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Indecomposabilité dans les théories des champs et applications

aux systèmes désordonnés et aux problèmes géométriques

Résumé :

Les théories des champs conformes logarithmiques (LCFTs) sont cruciales pour
décrire le comportement critique de systèmes physiques variés : les transitions de phase
dans les systèmes électroniques désordonnés sans interaction (comme par exemple
la transition entre plateaux dans l’effet Hall quantique entier), les points critiques
désordonnés dans les systèmes statistiques classiques (comme le modèle d’Ising avec
liens aléatoires), ou encore les modèles géométriques critiques (comme la percolation ou
les marches aléatoires auto-évitantes). Les LCFTs décrivent des théories non unitaires,
qui ne seraient probablement pas pertinentes dans le contexte de la physique des parti-
cules, mais qui apparaissent naturellement en matière condensée et en physique statis-
tique. Sans cette condition d’unitarité, toute la puissance algébrique qui a fait le succès
des théories conformes est fortement compromise à cause de “l’indécomposabilité” de la
théorie des représentations sous-jacente. Ceci a pour conséquence de modifier les fonc-
tions de corrélation algébriques par des corrections logarithmiques, et réduit sévèrement
l’espoir d’une classification générale.

Le but de cette thèse est d’analyser ces théories logarithmiques en étudiant leur
régularisation sur réseau, l’idée principale étant que la plupart des difficultés algébriques
causées par l’indécomposabilité sont déjà présentes dans des systèmes de taille finie.
Notre approche consiste à considérer des modèles statistiques critiques avec matrice
de transfert non diagonalisable (ou des châınes de spins critiques avec Hamiltonien
non diagonalisable) et d’analyser leur limite thermodynamique à l’aide de différentes
méthodes numériques, algébriques et analytiques. On explique en particulier comment
mesurer numériquement les paramètres universels qui caractérisent les représentations
indécomposables qui apparaissent à la limite continue. L’analyse détaillée d’une vaste
classe de modèles sur réseau nous permet également de conjecturer une classification de
toutes les LCFTs chirales pertinentes physiquement, pour lesquelles la seule symétrie
est donnée par l’algèbre de Virasoro. Cette approche est aussi partiellement étendue aux
théories non chirales, avec une attention particulière portée au problème bien connu de
la formulation d’une théorie des champs cohérente qui décrirait la percolation en deux
dimensions. On montre que les modèles sur réseaux périodiques ou avec bords peuvent
être reliés algébriquement seulement dans le cas des modèles minimaux, impliquant
des conséquences intéressantes pour les théories des champs sous-jacentes. Un certain
nombre d’applications aux systèmes désordonnés et aux modèles géométriques sont
également abordées, avec en particulier une discussion détaillée des observables avec
comportement logarithmique au point critique dans le modèle de Potts en dimension
arbitraire.

Mots clefs : Théories des Champs Conformes Logarithmiques, Représentations inde-
composables, Modèles sur réseau, Systèmes désordonnés, Problèmes géométriques.
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Indecomposability in field theory and applications to

disordered systems and geometrical problems

Abstract:

Logarithmic Conformal Field Theories (LCFTs) are crucial for describing the crit-
ical behavior of a variety of physical systems. These include phase transitions in dis-
ordered non-interacting electronic systems (such as the transition between plateaus in
the integer quantum Hall effect), disordered critical points in classical statistical mod-
els (such as the random bond Ising model), or critical geometrical models (such as
polymers and percolation). LCFTs appear when one has to give up the unitarity con-
dition, which is natural in particle physics applications, but not in statistical mechanics
and condensed matter physics. Without unitarity, the powerful algebraic approach of
conformal invariance encounters formidable technical difficulties due to ‘indecompos-
ability’. This in turn yields logarithmic corrections to the power-law correlations at
the critical point, and prevents the use of general classification techniques that have
proven so powerful in the unitary case.

The goal of this thesis is to understand LCFTs by studying their lattice regular-
izations, the crucial point being that most algebraic complications due to indecompos-
ability occur in finite size systems as well. Our approach is thus to consider critical
statistical models with non-diagonalizable transfer matrices, or gapless quantum spin
chains with non-diagonalizable hamiltonians, and to study their scaling limit by uti-
lizing a variety of algebraic, numerical and integrable techniques. We show how to
measure numerically universal parameters that characterize the indecomposable rep-
resentations of the Virasoro algebra which emerge in the thermodynamic limit. An
extensive understanding of a wide class of lattice models allows us to conjecture a ten-
tative classification of all possible (chiral) LCFTs with Virasoro symmetry only. This
approach is partially extended to the bulk case, for which we discuss how the long-
standing bulk CFT formulation of percolation can be tackled along these lines. We
also argue that boundary and periodic lattice models can be related algebraically only
in the case of minimal models, and we work out the consequences for the underlying
boundary and bulk field theories. Several concrete applications to disordered systems
and geometrical problems are discussed, and we uncover a large class of geometrical
observables in the Potts model that behave logarithmically at the critical point.

Key words: Logarithmic Conformal Field Theory, Indecomposable representations,
Temperley-Lieb algebra, Lattice models, Disordered systems, Geometrical problems.
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accepté la pénible tache de rapporteur, ainsi que les examinateurs, Denis Bernard,
Nicholas Read et Jean-Bernard Zuber. Merci pour votre aide et vos conseils pour
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depuis l’ENS Lyon, et sans nos vacances à New York et dans l’ouest américain pour
notre mariage avec Mandy, ces années de thèse auraient sans doute été moins sympa-
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Note to the reader

This manuscript contains a review of my doctoral work on Logarithmic Conformal
Field Theory that corresponds more or less to the first two years of my PhD thesis.
More recently, I have been involved in various projects related to quantum quenches
and entanglement in quantum impurity problems, which would have arguably deserved
one or two chapters in this thesis manuscript. However, for the sake of consistency and
brevity, I have decided not to include here this part of my work. I refer the interested
reader to the original papers on that topic that are included at the end of this thesis.

Before embarking on our journey through the various aspects of Logarithmic Con-
formal Field Theories, I would like to warn the reader that I have chosen to address
this admittedly very technical topic in a rather loose way, without paying too much
attention to precise mathematical definitions. The words ‘modules’ and ‘representa-
tions’ are used interchangeably, very technical mathematical concepts such as ‘tiltings’
or ‘projectives’ are defined and used in a ‘physical way’ etc. I hope that the reader
fond of mathematical rigor will forgive me for that pedagogical choice.
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Chapter 1
Introduction: logarithmic correlations in
condensed matter physics

This thesis manuscript aims at providing a rather self-contained introduction to
the field of Logarithmic Conformal Field Theory (LCFT), with of course a particular
emphasis on the work of the author. The techniques of Conformal Field Theory (CFT)
have proven very efficient over the past decades at describing critical phenomena. In a
typical critical physical system, the correlations within the sample do not decay expo-
nentially with a characteristic correlation length �, but rather algebraically with a set of
universal critical exponents that may be the same for very different physical problems,
depending on the symmetries and the dimensionality of the system rather than on mi-
croscopic details. In the well-known example of the ferromagnetic/antiferromagnetic
transition, described in its simplest version by the Ising model (see Fig. 1.1), the corre-
lation length diverges as � ∼ ∣T −Tc∣−� when the temperature approaches the so-called
Curie temperature Tc, with a critical exponent � (� = 1 in d = 2 dimensions, and
� = 1

2
in mean-field theory). At the critical point T = Tc, the two-point function of

the spin operator S(r) scales as

⟨S(r⃗1)S(r⃗2)⟩ ∼ ∣r⃗1 − r⃗2∣2−d−� , (1.1)

where � is yet another critical exponent, with � = 1
4
in two dimensions, as computed

by Wu and Chen [1, 2], more than twenty years after the exact calculation of the free
energy by Onsager [3]. The power-law behavior of eq. (1.1) can actually be traced back
to the expected scale invariance at the critical point. As it turns out, the symmetry of
the critical point is much larger and contains all transformations preserving local scale
invariance; these are called conformal transformations, and they include for example
rotation and translation symmetries. Quantum Field Theories with such conformal
symmetry describe Renormalization Group fixed points, and are called Conformal Field
Theories. CFTs are very constrained by symmetry, especially in two dimensions (2D)
where the Lie algebra of conformal transformations becomes infinite, giving rise to the

1



TcT = 0 T = ∞
b b b

Figure 1.1: Phase diagram of the two-dimensional Ising model. The system flows, in
the sense of the renormalization group, to a massive disordered phase for T > Tc. At
the critical point T = Tc, the low energy behavior of the Ising model is described by a
Conformal Field Theory with central charge c = 1

2
.

celebrated Virasoro algebra

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)�n+m,0, (1.2)

where c ∈ ℝ (or c ∈ ℂ a priori) is the central charge. Since the seminal paper [4], many
exact results for critical systems have been obtained using conformal invariance tech-
niques. Among the most famous examples are the unitary minimal modelsℳ(p, p+ 1),
with central charge [5, 6]

c = 1− 6

p(p+ 1)
, with p ≥ 3 integer, (1.3)

obtained from the classification of irreducible representations of the Virasoro alge-
bra (1.2). In that series, p = 3 corresponds to the Ising model, p = 4 to the tricritical
Ising model, p = 5 to the 3-state Potts model, etc. It is also worth pointing out that
as p increases, more and more relevant operators are allowed and the corresponding
critical points are obtained through fine tuning of more and more parameters, so that
only small values of p are actually interesting for practical applications. CFTs were
also found to have a very broad range of applications in condensed matter and quan-
tum impurity physics (related to Boundary CFTs [7]), from the Kondo effect [8], the
Fermi Edge singularity [9] or the wave functions describing Fractional Quantum Hall
states [10] to, more recently, entanglement entropy [11], quantum quenches [12, 13] or
non-equilibrium heat current [14] calculations in 1D quantum spin chains.

Despite its success, many interesting physical applications of CFT actually involve
much more complicated field theories whose understanding is not complete. These
include for instance quantum critical points in disordered systems of non-interacting
fermions – an example being the long sought-after theory of the transition between

2



plateaus in the Integer Quantum Hall Effect (IQHE) [15] (see e.g. [16] for a review from
a CFT perspective and references therein), two-dimensional geometrical problems such
as self-avoiding walks and percolation [17], or critical systems with quenched disorder in
general [18, 19]. Those arguably interesting physical problems turn out to be described
by daunting CFTs that show unusual features such as non-unitarity, which means one
has to deal with non-Hermitian Hamiltonians and negative norm-square states, or non-
rationality, which implies that the scaling operators in the theories cannot be simply
described by a finite set of primary operators – all remaining operators being roughly
derivatives (descendants) of these few primary fields. As we shall discuss shortly, non-
unitarity opens the door to indecomposability, a crucial feature that ultimately lead to
logarithmic corrections to algebraic correlations such as (1.1)

⟨S̃(r⃗1)S̃(r⃗2)⟩ ∼ ∣r⃗1 − r⃗2∣−2Δ (�+ � log ∣r⃗1 − r⃗2∣), (1.4)

where Δ is the scaling dimension of the field S̃. It is important to emphasize the fact
the logarithmic corrections in (1.4) appear at the critical point; in particular, those are
not sub-leading corrections produced by marginally irrelevant operators as in the �4

field theory in d = 4 dimensions [20] or in the XY model at the Kosterlitz-Thouless
point [21]. The existence of logarithmic fields like S̃(r⃗) requires the generalization
of the usual scale invariance principle of a Quantum Field Theory, which translates
into complicated indecomposable representations from the point of view of the Virasoro
algebra. This shall be explained in more detail in the following.

The remainder of this introduction will be devoted to some examples of physical
systems expected to have logarithmic correlations. We will also give some motivations
for the lattice methods that shall be used extensively throughout this thesis.

1.1 Non-unitarity and LCFTs in statistical mechan-

ics and condensed matter

Whereas non-unitarity can probably be considered as non-physical in the context of
particle physics and traditional Quantum Mechanics, it turns out to be a quite natural
feature in statistical mechanics, geometrical problems and condensed matter physics.
For instance, the description of statistical properties of geometrical problems such as
percolation (see Fig. 1.2) or self-avoiding walks (SAWs, also known as dilute polymers)
involves features that are more complicated than those of the minimal models (1.3).
One might reasonably think that this is in fact due to the non-local nature of these
geometrical problems. Indeed, the main difference between, say the Ising model and
percolation, is the intrinsic non-locality of the physical observables in percolation, where
one is interested in connectivity probabilities of percolation clusters rather than in local
spin or energy observables. However, this point of view is somehow misleading, as
genuine non-locality would obviously spoil the Field Theory description of the problem.
In fact, those geometrical problems are only superficially non-local, as the non-locality
can be traded for non-unitarity and complex Boltzmann weights [22], by reformulating
them in terms of vertex models. Giving a weight n = 2 cos  to a loop on the honeycomb
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Figure 1.2: Two-dimensional percolation configuration on the square lattice. Bonds are
occupied with probability p, and at the critical point p = pc =

1
2
, the scaling properties

of percolation clusters are described by a c = 0 (L)CFT.

lattice can for example be done by orienting the loops, and giving an elementary
complex weight e±i/6 to each left/right turn. Summing over both loop orientations
thus gives each loop a fugacity 2 cos (6× /6) = n as requested, since the number
of left and right turns in a closed loop can only differ by 6. One therefore recovers
locality at the price of giving up the natural probabilistic interpretation of the models.
From the 2D CFT perspective, the scaling properties of percolation and SAWs can be
described by correlation functions and critical exponents given by a CFT with central
charge c = 0. As we shall see later on, such c = 0 must be non-unitary, and actually
logarithmic, in order to be non-trivial. The only unitary CFT with c = 0 indeed
has a unique observable, the identity operator with scaling dimension Δ = 0 [6]. It
is also worth mentioning that even the Ising model can be considered as a LCFT,
provided that one includes (apparently) non-local observables in the theory, such as
fields measuring the probability that two spins belong to the same spin cluster for
example. In that sense, logarithmic CFTs can actually be thought of as extensions of
the minimal models outside the minimal Kac table, thus including more operators in
the theory.

A few important remarks should be emphasized at this point.

∙ In the case of percolation or SAWs, the logarithmic nature of the LCFTs did not
deter physicists from using conformal invariance to compute interesting physi-
cal quantities such as critical exponents [23, 24] and crossing probabilities [25].
However, the full CFT description of such geometrical problems remains sadly
unknown [26], as are almost all bulk correlation functions.

∙ Although we have insisted on the fact that one of the main aspects of a LCFT
is non-unitarity, there exist some very simple non-unitary CFTs which can be
tackled quite easily. Minimal models can indeed be extended to non-unitary
theories, a well-known example being the Yang-Lee singularity CFTℳ(2, 5) with
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Figure 1.3: Plateaus for the Hall resistance and peaks of the Ohmic resistance in the
integer quantum Hall effect. Neighboring values of i are separated by a quantum
critical point, whose properties are described by a c = 0 2D (L)CFT. (figure taken from
http : //www.nobelprize.org/nobel prizes/physics/laureates/1998/press.html).

central charge c = −22
5
, describing the Ising model above its critical temperature

in a non-zero, purely imaginary magnetic field [27]. Therefore, although a LCFT
must be non-unitary, non-unitary CFTs do not have to be logarithmic and can be
described thanks to a finite number of irreducible Virasoro representations just
like unitary minimal models.

∙ The key feature of a LCFT is rather indecomposability, which means, from
the point of view of Virasoro representation theory, that one has to deal with
complicated reducible representations that cannot be decomposed into a direct
sum of irreducible representations. In physical terms, this will imply the non-
diagonalizability of the scale transformation generator – the Hamiltonian in a 2D
CFT. This is allowed because the scale transformation generator does not have
to be Hermitian in a non-unitary theory. We will come back to this in the next
chapter.

Disordered systems provide another class of physical systems whose critical points
are expected to be described by LCFTs. Of course, impurities and random disorder
break conformal invariance in general, but upon averaging over disorder configurations,
it is reasonable to expect that conformal invariance could be restored for specific values
of the disorder strength and other physical parameters such as the temperature. We
will call disordered or random critical points the resulting conformally invariant RG
fixed points. The main issue when facing a problem with quenched disorder is to
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average correlation functions such as

⟨O⟩ = 1

Z[{ℎ(r⃗)}]Tr�
(
Oe−H[�,{ℎ(r⃗)}]) , (1.5)

over some quenched disordered variable ℎ(r⃗). One solution to get rid of the partition
function in the numerator of (1.5) is to consider n ∈ ℤ copies (replicas) of the system,
and then to take a formal n→ 0 limit to recover physical results. Another alternative
in the case of non-interacting system is to find other degrees of freedom  such that
Z−1 = Tr e

−H[ ]. This is the essence of the supersymmetry (SUSY) approach to
disordered systems [28], where in practical applications, � and  are bosonic and
fermionic degrees of freedom, respectively. In both approaches, one ends up computing
averaged observables using an effective field theory with trivial partition function, thus
implying [29] the vanishing of the central charge c = 0 for disordered fixed points [18,
19]. Among the examples of problems described by c = 0 LCFT is the transition
between plateaus in the IQHE mentioned above [16] (see Fig. 1.3), or for instance,
the so-called Nishimori point in the two-dimensional random-bond Ising model (see
e.g. [30]). Other examples include the Spin Quantum Hall Transition – related to
classical percolation [31], or Dirac fermions in a random SU(N) gauge potential [32–
34].

Of course, physical applications of LCFTs are not restricted to condensed matter
physics. For example, let us also mention Abelian sandpile models [35, 36], 2D tur-
bulence [37, 38], or the AdS/CFT correspondence where LCFTs describe the massless
limit of non-linear sigma models with non-compact target spaces [39, 40]. LCFTs
also appear as duals of ‘logarithmic gravity’ theories in the AdS/LCFT correspon-
dence [41, 42], and they also play an important role in 4D gauge theories [43].

Given the broad range of applications of LCFTs, it seems quite natural to try
to push further our understanding of such quantum field theories, in the hope that
someday we will be able to classify and handle them as well as we do minimal CFTs.
In this thesis, we will mostly focus on lattice models and point out how they can help
in getting LCFTs under control. However, before we turn to this lattice regularization

approach (or lattice approach), let us make a short historical detour to understand how
and why physicists got interested in LCFTs in the first place.

1.2 A little bit of history

It is of course not the purpose of this short paragraph to provide a detailed ac-
count of all the contributions to the LCFT field, but rather to point out that the key
ideas of Logarithmic CFTs came out of rather different communities, ranging from
pure mathematics and string theory to condensed matter. The first observation of
logarithmic terms and indecomposability in CFTs probably goes back to the work of
Rozansky and Saleur [44] in 1992, who studied the Wess-Zumino-Witten (WZW) model
on the supergroup GL(1∣1). This was followed shortly after by the pioneering paper
of Gurarie [45] in 1993, who first introduced the concept of logarithmic operators and
explained how these were compatible with conformal invariance. Although it would be
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fair to say that LCFTs remained mostly unknown to most theoretical physicists at the
time, several key papers contributed to the birth of the LCFT field a few years later, in
1996. First, logarithmic operators were shown by Caux, Kogan and Tsvelik to appear
in the problem of Dirac Fermions in a random gauge potential [32]. At the same time,
Gaberdiel and Kaush [46, 47], and Flohr [48], studied indecomposable fusion rules and
logarithmic operators with motivations rather far from condensed matter physics and
disordered systems. The same year again, the mathematician Rohsiepe uploaded on
arXiv his preliminary work on Virasoro staggered modules [49], which were realized to
be of crucial importance to LCFTs many years later. A few years afterwards, Gurarie
introduced his b-number for c = 0 CFTs [50], which turned out to be closely related to
the apparently very different indecomposability parameters studied a bit earlier in [46].
At the time, the number b was thought to be a sort of new “central charge”, that would
allow one to distinguish between different c = 0 CFTs. Right about the same time,
Kausch introduced the theory of symplectic fermions [51, 52], which remains even now
one of the few exactly solvable logarithmic theories, for which everything is under con-
trol. Cardy then showed that logarithmic corrections in disordered systems and in
polymers could be understood in terms of limits within a replica approach [18, 53],
thus providing a simple physical mechanism for the appearance of logarithmic correla-
tions in disordered systems in general. Disordered systems and c = 0 CFTs were also
studied by Gurarie and Ludwig [19, 54], who computed for the first time the allowed
values for b in the boundary versions of polymers and percolation.

It is now well-accepted that LCFTs are not characterized by a single parameter b,
but rather by a complex structure of indecomposable Virasoro representations, with
an infinite set of indecomposability parameters akin to b characterizing their struc-
ture. Over the past few years, two lines of thought have been considered. The first
one is to deal directly with complicated indecomposable Virasoro representations (see
e.g. [55–60]). The second approach is somewhat more concrete, and consists in study-
ing thoroughly lattice models whose continuum limit is described by LCFTs. This is
this ‘lattice approach’ that we shall analyze in details in the following.

1.3 Why lattice models?

Most of our understanding of ordinary (non-logarithmic, rational) CFTs came from
the classification of irreducible representations of the Virasoro algebra. The null-vector
conditions in Virasoro representation theory strongly constrain the operator content
of minimal CFTs, and they also allow one to compute correlation functions through
differential equations etc [4–6, 61]. LCFTs, on the other hand, though still constrained
by representation theory – at least compared to completely irrationnal CFTs with
generic central charge, remain very poorly understood mainly because the involved
(indecomposable) modules of the Virasoro algebra have a very complicated structure.
It is actually believed that it is impossible to classify such indecomposable modules;
this is why the representation theory of Virasoro is said to be wild [62], which roughly
means that it is as complicated as it can be. It might therefore be hopeless to try to
solve LCFTs by classifying Virasoro representations, although several partial results
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have emerged in that direction recently 1.

Although it might appear almost as a bit of a heresy in the CFT world, LCFTs
seem so complicated that another possibility is to turn to specific examples, from which
one might hope to extract generic features. WZW models with super target spaces do
provide ‘simple’ examples of LCFTs [63–65], but although some interesting lessons can
be learned from them, all the known examples seem to be very closely related [66], and
their features far from being generic.

Another approach that has proven very helpful consists in considering lattice models
as lattice regularizations of LCFTs, that is, lattice models whose continuum limit is
described by LCFTs. This may seem completely hopeless at first sight, as lattice models
are in principle much more complicated than field theories. In particular, conformal
invariance obviously holds only in the continuum limit. However, it was realized over
the years that many features of the continuum limit already appear on small lattice
systems, albeit in some finite dimensional forms. This was first observed quite a while
ago using quantum groups by Pasquier and Saleur [67], although it was formalized as
an efficient tool to study LCFTs only a few years ago by Read and Saleur [68, 69],
and independently with less algebraic emphasis, by Pearce, Rasmussen and Zuber [70].
The point is that most of the algebraic features that make LCFTs so complicated,
such as indecomposability, are already present in finite lattice systems. In general, we
would like to get a handle on LCFTs that describe fixed points of interacting, non-
unitary, field theories with well defined local actions. If such LCFTs do exist, it is
reasonable to expect that they can be realized as continuum limit (or scaling limit) of
lattice models, such as quantum spin chains with local interactions. The Hamiltonian
densities form a lattice algebra whose representation theory is well under control, and
as the continuum limit is taken, one expects conformal symmetry to emerge, and this
lattice algebra to tend to Virasoro in some sense that remains to be made more precise.
As we shall argue, Virasoro indecomposable modules and their fusion rules can be
seen as scaling limits of lattice representations, and much crucial physical information,
including indecomposability parameters or b-numbers generalizing Gurarie’s [50], can
be recovered from the lattice. The lattice approach that we shall describe in this thesis
mostly relies on the original work of Read and Saleur [68, 69], but we will try to connect
our results to other approaches whenever possible.

Yet another good reason to study lattice models in the LCFTs context is that after
all, at least for a condensed matter/statistical physicist, LCFTs can be considered as
physical only if they do describe the low energy limit of some microscopic model of
physical relevance. It might of course be important to construct c = 0 theories from a
purely abstract point of view, but arguably, the ultimate goal is to get under control
the CFTs describing physical systems such as percolation or disordered systems. It is
therefore quite natural to try to stay as concrete as possible from the very beginning.
Many other interesting questions then emerge; for example, if correlation functions

1. In particular, Kytölä and Ridout have recently managed to classify rigorously a special class of
Virasoro representations called staggered modules [59], following the pioneering work of Rohsiepe [49].
These modules seem to play a special role in the physics of boundary LCFTs, and it is for example
quite satisfying to see that the b-number of Gurarie [50] can actually be computed from a purely
algebraic viewpoint [57]. We shall come back to these staggered modules in Chapter 2.
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such as (1.4) do appear in physical systems, then what do they describe precisely?
What kind of physical observables are logarithms related to? Can we understand
indecomposability more physically? We will see that studying directly concrete lattice
models provides reasonably-satisfying partial answers to these questions.

1.4 Organization of the manuscript

The outline of the remainder of this thesis is as follows:
∙ Chapter 2 contains an introduction to Logarithmic CFTs and indecomposability,
assuming that the reader has a basic knowledge of CFTs only. All the rele-
vant algebraic concepts (indecomposable representations, staggered modules for
Virasoro etc.) are introduced using concrete examples. This chapter does not
contain any new result per se – although it does reproduce some of the opera-
tor product expansion arguments presented in [71, 72], but hopefully it provides
a self-contained review of the field with examples worked out in details, that
will take the reader from logarithmic correlations to complicated indecomposable
Virasoro representations.

∙ Chapter 3 is a review of how lattice models can provide regularizations of Loga-
rithmic CFTs, using the ideas of Read and Saleur [68, 69] – relying quite heavily
on the recent review [73]. We explain how to measure indecomposability param-
eters [71] and how to compute fusion rules [72] directly from the lattice.

∙ In chapter 4, we push further the ideas of the previous chapter to attempt a
classification of Virasoro indecomposable representations relevant for physical
applications [74]. We also study non-chiral (bulk) LCFTs, that are obtained as
scaling limits of periodic lattice models, mostly from the point of view of inde-
composability parameters [75]. Some (yet) unpublished results on the relation
between open and periodic lattice models [76] and periodic percolation are also
discussed.

∙ In the last chapter 5, we first discuss why LCFTs are relevant to describe crit-
ical points in quenched disordered systems using supersymmetry or the replica
trick [18]. We also adapt the ideas of Cardy [18, 77] to obtain geometrical ob-
servables in the Potts model – and in particular in percolation – that behave
logarithmically at the critical point. The O(n) model, dilute polymers and span-
ning trees are also discussed from the perspective of LCFTs. This chapter is
based on the papers [78, 79].
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Chapter 2
A short introduction to Logarithmic
Conformal Field Theory

In this chapter, we will review the main ingredients of Logarithmic CFTs. Although
conformal invariance yields several general results, e.g. the form of two and three-point
correlators [80], in any dimension, most of the successes of CFTs are restricted to d = 2
dimensions (see e.g. [61, 81]), where the conformal group becomes infinite dimensional.
We will henceforth restrict ourselves to two dimensions, mainly to fix some notations
that will be used throughout this thesis. However, note that in principle, LCFTs
exist in any dimension, and some of the results of this section can actually be readily
generalized to higher dimensions. We shall come back to higher dimensional LCFTs in
Chapter 5.

We will begin this chapter by coming back to CFT basics, and analyze how scale
invariance can be made compatible with logarithmic correlations. We will show that
logarithms are related to Jordan cells in the scale transformation generator, and we
shall discuss the general form of the logarithmic correlators [45]. At this point, we
will introduce the indecomposability parameters or b-numbers that characterize the
logarithmic structure of a LCFT. The second section of this chapter is a review of
the ‘c → 0 catastrophe’ [50, 54], and contains a discussion of a general pattern to
explain how LCFTs can be thought of as limits of ordinary (non-logarithmic but ir-
rational) CFTs 1. Within this approach, logarithms can be shown to arise as limits of
power-law correlations, thus yielding simple formula for the indecomposability param-
eters [71]. In order to relate these results to more formal algebra, we define and give
simple examples of indecomposable representations in the case of the Lie superalgebra
gl(1∣1). The symplectic fermions theory [51, 52] will then provide a concrete exam-
ple to illustrate all these new concepts: logarithms, indecomposable representations,
indecomposability parameters, etc. Finally, the end of this chapter will be devoted
to the ubiquitous Virasoro staggered modules – a class of indecomposable Virasoro
modules especially important to LCFTs. This will also give us a chance to define inde-
composability parameters in a purely algebraic language, as a number characterizing
a Virasoro representation.

1. This idea will be used extensively in Chapter 5.
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In this chapter, the emphasis will be on (L)CFTs rather than on lattice models. We
will therefore try not to think of CFTs as describing properties of statistical models
for a while, but rather consider them as abstract field theories that satisfy conformal
invariance. We will go back to lattice models and show how all the results of this
chapter are related to interesting physical problems in the next chapters.

2.1 Logarithmic operators, scale invariance and in-

decomposability parameters

In this first section, we define Logarithmic operators and show that logarithmic cor-
relations do not break conformal invariance. We derive the general form of two-point
functions in the case of a rank-two Jordan cell in the scale transformation generator,
and discuss the case of higher-rank Jordan cells. Furthermore, we introduce indecom-
posability parameters, also called logarithmic couplings or b-numbers.

2.1.1 Conformal invariance in 2D, primary operators and Ward

identity

We start with some general well-known results on ordinary (non logarithmic) CFTs.
More details can be found in [61] or in the seminal paper [4].

Conformal transformations

A conformal transformation is defined as an invertible mapping x⃗ 7→ ⃗̃x which pre-
serves the form of the metric tensor g��(x⃗), up to a local scale Λ(x⃗)

g��(⃗̃x) = Λ(x⃗)g��(x⃗). (2.1)

These transformations form the conformal group, which contains the Poincaré group as
a subgroup (Λ(x⃗) = 1), as well as scale transformations (Λ(x⃗) = Λ). Conformal invari-
ance can be thought of as a local version of scale invariance. In generic dimension d,
the conformal group can be shown to be isomorphic to SO(d+1, 1), and the covariance
of the correlation functions under this finite dimensional Lie group already enforces the
form of two and three-point correlators [80]. However, in two dimensions 2, eq. (2.1) re-
duces to the Cauchy-Riemann equations and any analytical mapping w(z) (∂̄w = 0) is
conformal, i.e. preserves angles in 2D (see Fig. 2.1). Strictly speaking, these conformal
transformations do not have to be well-defined everywhere and invertible, which leads
to the distinction between local and global conformal transformations. The subset of
global invertible transformations form the group of global conformal transformations
SL(2,ℂ)/ℤ2 ≃ SO(3, 1).

2. We will use complex coordinates z = x0 + ix1 and z̄ = x0 − ix1, with ∂ = 1
2 (∂0 − i∂1) and

∂̄ = 1
2 (∂0 + i∂1).
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Figure 2.1: A rectangular grid (left) and its image under the conformal transformation
f(z) = z2

3
(right). An important point is that f(z) preserves angles as can clearly be

seen on these pictures.

Primary operators

CFTs are quantum field theories with conformal transformations as symmetry. The
fundamental fields of a CFT are the so-called primary operators �ℎ,ℎ̄(z, z̄) which trans-
form covariantly under a conformal map z 7→ w(z), z̄ 7→ w̄(z̄)

�̃ℎ,ℎ̄(w, w̄) =

(
dw

dz

)−ℎ(
dw̄

dz̄

)−ℎ̄
�ℎ,ℎ̄(z, z̄), (2.2)

where ℎ, ℎ̄ are the conformal weights of the field �. In order to recover some more
physically transparent quantities, we define

Δ = ℎ+ ℎ̄, (2.3a)

s = ℎ− ℎ̄. (2.3b)

Δ is the usual scaling dimension that controls how  transforms under a scale trans-
formation x⃗ 7→ Λx⃗

�̃(Λx⃗) = Λ−Δ�(x⃗), (2.4)

whereas s is the conformal spin which appears naturally when rotating the system with
an angle �

�̃(ℛ�x⃗) = ei�s�(x⃗). (2.5)
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Note that if � transforms as (2.2) (i.e. is primary), its derivatives will not be primary
and will have more complicated transformation laws under conformal transformations.

Stress-energy tensor and Ward identity

A fundamental object in a CFT is the stress-energy tensor T �� , defined through
the variation of the action S under an arbitrary transformation of the coordinates
x� 7→ x� + ��

�S =
1

2�

∫
d2x T �� ∂��� . (2.6)

The stress-energy tensor measures the reaction of the system with respect to a change
in geometry. It can be chosen to be symmetric, and invariance with respect to rotations
and translations implies, in complex coordinates, that ∂T̄ = ∂̄T = 0 with T (z) = Tzz
and T̄ (z̄) = Tz̄z̄. Scale invariance makes the stress-energy tensor traceless, so that Tzz̄ =
Tz̄z =

1
4
T �� = 0. In an ordinary CFT, the holomorphic and antiholomorphic dependence

decouple, and the whole theory can be constructed as sum of tensor products of chiral
and anti-chiral sectors 3. We will thus forget about the antiholomorphic sector for now,
and focus on infinitesimal holomorphic conformal transformations z 7→ w(z) = z+�(z).
Using (2.2), a primary field �ℎ with holomorphic conformal weight ℎ transforms as

��ℎ = �∂�ℎ + ℎ�ℎ∂�. (2.7)

The variation of correlation functions involving �ℎ under this infinitesimal conformal
transformation can also be expressed in terms of a contour integral involving the stress-
energy tensor T (z)

��ℎ =

∮

z

d�

2�i
�(�)T (�)�ℎ(z), (2.8)

where this equality should be understood as holding when inserted in a correlator.
From (2.7) and (2.8), one obtains the following Operator Product Expansion (OPE) –
called conformal Ward identity,

T (z)�ℎ(w) ∼
ℎ

(z − w)2
�ℎ(w) +

1

z − w
∂�ℎ(w), (2.9)

where we dropped less singular contributions. Let us also define the Virasoro modes
Ln as the Laurent series

T (z) =
∑

n∈ℤ

Ln
zn+2

. (2.10)

3. This will not hold anymore for a LCFT, where the holomorphic and antiholomorphic sectors
can be glued in a highly non-trivial fashion.
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We also define the antiholomorphic modes L̄n from T̄ (z̄) in the same way. The Virasoro
modes Ln and L̄n satisfy the commutation relations of the Virasoro algebra (1.2), with[
Ln, L̄m

]
= 0. The Virasoro algebra structure is encoded in the following OPE

T (z)T (w) ∼ c/2

(z − w)4
+

2

(z − w)2
T (w) +

1

z − w
∂T (w), (2.11)

where we recall that c is the central charge of the theory. The stress-energy tensor
provides an example of quasiprimary field, which satisfies (2.2) only for global conformal
transformations.

Within the usual radial quantization framework, the vacuum state ∣0⟩ is defined such
that Ln ∣0⟩ = 0 for all n ≥ −1. This implies that the vacuum must be invariant under
global conformal transformations, spanned by L−1, L0 and L1. The Ward identity (2.9)
then implies that the asymptotic state ∣�ℎ⟩ = limz→0 �ℎ(z) ∣0⟩ is an eigenstate of L0

with eigenvalue ℎ, and Ln ∣�ℎ⟩ = 0 for n > 0. The operator L0 in the chiral theory, or
rather L0 + L̄0 in the full theory, generates the scale transformations (or dilatations)
x⃗ 7→ Λx⃗, which are nothing but time translations in radial quantization. Hence, L0 (or
L0 + L̄0) plays the role of the Hamiltonian of the system.

2.1.2 Logarithmic operators and two-point functions

Let us now turn to the definition of logarithmic operators [45] (see also the recent
review [82] and references therein), and compute their two-point correlation functions.

Logarithmic operators

For the sake of the argument, we shall focus on the holomorphic sector only. We
will come back to non-chiral correlation functions later. Let � be a primary field with
conformal weight ℎ. The associated state ∣�⟩ is thus an eigenstate of the Hamiltonian
L0 – the scale transformations generator: L0 ∣�⟩ = ℎ ∣�⟩. It satisfies L1 ∣�⟩ = L2 ∣�⟩ = 0.
Let us now imagine that there exists a field  which satisfies

T (z) (w) ∼ ⋅ ⋅ ⋅+ ℎ + �

(z − w)2
+

1

z − w
∂ , (2.12)

so that L0 ∣ ⟩ = ℎ ∣ ⟩+ ∣�⟩, and Ln>0 ∣ ⟩ ∕= 0 in general. We will nevertheless assume
that L1 ∣ ⟩ = 0. The field  (z) is called logarithmic partner of �. Concrete examples
of such fields will be given later. In the basis (∣�⟩ , ∣ ⟩), Hamiltonian reads

L0 =

(
ℎ 1
0 ℎ

)
. (2.13)

It has a rank-two Jordan cell and is therefore non-diagonalizable. We will say that
the two fields � and  are mixed by L0 into a rank-two Jordan cell. Under global
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infinitesimal conformal transformations w(z) = z + �(z) 4, they transform as

�� = �∂� + ℎ�∂�, (2.14a)

� = �∂ + (ℎ + �)∂�. (2.14b)

Let us emphasize again that these equations hold if �(z) = a + bz + cz2, that is, if
w(z) = z + �(z) is a global conformal transformation. In general, the transformation
laws are more complicated and involve higher derivatives of �(z); in particular, recall
that  does not transform as (2.14) for an arbitrary conformal transformation.

After a finite scale transformation z 7→ Λz, one has

(
 ̃(Λz)

�̃(Λz)

)
= Λ

−

⎛

⎝

ℎ 1
0 ℎ

⎞

⎠

(
 (z)
�(z)

)
=

(
Λ−ℎ( (z)− �(z) log Λ)

Λ−ℎ�(z)

)
. (2.15)

Physically, this means that after a scale transformation, or after a Renormalization
Group (RG) transformation, the field  (z) will be mixed with the scaling field �(z),
and there is of course no way to change the field basis to get rid of this mixing. Non-
diagonalizable RG flows are allowed because of the non-unitarity of the theory, and
although it might seem quite exotic at first sight, we will see in the next chapters that
such logarithmic fields are quite common is physics.

Note that because the Hamiltonian is non-diagonalizable, it is also non hermitian
so we can see at this point that if such logarithmic partner fields do exist, the CFT
cannot be unitary. Nevertheless, it is worth pointing out that one still has L†

0 = L0

for the usual Virasoro bilinear form L†
n = L−n, by definition, but the bilinear form †

is no longer positive definite. For instance, we will show in the next paragraph that
conformal invariance leads to ⟨�∣�⟩ = 0.

Logarithmic two-point functions

Now that we know how these logarithmic fields transform under global conformal
transformations, we would like to compute their two-point correlation functions – three-
point functions could also be considered but we will restrict to two-point function for
the sake of simplicity. Just like in ordinary CFT, global conformal invariance fixes the
form of two and three-point correlators in any dimension [80], but we will restrict to
two dimensions for now, postponing our discussion of higher dimensional LCFTs to
Chap. 5.

First of all, because of translation invariance (� = a), the correlators ⟨�(z)�(w)⟩,
⟨�(z) (w)⟩ and ⟨ (z) (w)⟩ depend only on u = z−w. We will denote by f(u), g(u) and
ℎ(u) the corresponding functions, that is, ⟨�(z)�(w)⟩ = f(z−w), ⟨�(z) (w)⟩ = g(z−w)
and ⟨ (z) (w)⟩ = ℎ(z − w). Note that we already anticipated that ⟨�(z) (w)⟩ =
⟨ (z)�(w)⟩ for the sake of simplicity. Scale invariance (� = az) then implies the

4. Translations correspond to the choice �(z) = a, dilatations to �(z) = az, and special conformal
transformations to �(z) = az2, with a ∈ ℂ.
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following differential equations

u
df

du
+ 2ℎf = 0, (2.16a)

u
dg

du
+ 2ℎg + f = 0, (2.16b)

u
dk

du
+ 2ℎk + 2g = 0. (2.16c)

Similarly, it is straightforward to show that special conformal transformations yield
equations that are compatible with (2.16) if and only if f(u) = 0. The remaining
equations can readily be solved, and one ends up with

⟨�(z)�(0)⟩ = 0, (2.17a)

⟨�(z) (0)⟩ =
b

z2ℎ
, (2.17b)

⟨ (z) (0)⟩ =
� − 2b log z

z2ℎ
, (2.17c)

where � and b are some constants. Let us assume for the sake of the argument that
the normalization of � can be fixed in some way, then the normalization of  is given 5

by the equation L0 = ℎ + �. In that case, while the constant � is arbitrary and
can be canceled by a choice  →  − �

2b
�, the parameter b is a fundamental number

that characterizes the structure of the Jordan cell. It is unique and well-defined once
a given normalization of the field � has been chosen 6. We also emphasize that the
logarithmic term in the correlation function ⟨ (z) (0)⟩ is perfectly consistent with
scale and conformal invariance, but it implies that L0 is non-diagonalizable because
log Λz = logΛ + log z. It is also important to remark that �(z) must be a null-field
by conformal invariance, that is to say, introducing the usual Virasoro bilinear form,
⟨�∣�⟩ = 0 7. However, �(z) does not decouple as the correlator ⟨�(z) (0)⟩ does not
vanish. This is crucially different from what we are used to with ordinary CFTs.
Finally, let us point out that logarithmic partners are unique: this can be argued using
conformal invariance, or more simply by remarking that if L0 ∣ 1⟩ = ℎ ∣ 1⟩ + ∣�⟩ and
L0 ∣ 2⟩ = ℎ ∣ 2⟩ + ∣�⟩, then the combination ∣ 1⟩ − ∣ 2⟩ decouples and there remains
only one true logarithmic partner (∣ 1⟩ + ∣ 2⟩)/2. However, higher-rank Jordan cells
are allowed (see next paragraph).

Note that similar equations can be obtained in the non-chiral case, but the impor-
tant point is that L0 − L̄0 has to remain diagonalizable so that the theory remains
local [83]. Therefore, if L0 is non-diagonalizable, then so is L̄0. Two-point correlation
functions are readily obtained by replacing log z → log ∣z∣2, and z2ℎ → z2ℎz̄2ℎ̄.

5. Note however that there still remains a degree of freedom  →  + �� in the definition of  .
6. Anticipating a little bit, in most (but not all) cases of interest, � is a descendant of another

primary field. The normalization is then be given by the way � is related to this ‘parent’ primary
field, see eq. (2.21).

7. Note also that ⟨ ∣ ⟩ = ∞.
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Generalization to higher-rank Jordan cells

Of course, more logarithmic partners can be considered. As a simple example,
let us consider the case of a rank 3 Jordan cell so that L0 expressed in the basis(
�(z),  1(z),  2(z)

)
reads

L0 =

⎛
⎝

ℎ 1 0
0 ℎ 1
0 0 ℎ

⎞
⎠ . (2.18)

One can then show that global conformal invariance enforces

⟨�(z)�(0)⟩ = ⟨ 1(z)�(0)⟩ = 0, (2.19a)

⟨ 1(z) 1(0)⟩ = ⟨ 2(z)�(0)⟩ =
b

z2ℎ
, (2.19b)

⟨ 2(z) 1(0)⟩ =
�1 − 2b log z

z2ℎ
, (2.19c)

⟨ 2(z) 2(0)⟩ =
�2 − 2�1 log z + 2b log2 z

z2ℎ
. (2.19d)

Note that there still is a unique ‘b number’ that characterizes these correlation func-
tions, assuming that a given normalization of the null field � has been chosen. The
other coefficients �1, �2 are non-universal, and depend on the UV cutoff. This can
be generalized to Jordan cells of any rank k [84], with logarithmic terms logk−1 z in
two-point correlation functions.

2.1.3 Indecomposability parameters

The parameter b in eq.(2.17) is a fundamental, universal number that characterizes
the structure of the Jordan cell and appears as an amplitude of the logarithmic term.
It is uniquely defined once a normalization for the field � has been chosen (in almost
all the cases encountered in this thesis, this normalization will be given by eq. (2.21),
see below). In the case of a rank-2 Jordan cell, there is a unique such b-number, also
called indecomposability parameter or logarithmic coupling. More formally, we have

b ≡ lim
z→∞

z2ℎ⟨�(z) (0)⟩. (2.20)

In fact, there is another more algebraic, closely related parameter that also goes by
these names in the literature. To avoid any confusion, we will refer to the coefficient
b appearing in correlation functions as physical indecomposability parameter, and we
will denote by � algebraic indecomposability parameters.

In order to introduce �, let us remark that in most cases that we will encounter in
this thesis (but not all), the null field �(z) is actually a descendant of a primary field
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�(z), with conformal weight ℎ� ≤ ℎ = ℎ� = ℎ . This means that we can write

�(z) = A�(z), A = L−n + �(1)L−n+1L−1 + ⋅ ⋅ ⋅+ �(P (n)−1)L
n
−1, (2.21)

where n = ℎ− ℎ� and P (n) is the number of partitions of the integer n. A belongs to
the universal cover of the Virasoro algebra, that is, it consists of words of the Virasoro
generators Ln. The �(i) coefficients are uniquely fixed by the null-vector condition
L+1� = L+2� = 0. In that case, we define the algebraic indecomposability using
Virasoro bilinear form

� ≡ ⟨�∣ ⟩ , (2.22)

where we normalized �(z) such that ⟨�∣�⟩ = 1. Note that it is also possible to define �
through the equation

A† (z) = ��(z). (2.23)

It is important to notice at this point that the choice that we adopted for the nor-
malization of the operator A is crucial for the value of �. Different choices have been
used in the literature, and some of them may yield simpler expressions for �. Unless
otherwise indicated, we will always use the convention given by eq. (2.21). As an ex-
ample, we will see in the next section that the stress-energy tensor �(z) = T (z) = L−2I
(A = L−2 here) has a logarithmic partner  (z) = t(z) for non-trivial c = 0 theories.
To summarize this general structure, we will use the following diagram

∣ ⟩
�−1A†

����
��

��

L0−ℎI

��

∣�⟩

A
��

66
66

66

∣�⟩

(2.24)

where the arrows are only here to indicate the action of the Virasoro generators L0, A
and A†. They will acquire a more precise meaning in the following sections.

Because of (2.17b), it might be tempting to claim that b ≡ limz→∞ z2ℎ⟨�(z) (0)⟩
is equal to � ≡ ⟨�∣ ⟩. However, one has to be careful since once the adjoint operator
is defined for the state ∣�⟩, then the adjoint for its descendant ∣�⟩ = A ∣�⟩ is fixed, and
generally it will not coincide with the naive definition limz→∞ z2ℎ ⟨0∣�(z) [58, 72]. We
will remember that in general, b ∕= �.

Indecomposability parameters also play a crucial role in the representation theory
of the Virasoro algebra, and we will come back to this in section 2.5. After these formal
definitions, it is now time to turn to more concrete examples.
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2.2 c → 0 catastrophe, differential equations and

generalizations

In a Quantum Field Theory, Operator Product Expansions (OPEs) are fundamental
as they encode the structure of the correlation functions. In 2D, conformal invariance
strongly constrains the structure of OPEs. It may happen that OPE coefficients (either
the structure constants or the coefficients in front of the descendants) become ill-
defined when the central charge approaches a ‘logarithmic’ value (c = 0 typically).
One possibility to solve this ‘catastrophe’ is to look for other fields in the OPE that
will ‘collide’ with the diverging term in order to cancel out the divergence. This is the
essence of the so-called ‘c→ 0 catastrophe’ [18, 19, 50, 54, 85, 86], which predicts the
existence of a logarithmic partner t(z) for the stress energy tensor T (z) in c = 0 CFTs.

2.2.1 c→ 0 catastrophe

Conformal Field Theories with central charge c→ 0 are arguably the most impor-
tant examples of LCFTs as far as physical applications are concerned. One important
feature of such LCFTs is that the stress energy tensor T (z) has a logarithmic partner
t(z). We review here the argument leading to this conclusion.

Kac operators

Now that we are turning to more explicit examples, we need to introduce some
additional notations to parametrize the central charge and the Kac table. We will use
the following parametrization for the central charge

c = 1− 6

p(p+ 1)
, (2.25)

with p ∈ ℝ, so that the Kac formula at central charge c reads

ℎr,s =
((p+ 1)r − ps)2 − 1

4p(p+ 1)
. (2.26)

We will call Kac operators the fields Φr,s (r, s positive integers) with conformal weights
ℎr,s

8 that are degenerate 9 at level rs. An example of Kac operator is given by the
identity 1 = I = Φ1,1, which satisfies a trivial differential equation at level 1 L−1I =
∂I = 0.

8. Recall that unless mentioned explicitly, we restrict our study to the case of chiral LCFTs, with
only one copy of the Virasoro algebra. In the language of lattice models, this will correspond to open
boundary conditions.

9. In the language of Virasoro representation theory (see section 2.5), Kac operators are associated
with what we shall call Kac modules Kr,s ≡ Vℎr,s

/Vℎr,−s
, where Vℎ is the Verma module of conformal

weight ℎ.
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c→ 0 catastrophe and b-number

In this section, we will focus on Kac operators Φ1+2j,1 (j ∈ ℕ/2) lying on the first
column of the Kac table. The structure of the OPEs of these Kac operators is encoded
in the following fusion rules [4]

Φ1+2j1,1 ×f Φ1+2j2,1 =

j1+j2∑

j=∣j1−j2∣
Φ1+2j,1, (2.27)

where as usual, we dropped all the numerical coefficients, as well as the descendants.
The operators Φ1+2j,1 form a close algebra under fusion, and as we shall see in the next
chapters, this choice corresponds to ‘dilute’ loop models on the lattice. Note also that
these fusion rules have a SU(2) structure, and we will also come back to this crucial
point in the next chapters. These fusion rules hold only when the central charge is
generic, in particular when it is irrational. When c takes specific values, typically c = 0,
‘mixing’ will occur between the different Kac operators and logarithmic corrections will
appear in correlation functions. These logarithmic operators correspond to fields that
are quotiented out in minimal models.

To see this more explicitly, let us consider the OPE of Φ2,1 with itself at c ∕= 0.
Conformal invariance then enforces

Φ2,1(z)Φ2,1(0) ∼
C

Φ1,1

Φ2,1Φ2,1

z2ℎ2,1

(
1 +

2ℎ2,1
c

z2T (0) +
ℎ2,1
c
z3∂T (0) + . . .

)

+
C

Φ3,1

Φ2,1Φ2,1

z2ℎ2,1−ℎ3,1

(
Φ3,1(0) +

z

2
∂Φ3,1(0) + . . .

)
. (2.28)

If we try to take naively the limit c → 0, we immediately face a problem as the
term

2ℎ2,1
c
z2T (0) in the identity channel is ill-defined (ℎ2,1 = 5

8
∕= 0 at c = 0). Other

descendants in the identity sector, such as ∂T , will also show similar divergences. This
problem is of course not specific to the fusion of the field Φ2,1 with itself as it will occur
systematically in the identity channel. One possibility to fix this problem would be
that C

Φ1,1

Φ2,1Φ2,1
vanishes at c = 0. This actually happens in the bulk (non-chiral) case for

Kac operators [53, 75, 77] (regarding bulk LCFTs, see also section 4.2 in this thesis),

but unless there is no other choice, it is customary to set C
Φ1,1

Φ2,1Φ2,1
= 1.

To kill the divergent terms, we introduce a new field t(z)

t(z) =
2b(c)

c

(
C

Φ3,1

Φ2,1Φ2,1

c

2ℎ2,1
Φ3,1(z) + T (z)

)
, (2.29)

with b(c) = − c/2
ℎ3,1−2

. In terms of this field (admitting for the moment that it is mean-

ingful in the c → 0 limit), it is straightforward to check that the OPE is well-defined
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at c = 0, but that it becomes logarithmic

Φ2,1(z)Φ2,1(0) ∼
1

z5/4

(
1 +

ℎ2,1z
2

b
(t(0) + log z T (0)) +

ℎ2,1z
3

2b
(∂t(0) + log z ∂T (0)) + . . .

)
,

(2.30)
with b = limc→0 b(c) = 5/6 and ℎ2,1 =

5
8
.

It is important to notice that although the field t(z) is built out of two divergent
quantities, one can check that it is perfectly well-defined when inserted in correlation
functions, as long as the limit process is properly respected. As c→ 0, the eigenvectors
T (z) and Φ3,1 of L0 become degenerate with the same conformal weight ℎ3,1 = 2.
The generically primary field Φ3,1 is ill-defined in the limit, but if one considers the
appropriate combination with T (z), one can construct a new well-defined field t(z)
given by (2.29) that will be mixed into a Jordan cell with T (z) at c = 0. It is indeed
straightforward to check that L0 ∣t⟩ = 2 ∣t⟩ + ∣T ⟩ in radial quantization, as well as

⟨T (z)T (0)⟩ = 0 (2.31a)

⟨T (z)t(0)⟩ =
b

z4
(2.31b)

⟨t(z)t(0)⟩ =
� − 2b log z

z4
, (2.31c)

as expected for a logarithmic partner 10.

Another important remark is that despite the fact that the definition of t(z) in (2.29)
seems to depend on the particular fusion that one considers in the first place (here
Φ2,1), all the physical properties of this field, including the OPEs and the correlation
functions, do not depend on this feature. In particular, we expect the coefficient
C

Φ3,1

Φ2,1Φ2,1
to be irrelevant for our matters, and if we were to define t(z) to cancel the

divergence in another fusion (say Φ5,1×f Φ5,1), we would find a field t(z) with the same
properties. It is thus natural to conjecture that in the limit c → 0, these different
definitions coincide, up to a rescaling.

We have thus identified explicitly a logarithmic field at c = 0 that arises as a mixing
of T (z) = L−2I and Φ3,1. This limit argument also allowed us to compute the value of
the physical indecomposability parameter

bpolymers = − lim
c→0

c/2

ℎ3,1 − 2
=

5

6
. (2.32)

We denoted by bpolymers the indecomposability parameter as it corresponds to the theory
of SAWs (dilute polymers). If instead we had considered the fusion of Kac operators
Φ1,1+2j living in the first row of the Kac table, we would have had to use the Kac
operator Φ1,5 (ℎ1,5 = 2 at c = 0) to cancel the divergences, leading to a different value

10. We allowed for an additive constant � in the correlation function ⟨t(z)t(0)⟩, but whereas b is
universal, � will depend on the UV cutoff of the theory as the argument of the logarithm has to be
dimensionless.
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for the indecomposability parameter

bpercolation = − lim
c→0

c/2

ℎ1,5 − 2
= −5

8
, (2.33)

relevant this time for the percolation theory 11. These values of b were computed for the
first time in [19], even though the correct attribution of −5

8
to percolation only came

many years later [57]. We also remark in passing that for percolation and polymers,
the algebraic indecomposability parameter � = ⟨T ∣t⟩ is equal to b

L2 ∣t⟩ = b ∣0⟩ . (2.34)

where we have used eq. (2.29).

2.2.2 Generalization and formulas for indecomposability pa-
rameters

Actually, the results of the previous paragraph are not restricted to c = 0 and the
same line of reasoning can be applied to other values of the central charge, and to
other operators. This can be used to infer general formulas for the indecomposability
parameters [71] (see also [72]). We follow here [72].

Logarithmic Ising model

As another example, let us consider the logarithmic Ising model (p = 3, c = 1/2).
We deform our logarithmic theory into a generic ordinary CFT (p = 3+�) and consider
the OPE of Φ1,3 with itself

Φ1,3 ×f Φ1,3 = Φ1,1 + Φ1,3 + Φ1,5. (2.35)

As before, this fusion rule means that when two primary fields Φ1,3(z) are brought
close to each other in a correlation function, their product can be expanded onto the
fields Φ1,1(z), which is the identity field I, Φ1,3(z), Φ1,5(z) and their descendants. At
the Ising point p = 3, we are going to show that the fields Φ1,3(z) and Φ1,5(z) (and
their descendants) are mixed together and we thus expect logarithms to appear.

More explicitly, the OPE of Φ1,3(z) with itself in the generic case reads

Φ1,3(z)Φ1,3(0) ∼
C

Φ1,3

Φ1,3,Φ1,3

zℎ1,3

[
Φ1,3(0) +

1

2
z∂Φ1,3(0) + �(−2)z2L−2Φ1,3(0)

+�(−1,−1)z2L2
−1Φ1,3(0) + . . .

]
+
C

Φ1,5

Φ1,3,Φ1,3

z2ℎ1,3−ℎ1,5
[Φ1,5(0) + . . . ] +

1

z2ℎ1,3
[1 + . . . ] , (2.36)

11. Once again, we emphasize that the precise identification of the LCFTs corresponding to perco-
lation or dilute polymers will be discussed in the following chapters of this thesis.
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16

0 . . .

5
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1
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1
6
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1
2

1
16

0 5
16

1 . . .

0 1
16

1
2

21
16

5
2

. . .

p = 2 (c = 0) p = 3 (c = 1
2
)

Table 2.1: Extended Kac tables at c = 0 (percolation) and c = 1
2
(Ising), showing

the conformal weights ℎr,s for r, s ≥ 1 (see eq. (2.26)). The shaded parts correspond
to minimal models, whereas logarithmic CFTs typically involve operators outside this
minimal part.

where the coefficients �(−2) = 6
5�

+ 16
25

+ O(�) and �(−1,−1) = − 9
10�

− 9
50

+ O(�) are
fixed by global conformal invariance and are diverging as � → 0. However, if we
introduce the field � = (L−2 − 3

4
L2
−1)Φ1,3, we can get rid of one of these divergences as

3
4
�(−2) + �(−1,−1) = 3

10
+O(�) is well-defined:

Φ1,3(z)Φ1,3(0) ∼
C

Φ1,3

Φ1,3,Φ1,3

zℎ1,3

[
Φ1,3(0) +

1

2
z∂Φ1,3(0) + �(−2)z2�(0)

+z2(�(−1,−1) +
3

4
�(−2))∂2Φ1,3(0) + . . .

]
+
C

Φ1,5

Φ1,3,Φ1,3

z2ℎ1,3−ℎ1,5
[Φ1,5(0) + . . . ] + . . . . (2.37)

We dropped the identity channel as it will play no role in the following. We then define
a new field  (z) as

 (z) =
C

Φ1,5

Φ1,3,Φ1,3

C
Φ1,3

Φ1,3,Φ1,3

b(�)

�(−2)N�(�)
Φ1,5(z) +

b(�)

N�(�)
�(z), (2.38)

where b = − N�(�)

ℎ1,5−ℎ1,3−2
. The factor N�(�) is defined as the coefficient that appears in

the two-point function ⟨�(z)�(0)⟩ = N�(�)z
−2(ℎ1,3+2). This number can be computed

using standard CFT techniques [72], with the result N�(�) = 35
96
� + O(�). Since �

becomes a singular state at � = 0, we obviously have N�(0) = 0. Because b(�) has a
finite limit when � → 0, we can now safely take the limit �→ 0 so that the logarithmic
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OPE reads

Φ1,3(z)Φ1,3(0) ∼
C

Φ1,3

Φ1,3,Φ1,3

z1/2

[
Φ1,3(0) +

1

2
z∂Φ1,3(0) +

3

10
z2∂2Φ1,3(0)+

7

16b
z2( (0) + �(0) log z) + . . .

]
+ . . . (2.39)

where we have used that lim�→0N�(�)�
(−2) = 7

16
. One can check that the operators  

and � defined this way satisfy the usual OPEs for logarithmic operators with physical
indecomposability parameter b = lim�→0 b(�) = −35

24
. In particular, it is possible to

check that L0 ∣ ⟩ = 5
2
∣ ⟩+ ∣�⟩.

Using this approach, it is also possible to compute the associated algebraic inde-
composability parameter

(L2 −
3

4
L2
1) ∣ ⟩ =

b(�)

N�(�)
(L2 −

3

4
L2
1) ∣�⟩ = �(�) ∣Φ1,3⟩ , (2.40)

where in the limit �→ 0

� ≡ ⟨�∣ ⟩ = lim
�→0

�(�) = − lim
�→0

⟨�∣�⟩
ℎ1,5 − ℎ1,3 − 2

. (2.41)

In our case, we find ⟨�∣�⟩ =
〈
Φ1,3∣(L2 − 3

4
L2
1)(L−2 − 3

4
L2
−1)∣Φ1,3

〉
= 1

4
(2c+ℎ1,3(18ℎ1,3−

11)). Although ⟨�∣�⟩ ∕= N�(�), these two expressions coincide up to order O(�2), so
that we find � = b = −35

24
. Once again, these two numbers do not have to coincide in

general, and it is actually quite easy to find examples for which they are different [58].

General pattern and formulas for the indecomposability parameters

In fact, this OPE construction that we presented on two specific examples is actually
quite general. Indeed, the divergence of the OPE coefficients �(−2) and �(−1,−1) for
the descendants of Φ1,3 is directly related to the vanishing of the Kac determinant
K(2)(c, ℎ) = 2ℎ(16ℎ2 + 2ℎ(c− 5) + c) at level 2 for c = 1

2
and ℎ = ℎ1,3 =

1
2
. Actually,

it can be shown in general that the OPE coefficients for the descendants are inversely
proportional to the Kac determinant at this level (see e.g. [61] for a proof of this
statement, as well as a discussion of Kac determinants in general). We thus expect
these divergences to be general, and they must be canceled by the (generally unique)
primary operators present in the OPE with same conformal weights at � → 0 as the
ill-defined descendant terms. However, there might be some additional cancellations
between the Kac determinant and the numerator in the descendant OPE coefficients,
which are hard to control in general 12. Let us also remark that these divergences in
the OPEs correspond to fields that are quotiented out in the ordinary minimal models.
Therefore, the logarithms that we obtained at c = 0 and c = 1

2
appear in LCFTs that

12. As a simple example, the Kac determinant K(1)(c, ℎ) = 2ℎ at level 1 is canceled in the OPE
coefficient �(−1) = 1

2 in (2.36).
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should be thought of as extensions of the minimal models ℳ(2, 3) and ℳ(3, 4) (Ising)
(see Tab. 2.1).

This pattern being quite general, one can also infer from this construction general
formulas to compute indecomposability parameters. Let us consider a more general
LCFT with central charge c = 1 − 6

x0(x0+1)
that we slightly deform x = x0 + � to

make it non-logarithmic. Let � = A� be a null field at � = 0, with � primary with
conformal weight ℎ�; and  its logarithmic partner at � = 0 normalized such that
L0 ∣ ⟩ = ℎ ∣ ⟩+ ∣�⟩ at the logarithmic point. We normalize � so that ⟨�∣�⟩ = 1 and we
choose A = L−n + . . . (see eq. (2.21)), so the dimension of � is ℎ� = ℎ� + n. We call
ℎ the generic conformal weight of the primary field that will collide with � at � = 0
(we had ℎ = ℎ3,1 and ℎ = ℎ1,5 in our previous example). We also define N�(�) as
the coefficient that appears in the two-point function ⟨�(z)�(0)⟩ = N�(�)z

−2ℎ� . At the
logarithmic point � = 0, we have ⟨�∣�⟩ =

〈
�∣A†A∣�

〉
= N� = 0 and ℎ = ℎ� = ℎ� + n.

Then, the algebraic indecomposability parameter reads [71]

� ≡ ⟨�∣ ⟩ = − lim
�→0

⟨�∣�⟩
ℎ − ℎ�

, (2.42)

whereas the physical indecomposability parameter of the Jordan cell (�,  ) at c = 0
can be expressed as [72]

b = lim
z→∞

z2ℎ⟨�(z) (0)⟩ = − lim
�→0

N�(�)

ℎ − ℎ�
. (2.43)

2.2.3 Boundary dilute polymers four-point functions

The OPE approach of the previous paragraph provides a nice and simple under-
standing of how logarithms can appear in correlation functions, so as to cancel divergent
quantities in operator product expansions. One can check that the logarithmic opera-
tors obtained as limits such as the ones in eqs. (2.29) or (2.38) are well-behaved when
inserted in correlation functions. However, this argument is rather heuristic, and it is
quite reassuring to see that it is perfectly consistent with other methods that do not
involve limits.

As an example, we will consider the boundary theory of self-avoiding walks, also
known as dilute polymers. Because the partition function is trivial, the central charge
of the corresponding CFT is c = 0, and we will admit for the moment that the boundary
spectrum involves watermelon (or 2j-leg) operators Φ2j+1,1(z) that create 2j polymers,
with j ∈ ℕ/2, with critical exponents ℎ1+2j,1 [23] (see also Chapter 3). We have
seen in section 2.2.1 that the OPE Φ2,1(z1)Φ2,1(z2) contains logarithmic terms at c =
0, with a physical indecomposability parameter b = 5

6
. If this is correct, the four-

point function ⟨Φ2,1(z1)Φ2,1(z2)Φ2,1(z3)Φ2,1(z4)⟩ should show some signatures of this
logarithmic dependence. Hence, we would like to analyze in details the case of the four-
point function of the operator Φ2,1(z) at the boundary, with its conformal dimension
is ℎ2,1 = 5

8
. This operator inserts one polymer at the boundary, and since it is a Kac
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operator, it is degenerate at level 2

(
L−2 −

2

3
L2
−1

)
Φ2,1 = 0. (2.44)

This null-vector condition implies a simple differential equation for the four-point func-
tion ⟨Φ2,1(z1)Φ2,1(z2)Φ2,1(z3)Φ2,1(z4)⟩. We introduce the fonction F (�) such that

⟨Φ2,1(z1)Φ2,1(z2)Φ2,1(z3)Φ2,1(z4)⟩ =
1

z
5/4
12 z

5/4
34

F (�)

(1− �)5/4
, (2.45)

where � = z12z34
z13z24

is the usual anharmonic ratio. The null-vector condition then yields
the following differential equation

z(1 − z)
d2

dz2
F (z) + (1− 2z)

d

dz
F (z) +

5

4
F (z) = 0, (2.46)

with solution

F (�) = A(1− �)2 2F1

[
−1

2
,
3

2
, 3, 1− �

]
+B�2 2F1

[
−1

2
,
3

2
, 3, �

]
. (2.47)

Here, 2F1(�, �, ; z) are the usual hypergeometric functions

2F1(�, �, ; z) =
∞∑

n=0

(�)n(�)n
()n

zn

n!
, (2.48)

where (x)n = x(x + 1) . . . (x + n − 1) (and (0)n = 1) is the Pochhammer symbol.
For generic central charge, the four-point function of Φ2,1 satisfies a similar differential
equation, with two hypergeometric functions (conformal blocks) that correspond to the
two channels Φ1,1 and Φ3,1 in the fusion Φ2,1 ×f Φ2,1. At c = 0 however, things are a
bit more complicated as this two channels are mixed together. To see this, we first set
A = 15�

32
to respect the usual normalization of the two-point functions in the identity

channel. The constant B depends on the boundary conditions and can be determined
using different limits of the correlation function. Using this result, we can expand the
correlation function for small anharmonic ratio

⟨Φ2,1(z1)Φ2,1(z2)Φ2,1(z3)Φ2,1(z4)⟩ =
1

z
5/4
12 z

5/4
34

(
1 +

(
65

64
+B − 15 log 2

8

)
�2+

15

32
�2 log � +

(
B − 15 log 2

8
+

5

4
+

15

32
log �

)
�3 +O(�4)

)
. (2.49)

As expected, we see that there are logarithms in this expansion, all coming from the

function 2F1

[
−1

2
, 3
2
, 3, 1− �

]
. The coefficient 15

32
is nothing but

ℎ22,1
b
, with b = 5

6
, so
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this four-point function is consistent with the result for b for polymers. To see this, we
can now use the OPE (2.30) at c = 0 along with equations (2.31) to find

⟨Φ2,1(z1)Φ2,1(z2)Φ2,1(z3)Φ2,1(z4)⟩ =
1

z
5/4
12 z

5/4
34

(
1 +

9

16
��2 +

15

32
�2 log �

+

(
9

16
� +

15

64

)
�3 +

15

32
�3 log � +O(�4)

)
. (2.50)

This equation is perfectly consistent with eq. (2.49) provided that � = 65
36
+16

9
B−10

3
log 2.

Logarithmic OPEs can thus be observed directly at c = 0, as solutions of simple
differential equations.

If we expand both hypergeometric functions, it is very tempting to interpret the A-
channel (with 2F1

[
−1

2
, 3
2
, 3, 1− �

]
) as the identity, as it involves logarithms and starts

with a constant term. This is consistent with the fact that the other B-channel starts
with a term �2, so it is natural to say that it corresponds to the conformal block Φ3,1

(ℎ3,1 = 2). However, this observation is a bit too naive and one should really think of
the two channels as mixed together at the logarithmic point. Note also that in the OPE
approach, we considered � → 0 before taking the limit c → 0. This is an important
point as there is no reason for these limits to commute in general. To understand what
happens to the conformal blocks at the logarithmic point, it is actually very instructive
to have a look at the limit c→ 0 of the generic four-point function of Φ2,1(z). We also
mention the geometrical interpretation of the different conformal blocks is a bit subtle
for LCFTs [87].

2.3 Intermezzo: Indecomposable representations and

GL(1∣1)
In the introduction of this thesis, we have defined indecomposable representations

as representations that cannot be decomposed into a direct sum of smaller representa-
tions 13. Before going deeper in our analysis of LCFTs, let us pause for some time and
come back to basic algebra to give some examples of indecomposable representations
using the simple example of the Lie superalgebra gl(1∣1). Applications to field theory
will be given in the next section.

2.3.1 Defining relations and irreducible representations

We first define the Lie super algebra gl(1∣1) and describe its irreducible represen-
tations. This paragraph has some strong overlap with Appendix A which reviews the
properties of superalgebras in a rather formal and less pedagogical way. The Lie super-
algebra gl(1∣1) is generated by two bosonic elements E,N and two fermionic generators

13. Note that strictly speaking, irreducible representations are also indecomposable – they cannot be
decomposed onto smaller objects by definition. Nevertheless, in this thesis we will call indecomposables
representations that are also reducible, that is, that contain invariant subrepresentation(s).
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Ψ± such that E is central and the other generators obey

[N,Ψ±] = ±Ψ± and {Ψ−,Ψ+} = E . (2.51)

N is an operator that counts the number of fermions. Let us also fix the following
Casimir element C

C = (2N − 1)E + 2Ψ−Ψ+ . (2.52)

The choice of C is not unique since we could add any function of the central element
E.

The irreducible representations of gl(1∣1) are either one-dimensional (atypicals), or
two-dimensional (typicals). Atypical representations are given by 1-dimensional repre-
sentations ⟨n⟩, parametrized by the value n ∈ ℝ of N , with vanishing other generators
Ψ+ = Ψ− = E = 0. As we shall see in the following, these one-dimensional represen-
tations will appear as ‘building blocks’ of larger indecomposable representations. The
typical representations are 2-dimensional representations ⟨e, n⟩ labeled by pairs e, n
with e ∕= 0 and n ∈ ℝ. In these representations, the generators take the form E = e12

and

N =

(
n− 1 0
0 n

)
, Ψ+ =

(
0 0
e 0

)
, Ψ− =

(
0 1
0 0

)
, (2.53)

in a basis {∣0⟩ , ∣1⟩}. So far, everything is quite simple, even simpler than one would
obtain for su(2) for example, as there is no irreducible representation with dimension
larger than two. But the Lie superalgebra gl(1∣1) is actually more complicated than
su(2), because it is non-semisimple 14 (it has an abelian ideal generated by E). In a
nutshell, non-semisimplicity means that irreducible representations are not the end of
the story, and that one also has to worry about indecomposable representations that are
not irreducible, but that cannot be expressed as direct sums of smaller representations
either.

2.3.2 A first look at indecomposability

As a first example of indecomposable representation, let us consider the case e = 0
of the typicals ⟨e, n⟩. The representations ⟨e, n⟩ are irreducible as long as e ∕= 0.
When e = 0, the generators (2.53) still provide a representation of gl(1∣1), but it is
not irreducible. Indeed, the one-dimensional vector space with basis {∣0⟩} provides
an invariant subrepresentation, isomorphic to the atypical ⟨n − 1⟩. It would thus be
tempting to claim that ⟨0, n⟩ is fully reducible (i.e. is semisimple) and that it can be
decomposed onto ⟨n− 1⟩ ⊕ ⟨n⟩. However, this is not the case, and ⟨0, n⟩ is said to be

14. Recall that in mathematics, a semi-simple algebraic object means that it can be decomposed
as a direct sum of simple objects. For modules (or representations), simple means irreducible, and
a non-semisimple representation is also said to be indecomposable. For Lie algebras, a simple Lie
algebra has no other ideal that {0} and itself.
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indecomposable, as it cannot be expressed as a direct sum of smaller representations.
This is because of the form of Ψ− in eq. (2.53). It is useful to picture the structure of
indecomposable representations

⟨0, n⟩ =

⟨n⟩
Ψ−

����
��

��
�

⟨n− 1⟩

(2.54)

This diagram represents the structure of ⟨0, n⟩ in terms of its two atypical (one-
dimensional) components ⟨n − 1⟩ and ⟨n⟩. The arrow represents the action of the
algebra gl(1∣1), here, the generator Ψ−. Acting with Ψ−, one can go from the ‘top’
⟨n⟩ to the ’bottom’ (also called ‘socle’) ⟨n − 1⟩ but not the other way around. The
irreducible ⟨n− 1⟩ is subrepresentation of ⟨0, n⟩, and the quotient ⟨0, n⟩/⟨n− 1⟩ ≃ ⟨n⟩
is also irreducible. We will refer to the structure of indecomposable modules (repre-
sentations) in terms of irreducible modules and mappings between them (arrows) as
subquotient structure, and the irreducible components as subquotients. The diagram
may appear to the reader as a quite complicated way to represent the structure of
a two-dimensional representation. Nevertheless, in most examples of indecomposable
representations that we shall encounter in this thesis, the subquotients will not be
simply one-dimensional, the structure might become much more complicated. In these
cases, diagrams such as (2.54) are a useful way to represent the ‘backbone’ of the
indecomposable representation, even if it is infinite-dimensional for example.

2.3.3 Tensor products

To obtain more involved indecomposable representations, let us consider tensor
products of typical representations ⟨e1, n1⟩ ⊗ ⟨e2, n2⟩. We emphasize that we deal here
with graded tensor products, that is, when we pass a fermionic operator through a
fermionic state, we generate an additional minus sign. We will take the convention
that ∣0⟩ is bosonic and ∣1⟩ is fermionic. So for example, we have

Ψ− ∣11⟩ =
(
Ψ−

1 +Ψ−
2

)
∣11⟩ = Ψ−

1 ∣1⟩ ⊗ ∣1⟩− ∣1⟩ ⊗Ψ−
2 ∣1⟩ = ∣01⟩− ∣10⟩ . (2.55)

In the basis {∣00⟩ , ∣01⟩ , ∣10⟩ , ∣11⟩}, we find

Ψ+ =

⎛
⎜⎜⎝

0 0 0 0
e2 0 0 0
e1 0 0 0
0 e1 −e2 0

⎞
⎟⎟⎠ , Ψ− =

⎛
⎜⎜⎝

0 1 1 0
0 0 0 1
0 0 0 −1
0 0 0 0

⎞
⎟⎟⎠ , N =

⎛
⎜⎜⎝

n− 1 0 0 0
0 n 0 0
0 0 n 0
0 0 0 n+ 1

⎞
⎟⎟⎠ ,

(2.56)
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and E = (e1 + e2)14. As long as e1 + e2 ∕= 0, this four-dimensional representation is
reducible. To see this, we define the change-of-basis matrix

P =

⎛
⎜⎜⎝

e1 + e2 0 0 0
0 e2 1 0
0 e1 −1 0
0 0 0 1

⎞
⎟⎟⎠ , (2.57)

which is invertible only for e1 + e2 ∕= 0. In the new basis, the Casimir operator is
diagonal with eigenvalues C = diag{(e1 + e2)(2n− 1), (e1 + e2)(2n− 1), (e1 + e2)(2n+
1), (e1 + e2)(2n+ 1)}, and the fermionic generators Ψ± read

Ψ+ =

⎛
⎜⎜⎝

0 0 0 0
e1 + e2 0 0 0

0 0 0 0
0 0 e1 + e2 0

⎞
⎟⎟⎠ , Ψ− =

⎛
⎜⎜⎝

0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

⎞
⎟⎟⎠ . (2.58)

The bosonic (even) generator remain unchanged. These equations show that as long
as e1 + e2 ∕= 0, the tensor product representation ⟨e1, n1⟩ ⊗ ⟨e2, n2⟩ is reducible with
the decomposition

⟨e1, n1⟩ ⊗ ⟨e2, n2⟩ = ⟨e1 + e2, n⟩ ⊕ ⟨e1 + e2, n− 1⟩, (2.59)

where we recall that n ≡ n1 + n2 − 1.

When e1 + e2 = 0, things become more complicated. First of all, the matrix (2.57)
is no longer invertible, so the decomposition (2.59) does not hold anymore. It should
also be noted that the Casimir operator has 4 degenerate eigenvalues 0, so knowing
them is not enough to label typical representations. After a trivial change of basis, one
finds the following expressions for the generators (we take e1 = −e2 = 1)

Ψ+ =

⎛
⎜⎜⎝

0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

⎞
⎟⎟⎠ , Ψ− =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 −1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , N =

⎛
⎜⎜⎝

n− 1 0 0 0
0 n 0 0
0 0 n 0
0 0 0 n+ 1

⎞
⎟⎟⎠ ,

(2.60)
and E = 0. It is straightforward to see that this four-dimensional representation is
indecomposable, that is, that it cannot be decomposed as a direct sum anymore. It is
not irreducible, as it contains invariant subrepresentations of dimension 1 and 2. It is
also convenient to represent the structure of this representation, that we shall denote
by Pn, in terms of a diagram. The form of N tells us that Pn is made of one-dimension
irreducibles (atypical representations) ⟨n− 1⟩, 2⟨n⟩, ⟨n+ 1⟩. The action of Ψ± relates
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these four representations as follows

⟨1, n1⟩ ⊗ ⟨−1, n2⟩ ≡ Pn≡n1+n2−1 =

⟨n⟩
Ψ−

����
��

��
�

Ψ+

��
??

??
??

?

⟨n− 1⟩

Ψ+
��

??
??

??
?

⟨n+ 1⟩

Ψ−
����

��
��

�

⟨n⟩

(2.61)

The Casimir operator

C =

⎛
⎜⎜⎝

0 0 0 0
0 0 −2 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (2.62)

is non-diagonalizable and maps the top subquotient ⟨n⟩ to the bottom ⟨n⟩ in Pn.
Sometimes, it is also convenient to represent the structure of representations like Pn,
not in terms of irreducible atypicals, but in terms of the typicals that generically
appeared as direct summands (see eq. (2.59)). For example, we have

Pn =

⟨0, n⟩

""
EE

EE
EEE

E

⟨0, n+ 1⟩

(2.63)

where ⟨0, n⟩ is itself reducible (see eq. (2.54)). We remark in passing that the four-
dimensional representation Pn is called projective cover of the atypical ⟨n⟩ (see Ap-
pendix A). Examples of application of these indecomposable representations to field
theory will be given in the next section.

2.4 Indecomposability in field theory: the example

of symplectic fermions

In order to illustrate the concepts of indecomposability and logarithmic operators on
a concrete example, we discuss in this section some aspects of the symplectic fermions

theory [51, 52]. As we shall see later on, it describes the scaling limit of the (twisted)
XX spin chain, and is related to the critical behavior of dense polymers (self-avoiding
walks). It is also believed to be closely related to abelian sand piles [35, 36], and it was
proposed as the bulk theory for a quantum Hall state described by the Haldane-Rezayi
wavefunction [88]. Much can be said about symplectic fermions, and we will focus in
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this short section on a few salient ingredients relevant for our purpose. In particular, we
will shall not address the relations between symplectic fermions, the �-ghosts system,
and the c = −2 triplet model W(1, 2); and we will also say next to nothing about the
underlying W algebra structure of the theory. We refer the interested reader to the
reviews [89, 90] (see also [66]).

2.4.1 Symplectic fermions

Let us work out in some details the continuum version of the so-called symplectic
fermions theory [51, 52]. This theory has central charge c = −2, so it corresponds to
p = 2 with our notations. This is a non-interacting theory, so the whole logarithmic
structure can be worked out in details. Let us illustrate on this simple example how
indecomposability arises. Our starting point will be the action

S[�±] =
1

4�

∫
d2zJ��∂��

�∂��� =
1

�

∫
d2z∂�+∂̄�−, (2.64)

where J�� in the inverse of the symplectic form J+− = −J−+ = −1 so the model has
a global Sp(2) symmetry. However, the associated Noether currents of the form �∂�
do not form a Kac-Moody algebra, because of the logarithmic structure of theory. In
a non-unitary theory, continuous symmetry plus conformal invariance do not imply
Kac-Moody symmetry in general. This is but one characteristic unpleasant features of
Logarithmic CFTs. Instead, the theory admits generators of dimension 3 that form a
W-algebra [91].

This symplectic fermions theory seems quite similar to the analogous theory of a
complex boson, but it has some crucial differences. A very important feature is that
the partition function vanishes because of the fermionic zero modes (constant pieces)
in the field �±. More precisely, we can decompose

�±(z, z̄) = �±0 +  ±(z, z̄), (2.65)

so that the partition function vanishes

Z =

∫
D�−D�+e−S[�±] =

∫
D −D +d�+0 d�

−
0 e

− 1
�

∫

d2z∂ +∂̄ −

= 0, (2.66)

because of the Grassmannian rules of integration over the zero modes �±0 . It is thus
reasonable to define correlation functions as

⟨O[�±]⟩ ∝
∫

D�−D�+e−S[�±]O[�±]. (2.67)

As a result, the expectation value of the identity field Ω = I vanishes ⟨Ω⟩ = 0, so that
the vacuum ∣Ω⟩ is somewhat unusual as its norm is equal to zero ⟨Ω∣Ω⟩ = 0. We choose
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the normalization so that the corresponding two-point function is

⟨�+(z, z̄)�−(w, w̄)⟩ = log ∣z − w∣2 = log(z − w) + log(z̄ − w̄). (2.68)

In the following, we will restrict our study to the chiral sector and will forget about
the antiholomorphic components. More explicitly, we rewrite eq. (2.68) as

�+(z)�−(0) ∼ ! + log z Ω, (2.69)

where ! =: �+�− : is the normal ordered product of �+ and �−. We will argue shortly
that ! is a logarithmic partner for the identity field Ω. We have

⟨!⟩ = ⟨�+0 �−0 ⟩ = 1. (2.70)

Zero-modes must also be inserted explicitly in correlation functions involving deriva-
tives of the fields �± in order to make them non-zero. The (holomorphic component of
the) energy momentum tensor is also readily obtained

T (z) =
∑

n∈ℤ

Ln
zn+2

= − : ∂�+∂�− :, (2.71)

where we have used the usual fermionic normal order. The OPE of T with itself is
consistent with a central charge c = −2

T (z)T (w) ∼ −1

(z − w)4
+

2T (w)

(z − w)2
+
∂T (w)

z − w
. (2.72)

The theory is obviously non-unitary as for example, ⟨T ∣T ⟩ = −1 ≤ 0.

2.4.2 Hilbert space and zero-dimensional logarithmic opera-
tors

Following the usual quantization scheme, one expands �±(z) = �±0 + ±(z) in terms
of fermionic modes

 ±(z) = −i ±
0 log z + i

∑

n ∕=0

 ±
n

n
z−n (2.73)

with anti-commutators

{ +
n ,  

−
m} = n�n+m,0 { ±

0 , �
∓
0 } = ±i, (2.74)

34



the other anti-commutators vanish. Using the form of the stress-energy tensor, we can
then express the Virasoro generators in terms of these modes

L0 =  +
0  

−
0 +

∞∑

m=1

( +
−m 

−
m −  −

−m 
+
m), Ln =

∑

m∈ℤ
 +
n−m 

−
m. (2.75)

Logarithmic partner of the identity

The crucial feature here is the presence of a non-diagonalizable term in L0. This
term is responsible for the appearance of logarithms in correlation functions. Let us
define the vacuum ∣Ω⟩ such that  ±

m ∣Ω⟩ = 0 for m ≥ 0 (recall that ⟨Ω∣Ω⟩ = 0). The
creation modes are  ±

−m (m > 0) and �±0 . There are thus four operators with dimension
0: ∣Ω⟩, �+0 ∣Ω⟩, �−0 ∣Ω⟩ and

∣!⟩ = �+0 �
−
0 ∣Ω⟩ . (2.76)

The states ∣Ω⟩ and ∣!⟩ are mixed into a Jordan cell for L0

L0 ∣!⟩ = ∣Ω⟩ . (2.77)

There is no interesting logarithmic coupling to compute here as ∣Ω⟩ is already a primary
and not a descendant. The coefficient that appears in front of the logarithmic term
here is merely a question of convention. The corresponding OPEs are easily computed
using Wick’s theorem

T (z)!(0) ∼ Ω

z2
+
∂!(0)

z
, (2.78a)

�±(z)!(0) ∼ −�± log z, (2.78b)

!(z)!(0) ∼ −2 log z !(0)− log2 z Ω. (2.78c)

More explicitly, the logarithmic two-point functions read (see eq. (2.17))

⟨ΩΩ⟩ = 0, (2.79a)

⟨!(z)Ω⟩ = 1, (2.79b)

⟨!(z)!(0)⟩ = −2 log z. (2.79c)

All these equations are therefore consistent with the identification of ! as the loga-
rithmic partner of the identity Ω. That said, it might be tempting to consider only
derivatives such as ∂�± to get rid of the zero-modes and thus, of the logarithmic be-
havior. However, as was argued in [45] (see also the recent review [82]), the symplectic
fermions theory at c = −2 must also contain another field �(z) 15, with conformal di-
mension ℎ = −1

8
. Using the Kac table, one can identify � as the Kac operator Φ1,2 with

15. It appears when considering antiperiodic boundary conditions for the fermions, the resulting
new groundstate being then ∣�⟩ = limz→0 �(z) ∣Ω⟩.
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dimension ℎ1,2 = −1
8
. The generic fusion of Φ1,2 contains the identity field and the pri-

mary Φ1,3, whose conformal dimension ℎ1,3 vanishes at c = −2. Using the appropriate
differential equation for the Kac operator �(z), one finds [45]

⟨�(z1)�(z2)�(z3)�(z4)⟩ = ((z1 − z3)(z2 − z4)�(1− �))1/4

×
(
A 2F1

[
1

2
,
1

2
, 1, �

]
+B 2F1

[
1

2
,
1

2
, 1, 1− �

])
, (2.80)

where we used the same notations as in Sec.2.2.3. These hypergeometric functions
contain logarithms in their Taylor expansions, and it is straightforward to check that the
conformal blocks are consistent with the OPE (see Sec.2.2.3 for a similar computation
at c = 0)

�(z)�(0) ∼ z1/4 (log z Ω+ !(0) + . . . ) . (2.81)

Considering �(z) thus forces us to include the logarithmic field !, which should be
considered as a mix of Φ1,1 and Φ1,3 at c = −2. In order to be consistent, it seems
necessary to include ! in the theory, and there is no way around these logarithmic
terms at c = −2.

PSL(1∣1) supersymmetry and indecomposability

As it turns out, the Jordan cells in the Hamiltonian L0 are related to indecomposable
representations of Lie superalgebras. To see this, let is first notice that the equations
of motion state that the currents J± = ∂�±(z, z̄) are holomorphic. They satisfy the
following OPEs

J+(z)J−(0) ∼ Ω

(z − w)2
, J±(z)J±(0) ∼ 0, (2.82)

where we recall that Ω = 1 is the identity field. Their modes satisfy the relations
{ +

n ,  
−
m} = n�n+m,0 and { ±

n ,  
±
m} = 0 which can actually be interpreted as a realiza-

tion of the affine Lie super algebra p̂sl(1∣1). We will not go into more detail concerning

the Kac-Moody p̂sl(1∣1) algebra, but rather simply remark that the modes  +
0 and  −

0

satisfy the anticommutation of the Lie superalgebra psl(1∣1)

{ +
0 ,  

−
0 } = 0. (2.83)

psl(1∣1) can be obtained from gl(1∣1) (see section 2.3) by considering two u(1) quotients:
the first one to factor out the elements with non-zero supertrace, and the other one
to factor out the ideal spanned by the central generator E. Hence, it corresponds to
gl(1∣1) with E = N = 0, and Ψ± =  ±

0 . We wish to emphasize here that the four fields
with conformal weight ℎ = 0 in the symplectic fermions theory can be organized into
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a diamond-shaped indecomposable representation of psl(1∣1) (see section 2.3)

∣!⟩
 −
0

����
��

��
�  +

0

��
<<

<<
<<

<

�−0 ∣Ω⟩

 +
0 ��

<<
<<

<<
<

�+0 ∣Ω⟩

 −
0����

��
��

�

∣Ω⟩

(2.84)

The Casimir operator C =  +
0  

−
0 in the basis {�−0 ∣Ω⟩ , ∣!⟩ , ∣Ω⟩ , �+0 ∣Ω⟩}

C =

⎛
⎜⎜⎝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ (2.85)

is non-diagonalizable and maps ∣!⟩ onto ∣Ω⟩. Note that this is precisely the non-
diagonalizable term that appears in L0 (2.75), so this non-diagonalizability of the theory
can thus be understood in terms of the properties of the superalgebra (2.83).

2.4.3 A first step towards Virasoro staggered modules

It is an interesting and straightforward exercise to construct the Jordan cells asso-
ciated with excited states in the holomorphic sector. For example, the first fermionic
excitations over the vacuum can be organized as follows 16

∣ 2⟩ =  +
−1 ∣!⟩

�−1
2 A†

2

wwooooooooooo

L0−I

��

∣�2⟩ = i�−0 ∣Ω⟩

A2 ''OOOOOOOOOOO

∣�2⟩ =  +
−1 ∣Ω⟩

(2.86)

where the arrows now represent the action of the holomorphic Virasoro generators just
as in (2.24), and A2 = L−1. As far as logarithmic operators and indecomposability
parameters are concerned, we will use the notations of section 2.1.3. Actually, this
picture is not complete but things will become more precise as we go on. This will lead
us to the concept of Virasoro staggered module. At this stage, we will only consider
the arrows as a schematic way to show the action of some Virasoro generators, as in
eq. (2.24), and not as an accurate way to give the structure of a representation like we

16. We remind that reader we restrict our study to the holomorphic sector, that is, we do not
consider the action of the antiholomorphic Virasoro generators L̄n.
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did in section 2.3. In the basis {∣�2⟩,∣ 2⟩}, the Hamiltonian reads

L0 =

(
1 1
0 1

)
, (2.87)

this explains the vertical arrow in (2.86). A short calculation shows that

A2 ∣�2⟩ = L−1i�
+
0 ∣Ω⟩ =  +

−1 ∣Ω⟩ = ∣�2⟩ , (2.88)

this explains the normalization of the operator ∣�2⟩ = i�+0 ∣!⟩. We are now ready to
compute the associated (algebraic) indecomposability parameter that we shall denote
�2. We find

L1 ∣ 2⟩ = L1 
+
−1! = − ∣�2⟩ , (2.89)

which gives, using eq. (2.23) ,

�2 = −1. (2.90)

This is consistent with the number that was computed [46]. Note that this coefficient
can also be computed using the Virasoro bilinear form ( ±

m)
† =  ∓

−m.

Other indecomposability parameters can be computed in a similar fashion although
the calculations are slightly more complicated. For example, the next excited states
have the following structure

∣ 3⟩ =  +
−2 

+
−1 ∣!⟩

�−1
3 A†

3

vvlllllllllllll

L0−3I

��

∣�3⟩ = i
3
 +
−1�

−
0 ∣Ω⟩

A3 ((RRRRRRRRRRRRR

∣�3⟩ =  +
−2 

+
−1 ∣Ω⟩

(2.91)

where A3 = L2
−1 − 2L−2

17. The dimension 1 operator ∣�3⟩ = i
3
 +
−1�

+
0 ∣Ω⟩ has been

normalized such that A3 ∣�3⟩ = ∣�3⟩. ∣ 3⟩ is the logarithmic partner of the null field
∣�3⟩. Finally, a straightforward calculation shows that

(L2
1 − 2L2) ∣ 3⟩ = (−18) ∣�3⟩ , (2.92)

which yields

�3 = −18. (2.93)

17. Note that we do not use the normalization given by eq. (2.21) in order to be consistent with [46].
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It should seem clear that in principle, all the logarithmic couplings (indecomposability
parameters) could be computed in a similar way. However, there is no clear lesson in
this calculation that one could use to tackle more complicated, interacting theories.

Some indecomposable Virasoro representations at c = −2

Actually, the fields ∣�2⟩ and ∣ 2⟩ (or ∣�3⟩ and ∣ 3⟩) belong to more complicated,
indecomposable, Virasoro representations that are called staggered modules. We will
define more precisely how they are constructed in the next section, but for the moment,
let us try to reformulate our previous results using a more accurate mathematical
language. The L0 Jordan cells constructed in the previous paragraphs correspond to
infinite dimensional Virasoro modules Pj , with a diamond structure

Pj =

ℎj,1
↙ ↘

ℎj−1,1 ℎj+1,1

↘ ↙
ℎj,1

=

 j
↙ ↘

�j �j
↘ ↙
�j

. (2.94)

This diagram now has the same meaning as that of eq. (2.61), except that the algebra
under scrutiny in (2.94) is Virasoro and not gl(1∣1). The arrows thus represent the ac-
tion of the Virasoro generators, and the nodes correspond Virasoro simple (irreducible)
modules, which are themselves infinite dimensional. This contrasts with (2.61) where
the subquotients were one-dimensional. Simple (irreducible) Virasoro modules in (2.94)
are denoted by their conformal weights, or by the corresponding quantum fields  j , �j,
�j and �j . Only the field �j is new in our discussion, its role will be discussed further in
Sec. 2.5. To understand more this structure, we are going to need a few algebraic tools
of Virasoro representation theory that will be given in the next section. At this point,
one should really think of (2.94) as the analog of (2.61) for the Virasoro algebra.

The indecomposable modules Pj are completely characterized by the indecompos-
ability parameters �j, and each module corresponds to a Jordan cell

L0 ∣�j⟩ = ℎj,1 ∣�j⟩ , (2.95a)

L0 ∣ j⟩ = ℎj,1 ∣ j⟩+ ∣�j⟩ , (2.95b)

∣�j⟩ = Aj ∣�j⟩ (2.95c)

A†
j ∣ j⟩ = �j

∣∣�j
〉
. (2.95d)

We normalize the operators Aj such that Aj = Lj−1
−1 + . . . , unlike in our previous exam-

ples, A2 = L−1 and A3 = L2
−1−2L−2. This normalization is convenient and customary

for c = −2. With this convention, the associated indecomposability parameters have
been conjectured to be [71]

�j = − [(2j − 3)!]2

4j−2
(j − 1), j ∈ ℕ ∖ {0, 1}. (2.96)
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2.5 Indecomposable Virasoro representations

Let us conclude this first introductory chapter by addressing the main feature of
Logarithmic CFTs: indecomposable Virasoro representations. We have already seen in
the previous sections how logarithms were related to indecomposability, but it is now
time to make things more concrete and provide some examples of Virasoro representa-
tions with a non-diagonalizable action of the Virasoro zero-mode L0. Before doing so,
we first recall some well-known facts about Verma modules, and introduce some nota-
tions that shall be used extensively throughout the remainder of this manuscript. We
then introduce the special class of Virasoro staggered modules and relate them to inde-
composability parameters. We conclude this last section with a very short discussion
of fusion algorithms for Virasoro modules.

2.5.1 Virasoro algebra and Verma modules

Our starting point will be the Virasoro algebra vir

[Ln, Lm] = (n−m)Ln+m +
c

12
n(n2 − 1)�n+m,0, (2.97)

and we will take c ∈ ℝ. Strictly speaking, the central charge is rather a central
element that can be taken to be a constant in a given representation, but we will take
it to be a parameter of the algebra from the very beginning. We will denote by vir±

the subalgebras spanned by the modes Ln with n positive or negative. The Virasoro
bilinear form (also called Shapolanov form) is defined by L†

n = L−n and is extended
antilinearly to the whole algebra.

Verma modules form an especially important class of Virasoro representations. As
often in physics, they are constructed from highest-weight vectors. A highest-weight
vector ∣�ℎ⟩ is defined as an eigenstate of L0 which is annihilated by the elements of
vir+ 18. In field theory, eigenstates can be obtained by letting primary operators act
on the vacuum ∣�ℎ⟩ = limz→0 �ℎ(z) ∣0⟩. A Verma module Vℎ is then simply defined by
letting the lowering part of the Virasoro algebra vir− act freely on a highest weight
state ∣�ℎ⟩. A Verma module Vℎ therefore contains all the ‘descendants’ of ∣�ℎ⟩

Vℎ = {L−n1 . . . L−nk
∣�ℎ⟩ , n1 ≥ ⋅ ⋅ ⋅ ≥ nk, k ∈ ℕ★}. (2.98)

It is also convenient to represent the conformal spectrum (operator content) of mod-
ules thanks to characters TrqL0−c/24. Characters will be used extensively throughout
this thesis as they allow to manipulate functions instead of complicated representations.
In the case of a Verma module, we have

TrVℎ
qL0−c/24 =

q−c/24

P (q)
qℎ, (2.99)

18. Actually, it is straightforward to show that L1 ∣�ℎ⟩ = L2 ∣�ℎ⟩ = 0 is enough to imply that
vir+ ∣�ℎ⟩ = 0.

40



with

P (q) ≡ q−1/24�(q) ≡
∞∏

n=1

(1− qn). (2.100)

2.5.2 Verma modules theory

We follow here [61] and the introduction of Ref. [59].

Singular vectors and Kac determinant

It is important to realize that Verma modules are not always irreducible. It may
happen that among the descendants of ∣�ℎ⟩, there are other eigenvectors of L0, not
proportional to ∣�ℎ⟩, which are also annihilated by vir+. These are referred to as
‘singular vectors’ or null vectors. If such a singular vector ∣s⟩ = (L−n + . . . ) ∣�ℎ⟩ does
exist at grade n (that is, with conformal weight ℎ+ n), then it generates a submodule
isomorphic to Vℎ+n and Vℎ is obviously reducible. Singular vectors therefore allow
to probe the rather intricate indecomposable structure of Verma modules. From a
practical point of view, calculations are done by noticing that a singular vector ∣s⟩
(and its descendants) are orthogonal to the whole Verma module as

⟨s∣U�ℎ⟩ =
〈
sU †∣�ℎ

〉
= 0, (2.101)

for any descendant U ∣�ℎ⟩ ∈ Vℎ, where U = L−n1 . . . L−nk
is (a bit pedantically) an

element of the universal enveloping algebra of vir−. In particular, ⟨s∣s⟩ = 0. The
Virasoro bilinear form ⟨.∣.⟩ is therefore non-degenerate on a Verma module Vℎ if and
only if Vℎ is irreducible. Hence, it is of the utmost interest to analyze the zeros of ⟨.∣.⟩,
and in particular, its determinant det ⟨.∣.⟩ on a given Verma module Vℎ.

General structure of Verma modules

The zeros of this so-called Kac determinant were conjectured by Kac [92], and
proved by Feigen and Fuchs [93]. This analysis shows that something happens when
ℎ has the form given by the Kac formula (2.26), with r and s positive integers. The
resulting structure of the Verma modules can be separated in four cases: point, link,
chain and braid (see Tab. 2.2). We will restrict ourselves to c ≤ 1 in this thesis. Let
us shortly remind the reader when these cases occur:

∙ Point. If ℎ ∕= ℎr,s for every positive integers r, s, then the Verma module Vℎ is
irreducible.

∙ Link. If the central charge is generic, that is if p ∕∈ ℚ, and if there exist r, s ∈ ℕ★

(unique) such that ℎ = ℎr,s, then the Verma module Vℎ is reducible and has a
singular vector with conformal weight ℎr,−s = ℎr,s + rs. The maximal proper
submodule is therefore isomorphic to Vℎr,−s.
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Table 2.2: Subquotient structures of Verma modules for c ≤ 1. The black dots corre-
spond to Virasoro irreducible modules, and arrows represent (negative) Virasoro modes
action. Alternatively, one can think of the black dots as representing singular vectors,
each one generating a proper submodule of the original Verma modules by keeping the
dots and arrows emanating from it.

∙ Chain. Suppose that p ∈ ℕ★ in eq. (2.25). Then 19 if there exist r, s ∈ ℕ★

such that ℎ = ℎr,s and p + 1∣s or p∣r, Vℎ is reducible just like in the link case
but the maximal proper submodule is itself reducible with a chain structure.
The structure is therefore found iteratively and the singular vectors have a chain
structure as in Tab. 2.2.

∙ Braid. Let p ∈ ℕ★. If there exist r, s ∈ ℕ★ such that ℎ = ℎr,s, and p+1 ∕ ∣s and
p ∕ ∣r, then Vℎ has a braid (or ladder) subquotient structure as in Tab. 2.2.

Kac modules

When r, s ≥ 1 are positive integers, the Verma module Vℎr,s is reducible with a
singular vector at level (grade) rs with conformal weight ℎr,−s = ℎr,s + rs. We then
define a Kac module as the quotient Kr,s ≡ Vℎr,s/Vℎr,−s. The Kac modules Kr,s are
irreducible if the central charge is generic (link case for the Verma module Vℎr,s). The
character of the Kac module Kr,s reads

TrKr,sq
L0−c/24 =

q−c/24

P (q)

(
qℎr,s − qℎr,−s

)
. (2.102)

The corresponding quantum operators in field theory are what we called Kac operators
in Sec. 2.2.1. Kac modules and Kac operators are in fact very natural in CFT. A well-
known example is for example the identity operator I, associated with the Kac module

19. Strictly speaking, this case also arises for p ∈ ℚ, but we will focus on the case p integer for the
sake of simplicity.
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K1,1 ≡ Vℎ1,1=0/Vℎ1,−1=1. The quotient in that case corresponds to the invariance under
translations of the vacuum L−1I = ∂I = 0.

Simple (irreducible) modules

By quotienting proper submodules out of reducible Verma modules, one eventually
ends up with irreducible representations. These are denoted by Xℎ, or sometimes simply
by their conformal weight ℎ. It is important to realize that the simple (or irreducible)
module Xℎ appears at the top in the subquotient structure of the corresponding Verma
module Vℎ. CFT Minimal models are built out of such irreducible representations,
which do not contain any singular vector. Singular vectors are always quotiented out
in ordinary minimal CFTs, whereas they are actually crucial in the context of LCFT.
The corresponding characters for the irreducible modules Xℎr,s associated with minimal
models (1 ≤ r ≤ p− 1, 1 ≤ s ≤ p) are given by the Rocha-Caridi formula [61, 94]

TrXr,sq
L0−c/24 =

q−c/24

P (q)

[
qℎr,s +

∞∑

k=1

(−1)k

×
(
qℎr+kp,(−1)ks+(1−(−1)k)(p+1)/2 + qℎr,k(p+1)+(−1)ks+(1−(−1)k)(p+1)/2

)]
. (2.103)

This formula is obviously obtained from the braid (or ladder) structure of the corre-
sponding Verma module Vℎr,s.

2.5.3 Virasoro staggered modules and indecomposability pa-

rameters

Whereas for minimal models, irreducible representations are all one has to worry
about, LCFTs involve much more complicated, indecomposable representations. As we
have seen previously, the appearance of logarithms in correlation function is related to
the non-diagonalizability of the L0 operator. It is therefore of the utmost importance
to understand more the structure of Virasoro representations with Jordan cells in the
Hamiltonian L0.

Staggered modules

The simplest class of such representations are called staggered modules. They were
introduced in [49] and fully classified in by Ridout and Kytola [59]. These modules
are especially important as they encompass all the rank-2 L0 Jordan cells that we
have encountered so far, and they will play a crucial role in the following chapters
of this thesis as well. Note also that in this more algebraic language, the (algebraic)
indecomposability parameters (see section 2.1.3) can be thought of as characterizing
the structure of these staggered modules.

We will not give a detailed account of the theory of staggered modules here, neither
will we give precise mathematical statements regarding their existence and uniqueness.
We will only need the fact that staggered modules can be defined as a gluing of two
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highest-weight modules (quotient of Verma modules), with a non-diagonalizable action
of L0. The precise definition requires exact sequences, but we will find it more con-
venient and more enlightening to give explicit examples in the following rather than
going into general definitions 20. Staggered modules are reducible but indecomposable
by definition, with, in the case relevant to us, a diamond-shaped structure

P =

ℎ 
↙ ↘

ℎ� ℎ�
↘ ↙
ℎ� = ℎ 

. (2.104)

Conformal weights in this diagram represent Virasoro irreducible (simple) modules,
whereas the arrows correspond to the action of Virasoro generators. Hence, the whole
module can be induced by action of the Ln’s on the state ∣ ⟩ while the module generated
from the null vector ∣�⟩ belongs to an invariant submodule. We use here the same
notations as in sec. 2.1.3, so the null field � is actually a descendant of the primary
field � (Ln>0 ∣�⟩ = 0), with conformal weight ℎ� ≤ ℎ = ℎ� = ℎ . Just as in 2.1.3,
we will write ∣�⟩ = A ∣�⟩, where A is fixed (up to a global normalization) by the null
vector condition L1 ∣�⟩ = L2 ∣�⟩ = 0. The submodule generated by the action of the
Virasoro generators on � has a link structure, and, in the case that we will encounter,
it will typically be a Kac module. The quotient of P by this submodule is itself a Kac
module with a link structure, with proper submodule generated by ∣�⟩. The staggered
module (2.104) can thus be considered as a gluing of two Kac modules with a link
structure, with a non-diagonalizable action L0 ∣ ⟩ = ℎ ∣ ⟩ + ∣�⟩. Finally, note that
the staggered module P is uniquely characterized by the indecomposability parameter
� ≡ ⟨�∣ ⟩.

An example of explicit construction: Logarithmic Ising model

Let us illustrate these formal considerations by a more concrete example. We
revisit 21 here the Jordan cell for the Ising model discussed in Sec. 2.2.2. Instead of
using field theory arguments and OPEs, we analyze the existence of this Jordan cell
using only the Virasoro algebra representation theory. First recall that at c = 1

2
, the

Verma modules V1/2 and V5/2 have a braid structure (see Tab. 2.2). We then consider

20. We refer the reader to the thorough study [59] for more precise statements.
21. The following paragraph is (strongly) inspired from notes written jointly by the author and Azat

M. Gainutdinov.

44



the gluing
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where the subscripts denote the conformal dimensions. In this paragraph, we will
not use the Dirac BraKet notations for the states as no confusion between states and
fields is possible. We note that down-right arrows correspond to the action of negative
Virasoro generators while down-left arrows direction correspond to action of Ln’s with
positive n. Meanwhile, the crosses × denote the singular vectors that we will set to
zero in order to get a staggered module 22.

We thus wish to take a quotient of this module by the submodules generated from
the vectors �15/2 and '7/2, denoted by crosses × in the diagram (2.105), to obtain a
module that we will call P(1

2
, 5
2
), if it is possibe, with the subquotient structure

P(1
2
, 5
2
) =

 5/2

||yy
yy

y

##
GG

GG
GG

�1/2

##
GGGGG

�35/2

zzvvvv
vv

'5/2

(2.106)

The associated indecomposability parameter reads

� = ⟨� 1
2
∣A† 5

2
⟩, (2.107)

where A = L−2 − 3
4
L2
−1 and A� 1

2
= ' 5

2
.

Following [59], we will admit that the necessary and sufficient condition for the
existence of the module (2.106) is for the vector �15/2 to be a singular vector, i.e. the
arrow representing the action of the positive modes L≥0 in the diagram (2.105) should
actually be absent. This happens only for a particular value of the indecomposability
parameter � that is a solution of the system of linear equations produced by the
condition

L1�15/2 = L2�15/2 = 0. (2.108)

22. To be more explicit, the crosses represent eigenvectors of L0 that should be annihilated by
positive Virasoro modes L>0.
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To solve the equations (2.108), we need to obtain an appropriate ansatz for the
state �15/2 and to express the action of positive Virasoro modes on the top vector  5/2.
Using the freedom in the definition of  5/2 – we can add vectors from the bottom part
at the same dimension ℎ = 5/2 and this does not affect the value of � – we can fix the
action of L1 to be zero. Then, using the definition of �

A† 5/2 =

(
L2 −

3

4
L2
1

)
 5/2 = ��1/2, (2.109)

we get the action of L2

L1 5/2 = 0, L2 5/2 = ��1/2. (2.110)

We next choose an ansatz for the state �15/2. In the Verma module Vℎ1,5=5/2, the
state �15/2 is a null descendant �15/2 = B1,5 5/2 where B1,5 is given by the general
formula (see e.g. [61])

B1,r =
∑

{lj ∣ lj≥1,
l1+⋅⋅⋅+lk=r}

(−1)r+k
(
(r − 1)!

)2
(p/p+ 1)r−k

∏k−1
j=1(l1 + ⋅ ⋅ ⋅+ lj)(r − l1 − ⋅ ⋅ ⋅ − lj)

L−l1 . . . L−lk , r ∈ ℕ

(2.111)
which generates the singular vector at level r in the Verma module corresponding to
Kac labels (1, r) – recall also that p parametrizes the central charge, and p = 3 for the
Ising model. The sum in this formula is taken over all possible ordered partitions of
the integer r (for example, the partitions 1 + 2 and 2 + 1 are different and both give a
contribution to the sum).

It is important to notice that in the module (2.106), �15/2 can also be a descendant
of �1/2, so that we choose the ansatz

�15/2 = B1,5 5/2 +
(
a1L−7 + a2L−6L−1 + a3L−5L−2 + a4L−5L

2
−1 + a5L−4L−3

+ a6L−4L−2L−1 + a7L
2
−3L−1 + a8L−3L

2
−2 + a9L−3L−2L

2
−1 + a10L

3
−2L−1

)
�1/2, (2.112)

where we have used the constraint L3
−1 = 3L−2L−1 − 3/4L−3 following from the null-

vector condition '7/2 = B1,3�1/2 = 0.
Using all this, it is now quite straightforward to calculate the unique value of �

compatible with the existence of P(1
2
, 5
2
). In order to do so, one should solve equa-

tions (2.108) using (2.112) and (2.110). After some calculations, we find this way all
the coefficients in (2.112) a1 =

205
8
, a2 = −55, a3 = 78, a4 = −521

16
, a5 = −1035

32
, a6 =

255
8
,

a7 = 525
16
, a8 = −18, a9 = −21

4
, and a10 = 0 and we finally get � = −35/24 which co-

incides with the value obtained from the OPE ‘limit’ approach (see section 2.2.2). It
is quite remarkable that these two very different approaches, yield the same result.
The first one, based on OPEs and limit arguments, is probably more physical, but it
is reassuring to see that indecomposability parameters are actually completely fixed 23

23. Actually, this is not always the case. For example, at c = −2 the representation theory of Vira-
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by Virasoro representation theory.

Logarithmic partner of T (z) at c = 0 revisited

Let us also come back to the Jordan cell for the stress energy tensor T (z) at c = 0
discussed in section 2.2.1. Using our notations, we have T = '2, and t =  2. It
is now well understood (see also 2.2.1) that there are (at least) two possibilities for
the associated indecomposability parameter, which correspond to two fundamentally
different theories: percolation and dilute polymers (SAWs).

The Jordan cell in percolation theory involves the field t =  2 with conformal weight
ℎ1,5 = 2 at the top. We have to set �7 (at level rs = 5) to zero in its Verma module
in order to construct the corresponding staggered module. We have the following
structure
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(2.113)

Using the same method as described above, we find that � = −5
8
, in agreement with

the OPE argument of Sec. 2.2.1. This calculation was done first in [57]. The calculation
also yields the following expression for the null-state �7:

�7 = B1,5 1,5 +
(
10L−7 +

376

9
L−5L−2 −

16

3
L−4L−3 −

128

9
L−3L

2
−2

)
�0, (2.114)

where B1,5 is given by (2.111). In the polymer case, t =  2 corresponds to the conformal

soro allows for families of staggered modules parametrized by continuous values of �. The symplectic
fermions studied in the previous section are just one realization of a c = −2 theory, with a given set
of indecomposability parameters (2.96). The Abelian sandpile model is yet another example that is
believed to be characterized by different indecomposability parameters [95, 96].
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weight ℎ3,1 = 2, and the staggered module is
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where this time, we factor out �5 at level rs = 3. We find � = 5
6
, as expected, and the

null-vector is

�5 = B3,1 3,1 +
(
3L−3L−2 − 2L−5

)
�0, (2.116)

where B3,1 is again given by (2.111) but with the substitution p/p+ 1 → p+ 1/p.

Remark on bulk indecomposable modules

In the case of bulk (or non-chiral) CFTs, the relevant algebra is vir⊕vir, where vir is
isomorphic to vir, with generators L̄n. It is worth mentioning that despite the fact that[
Ln, L̄m

]
= 0, indecomposable representations of vir⊕vir are even more complicated as

holomorphic and holomorphic sectors can be glued together, see e.g. [97] for examples
of such modules. We will come back to this question in Sec. 4.2.

2.5.4 A word on fusion

A fundamental question about (L)CFTs is to determine the Operator Product Ex-
pansions of their quantum fields. Thanks to conformal symmetry, the OPEs are essen-
tially determined by the fusion rules that capture their global structure. We conclude
this last section by shortly mentioning the existence of fusion algorithms to compute
the fusion of indecomposable Virasoro modules. It is important to realize that whereas
for ordinary CFT – where representations are irreducible (or completely reducible) –
one can consider fusion as an operation on primary fields, fusion for Logarithmic CFTs
should rather be considered as a mathematical operation on representations. We will
see how to compute fusion rules from lattice models in the next chapters, but fusion
of Virasoro (indecomposable) modules can also be computed directly in the continuum
(conformal) limit using the so-called Nahm–Gaberdiel-Kausch [46, 98] algorithm, a
method based on the comultiplication of Virasoro generators [99]. This approach was
applied to many (chiral) LCFTs like percolation with success [56–58].
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Chapter 3
From the Temperley-Lieb algebra to
Virasoro: indecomposability in lattice
models

Much progress in the understanding of Logarithmic CFT has been obtained by
studying algebraic features of their lattice regularizations. For reasons which are not
entirely understood, the non semi-simple associative algebras underlying some lattice
models – such as the Temperley–Lieb algebra – indeed exhibit, in finite size, properties
that are in full correspondence with those of their continuum limits. This applies to
the structure of indecomposable modules, but also to fusion rules, and provides an
‘experimental’ way of measuring couplings, such as the ‘number b’ quantifying the
logarithmic coupling of the stress energy tensor with its partner.

In this chapter, we review the salient aspects of this approach, relying heavily
on [69] and [71, 72] (see also the recent review [73]), and describe how fusion and
indecomposability parameters can be extracted from lattice models. The outline is
as follows. In section 3.1, we introduce the Temperley-Lieb algebra and some lattice
models related to it (XXZ spin chain, dense loop models, SUSY chains). We then
describe the symmetries of these models and show how to use representation theory to
obtain the decomposition of the space of states (“Hilbert” space) in section 3.2. The
consequences of this decomposition in the scaling limit are discussed in Sec. 3.3, and
we argue that the structure of indecomposable representations can be obtained directly
from the lattice. Finally, we explain how to measure indecomposability parameters and
how to compute fusion rules in sections 3.4 and 3.5.

3.1 Temperley-Lieb algebra, XXZ spin chain, loop

models and supersymmetry

In this first section, we introduce the Temperley-Lieb algebra and some of its phys-
ical representations, corresponding to lattice models with open boundary conditions.
The spin-1/2 XXZ spin chain, the Potts model and supersymmetric vertex models are
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discussed within this algebraic context. We also mention the analogous ‘dilute’ models
(spin-1 XXZ spin chain, O(n) model etc.). In the next sections, we will argue that all
these lattice models provide regularizations of interesting boundary (chiral) LCFTs.

3.1.1 Temperley-Lieb algebra, transfer matrix and Hamilto-
nian

All the lattice models that we shall study throughout this section can be constructed
as representations of the so-called Temperley-Lieb (TL) algebra TLq,L defined on L =
2N strands. Unless otherwise stated, we will consider N ∈ ℕ so that L is even. The
algebra TLq,L consists of all the words written with the L− 1 generators ei, subject to
the relations

[ei, ej ] = 0, ∣i− j∣ ≥ 2, (3.1)

e2i = nei, (3.2)

eiei±1ei = ei, (3.3)

with

n = q+ q−1 = 2 cos , (3.4)

and q = ei . For reviews on the TL algebra, see [100, 101].
The TL algebra can be thought of as an algebra of diagrams [100]. Using the

notation

ei = . . .
i i+1

. . . ,

the equations (3.1)-(3.3) can now be interpreted geometrically, the composition law
corresponding to stacking the diagrams of the ei’s where it is assumed that every
closed loop carries a weight n, henceforth called the fugacity of a loop (see Fig. 3.1).
This constructs what we shall refer to as the loop or adjoint representation.

We consider two-dimensional models 1 defined by the transfer matrix

T =
N−1∏

i=1

(pB + (1− pB) e2i)
N∏

i=1

((1− pA) + pA e2i−1), (3.5)

which acts on a given TL representation. This definition is valid for L = 2N even
but it can be readily adapted to an odd number of sites. We will mainly work with
three different representations: geometrical (loop), XXZ, and supersymmetric. Using
the geometrical representation of TL2N (q), we obtain a dense loop model, where each

1. See [102] for an example of study of 3D loop model, which should show logarithmic features as
well. For simplicity, we will focus mostly on two-dimensional models in the remainder of this thesis,
with the notable exception of chapter 5.
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= n

=

Figure 3.1: Interpretation of the Temperley-Lieb algebra defining relations in terms of
diagrams.

closed loop carries a weight n (fugacity). We will discuss below how this loop model
can be obtained more physically from the high-temperature expansion of the Q-state
Potts model. Other representations will be introduced in the following sections. We
emphasize that dense loops cannot cross in this model. For a discussion of loop models
with crossings, see [103, 104].

In the strong anisotropy limit pA → 0 with pA/(1 − pB) fixed, we can extract the
Hamiltonian of the equivalent one-dimensional quantum system. It reads, up to an
irrelevant constant,

H = −"
N−1∑

i=1

e2i − "−1
N∑

i=1

e2i−1, (3.6)

where " =
√
pA/(1− pB). The system is isotropic when pA = pB, while a second order

phase transition occurs when pA = 1 − pB. Hereafter, we will always consider the
critical case " = 1.

3.1.2 XXZ spin chain

A very natural representation of the Temperley-Lieb algebra is provided by the
6-vertex model. We write n = ei + e−i and q = ei. The Hamiltonian limit of the
6-vertex model is the so-called XXZ chain, with Hilbert space ℋXXZ = (ℂ2)⊗L. We
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will focus on this limit hereafter. The Temperley-Lieb generators in this representation
read

ei = I⊗ I⊗ ⋅ ⋅ ⋅ ⊗

⎛
⎜⎜⎝

0 0 0 0
0 q−1 −1 0
0 −1 q 0
0 0 0 0

⎞
⎟⎟⎠⊗ ⋅ ⋅ ⋅ ⊗ I, (3.7)

where we have used the basis {∣↑↑⟩ , ∣↑↓⟩ , ∣↓↑⟩ , ∣↓↓⟩} of (ℂ2)⊗2, the tensor product of
the Hilbert spaces of the sites i and i+ 1. In terms of Pauli matrices, we have

ei =
q+ q−1

4
− 1

2

(
�xi �

x
i+1 + �yi �

y
i+1 +

q+ q−1

2
�zi �

z
i+1

)
− q− q−1

4

(
�zi − �zi+1

)
, (3.8)

so, up to an irrelevant constant term, the corresponding Hamiltonian H = −∑i ei
with open boundary conditions reads

H =
1

2

L−1∑

i=1

(
�xi �

x
i+1 + �yi �

y
i+1 +

q+ q−1

2
�zi �

z
i+1

)
+

q− q−1

4
(�z1 − �zL) . (3.9)

This is the so-called XXZ Hamiltonian, along with some additional boundary terms
that makes it symmetric under the quantum group Uqsℓ(2) [67]. This symmetry will
be analyzed in more detail in the following. Note also that for q = 1, it reduces to the
celebrated antiferromagnetic Heinsenberg spin-1/2 chain.

3.1.3 Potts and dense loop models

In most of this chapter, the emphasis will be on spin chains with local (nearest-
neighbor) Heinsenberg-like interactions, such as the XXZ spin chain introduced in the
previous paragraph. This is because in the scaling limit, we expect these lattice spin
chains to be described by well-defined, hopefully self-consistent, (Logarithmic) CFTs.
Loop models on the other hand, are non-local by definition and typically fail to give
self-consistent CFTs in the scaling limit (see the discussion in [74]). Geometrical ob-
servables will appear as subsectors in the spin chain models that we will mostly consider:
for example, the critical exponents of geometrical percolation appears as a subset in
the spectrum of the supersymmetric sl(2∣1) spin chain that shall be introduced in the
next section. That said, loop models are interesting by themselves and have critical
properties that are very well described by CFTs. Some of these geometrical properties
actually show some logarithmic features, this will be studied further in chapter 5. In
this paragraph, we mention the well-known relation between the Potts model and dense
loops, thus giving a more physical meaning to the geometrical representation of the
TL algebra.

The Q-state Potts model on a graph G = (V,E) is defined through Q-component
spins �i = 1, 2, . . . , Q that live on the vertices i ∈ V and interact along the edges
(ij) ∈ E via an interaction energy −K��i,�j proportional to the Kronecker symbol
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(�x,y = 1 if x = y, and 0 otherwise). Its partition function thus reads

Z =
∑

�

eK
∑

(ij)∈E ��i,�j , (3.10)

where the sum is over all spins � = {�i∣i ∈ V }. For simplicity, we will consider that G
is a square lattice in d = 2 dimensions.

Since �x,y can only take two values, the identity eK��i,�j = 1 + v��i,�j holds with
v = eK − 1. This yields

Z =
∑

�

∏

(ij)∈E

(
1 + v��i,�j

)
. (3.11)

Expanding out the product
∏

(ij)∈E one gets a sum over subsets A ⊆ E of edges for

which the term v��i,�j is taken. Each connected component (including isolated vertices)
in the spanning subgraph (V,A) is called a Fortuin-Kasteleyn (FK) cluster. The factors
of ��i,�j entail that the spin is constant on each FK cluster, so performing the sum

∑
�

results in [105]

Z =
∑

A⊆E
Qk(A)v∣A∣ , (3.12)

where k(A) is the number of connected components in the spanning subgraph (V,A)
with ∣A∣ edges.

Spin, FK clusters and percolation

The FK representation (3.12) of the partition function is valid for any graph, thus in
particular for lattices in any dimension d (see Fig. 3.2 in d = 2). It has the advantage
over (3.10) that Q appears as a formal parameter, making it possible to approach
physical (i.e., integer) values via a limiting procedure. On the square lattice and for
0 ≤ Q ≤ 4, the Potts model is known to have a non-trivial second order phase transition
at the critical temperature vc =

√
Q.

We stress that while all spins on a given FK cluster are identical, spins on different
FK clusters have been independently summed over to obtain (3.12). In particular, two
distinct FK clusters may or may not carry the same spin value, even when they are
adjacent in G. It is possible to define ‘spin clusters’ as connected regions in G with
constant spin, even when Q is not integer [106–108], thus leading to much more critical
exponents and fractal dimensions. However, in this thesis we shall exclusively consider
the better-known FK clusters.

The Potts model has several interesting limits. Among those, we have of course the
Ising model (Q = 2), but also the percolation problem (Q = 1), or dense polymers or
spanning tress (Q = 0). Let us see how percolation can be recovered from the Q → 1
limit of the Potts model, the case Q = 0 will be discussed further in chapter 5. Let
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Figure 3.2: Example of spin configuration of the Q = 3 Potts model on the square
lattice. We also show FK clusters (which can be interpreted as percolation clusters
living within spin clusters) and the loops formed by their contours.

p ∈ [0, 1] and v = p/(1− p). We then consider the rescaled partition function

Z̃ ≡ (1− p)∣E∣Z =
∑

A⊆E
Qk(A)p∣A∣(1− p)∣E∣−∣A∣. (3.13)

For Q = 1, we have Z̃ = 1, and p can be considered as the probability that each edge
in E is present in A (percolation clusters). On the square lattice, the critical point
corresponds to p = 1

2
. Let us point out that although the partition function is trivial,

the correlation functions certainly are not.

Dense loop models and TL algebra

We also remark that when d = 2 many other representations of Z are possible.
Among those, the loop representation consists in trading the FK clusters for their
surrounding (inner and outer) contours on the medial graph ℳ(G). Using topological
identities this results in [109]

Z = Q∣V ∣/2
∑

A⊆E
Qℓ(A)/2

(
v√
Q

)∣A∣
, (3.14)

where ℓ(A) is the number of closed loops formed by the cluster contours. This draws
dense loop configurations on the square lattice, so that the transfer matrix can be
expressed in terms of Temperley-Lieb generators in the geometrical representation. For
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an annulus of width N spins with free boundary conditions in the horizontal direction,
the transfer matrix can indeed be expressed using elements of the TL algebra defined
on L = 2N strands with weight n =

√
Q. Using (3.14), we find

T = QN/2
N−1∏

i=1

(1 + xe2i)
N∏

i=1

(x+ e2i−1) , (3.15)

where x = v/
√
Q. We therefore recover that the Potts model is critical for xc = 1

(vc = eKv − 1 =
√
Q). Let us drop out the term QN/2 and set x = 1. It is then

convenient to represent the action of T in terms of plaquettes

T =

where in this example N = 4 (L = 8). The right and leftmost half plaquettes corre-
spond to free (reflecting) boundary conditions. The bulk plaquettes carry the action
of the Temperley-Lieb generators

1 + ei = = +

The action of this transfer matrix builds up loop configurations, and the Boltzmann
weight of a configuration is computed by attributing a weight n to closed loops.

3.1.4 Supersymmetric models and sigma models

Another natural way to construct representations of TLq,L is given by supersym-
metric (SUSY) spin chains or vertex models [31, 110]. We consider a vertex model
with a transfer matrix propagating vertically. Each edge of this two-dimensional lat-
tice carries a ℤ2 graded vector space of dimension n +m∣m, that is, a bosonic (resp.
fermionic) space of dimension n +m (resp. m). We choose these vector spaces to be
the fundamental □ of the Lie superalgebra gl(n + m∣m) for i odd (corresponding to
down arrows of Fig. 3.3) and the dual □̄ for i even (up arrows). We refer the reader
to Appendix A for a discussion of the superalgebras relevant to our purpose (see also
section 2.3). The transfer matrix (or the Hamiltonian) then acts on the graded tensor
product ℋ = (□ ⊗ □̄)⊗N . The TL generators are defined (up to a multiplicative con-
stant) as projectors onto the singlet in the tensor products □ ⊗ □̄ and □̄ ⊗ □. The
transfer matrix and the Hamiltonian are then defined in the usual way. The partition
function can be expanded graphically, and one recovers a dense loop model with a
weight STr I = n +m−m = n for each closed loop as expected. An example of such
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□̄⊗□

=

pB

+

1− pB

□⊗ □̄

=

1− pA

+

pA

Figure 3.3: Graphical representation of the Temperley-Lieb-based supersymmetric ver-
tex model. The lattice consists of alternating arrows going up for i even and down for
i odd, where i = 1, . . . , L = 2N corresponds to the horizontal (space) coordinate. The
system has free boundary conditions in the horizontal direction and periodic in the ver-
tical (imaginary time) direction. We choose each vertex according to its probability,
this draws a dense loop configuration on the lattice. Each closed loop carries a weight
n = q + q−1. In the supersymmetric language, the alternating □, □̄ representations
correspond to a lattice orientation, conserved along each loop. The system is isotropic
when pA = pB, while the phase transition occurs when pA = 1− pB.

dense loop configuration is shown on Fig. 3.4. Notice the alternating orientation of the
arrows corresponding to the representations □ and □̄. Let us also point out that these
models are non-unitary because of the dual representations that contain negative norm
states (see Appendix A).

Supersymmetric sigma models

These spin chains describe the strong coupling limit of a continuum quantum field
theory [110], which turns out to be a non-linear �-model on the complex projective
superspace

ℂℙn+m−1∣m =
U(m+ n∣m)

U(1)× U(m+ n− 1∣m)
, (3.16)

at topological angle � = �. The Lagrangian of this theory involves a multiplet of fields
with complex bosonic components za (a = 1, . . . , n+m) and fermionic components �a

(a = 1, . . . , m). These fields satisfy the constraint equation z†az
a + �†a�

a = 1, modulo
U(1) gauge transformations, so they provide a parametrization of ℂℙn+m−1∣m. In terms
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Figure 3.4: Example of dense loop configuration obtained as an expansion of the par-
tition function of supersymmetric vertex models, in the case of a periodic model. We
also show the equivalent percolating clusters. The lattice consists of alternating arrows
going up for i odd and down for i even, where i = 1, . . . , L = 2N corresponds to
the horizontal (space) coordinate. The alternating □, □̄ representations correspond to
a lattice orientation, conserved along each loop. The system has periodic boundary
conditions in both spacial and imaginary time directions. Each closed loop carries a
weight STr I = n = q+ q−1.

of these fields, the Euclidian Lagrangian density reads

ℒ =
1

2g2�

[
(D�za)

†D�z
a + (D��a)

†D��
a
]
+
i�

2�
"��∂�a� , (3.17)

where a� = i
2

(
z†a∂�z

a + �†a∂��
a − ∂�z

†
az
a − ∂��

†
a�
a
)
is a gauge potential and D� = ∂�+

ia� is the covariant derivative. The coefficient � controls the topological term and is
defined modulo 2�.

For m > 0, the beta function

dg�
d lnL

= mg4� + . . . (3.18)

is positive and the coupling flows to large values under the renormalization group. For
� ∕= � (mod 2�), the coupling becomes large, the U(n + m∣n) symmetry is restored,
and the theory is massive. At � = � and m ≤ 2, a second order transition occurs, and
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the system flows to a conformally invariant strong-coupling fixed point (see Fig. 3.5).
The CFT description of this fixed point will be discussed further in the following. We
also mention that in the presence of a boundary, the physics of the system depends
crucially on the precise value of � and not only on � (mod 2�), the corresponding critical
exponents for all values of � = � (mod 2�) were computed in [111]. This turns out to
have an interesting physical interpretation in terms of edge-states and higher-plateau
transitions in quantum Hall systems [112].

�

�

1
g2
�

Figure 3.5: Renormalization group flow of the ℂℙn+m−1∣m sigma model. For 0 ≤ m ≤ 2,
the system with � = � (mod 2�) flows to a conformally invariant strong-coupling fixed
point.

Two interesting examples: gl(1∣1) and sl(2∣1) superspin chains

In the following, we will focus on two simple supersymmetric models based on the
gl(1∣1) and sl(2∣1) superalgebras. As we shall see, the low energy limit of these lattice
models is described by c = −2 and c = 0 LCFTs. For these two examples, it is
helpful to be slightly more specific regarding the construction of the spin chains (see
also Appendix A for algebraic details on the definition and the representation theory
of gl(1∣1) and sl(2∣1)).

The definition is especially simple in the case of gl(1∣1). The fundamental and dual
representations are easily constructed from the ‘fermions’ {fi, f †

j } = (−1)i�ij , with
i = 1, . . . L (see Appendix A). Notice the unusual minus sign for dual representations
(i odd). The Temperley-Lieb generators then read

ei = (fi + fi+1)(f
†
i + f †

i+1). (3.19)

It is straightforward to check that this provides a representation of TLq,L with q = i
(n = 0).

Another very important example is the sl(2∣1) spin chain [31, 110]. It can be con-
sidered as the supersymmetric formulation of the percolation problem, and appears
naturally as an effective model describing the plateaus transition in the Spin Quantum
Hall Effect [31]. The definition of the spin chain is quite simple. On each site, we
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introduce two bosonic operators [bi,�, b
†
j,�′] = �ij���′ , where � ∈ {↑, ↓}, and one fermion

{fi, f †
j } = (−1)i+1�ij . We further impose that there cannot be more than one particle

by site, so the whole ‘Hilbert’ space has dimension 3L = 9N . This provides a represen-
tation ℋ = (□ ⊗ □̄)⊗N of sl(2∣1), so the sites with i even correspond to fundamental
representations □, whereas i odd sites carry a dual representation □̄. We refer the
reader to Appendix A for more detail concerning the Lie superalgebra sl(2∣1). The
Temperley-Lieb generator is given by the projector on the singlet in the tensor product
□⊗ □̄, which reads

ei = (b†i+1,↓b
†
i,↑+ b†i+1,↑b

†
i,↓+(−1)i+1f †

i+1f
†
i )(bi,↑bi+1,↓+ bi,↓bi+1,↑+(−1)i+1fifi+1). (3.20)

It provides a representation of TLq,L with q = ei�/3 (n = 1). Note that although the
whole Hilbert space is quite large, there are two good quantum numbers Sz and B
conserved by the Hamiltonian that we can use to label the states

Sz =
1

2

L∑

i=1

(b†i,↑bi,↑ − b†i,↓bi,↓), (3.21a)

B =

L∑

i=1

(
(−1)i+1

b†i,↑bi,↑ + b†i,↓bi,↓

2
+ f †

i fi

)
. (3.21b)

The dimension g(N, Sz, B) of the various sectors of the Hilbert space is then given by
the generating function

∑

N,Sz ,B

g(N, Sz, B)xNy2Bz2Sz =
1

1− x(y + z + z−1)(y−1 + z + z−1)
. (3.22)

As discussed previously, this model corresponds to the fixed point of a nonlinear sigma
model on ℂℙ1∣1.

3.1.5 A remark on dilute models and other representations

To conclude this section, let us also mention the models built out of the ‘dilute’
version of the TL algebra. This denomination obviously refers to the dense or dilute
nature of the underlying loop gas. Instead of the Potts model, dilute models can be
obtained very naturally from the O(n) model. It corresponds to a dilute loop model
where closed loops carry a weight n. We shall focus here only on the dilute phase – this
model also possesses a dense phase which is in the same universality class as the dense
loop model. The case n → 0 is relevant for the physics of polymers. In terms of spin
chains, it is described by a S = 1 Uqsℓ(2)-invariant chain where the states Sz = ±1 are
viewed as occupied by parts of loops and Sz = 0 as empty. This model also corresponds
to osp(n+2m∣2m) (super)spin chains and to non-linear sigma models with supersphere
target space S2m+n−1∣2m ≃ OSp(2m + n∣2m)/OSp(2m + n − 1∣2m) [110]. There is a
dilute version of the Temperley-Lieb algebra behind all these models. We will not go
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into the details of these different formulations here, as for simplicity we will focus on
the dense models only. For a more thorough discussion of LCFTs associated with dilute
models, we refer the reader to, e.g. [69].

Going back to the TL algebra, it goes without saying that there exist other repre-
sentations that the ones discussed above. We just mention here RSOS models [113],
that correspond in the scaling limit to minimal models [114] – note also that there
has been a recent renewal of interest in RSOS models because of their connection to
anyonic chains [115–117].

3.2 TL representation theory and Hilbert space de-

composition

In this section, we analyze the symmetries of the lattice models introduced in the
previous section, and decompose the space of states with respect to these symmetries.
The point is that one can already see on the lattice the indecomposability pattern of
the Virasoro algebra. This observation probably goes back to the work of Pasquier
and Saleur [67], but it was fully understood and used efficiently to tackle LCFTs by
Read and Saleur many years later [68, 69]. We will mostly focus on the Uqsℓ(2)-
invariant XXZ spin chain for pedagogical reasons, but most of our results can also be
understood in terms of supersymmetric spin chains. It is worth mentioning that the
supersymmetric formulation turns out to be particularly convenient when dealing with
periodic systems, as the Uqsℓ(2) symmetry of the XXZ spin chain is lost in that case
(see e.g. [69, 118–120]).

3.2.1 Reduced states and standard modules

We now come back to the geometrical representation of the TL algebra. Recall
that all the elements of the TL algebra can be represented as diagrams, for instance,
on L = 4 sites,

e2e1 =

We also stress that composition can be computed by stacking diagrams,

e2e1e2e1 = = = e2e1.

An important point is that any state can be turned into a pair of reduced states by
cutting all its strings and pulling apart the upper and lower parts. Conversely, a state
can be obtained by adjoining two reduced states, gluing together their strings in a
unique fashion. It turns out that these reduced states provide a natural basis of the
(generically) irreducible representations of the TL algebra.

60



When q is generic, i.e. not a root of unity, the representation theory of TLq,L is
said to be semi-simple [100, 121, 122]. This means that all reducible representations
are fully reducible, so that the only indecomposable representations in that case are
irreducible as well. All simple modules or irreducible representations of TLq,L can
then be described geometrically; they are called standard modules. For j (half-)integer
such that 0 ≤ j ≤ L/2 and on L sites, we define a standard module Sj[L] with 2j
through-lines (also called “strings”) as the span of link diagrams – all possible nested
configurations of (L

2
− j) arcs, like . Through-lines are denoted by a vertical

line and are not allowed to intersect any arc. The action of the generators on these
modules is again interpreted as stacking the various diagrams with the additional rule
that contracting any pair of strings results in zero. The dimension of these standard
modules reads

dj ≡ dim(Sj [N ]) =

(
L

L/2 + j

)
−
(

L

L/2 + j + 1

)
, and we set dj = 0 for 2j > L.

(3.23)
We stress that dj does not depend on q. Note also that j must be half integer when L
is odd. For L = 4 for instance, there are four standard modules with basis

S0[4] = { , }, (3.24)

S1[4] = { , , }, (3.25)

S2[4] = { }. (3.26)

For example, in this basis, the action of the TL generators on S1[4] is e2 = n ,
e2 = , and e3 = 0. To give a complete example, in the basis S0[4] =
{ , }, the full action of the TL generators is given by

e1 =

(
0 0
1 n

)
, e2 =

(
n 1
0 0

)
, e3 =

(
0 0
1 n

)
. (3.27)

Because of the relation between the reduced states and the elements of the algebra, it
is easy to compute the dimension of TLq,L (recall that L = 2N)

dim(TLq,L) =

N∑

j=0

d
2
j =

1

L+ 1

(
2L

L

)
, (3.28)

which are the celebrated Catalan numbers.

3.2.2 Generic case: decomposition of the partition function

Let us consider a dense loop model on an annulus on width N spins and length M
(with, typically M ≫ N), with free boundary conditions in the spatial direction, and
periodic boundary conditions in the vertical (imaginary time) direction. The partition
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function of the loop gas is then given by

Z(N,M) = Tr TM , (3.29)

where the trace operation in this expression is the so-called Markov trace. The Markov
trace amounts to gluing the strands on the top and on the bottom of a state so as
to get the geometry of an annulus, giving an appropriate weight n′ = t + t−1 to loop
winding around the imaginary time direction.

When the fugacity of a loop n = q + q−1 is generic, that is, when q is not a root
of unity, one can then argue 2 that the partition function decomposes onto different
sectors with a fixed number of through lines 2j

Z(N,M) = Tr TM =

N∑

j=0

[1 + 2j]tK1,1+2j , (3.30)

where K1+2j is an ordinary trace evaluated within the standard module Sj [L] with 2j
strings (reduced states)

K1,1+2j = trSj [L]T
M , (3.31)

and the multiplicities Dj = [1 + 2j]t are expressed in terms of the t-deformed numbers

[x]t ≡
tx − t−x

t− t−1
. (3.32)

By continuity of the partition function of loop models with respect to the loop weight,
this formula should hold also for q roots of unity. If one wants the same weight n′ = n
to non-contractible loops winding around the annulus, the multiplicities read in that
case [1 + 2j]q as t = q. The XXZ spin chain on the other hand, after a mapping onto
the 6-vertex model, can be described by a loop gas with n′ = 2, so that Dj = 2j + 1
and

ZXXZ(N,M) =
N∑

j=0

(2j + 1)K1,1+2j . (3.33)

In the quantum spin chain language, M = � is the inverse temperature. Finally, in
the case of supersymmetric spin chains based on the gl(n + m∣m) superalgebra, the
multiplicities are given by [1 + 2j]t

3, with t + t−1 = 2m+ n [110].

2. The proof of that statement involves the computation of the trace of the so-called Jones-Wenzl
projector P2j that projects onto the sector with 2j through lines, satisfying P 2

2j = P2j , and eiP2j =
P2jei = 0 if i < 2j (see [100]).

3. These multiplicities correspond to the so-calledmodified partition function [110] – the generating
function of the spectrum, defined as a trace instead of a supertrace.
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3.2.3 Generic case: algebraic analysis of the spectrum, com-

mutant and bimodules

Of course, these multiplicities can (and should) be interpreted in terms of the sym-
metries of the models under scrutiny. As it so happens, all these numbers correspond
to some dimension of irreducible representations of symmetry algebras, called commu-
tant [68].

Let us reinterpret the results of the previous section from a more algebraic perspec-
tive in the XXZ case. To understand the multiplicities in the spectrum, it is crucial to
discuss the symmetries of the lattice models. Recall that the usual Heisenberg XXX
spin chain (q = 1 in (3.9)) is defined by its Hamiltonian H acting in the vector space
ℋL

H =
∑

i

S⃗i ⋅ S⃗i+1, ℋL = □
⊗L (3.34)

where □ = ℂ2 denotes the fundamental representation of sℓ(2), and L = 2N is chosen
to be even for simplicity. It is an antiferromagnetic chain, and accordingly its nearest
neighbor coupling S⃗i ⋅ S⃗i+1, projects neighbor pairs of spins onto the singlet. The
continuum limit is well-known to be described by the O(3) sigma model at � = � [123]
which flows to the level-1 SU(2) WZW theory at low energy [124]. So of course in
that case, the continuum theory is not logarithmic but this example will be useful to
illustrate our approach.

For this Heisenberg XXX spin chain, there are two natural algebras to consider.
One is the symmetry algebra sℓ(2) generated by S± and Sz operators satisfying the
usual relations

[S+, S−] = 2Sz, [Sz, S±] = ±S±. (3.35)

The other is the algebra generated by the local hamiltonian densities S⃗i ⋅ S⃗i+1. This
algebra actually coincides with (a quotient of) the group algebra of the permutation
group, which is nothing in this case but the Temperley–Lieb algebra for the value n = 2
of the fugacity parameter n. The actions of the two algebras commute – the symmetry
generators commute not only with the Heisenberg Hamiltonian but also with all its
densities. What this really means is that we can decompose the Hilbert space ℋL

in terms of sℓ(2) representations of (integer, if we restrict to chains of even length)
spin j. The vector space of all highest-weight states of a given spin j then provides a
representation of the permutation group or of the TL algebra with q = 1. Its dimension
is obviously the multiplicity of the spin j representation of sℓ(2) in (ℂ2)⊗2N and it is
given by the numbers

dj =

(
2N

N + j

)
−
(

2N

N + j + 1

)
, and we set dj = 0 for j > N. (3.36)

This representation is irreducible by construction, and it actually corresponds to the
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Figure 3.6: Bimodule for the antiferromagnetic Heisenberg or XXX spin chain and
L = 2N even. This shows the commuting action of the quantum group Uqsℓ(2) and of
the Temperley-Lieb algebra.

standard module Sj[L]. The full Hilbert space of states can thus be considered not
just a representation (or equivalently a module) for one of the algebras, but rather a
bi-module for both algebras simultaneously. In other words, the space of states ℋL, as
a (semi-simple) bi-module over this pair of commuting algebras, can be decomposed as

ℋL
∼=

N⊕

j=0

Sj [L]⊗Wj , (3.37)

where the first algebra generated by the densities S⃗i ⋅ S⃗i+1 acts on the left tensorands
denoted by Sj[L], while the second algebra sℓ(2) acts on the right components which
are spin j representations denoted by Wj – remark that these sℓ(2)-representations do
not depend on N . This relation between (the universal enveloping algebra of) sℓ(2) and
TLq,L for q = 1 is an example of Schur–Weyl duality. Finally, the resulting bimodule
can be represented graphically as in Fig. 3.6, where each open dot represents a simple
(irreducible) module for both algebras.

The Hamiltonian (3.9) of the XXZ model now generalizes this usual Heisenberg (or
XXX) model to a spin chain with quantum-group Uqsℓ(2) symmetry. This symmetry
is generated by the S± and Sz operators that now satisfy the quantum-group relations

[S+, S−] =
q2S

z − q−2Sz

q− q−1
, [Sz, S±] = ±S±, (3.38)

which are just q-deformed versions of the usual relations (3.35).

When q is generic, i.e. not a root of unity, the Hilbert space of the Hamiltonian
densities (3.8) nicely decomposes onto the irreducible standard modules Sj[L] of TLq,L
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again,

ℋL∣TLq,L

∼=
N⊕

j=0

(2j + 1)Sj[L], (3.39)

where the degeneracies 2j+1 correspond to the dimension of the spin j representations
(which are also generically irreducible) over the symmetry algebra for TLq,L, (a finite-
dimensional image of) the quantum group Uqsℓ(2). We can thus consider the space ℋL

again as a semi-simple bi-module over the pair of commuting algebras TLq,L⊗Uqsℓ(2)
and it has the same decomposition as in (3.37).

3.2.4 Representation theory of the Temperley-Lieb algebra

Whereas the representation theory for q generic is quite simple, things become
more intricate when q is a root of unity, which corresponds to most of the physically

relevant cases. We shall denote q = e
i�
p+1 in this case, and we will use the following

denominations, borrowed from the Potts model terminology, for the several physically
relevant cases: dense polymers (p = 1), percolation (p = 2), Ising model (p = 3), etc.
In these cases, the algebra TLq,L is non-semisimple and the decomposition (3.39) is no
longer true. We will describe the structure of the XXZ spin-chain at these roots of
unity cases after a short detour around the representation theory of the TL algebra.

When q = e
i�

p+1 is a root of unity, the representation theory of TLq,L becomes much
more complicated. The first striking feature is that the standard modules become
reducible, but indecomposable – that is, there is no way to decompose them onto
irreducible representations. As an example, let us consider the standard module S0[4]
with basis S0[4] = { , }. When q = ei�/3 (n = 1), it is easy to see that the space
X2 = { − } is invariant under the action of TLq,4. The module S0[4] is thus
reducible but indecomposable, and we represent its structure by the following diagram

S0[4] = X0 −→ X2,

= { } −→ { − }. (3.40)

The arrow in these diagrams (“subquotient structure”) should be understood as the
action of TL on S0[4]. It means that it is possible to go from { } to X2 acting with
TL generators, but not the other way around. To be more precise, it means that X2 is
an irreducible submodule in S0[4], and the quotient S0[4]/X2

∼= X0 by this submodule
is also irreducible. This is of course the analog of the indecomposable representations
encountered in chapter 2.

This structure is quite general, and it can be shown that other standard modules
have a similar indecomposable pattern for other roots of unity. These results can be
found in [121, 122, 125, 126] (see also [72] for complete results using techniques similar
to those developed in this chapter). We will only give the main results here and refer
the reader to those references for details and proofs. It turns out that the irreducible
(also called simple) modules Xj of the Temperley-Lieb algebra when q = ei�/p+1 is a

65



root of unity can still be labeled by 0 ≤ j ≤ N . For simplicity, we restrict here to the
case L = 2N even so that the parameter j must be integer. The standard modules can
then be indecomposable, with the following subquotient structure

Sj : Xj −→ X̃j+p−2(jmod (p+1)) where X̃j′ =

⎧
⎨
⎩

Xj′ , if j′ > j,

0, if j′ = j,

Xj′+p, if j′ < j,

(3.41)

and we additionally set Sj = 0 for all j > N which is crucial when the number
of through lines 2j is close to its maximum value j = N . We note also that the
standard modules are irreducible whenever jmod (p+1) = k(p+1)−1

2
with k = 0, 1. The

subquotient structure (3.41) then allows to compute the dimension d
0
j of the irreducible

modules taking standard alternating sums

dim(Xj) ≡ d
0
j =

∑

n≥0

dj+n(p+1) −
∑

n≥t(j)+1

dj+n(p+1)−1−2(jmod (p+1)), (3.42)

where we recall that dj is given by (3.23) and we also introduce the step function
t(j) ≡ t as

t =

{
1, for jmod (p+ 1) > p

2
,

0, for jmod (p+ 1) < p
2
.

(3.43)

Unfortunately, to describe the structure of spin chains when q is a root of unity,
the knowledge of standard modules are not enough. At special indecomposable points,
standard modules may actually “collide” and get glued together. This is reminiscent
of the staggered modules for the Virasoro algebra that are gluings of two Kac modules.
These more complicated modules are called tilting modules [127], and they will be the
“fundamental blocks” of the Hilbert of XXZ spin chains. The structure of these tiltings
can be deduced from their properties, in particular from the fact that they are self-dual,
which means that they should be invariant under the adjoint ⋅† operation defined by
e†i = ei (see also [74] for a short review in the context of boundary spin chains). We
give here only the structure of these fundamental representations, and refer the reader
to [72] for details.

Using the diagram (3.41) and introducing Tj as the tilting module that can be
mapped onto Sj , we have, for an integer or half integer j, the subquotient structure

Tj = Sj −→ S̃j−1−2(jmod (p+1)), for
p+ 1

2
≤ j ≤ N, (3.44)
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where we set

S̃j′ =

⎧
⎨
⎩

Sj′, if j′ + p + 1 > j,

0, if j′ + p + 1 = j,

Sj′+p+1, if j′ + p + 1 < j.

(3.45)

and in terms of irreducible representations we get, for j ≥ (p+1)/2 and jmod (p+1) ∕=
k(p+1)−1

2
with k = 0, 1,

Tj :

Xj

xxqqqqqqqq

''PPPPPPPPP

Xj+tp−2(jmod (p+1))

&&M
MMMMMMM

Xj+(1+t)p−2(jmod (p+1))

wwnnnnnnnnn

Xj

(3.46)

where the right subquotient is absent whenever its subscript j is greater than N .

3.2.5 Hilbert space decomposition in the root of unity case

Our ultimate goal is to obtain the structure of the Hilbert space (the space of states)
for the algebra TLq,L. This will be useful as, anticipating a little bit, this algebraic
structure will carry over to the continuum limit, and the TLq,L representations will
become representations over the Virasoro algebra. It turns out that the representation
theory of the symmetry algebra Uqsℓ(2) is easier to study than that of the “hamiltonian
densities” algebra TLq,L. Actually, because of the double centralizing structure – TLq,L

and Uqsℓ(2) are mutually centralizing each other, it is possible to deduce the decompo-
sition for TLq,L from the decomposition over Uqsℓ(2), and vice versa. In particular, the
multiplicities in front of tilting TLq,L-modules give the dimensions of simple Uqsℓ(2)-
modules, and the subquotient structure of tilting TLq,L-modules can be deduced from
the one of the tilting Uqsℓ(2)-modules (and vice versa), see [128]. This was used to
obtain the TL decomposition in [69], and generalized in [72].

Following these lines, one can obtain the decomposition of the spin-chain ℋL over
TLq,L as [72]

ℋL∣TLq,L

∼=
rm−1⊕

r=1

p⊕

s=0,
r(p+1)+s+N=1mod 2

dim
(
Xp+1−s,r

)
T r(p+1)+s−1

2
⊕

sm+1⊕

s=0,
s+sm=1mod 2

dim
(
Xp+1−s,rm

)

T rm(p+1)+s−1
2

⊕
sm+1⊕

s=1,
s+sm=1mod 2

dim
(
Xs,rm+1

)
X rm(p+1)+s−1

2
⊕

p⊕

s=sm+2,
s+sm=1mod 2

dim
(
Xp+1−s,rm

)
X rm(p+1)−s−1

2
,

(3.47)

where L = rm(p+1)+ sm, for rm ∈ ℕ and −1 ≤ sm ≤ p−1. Here, we use the notation
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Figure 3.7: Bimodule for percolation (q = ei�/3) and L = 10 sites. Horizontal (resp.
vertical) arrows correspond to the action of the quantum group Uqsℓ(2) (resp. the
Temperley-Lieb algebra). Each node with a Cartesian coordinate (n, n′) corresponds
to the tensor product Xn′ ⊗ X[n]. Some nodes occur twice and those nodes have been
separated slightly for clarity.

Xs,r for irreducible representations of the quantum group Uqsℓ(2). They have dimension
rs and they are irreducible quotients of the spin-n quantum group representations,
where n = (p+1)(r−1)+s−1

2
. We will also use the notation X[n].

Just like in semisimple cases, it is convenient to represent the Hilbert space structure
as a bimodule over both Temperley-Lieb and Uqsℓ(2) [69].

As an example, we show in Fig. 3.7 the analogue of Fig. 3.6 for q = ei�/3 (n = 1,
percolation) at N = 10 sites. The decomposition over the TL algebra is

ℋ10∣TLq,10

∼= 3T1 ⊕ T2 ⊕ 4T3 ⊕ 9T4 ⊕ 3T5 ⊕ 8X5. (3.48)

In this bimodule diagram, each node with a Cartesian coordinate (n, n′) corresponds
to the tensor product Xn′ ⊗ X[n] of simple modules over the TL algebra and Uqsℓ(2),
respectively, and the arrows show the action of both algebras – the Temperley–Lieb
TLq,N acts in the vertical direction (preserving the coordinate n), while Uqsℓ(2) acts
in the horizontal direction. The diamond-shape tilting TLq,N -modules Tn′ described
in (3.46) can be recovered by ignoring all the horizontal arrows of the bimodule diagram.
These are squeezed, so that the first tilting TL module T1 is just a node (this one is
irreducible), the second tilting T2 consists of the left-most set of four vertical arrows,
etc.
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Figure 3.8: Mapping of a strip of width L onto the upper half-plane ℍ. In terms of
dense loops, the standard module Sj with 2j through-lines (2j = 3 here) corresponds
in the scaling limit to the insertion of the Kac operator Φ1,1+2j (see Sec. 3.3.2).

3.3 Scaling limit and Virasoro representations

Now that we have analyzed the spin chain from an algebraic point of view, the idea is
that the algebra of local energy hamiltonian densities should go over, in the continuum
limit, to the Virasoro algebra, and that many of its features may be stable as the length
of the chain is increased, as long as one focuses only on low energy excitations. So our
general strategy will be to consider the XXZ spin chain (3.9) as a lattice regularization
for (L)CFTs. The representation theory of the TL algebra when q is a root of unity
then mimics what happens in the scaling limit for the Virasoro algebra. One can
even obtain interesting results for the Virasoro algebra representation theory, starting
directly from lattice models. The idea of doing so probably goes back to [67], and was
pushed forward more recently by Read and Saleur, who studied the structure of XXZ
spin chains and supersymmetric models [69, 110] on the lattice.

3.3.1 Finite size scaling

The first step to understand the scaling limit of our critical lattice models is to
compute the spectrum of critical exponents (the operator content) and the central
charge. Conformal invariance fixes the finite size scaling form of the eigenvalues of the
transfer matrix of a critical lattice model on a strip of width L – or of the energies of
the Hamiltonian of a gapless quantum spin chain. Mapping the upper-half plane onto
an infinite strip using the conformal transformation

w =
iL

�
log z, (3.49)
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one finds that the two-point function of two-operators on the strip scales as ⟨�(w =
il)�(0)⟩ ∝ exp

(
−�ℎ

L
l
)
, for l ≫ L. If we now compare this expression to what is

expected from the eigenvalues of the transfer matrix, we find that there is a one-
to-one mapping between the eigenstates of the transfer matrix and the operators of
the underlying CFT. The subdominant eigenvalues ��(L) of the transfer matrix are
then related to the conformal dimension ℎ� (critical exponent) of the operators in the
underlying boundary conformal field theory [129]

��(L) ≃ �0(L) e
− �

L
ℎ�. (3.50)

We also have a similar formula for the finite size correction to the gap of critical
quantum spin chains. The Hamiltonian of a CFT on a strip reads H = �

L

(
L0 − c

24

)
,

so the energy of the groundstate – that we assume corresponds to ℎ = 0, this is not
always the case for non-unitary CFTs! – scales as [29, 130]

E0 = e∞L+ eS∞ − �vF c

24L
+ . . . (3.51)

where e∞ and eS∞ are non-universal (cutoff dependent) bulk and surface energies, and vF
is the Fermi velocity – the dispersion relation of the massless excitations is �(k) = vF ∣k∣.
Meanwhile, the subdominant eigenstates have energy 4

Ei = e∞L+ eS∞ +
�vF
L

(
ℎi −

c

24

)
+ . . . (3.52)

The central charge can thus be obtained by analyzing the finite-size corrections to
the groundstate energy, while the critical exponents can be measured from the scaled
energy gaps.

From the scaling form of the Hamiltonian, the partition function can be expressed
as

Z = lim Tr e−�H = e−�(Le∞+eS∞)Tr qL0−c/24, (3.53)

with q = e−�vF �/L. We therefore see that the partition function contains a universal
part that takes the form of a Virasoro character Tr qL0−c/24. A similar formula holds
for the partition function of a 2D statistical model on a strip.

3.3.2 Critical exponents, Kac modules and lattice Virasoro
modes

It is not clear how the continuum limit can be taken in a mathematically rigorous
way for any q, but roughly speaking, we take the eigenvectors of H in the spin-chain
that have low-energy eigenvalues only, and we expect that the inner products among
these vectors can be made to tend to some limits. Moreover, if we focus on long

4. Note also that for periodic systems, we have the scaling H = Le∞ + 2�vF
L

(
L0 + L̄0 − c

12

)
+ . . . .
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wavelength Fourier components of the set of local generators ej , we expect their limits
to exist, and their commutation relations to tend to those of the Virasoro generators
Ln (this was shown explicitly for free fermion systems: for the Ising chain in [131, 132],
and for the XX model in [118]). Then, the modules over the TL algebra restricted to
the low-energy states become, now in the scaling limit 5, modules over the Virasoro
algebra at appropriate central charge.

As an example, let us discuss how the TL standard modules become Kac modules
(see Sec. 2.5) over the Virasoro algebra when the scaling limit is taken [67]. As dis-
cussed in the previous section, all our models (XXZ, SUSY) can be decomposed onto
TL standard modules, only the multiplicities are different (and the logarithmic fea-
tures!). As far as critical exponents are concerned, it is therefore enough to understand

the spectrum of standard modules only. For q = e
i�
p+1 (p ∈ ℝ here), the low-energy

excitations are described by a CFT with central charge c = 1 − 6
p(p+1)

. Using Bethe
ansatz and keeping only low-lying excitations, it can be then shown that the spectrum
generating function of the module Sj[L] has the following limit [67]

K1,1+2j ≡ lim
L→∞

∑

states i

q
L

�vF
(Ei(L)−Le∞−eS∞) = q−c/24

qℎ1,1+2j − qℎ1,−1−2j

∏∞
n=1 (1− qn)

, (3.54)

where vF = � sin 


is the Fermi velocity, 2 cos  = q+ q−1 = n is the fugacity of a loop,

Ei(L) is the eigenvalue of the i
tℎ (counted from the vacuum) eigenstate of H = −∑i ei,

eS∞ is the non-universal surface energy, and e∞ = limL→∞E0(L)/L is the non-universal
bulk energy, with E0(L) the groundstate energy. The latter can be computed by Bethe
ansatz [133], and reads 6

e∞ = sin2 

∫ +∞

−∞

dx

cosh �x

1

cosh 2x− 2 cos 
. (3.55)

As the notations suggest, K1,1+2j corresponds to the scaling limit of (3.31) with q =
e−�vFM/L and M ≫ L.

The expression on the right-hand side of (3.54) coincides with the Virasoro character
Tr qL0−c/24 of the Kac module K1,1+2j ≡ Vℎ1,1+2j

/Vℎ1,−1−2j
with conformal weight ℎ1,1+2j .

In other words, the scaling limit of the standard module Sj is described by the Kac
operator (see 2.2.1) Φ1,1+2j , which is degenerate at level ℎ1,−1−2j = ℎ1,1+2j +1+2j (see
also Fig. 3.8). These fields are called watermelon 2j-leg operators, as they effectively
create j FK clusters (2j polymers/strings) in the Potts geometrical language 7. We
will study these operators in more detail in chapter 5. We also remark that these
exponents can be computed within the Coulomb Gas setup, as our loop model can be
mapped onto a height model which in turn renormalizes towards a free boson theory

5. The two notions – continuum and scaling limits – are essentially the same.
6. We mention this formula as it will be especially important for eq. (3.56).
7. Obviously, if we think in terms of the Potts model, j must be integer as loops correspond to

the boundary of FK clusters. However, one can still consider operators creating an odd number
of polymers (j half-integer) in the dense loop model even if they do not correspond to something
meaningful in the Potts model.
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with background charge (see e.g. [134, 135]). In this framework, watermelon operators
correspond to magnetic excitations.

We already see at the level of generating functions and characters that we have a
deep correspondence between the TL and Virasoro algebras in the scaling limit, where
the (properly rescaled) Hamiltonian H becomes the L0 generator. As mentioned above,
it is even possible to construct other Fourier modes by taking appropriate combinations
of TL generators on the lattice that will tend (in a sense that can be made rigorous in
some cases) to other Virasoro generators Ln in the limit [118, 132]. Thanks to different
techniques (numerical or analytical whenever possible) it can be shown that the lattice
operators

L(L)
n =

L

�

[
− 1

vF

L−1∑

k=1

(ek − e∞) cos

(
nk�

L

)
+

1

v2F

L−2∑

k=1

[ek, ek+1] sin

(
nk�

L

)]
+

c

24
�n,0,

(3.56)
become the Virasoro modes Ln in the continuum limit L→ ∞.

We note in passing that the knowledge ofK1,1+2j is enough to compute the partition
function of all our models. For instance for the XXZ spin chain, using (3.33), we obtain

ZXXZ = lim Tr e−�(HXXZ−Le∞−eS∞) = q−c/24
∞∑

j=0

(2j + 1)
qℎ1,1+2j − qℎ1,−1−2j

∏∞
n=1 (1− qn)

, (3.57)

with q = e−�vF �/L, whereas for say, a dense loop gas on an annulus of width L and
lenth M , the universal part of the partition function reads

ZCFT
loop = q−c/24

∞∑

j=0

[2j + 1]q
qℎ1,1+2j − qℎ1,−1−2j

∏∞
n=1 (1− qn)

, (3.58)

where this time q = e−M�/L. As a highly non-trivial check, one can observe that
ZCFT

loop = 1 for percolation (q = ei�/3), as expected. This algebraic way to compute
partition function is extremely powerful, as once the spectrum of standard modules in
under control, the only things that make our various models different from the point
of view of the partition function are the multiplicities.

3.3.3 Hilbert space structure and bimodules in the limit

Having now the algebraic structure of the spin-chain for finite L at hands, we can
analyze its behavior in the limit L → ∞. It is clear that the symmetry algebra of the
Hamiltonian densities also provides a symmetry of the low-lying part of spectrum of
the Hamiltonian.The symmetry algebra in the scaling limit, which commutes now with
the Virasoro algebra, must thus be at least as large as that of finite-L chains. The only
difference in the limit is that we now admit arbitrarily high values of the Uqsℓ(2) spins.
For example, the decomposition of the open XXZ spin-chain as a bimodule over the
pair (TLq,L, Uqsℓ(2)) of commuting algebras, like in Fig. 3.7, goes over in the scaling
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Figure 3.9: Bimodule for boundary percolation (p = 3 or c = 0) showing the commuting
action of the Virasoro algebra and the quantum group Uqsℓ(2) (see [69]).

limit to a semi-infinite (‘staircase’) bimodule over the Virasoro algebra with central
charge c = 1 − 6

p(p+1)
. This is illustrated in Fig. 3.9 for the example of percolation,

where the same comments as in the finite chain apply exactly, with the replacement of
TLq,L by the Virasoro algebra. Using the correspondence between the irreducible TL
modules Xj and irreducible Virasoro modules with weight ℎ1,2j+1, which holds at least
at the level of characters, we obtain complicated indecomposable Virasoro modules
that turn out to coincide with Virasoro staggered modules. Note also that in some
cases, it is possible to observe the quantum group symmetry directly in the continuum
limit [136, 137].

While the scenario described above has not been analytically established for general
models, it is confirmed a posteriori by the validity of the results (structure of Virasoro
modules and their fusion) obtained using the bimodule structure [69, 72]. Of course,
in some special cases, such as free theories, much more can be said. For instance,
the symplectic fermions CFT arising in the scaling limit of the XXZ spin-chains at
the free fermion point (n = 0 or q = i) can be analyzed independently of the lattice
results. Recall that the symplectic fermions theory action involves two fermionic fields
of dimension 0, and has Noether’s currents generating a global SU(2) symmetry [52].
Together with the fermionic zero modes, we obtain the full symmetry algebra of oper-
ators commuting with the Virasoro algebra. It turns out that this symmetry algebra is
realized by a representation of the quantum group Uqsℓ(2) at q = i, see [118]. The full
Hilbert space in such chiral LCFT can then be decomposed onto indecomposable Vira-
soro modules and its symmetry algebra, with precisely the same result as in the q = i
analog of Fig. 3.9 (see [69]). As mentioned earlier, it is even possible to show [118, 138]

that the lattice regularizations L
(L)
n of the Virasoro modes indeed converge to the well-

known [52] symplectic fermions representation of the Ln generators.
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3.3.4 Virasoro staggered modules from the lattice

As discussed in Sec. 3.3.2, the continuum limit of the XXZ spin chain at q =

e
i�
p+1 is described by a CFT with central charge c = 1 − 6

p(p+1)
. In particular, the

generating functions of energy levels on the standard modules Sj of the TL algebra

at q = e
i�

p+1 give in the limit the characters of the Kac modules K1,2j+1 over the
Virasoro algebra. This correspondence does not end at the level of Kac modules, as
the indecomposable structure (3.41) of the TL standard modules mimics exactly that of
the corresponding Kac modules K1,2j+1 in the limit. In particular, the operator content
of the TL irreducible modules is given by a formula similar to (3.42) that coincides
with the Rocha–Caridi formula for the irreducible characters (see Sec. 2.5.2, see also
the very useful appendix in [139] for Virasoro characters).

Furthermore, using our semi-infinite bimodules (see Fig. 3.9 in the example of per-
colation), we can extract Virasoro modules keeping only the vertical arrows. We then
obtain the following diamond-shape diagram for indecomposable Virasoro modules, for
jmod p ∕= k(p+1)−1

2
with k = 0, 1,

P1,2j+1 :

ℎ1,2j+1

}}||
||

||
|

$$
IIIIIIII

ℎ1,2j′−1

!!
BB

BB
BB

B
ℎ1,2(j′+p+1)−1

zzuuuuuuuu

ℎ1,2j+1

for j ≥ p+1
2
,

(3.59)

where j′ = (j+t(j)(p+1))−2(jmod (p+1)) and the function t(j) was defined in (3.43).
Irreducible Virasoro subquotients are denoted by their conformal weights ℎ1,j, as usual
in this thesis. This diagram (3.59) is a ‘gluing’ of two indecomposable Kac modules:
the one in the top composed of irreducibles with ℎ1,2j+1 and ℎ1,2(j′+p)−1 is the quotient
K1,2j+1 = Vℎ1,2j+1

/Vℎ1,−2j−1
, while the second Kac module in the bottom corresponds to

K1,2j′−1. To summarize, we have

Sj −→
L→∞

K1,2j+1 = Vℎ1,2j+1
/Vℎ1,−2j−1

, (3.60)

Tj −→
L→∞

P1,2j+1. (3.61)

We therefore see that the staggered Virasoro modules for different central charges
abstractly discussed in Sec. 2.5 can quickly be recovered from the lattice – at least
their subquotient structure can be deduced from our spin chain analysis. If we add on
top of that the conjectured Koo–Saleur formula (3.56) for the Virasoro generators, this
opens the way to measuring [71, 140] indecomposability parameters characterizing these
Virasoro representations completely. This will be discussed further in the following.
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3.3.5 Some consequences of the bimodule structure: differen-

tial equations

It is a natural question to wonder which of the fields that appear in our (yet chiral)
theories satisfy differential equations, and what physical meaning they have. We shall
focus on the percolation theory (q = ei�/3), although the following considerations are
completely general. From the geometrical point of view, the fields Φ1,1+2j are degenerate
at level ℎ1,−1−2j = ℎ1,1+2j + 1 + 2j, and they correspond to the insertion of 2j legs at
the boundary. The correlation functions of these fields can be determined solving
differential equations from the null-vector condition, and they have a clear geometrical
meaning. For example, the differential equation satisfied by the four-point function of
Φ1,2 yields Cardy’s formula for percolation [25]. Note that these fields correspond to
what we called Kac operators in the previous chapter (see 2.2.1).

Now where are these fields in the spectrum of our model? Let us consider the spec-
trum of the XXZ spin chain at q = ei�/3 (or of the sl(2∣1) spin chain) with the Hilbert
space structure given by Fig. 3.9. The fields that satisfy the differential equations are
on the diagonal of this diagram, they are either in simple (irreducible) modules or they
correspond to the ‘left’ field �j in the indecomposable diamond modules (2.104). For
example, let us consider the first (Virasoro) Jordan cell in Fig. 3.9 at j = 0 for Uqsℓ(2).
The stress energy tensor and its logarithmic partner t live in this module, and we also
impose L−1I = ∂I = 0 which is the first example of operator in the theory satisfying
a (trivial) differential equation. It is clear that we have the same kind of equations
for all the fields in the diagonal of Fig. 3.9, as they correspond to the top of the left
Kac module. For example, there are three different (up to multiplicities) fields with
conformal weight ℎ = 2 in the theory: T ,t and what we would like to call Φ1,5. The
latter corresponds to the field (2,2) in Fig. 3.9. It satisfies B1,5Φ1,5 = 0 (we recall that
the operator B1,r was defined in (2.111)), or more explicitly

(
L5
−1 −

40

3
L−2L

3
−1 +

256

9
(L2

−2L−1 − L−3L−2)

+
52

3
L−3L

2
−1 −

104

3
L−4L−1 +

208

9
L−5

)
Φ1,5 = 0. (3.62)

The correlation function ⟨Φ1,5Φ1,5Φ1,5Φ1,5⟩ can thus be computed – in principle! – using
the corresponding differential equation.

It is worth mentioning that because of the “horizontal” Uqsℓ(2) symmetry, the stress
energy tensor should also satisfy B1,5T = 0! This can indeed be checked using Virasoro
commutation relations along with L−1I = 0. This is one example of application of this
bimodule structure – the observations of Ref. [141] that null-vector conditions “fac-
torize” are thus quite natural thanks to this quantum group language. This property
obviously extends to all the other Jordan cells. For example, it is quite straightforward
to check that because of B1,7Φ1,7 = 0 (this corresponds to the field with coordinates
(3,3) in Fig. 3.9), we have B1,7�j=3 = 0, with �j=3 = (L−3−L−2L−1+

1
6
L3
−1)Φ1,5 is the

null field (2,3) in Fig. 3.9. Once again, to prove this, we need the property B1,5Φ1,5 = 0.
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N bperco N bpoly
10 -0.605858 4 0.021029
12 -0.606403 6 0.145101
14 -0.607775 8 0.276585
16 -0.609226 10 0.382046
18 -0.610561 12 0.463292
20 -0.611738 14 0.526436
22 -0.612764
∞ -0.6249 ± 0.0005 ∞ 0.9 ± 0.1

Exact -5/8 = -0.625 Exact 5/6 ≃ 0.8333

Table 3.1: Numerical measure of the b parameter in percolation and polymers with
free boundary conditions.

3.4 Lattice indecomposability parameters

While the analysis of symmetries of the lattice models provides information about
the general structure of the Virasoro indecomposable modules, getting more detailed
information about the action of the Virasoro generators in these modules—such as
the numerical values of the indecomposability parameters—is more challenging. Recall
that Virasoro staggered modules are characterized by universal numbers called loga-
rithmic couplings or indecomposability parameters (see chapter 2). Indecomposability
parameters are universal, and they are believed to play an important role in physical
applications of LCFTs. They can be defined rather abstractly [57, 59] as parameters
crucial for characterizing the staggered modules completely, or they can be thought of
as universal coefficients that appear in front of logarithmic singularities in correlation
functions of fields living in such modules.

Although the method is completely general, we will focus here on the celebrated
b-number that characterizes the logarithmic structure associated with the stress energy
tensor at c = 0 (see Sec. 2.2). Recall that the parameter b can be expressed as
b = ⟨T ∣t⟩, where ∣t⟩ is normalized such that L0 ∣t⟩ = 2 ∣t⟩ + ∣T ⟩. This b parameter
has attracted a lot of attention since it was introduced by Gurarie, and computing
the values allowed for the parameter b in any given c = 0 conformal field theory, for
example the LCFT describing the transition between plateaus in the IQHE, remains
an interesting open problem. For simple c = 0 theories, namely Self-Avoiding Walks
(SAWs also known as dilute polymers) or percolation, b is now known both in bulk and
boundary CFTs [57, 75]. It is important to realize that despite this explicit definition,
the measure of b in a concrete lattice model is quite involved. For example, even though
the expectation value of t on a strip of width L satisfies

⟨t⟩ = �b

12L2
, (3.63)
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making it look like that the measure of b might be very similar to the measure of the
central charge, measuring b is extremely difficult a priori: what is t actually? How to
normalize it properly?

In spite of these difficulties, b can indeed be directly measured on the lattice, just
like the central charge or the conformal dimensions, but using a rather intricate method.
For percolation (q = ei�/3) for example, the logarithmic structure for the stress-energy
tensor corresponds on the lattice to a Jordan cell involving the state

∣∣T (N)
〉
correspond-

ing 8 to T (z) in the spectrum of the Hamiltonian H = −∑L−1
i=1 ei. We normalize the

states such that in the basis (
∣∣T (L)

〉
,
∣∣t(L)

〉
), the Hamiltonian reads

H(L) − E0(L)I =
�vF
L

(
ℎ(L) 1
0 ℎ(L)

)
, (3.64)

where E0(L) is the groundstate energy and ℎ
(L) = L

�vF
(E(L)−E0(L)), with limL→∞ ℎ(L) =

2. This Jordan cell appears because H is not diagonalizable on the Temperley-Lieb
tilting module T2 described by (3.46)

T2 :

X2
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44
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X2

−→
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22

22
2
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��
11

11
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T

In the scaling limit, this representation goes to a Virasoro staggered module where the
state t lives at the top and T = L−2I at the bottom (we loosely denote the Virasoro
simple modules by the corresponding field). Note that the field � has dimension ℎ1,7 =
5. This staggered module is known to be characterized by a number b = ⟨T ∣t⟩ = −5

8

from algebraic methods [57]. It is interesting to check this result directly on the lattice.
This was first done in [140] using a beautiful trick unfortunately restricted to c = 0,
and generalized to many other cases in [71]. The idea is to compute the inner product
⟨T ∣t⟩ on the lattice, the main issue being the proper normalization of

∣∣T (N)
〉
which is

non-trivial because
〈
T (N)∣T (N)

〉
= ⟨T ∣T ⟩ = 0 exactly. As we will explain here, a proper

normalization is provided by a regularization of the stress energy tensor given by the
lattice versions L

(N)
n of the Virasoro modes (3.56).

There are two crucial steps to measure indecomposability parameters on the lattice:
identifying a lattice inner product that will go to the Virasoro bilinear form in the limit,
and properly normalizing the null state ∣�⟩ on the lattice (∣T ⟩ in our example). The
Virasoro form on the lattice can be regularized in terms of the TL inner product (non-
definite positive!) defined by e†i = ei. More precisely, it is given by:

XXZ: The inner product is the usual bilinear form on ℂ without complex conjuga-
tion, that is, treating q as a formal parameter. For example, on L = 4 sites, the vector

8.
∣∣T (L)

〉
is the only state corresponding to the conformal weight ℎ = 2 in the vacuum sector.
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∣�⟩ = ∣↑↑↓↓⟩ + q ∣↑↑↑↑⟩ has norm ⟨�∣�⟩ = 1 + q2. Note that if we had considered the
usual inner product on ℂ, we would have found 1 + ∣q∣2 instead.

LOOP: The correct inner product is obtained gluing the mirror image of the first
state on top of the second one. Each closed loop carries a weight n = q+ q−1. This is
of course the usual form used in Temperley-Lieb representation theory. For instance,
the scalar product between the two states ∣�⟩ = ∣ ⟩ and ∣�⟩ = ∣ ⟩ is ⟨�∣�⟩ =
⟨ ∣ ⟩ = = n. The case with a non-zero number of strings 2j is treated in a
similar fashion. We have not talked much about the case of dilute models, but a loop
models can be defined in a similar fashion except that we now allow for empty sites.
In the case of the dilute O(n) model, the inner product between two states is chosen to
be zero if the empty sites (marked as dots) are not the same. For example for L = 6,
⟨ b b ∣ b b ⟩ = ⟨ b b ∣ b b ⟩ = n, whereas ⟨ b b ∣ b b ⟩ = 0.

SUSY: We use the usual inner product in Fock space. There are negative norm states
because of the use of the dual representation. For example, let us consider the sl(2∣1)
case still on L = 4 sites. The important point here is that each site must be occupied by
one particle which can be either a fermion {fi, f †

j } = (−1)i+1�ij, or a Schwinger boson

[bi,�, b
†
j,�′] = �ij���′ , with � ∈ {↑, ↓}. Let us consider the state ∣�⟩ = b†1↑f

†
2b

†
3↓b

†
4↑ ∣0⟩. Its

norm is ⟨�∣�⟩ = ⟨0∣ b4↑b3↓f2b1↑b†1↑f †
2b

†
3↓b

†
4↑ ∣0⟩ = −1 because of the fermionic operator f †

2

of the dual representation which satisfies {f2, f †
2} = −1.

The second step is the proper normalization of
∣∣T (L)

〉
. This is achieved using the

Koo-Saleur formula (3.56). Let us define

b(L) =

∣∣∣
〈
t(L)

∣∣∣L(L)
−2

∣∣∣ 0(L)
〉∣∣∣

2

⟨t(L)∣T (L)⟩ , (3.65)

where
∣∣0(L)

〉
is the groundstate of the system, and L

(L)
−2 is given by (3.56). It is easy

to see that this quantity does not depend on the normalization of
∣∣T (L)

〉
, and that it

provides a lattice version of b.
The various steps to compute b can thus be summarized in the following way:

1. Using exact diagonalization methods, find a Jordan basis for the first few excita-
tions of H on L = 2N sites.

2. Identify a Jordan cell in the spectrum of H and normalize the states like in
eq. (3.64).

3. Also identify the (ground)state
∣∣0(L)

〉
and normalize it such that

〈
0(L)∣0(L)

〉
= 1

for the lattice inner product.

4. Using Virasoro generators on the lattice (3.56), construct the operator L
(L)
−2 .

5. Compute b(L) using eq. (3.65).

The value of the indecomposability parameter b = limL→∞ b(L) is then computed using
an extrapolation b(L) = b+ A/L+ B/L2 + . . . We find numerically that b(L) does not
depend on the chosen Temperley-Lieb representation (Loop, XXZ, or SUSY).
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Numerical results are given in Tab. 3.1, and are in good agreement with the expec-
tation b = −5

8
. We also show the result for the dilute polymers theory (b = 5

6
). Note

that the method presented here is completely general and can in principle be applied
to the computation of any indecomposability parameter [71].

Despite the numerical success of the approach outlined above, it unfortunately re-
mains unclear to what extent it provides an accurate way to measure indecomposabil-
ity parameters – that is, whether the numbers we measure are truly indecomposability
parameters, or numbers very close numerically to indecomposability parameters. As
discussed in [132] on the example of the central charge, the order of the limits when
using the Koo-Saleur formula (3.56) is crucial. The formula is conjectured to hold only
when the field theory scaling limit is respected: one wants to keep the number of scaling
fields M fixed while taking the continuum limit L→ ∞, compute the matrix elements
of Virasoro operators in that basis of M fields, and then, take the limit M → ∞.
The problem is that, for interacting theories, lattice Virasoro generators (3.56) will
typically couple scaling fields to non-scaling ones on the lattice, thus maybe producing
residual corrections to scaling matrix elements such as indecomposability parameters
when naively taking the scaling limit. These fundamental considerations are of course
almost metaphysical, as numerically one need not worry about the order of the limits
to obtain a very good accuracy on indecomposability parameters.

3.5 Lattice fusion rules

To conclude this chapter on lattice regularizations of LCFTs, we now describe a
procedure allowing to compute fusion rules on the lattice [68, 69, 72]. The procedure
was outlined in [68], and also developed independently by Pearce, Rasmussen and
Zuber in [70] and in e.g. [142, 143].

3.5.1 Fusion on the lattice and in the continuum

The lattice fusion that we are going to present here was introduced in [68, 69],
and studied in details in [72]. The idea is that fusion corresponds to joining two spin
chains, each one carrying a representation of the TL algebra, by acting with an addi-
tional TL generator at their junction. In the scaling limit, those lattice representations
will eventually become representations of the group of conformal transformations in the
interior of the strips. In a more mathematical language, fusion can be thought of as an
induction process. Because of the additional TL generator that will join the two spin
chains, or any pair of TL modules, one expects a single copy of the conformal group
to emerge, which contains the tensor product of the conformal groups associated with
the two initial strips. Therefore, the induction process over the Temperley-Lieb alge-
bra corresponds, in the continuum limit, to the induction over the group of conformal
transformations in the corresponding regions. Hence, fusion is related to a slit-strip
geometry (see Fig. 3.10) that can be mapped by a Schwarz–Christoffel transforma-
tion [144] onto the upper half plane, where both sides and the slit of the strip are
mapped onto the real line. Then, the incoming and outcoming states correspond to
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�
x⏐ =⇒

Scaling

Limit

Φj1 Φj2

Φj1 ×f Φj2

TL2j1 ⊗ TL2j2

TL2(j1+j2)

Figure 3.10: Physical interpretation of the lattice fusion of two standard TL modules
Sj1[L1] and Sj2[L2] (in the picture, L1 = 2j1 and L2 = 2j2 so that both standard
modules are one-dimensional). Fusion can then be seen as an event in imaginary time
� , consisting in “joining” the two standard modules by acting with an additional TL
generator (induction procedure). In the scaling limit, we expect this construction to
coincide with the usual fusion procedure or OPE of boundary fields, here Φj1 = Φ1,1+2j1

and Φj2 = Φ1,1+2j2 , living in the corresponding Virasoro modules.

fields localized at points on the boundary of the half plane. One can then recover the
usual interpretation of the fusion as OPE of the boundary fields.

Formally, the fusion associates with any pair of modules over the algebras TLq,L1

and TLq,L2 a module over the bigger algebra TLq,L1+L2 . LetM1 andM2 be two modules
over TLq,L1 and TLq,L2 respectively, with the same fugacity n. Then, the tensor product
M1 ⊗M2 is a module over the product TLq,L1 ⊗ TLq,L2 of the two algebras. We note
that this product of algebras is naturally a subalgebra in TLq,L1+L2 . The fusion ×f of
two modules M1 and M2 is then defined as the module induced from this subalgebra,
i.e.

M1 ×f M2 = TLq,L1+L2 ⊗TLq,L1
⊗TLq,L2

M1 ⊗M2, (3.66)

where the balanced product ⊗A (of right and left modules) over an algebra A is defined
as a quotient of the usual tensor product by the relations v1 ⊲a⊗v2 = v1⊗a⊳v2 for all
a ∈ A, where the left and right actions of A are denoted by ⊳ and ⊲, respectively. In
simple words, we simply allow any element from A to pass through the tensor-product
symbol from right to left and vice versa. For any pair of left modules M1 and M2 over
TLq,L1 and TLq,L2 we shall call fusion rules the decomposition of the induced module
into indecomposable direct summands.

When q is not a root of unity, it is quite easy to convince oneself that the fusion
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rules for the TL standard modules follow a simple sℓ(2) spin addition rule

Sj1[L1]×f Sj2 [L2] =

j1+j2⊕

j=∣j1−j2∣
Sj [L1 + L2], (3.67)

for 2j1 ≤ L1 and 2j2 ≤ L2. This relation to sℓ(2) is not a coincidence of course and is
related to the centralizing property with Uqsℓ(2) with a dual construction [68, 69, 72]
– the quantum-group fusion. A direct argument for (3.67) is given by considering
the geometric interpretation of the induced module Sj1[L1 = 2j1] ×f Sj2 [L2 = 2j2] in
terms of link diagrams. This module is composed of (or filtered by) subspaces indexed
by the number j of through-lines which obviously takes integer values from ∣j1 − j2∣
up to j1 + j2. Then, using a semi-simplicity argument we deduce the direct sum
decomposition (3.67). For other values of L1 and L2, the decomposition can be shown
in a similar way. We note that a rigorous derivation of the generic fusion (3.67) can be
found in section 4 of [72].

Let us reformulate this result in a language more familiar to physicists. Using
the correspondence between standard modules and Virasoro Kac modules, this generic
fusion corresponds to

Φ1,1+2j1 ×f Φ1,1+2j2 =

j1+j2∑

j=∣j1−j2∣
Φ1,1+2j , (3.68)

where Φ1,1+2j has conformal weight ℎ1,1+2j .

3.5.2 c→ 0 catastrophe on the lattice

When q is a root of unity things become much more complicated and one encounters
once again indecomposability. As an example, let us discuss how the c→ 0 catastrophe
(see section 2.2) manifests itself on the lattice.

Let us consider the fusion S1[2]×fS1[2], where S1[2] has the basis { } with e1 = 0.
The induction results in a six-dimensional TLq,4-module with the basis

S1[2]×f S1[2] = ⟨ l, e2l, e1e2l, e3e2l, e1e3e2l, e2e1e3e2l ⟩, (3.69)

with l = ⊗ . This module is decomposed for q generic as

S1[2]×f S1[2] = S0[4]⊕ S1[4]⊕ S2[4], (3.70)

where the two-dimensional invariant subspace S0[4] is spanned by e1e3e2l and e2e1e3e2l
which may be identified with the link states and , respectively. The invari-
ant one-dimensional subspace S2[4] is spanned, after solving a simple system of linear
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equations, by

inv(n) = l +
1

n2 − 2

(
e1e2l + e3e2l − ne2l +

1

n2 − 1
(e2e1e3e2l − ne1e3e2l)

)
, (3.71)

with ej inv(n) = 0, for j = 1, 2, 3. Moreover, three remaining linearly independent
states contribute to the three-dimensional irreducible direct summand isomorphic to
S1[4] because the algebra is semisimple for generic q.

We see that the submodules S0[4] and S1[4] (or their basis elements) have a well-
defined limit n → 1 (p = 2, percolation) while the invariant inv(n) spanning S2[4] is
not defined in this limit – the state in (3.71) has a term diverging as n → 1. As it
turns out, this can be thought of as the lattice analog of the c → 0 catastrophe (see
section 2.2). The resolution of this lattice catastrophe was discussed in details in [72].
The idea is to introduce the new state

t(n) = inv(n)− 1

(n2 − 2)(n2 − 1)

(
e2e1e3e2l + a−e1e3e2l

)
, (3.72)

with a− = −ℎ−(n)− n and ℎ−(n) = −3n−
√
8+n2

2
. It can be easily shown that the state

t(n) has a finite limit as n → 1. Borrowing the terminology of LCFT, we say that
the state t is the “logarithmic partner” of the “stress-energy tensor” T = - .
Indeed, we find a Jordan cell between these two states

Ht =
2

3
T. (3.73)

We will also say that T is the “descendant” of the vacuum state ∣0⟩ = +2 as the
standard module S0 has the following indecomposable structure at n = 1: S0 = ∣0⟩ → T
where we recall that the arrow corresponds to the action of the TL algebra.

We see that the standard modules S0[4] and S2[4] arising in the generic fusion rules
are “glued” together at n = 1 into a bigger indecomposable module with the TL action
given by the diagram t → ∣0⟩ → T . The subquotient structure of this module reads
X2 → X0 → X2, where each subquotient is one-dimensional and we recall that Xj

denotes the irreducible top of Sj[N ]. We will denote the resulting module T2[4]; this
is an example of tilting module (see section 3.3.4). Finally, the fusion rules at n = 1
reads

S1[2]×f S1[2] = S1[4]⊕ T2[4], for p = 2. (3.74)

In the scaling limit, the diamond T2 module becomes a staggered module that contains
T and its logarithmic partner t.

3.5.3 Systematic calculations and general results

Let us first go back to the fusion S1[2]×fS1[2] = ⟨ l, e2l, e1e2l, e3e2l, e1e3e2l, e2e1e3e2l ⟩.
Note that the fusion states can be identified with link states in the following way:
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l = , e2l = , e1e2l = , e3e2l = , e1e3e2l = , and e2e1e3e2l = . We
use colors to keep track of the original algebras and their modules, red through-lines
correspond to the left S1[2] in S1[2]×f S1[2] while the blue ones correspond to the right
S1[2]. We only keep these colors for convenience but these are not really necessary as
we can always split the through lines into two halves (the number of through lines is
even in this case) and assign the red color to the leftmost ones while the other lines
should be blue. One can then compute the action of the Temperley-Lieb generators on
these states using the usual TL rules with a slight modification: when a Temperley-
Lieb generator acts on two through lines with two different colors, it comes with a
weight 1 instead of 0. In other words, one can fuse a red trough-line with a blue one
with weight 1. For example, one has e2 = while e1 = 0. With these
rules in hand, the calculations become easy and can be done geometrically, we shall
use these notations as they are less cumbersome. These rules also make transparent
the equivalence with the approach based on integrable boundary conditions used by
Pearce-Rasmussen-Zuber [70]. These two approaches actually correspond to the very
same thing. It is indeed not hard to see that our construction with through-lines of
two different colors, corresponds exactly to the so-called (1, s) boundary conditions
used in [70] (in the case we considered, to (1, 2) conditions on both sides of a strip).
However, the algebraic definition that we use provide a more powerful tool as it allows
one to obtain exact and rigorous results for any finite size using quantum group results.

The Hamiltonian H = −e1 − e2 − e3 in this basis reads

H = −

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
1 n 1 1 0 0
0 1 n 0 0 0
0 1 0 n 0 0
0 0 1 1 2n 2
0 0 0 0 1 n

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.75)

It is of course also a simple matter to find the eigenvalues of H in the standard mod-
ules S0[4], S1[4] and S2[4] on N = 4 sites. The Hamiltonian H applied to the one-
dimensionnal module S2[4] always yields 0. When p = 3, we find that S0[4] corresponds
to the eigenvalues {0,−3} and S1[4] to {−1,−1 −

√
2,−1 +

√
2}. Moreover, we find

that H has the following Jordan form in the fusion basis

H =

⎛
⎜⎜⎜⎜⎜⎜⎝

−3 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 −1 0 0

0 0 0 0 −1−
√
2 0

0 0 0 0 0 −1 +
√
2

⎞
⎟⎟⎟⎟⎟⎟⎠
. (3.76)

Using the subquotient structure T2[4] = S2[4] −→ S0[4], we conclude that

S1[2]×f S1[2] = S1[4]⊕ T2[4], for p = 2, (3.77)
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in agreement with what we had found in the previous section.
We can repeat this easy calculation for the extended Ising model (p = 3), in which

case we find that S0[4] corresponds to the Hamiltonian eigenvalues
{
−3+

√
5√

2
, 1
2
(
√
10 −

3
√
2)
}
and S1[4] to {0,−

√
2,−2

√
2}. We can infer the fusion rules from the Jordan

form of H in the fusion basis

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−2
√
2 0 0 0 0 0

0 −
√
2 0 0 0 0

0 0 0 1 0 0
0 0 0 0 0 0

0 0 0 0 −3+
√
5√

2
0

0 0 0 0 0 1
2
(
√
10− 3

√
2)}

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
. (3.78)

This is consistent with the fusion rule

S1[2]×f S1[2] = S0[4]⊕ T2[4], for p = 3, (3.79)

where T2[4] = S2[4] −→ S1[4] in this case.
These are just two examples of a lattice fusion rule, in good agreement with what is

expected on the field theory side. Using the bimodule structure of the spin chains and
algebra involving quantum group results (see [137]), it is actually possible to obtain
rigorous, general results for the lattice fusion of most of Temperley-Lieb modules [72]
for all roots of unity q, for any sizes L1 and L2. The physical consequences for the
OPEs were also discussed in [72]. The general results are quite cumbersome, so we
refer the reader to that reference for details.
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Chapter 4
Blob algebra, braid translator and bulk
LCFTs

In the previous section, we have analyzed in detail the simplest case of critical lat-
tice models providing regularization of boundary LCFTs. These spin chains or loop
models were built out of representations of the Temperley-Lieb algebra, and are de-
scribed in the scaling limit by Kac and staggered Virasoro modules. However, this
is not the end of the story, and one could wonder if it is possible to construct a lat-
tice algebra, larger than TL, that would have representations that would correspond
generically to Verma modules instead of Kac representations. The answer to that ques-
tion is yes and is provided by the so-called blob algebra [145]. The critical exponents
of the corresponding boundary dense loop models were computed in [146], and the
full algebraic analysis including the relation to Virasoro was worked out slightly after
in [74]. This lattice construction provides new indecomposable representations which
are much more intricate than their diamond-shaped counterparts that appear as limits
of TL representations. These representations were fully classified – and conjectured to
exhaust the indecomposable modules relevant for physics in the case where Virasoro
in the only symmetry – in [74]. This will be discussed in section 4.1.

Another very important open problem in the field is to understand the structure of
non-chiral, bulk, LCFTs. While the case of boundary LCFTs is slowly getting under
control, the understanding of the bulk case remains in its infancy. The main problem
here, from the continuum point of view, is the expected double indecomposability of the
modules over the sum of the left and right Virasoro algebras, leading to potentially very
complicated modules which have proven too hard to study so far, except in some special
cases [147, 148], including for instance WZW models [64, 65]. From the lattice point
of view, while it is possible to define and study lattice models whose continuum limit
is a (bulk) LCFT, the underlying structures are also very difficult to get: the lattice
algebras have a much more complicated representation theory. This was achieved for
the periodic gl(1∣1)-symmetric (free-fermions) spin chain only [118, 119, 149], and is
still in progress in the sl(2∣1) (percolation) case [120].

The remaining of this chapter goes as follows. We argue in section 4.3 that one can
build periodic lattice models from open ones using the so-called braid translator [145].
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This provides an interesting perspective on the relation between bulk and boundary
CFTs from a lattice point of view, and this also makes clear the difference between log-
arithmic and ordinary CFTs as far as this correspondence between bulk and boundary
is concerned. This will also illustrate the deep relation between the blob algebra and
periodic Temperley-Lieb algebras. Genuine periodic models are also shortly addressed,
mostly from the point of view of indecomposability parameters, in section 4.2.

4.1 Blob algebra and classification of Virasoro in-

decomposable representations

One of the difficulties of LCFTs is the absence of methods to understand and control
the amount of indecomposability one might expect to encounter in the general case.
While models such as WZW theories on supergroups can be (partly) tackled because
they admit semi-classical limits where intuition from supergeometry can be used, the
world of, say, LCFTs at c = 0 appears overwhelmingly hard to tame abstractly. This
difficulty can in fact be given a clear mathematical formulation: for instance, it is known
that the representation theory of the Virasoro algebra is wild which means roughly that
it is as complicated as can be [62, 150]. Among the rather modest questions whose
answer is not known is, for instance, the question of how large are the L0 Jordan cells
appearing in a given (chiral or non-chiral) CFT, such as the long searched for “CFT
for percolation”.

As is often the case however, physics provides powerful constraints which can be
used to restrict the wilderness of the algebraic problem. Rather than getting into
abstract considerations, it thus seems that important progress will be obtained by first
studying in details concrete models. For example, we have seen in the previous chapter
that the Temperley-Lieb algebra allowed us to get a handle on Virasoro staggered
modules. Despite the striking resemblances between the TL algebra and Virasoro,
this is not the end of the story, as there are many other lattice algebras that one can
use to construct critical statistical models described in the scaling limit by Logarithmic
Conformal Field Theory. An especially interesting example is provided by the so-called
blob algebra [145] (also known as “one-boundary TL algebra”).

4.1.1 Blob algebra and Verma modules

To define the blob algebra ℬ(L = 2N, n, y), let us start from the Temperley-Lieb
algebra and consider all the words written with the L − 1 generators ei and an extra
“blob” generator b, subject to the additional relations

b2 = b, (4.1a)

e1be1 = ye1, y ∈ ℝ, (4.1b)

[b, ei] = 0, i > 1. (4.1c)
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The extra boundary operator b can be interpreted as decorating strands at the left
boundary with a “blob”, so we represent it graphically as

bb = . . . ,

It gives to the corresponding “blobbed loops” a weight y [145], different from the bulk
weight n. We parametrize

y =
sin ((r + 1))

sin (r)
=

[r + 1]q
[r]q

. (4.2)

where r ∈ (0, x+ 1) and we recall that

[x]q =
qx − q−x

q− q−1
. (4.3)

Standard modules

As for the Temperley-Lieb algebra, one can define standard modules Wb
j and Wu

j

that are still parametrized by the number of through-lines 2j 1, but there are also two
sectors blobbed and unblobbed corresponding to the two orthogonal projectors b and
u = 1 − b, respectively [151]. We recall that within a standard module, through lines
cannot be contracted by the TL generators ei. When there are through lines in the
system (j > 0), only the leftmost line is exposed to the boundary where b and u act.
We can choose a basis so that the leftmost through line is either blobbed by the symbol
‘∙’ or unblobbed, with symbol ‘□’, and it has to stay that way under the action of the
algebra.

Following [145], the standard modules can be constructed iteratively using a Pascal
triangle construction (see Fig. 4.1). The action of the algebra on states can be obtained
geometrically by stacking the diagrams on top of one another, just as for the Temperley-
Lieb algebra with the convention that the TL generators ei cannot contract two through
lines. This convention implies that each standard module is stable under the action of
the algebra. The blobbed and unblobbed standard modules have the same dimension

dj ≡ dimWb/u
j =

(
2N
N − j

)
. (4.4)

Indeed, the Pascal construction of the state is compatible with the standard recursion
relation

(
2N−1
N−j

)
+
(

2N−1
N−j−1

)
=
(

2N
N−j
)
. The dimension of ℬ(2N, n, y) is therefore

dimℬ(2N, n, y) =
N∑

j=−N

(
2N
N − j

)2

=

(
4N
2N

)
. (4.5)

1. Recall that 2j has the same parity as L.
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Figure 4.1: Pascal triangle construction of the standard modules of the blob algebra.
The diagram is here truncated to L = 3. The symbols ∙ and □ represent the blob b
and antiblob 1− b operators, respectively. In the left (resp. right) part of the diagram,
a step one row down and to the left (resp. right) corresponds to adding a through line
on the right of the diagram; and a step one row down and to the right (resp. left)
corresponds to bending the rightmost through line to the right of the diagram.

These standard modules are irreducible for any q when r is not an integer (generic).

Boundary loop models and scaling limit

It is possible to define critical lattice models based on this blob algebra, and one finds
that whereas the TL standard modules were related in the scaling limit to Kac modules
over the Virasoro algebra, the blob standard modules tend to Verma modules [74, 146].
The blob algebra is clearly larger than TL and so are its representations, since they
correspond in the limit to Verma modules without any quotient being taken. In order
to see this more precisely, we start from the transfer matrix

T = (1 + �b)
N−1∏

i=1

(1 + e2i)
N∏

i=1

(1 + e2i−1) , (4.6)

As in the Temperley-Lieb case, we represent its action in terms of plaquettes

T =
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where in this example N = 4 (L = 8). The rightmost half plaquette corresponds to a
free boundary condition whereas the first half plaquette may or may not carry a blob
symbol. The bulk plaquettes carry the usual action of the Temperley-Lieb generators

1 + ei = = +

whilst the first one represents

1 + �b = = + � b

The action of this transfer matrix builds up loop configurations, where the edges touch-
ing the boundary may or may not be blobbed, depending on the parameter �. In
addition to these � factors, the Boltzmann weight of a configuration is computed by
attributing a weight y to closed loops carrying at least one blob symbol, and a weight
n to the other loops. The blob algebra is completely symmetric between blob b and
antiblob 1− b operators, and it is convenient to introduce the diagrammatic represen-
tation

1− b = rs

where the box represents the antiblob operator, and each loop carrying at least one
box will be weighted by n − y. Note also that configurations with at least one loop
that is blobbed and unblobbed at the same time should be excluded from the partition
function, since b(1− b) = 0.

Thanks to the extensive numerical study of [146] and the Bethe ansatz results
of [152, 153], the phase diagram of this statistical model in terms of the boundary
coupling � is now well understood, and can be summarized by the diagram below:

� = −1 � = 0 � = ∞
bb b

Here, the fixed point � = 0 corresponds to free boundary conditions, and is described
algebraically by the Temperley-Lieb algebra. The perturbation by the boundary cou-
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b

b

b

Figure 4.2: Example of loop configuration on L = 20 sites, after 3 iterations of the
transfer matrix T in the limit � = ∞. Every loop touching the left boundary is blobbed
and hence carries a weight y. The other loops that do not carry a blob symbol get a
weight n.

pling � is relevant in the renormalization group sense, so that the system flows to one
of the two conformally invariant boundary conditions where every loop touching the
left boundary carries a blob or unblob symbol. These two fixed points are related
by a simple switch between the weights of blobbed and unblobbed loops, and in the
following we will focus only on the fixed point � = ∞.

The limit � = ∞ in the transfer matrix �−1T , corresponds to blobbing every loop
touching the boundary; the transfer matrix reads then schematically

b

lim�→∞ �−1T =

and an example of loop configuration in this case is shown in Fig. 4.2. The limit lim�→∞
has the advantage of reducing the dimension of the Hilbert space while keeping the
correct universality class in the continuum limit: the relevant algebra is now reduced
to

ℬb(2N, n, y) ≡ bℬ(2N, n, y)b, (4.7)

which was dubbed “JS blob algebra” in [74].

At the renormalization group fixed point � = ∞, we expect statistical mechanics
systems with transfer matrix (4.6) to exhibit conformal invariance at low energy, and
their scaling limit to be described by a conformal field theory. One finds that the
scaling limit is described by a CFT with central charge c = 1− 6

x(x+1)
, where we recall

that x parametrizes the loop fugacity n = 2 cos �
x+1

. One can then compute the low-
energy spectrum in the scaling limit and identify all the exponents ℎi occurring in the
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Figure 4.3: Example of standard module W0 for the blob algebra with n = 1 and y = 1,
and corresponding c = 0 Verma module Vℎ=0 in the scaling limit.

spectrum of the transfer matrix (or the hamiltonian) acting in the standard modules

Wb/u
j over the blob algebra. It is convenient to gather the results into a generating

function (character) TrWb/u
j
qL0−c/24 ≡∑i q

ℎi−c/24, where the sum is taken over all low-

energy states. In the sector with no through lines, one finds [146]

Z0 = TrW0q
L0−c/24 =

q−c/24

P (q)
qℎr,r , (4.8)

where we recall that P (q) = q−1/24�(q) =
∏∞

n=1(1 − qn). On the other hand, the
generating functions [146] for the blobbed and unblobbed sectors read

Zb
j = TrWb

j
qL0−c/24 =

q−c/24

P (q)
qℎr,r+2j , (4.9a)

Zu
j = TrWu

j
qL0−c/24 =

q−c/24

P (q)
qℎr,r−2j . (4.9b)

These formulas coincide with the character of the Verma modules Vℎr,r±2j
.

4.1.2 Representation theory: from the Blob algebra to Vira-
soro

Actually, this correspondence between standard and Verma modules go way beyond
a simple equality between characters. The blob algebra representation theory is in fact
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JS blob algebra ℬb(2N,n, y) = bℬ(2N,n, y)b Virasoro algebra

n = q+ q−1 = 2cos �
x+1 central charge c = 1− 6

x(x+1)

y =
[r+1]

q

[r]
q

row of the Kac table r

Standard module Ŵb/u
j = bWb/u

j Verma module Vℎr,r±2j

Quotient module K̂b/u
j = Ŵb/u

j /Ŵu
r±j (r integer) Kac module Vℎr,r±2j

/Vℎr,−r∓2j

Simple module X̂ b/u
j Simple module ℎr,r±2j

L
(2N)
n (see [74]) Virasoro generators Ln

Inner product with b† = b, e†i = ei Virasoro bilinear form L†
n = L−n

Table 4.1: Correspondence between the JS blob algebra ℬb(2N, n, y) = bℬ(2N, n, y)b
and Virasoro.

very rich [145, 154], and standard modules turn out to have a complicated indecom-
posable structure in non-generic cases (see Fig. 4.3 for an example taken from [74],

where X b/u
j are simple modules of the blob algebra). The important point is that the

blob algebra somehow provides a lattice version of the Virasoro algebra 2, and that the
indecomposable structure of standard modules mimics exactly that of Verma modules.
In particular, the operator content of the irreducible blob representations X b/u

j is given
by the character of the Virasoro simple modules with conformal weight ℎr,r±2j . Note
also that Kac modules can be recovered by considering quotients of standard modules
– in fact, the Temperley-Lieb algebra itself can be considered as a quotient of the Blob
algebra.

Though the lattice expressions L
(N)
n for the Virasoro generators Ln were proposed [74]

for the blob algebra as well, this correspondence between the blob algebra (a finite-
dimensional, lattice algebra) and Virasoro (a infinite-dimensional Lie algebra) should
be understood as a conjecture, since the correspondence has been established only at
the level of modules so far. It is however tempting to conjecture that the standard
modules, their quotients, and simple modules of the blob algebra provide lattice reg-
ularizations of their well-known Virasoro modules counterparts. This (loosely stated)
correspondence between the (JS) blob algebra and (the universal enveloping algebra
of) Virasoro is summarized in Tab. 4.1. This result is especially useful as one can
now use the representation theory of the Blob algebra (which is well under control), to
obtain new results for the Virasoro algebra.

2. To be more precise, it is the JS blob algebra ℬb(2N,n, y) ≡ bℬ(2N,n, y)b that provides a
lattice version of Virasoro [74]. As the differences between the full blob algebra and ℬb(2N,n, y) ≡
bℬ(2N,n, y)b occur only for y = 0, we will ignore this subtlety in what follows.
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4.1.3 Towards a classification of Virasoro indecomposable rep-

resentations

We can now use this correspondence to obtain new results [74] for the Virasoro al-
gebra representation theory. As mentioned above, the representation theory of the Vi-
rasoro algebra is known to be wild, which makes classification issues a priori extremely
difficult. However, physicists are not just interested in “all” Virasoro representations.
Rather, they are interested in modules which may appear in physical LCFTs – CFTs
which are fixed points of interacting, non unitary, field theories with well defined ac-
tions. If such LCFTs exist, it is reasonable to expect that they must also admit some
lattice regularizations, that is, that their properties can be studied by considering mod-
els defined on large, but finite, lattices, and exploring the thermodynamic and scaling
limits. The point is now that the representation theory of the algebras occurring for
such finite lattice models – such as the Temperley Lieb algebra or the blob algebra
– is well under control. We might therefore hope to classify all physically relevant
indecomposable Virasoro representations by simply defining them as scaling limit of
spin-chains modules. Of course, there is a large choice of spin chains, determined not
only by the degrees of freedom but also by type of interaction. Nevertheless, experi-
ence with unitary models (say, the O(3) sigma model at � = �) has shown that, if the
continuum limit admits only the Virasoro algebra as a chiral algebra, it can be fully
understood by using lattice models with the simplest possible algebra compatible with
the symmetries (in the case of the O(3) sigma model, the spin 1/2 XXX spin chain).
Given the striking correspondence between blob representations and Virasoro mod-
ules in the limit, it is tempting to conjecture that Virasoro representations of physical
interest can be obtained a limits of blob representations.

This approach can be used to classify (or at the very least, obtain a large class of)
indecomposable Virasoro representations relevant for LCFTs. We will not go into more
detail here, but only give one example of a generalization of the diamond staggered
modules encountered before in (3.59), obtained as the scaling limit of a blob algebra
modules for n = 1 and y = 1 (this corresponds to c = 0 in the CFT language):
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Note that this module is a gluing of three Verma modules and it should in particular
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ℎ1,9
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Figure 4.4: Structure in terms of simple modules of an indecomposable Virasoro module
at c = 0 obtained from the blob algebra. All the down-left arrows in the figure represent
the action of positive Virasoro modes, whereas the other arrows correspond to negative
modes. There are Jordan cells for L0 of any rank occurring in the spectrum.

admit Jordan cells of ranks up to 3 for the L0 generator. Finally, the blob algebra
admits even more complicated modules – the tilting modules – which admit now Jordan
cells of any finite rank in the scaling limit. An example of such a module is shown in
Fig. 4.4.

To conclude this section, let us mention that this lattice approach can obviously be
generalized to CFTs with extended symmetries – i.e. larger than the Virasoro algebra.
For instance, the spin-1 XXZ Uqsℓ(2)-symmetric spin chain is expected to be described
by CFTs with super-Virasoro symmetry, and super-Virasoro indecomposable modules
could also be obtained directly from the lattice. Another example is the W-algebra
symmetry, which can also be realized on the lattice [138].

4.2 Periodic lattice models and bulk LCFTs

While chiral LCFTs are thus fairly well understood, much remains to be done to
understand the structure of bulk theories. Attempts to construct nonchiral theories at
c = 0 (see, e.g., [147, 148]) often exhibit unwanted features such as degenerate or non-
SL(2,ℂ) invariant ground states which should not occur in, for instance, percolation.
As we have seen so far, part of the progress in the chiral case originates from considering
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lattice models with open boundary conditions, and observing that the indecomposable
features of the chiral (Virasoro) algebra appearing in the scaling limit are similar to
those occurring, in finite size, on the lattice. This suggests that eventually, LCFTs may
be solved by a careful exercise in the representation theory of the algebras satisfied
by the local energy terms, also in the non-chiral case. The non-chiral or bulk case
corresponds, on the lattice, to periodic boundary conditions, which is rather difficult
mathematically. One can, nevertheless, use lattice algebraic techniques to investigate
aspects of the simplest representations under the full left and right Virasoro algebras
present in this case (see [118, 119, 149] for recent progress).

4.2.1 Periodic version of the TL algebra, standard modules

and operator content

When one tries to generalize the TL algebra to periodic models, the most natural
thing to do is to simply add a last generator eL and to define the labels modulo L so
that eL+1 = e1, eLe1eL = e1 etc . . . . The resulting algebra is infinite dimensional, even
for finite L, and considerably too big for our purpose. In order to define the relevant
quotients, it is useful to go again to a diagram representation, which now involves an
annulus instead of a rectangle. We also introduce a translation generator u that shifts
the label of the ej generators, giving rise to the relations

[ei, ej] = 0 (∣i− j∣ ≥ 2) (4.10a)

e2i = nei (4.10b)

eiei±1ei = ei (4.10c)

ueiu
−1 = ei+1 (4.10d)

u2eL−1 = e1 . . . eL−1 (4.10e)

uLis central. (4.10f)

The resulting algebra is again infinite dimensional, and called the affine Temperley-
Lieb algebra TLaL(n). The infinite dimensionality, can now be understood easily, since
there is no way, in the algebra, to undo non contractible loops, or through lines that
wind around the horizontal direction.

Note that the relation u2eL−1 = e1 . . . eL−1 is easily understood in terms of diagrams,
for example for L = 4

e1e2e3 = = = u2e3

The finite dimensional quotients which are relevant to us are obtained by consid-
ering the diagrams on the annulus (recall they do not involve crossings) and imposing
additional relations. The simplest case corresponds to the so called Jones-Temperley-
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Lieb algebra JTLL(n) and is obtained [155] by (i) replacing non contractible loops by
the same weight n as contractible ones (ii) setting uL = 1, which allows one to unwind
through lines and (iii) identifying non-isotopic (in the annulus) diagrams connecting
the same sites.

Standard modules

The generic irreducible representations of this algebra are well known [145, 156],
and can be interpreted in a geometrical fashion just like for the usual TL or the blob
algebra. Let 2j be the number of strings (through lines) that meet at the infinite past
and propagate along the (vertical) imaginary time direction. In the sector with no
string (j = 0), we can construct the modules Ŵ0 that turn out to be the same as in the
open TL case. In particular, dimensions are given by the celebrated Catalan numbers

d̂0 = dim Ŵ0 =

(
2N

N

)
−
(

2N

N + 1

)
. (4.11)

This is because we decided to identify non-isotopic diagrams connecting the same sites
when there is no through lines propagating. When j ∕= 0, there are more patterns al-
lowed. For example, for N = 3 (L = 6) and j = 1, the state ∣ ⟩ is allowed. If we do
not distinguish between the strings, we can construct the (irreducible) representations
Ŵj, with dimensions

d̂j = dim Ŵ2N,j =

(
2N

N − j

)
. (4.12)

Actually, it is possible to construct j − 1 other inequivalent irreps corresponding to
cyclic permutations of the strings. To see that, let us try to distinguish one string

from the others, this leads to modules
˜̂Wj with dimension jd̂j. Let us then introduce

the operator TN that shifts the tagged string two steps to the right. This operator
commutes with the JTL algebra as it acts only on strings, and its eigenvalues are
phases because (TN )

N = 1. Using Schur’s lemma, we can label irreps of JTL with the
eigenvalues of TN , and one introduces a pseudomomentum in the space of the strings
K = �q/M where M ∣J and with a greatest common divisor q ∧M = 1. The modules
˜̂W2N,j are thus reducible

˜̂W2N,j =

j−1⊕

q=0

Ŵ2N,j,e2�iq/j . (4.13)

In the module Ŵ2N,j,e2�iq/j , the eigenvalue of TN is e2�iq/j . Ŵ2N,j,e2�iq/j has dimension

d̂j as it is made of d̂j equivalence classes for the translation in string space, which
all contain j elements. Choosing K = 0 is equivalent not to distinguish between the
strings so that Ŵ2N,j,1 ≃ Ŵ2N,j . The modules we described are often referred to as
standard or cell modules of the JTL algebra, their structure may be quite complicated
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in non-generic cases, where they become highly reducible. In the case of the affine
Temperley-Lieb algebra, the pseudomomentum K can take any complex value.

Scaling limit and operator content

Although the geometrical setup of loop models is appealing, it is instructive and
useful to consider related periodic models. We define here a periodic version of the XXZ
spin chain [67] (or equivalently of the 6-vertex model). We define the last generator as

eL = I⊗ I⊗ ⋅ ⋅ ⋅ ⊗

⎛
⎜⎜⎝

0 0 0 0
0 q−1 −ei� 0
0 −e−i� q 0
0 0 0 0

⎞
⎟⎟⎠ . (4.14)

The resulting Hamiltonian H = −∑i ei reads, up to an irrelevant constant

H =
1

2

2N∑

i=1

(
�xi �

x
i+1 + �yi �

y
i+1 +

q+ q−1

2
�zi �

z
i+1

)
+

ei�

4
�+
2N�

−
1 +

e−i�

4
�−
2N�

+
1 . (4.15)

We shall refer to this model as XXZ twisted spin chain. Note that it may be useful
to redistribute the twist in order to restore translation invariance. The choice of the
twist ei� = e2iK allows to select specific generic irreducible representations of the JTL
algebra. For j ∕= 0, the Hilbert space of this model in the sector with spin Sz = ±j (j >
0) is isomorphic to the module Ŵj,e±2iK . The operator content of these representations
follows from the results of Ref. [67]. We use our usual parametrization

c = 1− 6

p(p+ 1)
, (4.16a)

ℎr,s =
[(p+ 1)r − ps]2 − 1

4p(p+ 1)
, (4.16b)

where we recall that q = ei�/(p+1). The generating function of levels in the scaling limit
of the module Ŵj,e2iK reads

Fj,e2iK ≡ TrŴ
j,e2iK

qL0 q̄L̄0 =
1

P (q)P (q̄)

∑

e∈ℤ
qℎe+p/M,−j q̄ℎe+p/M,j , (4.17)

where K = �
M
p and P (q) =

∏∞
n=1(1 − qn). Note that we did not introduce the usual

central charge term in the definition of this character.
The case j = 0 requires more care as one has to be careful about the loops that wrap

around the spatial direction due to the periodic boundary conditions which would get
a weight 2 with the generators of the open case. One then needs to introduce a twist
ei� = q2 to account for this 3. In this case, the sector Sz = 0 corresponds to the sum of

3. The weight n carried by non-contractible loops can be computed using the relation
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two irreps of the JTL algebra ℋ2N
Sz=0 ≃ Ŵ0⊕Ŵ1,1. The space ℋ2N

Sz=0 would correspond
in the geometrical language to all the diagrams with 2N sites on the outer and in the
inner boundary of an annulus, with no through line and without the identification of
non-isotopic diagrams connecting the same sites. The trace over the scaling limit of
the representation Ŵ0 (with identification of the non-isotopic diagrams connecting the
same sites) thus reads

TrŴ0
qL0 q̄L̄0 = F0,q2 − F1,1. (4.18)

In general, we will use the notation Ŵj=0,�2 for the representation of the affine
TL algebra with no through-line, without the identification of non-isotopic diagrams
connecting the same sites, and with weight � + �−1 for non-contractible loops. It has
dimension

dim Ŵ0,�2 =

(
2N

N

)
. (4.19)

We thus have ℋ2N
Sz=0 ≃ Ŵ0,q2 , and Ŵ0 = Ŵ0,q2/Ŵ1,1.

4.2.2 Periodic gl(1∣1) spin chain and lattice indecomposability

parameters

We start our study of periodic models with the gl(1∣1) spin chain, which corre-
sponds to symplectic fermions in the continuum limit. The full algebraic analysis can
be found in [118, 119, 149], and we shall not repeat it here, but focus instead on in-
decomposability parameters. The non-chiral theory of symplectic fermions is closely
related to the boundary theory, and actually, the indecomposability parameters are
the same in both cases. This will not be the case for more complicated theories like
percolation. That said, symplectic fermions provide a very concrete example where
lattice indecomposability parameters can be computed analytically.

Let us first recall the expression of the periodic gl(1∣1) spin chain

H = −
2N∑

j=1

(fj + fj+1)(f
†
j + f †

j+1), (4.20)

with the fermionic operators {fi, fj} = 0, {fi, f †
j } = (−1)i�i,j, and f2N+1 = f1. Note

that this formulation in terms of fermions can be mapped [118] onto a XX(Z) spin chain
at q = i thanks to a Jordan-Wigner transformation. In this twisted XXZ formulation,
we have j = ∣Sz∣ and the twist reads ei� = (−1)Sz+1. Using the operator content of JTL

e1e3 . . . e2N−1e2e4 . . . e2Ne1e3 . . . e2N−1 = n2e1e3 . . . e2N−1. In the XXZ case, we find that n̄ is re-
lated to the twist through n = 2 cos �

2 .
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representations derived above, we hence find the (modified) CFT partition function 4

Z = F0,−1 + 2

∞∑

j=1

Fj,(−1)j+1 = 4

∣∣∣∣∣
∞∏

n=1

(1 + qn)2

∣∣∣∣∣

2

. (4.21)

The resulting CFT is the symplectic fermion theory with c = −2.

Analytical expression of the lattice indecomposability parameters

We will show in this section that the lattice indecomposability parameters can be
computed analytically, using the fact that the spin chain can be (almost) diagonalized
in terms of fermionic modes. We follow [118] for the diagonalization of the Hamiltonian.
First of all, it turns out to be convenient to introduce the canonical fermions f †

j = ijc†j
and fj = ijcj, in terms of which we have

ej = i(−1)j
[
cjc

†
j+1 − c†jcj+1 + i

(
c†jcj − c†j+1cj+1

)]
. (4.22)

We also define the Fourier transforms of the fermions c and c†

c†j =
1√
L

∑

p

e−ijp�†p, cj =
1√
L

∑

p

eijp�p, (4.23)

where p = 2�n
L
, with L = 2N , N even and n = 0, . . . , L − 1. They obviously satisfy

{�p1, �†p2} = �p1,p2 and {�p1 , �p2} = {�†p1, �†p2} = 0 . We then introduce the fermionic
modes

�p =
1√
2

(√
cot

p

2
�p−�

2
−
√
tan

p

2
�p+�

2

)
, (4.24a)

�†p =
1√
2

(√
tan

p

2
�†p−�

2
−
√

cot
p

2
�†p+�

2

)
, (4.24b)

�p =
1√
2

(√
cot

p

2
�p−�

2
+

√
tan

p

2
�p+�

2

)
, (4.24c)

�†
p =

1√
2

(√
tan

p

2
�†p−�

2
+

√
cot

p

2
�†p+�

2

)
, (4.24d)

�†
0 = �†�

2
, �0 = ��

2
, �†0 = � 3�

2
, �0 = � 3�

2
. (4.24e)

4. Recall that this modified partition function is defined as a trace, not a supertrace. This amounts
to considering anti-periodic boundary conditions for the fermions along the imaginary time direction.
We emphasize that in particular, this partition function need not be modular invariant.
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In terms of these modes, the Hamiltonian reads

H = 4�†
0�0 + 2

�−�∑

p=�
step=�

sin p
(
�†
p�p − �†p�p

)
. (4.25)

where � = �
N
. The Hamiltonian is almost diagonal in this form, except for the non-

diagonalizable term 4�†
0�0 that mixes the zero-modes. There are four different ground-

states

�+ =
�−�∏

p=�
step=�

�p ∣↑ . . . ↑⟩ , �− = �0�0�
+, Ω = �0�

+, ! = �0�
+, (4.26)

where ∣↑ . . . ↑⟩ is the state with all spins up in the XX language. The corresponding
energy reads

E
(N)
0 = −2

N−1∑

n=1

sin
n�

N
= −2 cotan

�

2N
= −4N

�
+

�

3N
+O(N−2). (4.27)

This is formula is consistent with the values e∞ = 2/�, vF = 2 and c = −2. The states
∣Ω⟩ and ∣!⟩ are mixed into a Jordan cell by the Hamiltonian on the lattice because of
the zero-mode term �†

0�0.

It is also quite instructive to construct Jordan cells corresponding to excited states.
For example, let ∣�⟩ = �†

�−� ∣Ω⟩ and ∣ ⟩ = −1
2
2�
N
�†
�−� ∣!⟩ where � = �/N . One can

express exactly the Hamiltonian and the conformal momentum (see below for an ex-
pression of the latter in terms of the fermions �− �) on the lattice in this basis

(L0 + L̄0)
(N) =

(
ΔN 2
0 ΔN

)
(4.28a)

(L0 − L̄0)
(N) =

(
− N

2�
sin 2�

N
0

0 − N
2�

sin 2�
N

)
(4.28b)

where

Δ(N) =
N

�
sin

�

N
+

[
2N2

�2
− 1

6
− N

�
cotan

�

2N

]
= 1 +O

(
1

N

)
. (4.29)

These states belong to the antiholomorphic sector (ℎ, ℎ̄) = (0, 1). It is important to
notice that the action (L0 − L̄0)

(N) is closed on the states (
∣∣ (N)

〉
,
∣∣�(N)

〉
). Unfortu-

nately, this is not the case in more complicated situations such as percolation, and the
operator (L0 − L̄0)

(N) generally couple these two states to many others. In general,

finite size eigenvectors of (L0 + L̄0)
(N) are not eigenstates of L

(N)
0 or L̄

(N)
0 .

This lattice Jordan cell corresponds in the limit to a Virasoro staggered module,
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and the associated indecomposability parameter �2 = −1 was computed in section 2.4.
Generalizing the lattice method (see Sec. 3.4) to measure indecomposability parameters
to the bulk case, let us try to recover this value directly from the lattice. Actually,
because of the free fermions formulation of the model, it is even possible to obtain
exact formula on the lattice.

We will need the expression of the dagger operator with respect to the Fock state
scalar product which goes to the Virasoro bilinear form in the scaling limit. We denote
the dagger operation with a bar, so that in terms of the original fermions f̄i = f †

i . For
the modes diagonalizing the Hamiltonian, we have

�†p = −�̄p, �†
p = �̄p, �†0 = �̄0, �†

0 = �̄0. (4.30)

We emphasize that the dagger symbol † does not correspond to the dagger operation
for this scalar product.

The main step is then to use the Koo-Saleur formula [132] to properly normalize
our states

H(N)
n = − N

�vF

2N∑

j=1

einj�/N (ei − e∞) +
c

12
�n,0, (4.31a)

P (N)
n =

iN

�v2F

2N∑

j=1

einj�/N [ei, ei+1] , (4.31b)

where H
(N)
n = L

(N)
n + L̄

(N)
−n and P

(N)
n = L

(N)
n − L̄

(N)
−n . These formulas can be expressed

in terms of the fermionic modes �− �. The final expressions are quite cumbersome so
we refer the interested reader to [118] for details. Using all these elements, we are now
ready to compute exactly �2 on the lattice.

Let us now construct �
(N)
2 explicitly. First, we note that ⟨ ∣�⟩ = −�. Then, some

algebra using the Koo-Saleur formulae (4.31) yields

(L1 − L̄−1)
(N)
∣∣�+
〉

= − cos
�

2

√
sin �

�
ei��†

�−� ∣Ω⟩ (4.32a)

(L1 + L̄−1)
(N)
∣∣�+
〉

=

√
sin �

�
ei�/2�†

�−� ∣Ω⟩ (4.32b)

from which we deduce

〈
 
∣∣∣L̄(N)

−1

∣∣∣�+
〉
=

ei�/2

2

√
sin �

[
1 + cos

�

2
ei�/2

]
(4.33)

The lattice indecomposability parameter �
(N)
2 can then be expressed as

�
(N)
2 ≡ ∣

〈
 ∣L̄−1∣�+

〉
∣2

⟨ ∣�⟩ = −sin �

4�

[
(1 + cos2

�

2
)2 + cos2

�

2
sin2 �

2

]
. (4.34)
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Some trigonometric algebra finally yields the result

�
(N)
2 = −N

8�
sin

�

N

(
5 + 3 cos

�

N

)

= −1 +
17

48

( �
N

)2
+O(N−4). (4.35)

Note that it is also possible to define

∣
〈
 ∣L1 + L̄−1∣�+

〉
∣2

⟨ ∣�⟩ = −N
�

sin
�

N
, (4.36)

which actually converges faster towards the continuum value. A similar calculation
holds for holomorphic excitations, so we obtain the same indecomposability parameters
in both sectors.

We remark that one can obtain explicit lattice formulae for other indecomposability
parameters, however, the algebra becomes much more complicated. For example, we
find

�
(N)
3 = − N

256�3
sin

2�

N

[
16 sin2 �

N
(4� +N(1 + cos

�

N
) sin

�

N
)2

+(32� cos
�

N
+ 5N sin

2�

N
+ 2N sin

3�

N
)2
]
. (4.37)

This coefficient has the following asymptotic behavior

�
(N)
3 = −18 +

125

4

( �
N

)2
− 29209

1502

( �
N

)4
+O(N−6). (4.38)

This is consistent with the continuum expression �3 = −18 (see Sec. 2.4). We could go
on and compute lattice expressions of other logarithmic couplings in a similar fashion.
In principle, all the coefficients characterizing the continuum LCFT could be obtained
from the spin chain using the same method.

4.2.3 Measure of b in periodic percolation

We have seen that the case of periodic symplectic fermions is not so different from
the corresponding boundary LCFT, in particular, the indecomposability parameters
are the same in both cases. This is probably due to the lack of interaction, as it turns
out that more complicated interacting theories like polymers or percolation have a bulk
theory that seems to be be completely unrelated to the boundary case [75]. In this
section, we come back to these results in more detail.

Note that we tackle in details the percolation theory in this section, but let us
mention that a similar analysis can be done for the c = −7 theory, or for dilute
polymers for example.
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Percolation and supersymmetry

We now focus on the percolation problem, for which the full bulk theory is still
missing. This theory has central charge c = 0 (which follows from the trivial partition
function Z = 1), and as in the chiral case, we expect the stress energy tensor T (z) =
L−2I to be mixed into a Jordan cell with its logarithmic partner t(z, z̄) such that in
the basis (T, t), the generator of the scale transformation reads 5

L0 + L̄0 =

(
2 2
0 2

)
. (4.39)

We will show later (see also [85]) that the non diagonalizable term can be decomposed
as L0t = 2t+T and L̄0t = T , so that the field t(z, z̄) has a non trivial antiholomorphic
part ∂̄t ∕= 0. Just like in the chiral setup, we define b = ⟨T ∣t⟩.

The natural setup for this theory is of course geometrical, and after a slight modifi-
cation similar (see [140] for a similar discussion in the open case), it is straightforward
to build a transfer matrix (or a Hamiltonian) for a dense loop model with fugacity
n = 1, which has Jordan cells in the spectrum. The different sectors of the transfer
matrix can be labeled using the parameters j and K of the JTL algebra, where it is
understood that we allow contractions of through lines in order to mix the sectors.
As a consequence, j can only decrease under the action of the transfer matrix. We
must first define what we call the stress energy tensor ∣T ⟩. It is the only state with
conformal weight (2, 0) in the vacuum standard module Ŵ0. There are states with the
same exponents in the modules Ŵ1 and Ŵ2,1, but the eigenvalues corresponding to ∣T ⟩
only appear in the module Ŵ2,1. There are many other exact degeneracies between the

module Ŵ0 and Ŵ2,1 that occur only for n = 1, but we will focus on the Jordan cell
involving the stress energy tensor. The Jordan cell we are after should thus mix states
between Ŵ0 and Ŵ2,1 – this will be discussed algebraically in Sec. 4.2.4.

Of course, this Jordan cell cannot appear in the XXZ representation as the numbers
j = 0 and j = 2 correspond to different values of the spin Sz which is conserved by the
Hamiltonian. To obtain another representation where this Jordan cell arises, we turn
to the periodic sl(2∣1) spin chain (we recall that the open version of this models was
defined in Chap. 3). This model corresponds to the fixed point of a nonlinear sigma
model on ℂℙ1∣1, the operator content is given by the partition function [110]

Z = F0,q2−F1,1+8F1,1+23F2,1+24F2,−1+112F3,1+105(F3,e2i�/3+F3,e4i�/3)+. . . (4.40)

which strongly suggests that the building blocks of this spin chain are the standard
modules of the JTL algebra.

First of all, we note that there are 32 fields in the continuum limit with conformal
weights (2, 0). We have to discard 8 of them that live in the module Ŵ1 as their
eigenvalues do not match those of T in finite size. This multiplet of 8 fields transforms in

5. Note that in principle, we could have expected more that one logarithmic partner of the stress
energy tensor T in the bulk, but as can be confirmed numerically, the rank of the Jordan cell for T is
2, just like in the chiral case.
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the adjoint of sl(2∣1), so they can be thought of as “descendants” of the currents. There
are thus 24 degenerate eigenvalues that may correspond to ∣T ⟩ (or ∣t⟩) in the superspin
chain spectrum 6. It turns out to be useful to analyze this multiplet of fields under
the action of sl(2∣1). To that purpose, we use the notations gathered in appendix A.
Except for the trivial representation {0} of dimension 1,the representations that occur
in the spin chain have to be projective representations. This means that either typical
representations {b, j} and atypical projective covers P±(j) can occur. Coming back
to the 24-state multiplet with the same eigenvalue as the stress energy tensor, each
of these states can be labeled by the two quantum numbers (Sz, B) conserved by the
Hamiltonian. From elementary representation theory considerations, one can deduce
that they transform with respect to sl(2∣1) as {0, 2} ⊕ P(0). A similar analysis shows
that in the open case, the multiplet eigenvalues corresponding to ∣T ⟩ transforms as
56 = {0, 1}⊕{1

2
, 3
2
}⊕{−1

2
, 3
2
}⊕{0, 2}⊕P(0). Notice the occurrence of the projective

cover P(0) in both cases. Moreover, it is straightforward to check numerically that the
rank 2 Jordan cell occurs only in the sector (Sz = 0, B = 0). Therefore, we conjecture
that the fields t and T appear respectively at the top and at the bottom of the structure

P(0) =

{0}
↙ ↘

{1
2
}+ {1

2
}−

↘ ↙
{0}

, (4.41)

both in the open and periodic cases, where the arrows represent the actions of the
generators of sl(2∣1). Note that this idea of considering t and T at the top and at
the bottom of a SUSY multiplet goes back to the work of Gurarie and Ludwig [54].
Although the indecomposable sl(2∣1) representations associated with t and T are the
same in the chiral and non-chiral cases, the Virasoro structure seems much more in-
tricate in the bulk and we emphasize that the symmetry algebra (commutant) of the
sl(2∣1) spin chain is in fact much larger than sl(2∣1) [68], so the analysis with respect
to this partial sl(2∣1) symmetry is not the end of the story.

Numerical results

We would like to measure directly on the lattice the indecomposability parameter
for the stress energy tensor b = ⟨T ∣t⟩, using both the supersymmetric and geometrical
setups. It is quite easy to identify the lattice version of the stress energy tensor T .
Let us normalize the states in order to prepare the comparison with CFT; in the basis
(
∣∣T (N)

〉
,
∣∣t(N)

〉
}), we have

L
(N)
0 + L̄

(N)
0 = − 2N

2�vF

2N∑

j=1

(ei − e∞) =

(
Δ

(N)
T 2

0 Δ
(N)
T

)
, (4.42)

6. Actually there are 48 such degenerate eigenvalues in the whole spectrum, but we only focus on
fields with s = ℎ− ℎ̄ = +2.
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L = 2N b
(N)
1 b

(N)
2

10 -4.33296 -3.75812
12 -4.55078 -4.12350
14 -4.68234 -4.35560
16 -4.76634 -4.50978
18 -4.82256 -4.61640
20 -4.86168 -4.69272
22 -4.88978 -4.74896
∞ -5.00 ± 0.01 -5.00 ± 0.02

Exact −5 −5

Table 4.2: Measure of the indecomposability parameter b in periodic percolation.

where Δ
(N)
T = 2N

2�vF
(E

(N)
T +2Ne∞) = 2N

2�vF
(E

(N)
T −E(N)

0 )+O(N−1) and limN→∞Δ
(N)
T = 2.

Percolation has e∞ = 1 and vF = 3
√
3

2
. Note that

∣∣T (N)
〉
is an eigenvector of the

translation operator Q = u2

Q
∣∣T (N)

〉
= e4�i/N

∣∣T (N)
〉
, (4.43)

so that it indeed has a conformal spin s = ℎ − ℎ̄ = 2. We still have to deal with
the normalization of the stress energy tensor, this can be done using the Koo-Saleur
formula (4.31).

The lattice scalar products for the loop and supersymmetric representations are
well-known, and it is now well accepted that they go to the Virasoro bilinear form
in the continuum limit (see the discussion in the chiral case in the previous chapter).
Gathering all the pieces, we define two different versions of b on the lattice

b
(N)
1 =

∣
〈
t(N)∣(L−2 + L̄+2)

(N)∣0(N)
〉
∣2

⟨t(N)∣T (N)⟩ , (4.44a)

b
(N)
2 =

∣
〈
t(N)∣L(N)

−2 ∣0(N)
〉
∣2

⟨t(N)∣T (N)⟩ . (4.44b)

Results are shown on Tab. 4.2, they do not depend on the chosen representation (SUSY
spin chain or geometric model). Note that there are infinitely many ways to regularize
the number b on the lattice. In the scaling limit, we expect

∣∣T (N)
〉
= �

∣∣TCFT
〉
+ . . .

and there are various ways to get rid of the proportionality factor �. It is clear in
eq. (4.44a) that the factor � cancel out of the numerator and the denominator in the
scaling limit.
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OPE argument

The value b = −5 is quite surprising, since using standard arguments, one would
identify to a large extent the chiral sector of the bulk theory with the chiral theory, and
thus one would expect to recover the standard values −5

8
or 5

6
. However, it was recently

argued by D. Ridout that this special value actually emerges from non-chiral Virasoro
representation theory [97]. Moreover, to derive this value analytically, it is also possible
to generalize the c→ 0 catastrophe argument (see Sec. 2.2) to the non-chiral case [75]:

For generic c ∕= 0, conformal invariance fixes the OPE of an operator Φℎ,ℎ̄(z, z̄) with
itself to be of the form

Φℎ,ℎ̄(z, z̄)Φℎ,ℎ̄(0, 0) ∼
aΦ

z2ℎz̄2ℎ̄

[
1 +

2ℎ

c
z2T (0) +

2ℎ̄

c
z̄2T̄ (0) + . . .

]
. (4.45)

This expression is ill-defined as c→ 0. Just like the chiral case, we assume that there is
a field in the spectrum with conformal weights (2, 0) that will cancel this divergence 7.
Let us consider the sl(2∣1) spin chain to fix the ideas. There is an unique primary field
X(z, z̄) that has (ℎ, ℎ̄) = (2, 0) in the partition function (4.40), in terms of Kac labels,
it reads

X(z, z̄) = Φ1,−2(z)⊗ Φ1,2(z̄). (4.46)

In the Coulomb Gas (loop) language, this field is the spin-2 4-leg operator. It lives in
the module Ŵ2,1 with character

F2,1 = q2 + q̄2 + q5/8q̄5/8 + . . . (4.47)

whereas T appears as a descendant of the identity in the module Ŵ0, with character

F0,q2 − F1,1 = 1 + q2 + q̄2 + q5/8q̄5/8 + . . . (4.48)

This is consistent with our observation that the modules Ŵ2,1 and Ŵ0 should be mixed
into a Jordan cell. When c is slightly different from 0 (x = 2 + �), the OPE reads 8

Φℎ,ℎ̄(z, z̄)Φℎ,ℎ̄(0, 0) ∼
aΦ

z2ℎz̄2ℎ̄

[
1 +

2ℎ

c
z2T (0) + zℎ1,−2 z̄ℎ1,2X(0, 0) + . . .

]
. (4.49)

We then define a new field t(z) as

X(z, z̄) =
2ℎ ⟨T ∣T ⟩
c�(�)

t(z, z̄)− 2ℎ

c
T (z), (4.50)

7. We drop the term 2ℎ̄
c
z̄2T̄ (0) to focus on the holomorphic one. The antiholorphic divergence will

be canceled by X̄ in the same way.
8. In order to simplify the notations, we normalize the field X(z, z̄) to absorb the structure con-

stants.
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where �(�) = − ⟨T ∣T ⟩
ℎ1,−2−2

= − ⟨T ∣T ⟩
ℎ1,2

and ⟨T ∣T ⟩ = c
2
. It is an easy exercise to check that

this way, the OPE involves quantities that are perfectly defined as c→ 0

Φℎ,ℎ̄(z, z̄)Φℎ,ℎ̄(0, 0) ∼
aΦ

z2ℎz̄2ℎ̄

[
1 +

ℎ

b
z2(log ∣z∣2T (0) + t(0, 0)) +

ℎ̄

b
z̄2(log ∣z∣2T̄ (0) + t̄(0, 0)) + . . .

]
,

(4.51)
with b = lim�→0 �(�) = −5. The fields T (z) and t(z, z̄) then satisfy the standard
equations for logarithmic operators

⟨T (z)T (0)⟩ = 0 (4.52a)

⟨T (z)t(0, 0)⟩ =
b

z4
(4.52b)

⟨t(z, z̄)t(0, 0)⟩ =
� − 2b log ∣z∣2

z4
, (4.52c)

with � a constant. The coefficient b is thus the indecomposability parameter indeed,
and this whole argument predicts b = −5, in perfect agreement with our numerical
results. The key idea in this approach is the identification X(z, z̄) = Φ1,−2(z)⊗Φ1,2(z̄),
which is natural since this is the only candidate with conformal weights (2, 0) in the
spectrum.

Note that this argument also predicts that ∂̄t ∕= 0 so that

L̄0 ∣t⟩ = ∣T ⟩ , (4.53)

as it should, since we expect L0 − L̄0 to be diagonalizable in any reasonable bulk
theory [83].

Finally, for the generic OPE to be well-defined, it is reasonable to expect X(z, z̄) =
Φ1,−2(z) ⊗ Φ1,2(z̄) (and its analog X̄(z, z̄) = Φ1,2(z) ⊗ Φ1,−2(z̄) giving rise to t̄) to be
degenerate at holomorphic (resp. anti-holomorphic) level 2. We will thus conjecture
that they satisfy the differential equations

(
L̄−2 −

3

2 + 4ℎ1,2
∂̄2
)
X(z, z̄) = 0 (4.54a)

(
L−2 −

3

2 + 4ℎ1,2
∂2
)
X̄(z, z̄) = 0. (4.54b)

Expressed in terms of the usual fields T, t, T̄ , t̄, we find that eq. (4.54) reads

2

c
T T̄ =

1

b

(
L̄−2 −

3

2 + 4ℎ1,2
∂̄2
)
t (4.55a)

2

c
T T̄ =

1

b

(
L−2 −

3

2 + 4ℎ1,2
∂2
)
t̄. (4.55b)
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We thus see that at c = 0

 (2,2) ≡ lim
c→0

2b

c
T T̄ =

(
L̄−2 −

3

2
∂̄2
)
t =

(
L−2 −

3

2
∂2
)
t̄, (4.56)

where the ‘=’ symbol should of course be understood in terms of correlation function.
This equality is crucial as it reduces to the quotient considered by D. Ridout to obtain
a bulk module compatible with b = −5 [97]! The field  (2,2) is a logarithmic partner of
T T̄

(L0 + L̄0)
∣∣ (2,2)

〉
= 4

∣∣ (2,2)

〉
+ 2

∣∣T̄ T
〉
. (4.57)

In the sl(2∣1) chain, it turns out that
∣∣ (2,2)

〉
also has a logarithmic partner [120], so

that T T̄ lies at the bottom of a rank 3 Jordan cell.

Physical discussion

This value of b in the bulk has interesting consequences, in particular, it implies
that there are many fields that do not satisfy differential equations in the bulk.

Although computing all the n-point correlation functions in the bulk may appear
as a daunting task, one may hope that as in the chiral case there would be some phys-
ical fields, with a clear geometrical meaning, that would satisfy the usual correlation
functions. However, if this were correct, there would be a contradiction since the dif-
ferential equation approach always yields either b = −5

8
or b = 5

6
for the Jordan cell of

the stress energy tensor [54] (we shall come back to this shortly). This would not be
consistent with our value b = −5.

It has been mentioned in the literature (see e.g. [157]) that the original assumption
of Gurarie and Ludwig (b = 5

6
for percolation) could be correct in the bulk. This

original argument mostly relies on the calculation of the correlation function through
differential equations coming from null-vector condition. Let us consider for example
the correlation function ⟨Φ2,1Φ2,1Φ2,1Φ2,1⟩. Recall that � = Φ2,1 = Φ2,1(z) ⊗ Φ2,1(z)
is the energy operator in the Potts model, it thus has a clear physical interpretation.
It is used to construct thermal perturbations of the theory SCFT + �

∫
d2zΦ2,1, and is

generically degenerate at level 2. We can thus readily compute its four-point correlation
function, and of course, it follows closely the computation of the chiral case (see 2.2.3).
The solution of this calculation is consistent b = 5

6
like in the open case for polymers

(recall that Φ2,1 belongs to the polymer theory in the open case).

All this may seem a bit puzzling, and we should ask ourselves where this operator
�(z, z̄) comes into play in our sl(2∣1) spin chain. To be consistent with our value b = −5,
something very singular should happen to this operator at c = 0. Indeed, everything
seems to indicate that � is a null field with a logarithmic partner (just like T (z)) and
that all its n-point correlation functions are equal to zero! First, recall that the energy
operator has conformal weight (5

8
, 5
8
) at c = 0, it appears with degeneracy 24. One of

this value lives in the module Ŵ0, this is the field that corresponds to � = Φ2,1, it is
generically degenerate at level 2. However, there are 23 other fields that arise with the
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same conformal weights at c = 0 coming from the module Ŵ2,1. It turns out that � is

mixed into a Jordan cell for H = L0+ L̄0 with one of the fields of Ŵ2,1. These 24 fields
transform under sl(2∣1) as {0, 2} + P(0), in particular, everything seems to indicate
that � lies at the bottom of the projective cover P(0) just like the stress energy tensor.

It is also possible to check that the energy is a null field directly on the lattice.
Indeed, the thermal perturbation corresponds on the lattice to the operator

∑
i(−1)iei.

If we call ∣0⟩ the fundamental of our spin chain, the natural state corresponding to �
should read

∣�⟩ =
∑

i

(−1)iei ∣0⟩ . (4.58)

This vector satisfies ⟨�∣�⟩ = 0 exactly on the lattice as can be checked numerically.
This means that the two-point function of � should be equal to 0, as expected if it
lives at the bottom of a Jordan cell. Supposing that the energy operator is indeed at
the bottom of the Virasoro Jordan cell, we know from conformal invariance that its
two-point function should be equal to zero indeed. Using a " → 0 limit on the solution
of the differential equation of �, it is possible to show that if ⟨��⟩ = 0 at c = 0 (" = 0),
then all the n-point functions vanish ⟨�� . . . �⟩ = 0. Therefore, the four-point function
of the energy operator does make sense at c = 0, and is simply irrelevant in the theory.

One could then wonder if another operator Φ with conformal weights (5
8
, 5
8
) satisfies

the null-vector condition

(L2
−1 −

3

2
L−2)Φ = 0, (4.59)

that would again contradict our result b = −5. This would imply that the correspond-
ing states on the lattice have a null norm. We checked that the 23 other states do no
have a zero norm 9, they are thus not degenerate at level 2 like Φ2,1, and they do not

satisfy the corresponding differential equation. This is quite expected because these
23 other fields live in the module Ŵ2,1 and correspond generically to the conformal
weight ℎ0,2. Although one has ℎ0,2 = ℎ2,1 = 5

8
at c = 0, these fields do not have the

same continuation when c ∕= 0. In particular, ℎ2,1 = ℎ1+1/(x+1),0 =
5
8
− 3

16
"+O("2) and

ℎ0,2 = 5
8
+ 7

48
" + O("2), where we have parametrized x = 2 + ". These fields Φ0,2 do

not satisfy any differential equation, so in particular we do not know in general how to
compute their correlation functions.

In general, this discussion seems to indicate that one has to be careful using differ-
ential equations to compute the correlation functions of bulk observables. Ludwig and

9. It turns out that Virasoro null-vector in the scaling limit can be easily identified on the lattice
using the Koo-Saleur formula (4.31). The continuum null-vectors regularized on the lattice this way
always have a very small norm, usually of the order of the numerical precision. For example, if

∣∣0(N)
〉

is the normalized groundstate of the percolation spin chain, it is then straightforward to check that

L
(N)
−2

∣∣0(N)
〉
has a “very small norm” ( i.e. of the order of the numerical precision) as expected from

the continuum result ⟨T (z)T (0)⟩ = 0 at c = 0. Note however that there is no reason for these vectors
built using the Koo-Saleur formula to be exactly null on the lattice (although it may be hard to tell
from a numerical point of view), as opposed to their H-eigenstate counterparts that should be exactly
null for algebraic reasons.
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Gurarie showed that the solution of the differential equations associated with the two
first row and the first column of the Kac table always yield either b = −5

8
and b = 5

6
.

This is consistent with the results of the chiral case but our result in the bulk tends
to show that none of these operators satisfy these differential equations, and when
they do, there may be some strong logarithmic structure that enforces their correlation
functions to be 0, just like for the energy operator.

4.2.4 Towards a bulk c = 0 LCFT for percolation

Among the remaining challenges, the understanding of bulk LCFTs at c = 0 is
of utmost interest. In the lattice approach, bulk LCFTs are tackled by considering
periodic spin chains, in particular, the sl(2∣1) supersymmetric spin chain. Because of
the “loops” then going around the space direction, the corresponding algebras defined
in 4.2.1 are considerably more complicated. In particular, the quantum group sym-
metry is partly lost. The spectrum of conformal weights is then extremely rich, in
particular, the conformal weights cannot be arranged in a finite number of families
where weights differ from each other by integers. Although the conformal weights are
all rational, the theory is therefore not rational [110].

Another crucial issue is that whereas in the case the TL algebra, irreducible rep-
resentations go to irreducible Virasoro modules in the continuum limit, irreducible
representations over the JTL algebra correspond in the scaling limit to a infinite direct
sum of irreducible representations of vir⊕vir. Getting a handle on the structure of rep-
resentations over the two chiral and antichiral copies of the Virasoro algebra is therefore
quite intricate. This can actually be understood as the existence of a larger symmetry
in the limit, whose irreducible representations decompose over an infinite direct sum
of modules when restricted to the subalgebra vir⊕ vir. While the Virasoro modes Ln
and L̄n can be extracted from the periodic Temperley–Lieb algebras [118, 132], it is
interesting to remark that the scaling limit of some elements in the periodic TL can
lead to other physical observables corresponding to different bulk scaling fields. A
very important example of such a field is the energy operator Φ2,1 × Φ21 which can
be realized by the staggered perturbation

∑
(−1)iei. The introduction of such fields

in the organizing algebra of a LCFT requires a discussion of objects that mix chiral
and anti-chiral sectors, thus leading to the concept of interchiral algebra [149], which
appears as limit of the JTL algebra. This interchiral algebra is probably the key to
understand algebraically such LCFTs. Despite these difficulties, it is worth emphasiz-
ing that we are directly dealing with a physical theory, so that in particular, the c = 0
LCFT constructed here naturally has a unique vacuum Ω, invariant under translations
L−1Ω = 0.

The full analysis of the bulk percolation LCFT will be described in details in [120],
one of the main results being that the Hamiltonian operator L0 + L0 admits Jordan
cells of arbitrarily large rank as the corresponding conformal weight is increased. Just
to give a flavor of the results, let us mention that the stress-energy tensor T (z) and
its logarithmic partner t(z, z̄) (together with their antiholomorphic counterparts) are
living in a very complicated (vacuum) module that consists of a gluing of many standard
JTL modules. In particular, the fields with conformal weights (2, 0) are living in the
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standard modules Ŵ0 and Ŵ2,1, the latter being itself indecomposable with structure

Ŵ0 = Ŵ0,q2/Ŵ1,1 = ∙
X̂0,q2

��
99

99
99

99
99

99

∙ X̂2,1

(4.60)

while Ŵ0,q2 has the following structure

∙
X̂0,q2

����
��

��
��

��
��

��
99

99
99

99
99

99

∙X̂1,1

�� %%K
KKKKKKKKKKKKKKKKKKK ∙ X̂2,1

��yyssssssssssssssssssss

∙X̂3,q2

��

$$J
JJJJJJJJJJJJJJJJJJJ ∙ X̂3,q−2

��

zztttttttttttttttttttt
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...

(4.61)

The operator content of JTL simple modules can then be obtained from this structure,
for instance

F
(0)
0,q2 ≡ TrX̂0,q2

qL0 q̄L0 =

∞∑

n=0

(F3n,q2 + F3n+3,q−2 − F3n+1,1 − F3n+2,1) = �1,1�1,1 = 1,

(4.62)
where �r,s are the irreducible Virasoro characters (without the central charge term).

The operator content of X̂2,1 is much more complicated

F
(0)
2,1 = �2,1�2,1 + �3,1�1,1 + �1,1�3,1 + . . . (4.63)

so that X̂2,1 contains an infinite numbers of irreducible representations (ℎ, ℎ̄) of vir⊕vir

X̂2,1

∣∣∣
vir⊕vir

−→
(
5

8
,
5

8

)
⊕ (2, 0)⊕ (0, 2)⊕ 2 (2, 2)⊕ . . . (4.64)

The indecomposable vacuum module being a complex gluing of such simple JTL mod-
ules, we thus see that the structure over vir ⊕ vir is especially intricate. Arguably,

111



computing bulk 4-point correlation functions in percolation remains even more com-
plicated, and sadly out of reach as of now.

4.3 From boundary to bulk LCFTs: braid transla-

tor

The relation between bulk and boundary theories is a crucial issue in CFT. As
far as ordinary CFTs are concerned, Cardy argued in his celebrated paper [158] that
boundary fields can be interpreted as operators changing boundary conditions, and
that they are in one-to-one correspondence with bulk fields (see also [159, 160] for
related works). Unfortunately, this interplay between bulk and boundary is far more
complicated for Logarithmic CFTs, see [147]. In this section, we shortly review some
of the results that shall be presented in [76], and analyze how to go from boundary to
bulk theories from the point of view of lattice models.

4.3.1 Braid translator

The braid translator is a tool that allows us to generate affine TL algebra repre-
sentations from representations of the ordinary TL and blob algebras. Starting from
(a representation of) the blob algebra ℬ(L = 2N, q, y) one defines the braid operators

g±1
i = 1− q∓1ei. (4.65)

These operators satisfy the braid relations

gigi±1gi = gi±1gigi±1. (4.66)

They can be represented graphically as

gi = g−1
i =

The key point observed in [145] is that the generator defined by

ebraid2N =

(
2N−1∏

i=1

gi

)−1

(�b+ 1) e1 (1 + �b)
2N−1∏

i=1

gi, (4.67)

where
∏n

i=1 gi = g1g2 . . . gn and

� ≡ �(q) =
q− q−1

q−1 − y
, � = �(q−1), (4.68)
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obeys the relations ebraid2N e1e
braid
2N = ebraid2N , e1e

braid
2N e1 = e1, etc., and (ebraid2N )2 = (q +

q−1)ebraid2N of the affine TL algebra TLaL.

Recall then that the TLaL is generated by ej ’s and the translation element u together
with the defining relations (4.10). We can go further and define a translation operator
as

u = (−1)NqN
√

y − q

y − q−1
(1 + �b)

2N−1∏

i=1

gi (4.69)

which obeys

ueiu
−1 = ei+1, 1 ≤ i ≤ L mod L, (4.70)

along with the relation

u2eL−1 = e1 . . . eL−1. (4.71)

The relation u−1e1u = eL readily follows from the expression (4.67) while the last one
can be easily proven by an induction and using the braid relations (4.66).

This construction can be used to generate a representation of the affine TL algebra
TLaN(n) starting from a representation of ℬ(L, n, y): in more mathematical terms, the
braid translation is an algebra homomorphism br : TLaN (n) −→ ℬ(L, n, y). Starting
from a representation of the Blob algebra � : ℬ(L, n, y) −→ End(E) (with E a vector
space, for instance E = V ⊗N for a spin chain), we call Braid-generated representation
the representation over the TLaN(n) algebra � ∘ br.

It is worth noticing that u2N is central and it thus acts on irreducible representations
proportionally to the identity operator. If we parametrize

y =
q−1 − qe2i�

1− e2i�
, (4.72)

one can show that in the standard representation with 2∣j∣ through-lines (we use the
convention j > 0 in the blobbed sector, and j < 0 for the unblobbed one) its action
reads

u2N = (q2je2i�)j. (4.73)

In other words, the factor picked by 2j through-lines as they wind one time around the
annulus is given by

�2j = (q2je2i�)j. (4.74)

Finally for the sector with zero through-lines, j = 0, the braid translator generates
affine TL representations where each non-contractible loop should be replaced by the
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factor

�0 = ei� + e−i�. (4.75)

More precisely, the action of the braid translator on blob standard modules is given by

Wb
j

br−−−−→ Ŵj,q2je2i� (4.76)

Wu
j

br−−−−→ Ŵj,q2je−2i� . (4.77)

In particular, the image of W0 is Ŵ0,e2i� .

We now introduce the braid translator in the ordinary TL case, which corresponds
to setting y = q+ q−1, so ei� = q, and the blob operator to the identity b→ 1. In this
case, eq. (4.67) reduces to (note that (� + 1)(� + 1) = 1)

ebraid2N =

(
2N−1∏

i=1

gi

)−1

e1

(
2N−1∏

i=1

gi

)
. (4.78)

The translation operator u then reads

u = (−1)NqN−1

2N−1∏

i=1

gi, (4.79)

and the factor picked by 2j through-lines as they wind one time around the annulus is
given by �2j = (q2j+2)j . The TLa2N (n) module generated from a TL standard by the
braid-translator is given by

Sj
br−−−−→ Ŵj,q2j+2/Ŵj+1,q2j . (4.80)

4.3.2 Braid translation of minimal models

We start by studying the braid translation of lattice Minimal models – open RSOS
models. We shall show that a remarkable phenomenon occurs, as the periodic Minimal
models can be exactly recovered as the braid translation of various sectors of the
corresponding open models. In some simple cases, it is possible to work out explicitly
the expression of the last braid-induced generator (4.78). For minimal models ℳ(p, p+
1), it turns out that this last interaction is local, and couples the first and the last sites
only. In addition, we shall see that the expression is completely natural, in the sense
that it has the same form as the other generators. This contrasts with logarithmic
models, for which we will argue that the last generator is highly non-local, with some
kind of long-range interaction.

For instance, let us consider first the minimal Ising model ℳ(3, 4). It corresponds
to the Temperley-Lieb algebra with q = ei�/4, with the following quotient eiei+1 +
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Figure 4.5: Example of RSOS path for p = 5 and N = 7 with fixed boundary conditions
(3, 3). The blob operator b acts on this state as the identity as ℎ1 = s+ 1 = 4.

ei+1ei −
√
2(ei + ei+1) + 1 = 0. It can be parametrized using the Pauli matrices as

e2i−1 =
1√
2
(1 + �xi ) (4.81a)

e2i =
1√
2

(
1 + �zi �

z
i+1

)
. (4.81b)

The corresponding Hamiltonian expressed in terms of Pauli matrices is usually called
transverse field Ising chain. We consider free boundary conditions, that is, b = 1.
Using the ℤ2-symmetry of the Ising model and the expression �a�b = �ab + i�abc�

c, it
is straightforward to show that the braid-induced generator is local

ebraid2N =
1√
2

(
1− �zN�

z
N+1

)
, �zN+1 = ��z1 , (4.82)

with � = ±1. This expression is totally natural is the sense that is corresponds to the
usual periodic expression. This can be generalized to other boundary conditions – for
instance, b = 1+�z

2
corresponds to fixed boundary condition in the Ising chain – and to

other minimal models [76] (see related expressions in [161, 162]).

Braid translation of RSOS models

One can actually induce the full diagonal bulk minimal models starting from open
spin chains thanks to the braid translator.

Recall first the definition of the openAp RSOS models, which corresponds to q = ei ,
 = �

p+1
. We consider a height models with ℎi ∈ {1, 2, . . . , p}, i = 1, . . . , L = 2N ,

subject to the relation ∣ℎi − ℎi±1∣ = 1. We define the action of the Temperley-Lieb
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generators as

ei ∣ℎ1, ℎ2, . . . , ℎi . . . , ℎL⟩ = �ℎi−1,ℎi+1

∑

ℎ′i=ℎi−1±1

√
[ℎi]q [ℎ

′
i]q

[ℎi−1]q
∣ℎ1, ℎ2, . . . , ℎ′i . . . , ℎL⟩ ,

(4.83)
where we set ℎ0 = 1. The conformal invariant boundary conditions for RSOS models
have been discussed extensively in the literature [163–165], and we shall only require the
fact that fixing the BCs to be ℎ0 = s and ℎL = s generates the irreducible representation
�s,s = X0 of the blob algebra, where s parametrizes the weight of the blobbed loops

y =
sin(s+ 1)

sin s
=

[s+ 1]q
[s]q

, s = 1, . . . , p. (4.84)

The action of the blob generator in these RSOS representations is given by

b ∣ℎ0 = s, ℎ1, . . . , ℎL = s⟩ = �ℎ1,s+1 ∣ℎ0 = s, ℎ1, . . . , ℎL = s⟩ . (4.85)

The image space of b corresponds to all the states with ℎ1 = s+1. An example of such
state for j = 0 is given on Fig. 4.5.

The RSOS models in periodic geometry do not, a priori, require such a discussion
of boundary conditions: we simply take the Temperley Lieb matrix elements defined
in (4.83) and let them act on RSOS configurations which are periodic, that is, ℎL+1 ≡
ℎ0. This produces a finite dimensional representation �period of the periodic Temperley–
Lieb algebra, which obviously must be some particular quotient. Note that we can
choose ℎ0 to be odd or even from the beginning, and it remains this way upon acting
with the Hamiltonian/Transfer matrix. We define the periodic RSOS models without
this kind of restriction, i.e., the height ℎ0 takes all values from 1 to p. It is, in fact,
known [67] that such defined representation �period decomposes as a direct sum of
irreducible representations of the periodic TL algebra, where there are no through
lines, and where non-contractible loops are given the weight 2 cos s�

p+1
, with s = 1, . . . , p.

These representations are X̂0,q2s in our standard notations. The operator content of
these irreps is [67]

p−1∑

r=1

�rs�̄rs, (4.86)

where we use the standard notations for the character of Virasoro simple modules.

The point is now that each of these irreducible representations X̂0,q2s can be obtained
by the braid translation br defined in (4.67)

�s,s = X0
br−−−−→ X̂0,q2s , (4.87)

where we have used the identification (4.75) and ei� = qs for y = [s+1]q
[s]q

. After summing
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of all values of s, we finally obtain

p⊕

s=1

�s,s
br−−−−→ �period, (4.88)

so the overall partition function reads

Z =

p∑

s=1

p−1∑

r=1

�rs�̄rs. (4.89)

Therefore, after a sum over the braid translation of the p sectors of the open model
with boundary conditions (s, s), we end up with the partition function of the periodic
Ap models.

4.3.3 Braid translation of Logarithmic CFTs

Braid translation of the gl(1∣1) spin chain

Whereas for minimal models, one can obtain the full bulk theory starting for open
spin chains, this approach unfortunately does not work for Logarithmic CFTs. Starting
from the gl(1∣1) spin chain for example, one finds that the last generator is highly non-
local in terms of the fermions

ebraidL=2N =

(
f1 + (1− i)

L−1∑

j=2

fj + fL

)(
f †
1 + (1 + i)

L−1∑

j=2

f †
j + f †

L

)
. (4.90)

This is fundamentally different from the case of the minimal models, since the braid-
induced last generator does not reduce to the usual periodic expression e2N = (f1 +
f2N)(f

†
1 +f

†
2N ). However, the spectrum of this spin chain is actually the same as in the

original periodic case. In the continuum limit, this can be easily seen as the operator
content of the braid translation of the TL standard module with 2j through lines reads

Fj,(−1)j+1 − Fj+1,(−1)j , (4.91)

so that the partition function reduces to that of the usual periodic gl(1∣1) chain

Z =

∞∑

j=0

(2j + 1)
(
Fj,(−1)j+1 − Fj+1,(−1)j

)
= F0,−1 + 2

∞∑

j=1

Fj,(−1)j+1. (4.92)

Even though the spectrum is the same, the logarithmic structure is completely different.
The full analysis is too long to be given here, and we refer the reader to [76] for details.
The outcome of this lattice analysis is that all the indecomposability is concentrated in
the holomorphic sector, while the antiholomorphic one is fully reducible. For example,
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we find

L0 =  +
0  

−
0 +

∑

m∈ℤ★

: +
−m 

−
m :, (4.93)

L̄0 =
∑

m∈ℤ★

: ̄+
−m ̄

−
m :, (4.94)

so the zero-modes (the non-diagonalizable part) are only in L0. Unfortunately, the
fact that L0 − L̄0 is non-diagonalizable makes the theory highly non physical, and
the non-locality of the last generator has drastic consequences on the field theory. In
particular, correlation functions are not invariant under translations, the fields are not
local etc. Therefore, enforcing the bulk LCFT to be obtained from a chiral sector
makes the theory non-physical, with indecomposability only in the chiral sector, and
some ‘artificial’ fully reducible anti-holomorphic sector on top of that.

Braid translation of Percolation

L = 2N b(N)

10 -0.598912
12 -0.607285
14 -0.612164
16 -0.615264
18 -0.617357
20 -0.618839
22 -0.619927
∞ -0.62500 ± 0.00001

Conjecture −5/8

Table 4.3: Measure of the indecomposability parameter b in the braid translation of
the open percolation problem with q = ei�/3.

The study of the braid translation of the gl(1∣1) spin chain taught us that the
braid translation operation may yield some bizarre (and most likely non-physical) bulk
theories, as opposed to the case of unitary minimal models. The braid induced theories
have an algebraic structure that mimics the chiral case, and are therefore much simpler
than what is expected for “physical” bulk LCFTs. To conclude this section, we mention
some results obtained for the braid translation of the percolation problem, for which
the parallel with the algebraic structure of the chiral theory should be clearer. We
focus on the sl(2∣1) supersymmetric formulation of the theory.

Using our knowledge of the representation theory of the TL algebra at q = ei�/3 [69,
100], we can deduce the subquotient structure of the JTL representations induced from
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the TL standard modules

br(Sj) = Ŵj,q2j+2/Ŵj+1,q2j =

⎧
⎨
⎩

X̂j,q2

↘
X̂j+2,1

j ≡ 0 (mod3)

X̂j,1 j ≡ 1 (mod3)

X̂j,1

↘
X̂j+1,q2

j ≡ 2 (mod3)

In terms of generating function, this implies for example that

F3n,q2 − F3n+1,1 = F
(0)
3n,q2 + F

(0)
3n+2,1, (4.95a)

F3n+2,1 − F3n+3,q4 = F
(0)
3n+2,1 + F

(0)

3n+3,q2 . (4.95b)

We see that the induced modules have a structure that mimics exactly the standard
modules of the TL algebra. For instance, the Jordan cell of the stress energy tensor
corresponds to the diamond module

X̂2,1

↙ ↘
X̂0,q2 X̂3,q2

↘ ↙
X̂2,1

, (4.96)

which is a cousin of the Jordan cell that arises in open chains [69]. Note that this JTL
module is in fact much simpler that the one that contains the stress energy tensor in
the “physical” sl(2∣1) spin chain.

We have measured numerically the indecomposability parameter b associated with
the stress energy tensor of the theory, we recover b = −5

8
(Tab. 4.3) which is the value

of the open case, which seems reasonable given the construction of the theory, with
again a normalization with a factor 1 off-diagonal in the Hamiltonian. Just like for
gl(1∣1), this suggests that the braid-induced theory is non-pysical as L0 − L̄0 is not
diagonalizable in this theory, and one has L̄0t = 0 even though L0t = 2t + T . As a
conclusion, the braid translator works well only to construct bulk theories where chiral
and anti-chiral parts are fully decoupled, so this construction unfortunately fails for
logarithmic CFTs. This will be discussed in more detail in [76].
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Chapter 5
Logarithmic structure of geometrical models
and disordered systems in dimension d ≥ 2

To this point we have extensively exposed ideas and tools that are proper to two
dimensions. However, the fundamental mechanism for producing Jordan cells of the di-
latation operator remains operative in higher dimensions, d > 2, provided that two (or
more) suitably related operators possess coinciding scaling dimensions. The algebraic
tools that would permit to compute the ensuing logarithmic structure directly within
such an LCFT are however missing. Instead, insight can be gained by accessing that
theory as a limit, by tuning a suitable continuous (or formally continuous) parameter.
For a recent review describing this point of view, see [77].

One of the main advantages of this approach is that it allows one to obtain concrete
results (e.g. probabilities, averaged correlation functions) in situations that are of direct
physical relevance – namely, disordered systems or geometrical problems. Among those
are:

1. Disordered systems described by n-fold replication, in the replica limit n → 0
[18, 53];

2. The O(n) model, in the limit n→ a non-positive integer (including the polymer
limit n→ 0) [18];

3. The Q-state Potts model, in the limit Q→ a non-negative integer (including the
bond-percolation limit Q→ 1) [18, 78, 79].

In all cases the key assumption is that physical operators can be fully described as
irreducibles of the corresponding symmetry group (Sn, O(n) or SQ, as the case may
be). Obviously, this approach will fail to give exhaustive results if the actual symmetry
turns out to be larger (e.g., when specializing the results for the Potts model in general
dimension to d = 2).

In this last chapter, we briefly review the ideas of Cardy [18, 53] to tackle critical
disordered systems using a replica approach. We show how this is consistent with the
c → 0 catastrophe described in chapter 2, and we also mention the alternative SUSY
approach which is closely related to the more algebraic framework developed in the
previous chapters. We then turn to geometrical problems and argue that this ‘replica’
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method can be applied to obtain geometrical observables that behave logarithmically
at the critical point, in any dimension below the upper critical dimension.

5.1 Critical disordered systems: supersymmetry,

replicas and c = 0 LCFTs

5.1.1 Disordered systems and replicas

Perturbation theory and Harris criterion.

Let us consider a ferromagnet with quenched disorder, or to be more concrete,
a spin model with Hamiltonian H = −∑i,j Ji,jSiSj in d dimensions, where Ji,j are
quenched random variables, with short-range correlations only. Near the critical point
of the pure system, the continuum limit of the system can be represented as

S = S∗ +

∫
ddrJ(r)�(r) + . . . (5.1)

where S∗ the action of the pure system at the critical point, �(r) is the energy operator,
and J(r) is a random field with J(r) = 0 and J(r)J(r′) = ��(r − r′). Obviously, the
disordered theory is not conformally invariant, since it is not even invariant under
translations; however, once averaged over, the disorder may be a relevant perturbation
that will drive the system to a new RG fixed point, with conformal invariance restored
(in the averaged system). To see this, we need a clear field theory description of
averaged observables. The typical problem when dealing with disordered systems is to
compute averaged correlation functions, of the spin operator for example

⟨�(r1)�(r2)⟩ =
1

Z
Tr�(r) e−S[�(r)]�(r1)�(r2). (5.2)

The main issue here is the partition function in the denominator. A very convenient
(and standard) way around this is to introduce replicas a = 1, . . . , n, and to take
the formal limit n → 0 in the end. This amounts to computing the free energy as

logZ = limn→0
Zn−1
n

. Doing so, we find

Zn = Tr�a(r)e
−

∑

a Sa+
�
2

∫

ddr
∑

a ∕=b �a(r)�b(r)+..., (5.3)

where we have dropped less relevant terms. The dimension of the perturbation is
2(d−�−1) where � is the thermal exponent at the pure critical point, hence the disorder
is relevant if (Harris criterion)

d� < 2. (5.4)
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When the disorder is relevant, the system will typically flow to a new random fixed
point, for which we expect conformal invariance to be restored. This new fixed point
is what we will study in the following, and we will argue that we expect it to be a
good candidate for a LCFT. Random fixed points may be accessed perturbatively in
the dimension of the perturbation, this can be done for example for the Ising model in
d = 2+ " dimensions, or for the 2D Potts model with Q = 2+ " states (see e.g. [166]),
or the disordered O(n = 1 − ") model [167, 168]. For a discussion of the effects of
quench disorder on first-order phase transitions, see [169].

n→ 0 limit and logarithmic correlations.

Following Cardy [18, 53], we now argue that random fixed points in disordered
systems must contain logarithmic observables. To do so, let us consider an operator �a
(a = 1, . . . , n) in the replicated theory that transforms as a ‘vector’ under permutations
of the replicas. Typically, one can think of � as the energy operator in a spin model.
More formally, {�a}a=1,...,n is a representation of the permutation group Sn, where n
is the number of replica. This representation is reducible as the linear combination
Φ =

∑
a �a is clearly invariant under permutations. The n − 1 remaining fields �̃a =

�a − 1
n
Φ (satisfying

∑
�̃a = 0) then transform irreducibly under Sn. Because Sn is

a global symmetry of the replicated theory, we expect the scaling fields of the theory
to transform irreducibly under the symmetric group Sn. We thus expect Φ and �̃a to
have different scaling dimensions ΔΦ(n) and Δ�̃(n). More precisely, because of the Sn
symmetry, their two-point functions must take the form

⟨Φ(r)Φ(0)⟩ = nA(n)

r2ΔΦ(n)
, (5.5)

⟨�̃a(r)�̃b(0)⟩ =
Ã(n)

(
�ab − 1

n

)

r2Δ�̃(n)
, (5.6)

where A(n) and Ã(n) are regular functions of n, with A(0) ∕= 0 and Ã(0) ∕= 0. Since
we ultimately want to take the limit n → 0 to obtain the physical properties of the
disordered model, we see that �̃a is ill-defined in that limit. The 1/n pole in the
correlation function of �̃ is actually the reason why logarithms appear when n = 0,
this is obviously reminiscent of the c→ 0 catastrophe described in chapter 2. As argued
by Cardy [18], averaged physical quantities are well-defined if and only if A(0) = Ã(0)
and Δ = ΔΦ(0) = Δ�̃(0). Getting back to the original system, one finds that

⟨�(r)⟩⟨�(0)⟩ = lim
n→0

⟨�1(r)�2(0)⟩ = −2A(0)

�(0)

log r + Cst

r2Δ
, (5.7)

⟨�(r)�(0)⟩ − ⟨�(r)⟩⟨�(0)⟩ = lim
n→0

(⟨�1(r)�1(0)⟩ − ⟨�1(r)�2(0)⟩) =
A(0)

r2Δ
, (5.8)

where � = − limn→0
n

Δ�̃(n)−ΔΦ(n)
. To reformulate these results in a more familiar lan-

guage, let Ψ = �(n)�1, with �(n) = − n
Δ�̃(n)−ΔΦ(n)

. Under a scale transformation
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r −→ Λr, one can readily check that it transforms as

Ψ(Λr) = Λ−Δ (Ψ(r)− log ΛΦ(r)) , (5.9)

which means that the dilatation operator D acts on Ψ as DΨ = ΔΨ+Φ. The two-point
functions of these fields then read

⟨Φ(z)Φ(0)⟩ = 0, (5.10a)

⟨Φ(z)Ψ(0)⟩ =
b

r2Δ
, (5.10b)

⟨Φ(z)Ψ(0)⟩ =
� − 2b log r

r2Δ
, (5.10c)

with the b number

b = A(0)� = − lim
n→0

nA(n)

Δ�̃(n)−ΔΦ(n)
. (5.11)

Some remarks: other operators and Replica-Symmetry-Breaking.

It is important to notice that the argument above works only if the operator �
transforms trivially under some eventual extended symmetry. For example [18], because
of the ℤ2 spin-field symmetry of the Ising model, the spin operators {�a}a=1,...,n in the
replicated theory transform irreducibly under the symmetry group ℤ2×Sn, so that the
argument above does not apply in that case. However, because of the c→ 0 argument,
we still expect logarithms to occur in higher-rank correlation functions. For instance,
one can easily argue that the expected Jordan cell for the stress-energy tensor in the
disordered theory implies that

⟨�(r1)�(r2)⟩⟨�(r3)�(r4)⟩ ∼
1

r2Δ�
12 r2Δ�

34

(
1 +

(
r12r34
r13r24

)2(
A+B log

r12r34
r13r24

)
+ . . .

)
.

(5.12)
Another important point is that the above argument holds only if the Sn symmetry

is not broken. This seems to be the case for example for the disordered two-dimensional
Potts model for Q > 2 [170]. However, there is no reason for this to be true in general,
and it would be very interesting to generalize the argument above to the case of replica
symmetry breaking. The representation theory is more involved in that case, but it
remains manageable at least for the one-step replica symmetry breaking (1RSB). In a
nutshell, instead of n replica, one has l groups of k elements each, with n = l× k. The
symmetry group then becomes a so-called wreath product of permutation groups [171].

Labeling the fields �
(i)
a , with i = 1, . . . , l and a = 1, . . . , k, Φ =

∑
a,i �

(i)
a is still

an invariant, but the (n − 1)-dimensional representation �̃
(i)
a ≡ �

(i)
a − 1

n
Φ becomes

reducible and is broken into two representations with dimension l− 1 and n− l. These
representations are spanned by the fields �i =

∑
a �̃

(i)
a and �̂

(i)
a = �̃

(i)
a − 1

k
�i. Constructing

correlation functions as before and taking the limit k → 0 while keeping l fixed, one
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obtains logarithmic correlation functions as in the replica-symmetric case.

5.1.2 Disordered systems and SUSY

In this last chapter, we shall mostly focus on replica-like approaches similar to the
n → 0 argument introduced in the previous sections. However, as mentioned in the
introduction, there is another convenient way to deal with disordered systems in the
case where there are no interactions. Let us imagine that one wants to compute the
average of

⟨O⟩ = 1

Z[{ℎ(r⃗)}]Tr�
(
Oe−H[�,{ℎ(r)}]) , (5.13)

where ℎ(r) are quenched disordered variables, � are bosonic degrees of freedom and
H [�] is Gaussian – i.e. non-interacting. Using the properties of Grassmanian Gaussian
integrals, one can write the denominator as Z−1 = Tr e

−H[ ] when  are fermionic
variables, and then average over disorder configurations. This is the so-called su-
persymmetry approach [28]. As a concrete example, suppose we start with a d + 1
dimensional random quantum problem with Hamiltonian H = −∇2 + V , describing a
single particle in a disordered potential V with V = 0 and V (r)V (r′) = ��(r−r′). The
one-particle Green functions at fixed energy G±(E)(r, r′) =

〈
r′∣ (E −H ± i�)−1 ∣r

〉
can

be written as

±iG±(E)(r, r′) =
1

Z

∫
D�D� �(r′)�(r)e∓i

∫

dr�(−∇2+V−E∓i�)�. (5.14)

Using supersymmetry and averaging over the disorder, one ends up with

±iG±(E)(r, r′) =

∫
D�D�D D �(r′)�(r)e−SSUSY , (5.15)

where

SSUSY = ±i
∫

dr

[
�
(
−∇2 + V − E ∓ i�

)
�+  

(
−∇2 + V −E ∓ i�

)
 ± i

�

2

(
��+   

)]
.

(5.16)
We see that the averaged Green function can be computed from a pure field theory
where bosonic and fermionic degrees of freedom are effectively interacting because of
the disorder. If the SUSY problem is conformal, it must have central charge c = 0
since ZSUSY = 1, and so this means that averaged quantities in the original disordered
system will behave algebraically with critical exponents given by a c = 0 theory.

We therefore see that disorder systems must correspond to c = 0 CFTs 1, and thus
must be described by Logarithmic CFTs [18, 19]. Examples of problems described by
c = 0 LCFT after mapping onto a SUSY model include the transition between plateaus

1. In the replica approach, this corresponds to the fact that the central charge of the replicated
theory c(n) goes to c = 0 as n→ 0.
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Di

Dj

Figure 5.1: 2N -leg watermelon operators in the Potts model correspond to the insertion
of N FK clusters that will persist until they are taken out by another watermelon
operator.

in the IQHE, or for instance, the so-called Nishimori point in the two-dimensional
random-bond Ising model [30]. In the following, we will not use this supersymmetry
approach which corresponds more to the algebraic framework developed in the previous
chapters, but instead we shall argue that the replica approach can be used to study
geometrical problems as well.

5.2 Operator content of the Potts model in d di-

mensions

Disordered systems and geometrical problems are very closely related. The transi-
tion in the Spin Quantum Hall Effect can be mapped onto classical percolation [31],
the Chalker-Coddington model for the Integer Quantum Hall Transition can also be
transformed in a loop model, which can be in turn truncated to make it solvable [172];
the supersymmetric formulation of the Nishimori point [30] in the disordered 2D Ising
model can be expanded in a complicated loop model as well etc. While disordered
systems are arguably more interesting physically, it is therefore worth analyzing the
simpler geometrical models to try to understand further the logarithmic structure of
random fixed points.

Considering critical disordered systems or geometrical problems as limits can be
very fruitful, as it allows one to obtain interesting results in arbitrary dimension, using
mainly simple ideas and non-technical tools. This line of research has been pushed the
furthest for the Potts model [78, 79] and we review here some of the results obtained.

5.2.1 SQ representation theory

The operator content of the Potts model in arbitrary dimension is given by the so-
called watermelon operators, that will provide natural geometrical observables, which
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may or may not behave logarithmically at the critical point.

As a first step in constructing the N -cluster watermelon operators in arbitrary
dimension, we need some representation theoretical preliminaries. The intuitive idea
is that we must construct a certain operator acting on N spins (that will eventually be
taken to be adjacent, or belong to a small neighborhood) and satisfying some symmetry
requirement. If we require the N spins to take different values they will obviously
belong to distinct FK clusters, but this is not enough, since we must also ensure that
the N FK clusters inserted by the watermelon operator persist until they are taken
out by another watermelon operator (and not just “end in the middle of nowhere”),
see Fig. 5.1.

To make this idea precise, and to attain our objectives, we now set out to classify
N -spin operators from the point of view of irreducible representations (irreps) of the
symmetric group SQ.

Let L
(1)
Q be the span of all Q-component vectors O(�), where � = 1, . . . , Q. This

space obviously has dimension Q. Letting the symmetric group SQ acting on the index
�, this defines a reducible representation of this group. It is indeed straightforward to
form the invariant quantity

∑Q
�=1 O(�) which transforms as the trivial, one-dimensional

irrep [Q]. The decomposition with respect to SQ thus yields

L
(1)
Q = [Q]⊕ [Q− 1, 1] , (5.17)

where [Q− 1, 1] is the space of vectors O(�) that satisfy
∑

�O(�) = 0, with dimension
Q− 1.

Here, and in the sequel, an irrep � of SQ is denoted by its Young diagram [�1, �2, . . . , �k],
where �i is the length of row i. It is a remarkable fact that we shall only need repre-
sentations with at most k = 2 rows; the same property is well known to hold in d = 2
dimensions [173].

Let us now consider a slightly more involved example. Let L
(2)
Q be the span of all

symmetric Q × Q matrices O(�1, �2) with zero elements on the diagonal. We have

dim L
(2)
Q = Q(Q−1)

2
. Once again, acting with SQ on the indices �1 and �2, this defines

a representation which turns out to be reducible. Indeed, the subspace of matrices
that satisfy

∑Q
�1=1O(�1, �2) = 0 provides an irreducible representation [Q− 2, 2] of

dimension Q(Q−1)
2

− Q = Q(Q−3)
2

. The quotient of L
(2)
Q by this invariant subspace is

a representation of dimension Q, isomorphic to L
(1)
Q , which is spanned by the vector

Õ(�2) =
∑

�1
O(�1, �2). We therefore write

L
(2)
Q = [Q]⊕ [Q− 1, 1]︸ ︷︷ ︸

Õ(�2)=
∑

�1
O(�1,�2)

⊕ [Q− 2, 2]︸ ︷︷ ︸
∑

�1
O(�1,�2)=0

. (5.18)

The generalization of this decomposition is straightforward. For example, the space
L
(3)
Q ofQ×Q×Q symmetric tensorsO(�1, �2, �3) which vanish when two indices coincide

is decomposed as L
(2)
Q ⊕ [Q− 3, 3], where the subspace [Q− 3, 3] corresponds to the

tensors that satisfy the Q(Q− 1)/2 constraints
∑

�1
O(�1, �2, �3) = 0. The remaining
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space L
(2)
Q then corresponds to the decomposition of Õ(�2, �3) =

∑
�1
O(�1, �2, �3). In

general, we will denote by L
(N)
Q the space of Q×Q×⋅ ⋅ ⋅×Q symmetric tensors of rank

N that vanish whenever two indices coincide. The dimension of L
(N)
Q is Q(Q−1)...(Q−N+1)

N !
.

We then have the decomposition

L
(N)
Q = [Q]⊕ [Q− 1, 1]⊕ ⋅ ⋅ ⋅ ⊕ [Q−N + 1, N − 1]︸ ︷︷ ︸

Õ(�2,...,�N )=
∑

�1
O(�1,�2,...,�N )

⊕ [Q−N,N ]︸ ︷︷ ︸
∑

�1
O(�1,�2,...,�N )=0

. (5.19)

5.2.2 Watermelon operators t
(k,N)
a1,...,ak

We consider a symmetric operator O(�1, . . . , �N), defined on N distinct Potts spins,
and we impose that it vanishes if any of the N spins coincide. We would like to
understand how to decompose this operator in terms of irreps of the symmetric group.
According to the results of the previous section, this means that we want to construct
each of the representations in the decomposition

[Q]⊕ [Q− 1, 1]⊕ [Q− 2, 2]⊕ . . .⊕ [Q−N,N ]. (5.20)

By the hook formula the dimensions of the representations are

dk ≡ dim([Q− k, k]) =
Q!

(Q− k + 1)!

Q− 2k + 1

k!
, (5.21)

and in terms of dimensions the decomposition (5.20) reads

DN ≡
N∑

k=0

dk = (1)+(Q−1)+

(
Q(Q− 3)

2

)
+. . .+

(
Q!

(Q−N + 1)!

Q− 2N + 1

N !

)
=

Q!

(Q−N)!N !
.

(5.22)
This is indeed the number of symmetric tensors that vanish if any two spins coincide.

Constructing the invariant tensors

To construct an explicit basis for these representations, we proceed as follows. Let us
consider first the case N = 1. The invariant [Q] is just a constant t(0,1) ≡ 1 =

∑
a �a,�1

in that case. Meanwhile, the Q− 1 generators of the irrep [Q− 1, 1] read

t(1,1)a (�1) = �a,�1 −
1

Q
t(0,1) . (5.23)

These operators satisfy
∑

a t
(1,1)
a = 0 so we indeed have only Q − 1 of them, and

note that we also have
∑

�1
t
(1,1)
a (�1) = 0 which is expected by the definition of the

representation [Q− 1, 1].
We next consider the case N = 2. The invariant [Q] is nothing but t(0,2) ≡ ��1 ∕=�2 =

1− ��1,�2 . Note that since we already decided that our operators vanish whenever two
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spins coincide, we can set t(0,2) = 1 in that space. The representation [Q − 1, 1] is
trivially obtained from the case N = 1 as

t(1,2)a (�1, �2) = t(1,1)a (�1) + t(1,1)a (�2) = ��1,a + ��2,a −
2

Q
. (5.24)

The only new non-trivial case is the basis of [Q − 2, 2]. We are looking for a basis of
Q(Q− 3)/2 operators t(2,2)(�1, �2) that satisfy

∑

�1

t
(2,2)
ab (�1, �2) = 0 , (5.25)

as explained in section 5.2.1. We label them using two symmetric indices a, b that run
from 1 to Q. It is clear that t(2,2)(�1, �2) must contain the two terms ��1,a��2,b+��2,a��1,b.
However, just as in (5.24) we need to subtract multiples of the lower-order tensors in
order the fulfill the constraint (5.25). Solving the resulting linear system we easily find

t
(2,2)
ab (�1, �2) = ��1,a��2,b+��2,a��1,b−

1

Q− 2

(
t(1,2)a (�1, �2) + t

(1,2)
b (�1, �2)

)
− 2

Q(Q− 1)
t(0,2),

(5.26)

for a ∕= b; when a = b we have t
(2,2)
ab (�i, �j) = 0 by definition. One can check that

the constraint holds also for the tensor indices, namely
∑

a t
(2,2)
ab = 0, so that there are

Q(Q− 1)/2−Q = Q(Q− 3)/2 generators indeed.

General procedure and physical interpretation

The general pattern should already be clear at this point, the general results will
be given in [79].

We now claim that for a given number of spins N , the most symmetric tensor t(N,N)

is the N -cluster watermelon operator in arbitrary dimension d. This statement will
be corroborated in the next section where we show that the corresponding two-point
functions are proportional to the probability that N distinct FK clusters connect each
of the two groups of N points. We defer the precise interpretation of the tensors of
lower rank, t(k,N) with k < N , to [79] – they correspond, once properly arranged, to
subleading operators.

5.2.3 Correlation functions: discrete results

We next show that one can obtain useful structural results on correlation func-
tions of the tensors t(k,N) constructed in section 5.2.2, by combining the representation
theoretical tools of section 5.2.1 with elementary combinatorial considerations. These
results account in particular for the dependence of correlation functions on the tensorial
indices. Moreover, the correlation functions of watermelon operators will be related
to linear combinations of the probabilities that the spins acted on by one operator
is connected by FK clusters to spins acted on by other operators in various ways.
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This geometrical content is essential for unraveling the physical interpretation of the
correlation functions.

The structural results found in this section involve various coefficients that have
poles when Q tends to a non-negative integer. The cancellation of these singularities
is at the heart of the mechanism that will eventually produce the logarithm behavior
of correlation functions in the continuum limit.

Throughout this section we only apply combinatorial considerations to the finite
number of spins that enter explicitly in the watermelon operators. The results are
therefore completely general and do not, in particular, depend on the graph (or d-
dimensional lattice) on which the Potts model is defined.

Two-point functions: N = 1 spin

We recall from section 5.2.2 that the two operators acting on one spin read, in our
notation, t(0,1)(�1) = 1 and t

(1,1)
a (�1) = �a,�1 − 1

Q
. The two-point functions of these

operators are the following:

〈
t(0,1)(r1)t

(0,1)(r2)
〉
= 1 , (5.27)

〈
t(1,1)a (r1)t

(1,1)
b (r2)

〉
=

1

Q

(
�a,b −

1

Q

)
ℙ

()
. (5.28)

where ℙ

()
is the probability that r1 and r2 are in the same FK cluster. While the

former result is of course trivial, we wish to spend a moment discussing the latter result
in order to carefully fix some ideas and notations to be used throughout this section.

First, we imagine that the two groups of N = 1 spins are situated at (or later, when
N > 1, in small neighborhoods around) the points r1 and r2 respectively. Obviously
we cannot specify how the correlation function depends on these coordinates, since we
have not yet assumed anything about the lattice on which the Potts model is defined,
nor whether the coordinates are widely separated. We shall come back to that issue
later on, as we start exploiting the consequences of scale and conformal invariance.
However, we can still denote by ℙ ( ) the probability that the two spins belong to two
different FK clusters, and by ℙ ( ) the probability that they belong to the same FK
cluster. In the former case, the two spins are summed over independently, and the
coefficient of ℙ ( ) is

1

Q2

∑

�1,�2

(
�a,�1 −

1

Q

)(
�b,�2 −

1

Q

)
= 0 . (5.29)

In the latter case, the two spins are constrained to take the same value, and the
coefficient of ℙ ( ) is therefore

1

Q

∑

�1

(
�a,�1 −

1

Q

)(
�b,�1 −

1

Q

)
=

1

Q

(
�a,b −

1

Q

)
. (5.30)
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Combining (5.29)–(5.30) we arrive at (5.28).

We also note that the mixed correlation function is identically zero:

〈
t(0,1)(r1)t

(1,1)
a (r2)

〉
= 0 . (5.31)

This is a general feature that will carry over to higher N for symmetry reasons.

Two-point functions: N = 2 spins

We now move to the slightly more involved case of N = 2 spins. Our results read
as follows:

〈
t(0,2)(r1)t

(0,2)(r2)
〉
=

(
Q− 1

Q

)2(
ℙ

( )
+ ℙ

( ))
+
Q− 1

Q
ℙ

( )
, (5.32)

〈
t(1,2)a (r1)t

(1,2)
b (r2)

〉
=
Q− 2

Q2

(
�a,b −

1

Q

)(
Q− 2

Q
ℙ

( )
+ 2ℙ

( ))
, (5.33)

〈
t
(2,2)
ab (r1)t

(2,2)
cd (r2)

〉
=

2

Q2

(
�ac�bd + �ad�bc −

1

Q− 2
(�ac + �bd + �ad + �bc) +

2

(Q− 2)(Q− 1)

)
ℙ

( )
.

(5.34)

In the corresponding diagrams, the spins corresponding to the leftmost operator (and
that we imagine situated in a neighborhood around r1) are shown on the bottom, and
those corresponding to the rightmost operator are depicted on the top. We denote
by ℙ ( ) (resp. ℙ ( ), or ℙ ( )) the probability that there are zero (resp. one, or two)
FK clusters connecting an r1 point to an r2 point. Notice that the different points
belonging to the same operator cannot be connected among themselves, because of the
constraint that the watermelon operators vanish in the case of coinciding spins. We also
stress that ℙ ( ) is the probability that any one of the two r1 points is in the same FK
cluster as any one of the two r2 points, so even though the connected pair of points is
shown on the left, the diagram actually stands for a sum of four distinct contributions.
This is consistent with the fact that the watermelon operators are symmetric in their
spin indices.

To fix the coefficients appearing in front of the three probabilities in (5.32) one
simply needs to average the product of t(0,2)(r1) = 1 − ��1,�2 and t(0,2)(r2) = 1 − ��3,�4
over the spins �1, �2, �3, �4, upon inserting an extra factor of 1 in the case of ℙ ( ), a
factor ��1,�3 in the case of ℙ ( ), and a factor ��1,�3��2,�4 in the case of ℙ ( ). Doing
this leads to the result shown in (5.32).

To establish (5.33)–(5.34) one further needs to take account of the tensor indices.
It is useful to write first an Ansatz for the possible dependence on the tensor indices.
In the case of (5.33) this is obvious provided by c1,1�a,b − c0,1, where c1,1 and c0,1 are
some constants. We then apply the calculational scheme just explained for the t(0,2)

correlator to the case at hand where t
(1,2)
a is given by (5.24); the two cases a = b and

a ∕= b must be examined in turn to fix both constants c1,1 and c0,1. In the case of (5.34)
the Ansatz for the dependence on the tensor indices should obviously take into account
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that t
(2,2)
ab is zero when a = b. Therefore we have an Ansatz of the type

c2,2(�ac�bd + perm) + c1,2(�ac + perm) + c0,2 , (5.35)

where perm denotes all internal permutations among the indices in the r1 operator,
and among those in the r2 operator. To fix the three constants, the calculation must
be done in the cases where the values of the indices a, b coincide with zero, one or two
of the indices c, d. Obviously the structure of Kronecker deltas acting on the tensor
indices is very reminiscent of the one appearing in the spin variable probabilities ℙ ( ),
ℙ ( ) and ℙ ( ).

The results (5.32)–(5.34) display a remarkable feature that will carry over to higher
N as well. Namely, the two-point function of the watermelon operator t(p,N) couples
only to probabilities that there are at least p distinct FK clusters connecting the set
of points in the first and the second operator. In particular, ⟨t(N,N)(r1)t

(N,N)(r2)⟩ is
proportional to the probability of having N propagating FK clusters. This establishes
our claim that t(N,N) is the N -cluster watermelon operator. The precise interpretation
of t(p,N) for p < N is more tricky and will be deferred to [79]; suffice it here to say that
loosely speaking this operator inserts “at least” p propagating FK clusters.

We have checked that just like in the N = 1 case all mixed correlation functions
vanish:

〈
t(0,2)(r1)t

(1,2)
a (r2)

〉
=
〈
t(0,2)(r1)t

(2,2)
ab (r2)

〉
=
〈
t(1,2)a (r1)t

(2,2)
bc (r2)

〉
= 0 . (5.36)

This result could in fact be established without resorting to explicit calculations, since
t(0,2), t(1,2) and t(2,2) have been constructed as different irreps of SQ; the vanishing of
mixed correlations then follows from representation theoretical reasons. But (5.36)
is of course also consistent with the features mentioned in the preceding paragraph.
Namely the vanishing correlator of the product between t(0,2) and either t(1,2) or t(2,2) is
due to the fact that t(0,2) cannot “take out” the FK clusters “inserted” by either of the
two latter operators. However the vanishing of ⟨t(1,2)t(2,2)⟩ cannot be explained from
this simple reasoning.

This type of reasoning (or explicit calculations) also imply that the one-point func-

tions of t(p,N) vanish for p > 0; in particular ⟨t(1,2)a (r)⟩ = ⟨t(2,2)ab (r)⟩ = 0. However,
⟨t(0,2)⟩ = ⟨1 − ��1,�2⟩ is non-zero and is proportional to the probability ℙ ( ) that the
spins �1, �2 belong to two different FK clusters. It is convenient to define an operator
with this mean value subtracted:

�(r) ≡ t(0,2)(r)− Q− 1

Q
ℙ ( ) , (5.37)

so that now ⟨�(r)⟩ = 0. We shall see below that in the continuum limit �(r) is pro-
portional to the energy operator, as indicated by the chosen notation. Using again the
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same methods as above, we then find that

⟨�(r1)�(r2)⟩ =
Q− 1

Q

(
ℙ

( )
+

(
1− 1

Q

)(
ℙ

( )
+ ℙ

( )
− ℙ ( )2

))
. (5.38)

Once again these results can be generalized to higher number of spins N , or to
3-point correlation functions etc. We shall not need these generalizations here, and we
refer the reader to [79] for details.

5.3 Logarithmic correlations: spanning trees and

forests, percolation and subleading operators

5.3.1 Q→ 0: spanning trees and spanning forests

In this section, we discuss the limit Q → 0 limit of the Potts model in relation
with spanning trees and forests. We show how our lattice correlation functions give
a direct geometrical interpretation of many CFT correlators, and we comment on the
appearance of logarithms in the limit Q → 0. In d = 2, we reinterpret using our
framework the well known logarithmic partner of the identity operator, in relation
with symplectic fermions and resistor networks. Despite the fact that we will mostly
deal with free (non-interacting) theories in this section, we shall see in the following
that the general ideas will work in non-trivial, interacting cases as well.

Spanning trees and lattice correlation functions

Let us first discuss the case d = 2. Recall the FK expansion of partition function
of the Potts model defined on a graph G with N sites (3.12). Using the Euler relation
∣A∣+ k(A) = N + !(A), where !(A) is the number of loop in A, one can consider the
limit Q→ 0, v → 0 with w = Q

v
fixed

lim
1

vN
Z =

∑

F

wk(F ), (5.39)

where F is a spanning forest of G, characterized by !(F ) = 0 (no loop). In the limit
w → 0, only the so-called spanning trees T of the graph G survive up to a factor w,
which are forests with only one connected component (k(T ) = 1) [174]. This model
is critical, as the critical line of the Potts model has a vertical tangent at the point
(Q, v) = (0, 0). We will further consider the case of a square lattice in the following,
for which the critical line is v =

√
Q. To be more explicit, at the critical point, we

have v = w =
√
Q, so that

Z ∼
Q→0

vNwT (G) = (
√
Q)N+1T (G), (5.40)
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where T (G) is the number of spanning trees of the graph G. This expression alter-
natively follows from the dense loop expansion of the Potts model at its critical point
(see eq. (3.14))

Z = QN/2
∑

loops

(
√
Q)number of loops, (5.41)

where the loops are dual to the FK clusters. The limit Q → 0 yields dense polymers
(or dense self-avoiding walks), that are in one-to-one correspondence with spanning
tree configurations.

In particular, we see that the partition function of the Potts model vanishes as
Q → 0. In order to obtain non-trivial results, it is convenient to define the new
correlators

⟨. . .⟩0 =
Z

vN
⟨. . .⟩, (5.42)

so that the new critical partition function of the model is now Z0 ≡ ⟨1⟩0 =
√
QT (G).

Actually, because this limit Q → 0 is a bit peculiar, we will also have to rescale the
observables in order to find non-trivial results 2. For example, we will define �a =√
Qt

(1,1)
a =

√
Q��i,a − 1√

Q
. When Q → 0, �a becomes (formally) singular because of

the factor 1√
Q
, this will yield logarithms in the limit [18, 78].

Setting 'a =
√
Q��i,a, it is not hard to check that all the correlation functions of

this operator correspond to meaningful quantities. For example, since ⟨'a⟩ = 1√
Q
,we

immediately find ⟨'a⟩0 = T (G). It is also straightforward to show that

⟨'a(ri)'b(rj)⟩0 ∼
Q→0

Z

QvN

(
1− ℙ

())
∼
∑

F

′
(
√
Q)k(F )−2 −→

Q→0
T (G∖{ij}), (5.43)

where T (G∖{ij}) counts the number of spanning 2-tree forests, with one tree containing
the site i while the other contains j. The symbol

∑′ in the intermediate expression
corresponds to a sum over forests configurations where i and j can belong to different
trees.

Continuum limit and logarithms

In the field theory limit, we will denote Z0 =
√
QA(Q), where A(Q) is a regular

function of Q with a finite limit as Q→ 0. Obviously, in the scaling limit, we expect �a
to become the magnetization operator, with critical exponent Δ�(Q) = 2ℎ 1

2
,0 where we

used the standard Kac parametrization. The exponent for the corresponding boundary
operator would be ℎ1,3. Notice that Δ�(Q = 0) = 0, so this operator will be mixed

2. Of course, the global normalization factor of the operators defined in the previous sections is
not fixed by representation theory considerations.
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with the identity field at Q = 0. Therefore, we expect 3

⟨�a(ri)�b(rj)⟩0 =
(
�a,b
√
Q− 1√

Q

)
Ã(Q)r−2Δ�(Q), (5.44)

where Ã(Q) is another regular function of Q with a finite Q→ 0 limit. The Q→ 0 limit
of this equation is ill-defined, however, the correlation functions of 'a = �a + 1/

√
Q

have a finite limit if one assumes that A(0) = Ã(0)

⟨'a(r)'b(0)⟩ = 4A(0)
∂ℎ 1

2
,0

∂
√
Q

∣∣∣∣∣
Q=0

log r, (5.45a)

⟨'a(r)⟩ = ⟨'a(r)I(0)⟩ = A(0), (5.45b)

where we used I = 1 to denote the identity operator of the theory. Using the expansion
ℎ 1

2
,0 =

√
Q

4�
+ . . . , we find that the ratio

⟨'a(r)'b(0)⟩
⟨'a(0)⟩

=
1

�
log r, (5.46)

takes an universal form. This is probably the most simple correlation function showing
a logarithm, and as we shall see, it is in this case strongly related to the logarithmic
form of the Green function of the Laplacian in 2D. Close to a boundary, we find

⟨'a(r)'b(0)⟩
⟨'a(0)⟩

∣∣∣∣
boundary

=
2

�
log r, (5.47)

where we have used ℎ1,3 =
√
Q
�

+ . . .

Let us come back to the bulk case to see that this logarithmic singularity in the
correlation function ⟨'a(r)'b(0)⟩ should indeed be thought of as a logarithmic CFT
feature. In order to do so, we analyze how all these fields transform under a scale
transformation. When Q is generic, we have

I(Λr) = I(r) = 1, (5.48a)

�a(Λr) = Λ−Δ�(Q)�a(r). (5.48b)

We can deduce from this the transformation law of 'a(r) when Q = 0. We find

'a(Λr) = 2
∂ℎ 1

2
,0

∂
√
Q

∣∣∣∣∣
Q=0

log ΛI. (5.49)

3. In the following, we will ignore the renormalization of the fields �CFT = a−Δ�lattice+... where a
is the UV cutoff. For simplicity, we will use the same notations for lattice and CFT fields, and ignore
subleading corrections corresponding to operators with the same symmetry etc.
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We see that the scale transformations generator is non-diagonalizable as it maps 'a
onto the identity I = 1. Using states instead of fields and Virasoro generators, this
amounts to state that

(L0 + L̄0) ∣'a⟩ = −2
∂ℎ 1

2
,0

∂
√
Q

∣∣∣∣∣
Q=0

∣Ω⟩ . (5.50)

where ∣Ω⟩ is the vacuum of the theory and L0 and L̄0 are the usual Virasoro zero
modes.

These universal logarithmic ratios have a very nice interpretation in terms of span-
ning trees (or equivalently, in terms of the dual dense polymers). Comparing our lattice
expressions with eqs. (5.45), we find

T (G∖{ij})
T (G)

∼ 1

�
log rij , (5.51)

which has a clear geometrical meaning. Note that the existence of logarithmic correla-
tion functions for spanning trees is obviously not new (see e.g. [174–176]), but all the
methods employed previously rely heavily on the free-fermionic/Laplacian property of
the problem (see below), whereas our approach only used a simple limit argument,
that will turn out to apply also to non-trivial, interacting problems. It is also worth
pointing out that these correlation functions do not appear directly in the abelian sand
pile model, as the latter only involves derivatives or differences of Green functions.

Symplectic fermions

To see how all this is related to a Laplacian problem, let us introduce Grassman
variables ( ,  ̄) on each site, with the usual integration rules

∫
d 1 = 0,

∫
d  = 1,

∫
d ̄ 1 = 0,

∫
d ̄  ̄ = 1. (5.52)

Let us introduce the measure D
[
 ,  ̄

]
=
∏

i d id ̄i. In terms of these fermionic
variables, one can show that [177]

T (G) =

∫
D
[
 ,  ̄

]
 ̄i ie

−S[ , ̄], (5.53a)

T (G∖{ij}) =

∫
D
[
 ,  ̄

]
 ̄i i ̄j je

−S[ , ̄], (5.53b)

where the action reads

S
[
 ,  ̄

]
= −

∑

i,j

 ̄iLij j . (5.54)
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Figure 5.2: The equivalent resistance Req(n,m) between the points i and j is given by
R0T (G)/T (G∖{ij}), where T (G∖{ij}) counts the number of spanning 2-tree forests,
with one tree containing the site i while the other covers j.

In this last equation, Lij are the matrix elements of the discrete Laplacian, with for
the square lattice Li,i = 4 and Li,j = −1 if i and j are neighbors. In the continuum
limit, we expect this system to be described by a quantum field theory with Lagrangian
density

ℒ =
1

4�
∂� ̄∂

� . (5.55)

This is of course the symplectic fermions theory encounter in chapter 2. The relation
between the 2D Potts model at Q = 0 and this c = −2 (L)CFT is well-known, and
the logarithmic operator described above is nothing but the logarithmic partner of the
identity in symplectic fermions.

Applications to resistor networks

To conclude this section about spanning trees, let us discuss our result in the context
of resistor networks. The problem is very simple: let us define an infinite square network
of resistors, where each bond carries a resistance R0. One would like to compute
the equivalent resistance between two arbitrary points i and j of the network. The
answer to this question is very simple and uses the Green’s function of the Laplacian
Δ(log r) = 2��(r). It is actually straightforward to perform the calculation directly
on the square lattice. To measure the equivalent resistance between n and m, let us
consider a current I flowing from n to m. Using Kirchhoff’s laws, one finds that the
electric potential satisfies the following Laplace equation

ΔdiscreteVr ≡
∑

r′ n.n. r

Vr′ − 4Vr = R0I(�r,m − �r,n). (5.56)

137



The equivalent resistance Req(n,m) between n andm is then simply given byReq(n,m) =
(Vn − Vm)/I. Using the lattice Green function of the Laplacian, it is straightforward
to show that (see e.g. [178, 179])

Req(n,m) = R0

∫ �

−�

dx

2�

∫ �

−�

dy

2�

1− cos(nx+my)

2− cosx− cos y
. (5.57)

The asymptotic behavior of this function yields the resistance between two arbitrary
points separated by a distance r

Req(r)

R0

=
2 + 3 log 2

2�
+

1

�
log

r

a
+O(r−2), (5.58)

where a is a UV cutoff. The first term of this equation is a non-universal constant that
depends on the square lattice structure, however, the following behavior is universal

Req(r) ∼
R0

�
log r, (5.59)

and can be found directly from the continuum Green function G0(r) =
1
2�

log r. This
result is directly related to eq. (5.46) and eq. (5.51) using Kirchhoff theorem: the con-
ductance G(i, j) between two arbitrary points i and j of a network G of resistors R0 = 1
is given in terms of spanning trees by the ratio T (G)/T (G∖{ij}) (see Fig. 5.2). The
logarithmic divergence of eq. (5.46) is thus directly related to the simple conductance
calculation of an infinite resistor network. What is more interesting, though, is the
interpretation of the prefactor 1/� as a derivative of a critical exponent of the Potts
model. Moreover, this approach using a limit of the Potts model is quite general and
not restricted to Laplacian problems, and we shall see several non-trivial examples
in the following. To conclude, let us also mention that the boundary result (5.47)
has also a nice interpretation in terms of resistor networks. Indeed, let us consider a
resistor network covering the upper half-plane y ≥ 0, and let us compute the resis-
tance Req(r) between two points lying at the boundary y = 0. The Green function
G0(x0, y0, x, y) of the Laplacian must satisfy in this case Neumann boundary condi-
tions ∂yG0(x0, y0, x, y = 0) = 0. We find G0(x0, y0 = 0, x, y = 0) = 1

�
log(x − x0), so

there is an additional factor 2 as compared to the bulk case. Therefore, the boundary
resistance reads

Req(r)∣boundary ∼ 2R0

�
log r, (5.60)

in agreement with eq. (5.47).

Spanning forests in d = 3

We conclude this section on Q = 0 by discussing how our results can be gen-
eralized to higher dimensions d smaller than the upper critical dimension dc = 6.

138



Equation (5.39) remains valid in that case, the only difference being that the model is
believed to be critical for a finite non zero value wc of w [180], meaning that v ∝ Q
as Q → 0, instead of v ∝ √

Q for d = 2. One ends up with spanning forests with a
non-zero fugacity w, which can be described in terms of an interacting fermionic field
theory [177]

S =

∫
ddx

(
∂� ̄∂

� +
g

2

[
∂�( ̄ )

]2 − g ̄ 
)
, (5.61)

with bare coupling g ∝ w. To all orders of perturbation theory, this interacting
fermionic field theory can be mapped onto a � model with OSp(1∣2) supersymme-
try [177], or equivalently, to an O(n)-invariant � model analytically continued to
n = −1. In two dimensions, these models are (perturbatively) asymptotically free,
with � function

dg

d logL
=

3

2�
g2 + . . . (5.62)

The g = 0 (w = 0) fixed point then corresponds to the free symplectic fermion (span-
ning trees) theory (5.55).

It is easy to see that because v ∝ Q, the Jordan cell for the identity operator that
we found for d = 2 does not appear in higher dimensions. This is because we have
to normalize our operators with a factor v in order to find non-trivial results, so that
the fact that v ∝ Q instead of v ∝ √

Q will actually give way to a cancellation of
the divergences that we encountered for d = 2. One can also notice that the scaling
dimension of the magnetization vanishes only for d = 2. At one-loop for example, it
reads [181]

Δ� =
� + d− 2

2
= 2− 5Q− 16

9Q− 30
�+O(�2), (5.63)

with � = 6−d. For Q = 0, Δ� decreases as a function of � and reaches 0 only for d = 2.
However, we have considered only the simplest Jordan cell at Q = 0, and we do not
exclude the possibility of a logarithmic structure for more complicated observables in
d = 3. We leave the study of such observables at Q = 0 for future work.

5.3.2 Percolation (Q→ 1 limit)

CFT analysis

Let us first study the operators acting on two spins from a quantum field theory
point of view. The energy operator is given by "(ri) ≡ t(0,2)(ri) − ⟨t(0,2)⟩, where we
subtracted the bulk expectation value of " so as to obtain a well-defined scaling field.
Its two-point function is given by

⟨"(r)"(0)⟩ = Ã(Q)(Q− 1)r−2Δ"(Q) , (5.64)
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where Ã(Q) is a regular function of Q, with a finite non-zero limit Ã(1) for Q → 1.
The reasons why ⟨"(r)"(0)⟩ should vanish at Q = 1 is very natural from a lattice point
of view. On the other hand, one can quite easily argue that t(2,2) corresponds to the 4-
leg watermelon operator (the two propagating clusters correspond to four propagating
hulls). We thus deduce the form of the two-point function

⟨t(2,2)ab (r)t
(2,2)
cd (0)⟩ = 2A(Q)

Q2

(
�ac�bd + �ad�bc −

1

Q− 2
(�ac + �ad + �bc + �bd)

+
2

(Q− 1)(Q− 2)

)
× r−2Δ4(Q), (5.65)

where A(Q) is again a regular function of Q when Q→ 1, and the factor 2/Q2 is purely
conventional. The rest of the correlation function is fixed by representation theory.

In the formal limit Q → 1 the two-point function (5.65) diverges. To cure this, we
introduce a new field

 ab(r) = t
(2,2)
ab (r) +

2

Q(Q− 1)
"(r) . (5.66)

Its two-point function is easily computed and in order to have a finite Q→ 1 limit, we
must require A(1) = Ã(1), and that Δ" = Δ4 at Q = 1. This implies that the fractal
dimension dRB of the so-called “red bonds” (also called “cutting bonds”) is related
to the thermal exponent � via dRB = �−1. This is indeed a well-known percolation
result [182], valid in any dimension. We find

⟨ ab(r) cd(0)⟩ = 2A(1)r−2Δ4 [(�ac + �ad + �bc + �bd + �ac�bd + �ad�bc) + 2� log r] ,
(5.67)

where we have defined

� ≡ 2× lim
Q→1

Δ4 −Δ"

Q− 1
. (5.68)

Lattice analysis and geometrical interpretation

To understand what this logarithmic correlation means on the lattice, we define
 ab(ri) ≡ t(2,2)(ri) +

2
Q(Q−1)

"(ri), where "(ri) is defined as in the continuum limit, that

is, subtracting from t(0,2) its expectation value

�(r) ≡ t(0,2)(r)− Q− 1

Q
ℙ ( ) . (5.69)
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Figure 5.3: Percolation configurations contributing to the logarithmic observable F (r).

A careful analysis of the limit Q → 1 allows us to compute exactly the two-point
function of  ab on the lattice, we find [78]

⟨ ab(r1) cd(r2)⟩ = 2 (�ac + �ad + �bc + �bd + �ac�bd + �ad�bc)ℙ

( )

+ 4

[
ℙ

( )
+ ℙ

( )
− 2ℙ

( )
− ℙ ( )2

]
. (5.70)

Comparing with (5.67) we deduce that

ℙ

( )
∼ A(2)(1)r−2Δ4, (5.71)

as was of course expected from its relation to the 4-leg operator. Meanwhile, the
logarithmic term in (5.67) can be identified with

F (r) = ℙ

( )
+ ℙ

( )
− ℙ ( )2 ∼ A(2)(1)r−2Δ4 × � log r. (5.72)

Restricting now to two dimensions, the following combination [78]

F (r) ≡
ℙ

( )
+ ℙ

( )
− ℙ ( )2

ℙ

( ) ∼ � +
2
√
3

�
log r, (5.73)

cancels out the dominant power law (see Fig. 5.3), leaving a pure logarithmic scaling
which should be observable in numerical simulations (see below). The number � =
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Figure 5.4: Monte Carlo estimation of the function F (r) defined in eq. (5.73). Results
are shown for 200×200 and 300×300 square lattices, with no significant difference.

2
√
3

�
≃ 1.1026 is a universal constant. Although the combination (5.73) may look

slightly complicated, it is important to keep in mind that the logarithmic term we are
after resides in the first disconnected term.

We have checked the validity of (5.73) by performing naive Monte Carlo simulations
on square lattices of various sizes ranging from 150 × 150 to 300 × 300, with doubly
periodic boundary conditions. Statistics were obtained on ∼ 103 independent runs
of 107 percolation configurations each. Results are shown in Fig. 5.4, and are in good
agreement with (5.73). Careful extrapolations removing successively the first few short-

distance points yields a slope 1.15± 0.05 in good agreement with our prediction 2
√
3

�
≃

1.1026.

5.3.3 An example of logarithm in the Ising model (Q → 2
limit)

As can be seen from (5.65), the limit Q → 2 (FK formulation of the Ising model)

is also ill-defined. This is because the 4-leg watermelon operator t
(2,2)
ab (r) is mixed with

the ‘vector’ operator t
(1,2)
a (r) at Q = 2. From the point of view of critical exponents

in two dimensions, one has ℎ0,2 = ℎ3/2,0 at Q = 2, where ℎ3/2,0 is the dimension of the
first subleading magnetization operator. Unfortunately, although the mixing is clear
in the continuum (it involves the 4-leg and the subleading magnetization operators),
the situation is more intricate on the lattice as the magnetization and the subleading
magnetization operators have the same symmetry, so it is hard to construct a precise
lattice version of the subleading spin field. In practical terms, the two-point function
of t

(1,2)
a (r) defined in (5.26) has a dominant contribution given by the magnetization

operator: this is because all the scaling operators with the same symmetry are mixed
(not in the same sense as in indecomposability of course) on the lattice. To reformulate
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this issue, ignoring for the moment the constraint �1 ∕= �2, we can define

t̃
(1,2)
ab (�1, �2) = (��1 ∕=�2 −K)

(
��1,a + ��2,a −

2

Q

)
, (5.74)

where the term proportional to K involves operators acting on a single spin. In order
to obtain the subleading magnetization operator, K must be fined tuned so as to
cancel the leading magnetization contribution. Calling Δ' (resp. Δ

(1)
' ) the (resp.

subleading) magnetization exponent (so we have Δ
(1)
' = Δ4 at Q = 2), we define

� = 2 limQ→2
Δ

(1)
' −Δ4

Q−2
. In terms of probabilities, the mixing at Q→ 2 implies that

ℙ

( )
∼ Ar−Δ4, (5.75)

ℙ

( )
∼ Br−Δ' + 4� × Ar−Δ

(1)
' log

r

a
. (5.76)

We thus see that the logarithmic corrections arises only in the subleading term, for the
reason explained above. Unfortunately, there is a priori no simple way using symmetry
to form a linear combination of probabilities to get rid of the term Br−Δ' .

We emphasize that this issue arises only on the lattice, when one wants to identify
geometrically the logarithmic observable. Once again, in the continuum limit, there is
no ambiguity and our result indicates that the 4-leg operator is mixed into a Jordan cell
with the subleading magnetization operator in the (logarithmic) Ising model (Q = 2).

5.4 A short overview of the generalization to the

O(n) model

To conclude this chapter, we explain how our analysis of the Potts model could be
generalized to the case of O(n) model in d dimensions with action

S =

∫
ddx

(
1

2

n∑

a=1

(∂��a)
2 +

m2

2

n∑

a=1

�2
a + g

∑

a,b

�2
a�

2
b

)
. (5.77)

We will focus on the field theory although a similar analysis could be made at the level
of a lattice Heisenberg Hamiltonian of n-component spins H = −J∑⟨i,j⟩ S⃗i.S⃗j . Using

the representation theory of the O(n) group, one can classify the scaling operators of
the model. For instance, it was argued by Cardy [18] that the energy operator and the
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generalization of the 2-leg operator in d dimensions could be expressed as

"(r) =
∑

a

: �2
a :, (5.78a)

'
(2)
ab (r) = : �a�b : −

1

n

∑

c

: �2
c : . (5.78b)

The normal order means here that bulk expectation values are subtracted. Using once
again the global O(n) symmetry of the field theory, one can write down the general
expression of the two-point functions of these fields at the critical point [18]

⟨"(r)"(0)⟩ = 2nA(n)r−2Δ�, (5.79a)

⟨'(2)
ab (r)'

(2)
cd (0)⟩ = Ã(n)

(
�ac�bd + �ad�bc −

2

n
�ab�cd

)
r−2Δ(2), (5.79b)

where A(n) and Ã(n) are regular function of n with a finite non-zero limit at n = 0. The
n→ 0 limit of these equations is singular and this yields logarithms as discussed in the
context of the Potts model. This was argued to have a nice geometrical interpretation
in terms of intersecting self-avoiding walks in Ref. [18]. More precisely, taking properly
the n→ 0 limit, one finds the following logarithmic correlation

⟨: �2(r) :: �2(0) :⟩ ∼ log r × r−2Δ(2) × f

(
r

�

)
, (5.80)

where we have allowed for the system to be off-criticality, with correlation length � ∼
∣T − Tc∣−� , e−T being the monomer fugacity. Restricting for now to the boundary
case, a more physical expression is obtained, as usual when dealing with polymers, by
considering the Laplace transform so as to deal with polymers of fixed length

∫

boundary

(dr)⟨: �2(r) :: �2(0) :⟩ =
∫ ∞

0

dSe−TSZ(S). (5.81)

In this equation, Z(S) counts the configurations with two self-avoiding loops attached
to the boundary, with a total number of monomers S, with the constraints that the
first loop is attached to the origin, and that both loop must intersect at least once 4.
Inverting the Laplace transform, one finds the following asymptotic behavior at the
critical point T = Tc [18]

Z(S) ∼ eTcSS−1 logS, (5.82)

with  = �
(
1− 2Δ(2)

)
. The important point in that equation is the log S term,

which differs from the counting of 2-leg watermelon configurations that would scale
as Z0(S) ∼ eTcSS−1 [23] (see Fig. 5.5). It would be interesting to check this formula

4. This last constraint comes from the normal order.
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Figure 5.5: Left: The number of 2-leg watermelon configurations (two self-avoiding
walks) starting from a fixed point on the boundary and coming back to another point
(not fixed) on the boundary, with a total number of monomers S, scales as Z0(S) ∼
eTcSS−1 [23]. Right: Configurations with two self-avoiding loops attached to the
boundary, with a total number of monomers S, with the constraints that the first
loop is attached to the origin, and that both loop must intersect at least once. This
scales as Z(S) ∼ eTcSS−1 log S [18]. The ratio of these two quantities thus behaves as
Z(S)/Z0(S) ∼ log S.

using exact enumerations.
This mixing can also be interpreted as critical exponents coinciding at n = 0. At

one-loop, the scaling dimension of the energy is well-known

Δ" = 2

(
d

2
− 1

)
+
n + 2

n + 8
�+O(�2), (5.83)

with � = 4 − d, whereas the dimension of p-leg watermelon operator can be obtained
readily computing Gaussian operator product expansions (see e.g. [183])

Δp = p

(
d

2
− 1

)
+
p(p− 1)

n+ 8
�+O(�2). (5.84)

For n = 0, one has Δ2 = Δ" as expected. Note that in d = 2 dimensions, one has
Δ2 = 2ℎ0,1 =

2
3
and Δ" = 2ℎ1,2 =

2
3
.

This line of thought can be generalized to more complicated cases. For example,
we find that the 3-leg operator reads

'
(3)
abc = �a�b�c −

1

n + 2

∑

d

�2
d (�ab�c + �ac�b + �bc�a) . (5.85)

One can see that some mixing should be expected at n = −2 between '
(3)
abc and the

operator
∑

b : �
2
b�a :. The latter has a form energy × magnetization so we expect it

to be the first subleading magnetization operator. Its scaling dimension can be easily
computed at one loop order

Δ
(1)
� = 3

(
d

2
− 1

)
+ �+O(�2), (5.86)
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and we indeed find that Δ
(1)
� = Δ3 for n = −2. It would be very interesting to study

extensively the O(n) model along those lines, as we did for the Potts model above.
A closer look at the lattice model would then be necessary in order to interpret these
correlation functions geometrically.
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Conclusion

In this thesis, we have discussed how to tackle logarithmic CFTs using lattice
regularizations whose continuum limit is described by such theories.

The main idea underlying this lattice approach is to analyze thoroughly the rep-
resentation theory of the symmetry algebras on the lattice, study how this Hilbert
space structure carries over in the continuum limit, and deduce from this the indecom-
posable structure of Virasoro representations in the corresponding CFT. The point is
that lattice models contain not only information about the central charge or critical
exponents, but also fine structure details like representations structure, fusion rules, or
Virasoro matrix elements (indecomposability parameters). We have argued that such
indecomposability parameters can be measured directly on the lattice, thus providing
an unambiguous way to determine them numerically for a given theory. Another major
achievement of this work is the classification of a very large class of indecomposable
Virasoro representations from the blob algebra. Most of the results have been obtained
for chiral LCFTs, but lattice models will definitely be helpful to shed some light on
bulk LCFTs, mixing holomorphic and anti-holomorphic sectors, and their relation to
boundary CFTs.

Another approach discussed in this thesis is the limit or “replica” approach that con-
sists in considering logarithmic CFTs as limits of ordinary CFTs. Here, the logarithms
can be understood as power-laws “colliding” at the indecomposable point 5. Although
not new and definitely heuristic, this idea was used successfully in this thesis to obtain
general formulas for indecomposability parameters, and to uncover geometrical loga-
rithmic observables in the Potts model. In particular, we have found an observable in
critical percolation which behaves exactly logarithmically, without any power-law pref-
actor, and checked this result numerically. Despite its simplicity, this method allows
us to obtain very general results that are not restricted to two dimensions.

To conclude this thesis, we mention several interesting directions for future research,
some of which corresponding to projects that I have pursued during the last year of
my PhD:

∙ Bulk LCFTs at c = 0. Despite the recent progress in that direction, there
remains a lot to be done to compute, say, four-point functions in bulk percolation.

5. In the theory of differential equations, this phenomenon is called confluence of singularities.
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Although technically very difficult, the lattice approach provides us with a rather
clear program: understand fully the representation theory on the lattice, analyze
how this algebraic structure of the Hilbert space carries over to the continuum
limit, deduce the structure for Virasoro × Virasoro, and in principle, try to
compute correlation functions from there. The main issue is that the algebra
obtained in the scaling limit of periodic lattice models is actually larger that
vir⊕ vir, thus suggesting that this new object, called interchiral algebra in [149],
might be the key to understanding the structure of percolation. This is a project
in progress with A.M. Gainutdinov, J. Jacobsen, N. Read and H. Saleur.

∙ Extended symmetries, higher dimensions, non-critical theories etc. A rather
obvious generalization of the lattice approach presented in this thesis would be
to explore lattice algebras related to higher values of the quantum group spin.
The simplest case would be the Birman–Wenzl–Murakami algebra, which ap-
pears in the spin-one case, and should be related to the non semi-simple N = 1
super Virasoro algebra. Of course, logarithmic CFTs are not restricted to two
dimensions, and they have actually nothing to do with the integrability of most
of the models considered here. It would be of great interest to understand these
higher-dimensional CFTs, as well as, for instance, non-critical deformations etc.

∙ General analysis of logarithmic observables in geometrical models. A deeper un-
derstanding of why and how logarithmic correlations appear in geometrical mod-
els is also definitely one of the remaining challenges of the field. Although we
do know several specific examples that can be accessed and checked numerically,
we are still far from understanding extensively the logarithmic structure of, say,
the Potts model (let alone more complicated models!) in terms of geometrical
observables. Relating the “replica” approach discussed in the last chapter of this
thesis to the algebraic approach based on indecomposable representations would
also be very interesting – in the end, this amounts to conciliating the replica and
supersymmetry approach to disordered and geometrical models. Finally, getting
a hold on logarithms from the point of view of SLE (see [184, 185] for reviews for
theoretical physicists) remains a fully open question – for a recent step in that
direction, see [186].

∙ Logarithmic observables in disordered systems and sigma models. Coming back
to the replica approach, the only models “under control” are the Potts and O(n)
models, via limits such as Q → 1 for Potts (percolation) or n → 0 for O(n)
(SAWs). Though interesting, these examples are probably too simple to uncover
a general pattern. Analyzing how logarithms arise in e.g. the n → 0 limit of
Pruisken’s sigma model formulation [187] on U(2n)/U(n) × U(n) of the Integer
Quantum Hall transition would definitely be something worth looking into, even
though there is only very little hope that the corresponding observables will be
physically interesting, let alone experimentally accessible.

∙ Logarithmic structure of truncated models for the IQHE transition. Another
possibility in that direction is to analyze the logarithmic structure of truncated
geometrical formulations of the IQHE transition [172]. This is possible since
the truncated Hilbert space is finite-dimensional. The hope is of course that
some of the logarithmic features will be unaffected by the truncation, even if
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there is no reason to hope for this a priori since the truncated models are in
a different universality class. This is one of the projects under investigation
by E. Vernier. Another hope would be to find a finite-dimensional spin chain
that would describe the strong-coupling limit of the non-compact sigma model
underlying the IQHE. Despite the non-compact nature of the continuum limit,
this is not totally hopeless, as an example of finite dimensional regularization of
a non-compact sigma model has been uncovered recently [188, 189].
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Appendix A
The Lie superalgebras gl(1∣1) and sl(2∣1)
and some of their representations

In this appendix, we gather some well-known results concerning the Lie superalge-
bras gl(1∣1) and sl(2∣1), and we also recall some properties of several of their finite-
dimensional representations that are used throughout this thesis. In particular, we give
an explicit Fock space formulation of the fundamental and dual representations used to
construct Temperley-Lieb spin chains. Note that we shall not give a formal definition of
Lie superalgebras in general, but focus instead on the explicit examples relevant to our
discussion. We will simply consider superalgebras as ℤ2-graded Lie algebra that con-
tain both fermionic and bosonic generators, characterized by their (anti)commutation
relations. We follow here Ref. [190] (see also [191]).

Recall also that when dealing with the irreducible representations of a superalge-
bra, one has to distinguish between typical (long multiplets) or atypical representations
(short multiplets). Superalgebras also allows for more complicated indecomposable rep-
resentations (indecomposable modules, or indecomposables) that may be considered as
composites, or gluings, of the latters. An especially important class of representations
is given by the so-called projective covers of atypicals, which can be thought of in this
context as ‘maximally indecomposable representations’, containing atypical represen-
tations as building blocks 1. Projective modules satisfy very nice properties that make
them relevant for physics, for example, the tensor product of two projective modules
can only yield projective modules.

1. Maximal means that it cannot occur as a subrepresentation in a yet bigger indecomposable
representation. Note that this definition of projective modules is a bit misleading, especially in the
context of the TL algebra for example, but it is enough as far as the superalgebras of this appendix
are concerned. For a more mathematically precise and more general definition of a projective module,
see [74] section 4.1.
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A.1 The Lie superalgebra gl(1∣1) and its represen-

tations

A.1.1 Defining relations

The Lie superalgebra g = gl(1∣1) is generated by two bosonic elements E,N and
two fermionic generators Ψ± such that E is central and the other generators obey

[N,Ψ±] = ±Ψ± and {Ψ−,Ψ+} = E . (1.1)

The even (bosonic) subalgebra is thus given by g0 = u(1) ⊕ u(1), and N counts the
number of fermions. Let us also fix the following Casimir element C

C = (2N − 1)E + 2Ψ−Ψ+ . (1.2)

The choice of C is not unique since we could add any function of the central element
E. Finally we recall the definition of the supertrace STr(.) = Tr((−1)F .). The superdi-
mension is the supertrace of the identity, ie the number of bosons minus the number
of fermions. The superdimension of gl(1∣1) is zero.

A.1.2 Fundamental and Dual representations in Fock space

To construct what we will refer to as fundamental representation □, we introduce a
fermionic generator {f, f †} = 1. The gl(1∣1) generators in the representation □ read 2

N = f †f, Ψ+ = f †, Ψ− = f, E = 1. (1.3)

It is easy to check that these generators furnish a representation of gl(1∣1) in the space
□ ≡ Span{∣0⟩ , ∣1⟩ = f † ∣0⟩}. One can also construct the so-called dual representation

□ ≡ Span{
∣∣0
〉
,
∣∣1
〉
= −f † ∣∣0

〉
}, where {f, f †} = −1. The generators act as

N = −f †
f, Ψ+ = f

†
, Ψ− = f, E = 1. (1.4)

To generate a gl(1∣1)-invariant spin chain, we shall need an invariant interaction in the
tensor product representation □⊗□. It is given by the Casimir (1.2) in □⊗□

e ≡ −1

2
C = −Ψ−Ψ+ = (f † + f

†
)(f + f), (1.5)

with e2 = 0.

2. We use the same notation for the generators and their representation in the Fock space.
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A.1.3 Finite dimensional representations of gl(1∣1)
The irreducible representations of gl(1∣1) fall into two different series, typical and

atypical. The typical representations are 2-dimensional representations ⟨e, n⟩ labeled
by pairs e, n with e ∕= 0 and n ∈ ℝ. In these representations, the generators take the
form E = e12 and

N =

(
n− 1 0
0 n

)
, Ψ+ =

(
0 0
e 0

)
, Ψ− =

(
0 1
0 0

)
. (1.6)

Using these notations, one has □ = ⟨1, 1⟩ and □ = ⟨−1, 1⟩. Atypical representations
are given by 1-dimensional representations ⟨n⟩, parametrized by the value n ∈ ℝ of N ,
with vanishing other generators Ψ+ = Ψ− = E = 0.

Other finite dimensional representations are more complicated, indecomposable rep-
resentations. In particular, the projective covers Pn of the atypical representations ⟨n⟩
have the following structure

Pn =

⟨n⟩
↙ ↘

⟨n− 1⟩ ⟨n+ 1⟩
↘ ↙
⟨n⟩

, (1.7)

where the arrows represent the action of the generators Ψ± (see Sec. (2.3) for more
details). The Casimir (1.2) is not diagonalizable on Pn and maps the top ⟨n⟩ to
the bottom ⟨n⟩ in (1.7). We refer the reader to [190] for tensor products of these
representations.

A.2 The Lie superalgebra sl(2∣1) and its representa-

tions

A.2.1 Defining relations

We define the Lie superalgebra g = sl(2∣1) by the commutation relations of its 8
generators. Its bosonic part is g0 = u(1)⊕ sl(2), that is

[B,Q±] = [B,Qz] = 0, (1.8)

[Q+, Q−] = 2Qz, [Qz, Q±] = ±Q±. (1.9)

The fermionic generators obey the simple relations

{F±, F∓} = {F±
, F

∓} = 0, (1.10)

{F±, F
±} = Q±, {F±, F

∓} = B ∓Q±. (1.11)
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Finally, we have

[Qz, F±] = ±1

2
F±, [Qz, F

±
] = ±1

2
F

±
, (1.12)

[B,F±] =
1

2
F±, [B,F

±
] = −1

2
F

±
, (1.13)

[Q±, F±] = [Q±, F
±
] = 0, [Q±, F∓] = −F±, [Q±, F

∓
] = F

±
. (1.14)

Note that there is a subalgebra gl(1∣1) spanned by the generators Ψ+ = F+,Ψ− =
F−, E = B −Qz and N = B +Qz.

A.2.2 Fundamental and Dual representations in Fock space

Three-dimensional representations of this superalgebra are readily obtained using
creation and annihilation operators. To construct what we will refer to as fundamental
representation □, we introduce two bosonic operators [b�, b

†
�′ ] = ��,�′ , where � ∈ {↑, ↓},

and one fermion {f, f †} = 1. The generators read

B = f †f +
1

2
(b†↑b↑ + b†↓b↓), Qz =

1

2
(b†↑b↑ − b†↓b↓), Q

+ = b†↑b↓, (1.15)

Q− = b†↓b↑, F
+ = f †b↑, F

− = f †b↓, F
+
= b†↑f, F

−
= b†↓f. (1.16)

These generators furnish a representation of sl(2∣1) in the space□ ≡ Span{f † ∣0⟩ , b†↑ ∣0⟩ , b†↓ ∣0⟩}.
One can also construct the so-called dual representation□ ≡ Span{f † ∣0⟩ , b†↑ ∣0⟩ , b

†
↓ ∣0⟩},

where [b�, b
†
�′ ] = ��,�′ and {f, f †} = −1. The generators act as

B = f
†
f − 1

2
(b

†
↑b↑ + b

†
↓b↓), Qz =

1

2
(b

†
↑b↑ − b

†
↓b↓), Q

+ = −b†↑b↓, Q− = −b†↓b↑, (1.17)

F+ = b
†
↑f, F

− = b
†
↓f, F

+
= f

†
b↓, F

−
= f

†
b↑. (1.18)

Note also that the operator

e = (b
†
↑b

†
↓ + b

†
↓b

†
↑ + f

†
f †)(b↑b↓ + b↓b↑ + ff) (1.19)

is the projector onto the singlet in the tensor product representation □ ⊗ □. This
expression will be used for the definition of the Temperley-Lieb generator for our sl(2∣1)
spin chain.

A.2.3 Finite dimensional representations

We also recall some usual notations for the finite dimensional representations of
sl(2∣1). We begin with the irreducible representations. Except for the trivial represen-
tation {0} of dimension 1, the irreducible atypical representations {j}± are labeled by
the half-integer j = 1

2
, 1, . . . ; they have dimension 4j + 1. There are also the typical
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representations {b, j} (with dimension 8j and b ∕= ±j) where b is a U(1) charge, these
are also projective. When b = ±j, the modules {±j, j} become indecomposable. Using
these notations, the fundamental and dual representations are □ = {1

2
}+, □ = {1

2
}−,

and the adjoint representation is {0, 1}.
We will also be interested in atypical projective covers P±(j) (with dimension 16j+4

for j ∕= 0 and dimension 8 if j = 0). The projective covers for j ∕= 0 have the
subquotient structure

P±(j) =

{j}±
↙ ↘

{j − 1
2
}± {j + 1

2
}±

↘ ↙
{j}±

, (1.20)

whereas for j = 0, one has

P(0) =

{0}
↙ ↘

{1
2
}+ {1

2
}−

↘ ↙
{0}

. (1.21)

The arrows represent the action of the generators of sl(2∣1), as usual. We shall not
describe the tensor product of all these representations here, are refer the interested
reader to [190]. Using those results, one can decompose the Hilbert space ℋ = (□ ⊗
□)⊗N onto projective representations only (except for the fundamental). In particular,
we have □⊗□ = {0} ⊕ {0, 1}.
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W. Beiglböck, A. Böhm and E. Takasugi (Eds.), Group Theoretical Methods in Physics,
vol. 94 of Lecture Notes in Physics, pp. 441–445 (Springer Berlin Heidelberg, 1979).
ISBN 978-3-540-09238-4.

[93] B. Feigin and D. Fuks. Invariant skew-symmetric differential operators on the line and
verma modules over the Virasoro algebra. Functional Analysis and Its Applications 16,
114–126 (1982).

[94] A. Rocha-Caridi. Vacuum vector representations of the Virasoro algebra. Kac-Moody
and Virasoro Algebras: A Reprint Volume for Physicists 3, 353 (1988).

[95] M. Jeng, G. Piroux and P. Ruelle. Height variables in the abelian sandpile model: scal-
ing fields and correlations. Journal of Statistical Mechanics: Theory and Experiment
2006(10), P10015 (2006).

162



[96] P. Ruelle. Logarithmic conformal invariance in the abelian sandpile model.
arXiv:1303.4310 (2013).

[97] D. Ridout. Non-chiral logarithmic couplings for the Virasoro algebra. Journal of Physics
A: Mathematical and Theoretical 45(25), 255203 (2012).

[98] W. Nahm. Quasi-rational fusion modules. International Journal of Modern Physics B
08(25n26), 3693–3702 (1994).

[99] G. Moore and N. Seiberg. Classical and quantum conformal field theory. Communica-
tions in Mathematical Physics 123(2), 177–254 (1989).

[100] P. Martin. Potts models and related problems in statistical mechanics. Series on ad-
vances in statistical mechanics (World Scientific Publishing Company, Incorporated,
1991). ISBN 9789810200756.

[101] D. Ridout and Y. Saint-Aubin. Standard modules, induction and the Temperley-Lieb
algebra. arXiv:1204.4505 (2012).

[102] A. Nahum, J. T. Chalker, P. Serna, M. Ortuño and A. M. Somoza. 3D Loop Models
and the CPn−1 Sigma Model. Phys. Rev. Lett. 107, 110601 (2011).

[103] J. L. Jacobsen, N. Read and H. Saleur. Dense loops, supersymmetry, and Goldstone
phases in two dimensions. Phys. Rev. Lett. 90, 090601 (2003).

[104] A. Nahum, P. Serna, A. M. Somoza and M. Ortuño. Loop models with crossings. Phys.
Rev. B 87, 184204 (2013).

[105] C. Fortuin and P. Kasteleyn. On the random-cluster model: I. Introduction and relation
to other models. Physica 57(4), 536 – 564 (1972).

[106] J. Dubail, J. L. Jacobsen and H. Saleur. Critical exponents of domain walls in the two-
dimensional Potts model. Journal of Physics A: Mathematical and Theoretical 43(48),
482002 (2010).

[107] J. Dubail, J. L. Jacobsen and H. Saleur. Bulk and boundary critical behaviour of thin
and thick domain walls in the two-dimensional Potts model. Journal of Statistical
Mechanics: Theory and Experiment 2010(12), P12026 (2010).

[108] R. Vasseur and J. L. Jacobsen. Critical properties of joint spin and Fortuin–Kasteleyn
observables in the two-dimensional Potts model. Journal of Physics A: Mathematical
and Theoretical 45(16), 165001 (2012).

[109] R. J. Baxter, S. B. Kelland and F. Y. Wu. Equivalence of the Potts model or Whitney
polynomial with an ice-type model. Journal of Physics A: Mathematical and General
9(3), 397 (1976).

[110] N. Read and H. Saleur. Exact spectra of conformal supersymmetric nonlinear sigma
models in two dimensions. Nuclear Physics B 613(3), 409 – 444 (2001).

[111] R. Bondesan, J. L. Jacobsen and H. Saleur. Edge states and conformal boundary
conditions in super spin chains and super sigma models. Nuclear Physics B 849(2),
461 – 502 (2011).

163



[112] R. Bondesan, I. A. Gruzberg, J. L. Jacobsen, H. Obuse and H. Saleur. Exact Exponents
for the Spin Quantum Hall Transition in the Presence of Multiple Edge Channels. Phys.
Rev. Lett. 108, 126801 (2012).

[113] G. Andrews, R. Baxter and P. Forrester. Eight-vertex SOS model and generalized
Rogers-Ramanujan-type identities. Journal of Statistical Physics 35(3-4), 193–266
(1984).

[114] V. Pasquier. Two-dimensional critical systems labelled by Dynkin diagrams. Nuclear
Physics B 285(0), 162 – 172 (1987).

[115] A. Feiguin, S. Trebst, A. W. W. Ludwig, M. Troyer, A. Kitaev, Z. Wang and M. H.
Freedman. Interacting anyons in topological quantum liquids: The golden chain. Phys.
Rev. Lett. 98, 160409 (2007).

[116] Y. Ikhlef, J. L. Jacobsen and H. Saleur. A Temperley–Lieb quantum chain with two- and
three-site interactions. Journal of Physics A: Mathematical and Theoretical 42(29),
292002 (2009).

[117] Y. Ikhlef, J. L. Jacobsen and H. Saleur. The ℤ2 staggered vertex model and its appli-
cations. Journal of Physics A: Mathematical and Theoretical 43(22), 225201 (2010).

[118] A. Gainutdinov, N. Read and H. Saleur. Continuum limit and symmetries of the
periodic gl(1∣1) spin chain. Nuclear Physics B 871(2), 245 – 288 (2013).

[119] A. Gainutdinov, N. Read and H. Saleur. Bimodule structure in the periodic gl(1∣1) spin
chain. Nuclear Physics B 871(2), 289 – 329 (2013).

[120] A. Gainutdinov, N. Read, H. Saleur and R. Vasseur. Logarithmic CFT at c = 0:
percolation and the continuum limit of the sl(2∣1) alternating spin chain. To appear
(2013).

[121] P. P. Martin and D. S. McAnally. On commutants, dual pairs and non-semisimple
algebras from statistical mechanics. International Journal of Modern Physics A
07(supp01b), 675–705 (1992).

[122] P. P. Martin. On Schur–Weyl duality, an Hecke algebras and quantum sl(n) on ⊗n+1Cn.
International Journal of Modern Physics A 07(supp01b), 645–673 (1992).

[123] F. D. M. Haldane. Nonlinear field theory of large-spin Heisenberg antiferromagnets:
Semiclassically quantized solitons of the one-dimensional easy-axis Néel state. Phys.
Rev. Lett. 50, 1153–1156 (1983).

[124] I. Affleck and F. D. M. Haldane. Critical theory of quantum spin chains. Phys. Rev. B
36, 5291–5300 (1987).

[125] B. Westbury. The representation theory of the temperley-lieb algebras. Mathematische
Zeitschrift 219(1), 539–565 (1995).

[126] P. P. Martin and D. Woodcock. On quantum spin-chain spectra and the structure of
Hecke algebras and q-groups at roots of unity. Journal of Physics A: Mathematical and
General 31(50), 10131 (1998).

164



[127] S. Donkin (Cambridge University Press, 1998).

[128] F. Anderson and K. Fuller. Rings and Categories of Modules. Graduate Texts in
Mathematics (Springer, 1992). ISBN 9780387978451.

[129] J. L. Cardy. Conformal invariance and universality in finite-size scaling. Journal of
Physics A: Mathematical and General 17(7), L385 (1984).

[130] I. Affleck. Universal term in the free energy at a critical point and the conformal
anomaly. Phys. Rev. Lett. 56, 746–748 (1986).

[131] L. P. Kadanoff and H. Ceva. Determination of an operator algebra for the two-
dimensional Ising model. Phys. Rev. B 3, 3918–3939 (1971).

[132] W. Koo and H. Saleur. Representations of the Virasoro algebra from lattice models.
Nuclear Physics B 426(3), 459 – 504 (1994).

[133] C. J. Hamer, G. R. W. Quispel and M. T. Batchelor. Conformal anomaly and surface
energy for Potts and Ashkin-Teller quantum chains. Journal of Physics A: Mathemat-
ical and General 20(16), 5677 (1987).

[134] B. Nienhuis. Loop models. J. Jacobsen, S. Ouvry, V. Pasquier, D. Serban and
L. Cugliandolo (Eds.), Exact Methods in Low-dimensional Statistical Physics and Quan-
tum Computing, vol. 89 of Lecture Notes of the Les Houches Summer School, pp. 347–
424 (Oxford University Press, 2008). ISBN 978-0-19-957461-2.

[135] J. L. Jacobsen. Conformal field theory applied to loop models. A. J. Guttman (Ed.),
Polygons, Polyominoes and Polycubes, vol. 775 of Lecture Notes in Physics, pp. 347–424
(Springer Netherlands, 2009). ISBN 978-1-4020-9926-7.

[136] P. Bushlanov, B. Feigin, A. Gainutdinov and I. Tipunin. Lusztig limit of quantum at
root of unity and fusion of Virasoro logarithmic minimal models. Nuclear Physics B
818(3), 179 – 195 (2009).

[137] P. Bushlanov, A. Gainutdinov and I. Tipunin. Kazhdan–Lusztig equivalence and fusion
of Kac modules in Virasoro logarithmic models. Nuclear Physics B 862(1), 232 – 269
(2012).

[138] A. Gainutdinov, H. Saleur and I. Tipunin. W-algebras in XXZ spin chains at roots of
unity. arXiv:1212.1378 (2012).

[139] P. Di Francesco, H. Saleur and J.-B. Zuber. Modular invariance in non-minimal two-
dimensional conformal theories. Nuclear Physics B 285(0), 454 – 480 (1987).

[140] J. Dubail, J. L. Jacobsen and H. Saleur. Conformal field theory at central charge c = 0:
A measure of the indecomposability (b) parameters. Nuclear Physics B 834(3), 399 –
422 (2010).

[141] J. J. H. Simmons, P. Kleban and R. M. Ziff. Percolation crossing formulae and con-
formal field theory. Journal of Physics A: Mathematical and Theoretical 40(31), F771
(2007).

165



[142] J. Rasmussen and P. A. Pearce. Fusion algebra of critical percolation. Journal of
Statistical Mechanics: Theory and Experiment 2007(09), P09002 (2007).

[143] J. Rasmussen and P. A. Pearce. Fusion algebras of logarithmic minimal models. Journal
of Physics A: Mathematical and Theoretical 40(45), 13711 (2007).

[144] M. Green, J. Schwarz and E. Witten. Superstring Theory: Volume 2, Loop Am-
plitudes, Anomalies and Phenomenology. Cambridge Monographs on Mathematical
Physics (Cambridge University Press, 1987). ISBN 9780521357531.

[145] P. Martin and H. Saleur. The blob algebra and the periodic Temperley-Lieb algebra.
Letters in Mathematical Physics 30(3), 189–206 (1994).

[146] J. L. Jacobsen and H. Saleur. Conformal boundary loop models. Nuclear Physics B
788(3), 137 – 166 (2008).

[147] M. R. Gaberdiel and I. Runkel. From boundary to bulk in logarithmic CFT. Journal of
Physics A: Mathematical and Theoretical 41(7), 075402 (2008).

[148] M. R. Gaberdiel, I. Runkel and S. Wood. A modular invariant bulk theory for the c = 0
triplet model. Journal of Physics A: Mathematical and Theoretical 44(1), 015204
(2011).

[149] A. Gainutdinov, N. Read and H. Saleur. Associative algebraic approach to logarithmic
CFT in the bulk: the continuum limit of the gl(1∣1) periodic spin chain, Howe duality
and the interchiral algebra. arXiv:1207.6334 (2012).
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