
HAL Id: tel-00876866
https://theses.hal.science/tel-00876866

Submitted on 25 Oct 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Systèmes d’information sociaux
Marc Quast

To cite this version:
Marc Quast. Systèmes d’information sociaux. Autre [cs.OH]. Université de Grenoble, 2012. Français.
�NNT : 2012GRENM060�. �tel-00876866�

https://theses.hal.science/tel-00876866
https://hal.archives-ouvertes.fr

Université Joseph Fourier / Université Pierre Mendès France /
Université Stendhal / Université de Savoie / Grenoble INP

THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE

Spécialité : INFORMATIQUE

Arrêté ministériel : 7 août 2006

Présentée par

Marc QUAST

Thèse dirigée par Jacky ESTUBLIER et Jean-Marie FAVRE

préparée au sein du Laboratoire d’Informatique de Grenoble
dans l'École Doctorale MSTII

Social Information Systems

Thèse soutenue publiquement le 24 Octobre 2012,
devant le jury composé de :

Mme. Joëlle COUTAZ
Professeur, Université de Grenoble, Président

Mme. Tamara BABAIAN
Associate Professor, Bentley University, United States of America, Rapporteur

M. Mehdi JAZAYERI
Professor, University of Lugano, Switzerland, Rapporteur

M. Pierre-Alain MULLER
Professeur, Université de Haute-Alsace, Examinateur

i

RESUME

Les systèmes d’information d’entreprise actuels s’articulent autour d’applications centrales

lourdes, qui ne fournissent pas l’agilité nécessaire pour survivre dans un environnement

économique hautement concurrentiel. De nombreux acteurs (unités, individus, équipes et

communautés) doivent introduire leurs propres applications pour pallier à ces limitations,

avec pour résultat un système d’information fragmenté, incohérent et impossible à

gouverner.

Cette étude propose un paradigme d’architecture d’entreprise alternatif, qui s’appuie sur

une décomposition plus fine du système d’information et une distribution différente des

responsabilités. Il permet à tout acteur de contribuer au système d’information en

introduisant des fragments, privés ou partagés avec d’autres acteurs, qui peuvent ensuite

être composés pour former des applications dédiées à un profil. Les récents mécanismes de

l’informatique sociale sont proposés pour gérer les volumes potentiels importants de

fragments émergeant de la communauté d’employés.

L’objectif des systèmes d’informations sociaux est à la fois d’améliorer la cohérence et la

gouvernabilité du système d’information de l’entreprise et d’exploiter l’intelligence et

l’énergie collective de l’entreprise à des fins d’agilité métier maximale.

Mots-clés

Systèmes d’Information Entreprise, Applications, Agilité, Logiciels Sociaux,

Ingénierie Dirigée par les Modèles, End-User Development, Composition de Logiciel.

ABSTRACT

Present enterprise information systems are centered on heavy corporate applications,

which cannot and indeed do not provide the agility required to survive in todays’

competitive business landscape. Actors (business units, individuals, teams and

communities) must introduce their own applications to work around these limitations,

resulting in a fragmented, inconsistent and ungovernable information system.

This thesis proposes an alternative enterprise architecture paradigm based upon a finer-

grained decomposition of information systems and a different distribution of

responsibilities. It empowers all actors to contribute fragments to the information system,

private or shared with other actors, which can then be composed to form profile-specific

applications. Consumer-space social mechanisms are proposed to manage the potentially

huge resulting numbers of fragments emerging from the employee community.

The aim of social information systems is both to improve the overall consistency and

governability of the enterprise information system and to leverage the collective

intelligence and energy of the corporation towards maximum business agility.

Keywords

Enterprise Information Systems, Business Applications, Agility, Social Software,

Model-Driven Engineering, End-User Development, Software Composition.

ii

iii

Contents

1. Introduction ... 1

1.1. Motivation .. 1

1.2. Main Contributions of this Thesis .. 1

1.3. Thesis Structure.. 2

1.4. Notation ... 2

2. Enterprise Information Systems .. 3

2.1. The Need for Business Agility ... 4

2.2. Organizational Complexity ... 5

2.3. Information Systems and Business Applications ... 6

2.3.1. Business Application Elements ... 7

2.3.2. Persistence Elements ... 7

2.3.3. Business Logic Elements ... 8

2.3.4. Presentation Elements ... 9

2.3.5. Summary .. 11

2.4. The Problem: Information Systems are not Agile .. 12

2.4.1. Corporate IT and the Rise of Shadow IT ... 13

2.4.2. Shadow Applications as Evidence of Insufficient Agility 14

2.4.3. Motivating Example ... 15

2.4.4. Characterizing Shadow Applications .. 17

2.4.5. Benefits and Drawbacks of Shadow Applications .. 18

2.4.6. Summary .. 20

2.5. Factors Contributing to Insufficient Agility .. 21

2.5.1. The Requirements Paradox .. 21

2.5.2. The Knowledge/Influence Paradox .. 22

2.5.3. Secondary Factors .. 23

2.5.4. Inter-relationships of Factors ... 24

2.5.5. Summary .. 25

2.6. Quantifying the Lack of Agility ... 25

2.6.1. Measuring the Number of Shadow Applications ... 25

2.6.2. Estimating the Number of Shadow Applications. .. 26

2.7. Conclusion .. 26

iv

3. Requirements for an Agile Information System ... 27

3.1. Application Requirements .. 27

3.2. Information System Requirements .. 29

3.3. Derived Requirements ... 31

3.3.1. Composition Requirements .. 31

3.3.2. Traceability Requirements ... 31

3.3.3. Collaboration Requirements .. 32

3.3.4. Governance Requirements ... 33

3.4. Conclusion .. 34

4. State Of The Art ... 35

4.1. Information System Architecture Paradigms ... 35

4.2. Application-Centric Architectures .. 36

4.2.1. Description ... 36

4.2.2. Evaluation ... 37

4.2.3. Summary .. 41

4.3. Service-Oriented Architectures .. 41

4.3.1. Description ... 41

4.3.2. Evaluation ... 43

4.3.3. Summary .. 47

4.4. Coping with Requirements Complexity .. 47

4.4.1. Requirements Engineering ... 47

4.4.2. Model-Driven Engineering ... 47

4.4.3. End-User Software Development ... 48

4.4.4. Software Composition .. 48

4.5. Achieving Business Agility .. 48

4.5.1. Shadow Applications .. 48

4.5.2. Agile Methodologies .. 49

4.5.3. Software Tailoring .. 49

4.5.4. Cloud Computing .. 49

4.6. Coping with Information System Fragmentation ... 50

4.6.1. Enterprise Application Integration ... 50

4.6.2. Business Intelligence .. 50

4.7. Conclusion .. 51

v

5. Social Information Systems ... 53

5.1. An Alternative Decomposition ... 53

5.1.1. Element De-Composition: Fragments .. 54

5.1.2. Application De-Composition: Perspectives .. 56

5.1.3. Profile-Driven Re-Composition .. 58

5.1.4. Summary .. 59

5.2. An Alternative Distribution of Responsibilities .. 60

5.2.1. User-Contributed Fragments ... 60

5.2.2. Classifying User-Contributed Fragments.. 62

5.2.3. Estimating Fragment Relevance ... 62

5.2.4. Managing Fragment Awareness ... 63

5.2.5. Towards Social Information Systems ... 64

5.2.6. Summary .. 64

5.3. Social Information System Governance ... 64

5.3.1. Monitoring ... 65

5.3.2. Community Management .. 65

5.3.3. Inconsistency Management ... 66

5.3.4. Summary .. 69

5.4. Conclusion .. 70

6. Architecture ... 71

6.1. Foundation Components ... 71

6.1.1. Organizational Complexity: the Directory .. 71

6.1.2. Application Fragmentation: Repositories .. 73

6.2. End-User Runtime Components... 78

6.2.1. Profile-Driven Fragment Composition: the Weaver 78

6.2.2. Model-Driven User Interface Construction: the Browser 82

6.3. Social Collaboration ... 85

6.3.1. Fragment Sharing ... 85

6.3.2. Fragment Annotation ... 86

6.3.3. Fragment Search .. 88

6.3.4. Fragment Notification .. 88

6.3.5. Summary .. 89

6.4. Governance of User-Contributed Fragments ... 89

6.5. Conclusion .. 90

vi

7. Prototype Implementation ... 91

7.1. Overview .. 91

7.2. End-user experience ... 93

7.2.1. Instance manipulation .. 93

7.2.2. Model manipulation ... 97

7.3. Legacy integration .. 99

7.4. A Prospective FeatureFragment ... 100

7.5. Limitations of the Current Prototype ... 101

7.6. Conclusion .. 102

8. Evaluation ... 103

8.1. Experiments.. 103

8.1.1. Simulation on Fictional Shadow Application Scenarios 103

8.1.2. Simulation on Real-Life Shadow Applications .. 104

8.1.3. Acceptance of Perspective-Centric Concepts... 105

8.1.4. Qualitative Prototype Feedback ... 106

8.2. Evaluation versus Requirements .. 107

8.3. Performance Measures .. 111

8.3.1. Performance of the Runtime Model Composition Mechanism 111

8.3.2. Performance from the End-Users’ Point of View ... 112

8.4. Limitations .. 113

8.5. Comparison to Related Work ... 113

8.6. Challenges and Further Work... 116

8.6.1. Conceptualization Challenges .. 116

8.6.2. Usability Challenges ... 116

8.6.3. Evaluation Challenges .. 117

8.6.4. Cultural Challenges ... 117

9. Conclusion .. 119

9.1. Summary of Contributions ... 119

9.2. Perspectives ... 120

9.3. Conclusion .. 121

vii

Appendixes .. 123

A. Disambiguating the term "Application" ... 125

B. Difficulty of Measuring Fragmentation .. 129

C. Resolving Inconsistency: Merging .. 130

D. Fragment Composition Sequence Diagrams .. 131

E. User Interface Construction Mechanism ... 135

F. Role-Play Experiment Description .. 138

Bibliography .. 143

Index ... 155

viii

ix

Index of Figures
1-1. Hand-written notation used for disambiguation of common terms 2

2-1. Disambiguation of the terms actor, individual and group (class diagram) 3

2-2. Corporation, Business-Units and Departments (instance diagram) 4

2-3. An example partial organization structure with 5 dimensions ... 6

2-4. Information System and Applications ... 7

2-5. Typical tiers of modern business applications .. 7

2-6. High-level meta-model of persistence elements .. 8

2-7. Screenshot of a text-based business application.. 9

2-8. High-level meta-model of text-based business application user interface elements 9

2-9. Screenshot of a first-generation graphical business application 10

2-10. Oracle’s CEO announcing their new generation of business applications in 2011....... 11

2-11. Core Elements of business applications ... 12

2-12. Relative numbers of official and shadow applications from [39] 15

2-13. Example of fictional official Luxury application .. 16

2-14. Examples of fictional shadow applications ... 16

2-15. Application work-around and ownership relations .. 18

2-16. Typical roles with relative knowledge and influence .. 23

2-17. Paths to implementation of a new requirement in official or shadow application...... 24

4-1. Application-centric architecture overview ... 35

4-2. Service-oriented architecture overview ... 35

4-3. A real-life Concept and multiple Representations in various Applications 36

4-4. The SOA triangle, ensuring loose coupling between consumers and providers 41

4-5. Service-centric architecture .. 42

4-6. Widgets and service substitution.. 43

5-1. Subjectivity through subtraction .. 54

5-2. Subjectivity through composition ... 55

5-3. Perspectives hosting fragments and instances ... 56

5-4. Perspectives of individual Maria ... 57

5-5. High-level meta-model of Perspectives and Fragments ... 58

5-6. Runtime meta-model of profile-specific applications .. 59

5-7. Example element and associated presentation layer ... 59

5-8. Example assertion for classifying Perspectives ... 65

5-9. New Opportunity and Opinion classes for governance .. 68

5-10. Opinion and Opportunity state diagrams. .. 69

x

6-1. Logical model of Directory component... 72

6-2. Example Directory instances. .. 72

6-3. Example reply of the Directory component .. 73

6-4. Component diagram: Directory .. 73

6-5. Logical model of the Repository component .. 73

6-6. Example instance diagram of two Repositories hosting three Perspectives 74

6-7. Example instance diagram of a Perspective defining an extension 75

6-8. Example instance diagram of a private Perspective ... 75

6-9. Minimum set of concrete type classes ... 76

6-10. Example instance diagram of a Perspective connecting unrelated Fragments 77

6-11. A necessary evolution of the meta-model: PackageFragments 77

6-12. Foundation Components: Repository and Directory .. 78

6-13. Simplified public interface of composition mechanism .. 78

6-14. Classes underlying the simplified public interface .. 79

6-15. Explanation of notation elements for the next diagram .. 79

6-16. Example Actor-Perspective graph, with associated declarations 80

6-17. Complete public interface of the Weaver component ... 81

6-18. Instances and InstanceFragments ... 82

6-20. Standard form pattern for instance manipulation for a ClassElement x 82

6-21. Simplified ClassElement “Request” ... 83

6-22. Result of the user interface construction mechanism on the example ClassElement . 83

6-23. Component diagram including browser ... 84

6-24. General case of ExportDeclaration ... 85

6-25. ExportDeclaration specialization for ClassFragments ... 86

6-26. Social Annotations for business application fragments .. 87

6-27. Three example full-text queries .. 88

6-28. Simple notification mechanism ... 89

6-29. Dashboards for database monitoring in an industrial environment 90

6-30. Complete set of perspective-centric architecture components 90

7-1. Architecture of the prototype and main component interactions 91

7-2. Example XML snippets of main read requests and associated replies 92

7-3. Screenshot of a perspective-centric Luxury-like official application 93

7-4. Two users with different extensions displaying the same Request object 94

7-5. Screenshot of a user inspecting a (disabled) perspective ... 95

7-6. User interacting with fragments from robust server still waiting to receive extensions 96

7-7. A user updating an instance in spite of missing values from a slow server 96

7-8. Sequence of events when searching across servers with different response times 97

7-9. A user inspecting her model ... 98

7-10. A user extending Element “Request” with a new, private attribute 98

7-11. The effect of the operation in Figure 7-10 on the search and update forms 99

7-12. User updating a "Bug" object part legacy, part extension .. 100

7-13. A GANTT diagram as an example of FeatureFragment ... 101

xi

8-1. Example role sheet, and application before and after the experiment 105

8-2. Total model composition time for 1 concept defined across 1 to 100 perspectives ... 112

0-1. High-level overview of the Application lifecycle ... 125

0-2. Application Software at development-time ... 126

0-3. Application Instance at deployment-time .. 127

0-4. Application Session at run-time .. 127

0-5. UML2 Sequence diagram notation elements ... 131

0-6. Top-level sequence diagram of a Session instance initialization 131

0-7. Sub-diagram adding an Actor to Model .. 132

0-8. Sub-diagram adding a Fragment to Model ... 133

0-9. Standard form pattern for instance manipulation for a ClassElement x 135

0-10. Full instance diagram of Weaver classes .. 136

0-11. Class diagram implementing the standard form pattern ... 137

xii

1

1. Introduction
1.1. Motivation
Present enterprise information systems are centered on heavy corporate applications, which

cannot and indeed do not provide the agility required to survive in todays’ competitive

business landscape. Dissatisfaction with information systems is widespread.

Due to the strategic importance of information systems, corporations typically don’t volunteer

evidence of their shortcomings. As a notable exception, The Boeing Company has recently

published an experience report describing the alarming numbers of shadow applications which

various actors (business units, individuals, teams and communities) must introduce to work

around the limitations of the central information system. Due to both our own experience in

manufacturing industries and discussions with professionals from various domains (banking,

telecommunications, healthcare and government), we consider this a global phenomenon.

The result is a heavily fragmented information system, where consistency and governability

have been sacrificed to achieve a reasonable level of business agility. Our opinion is that with

present software architectures, no matter how carefully business applications are crafted, over

time they will spawn shadow applications whenever resourceful actors have urgent unsatisfied

needs, solving a local problem but aggravating the overall situation.

Our hypothesis is that a different information system architecture principle is both necessary

and possible.

1.2. Main Contributions of this Thesis
This thesis proposes an alternative enterprise architecture paradigm based upon a

fundamentally different distribution of responsibilities, empowering all actors to adapt

business applications themselves without introducing new applications and without impact on

other actors.

This is achieved by the decomposition of business applications into smaller fragments,

enabling multiple subjective representations of the corporate reality which defuses the

bottleneck of requirements negotiation. The ownership of such fragments can then be

distributed, allowing all actors to introduce the fragments they need, eliminating

implementation bottlenecks as well.

We describe a social information system, where all actors contribute and share business

application fragments, applying social technologies to organize, rank and propagate high

numbers of emergent fragments, which can gradually be “promoted” to more central

perspectives, enabling the collaborative design and meritocratic evolution of the corporate

information system.

2

The potential benefits of social information systems are to improve the overall consistency and

governability of the enterprise information system and to leverage the collective intelligence

and energy of the corporation towards maximum business agility.

1.3. Thesis Structure
Chapter 2 provides a critical observation of the present state of information systems in big

corporations, including the description of the real-life use cases which will serve as the running

example of this study. Chapter 3 generalizes these observations in the form of a set of high-

level requirements for an agile information system.

Chapter 4 then evaluates the two dominant information system architecture paradigms with

respect to these requirements, highlighting strengths and weaknesses and demonstrating the

need for an alternative enterprise architecture principle.

Chapter 5 proposes such a principle, based upon a fundamentally different granularity of

business applications and an alternative distribution of information system responsibilities. It

discusses our vision of a social information system leveraging the collective intelligence of an

organization’s employees, and the possibility of its collaborative evolution.

Chapter 6 refines this proposal by describing a possible architecture, based upon a set of

components for which it provides a high level design and brief discussion, and chapter 7

presents a prototype implementation of a subset of these components.

The prototype implementation has allowed a number of experiments on both fictional and

real-life use-cases, which chapter 8 presents along with an evaluation of the concepts,

architecture and implementation versus our initial requirements for business agility.

Chapter 9 concludes the study. An index of the terms we define or use is provided at the end

of the document.

1.4. Notation
The UML notation [1] is used in the majority of diagrams of this document. When describing

technical artifacts, the standard notation is used. When merely disambiguating real-world

terms, the pseudo hand-written notation below is used.

Figure 1-1. Hand-written notation used for disambiguation of common terms

ChapterBook Section Paragraph

TextFigure

*

1

*

1

*

1*

0..1

3

2. Enterprise
Information

Systems
This chapter presents the context of our study, namely the information systems of big

corporations. We describe the need for business agility and organizational complexity, and

both the importance and high-level structure of business applications. We present shadow

applications, which we describe in detail. We analyze their benefits, drawbacks and of the

causes of their emergence, which together will provide the foundation for the research

hypotheses expressed in the next chapter.

Terminology
When describing organizations and their employees, we will use the terms actor, individual

and group according to the following model.

Figure 2-1. Disambiguation of the terms actor, individual and group (class diagram)

It is important to notice that group is recursive, which allows to represent organization

structures of varying depths. When it is necessary to distinguish between typical groups, we

will use the terms corporation, business-unit and department to refer to three common

organization levels described and illustrated below.

 The term corporation refers to the top of the organization, with a typical size

between 10 000 and 100 000 employees (individuals)

 The term business-unit indicates groups close to the top, with typical sizes

between 1 000 and 10 000 employees

 The term department designates the next level of organization, between 100 and

1000 employees

Actor

GroupIndividual
groups

members

*

*

4

 We will use the terms team to refer to the lowest level of organization, and both

project and community to designate cross-organizational groups, not represented

in the diagram below and varying in size from a few to thousands of employees

Figure 2-2. Corporation, Business-Units and Departments (instance diagram)

It is also important to highlight that in the Figure 2-1 class diagram, an actor can be a member

of multiple groups, which allows to represent not only a traditional hierarchy (i.e. a tree), but

the multiple dimensions (i.e. a graph) necessary to represent complex organizations as

depicted in Figure 2-3.

2.1. The Need for Business Agility
Today's business landscape is highly competitive and dynamic. Markets are global,

international competition is fierce, change happens more rapidly and more often in the form

of discontinuous upheavals rather than incremental changes [2]. The very notion of the

classical enterprise is evolving, and alternative forms of organization, particularly flexible

networks, are emerging [3]. In such an environment, business agility is a key element for

corporations to survive and be successful [4].

There is no consensus yet as to what business agility is. A number of definitions can be found

in the literature [5, 6, 7, 8, 9]. In an attempt to disambiguate flexibility and agility, [10]

proposes to define flexibility as “a predetermined response to a predictable change”, and

agility as “an innovative response to an unpredictable change”, focusing flexibility on “single

systems with medium frequency of change” and agility on “groups of systems with high change

rates”. [11] summarizes the various views on agility as “a way to cope with highly uncertain

external and internal changes”.

Business agility includes both sensing capabilities (detection and anticipation) and responding

capabilities (physical ability to act rapidly and with relative ease) [9]. The present study focuses

on response capabilities, and we adopt the following restrictive definition for the remainder of

this document.

: Group

name="acme"

: Group

name="design"

: Group

name="manufacturing"

: Group

name="sales"

: Individual

name="Fred"

: Group

name="hardware"

: Group

name="software"

: Group

name="packaging"

Corporation

(100 000 employees)

Business-Unit

(10 000 employees)

Department

(1 000 employees)

5

definition Business Agility
Ability of a corporation to adapt rapidly and efficiently (i.e. at low cost)
to unpredictable changes in its environment.

Small start-up companies are agile by construction. They consist of a small group of individuals,

focused on one particular business opportunity. Big established corporations however suffer

from inertia almost by definition. In order to have large groups of individuals work together

efficiently, corporations aim at the right balance between the following two organization

models.

 In a centralized model, a strong hierarchical structure ensures consistency,

through clear decision and communication channels and emphasis on well-

defined reproducible processes, typically at the cost of heavy bureaucracy and

bottlenecks.

 In a decentralized model, a network of independent groups focus on their specific

goals, which ensures high autonomy1 and high reactivity when facing business

opportunities or threats, at the cost of a complex global organization and

duplications of efforts.

A common compromise is to centralize support functions for cost-effectiveness and to

decentralize core business functions for optimal agility.

Regardless of the balance between centralization and decentralization, information

technologies are vital [12, 4] and a key factor for achieving business agility. Within the broad

field of business information technologies, our study focuses on business applications. Before

we present business applications in section 2.3, it is important to highlight the complexity of

big corporations.

2.2. Organizational Complexity
The organization of big multinational corporations is a research topic in its own right. For the

purpose of our study, we highlight the existence of multiple organizational dimensions, as

illustrated by the figure below showing an individual Maria belonging to multiple groups across

5 orthogonal dimensions, most dimensions themselves hierarchical. The organization of real

corporations is more complex, both wider and deeper.

1
 In extreme situations this can mimic startups (“intrapreneurship”)

6

Figure 2-3. An example partial organization structure with 5 dimensions

The dotted lines represent the individuals’ membership of certain groups2. We will refer to the

combination of group memberships as a profile.

definition Profile
Combination of all groups an actor is a member of.

In the example above, Maria’s profile is a person playing a quality role in a manufacturing

organization on a site in Grenoble, France, who also participates in project Beta and is a

member of a workgroup on agility. In big corporations, there are a high number of possible

profiles, potentially equal to the number of its knowledge workers, i.e. tens of thousands.

2.3. Information Systems and Business Applications
There is no general agreement on the definition and goals of enterprise information systems

[13]. In this document, we will use the term information system to refer to the set of all

business applications used in a given corporation, excluding aspects like business processes

and people.

definition Information System
Set of all business applications used in a given corporation.

2
 This is a simplification of reality in two respects. First, memberships can be factorized at various group

levels, resulting in a significantly more complex graph. Second, memberships can be contextual, a
common example being an individual with a “quality” role which extends beyond the organization or
site he belongs to. This document adopts a simplified view for the purpose of clarity, but we think the
results of our study will prove even more relevant with the real complexity in mind.

acme corp

organization

design

sales

manufacturing

region

Europe

France

Grenoble

role

tech writer

quality

project

Alpha

Beta

community

green

agile

…

maria

7

The term application itself is heavily overloaded, and we will use in the broad sense in this

document. We have published a disambiguation in [14], included in appendix A. The class

diagram below illustrates this definition, and introduces the associated term end user, which

we define as an individual using an application to perform his work [15].

Figure 2-4. Information System and Applications

2.3.1. Business Application Elements
Business applications provide a way for individuals to interact with persistent business records.

The work of knowledge workers depends on a high extent on manipulating such business data

through a user interface [16]. Interactions mainly involve querying, creating, updating and

deleting such records, a set of features often referred to as CRUD, i.e. create, retrieve, update

and delete. Besides displaying and updating various attributes of business records,

applications allow to invoke business functions of low to moderate complexity. It is common

to separate these concerns into the tiers presented in the figure below.

Figure 2-5. Typical tiers of modern business applications

In this section we provide a high-level view of the main elements of these three tiers, and

highlight that they have remained relatively constant from the point of view of the end user.

2.3.2. Persistence Elements
The responsibility of the persistence layer is to encapsulate the permanent storage of

structured business objects, and to isolate the upper tiers from persistence-related specifics

like data structures, indexes and data partitioning. Technologies have evolved from flat files to

various generations of database management systems [17]. Business records have evolved

into business objects in the 1990s [18] and structured documents [19] later. Regardless of the

Information System"Corporation"

*

1

Individual Application
end-user
1..*

*

uses 

has 1 11 *

Presentation

Business Logic

Persistence

End User

Storage

Application Elements

8

underlying technologies, from a user perspective the persistence tier roughly conforms to the

following meta-model.

Figure 2-6. High-level meta-model of persistence elements

In enterprise software, the total number of classes can vary from under 10 to several

thousands in ERP systems. While we can observe increasing complexity, i.e. number of model

elements, and increasing volumes, i.e. numbers of instances [20], we can consider that the

core concepts presented in the above figure have remained fairly constant over the history of

business applications.

Relational database systems are the dominant technology in the persistence tier, and it is easy

to establish the parallel between Class, Attribute and Instance from the meta-model above

with respectively Table, Column and Row in the relational database space.

Figure 2-6 also introduces the term model in the restrictive but common meaning

encompassing the set of business classes underlying an application.

2.3.3. Business Logic Elements
The business logic tier or middle tier has emerged as a response to the fat client syndrome,

which tangled business concerns with presentation concerns [21]. It factorizes access to

persistent business objects by exposing a service interface. Besides the aforementioned CRUD

operations, the business logic tier provides higher-level domain-specific services across

multiple business objects.

A classic example of such a service is the transfer of money from one account to another. This

routine operation involves a number of business rules (like checking that after withdrawal

from the source account, the balance is not below its minimum) and can trigger workflows

(approval of the transfer depending on the amount), notifications, etc. A service typically

ensures that the user has the proper authorizations to perform the operation.

The purpose of factorizing such elements in the middle tier is to capture the business process

and rules for reuse by multiple clients; in the case of our money transfer example, the bank

clerk’s application, the ATM application or the online banking application used by the account

holder at home are all clients using the same service. Consistent processing is thus guaranteed

independently from the number of presentation elements invoking the operation.

*

Class

Attribute

*1
Instance

Value

1

*

1

*1

Model

*

1Application

11

9

2.3.4. Presentation Elements
The first figure shows a screenshot of a text-based business application as common in the

1970s, based on 80-columns text terminals and function-key based user interaction. Even

today, such applications are still commonplace in manufacturing, banking, retail and

administration environments alike.

Figure 2-7. Screenshot of a text-based business application

Text-based business applications revolve around successive forms. Forms are composed of

distinct sections, displaying fields with labels and values, in stacked or tabular format, and a set

of actions. Navigation through the form sequence is a particular case of action, and we can

consider menus a particular case of form. The class diagram below provides a high-level meta-

model of the core user interface elements of text-based business applications.

Figure 2-8. High-level meta-model of text-based business application user interface elements

In the mid-1990s, graphical user interfaces became common, used in windowing environments

with pointer devices. Besides minor changes like clicking on buttons instead of pressing

function keys, graphical business applications reproduce the original text-based interaction.

The figure below shows a screenshot of a graphical business application, illustrating the

similarity with their text-based predecessors and thus the reasonable conformance to the

meta-model above.

Section

Form

Field

Button

*

1

*

1

1

*

Application

*1

10

Figure 2-9. Screenshot of a first-generation graphical business application

Starting in 2000, mainly in order to solve deployment and upgrade problems, the norm has

gradually become to provide web-based interfaces. Whether in the early passive HTML format

or in one of the present RIA3 technologies, web-based applications again retain the familiar

form-centric interaction model. Such applications are the state-of-the-practice today, as

illustrated by the figure below showing Oracle’s CEO Larry Ellison during his keynote speech at

the Oracle World 2011 conference, announcing Oracle’s next generation of business

applications, the result of 6 years of engineering efforts.

3
 Rich Internet Application, via technologies like Javascript, Adobe/Flash or Microsoft/Silverlight.

11

Figure 2-10. Oracle’s CEO announcing their new generation of business applications in 2011 [22]

We will thus assume in our study that the present form-based user interfaces of business

applications are satisfactory and will remain so. The emerging trend of mobile business

computing, besides introducing a few new interaction modes, is unlikely to fundamentally

change business forms. The associated shrinking screen real-estate may actually urge the

profession to revert back to simpler interfaces with fewer elements.

2.3.5. Summary
Through several decades of technological evolutions, including the internet and mobile

communication breakthroughs, both the inner and outer core characteristics of business

applications have remained fairly constant [23]. They revolve around persistent structured

data with complex data models and high numbers of instances. Users invoke fairly simple

operations through forms.

The diagram below summarizes these constant concepts of business applications, and

introduces the abstract class Element to designate them. We will reuse the term element in

the remainder of this document with this rough meaning, i.e. any piece of a business

application which is perceived by the end user.

12

Figure 2-11. Core Elements of business applications

Due to both the complexity of generalizing the business logic tier and the data-centric nature

of business applications, the remainder of this study will not further elaborate LogicElements

and consider the create-read-update-delete operations as representative.

In the next section, we discuss how Information Systems and Business Applications both

contribute to and hinder business agility.

2.4. The Problem: Information Systems are not Agile
A common enterprise IT strategy is labeled “buy before build”4. Corporations adopt

commercial enterprise application packages like SAP, Oracle Applications or Baan, with the

expectation of both more robust and less expensive systems compared to in-house

developments, faster scaling and benefitting from “industry best practices” embedded in the

tool, theoretical benefits which we will not question in this study. Corporations adopting such

enterprise applications must configure and customize them, integrate them within their

application landscape, and more often than not modify their source code in order to meet vital

4
 An extended version of this principle is « reuse before buy ; buy before build »

*

Element

LogicElementPresentationElement PersistenceElement

Section

Form

Widget

Field

Button

*1

*1

Attribute

Value

*1
Class

Instance

1

0..1

1

1

1

*

*

1 *

Application

1 *

Information System

13

business requirements [24, 25]. Commercial enterprise applications thus don’t fit the

traditional distinction between custom-built and COTS5 applications [26]. We will refer to this

activity as tailoring.

definition Tailoring
Configuration, customization or modification performed to adapt
business application software to specific business requirements.

Tailoring is often considered critical to gain a competitive advantage over competitors,

whether these are using the same application [27] or not [28]. Keeping or augmenting this

competitive advantage makes tailoring a key activity for business agility [16].

2.4.1. Corporate IT and the Rise of Shadow IT
In order to achieve business agility, groups need to swiftly adapt to changes in their

environment, which more often than not has impacts on the information system. Actors thus

frequently need to change business applications. In a typical company however, applications

are owned by a central IT department6. We will call this department the corporate IT

department, and use both the prefixes corporate and official as adjectives for everything under

this departments’ control.

definition Corporate IT Department
Department centralizing IT activities for a corporation.

A corporate IT department presents the usual benefits of centralization, mainly saving costs

and enforcing standards. They also have the usual drawbacks, i.e. low reactivity, low service

transparency, poor support and insufficient understanding of specific requirements [29],

aggravated by the common practice of aggressive cost cuttings which precludes improving the

quality of their service.

As a result, the business applications provided by corporate IT departments are a widespread

source of frustration [30]. They do not allow sufficient nuance, are not socially flexible, and do

not allow sufficient ambiguity to adequately support day-to-day requirements [31]. Business-IT

alignment [32] has become a field actively studied by both researchers and practitioners [33,

34, 29, 35].

In order to achieve their goals, business units cannot and indeed do not accept the poor

service provided by their IT departments, and tend to build up independent IT resources to suit

their specific or urgent requirements [36] in order to meet their objectives. This phenomenon

is widely observed [29], and goes by various names. We will adopt the term shadow IT.

definition Shadow IT Activity
IT activity performed by an actor who is not a member of the
corporate IT department.

5
 Commercial-Off-The-Shelf

6
 Outsourcing [176] is an external form of centralization.

14

Shadow IT activities are thus performed by actors while it is not (a) their or (b) their

organizations’ primary mission. Shadow IT actors can be (a) isolated individuals with sufficient

interest in IT and either real or self-proclaimed IT skills or (b) entire groups of software

professionals employed by business units outside of the control of the corporate IT

department. Activities encompass a broad spectrum: office automation tool support;

hardware and software purchase, deployment and administration; software development; etc.

A major difference between corporate and shadow IT is that the latter escapes governance.

Governance can be broadly defined as “the task of steering and coordinating actions of

collective actors and managing the interdependencies of these actors” [37]. When applied to

information technology, the term governance lacks of a clear, shared definition. A systematic

literature review of 12 definitions proposes the following compound definition: “IT governance

is the strategic alignment of IT with the business such that maximum business value is achieved

through the development and maintenance of effective IT control and accountability,

performance management and risk management” [38], which when applied to information

systems we summarize as follows.

definition Information System Governance
Ability to get an overview of the information system and drive its evolution
in line with the corporations’ objectives.

2.4.2. Shadow Applications as Evidence of Insufficient Agility
One consequence of the shadow IT phenomenon of particular interest with respect to

information systems is that it introduces new applications to work around the shortcomings of

the official ones. A recent experience report [39] contributes observations about this

phenomenon in a 10 year long collaborative engineering project at The Boeing Company.

"Although many of the applications were bespoke efforts, designed to the

requirements of users, virtually all major applications had an unofficial

spreadsheet or database backing up the official application. These tools invariably

played a critical but unofficial role in the day-to-day work, serving as more than

just a workaround, whereas the official applications were used primarily for

mandated record keeping and auditing."

"Surprisingly, management often approved these unofficial applications but, at the

same time, desired to eliminate these applications and use only the official

applications."

These observations match our own experience of 20 years of industrial information system

development and integration in multinational corporations. The Boeing experience report

contributes the following volumes.

"The complex IT infrastructure had at its core a suite of three integrated

engineering applications, each customized for this program. A collection of about

30 secondary applications was tightly integrated with the core suite. These

applications were widely used and mission-critical, but did not share the same

management visibility as the core suite. The applications were either extensively

15

customized or developed specifically for this program. In addition, approximately

500 applications were less well integrated and had specialized, domain-specific

uses."

As a generalization, we can consider information systems of large corporations a web of

numerous applications. At the center we find a fairly small set of stable and robust central

applications. These are surrounded by a larger set of semi-official applications and a very large

number of unofficial applications, for which we adopt the term shadow application proposed

in [39].

Figure 2-12. Relative numbers of official and shadow applications from [39]

Due to both our own background and our academic reference material, we will focus on use

cases from manufacturing corporations. However, nothing indicates that shadow applications

are restricted to manufacturing environments. Discussions with professionals from various

domains (banking, telecommunications, healthcare and government) hint at a widespread,

global phenomenon.

2.4.3. Motivating Example
In the remainder of this document, we will reuse fictional examples derived from the

information disclosed by The Boeing Company in [39]. They describe an official application

“Luxury”, with the following limitations. Two shadow applications have been introduced to

work around these shortcomings.

 Delay analysis

“Luxury can report delays on process instances, but not the reasons for these

delays which are managed by a shadow application.”

 Subtask tracking

“Sometimes the tasks tracked by Luxury were informally decomposed into

subtasks; (…) Luxury had no provisions for this kind of task decomposition.”

We make the assumption that the Luxury application tracks requests, which is a common use

case in engineering environments (“change request”, “request for quote”, etc.). The figure

below shows a fictional official Luxury application, or more precisely a fictional form displaying

a request object as managed by Luxury.

0 50 100 150 200 250 300 350 400 450 500

official

semi-official

unofficial

16

Figure 2-13. Example of fictional official Luxury application

The form shows that Luxury provides neither a way to record the reason for the delay nor a

way to decompose a task into subtasks. The figure below shows two fictional shadow

applications built by business units to overcome these limitations, managing delay analyses

and subtasks respectively.

Figure 2-14. Examples of fictional shadow applications

The first author of [39] has confirmed in private communication that these fictional examples

are "close enough" for the purpose of the demonstration.

Align X with standard Z

Update Request "789"

done

id

name

state

owner

planned end

actual end

Cancel Save

Johanna …

10.october.2011

20.october.2011

789

17

Our example shadow applications are simple, the bottom application in Figure 2-14 being a

simple spreadsheet. In our study we will frequently refer to spreadsheets designed and used

simply for data storage and manipulation, as a substitute for more robust business

applications. This is a very common and possibly dominant use case since their introduction

[40, 41] and such spreadsheets qualify as shadow applications [39].

Spreadsheets can be considered to cover all three tiers of business applications, providing

users with persistent tables, logic (formulas) and presentation tools. It is important to notice

that despite their simplicity, such spreadsheet applications are vital for the daily operation of a

corporation and that they store critical data and business logic outside of mainstream

applications and controlled processes.

More Examples of Shadow Applications
Spreadsheets are arguably the most common form of shadow application, which we can

consider as the low end of the spectrum. At the high end, shadow application architectures are

limited only by the owner’s imagination and resources. It is possible for resourceful business

units to introduce full-blown business applications on their own budget. It is thus common,

though not necessarily widely advertised, for big corporations to have multiple ERP or PLM

systems7. More fashionably, actors utilize third-party applications in the “stealth cloud”, i.e.

“cloud services being consumed by business users without the knowledge, permission or

support of the IT department” [42].

Shadow applications are both a problem themselves, as we will illustrate in section 2.4.5, and

evidence of a bigger problem, i.e. the gap between the official information system and the

daily needs of knowledge workers and groups.

2.4.4. Characterizing Shadow Applications
Shadow applications are characterized by their purpose. If application B exists to work around

the limitations of application A, or if B’s data and features belong in A according to its users, B

can be considered a shadow application. This partial characterization illustrates the subjective

nature of the phenomenon. With this characterization, “official” and “shadow” are relative

concepts, and apply recursively at various levels of an organization. In other terms, multiple

layers of shadow applications exist across the corporation, the final one being personal

applications.

Shadow applications are also characterized by their ownership. If it’s owned by the corporate

IT department, it’s an official application; otherwise it’s a shadow application. The important

aspect of this distinction is not so much “IT or not IT” but “ownership by the actor effectively

using the application”. This allows the owner to quickly adapt the tool to changing

requirements without consulting other stakeholders or relying on the IT organizations’

priorities. It also provides him with full control over the visibility of the data and access to

features. It is worth noting that individual spreadsheets meet this definition.

7
 Besides the obvious cost drawback, this defeats the purpose of an ERP system which is to be the single

referential for a certain domain, capturing the data and implementing the processes.

18

The diagram below illustrates both characteristics.

Figure 2-15. Application work-around and ownership relations

For the purpose of our study, we will retain the objective characteristic of shadow applications

to define them, i.e. ownership.

definition Shadow Application
An application both functionally and technically owned by the actor using it.

An important characteristic of shadow applications is the visual integration of external

("official") data and shadow data. It is common for shadow applications to replicate a subset of

the data from one or several official applications (often manually [43]), add some data and

features, and provide forms and reports with a unified view of all data relevant for a given

profile, which we define as profile-specific.

definition Profile-Specific Application
An application which unifies everything relevant for a given profile,
and nothing superfluous.

Though the benefit of “getting the job done” is sufficient to justify, and indeed pay for, their

existence, shadow applications raise serious problems: duplicated and inconsistent data is

commonplace [43], and having critical information and functionality scattered, unreachable

and managed outside of standard IT processes is obviously not what comes to find when

envisioning a well-structured and robust information system.

Shadow applications are usually considered a “necessary evil” [39, 43], filling the social-

technical gap [31], i.e. the divide between what the corporate IT department knows it must

support and what it can support technically. Corporations cannot work without them, but

would really prefer to avoid the data duplication they imply as well as the burden they

represent, as presented in the next section.

2.4.5. Benefits and Drawbacks of Shadow Applications
Shadow applications provide business-units with the agility they need (and thus the company

needs) to survive and be successful. In this section, we describe the benefits of shadow

Actor

GroupIndividual
groups

members

*

*

Application

*

* 1

 owns

*

uses


works-around-limitations-of 

0..* 0..*

19

applications and the associated drawbacks. In order to do this, we evaluate shadow

applications first from the “local” point of view of the actor owning them and second from a

corporate, i.e. “global”, point of view. The local benefits of shadow applications initially

outweigh the local drawbacks; otherwise business-units would not introduce them on their

own budget.

The shadow application owners’ point of view
Probably the most important benefit from the owners’ point of view is the full autonomy to

implement his specific needs, as soon as these arise, without other actors in a position to

impede or slow down this implementation or to distort the needs by generalizing them. Also,

unlike official applications, the shadow application owner decides about the visibility of his

specific data and features to the rest of the world (confidentiality).

Shadow applications can integrate, either manually or automatically [43], data from other

applications in order to provide a uniform profile-specific interface with all relevant

information for a given profile or task. Integrating data in a single shadow application also

ensures a certain resilience through independence of unreliable or slow related applications.

All or most resources, whether people, hardware, or software, are under the direct

responsibility of the shadow application owner, who can thus decide about their allocation and

be sure they are dedicated to his highest priority, which by construction cannot be guaranteed

when resources are mutualized.

The main and possibly only drawback of shadow applications from a local point of view is that

their owner must support all costs himself: purchase or development costs, integration and

administration costs, hardware costs, and most importantly maintenance costs. Precisely the

costs corporate IT is endorsing for the official applications.

Shadow applications can be of lower quality than official ones. They are managed by people

who are not necessarily information system professionals and who often have other

responsibilities. They can be developed by amateurs [44], with ad hoc or nonexistent

processes, and the quality target is thus typically to be "good enough".

The corporate point of view
The main benefit of shadow applications from the corporate point of view is that they provide

the necessary business agility for the survival and success of the corporation in a rapidly

changing world. But besides this vital benefit, they present serious drawbacks.

Massive data duplication is the norm [43]. This implies inconsistencies and staleness, which are

precisely what information systems try to avoid. Redundant features are common as well, and

potentially inconsistent (for example different algorithms for computing the same business

indicator).

Critical data and features are scattered, which not only generates the risk of losses and bad

decisions but makes the overall information system ungovernable.

20

Various kinds of waste can be observed, like redundant development efforts. A lack of

awareness at the global level is typical, preventing the propagation of best practices for which

business applications are an ideal vehicle.

Most importantly, shadow applications end up aggravating the agility problem, due to the

numerous replications of central data which amplify the effort of changing a central element,

sometimes to the point of becoming prohibitive.

Summary
The table below summarizes the local and global benefits and drawbacks of shadow

applications.

Owners’ point of view Corporations’ point of view

 autonomy

 integration / uniformity

 resilience

 confidentiality

 dedicated resources

 agility (i.e. survival)

 cost

 variable quality

 duplications / inconsistencies

 ungovernable

 waste

 lack of awareness

 aggravate agility problem

Table 1. Summary of benefits and drawbacks of shadow applications

Table 1 shows a high number of local benefits and few local drawbacks, the major one being

the cost which is supported by the owner alone. The cost of business applications in general is

often underestimated at the beginning of their lifecycle [45], which means that at their

inception shadow applications present only benefits to their owner. Over time, the cost

becomes a problem when the shadow application grows, hence the frequent requests for

shadow application ownership to be transferred to the corporate IT department [39].

The summary also shows the high number of global drawbacks, and the single global benefit

which justifies them.

2.4.6. Summary
Our definition of information system is the set of all applications running in a given

corporation. This includes shadow applications, which is appropriate since these indeed

manage vital aspects for the corporation as a whole.

Shadow applications are evidence of the lack of agility of information systems, but are not a

solution due to the issues they introduce from the point of view of the corporation. However

21

they provide a set of requirements for a solution, both their benefits to be reproduced and

their drawbacks to be avoided.

Before stating these requirements in chapter 3, it is interesting to try to understand the root

causes for the lack of agility of official applications in the first place.

2.5. Factors Contributing to Insufficient Agility
Shadow applications initially emerge to work around the shortcomings of corporate

applications [39, 36]. We thus need to understand the causes for these shortcomings.

2.5.1. The Requirements Paradox
In a naïve view of the world, providing a satisfactory business application would only require

first correct requirements gathering and second the proper implementation of these

requirements. While this may be achievable in simple situations, we think the difficulties

described below make correct requirements gathering impossible in big corporations.

Distorted Requirements
Ideally, requirements analysis should be a highly social activity [46], bringing together all

stakeholders, letting them express their requirements and expectations and converging on a

common solution. Even for internally developed applications this is unrealistic due to the

number of stakeholders, and for commercial software this is impossible since the most

important stakeholders are usually not known in advance (future customers). Hence the

common practice of expecting a subset of user representatives to faithfully and completely

express requirements of other stakeholders, and trusting a few central roles to consolidate this

into a single, consistent, satisfactory whole.

Regardless of the competence and motivation of both the user representatives8 and the

consolidators, in complex business environments the result is invariably that requirements are

incomplete and distorted.

Conflicting Requirements
Large organizations are not consistent and orderly systems. Some level of conflict is useful for

identifying and assessing options and avoiding counter-productive conformity (“groupthink”)

[47]. Referring both to groups and individuals, [48] describes working relationships as

“multivalent with and mix elements of cooperation, conflict, conviviality, competition,

collaboration, control, coercion, coordination and combat (the c-words)”. When there are

hidden or conflicting goals, people will resist articulating these [31]. Requirements from

different stakeholders are thus incomplete and divergent [49] or downright conflicting [50].

8
 [175] indicates that user representatives express second-hand or third-hand knowledge at best, and

are typically chosen among junior workers, the most experienced people being too busy and in short
demand.

22

With big numbers and diversity of participants, requirements engineering means lengthy

discussions, leading to delays and more or less acceptable compromises. In other words, actors

must invest a lot of energy to get an unsatisfactory solution, late.

Continuously Evolving Requirements
As an aggravating factor, corporations are not static. They must adapt to changes in their

environment like new markets, competitors, partners, technologies or regulations, with

potential impact on their information system.

Change is not necessarily due to the environment. Over time, professionals learn better ways

of doing their job and want to adjust their way of working accordingly.

Although the impact of the aforementioned c-words is most obvious at the time of application

introduction, the continuous evolution of business requirements turns this into a subtle

though continuous problem. Any change in any stakeholder’s universe can invalidate the initial

compromises and demand new rounds of discussion.

Summary
Requirements are distorted, conflicting and continuously changing. Under such circumstances,

it is a challenge to converge on a consistent set of requirements and deliver a working

application at all. Widespread dissatisfaction with the result is almost guaranteed by

construction, which we call the requirements paradox.

definition Requirements Paradox
The more stakeholders are involved,
the less the result is likely to satisfy anyone at all.

We consider this phenomenon paradoxical because the purpose of involving stakeholders is to

satisfy their needs. But the principle does not scale in complex organizations.

2.5.2. The Knowledge/Influence Paradox
A problem with enterprise software is that the most important decisions are taken by the

people farthest away from the real-life problems the application needs to solve.

Although end-users have the best knowledge of their information processing needs, they have

little influence on the software applications they work with. By contrast the developers have a

tremendous influence on the application, but they usually have insufficient knowledge on the

details about application usage in particular contexts. We refer to this phenomenon as the

Knowledge/Influence Paradox. The following figure shows a typical set of roles, with their

respective influence on the application and their knowledge of the actual problem.

23

Figure 2-16. Typical roles with relative knowledge and influence

Besides illustrating the Knowledge/Influence Paradox, the figure above illustrates the idea of

distance between the user and the developer. This distance can be 0, in the case of an end-

user developing his own application. It is small in the case of shadow applications. And it can

be much bigger than what is illustrated in Figure 2-16 in the case of commercial enterprise

applications. The vertical dotted lines represent barriers, which range from non-existent in the

case of shadow applications to multiple corporation boundaries in an outsourcing scenario

with different companies developing, hosting, supporting, integrating and using enterprise

applications.

definition Knowledge/Influence Paradox
The closer the actors are to the problem being solved,
the less influence they have on the application.

2.5.3. Secondary Factors
Besides the requirements paradox and the knowledge/influence paradox, there are a number

of secondary factors contributing to poor agility of official applications and shadow application

emergence.

The aforementioned widespread practice of IT cost reduction lowers both the reactivity and

quality of IT support, inciting business units to help themselves [29].

Besides conflicting requirements, some c-words foster shadow application emergence by

themselves. A successful shadow application and the knowledge it captures is usually highly

visible within an organization, and its ownership provides recognition (competition) and power

(control, coercion).

We could even add a new c-word, creativity, to the list. Application development is a highly

creative activity, and problem-solving one considered a hobby by many, which can lead

individuals to prefer the shadow application option for no other reason.

Technical obsolescence, a consequence of either respectable age or an unfortunate choice of

foundation technologies, can make it difficult to find the right skillset to implement changes in

existing applications.

Fear of change, either from the application owner or other users, can lead to immobilism. This

natural phenomenon is aggravated by the fact that most organizations do not reward risk but

do punish mistakes. Both actor A requesting a change and actor B approving it take the risk of

programmer

knowledge

product

manager

support consultant project

manager

admin-

istrator

domain expert

/ key user

user

development integration deployment usage

0

100%

influence

24

making a "public" mistake. Actor A changing or adding a shadow application is much less risky,

failure would be limited to his own perimeter and probably unknown outside of it.

2.5.4. Inter-relationships of Factors
The flowchart on the right illustrates a number of typical obstacles for a new requirement on

the path to implementation in an official application, as well as example reasons for choosing

the alternative path leading to the implementation of the requirement in a shadow

application.

Figure 2-17. Paths to implementation of a new requirement in official or shadow application

The path for a given requirement to being satisfactorily implemented in the relevant official

application counts seven hurdles. Even when adopting the optimistic probability of success of

80% at each step, the probability of a given requirement being satisfactorily implemented in

example reasons

resignation : prior experience of any of the reasons below

boredom : "more fun than my real job"

competition : "let’s take the lead on this"

obsolescence : nobody is owner

"not in the scope of this application"

resignation : "other users or management won’t agree"

"impossible" *

"too expensive (cost > benefit)" *

overworked, understaffed, or undermotivated

conflicting requirements

fear of change

internal competition

conflicting requirements

"too expensive" *

IT cost reductions

distorted requirements

change in

environment

actor A needs change

in application X

should we

ask

owner(X) ?

does

owner(X)

agree ?

do users(X)

agree ?

are

compromises

acceptable to

A ?

is

budget and

time available

?

change implemented

in application X

change implemented

in shadow applicaton

is

timeframe

acceptable to

A ?

does change

satisfy initial

need ?

* knowledge / influence paradox and/or obsolescence

no

no

no

no

no

no

no

yes

yes

yes

yes

yes

yes

yes

25

the relevant official application is only of 0.87=0.21, i.e. a 0.79 probability of being

implemented in a shadow application. A neutral scenario with a 50% chance of success or

failure at each step brings the probability down to 0.57=0.01, and thus an almost certainty of

the requirement being implemented in a shadow application. These example figures are

consistent with the volumes mentioned in [39] and represented in Figure 2-12.

Several interesting observations can be made with respect to the chart in Figure 2-17.

 After a first iteration through the shadow application path for a given actor, it

becomes the path of least resistance for subsequent, potentially unrelated

requirements.

 After the first step, branching to the shadow application path does not necessarily

interrupt the official application path, potentially resulting in significant waste.

 Even when the official application path is successful, cycle times measured in

years are not uncommon.

2.5.5. Summary
The previous sections have described a number of causes for lack of agility of official

applications. Over time this leads to an overall state of disappointment and resignation of

actors with their unsatisfactory information system [30, 51] and thus to shadow application

emergence.

Though our analysis of causes is far from exhaustive, some patterns and commonalities

emerge, which will be reused to formulate our research hypotheses in chapter 3.

2.6. Quantifying the Lack of Agility
This section aims at providing some measures and estimates in terms of shadow application

numbers and costs.

2.6.1. Measuring the Number of Shadow Applications
The very nature of shadow systems implies that there is no central inventory where they can

be easily counted. Measuring their numbers in real-life corporations is extremely difficult, due

to a lack of incentive for cooperation both at the level of the corporation and at the level of

groups or individuals.

Information systems are gaining strategic importance, embodying an organization's know-how

and culture [12]. Big organizations - public or private - are therefore reluctant to publicly admit

shortcomings in their information system, or to dedicate resources to an audit revealing

information system deficiencies. The aforementioned report from The Boeing Company [39] is

a notable exception.

In a certain sense, measuring shadow application development and usage is measuring a

degree of taboo [52]. We have not found an experiment likely to yield accurate quantitative

data about shadow applications in existing corporations (see appendix B), and our study will

thus use the figures from the Boeing Company [39] and the estimates presented in the next

sections.

26

2.6.2. Estimating the Number of Shadow Applications.
We can use publicly available data to estimate the number of shadow applications in other

existing organizations.

The Boeing Company
In [39], the Boeing Company reports an organization with 3 official applications, 30 semi-

official applications and 500 unofficial applications. A generalization of this observation could

be to consider a 10x factor per "layer".

International Business Machines Corporation (IBM)
A public interview of the Chief Information Officer (CIO) of the IBM Corporation describes an

internal application consolidation effort [53] of unspecified length and cost. The result was to

reduce the number of applications supported by the corporate IT department from 16 000 to

4 500 today, with a final objective of 2 250 applications. The person clearly states that only a

small subset of the business units’ requirements will be implemented.

"The IT department may get requests for '100 new requirements' for the global

application, which they will negotiate down 'to the 20 requirements that you are

actually going to implement'".

This roughly says that discarding 80% of expressed requirements is considered acceptable.

The interview also clearly mentions their acceptance of shadow applications and the choice of

the IBM corporate IT department to provide dedicated resources, for which “100 000 users

have registered”.

2.7. Conclusion
Corporations must be agile to survive, and agility is thus a prime requirement for their

information systems. The state of fragmentation we have described is proof of a serious lack of

agility of today’s information systems. Our opinion is that with present software architectures,

no matter how carefully business applications are crafted, over time they will spawn shadow

applications whenever resourceful actors have urgent unsatisfied needs, solving a local

problem but aggravating the overall situation.

Our hypothesis is that a fundamentally different information system paradigm is possible, and

that shadow applications provide insight into what organizations need. In the next chapter we

express the benefits and drawbacks of shadow applications and the causes for their

emergence as high-level requirements for an agile information system.

27

3. Requirements
for an Agile

Information System
This section presents our research hypotheses. Building upon the observation of the present

state of information systems described in the previous chapter, we propose a set of high-level

requirements for an agile information system.

Starting from a generalization of the benefits of shadow applications, section 3.1 describes

application requirements, i.e. requirements which must be met by a single application.

Section 3.2 presents information system requirements, i.e. requirements which must be met

by the collection of all applications. A third section describes additional derived requirements

related to composition, traceability, collaboration and governance.

Requirements will be numbered Rx, from R0 to R15.

3.1. Application Requirements
When facing a new business requirement, actors must be able to quickly reflect this change in

the business applications they use. The first potential hurdle is a lack of influence.

R0 Influence

Whenever facing a shortcoming in an application, actors must be able to either adapt the

application themselves or introduce a new application. We will refer to such changes as

adaptations. In a data-centric vision, this encompasses adding attributes to existing business

concepts, adding new concepts, changing multiplicities, introducing or removing states in a

state machine, or more generally reducing or increasing any level of granularity.

EXAMPLE

In our Luxury example, an engineering organization adds a new concept "SubTask"
with a reference to the existing concept "Request", effectively adapting the initial
Luxury application.

EXAMPLE

Besides this organization-wide adaptation, individual employee X chooses to
extend the existing concept "Request" with a new attribute "difficulty" in order to
organize his work.

28

Allowing any actor to make changes to any application implies a mechanism which isolates

actors from one another, which dictates requirement R1.

R1 Isolation

Actors must be able to introduce adaptations without impacting other actors. The rationale for

this requirement is that seeking agreement with other stakeholders on the specification is not

only time-consuming but likely to fail (see section 2.5). This does not imply that adaptations

are private and that other actors cannot see them (which is a separate concern covered by R4)

but rather that actor A's adaptations are not applied to actor B by default.

EXAMPLE

In the examples in section R0, the sales organization does not see concept "SubTask",
and likewise, no individual besides X sees attribute "difficulty".

These first two requirements introduce application variability. Depending on the actor, a

different set of adaptations will apply, which is a first step towards profile-specific applications.

Other common hurdles between the expression of a requirement and its implementation are

hardware resource limitations, skills and confidentiality, which dictate the next 3 requirements.

R2 Hardware Independence

R0 and R1 provide any actor with the freedom to adapt applications owned by another actor.

However it would not be realistic to expect application owners to provide sufficient resources

to support the burden of all adaptations by other actors. As a consequence, adaptation owners

must be able to host their adaptations on their own hardware resources, i.e. resources they

can purchase and administrate themselves. Failing to meet this requirement would put the

application owner in a position to impede the deployment of adaptations for resource

limitation reasons, or even political reasons. R2 is effectively a prerequisite for R0.

EXAMPLE

If the engineering department wants to attach big specification documents and CAD
files to Tasks or SubTasks, it should be possible to host these documents on the
engineering departments’ own hardware resources.

R3 Ease of Modification

Even without having software development skills or having the budget for hiring or

subcontracting someone who does, any individual must have the possibility to implement

adaptations himself, following the gentle slope principle, which states that in order to modify

an application through its user interface, end users should have to “only increase their

knowledge by an amount in proportion to the complexity of the modification” [54, 55].

Simple adaptations must not require programming. More complex tailoring tasks should be

possible with user-oriented programming languages and building blocks [56]. Professional

software development must be possible as well.

29

EXAMPLE

In order to add the new attribute “difficulty” to existing concept “Task”, user X could
simply click next to the last column, type “difficulty” as a column header providing the
attribute name, and start filling values which can help determining the data type of the
attribute. Spreadsheet-like formulas provide a way to express simple processing, and
wizards can assist more complex operations like adding a new association between two
concepts.

R0 (influence), R1 (isolation) and R3 combined reduce both the requirements paradox and the

knowledge/influence paradox: everybody can easily change what needs to be changed to do

his job without impacting others.

R4 Confidentiality

An actor who introduces information system elements must be able to control their visibility. A

first reason for this is to implement business-related confidentiality rules, i.e. only exposing

sensitive data on a need-to-know basis. A second reason is to prevent time-consuming and

counterproductive post-implementation arguments with other stakeholders who might

disagree about political aspects like ownership, or about functional aspects like the business

process.

EXAMPLE

In our case of a Request management system, a first example is a sales department
who could decide to add an attribute “expected sales” in order to prioritize their work.
They prefer to hide such very rough projections from other actors.

EXAMPLE

As a second example, the corporate quality process dictates that for all requests which
last longer than 5 days, a “retrospective” meeting is required. The engineering team
considers it is a waste of time to do this systematically, and decides to add a boolean
attribute “needs retrospective” to mark for which requests they can bypass the
process. Such an attribute clearly contradicts the official process, and in order to
prevent lengthy explanations they decide to hide the attribute from the rest of the
corporation.

We consider that if anybody (R3) can quickly change whatever he wants (R0) without

necessarily consulting (R1) or even informing (R4) other actors, with his own hardware

resources (R2), an application supports conflicting requirements. We have shown that due to

organizational complexity, requirements are divergent by construction, and supporting them

greatly reduces the requirements paradox.

3.2. Information System Requirements
In an information system composed of applications meeting requirements R0-R4, a great

number of actors can introduce changes; it is worth remembering the Boeing figures of 530

shadow applications for 3 official applications. This section expresses desirable properties of

the overall resulting information system: consistency, resilience and uniformity.

30

R5 Consistency

Duplication must be avoided, both in terms of data and of features, resulting in a system

consistent by construction. This may seem straightforward, but observations of real-life

information systems [43, 39] make it worth stating.

EXAMPLE

In the first example for requirement R4, the values for the new “expected sales”
attribute (added by the sales department) must be stored without even partial
replication of official Request records.

R6 Resilience

In a scenario where many actors can provide application elements (R0) and host these on their

own hardware resources (R2), variable reliability is a certainty. Network availability and

performance is often uncertain as well, especially when considering small remote sites. It is

important that the information system is resilient when parts are down, i.e. unreliable or

temporarily missing parts must not preclude a user interacting with the available parts.

EXAMPLE

A central application hosted in Europe (on server SE) has been extended with a set of
attributes by a business unit X, which has hosted these extensions on a server in their
biggest location, i.e. in Asia (server SA). When employees from European or American
sites of business unit X interact with this application, a slow or broken link with the
Asian continent should not impede access to the elements on server SE.

R7 Uniformity

Actors should not have to deal with many different user interfaces. Ideally, they should have a

single point of access which seamlessly integrates all data and features relevant to their job,

and no more. It is thus important to blend together applications and the relevant adaptations

into a uniform user interface (the aforementioned profile-specific application), to avoid

juggling with numerous different user interfaces.

EXAMPLE

When a person from the quality department looks at a Request, he sees both the
official data (title, dates …) and the data which is specific to the quality department
(delay analyses), as illustrated in the top form in Figure 2-14.

EXAMPLE

The bottom example of the same figure provides a counter-example: people from the
planning department need to look both at the official application (Figure 2-13) and their
extension spreadsheet to get the overall picture.

31

3.3. Derived Requirements

3.3.1. Composition Requirements
Whether looking at our previous description of information systems (see Figure 2-11) or at

requirements R0-R7, we consider a business application as a composition of elements. This

composition typically happens at development-time and is thus manual and static. We propose

the next two requirements as desirable characteristics of the composition mechanism.

R8 Profile-driven Composition

Today, applications typically use the users’ profile (in particular organization memberships and

roles) to filter the elements which are available to him. Beyond removal of forbidden

elements, user profiles should drive the composition mechanism, automatically including

relevant adaptations.

EXAMPLE

Actor X is working in the planning department, and as a result the “subtask” adaptation
is part of his daily work. He has recently been named “quality champion” for his
department, and as such he is now interested in adaptations regarding quality aspects.
His applications should automatically reflect both the planning and the quality
adaptations, without the need for human contribution.

R9 Change Propagation

Application elements can be adapted (R0). When the original element changes, this change

should be reflected in all its adaptations without human contribution, resulting in the same

situation as if the attribute had been present from the start. This means that applications

should either be dynamic or automatically rebuilt in the case of an "upstream" change.

Traceability is a prerequisite (R10-R11).

EXAMPLE

The owner of official application Luxury introduces a new attribute “business value”.
Even though the new attribute has been added after the extensions, the applications
from the quality and planning department must automatically reflect this new
attribute, without human contribution.

3.3.2. Traceability Requirements
Evolution of complex information systems is not trivial, especially when envisioning distributed

ownership of elements. Pre-implementation impact analysis is an important aspect of change

management. The following two requirements propose bi-directional traceability to enable

such impact analyses. We adapt the terms forward and backward traceability from

requirements engineering [57] to our proposal.

R10 Forward Traceability

When considering a necessary evolution or removal of an element, understanding its usage is

mandatory to measure the impact of the change. We call forward traceability the possibility to

32

determine where a given element is used. Commonly advocated enterprise architecture

principles like layering [58], loose coupling [59] and separation of concerns don't necessarily

provide the owner of an element with this visibility.

EXAMPLE

In the example illustrating requirement R9, while considering the introduction of the
"business value" attribute, the owner of Luxury can inspect adaptions before the
change, and possibly contact the owner of a similar extension to discuss potential
conflicts together beforehand.

R11 Backward Traceability

When interacting with a profile-specific application, a user manipulates a composition of. He

should be able to know the origin of all these elements, in order to get explanations, suggest

evolutions, or determine trustworthiness with respect to his particular concern.

EXAMPLE

A user from the quality department notices that the “delay” calculation is incorrect
(Figure 2-14) because it does not take into account weekends. He should be able to
determine whether to notify the problem resides in the official application or in the
quality-specific adaptation.

3.3.3. Collaboration Requirements
When an actor faces a new requirement, he can either request a change in another application

(R11) or decide to implement the change himself (R0). However, instead of deciding to

introduce a new element of his own, he could reuse an existing adaption. In order to minimize

duplicate efforts, our last set of requirements deals with two aspects of collaboration: sharing

and awareness. These are closely related to R5 (consistency).

R12 Sharing

R4 ensures that actors have the possibility to hide their elements from other actors if they

wish. However, when the owner considers an element mature enough and potentially

interesting for other actors, he must be able to share this element, making it available to a

wider group of actors in order to minimize duplicate efforts and to propagate best practices.

EXAMPLE

Employee X has extended concept "Request" with an attribute "difficulty" in order to
organize his daily work by descending difficulty. When colleagues from his team wish to
adopt this approach, X shares this adaptation with them. After a few weeks of positive
impact on the teams’ productivity, employee X decides to share the “difficulty”
adaptation with a broader group of employees.

R13 Awareness

The corollary of R12 is that actors need to be aware of all existing elements available to them,

through both search (“pull”) and notification (“push”) mechanisms.

33

EXAMPLE

Employee Y wants to better manage his time, and wonders how he could better
organize his tasks. He should be able to easily find employee X’s “difficulty” extension,
so he can adopt it if it fits his way of working, instead of introducing a similar extension.

EXAMPLE

More and more actors adopt the “difficulty” extension. An employee Z with a similar
profile who hasn’t yet thought of prioritizing his tasks in this way could be proactively
notified of this popular feature.

R14 Relevance

As soon as an element is shared by its owner, it is available to other actors, and potentially

relevant for their activity before they identify the need. However, in a big organization where

all actors can contribute and share, the potential number of available elements is huge and

information overload must be avoided, especially in the case of notification mentioned in R13

(awareness). It is thus important to provide assistance to actors to determine which elements

are most relevant for them, not only enabling but accelerating the propagation of best

practices.

EXAMPLE

If aforementioned actor Z (R13) gets notified more than once about available
extensions which are not relevant for his job, he will start ignoring subsequent
notifications. As a corollary, if most suggested elements so far were relevant, he will
pay close attention to new notifications.

3.3.4. Governance Requirements
The previous requirements have depicted a situation where many elements are introduced

and shared by many actors. Our final requirement deals with governance, according to our

previous definition.

R15 Governability

Corporate management must be able to get a clear overview of the information system as a

whole and of the dependencies between its components, in order to drive its evolution.

Several previous requirements can be considered as prerequisites for governability, especially

R5 (consistency), R10-R11 (traceability) and R13 (awareness).

EXAMPLE

The popularity of the “difficulty” extension should be brought to the attention of the
corporate IT department, in order to assess whether it could be useful beyond its
present adopters and proposed for wider use, and possibly retire existing alternatives
which nobody uses.

34

3.4. Conclusion
In this chapter we have expressed the generalization of the benefits of shadow applications in

the form of requirements for an agile information system, and have complemented these with

further requirements in order to avoid their drawbacks. The resulting set of requirements for

an agile information system is summarized below.

Category Requirement

Application R0: Influence

R1: Isolation

R2: Hardware Independence

R3: Ease of Modification

R4: Confidentiality

Information System R5: Consistency

R6: Resilience

R7: Uniformity

Composition R8: Profile-driven Composition

R9: Change Propagation

Traceability R10: Forward Traceability

R11: Backward Traceability

Collaboration R12: Sharing

R13: Awareness

R14: Relevance

Governance R15: Governability

Table 2. Summary of requirements for an agile information system

In the next chapter we evaluate the two dominant information system architecture paradigms

versus these requirements, and describe related research work which provides elements for a

solution.

35

4. State Of The Art
In this section, we evaluate the two dominant information system architecture paradigms with

respect to our requirements for business agility: application-centric and service-oriented. We

discuss further research work related to requirements complexity, business agility, and coping

with information system fragmentation

4.1. Information System Architecture Paradigms
The most common architecture paradigm is centered on applications. In this vision, the

information system is a collection of more or less integrated applications, which users interact

with through various application user interfaces. We call this paradigm application-centric. The

diagram below shows that the primary decomposition is vertical, with a secondary

decomposition along the tiers presented in Figure 2-5.

Figure 4-1. Application-centric architecture overview

An alternative, more recent architecture paradigm revolves around services. Services are

components which expose business or technical capabilities to be invoked by other

components. Services can be complemented by widgets, i.e. snippets of user interface

providing a way to interact with a service. We call this paradigm service-oriented. The diagram

below shows that the primary decomposition is horizontal, with a secondary decomposition

along domain boundaries.

Figure 4-2. Service-oriented architecture overview

persistence

presentation

logic

Application0

persistence

presentation

logic

Applicationn

integration

mechanism

End User

storage0 stroragep

service0 servicei servicem

widget0 widgetnwidgeti

Logic and

Persistence

Presentation

user

36

These two paradigms are not mutually exclusive. Applications have been gradually adopting

more open middle tiers, effectively exposing the logic as services in order to facilitate their

integration in service-oriented architectures. Services on the other hand are frequently used as

a foundation to build applications.

Each information system is unique, with its own mix of closed monolithic applications, more

open service-enabled applications, services and (less frequently) widgets. It is thus impossible

to evaluate all possible combinations. In order to evaluate the two paradigms, the next two

sections describe and evaluate the two extreme scenarios: purely application-centric and

purely service-oriented.

4.2. Application-Centric Architectures
Application-centric architectures are the dominant situation in corporations today. The vast

array of methodologies and technologies for application development and integration

precludes an exhaustive state-of-the-art. In this section we first provide a more detailed

description of our assumptions about the typical characteristics of an application-centric

information system, and then evaluate it versus our requirements for business agility.

4.2.1. Description
An application provides a complete solution for a given problem domain. It covers the full

stack from persistence to presentation and is thus often referred to as a vertical solution, as

illustrated in Figure 4-1.

Big corporations have multiple applications, configured for their specific needs [60]. In theory a

single very powerful application could fulfill all needs. In practice however, even at the

corporate level more than one enterprise application is usually present, for either historical

reasons (mergers or acquisitions), functional reasons (no single application can meet all

requirements), legal reasons (different regulations depending on country or target business),

technical reasons (obsolete platforms with business-critical modules) or even strategic reasons

(“best-of-breed” approach [61]).

Within a corporation, the same real-world business concept (a product for example) typically

exists in various applications, i.e. it has multiple and different representations. In an ideal

information landscape, only one clearly identified application owns the master representation

for each instance of a concept, and all other applications have replicas.

Figure 4-3. A real-life Concept and multiple Representations in various Applications

It is possible to have several applications owning master data for one concept. The simple case

is a horizontal partition, when a given instance belongs to only one application according to its

*

Master

Replica

Representation*

1Application

Concept

*

1
Domain

*

*

37

nature. For example, in a company producing both hardware and software products, it is not

uncommon to have separate master applications for each. The more complex case is vertical

partitioning, where the same instance exists in multiple applications with different attributes,

each master of its own set.

Synchronizing replicas with master data can be manual [43] or via a form of integration, which

we will discuss in section 4.6. It implies extracting the master data and inject it into other

applications which can then operate on local data. An alternative to this data replication would

be to design applications in a way permitting to operate on remote data. This was the main

objective of the distributed objects paradigm [62], which has slowly evolved into the service-

centric scenario we will discuss in the next section. Modern business applications have a well-

defined and documented service interface allowing to extract or inject data, and to invoke

processing. Most applications have a "one-way" integration philosophy, where they consider

themselves as the focal point for a given problem domain and operate on local data.

The core set of integrated official applications is typically owned by the corporate IT

department, and only represents the tip of the iceberg. As described in section 2.4.2, in order

to meet their business goals, business units complement this set of official applications with

their own semi-official applications. These can exploit the core integration mechanisms to

synchronize reference data with official applications. Recursively, groups and individuals in

turn introduce further levels of unofficial applications to do their daily job; in order to evaluate

the application-centric scenario versus our set of requirements, we thus adopt the following

rough definition.

definition Application-centric Information System
Information System where a requirement is implemented
within a given application, official or shadow.

The next section evaluates application-centric information systems as a whole. We will provide

separate ranks for official applications and for their unavoidable shadow counterparts, and will

derive a compound rank for an application-centric architecture, as illustrated by the table

below.

requirement
official

applications
shadow

applications
application-centric

architecture

Rx <label> rankofficial rankshadow compound rank

Table 3. Explanation of application-centric ranking columns

4.2.2. Evaluation
When an actor A faces a new business requirement R which needs to be reflected in a given

application, two situations can occur: either the application in question is owned by an

external group, or it is owned by actor A himself. In the first case, actor A must request a

change from the application owner (see Figure 2-17). The result, if any, is rarely satisfactory,

often leading to the implementation of requirement R in an existing shadow application or

even the emergence of a new one. In the second case, i.e. actor A owns the application, he can

directly implement the requirement R in his shadow application.

38

Thanks to the existence of shadow applications, actors have full freedom to implement any

change at will, without disrupting other actors. This satisfies both requirements R0 (influence)

and R1 (isolation). Shadow applications typically run on business-unit owned hardware,

satisfying R2 (hardware independence) as well.

Numerous tools exist to allow individuals with varying degrees of software development skills

to implement business applications on their own. The most popular are spreadsheets, which

allow to represent structured data and express simple processing with minimum skills, while

providing more software-literate individuals with a rich set of processing and even

communication functions. Spreadsheets are thus an excellent illustration of the gentle slope

principle [54, 55]. Tools like Microsoft/Access target the development of small-scale local

database applications through a form-based development environment. Online tools like

Intuit/QuickBase or Tibco/FormVine provide similar functionality and ease-of-. Application-

centric environments thus satisfy requirement R3 (ease-of-modification), again thanks to

shadow applications.

Shadow applications satisfy R4 (confidentiality) by definition. Owners of shadow applications

can clearly decide who they grant access to. It should be noted here that corporate IT

departments can almost always access everything: they typically have administrator access on

all machines, both on servers and on all of the organization's personal computers.

The table below summarizes the rankings of application-centric architectures versus R0-R4.

requirement
official

applications
shadow

applications
application-centric

architecture

R0 influence   

R1 isolation   

R2 hardware independence   

R3 ease-of-modification   

R4 confidentiality   

Table 4. Ranking of application-centric architectures versus application-level requirements

Considering that R0-R4 are generalizations of shadow application characteristics, this summary

is no surprise. However, it clearly illustrates how shadow applications compensate for the lack

of agility of official applications.

When considering an application-centric information system as a whole, inconsistency is a

main weakness. Due to numerous replication paths, with successive selections and projections

(in the relational algebra [63] sense of the terms) and transformations, and multiple manual

entry points for identical business concepts, consistency is impossible by construction. This is

not obvious when looking at a single application, which is a consistent entity with well-

implemented integrity constraints. When trying to integrate several systems, discrepancies are

usually discovered [64]. The whole information system depicts a scary picture.

39

This situation is made tolerable by the human factor: people can deal with inconsistency. But

we consider that consistency has been sacrificed to achieve necessary agility, and application-

centric architectures fail to meet requirement R5 (consistency).

Applications, whether official or shadow are self-sufficient entities. As such, they are usually

designed to function independently from the availability of other applications. This loose or

non-existent coupling results in an overall resilient system, where the failure of one particular

application has little or no impact on the remaining applications. Also, in multi-national

environments with networks of variable speed and reliability, the replication mechanisms

which applications naturally encourage have the beneficial side-effect of isolating single-

application interactions from network problems. We can thus consider that application-centric

architectures satisfy requirement R6 (resilience).

When a users’ concerns span multiple applications, he usually interacts with all these

applications in turn, through distinct interfaces. This clearly fails to meet requirement R7

(uniformity). However, shadow applications often pull together the relevant data elements for

a given task. They present both local master data and replicated data in a convenient unified

interface, optimized for a given actor or task, which we can consider satisfies R7 in read mode.

Data updates are typically local. Although it is sometimes possible to implement bi-directional

synchronization by invoking services when these exist, the update of master data often

requires manual changes in the source application. We will thus consider that requirement R7

is not satisfied in write mode, as reflected by the double rank below for read and write (r / w).

requirement
official

applications
shadow

applications
application-centric

architecture

R5 consistency   

R6 resilience   

R7 uniformity (read/write)   /   / 

Table 5. Ranking of application-centric architectures versus information system-level requirements

Intrinsically, business applications are standalone entities, composed manually at

development-time. If an actors’ profile involves multiple roles spanning several applications

and adaptations, these do not get automatically composed without human contribution.

Requirement R8 (profile-driven composition) is thus not satisfied.

Applications, both shadow and official, have local replicas of data they do not own. If the

master schema evolves, the synchronization mechanism can break but even if it doesn't, the

evolution will typically not be dynamically propagated to other applications. We thus consider

that requirement R9 (change propagation) is not satisfied.

Applications are primarily designed for human users. Users are authenticated, and application

owners are thus usually aware of who uses his application. This is not necessarily true for

outgoing integration mechanisms. If this mechanism is a read-only database access or a service

interface invocation, it is possible to keep track of which other applications depend on a given

application through authentication. In the case of file extracts published in an area with wide

access, or messages published on communication middleware, this may be difficult, or over

40

time too impractical and expensive, or even impossible. By adhering to the principle of

decoupling [59], application-centric systems do not satisfy requirement R10 (forward

traceability).

Because applications mostly or only manipulate local data, little importance is given to the

origin of this data. Users of application B may be aware that some data is replicated from

application A, but such traceability is typically not a primary concern and no online

documentation or mechanism is provided. This fails to satisfy requirement R11 (backward

traceability).

requirement
application-centric

architecture

R8 profile-driven composition 

R9 change propagation 

R10 forward traceability 

R11 backward traceability 

Table 6. Ranking of application-centric architectures versus composition and traceability requirements

Official and high-end semi-official applications are few, well-known, typically listed in

corporate and organization homepages and portals, and often part of the "training" a

newcomer receives. They are shared by the entire organization, which is both their reason of

being and the cause of their main weaknesses. Awareness of the existence of these

applications and the data they contain is thus high. We can consider that official applications

satisfy both requirements R12 (sharing) and R13 (awareness).

Shadow applications on the other hand are by definition circumscribed to the actor owning it.

When the owner considers his shadow application of interest to a wider group and mature

enough, he typically does not have a central location to advertise it, failing to satisfy

requirement R12 (sharing). An actor with a new requirement which is already implemented in

a shadow application elsewhere in the corporation has no way of finding it. Requirement R13

(awareness) is thus not met by shadow applications.

Neither official nor shadow applications provide a reliable way to determine relevance for a

given user beyond word of mouth, failing to satisfy R14 (relevance).

requirement
official

applications
shadow

applications
application-centric

architecture

R12 sharing   

R13 awareness   

R14 relevance   

Table 7. Ranking of application-centric architectures versus collaboration requirements

Information system governance typically covers only the official applications, ignoring shadow

applications. Considering the relative numbers of official and shadow applications, we can

41

consider that an application-centric information system is ungoverned and ungovernable, and

that R15 (governability) is not met.

requirement
official

applications
shadow

applications
application-centric

architecture

R15 governability   

Table 8. Ranking of application-centric architectures versus governance requirements

4.2.3. Summary
Application-centric architectures are the most common information system scenario today,

where official applications provide consistent and robust but rigid record-keeping, and shadow

applications provide the flexibility actors need in their daily work, compensating for the lack of

agility of official applications.

As a whole, we consider that application-centric architectures have sacrificed consistency and

governability to provide the necessary business agility. The next section describes and

evaluates the more recent service-oriented architecture paradigm.

4.3. Service-Oriented Architectures
The term Service-Oriented Architecture (SOA) can designate a great variety of solutions. The

next section describes the assumptions we have made, most importantly the emerging view

that services and mashups are complementary technologies [33, 35]. We then evaluate the

SOA paradigm in general versus our proposed requirements for an agile information system.

4.3.1. Description
The Service-Oriented Architecture or SOA paradigm has been under discussion since the late

90s [65], but lacks a generally accepted definition [66]. A Service-Oriented Architecture views

the corporate information system as a set of services which allow different applications to

exchange and process data [67]. Desirable properties usually include loose coupling, dynamic

binding, published interfaces and standardized technologies [33].

The basic principles of loose coupling and dynamic binding are illustrated by the familiar

triangular diagram below, which shows how the service registry provides a level of indirection

(i.e. decoupling) between the service consumer and provider [68].

Figure 4-4. The SOA triangle, ensuring loose coupling between consumers and providers

Service
Registry

Service
Consumer

Service
Provider 3: bind

1: register 2: find

42

Enterprise mashups put a visual face to the purely machine-to-machine services of SOA [69, 70,

71, 35] and can be considered an evolution of SOA [72]. Like services, mashups lack a

commonly accepted definition9. They aim at allowing end users to integrate and combine

services, data and other content [73] to bridge the business/IT gap [33]. The figure below

presents the service-centric scenario which we will use in our evaluation.

Figure 4-5. Service-centric architecture

At the bottom it shows a service layer, which exposes all available business data and

functionality as standard and composable services. A registry allows both services to find each

other and actors to find services they can use in compositions (not represented), which can be

hard-coded, or use orchestration [74], data mashups [73] which can be considered “user-

driven micro-orchestration” [75], or other mechanisms.

Widgets are small, configurable user interface snippets, which once bound to services provide

a way for end users to interact with business data and functionality. They follow certain

standards [76] allowing them to be manipulated in presentation-level mashup environments

[33], where end-users can search the catalog for interesting widgets, and then select, compose

and configure them to form an optimal user interface, tailored and configured for their specific

needs.

We thus define a service-centric information system as a scenario where business

requirements are implemented in services, which are complemented by widgets for user

interaction.

definition Service-centric Information System
Information system where requirements are implemented
as services with the associated widgets.

9
 In [73], 16 different definitions have been identified

widget0 widgetm

service0 servicenservicei

mashupp

user0

registry

catalog

service
layer

widget
layer

mashup
layer

presentation
tier

business logic
tier

persistence
tier

mashup0

An arrow indicates an invokation

43

Web services [77] are presently the most common solution for implementing an SOA [78], and

we will thus assume that communication between the components of a service-centric

information system is synchronous.

In the next section we evaluate this service-centric information system scenario versus our

requirements for an agile information system.

4.3.2. Evaluation
When actor A faces a new business requirement, this can impact a service, a widget, or both. It

is generally possible for actor A to implement his adaptation in a new service or widget, either

by substitution or encapsulation.

Figure 4-6. Widgets and service substitution

In an ideal substitution scenario, widget1 reuses the code from widget0 and implements only

the difference. In the worst case, widget1 is a complete re-implementation. In the

encapsulation scenario, widget2 reuses an instance of widget0, pre-processing its input and

post-processing its output, for example to add or remove a column in a table or to transform

certain data or presentation elements.

If the underlying service service0 is impacted, a new service service1 must be developed.

Service1 can provide additional or substitute business logic, local storage of additional data

elements, and invoke service0 when required. This implies a mechanism for widget0 to

determine which service it should invoke depending on the actor, which can be dynamic (a

service registry as illustrated in Figure 4-4) or static (deployment-time widget configuration).

Thanks to their relatively fine granularity, services and widgets can thus be adapted through

encapsulation or substitution when necessary, which satisfies both requirements R0

(influence) and R1 (isolation). Since such adaptations can run on business-unit owned

hardware, R2 (hardware independence) is satisfied as well.

Business process modeling languages and techniques [79] allow in theory to involve domain

experts in service composition and orchestration. Graphical data mashup environments like

Yahoo/pipes [80] allow users to visually connect and configure services to adapt them to their

needs. The development of composite services can thus be considered fairly accessible to end

widget0

service0

initial
situation

mashup0

service0

widget
substitution

mashup0

widget0 widget1

widget0

service0

mashup0

widget2

widget0

service1

service encapsulation

mashup0

service0

widget
encapsulation

44

users. However the development of "leaf" services still requires appropriate software

engineering skills to deal with transactions, multi-threading, authentication and authorization,

persistence, etc.

Widgets are user interface fragments, and like bigger user interfaces are often hardcoded.

However, specific tools [80] provide a way for end users to graphically build widgets and bind

these to the appropriate services.

While the development of very specific services and widgets requires software development

expertise, the availability of graphical development environments partially satisfies

requirement R3 (ease-of-modification).

Actors can introduce specific services and widgets, but have no obligation to publish these in

the respective registries and catalogs, thus hiding their adaptations from other actors. Such

security through obscurity [81] can be sufficient in a corporate environment. For situations

where it is not sufficient, the presence of authentication and authorization mechanisms in

service environments allows actors to restrict access to their adaptations, satisfying

requirement R4 (confidentiality).

The table below summarizes the rankings of service-centric architectures versus application-

level requirements R0-R4.

requirement service widget
service-centric

architecture

R0 influence   

R1 isolation   

R2 hardware independence   

R3 ease-of-modification   

R4 confidentiality   

Table 9. Ranking of service-centric architectures versus application-level requirements

Services provide an ideal single point of access for reference data, as well as a mechanism to

expose reusable business or technical functionality. In a service-centric architecture, it is

natural to reuse existing services, removing the need for data replication which causes

inconsistency in application-centric environments. Services are often used to update various

underlying legacy applications in one call, hiding the replication. Services satisfy requirement

R5 (consistency).

The downside of this natural, synchronous way of reusing services is that they result in a

tightly coupled network, with multiple runtime dependencies. Most services are thus not self-

sufficient, and can be directly impacted by slow and unreliable dependencies. The underlying

assumption in a service-centric scenario is that the other services are reachable and that the

network is fast enough, which is a valid assumption in the restricted area of official and high-

end semi-official services. When considering numerous services contributed by any actor

anywhere in the corporation, the assumption breaks. While it is possible to design

asynchronous service architectures, it is not the natural usage scenario and we thus consider

45

that service-centric architectures do not satisfy requirement R6 (resilience) in an environment

with many user-contributed services (R0-R3).

Mashups and widgets provide good support for unifying elements from various origins into

profile-specific user interfaces. While the natural approach is to assemble widgets side-by-side,

it is possible to interleave elements through the aforementioned graphical composition

environments. A service-centric environment satisfies requirement R7 (uniformity).

requirement service widget
service-centric

architecture

R5 consistency  - 

R6 resilience   

R7 uniformity   

Table 10. Ranking of service-centric architectures versus information system-level requirements

Services are well suited for composition. Service composition can be hard-coded or

configurable, with high-level service composition languages like BPEL4WS and WSCI [82] or

with graphical service composition interfaces.

Requirement R8 (profile-driven composition) states that if several adaptations are relevant for

a given actor A, these should automatically be combined for him. This is not met by the service

layer, where service adaptation remains a manual operation. Likewise, if two separate widgets

provide adaptations, there is no automatic way to apply both these adaptations for actor A.

Only in the mashup layer can widgets be automatically inserted depending on the actors’

profile. We can thus consider that requirement R8 (profile-driven composition) is not met, and

that composition remains an essentially manual operation.

We can consider that a composed service encapsulates other services, and that it thus isolates

its client from underlying changes. In the case of using service composition to merge

adaptations, this fails to meet requirement R9 (change propagation), which would dictate that

changes in the underlying services get dynamically reflected in the top-level service.

Widgets are typically hard-coded. In the case of adaptation by substitution (widget1), an

evolution of the initial widget must be manually propagated to all adaptations. In the case of

adaptation by encapsulation (widget2), the adapted widget will dynamically reflect the change

only if the evolution of the initial widget does not break the post-processing mechanism. We

thus consider that requirement R9 (change propagation) is not met.

In layered architectures, lower-level elements typically don't know their clients in higher

layers. Services thus don't necessarily know by whom they are encapsulated or otherwise

used. Likewise, widgets which have been adapted by substitution or encapsulation do not

provide their owner with a reference to the various adaptations. Service-centric information

systems thus do not meet requirement R10 (forward traceability).

One of the main purposes of services, whether adaptations or not, is to hide whatever is

underneath. This is in contradiction with requirement R11 (backward traceability), which

states that users are interested in the origin of the data they manipulate. Widgets may or may

46

not expose their data sources (i.e. associated services) as configuration parameters, possibly

providing some insight. The origin of the widget itself is usually known through its URL, but

adaptations break this. We can thus consider that no traceability mechanism is available,

failing to satisfy requirement R11 (backward traceability).

requirement
service-centric

architecture

R8 profile-driven composition 

R9 change propagation 

R10 forward traceability 

R11 backward traceability 

Table 11. Ranking of service-centric architectures versus collaboration and traceability requirements

In a service-centric architecture scenario, two components clearly meet requirement R12

(sharing). The central service registry and widget catalog provide actors willing to make their

adaptations available to a wider group with a central location where respectively services and

widgets can be published, described with the appropriate metadata. Whether these referential

systems are indeed used and searchable is questionable [68, 83] and depends on the relevance

of the metadata, but the mechanism for satisfying requirement R13 (awareness) is available.

There are no indicators beyond owner-provided metadata to determine how relevant the

various candidate elements are for an actor who is searching, failing to meet requirement R14

(relevance).

requirement service widget
service-centric

architecture

R12 sharing   

R13 awareness   

R14 relevance   

Table 12. Ranking of service-centric architectures versus collaboration requirements

Although a service-centric architecture can provide good visibility of available elements

through the service registry and widget catalog, the lack of traceability mechanisms makes it

difficult to get a clear overview of the dependencies between components and thus of the

information system as a whole. We will thus consider R15 (governability) not satisfied.

requirement service widget
service-centric

architecture

R15 governability   

Table 13. Ranking of application-centric architectures versus governance requirements

47

4.3.3. Summary
The enormous amount of research on service-oriented architectures precludes a complete

state-of-the-art, and we have chosen to consider the emerging combination of services and

enterprise mashups as representative of the potential of SOA.

The fine-grained nature of services and widgets in theory allows actors to substitute or

encapsulate unsatisfactory elements, introducing a level of agility while preserving the overall

consistency. Chains of synchronous elements however introduce a resilience concern,

composition remains manual and traceability is not provided. And while (in theory) a service

registry and widget catalog provide a centralized sharing mechanism, they provide no way to

deal with potentially overwhelming numbers of actor-contributed elements.

Overall, the fine-grained and distributed nature of services and widgets seem to provide a

better foundation for an agile information system than the application-centric scenario. But, in

spite of some end-user graphical tools for end-users, they target software professionals, and

provide no improvement in traceability and governability.

In addition to the two extreme architecture paradigms presented earlier, the next sections

present various research domains which relate to business agility, either by aiming to cope

with requirements complexity, to build agile systems, or to deal with the fragmentation of

information systems.

4.4. Coping with Requirements Complexity
In a previous chapter we have identified organizational complexity and the associated

requirements paradox as an obstacle for information system agility. This has been widely

studied, and this section briefly presents a selection of research topics coping with multiple

viewpoints during the various phases of the software lifecycle.

4.4.1. Requirements Engineering
Two decades of studies on viewpoints [84, 85] have focused on capturing and representing

divergent concerns and reconciling these at the specification and design level. Conflicting

requirements can thus be expressed during inception, but these must be solved before

implementation. Viewpoints are thus helpful in both application-centric and service-centric

scenarios. They cannot be accurately evaluated versus our requirements, but will be compared

to our proposal in section 8.5.

With respect to managing conflicting requirements [86], research in requirements engineering

is considered “not really successful” [87]. Recent work proposes to apply social mechanisms

[46] to reduce both the requirements and knowledge/influence paradoxes by allowing greater

numbers of actors to vote and comment on requirements. Our proposal will build upon a

similar principle.

4.4.2. Model-Driven Engineering
Model-Driven Engineering (MDE) [88, 89] elevates the level of abstraction at which software is

developed, turning models into central and productive artifacts. By automating the production

48

of business applications, MDE can significantly increase agility by reducing the time and effort

required to implement new requirements.

The Software Language Engineering [16] and Domain-Specific Languages [9] domains, related

to MDE by the heavy reliance on meta-models, focus on domain expert involvement in

software development and configuration through specific textual representations, which also

leave room for imperative aspects.

Model-driven engineering thus provides foundation concepts for a significant reduction of the

knowledge/influence paradox, which our proposal builds upon.

4.4.3. End-User Software Development
The End-User Software Development (EUSD) or End-User Programming (EUP) community

denounces the fact that the role of humans who will use the system is marginalized to that of

“a source in requirements elicitation or worse, a “user”, instead of being considered a free and

intelligent agent of change” [90, 15]. EUSD advocates the empowerment of end-users to

implement their own specific requirements, as a way to bridge the business-IT gap [56, 91].

In the context of business applications, spreadsheets have been intensively studied [21, 26], as

well as enterprise mashups [33, 73, 35, 92] and more recently collaborative and social aspects

in enterprise settings [93].

In enterprise information systems, we subscribe to the view that end-users are the ultimate

domain expert, and our proposal will apply EUSD principles to information system evolution.

4.4.4. Software Composition
At the implementation or programming level, Subject-Oriented Programming (SOP) [94]

questions the possibility of a global concept of class, and advocates the decomposition of

software into multiple design subjects. The main objectives are to avoid tangling different and

potentially conflicting requirements, reducing the monolithic nature of a design, and allowing

for concurrent development [34].

This initiative appears to have merged with the aspect-oriented programming (AOP) [95]

domain which has brought unquestionable benefits in the simplification of enterprise

component development [96] but appears to have lost its promising focus on subjectivity

along the road.

4.5. Achieving Business Agility

4.5.1. Shadow Applications
Shadow applications are a widely known but widely accepted problem. They are frequently

mentioned when discussing information system agility [60] and studying dissatisfaction with

business applications [29], but not necessarily considered as a problem which must or can be

addressed [39].

49

4.5.2. Agile Methodologies
The 1994 “Chaos Report” [97] reports the shocking rate of only 16% of successful IT

development projects10, attributed to heavyweight plans, specifications and other

documentation imposed by maturity models and process compliance [20] considered

incompatible with the accelerating pace of change. In response, various alternative software

development methodologies like eXtreme Programming (XP) [98] and SCRUM [99] have

emerged, which after agreeing on a set of common principles [100] are now commonly

referred to as agile methodologies.

Through their emphasis on short iterations, working software, test automation and end-user

involvement [51, 100], agile methodologies have been embracing continuous change as the

norm for software products and aim at participating in business agility.

However, agile methodologies do not provide the expected benefits for larger projects [20],

and empirical studies show that the theoretically sound principle of prioritization driven by

business value leaves (up to 90% of) features unimplemented [101], with no other choice for

actors who really need these features than to implement them themselves in shadow

applications. Besides, by facilitating success of smaller projects we think agile methodologies

actually aggravate shadow application proliferation.

4.5.3. Software Tailoring
The tailoring of enterprise systems, from simple configuration to the modification of

commercial code, is a topic of sufficient complexity for [26] to propose a typology of its types.

The tailoring community advocates that software in general needs to be as flexible as possible,

and in the case of information systems that the ability to adapt to a continuously changing

environment is undermined by the “fallacy of ‘correct’ information systems requirement

specification” and should be approached as a key factor of success [102, 103]. To achieve this,

applications should try to be ateleological [104], i.e. independent of a specific end. Like the

end-user software development community, they thus imply the transfer of responsibility from

application developers and designers to application users.

4.5.4. Cloud Computing
The evolution of cloud computing from infrastructure-as-a-service (IaaS) to software-as-a-

service (Saas) [105] has recently yielded research in multi-tenancy [106], a way to configure

the same software installation for different corporations. The goal is to support different

corporations and thus different requirements on the same installed business application,

which necessitates an implementation supporting isolation (R1) and confidentiality (R4).

Beyond this commonality, we think supporting different corporations is a different problem,

and cannot position multi-tenancy versus the rest of our requirements.

10
 The “Chaos Report” and subsequent Standish Group reports, although questionable in their definition

of failure and heavily criticized [171], remain a cornerstone of agile culture.

50

4.6. Coping with Information System Fragmentation
In previous sections, we have presented the fragmentation of corporate information systems

over a huge number of applications, most of them shadow applications. We can distinguish

between the following kinds of fragmentation.

 Historical fragmentation is a consequence of mergers and acquisitions.

Considering the cost and risk of disruptions involved in aligning working

organizations (the acquiring and the acquired corporation) with foreign processes

and applications, it is common for the respective information systems to live side-

by-side for an extended period of time.

 Accidental fragmentation occurs when an actor has a requirement, is not aware

of the application meeting it, and thus decides to introduce a new application.

 Intentional fragmentation occurs when an actor has a requirement which is met

by no existing application, and he decides to introduce a new application.

Various research fields and technologies aim at helping corporations cope with all the above

kinds of fragmentation, after the fact. We can distinguish at least the following domains.

4.6.1. Enterprise Application Integration
Enterprise Application Integration (EAI) aims at connecting applications together. [107]

proposes 4 levels at which integration can be applied: the data level (persistence tier), the

application interface level and method level (business logic tier), and the user interface level

(presentation tier). EAI products typically provide a message-oriented-middleware (MOM)

core, with pre-developed configurable adaptors for most popular enterprise packages and

standard technologies (SQL, SOAP...). Enterprise Service Buses (ESBs) are an evolution of EAI

[108].

The difficult part of integration is not technical, i.e. reliably moving data from one environment

to another, but dealing with the semantic heterogeneity, which implies a translation of the

data from the source system into the proper equivalents in the destination systems [109]. This

can involve complex transformations and mapping mechanisms, not always fully automated.

Enterprise Ontologies can provide a neutral domain-specific model to act as a pivot in these

transformations [110].

It is debatable whether these technologies are beneficial to overall business agility. On one

hand, they help in connecting applications and services, minimizing or even hiding the

inconveniences of fragmentation. On the other hand, they may encourage coupling of

applications, fairly loose from a technical standpoint but no so much at the semantic level.

They also represent yet another piece of the puzzle which yield discussions, risk and update

costs when envisioning a change.

4.6.2. Business Intelligence
The field of Business Intelligence (BI), an evolution of mere reporting, aims at building data

warehouses which incorporate all available enterprise data in one database, usually via

Extract-Transform-Load (ETL) technologies [111]. Closely related, the goals of enterprise

information integration (EII) and federation approaches are to provide a uniform read-only

51

access to multiple data sources without having to first load them into a data warehouse [112],

by building a global schema which can be queried by users or applications.

4.7. Conclusion
In this chapter we have described two information system architectures, representing the

extremes of a continuum of possible scenarios. We have evaluated them with respect to our

research hypotheses R0-R14. The table below summarizes the marks of both scenarios.

Category Requirements
Application-centric

architecture
Service-centric

architecture

Application R0: Influence

R1: Isolation

R2: Hardware Independence

R3: Ease of Modification

R4: Confidentiality





















Information
System

R5: Consistency

R6: Resilience

R7: Uniformity













Composition R8: Profile-driven Composition

R9: Change Propagation









Traceability R10: Forward Traceability

R11: Backward Traceability









Collaboration R12: Sharing

R13: Awareness

R14: Relevance













Governance R15: Governability  

Table 14. Summary ranking of application- and service-centric architectures

We have presented various research domains related to business agility, which we will build

upon in our proposal for an alternative enterprise architecture presented in the next chapter.

52

53

5. Social
Information

Systems
The previous chapters have illustrated that present information system paradigms do not

provide an adequate level of business agility. Our objective is to define an enterprise

architecture principle meeting all our requirements for an agile information.

This chapter describes the principles guiding our proposal. We first propose an alternative

decomposition of business applications, splitting application elements into smaller fragments

and then re-composing truly profile-specific applications. We describe how the distributed

ownership of these fragments can provide a high level of business agility, and how social

technologies can be applied to share them across the corporation and achieve good levels of

awareness and governability.

These principles will be refined in chapter 6, which describes a possible architecture, and

refined further in chapter 7 which presents our prototype implementation.

5.1. An Alternative Decomposition
Present architecture paradigms assume a single, consistent, objective view of the way a

corporation works, and thus of its information system.

definition Objective
adjective: of, relating to, or being an object, phenomenon, or condition
in the realm of sensible experience independent of individual thought
and perceptible by all observers [113].

We consider shadow applications as evidence that such an objective view is impossible, and

think that each actor needs his own subjective view of the corporation and its information

system.

definition Subjective
adjective: characteristic of or belonging to reality as perceived rather
than as independent of mind [113].

In theory, subjectivity could be achieved by a central set of elements with the appropriate

filtering mechanisms. Indeed, such role-driven filtering mechanisms are present in a majority

54

of business applications. They assume the existence of a super-element, objective, complete

and consistent, from which pieces get subtracted according to the actors’ profile as illustrated

by the figure below.

Figure 5-1. Subjectivity through subtraction

We think this assumption is the key problem with present business applications. The timely

design of super-elements is precisely the impossible feat we have described in section 2. The

above example deliberately includes mutually exclusive attributes (predecessor and effort,

used for traditional project management [114], and iteration and story-points used in agile

methodologies [100]) to illustrate the tension11 between objectivity and consistency.

In this section we propose an alternative view on business computing, decomposing

application elements into fragments, applications into perspectives and then using the users’

profile to automatically recompose a profile-specific application.

5.1.1. Element De-Composition: Fragments
Instead of building an objective super-element (i.e. the union of all subjective elements), we

envision building a set of sub-elements which we will call fragments. Fragments will be

described in depth in the next sections, but at this stage it is sufficient to state that fragments

are the constituents of application elements.

11
 It could appear natural to use inheritance to represent mutually exclusive attributes, but the number

of profiles, i.e. combinations of groups (see Figure 2-3), precludes this.

Task' : Element

name

iteration

story points

Task: Super-Element

name

predecessor

effort

iteration

story points

…

subtraction

user

55

definition Fragment
Part of an application element, either standalone or
an adaptation which can be applied to another Fragment.

Instead of a subtraction mechanism removing pieces, we propose a composition mechanism

adding fragments, as illustrated by the figure below.

Figure 5-2. Subjectivity through composition

Instead of designing a super-element, i.e. the frozen union of distorted and incomplete

requirements, a composition scenario implies designing fragments, i.e. the various

intersections of requirements from all actors, with a (probably small) common root fragment

which all actors agree upon.

We think a composition approach presents a number of important benefits over subtraction.

 As illustrated in Figure 2-17, reaching an agreement on a super-element in big

corporations involves a number of hurdles. Smaller fragments are significantly

easier to agree upon, especially since fewer actors are involved.

 Due to the high number of possible profiles in big corporations, we cannot expect

super-elements to contain all possible useful attributes. In particular, individual

attributes like the “risk” attribute above are not realistic in a subtraction scenario.

In a composition scenario, it becomes possible to compose profile-specific

applications, where even an individual requirement represents just one more

fragment to add to the final element.

 Finally, a central super-element implies a central owner and thus a potential

bottleneck. In contrast, multiple fragments enable to distribute the ownership to

the most knowledgeable actors, which we will discuss in section 5.2.

Task' : Element

name

iteration

story points

risk

composition

user

Task 1 : Fragment

iteration

story points

Task : Fragment

name

Task 2 : Fragment

risk

56

Considering the requirements paradox presented in section 2.5.1, the bigger the corporation

the smaller the first level of intersections are likely to be, to the point of being of no practical

use to anybody. Their purpose is to act as a scaffold which other actors can add their elements

to, at business unit level, group level, or even individual level.

At subsequent levels of the organization, this process can be repeated recursively, defining

successive layers of fragments representing boundary objects [115]. Boundary objects allow

actors with different interests to collaborate around entities despite the fact that they attach

different semantics to it. They provide a form of local agreement [116] enabling collaboration.

Having decomposed super-elements into fragments, the next section presents how to

decompose applications into more subjective constructs.

5.1.2. Application De-Composition: Perspectives
Present applications attempt to cover a more or less broad business domain, again aiming at

objectivity. Instead of grouping fragments per domain, we propose to group them per

subjective viewpoint of a given actor on the information system. We call such viewpoints

perspectives.

definition Perspective
Subjective viewpoint of a given actor on the information system.

A perspective hosts all relevant fragments for a given actor. Reverting back to our running

example, the figure below illustrates how the “Luxury” perspective defines the root fragment

for business concept “Request”, and the “quality group” perspective defines an extension.

Both perspectives host the model (concepts, attributes, relationships, rules) and the associated

instances (actual business entities).

Figure 5-3. Perspectives hosting fragments and instances

Request : Fragment

title : String

state : {OPEN,CLOSED}

: Fragment

delay : TimeInterval

analyses : …

123: "Instance"

title = "Port X to Android"

state = CLOSED

"extends"

123: "Instance"

delay = 10 days

"Quality group" perspective

"Luxury" perspective

57

As a first description of perspectives, we can say they must provide the following primitive

capabilities.

 define a new fragment

 extend an existing fragment

Furthermore, in order to represent the viewpoint of a given actor on the information system,

perspectives must also indicate which fragments from other perspectives are relevant. We call

this primitive operation import.

 import a fragment from another perspective

If we make the assumption that all actors define one and only one perspective, the example

individual “Maria” in Figure 2-3 inherits the following set of perspectives from the various

groups she is a member of.

perspectives(Maria) = {

organization/manufacturing,
region/Europe,
region/Europe/France,
region/Europe/France/Grenoble,
role/quality,
project/Beta,
community/agile,
users/~maria }

Figure 5-4. Perspectives of individual Maria

An actors’ full set of fragments thus contains the fragments defined in his own perspective

("users/~maria" in the example), but also those defined in perspectives belonging to groups he

is a member of. We will call the latter inherited fragments.

It is thus possible that a given actor inherits fragments which he is not interested in. In this

case, he should be able to indicate this lack of relevance in his own perspective, which dictates

our last primitive capability.

 unimport an inherited fragment

The figure below shows the meta-model representing the concepts presented so far, and

introduces the terms directory, the referential server for actors, and repositories, servers

hosting perspectives and their fragments.

58

Figure 5-5. High-level meta-model of Perspectives and Fragments

Perspectives are the fundamental concept underlying our proposal. They intend to unify the

notions of a COTS application, its configuration and customization, personal preferences, the

surrounding shadow applications and to some extent even present integration mechanisms.

Fragments represent different, finer and more connected information system grains than

applications. As such, they can be composed to form profile-specific applications, as described

in the next section.

5.1.3. Profile-Driven Re-Composition
In previous sections we have shown the high number of possible profiles in big corporations,

and how in present information systems this translates into a high number of shadow

applications.

A major benefit of decomposing information systems into fragments and perspectives is that it

enables the construction of profile-specific applications. Given the current users’ profile (i.e.

set of groups), we can traverse the graph of groups to find all relevant perspectives, and thus

all relevant fragments. This set of relevant fragments can be composed to form an application

tailored for the current user, containing everything relevant for his specific profile and nothing

superfluous. Considering our goal of maximum agility and in order to avoid premature

optimization [117], we envision this composition happening at run-time.

The diagram below shows the previous meta-model augmented with the runtime concepts of

profile-specific application and element.

defines ►

*

repository

Repository

Actor

*

▲
owns

1

hosts ►

*

(un)imports ►

*

Perspective Fragment

**

User Group

members

*

*

groups

Directory

extends ►

0..1

directory

*

▲
/inherits

59

Figure 5-6. Runtime meta-model of profile-specific applications

The composition logic allowing to weave fragments together to form profile-specific elements

in a resilient manner is not trivial in a distributed environment and will be described in section

6.2.1. Once these elements are available it is possible to build a profile-specific user interface

with forms containing only the concepts and attributes relevant for the current user, as

illustrated below and as described in further detail in section 6.2.2.

Figure 5-7. Example element and associated presentation layer

5.1.4. Summary
Our definition of the term application encompasses a broad spectrum, from full-blown

enterprise systems to private spreadsheets. Likewise, for perspectives we envision a broad

range, from big perspectives hosting self-sufficient third-party root fragments to tiny individual

perspectives with just a few adaptations replacing simple spreadsheets. Some perspectives

may only factorize the optimal list of import and unimport declarations for a given actor.

Perspectives and fragments in essence provide a mechanism to partition the information

system along multiple dimensions, acknowledging and anticipating the fact that actors have

different requirements and need to be isolated from each other to be agile. Perspectives thus

allow to defuse the requirements paradox, and to compose profile-specific applications,

tailored to include all relevant fragments for the current user.

defines ►

*

repository

Repository

Actor

*

▲
owns

1

hosts ►

*

(un)imports ►

*
*

Perspective Fragment

**

User Group

members

*

*

groups

Directory

runtime

Profile-specific

Application
Element

*

1

extends ►

0..1

directory

active elements

*

*

▲
/inherits

<< server-side, persistent >>

<< server-side, persistent >>

<< client-side, transient >>

*

Request : Element

title : String

state : {running, done}

delay : TimeInterval

update Request 123

create new Request

*

search Requests

running done

title

state

delay

Search

0 5 days

user interface

construction

mechanism

60

In the next section we describe how perspectives provide a way to solve the

knowledge/influence paradox as well.

5.2. An Alternative Distribution of Responsibilities
We have shown through shadow applications that the ownership of information system

elements is not centralized today. Likewise, the ownership of the aforementioned perspectives

and fragments should be distributed to the right actors, as advocated by aforementioned

research on end-user software development and information system tailoring.

Ideally, perspectives should be owned by the "most knowledgeable" actor, “closest” to the

business concern at hand. These criteria are subjective, and in most organizations

controversial or even provocative. However, through the isolation mechanism which

perspectives provide, in case of disagreement multiple actors can be considered most

knowledgeable in their particular domain. We do make the assumption that actors behave

responsibly, adding only fragments which they really need and which don't already exist as per

their knowledge.

Such user-contributed fragments can be shared with other actors. This effectively allows all

actors to contribute to the information system, which raises the question of how to cope with

these potentially great numbers of fragments emerging from the bottom up. Fortunately, this

question has been answered in a more complex environment with less disciplined contributors

which is the consumer space.

In the last decade, the consumer web has moved away from centrally controlled content to

user-contributed content [118]. Whether the user community contributes pictures on flickr12,

videos on youtube13 or dailymotion14, or other media, the problem of coping with a huge and

ever-increasing mass of elements has been addressed by leveraging the collective energy of

the systems’ users [119] through various social mechanisms.

In the following sections we describe our vision transposing the consumer-space user-

generated content trend and the associated self-organization mechanisms to perspectives and

fragments in a business setting.

5.2.1. User-Contributed Fragments
Organizational hierarchy is a natural and convenient way of propagating fragments from the

top to the bottom of a corporation (see Figure 2-3). However, due to the knowledge/influence

paradox in particular, many important fragments can only be created at much lower levels.

The fact that a given actor defines a fragment does not necessarily mean that it is relevant only

for him. Indeed, few problems are completely specific to one actor and thus most solutions,

even (or especially) when initiated “in the field”, are of potential interest to other actors of the

corporation, close by or far away. It is thus possible for any actor to define a fragment of

12
 www.flickr.com

13
 www.youtube.com

14
 www.dailymotion.com

61

potential interest to a wider community. This may be part of the mission of the actor, for

example a software quality group providing fragments related to software root cause analyses.

It can also be accidental, in the case of an individual who solves a problem for himself but

which he afterwards realizes may occur in other places in the corporation.

In order to encourage re-use of user-contributed fragments, a complementary cross-

organization fragment sharing mechanism is required. Fragment owners must be able to

indicate whom they want to share their fragment with. This could be the colleague in the next

cubicle, his project team, a given community or even the entire corporation.

In a similar fashion to service registries and widget catalogs, these indications must be

published in a central location. We call this operation export, the symmetrical operation from

the import operation presented previously. We thus need one final primitive operation for

perspectives.

 export a fragment to other perspectives

Import and export operations can be specialized according to the nature of the fragment, as

we will describe in section 6.3.

The implication of this sharing mechanism is that everybody becomes a potential provider of

information system fragments, sharing with just one colleague or with the entire corporation.

This effectively shifts a number of formerly central responsibilities (most importantly

developer, domain expert and administrator) from the corporate IT authorities to all other

actors of the corporation (formerly "end-users").

Spreadsheets have been successful precisely because they have shifted power from the

programmers to the end users [40]. Usability is a key success factor in such shifts, and we think

that the relative simplicity and stability of the core concepts of data-centric business

applications (see section 2) allows to envision a similar level of intuitiveness. While the dream

of business software without programmers is at least as old as the COBOL language, even in

recent research [92] this is still considered a radical paradigm shift.

There is no guarantee that people would exercise this power in the business application realm,

but the success of spreadsheets, the number of shadow applications, and prior field studies

are encouraging. In a recent survey involving 73 users of enterprise applications [16], 87% of

participants have rated the potential benefit to ease or speed up their work to be at least 2 on

a scale ranging from 0 (no benefit) to 4 (high benefit). 80% of participants would accept

learning efforts of several hours up to several days to be able to create applications

themselves. In another study involving 15 industrial participants, “all users liked to develop

their own software applications that suit their needs and interests” [120].

Our assumption is that removing the bottlenecks and deadlocks caused by central super-

elements could help liberate the collective intelligence [121] of the corporation. A dynamic

corporation with skilled and motivated actors can thus expect to see thousands of shared

fragments provided by its business units and employee base, which dictates the need for

mechanisms to cope with these volumes presented in the next sections.

62

5.2.2. Classifying User-Contributed Fragments
Most social resource sharing systems use a kind of lightweight knowledge representation,

called folksonomy [122]. Folksonomies rely on emergent semantics [123], which result from

the converging uses of the same vocabulary by a large number of non-expert users. The

success of these systems shows that they are able to overcome the knowledge acquisition

bottleneck [122], i.e. the prohibitive time required to classify user-contributed items. Besides

the items’ name and description, folksonomy-based systems typically allow both contributors

and end-users to tag items, i.e. attaching free-text keywords to items, often with sophisticated

suggestion mechanisms [124].

In an enterprise setting, we envision folksonomies be applied to organize fragments. As an

example, if a Luxury extension called “delay analysis” defined in a “planning” perspective is

annotated with a simple tag “RCA15”, this provides important semantic information for people

in the quality community.

Folksonomies can be leveraged by various search mechanisms: text-based search similar to

web search engines, tag clouds, and more traditional browsing of a hierarchical classification

[122].

5.2.3. Estimating Fragment Relevance
One could consider that a big number of fragments is not a problem per se, but only becomes

a problem when an actual actor needs to find something, hence requirement R14 (relevance).

Another consumer-space social technology which should prove of great help is the

recommender system paradigm.

Recommender systems have revolutionized the marketing and delivery of a variety of complex

product offerings by providing personalized recommendations [125]. They build upon

extensive research in cognitive science, approximation theory, information retrieval,

forecasting theories, management science and also to the consumer choice modeling in

marketing [126]. The recommendation problem can be summarized as the problem of

estimating ratings for “new” items, i.e. which have not yet been seen by a user. Collaborative

recommender systems [127] try to predict the rating of items for a particular user based on

the items previously rated by other users, weighted by the similarity of the user profiles.

In the consumer space, profile matching is based mainly on data provided by the user (age,

gender, education...), his activity (for example items bought) and his ratings [126]. In a

perspective-centric information system, many data items are available to help determining

profile similarity.

 Group memberships provide profile data along various dimensions (organization,

role, projects, region...). Interestingly, in a corporate setting this data is usually

available the first day, thus solving the “new user” or “cold start” problem

15
 Root-Cause Analysis

63

plaguing many commercial recommender systems who cannot determine the

profile of newcomers [125, 128]

 Users with similar group profiles automatically inherit the same set of fragments.

The set of additional fragments they choose to import is very similar to the list of

items purchased in a commercial setting, i.e. a fairly accurate reflection of the

actors’ interests

 Another strong profile indicator is the set of fragments they choose to unimport,

which can be interpreted as a rating of “not useful”

 Aforementioned tags, if similar, can indicate that different actors have the same

viewpoint

 Explicit rating of fragments is possible as well, if it represents a low-effort

operation for the end-user16. While probably odd to the present working

population, rating the fragments in their workspace may appear entirely natural

to the upcoming generation of knowledge workers who have grown up with such

mechanisms

 Beyond these persistent aspects, more dynamic aspects can be collected during

system usage [129] as an additional similarity indicator. Two users spending most

of their time on the same class of objects or even actual objects, or navigating

with the same pattern in the application, present a potential similarity

Other social mechanisms can be envisioned, like explicitly indicating trust in another actor, not

unlike the LinkedIn17 “connection” or Facebook18 “friend” relationships, which could provide a

weight to ratings where profile similarity is not sufficient. An explicit recommendation

mechanism is possible as well, a generalization of the common phenomenon of people

forwarding each other interesting things through informal communication channels like email.

5.2.4. Managing Fragment Awareness
Awareness of available fragments is closely related to their classification and the ability to

compute correct relevance ratings.

The cross-cutting nature of perspectives is an ideal channel for raising awareness. As an

example, the “delay analysis” extension can originate in a “planning” perspective, but can be

exported to a “quality” perspective, making it visible to a community likely to be interested in

it. Additionally, the social mechanisms described in section 5.2.2 allow to further organize

fragments while their users recognize and classify them, continuously improving the visibility

of fragments to interested users.

While searching for fragments, the ranking provided by recommender technology described in

section 5.2.3 allows to present the most relevant results first, which is critical for awareness.

More proactively, we can imagine (configurable) relevance thresholds above which users get

notified of the existence of elements without searching for them.

16
 We refer to the “like”, “+1” and other “thumbs up/down” buttons from social web sites

17
 www.linkedin.com

18
 www.facebook.com

64

5.2.5. Towards Social Information Systems
In the consumer space, the aforementioned social mechanisms have proven effective in

organizing huge quantities of consumer-contributed data [119]. We think that a corporate

environment, where all users are authenticated professionals, is an even more beneficial

setting than the consumer space for social technologies to apply.

 In an ideal situation, we envision social information systems where fragments are contributed

from the bottom up, shared with other actors, adopted by some and improved through social

feedback mechanisms, rated, recommended and if widely adopted eventually gradually

“promoted” to more central perspectives. This could result in the democratic or meritocratic

evolution of a corporations’ application landscape, where the actual users decide which

elements are the most useful for their daily jobs.

The aforementioned social technologies are not without issues. Especially regarding

recommender systems, it is yet unclear whether these could create increasingly isolated sub-

communities by making it easier for like-minded people to find each other [130] or on the

contrary foster the (equally bad) opposite outcome, i.e. excessive homogenization. Regarding

present recommender systems, some believe they help consumers discover new items and

thus increase diversity, while others believe they only reinforce the domination of already

popular items [131]. More research is needed to determine how such systems can be tuned to

achieve the positive outcome we have described [125].

5.2.6. Summary
We have described our vision of a social information system, where all actors contribute19 and

share business application fragments, applying the vast array of social technologies from the

consumer space to organize great numbers of user-contributed fragments at low cost, to

determine their relevance for a given actor, and to manage awareness among concerned

actors. We think this enables the collaborative design and social evolution of the corporate

application landscape.

Allowing all actors to contribute to the information system represents a significant shift of

responsibilities, from the corporate IT authorities to all other actors. Instead of providing

complete solutions to all of the corporations’ problems, a corporate IT department would

merely provide an infrastructure, pre-populated with the right scaffolding fragments and then

allow all actors to adapt it, which raises the question of governance of social information

systems which we discuss in the next section.

5.3. Social Information System Governance
Due to the high percentage of shadow applications, only a small fraction of present

information systems can be considered to really be governed. Social information systems leave

fragments under the control of the community but host them in a unified infrastructure; the

big difference with respect to governance is that this makes the situation observable,

measurable, and thus manageable.

19
 This could be considered a form of internal crowdsourcing [143].

65

In this section we discuss three aspects of social information system governance: monitoring,

community management and inconsistency management.

5.3.1. Monitoring
Monitoring essentially means collecting indicators to observe the evolution of a social

information system and estimate its soundness. Once collected, indicators allow to compute

trends, to express and periodically check consistency rules, and to build high-level dashboards,

i.e. predefined ways of combining and presenting indicators.

Indicators can be collected by scanning the various repositories. A first type of indicators can

be simple counters, like the number of defined root fragments, defined extension fragments,

inherited fragments, imported fragments, unimported fragments, or export declarations.

These can be computed per perspective, per actor, per server or for other dimensions. A

possible use of such counters is to classify perspectives or actors. For example, the assertion

below indicates a purely "provider" perspective.

isProvider(x):

 count(x.importedFragments)=0 AND

 count(x.definedRootFragments)=count(x.exportedRootFragments)

Figure 5-8. Example assertion for classifying Perspectives

Keeping the history of these counters allows observing the overall growth, computing averages

and standard deviations, and possibly setting thresholds to warn about alarming trends

applying statistical process control (SPC) [132] techniques.

It is possible to collect similar counters at fragment level. We can envision counting the

number of adaptations, both in terms of fragments and attributes, measuring the "width" and

"depth" of the set of its adaptations. Counting the number of times a fragment is imported,

inherited and unimported, both in terms of perspectives and number of users, provides some

insight in its impact.

Beyond the simple threshold and trend analysis mentioned above, rich data mining and

pattern matching algorithms can be applied for a deep insight into the evolution of the

information system. Indeed, the ability to compute these indicators and the visibility this

provides are major expected benefits of our proposal.

5.3.2. Community Management
The social web is driven by web communities, which can be defined as “a group of people who

share a common purpose and interact with each other through a community platform” [133].

Maintaining a high quality of user-generated content requires a healthy and thriving

community (and vice versa), which has yielded recent research in community platform

governance [134].

We think that employees contributing application fragments meet the definition of a web

community, and that social information system governance will thus benefit from the

advances in community platform governance research.

66

Beyond analyzing the contributions, the health of the community itself can be measured.

Health of online communities is a fairly new and complex concept which is codependent on

the emergence and evolution of user behavior [135]. A great variety of roles can be inferred by

observing user behavioral patterns, like “popular initiator”, “elitist”, “over-rider” and “grunt”.

Community health can then be estimated by observing the evolution of the balance between

these various behaviors, enabling dashboards for a new enterprise role, the community

manager (or community owner) [136].

Social information systems could thus provide a new angle on governance through community

management, which should prove complimentary to the more traditional monitoring

described in the previous section.

5.3.3. Inconsistency Management
Even though today's information systems are far from consistent, a spontaneous concern

when envisioning an environment encouraging more individuals to contribute fragments is

that it could aggravate inconsistency.

definition Inconsistency
Any situation in which two descriptions do not obey
some relationship that is prescribed to hold between them [137].

Inconsistency carries a stigma, implying poor quality work. However, in many cases it is

desirable to tolerate or even encourage temporary inconsistency to facilitate distributed

collaborative working [138], to ensure all stakeholder views are taken into account [139], to

experiment with alternative solutions and to maximize reactivity. Inconsistency can be a driver

of software evolution [140] as long as the associated risks are measured and periodically re-

assessed [141].

Whether worse than the present situation or not, a social information system will certainly

yield inconsistency and needs governance mechanisms to stay within the aforementioned

range of beneficial inconsistency and avoid chaos. In this section, we present various

mechanisms aiming at preventing, detecting, assessing and handling inconsistent fragments.

Preventing Inconsistencies "A Priori"
Although a social information system allows for a fully emergent model, large corporations are

unlikely to start from scratch with an empty set of perspectives. In a real-life setting, the model

would be bootstrapped with a number of scaffolding fragments like third-party applications,

possibly ontologies (potentially also acquired from a third party) and certainly other core

fragments decided by corporate authorities. Scaffolding is a form of implicit coordination

through structure, which improves the quality of the result in the presence of many

contributors [142]. By providing a common starting place for actors to introduce new

fragments, scaffolding minimizes inconsistencies, or at least make their detection much easier

than if the fragments were unrelated.

Besides scaffolding elements, a perspective-centric system can provide a number of features

which contribute to prevent inconsistencies. A few example features are listed below. All

67

features leverage the social aspects described in the previous section. All examples assume

that fragment A exists and that user X considers the introduction of a conflicting fragment B.

 All features maximizing awareness (c.f. section 5.2.3) of user X that fragment A

exists or has just been introduced minimize the risk of divergence, i.e. could

prevent the introduction of B

 If user X decides to introduce B, he should be encouraged (or even forced) to use

social search features (taxonomy, tag-cloud, full-text, ...) in case he wasn't aware

of A's existence

 If user X adds fragment B through an interactive user interface, this interface can

show suggestions of similar fragments, sorted by social relevance. Ideally

suggestions should be displayed in real-time, for example in a side-bar. Otherwise

suggestions can be displayed as a step prior to committing fragment B.

There are a number of limiting factors weakening the mechanisms above. We can cite

operational pressure to immediately introduce item B, inciting user X to ignore the prevention

mechanisms. Insufficient sharing is likely to be another problem, if the owner of A is shy or

underestimates the maturity or general interest of his fragment and thus does not share it

with a sufficiently wide audience, i.e. excluding user X. Language and terminology differences

are other well-known issues which may defeat the mechanisms above.

Besides attempting to prevent divergence before-the-fact, it is therefore mandatory to assist

in detecting, assessing and resolving inconsistencies after-the-fact.

Detecting Inconsistencies "A Posteriori"
Regardless of the efficiency of prevention mechanisms and the goodwill and discipline of

contributors, inconsistencies will occur and must be detected. Detection can be both

automatic and manual.

Automatic detection is performed by the infrastructure without human assistance. Consistency

rules can be checked and pattern-matching and data mining techniques can be applied to look

for potential inconsistencies or duplicates. In addition to comparing model fragments, it can

compare instances which help to detect similarities, as illustrated in the example below.

EXAMPLE

As a simple academic use-case, we can consider a central Conference class, with
two groups extending it in their own perspectives. The first group adds an attribute
‘deadline’, representing the deadline for paper submissions. The second group
adds the same attribute but calls it ‘paper date’, plus a second one called ‘abstract
date’.

Looking only at the model, the similarity between the two extensions is limited to
two aspects: they extend the same class, with at least an attribute of type ‘DATE’.
This is not sufficient to raise a similarity flag.

However, looking at the instance values the system can detect that when both
groups set attribute values for the same conference, ‘deadline’ and ‘paper date’
are always identical, providing a strong indication that the extensions could be
semantically equivalent.

68

Manual detection is performed by people. All users should be allowed to report potential

inconsistencies to the system when they see them, whether accidentally or because they were

actively looking. In a similar way to the “report spam” button of online email systems, a

“report inconsistency” button could provide a way to crowd-source the governance of the

global model.

Once detected, inconsistencies must be tracked, assessed and resolved, as presented in the

next sections.

Tracking and Assessing Inconsistencies
We consider a detected or reported potential inconsistency an opportunity for convergence,

and thus introduce Opportunity as a first class citizen in our meta-model. Since fragment

owners will invariably be consulted in the opportunity assessment process, their opinion

appears as well as illustrated in the diagram below.

Figure 5-9. New Opportunity and Opinion classes for governance

When a convergence opportunity is detected, manually or automatically, the system must first

ensure that it doesn’t already exists. If the opportunity is new, an instance of Opportunity is

created in state to-be-assessed, with the appropriate references to all fragments involved, and

the owners of the fragments in question are notified which begins the assessment phase.

The owners can either agree that the fragments are similar and that convergence should be

discussed, or disagree, meaning they think there is a difference which justifies the existence of

both fragments. This judgment is represented by an Opinion object, the state of which drives

the state of the Opportunity object as illustrated by the diagram below.

Fragment

Actor
1*

1 /owner

repository

directory

governance

Opportunity

Opinion

*

* *
+ state

+ state

*

69

Figure 5-10. Opinion and Opportunity state diagrams.

If all contributors mark their Opinion as disagree, we can consider the Opportunity was a false

positive. It can be marked as such via the state false, but should not be deleted in order to

avoid further detection and notification of the same opportunity.

If opinions differ, the Opportunity is marked as conflict. Either the divergence is acceptable and

remains, or it is not and can only be solved through conflict-management at the human-level

without additional support from the architecture.

If all contributors mark their Opinion as agree, the Opportunity is true and the resolution

phase can be attempted.

Resolving Inconsistencies
When all owners involved in a convergence opportunity agree that there is an inconsistency,

they can decide resolve the inconsistency or to ignore it. The decision is based on risk: if the

cost of resolving the inconsistency outweighs the risk of ignoring it, it is not worth fixing in

some situations [139]. In this case, it is important to re-assess the risk, either periodically or

when one of the involved fragments changes, in order to avoid problems like the Ariane 5

maiden-flight explosion [143].

Resolving an inconsistency means merging fragments, which implies both the evolution of the

schema and the migration of data. Appendix C provides a little more details on this merge

operation.

5.3.4. Summary
We have discussed monitoring, community management and inconsistency management,

showing that the highly collaborative and distributed nature of social information systems is

not necessarily an obstacle to governance but may be an advantage.

Although the deniability of shadow applications is lost, we consider a better visibility into the

state and evolution of information systems a major improvement over the present situation.

to-be-assessed

ALL opinion.state = "DISAGREE"

conflict

false

true

DIFFERENT opinion.states

ALL opinion.state = "AGREE"

Opportunity.state

requested

agree

disagree

Opinion.state

ignored

resolved

70

5.4. Conclusion
Based upon the observation of present information systems, we have presented a

fundamentally different enterprise architecture paradigm with the goal of meeting all

requirements for an agile information system.

First, we have proposed an alternative decomposition of business applications into

perspectives, and of their elements into smaller fragments, providing a more subjective

representation of the corporate reality which thus defuses the requirements paradox. This

decomposition allows to re-compose profile-specific applications, tailored for each user

including completely private data, and to distribute the ownership to the most knowledgeable

actors, eliminating the knowledge/influence paradox and the bottleneck of requirements

negotiation.

Second, we have described our vision of a social information system, where all actors

contribute and share business application fragments, applying social technologies to organize,

rank and propagate great numbers of emergent fragments, which can gradually be

“promoted” to more central perspectives, enabling the collaborative design and social

evolution of the corporate information system.

Finally, we have shown that this shift of responsibilities to a wider community could assist in

information system governance, representing a significant improvement over the present state

of ungoverned shadow applications.

The next chapter discusses these principles in further detail by describing a possible

architecture for a social information system.

71

6. Architecture
Many different interpretations and implementations of the principles described in the previous

chapter are possible. This chapter presents a possible perspective-centric architecture, in order

to illustrate the high-level principles and their implications. We will describe this architecture

in the form of a set of components, listed below.

 The foundation components are the directory, managing users and their groups,

and repositories which host perspectives and fragments

 The end-user runtime components supporting our claim for self-tailoring

applications are the weaver which composes a model driven by the profile of the

current user, and the browser which interprets this model to construct a user

interface, for both regular use and model updates

 The social collaboration through sharing, annotating and organizing fragments is

supported by the registry component, as well as fragment awareness

 Finally, governance will be briefly discussed via the monitoring component

Each section below presents a specific component of the architecture, gradually building the

full picture.

6.1. Foundation Components

6.1.1. Organizational Complexity: the Directory
Present information system architectures typically include an enterprise directory service,

usually a set of servers implementing the LDAP protocol [144]. Such a service is used by

applications and services alike to authenticate users, and serve as a referential for group

membership and other profile data. It is a sensitive component in terms of security, with open

read access but write access restricted to administrators. It is optimized for mostly-read

access.

A perspective-centric architecture revolves around a similar service. The Directory component

is the referential for the social constructs along all dimensions presented in Figure 2-3. The

central concept is actor. The figure below shows the logical model of the resources under the

responsibility of the directory component.

72

Figure 6-1. Logical model of Directory component

We make the simplifying assumption that a group is owned by a single individual. Groups can

be either static or dynamic. Static groups have an explicit list of members. Dynamic groups

have an expression which determines the set of members. The <<singleton>> annotation

indicates that there is typically only one logical instance of Directory, although it is common to

have several physical instances for load-balancing and high-availability reasons.

The instance diagram below illustrates typical usage of the directory component.

Figure 6-2. Example Directory instances.

The main difference w.r.t. present directories are that all actors are first-level citizens, and that

they need to be annotated with the (possibly empty) list of their perspectives. This is perfectly

achievable with present enterprise directory technologies.

The main usage of the directory is at initialization-time, where it can provide the complete

profile of the connected user, i.e. his groups and perspectives, as illustrated below by an

example reply to an authentication request.

User Group

members

*

*

groups

owner

1

Dynamic Group Static Group

+ password

Directory

+ queryExpression

+ identifier

+ name

+ perspectives

+ other properties

<<singleton>>

directory << server-side, persistent >>

<<resource>>

Actor*

*

acme : Group

name="acme"

perspectives="corp.acme.com/ACME"

Directory http://acme.com/

quality : Group

name="quality"

perspectives="quality.acme.com/Analysis"

software : Group

name="sw-group"

perspectives="software.acme.com/dev"

ict : Group

name="corp-ict"

perspectives=""

ahmed : User

name="ahmed"

perspectives="personal.acme.com/~ahmed"

fred : User

name="fred"

perspectives=""

73

<User id=“123” name="fred"
 <perspective url="http://personal.acme.com/~fred"/>
 <is-member-of>
 <Group id="456" name=“sw-group”>
 <perspective url=“http://software.acme.com/dev”/>
 ...
</User>

Figure 6-3. Example reply of the Directory component

Due to the aforementioned security constraints, some administration operations must remain

centralized, mainly the creation of a new user. However, in a perspective-centric architecture

it is important that any actor can create new groups, and can attach perspectives to the groups

he owns.

The figure below shows the component diagram with only the Directory component and its

public interface allowing to create, retrieve, update and delete actors.

Figure 6-4. Component diagram: Directory

6.1.2. Application Fragmentation: Repositories
The Repository service hosts the bulk of business applications, i.e. the fragments which can be

composed to form applications, organized around perspectives. The class diagram below

shows the logical model of the resources under the responsibility of a repository component.

Figure 6-5. Logical model of the Repository component

The example instance diagram below shows the perspective-centric equivalent of a simple

application which manages "Requests". This translates into a Perspective "luxury", which

Actor

Directory

defines ►

*

repository

Repository

hosts ▼

*

(un)imports ►

*

<<resource>>

Perspective
<<resource>>

Fragment

**

extends ►

0..1

directory

<< server-side, persistent >>

ClassFragment

Attribute

<<resource>>

InstanceFragment

Value

* *

*

*

Type

1

*

*

Actor

is-owned-by▼

1

*

74

defines a single ClassFragment "Request" with two attributes "title" and "state". The owner of

this perspective is actor "corporate-IT", thus representing a typical official application. The

diagram provides 3 example instances of requests with the associated attribute values.

Figure 6-6. Example instance diagram of two Repositories hosting three Perspectives

Propagating the "Request" object to the entire company is done by importing the

ClassFragment in the ACME perspective, associated with the top-level group in the

corporation's organization as shown in Figure 2-3. All other departments thus inherit

ClassFragment "Request", through a mechanism we will describe in detail in the next section.

Besides the official application, the "hardware" perspective defines a simple class "Product". In

an application-centric architecture, this would most likely have been a separate application,

owned by the software department.

The examples above illustrate the fact that perspectives serve two purposes.

 installation: the "luxury" perspective is similar to a third-party application,

completely self-sufficient, managed by a corporate IT department and intended

for use by the entire corporation.

 deployment and configuration : by importing the Request ClassFragment, the

ACME perspective makes it available to all its members, in this case the entire

corporation. This level of indirection separates the deployment and configuration

from the installation, making it easy to share an installation between multiple

groups with divergent configuration requirements.

luxury : Perspective

name="luxury"

owner="corp-it"

r : ClassFragment

name="Request"

a1 : Attribute

name="title"

type="String[80]"

a2 : Attribute

name="state"

type="enum(OPEN,CLOSED)"

z : InstanceFragment

id="789"

: Value

value="OPEN"

: Value

value="Improve #DEF"

: Value

value="CLOSED"

: Value

value="Fix Bug #ABC"

x : InstanceFragment

id="123"

acme : Perspective

name="ACME"

owner="admin"

: ImportDeclaration

url=" corp.acme.com/luxury/Request "

action="IMPORT"

: Value

value="OPEN"

: Value

value="Port to Android"

y : InstanceFragment

id="456"

Repository http://corp.acme.com

defines ►

: Perspective

name="hardware"

owner="hw-group"

: ClassFragment

name="Product"

a3 : Attribute

name="name"

type="String"

Repository http://hardware.acme.com

75

It is worth noting that perspectives can be hosted on different repositories and thus different

physical servers. Even when hosted in the same repository, perspectives are isolated from

each other. As a consequence, cross-perspective references are expressed with URLs.

The next instance diagram shows the repository of the "quality" group, which hosts their

"Analysis" perspective on yet another server (http://quality.acme.com/). It extends the

concept “Request” from the “luxury” perspective with a new attribute "reason for delay". Two

instances of request have values associated with them.

Figure 6-7. Example instance diagram of a Perspective defining an extension

Though a simplification of our running example, this shows how shadow applications can be

avoided. Even in a situation where an extension is really group-specific and of interest to

nobody else, or where for any other reason there is no hope to influence the official

application, or where the quality group absolutely wants to keep the ownership of the

extension, there is no need to introduce a completely new application. Instead, the "Analysis"

perspective hosts only the delta with respect to the "official application", which gets overlaid

by the composition mechanism described in the next section.

The third instance diagram shows the individual perspective of employee "Ahmed". He

introduces yet another extension of the "Request" concept, adding attribute "risk". Also, as a

member of the software group, he inherits the "product" class. But since he is not interested in

products, he chooses to remove it from his environment through the "unimport" declaration.

Figure 6-8. Example instance diagram of a private Perspective

: Perspective

name="Analysis"

owner="quality-group"

r : ClassFragment

extends="corp.acme.com/luxury/Request"

a1 : Attribute

name="reasonForDelay"

type="enum"

y : InstanceFragment

id="789"

: Value

value="EQUIPMENT-FAILURE"

: Value

value="RESOURCE-CONFLICT"

x : InstanceFragment

id="123"

Repository http://quality.acme.com

: Perspective

name="~ahmed"

owner="ahmed"

: ClassFragment

extends="corp.acme.com/luxury/Request"

a1 : Attribute

name="risk"

type="0..1"

: Value

value="0.7"

x : InstanceFragment

id="123"

Repository http://personal.acme.com

: ImportDeclaration

url=" software.acme.com/dev/Product "

action="UNIMPORT"

76

The class diagram in Figure 6-5 has pictured "Type" as abstract. The class diagram below shows

examples of derived concrete types.

Figure 6-9. Minimum set of concrete type classes

The "Reference" type allows to represent associations between business concepts. Since the

target of the reference is a URL, it allows to connect instances across servers, as illustrated by

the next and last instance diagram. This perspective shows that individual "barney" needs to

track two additional aspects of "Request" objects: which "Product" they relate to, and what

their specification is. Even though "Request", "Product" and "Document" are hosted on

different repositories, and this extension lives on a fourth one, these declarations demonstrate

how perspectives provide an integration mechanism when actors need to tie together

previously unrelated entities.

Type

Atomic

String

+ length : int

Reference

+ target : URL<ClassFragment>

Collection

+ inverse: URL<Attribute>

Number

Date

Enumeration Values
*

repository << server-side, persistent >>

77

Figure 6-10. Example instance diagram of a Perspective connecting unrelated Fragments

The Repository meta-model in Figure 6-5 provides a single type of fragment granularity, i.e. the

ClassFragment. In order to build more complex business applications, composite Fragments

are necessary to manage related fragments together as a consistent whole. We can envision a

generic PackageFragment construct as illustrated in the figure below.

Figure 6-11. A necessary evolution of the meta-model: PackageFragments

However simple it may seem, the implications of such a composition mechanism are beyond

the scope of this document. Finer levels of fragments would be interesting as well: Attributes

and Types could be reused across various ClassFragments. Again, this appears like a simple

change of multiplicity in the meta-model but, though perfectly possible, introduces a

complexity beyond our present discussion.

The independent nature of fragments constitutes an oversimplification as well. We have

presented two kinds of dependencies among fragments: extension and reference. It is possible

to envision other relationships, like the “requires" dependency in component-based software

engineering [145].

When looking at the meta-model of Figure 6-5 and the instance diagrams in this section, the

similarities between a Repository component and a regular database server are apparent.

Indeed, a Repository component only represents a fairly thin layer on top of a database server.

Additionally, we think perspectives could provide a natural mechanism for both vertical and

horizontal data partitioning [146].

: Perspective

name="~barney"

owner="barney"

Repository http://personal.acme.com

: ClassFragment

extends="corp.acme.com/luxury/Request"

a4 : Attribute

name="product"

type="Reference to ONE software.acme.com/dev/Product"

: ImportDeclaration

url="corp.acme.com/luxury/Request "

action="IMPORT" : ImportDeclaration

url="hardware.acme.com/dev/Product"

action="IMPORT"

: ClassFragment

extends=" software.acme.com/dev/Product "

a6 : Attribute

name="requests"

type="Reference to MULTIPLE corp.acme.com/luxury/Request "

inverse="product"

: ImportDeclaration

url="corp.acme.com/doc/Docuiment"

action="IMPORT"

a5 : Attribute

name="spec"

type="Reference to ONE doc.acme.com/doc/Document"

<<resource>>

Fragment

0..1
PackageFragment

*

+ name

+ /fullyQualifiedName

78

The figure below shows the component diagram at this point, with the unchanged Directory

component, and the Repository component requiring Actor management and providing

Perspectives and Fragments as its public interface.

Figure 6-12. Foundation Components: Repository and Directory

The public interface of the Repository component is voluntarily simple, in order to enable

legacy system integration by writing wrapper components which expose the legacy systems’

model and instances as Fragments. Section 7.3 presents a prototype implementation of such a

wrapper.

A Directory and several Repository components provide the server-side foundation for a

perspective-centric architecture. The repositories host isolated perspectives and fragments,

and the Directory provides the map which indicates how these must be composed for a given

actor. This composition is the responsibility of the Weaver component, described in the next

section.

6.2. End-User Runtime Components

6.2.1. Profile-Driven Fragment Composition: the Weaver
The purpose of the Weaver component is to provide a given Actor with his own subjective

view of the information system. It constructs a unified model, weaving together the relevant

fragments and extensions to form a consistent set of elements, effectively building the model

underlying the current actor's profile-specific application. The class diagram below presents

the public interface of the composition mechanism, which also shows that the model has a

lifespan limited to the duration of a session. As a consequence, a profile-specific application

only exists while a user is connected. Between sessions, the composition does not exist.

Figure 6-13. Simplified public interface of composition mechanism

The above interface hides the fragmentation of application elements from higher-level

components, giving the illusion of a set of atomic elements. The diagram below shows the

internal concepts20 the Weaver must leverage to instantiate elements.

20
 In the context of the Weaver component, the internal classes should be considered proxy classes

[139], i.e. each instance is a local representation of one or several remote objects.

Directory

ActorPerspective

Fragment Repository

weaver

public

Element
*1

ModelUser
current

1

directory

Session

79

In order for a model to reflect the subjective view of the current actor, a graph of actors is built

by traversing the groups which he is a member of. An example of such a graph is shown in

Figure 6-16 below. The model thus corresponds to a set of Perspectives, inferred from the

graph of Actors. An Element has one root Fragment and potentially multiple extension

Fragments from different Perspectives.

Figure 6-14. Classes underlying the simplified public interface

To illustrate the principles driving the composition logic, we will use an example diagram

representing the actor graph and associated perspectives, using the following notation.

Symbol Meaning

1 is an Actor, either User or Group

Actor 2 is member of Group 1

A Perspective. The upper part represents inherited fragments,
the middle part declarations, and the bottom part the resulting
set of fragments

Perspective defining fragment A (symbol “=”) and importing
fragment B (symbol “+”) in the middle part.
 The bottom part thus shows available fragments A and B.

Actor 2 inherits fragments A and B through his membership of
Group 1 in the upper part. In the middle part, actor 2 unimports
fragment A (symbol “-“) and defines fragment B’, extension of B
(the prime symbol denotes extension).

Figure 6-15. Explanation of notation elements for the next diagram

We will start with the simplifying assumption that an Actor has 0 or 1 Perspective. We will thus

call "Perspective 0" the Perspective associated with group 0.

Figure 6-16 below shows a user 8 belonging to multiple groups with various declarations,

presenting a number of possible combinations of primitive operations. It illustrates the

internal

weaver

public

Element
*1

Session Model

*
Fragment

root 1 * extensions/perspectives *

parent 0..1 * extensions

Actor

current 1

parents * * children

Perspective
*

1

1 2

=A +B

A B

1

2

=A +B

A B

A B

-A =B'

B B'

80

propagation of fragments and the resulting set of elements when weaving all fragments

together for each actor. Only the paths which user 8 is a member of are represented.

Figure 6-16. Example Actor-Perspective graph, with associated declarations

 User 8 is a member of groups 5, 6, and 7. All these groups are member of the

same corporation, and represent the users' organization, role, and region

respectively.

 Perspective 0 defines 2 fragments, A and B. This situation represents for example

an installed third-party tool with two modules.

 Group 1 is the root group, representing the entire corporation. Its purpose is to

select the fragments which are available to all employees. In the example it

imports A from Perspective 0, and defines an additional element C.

 Group 2 is member of group 1, for example a business-unit. Group 2 thus inherits

fragments A and C. However, it decides that element A is not relevant for its

activity and does not want to push it to its members, and thus unimports it. It

defines an extension of C called C'. Its member group 5 (a department) disagrees

with the parent group and imports A. Through path (organization), Actor 8 thus

inherits A and C and C'. Likewise, through the (role) and (organization) paths,

different fragments are defined, imported and unimported.

 There is an apparent conflict between paths (organization, region) and path

(role). Both (organization) and (region) consider fragment C as relevant, but (role)

does not. By default, unimport is considered a lower priority operation than

import and define, for the reason that if C is relevant for at least one community

8 is a member of, it is potentially relevant for 8. In the example this is not the case

however, because user 8 in turn decides to unimport C.

6

8

3

1

2

5

4

0

(organization) (role) (region)

7

=A =B

A B

+A =C

A C

A C

-A =C'

C C'

C C'

+A

A C C'

A C

=A' +B

A A' B C

A C

=E

A C E

A C E

=A" -E

A A" C

A A' B C

-C =D

A A' B D

A A' A" B C C' D

-C =D'

A A' A" B D D'

81

 The diagram shows that unimporting C in perspective 8 also disables the inherited

extension C’, thus illustrating our assumption that extensions don’t make sense

without the associated root fragment.

 User 8 also defines a private extension D', and thus the final elements to be

assembled are element A (fragments A, A’ and A”), element B, and element D

(fragments D and D’).

Building the actor-perspective graph in a robust manner is not trivial. Requirement R6

(resilience) states that even when fragments are missing, the user must be able to interact

with the remainder of the model. This implies asynchronous communication between the

weaver component and the various repositories. Appendix D provides a detailed description of

this recursive asynchronous model composition.

In order to propagate the resilience characteristic to its client components, the Weaver must

expose an event-driven behavior. The public interface presented in Figure 6-13 must thus be

completed with event classes as illustrated in the diagram below.

Figure 6-17. Complete public interface of the Weaver component

A surprising twist of this asynchronous behavior is that it is possible to receive a fragment,

notify the session accordingly, and receive at a later point in time the description of a

perspective with higher priority which unimports the fragment in question. It is thus necessary

to indicate in the event whether it enables or disables the related fragment or element.

It is interesting to provide client components with the capability to enable and disable

perspectives, for example for users with many roles to filter elements, or for confidentiality

reasons when sharing a screen with another person. Another common situation could be a

remote support interaction, where it can be expected that application support people will

request to disable extensions in order to understand the users' question. User-controlled

enabling and disabling can leverage the same events.

In data-centric applications, the concepts of element and fragment must be specialized, as

illustrated by the diagram below which also introduces the notion of instance in its

perspective-centric sense, compliant with the usual definition, i.e. a set of values.

Event

ElementEvent FragmentEvent

weaver

public

Element
*1

Session Model

*
Perspective

+ active : boolean

Fragment

root 1 * extensions/perspectives *

parent 1 * extensions

+ subscribe(Listener l)

+ state : {ON,OFF}
1

1

82

Figure 6-18. Instances and InstanceFragments

An instance is the composition of InstanceFragments from various repositories, which must

satisfy the R6 (resilience) constraint. The model composition mechanism described in appendix

D must thus be generalized to compose instances, including the notification of InstanceEvents.

6.2.2. Model-Driven User Interface Construction: the Browser
An application user interacts with the information system through forms. This section

describes the user interface construction mechanism introduced in Figure 5-7, represented by

the Browser component which constructs a presentation layer on top of the dynamic,

asynchronously composed model presented in the previous section, both for instance

manipulation (regular application usage) and for model manipulation (adapting the

application, i.e. end-user modeling).

Instance manipulation
The browser provides a standard pattern of forms for instance manipulation, allowing all

common end-user manipulations (CRUD). The diagram below shows the flow between the 5

main forms of this standard pattern, representing the manipulation of instances of a given

ClassElement x. A more detailed description of each form is provided in appendix E.1.

Figure 6-19. Standard form pattern for instance manipulation for a ClassElement x

The content of each form depends on the ClassElement it is associated with. The figure below

shows a simplified instance diagram of ClassElement “Request”. The full instance diagram for

this example is provided in appendix E.2.

weaver

ClassFragmentClassElement

*
Instance InstanceFragment

**

FragmentElement
/fragments

*

Attribute

Value

*

*

*
+ findInstances(Query)

SearchForm(x) ResultForm(x)

UpdateForm(x)

CreateForm(x)

search
view

delete

save

cancel | saveupdate

ViewForm(x) navigate

83

Figure 6-20. Simplified ClassElement “Request”

When instantiating a form for a given ClassElement, the browser iterates over all attributes of

all ClassFragments, and creates the widgets according to the nature of the form (search,

update, ...) and the type of the attribute. The example below shows the user interface which is

constructed when applying the standard pattern (Figure 6-19) to our example ClassElement

(Figure 6-20), including the navigation among these forms. Example classes underlying such a

construction mechanism are presented in appendix E.3.

Figure 6-21. Result of the user interface construction mechanism on the example ClassElement

Besides class-specific forms, at the top level the user interface must provide a menu proposing

to both search for and create any kind of ClassElement, as will be illustrated in the next

chapter presenting our prototype implementation.

Beyond the standard interaction model allowing to manipulate instances, the browser must

provide a way for an end-user to interact with the underlying model, as described in the next

section.

Request : Element Request : Fragment

title : String

products : set<Product>

: Fragment

state : {running, done}

root

extensions

list Requests

title state

Electric Engine Qualification running

ISO-TS Audit running

Electric Engine Qualification

update Request

running

name

state

Cancel Save

*

search Requests

running done

title

state

Search

view Request

Electric Engine Qualification

running

name

state

products

Update Delete

product priority

Electric Bicycle none

Electric Motorcycle medium

Electric Car high

84

Model manipulation
We have mentioned that every employee becomes a potential provider of fragments, private

or shared with other actors. Usability is a key enabler for this, and we consider the success of

spreadsheets as a good indicator that employees will contribute pieces to the information

system when provided with the right tools.

Spreadsheets do not really distinguish between design and usage or between model and

schema, thus providing a form of design by example, naturally geared towards

experimentation. They are a perfect example of the gentle slope principle, where even novices

can create tables by using simple and universal conventions (the first row holds the columns

names); more advanced users can indicate the type of data, create reference tables and simple

joins via lookup functions, and describe simple calculations (“formulas”); experts have a rich

set of features blending declarative and imperative programming styles.

Given the foundation concepts of perspectives and fragments, it is possible to envision the

same set of features for end-user business application extension. As stated in the example for

R3 (ease-of-modification), it is possible to allow users to click next to the last column of a

“Request” table and let them type a column header “difficulty”, and start filling values. Behind

the scenes this can create a fragment extending “Request”, with a “difficulty” attribute of

either default type string or a type inferred from the values. Right-click contextual menus or

other more intuitive mechanisms can provide the complex operations required for advanced

users and experts.

The Browser component must thus provide both an automatic user interface construction

mechanism and an intuitive end-user modeling and development environment. Besides just

adding attributes, this environment must allow other operations, like importing available

fragments, unimporting irrelevant inherited ones, or create completely new fragments.

The user interface design effort this implies is beyond the scope of our study, but a minimal,

less ambitious forms-based implementation of these end-user development features has been

implemented in our prototype and will be illustrated in chapter 7.

The diagram below shows the set of components introduced so far.

Figure 6-22. Component diagram including browser

These components are the rough equivalent of present business applications. Besides being

designed for agility, they enable new forms of collaboration and governance described in the

final two sections.

Actor

Perspective

Directory

ActorPerspective

Fragment Repository

Element

WeaverBrowser

foundation
components

end-user
runtime
components

85

6.3. Social Collaboration
Continuous collaboration is a central aspect of our proposal, for which we have proposed

social mechanisms. In our reference architecture this is the responsibility of the registry

component. Like the directory component and unlike repositories, the registry component is

central and serves as a catalog of available fragments, providing the following operations.

 share fragments with other actors, implementing the “export” primitive and thus

requirement R12 (sharing)

 annotate fragments, providing the necessary information to determine the

relevance of available fragments for a given actor as dictated by R14 (relevance)

 search for and notify about available fragments, implementing R13 (awareness)

6.3.1. Fragment Sharing
The owner of a fragment can share it with other actors, which we have called export. At the

minimum, the owner must be able to express the set of target actors, as presented in the

diagram below.

Figure 6-23. General case of ExportDeclaration

Beyond the general case, specific subtypes of Fragment can require specialized

ExportDeclarations. In the case of ClassFragments, the owner could choose to share only a

subset of all instances, a subset of all attributes, and grant various fine-grained permissions at

both the instance and attribute level. This is very similar to the selection and projection

operations in relational algebra [17] and to present database authorization mechanisms, as

illustrated by the class diagram below. It provides an example of a subclass of

ExportDeclaration specialized for ClassFragments. It introduces the concepts of View and

Permission which we will not further describe in this document but are used here to illustrate

a specialization. Since import and export are symmetrical operations, it could be interesting to

provide similar specializations at import time.

Fragment
Export

Declaration
Actor

target

1..**

has

0..*1

repository directory
registry

86

Figure 6-24. ExportDeclaration specialization for ClassFragments

Sharing an extension with the owner of the root fragment is a specific case, which probably

deserves a dedicated property in the model. If fragment B is an extension of fragment A, the

owner of B can choose to either keep his adaptation hidden from the owner of A or to make

the owner of A aware of the adaptation. In the first case, the owner of B puts the emphasis on

confidentiality (requirement R4). In the second case, he considers traceability (R10) more

important and minimizes the risk of A changing without him being forewarned.

6.3.2. Fragment Annotation
In section 5.2, we have proposed to leverage social mechanisms to organize the huge number

of fragments a big corporation can potentially produce. Although it would technically be

possible to store social annotations next to fragments, it appears safer to centralize the

opinions which annotations express in a component managed by an impartial authority. The

diagram below presents the most common social annotations applied to business application

fragments.

repository

ClassFragment

Export

Declaration

Export

Declaration

ClassFragment

View

Actor

registry

target

1..*

1

directory

*

*

+ condition: Expression

Attribute

InstancePermission

ValuePermission

Permission

+ canRead : boolean

+ canCreate: boolean

+ canUpdate : boolean

+ canDelete : boolean

+ canRead : boolean

+ canUpdate : boolean

has 0..*

0..1

**

*

*

1

1

*

Expression designates a

textual filter similar to the

WHERE clause in an SQL

statement,

Example

state="ACTIVE" and

visibility="PUBLIC"

87

Figure 6-25. Social Annotations for business application fragments

A Tag annotation associates a free text keyword to a fragment, in order to enable

folksonomies as described in section 5.2.2.

A Rating annotation expresses the quantified overall opinion of a given user on a given

fragment. In the simplest case, these are the "like" and "don't like" buttons found on many

social networking sites. A slightly wider range of values is provided by the also very popular

"star rating" system. Both types of rating provide valuable input to recommender systems as

discussed in section 5.2.3.

A Recommendation annotation represents a direct message to an actor, a suggestion for him

to look at a particular fragment and take action.

A Comment is part of a discussion thread attached to a given fragment, and can hold

questions, answers, opinions, and anything else. It could be interesting to consider Comments

as fragments in their own right, in order to organize them with respect to their tags and

ratings, as made popular by question-and-answer oriented knowledge sharing sites like

stackoverflow21.

It is important to remember that in an enterprise environment a user is an authenticated

employee of the corporation, and as such will exhibit professional behavior when annotating

fragments, providing a more beneficial setting for social technologies than an anonymous

consumer space.

21
 www.stackoverflow.com

repository

Tag

Annotation

Fragment

Rank

Recommendation

User

registry

target 1..*
1

directory

Comment

+ message : Text

**

+ body : Text

author 1

*

parent

0..1

replies 0..*

+ opinion: Integer

+ keyword: String

88

The new generation of workers has grown up with social networks as an important part of

their lives, and can thus be expected to spontaneously annotate the business application

fragments they work with.

In settings where users do not contribute annotations spontaneously, they can be encouraged

to do so. If detected by the system that they use certain elements but have no annotation, a

low-frequency popup window can suggest contributing ratings and tags. If further incentives

are needed, it could be made a groups’ goal to have each member contribute at least N

opinions on the information system. Following the recent trend of serious games, [147]

proposes a tagging mechanism which simultaneously entertains users and encourages them to

contribute annotations.

Annotations can be interpreted directly by users when public, but are most useful when

leveraged by the services presented in the next sections.

6.3.3. Fragment Search
When facing a new requirement, a user must be able to first search for existing fragments

satisfying his needs before deciding to introduce a new fragment himself.

Traditional full-text search mechanisms can be applied, with decreasing weight for terms

found in the fragments' name, short and long descriptions. In addition, full-text search can

incorporate tags and text from aforementioned Comments and Recommendations. Full-text

search can allow for logical operators and parenthesis. In addition, it is common to provide an

"advanced search" mode, providing more fields like the owner, the perspective, the

modification date, the root fragment in case of an extension, etc. Advanced queries can be

entered via a form or with a text-based syntax for full flexibility.

manufacturing

owner:/acme/ICT/collaborative-tools

extends:Task AND perspective:*.china.acme.com/*

Figure 6-26. Three example full-text queries

A critical aspect of searching through a high number of items is the ability to determine the

relevance of the candidate items, and present the results with the highest relevance first. In

section 5.2.3, we have proposed to apply recommender algorithms used in the consumer

space to application fragments, and have described the available data for computing a profile

similarity score and fragment ranking.

Besides search, these relevance scores can be leveraged to proactively notify users, as

described in the next section.

6.3.4. Fragment Notification
In order to improve awareness of interesting components, the registry component can provide

a mechanism notifying actors of newly available relevant fragments. This can be envisioned as

89

a configurable search running in the background on behalf of an actor. Besides the fact that

the notifications concern application fragments and not instances, this is similar to common

business application notification mechanisms and thus does not require more details than

provided in the figure below.

Figure 6-27. Simple notification mechanism

6.3.5. Summary
The registry component provides a number of central services to the browser, enabling the

sharing of fragments, their annotation, a central place for searching fragments ordered by

relevance, and possibly a notification mechanism to raise awareness.

6.4. Governance of User-Contributed Fragments
Indicator management is a prerequisite for system governance, as presented in section 5.3.

We envision a dedicated Monitoring component collecting indicators from all other

components in order to observe the evolution of a perspective-centric information system and

estimate its soundness.

The main purpose of indicators is to be presented in the form of dashboards, for use by IT

management, corporate management, community management and ideally all actors. We

think the reuse of present enterprise monitoring tools (often SNMP22-based) can help in the

governance of a perspective-centric information system. As an example of such tools, the

figure below shows two dashboards used to monitor the volumes, load and performance of a

set of 250 databases in an industrial production environment.

22
 Simple Network Management Protocol, a family of standards used for monitoring networks and other

enterprise resources [172]

directory

SubscriptionActor Query

registry

has

0..*1

targets

1..*

+ relevanceThreshold : integer

+ periodicity : enum(INSTANT, DAILY, WEEKLY)

+ channel : enum(mail, RSS, ...)

90

Figure 6-28. Dashboards for database monitoring in an industrial environment

6.5. Conclusion
In the previous sections, we have presented a possible perspective-centric architecture by

describing a set of components with their responsibilities and interactions. The figure below

shows the all components with their dependencies.

Figure 6-29. Complete set of perspective-centric architecture components

Actor

Perspective

Directory

ActorPerspective

Fragment Repository

Element

WeaverBrowser

ExportDeclaration

Annotation Registry

Query

Monitor
Indicator

foundation
components

end-user
runtime
components

governance
component

social
collaboration
component

91

7. Prototype
Implementation

We have implemented a first prototype of a perspective-centric application, in order to

evaluate the impact of perspectives on the user experience, assess the technical feasibility,

identify difficulties and act as a vehicle for experiments.

The following sections present the subset of components we have implemented, an overview

of the user experience during instance manipulation and model adaptation, an example of

legacy integration, and a first FeatureFragment.

7.1. Overview
In order to have a functional prototype, we have focused on the foundation components, i.e.

the directory, the repository, the weaver and the browser. The figure below shows the

interactions of these components during the initialization phase (1, 2 and 3) and regular

instance manipulation (4).

Figure 7-1. Architecture of the prototype and main component interactions

In step (1), the weaver authenticates the user and gets as a reply the full graph of his groups

and perspectives. This allows the client to (2) request all perspectives and the associated

fragment definitions from the various repositories involved (see figure below). Receiving a

fragment triggers the (3) weaving mechanism which composes the associated elements.

Regular use is then equivalent to any distributed system, where accessing an object translates

into multiple requests (4).

The communication between components uses the REST architectural style [148] over the

HTTP protocol. The figure below shows examples of the main requests in Figure 7-1 and XML

3

directory

browser

repository 1

weaver

repository n

1 2 2
4 4

92

snippets of the corresponding replies (when applicable, identifiers have been replaced by

labels for readability purposes).

1 http://directory.acme.com/Actor/barney

<Account uid=“barney”>
 <owns>
 <perspective url=“http://slow.acme.com/~barney”/>
 </owns>
 <is-member-of>
 <group name=“quality”>
 <owns>
 <perspective url=“http://fast.acme.com/Quality”/>
 ...
</Account>

2 http://fast.acme.com/Quality

<Perspective name=“Quality” owner=”...”>
 <defines>
 <Class name=“Delay Analysis”/>
 <Attribute name=“request”
 type=“http://fast.acme.com/Luxury/Request” .../>
 <Attribute name=“comment” type=“Text” .../>
 ...
 </Class>
 </defines>
 <extends>
 <Class url=“http://fast.acme.com/Luxury/Request”/>
 <Attribute name=“delay” type=“String” .../>
 <Attribute name=“analyses”
 set=“http://fast.acme.com/Quality/Delay%20Analysis”
 .../>
 ...

http://slow.acme.com/~barney

<Perspective name=“~barney” owner=”barney”>
 <extends>
 <Class url=“http://fast.acme.com/Luxury/Request”/>
 <Attribute name=“difficulty”
 type=“enum{HIGH,LOW}” .../>
...

4 http://fast.acme.com/Luxury/Task/12/*

<InstanceFragment id=”12”>
 <title>Align X with standard Z</title>
 <forecast>2011-10-10</forecast>
 ...
</InstanceFragment>

http://slow.acme.com/resource/Task/12/difficulty

<InstanceFragment id=”12”>
 <difficulty>HIGH</difficulty>
</InstanceFragment>

Figure 7-2. Example XML snippets of main read requests and associated replies

The communication protocol between components has been kept as simple and standard as

possible in order to enable integration of legacy applications in a perspective-centric

landscape, as we will describe in section 7.3.

93

7.2. End-user experience
This section presents a number of user interactions and screenshots, first manipulating

instances, and second manipulating the model, illustrating a rudimentary interface for end-

user modeling.

7.2.1. Instance manipulation
Instance manipulation is what corresponds to the regular daily use of present business

applications. Our main objective was to verify that the dynamic, distributed nature of a

perspective-centric application could be made reasonably transparent to end-users during

such normal use.

The first screenshot below shows a Luxury-like official application displaying a single object.

Figure 7-3. Screenshot of a perspective-centric Luxury-like official application

The screenshots below show two different users connected to the Luxury-like application, both

displaying the same request object. The first user (maria) belongs to the quality group and thus

sees the delay attribute and DelayAnalysis objects, whereas the second user (barney) from the

planning group sees SubTask objects.

94

Figure 7-4. Two users with different extensions displaying the same Request object

It is important to stress again the additive nature of the system, as opposed to subtractive (see

Figure 5-1 and Figure 5-2). In a subtractive (i.e. filtering) approach, somewhere an element

would exist with all attributes, which are removed depending on the users’ profile. In the

prototype, multiple ClassFragments are hosted on different servers, are composed by the

weaver and presented together by the browser. The same is true for InstanceFragments.

The Perspective Box
A first visible difference between the perspective-centric browser and a regular business

application is the perspective box on the lower right side of the screen. It allows the user to

inspect perspectives, i.e. see which fragments they define, import, extend or unimport. We

think it is beneficial to raise user awareness about perspectives in this manner. An additional

benefit of the perspectives box is that it allows enabling or disabling selected perspectives, as

95

discussed in section 6.2.1. The figure below shows a user who has disabled the “quality”

perspective, which (when enabled) provides the new Element “Delay Analysis”, and extends

existing Element “Request” with a new attribute “delay” and a collection of “Delay Analysis”

objects.

Figure 7-5. Screenshot of a user inspecting a (disabled) perspective

Asynchronicity Showing on the Surface
The other differences between the browser and regular business applications are related to

the asynchronous nature of a perspective-centric system, dictated by requirement R6

(resilience). While the fragmentation of elements is transparent to the end user if the various

repositories hosting the fragments have similar response time, it becomes apparent as soon as

there is a perceivable difference in performance. In the remainder of this section we make the

assumption that official ClassFragment "Request" is hosted on a fast and reliable server, and

that the “quality” perspective has an extension of "Request", adding an attribute "delay",

hosted on a slow server.

The first situation where noticeable performance differences can make the asynchronous

foundation show on the surface is during the “initialization”, i.e. the time between starting the

user interface and receiving the last model fragment from the slowest Repository. The

screenshot below shows a user interacting with the official part of a Request object, while the

extensions from the “quality” and “~maria” perspectives have not yet been received. This is

illustrated by the animated arrows next to the name of the perspective23. The screenshot

demonstrates that even when an object from an official system has been extended with

fragments hosted on unreliable or slow servers, the user can still interact with the official

object.

23
 The number between parentheses indicates the number of pending requests, which could be

displayed in the more familiar form of a progress bar.

96

Figure 7-6. A user interacting with fragments from robust server while still waiting to receive extensions

It can be noted that the menu does not show the “Delay Analysis” extension which has not yet

been received, neither does the form show the “delay” attribute for the same reason.

The menu gets updated immediately when the fragments are received, and the missing

“delay” attribute will appear on subsequent forms as illustrated by the next screenshot, where

the system is aware of the existence of the “delay” attribute but has not yet received its value

for the current object, as indicated by the animated arrows. Once the value is received, the

arrows are replaced by the regular widget for updating the value.

Figure 7-7. A user updating an instance in spite of missing values from a slow server

97

Another case when performance differences can make the fragmentation of elements visible is

when a user searches for objects using criteria hosted on different servers. As an example, we

can imagine a user searching for all Requests with a title containing the word “engine” and

with delay equal to “1 day”. This would result in the following sequence of events.

t0 ask repository fast.acme.com for all Requests with title="*engine*"
ask repository slow.acme.com for all Requests with delay="1 day"

t1 get objects 8, 9, 10, 11 and 12 from fast.acme.com
display candidate objects: 8, 9, 10, 11 and 12 (preliminary result)

t2 get objects 11, 12, 13, 14 and 15 from slow.acme.com
display the intersection: 11 and 12 (final result)

Figure 7-8. Sequence of events when searching across servers with different response times

At t1, if we want to be meet requirement R6 (resilience), we must display the official objects

regardless of the slow extension. The result of the search thus displays the list of candidate

objects 8, 9, 10, 11 and 12 at t1. Only at t2 can the system determine that only objects 11 and

12 are valid results. It must thus be made clear to the end user that the result at t1 is

preliminary, which is not trivial. The preliminary result is a superset in the case of an "AND"

request and a subset in the case of an "OR" request, and in both cases the user could take a

bad decision if the incomplete nature of the result is not clear to him. The present prototype

displays the preliminary result in a red font and changes to regular black font once the results

are confirmed. How to clearly represent the preliminary nature of a result from a user

interface point of view is beyond the scope of our study.

7.2.2. Model manipulation
A second visible difference with a regular system is the presence of edit buttons, which allow

inspection and tailoring of the connected user’s model as illustrated in the next screenshot,

which shows (1) the possibility to import another Entity “Product”, and (2) that Element

“Request” is a composition of Fragments from three different perspectives.

98

Figure 7-9. A user inspecting her model

Another important goal was to experiment with a first level of form-based end-user modeling.

The screenshot below shows a user extending existing element “Request” with a new private

attribute “customer impact” hosted in her perspective “~maria”. In terms of sequence, the

operation in Figure 7-10 has occurred before the inspection in Figure 7-9.

Figure 7-10. A user extending Element “Request” with a new, private attribute

99

The next screenshots show the effect of this extension on the user forms, with a different

widget for the search and update forms of the ClassElement “Request”.

Figure 7-11. The effect of the operation in Figure 7-10 on the search and update forms

It is worth highlighting that the operation shown in Figure 7-10, i.e. adding an attribute to the

“Request” Element, has transparently created the extension Fragment “**Request” shown in

the inspection window in Figure 7-9.

As mentioned in section 3.1, an ideal interface should have the intuitiveness of a spreadsheet,

where filling an empty “header” cell transparently creates an extension with the new attribute,

with default type and visibility. We believe the presence of actual records makes such

example-centric modeling [149] possible.

7.3. Legacy integration
Even though our proposal is focused on a fundamentally new approach to the information

system as a whole, it is important to consider how to integrate with legacy applications.

A specific implementation of the Repository component wraps a legacy system at the database

level. Legacy Elements are exposed as one or several Perspectives providing top-level

Fragments. This allows to selectively import and unimport elements, and most importantly to

extend the legacy concepts. The figure below shows a user updating a "Bug" object, composed

of a legacy ClassFragment, with an extension hosted on a different server adding attributes

"root cause", “platform” and “notes”. The screenshot also shows that the wrapper allows

read-only access to the legacy data (attributes “id” to “priority”).

100

Figure 7-12. User updating a "Bug" object part legacy, part extension

The prototype wrapper allows read access at the database level. A more complete legacy

integration would need access at the service level in order to not bypass the business logic

layer, and write access.

In conclusion, the prototype wrapper has shown that it is possible to seamlessly integrate

legacy applications in a perspective-centric information system. This wrapper has been

implemented by a third party, using different technologies (Apache and PHP5) from the rest of

the prototype, which illustrating the interoperability potential of the architecture.

7.4. A Prospective FeatureFragment
In order to complement our data-centric prototype, we have implemented a mechanism for

invoking server-side, non-extensible FeatureFragments. In order to validate this mechanism,

we have implemented the GANTT chart feature shown in the screenshot below, which has not

revealed any unexpected difficulties in envisioning features as Fragments hosted by a

Perspective. However, the description and generalization of FeatureFragments are beyond the

scope of our study.

101

Figure 7-13. A GANTT diagram as an example of FeatureFragment

7.5. Limitations of the Current Prototype
The main limitation of the prototype is its incomplete coverage of the perspective-centric

reference architecture presented in section 6. While providing the Directory, Repository,

Weaver and Browser components, it is lacking the high-level components, i.e. the Registry and

Monitor component. This is due to our choice to build the system from the bottom up.

The features of this available subset of components have been selected in order to enable the

experiments described hereafter, excluding features which would have been interesting but

not vital. Without trying to be exhaustive, we can provide the following examples of such

features.

 The prototype only supports InstanceFragments hosted on the same server as

their ClassFragment. It would be interesting to remove this limitation, using the

Perspective as not only a vertical partitioning mechanism [146] but a horizontal

one as well, undoubtedly raising new issues.

 There is no mechanism to hide, re-arrange and rename fields on a form. This

feature is available in some applications today, and is fairly simple to implement

in theory but it would have been interesting to measure the benefits and

drawbacks of perspectives for the layout personalization as well. We can imagine

FormFragments, with a specific FormElement composition logic managing the

potential conflicts between multiple inherited FormFragments.

Other features are implemented in the lower layers to enable experimentation but are merely

missing from the user interface, like the ability to rename and delete ClassFragments and

Attributes.

Although based upon production-quality infrastructure like a JavaEE application server and a

relational database system, the prototype has been designed with experimentation in mind

and would require significant improvements to be deployed in a production environment.

102

7.6. Conclusion
In this chapter we have presented a prototype implementation of a subset of the components

of the perspective-centric reference architecture presented in chapter 6.

The main goal of this prototype was to provide a concrete substrate for the experiments

described in the next section.

103

8. Evaluation
The following sections present an evaluation of our proposal.

We describe the experiments based on the prototype and their results, and then provide an

evaluation of social information systems versus our initial requirements for an agile

information system. Some performance measures of the runtime composition mechanism are

presented. We discuss related work, and conclude with some challenges and directions for

future research.

8.1. Experiments

8.1.1. Simulation on Fictional Shadow Application Scenarios
As a first set of experiments, we have instantiated the prototype with various fictional industry

use cases, primarily a Luxury-like application as illustrated by the screenshots from Figure 7-3

to Figure 7-13. All use cases featured multiple groups and individuals with different

perspectives deployed on different servers.

These experiments with the prototype enable us to make the following assertions, which we

will translate into an assessment versus the requirements in section 8.2.

 It is possible to represent business objects in the form of multiple, logically and

physically distributed, actor-specific fragments

 It is possible to asynchronously compose these fragments at runtime according to

the actors’ profile, providing unified elements, which can be temporarily

incomplete (in the presence of slow servers) but are always consistent and usable

 By applying a standard form pattern, it is possible to derive a profile-specific

presentation layer from these unified elements (Figure 7-3 and Figure 7-4),

providing all basic business application operations

 End-users can choose to enable and disable perspectives at runtime, with

immediate adjustment of the presentation layer (Figure 7-5)

 It is possible for an end-user to dynamically change elements through forms

during execution and reflect these changes immediately in all application tiers

 Legacy systems can be seamlessly integrated and adapted via a perspective-

centric service facade

An important goal we had in mind was total transparency of the dynamic, distributed nature of

the system for end-users. The prototype has revealed that this goal conflicts with requirement

R6 (resilience) as described in the situation of distributed search with missing values (section

7.2.1). It has also revealed that it was preferable to explicitly refer to perspectives in the user

104

interface, in order to allow enabling and disabling them and for traceability and awareness

purposes (requirements R11 and R14).

8.1.2. Simulation on Real-Life Shadow Applications
For the purpose of evaluation, the authors of [39] have provided us with additional

information about Luxury, Fallen and the associated shadow applications mentioned in their

paper. This has allowed us to instantiate fake versions of both official applications in our

prototype.

The following perspectives have been defined to represent the relevant subset of the real-life

situation, judged by the authors of [39] as "close enough for the purposes of the evaluation".

 One “organizational” perspective: "acme corporation"

 Two “official application” perspective: “Luxury” and “Fallen”, both providing core

concepts similar to the real official applications.

 Two role perspectives: “quality” and “operations”

 One region-specific perspective: “japan”

During two remote presentations, we have been able to walk through the use cases in [39]

with the first author, and have confirmed together these real-life shadow applications could

have been avoided with a robust implementation of the prototype's features. The table below

summarizes the results of the main use cases (shadow requirements), and mentions the main

necessary improvements.

official
application

shadow
requirement result main improvements required

Luxury subtasks  consistency checking in terms of dates,
efforts, and states24

 delay analysis  same as above

Fallen Japanese extension  ability to unimport the original English
attributes or at least hide them

Table 15. Results of simulation with real-life shadow applications from [39]

This experiment shows that a robust implementation of a perspective-centric architecture

technically removes most needs for introducing shadow applications. This is not proof that this

would actually have happened in real life, but represents a conclusive result nonetheless.

The experiments above cover the use cases reported in [39], i.e. shadow applications providing

additional concept and attributes, and shadow applications providing an additional level of

decomposition, which the authors consider as the majority of shadow application

requirements. An important third scenario they have mentioned after the presentations is

“pulling together data from various systems, official or not, and presenting this data in a

24
 The bottom screenshot of Figure 7-4 (page 85) shows an example the need for consistency checking

rules. The Request has a state “DONE”, while some SubTasks are still “RUNNING” or “ON-HOLD”.

105

unified way with potential additional data”, which is possible in the prototype implementation

but in the absence of more detailed Boeing use cases has not been included in the

presentation.

8.1.3. Acceptance of Perspective-Centric Concepts
In order to evaluate the assumption that end users can adapt a business application to their

needs through forms, we have conducted an experiment where a focus group [150] of 3

subjects was requested to play 3 different roles inspired by our reference use cases from [39].

A fake official application was provided, with 4 concepts. Subjects were handed a role sheet

which explained their job, for which the official application was only partially suited, and they

were asked to adapt the official application to their needs for 30 minutes. For all 3 roles,

successfully adapting the application involved to import an already available fragment, extend

available fragments and introduce a new element themselves. A complete description of the

experiment is provided in appendix F. The figure below illustrates a role sheet, the initial

official application (i.e. the state at the beginning of the experiment) and the adapted

application (at the end of the experiment).

Figure 8-1. Example role sheet, and application before and after the experiment

We have run this experiment 4 times, i.e. with 12 subjects; all are at least occasional users of

business applications. 6 were industry employees, 6 academic staff; in each category, 3 were

professional software developers, 3 were not, although all subjects were familiar to some

extent with business application management or configuration. We have excluded “pure” end-

users from this experiment due to the present modeling interface which requires a degree of

software literacy, and which we do not consider intuitive enough for users unfamiliar with

concepts like Attribute and Type (see screenshot in Figure 7-10).

106

In spite of the rudimentary modeling interface, all 12 subjects have successfully completed the

experiment. The detailed results of the 4 runs are provided in appendix F.

In the groups of subjects who were not software developers, some subjects have asked for

guidance on how to add associations between the central concept (“Phase”) and related

concepts like “SubTask” and “DelayAnalysis”, which we think is due to the difficulty of mentally

mapping associations with the example spreadsheets provided in the role sheets.

In order to conduct experiments with broader and more diverse audiences, more work on the

intuitiveness of the modeling interface is required, with particular attention to the

representation of associations between concepts.

8.1.4. Qualitative Prototype Feedback
In addition to the aforementioned experiments, we have formally presented an early version

of our prototype to 8 information system professionals, individually, from 6 different industrial

and educational organizations. All of them have over 20 years of experience and have

witnessed the emergence of numerous shadow applications. Their reactions to the proposal

varied from fairly positive to enthusiastic. 4 out of 8 subjects have volunteered for evaluating

the prototype with real application data.

The highly dynamic nature of the proposal initially made all interviewed professionals

uncomfortable, illustrating the fairly conservative attitude they adopt regarding the

architecture of business applications, particularly the persistence tier. One manager has

expressed a desire to restrict the perspective-centric nature of an application to the “initial

phases of its life, and to freeze the model later”, i.e. once the application has been

collaboratively built and validated. This directly contradicted his earlier statements about

continuously evolving and conflicting requirements, which he has acknowledged.

The final version of the prototype has also been demonstrated to the corporate IT architecture

group (6 senior architects) of a major European high-tech company of over 100 000

employees. As a conclusion, they have stated that “if a new official application (or a new

version of an existing official application) provided (a mature implementation of) these social

extension capabilities, this would avoid (or strongly diminish) the emergence of shadow

applications”25. Their concerns were not related to the concepts or the technology, but to

communication and training, i.e. changing decades of habits of people “helping themselves”.

Besides these two initiatives to collect qualitative feedback, we have informally presented our

proposal and prototype to dozens of information system professionals, always receiving

encouraging feedback. We would like to mention the following two concerns that were often

raised early in the discussion.

25
 "Si une nouvelle application officielle (ou nouvelle version d'une application officielle existante)

fournissait (une implémentation mature de) ces capacités d'extension sociale, elle pourrait éviter (ou
limiter fortement) l'apparition d'applications périphériques"

107

 When all employees from a multi-national corporation can contribute fragments

to the information system, duplications and inconsistencies are guaranteed.

 Information system governance appears impossible in an environment where all

components change continuously.

First, we think both concerns share an incomplete assessment of the present situation, where

duplications and inconsistencies are already a problem and governance is restricted to a small

subset of applications at best. Today these problems are impossible to measure and thus easy

to underestimate or even ignore. Second, we consider that the awareness and monitoring

mechanisms we propose provide assistance in preventing and resolving inconsistencies

respectively, and thus think governance would become easier, not more difficult.

Another interesting objection has emerged three times with different individuals and

companies: “great idea, but this will never work here (in our company)”. In all three cases, the

persons’ explanation was that political tensions and internal competition would keep actors

from sharing anything with their colleagues. It is tempting to dismiss these objections as

coming from dysfunctional corporations with poor management and an unhealthy corporate

culture (which no architecture paradigm can cure), but the problem may be common and

serious enough to warrant further study.

8.2. Evaluation versus Requirements
In this section we evaluate perspective-centric architectures versus the requirements for agile

information systems presented in chapter 3. We will rank different levels of our proposal.

 We consider that the proposal meets the requirement at a conceptual level if the

high-level conceptualization presented in chapter 5 provides a theoretical

solution.

 If the reference architecture presented in section 6 describes a solution to a

requirement, we consider it is met at the design level.

 Our strongest claim for meeting a requirement is when the prototype

implementation and associated experiments presented in chapter 7 have

demonstrated a solution.

When an actor A faces a new business requirement which needs to be reflected in a given

application, the prototype has shown that regardless of who owns the application, actor A can

adapt it himself. His adaptation is hosted in a separate perspective which isolates his change

from both the initial application and other adaptations. Thanks to perspectives, actors thus

have freedom to adapt applications when needed, without disrupting other actors, which

satisfies both requirements R0 (influence) and R1 (isolation).

The distributed nature of the prototype has shown that it is possible to host adaptations on

hardware resources different from the original application if any. Business-units can thus

introduce the hardware resources they need for their specific requirements, satisfying R2

(hardware independence).

108

The prototype has demonstrated the feasibility of simple form-based end-user adaptations of

applications. More complex adaptations are possible by providing a spreadsheet-like scripting

language. We can thus consider that R3 (ease-of-modification) is met.

Distributed repositories isolate fragments, allowing their owner to decide who they grant

access to. The prototype implementation does provide this isolation but does not have an

access control mechanism, and we thus consider requirement R4 (confidentiality) as met at

the design level.

The table below summarizes the rankings of perspective-centric concepts, reference design

and prototype implementation versus application-level requirements R0-R4.

 perspective-centric architecture

requirement conceptualized designed implemented

R0 influence   

R1 isolation   

R2 hardware independence   

R3 ease-of-modification   

R4 confidentiality  

Table 16. Ranking of perspective-centric architectures versus application-level requirements

Like service-oriented architectures, our prototype implementation has the capability to adapt

official fragments with actor-specific aspects without duplicating the initial fragment. We can

thus consider that the global information system consistency is preserved and that

requirement R5 (consistency) is met.

Unlike service-oriented architectures, adaptations do not encapsulate the initial element but

merely complement them. As a result, a slow or missing adaptation does not break the

communication between the client and the official element. The prototype has demonstrated

the ability to interact with available elements even when adaptations are unreliable (Figure

7-7), and we thus consider requirement R6 (resilience) as met.

The prototype’s fragment composition mechanism traverses the actor-perspective graph and

composes a unified model including all fragments relevant for the current profile, meeting

requirement R8 (profile-driven composition). This allows the Browser to present a single

profile-specific user interface to the end-user, providing all and only relevant elements.

Requirement R7 (uniformity) is thus satisfied as well.

 perspective-centric architecture

requirement conceptualized designed implemented

R5 consistency   

R6 resilience   

R7 uniformity   

Table 17. Ranking of perspective-centric architectures versus information system-level requirements

109

During our experiments (section 8.1.1), we have been able to verify that changes in a high-

level perspective, whether these changes are evolutions of existing fragments, introduction of

new fragments or even deletion of fragments are reflected in all relevant users’ runtime

environments. In the present implementation, this happens at session initialization-time only,

but in principle the asynchronous model composition mechanism can reflect the changes

immediately, adding and removing elements on the fly. We thus consider requirement R9

(change propagation) as satisfied.

The Registry component allows the owner of adaptation A’ to publish it, making the

adaptation visible to the owner of initial fragment A. The owner of A is thus aware of all

published adaptations of his element, and can analyze the impact of a change on the overall

system before performing the change. This meets requirements R10 (forward traceability).

Figure 7-9 (page 98) shows a user inspecting her model. She can clearly see that the element

“Request” she is manipulating is composed of several fragments, and determine their

respective origins. This helps in getting support (explanations) at the right level, and improves

the end-user understanding of the elements on her screen. We can thus consider that the

prototype provides a mechanism for backward traceability which satisfies requirement R11.

 perspective-centric architecture

requirement conceptualized designed implemented

R8 profile-driven composition   

R9 change propagation   

R10 forward traceability  

R11 backward traceability   

Table 18. Ranking of perspective-centric architectures versus traceability and composition requirements

The Registry component provides a way for all actors to share their elements with other

actors, whether a single individual, groups, or even the entire corporation. Like service-

oriented architectures, the Registry component provides a central referential for all available

fragments, which meets both requirements R12 (sharing) and R13 (awareness). The social

mechanisms described in section 5.2 provide a promising solution for sorting available

fragments according to their relevance for a given user, meeting requirement R14 (relevance).

 perspective-centric architecture

requirement conceptualized designed implemented

R12 sharing  

R13 awareness  

R14 relevance 

Table 19. Ranking of perspective-centric architectures versus traceability and composition requirements

In a successful perspective-centric information system, all fragments and their dependencies

are well known. We have described the expected benefits of perspectives with respect to

governance, in terms of observation (monitoring), community management and inconsistency

110

detection and resolution, and will thus consider that a perspective-centric information system

meets requirement R15 (governability).

 perspective-centric architecture

requirement conceptualized designed implemented

R15 governability 

Table 20. Ranking of perspective-centric architectures versus governance requirements

The table below summarizes the rankings of application-centric architectures, service-oriented

architectures and our perspective-centric proposal. It illustrates how a perspective-centric

system successfully borrows the benefits from both shadow applications and services, and

leverages the aforementioned benefits of model-driven engineering, end-user development

and social computing to provide a promising paradigm fulfilling all our requirements for an

agile information system.

Category Requirements

Application-
centric

architecture

Service-
centric

architecture

Perspective-
centric

architecture

Application R0: Influence

R1: Isolation

R2: Hardware Independence

R3: Ease of Modification

R4: Confidentiality































Information
System

R5: Consistency

R6: Resilience

R7: Uniformity



















Composition R8: Profile-driven
Composition

R9: Change Propagation













Traceability R10: Forward Traceability

R11: Backward Traceability













Collaboration R12: Sharing

R13: Awareness

R14: Relevance



















Governance R15: Governability   

Table 21. Rankings of the various architecture paradigms versus requirements for agile information systems

111

8.3. Performance Measures
It appears obvious that dynamically composing a model at runtime instead of building a static

model at development-time has a performance impact. However, the manipulation of the

prototype on the example uses cases has no perceptible influence, which we attribute to the

continuously growing processing power and network bandwidths versus the fairly simple and

stable core requirements of business applications.

Beyond this subjective observation, this section discusses two performance aspects of our

proposal. First, we measure the performance of the runtime model composition mechanism,

and second, we discuss the performance perception from the end-users’ point of view.

8.3.1. Performance of the Runtime Model Composition Mechanism
In order to evaluate the performance impact of runtime model composition, we have

measured the time to compose one single concept with 100 attributes. The table below shows

a few composition scenarios for these 100 attributes.

number of
perspectives

number of
root fragments

number of
extension fragments

number of
attributes per

fragment

1 1 0 100
10 1 9 10

100 1 99 1

Table 22. Example composition scenarios for one concept with 100 attributes

It is important to remember that composition is driven by the current users’ profile, and that

the scenario of 1 concept having 99 relevant extensions for the current user is extremely

unlikely. We estimate that the highlighted case of 10 perspectives (i.e. 1 root fragment and 9

extensions) is representative of a maximum number of relevant extensions in real-life

situations.

The execution times below have been measured on a single machine hosting the directory and

repository components (with associated databases and application server) and the browser

component. They include (local) network requests, database access, serialization and

deserialization, model composition and browser rendering. The chart below plots the total

composition time versus the number of perspectives.

112

Figure 8-2. Total model composition time for 1 concept defined across 1 to 100 perspectives

The chart illustrates that in an implementation with no optimization, the performance is a

linear function of the number of perspectives. Optimization can be envisioned at many levels,

especially caching techniques should prove effective considering that model changes are less

frequent than instance changes. Also, the asynchronous composition fetches perspectives in

parallel, which in the presence of multiple physical machines should result in better

performance than shown above, where hosting all servers on the same machine cancels out

the benefit of parallelism.

We have not measured the performance of instance composition, which is the same situation

as any other distributed system.

8.3.2. Performance from the End-Users’ Point of View
Although not strictly a matter of performance, it is important that from an end-user point of

view, a perspective-centric information system provides him with the optimal composition of

fragments for his profile (i.e. his profile-specific application).

In complex corporations, the high number of possible profiles mentioned in section 2.2 makes

this impossible to achieve when composition is not automatic. End-users must thus juggle with

multiple applications to perform a simple business transaction in order to keep the various

applications aligned.

Although we need more experiments to back up this claim, we think profile-specific

applications have the potential to significantly speed up the typical knowledge workers’ daily

work.

0

500

1000

1500

2000

2500

3000

0 10 20 30 40 50 60 70 80 90

number of
perspectives

total composition time (in milliseconds)

113

8.4. Limitations
The conceptualization of a complex system involves numerous conscious and unconscious

decisions. In this section, we present the most important conscious limitations part of our

proposal.

We consider the main conceptual limitation of our study is its focus on data-centric

applications. Within data-centric aspects and whether at the conceptualization, design or

implementation phase, we have restricted our study to class fragments and the associated

class elements. Both the introduction of higher level concepts like package fragments and

finer-grained fragments would unquestionably raise versioning issues [151] which are not

addressed by the present study.

We have described a conceptual solution to the management of big numbers of user-

contributed Fragments, but have no experimental data to validate the applicability of

consumer-space social mechanisms in the domain of end-user enterprise development.

A majority of todays’ distributed business applications rely on transactions guaranteeing the

ACID constraints [152] through synchronicity [153]. Following the CAP theorem [154], such

systems guarantee consistency but not availability. In order to meet R6 (resilience), our

proposal relies on asynchronous communication, which implies that a different consistency

model is needed, like session consistency [154], a variant of the eventually consistent strategy.

Our study has not covered the impact of such a consistency model on the design. The highly

asynchronous nature of our proposal may raise other technical issues which need further

work.

Other important aspects of enterprise computing have been excluded from our study due to

our initial assumption that present solutions would be applicable in a perspective-centric

system. Security is an example of such a concern. At the Repository-level, authentication and

authorization requirements are indeed similar to present service-oriented architectures.

However, at the Weaver-level we can imagine malicious extensions being composed with

sensitive enterprise data, revealing the need for a robust security model.

8.5. Comparison to Related Work
In this section we compare our proposal for a perspective-centric information system to a

selection of research domains and practices.

Social Software Engineering
The new though broad field of Social Software Engineering focuses on the understanding of

the human and social aspects of software engineering. It covers both the social aspects in the

software engineering process and the engineering of social software [93]. Our proposal clearly

belongs in this field [14].

Social Computing and Social Informatics
Social Computing and Social Informatics both designate the emerging research field concerned

with the interactions between technology and society, more precisely between computational

systems and social behavior. It is a highly multi-disciplinary field, which leverages previous

114

work in sociology, social psychology, organization and communication theory, human-

computer interaction and computing. Social informatics studies claim that information

technology and society influence each other [155]. [156] has identified several definitions, and

proposes the following summary.

“Computational facilitation of social studies and human social dynamics as well as

the design and use of ICT technologies that consider social context”

Our proposal clearly falls in the second category. The research within the field focuses on

machine learning techniques [157], and the following application areas.

 computer supported online communities, also referred to as social network sites

(SNSs)

 intelligent agents in interactive entertainment

 business and public sector applications and forecasting systems

Within the business applications category, the contributions focus on recommender systems

(for the purpose of suggesting products to customers) and the associated feedback

mechanisms, and on forecasting (predicting sales) [156], and not on the social aspects of the

internal enterprise information system. However, most research topics in social computing

(motivation for participating, reputation, network effects, governance structures, intellectual

property rights... [158]) directly apply to our proposal.

Linked Data and the Semantic Web
The Semantic Web is an extension of the current web in which information is given well-

defined meaning [159]. Within this vision, the Linked Data initiative [160] aims at enabling the

evolution of the present World-Wide Web of linked documents to include linked data entities.

It proposes a set of practices for publishing and connecting structured data, through the

following rules [161].

 Use URIs as names for things

 Use HTTP URIs so that people can look up those names.

 When someone looks up a URI, provide useful information, using standards

 Include links to other URIs so that they can discover more things.

At a high level, we can consider that both LinkedData and our proposal aim at integrating

distributed, loosely coupled and independently managed repositories of persistent entities,

which users then manipulate through a dynamic user interface built using mostly standard

web technologies. However, there are a number of important differences between the

LinkedData initiative and a perspective-centric enterprise architecture, which are summarized

in the table below.

115

 Linked Data Perspective-Centric System

focus internet,
mostly-read,
(existing) semantic data

enterprise,
read-write,
business applications

goal integration, "use the web as
a single global database"

evolution,
business agility,
prevent shadow app chaos

central component search-engine directory

data public,
loosely structured

limited visibility,
strongly structured

schema global,
managed by experts

actor-specific,
layered,
contributed by end-users

main "same entity"
relationship

same-as extends

duplicates resolution semantic,
i.e. tolerate duplicates,
annotate with same-as

physical,
i.e. factorize in common
fragment with different
extensions

functionality out of scope mandatory

scalability requirements
and solution

extreme (world-wide),
no solution

medium (enterprise-wide),
perspectives provide
factorization

Table 23. Overview of the differences between Linked Data and a perspective-centric information system

Further study is required to more accurately assess the overlap and complementarity of social

information systems and Linked Data.

Organic Information Systems
Organic computing is an emerging field of research which aims to apply principles of biology to

software systems. [3] mentions the following definition, where systems are “… organic if all of

its components and subsystems are well coordinated in a purposeful manner. Organic

structures realize themselves as hierarchically nested processes, structured such as to be able

to meet upcoming challenges by goal-oriented reactions”, and highlights how this definition

relates to the concept of business agility.

Component-Based Software Engineering
The Component-Based Software Engineering (CBSE) [41, 145] community is actively

researching robust dynamic systems, where components can appear and disappear during

execution. It provides foundation concepts and technologies for making a perspective-centric

information system cope with dynamic fragments and services of variable reliability.

Other Related Work
The nature of our proposal is such that many other fields of research and practice could be

considered related.

116

We have mentioned ViewPoints in section 4.4, which allow capturing and representing

divergent concerns at the specification and design level. We think our proposal is

complementary, and that perspectives could be considered a runtime representation of

viewpoints.

Likewise, the Requirements Engineering community has recently started to study how to apply

social mechanisms like voting and commenting to requirements gathering and prioritizing [46].

Our proposal can be considered an extension of this principle, applying the same voting

mechanisms to the implementation of the requirements as well.

We consider our social information systems a new combination of numerous existing

approaches, and will thus not try to further enumerate all potentially related fields.

8.6. Challenges and Further Work
In this section we present some of the challenges and directions for future work, in terms of

conceptualization, usability, evaluation and corporate culture.

8.6.1. Conceptualization Challenges
Overcoming the limitations described in section 8.4, like the management of composite

fragments, the integration of an appropriate transaction model and robust security, can

leverage solid prior work from a number of research topics but may raise other conceptual

challenges in when envisioning a high level of fragmentation and asynchronicity.

Inheritance is an important construct in data modeling. It needs to be introduced in the meta-

model, and the differences and similarities between the concepts of inheritance, extension

and views must be formally described.

Many other potentially useful extensions of the meta-model can be imagined, like derived

associations. Finding and keeping the right balance between a naïve and an over-engineered

meta-model is a challenge in itself.

Beyond data-centric fragments, the introduction of functions in our meta-model is not easy.

Function overloading has been intensely studied in the object-oriented software development

domain, and the more recent software composition and aspect-oriented software

development domains contribute interesting prior art as well. Functions are typically

expressed in imperative languages, which are not easily reconciled with an asynchronous

model composition mechanism. A fine tracking of dependencies is necessary to determine

whether all fragments required for a given function are available, and to allow its execution.

8.6.2. Usability Challenges
End-user modeling and scripting is still a topic of research in itself. In our case, significant work

is necessary to blend the unfamiliar model evolution features into regular business application

interfaces and provide a degree of modeling by example.

Both traceability and social features must also find the right balance between intuitive access

and non-intrusiveness.

117

8.6.3. Evaluation Challenges
One of the main challenges of our work is to find suitable ways to evaluate the concepts

underlying social information systems in a real enterprise setting. A standard approach would

be to deploy a perspective-centric application with a small group of users, and study its usage.

However, the prototype perspective-centric system is designed to alleviate the need for

shadow applications. If it were deployed in this fashion, it would become just one more

shadow application, and many of the benefits of a perspective-centric system would be lost.

On the other hand, this approach is new and unfamiliar enough to both potential users and IT

organizations that a major implementation would be difficult to accomplish. As illustrated by

the discomfort of the IT professionals about this architecture, this requires a significant shift in

thinking by both IT and business-unit managers about how crucial business data is stored and

managed.

8.6.4. Cultural Challenges
Beyond successful evaluation, deploying a perspective-centric application for production usage

requires to convince the corporate IT department to relinquish their present control

monopoly. First, they must admit that they cannot manage the evolution of applications

themselves in timely fashion. Second, they must trust the employee base to contribute

relevant elements and manage the evolution of the information system as a community. Both

aspects represent a challenge in the conservative world of business computing.

Besides reluctance from corporate IT departments, business units themselves may be afraid of

officially taking ownership and responsibility, which is an entirely different matter than

discreetly developing shadow applications.

Introducing a perspective-centric system thus requires not only technological innovation, but

also a high degree of organizational open-mindedness.

118

119

9. Conclusion
We consider this study an original combination of existing approaches, proposing to apply

principles proven effective in the consumer space to the conservative domain of enterprise

information systems. This chapter summarizes our contributions and discusses short and long

term perspectives.

9.1. Summary of Contributions
The aim of this thesis was to study how information systems could be made more agile.

Building upon the observation of the present state of information systems in big corporations,

we have provided a characterization and analysis of shadow applications (chapter 2), and have

proposed a generalization of their interesting characteristics in the form of a set of high-level

requirements for business agility (chapter 3).

We have evaluated the two dominant information system architecture paradigms with respect

to these requirements (chapter 4), highlighting strengths and weaknesses and demonstrating

the need for an alternative enterprise architecture principle.

We have proposed such a principle, based upon a fundamentally different distribution of

information system responsibilities, and have presented the foundation concepts of isolation

through perspectives and fragment composition. We have discussed our broader vision of a

social information system leveraging the collective intelligence of an organizations’ employees,

and the possibility of social evolution (chapter 5).

We have described a possible perspective-centric architecture, based upon a set of

components for which we have provided a high level design and brief discussion (chapter 6). A

subset of these components has been implemented in a prototype which has been presented

(chapter 7).

The prototype implementation has allowed a number of experiments on both fictional and

real-life use-cases, which have been presented along with an evaluation of the concepts,

architecture and implementation versus our initial requirements for business agility (chapter

8).

A paper describing an early stage of the proposal [14] has been presented at the 3rd

international workshop on Social Software Engineering in 2010, and a more complete paper

summarizing our work [162] has been presented at the 14th international conference on

Enterprise Information Systems (ICEIS) in 2012.

120

9.2. Perspectives
An immediate application of our proposal would be to embed actor-specific extension

capabilities in present business applications. By allowing actors to implement their specific

requirements within the application, this should already avoid the emergence of simple

shadow applications in their vicinity. If the communication protocol used by such an

application is well documented, legacy applications could be easily integrated by wrapping

them as external perspectives.

A more advanced application would be the specification of a standard interface and

communication protocol for Repository components. This would allow to design application

modules independently from each other, and to leave their integration to an external

perspective. In similar fashion to web and LinkedData browsers, a standard protocol would

enable the development of universal client components.

The specification of standards for perspectives and fragments could in turn lead to the

fragmentation of the business application market, and to increased competition, an important

driver for innovation. This may not be in the interest of established enterprise market leaders

who thrive on critical mass and captive customers. But it would make a place for smaller, more

innovative players, which should benefit the industry as a whole.

The social feedback mechanisms we have discussed with an intra-corporation scope could be

envisioned at a global level as well, beyond corporate boundaries in similar fashion to present

consumer app-stores. “Fragment stores” could emerge out of this, with contributions from

historical market leaders, challengers, niche players, integrators and open source

communities. Perspectives could help pave the road for the old dream of a component market.

Even corporations which are not in the enterprise software market could decide to share their

internally developed fragments, to propose them for adoption by a community, leveraging

their collective intelligence and energy and share maintenance costs.

Our proposal could both benefit from and contribute to progress on cloud computing

infrastructures. On one hand, cloud computing provides an ideal platform for collaboration

across complex supply chains, sharing selected fragments with relevant partners. On the other

hand, perspectives could prove an interesting solution for multi-layered multi-tenancy.

Additionally, our distributed architecture and runtime composition allows to blend public data,

data shared with partners in the cloud, and confidential on-premise data, potentially

overcoming a reluctance26 to cloud computing adoption.

The recent desire of individuals to bring the devices they use at home into the workplace

[163], called the Bring-Your-Own-Device vision [164], implies a greater variety of terminals

with, on average, smaller screens. As a result, employees need high flexibility in selecting the

most important information, for which perspectives could provide an interesting support.

26
 In the case of legal obligation to keep some data on premise, or situations where corporations

consider their security level superior to their cloud platform providers’.

121

From a software engineering point of view, perspectives could help in integrating running

development projects with live production environments, facilitating continuous integration

and delivery. Boundaries between mockup, prototype, beta and production environments

could be smoothened and concurrent development made easier, as well as experimentation

encouraged.

9.3. Conclusion
In [20], Barry Boehm provides an overview of the history of software engineering by adopting

the Hegelian view that increased human understanding follows a path of thesis (a

substantiated proposal); antithesis (the thesis fails in some important ways; here is a better

explanation); and synthesis (the antithesis rejected too much of the original thesis; here is a

hybrid that captures the best of both while avoiding their defects).

Within the domain of information systems, we have considered present enterprise

applications as the thesis (1960-present) and shadow applications as the antithesis (1990-

present). Our social information systems proposal thus aims at a contribution to a synthesis,

preserving the strengths of both and resolving their weaknesses by leveraging recent progress

on model-driven engineering, end-user software development, service-oriented architectures

and social software engineering.

122

123

Appendixes

124

125

A. Disambiguating the term "Application"
Our study targets business software applications for human users, excluding machine-to-machine

systems (reservation backends, ...). We also exclude system software like database management

systems (DBMSs), application servers and other kinds of middleware.

In this section we try to disambiguate the term Application (both from this human user's point of

view and from a technical / architecture point of view), and introduce the main roles. The following

diagram shows a high-level overview of the application lifecycle, defining the main phases, roles and

artifacts, each described in more details in the next sections.

Figure 0-1. High-level overview of the Application lifecycle

The figure above introduces the following artifacts, all of which are commonly referred to by the

term Application.

 Application Software is a set of executable programs and other resources (configuration

files, documentation), typically identified by a name and version

 Application Instance = application software installed in a runtime environment and

configured to solve a specific business problem for a given organization

 Application Session = what happens in front of a users’ eyes

Even at such a high level, the social aspects of business software are apparent. Although in real

enterprise settings a huge number of roles exist, we can consider the following grouping by their

impact on the various artifacts.

 Developers are actors (with influence on)/(whose decisions are embedded in) the

application software. Examples are product managers, architects, programmers, testers,

...

 Administrators are actors deciding how to configure an application instance : integrator,

consultant / application engineer, functional administrator, system administrator, ...

 Users are actors effectively using the application to perform their job

Development-time: Development of Application Software
At development-time, Application Software can be considered a collection of coarse-grained

Elements. Below are a few examples of Elements.

In a Project Management application, the business concepts “Project” and “Task” can be considered

Elements. They represent persistent entities of the problem domain, and can involve a number of

technical representations: a database table "Task" with the associated database triggers, various

object representations like a JavaEE EntityBean "Task", etc.

developer

Application

Software

administrator user

Application

Instance

Application

Session

ConfigurationServer Preferences

development-time deployment-time run-time

126

In the same application, features like the critical path calculation algorithm or the GANTT chart can

be considered elements as well, which rely on the aforementioned business concepts.

There are many ways of envisioning Application Software development, and thus of deciding which

Elements are implemented. As an example, a developer can provide a single “generic” Element which

produces the forms required to edit a Project, a Task, etc. Or he can decide to implement specialized

forms EditProject and EditTask.

Most Elements are static. Some Elements are configurable, i.e. designed to be further refined at

deployment- and/or run-time. The level of configurability varies from very low (typical for in-house

ad-hoc software developments) to fairly high for generic applications like Product Lifecycle

Management systems.

Application Software packages usually define Permissions restricting access to Elements, thus

defining logical subsets.

Figure 0-2. Application Software at development-time

In terms of artifacts, Application Software is a set of executables and related resources like scripts,

configuration files and documentation. They are typically identified by a name and version, for

example Microsoft Enterprise Project Management version 2010.

The resulting application reflects the decisions of a (typically fairly small [46]) group of software

developers.

Deployment-time: Configuration of Application Instances
At deployment-time, the goal is to solve a specific problem for a given organization. An Application

Instance is created by physically installing Application Software in a runtime environment and by

using Element configurability to adapt it to the specific purpose. Actors (i.e. Users or Groups) are

granted Permissions. Application Instances reflect the decisions of yet another small group of

software integrators and administrators - constrained by the earlier decisions of developers.

Feature

Element

Permission

Application Software

+ name
+ version

*

*

development-time

Concept

*

*

...

127

Figure 0-3. Application Instance at deployment-time

The distinction between Application Software and Application Instance is especially difficult when the

Software has been developed specifically for one purpose, i.e. for one Instance, which is also the

situation where the Configuration is least important and sometimes non-existent. Even in the case of

third-party Software, when only one Instance exists in a given organization, the two are often

considered one whole.

Run-time: Execution of end-user Application Sessions
At run-time, a User working with an Application Instance establishes a Session. A User (i.e. single

individual) typically acts on behalf of or at least as a member of one or several groups.

A Session filters available Elements according to Permissions, and can provide a final, typically

shallow layer of Preferences.

Figure 0-4. Application Session at run-time

Summary
In the rest of this document, we will use the terms Application Software, Element, Application

Instance, and Session as described here, and the term Application only when the specifics are not

important.

It is worth noting that an Application as seen by the end-user can be considered a "core" with a

number of successive adaptation layers. In our example, the first layer is the Configuration at

deployment time, the second layer is the Preferences mechanism at run-time, but more layers are

possible. The intent of these layers is to gradually fit a generic solution to a specific problem. All

commercial-off-the-shelf applications we have encountered implement some variant of this

*

*

*

1

*

*

development-time

*

ElementConfiguration

Actor

deployment-time

Application Instance

+ name
+ version

Application Software

+ name
+ version

1..*

Element

Permission

*

0..1 *

1

* *

1

* *

Server

1

1

Organization

deployment-time

Application Instance

+ name
+ version

*

* *
Organization

run-time

Session

+ ...

1

Preferences

*

1

User

1 *

1

development-time

Application Software

+ name
+ version

*

*

Permission

1

128

approach. The boundaries between development, customization and configuration are not always

clear.

129

B. Difficulty of Measuring Fragmentation
When the information system in place provides poor or no support for an important function under a

certain group/individual's responsibility, a wide spectrum of reactions can be observed, two

extremes of which are listed below. Both demonstrate the impossibility to measure the problem

accurately.

Group/individual does the job without shadow application support

In this scenario, since no application performs the function, individuals do. The resulting growth of

groups and importance of people skills are major factors of recognition in any corporation. Due to

fear to lose their status or job, there is little or no incentive for groups or individuals to recognize the

shortcomings of the official applications, or the need for a shadow application.

Group/individual introduces a shadow application

In this opposite scenario, the group or individual has introduced a shadow application to perform the

function. The owners are unlikely to volunteer this information, due to the recognition factor

mentioned previously plus the fact that some possible outcomes of advertising the application are

unlikely to benefit the owner.

 Owner is forced to stop using the shadow application and use the official referential

applications

 Responsibility of the shadow application is transferred to another group, officially “so

that owner can focus on his core business”, but as a side-effect reducing his agility

 Wider adoption is decided, i.e. the system is promoted to a (more) official status, and

thus inherits the associated lack of agility

130

C. Resolving Inconsistency: Merging
Resolving an inconsistency means merging fragments, which implies both the evolution of the

schema and the migration of data. We can distinguish two main situations when merging fragments

A and B.

 In the simplest case, one fragment (A) is chosen as the convergence target. This implies

that the owner of B gives up ownership of his fragment, and trust A’s owner to manage

subsequent evolutions of the fragment. Executing the convergence thus involves

deleting B and migrating the data from B to A.

 In a more complex situation, the agreement is only partial, and a new fragment C must

be introduced with only the attributes agreed upon. This can be considered a case of

fragment "promotion" to "higher" level perspective. Both owners import fragment C,

and remove the redundant attributes from A and B. Data migration is identical to the

previous case.

In essence, this operation is very similar to the migration of any enterprise system to a newer

version. Simple situations could be managed by fragment owners with graphical support. More

complex situations may require complex data transformations, which in the case of low volumes can

be envisioned by transiting through a spreadsheet and letting the user perform the translation, and

in the case of high volumes by environments similar to aforementioned ETL or data mashup tools

allowing to graphically build transformations, and only in the worst case require the assistance of a

professional programmer.

131

D. Fragment Composition Sequence

Diagrams
Building the actor-perspective graph in a robust manner is not trivial. The following sections will

describe the composition logic through UML2 sequence diagrams.

Notation
The figure below reminds the main elements of the notation, most importantly the distinction

between synchronous and asynchronous messages (method invocations), and invocation of a sub-

diagram. We will not distinguish between local and remote calls.

Figure 0-5. UML2 Sequence diagram notation elements

Fragment Composition
The sequence diagrams below illustrate the initialization process of an instance of the Weaver

component. The top-level object is the Session which needs a reference to the Directory and the

credentials (username) of the current user. The authentication step has been omitted.

Figure 0-6. Top-level sequence diagram of a Session instance initialization

c: Objecta : Object b : Object

2: async()

opt [x!= 1]

Sequence Diagram (parameter : Type)

3: callback(y)

ref

4: Invoke sub-diagram(parameter)

1: sync()

x

s : Session m : Model

1: <<create>>

d : Directory

2: fetchActor(username)

user

4: add(user)

user : Actor

3: <<create>>

ref

Add Actor To Model(user,null)

Session Initialization

132

Figure 0-7. Sub-diagram adding an Actor to Model

Several important aspects can be noted in the "Add Actor To Model" diagram.

 The initialization is recursive, and gradually builds the actor graph from the bottom up

via message (1).

 Multiple repositories are instantiated on the fly during the Actor graph traversal.

 Both messages (5) and (7) are asynchronous.

The asynchronous nature of the weaver is necessary to meet R6 (resilience). R6 states that unreliable

or temporarily missing fragments must not impact the running ones. The asynchronous model

composition presented above ensures that all available Fragments get added to the model as soon as

possible, even when related fragment requests have not yet been answered.

Adding a Fragment to the Model has been isolated in a separate diagram because it is recursive: a

Fragment can reference further Fragments. In the general case, a Fragment which extends another

Fragment will fetch its "parent" Fragment. In the particular case of ClassFragments, any attribute

m : Model

5: fetchPerspective(url)

actor : Actor

1: add(actor)

parent : Actor

opt [parent != null]

Add Actor To Model (actor : Actor, parent : Actor)

loop [for each url]

2: getGroups()

groups

ri : Repository

ref

3: Add Actor To Model(group,actor)

6: callback(perspective)

loop [for each group]

4: getPerspectives()

urls

loop [for each fragment url]

7: fetchFragment(url)

8: callback(fragment)

ref

9: Add Fragment To Model(fragment)

rj : Repository

133

which represents an association with another ClassFragment will need to fetch these "target"

Fragments. The figure below only illustrates the general case of fetching the parent Fragment via

message (9), and recursively invoking itself in frame (13).

Figure 0-8 also describes the Element composition logic. The asynchronous nature of the weaver

cannot guarantee the order in which Fragments become available. The Model thus maintains a heap

of "orphan" extension Fragments (8) until the root Fragment is received. Once the root Fragment is

available, an Element is instantiated (3) and the orphan extensions retrieved from the heap (4) and

added (5). Subsequent extension Fragments skip the heap stage and are added directly to the

Element corresponding to their root Fragment (10).

Figure 0-8. Sub-diagram adding a Fragment to Model

ri : Repositorys : Session m : Model f : Fragment

9: fetchFragment(parentFragment)

[parentFragment = null]

Add Fragment To Model (f : Fragment)

12: callback(fragment)

ref

13: Add Fragment To Model(fragment)

1: getParentFragment()

parentFragment

11: notifyOfNewExtension(element,f)

alt

orphans : Heape : Element

8: addOrphanExtension(f)

[else]

3: <<create>>

4: getOrphanExtensions(f)

orphan extensions

loop [for each orphan-extension]

5: addExtension(orphan-extension)

7: findElementByRootFragment(parentFragment)

alt

[element = null]

[else]

10: addExtension(f)

6: notifyOfNewElement(element)

134

Messages (6) and (11) illustrate that the Session is notified of newly available Elements and

extensions.

135

E. User Interface Construction Mechanism

1. Standard Form and Navigation Pattern
The browser provides a standard pattern of forms, allowing all common end-user manipulations

(CRUD). The diagram below shows the flow between the 5 main forms of this standard pattern,

representing the manipulation of instances of a given ClassElement x.

Figure 0-9. Standard form pattern for instance manipulation for a ClassElement x

The standard pattern provides the following forms for each ClassElement.

 A "search" form, showing a list of filters on the ClassElements' various attributes, and a

single search button. Other modes are possible, often called "Advanced Search",

allowing to specify multiple values, ranges, or even text-based query expressions with

logical operators.

 A "result" form, displaying the list of Instances matching the criteria from the search

form, typically providing sort operations and sometimes a bulk update mode. It allows

to navigate to the "view" form for each Instance.

 "view" form, displaying all attributes of a single Instance. It has an "update" button to

switch from read-only widgets to read-write widgets allowing to update the attributes,

and a "delete" button to delete the Instance from persistent storage.

 "update" form is the same as the "view" form, but allows to change all attributes, and

carries the standard "cancel" and "save" operations.

 "create" form is similar to the update form, except that it allows to create a new

Instance as opposed to updating an existing one.

SearchForm(x) ResultForm(x)

UpdateForm(x)

CreateForm(x)

search
view

delete

save

cancel | saveupdate

ViewForm(x) navigate

136

2. Example Instance Diagram
The diagram below shows the full instance diagram for the example in Figure 6-20.

Figure 0-10. Full instance diagram of Weaver classes

luxury : Perspective

name="luxury"

owner="corp-it"

f1 : ClassFragment

name="Request"

a1 : Attribute

name="title"

type="String[80]"

a2 : Attribute

name="state"

type="enum(RUNNING,DONE)"

a2 : Attribute

name="products"

type="Reference to MULTIPLE Products"

~walter : Perspective

name="~walter"

owner="walter"

f2 : ClassFragment

name=""



extends



defines

defines



: ClassElement

name="Request"

root

extensions

137

3. Classes underlying the user interface construction mechanism
The standard form pattern is implemented by the classes presented in the figure below, which get

instantiated when a user action requires them.

Figure 0-11. Class diagram implementing the standard form pattern

weaver

SearchForm

ClassElement
*

Form

Element

ResultForm

InstanceForm

ViewForm

UpdateForm

Query

Instance

browser

* 11

1

1

138

F. Role-Play Experiment Description

1. Protocol
Submit groups of 3 participants to the following role game.

 Experiment introduction (0:05)

 Introduction to use case (0:05)

Manufacturing company which introduces a new project tracking application

 Prototype demonstration (0:05)

Demonstrate concept extension and creation, on Conference-Article use-case

 Mini-training (0:15)

Let participants manipulate the Conference-Article example

Ensure people understand the concepts AND how to manipulate the user interface

Goal is that UI misunderstandings don't pollute next exercise

 Assign one role per participant (0:05)

Distribute role sheets, describing a few business tasks to perform which require

Adaptations and extensions of central app

Each role sheet requires the participant to :

a. import[1] and unimport[2] concepts from central application

b. extend[3] concepts from central app

c. add[4] concepts in private space

 Ask participants to perform the business tasks on the role sheet (30:00)

Assistance is acceptable to circumvent usability issues of present UI

 Collect feedback on the experiment (15:00)

Self-assessment of concepts understood (0..5) and properly leveraged (0..5)

 Measurement

For each participant, count mandatory tasks accomplished (0..3)

139

2. Example Role Sheet

The other two roles are Quality Manager, and Region Japan manager.

Planning Manager
• Your job

You are the planning manager of a department of 80 engineers.
You track everything at phase-level and even below. It is important for
you to know how much risk is associated with each phase. You also need
to track tasks with a finer granularity than phases. You want to know
who is responsible for each task, and what state it is in. So far you have
achieved this with the following spreadsheet.

•

You need to attach tasks to the corresponding phase.

• Your main goal
You want to start the day with the list of running tasks not yet completed

• Optional goal
You are also interested in keeping track of how much effort was spent on
the project phases.
Ideally, you would like to be able to build a bar-chart with total effort per
project and per phase.

140

3. Results

Planning

Manager

Quality

Manager

Region

Japan

Planning

Manager

Quality

Manager

Region

Japan

36 30 45 39 49 54

A A A A A A

Y Y Y N N N

6 5 0 10 23 5

4 0 5 10 8 5

... seen 5 5 0 "a lot" 20

... used 3 3 0 "a lot" 20

... developed 1 0 0 3 "a lot" 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Has unimported 1 1 0 1 1 1

Successfully done job 1 1 1 1 1 1

Planning

Manager

Quality

Manager

Region

Japan

Planning

Manager

Quality

Manager

Region

Japan

45 47 48 32 30 27

I I I I I I

N N N Y Y Y

20 26 22 8 7 3

5 0 0 8 7 3

... seen >50 20 60+ >100 16 5

... used ~20 5 30+ >50 10 3

... developed 10 1 12 15 5 2

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

Has unimported 1 0 1 1 1 1

Successfully done job 1 1 1 1 1 1

1 2

3 4

Professional developer (Y/N)

Background (Academic / Industry)

Professional developer (Y/N)

Years of business application usage

Years of business application development

Number of shadow

applications you have...

Has created

Session

Role

Age

Background (Academic / Industry)

Session

Role

Age

Has imported

Has extended

Has imported

Has extended

Has created

Years of business application usage

Years of business application development

Number of shadow

applications you have...

141

142

143

Bibliography

[1] Object Management Group, "UML 2.0," [Online]. Available: http://www.omg.org/spec/UML/2.0/.

[Accessed June 2012].

[2] M. Van Oosterhout, E. Waarts and J. Van Hillegersberg, "Assessing Business Agility: A Multi-

Industry Study in the Netherlands," Business agility and information technology, vol. 180, 2005.

[3] M. Strohmaier and H. Rollett, "Future Research Challenges in Business Agility – Time, Control and

Information Systems," in Seventh IEEE International Conference on E-Commerce Technology, 2005.

[4] L. Mathiassen and J. Pries-Heje, "Business Agility and Diffusion of Information Technology,"

European Journal of Information Systems, no. 15, 2006.

[5] S. Goldman, R. Nagel and K. Preis, Agile Competitors and Virtual Organizations, Van Nostrand

Reinhold, 1995.

[6] H. Sharifi and Z. Zhang, "A methodology for achieving agility in manufacturing organizations: An

introduction," International Journal of Production Economics, no. 62, pp. 7-22, 1999.

[7] R. Dove, Response Ability: The Language, Structure and Culture of the Agile Enterprise, Wiley,

2001.

[8] M. J. Hooper, D. Steeple and C. Winters, "Costing Customer Value: An approach for the agile

enterprise," International Journal of Operations and Production Management, no. 21, pp. 630-644,

2001.

[9] K. Conboy and B. Fitzgerald, "Toward a Conceptual Framework of Agile Methods:A Study of Agility

in Different Disciplines," in ACM Workshop on Interdisciplinary Software Engineering Research,

2004.

[10] S. Wadhwa and K. Rao, "Flexibility and agility for enterprise synchronization: Knowledge and

innovation management towards flexagility," Studies in Informatics and Control, vol. 12, no. 2, pp.

111-128, 2003.

[11] M. Van Oosterhout, E. Waarts, E. Van Heck and J. Van Hillegersberg, "Business Agility: Need,

Readiness and Alignment with IT strategies," in Agile Information Systems, Elsevier, 2007, pp. 52-

69.

144

[12] T. Margaria and B. Steffen, "Continuous Model-Driven Engineering," IEEE Computer, vol. 42, no.

10, pp. 106-109, 2009.

[13] J. A. Carvalho, "Information System? Which One Do You Mean?," in Information Systems Concepts:

An Integrated Discipline Emerging, Kluwer Academic Publishers, 2000, pp. 259-280.

[14] M. Quast and J.-M. Favre, "Towards Social Information Systems," in 3rd International Workshop on

Social Software Engineering, 2010.

[15] K. Lindblad-Gidlund, "When and How Do We Become a "User" ?," in Reframing Humans in

Information Systems Development, 2011, pp. 211-225.

[16] M. Spahn and V. Wulf, "End-User Development for Individualized Information Management:

Analysis of Problem Domains and Solution Approaches," in International Conference on Enterprise

Information Systems (ICEIS), 2009.

[17] E. F. Codd, "A Relational Model of Data for Large Shared Data Banks," Communications of the

ACM, 1970.

[18] M. M. Zloof, "A language for office and business automation," in Data Base Design Techniques:

Lecture Notes in Computer Science, 1982.

[19] J. Sametinger, "On a Taxonomy for Software Components," in International Workshop on

Component-Oriented Programming (WCOP), 1996.

[20] B. Boehm, "A View of 20th and 21st Century Software Engineering," in International Conference on

Software Engineering (ICSE), 2006.

[21] J. Bonar, N. Lehrer, K. Looney, R. Schnier, J. Russel, T. Selker and S. Nickolas, "Components on the

Internet (panel)," in International Conference on Object-Oriented Programming, Systems,

Languages and Applications (OOPSLA), 1996.

[22] L. Ellison, Writer, Oracle World 2011 keynote

(http://www.youtube.com/watch?v=XLmtD3CanpM). [Performance]. The Oracle Corporation,

2011.

[23] M. Davidsen and J. Krogstie, "Information System Evolution over the Last 15 Years," in

International Conference on Advanced Information System Engineering (CAiSE), 2010.

[24] M. L. Markus and C. Tanis, "The Enterprise Systems Experience - From Adoption to Success," in

Framing the Domains of IT Research: Glimpsing the Future Through the Past, Pinnaflex Educational

Resources, 200, pp. 173-207.

[25] C. Soh, S. D. Kien and J. Tay-Yap, "Cultural Fits and Misfits: Is ERP a Universal Solution?,"

Communications of the ACM, vol. 43, no. 4, pp. 47-51, 2000.

145

[26] L. Brehm, A. Heinzl and M. L. Markus, "Tailoring ERP Systems: A Spectrum of Choices and their

Implications," in International Conference on System Sciences, 2001.

[27] T. H. Davenport, "Putting the Enterprise into the Enterprise System," Harvard Business Review,

vol. 76, no. 4, pp. 121-131, 1998.

[28] A. Gurram, B. Mo and R. Gueldemeister, "A Web Based Mashup Platform for Enterprise 2.0," in

International Conference on Web Information System Engineering (WISE), 2008.

[29] V. Hoyer and K. Stanoevska-Slabena, "The Changing Role of IT Departments in Enterprise Mashup

Environments," in Service-Oriented Computing, Springer-Verlag, 2008, pp. 148-154.

[30] S. Newell, E. Wagner and G. David, "Clumsy Information Systems : A Critical Review of Enterprise

Systems," in Agile Information Systems, Elsevier, 2007, pp. 163-177.

[31] M. S. Ackerman, "The Intellectual Challenge of CSCW: The Gap Between Social Requirements and

Technical Feasibility," Human-Computer Interaction, vol. 15, no. 2, pp. 179-203, 2000.

[32] J. Luftman and R. Kempaiah, "An Update on Business-IT Alignment: "A Line" Has Been Drawn," MIS

Quarterly Executive, vol. 6, no. 3, pp. 165-177, 2007.

[33] S. Bitzer and M. Schumann, "Mashups: An Approach to Overcoming the Business/IT Gap in

Service-Oriented Architectures," Lecture Notes in Business Information Processing, 2009.

[34] S. Clarke, W. Harrison, H. Ossher and P. Tarr, "Subject-Oriented Design: Towards Improved

Alignment of Requirements, Design and Code," in International Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), 1999.

[35] T. Nestler, "Towards a Mashup-driven End-User Programming of SOA-based Applications," in

Internationel Conference on Information Integration and Web-based Applications and Services

(iiWAS), 2008.

[36] R. Zarnekow, W. Brenner and U. Pilgram, Integrated Information Management: Applying

Successful Industrial Concepts in IT, Springer, 2006.

[37] A. Benz, Einleitung: Governance - Modebegriff oder nützliches sozialwissenschaftliches Konzept,

2004.

[38] P. Webb, C. Pollard and G. Ridley, "Attempting to Define IT Governance: Wisdom or Folly?," in

International Conference on System Sciences, 2006.

[39] M. Handel and S. Poltrock, "Working Around Official Applications," in Computer-Supported

Collaborative Work (CSCW), 2011.

[40] B. A. Nardi and J. R. Miller, "An Ethnographic Study of Distributed Problem Solving in Spreadsheet

Development," in Computer-Supported Collaborative Work (CSCW), 1990.

146

[41] D. McIlroy, "Mass-Produced Software Components," in Software Engineering, Report on a

conference sponsored by the NATO Science Committee, 1969.

[42] Gotts, "A New Cloud: The Stealth Cloud?," 2010. [Online]. Available:

http://www.cio.com/article/630164. [Accessed June 2012].

[43] W. Hordijk and R. Wieringa, "Rationality of Cross-System Data Duplication: A Case Study," in

International Conference on Advanced Information System Engineering (CAiSE), 2010.

[44] W. Harrisson, "The Dangers of End-User Programming," IEEE Software, vol. 21, no. 4, pp. 5-7,

2004.

[45] L. Ellram, "Total Cost of Ownership: Elements and Implementation," Journal of Supply Chain

Management, vol. 29, no. 4, pp. 2-11, 1993.

[46] S. Lohmann, S. Dietzold, P. Heim and H. N., "A Web Platform for Social Requirements

Engineering," in Software Engineering, 2009.

[47] R. Kling, "Cooperation, Coordination and Control in Computer-Supported Work," Communications

of the ACM, vol. 34, no. 12, pp. 83-88, 1991.

[48] T. Finholt and L. S. Sproull, "Electronic Groups at Work," Organizational Science, vol. 1, 1990.

[49] A. Van Lansweerde and E. Letier, "Integrating Obstacles in Goal-Driven Requirements

Engineering," in International Conference on Software Engineering (ICSE), 1998.

[50] W. N. Robinson, "Negotiation Behaviour During Multiple Agent Specification: A Need for

Automated Conflict Resolution," in International Conference on Software Engineering (ICSE), 1990.

[51] P. J. Denning, C. Gunderson and H.-R. R., "Evolutionary System Development," Communications of

the ACM, vol. 51, no. 12, pp. 29-31, 2008.

[52] J. Kitzinger, "Focus Groups," in Qualitative Research in Health Care, Blackwell Publishing Ltd, 2007.

[53] P. Thibodeau, "IBM on path to cut internal apps by 85%," April 2012. [Online]. Available:

http://www.computerworld.com/s/article/9226430/IBM_on_path_to_cut_internal_apps_by_85_.

[Accessed June 2012].

[54] G. Fischer and A. Girgensohn, "End-User Modifiability in Design Environments," in Proceedings

Conference on Human Factors in Computing Systems (CHI’90), 1990.

[55] A. MacLean, K. Carter, L. Lovstrand and T. Moran, "User-Tailorable Systems: Pressing the Issues

with Buttons," in Proceedings of Human Factors in Computing Systems (CHI’90), 1990.

[56] A. Mørch, G. Stevens, M. Won, Klann, M., Y. Dittrich and V. Wulf, "Component-Based Technologies

for End-User Development," Communications of the ACM, vol. 47, no. 9, p. 59–62, 2004.

147

[57] R. Wieringa, "An Introduction to Requirements Traceability," Faculty of Mathematics and

Computer Science, Vrije Universiteit, Amsterdam, 1995.

[58] M. Fowler, D. Rice, M. Foemmel, E. Hieatt, R. Mee and R. Stafford, Patterns of Enterprise

Application Architecture, Addisson-Wesley, 2003.

[59] G. J. Myers and L. L. Constantine, "Structured design," IBM Systems Journal, 1979.

[60] K. C. Desouza, Agile Information Systems: Conceptualization, Construction and Management,

Elsevier, 2009.

[61] B. Light, C. P. Holland and W. K., "ERP and best of breed: a comparative analysis," Business Process

Management Journal, vol. 7, no. 3, pp. 216-224, 2001.

[62] R. Orfali, D. Harkey and J. Edwards, The essential distributed objects survival guide, John Wiley &

Sons, 1995.

[63] E. F. Codd, "Extending the database relational model to capture more meaning," ACM

Transactions on Database Systems (TODS), 1979.

[64] T. Leveque, "Définition et contrôle des politiques d’évolution dans les projets logiciels (doctoral

dissertation)," Laboratoire Informatique de Grenoble (LIG), 2010.

[65] Y. V. Natis, "Service-Oriented Architecture Scenario," Gartner Research, 2003.

[66] N. Josuttis, SOA in practice: The Art of Distributed System Design, Sebastopol: O'Reilly Media Inc,

2007.

[67] K. Bennett, D. Budgen, P. Brereton, L. Macaulay and M. Munro, "Service-Based Software: The

Future for Flexible Software," in Asia-Pacific Software Engineering Conference, 2000.

[68] A. Michlmayer, F. Rosenberg, C. Platzer, M. Treiber and S. Dustdar, "Towards recovering the

broken SOA triangle : a software engineering perspective," in International Workshop on Service-

Oriented Software Engineering, New York, 2007.

[69] X. Liu, Y. Hui, W. Sun and H. Liang, "Towards service composition based on mashups," in IEEE

International Conference on Service Computing.

[70] T. Janner, V. Canas, J. Hierro, D. Licano, M. Reyers, C. Schroth and J. Soriano, "Enterprise Mashups:

Putting a face on next generation global SOA," in International Conference on Web Information

Systems Engineering (WISE), 2007.

[71] J. Soriano, D. Lizcano, M. Canas, M. Reyes and J. Hierro, "Foster Innovation in a Mashup-oriented

Enterprise 2.0 Collaboration Environment," System and Information Sciences Notes, vol. 1, no. 1.

148

[72] S. Watt, "Mashups - the evolution of the SOA - part 2 : Situational applications and the mashup

ecosystem," 2007. [Online]. Available:

http://www.ibm.com/developerworks/webservices/library/ws-soa-mashups2.

[73] V. Hoyer and M. Fischer, "Market Overview of Enterprise Mashup Tools," in International

Conference on Service-Oriented Computing (ICSOC), 2008.

[74] T. Erl, Service-Oriented Architecture: Concepts, Technology & Design, Prentice Hall, 2005.

[75] M. Cañas, J. Hierro, V. Hoyer, T. Janner, D. Lizcano, M. Reyes and C. Schroth, "Enterprise Mashups:

Putting a face on the next generation global SOA," in International Conference on Web

Information Systems Engineering (WISE), 2007.

[76] S. Peenikal, "Mashups and the enterprise," Mphasis, a Hewlett-Packard Company, 2009.

[77] E. Cerami, Web Services Essentials, O'Reilly & Associates, Inc, 2002.

[78] L. Santillo, "Seizing and Sizing SOA Applications with COSMIC Function Points," in Software

Measurement European Forum, 2007.

[79] R. Thiagarajan, A. K. Srivastava, A. K. Pujari and B. K. Visweswar, "BPML : a process modeling

language for dynamic business models," in Fourth IEEE International Workshop on Advanced

Issues of E-Commerce and Web-Based Information Systems, 2002.

[80] Yahoo!, "Yahoo! Pipes," [Online]. Available: pipes.yahoo.com. [Accessed August 2012].

[81] K. Scarfone, W. Jansen and M. Tracy, "Guide to General Server Security," National Institute of

Standards and Technology, 2011.

[82] W. Van Der Aalst, "Web Service Composition Languages: Old Wine in New Bottles?," in Euromicro

Conference, 2003.

[83] M. Abu Jarour, F. Naumann and M. Craculeac, "Collecting, Annotating and Classifying Public Web

Services," in On the move to meaningful internet systems, 2010.

[84] A. Finkelstein, J. Kramer and M. Goedicke, "ViewPoint Oriented Software Development," in

International Workshop on Software Engineering and its Applications, 1990.

[85] M. Sabetzadeh, A. Finkelstein and M. Goedicke, "ViewPoints," in Encyclopedia of Software

Engineering, P. Laplante, 2010.

[86] M. Lubars, C. Potts and C. Richter, "A review of the state of the practice in requirements

modeling," in IEEE International Symposium on Requirements Engineering, 1993.

[87] P. Loucopoulos, "Requirements Engineering: Panacea or Predicament? (keynote)," in International

Conference on Enterprise Information Systems (ICEIS), 2012.

149

[88] D. C. Schmidt, "Model-Driven Engineering," IEEE Computing, vol. 39, 2006.

[89] J.-M. Favre, J. Estublier and M. Blay-Fornarino, L'ingénierie dirigée par les modèles: au-delà du

MDA, Hermès - Lavoisier, 2006.

[90] D. S. Hovorka and M. Germonprez, "Reflection, Tinkering, and Tailoring: Implications for Theories

of Information System Design," in Reframing Humans in Information Systems Development,

Springer-Verlag, 2011, pp. 135-149.

[91] "Evolutionary Application Development," in Reframing Humans in Information Systems

Development, Springer-Verlag, 2011, pp. 151-171.

[92] S. Soi and M. Baez, "Domain-specific Mashups: From All to All You Need," in International

Conference on Web Engineering, 2010.

[93] N. Ahmadi, M. Jazayeri, F. Lelli and A. Repenning, "Towards the Web Of Applications :

Incorporating End User Programming into the Web 2.0 Communities," in Proceedings of the 2nd

international workshop on Social software engineering and applications (SoSEA), 2009.

[94] W. Harrisson and H. Ossher, "Subject-Oriented Programming (A Critique of Pure Objects)," in

International Conference on Object-Oriented Programming, Systems, Languages and Applications

(OOPSLA), 1993.

[95] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J. Loingtier and J. Irwin, "Aspect-

Oriented Programming," in European Conference on Object-Oriented Programming (ECOOP),

1997.

[96] The Oracle Corporation, "An Introduction to the Java EE 5 Platform," May 2006. [Online].

Available: http://java.sun.com/developer/technicalArticles/J2EE/intro_ee5/. [Accessed July 2012].

[97] Standish Group International, "Chaos," 1994.

[98] K. Beck, Extreme Programming Explained: Embrace Change, Addison-Wesley , 1999.

[99] J. V. Sutherland and K. Schwaber, "The SCRUM Methodology," in Business object design and

implementation: OOPSLA workshop, 1995.

[100] "The Agile Manifesto," [Online]. Available: http://agilemanifesto.org/. [Accessed June 2012].

[101] G. Lee and W. Xia, "Toward Agile: An Integrated Analysis of Quantitative and Qualitative Field Data

on Software Development Agility," MIS Quarterly, vol. 34, no. 1, pp. 87-114, 2010.

[102] G. Fitzgerald, "Achieving Flexble Information Systems: The Case for Improved Analysis," Journal of

Information Technology, vol. 5, no. 1, pp. 5-11, 2001.

150

[103] P. Robertson, "Integrating Legacy Applications with Modern Corporate Applications,"

Communications of the ACM, vol. 40, no. 5, pp. 39-46, 1997.

[104] D. Stamoupolis, P. Kanellis and D. Martakos, "Tailorable Information Systems: Resolving the

Deadlock of Changing User Requirements," Journal of Applied System Studies, vol. 2, no. 2, 2001.

[105] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National Institute of Standards

and Technology, 2009.

[106] S. Jansen, G.-J. Houben and S. Brinkkemper, "Customization Realization in Multi-tenant Web

Applications: Case Studies from the Library Sector," in International Conference on Web

Engineering (ICWE), 2010.

[107] D. S. Linthicum, Enterprise Application Integration, Addisson-Wesley, 2000.

[108] F. Menge, "Enterprise Service Bus," in Free and Open Source Software Conference, 20007.

[109] A. Laftsidis, "Enterprise Application Integration," IBM, 2000.

[110] A. Umar and A. Zordan, "Enterprise Ontologies for Planning and Integration of Business: A

Pragmatic Approach," IEEE Transactions on Engineering Management, vol. 56, no. 2, pp. 352-371 ,

2009.

[111] P. Vassiliadis, "A Survey of Extract–Transform–Load Technology," International Journal of Data

Warehousing & Mining, vol. 5, no. 3, pp. 1-27, 2009.

[112] A. Y. Halevy, H. Ashish, D. Bitton, M. Carey, D. Draper, J. Pollock, A. Rosenthal and V. Sikka,

"Enterprise information integration: Successes, Challenges and Controversies," in ACM SIGMOD

International Conference on Management of Data, 2005.

[113] "Merriam-Webster Online Dictionary," [Online]. Available: http://www.merriam-webster.com/.

[114] Project Management Institute, [Online]. Available: www.pmi.org.

[115] S. Star, "The Structure of Ill-Structured Solutions : Boundary Objects and Heterogeneous Problem

Solving," in Distributed artificial intelligence, 1990.

[116] C. Kimble, C. Grenier and K. Goglio-Primard, "Innovation and Knowledge sharing across

professional boundaries: Political interplay between boundary objects and brokers," International

Journal of Information Management, vol. 30, pp. 437-444, 2010.

[117] R. Hyde, "The Fallacy of Premature Optimization," Ubiquity, 2009.

[118] N. Balasubramaniam, "User-Generated Content," in Business Aspects of the Internet of Things,

Seminar of Advanced Topics, 2008.

151

[119] J. Surowiecki, The Wisdom of Crowds: Why the Many Are Smarter Than the Few and How

Collective Wisdom Shapes Business,Economies, Societies and Nations, Doubleday Books, 2004.

[120] A. Namoun, T. Nestler and A. De Angeli, "End User Requirements for the Composable Web," in

International Conference on Web Engineering (ICWE), 2010.

[121] D. Tapscott and A. D. Williams, Wikinomics: How Mass Collaboration Changes Everything,

Portfolio, 2006.

[122] A. Hotho, R. Jäschke, C. Schmitz and G. Stumme, "Information Retrieval in Folksonomies : Search

and Ranking," in Extended Semantic Web Conference, 2006.

[123] K. Aberer, P. Cudré-Mauroux, A. M. Ouksel, T. Catarci, M.-S. Hacid, A. Illarramendi, V. Kashyap, M.

Mecella, E. MenaetErich and J. Neuhold, "Emergent Semantics: Principles and Issues," in Database

Systems for Advanced Applications, 2004.

[124] R. Jaschke, L. Marinho, A. Hotho, L. Schmidt-Thieme and G. Stumme, "Tag Recommendations in

Folksonomies," in 11th European Conference on Principles and Practice of Knowledge Discovery in

Databases, 2007.

[125] J. A. Konstan and J. Riedl, "Recommender Systems: From Algorithms to User Experience," User

Modeling and User-Adapted Interaction, vol. 22, pp. 101-123, 2012.

[126] G. Adomavicius and A. Tuzhilin, "Towards the Next Generation of Recommender Systems:A Survey

of the State-of-the-Art and Possible Extensions," IEEE Transactions on Knowledge and Data

Engineering, 2005.

[127] M. Balabanovic and Y. Shoham, "Fab: Content-based, collaborative recommendation,"

Communications of the ACM,, vol. 40, no. 3, pp. 66-72, 1997.

[128] X. Zhou, Y. Xu, Y. Li, A. Josang and C. Cox, "The state-of-the-art in personalized recommender

systems for social networking," Artificial Intelligence Review, vol. 37, no. 2, pp. 119-132, 2012.

[129] T. Babaian and W. Lucas, "Leveraging Usage History To Support Enterprise System Users," in

International Conference on Enterprise Information Systems (ICEIS), 2012.

[130] M. W. Van Alstyne and E. Brynjolfsson, "Global Village or CyberBalkans: Modeling and Measuring

the Integration of Electronic Communities," Management Science, vol. 51, no. 6, pp. 851-868,

2005.

[131] D. Fleder and K. Hosanger, "Blockbuster culture's next rise or fall: the impact of recommender

systems on sales diversity," Management Science, vol. 55, no. 5, pp. 697-712, 2007.

[132] J. Oakland, Statistical Process Control, John Wiley and Sons , 1986.

152

[133] F. Schwagereit, S. Sizov and S. Staab, "Finding optimal policies for online communities with

cosimo," in Web Science, 2010.

[134] F. Schwagereit, A. Scherp and S. Staab, "Survey on Governance of User-generated Content," in

Web Science, 2011.

[135] S. Angeletou, M. Rowe and H. Alani, "Modelling and Analysis of User Behaviour in Online

Communities," in International Conference on the Semantic Web (ISWC), 2011.

[136] S. Staab, "Managing Online Business Communities (keynote)," in International Conference on

Enterprise Information Systems (ICEIS), 2012.

[137] B. Nuseibeh, J. Kramer and A. Finkelstein, "A Framework for Expressing the Relationships Between

Multiple Views in Requirements Specification," IEEE Transactions on Software Engineering, vol. 20,

no. 10, pp. 760-773 , 1994.

[138] R. Balzer, "Tolerating Inconsistency," in International Conference on Software Engineering (ICSE),

1991.

[139] B. Nuseibeh, S. Easterbrook and A. Russo, "Making Inconsistency Respectable in Software

Development," Journal of Systems and Software, vol. 56, no. 58, pp. 171-180, 2000.

[140] C. Ghezzi and B. A. Nuseibeh, "Special Issue on Managing Inconsistency in SOftware

Development," Transactions on Software Engineering, vol. 24, no. 11, pp. 906-1001, 1998.

[141] R. W. Schwanke and G. E. Kaiser, "Living with Inconsistency in Large Systems," in International

Workshop on Software Version and Configuration Control, 1988.

[142] A. Kittur and R. E. Kraut, "Harnessing the Wisdom of Crowds in Wikipedia: QualityThrough

Coordination," in Computer-Supported Collaborative Work (CSCW), 2008.

[143] B. Nuseibeh, "Ariane 5: Who Dunnit?," IEEE Software, vol. 14, no. 3, pp. 15-16, 1997.

[144] K. Zeilenga, "RFC 4510 - Lightweight Directory Access Protocol (LDAP): Technical Specification

Road Map," Internet Engineering Task Force (IETF), 2006.

[145] C. Szyperski, Component Software: Beyond Object-Oriented Programming (2nd Edition), Addison-

Wesley Professional, 2002.

[146] S. B. Navathe, K. Karlapalem and M. Ra, "A mixed fragmentation methodology for initial

distributed database design," Journal of Computer and Software Engineering, 1995.

[147] H. Roinestad, J. Burgoon, B. Markines and F. Menczer, " Incentives for social Annotation," in 20th

ACM conference on Hypertext and hypermedia, 2009.

153

[148] R. T. Fielding, "Architectural Styles and the Design of Network-based Software Architectures

(doctoral dissertation)," University of California, Irvine, 2000.

[149] J. Edwards, "Example Centric Programming," in International Conference on Object-Oriented

Programming, Systems, Languages and Applications (OOPSLA), 2004.

[150] S. R. Vaughn, J. S. Schumm and J. M. Sinagub, Focus Group Interviews in Education and

Psychology, Sage Publications, 1996.

[151] J. Estublier and R. Casallas, "Three dimensional versioning," in Software Configuration

Management, Springer, 1995, pp. 118-135.

[152] J. Gray, "The Transaction Concept: Virtues and Limitations," in Very Large Databases (VLDB), 1981.

[153] B. G. Lindsay and P. Selinger, "Notes on Distributed Databases," in Distributed Databases, 1979.

[154] E. Brewer, "Towards Robust Distributed Systems," in ACM Symposium on Principles of Distributed

Computing, 2000.

[155] R. Kling, "What is Social Informatics and Why Does it Matter?," January 1999. [Online]. Available:

http://dlib.org/dlib/january99/kling/01kling.html.

[156] F.-Y. Wang, D. Zeng, K. M. Carley and W. Mao, "Social Computing: From Social Informatics to Social

Intelligence," Intelligent Systems (IEEE), vol. 22, no. 2, pp. 79-83 , 2007.

[157] I. King, J. L. and K. T. C., "A brief survey of computational approaches in Social Computing," in

International Joint Conference on Neural Networks (IJCNN), 2009.

[158] M. Parameswaran and A. B. Whinston, "Research issues in social computing," Journal of the

Association for Information Systems, vol. 8, no. 6, pp. 336-350, 2007.

[159] M. C. Daconta, L. J. Obrst and K. T. Smith, The Semantic Web : A Guide to the Future of XML, Web

Services, and Knowledge Management, 2003.

[160] C. Bizer, T. Heath and T. Berners-Lee, "Linked Data - The Story So Far," International Journal on

Semantic Web and Information Systems, vol. 5, no. 3, 2009.

[161] T. Berners-Lee, "Linked Data - Design Issues," July 2006. [Online]. Available:

http://www.w3.org/DesignIssues/LinkedData.html. [Accessed June 2012].

[162] M. Quast and M. Handel, "Social Information Systems: The End of Shadow Applications?," in

International Conference on Enterprise Information Systems (ICEIS), 2012.

[163] G. Thomson, "BYOD: enabling the chaos," Network Security, vol. 2012, no. 2, pp. 5-8, 2012.

[164] F. Graham, "BBC News - BYOD: Bring your own device could spell end for work PC," [Online].

Available: http://www.bbc.co.uk/news/business-17017570.

154

[165] W. Vogels, "Eventually Consistent," ACM QUEUE, pp. 14-19, 2008.

[166] G. Fischer, "End-User Development and Meta-design: Foundations for Cultures of Participation," in

2nd International Symposium on End-User Development, 2009.

[167] J. W. Ross, "Creating a Strategic IT Architecture Competency: Learning in Stages," MIT Sloan

School of Management, 2003.

[168] V. Markl, M. Altinel, D. Simmen and A. Singh, "Data Mashups for Situational Applications," in

International Workshop on Model-Based Software and Data Integration (MBSDI), 2008.

[169] E. Gamma, R. Helm, R. Johnson and J. Vlissides, Design Patterns:Elements od Reusable Software,

Addison-Wesley, 1994.

[170] S. Garcia, "Ingénierie Concurrente en Génie Logiciel : Céline (doctoral dissertation)," Laboratoire

Informatique de Grenoble (LIG), 2006.

[171] J. L. Eveleend and C. Verhoef, "The Rise and Fall of the Chaos Report Figures," IEEE Software, pp.

30-36, 2010.

[172] D. R. Mauro and K. J. Schmidt, Essential SNMP, O’Reilly & Associates, 2001.

[173] E. Schenk and C. Guittard, "Towards a characterization of crowdsourcing practices," Journal of

Innovation Economics, vol. 1, no. 7, 2001.

[174] A. Sutcliffe, "Evaluating the costs and benefits of end-user development," ACM SIGSOFT Software

Engineering Notes, vol. 30, 2005.

[175] K. Bodker, F. Kensing and J. Simonsen, "Participatory Design in Information Systems

Development," in Reframing Humans in Information Systems Development, Springer-Verlag, 2011,

pp. 115-134.

[176] V. Grover, M. Joong Cheon and J. T. C. Teng, "A descriptive study on the outsourcing of

information systems functions," Information & Management, vol. 27, no. 1, p. 33–44, 1994.

155

Index
actor, 3
adaptation, 27
agile methodologies, 49
annotation, 86
AOP, 48
application, 6, 36, 93
application variability, 28
application-centric, 36
aspect-oriented programming, 48
asynchronous, 95
awareness, 32, 63
backward traceability, 32
best practice, 12
Boeing, 14
bring-your-own-device, 120
browser, 82
business agility, 5, 48
business application, 6
business intelligence, 50
business logic element, 8
business-unit, 3
CBSE, 115
centralized, 5
change propagation, 31
cloud computing, 49
collaboration, 32
community, 4, 65
component, 115
composition, 31, 48, 78
confidentiality, 29
consistency, 30
corporate IT department, 13
corporation, 3
COTS, 13
CRUD, 7, 82, 135
decentralized, 5
department, 3
directory, 71
EAI, 50
ease of modification, 28
EII, 50
element, 7, 11, 12
encapsulation, 43
end user, 7

end user programming, 48
end-user software development, 48
enterprise application integration, 50
enterprise information integration, 50
ESB, 50
ETL, 50
EUP, 48
EUSD, 48
feature, 100
federation, 50
folksonomy, 62
form, 9
forward traceability, 31
fragment, 54, 60
gentle slope, 28
governability, 33
governance, 14, 33, 64, 89
group, 3
hardware independence, 28
inconsistency, 66
individual, 3
influence, 27
information system, 6
instance, 93
isolation, 28
knowledge/influence paradox, 22
Linked Data, 114
Luxury, 15
MDE, 47
model, 8, 78, 97
model-driven engineering, 47
monitoring, 65, 89
multi-tenancy, 49
notification, 88
objective, 53
official, 13
ontology, 50, 66, 114
organizational complexity, 5
owner, 17
performance, 111
persistence element, 7
perspective, 56, 94
presentation element, 9
profile, 6, 18, 58, 78

156

profile similarity, 62
profile-driven composition, 31
profile-specific, 18
project, 4
prototype, 91
recommender system, 62
relevance, 33, 62
repository, 73
requirement, 21, 47
requirements paradox, 21
resilience, 30
scaffold, 56
search, 88
semantic web, 114
service-oriented, 41
shadow application, 15, 18
shadow IT activity, 13
sharing, 32, 85
SNS, 114

SOA, 41
social, 64, 85, 113
social computing, 113
social informatics, 113
social information system, 64
social network site, 114
social software engineering, 113
subjective, 53
substitution, 43
tag, 62, 87
tailoring, 13, 49
team, 4
tier, 7
traceability, 31
uniformity, 30
user interface, 9, 82, 93
viewpoint, 47, 116
weaver, 78

RESUME

Les systèmes d’information d’entreprise actuels s’articulent autour d’applications centrales lourdes,

qui ne fournissent pas l’agilité nécessaire pour survivre dans un environnement économique

hautement concurrentiel. De nombreux acteurs (unités commerciales, individus, équipes et

communautés) doivent introduire leurs propres applications pour pallier à ces limitations, avec pour

résultat un système d’information fragmenté, incohérent et impossible à gouverner.

Cette étude propose un paradigme d’architecture d’entreprise alternatif, qui s’appuie sur une

décomposition plus fine du système d’information et une distribution différente des responsabilités.

Il permet à tout acteur de contribuer au système d’information en introduisant des fragments, privés

ou partagés avec d’autres acteurs, qui peuvent ensuite être composés pour former des applications

dédiées à un profil. Les récents mécanismes de l’informatique sociale sont proposés pour gérer les

volumes potentiels importants de fragments émergeant de la communauté d’employés.

L’objectif des systèmes d’informations sociaux est à la fois d’améliorer la cohérence et la

gouvernabilité du système d’information de l’entreprise et d’exploiter l’intelligence et l’énergie

collective de l’entreprise à des fins d’agilité métier maximale.

Mots-clés

Systèmes d’Information Entreprise, Applications, Agilité, Logiciels Sociaux,

Ingénierie Dirigée par les Modèles, Composition de Logiciel.

ABSTRACT

Present enterprise information systems are centered on heavy corporate applications, which cannot

and indeed do not provide the agility required to survive in todays’ competitive business landscape.

Actors (business units, individuals, teams and communities) must introduce their own applications to

work around these limitations, resulting in a fragmented, inconsistent and ungovernable information

system.

This thesis proposes an alternative enterprise architecture paradigm based upon a finer-grained

decomposition of information systems and a different distribution of responsibilities. It empowers all

actors to contribute fragments to the information system, private or shared with other actors, which

can then be composed to form profile-specific applications. Consumer-space social mechanisms are

proposed to manage the potentially huge resulting numbers of fragments emerging from the

employee community.

The aim of social information systems is both to improve the overall consistency and governability of

the enterprise information system and to leverage the collective intelligence and energy of the

corporation towards maximum business agility.

Keywords

Enterprise Information Systems, Business Applications, Agility, Social Software,

Model-Driven Engineering, End-User Development, Software Composition.

