidate recovery execution is available, the recovery will con-

sists simply to compensate all transitions of σF .

5.2 Formalizing the recovery problem 63

5.2.2 Recovery operations and recovery plans

In this section, recovery operations and recovery plans are respectively defined. A recov-

ery operation is an elementary step in a recovery process. We use two kinds of recovery

operations: the execution moves forward some transition while compensation moves it

backward. In the following, we formally define both the execution and the compensation

recovery operations.

Definition 6. (Execution recovery operation) let σF = s0

(a1,Av1
)

−→ . . .
(an,Avn)−→ sn be a failed

execution. We denote by σF execD(σ
F,tD)

−→ σ′F the application of a single execution recov-

ery operation execD(σ
F, tD) on σF which produces an execution σ′F such that: If tD =

(sn,an+1,Avn+1
,sn+1), vn+1 ∈ [1,k] then σ′F = s0

(a1,Av1
)

−→ . . .
(an,Avn)−→ sn

(an+1,Avn+1
)

−→ sn+1.

Definition 7. (Compensation recovery operation) let σF be a failed execution and

P(σF) = (trans(σF),≤σF) its associated poset. We denote by σF compD(σ
F,tD)

−→ σ′F the appli-

cation of a single compensation recovery operation compD(σ
F, tD) on σF which produces

an execution σ′F such that trans(σ′F) ∈ I(P(σF)).

Example 9. (Recovery operations) Figure 5.3 depicts some possible recovery operations

that can immediately be applied on the execution σ. We can either execute some transi-

tion that we called t3
D (other executions may be possible depending on the Delegator), or

compensate t2
D. The transition t1

D cannot be compensated at this stage because of its data

dependency going to t2
D. Therefore, t2

D should be firstly compensated.

A recovery plan is a sequence of recovery operations transforming a failed execution

σF into a candidate recovery execution.

5.2 Formalizing the recovery problem 64

�
�
�

�
�
�

�
�
�

�

�
�
�

�

�
�

�
�
�

�

���������	��	AB�C

�
�

�

�

�D�
A��E
���F�
����
�

�
�

�

�
A�����E���F������

Figure 5.3: Applied recovery operations

Definition 8. (Recovery plan) Let σF and σR be respectively a failed and a candidate

recovery executions. A recovery plan is a sequence of recovery operations (ro1, . . . ,ron−1)

such that σF ro17→ σ2
ro27→ ...σn−1

ron−1
7→ σR. The recovery plan transforming σF to σR is denoted

Plan(σF ,σR).

Example 10. (Recovery plans) Let σF be a failed execution. Figures 5.4(1) and 5.4(2)

are respectively recovery executions σR
1 and σR

2 obtained from σF by applying the following

recovery plans:

• Plan(σF ,σR
1) = 〈compD(σ

F, t2
D),compD(σ

F, t1
D),execD(σ

F, t4
D),execD(σ

F, t5
D)〉

• Plan(σF ,σR
2) = 〈compD(σ

F, t2
D),compD(σ

F, t3
D),execD(σ

F, t5
D),execD(σ

F, t6
D)〉

Generating recovery plans Given a failed and a candidate recovery execution, Algo-

rithm 2 generates the recovery plan by simply compensating all transitions of the failed

execution in the reverse execution sense, then executing all transitions of the recovery exe-

cution. In Algorithm 2, σX(i), with X ∈ {F,R}, denotes the ith transition of the execution

σX . If executions are given by lists of transitions then Algorithm 2 runs in linear time equal

to max(|σF |, |σR|).

5.2 Formalizing the recovery problem 65

�
�

�
�
�

�

�������������	A�B

�
�

�
�
�

�
�
�

�

�
�

�
�
�

�
�
�

�

CDE

CFE

�
�

�

���
���
�����
�����
�����	
A
B A

B

���������������������

	
A
C

A
C

	

Figure 5.4: Obtained recovery executions

Algorithm 2: Recovery Plan Generation

input : σF , σR

output: Plan(σF ,σR) // Plan(σF ,σR) is a queue

1 begin

2 Plan(σF ,σR)← /0;

3 for i← |σF |,1 do

4 enqueue(Plan(σF ,σR),compD(σ
F,σF(i)));

5 for i← 1, |σR| do

6 enqueue(Plan(σF ,σR),execD(σ
F,σR(i)));

5.2 Formalizing the recovery problem 66

5.2.3 The replacement problem

During a recovery procedure, several candidate recovery executions may exist, but some

ones may be better than the others with respect to a given quality criterion. In this work, we

attempt to minimize the number of visible compensations i.e., the best recovery execution

is that reached with a minimal number of visible compensations. A compensation is in-

visible if the compensated transition is replaced by another transition performing the same

operation and respecting some order constraints. The replacement concept is defined in

the following and illustrated in Example 11.

Definition 9. (The Replacement) Let P(σF)= (trans(σF),≤σF) and P(σR)= (trans(σR),≤σR

) be respectively the posets associated to a failed execution σF and a recovery execution

σR, and let l : λD → ΣD be a labeling function. A replacement of P(σF) by P(σR) is an

injective partial function ϕ : trans(σF)→ trans(σR) such that:

1. Dom(ϕ) ∈ I(P(σF)) with Dom(ϕ) = {x such that x ∈ trans(σF) is defined },

2. Img(ϕ) ∈ I(P(σR)) with Img(ϕ) = {ϕ(x) such that x ∈ trans(σF) is defined },

3. ∀x ∈ Dom(ϕ), l(x) = l(ϕ(x)),

4. (Dom(ϕ),≤σF) and (Img(ϕ),≤σR) are isomorphic via the injection ϕ i.e., ∀x,y ∈

Dom(ϕ),x≤σF y⇔ ϕ(x)≤σR ϕ(y).

If condition (4) is not required to be true then the replacement is said to be loose and

is denoted ϕloose, else it is strict and denoted ϕstrict . The set Dom(ϕ) is the set of replaced

transitions.

5.2 Formalizing the recovery problem 67

�����������
�

	����
A�

�

	����
B�

�

	����
C�

�

	����
D�

�

	����
E�

� 	����
AF�

�

	����
��

�

	����
��

�

	����
��

�

	����
��

�

	����
F�

�

	����
AB�

�

	����
AC�

�

	����
AD�

�

	����
AE�

�

	����
A��

�

	����
A��

�

�������
A�

�������
A�

�������
A�

�������
A�

�������
A�

�������
B�

�������
B�

�������
B�

�������
B�

�������
B�

�������
C�

�������
C�

�������
C�

�������
C�

�������
C�

�������
C�

�	�ABC�DEFC�

�	�E�������F���F�FC�

�	��F�C��C���

�	������C��C��

�	�����DE�F�BC����C����D�F��

�	��F�C�D���DF��

������������������	���
�

	����
AA�

�

�������
B�

�

�

�

�

�

�

�

�

�

�

�

�

Figure 5.5: A Search-Hotel composite service

5.2 Formalizing the recovery problem 68

Example 11. (Replacement and invisible compensation)

Consider The Delegator in Figure 5.5. This Delegator gathers three services (A1, A2

and A3) where each of them is used to look for an available hotel room in some city entered

as parameter. Six operations may be executed in the whole Delegator:

• EnterCity: Allows the client to enter the city name where he seeks a hotel.

• CheckAvailability: The system searches for hotels situated on the specified

city and that have available rooms.

• ListHotels: A list of hotels is displayed.

• SelectHotel: Allows the client to choose among proposed hotels.

• ReferClientToHotelService: The client is oriented towards the reservation

Web service associated with the selected hotel.

• FilterByPrice: A functionality that sorts available hotels from the least to the

most expensive.

Building on what precedes, we can describe the global functionality of A1, A2 and A3

as follows:

• The service A1: Simply takes the city name as an input and displays the list of all city

hotels having available rooms.

• The service A2: Also takes the city name as parameter and looks for hotels having

available rooms. Once hotels are found, they are displayed from the least to the most

expensive thanks to the additional operation FilterByPrice.

5.2 Formalizing the recovery problem 69

• The service A3: The same functionality as A2. However, hotels are firstly filtered by

price then only those having available rooms are displayed in the list.

Let us consider the following recovery scenarios:

1. Plan(σF
1 ,σ

R
1) = 〈compD(σ

F
1 ,(s

D
1 ,A1,b,s

D
2)),compD(σ

F
1 ,(s

D
0 ,A1,a,s

D
1)),

execD(σ
F
1 ,(s

D
0 ,A2,a,s

D
6)),execD(σ

F
1 ,(s

D
6 ,A2,b,s

D
7))〉.

Before failure occurrence, the client has executed a then b with a data dependency

from a to b. After the recovery procedure, the client is in a state (sD
7) that is reached

also after an execution of a followed by b and a data dependency from a to b. There-

fore, from a client’s perspective, nothing is changed. The recovery is completely

transparent and the compensation of both (sD
1 ,A1,b,s

D
2) and (sD

0 ,A1,a,s
D
1) is invisi-

ble.

2. Plan(σF
2 ,σ

R
2) = 〈compD(σ

F
1 ,(s

D
2 ,A1,c,s

D
3)),compD(σ

F
1 ,(s

D
1 ,A1,b,s

D
2)),

compD(σ
F
1 ,(s

D
0 ,A1,a,s

D
1)),execD(σ

F
1 ,(s

D
0 ,A2,a,s

D
6)),execD(σ

F
1 ,(s

D
6 ,A2,b,s

D
7)),

execD(σ
F
1 ,(s

D
7 ,A2, f,s

D
8)),execD(σ

F
1 ,(s

D
8 ,A2,c,s

D
9))〉

Being on the state sD
3 , the client has as a result of execution a list of all hotels having

available rooms. Following recovery, the client will have on the state sD
9 a list of

hotels sorted by price. Then a small difference between results will be visible to the

client which makes the recovery not completely transparent.

3. Plan(σF
3 ,σ

R
3) = 〈compD(σ

F
1 ,(s

D
9 ,A2,c,s

D
8)),compD(σ

F
1 ,(s

D
8 ,A2, f,s

D
7)),

compD(σ
F
1 ,(s

D
7 ,A2,b,s

D
6)),compD(σ

F
1 ,(s

D
6 ,A2,a,s

D
0)),execD(σ

F
1 ,(s

D
0 ,A3,a,s

D
12)),

execD(σ
F
1 ,(s

D
12,A3, f,s

D
13)),execD(σ

F
1 ,(s

D
13,A3,b,s

D
14)),execD(σ

F
1 ,(s

D
14,A3,c,s

D
15))〉

5.2 Formalizing the recovery problem 70

In this case, the client on both sD
9 and sD

15 has as an execution result a list, filtered by

price, of hotels having available rooms. Despite the complete transparency of such

a recovery, the data on the failed execution σF
3 did not circulate in the same way as

in σR
3 (from b to f in σF

3 and from f to b in σR
3). Such a recovery is then loose but in

which all made compensations are invisible to the client.

Computing the set of replaced transitions ensured by a given candidate recovery ex-

ecution is a hard task. Indeed, to each transition in the failed execution may correspond

multiple substitutes. Choosing one among substitutes may change the total number of re-

placed transitions (see Example 12 below). Thus, substitutes must be selected in a manner

to maximize the total number of replaced transitions. Given a failed execution σF , the Re-

placement problem is informally the problem of finding the maximal replacement ensured

by some candidate recovery execution σR. The maximal replacement correctly reflects the

number of invisibly compensated transitions. This will later enable to compare available

candidate recovery executions and select the one ensuring a maximal number of replaced

transitions. The replacement problem in both cases (strict and loose) is formalized in Defi-

nition 10 below.

Definition 10. (Strict and Loose Replacement problems (Optimization problems))

• Instance: P(σF) = (trans(σF),≤σF) and P(σR) = (trans(σR),≤σR) are two posets

corresponding to the executions σF and σR.

• Question (for the Strict Replacement problem): Find a strict replacement ϕstrict :

trans(σF)→ trans(σR) such that |Dom(ϕstrict)| is maximal.

• Question (for the Loose Replacement problem): Find a loose replacement ϕloose :

5.2 Formalizing the recovery problem 71

trans(σF)→ trans(σR) such that |Dom(ϕloose)| is maximal.

Example 12. (The replacement problem hardness) Take the example of Figure 5.6 where

a failed and a candidate recovery executions are depicted. Note that in Figures 5.7 and 5.8,

the notation t i
D : a, with a ∈ Σ, means that the transition t i

D has the label a.

If we consider the strict replacement problem then two possible strict replacements are

found. The first is denoted ϕstrict
1 and depicted in Figure 5.7 where |Dom(ϕstrict

1)| = 3.

The second possible replacement is denoted ϕstrict
2 and is depicted in Figure 5.8 where

|Dom(ϕstrict
2)|= 2. Therefore, it is clear that several replacements may exist for each couple

of executions which makes the best replacement difficult to compute.

��
��

�

��
��

�

��
��

�

��
��

�

��
��

�

	�
��
���

	�
��
���

	�
A�
���

	�
��
���

��
B �

	�
��
���

��
��

�

��
C�

�

��
A�

�

��
D�

�

	�
C�
���

	�
C�
���

	�
A�
���

	�
D�
���

��
EF�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

�

�
�

C

�
�

A

�
�

D

�
�

�

�������F����F���������
�

���B��������������F�B������
�

��

Figure 5.6: A failed and a candidate recovery executions

5.2 Formalizing the recovery problem 72

�
�

�

�
�

�

�
�

�
�
�

�

�
�

�

�
�

�

�
�

	

�
�

A

�
�

B��

��������� ���������

	ABCDA

E

	ABCDA

E

	ABCDA

E

�F

��

�D �F

��

�D �F

�F

����������������
	ABCDA

E
����������������

	ABCDA

E

Figure 5.7: A first possible strict replacement

�
�

�

�
�

�

�
�

�
�
�

�

�
�

�

�
�

�

�
�

	

�
�

A

�
�

B

��

��

��

��

��������	 A�������	

BCDE�C

F

BCDE�C

F

��

�� �� �� ��

���������������	
BCDE�C

F
���������������	

BCDE�C

F

Figure 5.8: A second possible strict replacement

5.2 Formalizing the recovery problem 73

We announce in the following the decision problems associated with both strict and

loose replacements and we show the NP-Completeness of each of them.

Definition 11. (The decision problem of the Strict-Replacement (Repstrict))

• Instance: P(σF) and P(σR) are two posets corresponding to the executions σF and

σR, and k is a positive integer.

• Question: Is there a strict replacement ϕstrict : trans(σF)→ trans(σR) such that

|Dom(ϕstrict)| ≥ k?

Theorem 2. Repstrict(P(σF),P(σR),k) is NP-Complete.

Proof. The Repstrict problem is proven NP-Complete by reducing from the Partial Sub-

graph Isomorphism problem (PSI). Details of the reduction are provided in the Appendix

A.

Definition 12. (The decision problem of the Loose-Replacement (Reploose)

• Instance: P(σF) and P(σR) are two posets corresponding to the executions σF and

σR, and k a positive integer.

• Question: Is there a loose replacement ϕloose : trans(σF)→ trans(σR) such that

|Dom(ϕloose)| ≥ k?

Theorem 3. Reploose(P(σF),P(σR),k) is NP-Complete.

Proof. Details of the reduction are provided in the Appendix B

5.2 Formalizing the recovery problem 74

5.2.4 The recovery problem

As already mentioned, the recovery consists to find the best recovery execution. It is the ex-

ecution ensuring a maximal replacement. The decision problem associated to the recovery

can be announced as follows:

Definition 13. (Strict and Loose Recovery problems (Recstrict and Recloose))

• Instance: P(σF) is a poset corresponding to failed execution, {P(σR
1), . . . ,P(σ

R
n)}

is a set of posets corresponding to candidate recovery executions and k is a positive

integer.

• Question for Recstrict: Is there a candidate recovery execution σR
i such that the an-

swer to the decision problem Repstrict(P(σF),P(σR
i),k) is YES?

• Question for Recloose: Is there a candidate recovery execution σR
i such that the an-

swer to the decision problem Reploose(P(σF),P(σR
i)),k) is YES?

Lemma 1. Both Strict and Loose Recovery problems belong to ΣP
2 .

Proof. To see that Recstrict is in ΣP
2 , notice that the problem of verifying whether Repstrict(

P(σF),P(σR),k) is a true instance for some given execution σR is in NP (Theorem 2). Then,

a set of candidate recovery executions is a certificate that can be verified in polynomial

time if an NP-oracle is available. Thus clearly Recstrict is in NPNP = ΣP
2 . In the same way,

Recloose can be easily shown to be in ΣP
2 using Theorem 3.

5.3 Summary and discussion 75

5.3 Summary and discussion

In a first part of this chapter, we formalized the unavailability failure and its side effects on

a running composition. Further than the resulting failed execution, the number of possi-

ble executions of the Delegator may decrease. For this purpose, we proposed to clean the

Delegator by removing branches not leading to final states. This allows putting out risky

alternatives during recovery.

In a second part, the recovery problem is formalized. We defined the recovery as the

process of transforming the failed execution into a recovery execution using a recovery

plan. The recovery execution is an alternative execution of the cleaned Delegator that

shares, at least, one operation with the failed execution.

We defined the recovery problem as the problem of finding the best recovery execu-

tion(s) among those available. The best recovery execution should be attainable from the

failed execution with a minimal number of visible compensations. A compensation is in-

visible if the compensated transition is replaced by another transition performing the same

operation. We distinguished two kinds of replacement. If the order among the set of re-

placed transitions is required to be isomorphic to the order among the set of substitute tran-

sitions then the replacement is strict. Otherwise, the replacement is loose. In both cases,

we proved that the decision problem associated to computing the number of invisibly-

compensated transitions is NP-complete (strict and loose replacement problems). Thus, we

concluded that deciding of the best recovery execution is in ΣP
2 .

Chapter 6

Conclusion

Through this work, we provided a formal study of the recovery problem in the protocol-

based Web service composition. Such a problem may be caused by the runtime unavailabil-

ity of component services. We focused on the recovery that migrates the failed execution

into a recovery execution with a minimal number of visible compensations. A transition is

invisibly compensated if it is replaced by another transition performing the same operation

and respecting some given order constraints. We mainly exploited the partial orders for-

malism in characterizing the best recovery executions. Our work can be summarized in the

following points:

• We used the protocol-based Web service composition model where both the com-

posite and the components export their conversational behaviors as FSMs. The com-

position consists in delegating each requested operation (at runtime) to an available

component service. We enhanced the composite structure with a set of data depen-

dencies over transitions. Thus, an execution takes the form of a poset.

• We formalized the unavailability failure as a set of unavailable (non-executable) tran-

77

sitions on the Delegator. By doing this, we capture all cases of unavailability. Those

cases include the partial unavailability of one component and the partial/total un-

availability of multiple components at the same time.

• The unavailability failure may lead to an unsuccessful delegation which results in a

failed execution. We defined the recovery as the process of transforming the failed

execution into a second still possible execution on the Delegator using a recovery

plan. The recovery problem is then defined as the problem of finding the best re-

covery execution among those available. It is the one to which the transformation is

made with a minimal number of visible compensations towards the client.

• The compensation is invisible whether the compensated transition is replaced by a

second transition performing the same operation. Furthermore, if the replacement is

required to be strict then the order among the set of replaced transitions is required

to be isomorphic to the order among the set of substitute transitions. Otherwise, the

replacement is loose.

• We defined the replacement problem as the problem of computing the number of re-

placed transitions ensured by some given candidate recovery execution. This allows

comparing candidate recovery executions and selecting the one ensuring a maximal

number of replaced transitions. Indeed, the number of replaced transitions allows

computing the number of visible compensations. To this fact, solving the recovery

problem requires solving the replacement problem in a first place.

• Complexity results related to the automatic recovery issue are depicted. We have

shown the NP-Completeness of the replacement problems (loose and strict). We

78

have then concluded that the recovery problem in the protocol-based Web service

composition is in ΣP
2 .

In the following, we briefly detail some improvement opportunities regarding our re-

search work.

Towards a richer composition model In a composition scenario, an execution is fired

and forwarded by a client. To this fact, the client is a very important factor to take into

account during recovery. This can be done if the composition model allows to reason about

user preferences. For instance, a user may prefer some service attributes over the others

such as time, cost, quality of results, etc. Therefore, it may prefer an alternative over the

others. Beyond user preferences, it will be interesting if the compensatability constraint is

taken into account. That is, if some failed transitions are non-compensable (pivots), then

they must be conserved by the recovery procedure.

Providing heuristics The replacement problems in both cases (strict and loose) have

been proven NP-Complete (Theorem 2 and Theorem 3). In the present work, no heuristics

are provided to approximately solve the replacement problems. To this fact, a good contin-

uation of this work will be to think about those heuristics. In fact, a poset is some kind of

directed graph. Thus, we can draw on heuristics developed to solve the graph isomorphism

problems.

Bibliography

[1] G. Alonso, F. C. an, H. A. Kuno, and V. Machiraju. Web Services - Concepts, Archi-

tectures and Applications. Springer, Berlin, 2004.

[2] R. Angarita, Y. Cardinale, and M. Rukoz. Faceta: Backward and forward recovery for

execution of transactional composite ws. In CEUR Workshop Proceedings, Heraklion,

Grèce, 2012.

[3] A. Avizienis, J. Laprie, and B. Randell. Fundamental concepts of dependability. Tech-

nical Report 1145, LAAS-CNRS, April 2001.

[4] A. Avizienis, J. Laprie, B. Randell, and C. Landwehr. Basic concepts and taxonomy

of dependable and secure computing. IEEE Transactions on Dependable and Secure

Computing, 1(1):11–33, January 2004.

[5] B. Benatallah, F. Casati, and F. Toumani. Representing, analysing and managing web

service protocols. Data Knowl. Eng., 58(3):327–357, September 2006.

[6] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Automatic

composition of e-services that export their behavior. In ICSOC, pages 43–58, 2003.

BIBLIOGRAPHY 80

[7] D. Berardi, D. Calvanese, G. D. Giacomo, M. Lenzerini, and M. Mecella. Auto-

matic service composition based on behavioral descriptions. International Journal of

Cooperative Information Systems, 14(4):333–376, 2005.

[8] D. Berardi, F. Cheikh, G. D. Giacomo, and F. Patrizi. Automatic service compo-

sition via simulation. International Journal of Foundations of Computer Science,

19(2):429–451, 2008.

[9] S. Bhiri, O. Perrin, and C. Godart. Ensuring required failure atomicity of composite

web services. In 14th international conference on World Wide Web, pages 138–14,

Chiba, Japan, May 2005.

[10] M. Brambilla, S. Ceri, S. Comai, and C. Tziviskou. Exception handling in workflow

driven web applications. In 14th International Conference on World Wide Web, pages

170–179, Chiba, Japan, 2005. ACM Press.

[11] A. Bucchiarone and S. Gnesi. A survey on services composition languages and mod-

els. In International Workshop on Web Services Modeling and Testing, pages 37–49,

2006.

[12] O. Bushehrian, S. Zare, and N. Rad. A workflow-based failure recovery in web ser-

vices composition. Journal of Software Engineering and Applications, 5:89–95, 2012.

[13] N. Busi, R. Gorrieri, C. Guidi, R. Lucchi, and G. Zavattaro. Towards a formal frame-

work for choreography. In WETICE, pages 107–112, 2005.

BIBLIOGRAPHY 81

[14] Y. Cardinale, M. Rukoz, M. Manouvrier, and J. El Haddad. Cpn-tws: A coloured

petri-net approach for transactional-qos driven web service composition. Interna-

tional Journal of Web and Grid Services (IJWGS), 7, 2011.

[15] F. Casati and G. Cugola. Error handling in process support systems. In Advances in

Exception Handling Techniques, volume 2022 of Lecture Notes in Computer Science,

pages 251–270. Springer Berlin / Heidelberg, 2001.

[16] K. M. Chan, J. Bishop, J. Steyn, L. Baresi, and S. Guinea. A fault taxonomy for web

service composition. In ICSOC Workshops, pages 363–375, 2007.

[17] B. A. Davey and H. A. Priestley. Introduction to Lattices and Order (2. ed.). Cam-

bridge University Press, 2002.

[18] G. Debanjan, S. Raj, R. R. H., and U. Shambhu. Self-healing systems - survey and

synthesis. Decision Support Systems, 42(4):2164–2185, January 2007.

[19] J. Dietmar and G. Alexander. The evolution of conceptual modeling. chapter Ex-

ception handling in web service processes, pages 225–253. Springer-Verlag, Berlin,

Heidelberg, 2011.

[20] L. A. Digiampietri, J. J. Prez-Alczar, and C. B. Medeiros. Ai planning in web services

composition: a review of current approaches and a new solution. SBC, pages 983–

992, 2007.

[21] S. Dustdar and W. Schreiner. A survey on web services composition. International

Journal of Web and Grid Services, 1(1):1–30, Augest 2005.

BIBLIOGRAPHY 82

[22] M. Fredj. Reconfiguration dynamique des architectures orientées services. PhD the-

sis, Université de Paris VI, 2010.

[23] M. Fredj, N. Georgantas, V. Issarny, and A. Zarras. Dynamic service substitution in

service-oriented architectures. In SERVICES I, pages 101–104, 2008.

[24] G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni. Exception handling

for repair in service-based processes. IEEE Transactions on Software Engineering,

99:198–215, April 2010.

[25] L. Gao, S. Urban, and J. Ramachandran. A survey of transactional issues for web

service composition and recovery. International journal of Web and Grid Services,

7(4):331–356, January 2011.

[26] D. Garlan, J. Kramer, and A. Wolf, editors. Proceedings of the First Workshop on

Self-Healing Systems, Charleston, South Carolina, USA, November 2002. ACM.

[27] G. D. Giacomo, F. Patrizi, and S. Sardiña. Automatic behavior composition synthesis.

Artif. Intell., 196:106–142, 2013.

[28] C. Hagen and G. Alonso. Exception handling in workflow management systems.

IEEE Transactions on Software Engineering, 26(10):943–958, October 2000.

[29] R. Hamadi and B. Benatallah. Recovery nets: Towards self-adaptive workflow sys-

tems. In WISE, pages 439–453, 2004.

[30] R. R. HASSEN. Automatic Composition of Protocol-based Web Services. PhD thesis,

Blaise Pascal - Clermont-Ferrand II, 2009.

BIBLIOGRAPHY 83

[31] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,

Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing

Co., Inc., Boston, MA, USA, 2006.

[32] D. S. Johnson. The np-completeness column: An ongoing guide. J. Algorithms,

7(4):584–601, 1986.

[33] A. Kandel, H. Bunke, and M. Last, editors. Applied Graph Theory in Computer

Vision and Pattern Recognition, volume 52 of Studies in Computational Intelligence.

Springer, 2007.

[34] J. Laprie. Dependability: Basic Concepts and Terminology. Springer-Verlag, 1992.

[35] J. Laprie. Dependability - its attributes, impairments and means. In Predictably De-

pendable Computing Systems, pages 1–24. Springer-Verlag Heidelberg, Berlin, Ger-

many, 1995.

[36] J. Laprie. Dependable computing and fault tolerance: concepts and terminology.

In Proceedings 15th IEEE International Symposium on Fault-Tolerant Computing

(FTCS-15), pages 2–11, Atlanta, Georgia, June 1999.

[37] P. A. Lee and T. Anderson. Fault Tolerance: Principles and Practice. Springer-

Verlag, Secaucus, NJ, USA, 2nd edition, 1990.

[38] F. Mattern. Virtual time and global states of distributed systems. In C. M. et al., ed-

itor, Proc. Workshop on Parallel and Distributed Algorithms, pages 215–226, North-

Holland / Elsevier, 1989. (Reprinted in: Z. Yang, T.A. Marsland (Eds.), ”Global

States and Time in Distributed Systems”, IEEE, 1994, pp. 123-133.).

BIBLIOGRAPHY 84

[39] H. A. Maurer, J. H. Sudborough, and E. Welzl. On the complexity of the general

coloring problem. Information and Control, 51(2):128 – 145, 1981.

[40] J. Musa, A. Iannino, and K. Okumoto. Software Reliability: Measurement, Predic-

tion, Application. McGraw-Hill, New York, 1990.

[41] A. Muscholl and I. Walukiewicz. A lower bound on web services composition. In

FoSSaCS, pages 274–286, 2007.

[42] N.Desai, A.U.Mallya, A.K.Chopra, and M.P.Singh. Interaction protocols as design

abstractions for business processes. IEEE Transactions on Software Engineering,

31(12):1015–1027, 2005.

[43] M. P. Papazoglou and D. Georgakopoulos. Service oriented computing (special issue).

Communications of the ACM, 46(10), 2003.

[44] B. Parhami. From defects to failures: a view of dependable computing. Computer

Architecture News, 16(4):157–168, September 1988.

[45] B. Parhami. A multilevel view of dependable computing. Computers and Electrical

Engineering, 20(4):347–368, July 1994.

[46] F. Patrizi. Simulation-based Techniques for Automated Service Composition. PhD

thesis, University of Roma, 2009.

[47] B. Randell, P. Lee, and P. C. Treleaven. Reliability issues in computing system design.

ACM Comput. Surv., 10(2):123–165, January 1978.

BIBLIOGRAPHY 85

[48] J. Rao and X. Su. A survey of automated web service composition methods. In Pro-

ceedings of First International Workshop on Semantic Web Services and Web Process

Composition (SWSWPC), pages 43–54, 2004.

[49] S. Sardina, F. Patrizi, and G. D. Giacomo. Behavior composition in the presence of

failure. In 11th International Conference on Principles of Knowledge Representation

and Reasoning, pages 640–650, Sydney, Australia, 2008.

[50] J. Simmonds, S. Ben-David, and M. Chechik. Guided recovery for web service appli-

cations. In 8th International Symposium on the Foundations of Software Engineering,

pages 247–256, 2010.

[51] J. Simmonds, S. Ben-David, and M. Chechik. Monitoring and recovery of web service

applications. In The Smart Internet, pages 250–288, 2010.

[52] J. Simmonds, S. Ben-David, and M. Chechik. Optimizing computation of recovery

plans for bpel applications. In TAV-WEB, pages 3–14, 2010.

[53] B. Srivastava and J. Koehler. Web service composition - current solutions and open

problems. In ICAPS 2003, Workshop on Planning for Web Services, pages 28–35,

Trento, Italy, June 2003.

[54] F. Tartanoglu, V. Issarny, N. Levy, and A. Romanovsky. Dependability in the web

service architecture. In Architecting dependable systems, pages 90–109. Springer,

2003.

[55] F. Tartanoglu, V. Issarny, A. B. Romanovsky, and N. Lévy. Coordinated forward error

recovery for composite web services. In SRDS, pages 167–176, 2003.

BIBLIOGRAPHY 86

[56] S. Urban, L. Gao, R. Shrestha, Y. Xiao, Z. Friedman, and J. Rodriguez. The assurance

point model for consistency and recovery in service composition. In Innovations,

Standards and Practices of Web Services: Emerging Research Topics, pages 250–

287, 2011. IGI Global publication.

[57] S. D. Urban, A. Courter, L. Gao, and M. Shuman. Supporting data consistency in con-

current process execution with assurance points and invariants. In RuleML America,

pages 140–154, 2011.

[58] S. D. Urban, Z. Liu, and L. Gao. Decentralized communication for data dependency

analysis among process execution agents. International Journal of Web Service Re-

seach, 8(4):1–28, 2011.

[59] Y. Xiao, S. Urban, and N. Liao. The deltagrid abstract execution model: service com-

position and process interference handling. In Proceedings of the 25th international

conference on Conceptual Modeling, ER’06, pages 40–53, Berlin, Heidelberg, 2006.

Springer-Verlag.

[60] Y. Xiao and S. D. Urban. The deltagrid service composition and recovery model. Int.

J. Web Service Res., 6(3):35–66, 2009.

[61] C. Ye, S. C. Cheung, W. K. Chan, and C. Xu. Atomicity analysis of services compo-

sition across organizations. IEEE Transactions on Software Engineering, 35(1):2–28,

January/Ferbruary 2009.

[62] T. Yu and K. J. Lin. Adaptive algorithms for finding replacement services in auto-

nomic distributed business processes. In 7th International Symposium on Autonomous

Decentralized Systems, Chengdu, China, April 2005.

Appendix A

NP-completeness of the

Strict-Replacement problem

The NP-completeness of the Repstrict problem, announced in theorem 2 of Chapter 5 can

be proven by reducing from the Partial Subgraph Isomorphism problem (PSI) i.e. PSI≪

Repstrict . Some definitions are required before going deep in proof details.

Definition 14. (Patial subgraphs) Let G1 = (V1,E1) be an undirected graph. G2 =

(V2,E2) is a partial subgraph of G1 if V2 ⊆V1 and E2 ⊆ E1∩V2×V2.

Definition 15. (Graphs isomorphism) Let G1 = (V1,E1) and G2 = (V2,E2) be two undi-

rected graphs. G1 is isomorphic to G2 if there exists a bijection µ : V1→V2 which preserves

arcs, i.e., ∀x,y ∈V1,xy ∈ E1⇐⇒ µ(x)µ(y) ∈ E2.

Definition 16. (Incidence poset of a graph) The incidence poset of an undirected graph

G = (V,E) is a poset P(G) = (V ∪E,<) where x < y if and only if x is a vertex, y is an

edge, and x is an endpoint of y.

88

Definition 17. (Posets isomorphism) Let P1 = (X1,<1) and P2 = (X2,<2) be two posets.

We say that P1 and P2 are isomorphic if there is a bijection f : X1 → X2 such that x <1

y⇐⇒ f (x)<2 f (y).

Definition 18. (Partial Subgraph Isomorphism problem (PSI)) Also called Graph Monomor-

phism problem in [33] and Subgraph Homomorphism in [32]. This problem is known to be

NP-Complete [39] and it is described as follows:

• Instance: Two graphs G1 = (V1,E1) and G2 = (V2,E2).

• Question: Do there exist a partial subgraph G′2 = (V ′2,E
′
2) of G2 which is isomorphic

to G1? Or, is there an injective function µ : V1→ V2 such that ∀x,y ∈ V1,xy ∈ E1⇒

µ(x)µ(y) ∈ E2?

Recall: The Strict Replacement problem (unlabeled version)

• Instance: P(σF) and P(σR) are two posets corresponding to executions σF and σR,

and k is a positive integer.

• Question: Is there a strict replacement ϕstrict : trans(σF) → trans(σR) such that

|Dom(ϕstrict)| ≥ k? (We suppose here that ∀x,y ∈ λD, l(x) = l(y) i.e., all transitions

have a same label then condition (3) of Definition 9 can be dropped in the sequel

proof).

Proof.

1. Repstrict ∈ NP ?

Given a function ϕ, we can easily check it in polynomial time then Repstrict is in NP.

89

2. PSI≪ Repstrict ?

As already mentioned, the reduction is made from the PSI problem. We construct the inci-

dence posets P(G1) = (V1∪E1,<1) and P(G2) = (V2∪E2,<2) associated to the undirected

graphs G1 = (V1,E1) and G2 = (V2,E2) respectively. An instance of the problem Repstrict

is I = (P(σF),P(σR),k). Take J = (G1,G2) as an instance of the PSI problem and we trans-

form it to an instance to the Repstrict problem by replacing G1 by P(G1) and G2 by P(G2)

and we put k = |V1|+ |E1|. Then we get I = (P(G1),P(G2), |V1|+ |E1|) is an instance of

the Repstrict . Let us prove that:

G2 has a partial subgraph isomorphic to G1 if and only if the answer to

Repstrict(P(G1),P(G2), |V1|+ |E1|) is YES.

a. We start by proving that the answer ”Yes” to the PSI instance implies an answer

”Yes” to the Repstrict one. Suppose there exists a partial subgraph G′2 = (V ′2,E
′
2) (with

V ′2 ⊆ V2 and E ′2 ⊆ E2) of G2 which is isomorphic to G1. That means, ∃µ : E ′2 → E1 s.t.

∀x,y ∈V ′2,xy ∈ E ′2⇒ µ(x)µ(y) ∈ E1. Take the subposet, noted P(G′2), associated to the par-

tial subgraph G′2. Proving that P(G1) and P(G′2) are isomorphic, then, proving that V ′2∪E ′2

is an ideal of P(G2).

We have: ∀x,y∈V ′2,xy∈ E ′2⇒ x < xy and y < xy in P(G′2) and µ(x)µ(y)∈ E1⇒ µ(x)<

µ(x)µ(y) and µ(y) < µ(x)µ(y) in P(G1). Clearly, P(G1) and P(G′2) are isomorphic. Let us

prove that E ′2∪V ′2 is an ideal of P(G2). Suppose that: ∃x ∈V2∪E2,y ∈V ′2∪E ′2 s.t. x <2 y

but x /∈V ′2∪E ′2. We have x <2 y means that x is one end point of y and y∈ E ′2 then x ∈V ′2→

contradiction.

90

b. Now, proving that if we have an answer ”Yes” of an instance I =(P(G1),P(G2), |V1|+

|E1|) of the Repstrict problem then we have surely a partial subgraph G′2 of G2 which is iso-

morphic to G1. We have an answer YES to the instance I means there is strict replacement

ϕstrict : V1 ∪ E1 → V2 ∪ E2 s.t. ∀x,y ∈ V1 ∪ E1,x <1 y⇐⇒ ϕstrict(x) <2 ϕstrict(y). Take

Img(ϕstrict) =V ′2∪E ′2 with V ′2 ⊆V2 and E ′2 ⊆ E2.

We have x <1 y means x is endpoint of the edge y, then x ∈ V1 and y ∈ E1. Similarly,

ϕstrict(x)<2 ϕstrict(y) means ϕstrict(x) is endpoint of the edge ϕstrict(y), then ϕstrict(x) ∈V ′2

and ϕstrict(y) ∈ E ′2. We conclude that for all x ∈ V1 we have ϕstrict(x) ∈ V ′2 and for all

y = xz ∈ E1 we have ϕstrict(y) = ϕstrict(x)ϕstrict(z) ∈ E ′2, therefore, the partial subgraph

G′2 = (V ′2,E
′
2) is isomorphic to G1.

Appendix B

NP-completeness of the

Loose-Replacement problem

The NP-completeness of the Reploose problem, announced in theorem 3 of Chapter 5, can

be proven by reducing from the Maximal Independent Set problem (MIS) i.e. MIS ≪

Reploose. Some definitions are required before going deep in proof details.

Definition 19. (Independent Set) An independent set in a graph G = (V,E) is a set S⊆V

such that ∀x,y ∈ S,xy /∈ E.

Definition 20. (Maximal Independent Set problem (MIS))

• Instance: A graph G = (V,E) and a positive integer k.

• Question: Do there exist an independent set S⊆V such that |S| ≥ k?

Recall: The Loose Replacement problem

• Instance: P1 =(X1,≤1) and P2 =(X2,≤2) are two posets, l : X1∪X2→Σ is a labeling

function, and k is a positive integer.

92

• Question: Is there a loose replacement ϕloose : X1→ X2 such that |Dom(ϕloose)| ≥ k?

Proof.

1. Reploose ∈ NP ?

Given a function ϕ and a positive integer k, we can check in polynomial time if ϕ corre-

sponds to a loose replacement with Dom(ϕ)≥ k (it corresponds to checking conditions of

Definition 9). Then Reploose is in NP.

2. MIS≪ Reploose ?

Given a graph G = (V,E), we construct two posets P1(G) and P2(G) (depicted in Figure

B.1) and a labeling function l as follows:

• P1(G) = (V ∪E ∪E ′,≤1) where:

– E ′ = {xy′ such that xy ∈ E}

– <1= {(x,e) | x ∈V,e ∈ E ∪E ′,x ∈ e}

• P2(G) = (V ∪E,≤2) where ≤2= /0 (P2(G) is an antichain),

• l(x) = x if x ∈V ∪E and l(x′) = x if x′ ∈ E ′.

Let us prove that G = (V,E) has an independent set S with |S| ≥ k if and only if

∃ϕloose : V ∪E ∪E ′→V ∪E such that |Dom(ϕloose)| ≥ k+ |E|.

a. Suppose G = (V,E) has an independent set S with |S| ≥ k. We prove that ∃ϕloose :

S∪E∪E ′→ E∪V with |Dom(ϕloose)| ≥ k+ |E|. Let define ϕloose and show by the follow-

ing that it is injective and that |Dom(ϕloose)| ≥ k+ |E|.

93

� � � �

� � � �

� �

�

������	���

� �

�

� �

�

� �

�

�� �

�

�� �

�

�� �

�

�� �

�

� �

�

� �

�

� �

�

� �

�

��A � �� � �� � ��A� �� � ��A� ��A��� �

������	���

�

Figure B.1: A graph G and its corresponding posets

94

Put Dom(ϕloose) = S∪Pred(S)∪Pred(S) such that ∀x ∈ Dom(ϕloose),ϕloose(x) = y if

l(x) = l(y), where:

• Pred(S) = {e ∈ E ∪E ′ | e≤ x,x ∈ S}, and

• Pred(S) = {e ∈ E | e1 /∈ Pred(S) and e′1 /∈ Pred(S)}.

Clearly |Dom(ϕloose)| ≥ k+ |E| since |S| ≥ k and |Pred(S)∪Pred(S)|= |E| (since S is

an independent set).

Let us show that ϕloose is injective. Surly, to each vertex in S it corresponds a unique

image in P2(G) (since a vertex labeling is different from an edge labeling and each ver-

tex occurs once per poset by definition of the posets). Furthermore, to each edge in

Pred(S)∪Pred(S) it corresponds a unique image in P2(G) (since each edge occurs only

once in both P2(G) and Pred(S)∪Pred(S)).

Therefore, ϕloose corresponds to a loose replacement with |Dom(ϕloose)| ≥ k+ |E|.

b. Suppose we have a loose replacement ϕloose :V ∪E∪E ′→V ∪E with |Dom(ϕloose)| ≥

k+ |E|. Let us prove that Dom(ϕloose)∩V corresponds to an independent set on G = (V,E)

with |Dom(ϕloose)∩V | ≥ k.

We have |Dom(ϕloose)| ≥ k+ |E| =⇒ |Dom(ϕloose)∩V | ≥ k (since ϕloose is injective

and |Img(ϕloose)∩E|= |E| in the worst case). Also, we know that:

• x ∈Dom(ϕloose)∩V =⇒∀e≤ x,e ∈Dom(ϕloose)∩ (E∪E ′) (since Dom(ϕloose) is an

ideal and xy≤ x by definition of the posets).

95

• ∀e1,e2 ∈ Dom(ϕloose)∩ (E ∪E ′),e1 6= e2 (since ϕloose is anjective and Img(ϕloose)∩

E = E in the worst case).

Therefore, ∀x1,x2 ∈ Dom(ϕloose)∩V we have e1 ≤ x1 and e2 ≤ x2 implies e1 6= e2. It

means that Dom(ϕloose)∩V corresponds to an independent set with |Dom(ϕloose)∩V | ≥ k.

	Abstract
	Résumée
	Dedication
	Acknowledgements
	List of Figures
	Introduction
	Context
	Problematic and contribution
	Thesis outline

	Unavailability failure and recovery problem in Web service composition
	Unavailability failure in composite Web services
	Fault tolerance mechanism for composite Web services
	State-of-the-art analysis dimensions
	Composition methods
	Compile time vs. runtime-based recovery approach
	Recovery operations
	Transactional aspect

	Related work
	compile time-based recovery approaches
	Runtime-based recovery approaches
	Discussion

	Preliminaries
	Finite State Machines IAT2006
	Partial orders and ideals ILO2002

	Web Service Composition Model
	Protocol-based Web service modeling
	Automatic composition synthesis
	The target service
	The Delegator
	Delegator generation
	Discussion

	Relaxing executions with dependencies
	Summary

	Automatic recovery in Web service composition
	Formalizing unavailability failure in Web service composition
	Unavailability failure occurrence
	Delegator cleaning

	Formalizing the recovery problem
	Candidate recovery executions
	Recovery operations and recovery plans
	The replacement problem
	The recovery problem

	Summary and discussion

	Conclusion
	Bibliography
	NP-completeness of the Strict-Replacement problem
	NP-completeness of the Loose-Replacement problem

