
HAL Id: tel-00875229
https://theses.hal.science/tel-00875229v1

Submitted on 21 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Revisiting user simulation in dialogue systems : do we
still need them ? : will imitation play the role of

simulation ?
Senthilkumar Chandramohan

To cite this version:
Senthilkumar Chandramohan. Revisiting user simulation in dialogue systems : do we still need them ? :
will imitation play the role of simulation ?. Other [cs.OH]. Université d’Avignon, 2012. English. �NNT :
2012AVIG0185�. �tel-00875229�

https://theses.hal.science/tel-00875229v1
https://hal.archives-ouvertes.fr

Revisiting User Simulation in Dialogue Systems.

Do we still need them?

Will imitation play the role of simulation?

Senthilkumar Chandramohan

Machine Learning and Interactive Systems group, Supélec - Metz

Laboratoire Informatique d’Avignon

Université d’Avignon et des Pays de Vaucluse

A thesis submitted for the degree of

Doctor of Philosophy

September 2012

i

Dedicated to my beloved parents.

Acknowledgements

In the journey of life, numerous people walk in and out of our lives.

Yet, at times we wish some of those who came into our lives stayed

for ever. It is with that sense I am writing this note at the end of

my work contract with Supélec. One of the best things that ever

happened in my life is to have an opportunity to pursue my doctoral

research at Supélec and work with two great minds in the form of Prof.

Olivier Pietquin and Dr. Matthieu Geist. Things got even better

when I registered my thesis at the Université d’Avignon and continued

working under the guidance of Prof. Fabrice Lefèvre. Between 2009

and 2012, I had numerous opportunities to interact with them and

learn a great deal of things. I am really grateful for having received

their unlimited support at good times as well as those difficult days. I

wish to convey my deepest gratitude to my advisers for their priceless

time, efforts and above all their inspiration. Olivier, the trust you

placed on me was more than what I had on myself at times.

Next, I would like to thank my fellow students Lucie, Edouard, Bassem,

Billal, Constantinos, Vianney and Andreas for making the salle de

doctorant a conducive and livelier place to work. As part of the IMS

group at Supélec, it was a pleasure to work with Hervé, Stéphane,

Michel, Frédéric, JB, Jérémy, Abolfazl and others such as Beate,

Gilles. I thank the networking team for providing the necessary com-

putational infrastructure. A special thanks to our secretaries Fabi-

enne, Thérèse and Danielle. During my stay in Metz, the Supélec

administration has been a great support in several aspects and so I

would like convey my sincere thanks to the campus director Dr. Serge

Perrine and the research director Dr. Joël Jacquet.

I also take this opportunity to thank Prof. Oliver Lemon for intro-

ducing me to the fascinating domain of spoken dialogue research. The

time I spent in Edinburgh was primarily responsible for kindling my

interest on spoken dialogue systems. I must thank Dr. Verena Rieser

who in the first place was responsible for my interaction with Oliver.

Special thanks to Srinivasan and Udhyakumar, who have been a great

source of motivation right from my undergraduate days.

Finally, I would like to extend my deepest gratitude to my family.

Without their continued support and wishes, I would not be in a po-

sition to complete my doctoral research. I sincerely thank Er. Suku-

mar Ramamoorthy, Mr. Elango Ramamoorthy and Mr. Arulkumar

Sambandam for their motivation and guidance at different times in

my life. I started my schooling under the auspicious of my lovable

grandparents and since then I have received their endless affection. I

am really grateful to these selfless and noble souls. I wish my grandma

lived long enough to see this day.

I sincerely thank the Conseil Régional de Lorraine and the European

Commission’s FP7 (216594) Classic project for jointly financing my

doctoral research. A special thanks to all my French friends for wel-

coming me with open hands and for giving numerous good moments

to cherish.

Vive la France !!!

Abstract

Recent advancements in the area of spoken language processing and

the wide acceptance of portable devices, have attracted significant

interest in spoken dialogue systems. These conversational systems

are man-machine interfaces which use natural language (speech) as

the medium of interaction. In order to conduct dialogues, computers

must have the ability to decide when and what information has to

be exchanged with the users. The dialogue management module is

responsible to make these decisions so that the intended task (such as

ticket booking or appointment scheduling) can be achieved. Effective

functioning of a dialogue system depends on the quality of the strategy

used for making these decisions. Thus learning a good strategy for

dialogue management is a critical task.

In recent years reinforcement learning-based dialogue management

optimization has evolved to be the state-of-the-art. A majority of the

algorithms used for this purpose needs vast amounts of training data.

However, data generation in the dialogue domain is an expensive and

time consuming process. In order to cope with this and also to evalu-

ate the learnt dialogue strategies, user modelling in dialogue systems

was introduced. These models simulate real users in order to generate

synthetic data. Being computational models, they introduce some de-

gree of modelling errors. In spite of this, system designers are forced

to employ user models due to the data requirement of conventional

reinforcement learning algorithms.

As part of this manuscript, a set of sample efficient Approximate

Dynamic Programming and Kalman Temporal Differences class of

algorithms are adapted to dialogue optimization. Experimental re-

sults indicate that these algorithms are indeed sample efficient and

can learn optimal dialogue strategies from limited amount of training

data when compared to the conventional algorithms. As a conse-

quence of this, user models are no longer required for the purpose of

optimization, yet they continue to provide a fast and easy means for

quantifying the quality of dialogue strategies. Since existing methods

for user modelling are relatively less realistic compared to real user

behaviors, the focus is shifted towards user modelling by means of

inverse reinforcement learning. Using experimental results, the pro-

posed method’s ability to learn a computational models with real user

like qualities is showcased as part of this work.

Contents

Contents vi

List of Figures xi

List of Tables xiii

Nomenclature xiii

1 Introduction 1

1.1 Problem statement . 1

1.2 Resulting contributions . 3

1.3 Thesis layout . 4

I Statistical Dialogue Management 9

2 Spoken Dialogue Systems 11

2.1 Architecture of dialogue systems 12

2.2 Spoken dialogue management . 13

2.2.1 Information state update 16

2.2.2 Dialogue management policy 19

2.2.3 Taxonomy of dialogue systems 19

2.2.4 Why dialogue management is challenging? 20

2.3 State-of-the-art in dialogue systems 22

2.3.1 Statistical user act interpretation 22

2.3.2 Dialogue policy optimization 23

vi

CONTENTS

2.3.3 User simulations in dialogue systems 24

2.3.4 Language generation in dialogue systems 25

3 Markov Decision Processes 27

3.1 Formal definition of an MDP . 28

3.2 Solving MDPs . 30

3.3 Dynamic programming . 32

3.3.1 Policy iteration . 33

3.3.2 Value iteration . 34

3.4 Reinforcement learning . 35

3.4.1 Temporal difference learning 36

3.4.2 SARSA . 37

3.4.3 Q-Learning . 38

3.4.4 Taxonomy of RL algorithms 39

3.5 Dialogue management using MDP 41

3.5.1 Casting dialogue management problem as an MDP 41

3.5.2 Dialogue policy optimization using RL 43

3.5.3 Dialogue policy evaluation schemes 44

4 User simulation in dialogue systems 46

4.1 User simulation: an overview . 46

4.1.1 Probabilistic user simulation 48

4.1.2 n-gram user simulation . 48

4.1.3 Bayesian Networks based user simulation 49

4.1.4 Advanced n-gram user simulation 50

4.1.5 Agenda based user simulation 50

4.2 User modelling evaluation metrics 51

4.2.1 Precision and Recall . 52

4.2.2 Kullback-Leibler (KL) divergence and dissimilarity 53

4.2.3 Log-likelihood . 53

4.2.4 Bilingual Evaluation Understudy 54

4.2.5 Simulated User Pragmatic Error Rate 54

4.2.6 Performance of dialogue policy 55

vii

CONTENTS

4.3 Revisiting user simulations . 56

II Sample Efficient Dialogue Optimization 59

5 Approximate Dynamic Programming 61

5.1 Value function approximation . 62

5.2 Fitted value iteration . 64

5.3 Least squares policy iteration . 66

5.4 Automatic feature selection . 68

5.5 Sparse-Fitted value iteration . 70

5.6 Sparse-least squares policy iteration 71

5.7 Experimental results and analysis 73

5.7.1 Restaurant information system (MDP-SDS) 74

5.7.2 Dialogue corpora generation 76

5.7.3 Q-function representation 77

5.7.4 Policy optimization using ADP 77

5.7.5 Dialogue optimization using Sparse ADP 78

6 Kalman Temporal Differences 85

6.1 Q-learning with function approximation 86

6.2 Kalman Temporal Differences . 87

6.2.1 KTD-Q - online/off-policy algorithm 88

6.3 SARSA with function approximation 90

6.3.1 KTD-SARSA - online/on-policy algorithm 90

6.4 Uncertainty management in KTD 91

6.5 Experimental results and analysis 93

6.5.1 Online/off-policy dialogue optimization 93

6.5.2 Online/on-policy dialogue optimization 95

III Inverse Reinforcement Learning 99

7 User simulation using Inverse Reinforcement Learning 101

7.1 User simulation as a sequential decision making problem 104

viii

CONTENTS

7.1.1 Casting user simulation as an MDP 104

7.1.2 User behavior imitation 105

7.2 Inverse reinforcement learning . 107

7.2.1 IRL: problem elicitation 107

7.2.2 Imitation learning algorithm 109

7.3 Experimental results and analysis 113

7.3.1 Learning to imitate . 114

7.3.2 Evaluation of user behavior 115

7.3.3 IRL evaluation metric . 117

8 User behavior clustering 120

8.1 Quantizing and clustering trajectories 121

8.1.1 Modelling users with MDPs 121

8.1.2 Discounted cumulative feature vectors 122

8.1.3 Behavior specific user simulation 123

8.2 Experimental results and analysis 124

8.2.1 Behavior clustering for 3-slot dialogue problem 124

8.2.2 Behavior clustering for 12-slot dialogue problem 125

8.2.3 Behavior specific user simulation results 129

9 Co-adaptation in dialogue systems 132

9.1 Cognitive aspects of interpersonal interaction 134

9.2 Co-adaptation process elicitation 134

9.3 Experimental results and analysis 137

9.3.1 2-Slot restaurant information SDS 137

9.3.2 Co-adaptation results and analysis 138

10 Conclusion 145

10.1 Sample efficient policy optimization schemes 146

10.2 User simulation using IRL . 147

10.3 Co-adaptation in spoken dialogue systems 148

10.4 Future works . 149

10.4.1 Model selection in reinforcement learning 149

10.4.2 IRL-based dialogue optimization 149

ix

CONTENTS

10.4.3 Transfer learning in dialogue systems 150

10.4.4 Scaling up IRL-based methods for SDS 150

10.4.5 Generalization of user behaviors 151

10.4.6 Dialogue adaptation to behavior specific users 151

References 154

x

List of Figures

1.1 Spoken dialogue interface for human computer interaction 1

2.1 Architecture of a multi-modal spoken dialogue system 13

2.2 Dialogue optimization involving real users 23

2.3 Dialogue optimization involving user simulation 24

3.1 Reinforcement Learning: Agent interacting with the environment 35

4.1 Dialogue Management using User Simulation 47

4.2 Bayesian Network-based User Simulation 50

4.3 User simulation evaluation based on performance of dialogue policy 55

5.1 Policy optimization using both batch and online learning 63

5.2 Fitted-Q iteration. 65

5.3 LSTD principle. 67

5.4 Sparse - FVI (Fitted-Q with feature selection) 71

5.5 Sparse - LSPI (LSPI with feature selection) 72

5.6 Evaluation of policies learned using Fitted-Q and LSPI 79

5.7 Evaluation of policies learned using Fitted-Q and Sparse Fitted-Q 80

5.8 Evaluation of policies learned using LSPI and sparse LSPI 81

6.1 Q-values and policies. 92

6.2 Evaluation of KTD-Q (linear scale) 94

6.3 Evaluation of KTD-Q (semi-log scale) 95

6.4 Evaluation of policies learned using KTD-SARSA (Bonus Greedy) 97

6.5 Evaluation of policies learned using KTD-SARSA 97

xi

LIST OF FIGURES

7.1 User simulation using imitation learning 110

7.2 Frequency of user actions per episode 117

8.1 Behavior specific user simulations 123

8.2 Frequency of user actions per episode for the 3-slot problem 126

8.3 Cumulative distortion with varying number of clusters 128

8.4 Behavior specific user simulation 130

9.1 Dialogue optimization using RL and user simulation 136

9.2 Co-adaptation framework for dialogue evolution 136

9.3 Change in dialogue trajectory due to (error-free) co-adaptation . . 141

xii

List of Tables

2.1 Restaurant information SDS: dialogue policy structure 19

7.1 Hand-crafted user behavior . 114

7.2 Hand-crafted vs IRL user behavior 118

8.1 Hand-crafted users behaviors . 125

8.2 Inter-cluster Kullback-Leibler divergence 128

8.3 Intra-cluster cosine similarity . 129

10.1 Algorithms for solving SDS-MDP and User-MDP 146

xiii

Chapter 1

Introduction

Spoken Dialogue Systems (SDS) are natural language interfaces for Human Com-

puter Interaction (HCI). Speech is used as the medium of interaction. Some

example scenarios for dialogue based interaction with computers are shown in

Figure 1.1. Dialogue management engine of the SDS navigates it to accomplish

a specific task such as flight booking [Williams & Young, 2007], town informa-

tion [Lemon et al., 2006] etc.

Figure 1.1: Spoken dialogue interface for human computer interaction

1.1 Problem statement

State-of-the-art dialogue systems [Lemon & Pietquin, 2007; Rieser & Lemon,

2011], rely on Reinforcement Learning (RL) [Sutton & Barto, 1998] based opti-

mization schemes in order to learn an user adaptive and (noise) robust dialogue

1

strategy. However, poor sample efficiency of conventional RL algorithms forces

system designers to employ user simulations [Levin et al., 2000]. User simula-

tions are computational models used to generate synthetic dialogues. The pri-

mary problem in employing user simulation is twofold: (i) being a computational

model in itself user simulators introduce modelling errors, (ii) existing approaches

for building user simulators [Schatzmann et al., 2006a] focus on replicating dia-

logue corpus rather than behaving like a real user. Dialogue optimization which

involves such user simulators results in adapting1 dialogue strategies towards some

generic, non-existent users.

In order to solve this problem, sample efficient approaches for dialogue opti-

mization are analysed as part of this manuscript. By means of experimental re-

sults, sample efficiency and effectiveness of Approximate Dynamic Programming

(ADP) [Bellman & Dreyfus, 1959] and Kalman Temporal Differences (KTD) algo-

rithms [Geist & Pietquin, 2010b] when applied to dialogue are validated [Pietquin

et al., 2011a,b]. The primary motivation behind this effort is to avoid using user

simulators for dialogue optimization. However, optimized dialogue strategies still

ought to be evaluated. Involving prospective users or domain experts to evaluate

their performance is one possible solution. Yet, it is an expensive and time con-

suming process. Thus, user simulators continue to play a role at least for the sake

of evaluation. Behavior of real users tends to be much more complex rather than

merely responding to the current dialogue act. For example, every user response

is often based on the progress of the dialogue and their goal. Also real users

can generalize and adapt their behavior based on the dialogue manager they are

interacting with. In order to overcome the shortcomings of existing methods for

user modelling and also to make user simulation more realistic, a novel method

based on Inverse Reinforcement Learning (IRL) [Chandramohan et al., 2011a;

Ng & Russell, 2000] is proposed. This method treats the task of user simulation

as a sequential decision making problem. Imitation learning is performed to solve

this problem and thereby simulate real user behavior.

1Quality of user simulation tends to have a direct impact on the quality of dialogue strategy.

2

1.2 Resulting contributions

The following is a list of contributions resulting from this thesis. As discussed

in 1.1, this manuscript focuses on two key aspects of statistical dialogue man-

agement: (i) sample efficiency in dialogue optimization and (ii) IRL-based user

simulation.

Sample efficient dialogue optimization

1. Chandramohan, S., Geist, M. & Pietquin, O. (2010a). Optimizing

Spoken Dialogue Management with Fitted Value Iteration. In Proc. of In-

terSpeech 2010 , Makuhari (Japan)

2. Chandramohan, S., Geist, M. & Pietquin, O. (2010b). Sparse Ap-

proximate Dynamic Programming for Dialog Management. In Proc. of SIG-

Dial , Tokyo (Japan)

3. Daubigney, L., Gasic, M., Chandramohan, S., Geist, M., Pietquin,

O. & Young, S. (2011). Uncertainty management for on-line optimisation

of a POMDP-based large-scale spoken dialogue system. In Proc. of Inter-

speech 2011 , 1301–1304, Florence (Italy)

4. Pietquin, O., Geist, M. & Chandramohan, S. (2011a). Sample Effi-

cient On-line Learning of Optimal Dialogue Policies with Kalman Temporal

Differences. In Proc. of International Joint Conference on Artificial Intelli-

gence (IJCAI), Barcelona (Spain)

5. Pietquin, O., Geist, M., Chandramohan, S. & Frezza-Buet, H.

(2011b). Sample-Efficient Batch Reinforcement Learning for Dialogue Man-

agement Optimization. ACM Transactions on Speech and Language Pro-

cessing , 7, 7:1–7:21

Inverse reinforcement learning based user simulation

6. Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2011a).

User Simulation in Dialogue Systems using Inverse Reinforcement Learning.

In Proc. of Interspeech 2011 , Florence (Italy)

3

7. Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012b).

Clustering Behaviors of Spoken Dialogue Systems Users. In Proc. of the 37th

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2012), Kyoto (Japan)

8. Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012c).

Regroupement non-supervisé d’utilisateurs par leur comportement pour les

systèmes de dialogue parlé. In Journées Francophones de Planification,

Décision et Apprentissage pour la conduite de systèmes (JFPDA 2012),

Nancy (France)

9. Chandramohan, S., Geist, M. & Pietquin, O. (2011b). Apprentis-

sage par Renforcement Inverse pour la Simulation d’Utilisateurs dans les

Systèmes de Dialogue. In Sixièmes Journées Francophones de Planification,

Décision et Apprentissage pour la conduite de systèmes (JFPDA 2011), 7

pages, Rouen (France)

10. Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012a).

Behavior Specific User Simulation in Spoken Dialogue Systems. In Proc. of

the IEEE ITG Conference on Speech Communication (to appear), Braun-

schweig, Germany

11. Keizer, S., Rossignol, S., Chandramohan, S. & Pietquin, O.

(2012). User Simulation in the Development of Statistical Spoken Dialogue

Systems. In Data driven methods for Adaptive Spoken Dialogue Systems ,

Springer-Verlag New York Inc (To appear), (To appear)

1.3 Thesis layout

This manuscript is organized in three parts: Part I, Part II and Part III. The

basic idea in such an organization is to first introduce the necessary foundations

and then outline the resulting contributions. To begin with Part I presents an

overview on statistical dialogue management. It includes three chapters: Chap-

ter 2 introduces spoken dialogue management and Chapter 3 outlines machine

4

learning schemes for dialogue optimization and finally, Chapter 4 formally in-

troduces user simulations in dialogue systems. Part II outlines the resulting

contributions with regard to sample efficient dialogue optimization. This part is

organized in two chapters: Chapter 5 studies the effects of dialogue optimization

using ADP and Chapter 6 outlines the effectiveness of KTD-based algorithms

when applied to dialogue optimization. Eventually, Part III summarizes the con-

tributions with regard to the proposed IRL-based user simulation. The final part

of this manuscript is organized in to three chapters: Chapter 7 presents a short

overview on IRL and user simulation using IRL. Chapter 8 studies the possibility

to cluster behaviors of dialogue system users and Chapter 9 presents an overview

on co-adaptation in dialogue systems.

The rest of this section presents a detailed description on the layout of this

manuscript. Chapter 2 provides an overview on dialogue systems and statisti-

cal dialogue management. To begin with the architecture of a dialogue system is

outlined in 2.1, following which the dialogue management task is formally defined

in 2.2. Dialogue state and state transitions are introduced in 2.2.1. Introduction

to the dialogue policy along with an explanation on its role in dialogue man-

agement are presented in 2.2.2. A short summary on the taxonomy of dialogue

systems is presented in 2.2.3. Challenges to be addressed in the process of dialogue

management in case of man-machine interaction are outlined in 2.2.4. State-of-

the-art in statistical dialogue management is summarized in 2.3. Chapter 3 is

dedicated to provide an overview on Markov Decision Processes (MDP) [Puter-

man, 1994] and associated optimization techniques. Section 3.1 formally defines

an MDP and 3.2 introduces the Bellman equations and explains how it can be

used to solve MDPs. Dynamic programming (DP) [Bellman, 1957a] based al-

gorithms for solving MDPs are introduced in 3.3. An overview on RL-based

solution techniques for solving MDPs is presented in 3.4. Eventually dialogue

management using MDPs is discussed in 3.5.

Role of user simulation in SDS is discussed in Chapter 4. To begin with 4.1

introduces user simulation in SDS, following which an overview on some of the

existing approaches for building user simulators are described. Section 4.2 lists

commonly used metrics for evaluating the performance of user simulators. Sec-

tion 4.3 outlines few shortcomings in present day user simulation techniques.

5

Chapter 5 introduces ADP algorithms and studies their effectiveness when ap-

plied for dialogue optimization. To begin with value function approximation is

outlined in 5.1, following which ADP-based Fitted Value Iteration is discussed

in 5.2. Automatic feature selection scheme for value function approximation and

Sparse-ADP algorithms are discussed in 5.4, 5.5 and 5.6 respectively. Eventu-

ally, experimental results on dialogue optimization using ADP and sparse ADP

algorithms are presented in 5.7

An introduction to KTD framework and dialogue optimization using KTD-

Q and KTD-SARSA are presented in Chapter 6. Policy optimization using

online/off-policy are discussed in 6.1 (Q-learning) and 6.2 (KTD-Q), following

which policy optimization using online/on-policy algorithms are outlined in 6.3

(SARSA and KTD-SARSA). Eventually 6.5 outlines the effectiveness of these

algorithms when applied for dialogue optimization. Given the shortcomings of

existing methods for user simulation, Chapter 7 presents a novel method for user

simulation using IRL. The equivalence of the user simulation task to a sequential

decision making problem is discussed in 7.1. IRL problem elicitation and descrip-

tion of IRL-based user simulation are presented in 7.2. Eventually 7.3 outlines

the experimental set-up and analyse the results.

Chapter 8 describes how behavior clustering can be performed using feature

expectations. To begin with the proposed scheme for clustering is outlined in 8.1.

Once similar behaviors are identified and clustered, specific behaviors can then be

imitated using IRL-based user simulation. Eventually 8.2 outlines a set of exper-

iments carried out to validate the effectiveness of the proposed methods. Chap-

ter 9 introduces the co-adaptation framework in dialogue systems and studies

its impact towards dialogue evolution. Natural forms co-adaptation that occurs

in human-human communication are discussed in 9.1. The proposed scheme for

co-adaptation in dialogue systems is discussed in 9.2. Section 9.3 describes the

experimental set-up and analyses the consequence of co-adaptation for a 2-slot

restaurant information SDS.

Finally, Chapter 10 revisits the experimental results and derives a conclusion

on the proposed algorithms and methods for dialogue optimization and user mod-

elling. To begin with 10.1 derives a conclusion on the effectiveness of ADP and

KTD algorithms for dialogue optimization. Following which 10.2 summarizes the

6

effects of user modelling using IRL. Section 10.3 revisits some of the advantages

of treating the user modelling task as a sequential decision making problem and

solving it using IRL. Eventually, 10.4 identifies and outlines some directions of

future works.

7

8

Part I

Statistical Dialogue Management

9

10

Chapter 2

Spoken Dialogue Systems

Human Computer Interaction (HCI) is a field of study which focuses on designing

interfaces that facilitate the interaction between computers and their prospective

users. Ever since computers began to play a key role in our day-to-day lives,

interfaces such as keyboards, mouse enabled graphical layouts and the more recent

touch screens have all become widely accepted means for HCI. However, in order

to use these devices, the users are expected to have some amount of knowledge

on their functionality and how they can be used. Unlike such interfaces, dialogue

systems provide a more natural mean for HCI using speech as the medium of

interaction. Thus users can now converse with computers just like in human-

human interaction. Dialogue based interaction means now computer enabled

services such as weather forecast or flight information can be received remotely

(for instance, over telephone).

Looking at human-human conversation in a psychological perspective: we hu-

mans tend to involve in a dialogue in order to convey or receive information. At

granular level this task is accomplished by means of utterances (speech based ut-

terances or non-verbal utterances such as facial expressions, body language etc).

Performative utterances in the form of speech acts convey a short piece of in-

formation. This information is interpreted based on the context of the dialogue.

The dialogue context is composed of a sequence of utterances (uttered during the

history of the communication). Thus to summarize, parties involved in communi-

cation alternately generate communicative utterances or speech acts so that the

intended task (of conveying or seeking some information) can be achieved over

11

a period of time. More detailed information on psychological aspects of human-

human communication can be found in [Austin, 1975]. The task of choosing

a sequence of performative utterances or speech acts1 and maintaining as well

as updating the dialogue history or context can be termed as spoken dialogue

management. We humans acquire the necessary skills to conduct and manage a

dialogue as we grow up.

In order to conduct dialogue with human users, computers should have the

ability to choose and perform a sequence of speech acts as well as maintain the

dialogue context so that speech acts generated by users can be suitably inter-

preted. Tasks to be accomplished by a dialogue system may range from simple

tasks (such as flight booking, tourist information) to complex tasks (such as tu-

toring). The following chapter is organized as follows: To begin with an overview

on the architecture of SDS is presented in Section 2.1. Computer enabled spoken

dialogue management is elicited in detail in Section 2.2. Section 2.2.1 explains

how dialogue progress can be observed in the form of dialogue context and how it

can be represented using the Information State (IS) paradigm. The significance

and the structure of dialogue management policy is outlined in Section 2.2.2.

A short note on the taxonomy of dialogue systems is presented in Section 2.2.3.

Challenges to be addressed in the process of dialogue management in case of man-

machine interaction are outlined in Section 2.2.4. Finally, Section 2.3 surveys the

state-of-the-art statistical dialogue managers.

2.1 Architecture of dialogue systems

SDS are complex systems, which include multiple internal modules (as shown in

Figure 2.1). The speech signal uttered by the user is converted into text by the

Automatic Speech Recognition (ASR) module [Rabiner & Juang, 1993]. Natural

Language understanding (NLU) module [Allen, 1995] then extracts the meaning

of this text. The extracted information is passed on to the dialogue manager. In

case of a multi-modal SDS (which for example employs a graphical user inter-

face) users can choose to provide a non-verbal utterance. In the later case, the

1Every speech act is chosen in accordance to the dialogue context so that some task (such
as train ticket booking or trouble shooting) can be achieved over a period of time.

12

dialogue manager is updated by both the language understanding module and

event manager of the graphical user interface.

The dialogue manager [Frampton & Lemon, 2009; Levin & Pieraccini, 1998;

Roy et al., 2000] plays a key role in navigating the SDS to accomplish the specified

task. Based on the user utterance it decides the next speech act to be performed

by the SDS. Language generation module [Reiter & Dale, 2000] transforms the

speech act of the SDS into a natural language text (with the help of a suitable

language model). The text generated is presented to the user with a text-to-

speech synthesis engine [Dutoit, 1997]. In case of a multi-modal SDS, a graphical

user interface as shown in Figure 2.1 can be used to present the information.

Figure 2.1: Architecture of a multi-modal spoken dialogue system

2.2 Spoken dialogue management

Dialogue management in itself is a problem which involves choosing and perform-

ing a sequence of speech acts. By means of step-by-step instructions, the dialogue

manager governs the functioning of the SDS. Speech acts performed by the dia-

logue manager are termed as dialogue acts, while user’s speech acts are termed as

user acts. A dialogue turn constitutes of a dialogue act and an user act. At every

dialogue turn, the dialogue manager intends either to seek information from the

user or furnish information to the user. The choice of a dialogue act is based

on the dialogue context. The primary aim of the SDS and hence the dialogue

manager is to achieve its goal, taking user satisfaction into account.

13

Following are fictitious dialogues between a tourist guide and a tourist who is

visiting some city. Let us assume that the tourist intends to eat in a cheap Italian

restaurant located in the city-centre, but has no information about restaurants

in the city. Thus to find a suitable restaurant he/she contacts the tourist guide

at the information desk who has a database of restaurants. In order to serve the

tourist i.e., to search the database and refine the results, the guide has to know

the tourist’s preferences for certain fields or variables such as: (i) restaurant lo-

cation, (ii) price-range, (iii) cuisine type, etc.

Example Dialogue: 1

Guide: Hi, how can I help you?

Tourist: I am looking for a restaurant.

Guide: In which part of the city are you looking for a restaurant?

Tourist: City-centre please.

Guide: In what price-range are you looking?

Tourist: A cheap restaurant which serves Italian food.

Guide: Inform possible options {1,2,3...}

Tourist: Thank you

Guide: Good bye

Example Dialogue: 2

Guide: Hi, how can I help you?

Tourist: I am looking for a cheap Italian restaurant in the city-centre.

Guide: Inform possible options {1,2,3...}

Tourist: Thank you

14

Guide: Good bye

Example dialogues from the restaurant information domain

Example dialogue 1 showcases the behavior of a tourist who has limited ex-

perience in interacting with the tourist guide. So when asked how can I help

you? or In which part of the city are you looking for a restaurant? the tourist

answers the questions directly and provide limited information. As the dialogue

progresses the user grows in confidence and tends to provide more information

as shown by his/her response for In what price-range are you looking? It can be

observed that the response for this question includes information on the price-

range of the restaurant being searched for (i.e., cheap) along with information on

the type of the restaurant (i.e., Italian). However, example dialogue 2 showcases

the behavior of the tourist who knows all the information required by the guide

(perhaps as result of frequent interaction). Thus, when asked how can I help

you?, the response is comprehensive and includes all information required by the

guide (i.e., price-range, location, restaurant-type).

Let us now assume that the role of the tourist guide has to be automated and

a dialogue system will be employed in order to help the tourists. For the sake

of simplicity let us assume that the dialogue system can only provide restaurant

related information. In case of such a dialogue system, the dialogue manager’s

role is to seek information about the restaurant preferences and furnish the results

from database. However, dialogue management is a challenging problem due to (i)

the variations in user behaviors and (ii) the uncertainty due to speech recognition

errors and/or language understanding errors. Based on the examples studied here

it can be assumed that: the users of the dialogue system will have behaviors

similar to the one showcased either in the example dialogue 1 or in the example

dialogue 2. Thus it is safe to mention that the prospective users may have no prior

knowledge or some (partial or complete) knowledge on what information will be

requested by the system. More importantly such behaviors can be observed only

during the time of interaction with the potential users. Often it is impossible to

guess the user knowledge or say how the user will behave before actually initiating

the dialogue. Thus dialogue systems should have the ability to cope and adapt to

the variations in user behaviors. More information on challenges associated with

15

dialogue management are discussed in Section 2.2.4.

2.2.1 Information state update

In case of a human-human dialogue, real user’s ability to maintain and update the

dialogue context comes in handy for dialogue management. Some internal mea-

sure of dialogue progress is made available naturally. In order to give this ability

for computers, there is a necessity to track the progress of the dialogue. This can

be achieved by the so called dialogue state or context. It is an internal measure

of the dialogue progress and everything that can help the dialogue manager in

choosing a suitable dialogue act. It compactly summarizes the dialogue history.

At every turn, the dialogue manager updates the current dialogue context based

on the observed1 user utterance. The updated context is used to choose the next

dialogue act. This process is repeated until the dialogue task is achieved by the

system or the user terminates the dialogue (for instance, hangs-up the phone).

A simple, yet effective way for representing the dialogue context is to use

the so called Information State (IS) paradigm [Larsson & Traum, 2000]. The

dialogue context in itself consists of features of great relevance to the dialogue

problem being treated. At each dialogue turn, based on the user response one

or more features in the dialogue state are updated. The restaurant information

dialogue problem studied here is essentially a form filling or slot filling dialogue

task. In order to search the database, the SDS must know the user preferences:

(i) whether the user is looking for a restaurant or a bar, (ii) in which part of the

city the user is looking for the restaurant, (iii) in what price-range and finally

(iv) what type of restaurant the user is looking for, i.e., whether he is looking for

an Italian or an Indian restaurant. It is also necessary to track dialogue events

such as: (v) whether the user has been greeted or not, (vi) whether the results

retrieved from the database have been informed to the user or not.

Since these (six) features correspond to the user preferences and the dialogue

progress, they play a key role during the dialogue. Thus while designing a dialogue

1Observed user utterance is indeed the user utterance subject to speech recognition and
language understanding errors. The utterance recognized by the speech recognition engine and
interpreted by the language understanding module may not always be the actual user utterance,
primarily due to the possibility of errors (refer Section 2.2.4).

16

manager it is necessary to include them in the dialogue state. Features of the

dialogue state can be defined at the word level or at the intention level. For

example, a slot which corresponds to restaurant-type can take values such as

Italian, Mexican, Indian etc. In case of word level feature definition the slot can

have values: (i) 0 corresponds to Italian, (ii) 1 corresponds to Mexican, (iii) 2

corresponds to Indian, etc. However, in case of intention level definition the slot

can only take two values: (i) 0 corresponds to a scenario where the user is yet

to provide the value, (ii) 1 corresponds to a scenario where the user has already

provided the value. Defining the feature at intention level provides a compact way

for representing the dialogue problem. Thus dialogue state features are defined

at the intention level in the rest of this manuscript. While defining the features

at the intention level, it is also possible to have continuous values rather than

binary values as discussed here1. To summarize the restaurant information SDS

will have the following binary features in its state representation:

φ1 : search-id (sample values: restaurant or bar)

φ2 : location (sample values: city centre or market square)

φ3 : price-range (sample values: expensive or moderate or cheap)

φ4 : type (sample values: Italian restaurant or jazz bar)

φ5 : greet-user

φ6 : inform-user

Restaurant information SDS: example of dialogue state features

Thus, the dialogue state takes the form: {φ1, φ2, φ3, φ4, φ5, φ6}, where all the

features are binary variables. When the dialogue episodes begins (i.e. the initial

state - {0, 0, 0, 0, 0, 0}) all the features are set to zero. Once the dialogue

manager chooses and performs a dialogue act a, the user responds with a suitable

1It may be useful to note that state of the art statistical speech recognition engines apart
from providing the recognized text, also provide a measure of recognition confidence. Thus, a
feature can be defined to have continuous values which correspond to the ASR confidence score
of a slot-value (refer Section 5.7.1 for an example scenario)

17

user act. A possible list of dialogue acts that can be performed by the dialogue

manager is listed below:

1. ask-destination-type

2. ask-restaurant-type

3. ask-restaurant-location

4. ask-restaurant-price-range

5. inform-restaurants

6. greet-user

7. close-dialogue

Restaurant information SDS: list of dialogue acts

Based on the current dialogue state s, the dialogue act a and the observed user

utterance, state transition to a new state s′ occurs. Following is an example for

dialogue state transition. In this example since the user has been greeted feature

φ5 of s′ is set to 1. Also since the user informs he is looking for a restaurant

feature φ1 of s′ is set to 1.

Dialogue turn:

Guide: Hi, how can I help you?

Tourist: I am looking for a restaurant.

Dialogue State Transition:

Initial dialogue state (s): {0, 0, 0, 0, 0, 0}

Dialogue act (a): greet-user

User utterance: inform-restaurant

Next dialogue state (s′): {1, 0, 0, 0, 1, 0}

Restaurant information SDS: state transition example

18

Current dialogue state Dialogue act to be performed
{0, 0, 0, 0, 0, 0} greet-user
{1, 0, 0, 0, 0, 0} ask-destination-type

...
...

{1, 1, 1, 1, 1, 0} inform-restaurants
{1, 1, 1, 1, 1, 1} close-dialogue

Table 2.1: Restaurant information SDS: dialogue policy structure

2.2.2 Dialogue management policy

In Section 2.2, the dialogue management task was defined as one in which the

dialogue manager has to choose (decide which is the best action) and perform

a sequence of actions in order to accomplish a specific task. Most often such

decisions are made using the so called dialogue policy. In simple terms, given

a dialogue state, the policy dictates what action should be performed next. We

know that the dialogue state for the restaurant information dialogue problem

includes six binary features. In total there will be 64 states (in other words |S|

is 26 = 64). There will be a total of 448 (i.e. 64*7) state-action pairs (s, a). The

dialogue policy here can take a tabular format as shown in Table 2.1.

2.2.3 Taxonomy of dialogue systems

In general commercial dialogue systems can be classified into several groups based

on the type of the dialogue task addressed by them. A partial list of different SDS

types includes: (i) form filling dialogues (for example, town information [Lemon

et al., 2006; Seneff et al., 1998], flight booking [Williams & Young, 2007]), (ii)

tutorial dialogues (for example, natural language tutoring SDS [Vanlehn et al.,

2007]), (iii) virtual companions or assistants [Wilks, 2004]. Based on the strategy

applied for dialogue management, SDS can further be classified into two types: (i)

rule based systems and (ii) plan based systems. Rule based dialogue systems are

governed by a set of rules (similar to grammar which governs the correctness of a

sentence) [Jnsson, 1993]. The primary focus of these rules is to handle dialogues

at the level of transitions. Plan based dialogue systems are governed by detailed

19

plans which include information such as user intentions and the final task to be

accomplished. Here the focus is to handle dialogues at the level of trajectories.

Based on who is performing the lead role in the dialogue, SDS can be classified

into three types: (i) system-initiative (where the dialogue manager conducts the

dialogue), (ii) user-initiative (where the user conducts the dialogue) and (iii)

mixed-initiative [Ferguson et al., 1996] (where both the dialogue manager and

the user can take turns to conduct the dialogue and need not wait for the other

party to seek/furnish information).

Dialogue policy-based spoken dialogue management introduced so-far in this

chapter can be perceived (to some extent) as a plan based SDS. There exists

several possible ways to determine this policy. For instance, it is possible to man-

ually specify a policy which defines what action to be performed given the current

dialogue context. However, hand-crafting such a policy is a time consuming task

even for small dialogue problems like the one discussed here. Dialogue optimiza-

tion is the process of retrieving an optimal1 dialogue policy. The goal of dialogue

optimization process is to determine a policy that achieves the dialogue task in

an efficient way. A key focus of research in the dialogue domain since last decade

is to explore the possibility for dialogue optimization using the available dialogue

corpora.

2.2.4 Why dialogue management is challenging?

As mentioned earlier, the dialogue manager updates the dialogue state based on

the observed user utterance. Speech recognition engine and natural language un-

derstanding modules play a key role in observing the user utterances. However,

there is a possibility for incorrect recognition (due to ASR channel noise) or mis-

interpretation (due to NLU) of user utterances. Such errors are propagated to the

dialogue manager resulting in state transitions which were not intended by the

user. Let us have a look at the following example which showcases the effect of

error in observing user utterances. In this case the tourist is looking for a restau-

rant in the High-street. However, if an error does occur (as shown below), the

user utterance is interpreted or understood in a wrong sense. Using an incorrect

1What makes a policy optimal and how it can be estimated are discussed in chapter 3

20

observation, the dialogue manager updates its state. Here the dialogue manager

believes the user has provided information about price-range of the restaurant

(whereas the user expects it to provide restaurant options in the high-street).

It takes several dialogue turns for the dialogue manager to realize the mistake.

Thus, it is often hard to recover from such errors. Yet, there always exists some

amount of uncertainty in observing the user utterance. Since the dialogue man-

ager relies heavily on the ASR and NLU modules, it should have the ability to

cope with recognition errors and/or language understanding errors. This is often

a key challenge in designing dialogue managers. It is important to note that as

the complexity of the dialogue problem increases, chances for speech recognition

errors (since the vocabulary becomes very large in size) and language understand-

ing errors (since it is difficult to determine the correct semantic annotation: what

information is provided under which scenario) increase exponentially.

Dialogue turn:

Guide: Hi, how can I help you?

Tourist: I am looking for a restaurant in the high-street.

Dialogue State Transition:

Initial dialogue state (s): {0, 0, 0, 0, 0, 0}

Dialogue act (a): greet-user

Actual user utterance: inform-restaurant, inform-location

Observed user utterance: inform-restaurant, inform-price-range

Next dialogue state (s′): {1, 0, 1, 0, 1, 0}

Restaurant information SDS: impact of speech recognition errors

One other challenge with regard to dialogue management, is caused by varia-

tions in user behaviors (recollect the variation in user behavior in dialogue exam-

ples 1 and 2). Often while interacting with users, a dialogue system encounters

users with different behaviors. Some users may have frequently used the dialogue

21

system in the past and thus often provide more information in every dialogue

turn. Whereas some users may never have used the dialogue system and thus

wait for the dialogue system to take the lead role. Since prospective user behav-

iors are different from each other, there is a pressing necessity to have an adaptive

dialogue management policy.

2.3 State-of-the-art in dialogue systems

In order to cope with the challenges involved in dialogue management and also to

provide a satisfying experience for prospective users, various components of the

state-of-the-art commercial SDS are built using statistical data driven methods.

The primary focus here is to build dialogue systems which are (i) user adaptive,

(ii) robust to errors and (iii) capable of producing natural human-human like

dialogues. The following section presents an overview on the state-of-the-art in

dialogue systems.

2.3.1 Statistical user act interpretation

Statistical approaches for speech recognition [Jelinek, 1998] and language under-

standing [Hahn et al., 2011; Lefèvre, 2007] have taken precedence in recent years.

A vast majority of present day ASR and NLU modules apart from interpreting

the user act, also provide some probabilistic score indicating their confidence on

the interpretation. The basic idea here is to provide an opportunity for the di-

alogue management engine to cope with the associated uncertainty. Using this

confidence scores, dialogue managers can choose to use an interpretation hypoth-

esis as it is (in case of high confidence) or else choose to request the user to repeat

the speech act (in case of very low confidence) or seek the user to confirm whether

the dialogue system’s interpretation is in line with the user goal (in case of inter-

mediate confidence). State-of-the-art statistical ASR and NLU modules provide

multiple hypothesis along with their corresponding confidence scores. This in

turn helps dialogue management engines to maintain multiple hypothesis [Hen-

derson & Lemon, 2008; Williams & Young, 2007] about user intentions or user

goal. One of the key advantages in maintaining multiple hypothesis is the ability

22

and the ease with which one hypothesis can be switched with another. More

sophisticated formalisms of user act interpretation does exist for the purpose of

dialogue management. For instance, [Pinault & Lefèvre, 2011] proposes a scheme

in which user utterance interpretation in the form of semantic graphs is directly

mapped to the summary space of a dialogue manager.

2.3.2 Dialogue policy optimization

As the complexity of the dialogue problem increases, the size of the state-action

space also increase exponentially1. Dealing with large state-space problems man-

ually is a tedious or even an impossible task. Statistical dialogue optimization

approaches aim at retrieving the dialogue policy from the dialogue corpus or by

interacting with users (or user simulators). Dialogue management problem (as

explained in Section 2.2), involves making a sequence of decisions. Given its

equivalence to the sequential decision making problem, it is often modelled as a

Markov Decision Process (MDP) [Bellman, 1957b; Levin & Pieraccini, 1998] or a

Partially Observable Markov Decision Process (POMDP) [Sondik, 1978; Williams

& Young, 2007].

Dialogue Manager

RL Policy Learner

User

Figure 2.2: Dialogue optimization involving real users

Once the dialogue problem is casted as an MDP (as discussed in Section 3.5)

or POMDP dialogue policy optimization can be performed using Reinforcement

Learning (RL) [Kaelbling et al., 1996; Sutton & Barto, 1998]. There exists a

wide range of RL algorithms (as discussed in Section 3.4). One possibility to

1As the complexity of the dialogue problem increases, more and more features are required
to define the dialogue state and also the list of possible dialogue acts increases. Thus, resulting
in exponential increase in the size of state-action space.

23

perform this optimization indeed is to learn from live interactions with real users.

Dialogue optimization in an online RL set-up is showcased in Figure 2.2.

2.3.3 User simulations in dialogue systems

Figure 2.3: Dialogue optimization involving user simulation

Data (dialogue corpora) used for dialogue optimization is obtained from real

users. It generally consists of a set of human-human or human-machine dia-

logues. If such dialogues are not available, dialogue corpora can be generated

using a Wizard-of-Oz1 set-up [Rieser, 2008]. Standard RL algorithms used for

policy optimization require vast amounts of data to converge. However, dialogue

corpora generation and annotation is a time consuming and expensive process.

To cope with the data requirement of RL algorithms, user modelling for dialogue

simulation has received significant interest in the last decade [Levin et al., 2000;

Pietquin, 2006; Schatzmann et al., 2006a].

User simulators are computational models used to simulate the behavior(s)

of real users and thereby generate synthetic dialogues. Often user simulators

are built from the available dialogue corpus. Synthetic dialogues generated with

user simulators are utilized to perform dialogue optimization. Given its cost

1In which case real users interact (in order to generate a set of dialogues) with a wizard
assuming or believing it to be a machine. The role of the wizard is often enacted by a human
operator or the system designer.

24

effectiveness, user simulators are also employed to evaluate the quality of learned

dialogue policies. However, user simulators introduce new sources of modelling

errors. The quality of the dialogue policy directly depends on the quality of

user simulator used for policy optimization [Schatzmann et al., 2005]. Chapter 4

provides a short overview on some of the existing methods for user simulation. A

more detailed information on such methods can be found in [Schatzmann et al.,

2006b].

2.3.4 Language generation in dialogue systems

As mentioned earlier, language generation modules are used to generate natural

language text given the current dialogue act. They play a key role in determining

the naturalness of human-machine dialogues. In order to improve the naturalness

of dialogues, several data driven methods for language generation [Theune, 2003]

have been proposed. The task of generating natural language text in turn consists

of several sub-tasks such as: macro-planning, micro-planning, referring expression

generation etc.. Given the recent advancements in the field of ASR and NLU (for

example: continuous speech recognition and interpretation) and state-of-the-art

in dialogue management using RL, language generation in dialogue systems has

received significant interest. As a result of this several machine learning-based

methods for language generation in dialogue systems (for example [Janarthanam

& Lemon, 2009; Lemon, 2011]) have been proposed in recent past.

Chapter 3 formally introduces MDPs and gives on overview on methods for

solving MDPs. In order to introduce sample efficient dialogue optimization tech-

niques proposed in this manuscript, MDPs ought to be introduced first.

25

26

Chapter 3

Markov Decision Processes

In case of an SDS, the dialogue manager essentially performs the role of a decision

maker. The goal of the (restaurant information) dialogue manager is to help the

tourist (i.e., to present information about restaurants of user’s choice). In order

to achieve this, dialogue act selection at every time step should be made by

having the final goal in foresight. Let us assume that these decisions are made

at time steps t1, t2, ...tn, where n is the number of turns required to accomplish

the dialogue task1. At each time step ti, the dialogue manager has to choose

a suitable dialogue act given the dialogue state (which summarizes the dialogue

history). Not all actions are allowed to be performed at every time step ti. For

instance, informing the list of restaurants before seeking the user preferences (i.e.,

filling the location, price-range, restaurant-type related information) is deemed

to be an inappropriate choice of action. However, it is likely that the dialogue

manager will have more than one action to choose from at every time step ti.

Thus a dialogue policy plays a key role in spoken dialogue management. Given

the dialogue state, a dialogue policy dictates what action should be performed

next by the dialogue manager. The structure and the significance of a dialogue

policy are discussed in Section 2.2.2. However, how to determine a good dialogue

policy is a key question to be addressed.

In machine learning (ML), paradigms such as Markov Decision Process (MDP)

[Bellman, 1957a; Puterman, 1994] and Partially Observable Markov Decision Pro-

1Note that the dialogue length (n) is subjective to user (behavior and goal) and thus tends
to vary from one dialogue to another.

27

cess (POMDP) [Astrom, 1965] provide an efficient way to handle sequential

decision making problems. This chapter focuses on casting the restaurant in-

formation dialogue manager as an MDP and describes how it can be solved in

order to estimate a fairly good dialogue policy. MDPs can be optimized using

Dynamic Programming [Bellman, 1957a] or Reinforcement Learning [Sutton &

Barto, 1998]. In order to employ dynamic programming it is necessary to have the

set of Markovian state transition probabilities and the associated rewards. How-

ever, this may not be always possible. For example, knowing the state transition

probabilities for an MDP with finite but large state-action space is often not prac-

tical. Hence, reinforcement learning based policy optimization is commonly used

in the dialogue domain. The organization of this chapter is as follows: Section 3.1

formally defines an MDP and Section 3.2 provides an overview on solving MDPs.

Following which in Section 3.3 dynamic programming (model) based solutions are

discussed. Section 3.4 outlines reinforcement learning (model-free) based policy

optimization techniques. Finally in Section 3.5 statistical dialogue management

using MDPs is discussed in detail.

3.1 Formal definition of an MDP

MDPs are a well known framework for modelling and solving sequential decision

problems. Formally, an MDP is defined as a tuple {S,A, P, R, γ}, where S is

the (finite) state space, A the (finite) action space, P : S × A → P(S) a set of

Markovian transition probabilities. R : S × A× S → R the reward function and

γ is the discount factor for weighting long-term rewards.

At each time step t, the agent (i.e., the decision maker) in state st ∈ S chooses

and performs an action at ∈ A (according to a policy π being followed by the

agent) and then steps to st+1 according to p(.|st, at). In this case, P(S) determines

with what probability (p(st+1|st, at)) state transition occurs from st to st+1. The

agent receives a reward or some feedback of the form rt = R(st, at, st+1) (which

basically measures the quality of the agent’s choice of action). The agents goal

is to maximize the cumulative reward that can be obtained over a period of time

(but not necessarily maximize immediate rewards).

While using MDPs for modelling a problem under study, it is important that

28

the Markovian assumption holds true. Markovian assumption states that: the

transition of an agent from st to st+1 depends only on the current state-action

pair (st, at) and not on the history of transitions (or the path followed to reach

it). It is always possible (but not practical) to make a system Markovian by

taking into account all the past transitions into the state representation. By

using information state update paradigm for the dialogue state representation,

the dialogue history is summarized implicitly in the dialogue state. This enables

us to model dialogue problems as MDPs.

The solution of an MDP is called a policy, which in simple terms is a mapping

from state to action: π : S → A. The quality of such a policy is quantified by

the so-called value function V π : S → R, which associates each state s ∈ S to the

expected cumulative discounted reward that can be obtained by starting from

state s and from then on following the policy π:

V π(s) = E[
∞
∑

t=0

γtR(st, at, st+1)|s0 = s, at = π(st), st+1 = p(.|st, at)]. (3.1)

The expectation term over trajectories in the definition of state-value function

(V π(s)) comes from the fact that trajectories are stochastic (due to the random-

ness of transitions). The optimal policy π∗ is the one for which the value (V π) is

maximum for every state s ∈ S:

π∗ ∈ argmax
π

V π. (3.2)

The action-value function Qπ : S×A→ R (defined as follows) can also be used

to measure the quality of the associated policy π. The Q-function associates each

state-action pair (si, ai) to the expected cumulative discounted reward that can

be obtained by starting from si, performing action ai and from then on following

the policy π:

Qπ(s, a) = E[
∞
∑

t=0

γtR(st, at, st+1)|s0 = s, at = π(st), st+1 = p(.|st, at)]. (3.3)

29

In comparison to the value function, the action-value function i.e. the Q-

function provides an additional degree of freedom concerning the choice of the

first action to be taken. Actually, an important concept in RL is the greedy policy,

which associates to a state the action which maximizes the expected cumulative

discounted reward according to a currently estimated value function. Considering

the value function, computing a greedy policy requires knowing the model, that is

transition probabilities and the reward function. In the less constrained context,

this model is not known neither learned. Thanks to this additional degree of

freedom, a greedy policy can be computed from the Q-function without knowing

the model. Based on the associated Qπ-function, the optimal policy π∗ is the one

for which the value (Qπ) is maximum for every state (s, a) ∈ S × A:

π∗ ∈ argmax
π

Qπ (3.4)

3.2 Solving MDPs

The most compelling aspect of modelling sequential decision making problems as

MDPs comes from the fact that, the underlying mathematical framework govern-

ing MDPs provide an effective means for identifying and retrieving the optimal

solution (i.e., to find the optimal policy). Most existing solutions for solving

MDPs revolve around using two fundamental equations; (i) Bellman evaluation

equation and (ii) Bellman optimality equation [Bellman, 1957a]. This section pro-

vides an overview on how these equations can be used to determine the optimal

solution for MDPs.

Recollect the definition of the state-value function (V π) in eq. 3.1. Computing

the value function V π from its definition is indeed not a practical option. Such

a solution would mean sampling trajectories in order to find V π. However, there

exist much effective means to determine V π. Based on the Markovian assump-

tion, it can be shown that the value function V π satisfies the Bellman evaluation

30

equation:

V π(s) = Es′|s,π[R(s, π(s), s′) + γV π(s′)] (3.5)

=
∑

s′∈S

p(s′|s, π(s)) (R(s, π(s), s′) + γV π(s′)) (3.6)

The operator T π associated with this equation is often termed as the Bellman

evaluation operator. T π can be defined as:

T π : V ∈ R
S → T πV ∈ R

S : [T πV] (s) = Es′|s[R(s, π(s), s′) + γV (s′)] (3.7)

Bellman evaluation operator is indeed a contraction [Puterman, 1994] for

which the optimal value function is the unique fixed-point:

V π = T πV π (3.8)

The other Bellman equation providing directly the optimal value function V ∗

is the Bellman optimality equation:

V ∗(s) = max
a∈A

Es′|s,a[R(s, a, s′) + γV ∗(s′)] (3.9)

= max
a∈A

∑

s′∈S

p(s′|s, a)(R(s, a, s′) + γV ∗(s′)) (3.10)

The optimal value function can be defined as the unique fixed-point of a

similarly defined Bellman optimality operator T ∗, which can also be shown to be

a contraction [Puterman, 1994]. Thanks to the Banach theorem, for any initial

value function V1, the iterative scheme Vk+1 = T ∗Vk converges to the optimal

value function V ∗. Thus using V ∗ and the model, policy π∗ can be computed.

However, it is more practical to work directly with the action-value function

(i.e. the Q-function). The action-value function (Qπ) of a given policy π and the

optimal action-value function (Q∗) satisfies the Bellman evaluation and optimality

equations respectively. Thus, as for as the action-value function concerned, Qπ

and Q∗ are the fixed-points of associated Bellman operators T π and T ∗.

31

Qπ(s, a) = Es′|s,a[R(s, a, s′) + γQπ(s′, π(s′))] (3.11)

Q∗(s, a) = Es′|s,a[R(s, a, s′) + γ max
b∈A

Q∗(s′, a′)] (3.12)

3.3 Dynamic programming

Dynamic programming [Bellman, 1957a] is a set of algorithms to solve problems

which involve sequential decision making problems. If the sequential decision

problem modelled as an MDP has a finite state space and is episodic (i.e., a

finite horizon problem), dynamic programming guarantees exact solutions. We

know that the solution for an MDP is a policy and the optimization process aims

at retrieving the optimal policy. Bellman evaluation and Bellman optimality

equation forms the mathematical foundation for dynamic programming. Policy

optimization using dynamic programming involves solving either of these equa-

tions. The optimization problem in itself is divided into several sub-problems and

solved recursively to find the optimal solution. Computational results (such as

V (si)) obtained during the optimization process are stored in the form of look-up

table and re-used when needed.

It is important to note that two key assumptions ought to be met in order

to employ dynamic programming for policy optimization: (i) the model of the

system is well defined, i.e., the Markovian transition probabilities (p(st+1/st, at))

and the reward function (R(st+1, st, at)) are made available (ii) the state space

and the action space must be finite in size and the problem dealt with is episodic

(finite horizon). However, there exists methods which can compute approximate

solutions (from a set of transition samples) for problems with infinite state or

action space (see Chapter 5). This section outlines two dynamic programming

algorithms: (i) policy iteration - aims at estimating an optimal policy π∗ by

iteratively and alternatively switching between policy evaluation and policy im-

provement and (ii) value iteration - aims at directly retrieving the optimal value

function (V ∗ or Q∗) so that the associated optimal policy π∗ can be reached.

In order to introduce policy iteration algorithm, policy evaluation and policy

improvement ought to be outlined. Given two policies π1 and π2, it is difficult

32

to directly determine the best one of the two. However, using the associated

value functions V1 and V2 it is possible to conclude which of the two policies is

better. Policy evaluation is the process of retrieving the value functions (V π or

Qπ) associated to a policy π. Based on Bellman evaluation equation, V π can be

defined as follows:

V π(s) = Es′|s,π[R(s, π(s), s′) + γV π(s′)]

=
∑

a∈A

π(s, a)
∑

s′∈S

p(s′|s, a) (R(s, a, s′) + γV π(s′)) (3.13)

As explained in 3.2, the existence of unique V π for π is guaranteed and it is

indeed the fixed point of the Bellman evaluation operator (refer eq 3.7). Thus,

as the value of k → ∞, V π
k+1 → V π (see Eq. 3.8). This iterative process is

summarized as shown in Eq. 3.14. Commonly used stopping criterion for policy

evaluation is ‖Vk+1 − Vk‖ ≤ η, where η is a small position constant.

V π
k+1(s) = Es′|s,π[R(s, π(s), s′) + γV π

k (s′)]

=
∑

a∈A

π(s, a)
∑

s′∈S

p(s′|s, a) (R(s, a, s′) + γV π
k (s′)) (3.14)

Given an arbitrary policy πk, policy improvement aims at finding a policy

πk+1 (if it indeed exists) such that V πk+1 ≥ V πk . The improved policy πk+1 is

guaranteed by the policy improvement theorem, to be better if not as good as

policy πk. Using the computed value function V πk , the policy πk can be improved

(during policy improvement) by being greedy with respect to V πk :

πk+1 = πgreedy(V
πk) : s→ argmax

a∈A

Es′|s,a[R(s, a, s′) + γV πk(s′)] (3.15)

3.3.1 Policy iteration

Policy iteration converges to the optimal policy (π∗) by iteratively and alterna-

tively performing policy evaluation and policy improvement. To begin with the

33

value function (V π0) associated to some arbitrary policy π0 is estimated (policy

evaluation). Using the value function (V π0), policy π0 is improved resulting in

a better policy π1 (policy improvement). Policy π1 is evaluated to determine

V π1 , which is then used to improve the policy and so on. Policy iteration can be

summarized as shown below:

π0 → V π0 → π1 → V π1 ...πk−1 → V πk−1 → πk → V πk (3.16)

It can be shown that under this scheme, V πk+1 ≥ V πk [Puterman, 1994]. If this

equality holds true, the optimal policy can be reached (the Bellman optimality

equation being satisfied in this case). Since the number of different policies is

finite (as a result of finite state space) the optimal policy can be reached in a finite

number of iterations. Being an iterative algorithm, it must be terminated at some

point. Stopping criterion can be defined such that policy iteration terminates if

the number changes made to the policy is zero or negligibly small. This algorithm

can be extended for the action-value function in which case the greedy policy is

defined as follows:

πk+1 = πgreedy(Q
πk) : s→ argmax

a∈A

Qπk(s, a) (3.17)

3.3.2 Value iteration

Value iteration aims at determining the optimal policy (π∗). However, it primarily

focuses on retrieving the optimal value function V ∗. The optimal value function

V ∗ is actually the value function associated with optimal policies π∗. Thus by

using V ∗ and the model it is possible to retrieve the optimal policy by simply

acting greedily with respect to V ∗.

π∗ = πgreedy(V
∗) : s→ argmax

a∈A

Es′|s,a[R(s, a, s′) + γV ∗(s′)] (3.18)

It may be useful to recollect that V ∗ is indeed the unique fixed-point of the

contraction T ∗. Thanks to the Banach theorem, for any initial value function

V1, the iterative scheme Vk+1 = T ∗Vk converges to the optimal value function

V ∗ [Puterman, 1994]. Since the convergence is asymptotic (i.e., Vk → V ∗ as

34

k →∞.) with regard to value iteration, a stopping criteria must be introduced.

Commonly used stopping criterion is ‖Vk+1−Vk‖ ≤ η, where η is a small positive

constant. Value iteration can be summarized as show here:

∀s ∈ S, Vk+1(s) = max
a∈A

Es′|s,a[R(s, a, s′) + γVk(s
′)] (3.19)

V0 → V1 → V2 → ...Vk−1 → Vk (3.20)

3.4 Reinforcement learning

When the model of the problem is not available, reinforcement learning [Sutton &

Barto, 1998] can be employed for policy optimization. The reinforcement learning

agent (decision maker) interacts with the environment as shown in Figure 3.1.

The agent maintains an internal state s, which is the view of the environment

from its perspective. At any given time t, based on the current state st, the agent

chooses and performs an action at. Using its sensory inputs (used to observe the

changes in the environment) the agent steps from the current state st to the next

state st+1. The environment provides a feedback rt to the agent. This feedback rt

quantifies the quality of the agent’s decision to perform action at from the state

st.

ENVIRONMENT

AGENT

Action : a Observation : s’

Feedback : r

state : s

(reward function)

Figure 3.1: Reinforcement Learning: Agent interacting with the environment

The reward function succinctly represents the task to be accomplished by the

agent. In order to use reinforcement learning it is necessary that this reward

35

function is known beforehand. The agent behavior in itself can be modelled as

an MDP. The state space of the MDP is defined by all possible internal states

of the agent and the action space of the MDP includes all actions that can be

performed by the agent. The Markovian transition probabilities need not be

defined (since the policy optimization is performed in a model free set-up). The

reinforcement learning agent must learn to optimize its behavior with regard to

the reward function of the environment. Reinforcement learning based solutions

for MDPs also rely heavily on the Bellman equations (eq: 3.7,3.10). To begin with,

this section outlines the temporal-difference-based learning technique. Following

which two RL algorithms are discussed: (i) Q-learning based on value iteration

and (ii) SARSA based on policy iteration.

3.4.1 Temporal difference learning

Temporal differences (TD) is a prediction algorithm used for determining the

value function V π associated to some arbitrary policy π. It is one of the most

widely used learning scheme in reinforcement learning. At any given time step,

temporal-difference-based learning methods use the future value of a variable to

be predicted to update its current value:

V (s) = V (s) + α(r + γV (s′)− V (s)) (3.21)

where γ is the discount factor which determines to what extent V (s) depends

on future values such as V (s′), V (s′′), ... etc. Here, α is the learning rate which

indicates the level of importance given for new estimate of V (s) : (r + γV (s′))

in comparison to the existing estimate of V (s). Setting α to 1, resets the value

of V (s) to (r + γV (s′)), whereas α < 1 allows prediction of V (s). The following

algorithm from [Sutton & Barto, 1998] outlines TD updates for determining the

value function V π associated to some policy π:

Unlike dynamic programming, TD uses partial backups. TD(λ) determines

the extent of backup to be provided. The algorithm presented here is the simplest

case where V (s) only depends on the immediate next state V (s′). TD can be

extended to perform value iteration (Q-learning) and policy iteration (SARSA).

Also it is important to note that TD algorithms are asynchronous (i.e., learn

36

Algorithm 1: Temporal differences TD(0) based V π prediction

Given
π some policy to be evaluated
Initialization
Initialize V(s) to some arbitrary value
Computation
for every episode do

s← s0

for every transition do
a← π(s)
Perform: a Observe: r & s’
V (s)← V (s) + α(r + γV (s′)− V (s))
s← s′

if s is terminal state then
Break

end

end

end

after observing every sample).

3.4.2 SARSA

TD learning outlined here for policy evaluation can be extended to determine the

action-value function. SARSA is a well-known online/on-policy RL algorithm.

Here the policy being evaluated and the policy being used for data generation are

one and the same. SARSA is the acronym for state-action-reward-state-action

(s, a, r, s′, a′). It is an optimistic policy iteration algorithm1 which focuses on

retrieving the optimal policy by iteratively alternating between policy evaluation

and policy improvement. SARSA algorithm as described in [Sutton & Barto,

1998] is presented in Algo. 2.

SARSA employs asynchronous value iteration scheme, where upon observ-

ing a sample (s, a, r, s′, a′) policy evaluation updates only the value estimate of

Q(s, a). This (partial) estimate of the value function is then used to perform

1Optimistic policy iteration scheme performs policy improvement without waiting for the
policy evaluation step to return the (true) value function associated to the current policy.

37

Algorithm 2: SARSA: On-policy TD algorithm
.

Initialization
Initialize Q(s, a) with arbitrary values
Computation
for every episode do

s← s0

for every transition do
a← π(s) derived from Q(s, a) using ǫ-greedy
Perform: a Observe: r & s’
a′ ← π(s′) derived from Q(s′, a′) using ǫ-greedy
Q(s, a)← Q(s, a) + α(r + γQ(s′, a′)−Q(s, a))
s← s′ and a← a′

if s is terminal state then
break

end

end

end

policy improvement. Being an online RL algorithm SARSA suffers from the so-

called exploration versus exploitation dilemma. Ways to cope with this dilemma

is discussed in detail in Section 3.4.4

3.4.3 Q-Learning

Q-learning is a value iteration algorithm which aims at retrieving the optimal

action-value function. It is an off-policy algorithm and the learning can be per-

formed either in online or off-line setting and in a controlled manner. The Q-

learning algorithm [Watkins & Dayan, 1992] is presented in Algo. 3.

Policy π used for choosing a given s, can be estimated by acting greedily with

respect to Q-function or by combing it with an ǫ-greedy action selection. Based

on the principles of value iteration (recall Section 3.2), the learning outcome is

expected to be the optimal value function and thus an optimal policy can be

estimated upon termination. Being an off-policy algorithm, Q-learning can be

used in a off-line setting for policy optimization using samples generated from

a sub-optimal policy. However, when used in a online setting, Q-learning also

38

Algorithm 3: Q-Learning : Off-policy TD algorithm

Initialization
Initialize Q(s, a) with arbitrary values
Computation
for every episode do

s← s0

for every transition do
a← π(s) derived from Q(s, a) using ǫ-greedy
Perform: a Observe: r & s’
Q(s, a)← Q(s, a) + α(r + γ maxa′ Q(s′, a′)−Q(s, a))
s← s′ and a← a′

if s is terminal state then
break

end

end

end

suffers from the exploration versus exploitation dilemma. How to cope with this

dilemma is discussed in detail in Section 3.4.4

3.4.4 Taxonomy of RL algorithms

There exits several different taxonomies of RL algorithms. Most often these

algorithms are classified as follows: (i) online and off-line, (ii) on-policy and off-

policy, (iii) controlled and uncontrolled. The following section explains how these

classifications can be made using different criterion. We know that in case of

RL, policy optimization is performed using the observed samples either in the

form of (s, a, r, s′) or (s, a, r, s′, a′). Based on how these samples are generated,

RL algorithms can be classified into two types: (i) online and (ii) off-line. On-

line algorithms obtain these samples from live interaction with the environment.

Off-line algorithms perform policy optimization using samples which are already

available. Based on the policy used for data generation and the policy being

evaluated RL algorithms can be classified into two types: (i) on-policy and (ii)

off-policy. In case of on-policy algorithms the policy being evaluated and the

(control) policy being used for (action selection in order to) interaction with the

environment are one and the same. Whereas, in case of off-policy algorithms

39

the policy being evaluated and the policy being used for data generation are in-

deed different. Based on the policy used for data generation RL algorithms can

be further classified into two types: (i) “controlled” and (ii) “uncontrolled”. In

both these cases the interaction is still controlled. However, this classification

addresses how the interaction is controlled (differentiates the control mechanism

in place). In case of controlled RL algorithms the policy being used for data

generation (control) depends on the value function being estimated. Whereas, if

the policy used for data generation is not related to or not estimated using the

value function being estimated then the RL algorithm is said to function in an

uncontrolled manner.

Off-line RL algorithms must aim at optimizing an optimal policy from the

available data (samples) and there exists no possibility to generate more samples

(by means of interaction with the environment) during the process of optimiza-

tion. Online and controlled algorithms (irrespective of on-policy or off-policy)

suffer from exploration versus exploitation dilemma. While interacting the en-

vironment the RL agent should decide whether to explore or exploit from the

experience it has gained from the past interactions. For such algorithms to be ef-

fective (for policy optimization) it is important to choose a good trade-off between

exploration and exploitation. One simple possibility to cope with this challenge

is to use an ǫ-greedy action selection scheme. In this case action selection is per-

formed in a greedy manner with probability (1 - ǫ) and random action is selected

with probability ǫ. Choosing a (constant) value for ǫ close to 1 (but not equal

to one) will result in moderate exploration and a good degree of exploitation.

However, during the initial stages of learning, knowledge available for the RL

agent (in the form of value function estimates) is limited and hence it is ideal

to give preference for exploration. However, as the learning progresses, the RL

agent tends to have a good estimate of the value function and thus it is ideal

to give preference for exploitation. A simple trade-off for handling exploration

versus exploitation dilemma is to involve a decaying exploration rate (rather than

a constant value for ǫ). When the learning begins this rate can be high (so that

the agent explores more) and the exploration rate can be halved or decayed as

the learning progresses (so that the agent exploits more). It is also possible to

employ efficient schemes such as bonus-greedy (explained in Chapter 6) which

40

makes use of uncertainty related to the value estimates.

3.5 Dialogue management using MDP

So far, this chapter focused on solving sequential decision making problems mod-

elled as MDPs using dynamic programming and reinforcement learning algo-

rithms. The rest of this chapter will focus on building statistical dialogue man-

agement engines. We know that the dialogue management policy navigates the

dialogue system to perform the specified task. However, dialogue policy estima-

tion is a complex procedure given the variations in user behavior and uncertainty

involved due to speech recognition and language understanding errors.

3.5.1 Casting dialogue management problem as an MDP

If the dialogue management task is casted as an MDP, then the agent behavior

can be optimized using dynamic programming or reinforcement learning. Let us

term the MDP-based dialogue manager as MDP-SDS. We know that an MDP

is formally defined as a tuple {S, A, P, R, γ}. Thus, the first step in casting

the dialogue management task as an MDP is to define the state space S, ac-

tion space A and reward function R of MDP-SDS. Let us revisit the restau-

rant information dialogue system outlined in Section 2.2. The dialogue state

of MDP-SDS takes the form: { φ1, φ2, φ3, φ4, φ5, φ6 }. Recall the list of actions

(action space of the MDP-SDS) specified in Section 2.2.2: ask-destination-type,

ask-restaurant-type, ask-restaurant-location, ask-restaurant-price-range, inform-

restaurants, greet-user and close-dialogue.

We know that P represents the set of all Markovian transition probabilities.

In order to compute this statistics from a corpus, every dialogue state has to be

visited, multiple number of times. Also it depends on the corpus to showcase all

possible state transitions. Thus, it is impractical to compute these probabilities

from the corpus. For this reason, it is more convincing to employ model free

policy optimization using reinforcement learning.

Having defined the state space and the action space of MDP-SDS, the next

important task is to define the reward function. It may be useful to recall that

41

the RL-based agent behavior optimization maximizes the agent behavior with

regard to the specified reward function. Thus reward function specification is a

critical task in casting dialogue management problem as an MDP. It succinctly

represents the dialogue task that has to be achieved by the dialogue manager. Yet,

there is no straightforward means for defining the reward function. Often reward

functions are defined by the system designer based on their domain expertise.

The optimal dialogue strategy is expected to maximize the reward that can

be obtained by the dialogue manager. This implicitly guarantees user satisfaction

and dialogue task accomplishment [Singh et al., 1999; Walker et al., 1997]. Since

the exact reward function cannot be observed from data, some subjective reward

function is estimated from a linear combination of objective measures (such as:

dialogue task completion, dialogue length, number of speech recognition errors,

etc.). It is customary to specify a reward function [Levin & Pieraccini, 1998],

perform dialogue optimization and observe the learned or optimized behavior.

If the optimized behavior is not in correlation with the expected behavior, the

reward function is fine tuned and the entire process is repeated.

• turn penalty : -1

• task-completion reward : 100

Restaurant information SDS: example reward function

Let us analyse the example reward function for the restaurant information

MDP-SDS. This reward function is a linear combination of measures such as:

turn penalty, task completion. Turn penalty penalizes agent performance based

on the length of the dialogue episode. A dialogue task is deemed to be complete

if the intended purpose of the dialogue is achieved before the end of the dialogue

episode. For example, in case of the restaurant information dialogue system, the

dialogue task (to furnish user requested information) is said to be completed if

the terminal dialogue state is {1, 1, 1, 1, 1, 1}. Task completion reward implic-

itly underlines the importance of task completion and thus ensures the dialogue

manager to accomplish the specified task.

42

3.5.2 Dialogue policy optimization using RL

As discussed earlier RL based optimization can be performed under two different

settings: (i) online RL algorithms or (ii) off-line (off-policy) algorithms. We know

that in case of RL the actual learning is performed by observing (s, a, r, s′, a′)

samples. A RL policy learner can observe these samples either from its interaction

with users or perform learning from samples observed in the dialogue corpus (learn

from existing data). If a dialogue corpus is available, off-line (i.e., off-policy) RL

algorithms such as Q-learning can be used to learn the underlying optimal policy.

Once the initial policy is learned, (if necessary) it can be further improved under

an online setting. Online/on-policy algorithms tend to directly update the policy

being estimated. These changes at times may result in unexpected fluctuations

in the system behavior. Since the policy being estimated is also used for data

generation, these policy fluctuations are often visible to users. This presents

inconvenience for users and often result in unsuccessful dialogues (for instance,

users may hangup). However, online/off-policy algorithms don’t suffer from this

shortcomings (since control policy is different from policy being optimized).

Also involving real users for the sake of dialogue corpora generation or online

policy optimization is an expensive and time consuming process. However, com-

monly used reinforcement learning algorithms such as SARSA and Q-learning are

sample inefficient and need large amounts of data. In order to cope with this data

requirement problem user simulators were introduced. Existing approaches for

building user simulations and their role in dialogue optimization are discussed in

detail in Section 4.1. To summarize, an ideal algorithm for dialogue optimization

must have the ability to learn in a off-line setting (learn an initial policy from fixed

amount of dialogue corpora) and then continue learning in a online/off-policy set-

ting (improve the initial policy by interacting with real users). Irrespective of the

algorithm employed for policy optimization it should be sample efficient (so that

the necessity for user simulation can be eliminated).

43

3.5.3 Dialogue policy evaluation schemes

Dialogue policy evaluation1 schemes are intended to quantify the quality of the

dialogue policies. Dialogue optimization yields dialogue policies which are meant

to be optimal. However, most of the algorithms (example: policy iteration)

doesn’t guarantee the effectiveness of the retrieved dialogue policies. Thus it is

essential to evaluate dialogue policies before it can be used in real-life scenarios.

The most effective way of evaluating dialogue policies is to use them and interact

with users. However, employing real users to evaluate several dialogue policies is

a time consuming procedure.

One simple yet effective way to overcome the difficulties of policy evaluation

using human users is to employ user simulation for evaluation. In this case,

dialogue policies are evaluated based on the reward function used during dialogue

optimization. The cumulative reward function quantifies the performance of a

dialogue policy. Performance observation measures can be computed from a set

of dialogues generated from the interaction between the dialogue manager and

user simulation. The performance of the dialogue policies can then be quantified

based on the average reward obtained by them. Objective measures computed

from a set of dialogues can also be used for policy evaluation: average success

rate (defined as the percentage of dialogues with successful task completion in

comparison to the total number of dialogues), average dialogue length, robustness

to speech recognition errors, etc.

1In reinforcement learning, policy evaluation often corresponds to retrieving the value func-
tion (V π) associated with some policy (π). However, in case of the dialogue domain, it refers
to the process of measuring the effectiveness of a policy in accomplishing a dialogue task.

44

45

Chapter 4

User simulation in dialogue

systems

User simulators [Schatzmann et al., 2006b] play a central role in designing sta-

tistical SDS. It is used to generate synthetic dialogues based on some reference

dialogue corpus. These dialogues can then be used for dialogue optimization and

policy evaluation. The organization of this chapter is as follows: Section 4.1 in-

troduces the role of user simulation in SDS, following which an overview on some

of the existing approaches for building user simulators is presented. Section 4.2

lists commonly used metrics for evaluating the performance of user simulators.

Section 4.3 outlines few shortcomings in present day user simulation techniques.

4.1 User simulation: an overview

User simulators are computational models which exhibit behavior similar to that

of human users. Its primary goal is to generate an appropriate user utterance

for any given dialogue act. User behavior simulation can be performed at three

different levels: (i) signal-level, (ii) word-level and (iii) intention-level. Signal-level

simulation discussed in [Götze et al., 2010] focuses on generating user utterances

in the form of speech signals. Word-level simulation as discussed in [Jung et al.,

2009] aims at generating text based user utterances. However, in order to perform

dialogue optimization most often simulation of user behavior is performed at the

46

intention-level [Eckert et al., 1997a].

Dialogue Management Engine

RL Policy Learner

User Simulation

Dialogue Policy Optimization Dialogue Policy Optimization

Dialogue Policy Evaluation Dialogue Policy Evaluation

Dialogue Corpus

User

Figure 4.1: Dialogue Management using User Simulation

Dialogue management using user simulation is summarized in Figure 4.1.

Dialogue optimization using RL can be performed in two methods: (i) online

(on-policy or off-policy) learning based on interaction, (ii) batch methods that

optimize a policy directly from dialogue corpora. In both cases user simulators

can be employed for dialogue policy optimization. In case of interaction based

learning; RL based policy learner (of the dialogue manager) interacts with the

user simulation. Here user simulation responds to the dialogue acts with suitable

user acts. In case of the batch methods (discussed in detail in Section 5) synthetic

dialogue corpora generated using user simulation is used for policy optimization.

Here the intention is to make use of the available dialogue corpora to learn a fairly

good initial policy for dialogue optimization. Such an initial policy can then be

improved by continued learning in an online set-up.

As illustrated in Figure 4.1, user simulators are often built using existing dia-

logue corpus. Data driven methods (such as [Eckert et al., 1997a; Georgila et al.,

2005; Pietquin & Dutoit, 2006; Schatzmann et al., 2007a]) for user modelling

have evolved to be the state-of-the-art. These methods focus on building compu-

tational models based on some reference dialogue corpus. To begin with, dialogue

corpus is annotated in terms of dialogue acts and user acts. On a general case:

annotated dialogue corpus is used to learn conditional probability distributions,

which are then used to choose (the most probable) an user act given the dialogue

act.

47

There exists several possibilities for computing these conditional probability

distributions from dialogue corpus. Existing methods for user simulation focuses

on defining and computing slightly different variants of this conditional probabil-

ity distributions. An overview on some of these approaches is presented in the

following sections.

4.1.1 Probabilistic user simulation

Transition-level user simulation (for example [Eckert et al., 1997a]) focuses on re-

producing the observed user behavior at the level of dialogue transitions. A simple

approach for such simulation is to use the frequency of different user acts given a

specific dialogue act. Conditional probability distributions for user acts given di-

alogue acts are computed from the reference dialogue corpus. Synthetic dialogues

generated using this method tend to correlate with the reference dialogue corpus

at the transition level (i.e., statistically coherent in terms of frequency of user

act occurrence). However, dialogues generated using transition-level simulation

often lag in terms of overall consistency.

ut = argmax
i

p(ui|dt) (4.1)

where i = 1..n represents the number of all possible user acts. For instance, let

us say that the dialogue act (dt) is observed by the user simulation at turn t.

Here the choice of user act (ut) is made based on the equation 4.1. The user act

which has the highest probability (of all possible user acts) is chosen by the user

simulation.

4.1.2 n-gram user simulation

A probabilistic user simulation termed as n-gram user was proposed in [Georgila

et al., 2005]. It aims at reproducing partial-trajectories (sequence of user acts) as

observed in the dialogue corpus. Here n corresponds to the length of the dialogue

history to be considered while choosing an user act. Apart from conditioning the

probability of user act on the current dialogue act, n prior user acts from the

48

history of dialogue episode are also considered.

ut = argmax
i

p(ui|dt, u(t−1), u(t−2)...u(t−n)) (4.2)

User act selection by n-gram user is summarized in equation 4.2. The conditional

probability of current user act(ut), current dialogue act (dt) and the n previous

user acts ut−1, ut−2...ut−n. This results in a user act selection methods which is

based on the occurrence frequency of a sequence of user acts (as observed in some

reference dialogue corpus). Overall consistency of synthetic dialogues is expected

to be better when compared to that of data from transition-level simulation.

4.1.3 Bayesian Networks based user simulation

Dynamic Bayesian Networks (DBN) [Pietquin et al., 2009] based user simulation

aims at casting the user simulation problem as a probabilistic graphical model

(as shown in Figure 4.2). Similar to n-gram user, DBN user simulator focuses

on reproducing sequence of user acts (partial-trajectory-level simulation). Being

a generative model DBN simulator can be employed to predict the user act. If

some reference dialogue corpus is available, DBN parameters can be learned from

the corpus. However, it is also possible to hand-craft these parameters to build

a hand-crafted user simulation.

Interaction between the user and the dialogue manager is considered as a

sequential transfer of intentions organised in the form of dialogue turns. User

act prediction using the Bayesian user simulation can be summarised as shown

in equation 4.3. It chooses an user act ut, based on the current dialogue act (dt),

user’s goal (gt) and knowledge (kt). Here, kt represents what information has

been exchanged until reaching turn t and gt represent what is yet to be achieved.

After each dialogue turn user goal and user knowledge are updated.

ut = argmax
i

p(ui|dt, gt, kt) (4.3)

49

Figure 4.2: Bayesian Network-based User Simulation

4.1.4 Advanced n-gram user simulation

Advanced n-gram user simulation proposed by [Georgila et al., 2006] is a variant

of n-gram user simulation (see Section 4.1.2). In this case information such as

whether a specific slot has been filled or not is also used while computing the

conditional probability of an user act. This inclusion provides an implicit repre-

sentation of the goal of user simulation. Advanced n-gram user simulation for a

two slot (s1, s2) dialogue problem is summarized as:

ut = argmax
i

p(ui|dt, u(t−1)...u(t−n), s1(filled), s2(empty)) (4.4)

4.1.5 Agenda based user simulation

Agenda based user simulation proposed by [Schatzmann et al., 2007b] maintains

an internal representation of the user goal and agenda (which are used during

user act selection process). The agenda (at) of user simulation in itself can be

visualized as a list of user acts or intentions to be performed in order to achieve

the goal. The goal (gt) can be generated using a set of structured rules such

as ontologies. The goal of the user simulation is then broken down into user

50

acts, which are then stacked to form the agenda of the user simulation. User act

selection in case of agenda based user simulation can be summarized as:

ut = argmax
i

p(ui|dt, gt, at) (4.5)

Since real users are goal directed, our focus during user modelling should be

on simulating dialogue trajectories. However, the primary challenge in such an

approach is to determine the goal of the user. Once the goal of the user simulation

is determined it can be used in several different forms (example: goal, agenda,

etc). Secondly, even if the goal information is available, the user behavior must

be subjective with regard to the dialogue context (similar to the ability of real

users). This cannot be achieved by (only) conditioning the selection of user act on

the dialogue act and user goal. A possible solution to cope with these challenges

is to present rich information about the dialogue context, the current dialogue

act and the user goal in the form of an information state (similar to dialogue

management). Unlike existing methods, Inverse Reinforcement Learning (IRL)

based user simulation provides a more formalized approach to retrieve the user

goal. In this case, some reward function which can explain the real user behavior

observed in the dialogue corpus is predicted using IRL. This function is used to

optimize the simulated user (modelled as an MDP) behavior. More information

on IRL user simulation can be found in Chapter 7.

4.2 User modelling evaluation metrics

User simulators, when used for dialogue optimization, tend to have a direct im-

pact on the quality of the retried dialogue policy as shown by [Schatzmann et al.,

2005]. Thus, it is necessary to ensure good performance of user simulators. How-

ever, there exists no commonly accepted list of evaluation metrics. Evaluation

with human intervention would be a possibility, nevertheless user simulators are

introduced in first place to reduce human involvement. For this reason, several

automatic schemes have been proposed to measure the performance evaluation.

As suggested in [Pietquin & Hastie, 2011], evaluation measures are grouped un-

der two schemes: (i) turn-level evaluation measures (outlined in this section) and

51

(ii) dialogue-level measures. Under both these schemes, the performance of user

simulations are measured based on the quality of synthetic dialogues generated

by them. Some definitions and notations used in this chapter were first presented

in [Pietquin & Hastie, 2011].

To begin with most common, turn-level evaluation metrics are presented in

this section. They aim at evaluating the performance of user simulation at the

level of dialogue transitions. Trivial information such as the prediction capability

of user simulators are measured using these metrics. For example, set of synthetic

dialogues generated using user simulation are expected to correlate with the ref-

erence dialogue corpus in terms of action frequency. However, it is important to

note that turn level metrics focus on evaluating the local consistency and not the

global consistency of the synthetic dialogues.

4.2.1 Precision and Recall

Precision and Recall are common measures in machine learning to measure a

model’s ability to predict the observed values. Since user simulators are used

to predict user acts (see [Zukerman & Albrecht, 2001]), their performance can

be measured using precision and recall metrics. These metrics can be adapted

for user modelling as shown in [Schatzmann et al., 2006b]. They are some of

the widely used evaluation metrics in dialogue domain. Precision and Recall are

defined as follows:

Precision: P = 100×
Correctly predicted actions

All actions in simulated response
(4.6)

Recall: R = 100×
Correctly predicted actions

All actions in real response
(4.7)

These two measures are complementary and cannot be used individually to

rank user simulation methods. However, the balanced F -measure [van Rijsbergen,

1979] can be used to combine these measures into a single scalar:

F =
2PR

P + R
(4.8)

52

Precision and recall metrics, do not measure the generalisation capabilities of

the user simulators. As a matter of fact, it penalizes attempts to generalise when

the model generates unseen dialogues.

4.2.2 Kullback-Leibler (KL) divergence and dissimilarity

The Kullback-Leibler (KL) divergence [Kullback & Leibler, 1951] is a measure

of dissimilarity between two probability distributions P and Q. KL divergence is

defined as follows:

DKL(P ||Q) =
M
∑

i=1

pilog(
pi

qi

) (4.9)

KL divergence was first used as an user simulation evaluation metric in [Cuayáhuitl

et al., 2005]. While using KL divergence for evaluating user simulations, P rep-

resents the probability distribution of user acts in some reference dialogue corpus

while Q is the distribution of user acts in the synthetic dialogues. However, since

the KL divergence is not a distance (since it is not symmetric), the dissimilarity

metric DS(P ||Q) is introduced:

DS(P ||Q) =
DKL(P ||Q) + DKL(Q||P)

2
(4.10)

Since KL divergence is a measure used to predict dissimilarities between two

distributions, it provides a natural means for evaluating user simulations. How-

ever, since it is an unbounded metric it cannot be used directly for ranking user

simulations.

4.2.3 Log-likelihood

Dialogue-level metrics for evaluating user simulation aim at using the entire di-

alogue trajectories. The simulated behavior observed in the synthetic dialogues

(using dialogue-level metrics) are compared to that of dialogues present in some

reference dialogue corpus. Considering entire dialogue trajectories during eval-

uation provide an implicit measure of overall dialogue consistency. Rest of this

section outlines the most commonly used dialogue-level evaluation metrics.

53

The log-likelihood L(x) of a data set x = {xi}i=1,...,N given a model m, is

defined as L(x) = log p(x|m) = log pm(x). If the data samples xi are assumed to

be independent (a common assumption), L(x) can be written as:

L(x) = log
N
∏

i=1

pm(xi) =
N
∑

i=1

log pm(xi) (4.11)

In case of user simulations, the higher the log-likelihood, the higher the con-

sistency between the dialogue corpus and the user simulation being evaluated.

Log-likelihood measures the user simulator’s ability to predict sequences of user

acts as observed in the reference corpus. The outcome of the this metric is positive

and scalar (which can help to rank user simulators).

4.2.4 Bilingual Evaluation Understudy

The bleu (Bilingual Evaluation Understudy) score [Papineni et al., 2002] is often

used in machine translation domain. It compares two semantically equivalent

sentences by computing the geometric mean of the n-gram precisions with a

brevity penalty to compensate for high n-gram precision of short utterances. In

case of user simulation evaluation, the n-grams considered are not sequences of

words but sequences of intentions. The later is termed as Discourse-bleu (d-

bleu) [Jung et al., 2009].

The bleu score is known to be highly correlated with human judgement [Dod-

dington, 2002; Papineni et al., 2002], thus provides a compelling case for its use

in evaluating user simulations. However, bleu has been reported to fail to pre-

dict machine translation improvements and naturalness [Lee & Przybocki, 2005].

Since bleu is a measure of semantic equivalence of (sequence of) intentions, any

act of generalisation by user simulation is penalized.

4.2.5 Simulated User Pragmatic Error Rate

super (Simulated User Pragmatic Error Rate) [Rieser, 2008; Rieser & Lemon,

2006] is a metric resulting from an effort to combine different metrics. Similar to

computing word error rate for speech recognition systems in terms of insertions,

54

deletions and substitutions, this metric combines scores for consistency (Is - in

terms of insertions of user intentions), completeness (Ds - in terms of deletions

of user intentions) and variety (Vs - comparing probabilities of human and user

simulator intentions). For each scenario s, these individual scores Is, Ds and Vs

are computed and combined into a single score as follows:

super =
1

m

m
∑

s=1

Vs + Is + Ds

n
(4.12)

where n is the number of possible user intentions and m the number of contexts

or scenarios. Since the resulting score is a scalar value it can be used to compare

user simulators.

4.2.6 Performance of dialogue policy

User simulators are used in the first place to optimize dialogue policies. Thus

an indirect method for evaluating an user simulation is indeed to evaluate the

dialogue policy (learnt using the simulation being evaluated) with the help of

real users. During the evaluation process, based on their interactions with the

dialogue system, users provide feedback on the performance of dialogue policies.

This feedback can be used to rank user simulations which were used to learn the

dialogue policies. Evaluation of user simulation based on the performance of the

dialogue policy is summarized in Figure 4.3

Dialogue Management Engine

RL Policy Learner

User Simulation 1

Dialogue Policy OptimizationDialogue Policy Evaluation

Dialogue Corpus

User

User Simulation 2

User Simulation 2

Figure 4.3: User simulation evaluation based on performance of dialogue policy

55

4.3 Revisiting user simulations

Almost all existing works on user simulation focus on generating synthetic dia-

logues which are statistically consistent with the reference dialogue corpus. A

wide variety of evaluation metrics were introduced to ensure that this criteria for

statistical coherence is met for a user simulation to be deemed good or bad. Since

most methods for building user simulators are data driven, it is in fact logical to

ensure whether the computational model predicts as expected.

However, there are two key problems: Firstly, too much of onus is left on the

reference dialogue corpus generation. Yet, there is no guarantee for any dialogue

corpus to be comprehensive. Often behaviors observed in the dialogue corpus can

be attributed to a limited group or class of users. Since the dialogue corpus only

presents certain aspects of the user behavior, focusing merely on reproducing

it perhaps is not realistic means user modelling. This in fact results in some

generic user behavior which happens to be an amalgamation of all user behaviors

observed in the dialogue corpora. Often such generic user behaviors may indeed

be non-existent user behaviors. Since the dialogue policy adapts to simulated user

behavior it is important to present all different possible user behaviors rather than

one generic behavior. Secondly, present day user simulators lag on aspects such as

adaptation, generalization and evolution. Yet, these aspects are part and parcel

of real user behavior. For example, adaptation to the other party involved in

communication, generalisation and evolution during the progress of a dialogue

are often exhibited in human-human interaction.

Today, there is a pressing necessity for developing SDS which can facilitate

man-machine dialogues. Naturalness of man-machine dialogues is a key aspect

that determines the wide acceptance of dialogue systems. However, effectiveness

of dialogue policies can be attributed towards the quality of user simulators.

Thus, in order to improve the performance of dialogue systems, focus should be

on improving the performance of user simulators. In order to build a better user

model, it is necessary to revisit the task of user simulation. Perhaps how this

modelling problem is perceived or what is expected as the outcome ought to be

changed. For instance, rather than focusing on just reproducing the statistical

consistency our focus can be on building models that can adapt, generalize and

56

in fact evolve (just like real users).

57

58

Part II

Sample Efficient Dialogue

Optimization

59

60

Chapter 5

Approximate Dynamic

Programming

It may be useful to recall that the methods for solving MDPs (discussed in Chap-

ter 4) assume that the state and action spaces are finite and small enough to

be tractable. This assumption in turn guarantees the existence of optimal value

functions and thus optimal policies1. Methods for solving MDPs, which aim at

retrieving “the optimal solution” are collectively termed as exact solution meth-

ods. However, if the assumption of finite problem space is relaxed (i.e., when

MDPs are allowed to have infinite state space or action space) exact methods

for solving MDPs (generally) cease to exist. This is largely due to the fact that

computing exact solutions becomes intractable in the later case.

MDPs with large state-action spaces are solved using approximate solution

methods. Since exact methods are no-longer tractable, focus is shifted towards

finding a near optimal solution by sampling the problem space. These methods

aim at retrieving some generalization of the optimal value function based on the

limited amount of observed (and rewarded) transitions. The resulting approxi-

mation can then be generalized to predict values for states which were not visited

during training. Dialogue managers modelled as MDPs often tend to have con-

tinuous state spaces (i.e., infinite states). Hence approximate methods for policy

optimization play a key role in the dialogue domain.

1For example an optimal policy in tabular format lists all possible states along with the
best possible action that can be performed from those corresponding states.

61

This chapter is organized as follows: value function approximation is outlined

in 5.1, following which Approximate Dynamic Programming based Fitted Value

Iteration is discussed in 5.2. Automatic feature selection scheme, Sparse ADP

based sparse fitted-Q and sparse LSPI are discussed in 5.4, 5.5 and 5.6 respec-

tively. Eventually, experimental results on dialogue optimization using ADP and

sparse ADP algorithms are presented in 5.7.

5.1 Value function approximation

First task in order to employ approximate solution methods is to define some

representation for the (approximate) value function. Function approximation

schemes can generally be classified as: (i) parametric and non-parametric and

(ii) linear and non-linear representations. In this manuscript we focus on linear-

parametric representation for value function approximation. A brief summary on

parametric function approximation can be found in [Geist & Pietquin, 2010a].

Some examples for linear-parametric representation include: Radial Basis Func-

tion (RBF) [Park & Sandberg, 1991], polynomial function [Gergonne, 1974]. Let

us now assume that a linear parametric representation of the Q-function using

a set of features φ1...k is possible. Let θ ∈ R
p represent the parameter or weight

vector associated with the features φ1...k. The resulting approximate Q-function

belongs to the hypothesis space H: θ × φ. Note that the notation used for the

exact value function is Q and the notation for the approximate value function is

Q̂θ:

Q̂θ =
k
∑

i=1

θi φi(s, a) = θT φ(s, a). (5.1)

Once some linear representation of the value function is defined, approximate

solution methods can be used to estimate (through the parameter vector θ) a

good approximation Q̂∗
θ of Q∗. This manuscript discusses two different classes

of approximate solutions: (i) Approximate Dynamic Programming [Bellman &

Dreyfus, 1959] (discussed in this chapter) and (ii) Reinforcement learning with

function approximation (general case TD RL algorithms as well as those using

Kalman Temporal Differences [Geist & Pietquin, 2010b] are discussed in Chap-

62

ter 6).

Approximate Dynamic Programming(ADP)-based algorithms were introduced

for dialogue optimization in [Li et al., 2009; Pietquin et al., 2011b]. These algo-

rithms aim at estimating an approximation of the optimal value function using a

fixed set of transition samples (s, a, r, s′). The samples required for training are

extracted from the limited amount of dialogue corpora. Since ADP algorithms

are known to be sample-efficient, dialogue policies can now be optimized directly

from the dialogue corpus1. This possibility in turn questions the basic necessity

of user simulation for the purpose of dialogue optimization. Once an approximate

(near optimal) value function is estimated from the corpus the learning termi-

nates and thus the associated policy cannot be improved further. Yet, ADP can

be used to retrieve the initial dialogue policy from the corpus. If required, this

policy can be improved further using conventional RL algorithms and based on

interaction with real users (as summarized in Figure 5.1). Learning by interacting

with real users will also result in adapting the policy to any possible changes in

user behavior.

Dialogue Corpus

(Fitted-Q, LSPI)

Online Reinforcement Learning

(SARSA, Q-learning)

State Transistions

 (s,a,r,s’)

User

Initial estimate of optimal policy

Final estimate of optimal policy

Approximate Dynamic Programming

Figure 5.1: Policy optimization using both batch and online learning

The key challenge with regard to approximate solution methods is to choose a

1Note that ADP algorithms do not converge if the available corpus is too small in size. See
Section 5.7 for more information.

63

good set of features (φ1...k) such that the the approximated Q-function (Q̂∗) is not

too far from the (true) optimal Q-function (Q∗). Often these features are selected

manually with the help of designer’s knowledge on the problem (space). One

other possibility for feature selection is to employ schemes which can learn this

representation automatically from data (for instance, Engel’s dictionary [Engel

et al., 2004]).

5.2 Fitted value iteration

Let us recall the value iteration algorithm discussed in 3.3.2. The optimal action

value function Q∗ being the fixed point of the Bellman optimality operator T ∗ can

be obtained by iterative contraction, i.e, application of the contraction operator

to an arbitrary initial value. Being an exact method, value iteration is expected

to converge (asymptotically) to the optimal value function:

Q∗ = T ∗Q∗. (5.2)

Fitted value iteration (FVI) class of algorithms [Bellman & Dreyfus, 1959;

Samuel, 1959] adopts an approximate value iteration scheme1. Policy optimiza-

tion using FVI is very similar to that of the value iteration algorithm. However,

the primary difference is the projection operation. The image of Q̂θ obtained

through the Bellman operator is not guaranteed to be in the space spanned by

the basis function, i.e., in H. Thus, it is projected onto the hypothesis space

after every iteration. The projection operator is noted as Π and defined for any

function f : S × A → R as Πf = argminQ̂θ∈H
‖f − Q̂θ‖

2. Upon iterating, FVI

results in finding a near optimal value function through the parameter vector θ

satisfying:

Q̂∗
θ = ΠT ∗Q̂∗

θ. (5.3)

Fitted-Q (see Figure 5.2) is a specific form of FVI algorithm. It assumes that

the ΠT ∗ operator is still a contraction and therefore admits the unique fixed point.

1Approximate value iteration scheme aims at determining the approximation of an optimal
value function

64

Figure 5.2: Fitted-Q iteration.

The fixed point and therefore the optimal value function (Q̂∗
θ) is searched using

an iterative scheme: Q̂θi
= ΠT ∗Q̂θi−1

. However, in case of the dialogue domain

often the transitions probabilities T and reward function R are not known. In

order to cope with this, a sampled Bellman optimality operator T̂ ∗ is considered.

For instance, given a sample transition (s, a, r, s′), it is defined as:

T̂ ∗Q(s, a) = r(s, a) + γ max
a∈A

Q(s′, a). (5.4)

Learning from (s, a, r, s′) transition samples provides an opportunity to learn

a policy from data as shown here. This comes in handy to learn a dialogue policy

(directly) from the limited amount of dialogue corpora. Using the definition of

T̂ ∗ in Eq 5.3, the fitted-Q algorithm can be defined as:

Q̂θi
= ΠT̂ ∗Q̂θi−1

. (5.5)

At every iteration of Fitted-Q, a new estimate of Q̂θi
is computed. This

estimation depends on how T̂ ∗Q̂θi−1
is projected onto the hypothesis space. This

process can be seen as a classical regression (which can be performed by any

supervised learning algorithm):

Q̂θi
(s, a) = ΠT̂ ∗Q̂θi−1

(s, a) = Π(r + γ max
a∈A

Q̂θi−1
(s′, a)). (5.6)

As shown in Eq. 5.1, let us assume that a linear parametrization of Q̂θ(s, a) =
∑

i θiφi(s, a) = θT φ(s, a) is made available. Let us also assume that a set of

transition samples ({(sj, aj, rj, s
′
j)1≤j≤N}) for training purpose is available. One

65

of the several possible means to perform the operation summarized in Eq 5.6 is

to perceive it as a least-squares optimization problem as shown below (note that

φ(sj, aj) is indeed φj):

θi = argmin
θ∈Rp

N
∑

j=1

(T̂ ∗Q̂θi−1
(sj, aj)− Q̂θ(sj, aj))

2 (5.7)

= argmin
θ∈Rp

N
∑

j=1

(rj + γ max
a∈A

(θT
i−1φ(s′j, a))− θT φj)

2 (5.8)

θi = (
N
∑

j=1

φjφ
T
j)−1

N
∑

j=1

φj(rj + γ max
a∈A

(θT
i−1φ(s′j, a))) (5.9)

The resulting algorithm which employs least-squares optimization as part of

fitted-Q is termed as LSFQ. To begin with, an initial parameter vector θ0 should

be chosen (example: with arbitrary values). Similar to value iteration, some

stopping criterion ought to be introduced for terminating fitted-Q. This criterion

can either be some maximum number of iterations or a small difference between

two consecutive parameter vector estimations. Let us assume that there are M

iterations, the optimal policy is estimated from Q̂θM
:

π̂∗(s) = argmax
a∈A

Q̂θM
(s, a). (5.10)

It may be useful to note that the inverted matrix (
∑N

j=1 φjφ
T
j)−1 in Eq 5.9 is

the same at every iteration. Only the target rj + γ maxa∈A(θT
i−1φ(s′j, a)) depends

on the preceding estimate. Thus, the complexity of least squares fitted-Q per

iteration is in O(p2) (ignoring the matrix inversion which remains unchanged).

5.3 Least squares policy iteration

Fitted-Q algorithm presented above is an approximate value iteration algorithm.

This section presents another ADP algorithm based on approximate policy iter-

ation. Least Squares Policy Iteration (LSPI) [Lagoudakis & Parr, 2003] (similar

to policy iteration algorithm discussed in Section 3.3.1) iteratively alternates be-

66

tween policy evaluation and policy improvement. At iteration (k + 1), using the

approximate value function (Q̂θk
) estimated in iteration k, the policy π(k+1) is

improved:

πk+1 = πgreedy(Q̂θk
) (5.11)

Figure 5.3: LSTD principle.

This policy can be evaluated thanks to the Least Squares Temporal Differences

(LSTD) algorithm proposed in [Bradtke & Barto, 1996]. It aims at minimizing

the distance between the estimated Q-function and the projection of its image

through the Bellman evaluation operator onto the hypothesis space (as illustrated

on figure 5.3):

θπ = argmin
θ∈Rp

‖Q̂θ − ΠT πQ̂θ‖
2 (5.12)

where Π is the projection operator (similar to the one discussed for fitted-Q).

Generally speaking, T πQ̂θ /∈ H, thus it is projected back into the hypothesis

space, i.e., ΠT πQ̂θ ∈ H. Here, N available transitions (si, ai, ri, si+1, π(si+1)) and

thus the sampled Bellman operator is considered for policy evaluation. Among

the several possible cost functions, one considered in this manuscript takes the

form:

θπ = argmin
θ∈Rp

N
∑

i=1

(ri + γQ̂π(si+1, π(si+1))− Q̂θ(si, ai))
2 (5.13)

Equations 5.12 and 5.13 correspond to two nested optimization problems:

(i) projecting T πQ̂θ to the hypothesis space, and (ii) minimizing the distance

between Q̂θ and ΠT πQ̂θ. Since the parametrization is assumed to be linear, this

67

optimization problem can be solved analytically:

θπ =

(

N
∑

i=1

φ(si, ai)(φ(si, ai)− γφ(si+1, π(si+1))
T

)−1 N
∑

i=1

φ(si, ai)ri (5.14)

LSPI was adapted for dialogue optimization in [Li et al., 2009]. However, the

feature selection scheme used in this case was based on heuristics which needs

careful tuning. The following section details how automatic feature selection

schemes can be combined with fitted-Q and LSPI. Both these algorithms are

known for their sample efficiency and off-policy aspect. These factors contribute

towards direct policy optimization from the dialogue corpus. In particular off-

policy aspect provides an opportunity to learn a fairly good policy even if the

policy used for generating the samples was not optimal. Thus both fitted-Q

and LSPI, make a compelling case for their use in dialogue policy optimization.

With regard to computation complexity, fitted-Q and LSPI are O(p2) and O(p3)

respectively per iteration.

5.4 Automatic feature selection

Manually selecting a set of features for value function approximation is a

complex task. For instance, using a Radial Basis Function (RBF) [Park & Sand-

berg, 1991] network for function approximation involves three steps: (i) choose

the number of features, (ii) choose the variance σ2 of the Gaussian kernels (see

Eq. 5.15) and (iii) decide on where each of these kernel centres should be placed.

It is often difficult to determine these factors in order to identify a comprehensive1

set of basis functions. In order to cope with this challenge, an approach which

allows learning this representation from data [Engel et al., 2004] is combined

with FVI. Combining such a feature selection scheme with LSPI was proposed

in [Xu et al., 2007]. This combination will help us to perform sample-efficient

1Q̂θ will be in the space defined by φ. Thus feature selection directly impacts the quality
of approximation.

68

dialogue optimization without the necessity of manual feature selection. This

section provides an overview on how function representation can be learned from

data. Data used for this purpose is in the form of state-action pairs (s, a). Let us

term (s, a) as z for convenience. Recall that the Q-function can be approximated

in φ and θ: Q̂θ(z) = θT φ(z), with φ(z) being a set of Gaussian kernel1 basis

functions:

φ(z) =
(

K(z, z̃1) . . . K(z, z̃p)
)T

(5.15)

Given a set of training samples or basis ({z1, . . . , zN}) and a kernel K (which

comes back to choosing σ in case of Gaussian kernel), we will use Engel’s dictio-

nary method that aims at: (i) choosing the number of basis functions (p) and (ii)

the associated kernel centres {z̃1, . . . , z̃p} ⊂ {z1, . . . , zN}. An important result

with regard to kernels is the Mercer theorem: for each kernel K there exists a

mapping ϕ : z ∈ Z → ϕ(z) ∈ F (F being called the feature space) such that

∀z1, z2 ∈ Z, K(z1, z2) = 〈ϕ(z1), ϕ(z2)〉 (in short, K defines a dot product in F).

The space F can be huge (it is an infinite hyper-sphere for Gaussian kernels),

therefore ϕ cannot always be explicitly built. Given this result and from the

bi-linearity of the dot product, Qθ can be rewritten as follows:

Qθ(z) =

p
∑

i=1

θiK(z, z̃i) = 〈ϕ(z),

p
∑

i=1

θiϕ(z̃i)〉. (5.16)

Therefore, a kernel-based parametrization corresponds to a linear approxima-

tion in the feature space, the weight vector being
∑p

i=1 θiϕ(z̃i). This is called

the kernel trick. Consequently, kernel centres (z̃1, . . . , z̃p) should be chosen such

that (ϕ(z̃1), . . . , ϕ(z̃p)) are linearly independent in order to avoid redundancy. In

simple words, given a state-action pair from the training basis, Engel’s dictionary

method [Engel et al., 2004] tries to ensure whether it can be expressed as a linear

combination (in the feature space) of elements already present in the dictionary.

If it can be expressed so, then the dictionary remains unchanged. However, if it

cannot be expressed as a linear combination, then the state-action pair is added

1In simple terms kernel functions are mappings or projections to higher dimensional spaces.

A two dimensional Gaussian kernel is defined as: 1

2πσ2 exp−
x
2+y

2

2σ2 , where σ is the standard
deviation.

69

to the dictionary. This process is repeated iteratively for all state-action pairs

that can be observed in the training corpus. At the end of this iterative process,

a set of state-action pairs (those that are present in the computed dictionary) are

chosen as basis functions to define the representation of Q̂θ.

The training base is sequentially processed, and the dictionary is initiated with

the first sample: D1 = {z1}. At iteration k, a dictionary Dk−1 computed from

{z1, . . . , zk−1} is available and the kth sample zk is considered. If ϕ(zk) is linearly

independent of ϕ(Dk−1), then it is added to the dictionary: Dk = Dk−1 ∪ {zk}.

Otherwise, the dictionary remains unchanged: Dk = Dk−1. Linear dependency

can be checked by solving the following optimization problem (pk−1 being the size

of Dk−1):

δ = argmin
w∈R

pk−1

‖ϕ(zk)−

pk−1
∑

i=1

wiϕ(z̃i)‖
2 (5.17)

Thanks to the kernel trick, this optimization problem can be solved analyt-

ically, without computing explicitly ϕ. Formally, linear dependency is satisfied

if δ = 0. However, an approximate linear dependency is allowed, and ϕ(zk) will

be considered as linearly dependent of ϕ(Dk−1) if δ < ν, where ν is the so-

called sparsification factor. This allows controlling the trade-of between quality

of the representation and its sparsity. See [Engel et al., 2004] for details as well

as an efficient implementation of this dictionary approach. Let us term ADP

performed with automatically selected function representation as Sparse-ADP.

FVI and LSPI can be thus be performed with a sparse representation yielding

Sparse-FVI and Sparse-LSPI algorithms.

5.5 Sparse-Fitted value iteration

Engel’s dictionary method is first combined with fitted-Q. The aim here is to learn

a representation for the Q-function using the automatic feature selection scheme

in order to perform fitted-Q 1. In case of the dialogue domain, the trajectories are

annotated and stored in the form of transitions (s, a, r, s′). In order to compute

1Recall the fact that fitted-Q assumes that some representation of Q-function is available.

70

the dictionary, the inputs needed are only state-action pairs (s, a), but not the

feedback (r) of the transitions. The transiting state s′ is taken into account while

considering the next state-action pair and thus ignored while using (s, a).

List of (s,a) Engel’s Dictionary Method

Fitted Q - (Iteration k)

(k = k+1)

Dialogue Corpus

Training Basis Automatic Feature Selection

Fitted Value Iteration

Figure 5.4: Sparse - FVI (Fitted-Q with feature selection)

It is important to note that, in case of fitted-Q, the input space remains the

same over several iterations. Thus the dictionary computed as a pre-processing

step from {(sj, aj)1≤j≤N} before starting fitted-Q remains unchanged (as shown

in Figure 5.4). It can also be noticed that the matrix (
∑N

j=1 φjφ
T
j)−1 (recall

Eq. 5.9) remains unchanged over iterations. Thus it can also be computed during

the pre-processing stage of fitted-Q. The proposed sparse Least Squares Fitted-Q

(sparse LSFQ) algorithm is summarized in Alg. 4.

5.6 Sparse-least squares policy iteration

An automatic feature selection scheme was first combined with LSPI in [Xu et al.,

2007]. In this section, Engel’s method is combined with the LSPI algorithm. The

primary difference with regard to sparse LSPI and sparse LSFQ, is the fact that

the input space for LSPI changes after every iteration. At iteration k, the input

is composed of both (s, a) and (s′, πk−1(s
′)) state-action couples (as shown in Fig-

71

Algorithm 4: Sparse LSFQ.

Initialization
1. Initialize vector θ0 arbitrarily
2. Choose a kernel K and a sparsification factor ν;
Dictionary computation
Compute the dictionary D = {(s̃j, ãj)1≤j≤p} from {(sj, aj)1≤j≤N};
Define the parametrization
Qθ(s, a) = θT φ(s, a) with
φ(s, a) = (K((s, a), (s̃1, ã1)), . . . , K((s, a), (s̃p, ãp)))

T ;
Compute P−1

P−1 = (
∑N

j=1 φjφ
T
j)−1;

for k = 1, 2, . . . ,M do
Compute θk, see Eq. (5.9);

end
Resulting optimal policy
π̂∗

M(s) = argmaxa∈A Q̂θM
(s, a);

List of (s,a) & (s’,a’) Engel’s Dictionary Method

Sparse LSPI - (Iteration k)

(k = k+1)

Dialogue Corpus

Training Basis Automatic Feature Selection

Least Squares Policy Iteration

Updated Training Basis

List of (s,a) & (s’,a’)

Figure 5.5: Sparse - LSPI (LSPI with feature selection)

72

ure 5.5). This results in a necessity for computing a new dictionary before each

iteration using {(s, a)1≤j≤N , (s′, πk−1(s
′))1≤j≤N}. The resulting elements in the

dictionary define the parametrization which is considered for Q-function evalua-

tion1. Sparse LSPI algorithm is summarized in Alg. 5.

Algorithm 5: Sparse LSPI.

Initialization
1. Initialize policy π0

2. Choose a kernel K and a sparsification factor ν;
for k = 1, 2, . . . do

Dictionary computation
Compute the dictionary D = {(s̃j, ãj)1≤j≤pk

} from
{(sj, aj)1≤j≤N , (s′j, πk−1(s

′
j))1≤j≤N};

Define the parametrization
Qθ(s, a) = θT φ(s, a) with
φ(s, a) = (K((s, a), (s̃1, ã1)), . . . , K((s, a), (s̃pk

, ãpk
)))T ;

Compute θk−1, see Eq. (5.12);
Compute policy πk

πk(s) = argmaxa∈A Q̂θk−1
(s, a);

end

Notice that sparse LSFQ has a lower computational complexity than the

sparse LSPI. For sparse LSFQ, dictionary and matrix P−1 are computed in a

pre-processing step, therefore the complexity per iteration is in O(p2), with p

being the number of basis functions computed using the dictionary method. For

LSPI, the inverse matrix depends on the iteration, as well as the dictionary, there-

fore the computational complexity is in O(p3
k) per iteration, where pk is the size

of the dictionary computed at the kth iteration.

5.7 Experimental results and analysis

So far in this chapter ADP-based fitted-Q, LSPI, sparse LSFQ and sparse LSPI

were discussed in detail. The rest of this chapter outlines a set of experiments

conducted in the dialogue domain. The primary focus here is to validate (by

1Recall policy iteration described in 3.3.1. It is a two step iterative process involving policy
evaluation and policy improvement.

73

means of experimental results) the effectiveness of these algorithms when applied

to dialogue policy optimization. Experimental results are analysed in terms of

sample efficiency and the quality of retrieved policies. To begin with, the restau-

rant information SDS with continuous state space, dialogue corpora generation

process and choice of Q-function representation are elicitated in Section 5.7.1,

5.7.2 and 5.7.3 respectively. Following which dialogue policy optimization for

the restaurant information SDS using ADP (see Section 5.7.4) and sparse ADP

algorithms (see Section 5.7.5) are discussed in detail.

Recall that ADP algorithms presented in this chapter are batch methods.

Here policy optimization is carried out using transitions (s, a, r, s′) observed in

the dialogue corpus. Using these algorithms it is now possible to directly optimize

a policy from fairly limited amount of dialogue data. Unlike dialogue optimiza-

tion using conventional RL algorithms, these methods does not require a user

simulation (since they are sample-efficient) [Pietquin et al., 2011b]. However, to

ascertain the quality of the optimized policies, they must be evaluated. Thus user

simulation continues to play a critical role at least for the sake of policy evalua-

tion [Georgila et al., 2006]. Even though part of the experiments are conducted

using automatically selected features (for Sparse LSFQ and Sparse LSPI), the

function approximation method is chosen (manually) to be RBF network. There

exist intelligent schemes for model selection in case of batch methods as discussed

in [Farahmand & Szepesvári, 2011].

5.7.1 Restaurant information system (MDP-SDS)

Restaurant information SDS [Lemon et al., 2006] introduced in chapter 2 is con-

sidered again for experimental purposes. However, the state and action space

of the MDP-SDS is updated to reflect real world scenarios. The (dialogue) state

representation of the MDP-SDS includes confidence scores corresponding to three

slots: (1) the location of the restaurant, (2) cuisine of the restaurant and (3)

price-range of the restaurant. Each of these confidence scores is the average of

slot filling confidence and slot confirmation confidence1. Using the such confi-

1It may be useful to recall that state of the art statistical ASR and NLU engines also provide
a measure of confidence on resulting hypotheses.

74

dence measures for dialogue management to some extent helps in coping up with

the (associated) uncertainty. For instance, if the confidence of filling a slot is very

low the dialogue manager can choose to confirm it with the user. However, this

is not possible if a binary feature is used for determining whether the slot is filled

or not (as suggested in 2.3).

The confidence measure in itself is the probability score ranging from 0 to

1. It is essentially the probability of correct recognition from ASR’s perspective

or correct interpretation from NLU’s perspective. Including such scores in the

state representation of the MDP-SDS results in a dialogue problem with three

dimensional continuous state space. Thus exact solution methods (such as value

iteration for retrieving a tabular policy) cannot be used for policy optimization.

With regard to the action space, there exists 13 actions (dialogue-acts): Ask-A-

Slot (3 actions, one for each slot), Explicit-Confirm-Slot (3 actions, one for each

slot), Implicit-Confirm-And-Ask-A-Slot (6 actions, in combination of 2 slots) and

Close-Dialogue action. In order to enable dialogue optimization, some reward

function should be defined (as discussed in 3.5). For the experiments presented

in this section the following reward function is used:

• reward for correct slot filling: 25;

• penalty for incorrect slot filling: -75;

• penalty for empty slot: -300.

The rewards are given upon reaching the end of the dialogue episode. Note

that the reward function includes no time-penalty to penalize the length of dia-

logue episode explicitly. However, the discount factor γ is set to 0.95 to induce an

implicit penalty for the length of the dialogue episode. Now that the restaurant

information dialogue problem is defined and casted as an MDP, the next step is

to solve the MDP-SDS to determine the optimal dialogue management strategy.

In order to perform policy optimization using Fitted-Q and LSPI, dialogue data

is required. For this reason simulated dialogues are generated using a sub optimal

ǫ-greedy policy as explained in the following section. The reason for using simu-

lated data is to showcase the effectiveness of the proposed algorithm on a simple

75

problem. Yet the state space is deliberately chosen to be continuous (infinite

states) to elicit the ability of these algorithms to scale up.

5.7.2 Dialogue corpora generation

It is important to note that the methods discussed here are off-policy algorithms.

Irrespective of the policy used for data generation they can learn an (underlying)

optimal policy from the dialogue corpora. This is a key advantage when such

algorithms are adapted for policy optimization in the dialogue domain. In order

to showcase this ability, dialogues are generated using an inferior policy. Also it is

important to note that the samples used for learning should be explorative enough

to learn a good generalization or approximation of the value function. Thus, the

sub-optimal ǫ-greedy policy used for dialogue corpus generation is a combination

of a hand-crafted baseline policy and a uniform policy. Here, for each decision,

the baseline policy is chosen with a probability (1− ǫ) and the random (uniform)

policy is chosen with a probability ǫ. To begin with, a baseline system which

uses a hand-crafted policy is built. The hand-crafted policy tries to fill the three

available slots one after the other and terminates the dialogue episode if all the

slots are filled. Perhaps this is one of the simplest way to perform the restaurant-

info dialogue task. The sub-optimality of the hand-crafted policy, used here for

data generation, comes from the fact that confirmatory system actions are not

used.

Dialogues generated using a hand-crafted policy alone will not provide a good

sampling of the problem space. Thus, it is combined with a pure random or

uniform policy using ǫ-greedy approach. The value of ǫ is set as 0.9 during

dialogue generation process. By using the random policy in conjunction with a

hand-crafted policy it is ensured that the problem space is sampled better and

at the same time there are also episodes which have a successful task completion

reward. In order to generate simulated dialogues, an n-gram user simulation is

plugged into the DIPPER dialogue management framework [Lemon et al., 2006].

The ǫ-greedy policy is then used to control the interaction between the DIPPER

dialogue manager and simulated user for dialogue simulation. Using this set-

up, 56k dialogue episodes resulting in 400k (approximately) dialogue turns (state

76

transitions) are collected.

5.7.3 Q-function representation

In order to use ADP for policy optimization, the first step is to define the rep-

resentation of the action-value function. To begin with, manual feature selection

scheme for parametric representation of the Q-function is considered (as described

in Eq 5.1). For the experiments, an RBF network based representation of the Q-

function is employed (see Eq 5.15). The RBF network has 3 Gaussians for every

dimension in the state space and considering that the restaurant-info problem

has 13 actions, a total of 351 (i.e., 33 × 13) features are used for representing

the Q-function. Gaussians are centred at µi = 0.0, 0.5, 1.01 and with a standard

deviation σi = σ = 0.25.

5.7.4 Policy optimization using ADP

To begin with, the initial set of experiments (presented in this section) focuses on

using the manually defined Q-function representation. Fitted-Q [Chandramohan

et al., 2010a] and LSPI [Li et al., 2009] are used to perform dialogue policy

optimization. The primary focus of these experiments is to explore the sample

efficiency of ADP algorithms when applied to dialogue optimization. We know

that these algorithms learn from transition samples, i.e., (s, a, r, s′). The available

training data set is divided into 8 smaller data sets each with 50k dialogue turns.

LSPI and fitted-Q based policy optimization is performed 8 different times using

the 8 different data sets. During each of these training sessions the number of

samples used for training is varied from 5k to 50k. Resulting Q-functions after

convergence while using 5k, 10k, 20k, 30k, 40k, 50k samples are stored in memory.

Using these Q-functions, optimal policies (greedy with respect to Q-function) are

computed.

The stopping criterion for LSPI is based on the number of changes made to

the policy being optimized. The learning is terminated if the number of changes

to the policy is less than ξ (during the experiments the value of ξ is set to 1).

1Recall that dialogue state involves three dimensions with values ranging from 0 to 1.

77

The stopping criterion for the fitted-Q is as follows: learning is terminated at

iteration n, if ‖θn − θ(n−1)‖1 < ξ, where n is the iteration number and ξ is the

convergence threshold.

The estimated policies are evaluated based on the quality of dialogues gener-

ated by the DIPPER dialogue management framework (controlled by resulting

policies) and an n-gram user simulation. In total 100 dialogue episodes are gener-

ated using each of the 8 policies at every stage (for instance while using 5k samples

for training). The average discounted sum of rewards (and their standard devia-

tion) obtained by the policies trained using varied number of samples are shown

in Figure 5.6 (in semi-log scale). This figure indicates that both Fitted-Q and

LSPI are sample-efficient algorithms for dialogue policy optimization. These ap-

proaches can learn good dialogue policies (compared to the baseline hand-crafted

policy) from limited number of samples contrary to other RL algorithms which are

known to be data intensive [Pietquin et al., 2011b] (such as Q-learning)1. Even

though the performance of fitted-Q and LSPI are more or less the same, LSPI-

based policy optimization comes at an additional computational cost considering

the fact that it needs matrix inversion at each iteration, contrary to fitted-Q (in

which matrix inversion is done only once).

5.7.5 Dialogue optimization using Sparse ADP

Even though ADP algorithms for dialogue optimization are sample-efficient, they

need the representation of Q-function to be defined beforehand. For this reason

we combine automatic feature selection schemes with LSPI and fitted-Q algo-

rithms (as discussed in sections 5.5 and 5.6). Similar to the experiments with

ADP algorithms, sparse LSFQ and sparse LSPI are used to optimize the dia-

logue policy of the restaurant information dialogue system. These algorithms

learn a representation of the Q-function and then retrieve the estimated opti-

mal Q-function from the data. The number of features selected by the dictionary

scheme varies depending on the value ν (which is the sparsity coefficient). During

1Experimental evidence showcasing the sample inefficiency of SARSA and Q-learning is
presented in chapter 6.

78

 0

 10

 20

 30

 40

 50

 60

 70

 5000 10000 20000 30000 40000 50000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of samples used for training

Hand crafted
FittedQ

LSPI

Figure 5.6: Evaluation of policies learned using Fitted-Q and LSPI

the experiments ν is first set to 0.7 and then to 0.81. Dictionaries computed with

ν=0.7 and σi = σ = 0.25 had about 325 to 365 features depending on the number

of samples used for learning. Dictionaries computed with ν=0.8 and σi = σ =

0.25 had about 286 to 317 features depending on the number of samples used.

As discussed earlier, the dictionary is computed only once at the beginning

of sparse LSFQ-based learning. In this case it is computed using (si, ai)1≤i≤N

couples from the dialogue corpora. In case of sparse LSPI the dictionary is com-

puted before each iteration using both (si, ai)1≤i≤N and (s′i, πk(s
′
i))1≤i≤N couples.

Similar to the process explained in Section 5.7.4, multiple learning sessions are

performed using the eight different data sets. The stopping criterion for sparse

LSFQ is same as that of fitted-Q whereas the stopping criterion for sparse LSPI

has ξ set to 500. In the later case, since the basis function of the Q-function is

updated before each iteration, the convergence criteria is relaxed (based on trail

1Recall that for higher values of ν, the resulting representation will be sparser as well as
cruder. For Gaussian kernels, dictionary computation with ν set to 1, will result in having only
one element in the dictionary.

79

 0

 10

 20

 30

 40

 50

 60

 70

 5000 10000 20000 30000 40000 50000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of samples used for training

Hand crafted
FittedQ

Sparse FittedQ (Nu=0.7)
Sparse FittedQ (Nu=0.8)

Figure 5.7: Evaluation of policies learned using Fitted-Q and Sparse Fitted-Q

and error to get good performance).

In order to evaluate the resulting dialogue policies, synthetic dialogues are

generated using DIPPER and an n-gram user simulation. Policies are evaluated

based on their average discounted sum of rewards. Comparison between the

policies learned using fitted-Q and sparse LSFQ, is presented in Figure 5.7. It

can be observed that sparse LSFQ is also sample-efficient and indeed can learn

good dialogue policies (some times as good as fitted-Q) compared to the baseline

policy. It can be observed that the performance of fitted-Q is slightly better when

compared to sparse Fitted-Q. This may be due to the fact that the hand selected

features for this specific dialogue problem seem to be a good set of features.

However, it is important to recall that manually selecting a good feature set may

not be always a possible option (especially when dealing with larger dialogue

problems).

Comparison between LSPI and sparse LSPI policies is presented in Figure 5.8.

It can be observed that policies learned using sparse LSPI performed significantly

better than the baseline hand-crafted policy. But when compared to LSPI the

80

 0

 10

 20

 30

 40

 50

 60

 70

 5000 10000 20000 30000 40000 50000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of samples used for training

Hand crafted
LSPI

Sparse-LSPI (Nu=0.7)
Sparse-LSPI (Nu=0.8)

Figure 5.8: Evaluation of policies learned using LSPI and sparse LSPI

policies are moderately inferior. This may partially be attributed to the conver-

gence criteria used for stopping the learning. For instance, hand selecting the

policy with the least number of policy changes may result in better performance.

Similar to fitted-Q, in this case as well the good performance of LSPI is largely

due to the quality of manually selected features. When the complexity of the

problem grows, the possibility for manual feature selection may cease to exist or

may become intractable. Even though the results of ADP and Sparse ADP are

fairly comparable, the policies estimated using Sparse ADP seem to be less stable

(since they have a large variance) when compared to ADP policies.

The following dialogue is an example interaction between the DIPPER dia-

logue manager (controlled by a policy learned using Fitted-Q with 10k samples)

and the n-gram user simulation. Here it can be observed that the learnt dialogue

policy not only fills the slots with user preferences (like the baseline policy) but

also confirms the slot using explicit and implicit confirmatory actions.

81

===

Dialogue between DIPPER dialogue manager and n-gram user:

Dialogue State: [0, 0, 0]

Dialogua Act: askASlot-slot_3

Dialogue State: [0, 0, 0.5]

Dialogua Act: explicitConfirm-slot_3

Dialogue State: [0.368238, 0, 1]

Dialogua Act: implConfAskASlot-slot_1_ASK_slot_2

Dialogue State: [0.917882, 0.499996, 1]

Dialogua Act: explicitConfirm-slot_2

Dialogue State: [0.958942, 0.5, 1]

Dialogua Act: explicitConfirm-slot_2

Dialogue State: [0.958942, 1, 1]

Dialogua Act: closingDialogue-null

===

Intended goal of the simulated user:

Type: Indian

Price-range: Cheap

Location: City-Centre

User goal captured by the dialogue manager:

Type: Indian

Price-range: Cheap

Location: City-Centre

===

Dialogue statistics:

ActualReward: 75 (for successful task completion)

Dialogue length: 6

Discounted reward at end of the episode: 55.1319

===

Example dialogue episode from the restaurant-information MDP-SDS

Experimental results summarized in this chapter [Chandramohan et al., 2010a,b;

Li et al., 2009; Pietquin et al., 2011b] outlines an exciting direction of work with

82

regard to policy optimization in the dialogue domain. Firstly, the off-policy

aspect of ADP algorithms comes in handy for direct policy optimization from

dialogue corpora. Secondly, the sample-efficiency of these algorithms means that

user simulators are no longer required for the sake of policy optimization. Even

though user simulators still play a role in policy evaluation, alternative schemes

for evaluation based on feedback from real users tends to be more reliable.

83

84

Chapter 6

Kalman Temporal Differences

Online reinforcement learning-based dialogue optimization is discussed in this

chapter. Let us recall the taxonomy of RL algorithms discussed in Section 3.4.4.

Online RL algorithms make use of samples obtained during live interaction with

the real users for dialogue optimization. Based on the differences between the

policy being evaluated and policy used for control, these algorithms can be classi-

fied into on-policy and off-policy algorithms. In the case of off-policy algorithms,

the policy used for data generation is different from the policy associated to the

Q-function being estimated, thus learning can be performed in a off-line setting

using a fixed data set in the form of a dialogue corpus.

Standard RL algorithms such as SARSA (see section 3.4.2) and Q-learning

(see section 3.4.3) are based on Temporal Difference (TD) estimates1. These al-

gorithms in particular are known to have poor sample efficiency and thus need

vast amounts of data for policy optimization. Yet, they are the most frequently

used algorithms for policy optimization in the dialogue domain. More recently,

Kalman Temporal Differences (KTD) [Geist & Pietquin, 2010b] based value func-

tion approximation was introduced. KTD in itself is a generic framework which

casts value function approximation task as a filtering problem. It can be used

to retrieve specific flavours of algorithms such as KTD-Q (off-policy) and KTD-

SARSA (on-policy). This chapter is organized as follows: policy optimization

using online/off-policy are discussed in sections 6.1 (Q-learning) and 6.2 (KTD-

1Recall from section 3.4.1, TD is the commonly used learning scheme in RL, where the
current estimate of Q(s, a) is updated using the future estimate i.e., Q(s′, a′).

85

Q), following which policy optimization using online/on-policy algorithms are

outlined in section 6.3 (SARSA and KTD-SARSA). Eventually, section 6.5 out-

lines the effectiveness of these algorithms when applied for dialogue optimization.

6.1 Q-learning with function approximation

Q-learning with function approximation is one of the classic RL algorithm used

for optimizing large or continuous state MDPs. Assume for now that the optimal

state-action values (Q∗(sj, aj) = q∗j) can be observed. Once these values are

(assumed to be) known, we can treat the value function approximation problem

as a regression problem. There exists several possible cost functions in order to

minimize the associated (regression) error. The cost function considered here

takes the form:

θi = argmin
θ∈Rp

i
∑

j=1

(q∗j − Q̂θ(sj, aj))
2. (6.1)

The goal here is to determine the parameter vector θi which assures a good

approximation of the optimal value function. In the supervised learning domain,

it is common to minimize the associated cost function using methods such as

gradient descent. Let us assume that the typical gradient descent scheme is

applied for cost minimization. In this case the update rule upon observing (sj, aj)

and q∗j can be defined as follows:

θi = θi−1 + αi∇θQ̂θi−1
(si, ai)(q

∗
j − Q̂θi−1

(si, ai)). (6.2)

Here, αi is the step size or the learning rate. Revisiting the assumption made

before, it is important to note that the optimal state-action values indeed are

not observable and only an estimate of this optimal value is available. Because

of this, q∗i is bootstrapped i.e., it is replaced by an estimate of this optimal Q-

value. Recall that the optimal Q-function is the unique fixed-point of the Bellman

optimality operator. Thus, a good estimate for q∗j is:

T̂ ∗Q̂θi−1
(si, ai) = ri + γ max

a∈A
Q̂θi−1

(si+1, a). (6.3)

86

Using the estimation of q∗j (see Eq. 6.3), we can now rewrite Eq. 6.1 as:

θi = θi−1 + αi∇θQ̂θi−1
(si, ai)(ri + γ max

a∈A
Q̂θi−1

(si+1, a)− Q̂θi−1
(si, ai)). (6.4)

As it can be observed in Eq. 6.4, the problem being dealt with is treated as a

first order optimization problem. The update rule used here is the typical gradient

ascent (i.e., ∇θ is utilised). The convergence criteria associated with gradient

ascent-based optimization is asymptotic and thus requires vast amount of data

to estimate the optimal Q-function. However, dialogue corpora generation is an

expensive process. Thus, user simulations are employed to generate synthetic

dialogues. It may be useful to recall that, Q-learning estimates the optimal

Q-function using samples generated by another control policy (i.e., off-policy

algorithm). Thus, dialogue transitions collected using some sub-optimal policy

can in turn be used to optimize a policy using Q-learning in a offline and off-policy

setting.

6.2 Kalman Temporal Differences

Kalman Temporal Differences (KTD) framework [Geist et al., 2009] aims at esti-

mating the approximate value function. Here the task of estimating this function

is casted as a filtering problem, and solved using Kalman filters [Kalman, 1960].

The advantage of using Kalman filters for value function approximation comes

from its ability to predict statistically optimal estimates (best linear predictor in

a least-means squares sense), in-spite of receiving non-stationary and noisy in-

puts. More importantly, Kalman filters can estimate optimal values in a sample

efficient manner (since it uses second order statistics). Thus KTD-based algo-

rithms, when employed for dialogue policy optimization, can effectively handle

non stationary user behaviors and optimize policies from limited amount of data.

KTD is a generic framework for value function approximation and so specific ver-

sions of algorithms such as KTD-Q and KTD-SARSA can be derived. To begin

with, this section explains value function approximation using Kalman filters and

outlines the KTD-Q algorithm.

87

6.2.1 KTD-Q - online/off-policy algorithm

A filtering problem involves predicting the best estimate of some unknown vari-

ables using potentially noisy observations, provided a generative model linking

the observations to some unknown variables. Kalman filters[Kalman, 1960] are

well known algorithms for solving such problems. Let us consider a typical pre-

diction problem where X has to be estimated using some related observations

Y . To begin with, X and Y are modelled as random variables. Now the solu-

tion for this problem can be summarized as finding a conditional expectation of

X in terms of Y , i.e., X̂i|i = E[X|Y1, . . . , Yi]. The Kalman-filter-based solution

requires determining two factors: (i) how the hidden quantities evolve? and (ii)

how they are linked to observations? (see Eq. 6.5). These factors together are

often termed as a state-space formulation.

Xi+1 = fi(Xi, vi),

Yi = gi(Xi, wi).
(6.5)

Here the equation used to determine the evolution of Xi+1 is called the

evolution equation and the one used to determine Yi is called as the obser-

vation equation. Given these equations, the Kalman filter proposes a linear

update rule providing the best linear estimate of the conditional expectation

X̂i|i = E[X|Y1, . . . , Yi]:

X̂i|i = X̂i|i−1 + Ki(Yi − Ŷi|i−1) (6.6)

where Ki is the so-called Kalman gain and Ŷi|i−1 is the prediction of the obser-

vation given the current estimate of X̂i|i−1 and Eq. 6.5.

Q-function approximation given its equivalence to the filtering problem can be

solved using Kalman filters. However, in case of dialogue systems the parameters

can evolve with time (in which case the hidden variable is the θ vector). This

variation is primarily due to constant variation in user behavior. Since the optimal

policy is non stationary, how θ evolves over a period of time cannot be determined,

i.e., the function f of the evolution equation is not known. Thus, a random walk

evolution model is assumed for parameters (θi = θi−1+vi with vi being a centered

88

white noise, called the evolution noise). Rewards are linked to parameters through

the (sampled) Bellman optimality equation (see Eq. 6.3) which provides the gi

function of Eq. 6.5. A centered and white observation noise ni is added because

the estimated value Qθ does not necessary lie in the functional space H (inductive

bias, which is the difference between the Q-function and its estimate in H.). This

provides the following state-space formulation in the Kalman filtering paradigm:

θi = θi−1 + vi

ri = Q̂θi
(si, ai)− γ maxa∈A Q̂θi

(si+1, a) + ni

(6.7)

The KTD-Q algorithm provides the best linear estimator. The Kalman es-

timator minimizes the expectation of the mean-squared error conditioned on

past observed rewards: Ji(θ) = E[‖θi − θ‖2|r1:i]. Here both parameters θi

and the associated variance Pi are maintained. Upon observing a new transi-

tion, Pri
and Pθri

as well as the predicted reward r̂i are computed. Note that

r̂i ≈ E[Q̂θi−1
(si, ai)−maxa∈A Q̂θi−1

(si+1, a)] is indeed the temporal difference er-

ror. These values are used to update the Kalman gain and thus θi and Pi (variance

associated with θ) as shown here:

Ki = Pθri
P−1

ri

θi = θi−1 + Ki(ri − r̂i)

Pi = Pi−1 −KiPri
KT

i

(6.8)

It is important to note that the computation of the Kalman gain relies on

second order statistics computable from data. This approach is sample efficient

when compared to Q-learning which makes use of first order estimates. The

sample efficiency is validated using experimental results in Section 6.5 where

KTD-based algorithms are compared to Q-learning with function approximation.

Non-linearity due to non-stationary behavior of users can be handled effectively

using Kalman filtering using unscented transform (a sampling technique used

to choose a minimal set of samples). This ability of unscented Kalman filter-

ing comes in hand when applied for dialogue optimization in the form of value

function prediction or estimation.

89

6.3 SARSA with function approximation

SARSA another classic RL algorithm discussed in Section 3.4.2 aims at estimating

Q-functions for MDPs with finite problem space. However, in order to deal with

large or continuous space MDPs, only approximate solutions are feasible. In case

of SARSA, estimated value of θi is updated upon observing a dialogue transition

of the form (si, ai, ri, si+1, ai+1). It may be useful to note that the action ai+1

is chosen by the control policy used for user interaction1. SARSA with function

approximation is similar to the Q-learning algorithm explained in Section 6.1.

Recall that in case of Q-learning, the optimal Q-function is estimated using the

sampled Bellman optimality operator. Whereas, the estimate used with regard to

SARSA is based on the the sampled Bellman evaluation operator T̂ π. Thanks to

the function approximation-based update rule which can be derived as discussed

in Section 6.1. The update rule for SARSA with function approximation in order

to estimate θi can be obtained in a similar way:

θi = θi−1 + αi∇θQ̂θi−1
(si, ai)(ri + γQ̂θi−1

(si+1, ai+1)− Q̂θi−1
(si, ai)) (6.9)

6.3.1 KTD-SARSA - online/on-policy algorithm

Another specific form of the KTD framework can be obtained to perform online/on-

policy dialogue optimization. We know that in case of SARSA, value estimates

are indeed obtained using the sampled Bellman evaluation operator. Thus, for

KTD-SARSA the update rule is derived from the following state-space formula-

tion:

θi = θi−1 + vi

ri = Q̂θi
(si, ai)− γQ̂θi

(si+1, ai+1) + ni

(6.10)

1Recall that in case of online/on-policy learning, both the control policy and the policy
being estimated are one and the same.

90

6.4 Uncertainty management in KTD

On-policy reinforcement learning algorithms suffer from the exploration vs ex-

ploitation dilemma. Dialogue manager interacting with an user must decide

whether to choose dialogue acts based on the experience it gained from past

interactions (i.e., exploitation) or to explore the outcome of dialogue acts which

were not used during past interactions (i.e., exploration). As discussed in Sec-

tion 3.4, one possible way to cope with this challenge is to employ an ǫ-greedy

action selection scheme1. In order to efficiently and quickly optimize a dialogue

policy, online policy learners must have a good trade-off between exploration and

exploitation. Thus, choosing a right ǫ is of critical importance with regard to

policy optimization. There exist several methods for choosing ǫ in order to cope

with this dilemma. Yet most of these methods rely heavily on heuristics in one

form or another.

In recent years, smarter ways to cope with the exploration vs exploitation

dilemma have been studied with significant interest in the RL domain. For

instance, using uncertainty information (associated with Q(s, a) estimates) has

been shown to be effective [Dearden et al., 1998; Kolter & Ng, 2009; Sakaguchi

& Takano, 2004; Strehl & Littman, 2006]. Most of these approaches are designed

for finite space MDPs with tabular case2. Even though these methods are ef-

fective, extending them for infinite or continuous space MDPs (such as dialogue

management MDP) is often impractical.

KTD framework provides an opportunity (both for finite and continuous space

MDPs) to cope with this challenge by computing uncertainty information asso-

ciated with the estimates of state-action values [Geist et al., 2008]. Let us recall

the KTD update rule summarized in Eq. 6.8. Here apart from updating θi, the

variance Pi associated with θi estimate is also computed. Using these quantities,

it is possible to compute, for any state-action couple (s, a), the value estimate

Q̂θi
(s, a), as well as the associated variance σ2

Qi
(s, a). In simple terms this vari-

1The agent explores the problem space by choosing a random action with probability ǫ

and exploits the experience gained (summarized in the form of Q-function) by choosing greedy
actions with probability (1 - ǫ)

2In case of finite space MDPs, uncertainty information can be computed by using state-
action visitation frequencies.

91

(a) Q-values and variance (b) ǫ-greedy. (c) Bonus-greedy.

Figure 6.1: Q-values and policies.

ance measure is the algorithm’s confidence on its estimate of Q̂θi
(s, a). Using

this variance active learning schemes can be formulated as shown in [Geist &

Pietquin, 2010c].

The rest of this section explores the possibility of using an intelligent explo-

ration scheme for dialogue policy optimization. For this purpose, the bonus-

greedy policy proposed in [Kolter & Ng, 2009] is employed. It consists in acting

greedily with respect to the estimated Q-function plus some bonus (β and β0

being two parameters to be set by the system designer):

ai+1 = argmax
a∈A

(

Q̂θi
(si+1, a) + β

σ2
Qi

(si+1, a)

β0 + σ2
Qi

(si+1, a)

)

(6.11)

To begin with, during the initial stages of learning, the estimated variance is

expected to be high and so the bonus will be approximately equal to β. However,

as learning progresses, the variance is expected to decrease1. In the final stages

of the learning process, when state-action values are well estimated, the variance

tends to 0. Thus, the bonus greedy policy becomes totally greedy with respect

to the estimated state-action value function.

Action selection using bonus and ǫ-greedy policies is explained here with an

example [Geist, 2009]. Let us consider an arbitrary Q-function for some given

state and 4 different actions as shown in Figure 6.1 (a). This shows the Q-

values for each of the 4 actions along with the associated uncertainty in the form

1After several observations the algorithm will grow in confidence and hence the variance
will decrease.

92

of standard deviation. It can be noted that action 3 has the highest Q-value

and also the lowest uncertainty, while action 1 has the lowest Q-value but the

highest uncertainty. The probability distribution associated to ǫ-greedy policy

(action selection scheme) is shown in Figure 6.1 (b). In this case action 3 has the

highest probability (for being selected) while other actions have some uniform

(low) probability. The probabilities of other actions are the same despite the

fact that these actions have different Q-values and associated variances. The

bonus-greedy action selection is shown in Figure 6.1 (c). In this case the score

for action selection is computed as explained in Eq 6.11. Both arbitrary Q-values

and associated standard deviations are used with regard to bonus-greedy. Thus,

action 2 becomes the best action to be chosen. It can also be noticed that the

rest of the actions have approximately the same score, despite the fact that they

have quite different Q-values.

6.5 Experimental results and analysis

So far in this chapter, different online reinforcement learning algorithms were

discussed. The primary motivation to introduce commonly used RL algorithms

(such as Q-learning and SARSA) along with relatively new KTD-framework-

based algorithms is to provide an unified view on these algorithms. The rest

of this chapter focuses on comparing the effectiveness of using these algorithms

for dialogue policy optimization. The dialogue problem studied in this section

is the same restaurant information dialogue system. For this reason, restaurant

information MDP-SDS formulation discussed in Section 5.7 is reused.

6.5.1 Online/off-policy dialogue optimization

To begin with, experiments are first conducted using two algorithms: (i) Q-

learning and (ii) KTD-Q. Since they are off-policy algorithms, dialogue corpora

generated using sub-optimal policies can be used for training. During the experi-

ments both prior variance and observation noise of KTD-Q are set to 1. Learning

rate α is set to 0.2. Both KTD-Q and Q-learning employed the same parametrized

93

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 600 1000 5000 20000 50000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of samples used for training

Hand crafted
FittedQ
KTD-Q

Q-learning

Figure 6.2: Evaluation of KTD-Q (linear scale)

representation of the Q-function1. Using the 400K training samples, policy op-

timization is performed in eight parallel sessions. Resulting dialogue policies

are used in conjunction with the DIPPER dialogue management engine with an

n-gram user simulation, in order to generate synthetic dialogues for evaluation

purposes. A hand-crafted system is used as the baseline for evaluation.

Performance of the policies learned using KTD-Q and Q-learning is presented

in Figure 6.2 (in linear scale). It can be observed that KTD-Q policies outperform

the baseline (hand-crafted) system as well as Q-learning policies (quite signifi-

cantly). Figure 6.3 (in semi-log scale) shows that KTD-Q can learn good policies

from few hundred samples when compared to Q-learning. The sample efficiency

of KTD-Q showcased here is very good. This encourages policy optimization us-

ing KTD-Q especially in the dialogue domain (where corpora generation is known

to be expensive and time consuming process).

On the contrary, Q-learning, being data intensive, fails to learn a good policy

1Same Q-function representation is employed in order to compare algorithms under a unified
setting.

94

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 50 100 600 1000 5000 20000 50000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of samples used for training

Hand crafted
FittedQ
KTD-Q

Q-learning

Figure 6.3: Evaluation of KTD-Q (semi-log scale)

even after using 50K samples. Poor performance of Q-learning may be attributed

to its value estimation scheme (which uses first order statistics). Also it can be

observed that the policies learned using KTD-Q are nearly as good as the policies

learned using Fitted-Q. However, choosing KTD-Q parameters can be tricky task

at times. Thus it is ideal to perform policy optimization using a cross-validation

scheme, where different set of parameters and use the one which performs better

for the specific problem. It is important to note that, since classic RL algorithms

(which are widely used in the dialogue domain) are sample-inefficient, they cannot

be used to perform (direct) policy optimization using available dialogue corpora.

6.5.2 Online/on-policy dialogue optimization

In this section, policy optimization using online/on-policy algorithms is discussed.

Experiments focus on optimizing the restaurant information dialogue system.

However, since the algorithms are on-policy, the DIPPER dialogue management

engine (plugged with KTD-SARSA or SARSA policy learner) is used in conjunc-

95

tion with an n-gram user simulation. In order to cope with the exploration vs

exploitation dilemma in case of KTD-SARSA two action selection schemes are

used: (i) the standard ǫ-greedy and (ii) a bonus greedy approach.

All three algorithms (i.e., KTD-SARSA ǫ-greedy, KTD-SARSA bonus-greedy

and SARSA) uses the same parametrized representation of the Q-function. For

KTD-SARSA, both prior and variance are set to 1. For KTD-Q, the observation

noise is set to 1. The learning rate α is set to 0.2. The exploration rate of ǫ-

greedy is set to 0.1 and for bonus greedy the β0 is set to 1 and the β value is set

to 5, 3 and 1. Recall from Eq. 6.11 that the β parameter of the bonus greedy

policy determines to what extent the policy will be explorative with regard to the

variance of Q̂θ(s, a). Large values for β will result in large bonuses. Thus, the

policy behaves in an explorative manner during the initial stages of the learning

and then tends to act greedily as the variance tends to 0 or in the later stages of

learning. The extent of exploration while using KTD-SARSA with bonus-greedy

can be observed in Figure 6.4. When β is set to 5 the behavior is more explorative

when compared to the policy with β set to 3 and 1. More exploration results in

retrieving a better dialogue policy from fewer number of episodes. Thus at the

end of the first 100 training episodes, the average discounted reward obtained

with β set to 5 is relatively more when compared to the rest.

It may be useful to note that the discounted sum of rewards obtained by the

policy learners (KTD-SARSA and SARSA) are averaged using a sliding window

(of size 100 initially and 500 later on). The average rewards obtained by SARSA,

KTD-SARSA with ǫ-greedy and KTD-SARSA with bonus greedy are shown in

Figure 6.5. Experimental results show that KTD-SARSA with bonus greedy

learns faster and stabilizes sooner when compared to the rest. KTD-SARSA with

ǫ-greedy exploration also learns faster and stabilizes with a better policy when

compared to SARSA. Ideally a second order algorithm such as KTD-SARSA is

expected to outperform first order algorithms like SARSA. This is due to the

fact that, second order algorithms are known to have faster rate of convergence

and thus enjoys better sample efficiency. Whereas, SARSA is well known to be

sample-inefficient i.e., data intensive and thus normally needs vast amounts of

data to retrieve an optimal policy.

96

 0

 10

 20

 30

 40

 50

 60

 70

 100 500 1000 5000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of training episodes

KTD-SARSA (BonusGreedy, Beta=5, Beta0=1)
KTD-SARSA (BonusGreedy, Beta=3, Beta0=1)
KTD-SARSA (BonusGreedy, Beta=1, Beta0=1)

Figure 6.4: Evaluation of policies learned using KTD-SARSA (Bonus Greedy)

-20

-10

 0

 10

 20

 30

 40

 50

 60

 70

 100 300 500 1000 3000 5000 10000

A
v
er

ag
e

d
is

co
u
n
te

d
 s

u
m

 o
f

re
w

ar
d
s

Number of training episodes

KTD-SARSA (BonusGreedy; Beta=5, Beta0=1)
KTD-SARSA (EpsilonGreedy; Epsilon=0.1)

SARSA (Epsilon=0.1, Alpha=0.2)

Figure 6.5: Evaluation of policies learned using KTD-SARSA

97

98

Part III

Inverse Reinforcement Learning

99

100

Chapter 7

User simulation using Inverse

Reinforcement Learning

In chapters 5 and 6, sample efficient algorithms for dialogue policy optimization

have been discussed. Given the effectiveness showcased by these algorithms, one

can now question the basic necessity for employing user simulations in order to

perform policy optimization1. Using algorithms such as fitted-Q and KTD-Q for

direct policy optimization from the available corpus and then improve (if nec-

essary) the resulting policies using online/on-policy or online/off-policy methods

such as KTD-SARSA and KTD-Q promises to be an encouraging direction of

research on dialogue optimization.

However, one key challenge with regard to policy assessment needs to be ad-

dressed. Almost all policy assessment methods proposed so-far in the dialogue

domain, either rely on employing user simulators [Eckert et al., 1997a; López-

Cózar et al., 2006] or use feedback from experts [Ai & Litman, 2008]. Undoubt-

edly, evaluating dialogue policies based on feedback from real users (experts or

prospective end-users) is the best way forward. However, it is an expensive and

time consuming process. Real user feedback on dialogue policies may also be

biased by the performance of components such as speech synthesis engine. Even

though these modules are inter-related, during evaluation real users are expected

to provide feedback only on individual modules. Considering these challenges

1Recall user simulators were first introduced to cope with the data requirement of conven-
tional RL algorithms.

101

and the associated cost factor, a relatively easier option for policy assessment is

to continue employing user simulators.

Thus, it is reasonable to mention that user simulators are still required for

(at least) evaluating dialogue policies. They continue to be a cost effective and

fast means for policy assessment. In the final part of this thesis, focus is shifted

towards building robust and adaptive user simulators. There exists several meth-

ods for user modelling as discussed in chapter 4. Almost all these methods aim at

building user simulators using some reference dialogue corpus. The primary aim

here is to ensure statistical consistency between the reference dialogue corpus and

the generated synthetic dialogues. Often the dialogue corpora used for this pur-

pose are collected from several real users by using Wizard-of-Oz set-up [Rieser,

2008] or using a hand-crafted dialogue manager.

There are several shortcomings with these existing methods for user simula-

tion (recall section 4.3). Firstly, using such a corpus to learn only one simulated

user behavior is indeed questionable. The dialogue corpus in itself is collected

from multiple users, thus can be expected to showcase multiple behaviors. Sum-

marizing all these behaviors into one (simulated and averaged) user behavior may

even result in a behavior which does not correlate with any of the real users or

user groups. Such a summarization of a multi-modal distribution by its mean

generally results in a very bad estimate. We already know that user simulators

have a direct impact on the quality of the dialogue policy [Schatzmann et al.,

2005]. Thus, when a user simulation with mean behavior is employed for dia-

logue optimization, resulting policies are adapted to some non-existing average

user. For this reason dialogue corpus should be used to learn multiple user be-

haviors1 rather than to simulate some generic or non-existent behavior.

Secondly, real users are known to behave in a goal oriented manner. Some

existing user simulation methods do focus on behavior simulation based on user

goal like information [Pietquin, 2005; Schatzmann et al., 2007a]. Often, the goal

of the user is learned from the data or using ontology of the domain, for example:

restaurant information, etc. This can be seen as an effort to produce goal-oriented

1For instance, methods such as vector quantization which provides ways to approximate
a distribution can be used to differentiate distributions which correspond to different user
behaviors.

102

user simulation but they fail to capture the user goal precisely. This is because,

firstly the user goal is not observable in the data and secondly user goal may

change over time [Mehta et al., 2010]. Real user behavior is not just goal oriented

but also adaptive to the other party involved in the communication. In other

words, while interacting with any dialogue manager (SDS) real users tend to: (i)

interact in their preferred way (i.e., use information rich speech act for faster

dialogue or prefer step-by-step system initiated dialogue), (ii) gain expertise in

the dialogue domain after several interactions and finally (iii) adapt their behavior

(so that they can accomplish their goal).

A novel approach for building user simulators based on Inverse Reinforcement

Learning (IRL) is presented in this chapter. This method treats the task of user

simulation as a sequential decision making problem and models it as an MDP.

Here, at each time-step, decision on user act selection is made based on the

dialogue context summarized in the form of the user state. The reward function

used to optimize the behavior of the user modelled as an MDP is learned from

the data annotated in a user perspective. It is important to note that we are

not learning the goal in terms of task completion but in terms of naturalness

of the interaction according to user preferences or expertise.. In other words,

here the focus is on finding a reward function which can reproduce a behavior

similar to the observed user behavior and not on determining the user goal at

their intention level and try to accomplish it in the shortest possible manner.

The following chapter is organized as follows: Equivalence of the task of user

simulation to a sequential decision making problem is discussed in Section 7.1.

Inverse Reinforcement Learning (IRL) and user simulation based on IRL are

elicitated in Section 7.2. Eventually Section 7.3 outlines the experimental set-up

and analyse the results. The IRL-based approach proposed here, has the ability

to learn multiple simulators when combined with a vector quantization scheme.

Each of these simulators reflect different user behaviors that can be observed in

the corpora. Users modelled as MDPs can also evolve or co-adapt to the dialogue

manager, similar to real users. Behavior specific simulation and co-adaptation

are discussed in detail in Chapters 8 and 9 respectively.

103

7.1 User simulation as a sequential decision mak-

ing problem

Real users while interacting with the dialogue system tend to have an internal goal

or objective function. For instance, an user may wish to find information about a

moderately priced Italian restaurant in the city centre. The primary aim of users

is to obtain this information at the end of the dialogue episode in a preferred

manner. At any dialogue turn, users decide what to say next based on the dialogue

history and their goal. This essentially involves a sequence of decisions. Thus,

in general the task of user simulation can be perceived as a sequential decision

making problem (symmetrical to that of the dialogue management task). Being a

sequential decision making problem, user simulation can be modelled as an MDP.

Let us term the MDP-based user simulation as User-MDP. Solving the User-MDP

will result in a policy which is expected to behave like real users. It may be useful

note that the dynamics of the User-MDP is induced by the dialogue manager with

which it interacts. The rest of this section explains how user simulators can be

modelled as MDPs and how these MDPs can be solved.

Most existing methods for user simulation focus on reproducing transitions

(between dialogue manager and user) or partial trajectories as observed in the

reference dialogue corpus. The primary motivation of the work presented here is

to reproduce consistent full trajectories. Treating user simulation as a sequential

decision making problem will implicitly help us in learning a (simulated) behav-

ior for User-MDP to accomplish the designated goal. The interesting fact here

is that apart from accomplishing the goal, the simulated user behavior will be

subjective to the dialogue manager in use (i.e., adapt to the other party involved

in communication just like real users). Since policies are used for behavior simu-

lation, multiple policies can now be employed to simulate different user behaviors

with relative ease.

7.1.1 Casting user simulation as an MDP

As discussed so-far (with regard to dialogue management), MDPs provide a for-

mulated way for solving sequential decision making problems. To begin with, the

104

user simulation task has to be casted as an MDP. We know that an MDP is de-

fined as a tuple {S,A, P, γ, R} (recall Section 3.1). This involves defining the state

space (S) and the action space (A) of the user simulation. Action space of the

User-MDP can be defined using the set of all possible user acts for the dialogue

problem under study. For instance, in case of restaurant information dialogue

system a partial list of user acts includes actions such as: provide-restaurant-

type, provide-location, provide-price-range. Let us assume that user behavior

optimization is performed in a model-free set-up and thus transition probabilities

(P) need not be defined. In order to penalize delayed rewards, γ can be set to

0.95.

With regard to the state space definition, things get little tricky. In case of

a system initiative dialogue strategy, user simulation is expected to respond to

the current dialogue act. Thus information regarding the current dialogue act

ought to be included in the state representation of the User-MDP. Apart from

this, the state representation should also include a summary of all information

exchanged since the beginning of the dialogue episode (i.e., dialogue history).

This can be achieved by using the Information State paradigm similar to that of

dialogue state representation.

For instance, the state representation of the User-MDP for the restaurant

information dialogue system will be of the form: {dact, φ1, φ2, φ3}, where dact

is the current dialogue act and φi can take values 0 (which means that the slot

information is yet to be furnished to the dialogue manager) and 1 (which means

that the slot information has already been furnished to the user). In this case,

φ1 corresponds to restaurant-type, φ2 corresponds to restaurant-location and φ3

corresponds to restaurant-price-range. Now that the state space, the action space

and the discount factor have all been defined, the only component of the User-

MDP yet to be defined is the reward function R.

7.1.2 User behavior imitation

Let us consider that an user is looking for a moderately priced French restaurant

in the northern part of the city. By observing the dialogue trajectory apart from

knowing the user preferences for the restaurant (primary goal), other information

105

such as expertness (secondary goal) of the user can also be observed. For instance,

expert users may wish to achieve the intended task in fewer number of dialogue

turns, whereas novice users may wish to conduct a longer and much informative

dialogue. The primary goal outlines what the user wants, and the secondary goal

outlines how the user intends to interact with the dialogue system (in order to

achieve the primary goal).

In order to perform policy optimization for User-MDP using reinforcement

learning, the reward function has to be defined beforehand. The reward function

of an MDP provides a compact representation of the task to be achieved by the

agent. While employing MDPs for user modelling this reward function should

not focus only on summarizing the dialogue task to be performed by the user,

rather it should also explain how users prefer to perform some task (elicit their

preferences, expertise etc). Often the exact reward function of the user is not

known. However, some implicit observations of the user goal can be obtained

from the dialogue corpus as explained using the above example.

Specifying the reward function for the User-MDP is a critical step in user pol-

icy estimation. We know that the reinforcement learning agents merely tend to

optimize the agent’s behavior according to the specified reward function. Given

this fact, one possible option to specify this function, is to make use of the system

designer’s ability based on his/her observations of users. This option is widely

practised in the dialogue domain with regard to reward function specification for

MDP-based dialogue managers. However, it is important to note that the task

studied is to simulate behavior as observed in dialogue corpus. Thus, guessing

the unknown reward function of the real user based on manual observation of

a dialogue corpus is not a practical option. Therefore, a more interesting op-

tion would involve automated schemes which can be used to retrieve the reward

function of the user from the dialogue corpus. One such automated scheme to

retrieve the reward function of the sequential decision making agent is the Inverse

Reinforcement Learning paradigm [Sutton & Barto, 1998]. In the meantime it

is important to note that different users may have different behaviors and hence

different utility functions. In chapter 8, means to identify and utilize different

utility functions are discussed in detail. For now, our focus is to retrieve a generic

reward function from dialogue corpus and utilize it to optimize User-MDP.

106

7.2 Inverse reinforcement learning

Given that the MDP framework is adopted, IRL [Ng & Russell, 2000] aims at

learning the reward optimized by an expert from a set of observed interactions.

The expert is assumed to act optimally with regard to their own reward function.

For the sake of user simulation, real users are treated as experts whose behavior

ought to be imitated. However, IRL in itself is an ill-posed problem and there

exist several possible reward functions that can match the expert behavior [Ng &

Russell, 2000]. For instance, any policy is optimal for the null reward function.

Thus the primary focus of most existing IRL algorithms is to retrieve some reward

function (not necessarily the true reward function) which can result in a behavior

similar to that of expert’s behavior.

7.2.1 IRL: problem elicitation

Let us revisit the definition of User-MDP outlined in Section 7.1.1. In this case,

the User-MDP was proposed to take the form {S,A, P, γ, R}. However, as dis-

cussed so far the utility function of the real user is unknown. Thus, the User-

MDP can now be defined by the tuple {S,A, P, γ}/R, where /R means that the

reward function is not available. Let us assume that, the reward function can be

(linearly) parametrized using a set of weights θi (where i = 1 ... k) and corre-

sponding set of features φi. Then, the reward function R of the User-MDP can

be expressed as: Rθ(s, a) = θT φ(s, a) =
∑k

i=1 θiφi(s, a). Recall from section 3.2

that the Q-function of an MDP can be defined as:

Qπ(s, a) = E[
∞
∑

i=0

γiR(si, ai)|s0 = s, a0 = a] (7.1)

Given that the reward function R is now parametrized in terms of θ and φ, the

Q-function of the User-MDP can now be defined as:

107

Qπ(s, a) = E[
∞
∑

i=0

γiθT φ(si, ai)|s0 = s, a0 = a];

= θT E[
∞
∑

t=0

γtφ(si, ai)|s0 = s, a0 = a];

Qπ(s, a) = θT µπ(si, ai). (7.2)

where µπ(s, a) is the feature expectation of the policy π. Feature expectation

in itself is a vector which contains the discounted measure of features according

to state-action visitation frequency (based on when the state is visited in the

trajectory). It provides a compact summary of the user behavior observed in

the form of trajectories (in dialogue corpus). Let us assume that m dialogue

trajectories are made available. Here Hi is the length of the ith dialogue episode

from the expert (i.e., real users who act based on some unknown policy π). Let

(si
t, a

i
t) be the state-action pairs visited at time-step t in the ith dialogue episode.

The feature expectation µπ(s0, a) can be estimated using Monte Carlo roll-out:

µπ(s0, a) =
1

m

m
∑

i=0

Hi
∑

t=0

γtφ(si
t, a

i
t). (7.3)

The primary focus of IRL is to retrieve some reward function (through its

parameters θ). This reward function can in turn be used to predict a simulated

user behavior (πpredict) being similar to the behavior of the expert (πexpert). How-

ever, to ensure the effectiveness of the retrieved reward function, some measure

of similarity or dissimilarity between πpredict and πexpert should be introduced. A

majority of IRL algorithms aim at observing minimal dissimilarity (J) between

behaviors:

Rθ∗ = argmin{J(πexpert, πpredict)}. (7.4)

Here J is some dissimilarity measure between the expert behavior and the pre-

dicted user behavior. Recall that from section 3.2, an effective way for comparing

two different policies is to compare them using the associated value functions.

Comparing two different user behaviors (policies) in terms of their feature ex-

108

pectations (see Eq (7.2)) is indeed comparing the behaviors based on their value

function. Assuming that ‖θ‖ ≤ 1 (which is not restrictive: rewards are bounded

and scale invariant), one has ‖Qπ‖ ≤ ‖µπ‖. As a consequence, an easy way of

computing the dissimilarity between the expert behavior πexpert and the predicted

user behavior πpredict is:

J(πexpert, πpredict) = ‖µexpert − µpredict‖
2 (7.5)

Notice that from Eq (7.1), a reward function that is non-zero only in some

states can lead to a Q-function that is non-zero in every state. A greedy policy

argmaxa Q(s, a) can be inferred for every state using the retrieved Q-function. In

simple terms, even if the reward function retrieved from the data is very sparse,

it is possible to learn a Q-function which has several non-zero elements. This

function can then be expected to have non-zero values for expected outcome of

many state-action pairs which are originally not seen in the training dialogue

corpus. Therefore, IRL-based user simulation can generalize to unseen situations

which is harder to obtain from traditional statistical simulation. Also it is useful

to note that the primary focus in case of user simulation is to imitate the expert

user behavior. Thus the rest of this section outlines an imitation learning algo-

rithm [Abbeel & Ng, 2004] which is uses IRL implicitly to retrieve some πpredict

that closely correlates with πexpert (as shown in Eq. 7.5). However, there exist a

class of IRL algorithms (for example: Boularias et al. [2011]) which are primarily

used to retrieve a reward function. A short overview on such an algorithm and

its potential use in the dialogue domain are presented in Chapter 9.

7.2.2 Imitation learning algorithm

Apprenticeship learning algorithm proposed in [Abbeel & Ng, 2004] focuses on

learning to imitate the behavior (of experts) observed in the sample trajectories.

This learning involves two steps in an iterative manner: (i) IRL and (ii) RL. To

begin with, IRL is employed to retrieve some underlying reward function from the

dialogue corpus. Here a reward function is estimated based on the comparison

between the feature expectations of the expert policy and predicted policy. This

function is then used by RL or ADP algorithms (such as LSPI or Fitted-Q) to

109

Figure 7.1: User simulation using imitation learning

estimate the optimal value function and thus an optimal policy for solving the

User-MDP. The resulting policy (since it is estimated using a reward function

retrieved from corpus) is expected to imitate or simulate the behavior of real

users observed in the dialogue corpus. Imitation learning scheme explained here

is pictorially presented in Figure 7.1.

In order to perform imitation learning at every iteration we need two sets

of data: (i) Expert data and (ii) Simulated data (see Figure 7.1). Expert data

with regard to user simulation will be a set of m dialogue episodes (trajectories)

from real users. Feature expectation of expert policy can be computed using the

dialogue trajectories as shown in Eq. 7.3. During initialization (i.e., in the first

iteration) no policy is available for User-MDP (in order to generate data). Thus,

some random policy is used for (simulated) data generation in iteration j = 1.

However, after the first iteration of the algorithm we will have some predicted

policy for User-MDP. Thus, for subsequent iterations (j+1), the policy predicted

in iteration (j) is used for dialogue generation1. Similar to expert data, simulated

data will be a set of (n) dialogues generated using the estimated policy for the

User-MDP. Feature expectation can be computed using this data. However, it is

important to note that simulated data and its feature expectation changes from

one iteration to another. Let us term πexpert the policy of the real users and

1Data is generated based on the interaction between the User-MDP (with the predicted
policy) and the SDS-MDP (dialogue manager with a hand-crafted policy)

110

πpredict the estimated policy of the User-MDP. Feature expectation µexpert and

µpredict can be computed as shown in Eq (7.3 using a Monte Carlo roll-out as

explained before). Pseudo code for user simulation using imitation learning is

presented in Algo 6.

Algorithm 6: User simulation using imitation learning

1. Estimate µexpert from dialogue corpus
2. Initiate Π with random policy πpredict = π0 and estimate µpredict

3. Compute t and θ such that

t = max
θ
{ min

πpredict∈Π

θT (µexpert − µpredict)} s.t. ‖θ‖2 ≤ 1

4. Terminate if(t ≤ ξ)
5. Optimize πpredict for reward R(s, a) = θT φ(s, a) with RL (LSPI).
6. Compute µpredict for πpredict; Π← πpredict

7. Goto to step 3.

Step 3 is an IRL step where based on the dissimilarity between the human and

simulated user behavior, a reward function is estimated. This algorithm treats

the task of retrieving a prospective reward function as a quadratic programming

problem. A reward function (which indeed is a hyperplane in space spanned by

the set of features φ) which minimizes the dissimilarity between the two behaviors

as well as the one that is maximum apart from the previous retrieved reward

functions is estimated in Step 3. In other words, this algorithm searches for the

reward function which maximizes the distance between the value of the expert

and any policy computed in prior iterations. Apart from estimating a prospective

reward function, feature distance t is also computed in Step 3. If t is within some

threshold (ξ) the algorithm is terminated.

The estimated reward function is then used to perform RL based policy opti-

mization in Step 5. This process results in finding a new policy for the User-MDP.

The resulting policy πj in iteration j is added to the set of policies Π. Synthetic

dialogues are generated using the retrieved policy in order to compute the feature

expectation (µpredictj). Steps 3 to 6 are performed iteratively until convergence

criteria is met. Upon convergence the imitation learning algorithm provides a set

of policies Π. Since these policies are estimated using the predicted reward func-

111

tion they can be expected to imitate the expert behavior. One other interesting

fact about these policies is that they can generalize (user behavior for situations

unseen in corpus) through the value function which is non-zero for several state-

action pairs. In order to simulate the real user (behavior) one can choose the best

policy from the set Π based on its distance with µexpert or choose to use multiple

policies with an associated policy selection probability (explained in Section 7.3).

It is important to note that this algorithm does not guarantee to retrieve

the true reward function of the real user (which in fact is not possible given

the problem is ill-posed). However, the retrieved policies can be expected to

imitate the expert precisely. Even though it may seem that using the state-action

visitation frequency in the form of feature expectation is comparable to existing

approaches for user simulation (such as the n-gram method), it is worth noting

that the feature expectation is not directly used. Also feature expectation take

a better account (than n-grams) of the dialogue trajectories since the features

are discounted (using γ) based on when they are visited in the trajectory. It is

used to predict a reward function which in turn is used to simulate the expert

behavior. RL based optimization using the predicted reward function means that

the simulated behavior is subjective to the environment the agent is interacting

with. For MDP-based user simulation the environment is expected to be a hand-

crafted dialogue manager, thus the resulting user behavior is not just aimed at

statistically correlating with the reference corpus but behaves like a real user

(by adapting its behavior given the observations). However, in order to emulate

exactly the same behavior of the expert, the algorithm discussed here expects

to have an environment as close as possible to the one that was originally used

for expert interaction. Most existing ML-based approaches for user simulation

focus on simulating the user at the transition level when the primary focus of this

method is to simulate user trajectories. Casting the task of user simulation as

an MDP is precisely meant to simulate real user like trajectories in an adaptive

manner.

112

7.3 Experimental results and analysis

In this section, a simple experiment is set-up to showcase the user simulation abil-

ity of the proposed IRL based method. Restaurant information dialogue system

considered so far is reused for this purpose. However, unlike previous chapters

(which focused on dialogue management), here the focus is on building a user

simulation for the restaurant information dialogue task. To recall, the aim of the

dialogue system is to give information about restaurants in a city based on specific

user preferences. In order to employ imitation learning algorithm for user sim-

ulation, feature expectations ought to be computed. This computation requires

dialogue trajectories from both experts (real users) and as well as predicted poli-

cies (Monte Carlo roll-out). Dialogue corpus generated using real users can be

used to compute µexpert. However, synthetic dialogues have to be generated using

a hand-crafted dialogue manager and a user simulator controlled by the estimated

policy πpredict, in order to compute µpredict. It may be useful to recollect that the

dynamics of the User-MDP is induced by the SDS-MDP. For this reason during

corpora generation (expert trajectories) as well as during imitation learning the

same SDS-MDP is employed.

The task of dialogue management for the restaurant information system is

casted as an MDP. Let us term this as SDS-MDP. The dialogue state of SDS-MDP

is composed of knowledge corresponding to 3 slots: location, cuisine and price-

range. Thus a list of possible system (dialogue) acts includes 14 actions: Ask-slot

(3 actions), Explicit-confirm (3 actions), Implicit-confirm and Ask-slot value (6

actions), Close-dialogue and Close-Session. Setting on the task to optimize the

SDS-MDP using the available dialogue corpus would be the ideal way to begin the

experiment. Since the focus here is on user simulation, a hand-crafted dialogue

strategy is employed (for SDS-MDP) to fill and confirm all the 3 slots one after

the other and eventually conclude the dialogue session.

As explained in section 7.1.1, the task of user simulation is also casted as

an MDP (User-MDP). The user state presents a compact summary of the dia-

logue course from the user simulation’s perspective. For the restaurant informa-

tion dialogue problem the state of User-MDP has the following representation:

{dact, φ1, φ2, φ3}, where the dact field takes values in {0, . . . , 12} representing the

113

Table 7.1: Hand-crafted user behavior

SystemAct UserActs (probability)
Greet Silent (0.7) AllSlots (0.3)

AskSlot OneSlot (0.95) AllSlots (0.05)
Explicit-Conf Confirm (1.0)
Implicit-Conf OneSlot (0.9) Negate (0.1)
CloseDialogue Silent (1.0)

corresponding system acts (action space) of SDS-MDP. Fields φ1, φ2, φ3 take val-

ues in {0, . . . , 2} with (0) the slot is empty (never provided by the user), with (1)

the slot has been provided by the user and with (2) the slot is confirmed. The ac-

tion space of User-MDP includes the following 10 user acts: remain silent (Silent),

provide-all-values (AllSlots), provide-one-value (OneSlot: 3 actions), confirm slot

value (Confirm: 3 actions), negate slot value (Negate: 3 actions) and hangup

(CloseDialogue). The state-action space of the User-MDP is spanned by a set of

3780 features (i.e., 10.(14.33)). The discount factor of the User-MDP is set to γ

= 0.95.

7.3.1 Learning to imitate

For the sake of simplicity, expert data is generated using a hand-crafted (expert)

user. The proposed user behavior for imitation is detailed in Table 7.1. A set of

1000 dialogue trajectories is generated using this user and the SDS-MDP. Fea-

ture expectation of the expert (πexpert) is computed using the generated dialogue

trajectories as shown in Eq. 7.3. Ideally speaking, during initialization π0 is not

available to generate data (see figure 7.1). Thus, a random (uniform) policy is

used to generate this data at j = 1. In subsequent iterations (j + 1), the es-

timated policy πpredictj is used for generating simulated data. Following which

feature expectation (µpredictj) can be computed from these trajectories.

At each iteration, the estimated reward function is used to optimize User-

MDP by employing LSPI [Lagoudakis & Parr, 2003]1. It is important to note

that LSPI is a batch algorithm which allows learning from a fixed data set. Upon

1Any sample efficient algorithm (as discussed in Part II) can be used for this purpose.
During the experiments an incremental version of LSPI [Geramifard et al., 2006] is used (which
does not require matrix inversion or parameter tuning).

114

convergence (here ξ is set to 0.1) the best policy π∗ for the User-MDP (chosen

from Π based on the least dissimilarity measure between πpredict and πexpert) will

simulate the expert behavior. An example dialogue episode between the hand-

crafted SDS-MDP and the User-MDP controlled by policy learned using imitation

learning is presented as follows. Here it can be observed that the User-MDP policy

===

User State: GreetUser 0 0 0

User Act: Say-Nothing

User State: Ask-Slot-2 0 0 0

User Act: Provide-Slot-2

User State: Implicit-Confirm-Slot-2-Ask-Slot-1 0 1 0

User Act: Provide-Slot-1

User State: Implicit-Confirm-Slot-1-Ask-Slot-3 1 2 0

User Act: Provide-Slot-3

User State: Confirm-Slot-3 2 2 1

User Act: Confirm-Slot-3

User State: CloseDia 2 2 2

User Act: HangUp %

===

An example dialogue between the hand-crafted SDS-MDP and IRL-User-MDP

7.3.2 Evaluation of user behavior

It may be useful to note that the behavior of the expert is stochastic (as shown

in Table 7.1). However, the behavior of IRL user simulation is deterministic since

only one of the policies estimated during training is used during evaluation. One

possibility to obtain a stochastic user behavior is to employ a policy mixer to

pick up a different policy before starting each dialogue episode. However, this

mixer has to be trained so that efficient policies are chosen more often. Let the

probability of choosing a policy πi
predict ∈ Π be λi. The values of λ1...n can be

115

heuristically determined using a Gibbs distribution:

λi = e(−di/τ)/
n
∑

j=1

e(−dj/τ). (7.6)

where di is the distance between µexpert and µi
predict estimated during training

and τ is a temperature parameter. During the evaluation, τ is set to 0.01 (ensures

that the policies closest to πexpert are given more preference). Let the behavior of

IRL user simulation which employs policy mixer be termed as MixIRL-UserSim.

In order to evaluate the performance of the IRL-based user simulation, 3000

dialogue trajectories are generated using SDS-MDP and User-MDP. Of these 3000

episodes: (i) 1000 trajectories are generated by employing User-MDP with the

(hand-crafted) expert policy, (ii) 1000 trajectories are generated using User-MDP

with a policy π. This policy π ∈ Π is hand picked based on its performance and

(iii) 1000 episodes are generated using User-MDP whose policy is selected by a

mixer. Figure 8.4 showcases the average choice of user actions per episode by

the expert user, IRL user and IRL user which employed policy mixer. It can be

observed that the expert user and the mixed IRL user behaviors correlate better

(since both of them are stochastic) when compared to deterministic IRL user

behavior (which follows one deterministic control policy). In this case, the IRL

user exhibits the most commonly or frequently observed expert user.

A similarity measure suggested in [Pietquin & Hastie, 2011; Schatzmann et al.,

2005] is also used to compare the behaviors of the three different user simulation.

This metric is used to measure the correlation between the trajectories of the

expert, πhc and the IRL user model, πirl:

Sim(πexpert, πpredict) =
1

n

n
∑

i=1

1

1 + rank(ai)

with n the number of user acts observed in the trajectory generated by the expert

user model. Ranking of user acts (selected by πexpert) based on their Q-value

(obtained using Q-function of the IRL used model) gives an indication to what

extent the user acts selected by the expert model correlates with the learned IRL

user model. Upon comparing the expert user model with the IRL user model,

116

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

silent provide-all provide-one negate confirm hangup

A
v
er

ag
e

U
se

rA
ct

 p
er

 E
p
is

o
d
e

Hand-Crafted-UserSim
IRL-UserSim

MixIRL-UserSim[τ=0.01]

Figure 7.2: Frequency of user actions per episode

the similarity measure is found to be 0.48 for IRL-UserSim and 0.46 for MixIRL-

UserSim which are close to the optimal value 0.5 (both rankings are identical,

and then rank(.) is 1 constantly). This confirms that the behavior of the IRL

user model correlates very well with the expert’s behavior.

7.3.3 IRL evaluation metric

The primary motivation behind IRL user simulation is to perceive the task of

user simulation as an MDP and optimize it using the predicted reward function.

Even though the predicted reward function is not guaranteed to be the true

reward function of the real user, it is one which results in a similar behavior.

Thus, it provides a compact representation of user’s intentions and preferences.

This function can in turn be used to quantify the performance of any given user

simulation. Let us call this new metric for evaluating user simulations as IRL

evaluation metric. Table 7.2 shows the average discounted reward obtained by

the user simulations based on the estimated reward function. It can be observed

117

Table 7.2: Hand-crafted vs IRL user behavior

UserSim AvgLength AvgReward
Hand-crafted 6.03 2.6

IRL 6.0 2.7
Mixed-IRL 5.5 2.9

that the rewards obtained by the IRL user simulations and the expert are indeed

similar. Also the average lengths of dialogue episodes, both in case of expert

and simulated user, are almost the same. These evaluation metrics ascertain

the hypothesis of similar behaviors (which originally was the intention of the

experiment).

118

119

Chapter 8

User behavior clustering

Corpora generation is an expensive and time consuming task in the dialogue

domain since it involves real users. These users come from different backgrounds

and are thus expected to showcase a wide range of user behaviors. For instance,

expert users may wish to achieve the intended task in fewer number of dialogue

turns, whereas novice users may need to conduct a longer and much informative

dialogue. Since dialogue corpora is generated from multiple users, our aim during

user modelling should be on identifying and learning all possible (different) user

behaviors rather than simulating one generic behavior.

First step in building behavior specific user simulators is to annotate the dia-

logue corpus from a user simulation perspective. Once this task is accomplished,

existence of different user behaviors in the dialogue corpus has to be ascertained.

Then efforts should be made to analyse how these behaviors differ from each

other. Most often dialogue trajectories collected from real users are annotated

with human intervention. Thus one possibility would be to identify and differen-

tiate user behaviors using manual analysis. This would not only increase the cost

of corpora generation and annotation process, but also is less effective and expo-

nentially (with increase in problem complexity) time consuming process. Thus

automated schemes should be employed to differentiate user behaviors observed

in the dialogue corpus.

The key challenge in employing such an automated scheme is the fact that di-

alogue episodes (trajectories) vary widely based on the dialogue context/domain

and the communicative goal. Thus directly comparing dialogues is not feasible.

120

This chapter presents an automatic scheme for clustering behaviors of dialogue

system users based on expected discounted cumulative feature vectors. The fol-

lowing chapter is organized as follows: to begin with, the proposed scheme for

clustering user behaviors is outlined in Section 8.1. Once similar behaviors are

identified, specific behaviors can then be imitated using IRL-based user simu-

lation (as shown in Sections 8.1.1 and 8.1.2). The process of building behavior

specific user simulators is discussed in Section 8.1.3. Eventually Section 8.2 out-

lines a set of experiments carried out to validate the effectiveness of the proposed

methods.

8.1 Quantizing and clustering trajectories

Identifying and simulating different user behaviors from dialogue corpus is a cru-

cial task in user modelling. For instance, it is important to simulate all observed

behaviors in order to estimate truly user adaptive dialogue strategies. However,

until now, dialogue corpus is annotated in dialogue management perspective1.

This provided little scope to observe different user behaviors (only user actions

can be used to observe user behaviors).

8.1.1 Modelling users with MDPs

In Chapter 7 the task of user simulation has been treated as a sequential decision

making problem and casted as an MDP. The primary motivation for this work

comes from the fact that a real user can be perceived as a decision maker optimiz-

ing some unknown reward function. For this purpose dialogue corpus is annotated

in a user simulation perspective (capturing user state transitions). Such an an-

notation scheme provides rich information to identify and analyse different user

behaviors. However, dialogue trajectories can hardly be used directly, notably

because they tend to vary widely in length (i.e., number of dialogue turns). Let

us revisit the restaurant information dialogue system. User simulation of this

SDS can be casted as an MDP as discussed in Section 7.1. Once the User-MDP

1Annotation of trajectories primarily intends to capture all dialogue state transitions.

121

is formulated, a policy for imitating real user behavior observed in the dialogue

corpus can be learned.

8.1.2 Discounted cumulative feature vectors

The immediate effect of treating user simulation as an MDP results in perceiving

each user as a policy for User-MDP. The initial state s0 is always the same: there

is no system act and all slots are empty. Let us assume that the dialogue corpus

is a contribution of K different users or groups of users, and therefore K different

policies πk. Recall that the IRL-based user simulation summarizes user behavior

in the form of feature expectations (see Eq. 7.3). This in fact is the (averaged)

sum of the so-called expected discounted cumulative feature vectors (explained as

follows). Let us assume that the dialogue corpus contains N dialogues, each one

of length Hn. For each of these trajectories, we can compute the corresponding

discounted cumulative feature vectors as follows:

δn =
Hn
∑

t=0

γtφ(st). (8.1)

Most interesting fact about these vectors is that they provide a compact sum-

mary of dialogue episodes. Until recently [Chandramohan et al., 2011a] such a

compact representation was not introduced to the dialogue domain. Since these

vectors are not subjective to dialogue length they can now be used to compare

trajectories. To begin with, this measure is used for clustering real users observed

in the dialogue corpus based on their behaviors.

Each of these δn vectors succinctly represents a dialogue trajectory. It provides

an unbiased estimate of µπk
for some users (represented by the policy πk). While

clustering, it is assumed that the intra-variability of one user behavior (due to

randomness of transitions) is lower than the inter-variability between user groups.

Being a vector in itself, δn exists in some high dimensional space Rp, where p is the

number of features (recall Section 7.2). Thus, any vector quantization algorithm

can be employed to cluster δn in Rp. Even simple clustering algorithms such as

the K-means algorithm can be employed for clustering the discounted cumulative

feature vectors. Such schemes will result in clustering user behaviors observed in

122

Figure 8.1: Behavior specific user simulations

the dialogue corpus.

8.1.3 Behavior specific user simulation

The task of building behavior specific (multiple) user simulators can be achieved

by combing the clustering scheme with IRL-based user simulation method (or us-

ing other methods), as shown in Figure 8.1. Often, data-centric user simulation

methods use the dialogue corpus as it is without any pre-processing. This is one

of the primary reasons for learning a generic behavior for simulated users. The

clustering method proposed in this chapter can be used to identify and differen-

tiate user behaviors. Thus it provides an opportunity to precisely simulate these

different behaviors.

In the pre-processing stage, user behaviors observed in the dialogue corpus are

automatically clustered based on their δn. The basic assumption here is that each

123

of the resulting clusters have unique behavior. In order to build behavior spe-

cific simulators, feature expectation is computed only using dialogue trajectories

included in one of the resulting clusters. Performing IRL-based user simulation

using such a feature expectation will result in imitating the behavior observed in

the individual clusters. Upon repeating the process for each cluster, it is theoret-

ically possible to build multiple user simulators with different behaviors.

8.2 Experimental results and analysis

In this section, a series of simple experiments is performed to validate the ef-

fectiveness of the proposed methods for user clustering and behavior specific

user simulation. To begin with, clustering is performed on dialogue trajecto-

ries obtained for the 3-slot restaurant information problem. Here, two different

hand-crafted users are employed for data generation. This is done for the sake

of simplicity and also to ensure the presence of (at least) two different user be-

haviors in dialogue corpus. Following this, clustering is performed on dialogue

trajectories (generated by real users) for the 12-slot Cambridge town information

dialogue system [Keizer et al., 2010]. The experiment with 12 slot dialogue sys-

tems is proposed in order to determine the effectiveness of the proposed method

on problems for which the number of underlying clusters is not known before-

hand. Finally behavior specific user simulators are built for the 3-slot restaurant

information dialogue problem.

8.2.1 Behavior clustering for 3-slot dialogue problem

The primary goal of this experiment is to explore the possibility of user clustering

based on discounted cumulative feature vectors. The state representation of SDS-

MDP and User-MDP discussed in section 7.3 are reused for the experiments.

Two simple hand-crafted user policies for the User-MDP are specified as shown

in Table 8.1. User behavior 1 outlines a proactive user who prefers to furnish all

the required information as soon as the system greets. Whereas user behavior

2 outlines a novice user who prefers to furnish only the information requested

by the system. These user behaviors are indeed chosen to be simple so that the

124

SystemAct UserActs 1 (probab.) UserActs 2 (probab.)
Greet Silent (0.1) AllSlots (0.9) Silent (0.9) AllSlots (0.1)

AskSlot OneSlot (0.95) AllSlots (0.05) OneSlot (0.95) AllSlots (0.05)
Explicit-Conf Confirm (1.0) Confirm (1.0)
Implicit-Conf OneSlot (0.9) Negate (0.1) OneSlot (0.9) Negate (0.1)
CloseDialogue Silent (1.0) Silent (1.0)

Table 8.1: Hand-crafted users behaviors

clustering results can be visually interpreted. The SDS-MDP is controlled by a

hand-crafted policy that can respond to both user behaviors.

A total of 3000 dialogue trajectories are generated by randomly choosing

one of the two user behaviors. The resulting dialogue corpus consists of 1544

trajectories from the expert user model and 1456 trajectories from the novice

user model. Discounted cumulative feature vectors corresponding to each of these

3000 trajectories are computed. Following which behavior clustering is performed

using K-means method with K set to 2 (since it is known that only two user

behaviors are simulated). Euclidean distance measure is used as part of the K

means method.

Upon clustering it is observed that the two clusters have 1549 and 1451 ele-

ments. Average user action selection per episode is used as the measure to com-

pare the two hand-crafted behaviors with the behaviors observed in the clusters.

This measure is computed from the trajectories in the dialogue corpus, cluster 1

and cluster 2. Figure 8.4 presents a histogram of the action selection frequency.

It can be observed that the expert user behavior correlates with cluster 1 and the

novice user behavior correlates with cluster 2. Since the clustered user behaviors

correlate with the respective hand-crafted user behaviors, clustering user behav-

ior based on discounted cumulative feature vector can be deemed to be a viable

option.

8.2.2 Behavior clustering for 12-slot dialogue problem

For the second experiment, a 12-slot restaurant information dialogue system is

considered (same as in [Keizer et al., 2010]). The data used for clustering is gen-

125

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

silent provide-all provide-one negate confirm hangup

A
v
er

ag
e

U
se

rA
ct

 p
er

 E
p
is

o
d
e

HC-User-1
HC-User-2

Cluster-1
Cluster-2

Figure 8.2: Frequency of user actions per episode for the 3-slot problem

erated from interaction between a hand-crafted dialogue policy and human users.

This problem is a large real world dialogue problem similar to the 3-slot problem,

but also includes several other user preferences such as type of drinks served, type

of music played, number of stars, etc. This experiment primarily aims at deter-

mining whether the proposed clustering scheme based on feature expectations:

(i) will work on data collected from real users, (ii) whether the method scales for

large state space dialogue problems and (iii) whether the resulting clusters are

indeed distinct from each other.

User simulation is again modelled as an MDP. The state of the User-MDP is:

{System-Act} {Preference} {Goal} {Annoyance} {Correctness} {ChangeIntention},

where system-act can takes values between 0 and 10, preference and goal fields

can take values from 0 to 2 (0 means no information is furnished or obtained, 1

meaning partial exchange and 2 means all constraints have been informed or all

requested information have been obtained from the system), while annoyance is

a boolean value which indicates whether the user is annoyed or not, correctness

field indicates whether the information presented by the system is what user ac-

126

tually conveyed and changeIntention field indicates whether the system can find

results for the user constraints or not.

The dialogue corpus consists of 480 dialogue trajectories (weakly annotated

from user perspective) generated from interactions between human users and a

hand-crafted dialogue manager. The associated discounted cumulative feature

vectors of all these trajectories are computed. Assuming that these vectors are

linearly separable, the K-means method is applied for clustering. The primary

challenge is to determine the number of different types of user behaviors. This

indeed determines the number of clusters (K). However, this information is not

known unlike earlier experiment. A possible option for determining the number

of clusters is to observe the average cumulative distortion with varying number

of clusters. In addition to using average distortion, a measure of intra-cluster

cosine similarity (i.e., normalized dot product between two discounted cumulative

feature vectors) is also used to decide the number of clusters: cos(A, B) = A.B
‖A‖.‖B‖

.

Figure 8.3 presents a comparison of the average distortion and cosine similarity

among clusters for several values of K. It can be observed that for K > 4, the

distortion as well as the intra-cluster cohesion do not improve significantly. Thus,

for experimental purpose K is set to 4. As it can be observed from the User-

MDP state, the data used for clustering is symbolic, hence K-means clustering is

performed using the cosine similarity measure rather than the Euclidean distance.

The 480 trajectories are grouped as 4 clusters each with 35, 124, 114 and 207

elements.

The primary problem while dealing with human user data, unlike the simple

simulated user behavior (like the 3-slot problem), is that the behaviors grouped

under various clusters may not be easily differentiated. Thus the use of Kullback-

Leibler (KL) divergence measure [Kullback & Leibler, 1951] to ensure the cor-

rectness of clustering is proposed. The KL divergence, which measures the dis-

similarity between two probability distributions P and Q can be defined as:

DKL(P ||Q) =
M
∑

i=1

pilog(
pi

qi

) (8.2)

where pi (resp. qi) is the frequency of dialogue act ai in the histogram of distri-

bution P (resp. Q). KL divergence close to 0 corresponds to identical behavior

127

 1

 2

 3

 4

 5

 6

 7

 8

 1 2 3 4 5 6 7 8

A
v
g
.

d
is

to
rt

io
n
 a

n
d
 A

v
g
.

C
o
si

n
e

S
im

u
la

ri
ty

Number of clusters

Avg. distortion Vs No. of clusters
Avg. cosine simularity Vs No. of clusters

Figure 8.3: Cumulative distortion with varying number of clusters

Behavior comparison KL-Divergence
Cluster-1 vs Cluster-2 2.52
Cluster-1 vs Cluster-3 2.51
Cluster-1 vs Cluster-4 1.99

Table 8.2: Inter-cluster Kullback-Leibler divergence

and larger non zero values correspond to significant divergence from each other.

Having this in mind, if the behavior of the users in two different clusters are truly

distinct then there should be a noticeable divergence between the frequency of

user acts selection per episode. KL divergence scores are computed using user

act selection frequency across all clusters. As it can be observed from Table 8.2

clusters formed by K-means method and their respective user behaviors have sig-

nificant KL divergence when compared among themselves. This ascertains that

every cluster indeed represents a specific behavior (possible group of users with

similar behavior) which is different from other clusters.

It is also important to establish that there is a good cohesion among the

elements within a cluster, i.e., to show that the intra-cluster cohesion is non neg-

128

Table 8.3: Intra-cluster cosine similarity

Behavior-Type Cosine similarity
Cluster-1 0.68
Cluster-2 0.60
Cluster-3 0.55
Cluster-4 0.70

ligible. In order to measure the intra-cluster cohesion, cosine similarity (between

the centroid of the cluster and the elements within the cluster) is computed. The

value for cosine similarity while comparing 2 elements can range form -1 (mean-

ing totally opposite elements), 0 (meaning cosine independence of elements), 1

(meaning cosine similarity of elements). Cosine similarity is computed for each

cluster by measuring the similarity between the cluster’s centroid and its own

elements. Without clustering, the cosine similarity of the complete set of data

to the average vector is 0.4. It can be observed from Table 8.3 that the cosine

similarity of all the clusters have values closer to 1. This ascertains similarity

between trajectories in each of the 4 clusters.

8.2.3 Behavior specific user simulation results

Recall that the resulting clusters for the 3-slot problem have 1549 (Cluster-1) and

1451 (Cluster-2) elements respectively. Normalized sum of δu, where u = 1...1549

from Cluster-1 yields the feature expectation of the expert user model. Likewise

sum of δv, where v = 1...1451 from Cluster-2 yields the feature expectation of the

novice user model. When these feature expectations are fed to the IRL-based user

simulation method (one after the other), two different policies for User-MDP can

be estimated. Let us term these policies and the resulting behaviors as IRL-User-1

and IRL-User-2. Using these two IRL user models and the hand-crafted SDS-

MDP, a set of 2000 dialogue episodes were generated (1000 with each IRL user).

User act selection frequency of these IRL user simulators along with the hand-

crafted and clustered behaviors are presented in Figure 8.4. From the histogram

a strong correlation between the behaviors of the expert user model, Cluster-1

129

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

silent provide-all provide-one negate confirm hangup

A
v
er

ag
e

U
se

rA
ct

 p
er

 E
p
is

o
d
e

HandCrafted-User-1
HandCrafted-User-2

Cluster-1
Cluster-2

IRL-User-1
IRL-User-2

Figure 8.4: Behavior specific user simulation

and IRL-User-1 can be observed. Same is the case with regard to the novice

user model, Cluster-2 and IRL-User-2. These results indicate the fact that: by

combining automatic clustering schemes with IRL-based user simulation methods

it is now possible to simulate specific behaviors observed in the dialogue corpus.

The primary advantage here is that now all different simulated user behaviors

can be used for dialogue policy optimization as well as for policy assessment.

These user simulators can be either employed separately or collectively (mixture

of behaviors). The impact of such a scheme on the resulting dialogue policies

ought to be studied in the near future. Most certainly multiple user simulators

will yield multiple dialogue policies which are better adapted to the specific group

of users. The key challenge in such a scenario would be to determine how to switch

between policies while in the process of interacting with a user? Even if we find a

way to switch between policies, its effectiveness compared to one adaptive policy

ought to be ascertained in the near future.

130

131

Chapter 9

Co-adaptation in dialogue

systems

In case of human-human interaction, the parties involved in conversation tend to

evolve mutually over a period of time. Most often, when the conversation begins,

the parties asses each others ability to understand and then continue to interact

based on their initial assessment. This aspect of human-human communication

can be termed as dialogue-initiation. However, once the dialogue progresses hu-

mans tend to evolve mutually (based on the history of conversation). Let this

stage of human-human communication be termed as dialogue-evolution. An ex-

ample for such an evolution leads to the use of an acronym MDP (during sub-

sequent references) after defining the Markov Decision Process in oral or written

communication. It may be useful to note that the dialogue-evolution occurs at

several levels (such as: the amount of information exchanged, terminologies used

during the conversation, etc.). Naturalness of human-human dialogues can be at-

tributed to several unique abilities of humans (such as: mutual evolution during

the period of interaction).

Most existing approaches for dialogue management optimization [Rieser &

Lemon, 2011] focuses on retrieving some optimal (with respect to the reward func-

tion) and user adaptive (with respect to user simulation) dialogue policy [Eckert

et al., 1997b]. This can be perceived as the dialogue-initiation stage in man-

machine interaction. This aspect of man-machine interaction has been stud-

132

ied in detail and is now state of the art. However, very less attention has

been paid to dialogue-evolution in man-machine interaction. One of the most

relevant work done towards dialogue-evolution is to perform on-line policy op-

timization [Daubigney et al., 2011]. There are two primary drawbacks: (i)

when the dialogue manager tries to evolve or optimize its behavior, human users

also tend to adapt to the dialogue manager (for example, instead of speaking

normally, users provide only information requested by the dialogue manager).

These contradicting efforts when applied simultaneously may often result in sub-

optimal policies and thus blocking the possibility for dialogue-evolution, (ii) even

if dialogue-evolution occurs it may bias the dialogue management to act over

confidently [Daubigney et al., 2011; Gasic et al., 2011] and thereby resulting in

inferior policies. Changes made directly to the policy used for dialogue manage-

ment cannot always be guaranteed to improve the performance. In the worst

case scenario this may induce very bad user experience. Also, in case of online

optimization, the speed of adaptation is relatively slow considering the fact that

users (and hence behaviors) encountered are random in nature.

In order to cope with this problem, a novel approach for evolution in spoken

dialogue systems is proposed in this chapter. Here, the dialogue manager and

the user simulation modelled as MDPs are optimized iteratively over a period

of time. Most important advantage of the proposed approach is that: it is now

possible to learn optimal policies which are originally not seen in the dialogue

corpus. Evolution of the environment helps the RL agent (user/dialogue man-

ager) to estimate better policies during subsequent optimization. This chapter

is organized as follows: Some cognitive aspects of human-human communication

are discussed in section 9.1. The proposed scheme for co-adaptation in dialogue

systems is discussed in section 9.2. Finally section 9.3 describes the experimen-

tal set-up and analyse the consequence of co-adaptation for a 2-slot restaurant

information SDS.

133

9.1 Cognitive aspects of interpersonal interac-

tion

As suggested by the theory of uncertainty reduction [Baxter & Braithwaite, 2008;

Berger, 1986], we humans tend to have difficulties with regard to uncertainty

(irrespective of its form) and so we try reduce it by seeking more information.

During this process, we constantly evolve over a period of time. For instance,

interpersonal relationship [Altman & Taylor, 1973] involves various stages such

as orientation (introductory stage), exploratory affective stage (explorative stage),

affective exchange (acquaintance stage) and stable stage. At each of these stages

people involved try to seek information about each other so that they can reduce

uncertainty about each other.

The uncertainty theory also holds good in terms of human-human communi-

cation. Here, apart from trying to reduce uncertainty, we also try to follow a set

of rules during communication. These rules ascertain that the parties involved

in communication interpret the message in an identical manner (which is critical

for understanding each other). However, if some previously unknown informa-

tion is encountered during communication, the associated uncertainty ought to

be reduced. The most obvious way this can be achieved is to seek information

about the same. However, once the knowledge is updated the associated uncer-

tainty reduces and thus the communication evolve over a period of time. It can

be observed from all these cases that, given an opportunity, humans can learn

and evolve over time. Ideally speaking, in order to make man-machine dialogues

as natural as possible, machines should have the ability to evolve. This evolution

can occur at the word level, intention level or task level [Glass & Seneff, 2003]. For

instance, a dialogue system’s ability to learn new names was showcased in [Chung

et al., 2003].

9.2 Co-adaptation process elicitation

Co-adaptation in dialogue systems can provide an opportunity for the dialogue

manager and user simulation to evolve mutually. To begin with, the task of

134

dialogue management (SDS-MDP) and user simulation (User-MDP) are casted

as MDPs. In order to perform policy optimization, reward functions for SDS-

MDP and User-MDP have to be defined in advance. As a pre-processing step for

co-adaptation, these reward functions can be learned from the dialogue corpus

using IRL. It may be useful to recall that in Chapter 7, an algorithm to perform

imitation learning by means of IRL was outlined and then employed for the

purpose of user simulation. At each iteration, this algorithm requires Monte Carlo

roll-out of the estimated policy πpredict in order to compute µπ(s0, a). It focuses

on estimating a set of policies policy πj
predict ∈ Π but falls short of retrieving the

true reward function. In order to avoid the necessity of Monte Carlo roll-out,

in this chapter we focus on using the relative entropy IRL algorithm [Boularias

et al., 2011] for experimental purposes. The later algorithm focuses on minimizing

the relative entropy between the empirical distribution of the trajectories from a

uniform policy and the empirical distribution of trajectories from a expert policy.

This minimization is carried out by means of (importance) sample-based gradient.

Unlike dialogue optimization shown in Figure 9.1, co-adaptation is an iterative

procedure where policy optimization of User-MDP and SDS-MDP is performed

repeatedly. As shown in Figure 9.2, in Step 1: policy optimization for User-MDP

is performed using a hand-crafted dialogue manager and the available dialogue

corpus. Using the policy learned in Step 1; dialogue optimization for SDS-MDP is

performed in the next step. Following which policy optimization for User-MDP is

performed using the optimal dialogue policy retrieved in the previous step. Step

N and Step N+1 are repeated iteratively until convergence (in other words until

the resulting policies cease to evolve).

Even though the resulting policies are deterministic, some amount of stochas-

ticity can be introduced using Gibbs sampling based on state-action values Q(s,a).

Let the probability of choosing a dialogue act or user act ai ∈ A be λi such that
∑n

i=1 λi = 1. The values of λ1...n can be heuristically determined using a Gibbs

distribution as discussed in Eq. 7.6. RL based optimization is subjective to that

of the reward function and the environment the agent is interacting with. In case

of co-adaptation, even though the reward function remains the same, employing

Gibbs sampling scheme results in changes to the dynamics of the environment.

This very change in the dynamics of the dialogue manager or the user simulation

135

Figure 9.1: Dialogue optimization using RL and user simulation

Figure 9.2: Co-adaptation framework for dialogue evolution

136

will yield different user or dialogue policies respectively.

It may be useful to note that, during the process of co-adaptation, the rewards

obtained by the agents are back-propagated and thus results in some degree

of generalization of dialogue manager as well as user simulation modules. The

immediate effect of this would be an opportunity for the dialogue manager and

user simulation to cope with unseen situations (which are not observed in the

dialogue corpus) provided a good modelization. This in turn will help the dialogue

manager to retrieve the real optimal policy from its own capacity. Improvement

in dialogue management will result in adaptation of the user simulation. In

this case, optimization of User-MDP will yield a different policy than the one

observed in the dialogue corpus. This new policy will be adapted to the updated

behavior of the dialogue manager and other factors such as ASR errors, etc. As

a result of co-adaptation, policies which originally may not be present in the

corpus1 can be learned for both the SDS-MDP and the User-MDP. The state

of equilibrium, however is defined by the reward function (given suitable reward

functions machines will certainly evolve like humans as shown here).

9.3 Experimental results and analysis

This section outlines a simple experiment to exhibit the outcome of co-adaptation

in spoken dialogue systems. Our primary motivation is to show how co-adaptation

can be performed in case of man-machine interfaces and to analyse the possibility

of dialogue-evolution. User-MDP policy optimization is performed in two steps:

(i) perform IRL on the available dialogue corpus to retrieve the reward function

and (ii) use the retrieved reward function obtained from the data to perform co-

adaptation. However, dialogue optimization (for SDS-MDP) is performed using

a hand-crafted reward function.

9.3.1 2-Slot restaurant information SDS

The dialogue problem studied for experimental purposes is the restaurant infor-

mation system (only with two slots). The dialogue manager has to seek and

1Some initial corpus available for user and dialogue manager policy optimization.

137

obtain user preferences for price-range and location of restaurants in the city.

The state of the SDS-MDP (dialogue manager modelled as an MDP) involves 3

dimensions: (i) 0-2 (corresponding to the price-range; 0 - slot is not filled, 1 - slot

is filled but yet to be confirmed, 2 - slot is filled and confirmed) (ii) 0-2 (corre-

sponding to the location) and (iii) 0-1 (indicates whether the user has performed

negation: indirect measure of channel noise). Dialogue acts include: ask-slot1,

ask-slot2, ask-all-slots, confirm1, confirm2, confirm-both, close-dialogue, as well

as 2 implicit confirmation acts. The state of the User-MDP involves 4 dimen-

sions: (i) 0-9 (represents the action performed by the dialogue manager), (ii) 0-2

(corresponding to the price-range), (iii) 0-2 (corresponding to the location) and

(iii) 0-1 (indicates whether speech recognition errors have occurred)1. List of user

acts includes: provide-slot1, provide-slot2, provide-all-slots, confirm1, confirm2,

confirm-all-slots, negate, remain-silent and hangUp. The same reward function

was used for both SDS-MDP and User-MDP (positive reward of 20 for each cor-

rectly filled slot and bonus reward of 60 for successful task completion) and the

discount factor is set to 0.95.

9.3.2 Co-adaptation results and analysis

To begin with, hand-crafted (HC) policies for both SDS-MDP and User-MDP

are defined (these policies attempt to ask/provide and confirm/ascertain one slot

after the other) so as to generate data from which a user simulation will be

learnt (simulating the acquisition of a corpus). During the experiments dialogue

manager and user policy optimization are carried out using Least Squares Policy

Iteration (LSPI) [Lagoudakis & Parr, 2003], considering its sample efficiency (re-

call the relative ease of employing incremental LSPI [Geramifard et al., 2006]).

Co-adaptation is performed as explained in Figure 9.2. First user optimization

is performed using the SDS-MDP with hand-crafted policy. The resulting user

policy was then used to perform dialogue management optimization. During the

initial stages of the experiment, the channel noise is set to zero. However, the

level of noise is varied after initial experiments. At the end of each step a dia-

1This field is set by the dialogue management engine based on a error probability introduced
later in this section

138

logue/user policy is generated. The following are a set of dialogue episodes are

generated from these retrieved policies:

==

Step 1: HC-DialogueManager vs Train-RL-User

==

UserState: AskSlot_1 0 0 0

UserAct: provide_slot_1

UserState: ExpConfirm_1 1 0 0

UserAct: confirm_slot_1

UserState: AskSlot_2 2 0 0

UserAct: provide_slot_2

UserState: ExpConfirm_2 2 1 0

UserAct: confirm_slot_2

UserState: CloseDia 2 2 0

UserAct: hangUp

==

Step 2: Train-RL-DialogueManager vs RL-User

==

DiaState: 0 0 0 DiaAct: AskSlot_1

UserResponse: provide_slot_1

DiaState: 1 0 0 DiaAct: ExpConfirm_1

UserResponse: confirm_slot_1

DiaState: 2 0 0 DiaAct: AskSlot_2

UserResponse: provide_slot_2

DiaState: 2 1 0 DiaAct: ExpConfirm_2

UserResponse: confirm_slot_2

DiaState: 2 2 0 DiaAct: CloseDia

UserResponse: hangUp

==

Step 3: RL-DialogueManager vs Train-RL-User

==

UserState: AskSlot_1 0 0 0

UserAct: provide_slot_1

139

UserState: ExpConfirm_1 1 0 0

UserAct: confirm_slot_1

UserState: AskSlot_2 2 0 0

UserAct: provide_slot_2

UserState: ExpConfirm_2 2 1 0

UserAct: confirm_slot_2

UserState: CloseDia 2 2 0

UserAct: hangUp %

===

Step 4: Train-RL-DialogueManager vs RL-User

===

DiaState: 0 0 0 DiaAct: AskAllSlots

UserResponse: provide_all_slots

DiaState: 1 1 0 DiaAct: ExpConfirmAll

UserResponse: confirm_all_slots

DiaState: 2 2 0 DiaAct: CloseDia

UserResponse: hangUp

===

Co-adaptation in dialogue systems (0% ASR error rate)

The set of dialogues presented here, showcases the possibility of co-adaptation

in dialogue systems. Dialogue episodes generated using policies learned from Step

3 and Step 4 clearly indicate that co-adaptation of dialogue management engine

and user simulation has indeed happened (observe change in behavior of dialogue

manager and user simulation when there is no noise). More interesting aspect of

this result is the fact that such optimal policies can be learned even though they

were not observed in the dialogue corpus (recall that the hand-crafted policies

used in Step 1 only used simple dialogue acts and user acts). This result can

be attributed towards the generalization ability of dialogue manager and user

simulation when casted as interacting MDPs. It may be useful to note that

Gibbs sampling is not introduced in Step 2, since the focus was to learn a basic

dialogue policy (similar to the hand-crafted dialogue manager used in Step 1).

Even though Gibbs sampling of dialogue policy (from Step 2) was employed in

Step 3, the dialogue episode may look similar to that of Step 1. In this case,

140

Figure 9.3: Change in dialogue trajectory due to (error-free) co-adaptation

the evolution of the user simulation is invisible because the episode presented

here is pure greedy interaction between the dialogue policy from Step 2 and user

policy from Step 3. However, this invisible evolution of user simulation in Step 3

eventually contributes to the evolution of the dialogue policy in Step 4. Changes

in transitions due to co-adaptation of the dialogue management engine is shown

in Figure 9.3.

In case of dialogue management, the ability of optimization schemes and re-

sulting policies to cope with ASR channel noise is an important aspect. Therefore,

as a next step artificial noise (error model) is introduced, in order to study its

effects on the co-adaptation framework. Ideally speaking, if there is some amount

of channel noise, performing complex user action (where more information is ex-

changed) will exponentially increase the possibility for a speech recognition error.

Having this in mind, 40% error is introduced when the user simulation performs a

complex user action (i.e. provide-all-slots). The error field in the user state is set

to 1 by the dialogue manager when a confirmation dialogue act is performed. The

following are a set of dialogue episodes generated from these retrieved policies:

==

Step 1: HC-DialogueManager vs Train-RL-User

==

UserState: AskSlot_1 0 0 0

UserAct: provide_slot_1

UserState: ExpConfirm_1 1 0 0

UserAct: confirm_slot_1

141

UserState: AskSlot_2 2 0 0

UserAct: provide_slot_2

UserState: ExpConfirm_2 2 1 0

UserAct: confirm_slot_2

UserState: CloseDia 2 2 0

UserAct: hangUp

==

Step 2: Train-RL-DialogueManager vs RL-User

==

DiaState: 0 0 0 DiaAct: AskSlot_1

UserResponse: provide_slot_1

DiaState: 1 0 0 DiaAct: ExpConfirm_1

UserResponse: confirm_slot_1

DiaState: 2 0 0 DiaAct: AskSlot_2

UserResponse: provide_slot_2

DiaState: 2 1 0 DiaAct: ExpConfirm_2

UserResponse: confirm_slot_2

DiaState: 2 2 0 DiaAct: CloseDia

UserResponse: hangUp

==

Step 3: RL-DialogueManager vs Train-RL-User

==

UserState: AskSlot_1 0 0 0

UserAct: provide_slot_1

UserState: ExpConfirm_1 1 0 0

UserAct: confirm_slot_1

UserState: AskSlot_2 2 0 0

UserAct: provide_slot_2

UserState: ExpConfirm_2 2 1 0

UserAct: confirm_slot_2

UserState: CloseDia 2 2 0

UserAct: hangUp %

===

142

Step 4: Train-RL-DialogueManager vs RL-User

===

DiaState: 0 0 0 DiaAct: AskSlot_1

UserResponse: provide_slot_1

DiaState: 1 0 0 DiaAct: ExpConfirm_1

UserResponse: confirm_slot_1

DiaState: 2 0 0 DiaAct: AskSlot_2

UserResponse: provide_slot_2

DiaState: 2 1 0 DiaAct: ExpConfirm_2

UserResponse: confirm_slot_2

DiaState: 2 2 0 DiaAct: CloseDia

UserResponse: hangUp

===

Co-adaptation in dialogue systems (40% ASR error rate)

It can be observed from the above set of dialogues that the dialogue policy

and the user policy remain the same even after co-adaptation. It may be useful

to note that due to the presence of ASR channel noise, using complex user acts

will result in frequent negations, thus both the SDS-MDP and the User-MDP

settles with a policy which chooses to perform simple user/dialogue acts. Given

the same scenario real users will tend to act in a similar fashion and thus evolve

to showcase complex behaviors if the conditions are favourable (as shown in the

case of 0% ASR error rate); if not stick to safe means of communication. These

experimental results collectively show that the co-adaptation framework proposed

here is indeed an effective means for facilitating dialogue evolution.

143

144

Chapter 10

Conclusion

As mentioned in Chapter 1, the primary focus of this manuscript is twofold:

(i) sample efficient dialogue optimization and (ii) IRL-based user simulation. A

majority of RL algorithms (recall Section 2.3.2) used to perform dialogue opti-

mization makes inefficient use of training samples. This in turn enforces the ne-

cessity for user simulators in order to cope with the data requirement challenge.

However, user simulators being computational models introduce some degree of

modelling errors. Also as indicated in Chapter 4 the primary focus while user

modelling has always been on reproducing the reference dialogue corpus. This

results in simulating some non-existent user behavior as outlined in Section 4.3.

Given the current challenges in the dialogue domain, Part II of this manuscript

adapts a set of sample efficient algorithms to perform dialogue policy optimiza-

tion. Also considering the impact of user simulators on the dialogue optimization

process, a more realistic user modelling technique based on IRL has been pro-

posed in Part III. The following chapter is organized as follows: To begin with

Section 10.1 derives a conclusion on the effectiveness of ADP and KTD algorithms

for dialogue optimization. Following which Section 10.2 summarize the effects of

user modelling using IRL. Section 10.3 revisits some of the advantages of treating

user modelling as a sequential decision making problem and solving it using IRL.

Eventually, Section 10.4 outlines the directions of future works.

145

Algorithm Type ModelReq Learning mode UncertaintyInfo
Value Iteration DP Yes Model based Not available
Policy Iteration DP Yes Model based Not available

FVI † ADP No Batch method Not available
LSPI ADP No Batch method Not available

Sparse-FVI † Sparse-ADP No Batch method Not available
Sparse-LSPI † Sparse-ADP No Batch method Not available

Q-learning TD-RL No Online/Off-policy Not available
SARSA TD-RL No Online/On-policy Not available

KTD-Q † KTD-RL No Online/Off-policy Available
KTD-SARSA † KTD-RL No Online/On-policy Available

Table 10.1: Algorithms for solving SDS-MDP and User-MDP

10.1 Sample efficient policy optimization schemes

In Chapters 5 and 6, a set of ADP, Sparse-ADP and KTD-based algorithms were

introduced and adapted to perform dialogue policy optimization. ADP algorithms

together can be classified as batch methods (since they learn from a fixed set of

data set). Whereas, RL algorithms can be grouped under several classes based on

the difference between the control policy and the policy used for data generation

(recall the taxonomy of RL algorithms presented in Section 3.4.4). Table 10.1

lists a set of algorithms studied in this manuscript. Note that the † symbol in the

table indicates that the corresponding algorithm is adapted to perform dialogue

optimization for the first time.

Experimental set-up presented in Section 5.7 studied the effectiveness of ADP

(fitted-Q and LSPI) and Sparse-ADP (sparse-fitted-Q and sparse-LSPI) when

applied to perform dialogue optimization. Based on the experimental results we

can now conclude that these methods are indeed sample efficient (in comparison

to conventional RL algorithms). However, it is important to note that these

methods need some training corpus to learn in a batch setting. They merely

focus on learning an optimal policy from the corpus and provide no scope for

improving this initial policy once the learning is terminated. However, this offers

an opportunity to learn an initial policy using these sample efficient algorithms

and further improve the policy in a online setting. Even though they promise to

146

be a good alternative, ADP-based algorithms provide no guarantees to retrieve

an (near) optimal policy.

Sample efficiency of KTD-based algorithms (KTD-Q and KTD-SARSA) are

studied using a set of experiments outlined in Section 6.5. Experimental results

obtained in the dialogue domain indicate that these algorithms make efficient use

of training samples. Since the KTD framework maintains uncertainty information

with regard to Q-value estimates, smart exploration schemes (which accelerates

learning) can be employed. Since they fall under the class of online RL algorithms

they can be used to learn in an off-policy or on-policy setting in a controlled or

uncontrolled manner. An initial policy learned from the available dialogue corpus

(either using ADP-based batch methods or using online/off-policy/uncontrolled

manner) and can be further improved in an online/on-policy/controlled setting. It

is important to note that during online/on-policy learning in case of the dialogue

domain policy changes can result in adverse system behaviors and thus may cause

incontinence to real users (leaving users unsatisfied). Thus it is always better to

learn a fairly good initial in a off-policy setting and then switch to on-policy

setting for improving the policy further.

10.2 User simulation using IRL

IRL-based user simulation in dialogue systems was introduced in Chapter 7. This

novel method for user modelling can be seen as an effort towards simulating di-

alogue trajectories rather than dialogue transitions. To begin the task of user

simulation is treated as a sequential decision making problem and casted as an

MDP. In order to optimize the User-MDP using RL methods some reward func-

tion is required. Learning this reward function from the dialogue corpus using

IRL provides an implicit mechanism for simulating real user behavior (observed

in the corpus). Experimental results presented in Section 7.3 showcase that the

estimated policies for User-MDP indeed simulate a behavior similar to the ref-

erence dialogue corpus. Even though the policies retrieved are deterministic,

stochastic user behavior can be derived by employing a policy mixer based on

Gibbs sampling.

Discounted feature vectors (see Eq. 8.1) provide new possibilities for analysing

147

the user behavior. For instance, since it provides a compact summary of dialogue

trajectories (irrespective of their length), it can be used for clustering user behav-

iors (recall Section 8.1.2). Experimental results presented in Section 8.2 showcase

that behavior clustering can be used to identify and differentiate user behaviors.

This can be seen as an important result in the dialogue domain for two reasons:

(i) being an automatic scheme, behavior clustering scheme can be employed as

a preprocessing step on the reference dialogue corpus and (ii) once different user

behaviors are identified, behaviors corresponding to every user group can be sim-

ulated. This overcomes the critical shortcomings of existing methods for user

modelling which focus on simulating some generic non-existent user behavior (in

the process of reproducing the reference dialogue corpus). Identifying and/or

simulating different user behaviors is a crucial task in order to adapt a dialogue

policy to all (observable) user groups rather than adapting it to a generic user

behavior.

10.3 Co-adaptation in spoken dialogue systems

Treating the task of user simulation as a sequential decision making problem

provides some novel opportunities for generalization of user behavior and co-

adaptation in dialogue systems. Mutual adaptation (at the level of words, amount

of information exchanged) can be frequently observed in human-human commu-

nication. Modelling user as an MDP and making it interact with a dialogue

manager modelled as an MDP provides a framework for co-adaptation in dia-

logue systems. Experimental results presented in Section 9.3 outlines the effects

of co-adaptation in the presence and absence of ASR channel noise. These re-

sults indicate that it is possible to learn an initial policy (for both SDS-MDP and

User-MDP) from the reference dialogue corpus and then learn further policies as a

result of co-adaptation between the dialogue manager and user simulator. In case

of the dialogue domain co-adaptation can be advantageous in several ways: (i)

by providing a natural means for evolution, co-adaptation shifts human/machine-

machine interaction closer towards human-human interaction, (ii) possibility to

learn complex policies which are originally not observed in the reference dialogue

corpus, (iii) provides a framework for introducing evolution at the word-level,

148

intention-level etc.

10.4 Future works

The works presented in this manuscript primarily aims at estimating user adap-

tive policies for spoken dialogue management. Such policies are necessary in order

to guarantee user satisfaction in human-machine interaction. With regard to the

future works, there are several possibilities relating to both sample efficient di-

alogue optimization and/or IRL user simulation. The following section presents

some directions for future works.

10.4.1 Model selection in reinforcement learning

Sample efficiency of ADP and KTD-based algorithms when adapted to dialogue

optimization has been showcased with the help of experimental results. In the

first place these algorithms were introduced to suppress the necessity for user

simulators. However, user simulators were still employed for evaluation purposes.

The primary reason for their continued use is the ease with which policy eval-

uation can be performed by using simulators. They provide an automatic and

fast scheme for evaluating the quality of a dialogue policy. Thus, one interesting

direction of future work would be to explore the possibility for policy evaluation

using the available dialogue corpus. In order to envision this, model selection

schemes [Farahmand & Szepesvári, 2011] can be used to quantify the quality of

the estimated (dialogue or user) policies.

10.4.2 IRL-based dialogue optimization

So-far in this manuscript IRL was used for the purpose of user simulation. This

can as well be extended for spoken dialogue management. Although, such an

extension would need the data to reflect the optimal behavior so that it can

be reproduced directly. For instance, if the dialogue corpus consists of human-

human (or Wiz-of-Oz) dialogues, an optimal dialogue management policy can be

reproduced by means of imitation. However, this option turns out to be chal-

lenging if the dialogue corpus does not reflect the optimal behavior (for instance

149

if the dialogues are generated using human-machine setting where the machine

employs some basic hand-crafted policy). In such cases it is necessary to employ

IRL methods which focus on retrieving the task related information at a generic

level. In other words it is important predict the structure of the task rather than

focusing on how the task is accomplished. Also one other direction of future

work is to scale up the IRL-based methods for complex dialogue management

problems.

10.4.3 Transfer learning in dialogue systems

Transfer learning is the field of study which explores the possibility of using

knowledge gained in solving one task to solve another but relevant task. In

recent years there has been a significant interest to extend transfer learning for

RL settings [Taylor & Stone, 2009]. In general the dialogue domain presents an

ideal case for employing transfer learning. For instance (dialogue management or

user simulation) skills learned for handling a 3 slots restaurant information SDS

can be used to handle a 5 slots flight ticket booking SDS. One possible way to

perform this task is to first learn the structural relation between the state-action

space and the reward function for the 3 slots problem space. Once this relation

is learned it can then be transformed to the 5 slots dialogue problem space.

10.4.4 Scaling up IRL-based methods for SDS

Experimental analysis used for validating the proposed IRL-based user simula-

tion focused on a relatively simple slot filling dialogue problem. Even though

the results showcased the possibility for user simulation, the true potential of

IRL-based methods is yet to be revealed. In the first place IRL-based meth-

ods were introduced to cope with complex decision making problems where it

is impractical to manually specify a reward function. Thus the IRL-framework

in itself is capable and in fact is meant for dealing with complex dialogue prob-

lems. However, it was necessary to explore the possibility of using IRL in the

dialogue domain. Our initial results are promising and have opened several new

arenas for research. Thus an obvious direction of future work would be to scale

up IRL methods for complex dialogue management problems and corresponding

150

user simulations. One of the critical factors during scaling up would be to identify

a suitable set of state features for SDS-MDP and User-MDP. However, there exist

a set of automatic schemes (such as [Lefèvre & de Mori, 2007]) which can learn

a suitable state representation. Such scheme can be used to cast the dialogue

problem in-terms of SDS-MDP and User-MDP.

10.4.5 Generalization of user behaviors

Treating user simulation as a sequential decision making problem offered an op-

portunity to cast the task as an MDP. This in turn opened up a possibility for

generalization of user simulations. RL based optimization of User-MDPs back-

propagate the rewards and thus help the user model to generalize the behavior

for scenarios which are originally not seen in the dialogue corpus. In fact the

results presented while outlining co-adaptation in dialogue systems is an exact

consequence of behavior generalization. However, to what extent user behaviors

can be generalized and how the quality of such generalizations can be quantified

is a open question to be answered in the near future.

10.4.6 Dialogue adaptation to behavior specific users

One of the primary advantages of using IRL-based methods for user modelling

is their ability to learn multiple behavior specific user simulation rather than

learning one generic behavior. This possibility was showcased by means of exper-

imental result in Section 8.2. Now given the availability of multiple simulators, a

obvious question to be addressed is: how to employ them for dialogue optimiza-

tion. One possibility would be to randomly switch the user simulators during the

optimization process and have one dialogue policy which is expected to be adap-

tive to all the user behaviors (as shown in [Chandramohan & Pietquin, 2010]).

What needs to be determined is in what way the policy learned by switching

the user simulators will be different from the one learned using other existing

user simulation methods (which exhibit a generic behavior)? The other possi-

bility would be to learn one dialogue policy for every user behavior and have a

mechanism which decides which policy to use during live interaction with users.

However, what mechanism should be employed for policy selection is an open

151

question. One other direction of future work would be to study the possibility

for predicting missing user behaviors (using other available behaviors) and derive

schemes to automatically generate data reflecting user behaviors which are not

available in the dialogue corpus.

152

153

References

Abbeel, P. & Ng, A. (2004). Apprenticeship learning via inverse reinforcement

learning. In Proc. of ICML, Banff, Alberta (Canada). 109

Ai, H. & Litman, D. (2008). Assessing dialog system user simulation evaluation

measures using human judges. In Proc. of the 46th meeting of the Association

for Computational Linguistics , 622–629, Columbus (OH). 101

Allen, J. (1995). Natural language understanding (2nd ed.). Benjamin-

Cummings Publishing Co., Inc., Redwood City, CA, USA. 12

Altman, I. & Taylor, D. (1973). Social penetration: The development of

interpersonal relationships. Holt, Rinehart and Winston. 134

Astrom, K.J. (1965). Optimal control of Markov decision processes with in-

complete state estimation. Journal of Mathematical Analysis and Applications,

vol. 10, pp. 174–205 . 28

Austin, J.L. (1975). How to Do Things with Words: Second Edition (William

James Lectures). Harvard University Press, 2nd edn. 12

Baxter, L. & Braithwaite, D. (2008). Engaging Theories in Interpersonal

Communication: Multiple Perspectives . Sage Publications. 134

Bellman, R. (1957a). Dynamic Programming . Dover Publications, sixth edn.

5, 27, 28, 30, 32

Bellman, R. (1957b). A markovian decision process. Journal of Mathematics

and Mechanics, vol. 6, pp. 679–684 . 23

154

REFERENCES

Bellman, R. & Dreyfus, S. (1959). Functional approximation and dynamic

programming. Mathematical Tables and Other Aids to Computation, 13, 247–

251. 2, 62, 64

Berger, C.R. (1986). Uncertain outcome values in predicted relationships: Un-

certainty reduction theory then and now. In H.C. Research, ed., Human Com-

munication Research, vol. 13, 34–38. 134

Boularias, A., Kober, J. & Peters, J. (2011). Relative entropy inverse

reinforcement learning. Journal of Machine Learning Research - Proceedings

Track , 15, 182–189. 109, 135

Bradtke, S.J. & Barto, A.G. (1996). Linear least-squares algorithms for

temporal difference learning. Machine Learning , 22, 33–57. 67

Chandramohan, S. & Pietquin, O. (2010). User and Noise Adaptive Dia-

logue Management Using Hybrid System Actions. In Spoken Dialogue Systems

for Ambient Environments , vol. 6392 of Lecture Notes in Artificial Intelligence

(LNAI), 13–24, proc. of IWSDS 2010, Gotemba, Shizuoka (Japan). 151

Chandramohan, S., Geist, M. & Pietquin, O. (2010a). Optimizing Spo-

ken Dialogue Management with Fitted Value Iteration. In Proc. of InterSpeech

2010 , Makuhari (Japan). 77, 82

Chandramohan, S., Geist, M. & Pietquin, O. (2010b). Sparse Approx-

imate Dynamic Programming for Dialog Management. In Proc. of SIGDial ,

Tokyo (Japan). 82

Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2011a).

User Simulation in Dialogue Systems using Inverse Reinforcement Learning. In

Proc. of Interspeech 2011 , Florence (Italy). 2, 122

Chandramohan, S., Geist, M. & Pietquin, O. (2011b). Apprentissage par

Renforcement Inverse pour la Simulation d’Utilisateurs dans les Systèmes de

Dialogue. In Sixièmes Journées Francophones de Planification, Décision et

Apprentissage pour la conduite de systèmes (JFPDA 2011), 7 pages, Rouen

(France).

155

REFERENCES

Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012a).

Behavior Specific User Simulation in Spoken Dialogue Systems. In Proc. of the

IEEE ITG Conference on Speech Communication (to appear), Braunschweig,

Germany.

Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012b).

Clustering Behaviors of Spoken Dialogue Systems Users. In Proc. of the 37th

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP 2012), Kyoto (Japan).

Chandramohan, S., Geist, M., Lefèvre, F. & Pietquin, O. (2012c).

Regroupement non-supervisé d’utilisateurs par leur comportement pour les

systèmes de dialogue parlé. In Journées Francophones de Planification,

Décision et Apprentissage pour la conduite de systèmes (JFPDA 2012), Nancy

(France).

Chung, G., Seneff, S. & Wang, C. (2003). Automatic acquisition of names

using speak and spell mode in spoken dialogue systems. In Proc. of the 2003

Conference of the North American Chapter of the Association for Computa-

tional Linguistics on Human Language Technology - Volume 1 , NAACL ’03,

32–39, Association for Computational Linguistics, Stroudsburg, PA, USA. 134

Cuayáhuitl, H., Renals, S., Lemon, O. & Shimodaira, H. (2005).

Human-computer dialogue simulation using hidden markov models. In Proc.

of the Automatic Speech Recognition Workshop (ASRU), Cancun (Mexico). 53

Daubigney, L., Gasic, M., Chandramohan, S., Geist, M., Pietquin,

O. & Young, S. (2011). Uncertainty management for on-line optimisation of

a POMDP-based large-scale spoken dialogue system. In Proc. of Interspeech

2011 , 1301–1304, Florence (Italy). 133

Dearden, R., Friedman, N. & Russell, S.J. (1998). Bayesian Q-Learning.

In Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI), 761–768. 91

156

REFERENCES

Doddington, G. (2002). Automatic evaluation of machine translation quality

using n-gram co-occurrence statistics. In Proc. of the Human Language Tech-

nology Conference (HLT), San Diego (CA). 54

Dutoit, T. (1997). An introduction to text-to-speech synthesis . Kluwer Aca-

demic Publishers, Norwell, MA, USA. 13

Eckert, W., Levin, E. & Pieraccini, R. (1997a). User modeling for spo-

ken dialogue system evaluation. In Proc. of the Automatic Speech Recognition

Workshop (ASRU), Santa Barbara (CA). 47, 48, 101

Eckert, W., Levin, E. & Pieraccini, R. (1997b). User Modeling for Spoken

Dialogue System Evaluation. In Proc. of ASRU , 80–87. 132

Engel, Y., Mannor, S. & Meir, R. (2004). The Kernel Recursive Least

Squares Algorithm. IEEE Transactions on Signal Processing, vol. 52(8), pp.

2275–2285 . 64, 68, 69, 70

Farahmand, A.m. & Szepesvári, C. (2011). Model selection in reinforcement

learning. Machine Learning , 1–34. 74, 149

Ferguson, G., Allen, J. & Miller, B. (1996). Trains-95: Towards a mixed-

initiative planning assistant. In in Proceedings of the 3rd Conference on AI

Planning Systems . 20

Frampton, M. & Lemon, O. (2009). Recent research advances in reinforce-

ment learning in spoken dialogue systems. Knowledge Eng. Review , 24, 375–

408. 13

Gasic, M., Jurcicek, F., Thomson, B., Yu, K. & Young, S. (2011). On-

line policy optimisation of spoken dialogue systems via live interaction with

human subjects. In Proc. of ASRU 2011 , Hawaii (USA). 133

Geist, M. (2009). Optimisation des chanes de production dans l’industrie

sidérurgique : une approche statistique de l’apprentissage par renforcement .

Phd thesis in mathematics, Université Paul Verlaine de Metz (en collaboration

avec Supélec, ArcelorMittal et l’INRIA). 92

157

REFERENCES

Geist, M. & Pietquin, O. (2010a). A Brief Survey of Parametric Value Func-

tion Approximation. Tech. rep., Supélec - Metz (France). 62

Geist, M. & Pietquin, O. (2010b). Kalman Temporal Differences. Journal of

Artificial Intelligence Research (JAIR), 39, 483–532. 2, 62, 85

Geist, M. & Pietquin, O. (2010c). Managing Uncertainty within Value Func-

tion Approximation in Reinforcement Learning. In Active Learning and Ex-

perimental Design workshop (collocated with AISTATS 2010), Sardinia, Italy.

92

Geist, M., Pietquin, O. & Fricout, G. (2008). Kalman Temporal Differ-

ences: Uncertainty and Value Function Approximation. In NIPS Workshop on

Model Uncertainty and Risk in Reinforcement Learning , Vancouver (Canada).

91

Geist, M., Pietquin, O. & Fricout, G. (2009). Kalman Temporal Differ-

ences: the deterministic case . In IEEE International Symposium on Adaptive

Dynamic Programming and Reinforcement Learning (ADPRL 2009), 185–192,

Nashville (TN, USA). 87

Georgila, K., Henderson, J. & Lemon, O. (2005). Learning user simula-

tions for information state update dialogue systems. In Proc. Interspeech ’05 ,

Lisbon (Portugal). 47, 48

Georgila, K., Henderson, J. & Lemon, O. (2006). User simulation for spo-

ken dialogue systems: Learning and evaluation. In Proc. International Confer-

ence on Spoken Language Processing (Interspeech/ICSLP), Pittsburgh (PA).

50, 74

Geramifard, A., Bowling, M. & Sutton, R.S. (2006). Incremental least-

squares temporal difference learning. In Proc. of AAAI , 356–361, AAAI Press.

114, 138

Gergonne, J. (1974). The application of the method of least squares to the

interpolation of sequences. Historia Mathematica, 1, 439 – 447. 62

158

REFERENCES

Glass, J. & Seneff, S. (2003). Flexible and personalizable mixed-initiative

dialogue systems. In Proc. of the HLT-NAACL 2003 workshop on Research

directions in dialogue processing - Volume 7 , 19–21, Association for Computa-

tional Linguistics, Stroudsburg, PA, USA. 134

Götze, J., Scheffler, T., Roller, R. & Reithinger, N. (2010). User

simulation for the evaluation of bus information systems. In Proc. IEEE Spoken

Language Technology Workshop (SLT), Berkeley (CA). 46

Hahn, S., Dinarelli, M., Raymond, C., Lefèvre, F., Lehnen, P.,

De Mori, R., Moschitti, A., Ney, H. & Riccardi, G. (2011). Com-

paring stochastic approaches to spoken language understanding in multiple

languages. Audio, Speech, and Language Processing, IEEE Transactions on,

19, 1569 –1583. 22

Henderson, J. & Lemon, O. (2008). Mixture model pomdps for efficient han-

dling of uncertainty in dialogue management. In Proc. of the 46th Annual Meet-

ing of the Association for Computational Linguistics on Human Language Tech-

nologies: Short Papers , HLT-Short ’08, 73–76, Association for Computational

Linguistics, Stroudsburg, PA, USA. 22

Janarthanam, S. & Lemon, O. (2009). Learning Adaptive Referring Ex-

pression Generation Policies for Spoken Dialogue Systems using Reinforcement

Learning. In Proceedings SemDial’09, Stockholm. 25

Jelinek, F. (1998). Statistical Methods for Speech Recognition. The MIT Press.

22

Jung, S., Lee, C., Kim, K., Jeong, M. & Lee, G.G. (2009). Data-driven

user simulation for automated evaluation of spoken dialogue systems. Computer

Speech and Language, 23, 479–509. 46, 54

Jnsson, A. (1993). Dialogue management for natural language interfaces. Tech.

rep., THE UNIVERSITY OF QUEENSLAND. 19

Kaelbling, L.P., Littman, M.L. & Moore, A.W. (1996). Reinforcement

learning: a survey. Journal of Artificial Intelligence Research, 4, 237–285. 23

159

REFERENCES

Kalman, R.E. (1960). A new approach to linear filtering and prediction prob-

lems. Transactions of the ASME–Journal of Basic Engineering , 82, 35–45. 87,

88

Keizer, S., Gasic, M., Jurcicek, F., Mairesse, F., Thomson, B., Yu, K.

& Young, S. (2010). Parameter estimation for agenda-based user simulation.

In Proc. of the SIGDIAL 2010 Conference, 116–123. 124, 125

Keizer, S., Rossignol, S., Chandramohan, S. & Pietquin, O. (2012).

User Simulation in the Development of Statistical Spoken Dialogue Systems. In

Data driven methods for Adaptive Spoken Dialogue Systems , Springer-Verlag

New York Inc (To appear), (To appear).

Kolter, J.Z. & Ng, A.Y. (2009). Near-Bayesian Exploration in Polynomial

Time. In Proceedings of the 26th international conference on Machine learning

(ICML 09), ACM, New York, NY, USA. 91, 92

Kullback, S. & Leibler, R. (1951). On information and sufficiency. Annals

of Mathematical Statistics , 22, 79–86. 53, 127

Lagoudakis, M.G. & Parr, R. (2003). Least-squares policy iteration. Journal

of Machine Learning Research, 4, 1107–1149. 66, 114, 138

Larsson, S. & Traum, D. (2000). Information state and dialogue management

in the TRINDI dialogue move engine toolkit. Natural Language Engineering,

vol. 6, pp 323–340 . 16

Lee, A. & Przybocki, M. (2005). NIST Machine translation evaluation official

results. Official release of automatic evaluation scores for all submissions. 54

Lefèvre, F. (2007). Dynamic bayesian networks and discriminative classifiers

for multi-stage semantic interpretation. Hawaii, USA. 22

Lefèvre, F. & de Mori, R. (2007). Unsupervised state clustering for stochas-

tic dialog management. In Proc. of ASRU , Kyoto (Japan). 151

160

REFERENCES

Lemon, O. (2011). Learning what to say and how to say it: Joint optimisation

of spoken dialogue management and natural language generation. Computer

Speech & Language, 25, 210 – 221. 25

Lemon, O. & Pietquin, O. (2007). Machine learning for spoken dialogue sys-

tems. In Proc. of InterSpeech’07 , Belgium. 1

Lemon, O., Georgila, K., Henderson, J. & Stuttle, M. (2006). An ISU

dialogue system exhibiting reinforcement learning of dialogue policies: generic

slot-filling in the TALK in-car system. In Proc. of EACL’06 , Morristown, NJ,

USA. 1, 19, 74, 76

Levin, E. & Pieraccini, R. (1998). Using markov decision process for learning

dialogue strategies. In Proc. ICASSP’98, Seattle (USA). 13, 23, 42

Levin, E., Pieraccini, R. & Eckert, W. (2000). A Stochastic Model of

Human-Machine Interaction for learning dialog Strategies. IEEE Transactions

on Speech and Audio Processing, vol. 8, pp. 11–23 . 2, 24

Li, L., Balakrishnan, S. & Williams, J. (2009). Reinforcement Learning

for Dialog Management using Least-Squares Policy Iteration and Fast Feature

Selection. In Proc. of the International Conference on Speech Communication

and Technologies (InterSpeech’09), Brighton (UK). 63, 68, 77, 82

López-Cózar, R., Callejas, Z. & McTear, M.F. (2006). Testing the per-

formance of spoken dialogue systems by means of an artificially simulated user.

Artificial Intelligence Review , 26, 291–323. 101

Mehta, N., Gupta, R., Raux, A., Ramachandran, D. & Krawczyk, S.

(2010). Probabilistic Ontology Trees for Belief Tracking in Dialog Systems. In

Proc. of the SIGDIAL 2010 Conference, 37–46, Association for Computational

Linguistics, Tokyo, Japan. 103

Ng, A.Y. & Russell, S. (2000). Algorithms for inverse reinforcement learning.

In Proc. of ICML, Stanford (CA). 2, 107

161

REFERENCES

Papineni, K., Roukos, S., Ward, T. & Zhu, W. (2002). BLEU: A method

for automatic evaluation of machine translation. In Proc. of the 40th Annual

Meeting on Association for Computational Linguistics (ACL), Philadelphia

(PA). 54

Park, J. & Sandberg, I. (1991). Universal approximation using radial-basis-

function networks. Neural computation, 3, 246–257. 62, 68

Pietquin, O. (2005). A probabilistic description of man-machine spoken com-

munication. In Proc. of ICME 2005 , 410–413, Amsterdam (The Netherlands).

102

Pietquin, O. (2006). Consistent goal-directed user model for realistic man-

machine task-oriented spoken dialogue simulation. In Proc. of ICME , 425–428,

Toronto (Canada). 24

Pietquin, O. & Dutoit, T. (2006). A probabilistic framework for dialog sim-

ulation and optimal strategy learning. IEEE Transactions on Audio, Speech &

Language Processing, 14(2): 589-599 . 47

Pietquin, O. & Hastie, H. (2011). A survey on metrics for the evaluation of

user simulations. The Knowledge Engineering Review . 51, 52, 116

Pietquin, O., Geist, M. & Chandramohan, S. (2011a). Sample Efficient

On-line Learning of Optimal Dialogue Policies with Kalman Temporal Dif-

ferences. In Proc. of International Joint Conference on Artificial Intelligence

(IJCAI), Barcelona (Spain). 2

Pietquin, O., Geist, M., Chandramohan, S. & Frezza-Buet, H.

(2011b). Sample-Efficient Batch Reinforcement Learning for Dialogue Manage-

ment Optimization. ACM Transactions on Speech and Language Processing , 7,

7:1–7:21. 2, 63, 74, 78, 82

Pietquin, O., Rossignol, S. & Ianotto, M. (2009). Training Bayesian net-

works for realistic man-machine spoken dialogue simulation. In Proc. of IWSDS

2009 , Irsee (Germany). 49

162

REFERENCES

Pinault, F. & Lefèvre, F. (2011). Semantic graph clustering for pomdp-based

spoken dialog systems. In Proc. of Interspeech, 1321–1324. 23

Puterman, M.L. (1994). Markov Decision Processes: Discrete Stochastic Dy-

namic Programming . Wiley-Interscience. 5, 27, 31, 34

Rabiner, L. & Juang, B.H. (1993). Fundamentals of Speech Recognition. Pren-

tice Hall Signal Processing Series, PTR Prentice-Hall. 12

Reiter, E. & Dale, R. (2000). Building natural language generation systems .

Cambridge University Press, New York, NY, USA. 13

Rieser, V. (2008). Bootstrapping Reinforcement Learning-based Dialogue Strate-

gies from Wizard-of-Oz data. Ph.D. thesis, Saarland University, Department of

Computational Linguistics. 24, 54, 102

Rieser, V. & Lemon, O. (2006). Simulations for learning dialogue strategies.

In Proc. of Interspeech 2006 , Pittsburg (PA). 54

Rieser, V. & Lemon, O. (2011). Reinforcement Learning for Adaptive Di-

alogue Systems: A Data-driven Methodology for Dialogue Management and

Natural Language Generation. Theory and Applications of Natural Language

Processing, Springer-Verlag New York Inc. 1, 132

Roy, N., Pineau, J. & Thrun, S. (2000). Spoken dialogue management using

probabilistic reasoning. In Proc. of the annual meetinf of the Association for

Computational Linguistics (ACL’00), Morristown, NJ, USA. 13

Sakaguchi, Y. & Takano, M. (2004). Reliability of internal predic-

tion/estimation and its application: I. adaptive action selection reflecting reli-

ability of value function. Neural Network , 17, 935–952. 91

Samuel, A.L. (1959). Some studies in machine learning using the game of check-

ers. IBM Journal on Research and Development , 210–229. 64

Schatzmann, J., Stuttle, M.N., Weilhammer, K. & Young, S. (2005).

Effects of the user model on simulation-based learning of dialogue strategies.

In Proc. of ASRU’05, Puerto Rico. 25, 51, 102, 116

163

REFERENCES

Schatzmann, J., Weilhammer, K., Stuttle, M. & Young, S. (2006a).

A survey of statistical user simulation techniques for reinforcement-learning of

dialogue management strategies. Knowledge Engineering Review, vol. 21(2),

pp. 97–126 . 2, 24

Schatzmann, J., Weilhammer, K., Stuttle, M. & Young, S. (2006b).

A survey of statistical user simulation techniques for reinforcement learning

of dialogue management strategies. The Knowledge Engineering Review , 21,

97–126. 25, 46, 52

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H. & Young., S.

(2007a). Agenda-based User Simulation for Bootstrapping a POMDP Dialogue

System. In Proc. of HLT NAACL. 47, 102

Schatzmann, J., Thomson, B., Weilhammer, K., Ye, H. & Young, S.

(2007b). Agenda-based user simulation for bootstrapping a POMDP dialogue

system. In Proc. of the Annual Conference of the North American Chapter

of the Association for Computational Linguistics (NAACL-HLT), Rochester

(NY). 50

Seneff, S., Hurley, E., Lau, R., Pao, C., Schmid, P. & Zue, V. (1998).

Galaxy-ii: A reference architecture for conversational system development. In

in Proc. ICSLP , 931–934. 19

Singh, S., Kearns, M., Litman, D. & Walker, M. (1999). Reinforcement

learning for spoken dialogue systems. In Proc. of NIPS, Denver, USA, Springer.

42

Sondik, E.J. (1978). The optimal control of partially observable Markov pro-

cesses over the infinite horizon: Discounted costs. Operations Research, 26,

282–304. 23

Strehl, A.L. & Littman, M.L. (2006). An Analysis of Model-Based Interval

Estimation for Markov Decision Processes. Journal of Computer and System

Sciences . 91

164

REFERENCES

Sutton, R. & Barto, A. (1998). Reinforcement Learning: An Introduction.

The MIT Press, 3rd edn. 1, 23, 28, 35, 36, 37, 106

Taylor, M.E. & Stone, P. (2009). Transfer learning for reinforcement learning

domains: A survey. Journal of Machine Learning Research, 10, 1633–1685. 150

Theune, M. (2003). Natural language generation for dialogue: system survey.

Tech. Rep. 2003-2, University of Twente (Netherlands). 25

van Rijsbergen, C.J. (1979). Information Retrieval . Butterworths, London

(UK), 2nd edn. 52

Vanlehn, K., Jordan, P. & Litman, D. (2007). D.: Developing pedagogi-

cally effective tutorial dialogue tactics: Experiments and a testbed. In Proc. of

SLaTE Workshop on Speech and Language Technology in Education.. 19

Walker, M.A., Litman, D.J., Kamm, C.A. & Abella, A. (1997). PAR-

ADISE: A framework for evaluating spoken dialogue agents. In Proc. of the 35th

Annual Meeting of the Association for Computational Linguistics (ACL’97),

271–280, Madrid (Spain). 42

Watkins, C.J.C.H. & Dayan, P. (1992). Q-learning. Machine Learning , 8,

272–292. 38

Wilks, Y. (2004). Artificial companions. In Proceedings of the 1st International

Workshop on Machine Learning for Multimodal Interaction, Switzerland. 19

Williams, J.D. & Young, S. (2007). Partially observable markov decision

processes for spoken dialog systems. Computer Speech and Language, vol. 21(2),

pp. 393–422.. 1, 19, 22, 23

Xu, X., Hu, D. & Lu, X. (2007). Kernel-based least squares policy iteration for

reinforcement learning. IEEE Transactions on Neural Networks, 18, 973–992.

68, 71

Zukerman, I. & Albrecht, D. (2001). Predictive statistical models for user

modeling. User Modeling and User-Adapted Interaction, 11, 5–18. 52

165

	Contents
	List of Figures
	List of Tables
	Nomenclature
	1 Introduction
	1.1 Problem statement
	1.2 Resulting contributions
	1.3 Thesis layout

	I Statistical Dialogue Management
	2 Spoken Dialogue Systems
	2.1 Architecture of dialogue systems
	2.2 Spoken dialogue management
	2.2.1 Information state update
	2.2.2 Dialogue management policy
	2.2.3 Taxonomy of dialogue systems
	2.2.4 Why dialogue management is challenging?

	2.3 State-of-the-art in dialogue systems
	2.3.1 Statistical user act interpretation
	2.3.2 Dialogue policy optimization
	2.3.3 User simulations in dialogue systems
	2.3.4 Language generation in dialogue systems

	3 Markov Decision Processes
	3.1 Formal definition of an MDP
	3.2 Solving MDPs
	3.3 Dynamic programming
	3.3.1 Policy iteration
	3.3.2 Value iteration

	3.4 Reinforcement learning
	3.4.1 Temporal difference learning
	3.4.2 SARSA
	3.4.3 Q-Learning
	3.4.4 Taxonomy of RL algorithms

	3.5 Dialogue management using MDP
	3.5.1 Casting dialogue management problem as an MDP
	3.5.2 Dialogue policy optimization using RL
	3.5.3 Dialogue policy evaluation schemes

	4 User simulation in dialogue systems
	4.1 User simulation: an overview
	4.1.1 Probabilistic user simulation
	4.1.2 n-gram user simulation
	4.1.3 Bayesian Networks based user simulation
	4.1.4 Advanced n-gram user simulation
	4.1.5 Agenda based user simulation

	4.2 User modelling evaluation metrics
	4.2.1 Precision and Recall
	4.2.2 Kullback-Leibler (KL) divergence and dissimilarity
	4.2.3 Log-likelihood
	4.2.4 Bilingual Evaluation Understudy
	4.2.5 Simulated User Pragmatic Error Rate
	4.2.6 Performance of dialogue policy

	4.3 Revisiting user simulations

	II Sample Efficient Dialogue Optimization
	5 Approximate Dynamic Programming
	5.1 Value function approximation
	5.2 Fitted value iteration
	5.3 Least squares policy iteration
	5.4 Automatic feature selection
	5.5 Sparse-Fitted value iteration
	5.6 Sparse-least squares policy iteration
	5.7 Experimental results and analysis
	5.7.1 Restaurant information system (MDP-SDS)
	5.7.2 Dialogue corpora generation
	5.7.3 Q-function representation
	5.7.4 Policy optimization using ADP
	5.7.5 Dialogue optimization using Sparse ADP

	6 Kalman Temporal Differences
	6.1 Q-learning with function approximation
	6.2 Kalman Temporal Differences
	6.2.1 KTD-Q - online/off-policy algorithm

	6.3 SARSA with function approximation
	6.3.1 KTD-SARSA - online/on-policy algorithm

	6.4 Uncertainty management in KTD
	6.5 Experimental results and analysis
	6.5.1 Online/off-policy dialogue optimization
	6.5.2 Online/on-policy dialogue optimization

	III Inverse Reinforcement Learning
	7 User simulation using Inverse Reinforcement Learning
	7.1 User simulation as a sequential decision making problem
	7.1.1 Casting user simulation as an MDP
	7.1.2 User behavior imitation

	7.2 Inverse reinforcement learning
	7.2.1 IRL: problem elicitation
	7.2.2 Imitation learning algorithm

	7.3 Experimental results and analysis
	7.3.1 Learning to imitate
	7.3.2 Evaluation of user behavior
	7.3.3 IRL evaluation metric

	8 User behavior clustering
	8.1 Quantizing and clustering trajectories
	8.1.1 Modelling users with MDPs
	8.1.2 Discounted cumulative feature vectors
	8.1.3 Behavior specific user simulation

	8.2 Experimental results and analysis
	8.2.1 Behavior clustering for 3-slot dialogue problem
	8.2.2 Behavior clustering for 12-slot dialogue problem
	8.2.3 Behavior specific user simulation results

	9 Co-adaptation in dialogue systems
	9.1 Cognitive aspects of interpersonal interaction
	9.2 Co-adaptation process elicitation
	9.3 Experimental results and analysis
	9.3.1 2-Slot restaurant information SDS
	9.3.2 Co-adaptation results and analysis

	10 Conclusion
	10.1 Sample efficient policy optimization schemes
	10.2 User simulation using IRL
	10.3 Co-adaptation in spoken dialogue systems
	10.4 Future works
	10.4.1 Model selection in reinforcement learning
	10.4.2 IRL-based dialogue optimization
	10.4.3 Transfer learning in dialogue systems
	10.4.4 Scaling up IRL-based methods for SDS
	10.4.5 Generalization of user behaviors
	10.4.6 Dialogue adaptation to behavior specific users

	References

