
HAL Id: tel-00875582
https://theses.hal.science/tel-00875582

Submitted on 22 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimisation des transferts de données sur systèmes
multiprocesseurs sur puce

Selma Saidi

To cite this version:
Selma Saidi. Optimisation des transferts de données sur systèmes multiprocesseurs sur puce. Autre
[cs.OH]. Université de Grenoble, 2012. Français. �NNT : 2012GRENM099�. �tel-00875582�

https://theses.hal.science/tel-00875582
https://hal.archives-ouvertes.fr

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministérial :

Présentée par

Selma Saïdi

Thèse dirigée par Dr. Oded Maler

préparée au sein du laboratoire VERIMAG
et de l’école doctorale Mathematiques, Sciences et Technologies de
l’Information, Informatique (MSTII)

Optimizing DMA Data Transfers for
Embedded Multi-Cores

Thèse soutenue publiquement le 24 Octobre 2012,
devant le jury composé de :

Mr, Ahmed Bouajjani
Professeur à l ’université Paris diderot, Président

Mr, Luca Benini
Professeur à l ’université de Bologne, Rapporteur

Mr, Albert Cohen
Directeur de Recherche, INRIA, Rapporteur

Mr, Oded Maler
Directeur de Recherche, CNRS, Directeur de thèse

Mr, Eric Flamand
Directeur de la division AST-Computing, STMicroelectronics, Examinateur

Mr, Bruno Jego
Equipe Application à AST-computing,STMicroelectronics, Examinateur

ii

Contents

Contents . iii

Introduction 1

1 Embedded Multicores: Opportunities and challenges 3

1.1 Embedded Multicore Architectures . 3

1.1.1 Multiprocessor Systems on chip (MPSoCs) 3

1.1.2 Example of an MPSoC: P2012 6

1.1.3 Memory Organization . 7

1.2 Embedded Software . 12

1.2.1 Parallelization potential of an application 12

1.2.2 Parallelization . 13

1.2.3 Parallel programming . 14

1.2.4 Deployment . 15

1.3 Conclusions . 16

2 Preliminaries 19

2.1 Introduction . 19

2.2 Direct Memory Access (DMA) Engines 19

2.2.1 Example of a DMA Command Flow 20

2.2.2 The DMA’s main features . 21

2.3 Data Parallel Applications . 23

2.3.1 Independent Data Computations 24

2.3.2 Overlapped Data Computations 26

2.3.3 Discussion . 28

2.4 Software Pipelining . 28

2.4.1 Buffering . 28

2.4.2 Double Buffering . 30

2.5 Choosing a Granularity of Transfers . 31

3 Optimal Granularity for Data Transfers 35

3.1 Computations and Data Transfers Characterization 35

3.1.1 DMA Performance Model . 35

3.1.2 Computation Time . 37

3.2 Problem Formulation . 37

3.3 Optimal Granularity for Independent Computations 39

3.3.1 Single Processor . 39

3.3.2 Multiple Processors . 41

3.3.3 Memory Limitation . 43

iii

CONTENTS

3.3.4 Conclusion . 44

4 Shared Data Transfers 47

4.1 Introduction . 47

4.2 Transferring Shared Data in one-dimensional data 47

4.2.1 Replication . 48

4.2.2 Inter-Processor Communication 49

4.2.3 Local Buffering . 50

4.2.4 Comparing Strategies . 51

4.3 Optimal Granularity for Two-Dimensional Data 52

4.4 Conclusion . 56

5 Experiments 59

5.1 Introduction . 59

5.2 Cell BE . 59

5.2.1 Overview . 59

5.2.2 Hardware Parameters Measurement 60

5.3 Experimental Results . 62

5.3.1 Independent Computations . 62

5.3.2 Shared Computations . 63

5.3.2.1 Synthetic Benchmarks 63

5.3.2.2 Convolution Algorithm 65

5.3.2.3 Mean Filtering Algorithm 67

5.4 Conclusion . 69

Conclusions and Perspectives 71

Bibliography 73

iv CONTENTS

Introduction

This thesis has been conducted as part of a CIFRE contract with ST and in the frame-

work of the collaborative project ATHOLE with the participation of ST, CEA-LETI, Ver-

imag, Thales, and CWS. The project was focused on embedded multi-core architectures

developed by ST (and CEA-LETI), initially xSTream and then Platform 2012 (P2012).

The role of Verimag in the project was to investigate ways to ease the passage from hard-

ware implementation of key applications (such as video and signal processing) to paral-

lel software. Exploiting the parallelism offered by multi-cores is an industry-wide and

world-wide challenge, and this thesis demonstrates what can be done for a specific (but

very general) class of applications and a specific class of execution platforms where the

multi-core is viewed as a computation fabric to which the main processor delegates heavy

computations to execute in parallel.

The applications that we consider are those that would be written as a (possibly nested)

loop in which the same computation is applied to each and every element of an array of

one or two dimensions. Such applications are called data parallel or embarrassingly

parallel and they can be found in image and video processing or in scientific compu-

tations. Running such an application efficiently on a multi-core architecture involves a

lot of decisions that require acquaintance with the low-level details of the architecture.

These decisions involve the splitting of the data into pieces that are sent to the different

processors, scheduling competing tasks and selecting efficient communication and data

transfer mechanisms. Today such decisions are made manually, and they pose non-trivial

combinatorial puzzles to application programmers and reduce their productivity.

The goal of this thesis is to liberate, in the limits of the possible, application pro-

grammers from this task by automating it, either fully or partially. The ideal scenario

envisioned by this thesis is that the programmer writes his or her algorithm as a generic

iteration of the computation over the array elements, annotates it with some performance

related numbers (execution time for processing one array element, amount of data in-

volved), and based on an abstract model of the architecture (processor speeds, intercon-

nect bandwidth and latency, memory features) automatically derives a parallel execution

scheme which is optimal or at least acceptable with respect to timing and/or other per-

formance metrics. In other words, we frame the problem of optimal execution as an

optimization problem based on application and architecture parameters.

We focus on architectures where the cores use a fast but small scratchpad memory

and the main issue is how to orchestrate computations and data transfers from off-chip

memory to the local memory of the cores efficiently. We use a double buffering scheme

where optimization reduces to the choice of the size and shape of blocks which are subject

to a single DMA call. This choice is dependent, of course, on the cost model of the DMA

and the interconnect, as well as on features of the application such as the ratio between

computation and communication and the weight of data sharing between blocks.

1

INTRODUCTION

This thesis ran in parallel with the design of P2012, a fact that prevented us from

validating our analysis on this architecture. We chose the Cell B.E, a mature architecture

whose features are close to P2012. We are currently extending our work to P2012 where

the DMA is more centralized and the local memory is shared between all the cores that

reside in the same cluster.

The rest of the thesis is organized as follows.

– Chapter 2 is a survey of current trends in MPSoCs (multi-processor systems on

chip) and the industrial context of the thesis;

– Chapter 3 gives preliminary definitions of the hardware and software models. It

explains DMA in general and the one implemented in the Cell B.E architecture that

we use for benchmarking. On the software side it explains the structure of data

parallel applications, the different ways to partition one and two-dimensional data,

and describes the well-known double buffering scheme which allows to process

one block of data while fetching the next block in parallel. The problem of optimal

granularity is formulated;

– Chapter 4 solves the optimal granularity problem for one-dimensional and two-

dimensional data arrays. The solution is based on the analysis of the behavior of

double-buffering software pipeline which depends on the computation/communica-

tion ratio of the basic computation as well as on the choice of granularity.

– Chapter 5 extends the analysis to computations where data is shared and the com-

putation for an array element involves some data belonging to its neighbors. For

one-dimensional data arrays we compare three strategies for data sharing, namely

replication of data in DMA calls, inter-process communication and load/store in-

structions in the local memory. For two-dimensional data our model captures the

tension between memory layout constraints that favor flat blocks and data-sharing

considerations that favor square data blocks;

– Chapter 6 is dedicated to the validation of the theoretical results on a cycle-accurate

simulator of the Cell B.E;

– Chapter 7 concludes the thesis with suggestions for further work, including adapta-

tion to the specifics of the P2012 architecture.

2 INTRODUCTION

Chapter 1

Embedded Multicores: Opportunities

and challenges

1.1 Embedded Multicore Architectures

Multicore architectures are a reality in most products today. Graphical Processing

Units (GPUs) [OHL+08] are perhaps the most widely visible example of this trend fea-

turing hundreds of cores and have highly contributed to the excitement about multi-cores

because of the high perfomance numbers they exhibit.

In fact, multi-core platforms became the alternative to increase performance in a sys-

tem after the microprocessor industry has hit the power wall (also referred to as the speed

wall) preventing higher clock speeds. Indeed, Moore’s law predicted 40 years ago that

the number of transistors on a chip roughly doubles every two years increasing the abil-

ity to integrate more capabilities onto one chip, and thereby increasing performance and

functionality and decreasing the cost. However, doubling performance per processing ele-

ment, which is the main feature Moore’s law is based on, is not feasible anymore because

faster processors also run hotter. Therefore running 2 processors in the same chip at half

the speed is less energy consuming and potentially equally performance efficient.

In particular, embedded multi-core architectures 1 have known a major wave of in-

terest in the past years with the growing demand for integrating more functionalities in

embedded devices, smart phones being a prime example. Due to the rapid advances in

the silicon industry, Multiprocessor Systems on Chips are becoming an important feature

of embedded systems.

In the sequel, we present some important features of MPSoCs and describe Platform

2012, a many-core programmable system on chip developed jointly by STMicroelectron-

ics and CEA. We then present and discuss some memory issues related to such platforms

which constitute the main focus of this thesis.

1.1.1 Multiprocessor Systems on chip (MPSoCs)

The term Systems on Chip (SoC) refers to embedded systems integrating in a single

chip several hardware modules such as processing units, memories and vendor specific

Intellectual Properties (IPs), designed and optimized for a specific class of applications

1. Also referred to as Chip Multiprocessors (CMP).

3

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

DSP

Bus

Audio

Accelerator

Memory

controller

Video Accelerator

Processor
Host

HWUHWUHWU

Bus

Mem

Figure 1.1: Overview of the STNomadik platform.

such as networking, communication, signal processing and multimedia. Today the semi-

conductor industry is mainly driven by these applications markets justifying the cost of

chips design which represents tens of millions of dollars.

The embedded feature of these architectures makes them resource constrained with a

strong concern for cost and power efficiency. Their application specific nature can then

be used to tailor the system architecture to suit the needs of the target application domain

and meet the strict area and power budgets. For instance, if the target applications do not

use floating point arithmetic then no floating point unit is considered in the design of the

SoC.

Multiprocessor Systems on Chips (MPSoCs) [WJM08] usually integrate a powerful

host processor combined with a mixture of specialized co-processors such as Digital Sig-

nal Processors (DSPs), and dedicated hardware units that implement in hardwired logic

computationally intensive kernels of code. The Nomadik architecture [ADC+03] devel-

oped by STMicroelectronics is an example of such platforms. Figure 1.1 presents a sim-

plified overview of the STNomadik platform. It is designed for mobile multimedia appli-

cations and composed of a main processor and application-specific accelerators for audio

and video, all connected through a bus. The main processor focuses on coordination and

control as most of the multimedia functions are performed by the accelerators which are in

turns heterogeneous subsystems composed of a multimedia DSP and dedicated hardware

units (HWU) that implement several important stages of video processing.

Today, embedded applications are rapidly evolving and growing in complexity, as an

example the H264 video compression standard reference code consists of over 1200000

lines of C code. Hence, they are increasingly presenting conflicting requirements of both

high performance and low power consumption. Hardwired implementations of such ap-

plications have the advantage of being very efficient, however they have a clear limi-

tation: flexibility. Therefore, today the design trend of MPSoC platforms is becoming

highly programmable to replace specialized hardware by multi-core subsystems, as de-

picted in Figure 1.2. Unlike general purpose multi-core systems, multi-core accelerators

use a large number of low to medium performance cores. The memory on the accelerator

part is referred to as on-chip memory and the host memory is usually referred to as main

memory or off-chip memory when it is located externally. Obviously there is a difficult

design decision as what to implement in software and hardware in order to find the best

4 1.1. EMBEDDED MULTICORE ARCHITECTURES

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Host

Processor

Memory

Main

Multi−core fabric

. . .
Local

Shared Memory

Local
Memory

HW Accelerator HW Accelerator

Memory

Local Interconnect

Core0 Coren

Figure 1.2: A Multiprocessor System on Chip.

trade-off between efficiency and flexibility.

In the last past years, the following important features have characterized the evolution

of MPSoCs design:

– The integration of Network on chips (NoCs) technology [BM02] as a new paradigm

for SoC communication infrastructures. The principles of NoCs are borrowed from

packet based communication networks and have been proposed mainly to encounter

the scalability limits of buses and switches as more and more hardware components

are being integrated into a single chip. Connecting these components efficiently is

a major concern for both performance and energy.

– The adoption of globally asynchronous and locally synchronous (GALS) paradigm

[IM02] which integrates different clock and frequency domains into a single chip.

By connecting locally synchronous modules via asynchronous wrappers, GALS

circuits encounter the problem of controlling the global clock signal propagation

across the entire chip which deeply affects power consumption.

– The adoption of scratchpad memories [BSL+02] as a design alternative for on-chip

memory caches. A scratchpad memory occupies the same level of the memory

hierarchy as a cache and constitues, with the main memory, a global address space.

Unlike caches, data movements are managed by the software giving more control

over the access times and more predictability to the program.

This draws the big picture of the context of this thesis which focuses on embedded

multi-core platforms that constitute non-autonomous systems and are rather used as gen-

eral purpose accelerators to guarantee high performance and flexibility. They are coupled

with a host processor which runs the operating system and offloads computationally heavy

and parallelizable kernels of code to the multi-core fabric to be accelerated via parallel

execution, somewhat similar to GPUs.

The most significant difference between a host only program and a host+accelerator

program is that the on-chip memory may be completely separated from main memory

1.1. EMBEDDED MULTICORE ARCHITECTURES 5

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Figure 1.3: Platform 2012.

(which is the case when scratchpad memories are used). In this case, the cores may not be

able to read or write memory data directly and all data movements between the separate

memories must be performed explicitly, typically using a Direct Memory Access (DMA)

engine. In the following, we present Platform 2012, an MPSoC architecture having this

feature:

1.1.2 Example of an MPSoC: P2012

Platform 2012 (P2012) [SC10] is an area and power efficient many-core computing

fabric intended to accelerate applications such as video decoding, imaging and next gen-

eration immersive applications like computational photography and augmented reality.

The ultimate goal of P2012 is to fill the area and power efficiency gap, explained earlier,

between general-purpose embedded CPUs and fully hardwired application accelerators,

the former being more flexible and the latter more efficient.

Figure 1.3 presents an overview of the platform. It is highly modular as it is composed

of a number of clusters where each cluster has its own frequency and clock domain and is

capable of integrating hardwired accelerators. Clusters are connected through a high per-

formance fully Asynchronous Network On Chip (ANoC) organized in a 2D-mesh struc-

ture providing a scalable and robust communication across the different power and clock

domains.

A cluster, called ENCore, is a multi-core processing engine clustering up to 16 pro-

cessors. Each processor is an STxP70-V4 which is an extensible 32-bit RISC processor

core implemented with a 7-stages pipeline, reaching 600 MHz and it can execute up to

two instructions per clock cycle (dual issue). P2012 can also link to the ENCore clus-

ter a set of hardware processing elements (HWPEs) that provide a cost optimized code

implementation when a software implementation is inefficient.

The memory hierarchy in the fabric consists of 3 levels, the first intra-cluster level

which is a multi-banked one cycle access L1 data memory shared between processors in

6 1.1. EMBEDDED MULTICORE ARCHITECTURES

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

the same cluster, a second inter-cluster level shared between clusters in the fabric and a

third off-chip memory level shared between the fabric and the rest of the SoC components.

The on-chip memories are scratchpad memories and constitute with the off-chip memory

a visible global memory map with a Non Uniform Memory Access (NUMA) time.

In this platform, remote memories (off-cluster and off-fabric) are very expensive to

access making off-chip memory access the main bottleneck for performance. Direct

Memory Access (DMA) engines are available per cluster to guarantee hardware accel-

erated memory transfers. Their efficient usage is delegated to the software/programmer

who becomes responsible of making decisions about data granularity, the partitioning and

the scheduling of data transfers. This issue along with others memory related issues are

detailed and discussed in the next section.

1.1.3 Memory Organization

One of the most critical components that determine the success of an MPSoC based ar-

chitecture is its memory system [WJM08]. Whereas for conventional architectures caches

are an obvious choice, in MPSoCs several memory design configurations can be consid-

ered using caches, scratchpad memories, stream buffers or a combination of those.

Despite the continuous technology improvement for building larger and faster memo-

ries, accessing main memory still remains the bottleneck for performance in many hard-

ware systems. In MPSoCs this limitation is even more critical mainly because i) the

limited on-chip memory capacity, especially compared to the increasing requirement of

handling larger data sets needed by embedded applications, ii) the main memory is shared

between the host processor and other devices and IPs on the SoC.

Over the decades, the gap in the increase of performance between processors speed

and memory speed has been referred to as the well known memory wall [WM95]. The

system performance becomes then determined by memory access speed rather than the

processor’s speed. This gap has grown over the years to reach a factor of 100 today as de-

picted in Figure 1.4. This is a big issue in computer architectures since in most programs

20 to 40 % of instructions are referencing data [HP06]. This fact is more significant for

data intensive applications that constitute a large part of today’s applications.

Memory hierarchy has been proposed as a solution to reduce the memory gap by

providing different levels of memories with increasing speed and decreasing capacity, as

illustrated in Figure 1.5, where main memory constitutes the last memory level in the

memory hierarchy as it is the first location of input data and where the output data will

eventually reside 2. Traditionally other memory levels are referred to as caches.

Cache Based Architectures

A cache memory keeps a temporary view of a small part of the main memory so that

the access to a data item is very fast and referred to as a cache hit, if a copy of this data

item is in a first level cache. The access is much slower and is referred to as a cache

miss if the copy is located in a further cache level or in main memory. When a cache

miss occurs, a fixed size collection of data items containing the requested word called

a block or a line is retrieved from main memory and placed into the cache. Failing to

keep pace with the processors speed, the main attempt was to reduce the number of cache

2. Secondary storage such as disks are ignored.

1.1. EMBEDDED MULTICORE ARCHITECTURES 7

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Figure 1.4: The gap in performance between processor speed and memory speed.

Main Memory

CPU

Caches

. . .

Registers

Increasing capacity, Decreasing speed

L
ev

el
n

L
ev

el
1

Figure 1.5: Memory Hierarchy.

misses by exploiting the temporal and spatial locality of programs. Temporal locality

exploits the fact that the same data item will be needed by the program in the near future

whereas spatial locality the fact that another data item in the same block will be most

likely needed soon. Efficient cache management policy has been (and is still) an active

research area [WL91, MCT96].

In Shared Memory symmetric Multiprocessor (SMP) context, cache solutions suffer

from the cache coherence (consistency) problem where two processors or more may ac-

cess in their private cache different copies of the same data. Therefore, the memory view

can easily get inconsistent if one of the processors modifies the value of the cached data

but not the external copies. The cache has to be flushed to upgrade the data value in main

memory, or the cached value has to be invalidated. To manage the consistency issue be-

tween caches and memory, many solutions have been proposed ranging from hardware

to software solutions [LLG+90, AB86, Ste90], hardware based solutions being the most

popular. Non coherent systems leave the management of cache inconsistency to the soft-

ware.

8 1.1. EMBEDDED MULTICORE ARCHITECTURES

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Data

Cache

Memory

Address

Space

CPU

Scratchpad

memory

(off−chip)

N−1

P−1

P

0

DRAM

(on−chip)

1 cycle

1 cycle

⋍ 100 cycles

Figure 1.6: Dividing data address space between SPM and off-chip memory.

While for general purpose multiprocessor architectures, the design choice of using

caches is obvious, it is not the case anymore for MPSoCs. The main reason is that MP-

SoCs are resource constrained systems and managing cache coherence is very expen-

sive both in terms of area and power [LPB06]. Therefore Scratchpad Memories (SPMs)

have been proposed as an alternative to caches where data (and sometimes code) trans-

fers through the memory hierarchy are explicitly managed by the software. Furthermore,

unlike a general purpose processor where a standard cache-based memory hierarchy is

employed to guarantee good average performance over a wide range of applications, in

MPSoCs, the overall memory organization has to be tailored in order to fit at best the

needs of the target class of applications. Indeed, according to the memory access pat-

tern of the target applications, the use of scratchpad memories can be more efficient than

caches [SK08].

Explicitly Managed Memory

Both caches and SPMs allow fast access to the residing data, whereas an access to the

off-chip memory requires relatively longer access times. The main difference between a

scratchpad memory and a conventional cache is that SPMs are mapped into an address

space disjoint from that of the off-chip memory as illustrated in Figure 1.6. Moreover, a

SPM guarantees a fixed single-cycle (for first level) access time whereas an access to the

cache is subject to cache misses. Therefore to improve performance, frequently accessed

data can be directly/statically mapped to the SPM address space.

However, the use of SPMs poses a number of new challenges. Indeed, from a soft-

ware perspective the use and support of caches provides a good abstraction of a single

shared memory space which simplifies programming since the programmer is freed from

managing data movements and memory consistency. On the contrary, SPMs are visible

to the programmer/software who has a disjoint view of the different levels of memories

and is responsible of explicitly managing data movements by deciding what data to move,

where and when. Machines with explicitly managed memory hierarchies will become

increasingly prevalent in the future [KYM+07].

To improve performance, SPMs are usually combined with a hardware support for

accelerating data transfers, called Direct Memory Access (DMA) engines. DMAs can

transfer large amount of data between memory locations without processor interven-

1.1. EMBEDDED MULTICORE ARCHITECTURES 9

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

tion offering another level of parallelism by overlapping computations and data prefetch-

ing [Gsc07, SBKD06] and thereby hiding memory latency. Multi-buffering programming

schemes are often used to take advantage of this. We detail these aspects in the next

chapter.

The idea of data prefetching to improve memory performance, in cache based archi-

tecture, it is a well and intensively studied topic. Several techniques have been proposed

ranging from purely hardware prefetching solutions such as [DDS95, fClB95, Fri02] re-

quiring a hardware unit connected to the cache to handle prefetching at runtime but at the

cost of extra circuitry, to software prefetching approaches such as [MG91, CKP91] rely-

ing on compiler’s analysis to insert additional fetch instructions in the code. Other works

such as [CB94, WBM+03] combine both hardware and software prefetching approaches.

However, as mentioned previously, in the context of caches, data prefetching is trans-

parent to the user and fetched data granularity is fixed to a cache line whereas in SPMs

context this is not the case. In explicitly managed memory architectures, the effort of data

movement is delegated to the programmer who has to make decisions about the granu-

larity of data transfers and the way they are scheduled to achieve optimal performance.

Indeed the programmer is solely responsible of setting up and sizing data buffers, man-

aging alignment of data, synchronizing computations and data transfers and maintaining

data coherence. Obviously this comes at the cost of programmers productivity and opti-

mal performance can only be achieved if the programmer has a good understanding of the

underlying architecture.

In order to improve both performance and programmers productivity we need to rely

on adequate compiler and runtime support. Some new programming models such as

Cellgen and Sequoia [FHK+06, SYN09, YRL+09] provide a programming front-end for

explicitly managed memories. However, advanced compilers that are able to generate

automatically efficient code based on optimal data movements decisions are still needed.

This thesis suggests models that can aid programmers/compilers in optimizing such deci-

sions.

DRAM

The reason why access to a cache/SPM is much faster than accessing main memory is

that the physical structure of both is different. Main memories are usually built using Dy-

namic Random Access Memory (DRAM) technology whereas caches/SPMs using Static

Random Access Memory (SRAM). The low price of DRAMs make them attractive for

main memories despite being slower and more power hungry than SRAMs.

Unlike SRAMs that have a fixed access latency, DRAM latency is subject to variabili-

ties. The main reason is that an SRAM memory is built of simple modules while a DRAM

memory admits several complex features which eventually influence the latency. In the

following we detail some of these features,

1. Data refreshment: SRAMs and DRAMs differ in the way they hold data. To store

data, DRAMs use capacitors that leak power over time, therefore data needs to be

refreshed periodically which means that information needs to be read and written

again every few milliseconds, which distinguish the term dynamic in DRAMs from

static in SRAMs. This refreshment induces an additional latency and requires extra

circuitry which also adds to the system cost.

10 1.1. EMBEDDED MULTICORE ARCHITECTURES

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Figure 1.7: Modern DRAMs organization.

2. Hierarchical organization: modern DRAMs have a hierachical organization, illus-

trated in Figure 1.7, to store data. The core memory storage is divided into multiple

banks where each bank consists of a rectangular matrix addressed by rows and

columns such that a typical DRAM memory address is internally split into a row

address and a column address. The row address selects a page from the core stor-

age, and the column address selects an offset within the page to get to the desired

word. When a row address is selected, the entire page addressed is precharged into

the page buffer which acts like a cache making subsequent accesses to the same

page very fast. In order to improve performance, each bank has an independent

page buffer to increase parallel read/write requests to the DRAM since two sepa-

rate memory pages can simultaneously be active in their page buffers. Therefore

data layout in main memory plays an important role in performance where a con-

tiguous access is less likely to be subject to page misses than a more fragmented

access to memory.

3. Requests scheduling: DRAMs are usually coupled with a memory controller and

a memory scheduler to arbitrate between concurrent requests to the DRAM, these

requests are usually rescheduled to maximize memory performance by maximizing

page hit rate. Therefore the arrival sequence of read/write memory requests also

influences performance. This sequence includes requests issued from the multi-

core fabric as well requests issued from other devices on the SoC, since access to

main memory is shared between these devices. This can be an important source of

variability even if to some extend we can have control on the read/write requests

issued by the software running on the multi-core fabric.

In the first part of this chapter, we have set up the hardware architectural context of

this thesis. In the sequel, we talk about some general issues concerning the software/ap-

plication layers on the top of the hardware.

1.1. EMBEDDED MULTICORE ARCHITECTURES 11

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

1.2 Embedded Software

Today the semiconductor industry has done great steps in building efficient multi-

core platforms that offer several levels of parallelism. However, exploiting the provided

hardware capabilities of modern multi-core architectures for the development of efficient

software still remains the critical path to fully take advantage of this hardware [MB09].

Because of the increasing demand of integrating more functionalities in embedded

architectures, embedded applications are becoming more computationally intensive, per-

formance demanding and power hungry. In order to satisfy such constraints, programmers

are required to deal with difficult tasks such as application/data partitioning, parallel pro-

gramming and mapping to the hardware architecture, that govern performance. Below,

we discuss some of these issues.

1.2.1 Parallelization potential of an application

For sequential programs, increase in the clock speed of the processor automatically

increases the speedup of execution. For parallel programs, this is not necessarily true as

we increase the number of processors since the benefit from parallel execution mainly

depends on the inherent parallelization potential of the application. For instance, paral-

lelizing video decoding standards such as MPEG and VC1 is limited by the parallelization

of the Variable Length Decoder (VLD) kernel of code which is very challenging since the

VLD algorithm requires a sequential access to the bitstream.

This idea is the essence of Amdahl’s law [Amd67] stating that the benefit from par-

allelizing tasks can be severely limited by the non parallelizable (sequential) parts in a

program. Let f be the fraction of the sequential part of a program, the parallel execution

time given p processors is f + (1− f)/p, since the non parallelizable part takes the same

time f on both sequential and parallel machines and the remaining (1− f) is fully paral-

lelizable. Therefore the speedup of the parallel execution defined as the ratio between the

sequential and the parallel execution time is,

Amdahl’s law speedup = 1/[f + (1− f)/p] < 1/f

which is clearly bounded by the sequential part giving a maximal theoretical speedup of

1/f . Figure 1.8 plots this speedup for different values of f as we increase the number of

processors. Thus for a fraction of f = 10% ((1 − f) = 90%), the speedup that can be

achieved is at most ×10 even if an infinite number of processors is provided. Hence, this

law puts a limit on the usefulness of increasing the number of processors. Note that in

practice this limitation is much more severe as Amdahl’s law takes into account only the

number of processors and ignores the effect of synchronization and communication.

Amdahl’s law may seem as a strong limitation, however in practice, fortunately, the

sequential overhead is very small for many applications. Furthermore, in many cases, the

sequential part is constant or does not scale proportionately to the size of the problem

as compared to the parallelizable part, making this limitation smaller as the size of the

problem increases. Embarassingly parallel applications refer to the ideal case where the

sequential part is null or negligible and therefore all computations in the program can be

done in parallel.

12 1.2. EMBEDDED SOFTWARE

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Figure 1.8: The limit on speedup according to Amdahl’s law, the parallel portion is de-

fined as (1− f).

1.2.2 Parallelization

Given an application, parallelization refers to the process of identifying and extracting

parts of the application that can be executed concurrently. Basically, there are 3 forms of

parallelism that we detail in the following,

Task parallelism refers to different independent activities that can run in parallel. These

activities can be characterized by a task graph, a Directed Acyclic Graph (DAG) where

nodes represent tasks and arrows precedence and data dependencies between them, see

Figure 1.9. As for the granularity of tasks, a task may represent an instruction as well as a

kernel of computation code or control code. Note that the sequential part of a task graph

is defined by the critical path of the graph, it is the longest sequence of sequential tasks

and it defines a lower bound on the execution time of the graph. The width of the graph

corresponds to the maximum number of tasks that can run in parallel provided enough

processors.

Data parallelism refers to different instances of the same task that are executed con-

currently on different data. This form of parallelism can also be represented using a task

graph, see Figure 1.9 where a fork and join tasks are added to ensure the synchroniza-

tion between the beginning and the end of the task execution. Single Instruction Multiple

Data (SIMD) and Single Program Multiple Data (SPMD) are very common forms of such

parallelism. The main difference between them is the granularity of tasks and data where

the former focuses on word level data combined with low level instruction tasks and the

latter on coarse granularity data combined with program tasks. SIMD operations usually

have a hardware support known as vector processors. Post decoding algorithms such as

noise filtering that are used to improve the quality of decoded images are good candidates

for data parallelization. Data parallelism is by far a better candidate for automatic extrac-

tion of parallelism, the parallelization of loops in compilers [DRV00] being a widespread

example.

1.2. EMBEDDED SOFTWARE 13

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Data Parallelism

Task Parallelism

T5T5

T1

T4T3
T2

T6

Fork

Join

Figure 1.9: Task and data parallelism.

Pipeline parallelism refers to computations that form a sequence of stages where each

stage corresponds to a different task/action performed by a different processor. Streaming

applications [TKA02] such as video decoding algorithms performing a series of trans-

formations on streams of data is a good example of pipelined parallelism. Figure 1.10

illustrates an 4-stages application F , computing a stream of data where each data x in

indexed by its position i in the stream. For a given data item, there is a sequential ex-

ecution of all stages so that the completion of one stage triggers the execution of the

next one exhibiting a producer/consumer kind of interaction between successive stages.

However, these stages can work concurrently on successive instances of the data stream.

A N -stages pipelined application can have up to N tasks working in parallel at a given

time. Dataflow paradigm [LM87] provides a natural way for modeling such applications

that are viewed as a set of autonomous actors communicating through FIFO channels and

where the arrival of data to a given stage triggers the execution, called firing, of this stage.

Luckily embedded applications exhibit a large degree of parallelism by combining

different forms of parallelism and at different levels of granularity. However, this makes

the task of automatic extraction of parallelism more difficult since it is critical/difficult to

leverage the right combination of task, data and pipeline parallelism.

1.2.3 Parallel programming

After being restricted to some specific domains such as High Performance Computing

(HPC), parallel programming is now becoming a main stream in software development

because of the increasing use of multi-core platforms. However, writing efficient parallel

programs has always been a very difficult task.

Several programming models and tools have been proposed in the recent years that

aim at facilitating software development for MPSoCs. Commonly, these programming

models are very low level libraries highly dependent on the target platform. They give

the programmer full control over the architecture thus allowing him or her to provide a

14 1.2. EMBEDDED SOFTWARE

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

Time

xi+1

T1(xi+1) T2(xi+1) T3(xi+1) T4(xi+1)

T1(xi+2) T2(xi+2) T3(xi+2) T4(xi+2)

T1(xi+3) T2(xi+3) T3(xi+3) T4(xi+3)

F

F (xi−1)

T1(xi) T2(xi) T3(xi) T4(xi)

Figure 1.10: 4-stages pipeline execution of a stream of data.

fully optimized software. However, to achieve this, the programmer requires a very good

understanding of all the platform low level hardware details which comes at the expense

of a high development effort besides abstraction and code portability.

Therefore, today there is a need for providing a standard way for programming ap-

plications on multi-core architectures. Standard parallel programming frameworks, such

as OpenMP [Ope08] initially designed for SMP architectures, are now used for program-

ming MPSoCs. This requires a customized and effective implementation of the standard

programming model constructs/directives on the underlying architecture and potentially

extensions to match the target hardware. Works such as [MBB10] and [MB09] investi-

gate and supports efficient implementation of OpenMP on MPSoCs featuring explicitly

managed memory hierarchy.

One major issue to be aware of is that standard programming models solve the prob-

lem of functional/code portability but not performance portability. OpenCL [Gro08], a

recent standard initially designed to be cross-platforms as it offers a unified framework

for programming heterogeneous systems which can provide a mix of multi-core CPUs,

GPUs, MPSoCs and other parallel processors such as DSPs, also poses the problem of

performance portability. OpenCL is now capturing the interest of both academia and

industry communities.

Another emerging concern in programming multi-core platforms is how to keep pace

with cores scalability. Indeed, with the rapid increase in the number of cores, the limiting

factor in performance will be the ability to write and rewrite applications to scale at a rate

that keeps up with the rate of core count.

1.2.4 Deployment

The deployment step makes the link between the parallelized application and the un-

derlying architecture. Deploying an application on a multiprocessor architecture is about

deciding the spatial (mapping) and temporal (scheduling) allocation of resources to the

1.2. EMBEDDED SOFTWARE 15

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

tasks.

The embedded feature of MPSoCs requires the applications implementation to meet

real-time constraints under strict cost and power budgets. To achieve these requirements,

both mapping and scheduling have to be done taking into account numerous criteria such

as workload balancing, energy consumption and data communication. This is naturally

formulated as constrained multi-criteria optimization problems [Ehr00] where decision

variables corresponds to the allocation of tasks to the available resources, constraints de-

fine feasible solutions and the cost functions define the criteria to optimize expressed over

the decision variables. When some of the criteria are conflicting, there is no single opti-

mal solution for which all criteria are optimal but a set of incomparable efficient solutions

known as Pareto solutions that represent the different trade-offs between conflicting cri-

teria. Methods/tools such as [LGCM10,LCM11] can then be used to find or approximate

the Pareto solutions.

To explore such solutions, the entry point of these tools is usually abstract models

of both the application and the platform. The model of the application usually assumes a

given parallelization that captures concurrency along with task and data dependencies and

it is annotated with information relevant to the deployment decisions, such as the duration

of tasks and the communication volume between two tasks. The model of the architecture

exhibits the resources required for deployment such as the number of processors, the

number of communication links between processors and the routing function, that are also

annotated with information such as the frequency of processors, the network bandwidth.

The choice of these parameters obviously depends on the criteria to optimize.

As to the granularity of the models, there is a clear trade-off between accuracy and

efficiency, when more details are modeled, the gap in performance between the theoretical

optimal solution and the practical solution is reduced, but this comes at the cost of more

complexity and thus efficiency.

In a previous work [CMLS11], we explored the use of Satisfiability Modulo Theory

(SMT) solvers [ZM02], to solve a simplified form of the mapping problem considering

two conflicting criteria, that is computation workload and communication volume, on a

distributed memory multi-processor architecture. This work is out of the scope of this

thesis.

1.3 Conclusions

The correlation between hardware and software is very strong in MPSoCs, which are

usually designed for a specific domain of applications and where optimal energy con-

sumption and performance efficiency are achieved by hardware implementations at the

expense of flexibility.

The shift of industry to more flexible architectures with more general purpose pro-

cessing units puts a heavy burden on the software/application programmers who cannot

ignore anymore the parallel features of the multi-core hardware and where optimal perfor-

mance can only be achieved by a tuned and low level implementation of the application

thus being very closely coupled with the target architecture. This comes at the expense of

programmers productivity and software portability.

Therefore, in order to be efficient as well as flexible and portable, there is no es-

cape from dealing with hard problems such as parallelizing applications, the error prone

parallel execution of programs and deployment decisions considering numerous and con-

16 1.3. CONCLUSIONS

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

flicting criteria, to fully take advantage of the different levels of parallelism offered by the

hardware as well as the memory hierarchy.

In this chapter, we presented a class of MPSoCs platforms that are the main focus of

this thesis. Their main feature is an explicitly managed memory hierarchy where data

movements are managed by the software using DMA engines, thus offering an opportu-

nity for optimizing data transfers between the off-chip memory and the limited capacity

on-chip memories, which is crucial for performance. This context changes the formula-

tion of the classical parallel processing problems where no memory space constraints are

assumed and where the main focus is to increase the processing capability while reducing

the communication cost between processors, without any concern about data movement

in the memory hierarchy.

1.3. CONCLUSIONS 17

CHAPTER 1. EMBEDDED MULTICORES: OPPORTUNITIES AND CHALLENGES

18 1.3. CONCLUSIONS

Chapter 2

Preliminaries

2.1 Introduction

In this chapter, we first describe DMA engines, a hardware component which plays

an important role in the performance of MPSoCs that need to transfer large data sets.

We then define the structure of the class of applications on which we focus in this thesis,

namely data parallel applications, and describe how these applications are programmed

in MPSoCs in which data movements are performed by the software using explicit DMA

calls.

2.2 Direct Memory Access (DMA) Engines

DMA is a hardware device that provides a cheap and fast way for transferring data. It

is an important feature of many hardware systems including hard disk drive controllers in

general purpose computers, graphics cards and systems-on-chip.

The main job of the DMA is to copy data (and sometimes code) from one memory

location to another without involving the processor. When a processor needs data, it

issues a command to the DMA by specifying the source address, the destination address

and how much data it needs (number of words) and the DMA controller (DMAC) then

takes charge of the transfer. When the data transfer terminates, the DMAC notifies the

processor of its completion. DMA is more efficient for transferring a large quantities of

data usually referred to as a block.

In MPSoCs, DMAs are particularily useful to relieve the cores from costly data trans-

fers between off-chip memory and on-chip memory where a read or a write operation

takes hundreds, sometimes thousands, of cycles. The implementation of data intensive

applications, that constitute a large part of today’s applications, impose a frequent access

to the off-chip memory to transfer large data sets due to the on-chip memories limited

capacity.

In order to understand the DMA behavior, we detail in the sequel the flow of a basic

DMA transfer in the Cell B.E. architecture. We then present and discuss general DMA

features, common to most architectures.

19

CHAPTER 2. PRELIMINARIES

M
em

o
ry

C
o
n
tr

o
le

r

TLB

DMA Queue

MMU

B
U

S

Off−chip Memory

C
h
an

n
el

In
te

rf
ac

e

Memory Flow Controller (MFC)

B
u

s
 I

n
te

rf
a
ce

U

n
it

Processor

Local Store

DMA Controller (DMAC)

Figure 2.1: DMA command flow in the Cell B.E. platform.

2.2.1 Example of a DMA Command Flow

The Cell B.E. is a multi-core heterogeneous architecture consisting of a host processor

and 8 cores acting as co-processors used for code acceleration. All elements in the Cell

B.E. are connected through a high speed interconnect bus which is the main communica-

tion infrastructure of the platform. Each processor has a local store, a scratchpad mem-

ory of a small capacity (256 Kbytes), and a Memory Flow Controller (MFC) to manage

DMA transfers. Local memory is the only memory directly accessible to the processor,

the DMA is used to access data in other processors local store or main memory. More

details about the architecture are given in Chapter 5, dedicated to the experiments.

Figure 2.1 presents a simplified overview of the components involved in a DMA trans-

fer flow between a processor’s local store and main memory. A more detailed description

can be found in [KPP06]. When a processor needs data, it sends a transfer request to the

DMA Controller (DMAC) through a channel interface by specifying all the parameters

required for the transfer, and the command is then inserted in a DMA queue. In the Cell

B.E. platform, the DMA queue has 16 entries and in case the queue is full, the processor

is blocked from issuing other requests. Note that the Memory Flow Controller (MFC) has

multiple channels enabling the DMA to receive multiple transfer requests.

The DMA controller (DMAC) selects from the queue a command to serve. Note that

the order in which the commands are served is not necessarily the same order in which

they arrive. The selected command is then submitted to the Memory Management Unit

(MMU) which performs an address translation of source and destination addresses since

the Cell B.E. uses a virtual memory addressing. The MMU uses a Translation Look-aside

Buffer (TLB) for caching the results of recently performed translations.

After the address translation, the DMAC unrolls the DMA transfer command to create

a sequence of smaller bus transfer requests since typically a DMA command granularity

20 2.2. DIRECT MEMORY ACCESS (DMA) ENGINES

CHAPTER 2. PRELIMINARIES

is larger than the bus transfer granularity, in the Cell B.E. a bus request can transfer up to

128 bytes. These bus requests are stored in the Bus Interface Unit (BIU) queue. When

the first bus request of a sequence of requests belonging to the same DMA command is

selected from this queue, it is submitted to the bus controller and then to the off-chip

controller and if it is accepted, data transfer begins to copy data from off-chip memory to

the local store such that subsequent bus requests of the same command are pipelined. The

DMA command remains in the DMA queue untill all its corresponding bus requests have

completed. In the meanwhile, the DMAC can continue processing other DMA commands

and when all bus requests of the current command have completed, it signals the command

completion to the processor and removes the command from the queue.

In the Cell B.E. architecture, a DMA command can be a more complex object, that

is, a DMA list to describe fragmented data transfers. Each list element is a contiguous

transfer where the programmer needs to specify the source address and the destination

address and the block size. These information are stored in the local store and when the

command is selected from the queue to be processed, they are fetched to proceed for each

list element, in the same way as previously, to address translation then splitting to several

read/write bus requests.

2.2.2 The DMA’s main features

So far, we presented a simplified view of the DMA behavior of the Cell B.E. . Some

features vary from one architecture to another, however all DMAs share some common

characteristics that we explain and discuss in this section.

Overall, a DMA command flow can be decomposed into two major phases:

1. Command initialization phase: including the command issue time, the time to write

the command in the queue and potentially some address translation when virtual

memory addressing is used. Note that this phase is independent of the amount of

data to transfer.

2. Data transfer phase: when a command is ready, data transfer begins, the block

transfer request is then split into smaller read/write requests submitted to the in-

terconnect and memory controller, these packets travel from source to destination

through the on-chip/off-chip interconnect and then read/write to/from memory. The

duration of this phase is clearly proportional to the amount of data.

Note that each DMA request requires the allocation of a buffer in local memory, of the

same size.

As mentioned previously, DMA engines are more efficient for coarse granularity data

transfers than for low load/store instructions granularity typically because the initializa-

tion cost is significant and is only amortized for large data blocks. Furthermore, it can

operate in burst mode (also called block transfer mode) where a block of possibly hun-

dreds or thousands words/bytes can be transferred before the processor issuing the transfer

is notified of its completion. Burst mode is very efficient since the memory latency is paid

for the first word and then the remaining read/write requests of the same command are

pipelined. This is very useful for loading program code and transferring large data sets

required by data intensive applications.

A DMA has multiple channels enabling it to receive several transfer requests and it

has a scheduling policy to arbitrate between concurrent requests, sometimes based on

programmable channels priority or on round robbin.

2.2. DIRECT MEMORY ACCESS (DMA) ENGINES 21

CHAPTER 2. PRELIMINARIES

Block

Src addr Dst addr

Local

Memory

Main

Memory
1D to 1D

(a) Contiguous memory access.

Src addr Dst addr

Stride

2D to 1D

(b) Strided memory access.

Src addr Dst addr2D to 1D

(c) Fixed stride memory access.

Figure 2.2: Different configurations for DMA data access.

DMA can transfer contiguous data blocks where data is stored in main memory as

contiguous memory segments, as well as strided data blocks where data is fragmented

in main memory. For such blocks, in addition to the source and destination address, a

DMA command should specify a stride, an offset to access the next contiguous block in

memory. Figure 2.2 illustrates different configurations for accessing data in main memory,

contiguous blocks in (a) and fragmented blocks with a variable stride in (b) and a fixed

stride in (c). These blocks of data are stored contiguously in local memory. Strided

DMA transfers are in particular used for transferring rectangular data blocks required for

applications working on two (or more) dimensional data arrays. In the Cell B.E. , there

is no hardware support for strided DMA commands that are implemented at the software

level using DMA lists which can be viewed as an array whose entries are pairs consisting

of a main memory address and a contiguous transfer size.

In terms of performance, strided DMA transfers are costlier than contiguous DMA

22 2.2. DIRECT MEMORY ACCESS (DMA) ENGINES

CHAPTER 2. PRELIMINARIES

transfers of the same size mainly for two reasons. The first concerns the initialization

phase overhead which may be associated with each line of contiguous transfer if no hard-

ware support for strided accesses is available. In the Cell B.E. , this corresponds to the

software issue overhead for each list element and to the time to fetch information required

by each list element transfer from the local store. Even with a hardware support, the issue

overhead still remains more expensive because more parameters are involved in the com-

mand. The second reason concerns the physical matrix structure of DRAMs described

in section 1.1.3. Since two dimensional data is usually organized in row major format in

main memory, performing a stride to access next contiguous data in memory may require

the precharging of a new page thereby inducing an additional latency overhead. Note that

when the granularity of transfers is fixed (e.g a macroblock in video encoding) , it is pos-

sible to reorganize data layout in memory so that each unit of transfer forms a contiguous

block in memory in order to reduce both the issue overhead and the page miss effect.

However this processing overhead may also in practice hinder the performance.

DMA mechanisms for multi-core systems can be roughly classified as centralized (one

device serves all processors) which is the case in the P2012 where one DMA is shared

among processors in the same cluster, or distributed (each processor has its own DMA

engine) like in the Cell B.E. .

The main limiting factor for DMA benefits is contention which has two sources,

1. The on-chip network traffic: resulting from simultaneous transfer requests of multi-

ple processors sharing the same transfer infra-structure and more generally from the

NoC traffic. Some of these contentions overhead can be controlled/reduced with an

appropriate transfer scheduling policy. Having a centralized DMA system has the

advantage of giving such control, especially for applications that exhibit a regular

memory access pattern and move large amounts of data.

2. The off-chip memory traffic: the DRAM memory controller becomes the bottle-

neck for performance due to contentions resulting from both on-chip and off-chip

concurrent read and write requests. This issue is very complex to handle (predic-

t/manage) precisely as it requires an accurate model of the external DRAM char-

acteristics such as the scheduling policy of the memory controller and the effect of

page misses and data refreshment latencies. Furthermore, memory controllers are

usually off-the-shelf IPs that vary among vendors and we usually have little control

on them.

In MPSoCs, which are the main concern of this thesis, the strict memory and power

constraints on one hand and the data intensive feature of the target applications on the

other, render efficient use of DMAs essential for performance, conditioning to a large

extent the success of MPSoCs. In such platforms, DMAs can be coupled either with

caches or scratchpad memories. Unlike caches, where the prefetching is transparent to

the programmer and the size of data to fetch is fixed to a cache line, in explicitly managed

memories performance improvement can be achieved by an appropriate choice of DMA

data granularity.

2.3 Data Parallel Applications

In this thesis we focus on data parallel applications for two major reasons, i) it is a

common way for parallelizing code as they occur naturally and ii) they exhibit a regular

2.3. DATA PARALLEL APPLICATIONS 23

CHAPTER 2. PRELIMINARIES

Algorithm 2.3.1 Sequential

for i1 := 0 to n− 1 do

for i2 := 0 to n− 1 do

Y (i1, i2) := f(X(i1, i2))
od

od

memory access pattern and we can therefore reason about data transfers optimization

statically.

Our typical structure of code is the computation Y = f(X) described in the sequential

algorithm 2.3.1 which uniformly applies f to the input array X to produce an output array

Y where X and Y are large arrays of data 1. For the sake of simplicity, we assume

that both arrays X and Y have the same size and dimensions. In Program 2.3.1, X is a

two dimensional data array of n × n elements, that we generalize thereafter to n1 × n2

elements. We explore mainly this case as being the most interesting, the notation can then

be generalized to any dimension.

In this section, we ignore the transfer from off-chip memory to the fabric as we assume

that data is already available in the processors local memory, and we only focus on the

logical structure of data. Therefore, we defer the discussion about the physical memory

layout and the transfer/communication cost to the sequel.

2.3.1 Independent Data Computations

Given p processors, the input array can be then partitioned into p chunks of data

processed concurrently, each processor computing n2/p elements.

This is the simplest form of data parallelization, it can be viewed as a task graph il-

lustrated in Figure 2.3 where a splitter and a merger task are added to insure the synchro-

nization at the beginning and the end of the execution. Computations between processors

are completely independent as there is no need for communication nor synchronization.

Note that there are two extreme cases in terms of sequential versus parallel execution,

both are not realizable because of the following architectural limits,

1. A fully sequential execution requires the whole array to fit in the processor’s local

memory which, in the context of MPSoCs, is not possible because of the limited on-

chip memories capacity that are typically smaller than n2, this issue will be further

discussed in the following sections.

2. A fully parallel execution requires enough processors so that each processor com-

putes one array element. Typically, the number of available processors r in a multi-

core fabric satisfies r << n2.

Note that the model in Figure 2.3 only captures concurrency of data parallel tasks but

tell us nothing about the structure of data or how it is allocated/mapped to each processor

which both in practice have an important role when data communication and transfers are

considered.

1. For instance, a full High Definition (HD) image consists of 1920x1080 pixels.

24 2.3. DATA PARALLEL APPLICATIONS

CHAPTER 2. PRELIMINARIES

Split

Merge

f f f

Y

Y

X

f

X

Figure 2.3: A fully data independent computation before and after data parallelization.

.

Array

1 n/p 1 n/p 1 n/p 1 n/p

P1 P2 P3 P4

1

Figure 2.4: One-dimensional data partitioning.

Data Partitioning (size vs. shape) For one-dimensional data arrays, the choice of par-

titioning into p chunks is straightforward where each chunk is a contiguous block of

n/p elements, as illustrated in Figure 2.4. However, for two-dimensional data structures,

the geometry of data offers different options for array partitioning, as an example Fig-

ure 2.5 depicts different partitionings where each chunk clusters n2/p elements of differ-

ent shapes. Note that in terms of quantity of data, these solutions are equivalent, however

when considering DMA transfers from main memory then, as argued previously in sec-

tion 2.2, strided DMA commands are more expensive than contiguous commands of the

same size, making the first choice (Figure 2.5(a)) optimal.

2.3. DATA PARALLEL APPLICATIONS 25

CHAPTER 2. PRELIMINARIES

n

n/p

n

n/p

n/
√
p

n/
√
p

(a) n/p lines of n elements (b) n lines of n/p elements (c) (n/
√
p) lines of (n/

√
p)

elements

Figure 2.5: Different data chunks with the same size but different shapes.

....

....

....

. . . .

. . . .

Contiguous

Periodic

P1 P2

bj

P1 P2 P3

P3 P4

P4

bj+p

bj+1

bj

P4 P1

Figure 2.6: Contiguous vs periodic allocation of data blocks.

Data Allocation A chunk of data represents the total amount of work that each proces-

sor must perform. This chunk can be transferred to a processor’s local memory at once or

it can be further divided into smaller blocks, transferred to the local memory separately.

This is particularly the case when the whole chunk of data cannot fit in the processor’s lo-

cal memory. Smaller blocks can then be allocated to the processors either in a contiguous

manner where adjacent blocks j and j + 1 are allocated to the same processor, or a peri-

odic manner where blocks j and j+ p are allocated to the same processor, see Figure 2.6.

Note that in terms of quantity of data these solutions are also equivalent, however as con-

current processors requests to access main memory are considered, periodic allocation of

data blocks has the advantage of avoiding jumping from one memory location to another

thus reducing page miss occurrence.

Because the reality of most algorithms today is more complicated than the simple

form defined previously, we also focus in this thesis on a variant of these algorithms where

computations share data. We refer to such computations as overlapped data applications.

2.3.2 Overlapped Data Computations

The main feature of these applications is that computations on each array element

involve additional neighboring data. In image processing applications, these operations

are for instance used in noise filtering algorithms and detection of local structures such as

edges, corners, lines, etc.

For that, we assume a neighborhood function which associates, in a uniform manner,

26 2.3. DATA PARALLEL APPLICATIONS

CHAPTER 2. PRELIMINARIES

n

n

k/2

k/2

Figure 2.7: Neighborhood pattern of size k.

with every array element X(i1, i2) a set of elements near to it including X(i1, i2) itself.

In other words, computation in the inner loop of Program 2.3.1 is replaced by,

Y (i1, i2) := f(V (i1, i2)),

where V is neighborhood data required for the computation. For instance,

V (i1, i2) = {X(i1 − 1, i2), X(i1, i2 − 1), X(i1, i2), X(i1 + 1, i2), X(i1, i2 + 1)}.

The Neighborhood dependency can be spatial when computations share input data,

that is V ⊂ X , or temporal when V ⊂ Y . In this thesis, we only focus on spatial de-

pendencies, temporal dependencies being more complicated since they create precedence

between data parallel tasks which somehow combines data and task parallelism and re-

quires more synchronization.

Both neighborhood pattern, size and the type of neighborhood dependency can differ

from one application to another. This information is usually known a priori as it is part of

the features of the algorithm.

As a neighborhood pattern, we consider a symmetric window of size k of input data

as illustrated in Figure 2.7. Therefore, without loss of generality, we assume V (i1, i2) to

be a square around X(i1, i2), that is,

V (i1, i2) =

{

X(j1, j2) :
(i1 − k/2 ≤ j1 ≤ i1 + k/2
(i2 − k/2 ≤ j2 ≤ i2 + k/2

}

Note that such computations have a degree of spatial locality, since k << n.

2.3. DATA PARALLEL APPLICATIONS 27

CHAPTER 2. PRELIMINARIES

(s1, s2) = (1, 4)

s2 = 4

s1 = 1

(s1, s2) = (4, 1)

s1 = 4

s2 = 1

(s1, s2) = (2, 2)

s1 = 2

s2 = 2

Figure 2.8: Influence of the block shape on the amount of shared data.

Data Sharing When data is partitioned among processors, the neighborhood pattern

of V along with the geometry of data partitioning determine the amount of data shared

between processors and consequently the synchronization and communication overhead

that restrict the speedup obtained from the parallel execution. In one-dimensional data, the

size of shared data is always fixed to k elements, no matter the size of the block. However,

when considering two-dimensional data, the size and also the shape of the block influence

the amount of shared data which constitute the perimeter around the block to compute.

Suppose that the input array is partitioned into blocks clustering s1 × s2 elements, The

amount of shared data is therefore k(s1 + s2) + k2. Figure 2.8 illustrates shared data for

different block shapes of the same area s1 × s2 = δ. It is not hard to see that for each

value of δ, shared data is optimized for square shapes, that is (s1, s2) = (
√
δ,
√
δ).

2.3.3 Discussion

While a lot of work has been done in the past to successfully parallelize data parallel

applications in a multi-processor setting such as [AKN95, kLH95, AP01], contemporary

MPSoCs architectures with a limited on-chip memory and a high latency access to main

memory change the formulation and parameters of the problem and call for new solutions

taking into account data layout in main memory along with the physical characteristics of

both DMA and DRAM, in order to achieve high performance on these platforms.

For our work, we target a simple, yet a large enough class of applications that comprise

a lot of today’s applications, the most interesting features we considered are obviously

the two-dimensional data structure and data sharing between neighboring computations.

In the sequel we consider data transfers, and see how these simple data parallel loops

defined in Program 2.3.1 are rewritten for such architecture to take into account DMA

data transfers.

2.4 Software Pipelining

2.4.1 Buffering

In program 2.3.1 data arrays are initially stored in the off-chip memory. Therefore

for an on-chip core to execute the program one needs first to bring the data from the

external memory to a closer on-chip memory level typically using DMA. As mentioned

28 2.4. SOFTWARE PIPELINING

CHAPTER 2. PRELIMINARIES

s2

s1

n1

n2

X(i1, i2)

m2

s1

s2

m1
X(j1, j2)

Figure 2.9: Basic blocks X(i1, i2) and super blocks X(j1, j2) (logical view).

previously, transferring the whole input array to local memory, perform the computation

then transfer the output array back to main memory is in practice not feasible because of

the small size of the local memory, an SRAM of capacity tens/hundreds kilobytes.

We assume that an array element represents the minimal granularity for which the

computation of f can be carried out. In image processing it can be a pixel, a block or

a macroblock. We refer to such granularity as a basic block. An intuitive solution is to

handle data transfers at the basic block level, but this is usually not a good choice for

performance since DMA is more attractive for coarse data transfers.

Therefore, the input array is partitioned into larger data blocks that we assume rect-

angular (to keep the choice of the shape as general as possible) clustering s1 × s2 basic

blocks, as illustrated in Figure 2.9. We call such clusters super blocks, and they constitute

the granularity of transfers. Note that the quantity s1 × s2 is obviously constrained by the

size of the local memory.

One can view the super blocks as arranged in an m1 × m2 array X (and Y) with

m1 = n1/s1 and m2 = n2/s2. We use

X(j1, j2) =

{

X(i1, i2) :
(j1 − 1)s1 + 1 ≤ i1 ≤ j1s1
(j2 − 1)s2 + 1 ≤ i2 ≤ j2s2

}

to denote the set of basic blocks associated with a super block indexed by (j1, j2). It is

sometimes more convenient to view two-dimensional arrays as one-dimensional and this

is done by a flattening function φ : [1..m1] × [1..m2] → [1..m], for m = m1m2. We will

sometime refer to super block X(j1, j2) as X(j) for j = φ(j1, j2).

DMA transfers are explicitly inserted in the program code as shown in Program 2.4.1

where we use a single buffer Bx for input super blocks and another buffer By for output

super blocks. Program 2.3.1 therefore becomes a sequence of computations and data

transfers using dma_get and dma_put operations before and after the computation in the

main program loop.

In program 2.4.1, data transfers and computations are performed sequentially and the

processor is idle during reading and writing. To avoid limiting the performance potential

of the processor, asynchronous DMA calls and double buffering are used.

2.4. SOFTWARE PIPELINING 29

CHAPTER 2. PRELIMINARIES

R1 R2 R3 R4 Rm

C1 C2 C3

W1 W2

Cm−1 Cm

Wm−1 WmWm−2· · ·

· · ·

· · ·

Figure 2.10: A schematic description of a pipeline: Read, Compute, Write.

2.4.2 Double Buffering

Double buffering or more generally multi-buffering is a well known programming

technique referred to as software pipelining used to hide memory latency. The main idea

is to overlap computations and data transfers and it is expressed at the software level.

This takes advantage from the fact that DMA can work in parallel with a proces-

sor. Program 2.4.2 uses double buffering for input blocks Bx[0], Bx[1] and output blocks

By[0], By[1]. At each iteration before the processor starts working on the current buffer,

it issues an asynchronous DMA call to fetch the next buffer. Therefore, the processor

can work on a super block j residing in one buffer while the DMA brings in parallel the

super block j + 1 to the other buffer. Note that comp(j) is used as a shorthand for the

inner double loop in Program 2.4.1. In practice, events are associated with each dma_get

and dma_put command to ensure the synchronization between each data transfer and its

corresponding computation.

Hence, program 2.4.2 defines a software pipeline with 3 stages: input of super block

(j + 1), computation on super block j and output of super block (j − 1), see Figure 2.10.

Reading the first block and writing back the last block are, respectively, the prologue and

epilogue of the pipeline. Note that Figure 2.10 only describes the obvious precedences

between the computations and data transfers but tells us nothing about their relative dura-

tions.

Double buffering overlaps at each iteration only one input/output DMA transfer with

the computation of current buffer. It is possible to increase the number of DMA trans-

fers that are overlapped with one computation by using Multi-Buffering. Indeed when

k-buffering is used, computation of super block j is done in parallel with transfers of in-

put super blocks (j+1), (j+2), ..., (j+ k− 1) and output super blocks (j− k), (j− k+
1), ..., (j − 1). This is possible since DMA has multiple channels to store a sequence of

transfer requests.

In terms of performance, since a DMA command has two phases, an initialization

phase and a transfer phase as explained in section 2.2, then issuing a sequence of trans-

fer requests has the advantage of overlapping in time the transfer of the current request

along with the initialization phase of pending transfer requests. However, let us note the

following facts:

1. Multi-buffering comes at the cost of a higher memory budget requirement. Indeed,

excluding program code and additional working memory, when using k-buffering

local memory should be large enough to store 2k local buffers, of s1 × s2 basic

blocks each. Therefore given a local memory budget, increasing the number of

30 2.4. SOFTWARE PIPELINING

CHAPTER 2. PRELIMINARIES

buffers used will necessarily decrease the upper bound on the size of each local

buffer knowing that if we decrease the buffer size too much, DMA use may become

less efficient.

2. There is a limit of how much performance benefit we can withdraw from overlap-

ping transfer phase of the current DMA request and initialization phase of subse-

quent requests. The gain is negligible if the initialization cost is much smaller than

transfer cost, or on the contrary if the initialization time is significant compared to

the transfer time and therefore performance becomes closer to a sequential execu-

tion of all transfers.

3. DMA requests are not necessarily served in the same order in which they arrive.

Therefore if super block j + 2 is served before super block j + 1 then computation

of j+1 should wait for the completion of both transfers. One solution for this is the

use of fences or barriers between transfer requests which comes with an additional

cost overhead.

For these reasons we focus in this thesis on double buffering.

One can see how the simple parallel loop in Program 2.3.1 has been transformed to a

more complex algorithm where the programmer has to manage multiple buffers, dealing

potentially with border cases using if conditions when the size of the array is not a perfect

multiple of the block size, and ensuring the synchronization between DMA fetching and

computations, which complicates the source code and counts for a substantial number

of lines in it. This exhibits some of the complex aspects of parallel programming for

explicitly managed memories which can be hidden from the programmer when an efficient

compiler is used for generating such code automatically.

2.5 Choosing a Granularity of Transfers

DMA combined with scratchpad memories give the programmer the freedom to chose

the granularity of transfers, that is the block size and also shape for multi-dimensional data

structures. Double buffering scheme improves performance compared to single buffering

by interleaving computations and data transfers. However, performance can be further

improved (controlled/tuned) by an appropriate choice of data granularity. A natural ques-

tion that arises then is how to make this choice given the available local memory budget?

the answer may not be straightforward since as we saw throughout this chapter, DMA per-

formance as well as computations and the amount of shared data are sensitive to the size

and the geometry of the block, thus the choice of data granularity influences performance

and sometimes in a significant way.

We propose a general methodology based on hardware and application parameters

to derive automatically the choice of data granularity that yields optimal performance

within the available local memory budget. An obvious choice for programmers would be

the maximum buffer size allowed by the local memory. However we show in this thesis

that this is not necessarily the optimal choice.

This methodology comes in contrast with the engineering way for tackling this prob-

lem which consists of writing a double buffering algorithm, for a given application and

a given architecture, in a parametric manner and run the code with different granularities

and then select the best among them. Furthermore, our methodology is done statically

2.5. CHOOSING A GRANULARITY OF TRANSFERS 31

CHAPTER 2. PRELIMINARIES

and can be combined with efficient compilers to generate automatically double buffering

programs with the appropriate data partitioning and granularity.

32 2.5. CHOOSING A GRANULARITY OF TRANSFERS

CHAPTER 2. PRELIMINARIES

Algorithm 2.4.1 Buffering

for j := 1 to m do

dma_get(Bx,X(j)); % read super block

for i1 := 1 to s1 do

for i2 := 1 to s2 do % compute for all blocks

By(i1, i2) := f(Bx(i1, i2)) % in super block j
od

od

dma_put(By,Y(j)); % write super block

od

Algorithm 2.4.2 Double Buffering

c := 0; c′ := 1;
dma_get(Bx(0),X(1)); % first read

dma_get(Bx(1),X(2)) ‖ comp(1);
for j := 2 to m− 1 do

dma_get(Bx(c),X(j + 1)) ‖ comp(j) ‖ dma_put(By(c
′),Y(j − 1));

c := c⊕ 1; c′ := c′ ⊕ 1;
od

comp(m) ‖ dma_put(By(0),Y(m− 1));
dma_put(By(1),Y(m)); % last write

2.5. CHOOSING A GRANULARITY OF TRANSFERS 33

CHAPTER 2. PRELIMINARIES

34 2.5. CHOOSING A GRANULARITY OF TRANSFERS

Chapter 3

Optimal Granularity for Data Transfers

3.1 Computations and Data Transfers Characterization

To derive optimal granularity, we need first to analyze the performance of the pipelined

execution of double buffering algorithms and understand how performance is influenced

by the size and the shape of a super block, which constitutes the granularity of transfers.

To this end we need to refine the qualitative description of Figure 2.10 which describes

the obvious precedences between the computations and data transfers but tells us nothing

about their relative durations. In the sequel, we characterize the DMA transfer time and

the computation time of a super block, that we denote T and C respectively.

3.1.1 DMA Performance Model

It is quite difficult to model the DMA behavior precisely taking into account all low

level hardware details that vary from one architecture to another. Nevertheless, all DMAs

share some common characteristics as explained in section 2.2.2. In the following, we

provide a simplified analytical DMA model that captures the important and common fea-

tures of DMA engines. We specify the cost of transferring a contiguous cluster of basic

blocks which, we recall, corresponds to the atomic granularity of an algorithm, we then

extend this model to specify the cost of transferring a rectangular cluster of basic blocks

using strided DMA commands.

For this, we need to make the following assumptions about data layout in main mem-

ory. We assume the array is organized in main memory contiguously in a lexicographic

order (that is a row major format for two-dimensional data arrays). Furthermore, without

loss of generality we assume that a basic (input and output) block consists of a contiguous

chunk of b bytes. This model can easily be adapted to the case where the basic block is a

rectangular block of b1 lines, each line consists of b2 bytes.

Contiguous DMA Transfers

As explained in section 2.2.2, a DMA command flow consists of an initialization phase

that we assume of a fixed cost I and a transfer phase whose duration is proportional to the

size of data to transfer. So given a transfer cost of α time units per byte, the transfer time

of a super block clustering s basic blocks as illustrated in Figure 3.1, is then approximated

by,

T (s) = I + α · b · s.
35

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

0 1 ... m-1

0 ... s-1

Array (m superblocks)

Each superblock of s basic blocks

0 ... b-1 Each basic block of b bytes

Figure 3.1: Decomposition of one-dimensional input (resp. output) array.

Strided DMA Transfers

As mentioned previously, to transfer rectangular blocks, strided DMA commands are

used. The cost of transferring a super block of s1 × s2 basic blocks, which corresponds

physically to a rectangular data chunk of s1 lines and b · s2 columns, can be approximated

by the following affine function,

T (s1, s2) = I0 + I1 · s1 + α b(s1 · s2) (3.1)

Like contiguous transfers, this function assumes a fixed initialization cost I0 (typically

I0 ≥ I) and a transfer phase whose duration is also proportional to the amount of data to

transfer which corresponds in this case to the area of the super block. Furthermore, we

assume an overhead I1 per line to capture the fact that transferring a rectangular block

is costlier than transferring a contiguous block of the same size (area), as explained in

section 2.2.2. This fact is expressed by the following inequality,

T (s1 · s2 , 1) ≤ T (s1, s2)

Note that despite strided DMA commands being costlier than contiguous, they remain

more efficient than using a separate contiguous DMA command for each line of data, a

fact expressed by,

T (s1, s2) ≤ s1 × T (s2)

The value of α depends on several hardware factors such as interconnect bandwidth,

memory latency (which is different according to the type of memory: SRAM of another

processor or off-chip DRAM), and possible contentions. In this model we assume a fixed

transfer latency α and this assumption is imprecise for two major reasons:

– We do not model the characteristics of the external DRAM memory explained in

section 1.1.3, such as the scheduling policy of the memory controller, the effect of

page misses and data refreshment latencies.

– The speed of transfer in the interconnect, especially in a multi-processor setting,

depends crucially on the number of simultaneous transfer requests issued by the

processors involved in the computation.

The first issue is too complex to handle precisely as memory controllers vary among

vendors. We can assume, however, that page misses are distributed more or less evenly

and their effect does not favor or disfavor a specific choice of granularity. Moreover, the

36 3.1. COMPUTATIONS AND DATA TRANSFERS CHARACTERIZATION

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

preference to contiguous blocks captured by our cost model by the parameter I1 holds

also on the memory controller side.

As for the influence of demand patterns on the latency of the interconnect, we will use

later a model where α is parametrized by the number p of active processors with αp < αp′

whenever p < p′. Additional traffic, which possibly influence the value of α, resulting

from other applications is ignored as we assume that there is only one application running

on the multi-core fabric, which gives us full control on the generated NoC traffic.

3.1.2 Computation Time

Regarding computation time per super block, for the sake of simplicity, we assume

the algorithm for computing f to have a fixed (data independent) computation time ω per

basic block, once the block is in local memory. This is the time to perform one iteration

in Program 2.3.1. This may sound as a strong assumption, however if the deviation in the

computation time per basic block is not significant then we can assume that an optimal an-

alytical choice of granularity based on an average value of ω still gives good performance

results.

Computation time of a contiguous cluster of s basic blocks is therefore C(s) = ω · s
and for rectangular clusters, computation then depends only on the area of the rectangle,

C(s1, s2) = ω · s1 · s2 (3.2)

In practice, C(s1, s2) has also a component that depends on the number of lines s1
and which corresponds to the overhead at each computation iteration related to the setting

required between the outer loop and the inner loop like adjustment of the pointers for

every row, pre-calculation of sums of borders, etc. We assume so far that this overhead is

negligible and we discuss it further in the chapter dedicated to the experiments.

3.2 Problem Formulation

As explained in the previous chapter, the execution of a double buffering program

forms a 3 stages pipeline which admits repetitive parallel execution of computations (for

super block i) and data-transfers (for input super block i+1 and output super block i− 1
).

Based on the balance at each iteration between the computation time of the current

super block and the transfer time of the next block, we refer to the execution of the pipeline

as being in the computation regime when the computation time of a super block dominates

the transfer of the next one , that is C > T , otherwise it is in the transfer regime. The

behavior of the software pipeline in both regimes is illustrated in Figures 3.2.

Assuming that the input and output super blocks are identical and can be transferred

in parallel 1, it is not hard to see that both regimes admit a prologue and epilogue, which

correspond to the transfer of first block and write back of last block and m episodes,

m being the number of super blocks, dominated either by transfer or by computation.

Therefore the pipeline execution time τ can be approximated by the following,

1. In practice, this is not completely true since input and output DMA transfers are overlapped, but we

can assume that this simply varies the value of α.

3.2. PROBLEM FORMULATION 37

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

(a)

(b)

s = 1

s = 3

Time

Input

Computation

Output

Input

Computation

Output

EpiloguePrologue

Prologue Epilogue

Time

Transfer

Transfer

Transfer

Transfer

Figure 3.2: Pipelined execution using double buffering on one processor: (a) transfer

regime, (b) computation regime. The shaded areas indicate processor idle time.

τ =

{

m · C + 2T in the computation regime

(m+ 1) · T in the transfer regime
(3.3)

The ratio between computation time of a super block C and its transfer time T is not

fixed but varies with the block size and shape. We can therefore control it to some extent

in order to optimize performance, but which relation is preferred? The answer depends

on which resource is more stressed by the application, computation or communication, a

fact characterized by the parameter ψ so that,

ψ = ω − αb.

Condition ψ < 0 means that regardless of the choice of data granularity, transfer time

always dominates computation time. In this case we prefer large data blocks (which

corresponds to the maximal buffer size allowed by the local store capacity) to amortize

the DMA initialization time and fully utilize the interconnect bandwidth. In the sequel,

we focus on the other case where ψ ≥ 0, that is according to the block size and shape the

execution switches between a computation regime and a transfer regime.

For the same instance of the problem, computation regime yields better performance

than transfer regime because the processor does not stall between two iterations waiting

for data thereby avoiding idle time. Therefore we orient the super block selection towards

a granularity (s for contiguous blocks and (s1, s2) for rectangular blocks) such thatC ≥ T
and τ = m · C + 2T is minimal.

Since the processor is always busy, all shapes satisfying C ≥ T admit roughly the

same total computation time m · C ⋍ ωn (or ωn1n2) since it is a sequential execution

over all the basic blocks. Hence, it remains to optimize the length of the prologue and

epilogue 2T with computation regime viewed as a constraint. Note that when ω or n are

very large, the prologue and epilogue represent a small part of the overall performance

and their variation has a negligible effect which in practice is not always the case. Obvious

additional constraints state that a super block is somewhere between a basic block and the

full image, provided its size does not exceed the maximum local buffer size M imposed

by the local store limited capacity. This leads to the following constrained optimization

problems,

38 3.2. PROBLEM FORMULATION

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

min T (s) s.t. min T (s1, s2) s.t.

T (s) ≤ C(s) T (s1, s2) ≤ C(s1, s2)
s ∈ [1..n] (s1, s2) ∈ [1..n1]× [1..n2]
b · s ≤M b · s1 · s2 ≤M

(3.4)

Note that in addition to these constraints, each specific DMA engine imposes additional

constraints on the range of possible values of s1 and s2.

In the following we derive the optimal granularity of data transfers starting with a

single processor and then considering multiple processors.

3.3 Optimal Granularity for Independent Computations

3.3.1 Single Processor

One-dimensional data:

The ratio between computation time of a super block and its DMA transfer time splits

the domain of feasible solutions into two sub-domains, the computation domain where

each granularity choice guarantees a computation regime since its computation time is

larger than its transfer time and the transfer domain.

Figure 3.3-(a) illustrates the intersection of functions T (s) andC(s) for one-dimensional

data blocks where the computation domain corresponds to the interval [s∗, n], and the

overall execution switches from a transfer regime to a computation regime for granularity

s∗, as illustrated in Figure 3.3-(b). It is approximated by

τ(s) =

{

(n/s+ 1) T (s) ⋍ (n · I)/s+ (n · α · b) for s < s∗

2 · T (s) + n · ω ⋍ (α · b)s+ (n · ω + I) for s > s∗

As the granularity increases in the interval [s∗, n], DMA transfer time also increases.

Hence optimal granularity minimizing the prologue and epilogue in the computation

regime is attained at s∗ where T (s∗) = C(s∗),

s∗ = I/(ω − αb) (3.5)

Note that if for any granularity s the execution is always in the computation regime,

the optimal unit of transfer is a basic block, that is s∗ = 1, which guarantees minimal

prologue and epilogue.

Two-dimensional data:

For rectangular blocks, the dependence of T (s1, s2) and C(s1, s2) on their arguments

is illustrated in Fig. 3.4 (assuming ψ > I1). Similarly, the intersection of these two

surfaces separates the domain of (s1, s2) into two sub-domains, the computation domain

where T ≤ C and the transfer domain where T ≤ C, see Fig. 3.5-(a).

As for one-dimensional data, we want to find the optimal granularity defined as the

point (shape) in the computation domain for which transfer time is minimal. Comparing

the transfer time of the different shapes becomes not trivial since the computation domain

3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS 39

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

Transfer/computation time

per block

s

C(s)

T (s)

s∗

Computation DomainTransfer Domain

I

n

Computation Regime

Program execution time using

double buffering

Transfer Regime

s∗

τ(s)

s

(a) (b)

Figure 3.3: Contiguous blocks: (a) The dependence of C and T per block, (b) Pipeline

execution time.

Figure 3.4: Rectangular blocks: The dependence of computation C and transfer T on the

granularity (s1, s2).

40 3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

Computation Domain

Transfer Domain

T = C

T < C

T > C

I1/ψ

n1

s1

s2

n2

H

1

H(1)

s∗
s′1

s1

s2 = s′2

s′

s

n1

s1

s2

n2

(a) (b)

Figure 3.5: Rectangular blocks: (a) computation and transfer domains, (b) optimal gran-

ularity candidates and optimal granularity.

forms a partially ordered set where possibly two different shapes s and s′ are such that

s1 < s′1 and s2 > s′2
2.

Observe that the computation domain is convex where for any point s inside the

domain, we can always find another point s′ on the boundary such that s′2 = s2 and

s′1 < s1, see Fig. 3.5-(b), and hence with a smaller transfer time. Therefore the can-

didates for optimality are restricted, as for the one-dimensional case, to the intersection

T (s1, s2) = C(s1, s2). These points are of the form (s1, H(s1)) where,

H(s1) = (1/ψ)(I1 + I0/s1)

Their transfer time is expressed as a function of the number of clustered horizontal

blocks s1:

T (s1, H(s1)) = c (I0 + I1s1)

where c is the constant 1+(αb/ψ). This function is linear and monotone in s1, means that

as we move upwards in the hyperbola H the transfer time increases, and hence optimal

shape is,

(s∗1, s
∗

2) = (s∗1, H(s∗1)) = (1, H(1)) (3.6)

which constitutes a contiguous block of one line of the physical data array. This is not

surprising as the asymmetry between dimensions in memory access prefers “flat“ super

blocks with s1 = 1. Without data sharing and memory size constraints the problem

becomes similar to the one-dimensional case where it is only the size of the super block

that needs to be optimized.

3.3.2 Multiple Processors

Given p identical processors having the same processing speed and the same local

store capacity, the input array is partitioned into p chunks of data distributed among the

2. Note that if these shapes have the same area, then the shape with less lines has a smaller transfer

overhead, that is T (s1, s2) < T (s′1, s
′
2).

3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS 41

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Epilogue
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��Time

Transfer

Transfer

Prologue

Proc Idle time

b3, b4, b5 b6, b7, b8

b6

b7

b8

b0, b1, b2

b6, b7, b8

b3

b4

b5

b3, b4, b5

b2

b0

b1

Output

Input b0, b1, b2

P0

P1

P2

Figure 3.6: Pipelined execution in the transfer regime using multiple processors.

processors to execute in parallel. Typically the size of a chunk allocated to each pro-

cessor is much larger than the local memory capacity since p << n (or p << n1n2),

each processor then implements double buffering algorithm to improve performance by

overlapping computations and data transfers. We extend our double-buffer granularity

analysis to this case assuming all processors implement the same granularity.

Intuitively, using multiple processors, a conflict arises between computation and data

transfers since increasing the number of processors reduces the amount of total work per

processor but creates contentions on the shared resources thus increasing the transfer time.

In the analysis, we assume a distributed DMA system where each processor has its

own DMA engine. It has the advantage of parallelizing the initialization phase of proces-

sors transfer commands which occurs independently on each processor’s DMA engine.

For this reason we synchronize data transfers of all processors at the beginning of the

execution 3. Figure 3.6 illustrates a pipelined execution using several processors where p
concurrent transfer requests arrive simultaneously to the shared interconnect. Arbitration

of these requests is left to the hardware which serves the processors in a low granularity

(packet based) round robin fashion. Therefore processors receive their super blocks nearly

at the same time and can then perform their computations independently in parallel.

Note that increasing the number of processors does not influence the computation time

per super block, however it increases the transfer time because contentions on the shared

resources induce a significant overhead that we model by parameterizing the transfer cost

per byte αwith the number of active processors such that αp increases monotonically with

p.

Obviously this changes the ratio between the computation time and the transfer time

of a super block and consequently the optimal granularity. Figure 3.7 shows the evolu-

tion of the computation domains and optimal granularity for one-dimensional and two-

dimensional data as we increase the number of processors. The reasoning is similar to

previously where functions T and H become Tp and Hp thus yielding an optimal data

granularity for each value of p. Note that the difference between computation and transfer

time represented by ψ = ω − bαp decreases as we increase p reducing the computation

domain. Also, beyond some value of p we are always in a transfer regime and there is no

3. Note that the gain from overlapping the initialization phase is less significant for large granularities

where the transfer phase time dominates the fixed initialization overhead.

42 3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

time

s

T1(s)

C(s)

Tp(s)

s∗(1) s∗(p) n

s∗(1) s∗(p)

Hp(1)H(1)

1

T1 = C Tp = C
n1

n2

s1

s2

(a) One-dimensional data (b) Two-dimensional data

Figure 3.7: Evolution of the computation domain and optimal granularity as we increase

the number of processors.

point in using more processors since our main focus is to optimize processors idle time.

The overall pipeline execution time becomes also parametrized by the number of pro-

cessors p as follows,

m/p · C + 2Tp when C ≥ Tp
(m/p+ 1) · Tp when C < Tp

Optimal granularity, which is simply the necessary amount of data needed to hide

memory latency, increases as we increase the number of processors since more data needs

to be brought to each processor to keep it busy during the time it takes to fetch its next

super block as well as the next super block of each of the other processors.

Note that with data independent computations, we do not distinguish between a cyclic

and a contiguous allocation of data, explained in the previous chapter, as this simply

affects the value of α which maybe larger because of the page miss effect as we jump

from one memory location to another as argued previously.

3.3.3 Memory Limitation

So far, we reasoned about optimal granularity only based on the ratio between com-

putation time and transfer time assuming no local memory constraint. In the following,

we discuss this issue.

One-dimensional data:

The local memory size constraint, which imposes an upper bound M on the size of a

buffer, is simply represented by the granularity s =M/b.

Given p processors, if optimal granularity does not fit in local memory, that is s∗(p) >
M/b as illustrated in Figure 3.8-(a), then near optimal solutions have to be considered.

We can think of two possible candidates presented as a combination of number processors

and granularity,

1. (p,M/p): keeping the same number of processors and decreasing the granularity

to the maximum possible value.

3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS 43

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

time

s

C(s)

Tp(s)

Tp′(s)∆

s∗(p′) M/b s∗(p)

Hp

1
s∗(p)

Hp(1)

M/(s2b)

M/b

n1

s1

s2

n2

(a) One-dimensional data (b) Two-dimensional data

Figure 3.8: Local memory constraint.

2. (p′, s∗(p′)): reducing the number of processors p′ < p involved in the computations

to reduce the corresponding optimal granularity s∗(p′). For this, we need to identify

the maximum value of p′ such that s∗(p′) ≤ M/b, a fact characterized by αp ≤
(ω/b)− (I/M) (or p ≤ (ω/αb)− (I/αM) if αp = α · p).

Which solution gives better performance? well, using more processors has the ad-

vantage of reducing the quantity of work per processor and the number of iterations

m, however since M/b is in the transfer domain, at each iteration processors are idle

∆ = Tp(M/b) − C(M/b) time units waiting for data. The answer to the question then

depends on the difference ∆, p− p′ and M/b− s∗(p′).

Two-dimensional data:

The local memory size constraint s2s2b ≤ M is proportional to the area of a block

s1× s2. More generally, for any point s = (s1, s2), the area of the rectangle defined by its

coordinates represents the memory capacity required for this granularity. Local memory

constraint is then represented by the hyperbola shown in Fig. 3.8(b), excluding solutions

(shapes) above the hyperbola that do not fit in local memory.

For a given value of p, if the optimal solution (1, Hp(1)) does not fit in local memory,

one can think of other points of the hyperbola Hp which are, as explained previously,

candidates for optimality since they satisfy the equality Tp = C. However, we know that

as we move upwards in the hyperbola Hp, the transfer time increases and consequently

computation time which is proportional to the area. Therefore the point (1, Hp(1)) is also

the point with minimal transfer time as well as computation time and area (means that it

is the closest point of the hyperbola Hp to the origin). This proves that if this point does

not fit in local memory then no other point (shape) of the hyperbola fits in local memory,

which is viewed as the hyperbolas Hp(s1) and M/(s1b) do not intersect.

Like the one-dimensional case, the two candidates for near optimal solutions are the

pairs, (p, (1,M/b)) and (p′, (1, Hp′(1)) where p′ < p.

3.3.4 Conclusion

In this chapter we focused on deriving optimal granularity for independent data com-

putations where the main idea is that the ratio between computation time and transfer time

44 3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

at each iteration of the pipeline varies with the block size and shape, we can therefore op-

timize performance by finding the right balance between computations and data transfers

to hide completely the memory latency while minimizing the prologue and epilogue of

the pipeline. This issue is closely related to the number of processors involved in the

computations which changes this ratio by increasing the transfer time, due to contentions,

thus requiring higher granularities to optimize performance.

In terms of performance, the main significant switch is between a transfer regime and

a computation regime, which is clear in the one-dimensional case as it occurs beyond

some value s∗, but is much less clear in the two-dimensional case. Note that there is a

limit of how much performance can be improved by varying the granularity before the

execution becomes computation dominant and where there is no point in increasing the

granularity.

The local memory limitation is a strong hardware constraint in MPSoCs, if optimal

granularity does not fit in the memory limitations then finding the right combination of

number of processors and data granularity is required.

3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS 45

CHAPTER 3. OPTIMAL GRANULARITY FOR DATA TRANSFERS

46 3.3. OPTIMAL GRANULARITY FOR INDEPENDENT COMPUTATIONS

Chapter 4

Shared Data Transfers

4.1 Introduction

The second part of our contribution is dedicated to overlapped data computations as

defined in Section 2.3.2. Like independent data computations, the input array is parti-

tioned into blocks of data and a double buffering algorithm is implemented in order to

overlap computations and data transfers, however as illustrated in Figure 4.1 these blocks

share data. We focus first on one-dimensional data where the size of shared data is fixed,

so besides deriving optimal granularity, we compare several strategies for transferring

shared data. We then focus on deriving optimal granularity for two-dimensional data

where the size of shared data varies according to the geometry of partitioning thus influ-

encing the choice of block shapes.

4.2 Transferring Shared Data in one-dimensional data

We assume that neighboring data required for the computation of a basic block consti-

tute a window of k basic blocks situated to the left 1, where k << n to keep some locality

in the computations. Such patterns are common, for example, in signal processing ap-

plication with overlapping time windows. Note that regardless of granularity for super

blocks, the size of shared data is always fixed due to the one-dimensional geometry of the

array.

In the following, we consider three strategies/mechanisms for transferring shared data

that mainly differ in the component of the architecture which carries the burden of the

1. The same reasoning can be applied to the right direction or both left and right directions.

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��

���
���
���

���
���
���

���
���
���
���

Neighboring Shared Data

n
s

b0 b1 b2 b3 b4 b5

Figure 4.1: Shared data between neighboring blocks in a one-dimensional array.

47

CHAPTER 4. SHARED DATA TRANSFERS

���
���
���
���

���
���
���

���
���
���

DMA

Multi−core fabric

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��

���
���
���
���

��
��
��

��
��
��

Off−chip Memory

Neighboring Shared Data
Memory Memory

b2
b3

n
s

b0 b1 b2 b3 b4 b5

P0
P1

Figure 4.2: Replication of shared data.

transfer,

1. Replication: transfer via the interconnect between local and off-chip memory;

2. Inter-processor communication: transfer via the network-on-chip between the cores;

3. Local buffering: transfer by the core processors themselves.

For each strategy, we construct an analytical performance model used to derive optimal

granularity and then compare their performance. These models are useful to give some

guidelines to the programmer/compiler for choosing a data sharing strategy along with

the granularity of data transfers. In the following, we detail and discuss these strategies.

4.2.1 Replication

Given a granularity s, the input array X is divided into super blocks of s basic blocks

each, allocated to processors in a periodic fashion for computations. For each transfer of a

super block from off-chip memory to a local memory, additional neighboring data is also

transferred. Neighboring blocks are mapped to neighboring processors and the same data

is replicated in each of the processor’s local memory, as illustrated in Figure 4.2.

The main advantage of this strategy is that computations among processors become

completely independent and no synchronization between them is required. The analysis is

similar to the previous chapter where optimal granularity is about finding the right balance

between the computation and the transfer times to hide completely the memory latency.

Thus considering at each iteration the overhead of transferring k additional basic blocks,

optimal granularity is reached for the granularity s∗ so that,

T (s∗ + k, p) = C(s∗)

48 4.2. TRANSFERRING SHARED DATA IN ONE-DIMENSIONAL DATA

CHAPTER 4. SHARED DATA TRANSFERS

Inter−processor
communication

DMA

NoC

Multi−core fabric

��
��
��
��

���
���
���
���

��
��
��
��

��
��
��
��

��

���
���
���
���

��
��
��

��
��
��

Off−chip Memory

Neighboring Shared Data
Memory Memory

��
��
��

��
��
��

b3b2

n
s

b0 b1 b2 b3 b4 b5

P0
P1

Figure 4.3: Communication of shared data between neighboring processors.

and the overall execution time is,

τ(s, p) =

{

(n/sp+ 1) T (s+ k, p) for s < s∗

2 · T (s+ k, p) + (n/p)ω for s > s∗

4.2.2 Inter-Processor Communication

The main idea in this strategy is to transfer data blocks from off-chip memory to pro-

cessors local memory without replication and then the processors can exchange required

shared data via the high speed local interconnect as illustrated in Figure 4.3. For this, we

need to allocate data blocks to processors in a periodic rather than contiguous fashion so

that neighboring blocks are to be processed by neighboring processors.

The behavior of the pipelined execution is illustrated in Figure 4.4. As for inde-

pendent data using multiple processors, transfers from external memory are performed

concurrently to overlap the initialization step of DMA commands. After reception of

a super block each processor pj sends the overlapping data to its right neighbor pj+1.

Processors stall at that time waiting for the end of the communication. Prefetching next

blocks can then be issued to be done concurrently with computations. This execution

assumes the ideal case where the communication geometry matches the geometry of the

local interconnect thus allowing processors to perform in parallel a point to point inter-

processor communication. In this case, data allocation constitutes a ring-like topology

which matches the hardware topology of the local interconnect in our experiments.

To reason about optimal granularity, we characterize the inter-processor communica-

tion cost for transferring shared data, a block of size b ·k bytes, from one processor’s local

memory to another. This cost, that we denote by Rk, obviously depends on the transfer

mechanism used: load/store instructions via a shared memory location, explicit DMA

commands, etc. We assume that inter-processor communication is also performed using

DMA. In terms of performance, they have the same initialization cost I , and a transfer

cost per byte β ≪ α because the network-on-chip connecting the cores as well as their

4.2. TRANSFERRING SHARED DATA IN ONE-DIMENSIONAL DATA 49

CHAPTER 4. SHARED DATA TRANSFERS

�
�
�
�

��
��
��

��
��
��

�
�
�

�
�
�

�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
��
��

��
��
��

��

��
��
��

��
��
��

��
��
��
��

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

�
�
�

��
��
��
��

��
��
��
��

�
�
�
�
�

�
�
�
�
�

��
��
��
��
��

��
��
��
��
��

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�

�
�
�
�

Prologue Epilogue

IPCIPC IPC

Time

Proc Idle Time

IPC: Inter−Processor Communication

�
�
�
�
�

�
�
�
�
�

Output

Input

P2

P1

P0

b0, b1, b2

b0, b1, b2

b3, b4, b5

b3, b4, b5

b6, b7, b8

b6, b7, b8

b0

b1

b2

b3

b4

b5

b6

b7

b8

Figure 4.4: Pipelined execution using multiple processors with inter-processor communi-

cation.

memories (usually SRAMs) is much faster. Thus Rk is approximately by,

Rk = I + β · b · k

In practice, this cost also includes the synchronization overhead between the cores which

can be included in the value of β or expressed with additional terms that depend on p.

In our case, we consider the use of blocking DMA calls for inter-processor communi-

cation which means that processors are idle for Rk time waiting for the transfer comple-

tion. This overhead is added to the computation time, and since our main focus is to hide

the off-chip memory latency, optimal granularity is reached for s∗ so that,

T (s∗, p) = C(s∗) +Rk

The overall execution time is,

τ(s, p) =

{

(n/sp+ 1) T (s, p) for s < s∗

2 · T (s, p) + (n/p)ω + (n/sp)Rk for s > s∗

Note that for the sake of simplicity, we assume that k < s to restrict inter-processor

communication to the immediate neighbors.

Also, note that one can also consider double buffering to hide inter-processor DMA

communication, we assume that off-chip memory latency is the main bottleneck for per-

formance since both the local interconnect latency and the size of shared data are much

smaller.

4.2.3 Local Buffering

When input array X is partitioned into p contiguous chunks allocated to processors

where each chunk is also partitioned into super blocks of s basic blocks each, then neigh-

boring blocks are allocated to the same processor and computed at successive iterations.

This strategy exploits this fact so that shared data is stored in the processor’s local memory

since it will be required for computations at the next iteration.

In terms of performance, keeping shared data in the local memory is not for free,

since at each iteration, this data has to be copied from one local buffer to the other using

50 4.2. TRANSFERRING SHARED DATA IN ONE-DIMENSIONAL DATA

CHAPTER 4. SHARED DATA TRANSFERS

Time

T (s)

s∗ IPC

T (s+ k)

C(s)

C(s) + kbγ

C(s) +Rk

s∗ Local Buffering

s

s∗ Replication

Figure 4.5: Comparing optimal granularity between strategies.

load/store instructions 2. We characterize the local copying overhead with k · b · γ where

γ is the cost per byte of a load/store instruction.

Since k is fixed, this overhead is also fixed and it is added at each iteration to the

computation time. Optimal granularity is obtained at s∗ so that

T (s∗, p) = C(s∗) + k · γ

and the overall execution time τ(s, p) is,

τ(s, p) =

{

(n/sp+ 1) T (s, p) for s < s∗

2 · T (s, p) + (n/p)ω + (n/sp)(k · γ) for s > s∗

4.2.4 Comparing Strategies

The models defined above for each strategy involve, on one hand, parameters of the

application: b, k and ω (assuming processor speed is fixed) and parameters of the archi-

tecture: α, β, γ. According to these models one can optimize the decision variables which

are p, s and the sharing strategy.

Local buffering and inter-processor communication schemes have a clear computation

overhead due to the time the processor spends at each iteration copying data from one lo-

cal buffer to another, or idle waiting for the completion of the inter-processor synchronous

DMA communication. On the other hand, replication contributes to the increase in the

off-chip memory latency because more data needs to be transferred. As discussed previ-

ously, this overhead becomes more significant when the number of processors increases.

Therefore, for the same instance of the problem, replication switches to the compu-

tation regime at a higher granularity than local buffering and inter-processor communi-

cation, see Figure 4.5, since off-chip memory latency is higher. However, when all three

strategies reach their computation regime, replication always performs better because of

the processing overhead; (n/sp)Rk or (n/sp)(k · γ), which corresponds to the time the

processor spends copying shared data locally, or communicating data to other processors.

Note that this overhead is proportional to the number of iterations in the pipeline (n/sp)
and is therefore reduced as s or p increase, leading to nearly similar performance results

among strategies.

2. More efficient pointer manipulation is hard to implement because the same buffer is used to store

x[i− 1] and x[i+ 1] which is filled in parallel with the computation of y[i].

4.2. TRANSFERRING SHARED DATA IN ONE-DIMENSIONAL DATA 51

CHAPTER 4. SHARED DATA TRANSFERS

time

k

k · γ

Rk

α(1) · k

α(2) · k

α(3) · k

Figure 4.6: Comparing parameters for strategies.

When transfer time is dominant, comparing the strategies boils down to comparing

the cost of transferring the additional shared data using different hardware mechanisms:

k · α(p), I + k · β and k · γ. Figure 4.6 illustrates the sensitivity of these quantities to k
and p. In this example, for one processor, replication cost is lower than local copying and

inter-processor communication, but as the number of processors increases, the overhead

of contentions while accessing off-chip memory ruins the performance compared to the

other strategies, where the transfer of shared data is delegated to the high speed network-

on-chip or to the processors and is totally or partly done in parallel.

Memory limitation can play a role in the choice of optimal strategy when optimal

granularity for the replication strategy does not fit in local memory, the parameters com-

parison can then give a hint about the strategy that gives best performance given the

available memory space budget.

4.3 Optimal Granularity for Two-Dimensional Data

For two-dimensional data arrays we consider the neighborhood pattern defined in sec-

tion 2.3.2 where neighboring data required for computations constitute a symmetric win-

dow of size k. Given this pattern, we want to derive optimal granularity considering

shared data, first for a single processor and then multiple processors.

We assume a replication strategy for transferring shared data where additional data

is transferred at each iteration, along with the block to compute, from off-chip memory

to local memory. Under this assumption, the constrained optimization problem to derive

optimal granularity, defined in (3.4), becomes

min T (s1 + k, s2 + k) s.t.

T (s1 + k, s2 + k) ≤ C(s1, s2)
(s1, s2) ∈ [1, n1]× [1, n2]
b · (s1 + k) · (s2 + k) ≤M

(4.1)

Recall that without data sharing, optimal granularity is attained by the flat block which

reaches the computation regime and optimizes the DMA latency overhead per line and

thus the prologue and epilogue. However, as discussed in section 2.3.2, the quantity of

replicated data: k(s1 + s2) + k2 which varies according to the block shape is minimal for

square blocks, among all the super blocks of the same area. Therefore, these two facts are

52 4.3. OPTIMAL GRANULARITY FOR TWO-DIMENSIONAL DATA

CHAPTER 4. SHARED DATA TRANSFERS

s1

Time

s∗1

T (s1 + k, δ/s1 + k)

1 δ
√
δ

R(s1, δ/s1)

I1(s1 + k)

s1

Time

s∗1

T (s1 + k, δ/s1 + k)
Regime

TransferComputation Regime

C(s1, δ/s1)δ · ω

(a) (b)

Figure 4.7: DMA transfer cost with replicated area as we increase the number of lines in

a block, for a given δ = s1 × s2.

in conflict and when they are combined there is a balance to be found between the two.

This excludes for optimality the two extreme solutions and justifies the analysis to find

the optimal granularity which is somewhere between flat and square shapes.

In the sequel we first explain how the shape of the block and its replicated area influ-

ence the transfer cost and then derive optimal shape.

Replicated Area and Transfer Cost

To process a super block of shape s1 × s2, one needs to load

R(s1, s2) = (s1 + k)× (s2 + k)

basic blocks. The DMA transfer cost of a rectangular super block considering replication

of shared data is therefore,

T (s1 + k, s2 + k) = I0 + I1(s1 + k) + αb ·R(s1, s2) (4.2)

Figure 4.7-(a) illustrates this function for a fixed value of δ = s1 × s2 along with the

DMA issue time overhead optimized for flat block transfer (s1 = 1) and the replicated

data transfer overhead optimized for square shapes (
√
δ,
√
δ). Among all combinations

(s1, s2) satisfying s1 × s2 = δ, the transfer cost is minimal for the point (s∗1, δ/s
∗

1) where

s∗1 =
√

αbkδ/(I1 + αbk). This point represents the balance between initialization phase

overhead (number of lines) and transfer phase cost (amount of replicated data).

Note that if we look at the computation time of these blocks, then all shapes satisfying

s1 × s2 = δ have approximately the same computation time: δ · ω, proportional to the

area. According to the balance between a block computation time and its transfer time,

some shapes will lead to a computation regime and others to a transfer regime as depicted

in Figure 4.7-(b). The point (s∗1, δ/s
∗

1) is then the optimal granularity for each value of δ
(assuming δ · ω ≥ T (s∗1 + k, δ/s∗1 + k)) since it minimizes the transfer time.

In the following we derive optimal granularity for all shapes yielding a computation

regime.

Optimal Granularity

Optimal granularity is the point s∗ = (s∗1, s
∗

2) in the computation domain which opti-

mizes DMA transfer time, in order to minimize both the prologue and the epilogue of the

pipeline.

4.3. OPTIMAL GRANULARITY FOR TWO-DIMENSIONAL DATA 53

CHAPTER 4. SHARED DATA TRANSFERS

s∗

s∗k

H(1)

HkH

c2/ψ

c1/ψ

n1

n2

s1

s2

s∗k,1

s∗k,2

s∗k,4

Hk,1 Hk,2 Hk,3
n1

n2

s1

s2

Figure 4.8: Computation domain and optimal granularity considering replication of

shared data: (a) Single processor, (b) As we increase the number of processors.

As for independent computations, the computation domain is defined by the inequality

T (s1 + k, s2 + k) ≤ C(s1, s2) and because this domain is convex, then candidates for

optimal granularity are restricted to the points (s1, Hk(s1)) satisfying the equality T = C.

The problem is reduced to minimizing T (s1, Hk(s1)) where,

Hk(s1) = (c2s1 − c3)/(ψs1 − c1)

c1, c2 and c3 are positive integer constants that depend on I0, I1, α, b and k such that,






c1 = αbk
c2 = c1 + I1
c3 = I0 + I1k + αbk2

T (s1, Hk(s1)) is a second order function with one variable. By computing the derivative,

we get one negative point that is not interesting for us and another positive point that is

the optimal.

To simplify the reading of the formulas, let ∆ = (c1/ψ)[1+D] whereD =
√

c3α/c1c2,

then optimal granularity is the point s∗ = (s∗1, s
∗

2) so that,

{

s∗1 = ∆+ (c1/ψ)(1/D)
s∗2 = ∆+ (I1/ψ)(1 +D)

Fig. 4.8-(a) illustrates the evolution of the computation domain and the optimal granularity

while considering shared data. As discussed in the previous section, we can clearly see

that optimal granularity is somewhere between a flat and a square block as s∗1 and s∗2 are

both equal to ∆ plus a different offset each.

As we consider multiple processors, recall that we parametrize the transfer cost per

byte α with the number of active processors such that αp increases monotonically with p,

in order to model contentions due to concurrent processors transfer requests. We use Tp
to denote DMA transfer time with αp replacing α.

The reasoning is similar to previously where function H becomes Hp yielding an op-

timal shape for each p. Figure 4.8-(b) illustrates the evolution of the computation domain

and optimal granularity as we increase the number of processors. As for independent data

computations, the computation domain is reduced as we increase the number of proces-

sors since the ratio between computation time and transfer time is also reduced. Also,

54 4.3. OPTIMAL GRANULARITY FOR TWO-DIMENSIONAL DATA

CHAPTER 4. SHARED DATA TRANSFERS

����

��������

��
��
��
��

����������

��
��
��
��

��
��
��
��

�
�
�
�

�
�
�
�

�
�
�
�
����
����
����
����

s2

s1P0 P1
P2

P3 P4 P5

P6 P7 P8

Figure 4.9: Neighboring data communication for two-dimensional data.

optimal granularity increases with the number of processors in order to keep the proces-

sors busy enough, the time to fetch data required by the processors for next iteration.

Other Strategies for Transferring Shared Data

As for one-dimensional data, one can think of other strategies than replication for

transferring shared data such as inter-processor communication, where at each iteration

each processor fetches a super block of (s1, s2) basic blocks and then neighboring pro-

cessors exchange shared data, as illustrated in Figure 4.9. In practice, this is hard to

program and in terms of performance it induces a large synchronization overhead since 8
processors are required to implement the geometry of the defined neighborhood pattern.

Furthermore, it also induces a large communication traffic and overhead especially if the

program topology does not match the underlying hardware topology.

One can also think about combining, in the same implementation, several strate-

gies (inter-processor communication or local buffering with replication) where a different

technique is used to transfer neighboring data in each direction. Figure 4.10 shows how

inter-processor communication can be combined with replication. In (a) 3, neighboring

horizontal data is exchanged between processors as at each iteration a super block of

(s1 + k, s2) basic blocks is fetched from main memory. k shared basic blocks are in the

sequel exchanged with right and left neighboring processors, thereby requiring a mini-

mum number of 3 concurrent processors. Note that in this case, data partitioning also

combines contiguous and periodic processors data allocation.

Horizontal inter-processor communication, as it is illustrated in Figure 4.10-(a), re-

quires copies of non contiguous data (additional data per line) from one processor’s local

memory to another. This induces a significant overhead as it requires a separate DMA

call for each contiguous transfer (strided DMA transfers are not possible between two

processors local memory) or an extra processing overhead for reorganizing strided data in

local memory in a contiguous fashion.

Vertical inter-processor communication seems an interesting option to investigate since

DMA is more efficient for transferring contiguous data blocks, which makes the cost of

3. We explain for (a) and it is the same for (b).

4.3. OPTIMAL GRANULARITY FOR TWO-DIMENSIONAL DATA 55

CHAPTER 4. SHARED DATA TRANSFERS

��������

��
��
��
��
��
��

��
��
��
��
��
��

������
��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��������

��������

��
��
��
��
��
��

��
��
��
��
��
��

������

������

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

������
�
�
�
�
�
�

�
�
�
�
�
�

������
�
�
�
�
�
�

�
�
�
�
�
�

��������

������

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

������ �������� ������ ������

��������

��
��
��
��
��
��

��
��
��
��
��
��

��������

������

b0

b8

b4

b9 b10 b11

b5 b6 b7

b3b2b1

s1

k/2

k/2

s2

P0P2P0 P1

(a)

����������

���������
�
�
�
�

�
�
�
�
�

�������������
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�����������
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

���������
�
�
�
�

�
�
�
�
�

����
����
����
����

����
����
����
����

������
������
������
������

������
������
������
������

�����
�����
�����
�����

�����
�����
�����
�����

����
����
����
����

����
����
����
����
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�������������������� ���������� ��������

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�
�

�
�
�
�
�

s1

b1b0 b2 b3

b4 b5 b6 b7

b8 b9 b10 b11

s2
k/2k/2

P0

P1

P2

(b)

Figure 4.10: Combining replication and inter-processor communication in different direc-

tions, (a) horizontal data exhange, (b) vertical data exchange. Shaded areas correspond to

shared data.

replicating additional data per line negligible. Also, it avoids the cost of transferring ad-

ditional data lines from main memory, these contiguous lines are efficiently transferred

using DMA between two processors local memory.

In this thesis, we focused only on replication as other strategies are in some cases hard

to implement and induce a significant overhead thus making them less interesting.

4.4 Conclusion

In this chapter, we focused on deriving optimal granularity for applications that share

data where the main focus remains to find the right balance between computations and

data transfers, based on hardware and software parameters.

For one-dimensional data, we compared several mechanisms for transferring shared

data. For each mechanism, we characterize the cost of transferring shared data, we derive

56 4.4. CONCLUSION

CHAPTER 4. SHARED DATA TRANSFERS

optimal granularity and approximate the overall performance in the computation and the

transfer regimes. Comparing the strategies obviously depends on the hardware parameters

that characterize the platform but more importantly on the size of shared data and the

number of processors involved.

Two-dimensional data structures with data sharing is the most interesting case which

justifies the most the analysis, as the optimal shape is hard for programmers to intuitively

guess. They usually pick trivial choices: contiguous or square shapes, even though they

are aware of the influence of the shape of the block on the size of shared data and the DMA

preference for contiguous blocks. These aspects becomes hard to combine especially as

further the balance between computation time, which also depends on the shape, has to

be considered.

4.4. CONCLUSION 57

CHAPTER 4. SHARED DATA TRANSFERS

58 4.4. CONCLUSION

Chapter 5

Experiments

5.1 Introduction

In this chapter, we validate the simplified models presented earlier on a real architec-

ture, the Cell Broadband Engine Architecture, represented by a cycle-accurate simulator,

and check whether their predictive power is sufficiently good to serve as a basis for opti-

mization decisions.

In the sequel, we give an overview of the Cell B.E. architecture and derive, based

on profiling of the architecture, the values of the hardware parameters required for the

analysis. Based on these values we then derive optimal granularity for double buffering

algorithms first for independent data computations and then for applications that share

data.

5.2 Cell BE

5.2.1 Overview

The Cell Broadband Engine Architecture is a 9-core heterogeneous multi-core archi-

tecture, consisting of a Power Processor Element (PPE) linked to 8 Synergistic Processing

Elements (SPE) acting as co-processors, through internal high speed Element Intercon-

nect Bus (EIB) as shown in Figure 5.1. The PPE and SPE processors run at 3.2GHz clock

frequency and the interconnect is clocked with half the frequency of the processors.

The PPE is a 64-bit PowerPC Processor Unit (PPU) and each SPE is composed of a

Synergistic Processing Unit (SPU) which is a vector processing unit, an SRAM local store

(LS) of size 256 kbytes shared between instructions and data, and a Memory Flow Con-

troller (MFC) to manage DMA data transfers. The PPU provides a single shared address

space across SPEs and the MFC’s memory translation unit handles the required address

translation. An SPE can access the external DRAM and the local store of other SPEs

only by issuing DMA commands. The PPU can also issue DMA commands supported by

the MFC. The MFC supports aligned DMA transfers of 1, 2, 4, 8, 16 or a multiple of 16

bytes, the maximum size of one DMA transfer request being 16K. To transfer more than

16K, DMA lists are used. Further details of the architecture can be obtained at [IBM08].

As mentioned in Section 2.2, the MFC of each SPE is composed of a Direct Mem-

ory Access Controller (DMAC) to process DMA commands queued in the MFC and of a

59

CHAPTER 5. EXPERIMENTS

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

SPU

MMUMFC

PPU

MMU

L2

XDR DRAM

Interface

I/O

Interface

Interface

Coherent

EIB

Figure 5.1: Cell B.E. Architecture

Memory Management Unit (MMU) to handle the address translation required by the se-

lected DMA command. The MMU has a translation look-aside buffer (TLB) for caching

recently translated addresses. TLB misses can affect significantly the performance, there-

fore we neglect this effect by doing a warm-up run which will load the TLB entries before

profiling of the program. Also, we allocate large page tables to have a smaller number

of TLB entries for data array. As explained previously, after the address translation, the

DMAC splits the DMA command into smaller bus transfers. Peak performance is achiev-

able when both the source and destination address are 128-byte aligned and the block size

is multiple of 128 bytes [KPP06]. We can observe reduction in performance when this is

not the case.

For our experiments, we use a Cell B.E. simulator [IBM09] whose performance are

very close to the actual processor. However, it does not model precisely all the main mem-

ory details. In the Cell B.E. references, it is mentioned that it models a DDR2 memory

instead of RAMBUS XDR, used in the real processor, and it does not have Replacement

Management table for cache. This does not affect much the validity of our results since

we do not consider either a detail description of the main memory and performance is

measured directly on the SPUs.

For programming the Cell B.E. platform, we use a low level library provided by the

Cell B.E. SDK [IBM08]. This library gives us direct control over the platform and ex-

cludes any overhead due to the implementation of high level constructs used by a high

level programming model. However, the low level library exposes to the programmer all

the low level hardware details which requires the programmer to have a good understand-

ing of the architecture and its hardware constraints, to provide an efficient implementa-

tion. One example of such hardware constraints is data alignment issues.

In the following, using profiling we retrieve the values of the hardware parameters of

the Cell B.E. platform required for the analysis.

5.2.2 Hardware Parameters Measurement

To measure the DMA latency, we implement small benchmarks issuing blocking

DMA requests and we measure the DMA transfer time as we vary the block size and

shape and increase the number of processors issuing concurrent transfer requests.

The DMA transfer time for one-dimensional blocks and accordingly the cost per byte

are plotted in Figure 5.2. As mentioned previously, the DMA has a large initialization

60 5.2. CELL BE

CHAPTER 5. EXPERIMENTS

16 64 256 1024 4096 16384

103

104

super-block size (s · b)

T
ra
n
sf
er

T
im

e
(c
lo
ck

cy
cl
es
)

1 SPU
2 SPU
4 SPU
8 SPU

(a) DMA transfer time

16 64 256 1024 4096 16384

0

10

20

30

super-block size (s · b)

C
o
st

P
er

B
y
te

(c
lo
ck

cy
cl
es
)

1 SPU
2 SPU
4 SPU
8 SPU

(b) DMA Read Cost per Byte

Figure 5.2: DMA performance for contiguous blocks

αp

p min max avg
1 1.13 14.00 2.57
2 1.78 29.98 4.13
4 3.97 47.23 11.07
8 5.43 87.86 18.82

Table 5.1: The transfer time per byte for two-dimensional data transfers, as a function of

the number of processes.

overhead, the measured initialization phase time I is about 400 cycles, which is amortized

for block size larger than 128 bytes since the DMA cost per byte is reduced significantly

for this value. As we increase the number of processors and synchronize concurrent DMA

transfers, we can observe that the transfer time is not highly affected for a small granular-

ity because the initial phase of the transfer is done in parallel in each processor’s MFC,

whereas for a large granularity the transfer time increases proportionately to the number

of processors due to the contentions of concurrent requests on the bus and bottleneck at

the Memory Interface Controller (MIC) as explained in [KPP06]. The measured DMA

transfer cost per byte to read from main memory α(1) is about 0.22 cycles per byte, it in-

creases proportionately to the number of processors to reach p ·α(1) (for large granularity

transfers).

For two-dimensional data blocks DMA transfers, implemented using DMA lists, we

also derive the DMA parameter values based on profiling information. As modeled, these

values consist of a fixed initialization cost I0 = 108 and an initialization cost per line

I1 = 50 cycles which corresponds to the cost of the creation of each list element.

The transfer cost per byte α is subject to variations that are more visible and amplified

for rectangular data block transfers. These variations are due to several factors such as

concurrent reading and writing requests of the same processor, packet-level arbitration

between requests of different processors as well as the effect of strided accesses in main

memory. The minimal, maximal and average values of αp measured for two-dimensional

data are shown in Tab. 5.1 and we use the average value in our model.

Note that due to the characteristics of the Cell B.E. not all block size and shape com-

5.2. CELL BE 61

CHAPTER 5. EXPERIMENTS

binations are possible. Indeed a DMA list can hold up to 2K transfer elements. Each

element is a contiguous block transfer with maximum size 16KBytes. Furthermore, the

Cell B.E. has a strict alignment requirements on 16-byte boundary for both DMA trans-

fers and SPU vector instructions for which the processor is optimized. If this is not taken

care of, the DMA engine aligns the data by itself causing erroneous results.

5.3 Experimental Results

For our experiments, we implement a double buffering algorithm for different bench-

marks, some of them are applications where computations are completely independent

and others share data. For each benchmark, we run the experiments as we vary the block

size and shape and the number of processors and check whether the analytical optimum

is close to the measured one and the measured performance close to the predicted one.

Our benchmarks consist of, first synthetic algorithms of (independent/shared) compu-

tations where f is an abstract function for which we vary the computation workload per

byte ω and the size of shared data.

We then implement a convolution algorithm that computes an output signal based

on an input signal and an impulse response signal. These signals are encoded as one-

dimensional data arrays and the size of the impulse signal determines the size of the data

window required to compute one output item. We vary the size of the impulse signal to

vary the size of the neighboring shared data.

Our last benchmark is a mean filtering algorithm working on a bitmap image, encoded

as a two-dimensional data array. This algorithm computes the output for each pixel as the

average of the value of its neighborhood.

5.3.1 Independent Computations

To validate our analytical results for independent computations, we use synthetic algo-

rithms and focus only on one-dimensional data since, as explained previously, optimizing

data granularity for independent two-dimensional data is similar to the one-dimensional

case where it is about optimizing the size (and not shape) of data.

For synthetic algorithms, we fix the size b of a basic block to 16 bytes and the size n
of input data array to 64K, the total size of the array being 1Mbytes. Also we keep the

maximal number of threads that are spawn on SPUs equal to the number of SPU’s. This

will avoid context switching and gives more predictable results. Also there will be no

question of scheduling which is another part of the problem and not in the scope of this

thesis. The memory capacity limits then the possible number of blocks clustered in one

transfer to s̄ < 4K, excluding memory space allocated to code size. We vary the number

of blocks s and the number of processors. We compare both predicted and measured op-

timal granularity, and the total execution time for both transfer and computation regimes.

Figure 5.3 shows the predicted and measured values for 2, 4 and 8 processors. We can

observe that the values are very close to each other. The predicted optimal points are not

exactly the measured ones but they give very good performance. Performance prediction

in the computation regime is better than in the transfer regime, because the computations

which constitute the dominant part of the total execution time is performed on processors.

Besides, as mentioned in [SBKD06] we have sufficient time to hide delays caused due to

the network latency and bandwidth.

62 5.3. EXPERIMENTAL RESULTS

CHAPTER 5. EXPERIMENTS

16 64 256 1024 4096 16384
0

0.5

1

1.5

·107

super-block size (s · b)

E
x
ec
u
ti
o
n
T
im

e
(c
lo
ck

cy
cl
es
)

2 SPU-pred 4 SPU-pred 8 SPU-pred
2 SPU-meas 4 SPU-meas 8 SPU-meas

Figure 5.3: Independent data computations

5.3.2 Shared Computations

5.3.2.1 Synthetic Benchmarks

We implement the different strategies for transferring shared data explained in Sec-

tion 4.2. We run experiments with different values of k, s and p, for both computation

and transfer regimes by varying the computation workload ω. We present the results for a

small and a large value of k, 128bytes and 1K respectively, and for 2 and 8 processors.

In Inter-Processor Communication (IPC) strategy, we make sure that neighboring pro-

cessors exchanging data are physically mapped close to each other. Specifying affinity

during thread creation in linux allows the logical threads to be mapped physically next to

each other. This gives advantage of having higher bandwidth as mentioned in [SNBS09].

The global data partitioning specified in section 4.2.2 has a ring geometry of communica-

tion similar to the EIB topology, so that each processor can send data to its right neighbor.

The processors must synchronize with each other to send shared data after the DMA re-

quest for fetching a super-block from main memory has completed. We experiment with

two variants of IPC synchronization: a point to point signaling mechanism to check the

availability of shared data and acknowledge the neighbor, and a global barrier based on

signals mentioned in [BZZL08] to synchronize all processors. Because of the high syn-

chronization overhead compared to point to point signaling, we do not present here the

results obtained with this variant. After processors synchronization, the transfer of shared

data is done by issuing a DMA command.

As discussed in section 4.2.4, in the computation regime replication performs always

better than local buffering and IPC as shown in Figures 5.4a and 5.4b. Besides, we can

see that IPC performs worse than local buffering because the cost per byte γ via load/store

operations which is around 2 cycles per byte, is much lower than the cost Rk to perform

IPC synchronization and DMA calls. Rk involves a DMA inter-processor cost per byte β
and a synchronization cost. In practice, it is very difficult to estimate Rk precisely, mainly

because of the difficulty in predicting the exact arrival time in the presence of continuous

read/write data-transfers. In our experiments, the initial time of an inter-processor DMA

command was around 200 cycles, the transfer cost per byte β around 0.13 cycles and the

5.3. EXPERIMENTAL RESULTS 63

CHAPTER 5. EXPERIMENTS

128 256 512 1024 2048 4096 8192

106

106.5

super-block size (s · b)

E
x
ec
u
ti
o
n
T
im

e
(c
lo
ck

cy
cl
es
)

2 repl 2 ipc 2 local buffering
8 repl 8 ipc 8 local buffering

(a) shared data size 128 bytes

1024 2048 4096 8192

106

106.2

106.4

106.6

super-block size (s · b)

E
x
ec
u
ti
o
n
T
im

e
(c
lo
ck

cy
cl
es
)

2 repl 2 ipc 2 local buffering

8 repl 8 ipc 8 local buffering

(b) shared data size 1024 bytes

Figure 5.4: Overlapped data in computation regime

synchronization cost between 200 and 500 cycles as we vary the number of processors.

The synchronization cost using barrier is much larger, between 800 and 2400 for each

iteration.

In the transfer regime, performance varies according to the value of k and the number

of processors. We can observe in Figure 5.5a that the costs of local buffering and replica-

tion are nearly the same, and that replication performs even better for a transfer of block

size between 512bytes and 2K. This demonstrates that using DMA for transferring addi-

tional data can perform sometimes better than local buffering even for a small value of k,

and that keeping shared data in the local store may have a non-negligible cost. Therefore,

even when considering contiguous partitioning of data, redundant fetching of shared data

using replication strategy can be as efficient, if not more efficient than keeping shared

data in the local store. However, the cost of transferring shared data using replication

becomes higher than other strategies when the number of processors increases because of

the contentions even for small values of k.

In the following, we detail the results for each strategy in terms of efficiency and

conformance with the prediction of the models.

– Replication: For computation regime, the measured results are very close to the

predicted ones. The only source of error would be the contentions on the network

with huge network traffic which causes differences in the arrival time of the data.

The error between the measured and predicted values is about 3%. In the transfer

regime, replication always performs worse than other strategies for 8 processors

due to contentions.

– IPC: When synchronization is done using messages between neighboring proces-

sors, we observe variabilities in the arrival time of data transfers and exchanged

messages due to contentions in the network. This effect increases in the trans-

fer regime which makes the gap between the measured and estimated performance

larger, with an error of about 6%, that goes to 30% when barriers are used with a

high number of processors.

– Local buffering: In the computation regime, local buffering outperforms IPC for

most of the cases, whereas in the transfer regime, the DMA engine can be more

64 5.3. EXPERIMENTAL RESULTS

CHAPTER 5. EXPERIMENTS

128 256 512 1024 2048 4096 8192

105.8

106

106.2

106.4

106.6

super-block size (s · b)

E
x
ec
u
ti
o
n
T
im

e
(c
lo
ck

cy
cl
es
)

2 repl 2 ipc 2 local buffering

8 repl 8 ipc 8 local buffering

(a) shared data size 128 bytes

1024 2048 4096 8192

105.8

106

106.2

super-block size (s · b)

E
x
ec
u
ti
o
n
T
im

e
(c
lo
ck

cy
cl
es
)

2 repl 2 ipc 2 local buffering

8 repl 8 ipc 8 local buffering

(b) shared data size 1024 bytes

Figure 5.5: Overlapped data in transfer regime

efficient for transferring shared data than copying it from one buffer to another in

the local store, despite the inter-processor synchronization overhead.

Note that for a given k, as super-block size increases the cost of transferring shared

data relative to the overall execution time decreases and all strategies give similar perfor-

mance results. In the transfer regime, the gap between estimated and measured perfor-

mance becomes larger as it is more dependent upon contentions in the network traffic for

which our modeling is less accurate. There are two major sources of contentions that we

currently do not model:

1. In the 3 stage software pipeline there is an overlap between reading super-block i
and writing super-block i − 1. This is the main reason why the estimated optimal

granularity point is in reality still in the transfer regime.

2. Inter-processor synchronization, in which messages exchanged between processors

add contention to the network. This overhead increases with the number of proces-

sors even for the more efficient inter-processor signaling variant. The exact arrival

time of each message is difficult to model due to continuous read/write network

traffic and the scheduling policy of the DMA controller.

In the following, we apply the double buffering granularity optimization on a real

application working on one-dimensional data: the convolution.

5.3.2.2 Convolution Algorithm

Convolution is one of the basic algorithm is signal processing [Nus81]. Assuming

an input signal array X of a large size n and an impulse system response signal array B
of a smaller size m (m << n), the output system signal array Y of the same size n is

computed as follows;

Y [i] =
m
∑

j=0

X[i− j] · B[j]

5.3. EXPERIMENTAL RESULTS 65

CHAPTER 5. EXPERIMENTS

P2P1

X

B

Y

Figure 5.6: Convolution Algorithm.

Therefore to compute each sample Y [i] of the output signal, a window of m data

samples is required from input array X . When multiple processors are used, input array

is partitioned into contiguous chunks, see Figure 5.6. The area in grey illustrates shared

data between processors.

In our experiments, the size of input array X is chosen to be 1Mbytes of data, so it

cannot fit in the scratchpad memory, whereas B is small enough to be permanently stored

in each SPU’s local store. Hence double buffering is implemented to transfer data blocks

of array X (resp. Y). As for the synthetic examples, we compare the different strategies

of section 4.2 and we vary the size of B to vary the size of shared data.

Signal samples are encoded as double data types. The minimal granularity size b is

chosen to be the size of the data window required to compute one output data sample,

that is b = m · 8 (8 being the size of a double data type). In the implementation of the

algorithm, we use SIMD operations to optimize the code. The measured cost per byte ω
is about 53 cycles.

Note that for this algorithm, despite an optimized implementation using vector opera-

tions the computation cost per byte ω is much higher than the transfer cost per byte with

maximum contentions α(8) (being 7.22 cycles), resulting from the use of the maximal

number of available cores. Therefore, the overall execution is always in a computation

regime for all strategies.

The reason why the cost per byte for this algorithm is so high is the use of double

data types to encode signals samples which does not fully take advantage of the 16 bytes

SIMD engine since operations on at most 2 elements of the array can be done in parallel.

Floating point data types would take more advantage of the SIMD operations, however

at the cost of results accuracy since the Cell B.E. does not support a floating point unit.

Besides since SPU’s general registers are SIMD registers, this makes operations on the

SPU not optimized for scalar operations and branching instructions, resulting in a high

execution latency.

Figure 5.7 summarizes performance results for size of B = 256 bytes, that is, 32
samples, using 2 and 8 processors. As explained in section 4.2.4, in the computation

regime the replication strategy outperforms local buffering and IPC strategies since it

avoids the computational overhead at each iteration of copying shared data locally or

exchanging data between neighboring processors using synchronous DMA calls. This

overhead is proportional to the number of iterations and therefore decreases with higher

granularities to be eventually negligible which leads all strategies to perform with nearly

the same efficiency.

Moreover, note that in the program execution time estimation, we ignored so far the

overhead at each iteration of setup variables which is also proportional to the number of

iterations and is hence reduced for high granularity.

66 5.3. EXPERIMENTAL RESULTS

CHAPTER 5. EXPERIMENTS

256 512 1024 2048 4096 8192

4

4.02

4.04

4.06

super-block size (s · b)

N
o
rm

a
li
ze
d
E
x
ec
u
ti
o
n
T
im

e

2 repl
2 ipc
2 local

256 512 1024 2048 4096 8192

1

1.01

1.02

1.03

1.04

super-block size (s · b)

N
o
rm

a
li
ze
d
E
x
ec
u
ti
o
n
T
im

e

8 repl
8 ipc
8 local

Figure 5.7: Convolution using double buffering, shared data size is 256 bytes

5.3.2.3 Mean Filtering Algorithm

We implemented a mean filter algorithm that works on a bitmap image of 512 × 512
pixels. Each pixel is characterized by its intensity ranging over 0..255. The output for a

pixel is the average of the value of its neighborhood defined as a square (mask) centered

around it which corresponds to the neighborhood pattern we considered.

We have experimented with different mask sizes and focus on the presentation of the

results for a 9 × 9 mask, that is, k = 8. In order to us SIMD operations to optimize

the implementation of the code, we encode a pixel as an integer (b = 4 bytes). The

computation workload per basic block is roughly ω = 62 cycles.

First we experiment with the influence of the block shape and its implied replicated

area on the transfer time discussed in Section 4.3. For this, we fix the quantity δ = s1×s2
and profile the DMA transfer time for different feasible combinations of (s1, s2) so that

s1 × s2 = δ. Figure 5.8 plots the DMA transfer time of these shapes for δ = 4096. Note

that given the considered mask size, a shape (s1, s2) yields a block of s1 + 8 lines, each

line corresponding to a contiguous transfer of b · (s1 + 8) bytes. As argued in section 4.3,

the optimal transfer time is obtained neither for square (64, 64) nor the flattest possible

(8, 512) super blocks and the best trade-off in this case is (s1, s2) = (32, 128).
We then evaluate the effect of the size and shape of the super blocks and the total

execution time of the pipeline for different numbers of processors. Fig. 5.9-(a) compares

the predicted and measured performance for different block shapes where s1× s2 = 1024
while Fig. 5.9-(b) does the same for s1×s2 = 2048. As one can see, the distance between

the predicted and measured values is rather small except for large values of s1. The major

reason for the discrepancy between the model and the reality is that C(s1, s2) has non

negligible component that depends on s1 for two reasons. The first is due to the overhead

at each computation iteration related to the setting required between the outer loop and the

inner loop like adjustment of the pointers for every row, pre-calculation of sums of borders

etc. Secondly, the creation of list elements occupies the processor and this overhead is

also added to the overall execution time.

Fig. 5.10 combines the measured results for different super block sizes. The measured

optimum is obtained for (4, 256) while our calculation yield (56, 33) whose nearest fea-

sible value is (64, 32) whose measured overall performance is less than 10% above the

performance for the optimum. The discrepancy can be attributed to the reasons stated

above, namely the dependence of C on s1.

5.3. EXPERIMENTAL RESULTS 67

CHAPTER 5. EXPERIMENTS

8

1
6

3
2

6
4

1
2
8

2
5
6

1

1.2

1.4

·105

Block Height s1, s2 = 4096/s1

D
M

A
T

ra
n
sf

er
ti

m
e

Super block with replicated data transfer time

Figure 5.8: Influence of block shape and its replicated data on the transfer time.

2 4 8 16 32 64

4

4.5

5

·106

Block Height s1

P
ip

el
in

e
T

o
ta

l
E

x
ec

u
ti

o
n

ti
m

e measured

predicted

4 8 16 32 64 128

4

4.5

5

5.5

·106

Block Height s1

P
ip

el
in

e
T

o
ta

l
E

x
ec

u
ti

o
n

ti
m

e measured

predicted

(a) (b)

Figure 5.9: Predicted and measured values for different combinations of s1 × s2

68 5.3. EXPERIMENTAL RESULTS

CHAPTER 5. EXPERIMENTS

2 8 32 128

4

4.5

5

5.5

·106

Block Height s1

P
ip

el
in

e
T

o
ta

l
E

x
ec

u
ti

o
n

ti
m

e meas s1 × s2 = 4K
meas s1 × s2 = 2K
meas s1 × s2 = 1K

Figure 5.10: Observed optimal granularity s∗ = (4, 256) and predicted optimal granular-

ity s∗ = (64, 32).

5.4 Conclusion

In order to validate the analysis, we implemented and run double buffering algorithms

considering different benchmarks, first synthetic where we vary the computation work-

load per basic block and the size of shared data, in order to vary the balance between

computations and transfers. We considered then real benchmarks where computations

share data: a convolution algorithm working on one-dimensional data requiring only con-

tiguous block transfers and a mean filtering algorithm working on two-dimensional data

requiring rectangular block transfers.

Overall the analytical results are close to the measured ones which proves that we

captured the important features of the problem. However, some discrepancy remains

mainly because of the following reasons:

– Variabilities in the architecture which influence in particular the value of α and

where an average value is clearly not enough to capture these variabilities.

– We ignored so far the overhead per line involved in the computation time of a rect-

angular block. It turns out that in the Cell B.E. architecture, this overhead is signifi-

cant since, i) the issue of each list element is performed by the software which adds

to the processing time and ii) the Cell B.E. processors are vector processors not

optimized for scalar and branching instructions which makes the extra processing

required for the computation of a rectangular block not negligible.

We believe that a right choice of the parameters values along with more detailed mod-

els can further improve granularity and performance predictions.

5.4. CONCLUSION 69

CHAPTER 5. EXPERIMENTS

70 5.4. CONCLUSION

Conclusions and Perspectives

The critical path of this thesis was to understand the architectural context and the new

challenges emerging from the current trend for designing embedded multi-core systems,

which are in some aspects very different from general-purpose multi-core platforms. In

fact, a particular difficulty in the embedded multi-core domain is the cultural gap between

the software and hardware communities that hold different partial views of the same sys-

tem and thus problems.

For such platforms, efficient use of the memory hierarchy is crucial for performance

and constitutes one of the major new challenges. It breaks with the implicit assumption

of an unlimited memory space available to the program and thus puts a heavy burden on

the software and the programmer who have to manage data movement in the memory

hierarchy, granularity choice, synchronization with the computations, etc.

To tackle this problem, we have targeted a relatively-easy, but important, class of

applications with regular patterns of computation and high volume data transfers. This

choice may look too restrictive, however array processing algorithm constitute a large part

of today’s embedded applications and their efficient software implementation on multi-

core architectures is an activity that will still occupy a lot of programmers in the coming

future.

Under some simplifying assumptions we constructed models that capture the main

features/parameters of the problem, that is the logical description of the applications and

the DMA specification, with a clear separation between parameters characterizing the

applications and those which are specific to the hardware platform. A crucial point of our

methodology is that the hardware characterization and modeling phase can, in principle,

be done once for each new platform and then be used by different applications running on

it.

The analysis turned out to approximate reasonably well the behavior of implemented

benchmarks on a real architecture. However, we are of course aware of the fact that

each real program and each architecture will have its own particularity, more complex

and richer in parameters than the model we have built. The work presented in this thesis

is just a first step and our main concern was to provide an abstract view of the problem

towards a more systematic way for solving such problems than the actual pure trial and

error engineering method.

There are many possible extensions for this work and a lot is still to be done, including,

– Integrate different/more complex features of data parallel applications such as dif-

ferent data sharing patterns, potentially involving temporal dependency and thus

allowing data dependent execution;

– Capture variations which is necessary if we want to move a step towards more re-

alistic results. Sources of variations can be software and/or hardware. In software

they appear for instance naturally in some filtering algorithms where the degree

71

CONCLUSIONS AND PERSPECTIVES

of filtering and thus computations varies according to the structures of the image.

Hardware variations are, as discussed throughout this thesis, mainly due to the con-

tentions on the NoC and the main memory side. We think that a more detailed

model of DRAM features would help improve granularity and performance predic-

tions and that a dynamic tuning of the granularity between subsequent iterations

maybe required to adapt to the variations in the memory access latency;

– In contrast with data-parallelism, task-level parallelism usually use multithreading

to hide memory latency where multiple threads run on the same core and a context

switch occurs at the request of data that is not available in local memory. Combin-

ing both data and task parallelism is in practice required since different applications

can run simultaneously on the same multi-core fabric. This will change the sym-

metric nature of the problem and may create new bottlenecks. Consideration of

code distribution should also be taken into account;

– Adapt our analysis to a distributed DMA architecture where data transfers can be

scheduled at the super block rather than the packet level. This way, useless con-

tentions between sub tasks of the same application can be avoided;

– So far, we considered only two memory levels in the hierarchy, main memory and

processors local memory. We can also consider a third memory level (which is in

practice already available in platforms such as P2012). More generally, the memory

hierarchy can be viewed as a tree where each node features a different speed and

capacity, and one (or multiple) DMA (s) engines are used to transfer data from one

memory location to another;

– Finally, we think that the best way to leverage this work is to integrate it in a com-

plete compilation flow where the programmer writes his program as a sequential

data parallel loop and a double buffering algorithm source code is generated auto-

matically with the appropriate partitioning for the target platform, that varies as we

vary the hardware;

We are currently extending our work to P2012, which is the initial motivation for

this thesis. The problem as it is so far described already matches the inter-cluster view

of P2012 where each cluster has its own local memory and DMA engine. In the same

cluster, the programmer can chose between two strategies of moving data, i) a “liberal”

approach where each core copies data independently of other cores in the cluster thus

issuing a different DMA request per core, data is however stored in the shared memory.

ii) a “collaborative” approach where cores in the same cluster issue simultaneously one

common transfer request to serve their respective computations. It will be interesting

to compare both approaches as the first offers more synchronization flexibility and the

second matches the hardware view.

72 CONCLUSIONS AND PERSPECTIVES

Bibliography

[AB86] James Archibald and Jean-Loup Baer. Cache coherence protocols: evalua-

tion using a multiprocessor simulation model. ACM Trans. Comput. Syst.,

4(4):273–298, September 1986.

[ADC+03] A. Artieri, V. D’Alto, R. Chesson, M. Hopkins, and M. C. Rossi. Nomadik

- Open multimedia platform for next generation mobile devices. Technical

report, 2003.

[AKN95] Anant Agarwal, David Kranz, and Venkat Natarajan. Automatic partitioning

of parallel loops and data arrays for distributed shared memory multiproces-

sors. IEEE Trans. Parallel Distributed Systems, 6:943–962, 1995.

[Amd67] Gene M. Amdahl. Validity of the single processor approach to achieving

large scale computing capabilities. In Proceedings of the April 18-20, 1967,

spring joint computer conference, AFIPS ’67 (Spring), pages 483–485, New

York, NY, USA, 1967. ACM.

[AP01] Turgay Altilar and Yakup Paker. Minimum overhead data partitioning algo-

rithms for parallel video processing. In Proceedings Domain Decomposition

Methods Conference, pages 25125–8, 2001.

[BM02] Luca Benini and Giovanni De Micheli. Networks on chips: A new soc

paradigm. Computer, 35:70–78, 2002.

[BSL+02] Rajeshwari Banakar, Stefan Steinke, Bo-Sik Lee, M. Balakrishnan, and Pe-

ter Marwedel. Scratchpad memory: design alternative for cache on-chip

memory in embedded systems. In Proceedings of the tenth international

symposium on Hardware/software codesign, CODES ’02, pages 73–78, New

York, NY, USA, 2002. ACM.

[BZZL08] Shuwei Bai, Qingguo Zhou, Rui Zhou, and Lian Li. Barrier synchronization

for cell multi-processor architecture. In Ubi-Media Computing, 2008 First

IEEE International Conference on, pages 155 –158, august 2008.

[CB94] T.-F. Chen and J.-L. Baer. A performance study of software and hardware

data prefetching schemes. SIGARCH Comput. Archit. News, 22:223–232,

April 1994.

[CKP91] David Callahan, Ken Kennedy, and Allan Porterfield. Software prefetching.

In Proceedings of the fourth international conference on Architectural sup-

port for programming languages and operating systems, ASPLOS-IV, pages

40–52, New York, NY, USA, 1991. ACM.

[CMLS11] Scott Cotton, Oded Maler, Julien Legriel, and Selma Saidi. Multi-criteria

optimization for mapping programs to multi-processors. In SIES, pages 9–

17, 2011.

73

BIBLIOGRAPHY

[DDS95] Fredrik Dahlgren, Michel Dubois, and Per Stenström. Sequential hardware

prefetching in shared-memory multiprocessors. IEEE Trans. Parallel Dis-

trib. Syst., 6:733–746, July 1995.

[DRV00] Alain Darte, Yves Robert, and Frederic Vivien. Scheduling and Automatic

Parallelization. Birkhauser Boston, 1st edition, 2000.

[Ehr00] M. Ehrgott. Multicriteria optimization. Lecture Notes in Economics and

Mathematical Systems. Springer-Verlag, 2000.

[fClB95] Tien fu Chen and Jean loup Baer. Effective hardware-based data prefetch-

ing for high-performance processors. IEEE Transactions on Computers,

44:609–623, 1995.

[FHK+06] K. Fatahalian, D.R. Horn, T.J. Knight, L. Leem, M. Houston, J.Y. Park,

M. Erez, M. Ren, A. Aiken, W.J. Dally, et al. Sequoia: Programming the

memory hierarchy. In Proceedings of the 2006 ACM/IEEE Conference on

Supercomputing, pages 83–es. ACM, 2006.

[Fri02] J. Fritts. Multi-level memory prefetching for media and stream processing.

In Multimedia and Expo, 2002. ICME ’02. Proceedings. 2002 IEEE Inter-

national Conference on, volume 2, pages 101–104 vol.2, 2002.

[Gro08] Khronos OpenCL Working Group. The OpenCL Specification, version

1.0.29, 8 December 2008.

[Gsc07] M. Gschwind. The cell broadband engine: exploiting multiple levels of

parallelism in a chip multiprocessor. International Journal of Parallel Pro-

gramming, 35(3):233–262, 2007.

[HP06] John L. Hennessy and David A. Patterson. Computer Architecture, Fourth

Edition: A Quantitative Approach. Morgan Kaufmann Publishers Inc., San

Francisco, CA, USA, 2006.

[IBM08] IBM. Cell SDK 3.1. https://www.ibm.com/developerworks/

power/cell/, 2008.

[IBM09] IBM. Cell Simulator. http://www.alphaworks.ibm.com/tech/

cellsystemsim, June 2009.

[IM02] Anoop Iyer and Diana Marculescu. Power and performance evaluation of

globally asynchronous locally synchronous processors. Computer Architec-

ture, International Symposium on, 0:0158, 2002.

[kLH95] Chi kin Lee and Mounir Hamdi. Parallel image processing applications on

a network of workstations. Parallel Computing, 21(1):137 – 160, 1995.

[KPP06] M. Kistler, M. Perrone, and F. Petrini. Cell multiprocessor communication

network: Built for speed. Micro, IEEE, 26(3):10 –23, may-june 2006.

[KYM+07] Timothy J. Knight, Ji Young, Park Manman, Ren Mike Houston, Mattan

Erez, Kayvon Fatahalian, Alex Aiken, William J. Dally, and Pat Hanrahan.

Compilation for explicitly managed memory hierarchies. In In PPoPP ’07:

Proceedings of the 12th ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, pages 226–236. ACM Press, 2007.

[LCM11] Julien Legriel, Scott Cotton, and Oded Maler. On universal search strategies

for multi-criteria optimization using weighted sums. In IEEE Congress on

Evolutionary Computation, pages 2351–2358, 2011.

74 BIBLIOGRAPHY

BIBLIOGRAPHY

[LGCM10] Julien Legriel, Colas Le Guernic, Scott Cotton, and Oded Maler. Approxi-

mating the pareto front of multi-criteria optimization problems. In TACAS,

pages 69–83, 2010.

[LLG+90] Daniel Lenoski, James Laudon, Kourosh Gharachorloo, Anoop Gupta, and

John Hennessy. The directory-based cache coherence protocol for the dash

multiprocessor. SIGARCH Comput. Archit. News, 18(3a):148–159, May

1990.

[LM87] E. A. Lee and D. G. Messerschmitt. Synchronous data flow. Proceedings of

the IEEE, 75(9):1235–1245, 1987.

[LPB06] Mirko Loghi, Massimo Poncino, and Luca Benini. Cache coherence trade-

offs in shared-memory mpsocs. ACM Trans. Embed. Comput. Syst., 5:383–

407, May 2006.

[MB09] Andrea Marongiu and Luca Benini. Efficient openmp support and extensions

for mpsocs with explicitly managed memory hierarchy. In DATE, pages

809–814, 2009.

[MBB10] Andrea Marongiu, Paolo Burgio, and Luca Benini. Evaluating openmp sup-

port costs on mpsocs. In DSD, pages 191–198, 2010.

[MCT96] Kathryn S. McKinley, Steve Carr, and Chau-Wen Tseng. Improving data

locality with loop transformations. ACM Trans. Program. Lang. Syst.,

18(4):424–453, July 1996.

[MG91] Todd Mowry and Anoop Gupta. Tolerating latency through software-

controlled prefetching in shared-memory multiprocessors. Journal of Paral-

lel and Distributed Computing, 12:87–106, 1991.

[Nus81] Henri J. Nussbaumer. Fast Fourier transform and convolution algorithms.

Springer-Verlag, Berlin ; New York :, 1981.

[OHL+08] J.D. Owens, M. Houston, D. Luebke, S. Green, J.E. Stone, and J.C. Phillips.

Gpu computing. Proceedings of the IEEE, 96(5):879 –899, may 2008.

[Ope08] OpenMP Architecture Review Board. OpenMP Application Program Inter-

face, 3.0 edition, May 2008.

[SBKD06] José Carlos Sancho, Kevin J. Barker, Darren J. Kerbyson, and Kei Davis.

Quantifying the potential benefit of overlapping communication and com-

putation in large-scale scientific applications. In Proceedings of the 2006

ACM/IEEE conference on Supercomputing, SC ’06, New York, NY, USA,

2006. ACM.

[SC10] STMicroelectronics and CEA. Platform 2012: a many core programmable

accelerator for ultra efficient embedded computing in nanometer technology,

2010.

[SK08] J.C. Sancho and D.J. Kerbyson. Analysis of double buffering on two differ-

ent multicore architectures: Quad-core Opteron and the Cell-BE. In Parallel

and Distributed Processing, 2008. IPDPS 2008. IEEE International Sympo-

sium on, pages 1–12. IEEE, 2008.

[SNBS09] C.D. Sudheer, T. Nagaraju, P.K. Baruah, and Ashok Srinivasan. Optimizing

assignment of threads to spes on the cell be processor. Parallel and Dis-

tributed Processing Symposium, International, 0:1–8, 2009.

BIBLIOGRAPHY 75

BIBLIOGRAPHY

[Ste90] Per Stenström. A survey of cache coherence schemes for multiprocessors.

Computer, 23(6):12–24, June 1990.

[SYN09] S. Schneider, J.S. Yeom, and D.S. Nikolopoulos. Programming multiproces-

sors with explicitly managed memory hierarchies. Computer, 42(12):28–34,

2009.

[TKA02] William Thies, Michal Karczmarek, and Saman P. Amarasinghe. Streamit:

A language for streaming applications. In Proceedings of the 11th Inter-

national Conference on Compiler Construction, CC ’02, pages 179–196,

London, UK, UK, 2002. Springer-Verlag.

[WBM+03] Zhenlin Wang, Doug Burger, Kathryn S. McKinley, Steven K. Reinhardt,

and Charles C. Weems. Guided region prefetching: a cooperative hard-

ware/software approach. SIGARCH Comput. Archit. News, 31:388–398,

May 2003.

[WJM08] W. Wolf, A.A. Jerraya, and G. Martin. Multiprocessor system-on-chip (MP-

SoC) technology. Computer-Aided Design of Integrated Circuits and Sys-

tems, IEEE Transactions on, 27(10):1701–1713, 2008.

[WL91] Michael E. Wolf and Monica S. Lam. A data locality optimizing algorithm.

SIGPLAN Not., 26(6):30–44, May 1991.

[WM95] Wm. A. Wulf and Sally A. Mckee. Hitting the memory wall: Implications

of the obvious. Computer Architecture News, 23:20–24, 1995.

[YRL+09] S.S.J.S. Yeom, B. Rose, J.C. Linford, A. Sandu, and D.S. Nikolopoulos.

A Comparison of Programming Models for Multiprocessors with Explicitly

Managed Memory Hierarchies. 2009.

[ZM02] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability

solvers. In CADE, pages 295–313, 2002.

76 BIBLIOGRAPHY

MOT-CLEFS

mot-clef1, mot-clef2, mot-clef3

TITLE

Optimizing DMA Data Transfers for Embedded Multi-Cores

KEYWORDS

keyword1, keyword2, keyword3

ADRR : Adresse Labo

ISBN : ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔ ⊔

