A. Girard-egrot, G. Karp, J. Bouharmont, and J. C. Wissocq, Lipides membranaires, p.850, 2004.

L. M. Prescott, J. P. Harley, D. A. Klein, C. M. Bacq-calberg, and J. Dusard, Microbiologie ème édition française, p.1164, 2003.

D. Robert and B. Vian, Elements de Biologie Cellulaire 3ème édition, Doin, p.428, 2004.

M. Maillet, Biologie Cellulaire 10ème édition, p.618, 2006.

P. Mazliak, Les membranes protoplasmiques. Doin. 195p, 1971.

J. Callen, Biologie Cellulaire -Des molécules aux organismes. Dunod, p.475, 1999.

P. L. Yeagle, The Membranes of Cells 2ème édition, p.349, 1993.

H. Palsdottir and C. Hunte, Lipids in membrane protein structures, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1666, issue.1-2, pp.2-18, 2004.
DOI : 10.1016/j.bbamem.2004.06.012

A. A. Spector and M. A. Yorek, Membrane lipid composition and cellular function, Journal of lipid research, vol.26, pp.1015-1050, 1985.

T. P. Mcmullen, R. N. Lewis, and R. N. Mcelhaney, Cholesterol???phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes, Current Opinion in Colloid & Interface Science, vol.8, issue.6, pp.459-468, 2004.
DOI : 10.1016/j.cocis.2004.01.007

E. M. Bevers, P. Comfurius, D. W. Dekkers, and R. F. Zwaal, Lipid translocation across the plasma membrane of mammalian cells, Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids, vol.1439, issue.3, pp.317-347, 1999.
DOI : 10.1016/S1388-1981(99)00110-9

C. Tribet and F. Vial, Flexible macromolecules attached to lipid bilayers: impact on fluidity, curvature, permeability and stability of the membranes, Soft Matter, vol.29, issue.16, p.68, 2008.
DOI : 10.1039/B708431P

S. Bartolami and D. J. Hanahan, Transduction du signal extracellulaireat <http://schwann.free.fr/transduction_du_signal.htm> 16, p.214, 1997.

A. Ono, S. D. Ablan, S. J. Lockett, K. Nagashima, and E. O. Freed, Phosphatidylinositol (4,5) bisphosphate regulates HIV-1 Gag targeting to the plasma membrane, Proceedings of the National Academy of Sciences, vol.101, issue.41, pp.14889-14894, 2004.
DOI : 10.1073/pnas.0405596101

J. S. Saad, Structural basis for targeting HIV-1 Gag proteins to the plasma membrane for virus assembly, Proceedings of the National Academy of Sciences, vol.103, issue.30, pp.11364-11369, 2006.
DOI : 10.1073/pnas.0602818103

G. M. Cooper, La cellule : une approche moléculaire, p.706, 1999.

L. Lipides, O. Oberle, V. Hoekstra, and D. , Fluorescent lipid probes: some properties and applications (a review) Chemistry and physics of lipids, pp.3-18, 2002.

D. K. Struck, D. Hoekstra, and R. E. Pagano, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, vol.20, issue.14, pp.4093-4102, 1981.
DOI : 10.1021/bi00517a023

R. Pagano and R. Watanabe, Use of N-[5-(5,7-dimethyl boron dipyrromethene difluoride-sphingomyelin to study membrane traffic along the endocytic pathway, Chemistry and Physics of Lipids, vol.102, issue.1-2, pp.55-63, 1999.
DOI : 10.1016/S0009-3084(99)00075-4

J. Aubin, Autofluorescence of viable cultured mammalian cells., Journal of Histochemistry & Cytochemistry, vol.27, issue.1, pp.36-43, 1979.
DOI : 10.1177/27.1.220325

M. Roederer and R. F. Murphy, Cell-by-cell autofluorescence correction for low signal-to-noise systems: Application to epidermal growth factor endocytosis by 3T3 fibroblasts, Cytometry, vol.259, issue.6, pp.558-65, 1986.
DOI : 10.1002/cyto.990070610

J. M. Rasmussen and A. Hermetter, Chemical synthesis of fluorescent glycero- and sphingolipids, Progress in Lipid Research, vol.47, issue.6, pp.436-460, 2008.
DOI : 10.1016/j.plipres.2008.05.002

I. Boldyrev and J. G. Molotkovsky, A synthesis and properties of new 4,4-difluoro-3a,4a-diaza-s-indacene (BODIPY)-labeled lipids, Russian Journal of Bioorganic Chemistry, vol.32, issue.1, pp.78-83, 2006.
DOI : 10.1134/S1068162006010080

N. G. Lipsky and R. E. Pagano, Intracellular translocation of fluorescent sphingolipids in cultured fibroblasts: endogenously synthesized sphingomyelin and glucocerebroside analogues pass through the Golgi apparatus en route to the plasma membrane, The Journal of Cell Biology, vol.100, issue.1, pp.27-34, 1985.
DOI : 10.1083/jcb.100.1.27

R. E. Pagano, O. C. Martin, H. C. Kang, and R. P. Haugland, A novel fluorescent ceramide analogue for studying membrane traffic in animal cells: accumulation at the Golgi apparatus results in altered spectral properties of the sphingolipid precursor, The Journal of Cell Biology, vol.113, issue.6, pp.1267-79, 1991.
DOI : 10.1083/jcb.113.6.1267

I. Boldyrev, New BODIPY lipid probes for fluorescence studies of membranes, The Journal of Lipid Research, vol.48, issue.7, pp.1518-1550, 2007.
DOI : 10.1194/jlr.M600459-JLR200

R. Rosseto, C. M. Tcacenco, R. Ranganathan, and J. Hajdu, Synthesis of phosphatidylcholine analogues derived from glyceric acid: a new class of biologically active phospholipid compounds, Tetrahedron Letters, vol.49, issue.21, pp.3500-3503, 2008.
DOI : 10.1016/j.tetlet.2008.03.084

L. Davenport, B. Shen, T. W. Joseph, and M. P. Straher, A novel fluorescent coronenyl-phospholipid analogue for investigations of submicrosecond lipid fluctuations, Chemistry and Physics of Lipids, vol.109, issue.2, pp.145-156, 2001.
DOI : 10.1016/S0009-3084(00)00214-0

R. A. Vishwakarma, New fluorescent probes reveal that flippase-mediated flip-flop of phosphatidylinositol across the endoplasmic reticulum membrane does not depend on the stereochemistry of the lipid, Organic & Biomolecular Chemistry, vol.172, issue.7, pp.1275-1283, 2005.
DOI : 10.1039/b500300h

A. Chaudhary, I. , J. C. Witke, W. Kwiatkowski, D. J. Prestwichl et al., Probing the phosphoinositide 4,5-bisphosphate binding site of human profilin I, Chemistry & Biology, vol.5, issue.5, pp.273-281, 1998.
DOI : 10.1016/S1074-5521(98)90620-2

J. Chen, A. Profit, and G. D. Prestwich, Synthesis of Photoactivatable 1,2-O-Diacyl-sn-glycerol Derivatives of 1-L-Phosphatidyl-D-myo-inositol 4 The Journal of organic chemistry 61, PtdInsPPtdInsP, vol.34, issue.23, pp.5-5, 1996.

J. Monti, S. T. Christian, and W. Shaw, a Synthesis and properties of a highly fluorescent derivative of phosphatidylethanolamine, Journal of lipid research, vol.19, pp.222-230, 1978.

T. Tabarin, A. Martin, R. J. Forster, and T. Keyes, Poly-ethylene glycol induced super-diffusivity in lipid bilayer membranes, Soft Matter, vol.8, issue.33, pp.8743-8751, 2012.
DOI : 10.1039/c2sm25742d

P. Jolimaître, Synthesis and preliminary physical applications of a rhodamin-biotin phosphatidylethanolamine, an easy attainable lipid double probe. Chemistry and physics of lipids 133, pp.215-238, 2005.

X. Sun, H. Liu, J. M. Orban, L. Sun, and E. L. Chaikof, Synthesis and Terminal Functionalization of a Polymerizable Phosphatidylethanolamine, Bioconjugate Chemistry, vol.12, issue.5, pp.673-677, 2001.
DOI : 10.1021/bc015502w

. Petrossian, B. Kantor, and J. Owicki, Synthesis and characterization of a highly fluorescent peptidylphosphatidylethanolamine, Journal of lipid research, vol.26, pp.767-73, 1985.

R. Koynova, H. S. Rosenzweig, L. Wang, M. Wasielewski, and R. C. Macdonald, Novel fluorescent cationic phospholipid,.pdf. Chemistry and physics of lipids 129, pp.183-194, 2004.

G. Schwarzmann, M. Wendeler, and K. Sandhoff, Synthesis of novel NBD-GM1 and NBD-GM2 for the transfer activity of GM2-activator protein by a FRET-based assay system, Glycobiology, vol.15, issue.12, pp.1302-1313, 2005.
DOI : 10.1093/glycob/cwj018

N. Kamaly, A novel bimodal lipidic contrast agent for cellular labelling and tumour MRI, Org. Biomol. Chem., vol.90, issue.1, pp.201-212, 2010.
DOI : 10.1039/B910561A

J. Lutz and H. G. Börner, Modern trends in polymer bioconjugates design, Progress in Polymer Science, vol.33, issue.1, pp.1-39, 2008.
DOI : 10.1016/j.progpolymsci.2007.07.005

H. G. Börner, Strategies exploiting functions and self-assembly properties of bioconjugates for polymer and materials sciences, Progress in Polymer Science, vol.34, issue.9, pp.811-851, 2009.
DOI : 10.1016/j.progpolymsci.2009.05.001

D. Lambert and B. , Polymer???Oligonucleotide Conjugate Synthesis from an Amphiphilic Block Copolymer. Applications to DNA Detection on Microarray, Bioconjugate Chemistry, vol.16, issue.2, pp.265-74, 2005.
DOI : 10.1021/bc049791a

Q. Wang, J. S. Dordick, and R. J. Linhardt, Synthesis and Application of Carbohydrate-Containing Polymers, Chemistry of Materials, vol.14, issue.8, pp.3232-3244, 2002.
DOI : 10.1021/cm0200137

V. Vázquez-dorbatt, Z. P. Tolstyka, C. Chang, and H. Maynard, Synthesis of a Pyridyl Disulfide End-Functionalized Glycopolymer for Conjugation to Biomolecules and Patterning on Gold Surfaces, Biomacromolecules, vol.10, issue.8, pp.2207-2219, 2009.
DOI : 10.1021/bm900395h

A. Jonker, Peptide- and Protein-Based Hydrogels, Chemistry of Materials, vol.24, issue.5, pp.759-773, 2012.
DOI : 10.1021/cm202640w

H. Sun, ??-Amino Acid Containing Degradable Polymers as Functional Biomaterials: Rational Design, Synthetic Pathway, and Biomedical Applications, Biomacromolecules, vol.12, issue.6, pp.1937-55, 2011.
DOI : 10.1021/bm200043u

M. Kwak and A. Herrmann, Nucleic Acid/Organic Polymer Hybrid Materials: Synthesis, Superstructures, and Applications, Angewandte Chemie International Edition, vol.48, issue.46, pp.8574-87, 2010.
DOI : 10.1002/anie.200906820

D. J. Gary, N. Puri, and Y. Won, Polymer-based siRNA delivery: Perspectives on the fundamental and phenomenological distinctions from polymer-based DNA delivery, Journal of Controlled Release, vol.121, issue.1-2, pp.64-73, 2007.
DOI : 10.1016/j.jconrel.2007.05.021

S. Sriwongsitanont and M. Ueno, Physicochemical Properties of PEG-Grafted Liposomes, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.50, issue.9, pp.1238-1282, 2002.
DOI : 10.1248/cpb.50.1238

Y. Teramura, Y. Kaneda, and H. Iwata, Islet-encapsulation in ultra-thin layer-by-layer membranes of poly(vinyl alcohol) anchored to poly(ethylene glycol)???lipids in the cell membrane, Biomaterials, vol.28, issue.32, pp.4818-4843, 2007.
DOI : 10.1016/j.biomaterials.2007.07.050

. Zalipsky, Lipid-Polymer conjugates, US Patent, vol.395, issue.5, p.619, 1995.

H. Kitano and K. Ohno, Sugar-Containing Lipids Prepared by Using a Lipophilic Radical Initiator: Interfacial Recognition by Lectin As Studied by Using the Multiple Internal Reflection Fluorescence Method, Langmuir, vol.10, issue.11, pp.4131-4135, 1994.
DOI : 10.1021/la00023a036

Y. Teramura, L. N. Minh, T. Kawamoto, and H. Iwata, Microencapsulation of Islets with Living Cells Using PolyDNA-PEG-Lipid Conjugate, Bioconjugate Chemistry, vol.21, issue.4, pp.792-798, 2010.
DOI : 10.1021/bc900494x

A. A. Kale and V. P. Torchilin, Design, Synthesis, and Characterization of pH-Sensitive PEG???PE Conjugates for Stimuli-Sensitive Pharmaceutical Nanocarriers:?? The Effect of Substitutes at the Hydrazone Linkage on the pH Stability of PEG???PE Conjugates, Bioconjugate Chemistry, vol.18, issue.2, pp.363-70, 2007.
DOI : 10.1021/bc060228x

S. Takeoka, K. Mori, H. Ohkawa, K. Sou, and E. Tsuchida, Synthesis and Assembly of Poly(ethylene glycol)???Lipids with Mono-, Di-, and Tetraacyl Chains and a Poly(ethylene glycol) Chain of Various Molecular Weights, Journal of the American Chemical Society, vol.122, issue.33, pp.7927-7935, 2000.
DOI : 10.1021/ja000835+

J. M. Metselaar, -Amino Acid-Based Biodegradable Polymer???Lipid Conjugates for the Development of Long-Circulating Liposomes with Effective Drug-Targeting Capacity, Bioconjugate Chemistry, vol.14, issue.6, pp.1156-64, 2003.
DOI : 10.1021/bc0340363

URL : https://hal.archives-ouvertes.fr/jpa-00214077

S. Zalipsky, Synthesis of an end-group functionalized polyethylene glycol-lipid conjugate for preparation of polymer-grafted liposomes, Bioconjugate Chemistry, vol.4, issue.4, pp.296-299, 1993.
DOI : 10.1021/bc00022a008

D. N. Hay, P. G. Rickert, S. Seifert, and . Firestone, -isopropylacrylamide)???Lipid Conjugate, Journal of the American Chemical Society, vol.126, issue.8, pp.2290-2291, 2004.
DOI : 10.1021/ja039023e

URL : https://hal.archives-ouvertes.fr/halshs-00607328

M. C. Woodle, C. M. Engbers, and S. Zalipsky, New Amphipatic Polymer-Lipid Conjugates Forming Long-Circulating Reticuloendothelial System-Evading Liposomes, Bioconjugate Chemistry, vol.5, issue.6, pp.493-499, 1994.
DOI : 10.1021/bc00030a001

H. Kitano, Y. Akatsuka, and N. Ise, pH-responsive liposomes which contain amphiphiles prepared by using lipophilic radical initiator, Macromolecules, vol.24, issue.1, pp.42-46, 1991.
DOI : 10.1021/ma00001a007

F. M. Winnik, A. R. Davidson, and G. Hamer, Amphiphilic poly(N-isopropylacrylamides) prepared by using a lipophilic radical initiator: synthesis and solution properties in water, Macromolecules, vol.25, issue.7, pp.1876-1880, 1992.
DOI : 10.1021/ma00033a006

M. Einzmann and W. Binder, Novel functional initiators for oxazoline polymerization, Journal of Polymer Science Part A: Polymer Chemistry, vol.201, issue.10, pp.2821-2831, 2001.
DOI : 10.1002/pola.1262

H. Götz, Synthesis of lipo-glycopolymer amphiphiles by nitroxide-mediated living free-radical polymerization, Journal of Polymer Science Part A: Polymer Chemistry, vol.12, issue.20, pp.3379-3391, 2002.
DOI : 10.1002/pola.10428

M. Bathfield, Synthesis of Lipid-??-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer Particle Assemblies, Macromolecules, vol.41, issue.22, pp.8346-8353, 2008.
DOI : 10.1021/ma801567c

URL : https://hal.archives-ouvertes.fr/hal-00373641

K. Ohno, T. Fukuda, and H. Kitano, Free radical polymerization of a sugar residue-carrying styryl monomer with a lipophilic alkoxyamine initiator: synthesis of a well-defined novel glycolipid, Macromolecular Chemistry and Physics, vol.199, issue.10, pp.2193-2197, 1998.
DOI : 10.1002/(SICI)1521-3935(19981001)199:10<2193::AID-MACP2193>3.0.CO;2-D

P. Théato, R. Zentel, and S. Schwarz, Synthesis of End-Functionalized Lipopolymers and Their Characterization with Regard to Polymer-Supported Lipid Membranes, Macromolecular Bioscience, vol.2, issue.8, pp.387-394, 2002.
DOI : 10.1002/1616-5195(200211)2:8<387::AID-MABI387>3.0.CO;2-5

P. Théato, E. Preis, M. Brehmer, and R. Zentel, New lipopolymers for the fixation of lipid bilayers, Macromolecular Symposia, vol.164, issue.1, pp.257-267, 2001.
DOI : 10.1002/1521-3900(200102)164:1<257::AID-MASY257>3.0.CO;2-M

D. M. Haddleton, R. Edmonds, A. M. Heming, E. J. Kelly, and D. Kukulj, Atom transfer polymerisation with glucose and cholesterol derived initiators, New Journal of Chemistry, vol.23, issue.5, pp.477-479, 1999.
DOI : 10.1039/a901929d

L. Hespel, Synthesis of pH-sensitive micelles from linseed oil using atom transfer radical polymerisation (ATRP), Polymer, vol.53, issue.20, pp.4344-4352, 2012.
DOI : 10.1016/j.polymer.2012.07.041

A. Bajaj, P. Kondaiah, and S. Bhattacharya, Synthesis and Gene Transfection Efficacies of PEI???Cholesterol-Based Lipopolymers, Bioconjugate Chemistry, vol.19, issue.8, pp.1640-51, 2008.
DOI : 10.1021/bc700381v

T. Konno and K. Ishihara, Cell-Container Prepared with Cytocom pa tibie Phospholipid Polymers for Cell and Tissue Engineering, Polymers for Biomedical Applications -ACS Symposium Series, vol.977, pp.336-345, 2008.
DOI : 10.1021/bk-2008-0977.ch020

K. Nakai, K. Morigaki, and Y. Iwasashi, Molecular recognition on fluidic lipid bilayer microarray corralled by well-defined polymer brushes, Soft Matter, vol.55, issue.23, pp.5937-5943, 2010.
DOI : 10.1039/c0sm00086h

X. Feng, Y. Tang, X. Duan, L. Liu, and S. Wang, Lipid-modified conjugated polymernanoparticles for cell imaging and transfection, J. Mater. Chem., vol.126, issue.7, pp.1312-1316, 2010.
DOI : 10.1021/la901444c

F. Dutertre, P. Pennarun, O. Colombani, and E. Nicol, Straightforward synthesis of poly(lauryl acrylate)-b-poly(stearyl acrylate) diblock copolymers by ATRP, European Polymer Journal, vol.47, issue.3, pp.343-351, 2011.
DOI : 10.1016/j.eurpolymj.2010.12.003

S. Yusa, K. Fukuda, T. Yamamoto, K. Ishihara, and Y. Morishima, Synthesis of Well-Defined Amphiphilic Block Copolymers Having Phospholipid Polymer Sequences as a Novel Biocompatible Polymer Micelle Reagent, Biomacromolecules, vol.6, issue.2, pp.663-70, 2005.
DOI : 10.1021/bm0495553

G. Çayli and M. A. Meier, Polymers from renewable resources: Bulk ATRP of fatty alcohol-derived methacrylates, European Journal of Lipid Science and Technology, vol.208, issue.9, pp.853-859, 2008.
DOI : 10.1002/ejlt.200800028

A. Neamnark, Aliphatic Lipid Substitution on 2 kDa Polyethylenimine Improves Plasmid Delivery and Transgene Expression, Molecular Pharmaceutics, vol.6, issue.6, pp.1798-1815, 2009.
DOI : 10.1021/mp900074d

D. Wang, Novel Branched Poly(Ethylenimine)???Cholesterol Water-Soluble Lipopolymers for Gene Delivery, Biomacromolecules, vol.3, issue.6, pp.1197-207, 2002.
DOI : 10.1021/bm025563c

R. I. Mahato, M. Lee, S. Han, . Maheshwari, and S. W. Kim, Intratumoral Delivery of p2CMVmIL-12 Using Water-Soluble Lipopolymers, Molecular Therapy, vol.4, issue.2, pp.130-138, 2001.
DOI : 10.1006/mthe.2001.0425

H. So, R. I. Mahato, and S. W. Kim, Water-soluble lipopolymer for gene delivery, Bioconjugate chemistry, vol.12, pp.337-382, 2001.

C. Diab, F. M. Winnik, and C. Tribet, Enthalpy of Interaction and Binding Isotherms of Non-ionic Surfactants onto Micellar Amphiphilic Polymers (Amphipols), Langmuir, vol.23, issue.6, pp.3025-3060, 2007.
DOI : 10.1021/la062522j

F. Albertorio, Fluid and air-stable lipopolymer membranes for biosensor applications Langmuir : the ACS journal of surfaces and colloids 21 95. van Tilborg, G. a F. et al. Annexin A5-functionalized bimodal nanoparticles for MRI and fluorescence imaging of atherosclerotic plaques, Bioconjugate chemistry, vol.21, pp.7476-82, 2005.

A. P. Siegel, Compartmentalizing a lipid bilayer by tuning lateral stress in a physisorbed polymer-tethered membrane, Soft Matter, vol.40, issue.12, p.2723, 2010.
DOI : 10.1039/c001394c

C. C. Ng, Y. Cheng, and P. S. Pennefather, One-Step Synthesis of a Fluorescent Phospholipid???Hydrogel Conjugate for Driving Self-Assembly of Supported Lipid Membranes, Macromolecules, vol.34, issue.17, pp.5759-5765, 2001.
DOI : 10.1021/ma0100899

G. Rizzardo, E. Thang, and S. H. , Living Radical Polymerization by the RAFT Process, Australian Journal of Chemistry, vol.58, p.379, 2005.

J. Chiefari, Living Free-Radical Polymerization by Reversible Addition???Fragmentation Chain Transfer:?? The RAFT Process, Macromolecules, vol.31, issue.16, pp.5559-5562, 1998.
DOI : 10.1021/ma9804951

A. Favier and M. Charreyre, Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process, Macromolecular Rapid Communications, vol.12, issue.9, pp.653-692, 2006.
DOI : 10.1002/marc.200500839

A. B. Lowe and C. L. Mccormick, Reversible addition???fragmentation chain transfer (RAFT) radical polymerization and the synthesis of water-soluble (co)polymers under homogeneous conditions in organic and aqueous media, Progress in Polymer Science, vol.32, issue.3, pp.283-351, 2007.
DOI : 10.1016/j.progpolymsci.2006.11.003

A. Favier, F. D-'agosto, M. Charreyre, and C. Pichot, Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights, Polymer, vol.45, issue.23, pp.7821-7830, 2004.
DOI : 10.1016/j.polymer.2004.09.042

M. Charreyre, F. D-'agosto, A. Favier, C. Pichot, and B. Mandrand, biocompatible polymer for fixing bilogical ligands, pp.91451-91452, 2004.

M. Bathfield, F. D-'agosto, R. Spitz, M. Charreyre, and T. Delair, Versatile Precursors of Functional RAFT Agents. Application to the Synthesis of Bio-Related End-Functionalized Polymers, Journal of the American Chemical Society, vol.128, issue.8, pp.2546-2547, 2006.
DOI : 10.1021/ja057481c

D. 'agosto, F. Bathfield, M. Charreyre, and M. , Novel functionalised transfer agents for controlled radical polymerization RAFT, RAFT methods using said transfer agents and polymers obtainable thereby, pp.3782-3784, 2007.

M. Bathfield, Synthesis of Lipid-??-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer Particle Assemblies, Macromolecules, vol.41, issue.22, pp.8346-8353, 2008.
DOI : 10.1021/ma801567c

URL : https://hal.archives-ouvertes.fr/hal-00373641

D. 'agosto, F. Hughes, R. Charreyre, M. T. Pichot, C. Gilbert et al., Molecular Weight and Functional End Group Control by RAFT Polymerization of a Bisubstituted Acrylamide Derivative, Macromolecules, vol.36, issue.3, pp.621-629, 2003.
DOI : 10.1021/ma025646l

A. Favier, C. Barner-kowollik, T. P. Davis, and M. H. Stenzel, A Detailed On-Line FT

H. Nmr-spectroscopic, Investigation into Factors Causing Inhibition in Xanthate-Mediated Vinyl Acetate Polymerization Evidence for chain transfer in the atom transfer radical polymerization of butyl acrylate, Macromolecular Chemistry and Physics Macromol. Rapid Commun, vol.205, issue.21, pp.925-936, 2000.

M. J. Monteiro and H. De-brouwer, Intermediate Radical Termination as the Mechanism for Retardation in Reversible Addition???Fragmentation Chain Transfer Polymerization, Macromolecules, vol.34, issue.3, pp.349-352, 2001.
DOI : 10.1021/ma001484m

A. Favier, M. Charreyre, P. Chaumont, and C. Pichot, Study of the RAFT Polymerization of a Water-Soluble Bisubstituted Acrylamide Derivative. 1. Influence of the Dithioester Structure, Macromolecules, vol.35, issue.22, pp.8271-8280, 2002.
DOI : 10.1021/ma020550c

D. 'agosto, F. Charreyre, M. Pichot, and C. , Side-Product ofN-Acryloyloxysuccinimide Synthesis or Useful New Bifunctional Monomer?, Macromolecular Bioscience, vol.1, pp.322-328, 2001.

F. D. Agosto, M. Charreyre, L. Veron, M. Llauro, and C. Pichot, Kinetic Study of Free-Radical Solution Copoly- merization ofN-Acryloylmorpholine with an Activated Ester-Type Monomer,N-Acryloxysuccinimide, Macromolecular Chemistry and Physics, vol.202, issue.9, pp.1689-1699, 2001.
DOI : 10.1002/1521-3935(20010601)202:9<1689::AID-MACP1689>3.0.CO;2-P

W. Qin, Biocompatible Nanoparticles with Aggregation-Induced Emission Characteristics as Far-Red/Near-Infrared Fluorescent Bioprobes for In Vitro and In Vivo Imaging Applications, Advanced Functional Materials, vol.119, issue.4, pp.771-779, 2012.
DOI : 10.1002/adfm.201102191

N. Klonis, N. H. Quazi, L. W. Deady, A. B. Hughes, and L. Tilley, Characterization of a series of far-red-absorbing thiobarbituric acid oxonol derivatives as fluorescent probes for biological applications, Analytical Biochemistry, vol.317, issue.1, pp.47-58, 2003.
DOI : 10.1016/S0003-2697(03)00086-1

Z. Lu, Bright, Red Single-Molecule Emitters: Synthesis and Properties of Environmentally Sensitive Dicyanomethylenedihydrofuran (DCDHF) Fluorophores with Bisaromatic Conjugation, Chemistry of Materials, vol.21, issue.5, p.797, 2009.
DOI : 10.1021/cm801783f

N. Klonis, H. Wang, and N. Quazi, Characterization of a series of far red absorbing perylene diones: a new class of fluorescent probes for biological applications, Journal of fluorescence, vol.11, 2001.

J. Aubin, Autofluorescence of viable cultured mammalian cells., Journal of Histochemistry & Cytochemistry, vol.27, issue.1, pp.36-43, 1979.
DOI : 10.1177/27.1.220325

V. Pansare, S. Hejazi, W. Faenza, and R. K. Prud-'homme, Review of Long-Wavelength Optical and NIR Imaging Materials: Contrast Agents, Fluorophores, and Multifunctional Nano Carriers, Chemistry of Materials, vol.24, issue.5, pp.812-827, 2012.
DOI : 10.1021/cm2028367

M. Roederer and R. F. Murphy, Cell-by-cell autofluorescence correction for low signal-to-noise systems: Application to epidermal growth factor endocytosis by 3T3 fibroblasts, Cytometry, vol.259, issue.6, pp.558-65, 1986.
DOI : 10.1002/cyto.990070610

R. N. Dsouza, U. Pischel, and W. M. Nau, Fluorescent Dyes and Their Supramolecular Host/Guest Complexes with Macrocycles in Aqueous Solution, Chemical Reviews, vol.111, issue.12, pp.7941-80, 2011.
DOI : 10.1021/cr200213s

K. Rurack and M. Spieles, Fluorescence Quantum Yields of a Series of Red and Near-Infrared Dyes Emitting at 600???1000 nm, Analytical Chemistry, vol.83, issue.4, pp.1232-1274, 2011.
DOI : 10.1021/ac101329h

R. B. Mujumdar, L. Ernst, S. R. Mujumdar, C. J. Lewis, and S. Waggoner, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconjugate Chemistry, vol.4, issue.2, pp.105-116, 1993.
DOI : 10.1021/bc00020a001

C. Chen, Evolution of Red Organic Light-Emitting Diodes:?? Materials and Devices, Chemistry of Materials, vol.16, issue.23, pp.4389-4400, 2004.
DOI : 10.1021/cm049679m

G. Qian and Z. Wang, Near-Infrared Organic Compounds and Emerging Applications, Chemistry - An Asian Journal, vol.41, issue.5, pp.1006-1035, 2010.
DOI : 10.1002/asia.200900596

K. Kolmakov, Red-Emitting Rhodamine Dyes for Fluorescence Microscopy and Nanoscopy, Chemistry - A European Journal, vol.457, issue.1, pp.158-66, 2010.
DOI : 10.1002/chem.200902309

K. Kolmakov, A Versatile Route to Red-Emitting Carbopyronine Dyes for Optical Microscopy and Nanoscopy, European Journal of Organic Chemistry, vol.16, issue.19, pp.3593-3610, 2010.
DOI : 10.1002/ejoc.201000343

P. J. Roth, M. Haase, T. Basché, P. Theato, and R. Zentel, Synthesis of Heterotelechelic ??,?? Dye-Functionalized Polymer by the RAFT Process and Energy Transfer between the End Groups, Macromolecules, vol.43, issue.2, pp.895-902, 2010.
DOI : 10.1021/ma902391b

M. Saad, Receptor targeted polymers, dendrimers, liposomes: Which nanocarrier is the most efficient for tumor-specific treatment and imaging?, Journal of Controlled Release, vol.130, issue.2, pp.107-121, 2008.
DOI : 10.1016/j.jconrel.2008.05.024

X. Wang, Y. Zhang, Z. Zhu, and S. Liu, Fabrication of Fullerene-Containing Hybrid Vesicles via Supramolecular Self-Assembly of a Well-Defined Amphiphilic Block Copolymer Incorporated with a Single C60 Moiety at the Diblock Junction Point, Macromolecular Rapid Communications, vol.31, issue.4, pp.340-346, 2008.
DOI : 10.1002/marc.200700811

B. Milián and E. Ortí, Spectroscopic and theoretical study of push-pull chromophores containing thiophene-based quinonoid structures as electron spacers. The journal of physical chemistry, pp.12175-12183, 2003.

A. Tounsia and . Principe-physique-de-la-fluorescence, Fery-Forgues, S. & Lavabre, D. Are Fluorescence Quantum Yields So Tricky to Measure? A Demonstration Using Familiar Stationery Products, Journal of Chemical Education, vol.22, issue.76, p.1260, 1999.

M. Grabolle, Determination of the Fluorescence Quantum Yield of Quantum Dots: Suitable Procedures and Achievable Uncertainties, Analytical Chemistry, vol.81, issue.15, pp.6285-6294, 2009.
DOI : 10.1021/ac900308v

O. S. Wolfbeis, Fluorescence Methods and Applications: Spectroscopy, Imaging and Probes, New York Academy of Sciences, p.328, 2008.

L. D. Lavis and R. T. Raines, Bright Ideas for Chemical Biology, ACS Chemical Biology, vol.3, issue.3, pp.142-55, 2008.
DOI : 10.1021/cb700248m

S. J. Lord, Photophysical properties of acene DCDHF fluorophores: long-wavelength singlemolecule emitters designed for cellular imaging. The journal of physical chemistry, A, vol.111, pp.8934-8975, 2007.

B. Valeur, Molecular Fluorescence. Principles and Applications, 2001.

Z. Ning, Aggregation-induced Emission (AIE)-active Starburst Triarylamine Fluorophores as Potential Non-doped Red Emitters for Organic Light-emitting Diodes and Cl2 Gas Chemodosimeter, Advanced Functional Materials, vol.74, issue.18, pp.3799-3807, 2007.
DOI : 10.1002/adfm.200700649

H. Li, New aggregation-induced emission enhancement materials combined triarylamine and dicarbazolyl triphenylethylene moieties, Journal of Materials Chemistry, vol.15, issue.29, p.6103, 2010.
DOI : 10.1039/c0jm00599a

J. Luo, Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole, Chemical Communications, vol.381, issue.18, pp.1740-1741, 2001.
DOI : 10.1039/b105159h

W. Qin, Fluorescence Lifetime Standards for Time and Garry Rumbles and David Phillips, Analytical Chemistry, vol.79, pp.2137-2149, 2007.

F. J. Pavinatto, Cholesterol Mediates Chitosan Activity on Phospholipid Monolayers and Langmuir???Blodgett Films, Langmuir, vol.25, issue.17, pp.10051-61, 2009.
DOI : 10.1021/la901019p

E. Elizondo, Liposomes and Other Vesicular Systems, Progress in molecular biology and translational science, pp.1-52, 2011.
DOI : 10.1016/B978-0-12-416020-0.00001-2

J. Callen, Biologie Cellulaire -Des molécules aux organismes, 1999.

F. M. Menger and J. S. Keiper, Chemistry and physics of giant vesicles as biomembrane models, Current Opinion in Chemical Biology, vol.2, issue.6, pp.726-732, 1998.
DOI : 10.1016/S1367-5931(98)80110-5

V. Rosilio, G. Albrecht, Y. Okumura, J. Sunamoto, and A. Baszkin, Surface Properties and Miscibility of Monolayers of Dimyristoylphosphatidylcholine and Poly(Ethylene oxide) Lipids at the Water/Air Interface, Langmuir, vol.12, issue.10, pp.2544-2550, 1996.
DOI : 10.1021/la9507388

V. Rosilio, M. Boissonnade, J. Zhang, L. Jiang, and A. Baszkin, Penetration of Glucose Oxidase into Organized Phospholipid Monolayers Spread at the Solution/Air Interface, Langmuir, vol.13, issue.17, pp.4669-4675, 1997.
DOI : 10.1021/la970087a

J. Zhang, V. Rosilio, M. Goldmann, M. Boissonnade, and A. Baszkin, Adsorption of Glucose Oxidase into Lipid Monolayers. Effect of Lipid Chain Lengths on the Stability and Structure of Mixed Enzyme/Phospholipid Films, Langmuir, vol.16, issue.3, pp.1226-1232, 2000.
DOI : 10.1021/la990490c

S. Alexandre, V. Dérue, J. Valleton, F. Sommer, and T. Duc, High resolution imaging of lipid/protein Langmuir???Blodgett films by atomic force microscopy, Colloids and Surfaces B: Biointerfaces, vol.23, issue.2-3, pp.183-189, 2002.
DOI : 10.1016/S0927-7765(01)00252-1

P. S. Cremer, J. T. Groves, L. A. Kung, and S. G. Boxer, Writing and Erasing Barriers to Lateral Mobility into Fluid Phospholipid Bilayers, Langmuir, vol.15, issue.11, pp.3893-3896, 1999.
DOI : 10.1021/la981240j

P. S. Cremer and S. G. Boxer, Formation and Spreading of Lipid Bilayers on Planar Glass Supports, The Journal of Physical Chemistry B, vol.103, issue.13, pp.2554-2559, 1999.
DOI : 10.1021/jp983996x

E. Sackmann, Supported Membranes: Scientific and Practical Applications, Science, vol.271, issue.5245, pp.43-48, 1996.
DOI : 10.1126/science.271.5245.43

C. Hamai, T. Yang, S. Kataoka, P. S. Cremer, and S. M. Musser, Effect of Average Phospholipid Curvature on Supported Bilayer Formation on Glass by Vesicle Fusion, Biophysical Journal, vol.90, issue.4, pp.1241-1249, 2006.
DOI : 10.1529/biophysj.105.069435

S. Mornet, O. Lambert, E. Duguet, and A. Brisson, The Formation of Supported Lipid Bilayers on Silica Nanoparticles Revealed by Cryoelectron Microscopy, Nano Letters, vol.5, issue.2, pp.281-286, 2005.
DOI : 10.1021/nl048153y

URL : https://hal.archives-ouvertes.fr/hal-00022099

J. Liu, A. Stace-naughton, X. Jiang, and C. J. Brinker, Porous Nanoparticle Supported Lipid Bilayers (Protocells) as Delivery Vehicles, Journal of the American Chemical Society, vol.131, issue.4, pp.1354-1359, 2009.
DOI : 10.1021/ja808018y

P. Walde and S. Ichikawa, Enzymes inside lipid vesicles: preparation, reactivity and applications, Biomolecular Engineering, vol.18, issue.4, pp.143-77, 2001.
DOI : 10.1016/S1389-0344(01)00088-0

J. M. Metselaar, -Amino Acid-Based Biodegradable Polymer???Lipid Conjugates for the Development of Long-Circulating Liposomes with Effective Drug-Targeting Capacity, Bioconjugate Chemistry, vol.14, issue.6, pp.1156-64, 2003.
DOI : 10.1021/bc0340363

URL : https://hal.archives-ouvertes.fr/jpa-00214077

U. Pleyer, J. Grammer, P. Kosmidis, and D. G. Ruckert, Analysis of interactions between the corneal epithelium and liposomes: Qualitative and quantitative fluorescence studies of a corneal epithelial cell line, Survey of Ophthalmology, vol.39, pp.3-16, 1995.
DOI : 10.1016/S0039-6257(05)80068-2

D. D. Lasic, The mechanism of vesicle formation, Biochemical Journal, vol.256, issue.1, pp.1-11, 1988.
DOI : 10.1042/bj2560001

S. M. Gruner, R. P. Lenk, S. Janoff, and M. J. Ostro, Novel multilayered lipid vesicles: comparison of physical characteristics of multilamellar liposomes and stable plurilamellar vesicles, Biochemistry, vol.24, issue.12, pp.2833-2875, 1985.
DOI : 10.1021/bi00333a004

H. Rongen, . Bult, and W. P. Van-bennekom, Liposomes and immunoassays, Journal of Immunological Methods, vol.204, issue.2, pp.105-138, 1997.
DOI : 10.1016/S0022-1759(97)00041-0

L. T. Boni, Interleukin-2-induced small unilamellar vesicle coalescence, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1514, issue.1, pp.127-165, 2001.
DOI : 10.1016/S0005-2736(01)00377-7

M. R. Sancho, P. Boullanger, and R. Létoublon, Incorporation of D-glucosamine alkyi glucopyranosides into the bilayer of small unilamellar vesicles of egg phosphatidyl choline, Colloids and Surfaces B: Biointerfaces, vol.1, pp.373-381, 1993.

R. L. Hamilton, J. Goerke, L. S. Guo, M. C. Williams, and R. J. Havel, Unilamellar liposomes made with the French pressure cell: a simple preparative and semiquantitative technique, Journal of lipid research, vol.21, pp.981-92, 1980.

H. Ferreira, M. Lucio, P. G. De-castro, J. L. Lima, and S. Reis, Partition and location of nimesulide in EPC liposomes: a spectrophotometric and fluorescence study, Analytical and Bioanalytical Chemistry, vol.377, issue.2, pp.293-298, 2003.
DOI : 10.1007/s00216-003-2089-5

A. Yamazaki, F. M. Winnik, R. M. Cornelius, and J. L. Brash, Modification of liposomes with N-substituted polyacrylamides: identification of proteins adsorbed from plasma, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1421, issue.1, pp.103-115, 1999.
DOI : 10.1016/S0005-2736(99)00117-0

M. Ueno and S. Sriwongsitanont, Effect of PEG lipid on fusion and fission of phospholipid vesicles in the process of freeze-thawing, Polymer, vol.46, issue.4, pp.1257-1267, 2005.
DOI : 10.1016/j.polymer.2004.11.050

A. Moscho, O. W. Orwar, D. T. Chiu, B. P. Modi, and R. N. Zare, Rapid preparation of giant unilamellar vesicles., Proc. Natl. Acad. Sci. 93, pp.11443-11447, 1996.
DOI : 10.1073/pnas.93.21.11443

M. Karlsson, Electroinjection of Colloid Particles and Biopolymers into Single Unilamellar Liposomes and Cells for Bioanalytical Applications, Analytical Chemistry, vol.72, issue.23, pp.5857-62, 2000.
DOI : 10.1021/ac0003246

T. Portet, Visualization of Membrane Loss during the Shrinkage of Giant Vesicles under Electropulsation, Biophysical Journal, vol.96, issue.10, pp.4109-4130, 2009.
DOI : 10.1016/j.bpj.2009.02.063

URL : https://hal.archives-ouvertes.fr/hal-00455196

F. M. Menger and M. I. Angelova, Giant Vesicles:?? Imitating the Cytological Processes of Cell Membranes, Accounts of Chemical Research, vol.31, issue.12, pp.789-797, 1998.
DOI : 10.1021/ar970103v

D. G. Hunter and B. J. Frisken, Effect of Extrusion Pressure and Lipid Properties on the Size and Polydispersity of Lipid Vesicles, Biophysical Journal, vol.74, issue.6, pp.2996-3002, 1998.
DOI : 10.1016/S0006-3495(98)78006-3

B. Mui, L. Chow, and M. J. Hope, Extrusion Technique to Generate Liposomes of Defined Size, Methods in enzymology, vol.367, pp.3-14, 2003.
DOI : 10.1016/S0076-6879(03)67001-1

S. Sriwongsitanont and M. Ueno, Physicochemical Properties of PEG-Grafted Liposomes, CHEMICAL & PHARMACEUTICAL BULLETIN, vol.50, issue.9, pp.1238-1282, 2002.
DOI : 10.1248/cpb.50.1238

K. Edwards, M. Johnsson, G. Karlsson, and M. Silvander, Effect of polyethyleneglycol-phospholipids on aggregate structure in preparations of small unilamellar liposomes, Biophysical Journal, vol.73, issue.1, pp.258-266, 1997.
DOI : 10.1016/S0006-3495(97)78066-4

Z. V. Leonenko, E. Finot, H. Ma, T. E. Dahms, and D. T. Cramb, Investigation of Temperature-Induced Phase Transitions in DOPC and DPPC Phospholipid Bilayers Using Temperature-Controlled Scanning Force Microscopy, Biophysical Journal, vol.86, issue.6, pp.3783-93, 2004.
DOI : 10.1529/biophysj.103.036681

A. Girard-egrot, J. D. Castile, and K. M. Taylor, Lipides membranaires Factors affecting the size distribution of liposomes produced by freezethaw extrusion, International journal of pharmaceutics, vol.4650924017, issue.188, pp.87-95, 1999.

K. K. Matthay, T. D. Heath, D. Papahadjopoulos, and A. S. Vesicles, Specific Enhancement of Drug Delivery to AKR Lymphoma by Antibody-targeted Small Unilamellar Vesicles, Cancer Research, vol.44, pp.1880-1886, 1984.

A. Colomer-pallas, M. Petit-glatron, and R. Chambert, Bacillus subtilis ??-amylase: interactions of a partially folded conformer with small unilamellar vesicles, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1660, issue.1-2, pp.16-23, 2004.
DOI : 10.1016/j.bbamem.2003.10.006

J. N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition, p.704, 2011.

B. Malaekeh-nikouei, M. R. Jaafari, S. Tabassi, S. Samiei, and A. , The enhancement of immunosuppressive effects of cyclosporine A on human T-cells using fusogenic liposomes, Colloids and Surfaces B: Biointerfaces, vol.67, issue.2, pp.238-244, 2008.
DOI : 10.1016/j.colsurfb.2008.09.001

R. J. Veldman, S. Zerp, W. J. Van-blitterswijk, and M. Verheij, N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx, British Journal of Cancer, vol.90, issue.4, pp.917-942, 2004.
DOI : 10.1038/sj.bjc.6601581

O. Darkfield-illumination-omoto and C. K. , Using Darkfield Microscopy To Enhance Contrast: An Easy and Inexpensive Method Hamard-Peron, E. et al. Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4,5)P2/PS and a polybasic region in the matrix, Journal of virology, vol.48, issue.84, pp.503-518, 2010.

T. Lymphocyte and .. Par-cytométrie-en-flux, 172 II.2.1. Principe du test ? Bilan des résultats obtenus, II.2. Evaluation quantitative sur 172 II.2.2. Influence de la concentration et de la structure des bio-conjugués, p.173

L. Cellules and H. , 17×10 4 cellules par millilitre. Les cellules ont ensuite été incubées en présence de 200 µL de solutions de différentes concentrations en bio-conjugués 33K-9H et 33K-9AEM (20, 10, 1 et 0,1 µM) pendant 48 heures, à 37°C et sous 5% de CO 2 . Chaque condition a été réalisée en duplicate

. Dans-chaque-puits-d, une plaque 24 puits, 50 000 cellules de type Jurkat ont été plaquées, en solution dans le milieu de culture RPMI. Les cellules ont ensuite été incubées en présence de 500 µL de solutions de différentes concentrations en bio-conjugués

F. Le-pourcentage-de-mortalité-cellulaire-a-Été-déterminé-par-granulométrie-grâce-au-rapport and . Ssc, Intensité de lumière diffusé dans l'axe du laser/Intensité de lumière diffusée à 90° du laser) permettant la discrimination entre les cellules vivantes et mortes. Les résultats obtenus lors de ces tests se présentent, pour chaque bio-conjugué et pour chacune des concentrations testées, sous la forme de diagrammes de dispersions (Figure II.1.). Ces diagrammes renseignent à la fois sur la taille des cellules passant

C. Mothersill and B. Austin, In Vitro Methods in Aquatic Ecotoxicology, p.477, 2003.

J. H. Wijsman, A new method to detect apoptosis in paraffin sections: in situ end-labeling of fragmented DNA., Journal of Histochemistry & Cytochemistry, vol.41, issue.1, pp.7-12, 1993.
DOI : 10.1177/41.1.7678025

J. F. Kerr, C. M. Winterford, B. V. Harmon, and . Apoptosis, Apoptosis. Its significance in cancer and cancer Therapy, Cancer, vol.362, issue.8, pp.2013-2039, 1994.
DOI : 10.1002/1097-0142(19940415)73:8<2013::AID-CNCR2820730802>3.0.CO;2-J

J. L. Zurlo, . Tests-de-toxicité-in, and . Vitro, Lecureur-Rolland, V. Etude fonctionnelle de la cellule Cytométrie en fluxat <acmed.univ- rennes1.fr/wkf/stock/RENNES20091110010820fletelliLECUREUR_- _Cytometrie_en_flux_Nov_2009.pdf> 6 Simultaneous measurement by flow cytometry of sperm cell viability and mitochondrial membrane potential related to cell motility, Journal of Histochemistry & Cytochemistry, vol.5, issue.30, pp.279-280, 1982.

F. Blanc-béguin, Cytotoxicity and GMI bio-sensor detection of maghemite nanoparticles internalized into cells, Journal of Magnetism and Magnetic Materials, vol.321, issue.3, pp.192-197, 2009.
DOI : 10.1016/j.jmmm.2008.08.104

R. Pagano and R. Watanabe, Use of N-[5-(5,7-dimethyl boron dipyrromethene difluoride-sphingomyelin to study membrane traffic along the endocytic pathway, Chemistry and Physics of Lipids, vol.102, issue.1-2, pp.55-63, 1999.
DOI : 10.1016/S0009-3084(99)00075-4

M. Schenk, S. Raffellini, S. Guerrero, G. Blanco, and S. M. Alzamora, Inactivation of Escherichia coli, Listeria innocua and Saccharomyces cerevisiae by UV-C light: Study of cell injury by flow cytometry, LWT - Food Science and Technology, vol.44, issue.1, pp.191-198, 2011.
DOI : 10.1016/j.lwt.2010.05.012

U. Kersting, Fusion of Cultured Dog Kidney (MDCK) Cells: I. Technique, Fate of Plasma Membranes and of Cell Nuclei 12. Olympus Introduction to Confocal Microscopy, The Journal of Membrane Biology J. R. & Shotton, D. M. Confocal Laser Scanning Microscopy. Bios Scientific Publishers, vol.111, pp.37-48, 1989.

W. G. Mallet, F. R. Maxfield, and . Endocytose, Flammarion Médecine-Sciences -Actualités Néphrologiques, pp.255-269, 2000.

J. Gruenberg and F. Maxfield, Membrane transport in the endocytic pathway, Current Opinion in Cell Biology, vol.7, issue.4, pp.552-63, 1995.
DOI : 10.1016/0955-0674(95)80013-1

L. B. Systèmes-endosomale-et-lysosomale, S. De-renzis, E. Nielsen, J. Rietdorf, and M. Zerial, cours-pharmacie.com/biologiecellulaire/les-systemes-endosomale-et-lysosomale, Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5, and Rab11, pp.901-915, 2000.

L. Danglot, Role of TI-VAMP and CD82 in EGFR cell-surface dynamics and signaling, Journal of Cell Science, vol.123, issue.5, pp.723-758, 2010.
DOI : 10.1242/jcs.062497

URL : https://hal.archives-ouvertes.fr/hal-00486387

M. Chaineau, L. Danglot, and T. Galli, Multiple roles of the vesicular-SNARE TI-VAMP in post-Golgi and endosomal trafficking, FEBS Letters, vol.10, issue.23, pp.3817-3843, 2009.
DOI : 10.1016/j.febslet.2009.10.026

URL : https://hal.archives-ouvertes.fr/hal-00441621

T. Galli, Tetanus toxin-mediated cleavage of cellubrevin impairs exocytosis of transferrin receptor-containing vesicles in CHO cells, The Journal of Cell Biology, vol.125, issue.5, pp.1015-1039, 1994.
DOI : 10.1083/jcb.125.5.1015

C. M. Fader, D. G. Sánchez, M. B. Mestre, and M. I. Colombo, TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways, Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, vol.1793, issue.12, pp.1901-1917, 2009.
DOI : 10.1016/j.bbamcr.2009.09.011

M. R. Spinosa, Functional Characterization of Rab7 Mutant Proteins Associated with Charcot-Marie-Tooth Type 2B Disease, Journal of Neuroscience, vol.28, issue.7, pp.1640-1648, 2008.
DOI : 10.1523/JNEUROSCI.3677-07.2008

Y. Usson, Principe de la microscopie par absorption biphotonique. at <http://membrestimc .imag.fr/Yves.Usson/COURS/2-PHOTONS.pdf> 24 Microscopie à deux photons pour l'imagerie cellulaire fonctionnelle : avantages et enjeux, Medecine/Science, vol.22, pp.837-844, 2006.

K. Svoboda and R. Yasuda, Principles of Two-Photon Excitation Microscopy and Its Applications to Neuroscience, Neuron, vol.50, issue.6, pp.823-862, 2006.
DOI : 10.1016/j.neuron.2006.05.019

C. Parish, Fluorescent dyes for lymphocyte migration and proliferation studies, Immunology and Cell Biology, vol.59, issue.6, pp.499-508, 1999.
DOI : 10.1016/0022-1759(93)90113-L

E. Bártová, Structure and epigenetics of nucleoli in comparison with non-nucleolar compartments. The journal of histochemistry and cytochemistry : official journal of the, Histochemistry Society, vol.58, pp.391-403, 2010.

S. J. Lo, C. Lee, and H. Lai, The nucleolus: reviewing oldies to have new understandings, Cell Research, vol.77, issue.6, pp.530-538, 2006.
DOI : 10.1016/S1046-2023(03)00050-1

B. Malaekeh-nikouei, M. R. Jaafari, S. Tabassi, S. Samiei, and A. , The enhancement of immunosuppressive effects of cyclosporine A on human T-cells using fusogenic liposomes, Colloids and Surfaces B: Biointerfaces, vol.67, issue.2, pp.238-244, 2008.
DOI : 10.1016/j.colsurfb.2008.09.001

R. E. Pagano and L. Huang, Interaction of phospholipid vesicles with cultured mammalian cells. II. Studies of mechanism, The Journal of Cell Biology, vol.67, issue.1, pp.49-60, 1975.
DOI : 10.1083/jcb.67.1.49

T. P. Mcmullen, R. N. Lewis, and R. N. Mcelhaney, Cholesterol???phospholipid interactions, the liquid-ordered phase and lipid rafts in model and biological membranes, Current Opinion in Colloid & Interface Science, vol.8, issue.6, pp.459-468, 2004.
DOI : 10.1016/j.cocis.2004.01.007

A. Csis-r, Novel Fusogenic Liposomes for Fluorescent Cell Labeling and Membrane Modification, Bioconjugate Chemistry, vol.21, issue.3, pp.537-543, 2010.
DOI : 10.1021/bc900470y

D. K. Struck, D. Hoekstra, and R. E. Pagano, Use of resonance energy transfer to monitor membrane fusion, Biochemistry, vol.20, issue.14, pp.4093-4102, 1981.
DOI : 10.1021/bi00517a023

K. Stebelska, P. Wyrozumska, and A. Sikorski, PS exposure increases the susceptibility of cells to fusion with DOTAP liposomes, Chemico-Biological Interactions, vol.160, issue.2, pp.165-74, 2006.
DOI : 10.1016/j.cbi.2006.01.005

R. J. Veldman, S. Zerp, W. J. Van-blitterswijk, and M. Verheij, N-hexanoyl-sphingomyelin potentiates in vitro doxorubicin cytotoxicity by enhancing its cellular influx, British Journal of Cancer, vol.90, issue.4, pp.917-942, 2004.
DOI : 10.1038/sj.bjc.6601581

J. N. Israelachvili, Intermolecular and Surface Forces: Revised Third Edition, p.704, 2011.

J. De-gier, J. G. Mandersloot, and L. L. Van-deenen, The role of cholesterol in lipid membranes, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.173, issue.1, pp.143-145, 1969.
DOI : 10.1016/0005-2736(69)90045-5

M. Maillet, Biologie Cellulaire 10ème édition, 2006.

I. Wrobel and D. Collins, Fusion of cationic liposomes with mammalian cells occurs after endocytosis, Biochimica et Biophysica Acta (BBA) - Biomembranes, vol.1235, issue.2, pp.296-304, 1995.
DOI : 10.1016/0005-2736(95)80017-A

A. Favier, F. D-'agosto, M. Charreyre, and C. Pichot, Synthesis of N-acryloxysuccinimide copolymers by RAFT polymerization, as reactive building blocks with full control of composition and molecular weights, Polymer, vol.45, issue.23, pp.7821-7830, 2004.
DOI : 10.1016/j.polymer.2004.09.042

M. Bathfield, Synthesis of Lipid-??-End-Functionalized Chains by RAFT Polymerization. Stabilization of Lipid/Polymer Particle Assemblies, Macromolecules, vol.41, issue.22, pp.8346-8353, 2008.
DOI : 10.1021/ma801567c

URL : https://hal.archives-ouvertes.fr/hal-00373641

A. Favier and M. Charreyre, Experimental Requirements for an Efficient Control of Free-Radical Polymerizations via the Reversible Addition-Fragmentation Chain Transfer (RAFT) Process, Macromolecular Rapid Communications, vol.12, issue.9, pp.653-692, 2006.
DOI : 10.1002/marc.200500839

A. Favier, M. Charreyre, P. Chaumont, and C. Pichot, Study of the RAFT Polymerization of a Water-Soluble Bisubstituted Acrylamide Derivative. 1. Influence of the Dithioester Structure, Macromolecules, vol.35, issue.22, pp.8271-8280, 2002.
DOI : 10.1021/ma020550c

G. Moad, E. Rizzardo, and S. H. Thang, Living Radical Polymerization by the RAFT Process, Australian Journal of Chemistry, vol.58, issue.6, p.379, 2005.
DOI : 10.1071/CH05072

. Après-avoir-discuté-avec-les-chimistes-du-laboratoire-de-chimie-de-l-'ens-de-lyon, Cyrille Monnereau et Yann Bretonnière), il semblerait que nous ayons mis en évidence un phénomène d'émission stimulée. En choisissant une longueur d'onde d'excitation bi-photon

. Finalement, après traitement des images (détermination de l'intensité de fluorescence moyenne sur la totalité du champ d'observation pour tenir compte des mouvements rapides des spots brillants (endosomes) et des cellules, nous avons réussi à obtenir un spectre d'excitation à 2 photons du bio-conjugué 33K-9H in cellulo

. Prénoms and T. Salim, Synthèse et caractérisation de sondes lipidiques macromoléculaires fluorescentes émettant dans le rouge lointain pour l'imagerie membranaire, NATURE : Doctorat Numéro, pp.2012-0122

. Bio-conjugué, Lipides fluorescents / Polymérisation radicalaire contrôlée, Procédé RAFT

T. Christophe, ?. Directeur-de-recherche, and C. Paris, INSA de Lyon Favier Arnaud ? Chargé de Recherche CNRS, INSA de Lyon Cette thèse est accessible à l'adresse : http://theses INSA de Lyon, tous droits réservés Cette thèse est accessible à l'adresse : http://theses.insa-lyon