Distributed Model Predictive Control for energy management in buildings

Ph.D. thesis presented by: Mohamed Yacine Lamoudi

Supervised by: Mazen Alamir - Directeur de recherche CNRS Patrick Béguery - Schneider-Electric / Strategy & Innovation

November 29th 2012

Energy consumption in the world - the facts S

The challenge ...

Energy consumption in the world - the facts S

The challenge ...

Energy consumption in the world - the facts ${igodot}$

The challenge ...

Energy consumption in the world - the facts ${\mathfrak S}$

Energy consumption in the world - the facts ${\mathfrak G}$

Energy consumption in the world - the facts S

40 % of world-wide primary energy consumption is due to buildings

Energy consumption in the world - the facts S

40 % of world-wide primary energy consumption is due to buildings

Energy consumption in the world - the facts S

40 % of world-wide primary energy consumption is due to buildings

Energy consumption in the world - the facts S

40 % of world-wide primary energy consumption is due to buildings

Energy consumption in the world - the facts S

40 % of world-wide primary energy consumption is due to buildings

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

Energy consumption in the world - the facts S

- 40 % of world-wide primary energy consumption is due to buildings
- Buildings play a key role in smart grid

Energy consumption in the world - the facts S

- 40 % of world-wide primary energy consumption is due to buildings
- 2 Buildings play a key role in smart grid

Objectives

Reduce Buildings energy consumptionMake them smart grid ready

The HOMES program

Largest funded program on buildings **active energy efficiency** in Europe ...

The HOMES program

Largest funded program on buildings **active energy efficiency** in Europe ...

Thesis objectives

Design **control algorithms** able to improve energy management in buildings

- Reduce energy and maintain comfort
- Make buildings "smart grid ready" (variable energy prices, power limitations)
- Design generic, scalable and modular solutions

Distributed Model Predictive control for energy management in buildings

MPC for energy management in buildings

- 2 Zone Model Predictive Control
- 3 Distributed Model Predictive Control

Distributed Model Predictive control for energy management in buildings

MPC for energy management in buildings

- 2 Zone Model Predictive Control
- 3 Distributed Model Predictive Control

4 Conclusion

Energy management in buildings An introduction

Conventional control in buildings

Rule-based control

Rule-based control

Rule1: *if* condition[params] *then* action[params] Rule2: *if* condition[params] *then* action[params]

•••

Many issues

- Coherence of the process of decision
- Parameters tuning ?
- complex situations ?

Conventional control in buildings

Rule-based control

Rule-based control

Rule1: *if* condition[params] *then* action[params] Rule2: *if* condition[params] *then* action[params]

• • •

Many issues

- Coherence of the process of decision
- Parameters tuning ?
- complex situations ?

To sum up ...

- Difficult to generalize
- Must be fully adapted for a given scenario
- Difficult to handle economical objectives
- Difficult to ensure coherence of the decision
- Extremely simple to implement on BEMS !

An intuitive concept...

A simplistic example

minimize path length and avoid obstacles

Target

Initial state M. V. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

An intuitive concept...

A simplistic example

Receding Horizon Principle

Why Model Predictive Control in buildings?

- Thermal inertia
- Coupled dynamics
- Constraints (comfort, actuators, power consumption, etc.)
- Multi-source: several power sources (thermal, electrical, etc.)
- Economic objectives (varying energy tariffs)

MPC for energy management in buildings Model Predictive con

MPC for building Energy management

The ingredients ...

Model

MPC for building Energy management

The ingredients ...

Model

Decomposition approach

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

Decomposition approach

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

Distributed Model Predictive control for energy management in buildings

MPC for energy management in building:

2

Zone Model Predictive Control

- Zone modeling
- The control problem
- Simulation and real-time implementation
- Yearly simulation
- Roombox implementation

Zone Model Predictive Control

zone presentation

Objective

(a) Control comfort parameters (temperature, CO₂ level, lighting),

(b) Minimize operational costs (energy, invoice).

7one Model Predictive Control

zone presentation

Objective

(a) Control comfort parameters (temperature, CO₂ level, lighting),

(b) Minimize operational costs (energy, invoice).

Variables	Description	Unit
u _W	FCU valve opening	[-]
u _f	FCU fan speed	[-]
uh	Elec. heating control	[-]
u _V	Ventilation control	[-]
иj	Lighting control	[-]
$\{u_{b}^{i}\}_{i=1,,N_{f}}$	Blind ctrl facade i	[-]
Tw	Inlet FCU water temp.	[⁰ C]
T _{ex}	Outdoor temperature	[⁰ C]
T _{adj}	Adjacent zones temp.	[⁰ C]
$\{\phi_{g}^{i}\}_{i=1,,N_{f}}$	Global irr. flux facade i	$\left[\frac{W}{m^2}\right]$
Occ	Number of occupants	[-]
C _{ex}	Outdoor CO ₂ level	[ppm]
T	Indoor air temperature	[⁰ C]
С	Indoor CO2 level	[ppm]
L	Indoor illuminance	[Lux]

Description of Input/Output and exogenous variables

Zone Modeling

electrical analogy

Thermal model

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

Zone Modeling

electrical analogy

CO₂ accumulation model

Zone Modeling

electrical analogy

Indoor illuminance model

Zone Model

Bilinear state-space representation

Zone model - bilinear system

$$\begin{cases} x^+ = A \cdot x + [B(y, w)] \cdot u + F \cdot w \\ y = C \cdot x + [D(w)] \cdot u \end{cases}$$

• x state, y output, w disturbance, u input.

• The matrices [B(y, w)] and [D(w)] are affine in their arguments.

Zone Model

Bilinear state-space representation

Zone model - bilinear system

$$\begin{cases} x^+ = A \cdot x + [B(\mathbf{y}, w)] \cdot \mathbf{u} + F \cdot w \\ y = C \cdot x + [D(w)] \cdot u \end{cases}$$

• x state, y output, w disturbance, u input.

• The matrices [B(y, w)] and [D(w)] are affine in their arguments.

Zone Model

Bilinear state-space representation

Zone model - bilinear system

$$\begin{cases} x^+ = A \cdot x + [B(y, w)] \cdot u + F \cdot w \\ y = C \cdot x + [D(w)] \cdot u \end{cases}$$

• x state, y output, w disturbance, u input.

• The matrices [B(y, w)] and [D(w)] are affine in their arguments.

Simulator form

$$\mathbf{y}_k := \mathcal{Z}(\mathbf{u}_k, \mathbf{w}_k, \mathbf{x}_k)$$

boldfaced vectors are predicted profiles (e.g. $\mathbf{u}_k := [u_k^T, u_{k+1}^T, u_{k+N-1}^T]^T$).

problem description

The comfort indicator

- Comfort is only required during presence
- Comfort constraints are relaxed to ensure feasibility of the problem

The comfort indicator

- Comfort is only required during presence
- Comfort constraints are relaxed to ensure feasibility of the problem

Mathematical formulation

NMPC-related optimization problem

$$\underset{\mathbf{u}\in\mathbf{U}}{\text{Minimize}} \quad J := J^{E}(\mathbf{p}) + J^{C}(\mathbf{y}) \tag{1}$$

where:

- the boldfaced vectors stand for predicted profiles (e.g. $\mathbf{y} := [y_k^T, \dots, y_{k+N-1}^T]^T$),
- $p \in \mathbb{R}^{n_p}$ is the power consumption,
- J^C is the discomfort criterion.
- J^E is the energy criterion.

problem resolution

Optimization problem - explicit form:

$$NLP_{k}: \underset{\mathbf{u}_{k}, \delta_{0}, \delta_{1}, \delta_{\sigma}, \mathbf{y}_{k}}{\text{Minimize}} J_{k}(\mathbf{u}_{k}, \mathbf{y}_{k})$$
(2a)

Subject To :

$$[\Phi(\mathbf{y}_k \quad , \mathbf{w}_k)] \cdot \mathbf{u}_k + \delta_0^- + \delta_1^- \ge \underline{\mathbf{y}}_k - \Psi \mathbf{x}_k - \Xi \mathbf{w}_k$$
(2b)

$$[\Phi(\mathbf{y}_k , \mathbf{w}_k)] \cdot \mathbf{u}_k - \delta_0^+ - \delta_1^+ \le \overline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2c)

$$\mathbf{D} \cdot \mathbf{u}_k - \boldsymbol{\delta}_d^+ + \boldsymbol{\delta}_d^- = \mathbf{a}$$
(2d)

$$0 \le u_k \le 1$$
 (2e)

$$\boldsymbol{\delta}_{0} \geq \boldsymbol{0} , \boldsymbol{\delta}_{d} \geq \boldsymbol{0} , \, \boldsymbol{0} \leq \boldsymbol{\delta}_{1} \leq \begin{bmatrix} \boldsymbol{\delta}_{Y} \\ \boldsymbol{\delta}_{Y} \end{bmatrix}$$
(2f)

problem resolution

Optimization problem - explicit form:

$$NLP_{k}: \underset{\mathbf{u}_{k}, \delta_{0}, \delta_{1}, \delta_{\sigma}, \mathbf{y}_{k}}{\text{Minimize}} J_{k}(\mathbf{u}_{k}, \mathbf{y}_{k})$$
(2a)

Subject To :

$$[\Phi(\mathbf{y}_k \quad , \mathbf{w}_k)] \cdot \mathbf{u}_k + \delta_0^- + \delta_1^- \ge \underline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2b)

$$[\Phi(\mathbf{y}_{k}, \mathbf{w}_{k})] \cdot \mathbf{u}_{k} - \delta_{0}^{+} - \delta_{1}^{+} \leq \overline{\mathbf{y}}_{k} - \Psi x_{k} - \Xi \mathbf{w}_{k}$$
(2c)

$$\mathbf{D} \cdot \mathbf{u}_k - \boldsymbol{\delta}_d^+ + \boldsymbol{\delta}_d^- = \mathbf{a} \tag{2d}$$

$$\mathbf{0} \leq \mathbf{u}_k \leq \mathbf{1}$$
 (2e)

$$\boldsymbol{\delta}_0 \geq \boldsymbol{0} \,, \boldsymbol{\delta}_d \geq \boldsymbol{0} \,, \, \boldsymbol{0} \leq \boldsymbol{\delta}_1 \leq \begin{bmatrix} \boldsymbol{\delta}_Y \\ \boldsymbol{\delta}_Y \end{bmatrix}$$
 (2f)

Nonlinear optimization problem due the product terms $u \cdot y$

problem resolution

Optimization problem - explicit form:

$$LP_{k}^{(s)}: \underset{\mathbf{u}_{k}, \delta_{0}, \delta_{1}, \delta_{d}, \mathbf{y}_{k}}{\text{Minimize}} J_{k}(\mathbf{u}_{k}, \mathbf{y}_{k}^{(s)})$$
(2a)

Subject To :

$$[\Phi(\mathbf{y}_{k}^{(s)},\mathbf{w}_{k})]\cdot\mathbf{u}_{k}+\delta_{0}^{-}+\delta_{1}^{-}\geq\underline{\mathbf{y}}_{k}-\Psi x_{k}-\Xi\mathbf{w}_{k}$$
(2b)

$$[\Phi(\mathbf{y}_{k}^{(s)},\mathbf{w}_{k})]\cdot\mathbf{u}_{k}-\boldsymbol{\delta}_{0}^{+}-\boldsymbol{\delta}_{1}^{+}\leq\overline{\mathbf{y}}_{k}-\Psi\boldsymbol{x}_{k}-\Xi\mathbf{w}_{k}$$
(2c)

$$\mathbf{D} \cdot \mathbf{u}_k - \boldsymbol{\delta}_d^+ + \boldsymbol{\delta}_d^- = \mathbf{a} \tag{2d}$$

$$\mathbf{0} \leq \mathbf{u}_k \leq \mathbf{1}$$
 (2e)

$$\boldsymbol{\delta}_{0} \geq \boldsymbol{0} , \boldsymbol{\delta}_{d} \geq \boldsymbol{0} , \, \boldsymbol{0} \leq \boldsymbol{\delta}_{1} \leq \begin{bmatrix} \boldsymbol{\delta}_{Y} \\ \boldsymbol{\delta}_{Y} \end{bmatrix}$$
(2f)

problem resolution

Optimization problem - explicit form:

$$\mathbf{u}_{k}^{(s)} \leftarrow \mathsf{LP}_{k}^{(s)}: \underset{\mathbf{u}_{k}, \delta_{0}, \delta_{1}, \delta_{d}}{\mathsf{Minimize}} J_{k}(\mathbf{u}_{k}, \mathbf{y}_{k}^{(s)})$$
(2a)

Subject To :

$$[\Phi(\mathbf{y}_k^{(s)}, \mathbf{w}_k)] \cdot \mathbf{u}_k + \delta_0^- + \delta_1^- \ge \underline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2b)

$$[\Phi(\mathbf{y}_k^{(s)}, \mathbf{w}_k)] \cdot \mathbf{u}_k - \delta_0^+ - \delta_1^+ \le \overline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2c)

$$\mathbf{D} \cdot \mathbf{u}_k - \boldsymbol{\delta}_d^+ + \boldsymbol{\delta}_d^- = \mathbf{a} \tag{2d}$$

$$0 \le u_k \le 1$$
 (2e)

$$\delta_0 \ge \mathbf{0}, \delta_d \ge \mathbf{0}, \, \mathbf{0} \le \delta_1 \le \begin{bmatrix} \delta_Y \\ \delta_Y \end{bmatrix}$$
 (2f)

Update the output trajectory $\mathbf{y}_{k}^{(s)}$ by simulating the NL system:

$$\mathbf{y}_k^{(s+1)} = \mathcal{Z}(\mathbf{u}_k^{(s)}, \mathbf{w}_k, x_k)$$

problem resolution

Optimization problem - explicit form:

$$\mathbf{u}_{k}^{(s)} \leftarrow \mathsf{LP}_{k}^{(s)}: \underset{\mathbf{u}_{k}, \delta_{0}, \delta_{1}, \delta_{d}}{\mathsf{Minimize}} J_{k}(\mathbf{u}_{k}, \mathbf{y}_{k}^{(s)})$$
(2a)

Subject To :

$$[\Phi(\mathbf{y}_k^{(s)}, \mathbf{w}_k)] \cdot \mathbf{u}_k + \delta_0^- + \delta_1^- \ge \underline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2b)

$$[\Phi(\mathbf{y}_k^{(s)}, \mathbf{w}_k)] \cdot \mathbf{u}_k - \delta_0^+ - \delta_1^+ \le \overline{\mathbf{y}}_k - \Psi x_k - \Xi \mathbf{w}_k$$
(2c)

$$\mathbf{D} \cdot \mathbf{u}_k - \boldsymbol{\delta}_d^+ + \boldsymbol{\delta}_d^- = \mathbf{a}$$
(2d)

$$0 \le u_k \le 1$$
 (2e)

$$\delta_0 \ge \mathbf{0} , \delta_d \ge \mathbf{0} , \, \mathbf{0} \le \delta_1 \le \begin{bmatrix} \delta_Y \\ \delta_Y \end{bmatrix}$$
 (2f)

Update the output trajectory $\mathbf{y}_{k}^{(s)}$ by simulating the NL system:

$$\mathbf{y}_k^{(s+1)} = \mathcal{Z}(\mathbf{u}_k^{(s)}, \mathbf{w}_k, x_k)$$

Fixed-point algorithm: $\mathbf{y}_k^{(s)} \xrightarrow{LP} \mathbf{u}_k^{(s)} \xrightarrow{SIM} \mathbf{y}_k^{(s+1)}$

Convergence analysis

- No formal convergence proof of the algorithm is provided,
- Run the algorithm starting from 100 random (unrealistic) initial guesses.

Computational burden

Computation time for N = 720, $N_u^{par} = 20$, $N_y^{par} = 20$ (Intel[®] Xeon[®] @ 2.67 GHz, 3.48 Go RAM - ILOG CPLEX 12.1 for LPs)

The case study

small business building

- Typical french small business building built in 2006, 20 zones, 540 (m²),
- Electrical heater,
- Local dampers for ventilation control,
- Automated blinds,
- Location Trappes (near Paris),
- Modeled using the SIMBAD toolbox.

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

MPC integration in SIMBAD

Configuration step

- Build the structure of the building (.xml),
- Identify the dynamical models of each zone,
- Generate automatically C code able for zones and energy layer representations,
- Instantiate MPCs for the whole building (observers, powers estimators, available forecast, occupancy schedule, available equipments, etc.)

MPC integration in SIMBAD

Example: 20 zones building:

≈70 inputs / ≈60 outputs / ≈160 states

Simulation

- Refreshing period: 5 min.
- \approx 2,102,400 optimization problems (600-900 d.v \times 1000 con.) solved during the whole year simulation.
- Simulation time \approx 18 (h)

MPC integration in SIMBAD

Example: 20 zones building:

• \approx 70 inputs / \approx 60 outputs / \approx 160 states

Simulation

- Refreshing period: 5 min.
- \approx **2,102,400** optimization problems (600-900 d.v \times 1000 con.) solved during the whole year simulation.
- Simulation time \approx 18 (h)

\rightarrow need for efficient code to perform a yearly simulation

- use of C code when appropriate
- vectorized m-code
- Iogical matrix indexation

Simulation results (I)

Zone MPC illustration- an office

48 (h) simulation - office # 1
Simulation results (II)

Yearly simulation results

- Perfectly known forecast ($\alpha = 1$)
- 2 Errors on forecast ($\alpha = 0$)
- Rule-based control

	Energy cons. (kWh/m²/year)	
Rule based*	142	
MPC ($\alpha = 1$)	119 (- 16 %)	
MPC ($\alpha = 0$)	122 (- 14 %)	

Energy consumption / Comfort - Rule-based vs. MPC

*: more advanced RB control strategy (\approx -50% compared to current practice)

Simulation results (II)

Yearly simulation results

- Perfectly known forecast ($\alpha = 1$)
- 2 Errors on forecast ($\alpha = 0$)
- Rule-based control

	Energy cons. (kWh/m²/year)	GTC (%)	
Rule based*	142	91.6	
MPC ($\alpha = 1$)	119 (- 16 %)	91.8	
MPC ($\alpha = 0$)	122 (- 14 %)	88.1	

Energy consumption / Comfort - Rule-based vs. MPC

*: more advanced RB control strategy (\approx -50% compared to current practice)

Simulation results (II)

Yearly simulation results

- Perfectly known forecast ($\alpha = 1$)
- 2 Errors on forecast ($\alpha = 0$)
- Rule-based control

	Energy cons. (kWh/m²/year)	GTC (%)	TCV (k· ^O C·h)
Rule based*	142	91.6	322
MPC ($\alpha = 1$)	119 (- 16 %)	91.8	295
MPC ($\alpha = 0$)	122 (- 14 %)	88.1	310

Energy consumption / Comfort - Rule-based vs. MPC

*: more advanced RB control strategy (\approx -50% compared to current practice)

Handling fan coil units

The FCU model is a static nonlinear heat emission characteristic:

$$\phi^{th}(u_w, u_f, T, T_w) = (T_w - T) \cdot \phi^N(u_w, u_f)$$

Thermal emission characteristic

Handling fan coil units

The FCU model is a static nonlinear heat emission characteristic:

$$\phi^{th}(u_w, u_f, T, T_w) = (T_w - T) \cdot \phi^N(u_w, u_f)$$

PWA approx. Adapt the algorithm to handle FCUs and preserve the LP formulation

variable energy prices

- Preheat the first day during off-peak hours,
- Optimal start the second day during on-peak hours,

variable energy prices

Sensitivity of the solution to the ratio between high and low energy price periods (β_p)

variable energy prices

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

variable energy prices

Heater half dimensioned

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

variable energy prices

+ another zone (more inertia)

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

variable energy prices

Heater half dimensioned + another zone (more inertia)

M. Y. Lamoudi - Schneider-Electric/Gipsa-lab - DMPC for Energy management in buildings - 11/29/2012

variable energy prices

The optimal behavior is linked to the dynamical characteristics of each zone

Main features:

- Power output: lighting, shutters and blinds, HVAC
- Network connection to BMS
- Ethernet port for local PC
- Inputs for switches and window contacts 24 Vcc
- Output protection (SC protection, overload ...)

Main features:

- Power output: lighting, shutters and blinds, HVAC
- Network connection to BMS
- Ethernet port for local PC
- Inputs for switches and window contacts 24 Vcc
- Output protection (SC protection, overload ...)

Objective

Implement the MPC algorithm on the Roombox \rightarrow

- To study the real-time implementation
- To identify the main related issues

Validation

 \rightarrow Virtual signals sent via the ethernet port (measures and forecast)

Conditions

- Prediction horizon 12 h.
- sampling period 2 min.
- zone: $n_u = 6$, $n_y = 3$
- GLPK (GNU MILP solver)

Results

- ${l \bullet}~\approx$ 6 (s) / iteration
- 8.2 % of memory usage
- Able to run more than one thread of the algo. on one Roombox

Distributed Model Predictive control for energy management in buildings

MPC for energy management in buildings

2

Zone Model Predictive Control

Distributed Model Predictive Control

- Problem presentation
- Distributed MPC design

4 Conclusion

Building control layers

Decomposition approach

Objective

Coordinate the energy layer and the zone layer \rightarrow Manage resource coupling constraints

Building control layers

Decomposition approach

Objective

Coordinate the energy layer and the zone layer \rightarrow Manage resource coupling constraints

Building control layers

Decomposition approach

Objective

Coordinate the energy layer and the zone layer \rightarrow Manage resource coupling constraints

Problem presentation

Handling coupling resource constraints

Objectives:

Power limitation constraint on the whole building cons.

$\mathbf{p}_b^+ + \sum_{\ell \in \mathbf{Z}} \mathbf{p}_\ell \leq \overline{\mathbf{P}}_{\mathbf{g}}$

Manage the storage capability (elec. battery)

Handling coupling resource constraints

Objectives:

• Power limitation constraint on the whole building cons.

$$\mathbf{p}_{\mathcal{b}}^{+} + \sum_{\ell \in \mathbf{Z}} \mathbf{p}_{\ell} \leq \overline{\mathbf{P}}_{\mathbf{g}}$$

• Manage the storage capability (elec. battery)

Handling coupling resource constraints

Objectives:

• Power limitation constraint on the whole building cons.

$$\mathbf{p}_{\mathcal{b}}^{+} + \sum_{\ell \in \mathbf{Z}} \mathbf{p}_{\ell} \leq \overline{\mathbf{P}}_{\mathbf{g}}$$

• Manage the storage capability (elec. battery)

Slight modifications ...

Each zone controller controls local variables

 $\begin{array}{ll} \mbox{MPC}_\ell & : \underset{\underline{z}_\ell \leq z_\ell \leq \overline{z}_\ell}{\mbox{Minimize } L_\ell \cdot z_\ell} \\ \mbox{Subject To:} \\ \mbox{A}_\ell \cdot z_\ell \leq b_\ell \end{array}$

Slight modifications ...

Each zone controller controls local variables while meeting local constraints on resources:

$$\begin{split} \mathsf{MPC}_\ell(\mathbf{r}_\ell) &: \underset{\underline{z}_\ell \leq z_\ell \leq \overline{z}_\ell}{\text{Minimize }} \mathbf{L}_\ell \cdot \mathbf{z}_\ell\\ \text{Subject To:} &\\ \mathbf{A}_\ell \cdot \mathbf{z}_\ell \leq \mathbf{b}_\ell\\ \mathbf{A}'_\ell \cdot \mathbf{z}_\ell \leq \mathbf{r}_\ell \end{split}$$

Slight modifications ...

Each zone controller controls local variables while meeting local constraints on resources:

$$\begin{split} \mathsf{MPC}_\ell(\mathbf{r}_\ell) &: \underset{\underline{z}_\ell \leq z_\ell \leq \overline{z}_\ell}{\text{Subject To:}} \\ \mathbf{A}_\ell \cdot \mathbf{z}_\ell \leq \mathbf{b}_\ell \\ \mathbf{A}_\ell' \cdot \mathbf{z}_\ell \leq \mathbf{r}_\ell \end{split}$$

One gets:

 $(J_\ell, g_\ell) \gets \mathsf{MPC}_\ell(r_\ell)$

• $J_{\ell} := J_{\ell}(\mathbf{r}_{\ell})$: optimal value • $g_{\ell} := g_{\ell}(\mathbf{r}_{\ell})$: sub-gradient at \mathbf{r}_{ℓ}

Slight modifications ...

Each zone controller controls local variables while meeting local constraints on resources:

$$\begin{split} \mathsf{MPC}_\ell(\mathbf{r}_\ell) &: \underset{\underline{z}_\ell \leq \overline{z}_\ell \leq \overline{z}_\ell}{\text{Minimize } \mathbf{L}_\ell \cdot \mathbf{z}_\ell} \\ \text{Subject To:} \\ \mathbf{A}_\ell \cdot \mathbf{z}_\ell \leq \mathbf{b}_\ell \\ \mathbf{A}'_\ell \cdot \mathbf{z}_\ell \leq \mathbf{r}_\ell \end{split}$$

One gets:

 $(J_\ell, g_\ell) \gets \mathsf{MPC}_\ell(r_\ell)$

• $J_{\ell} := J_{\ell}(\mathbf{r}_{\ell})$: optimal value • $g_{\ell} := g_{\ell}(\mathbf{r}_{\ell})$: sub-gradient at \mathbf{r}_{ℓ}

The coordination layer

At the coordination layer, the problem is the following: How to affect optimally resource profiles $r := {r_{\ell}}_{\ell \in Z}$ to minimize the total cost function?

The coordination layer

At the coordination layer, the problem is the following: How to affect optimally resource profiles $r := {r_{\ell}}_{\ell \in Z}$ to minimize the total cost function?

 \rightarrow Solve the master problem:

The coordination layer

At the coordination layer, the problem is the following: How to affect optimally resource profiles $\mathbf{r} := {\mathbf{r}_{\ell}}_{\ell \in \mathbf{Z}}$ to minimize the total cost function?

\rightarrow Solve the master problem:

problem: $\rightarrow J_{\ell}$ are not available !

The coordination layer

At the coordination layer, the problem is the following: How to affect optimally resource profiles $\mathbf{r} := {\mathbf{r}_{\ell}}_{\ell \in \mathbf{Z}}$ to minimize the total cost function?

\rightarrow Solve the master problem:

problem:

- $\rightarrow J_{\ell}$ are not available !
- \rightarrow built-up approximations of $J_{\ell} \rightarrow$ Bundle method

The bundle method

- The coordinator affects local resources
- Each zones gives:
 - The value of the cost function $J_{\ell}(\mathbf{r}_{\ell})$
 - A sub-gradient $g_{\ell}(\mathbf{r}_{\ell})$ (sensitivity)

The bundle method

Cutting plane approximation

Unknown at the coordination layer

The bundle method

Cutting plane approximation

Distributed MPC design

The bundle method

Distributed MPC scheme

- Process of decision is distributed among several agents
- The coordinator manages only the shared resources
- A restricted number of negotiation iterations is allowed

Now Distribute the optimization problem solving over time

Distributed MPC scheme

- Process of decision is distributed among several agents
- The coordinator manages only the shared resources
- A restricted number of negotiation iterations is allowed

Now Distribute the optimization problem solving over time

The memory mechanism

The idea is simply to keep a certain part of the information (approximation) from one decision instant to next one...

The memory mechanism

The idea is simply to keep a certain part of the information (approximation) from one decision instant to next one...

The memory mechanism

The idea is simply to keep a certain part of the information (approximation) from one decision instant to next one...

The memory mechanism

The idea is simply to keep a certain part of the information (approximation) from one decision instant to next one...

...by introducing a memory factor.

Illustration

• $J_{\ell}^{(s_{max})}$ is given at decision instant k-1

Illustration

► Decrease it (memory factor $m_{\ell,k}$)

Illustration

► First iteration (exchange between zone layer and coordinator)

Illustration

► Iterate (exchanges between zone layer and coordinator)

Illustration

 \blacktriangleright One gets the latest approximation at decision instant k

Illustration

► And so on ...

DMPC simulation

Effect of the memory mechanism

Achieve better solutions faster with memory !

Distributed MPC design

Distributed Model Predictive Control

Other features

Handling shared variables

Distributed MPC design

Distributed Model Predictive Control

Other features

- Handling shared variables
- Including local production

Distributed Model Predictive control for energy management in buildings

- Zone Model Predictive Control
- 3 Distributed Model Predictive Control

4 Conclusion

Summary

Zone MPC design (Bilinear model, MIMO)

- generic framework
- energy savings
- Moderate computational burden
- Real-time implementation

Summary

Zone MPC design (Bilinear model, MIMO)

- generic framework
- energy savings
- Moderate computational burden
- Real-time implementation
- Build a distributed solution based on local controllers
 - Handle global power limitations (multi-sources)
 - Handle storage equipment
 - Manage shared actuators
 - Distributed-in-time optimization

Benefits

- A generic and coherent framework
- \bullet Modular \rightarrow scalable, maintenance concerns
- Represents a good answer for smart-grid connectivity

Benefits

- A generic and coherent framework
- \bullet Modular \rightarrow scalable, maintenance concerns
- Represents a good answer for smart-grid connectivity

Issues

- Availability of the model of the building
- Availability of forecast
- Much more computationally demanding

For future ...

Projects

- First MPC prototype in North-Andover (USA) starting in few weeks

For future ...

Projects

- **First MPC prototype** in North-Andover (USA) starting in few weeks

but also ...

- Deployment tools for large scale penetration
- MPC commissioning
- Code certification for large deployment

Acknowledgement

http://www.homesprogramme.com

This work is part of **HOMES** collaborative program.

The **HOMES** program is funded by **OSEO** (http://www.oseo.fr).

Publications I

Conferences

- M. Y. Lamoudi, M. Alamir, and P. Béguery. Distributed constrained model predictive control based on bundle method for building energy management. In <u>50th IEEE Conference on Decision and Control and</u> <u>European Control Conference- Orlando</u>, 2011.
- M. Y. Lamoudi, M. Alamir, and P. Béguery. Unified NMPC for multi-variable control in smart buildings. In <u>IFAC 18th World Congress</u>, <u>Milano</u>, <u>Itlay</u>, 2011.
- M. Y. Lamoudi, M. Alamir, and P. Béguery. Model predictive control for energy management in buildings- part 1: zone model predictive control. In IFAC conference on Nonlinear Model Predictive Control, 2012.
- M. Y. Lamoudi, M. Alamir, and P. Béguery. Model predictive control for energy management in buildings- part 2: Distributed model predictive control. In IFAC conference on Nonlinear Model Predictive Control, 2012.
- M. Y. Lamoudi, P. Béguery, and M. Alamir. Use of simulation for the validation of a predictive control strategy. In <u>12th International IBPSA</u> Conference, Sydney, Australia, 2011.

Publications

Publications II

 P. Béguery, M. Y. Lamoudi, O. Cottet, O. Jung, N. Couillaud, and D. Destruel. Simulation of smart buildings HOMES pilot sites. In <u>12th</u> International IBPSA Conference, Sydney, Australia, 2011.

Book chapter

 M. Y. Lamoudi, M. Alamir, and P. Béguery. A distributed-in-time NMPC-based coordination mechanism for resource sharing problems. Chapter in <u>Distributed Model Predictive Control made easy</u>. <u>Springer</u> <u>Verlag</u>, 2012. (to appear)

Schneider-Electric white papers

• M. Y. Lamoudi, P. Béguery, O. Nilsson and B. Leida. Model Predictive Control - toward smarter energy management systems. <u>White paper</u>, <u>Schneider-Electric</u>, Jan. 2012.

Publications III

Patents

- M. Y. Lamoudi, P. Béguery, and M. Alamir. Procédé de commande pour gérer le confort d'une zone d'un bâtiment selon une approche multicritères et installation pour la mise en œuvre du procédé, 2011.
- C. Guyon, M. Y. Lamoudi and P. Béguery, Procédé et dispositif de répartition de flux d'énergie éléctrique et système électrique comportant un tel dispositif, 2012.

Thank you for your attention Questions ?