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Abstract

Goal of this thesis is to study four problems. In chapters 3-5, we consider scalar conser-

vation law in one space dimension with strictly convex flux. First problem is to know the

profile of the entropy solution. In spite of the fact that, this was studied extensively in

last several decades, the complete profile of the entropy solution is not well understood.

Second problem is the exact controllability. This was studied for Burgers equation and

some partial results are obtained for large time. It was a challenging problem to know

the controllability for all time and also for general convex flux. In a seminal paper [25],

Dafermos introduces the characteristic curves and obtain some qualitative properties of a

solution of a convex conservation law. In this thesis, we further study the finer properties

of these characteristic curves. Here we solve these two problems in complete generality.

In view of the explicit formulas of Lax - Oleinik [31], Joseph - Gowda [40], target func-

tions must satisfy some necessary conditions. In this thesis we prove that these are also

sufficient. Method of the proof depends highly on the characteristic methods and explicit

formula given by Lax - Oleinik and the proof is constructive. Third problem is to solve

the optimal controllability problem. In chapter 5 we derive a method to obtain a solution

of an optimal control problem for the scalar conservation laws with convex flux. By using

the method of descent, this type of problem was considered by Castro-Palacios-Zuazua in

[23] for the Burgers equation. Our approach is simple and based on the explicit formulas

of Hopf and Lax-Olenik. Last but not the least is about the problem of total variation

bound for solution of scalar conservation laws with discontinuous flux. For the scalar con-

servation laws with discontinuous flux, an infinite family (A,B)-interface entropies are

introduced and each one of them has been shown to form an L1-contraction semigroup

(see, [8]). One of the main unsettled questions concerning conservation law with discon-

tinuous flux is boundedness of total variation of the solution. Away from the interface,

boundedness of total variation of the solution has been proved in a recent paper [16]. In

the chapter 6, we discuss this particular issue in detail and produce a counter example to

show that the solution, in general, has unbounded total variation near the interface. In

fact this example illustrates that smallness of BV norm of the initial data is immaterial.

We hereby settled the question of determining for which of the aforementioned (A,B)

pairs, the solution will have bounded total variation in case of strictly convex fluxes.
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Chapter 1

Basics of conservation laws

1.1 Preliminaries

What is conservation laws ?

Let Ω be an open subset of Rm, and let fj, 1 ≤ j ≤ n, be n smooth functions from Ω into

R
n. The general form of a system of conservation laws in several space variable is given

by

ut +
n

∑

i=1

∂

∂xi
f i(u) = 0, x = (x1, x2, · · · , xn) ∈ R

n, t > 0, (1.1.1)

where

u =























u1

.

.

.

um























is a vector valued function from R
n × [0,∞) into Ω. The set Ω is called the set of states

and the functions

fj =























f1j

.

.

.

fmj























are called the flux-functions.

Let D be an arbitrary domain of Rn, and let γ = (γ1, ....γn)
T be an outward unit

normal to the boundary ∂D of D. Then by Gauss-divergence theorem, (1.1.1) becomes

d

dt

∫

D

u(x, t)dx+
n

∑

i=1

∫

∂D

fi(u)γidS = 0.
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This equation has a very natural meaning :
∫

D
u(x, t)dx represents the total amount of

the densities of various conserved quantities in some physical system within D at time t.

Now the above equation typically asserts that the rate of change of
∫

D
u(x, t)dx within

D is governed by flux functions, which controls the rate of loss or increase of u through

∂D. Hence the system (1.1.1) is called in conservative form.

For all j = 1, ...n, let

Aj(u) =

(

∂fij
∂uk

(u)

)

1≤i,k≤m

be the Jacobian matrix of fj(u).

Definition: The system (1.1.1) is called hyperbolic if, for any u ∈ Ω and any ω=

(ω1, ...ωn) ∈ R
n, ω 6= 0, all the eigenvalues of the matrix A(u,ω) =

∑n
i=1 ωjAj(u) are

real, say, λ1(u, ω) ≤ · · · ≤ λm(u, ω). If, in addition, the eigenvalues λk(u, ω) are all

distinct, the corresponding m eigenvectors are linearly independent, then the system

(1.1.1) is called strictly hyperbolic.

If we put m = 1 in (1.1.1) then it is called a scalar conservation laws. Now our aim

is to study initial value problem (IVP) : Find a function u such that u(x, t) ∈D which is

a solution of (1.1.1) satisfying the initial condition

u(x, 0) = u0(x), x ∈ R
n (1.1.2)

Where u0 : R
n → D is a given function.

It is well known that even if the initial value u0 is smooth, the solution to (1.1.1)-

(1.1.2) typically develops discontinuities in a finite time. Hence the above problem must

be understood in a weak sense.

Concept of weak solutions : Consider the problem (1.1.1)-(1.1.2) and assume u0 ∈

L∞
loc(R

n)m, where L∞
loc(R

n)m is the space of locally bounded measurable functions. We

say u ∈ L∞
loc(R

n × [0,∞))m solves (1.1.1)-(1.1.2) weakly if the following holds for all ϕ

∈ C1
0(R

n × [0,∞))m

∫ ∞

0

∫

Rn

{u·
∂ϕ

∂t
+

n
∑

j=1

fj(u)
∂ϕ

∂xj
}dxdt+

∫

Rn

u0·ϕ(x, 0) = 0. (1.1.3)

We say that a function u is “piecewise C1” if there exists a finite number of smooth

orientable surfaces Γ outside of which u is a C1 fuction and across which u has jump

discontinuity. Given a surface of discontinuity Γ , we denote n = (nt, nx1 , .., nxn)
T ( 6= 0)

by a normal vector to Γ and u+ and u− be the limits of u on each side of Γ .

lim
ε→ 0

ε > 0

u±((x, t) + ǫn) = u(x, t).
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Let u : Rn × [0,∞) → D be a piecewise C1 function. Then, u is a solution of (1.1.1)-

(1.1.2), in the sense of weak solution on R
n× [0,∞) if and only if the following conditions

are satisfied:

(i) u is a classical solution of (1.1.1)-(1.1.2) in the domains where u is C1.

(ii) u satisfies the jump condition

(u+ − u−)nt +
n

∑

j=1

ηxj
(fj(u+)− fj(u−)) = 0 (1.1.4)

along the surfaces of discontinuity. The jump relation (1.1.4) is known as the

Rankine-Hugoniot condition.

In the one-dimensional case (n = 1), if we assume Γ is a smooth curve with

parametrization (t, ξ(t)), and we have

n = (−s, 1)T , s =
dξ

dt
. (1.1.5)

So that the Rankine-Hugoniot condition (1.1.4) becomes

s[u] = [f(u)]. (1.1.6)

Example 1.1.1.(Burgers equation) : The scalar parabolic equation

∂u

∂t
+ u

∂u

∂x
= ǫ

∂2u

∂x2

was introduced by Burgers as the simplest differential model for a fluid flow. He studied

in particular the limit equation when ǫ tends to zero which we write in conservation form

∂u

∂t
+

∂

∂x
(u2/2) = 0. (1.1.7)

This is a particular case of (1.1.1) if we put n = 1,m = 1 and f(u) = u2/2, trivially it is

strictly hyperbolic.

Example 1.1.2.(Euler equations for compressible gas flow in one dimension) :











ρt + (ρv)x = 0 (conservation of mass)

(ρv)t + (ρv2 + p)x = 0 (conservation of momentum)

(ρE)t + (ρEv + ρv)x = 0 (conservation of energy).

(1.1.8)

Here ρ is the mass density, v the velocity, and E the energy density per unit mass.

We assume E = e+v2/2, where e is the enternal energy per unit mass and the term v2/2

corresponds to the kinetic energy per unit mass. The p in (1.1.8) denotes the pressure.

6



Where p = p(ρ, e) is a known function of p and e. Writing u=(u1, u2, u3) = (ρ, ρv, ρE),

Euler’s equation (1.1.8) comprise a stricly hyperbolic system provided we assume p > 0

and
∂p

∂ρ
> 0,

∂p

∂e
> 0, (1.1.9)

where p = p(ρ, e) is the constitutive relation between the mass density, the inter-

nal energy density and the pressure. Let us rather change variables and regard the

density ρ, velocity v and internal energy e as the unknowns. We can then rewrite

Euler’s equation (1.1.8) in terms of these quantities, and, so doing, obtain after some

calculations the system










ρt + vρx + ρvx = 0,

vt + vvx +
1
ρ
px = 0,

et + vex +
p
ρ
vx = 0,

(1.1.10)

provided ρ > 0. These equations are not in conservative form. Setting now u=(u1, u2,

u3) = (ρ, v, e), we rewrite (1.1.10) as

ut +B(u)ux = 0, in R× (0,∞) (1.1.11)

B(z) = z2I +D(z). (1.1.12)

The characteristic polynomial of D is −λ(λ2 − σ2), for σ2 = p
z21

∂p
∂e

+ ∂p
∂ρ
.

Recalling (1.1.12) and reverting to physical notation,we see that the eigenvalues of B are

λ1 = v − σ, λ2 = v, λ3 = v + σ. (1.1.13)

Where σ2 = p
z21

∂p
∂e

+ ∂p
∂ρ
> 0 is the local sound speed. We therefore see that the system

(1.1.11) is stricly hyperbolic, provided the assumption (1.1.9) is valid. At present a

good mathematical understanding of the problem (1.1.1) is largely unavailable.

1.1.1 Scalar Conservation Laws

Consider the following scalar conservation laws

ut +
n

∑

i=1

∂

∂xi
fi(t, x, u) = 0, x = (x1, x2, · · · , xn) ∈ R

n (1.1.14)

with initial condition

u|t=0 = u0(x). (1.1.15)

Existence of a solution by Vanishing Viscosity Method : The basic idea for

“Vanishing Viscosity Method” (see [46]), is to passing to the limit as ǫ→ 0+ in the

7



parabolic equation

ut +
n

∑

i=1

∂

∂xi
fi(t, x, u) = ǫ∆u, ǫ > 0. (1.1.16)

Where ∆ is the Laplace operator over the space variables x1, · · · , xn. This method, which

has deep physical meaning, not only allows us to prove the existance of a weak solution

of the problem (1.1.14)-(1.1.15) in the sense of the corresponding intregal identity, but

also makes it possible to show those additional conditions called entropy condition on

the weak solutions which characterize the uquiueness.

Entropy condition: Kruzkov (see [46]) introduce the following entropy criteria to

prove the uniqueness :

∫∫

{|u(t, x)− k|φt +
n

∑

i=1

sign(u(t, x)− k)[fi(t, x, u(t, x))− fi(t, x, k)]φxi

−
n

∑

i=1

sign(u(t, x)− k)[fixi
(t, x, k)]φ}dxdt ≥ 0; (1.1.17)

for all 0 ≤ φ ∈ C∞
c (Rn), k ∈ R.

1.1.2 Scalar conservation laws with strict convex flux

Let us consider the following scalar conservation laws with strict convex flux

ut + f(u)x = 0 if (x, t) ∈ R× R+

u(x, 0) = u0(x) ∈ L∞(R)
(1.1.18)

where the flux f ∈ C2(R) be a strict convex function with superlinear growth i.e.,

lim
u→∞

f(u)

|u|
= ∞.

The Legendre transform (convex dual) of f is defined by

f ∗(p) = sup
q∈R

{pq − f(q)}. (1.1.19)

We say f is uniformly convex if for some constant θ > 0 the following holds

f ′′ ≥ θ > 0.

We now try to obtain a formula for an appropriate weak solution of the initial-value

problem (1.1.18). With out loss of generality we may as well also take

f(0) = 0.

8



As motivation, suppose now u0 ∈ L∞(R) and define

v0(x) :=

x
∫

0

u0(y)dy (x ∈ R). (1.1.20)

Recalling the Hopf-Lax formula (see third chapter of [31]) :

w(x, t) := min
y∈R

{

v0(y) + tf ∗

(

x− y

t

)}

(x ∈ R, t > 0). (1.1.21)

Then w is unique, weak solution for the following Hamilton-Jacobi equation with Lip-

schitz continuous initial data v0 :

wt + f(wx) = 0 in R× (0,∞)

w = v0 on R× {t = 0}.
(1.1.22)

For the moment assume w is smooth. Now by differentiate the PDE and its initial

condition with respect to x, we deduce

wxt + f(wx)x = 0 in R× (0,∞)

wx = u0 on R× t = 0.
(1.1.23)

Hence if we set u = wx, we see u solves problem (1.1.18).

The foregoing computational is only formal, as we know that w defined by (1.1.21) is

not in general smooth. But the solution w of (1.1.22) is Lipschitz continuous, hence

u(x, t) =
∂

∂x

[

min
y∈R

{

v0(y) + tf ∗

(

x− y

t

)}]

(1.1.24)

is defined for a.e.. Lax-Oleinik has given an eligant formula for (1.1.24).

Theorem 1.1.1. (Lax-Oleinik formula). Assume f : R → R is smooth convex and

u0 ∈ L1(R).

(i) For each time t > 0, there exists for all but at most countably many values of x ∈ R,

a unique point y(x, t) such that

min
y∈R

{

v0(y) + tf ∗

(

x− y

t

)}

= v0(y(x, t)) + tf ∗

(

x− y(x, t)

t

)

.

(ii) The mapping x 7→ y(x, t) is nondecreasing.

(iii) For each time t > 0, the function u defined by (1.1.24) is

u(x, t) = (f ′)−1

(

x− y(x, t)

t

)

(1.1.25)

9



for a.e x. In particular, formula (1.1.25) holds for (x, t) ∈ R× (0,∞).

Theorem 1.1.2. Under the assumption of Theorem 1.1.1, the function u defined by

(1.1.25) is a weak solution of the initial-value problem (1.1.18).

1.2 Long Time Behavior

a. Decay in sup-norm.

Theorem 1.2.1. (Asymtotics in L∞-norm). Assume f : R → R is smooth uniformly

convex and the initial data u0 has compact support then there exists a constant C such

that

|u(x, t)| ≤
C

t1/2
.

b. Decay to N-wave.

Theorem 1.2.2. (Asymtotics in L1-norm). Assume f : R → R is smooth uniformly

convex. Assume u0 has compact support and p, q > 0. Then there exists a constant C

such that

∞
∫

−∞

|u(·, t)−N(·, t)|dx ≤
C

t1/2
.

where the N -wave is given by

N(x, t) :=

{

1
d

(

x
t
− σ

)

if −(pdt)1/2 < x− σt < (qdt)1/2

0 otherwise.

and d := f ′′(0) > 0, ((f ′)−1)′(σ) = 1
d
,

p := −2min
y∈R

y
∫

−∞

u0dx, q := 2max
y∈R

∞
∫

y

u0dx.

1.3 Conservation law with discontinuous flux

Introduction. Let us introduce the following single scalar conservation law of the form:

∂u
∂t

+ ∂
∂x
(F (x, u)) = 0, x ∈ R, t > 0,

u(x, 0) = u0(x), x ∈ R
(1.3.1)

where the flux function F (x, u) is given by F (x, u) = H(x)f(u) + (1−H(x))g(u), which

is a discontinuous function of x, H is the Heaviside function, f and g are smooth
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functions on R. We are going to consider the equation with the assumtion that both f

and g are smooth and are of convex type.

It is well known that after a finite time, the IVP (1.3.1), in general, does not admit a

continuous solution even if u0 is sufficiently smooth. Henceforth, by a solution u of (1.3.1)

we mean a solution in the weak sense. That is u ∈ L∞
loc such that for all ϕ ∈ C1

0(R× R+),

∫ ∞

−∞

∫ ∞

0

(

u
∂ϕ

∂t
+ F (x, u)

∂ϕ

∂x

)

dtdx+

∫ ∞

−∞

u(x, 0)ϕ(x, 0)dx = 0. (1.3.2)

It is easy to see that (1.3.2) is the weak formulation of the following problem. Denoting

ut =
∂u
∂t
, ux = ∂u

∂x
, then in the weak sense u satisfies

ut + f(u)x = 0 for x > 0, t > 0,

ut + g(u)x = 0 for x < 0, t > 0,

u(x, 0) = u0(x),

(1.3.3)

and at x = 0, u satisfies the Rankine-Hugoniot condition i.e., for allmost all t > 0,

f(u(0+, t)) = g(u(0−, t)) (1.3.4)

where u(0+, t) = limx→0+ u(x, t) and u(0−, t) = limx→0− u(x, t).

Even in the case where the flux is smooth (f = g), it is well known that weak solutions

are not necessarily unique and have to be augmented by extra admissibility criteria, the

so called entropy conditions.

Kruzkov (see [46]) proved that if F is continuous in u and ∂F
∂x

is bounded, then (1.3.1)

admits a weak solution. Hence in general the problem (1.3.3) may not admit a solution,

even if it admits solution may not be unique.

Non existence of solution: If F is discontinuous in x, Kruzkov’s method does not

gaurantee a solution. For example in (1.3.3) if we take g(u) = u, f(u) = −u, u0(x) = 2

if x < 0 and u0(x) = 3 if x > 0, then it is easy to see that u(x, t) = 2 if x < 0 and

u(x, t) = 3 if x > 0, is a solution for (1.3.3) but do not satisfy (1.3.4). Hence it is not a

weak solution of (1.3.1).

Non uniqueness of solution: Now in (1.3.3) if we consider g(u) = −u, f(u) = u,

u0 = 0 ∀x, then for any λ > 0,

u(x, t) =























0 if x < t < 0

−λ if t < x < 0

λ if x < t < 0

0 if 0 < t < x

(1.3.5)

satisfies (1.3.3)-(1.3.4) which shows that weak solutions of (1.3.1) may not be unique.
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The discontinuity of the flux function at x = 0 causes a discontinuity of a solution which

in general not uniquely determined by the initial data.

Adimurthi and Gowda [6] have given an explicit formula for the solution of (1.3.3)

satisfying (1.3.4). This agrees with the Lax-Oleinik (see third chapter of [31]) formula

when f = g. Also they have given an interface entropy condition at x = 0 so that the

problem (1.3.3)-(1.3.4) admits a unique solution determined by the initial condition like in

Kruzkov [46]. This explicit formula satisfies some extra entropy condition called interface

entropy condition. Using this entropy condition and Lax-Oleinik entropy condition away

from x = 0(Interior Entropy Condition) Adimurthi and Gowda [6] prove the uniqueness

like in Kruzkov by showing that the solution forms L1 contractive semigroup.

Now we state the following results without proof, for details see Adimurthi and Gowda

[6].

Entropy conditions and Uniqueness results :

Interior Entropy Condition (EInterior): u is said to satisfy the entropy condition

(EInterior) (Lax-Oleinik entropy conditions) if for all t > 0

lim
0<z→0

u(x+ z, t) ≤ lim
0<z→0

u(x− z, t) if x > 0 (1.3.6)

lim
0<z→0

u(x+ z, t) ≤ lim
0<z→0

u(x− z, t) if x < 0 . (1.3.7)

Interface Entropy Condition (EInterface): At x = 0,

u(0+, t) = limx→0+ u(x, t), u(0−, t) = limx→0− u(x, t) exist for allmost all t > 0. Further-

more for almost all t > 0 one of the following conditions must hold:

f ′(u(0+, t)) ≥ 0 and g′(u(0−, t)) ≥ 0, (1.3.8)

f ′(u(0+, t)) ≤ 0 and g′(u(0−, t)) ≤ 0, (1.3.9)

f ′(u(0+, t)) ≤ 0 and g′(u(0−, t)) ≥ 0. (1.3.10)

Entropy pairs: Let ϕ1, ϕ2 be convex functions. Let ψ′
1(s) = f ′(s)ϕ′

1(s), ψ
′
2(s) =

g′(s)ϕ′
2(s). Then (ϕi, ψi), i = 1, 2 are called entropy pairs associated to (1.3.1).

Kruzkov Entropy condition (EKruzkov): A weak solution u ∈ L∞
loc of (1.3.3) and

(1.3.3) is said to satisfy (EKruzkov) if for every entropy pairs (ϕi, ψi) i = 1, 2 and for every

ρ ∈ C1
0 (R× R+), ρ ≥ 0

∫ ∞

0

∫ ∞

0

(

φ1(u)
∂ρ

∂t
+ ψ1(u)

∂ρ

∂x

)

dtdx ≥ −

∫ ∞

0

ψ1(u(0+, t))ρ(0, t)dt (1.3.11)

∫ 0

−∞

∫ ∞

0

(

φ2(u)
∂ρ

∂t
+ ψ2(u)

∂ρ

∂x

)

dtdx ≥

∫ ∞

0

ψ2(u(0−, t))ρ(0, t)dt. (1.3.12)

Then we have the following

Theorem 1.3.1. Let u, v ∈ L∞ be two weak solutions of (1.3.3) and (1.3.4). Assume that
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u, v satisfy the entropy conditions (EInterface) and (EKruzkov) and satisfy initial condition

in the following sense:

lim
t→0+

||u(., t)− u0||L1 = lim
t→0+

||v(., t)− u0||L1 = 0

Then u ≡ v.

Theorem 1.3.2. Let u, v ∈ L∞ ∩BVloc be two solutions of (1.3.3) and (1.3.4) satisfying

(EInterior) and (EInterface). Further more assume that the set of points of discontinuity of

u and v are discrete set of Lipschitz curves. Then u ≡ v.

Explicit formula for the solution

Before going to the explicit formula, let us recall some well known results on convex

functions without proof.

f : R → R is said to be a strictly convex and superlinear growth if for a 6= b, t ∈ (0, 1)

f(ta+ (1− t)b) < tf(a) + (1− t)f(b) and lim
a→∞

f(a)

|a|
= ∞.

Define convex dual f ∗ of f by

f ∗(x) = sup
y∈R

{xy − f(y)}.

If f is strictly convex and super linear growth then f and f ∗ satisfies the following:

(a) f ∗(0) = −min f , is finite

(b) f ∗ is strictly convex and super linear growth and satisfy

f(y) = sup
x∈R

{xy − f ∗(x)}.

Definition 1.3.3. (Admissible curves). Let 0 ≤ s < t and ξ ∈ c([s, t],R).

ξ is called an admissible curve if the following hold.

1. ξ consists of atmost three linear curves and each segment lies completely in either

x ≥ 0 or x ≤ 0 .

2. Let s = t3 ≤ t2 ≤ t1 ≤ t0 = t be such that for i = 1, 2, 3, ξi = ξ|[ti,ti−1] be the

linear parts of ξ. If ξ consists of three linear curves then ξ2 = 0.

Let

c(x, t, s) = {ξ ∈ c([s, t],R); ξ(t) = x, ξ is an admissible curve}

c(x, t) = c(x, t, 0).
(1.3.13)
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Divide c(x, s, t) into three categories defined as below.

c0(x, t, s) = {ξ ∈ c(x, t, s); ξ is linear and xξ(θ) ≥ 0 ∀ θ ∈ [s, t]} .

cr(x, t, s) = {ξ ∈ c(x, t, s); ξ consists of three pieces and xξ(θ) ≥ 0

∀ θ ∈ [s, t]}.

cb(x, t, s) = c(x, t, s) − {cr(x, t, s) ∪ c0(x, t, s)} .

cl(x, t) = cl(x, t, 0) for l = 0, r, b

(1.3.14)

Let f ∗, g∗ denote the convex duals of f and g respectively. Let w be a function on R

and ξ ∈ c(x, t, s). Define

ρξ,w(x, t, s) = w(ξ(s)) +
∫

{θ∈[s,t];ξ(θ)>0}
f ∗(dξ

dθ
)dθ +

∫

{θ∈[s,t];ξ(θ)<0}
g∗(dξ

dθ
)dθ

+meas{θ ∈ [s, t]; ξ(θ) = 0}min{f ∗(0), g∗(0)}.

(1.3.15)

Theorem 1.3.4. Let v0 be a uniformly Lipschitz continuous function on R and ρξ(x, t)

= ρξ,v0(x, t, 0). Define

v(x, t) = inf {ρξ(x, t), ξ ∈ c(x, t)} . (1.3.16)

Then v is a uniformly Lipschitz continuous function satisfying the following:

(i)

vt + f(vx) = 0 in x > 0, t > 0

vt + g(vx) = 0 in x < 0, t > 0.
(1.3.17)

(ii) For allmost every t, vx(0+, t) = lim
x→0+

vx(x, t) and vx(0−, t) = lim
x→0−

vx

(x, t) exist and satisfy f(vx(0+, t)) = g(vx(0−, t)). Furthermore there exist disjoint sets

V, S1, S2 such that (0,∞) = V ∪ S1 ∪ S2, V an open set, meas (S2) = 0 with the property

that for allmost every t ∈ V , one of the following pairs of inequalities holds:

f ′(vx(0+, t)) ≥ 0, g′(vx(0−, t)) ≥ 0 (1.3.18)

f ′(vx(0+, t)) ≤ 0, g′(vx(0−, t)) ≤ 0 (1.3.19)

and if t ∈ S1, then

f ′(vx(0+, t)) ≤ 0, g′(vx(0−, t)) ≥ 0 . (1.3.20)

(iii) There exist a constant M > 0 and Lipschitz continuous functions R1(t) ≥ 0, L1(t)

≥ 0 on [0,∞) with R1(0) = L1(0) = 0 such that for all z > 0

f ′(vx(x+ z, t))− f ′(vx(x, t)) ≤

{

Mz
z+x

if 0 < x < x+ z < R1(t)
z
t

if x > 0 and not in the above range.
(1.3.21)
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g′(vx(x, t))− g′(vx(x− z, t)) ≤

{

Mz
z−x

if L1(t) < x− z and x < 0
z
t

if x < 0 and not in the above range.
(1.3.22)

Theorem 1.3.5. Let u0 ∈ L∞(R) and v0(x) =
x
∫

0

u0(θ)dθ. Then u = ∂v
∂x

is a weak solution

of (1.3.3)and (1.3.4). Also u satisfies the entropy condition (Ei) and (Eb) and the solution

can be given explicitly as follows:

There exist Lipschitz continuous functions R1(t) ≥ 0 and L1(t) ≤ 0 on (0,∞) and

bounded variation functions y+(x, t) for x ≥ 0 (non increasing in (0, R1(t)) and non

decreasing in [R1(t),∞)) and y−(x, t) for x ≤ 0 (non decreasing in (−∞, 0)) such that

(i) For x > 0,

u(x, t) =







(f ′)−1
(

x
t−y+(x,t)

)

if x ≤ R1(t)

(f ′)−1
(

x−y+(x,t)
t

)

if x > R1(t).
(1.3.23)

(ii) For x < 0,

u(x, t) =







(g′)−1
(

x
t−y−(x,t)

)

if x ≤ L1(t)

(g′)−1
(

x−y−(x,t)
t

)

if x > L1(t).
(1.3.24)

Furthermore u is unique in the class of all solutions for which the set of discontinuities

is a discrete set of Lipschitz curves.
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Chapter 2

Introduction

2.1 Introduction to the problem of exact,optimal controllability and struc-

ture of the solution of scalar conservation laws with strict convex flux

In this chapter we give a brief introduction to the problems which have been tackled in

this thesis. Consider the following scalar conservation law in one space dimension.

Let f : R → R be a strictly convex C2 function satisfying the super linear growth,

lim
|u|→∞

f(u)

|u|
= ∞. (2.1.1)

Let T > 0, I = (A,B), Ω = I× (0, T ), u0 ∈ L∞(I), b0, b1 ∈ L∞((0, T )) and consider the

problem

ut + f(u)x = 0 (x, t) ∈ Ω, (2.1.2)

u(x, 0) = u0(x) x ∈ I, (2.1.3)

u(A, t) = b0(t) t ∈ (0, T ), (2.1.4)

u(B, t) = b1(t) t ∈ (0, T ). (2.1.5)

This problem was well studied from last several decades starting from the pioneering works

of Lax-Oleinik [31], Kruzkov [46], Bardaux-Leraux-Nedeleck [13]. They have studied

the existence and uniqueness of weak solutions to (2.1.2)-(2.1.5) satisfying the entropy

condition. In spite of being well studied, still there are problems which are open. Notably

among them are

1. Profile of a solution, for example how many shocks can a solution exhibit and the

nature of the shocks.

2. Exact controllability of initial and initial-boundary value problem.

3. Optimal controllability for initial and initial-boundary value problem.
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In the forthcoming chapters we study these problems for the entropy solution of (2.1.2)

and we say a solution means a weak solution satisfying the entropy condition. The basic

ingredient in studying all these problems comes from the analysis of characteristic curves

R±. Originally this was introduced by Hopf [33] and later by Dafermos [25], who studied

them quite extensively to obtain information on the nature of solutions. Independently

this was used in [6] to obtain the explicit formula for solution of discontinuous flux.

First we study the finer properties of the characteristics for the initial value problem,

namely

(i). Comparison properties with respect to the initial data.

(ii). Failure of the continuity with respect to the initial data.

(iii). Behavior of the characteristics when one side of the initial data is large.

Before stating the main results for structure of the solution of (2.1.2), we recall some

well known results without proof.

Let f : R → R be a C1 convex function. Assume that

1. f has superlinear growth, that is

lim
|u|→∞

f(u)

|u|
= ∞.

2. f is strictly convex. That is for a, b ∈ R, a = b if and only if

f(a)− f(b)− (a− b)f ′(b) = 0.

3. Let f ∗(p) = sup
q
{pq − f(q)} be the Legendre transform of f . Then f ∗ ∈ C1 and f ∗

is of superlinear growth and satisfies

f = f ∗∗,

f ∗′(p) = (f
′

)−1(p),

f ∗(f ′(p)) = pf
′

(p)− f(p),

f(f ∗′(p)) = pf ∗′(p)− f ∗(p).

(2.1.6)

Controlled Curves: Let x ∈ R, 0 ≤ s < t and define the class of controlled curves

Γ (x, s, t) by

Γ (x, s, t) = {r : [s, t] → R; r is a stright line with r(t) = x}, (2.1.7)

and denote Γ (x, t) = Γ (x, 0, t).
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Value function: Let u0 ∈ L∞(R), b ∈ R, define

v0(x) =
x
∫

b

u0(θ)dθ, (2.1.8)

be its primitive. Define the value function v(x, t) associated with f and u0 by

v(x, t) = min
r∈Γ (x,t)

{

v0(r(0)) + tf ∗

(

x− r(0)

t

)}

= min
β∈R

{

v0(β) + tf ∗

(

x− β

t

)}

.
(2.1.9)

Then v satisfies the

Dynamic Programming principle: Let 0 ≤ s < t, then

v(x, t) = min
r∈Γ (x,s,t)

{

v(r(s), s) + (t− s)f ∗

(

x− r(s)

t− s

)}

. (2.1.10)

Characteristics: Define the characteristic set ch(x, t, s) and extreme characteristic

points y±(x, t, s) by

ch(x, t, s) = {r ∈ Γ (x, t, s); r is a minimizer in (2.1.10)}, (2.1.11)

y−(x, t, s) = min{r(s) : r ∈ ch(x, t, s)},

y+(x, t, s) = max{r(s); r ∈ ch(x, t, s)}.
(2.1.12)

r±(θ, x, t, s) = x+
x− y±(x, t, s)

t− s
(θ − t). (2.1.13)

Denote ch(x, t) = ch(x, t, 0), y±(x, t) = y±(x, t, 0), r±(·, x, t) = r±(·, x, t, 0). For r ∈

ch(x, t, s), we say, r(s) a characteristic point.

Then we have the following theorem due to Hopf, Lax-Oleinik (see [31]).

Theorem 2.1.1. Let 0 ≤ s < t, u0, v0, v be as above, then

(1). v is a uniformly Lipschitz continuous viscosity solution of the Hamilton-Jacobi equa-

tion
vt + f(vx) = 0 (x, t) ∈ R× (0,∞),

v(x, 0) = v0(x) x ∈ R.
(2.1.14)

(2). There exist M > 0, depending only on ‖u0‖∞ and Lipschitz constant of f, f ∗ re-

stricted to [−‖u0‖∞, ‖u0‖∞] such that for all (x, t) ∈ R× R+, r ∈ ch(x, t, s)

∣

∣

∣

∣

x− r(s)

t− s

∣

∣

∣

∣

≤M. (2.1.15)
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(3). NIP (Non intersecting property of characteristics): Let x1 6= x2, 0 ≤ s <

min{t1, t2}, ri ∈ ch(xi, ti, s) and for i = 1, 2. Then for all θ ∈ (s,min{t1, t2}),

r1(θ) 6= r2(θ). (2.1.16)

From NIP, it follows that

(a). x 7→ y±(x, t, s) are non decreasing functions.

(b). At the points of continuity of y+,

y+(x, t, s) = y−(x, t, s)

and hence ch(x, t, s) = {r} given by

r(θ) =
x− y+(x, t, s)

t− s
(θ − t) + x.

(c). Let r ∈ ch(x, t), z = r(s). Let r1 = r|[0,s], r2 = r|[s,t], then r1 ∈ ch(z, s),

r2 ∈ ch(x, t, s).

(4). Let u(x, t) = ∂v
∂x
(x, t). Then u is the unique solution of (2.1.2) with initial data u0

and satisfying

|u(x, t)| ≤ ‖u0‖∞. (2.1.17)

For a.e x, y−(x, t) = y+(x, t) and u is given by

f
′

(u(x, t)) =
x− y+(x, t)

t
=
x− y−(x, t)

t
. (2.1.18)

Furthermore if x be a point of differentiability of y±(x, t) and y±(x, t) is a point of dif-

ferentiability of v0, then

u(x, t) = u0(y±(x, t)). (2.1.19)

(5). If u0 ≤ v0 , then u(x, t) ≤ v(x, t), for a.e. t > 0 and for a.e. x ∈ R.

In this sequel we will follow the notation of characteristic curves as in [6].

Definition 2.1.2. (Characteristic Curves R±) : Let α ∈ R, 0 ≤ s < t. Define

R−(t, s, α) = inf{x; α ≤ y−(x, t, s)},

R+(t, s, α) = sup{x; y+(x, t, s) ≤ α},

R±(t, α) = R±(t, 0, α).

(2.1.20)

Definition 2.1.3. (Characteristic and regular characteristic line): Let α, p ∈ R

and r(t, α, p) = α + tf ′(p) be a stright line passing through (α, 0) with reciprocal slope

f ′(p). Then
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(i). r is called a characteristic line if for all t > 0, r(·, α, p) ∈ ch(r(t, α, p), t).

(ii). Let r be a characteristic line, then r is called regular characteristic line if for all

t > 0

y+(r(t, α, p), t) = y−(r(t, α, p), t) = α. (2.1.21)

Definition 2.1.4. (Base point and value) : Let r(·, α, p) be a characteristic line. Then

α is called the base point and p is called value of the characteristic line r(·, α, p).

Definition 2.1.5. (ASSP-Asymtotically Single Shock Packet) : Let C1 < C2, p ∈ R

and for i = 1, 2, r(· , Ci, p) as above. Then define

D(C1, C2, p) = {(x, t) : r(t, C1, p) < x < r(t, C2, p), t > 0}. (2.1.22)

Then D(C1, C2, p) is called ASSP if

(i). r(· , C1, p), r(· , C2, p) are regular characteristic lines.

(ii). For all C1 < α < C2, R±(t, α) ∈ D(C1, C2, p) for all t > 0.

(iii). For all C1 < α ≤ β < C2 there exists T > 0 such that for t ≥ T,

R+(t, α) = R−(t, α) = R+(t, β) = R−(t, β). (2.1.23)

In otherwords all the characteristic curves in D will merge at infinity and represents a

single shock at infinity.

With these preliminaries, we can state our main results. Let A1 < A2, u± ∈ R, ū0 ∈

L∞(A1, A2) and define u0 by

u0(x) =











u− if x < A1,

ū0 if A1 < x < A2,

u+ if x > A2.

(2.1.24)

Let u be the solution of (2.1.2) with u0 as the initial data.

Definition 2.1.6. (Single shock case) : Let u and u0 be as above, then u is said to be

a case of single shock if there exist T > 0, x0 ∈ R such that

u(x, T ) =

{

u− if x < x0,

u+ if x > x0.
(2.1.25)
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As a consequence of this, for t > T, u is given by

u(x, T ) =















u− if x < x0 + (t− T )

(

f(u+)− f(u−)

u+ − u−

)

,

u+ if x > x0 + (t− T )

(

f(u+)− f(u−)

u+ − u−

)

.
(2.1.26)

Then we have the following structure Theorem.

Main results for structure of the entropy solution

Theorem 2.1.7. (Structure Theorem) Let u and u0 be as above. Then

(I). u represents a case of single shock if and only if u− > u+.

(II). Let u− ≤ u+. Then there exist A1 ≤ B1 ≤ B2 ≤ A2 and a countable number of

disjoint ASSP {D(C1i, C2i, pi)}i∈I such that

(i). r(·, B1, u−), r(·, B2, u+), are regular characteristic lines and for t > 0,

R−(t, A1) ≤ r(t, B1, u−) ≤ r(t, B2, u+) ≤ R+(t, A2) (2.1.27)

u(x, T ) =

{

u− if x < R−(t, A1),

u+ if x > R+(t, A2)
(2.1.28)

(ii). Let

E = {(x, t) : r(t, B1, u−) ≤ x ≤ r(t, B2, u+)}

S = ∪i∈ID(C1i, C2i, pi)

R = E \ S.

Then R consists of all regular characteristic lines and u is continuous on R.

(iii). For each i ∈ I, u0 satisfies

C2i
∫

C1i

u0(x)dx = (C2i − C1i)pi (2.1.29)

and if u0 is continuous in a neighbourhood of {C1i, C2i}, then

u0(C1i) = u0(C2i) = pi. (2.1.30)
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(iv) Let

F− = {(x, t) : x < R−(t, A1)}

D− = {(x, t) : R−(t, A1) < x < r(t, B1, u−)}

F+ = {(x, t) : x > R+(t, A2)}

D+ = {(x, t) : r(t, B2, u+) < x < R+(t, A2)}

then R× (0,∞) = F− ∪ F+ ∪D− ∪D+ ∪ S ∪R. Define the N−wave by

N(x, t) =



























































u− if(x, t) ∈ F−

u+ if (x, t) ∈ F+

x−B1

t
if (x, t) ∈ D−

x−B2

t
if (x, t) ∈ D+

pi if (x, t) ∈ D(C1,i, C2,i, pi)

p if (x, t) ∈ R, p is the value of the regular

characteristic line on which (x, t) lies.

(2.1.31)

Then x 7→ N(x, t) is a continuous non decreasing function on D+ ∪D− ∪ S ∪R.

(v). Suppose f satisfies the following growth assumptions : There exist γ > 0, δ > 0, C >

0 such that for |h| ≤ δ,

f(u±)− f(u± + h) + hf ′(u± + h) ≥ C|h|γ (2.1.32)

and for any compact interval J , there exists C(J) > 0, η > 0 such that for all a, b ∈ J

|f ′(a)− f ′(b)| ≤ C(J)|a− b|η. (2.1.33)

Then for t large we have the following decay estimate

∞
∫

−∞

|f ′(u(x, t))− f ′(N(x, t))|dx = O

(

1

tη/γ

)

. (2.1.34)

Furthermore if some r > 0, a, b ∈ J, C1(J) > 0,

|f ′(a)− f ′(b)| ≥ C1(J)|a− b|r

then,
∞
∫

−∞

|u(x, t)−N(x, t)|rdx = O

(

1

tη/γ

)

. (2.1.35)
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As an immediate consequence we have

Corollary 2.1.1. Let u− = u+ = 0, u0 be continuous in [A1, A2]. Let

Z(u0) = {x ∈ (A1, A2) : u0(x) = 0}.

Suppose for any α, β ∈ Z(u0),
β

∫

α

u0(x)dx 6= 0,

then ASSP does not exist.

Remark 2.1.1. In general, solution u can have infinitly many discontinuity in ASSP

(see example 3.3.10). If u0 satisfies some smooth assumptions near boundary points in

an ASSP, then for each t large, u admits only one discontinuity.

In contrast to Schaffer [56] results which says that for a quite large class of smooth

initial data, solution admits finitly many shocks. Then we have the following

Theorem 2.1.8. There exist a u0 ∈ C∞
c (R) such that u admits infinitly many ASSP.

2. Exact Controllability: Normally for the non linear evolution equations, technique

of linearization is adopted to study controllability problems. Unfortunately this method

does not work (see Horsin [39]) and very few results are available on this subject. Here

we consider the following three problems of controllability. Let u0 ∈ L∞(R),

(I) Controllability for pure initial value problem: Assume that I = R,Ω =

R × (0, T ). Let J1 = (C1, C2), J2 = (B1, B2), g ∈ L∞(J1), a target be given. The

question is, does there exist a ū0 ∈ L∞(J2) and u in L∞(Ω) such that u is a solution

of (2.1.2) satisfying

u(x, T ) = g(x) x ∈ J1, (2.1.36)

u(x, 0) =

{

u0(x) if x 6∈ J2,

ū0(x) if x ∈ J2.
(2.1.37)

(II) Controllability for one sided initial boundary value problem: Assume that

I = (0,∞), Ω = R× (0, T ), J = (0, C) and a target function g ∈ L∞(J) be given.

The question is, does there exist a u ∈ L∞(Ω) and a b ∈ L∞((0, T )) such that u is

a solution of (2.1.2) satisfying

u(x, T ) = g(x) if x ∈ J, (2.1.38)

u(x, 0) = u0(x) if x ∈ (0,∞), (2.1.39)

u(0, t) = b(t) if t ∈ (0, T ). (2.1.40)
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(III) Controllability from two sided initial boundary value problem:

(a). Let Ω = R× (0, T ), I1 = (B1, B2) , B1 ≤ C ≤ B2. Given the target functions

g1 ∈ L∞(B1, C), g2 ∈ L∞(C,B2), does there exist a ū0 ∈ L∞(R\I1) and u ∈ L∞(Ω)

such that u is a solution of (2.1.2) satisfying

u(x, T ) =

{

g1(x) if B1 < x < C,

g2(x) if C < x < B2.
(2.1.41)

and

u(x, 0) =

{

u0(x) if B1 < x < B2,

ū0(x) if x < B1 or x > B2.
(2.1.42)

(b). Here we consider controllability in a strip. Let I = (B1, B2), Ω = I ×

(0, T ), B1 < C < B2. Let g1 ∈ L∞((B1, C)), g2 ∈ L∞((C,B2)) be given. The

question is, does there exist b0, b1 ∈ L∞((0, T )) and a u ∈ L∞(Ω) such that u is a

solution of (2.1.2) and satisfying

u(x, 0) = u0(x), (2.1.43)

u(x, T ) =

{

g1(x) if B1 < x < C,

g2(x) if C < x < B2.
(2.1.44)

u(B1, t) = b0(t), (2.1.45)

u(B2, t) = b1(t). (2.1.46)

In view of the Lax-Oleinik (Chapter (3) of [31]) explicit formula for solutions of pure

initial value problem and by Joseph-Gowda [40] for initial boundary value problem,

the targets g or g1, g2 cannot be arbitrary. They must satisfy the compatibility

condition, for example in the case of problem (I), there exists a non-decreasing

function ρ in (B1, B2) such that for a.e x ∈ (B1, B2)

f ′(g(x)) =
x− ρ(x)

T
. (2.1.47)

In the case of problem (II), there exists a non-decreasing function ρ in (0, C) such

that

f ′(g(x)) =
x

T − ρ(x)
. (2.1.48)

If the target functions satisfies the compatibility conditions, then the question is

whether the problems (I),(II) and (III) admit a solution?. In fact, it is

true and we have the following results. First we describe the class of functions

satisfying compatibility conditions.
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Definition (Admissible functions): Let J = (M,N) and T > 0,

S(J) = {ρ : J → R : ρ is monotone and left or right continuous function}.

Then define admissible class of target functions by

(i) Target space for initial value problem (IA):

IA(J) = {g; f
′

(g(x)) =
x− ρ(x)

T
, ρ ∈ S(J), ρ is a non-decreasing funtion}.

(2.1.49)

(ii) Target space for left boundary problem (LA):

LA(J) = {g; f
′

(g(x)) = x−M
T−ρ(x)

, ρ ∈ S(J), ρ is a non-increasing

right continuous function}. (2.1.50)

(iii) Target space for right boundary problem (RA):

RA(J) = {g; f
′

(g(x)) = x−N
T−ρ(x)

, ρ ∈ S(J), ρ is a non-decreasing

left continuous function}. (2.1.51)

Main Theorems for exact controllability :

Theorem 2.1.9. Let J1 = (C1, C2), J2 = (B1, B2). Let g(x) = (f ′)−1
(

x−ρ(x)
T

)

be in

IA(J1) and B1 < A1 < A2 < B2, satisfying

A1 ≤ ρ(x) ≤ A2 if x ∈ J1, (2.1.52)

then there exists a ū0 ∈ L∞(J2), u ∈ L∞(Ω) such that (u, ū0) is a solution to problem (I)

(see Figure 2.1).

Theorem 2.1.10. Let ∧ > 0, C > 0, δ > 0, J = (0, C). Let g ∈ LA(J) given by

f
′

(g(x)) = x
T−ρ(x)

for x ∈ J and satisfying

δ ≤ ρ(x) ≤ T, (2.1.53)

∣

∣

∣

∣

x

T − ρ(x)

∣

∣

∣

∣

≤ ∧. (2.1.54)

Then there exist a b ∈ L∞(0, T ), u ∈ L∞(Ω) such that (u, b) is a solution to Problem II

(see Figure 2.2).
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(A1,0)

(C1,T) (C2,T)x

u(x,t)=?

u0(x)=?

u(x,t)=?

u(x,t)=?

(A2,0)

f (g(x))= (x)ρx−
T

(x)ρ(B1,0)u0(x) u0(x)(B2,0)

Fig. 2.1:

b(t)=?

(0,T)
x

u(x,t)=?

(0,0)

(0, δ)

(x)ρ

=(g(x))f (C,T)

u0(x)

u(x,t)=?

T−ρ (  x)
x

Fig. 2.2:
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Theorem 2.1.11. Let I1 = (B1, B2), B1 < C < B2, J1 = (B1, C), J2 = (C,B2), then

(a). Let A1 < B1 < B2 < A2 and g1 ∈ IA(J1), g2 ∈ IA(J2) given by f
′

(g1(x)) =
x−ρ1(x)

T
, f

′

(g2(x)) =
x−ρ2(x)

T
, satisfying

ρ1(x) ≤ A1 if x ∈ J1, (2.1.55)

ρ2(x) ≥ A2 if x ∈ J2. (2.1.56)

Then there exists ū0 ∈ L∞((R \ I1)), u ∈ L∞(Ω) such that (u, ū0) is a solution to problem

(a) of III (see Figure 2.3).

u(x,t)=?
u(x,t)=?

u(x,t)=?

u0(x)

u0(x)=?

(B2,T)(B1,T)

x x

(x) (x)ρ ρ

u0(x)=?
1 2

(A1,0) (B1,0) (B2,0) (A2,0)

(C,T)
t=T

f (g (x))=
1

x−    (x)ρ
1

T
f (g (x))=

x−    (x)ρ
2

T2

Fig. 2.3:

x

(B1,T) (B2,T)

(B1,   ) (B2,   )

u=?
b2(t)=?

b1(t)=?

(x) (x)

f (g(x))= 1 f (g (x))= 2

δ δ

ρρ

1

2

u0(x)

1

1

x−Bx−B

x
(C,T)

(B1,0) (B2,0)

2
ρρT−   (x) T−  (x)

Fig. 2.4:

(b). Let ∧ > 0, 0 < δ < T, g1 ∈ LA(J1), g2 ∈ RA(J2), given by f
′

(g1(x)) =
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x−B1

T−ρ1(x)
,f

′

(g2(x)) =
x−B2

T−ρ2(x)
satisfying for i = 1, 2, x ∈ Ji

δ ≤ ρi(x) ≤ T, (2.1.57)
∣

∣

∣

∣

x− Bi

T − ρi(x)

∣

∣

∣

∣

≤ ∧. (2.1.58)

Then there exists b0, b1 ∈ L∞((0, T )) and u ∈ L∞(Ω) such that (u, b0, b1) is a solution to

problem (b) of III (see Figure 2.4).

Before going for further results, let us recall some of the earlier works in this direction.

Problem (a) in III was considered by Horsin [39] for the Burger’s equation under

similar assumptions on g1 and g2 as in (a) of Theorem (4.1.3). He proves that there

exists Tc > 2, such that (a) of problem III has an approximate controllability solution.

That is given ǫ > 0, there exist (u, ū0) such that

B2
∫

B1

|u(x, Tc)− g(x)|dx = O(ǫ),

and u(x, Tc) = g(x) = χ(B1,C)g1(x) + χ(C,B2)g2(x), outside an interval of length ǫ.

For the viscous case Glass-Guerrero [32] proved that u(x, T ) =M 6= 0 is controllable

by using the Cole-Hopf transformation. On the other hand, Guerrero-Imanuvilov [37]

proved that M = 0 cannot be controllable.

Theorem (4.1.3) is stronger and much more precise result in the non viscous case

because

(i). It removes the condition on time Tc and obtains exact controllability.

(ii). It deals with general convex flux instead of Burger’s equation.

(iii). Also we give a criterion when the constants are controllable.

In the case of problem (II), Fabio-Ancona and Andrea-Marson [11],[12] studied the

problem (II)from the point of view of Hamilton-Jacobi equations. They proved the com-

pactness properties of {u(·, T )} when u(x, 0) = 0. But they do not address the exact

controllability question and Theorem (4.1.2) gives a precise solution for control problem

(II).

In our results on controllability, superlinearity of f plays an important role in removing

the condition on Tc and obtain a free region. Next using convexity, we explicitly construct

solutions in these free regions for particular data which allow us to obtain solutions for

control problems.

(3) Optimal controllability: Let g ∈ L∞(R) with compact support be given. For

u0 ∈ L∞(R), let u be the solution of (2.1.2) in Ω = R×R+ with initial data u0(x). Define
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the cost functional

J(u0) =

∫

R

|u(x, T )− g(x)|2dx, (2.1.59)

and consider the minimization problem

C = inf
u0∈L∞(R)

J(u0).

This problem was considered by Castro-Palacious-Zuazua [23] and proved that there

exists a minimizer. Since the functional is neither convex nor differentiable, it is quite

hard to give a numerical scheme to capture a minimizer.

In chapter 5, we tackle this optimal controllability in a different way. We first reduce

the problem to a standard optimization in a Hilbert space by using Lax-Oleinik formula,

then we use backward construction to obtain a minimizer. This construction turns out

to be far simpler.

Let us state our main results of chapter 5 Let

f(θf ) = min
θ∈R

f(θ). (2.1.60)

Define

1. Admissible sets A and B :

A = {u0 ∈ L∞(R) : u0(x) = θf outside a compact set} (2.1.61)

B = {ρ ∈ L∞
loc(R) : (i) ρ is a non decreasing function

(ii) ρ(x) = x outside a compact set}.
(2.1.62)

For each N > 0, define

BN = {ρ ∈ B : ρ(x) = x for |x| > N}. (2.1.63)

2. Target function k : Let I = (C1, C2) and k be a measurable function such that

k(x) = θf if x /∈ (C1, C2), (2.1.64)

f ′(k(x)) ∈ L2(I). (2.1.65)

3. Cost function J : Let k be a target function and u0 ∈ A. Let u(x, t) be the

corresponding solution of (5.1.2) with initial data u0. Let T > 0 and define the
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modified cost function

J(u0) =

∫

R

|f ′(u(x, T ))− f ′(k(x))|2dx. (2.1.66)

Then we have the following proposition.

Proposition 2.1.1. J is well defined.

Optimal control problem : Given A, k as above, find a ũ0 ∈ A such that

J(ũ0) = min
u0∈A

J(u0) (2.1.67)

and if the minimizer exists, then device a algorithm to capture it.

Then we have the following main result.

Main Theorem :

Theorem 2.1.12. There exists a minimizer for (2.1.67) which can be captured by using

the standard convex optimization problem in a Hilbert space and backword construction.

2.2 Introduction to the problem of existence and non-existence of TV

bounds for scalar conservation laws with discontinuous flux

Let I ⊂ R be an open interval. Let u0 : R → I, F : R× I → R be measurable functions.

We consider the following equation of conservation law

ut + F (x, u)x = 0 x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(2.2.1)

However smooth F and u0, in general (2.2.1) may not admit classical solutions. Even if

weak solutions exist, it may not be unique.

This problem has been studied extensively over the last several decades, when the

flux F is Lipschitz continuous and u0 is of bounded variation. One has to impose an

extra criteria called “Entropy condition” to obtain the physically relevant solution. In

this direction, there are three following methods :

1. Hamilton-Jacobi method (due to Lax and Olenik [31]).

2. Vanishing viscosity method (due to Kruzkov [46], [38]).

3. Numerical schemes: Here F (x, u) = f(u) is Lipschitz. Any monotone, conservative

and consistent scheme converges to a unique entropy solution, (for details see [36]).

Next consider the case when the regularity on F fails. Suppose F (x, u) = f(u) is

continuous but not Lipschitz continuous. Then the finite domain of dependence fails
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and this case was considered by Kruzkov [47]. They defined the concept of generalized

entropy condition and proved that the solution is unique.

Now suppose the regularity of F in the space variable fails. Assume that F has a

single point of discontinuity at x = 0 and is given by

F (x, u) = H(x)f(u) + (1−H(x))g(u) (2.2.2)

where f and g are Lipschitz continuous functions and H is the Heaviside function. This

equation (2.2.2) decomposes into two equations

ut + f(u)x = 0 x > 0, t > 0

ut + g(u)x = 0 x < 0, t > 0

(2.2.3)

and if u+(t) = u(0+, t), u−(t) = u(0−, t) exist, then u±(t) satisfy Rankine-Hugoniot

condition at the interface x = 0 given by

f(u+(t)) = g(u−(t)). (2.2.4)

A solution to (2.2.1) by definition a weak solution to (2.2.1) satisfying entropy condition

of Lax-Olenik, Kruzkov away from the interface x = 0.

Under the assumption f and g coincides at least two points Gimse-Risebro [35, 34],

Diehl [30] obtained a solution for Riemann data. Main questions are existence of solutions

for arbitrary data and unicity.

Assume that f and g are strictly convex C2-function and u0 ∈ BV ∩ L∞. Now

regularize H to a smooth function Hδ and let F δ(x, u) = Hδ(x)f(u) + (1−Hδ(x))g(u).

Then F δ is Lipschitz continuous function. Consider two problems

(i). Vanishing viscosity for Hamilton-Jacobi:

vt + F δ(x, vx) = ǫvxx x ∈ R, t > 0

v(x, 0) = v0(x) =
∫ x

0
u0(θ)dθ, x ∈ R

(2.2.5)

and

(ii). Vanishing viscosity for conservation law:

ut + F δ(x, u)x = ǫuxx x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(2.2.6)

Let vǫ,δ be the unique solution of (2.2.5). Then letting ǫ → 0, δ → 0 Ostrov [54] showed
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that vǫ,δ converges to a unique viscosity solution v of

vt + F (x, vx) = 0 x ∈ R, t > 0

v(x, 0) = v0(x) x ∈ R.
(2.2.7)

Independently, (2.2.7) has been studied by Adimurthi-Gowda [6] and obtained an explicit

formula for the viscosity solution. Furthermore it was shown that u = ∂v
∂x

is a solution of

(2.2.3) satisfying an interface entropy condition

meas
{

t : f ′(u+(t)) > 0, g′(u−(t)) < 0
}

= 0 (2.2.8)

and Lax-Olenik entropy condition for x 6= 0. That is undercompressive waves are not

allowed at the interface. The solution forms an L1-contractive semi-group. Moreover

under some mild regularity, the solution of (2.2.3) satisfying (2.2.8) is unique.

At the conservation law level, this problem was studied by Karlsen, Risebro, Towers

[42] and showed that for ǫ → 0, δ → 0, solution of (2.2.6) converges to a solution of

(2.2.3) and it does not satisfy the condition (2.2.8)(see, Example in page 7). In general,

these solutions admit undercompressive waves at the interface x = 0 which is not allowed

in the classical theory of Lax-Olenik and Kruzkov (see, [46] ). From the model coming

from capillary diffusion, Kaasschieter [41] had studied this problem by using a different

diffusion term than the one in (2.2.6) which captured the better physics of that situation.

The solution obtained by Kaasschieter also satisfy interface entropy condition (2.2.8). For

example, in some cases like clarifier-thickner model, undercompressive waves are allowed

at the interface [18, 19, 20, 17, 21, 42, 27, 29, 28, 43]. In view of this discrepancy, a

general theory known as (A,B) interface entropy theory was proposed in [8], [9], [22].

It was first shown that (A,B)-entropy solution exists and forms an L1-contractive semi-

group and is unique. For the strictly convex case, in [9] explicit Lax-Olenik type formulas

are established satisfying “(A,B) interface entropy condition”.

Using this, a numerical scheme of Godunov type is derived in [7], [10]. This scheme is

conservative, monotone but not consistent. One cannot expect total variation diminishing

property as a constant data gives rise to a non-constant solution. Without total variation

bound studying the convergence of the scheme was difficult. This was overcome by

singular mapping technique used in [50], [61], [7], [45], [8]. Since the schemes are monotone

and conservative and hence by Crandall-Tartar’s Lemma, the solution mapping is L1-

contractive. From this, it was shown (see, [16]) that the scheme is of total variation

bounded away from the interface and this gives an alternative method to prove the

convergence of the scheme. These methods do not give any information at the interface

x = 0. Now the open question was

“does the (A,B) entropy solution admits a total variation bound?”

Here we assume that f and g are strictly convex and of super linear growth. We use
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the explicit formula for the (A,B) entropy solution constructed in [9] and show that if

(A,B) are away from the critical points, then the solution is of total bounded variation.

One of the main ingredients to show this is the study of boundary values λ±(t). If λ±(t)

are of bounded variation, then it follows easily that the solution itself is of bounded

variation. But this is not the case in general. In general λ±(t) are highly oscillatory and

we illustrate this with an example where we show that λ±(t) are not of bounded variation.

The total variation bound exists when A, B are away from the critical points of f and g

respectively.

When A is a critical point of g, then for certain data we construct the (A,B) entropy

solution which is not of bounded variation at the interface x = 0. Idea behind this

construction is as follows. At the interface, u satisfies RH condition, namely f(u+(t)) =

g(u−(t)). Hence u−(t) = g−1(f(u+(t))). If f(u+(t)) is of bounded variation and the range

lies in a neighbourhood of critical point of g, then u− need not be of bounded variation.

As a consequence of our example, it follows that however small the BV norm of initial

data is, BV norm of the solution can blow up at the interface. Hence the BV bounds of

the solution need not depend on the smallness of the initial data.

We assume the following assumptions on f , g and u0.

(i). f and g are strictly convex, C2 and of superlinear growth.

(ii). u0 ∈ L∞ and let v0 be its primitive given by

v0(x) =

∫ x

0

u0(θ)dθ.

Let f(θf ) = min
θ∈R

f(θ), g(θg) = min
θ∈R

g(θ) be the points of minima of f and g respectively.

Let f ∗ and g∗ be their respective convex duals. Let us recall some of the definitions and

notations from [9], [8].

Definition 2.2.1. (Connection). Let (A,B) ∈ R
2. Then (A,B) is called a connection if

it satisfies

(i). f(B) = g(A).

(ii). f ′(B) ≥ 0, g′(A) ≤ 0.

Definition 2.2.2. (Interphase entropy functional). Let u ∈ L∞
loc(R× R+) such that

u±(t) = u(0±, t) exist a.e. t > 0. Then we define IAB(t), the interface entropy functional

by

IAB(t) = (g(u−(t))− g(A))sign(u−(t)−A)− (f(u+(t))− f(B))sign(u+(t)−B). (2.2.9)
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Definition 2.2.3. (Interphase entropy condition). Let u ∈ L∞
loc(R× R+) such that u±(t)

exist a.e. t > 0. Then u is said to satisfy Interphase entropy condition relative to a

connection (A,B) if for a.e. t > 0

IAB(t) ≥ 0. (2.2.10)

Definition 2.2.4. ((A,B) entropy solution). Let F (x, u) = H(x)f(u) + (1 −H(x))g(u)

and (A,B) be a connection. Let u0 ∈ L∞
loc(R×R+). Then u ∈ L∞

loc(R×R+) is said to be

a (A,B) entropy solution if

(i). u is a weak solution of

ut + F (x, u)x = 0, x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(2.2.11)

(ii). u satisfies Lax-Olenik-Kruzkov entropy condition away from the interface x = 0.

(iii). At the interface x = 0, u satisfies (A,B) interface entropy condition (2.2.10).

The (A,B) interface entropy conditions generalies these two cases. For a particular choice

of the (A,B) connection the total variation of the solution of (2.2.11) may increase.

Next we illustrate how to get an explicit (A,B) entropy solution. For this we need to

construct boundary values λ±(t) and the details are carried out in [9], [6].

Definition 2.2.5. (Control curves).Let t > 0. γ : [0, t] → R be a continuous function. γ

is said to be a control curve if there exist 0 ≤ t1 ≤ t such that

(i). γ|[t1,t] = 0,

(ii). γ|[0,t1] is linear and γ|(0,t1) 6= 0.

Let
Γ(t) =

{

γ : [0, t] → R; γ is control curve
}

,

Γ+(t) =
{

γ ∈ Γ(t) : γ(t) ≥ 0
}

,

Γ−(t) =
{

γ ∈ Γ(t) : γ(t) ≤ 0
}

.

Define b±(t) by

b+(t) = inf
γ∈Γ+(t)

{

v0(γ(0)) +

∫ t

0

f ∗(γ̇(θ))dθ
}

,

b−(t) = inf
γ∈Γ−(t)

{

v0(γ(0)) +

∫ t

0

g∗(γ̇(θ))dθ
}

,

where v0(x) =
∫ x

0
u0(θ)dθ.
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Definition 2.2.6. (Boundary data). Let (A,B) be a connection and define λ±(t) =

λ±(t, A,B, v0, f, g) by

λ+(t) =











f−1
− (−b′+(t)) if − b′+(t) > max(−b′−(t), f(B)),

f−1
+

(

max(−b′−(t), f(B))
)

if − b′+(t) ≤ max(−b′+(t), f(B)),

(2.2.12)

λ−(t) =











g−1
− (−b′−(t)) if − b′−(t) > max(−b′+(t), g(A)),

g−1
+

(

max(−b′+(t), g(A))
)

if − b′−(t) ≤ max(−b′+(t), g(A)).

(2.2.13)

Regarding the behavior of λ±(t), we have the following Theorem.

Theorem 2.2.1. For a certain choice of f and g there exists u0 such that TV(λ±) = ∞.

Now recall from [6], [9] the existence and uniqueness of (A,B) entropy solution.

Theorem 2.2.2. Let u0 ∈ L∞ and (A,B) be a connection . Let λ±(t) be as defined

earlier. Then there exists an (A,B) entropy solution u with ||u||∞ ≤ ||u0||∞ and is

unique. Furthermore the solution can be described explicitly by Lax-Olenik type formula

as follows.

For each t > 0 there exists R1(t), R2(t) ≥ 0, L1(t) ≤ 0, L2(t) ≤ 0 and monotone

functions y±(x, t), t±(x, t) z±(x, t)such that

(i). for x ∈ [R1(t),∞), y+(x, t) ≥ 0 is a non-decreasing function and for x ∈ [0, R1(t)),

0 ≤ t+(x, t) < t is a non-increasing function such that for x > 0,(see page 16,

equation (44), [9])

u(x, t) =



















f ∗′
(x− y+(x, t)

t

)

= u0
(

y+(x, t)
)

if x ≥ R1(t),

f ∗′
( x

t− t+(x, t)

)

= λ+
(

t+(x, t)
)

if 0 ≤ x < R1(t).

(2.2.14)

(ii). For x ∈ (−∞, L1(t)], y−(x, t) ≤ 0, is a non-decreasing function and for x ∈

(L1(t), 0], 0 ≤ t−(x, t) < t, t−(x, t) is non-increasing function such that for x < 0,

u(x, t) =



















g∗′
(x− y−(x, t)

t

)

= u0
(

y−(x, t)
)

if x ≤ L1(t),

g∗′
( x

t− t−(x, t)

)

= λ−
(

t−(x, t)
)

if L1(t) < x < 0.

(2.2.15)

(iii). Without loss of generality we can assume g(θg) ≥ f(θf ). Let us assume A = θg.

Then we have the following two cases
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Case 1. L1(t) = 0, R1(t) ≥ 0 (see page 53, equation (4.21), (4.22), [6])

u(x, t) =











f−1
+

(

g(u0(z+(x, t)))
)

if 0 < x < R2(t)

f−1
+

(

g(θg)
)

if R2(t) ≤ x < R1(t).

(2.2.16)

Case 2. L1(t) < 0, R1(t) ≥ 0 (see Lemma 4.8 and page 55, equation (4.30), [6])

u(x, t) =











g−1
−

(

f((u0(z−(x, t))))
)

if 0 > x > L1(t) = L2(t)

f−1
+ (g(θg)) if 0 < x < R1(t) = R2(t).

(2.2.17)

See figure 2.5 for clear illustrations.

y−(x, t)z+(x, t) y+(x, t)

(x, t) (x, t) R2(t) R1(t)(x, t)

t+(x, t)

t+(x, t)

L1(t) = 0, R1(t) ≥ 0
y−(x, t) z−(x, t) y+(x, t)

(x, t)

t−(x, t)

R1(t) (x, t)

L1(t) < 0, R1(t) ≥ 0
Fig. 2.5:

Now we can state our main results as follows.

Main Theorem :

Theorem 2.2.3. Let u0 ∈ L∞(R) and u be the solution as above. Let t > 0, ǫ > 0,M >

ǫ, I(M, ǫ) = {x : ǫ ≤ |x| ≤M}. Then

(1). Suppose there exists an α > 0 for which f ′′ ≥ α, g′′ ≥ α, then there exist a

C = C(ǫ,M, α) such that

TV
(

u(., t), I(M, ǫ)
)

≤ C(ǫ,M, t).

(2). Let T > 0 and u0 ∈ BV. Then there exists a C(ǫ, T ) such that for all 0 < t ≤ T

TV
(

u(., t), |x| > ǫ
)

≤ C(ǫ, t)TV(u0) + 4||u0||∞

(3). Let u0 ∈ BV, T > 0 and A 6= θg, B 6= θf . Then there exists a C > 0 such that for

all 0 < t ≤ T ,

TV
(

u(., t)
)

≤ C TV(u0) + 6||u0||∞.
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(4). Let u0, f
−1
+ (g(u0)), g

−1
− (f(u0)) ∈ BV, T > 0 and A = θg. Then for all 0 < t ≤ T ,

TV
(

u(., t)
)

≤ TV(u0) + max
(

TV (f−1
+ (g(u0))),TV(g

−1
− (f(u0)))

)

+ 6||u0||∞.

(5). Let A = θg or B = θf , then for certain choice of fluxes f and g there exists a initial

data u0 ∈ BV ∩ L∞ such that TV (u(., t))

= ∞.
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Chapter 3

Structure of an entropy solution

of a scalar conservation law with

strict convex flux

3.1 Introduction

Let f : R → R be a strictly convex C1 function satisfying the super linear growth,

lim
|u|→∞

f(u)

|u|
= ∞. (3.1.1)

Let u0 ∈ L∞(I) and consider the following single scalar conservation law

ut + f(u)x = 0 x ∈ R, t > 0, (3.1.2)

u(x, 0) = u0(x) x ∈ I. (3.1.3)

This problem was well studied from last several decades starting from the pioneering

works of Lax-Oleinik [31], Kruzkov [36]. They have studied the existence and uniqueness

of weak solutions to (3.1.1)-(3.1.2) satisfying the entropy condition. In this chapter we

study, profile of a solution, for example how many shocks can a solution exhibit and the

nature of the shocks. Some partial results in this direction are obtained by Lax [48] and

Dafermos [26].

The basic ingredient in studying the above problem comes from the analysis of char-

acteristic curves R±. Originally this was introduced by Hopf [33] and later in a seminal

paper by Dafermos [25], who studied them quite extensively to obtain information on the

nature of solutions. Independently, this was used in [6] to obtain the explicit formula for

a solution of discontinuous flux.

The plan of the chapter is as follows: In this section with some examples, we illustrate

the behaviour of solutions. In section 3.2 we recall the basic theorems of Hopf, Lax-Oleinik

and state our main results. Section 3.3 deals with the finer analysis of characteristic and
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the proof of main Theorems.

1. Illustration of a profile of a solution : In order to understand the shock profile of

a solution, we consider the following two basic examples which form the general pattern.

Consider the Burgers equation,

ut +

(

u2

2

)

x

= 0, (x, t) ∈ R× R+.

Let A1 < A2, u−, u+ ∈ R, ū0 ∈ L∞(A1, A2) and define the initial data u0 by

u0(x) =











u− if x < A1,

ū0(x) if A1 < x < A2,

u+ if x > A2.

(3.1.4)

Example 3.1.1. (Single shock case): (See Figure 3.1) Let u− > α > u+ and ū0(x) = α.

Define

σ0 =
f(u−)− f(u+)

u− − u+
, σ1 =

f(u−)− f(α)

u− − α
, σ2 =

f(u+)− f(α)

u+ − α
, T0 =

A2 − A1

σ1 − σ2
,

x0 = A1 + σ1T0, s1(t) = A1 + σ1t, s2(t) = A2 + σ2t, s0(t) = x0 + (t− T0)σ0.

Then the solution u is given by,

(i). Let 0 < t < T0, then

u(x, t) =











u− if x < s1(t),

α if s1(t) < x < s2(t),

u+ if x > s2(t).

(3.1.5)

(ii). Let t > T0, then

u(x, t) =

{

u− if x < s0(t),

u+ if x > s0(t).
(3.1.6)

Example 3.1.2. (Infinitely many Shocks): (See Figure 3.2 and Figure 3.3) Let I =

(A1, A2) and define the ASSP (asymtotically single shock packet-see definition 3.2.5)D(I)

and single shock solution u(x, t, I) as follows:

D(I) = I × (0,∞). (3.1.7)

T (I) =
A2 − A1

2
. (3.1.8)

ū0(x, I) =

{

1 if A1 < x < A1+A2

2
,

−1 if A1+A2

2
< x < A2.

(3.1.9)
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u=u+

u=α
s1(t) s2(t)

u− u+ T0

s0(t)

u=u−

(A2,0)1,0(A ) u+u− α x0

Fig. 3.1:

Let u(x, t, I) be a solution of (3.1.2) in D(I) with initial condition ū0(x, I) and satisfying

the boundary condition

D(I)

00

u(x,t,I)

x=A
2

x=
A 1+

t

1 −1

−t

(A1,0) (A2,0)1 −1

T(I)

(A1+A2,0)
2

Fig. 3.2:

u(A1+, t, I) = u(A2−, t, I) = 0, (3.1.10)

and it is given by (see Figure 3.2).
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(i). Let 0 < t < T (I), then

u(x, t, I) =























x−A1

t
if A1 < x < A1 + t,

1 if A1 + t < x < A1+A2

2
,

−1 if A1+A2

2
< x < A2 − t,

x−A2

t
if A2 − t < x < A2.

(3.1.11)

(ii). Let t > T (I), then

u(x, t, I) =

{

x−A1

t
if A1 < x < A1+A2

2
,

x−A2

t
if A1+A2

2
< x < A2.

(3.1.12)

Next we glue such solutions to produce a single solution having infinitely many shocks

for each t > 0. Let n ≥ 1 and define

I+ = (1,∞), I− = (−∞, 0), In = (
1

2n
,

1

2n− 1
), Jn = (

1

2n+ 1
,
1

2n
), n ≥ 1.

Dn = In × (0,∞), xn =
1

2
(
1

2n
+

1

2n− 1
).

u0(x) =











1 if x ∈ (1,∞) ∪∞
n=1 (

1
2n
, xn),

0 if x ∈ Jn ∪ I−,

−1 if x ∈ ∪∞
n=1(xn,

1
2n−1

),

(3.1.13)

and define the solution by (see Figure 3.3)

u(x, t) =























1 if 1 + t < x,
x−1
t

if 1 < x < 1 + t,

u(x, t, In) if (x, t) ∈ Dn,

0 otherwise.

(3.1.14)

In view of (3.1.12), u satisfies Rankine-Hugoniot condition as well as entropy condition

across ∂Dn and hence u is the entropy solution of (3.1.2) with u0 as its initial condition.

Now the basic question is, under what conditions, solution u admit a single shock (as

in example 3.1.1) for t sufficiently large and how it behaves if it does not admits a single

shock (as in example 3.1.2) for t large?

Analysis of shocks: If the data satisfies like in example (3.1.1),

u− > u+, (3.1.15)
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Jn

u=0

R

F−

u=0

F+

D+

x−1
t

n
−11

= u

Dn

1
2n

1 1

u(x,t,I)n

x=
1+

t

u=1

(0,0) (1,0)(,0)(
0 1 −1 1

2n−1 2(n−1)
( ,0),0)

I

Fig. 3.3:

it was proved by Liu [51] that for ū0 arbitrary and u is a piecewise continuous function,

then u admits a single shock for t large. Recently Shearer-Dafermos [26] have relaxed

the condition of piecewise continuity and proved that for t sufficiently large, u admits a

single shock under the condition (3.1.15).

In this chapter we consider the case

u− ≤ u+

and would like to study the behavior of the solution. In fact we can show that (Theorem

3.2.7) solution behaves like as in example (3.1.2). That is there exists a continuous non-

decreasing N wave in R × R+ and a countable number of disjoint regions {Dj}, F±, D±

(see Figure 3.3) such that

(i). Ω = R× R+ = F+ ∪ F− ∪D− ∪D+ ∪i∈I Di ∪R.

(ii). F± are closed and u(x, t) = u± in the interior of F±. In example (3.1.2),

F− = {(x, t) : x ≤ 0}, F+ = {(x, t) : x ≥ 1 + t}.

(iii). u behaves like rarefaction in D− ∪ D+, and in example (3.1.2), D− = φ, D+ =

{(x, t) : 1 < x < 1 + t}.

(iv). R is a closed set consists of characteristic lines and u is continuous in R. In example

(3.1.2), R is given by

R = ∪∞
n=1{(x, t) : x ∈ J̄n},

u(x, t) = 0 for (x, t) ∈ R.
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(v). ∂Di\(R×{t = 0}) are parallel characteristic lines and any two characteristics curves

within Di intersects after finite time. Asyptotically it represents a single shock packet.

In example (3.1.2), Di = Ii × (0,∞).

(vi). N wave (see Figure 3.4 ) satisfies

∞
∫

−∞

|u(x, t)−N(x, t)| = O(
1

t1/2
)

provided f ′′ ≥ β > 0. In example (3.1.2), rarefaction wave is given by

N=0

N=1

1+t1

N= x−1
t

Fig. 3.4:

N(x, t) =











0 if x ≤ 1,
x−1
t

if 1 ≤ x ≤ 1 + t,

1 if x > 1 + t.

The main results of this chapter are : we prove (i) to (iv), for a general convex flux

f with L∞ data. In case of (vi), we have relaxed the condition f
′′

≥ β > 0. Earlier this

problem was studied by Liu-Pierre [52] (for the power law), Kim [44] (for the algebric

growth rate at zero) and obtained the decay estimates. Here we have generalized these

results and obtain the rate of decay of solutions with respect to the N -wave (see Remark

3.3.2).

It has been shown by Schaeffer [56] that for large class of smooth initial data u0, the

solution can develop atmost finitely many shocks for t large. If we remove the smoothness

in the initial data, example (3.1.2) shows the existence of infinitely many asymptotically

shock packets Di and each one represents a single shock. In fact within Di, one can

construct infinitely many shocks by using backward construction [2] and all of them

merge at infinity (see example 3.3.10).

In Theorem 3.2.8, we construct a u0 ∈ C∞
c (R) for which the solution admits infinitely

many shocks and hence Schaeffer’s result cannot be improved.

3.2 Preliminaries and Main results

Before stating the main results, we recall some well known results without proof.
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Let f : R → R be a C1 convex function. Assume that

1. f has superlinear growth, that is

lim
|u|→∞

f(u)

|u|
= ∞.

2. f is strictly convex. That is for a, b ∈ R, a = b if and only if

f(a)− f(b)− (a− b)f ′(b) = 0.

3. Let f ∗(p) = sup
q
{pq − f(q)} be the Legendre transform of f . Then f ∗ ∈ C1 and f ∗

is of superlinear growth and satisfies

f = f ∗∗,

f ∗′(p) = (f
′

)−1(p),

f ∗(f ′(p)) = pf
′

(p)− f(p),

f(f ∗′(p)) = pf ∗′(p)− f ∗(p).

(3.2.1)

Examples: f(u) = |u|p, 1 < p <∞.

Controlled Curves: Let x ∈ R, 0 ≤ s < t and define the class of controlled curves

Γ (x, s, t) by

Γ (x, s, t) = {r : [s, t] → R; r is a stright line with r(t) = x}, (3.2.2)

and denote Γ (x, t) = Γ (x, 0, t).

Value function: Let u0 ∈ L∞(R), b ∈ R, define

v0(x) =
x
∫

b

u0(θ)dθ, (3.2.3)

be its primitive. Define the value function v(x, t) associated to f and u0 by

v(x, t) = min
r∈Γ (x,t)

{

v0(r(0)) + tf ∗

(

x− r(0)

t

)}

= min
β∈R

{

v0(β) + tf ∗

(

x− β

t

)}

.
(3.2.4)

Then v satisfies the

Dynamic Programming principle: Let 0 ≤ s < t, then

v(x, t) = min
r∈Γ (x,s,t)

{

v(r(s), s) + (t− s)f ∗

(

x− r(s)

t− s

)}

. (3.2.5)
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Characteristics: Define the characteristic set ch(x, t, s) and extreme characteristic

points y±(x, t, s) by

ch(x, t, s) = {r ∈ Γ (x, t, s); r is a minimizer in (3.2.5)}, (3.2.6)

y−(x, t, s) = min{r(s) : r ∈ ch(x, t, s)},

y+(x, t, s) = max{r(s); r ∈ ch(x, t, s)}.
(3.2.7)

r±(θ, x, t, s) = x+
x− y±(x, t, s)

t− s
(θ − t). (3.2.8)

Denote ch(x, t) = ch(x, t, 0), y±(x, t) = y±(x, t, 0), r±(·, x, t) = r±(·, x, t, 0). For r ∈

ch(x, t, s), we say, r(s) a characteristic point.

Then we have the following theorem due to Hopf, Lax-Oleinik (see [31]).

Theorem 3.2.1. Let 0 ≤ s < t, u0, v0, v be as above, then

(1). v is a uniformly Lipschitz continuous viscosity solution of the Hamilton-Jacobi equa-

tion
vt + f(vx) = 0 (x, t) ∈ R× (0,∞),

v(x, 0) = v0(x) x ∈ R.
(3.2.9)

(2). There exist M > 0, depending only on ‖u0‖∞ and Lipschitz constant of f, f ∗ re-

stricted to [−‖u0‖∞, ‖u0‖∞] such that for all (x, t) ∈ R× R+, r ∈ ch(x, t, s)

∣

∣

∣

∣

x− r(s)

t− s

∣

∣

∣

∣

≤M. (3.2.10)

(3). NIP (Non intersecting property of characteristics): Let x1 6= x2, 0 ≤ s <

min{t1, t2}, ri ∈ ch(xi, ti, s) and for i = 1, 2. Then for all θ ∈ (s,min{t1, t2}),

r1(θ) 6= r2(θ). (3.2.11)

From NIP, it follows that

(a). x 7→ y±(x, t, s) are non decreasing functions.

(b). At the points of continuity of y+,

y+(x, t, s) = y−(x, t, s)

and hence ch(x, t, s) = {r} given by

r(θ) =
x− y+(x, t, s)

t− s
(θ − t) + x.
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(c). Let r ∈ ch(x, t), z = r(s). Let r1 = r|[0,s], r2 = r|[s,t], then r1 ∈ ch(z, s),

r2 ∈ ch(x, t, s).

(4). Let u(x, t) = ∂v
∂x
(x, t). Then u is the unique solution of (3.1.2) with initial data u0

and satisfying

|u(x, t)| ≤ ‖u0‖∞. (3.2.12)

For a.e x, y−(x, t) = y+(x, t) and u is given by

f
′

(u(x, t)) =
x− y+(x, t)

t
=
x− y−(x, t)

t
. (3.2.13)

Furthermore if x be a point of differentiability of y±(x, t) and y±(x, t) is a point of dif-

ferentiability of v0, then

u(x, t) = u0(y±(x, t)). (3.2.14)

(5). If u0 ≤ v0 , then u(x, t) ≤ v(x, t), for a.e. t > 0 and for a.e. x ∈ R.

In this sequel we will follow the notation of characteristic curves as in [6].

Definition 3.2.2. (Characteristic Curves R±) : Let α ∈ R, 0 ≤ s < t. Define

R−(t, s, α) = inf{x; α ≤ y−(x, t, s)},

R+(t, s, α) = sup{x; y+(x, t, s) ≤ α},

R±(t, α) = R±(t, 0, α).

(3.2.15)

Definition 3.2.3. (Characteristic and regular characteristic line): Let α, p ∈ R

and r(t, α, p) = α + tf ′(p) be a stright line passing through (α, 0) with reciprocal slope

f ′(p). Then

(i). r is called a characteristic line if for all t > 0, r(·, α, p) ∈ ch(r(t, α, p), t)

(ii). Let r be a characteristic line, then r is called regular characteristic line if for all

t > 0

y+(r(t, α, p), t) = y−(r(t, α, p), t) = α. (3.2.16)

Definition 3.2.4. (Base point and value) : Let r(·, α, p) be a characteristic line. Then

α is called the base point and p is called value of the characteristic line r(·, α, p).

Definition 3.2.5. (ASSP-Asymtotically single shock packet) : Let C1 < C2, p ∈ R

and for i = 1, 2, r(· , Ci, p) as above. Then define

D(C1, C2, p) = {(x, t) : r(t, C1, p) < x < r(t, C2, p), t > 0}. (3.2.17)

Then D(C1, C2, p) is called ASSP if
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(i). r(· , C1, p), r(· , C2, p) are regular characteristic lines.

(ii). For all C1 < α < C2, R±(t, α) ∈ D(C1, C2, p) for all t > 0.

(iii). For all C1 < α ≤ β < C2 there exists T > 0 such that for t ≥ T,

R+(t, α) = R−(t, α) = R+(t, β) = R−(t, β). (3.2.18)

In otherwords all the characteristic curves in D will merge at infinity and represents a

single shock at infinity.

With these preliminaries, we can state our main results. Let A1 < A2, u± ∈ R, ū0 ∈

L∞(A1, A2) and define u0 by

u0(x) =











u− if x < A1,

ū0 if A1 < x < A2,

u+ if x > A2.

(3.2.19)

Let u be the solution of (3.1.2) with u0 as the initial data.

Definition 3.2.6. (Single shock case) : Let u and u0 be as above, then u is said to be

a case of single shock if there exist T > 0, x0 ∈ R such that

u(x, T ) =

{

u− if x < x0,

u+ if x > x0.
(3.2.20)

As a consequence of this, for t > T, u is given by

u(x, T ) =















u− if x < x0 + (t− T )

(

f(u+)− f(u−)

u+ − u−

)

,

u+ if x > x0 + (t− T )

(

f(u+)− f(u−)

u+ − u−

)

.
(3.2.21)

Then we have the following shock profile decomposition.

Main Results :

Theorem 3.2.7. (Stucture Theorem) Let u and u0 be as in (3.2.19). Then

(I). u represents a case of single shock if and only if u− > u+.

(II). Let u− ≤ u+. Then there exist A1 ≤ B1 ≤ B2 ≤ A2 and a countable number of

disjoint ASSP {D(C1i, C2i, pi)}i∈I such that

(i). r(·, B1, u−), r(·, B2, u+), are regular characteristic lines and for t > 0,

R−(t, A1) ≤ r(t, B1, u−) ≤ r(t, B2, u+) ≤ R+(t, A2) (3.2.22)
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u(x, T ) =

{

u− if x < R−(t, A1),

u+ if x > R+(t, A2)
(3.2.23)

(ii). Let

E = {(x, t) : r(t, B1, u−) ≤ x ≤ r(t, B2, u+)}

S = ∪i∈ID(C1i, C2i, pi)

R = E \ S.

Then R consists of all regular characteristic lines and u is continuous on R.

(iii). For each i ∈ I, u0 satisfies

C2i
∫

C1i

u0(x)dx = (C2i − C1i)pi (3.2.24)

and if u0 is continuous in a neighbourhood of {C1i, C2i}, then

u0(C1i) = u0(C2i) = pi. (3.2.25)

(iv) Let

F− = {(x, t) : x < R−(t, A1)}

D− = {(x, t) : R−(t, A1) < x < r(t, B1, u−)}

F+ = {(x, t) : x > R+(t, A2)}

D+ = {(x, t) : r(t, B2, u+) < x < R+(t, A2)}

then R× (0,∞) = F− ∪ F+ ∪D− ∪D+ ∪ S ∪R. Define the N−wave by

N(x, t) =



























































u− if(x, t) ∈ F−

u+ if (x, t) ∈ F+

x−B1

t
if (x, t) ∈ D−

x−B2

t
if (x, t) ∈ D+

pi if (x, t) ∈ D(C1,i, C2,i, pi)

p if (x, t) ∈ R, p is the value of the regular

characteristic line on which (x, t) lies.

(3.2.26)

Then x 7→ N(x, t) is a continuous non decreasing function on D+ ∪D− ∪ S ∪R.

(v). Suppose f satisfies the following growth assumptions : There exist γ > 0, δ > 0, C >
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0 such that for |h| ≤ δ,

f(u±)− f(u± + h) + hf ′(u± + h) ≥ C|h|γ (3.2.27)

and for any compact interval J , there exists C(J) > 0, η > 0 such that for all a, b ∈ J

|f ′(a)− f ′(b)| ≤ C(J)|a− b|η. (3.2.28)

Then for t large we have the following decay estimate

∞
∫

−∞

|f ′(u(x, t))− f ′(N(x, t))|dx = O

(

1

tη/γ

)

. (3.2.29)

Furthermore if some r > 0, a, b ∈ J, C1(J) > 0,

|f ′(a)− f ′(b)| ≥ C1(J)|a− b|r

then,
∞
∫

−∞

|u(x, t)−N(x, t)|rdx = O

(

1

tη/γ

)

. (3.2.30)

As an immediate consequence of (3.2.24),(3.2.25) is

Corollary 3.2.1. Let u− = u+ = 0, u0 be continuous in [A1, A2]. Let

Z(u0) = {x ∈ (A1, A2) : u0(x) = 0}.

Suppose for any α, β ∈ Z(u0),
β

∫

α

u0(x)dx 6= 0,

then ASSP does not exist.

Remark 3.2.1. In general, solution u can have infinitly many discontinuity in ASSP

(see example 3.3.10). If u0 satisfies some smooth assumptions near boundary points in

an ASSP, then for each t large, u admits only one discontinuity.

In contrast to Schaffer [56] results which says that for a quite large class of smooth

initial data, solution admits finitly many shocks. Then we have the following

Theorem 3.2.8. There exist a u0 ∈ C∞
c (R), such that u admits infinitly many ASSP.
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3.3 Proof of the Theorems:

In order to prove the theorems, we need the following lemmas.

Lemma 3.3.1. Let u0, u, v0, v be as in theorem (3.2.1) and 0 ≤ s < t. Then

1. Let x1 < x2 and β be a minimizer in (3.2.4) for v(x1, t) and v(x2, t). Then β is a

minimizer for all x1 < x < x2 and satisfies

f
′

(u(x, t)) =
x− β

t− s
. (3.3.1)

2. Let xk ∈ R, rk ∈ ch(xk, t, s) such that lim
k→∞

(xk, rk(0)) = (x, β). Then r(θ) = β +

x−β
t−s

(θ − t) is in ch(x, t, s). Furthermore

lim
xk↑x

y+(xk, t, s) = y−(x, t, s), (3.3.2)

lim
xk↓x

y−(xk, t, s) = y+(x, t, s). (3.3.3)

3. For all t > 0,

R−(t, s, α) ≤ R+(t, s, α), (3.3.4)

y−(R−(t, s, α), t, s) ≤ α ≤ y+(R−(t, s, α), t, s), (3.3.5)

y−(R+(t, s, α), t, s) ≤ α ≤ y+(R+(t, s, α), t, s). (3.3.6)

4. Let r±(·, t, s, α) and r̄±(·, t, s, α) denote the left and right extreme characteristics at

R−(t, s, α) and R+(t, s, α) respectively and is given by

r±(θ) = r±(θ, t, s, α) = R−(t, s, α)

+
R−(t, s, α)− y±(R−(t, s, α), t, s)

t− s
(θ − t).

(3.3.7)

r̄±(θ) = r̄±(θ, t, s, α) = R+(t, s, α)

+
R+(t, s, α)− y±(R+(t, s, α), t, s)

t− s
(θ − t).

(3.3.8)

Then for all s < θ < t

r−(θ) ≤ R−(θ, s, α) ≤ r+(θ). (3.3.9)

r̄−(θ) ≤ R+(θ, s, α) ≤ r̄+(θ). (3.3.10)
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Furthermore, they satisfy the dynamic programing principle

R−(t, α) = R−(t, s, R−(s, α)) (3.3.11)

R+(t, α) = R+(t, s, R−(s, α)) (3.3.12)

and t 7→ R±(t, α) are Lipschitz continuous functions with Lipschitz constant inde-

pendent of α with

lim
t→0

R±(t, α) = α. (3.3.13)

5. Let s > 0, then

R−(t, s, α) = R+(t, s, α). (3.3.14)

Let s = 0 and if R−(t, α) < R+(t, α), then for all R−(t, α) < x < R+(t, α)

y±(x, t) = α, f ′(u(x, t)) =
x− α

t
. (3.3.15)

6. Collapsing property : Suppose for α, β ∈ R, there exists a T > 0 such that

(i). If R−(T, α) = R−(T, β), then for t > T, R−(t, α) = R+(t, β).

(ii). If R−(T, α) = R+(T, β), then for t > T, R−(t, α) = R+(t, β).

(iii). If R+(T, α) = R+(T, β), then for t > T, R+(t, α) = R+(t, β).

7. Let u1,0 ≤ u2,0 and u1 and u2 be the respective solutions of (3.1.2) and (3.1.3). Let

α ∈ R and R
(1)
± (t, α), R

(2)
± (t, α) be the extreme characteristic curves of u1 and u2

respectively. Then for all t > 0,

R
(1)
± (t, α) ≤ R

(2)
± (t, α).

Proof :

1. Let x ∈ (x1, x2) and r ∈ ch(x, t, s). Suppose r(s) 6= β, then r intersects one of the

characteristics xi−β
t−s

(θ− t)+xi, i = 1, 2 which contradicts NIP. Hence β = r(s) and

y±(x, t, s) = β. Furthermore

v(x, t) = v(β, s) + (t− s)f ∗

(

x− β

t− s

)

and hence u(x, t) = ∂v
∂x

= f ∗′
(

x−β
t−s

)

= (f ′)−1
(

x−β
t−s

)

. This proves (1).
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2. From the continuity of v, f ∗ and from dynamic programming principle

v(x, t) = lim
k→∞

{v(rk(s), s) + (t− s)f ∗

(

xk − rk(s)

t− s

)

= v(β, s) + (t− s)f ∗

(

x− β

t− s

)

.

Hence

r(θ) = β +
x− β

t− s
(θ − t) ∈ ch(x, t, s). (3.3.16)

Let x1 < x2, then from NIP,

y−(x1, t, s) ≤ y+(x1, t, s) ≤ y−(x2, t, s) ≤ y+(x2, t, s).

Let x1 = xk, x2 = x and β = lim
xk↑x

y+(xk, t, s). Then from (3.3.1), β = r(s) is a

characteristic point and hence y−(x, t, s) ≤ β. Therefore

y−(x, t, s) ≤ β = lim
xk↑x

y+(xk, t, s) ≤ y−(x, t, s)

This proves (3.3.2) and similarly (3.3.3) holds.

3. Let x < R−(t, s, α), then y−(x, t, s) < α and for any ξ < x, y+(ξ, t, s) ≤ y−(x, t, s) <

α. Hence {x < R−(t, s, α)} ⊂ {x : y+(x, t, s) < α}. This implies that R−(t, s, α) ≤

supx{x : y+(x, t, s) ≤ α} = R+(t, s, α). This proves (3.3.4). Suppose y−(R−(t, s, α)

, t, s) > α, then from (3.3.2) there exist a x < R−(t, s, α) for which y−(x, t, s) > α.

Hence R−(t, s, α) ≤ x which is a contradiction. Similarly from (3.3.3), it follows

that α ≤ y+(R−(t, s, α), t, s). This proves (3.3.5) and (3.3.6) follows similarly.

4. Suppose for some s < θ0 < t, R−(θ0, s, α) < r−(θ0). Hence for x ∈ (R−(θ0, t, s,

α), r−(θ0)), r−(s) ≤ α ≤ y−(x, θ0, s). If r−(s) < α or y−(x, θ0, s) > α, then from

NIP gives a contradiction. Therefore r−(s) = y−(x, θ0, s) = α, for all x and therefore

r(θ) = x +
x− α

θ0 − s
(θ − θ0) ∈ ch(x, θ0, s). From (3.3.2), choose ξ < R−(t, s, α) such

that y+(ξ, t, s) < α and r̃(θ) = ξ+ ξ−y+(ξ,t,α)
t−s

(θ−s) intersect r(θ) at some s < θ̃ < t.

This contradics NIP and hence r−(θ) ≤ R−(θ, t, s).

Next suppose r+(θ0) < R−(θ0, s, α) for some θ0 ∈ (s, t). From (3.3.5), r+(s) ≥ α

and hence for any x ∈ (r+(θ0), R−(θ0, t, s, α)), y−(x, t, s) < α and therfore the

characteristic r(θ) = x + x−y−(x,θ0,s)
θ0−s

(θ − s) intersect r+(θ) at some θ̃ ∈ (s, θ0)

contradicting NIP. This proves (3.3.9) and (3.3.10) follows similarly.

For s = 0 and θ ∈ (0, t) we have from (3.3.9)

r−(θ, t, 0, α) ≤ R−(θ, α) ≤ r+(θ, t, 0, α),
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hence from NIP, if x < R−(t, α), then y−(x, t, s) ≤ r−(s, t, 0, α) and if

x > R−(t, α), y+(x, t, s) ≥ r+(s, t, 0, α). This implies (3.3.11). (3.3.12) follows

similarly.

From (3.3.7), (3.3.9) and (3.2.10) we have at s = 0, θ ∈ (0, t]

R−(t, α) +
R−(t, α)− y−(R−(t, α), t)

t
(θ − t)

≤ R−(θ, α)

≤ R−(t, α) +
R−(t, α)− y+(R−(t, α), t)

t
(θ − t).

Hence

|R−(θ, α)−R−(t, α)| ≤

∣

∣

∣

∣

R−(t, α)− y−(R−(t, α), t)

t

∣

∣

∣

∣

|θ − t|

+

∣

∣

∣

∣

R−(t, α)− y+(R−(t, α), t)

t

∣

∣

∣

∣

|θ − t|

≤ 2M(θ − t)

and

|R−(t, α)− y±(R−(t, α), t)| ≤Mt.

Since y−(R−(t, α), t) ≤ α ≤ y+(R+(t, α), t) and hence letting t → 0 to obtain

R−(t, α) → α as t→ 0. Similarly for R+ and this proves (4).

5. Let R−(t, s, α) < R+(t, s, α) and x ∈ (R−(t, s, α), R+(t, s, α)). Then

y+(x, t, s) ≥ y−(x, t, s) ≥ α ≥ y+(x, t, s) and hence y+(x, t, s) = α. Therefore from

(3.3.1), u(x, t) = ∂v
∂x

is given by

f ′(u(x, t)) =
x− α

t− s
(3.3.17)

and rx(θ) = x+
x− α

t− s
(θ − t) ∈ ch(x, t, s). Let s > 0, then from NIP, rx ∈ ch(x, t)

and for x1 < x2, rx1 , rx2 intersect at t = s which is a contradiction. This proves

(3.3.14) and when s = 0, (3.3.15) follows from (3.3.17).

6. It is enough to prove (ii) and the rest follows in the same manner. From (3.3.11)
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and (3.3.14) for t > T ,

R−(t, α) = R−(t, T, R−(T, α))

= R−(t, T, R+(T, β))

= R+(t, T, R+(T, β))

= R+(t, β).

This proves (6).

7. From (5) of Theorem 3.2.1, u1(x, t) ≤ u2(x, t). Hence from Theorem 3.2.1, for a.e.

t > 0 and for a.e. x ∈ R,

x− y
(1)
± (x, t)

t
= f ′(u1(x, t)) ≤ f ′(u2(x, t)) =

x− y
(2)
± (x, t)

t

where y
(i)
± (x, t) are the extreme characteristic points of ui, i = 1, 2. Therefore

y
(2)
± (x, t) ≤ y

(1)
± (x, t) and hance R

(1)
± (t, α) ≤ R

(2)
± (t, α) for a.e. t > 0. Now from

the continuity in t > 0, (7) follows.

Lemma 3.3.2. (1). Let r(t, α, p) = α + tf ′(p) and for T > 0, r(·, α, p) ∈ ch(r(T, α, p),

T ). Let 0 ≤ T1 < T, then for T1 < t < T , following are equivalent

(i). y−(r(t, α, p), t) = α.

(ii). u(r(t, α, p)−, t) = p.

(iii). u(r(t, α, p)+, t) = p.

(iv). y+(r(t, α, p), t) = α.

(3.3.18)

(2). Let r(t, α, p) be a regular characteristic line. In view of (1), u is well defined at

r(t, α, p) for all t > 0 by

u(r(t, α, p), t) = p. (3.3.19)

Let (αk, pk) → (α, p) and {r(·, αk, pk)} are regular characteristic lines. Then r(·, α, p)

is a regular characteristic line. Furthermore if tk → t > 0 and xk = r(tk, αk, pk), x =

r(t, α, p), then

lim
k→∞

u(xk, tk) = u(x, t). (3.3.20)

(3). Suppose for some t > 0, y−(R−(T, α)) = α, then for all 0 < t < T,

R−(T, α) = R−(T, α) +
R−(T, α)− α

T
(t− T )

y−(R−(t, α), t) = α.
(3.3.21)
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(4). Suppose for some T > 0, y+(R+(T, α), T ) = α, then for 0 < t < T,

R+(t, α) = R+(T, α) +
R+(T, α)− α

T
(t− T )

y+(R+(t, α), t) = α.
(3.3.22)

Proof. (1). we have the following

claim : Denote r(t) = r(t, α, p), then for T1 < t < T

f ′(u(r(t)−, t)) =
r(t)− y−(r(t), t)

t

f ′(u(r(t)+, t)) =
r(t)− y+(r(t), t)

t
u(r(t)−, t) ≥ p ≥ u(r(t)+, t).

In order to prove this, observe that that y−(r(t), t) ≤ α ≤ y+(r(t), t) since r(·) is a

characteristic. Hence from (3.2.13) and (3.3.2) we have

f ′(u(r(t)−, t)) = lim
x↑r(t)

x− y+(x, t)

t

=
r(t)− y−(r(t), t)

t

≥
r(t)− α

t
= f ′(p).

Similarly from (3.2.13) and (3.3.3) we have

f ′(u(r(t)+, t)) =
r(t)− y+(r(t), t)

t

≤
r(t)− α

t
= f ′(p).

Hence

u(r(t)+, t) ≥ p ≥ u(r(t)−, t)

and this proves the claim.

(i)=⇒(ii). Let y−(r(t), t) = α, then from the claim we have f ′(u(r(t)−, t)) =
r(t)− α

t
=

f ′(p) and hence u(r(t)−, t) = p.

(ii)=⇒(iii). From the claim and Rankine-Hugoniot condition across r(·), we have for a.e.

T1 < t < T

f ′(p) =
dr

dt
=

f(u(r(t)−, t))− f(u(r(t)+, t))

u(r(t)+, t)− u(r(t)−, t)

=
f ′(p)− f(u(r(t)+, t))

u(r(t)+, t)− u(r(t)−, t)
.
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Since u(r(t)+, t) ≤ p and hence by strict convexity of f , we have u(r(t)+, t) = p for a.e

T1 < t < T. Therefore from the claim we have

f ′(p) = f ′(u(r(t)+, t)) =
r(t)− y+(r(t), t)

t
≤ f ′(p).

Hence y+(r(t), t) = α for a.e. t > 0.

Suppose for some T1 < t0 < T, y+(r(t0), t0) > α. Let T > t1 > t0 such that

y+(r(t1), t1) = α. Then from (3.3.3), choose a ξ > r(t1) such that y+(ξ, t1) ∈ (α,

y+(r(t0), t0)). Then the right extreme characteristics at (r(t1), t1) and at (r(t0), t0) inter-

sect contradicting NIP. Hence y+(r(t), t) = α for all T1 < t < T . Therefore from the

claim, for T1 < t < T,

f ′(u(r(t)+, t)) =
r(t)− y+(r(t), t)

t

=
r(t)− α

t
= f ′(p).

(iii)=⇒(iv). From the cliam we have

f ′(p) = f ′(u(r(t)+, t)) =
r(t)− y+(r(t), t)

t

and hence y+(r(t), t) = α.

Similar analysis proves (iv)=⇒(iii)=⇒(ii)=⇒(i). This proves (1).

(2). From (2) of Lemma 3.3.1, limit of characteristics is a characteristic and hence

r(t, α, p) is a characteristic line. If (αk, pk) = (α, p) for some k, then there is nothing

to prove. Hence assume that (αk, pk) 6= (α, p) for all k. Therefore from NIP, given k,

for all t > 0, either r(t, αk, pk) < r(t, α, p) or r(t, α, p) < r(t, αk, pk). Suppose for some

subsequence still denoted by (αk, pk) such that for all k, r(t, αk, pk) < r(t, α, p), then

αk = r(0, αk, pk) ≤ r(0, α, p) = α. Suppose for some t0 > 0, y−(r(t0, α, p), t0) < α, then

choose k0 large such that

y−(r(t0, α, p), t0) < αk = y−(r(t, αk0 , pk0), t) ≤ α.

Hence the left extreme characteristic at (r(t0, α, p), t0) intersect r(·, αk0 , pk0) contradicting

NIP. Hence y−(r(t, α, p), t) = α for all t > 0. From the claim it follows that r(·, α, p) is

regular. Similarly if for a subsequence still denoted by (αk, pk) if r(t, αk, pk)

> r(t, α, p), it follows that r(·, α, p) is regular.

Let xk = r(tk, αk, pk) → x = r(t, α, p) as k → ∞, then

lim
k→∞

u(xk, tk) = lim
k→∞

pk = p = u(x, t).
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This proves (2).

(3). It is enough to prove (3) and (4) follows in a similar way. For 0 ≤ θ, let r(θ) =

R−(T, α) +
R−(T,α)−α

T
(θ − T ). Then from the hypothesis, r ∈ ch(R−(T, α), T ) and hence

for 0 < t < T, R−(t, α) ≤ r(t). Suppose for some t0 ∈ (θ, T ), R−(t0, α) < r(t0), then

from NIP, for all R−(t0, α) < x < r(t0), α ≤ y−(x, t0) ≤ α and hence y−(x, t0) = α. This

implies rx(θ) = α+ x−α
t0

(θ− t0) is in ch(x, t0). From (3.3.2) we can choose a ξ < R−(T, α)

such that y+(ξ, T ) ∈ (R−(t0, α), α) and hence the characteristic ξ + ξ−y+(ξ,T )
T

(θ − T )

intersect rx0(θ) for some x0 ∈ (R−(t0, α), r(t0)) contradicting NIP. Suppose for some

0 < t0 < T, y−(R−(t0, α), α) < α, then again choose ξ < R−(T, α) such that y+(ξ, T ) ∈

(y−(R−(t0, α), α), α). Hence the right extreme characteristic at (ξ, T ) intersect the left

extreme characteristic at (R−(t0, α), t0) contradicting NIP. This proves (3).

Lemma 3.3.3. Let t > 0 and suppose x 7→ u(x, t) is a non decreasing function for

x ∈ (a, b). Then u(·, t) is a continuous function in (a, b).

Proof. Let a < x1 < x2 < b, then u(x1, t) ≤ u(x2, t) and hence for x ∈ (a, b),

u(x−, t) ≤ u(x+, t). Since u is an entropy solution and hence u(x+, t) ≤ u(x−, t). This

proves u(x+, t) = u(x−, t) and hence the Lemma.

Lemma 3.3.4. Let α ∈ R, then

1. t 7→ y−(R−(t, α), t) is a non increasing function and t 7→ y+(R−(t, α), t) is a non

decreasing function. Let

(C1,α, C2,α) = lim
t→∞

(y−(R−(t, α), t), y+(R−(t, α), t)) (3.3.23)

Then

C1,α ≤ α ≤ C2,α.

2. Let C1,α < β < C2,α, then there exists a T (β) > 0 such that for t > T (β)

R±(t, β) = R−(t, α) (3.3.24)

3. There does not exist a regular characteristic line r(t) such that C1,α < r(0) < C2,α.

4. Suppose C1,α > −∞, then

p−,α = lim
t→∞

R−(t, α)− y−(R−(t, α), t)

t
(3.3.25)

exists and r1,α(t) = C1,α + tf ′(p−,α) is a regular characteristic line. Furthermore

(i). if C1,α = α, then r1,α(t) = R−(t, α) for all t > 0.

(ii). If C1,α < α, then r1,α(t) < R−(t, α) for all t > 0.
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5. Suppose u0 is continuous in a neighbourhood of C1,α, then

u0(C1,α) = p−,α. (3.3.26)

Furthermore if u0 be a non decreasing function in (C1,α, C1,α+ǫ) for some ǫ > 0, then there

exists a T > 0 such that for all t > 0, u(·, t) is continuous in {x : r1,α(t) < x < R−(t, α)}.

6. Suppose C2,α <∞, then

p+,α = lim
t→∞

R−(t, α)− y+(R−(t, α), t)

t
(3.3.27)

exists and r2,α = C2,α + tf ′(p+,α) is a regular characteristic line. Furthermore if there

exists a T > 0 such that y−(R−(T, α), α) < α, then for all t > 0,

R−(t, α) < r2,α(t).

7. Suppose u0 is continuous in neighbourhood of C2,α, then

u0(C2,α) = p+,α (3.3.28)

Furthermore if u0 is a non decreasing function in (C2,α− ǫ, C2,α), then there exists T > 0

such that for all t > T, u(·, t) is continuous in {x : R−(t, α) < x < r2,α(t)}.

8. If −∞ < C1,α < C2,α <∞, then for all t > 0,

def: pα = p−,α = p+,α (3.3.29)

C2,α
∫

C1,α

u0(x)dx =

r2,α(t)
∫

r1,α(t)

u(x, t)dx = pα(C2,α − C1,α). (3.3.30)

r2,α(t)
∫

r1,α(t)

|f ′(u(x, t))− f ′(pα)|dx ≤
(C1,α − C2,α)

2

t
. (3.3.31)

9. t 7→ y−(R+(t, α), t) is a non increasing function and t 7→ y+(R+(t, α), t) is a non

decreasing function and let

(d1,α, d2,α) = lim
t→∞

(y−(R+(t, α), α), y+(R+(t, α), α)). (3.3.32)

10. All the above properties (2) to (8) hold for R+(t, α), d1,α, d2,α, with appropriate

changes in (4) and (6).

Proof. It is enough to prove (1) to (8), (9) and (10) follow similarly.

58



1. Let t1 < t2 and ri(θ) be the left extreme characteristic at (R−(ti, α), ti) for i = 1, 2.

From (3.3.9) we have r2(t1) ≤ R−(t1, α) = r1(t1). Hence from NIP, r2 and r1 do not inter-

sect in the interval (0, t1). Therefore for θ ∈ (0, t1), either r2(θ) ≤ r1(θ) or r2(θ) > r1(θ).

Suppose r1(θ) < r2(θ), then y−(R−(t1, α), t1) = r1(0) < r2(0) = y−(R−(t2, α), t2).

From (3.3.2), we can choose a ξ < R−(t2, α) such that y−(R−(t1, α), t1) < y−(ξ, t2) <

y−(R−(t2, α), t2) and hence the characteristic at (ξ, t2) intersects r1 in (0, t1) which con-

tradicts NIP. Hence

y−(R−(t2, α), t2) = r2(0) ≤ r1(0) = y−(R−(t1, α), t1)

Similarly for t 7→ y+(R−(t, α), t). Since y−(R−(t, α), t) ≤ α ≤ y+(R−(t, α), t) and hence

C1,α ≤ α ≤ C2,α. This proves (1).

2. Let C1,α < β < C2,α. Chooose T > 0 such that y−(R−(T, α), T ) < β < y+(R−(T, α),

T ). Let r1(θ), r2(θ) be the left and right characteristic at (R−(T, α), T ).We claim that for

θ ∈ (0, T ), r1(θ) ≤ R±(θ, β) ≤ r2(θ). Suppose not, let for some θ0 ∈ (0, T ), R−(θ0, β) <

r1(θ0). Since y+(R−(θ0, β), θ0)) ≥ β > r1(0), hence the right extreme characteristic at

(R−(θ0, β), θ0) intersects r1 in (0, θ0) contradicting NIP. Hence r1(θ) ≤ R−(θ, β). Similarly

all other cases follow. This proves the claim. Since r1(T ) = r2(T ) = R−(T, α) and hence

there exist t1, t2 ∈ (0, T ] such that R+(t1, β) = R−(t1, α) and R−(t2, β) = R−(t2, α).

Then from collapsing property, R±(t, β) = R−(t, α) for all t ≥ max{t1, t2}. This proves

(2).

3. First observe that y−(R−(t, α), t) 6= α for all t > 0. Suppose y−(R−(t, α), t) = α for all

t > 0, then from (3) and (1) of Lemma 3.3.2, y+(R−(t, α), t) = α for all t > 0, contra-

dicting C1,α < C2,α. Hence there exists T > 0 such that for all t > T, y−(R−(t, α), t) <

α ≤ y+(R−(t, α), t). Let r be a regular characteristic line with C1,α < r(0) = β < C2,α.

Then we have for all t > 0,

R−(t, β) ≤ r(t) ≤ R+(t, β).

From (2), there exists T1 > 0 such that for all t > T1, R−(t, β) = R+(t, β) = R−(t, α).

Hence r(t) = R−(t, α) for all t > T1. Since r is a regular characteristic line, hence for

t > max{T, T1}, α = y−(r(t), t) = y−(R−(t, α), t) < α, which is a contradiction. This

proves (3).

4. Let

f ′(pt) =
R−(t, α)− y−(R−(t, α), t)

t
r(θ, t) = R−(t, α) + f ′(pt)(θ − t).

= y−(R−(t, α), t) + θf ′(pt)
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Then from (3.2.10), {pt} is bounded and r(· , t) is the left extreme characteristic at

(R−(t, α), t). Let 0 < t0 < t be fixed and define x(t0, t) = r(t0, t). Then for θ ∈ (0, t0),

x(t0, t) and r satisfies

x(t0, t) = y−(R−(t, α), t) + t0f
′(pt) (3.3.33)

r(θ, t) = x(t0, t) + f ′(pt)(θ − t0). (3.3.34)

Let t0 < t1 < t2. Since y−(R−(t2, α), t2) ≤ y−(R−(t1, α), t1) and hence fron NIP,

x(t0, t2) ≤ x(t0, t1). From (3.3.33), {x(t0, t)} is bounded and non increasing function. Let

x(t0) = lim
t→∞

x(t0, t). Therefore from (3.3.33), pt converges as t→ ∞ and let p−,α = lim
t→∞

pt.

Then (3.3.33) and (3.3.34) imply

x(t0) = C1,α + t0f
′(p−,α)

lim
t→∞

r(θ, t) = x(t0) + f ′(p−,α)(θ − t0)

= C1,α + θf ′(p−,α)

= r1,α(θ)

and from (2) of Lemma 3.3.1, r1,α is a characteristic at (x(t0), t0). Since t0 is arbitrary

and hence r1,α is a characteristic line with r1,α(0) = C1,α. From (3.3.9), we have x(t0, t) =

r(t0, t) ≤ R−(t0, α). Hence letting t→ ∞ to obtain

r1,α(t0) ≤ R−(t0, α).

Let C1,α = α, then y−(R−(t, α), t) = α for all t > 0. Hence from (3) and (1) of Lemma

3.3.2, R−(t, α) is a regular characteristic line and from the definition, r1,α(t) = R−(t, α).

C1,α < α. Suppose for some T > 0, R−(T, α) = r1,α(T ). Since r1,α is a character-

istic line and C1,α ≤ y−(R−(t, α), t), hence y−(R−(T, α), T ) = C1,α and by monotonic-

ity, y−(R−(t, α), t) = C1,α for all t > T . Next we claim that R−(t, α) = r1,α(t) for

t > T . Suppose not, then there exists T1 > T such that r1,α(T1) < R−(T1, α). Since

y+(R−(T, α), T ) ≥ α > C1,α and y−(R−(T, α), T ) = C1,α, hence the right extreme char-

acteristic at (R−(T, α), T ) and left extreme characteristic at (R−(T1, α), T1) intersect in

(0, T ) contradicting NIP, this proves the claim.

Therefore for t > T, y−(r1,α(t), t) = y−(R−(t, α), t) = C1,α and hence from (1) of

Lemma 3.3.2, C1,α = y+(r1,α(t), t) = y+(R−(t, α), t) ≥ α > C1,α which is a contradiction.

This proves that for all t > 0, r1,α(t) < R−(t, α). Hence for t0 > 0 and for any t >

t0, r1,α(t0) < x(t0, t) < R−(t0, α). Since y−(x(t0, t), t0) = y−(R−(t, α), t) and therefore

lim
x↓r1,α(t0)

y−(x, t0) = C1,α.
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Hence from (3.2.13) and (3.3.3), we have

f ′(u(r1,α(t0)+, t0)) = lim
x↓r1,α(t0)

x− y−(x, t0)

t0

=
r1,α(t0)− C1,α

t0
= f ′(p−,α).

Therefore from (1) of Lemma 3.3.1we have for all t0 > 0, y−(r1,α(t0), t0) = y+(r1,α(t0)

, t0) = C1,α. This proves that r1,α is a regular characteristic and this completes the proof

of (4).

5. Let ǫ0 > 0 be such that u0 is continuous in (C1,α − ǫ0, C1,α + ǫ0). Choose T > 0 such

that for all t > T, y−(R−(t, α), t) < C1,α + ǫ0. Let T < t, then for all r1,α(t) < x <

R−(t, α), y−(x, t0) ∈ [C1,α, C1,α + ǫ0). Since v0 is differentiable in (C1,α − ǫ0, C1,α + ǫ0),

hence from (3.2.13) and (3.2.14) we have for a.e. x ∈ (r1,α(t), R−(t, α)),

f ′(u0(y−(x, t))) = f ′(u(x, t)) =
x− y−(x, t)

t
. (3.3.35)

Let x(t0, t) be as in (3.3.33). Since x(t0, t) → r1,α(t0) as t→ ∞ and hence

lim
x→r1,α(t0)

y−(x, t0) = C1,α

Hence from (3.3.35)

f ′(u0(C1,α)) = lim
x→r1,α(t0)

f ′(u0(y−(x, t0)))

=
r1,α(x0)− C1,α

t0
= f ′(p−,α).

This proves (3.3.26).

Let u0 be non decreasing in [C1,α, C1,α + ǫ0). Since y−(x, t) ∈ [C1,α, C1,α + ǫ0), hence

x 7→ u0(y−(x, t)) is a non decreasing function. Therefore from (3.2.14) and Lemma 3.3.3,

x 7→ u(x, t) = u0(y−(x, t)) is a continuous function for x ∈ (r1,α(t), R−(t,

α)). This proves (5).

(6). (3.3.27) follows exactly as in (4) and r2,α is a characteristic line.

Cliam: Let for some T > 0, R−(T, α) = r2,α(T ), then y−(R−(T, α), α) = α.

Suppose y−(R−(T, α), α) < α, then we show that R−(t, α) = r2,α(t) for all t > T. If

not, then there exists a t0 > T such that R−(t0, α) < r2,α(t0). Since y−(R−(T, α), α) <

α ≤ y+(R−(t0, α), t0), the left extreme characteristic at (R−(T, α),

T ) and the right extreme characteristic at (R−(t0, α), t) intersect in (0, T ) contradicting
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NIP. Hence R−(t, α) = r2,α(t) for all t > T. Since y+(R−(t, α), t) ≤ C2,α and hence

y+(R−(t, α), t) = C2,α for t > T. Therefore from (1) of Lemma 3.3.2, for t > T, α ≤

C2,α = y+(R−(t, α), t) = y−(R−(t, α), t) < α which is a contradiction. This proves the

claim.

From the hypothesis, there exists T > 0 such that y−(R−(T, α), T ) < α and hence

from the above claim, there exists 0 ≤ T0 <∞ such that

T0 = max{t ≥ 0 : R−(t, α) = r2,α(t)}.

Since R−(t, α) ≤ r2,α(t) for all t > 0, hence we have for t > T0, R−(t, α) < r2,α(t) and

from the claim y−(R−(T0, α), T0) = α. Therefore from (3),(1) of Lemma 3.3.2, for all

0 < t ≤ T0,

α = y−(R−(t, α), t) = y+(R−(t, α), t) = C2,α,

and for all t > T0

y−(R−(t, α), t) < α ≤ y+(R−(t, α), t) ≤ C2,α.

Hence if α < C2,α, then the left extreme characteristic at (R−(T0, α), T0) and the right

extreme characteristic at (R−(t, α), t), for t > T0 intersect in (0, T ) contradicting NIP.

Therefore α = C2,α and y+(R−(t, α), t) = C2,α for all t > T. Let t0 > T0 and r+(·) be

the right extreme characteristic at (R−(t0, α), t0). Let T0 < t ≤ t0 be such that r+(t1) ≤

R−(t1, α) and t1 exists because R−(T0, α) = r2,α(T0). Since y−(R−(t, α), α) < α = C2,α

and r+(0) = y+(R−(t0, α), α) = C2,α, therefore r+ and left extreme characteristic at

(R−(t1, α), t1) intersect in (0, t1) contradicting NIP. Hence T0 = 0 and therefore for all

t > 0, R−(t, α) < r2,α(t). Following the similar proof as in (4) to yield r2,α(·) is a regular

characteristic line. This proves (6).

7. Proof of this assertion follows by similar arguments as in (5).

8. Let −∞ < C1,α < C2,α <∞, then C1,α ≤ y−(R−(t, α), t) ≤ α ≤ y+(R−(t, α), t) ≤ C2,α

and hence

f ′(p−,α) = lim
t→∞

R−(t, α)− y−(R−(t, α), t)

t

≥ lim
t→∞

R−(t, α)− y+(R−(t, α), t)

t
= f ′(p+,α).

Hence p−,α ≥ p+,α. Suppose p−,α > p+,α, then the characteristic lines r1,α and r2,α intersect

at t0 =
C2,α−C1,α

f ′(p−,α)−f ′(p+,α)
> 0 contradicting NIP. Hence p−,α = p+,α. This proves (3.3.29).

Let Ω(t) = {(x, θ) : 0 < θ < t, r1,α(θ) < x < r2,α(θ)}. Then integrating by parts
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yields

0 =

∫

Ω(t)

(uθ + f(u)x)dxdθ = −

C2,α
∫

C1,α

u0(x)dx+

r2,α(t)
∫

r1,α(t)

u(x, t)dx

+

t
∫

0

dr1,α
dθ

u(r1,α(θ)+, θ)dθ

−

t
∫

0

dr2,α
dθ

u(r2,α(θ)−, θ)dθ

−

t
∫

0

f(u(r1,α(θ)+, θ))dθ

+

t
∫

0

f(u(r2,α(θ)−, θ))dθ.

Since
dr1,α
dθ

=
dr2,α
dθ

= f ′(pα), r1,α and r2,α are regular characteristic lines and hence from

(1) of Lemma 3.3.2, we have u(r1,α(θ)+, θ) = u(r2,α(θ)−, θ) = pα. Therefore by change

of variable ξ = x− tf ′(pα) to obtain

C2,α
∫

C1,α

u0(x)dx =

r2,α(t)
∫

r1,α(t)

u(x, t)dx

=

r2,α(t)
∫

r1,α(t)

(f ′)−1

(

x− y−(x, t)

t

)

dx

=

r2,α(t)
∫

r1,α(t)

(f ′)−1

(

x− tf ′(pα)− y−(x, t)

t
+ f ′(pα)

)

dx

=

C2,α
∫

C1,α

(f ′)−1

(

ξ − y−(x, t)

t
+ f ′(pα)

)

dξ

→ pα(C1,α − C2,α) as t→ ∞.
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This proves (3.3.30).

r2,α(t)
∫

r1,α(t)

|f ′(u(x, t))− f ′(pα)|dx =

r2,α(t)
∫

r1,α(t)

∣

∣

∣

∣

x− y−(x, t)

t
− f ′(pα)

∣

∣

∣

∣

dx

=

C2,α
∫

C1,α

∣

∣

∣

∣

ξ − y−(x, t)

t

∣

∣

∣

∣

dξ

≤
(C2,α − C1,α)

2

t
.

This proves (3.3.31) and hence (8). (9) and (10) follow exactly as in the previous cases

and this proves the Lemma.

Let u0 be as in (3.2.19) and I = (A1, A2). Define

m = inf
x∈I

{ū0(x), u+}, M = sup
x∈I

{ū0(x), u−}.

f ′(k1) =







f ′(u−) if u− < m
f(u−)− f(m)

u− −m
if u− ≥ m.

(3.3.36)

f ′(k2) =







f ′(u+) if u+ > M
f(u+)− f(M)

u+ −M
if u+ ≤M.

(3.3.37)

r1(t) = A1 + tf ′(k1), r2(t) = A2 + tf ′(k2). (3.3.38)

Let um, uM be the solutions of (3.1.2) with respective initial datas um0 and uM0 given by

um0 =

{

u− if x < A1,

m if x > A1.

uM0 =

{

u+ if x > A2,

M if x < A2.

Then um and uM are given by

um(x, t) =



















u− if x < r1(t),

(f ′)−1

(

x− A1

t

)

if r1(t) < x < Max{r1(t), A1 + tf ′(m)},

m if x > Max{r1(t), A1 + tf ′(m)}.
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um(x, t) =



















u+ if x > r2(t),

(f ′)−1

(

x− A2

t

)

if Min{r2(t), A2 + tf ′(M)} < x < r2(t),

M if x < Min{r2(t), A2 + tf ′(M)}.

Then clearly the left extreme characteristic curve R− at A1 for um is r1 and right extreme

characteristic R+ at A2 for uM is r2. Since u
m
0 ≤ u0 ≤ uM0 , then from (7) of Lemma 3.3.1

we have for t > 0,

r1(t) ≤ R−(t, A1) ≤ R+(t, A2) ≤ r2(t). (3.3.39)

Furthermore, for x < R−(t, A1) we have y−(x, t) < A1 and for x > R+(t, A2) we have

y+(x, t) > A2. Since v0 is differentiable in (−∞, A1) ∪ (A2,∞), hence from (3.2.14)

u(x, t) =

{

u− if x < R−(t, A1),

u+ if x > R+(t, A2).
(3.3.40)

f ′(u−) = lim
x↑R−(t,A1)

x− y+(x, t)

t

=
R−(t, A1)− y−(R−(t, A1), t)

t
.

(3.3.41)

f ′(u+) = lim
x↓R+(t,A2)

x− y−(x, t)

t

=
R+(t, A2)− y+(R+(t, A2), t)

t
.

(3.3.42)

Let v0 be given by

v0(x) =

x
∫

A1

u0(θ)dθ. (3.3.43)

Then from (3.2.4), for any x ∈ R, t > 0,

v(x, t) = v0(y−(x, t)) + tf ∗

(

x− y−(x, t)

t

)

v(x, t) = v0(y+(x, t)) + tf ∗

(

x− y+(x, t)

t

)

,

therefore if y−(x, t) ≤ A1, then

(y−(x, t)− A1)u− + tf ∗

(

x− y−(x, t)

t

)

=
y+(x,t)
∫

A1

u0(θ)dθ

+ tf ∗

(

x− y+(x, t)

t

)

.

(3.3.44)

65



and if y+(x, t) > A2,

y−(x,t)
∫

A1

u0(θ)dθ + tf ∗

(

x− y−(x, t)

t

)

=

A2
∫

A1

ū0(θ)dθ + (y+(x, t)− A2)u+

+ tf ∗

(

x− y+(x, t)

t

)

.

(3.3.45)

Then we have the following

Lemma 3.3.5. Assume that for all t > 0,

R−(t, A1) < R+(t, A2) (3.3.46)

and denote

y(t) = y+(R−(t, A1), t), Y (t) = y−(R+(t, A2), t) (3.3.47)

(B1, B2) = lim
t→∞

(y(t), Y (t)) (3.3.48)

then,

1. A1 ≤ B1 ≤ B2 ≤ A2,

f ′(u−) = lim
t→∞

R−(t, A1)− y(t)

t
(3.3.49)

f ′(u+) = lim
t→∞

R+(t, A2)− Y (t)

t
(3.3.50)

2. Let Γ1(t) = R−(t, B1), Γ2(t) = R+(t, B2), then Γ1 and Γ2 are regular characteristic

lines given by

R−(t, A1) ≤ Γ1(t) = B1 + tf ′(u−) (3.3.51)

R+(t, A2) ≥ Γ2(t) = B2 + tf ′(u+). (3.3.52)

Furthermore,

u− ≤ u+. (3.3.53)

3. Assume that there exist γ > 0, δ > 0, C > 0 such that for all |h| ≤ δ,

f(u±)− f(u± + h) + hf ′(u± + h) ≥ C|h|γ. (3.3.54)
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Then

u− − (f ′)−1

(

R−(t, A1)− y(t)

t

)

= O

(

1

t1/γ

)

(3.3.55)

u+ − (f ′)−1

(

R+(t, A2)− Y (t)

t

)

= O

(

1

t1/γ

)

. (3.3.56)

Furthermore for some η > 0, for all a, b ∈ [−‖u0‖, ‖u0‖], f satisfies

|f ′(a)− f ′(b)| ≤ C|b− a|η. (3.3.57)

Then

f ′(u−)−
R−(t, A1)− y(t)

t
= O

(

1

tη/γ

)

(3.3.58)

f ′(u+)−
R+(t, A2)− Y (t)

t
= O

(

1

tη/γ

)

. (3.3.59)

Proof : From (1) and (9) of Lemma 3.3.4, (B1, B2) exist and satisfies A1 ≤ B1, B2 ≤ A2.

Suppose B2 < B1, then there exists t0 > 0 such that B2 < Y (t0) < y(t0) < B1.

Since by hypothesis R−(t0, A1) < R+(t0, A2) and hence the left extreme characteris-

tic at (R+(t0, A2), t0) and right extreme characteristic at (R−(t0, A1), t0) intersect which

contradics NIP. Hence A1 ≤ B1 ≤ B2 ≤ A2.

Let f ′(pt) =
R−(t, A1)− y(t)

t
, then from (3.3.39), we have

A1 + tf ′(k1) ≤ R−(t, A1) ≤ A2 + tf ′(k2)

and hence

A1 − y(t)

t
+ f ′(k1) ≤ f ′(pt) ≤

A2 − y(t)

t
+ f ′(k2)

Since y(t) ∈ [A1, B1] and hence {pt} is bounded as t → ∞. From (3.3.41) and (3.3.44)

we have

(y−(R−(t, A1), t)− A1)u− + tf ∗

(

R−(t, A1)− y−(R−(t, A1), t)

t

)

=
y(t)
∫

A1

u0(θ)dθ + tf ∗

(

R−(t, A1)− y(t)

t

)

.
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That is

−u−f
′(u−) + u−

(

R−(t, A1)− A1

t

)

+ f ∗(f ′(u−))

=
1

t

y(t)
∫

A1

u0(θ)dθ + f ∗(f ′(pt))

−u−f
′(u−) + f ∗(f ′(u−)) =

1

t

y(t)
∫

A1

u0(θ)dθ − u−

(

y(t)− A1

t

)

− u−

(

R−(t, A1)− y(t)

t

)

+ f ∗(f ′(pt))

= O

(

1

t

)

+ f ∗(f ′(pt))− u−f
′(pt)

Since f ∗(f ′(p)) = pf ′(p)− f(p) we have

f(pt)− f(u−)− (pt − u−)f
′(pt) = O

(

1

t

)

. (3.3.60)

Let for a sequence tk → ∞, ptk → p, then from (3.3.60) we obtain

f(p)− f(u−)− (p− u−)f
′(p) = 0

and hence by strict convexity, p = u−. This proves (3.3.49) and similarly (3.3.50). This

proves (1).

2. From (6) and (9) of Lemma 3.3.3, Γ1 = R−(t, B1), Γ2 = R+(t, B2) are regular

characteristic lines given by (3.3.51) and (3.3.52). Since

R−(t, A1)− y(t)

t
<
R+(t, A2)− Y (t)

t
+
Y (t)− y(t)

t

and hence letting t → ∞ to obtain f ′(u−) ≤ f ′(u+). This implies that u− ≤ u+. This

proves (3.3.53) and hence (2).

From (3.3.54) and (3.3.60) we have

|u− − pt| = O

(

1

t1/γ

)

.

R−(t, A1) = y(t) + tf ′

(

u− +O

(

1

t1/γ

))

.
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Therefore from (3.3.57) we have

∣

∣

∣f ′(u−)−
R−(t,A1)−y(t)

t

∣

∣

∣ =
∣

∣f ′(u−)− f ′
(

u− +O
(

1
t1/γ

))∣

∣

= O
(

1
tη/γ

)

.
(3.3.61)

This proves (3.3.55) and (3.3.58). Similarly (3.3.56) and (3.3.59) follow. This proves (3)

and hence the Lemma.

Proof of Theorem 3.2.7 : We have to consider the following two cases:

(I). There exists T > 0 such that

R−(T,A1) = R+(T,A2). (3.3.62)

(II). For all t > 0,

R−(t, A1) < R+(t, A2). (3.3.63)

(I). In this case, from (6) of Lemma 3.3.1 and (3.3.40) we have for all t > T,

S(t) = R−(t, A1) = R+(t, A2)

= S(T ) +
f(u+)− f(u−)

u+ − u−
(t− T )

u(x, t) =

{

u+ if x > S(t),

u− if x < S(t).

Since u is an entropy solution and hence u− ≥ u+. From (3.3.41) and (3.3.42), for t > T ,

we have

f ′(u−) = lim
x↑S(t)

x− y+(x, t)

t
=
S(t)− y−(S(t), t)

t

f ′(u+) = lim
x↓S(t)

x− y−(x, t)

t
=
S(t)− y+(S(t), t)

t

and y−(S(t), t) ≤ A1 < A2 ≤ y+(S(t), t). This implies that f ′(u−) > f ′(u+) and hence

u− > u+. This proves (I).

(II). From Lemma 3.3.5, there exists A1 ≤ B1 ≤ B2 ≤ A2 such that Γ1(t) = r1(t, B1, u−),

Γ2(t) = r2(t, B2, u+) are regular characteristic lines. Hence from (3.3.52), u− ≤ u+ and

(3.2.22) follows from (3.3.51), (3.3.52). (3.2.23) follows from (3.3.40). This proves (i).

Define the regular set R̃ and singular set D̃ by

R̃ = {α ∈ [B1, B2] : α is the base point of a regular characteristic line}. (3.3.64)

Since then sequence of regular characteristics converges to a regular characteristic (see
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(2) of Lemma 3.3.2) and hence R̃ is a closed set. Let

D̃ = [B1, B2] \ R̃. (3.3.65)

Then D̃ is open set. Let α ∈ D̃. Then from (1) and (3) of Lemma 3.3.2 there exists a

T > 0 such that for t > T,

y−(R−(t, α), α) < α ≤ y+(R−(t, α), α).

Since Γ1,Γ2 are characteristic lines, hence from NIP,

B1 ≤ y−(R−(t, α), α) ≤ y+(R−(t, α), α) ≤ B2.

Then from Lemma 3.3.4 there exist C1,α < C2,α, pα such that

(C1,α, C2,α) = lim
t→∞

(y−(R−(t, α), α), y+(R−(t, α), α))

r1,α = C1,α + tf ′(pα), r2,α(t) = C2,α + tf ′(pα)

are regular characteristic lines and {C1,α, C2,α} ∩ D̃ = φ. Let

Dα = {(x, t) : r1,α(t) < x < r2,α(t)},

then from Lemma 3.3.4 Dα is an ASSP and Dα ⊂ E, where

E = {(x, t) : Γ1(t) ≤ x ≤ Γ2(t)}.

Let α, β ∈ D̃ such that Dα ∩Dβ 6= φ. Suppose Dα 6= Dβ, since ∂Dα \ [C1,α, C2,α], ∂Dβ \

[C1,β, C2,β] are regular characteristic lines and hence from NIP, for some i ∈ {1, 2}, for

all t > 0, the regular characteristic line ri,α(t) ∈ Dβ, contradicting the fact that Dβ

does not contain regular characteristic line. Hence Dα = Dβ. Therefore we can define an

equivalence relation in D̃ by α*β if and only if Dα = Dβ. From ASSP, it follows that

the equivalence class of α, denoted by (α) = (C1,α, C2,α). Hence there exists a countable

set I, disjoint intervals {(C1,i, C2,i)}i∈I , real numbers {pi}, regular characteristic lines

r1,i(t) = C1,i+ tf
′(pi), r2,i(t) = C2,i+ tf

′(pi) and disjoint ASSP {Di = D(C1,i, C2,i, pi)}i∈I

given by

D̃ = ∪i∈I(C1,i, C2,i)

Di = {(x, t) : r1,i(t) < x < r2,i(t)}.
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Claim 1 : Let R be the union of all regular characteristic lines in E. Then

E = ∪i∈IDi ∪R.

Let (x0, t0) ∈ E and r ∈ ch(x0, t0). Let α = r(0), then from the definition we have for

0 ≤ t ≤ t0,

R−(t, α) ≤ r(t) ≤ R+(t, α).

Suppose α ∈ (C1,i, C2,i) for some i, since Di is an ASSP and hence for all R−(t, α) ≤ x ≤

R+(t, α), (x, t) ∈ Di. This implies (x0, t0) ∈ Di.

Suppose α /∈ D̃, then α ∈ R̃ and hence there exist a regular characteristic line η(t) =

α + tf ′(p). Since R−(t, α) ≤ η(t) ≤ R+(t, α) and hence either R−(t0, α) ≤ x0 ≤ η(t0) or

η(t0) ≤ x0 ≤ R+(t0, α). Without loss of generality we can assume that R−(t0, α) ≤ x0 ≤

η(t0). Since η is a regular characteristic and hence y+(R−(t, α)) = α for all t > 0. We

have to consider two cases.

Case (i) : y−(R−(t, α), t) = α for all t > 0.

Then from (3) of Lemma 3.3.2, R−(t, α) ≤ x ≤ η(t), f ′(u(x, t)) = x−α
t
. Hence (x0, t0) lies

on the line L(t) = α + x0−α
t0

t and R−(t, α) ≤ L(t) ≤ η(t) for all t > 0. Hence from NIP,

y−(L(t), t)) = y+(L(t), t) = α and therefore L is a regular characteristic line.

Case (ii) : There exists T > 0 such that y−(R−(T, α), T ) < α. Since R−(t, α) ≤ η(t)

and hence y+(R−(t, α), t) = α for all t > 0. Therefore from (2),(4),(6),(7) of Lemma 3.3.3

Dα = {(x, t) : r1,α(t) < x < r2,α(t)}

is an ASSP. Hence Dα = Di for some i. From (6) of Lemma 3.3.3, we have for all

t > 0, R−(t, α) < r2,α(t) ≤ η(t). Hence if R−(t0, α) ≤ x0 < r2,α(t0), then (x0, t0) ∈ Di. If

r2,α(t0) ≤ x0 ≤ η(t0), then by the same argument as earlier, x0 = L(t0) for some regular

characteristic line. Hence (x0, t0) ∈ R. This proves the claim.

From the above analysis and claim, (i) and (ii) follow. (3.2.24) follows from (3.3.30)

and (3.2.25) follows from (3.3.28),(3.3.29).

(iv). From (2) of Lemma 3.3.2, u is continuous on R and hence N = u on R is continuous.

Since Γ1 and Γ2 are characteristic lines with values u− and u+ and hence N is continuous

on R∪D−∪D+. By definition, N is continuous on ∪i∈IDi. Therefore it is enough to show

that if (xk, tk) → (x0, t0), (xk, tk) ∈ R, (x0, t0) ∈ ∂Di \ D̃ for some i, then N(xk, tk) →

N(x0, t0). Let rk(t) = αk+ tf
′(pk) be the regular characteristic line such that rk(tk) = xk.

Without loss of generality we can assume that r1,i(t0) = x0. Since αk ∈ [B1, B2] and hence

f ′(pk) =
xk−αk

tk
are bounded. Then for a subsequence still denoted by {αk, pk} such that

(αk, pk) → (α0, p0). Therefore for all t, rk(t) → r(t) = α0+ tf
′(p0) a regular characteristic

line. Since r1,i(t0) = x0 = lim
k→∞

rk(tk) = r(t0), r and r1,i intersect at (x0, t0) and by NIP

it follows that r = r1,i and α0 = C1,i, p0 = pi. Hence N(xk, tk) = pk → pi = N(x0, t0).
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This proves that N is continuous.

Let (x1, t), (x2, t) ∈ R and x1 < x2. Let the corresponding regular characteristic

lines be r1, r2 and for i = 1, 2, xi = ri(t) = y−(xi, t) + tf ′(pi), for some p1, p2. Since

y−(x1, t) ≤ y−(x2, t) and hence from NIP, f ′(p1) ≤ f ′(p2). This implies that N(x1, t) =

p1 ≤ p2 = N(x2, t). Since N is constant on Di and hence x 7→ N(x, t) is a non decreasing

function for (x, t) /∈ F− ∪ F+.

For A ⊂ R× R+, t > 0, define t section At of A by

At = {x : (x, t) ∈ A}.

Let f satisfies (3.2.27) and (3.2.28). Then

J =

∞
∫

−∞

|f ′(u(x, t))− f ′(N(x, t))|dx =

Γ1(t)
∫

R−(t,A1)

|f ′(u(x, t))− f ′(u−)|dx

+

∫

Rt

|f ′(u(x, t))− f ′(N(x, t))|dx+
∑

i∈I

∫

Dit

|f ′(u(x, t))− f ′(N(x, t))|dx

+

R+(t,A2)
∫

Γ2(t)

|f ′(u(x, t))− f ′(u+)|dx

=

Γ1(t)
∫

R−(t,A1)

|
x− y−(x, t)

t
−
x− B1

t
|dx+

R+(t,A2)
∫

Γ2(t)

|
x− y−(x, t)

t
−
x− B2

t
|dx

+
∑

i∈I

r2,i(t)
∫

r1,i(t)

|
x− y−(x, t)

t
− f ′(pi)|dx

since on Rt, N(x, t) = u(x, t). Let ξ = x− tf ′(pi), then

r2,i(t)
∫

r1,i(t)

|
x− y−(x, t)

t
− f ′(pi)|dx =

C2,i
∫

C1,i

|
ξ − y−(x, t)

t
|dξ

≤
(C2,i − C1,i)

2

t

From (3.3.61) we have for ξ = x− tf ′(u−)

Γ1(t)
∫

R−(t,A1)

|
x− y−(x, t)

t
−
x−B1

t
|dx =

Γ1(t)
∫

R−(t,A1)

∣

∣

∣

∣

B1 − y−(x, t)

t

∣

∣

∣

∣
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≤
B1 − A1

t
(Γ1(t)−R−(t, A1))

=
B1 − A1

t

[

B1 − y(t)− t

(

f ′(u−) +O

(

1

t1/γ

))

− f ′(u−)

]

≤
B1 − A1

t

[

(B1 − A1) + tO

(

1

tη/γ

)]

=
(B1 − A1)

2

t
+O

(

1

tη/γ

)

.

Similarly

R−(t,A2)
∫

Γ2(t)

|
x− y−(x, t)

t
−
x− B2

t
|dx ≤

(A2 −B2)
2

t
+O

(

1

tη/γ

)

.

Hence

J ≤

(B1 − A1)
2 + (B2 − A2)

2 +
∑

i∈I

(C2,i − C1,i)
2

t
+O

(

1

tη/γ

)

=
(B1 − A1)

2 + (B2 − A2)
2 + (B2 − B1)

2

t
+O

(

1

tη/γ

)

= O

(

1

t
+

1

tη/γ

)

= O

(

1

tη/γ

)

,

since η/γ ≤ 1. This proves (3.2.29). Now (3.2.30) follows from (3.2.29). This proves the

theorem.

Before proving Theorem 3.2.8, we need some preliminary results.

Definition 3.3.6. u0 is said to be mildly oscillating at a if there exist θ1 < a < θ2 such

that either a is a local maxima or a local minima of u0 or u0 is monotone in (θ1, θ2).

Definition 3.3.7. Let α < β and u0 is said to have same parity at α, β if there exist

α < θ1 < θ2 < β such that

u0(α) = u0(β)

and u0 is a non decreasing function in (α, θ1) ∪ (θ2, β).

Lemma 3.3.8. Let C1 < C2, p ∈ R and r1(t) = C1 + tf ′(p), r2(t) = C2 + tf ′(p). Let

D = {(x, t) : r1(t) < x < r2(t)}

be an ASSP. Assume that u0 is continuous in a neighbourhood of {C1, C2} and mildly

oscillating at C1 and C2. Then u0 have same parity at C1 and C2.
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Proof : Let C1 < α < C2, then α is not a regular point since D is an ASSP. Hence from

Lemma 3.3.4, D = Dα is the ASSP with u0(C1) = u0(C2) = p. Suppose they are not of

same parity. For simplicity we assume that there exists C1 < θ1 < θ2 < C2 such that

u0 is non decreasing continuous function in (C1, θ1) and u0 is non increasing continuous

function in (θ2, C2). Let T > 0 be such that for all t > T, r1(t) < x < R−(t, α) < ξ < r2(t),

R−(t, θ1) = R+(t, θ2) = R−(t, α) (3.3.66)

C1 ≤ y−(x, t) ≤ y+(x, t) < θ1 < θ2 < y−(ξ, t) ≤ y+(ξ, t) ≤ C2. (3.3.67)

By choosing θ1 close to C1 and θ2 close to C2, we can assume that u0 is continuous in

[C1, θ1] ∪ [θ2, C2]. Hence from (3.2.14), for a.e. x and ξ

u(x, t) = u0(y+(x, t)), u(ξ, t) = u0(y+(ξ, t)). (3.3.68)

Therefore

p = u0(C1) ≤ u0(y+(x, t)) = u(x, t) (3.3.69)

p = u0(C2) ≤ u0(y+(ξ, t)) = u(ξ, t). (3.3.70)

Claim : For a.e. x ∈ (r1(t), R−(t, α)), a.e. ξ ∈ (R−(t, α), r2(t))

u(x, t) = u(ξ, t) = p

does not hold.

Suppose not, then choose a sequence xk ↑ R−(t, α), ξk ↓ R−(t, α) such that f ′(p) =

f ′(u(xk, t)) = xk−y+(xk,t)
t

and f ′(p) = f ′(u(ξk, t)) = ξk−y−(xk,t)
t

. Then from (3.3.2) and

(3.3.3)

f ′(p) = lim
xk↑R−(t,α)

xk − y+(xk, t)

t

=
R−(t, α)− y−(R−(t, α), t)

t

f ′(p) = lim
ξk↓R−(t,α)

ξk − y−(ξk, t)

t

=
R−(t, α)− y+(R−(t, α), t)

t
.

Comparing both the expression and from (3.3.67) we have y−(R−(t, α), t) =

y+(R−(t, α), t) and y−(R−(t, α), t) < θ1 < θ2 < y+(R−(t, α), t) which is a contradiction.

This proves the claim.
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From (3.3.30),(3.3.69),(3.3.70) and the claim we have

p(C2 − C1) =

r2(t)
∫

r1(t)

u(x, t)dx =

R−(t,α)
∫

r1(t)

u(x, t)dx+

r2(t)
∫

R−(t,α)

u(x, t)dx

> p(r2(t)− r1(t))

= p(C2 − C1)

which is a contradiction.

Similar proof follows if u0 is non increasing continuous function in (C1, θ1) and non

decreasing continuous function in (θ2, C2). Next assume that u0 is non increasing contin-

uous function in (C1, θ1)∪ (θ2, C2). Choose T > 0 such that (3.3.66), (3.3.67) and (3.3.68)

hold for all t > T . Therefore for a.e r1(t) < x < R−(t, α) < ξ < r2(t),

f ′(u0(y+(x, t))) ≤ f ′(u0(C1)) = f ′(p)

f ′(u0(y−(ξ, t))) ≥ f ′(u0(C2)) = f ′(p).

Therefore

R−(t, α)− y−(R−(t, α), t)

t
= lim

x↑R−(t,α)

x− y+(x, t)

t

= lim
x↑R−(t,α)

f ′(u(x, t))

= lim
x↑R−(t,α)

f ′(u0(y+(x, t)))

≤ f ′(p).

Hence R−(t, α) ≤ y−(R−(t, α), α) + tf ′(p). Similarly we get R−(t, α) ≥ y+(R−(t, α), α)

+tf ′(p) and hence θ2 ≤ y+(R−(t, α), α) ≤ y−(R−(t, α), α) ≤ θ1, which is a contradiction.

This proves the Lemma.

Existence of u0 ∈ C∞
c for which the solution of (3.1.2) admits infinitely many

ASSP : Let u0 ∈ C∞
c (R) and u be the solution of (3.1.2) with initial data u0. First

observe that if an ASSP exists, then u0 necessarily satisfies the compatibility conditions

(3.3.29), (3.3.30) and having the same parity at the end points. Hence we look for data

satisfying these conditions.

First we construct a solution having single ASSP. From this we construct a data

having infinitely many ASSP.

Let A1 < α1 < α2 < A2 and u0 ∈ C∞
c (R) such that

1. Support of u0 ⊂ [A1, A2].

2.
A2
∫

A1

u0(x)dx = 0.
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3. 0 < u(α1) = maxu, 0 > u(α2) = min u,

and u0 is strictly increasing in (A1, α1)∪ (α2, A2) and strictly decreasing in (α1, α2), then

Lemma 3.3.9. Assume that f(0) = f ′(0) = 0 and u be the solution of (3.1.2) with

initial data u0. Then u admits a single ASSP in D = (A1, A2)× (0,∞) and satisfies for

all x 6∈ (A1, A2), t > 0

u(x, t) = u(A1+, t) = u(A2−, t) = 0. (3.3.71)

Proof. Let α1 < β < α2 be such that u0(β) = 0. Then u0 > 0 in (A1, β) and u0 < 0 in

(β,A2). Let

R1(t) = R−(t, α1), R2(t) = R+(t, α2),

y±(t) = y±(R1(t), t), Y±(t) = y±(R2(t), t).

Claim 1: Let t0 > 0 such that for 0 < t < t0, A1 < R1(t). Then for all z < A1 < x <

R1(t)

A1 ≤ y−(x, t) ≤ y+(x, t) ≤ α1 (3.3.72)

u(A1+, t) = u(z, t) = 0. (3.3.73)

Suppose for some x1 ∈ (A1, R1(t)), y−(x1, t) < A1, then for all x < x1, y−(x, t) < A1.

Since u0 is differentiable and hence from (3.2.13) and (3.2.14) for a.e. x ∈ (A1, x1)

0 = f ′(0) = f ′(u0(y−(x, t)) = f ′(u(x, t)) =
x− y−(x, t)

t

and hence y−(x, t) < A1 < x = y−(x, t) which is a contradiction. Since y+(x, t) ≤ y−(t) ≤

α1, hence (3.3.72).

Let z0 < A1 be such that y+(z0, t) ≥ A1, then for all z ∈ (z0, A1), y+(z, t) ≥ A1. Then

from NIP, it follows that y+(z, t) ≤ y−(t) ≤ α1 and hence f ′(u0(y+(z, t))) ≥ 0. Hence

from (3.2.13) and (3.2.14), for a.e. z ∈ [z0, A1]

0 ≤ f ′(u0(y+(z, t))) = f ′(u(z, t)) =
z − y+(z, t)

t
.

Therefore A1 > z ≥ y+(z, t) ≥ A1 which is a contradiction. Hence y+(z, t) < A1 for all

z < A1 and u(z, t) = u0(y+(z, t)) = 0. Therefore u(A1−, t) = lim
z↑A1

u(z, t) = 0. Hence from

Rankine-Hugoniot condition across x = A1, 0 < t < t0 gives u(A1+, t) = 0. This proves

(3.3.73).
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Claim 2: Let t1 > 0 be such that for 0 < t < t1, R2(t) < A2, then for R2(t) < x < A2 < z

α2 ≤ y−(x, t) ≤ y+(x, t) ≤ A2 (3.3.74)

u(A2−, t) = u(z, t) = 0. (3.3.75)

Proof follows exactly as in claim 1.

Claim 3: Let t0 > 0 such that for all 0 < t < t0,

A1 < R1(t) ≤ R2(t) < A2 (3.3.76)

then

A1 < R1(t0) ≤ R2(t0) < A2. (3.3.77)

Suppose R1(t0) = A1. Then A1 = R1(t0) ≤ R2(t0) ≤ A2. At R1(t0), y+(t0) ≥ α1, hence

for R1(t0) < x, y+(x, t0) ≥ α1 and from (3.2.13) and (3.2.14) for a.e. x ∈ (R1(t0), α1), we

have

f ′(u0(y+(x, t0)) = f ′(u(x, t0)) =
x− y+(x, t0)

t0
<
α1 − α1

t0
= 0.

Therefore u0(y+(x, t0)) < 0 and hence y+(x, t0) > β. By monotonicity, for all x > R1(t0) =

A1, y+(x, t0) > β. This implies from (3.3.74), for all x ∈ (A1, A2).

β < y+(x, t0) ≤ A2.

Therefore from the hypothesis on u0 and from (3.2.14) we have for a.e. x ∈ (A1, A2)

u(x, t0) = u0(y+(x, t0)) < 0. (3.3.78)

From (3.3.73) and (3.3.75) u(A1+, t) = u(A2−, t) = 0. Therefore we have

0 =

A2
∫

A1

t0
∫

0

(ut + f(u)x)dxdt =

A2
∫

A1

u(x, t0)dx−

A2
∫

A1

u0(x)dx

=

A2
∫

A1

u(x, t0)dx < 0,

which is a cotnradiction. Similarly R2(t0) ∈ (A1, A2) and this proves the claim.

Since for t small, A1 < R1(t) < R2(t) < A2 and hence from claim (3), A1 < R1(t) ≤

R2(t) < A2 for all t > 0. Therefore from claim 1 and claim 2 A1 ≤ y±(t) ≤ A2. Hence
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from Lemma 3.3.4 there exists an ASSP D = (Ã1, Ã2, p) such that

(Ã1, Ã2) = lim
t→∞

(y−(t), y+(t))

f ′(p) = lim
t→∞

R1(t)−y−(t)
t

= 0

u0(Ã1) = u0(Ã2) = p = 0.

From Lemma 3.3.8 Ã1 and Ã2 have the same parity. Since u0 has only three zeros

{A1, β, A2} and A1 and A2 are the only pair of points having same parity. Hence Ã1 =

A1, Ã2 = A2 and this proves the Lemma.

Proof of Theorem 3.2.8

Proof. Let u0 be as in Lemma 3.3.9 with A1 = −1, A2 = 1. For n ≥ 2. define {ψ0,n, un}

as follows

ψ0,n(x) = e−nu0(2n
2(x−

1

n
)).

Then ψ0,n ∈ C∞
c (R) and support of ψ0,nis contained in ( 1

n
− 1

2n2 ,
1
n
+ 1

2n2 ) and for each k,

there exists c(k) > 0 such that

∥

∥

∥

∥

dkψ0,n

dxk

∥

∥

∥

∥

∞

≤ c(k)n2ke−n → 0 as n→ ∞. (3.3.79)

ψ0,n satisfies all the hypothesis of Lemma 3.3.9 and let un be the corresponding solution.

Define ū0 and u by

ū0(x) =

{

ψ0,n(x) if x ∈ ( 1
n
− 1

2n2 ,
1
n
+ 1

2n2 ),

0 otherwise.
(3.3.80)

u(x, t) =

{

un(x, t) if x ∈ ( 1
n
− 1

2n2 ,
1
n
+ 1

2n2 ),

0 otherwise,
(3.3.81)

then from (3.3.71) , u is a solution of (3.1.2) with initial condition ū0. From (3.3.79),

ū0 ∈ C∞
c (R) and u is an ASSP in

(

1
n
− 1

2n2 ,
1
n
+ 1

2n2

)

for all n ≥ 2. This proves the

theorem.

Example 3.3.10. (See Figure 3.5) Next we construct an ASSP which contains infinitely

many shocks. Let f(u) = u2

2
and 0 = x0 < x1 < x2 < . . . < 1 and 0 = t0 < t1 < t2 . . . <∞

be such that

lim
n→∞

xn = 1, lim
n→∞

xn
tn

= 0.
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t3

t2

t1

1−1 −x1 x0 x1
x2 3x

a0 b0
a1 b1

a b2−x−x 2
3 2

Fig. 3.5:

Define for n ≥ 1, an, bn, ln,mn, ãn, b̃n, l̃n, m̃n as follows:

f ′(an) = −f ′(ãn) =
−xn−1

tn

f ′(bn) = −f ′(b̃n) =
−xn
tn

ln(t) = −l̃n(t) = xn−1 + tf ′(an)

mn(t) = −m̃n(t) = xn + tf ′(bn).

sn(t) = (t− tn)
f(an)− f(bn)

an − bi
s̃n(t) = −sn(t)

−α̃n = αn = sn(0).

Since xn−1 < xn and hence f ′(an) = −xn−1

tn
> −xn

tn
= f ′(bn), therefore bn < an and

f ′(bn) <
f(an)− f(bn)

an − bn
< f ′(an),

xn−1 = −tnf
′(an) < −tn

f(an)− f(bn)

an − bn
< −tnf

′(bn) = xn,

ln(0) < sn(0) < mn(0).
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Define u+(x, t) for x > 0, t > 0 by

u+(x, t) =























an if 0 < t < tn, ln(t) < x < sn(t),

bn if 0 < t < tn, sn(t) < x < mn(t),

(f ′)−1
(

x−xn+1

t

)

if 0 < t < tn,mn(t) < x < ln+1(t),

0 otherwise,

and u and u0 by

u(x, t) =

{

u+(x, t) if x > 0, t > 0,

−u+(−x, t) if x < 0, t > 0,

u0(x) = u(x, 0).

On the line x = 0, u(0+, t) = −u(0− t) and hence 1
2
(u(0+, t)+u(0−, t)) = 0. This implies

that u satisfies RH condition across x = 0 and hence u is the solution of (1.2) with initial

data u0. Furthermore u = 0 for |x| ≥ 1 and D = (−1, 1) ∪ (0,∞) is an ASSP and each

line sn(t) and s̃n(t) for 0 < t < tn is a shock curve.

Remark 3.3.1. In Lemma 3.3.9, one can relax the conditions on u0 as follows

Let u0 be a bounded measurable function with support of u0 is in [A1, A2]. Let

z(u0) = {x ∈ [A1, A2] : u0(x) = 0}

be its zero set and satisfies the following conditions

(1). u0 is monotone in a neighbourhood of z(u0).

(2).
A2
∫

A1

u0(x)dx = 0 and whenever α < β, α, β ∈ z(u0),
β
∫

α

u0(x)dx = 0, then α = A1, β =

A2.

(3). u0 is a non decreasing continuous function in a neighbourhood of A1, A2, then

Lemma 3.3.11. Let u0 satisfies the above conditions and u be the solution of (3.1.2)

with initial data u0. Then D = (A1, A2)× (0,∞) is the only ASSP for u and u(x, t) = 0

for x /∈ (A1, A2).

Proof follows exactly as in Lemma 3.3.9.

Remark 3.3.2. In Theorem 3.2.7, the decay estimates (3.2.29) and (3.2.30) are obtained

under the assumption f(u) = |u|p for 1 < p < 2, by Liu-Pierre [52] and generalised by

Kim [44] when u− = u+ = 0.
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Chapter 4

Exact controllability of scalar

conservation laws with strict

convex flux

4.1 Introduction:

In this chapter we consider the following scalar conservation law in one space dimension.

Let f : R → R be a strictly convex C1 function satisfying the super linear growth,

lim
|u|→∞

f(u)

|u|
= ∞. (4.1.1)

Let T > 0, 0 ≤ δ < T, A < B, I = (A,B), Ω = I × (δ, T ), u0 ∈ L∞(I), b0, b1 ∈

L∞((0, T )) and consider the problem

ut + f(u)x = 0 (x, t) ∈ Ω, (4.1.2)

u(x, δ) = u0(x) x ∈ I, (4.1.3)

u(A, t) = b0(t) t ∈ (δ, T ), (4.1.4)

u(B, t) = b1(t) t ∈ (δ, T ). (4.1.5)

This problem has been well studied over the last several decades starting from the pi-

oneering works of Lax-Oleinik [31], Kruzkov [46], Bardaux-Leraux-Nedeleck [13]. They

have studied the existence and uniqueness of weak solutions to (4.1.2)-(4.1.5) satisfying

the entropy condition. In spite of being well studied, still there are problems which are

open. Notably among them are

1. Profile of a solution, for example how many shocks can a solution exhibit and the

nature of the shocks.

2. Optimal controllability for initial and initial-boundary value problem.

3. Exact controllability of initial and initial-boundary value problem.
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Problems (1) and (2) have been dealt in [4] and [3] respectively. In this chapter we

investigate problem (3) for the entropy solution of (4.1.2). Through out the chapter solu-

tion of (4.1.2) always means a weak solution satisfying the entropy condition. The basic

ingredient in studying all these problems comes from the analysis of characteristic curves

R±. Originally this was introduced by Hopf [33] and later by Dafermos [25], who studied

them quite extensively to obtain information on the nature of solutions. Independently

this was used in [6] to obtain the explicit formula for solution of discontinuous flux.

The plan of the chapter is as follows:

In section (4.1) we state the main results. In section (4.2) we prove these results assuming

four Lemmas without proof. The First two Lemmas deals with the backward construction

which will be proved in section (4.3). The remaining two Lemmas deals with free regions.

In order to prove these Lemmas, one has to study the finer properties of the generalized

characterictics namely

(i). Comparison properties with respect to the initial data.

(ii). Failure of the continuity with respect to the initial data.

(iii). Behavior of the characteristics when one side of the initial data is large.

This has been carried out in section (4.4). Main tool to study all these properties are the

Hopf [33], Lax-Oleinik [31] explicit formulas and we recall them without proof.

Main results, Exact Controllability: Normally for the non linear evolution equations,

technique of linearization is adopted to study controllability problems. Unfortunately this

method does not work (see Horsin [39]) and very few results are available on this subject.

Here we consider the following three problems of controllability. Let u0 ∈ L∞(R) and

(I) Controllability for pure initial value problem: Assume that I = R,Ω =

R × (0, T ). Let J1 = (C1, C2), J2 = (B1, B2), g ∈ L∞(J1), a target be given. The

question is, does there exist a ū0 ∈ L∞(J2) and u in L∞(Ω) such that u is a solution

of (4.1.2) satisfying

u(x, T ) = g(x) x ∈ J1, (4.1.6)

u(x, 0) =

{

u0(x) if x 6∈ J2,

ū0(x) if x ∈ J2.
(4.1.7)

(II) Controllability for one sided initial boundary value problem: Assume that

I = (0,∞), Ω = R× (0, T ), J = (0, C) and a target function g ∈ L∞(J) be given.

The question is, does there exist a u ∈ L∞(Ω) and b ∈ L∞((0, T )) such that u is a

82



solution of (4.1.2) satisfying

u(x, T ) = g(x) if x ∈ J, (4.1.8)

u(x, 0) = u0(x) if x ∈ (0,∞), (4.1.9)

u(0, t) = b(t) if t ∈ (0, T ). (4.1.10)

(III) Controllability from two sided initial boundary value problem:

(a). Let Ω = R× (0, T ), I1 = (B1, B2) , B1 ≤ C ≤ B2. Given the target functions

g1 ∈ L∞(B1, C), g2 ∈ L∞(C,B2), does there exist a ū0 ∈ L∞(R\I1) and u ∈ L∞(Ω)

such that u is a solution of (4.1.2) satisfying

u(x, T ) =

{

g1(x) if B1 < x < C,

g2(x) if C < x < B2.
(4.1.11)

and

u(x, 0) =

{

u0(x) if B1 < x < B2,

ū0(x) if x < B1 or x > B2.
(4.1.12)

(b). Here we consider controllability in a strip. Let I = (B1, B2), Ω = I ×

(0, T ), B1 < C < B2. Let g1 ∈ L∞((B1, C)), g2 ∈ L∞((C,B2)) be given. Then the

question is, does there exist b0, b1 ∈ L∞((0, T )) and a u ∈ L∞(Ω) such that u is a

solution of (4.1.2) and satisfying

u(x, 0) = u0(x), (4.1.13)

u(x, T ) =

{

g1(x) if B1 < x < C,

g2(x) if C < x < B2.
(4.1.14)

u(B1, t) = b0(t), (4.1.15)

u(B2, t) = b1(t). (4.1.16)

In view of the Lax-Oleinik (Chapter (3) of [31]) explicit formula for solutions of pure

initial value problem and by Joseph-Gowda [40] for initial boundary value problem,

the targets g or g1, g2 cannot be arbitrary. They must satisfy the compatibility

condition, for example in the case of problem (I), there exists a non-decreasing

function ρ in (C1, C2) such that for a.e x ∈ (C1, C2)

f ′(g(x)) =
x− ρ(x)

T
. (4.1.17)

In the case of problem (II), there exists a non-decreasing function ρ in (0, C) such
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that

f ′(g(x)) =
x

T − ρ(x)
. (4.1.18)

Assuming that the target functions satisfy the compatibility conditions, then the question

is

whether the problems (I),(II) and (III) admit a solution? In fact, it is

true and we have the following results. First we describe the class of functions satisfying

compatibility conditions.

Definition (Admissible functions): Let J = (M,N) and T > 0,

S(J) = {ρ : J → R : ρ is monotone and left or right condinuous function}.

Then define admissible class of target functions by

(i) Target space for initial value problem (IA):

IA(J) = {g ∈ L∞(J) : f
′

(g(x)) =
x− ρ(x)

T
, ρ ∈ S(J),

ρ is a non-decreasing funtion }. (4.1.19)

(ii) Target space for left boundary problem (LA):

LA(J) = {g ∈ L∞(J) : f
′

(g(x)) =
x−M

T − ρ(x)
, ρ ∈ S(J),

ρ is a non-increasing right continuous function}. (4.1.20)

(iii) Target space for right boundary problem (RA):

RA(J) = {g ∈ L∞(J) : f
′

(g(x)) =
x−N

T − ρ(x)
, ρ ∈ S(J),

ρ is a non-decreasing left continuous function}.(4.1.21)

Theorem 4.1.1. Let J1 = (C1, C2), J2 = (B1, B2). Let g(x) = (f ′)−1

(

x− ρ(x)

T

)

be in

IA(J1) and B1 < A1 < A2 < B2, satisfying

A1 ≤ ρ(x) ≤ A2 if x ∈ J1, (4.1.22)

then there exists a ū0 ∈ L∞(J2), u ∈ L∞(Ω) such that (u, ū0) is a solution to problem (I)

(see Figure 4.1).

Theorem 4.1.2. Let ∧ > 0, C > 0, δ > 0, J = (0, C). Let g ∈ LA(J) given by f
′

(g(x)) =
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(A1,0)

(C1,T) (C2,T)x

u(x,t)=?

u0(x)=?

u(x,t)=?

u(x,t)=?

(A2,0)

f (g(x))= (x)ρx−
T

(x)ρ(B1,0)u0(x) u0(x)(B2,0)

Fig. 4.1:

x

T − ρ(x)
for x ∈ J and satisfying

δ ≤ ρ(x) ≤ T, (4.1.23)

∣

∣

∣

∣

x

T − ρ(x)

∣

∣

∣

∣

≤ ∧. (4.1.24)

Then there exist a b ∈ L∞(0, T ), u ∈ L∞(Ω) such that (u, b) is a solution to Problem II

(see Figure 4.2).

b(t)=?

(0,T)
x

u(x,t)=?

(0,0)

(0, δ)

(x)ρ

=(g(x))f (C,T)

u0(x)

u(x,t)=?

T−ρ (  x)
x

Fig. 4.2:

Theorem 4.1.3. Let I1 = (B1, B2), B1 < C < B2, J1 = (B1, C), J2 = (C,B2), then
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(a). Let A1 < B1 < B2 < A2 and g1 ∈ IA(J1), g2 ∈ IA(J2) given by f
′

(g1(x)) =
x−ρ1(x)

T
, f

′

(g2(x)) =
x−ρ2(x)

T
, satisfying

ρ1(x) ≤ A1 if x ∈ J1, (4.1.25)

ρ2(x) ≥ A2 if x ∈ J2. (4.1.26)

Then there exists ū0 ∈ L∞((R \ I1)), u ∈ L∞(Ω) such that (u, ū0) is a solution to problem

(a) of III (see Figure 4.3).

u(x,t)=?
u(x,t)=?

u(x,t)=?

u0(x)

u0(x)=?

(B2,T)(B1,T)

x x

(x) (x)ρ ρ

u0(x)=?
1 2

(A1,0) (B1,0) (B2,0) (A2,0)

(C,T)
t=T

f (g (x))=
1

x−    (x)ρ
1

T
f (g (x))=

x−    (x)ρ
2

T2

Fig. 4.3:

x

(B1,T) (B2,T)

(B1,   ) (B2,   )

u=?
b2(t)=?

b1(t)=?

(x) (x)

f (g(x))= 1 f (g (x))= 2

δ δ

ρρ

1

2

u0(x)

1

1

x−Bx−B

x
(C,T)

(B1,0) (B2,0)

2
ρρT−   (x) T−  (x)

Fig. 4.4:

(b). Let ∧ > 0, 0 < δ < T, g1 ∈ LA(J1), g2 ∈ RA(J2), given by f
′

(g1(x)) =
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x−B1

T−ρ1(x)
,f

′

(g2(x)) =
x−B2

T−ρ2(x)
satisfying for i = 1, 2, x ∈ Ji

δ ≤ ρi(x) ≤ T, (4.1.27)
∣

∣

∣

∣

x− Bi

T − ρi(x)

∣

∣

∣

∣

≤ ∧. (4.1.28)

Then there exists b0, b1 ∈ L∞((0, T )) and u ∈ L∞(Ω) such that (u, b0, b1) is a solution to

problem (b) of III (see Figure 4.4).

Before going for further results, let us recall some of the earlier works in this direction

and compare them with these results.

Problem (a) in III was considered by Horsin [39] for the Burger’s equation under

similar assumptions on g1 and g2 as in (a) of Theorem 4.1.3. He proves that given

any T > 2 there exists a Tc ≥ T, such that (a) of problem III has an approximate

controllability solution. That is given ǫ > 0, there exist (u, ū0) such that

B2
∫

B1

|u(x, Tc)− g(x)|dx = O(ǫ),

and u(x, Tc) = g(x) = χ(B1,C)(x)g1(x) + χ(C,B2)(x)g2(x), outside an interval of length ǫ.

In the viscous case the same problem was considered by Glass-Guerrero [32] for the

control u(x, T ) = M is constant. Using the Cole-Hopf transformation, they show that

there exist T0 > 0 such that for all time T > T0 and small viscosity, they prove the exact

controllability. Also Guerrero-Imanuvilov [37] proves a negative result by showing that

M = 0 cannot be controllable.

Theorem 4.1.3 is stronger and much more precise result in the non viscous case because

(i). It removes the condition on time Tc and obtains exact controllability.

(ii). It deals with general convex flux instead of Burger’s equation.

(iii). In section (4.5) we give a criterion when the constants are controllable.

In the case of problem (II), Fabio-Ancona and Andrea-Marson [11],[12] studied the

problem from the point of view of Hamilton-Jacobi equations and studies the compactness

properties of {u(·, T )} when u(x, 0) = 0 and u(·, 0) ∈ U , here U is a set of controls

satisfying some properties.

In our results on controllability, superlinearity of f plays an important role in removing

the condition on Tc and by creating free regions (see Lemmas 4.2.3 and 4.2.4 ). Next

using convexity and backword construction, we explicitly construct solutions in these

free regions for particular data which allow to obtain solutions for control problems (see

Lemmas 4.2.1 and 4.2.2).
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Remark 4.1.1. The conditions in Theorems 4.1.1-4.1.3 are optimal. That is, in general,

we cannot take A1 = B1, A2 = B2 in Theorem 4.1.1 and δ = 0 in Theorems 4.1.2 and

4.1.3. This can be illustrated by a simple counter example (see counter example 4.4.14).

4.2 Exact controllability and main results

In this section we give the proof of Theorems 4.1.1 to 4.1.3. Basically following two main

ideas are used to prove these results

(a) Free regions : By suitable variations of parameters in the initial data, one can

obtain a sub region in Ω, where the solution is prescribed as a constant. These sub

regions are called free regions. This is achieved in Lemmas 4.4.8 and 4.4.9. For

example from (4.4.95), the region

{(x, t) : x < L1(t)} (4.2.1)

is a free region since uλ is constant.

(b) Backword construction : By using this method, one can construct a solution which

achieves the given target at any time t = T.

We use this backward construction to prove the main theorems in the free regions.

Then we glue the different solutions by using Rankine-Hugoniot condition.

We state the following Lemmas which deal with this construction.

Let u0 ∈ L∞(R), 0 ≤ δ < T,A,C ∈ R. Let l(., δ, A, C) be the line joining between

(C, T ) and (A, δ) with slope 1/f
′

(a(δ, A, C)), intersecting t = 0 axis at D(δ, A, C) and is

given by

f
′

(a(δ, A, C)) =
C − A

T − δ
, (4.2.2)

l(t, δ, A, C) = A+ f
′

(a(δ, A, C))(t− δ), (4.2.3)

D(δ, A, C) = A− δf
′

(a(δ, A, C)), (4.2.4)

= A−
δ(C − A)

T − δ
. (4.2.5)

Lemma 4.2.1. 1. Let ∧ > 0, A < C and ρ ∈ LA((A,C)) satisfying

0 ≤ δ ≤ ρ(x) ≤ T, (4.2.6)

∣

∣

∣

∣

x− A

T − ρ(x)

∣

∣

∣

∣

≤ ∧. (4.2.7)

Let Ω = (A,∞) × (δ, T ). Then there exists a b̃1(t, δ, A, C) ∈ L∞((δ, T )) and a solution
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ũ1(x, t, δ, A, C) of (4.1.2) satisfying

f
′

(ũ1(x, T, δ, A, c)) =
x− A

T − ρ(x)
, x ∈ (A,C), (4.2.8)

with initial and boundary conditions

ũ1(A, t, δ, a, C) = b̃1(t, δ, A, C), t ∈ (δ, T ), (4.2.9)

ũ1(x, t, δ, a, C) = a(δ, A, C), x > l(t, δ, A, C), (4.2.10)

ũ1(l(t, δ, A, C)−, t, δ, a, C) = a(δ, A, C). (4.2.11)

2. Let C < A and ρ ∈ RA((C,A)) satisfying (4.2.6) and (4.2.7) for x ∈ (C,A). Let Ω =

(−∞, A)×(δ, T ). Then there exist b̃2(t, δ, A, C) ∈ L∞((δ, T )) and a solution ũ2(x, t, δ, a, C)

of (4.1.2) satisfying

f
′

(ũ2(x, T, δ, A, C)) =
x− A

T − ρ(x)
, x ∈ (C,A), (4.2.12)

with initial and boundary conditions

ũ2(A, t, δ, A, C) = b̃2(t, δ, A, C), t ∈ (δ, T ), (4.2.13)

ũ2(x, t, δ, A, C) = a(δ, a, C), x < l(t, δ, A, C), (4.2.14)

ũ2(l(t, δ, A, C)+, t, δ, A, C) = a(δ, A, C), t ∈ (δ, T ). (4.2.15)

Lemma 4.2.2. Let A1 < A2, C1 < C2, ρ ∈ IA((C1, C2)) such that for all x ∈ (C1, C2),

A1 ≤ ρ(x) ≤ A2. (4.2.16)

Let Ω = R × R+, for i = 1, 2, li(t) = l(t, 0, Ai, Ci), ai = ai(0, Ai, Ci), then there exist

ũ0 ∈ L∞((A1, A2)) and a solution ũ of (4.1.2) such that for 0 < t < T,

f
′

(ũ(x, T )) =
x− ρ(x)

T
, for x ∈ (C1, C2), (4.2.17)

ũ(l1(t)+, t) = a1, (4.2.18)

ũ(l2(t)−, t) = a2, (4.2.19)

with initial conditions

ũ(x, 0) =











a1 if x < A1,

ũ0(x) if A1 < x < A2,

a2 if x > A2.

(4.2.20)
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Let T > 0, µ, λ ∈ R, A < B, l1(t) = l(t, 0, A, C), l2(t) = l(t, 0, B, C), a1 = a1(0, A

, C), a2 = a2(0, B, C). Define u
λ
0 and uµ0 by

uλ0(x) =











a1 if x < A,

λ if A < x < B,

u0(x) if x > B

(4.2.21)

and

uµ0(x) =











a2 if x > B,

µ if A < x < B,

u0(x) if x < A.

(4.2.22)

Let uλ(x, t) and uµ(x, t) be the solutions of (4.1.2) with initial data uλ0 and u
µ
0 respectively.

Then we have the following

Lemma 4.2.3. There exists µ0 < λ0 such that for all µ ≤ µ0, λ ≥ λ0, 0 < t < T, x ∈

R, uλ and uµ satisfy

uλ(x, t) = a1, if x < l1(t), uλ(l1(t)+, t) = a1 (4.2.23)

uµ(x, t) = a2, if x > l2(t), uµ(l2(t)−, t) = a2. (4.2.24)

Let δ > 0, T > 0, B1 ≤ B2, l1(t) = l(t, δ, B1, C), l2(t) = l(t, δ, B2, C), A1 = l1(0) <

B1, A2 = l2(0) > B2, a1 = a(δ, B1, C), a2 = a(δ, B2, C). For λ, µ ∈ R, define uλ,µ0 by

uλ,µ0 (x) =































a1 if x < A1,

λ if A1 < x < B1,

u0(x) if B1 < x < B2,

µ if B2 < x < A2,

a2 if x > A2

(4.2.25)

and uλ,µ be the solution of (4.1.2) with initial data uλ,µ0 .

Then we have the following

Lemma 4.2.4. Given any λ0, µ0, there exist λ2 ≥ λ0, µ2 ≤ µ0 such that for 0 ≤ t ≤

T, uλ2,µ2 satisfies

uλ2,µ2(x, t) =

{

a1 if x < l1(t),

a2 if x > l2(t),
(4.2.26)

uλ2,µ2(l1(t)+, t) = a1, uλ2,µ2(l2(t)−, t) = a2. (4.2.27)
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Proof of Theorem 4.1.1 Let Ω = R× (0, T ), Ai, Bi, Ci, g and ρ be as in Theorem 4.1.1

Let

f ′(a1) =
C1 − A1

T
, f ′(a2) =

C2 − A2

T
, l1(t) = A1 + tf ′(a1), l2(t) = A2 + tf ′(a2).

Then from Lemma 4.2.3 choose λ, µ and solutions uλ and uµ of (4.1.2) such that

uλ(x, t) = a2 if x < l2(t), uλ(l2(t)+, t) = a2 (4.2.28)

uµ(x, t) = a1 if x > l1(t), uµ(l1(t)−, t) = a1 (4.2.29)

with

uλ(x, 0) =











a2 if x < A2,

λ if A2 < x < B2,

u0(x) if x > B2

(4.2.30)

and

uµ(x, 0) =











a1 if x > A1,

µ if B1 < x < A1,

u0(x) if x < B1

(4.2.31)

From (4.1.22) and Lemma 4.2.1 there exist a solution u1 of (4.1.2) and ũ0 ∈ L∞(A1,

A2) satisfying

u1(x, T ) = g(x), if x ∈ (C1, C2) (4.2.32)

u1(x, 0) =











a1 if x < A1,

ū0(x) if A1 < x < A2,

a2 if x > A2,

(4.2.33)

and

u1(x, t) =

{

a1 if x < l1(t),

a2 if x > l2(t).
(4.2.34)

u1(l1(t)+, t) = a1, u1(l2(t)−, t) = a2. (4.2.35)

Let

ū0(x) =























u0(x) if x /∈ (B1, B2)

λ if A2 < x < B2

ũ0(x) if A1 < x < A2

µ if B1 < x < A1.
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From (4.2.28), (4.2.29) , (4.2.34) and RH condition, glue uλ, uµ, u1 to form a single

solution u of (1.2) for 0 < t < T by

u(x, t) =











uµ(x, t) if x < l1(t),

u1(x, t) if l1(t) < x < l2(t),

uλ(x, t) if l2(t) < x.

(4.2.36)

Then from (4.2.30), (4.2.31) and (4.2.33), (u, ū0) is the required solution. This proves the

Theorem.

Proof of Theorem 4.1.2 Let f ′(a) = C
T−δ

and l(t) be the line joining (C, T ) and (0, δ)

given by l(t) = (t− δ)f ′(a). Let A = l(0) = −δf ′(a) < 0. From Lemma 4.2.3 by choosing

λ large, we can find a solution uλ of (4.1.2) in Ω = R× (0, T ) satisfying

uλ(x, 0) =











a if x < A,

λ if A < x < 0,

u0(x) if x > 0.

(4.2.37)

uλ(x, t) = a if x < l(t), (4.2.38)

uλ(l(t)+, t) = a. (4.2.39)

From (4.1.23) , (4.1.24) and (1) of Lemma 4.2.1, choose a solution u1 of (4.1.2) and

b1 ∈ L∞(δ, T ) such that

u1(x, T ) = g(x) (4.2.40)

u1(0, t) = b1(t) if δ < t < T, (4.2.41)

u1(x, t) = a if x > l(t), t > δ, (4.2.42)

u1(l(t)−, t) = a if t > δ. (4.2.43)

From (4.2.39), (4.2.43) and RH conditions we glue the solutions uλ and u1 to obtain a

solution u of (4.1.2) by

u(x, t) =

{

uλ(x, t) if x > l(t), 0 < t < T,

u1(x, t) if 0 < x < l(t), δ < t < T.
(4.2.44)

Define b ∈ L∞(0, T ) by

b(t) =

{

uλ(0+, t) if 0 < t < δ,

b1(t) if δ < t < T.
(4.2.45)

Then from (4.2.37) , (4.2.40), (u, b) is the required solution. This proves the theorem.
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Proof of Theorem 4.1.3 Let f ′(a1) = C−A1

T
, f ′(a2) = C−A2

T
, l1(t) = A1 + tf ′(a1) =

A2 + tf ′(a2) be the respective lines joining (C, T ), (A1, 0) and (C, T ), (A2, 0).

From Lemma 4.2.4 choose (λ, µ) and a solution uλ,µ of (4.1.2) in R× (0, T ) satisfying

uλ,µ(x, t) =

{

a1 if x < l1(t),

a2 if x > l2(t),
(4.2.46)

with initial condition

uλ,µ(x, 0) =































a1 if x < A1,

λ if A1 < x < B1,

u0(x) if B1 < x < B2,

µ if B2 < x < A2,

a2 if x > A2.

(4.2.47)

(a). Since gi is a non decreasing function for i = 1, 2 satisfying (4.1.23) , (4.1.26) and

hence

D1 = ρ1(B1) ≤ A1, A2 ≤ ρ2(B2) = D2.

Let ηi be the line joining (Bi, T ) and (Di, 0) with f
′(mi) =

Bi−Di

T
for i = 1, 2. Then

from Lemma 4.2.2, there exist solutions ui of (4.1.2) in R× (0, T ) with initial condition

ui0 ∈ L∞(Di, Ai) for i = 1, 2 such that

u1(x, T ) = g1(x, T ) if x ∈ (B1, C), (4.2.48)

u2(x, T ) = g2(x, T ) if x ∈ (C,B2), (4.2.49)

u1(x, t) = m1 if x < η1(t), (4.2.50)

u1(l1(t)−, t) = u1(l1(t)+, t) = a1, (4.2.51)

u2(x, t) = m2 if x > η2(t), (4.2.52)

u2(l2(t)−, t) = u2(l2(t)+, t) = a2, (4.2.53)

and

u1(x, 0) =











m1 if x < D1,

u10(x) if D1 < x < A1,

a1 if x > A1.

(4.2.54)

u2(x, 0) =











m2 if x > D2,

u20(x) if A2 < x < D2,

a2 if x < A2.

(4.2.55)
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From (4.2.46) , (4.2.47) ,(4.2.51), (4.2.53) and from RH conditions, we can glue u1, u2, uλ,µ

to a solution u of (4.1.2) with initial data u(x, 0) given by

u(x, t) =











u1(x, t) if x < l1(t),

uλ,µ(x, t) if l1(t) < x < l2(t),

u2(x, t) if x > l2(t),

(4.2.56)

u(x, 0) =



















































m1 if x < D1,

u10(x) if D1 < x < A1,

λ if A1 < x < B1,

u0(x) if B1 < x < B2,

µ if B2 < x < A2,

u20(x) if A2 < x < D2,

m2 if x > D2.

Define ū0 by

ū0(x) =











































m1 if x < D1,

u10(x) if D1 < x < A1,

λ if A1 < x < B1,

µ if B2 < x < A2,

u20(x) if A2 < x < D2,

m2 if x > D2.

(4.2.57)

From (4.2.52) , (4.2.53) u satisfies

u(x, T ) =

{

g1(x) if B1 < x < C,

g2(x) if C < x < B2,
(4.2.58)

and (u, ū0) is the required solution. This proves (a).

(b). Given δ > 0 choose A1 < B1 < B2 < A2 such that max(l1(B1), l2(B2)) = δ and uλ,µ

be the solution of (4.1.2) as in (4.2.46). From (4.1.27),(4.1.28) and from Lemma 4.2.1,

there exist solutions u1 of (4.1.2) in (B1,∞)× (δ, T ) and boundary data b̃1, u2 of (4.1.2)

in (−∞, B2)× (δ, T ) and boundary data b̃2 such that

u1(x, T ) = g1(x) if x ∈ (B1, C),

u2(x, T ) = g2(x) if x ∈ (C,B2),
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and for δ < t < T,

u1(B1, t) = b̃1(t), u1(l1(t)−, t) = a1,

u2(B2, t) = b̃2(t), u2(l2(t)+, t) = a2.

Then from RH condition glue u1, u2, uλ,µ in Ω = (B1, B2)× (0, T ) by

u(x, t) =











u1(x, t) if 0 < t < δ,B1 < l1(x) < t,

u2(x, t) if 0 < t < δ, t < l1(x) < B2,

uλ,µ(x, t) otherwise.

Then u is a solution of (4.1.2) satisfying the boundary conditions (b1, b2) given by

b1(t) =

{

b̃1(t) if δ < t < T,

uλ,µ(B1+, t) if 0 < t < δ,

b2(t) =

{

b̃2(t) if δ < t < T,

uλ,µ(B2−, t) if 0 < t < δ.

Then (u, b1, b2) is the solution for problem (4.1.3). This proves the Theorem.

4.3 Proof of Lemmas :

Initial Value problem partitions: (See Figure 4.5) Let 0 ≤ δ < T, I = (A1, A2),

J = (C1, C2). Let P = {y0, y1 . . . yn, x0, x1 . . . xn} be a partition of (I, J) if

A1 = y0 < y1 < . . . < yn = A2, C1 = x0 ≤ x1 ≤ . . . ≤ xn = C2.

Let P (I, J) = {P : P is a partition of (I, J)}. For a partition P denote ai(P ), si(P ),

bi(P ), ai(t, P ), si(t, P ), bi(t, P ) by

f
′

(ai(p)) =
xi − yi
T − δ

,

f
′

(bi(P )) =
xi − yi+1

T − δ
,

si(P ) =
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
,

ai(t, P ) = xi + f
′

(ai(P ))(t− T ),

bi(t, P ) = xi + f
′

(bi(P ))(t− T ),

si(t, P ) = xi + si(P )(t− T ).
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Clearly ai(δ, P ) = yi, bi(δ, P ) = yi+1.

x1 xi xi+1 xn=C2

A1=y0 y1
yi

s i
(t

,P
)

a i(
t,
P

)

b
i(t
,P

)

a i+
1
(t

,P
)

yn= A2

ai(P) bi(p)

(P)α
t= δ

i

C1=x0 t=T

y i+1

Fig. 4.5:

Lemma 4.3.1. Let αi(P ) = si(δ, P ), then for δ ≤ t ≤ T,

bi(P ) < ai(p), bi(P ) ≤ ai+1(P ), (4.3.1)

yi < αi(P ) < yi+1, (4.3.2)

ai(t, P ) < si(t, P ) < bi(t, P ) for δ < t < T. (4.3.3)

Proof. Since yi < yi+1, hence

f
′

(ai(P )) =
xi − yi
T − δ

>
xi − yi+1

T − δ
= f

′

(bi(P )),

therefore ai(P ) > bi(P ). By convexity of f

f
′

(ai(p)) >
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
> f

′

(bi(P )),

xi − yi
T − δ

>
xi − αi(P )

T − δ
>
xi − yi+1

t− δ
,

and hence yi < αi(P ) < yi+1. Since xi ≤ xi+1 and hence f
′

(bi(P )) =
xi−yi+1

T−δ
≤ xi+1−yi+1

T−δ
=

f
′

(ai+1(P )). This implies bi(P ) ≤ ai+1(P ). This proves (4.3.1) to (4.3.3) and hence the

Lemma.

Let Ωi(P ) = {(x, t) : δ < t < T, ai(t, P ) < x < ai+1(t, P )}. In view of Lemma 4.3.1,
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let ui(x, t, P ) be a solution of (4.1.2) in Ωi(P ) defined by

ui(x, t, P ) =











ai(P ) if ai(t, P ) < x < si(t, P ),

bi(P ) if si(t, P ) < x < bi(t, P ),

(f
′

)−1
(x−yi+1

t−δ

)

if bi(t, P ) ≤ x < ai+1(t, P ).

(4.3.4)

Hence ui(ai+1(t, P )−, t, P ) = ai+1(P ) = ui+1(ai+1(t, P )+, t, P ). Therefore define the so-

lution u(x, t, P ) of (4.1.2) in R× (δ, T ) by

u(x, t, P ) =











ui(x, t, P ) if (x, t) ∈ Ωi(P ),

a0(P ) if x < a0(t, P ),

an(P ) if x > an(t, P ),

(4.3.5)

satisfying the initial condition

u(x, δ, P ) =











u0(x, P ) if x ∈ (A1, A2),

a0(P ) if x < A1,

an(P ) if x > A2,

(4.3.6)

where u0 is given by

u0(x, P ) =

{

ai(P ) if yi < x < αi(P ),

bi(P ) if αi(P ) < x < yi+1.
(4.3.7)

Furthermore at t = T, x ∈ (C1, C2), u satisfies

f ′(u(x, T, P )) =
n−1
∑

i=0

χ[xi,xi+1)(x)

(

x− yi+1

T − δ

)

. (4.3.8)

Next we calculate the L∞ and TV bounds of u0. First observe that f ′(a0(P )) =
C1−A1

T−δ

and f ′(an(P )) =
C2−A2

T−δ
, hence a0(P ), an(P ), are independent of P and denote

a0 = a0(P ), an = an(P ),

a0(t) = a0(t, P ), an(t) = an(t, P ).

Let M = max(C2,A2)−min(C1,A1)
T−δ

, then |f ′(ai(P )| ≤
∣

∣

xi−yi
T−δ

∣

∣ ≤M, |f ′(bi(P ))| ≤M and hence

|f ′(u0(x, p))| ≤M (4.3.9)
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TV (f
′

(u0(·, P )) =
n
∑

i=0

|f
′

(ai(P ))− f
′

(bi(P ))|

= +
n−1
∑

i=0

∣

∣f
′

(bi(P ))− f
′

(ai+1(P ))
∣

∣

=
n
∑

i=0

∣

∣

xi−yi
T−δ

− xi−yi+1

T−δ

∣

∣+
n−1
∑

i=0

∣

∣

xi−yi+1

T−δ
− xi+1−yi+1

T−δ

∣

∣

= 1
T−δ

(A2 − A1) +
1

T−δ
(C2 − C1).

(4.3.10)

Since |f ′(θ)| → ∞ as |θ| → ∞ and hence we have

Lemma 4.3.2. There exists a constant M1 independent of P such that

‖u0(·, P )‖∞ + TV (f ′(u0(·, P )) ≤M1. (4.3.11)

A=x0
x1 xi

x2 xi+1 xn=C
t=T

t=

T=t0

t1

t

=tn

A

b
i
(P)

ai (P)

(P)

a i+
1
(t,

P)

s i(
t,P

)

δ
δ

α
i

a i(
t,P

)

t i+1

i+2

t i

b i(
t,P

)

Fig. 4.6:

Boundary value partition: (See Figure 4.6) Let 0 ≤ δ < T, A < C, I = (A,C), J =

(δ, T ). Let P = {t0, t1 . . . tn, x0, x1 . . . xn} is called a boundary value partition if

T = t0 > t1 > t2 . . . > tn = δ, A = x0 ≤ x1 ≤ x2 < . . . ≤ xn = C.

Let P (I, J) = {P : P is a boundary value partition of I , J}. (4.3.12)
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For a P ∈ P (I, J) denote ai(P ), si(P ), bi(P ), ai(t, P ), si(t, P ), bi(t, P ) by

f
′

(ai(P )) =
xi − A

T − ti
,

f
′

(bi(P )) =
xi − A

T − ti+1

,

si(P ) =
f(ai(P )− f(bi(P ))

ai(P )− bi(P )
,

ai(t, P ) = xi + f
′

(ai(P ))(t− T ),

bi(t, P ) = xi + f
′

(bi(P ))(t− T ),

si(t, P ) = xi + si(P )(t− T ),

Clearly ai(ti, P ) = ti, bi(ti+1, P ) = ti+1.

Lemma 4.3.3. Define αi(P )such that si(αi(P ), P ) = A. Then for t ≤ T

ai(P ) > bi(P ), ai+1(P ) ≥ bi(p), (4.3.13)

ti > αi(P ) > ti+1, ai(t, P ) ≤ si(t, P ) ≤ bi(t, P ), (4.3.14)

Proof. Since ti > ti+1, xi ≤ xi+1, hence

xi − A

T − ti
>

xi − A

T − ti+1

,
xi − A

T − ti+1

≤
xi+1 − A

T − ti+1

.

This implies (4.3.13). From strict convexity of f and (4.3.13), we have

f ′(ai(P )) >
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
> f

′

(bi(P )),

hence ti > αi(P ) > ti+1 and for all t < T, ai(t, P ) ≤ si(t, P ) ≤ bi(t, P ). This proves the

Lemma.

Let Ωi(P ) = {(x, t) : ai(t, P ) < x < ai+1(t, P ), ti+1 < t < T}. In view of Lemma 4.3.3,

let ui(x, t, P ) be a solution of (4.1.2) in Ωi(P ) defined by

ui(x, t, P ) =















ai(P ) if ai(t, P ) < x < si(t, P ),

bi(P ) if si(t, P ) < x < bi(t, P ),

(f
′

)−1
(

x−A
T−ti+1

)

if bi(t, P ) < x < ai+1(t, P ).

(4.3.15)

Then

ui+1(ai+1(t, P )+, t, P ) = ai+1(P ) = ui(ai+1(t, P )−, t, P ). (4.3.16)

Also an(P ) and an(t, P ) are independent of P and denote by an, an(t). Then from (4.3.16)

it follows that un−1(an(t)−, t, P ) = an. Therefore define the solution u(x, t, P ) of (4.1.2)
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in Ω = (A,∞)× (δ, T ) by

u(x, t, P ) =

{

ui(x, t, P ) if (x, t) ∈ Ωi(P ), 0 < i ≤ n− 1,

an if x > an(t), δ < t < T,
(4.3.17)

and u(x, t, P ) takes the boundary value b(t, P ) and initial value an given by

u(A, t, P ) = b(t, P ) =











θf if t1 < t < T,

ai(P ) if αi(P ) < t < ti,

bi(P ) if ti+1 < t < αi(P ).

(4.3.18)

u(x, δ, P ) = u0(x, P ) = an = (f )−1

(

C − A

T − δ

)

if x ∈ (A,∞). (4.3.19)

Further more at t = T, and x ∈ (A,C), u satisfies

f
′

(u(x, T, P )) =
n

∑

i=1

χ[xi,xi+1)(x)

(

x− A

T − ti

)

. (4.3.20)

Next we calculate the L∞ and TV bounds of the boundary value b(·, P ).

|f
′

(b(t, P ))| = max
1≤i≤n

(|f
′

(ai(p))|, |f
′

(bi(P ))|)

= max
1≤i≤n

(∣

∣

∣

xi−A
T−ti

∣

∣

∣
,
∣

∣

∣

xi−A
T−ti+1

∣

∣

∣

)

= max
1≤i≤n

(∣

∣

∣

xi−A
T−ti

∣

∣

∣

)

.

(4.3.21)

TV (f
′

(b(·, P )) =
n−1
∑

i=1

∣

∣f
′

(ai(P ))− f
′

(bi(P ))
∣

∣+
n−1
∑

i=0

∣

∣f
′

(bi(P ))− f
′

(ai+1(P ))
∣

∣

=
n−1
∑

i=1

∣

∣

∣

xi−A
T−ti

− xi−A
T−ti+1

∣

∣

∣
+

n−1
∑

i=1

∣

∣

∣

xi−A
T−ti+1

− xi+1−A
T−ti+1

∣

∣

∣
+
∣

∣

∣

x1−A
T−t1

∣

∣

∣

=
n−1
∑

i=1

(xi−A)(ti−ti+1)
(T−ti)(T−ti+1)

+
n−1
∑

i=1

(xi+1−xi)
(T−ti+1)

+
∣

∣

∣

x1−A
T−t1

∣

∣

∣

≤
(

T−δ
T−t1

)

max
1≤i≤n

∣

∣

∣

xi−A
T−ti

∣

∣

∣
+
(

C−A
T−t1

)

.

(4.3.22)

Analysis of Discretization and Convergence: Let ρ : [A,C] → [δ, T ] be a non

increasing right continuous function. Then it follows that {x : ρ(x) ≤ t} is a closed

interval for any t. Let 0 < ǫ < C − A, define

ρǫ(x) = min{ρ(x), ρ(A+ ǫ)}.

Then ρǫ is a non-increasing right continuous function. Let m,n be non negative integers

and let T = t0 > t1 = ρ(A + ǫ) > t2 > . . . > tn = δ be such that |ti − ti+1| ≤
1
m

for all

i ≥ 1. Let k ≤ n − 1 such that {x : ρǫ(x) ≤ tk+1} = φ, {x : ρ(x) ≤ tk} 6= φ and define
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{xi} by xi = C if i ≥ k + 1 and for 1 ≤ i ≤ k,

{x : ρε(x) > ti} = (xi, C).

Denote Pn,m,ǫ by Pm,n,ǫ = {t0, t1, . . . tn, x0, x1 . . . , xn} the partition depending on n,m and

ǫ. Associate to Pm,n,ǫ define

ρ(x, Pm,n,ǫ) =
n−1
∑

i=1

tiχ[xi−1,xi)(x) + tnχ[xn−1,xn](x). (4.3.23)

Then it follows from definition,

sup
n

|ρǫ(x)− ρ(x)| ≤ sup
A<x<ε

|ρ(x)− ρ(A+ ε)| (4.3.24)

sup
n

|ρǫ(x)− ρ(x, Pm,n,ǫ)| ≤
1

m
. (4.3.25)

Definition: Let ǫ2 < ǫ1, n2 ≥ n1. For i = 1, 2, let Pm,ni,ǫi = {t0, t1,i, . . . tni,i, x0, x1,i,

. . . xni,i} be the partitions. Then we say Pm,n2,ǫ2 dominates Pm,n1,ǫ1 and is denoted by

Pm,n2,ǫ2 ≥ Pm,n1,ǫ1 if for 1 ≤ j ≤ n1

tj,1 = tn2−n1+j,2,

xj,1 = xn2−n1+j,2.
(4.3.26)

For a partition Pm,n,ǫ, define Ω(Pm,n,ǫ) by

Ω(Pm,n,ǫ) = {(x, t) : a1(t, Pm,n,ǫ) < x, δ < t < T}. (4.3.27)

Properties of the domination: Let ǫ2 < ǫ1, n2 ≥ n1 and let for i = 1, 2, ui(x, t) =

u(x, t, Pm,ni,ǫi), bi(t) = b(t, Pm,ni,ǫi) as in (4.3.17) and (4.3.18) respectively. Let Pm,n2,ǫ2 ≥

Pm,n1,ǫ1 , then from the construction it follows

ρǫ1(x) = ρǫ2(x) if x ≥ ε1 + A, (4.3.28)

u1(x, t) = u2(x, t) if (x, t) ∈ Ω(Pm,n,ǫ1), (4.3.29)

b1(t) = b2(t) if δ < t ≤ ρ(A+ ǫ1), (4.3.30)

f
′

(ui(x, T )) =
x− A

T − ρ(x, pm,ni,ǫi)
, i = 1, 2. (4.3.31)
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T
∫

δ

|f
′

(b1(t))− f
′

(b2(t))|dt =
ρ(ǫ2+A)
∫

ρ(ǫ1+A)

|f
′

(b2(t))− f
′

(b1(t)))|dt

≤ |ρ(A+ ǫ1)− ρ(A+ ǫ2)|max
j

{∣

∣

∣

xj,2−A

T−tj,2

∣

∣

∣

}

= |ρ(A+ ǫ1)− ρ(A+ ǫ2)|max
j

{∣

∣

∣

xj,2−A

T−ρǫ2 (xj,2)

∣

∣

∣

}

.

(4.3.32)

Construction of dominations: Let ǫ2 < ǫ1 and Pm,n1,ǫ1 = {t0, t1,1, . . . tn1,1, x0, x1,1,

. . . xn1,1}. Now choose ρ(ǫ2 + A) = t1,2 > t2,2 > . . . tr2,2 = t11 = ρ(ǫ1 + A) such that

|ti,2 − ti+1,2| ≤
1
m

for 1 ≤ i ≤ r2 − 1. Let n2 = n1 + n2 and define ti,2 for i ≥ r2 by

ti,2 = ti−r2+1,1,

and {xi,2} be associated to {ti,2}. Let n2 = r2 + n1 − 1 and Pm,n2,ǫ2 = {t0, t1,2 . . . tn2,2,

x0, x1,2, . . . xn2,2}, then Pm,n2,ǫ2 ≥ Pm,n1,ǫ1 .

Let 0 < ǫi+1 < ǫi < C − A, lim
i→∞

ǫi = 0. Let m ≥ 1 and {Pm,n1,ǫ1}m be a partition

corresponding to ρǫ1 . From the above construction, extend this partition to {Pm,n2,ǫ2}m

to ρǫ2 such that Pm,n2,ǫ2 ≥ Pm,n1,ǫ1 . By induction there exist partitions {Pm,nj ,ǫj}m of ρǫj
such that

Pm,nj ,ǫj ≥ Pm,nj−1,ǫj−1
. (4.3.33)

Denote Pm,nj ,ǫj = {t0, t1,m,j, . . . tnj ,m,j, x0, x1,m,j, . . . xnj ,m,j}. Since ρǫj ≤ ρ and hence

∣

∣

∣

∣

x− A

T − ρǫj(x)

∣

∣

∣

∣

≤

∣

∣

∣

∣

x− A

T − ρ(x)

∣

∣

∣

∣

,

and ∣

∣

∣

∣

xk,m,j − A

T − tk,m,j

∣

∣

∣

∣

=

∣

∣

∣

∣

xk,m,j − A

T − ρǫj(xk,m,j)

∣

∣

∣

∣

≤ max
x

∣

∣

∣

∣

x− A

T − ρ(x)

∣

∣

∣

∣

. (4.3.34)

Assume that ρ satisfies (4.2.7). Then from (4.3.34)

max
k≤nj

{∣

∣

∣

∣

xk,m,j − A

T − tj,m,j

∣

∣

∣

∣

}

≤ ∧. (4.3.35)

For each m, j, let

um,j(x, t) = u(x, t, Pm,nj ,ǫj),

bm,j(t) = b(t, Pm,nj ,ǫj),

where u and b are given in (4.3.17) and (4.3.18) respectively. From (4.3.21), (4.3.22) and

(4.3.35) we have for all m, j
∣

∣

∣
f

′

(bm,j(t))
∣

∣

∣
≤ ∧. (4.3.36)

TV (f
′

(bm,j)) ≤

(

T − δ

T − ρ(ǫj)

)

∧+
C − A

T − ρ(ǫj + A)
. (4.3.37)
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Let j > k, then from (4.3.32)

T
∫

δ

∣

∣

∣
f

′

(bm,j(t)− f
′

(bm,k(t)
∣

∣

∣
dt ≤ ∧ |ρ(ǫj + A)− ρ(ǫk + A)| . (4.3.38)

Under the above notations we have

Proof of Lemma 4.2.1 Let ρ satisfies (4.2.7), then for ρ(ǫj +A) < T and from (4.3.36),

(4.3.37), for each j, {f ′(bm,j)}m∈N is bounded in total variation norm. Therefore from

super linearity of f, {bm,j}m∈N is uniformly bounded in L∞ for all j,m. Hence from

Helly’s theorem and Cantors diagonalization, we can extract a subsequence still denoted

by {bm,j} such that for every j, f ′(bm,j) → f ′(bj) as m → ∞ in L1 and for a.e. t. Since

(f ′)−1 exists and hence bm,j → bj a.e. t and by dominated convergence Theorem, bm,j → bj

in L1. Let ρm,j(x) = ρ(x, Pm,nj ,ǫj), then from (4.3.25) ρm,j(x) → ρεj(x) uniformly. Since

f
′

(um,j(x, δ)) =
C−A
T−δ

, hence by L1
loc contraction, um,j converges in L

1
loc and for a.e. (x, t)

to a solution uj of (4.1.2) with initial boundary condition

uj(A, t) = bj(t) (4.3.39)

f
′

(uj(x, δ)) =
C − A

T − δ
. (4.3.40)

From (4.3.20) , (4.3.23) and (4.3.25), for a.e. x ∈ (A,C)

f
′

(uj(x, T )) =
x− A

T − ρǫj(x)
. (4.3.41)

Letting m→ ∞ in (4.3.38) to obtain

T
∫

δ

∣

∣

∣f
′

(bj(t))− f
′

(bk(t))
∣

∣

∣ ≤ ∧ |ρ(A+ ǫj)− ρ(A+ ǫk)| . (4.3.42)

Since ρ is right continuous and hence |ρ(A+ ǫj)− ρ(A+ ǫk)| → 0 as j, k → ∞. Therefore

from L1
loc contractivity, there exists a subsequence still denoted by j such that uj → ũ1,

a solution of (4.1.2), bj → b̃1 in L1
loc and a.e. Letting j → ∞ in (4.3.39) to (4.3.41), then

(ũ1, b̃1) satisfies (4.2.7) to (4.2.10). From Rankine-Hugoniot condition across an(t, δ), ũ1

satisfies (4.2.10). This proves (1). Similarly (2) follows and hence the Lemma.

Proof of Lemma 4.3.2 is much simpler than that of Lemma 4.3.1 because of (4.3.9)

and (4.3.10), TV bounds exist for discretization of ρ. Let ρ : [C1, C2] → [A1, A2] be in

IA([C1, C2]). First assume that ρ is a strictly increasing continuous function. Let n ≥ 1

and A1 = y0 < y1 < . . . < yn = A2 such that |yi − yi+1| ≤ 1
n
. Let k be such that
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{x : ρ(x) < yk−1} = φ and {x : ρ(x) < yk} 6= φ. Define xi = A1 if i ≤ k− 1 and for i ≥ k,

{x : ρ(x) < yi} = [A1, xi).

Let Pn = {y0, y1 . . . yn, x0, x1 . . . xn} be the corresponding partition and define

ρ(x, Pn) =
n−2
∑

i=0

yiχ[xi,xi+1)(x) + yn−1χ[xn−1,C2](x).

Clearly

|ρ(x)− ρ(x, Pn)| ≤
1

n
,

and hence ρ(x, Pn) → ρ(x) uniformly as n→ ∞.

Proof of Lemma 4.2.2 First assume that ρ is a strictly increasing continuous function.

For n ≥ 1, let Pn and ρn(x) = ρ(x, Pn) be constructed as above. Let un(x, t) = u(x, t, Pn)

as in (4.3.5) a solution of (4.1.2) with initial data u0,n(x) = u0(x, δ, Pn) as in (4.3.6).

From (4.3.9), {f ′(u0,n)} is bounded in BVloc(R) and hence by Helly’s theorem, there

exists a subsequence still denoted by {f ′(u0,n)} converges to f ′(u0) in L
1
loc and a.e. Since

u0,n is uniformly bounded and f ′ is strictly increasing function, therefore u0,n → u0 in

L1
loc. Hence from L1

loc contractivity, un converges to ũ a solution of (4.1.2) a.e. (x, t) ∈

R × (δ, T ) with initial data u0. Since f
′

(a0(P )) = C1−A1

T−δ
, f

′

(an(P )) = C2−A2

T−δ
, hence if

ũ0 = ũ0|[A1,A2], then from Rankine-Hugoniot condition across a0(t), an(t), (ũ, ũ0) satisfies

(4.2.18) to (4.2.20). At t = T,

f
′

(un(x, T )) =
x− ρn(x)

T − δ
, if x ∈ [C1, C2],

and hence letting n→ ∞, for a.e. x ∈ (C1, C2),

f
′

(u(x, T )) =
x− ρ(x)

T − δ
.

Then (ũ, ũ0) is the required solution satisfying (4.2.17). Let ρ ∈ IA((C1, C2)) and ρn be

a strictly increasing continuous function with values in (A1, A2) and converging to ρ in

L1 and a.e. Let (ũn, ũn,0) be the corresponding solutions satisfying (4.2.17) to (4.2.20).

Hence from Helly’s theorem, there exists a subsequence still denoted by ũn,0 converging

to ũ0 in L1
loc and a.e. Therefore from L1

loc contractivity, for a subsequence still denoted

by ũn converging to ũ a.e to a solution of (4.1.2) satisfying (4.2.18) to (4.2.20).

For a.e. x ∈ (C1, C2) we have

f
′

(ũ(x, t)) = lim
n→∞

f
′

(ũn(x, T )) = lim
n→∞

x− ρn(x)

T − δ
=
x− ρ(x)

T − δ
.

This proves the Lemma.
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Remark 4.3.1. Given ρ, we have exhibited a method to construct an initial data ū0 and

the solution u such that at t = T

f ′(u(x, T )) =
x− ρ(x)

T
. (4.3.43)

This method is not unique. In fact we can construct infinitely many initial datas and all

the solutions to these initial data satisfy (4.3.43). Here we illustrate this method with an

example.

Example 4.3.4. Let T > 0 and x1 < x2, y1 < y2. Define

ρ(x) =











x− x1 + Ty1 if x < x1,

y2 if x1 < x < x2,

x− x2 + Ty2 if x > x2.

Let f ′(a1) = x1−y1
T

, f ′(b1) = x1−y2
T

, f ′(a2) = x2−y2
T

. By strict covexity, it follows that

b1 < min{a1, a2}. Let y1 = ξ1 < ξ2 < · · · < ξn = y2 be a sequence and define a1 = c1 <

c2 < · · · < cn = b1 and {di} by

f ′(ci) =
x1 − ξi
T

, f ′(di) =
f(ci+1)− f(ci)

ci+1 − ci
.

By strict convexity ci < di < ci+1. For 0 ≤ t ≤ T, let

αi(t) = x1 + f ′(ci)(t− T )

si(t) = x1 + f ′(di)(t− T )

β(t) = x2 + f ′(a2)(t− T ),

then αi(t) < si(t) < αi+1(t) < β(t) for 1 ≤ i ≤ n − 1, t ∈ (0, T ). Let si = si(0) =

xi − Tf ′(di), then ξi < si < ξi+1. Now define u and ū0 by (see figure 4.7)

ū0 =























c1 = a1 if x < s1,

ci if ξ < x < si,

ci+1 if si < x < ξi+1,

cn = a2 if x > sn−1,
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Fig. 4.7:

then the solution u with initial data ū0 in (0, T ) is given by

u(x, t) =











































c1 if x < s1,

ci if αi(t) < x < si(t)

ci+1 if si(t) < x < si+1(t)

cn if sn−1(t) < x < αn

(f ′)−1
(

x−y2
t

)

if αn(t) < x < β(t)

a2 if x > β(t).

Clearly u satisfies (4.3.43).

Since {ξi} are arbitrary and hence there exist infinitely many solutions satisfying

(4.3.43). In the above example, si(t) are shock curves. In fact one can also introduce the

backword rarefaction in the region αi(t) < x < αi+1(t) by

u(x, t) = (f ′)−1

(

x− x1
t− T

)

for αi(t) < x < αi+1(t).

4.4 Finer Analysis of Characteristics

In a beautiful paper, Dafermos [25] had extensively studied the properties of characteristic

curves. Here we make a finer analysis of these characteristics curves and then use them to

obtain our results. In order to do this, first we recollect the results of Lax-Olenik explicit

formula and a good reference for this, is third chapter in [31].

Let f ∗(p) = sup
q
{pq − f(q)} denote the Legendre transform of f.
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Then f ∗ is in C1, strictly convex, super linear growth and satisfies

f = f ∗∗,

f ∗′(p) = (f
′

)−1(p),

f ∗(f ′(p)) = pf
′

(p)− f(p),

f(f ∗′(p)) = pf ∗′(p)− f ∗(p).

(4.4.1)

Controlled Curves: Let x ∈ R, 0 ≤ s < t and define the controlled curves Γ (x, s, t) by

Γ (x, s, t) = {r : [s, t] → R; r is linear and r(t) = x}, (4.4.2)

and denote Γ (x, t) = Γ (x, 0, t).

Value function: Let u0 ∈ L∞(R), x0 ∈ R, define

v0(x) =
x
∫

x0

u0(θ)dθ, (4.4.3)

be its primitive. Define the value function v(x, t) by

v(x, t) = min
r∈Γ (x,t)

{

v0(r(0)) + tf ∗
(

x−r(0)
t

)}

= min
β∈R

{

v0(β) + tf ∗
(

x−β
t

)}

.
(4.4.4)

Then v satisfies the

Dynamic Programming principle: For 0 ≤ s < t,

v(x, t) = min
r∈Γ (x,s,t)

{

v(r(s), s) + (t− s)f ∗

(

x− r(s)

t− s

)}

. (4.4.5)

Define the characteristic set ch(x, s, t, u0) and extreme characteristics y±(x, s, t,

u0) by

ch(x, s, t, u0) = {r ∈ Γ (x, s, t); r is a minimizer in (4.4.5)}, (4.4.6)

y−(x, s, t, u0) = min{r(s) : r ∈ ch(x, s, t, u0)}, (4.4.7)

y+(x, s, t, u0) = max{r(s); r ∈ ch(x, s, t, u0)}, (4.4.8)

Denote ch(x, t, u0) = ch(x, 0, t, u0), y±(x, t, u0) = y±(x, 0, t, u0). Then we have the follow-

ing result due to Hopf, Lax -Oleinik:

Theorem 4.4.1. Let 0 ≤ s < t, u0, v0, v be as above, then

1. v is a uniformly Lipschitz continuous function and is a unique viscosity solution of
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the Hamilton-Jacobi equation

vt + f(vx) = 0 (x, t) ∈ R× (0,∞),

v(x, 0) = v0(x) x ∈ R.
(4.4.9)

2. There exists M > 0, depending only on ‖u0‖∞ and Lipschitz constant of f restricted

to the interval [−‖u0‖∞, ‖u0‖∞] such that for (x, t) ∈ R× R+,

ch(x, s, t, u0) 6= φ and for r ∈ ch(x, s, t, u0)

∣

∣

∣

∣

x− r(s)

t− s

∣

∣

∣

∣

≤M. (4.4.10)

3. NIP (Non intersecting property of characteristics): Let x1 6= x2, t1 > 0, t2 > 0 and

for i = 1, 2, ri ∈ ch(xi, s, ti, u0). Then r1(θ) 6= r2(θ) for all θ ∈ (s,min{t1,

t2}).

From NIP, it follows that for 0 ≤ s < t,

(a). x 7→ y±(x, s, t, u0) are non decreasing functions,

(b). At the points of continuity of y+,

y+(x, s, t, u0) = y−(x, s, t, u0),

and hence ch(x, s, t, u0) = {r}, where r is given by

r(θ) =
x− y+(x, s, t, u0)

t− s
(θ − t) + x.

(c). Let r ∈ ch(x, t, u0), z = r(s). Let r1(θ) = r(θ) for 0 ≤ θ ≤ s, r2(θ) = r(θ) for

s ≤ θ ≤ t. Then r1 ∈ ch(z, s, u0), r2 ∈ ch(x, s, t, u0).

4. Let u(x, t) = ∂v
∂x
(x, t). Then u is the unique solution of (4.1.2) in Ω = R×R+ with

initial data u0 and satisfying

|u(x, t)| ≤ ‖u0‖∞. (4.4.11)

For a.e x, y−(x, t) = y+(x, t) and u is given by

f
′

(u(x, t)) =
x− y+(x, t, u0)

t
=
x− y−(x, t, u0)

t
. (4.4.12)

Let x be a point of differentiability of y±(x, t, u0) and y±(x, t, u0) is a point of dif-

ferentiability of v0, then

u(x, t) = u0(y±(x, t, u0)). (4.4.13)
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5. Let u0, w0 ∈ L∞(R) and u, w be the solutions given in (4) with initial data u0, w0

respectively. Then

(a). Monotonicity: Let u0(x) ≤ w0(x) for x ∈ R, there exists a set N ⊂ R of

measure zero such that for each t /∈ N, for a.e x ∈ R,

u(x, t) ≤ w(x, t). (4.4.14)

(b). L1
loc contractivity: Let c = max(‖u0‖∞, ‖w0‖∞) and I = [−c, c]. Then there

exists a M > 0, depending on Lipschitz constant f restricted to I such that for

all t > 0, a < b,

b
∫

a

|u(x, t)− w(x, t)|dx ≤

b+Mt
∫

a−Mt

|u0(x)− w0(x)|dx. (4.4.15)

For the proofs of (1) to (4) see chapter (3) of [31] and for (5), see chapter (3) of [36].

In this sequal we follow the notations of characterictic curves as in [6]. From now

onwards, we assume that Ω = R× (0,∞), u0 ∈ L∞(R).

Left and right characteristic curves: Let 0 ≤ s < t, u be a solution of (4.1.2) with

initial data u0 and α ∈ R. Define the left characteristic curve R−(t, s, α, u0) and right

characteristic curve R+(t, s, α, u0) and denote R±(t, α, u0) = R±(t, 0, α, u0) by

R−(t, s, α, u0) = inf{x;α ≤ y−(x, s, t, u0)}, (4.4.16)

R+(t, s, α, u0) = sup{x : y+(x, s, t, u0) ≤ α}. (4.4.17)

In view of (4.4.10), y−(x, s, t, u0) → −∞ as x → −∞, y+(x, s, t, u0) → +∞ as x →

+∞. Hence (4.4.16) and (4.4.17) are well defined. Our aim is to study the continuous

dependence of R± on their arguments (t, α, u0).

For x, y,∈ R, t > 0, let r(θ, t, x, y) ∈ Γ (x, t) be the line joining (x, t), (y, 0) given by

r(θ, t, x, y) =

(

x− y

t

)

(θ − t) + x. (4.4.18)

Observe that r(0, t, x, y) = y and hence r ∈ ch(x, t, u0) if and only if y is a minimizer in

(4.4.4). Hence define the extreme characteristic lines by

r±(θ, t, x) = r(θ, t, y±(x, t, u0)). (4.4.19)

Since r±(0, t, x) = y±(x, t.u0) and y−(x, t, u0) ≤ y+(x, t, u0), hence for all θ ∈ [0, t],

r−(θ, t, x) ≤ r+(θ, t, x). (4.4.20)
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Then we have the following

Lemma 4.4.2. Let u0, w0, {u
k
0} are in L∞(R) and α, {αk} are in R. Let v,W, {vk} be the

value functions defined in (4.4.4) with respect to the data u0, w0, {u
k
0} respectively. Let

u = ∂v
∂x
, w = ∂W

∂x
, uk =

∂vk
∂x

be the solutions of (4.1.2). Then

1. Let x1 < x2, 0 ≤ s < t and β ∈ R be a minimizer for v(x1, t) and v(x2, t) in (4.4.5).

Then for x1 < x < x2, β is the unique minimizer for v(x, t) and satisfies

f
′

(u(x, t)) =
x− β

t− s
. (4.4.21)

2. Let xk ∈ R, rk ∈ ch(xk, t, u0) such that lim
k→∞

(xk, rk(0)) = (x, β). Then r(·, t, x, β)

∈ ch(x, t, u0). Furthermore

lim
xk↑x

y+(xk, t, u0) = y−(x, t, u0), (4.4.22)

lim
xk↓x

y−(xk, t, u0) = y+(x, t, u0). (4.4.23)

In particular, y− is left continuous and y+ is right continuous.

3. (i). For all t > 0,

R−(t, α, u0) ≤ R+(t, α, u0), (4.4.24)

{

y−(R−(t, α, u0), t, u0) ≤ α ≤ y+(R−(t, α, u0), t, u0),

y−(R+(t, α, u0), t, u0) ≤ α ≤ y+(R+(t, α, u0), t, u0).
(4.4.25)

Further more if R−(t, α, u0) < R+(t, α, u0), then for all x ∈ (R−(t, α, u0),

R+(t, α, u0)) (see Figure 4.8)

y±(x, t, α) = α, f
′

(u(x, t)) =
x− α

t
. (4.4.26)

(ii). Let 0 < s < t, then

R−(t, s, α, u0) = R+(t, s, α, u0). (4.4.27)

4. Let 0 ≤ s < t. Then t 7→ R±(t, α, u0) are Lipschitz continuous function with Lips-

chitz norm depends only on α and ‖u0‖∞ and satisfying

lim
t→0

R±(t, α, u0) = α, (4.4.28)

R±(t, α, u0) = R±(t, s, R±(s, α, u0), u0). (4.4.29)
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u(x,t)= x−
t

t
α

(   ,0)α

(R−(t,   ,u0α (R+(t,   ,u0α

(y+(x,t,u0),0) (y−(x,t,u0),0)

),t) ),t)

(x,t) (x,t)

Fig. 4.8:

5. Monotonicity: Let u0 ≤ w0, α ≤ β, then

R±(t, α, u0) ≤ R±(t, α, w0), (4.4.30)

R±(t, α, u0) ≤ R±(t, β, u0). (4.4.31)

6. Continuity with respect to data: Let {u0
k} be bounded in L∞(R). Let αk → α, uk0 →

u0 in L1
loc(R). Then for t > 0.

(a). Suppose for all k,R−(t, αk, u
k
0) ≤ R−(t, α, u0), then

lim
k→∞

R−(t, αk, u
k
0) = R−(t, α, u0). (4.4.32)

(b). Suppose for all k,R+(t, αk, u
k
0) ≥ R+(t, α, u0), then

lim
k→∞

R+(t, αk, u
k
0) = R+(t, α, u0). (4.4.33)

(c). Suppose R−(t, α, u0) < R̄ = ¯lim
k→∞

R−(t, αk, u
k
0), then for

all x ∈ (R−(t, α, u0), R̄), y±(x, t, u0) = α and

f
′

(u(x, t)) =
x− α

t
. (4.4.34)

(d). Suppose lim
k→∞

R+(t, αk, u
k
0) = R̄ < R+(t, α, u0), then for all x ∈ (R̄,

R+(t, α, u0)), y±(x, t, u0) = α and

f
′

(u(x, t)) =
x− α

t
. (4.4.35)

As an immediate consequence of this, if R−(t, α, u0) = R+(t, α, u0) for t > 0, then

R±(t, α, u0) is continuous at (α, u0).
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Proof. (1). Let x ∈ (x1, x2) and r ∈ ch(x, s, t, u0). Suppose r(s) 6= β. then r inter-sets

one of the characteristics
(

xi−β
t−s

)

(θ− t) + xi, i = 1, 2, which contradicts NIP of Theorem

4.2.1 Hence β = r(s) = y±(x, s, t, u0). Furthermore

v(x, t) = v(β, s) + (t− s)f ∗

(

x− β

t− s

)

,

and for a.e x,

u(x, t) =
∂v

∂x
= f ∗

′

(

x− β

t− s

)

= (f
′

)−1

(

x− β

t− s

)

.

This proves (1).

(2). From the continuity of v and f ∗, we have

v(x, t) = lim
k→∞

v(xk, t)

= lim
k→∞

{

v0(rk(0)) + tf ∗
(

xk−rk(0)
t

)}

= v0(β) + tf ∗
(

x−β
t

)

,

and hence r(·, t, x, β) ∈ ch(x, t, u0). Let x1 < x2, then from NIP, y+(x1, t, u0) ≤ y−(x2, t,

u0). From monotonicity of y±, we have

y−(x1, t, u0) ≤ y+(x1, t, u0) ≤ y−(x2, t, u0) ≤ y+(x2, t, u0).

Let xk ↑ x, then from above inequality,

β = lim
k→∞

y+(xk, t, u0) ≤ y−(x, t, u0).

Since a subsequence of y+(xk, t, u0) converges to β, hence r(·, t, x, β) ∈ ch(x, t, u0). There-

fore β ≤ y−(x, t, u0) ≤ r(0, t, x, β) = β. This proves (4.4.22). Similarly (4.4.23) follows.

This proves (2).

(3). (i). Suppose y−(R−(t, α, u0), t, u0) > α. Then from (4.4.22) there exists x0 <

R−(t, α, u0). such that for all x ∈ (x0, R−(t, α, u0)), y+(x, t, u0) > α. Let x be a point of

continuity of y+, then from (3) of theorem 4.2.1, y−(x, t, u0) = y+(x, t, u0) > α and hence

R−(t, α, u0) ≤ x < R−(t, α, u0) which is a contradiction. Suppose y+(R−(t, α, u0), t, u0) <

α, again from (4.4.23) there exists x0 > R−(t, α, u0) such that for all x ∈ (R−(t, α, u0), x0),

y−(x, t, u0) < α. Therefore at points x of continuity, α ≤ y+(x, t, u0) = y−(x, t, u0) < α,

which is a contradiction. This proves (4.4.25) and (4.4.26) follows similarly.

Suppose R+(t, α, u0) < R−(t, α, u0), then from (4.4.25), y−(R−(t, α, u0), α,

u0) ≤ α ≤ y+(R+(t, α, u0), t, u0), therefore from NIP, y−(R−(t, α, u0), t, u0) = α =

y+(R+(t, α, u0), t, u0). Hence from (4.4.21), for all x ∈ (R+(t, α, u0), R−(t, α, u0)), α is

a minimizer for v(x, t) which implies that R−(t, α, u0) ≤ x < R−(t, α, u0) which is a

contradiction. This proves (4.4.24).
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Suppose R−(t, α, u0) < R+(t, α, u0). then from (4.4.24), (4.4.25), we have

α ≤ y+(R−(t, α, u0), t, u0) ≤ y−(R+(t, α, u0), t,u0) ≤ α.

Therefore from (1), for all x ∈ (R−(t, α, u0), R+(t, α, u0)), y±(x, t, u0) = α and

f
′

(u(x, t)) = x−α
t
. This proves (4.4.26).

(3). (ii). Let 0 < s < t, then as in (4.4.24) we have R−(t, s, α, u0) ≤ R+(t, s, α, u0).

Suppose R−(t, s, α, u0) < R+(t, s, α, u0), then as in (4.4.26), we have for all x ∈ (R−(t, s,

α, u0), R+(t, s, α, u0)), f
′(u(x, t)) = x−α

t−s
. Let R−(t, s, α, u0) < x1 < x2 < R+(t, s, α, u0)

and r±(., t, x1), r±(., t, x2) be the extreme characteristics at x1, x2. Since r±(s, t, x1) =

r±(s, t, x2) = α, which contradicts NIP. This proves (ii) and hence (3).

(4). Let 0 ≤ s < t,R− = R−(t, α, u0), y± = y±(R−, t, u0) and r±(θ) = r(θ, t, R−, y±) ∈

ch(R−, t, u0). Then from (3) of theorem 4.2.1, r±|(0,s) ∈ ch(r±(s), s, u0).

Claim : r−(s) ≤ R−(s, α, u0) ≤ r+(s).

Suppose R−(s, α, u0) < r−(s). For x ∈ (R−(s, α, u0), r−(s)), y−(x, s, α) ≥ α. Hence

if y− < α or y−(x, s, α) > α, then the characteristics r−(θ), r−(θ, s, x) intersect for

some θ ∈ (0, s) which contradicts NIP. Therefore α = y− = y−(x, s, α) and from

(2) r̃(θ) = r̃(θ, s, R−(s, α, u0), α) ∈ ch(R−(s, α, u0), s, u0). From (4.4.22) choose a ξ <

R−, y−(ξ, t, u0) < α such that the characteristic r̃(θ) and r(θ, t, ξ, y+(ξ, t, u0)) intersect

for some θ ∈ (0, s) which contradicts NIP.

Suppose r+(s) < R−(s, α, u0), then for x ∈ (r+(s), R−(s, α, u0)), y−(x, s, u0) < α ≤

r+(0) = y+ and therefore the characteristic at (x, s) with end point (y−(x, s, u0),

0) intersects r+(θ) for some θ ∈ (0, s) contradicting NIP. This proves the claim.

From (4.4.10) and the claim, we have

R− +

(

R− − y−
t

)

(s− t) ≤ R−(s, α, u0) ≤ R− +

(

R− − y+
t

)

(s− t)

that is

|R− −R−(s, α, u0)| ≤

(∣

∣

∣

∣

R− − y−
t

∣

∣

∣

∣

+

∣

∣

∣

∣

R− − y+
t

∣

∣

∣

∣

)

|s− t|

≤ 2M |s− t|.

Also from (4.4.10), we have |R− − y±| = |R− − r±(0)| ≤Mt, hence

lim
t→0

R−(t, α, u0) = α. Similarly for R+(t, α, u0).

From (c) of (3) in Theorem 4.2.1, we have r±|[s,t] ∈ ch(R−(t, α, u0), s, t, u0), hence from

NIP and from the above claim we have for any x < R−(t, α, u0) < z, y+(x, s, t, u0) <

r−(s) ≤ R−(s, α, u0) ≤ r+(s) < y−(z, s, t, u0). Therefore from the definitions it follows

that R−(t, α, u0)) = R−(t, s, R−(t, s, u0), u0). Similarly for R+ and this proves (4).

(5). From (5) of Theorem 4.2.1, for t ∈ N, a.e. x, u(x, t) ≤ w(x, t). Let y1,±(x) =
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y±(x, t, u0), y2,±(x) = y±(x, t, w0). Choose a dense set D ⊂ R such that for i = 1, 2, x ∈

D, u(x, t) ≤ w(x, t), yi,+(x) = yi,−(x). Hence from (4.4.12) we have for x ∈ D,

x− y1,±(x)

t
= f

′

(u(x, t)) ≤ f
′

(w(x, t)) =
x− y2,±(x)

t
.

This implies y2,±(x) ≤ y1,±(x). Therefore from (4.4.22) and (4.4.23),

R−(t, α, u0) = inf{x ∈ D : y1,−(x) ≥ α}

≤ inf{x ∈ D : y2,−(x) ≥ α}

= R−(t, α, w0).

R+(t, α, u0) = sup{x ∈ D, y1,+(x) ≤ α}

≤ sup{x ∈ D : y2,+(x) ≤ α}

= R+(t, α, w0).

From (4), t 7→ (R±(t, α, u0), R±(t, α, w0)) are continuous and hence (4.4.30) holds for all

t > 0.

R−(t, α, u0) = inf{x : y−(x, t, u0) ≥ α}

≤ inf{x : y−(x, t, u0) ≥ β}

= R−(t, β, u0),

and similarly for R+. This proves (5).

(6). From L1
loc contractivity, uk → u in L1

loc and hence for a.e. s, uk(·, s) → u(·, s) in

L1
loc. Let t > 0 be such that for a subsequence still denoted by k such that for a.e. x

lim
k→∞

uk(x, t) = u(x, t). (4.4.36)

Let yk±(x) = y±(x, t, u
k
0), R

k
± = R±(t, αk, u

k
0). Since {yk±} are monotone functions and

{Rk
±} are bounded. Hence from Helly’s theorem, there exists a subsequence still denoted

by k such that for a.e. x,

lim
k→∞

yk±(x) = y±(x) (4.4.37)
(

lim
k→∞

Rk
±,

¯lim
k+∞

Rk
±

)

=
(

R̄±, R̃±

)

, (4.4.38)

where u is the solution of (4.1.2) with u(x, 0) = u0(x). Let D ⊂ R be a dense set such
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that for all x ∈ D, (4.4.36) to (4.4.38) holds and further for all k,

yk+(x) = yk−(x) (4.4.39)

y+(x, t, u0) = y−(x, t, u0) (4.4.40)

f
′

(uk(x, t)) =
x− yk±(x)

t
(4.4.41)

f
′

(u(x, t)) =
x− y±(x, t, u0)

t
. (4.4.42)

Hence from (4.4.37) , (4.4.41) and (4.4.42), for x ∈ D,

y±(x) = lim
k→∞

yk±(x) = y±(x, t, u0). (4.4.43)

Case (i): Let for all k,Rk
− ≤ R−(t, α, u0), then R̄− ≤ R−(t, α, u0). Suppose R̄− <

R−(t, α, u0). Let I = (R̄−, R−(t, α, u0)), x ∈ D ∩ I and choose k0 = k0(x) > 0 such that

for all k ≥ k0, R
k
− < x, then

α = lim
k→∞

αk ≤ lim
k→∞

yk−(x) = y−(x, t, u0) < α,

which is a contradiction. Hence R̄− = R−(t, α, u0).

Case (ii) : Let for all k, R−(t, α, u0) ≤ Rk
−, then R−(t, α, u0) ≤ R̃−. Suppose

R−(t, α, u0) < R̃−, then for x ∈ D ∩ (R−(t, α, u0), R̃−) choose k0 = k0(x) such that

for a subsequence k > k0, x < Rk
−. Hence α ≤ y−(x, t, u0) = lim

k→∞
yk−(x) ≤ α and therefore

y−(x, t, u0) = α. Therefore from (4.4.12), f
′

(u(x, t)) = x−α
t

.

Since {uk0} are bounded in L∞ and hence from (4), ther exists a C > 0 independent

of k such that for all s1, s2 we have

|R±(s1, αk, u
k
0)−R±(s2, αk, u

k
0)| ≤ |s1 − s2|

|R±(s1, α, u0)−R±(s2, α, u0)| ≤ |s1 − s2|

Now suppose for t > 0 and for a subsequence still denoted by k such that

R− = lim
k→∞

R−(t, αk, u
k
0) < R−(t, α, u0).

Therefore choose ǫ > 0, k0 > 0 such that for all k ≥ k0

R−(t, αk, u
k
0) < R−(t, α, u0)− 2ǫ.
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Let |s− t| ≤ ǫ
2C
, then from the above uniform estimates we have for k ≥ k0

R−(s, αk, u
k
0) ≤

ǫ

2
+R−(t, αk, u

k
0)

≤
ǫ

2
+R−(t, α, u0)− 2ǫ

≤
ǫ

2
+R−(s, αk, u

k
0) +

ǫ

2
− 2ǫ

≤ R−(s, α, u0)− ǫ < R−(s, α, u0).

Now choose an |s0 − t| < ǫ
2
such that the previous analysis holds. Then at s0, we have

R−(s, α, u0)− ǫ ≥ lim
k→∞

R−(s, αk, u
k
0) = R−(s, α, u0) < R−

which is a contradiction. This proves (2.32) and similarly (2.33) holds.

Let R−(t, α, u0) < R̄ = lim
k→∞

R−(t, αk, u
k
0) and R−(t, α, u0) < x < R̄. Then as earlier

choose an ǫ > 0, a subsequence still denoted by k such that for |s− t| < ǫ
2C

and k ≥ k0(ǫ),

following holds :

R−(s, α, u0) + ǫ < x < R̄− ǫ ≤ R−(s, αk, u
k
0).

Now choose an s > t such that uk(ξ, s) → u(ξ, s) a.e. ξ. Hence from the previous analysis

we have for all ξ ∈ (R−(s, α, u0), R̄− ǫ), f ′(u(ξ, s)) = ξ−α
s
. Since s > t and hence we have

f ′(u(x, t)) = x−α
t
. This proves (2.34) and similarly (2.35) follows. This proves (6) and

hence the Lemma.

Next we study the characterization of R± and some comparison properties. For this

we need some well known results which will be proved in the following Lemma.

Let Ω ⊂ R
n be an open set andB(1) denote the unit ball in R

n. Let 0 ≤ χ ∈ C∞
c (B(1))

with
∫

Rn

χ(x)dx = 1. Let ε > 0 and denote χε(x) =
1
εn
χ(x

ε
) be the usual mollifiers. Let

u0 ∈ L1
loc(R

n) and define

uε0(x) = (χε ∗ u0)(x) =

∫

B(1)

χ(y)u0(x− εy)dy ,

then

Lemma 4.4.3. Denote ess inf and ess sup by inf and sup. Then

1. With the above notation, for x ∈ Ω, there exists a ε0 = ε0(x) > 0 such that for all

0 < ε < ε0,

inf
y∈Ω

u0(y) ≤ uε0(x) ≤ sup
y∈Ω

u0(y). (4.4.44)

2. Let t0, ε0, α ∈ R and ω ∈ L∞((0, t0)). Let R : (0, t0] → R be a locally Lipschitz
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continuous function such that for a.e t ∈ (0, t0),

ω(t) ≥ (f ′)−1

(

R(t)− α

t

)

+ ε0 (4.4.45)

dR

dt
=

f(ω(t))− f((f ′)−1(R(t)−α
t

))

ω(t)− (f ′)−1(R(t)−α
t

)
, (4.4.46)

then

lim
t→0

∣

∣

∣

∣

R(t)− α

t

∣

∣

∣

∣

= ∞. (4.4.47)

Proof. (1). Let Ωε = {x; d(x,Ωc) > ε}. Then for x ∈ Ω, there exists an ε0 > 0, such

that x ∈ Ωε, for all ε < ε0. Hence x− εy ∈ Ω, for a.e y ∈ B(1) a.e

inf
ξ∈Ω

u0(ξ) ≤ u0(x− εy) ≤ sup
ξ∈Ω

u0(ξ).

Multiply this identity by χ and integrate over B(1) gives (4.4.44).

(2). Suppose (4.4.47) is not true. That is

sup
t>0

∣

∣

∣

∣

R(t)− α

t

∣

∣

∣

∣

<∞. (4.4.48)

Let m be defined by

m = inf
t∈(0,t0)

1
∫

0

f ′
(

(f ′)−1
(

R(t)−α
t

)

+ θ
(

w(t)− (f ′)−1
(

R(t)−α
t

)))

−
(

R(t)−α
t

)

dθ.

(4.4.49)

Claim : m > 0.

From (4.4.45), w(t)− (f ′)−1
(

R(t)−α
t

)

> 0 and hence by convexity we have

f ′
(

(f ′)−1
(

R(t)−α
t

)

+ θ
(

w(t)− (f ′)−1
(

R(t)−α
t

)))

≥ f ′
(

(f ′)−1
(

R(t)−α
t

))

= R(t)−α
t

.

Hence m ≥ 0. Suppose m = 0, then there exists a sequence tk → t̃ in [0, 1] such that

0 = lim
k→∞

1
∫

0

f ′
(

(f ′)−1
(

R(tk)−α
tk

)

+ θ
(

w(t)− (f ′)−1
(

R(tk)−α
tk

)))

−
(

R(tk)−α
tk

)

dθ.
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Then from (4.4.48), we can choose a subsequence such that

R(tk)− α

tk
→ a, w(tk) → b as k → ∞.

Then from (4.4.45) we have b ≥ (f ′)−1(a) + ǫ0 and

0 =

1
∫

0

[

f ′
(

(f ′)−1(a) + θ(b− (f ′)−1(a))
)

− a
]

dθ

and hence by strict convexity

0 < f ′((f ′)−1(a) + θ(b− (f ′)−1(a)))− a = 0

which is a contradiction. This proves the claim. From Taylor series and the claim we

have

dR
dt

= R(t)−α
t

+
1
∫

0

f ′
(

(f ′)−1
(

R(t)−α
t

)

+ θ
(

w(t)− (f ′)−1
(

R(t)−α
t

)))

−
(

R(t)−α
t

)

dθ.

≥ R(t)−α
t

+mǫ0

or

t
d

dt

(

R(t)− α

t

)

≥ mǫ0.

For 0 < t1 < t0, integrating t to t1 to obtain

R(t)− α

t
≤
R(t1)− α

t
−mǫ0log

t1
t
→ −∞ as t→ 0.

Lemma 4.4.4. Let T > 0, α, β ∈ R, u0, v0 and v be as in (4.4.3) and (4.4.4). Then

(1). Let x0 ∈ R, t > 0 such that

y−(x0, t, u0) ≤ α ≤ y+(x0, t, u0), (4.4.50)

then

(i). if x0 ≤ R−(t, α, u0), then x0 = R−(t, α, u0). If R−(t, α, u0) < x0, then for all x ∈

(R−(t, α, u0), x0), f
′

(u(x, t)) = x−α
t
.

(ii). if x0 ≥ R+(t, α, u0), then x0 = R+(t, α, u0). If x0 < R+(t, α, u0), then for all x ∈

(x0, R+(t, α, u0)), f
′(u(x, t)) = x−α

t
.
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(2). (i). Let x ≥ R−(t, α, u0), then

v(x, t) = inf
y≥α

{

v0(y) + tf ∗

(

x− y

t

)}

. (4.4.51)

(ii). Let x ≤ R+(t, α, u0), then

v(x, t) = inf
y≤α

{

v0(y) + tf ∗

(

x− y

t

)}

. (4.4.52)

(iii). Let α < β and for 0 < t < T assume that

R+(t, α, u0) < R−(t, β, u0),

then for R+(t, α, u0) < x < R−(t, β, u0),

v(x, t) = inf
α≤y≤β

{

v0(y) + tf ∗

(

x− y

t

)}

, (4.4.53)

m = inf
y∈[α,β]

u0(y) ≤ u(x, t) ≤ sup
y∈[α,β]

u0(y) =M. (4.4.54)

f ′(m) ≤
x− y+(x, t, u0)

t
≤ f ′(M). (4.4.55)

(3). Let L(t, α, u0) ∈ {R±(t, α, u0)}, R(t, β, u0) ∈ {R±(t, β, u0)}. Suppose at t = T,

L(T, α, u0) = R(T, β, u0), (4.4.56)

then for all t ≥ T, (see Figure 9).

L(t, α, u0) = R(t, β, u0). (4.4.57)

Furthermore, let {uk0} and u0 are in L∞(R) with sup
k

‖uk0‖∞ <∞. Let (αk, βk,

uk0) → (α, β, u0) as k → ∞ in R
2 × L1

loc(R) and Tk → T in R such that

R−(T, α, u0) = R+(T, β, u0)

R−(Tk, αk, u
k
0) = R+(Tk, βk, u

k
0).

(4.4.58)
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Then for t > T,

lim
k→∞

R+(t, αk, u
k
0) = lim

k→∞
R−(t, βk, u

k
0)

= R+(t, α, u0)

= R−(t, α, u0).

(4.4.59)

R− 0)(t,  ,uα

u0 u0

T

u0(   ,0) (   ,0)βα

R−(t,   ,u0)=R+ 0)α (t,   ,uβ

R+(t,   ,u0)β

Fig. 4.9:

Proof. (1). It is enough to prove (i) and (ii) follows similarly. Let C = R−(t, α, u0), then

from (4.4.22) y−(C, t, u0) ≤ α. Suppose x0 < C, then from (4.4.50), the characteristic line

joining (C, t), (y−(C, t, u0), 0) and (x0, t), (y+(x0, t, u0), 0) intersects if y+(x0, t, u0) > α or

y−(C, t, u0) < α, which contradicts NIP. Hence y+(x0, t, u0) = y−(C, t, u0) = α. Therefore

from (4.4.21), for x0 < x < C, f ′(u(x, t)) = x−α
t
. This implies that C = R−(t, α, u0) <

x < C, which is a contradiction. Hence x0 = R−(t, α, u0). Suppose C < x0, then from

the definition and (4.4.50), we have y−(x0, t, u0)

≤ α ≤ y−(x0, t, u0) and hence y−(x0, t, u0) = α and from (4.4.21), f ′(u(x, t)) = x−α
t

for

all C < x < x0. This proves (1).

(2). It is enough to prove (i) and (ii) follows similarly. Let x ≥ R−(t, α, u0), then from

(4.4.25), y+(x, t, u0) ≥ α. Therefore

inf

{

inf
y≥α

{v0(y) + tf ∗

(

x− y

t

)

}, inf
y<α

{v0(y) + tf ∗

(

x− y

t

)

}

}

= v(x, t)

= v0(y+(x, t, u0)) + tf ∗

(

x− y+(x, t, u0)

t

)

.
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Hence

v(x, t) = inf
y≥α

{v0(y) + tf ∗

(

x− y

t

)

}.

(iii). (4.4.53) follows from (4.4.51) and (4.4.52). Let ε > 0, uε0 = χε ∗ u0 and vε0, vε be as

in (4.4.3) , (4.4.4) respectively. Let uǫ = ∂vǫ

∂x
be the solution of (4.1.2) in Ω = R × R+.

Since vǫ0 is differentiable and hence for a.e x and from (4.4.13), uε(x, t) = uε0(y+(x, t, u0)).

Since uε0 → u0 in L1
loc and hence uε → u in L1

loc. Therefore from (4.4.32) to (4.4.35), we

have for 0 < t < T,

lim
ε→0

R+(t, α, u
ε
0) ≤ R+(t, α, u0) < R−(t, β, u0) ≤ lim

ε→0
R−(t, β, u

ǫ
0).

Let εk → 0 and choose a dense set D ⊂ (R+(t, α, u0), R−(t, β, u0)) such that for all x ∈ D,

lim
k→∞

uεk(x, t) = u(x, t)

y(x) = y+(x, t, u0) = y−(x, t, u0)

yk(x) = y+(x, t, u
εk
0 ) = y−(x, t, u

εk
0 ).

For x ∈ D, choose k0(x) such that for all k ≥ k0(x), x ∈ (R+(t, α, u
εk
0 ), R−(t, β, u

ǫk
0 )).

Then from ((4.4.53)), yk ∈ [α, β]. Since uεk(x, t) = uεk0 (yk(x)), hence from (4.4.44),

m ≤ uεk0 (yk(x)) = uεk(x, t) ≤M.

Letting k → ∞ to obtain (4.4.54). From (4.4.12),

f ′(uεk(x, t)) =
x− yk(x)

t
,

letting k → ∞ to obtain

x− y(x)

t
= f ′(u(x, t)) = lim

k→∞
f ′(uεk(x, t))

= lim
k→∞

x− yk(x)

t
.

Hence lim
k→∞

yk(x) = y(x),

f ′(m) ≤ f ′(uεk0 (yk(x))) =
x− yk(x)

t
≤ f ′(M),

Now letting k → ∞ to obtain

f ′(m) ≤
x− y(x)

t
≤ f ′(M),

For x 6∈ D, choose xk ↑ x, y+(xk, t, u0) = y−(xk, t, u0). Then from (4.4.22), y+(xk, t, u0)
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→ y−(x, t, u0). Now apply the inequalities for xk and let k → ∞ to obtain (4.4.54),

(4.4.55). This proves (2).

(3). Without loss of generality we can take L(t, α, u0) = R−(t, α, u0) and R(t, β, u0) =

R+(t, β, u0). Similar proof follows in all other cases. Let C = R−(T, α, u0) = R+(T, β,

u0) and t > T. Then from (4.4.27) and (4.4.29) we have

R−(t, α, u0) = R−(t, T, C, u0)

= R+(t, T, C, u0)

= R+(t, β, u0).

(4.4.60)

This proves (4.4.57).

Let t > T, then choose k0 = k0(t) such that t > Tk, for all k > k0. Then from (4.4.57)

we have

Rk(t) = R−(t, αk, u
k
0) = R+(t, αk, u

k
0),

R(t) = R−(t, α, u0) = R+(t, α, u0).

Hence from (6) of Lemma 4.2,

lim
k→∞

Rk(t) ≤ R+(t, α, u0) = R−(t, α, u0) ≤ lim
k→∞

Rk(t). (4.4.61)

This proves (4.4.59) and hence the Lemma.

Next we give a criteria under which R+ = R−. Let β < γ and I1 = [β, γ], Define

m = inf
y∈I1

u0(y), M = sup
y∈I1

u0(y), I2 = [f ′(m), f ′(M)].

Let

a0 = max{f ∗(q)−Mq; q ∈ I2}, f
′(q0) = max{q; f ∗(q)−Mq ≤ a0}.

Then we have the following.

Lemma 4.4.5. Let α < β < γ, ε0 > 0. Let u0 ∈ L∞(R), a0 and q0 as above. Suppose

inf
[α,β]

u0(y) ≥ q0 + ε0, (4.4.62)

then for all t > 0,

R+(t, β, u0) = R−(t, β, u0).

Proof. Suppose for some T > 0, R+(T, β, u0) > R−(T, β, u0), then from (4.4.57), for

0 < t < T,

R−(t, β, u0) < R+(t, β, u0)
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and from (4.4.26) for R−(t, β, u0) < x < R+(t, β, u0).

f ′(u(x, t)) =
x− β

t
. (4.4.63)

From (4.4.28) we can choose T sufficiently small such that for all 0 < t ≤ T,

R+(t, α, u0) < R−(t, β, u0) < R+(t, β, u0) < R−(t, γ, u0). (4.4.64)

Claim: Let L(t) = R−(t, β, u0), then for 0 < t ≤ T

f ′(u(L(t)+, t)) ≤
R+(t, β, u0)− β

t
≤ f ′(q0). (4.4.65)

Let xk > R+(t, β, u0) be such that y+(xk, t, u0) = y−(xk, t,

u0) and lim
k→∞

xk = R+(t, β, u0). Then from (4.4.55)

f ′(m) ≤
x− y−(xk, t, u0)

t
≤ f ′(M).

Letting k → ∞ and from (4.4.23) we have

f ′(m) ≤
R+(t, β, u0)− y+(R+(t, β, u0), t, u0)

t
≤ f ′(M). (4.4.66)

Let v0(y) =
y
∫

β

u0(θ)dθ, hence v0(β) = 0. Denote R(t) = R+(t, β, u0), y±(t)

= y±(R+(t, β, u0), t, u0), then from (4.4.63), y−(t) = β and from (4.4.4) we have

tf ∗

(

R(t)− β

t

)

= v0(y−(t)) + tf ∗

(

R(t)− y−(t)

t

)

= v0(y+(t)) + tf ∗

(

R(t)− y+(t)

t

)

≤ M(y+(t)− β) + tf ∗

(

R(t)− y+(t)

t

)

≤ M(y+(t)−R(t)) +M(R(t)− β) + tf ∗

(

R(t)− y+(t)

t

)

,

and hence

f ∗

(

R(t)− β

t

)

−M

(

R(t)− β

t

)

≤ f ∗

(

R(t)− y+(t)

t

)

−M

(

R(t)− y+(t)

t

)

.

From (4.4.66) it follows that

f ∗

(

R(t)− β

t

)

−M

(

R(t)− β

t

)

≤ a0,
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Letting x tends to L(t) in (4.4.63) to obtain

f ′(u(L(t)+, t)) =
L(t)− β

t
≤
R+(t, β, u0)− β

t
≤ f ′(q0). (4.4.67)

This proves (4.4.65) and hence the claim.

From (4.4.54), for R+(t, α, u0) < x < R−(t, β, u0) = L(t), u(x, t) ≥ inf
y∈[α,β]

u0(y), hence

from (4.4.62) and (4.4.67), we have

u(L(t)−, t) ≥ inf
y∈[α,β]

u0(y) ≥ q0 + ε0

≥ u(L(t)+, t) + ε0

= f ∗′
(

L(t)−β
t

)

+ ε0.

(4.4.68)

From RH condition across L(t) gives

dL

dt
=
f(u(L(t)−, t))− f

(

f ∗′
(

L(t)−β
t

))

u(L(t)−, t)− f ∗′
(

L(t)−β
t

) . (4.4.69)

Therefore L(t) satisfies the hypothesis (2) of Lemma 4.2.3 and hence from (4.4.47)

¯lim
t→0

∣

∣

∣

∣

L(t)− β

t

∣

∣

∣

∣

= ∞,

which contradicts the uniform Lipschitz continuity of L from (4) of Lemma 4.2.2. Hence

R−(t, β, u0) = R+(t, β, u0), for all t, and this proves the Lemma.

Remark 4.4.1. Observe that q0 entirely depends on the bounds of u0 in [β, γ].

Lemma 4.4.6. Let u be the solution of (4.1.2) with

ū0(x) = u(x, 0) =

{

a if x < α,

u0(x) if x > α.

Then for x < R−(t, α, ū0),

u(x, t) = a, (4.4.70)

f ′(a) =
R−(t, α, ū0)− y−(R−(t, α, ū0), t, ū0)

t
. (4.4.71)

Proof. Since v̄0(x) =
x
∫

α

ū0(θ)dθ is differentiable for x < α and hence from (4.4.13), for
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a.e, x < α, u(x, t) = ū0(y+(x, t, ū0)) = a and

f ′(a) =
x− y+(x, t, ū0)

t
.

From (4.4.22) and letting x ↑ R−(t, α, ū0) to obtain (4.4.71). This proves the Lemma.

Analysis of initial value problem with data taking three values : Consider the

following initial value problem taking three values. Let a, λ,m ∈ R, α < β and consider

uλ0(x) =











a if x < α,

λ if α < x < β,

m if x > β.

(4.4.72)

and denote

vλ0 (x) =

x
∫

β

uλ0(θ)dθ, (4.4.73)

and vλ be as in (4.4.4). Let uλ = ∂vλ

∂x
be the entropy solution of (4.1.2) in Ω = R × R+

with initial data uλ0 . Assume that

λ > max(a,m), (4.4.74)

then α is a point of rarefaction and β is the shock point.

Let
L1(t) = α + f ′(a)t,

Lλ
2(t) = α + f ′(λ)t,

Sλ(t) = β +
(

f(λ)−f(m)
λ−m

)

t.

Let (x0(λ), T0(λ)) be the point of intersection of Lλ
2 and Sλ given by

T0(λ) =
β − α

f ′(λ)−
(

f(λ)−f(m)
λ−m

) ,

x0(λ) = α +
(β − α)f ′(λ)

f ′(λ)−
(

f(λ)−f(m)
λ−m

) .

Since β is the point of shock and hence from (4.4.26) we have

R+(t, β, u
λ
0) = R−(t, β, u

λ
0) = Rλ(t)(def). (4.4.75)
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Then the solution uλ for t ≤ T0(λ) is given by

Rλ(t) = Sλ(t). (4.4.76)

uλ(x, t) =























m if x > Sλ(t),

λ if Lλ
2(t) < x < Sλ(t),

(f ′)−1
(

x−α
t

)

if L1(t) < x < Lλ
2(t),

a if x < L1(t).

(4.4.77)

Define T1(λ) > T0(λ) be the first point of intersection of Lλ
2 and Rλ. If they do not

meet, then define T1(λ) = ∞. Next Lemma describes the behavior of uλ for t > T0(λ).

Lemma 4.4.7. Let λ satisfy (4.4.74). Then uλ is given by (see Figure 4.10).

(i). For T0(λ) < t < T1(λ), y±(L1(t), t, u
λ
0) = a and

uλ(x, t) =











m if x > Rλ(t),

f ′−1 (x−α
t

)

if L1(t) < x < Rλ(t),

a if x < L1(t).

(4.4.78)

(ii). t > T1(λ), then u
λ is the solution of (4.1.2) with initial data

uλ(x, T1(λ)) =

{

a if x < Rλ(T1(λ)),

m if x > Rλ(T1(λ)).
(4.4.79)

Furthermore for any compact sets K1 and K2 of R with K = K1 ×K2, η > 0, T ≤

T1(λ) be bounded, then

lim
λ→∞

inf
(a,m)∈K

T1(λ) = ∞, (4.4.80)

f ′(uλ(Rλ(t)−, t) =

{

f ′(λ) if 0 < t < T0(λ),
Rλ(t)−α

t
if T0(λ) < t < T1(λ).

(4.4.81)

lim
λ→∞

inf
(a,m)∈K

T0(λ)≤t≤T

uλ(Rλ(t)−, t) = ∞. (4.4.82)

lim
λ→∞

inf
η≤t≤T

Rλ(t) = ∞, (4.4.83)
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u(x,t)=
x−

t

L 2

L 1

u=

T1(   )

T0

u=a

λ

(t)
= 
   
+t
f (
a 
)

α

(t)=
     +

tf (  
)

α

α

λ

λ

(   )

λ

R  (t)

(   ,0) (   ,0)λ u0(x)α βa

λ

λ

Fig. 4.10:

Proof. Let T0(λ) < t ≤ T1(λ). Since v
λ
0 (x) is differentiable for x > β and hence from

(4.4.13) and (4.4.51), uλ(x, t) = u0(y+(x, t, u
λ
0)) = m if x > R+(t, β, u

λ
0) = Rλ(t). Next

we show that for L1(t) < x < Rλ(t), y±(x, t, u
λ
0) = α.

L1(t) < x < Rλ(t). Then y+(x, t, u
λ
0) < β. Suppose for some x0 ∈ (L1(t), R

λ

(t)), y−(x, t, u
λ
0) < α, then for all x ∈ (L1(t), x0), y−(x, t, u

λ
0)) < α, uλ(x, t) = u0(y−(x, t,

uλ0)) = a and

L1(t)− α

t
= f ′(a) = f ′(uλ(x, t)) =

x− y−(x, t, u
λ
0)

t
>
L1(t)− α

t
,

which is a contradiction. Suppose y+(x0, t, u
λ
0) > α, then for all x0 < x < Rλ(t), α <

y+(x, t, u
λ
0) < β. Since uλ0 is differentiable in (α, β) and hence from (4.4.13), for a.e

x ∈ (x0, R
λ(t)),

uλ(x, t) = uλ0(y+(x, t, u
λ
0)) = λ, f ′(λ) = f ′(uλ(x, t)) =

x− y+(x, t, u
λ
0)

t
.

Suppose x0 < Lλ
2(t), then for x0 < x < min(Lλ

2(t), R
λ(t)),

f ′(λ) =
x− y+(x, t, u

λ
0)

t
<
Lλ
2(t)− α

t
= f ′(λ),

which is a contradiction. Suppose Lλ
2(t) < x0 < Rλ(t), then for x ∈ (x0, R

λ(t)), charac-

teristic γ at (x, t) given by γ(θ) = y+(x, t, u
λ
0) + f ′(λ)θ intersects Sλ at t0, where

t0 =
β − y+(x, t, u

λ
0)

f ′(λ)− f(λ)−f(m)
λ−m

<
β − α

f ′(λ)− f(λ)−f(m)
λ−m

= T0(λ),

which contradicts NIP, since Sλ(t) is a characteristic for 0 < t < T0(λ). Hence for
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L1(t) < x < Rλ(t), y+(x, t, u
λ
0) = y−(x, t, u

λ
0) = α and from (4.4.21), we have

f ′(uλ(x, t)) =
x− α

t
. (4.4.84)

Now letting x ↓ L1(t) and from (4.4.22) to obtain y+(L1(t), t, u
λ
0) = α and f ′(uλ(L1(t)

+, t)) = L1(t)−α
t

= f ′(a). This implies uλ(L1(t)+, t) = a. From RH condition across L1(t)

implies that uλ(L1(t)−, t) = a. Therefore from (4.4.12),(4.4.22),(4.4.23) y±(L1(t), t,

uλ0) = a. This implies for x < L1(t), y+(x, t, u
λ
0) < α and hence from (4.4.13), uλ(x, t) =

u0(y+(x, t, u
λ
0)) = a. This proves (4.4.78) and hence (4.4.79).

Let
y±(t, λ) = y±(R

λ(t), t, uλ0),

y±(λ) = y±(R
λ(T1(λ)), T1(λ), u

λ
0),

Rλ = Rλ(T1(λ)).

Let T0(λ) < t ≤ T1(λ) and letting x ↑ Rλ(t) in (4.4.84) to obtain

Rλ(t)− y−(t, λ)

t
= f ′(uλ(Rλ(t)−, t)) =

Rλ(t)− α

t
. (4.4.85)

Hence y−(t, λ) = α. Also at t = T1(λ),

f ′(a) =
Rλ − α

T1(λ)
=
Rλ − y−
T1(λ)

. (4.4.86)

Rλ(t)− y+(t, λ)

t
= lim

x↓Rλ(t)

x− y−(x, t, u
λ
0)

t
(4.4.87)

= lim
x↓Rλ(t)

f ′(uλ(x, t)) = f ′(m). (4.4.88)

From (4.4.85) to (4.4.88) we can evaluate vλ(Rλ(t), t) by

−(β − α)λ+ tf ∗

(

Rλ(t)− α

t

)

= (y+(t, λ)− β)m+ tf ∗

(

Rλ(t)− y+(t, λ)

t

)

= m

(

y+(t, λ)−Rλ(t)

t
t+Rλ(t)− β

)

+ tf ∗(f ′(m))

= −tmf ′(m) +m(Rλ(t)− α) +m(α− β)

+ tf ∗(f ′(m)).

(β − α)(λ−m)

t
= f ∗

(

Rλ(t)− α

t

)

−
Rλ(t)− α

t
− f ∗(f ′(m) +mf ′(m). (4.4.89)
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Let t = T1(λ) then Rλ−α
T1(λ)

= f ′(a) and hence the right hand side of (4.4.89) is bounded

uniformly for (a,m) ∈ K and hence as λ→ ∞, T1(λ) → ∞. This proves (4.4.80).

Observe that R+(t, α, u
λ
0) = Lλ

2(t) and L
λ
2(t) < Rλ(t) for 0 < t < T0(λ). Hence for a.e

x ∈ (Lλ
2(t), R

λ(t)), y+(x, t, u
λ
0) = y−(x, t, u

λ
0) ∈ (α, β) and from (4.4.13),

uλ(x, t) = uλ0(y+(x, t, u
λ
0)) = λ.

From this and (4.4.85) , (4.4.81) follows. Let T0(λ) < t ≤ T, then from superlinearity

of f ∗, (4.4.82) follows from (4.4.85), (4.4.89). Suppose lim
λ→∞

T0(λ) = 0, and then (4.4.83)

follows from (4.4.81) , (4.4.82). Hence assume that lim
¯λ→∞
T0(λ) > 0, then if η < T0(λ),

then (4.4.83) follows from (4.4.89). This proves the Lemma.

Next we generalize the above Lemma by replacing m by u0. More precisely let

uλ0(x) =











a if x < α,

λ if α < x < β,

u0(x) if x > β,

(4.4.90)

and uλ be the solution of (4.1.2) with initial data uλ0 . Let

m1 = inf
x≥α

u0(x),m2 = sup
x≥α

u0(x). (4.4.91)

For i = 1, 2, define ui,λ0 by

ui,λ0 (x) =











a if x < α,

λ if α < x < β,

mi if β < x,

(4.4.92)

and let uλi be the solution of (4.1.2) with intial data ui,λ0 . Let L1(t), L
λ
2(t) be as defined

earlier, then

Lemma 4.4.8. Let T > 0 be fixed, then there exist λ0 = λ0(m1,m2, a, t) such that for

λ ≥ λ0, 0 < t ≤ T,

R−(t, β, u
λ
0) = R+(t, β, u

λ
0). (4.4.93)

and denote R(λ, t) = R−(t, β, u
λ
0), then

(i). t→ R(λ, t) is a strictly increasing function.

(ii). λ → R(λ, t) is a strictly increasing function. Let T1(λ) be the first point of inter-
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section of L1(t) and R(t, λ). Then for any fixed T > 0

lim
t→∞

T1(λ) = ∞, lim
λ→∞

R(λ, T ) = ∞. (4.4.94)

Let T0(λ) be the first point of intersection of Lλ
2(t) and R(λ, t). Then

uλ(x, t) =

{

a if x < L1(t)

λ if Lλ
2(t) < x < R(λ, t), 0 < t < T0(λ).

(4.4.95)

Proof. Let q0 be as in (4.4.62), then for λ > q0, from Lemma 4.4.5 we have for i = 1, 2,

R−(t, β, u
λ
0) = R+(t, β, u

λ
0), (4.4.96)

R−(t, β, u
i,λ
0 ) = R+(t, β, u

i,λ
0 ) (4.4.97)

and denote Ri(λ, t) = R−(t, β, u
i,λ
0 ), T11(λ), T1(λ), T21(λ) the first points of intersection

of L1(t) with R1(λ, t), R(λ, t), R2(λ, t) respectively. Since u1,λ0 ≤ uλ0 ≤ u2,λ0 , hence from

(4.4.30)

R1(λ, t) ≤ R(λ, t) ≤ R2(λ, t), T11(λ) ≤ T1(λ) ≤ T2,1(λ). (4.4.98)

Then from (4.4.80), it follows that

lim
λ→∞

T1(λ) = ∞.

Next we obtain a bound on uλ(R(λ, t)+, t). For this let ū(x, t) be the solution of

(4.1.2) with initial data ū0(x) defined by

ū0(x) =

{

min(a,m1) if x < β,

u0(x) if x > β,

then for λ > m, ū0(x) ≤ u1,λ0 (x) ≤ uλ0(x) and hence ū(x, t) ≤ uλ(x, t) and R+(t, β, ū0)

≤ R(λ, t). Since for y > β,
∫ y

β
ū0(θ)dθ =

∫ y

β
uλ0(θ)dθ and hence from (4.4.51) we have for
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x > R(λ, t),

V λ(x, t) = inf
y≥β

{

y
∫

β

uλ0(θ)dθ + tf ∗

(

x− y

t

)

}

= inf
y≥β

{

y
∫

β

ū0(θ)dθ + tf ∗

(

x− y

t

)

}

= V (x, t),

where uλ = ∂V λ

∂x
and ū = ∂V

∂x
. Hence for x > R(λ, t),

uλ(x, t) = ū(x, t). (4.4.99)

Therefore

|uλ(R(λ, t)+, t)| ≤ ‖ū‖∞

≤ max(m2, a).
(4.4.100)

For i = 1, 2, let Ti,0(λ) be the first intersection point of Lλ
2(t) and Ri(λ, t) and Ti,1(λ) >

Ti,0(λ) be the points of intersections of L1(t) and Ri(λ, t). Then from Lemma 4.8, we can

choose λ0 ≥ q0 + ‖ū‖∞ such that for all λ ≥ λ0, f
′(λ) > 0, f(λ) > f(‖ū‖∞) and

T1,1(λ) > T, R1(λ, T ) > L1(t). (4.4.101)

inf
T1,0(λ)≤t≤T

f ∗′
(

R1(λ, t)− α

t

)

= inf
T1,0(λ)≤t≤T

u1,λ(R1(λ, t)−, t) > λ0. (4.4.102)

From (4.4.83) and (4.4.98) we have

lim
λ→∞

R(λ, T ) ≥ lim
λ→∞

R1(λ, T ) = ∞.

This proves (4.4.94).

Next imitating the proof as in Lemma 4.4.7 and from (4.4.99) we have for 0 < t < T ,

uλ(x, t) =























ū(x, t) if x > R(λ, t),

(f ′)−1
(

x−α
t

)

if t > T0(λ), L1(t) < x < R(λ, t),

λ if 0 < t < T0(λ), L
λ
2(t) < x < R(λ),

a if x < L1(t).

(4.4.103)
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Let 0 < t < T0(λ) then from (4.4.100) and the choice of λ0, we have for a.e. t,

d

dt
R(λ, t) =

f(uλ(R(λ, t)−, t))− f(uλ(R(λ, t)+, t))

uλ(R(λ, t)−, t)− uλ(R(λ, t)+, t)

=
f(λ)− f(uλ(R(λ, t)+, t)

λ− uλ(R(λ, t)+, t)
> 0.

Let T0(λ) < t ≤ T, then from (4.4.98), T1,0(λ) ≤ T0(λ). Hence from (4.4.103), (4.4.102)

uλ(R(λ, t)−, t) = f ∗′
(

R(λ, t)− α

t

)

≥ f ∗′
(

R1(λ, t)− α

t

)

= u1,λ(R1(λ, t)−, t)

> λ0.

Since f ′(λ) > 0 for λ ≥ λ0, hence

f(uλ(R(λ, t)−, t)) ≥ f(λ0) > f(‖ū‖∞).

Therefore from (4.4.99), (4.4.100) we have for T0(λ) < t ≤ T.

d

dt
R(λ, t) =

f(uλ(R(λ, t)−, t)− f(uλ(R(λ, t)+, t))

uλ(R(λ, t)−, t)− uλ(R(λ, t)+, t)

=
f(uλ(R(λ, t)−, t)− f(ū(R(λ, t)+, t)

uλ(R(λ, t)−, t)− ū(R(λ, t)+, t)
> 0.

This proves that t→ R(λ, t) is a strictly increasing function.

Claim: R(λ, t) ≤ Lλ
2(t) for t > T0(λ).

Suppose for some t0 > T0(λ), R(λ, t0) > Lλ
2(t0), then for a.e x ∈ (Lλ

2(t0), R(λ, t0)

), y+(x, t, u
λ
0) ∈ (α, β) and hence from (4.4.13) and differentiability of uλ0 in (α, β) gives

u(x, t0) = λ and f ′(λ) =
x−y+(x,t0,uλ

0 )

t0
. Hence the characteristic line r(θ) at (x, t0) is

parallel to Lλ
2 and r(θ) ≥ Lλ

2(θ) for θ ∈ [0, t0]. Since t → R(λ, t) is an increas-

ing function for t ∈ (0, T1(λ)) and T0(λ) < t0, hence R(λ, T0(λ)) < x. Furthermore

y+(R(λ, T0(λ)), T0(λ), u
λ
0) ≥ β. Hence the characteristic line at (R(λ, T0(λ)), T0(λ)) inter-

sect r which contradicts NIP. This proves the claim.

Hence for t ≥ T0(λ),

R(λ, t)− α

t
≤
Lλ

2(t)− α

t
= f ′(λ). (4.4.104)

Let λ0 ≤ λ1 < λ2, then uλ1
0 ≤ uλ2

0 and hence R(λ1, t) ≤ R(λ2, t) and for a.e. x,
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y±(x, t, u
λ1
0 ) ≥ y±(x, t, u

λ2
0 ). Suppose for some 0 < t0 < T,R = R(λ1, t0) = R(λ2, t0).

From (4.4.99) at x = R, we have α ≤ y−(R, t0, u
λ2
0 ) ≤ y−(R, t0, u

λ1
0 ) < β, and uλ1(R+, t0)

= ū(R+, t0) = uλ2(R+, t0). Hence from (4.4.23) y+(R, t0, u
λ1
0 ) = y+(R, t0, u

λ2
0 ).

Let for i = 1, 2, y = y+(R, t0, u
λi
0 ), yi = y−(R, t0, u

λi
0 ) and V λi

0 (y) =
y
∫

β

uλi
0 (θ)dθ, then

V λ1
0 (y) = V λ2

0 (y) for y ≥ β. Hence from (4.4.4) we have

λ2(y2 − β) + t0f
∗

(

R− y2
t0

)

= V λ2
0 (y2) + tf ∗

(

R− y2
t0

)

= V λ2
0 (y) + tf ∗

(

R− y

t0

)

= V λ1
0 (y) + tf ∗

(

R− y

t0

)

= V λ1
0 (y1) + tf ∗

(

R− y1
t0

)

= λ1(y1 − β) + t0f
∗

(

R− y1
t0

)

.

Let f ′(θi) =
R−yi
t0
, then R = f ′(θi)t0+yi and since y2 ≤ y1 implies that f ′(θ2) ≥ f ′(θ1),

hence θ2 ≥ θ1. Substituting this in the above expression and using f ∗(f ′(p)) = pf ′(p) −

f(p) to obtain

(R− t0f
′(θ2))λ2 + t0f

∗(f ′(θ2)) = (R− t0f
′(θ1))λ1 + t0f

∗(f ′(θ1)) + β(λ2 − λ1)

R = β +
t0

(λ2 − λ1)
[(λ2 − θ2)f

′(θ2)− (λ1 − θ1)f
′(θ1)] +

(

f(θ2)− f(θ1)

λ2 − λ1

)

t0.

That is for i = 1, 2,

yi = β +
t0

(λ2 − λ1)
[(λ2 − θ2)f

′(θ2)− (λ1 − θ1)f
′(θ1)] + t0

[

f(θ2)− f(θ1)

λ2 − λ1
− f ′(θi)

]

.

(4.4.105)

Case (i) : Let y2 = y1. Then θ2 = θ1 and hence from (4.4.105), β = y1 < β which is a

contradiction.

Case (ii): Let α < y2 < y1.

Since V λi
0 is differentiable for y ∈ (α, β) and hence from (4.4.13) , (4.4.23), we have

f ′(λi) =
R−yi
t0

. Therefore from (4.4.105) and from strict convexity of f we have

y1 = β + t0

[

f(λ2)− f(λ1)

λ2 − λ1
− f ′(λ1)

]

> β.

which is a contradiction.

Case(iii): Let α = y2 < y1.

Since y1 > α, hence f ′(θ1) = R−y1
t0

= f ′(λ1) and R−α
t0

= f ′(θ2). From (4.4.104),
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f ′(θ2) ≤ f ′(λ2) and hence λ2 ≥ θ2. Since λ1 ≥ λ0 and hence f ′(θ2) ≥ f ′(λ1) > 0. From

(4.4.105), θ1 = λ1 and convexity of f we have

0 >
(λ2 − λ1)(y1 − β)

t0
= (λ2 − θ2)(f

′(θ2)− f ′(λ1)) + f(θ2)− f(λ1)

≥ (θ2 − λ1)f
′(λ1)

> 0,

which is a contradiction. This proves λ → R(λ, t) is a strictly increasing function for

λ ≥ λ0 and 0 < t ≤ T. This proves the Lemma.

Next we consider the variation from the right, Let uµ be the solution of (4.1.2) with

initial data uµ0 given by

uµ0 =











u0(x) if x < α,

µ if α < x < β,

a if x > β.

We state the following Lemma without proof since the proof follows exactly as that of

Lemma 4.4.8.

Define

L1(t) = β + f ′(a)t, Lµ
2(t) = β + f ′(µ)t.

Lemma 4.4.9. There exist µ1 = µ1(m1,m2, a) such that for µ < µ1, t > 0,

R−(t, α, u
µ
0) = R+(t, α, u

µ
0), (4.4.106)

and denote R(µ, t) = R−(t, α, u
µ
0). Let T0(µ) > 0 be the first point of intersection of

R(µ, t) and Lµ
2(t) and T1(µ) > T0(µ) be the first point of intersection of R(µ, t) and

L1(t). Then

lim
µ→−∞

T1(µ) = ∞. (4.4.107)

For 0 < t < T1(µ),

uµ(x, t) =































a if x > L1(t),

(f ′)−1
(

x−β
t

)

if T0(µ) < t < T1(µ),

R(µ, t) < x < L1(t),

µ if 0 < t < T0(µ),

R(µ, t) < x < Lµ
2(t).

(4.4.108)

Furthermore let T > 0 be fixed, then there exist µ0 = µ0(T, µ1) < µ1 such that
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(i). µ→ R(µ, t) is a strictly increasing function for 0 < t ≤ T and

lim
µ→−∞

R(µ, t) = −∞. (4.4.109)

(ii). For 0 < t < T1(µ), t→ R(µ, t) is a strictly decreasing function of t.

Interaction of R± with initial data: We study the interaction of R± with varying

parameters in the data. For this first we need the following elementary results.

Let B1, B2, µ0 < λ0, L ∈ C(R+ × [λ0,∞)), R ∈ C(R+ × (−∞, µ0]) be given and for

λ ≥ λ0, µ ≤ µ0, L and R satisfy the following hypothesis,

(H1). λ 7→ L(t, λ), µ 7→ R(t, µ) are strictly increasing functions such that for all λ ≥

λ0, µ ≤ µ0,

L(0, λ) = B1, R(0, µ) = B2, (4.4.110)

and for any 0 < α < β,

lim
λ→∞

inf
t∈[α,β]

L(t, λ) = ∞, lim
µ→−∞

sup
t∈[α,β]

R(t, µ) = −∞. (4.4.111)

(H2). For λ ≥ λ0, µ ≤ µ0, t 7→ L(t, λ), is a strictly increasing function and t 7→ R(t, µ) is

a strictly decreasing function.

Let I = [λ0,∞) × (−∞, µ0] and define x0(t), y0(t), λ(x, t), µ(y, t), δ(λ, µ), c(λ, µ) as

follows:

x0(t) = L(t, λ0), y0(t) = R(t, µ0) (4.4.112)

L(t, λ(x, t)) = x, R(t, µ(y, t)) = y (4.4.113)

L(δ(λ, µ), λ) = R(δ(λ, µ), µ) = c(λ, µ), (4.4.114)

then we have the following

Lemma 4.4.10. 1. x0 is a strictly increasing continuous and y0 is a strictly decreasing

function satisfying

(x0(0), y0(0)) = (B1, B2). (4.4.115)

2. For x ≥ x0(t), y ≤ y0(t), (λ(x, t), µ(y, t)) ∈ I, x 7→ λ(x, t), t → µ(y, t) are strictly in-

creasing functions and t 7→ λ(x, t), y 7→ µ(y, t) are strictly decreasing continuous functions

in (0,∞). Also for x > B1, y < B2

lim
t→0

(λ(x, t), µ(y, t)) = (∞,−∞). (4.4.116)

3. Let B1 < B2 and (λ, µ) ∈ I. Then δ(λ, µ) exists and is a continuous function. Fur-

thermore λ → δ(λ, µ) is a decreasing function and µ 7→ δ(λ, µ) is an increasing function
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and

lim
λ→∞

δ(λ, µ) = lim
µ→−∞

δ(λ, µ) = 0 (4.4.117)

lim
µ→−∞

c(λ, µ) = B1, lim
λ→∞

c(λ, µ) = B2. (4.4.118)

Proof.

1. Follows from (H1).

2. From (4.4.111) for t > 0, L(t, ·) : [λ0,∞) → [x0(t),∞) is a homeomorphism and

hence λ(x, t) exists and x 7→ λ(x, t) is a strictly increasing function. Let t1 < t2

and suppose λ(x, t1) ≤ λ(x, t2), then

x = L(t1, λ(x, t1)) ≤ L(t1, λ(x, t2)) < L(t2, λ(x, t2)) = x,

which is a contradiction. Hence t 7→ λ(x, t) is a strictly decreasing function. Let

(xn, tn) → (x, t), λ(xn, tn) → λ, then

x = lim
n→∞

L(tn, λ(xn, tn)) = L(t, λ),

and hence λ = λ(x, t). This proves the continuity of λ(x, t). Suppose as tn →

0, {λ(x, tn)} is bounded. Then for a subsequence still denote by n such that

λ(x, , tn) → λ as n 7→ ∞. Therefore by continuity of L and (4.4.110)

B1 < x = lim
n→∞

L(tn, λ(x, tn)) = L(0, λ) = B1,

which is a contradiction. Hence λ(x, t) → ∞ as t → 0. Similarly for µ(y, t) and

this proves (2).

3. For (λ, µ) ∈ I, t 7→ L(t, λ) ≥ B1 and is a strictly increasing function and t 7→

R(t, µ) ≤ B2 is a strictly decreasing function. Hence there exists a unique δ(λ, µ)

satisfying (4.4.114) and B1 ≤ c(λ, µ) ≤ B2 and continuity follows from the unique-

ness of δ(λ, µ).

Let λ1 < λ2 and δ(λ1, µ) ≤ δ(λ2, µ). Then

R(δ(λ1, µ), µ) = L(δ(λ1, µ), λ1) ≤ L(δ(λ2, µ), λ1)

< L(δ(λ2, µ), λ2)

= R(δ(λ2, µ), µ)

and hence δ(λ2, µ) < δ(λ1, µ) which is a contradiction. Suppose lim
λ→∞

δ(λ, µ) = δ0 > 0,

then from (4.4.111),

∞ = lim
λ→∞

L(δ(λ, u), λ) = lim
δ(λ,µ)→δ0

R(δ(λ, µ), µ) = R(δ0, µ) <∞,
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which is a contradiction hence δ0 = 0 and

lim
λ→∞

c(λ, µ) = lim
λ→∞

L(δ(λ, µ), λ)

= lim
δ(λ,µ)→0

R(δ(λ, µ), µ)

= B2,

similarly for µ→ δ(λ, µ). This proves (3) and hence the Lemma.

Corollary 4.4.1. Let δ0 > 0, then there exist λ1 ≥ λ0, µ1 ≤ µ0 such that for all λ ≥

λ1, µ ≤ µ1,

δ(λ, µ) ≤ δ0. (4.4.119)

Proof. Since δ(λ, µ0) → 0 as λ→ ∞, hence choose λ1 ≥ λ0 such that δ(λ1, µ0) ≤ δ0. Let

µ1 = µ0, then for λ ≥ λ1, µ ≤ µ1, we have,

δ(λ, µ) ≤ δ(λ1, µ) ≤ δ(λ1, µ1) ≤ δ0.

This proves the Corollary.

Let T > 0 and A1 < B1 ≤ C ≤ B2 < A2 and for i = 1, 2, define ai, li, 0 < δ0 < T by

f ′(ai) =
C − Ai

T
li(t) = Ai + tf ′(ai)

δ0 = min{l1(B1), l2(B2)}.

Let uλ1 and uµ2 be solutions of (4.1.2) with respective initial data uλ0 , u
µ
0 given by

u1,λ0 (x) =























a1 if x < A1,

λ if A1 < x < B1,

u0(x) if B1 < x < B2,

θf if x > B2.

(4.4.120)

u2,µ0 (x) =























θf if x < B1,

u0(x) if B1 < x < B2,

µ if B2 < x < A2,

a2 if x > A2.

(4.4.121)

From Lemma 4.4.8 and 4.4.9 we can choose λ0 = λ0(‖u0‖∞), µ0 = µ0(‖u0‖∞) such that
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for all λ ≥ λ0, µ ≤ µ0, t > 0,

L(t, λ) = R−(t, B1, u
1,λ
0 ) = R+(t, B1, u

1,λ
0 ) (4.4.122)

R(t, µ) = R−(t, B2, u
2,µ
0 ) = R+(t, B2, u

2,µ
0 ), (4.4.123)

and for 0 < t ≤ T, L and R satisfies the hypothesis (H1), (H2) of Lemma 4.4.10. Let

(c(λ, µ), δ(λ, µ)) be the point of intersection of L(t, λ) and R(t, µ) as defined in (4.4.114).

From Corollary 4.4.1, choose λ1 ≥ λ0, µ1 ≤ µ0 such that for all λ ≥ λ1, µ ≤ µ1

δ(λ, µ) < δ0. (4.4.124)

Lemma 4.4.11. With the above notation and let u(x, t, λ, µ) be the solution of (4.1.2)

with initial condition uλ,µ0 given by

uλ,µ0 (x) =































a1 if x < A1,

λ if A1 < x < B1,

u0 if B1 < x < B2,

µ if B2 < x < A2,

a2 if x > A2.

(4.4.125)

then for 0 < t < δ(λ, µ),

uλ1(x, t) = uµ2(x, t) if L(t, λ) < x < R(t, µ), (4.4.126)

u(x, t, λ, µ) =











uλ1(x, t) if x < L(t, λ),

uλ1(x, t) if L(t, λ) < x < R(t, µ),

uµ2(x, t) if x > R(t, µ).

(4.4.127)

Proof. Let γ = B1+B2

2
and define v1,λ0 (x) =

x
∫

γ

u1,λ0 (θ)dθ, v2,µ0 (x) =
x
∫

γ

u2,µ0 (θ)dθ,

vλ,µ0 (x) =
x
∫

γ

uλ,µ0 (θ)dθ. Then for x ∈ [B1, B2],

v1,λ0 (x) = v2,µ0 (x) =

x
∫

B1+B2
2

u0(θ)dθ. (4.4.128)

vλ,µ0 (x) =

{

v1,λ0 (x) if x < B1,

v2,µ0 (x) if x > B2.
(4.4.129)

Claim: Let v1,λ, v2,µ be the corresponding value functions associated by v1,λ0 , v2,µ0 defined
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in (4.4.4). Then

v1,λ(x, t) = infy∈[B1,B2]

{

v1,λ0 (y) + tf ∗

(

x− y

t

)}

, if L(t, λ) < x < B2 (4.4.130)

v2,µ(x, t) = infy∈[B1,B2]

{

v2,µ0 (y) + tf ∗

(

x− y

t

)}

, if B1 < x < R(t, λ). (4.4.131)

Let L(t, λ) < x < B2, then from (4.4.122) y±(x, t, u
1,λ
0 ) > B1. Suppose for some x0 ∈

(L(t, λ), B2), y+(x0, t, u
1,λ
0 ) > B2. Since v1,λ0 is differentiable in (B2,∞) and hence from

(4.4.13) for a.e. x ∈ (x0, B2), u
1,λ(x, t) = ∂v1,λ

∂x
(x, t) = θf and 0 = f ′(θf ) =

x−y+(x,t,u1,λ
0 )

t
.

Hence B2 > x = y+(x, t, u
1,λ
0 ) > B2, which is a contradiction. Therefore y±(x, t, u

1,λ
0 ) ∈

[B1, B2] and hence (4.4.130) follows. Similarly (4.4.131) holds .This proves the claim.

From (4.4.128), (4.4.130), (4.4.131), for L(t, λ) < x < R(t, µ), v1,λ(x, t) = v2,µ(x, t)

and hence for a.e. x, u1,λ(x, t) = ∂v1,λ

∂x
(x, t) = ∂v2,µ

∂x
(x, t) = u2,µ(x, t). This proves

(4.4.126). In view of (4.4.126), RHS of (4.4.127) is a solution of (4.1.2) with initial

data uλ,µ0 . Hence from uniqueness of solutions (4.4.127) follows. This proves the Lemma.

As an immediate consequence of Lemma 4.4.11 and (4.4.27), (4.4.122), (4.4.123) we

have

Corollary 4.4.2. Let λ ≥ λ1, µ ≤ µ1, then

R±(t, B1, u
λ,µ
0 ) = L(t, λ) 0 < t < δ(λ, µ),

R±(t, B2, u
λ,µ
0 ) = R(t, µ) 0 < t < δ(λ, µ),

R±(t, B1, u
λ,µ
0 ) = R±(t, B2, u

λ,µ
0 ), t ≥ δ(λ, µ).

Furthermore, denote S(t, λ, µ) = R+(t, B1, u
λ,µ
0 ) for t > δ(λ, µ),then (t, λ, µ) 7→ S(t, λ, µ)

is continuous and

u(x, t, λ, µ) =

{

u1,λ(x, t) if x < S(t, λ, µ),

u2,µ(x, t) if x > S(t, λ, µ),
(4.4.132)

Proof. Let (tk, λk, µk) → (t, λ, µ). From Lemma 4.4.10, δ(λk, µk) → δ(λ, µ) and hence

for t > δ(λ, µ)

|S(tk, λk, µk)− S(t, λ, µ)| ≤ |S(tk, λk, µk)− S(t, λk, µk)|

+ |S(t, λk, µk)− S(t, λ, µ)|.

From (4) of Lemma 4.4.2 and from (3) of Lemma 4.4.4, the right hand side tends to

zero as k → ∞. Let vλ,µ be the cost function associated to vλ,µ0 defined in (4.4.4). For

x < S(t, λ, µ), y±(x, t, u
λ,µ
0 ) < B1 and hence from (4.4.129), vλ,µ(x, t) = v1,λ(x, t). Hence

u(x, t, λ, µ) = ∂v1,λ

∂x
(x, t) = u1,λ(x, t). Similarly for x > S(t, λ, µ), u(x, t, λ, µ) = u2,µ(x, t),
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this proves (4.4.127) and hence the Lemma.

Lemma 4.4.12. Let λ ≥ λ1, µ ≤ µ1 and δ(λ, µ) < t0 ≤ T, then

(i). Suppose l1(t0) = S(t0, λ, µ). Then for all t0 < t < T,

S(t, λ, µ) < l1(t). (4.4.133)

u(x, t, λ, µ) =

{

a2 if 0 < t < T, x > l2(t)

a1 if x < min(l1(t), S(t, λ, µ)).
(4.4.134)

(ii). Suppose l2(t0) = S(t0, λ, µ). Then for all t0 < t < T,

S(t, λ, µ) > l2(t). (4.4.135)

u(x, t, λ, µ) =

{

a1 if 0 < t < T, x < l1(t),

a2 if x > max(l2(t), S(t, λ, µ)).
(4.4.136)

Furthermore there exist λ2 and µ2 such that S(T, λ2, µ2) = C and for 0 < t < T, u

satisfies

u(x, t, λ2, µ2) =

{

a1 if x < l1(t),

a2 if x > l2(t).
(4.4.137)

Proof. (See Figure 4.11) Let g(t) = min(l1(t), S(t, λ, µ)). Then we claim that for all

x < g(t),

u(x, t, λ, µ) = a1. (4.4.138)

Suppose x < l1(t) ≤ S(t, λ, µ), then from (4.4.132), (4.4.95) we have u(x, t, λ, µ) =

u1,λ(x, t) = a1. Hence assume that S(t, λ, µ) < l1(t). Suppose there exists x0 < S(t, λ, µ)

such that y+(x0, t, u
λ,µ
0 ) > A1, then for all x ∈ (x0, S(t, λ, µ)), A1 < y+(x, t,

uλ,µ0 ) < B1. Since u
λ,µ
0 is differentiable in (A1, B1) and hence from (4.4.13), for a.e. x ∈

(x0, S(t, λ, µ))

f ′(λ) = f ′(u(x, t, λ, µ)) =
x− y+(x, t, u

λ,µ
0 )

t

<
l1(t)− A1

t
= f ′(a1),

which is a contradiction since λ > a1. Hence y+(x, t, u
λ,µ
0 ) ≤ A1 for all x ∈ (x0, S(t, λ, µ

)). Suppose y+(x0, t, u
λ,µ
0 ) = A1. Then from (4.4.21) f ′(u(x, t)) = x−A1

t
for x ∈ (x0, S(t,
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λ, µ)). Let γx(θ) = A1 + θ
(

x−A1

t

)

< l1(θ) be the characteristic at (x, t), then from (c)

of (3) in Theorem 4.2.1, γx is also a characteristic at (γx(s), s) for 0 < s < t and

f ′(u(γx(s), s, λ, µ) = γx(s)−A1

s
< l1(s)−A1

s
= f ′(a1). Let s < δ(λ, µ), then l1(s) < L(s, λ)

and hence f ′(a1) > f ′(u(γx(s), s, λ, µ)) = f ′(a1) which is a contradiction. T his proves

the claim.

Let t0 > δ(λ, µ) such that l(t0) = S(t0, λ, µ). From (4.4.132) and Lemma 4.4.9 for

x > S(t0, λ, µ),

a2 = max(µ, a2) ≥ u(x, t0, λ, µ). (4.4.139)

Let t0 < t < T and w be the solution of (4.1.2) with initial data w0 at t0 is given by

w0(x) =

{

a1 if x < S(t0, λ, µ) = l1(t0),

a2 if x > S(t0, λ, µ) = l1(t0).

Then w admits a shock at l1(t0) and for t > t0 is given by

η(t) = l1(t0) +
f(a1)−f(a2)

a1−a2
(t− t0)

< l1(t0) + f ′(a1)(t− t0)

= A1 + f ′(a1)t

= l1(t),

(4.4.140)

since f is strictly convex and f ′(a1) > 0 > f ′(a2). From (4.4.138) and (4.4.139), w0(x) ≥

(B1,T) (C,T) (B2,T)

u=a1 u=a2

(B1,0)

u

u0(x) (B2,0) (A2,0) a2

l
l

R−

R+(t,   )

R−

=R+(t,   )

(t)
(t)

1

2

T

µ

µ

(t,   )λ

a1 (A1,0) λ µ

(t,   )λ

Fig. 4.11:

u(x, t0, λ, µ) and therefore from (4.4.29) and (4.4.30) we have for t > t0, l1(t) > η(t) ≥

S(t, λ, µ). This proves (4.4.133).

From (3) of Lemma 4.2.4, (λ, µ) → S(T, λ, µ) is a continuous function for λ ≥ λ1 and

µ ≤ µ1. From (4.4.94), choose a λ̃1 > λ1 such that S(T, λ̃1, µ1) > T and from (4.4.109)
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choose µ̃1 < µ1 such that S(T, λ1, µ̃1) < T. From Corrollary 4.4.1, S is continuous

in [λ1, λ̃1] × [µ1, µ̃1] and therefore there exists a (λ2, µ2) ∈ [λ1, λ̃1] × [µ1, µ̃1] such that

S(T, λ2, µ2) = C . Hence (4.4.137) follows from (4.4.136). This proves the Lemma.

Proof of Lemma 4.2.3. In Lemma 4.4.8, take A = α, B = β, l(t) = L1(t). Then from

(4.4.94), choose a λ0 large such that for all 0 < t ≤ T and for all λ ≥ λ0, l(t) < R(λ, t).

Then (4.2.23) follows from (4.4.95) and from Rankine-Hugoniot condition across l(t).

Similarly (4.2.24) follows from Lemma 4.4.9 and (4.4.107) and (4.4.108).

Proof of Lemma 4.2.4 This follows from Lemma 4.4.12 and (4.4.136) and Rankine-

Hugoniot conditions across l1(t) and l2(t).

Example 4.4.13. (Counter Example) : Let α = 0, xk < 0, lim
k→∞

xk = 0, λ > θf and

define u0, u
k
0 by

u0(x) =

{

θf if x < 0,

λ if x > 0.

uk0(x) =

{

θf if x < xk,

λ if x > xk.

Then the solution u and uk with respective initial datas u0 and uk0 are given by

u(x, t) =











θf if x < 0, t > 0,

(f ′)−1(x
t
) if 0 < x ≤ f ′(λ)t,

λ if x > f ′(λ)t,

then

R−(t, 0, u0) = 0.

uk(x, t) =











θf if x < xk, t > 0,

(f ′)−1(x−xk

t
) if xk < x < f ′(λ)t+ xk,

λ if x > f ′(λ)t+ xk,

then

R−(t, 0, u
k
0) = f ′(λ)t,

∫

R

|u0(x)− uk0(x)|dx =

0
∫

xk

(λ− θf ) = (λ− θf )|xk| → 0 as k → ∞.

But

lim
k→∞

R−(t, 0, u
k
0) = f ′(λ)t > 0 = R−(t, 0, u0).

Example 4.4.14. (Counter Example) : Let A1 = B1 = C1, A2 = B2 = C2, ρ(x) = x
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for x ∈ (C1, C2) and

u0(x) =

{

a2 if x > B2

a1 if x < B1,

where a2 < θf and θf is the point of minima of f.

Suppose there exists a solution (u, ū0) to problem (I), then by Lax-Oleinik formula

we have

ū0(x) = θf if x ∈ (B1, B2)

u(x, t) = θf if (x, t) ∈ (B1, B2)× (0, T ).

On the otherhand, since a2 < θf there is a shock wave entering the region (B1, B2)×(0, T )

at (B2, 0) which is a contradiction because the solution u = θf in this region.

4.5 Extensions:

Proposition 4.5.1. (Controllability of constant states):

1. In theorem 4.1.1, g(x) = m a constant if and only if m satisfies

C2 − A2

T
≤ f ′(m) ≤

C1 − A1

T
. (4.5.1)

2. In theorem 4.1.2, g(x0) = m a constant if and only m satisfies

f ′(m) ≥
C

T − δ
. (4.5.2)

3. In theorem 4.1.3, g1(x) = m1, g2(x) = m2 are constants. then g1, g2 is controllable

if and only if m1,m2 satisfies

f ′(m1) ≥
C − A1

T − δ
, f ′(m2) ≤

A2 − C

T − δ
. (4.5.3)

Proof. (1). g(x) = m if and only if ρ(x) = x− Tf ′(m) for all x ∈ (C1, C2). Hence from

(4.1.22) we have A1 ≤ ρ(x) ≤ A2 implies that x−A2

T
≤ f ′(m) ≤ x−A1

T
and hence (4.5.1)

holds.

(2). From (4.1.23) , g(x) = m if and only if δ ≤ ρ(x) ≤ T and hence δ ≤ x−Tf ′(m) ≤ T.

This implies (4.5.2). Similarly (4.5.3) follows from (4.1.25) and (4.1.26). This proves the

theorem.

(3). Follows similarly.
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4.5.1 Controllability on the boundary

As mentioned in the introduction problems (I) and (III) deal with the controllability at

time t = T. What about the controllability at x = A2. More precisely

Problem (IV): Let T > 0 and A1 < A2. Given u0 ∈ L∞(R), g ∈ L∞(0, T ) find

ū0 ∈ L∞((A1, A2)) and u a solution of (4.1.2) in Ω = (−∞, A2)× (0, T ) such that

f ′(u(A2, t)) = g(t) if 0 < t ≤ T, (4.5.4)

and

u(x, 0) =

{

u0(x) if x < A1

ū0(x) if A1 < x < A2.
(4.5.5)

Then we have the following

Theorem 4.5.1. : Let A1 < B < A2,∧ > 0 and ρ : [0, T ] → [B,A2] be a non increasing

left continuous function such that for all t ∈ [0, T ],

∣

∣

∣

∣

A2 − ρ(t)

t

∣

∣

∣

∣

≤ ∧, (4.5.6)

and f ′(g(t)) = A2−ρ(t)
t

. Then there exist (u, ū0) satisfying (4.5.4) and (4.5.5).

Proof. Proof follows on the same lines as in theorem (4.1.2) and hence only sketch the

main idea of the proof.

Step 1. This step is analogous to Lemma 4.2.1. Frist assume that ρ is discrete. That is

there exist a partition 0 = tn ≤ tn−1 ≤ . . . ≤ t0 = T and B = x0 < x1 < . . . < xn = A2.

Define ai and bi by

f ′(ai) =
A2 − xi

ti
, f ′(bi) =

A2 − xi−1

ti

si(t) = A2 + (t− ti)
f(ai)− f(bi)

ai − bi

f ′(ai) =
A2 − xi

ti
>
A2 − xi−1

ti
= f ′(bi).

Then

f ′(bi) =
A2 − xi−1

ti
<
A2 − xi−1

ti−1

= f ′(ai−1).

Hence ai > bi, ai+1 > bi and from convexity. f ′(ai) >
f(ai)−f(bi)

ai−bi
> f ′(bi). Therefore

xi = A2 − tf ′(ai) < A2 − tf(ai)−f(bi)
ai−bi

= si(0) < A2 − tf ′(bi)

= xi+1.
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Hence for 0 ≤ t ≤ T,

li(t) ≤ si(t) ≤ mi(t),

where li(t) = xi + f ′(ai)t,mi(t) = xi−1 + f ′(bi)t. Define ρn and gn by

ρn(t) = x0χ[T,t1] +
n
∑

i=1

xiχ(ti,ti+1](t)

f ′(gn(t)) = A2−ρn(t)
t

.

Define un in Ω = (−∞, A2)× (0, T ) by

f ′(un(x, t)) =























an if x ≤ ln(t),

ai if li(t) ≤ x < si(t),

bi if si(t) < x ≤ mi(t),

(f ′)−1(A2−xi

t
) if mi(t) ≤ x ≤ li−1(t),

then un is a solution of (4.1.2) in Ω satisfying

f ′(un(x, t)) = an if x ≤ ln(t) = B + t(A2−B
T

)

f ′(un(A2, t)) = x−ρn(t)
t

.

Let ūn,0(x) = un(x, 0) for B ≤ x ≤ A2, then as in the proof of Lemma 4.2.1 and from

(4.5.6), for a subsequence un → ũ in L1
ioc(Ω), un(·, 0) → ũ0 in L1((B,A2)), ρn → ρ a. e.

such that u satisfies (4.1.2) and for a.e. t,

f ′(ũ(A2, t)) =
A2 − ρ(t)

t
if t ∈ (0, T ), (4.5.7)

ũ(x, 0) = ũ0(x) if x ∈ (B,A2), (4.5.8)

f ′(ũ(x, t)) =
A2 −B

T
if x ≤ l0(t). (4.5.9)

Step 2. From Lemma 4.4.9 there exists a µ and a solution u1 of (4.1.2) in Ω satisfying

f ′(u1(x, t)) = a0 if x > l0(t), 0 ≤ t < T (4.5.10)

u1(x, 0) =











a0 if x > B,

µ if A1 < x < B,

u0(x) if x < A1.

Now define (u, ū0) in Ω by

u(x, t) =

{

ũ(x, t) if x > l1(t),

u1(x, t) if x < l0(t),
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ū0(x) =











u0(x) if x < A1,

µ if A1 < x < B,

ũ0(x) if x ∈ (B,A2).

Then (u, ū0) is the required solution to problem (IV).

4.5.2 Controllability of initial and boundary values:

All three problems deals with finding either initial data or purely boundary data. In fact

one can combine both and is as follows.

Problem V: Let u0 ∈ L∞, T > 0, 0 < C1 < C2, 0 < A, Let ρ1 : [0, C1] → [0, T ], ρ2 :

[C1, C2] → [0, A] be such that

(i) ρ1 is a non increasing right continuous function.

(ii) ρ2 is a non decreasing function.

Define g1 and g2 by

f ′(g1(x)) =
x

T − ρ1(x)
if x ∈ [0, C1]

f ′(g2(x)) =
x− ρ2(x)

T
if x ∈ [C1, C2].

Then the problem is to find b ∈ L∞(0, T ) and ū0 ∈ L∞(0, A) such that a solution u of

(4.1.2) in R× (0, T ) satisfying the following initial boundary data

u(0, t) = b(t) if 0 < t < T. (4.5.11)

u(x, 0) =

{

ū0(x) if x ∈ (0, A),

u0(x) if x ∈ (A, 0),
(4.5.12)

and

f ′(u(x, t)) =

{

g1(x) if x ∈ (0, C1),

g2(x) if x ∈ (C1, C2).
(4.5.13)

Theorem 4.5.2. Let λ > 0, 0 < A1 < A be given. Let ρ1 and ρ2, g1 and g2 be as above

and satisfying

0 ≤ ρ2(x) ≤ A1,

∣

∣

∣

∣

x

T − ρ1(x)

∣

∣

∣

∣

≤ ∧ (4.5.14)

then problem (V) admits a solution.

Idea of the proof. First get a free region by choosing λ large such that the solution

uλ of (4.1.2) in R× (0,∞) satisfying for 0 < t < T,

uλ(x, t) = a1 =
C2 − A1

T
, if x < A1 + tf ′(a1) = l1(t),
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uλ(x, 0) =











a1 if x < A1,

λ if A1 < x < A,

u0(x) if x > A.

Existence of uλ is guaranteed from Lemma 4.4.8. Let f ′(a0) = C1

T
and for 0 < t < T

define the free regions F1 and F2 by

F1 = {(x, t) : 0 < x < l0(t) = tf ′(a0)}, F2 = {(x, t) : l0(t) < x < l1(t) = A1 + tf ′(a1)}.

Since 0 ≤ ρ1(x) ≤ T for x ∈ (0, C1) and satisfying (4.5.14), therefore from Lemma

4.4.1, there exists a solution u1 of (4.1.2) in F1 and b ∈ L∞(0, T ) such that

u1(0, t) = b(t)

u1(x, T ) = g1(x) if x ∈ (0, C1)

u1(l0(t)−, t) = a0.

From Lemma 4.4.2, there exists a solution u2 of (4.1.2) in F2 and ũ0 ∈ L∞(0, A1) such

that
u2(x, T ) = g2(x) if x ∈ (C1, C2)

u2(x, 0) = ũ0(x) if x ∈ (0, A1)

u2(l0(t)+, t) = a0, u2(l1(t)−, t) = a1.

From RH conditions, glue u1, u2, uλ to a single solution u of (4.1.2) in 0,∞)× (0, T )

by

u(x, t) =











u1(x, t) if (x, t) ∈ F1,

u2(x, t) if (x, t) ∈ F2,

uλ(x, t) if x > l1(t),

and

u(x, 0) =











ũ0(x) if x ∈ (0, A1),

λ if x ∈ (A1, A),

u0(x) if x ∈ (A,∞).

Then (u, u(x, 0), b) is the required solution to problem (V) The same method allows to

generalize problem III also.
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Chapter 5

Optimal controllability for

scalar conservation laws with

convex flux

5.1 Introduction

Let f : R → R be C1, strictly convex function having super linear growth. That is

lim
|u|→∞

f(u)

|u|
= ∞. (5.1.1)

Let u0 ∈ L∞(R) and consider the scalar conservation law

ut + f(u)x = 0, if x ∈ R, t > 0,

u(x, 0) = u0(x).
(5.1.2)

In general, (5.1.2) does not admit classical solutions and hence look for weak solutions.

This problem was well studied and showed that (5.1.2) admits a unique weak solution

satisfying Lax-Olenik-Kruzkov entropy conditions. In the sequel we mean u a solution of

(5.1.2) if it is a weak solution satisfying entropy condition.

In [23] following optimal control problem associated to (5.1.2) had been considered.

Let k ∈ L2
loc(R) be a target function and A ⊂ L∞(R), a set of admissible controls. Let

u0, u be the assiciated solution of (5.1.2) and T > 0. Define the cost functional J̃ on A

by

J̃(u0) =

∞
∫

−∞

|u(x, T )− k(x)|2dx. (5.1.3)

Then the optimal control problem is to find an u0 ∈ A such that

J̃(u0) = min
wo∈A

J̃(w0). (5.1.4)

148



Under a suitable conditions on k and A, they prove that u0 exists. In general u0 is not

unique. The basic problem related to this is “to capture a minimizer”. It is a very hard

problem because the cost functional J̃ is highly nonlinear, non differentiable and non

convex. For the Burger’s equation, in [23], they have proposed a numerical scheme called

“alternating descent direction” by using the linearization technique developed in [15],[13].

In that work, convergence analysis is completely open.

In this chapter, we tackle this problem in a completely diffferent way. In view of the

non linearity, we modify the cost function J̃ to J so that the optimal control problem

reduces to the standard convex optimization problem via Lax-Oleinik explicit formula.

Then we use the backward construction introduced in [5] to obtain an optimal solution.

The novelty of this method is that it is constructive and easy to derive a numerical scheme

to capture an optimal solution.

5.2 Preliminaries

Before stating the main results, let us recall Hopf, Lax-Oleinik explicit formulas (see [31]).

Let u0 ∈ L∞(R) and f be as in the introduction. let f ∗ denote its convex dual defined

by

f ∗(p) = sup
q
{pq − f ∗(q)} (5.2.1)

then f ∗ is C1, superlinear growth and satisfies

f(p) = supq {pq − f ∗(q)},

f ∗(f ′(p)) = pf ′(p)− f(p),

f ∗′ = f ′−1.

(5.2.2)

Let b ∈ R and define v0 by

v0(x) =

x
∫

b

u0(y)dy, (5.2.3)

and the associated value function v is given by

v(x, t) = inf
y

{

v0(y) + tf ∗

(

x− y

t

)}

. (5.2.4)

Definition 5.2.1. (Characteristic): Define the characteristic set ch(x, t), extreme char-
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acteristics y±(x, t) by

ch(x, t) = {y : y is a minimizer in (5.2.4)} (5.2.5)

y−(x, t) = inf{y : y is in ch(x, t)} (5.2.6)

y+(x, t) = sup{y : y is in ch(x, t)}. (5.2.7)

Then we have the following theorem due to Hopf, Lax-Oleinik ( see [31]).

Theorem 5.2.2. (1). v is a uniformly Lipschitz continuous function with Lipschitz

constant depending only on ‖u0‖∞, f ∗ and satisfies the Hamilton-Jacobi equation

vt + f(vx) = 0 x ∈ R, t > 0, (5.2.8)

v(x, 0) = v0(x) (5.2.9)

in the sense of viscosity.

(2). ch(x, t) 6= φ and there exists M > 0 depending only on ‖u0‖∞ and f ∗ such that for

all (x, t) ∈ R× R+, y ∈ ch(x, t)
∣

∣

∣

∣

x− y

t

∣

∣

∣

∣

≤M. (5.2.10)

(3). For each time t, x 7→ y±(x, t) are non decreasing functions and for a.e. x,

y+(x, t) = y−(x, t).

(4). Let u = ∂v
∂x
, then u is the solution of (5.1.2) such that for a.e. x, t > 0,

f ′(u(x, t)) =
x− y+(x, t)

t
=
x− y−(x, t)

t
. (5.2.11)

Furthermore

u(x, t) = u0(y±(x, t)) (5.2.12)

if x is a point of differentiability of y±(x, t) and y±(x, t) is a point of differentiability for

v0.

As an immediate consequence of this theorem, we have the following Lemma on finite

speed of propogation.

Lemma 5.2.3. Let A1 < A2, u−, u+ ∈ R, ū0 ∈ L∞(A1, A2). Define u0 by

u0(x) =











u− if x < A1,

ū0(x) if A1 < x < A2,

u+ if x > A2.

(5.2.13)
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Then for t > 0, the solution u satisfies

u(x, t) =

{

u− if x < A1 −Mt,

u+ if x > A2 +Mt.
(5.2.14)

Proof. Let t > 0, then from (5.2.10), if x < A1 −Mt, then

−M ≤
x− y±(x, t)

t
<
A1 −Mt− y±(x, t)

t
.

Hence y±(x, t) < A1. Since v0 is differentiable in (−∞, A1) and hence from (5.2.12), at

the differentiable point x of y±(x, t), we have

u(x, t) = u0(y±(x, t)) = u−.

Similarly if x > A2 +Mt, then for a.e. x, u(x, t) = u+. This proves (5.2.14) and hence

the Lemma.

5.3 Main results

Let

f(θf ) = min
θ∈R

f(θ). (5.3.1)

Define

1. Admissible sets A and B :

A = {u0 ∈ L∞(R) : u0(x) = θf outside a compact set} (5.3.2)

B = {ρ ∈ L∞
loc(R) : (i) ρ is a non decreasing function

(ii) ρ(x) = x outside a compact set}.
(5.3.3)

For each N > 0, define

BN = {ρ ∈ B : ρ(x) = x for |x| > N}. (5.3.4)

2. Target function k : Let I = (C1, C2) and k be a measurable function such that

k(x) = θf if x /∈ (C1, C2), (5.3.5)

f ′(k(x)) ∈ L2(I). (5.3.6)

3. Cost function J : Let k be a target function and u0 ∈ A. Let u(x, t) be the

151



corresponding solution of (5.1.2) with initial data u0. Let T > 0 and define the

modified cost function

J(u0) =

∫

R

|f ′(u(x, T ))− f ′(k(x))|2dx. (5.3.7)

Then we have the following proposition.

Proposition 5.3.1. J is well defined.

Proof. Choose A1 < C1 < C2 < A2 such that u0(x) = θf for x /∈ (A1, A2). Then from

Lemma 5.2.3, there exists an M > 0 depending only on ‖u0‖∞ and f ∗ such that

u(x, T ) = θf for x /∈ [A1 −MT,A2 +MT ] (5.3.8)

and hence f ′(u(x, T )) = f ′(θf ) = 0. Hypothesis on k implies for x /∈ [C1, C2]

f ′(k(x)) = f ′(θf ) = 0.

Hence

J(u0) =

A2+MT
∫

A1−MT

|f ′(u(x, T ))− f ′(k(x))|2dx. (5.3.9)

This proves the proposition.

Optimal control problem : Given A, k as above, find a ũ0 ∈ A such that

J(ũ0) = min
u0∈A

J(u0) (5.3.10)

and if the minimizer exists, then device a scheme to capture it.

Then we have the following main result.

Theorem 5.3.1. There exists a minimizer for (5.3.10) which can be captured by using

the standard convex optimization problem in a Hilbert space and backward construction.

In order to prove this Theorem, first we reduce the problem to a standard projection

Theorem in a Hilbert space and then use the backward construction.

Reduction to a projection on a convex set : Let y+(x, t) be the right extreme

characteristic corresponding to the solution u. Let

ρ(x) = y+(x, T ), x ∈ R,

then ρ is a non decreasing function and from (5.2.11) for a.e. x,

f ′(u(x, t)) =
x− ρ(x)

T
. (5.3.11)
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Since u(x, T ) = θf for x /∈ [A1 −MT,A2 +MT ], hence ρ(x) = x for x /∈ [A1 −MT,A2 +

MT ] and

J(u0) =

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

=

A2+MT
∫

A1−MT

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx.

(5.3.12)

Now define J̄ on B by

J̄(ρ) =

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx. (5.3.13)

Then from (5.3.11) to (5.3.13) we have

inf
ρ∈B

J̄(ρ) ≤ inf
u0∈A

J(u0). (5.3.14)

Lemma 5.3.2. Let

B̃ = {ρ ∈ B : ρ(x) = x if x /∈ [min(C1, ρ(C1)),max(C2, ρ(C2))]}.

Then

inf
ρ∈B

J̄(ρ) = inf
ρ̃∈B̃

J̄(ρ̃). (5.3.15)

Proof. Since B̃ ⊂ B, hence

inf
ρ̃∈B̃

J̄(ρ̃) ≥ inf
ρ∈B

J̄(ρ). (5.3.16)

Let ρ ∈ B and define ρ̃ by

ρ̃(x) =























x if x /∈ [min(C1, ρ(C1)),max(C2, ρ(C2))],

ρ(C1) if min(C1, ρ(C1)) ≤ x < C1

ρ(x) if x ∈ [C1, C2]

ρ(C2) if C2 < x < max(C2, ρ(C2)).
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Then

J̄(ρ̃) =

max(C2,ρ(C2))
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ̃(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

=

C2
∫

C1

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx+

C1
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ(C1)

T

∣

∣

∣

∣

2

dx

+

max(C2,ρ(C2))
∫

C2

∣

∣

∣

∣

x− ρ(C2)

T

∣

∣

∣

∣

2

dx.

Since ρ(x) ≤ ρ(C1) for x ∈ (min(C1, ρ(C1)), C1) and ρ(x) ≥ ρ(C2) for x ∈ (C2,

max(C2, ρ(C2))), hence

J̄(ρ̃) ≤

C2
∫

C1

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

+

C1
∫

min(C1,ρ(C1))

∣

∣

∣

∣

x− ρ(x)

T

∣

∣

∣

∣

2

dx+

max(C2,ρ(C2))
∫

C2

∣

∣

∣

∣

x− ρ(x)

T

∣

∣

∣

∣

2

dx

≤

∞
∫

−∞

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

= J̄(ρ).

Hence

inf
ρ̃∈B̃

J̄(ρ̃) ≤ inf
ρ∈B

J(ρ).

This proves the Lemma.

Lemma 5.3.3. Let

C̃1 = C1 −
(

3T 2
(

‖f ′(k)‖22 + 1
))1/3

C̃2 = C2 +
(

3T 2
(

‖f ′(k)‖22 + 1
))1/3

B̃0 = {ρ ∈ B̃ : ρ(x) = x for x /∈ [C̃1, C̃2]},

then there exists a unique ρ̃0 ∈ B̃0 such that

J̄(ρ̃0) = min
ρ̃∈B̃0

J̄(ρ̃) = min
ρ∈B

J̄(ρ).
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Proof. Let ρk ∈ B̃ be such that

lim
k→∞

J̄(ρ̃k) = inf
h̃∈B̃

J̄(ρ̃).

Let η(x) = x for all x ∈ R, then η ∈ B̃ and

‖f ′(k)‖22 = J̄(η) ≥ lim
k→∞

J̄(ρ̃k)

≥ lim
k→∞











C1
∫

min(C1,ρk(C1))

∣

∣

∣

∣

x− ρk(x)

T

∣

∣

∣

∣

2

dx+

max(C2,ρk(C2))
∫

C2

∣

∣

∣

∣

x− ρk(x)

T

∣

∣

∣

∣

2

dx











.

Since

ρk(x) =

{

ρk(C1) if x ∈ (min(C1, ρk(C1)), C1),

ρk(C2) if x ∈ (C2,max(C2, ρk(C2)))

and hence ther exists k0 > 0 such that for all k ≥ k0,

3T 2
(

‖f ′(k)‖22 + 1
)

≥ 3T 2

C1
∫

min(C1,ρk(C1))

(

x− ρk(C1)

T

)2

dx

+ 3T 2

max(C2,ρk(C2))
∫

C2

(

x− ρk(C2)

T

)2

= (C1 −min(C1, ρk(C1)))
3 + (max(C2, ρk(C2))− C2)

3 .

Hence

min(C1, ρk(C1)) ≥ C̃1

max(C2, ρk(C2)) ≤ C̃2.

This implies that ρk(C1), ρk(C2) ∈ [C̃1, C̃2] and hence

inf
ρ̃∈B̃

J̄(ρ̃) = inf
ρ̃∈B̃0

J̄(ρ̃).

Let

H = L2(C̃1, C̃2), K = {ρ ∈ B̃ : C̃1 ≤ min(C1, ρ(C1)) ≤ max(C2, ρ(C2)) ≤ C̃2}.
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Then K is a closed convex set in H and hence from the projection Theorem in a Hilbert

space, there exists a unique ρ̃0 ∈ K such that

J̄(ρ̃0) = min
ρ̃∈K

J̄(ρ̃).

This proves the Lemma.

In order to prove the main results, we need the following backword construction

Lemma which is proved in [5],[2]. For the sake of completeness we prove this Lemma

after completing the proof of the theorem.

Lemma 5.3.4. (Backward construction): Let D1 < D2, A1 < A2 and ρ : [D1, D2] →

[A1, A2] be a non decreasing function. Define a1 and a2 by

f ′(a1) =
D1 − A1

T
, f ′(a2) =

D2 − A2

T
.

Then there exists a ū0 ∈ L∞(A1, A2) and th solution u of (5.1.2) with initial data u0 given

by

u0(x) =











a1 if x < A1,

ū0(x) if A1 < x < A2,

a2 if x > A2

(5.3.17)

satisfies

f ′(u(x, T )) =
x− ρ(x)

T
if x ∈ [D1, D2] (5.3.18)

u(x, t) =

{

a1 if x < A1 + tf ′(a1), t < T

a2 if x > A2 + tf ′(a2), t < T.
(5.3.19)

Proof of Theorem 5.3.1 From Lemma 5.3.3, there exists a unique minimizer ρ̃0 ∈ B̃0

for J̄ . Take D1 = A1 = C̃1, D2 = A2 = C̃2, ρ = ρ̃0, then ρ̃0 satisfies the hypothesis of

Lemma 5.3.4. Hence there exists an initial data u0 and the corresponding solution u such

that

f ′(u(x, T )) =
x− ρ̃0(x)

T
if x ∈ [C̃1, C̃2],

u0(x) = θf if x /∈ [C̃1, C̃2].

Since f ′(a1) = f ′(a2) = 0. Therefore u0 ∈ A and hence from (5.3.14)

inf
w0∈A

J(w0) ≤ J(u0) = J̄(ρ̃0) = inf
ρ∈B

J̄(ρ) ≤ inf
w0∈A

J(w0).

Hence u0 is an optimal solution to the problem and this proves the Theorem.
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Initial Value problem partitions: (See Figure 5.1) Let I = (A1, A2), J = (D1, D2).

Let P = {y0, y1 . . . yn, x0, x1 . . . xn} is called a partition of (I, J) if

A1 = y0 < y1 < . . . < yn = A2, D1 = x0 ≤ x1 ≤ . . . ≤ xn = D2.

Let P (I, J) = {P : P is a partition of (I, J)}. For a partition P denote ai(P ), si(P ),

bi(P ), ai(t, P ), si(t, P ), bi(t, P ) by

f
′

(ai(p)) =
xi − yi
T

,

f
′

(bi(P )) =
xi − yi+1

T
,

si(P ) =
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
,

ai(t, P ) = xi + f
′

(ai(P ))(t− T ),

bi(t, P ) = xi + f
′

(bi(P ))(t− T ),

si(t, P ) = xi + si(P )(t− T ).

x1 xi xi+1 xn 2

A1=y0 y1
yi

s i
(t

,P
)

a i(
t,
P

)

b
i(t
,P

)

a i+
1
(t

,P
)

yn= A2

ai(P) bi(p)

(P)α
i

1=x0 t=T

y i+1

t=0

D =D

Fig. 5.1:

Clearly ai(0, P ) = yi, bi(0, P ) = yi+1.

Lemma 5.3.5. Let αi(P ) = si(0, P ), then for 0 ≤ t ≤ T,

bi(P ) < ai(p), bi(P ) ≤ ai+1(P ), (5.3.20)

yi < αi(P ) < yi+1, (5.3.21)

ai(t, P ) < si(t, P ) < bi(t, P ) for 0 < t < T. (5.3.22)
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Proof. Since yi < yi+1, hence

f
′

(ai(P )) =
xi − yi
T

>
xi − yi+1

T
= f

′

(bi(P )),

therefore ai(P ) > bi(P ). By convexity of f

f
′

(ai(p)) >
f(ai(P ))− f(bi(P ))

ai(P )− bi(P )
> f

′

(bi(P )),

xi − yi
T

>
xi − αi(P )

T
>
xi − yi+1

t
,

and hence yi < αi(P ) < yi+1. Since xi ≤ xi+1 and hence f
′

(bi(P )) =
xi − yi+1

T
≤

xi+1 − yi+1

T
= f

′

(ai+1(P )). This implies bi(P ) ≤ ai+1(P ). This proves (5.3.20) to (5.3.22)

and hence the Lemma.

Let Ωi(P ) = {(x, t) : 0 < t < T, ai(t, P ) < x < ai+1(t, P )}. In view of Lemma 5.3.5,

let ui(x, t, P ) be a solution of (5.1.2) in Ωi(P ) defined by

ui(x, t, P ) =



















ai(P ) if ai(t, P ) < x < si(t, P ),

bi(P ) if si(t, P ) < x < bi(t, P ),

(f
′

)−1

(

x− yi+1

t

)

if bi(t, P ) ≤ x < ai+1(t, P ).

(5.3.23)

Hence ui(ai+1(t, P )−, t, P ) = ai+1(P ) = ui+1(ai+1(t, P )+, t, P ). Therefore define the so-

lution u(x, t, P ) of (5.1.2) in R× (0, T ) by

u(x, t, P ) =











ui(x, t, P ) if (x, t) ∈ Ωi(P ),

a0(P ) if x < a0(t, P ),

an(P ) if x > an(t, P ),

(5.3.24)

satisfying the initial condition

u(x, P ) =











u0(x, P ) if x ∈ (A1, A2),

a0(P ) if x < A1,

an(P ) if x > A2,

(5.3.25)

where u0 is given by

u0(x, P ) =

{

ai(P ) if yi < x < αi(P ),

bi(P ) if αi(P ) < x < yi+1.
(5.3.26)
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Furthermore at t = T, x ∈ (D1, D2), u satisfies

f ′(u(x, T, P )) =
n−1
∑

i=0

χ[xi,xi+1)(x)

(

x− yi+1

T

)

. (5.3.27)

Next we calculate the L∞ and TV bounds of u0. First observe that f
′(a0(P )) =

D1 − A1

T

and f ′(an(P )) =
D2 − A2

T
, hence a0(P ), an(P ), are independent of P and denote

a0 = a0(P ), an = an(P ),

a0(t) = a0(t, P ), an(t) = an(t, P ).

Let M =
max(D2, A2)−min(D1, A1)

T
, then |f ′(ai(P )| ≤

∣

∣

∣

∣

xi − yi
T − δ

∣

∣

∣

∣

≤M, |f ′(bi(P ))|

≤M and hence

|f ′(u0(x, p))| ≤M. (5.3.28)

TV (f
′

(u0(·, P )) =
n
∑

i=0

|f
′

(ai(P ))− f
′

(bi(P ))|

= +
n−1
∑

i=0

∣

∣f
′

(bi(P ))− f
′

(ai+1(P ))
∣

∣

=
n
∑

i=0

∣

∣

∣

∣

xi − yi
T

−
xi − yi+1

T

∣

∣

∣

∣

+
n−1
∑

i=0

∣

∣

∣

∣

xi − yi+1

T
−
xi+1 − yi+1

T

∣

∣

∣

∣

=
1

T
(A2 − A1) +

1

T
(D2 −D1).

(5.3.29)

Since |f ′(θ)| → ∞ as |θ| → ∞ and hence we have

Lemma 5.3.6. There exists a constant M1 independent of P such that

‖u0(·, P )‖∞ + TV (f ′(u0(·, P )) ≤M1. (5.3.30)

Furthermore, for φ ∈ C∞
c (R× [0, T ]) we have

f
∫

−f

T
∫

0

(u(x, t, P )φt + f(u(x, t, P ))φx)dxdt +

∞
∫

−∞

u0(x, P )φ(x, 0)dx

=

∞
∫

−∞

u(x, T, P )φ(x, T )dx.

(5.3.31)

Let ρ be a strictly increasing continuous function. Let n ≥ 1 and A1 = y0 < y1 <

. . . < yn = A2 such that |yi − yi+1| ≤
1
n
. Let k be such that {x : ρ(x) < yk−1} = φ and

{x : ρ(x) < yk} 6= φ. Define xi = A1 if i ≤ k − 1 and for i ≥ k,

{x : ρ(x) < yi} = [A1, xi).
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Let Pn = {y0, y1 . . . yn, x0, x1 . . . xn} be the corresponding partition and define

ρ(x, Pn) =
n−2
∑

i=0

yiχ[xi,xi+1)(x) + yn−1χ[xn−1,D2](x).

Clearly

|ρ(x)− ρ(x, Pn)| ≤
1

n
,

and hence ρ(x, Pn) → ρ(x) uniformly as n→ ∞.

Proof of Lemma 5.3.4 First assume that ρ is a strictly increasing continuous function.

For n ≥ 1, let Pn and ρn(x) = ρ(x, Pn) be constructed as above. Let un(x, t) = u(x, t, Pn)

as in (5.3.21) a solution of (5.1.2) with initial data u0,n(x) = u0(x, δ, Pn) as in (5.3.22).

From (5.3.27), {f ′(u0,n)} is bounded in BVloc(R) and hence by Helly’s theorem, there

exists a subsequence still denoted by {f ′(u0,n)} converges to f ′(u0) in L
1
loc and a.e. Since

u0,n is uniformly bounded and f ′ is strictly increasing function, therefore u0,n → u0 in

L1
loc. Hence from L1

loc contractivity, un converges to ũ a solution of (5.1.2) a.e. (x, t) ∈

R×(0, T ) with initial data u0. Since f
′

(a0(P )) =
D1 − A1

T
, f

′

(an(P )) =
D2 − A2

T
, hence if

ũ0 = ũ0|[A1,A2], then from Rankine-Hugoniot condition across a0(t), an(t), (ũ, ũ0) satisfies

(5.3.17) to (5.3.19) . At t = T,

f
′

(un(x, T )) =
x− ρn(x)

T
, if x ∈ [D1, D2],

and hence letting n→ ∞ and from (5.3.31) for a.e. x ∈ (D1, D2),

f
′

(u(x, T )) =
x− ρ(x)

T
.

Then (ũ, ũ0) is a required solution. For general ρ, let ρn be a strictly increasing continuous

function with values in (A1, A2) and converging to ρ in L1 and a.e. Let (ũn, ũn,0) be the

corresponding solutions satisfying (5.3.17) to (5.3.19) . Hence from Helly’s theorem, there

exists a subsequence still denoted by ũn,0 converging to ũ0 in L
1
loc and a.e. Therefore from

L1
loc contractivity, for a subsequence still denoted by ũn converging to ũ a.e to a solution

of (5.1.2) satisfying (5.3.17) to (5.3.19) .

For a.e. x ∈ (D1, D2) we have

f
′

(ũ(x, t)) = lim
n→∞

f
′

(ũn(x, T )) = lim
n→∞

x− ρn(x)

T
=
x− ρ(x)

T
.

This proves the Lemma.
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5.4 Generalization

Remark 5.4.1. In the optimal Control Problem: condition on k can be relaxed and is

as follows. We can assume that for x 6∈ (C1, C2)

k(x) =

{

α1 if x < C1,

α2 if x > C2.

Then the class B is defined as follows. Let ρ ∈ L∞
loc(R) be such that

(i). ρ is non decreasing function

(ii). There exist A1 < A2 such that

ρ(x) =

{

x− α1T if x < A1,

x− α2T if x > A2.

Let

B = {ρ; ρ satisfying (i) and (ii) }.

Then by the similar arguments one can show that there exists a unique ρ̃ ∈ B such

that

J(ρ̃) = inf
ρ∈B

J(ρ). (5.4.1)

In view of the controllability of initial and boundary value problems, we can extend

the optimal controllability for the boundary value problem. To illustrate this, let us

consider one sided initial boundary value problem. Let 0 < T, 0 < C, and k ∈ L2
loc(R)

such that k(x) = θf for x large. Let u0 ∈ L∞, b ∈ L∞(0, T ) and u be the solution of (1.2)

in Ω = (0,∞)× (0, T ) with

u(t, 0) = b(t) 0 < t < T,

u(x, 0) = u0(x) x > 0,

J(u0, b) =

∫

R

|f ′(u(x, T )− f ′(k(x))|2dx.

In order to make integral finite assume u0(x) = θf for x large. Hence define

A = {(u0, b) ∈ L∞(R)× L∞(0, T );u0(x) = θf , for large x}.

Then optimal control problem is to find (ũ0, b̃) such that

J(ũ0, b̃) = inf
(u0,b)∈A

J(u0, b). (5.4.2)
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From Joseph-Gowda [40] and Lax - Olienik [31] formulas for any (u0, b) ∈ A, there exist

0 ≤ C1 ≤ C and ρ1 : [0, C1] → [0, T ] a non increasing function and ρ2 : [C1, C] → R a

non decreasing function such that

(i). ρ2(x) = x for x large and

f ′(u(x, T )) =
x− ρ2(x)

T
if x ∈ (C1, C).

(ii). f ′(u(x, t)) = x
T−ρ1(x)

, 0 < x < C1 and

∣

∣

∣

∣

x

T − ρ(x)

∣

∣

∣

∣

≤ ∧,

where ∧ is a constant depending on the Lipschitz constant of f on [−‖b‖∞, ‖b‖∞].

Therefore

J(u0, b) =

C1
∫

0

∣

∣

∣

∣

x

T − ρ1(x)
− f ′(k(x))

∣

∣

∣

∣

2

dx+

C
∫

C1

∣

∣

∣

∣

x− ρ2(x)

T
− f ′(k(x))

∣

∣

∣

∣

2

dx

= J1(ρ1, C1) + J2(ρ2, C1)

= J(ρ1, ρ2, C1)

m = inf
u0,b

J(u0, b) = inf
ρ1,ρ2,C1

{J1(ρ1, C1) + J2(ρ2, C1)}.

Let (ρ1,k, ρ2,k, C1,k) be a minimizing sequence. As in the previous case, it follows that

there exists A > 0, such that ρ2,k(x) = x for all k and x ≥ A. Hence {ρik} are uniformly

bounded monotone functions, therefore from Helly’s theorem there exists a subsequence

still denoted by {ρ1,k, ρ2,kCk} converges (ρ̃1, ρ̃2, C̃) for all x ∈ [0, C]. Hence by Fatau’s

Lemma (ρ̃1, ρ̃2, C̃) is an optimal solution and from [2] we can construct the solution (ũ0, b̃).

If C̃ is known, then ρ̃1 and ρ̃2 can be obtained from the L2 - projection as follows:

Let η1(x) =
x

T−ρ1(x)
then x

η1
≤ T, η1(x)

x
is a non increasing right continuous function. Let

η : [0, C] → R be function such that

1. η(x)
x

is non increasing right, continuous function in [0, C̃] and x
η(x)

≤ T in [0, C̃].

2. η|(C̃,C) is non decreasing function.

Let

KN = {η; η satisfying (1) , (2) and 0 ≤ η ≤ N}.
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Then KN is a closed convex set in L2((0, C)) and let η̃k ∈ KN such that

J(η̃) = inf
η∈KN

J(η) = inf{

C̃
∫

0

|η(x)− f ′(k(x))|2dx+

C
∫

C̃

|
x− η(x)

T
− f ′(k(x))|2dx}.

Then for large η, if we define

ρ̃1(x) = T −
x

η̃(x)
for x ∈ (0, C̃)

ρ̃2, (x) = η̃(x) for x ∈ (C̃1, C)

then (ρ̃1, ρ̃2, C̃) is the optimal solution.

Let 1 < p < ∞ and k be a measurable function satisfying (5.3.5) and f ′(k) ∈ Lp(R).

Let u0 ∈ A and define the cost functional

Jp(u0) =

∫

R

|f ′(u(x, T ))− f ′(k(x))|pdx.

Then from Lax-Oleinik formula, there exists a ρ ∈ B such that

Jp(u0) = J̄p(ρ) =

∫

R

∣

∣

∣

∣

x− ρ(x)

T
− f ′(k(x))

∣

∣

∣

∣

p

dx

and

inf
u0∈A

Jp(u0) = inf
ρ∈B

J̄p(ρ).

Then as in Lemma 5.3.3

inf
ρ∈B

J̄p(ρ) = inf
ρ∈B̃0

J̄p(ρ).

and B̃0 ⊂ Lp([C̃1, C̃2]) is a closed convex set. Hence from uniform convexity. there exists

a unique ρ̃0 ∈ B̃0 such that

J̄p(ρ̃0) = inf
u0∈B̃0

J̄p(ρ).
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Chapter 6

Existence and non-existence of TV

bounds for Scalar Conservation

Laws with discontinuous flux

6.1 Introduction

1 Let I ⊂ R be an open interval. Let u0 : R → I, F : R×I → R be measurable functions.

We consider the following equation of conservation law

ut + F (x, u)x = 0 x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(6.1.1)

In general (6.1.1) may not admit classical solutions even for smooth F and u0 and it is

well known that even if weak solutions exist, it may not be unique.

This problem has been studied extensively over the last several decades, when the

flux F is Lipschitz continuous and u0 is of bounded variation. One has to impose an

extra criteria called “Entropy condition” to obtain the physically relevant solution. For

achieving this goal, the following three methods are used:

1. Hamilton-Jacobi method (due to Lax and Olenik [31]): Basic assumption is

that F (x, u) = f(u) which is strictly convex C2-functions. Let v0(x) be the primitive of

u0 and consider the following Hamilton-Jacobi equation

vt + f(vx) = 0 x ∈ R, t > 0

v(x, 0) = v0(x) x ∈ R.
(6.1.2)

Then this problem admits a unique viscosity solution v which can be explicitly calculated

1This chapter is taken from the work [1] and the contents are also added in the thesis of Rajib Dutta
as he is one of the coauthor of [1]
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from the Hopf formula or from the parabolic regularization

vt + f(vx) = ǫvxx x ∈ R, t > 0

v(x, 0) = v0(x) x ∈ R,
(6.1.3)

and then letting ǫ→ 0. This v turns out to be Lipschitz continuous function and u = ∂v
∂x

is the entropy solution of (6.1.1) with TV(u(., t)) ≤ TV(u0) for all t > 0. In the case of

initial-boundary value problem in the quarter plane explicit formula obtained in [40].

2. Vanishing viscosity method (due to Kruzkov [46], [38]): Here F is assumed to

be Lipschitz continuous function in x and u and use directly the parabolic regularizations

to (6.1.1), i.e.

ut + F (x, u)x = ǫuxx x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R,
(6.1.4)

and let ǫ → 0 to obtain a unique entropy solution with TV(u(., t)) is bounded for all

t > 0 whenever TV(u0) is finite.

3. Numerical schemes: Here F (x, u) = f(u) is Lipschitz. Any monotone, conservative

and consistent scheme converges to a unique entropy solution, (for details see [36]), having

TV(u(., t)) ≤ TV(u0) <∞ for all t > 0.

Next consider the case when the regularity on F fails. Suppose F (x, u) = f(u) is

continuous but not Lipschitz continuous. Then the finite domain of dependence fails

and this case was considered by Kruzkov [47]. They defined the concept of generalized

entropy condition and proved that the solution is unique.

Now suppose the regularity of F in the space variable fails. Assume that F has a

single point of discontinuity at x = 0 and is given by

F (x, u) = H(x)f(u) + (1−H(x))g(u) (6.1.5)

where f and g are Lipschitz continuous functions and H is the Heaviside function. This

equation (6.1.1) decomposes into two equations

ut + f(u)x = 0 x > 0, t > 0

ut + g(u)x = 0 x < 0, t > 0

(6.1.6)

and if u+(t) = u(0+, t), u−(t) = u(0−, t) exist, then u±(t) satisfies Rankine-Hugoniot

condition at the interface x = 0 given by

f(u+(t)) = g(u−(t)). (6.1.7)

A solution to (6.1.1) by definition a weak solution to (6.1.1) satisfying entropy condition
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of Lax-Olenik, Kruzkov away from the interface x = 0.

Equations of the above type arise while dealing with fluid flows in heterogeneous

media like in two phase flow in a porous medium with changing rock types that arise

in the petroleum industry. In this case, the discontinuities can be on account of the

change in permeabilities due to changing rock types. Equations of the type (6.1.1) with

discontinuous flux also arise while modeling gravity settling in an ideal clarifier thickener

unit used in waste water treatment plants. See [17] for details. Here, discontinuities are

on account of the separation of the flow into bulk upward and downward flows at the

feed inlet and also due to the presence of singular source terms. Other examples are in

the modeling of traffic on highways with changing surface conditions (see [53]) and in ion

etching in the semiconductor industry (see [55]).

A simple example by taking f = 0, g = 1, shows that (6.1.6)-(6.1.7), does not admit

any solutions. Hence for existence, one need to put an extra assumption, namely that f

and g coincide at least two points. Under this assumption Gimse-Risebro [35, 34], Diehl

[30] obtained a solution for Riemann data. Main questions are existence of solutions for

arbitrary data and unicity.

In order to understand the problem clearly, assume that f and g are strictly convex

C2-function. Now regularize H to Hδ, a smooth function and let F δ(x, u) = Hδ(x)f(u)+

(1 − Hδ(x))g(u). Then F δ is Lipschitz continuous function. Let u0 ∈ BV ∩ L∞ and

consider two problems

(i). Vanishing viscosity for Hamilton-Jacobi:

vt + F δ(x, vx) = ǫvxx x ∈ R, t > 0

v(x, 0) = v0(x) =
∫ x

0
u0(θ)dθ, x ∈ R

(6.1.8)

and

(ii). Vanishing viscosity for conservation law:

ut + F δ(x, u)x = ǫuxx x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(6.1.9)

Let vǫ,δ be the unique solution of (6.1.8). Then letting ǫ → 0, δ → 0 Ostrov [54] showed

that vǫ,δ converges to a unique viscosity solution v of

vt + F (x, vx) = 0 x ∈ R, t > 0

v(x, 0) = v0(x) x ∈ R.
(6.1.10)

Independently, (6.1.10) has been studied by Adimurthi-Gowda [6] and obtained an explicit

formula for the viscosity solution. Furthermore it was shown that u = ∂v
∂x

is a solution of
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(6.1.1) satisfying an interface entropy condition

meas
{

t : f ′(u+(t)) > 0, g′(u−(t)) < 0
}

= 0 (6.1.11)

and Lax-Olenik entropy condition for x 6= 0. That is undercompressive waves at the

interface are not allowed. The solution so obtained form an L1-contractive semi-group.

Moreover under some mild regularity (see Remark 6.2.1), the solutions of (6.1.1) satisfying

(6.1.11) is unique.

At the conservation law level, this problem was studied by Karlsen, Risebro, Tow-

ers [42] and showed that for ǫ → 0, δ → 0, solution of (6.1.9) converges to a solution

of (6.1.1) and it does not satisfy the condition (6.1.11). In general, these solutions ad-

mit undercompressive waves at the interface x = 0 which is not allowed in the classical

theory of Lax-Olenik and Kruzkov (see, [46] ). From the model coming from capillary

diffusion, Kaasschieter [41] had studied this problem by using a different diffusion term

than the one in (6.1.9) which captured the better physics of that situation. He used trav-

elling wave method and also arrived to the conclusion that the solution satisfy interface

entropy condition (6.1.11). For example, in some cases like clarifier-thickner model, un-

dercompressive waves are allowed at the interface [18, 19, 20, 17, 21, 42, 27, 29, 28, 43]. In

view of this discrepancy, a general theory known as (A,B) interface entropy theory was

proposed in [8], [9], [22]. It was first shown that (A,B)-entropy solution exists and forms

an L1-contractive semi-group and is unique. For the strictly convex case, in [9] explicit

Lax-Olenik type formulas are established satisfying “(A,B) interface entropy condition”.

Using this, a numerical scheme of Godunov type is derived in [7], [10]. This scheme is

conservative, monotone but not consistent. One cannot expect total variation diminishing

property as a constant data gives rise to a non-constant solution. Without total variation

bound studying the convergence of the scheme was difficult. This was overcome by

singular mapping technique used in [50], [61], [7], [45], [8]. Since the schemes are monotone

and conservative and hence by Crandall-Tartar’s Lemma, the solution mapping is L1-

contractive. From this, it was shown (see, [16]) that the scheme is of total variation

bounded away from the interface and this gives an alternative method to prove the

convergence of the scheme. Both the methods does not give any information at the

interface x = 0. Now the open question was

“Does the (A,B) entropy solution admit a total variation bound?”

It is easy to see that if the fluxes f and g are Lipschitz continuous and for almost

everywhere modulus of their derivatives are bounded below by a positive constant then

the associated singular mappings are invertible and Lipschitz continuous, this implies

that (A,B) entropy solutions are of bounded variation. In view of this observation, it is

expected that the total variation bounds fail if one of A or B is a critical point of f or g

respectively. Aim of this chapter is to show indeed this is the case.
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Basically we assume that f and g are strictly convex and of super linear growth. We

use the explicit formula for the (A,B) entropy solution constructed in [9] and show that

if (A,B) are away from the critical points, then the solution is of total bounded variation

(see (1), (2) and (3)of Main Theorem 6.2.5). One of the main ingredients to show this is

the study of boundary values λ±(t) ((6.2.5), (6.2.6)). If λ±(t) are of bounded variation,

then it follows easily that the solution itself is of bounded variation. But this is not the

case in general. In general λ±(t) are highly oscillatory and we illustrate this with an

example (see, Theorem 6.2.2) where we show that λ±(t) are not of bounded variation. In

spite of this anomaly, total variation bound exists when A, B are away from the critical

points of f and g respectively.

In (5) of Main Theorem 6.2.5, when A is a critical point of g, then for certain data we

construct the (A,B) entropy solution which is not of bounded variation at the interface

x = 0. Idea behind this construction is as follows. At the interface, u satisfies RH

condition, namely f(u+(t)) = g(u−(t)). Hence u−(t) = g−1(f(u+(t))). If f(u+(t)) is of

bounded variation and the range lies in a neighbourhood of critical point of g, then u−

need not be of bounded variation.

Plan of this chapter is organized as follows. In Section 6.2, we recall from [6], [9], the

properties of (A,B) entropy solutions. Basically (A,B) entropy solution depends heavily

on construction of left λ−(t) and right λ+(t) boundary values at the interface x = 0. In

general they need not be of bounded variation. In Section 6.2, we give an example to

show that λ+(t) is not of bounded variation whose proof is carried out in Section 6.3. In

spite of this anomaly, next we prove that

(1). (A,B) entropy solutions are of bounded variation if A, B are not critical points of

g and f respectively.

(2). construct an explicit example to show that total variation is unbounded under the

assumption that one of A or B is a critical point.

As a consequence of our example, it follows that however small the BV norm of initial

data is, BV norm of the solution can blow up at the interface. Hence the BV bounds of

the solution need not depend on the smallness of the initial data (see Remark 6.2.2).

Conservation laws with discontinuous flux can also be written as 2 × 2 system of

hyperbolic equations. This system is non strictly hyperbolic near the critical points of f

and g. Hence the TV bound may blow up due to occurrance of the critical points of f

and g. This type of TV bounds failure usually is called resonance (see [60], [59]).

6.2 Preliminaries

We assume the following assumptions on f , g and u0.

(i). f and g are strictly convex, C2 and of superlinear growth.
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(ii). u0 ∈ L∞ and let v0 be its primitive given by

v0(x) =

∫ x

0

u0(θ)dθ.

Let f(θf ) = min
θ∈R

f(θ), g(θg) = min
θ∈R

g(θ) be the points of minima of f and g respectively.

Let f ∗ and g∗ be their respective convex duals. Let us recall some of the definitions and

notations from [9], [8].

Definition 6.2.1. (Connection). Let (A,B) ∈ R
2. Then (A,B) is called a connection if

it satisfies

(i). f(B) = g(A).

(ii). f ′(B) ≥ 0, g′(A) ≤ 0.

Definition 6.2.2. (Interphase entropy functional). Let u ∈ L∞
loc(R× R+) such that

u±(t) = u(0±, t) exist a.e. t > 0. Then we define IAB(t), the interface entropy functional

by

IAB(t) = (g(u−(t))− g(A))sign(u−(t)−A)− (f(u+(t))− f(B))sign(u+(t)−B). (6.2.1)

Definition 6.2.3. (Interphase entropy condition). Let u ∈ L∞
loc(R× R+) such that u±(t)

exist a.e. t > 0. Then u is said to satisfy Interphase entropy condition relative to a

connection (A,B) if for a.e. t > 0

IAB(t) ≥ 0. (6.2.2)

Definition 6.2.4. ((A,B) entropy solution). Let F (x, u) = H(x)f(u) + (1 −H(x))g(u)

and (A,B) be a connection. Let u0 ∈ L∞
loc(R×R+). Then u ∈ L∞

loc(R×R+) is said to be

a (A,B) entropy solution if

(i). u is a weak solution of

ut + F (x, u)x = 0, x ∈ R, t > 0

u(x, 0) = u0(x) x ∈ R.
(6.2.3)

(ii). u satisfies Lax-Olenik-Kruzkov entropy condition away from the interface x = 0.

(iii). At the interface x = 0, u satisfies (A,B) interface entropy condition (6.2.2).

The following examples illustrate the different approaches give rise to different solu-

tions for the same initial data.

Example. Assume that f and g intersect at a point p where f ′(p) > 0, g′(p) < 0. Let

g(θg) ≥ f(θf ) and u0(x) = p. Then
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1. Parabolic regularization of (6.2.3) gives u ≡ p as a solution. For every t > 0,

f ′(u+(t)) = f ′(p) > 0, g′(u−(t)) = g′(p) < 0

and hence this solution produces an undercompressive wave at the interface x = 0.

In this case, total variation of u(., t) does not increase.

2. From the explicit formula [6], the solution u of (6.2.3) is given by

u(x, t) =































p if x < g′(p)t,

g′−1(x
t
) if g′(p)t < x < 0,

B if 0 < x < f ′(B)t,

f ′−1(x
t
) if f ′(B)t < x < f ′(p)t,

p if x > f ′(p)t

(6.2.4)

where f(B) = g(θg), f
′(B) ≥ 0. In this case u+(t) = B, u−(t) = θg, hence

f ′(u+(t)) ≥ 0, g′(u−(t)) = 0 for all t. Here total variation of u(., t) increases.

(A,B) interface entropy conditions generalize these two cases and for particular choice of

(A,B) connection total variation of the solution of (6.2.3) may increase.

Next we illustrate how to get an explicit (A,B) entropy solution. For this we need to

construct boundary values λ±(t) and the details are carried in [9], [6].

Definition 6.2.5. (Control curves).Let t > 0. γ : [0, t] → R be a continuous function. γ

is said to be a control curve if there exists 0 ≤ t1 ≤ t such that

(i). γ|[t1,t] = 0,

(ii). γ|[0,t1] is linear and γ|(0,t1) 6= 0.

Let
Γ(t) =

{

γ : [0, t] → R; γ is control curve
}

,

Γ+(t) =
{

γ ∈ Γ(t) : γ(t) ≥ 0
}

,

Γ−(t) =
{

γ ∈ Γ(t) : γ(t) ≤ 0
}

.

Define b±(t) by

b+(t) = inf
γ∈Γ+(t)

{

v0(γ(0)) +

∫ t

0

f ∗(γ̇(θ))dθ
}

,

b−(t) = inf
γ∈Γ−(t)

{

v0(γ(0)) +

∫ t

0

g∗(γ̇(θ))dθ
}

,

where v0(x) =
∫ x

0
u0(θ)dθ.

Lemma 6.2.1. Let u0 ∈ L∞, then b±(t) ∈ L∞ and satisfies
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(i). b±(t) are Lipschitz continuous functions.

(ii). Let u0 ∈ BV, then b′±(t) are of bounded variation on any interval [0, T ] for T > 0

with TV
(

b±, [0, T ]
)

≤ CTV(u0), for some constant C > 0.

Proof of this Lemma follows from Lemma 6.2.1, (24) and (27) of [9].

In order to construct an (A,B) entropy solution, we split the problem into two bound-

ary value problems with appropriate boundary conditions λ±(t). For this, we denote f
−1
+

the inverse of f restricted to the increasing part of f and f−1
− the inverse of f restricted

to the decreasing part of f . Similarly define for g−1
+ , g−1

− .

Definition 6.2.6. (Boundary data). Let (A,B) be a connection and define λ±(t) =

λ±(t, A,B, v0, f, g) (see Figure 1, Figure 2) by

λ+(t) =











f−1
− (−b′+(t)) if − b′+(t) > max(−b′−(t), f(B)),

f−1
+

(

max(−b′−(t), f(B))
)

if − b′+(t) ≤ max(−b′+(t), f(B)),

(6.2.5)

λ−(t) =











g−1
− (−b′−(t)) if − b′−(t) > max(−b′+(t), g(A)),

g−1
+

(

max(−b′+(t), g(A))
)

if − b′−(t) ≤ max(−b′+(t), g(A)).

(6.2.6)

Regarding the behavior of λ±(t), we have the following theorem whose proof will be

given in Section 6.3.

Theorem 6.2.2. For a certain choice of f and g there exists u0 such that TV(λ±) = ∞.

λ+(t)B̄ B A Ā

f(B) = g(A)

−b
′

−(t)

−b
′

+(t)
f g

λ+(t) = f−1
− (−b′+(t))

−b′+(t) ≥ min((−b′+(t), f(B))

λ+(t)
B A

ĀB̄

f(B) = g(A)

−b
′

+(t)

−b
′

−(t)
f

g

λ+(t) = f−1
+ (−b′−(t))

−b′+(t) ≤ max(−b′−(t), f(B))
Fig. 6.1:

Let B < B, A > A be such that f(B) = f(B) = g(A) = g(A). Now from (6.2.5) and

(6.2.6), it follows immediately the following

Lemma 6.2.3. Let u0 ∈ BV ∩ L∞, then λ± satisfies
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(i). f(λ+(t)) ≥ f(B). If f
′

(λ+(t)) ≥ 0, then λ+(t) ≥ B. Furthermore if B 6= θf then

there exists an α > 0, such that ∀ 0 ≤ t1 < t2 < .... < tk+1 and satisfies λ+(ti) ≥ B,

then
k

∑

i=1

|λ+(ti)− λ+(ti+1)| ≤ αTV (u0)

(ii). g(λ−(t)) ≥ g(A). If g
′

(λ−(t)) ≤ 0, then λ−(t) ≤ A. Furthermore if A 6= θg, then

there exists a β > 0, such that ∀ 0 ≤ t1 < t2 < .... < tk+1 and satisfies λ−(ti) ≤ A,

then
k

∑

i=1

|λ−(ti)− λ−(ti+1)| ≤ βTV (u0)

−b
′

−(t)
−b

′

+(t)

f(B) = g(A)

f

B̄ B A Ā

g

λ+(t) = B
−b

′

+(t) ≤ max(−b
′

−(t), f(B)) ≤ f(B)

Fig. 6.2:

Proof. If −b
′

+(t) > Max(−b
′

−(t), f(B)). Then f(λ+(t)) = −b
′

+(t) ≥ f(B). If −b
′

+(t) ≤

Max(−b
′

−(t), f(B)), then f(λ+(t)) = Max(−b
′

−(t), f(B)) ≥ f(B). This immediately gives

that if f
′

(λ+) ≥ 0, then necessarily λ+(t) ≥ B. Let B > θf , then f−1
+ restricted to

[f(B),∞] is locally Lipschitz continuous function. From Lemma 6.2.1, b
′

± are in L∞ and

hence λ+ ∈ L∞. Let α1 be the Lipschitz constant of f−1
+ in [f(B), ||λ+||∞]. Hence from

Lemma 6.2.1, there exists C > 0 such that

k
∑

i=1

|λ+(ti)− λ+(ti+1)|

=
k

∑

i=1

|f−1
+ (Max(−b

′

−(ti), f(B)))− f−1
+ (Max(−b

′

−(ti+1), f(B)))|

≤ α1

k
∑

i=1

|(Max(−b
′

−(ti), f(B)))− (Max(−b
′

−(ti+1), f(B)))|

≤ α1

k
∑

i=1

|b
′

−(ti)− b
′

−(ti+1)|

≤ α1CTV (u0)

= αTV (u0).
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Similarly for λ− and this proves the corollary.

Now recall from [6], [9] the existence and uniqueness of (A,B) entropy solution.

Theorem 6.2.4. Let u0 ∈ L∞ and (A,B) be a connection . Let λ±(t) be as defined

earlier. Then there exists an (A,B) entropy solution u with ||u||∞ ≤ ||u0||∞ and is

unique under mild regularity assumption (see Remark 6.2.1). Furthermore the solution

can be described explicitly by Lax-Olenik type formula as follows.

For each t > 0 there exists R1(t), R2(t) ≥ 0, L1(t) ≤ 0, L2(t) ≤ 0 and monotone

functions y±(x, t), t±(x, t) z±(x, t)such that

(i). for x ∈ [R1(t),∞), y+(x, t) ≥ 0 is a non-decreasing function and for x ∈ [0, R1(t)),

0 ≤ t+(x, t) < t is a non-increasing function such that for x > 0,(see page 16,

equation (44), [9])

u(x, t) =



















f ∗′
(x− y+(x, t)

t

)

= u0
(

y+(x, t)
)

if x ≥ R1(t),

f ∗′
( x

t− t+(x, t)

)

= λ+
(

t+(x, t)
)

if 0 ≤ x < R1(t).

(6.2.7)

(ii). For x ∈ (−∞, L1(t)], y−(x, t) ≤ 0, is a non-decreasing function and for x ∈

(L1(t), 0], 0 ≤ t−(x, t) < t, t−(x, t) is non-increasing function such that for x < 0,

u(x, t) =



















g∗′
(x− y−(x, t)

t

)

= u0
(

y−(x, t)
)

if x ≤ L1(t),

g∗′
( x

t− t−(x, t)

)

= λ−
(

t−(x, t)
)

if L1(t) < x < 0.

(6.2.8)

(iii). Without loss of generality we can assume g(θg) ≥ f(θf ). Let us assume A = θg.

Then we have the following two cases

Case 1. L1(t) = 0, R1(t) ≥ 0 (see page 53, equation (4.21), (4.22), [6])

u(x, t) =











f−1
+

(

g(u0(z+(x, t)))
)

if 0 < x < R2(t)

f−1
+

(

g(θg)
)

if R2(t) ≤ x < R1(t).

(6.2.9)

Case 2. L1(t) < 0, R1(t) ≥ 0 (see Lemma 4.8 and page 55, equation (4.30), [6])

u(x, t) =











g−1
−

(

f((u0(z−(x, t))))
)

if 0 > x > L1(t) = L2(t)

f−1
+ (g(θg)) if 0 < x < R1(t) = R2(t).

(6.2.10)

See figure (6.3) for clear illustrations.
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y−(x, t)z+(x, t) y+(x, t)

(x, t) (x, t) R2(t) R1(t)(x, t)

t+(x, t)

t+(x, t)

L1(t) = 0, R1(t) ≥ 0
y−(x, t) z−(x, t) y+(x, t)

(x, t)

t−(x, t)

R1(t) (x, t)

L1(t) < 0, R1(t) ≥ 0
Fig. 6.3:

Remark 6.2.1. In the above theorem by “mild regularity” we mean the set of points

of discontinuity of the solution of (6.1.6) is discrete set of Lipschitz curves. In [22],

uniqueness was proven without the “mild regularity assumption”.

Now we can state our main result of this chapter as follows.

Theorem 6.2.5. (Main Theorem) Let u0 ∈ L∞(R) and u be the solution obtained in

Theorem 6.2.4 Let t > 0, ǫ > 0,M > ǫ, I(M, ǫ) = {x : ǫ ≤ |x| ≤M}. Then

(1). Suppose there exists an α > 0 such that f ′′ ≥ α, g′′ ≥ α, then there exist C =

C(ǫ,M, α) such that

TV
(

u(., t), I(M, ǫ)
)

≤ C(ǫ,M, t).

(2). Suppose u0 ∈ BV, and T > 0. Then there exists C(ǫ, T ) such that for all 0 < t ≤ T

TV
(

u(., t), |x| > ǫ
)

≤ C(ǫ, t)TV(u0) + 4||u0||∞

(3). Let u0 ∈ BV, T > 0 and A 6= θg and B 6= θf . Then there exists C > 0 such that

for all 0 < t ≤ T ,

TV
(

u(., t)
)

≤ C TV(u0) + 6||u0||∞.

(4). Let u0, f
−1
+ (g(u0)), g

−1
− (f(u0)) ∈ BV, T > 0 and A = θg. Then for all 0 < t ≤ T ,

TV
(

u(., t)
)

≤ TV(u0) + max
(

TV (f−1
+ (g(u0))),TV(g

−1
− (f(u0)))

)

+ 6||u0||∞.

(5). For a certain choice of fluxes f and g there exists u0 ∈ BV∩L∞ such that TV(u(., t))

= ∞ if A = θg or B = θf . For general f and g see Remark 6.2.4.
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Proof.(1) Let ǫ ≤ x0 < x1 < ........ < xl ≤ R1(t) ≤ xl+1 < ..... < xN ≤M be a partition.

Then by monotonicity of y+, t+, we have

1
t

N−1
∑

i=l

|xi − y+(xi, t)− xi+1 + y+(xi+1, t)| ≤
1

t

{

|M −R1(t)|

+|y+(M, t)− y+(R1(t), t)|
}

,

l−1
∑

i=0

∣

∣

xi
t− t+(xi, t)

−
xi+1

t− t+(xi+1, t)

∣

∣ ≤
R1(t)− ǫ

|t− t+(ǫ, t)|

+
R1(t)|t+(ǫ, t)− t+(R1(t), t)|

|t− t+(ǫ, t)|2
.

f ∗′ = f ′−1 is Lipschitz continuous with Lipschitz constant bounded by 1
α
since f ′′ ≥ α.

Hence from (6.2.7) and above inequalities we obtain

N−1
∑

i=0

|u(xi, t)− u(xi+1, t)| ≤
1

αt

{

|M −R1(t)|+ |y+(M, t)− y+(R1(t), t)|
}

+
1

α

{ R1(t)− ǫ

|t− t+(ǫ, t)|
+ R1(t)

|t+(ǫ, t)− t+(R1(t), t)|

|t− t+(ǫ, t)|2
}

+|u(xl, t)− u(xl+1, t)|

= C(M, ǫ, t).

Hence TV
(

u(., t), [ǫ,M ]
)

≤ C(M, ǫ, t). Similarly for x ≤ −ǫ. Now let u0 ∈ BV. Let

zi = y+(xi, t), i ≥ l + 1, then zi ≤ zi+1 and hence from (6.2.7)

N−1
∑

i=l

|u(xi, t)− u(xi+1, t)| ≤
N−1
∑

i=l

|u0(zi)− u0(zi+1)| ≤ TV(u0, [0,∞)).

Let 0 < t ≤ T , define

a(T ) = sup{R1(t) : 0 < t ≤ T}

ρ(T, ǫ) = inf{t− t+(x, t) : 0 < t ≤ T, ǫ ≤ x ≤ R1(t)}.

Then for ǫ ≤ x ≤ R1(t), we have

ǫ

T
≤

x

t− t+(x, t)
≤

a(T )

ρ(T, ǫ)
.
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Now f ∗′ = f ′−1 is a Lipschitz continuous function in
[

ǫ
T
, a(T )
ρ(T,ǫ)

]

. Let C1(T ) be its Lipschitz

constant. Then from (6.2.6)

l−1
∑

i=0

|u(xi, t)− u(xi+1, t)|

=
l−1
∑

i=0

∣

∣f ∗′
( xi
t− t+(xi, t)

)

− f ∗′
( xi+1

t− t+(xi+1, t)

)∣

∣

≤ C1(T )
l−1
∑

i=0

∣

∣

xi
t− t+(xi, t)

−
xi+1

t− t+(xi+1, t)

∣

∣

≤ C1(T )

{

R1(t)− ǫ

|t− t+(ǫ, t)|
+R1(t)

|t+(ǫ, t)− t+(R1(t), t)|

|t− t+(ǫ, t)|2

}

≤ C1(T ) sup
0≤t≤T

{

R1(t)− ǫ

|t− t+(ǫ, t)|
+R1(t)

|t+(ǫ, t)− t+(R1(t), t)|

|t− t+(ǫ, t)|2
,

L1(t)− ǫ

|t− t−(ǫ, t)|
+ L1(t)

|t−(ǫ, t)− t−(L1(t), t)|

|t− t−(ǫ, t)|2

}

= C(T ).

Therefore we have

N−1
∑

i=0

|u(xi, t)− u(xi+1, t)| =
l−1
∑

i=0

|u(xi, t)− u(xi+1, t)|

+|u(xl, t)− u(xl+1, t)|

+
N−1
∑

i=l+1

|u(xi, t)− u(xi+1, t)|

≤ C(T ) + 2||u0||∞ + TV(u0, (0,∞)).

Similarly for x ≤ −ǫ. Hence we obtain

TV
(

u(., t), |x| ≥ ǫ
)

≤ TV(u0) + C(T ) + 4||u0||∞.

This proves (1) and (2).
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(3). Let A 6= θf , B 6= θg. From (2.7) we have for x0 < x1 < ... < xl ≤ R1(t), ti = t+(xi, t),

f
′

+(λ+(ti)) ≥ 0. Hence from (i) of Lemma 6.2.3 we have

N−1
∑

i=0

|u(xi, t)− u(xi+1, t)|

=
l−1
∑

i=0

|λ+(t+(xi, t))− λ+(t+(xi+1, t))|+ |λ+(xl, t)− u0(y+(xl+1, t))|

+
N−1
∑

i=l

|u0(y+(xi, t))− u0(y+(xi+1, t))|

≤ α TV (u0) + 2||u0||∞ + TV (u0)

= (α + 1)TV (u0) + 2||u0||∞.

This is true for all t > 0, ǫ,M and hence

TV (u(., t), [0,∞)) ≤ (α + 1)TV (u0) + 2||u0||∞

Similarly in (−∞, 0]. Hence we have

TV (u(., t)) ≤ TV (u(., t), [0,∞)) + TV (u(., t), [0,∞))

+ |u(0+, t)− u(0−, t)|

≤ (α + β + 2)TV (u(., t)) + 6||u0||∞.

This proves (3).

(4). Since A = θg and hence f ∗(0) ≥ g∗(0). It is enough if we consider the following two

cases.

Case 1. L1(t) = 0, R1(t) ≥ 0.

Let ....... < x−1 < x0 ≤ 0 < x1 < ...... < xN1 ≤ R2(t) < xN1+1 < ...... < xN2 ≤ R1(t) <

xN2+1 < ... be a partition. Then from (6.2.7), (6.2.8), (6.2.9) we obtain

∞
∑

−∞

|u(xi, t)− u(xi+1, t)|

=
−1
∑

−∞

|u0(y−(xi, t))− u0(y−(xi+1, t))|+
∞
∑

N2

|u0(y+(xi, t))− u0(y+(xi+1, t))|

+
∑N1

1 |f−1
+ (g(u0(z+(xi, t))))− f−1

+ (g(u0(z+(xi+1, t))))|

+|u(x0, t)− u(x1, t)|+ |u(xN1 , t)− u(xN1+1, t)|

+|u(xN2 , t)− u(xN2+1, t)|

≤ TV(u0) + TV
(

f−1
+ g(u0)

)

+ 6||u0||∞.

Case 2. L1(t) < 0, R1(t) ≥ 0.

Let ....... < x−N1 ≤ L2(t) = L1(t) < x−N1+1 < .... < x0 ≤ 0 < x1 < ...... < xN2 ≤ R2(t) =

177



R1(t) < xN2+1 < ...... be a partition. Then from (6.2.7), (6.2.8), (6.2.10) we obtain

∞
∑

−∞

|u(xi, t)− u(xi+1, t)|

=

−N1−1
∑

−∞

|u0(y−(xi, t))− u0(y−(xi+1, t))|+
∞
∑

N2

|u0(y+(xi, t))− u0(y+(xi+1, t))|

+
∑−1

−N1
|g−1

− (f(u0(z−(xi, t))))− g−1
− (f(u0(z−(xi+1, t))))|

+|u(x−N1 , t)− u(x−N1+1, t)|+ |u(x0, t)− u(x1, t)|

+|u(xN2 , t)− u(xN2+1, t)|

≤ TV(u0) + TV
(

f−1
+ g(u0)

)

+ 6||u0||∞.

This proves (4).

(5). Assume

f |[−1,0] = −u, g = u2. (6.2.11)

a1 a2 B

f
=
−
u

g
=
u
2

A = θg = B̄

Fig. 6.4:

Here we take A = θg = 0 = B, where f(B) = f(B), f ′(B) < 0 (see Figure 6.4).

Step 1. In order to construct a counter example first we study a Riemann boundary

value problem

ut + (u2)x = 0 x < 0, t > t1,

u(x, t1) = a1 x < 0,

u(0, t) = a2 t > t1

(6.2.12)

where ai ≤ 0, i = 1, 2.

Shock case: a1 > a2. Then the solution is given by (see Figure 6.5)

uS(x, t) =

{

a1 if x < (a1 + a2)(t− t1), t > t1,

a2 if (a1 + a2)(t− t1) < x < 0, t > t1
(6.2.13)
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and denote the shock curve by

S(a1, a2, t1) : x = (a1 + a2)(t− t1), t > t1. (6.2.14)

a1 t1

S(a
1 , a

2 , t1 ) : x
=
(a
1 +

a
2 )(t−

t1 )

uS = a1

uS = a2
a2

a1 t1

a2

uR = a1

uR = a2

R
− : x = 2a1(t− t1 )

R
+
: x

=
2a

2 (t−
t
2 )

uR = x
2(t−t1)

Fig. 6.5: Shock and rarefaction wave

Rarefaction case: a1 < a2. Then the solution is given by (see Figure 6.5)

uR(x, t) =











a1 if x < 2a1(t− t1), t > t1,
x

2(t−t1)
if 2a1(t− t1) < x < 2a2(t− t1), t > t1,

a2 if 2a2(t− t1) < x < 0, t > t1

and denote the boundary of the rarefaction by

R−(a1, a2, t1) : x = 2a1(t− t1),

R+(a1, a2, t1) : x = 2a2(t− t1).

Step 2. Next consider the following data. Let 0 ≤ t1 < t2 < t3, a2 < a1 < 0, a2 < a3 < 0,

a4 < a3,

u0(x) = a1 if t = t1,

u(0, t) =











a2 if t1 < t < t2,

a3 if t2 < t < t3,

a4 if t3 < t.

Since a2 < a1, a4 < a3, at t1 and t3 we get shocks and the shock curves are given by

S(a1, a2, t1) : x = (a1 + a2)(t− t1),

S(a3, a4, t3) : x = (a3 + a4)(t− t3).

Since a2 < a3, hence at t2 we get rarefaction and the boundaries of the rarefaction wave

is given by

R−(a2, a3, t2) : x = 2a2(t− t2),

R+(a2, a3, t2) : x = 2a3(t− t2).
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Let T ≥ t1 such that these lines do not meet, then the solution u (see Figure 6.6) for

t ≤ T is given by

u(x, t) =































a1 if x < (a1 + a2)(t− t1),

a2 if (a1 + a2)(t− t1) < x < 2a2(t− t2),
x

2(t−t2)
if 2a2(t− t2) < x < 2a3(t− t2),

a3 if 2a3(t− t2) < x < (a3 + a4)(t− t3),

a4 if x > (a3 + a4)(t− t3).

S
: x

=
(a

1 +
a
2 )(t−

t1 )

R
− : x =

2a
2 (t−

t2 )

S
: x

=
(a
3 +

a
4 )(t−

t3 )

R
+
: x

=
2a

3 (t−
t
2 )

u = x
2(t−t2)

T− a1 t1

u = a1

u = a2

u = a3

u = a4

a2

t2

a3

t3

a4

T = 1

Fig. 6.6:

Next we find the conditions for intersections. S(a1, a2, t1) and R−(a2, a3, t2) meet at T−

if and only if

(a1 + a2)(T− − t1) = 2a2(T− − t2),

that is,

T− = t1 −
2a2

a1 − a2
(t2 − t1) (6.2.15)

and R+(a2, a3, t2) and S(a3, a4, t3) meet at T+ if and only if

2a3(T+ − t2) = (a3 + a4)(T+ − t3)

that is,

T+ = t2 −
a3 + a4
a3 − a4

(t3 − t2). (6.2.16)

180



Step 3. Let 0 = t0 < t1 < t2 < ...... be a sequence to be determined. Let a0 = 0 and

{ai}i≥1 be defined by

a2i−1 = −
1

(i+ 1)
, a2i = −

1

(i+ 1)2

and consider the initial boundary condition

u0(x) = 0 for x ≤ 0

u(0, t) =

{

a2i+1 if t2i < t < t2i+1,

a2i+2 if t2i+1 < t < t2i+2.

From Step 1 it follows that the shock line S2i = S(a2i, a2i+1, t2i) emerge from t2i and

boundary of rarefaction R−(2i+ 1) = R−(a2i+1, a2i+2,

t2i+1), R+(2i+ 1) = R+(a2i+1, a2i+2, t2i+1) emerge from t2i+1. From (6.2.15) and (6.2.16)

S2i and R−(2i+ 1) meet at T−(i) and R+(2i+ 1) and S2i+2 meet at T+(i).

Claim 1. We can choose a sequence {ti} such that

(i). T±(i) ≥ 1 for all i.

(ii). t1 =
1
2
, ti < ti+1 for all i, lim

i→∞
ti = 1

Proof. Proof is by induction. At t1, a0 = 0, a1 = −1
2
and hence from (6.2.15)

1 ≤ T−(0) = 2t1 ⇒ t1 ≥
1

2
.

Hence we can choose t1 =
1
2
.

Now from (6.2.15) and (6.2.16) we have

1 ≤ T−(i) =
a2i + a2i+1

a2i − a2i+1

t2i −
2a2i+1

a2i − a2i+1

t2i+1,

1 ≤ T+(i) =
2a2i+2

a2i+2 − a2i+3

t2i+1 −
a2i+2 + a2i+3

a2i+2 − a2i+3

t2i+2.

Hence,

t2i+1 − t2i ≥
a2i − a2i+1

2|a2i+1|
(1− t2i), (6.2.17)

t2i+2 − t2i+1 ≥
∣

∣

a2i+2 − a2i+3

a2i+2 + a2i+3

∣

∣(1− t2i+1). (6.2.18)

Now choose for i ≥ 1

t2i+1 = t2i +
1

2

∣

∣

∣

a2i − a2i+1

2a2i+1

∣

∣

∣
(1− t2i),

t2i+2 = t2i+1 +
∣

∣

∣

a2i+2 − a2i+3

a2i+2 + a2i+3

∣

∣

∣
(1− t2i+1).
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Now substituting values of ai to obtain

t2i+1 = t2i +
1

2

(

i2 + i− 1

2(i+ 1)2

)

(1− t2i),

t2i+2 = t2i+1 +

(

i2 + i+ 1

i2 + 3i+ 7

)

(1− t2i+1).

Therefore if t2i < 1, t2i+1 < 1, then

(1− t2i+1) = (1− t2i)

(

1−
i2 + i− 1

4(i+ 1)2

)

> 0,

(1− t2i+2) = (1− t2i+1)

(

1−
1

2

i2 + i+ 1

i2 + 3i+ 7

)

> 0.

Hence by induction ti ≤ 1 ∀i and t2i < t2i+1 < t2i+2. This implies that T0 = lim
i→∞

ti exists

and from the above definition, T0 = 1. This proves the claim.

As an immediate consequence of Claim 1 and Step 2, solution u (see Figure 6.7 ) of

the boundary value problem in R× [0, 1] is given by

u(x, t) =



















































0 if x ≤ a1t,

a2i+1 if (a2i + a2i+1)(t− t2i) < x < 2a2i+1(t− t2i+1),

x
2(t−t2i)

if 2a2i+1(t− t2i+1) < x < 2a2i+2(t− t2i+1),

a2i+2 if 2a2i+2(t− t2i+1) < x < (a2i+1 + a2i+2)(1− t2i+2).

(6.2.19)

Then we have the following.

Claim 2. TV(u(., 1)) = ∞.

From the construction, shocks and rarefaction of u do not intersect in R × [0, 1] and

hence from (6.2.19), we can find a sequence x1 < x2 < ..... < xn < 0 such that u(xi, 1) = ai

and lim
n→∞

xn = 0. Hence

TV
(

u(., 1)
)

≥
∞
∑

n=1

|u(xn, 1)− u(xn+1, 1)|

=
∞
∑

n=1

|an − an+1|

≥
∞
∑

n=1

1

n
−

∞
∑

n=1

1

n2
= ∞.

This proves the claim.
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00 t2i−1 t2i t2i+1 t2i+2

0

S

u
−
=
a
2iu

−
=
a
2i−

1

u
−
=
a
2i+

1

u
+
=
−
a 2
2i+

1

u
+
=
−
a 2
2i

u
+
=
−
a 2
2i−

1

R− R+

S T = 1

Fig. 6.7:

Step 4. Here we complete the proof of the theorem. Let {ai} and {ti} as in Step 3 and

define the initial condition

u0(x) =























0 if x < 0,

−a22i+1 if t2i < x < t2i+1,

−a22i+2 if t2i+1 < x < t2i+2,

−1 if x ≥ 1.

Now for x > 0, the solution is given by

u(x, t) =

{

−1 if 1− t ≤ x,

−a2n if tn−1 − t < x < tn − t.

At the interface, x = 0, R-H condition f(u+(t)) = g(u−(t)) implies that −u+(t) = u−(t)2

and hence u−(t) is given by,

u−(t) =

{

−1 if t ≥ 1,

an if tn−1 ≤ t ≤ tn.

Step 3 gives the solution to the above data in R× [0, 1] and hence TV(u(., 1)) = ∞. This

proves the theorem.

Remark 6.2.2. Let ǫ > 0 and v0,ǫ = ǫ2u0 where u0 is as in Step 4. Then TV(v0,ǫ) =

ǫ2TV(u0). Let vǫ be the corresponding solution. Observe that from (6.2.15) and (6.2.16),

T ǫ
±(i) is independent of ǫ. Hence TV(vǫ(., 1)) = ∞. This shows that smallness of the
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total variation of initial data does not guarantee the boundedness of the total variation

at the interface.

Remark 6.2.3. In general, if f and g are not strictly convex Theorem 6.2.5 (3) fails. Here

we have an example where total variation bound fails for any (A,B) connection provided

one of the points is a critical point though A 6= θg and B 6= θf . Let f(u) = |u − 1| − 1

and g is given by

g(u) =

{

−u3 if u ≤ 0,

(u− 1)2 − 1 if u ≥ 0

and let A = 2, B = 0, for the initial data like in the main theorem, if u is an (A,B)

entropy solution, then TV(u(., 1)) = ∞. The proof follows exactly as in the theorem.

Remark 6.2.4. For general f and g strictly convex C2 functions and not multiple of each

other, the following construction gives the unbounded total variation for (θg, B) entropy

solution.

b2i−1 b2i+1b2i B̄ a2i−1 a2i+1 a2i B θg

f

g

Fig. 6.8:

Assume that g(θg) > f(θf ) and let B < B such that f(B) = f(B) = g(θg), f
′(B) <

0, f ′(B) > 0.

Step 1. We can choose a sequence bn < B and a sequence an < θg with the following

property:

(i). lim bn = B,

(ii). b2i−1 < b2i, b2i+1 < b2i, b2i−1 < b2i+1, b2i < b2i+2,

(iii). g(an) = f(bn) with g
′(an) < 0 such that TV(bn) < ∞, TV(an) = ∞. This can be

done since g′(θg) = 0 and f ′(B) > 0.

Step 2. Let 0 = ξ0 < ξ1 < ........ < ξn < ..... < ξ, where ξi, ξ is going to be choosen
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θg t2i−1b2i−1 t2i b2i t2i+1 ξ̄ B̄

x2i−1 x2i
T0

a
2i−

1

a
2i

b
2i

b
2i−

1

Fig. 6.9:

later. Then we define initial data (see Figure 6.8)

u0(x) =































θg if x < 0 = ξ0,

bn if ξn−1 < x < ξn,

B if x ≥ ξ.

Step 3. Since b2i−1 < b2i and b2i+1 < b2i, it creates rarefaction and shocks alterna-

tively. Now we can choose ξn, ξ, t0 such a way that rarefaction and shocks do not

meet in the region (0, t0)× R (see Figure 6.9).

Step 4. Now at time t0, we can find the points xn < 0 such that lim xn = 0

and u(xn, t0) = an, which implies TV(u(., t0)) = ∞, where u is (θg, B) entropy

solution.

6.3 Proof of Theorem 6.2.2

In this section we will construct an example showing λ+(t) is not of bounded variation.

Basic idea is to choose the data appropriately so that λ+(t) has lot of oscillations. In

order to do this we define the following:

Let f(u) = u2

2
, g(u) = (u−1)2

2
= f(u − 1) then f ∗(u) = u2

2
, g∗(u) = u + u2

2
. For n ≥ 0,
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define

xn = (1−
1

2n
), yn = −(1−

1

2n
),

bn = −(1−
1

2n+1
), cn = 1− bn +

(−1)n

24(n+2)
,

τn = −
(xn + xn+1)

2bn
, ηn = −

(yn + yn+1)

2(cn − 1)
,

αn = −
xn
bn
, βn = −

yn
cn − 1

,

γn = −
2xn

bn−1 + bn
, δn = −

2yn
cn−1 + cn − 2

.

Then the following proposition are needed to prove the theorem. Proposition 6.3.1 is a

direct verification. In Proposition 6.3.2, we calculate explicitly b′+(t) and b
′
−(t) for some

range of t. Then from these two propositions, we can choose a sequence {tn} such that

f ′(λ+(t2n+1)) < 0, f ′(λ+(t2n)) > 0and {λ+(tn)} has unbounded oscillations.

Proposition 6.3.1. (1) τn−1 < αn < γn < τn,

(2) ηn−1 < βn < δn < ηn,

(3) η2n−2 < α2n−1 < β2n−1 < δ2n−1 < γ2n−1 < τ2n−1 < η2n−1 < β2n < α2n < γ2n < δ2n <

η2n < τ2n,

(4) c2n − 1− b2n−1 ≥
1
2
.

Proof. It follows from direct calculations. Since xn < xn+1, yn+1 < yn < 0, bn < 0,

cn − 1 > 0, it follows that

αn = −
xn
bn

< −
(xn + xn+1)

2bn
= τn,

βn = −
yn

cn − 1
< −

(yn + yn+1)

2(cn − 1)
= ηn.

Now τn−1 < αn if and only if −
(xn + xn−1)

2bn−1

< −
xn
bn

and hence

(1−
1

2n+1
)(2−

1

2n
−

1

2n−1
) < 2(1−

1

2n
)2,

i.e., 2−
4

2n
+

3

22n+1
< 2−

4

2n
+

2

22n
,

i.e., 3 < 4.

186



Now −bn−1 < −bn implies that αn =
xn
−bn

<
2xn

−bn − bn−1

= γn. Also γn < τn if and only

if
2xn

−bn − bn−1

<
xn + xn+1

−2bn
,

i.e., − 4bnxn < (xn + xn+1)(−bn − bn−1),

i.e., 4(1−
1

2n+1
)(1−

1

2n
) < (2−

1

2n
−

1

2n+1
)2,

i.e., 4(1−
3

2n+1
+

1

22n+1
) <

(

4−
12

2n+1
+

9

22n+1

)

,

and hence 8 < 9. This proves (1).

Now ηn−1 < βn if and only if −
(yn + yn−1)

2(cn−1 − 1)
< −

yn
cn − 1

and hence

(1−
1

2n+1
+

(−1)n

24(n+1)
)(2−

1

2n
−

1

2n−1
) < 2(1−

1

2n
)(1−

1

2n
+

(−1)n−1

24n
),

i.e.,
(−1)n+1

22n
(4−

1

2n−1
) < 4.

Since cn−1 < cn implies that βn < δn. Also δn < ηn if and only if for n ≥ 1

−2yn
cn + cn−1 − 2

< −
yn + yn+1

2(cn − 1)
,

i.e, 4xn
(

− bn +
(−1)n

24(n+2)

)

< (xn + xn+1)
(

− bn − bn−1 +
(−1)n

24(n+2)
+

(−1)n−1

24(n+1)

)

,

i.e.,
8

22n+2
+

4xn(−1)n

24(n+2)
<

9

22n+2
+

(−1)n−1

24(2n+2)
(2−

3

2n+1
)(24 − 1),

i.e.,
(−1)n

22n+6

(

25 + 2−
59

2n+1

)

< 1.

This proves(2).

Since c2n−1 − 1 + b2n−1 < 0, hence α2n−1 = −
x2n−1

b2n−1

<
x2n−1

(c2n−1 − 1)
= β2n−1 and τ2n−1 =

−
(x2n−1 + x2n)

2b2n−1

<
(x2n−1 + x2n)

2(c2n−1 − 1)
= η2n−1. Since c2n − 1 + b2n > 0, hence α2n = −

x2n
b2n

>
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x2n
(c2n − 1)

= −
y2n

c2n − 1
= β2n. Now τ2n−1 > β2n−1 if and only if for n ≥ 1

−
x2n−1 + x2n
−2b2n−1

>
x2n−1

(c2n−1 − 1)
,

i.e., (c2n−1 − 1 + 2b2n−1)x2n−1 + x2n > 0,

i.e., − (1−
1

22n
+

1

24(2n+1)
)(1−

1

22n−1
) + (1−

1

22n
) > 0,

i.e., 1−
1

22n−1
(1−

1

22n
)−

1

24(2n+1)
(1−

1

22n−1
) > 0.

Next α2n < η2n if and only if

−
x2n
b2n

< −
(y2n + y2n+1)

2(c2n − 1)
=

(x2n + x2n+1)

2(c2n − 1)
,

i.e., x2n(2(c2n − 1) + b2n) < −b2nx2n+1,

i.e., (1−
1

22n
) + (1−

1

2(2n+1)
) < (1−

1

22n+1
)(1−

1

22n+1
),

i.e., (1−
1

22n+1
)(1−

1

2(2n)
− 1 +

1

22n+1
) +

2

24(2n+1)
(1−

1

22n
) < 0,

i.e., − 1 +
1

22n+1
+

2

23(2n+1)
(1−

1

22n
) < 0.

Now η2n−2 < α2n−1 if and only if for n ≥ 1

x2n−2 + x2n−1

2(c2n−1 − 1)
< −

x2n−1

b2n−1

,

i.e.,− b2n−1x2n−2 < x2n−1(2(c2n−1 − 1) + b2n−1),

i.e.,(1−
1

22n
)(1−

1

22n−2
) < (1−

1

22n−1
)(1−

1

22n
−

2

24n
),

i.e.,(1−
1

22n
)(1−

1

22n−2
− 1 +

1

2n− 1
) < −

1

24n−2
(1−

1

22n−1
),

i.e.,− 1 +
1

22n
< −

1

23n−1
(1−

1

22n−1
).

Now
c2n + c2n−1 − 2 = −b2n − b2n−1 +

1
24(2n+2) −

1
24(2n+1)

< −b2n − b2n−1

and c2n + c2n−1 − 2 > −b2n − b2n+1. Hence

γ2n = −
2x2n

b2n−1 + b2n
<

−2y2n
c2n + c2n−1 − 2

= δ2n,

γ2n−1 = −
2x2n−1

b2n−2 + b2n−1

>
−2y2n−1

c2n−1 + c2n−2 − 2
= δ2n−1.

This proves (3).
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Now we have

c2n − 1− b2n−1 = −b2n +
1

24(2n+1) − b2n−1

= 2− 1
22n+1 −

1
22n

− 1
24(2n+1)

≥ 1
2
.

This proves (4) and hence the proposition.

Define

u0(x) =























−1 if x ≥ 1,

bn if xn ≤ x < xn+1,

cn if yn+1 < x ≤ yn,

−1 if x ≤ −1.

For y ≥ 0,

J+(t, y) = v0(y) + tf ∗(−
y

t
) = v0(y) +

y2

2t
.

For y ≤ 0,

J−(t, y) = v0(y) + tg∗(−y
t
) = v0(y)− y + y2

2t
.

b+(t) = inf
y≥0

J+(t, y),

b−(t) = inf
y≤0

J−(t, y).

Then we have the following

Proposition 6.3.2. With the above definitions, we have

(1). 0 < t < τi if and only if J+(t, xi) < J+(t, xi+1).

(2). t ∈ (τi−1, τi) if and only if J+(t, xi) < J+(t, xj) for i 6= j.

(3). t ∈ (γi, τi) then y = −tbi ∈ (xi, xi+1) such that

b+(t) = J+(t,−tbi) = v0(xi)− bixi −
tb2i
2

(6.3.1)

−b
′

+(t) =
b2i
2

= f(bi). (6.3.2)

(4). 0 < t < ηi if and only if J−(t, yi) < J−(t, yi+1).

(5). t ∈ (βi, ηi) if and only if J−(t, yi) < J−(t, yj) for i 6= j.

(6). t ∈ (δi, ηi) then y = −t(ci − 1) ∈ (yi+1, yi) such that

b−(t) = J−(t,−t(ci − 1)) = v0(yi)− ci−1yi −
t(ci − 1)2

2
(6.3.3)

−b
′

−(t) =
(ci − 1)2

2
= g(ci). (6.3.4)
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Proof. By symmetry, it is enough to prove for J+. Now J+(t, xi) < J+(t, xi+1) if and

only if v0(xi)+
x2
i

2t
< v0(xi)+ bi(xi+1−xi)+

x2
i+1

2t
and hence t < −xi+1+xi

2bi
= τi. This proves

(1).

From (1) it follows that if t ∈ (τi−1, τi), then J+(t, xi) < J+(t, xi+1) < J+(t, xi+2).... <

J+(t, xk) for all k ≥ i + 1 and J+(t, xi) < J+(t, xi−1) < J+(t, xi−2).... < J+(t, xk) for all

k ≤ i− 1. This proves (2). Converse follows immediately from (1).

Let t ∈ (γi, τi) and J+(t, z0) = min J+(t, y). Then

Claim. z0 = −tbi ∈ (xi, xi+1)

J+(t,−tbi) = v0(xi)− bixi −
tb2i
2
.

Proof of the claim: From (1), {xj}j 6=i are not the minimizers. Let z0 ∈ [xj0 , xj0+1] for

some j0. Then we have to consider two cases

Case 1. j0 ≥ i+ 1. Since z0 /∈ {xj0 , xj0+1} and hence J+(t, z0) < J+(t, xj0). This gives

v0(xj0) + bj(z0 − xj0) +
y2j
2t
< v0(xj0) +

x2j0
2t
.

That is, t ≥
z0+xj0

−2bj0
≥

−xj0

bj0
= αj0 which contradicts the fact that t < τi < αj0 .

Case 2. Let j0 + 1 ≤ i. Let j ≤ i, then −bj = xj+1. Since t < 1 and hence −tbj < xj+1.

Also αj ≤ αi < t implies that xj < −tbj. This implies that zj = −tbj ∈ (xj, xj+1) is the

unique critical point of J+(t, y) for y ∈ (xj, xj+1) and hence J+(t, zj) = min{J+(t, y); y ∈

(xj, xj+1)} and J+(t, zj) = v0(xj)− bjxj −
tb2j
2
.

Now J+(t, zj) > J+(t, zj+1) if and only if

v0(xj)− bjxj −
tb2j
2
> v0(xj)− bj(xj+1 − xj)− bjxj −

tb2j+1

2
.

This implies that for j ≤ i− 1,

γj+1 = −
2xj+1

bj + bj+1

< t.

Since t > γi ≥ γj+1 ∀j ≤ i− 1, hence J+(t, zj) > J+(t, zj+1) > .... > J+(t, zi). Therefore

z0 = zi = −tbi is the unique minimizer for J+(t, y) and b+(t) = J+(t,−tbi) = v0(xi) −

bixi −
tb2i
2
. This proves the claim.

From this (6.3.1) and (6.3.2) follows and hence the proposition.

With this preliminary, we will construct the following example which concludes the The-

orem 6.2.2.

Proposition 6.3.3. Let (A,B) be a connection such that f(B) = g(A) ≤ 1
4
. Then with

the above notation, total variation of λ+ is infinity.
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Proof : From (3) of proposition (6.3.1) and proposition (6.3.2), we can choose a sequence

tn < tn+1 (see Figure 6.9) such that

(1) t2n ∈ (δ2n, η2n), t2n−1 ∈ (γ2n−1, τ2n−1).

(2) −b
′

+(t2n) = f(b2n), −b
′

−(t2n) = g(c2n).

(3) −b
′

+(t2n−1) = f(b2n−1), −b
′

−(t2n−1) = g(c2n−1).

y2n−1 y2n−2 x2n x2n+1

τ2n

η2n

δ2n
t2n

γ2n

η2n−1

τ2n−1

γ2n−1
t2n−1

δ2n−1

b
′
−
(t 2

n−
1
) =
g(
c 2n

−
1
)

−
b ′
+ (t

2n )
=
f(b

2n )

Fig. 6.10:

Since c2n − 1 > b2n and hence g(c2n) > f(b2n) and this implies −b
′

−(t2n) > −b
′

+(t2n).

Hence from the definition of λ+,

λ+(t2n) = f−1
+ (g(c2n)) = c2n − 1.

Also c2n−1 − 1 < b2n−1 and hence −b
′

−(t2n−1) < −b
′

+(t2n−1). Therefore

λ+(t2n−1) = f−1
− (f(b2n−1)) = b2n−1.

From (4) of proposition (6.3.1)

λ+(t2n)− λ+(t2n−1) = c2n − 1− b2n−1 ≥
1
2

and hence
∑∞

n=1 |λ+(tn)− λ+(tn−1)| = ∞.
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This completes the proof of the example.
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