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September 2008 > September 2012
26 Work Packages – 80 M€
39 M€ funded by OSEO  (French 
Agency) incl. Schneider 26 M€

“Equip each building with Active Energy 
Efficiency solutions, to achieve the best 
possible energy performance”
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Introduction

Thesis objectives

Design control algorithms able to improve energy
management in buildings

1 Reduce energy and maintain comfort
2 Make buildings "smart grid ready" (variable

energy prices, power limitations)
3 Design generic, scalable and modular solutions
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MPC for energy management in buildings

Energy management in buildings
An introduction

Energy criterionComfort indicator

Find the best way to achieve comfort

given constraints on inputs

Ensure comfort by mainting

outputs in a given set

Inputs

Optimum

Crit.Outputs

time
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MPC for energy management in buildings Rule-based control

Conventional control in buildings
Rule-based control

Rule-based control

Rule1: if condition[params] then action[params]
Rule2: if condition[params] then action[params]
...

Many issues

Coherence of the process of decision
Parameters tuning ?
complex situations ?

To sum up ...

Difficult to generalize
Must be fully adapted for a given scenario
Difficult to handle economical objectives
Difficult to ensure coherence of the decision
Extremely simple to implement on BEMS !
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A simplistic example

minimize path length and avoid obstacles

Initial state

Target
Avoid Obstacles

Closed loop trajectory

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 9 / 52



MPC for energy management in buildings Model Predictive control

Model Predictive Control (I)
An intuitive concept...

A simplistic example

minimize path length and avoid obstacles

Initial state

Target
Initial obstacles positions

Closed loop trajectory

First Optimal Trajectory

Final obstacles positions
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MPC for energy management in buildings Model Predictive control

Model Predictive Control (II)
Receding Horizon Principle
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MPC for energy management in buildings Model Predictive control

Why Model Predictive Control in buildings?

Thermal inertia
Coupled dynamics
Constraints (comfort, actuators, power consumption, etc.)
Multi-source: several power sources (thermal, electrical, etc.)
Economic objectives (varying energy tariffs)
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MPC for building Energy management
The ingredients ...

Model
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*
Optimal 
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Building control layers
Decomposition approach

Heat

Storage

PumpBoiler
Electrical storage

Grid

Gas
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Zone modeling
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Zone Model Predictive Control Zone modeling

Zone Model Predictive Control
zone presentation

Objective

(a) Control comfort parameters (temperature, CO2 level, lighting),
(b) Minimize operational costs (energy, invoice).

∞

Fan coil unit

Ventilation

Lighting

Shutter

Occupation + 
internal gains

Outdoor conditions

A typical zone representation
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Zone Model Predictive Control Zone modeling

Zone Model Predictive Control
zone presentation

Objective

(a) Control comfort parameters (temperature, CO2 level, lighting),
(b) Minimize operational costs (energy, invoice).

∞

Fan coil unit

Ventilation

Lighting

Shutter

Occupation + 
internal gains

Outdoor conditions

Variables Description Unit

uw FCU valve opening [−]

uf FCU fan speed [−]

uh Elec. heating control [−]

uv Ventilation control [−]

ul Lighting control [−]

{ui
b}i=1,...,Nf

Blind ctrl facade i [−]

Tw Inlet FCU water temp. [oC]

Tex Outdoor temperature [oC]

Tadj Adjacent zones temp. [oC]

{φi
g}i=1,...,Nf

Global irr. flux facade i [ W
m2 ]

Occ Number of occupants [−]

Cex Outdoor CO2 level [ppm]

T Indoor air temperature [oC]

C Indoor CO2 level [ppm]

L Indoor illuminance [Lux]

Description of Input/Output and
exogenous variables
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Zone Model Predictive Control Zone modeling

Zone Modeling
electrical analogy

Thermal model

Internal wall

External wall

Internal wall

window

Air duct

Zone air

T

Tex

uv
…

Internal gains + equipment

ub

c0 · ub · φg

c2 · φg

T 1adjc1 · (1− ub) · φg

1− ub

Shaded part

Ground

Voltage generator

Current generator

Capacitance

Resistor

Variable resistor (depending on the parameter p)
p

Constantci

T
Nadj

adj

Damper 

Heat transfer phenomena are essentially linear,
Varying resistors depending on controlled inputs make the system
bilinear.
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Zone Modeling
electrical analogy
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Zone Model Predictive Control Zone modeling

Zone Modeling
electrical analogy

Indoor illuminance model����������	�
����
���	��
� ����������� ������
Heat transfer phenomena are essentially linear,
Varying resistors depending on controlled inputs make the system
bilinear.
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Zone Model Predictive Control Zone modeling

Zone Model
Bilinear state-space representation

Zone model - bilinear system

{
x+ = A · x +

[
B(y ,w)

]
· u + F ·w

y = C · x + [D(w)] · u

x state, y output, w disturbance, u input.
The matrices [B(y ,w)] and [D(w)] are affine in their arguments.

Simulator form

yk := Z(uk ,wk , xk )

boldfaced vectors are predicted profiles (e.g.
uk := [uT

k ,u
T
k+1,u

T
k+N−1]T ).
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Zone Model Predictive Control The control problem

The control problem
problem description

Energy criterionComfort indicator

Find the best way to achieve comfort

given constraints on inputs

Ensure comfort by mainting

outputs in a given set

Inputs

Optimum

Crit.Outputs

time
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Zone Model Predictive Control The control problem

The control problem
The comfort indicator

Comfort is only required during presence
Comfort constraints are relaxed to ensure feasibility of the
problem

y

y

y

Occ

Time

Time
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Zone Model Predictive Control The control problem

The control problem
The comfort indicator

Comfort is only required during presence
Comfort constraints are relaxed to ensure feasibility of the
problem

ρ1

y

ρ0

y

δy δy

ρ0 < ρ1

JC(y)

Comfort region

y
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Zone Model Predictive Control The control problem

The control problem
Mathematical formulation

NMPC-related optimization problem

Minimize
u∈U

J := JE(p) + JC(y) (1)

where:
the boldfaced vectors stand for predicted profiles (e.g.
y := [yT

k , . . . , y
T
k+N−1]T ),

p ∈ Rnp is the power consumption,
JC is the discomfort criterion.
JE is the energy criterion.
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Zone Model Predictive Control The control problem

The control problem
problem resolution

Optimization problem - explicit form:

u(s)
k ←

NLPk : Minimize
uk ,δ0,δ1,δd ,yk

Jk (uk ,yk

(s)

) (2a)

Subject To :

[Φ(yk

(s)

,wk )] · uk + δ−0 + δ−1 ≥ y
k
−Ψxk − Ξwk (2b)

[Φ(yk

(s)

,wk )] · uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (2c)
D · uk − δ+d + δ−d = a (2d)
0 ≤ uk ≤ 1 (2e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(2f)

Nonlinear optimization problem due the product terms u · y
Update the output trajectory y(s)

k by simulating the NL system:

y(s+1)
k = Z(u(s)

k ,wk , xk )

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 21 / 52



Zone Model Predictive Control The control problem

The control problem
problem resolution

Optimization problem - explicit form:

u(s)
k ←

NLPk : Minimize
uk ,δ0,δ1,δd ,yk

Jk (uk ,yk

(s)

) (2a)

Subject To :

[Φ(yk

(s)

,wk )] · uk + δ−0 + δ−1 ≥ y
k
−Ψxk − Ξwk (2b)

[Φ(yk

(s)

,wk )] · uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (2c)
D · uk − δ+d + δ−d = a (2d)
0 ≤ uk ≤ 1 (2e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(2f)

Nonlinear optimization problem due the product terms u · y

Update the output trajectory y(s)
k by simulating the NL system:

y(s+1)
k = Z(u(s)

k ,wk , xk )

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 21 / 52



Zone Model Predictive Control The control problem

The control problem
problem resolution

Optimization problem - explicit form:

u(s)
k ←

LP(s)
k : Minimize

uk ,δ0,δ1,δd ,�yk

Jk (uk ,yk
(s)) (2a)

Subject To :

[Φ(yk
(s),wk )] · uk + δ−0 + δ−1 ≥ y

k
−Ψxk − Ξwk (2b)

[Φ(yk
(s),wk )] · uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (2c)

D · uk − δ+d + δ−d = a (2d)
0 ≤ uk ≤ 1 (2e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(2f)

Nonlinear optimization problem due the product terms u · y
Update the output trajectory y(s)

k by simulating the NL system:

y(s+1)
k = Z(u(s)

k ,wk , xk )

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 21 / 52



Zone Model Predictive Control The control problem

The control problem
problem resolution

Optimization problem - explicit form:

u(s)
k ← LP(s)

k : Minimize
uk ,δ0,δ1,δd

Jk (uk ,yk
(s)) (2a)

Subject To :

[Φ(yk
(s),wk )] · uk + δ−0 + δ−1 ≥ y

k
−Ψxk − Ξwk (2b)

[Φ(yk
(s),wk )] · uk − δ+0 − δ+1 ≤ yk −Ψxk − Ξwk (2c)

D · uk − δ+d + δ−d = a (2d)
0 ≤ uk ≤ 1 (2e)

δ0 ≥ 0 , δd ≥ 0 , 0 ≤ δ1 ≤
[
δy
δy

]
(2f)

Nonlinear optimization problem due the product terms u · y

Update the output trajectory y(s)
k by simulating the NL system:

y(s+1)
k = Z(u(s)

k ,wk , xk )
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Nonlinear optimization problem due the product terms u · y

Update the output trajectory y(s)
k by simulating the NL system:

y(s+1)
k = Z(u(s)

k ,wk , xk )

Fixed-point algorithm: y(s)
k

LP−→ u(s)
k

SIM−→ y(s+1)
k
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Zone Model Predictive Control The control problem

Convergence analysis

No formal convergence proof of the algorithm is provided,
Run the algorithm starting from 100 random (unrealistic) initial
guesses.
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Zone Model Predictive Control Simulation and real-time implementation

Computational burden

Computation time for N = 720, Npar
u = 20, Npar

y = 20 (Intelr Xeonr @ 2.67
GHz, 3.48 Go RAM - ILOG CPLEX 12.1 for LPs)

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 23 / 52



Zone Model Predictive Control Yearly simulation

The case study
small business building

Typical french small business building built in 2006, 20 zones, 540 [m2],
Electrical heater,
Local dampers for ventilation control,
Automated blinds,
Location Trappes (near Paris),
Modeled using the SIMBAD toolbox.
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Zone Model Predictive Control Yearly simulation

MPC integration in SIMBAD
Configuration step

1 Build the structure of the building
(.xml),

2 Identify the dynamical models of
each zone,

3 Generate automatically C code
able for zones and energy layer
representations,

4 Instantiate MPCs for the whole
building (observers, powers
estimators, available forecast,
occupancy schedule, available
equipments, etc.)

−→ need for efficient code to
perform a yearly simulation

use of C code when appropriate

vectorized m-code

logical matrix indexation

Simbad

.mdl

Off-line Identification

.xml

Energy layer and 

zones models

Code generation

Simulator 

configuration

Structural 

description

Coordinator

MPC1

Energy 

layer.m

MPC1MPC1

.cpp

Zones MPC’s and 

Coordinator instantiation 

.xml
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Zone Model Predictive Control Yearly simulation

Simulation results (I)
Zone MPC illustration- an office

48 [h] simulation - office # 1
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Zone Model Predictive Control Yearly simulation

Simulation results (II)
Yearly simulation results

1 Perfectly known forecast (α = 1)
2 Errors on forecast (α = 0)
3 Rule-based control

Energy cons. [kWh/m2/year] GTC [%] TCV [k·OC·h]
Rule based? 142 91.6 322
MPC (α = 1) 119 (−16%) 91.8 295
MPC (α = 0) 122 (−14%) 88.1 310

Energy consumption / Comfort - Rule-based vs. MPC

?: more advanced RB control strategy (≈-50% compared to current practice)
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Zone Model Predictive Control Other features

Other features (I)
Handling fan coil units

The FCU model is a static nonlinear heat emission characteristic:

φth(uw ,uf , T , Tw ) = (Tw − T ) · φN(uw ,uf )

Thermal emission characteristic

Heating coil

(Valve)

(Zone air temp.)

Return water

Tw
Tair

uw

uf

uh

φth(Tw, Tair, uf , uw)

(Electrical heating coil )

(Fan)

(Hot water supply)

Adapt the algorithm to handle FCUs and preserve the LP formulation
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The FCU model is a static nonlinear heat emission characteristic:

φth(uw ,uf , T , Tw ) = (Tw − T ) · φN(uw ,uf )

PWA approx.

Heating coil

(Valve)

(Zone air temp.)

Return water

Tw
Tair

uw

uf

uh
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(Electrical heating coil )

(Fan)
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Zone Model Predictive Control Other features

Other features (II)
variable energy prices

1 Preheat the first day during off-peak hours,
2 Optimal start the second day during on-peak hours,
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Zone Model Predictive Control Other features

Other features (II)
variable energy prices

Sensitivity of the solution to the ratio between high and low energy
price periods (βp)
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Zone Model Predictive Control Other features

Other features (II)
variable energy prices

Heater half dimensioned + another zone (more inertia)
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Zone Model Predictive Control Other features

Other features (II)
variable energy prices

The optimal behavior is linked to the dynamical characteristics of
each zone
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Zone Model Predictive Control Roombox implementation

Roombox implementation

Roombox

Main features:
Power output: lighting, shutters
and blinds, HVAC
Network connection to BMS
Ethernet port for local PC
Inputs for switches and
window contacts 24 Vcc
Output protection (SC
protection, overload ...)
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Zone Model Predictive Control Roombox implementation

Roombox implementation

Roombox

Objective
Implement the MPC algorithm on
the Roombox→

To study the real-time
implementation
To identify the main related
issues

Validation
→ Virtual signals sent via the
ethernet port (measures and
forecast)
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Zone Model Predictive Control Roombox implementation

Roombox implementation

.h

.cpp

.cpp

.m

ecplise®

.b Code compilationCode translation

human

Matlab®

C/C ++

binary

C/C ++

MPC

Solver

(LP)

.cppMatrix 

library

Roombox
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Zone Model Predictive Control Roombox implementation

Roombox implementation

Roombox

Conditions
Prediction horizon 12 h.
sampling period 2 min.
zone: nu = 6, ny = 3
GLPK (GNU MILP solver)
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Zone Model Predictive Control Roombox implementation

Roombox implementation

Roombox

Results

≈ 6 [s] / iteration

8.2 % of memory usage

Able to run more than one thread
of the algo. on one Roombox
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Distributed Model Predictive control for energy
management in buildings

1 MPC for energy management in buildings

2 Zone Model Predictive Control

3 Distributed Model Predictive Control
Problem presentation
Distributed MPC design

4 Conclusion



Distributed Model Predictive Control Problem presentation

Building control layers
Decomposition approach

Objective

Coordinate the energy layer and the zone layer→ Manage resource
coupling constraints

Energy layer →
energy supply,
storage and
transformation

Zone layer →
consume
energy to
provide comfort

Heat

Storage

PumpBoiler
Electrical storage

∞ ∈

∋ △

GridSupply

Storage and 

transformation

Gas

Local prod.

Zone layer

Energy layer

Zone controller
Energy cons. / 

ensure comfort
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Distributed Model Predictive Control Problem presentation

Handling coupling resource constraints

∞ ∈

∋ △

Grid

Coordinator

Communication

Local MPC

control

Power

limitations

Energy

prices
Electrical storage

Objectives:
Power limitation constraint on the whole building cons.

p+
b +

∑
`∈Z

p` ≤ Pg

Manage the storage capability (elec. battery)
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Distributed Model Predictive Control Distributed MPC design

Zone Predictive controller
Slight modifications ...

Each zone controller controls local
variables

while meeting local
constraints on resources:

MPC`

(r`)

: Minimize
z`≤z`≤z`

L` · z`

Subject To:

A` · z` ≤ b`

A′` · z` ≤ r`

One gets:

(J`,g`)← MPC`(r`)

J` := J`(r`) : optimal value
g` := g`(r`) : sub-gradient at r`

yℓuℓ

MPCℓ

F
o
r
e
c
a
s
t
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Distributed Model Predictive Control Distributed MPC design

The coordination layer

At the coordination layer, the problem is the following:
How to affect optimally resource profiles r := {r`}`∈Z to minimize the
total cost function ?

→ Solve the master problem:

Minimize
ze,r

[ Le · ze︸ ︷︷ ︸
Energy layer cost fct.

+
∑
`∈Z

J`(r`)︸ ︷︷ ︸
Zone cost fct.

] S.t. C(r, ze) ≤ be︸ ︷︷ ︸
Global constraints

Zone nz

CoordinatorEnergy layer

pnzp1

bpb unz ynz

MPC1 MPCnz

y1u1

Zone layer

Zone 1Battery
pg

rnz gnz (rnz)Jnz(rnz)r1 g1(r1)J1(r1)

problem:
→ J` are not available !
→ built-up approximations of J` → Bundle method
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Distributed Model Predictive Control Distributed MPC design

The bundle method

1 The coordinator affects local
resources

2 Each zones gives:
The value of the cost function J`(r`)
A sub-gradient g`(r`) (sensitivity)

yℓuℓ

MPCℓ
Jℓ(rℓ) gℓ(rℓ)

F
o
r
e
c
a
s
t

rℓ

rℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 36 / 52



Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

Unknown at the coordination layer

?
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Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

epi(Jℓ)
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Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

r
(0)
ℓ

Sensitivity
Function value

epi(Jℓ)

gℓrℓ Jℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 37 / 52



Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

J̌ℓ

r
(0)
ℓ

epi(Jℓ)

gℓrℓ Jℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 37 / 52



Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

J̌ℓ

r
(1)
ℓ

r
(0)
ℓ

epi(Jℓ)

gℓrℓ Jℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 37 / 52



Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

J̌ℓ

r
(1)
ℓ

r
(0)
ℓ

r
(2)
ℓ

epi(Jℓ)

gℓrℓ Jℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 37 / 52



Distributed Model Predictive Control Distributed MPC design

The bundle method
Cutting plane approximation

rℓ

Jℓ

J̌ℓ

r
(1)
ℓ

r
(0)
ℓ

r
(2)
ℓ

epi(Jℓ)

r
(3)
ℓ

gℓrℓ Jℓ

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012 37 / 52



Distributed Model Predictive Control Distributed MPC design

Distributed MPC scheme

Process of decision is distributed among several agents
The coordinator manages only the shared resources
A restricted number of negotiation iterations is allowed

yℓuℓ

MPCℓ

rℓ J̌ℓ(·)

J̌ℓ(rℓ)

BMℓ

unz

Zone nz

ynz

MPCnz

rnz J̌nz(·)

J̌nz(rnz)

BMnz

Zone 1

MPC1

r1 J̌1(·)

J̌1(r1)

BM1

Jℓ(rℓ) gℓ(rℓ) gnz(rnz)Jnz (rnz)g1(r1)J1(r1)

C
o
o
rd
in
a
to
r

Power  tariff        

forecast

Meteorological 
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Distributed Model Predictive Control Distributed MPC design

Distributing the optimization over time
The memory mechanism

The idea is simply to keep a certain part of the information
(approximation) from one decision instant to next one...

rℓ

J
(k−1)
ℓ

...by introducing a memory factor.
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Distributed Model Predictive Control Distributed MPC design

Memory mechanism
Illustration

I J(smax )
` is given at decision instant k − 1
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ℓ,k−1
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Distributed Model Predictive Control Distributed MPC design

Memory mechanism
Illustration
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Distributed Model Predictive Control Distributed MPC design

Memory mechanism
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Distributed Model Predictive Control Distributed MPC design
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Distributed Model Predictive Control Distributed MPC design

Memory mechanism
Illustration

I One gets the latest approximation at decision instant k
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Distributed Model Predictive Control Distributed MPC design

Memory mechanism
Illustration

I And so on ...
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Distributed Model Predictive Control Distributed MPC design

DMPC simulation

DMPC- 3 iterations with memory

Time [h]

Closed-loop trajectories
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Distributed Model Predictive Control Distributed MPC design

Effect of the memory mechanism
Achieve better solutions faster with memory !
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Distributed Model Predictive Control Distributed MPC design

Distributed Model Predictive Control
Other features

1 Handling shared variables
2 Including local production

Electricity
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Electrical storage
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Ventilation system
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Air duct
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Distributed Model Predictive control for energy
management in buildings

1 MPC for energy management in buildings

2 Zone Model Predictive Control

3 Distributed Model Predictive Control

4 Conclusion



Conclusion

Conclusion

Summary
1 Zone MPC design (Bilinear

model, MIMO)
generic framework
energy savings
Moderate computational
burden
Real-time implementation

2 Build a distributed solution
based on local controllers

Handle global power
limitations (multi-sources)
Handle storage equipment
Manage shared actuators
Distributed-in-time
optimization

yℓuℓ
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F
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e
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Conclusion

Conclusion

Benefits
A generic and coherent framework
Modular→ scalable, maintenance concerns
Represents a good answer for smart-grid connectivity

Issues
Availability of the model of the building
Availability of forecast
Much more computationally demanding
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Conclusion

For future ...

Projects
1 First MPC prototype in North-Andover (USA) starting in few weeks
2 Extend the current framework to manage smart districts

(building← zone, district← building): Ambassador project
(Europe)

but also ...
1 Deployment tools for large scale penetration
2 MPC commissioning
3 Code certification for large deployment
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Questions

Thank you for your attention
Questions ?
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