
HAL Id: tel-00876624
https://theses.hal.science/tel-00876624v1

Submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic cubing for hierarchical multidimensional data
space

Usman Ahmed

To cite this version:
Usman Ahmed. Dynamic cubing for hierarchical multidimensional data space. Other [cs.OH]. INSA
de Lyon, 2013. English. �NNT : 2013ISAL0011�. �tel-00876624�

https://theses.hal.science/tel-00876624v1
https://hal.archives-ouvertes.fr

N° d’ordre :

2013ISAL0011
Année : 2013

Université de Lyon
Institut National des Sciences Appliquées de Lyon

Laboratoire d’InfoRmatique en Image et Systèmes d’information

THESE

Dynamic Cubing for Hierarchical
Multidimensional Data Space

pour obtenir le grade de

Docteur de L’INSA de Lyon

Discipline : Informatique

Ecole Doctorale : InfoMaths

présenté et soutenue publiquement par

Usman AHMED

le 18 février 2013

devant le jury composé de

Ladjel BELLATRECHE . Professeur des Universités, ENSMA Poitiers (Rapporteur)

Maryvonne MIQUEL .Maître de Conférences, HDR, INSA de Lyon (Co-Directrice)

Jean-Marc PETIT . Professeur des Universités, INSA de Lyon

Franck RAVAT .Professeur des Universités, Université Toulouse I

Anne TCHOUNIKINE .Maître de Conférences, INSA de Lyon (Co-Directrice)

Karine ZEITOUNI Professeur des Universités, Université de Versailles Saint-Quentin-en-Yvelines (Rapporteur)

Esteban ZIMANYI . Professeur des Universités, Université Libre de Bruxelles

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Usman AHMED

PhD, Computer Science, INSA de Lyon

© 2013 – All Rights Reserved

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Order No.:

2013ISAL0011
Year: 2013

Université de Lyon
Institut National des Sciences Appliquées de Lyon

Laboratoire d’InfoRmatique en Image et Systèmes d’information

THESIS

Dynamic Cubing for Hierarchical
Multidimensional Data Space

submitted to obtain the grade of

Doctor of INSA de Lyon

Discipline: Computer Science

Ecole Doctorale: InfoMaths

presented and publicly defended by

Usman Ahmed

on 18th February, 2013

in front of a jury composed of

Ladjel BELLATRECHE .Professeur des Universités, ENSMA Poitiers (Reviewer)

Maryvonne MIQUEL . Maître de Conférences, HDR, INSA de Lyon (Co-Supervisor)

Jean-Marc PETIT . Professeur des Universités, INSA de Lyon

Franck RAVAT .Professeur des Universités, Université Toulouse I

Anne TCHOUNIKINE . Maître de Conférences, INSA de Lyon (Co-Supervisor)

Karine ZEITOUNI Professeur des Universités, Université de Versailles Saint-Quentin-en-Yvelines (Reviewer)

Esteban ZIMANYI . Professeur des Universités, Université Libre de Bruxelles

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

..

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

SIGLE ECOLE DOCTORALE NOM ET COORDONNEES DU RESPONSABLE

CHIMIE

CHIMIE DE LYON

http://www.edchimie-lyon.fr

Insa : R. GOURDON

M. Jean Marc LANCELIN
Université de Lyon – Collège Doctoral
Bât ESCPE

43 bd du 11 novembre 1918
69622 VILLEURBANNE Cedex

Tél : 04.72.43 13 95
directeur@edchimie-lyon.fr

E.E.A.

ELECTRONIQUE,

ELECTROTECHNIQUE, AUTOMATIQUE

http://edeea.ec-lyon.fr

Secrétariat : M.C. HAVGOUDOUKIAN
eea@ec-lyon.fr

M. Gérard SCORLETTI
Ecole Centrale de Lyon

36 avenue Guy de Collongue
69134 ECULLY

Tél : 04.72.18 60 97 Fax : 04 78 43 37 17
Gerard.scorletti@ec-lyon.fr

E2M2

EVOLUTION, ECOSYSTEME,
MICROBIOLOGIE, MODELISATION
http://e2m2.universite-lyon.fr

Insa : H. CHARLES

Mme Gudrun BORNETTE
CNRS UMR 5023 LEHNA

Université Claude Bernard Lyon 1
Bât Forel

43 bd du 11 novembre 1918
69622 VILLEURBANNE Cédex

Tél : 04.72.43.12.94
e2m2@biomserv.univ-lyon1.fr

EDISS

INTERDISCIPLINAIRE SCIENCES-

SANTE

http://ww2.ibcp.fr/ediss

Sec : Safia AIT CHALAL
Insa : M. LAGARDE

M. Didier REVEL
Hôpital Louis Pradel

Bâtiment Central
28 Avenue Doyen Lépine

69677 BRON
Tél : 04.72.68 49 09 Fax :04 72 35 49 16

Didier.revel@creatis.uni-lyon1.fr

INFOMATHS

INFORMATIQUE ET
MATHEMATIQUES
http://infomaths.univ-lyon1.fr

M. Johannes KELLENDONK
Université Claude Bernard Lyon 1
INFOMATHS

Bâtiment Braconnier
43 bd du 11 novembre 1918

69622 VILLEURBANNE Cedex
Tél : 04.72. 44.82.94 Fax 04 72 43 16 87
infomaths@univ-lyon1.fr

Matériaux

MATERIAUX DE LYON

Secrétariat : M. LABOUNE
PM : 71.70 �Fax : 87.12
Bat. Saint Exupéry
Ed.materiaux@insa-lyon.fr

M. Jean-Yves BUFFIERE
INSA de Lyon
MATEIS

Bâtiment Saint Exupéry
7 avenue Jean Capelle

69621 VILLEURBANNE Cédex
Tél : 04.72.43 83 18 Fax 04 72 43 85 28

Jean-yves.buffiere@insa-lyon.fr

MEGA

MECANIQUE, ENERGETIQUE, GENIE

CIVIL, ACOUSTIQUE

Secrétariat : M. LABOUNE
PM : 71.70 �Fax : 87.12
Bat. Saint Exupéry
mega@insa-lyon.fr

M. Philippe BOISSE
INSA de Lyon
Laboratoire LAMCOS

Bâtiment Jacquard
25 bis avenue Jean Capelle

69621 VILLEURBANNE Cedex
Tél :04.72.43.71.70 Fax : 04 72 43 72 37

Philippe.boisse@insa-lyon.fr

ScSo

ScSo*

M. OBADIA Lionel

Sec : Viviane POLSINELLI
Insa : J.Y. TOUSSAINT

M. OBADIA Lionel
Université Lyon 2
86 rue Pasteur

69365 LYON Cedex 07
Tél : 04.78.69.72.76 Fax : 04.37.28.04.48

Lionel.Obadia@univ-lyon2.fr

*ScSo : Histoire, Geographie, Aménagement, Urbanisme, Archéologie, Science politique, Sociologie, Anthropologie

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

..

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

.

To my parents, my siblings and all my teachers!

A mes parents, mes frères et sœurs et tous mes enseignants!

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Acknowledgements

I would like to express my gratitude for the continued guidance, support

and the confidence my supervisors, Dr. Maryvonne Miquel and Dr. Anne

Tchounikine, showed in me. Their ideas, suggestion and repetitive cor-

rections played a major part in completion of the research work and this

manuscript. For someone like me who was first time ever away from his

home and that too about 6000 kms, who did not know the native language

and was shy, it would have been impossible to complete this research en-

deavor without the support of my supervisors. They were always there

to support me not only in the research work but also in my daily affairs,

right from the day I arrived here in Lyon. For such a tremendous support,

I owe them a life time gratitude.

I am thankful to the reviewers, Pr. Ladjel Bellatreche and Pr. Karine

Zeitouni, for their time and the important suggestions to improve the

quality of the manuscript. I am also thankful to the other members of

jury, Pr. Jean-Marc Petit, Pr. Franck Ravat and Pr. Esteban Zimanyi,

for accepting to come and evaluate my work.

I would also like to acknowledge the help of my colleagues who were very

kind to help me in my work, when I needed, as well as in understanding

the French culture and administration. It was thanks to them that we

were able to maintain a very healthy environment at the work place and

which let me complete my work with full serenity and peace of mind. The

encouragement and appreciation I got from the members of the Database

Research Group at LIRIS is also very important for me.

Last but not the least, I would like to thank my family members, friends

and all my teachers right from my early schooldays who showed confidence

in me and made me capable of achieving whatever I have. I am grateful

for all your support and encouragement.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Abstract

Data warehouses are being used in many applications since quite a long time. Tradi-

tionally, new data in these warehouses is loaded through offline bulk updates which

implies that latest data is not always available for analysis. This, however, is not ac-

ceptable in many modern applications (such as intelligent building, smart grid etc.)

that require the latest data for decision making. These modern applications necessi-

tate real-time fast atomic integration of incoming facts in data warehouse. Moreover,

the data defining the analysis dimensions, stored in dimension tables of these ware-

houses, also needs to be updated in real-time, in case of any change. In this thesis,

such real-time data warehouses are defined as dynamic data warehouses. We propose

a data model for these dynamic data warehouses and present the concept of Hierarchi-

cal Hybrid Multidimensional Data Space (HHMDS) which constitutes of both ordered

and non-ordered hierarchical dimensions. The axes of the data space are non-ordered

which help their dynamic evolution without any need of reordering. We define a

data grouping structure, called Minimum Bounding Space (MBS), that helps efficient

data partitioning of data in the space. Various operators, relations and metrics are

defined which are used for the optimization of these data partitions and the analogies

among classical OLAP concepts and the HHMDS are defined. We propose efficient

algorithms to store summarized or detailed data, in form of MBS, in a tree structure

called DyTree. Algorithms for OLAP queries over the DyTree are also detailed. The

nodes of DyTree, holding MBS with associated aggregated measure values, represent

materialized sections of cuboids and tree as a whole is a partially materialized and

indexed data cube which is maintained using online atomic incremental updates. We

propose a methodology to experimentally evaluate partial data cubing techniques

and a prototype implementing this methodology is developed. The prototype lets us

experimentally evaluate and simulate the structure and performance of the DyTree

against other solutions. An extensive study is conducted using this prototype which

shows that the DyTree is an efficient and effective partial data cubing solution for a

dynamic data warehousing environment.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Résumé

De nombreuses applications décisionnelles reposent sur des entrepôts de données. Ces

entrepôts permettent le stockage de données multidimensionnelles historisées qui sont

ensuite analysées grâce à des outils OLAP. Traditionnellement, les nouvelles données

dans ces entrepôts sont chargées grâce à des processus d’alimentation réalisant des in-

sertions en bloc, déclenchés périodiquement lorsque l’entrepôt est hors-ligne. Une telle

stratégie implique que d’une part les données de l’entrepôt ne sont pas toujours à jour,

et que d’autre part le système de décisionnel n’est pas continuellement disponible. Or

cette latence n’est pas acceptable dans certaines applications modernes, tels que la

surveillance de bâtiments instrumentés dits "intelligents", la gestion des risques envi-

ronnementaux etc., qui exigent des données les plus récentes possible pour la prise de

décision. Ces applications temps réel requièrent l’intégration rapide et atomique des

nouveaux faits dans l’entrepôt de données. De plus, ce type d’applications opérant

dans des environnements fortement évolutifs, les données définissant les dimensions

d’analyse elles-mêmes doivent fréquemment être mises à jour. Dans cette thèse, de

tels entrepôts de données sont qualifiés d’entrepôts de données dynamiques. Nous

proposons un modèle de données pour ces entrepôts dynamiques et définissons un

espace hiérarchique de données appelé Hierarchical Hybrid Multidimensional Data

Space (HHMDS). Un HHMDS est constitué indifféremment de dimensions ordonnées

et/ou non ordonnées. Les axes de l’espace de données sont non-ordonnés afin de fa-

voriser leur évolution dynamique. Nous définissons une structure de regroupement

de données, appelé Minimum Bounding Space (MBS), qui réalise le partitionnement

efficace des données dans l’espace. Des opérateurs, relations et métriques sont définis

pour permettre l’optimisation de ces partitions. Nous proposons des algorithmes pour

stocker efficacement des données agrégées ou détaillées, sous forme de MBS, dans une

structure d’arbre appelée le DyTree. Les algorithmes pour requêter le DyTree sont

également fournis. Les nœuds du DyTree, contenant les MBS associés à leurs mesures

agrégées, représentent des sections matérialisées de cuboïdes, et l’arbre lui-même est

un hypercube partiellement matérialisé maintenu en ligne à l’aide des mises à jour

incrémentielles. Nous proposons une méthodologie pour évaluer expérimentalement

cette technique de matérialisation partielle ainsi qu’un prototype. Le prototype nous

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

permet d’évaluer la structure et la performance du DyTree par rapport aux autres

solutions existantes. L’étude expérimentale montre que le DyTree est une solution

efficace pour la matérialisation partielle d’un cube de données dans un environnement

dynamique.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Contents

1 Introduction 1

1 Motivation . 2

2 Positioning our Research Work . 3

3 Problems and Challenges . 4

4 Contribution . 5

5 Organization of the Thesis . 6

2 Literature Review 7

1 Introduction . 8

2 Real-Time ETL . 8

3 Data Cubing . 11

4 Data Indexing . 15

5 Conclusion . 25

3 Mathematical Model for HHMDS 27

1 Introduction . 28

2 Illustrating Toy Example . 28

3 Data Model . 29

4 Algebra for HHMDS . 34

5 Conclusion . 46

4 The DyTree 47

1 Introduction . 49

2 Structure of the DyTree . 49

3 Constructing a DyTree . 51

4 Discussion on the DyTree . 63

5 Querying the DyTree . 64

6 Conclusion . 67

i

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5 Experimental Evaluation 69

1 Methodology . 71

2 Inputs to the Workflow . 72

3 Outputs of the Workflow . 80

4 Synthesis of the Workflow . 85

5 Experimental Results and Discussion 85

6 The Prototype . 102

7 Conclusion . 107

6 General Conclusion 111

1 Contribution Summary . 112

2 Discussion . 113

3 Enhancements and Extensions . 114

4 Final Words . 117

Nomenclature . 119

References 121

ii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

List of Figures

2.1 An example of point QuadTree [Gaede 1998] 17

2.2 An example of point kd-tree [Gaede 1998] 18

2.3 An example of R-Tree [Gaede 1998] 18

2.4 An example of R+-Tree [Gaede 1998] 19

2.5 An example of HOBI [Chmiel 2010] 21

2.6 An example of Time-HOBI [Chmiel 2010] 22

2.7 An example of an Ag-Tree’s structure [Feng 2006] 23

2.8 An example of a Dwarf’s structure [Sismanis 2002] 24

3.1 Dimension Hierarchies and Instances of dimension (a) Location and

(b) Time, for the illustrating toy example. 29

3.2 Two possible representations of a hierarchical hybrid multidimensional

data space. 31

3.3 Minimum bounding spaces (MBS) in an HHMDS 35

3.4 Translate-Up operation on MBS . 37

3.5 Translate-Down operation on MBS 38

3.6 MBS to illustrate the metrics and relations defined for HHMDS . . . 39

4.1 An example DyTree built with DNCAP = 3 and OV LAP = 0: (a)

structure of the DyTree, (b) data space, and (c) MBS and facts. . . 52

4.2 The instance of hierarchical dimension Location used in the running

example. 56

4.3 State I: Initial state of DyTree . 57

4.4 State II: Insertion of f4. 58

4.5 State III: Insertion of f5. 59

4.6 State IV: Insertion of a f6. 60

4.7 State V: Insertion of a new fact f7. 61

4.8 State VI: Insertion of f8. 62

5.1 Outline of experimental evaluation process 73

iii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5.2 Schema used in Star Schema Benchmark 74

5.3 Hierarchical organization of dimensions used in Star Schema Benchmark 75

5.4 Schema of synthetic data sets . 75

5.5 An example of a DyTree built using a 3-dimensional schema with

DNCAP = 3 and OV LAP = 0 . 83

5.6 Detailed outline of experimental evaluation process 85

5.7 Comparison of, single data record insertion time on (a) SSB (# 1 in

table 5.2) (b) syn-dns40 (# 13 in table 5.2); tree construction time on

(c) SSB (d) syn-dns40; memory usage on (e) SSB (f) syn-dns40 . . . 88

5.8 Comparison of query response time of (a) point queries using SSB (#

1 in table 5.2), (b) point queries using syn-dns40 (# 13 in table 5.2),

(c) range queries using SSB, (d) range queries using syn-dns40 90

5.9 Comparison of queries response time of range queries when the range is

defined on only one (a, b) temporal dimension and (c, d) non-temporal

dimension . 91

5.10 Effect of varying the overlap limit on, (a) insertion time of a single

fact; number of (b) directory nodes (c) super nodes; query response

time of (d) point queries and (e) range queries. The experiments are

conducted using SSB data set (# 1 in table 5.2) 93

5.11 Effect of varying the overlap limit on (a) tree height and (b) average

tree levels width . 94

5.12 Effect of varying the directory node capacity on, (a) insertion time of a

single fact; (b) memory usage; query response time of (c)point queries,

(d) range queries. The experiments are conducted using SSB data set

(# 1 in table 5.2). 96

5.13 Effect of varying the directory node capacity on (a) average nodes fill

ratio and (b) average nodes density 99

5.14 Effect of dimension scaling on, (a) atomic insertion of a fact; (b) mem-

ory usage; query response time of (c) point and (d) range queries. The

experiments are conducted using data sets #6-10 described in table 5.2. 99

5.15 Effect of variation in fact table’s density on, (a) atomic insertion of

a fact, and query response time of (b) point (c) range queries; The

experiments are conducted using data sets #11-15 described in table

5.2. 100

iv

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5.16 Effect of delayed insertion on, (a) atomic insertion of a fact, and query

response time of (b) point (c) range queries. The experiments are

conducted using data sets #1-5 described in table 5.2. 102

5.17 Schema definition . 104

5.18 Loading or automatic generation of dimension tables data 105

5.19 The tree construction and visualization interface 106

5.20 Automatic schema, data set and queries set generation 107

5.21 Querying a DyTree . 107

5.22 Interface to visualize data and tree nodes of a DyTree 108

5.23 Parameters to start automatic experimentation 108

v

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

vi

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

List of Tables

3.1 Illustration of the calculation of δ(Et, Ft) and β(Et, Ft) using Allen’s

interval algebra. The intervals used for the illustration are X = Interval(Et) =

[t1, t2] and Y = Interval(Ft) = [t3, t4] 44

5.1 Cardinality of the instances of different tables involved in SSB 76

5.2 Summary of the data sets used in experimental evaluation 78

vii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

viii

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

List of Algorithms

4.1 Insert algorithm for DyTree’s internal (directory or super) node . . . 53

4.2 Directory node’s split algorithm for DyTree 55

4.3 Range (SUM) query algorithm for a DyTree’s internal (directory or

super) node . 65

ix

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

x

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 1

Introduction

Chapter Outline

1 Motivation . 2

2 Positioning our Research Work 3

3 Problems and Challenges 4

4 Contribution . 5

5 Organization of the Thesis 6

1

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

1. Motivation Chapter 1. Introduction

1 Motivation

Since quite a long time, data warehouses are being used to help decision making

in many applications such as applications aimed at inventory forecasting, customer

relation management etc. These applications generate huge volume of strategically

important data which is stored for eventual use in decision making process. The

analysis over the data is usually carried out through online analytical processing

(OLAP) which involves the summarization of historical data stored in the data ware-

houses. Classically, the updates in data warehouses are integrated through periodic

(e.g. daily, weekly etc.) offline bulk updates. Such a strategy allows enough time for

data cleaning, quality checking and maintenance of materialized views but implies

that the latest data is not always available for the decision making process and the

data warehouses themselves are not available while the updates are being integrated.

As the time has passed, the usage of data warehouses has increased. These are now

being used in much critical applications such as surveillance applications, intelligent

building, smart grid, fraud/threat detection, energy management, operational intel-

ligence etc. Latest data in these applications is of paramount importance for making

critical decisions. This latest data needs to be analyzed in conjunction with the stored

historical data in real-time to make timely and realistic decisions. For example, in

an intelligent building application several sensors are installed at various locations of

the building. These sensors record various indicators such as temperature, humidity,

motion etc. which need to be analyzed in real-time for efficient energy management

and/or surveillance. Thus, they must be integrated in the warehouse as soon as they

are recorded. Moreover, the number of the sensors used in such application are not

static and we may need to add new ones. This requires the addition of new members

in analysis dimensions or, in other words, demands the fast evolution of dimensional

data in warehouse. Due to such critical requirements and usage, the traditional data

warehouses are not suitable and recently some techniques and solutions have been

proposed.

In literature, such solutions have been proposed using different terminologies which

include near real-time, soft real-time, real-time, right time, useful time, active or

zero-latency data warehouses. All these solutions propose to integrate new data more

often and while both operational systems and data warehouse are online but with

some slightly different constraints.

2

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 1. Introduction 2. Positioning our Research Work

2 Positioning our Research Work

Our research works resides at the frontiers of real-time data warehouses and evolving

data warehouses.

The real-time data warehouses invoke the problems linked to the freshness of data.

In other words, they deal with the challenges encountered while making efforts to re-

duce the latency between the occurrence of a fact in the observed system and its

integration in an OLAP system. Among the research works addressing such data

warehouses, we very often talk about “near real-time” [Zuters 2011, Bruckner 2002,

Jorg 2010], “soft real-time” [Vu 2009, Namgyu 2007], “real-time” [Santos 2008] and

“zero-latency” [Nguyen 2003] data warehouses. The research works on these data

warehouses focus on continuous fast integration of data, appearing at the transac-

tional system’s end, into the warehouse. The focal point of the proposed solutions is

finding out the optimized ETL strategies in which the triggering event to start data

loading is the occurrence of a transaction at the source system.

The data warehouses called as “right-time” [Thomsen 2008] and “useful-time”

[Santos 2009] also invoke the issues related to data freshness but this time from the

analysis perspective. The solutions proposed in this context present scheduling strate-

gies for the update of aggregates and cube maintenance on the basis of requirements

of queries in OLAP systems (“on-demand” updates).

The common point among real-time and right-time data warehouses is that the

dynamic aspect of data warehouse and data cubes is linked to the integration of new

facts in the system. Another type of data warehouses, we call evolving data ware-

houses, deal with the problems of considering the evolution of the data which serves

at defining the schema of a data cube (e.g. dimensions, hierarchies, members). There-

fore, the dynamic aspect in these data warehouses is related to the addition or change

in the definition of new members in the multidimensional data space. These data

warehouses are sometimes referred as “temporal” [Chamoni 1999, Malinowski 2008]

or “dynamic” [Dayal 1999, Theodoratos 1999] data warehouses. The proposed solu-

tions in this context often include strategies such as time-stamping and/or versioning

of data.

In this thesis, we use the term dynamic data warehouses to simultaneously take

the dynamic aspect of the data in observed system and that of the new members in

multidimensional data space into account.

3

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Problems and Challenges Chapter 1. Introduction

3 Problems and Challenges

The special nature of dynamic data warehouses raises some real challenges for its

realization. Among these, one of the principle challenges is to ensure freshness of data.

This requires the integration of new transactions in the data warehouse as soon as

they occur at the source systems. The data structures (e.g. index, materialized views)

maintained for the performance improvement also need to be updated in real-time

to make them available for analysis and decision making process. In dynamic data

warehouses, these data structures must support online incremental updates without

needing any complex computations and system down time. The issue can be addressed

by the supporting online atomic facts insertion and by improving the performance of

facts insertion, views maintenance and querying algorithms.

Another challenge while dealing with dynamic data warehouses is that as data

is loaded through fast atomic insertions, it can not be ordered. As a result, these

data warehouses do not operate in an ordered data space which is usually the case

for traditional data warehouses. Indeed, the working data space of most data ware-

houses is composed of both naturally ordered (e.g. time) and non-ordered (sensors,

location etc.) dimensions. Since ordered data renders the optimal techniques of data

manipulation feasible, the members of naturally non-ordered dimensions are usually

assigned numerical ids to introduce an artificial order in them. Such an ordering strat-

egy improves the querying performance of the system, but might require reordering

of entire data space, upon insertion of new dimension members, and hence is time

consuming. Still, as data in classical data warehouses is loaded through offline ETL

operations, this strategy is a reasonable one. Nonetheless, dynamic data warehouses

can not afford to have such strategy because it would compromise the system avail-

ability. Moreover, the growth in the working data space of dynamic data warehouses

is more important than in traditional data warehouses which usually operate in static

or slowly changing data space. Therefore, we believe that the naturally non-ordered

dimensions in dynamic data warehouses should remain non-ordered which is helpful

in supporting dynamic growth of data space. However, the nature of ordered dimen-

sions could be exploited so as to facilitate the manipulation of data (e.g. indexing,

partitioning etc.). This makes dynamic data warehouses to operate in a mixed data

space that is composed of both ordered and non-ordered dimensions. This raises the

need of a specific data model for dynamic data warehouses.

4

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 1. Introduction 4. Contribution

4 Contribution

Our contribution in this research work is on partial cube materialization in a dynamic

data warehousing environment. For this purpose, we first focus on the problems of

data modeling which requires to consider both naturally ordered and non-ordered

hierarchical dimensions for the description of data objects and algebraic operations.

The materialization of views is achieved through data grouping structures that are

stored and indexed in a tree like structure. The indexing structure operating in

such an environment requires itself to be able to integrate the newly coming data

dynamically. It should also be able to efficiently respond to OLAP queries which

involve aggregation at different levels of granularity. Precisely, over contribution in

this research work includes the proposition of:

• a data model for dynamic data warehouses. In our data model, we propose the

concept of Hierarchical Hybrid Multidimensional Data Space (HHMDS) which

constitutes of both ordered and non-ordered hierarchical dimensions. The axes

of the data space are non-ordered which help their dynamic evolution without

any need of reordering. We define a data grouping structure, called Minimum

Bounding Space (MBS), that helps the efficient data partitioning of data in

the space. Various operators, relations and metrics are defined which are used

for the optimization of these data partitions and the analogies among classical

OLAP concepts and the HHMDS are defined which lets us use the operations

of classical data warehousing in HHMDS.

• a data structure called DyTree that indexes the MBS in its nodes and facts

in the leaves with corresponding measure and aggregate values. The nodes

holding MBS with associated aggregate values represent materialized sections

of cuboids and the tree as a whole could be seen as a partially materialized

data cube. Therefore, the DyTree is also a cubing structure. The views that

are materialized (i.e. the nodes) are constructed at run time and guided by the

proposed metrics. Algorithms for atomic insertion of a fact and querying the

DyTree are provided.

• a methodology to experimentally evaluate the performance of the DyTree. For

this purpose, a workflow has been set up. We outline input and output pa-

rameters for this workflow allowing us to assess the performance in different

scenarios. Using input parameters, the size and nature of data and queries

5

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Organization of the Thesis Chapter 1. Introduction

sets is varied to see its effect on the output parameters which let us charac-

terize and compare the performance of the trees. The methodology allows us

to systematically analyze the DyTree from both quantitative and qualitative

perspectives.

• a prototype that implements the experimental evaluation workflow and lets

us evaluate the efficiency of the DyTree. The prototype has a range of fea-

tures which include schema building, data and queries sets generation, trees

construction, querying, 3D data and tree visualization and simulation utilities.

The prototype helps us validate and evaluate the performance of our solution.

5 Organization of the Thesis

After discussing our motivation and giving a brief introduction about our research

work in this chapter, we discuss our research work in more details in the next chapters:

• In chapter 2, a study of existing state-of-the-art solutions that deal with the

issues related to ours is presented.

• In chapter 3 we present the data model for HHMDS and provide the details of

our data grouping structure and related algebra.

• The structure of the DyTree and algorithms for its construction and querying

are presented in chapter 4.

• In chapter 5, we detail our methodology for the experimental evaluation of

the DyTree and discuss the obtained results. The details of our prototype

implementing the experimental evaluation workflow and allowing the interactive

simulation of the DyTree are also presented in this chapter.

• We conclude our discussion in chapter 6 by highlighting some strong and weak

points of our solution and give some perspectives and possible directions for the

future research works.

6

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2

Literature Review

Chapter Outline

1 Introduction . 8

2 Real-Time ETL . 8

2.1 Process Improvement . 9

2.2 Updates and Queries Scheduling 10

2.3 Concurrency Control . 11

2.4 Performance Measurement 11

3 Data Cubing . 11

3.1 Partial Data Cubing . 12

3.2 Space Efficient Data Cubing 12

3.3 Data Cubing in a Dynamic Environment 14

4 Data Indexing . 15

4.1 Data Indexing for Multidimensional Databases 16

4.2 Data Indexing for Data Warehouses and OLAP 20

4.3 Partially/Non Ordered Data Spaces 25

5 Conclusion . 25

7

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

1. Introduction Chapter 2. Literature Review

1 Introduction

For over a decade now, the BI research community has paid a lot of attention to the

works focusing on to reduce the time required to take a business action on the occur-

rence of some event in the concerned application. The delay between the happening

of this event and the business action is called action time and can be considered as

comprising of four components [Nguyen 2006]:

• Data latency: time between the occurrence of some event and the data storage

in the warehouse,

• Analysis latency: time from the data being available for analysis to the time

when the information is generated based on it,

• Decision latency: time between the delivery of information to the selection of

some business strategy, and

• Response latency: time required for the implementation of new business strategy

or decision.

In this research work, we rather focus our discussion on the first two components which

aim for quick availability (achieved through real-time ETL) and fast integration of

this data in data structures maintained for efficient analysis (e.g. aggregates, index

etc.).

In the following, we present and discuss the existing research works addressing the

issues related to these two components. We start our discussion by presenting some of

the research works focusing on real-time ETL. We then discuss the data cubing and

views materialization techniques which are largely used to pre-calculate and store

the aggregates in a data warehouse to gain the performance advantage. Next, we

consider techniques and methods that index data in multidimensional data space and

contribute to the performance improvement.

2 Real-Time ETL

As discussed in last chapter, various terms (e.g. right-time, soft real time etc.) are

used to refer very close concepts. In this section, we regroup these concepts under

real-time data warehouses for the sake of simplicity.

Real-time data warehousing has attracted much attention of researchers during the

last decade. Several studies have been carried out to deal with the issues in making it

8

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 2. Real-Time ETL

a reality and improve its performance. Among these, some projects (e.g. zero-latency

data warehousing [Nguyen 2003, Nguyen 2005, Nguyen 2007], LiveBI [Gupta 2011],

DataDepot [Golab 2009a]) have been realized to propose architectural frameworks

for these real-time data warehouses with the overall objective of reducing the ac-

tion time. Here we focus our discussion on the solutions for the improvement of

ETL process in real-time data warehouses. We categorize these research works into

four categories (sometimes overlapping): process improvement, updates and queries

scheduling, concurrency control and performance measurement.

2.1 Process Improvement

In this section, the research works focusing on to improve the efficiency of real-time

ETL process are discussed. Among these, [Santos 2009] presents interesting study

on data loading techniques in real-time data warehouses and propose a methodology

supporting the continuous integration of incoming data while minimizing the impact

on online analysis at the user end of the data warehouse. From the experimental study,

the authors make an observation that the insertion of new rows in a table with no or

very few contents is much less complex and faster than those in large size tables. Based

on this observation, they propose a data warehouse loading methodology comprising

of four steps: data warehouse schema adaptation, continuous data integration, OLAP

queries adaptation and data area packing and re-optimization. In the first step,

exact replica of all the tables that are suspected to welcome new insertions is created

without any contents, primary key, index and referential integrity constraints. These

replicated tables are named temporary tables. Data coming from source systems is

inserted into these tables after all the necessary transformations. OLAP queries are

adapted so as to take the schema adaptation into consideration. This is achieved by

joining the data in temporary and permanent tables. Since, the continuous integration

of data into temporary tables would degrade the insertion efficiency of new records

after some time, the data in temporary table is integrated into the tables in data

warehouse and all the temporary tables are recreated.

[Polyzotis 2007] discusses a particular aspect of continuous data loading into an

active data warehouse, i.e. the meshing of stream updates with persistent data avail-

able in the data warehouse. The authors propose a join algorithm, called MESHJOIN,

that is able to handle the fast arrival rate of the incoming streams and limited mem-

ory. The fast arrival rate is handled thanks to a so called tuple-shedding strategies

which may cause the loss of some information. Consequently, the answer to queries

are only approximate.

9

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Real-Time ETL Chapter 2. Literature Review

In [Thomsen 2008] a middle-ware system, called RiTE (Right-Time ETL), is pre-

sented. The data from source system is temporarily stored in a buffer at middle-ware

(i.e. RiTE) unless it is committed by the producer or required by the data consumer.

The buffer is managed by a so-called catalyst which is also responsible for data move-

ment from the producer to the consumer. The purpose of the catalyst is to enable

the fast movement of the data.

[Karakasidis 2005] presents an architectural framework for active data warehous-

ing. The architecture is based on queuing networks where each queue is maintained

to perform specific ETL activity.

2.2 Updates and Queries Scheduling

Since the new updates and queries may arrive at a very fast rate in real-time data

warehouses, they are required to be scheduled for better performance. Dealing with

this issue, [Thiele 2009] provides a dynamic scheduling algorithm for simultaneous

updates and queries while assuring the user associated QoS (quality of service) and

QoD (quality of data) criteria. The QoS criteria is used to optimize the response

time while QoD is used to optimizing data freshness. The workload consists of two

components, i.e. query workload and update workload. Each input query is accompa-

nied with user preferences of QoS and QoD. A profit parameter is attached with each

update specifying the user benefit if the update is applied. The correlation between

queries and updates is determined thanks to data warehouse partitions: if same par-

titions are accessed by an update u and query q then u and q are correlated. Using

this correlation information and user specified QoS and QoD criteria, the schedules

are generated such that they are optimal under specified constraints.

The research work was extended in [Thiele 2010] to support the updates coming

from several data sources. The authors propose two approaches, named local schedul-

ing and global scheduling. In case of local scheduling, a scheduler is maintained at

the site of each data source while for global scheduling only one global scheduler is

used. The local schedulers are aware of the workload at their respective ends while

the global scheduler is aware of the workload at all the data sources and stages of

the data warehouse. A detailed comparative study of the global and scheduling is

presented which shows the advantages and drawbacks of the two approaches.

In [Golab 2009b], the authors propose a scheduling algorithm for integration of

incoming streams into a data warehouse. The proposed algorithm takes not only the

priority of task into account but also the data freshness in base and/or derived tables.

The algorithm aims at minimizing the overall staleness of data in the data warehouse.

10

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 3. Data Cubing

2.3 Concurrency Control

As discussed earlier, updates are integrated in real-time data warehouses at the same

time when it is being used for analysis. In other words, same data structures are

accessed by updates and queries at the same time. This could lead to the conflict in

access priority and may cause deadlocks. The issue can be resolved using an access

control mechanism. This issue in real-time data warehouse is discussed in [Kim 2007].

The authors propose to maintain a global version for operational databases (VODB)

and a separate version for data warehouse (VDW). The update transactions are stored

in VODB before their integration in VDW while the queries are directly executed at

VDW. Update transactions stored at VODB are integrated in VDW thanks to an

operation called publishing. This integration of update transactions or in other words

the view maintenance is achieved in a conflict-free publishing order by the help of

so-called publish order graphs (POG). The POG are maintained such that there is

no concurrency issue in the execution of the transactions. The authors propose an

algorithm with its correctness proof to perform these operations and performance

study of the algorithm proves its utility in increasing data freshness, or in other

words, reducing the data latency.

2.4 Performance Measurement

To measure the performance of an ETL process, [Simitsis 2009] proposes a suite of

quality metrics, referred as QoX. The suite includes both quantitative (e.g. perfor-

mance, freshness, availability etc.) and qualitative (e.g. maintainability, flexibility

etc.) metrics. The metrics from QoX suite are incorporated at all the stages of

design process and guide its optimization. The interrelationships and dependencies

among the metrics are discussed which lead to the tradeoffs for alternative opti-

mization of the process. The metrics can be applied to any existing ETL frame-

work to measure its performance. The QoX metric suite is employed in LiveBI

[Castellanos 2010, Gupta 2011] project to guide the optimization of its ETL process.

3 Data Cubing

To reduce the analysis latency, an extensively used technique is pre-aggregation of

data in cubes. The introduction of data cube [Gray 1997] which pre-calculates the

aggregated measures for all level and dimension combinations of group-by was the

first effort to improve OLAP query response time. This cubing, however, raises

11

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Data Cubing Chapter 2. Literature Review

considerable problems related to the complexity of calculation and storage of the

data. Many research works have been carried out and various solutions are proposed

to optimize the data cube computation and storage efficiency. We discuss some of

these research works in the following sections.

3.1 Partial Data Cubing

One of the solution to address the cube storage problem is partial data cubing i.e.

to pre-compute only a subset of all possible aggregates (also called views). In litera-

ture, numerous research solutions can be found for efficient and strategic selection of

such subset of views to materialize in a data warehouse. These solutions provide a

reasonable compromise between space usage and query response time. Among these,

[Harinarayan 1996] was the first work dealing with the issue which discussed the need

of partial view materialization and proposed a greedy algorithm to select a subset

of views to materialize aimed at reducing the query response time. The research

work was extended by [Gupta 1997b], but still do not consider the update cost of

views. [Gupta 1997a] proposes another framework to address the issue and proposes

a polynomial time heuristic to optimize query response time. The selection of views

is based on AND/OR graphs and the proposed algorithm takes the update cost into

account. Authors of [Baralis 1997] propose a technique to reduce the solution space

on the basis of the prior information related to the user specified queries. A heuristic

based on the size of the candidate views is used to further reduce the solution space.

[Zhang 1999] proposes a genetic algorithm for the same problem of views selection

while in [Aouiche 2009] a strategy to select a subset of materialized views and an in-

dex (from a set of candidate indices) is discussed and a data-mining based approach

is employed for the purpose.

3.2 Space Efficient Data Cubing

Apart from partial data cubing, many other research works have also addressed the

issue of space consumption and have proposed space efficient storage ways for the

purpose. The basic principle of these works is based on avoiding storing unnecessary

or redundant information.

In [Wang 2002] the authors propose a structure called Condensed Cube for reduc-

ing the size of data cube which in turn reduces the space and computation overheads.

The condensed data cube is an uncompressed fully computed data cube and does

not require any compression/decompression. The idea is based on identifying base

12

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 3. Data Cubing

single tuples (BST) which on a subset of dimensions SD is defined as the only tuple

in a vertically partitioned (on SD) fact table. This definition implies that the ag-

gregate values of all the cuboids on the subsets of SD, are same as the aggregated

value of the BST. Therefore, only BST are physically stored in a cube while the other

cuboids are generated (when required) from these without needing much computa-

tion. [Feng 2004a] proposes further condensing in Condensed Cube using the prefix

sharing technique and propose another structure called PrefixCube.

Quotient Cube [Lakshmanan 2002] is based on idea of partitioning the cube cells

in classes such that all the cells in a class have same aggregate value in addition so

some filtering criteria (e.g. minimum count). The classes so formed are arranged

in lattice and replace the original cube. The classes are generated in such a way

that even without keeping the information about all the cells of a data cube, the

drill-down/roll-up semantics are preserved. QC-Tree [Lakshmanan 2003] is used to

efficiently store the quotient cube. PMC (Partially Materialized Cube) is an extension

of QC-Tree for partial views materialization. Less number of views are materialized

in PMC while additional information is stored in each node to still be able to com-

pute all the aggregates. This results in better performance for integration of new

updates at the cost of querying performance. Range Cube [Feng 2004b] is also a

similar solution proposing a compact structure. The idea of Range Cube is based on

generating range tries using the correlation among data tuples of the base fact table.

A single scan is needed over a fact table to construct the trie. The nodes of the trie

hold only non-redundant dimension values and the associated aggregates. Number of

nodes in generated tries is based on the correlation of data and has a strong effect

on the performance of the Range Cube’s computation, memory usage and querying

performance.

[Morfonios 2006] proposes a ROLAP cubing method called CURE (Cubing Using

a ROLAP Engine) that computes whole data cube over very large data space consti-

tuted of hierarchical dimensions. CURE uses an efficient algorithm for partitioning

fact table that helps improving the cube computation speed. Efficient cube storage is

achieved by removing the dimensional (repetition of dimension values) and aggrega-

tional (repetition of aggregate values) redundancy. The work was extended to make

online incremental updates possible in [Zhang 2008]. The authors have proposed a so-

lution, named DOLUS (Dynamic Online Updating Solution) that works with CURE.

The DOLUS can also be used independently without CURE. The incremental up-

dates in DOLUS, however, are not atomic. The tuples from fact table are stored in a

buffered pool where they are sorted before being integrated into cube.

13

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Data Cubing Chapter 2. Literature Review

Some research works have discussed the cube computation problem on the basis

of the density of data cubes. Among these, [Ross 1997] proposes an algorithm named

PartitionedCube for efficient computation of sparse data cubes over a large data space.

The idea is to partition a large fact table into smaller tables and create data cubes

over these small partitioned data tables. [Yu-cai 2004] also proposes an algorithm

for computation of sparse data cubes which exploits the functional dependencies that

may exist among different dimensions. The algorithm assumes that each dimension

value is an integer between zero and its cardinality which is known in advance. Since

levels in hierarchical dimensions can be assumed to be different functional dependent

dimensions (e.g. Country and City can be assumed to be two different dimensions

where City is functionally dependent on Country), cube with hierarchical dimensions

can also be computed.

3.3 Data Cubing in a Dynamic Environment

Dimensions in data warehouse are generally believed to be static or slowly changing

[Kimball 1996]. This, however, is not always valid and there exist the data warehous-

ing applications where data in dimension tables evolves over the time, i.e. they operate

in a dynamic environment. These data warehouses are also called temporal data ware-

houses. A large amount of research work dealing with the issues related to temporal

data warehouses is available in literature. These research works can be categorized in

five categories [Golfarelli 2009], i.e works on: changes in data source (e.g. [Amo 2000,

Chen 2001]), data changes in data mart (e.g. [Hurtado 1999, Gupta 1995]), schema

changes in data mart (e.g. [Hurtado 1999, Bellahsene 2002, Body 2002, Ravat 2006,

Favre 2007]), querying temporal data (e.g. [Wrembel 2006, Mendelzon 2000]) and

designing temporal data warehouse (e.g. [Malinowski 2008, Rizzi 2006]). The focus

of these research works is mostly on providing models to support evolution in data

warehouses including dimension updates, hierarchy updates, levels updates, instances

updates, facts updates etc.

The computation of data cube under such an evolving environment is discussed in

[Geffner 2000]. The authors propose a cube computation approach for dynamic data

warehousing environment, called Dynamic Data Cube (DDC) . A data space of DDC

is a multidimensional array in which the cardinality of each dimension equals the size

of dimension’s domain set. The data space is partitioned thanks to so-called overlay

boxes which are completely disjoint hyper-rectangles. Each overlay box stores only a

small number of values that represent row sums of the cell values in each dimension.

The DDC proposes to store these overlay boxes in a B-Tree based tree structure called

14

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 4. Data Indexing

Bc-Tree (Cumulative B-Tree). A separate Bc-Tree is maintained for each set of row

sum values. A 2-dimensional overlay box has two set of row sum values each of which

is one-dimensional. In case of a d-dimensional overlay box, we will have d groups of

row sum values each of which will be (d-1)-dimensional. Therefore, a d-dimensional

overlay box is stored in (d-1)-dimensional dynamic data cube , recursively unless we

get to d=2. There, the 2-dimensional DDC is stored in two Bc-Trees. The addition

of a new dimension value or in other words, a new cell requires the creation of a new

root above the existing one in the Bc-Tree. The new root has a size that is twice the

size of the replaced root in each dimension. This causes the number of levels in the

tree to grow. The tree can be maintained incrementally, hence the dynamic growth

of the cube becomes possible. The preceding description makes it clear that a higher

dimensional DDC needs complex computations and requires a lot of space. The issue

of space efficiency of DDC was later addressed in [Riedewald 2000] without much

effecting the query and update costs. This research work consider only numerical

dimensions for the calculation of range sums, which are naturally totally ordered. No

study was carried out to see the effect of increase in number of dimensions on these

approaches.

4 Data Indexing

Data in warehouses is multidimensional in nature. One of the approaches to index

multidimensional data is to transform it into one-dimensional data using space filling

curves (e.g. z-ordering [Orenstein 1984], Hilbert curve [Faloutsos 1989], Peano curve

[Morton 1966], gray ordering [Faloutsos 1988], etc.). The transformed data can then

be indexed using one dimensional indexing techniques such as B-Tree [Bayer 1972].

All these space filling curves propose to partition the data space using a grid and

then each of the resultant grid cells is labeled with a unique number determining the

position of that cell in the introduced total order. The total order is then used while

indexing the data lying in the multidimensional data space. While labeling the grid

cells, it is assured that there is a high probability of spatial proximity of the data

points is being preserved. The clear advantage of using the space filling curves is that

they are insensitive to the number of dimensions if the one dimensional keys can be

arbitrarily large [Gaede 1998]. However, we do not detail these works focusing on

space filling curves and one dimensional indexing techniques here and rather focus on

the indexing techniques that propose to index the data directly in a multidimensional

data space or can be used to index the data in a warehousing context.

15

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Data Indexing Chapter 2. Literature Review

In this section, we first discuss the data indexing techniques for multidimensional

databases and then present a study on specific indexing techniques for data ware-

houses. We discuss the indexing techniques dealing with the data lying in partially

or non-ordered data space at the end of this section.

4.1 Data Indexing for Multidimensional Databases

In this section, we discuss the multidimensional data indexing techniques that directly

index the data in a multidimensional data space. We classify these indexing techniques

into two groups: (1) space partitioning indexing techniques and (2) data partitioning

indexing techniques. In space partitioning indexing techniques, partitions of data

space are stored in some data structure (mostly a tree structure). The process of

partitioning a data space is usually very straight forward and the index always covers

the whole data space. This, however, may result in poor space utilization in case of

sparse data sets. The data partitioning techniques, on the other hand, do not suffer

from the inefficient space utilization. The data partitions do not cover all the data

space but as all the existing data is indexed in the data structures, they can easily

provide accurate answers to the queries. The process of creating data partitions,

however, is more complicated than the space partitions. In the following, we discuss

important works from each of these classes.

4.1.1 Space Partitioning Techniques

Among the space partitioning techniques for multidimensional data indexing, quadtree

[Finkel 1974] proposed by Finkel and Bentley is one of the initial structures. The ini-

tial quadtree was proposed for indexing of point data in 2-dimensional data space,

but the idea could be easily extended to the higher dimensional data space. A two

dimensional data space in a quadtree implementation is divided into four quadrants

or partitions (referred as NW, NE, SW, SE) every time the space needs to be divided

which explains the origin of the name “quadtree”. In other words, every non-leaf node

of a quadtree has four children (2n in case of an n-dimensional data space). In a

quadtree, data points themselves serve as the points of division, therefore the created

partitions need not to be of equal size and the tree itself is not guaranteed to be bal-

anced. The authors have also proposed an algorithm to build an optimized structure

called optimized quadtree if all the data points are known a priori. Figure 2.1 shows

an example point quadtree in 2-dimensional data space.

Many variants (e.g. [Samet 1984, Hunter 1979, Vassilakopoulos 1993, Bai 2006])

of the quadtree were proposed which can also index other complex objects (e.g. lines,

16

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 4. Data Indexing

Figure 2.1: An example of point QuadTree [Gaede 1998]

polygons etc.) and/or provide different space decomposition methods. All these

methods, however, work on the same basic principle of decomposing the n-dimensional

data space in 2n partitions.

As evident from the above explanation, increase in number of dimensions increases

the number of created partitions at the decomposition of the data space and so as

the fan out of a quadtree node. The fan out of the nodes can be controlled using

another prominent space partitioning technique based indexing structure called k-d-

tree [Bentley 1975]. The k-d-tree works on a principle of binary search tree and the

data space is partitioned (when required) along only one dimension at a time. Each

internal node of a k-d-tree has one or two children and each serves as a discriminator

to guide the search in the tree. The k-d-tree can index only point data and can not

be used to index (without any transformation) complex objects. The k-d-tree is an

un-balanced tree structure and it is very sensitive to the order in which the data

points are inserted. Like quadtree, many variants [Orenstein 1982, Orenstein 1984,

Foley 2005, Zhou 2008] of k-d-tree are also proposed which mainly differ from the

original k-d-tree on the basis of the choice of the space decomposition point/axis and

some of them can be used to index the complex objects. k-d-tree is basically an

in-memory data structure that is not suitable for indexing data in large spatial data

space.

As the space partitioning techniques based on space decomposition, they do not

take the distribution of data into account and could possibly index large dead spaces

which could severely affect the performance of indexing solution.

17

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Data Indexing Chapter 2. Literature Review

Figure 2.2: An example of point kd-tree [Gaede 1998]

Figure 2.3: An example of R-Tree [Gaede 1998]

4.1.2 Data Partitioning Techniques

The most prominent indexing structure based on data partitioning technique is the

R-Tree [Guttman 1984]. R-Tree is a multidimensional generalization of B-Tree and

has a balanced structure. The R-Tree indexes the n-dimensional minimum bounding

rectangles (MBR) in its nodes which are the data partitions constructed around a

set of objects. The leaf nodes of an R-Tree holds the entries consisting of a reference

pointing to a database object and an MBR bounding the data objects. The non-leaf

nodes have similar type of entries where the reference points to a child node while

the MBR bounds all entries in the child node.

Figure 2.3 shows an example R-Tree in a 2-dimensional data space where dot-

ted rectangles show the MBR of internal nodes while the solid rectangles are the

representation of MBR constructed around the data objects.

The nodes of an R-Tree can have overlapped regions which could degrade the

search and consequently the insertion and deletion efficiency of the R-Tree. To over-

come such a problem, R+-tree [Sellis 1987] was proposed. The nodes in R+-tree are

not allowed to overlap using the mechanism of clipping. If two data objects intersect

18

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 4. Data Indexing

Figure 2.4: An example of R+-Tree [Gaede 1998]

more than one MBR at the same level, they are clipped and stored in more than

one leaf nodes. Such a strategy is helpful in improving the efficiency of point queries

but a considerable degradation in query response time could be seen in case of range

queries. Similarly the insertion of a new object might also require traversing multiple

nodes.

Another variant of R-Tree, based on experimental study, was proposed with the

name R*-Tree [Beckmann 1990]. The authors carried out an experimental study

using different data distributions and identified many weaknesses in the initial R-

Tree. The author proposed a forced reinsert policy: if a node overflows, it is not

split right away. Rather, first some entries (about 30%) of the overflowing node are

removed from the entries and reinserted in the tree. In R*-Tree, the insertion of new

data objects is carried out while taking other parameters, such as minimal overlap,

minimal perimeters and maximum space utilization, into consideration. The authors

report a considerable performance improvement (up to 50%) using their proposed

solution.

Many other interesting variants [Günther 1989, Kamel 1994, White 1996] with

slightly different splitting and/or data partitioning strategy are proposed. However,

as [Berchtold 1996] shows, all these indexing techniques are not suitable for high-

dimensional data indexing. The increase in number of dimensions of a data space, in

fact, has a broad variety effect on data indexing which can not be witnessed unless

we experiment with high dimensional data. In literature, such affects are referred

as curse of dimensionality. As the R-Tree and its most variants were tested for low

dimensional data, such effects were not witnessed. One of the reason for witnessing

such effects in high dimensional data space is the increase in overlapped area as a result

of increase in the number of dimensions which results in a larger amount of dead space

and rapidly degrades the insert and querying efficiency of the indexing techniques. To

19

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Data Indexing Chapter 2. Literature Review

address the issue, Berchtold et al. have proposed an indexing structure called X-Tree

[Berchtold 1996]. The structure is primarily based on R*-Tree but introduces a new

splitting algorithm focusing on finding an overlap free split. The authors propose a

concept of super nodes which are larger capacity nodes and come into being when no

suitable split (controlled through the maximum amount of allowed overlap) is found.

The authors also propose to record the split history (in a binary tree) which is then

used to find the split axis serving to optimize the splitting process. Many other high

dimensional data indexing techniques are also discussed in literature, some of which

are discussed in [Böhm 2001].

4.2 Data Indexing for Data Warehouses and OLAP

Data in data warehouses is stored for the purpose of OLAP analysis which involves

querying the aggregated data at different levels of granularity characterized by hier-

archical dimensions in a data warehouse. The performance of this querying process

can be improved by considering such requirements while indexing the data in a ware-

house. In this section we discuss the research works taking these constraints of pre-

aggregation and hierarchical dimensions into account. We classify these works in four

categories: bitmap based indexing technique, tree based indexing techniques, graph

based indexing techniques and hash table based indexing techniques. The discussion

on the solutions of each of these categories is presented in the following.

4.2.1 Bitmap based Indexing Techniques

Bitmap indexes [O’Neil 1989, O’Neil 1997] are largely used in indexing the data for

data warehouses. The original bitmap index is a one-dimensional index and its idea is

based on creating bitmaps for each value of an attribute (or dimension) A to index in a

table T . A query can be efficiently answered using Boolean operations (such as AND,

OR, NOT) on the bitmaps. The main disadvantage of a bitmap index is the size of

bitmap index which increases with the increase in size of data sets as well as increase in

the cardinalities of the indexed attribute [Wu 1998] and become too large to efficiently

deal with in the main memory. To deal with the space consumption problem of

bitmap index, different encoding [Wu 1998, Koudas 2000, Rotem 2005, Chan 1998]

and compression techniques [Xi 2008, Xiao 2009] are proposed that are able to reduce

the size of bitmap indices but with computation overheads. Another index, called

bitmap join index (BJI) [O’Neil 1995], is also a well know solution for data warehouse

indexing. A BJI speeds up the star-join queries by considerably reducing the volume

20

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 4. Data Indexing

of data that needs to be joined. Some studies (e.g. [Aouiche 2005, Bellatreche 2007,

Bellatreche 2010]) have also been carried out to select the optimal BJI for a data

warehouse. All these bitmap indices, however, are used to index the data at the

detailed level of facts and do not have any support for hierarchical dimensions. HOBI

[Chmiel 2009] is one of the index that is used to index the data at different hierarchical

levels. Separate bitmap indices are used for each level to efficiently support the OLAP

queries (see figure 2.5). A query asking for aggregate at higher level of hierarchy

needs to consult only the corresponding index which stores direct pointers to the

items in fact table. The same authors propose a variant of HOBI, called Time-HOBI

[Chmiel 2010], which incorporates the time dimension at each level of hierarchically

organized bitmaps and supports the time-window queries more efficiently.

Figure 2.5: An example of HOBI [Chmiel 2010]

4.2.2 Tree based Indexing Techniques

Tree based indexing techniques are heavily used to index the data in various con-

texts. Many tree based indexing solutions which were originally not proposed for

data warehouses, can be used to serve the purpose. For example, some multidimen-

sional variants of B-Tree (e.g. [Govindarajan 2002, Fenk 2000]) can be used to index

data in warehouses.

In [Roussopoulos 1997], the authors have proposed an Extended Datacube Model

(EDM) to model the data cube in a spatial-like data space and propose to index

21

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Data Indexing Chapter 2. Literature Review

Figure 2.6: An example of Time-HOBI [Chmiel 2010]

the data using a packed R-Tree [Roussopoulos 1985]. The data cube so indexed is

termed as Cubetree. The authors propose the sorting and bulk loading techniques and

show that atomic incremental updates of the structure or complete re-computation

are not the viable solutions. The same research group in [Kotidis 1998], proposes

to store the ROLAP views in Cubetrees. Feng and Makinouchi extend the research

work on Cubetree to efficiently support partially-dimensional (involving a subset of

dimensions) range queries [Feng 2006] and propose a new structure called Aggregate-

Tree (Ag-Tree). The authors propose to maintain a group of nodes for every node

of a Cubetree. The Cubetree nodes hold multidimensional MBR while in Ag-Tree a

group of nodes each indexing data in one dimension (see figure 2.7). The research

work is further investigated and the authors propose to sort the entries in the nodes

of Ag-Tree, giving rise to another structure called Ag+-Tree [Feng 2011].

In [Papadias 2001], authors propose an R-Tree based indexing structure for spatial

data warehouses, called aggregation tree (aR-Tree). The internal nodes in aR-Tree

store, with their MBR, a pre-aggregated value obtained by some aggregation function

on all the data object enclosed in the MBR. [You 2006] puts forward a hybrid indexing

structure for spatio-temporal data warehouses. The indexing structure is composed

of an aR-Tree, indexing the spatial dimension, and hash tables indexing the temporal

dimensions. A hash table indexing the data at different temporal levels (e.g. year,

22

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 4. Data Indexing

Figure 2.7: An example of an Ag-Tree’s structure [Feng 2006]

month, day, hour) is linked to every node of the spatial part. The aggregated value

associated to the nodes of aR-Tree represent the aggregation for time level ALL for

the data enclosed in the MBR of the node.

[Ester 2000] proposes a dynamic indexing technique called DC-Tree that supports

atomic incremental maintenance of aggregates in a data warehouse. The data struc-

ture is an extension of X-Tree with support of hierarchical dimensions. No total order

among the members of dimensions is maintained, which needed the modification in

definition of MBR used in X-Tree. For this purpose, the authors propose the con-

cept of Minimum Describing Sequence (MDS) which is a sequence of n sets (n being

the number of dimensions) representing the edges of MDS. These MDS are stored in

nodes of the DC-Tree as the MBR in X-Tree.

In [Johnson 1996] authors define the concept of cube forest. In the cube forest

a tree is defined by a template determining the partial order in which attributes

are indexed. The nodes of the tree are the search structures (e.g. B-Tree) indexing

different values of an attribute in a cube tree’s node. A cube forest could be defined as

a union different trees with elimination of redundancies among different attributes.

The authors also propose and implemented a solution to incorporate hierarchical

dimensions in the cube forest. The template determining the partial order, is crucial

to performance and have a strong effect. The updates are carried out in batch. A

pruning strategy is proposed to address the issue of space efficiency.

4.2.3 Graph based Indexing Technique

Sismanis et al. propose a compressed directed acyclic graph (DAG) based data struc-

ture, named Dwarf [Sismanis 2002] which simultaneously stores and indexes the ag-

gregated data. The storage problem is addressed by removing the prefix and suffix

redundancies. A common prefix or suffix is stored only once in a cube helping reduce

23

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Data Indexing Chapter 2. Literature Review

Figure 2.8: An example of a Dwarf’s structure [Sismanis 2002]

the storage space (see figure 2.8). Dwarf requires all the dimension attributes to be

of integer type, and hence the attributes with other data types need to be mapped to

integers. The choice of dimension ordering while indexing the data in a Dwarf struc-

ture is very important and could severely effect the performance. The construction

of a Dwarf structure requires the fact table to be sorted which renders the atomic

incremental update to be impractical. The initial Dwarf structure did not have any

explicit support for queries involving aggregation at different levels of hierarchy, the

issue later discussed by the researchers in [Sismanis 2003]. These works are efficient

for data indexing but do not provide algorithms for atomic incremental updates and

do not scale well with increasing number of dimensions.

4.2.4 Hash Table based Indexing Technique

In [Doka 2011], the authors propose a distributed system that uses an adaptive in-

dexing scheme, based on distributed hash tables (DHT), for online queries involving

aggregation at different hierarchical levels. The fact table is distributively stored and

indexed at different sites over the network, called peers. Initially, a default levels

combination is indexed at each peer to effectively answer the queries at that level of

aggregation. The statistics (e.g. queries misses) about the queries executed at each

peer are stored locally which help the adaptation of the index at some different level

of aggregation. The queries concerning the indexed levels can be answered directly at

the concerned peer while the queries at different aggregation levels require the global

processing for which the queries are flooded in the system. The system supports

the approximate queries only and as evident from the obtained results, the precision

decreases considerably with increase in number of dimensions.

24

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 2. Literature Review 5. Conclusion

4.3 Data Indexing in Partially or Non Ordered Data Spaces

Solutions proposed for multidimensional data management (e.g. indexing, partition-

ing etc.) mostly manage the data in continuous ordered data space [Chen 2009a].

In literature, we find a reasonable amount of research works dealing with the

problems in partially or non-ordered data spaces. Among these, [Qian 2003] propose

a data indexing technique, named ND-Tree, by mapping the geometrical concepts of

continuous ordered data space into a non-ordered discrete data space. The authors

propose the concept of discrete minimum bounding rectangles (DMBR) which is an

alternative of MBR of R-Tree in a discrete non-ordered data space. The DMBR are

stored in a tree structure inspired from R*-Tree. The algebraic metrics and operators

(e.g. area, overlap) and algorithms to construct and query the tree are adapted to

work in the discrete non-ordered data space.

In [Qian 2006], the same authors propose another indexing technique, called NSP-

Tree, for non-ordered data space, this time based on space partitioning technique.

The solution is aimed at minimizing the overlap among the nodes which degrade the

ND-Tree’s performance with increase in overlap. As the NSP-Tree is based on space

partitioning strategy, the nodes of NSP-Tree do not overlap each other. The split

history, while partitioning the data space, is maintained in an unbalanced binary

tree, called SHT. The NSP-Tree indexes only the existing data space which could

grow with the arrival of new data items. The NSP-Tree has a balanced tree structure

whose non-leaf nodes hold the indexed regions in form of DMBR, a pointer to an

SHT and pointer to child nodes. The leaf nodes hold the key of the indexed vector

in the data space and a pointer to the indexed object.

Later, [Chen 2009b] propose an indexing technique, called C-ND-Tree, for hy-

brid data space. The DMBR are replaced by hybrid minimum bounding rectangles

(HMBR) and the algebraic metrics and operators are adapted to take the nature (or-

dered vs non-ordered) of constituting dimensions into account. The strategies to make

ordered and non-ordered dimensions comparable are proposed. HMBR are stored in

a structure similar to that of the R-Tree and the algorithms are accordingly adapted.

5 Conclusion

Research works presented on real-time ETL have mainly focused on loading and

scheduling strategies for incoming tuples and do not discuss the issue cube computa-

tion or data indexing.

25

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Conclusion Chapter 2. Literature Review

Partial data cubing and views selection techniques are helpful in improving space

and cube computation efficiency but mostly require the knowledge about frequently

used queries which is not possible in dynamic data warehouses. Space efficient cube

computation techniques provide interesting basis to address our problem but either

do not address the issue of atomic incremental maintenance of the cube or do not

scale well with the increase in number of dimensions. DDC proposing a solution for

data cubing in dynamic environment considers only flat dimensions with members

having numerical values.

Multidimensional data indexing techniques proposed in relational/spatial context

can be considered for data indexing for warehouses but these do not support high

dimensional data indexing. Even those proposed for high dimensional data indexing,

support only “flat” dimensions while in data warehousing environment we normally

deal with hierarchical dimensions.

Bitmap index is very often used in traditional data warehouses and indexes the

data along one flat dimension only. Some variants supporting hierarchical dimen-

sions [Chmiel 2009, Chmiel 2010] are also proposed. The bitmap indexes, however,

apart from being space inefficient (the issue that could be addressed by employing en-

coding and/or compression techniques), have expensive insert/delete operations and

therefore, are not suitable for the systems that are frequently updated.

R-Tree based indexing techniques, supporting pre-aggregation or not, are not suit-

able for high dimensional data indexing as shown in [Berchtold 1996]. The DC-Tree is

a suitable solution for atomic incremental updates, supports hierarchical dimensions

and pre-aggregation and scales well in high dimensional data space. The DC-Tree

is also a good candidate for indexing the data in data warehouses whose data space

grows dynamically over the time. However, the DC-Tree lacks a formal data model,

does not take advantage of the naturally totally ordered dimensions (if any in the

data space) and have a costly split algorithm. The DC-Tree aims at minimizing the

overlap among nodes by creating super nodes, but as the number of super nodes grow

the performance starts to degrade. C-ND Tree provides an idea of data indexing and

modeling in a hybrid data space, however deals with flat dimensions only.

We take inspiration from these above discussed research works and propose a

solution for efficient partial data cubing considering the special characteristics of

data and a dynamic data warehousing environment, such as multidimensional nature

of data, hierarchical dimensions, fast update, dynamic growth of the data space etc.

26

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3

Data Model for Hierarchical Hybrid

Multidimensional Data Space

In this chapter, we present a multidimensional data model for a dynamic warehouse’s

data space that is made of both ordered and non-ordered hierarchical dimensions. We

establish the analogies among different data warehousing and OLAP concepts and the

spatial data space. We provide formal definitions and explain these concepts in terms

of OLAP. Relations, operators and metrics are defined to represent, manipulate or

compare the multidimensional objects lying in the data space. The concepts of hyper-

plane and minimum bounding space are introduced which facilitate the grouping and

partitioning of data in the space.

Chapter Outline

1 Introduction . 28

2 Illustrating Toy Example 28

3 Data Model . 29

3.1 Hierarchical Dimensions . 29

3.2 Hierarchical Multidimensional Data Space 31

4 Algebra for HHMDS . 34

4.1 Operators . 35

4.2 Relations . 40

4.3 Metrics . 41

5 Conclusion . 46

27

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

1. Introduction Chapter 3. Mathematical Model for HHMDS

1 Introduction

As discussed in the previous chapters, the dynamic data warehouses operate in a

rapidly changing environment where the working data space keeps growing with time.

In such a data warehousing environment, the rearrangement of dimension spaces,

while the systems are online, is not possible and, therefore, the data space is composed

of both ordered and non-ordered hierarchical dimensions. Description of the objects

lying in such a space need a specific data model that can provide the abstraction for

them. Moreover, operations, relations and metrics are also needed to compare, char-

acterize and manipulate these objects. The analogies must also be drawn among the

concepts related to such a data space and traditional data warehousing environment.

Existing models (e.g. [Li 2004], [Agarwal 2011], [Kuznetsov 2009] etc.) provide

abstraction for data warehouses in ordered data space. Some other works (such as

[Chen 2009b]) which address the issue of modeling non-ordered data space, do not

have support for hierarchical dimensions which are the basis of data warehouse.

In this chapter, we propose a data model that deals with both ordered and non-

ordered hierarchical dimensions. This chapter presents the concepts and notations

needed to describe such a data space as well as various relations, operators and metrics

necessary to perform a multidimensional data analysis in the data space.

2 Illustrating Toy Example

As an illustrating example, we choose the classical application which aims at ana-

lyzing the sales of products with respect to time duration and location. In such an

application, we consider a very simple data warehouse that is built over a schema

with only two dimensions i.e. Location and Time. The locations and time values

in the application can be described at different levels of granularity, making them

to be hierarchical. These different levels of granularity serve to detail or summarize

the sales recorded in the application. In this example we consider that the levels for

the dimension location are ALLLocation, Regions and City while the Time dimension

consists of levels ALLT ime, Year and Semester. In reality, members of each level

could be described by different attributes (e.g. a Region can be described by its ID,

name, number of inhabitants, capital etc.) but for the sake of simplicity, we use only

name of these members to designate them. The resulting dimension hierarchies for

this application are presented in figure 3.1. The numerical value of interest in this

28

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 3. Data Model

ALLLocationRegionCity allLocationAlsaeStrasbourg Colmar Rhone-AlpesLyon Grenoble
(a)

ALLTimeYearSemester allTime20102010S1 2010S2 20112011S1 2011S2
(b)

Figure 3.1: Dimension Hierarchies and Instances of dimension (a) Location and (b)
Time, for the illustrating toy example.

application is quantity of sales which serves as measure and SUM is used as aggregate

function.

Obviously this simplistic example does not explain a real-time scenario, but it is

generalizable to other cases. We use such an example just to simplify the explanation

and make it easy for the reader to understand our proposal.

3 Data Model

In this section, we detail the concepts related to our proposed multidimensional data

space. First, we provide the notations for basic OLAP concepts (e.g. hierarchical

dimension, level etc.) and then propose and present other concepts that are necessary

to describe and manipulate our data space.

3.1 Hierarchical Dimensions

A dimension is called hierarchical , if its domain could be completely specified by

different sets categorizing the same domain at different levels of detail and these sets

can be arranged in a parent/child relationship among themselves. For example, the

domain of the dimension Location could be covered by the sets {Rhône-Alpes, Alsace}

and {Strasbourg, Colmar, Lyon, Grenoble} and could be arranged in a parent/child

relationship as Region/City. The position of the different domain sets contributing

in the hierarchical organization of a dimension is called a level. We note lji the jth

level of a hierarchical dimension Di and ALLi the top most hierarchical level of Di.

Domain set of ALLi is a singleton {alli}.

In figure 3.1, l1Location corresponds to the lowest level City of dimension Location,

l2Location is Region etc. and domain(City)= {Strasbourg, Colmar, Lyon, Grenoble}.

29

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Data Model Chapter 3. Mathematical Model for HHMDS

Formally, a dimension hierarchy is a directed acyclic graph H whose nodes are

the elements of Li={l1i , l
2
i , ..., l

k−1
i , ALLi} of dimension Di having k levels of hierarchy

and ALLi is the sink (i.e. reachable from every node in H). For lui , l
v
i ∈ Li, we note

lui ↑ lvi if there exists a path from lvi to lui in H where ↑ is a reflexive, transitive and

asymmetric relation.

We define SDi
, the dimension space of dimension Di having k levels as the union

of the domain sets of all the levels involved in dimension hierarchy, i.e. SDi
=

k
⋃

j=1

domain(lji). We write level(m) = lji , when m ∈ domain(lji). An elements of

SDi
is called a member. For example, SLocation ={Colmar, Lyon,..., Rhône-Alpes,

Alsace, allLocation} and level(Colmar) = City.

An instance of a hierarchical dimension Di is a directed acyclic graph I whose

nodes are the members of SDi
and alli is the sink. For m, n ∈ SDi

, we note m ⇑ n

and state “m is reachable from n”, if there exists a path from n to m in I . ⇑ is a

reflexive, transitive and asymmetric relation.

Let us note that in this multidimensional model all the dimensions are hierarchical

with partial order ⇑ among the members at different levels of dimension hierarchy.

However, the members of the same level are not essentially required to be ordered

among themselves. We make the following distinction among these dimensions:

• Dimensions for which the members of the domain sets of the same level are non-

ordered. For example, Strasbourg and Grenoble at level City in dimension Lo-

cation are non-ordered, while Alsace⇑Colmar and Rhône-Alpes⇑Grenoble etc.

In the rest of the dissertation, this type of dimensions is referred simply as

non-ordered dimensions.

• Dimensions for which the members of the domain set of the same level are

naturally ordered. For example, 2010 < 2011 at level Year in dimension Time

and allT ime ⇑ 2010 etc. We refer this type of dimensions as ordered dimensions

in the rest of the dissertation.

Thus, we do not impose any artificial order among the members. This strategy

facilitates our objective of dynamic maintenance of a dimension space. Consequently,

we can add the new members on the fly as and when they appear. In other words,

when a fact using some new coordinate arrives, e.g. first sale in the city of Lyon, this

triggers the addition of Lyon in the domain of level city of dimension Location. This

addition signifies the addition of a new member in the dimension space of Location

which results in the dynamic growth of the dimension space. We will see in the

30

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 3. Data Model

2010S12010S22011S12011S220102011allTime

Strasbourg Colmar LyonGrenoble AlsaeRh�ne-Alpes a
llL

oc

Loation

Time
b
p1

b
p2

b
p4

b
p5

b
p3

b
p6

b
p7 b

p8
b
p9

(a)

2010S12011S120102011S22011allTime

2010S2

Strasbourg LyonRh�ne-AlpesGrenoble Alsae Colmar a
llL

oc

Loation

Time

b
p1

b
p2

b
p4

b
p5

b
p3

b
p6

b
p7 b

p8b
p9

(b)

Figure 3.2: Two possible representations of a hierarchical hybrid multidimensional
data space.

following that even without imposing an artificial order, we take the natural order (if

any) into account for the optimization of data partitions. Otherwise stated, order is

an asset and not a limitation; it is ignored while distributing the points in the space

but considered while partitioning it.

3.2 Hierarchical Multidimensional Data Space

We have just defined the classical concepts of dimensions, hierarchy and their mem-

bers and now we define our concept of hierarchical hybrid multidimensional data

space. The dimensions serve as the axes of this data space and their members are the

coordinates of these axes.

Definition 3.1 (Hierarchical Hybrid Multidimensional Data Space): A hierarchical

hybrid multidimensional data space S is defined as the cartesian product of dimension

spaces of all the dimensions that form the basis of the multidimensional model. For a

multidimensional model involving n dimensions, S = SD1 × SD2 × ...× SDn
with SDi

,

∀i (1 ≤ i ≤ n), being the dimension space of Di.

The dimension space is called Hierarchical Hybrid Multidimensional Data Space

(HHMDS) because it is made of both ordered and non-ordered hierarchical dimen-

sions. A point p in S is represented by an ordered n-tuple (x1, x2, ..., xn) where

∀i (1 ≤ i ≤ n), xi ∈ SDi
is the ith dimensional coordinate of p.

31

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Data Model Chapter 3. Mathematical Model for HHMDS

Figure 3.2a shows a possible representation of a hierarchical multidimensional data

space with members of dimensions described in figure 3.1. This, however, is only a

possible representation as shown in figure 3.2b depicting the same data space, with

dimension members plotted in a different order on the axes. We can see in these

two representations that, not only the order on the axes is insignificant, but all the

members of a dimension are also plotted on the same axis, regardless of their levels.

We also note that the axes are neither continuous nor directional, therefore we do not

plot any arrow sign at the end of the axes.

On arrival of a new fact in the decision system, a new point is created in the

data space. If any of the dimension member used by the point (i.e. any of its

coordinate) and/or its parent is missing on the axes, then it is added: the axes “grow”

as and when needed, without any ordering consideration. Therefore, at any point, a

dimension space (so as the instance of hierarchical dimension) has the same elements

as the corresponding axis of the multidimensional data space. It is important to note

that growth in dimension space is only due to the addition of new member to the

instance of dimension hierarchy I which is built dynamically. However the dimension

hierarchy H itself is known beforehand in our model.

One of the objectives of this model is to provide a data grouping strategy, therefore

we now need a structure to group the data in the space. Our data grouping structure

is inspired by the R-Tree’s MBR. However,

• the axes in case R-Tree are ordered while in our case we do not have enough

time to order the axes.

• the data space of R-Tree is composed of flat dimensions while in our case, we

deal with hierarchical dimensions.

This implies that the data partitions constructed in R-Tree are always at the same

level while in our case we need data partitions at different hierarchical levels helping

us to store the data at different levels of aggregation. For this purpose, we first define

the concept of hyper-planes in the following.

Definition 3.2 (Multidimensional Hyper-plane): A multidimensional hyper-plane

(or simply a hyper-plane) P with n dimensions is defined as P = domain(lh1
1) ×

domain(lh2
2) × ... × domain(lhn

n) where ∀i (1 ≤ i ≤ n), 1 ≤ hi ≤ ki and ki is the

number of levels in dimension Di.

Every hyper-plane can be identified by an n-tuple < lh1
1 , lh2

2 , ..., lhn
n >. A point

p(x1, x2, ..., xn) lies in the hyper-plane < level(x1), level(x2), ..., level(xn) >. We can

also note that:

32

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 3. Data Model

• There are k1∗k2∗...∗kn different hyper-planes in a hierarchical multidimensional

data space with n dimensions.

• All the hyper-planes in S are organized in a hierarchy with partial order ≥P .

Thus given P < lh1
1 , lh2

2 , ..., lhn
n > and P

′

< l
h
′

1
1 , l

h
′

2
2 , ..., l

h
′

n
n > two multidimen-

sional hyper-planes, we note P ≥P P
′

iff ∀i (1 ≤ i ≤ n), lhi

i ↑ l
h
′

i

i . We also note

that ≥P is a transitive partial order relation.

The hyper-planes can be seen as mutually exclusive logical subspaces of an HHMDS

which represent the spaces determining the aggregation of data at different levels of

granularity.

Example 3.1 In figure 3, we can see the following 9 hyper-planes:

P1 < City, Semester >, P2 < Region, Semester >, P3 < City, Y ear >, P4 <

Region, Y ear >, P5 < ALLLocation, Semester >, P6 < City, ALLT ime >, P7 <

ALLLocation, Y ear >, P8 < Region, ALLT ime >, P9 < ALLLocation, ALLT ime >.

Among these hyper-planes, we can see, among others, the following relations: P9 ≥P

P7, P5 ≥P P2 etc.

Definition 3.3 (Minimum Bounding Space): Let ∆ ={(x1,1, x1,2, ..., x1,n), (x2,1,

x2,2, ..., x2,n), ..., (xm,1, xm,2, ..., xm,n)} be a set of m points lying in a same n-

dimensional hyper-plane i.e. xj,i ∈ domain(lkii) for 1 ≤ i ≤ n, 1 ≤ j ≤ m and

ki is a level in the hierarchy of dimension Di. A minimum bounding space (MBS)

constructed over ∆, denoted by M∆, is defined as:

M∆ =
m
⋃

j=1

xj,1 ×
m
⋃

j=1

xj,2 × ...×
m
⋃

j=1

xj,n

where each set
m
⋃

j=1

xj,i is called the ith(1 ≤ i ≤ n) dimension edge Ei of M∆.

An MBS allows the grouping of data in the space and represents a section of a

cuboid. It is also clear from the definition that an MBS can be constructed over

one or more points but lies only in one hyper-plane: MBS can not span multi-

ple hyper-planes. The MBS M∆ = E1 × E2 × ... × En, lies in the hyper-plane

< level(e1), level(e2), ..., level(en) > where ei ∈ Ei. For M∆, we note |M∆| =
n
∏

i=1

|Ei|

as the maximum number of points the MBS can hold and ||M∆|| = |∆| as the number

of currently existing points in the MBS.

33

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

Example 3.2 In figure 3.3, we can observe the following MBS:

M 1= M{p1 , p2, p3, p5}= M{(Strasbourg, 2010S1) , (Lyon, 2011S1), (Lyon, 2011S2), (Grenoble, 2010S1)}= {Stras-

bourg, Lyon, Grenoble}×{2010S1, 2011S1, 2011S2} is an MBS constructed over four

points in hyper-plane < City, Semester > with |M1| = 9 and ||M1|| = 4,

M 2= M{p6 , p10, p11}= M{(Alsace, 2011S2) , (Rhône−Alpes, 2010S2), (Alsace, 2010S2)}={Alsace, Rhône-

Alpes}×{2010S2, 2011S2} is an MBS constructed over three points in hyper-plane

< Region, Semester > with |M2| = 4 and ||M2|| = 3,

M 3= M{p8, p9}= M{(Colmar, allTime), (Grenoble, allTime)}={Grenoble, Colmar}×{allT ime} is

an MBS constructed over two points in hyper-plane < City, ALLT ime > with |M3| =

2 and ||M3|| = 2,

M 4= M{p4, p7}= M{(allLocation, 2010), (allLocation, 2011)} = {allLocation} × {2010, 2011} is an

MBS constructed over two points that lie in hyper-plane < ALLLocation, Semester >

with |M4| = 2 and ||M4|| = 2,

M 5= M{p2}= M{(Lyon, 2011S1)}={Lyon}×{2011S1} is an MBS constructed over a sin-

gle point in hyper-plane < City, Semester > with |M5| = 1 and ||M5|| = 1,

Definition 3.4 (Measure and Fact): A numerical value associated to a multidimen-

sional point p(x1, x2, ..., xn) in HHMDS is called measure. We denote this value as

m(p). The point p with m(p) is termed as a fact if p lies in the lowest level hyper-plane

i.e. < l11, l
1
2, ..., l

1
n >.

Definition 3.5 (Aggregate): Let ∆ = {p1, p2, ..., pk} be a set of k multidimensional

points and M∆ be an MBS constructed over ∆. A numerical value associated to M∆,

denoted by agg(M∆), is called aggregate. The value of agg(M) is obtained by applying

some aggregate function f (e.g. SUM, MAX, MIN etc.) on the measure values

associated the points enclosed in M△ i.e. agg(M∆) = f(m(p1), m(p2), ..., m(pk)).

The measure value in our model can represent both the value associated to a

detailed data point (i.e. lying in the lowest level hyper-plane) or some aggregated

data point (i.e. lying in some higher level hyper-plane).

Until now, we have defined a hierarchical multidimensional data space, points and

MBS. Now, to be able to manipulate these points and MBS, we provide the definitions

of some algebraic concepts in the following section.

4 Algebra for HHMDS

In this section, we provide the formal definitions of operators, relations and metrics

for HHMDS and explain them with the help of examples. The definition of these

34

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

2010S12011S120102011S22011allTime

2010S2

Strasbourg LyonRh�ne-AlpesGrenoble Alsae Colmar a
llL

oc

Loation

Time

b
p1 b

p2bp3 b
p4

b
p5

b
p6 b

p7b
p8

b
p9b

p10
b

p11
M 1

M 2 M 3
M 4M 5

Figure 3.3: Minimum bounding spaces (MBS) in an HHMDS

concepts facilitates the comparison of the objects (points and MBS) lying in the data

space as well as the algebraic operations on those objects.

4.1 Operators

The operators defined under this heading are used to provide some algebraic trans-

formations or operations on the objects in HHMDS. We categorize these operators in

two categories: operators for dimension members and operators for MBS.

4.1.1 Operators for Dimension Members

In the following we define two operators for the members of the domain sets of dif-

ferent dimensions. These operators allow navigating among the levels of dimension

hierarchy.

Definition 3.6 (Drill-Up): Let lui , l
v
i ∈ Li and lui ↑ lvi . A drill-up operation σlui

is a

function:

σlui
: domain(lvi) −→ domain(lui)

x 7−→ σlui
(x) = y such that y ⇑ x.

Definition 3.7 (Drill-Down): Let lui , l
v
i ∈ Li and lui ↑ lvi . A drill-down operation ̺lvi

is a function:

35

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

̺lvi : domain(lui) → P(domain(lvi))

x 7→ ̺lvi (x) = {y ∈ domain(lvi) | ∀y, x ⇑ y}

The drill-up and drill-down operators are traditionally used for the aggregation in

classical OLAP model. But, in our model these operators are defined on the members

of the instance of dimension hierarchy and allow us navigating from a higher hierarchy

level to a lower one or vice versa.

Since the instance of dimension hierarchy evolves over time, the result of a drill-

down operation on same member could vary over two different time instances. We

also remark that ̺lvi (σlui
(x)) 6= x.

Example 3.3 For instance, in the data space shown in figure 3:

σRegion(Colmar) = Alsace, σALLLocation
(Lyon) = allLocation and σALLTime

(2011) =

allT ime etc.

̺City(Rhône-Alpes)={Lyon, Grenoble} and ̺Y ear(allT ime) = {2010, 2011} etc.

̺City(σALLTime
(Lyon)) = {Strasbourg, Colmar, Lyon, Grenoble} 6= Lyon etc.

4.1.2 Operators for MBS

In the following we define operators for MBS in HHMDS. Among these, translate-up

and translate-down are inter-hyper-plane operators while the union is an intra-hyper-

plane operator. The inter-hyper-plane operators allow moving an MBS from one

hyper-plane to another hyper-plane. These, consequently serve as summarization or

detailing operators for the MBS. These operators are also used to make two MBS com-

parable by describing them at same level of detail. The intra-hyper-plane operator,

on the other hand, is used for the merger of two MBS.

Definition 3.8 (Translate-Up): Let P < lh1
1 , lh2

2 , ..., lhn
n > and P

′

< l
h
′

1
1 , l

h
′

2
2 , ..., l

h
′

n
n >

be two hyper-planes in S such that P
′

≥P P and M = E1 ×E2 × ...×En be an MBS

in P . A translate-up operation ⌈P ′ is defined as:

⌈P ′ : P → P
′

M 7→ M
′

=
⋃

e1∈E1

σ
l
h
′

1
1

(e1)×
⋃

e2∈E2

σ
l
h
′

2
2

(e2)× ...×
⋃

en∈En

σ
l
h
′

n
n

(en)

A translate-up operation translates an MBS from its current hyper-plane to a

target higher level hyper-plane in S. Union of drill-up on the elements of an edge of

36

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

the MBS gives us the corresponding edge of MBS in target hyper-plane. The cross

product of all the edges is then defined as resultant MBS. This allows us to describe

the data enclosed in an MBS at a higher aggregation level or in other words, helps

us to summarize the data.

Example 3.4 In figure 3.4, N1 = {Strasbourg, Lyon, Grenoble}×{2010S1, 2011S1,

2011S2} holding four points (i.e. p1, p2, p3, p6) lies in hyper-plane < City, Semester >.

To translate this in hyper-plane < Region, Y ear >,we need to do a drill-up on each el-

ement of both the edges of N1. Since, σRegion(Strasbourg) = Alsace, σRegion(Lyon) =

Rhône−Alpes, σRegion(Grenoble) =Rhône-Alpes, σY ear(2010S1) = 2010, σY ear(2011S1) =

2011, and σY ear(2011S2) = 2011, the sets {Rhône-Alpes , Alsace} and {2010, 2011}

will make the edges of the resultant MBS. Therefore, ⌈<Region, Y ear>(N1) = {Rhône−

Alpes, Alsace} × {2010, 2011} = N 2

Similarly, the translate-up on N3 = {Colmar} × {2010, 2011} from its current

hyper-plane < City, Semester > to the target hyper-plane < City, Y ear > pro-

duces N 5 i.e. ⌈<City, Y ear>(N3) = {Colmar}× {2010, 2011} = N 5 and the translate-

up on N2 = {Rhône − Alpes, Alsace} × {2010, 2011} from < Region, Y ear >

to the target higher level hyper-plane < ALLLocation, ALLT ime > produces N 4 i.e.

⌈<ALLLocation, ALLTime>(N2) = {allT ime} × {allLocation} = N 4 etc.

2010S12011S120102011S22011allTime

2010S2

Strasbourg LyonRh�ne-AlpesGrenoble Alsae Colmar a
llL

oc

Loation

Time

b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b
p7

b
p8b

p9
b

p10 b
p11N 1 N 2 N 3 N 4

N 5

Figure 3.4: Translate-Up operation on MBS

Definition 3.9 (Translate-Down): Let P < lh1
1 , lh2

2 , ..., lhn
n > and P

′

< l
h
′

1
1 , l

h
′

2
2 , ...

37

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

, l
h
′

n
n > be two hyper-planes in S such that P

′

≥P P and M
′

= E
′

1 × E
′

2 × ...× E
′

n be

an MBS in P
′

. A translate-down operation ⌊P is defined as:

⌊P : P
′

→ P

M
′

7→ M =
⋃

e1∈E
′

1

̺
l
h1
1
(e1)×

⋃

e2∈E
′

2

̺
l
h2
2
(e2)× ...×

⋃

en∈E
′

n

̺
l
hn
n
(en)

2010S12011S120102011S22011allTime

2010S2

Strasbourg LyonRh�ne-AlpesGrenoble Alsae Colmar a
llL

oc

Loation

Time

b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b
p7

b
p8b

p9

O1
O3 O2

Figure 3.5: Translate-Down operation on MBS

A translate-down operation translates an MBS from its current hyper-plane to a

target lower level hyper-plane in S. Union of drill-down on the elements of an edge

of the MBS gives us the corresponding edge of MBS in target hyper-plane. The cross

product of all the edges is then defined as resultant MBS. Opposite to translate-up,

translate-down operator describes the data enclosed in an MBS at a finer level of

detail.

We note that ⌊P (⌈P ′ (M)) 6= M while ⌈P ′ (⌊P (M)) = M . We also note that the

translate-up and translate-down operators may produce an MBS that encloses some

points that do not actually exist in the HHMDS (e.g. O1 in figure 3.5).

Example 3.5 In figure 3.5, O2 = {allLocation}×{allT ime} constructed over an aggre-

gated point p9 lies in the hyper-plane < ALLLocation, ALLT ime >. To translate-down

this MBS to a target hyper-plane < Region, Y ear > , drill-down operation is required

38

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

on all elements of both the edges of O2. We get, ̺Region(allLocation) ={Rhône-Alpes,

Alsace} and ̺Y ear(allT ime) = {2010, 2011}. Therefore, ⌊<Region, Y ear>(O2) ={Rhône-

Alpes, Alsace}×{2010, 2011} = O3

Similarly, ⌊<City, Semester>(O3) ={Strasbourg, Lyon, Colmar, Grenoble}×{2010S1,

2011S1, 2011S2, 2010S2} = O1 is a translate-down on an MBS from < Region, Y ear >

to a target lower level hyper-plane < City, Semester > etc.

Definition 3.10 (Union): Let M = E1×E2× ...×En and N = F1×F2× ...×Fn be

two MBS in same hyper-plane. The union of M and N , denoted by M ∪N is defined

as:

M ∪N = (E1 ∪ F1)× (E2 ∪ F2)× ...× (En ∪ Fn)

In other words, the union of two MBS is the cross product of the unions of the

corresponding edges. It is important to note that union can only be calculated for

the MBS lying in the same hyper-plane.

Example 3.6 In figure 3.6, we have:

R1 ∪R2 ={Strasbourg, Lyon, Grenoble, Colmar}×{2010S1, 2011S1, 2011S2},

R5 ∪R6 ={Lyon, Colmar}×{2010S1, 2010S2} etc.

2010S12011S120102011S22011allTime

2010S2

Strasbourg LyonRh�ne-AlpesGrenoble Alsae Colmar a
llL

oc

Loation

Time

b
p1b

p2 b
p3

b
p4

b
p5

b
p6

b
p7 b

p8b
p9

b
p10

R1 R2
R3 R4R5

Figure 3.6: MBS to illustrate the metrics and relations defined for HHMDS

39

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

4.2 Relations

The partial order in dimension hierarchy of the space constituting dimension allows

us to introduce the following relation among different points.

Definition 3.11 (Covers): For two n-dimensional points p(x1, x2, ..., xn) and p′(x′
1,

x′
2, ..., x

′
n) we say p′ covers p, and note p′ ⊚ p, if ∀i (1 ≤ i ≤ n), x′

i ⇑ xi.

A point p′ covers another point p if all of its coordinates can be obtained by a drill-

up operation applied on those of p. Remember that drill-up is a reflexive operator

which means that every point covers at least one point i.e. p⊚ p.

Example 3.7 In figure 3.6, these relations stand:

p1, p2, p4, p5, p7, p9 and p10 lie in the lowest level hyper-plane, therefore, they are

not comparable and do not cover any point except themselves.

p3 ⊚ p1 because 2010 ⇑ 2010S1 and Rhône-Alpes⇑ Lyon,

¬(p3 ⊚ p10) because 2010 ⇑ 2010S2 but ¬(Rhône-Alpes⇑ Colmar),

p6 ⊚ p2 because 2011 ⇑ 2011S1 and Alsace ⇑ Strasbourg,

∀p ∈ S, p8 ⊚ p

We define the following two relations which let us find the relative positions of

two MBS. These relations are also used in tree construction and querying algorithms

described in the next chapter.

Definition 3.12 (Contains): Let M = E1×E2× ...×En and N = F1×F2× ...×Fn

be two MBS in an HHMDS. We define relation contains as:

(M containsN) if : ∀p ∈ N, ∃q ∈ M | q ⊚ p

An MBS M contains another MBS N , if all the points of M are covered by the

points of N . Otherwise stated, if M and N are not in the same hyper-plane, M is

translated-down (if possible) to the hyper-plane of N and checked if all the edges of N

are included in those of the translated-down MBS. Contains is a reflexive, transitive

and asymmetric relation over MBS.

Example 3.8 In the following we try to determine if (R3 contains R1) in figure 3.6.

R3 ={Rhône-Alpes, Alsace}×{2010, 2011} encloses four possible points i.e. (Rhône-

Alpes, 2010), (Rhône-Alpes, 2011), (Alsace, 2010), (Alsace, 2011) and R1 ={Strasbourg,

Lyon, Grenoble}×{2010S1, 2011S1} encloses six points that are (Strasbourg, 2010S1),

(Strasbourg, 2011S1), (Lyon, 2010S1), (Lyon, 2011S1), (Grenoble, 2010S1) and (Greno-

ble, 2011S1). Among these, (Rhône-Alpes, 2010) covers (Lyon, 2010S1) and (Greno-

ble, 2010S1), (Rhône-Alpes, 2011) covers (Lyon, 2011S1) and (Grenoble, 2011S1),

40

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

(Alsace, 2010) covers (Strasbourg, 2010S1) and (Alsace, 2011) covers (Strasbourg,

2011S1). This implies that all the possible points enclosed by R1 are covered by

those of R3. Therefore, (R3 contains R1).

While determining if (R5 contains R6), we find that (Colmar, 2010S1) is not cov-

ered by any point of R5 i.e. (Colmar, 2010S2) and (Lyon, 2010S2). Therefore,

¬(R5 contains R1).

Similarly, (R3 contains R2), (R4 contains R3) etc.

Definition 3.13 (Overlaps): Let M = E1 ×E2 × ...×En and N = F1 ×F2 × ...×Fn

be two MBS in a same hyper-plane P .

(M overlapsN) if : ∃p ∈ N, ∃q ∈ M | q = p

An MBS M overlaps N if there is at least one point enclosed by both M and N .

Example 3.9 In the following we determine if (R5 overlaps R6) in figure 3.6.

R5 = {Lyon, Colmar} × {2010S2} encloses two possible points i.e. (Lyon, 2010S2)

and (Colmar, 2010S2) and R6 = {Colmar} × {2010S1, 2010S2} encloses (Colmar,

2010S1) and (Colmar, 2010S2). Since (Colmar, 2010S2) is common in both M and

N , (R5 overlaps R6).

Since, R1 ={Strasbourg, Lyon, Grenoble}×{2010S1, 2011S1} and R6 = {Colmar}×

{2010S1, 2010S2} do not have any common point, ¬(R1 overlaps R6)

Similarly, (R1 overlaps R2), (R2 overlaps R6) etc.

An MBS overlaps another MBS, if there is at least one common point among the

two MBS. The overlap among the MBS lying in different hyper-planes is meaningless

and can not be calculated. It is a reflexive, transitive and symmetric relation over

MBS.

4.3 Metrics

Since now, we have seen that the edges of an MBS are represented by a set. How-

ever, for an ordered dimension (such as time), the edge can obviously be defined by

an interval. Let Dt be an ordered dimension in our schema, for example the time

dimension, with Et being the corresponding edge of an MBS M . The time interval

covered by Et is noted as Interval(Et) = [min
miǫEt

(mi), max
miǫEt

(mi)].

41

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

The usage of interval for ordered dimensions to describe the length of an edge is

important because it simplifies the calculation of a range of values which, in turn,

speeds up the calculations of metrics defined in this section.

The metrics are used to numerically characterize the MBS in the data space.

Among the metrics defined under this section, volume and density are calculated for

a single MBS while the extension and overlap area are calculated among two MBS.

By exploiting these metrics, we optimize the construction of MBS.

Definition 3.14 (Volume): Let M = E1 × E2 × ...× En be an MBS in some hyper-

plane P in S. The volume(M) is defined as:

volume(M) = |⌊<l11,l
1
2,...,l

1
n>

(M)|

In order to make the comparison meaningful among different MBS, the volume of

an MBS is always calculated with a translate-down at the lowest level hyper-plane i.e.

< l11, l
1
2, ..., l

1
n >. The volume of an MBS determines the maximum number of points

an MBS can enclose if translated down to the lowest level hyper-plane. Otherwise

stated, it is the maximum number of facts, the MBS could possibly group under itself.

Example 3.10 The calculation of volume(R3) in figure 3.6 is as follows:

R3 = {Rhône− Alpes, Alsace} × {2010, 2011}

⌊<City, Semester>(R3) = {Strasbourg, Lyon, Grenoble, Colmar} × {2010S1, 2010S2,

2011S1, 2011S2}

Therefore:

volume(R3) = 4 ∗ 4 = 16

Similarly, volume(R1) = 3∗3 = 9, volume(R2) = 2∗4 = 8, volume(R4) = 4∗4 =

3, volume(R5) = 2 ∗ 1 = 2, volume(R6) = 1 ∗ 2 = 2 etc.

Definition 3.15 (Density): Let M = E1 × E2 × ...× En be an MBS in some hyper-

plane P in S. The density of M is defined as:

density(M) =
||⌊<l11,l

1
2,...,l

1
n>

(M)||

volume(M)

42

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

The density of an MBS determines the ratio of facts grouped under an MBS to

its volume and allows to distinguish between dense and sparse data groups.

Example 3.11 In figure 3.6, we can calculate the density(R3) as follows:

As shown in above example, ⌊<City, Semester>(R3) = {Strasbourg, Lyon, Grenoble,

Colmar } × {2010S1, 2010S2, 2011S1, 2011S2}. Now we can observe that there are

seven points (p1, p2, p4, p5, p7, p9, p10) in ⌊<City, Semester>(R3) i.e. ||⌊<l11,l
1
2,...,l

1
n>

(M)|| =

7 and as calculated before, volume(R3) = 16. Therefore,

density(R3) =
7

16
= 0.437

Similarly, density(R1) = 3
9
= 0.33, density(R2) = 2

8
= 0.25, density(R4) = 7

16
=

0.437 density(R5) = 2
2
= 1, density(R6) = 2

2
= 1 etc.

Definition 3.16 (Extension): Let M = E1×E2× ...×En and N = F1×F2× ...×Fn

be two MBS in a same hyper-plane P and Interval(Et) = [t1, t2] and Interval(Ft) =

[t3, t4] be the intervals covered by the time dimension edges of M and N respectively.

The extension of M to accommodate N , denoted by extension(M |N) is calculated as:

extension(M |N) =
n

∑

i=1,i 6=t

|Fi − Ei|+ δ(Et, Ft)

where

δ(Et, Ft) =

t4 − t2 t1 ≤ t3 and t2 ≤ t4

t1 − t3 t1 ≥ t3 and t2 ≥ t4

t1 − t3 + t4 − t2 t1 ≥ t3 and t2 ≤ t4

0 t1 ≤ t3 and t2 ≥ t4

Table 3.1 illustrates the calculation of δ(Et, Ft) using Allen’s relations.

Extension required to accommodate another MBS can only be calculated, if the

two MBS lie in the same hyper-plane. This metric is used to calculate the distance

among two MBS. It is a reflexive, transitive and asymmetric metric.

Example 3.12 To calculate extension(R1|R2) in figure 3.6, we can say:

R1 = E1 × Et andR2 = F 1 × F t with E1 = {Strasbourg, Lyon, Grenoble}, Et =

{2010S1, 2011S1}, F 1 = {Grenoble, Colmar} andF t = {2010S1, 2011S2}. Now:

|F 1 − E1| = |{Colmar}| = 1

δ(Et, Ft) = 2010S1− 2010S1 + 2011S2− 2011S1 = 1

extension(R1|R2) = 1 + 1

= 2

43

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Algebra for HHMDS Chapter 3. Mathematical Model for HHMDS

Relation Illustration Interpretation δ(Et, Ft) β(Et, Ft)

t4 − t2
X < Y X takes place before Y −1

XmY X meets Y
t2 − t3

X oY X overlaps with Y

Y < X Y takes place before X

t1 − t3

−1

XmiY Y meets X
t4 − t1

X oi Y Y overlaps with X

X sY X starts Y

t1 − t3
+t4 − t2

t2 − t1
X f Y X finishes Y

X dY X during Y

X si Y Y starts X

0 t4 − t3X fi Y Y finishes X

X di Y Y during X

X = Y X is equal to Y

Table 3.1: Illustration of the calculation of δ(Et, Ft) and β(Et, Ft) using Allen’s
interval algebra. The intervals used for the illustration are X = Interval(Et) = [t1, t2]
and Y = Interval(Ft) = [t3, t4]

44

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 3. Mathematical Model for HHMDS 4. Algebra for HHMDS

Similarly, extension(R2|R6) = 0, extension(R2|R5) = 1, extension(R1|R5) = 1

etc.

Definition 3.17 (Overlap Area): Let M = E1×E2×...×En and N = F1×F2×...×Fn

be two MBS in a same hyper-plane P and Interval(Et) = [t1, t2] and Interval(Ft) =

[t3, t4] be the intervals covered by the time dimension edges of M and N respectively.

The shared area, called overlap area, between M and N , noted as ovlapArea(M, N),

is calculated as:

ovlapArea(M, N) =
n
∏

i=1,i 6=t

|Fi ∩ Ei| ∗ (β(Et, Ft) + 1)

where

β(Et, Ft) =

−1 t2 < t3 or t4 < t1

t2 − t3 t1 ≤ t3 and t2 ≤ t4

t4 − t1 t1 ≥ t3 and t2 ≥ t4

t2 − t1 t1 ≥ t3 and t2 ≤ t4

t4 − t3 t1 ≤ t3 and t2 ≥ t4

Table 3.1 illustrates the calculation of β(Et, Ft) using Allen’s relations.

Overlap area can only be calculated, if the two MBS lie in the same hyper-plane.

It is a reflexive, transitive and symmetric metric.

Example 3.13 To calculate ovlapArea(R1, R2) in figure 3.6, we can say:

R1 = E1 × Et andR2 = F 1 × F t with E1 = {Strasbourg, Lyon, Grenoble}, Et =

{2010S1, 2011S1}, F 1 = {Grenoble, Colmar} andF t = {2010S1, 2011S2}. Now:

|F 1 ∩ E1| = |{Grenoble}| = 1

β(Et, Ft) = 2011S1− 2010S1 = 2

ovlapArea(R1, R2) = 1 ∗ (2 + 1)

= 3

Similarly, ovlapArea(R2, R6) = 2, ovlapArea(R6, R5) = 1, ovlapArea(R2, R5) =

0 etc.

We have seen that the calculation of the presented metrics related to MBS is based

on the cardinality of the edges in case of non-ordered dimensions while it depends

on the length of the intervals in case of ordered dimensions. The consequence of

45

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Conclusion Chapter 3. Mathematical Model for HHMDS

this distinction is important: suppose, as we considered above, that the only ordered

dimension is time. These metrics favor the grouping of temporally closed values

together in the same MBS. This grouping, in turn, helps to improve the response

time for range queries, which quite often involve the ranges over ordered dimensions.

We can easily extend this reasoning for all other ordered dimensions, and can define

a formula to calculate the distance among different members, that will allow the

grouping of similar or closed points in MBS.

5 Conclusion

In this chapter, we presented a data model that provides an abstraction for a Hier-

archical Hybrid Multidimensional Data Space. The model is used to describe OLAP

related objects and operations in this spatial-like data space. The proposed data

grouping structure is used to partition the data in the space and the metrics are

used to optimize these partitions. Our data grouping structure is based on cartesian

product of sets of members which is similar to the ideas proposed in other works such

as [Ester 2000], [Chen 2009b] and [Aligon 2011].

However, the originality of our data model lies in the non-ordered multilevel axes

constituting the dimensions space: indeed each dimension is represented by an axis

constituted of the non-ordered set of the members of all levels of the dimension. This

gives us the power to represent both detailed and aggregated data in the same data

space and then regroup it to create data partitions representing the views at dif-

ferent levels of granularity. It also allows us to dynamically add new members at

any hierarchical levels and provides a solution for handling evolving environment and

progressive appearance of aggregates in the cube. The proposed algebraic operators

then lets us manipulate the multidimensional points and the data partitions by ag-

gregating or detailing them in the data space. Another original aspect of our work is

that, in our data model, the dimensions are not required to have any kind of order.

However, while calculating the metrics to optimize the MBS, natural order among

the members, if any, of a dimension is exploited to regroup close points in the same

MBS.

Now, after defining the elements of data model and the algebra, we need a data

structure to store these partitions. Algorithms are needed to insert the new fact in

this data structure and query it for efficient data retrieval. The details about these

algorithms and the data structure are discussed in the next chapter.

46

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4

The DyTree

This chapter introduces a data structure called the DyTree. The DyTree operates

in Hierarchical Hybrid Multidimensional Data Space and is suitable to store and

index the data for dynamic data warehouses. The nodes of a DyTree store an MBS

with associated aggregated measure values. The MBS represent the materialized

views and are selected thanks to the metrics-based grouping strategy described in the

last chapter. The tree as a whole is a representation of partially materialized and

indexed data cube. In this chapter, we introduce the structure of the tree as well

as the algorithms to construct and query it. The details of algorithms are explained

through a running example which facilitates understanding their working.

Chapter Outline

1 Introduction . 49

2 Structure of the DyTree 49

2.1 Elements of DyTree . 49

2.2 Input Parameters for the DyTree 51

3 Constructing a DyTree . 51

3.1 Insert . 51

3.2 Split . 53

3.3 Running Example . 54

4 Discussion on the DyTree 63

4.1 Creation of Materialized Views 63

4.2 Dense Data Partitions . 64

5 Querying the DyTree . 64

5.1 Range Query . 64

5.2 Point Query . 65

5.3 Group-by Query . 65

47

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree

5.4 Running Example . 66

6 Conclusion . 67

48

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 1. Introduction

1 Introduction

As discussed in previous chapter, the HHMDS can evolve dynamically without need-

ing any consideration for reordering of the data space. For such a data space, we also

proposed data grouping structure and related algebra which allows us to optimize the

data partitions and to perform aggregations at different levels of granularity over the

data lying in HHMDS.

Now, as the DyTree operates in such data space, it automatically complies to the

requirements of dynamic data warehousing. We use MBS proposed in last chapter to

group the data points lying in the data space among different partitions. We propose

the algorithm to construct and optimize these data partitions using the previously

defined metrics. The data partitions are indexed in the proposed tree structure, i.e.

the DyTree. As a result, the DyTree simultaneously stores and indexes the detailed

and/or aggregated data in HHMDS. The nodes of DyTree are self-constructed chunks

of cuboids represented by MBS that are constructed at run-time. The tree as a

whole represents a partially materialized data cube that is built dynamically. In the

following, we explain the structure and the algorithms to construct and query the

DyTree. The working of the provided algorithms is explained through our running

example which simplifies the understanding.

2 Structure of the DyTree

In this section we describe the structure of a DyTree. We first discuss the elements

that make up a DyTree and then describe the input parameters needed to construct

the tree.

2.1 Elements of DyTree

DyTree is a dynamic structure that stores multidimensional points and MBS in HH-

MDS with associated measure(s) or aggregate values. The tree nodes, therefore, hold

a subset of different possible views with pre-calculated aggregate values (materialized

views). The DyTree has a structure similar to that of the B-tree and has a balanced

tree structure. It indexes and stores the MBS in its internal nodes and facts in the

leaves. The insertion order of the facts in the DyTree is not important, which helps

dynamic insertions of the facts.

Definition 4.18 A DyTree node is defined as a tuple node < M, entrySet, a1, a2, ..., ak

> where:

49

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Structure of the DyTree Chapter 4. The DyTree

• M is an MBS,

• entrySet is a set of pointers to the child entries and

• ai (1 ≤ i ≤ k) are aggregate values.

We use size(node.entrySet) to note the number of pointers held by the entrySet of

the node at some particular time instance. The nodes are either internal or leaf nodes

and can be categorized in following three types:

Directory Node: A node is called a directory node if the maximum value for size(

node.entrySet) is fixed and constant. In other words, a directory node is a

fixed and limited capacity node. A directory node represents a fixed sized

materialized section of cuboid and helps in improving the efficiency of aggregate

queries in DyTree.

For example, node3 < M4, {f3, f6}, 10 > is a directory node of the DyTree

shown in figure 4.1a.

Super Node: A node is called a super node if the maximum value for size(node.entr-

ySet) is not defined or unlimited. In other words, a super node is a variable and

unlimited capacity node. Like a directory node, a super node also represents a

materialized section of cuboid with only difference that they are larger capacity

nodes with virtually unlimited size. The objective of having a super node is to

avoid having highly overlapped nodes.

For example, node4 < M5, {f4, f5, f2, f1}, 18 > is a super node of the DyTree

shown in figure 4.1a.

Data Node: A node is called data node, if the maximum node.entrySet = φ and

M = E1×E2×...×En is an MBS such that M lies in the lowest level hyper-plane

i.e. < l11, l
1
2, ..., l

1
n > and |Ei| = 1, (1 ≤ i ≤ n) . In other words, a data node

holds an MBS constructed over a single point in the lowest level hyper-plane

of HHMDS with an associated measure value. A data node holds a fact with

associated measure value.

An MBS constructed over a single multidimensional point p lying in the lowest

level hyper-plane is called with the name of the point , in our examples. For

example, f4 < p4, φ, 8 > is a data node of the DyTree shown in figure 4.1a in

which p4 is an MBS constructed over p4. As the data nodes hold only facts, we

use the terms facts and data nodes interchangeably in this chapter.

50

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

The root of a DyTree is always a directory node with MBS at level ALLi for each

dimension Di in space i.e. the root always holds the MBS all1 × all2 × ...× alln. The

root of the DyTree summarizes the apex of the hypercube. In our implementation,

the data nodes in DyTree reside always on disk while the directory and super nodes

are kept in main memory.

2.2 Input Parameters for the DyTree

A DyTree is built using two input parameters, i.e. directory node capacity (DNCAP)

and overlap limit (OV LAP). The directory node capacity determines the number of

children a directory node can have (i.e. DNCAP = maximum size(entrySet)) while

the overlap limit determines the maximum amount of shared region that the MBS of

two nodes can have in common.

The figure 4.1a shows some parts of a DyTree, built with directory DNCAP = 3

and OV LAP = 0.

3 Constructing a DyTree

On the occurrence of a new transaction in the system (e.g. sale of an item), the

algorithm to insert a new fact in the DyTree is triggered. This results in insertion of

a new fact and update of the existing MBS to dynamically construct and maintain

the DyTree. In this section, we present and discuss the principle algorithms needed

for this purpose.

The insert algorithm is used to insert a new fact into a DyTree starting from its

root. This algorithm is responsible for finding a suitable place for the incoming fact

and placing it at that position in the tree. This algorithm, however, sometimes may

need to call another important algorithm called split algorithm. The split algorithm

is invoked in case of a directory node’s overflow and splits the node into two new

directory nodes. The details of these algorithms and a working example are discussed

in the following.

3.1 Insert

The insert algorithm starts with packing the new fact which is a new point in HHMDS,

into a data node. In this node’s MBS, each edge is a singleton and it is made of the

corresponding coordinate of the point. The insertion of a fact starts from the root and

recursively continues downwards. The insert algorithm (algorithm 4.1) is attached to

51

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTree

M1;340 noderootM2;232 node1************ ******** ******** ************ M4;10 node3p3;4f3 p6;6f6
M3;108 node2************ ******** ************ M5;18 node4p5;3f5 p4;8f4 p2;6f2 p1;1f1

(a)

2010S12010S22010allTime

2011S120112011S2

Lyon Grenoble ColmarRh�ne-Alpes Alsae a
llL

ocStrasbourg ParisIle-de-FraneVinennesSaint-Etienne Loation

Time

b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b

b

b

b b b

b

M 5 M 4M 3 M 2M 1

(b)

MBS Description Measure/Aggregate

M 1 {allLoc}×{allTime} 340
M 2 {Ile-de-France}×{allTime} 232
M 3 {Rhône-Alpes, Alsace}× {allTime} 108
M 4 {Paris, Vincennes}×{2010, 2011} 10
M 5 {Lyon, Grenoble, Strasbourg}×{2010S1, 2010S2, 2011S2} 18
p1 {Lyon}×{2010S1} 1
p2 {Grenoble}×{2010S2} 6
p3 {Paris}×{2010S1} 4
p4 {Lyon}×{2011S2} 8
p5 {Strasbourg}×{2010S2} 3
p6 {Vincennes}×{2011S1} 6

(c)

Figure 4.1: An example DyTree built with DNCAP = 3 and OV LAP = 0: (a)
structure of the DyTree, (b) data space, and (c) MBS and facts.

52

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

Algorithm 4.1 Insert algorithm for DyTree’s internal (directory or super) node

i n s e r t (DyTreeDataNode dataNode) {
// i n s e r t dataNode in t o an i n t e r n a l node currentNode

Aggregate currentNode . measure with dataNode . measure
Set targetNode = chooseSubt r eeFor Inse r t i on ()
i f (targetNode != NULL) then

targetNode . i n s e r t (dataNode)
else

i f (nodes in currentNode . ent rySet are data nodes)
i f (currentNode i s a d i r e c t o r y node)

i f (s i z e (currentNode . ent rySet) <= DNCAP)
Add dataNode to currentNode . ent rySet

else

currentNode . s p l i t (dataNode)
else i f (currentNode i s a super node)

Add dataNode to currentNode . ent rySet
else

extend currentNode .MBS to accommodate dataNode .MBS
Add dataNode to currentNode . ent rySet

}

a every internal node of the DyTree and starts by updating the aggregate value in

the node with the measure associated to the fact, and then chooses a subtree for the

further insertion: if the MBS of any of the entries of the node contains the data node’s

MBS, it is chosen as the subtree, otherwise the one needing the minimum extension

will be the candidate for further insertion. In this last case, the chosen node’s MBS

is extended to accommodate the data node’s MBS. Then the same insert algorithm

for the chosen node or the subtree is called. This process continues until the deepest

level internal node is reached i.e. the one holding the data nodes as entries.

If the selected deepest level node is a directory node and it still has not reached its

capacity, the data node is added to its entries. In case of overflow, the split algorithm

(algorithm 4.2) for this node is called.

If the selected deepest level node is a super node, the data node is simply added

to its entries.

3.2 Split

The split algorithm (algorithm 4.2) is invoked by the insert algorithm on occurrence

of an overflow in a directory node’s MBS. The algorithm starts with the selection

of a split dimension and the level for splitting the MBS of the node called splitting

53

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTree

node. The dimensions and levels are selected on the basis of either the cardinality

of the MBS’s edges or the levels of the members of each edge constituting the MBS.

In case of selection on the basis of cardinality, the chosen dimensions is one with the

highest edge cardinality and the split level is the same as in the corresponding edge

of the splitting node’s MBS. Otherwise, the dimension corresponding to the highest

level is chosen as split dimension and split level is a lower level in the hierarchy of the

dimension. Once the split dimension and level are selected, the hyper-plane called

split hyper-plane for the resultant splitted nodes could be established. The levels of

all the dimensions except the split dimension in the split hyper-plane are the same

as the dimension levels in the hyper-plane of the splitting node’s MBS.

After establishing the split hyper-plane, the MBS of all the entries of the splitting

node and that of the split provoking node are translated-up to the split hyper-plane

and are stored temporarily in a list called listNodes. Two new directory nodes called

splitted nodes are created such that their MBS lie in the split hyper-plane. The two

most distant (needing maximum extension) nodes from the listNodes are selected as

seeds. One seed is inserted in each of the splitted nodes. For all the remaining nodes

in the listNodes, one node is selected such that the difference of required extensions

in splitted nodes MBS to accommodate the selected node’s MBS is maximum. This

criterion selects the node that is the closest to one of the splitted nodes as compared

to the other splitted node and makes sure that the MBS are enlarged gradually. The

selected node is inserted into either of the splitted nodes on the basis of extension,

overlap area and number of existing entries, in order.

After distributing all the nodes in listNodes among the two splitted nodes, if the

overlap area between the splitted nodes is more than the predefined limit, an alternate

dimension and the corresponding level is chosen. This process continues recursively,

unless we find a suitable split. If no suitable split is found, the node is rather adapted

to a Super node.

In case of a successful split, the splitted nodes replace the splitting node in the

entries of its parents which may start a bottom-up recursive split process. If the

splitting node is root, a new root is created and the pointers to the splitted nodes are

added to its entries. The splitting of root causes the tree depth to grow.

3.3 Running Example

To better understand the above algorithms, we explain their working through a simple

running example. For this running example we use the two dimensional schema with

dimensions Location and Time as presented in previous chapter (figure 3.1). However,

54

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

Algorithm 4.2 Directory node’s split algorithm for DyTree

s p l i t (DyTreeNode provokingNode) {
// s p l i t s the s p l i t t i n gNod e us ing provokingNode

do{
Choose the s p l i t dimension and corre spond ing l e v e l
Set X = hyperplane o f sp l i t t i ngNode MBS except along s p l i t t i n g

dimension where i t i s s e t accord ing to the s e l e c t e d l e v e l
Set l i s tNod e s = provokingNode union s p l i t i n gNode . e n t r i e s
for each node in l i s tNod e s

TranslateUp node .MBS to X
Create two d i r e c t o r y nodes sp l i t edNode1 and sp l i t edNode2
Se l e c t the two most d i s t an t nodes nodeSeed1 and nodeSeed2 from

l i s tNod e s
I n s e r t nodeSeed1 in sp l i t edNode1 and nodeSeed2 in sp l i t edNode2
Remove nodeSeed1 and nodeSeed2 form l i s tNod e s
while (l i s tNod e s i s not empty) {

Set node from l i s tNod e s so that extens i on (node .MBS,
sp l i t edNode1 .MBS)− ex tens i on (node .MBS, sp l i t edNode2 .MBS) i s
maximum

In s e r t node in the node (sp l i t edNode1 or sp l i t edNode2) that
r e qu i r e s the minimum extens i on

In case o f t i e : p r e f e r the one that induces minimum over lap
area

In case o f f u r t h e r t i e : p r e f e r the one that has l e s s e n t r i e s }
i f (ovlapArea (sp l i t edNode1 .MBS, sp l i t edNode2 .MBS) < OVLAP)

succe s s=true
}while (ovlapArea (sp l i t edNode1 .MBS, sp l i t edNode2 .MBS) >= OVLAP or

a l l d imensions are not proce s sed)
i f (succe s s=true)

i f (s p l i t i n gNode i s root)
s p l i t i n gNode . e n t r i e s = { sp l i t edNode1 , sp l i t edNode2 }

else

s p l i t i n gNode = sp l i t edNode1
i f (s p l i t i n gNode . parent i s a super node or a d i r e c t o r y node)

and (i s not f u l l)
Add sp l i t edNode2 to s p l i t i n gNode . parent . entrySet

else

s p l i t i n gNode . parent . s p l i t (sp l i t edNode2)
else

Adapt s p l i t i n gNode to super node
}

55

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTree

to better illustrate the working of the algorithms, we use an extended instance of

dimension location as shown in figure 4.2. In this example, the facts are inserted one

by one into the DyTree which implies the dynamic evolution of dimension tables and

the data space. The capacity of a directory node is fixed to 3 and overlap limit is

fixed to 0 in this example. These small values are used to simplify the explanation of

the DyTree’s working. SUM is used as the only aggregate function to construct the

DyTree.

ALLLocationAlsaeStrasbourg Colmar Rhone-AlpesLyon Saint-Etienne Grenoble Ile-de-FraneParis Vinennes
Figure 4.2: The instance of hierarchical dimension Location used in the running
example.

In each of the following figures, the sub-figures ’a’ show different states of the

DyTree, sub-figures ’b’ present the evolution of data space and the sub-figures ’c’

depicts the description of MBS and facts in the DyTree.

State I (initial state) Figure 4.3 shows the initial state of a DyTree with three

facts. As the capacity of a directory node is set to 3, first three facts are easily inserted

in the root of the DyTree following the update of its aggregate value. node1 is the

root of the tree holding the MBS M1 = {allLocation} × {allT ime}.

State II (insertion needing the splitting of root) The insertion of a new

incoming fact f4 in the initial state of DyTree, as shown in figure 4.3, starts from

the root. The aggregate value of the root is updated to 19 (18+1). The addition of

f4 in the entries of the root causes the root (node1) to overflow. As a result the N1

needs to be split. As the cardinality of both the edges of node1’s MBS ({allLocation}

and {allT ime}) is 1, the choice of split dimension can not be made according to this

criteria. Next, we check the levels of the members of both the edges. The level of the

members of both the edges is also equal (i.e. 3) in their respective hierarchies. In this

case, we can select any of the two dimensions to be the candidate split dimension. In

our example, we select dimension Location to be our candidate split dimension and

the chosen split level is 2 or Location.Region (i.e. level(allLocation) − 1). After this

selection process, we can construct our split hyper-plane, which in this example is

< Region, ALLT ime >.

56

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

M1;18 node1p1;5f1 p2;7f2 p3;6f3
(a)

2010S12010S2allTime

LyonGrenoble Colmar a
llL

oc

Loation
Time

b
p1 b

p2
b
p3 b

M 1

(b)

MBS Description Measure/Aggregate

M 1 {allLoc}×{allTime} 18
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6

(c)

Figure 4.3: State I: Initial state of DyTree

Once the split dimension and level are selected, two most distant (in terms of

required extension) nodes with respect to Location dimension are selected as seeds.

It is important to note that in order to calculate the extension, the facts are first

translated-up in the split hyper-plane. The distances among different combina-

tion of the facts (after the required translate-up operation) in our example are:

extension(f1|f2) = 0, extension(f1|f3) = 1, extension(f1|f4) = 1, extension(f2|

f3) = 1, extension(f2|f4) = 1 and extension(f3|f4) = 0. Therefore, the two seeds

are found to be f1 and f3. We note that as this extension is being calculated among

the facts, exteneions(a|b) = extension(b|a).

Next, two new directory nodes,node2 and node3 are created with empty MBS

in the split hyper-plane. f1 is inserted in node2 while f3 in node3. Therefore, the

node2’s MBS (M 2) becomes {Rhône-Alpes}×{allT ime} while the MBS of node3 (M 3)

becomes {Alsace} × {allT ime}. In the next step, each remaining fact is distributed

one by one among node2 and node3. We insert f2 in node2 and f4 in node3, following

the update of their corresponding aggregate values.

As the splitting node is the root of DyTree, it does not disappear, rather all the

existing entries of node1 are cleared and the pointers to node2 and node3 are added

to its entries. The resultant state of the space and DyTree are depicted in figure 4.4.

57

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTree

M1;19 node1M2;12 node2p1;5f1 p2;7f2 M3;7 node3p3;6f3 p4;1f4
(a)

2010S12010S2allTime

LyonGrenoble Colmar a
llL

ocStrasbourgRh�ne-Alpes Alsae Loation
Time

b
p1 b

p2
b
p3

b
p4b b b

M 1 M 2 M 3

(b)

MBS Description Measure/Aggregate

M 1 {allLoc} × {allTime} 19
M 2 {Rhône-Alpes} × {allTime} 12
M 3 {Alsace} × {allTime} 7
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6
p4 {Strasbourg}×{2010S1} 1

(c)

Figure 4.4: State II: Insertion of f4.

State III (insertion needing the extension of an MBS) The insertion of f5 in

State II (as shown in figure 4.4) of the DyTree starts from the root whose aggregate

value is updated using the measure value of f5. The fact’s MBS is contained in

the root, therefore the condition of containment is checked against all its entries.

Since f5 is not contained in either of the root’s entries, extension (after the required

translate-up of fact’s MBS) of node2’s and node3’s MBS required to accommodate

f5 are calculated. The extension required in both the cases is same. Insertion of f5

in any of node2 and node3 does not require any overlap and the number of existing

entries in both of them is also same. This implies that f5 can be inserted in either of

node2 and node3 after extending the corresponding node’s MBS. We choose node3 to

accommodate f5, therefore its aggregate value is updated and the MBS is extended.

The M 3 now becomes {Alsace, Ile-de-France}×{allT ime}. Since node3 is the lowest

level directory node (i.e. one holding the pointers to data nodes or facts), the pointer

of f5 is added to the entries of node3. The resultant state of DyTree is presented in

figure 4.5.

58

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

M1;22 node1M2;12 node2p1;5f1 p2;7f2 M3;10 node3p3;6f3 p4;1f4 p5;3f5
(a)

2010S12010S2allTime

LyonGrenoble Colmar a
llL

ocStrasbourgRh�ne-Alpes Alsae ParisIle-de-Frane Loation
Time

b
p1 b

p2
b
p3

b
p4

b
p5b b b

b

M 1 M 2 M 3

(b)

MBS Description Measure/Aggregate

M 1 {allLoc} × {allTime} 22
M 2 {Rhône-Alpes} × {allTime} 12
M 3 {Alsace, Ile-de-France} × {allTime} 10
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6
p4 {Strasbourg}×{2010S1} 1
p5 {Paris}×{2010S2} 3

(c)

Figure 4.5: State III: Insertion of f5.

State IV (insertion without needing any split or extension) For the next

update, we insert f6 in the State III (see figure 4.5) of the DyTree. After the update

of the root’s aggregate value using the f6 ’s measure, it is checked if the f6 ’s MBS is

contained in the MBS of its entries. Since M 2 contains the MBS of f6 and node2

holds the data nodes as its entries, f6 is simply added to the node2’s entries and the

aggregate value of node2 is updated. The resultant state of DyTree is presented in

figure 4.6.

State V (insertion needing the splitting of a non-root node) Insertion of

f7 in state IV (figure 4.6) of the DyTree causes the node3 to overflow and induces

a split. This results in the split of node3 in node4 and node5. The pointer of node3

is replaced by node4 in its parent node1 (i.e. the root) while the pointer of node5 is

added to the entries of node1. The DyTree is now composed of four directory nodes

and 7 facts, as presented in figure 4.7.

59

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTree

M1;26 node1M2;16 node2p1;5f1 p2;7f2 p6;4f6 M3;10 node3p3;6f3 p4;1f4 p5;3f5
(a)

2010S12010S2allTime

2011S1
LyonGrenoble Colmar a

llL
ocStrasbourgRh�ne-Alpes Alsae ParisIle-de-Frane Loation

Time
b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b b b b

M 1 M 2 M 3

(b)

MBS Description Measure/Aggregate

M 1 {allLoc} × {allTime} 26
M 2 {Rhône-Alpes} × {allTime} 16
M 3 {Alsace, Ile-de-France} × {allTime} 10
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6
p4 {Strasbourg}×{2010S1} 1
p5 {Paris}×{2010S2} 3
p6 {Lyon}×{2011S1} 4

(c)

Figure 4.6: State IV: Insertion of a f6.

State VI (insertion needing the bottom-up recursive split) Insertion of f8

in state V (figure 4.7) of DyTree causes the node2 to split in node6 and node7. The

pointer of node6 replaces the pointer of node2 in its parent while node7 needs to be

added to the parent’s entries. This however, causes the parent (node1) to overflow.

Therefore, node1 is split creating two new directory nodes node8 and node9. node4,

node5, node6 and node7 are distributed among node8 and node9 as explained in the

state II. This time distributing entries are directory nodes as opposed to the facts

in state II, however this does not changes the procedure of distributing the entries

among newly created splitted nodes.

Since the node1 is root, its entries are cleared and the pointers to node8 and node9

are added to the node1’s entries. As a result, the height of the tree grows. The new

structure of the DyTree is presented in figure 4.8.

60

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 3. Constructing a DyTree

M1;34 node1M2;16 node2p1;5f1 p2;7f2 p6;4f6 M4;7 node4p3;6f3 p4;1f4 M5;11 node5p5;3f5 p7;8f7
(a)

2010S12010S2allTime

2011S1
LyonGrenoble Colmar a

llL
ocStrasbourgRh�ne-Alpes Alsae ParisIle-de-FraneVinennes Loation

Time
b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b
p7b b b b

M 1 M 2 M 4 M 5

(b)

MBS Description Measure/Aggregate

M 1 {allLoc} × {allTime} 34
M 2 {Rhône-Alpes} × {allTime} 16
M 3 disappeared –
M 4 {Alsace} × {allTime} 7
M 5 {Ile-de-France} × {allTime} 11
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6
p4 {Strasbourg}×{2010S1} 1
p5 {Paris}×{2010S2} 3
p6 {Lyon}×{2011S1} 4
p7 {Vincennes}×{2010S2} 8

(c)

Figure 4.7: State V: Insertion of a new fact f7.

61

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Constructing a DyTree Chapter 4. The DyTreeM1;40 node1M8;22 node8M6;12 node6p1;5f1 p2;7f2 M7;10 node7p6;4f6 p8;6f8
M9;18 node9M4;18 node4p3;6f3 p4;1f4 M5;11 node5p5;3f5 p7;8f7

(a)

2010S12010S2allTime

2011S12011S220102011

LyonGrenoble Colmar a
llL

ocStrasbourgRh�ne-Alpes Alsae ParisIle-de-FraneVinennesSaint-Etienne Loation

Time

b
p1 b

p2
b
p3

b
p4

b
p5

b
p6

b
p7

b
p8

b b b b

b

b

M 1 M 8 M 4 M 5
M 6M 7

M 9

(b)

MBS Description Measure/Aggregate

M 1 {allLoc} × {allTime} 40
M 2 disappeared –
M 3 disappeared –
M 4 {Alsace} × {allTime} 18
M 5 {Ile-de-France} × {allTime} 11
M 6 {Rhône-Alpes} × {2010} 12
M 7 {Rhône-Alpes} × {2011} 10
M 8 {Rhône-Alpes} × {allTime} 22
M 9 M 4∪M 5 = {Alsace, Ile-de-France} × {allTime} 18
p1 {Lyon}×{2010S1} 5
p2 {Grenoble}×{2010S2} 7
p3 {Colmar}×{2010S1} 6
p4 {Strasbourg}×{2010S1} 1
p5 {Paris}×{2010S2} 3
p6 {Lyon}×{2011S1} 4
p7 {Vincennes}×{2010S2} 8
p8 {Saint-Etienne}×{2011S2} 6

(c)

Figure 4.8: State VI: Insertion of f8.

62

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 4. Discussion on the DyTree

4 Discussion on the DyTree

Now as we have detailed the construction of a DyTree, let us reconsider the DyTree’s

structure and highlight its principal characteristics.

4.1 Creation of Materialized Views

We have seen that at the beginning, the DyTree has only one directory node enclosing

a single point (i.e. (all1, all2, ..., alln)) that covers all the other points in the HHMDS.

The splitting of the root produces two new directory nodes materializing the data at

a lower aggregation level. The splitting of these new nodes then produces more nodes

with data materialized at yet another lower aggregation levels. In other words, our

splitting strategy splits the nodes along different levels of dimension hierarchy and

produces the nodes materializing the data at different aggregation levels starting

from higher to the lower ones. The resultant nodes, therefore, materialize either a

multidimensional point in any hyper-plane of HHMDS, i.e. representing a detailed or

an aggregated point (represented by an MBS all whose edges are singleton) or a range

of multidimensional points. The creation of materialized views takes the position of

members in dimension hierarchy into account and favors the grouping of the children

of the same parents together. In case of ordered dimensions, the ordering among the

members of the same level is also taken into account. Such a strategy is adopted

to efficiently support the most commonly used aggregate OLAP queries (i.e. point,

range etc.). As on splitting of a node, the entries are re-distributed among two new

directory nodes, the facts in the tree do not follow their insertion order.

In DyTree, the materialized views, represented by MBS and stored in nodes, are

not selected on the basis of the criteria such as cost/benefit analysis [Harinarayan 1996]

or prior knowledge of frequently asked queries. The selection is rather guided by the

relations and metrics presented in chapter 3. The insertion order of facts may change

the structure of tree, i.e. two DyTrees indexing same facts may materialize different

sections of cuboids, if the facts are not inserted in the same order in both the DyTrees.

During the tree construction process, various MBS appear, vanish and reappear on

insertion of new facts.

In our splitting algorithm, unlike hierarchical split algorithm used in DC-Tree, if no

suitable splitting dimension is found by going one level down in hierarchy level, we skip

that level and allow splitting at further lower levels. For example, If we can not find

an overlap free split for {allLocation}×{allT ime} in hyper-planes < Country, allT ime >

or < allLocation, Y ear >, we allow the splitting in hyper-plane < City, allT ime >or

63

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Querying the DyTree Chapter 4. The DyTree

< allLocation, Semester >. This may cause the aggregation at level Country/Y ear to

skip but that would re-appear at the time of bottom-up recursive splitting later. This

strategy would help considerably reducing the number of super nodes and improving

the performance of the DyTree.

4.2 Dense Data Partitions

Numerous research works (e.g. [Beyer 1999, Yu-cai 2004, Cheung 2001]) have been

carried out to efficiently deal with the data cubes by considering the density charac-

teristic of the data sets in concerned applications. In the DyTree, indexed MBS are

always dense because these MBS are data partitions constructed over a set of existing

data points. The advantage of using such a data partitioning technique rather than a

space partitioning one is to avoid indexing possibly large dead spaces in the working

data space. Therefore using this strategy in DyTree means that it indexes only the

parts of data space where some data points exist. Indexing only the existing data

points without covering dead spaces is advantageous in both reducing the size of the

index and augmenting the querying performance.

5 Querying the DyTree

In OLAP or data warehousing environment, we come across three types of queries:

point queries, range queries and group-by queries. In the following, we discuss these

algorithms and explain them through our running example.

5.1 Range Query

The range query algorithm (algorithm 4.3) executes a range query over the DyTree

and returns the result of the query. For simplicity, the aggregate function we use to

describe the working of the algorithm is SUM.

The input to a range query algorithm is a range query that is transformed into an

MBS (called query_MBS) by putting the ranges defined over each dimension in its

corresponding edge of the query_MBS. Like insert, the range query algorithm starts

with the root. For a node in the DyTree, if the query_MBS contains the node’s MBS,

the aggregate value associated to the node’s MBS is added to the result. Otherwise,

the two MBS are adapted to the same level by applying translate-up on the MBS that

lies in the lower level hyper-plane. Then, if the query_MBS overlaps the node’s MBS,

the same algorithm is recursively called for each of its entries. If both the conditions

64

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 5. Querying the DyTree

Algorithm 4.3 Range (SUM) query algorithm for a DyTree’s internal (directory or
super) node

rangeQuery (MBS query_MBS) {
// c a l c u l a t e s r e s u l t , the aggrega ted measure o f query

r e s u l t = 0
i f conta in s (query_MBS , currentNode .MBS)

Aggregate r e s u l t with currentNode . measure
i f (query_MBS and currentNode .MBS are not in same hyper−plane)

i f (query_MBS i s in h igher l e v e l hyperplane than that o f
currentNode .MBS)

TranslateUp currentNode .MBS to the hyperplane o f query_MBS
else

TranslateUp query_MBS to the hyperplane o f currentNode .MBS
i f (query_MBS ove r l ap s currentNode .MBS)

for (eachnode in currentNode . ent rySet)
node . rangeQuery (query_MBS)

return r e s u l t
}

are false, the subtree is simply ignored for the further inquiry. The algorithm returns

the aggregated measure values corresponding to the range query at the end.

5.2 Point Query

Algorithm for point query is similar to the range query’s algorithm. The only differ-

ence is that of each edge of a query_MBS in point query has only one element (i.e.

cardinality of of each edge=1) as opposed to a range query where each edge may have

a list of elements (i.e. range of values). The elements in each edge of point query may

belong to any level of their respective dimension hierarchies: the queried point may

lie in any hyper-plane of the HHMDS. Therefore, the calculation of a point query’s

result does not necessarily need to query the leaves and could be answered at higher

aggregated levels of the DyTree.

5.3 Group-by Query

We consider a group-by query to be a collection of point queries. Therefore, a group-

by query algorithm of DyTree simply transforms a group-by query in a set of point

queries and then for each point query, above described point query’s algorithm is

called. The result of a group-by query is returned as a list of the results of the point

queries.

65

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Querying the DyTree Chapter 4. The DyTree

5.4 Running Example

To have clear understanding, the above algorithms are explained in this section using

our running example. For this purpose, we query the DyTree shown in figure 4.8.

Range Query We consider the query “Find the total amount of sales in Alsace and

Rhône-Alpes during 2011 - 2013” with SQL equivalent “SELECT SUM(sales) FROM

factTable WHERE Location.Region in (”Alsace”, “Rhône-Alpes”) and Time.Year BE-

TWEEN 2011 AND 2013” to explain the working of the range query’s algorithm:

To answer the above range query, the algorithm starts by transforming the query

into an MBS, called query_MBS, such that query_MBS = {“Alsace”, “Rhône-Alpes”}

×{2011, 2013}. After the transformation, it is checked if the query_MBS contains

the root’s MBS (M 1). Since the answer is no, second condition is checked: does

the query_MBS overlaps M 1? Since node1’s MBS is in a higher level hyper-plane

than the query_MBS, query_MBS first needs to be translated up in the hyper-plane

of M 1 before the determination of overlap condition. After the required translate-

up operation, query_MBS overlaps M 1. In this case, the same query algorithm is

invoked for all the entries of the root.

The query_MBS does not contain the node8’s MBS (M 8) but the overlap between

query_MBS and M 8 is greater than zero, therefore we continue exploring its entries.

Among the node8’s entries, query_MBS neither contains nor overlaps the M 6, there-

fore this subtree is simply ignored and we continue querying the remaining entries of

node8. Since the query_MBS contains M 7, the node7’s aggregate value is added to

the result and the subtree is not explored anymore. The value of result becomes 10.

Since there are no more entries of node8 are left for querying, we continue querying

the sibling nodes of node8 or in other words, the remaining entries of node1.

Again, the query_MBS does not contain M9 but there is an overlap between M9

and query_MBS, therefore all the entries of node9 are queried against the query_MBS.

The overlap between M 4 and query_MBS is greater than zero while neither of its

entries’ MBS is contained in query_MBS, therefore no changes are made to the re-

sult. Next, node5 is queried against the query_MBS, whose MBS i.e. M 5 is neither

contained in query_MBS nor there is any overlap between query_MBS and M 5,

therefore this subtree is also ignored without making any changes to the result. As

all the entries of node8 and so as the node1 are queried, the calculated value of result

(i.e. 10) is returned.

66

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 4. The DyTree 6. Conclusion

Point Query To explain the working of a point query, we consider a point query

“Find the total amount of sales in Alsace for the year 2010”. This query is in a higher

level hyper-plane i.e. an aggregate point query. The query can be re-written in SQL

as “SELECT SUM(sales) FROM factTable WHERE Location.Region = “Alsace” and

Time.Year= 2010”.

The transformation of above query in MBS produces a query_MBS= {“Alsace”}×

{2010}. The execution of query starts similar to the range query. The M 8 is neither

contained nor overlaps query_MBS, therefore this subtree is simply ignored. M 9

and so as the M 4 overlap query_MBS, therefore the entries of their respective nodes

are queried against the query_MBS. Both the entries of dir4 (i.e. f3 and f4) are

contained in query_MBS whose measure values are added up to make the result =

18. As M 5 is neither contained in query_MBS nor they overlap with each other, dir5

is ignored. as all the entries of dir1 are queries, the calculated result = 18 is returned.

Group-by Query A group-by query is of the form “Find the total amount of sales

in Alsace by Year” which can be expressed in SQL as “SELECT SUM(sales), year

FROM factTable WHERE Location.Region= “Alsace” GROUP BY Time.Year”.

Since the data needs to be grouped by Year and in our system it spans three years,

the above group-by query is transformed into the following three query_MBS:

• query_MBS1= {“Alsace”}×{2010}

• query_MBS2= {“Alsace”}×{2011}

• query_MBS3= {“Alsace”}×{2012}

Once the query is transformed into the MBS, the point query algorithm is called

for each of the above query, described in form of MBS. A list of the result of each

individual point query is returned as the result of the group-by query.

6 Conclusion

In this chapter, we have addressed the problem of data indexing in dynamic data

warehousing environment and proposed a data structure called DyTree. The DyTree

is built dynamically and indexes both detailed data (i.e. facts) and aggregated data

(i.e. MBS) in a hierarchical hybrid multidimensional data space. The DyTree does

not only indexes the data but also stores it in nodes which are the materialized section

of cuboids. For this reason we also consider the DyTree a cubing technique. Thanks

67

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

6. Conclusion Chapter 4. The DyTree

to its data partitioning technique and the proposed metrics, the DyTree nodes are

always dense and do not index large dead spaces. After detailing these algorithms, in

the next chapters, performance of the proposed algorithms is evaluated with respect

to an existing solution.

68

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5

Experimental Evaluation

Experimental evaluation of the proposed algorithms is an important part of this the-

sis. For this purpose, we outline parameters that are found interesting in evaluation

of a multidimensional data cubing solution. We use data sets to assess the efficiency

and effectiveness of our algorithms from different aspects. The use of the benchmark

is important for credible tests while the other data sets are used to determine the suit-

ability for high dimensional data. In literature, we find the DC-Tree to be the closest

to our problem, therefore we use it to compare the performance of our solution. The

comparison tests presented in this chapter summarize the efficiency of our proposed

solution. We have also developed a prototype which lets us know the possible short-

comings in the proposed solution and allows to see it working and better understand

it. In this chapter, we present the main functions and features of the implemented

DyTree and those necessary for the performance evaluation workflow.

Chapter Outline

1 Methodology . 71

1.1 Criteria for Experimental Evaluation 71

1.2 Outline of the Experimental Evaluation Workflow 72

2 Inputs to the Workflow . 72

2.1 Data Sets . 72

2.2 Queries Set . 79

2.3 Algorithm Input Parameters 79

3 Outputs of the Workflow 80

3.1 Performance Metrics . 80

3.2 Behavioral Metrics . 81

4 Synthesis of the Workflow 85

5 Experimental Results and Discussion 85

69

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation

5.1 Performance Comparison with the DC-Tree 86

5.2 Effect of Varying Algorithm Input Parameters 92

5.3 Scaling in High Dimensional Data Space 97

5.4 Effect of Varying the Data Sets Density 98

5.5 Effect of Delayed Insertion 101

6 The Prototype . 102

6.1 Data Warehouse Schema Building and Usage 103

6.2 Data Set Generation . 103

6.3 Queries Set Generation . 103

6.4 Tree Construction and Visualization 104

6.5 Querying . 105

6.6 Data and Views Visualization 105

6.7 Running a Set of Experiments 106

7 Conclusion . 107

70

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 1. Methodology

1 Methodology

In preceding chapters, we have defined a model for hybrid hierarchical multidimen-

sional data space called HHMDS and the related concepts. We have also proposed

DyTree and introduced the algorithms to construct and query the tree. Now in this

part of the thesis, our objective is to experimentally assess the efficiency and effec-

tiveness of our solution using our prototype. For this purpose, we devise a careful

experimental process to effectively measure and analyze the efficiency of the struc-

ture of DyTree and its associated algorithms. These experiments will let us find the

answer to following questions:

• Question 1: Are the DyTree and associated algorithms efficient?

• Question 2: How does the DyTree behave under different circumstances?

1.1 Criteria for Experimental Evaluation

Obviously, the first question is about the performance of the solution. Our criteria for

performance evaluation are based on execution time and memory space usage. Here,

execution time corresponds to both insertion time of a new fact and query response

time of an OLAP query. The prime objective of a dynamic cubing structure is always

to minimize the execution time.

Our implementation of the DyTree employs the following storage strategy: internal

(directory and super) nodes that hold the calculated aggregates are stored in main

memory while the leaves (data nodes) holding the detailed facts are stored on disk.

As for the execution time, efforts are made to reduce the memory space usage as well.

Therefore, this criteria is also important in performance evaluation of the DyTree.

Question 2 addresses the effectiveness of the solution by observing the behavior of

the DyTree. To answer this question, the evaluation criteria depends on the structure

and contents of tree and its nodes. These criteria (tree height, width etc.) are

expected to affect the performance and may change with the nature of data set or

input parameters of tree construction. Our objective by answering this question is

to analyze this effect to better understand the behavior of the DyTree which helps

tuning and optimizing its performance.

Finally, the criteria we use to respond these questions are:

• Performance metrics to respond question 1: execution time and memory usage.

• Behavioral metrics to respond question 2: structure and contents of the DyTree.

71

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Inputs to the Workflow Chapter 5. Experimental Evaluation

1.2 Outline of the Experimental Evaluation Workflow

The general principle of our experimental evaluation workflow is based on:

• defining a set of configuration parameters to characterize the inputs (data sets,

queries sets, algorithm input parameters).

• defining a set of metrics to a analyze and qualify the output (performance

metrics) of the DyTree.

• performing experiments to compare:

– The values of performance metrics obtained using our solution and a ref-

erence solution of the state of the art.

– The values of performance and behavioral metrics obtained by varying the

input parameters of the proposed algorithms.

– The values of performance and behavioral metrics obtained by using the

data sets with different characteristics.

Flow diagram presented in figure 5.1 summarizes the overall process of experimental

evaluation. For every experiment, a data set is used that is generated on the basis of

a use case schema and other data set generation parameters such as size, data density

etc. Input parameters for algorithms are set and the tree is constructed and updated.

Queries sets are generated with different characteristics such as type of queries. These

queries are executed on the tree. Metrics are collected at each step of the process

for later analysis. We detail each process and the input/output parameters in the

following.

2 Inputs to the Workflow

In this section, we discuss the inputs (as shown in figure 5.1) to our experimental

evaluation workflow.

2.1 Data Sets

Our data sets consist of a data warehouse schema, instances of dimensions stored in

dimension tables and a fact table.

For experiments, we use two types of data sets. The first type are data data sets

whose schema and data generation process is based on a data warehouse version of

72

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 2. Inputs to the Workflow

Figure 5.1: Outline of experimental evaluation process

TPC-H benchmark. The second type of data sets are customizable synthetic data

sets. For all the data sets a numerical value is used as measure in the fact table.

In the following, we first describe the schema of data sets and then provide the

detailed parameters.

2.1.1 Schema of Star Schema Benchmark Data Set

Our data sets of first category are based on star schema benchmark (SSB) [O’Neil 2009].

SSB is a modified version of famous TPC-H benchmark [TPC 2011]. TPC-H was

originally proposed for decision making relational database systems while the SSB

proposes the modifications to make it suitable for data warehouses. SSB is a widely

accepted benchmark and has already been used by many researchers to validate their

proposed data warehousing solutions. SSB is based on star schema as shown in fig-

ure 5.2. The schema constitutes of four dimension: CUSTOMER, SUPPLIER, PART

and DATE while the facts are in table LINEORDER. These dimensions are organized

in hierarchy as presented in figure 5.3. The details to generate the instances of each

of these dimensions and the fact table (LINEORDER) are provided in [O’Neil 2009].

In table 5.1, we summarize the number of distinct values for important attributes in

the tables of SSB.

2.1.2 Schema of Synthetic Data Sets

The data sets of our second category are synthetic data sets.

73

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Inputs to the Workflow Chapter 5. Experimental Evaluation

Figure 5.2: Schema used in Star Schema Benchmark

Some of synthetic data sets are generated by varying the number of dimensions.

The general data warehouse schema of these data sets is shown in figure 5.4. Each

dimension constitutes of between 2 to 5 hierarchy levels. We limit the maximum

number of levels to 5 because it is quite reasonable for general data warehouse appli-

cations and we do not need to consider more number of levels per dimension. These

data sets are listed from # 6 to 10 in table 5.2.

Other synthetics data sets that are based on 3-dimensional schema with each

dimension constituted of between 2 to 5 hierarchical levels are also generated. These

data sets are numbered 11 - 15 in table 5.2.

2.1.3 Data Set Parameters

The data sets are characterized by two parameters i.e. size and nature of the data

sets.

Size of Data Set Size of a data set is an important characteristic of the data set.

In our evaluation process, we determine the size of a data set on the basis of following

two criteria:

Number of Dimensions This parameter could affect the performance of the

proposed algorithms in terms of both execution time and usage of disk space. We

propose to vary the number of dimensions from 10 to 30.

74

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 2. Inputs to the Workflow

ALLCustomerRegionNationCityCustomer
ALLSupplierRegionNationCitySupplier

ALLPartsMFGRCategoryBrand1Part
ALLDateYearMonthDay

Figure 5.3: Hierarchical organization of dimensions used in Star Schema Benchmark

Figure 5.4: Schema of synthetic data sets

Number of Facts The size of a data set could be determined in terms of the

number of tuples of fact table. The size of dimension tables in a data warehouse

is negligible as compared to the size of the fact table. This is particularly more

convenient in case of dynamic data warehousing application where the tuples of a fact

table are inserted on tuple by tuple basis and the major interest lies in determining

the insertion efficiency as time needed to insert an individual tuple into the data

warehouse.

Nature of Data Set Data sets are also characterized according to the nature of

input data. We consider following two parameters to vary the nature of our data sets.

75

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Inputs to the Workflow Chapter 5. Experimental Evaluation

Cardinality

Customer

Region 5
Nation 25
City 250

Customers 30,000

Supplier

Region 5
Nation 25
City 250

Suppliers 2000

Part

MFGR 5
Category 25
Brand 1000
Parts 200,000

Date Days of 7 Years
LINEORDER 10,000,000

Table 5.1: Cardinality of the instances of different tables involved in SSB

Ordering of Facts Data space of a fact table could be composed of ordered or

non-ordered dimensions. In case there is at least one ordered dimension, data could

be ordered with respect to one of the ordered dimension. The transaction time, for

example, in a system respects the total order among the members of the ordered time

dimension and all the facts are ordered according to this transaction time. This order,

however, is not surely the insertion order of the facts because it may be compromised

due to some technical issue (such as system down time, network failure etc.) while

migrating data from source systems to the target data warehouse.

As previously discussed, ordering among the members of the domain sets of or-

dered dimension is exploited in our solution. The proposed metrics let us group the

closed values together in same MBS which, in effect, helps in improving the insertion

and query performance of the DyTree. Therefore, it is important to analyze if the

out of order insertion of some facts affects this grouping strategy of ours. For this

purpose we use multiple data sets (see # 2 - 5 in table 5.2) in which 5%, 10%, 15%

and 20% of the facts arrive with delay.

Density The volume of a multidimensional data space represents the number

of distinct detailed data points (i.e. possible facts) that could possibly lie in the data

space. Let D1, D2, ... , Dn be n dimensions of a multidimensional data space. The

volume of the data space S can be calculated as:

76

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 2. Inputs to the Workflow

volume(S) =
n
∏

i=1

|domain(l1i)|

If ||domain(l11) × domain(l12) × ... × domain(l1n)|| is the number of existing data

points in the lowest level hyper-plane of S (i.e. the facts in the fact table) then the

density of the data set or the S is given by:

density(S) =
||domain(l11)× domain(l12)× ...× domain(l1n)||

volume(S)

For instance, consider a multidimensional data space, of a retail store data ware-

housing application, with three dimensions i.e. customers, products and date. Now,

each customer would not buy all the products offered by the store, rather a customer

(in general) buys a very small number of the products as compared to the number of

products offered by the store. Similarly, the customer does not buy his required prod-

ucts every day. This means that many possible combinations of the customer, product

and date are not materialized and hence the collected data set becomes sparse.

For example, we consider that the retail store has only 10 customers, offers 200

products and the data is maintained for only 1000 days. Therefore, the volume of the

data space is given by:

volume(S) = 10 ∗ 200 ∗ 1000 = 2, 000, 000

Let us suppose that each customer has been to the store on 50 different days and on

each visit each of them has bought 20 different products. This implies that existing

number of data points in the lowest level hyper-plane of the data space is 10,000

(10 ∗ 20 ∗ 50) and the calculated density would be:

density(S) =
10, 000

2, 000, 000
= 0.005

On the contrary, an application aimed at recording the electricity consumption of

each customer in the country after every hour, collects a very dense data set.

In this research work, by varying the density of data sets, we aim to analyze if the

density of data sets affects the density of the the constructed data partitions i.e. the

nodes of the DyTree and the overall performance of the DyTree.

77

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

2. Inputs to the Workflow Chapter 5. Experimental Evaluation

Data Set Category
Size Nature

D
im

e
n
s
io

n
s

T
u
p
le

s Ordering

w.r.t

Time

Dimen-

sion

D
e
n
s
it
y

1 SSB

SSB

4 10,000,000 ordered ≈ 10−7

2 SSB-d1 4 10,000,000 5% delay ≈ 10−7

3 SSB-d2 4 10,000,000 10% delay ≈ 10−7

4 SSB-d3 4 10,000,000 15% delay ≈ 10−7

5 SSB-d4 4 10,000,000 20% delay ≈ 10−7

6 syn-d10

Dimension
Scaling

10 10,000,000 ordered ≈ 10−7

7 syn-d15 15 10,000,000 ordered ≈ 10−7

8 syn-d20 20 10,000,000 ordered ≈ 10−7

9 syn-d25 25 10,000,000 ordered ≈ 10−7

10 syn-d30 30 10,000,000 ordered ≈ 10−7

11 syn-dns20

Variable
Density

3 10,000,000 ordered 0.2
12 syn-dns30 3 10,000,000 ordered 0.3
13 syn-dns40 3 10,000,000 ordered 0.4
14 syn-dns50 3 10,000,000 ordered 0.5
15 syn-dns60 3 10,000,000 ordered 0.6

Table 5.2: Summary of the data sets used in experimental evaluation

2.1.4 Synthesis of Data Sets

In table 5.2, we summarize the characteristics of data sets. These data sets are used

as input for different experiments we run to evaluate the performance and behavior

of the DyTree.

The data sets prefixed with SSB are based on star schema benchmark, while all

other data sets are synthetic data sets. We use data sets # 6 - 10 to see the effect

of dimension scaling while the data sets # 11 - 15 are used to analyze the effect

of variation in fact tables density on the performance of our solution. All other

experiments are done using the data sets based on SSB (see # 1 - 5 in table 5.2)

which are aimed at performance evaluation of DyTree in comparison of DC-Tree and

to see the effect of delayed insertion of some of the facts in the DyTree.

78

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 2. Inputs to the Workflow

2.2 Queries Set

We generate three types of queries which are usually used in OLAP analysis i.e. point

queries, range queries and group-by queries. All three types of queries are generated

randomly using randomly chosen aggregation level.

For a point query, a random multidimensional point is chosen to query it for an

aggregated or measure value. This multidimensional point needs not necessarily be in

the lowest level hyper-plane of the space, but could rather lie in any hyper-plane of the

HHMDS. We represent a point query as an MBS whose all the edges are singleton.

For example, a point query “Find the total amount of sales for Mobile phones in

November” is represented as {allLocation} × {Mobile} × {November}.

In case of range queries, a hyper-plane in the HHMDS is selected for the range

query. A random range of domain values belonging to the domain sets of the levels of

each dimension in the chosen hyper-plane are selected. The aggregate value is queried

for all the points that lie in the subspace formed by the selected ranges of values for

each dimension. A range query is also represented by an MBS but, in this case, the

edges may represent a range of values for each dimensions. For example, the query

“Find the total amount of sales during the period from October to December in cities

of Paris, Lyon and Grenoble” is represented by the MBS {Lyon, Paris, Grenoble}×

{allProduct} × {October, December}.

To generate a group-by query, a hierarchical level is randomly selected for a ran-

domly chosen dimension. A group-by is represented by a set of MBS. For exam-

ple, “Find the total amount of sales for TV sets in by region during the month of

November” is represented by a set of MBS i.e. {{Alsace} × {TV } × {November},

{Rhône-Alpes}×{TV } × {November}, {Ile-de-France}×{TV } × {November}}.

It is obvious from the above examples that a group-by query could be regarded

as a set of individual point queries. Therefore, for experimental evaluation, we do

not consider the group-by queries any more. For range and group-by queries, we

generate the sets of 50 queries for each category. For all these queries, SUM is used as

aggregate function. The queries are generated using randomly selected aggregation

level as the input parameter. The aggregation level defines the level at which the

aggregation of measure is queried.

2.3 Algorithm Input Parameters

Two input parameters are used by tree construction algorithms of the DyTree. These

are directory node capacity and overlap limit. We briefly describe these two param-

79

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Outputs of the Workflow Chapter 5. Experimental Evaluation

eters in this subsection.

Directory Node Capacity Directory node capacity DNCAP is a fixed and pre-

defined value. It is the maximum number of nodes that can be pointed to by a

directory node.

Directory node capacity has a great impact on performance of the tree’s algorithms

and its behavior. A larger capacity directory node means that a larger number of

nodes are indexed sequentially under a directory node. This could degrade the query

performance, but on the other hand it minimizes the invocation of nodes splitting

algorithm which is a costly algorithm and is called once a directory node overflows.

Memory and disk space allocation is also dependent on the directory node capacity

because it is allocated, according to the capacity, at the time of creation of every new

directory node.

Overlap Limit Like directory node capacity, overlap limit OV LAP is also a fixed

pre-defined value. It determines the maximum amount of allowed overlap between

the MBS of any two nodes.

Since the overlap limit controls the shared area of two or more MBS, it could re-

quire searching algorithm to verify the searching criteria against less/more nodes and

consequently affects the performance of both construction and querying algorithms

of the DyTree.

3 Outputs of the Workflow

Outputs of our experimental evaluation workflow are the evaluation metrics that are

used to analyze the performance of the DyTree:

• with respect to different inputs and

• with respect to the DC-Tree.

These metrics can be grouped into two categories, namely performance metrics and

behavioral metrics.

3.1 Performance Metrics

Performance metrics are used to evaluate and analyze the performance efficiency of

the proposed solution. For this purpose, we use tree construction time, atomic fact

80

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 3. Outputs of the Workflow

insertion time, query response time and the memory usage metrics. Definitions of

these metrics are provided below.

Atomic Fact Insertion Time Atomic fact insertion time is the time to insert an

individual fact in an existing DyTree. As the facts are inserted quite frequently in

dynamic systems, an efficient system is one with the minimum insertion time. This

metric is recorded in milliseconds.

Tree Construction Time Tree construction time is the time to build a tree from

scratch. Since the facts in the DyTree are always inserted one by one, we can alter-

natively say that the tree construction time is total insertion time to insert a certain

number of facts. We use minutes as measuring unit to record the tree construction

time.

Query Response Time Query response time is defined as the time taken by the

solution to fetch the results corresponding to a given query. We record the query

response type of all the queries in milliseconds. An algorithm with minimum query

response time is desirable.

Memory Usage To be a suitable solution, we expect our solution to be space

efficient. For this purpose, we evaluate the memory usage efficiency of the trees. The

memory usage is measured in gigabytes (GB).

3.2 Behavioral Metrics

The behavioral metrics are defined to quantify the different aspects of the DyTree that

are found to be interesting in understanding its behavior. These metrics are grouped

into two categories: metrics for tree structure and metrics for nodes structure.

3.2.1 Metrics for Tree Structure

We intuitively suppose that the tree structure is affected by the change in directory

node capacity and overlap limit. It may also be affected by the nature of data sets.

Therefore, the analysis of the tree structure will help us better understand its relation

with input parameters and its effect on the performance of the DyTree. Following

metrics help us in this analysis. We use figure 5.5 to illustrate these metrics.

81

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Outputs of the Workflow Chapter 5. Experimental Evaluation

Number of Directory Nodes Directory Nodes are fixed capacity nodes that hold

the pointers to other nodes in the tree. In the beginning, tree has only one direc-

tory node and the new directory nodes are created through nodes splitting process.

Therefore, number of directory nodes is an indicator of number of splits occurred and

gives an idea about the evolution of the tree. DyTree shown in figure 5.5 has seven

(node1-node7) directory nodes.

Number of Super Nodes Super nodes are larger capacity nodes that hold pointer

to a larger (as compared to the directory nodes) number of other nodes in the tree.

Super nodes are created when no suitable split dimension is found at the time of

a directory node’s splitting. The larger number of super nodes may indicate the

wastage of memory and/or disk space and could cause the degradation in efficiency

of the search and insert algorithms. Number of super nodes are dependent upon the

directory node capacity and overlap limit. Figure 5.5 has only one super node (node8)

with four entries.

Tree Height Height of a DyTree is defined as distance between the root node to

the deepest level node in the tree. For example, the height of DyTree in figure 5.5 is

4. In DyTree, the height of the tree grows when the root node is split. Therefore, the

tree height should be an indicator of how many times the root node is split.

A DyTree with smaller value of tree height needs to sequentially index a greater

number of nodes as compared to another DyTree indexing the same data with a higher

value of tree height. We also recall that while searching for a node, our insertion

and querying algorithms consider all the child entries of an interesting node (i.e. a

node that could possibly accommodate the newly coming fact or the one that would

participate in the calculation of a query result). This means that locating a particular

node in the first DyTree (i.e. with smaller height) would need, on average, a greater

number of consultations. Therefore, we expect the DyTree with higher value of tree

height to show better performance as compared to the one with smaller value.

Average Tree Levels Width The width of a level is defined as the number of

nodes at that particular level in the tree. Average value of the width of individual

levels in the tree is known as average tree levels width. We do not consider first and

last level for the calculation of this metric because the width of first level is always

one and the width of the last level of DyTree is always equal to the number of facts,

82

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 3. Outputs of the Workflow

and if considered for calculation, these nodes may reduce the usability of the metric.

The average tree levels width of DyTree in figure 5.5 is 3.5.M1;46 node1M2;14 node2M4;8 node4p1;3 p2;4 p3;1 M5;6 node5p4;3 p5;3 M3;32 node3M6;7 node6p6;2 p7;5 M7;8 node7p8;7 p9;1 M8;17 node8p10;4 p11;8 p12;2 p13;3
Level 1Level 2Level 3Level 4

Name Description Measure/Aggregate

M1 {allLoc}×{allPro}×{allTime} 46
M2 {allLoc}×{allPro}×{Oct} 14
M3 {allLoc}×{allPro}× {Nov} 32
M4 {Alsace, Rhône-Alpes}×{allPro} × {Oct} 8
M5 {Ile-de-France}×{allPro}× {Oct} 6
M6 {Alsace}×{allPro}× {Nov} 7
M7 {Rhône-Alpes}×{allPro}× {Nov} 8
M8 {Ile-de-France}×{allPro}× {Nov} 17
p1 {Colmar}×{Sony,}×{01 Oct} 3
p2 {Lyon}×{HTC}×{01 Oct} 4
p3 {Grenoble}×{S. Vaio}×{03 Oct) 1
p4 {Paris}×{Nokia}×{11 Oct} 3
p5 {Paris}×{Samsung}×{13 Oct} 3
p6 {Colmar}×{Sony}×{07 Nov} 2
p7 {Mulhouse}×{Sony}×{23 Nov} 5
p8 {Lyon}×{Dell}×{05 Nov} 7
p9 {Paris}×{Assus}×{05 Nov} 1
p10 {Créteil}×{Panasonic}×{10 Nov} 4
p11 {Paris}×{HP}×{07 Nov} 8
p12 {Vincennes}×{Sony}×{17 Nov} 2
p13 {Paris}×{Apple Mac}×{03 Nov} 3

Figure 5.5: An example of a DyTree built using a 3-dimensional schema with
DNCAP = 3 and OV LAP = 0

This metric helps us in understanding the affect of different input parameters on

the tree. As our hypothesis, we expect that this metric is dependent on directory

node capacity. Contrary to the tree height, a DyTree with greater value of average

tree levels width indexes a larger number of nodes at the same level or in other words,

83

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Outputs of the Workflow Chapter 5. Experimental Evaluation

more nodes are sequentially indexed under a node than in another DyTree indexing

the same data and having a smaller value of average tree levels width. A lower value

of average tree levels width, therefore, is expected to result in better performance of

the algorithms.

3.2.2 Metrics for Nodes Structure

The internal (directory and super) nodes hold pointer to other child nodes called

entries. Memory is allocated for each of these internal nodes according to its pre-

defined capacity at the time of creation while the pointers to the entries are added at

run time. Following metrics help us to determine if the indexing through these nodes

is efficient or it causes the poor performance of algorithms and wastage of disk space.

Let node < M, entrySet, a1, a2, ..., ak > be a directory node of a DyTree with

DNCAP being the directory node capacity.

Node Fill Ratio The fill ratio (fillratio(node)) of this nodes can be calculated as:

fillratio(node) =
size(node.entrySet)

DNCAP

The fill ratio of a node determines the extent to which the node is filled. For

example, in figure 5.5: fillratio(node1) = 2/3, fillratio(node4) = 3/3 etc.

In our experiments, we record the average value of nodes fill ratio of all the direc-

tory nodes in the DyTree. We do not consider data and super nodes for the calculation

of average nodes fill ratio, because the data nodes having capacity of 1 are always

filled while the super nodes are not fixed in size. A lower value of average nodes fill

ratio means that the nodes are not filled up to the capacity and hence indicates the

wastage of memory.

Node Leaf Ratio If node indexes nbFacts data nodes under it then the leaf ratio,

noted as leafRatio(node), of the node can be calculated as:

leafRatio(node) =
nbFacts

volume(node.M)

The leaf ratio of a node measures the space utilization of the node. It is important

to note that a node does not necessarily index all the facts in the data space covered

by the points of the node’s MBS i.e. nbFacts 6= ||nodeint.M ||. Therefore, leaf ratio

of a node holding an MBS is not same as the density of the MBS. For example, in

84

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 4. Synthesis of the Workflow

figure 5.5: leafRatio(node3) = 8/3120, leafRatio(node5) = 2/806 etc. The leaf ratio

of a data node is always one.

A lower value of a node’s leaf ratio means that the node covers a large volume

without indexing a sufficient number of data nodes under it. In our experiments, we

use the average value of nodes leaf ratio of all the individual internal nodes of the

DyTree.

4 Synthesis of the Workflow

We can now detail the outline schema shown in figure 5.1 as in figure 5.6.

Figure 5.6: Detailed outline of experimental evaluation process

5 Experimental Results and Discussion

All the experiments presented here are carried out on a 2.67 GHz Intel Core 2 Duo ma-

chine with 14 GB of RAM, 500 GB of DELL MD32xxi disk storage running Microsoft

Windows 2008 R2 operating system.

Results of various experiments are presented in this section. First, we compare

the performance of DyTree against the DC-Tree, and then we present the study of

85

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

effects varying the input parameters, outline in experimental evaluation workflow,

on the DyTree’s behavior. In this chapter, we do not present the trivial results and

discuss only the interesting ones.

5.1 Performance Comparison with the DC-Tree

The performance of the DyTree is evaluated on the basis of tree construction, atomic

fact insertion and query response time. We also consider the memory usage efficiency

to measure the performance.

The data sets used for this performance evaluation process are presented in table

5.2.

5.1.1 Atomic Facts Insertion and Tree Construction

We first discuss the results for atomic insertion of facts (update of existing DyTree)

and then present the results for the construction of trees from scratch. To asses the

space efficiency of trees, memory usage metrics is used.

The trees are constructed using an overlap limit of 0 and the directory node

capacity is fixed at 15 while using SSB, and 35 while using syn-dns40 data set.

Atomic Fact Insertion Time Figure 5.7 illustrates the comparison results of

atomic fact insertion time in DC-Tree and DyTree. The results presented in the

figure 5.7a are obtained using SSB (see table 5.2) while those presented in figure 5.7b

are obtained using syn-dns40. The insertion time is presented in milliseconds. In

both these cases, DyTree shows better performance than the DC-Tree. We observe

that initially, with smaller tree size, the difference is not very important but as the

size of the tree grows, the difference in insertion time becomes more and more visible.

We also observe that the improvement in insertion time of DyTree presented in

5.7b is more than that in 5.7a. The reason for this difference is explained by the fact

that the syn-dns40 is a higher density data set or in other words, has the dimension

tables with low cardinality values as opposed to the SSB. This decreases the prob-

ability of successful nodes splitting and hence increases the number of super nodes.

As the super nodes sequentially index a larger number of nodes under itself, finding

a suitable directory or super node to accommodate the incoming fact takes longer.

Therefore the more efficient splitting algorithm of DyTree shows more improvement

in the case where the probability of a successful split is less i.e. when using syn-dns40.

86

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

Tree Construction Time The tree construction time is the cumulative time re-

quired for atomic insertions of multiple facts in an empty tree. We study this insertion

time to take the effect of all splits into account. The splitting algorithm is found to

be the costliest algorithm used in the atomic insertion of a fact in a DC or DyTree.

Therefore to take the effect of all the splits into account, we present the obtained re-

sults for this metric in figure 5.7. The recorded cumulative insertion time is recorded

in minutes.

Similar to the results of single record insertion, DyTree outperforms the DC-Tree

in both the cases, i.e. when using SSB (figure 5.7c) and when using the syn-dns40

(figure 5.7d).

Memory Usage As discussed before, the data nodes are stored on disk while the

directory and super nodes are kept in memory for both the DC-Tree and DyTree.

Since the data nodes represent the facts used as input, the disk space usage for the

trees will always be the same. Therefore, to analyze the space usage efficiency, we

study the comparison of memory usage only. This memory usage is the effect of

directory and super nodes present in a DC-Tree or DyTree which are the result of

nodes splitting.

The results for the comparison of memory usage are presented in figure 5.7. The

results show that the difference in memory usage of DC-Tree and DyTree is neither

much important when the input data set is SSB (figure 5.7e) nor in case of syn-dns40

(5.7f).

5.1.2 Query Response Time

In data warehousing environment, the data retrieval is performed through OLAP

queries. Therefore, the assessment of our proposed solution for query response time

of these OLAP queries is essential. As discussed earlier, a group-by query can be

regarded as a set of point queries, therefore, we discuss the results only for point and

range queries in the following. The results are obtained by executing the queries of the

queries sets described in section 2.2 on DC-Tree and DyTree materializing different

aggregates for 1, 2 up to 10 million facts. The query response time is recorded as the

average query response time of all the queries present in a query set.

The queried trees are constructed using the parameters discussed in section 5.1.1.

87

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 5.7: Comparison of, single data record insertion time on (a) SSB (# 1 in
table 5.2) (b) syn-dns40 (# 13 in table 5.2); tree construction time on (c) SSB (d)
syn-dns40; memory usage on (e) SSB (f) syn-dns40

88

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

Point Queries Figure 5.8 shows the comparison of query response time of point

queries on DC-Tree and DyTree constructed using two different data sets i.e. SSB

(figure 5.8a) and syn-dns40 (5.8b).

We observe that the query response time of DyTree is less than the DC-Tree’s.

The difference in the performance of both solutions increases with the increase in

the size of the partially materialized data cubes represented by DC-Tree and DyTree.

This difference is due to our strategy of favoring the grouping of temporally closed

values together in the same nodes. We recall that our point queries do not necessarily

lie in the lowest level hyper-plane but could lie in any of the hyper-planes of the

HHMDS. Therefore, these point queries may also involve aggregation and hence the

grouping of temporally closed values together in a node plays an important role in

the betterment of query response time of a point query on DyTree.

As the super nodes are larger capacity nodes and index a larger number of nodes

sequentially under itself, its retrieval performance is not as good as that of a directory

node. Since our optimized splitting algorithm produces a smaller number of super

nodes, it is also a contributing factor to this difference. Moreover, as the size of the

input data set grows, the number and size of the super nodes in DC-Tree also grow.

Hence the difference is increased with the size of data set.

We observe that the difference is much more important when the input data set is

based on the low cardinality dimension tables (figure 5.8b). This is due to the lower

successful splitting probability in case of low cardinality dimension tables, which

produces a larger number of super nodes and the difference in the query response

time of the two cubing techniques becomes more important.

Range Queries The results obtained for query response time of range queries on

SSB and syn-dns40 are presented in figures 5.8c and 5.8d respectively. In both these

cases as well, we witness the better performance of DyTree than the DC-Tree’s. The

explanation of this improvement is similar to the explanation of the improvement

in case of point queries. However, to have a better understanding of the different

contributing factors, we present, in figure 5.9, the results of query response time of

range queries in two different cases: when the range of values is defined only on one

(1) ordered dimension “Time” (figure 5.9a and 5.9b), (2) non-ordered dimension “X”

(figure 5.9c and 5.9d).

Figure 5.9a and 5.9b show that the query response time of DyTree is always better

than the DC-Tree’s and the difference in the response time of the two techniques

89

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

increases with the size of the queried tree. This difference is mainly due to our

grouping strategy of keeping temporally closed values together.

On the other hand, the results presented in 5.9c and 5.9d show that initially the

DC-Tree performed better but with the increase in the size of the trees, DyTree starts

showing better performance. This phenomenon is due to the fact that initially there

would be no need to create super nodes while with increase in the size of input data

set, the super nodes emerge and their sizes grow. As the DyTree avoids the creation

of super nodes by providing an improved split algorithm, it shows better performance

than that of the DC-Tree with increasing size of the input data set.

(a) (b)

(c) (d)

Figure 5.8: Comparison of query response time of (a) point queries using SSB (# 1
in table 5.2), (b) point queries using syn-dns40 (# 13 in table 5.2), (c) range queries
using SSB, (d) range queries using syn-dns40

90

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

(a) (b)

(c) (d)

Figure 5.9: Comparison of queries response time of range queries when the range is
defined on only one (a, b) temporal dimension and (c, d) non-temporal dimension

91

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

5.2 Effect of Varying Algorithm Input Parameters

In this section we see the effect of varying the values of algorithm input parameters

i.e. overlap limit and directory nodes capacity on the performance of the DyTree.

5.2.1 Effect of Varying Overlap Limit

As discussed earlier, overlap limit is an input parameter for the construction of a

DyTree. This parameter allows internal nodes to share the same region data space

and increases the probability of finding a suitable split. To understand the effect of

this parameter on the performance of DyTree, we perform an experimental study by

varying the overlap limit of a DyTree and discuss some of the obtained experimental

results in the following. These experiments are conducted using SSB data set and the

directory node capacity is fixed at 15.

Atomic Fact Insertion Time As evident from figure 5.10a, the atomic insertion

time of a single fact decreases rapidly by increasing the overlap limit from 0 to 5.

This phenomenon is observed because allowing an overlap among two nodes increases

the probability of finding a suitable split and this suitable split can be found easily

in early iterations which reduces the average insertion time of a single fact. Further

increasing the overlap limit also decreases the insertion time but very slightly. This

can be justified that the overlap limit of 5 already produces the most of the possible

optimization in insertion time.

The difference can also be explained by a very significant increase in number of

directory (figure 5.10b) while decrease in number of super (figure 5.10c) nodes. We

observe that initially both the number of directory and super nodes change rapidly

by increasing the overlap limit from 0 to 5 but then become quite stable for further

increase. This effect is exactly the same as on the atomic fact insertion insertion time.

In fact, the decrease in number of super nodes, which sequentially index quite a large

number of nodes, reduce the number of required consultations to locate a node to

accommodate the incoming fact which consequently reduces the insertion time.

Query Response Time The effect of variation of overlap limit on query response

time of a DyTree is presented in figure 5.10. We witness that the effect on the query

response time of both point (figure 5.10d) and range (figure 5.10e) queries is negative

i.e. the query response time increases with increase in overlap. This effect is due to

the fact that allowing an overlap allows two nodes to share the same data space and

92

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

(a)

(b) (c)

(d) (e)

Figure 5.10: Effect of varying the overlap limit on, (a) insertion time of a single
fact; number of (b) directory nodes (c) super nodes; query response time of (d) point
queries and (e) range queries. The experiments are conducted using SSB data set (#
1 in table 5.2)

93

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

when queried, a query needs to look for the possible answer along multiple paths of

the tree.

(a) (b)

Figure 5.11: Effect of varying the overlap limit on (a) tree height and (b) average tree
levels width

The figure 5.11 showing the tree height and average tree levels width of the DyTree

can also be used to explain the reason of better querying performance of the DyTree.

We observe that the tree height is not affected (see figure 5.11a) while the average tree

levels width is increased by increasing the overlap limit (as shown in figure 5.11b).

The higher value of average tree levels width means that greater number of entries

are sequentially indexed under the nodes at same levels. As our querying algorithm

requires verifying querying criteria against all the entries indexed under any visited

internal node, higher value of average tree levels width means that greater number of

consultations required. This, in effect, causes the query response time to increase.

From the above discussion on the experimental results of the performance of

DyTree obtained by varying the overlap limit, we can conclude that allowing an over-

lap among the nodes may decrease the insertion time, but at the same time causes

the query response time of a DyTree to grow.

5.2.2 Effect of Varying Directory Nodes Capacity

A higher value of directory node capacity allows a larger number of nodes to be

indexed under a directory node and minimizes the need of a node split. The experi-

mental results to study the effect of the variation of this parameter on the performance

of DyTree are discussed below. The overlap limit for this experimental study is fixed

at 0.

94

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

Atomic Fact Insertion Time Increasing the directory node capacity from 15,

initially decreases the atomic insertion time of an individual fact as shown in figure

5.12a, but if we keep increasing the directory node capacity, the insertion time start

to rise again. The initial decrease in insertion time is due to the larger capacity of

directory nodes, which avoids the need of nodes splitting: the costliest part of the

insertion process. However, if we keep increasing the directory nodes capacity, they

would sequentially hold a larger number of pointers to other nodes. This sequential

indexing of pointers would need more time to find a suitable node in DyTree to

accommodate a newly incoming fact and hence increases the insertion time.

Figure 5.12 can also be used to explain this effect. In fact, a rapid decrease in

the number of super nodes initially reduces the atomic fact insertion time, but as

the capacity of directory node keeps increasing, the directory nodes themselves start

sequentially indexing a larger number of nodes and hence the significant increase in

the insertion time is visible.

Query Response Time The effect of the variation of directory nodes capacity

is summarized in figure 5.12. The query response time of both point (figure 5.12e)

and range (figure 5.12f) queries initially decreases and then starts rising again with

directory nodes capacity.

The directory nodes capacity of 15 with an overlap limit of 0 has a large number of

directory and super nodes. Initially with the increase in directory nodes capacity, the

query response time falls because the number of directory and super nodes decreases

and the size of directory nodes remain reasonable. This makes the querying the

DyTree easier and efficient. But with further increase in directory nodes capacity, the

directory nodes start growing which sequentially hold the pointers to a larger number

of other nodes. This makes the querying algorithm to look into a larger number of

nodes pointed to by a node, and in turn, decreases the querying efficiency of DyTree

for both point and range queries.

Memory Usage The memory usage of a DyTree is found to increase linearly with

increase in directory nodes capacity (see figure 5.12b). We witness such an effect

because the larger capacity directory nodes occupy more space in the memory. But

as they would not be filled to their full capacity (see figure 5.13a and 5.13b), a

relatively larger amount of memory space is wasted.

95

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

(a) (b)

(c) (d)

(e) (f)

Figure 5.12: Effect of varying the directory node capacity on, (a) insertion time of
a single fact; (b) memory usage; query response time of (c)point queries, (d) range
queries. The experiments are conducted using SSB data set (# 1 in table 5.2).

96

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

The discussion on above results shows that the directory nodes capacity has an

important effect on the performance of a DyTree. Neither a very small nor a very big

value for the directory nodes capacity is suitable for an efficient DyTree.

5.3 Scaling in High Dimensional Data Space

For the results discussed above, we used a synthetic data set with a 10 dimensional

schema and an SSB data set which is based on a four dimensional schema. Both of

these data sets are based on low dimensional schema while in reality, a data warehouse

may involve high dimensional data. This high number of dimensions could severely

affect the performance of an indexing or cubing solution [Berchtold 1996]. Therefore,

in order to asses this affect on the performance of DyTree, we discuss some experi-

mental results obtained by varying the number of dimension of input data sets. We

use syn-d10, syn-d15, ..., syn-d30 (# 6 - 10) presented in table 5.2 as the input data

sets for this experimental study. The presented results are obtained on the DyTree

materializing 10,000,000 facts.

The directory node capacity for these experiments is fixed at 35 while the overlap

limit is 0.

Atomic Fact Insertion Time The effect of dimension scaling on atomic insertion

time of a single record is depicted in figure 5.14a. The figure shows that the insertion

time of a single fact is slightly affected by the increase in number of dimensions. The

insertion time for a single record on a data set with 30-dimensional schema and 10

million tuples is found to be 5 milliseconds approximately, which is reasonable for a

dynamic data warehousing environment.

Query Response Time The effect of dimension scaling on the query response

time of a DyTree is visible in the figure 5.14. Figure 5.14c shows the effect on query

response time of point queries while in figure 5.14d, the effect on the query response

time of range queries is presented. The figure show that the query response time

increases very slightly in case of point queries while in case of range queries, this

effect is more prominent.

We recall that the range of values to be queried are defined for all the dimensions

in our range queries. Therefore in case of a 10-dimensional schema we have ranges

defined on 10 different dimensions while in a 30-dimensional schema we have the

ranges defined on 30 dimensions. This means that a range query on a data set with

high dimensional schema will have to verify more conditions than that on a data set

97

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

with low dimensional schema. This causes the query response time of range queries to

increase with the increase in number of dimensions. This increase, however, is linear

which is justified and acceptable.

Memory Usage The memory usage of a DyTree, as evident from the figure 5.14b,

increases linearly with the increase in number of dimensions. This increase is easily

understandable because for a high dimensional data, the MBS of directory and super

nodes need to store more information which, in turn, utilizes more memory.

From the above discussion, we can conclude that the DyTree’s performance does

not degrade with increase in number of dimensions.

5.4 Effect of Varying the Data Sets Density

The data sets in real-world can be very different based on their density depending

upon the nature of the applications they are being used in. Therefore studying the

effect of variable density on the performance of an indexing solution is important.

For this purpose, we discuss the effect of using dense data sets on our result in this

section. We use the data sets with variable densities (i.e. syn-dns20, syn-dns20, ...,

syn-dns60 presented in table 5.2) and discuss the obtained results.

The directory node capacity for these experiments is fixed at 35 while the overlap

limit is 0.

Atomic Fact Insertion Time The effect of variation in fact table’s density on

atomic fact insertion time is depicted in figure 5.15a. The figure shows that the

insertion time slightly increases with the increase in the density of fact table. This is

due to the fact that increasing density reduces the chances of finding a suitable split

which causes the nodes to split more often and as the splitting algorithm is the most

expensive part of insertion algorithm, it causes the fact insertion time to grow.

Query Response Time Figure 5.15 presents the effect of variation in density of

a fact table on the query response time of the DyTree. Figure 5.15b shows the effect

on query response time of point queries while in figure 5.15c, the effect on the query

response time of range queries is presented.

We see a slight increase in the query response time of both types of queries. This

increase is apparently due to the greater number of queries created as a result of the

more splits.

98

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

(a) (b)

Figure 5.13: Effect of varying the directory node capacity on (a) average nodes fill
ratio and (b) average nodes density

(a) (b)

(c) (d)

Figure 5.14: Effect of dimension scaling on, (a) atomic insertion of a fact; (b) memory
usage; query response time of (c) point and (d) range queries. The experiments are
conducted using data sets #6-10 described in table 5.2.

99

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

5. Experimental Results and Discussion Chapter 5. Experimental Evaluation

(a)

(b) (c)

Figure 5.15: Effect of variation in fact table’s density on, (a) atomic insertion of a
fact, and query response time of (b) point (c) range queries; The experiments are
conducted using data sets #11-15 described in table 5.2.

100

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 5. Experimental Results and Discussion

From the above discussion, we can conclude that the DyTree’s performance changes

slightly with the variation in the input fact tables’ density but does not degrade con-

siderably.

5.5 Effect of Delayed Insertion

As previously discussed, the facts in a real-time data warehouse do not always arrive

in chronological time order. Some of the facts may experience some delay due to

the malfunctioning of some source system or due to some network problem. Since

the DyTree exploits the temporal order among the facts and favors the grouping of

temporally close values together in the tree nodes, we would like to understand if

this delayed or out of order insertion of some of the facts affects the performance of

DyTree or not. For this purpose, the DyTree is constructed using five different data

sets with 10 million facts each. All the facts in the first data set follow chronological

time order. In second data set, 5% of the total facts arrive with a delay, in third data

set 10% of facts, in fourth 15% and in fifth data set 20 % of the facts arrive with a

random delay.

The directory nodes capacity in these experiments is fixed at 15 while the overlap

limit is 0.

Atomic Fact Insertion Time Figure 5.16a shows that how the insertion time of

a single fact is affected by the delayed insertion of some of the facts. We observe that

this delay has only a slight effect on the atomic insertion of a fact in DyTree.

Query Response Time Figures 5.16b and 5.16c prove that the delayed insertion

of some of the facts has only a slight random effect on the query response time of a

DyTree and does not deteriorate the query performance of DyTree.

The above results show that our strategy of keeping temporally closed values

together in nodes is not much affected by the delayed insertion and as a result the

performance of DyTree does not experience any considerable deterioration.

101

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

6. The Prototype Chapter 5. Experimental Evaluation

(a)

(b) (c)

Figure 5.16: Effect of delayed insertion on, (a) atomic insertion of a fact, and query
response time of (b) point (c) range queries. The experiments are conducted using
data sets #1-5 described in table 5.2.

6 The Prototype

After explaining the performance evaluation workflow and experimental results, we

now describe our prototype developed for testing and evaluation. In this prototype

we have implemented the proposed algorithms which let us not only see them working

but also compare their performance and efficiency with existing solutions. For this

purpose, we have also implemented the algorithms proposed in [Ester 2000] under the

name of DC-Tree.

The development of the prototype is carried out on 64-bit windows platform.

Microsoft Visual C# 2010 is used as the main programming language.

This prototype provides a complete set of functions and features ranging from data

generation to data analysis. The data generation features are provided to generate

various synthetic data sets while cube construction and data analysis features allow us

102

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 6. The Prototype

to study the behavior and compare the performance of our proposed algorithms. We

give the details of the these functions and features of our prototype in the following.

6.1 Data Warehouse Schema Building and Usage

Every database or data warehouse is built over a schema. Therefore, it is mandatory

for every software solution concerning these applications to be able to generate or use

an existing schema. Our prototype provides an easy to use graphical user interface

(figure 5.17) to build a new data warehouse schema from the scratch. The GUI allows

the user to provide the names of the dimensions and their nature of being ordered (by

checking the “Temporal Dimension” checkbox) or non-ordered. For each dimension,

user provides the number and names of levels in each dimension hierarchy. Each level

has an associated table whose schema is also defined through the GUI. The tables

schema defining interface lets the user to define the names, data types and nature

(i.e. primary key, foreign key or value) of the columns in the table. The generated

schema can either be directly used as schema for the input data sets or be exported

to an XML file for later use.

The prototype also provides the feature to use an existing schema stored in an

XML file. This XML file could either be the one exported through our prototype or a

manually created file that is built on the well defined specifications. The input XML

file must define the participating dimensions, hierarchical levels in each dimensions

and the structure of the tables for each hierarchical level.

6.2 Data Set Generation

Our prototype is capable of generating different dimension and fact tables respecting

the input data warehouse schema (figure 5.18). The features to generate different

data sets having different densities and following different data distributions are also

provided. For a fact table generation, density or number of tuples is provided as

input. A fact table with uniformly distributed data can be generated automatically

while data with biased distribution needs to be generated manually by generating

small clusters of data and then combining them to get a large data set having a

biased distribution or clustered data.

6.3 Queries Set Generation

OLAP queries (e.g. point, range and group-by) can be generated by grace of queries

generation feature. A point query is a query over single multidimensional data point

103

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

6. The Prototype Chapter 5. Experimental Evaluation

Figure 5.17: Schema definition

that could be either a point in a lowest level plane (i.e. a tuple of the fact table) or

a point in some higher level plane in hybrid hierarchical multidimensional data space

(HHMDS). A range query involves aggregation over different ranges of values from

domain sets of different dimensions. This could be understood as a query over set

of multidimensional points in HHMDS. A group-by query on the other hand groups

different multidimensional points according to some attribute.

Number of queries to generate and the type of queries serve as the inputs. The

range of values for each dimension that would participate in queries generation can

also be selected. The queries are generated randomly and they may involve aggrega-

tion of the measures for different ranges and at different levels of hierarchy.

The schema, data set and queries set can also be generate automatically in one

go by providing input parameters shown in figure 5.20. This utility lets us save time

and generate completely random schema and data sets under specified constraints.

6.4 Tree Construction and Visualization

Both DC-Tree and DyTree can be constructed using “directory node capacity” and

“overlap limit” as input parameters. Data could be inserted either from a comma

separated (.csv) file or through the graphical user interface. The input from a .csv

104

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 6. The Prototype

Figure 5.18: Loading or automatic generation of dimension tables data

file is important for running the long experiments using stored data sets while the

GUI based loading helps understanding the working of insert and split algorithm,

discussed in previous chapter. While loading the data in trees, the interface shows

the progress through a progress bar.

A graphical representation of the state of the trees (as shown in figure 5.19) is

provided and different statistics like tree construction time, tree depth, nodes density,

disk space usage etc. can also be consulted. We provide the feature to save the trees

in a binary file for future use as well as in a text file that could be used for offline

detailed study of the trees.

6.5 Querying

The prototype allows all three types of queries over both DC-Tree and Dy-Tree. Like

data loading, queries could also be executed either using stored queries sets or through

graphical user interface. For the execution of every queries set, we also record the

execution time and number of nodes visited in order to answer the queries. The

graphical user interface, as shown in figure 5.21, provides an easy-to-use interface for

multidimensional analysis of the data stored in the DC-Tree or the DyTree.

6.6 Data and Views Visualization

Our prototype offers a graphical user interface (see figure 5.22) to visualize the data

in a three dimensional data space. This tool is helpful in viewing the distribution and

density of data. If the data lies in a higher (more than 3) dimensional data space,

any three of the dimensions could be selected to visualize the data.

105

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

6. The Prototype Chapter 5. Experimental Evaluation

Figure 5.19: The tree construction and visualization interface

This tool also lets us the visualize the trees’ nodes, representing the materialized

views, in the data space. For this purpose, we can select a node we are interested to

visualize from the GUI presented in figure 5.19 and see its contents in the data space.

Consequently, we can identify the dense or sparse data nodes and regions in the trees

and the data space. This helps us compare different materialized views, characterize

them and eventually optimize them.

6.7 Running a Set of Experiments

We have also developed a special feature to run complete set of experiments. Data

and queries sets are input to this feature, which constructs the trees and executes

the queries at different states of the tree (see figure 5.23). Metrics concerning the

construction and queries are recorded continuously throughout the process. These

recorded metrics then serve as the input for comparison and trees analysis. This fea-

ture helps us to launch the time consuming heavy experiments automatically, without

the need of intermittent human interventions which may be difficult at times. The

106

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 7. Conclusion

Figure 5.20: Automatic schema, data set and queries set generation

Figure 5.21: Querying a DyTree

logs of test runs are also recorded which help in spotting the cause of anomaly or

error, if any, during the process.

7 Conclusion

We used a methodology to evaluate the performance of our proposal. For this pur-

pose, a framework encompassing various evaluation criteria has been proposed. The

framework guides us about the important input data sets features that should be con-

sidered as well as the metrics we should be looking for to characterize the performance

of the DyTree/DC-Tree.

The obtained experimental results show that the DyTree outperforms the DC-

Tree in fact insertion speed and query response time while exhibits similar memory

107

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

7. Conclusion Chapter 5. Experimental Evaluation

Figure 5.22: Interface to visualize data and tree nodes of a DyTree

Figure 5.23: Parameters to start automatic experimentation

utilization efficiency. The DyTree scales well with increase in number of dimensions,

i.e. its performance does not degrade with increasing the number of dimensions.

The delayed insertion of some of the facts, which is quite common in real-time data

warehouses, does not severely affect its performance either. The results obtained using

very sparse (density(S) = 10−7, see table 5.2) and dense (up to density(S) = 0.6,

see table 5.2) sets show that the DyTree is viable for various types of applications,

irrespective of the densities of the data sets they generate. The experiments conducted

by varying the values of the algorithm input parameters let us understand the behavior

of the DyTree as well as serve to experimentally optimize and tune its performance.

The prototype allows many features for testing and simulation of DyTree and its

comparison with the DC-Tree. The experimental evaluation workflow is implemented.

108

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 5. Experimental Evaluation 7. Conclusion

Our prototype supports data visualization for a 3-dimensional data space and any 3

dimensions of a higher dimensional data can be selected to visualize data and tree

nodes. As discussed, the current version of the prototype supports the automatic

(parametrized) generation of uniformly distributed data only while data with biased

distributions could be generated manually.

109

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

7. Conclusion Chapter 5. Experimental Evaluation

110

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 6

General Conclusion

Chapter Outline

1 Contribution Summary . 112

2 Discussion . 113

2.1 Strong Points . 113

2.2 Limitations . 114

3 Enhancements and Extensions 114

3.1 Current Perspectives . 115

3.2 Future Directions . 116

4 Final Words . 117

Nomenclature . 119

111

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

1. Contribution Summary Chapter 6. General Conclusion

1 Contribution Summary

In this thesis, we addressed the issue of partial cube materialization in a dynamic

data warehousing environment. We proposed the concept of Hierarchical Hybrid

Multidimensional Data Space (HHMDS) that constitutes of both ordered and non-

ordered hierarchical dimensions. We argued that a dynamic data warehouse operates

in such a data space and introduced a multidimensional data model providing a

useful abstraction of data objects lying in this data space. We proposed a data

grouping structure, called MBS, that groups the data objects lying in the data space

and proposed algebraic relations, operators and metrics allowing manipulate these

objects. The proposed operators allow us to summarize or detail the data at different

levels of granularity.

Using the proposed algebra, we put forward a data partitioning strategy and

algorithms to store the MBS with their associated aggregate values, representing the

indexed materialized sections of cuboids. The MBS are stored in a tree based data

structure called the DyTree. The DyTree is built dynamically, i.e. through atomic

incremental maintenance. The DyTree simultaneously stores and indexes detailed

and aggregated data, therefore it is an indexing and cubing structure at same time.

As not whole data cube is pre-computed, it is regarded as partially materialized data

cube in which the views selection and optimization is based on the proposed metrics

and relations. We have proposed efficient insert, split and querying algorithms using

our metrics. The DyTree is based on data partitioning strategy so it naturally avoids

indexing large data space while the splitting algorithm is designed to minimize the

overlap among data partitions. This minimization of overlap, in turn, helps improving

the insertion and querying performance the DyTree.

We put forward a methodology to compare the performance of the DyTree with an

existing solution and to analyze its performance and behavior in different scenarios.

We designed a workflow for this purpose and outlined important input parameters

and output metrics allowing us to understand and characterize the performance of our

solution. The extensive experiments suite is used first to compare the performance of

the DyTree with that of the DC-Tree using different data sets and then to understand

the effect of changing scenarios. The obtained experimental results show that the

DyTree outperforms the DC-Tree in all cases, except the memory usage where it

shows similar performance. The DyTree performance does not degrade by increasing

the number of dimensions. The performance is not much affected by changing the

density or the insertion order of the facts. The experimental study to understand the

112

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 6. General Conclusion 2. Discussion

behavior of the tree is useful to explain the performance of the solution as well as to

optimize it.

We implemented our experimental evaluation workflow in a prototype which lets

us evaluate the efficiency and effectiveness of the DyTree. The prototype provides

interesting features including data/queries sets generation, trees construction, exper-

imental evaluation and simulation.

2 Discussion

After having summarized our contribution, we discuss some strong points and limi-

tations of our solution in this section.

2.1 Strong Points

We highlight and discuss some of the strong points of our contribution under this

heading.

Distinction of Ordered and Non-ordered Dimension One of the strong for

our solution is that our data space constitutes of both ordered and non-ordered di-

mensions. The members of all the dimensions are treated in a similar manner and

their insertion order is not important. It is only at the time of metrics calculation

that the ordered dimensions are treated distinctly than those which are not. The

non-ordering of dimension members gives us the advantage of dynamic maintenance

of data space while considering the natural order among the members of the or-

dered dimensions in metrics facilitates the data manipulation (e.g. data indexing,

partitioning, range/group-by etc.). These advantages are also verified through our

experimental study.

Creation of Dense MBS Since the DyTree’s construction is based on MBS which

are data grouping structure, it falls under the multidimensional data indexing tech-

niques based on data partitioning. Therefore, it inherently avoids indexing large dead

spaces. Apart from this, the MBS are created through hierarchical splitting triggered

by the number of pointers held by a node. Therefore, if the facts are clustered in a

data space, we will have more MBS for the clustered regions and these MBS will be

dense. The optimization of MBS is achieved by the help of the proposed metrics.

113

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Enhancements and Extensions Chapter 6. General Conclusion

2.2 Limitations

The proposed solution has some limitations and we discuss some of these below.

Schema Evolution and Versioning As evident from the discussion through out

this dissertation, our research work lies at the intersection real-time and temporal data

warehouses. However, we consider only one aspect of temporal data warehouses that

is the addition of new data in dimension tables. Other types of evolution supported

in temporal data warehouses that could be useful in the concerned applications, are

not discussed in this research work. For example, the movement of a sensor would

require the update of the existing sensors location in the dimension table.

Data Quality In traditional data warehouses, data coming from source systems

can be stored at intermediate operational data stores where it can be checked for

quality and consistency using other existing data items or master data. In our case,

however, we consider that data coming from source systems is directly integrated into

the DyTree without any quality or consistency checks. This might incur consistency

problems in the stored data and needs to be addressed using either some efficient

intermediate layer which performs quality checks without causing much delay in the

insertion of facts or by some on-the-fly quality mechanism which could be integrated

in the insertion algorithm.

Selection of Views Creation of materialized views (i.e. MBS) and their selection

in our solution is guided by the metrics, eventual order among dimension members

and the insertion order of facts. Therefore, we do not have complete control on the

selection of views to materialize and at any time instance, it is not possible to deduce

which views are materialized and stored in the DyTree without complete manual

simulation of the scenario.

3 Enhancements and Extensions

The DyTree and our research work still has some room for improvement and needs

more efforts. Among the improvements we can foresee, some are short term that we

are willing to attack in near future while the others can be termed as long term which

need more in depth analysis and research efforts.

114

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 6. General Conclusion 3. Enhancements and Extensions

3.1 Current Perspectives

In this section we discuss the current perspectives that can be addressed in near

future.

3.1.1 Theoretical Cost Model

In this research work, we have evaluated the performance of the DyTree using exten-

sive experimental study but a theoretical cost model is still lacking. A theoretical

cost model will help us to determine the time and space complexity of our algorithms

and establish the cost of their best, average and worst case scenarios. Theoretical

results can be compared with the experimental ones which would consequently allow

us to better understand, tune and optimize the performance of the algorithms. We

would like to provide correctness, completeness proofs of our algorithms. Theoretical

determination of optimized values of input parameters, DNCAP and OV LAP , also

needs more work.

3.1.2 Experiments with Real-World Data Sets

Though the experimental methodology and data sets used for the experimental eval-

uation of DyTree were carefully designed and a benchmark (SSB) was also used for

the purpose, yet we believe that our solution requires more tests. The SSB is based

on synthetic data set and was designed for traditional data warehouses while the syn-

thetic data sets hardly simulate a real-world scenario. Therefore, we believe that the

experimentation with a real-world data set would be more credible and convincing

and would like to that in near future.

3.1.3 The Prototype Enhancement

We would also like to upgrade our prototype, which for the moment allows automatic

generation of uniformly distributed data only. We would like to able to generate data

sets following different mathematical distributions which will then be used for the

experimental evaluation. We are also working to upgrade the data and tree visualiza-

tion feature of our prototype which currently supports visualizing only detailed data

in an ordered representation of 3-dimensional data space. We would like to make our

prototype more interactive and robust.

115

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

3. Enhancements and Extensions Chapter 6. General Conclusion

3.1.4 Towards a Benchmark

The methodology employed to evaluate our experiments considers various scenarios

that are important for partial data cubing or indexing technique in data warehouses.

We outlined interesting input and output parameters for the purpose. So for we

used it to experimentally evaluate our own solution and the DC-Tree and it was

accordingly adapted but in near future we would like to generalize it to evaluate the

effectiveness and efficiency of selected views by various techniques which would serve

as a benchmark in this context.

3.2 Future Directions

This section provides a discussion on some of the possible future directions for the

continuation of this research work.

3.2.1 Support For Irregular Dimension Hierarchies

Our current multidimensional data model considers dimensions with simple hierar-

chies only while in literature, many research works arguing the importance of complex

or irregular hierarchies [Malinowski 2004, Mansmann 2006] in an OLAP system can

be found. To make our model deal with such dimension hierarchies needs more re-

search efforts but will make the model more practical and usable.

3.2.2 Considering other Types of Ordering

In this research work, we proposed the idea of considering the nature of dimensions for

data modeling and creating/manipulating data partitions. We used only one ordered

dimension i.e. time and favored the grouping of temporally closed values together

and the utility of such an approach in improving the performance of temporal range

queries is shown through experiments. This idea can be applied to other ordered

dimensions as well to exploit other types of closeness such spatial proximity. In that

case spatially closed object can be grouped together in same views to enhance the

performance of spatial range queries. Similarly, the indexing of semantically closed

values together in same node can be favored in case of textual data.

3.2.3 Favoring the Appearance of Certain MBS

As discussed earlier, in current DyTree, the materialized views represented through

MBS are constructed at run time and depend upon the proposed metrics and the

116

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Chapter 6. General Conclusion 4. Final Words

insertion order of the facts. We believe that the performance of its algorithms can be

improved by favoring the appearance of certain MBS on the basis of following criteria.

Frequently Used Queries Unlike the views selection strategy employed in the

DyTree, many research works related to partial cube materialization provide solutions

on the basis of prior knowledge of used queries. Since the creation of views are aimed

at improving the query’s performance only, such a strategy of selection of views is

a reasonable one. However, as the DyTree operates in a dynamic environment, the

queries to be used are not known a priori. Still, it is possible to have the knowledge of

type of some frequently used queries. If there is any kind of such knowledge, it would

be useful for the selection of views. Therefore, we believe that using this knowledge,

in addition to the current DyTree’s strategy, to favor the materialization of particular

views is a possible and interesting future work.

Correlation among Dimensions As we know, dimension in a data warehouse

can sometimes be correlated. This correlation information has been used by some

researchers for efficient cube computation (e.g. [Yu-cai 2004, Feng 2004b]). Such

correlation information (if any) can easily be used while constructing and optimizing

the MBS stored in DyTree to group correlated values together and improve the query

performance. For example, in a sales application if it can be deduced that the sales

of warm clothes in Europe is much more significant than in Africa, then the early

appearance of warm clothes in an MBS with Europe can be favored. Similarly, certain

sparse MBS can also be made to appear if it could be deduced from the existing

pattern that the upcoming facts would come under it. For example, if it is known

in an intelligent building application that at certain location (say L1) the change in

temperature would be recorded more often than the others, then the node holding

an MBS with location L1 can be created even if it is sparse. Next temperature

readings coming from L1, will directly be indexed under that node without needing

any split unless it overflows. This will help reducing the splitting of existing MBS

and consequently improve the insertion efficiency of the DyTree.

4 Final Words

The importance of dynamic data warehouses is increasing day by day. These data

warehouses require the real-time integration of new data in warehouse and necessi-

tate the incremental update of aggregates and materialized views maintained for the

117

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

4. Final Words Chapter 6. General Conclusion

purpose of reducing the analysis latency. Our research work on this issue leads to a

formal data model supporting dynamic updates and a partial cubing structure with

efficient algorithms to incrementally build and query it. Many interesting research

directions follow from this work and can be considered in future.

118

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Nomenclature

ai ith aggregate value associate to a DyTree node

agg(M∆) aggregate value associated to an MBS M∆

M containsN relation contains among the two MBS

density(S) density of fact table or data set

density(M) density of an MBS

leafRatio(node) Leaf ratio of a DyTree node

Di ith dimension

δ(Et, Ft) difference between the two time intervals i.e. Et and Ft

DNCAP numerical value representing the capacity of a directory node

(Constant)

domain(l) domain set of a level l

̺lvi (m) drill-down on a member m of dimension from its current level

i to level v

σlui
(m) drill-up on a member of dimension from its current level i to

level u

Ei ith edge of an MBS

Fi ith edge of an MBS

entrySet set of pointers of a DyTree node holding the pointers to the

child entries

fillratio(node) fill ratio of a DyTree node

119

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

f an aggregate function such as SUM, AVERAGE etc.

H a graph representing a dimension hierarchy

I a graph representing the instance of a hierarchical dimension

Interval(Et) Interval represented by the time dimension edge Et of an MBS

lji jth hierachical level of ith dimension.

ALLi the top most level of ith dimension

alli the unique member of the top most level of ith dimension

level(m) level of a member m of a dimension space

Li set of the levels of the ith dimension

M a mniimum bounding space (MBS) m

Ni, Oi, Ri MBS used in examples

M∆ an MBS M constructed over a set of points ∆

m(p) measure value associated to a point p

node a DyTree node

p′ ⊚ p relation covers among two multidimensional points

P1 ≥P P2 ordere relation among the hyper-planes P1 and P2

lui ↑ lvi order relation among two levels of a dimension hierarchy

m ⇑ n order relation among the members of a dimension Di

OV LAP numerical value representing the overlap limit among two nodes

(Constant)

ovlapArea(M, N) the overlapped/shared area between two MBS M and N

M overlapsN relation representing an MBS M overlaps another MBS N

P hyper-plane

< lh1
1 , lh2

2 , ..., lhn
n > Notation for a hyper-plane

120

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

p(x1, x2, ..., xn) a multidimensional point p

∆ set of multidimensional points

size(entries) current number of pointers to child entries

S data space

SDi
dimension space of the ith dimension

⌊P (M) translate-down on an MBS M from its current hyper-plane to

the hyper-plane P

⌈P (M) translate-up on an MBS M from its current hyper-plane to

the hyper-plane P

volume(M) volume of an MBS M

volume(S) volume of data space

BJI bitmap join index

DDC dynamic data cube

DOLUS dynamic online updating solution

HHMDS hierarchical hybrid multidimensional data space

HOBI hierarchially organized bitmap index

MBS minimum bounding space

MDS minimum describing space

OLAP online analytical processing

QoD quality of data

QoS quality of service

RiTE right-time ETL

ROLAP relational online analytical processing

121

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

122

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

References

[Agarwal 2011] Deepak Agarwal and Bee-Chung Chen. Latent OLAP: data cubes

over latent variables. In Proceedings of the 2011 international conference on

Management of data, SIGMOD ’11, pages 877–888, 2011.

[Aligon 2011] Julien Aligon, Patrick Marcel and Elsa Negre. Résumés et interroga-

tions de logs de requêtes OLAP. In 11ème Conférence Internationale Franco-

phone sur l’Extraction et la Gestion des Connaissances, EGC’11, pages 239–

250, Brest, France, 2011.

[Amo 2000] Sandra De Amo and Mirian Halfeld Ferrari Alves. Efficient Maintenance

of Temporal Data Warehouses. In Proceedings of the 2000 International Sym-

posium on Database Engineering & Applications, IDEAS ’00, pages 188–196,

Washington, DC, USA, 2000. IEEE Computer Society.

[Aouiche 2005] Kamel Aouiche, Jérôme Darmont, Omar Boussaïd and Fadila Ben-

tayeb. Automatic selection of bitmap join indexes in data warehouses. In

Proceedings of the 7th international conference on Data Warehousing and

Knowledge Discovery, DaWaK’05, pages 64–73, 2005.

[Aouiche 2009] Kamel Aouiche and Jérôme Darmont. Data mining-based material-

ized view and index selection in data warehouses. Journal of Intelligent and

Information Systems, vol. 33, no. 1, pages 65–93, August 2009.

[Bai 2006] Yun Bai, Yanyan Guo, Xiaofeng Meng, Tao Wan and Karine Zeitouni.

Efficient dynamic traffic navigation with hierarchical aggregation tree. In Pro-

ceedings of the 8th Asia-Pacific Web conference on Frontiers of WWW Re-

search and Development, APWeb’06, pages 751–758, Berlin, Heidelberg, 2006.

Springer-Verlag.

123

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Baralis 1997] Elena Baralis, Stefano Paraboschi and Ernest Teniente. Materialized

Views Selection in a Multidimensional Database. In Proceedings of 23rd In-

ternational Conference on Very Large Data Bases, VLDB ’97, pages 156–165,

1997.

[Bayer 1972] Rudolf Bayer and Edward M. McCreight. Organization and mainte-

nance of large ordered indexes. Acta Informatica, vol. 1, pages 173–189, 1972.

[Beckmann 1990] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider and Bern-

hard Seeger. The R*-tree: an efficient and robust access method for points

and rectangles. SIGMOD Record, vol. 19, no. 2, pages 322–331, 1990.

[Bellahsene 2002] Zohra Bellahsene. Schema evolution in data warehouses. Knowl-

edge and Information Systems, vol. 4, no. 3, pages 283–304, July 2002.

[Bellatreche 2007] Ladjel Bellatreche, Rokia Missaoui, Hamid Necir and Habiba

Drias. Selection and Pruning Algorithms for Bitmap Index Selection Prob-

lem Using Data Mining. In Il Song, Johann Eder and Tho Nguyen, editeurs,

Data Warehousing and Knowledge Discovery, volume 4654 of Lecture Notes

in Computer Science, pages 221–230. Springer Berlin / Heidelberg, 2007.

[Bellatreche 2010] Ladjel Bellatreche and Kamel Boukhalfa. Yet another algorithms

for selecting bitmap join indexes. In Proceedings of the 12th international

conference on Data warehousing and knowledge discovery, DaWaK’10, pages

105–116, Berlin, Heidelberg, 2010. Springer-Verlag.

[Bentley 1975] Jon Louis Bentley. Multidimensional binary search trees used for as-

sociative searching. Commun. ACM, vol. 18, no. 9, pages 509–517, September

1975.

[Berchtold 1996] Stefan Berchtold, Daniel A. Keim and Hans-Peter Kriegel. The X-

tree : An Index Structure for High-Dimensional Data. In Proceedings of 22nd

International Conference on Very Large Data Bases, VLDB ’96, pages 28–39,

1996.

[Beyer 1999] Kevin Beyer and Raghu Ramakrishnan. Bottom-up computation of

sparse and Iceberg CUBE. SIGMOD Record, vol. 28, no. 2, pages 359–370,

June 1999.

124

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Body 2002] Mathurin Body, Maryvonne Miquel, Yvan Bédard and Anne

Tchounikine. A multidimensional and multiversion structure for OLAP ap-

plications. In Proceedings of the 5th ACM international workshop on Data

Warehousing and OLAP, DOLAP ’02, pages 1–6, New York, NY, USA, 2002.

ACM.

[Böhm 2001] Christian Böhm, Stefan Berchtold and Daniel A. Keim. Searching in

high-dimensional spaces: Index structures for improving the performance of

multimedia databases. ACM Comput. Surv., vol. 33, no. 3, pages 322–373,

September 2001.

[Bruckner 2002] Robert Bruckner, Beate List and Josef Schiefer. Striving towards

Near Real-Time Data Integration for Data Warehouses. In Data Warehousing

and Knowledge Discovery, volume 2454 of Lecture Notes in Computer Science,

pages 173–182. Springer Berlin / Heidelberg, 2002.

[Castellanos 2010] Malu Castellanos, Umeshwar Dayal and Meichun Hsu. Live Busi-

ness Intelligence for the Real-Time Enterprise. In From Active Data Manage-

ment to Event-Based Systems and More, Lecture Notes in Computer Science.

2010.

[Chamoni 1999] Peter Chamoni and Steffen Stock. Temporal Structures in Data

Warehousing. In Proceedings of the First International Conference on Data

Warehousing and Knowledge Discovery, DaWaK ’99, pages 353–358, London,

UK, UK, 1999. Springer-Verlag.

[Chan 1998] Chee-Yong Chan and Yannis E. Ioannidis. Bitmap index design and

evaluation. SIGMOD Record, vol. 27, no. 2, pages 355–366, June 1998.

[Chen 2001] Jun Chen, Xin Zhang, Songting Chen, Andreas Koeller and Elke A.

Rundensteiner. DyDa: data warehouse maintenance in fully concurrent envi-

ronments. SIGMOD Rec., vol. 30, no. 2, pages 619–, May 2001.

[Chen 2009a] Changqing Chen. Indexing of Multidimensional Discrete Data Spaces

and Hybrid Extensions. PhD thesis, Michigan State University, East Lansing,

Michigan, USA, 2009.

[Chen 2009b] Changqing Chen, Sakti Pramanik, Qiang Zhu, Watve Alok and Gang

Qian. The C-ND Tree: a multidimensional index for hybrid continuous and

non-ordered discrete data spaces. In Proceedings of the 12th International

125

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Conference on Extending Database Technology: Advances in Database Tech-

nology, EDBT ’09, pages 462–471, 2009.

[Cheung 2001] David W. Cheung, Bo Zhou, Ben Kao, Hu Kan and Sau Dan Lee.

Towards the building of a dense-region-based OLAP system. Data Knowledge

and Engineering, vol. 36, no. 1, pages 1–27, January 2001.

[Chmiel 2009] Jan Chmiel, Tadeusz Morzy and Robert Wrembel. HOBI: Hierar-

chically Organized Bitmap Index for Indexing Dimensional Data. In Data

Warehousing and Knowledge Discovery, Lecture Notes in Computer Science.

2009.

[Chmiel 2010] Jan Chmiel, Tadeusz Morzy and Robert Wrembel. Time-HOBI: in-

dexing dimension hierarchies by means of hierarchically organized bitmaps. In

Proceedings of the ACM 13th international workshop on Data warehousing

and OLAP, DOLAP ’10, pages 69–76, 2010.

[Dayal 1999] Umeshwar Dayal, Qiming Chen and Meichun Hsu. Dynamic Data Ware-

housing. In Mukesh Mohania and A Tjoa, editeurs, DataWarehousing and

Knowledge Discovery, volume 1676 of Lecture Notes in Computer Science,

pages 798–798. Springer Berlin / Heidelberg, 1999.

[Doka 2011] Katerina Doka, Dimitrios Tsoumakos and Nectarios Koziris. Online

querying of d-dimensional hierarchies. J. Parallel Distributed Computing,

vol. 71, no. 3, pages 424–437, March 2011.

[Ester 2000] Martin Ester, Jorn Kohlhammer and Hans-Peter Kriegel. The DC-tree:

A Fully Dynamic Index Structure for Data Warehouses. In Proceedings of the

16th International Conference on Data Engineering (ICDE), pages 379–388,

2000.

[Faloutsos 1988] Christos N. Faloutsos. Gray Codes for Partial Match and Range

Queries. IEEE Transactions on Software Engineering, vol. 14, no. 10, pages

1381–1393, oct 1988.

[Faloutsos 1989] C. Faloutsos and S. Roseman. Fractals for secondary key retrieval.

In Proceedings of the eighth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems, PODS ’89, pages 247–252, 1989.

126

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Favre 2007] Cécile Favre. Évolution de schémas dans les entrepôts de données : mise

à jour de hiérarchies de dimension pour la personnalisation des analyses. PhD

thesis, Université Lyon II, Lyon, France, 2007.

[Feng 2004a] Jianlin Feng, Qiong Fang and Hulin Ding. PrefixCube: prefix-sharing

condensed data cube. In Proceedings of the 7th ACM international workshop

on Data warehousing and OLAP, DOLAP ’04, pages 38–47, 2004.

[Feng 2004b] Ying Feng, Divyakant Agrawal, Amr El Abbadi and Ahmed Metwally.

Range CUBE: Efficient Cube Computation by Exploiting Data Correlation. In

Proceedings of the 20th International Conference on Data Engineering, ICDE

’04, pages 658–, 2004.

[Feng 2006] Yaokai Feng and Akifumi Makinouchi. Ag-Tree: A Novel Structure for

Range Queries in Data Warehouse Environments. In Mong Li Lee, Kian-Lee

Tan and Vilas Wuwongse, editeurs, Database Systems for Advanced Appli-

cations, volume 3882 of Lecture Notes in Computer Science, pages 498–512.

Springer Berlin / Heidelberg, 2006.

[Feng 2011] MicYaokai Feng and Akifumi Makinouchi. Ag+ tree: an Index Struc-

ture for Range-aggregation Queries in Data Warehousing Environment. Inter-

national Journal of Database Theory and Applications, vol. 4, no. 2, pages

51–54, 2011.

[Fenk 2000] Robert Fenk, Akihiko Kawakami, Volker Markl, Rudolf Bayer and Shunji

Osaki. Bulk Loading a Data Warehouse Built Upon a UB-Tree. In Proceedings

of the 2000 International Symposium on Database Engineering & Applications,

IDEAS ’00, pages 179–187, 2000.

[Finkel 1974] R. A. Finkel and J. L. Bentley. Quad trees: a data structure for retrieval

on composite keys. Acta Informatica, vol. 4, pages 1–9, 1974.

[Foley 2005] Tim Foley and Jeremy Sugerman. KD-tree acceleration structures for a

GPU raytracer. In Proceedings of the ACM SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, HWWS ’05, pages 15–22, 2005.

[Gaede 1998] Volker Gaede and Oliver Günther. Multidimensional access methods.

ACM Computing Surveys, vol. 30, no. 2, pages 170–231, June 1998.

127

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Geffner 2000] Steven Geffner, Divyakant Agrawal and Amr El Abbadi. The Dynamic

Data Cube. In Proceedings of the 7th International Conference on Extending

Database Technology: Advances in Database Technology, EDBT ’00, pages

237–253, London, UK, UK, 2000. Springer-Verlag.

[Golab 2009a] Lukasz Golab, Theodore Johnson, J. Spencer Seidel and Vladislav

Shkapenyuk. Stream warehousing with DataDepot. In Proceedings of the

35th SIGMOD international conference on Management of data, SIGMOD

’09, pages 847–854, 2009.

[Golab 2009b] Lukasz Golab, Theodore Johnson and Vladislav Shkapenyuk. Schedul-

ing Updates in a Real-Time Stream Warehouse. In Proceedings of the 2009

IEEE International Conference on Data Engineering, ICDE ’09, pages 1207–

1210, 2009.

[Golfarelli 2009] Matteo Golfarelli and Stefano Rizzi. A Survey on Temporal Data

Warehousing. International Journal of Data Warehousing and Mining, vol. 5,

pages 1–17, 2009.

[Govindarajan 2002] Sathish Govindarajan, Pankaj K. Agarwal and Lars Arge. CRB-

Tree: An Efficient Indexing Scheme for Range-Aggregate Queries. In Proceed-

ings of the 9th International Conference on Database Theory, ICDT ’03, pages

143–157, 2002.

[Gray 1997] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don

Reichart, Murali Venkatrao, Frank Pellow and Hamid Pirahesh. Data Cube:

A Relational Aggregation Operator Generalizing Group-By, Cross-Tab, and

Sub-Totals. Data Mining and Knowledge Discovery, vol. 1, 1997.

[Günther 1989] Oliver Günther. The Design of the Cell Tree: An Object-Oriented In-

dex Structure for Geometric Databases. In Proceedings of the 5th International

Conference on Data Engineering, ICDE ’89, pages 598–605, 1989.

[Gupta 1995] Ashish Gupta, Inderpal S. Mumick and Kenneth A. Ross. Adapting

materialized views after redefinitions. SIGMOD Records, vol. 24, no. 2, pages

211–222, May 1995.

[Gupta 1997a] Himanshu Gupta. Selection of Views to Materialize in a Data Ware-

house. In Foto N. Afrati and Phokion G. Kolaitis, editeurs, Proceeding of the

128

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

6th International Conference on Database Theory, volume 1186 of ICDT ’97,

pages 98–112. Springer, 1997.

[Gupta 1997b] Himanshu Gupta, Venky Harinarayan, Anand Rajaraman and Jef-

frey D. Ullman. Index Selection for OLAP. In Proceedings of the Thirteenth

International Conference on Data Engineering, ICDE ’97, pages 208–219, 1997.

[Gupta 2011] Chetan Gupta, Umeshwar Dayal, Song Wang and Abhay Mehta. Live

BI: A Framework for Real Time Operations Management. In Databases in

Networked Information Systems, Lecture Notes in Computer Science. 2011.

[Guttman 1984] Antonin Guttman. R-Trees: a dynamic index structure for spatial

searching. In Proceedings of the 1984 ACM SIGMOD international conference

on Management of data, SIGMOD ’84, pages 47–57, 1984.

[Harinarayan 1996] Venky Harinarayan, Anand Rajaraman and Jeffrey D. Ullman.

Implementing Data Cubes Efficiently. In Proceedings of the 1996 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’96, pages

205–216. ACM Press, 1996.

[Hunter 1979] Gregory M. Hunter and Kenneth Steiglitz. Operations on Images Using

Quad Trees. Pattern Analysis and Machine Intelligence, IEEE Transactions

on, vol. PAMI-1, no. 2, pages 145 –153, april 1979.

[Hurtado 1999] Carlos A. Hurtado, Alberto O. Mendelzon and Alejandro A Vaisman.

Maintaining Data Cubes under Dimension Updates. In Proceedings of the

15th International Conference on Data Engineering, ICDE ’99, pages 346–,

Washington, DC, USA, 1999. IEEE Computer Society.

[Johnson 1996] Theodore Johnson and Dennis Shasha. Hierarchically Split Cube

Forests for Decision Support: description and tuned design. Rapport tech-

nique, Department of Computer Science, New York University, New York,

USA, 1996.

[Jorg 2010] Thomas Jorg and Stefan Dessloch. Near Real-Time Data Warehousing

Using State-of-the-Art ETL Tools. In Enabling Real-Time Business Intelli-

gence, volume 41 of Lecture Notes in Business Information Processing, pages

100–117. Springer Berlin Heidelberg, 2010.

129

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Kamel 1994] Ibrahim Kamel and Christos Faloutsos. Hilbert R-tree: An Improved

R-tree using Fractals. In Proceedings of the 20th International Conference on

Very Large Data Bases, VLDB ’94, pages 500–509, 1994.

[Karakasidis 2005] Alexandros Karakasidis, Panos Vassiliadis and Evaggelia Pitoura.

ETL queues for active data warehousing. In Proceedings of the 2nd inter-

national workshop on Information quality in information systems, IQIS ’05,

pages 28–39, 2005.

[Kim 2007] Namgyu Kim and Songchun Moon. Concurrent View Maintenance

Scheme for Soft Real-time Data Warehouse Systems. Journal of Information

Science and Engineering, pages 725–741, 2007.

[Kimball 1996] Ralph Kimball. The data warehouse toolkit: practical techniques for

building dimensional data warehouses. John Wiley & Sons, Inc., New York,

NY, USA, 1996.

[Kotidis 1998] Yannis Kotidis and Nick Roussopoulos. An alternative storage orga-

nization for ROLAP aggregate views based on cubetrees. SIGMOD Record,

vol. 27, no. 2, pages 249–258, June 1998.

[Koudas 2000] Nick Koudas. Space efficient bitmap indexing. In Proceedings of the

ninth international conference on Information and knowledge management,

CIKM ’00, pages 194–201, 2000.

[Kuznetsov 2009] S. Kuznetsov and Yu. Kudryavtsev. A mathematical model of the

OLAP cubes. Programming and Computer Software, vol. 35, pages 257–265,

2009.

[Lakshmanan 2002] Laks V. S. Lakshmanan, Jian Pei and Jiawei Han. Quotient Cube:

how to summarize the semantics of a data cube. In VLDB ’02: Proc. of the

28th Int. Conf. on Very Large Data Bases, pages 778–789. VLDB Endowment,

2002.

[Lakshmanan 2003] Laks V. S. Lakshmanan, Jian Pei and Yan Zhao. QC-Trees: an

efficient summary structure for semantic OLAP. In Proceedings of the 2003

ACM SIGMOD international conference on Management of data, SIGMOD

’03, pages 64–75, 2003.

130

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Li 2004] Xiaolei Li, Jiawei Han and Hector Gonzalez. High-dimensional OLAP: a

minimal cubing approach. In Proceedings of the 30th international conference

on Very Large Data Bases - Volume 30, VLDB ’04, pages 528–539, 2004.

[Malinowski 2004] Elzbieta Malinowski and Esteban Zimányi. OLAP Hierarchies: A

Conceptual Perspective. In Anne Persson and Janis Stirna, editeurs, Advanced

Information Systems Engineering, volume 3084 of Lecture Notes in Computer

Science, pages 19–35. Springer Berlin / Heidelberg, 2004.

[Malinowski 2008] Elzbieta Malinowski and Esteban Zimányi. A conceptual model

for temporal data warehouses and its transformation to the ER and the object-

relational models. Data Knowledge & Engineering, vol. 64, no. 1, pages 101–

133, January 2008.

[Mansmann 2006] Svetlana Mansmann and Marc H. Scholl. Extending visual OLAP

for handling irregular dimensional hierarchies. In Proceedings of the 8th

international conference on Data Warehousing and Knowledge Discovery,

DaWaK’06, pages 95–105, Berlin, Heidelberg, 2006. Springer-Verlag.

[Mendelzon 2000] Alberto O. Mendelzon and Alejandro A. Vaisman. Temporal

Queries in OLAP. In Proceedings of the 26th International Conference on

Very Large Data Bases, VLDB ’00, pages 242–253, San Francisco, CA, USA,

2000. Morgan Kaufmann Publishers Inc.

[Morfonios 2006] Konstantinos Morfonios and Yannis Ioannidis. CURE for cubes:

cubing using a ROLAP engine. In Proceedings of the 32nd international con-

ference on Very large data bases, VLDB ’06, pages 379–390, 2006.

[Morton 1966] G.M. Morton. A computer oriented geodetic data base and a new

technique in file sequencing. Rapport technique, IBM Ltd., Ottawa, Ontario,

Canada, 1966.

[Namgyu 2007] Kim Namgyu and Moon Songchun. Concurrent view maintenance

scheme for soft real-time data warehouse systems. Journal of information

science and engineering, vol. 23, no. 3, pages 723–739, 2007. eng.

[Nguyen 2003] Tho Manh Nguyen and A Min Tjoa. Zero-Latency data warehousing

for hetrogeneous data sources and continuous data streams. In Proceedings of

the 5th International Conference on Information Integration and Web-based

Applications Services, iiWAS ’03, 2003.

131

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Nguyen 2005] Tho Manh Nguyen, Peter Brezany, A. Min Tjoa and Edgar Weippl.

Toward a Grid-Based Zero-Latency Data Warehousing Implementation for

Continuous Data Streams Processing. International Journal of Data Ware-

housing and Mining, IJDWM, vol. 1, no. 4, pages 22–55, 2005.

[Nguyen 2006] Tho Manh Nguyen and A Min Tjoa. Zero-latency data warehousing

(ZLDWH): the state-of-the-art and experimental implementation approaches.

In The 4th IEEE International Conference On Computer Sciences Researc;

Innovation and Vision for the Future, RIVF ’06, pages 167–176. IEEE, 2006.

[Nguyen 2007] Tho Manh Nguyen, Josef Schiefer and A. Min Tjoa. ZELESSA: an en-

abler for real-time sensing, analysing and acting on continuous event streams.

International Journal of Business Intelligence and Data Mining, vol. 2, no. 1,

pages 105–141, March 2007.

[O’Neil 1989] Patrick E. O’Neil. Model 204 Architecture and Performance. In Pro-

ceedings of the 2nd International Workshop on High Performance Transaction

Systems, pages 40–59, 1989.

[O’Neil 1995] Patrick O’Neil and Goetz Graefe. Multi-table joins through bitmapped

join indices. SIGMOD Record, vol. 24, no. 3, pages 8–11, September 1995.

[O’Neil 1997] Patrick O’Neil and Dallan Quass. Improved query performance with

variant indexes. In Proceedings of the 1997 ACM SIGMOD international

conference on Management of data, SIGMOD ’97, pages 38–49, 1997.

[O’Neil 2009] Patrick O’Neil, Elizabeth O’Neil, Xuedong Chen and Stephen Revilak.

In Raghunath Nambiar and Meikel Poess, editeurs, Performance Evaluation

and Benchmarking, chapitre The Star Schema Benchmark and Augmented

Fact Table Indexing, pages 237–252. Springer-Verlag, Berlin, Heidelberg, 2009.

[Orenstein 1982] Jack A. Orenstein. Multidimensional Tries Used for Associative

Searching. Information Processing Letters, no. 4, pages 150–157, 1982.

[Orenstein 1984] Jack A. Orenstein and Tim H. Merrett. A class of data structures

for associative searching. In Proceedings of the 3rd ACM SIGACT-SIGMOD

symposium on Principles of database systems, PODS ’84, pages 181–190, 1984.

[Papadias 2001] Dimitris Papadias, Panos Kalnis, Jun Zhang and Yufei Tao. Effi-

cient OLAP Operations in Spatial Data Warehouses. Proceedings of the 7th

132

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

International Symposium on Advances in Spatial and Temporal Databases,

pages 443–459, 2001.

[Polyzotis 2007] Neoklis Polyzotis, Spiros Skiadopoulos, Panos Vassiliadis andAlkis

Simitsis and Nils-Erik Frantzell. Supporting Streaming Updates in an Active

Data Warehouse. In Proceesdings of 23rd International Conference on Data

Engineering, ICDE ’07, 2007.

[Qian 2003] Gang Qian, Qiang Zhu, Qiang Xue and Sakti Pramanik. The ND-tree:

a dynamic indexing technique for multidimensional non-ordered discrete data

spaces. In Proceedings of the 29th international conference on Very large data

bases - Volume 29, VLDB ’03, pages 620–631, 2003.

[Qian 2006] Gang Qian, Qiang Zhu, Qiang Xue and Sakti Pramanik. A space-

partitioning-based indexing method for multidimensional non-ordered discrete

data spaces. ACM Transactions on Information Systems, vol. 24, no. 1, pages

79–110, January 2006.

[Ravat 2006] Franck Ravat, Olivier Teste and Gilles Zurfluh. A multiversion-based

multidimensional model. In Proceedings of the 8th international conference on

Data Warehousing and Knowledge Discovery, DaWaK’06, pages 65–74, Berlin,

Heidelberg, 2006. Springer-Verlag.

[Riedewald 2000] Mirek Riedewald, Divyakant Agrawal, Amr El Abbadi and Renato

Pajarola. Space-Efficient Data Cubes for Dynamic Environments. In Pro-

ceedings of the Second International Conference on Data Warehousing and

Knowledge Discovery, DaWaK 2000, pages 24–33, London, UK, UK, 2000.

Springer-Verlag.

[Rizzi 2006] Stefano Rizzi and Matteo Golfarelli. What time is it in the data ware-

house? In Proceedings of the 8th international conference on Data Warehous-

ing and Knowledge Discovery, DaWaK’06, pages 134–144, Berlin, Heidelberg,

2006. Springer-Verlag.

[Ross 1997] Kenneth A. Ross and Divesh Srivastava. Fast Computation of Sparse

Datacubes. In Proceedings of the 23rd International Conference on Very Large

Data Bases, VLDB ’97, pages 116–125, 1997.

133

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Rotem 2005] Doron Rotem, Kurt Stockinger and Kesheng Wu. Optimizing candidate

check costs for bitmap indices. In Proceedings of the 14th ACM international

conference on Information and knowledge management, CIKM ’05, pages 648–

655, New York, NY, USA, 2005. ACM.

[Roussopoulos 1985] Nick Roussopoulos and Daniel Leifker. Direct spatial search on

pictorial databases using packed R-trees. SIGMOD Record, vol. 14, no. 4,

pages 17–31, May 1985.

[Roussopoulos 1997] Nick Roussopoulos, Yannis Kotidis and Mema Roussopoulos.

Cubetree: organization of bulk and incremental updates on the data cube. In

Proceedings of the 1997 ACM SIGMOD International Conference on Manage-

ment of Data, SIGMOD ’97, pages 89–99, NY, USA, 1997. ACM.

[Samet 1984] Hanan Samet and Robert E. Webber. On Encoding Boundaries with

Quadtrees. IEEE Trans. Pattern Anal. Mach. Intell., vol. 6, no. 3, pages 365–

369, March 1984.

[Santos 2008] Ricardo Jorge Santos and Jorge Bernardino. Real-time data warehouse

loading methodology. In Proceedings of the 12th International Database En-

gineering and Application Symposium, IDEAS ’08, pages 49–58, New York,

NY, USA, 2008. ACM.

[Santos 2009] Ricardo Jorge Santos and Jorge Bernardino. Optimizing data ware-

house loading procedures for enabling useful-time data warehousing. In Pro-

ceedings of the 2009 International Database Engineering & Applications Sym-

posium, IDEAS ’09, pages 292–299, 2009.

[Sellis 1987] Timos K. Sellis, Nick Roussopoulos and Christos Faloutsos. The R+-

Tree: A Dynamic Index for Multi-Dimensional Objects. In Proceedings of the

13th International Conference on Very Large Data Bases, VLDB ’87, pages

507–518, 1987.

[Simitsis 2009] Alkis Simitsis, Kevin Wilkinson, Malu Castellanos and Umeshwar

Dayal. QoX-driven ETL design: reducing the cost of ETL consulting engage-

ments. In Proceedings of the 2009 ACM SIGMOD International Conference

on Management of data, SIGMOD ’09, pages 953–960, 2009.

134

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Sismanis 2002] Yannis Sismanis, Antonios Deligiannakis and Yannis Roussopou-

los Nickand Kotidis. Dwarf: shrinking the PetaCube. In Proceedings of the

2002 ACM SIGMOD International Conference on Management of data, SIG-

MOD ’02, pages 464–475, New York, NY, USA, 2002. ACM.

[Sismanis 2003] Yannis Sismanis, Antonios Deligiannakis, Yannis Kotidis and Nick

Roussopoulos. Hierarchical Dwarfs for the rollup cube. In Proceedings of the

6th ACM Intenrational workshop on Data Warehousing and OLAP, DOLAP

’03, NY, USA, 2003.

[Theodoratos 1999] Dimitri Theodoratos and Timos K. Sellis. Dynamic Data Ware-

house Design. In Proceedings of the First International Conference on Data

Warehousing and Knowledge Discovery, DaWaK ’99, pages 1–10, London, UK,

UK, 1999. Springer-Verlag.

[Thiele 2009] Maik Thiele, Andreas Bader and Wolfgang Lehner. Multi-objective

scheduling for real-time data warehouses. Computer Science - Research and

Development, vol. 24, pages 137–151, 2009.

[Thiele 2010] Maik Thiele and Wolfgang Lehner. Evaluation of Load Scheduling

Strategies for Real-Time Data Warehouse Environments. In Enabling Real-

Time Business Intelligence, volume 41 of Lecture Notes in Business Informa-

tion Processing, pages 84–99. Springer Berlin Heidelberg, 2010.

[Thomsen 2008] Christian Thomsen, Torben Bach Pedersen and Wolfgang Lehner.

RiTE: Providing On-Demand Data for Right-Time Data Warehousing. In

Proceedings of the 2008 IEEE 24th International Conference on Data Engi-

neering, ICDE ’08, pages 456–465, 2008.

[TPC 2011] TPC. TPC Benchmarks. http://www.tpc.org/information/

benchmarks.asp, 2001 - 2011. Accessed: 03/16/2012.

[Vassilakopoulos 1993] M Vassilakopoulos, Y Manolopoulos and K Economou. Over-

lapping quadtrees for the representation of similar images. Image and Vision

Computing, vol. 11, no. 5, pages 257 – 262, 1993.

[Vu 2009] Nguyen Hoang Vu and Vivekanand Gopalkrishnan. Epsilon Equitable Par-

tition: On Scheduling Data Loading and View Maintenance in Soft Real-time

Data Warehouses. In Sanjay Chawla, Kamalakar Karlapalem and Vikram

135

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

http://www.tpc.org/information/benchmarks.asp
http://www.tpc.org/information/benchmarks.asp

Pudi, editeurs, Proceedings of 15th International Conference on Management

of Data, COMAD ’09. Computer Society of India, 2009.

[Wang 2002] Wei Wang, Hongjun Lu, Jianlin Feng and Jeffrey Xu Yu. Condensed

Cube: An Efficient Approach to Reducing Data Cube Size. In Proceedings of

18th International Conference on Data Engineering, ICDE ’02, 2002.

[White 1996] David A. White and Ramesh Jain. Similarity Indexing with the SS-

tree. In Proceedings of the 12th International Conference on Data Engineer-

ing, ICDE ’96, pages 516–523, Washington, DC, USA, 1996. IEEE Computer

Society.

[Wrembel 2006] Robert Wrembel and Tadeusz Morzy. Managing and querying ver-

sions of multiversion data warehouse. In Proceedings of the 10th international

conference on Advances in Database Technology, EDBT’06, pages 1121–1124,

Berlin, Heidelberg, 2006. Springer-Verlag.

[Wu 1998] Ming-Chuan Wu and Alejandro P. Buchmann. Encoded Bitmap Indexing

for Data Warehouses. In Proceedings of the 14th International Conference on

Data Engineering, ICDE ’98, pages 220–230, 1998.

[Xi 2008] Jianqing Xi, Fuqiang Chen and Pingjian Zhang. A New Bitmap Index

and a New Data Cube Compression Technology. In Proceedings of the 8th

international conference on Computational Science and Its Applications, Part

II, ICCSA ’08, pages 1218–1228, 2008.

[Xiao 2009] Weiji Xiao and Jianqing Xi. CCBitmaps: A Space-Time Efficient Index

Structure for OLAP. In Proceedings of the 5th International Conference on

Advanced Data Mining and Applications, ADMA ’09, pages 729–735, 2009.

[You 2006] Byeong-Seob You, Dong-Wook Lee, Sang-Hun Eo, Jae-Dong Lee and Hae-

Young Bae. Hybrid index for spatio-temporal OLAP operations. pages 110–118,

2006.

[Yu-cai 2004] Feng Yu-cai, Chen Chang-qing, Feng Jian-lin and Xiang Long-gang.

Fast computation of sparse data cubes with constraints. Wuhan University

Journal of Natural Sciences, vol. 9, pages 167–172, 2004.

136

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

[Zhang 1999] Chuan Zhang and Jian Yang. Genetic Algorithm for Materialized View

Selection in Data Warehouse Environments. In Proceedings of the 1st Inter-

national Conference on Data Warehousing and Knowledge Discovery, DaWaK

’99, pages 116–125, 1999.

[Zhang 2008] Lei Zhang and Xiao-Guang Hong. Dynamic On-Line Updating Solution

for CURE Cubes. In Fuzzy Systems and Knowledge Discovery, 2008. FSKD

’08. Fifth International Conference on, volume 5, pages 396 –400, oct. 2008.

[Zhou 2008] Kun Zhou, Qiming Hou, Rui Wang and Baining Guo. Real-time KD-tree

construction on graphics hardware. ACM Transactions on Graphics, vol. 27,

no. 5, pages 126:1–126:11, December 2008.

[Zuters 2011] Janis Zuters. Near Real-Time Data Warehousing with Multi-stage

Trickle and Flip. In Perspectives in Business Informatics Research, volume 90

of Lecture Notes in Business Information Processing, pages 73–82. Springer

Berlin Heidelberg, 2011.

137

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

Last Name : Ahmed Defense Data : 18/02/2013

First Name : Usman

Title : Dynamic cubing for hierarchical multidimensional data space

Nature : PhD Order No. : 2013ISAL0011

Ecole Doctorale : InfoMaths

Speciality : Computer Science

Abstract :

Data warehouses are being used in many applications since quite a long time. Traditionally, new
data in these warehouses is loaded through offline bulk updates which implies that latest data is
not always available for analysis. This, however, is not acceptable in many modern applications
(such as intelligent building, smart grid etc.) that require the latest data for decision making.
These modern applications necessitate real-time fast atomic integration of incoming facts in data
warehouse. Moreover, the data defining the analysis dimensions, stored in dimension tables of these
warehouses, also needs to be updated in real-time, in case of any change. In this thesis, such real-
time data warehouses are defined as dynamic data warehouses. We propose a data model for these
dynamic data warehouses and present the concept of Hierarchical Hybrid Multidimensional Data
Space (HHMDS) which constitutes of both ordered and non-ordered hierarchical dimensions. The
axes of the data space are non-ordered which help their dynamic evolution without any need of
reordering. We define a data grouping structure, called Minimum Bounding Space (MBS), that
helps efficient data partitioning of data in the space. Various operators, relations and metrics
are defined which are used for the optimization of these data partitions and the analogies among
classical OLAP concepts and the HHMDS are defined. We propose efficient algorithms to store
summarized or detailed data, in form of MBS, in a tree structure called DyTree. Algorithms for
OLAP queries over the DyTree are also detailed. The nodes of DyTree, holding MBS with associated
aggregated measure values, represent materialized sections of cuboids and tree as a whole is a
partially materialized and indexed data cube which is maintained using online atomic incremental
updates. We propose a methodology to experimentally evaluate partial data cubing techniques and
a prototype implementing this methodology is developed. The prototype lets us experimentally
evaluate and simulate the structure and performance of the DyTree against other solutions. An
extensive study is conducted using this prototype which shows that the DyTree is an efficient and
effective partial data cubing solution for a dynamic data warehousing environment.

Keywords : OLAP, Partial Views Materialization, Multidimensional data indexing, Data Cube,

Real-Time Data Warehouse

Research Laboratory : Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS)

PhD Supervisors : Maryvonne Miquel, Anne Tchounikine

President of Jury :

Composition of Jury : Ladjel Bellatreche (Reviewer), Maryvonne Miquel (Co-supervisor),

Jean-Marc Petit (Examiner), Franck Ravat (Examiner),

Anne Tchounikine (Co-supervisor), Karine Zeitouni (Reviewer),

Estaban Zimányi (Examiner)

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

NOM : AHMED Data de Soutenance : 18/02/2013

Prénom : Usman

Intitulé : Dynamic cubing for hierarchical multidimensional data space

Nature : Doctorat N° D’ordre : 2013ISAL0011

Ecole Doctorale : InfoMaths

Spécialité : Informatique

Résumé :

De nombreuses applications décisionnelles reposent sur des entrepôts de données. Ces entrepôts permettent

le stockage de données multidimensionnelles historisées qui sont ensuite analysées grâce à des outils OLAP.

Traditionnellement, les nouvelles données dans ces entrepôts sont chargées grâce à des processus d’alimen-

tation réalisant des insertions en bloc, déclenchés périodiquement lorsque l’entrepôt est hors-ligne. Une telle

stratégie implique que d’une part les données de l’entrepôt ne sont pas toujours à jour, et que d’autre part

le système de décisionnel n’est pas continuellement disponible. Or cette latence n’est pas acceptable dans

certaines applications modernes, tels que la surveillance de bâtiments instrumentés dits "intelligents", la

gestion des risques environnementaux etc., qui exigent des données les plus récentes possible pour la prise

de décision. Ces applications temps réel requièrent l’intégration rapide et atomique des nouveaux faits dans

l’entrepôt de données. De plus, ce type d’applications opérant dans des environnements fortement évolutifs,

les données définissant les dimensions d’analyse elles-mêmes doivent fréquemment être mises à jour. Dans

cette thèse, de tels entrepôts de données sont qualifiés d’entrepôts de données dynamiques. Nous proposons

un modèle de données pour ces entrepôts dynamiques et définissons un espace hiérarchique de données

appelé Hierarchical Hybrid Multidimensional Data Space (HHMDS). Un HHMDS est constitué indifférem-

ment de dimensions ordonnées et/ou non ordonnées. Les axes de l’espace de données sont non-ordonnés afin

de favoriser leur évolution dynamique. Nous définissons une structure de regroupement de données, appelé

Minimum Bounding Space (MBS), qui réalise le partitionnement efficace des données dans l’espace. Des

opérateurs, relations et métriques sont définis pour permettre l’optimisation de ces partitions. Nous pro-

posons des algorithmes pour stocker efficacement des données agrégées ou détaillées, sous forme de MBS,

dans une structure d’arbre appelée le DyTree. Les algorithmes pour requêter le DyTree sont également four-

nis. Les nœuds du DyTree, contenant les MBS associés à leurs mesures agrégées, représentent des sections

matérialisées de cuboïdes, et l’arbre lui-même est un hypercube partiellement matérialisé maintenu en ligne

à l’aide des mises à jour incrémentielles. Nous proposons une méthodologie pour évaluer expérimentalement

cette technique de matérialisation partielle ainsi qu’un prototype. Le prototype nous permet d’évaluer la

structure et la performance du DyTree par rapport aux autres solutions existantes. L’étude expérimentale

montre que le DyTree est une solution efficace pour la matérialisation partielle d’un cube de données dans

un environnement dynamique.

MOTS-CLES : OLAP, Matérialisation partielle, Index multidimensionnel, Cube de données,

Entrepôt de données temps-réel

Laboratoire de Recherche : Laboratoire d’InfoRmatique en Image et Systèmes d’information (LIRIS)

Directerur(s) de Thèse : Maryvonne MIQUEL, Anne TCHOUNIKINE

Président de Jury :

Composition du Jury : Ladjel BELLATRECHE (Rapporteur), Maryvonne MIQUEL (Co-dir. de thèse),

Jean-Marc PETIT (Examinateur), Franck RAVAT (Examinateur),

Anne TCHOUNIKINE (Co-dir. de thèse), Karine ZEITOUNI (Rapporteur),

Estaban ZIMANYI (Examinateur)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0011/these.pdf

© [U. Ahmed], [2012], INSA de Lyon, tous droits réservés

	Notice XML
	Page de titre
	Acknowledgements
	Abstract
	Résumé
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Motivation
	Positioning our Research Work
	Problems and Challenges
	Contribution
	Organization of the Thesis

	Literature Review
	Introduction
	Real-Time ETL
	Process Improvement
	Updates and Queries Scheduling
	Concurrency Control
	Performance Measurement

	Data Cubing
	Partial Data Cubing
	Space Efficient Data Cubing
	Data Cubing in a Dynamic Environment

	Data Indexing
	Data Indexing for Multidimensional Databases
	Space Partitioning Techniques
	Data Partitioning Techniques

	Data Indexing for Data Warehouses and OLAP
	Bitmap based Indexing Techniques
	Tree based Indexing Techniques
	Graph based Indexing Technique
	Hash Table based Indexing Technique

	Data Indexing in Partially or Non Ordered Data Spaces

	Conclusion

	Mathematical Model for HHMDS
	Introduction
	Illustrating Toy Example
	Data Model
	Hierarchical Dimensions
	Hierarchical Multidimensional Data Space

	Algebra for HHMDS
	Operators
	Operators for Dimension Members
	Operators for MBS

	Relations
	Metrics

	Conclusion

	The DyTree
	Introduction
	Structure of the DyTree
	Elements of DyTree
	Input Parameters for the DyTree

	Constructing a DyTree
	Insert
	Split
	Running Example

	Discussion on the DyTree
	Creation of Materialized Views
	Dense Data Partitions

	Querying the DyTree
	Range Query
	Point Query
	Group-by Query
	Running Example

	Conclusion

	Experimental Evaluation
	Methodology
	Criteria for Experimental Evaluation
	Outline of the Experimental Evaluation Workflow

	Inputs to the Workflow
	Data Sets
	Schema of Star Schema Benchmark Data Set
	Schema of Synthetic Data Sets
	Data Set Parameters
	Synthesis of Data Sets

	Queries Set
	Algorithm Input Parameters

	Outputs of the Workflow
	Performance Metrics
	Behavioral Metrics
	Metrics for Tree Structure
	Metrics for Nodes Structure

	Synthesis of the Workflow
	Experimental Results and Discussion
	Performance Comparison with the DC-Tree
	Atomic Facts Insertion and Tree Construction
	Query Response Time

	Effect of Varying Algorithm Input Parameters
	Effect of Varying Overlap Limit
	Effect of Varying Directory Nodes Capacity

	Scaling in High Dimensional Data Space
	Effect of Varying the Data Sets Density
	Effect of Delayed Insertion

	The Prototype
	Data Warehouse Schema Building and Usage
	Data Set Generation
	Queries Set Generation
	Tree Construction and Visualization
	Querying
	Data and Views Visualization
	Running a Set of Experiments

	Conclusion

	General Conclusion
	Contribution Summary
	Discussion
	Strong Points
	Limitations

	Enhancements and Extensions
	Current Perspectives
	Theoretical Cost Model
	Experiments with Real-World Data Sets
	The Prototype Enhancement
	Towards a Benchmark

	Future Directions
	Support For Irregular Dimension Hierarchies
	Considering other Types of Ordering
	Favoring the Appearance of Certain MBS

	Final Words

	Nomenclature
	References
	Folio administratif

