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Notations
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N Natural numbers

R Real numbers

Sub+ Set with only positive elements

Sup⋆ Set including zero

Vector and sequences

X (boldface) Vector or matrix

Sup⊤ Transposition

diag (X) Diagonal matrix from X

X1:N Sequence X1, X2, · · · , XN

Probability

X (uppercase) Random variable

x (lowercase) Realization or parameter

P (�) Probability measure

P (�|�) Conditional probability

E (X) Expectation

EX|� (X) Conditional expectation

Var (X) Variance

VarX|� (X) Conditional variance

f (�) or p (�) Probability density function

f (�|�) Conditional density

F (�) Cumulative distribution function

f (�;x) Parametrization by x

Whenever the random variables related to a function are not clear from the context, they are

indicated implicitly by the variable in the argument of the function.

Main variables and parameters

X Unknown parameter

Y Continuous measurement

i Quantized measurement

X̂ Estimator

V Measurement noise

W Parameter variation

L Likelihood

S Score function

I Fisher information

CRB Cramér–Rao bound

BCRB Bayesian Cramér–Rao bound

MSE Mean squared error
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Main variables and parameters
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Assumptions

Assumptions (on the noise distribution):

AN1 The marginal CDF of the noise, denoted F , admits a PDF f w.r.t. the standard

Lebesgue measure on (R,B (R)).

AN2 The PDF f (v) is a strictly positive even function and it strictly decreases w.r.t. |v|.

AN3 F is locally Lipschitz continuous.

Assumptions (on the quantizer):

AQ1 NI is considered to be an even natural number and the set I where ik is defined is

I =

{

−NI

2
, · · · , −1, 1, · · · , NI

2

}

.

AQ2 The quantizer is symmetric around the central threshold. This means that the vector

of thresholds τ is given by

τ =

[

τ−NI
2

= τ0 − τ ′NI
2

· · · τ−1 = τ0 − τ ′1 τ0 τ1 = τ0 + τ ′1 · · · τNI
2

= τ0 + τ ′NI
2

]⊤

with the threshold vector elements forming a strictly increasing sequence and the non-

negative vector of threshold variations w.r.t. the central threshold given by

τ ′ =

[

τ ′0 = 0 τ ′1 · · · τ ′NI
2

= +∞
]⊤

.

AQ3 The quantizer output levels have odd symmetry w.r.t. i:

ηi = −η−i,

with ηi > 0 for i > 0.

Modified assumptions (on the quantizer):

AQ2’ The quantizer is symmetric around the central threshold which is equal to zero. This

means that the vector of thresholds τ is given by the vector of threshold variations

τ =

[

−τ ′NI
2

· · · − τ ′1 0 + τ ′1 · · · + τ ′NI
2

]⊤
,

where the threshold variations τ ′i form an increasing sequence.

AQ3’ The quantizer output levels ηx [i] are odd and the output levels ηδ [i] are even.

ηx [i] = −ηx [−i] , ηδ [i] = ηδ [−i] ,

with ηx [i] > 0 for i > 0 and ηδ [1] < 0.
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16 Assumptions

Assumptions on Iq for the MLE update to have asymptotically optimal perfor-

mance:

A1.MLE Iq (ε) is maximum for ε = 0.

A2.MLE Iq (ε) is locally decreasing around zero.

A3.MLE The function Iq (ε) has bounded Iq (0),
dIq(ε)

dε

∣

∣

∣

ε=0
= 0, bounded

d2Iq(ε)
dε2

∣

∣

∣

ε=0
, there-

fore accepting a Taylor approximation around zero (for small ε′):

Iq
(

ε′
)

= Iq (0) +
ε′2

2

d2Iq (ε)

dε2

∣

∣

∣

∣

ε=0

+ ◦
(

ε′2
)

,

where the ◦
(

ε2
)

here is equivalent to say that the quantity
◦(ε′2)
ε′2

tends to zero when ε′

tends to zero.



Introduction

Quantization: the stranger in the room

Open a book, any basic book on digital signal processing (DSP), and count the number

of pages dedicated to the sampling theorem and discrete-time signal processing: FFT, Z-

transform, FIR and IIR filtering. Now, count the number of pages dedicated to quantization.

Even if half of the "digital world" comes from quantization, by reading some basic books on

DSP, we have the feeling that it is a completely unimportant subject.1

A curious person might think: is it really unimportant? Maybe it is simply so difficult to

be treated and explained in an easy way, that most DSP books skip a detailed description

of quantization. We think this explanation is the reason most of the texts presenting DSP

assume that signals are quantized with a very high resolution, so they have the possibility

of explaining quantization almost in a footnote. As a consequence, quantization seems to be

the stranger that comes to the "DSP party" and almost nobody wants to speak with (even

if it is one of the party organizers). Some signal processing domains find useful (and in some

circumstances they are not wrong) to refuse "contact" with quantization. Whenever they need

to address quantization issues they always call it in a derogatory way – "quantization noise".

In this thesis we expect to make one of the subjects in the signal processing party to

"talk" with quantization in a polite way, without detracting terms. The subject we chose is

estimation.

In the following, we will explain the motivation and the main points of their "conversation".

Sensor networks and quantization: the welcome guest

Although we do not explicitly design estimation algorithms using a sensor network architec-

ture, this thesis is intended to contribute in the development of estimation techniques that

can be applied or extended to sensor networks.

Sensor network emergence. With the reduction in cost and size of electronic devices such

as sensors and transceivers, a whole new field emerged under the name Sensor Networks. This

term, in general, means any set of sensors capable of communication and processing used for

a specific task, e.g. estimation, detection, tracking, classification, etc.

Sensor networks are attractive for many reasons [Akyildiz 2002], [Intanagonwiwat 2000],

[Zhao 2004, pp. 7–8]:

1Note that the real problem of digitizing a signal by considering sampling and quantization as a joint

operation is simply a non-issue in signal processing literature. We do not study this problem in this thesis

either, but it is an interesting problem.
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18 Introduction

• fault-tolerance and flexibility. By using multiple sensors to realize a sensing task, even if

one of them is unable to measure, the other sensors guarantee that the sensing system is

still working. By proper design, the sensor network can reconfigure the way it operates,

so that if a failure occurs in a sensor or a small set of sensors, the performance of the

sensing system is not strongly affected.

• Easy deployment. The decreased cost of the sensors makes it possible to deploy large

quantities of sensors in a given area without detailed placement of the sensors. This

simplifies the deployment of sensing systems in difficult access and hostile environments.

• Risky environment sensing. By allowing the sensors to communicate wirelessly, remote

sensing can be done in areas where human activity is impossible or cannot be sustained

for long periods of time.

• No maintenance sensing. The fault tolerance capabilities of sensor networks allows it to

be applied in applications where maintenance of the sensing system is difficult.

• Multi-hop communication. By using the communication capabilities of the sensors to

allow multi-hop communication, the total energy used in communication for the sens-

ing task may decrease, as the attenuation of transmitted signals is smaller for smaller

distances.

• Enhanced signal-to-noise ratio. In tracking or detection applications, the performance

of the task is normally dependent on the signal-to-noise ratio of the measurements.

If we consider that the signal we measure attenuates with distance, then in a sensor

network, as the density of sensors can be high, it is expected that at least a few sensors

will measure the signal with high signal-to-noise ratio, enhancing in this way the final

performance.

Sensor network applications. Based on the advantages of sensor networks presented

above, a plethora of applications can be developed in many different domains [Arampatzis 2005],

[Chong 2003], [Durisic 2012], [Puccinelli 2005]:

• environmental monitoring. Habitat monitoring, bio-complexity mapping, weather fore-

casting and disaster prevention (volcanic eruptions, floods, earthquakes).

• Agricultural monitoring. Precision irrigation, fertilization and pest control.

• Civil engineering. Building automation, building emergency systems and structural

health monitoring.

• Urban monitoring. Pollution monitoring, video surveillance and traffic control.

• Health applications. Monitoring of human physiological data, tracking of doctors and

patients in a hospital.

• Commercial applications. Support for logistics, production surveillance and automation.
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• Military applications. Self-healing landmines, soldier detection and tracking, shot origin

information, perimeter protection, chemical, biological and explosive vapor detection,

missile canister monitoring and blast localization.

The need for quantization. Even if progress in sensor and communication technologies

motivates the use of a large number of communicating sensors, practical considerations such

as the use of non replenishable energy sources (sensors are self-powered with batteries) and

maximum size constraints impose three design constraints:

• energy constraint: which comes directly from the choice that the sensors use a non

replenishable energy source.

• Rate constraint: this constraint is related to the fact that the communication channel

bandwidth must be shared by a large quantity of sensors and that the energy is also

constrained.

The energy spent in a sensor network can be divided mainly in three activities, sensing,

communication and processing. It is known that the major energy consumer of these

activities is communication [Akyildiz 2002]. As bandwidth is constrained, the simplest

solution to have reduced energy consumption is to find a way to achieve the same or

similar goal by communicating with a lower rate (number of bits per unit of time).

• Complexity constraint: although much less important in energy consumption, complexity

both in terms of processing and memory must be small to keep the cost and size of the

sensors small.

One way to treat these problems is to consider that the sensors quantize their measurements

before the realization of any other operations2. This allows to

• reduce complexity by using pre-stored tables for the computations and also by bounding

memory requirements.

• Reduce directly the rate by controlling the number of quantization intervals.

• Reduce energy requirements, as a consequence of the reduction in complexity and rate.

These are the main reasons for studying quantization in this thesis.

Different objectives and the scope of the thesis

In a sensing system the main task is to infer some information that is embedded in the

measurements. The two main classes of inference problems studied in signal processing are

detection and estimation. The literature on the joint subjects, detection based on quantized

2We do not claim here that imposing quantization of the measurements is the optimal solution. In some

cases, it can be shown that a complete analog scheme is optimal [Gastpar 2008].
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measurements and estimation based on quantized measurements, is not expressive if compared

with the literature on the separated subjects, however, as a consequence of the emergence of

sensor networks its size is increasing. Some references on these subjects are the following:

• Detection: [Benitz 1989], [Gupta 2003], [Kassam 1977], [Longo 1990], [Picinbono 1988],

[Poor 1977], [Poor 1988], [Tsitsiklis 1993], [Villard 2010], [Villard 2011].

• Estimation: [Aysal 2008], [Fang 2008], [Gubner 1993], [Luo 2005], [Marano 2007],

[Papadopoulos 2001], [Poor 1988], [Ribeiro 2006a], [Ribeiro 2006b], [Ribeiro 2006c],

[Wang 2010].

Estimation based on quantized measurements. As mentioned before, in this thesis we

will study the second of the subjects mentioned above, namely, estimation based on quantized

measurements. We will start by explaining the general estimation problem in a sensing system.

By making a sequence of simplifications in the general problem, we will get to the main scope

of this thesis.

In the general scheme, each sensor measures a continuous amplitude quantity X(i), pro-

cesses locally its measurement and sends it to the point where the estimate will be evaluated.

The point of evaluation can be either a fusion center, one of the sensors or all sensors. In the

last case, all sensors broadcast their processed measurements. This scheme is shown in Fig.

1. The quantity in this case can be a sequence of vectors, a sequence of scalars, a constant

vector or a constant scalar.

Sensing Processing Transmission

Sensor 1

X(1)

Sensing Processing Transmission
X(2)

Sensor 2

Sensing Processing Transmission
X(Ns)

Sensor Ns

.

.

.

Estimation











X̂(1)

X̂(2)

...

X̂(Ns)











Figure 1: Estimation problem using a sensing system. Multiple sensors send preprocessed

information to the final estimator that must recover the quantities of interest.

The first simplification that we will make is to consider only one of the terminals (sensors)

in the sensing system, eventually, we might consider the problem with multiple terminals but

with the same quantity being measured by all sensors. We will also consider that the quantity

to be estimated is either a sequence of scalars or one scalar. We will use the notation Xk for

the quantity to be estimated in both cases, k is the sample index and, in most cases, it will be
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also the discrete-time index. When Xk is a scalar constant, we have Xk = x. The simplified

problem, which can also be called scalar remote sensing problem, is depicted in Fig. 2.

Sensing Processing Transmission

Sensor

Xk
Estimation

X̂k

Figure 2: Scalar remote sensing problem. A scalar single terminal simplification of the problem

depicted in Fig. 1.

The parameter Xk is measured with continuous amplitude additive noise Vk. The contin-

uous measurement will be denoted Yk = Xk + Vk.

The estimation problem we mainly deal here is location estimation, as Xk in this case is

a location parameter characterizing the measurement distribution. Other technical consider-

ations about the noise sequence will be presented later. In some points of the thesis we will

not constrain Xk to be a location parameter and we will let it be a general parameter.

According to the previous discussion on the design constraints, the processing block is

replaced by a scalar quantizer. Thus, each noisy continuous measurement Yk will generate a

quantized measurement ik according to the quantizer function Q (�). Each quantized measure-

ment is defined in a finite set of values so the rate (number of possible values per measurement

of the alphabet) is fixed and known. We suppose that the rate in bits per unit of time is chosen

such that the transmission channel capacity is not exceeded, thus, by adding proper channel

coding in the transmission block, we can consider that the channel is perfect.

For each time k we are interested in estimating Xk based on the set of past measurements

i1, i2, · · · , ik. The problem is then depicted in Fig. 3.

g (i1, · · · , ik)

Measurement

Estimation

Xk X̂k

Vk

Noise

Q (Yk)

Quant.

Yk ik Perfect

transmission

Figure 3: Estimation based on quantized measurements. A parameter is measured with addi-

tive noise, the measurements are then quantized and transmitted through a perfect channel.

Based on the past quantized measurements, the objective is to estimate Xk for each time k

with the sequence of mappings g (�).

As it is shown in Fig. 3, we also consider that the quantizer structure can depend on the

past quantized measurements.

What we want to study. We want to propose algorithms for estimating Xk based on ik.

The parameter Xk, which will be detailed later, can be either a deterministic constant or a

slowly varying random process.
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After proposing the algorithms, we want to evaluate their performance. Given the algo-

rithm performance, we want to study the effects of the quantizer function parameters, the

quantization thresholds, and of the quantizer resolution, the number of quantization intervals

or bits.

For assessing how quantization impacts on estimation, we will also compare the estimation

performance of the proposed algorithms with the estimation performance of their correspond-

ing continuous measurement versions.

The objective here is to estimate Xk based on the interval information (we know only in

which interval the measurement is) of a noisy version of it.

What we do not want to study (and we will not study). We do not want to reconstruct

the measurement Yk from the quantized measurements and then estimate Xk based on the

reconstructed measurements, as if they were continuous. By doing this, we would simply join

their optimal separated solutions, which are well known.

We do not want to consider quantization as additive noise either. We want to consider the

problem in its true form, that is to study how to exploit the information contained in intervals

and not in continuous values.

What we want to study but we will not study. To specify in a precise way the scope of

the thesis, we also have to state the problems we may have consciously overlooked. Consciously

overlooked in this case means that, differently from the class of problems above, we wanted

to study them, but to keep the subject simple, they will be neglected. These subjects are:

vector parameters and vector quantization, presence of noisy channels (fading or additive)

and channel coding, fast varying signals, estimation of continuous time signals and Bayesian

estimation of a random constant.
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Structure of the thesis and outline

This thesis is formed by a general introduction, two parts and a general conclusion. Each part

is divided in introduction, chapters and conclusion. In the first part, there are three chapters

and in the second a single chapter. Each chapter is subdivided in three parts: introduction

with the main contributions of the chapter, the main development and a summary/conclusion

with some directions for future work. The conclusions in the order thesis–part–chapter increase

in level of details. The thesis conclusion is a general overview, the part conclusion presents the

points that we think we must retain without explaining the technical details and the chapter

summary is a detailed account of the points observed in the chapter.

The thesis outline is the following:

• Part I: a study of algorithms/performance for estimation based on quantized measure-

ments.

– Chapter 1: the main details on the quantizer structure and noise are given. The

fundamental algorithms and performance for the estimation of a deterministic scalar

constant parameter are presented. Algorithms both for static quantization and

adaptive quantization are studied.

– Chapter 2: the time-varying parameter counterpart of Ch. 1 is presented. We

consider the parameter to be a slowly varying scalar Wiener process and we present

Bayesian algorithms for tracking the parameter.

– Chapter 3: Low complexity algorithms are proposed as alternatives to those pre-

sented in Ch. 1 and 2. We also study some extensions of the scalar location

problem: an extension that considers that the noise scale parameter is unknown

and an extension that considers multiple sensors.

• Part II: a high resolution (high-rate) approximate analytical expression for the estimation

performance.

– Chapter 4: an open problem from Part I is how to set completely the quantizer key

parameters so that estimation performance is maximized. In this chapter, we study

how to solve this problem approximately by considering high resolution approxi-

mations (small quantization intervals approximation). We give a practical solution

to obtain the optimal quantizer and the corresponding asymptotic estimation per-

formance.

Each part will begin with an example, which can be seen as a background for the presen-

tation of the problem. The examples serve only for presentation purposes and their specific

subjects (water management and deep-sea water mining) are not the main subject of this

work.

The appendices of this thesis are divided in three parts, one part for presenting proofs that

are considered not important to develop in the main text Why? - App. A.1, another for

giving more details about a subject More? - App. A.2 and one part for explaining some

implementation issues How? - App. A.3.
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For defining a new abbreviation or acronym we write the expression in boldface with

the abbreviation in parenthesis (�). For citing a reference that was already cited similarly

elsewhere, we write the reference and the work where it was cited with (cited in ...).

Publication

During this thesis three papers were presented in international conferences

• Rodrigo C. Farias and Jean-Marc Brossier, Adaptive Estimation Based on Quantized

Measurements, IEEE International Conference on Communications (ICC), 2013, Bu-

dapest, Hungary.

• Rodrigo C. Farias and Jean-Marc Brossier, Adjustable Quantizers for Joint Estimation

of Location and Scale Parameters , IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), 2013, Vancouver, Canada.

• Rodrigo C. Farias and Jean-Marc Brossier, Asymptotic Approximation of Optimal Quan-

tizers for Estimation, IEEE International Conference on Acoustics, Speech and Signal

Processing (ICASSP), 2013, Vancouver, Canada.

One paper was presented in a French conference

• Rodrigo C. Farias and Jean-Marc Brossier, "Quantification asymétrique optimale pour

l’estimation d’un paramètre de centrage dans un bruit de loi symétrique", "Colloque

GRETSI", 2013, Brest, France

and one article was published

• Rodrigo C. Farias and Jean-Marc Brossier, Adaptive quantizers for estimation, Signal

Processing, Elsevier, vol. 93, november 2013.
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"A word to the wise is enough" - popular saying.

Motivation

As a background to introduce this part, we start with an application example. A recent trend

in placing water as a key element in government strategic decisions (including possible future

military interventions) lead to the choice of the motivational example.

Agriculture is responsible for 70% of freshwater withdrawals. Food production for satis-

fying the daily caloric needs of a person consumes 3000 liters of water, a very large quantity

when compared with the 2-5 liters used for drinking. Add to these ingredients the fact that

world population is growing and that a large part of the population is changing its diet, con-

suming more meat and vegetables and therefore even more water [Molden 2007] and we have

a possible recipe for future water scarcity.

One possible policy for preventing future water scarcity is to develop or improve irrigation

systems in sub-developed countries, where water use efficiency is very low [Molden 2007]. For

doing so, measuring accurately the soil moisture of crop fields is a main issue. Thus, as a

background scenario for introducing this chapter, we will consider the problem of estimating

the moisture level of crop fields.

Consider that multiple crop field areas will have each a set of sensors noisy measurements of

some quantities related to soil moisture. All the data will be transmitted to a central processor,

which after estimating the moisture levels, will decide which crops must be irrigated. As the

number of sensed areas can be large, for example, when the irrigation system is integrated for

an entire geographic region, quantization will be applied to respect communication constraints.

The solution to this problem can be simplified by assuming that the decision (control)

part of the problem can be decoupled from the estimation part. We will focus here only on

the estimation part. In a first approach, we can assume that the moisture levels are unknown

deterministic scalars, unrelated from one region to the other and that they are approximately

constant for a block of N independent measurements. If humidity sensors are used, from the

symmetry of the problem and the assumption that the moisture levels are not related, the

joint estimation problem of all levels decouples into many scalar estimation problems with

identical general form. This general form is the following:

(a) Estimate a constant scalar location parameter x, based on N

independent noisy measurements

Y1:N = {Y1 = x+ V1, · · · , YN = x+ VN} ,

which are scalarly quantized with a quantizer function Q (to be

defined later)

i1:N = {i1 = Q (Y1) , · · · , iN = Q (YN )} .
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A more detailed meaning for "estimate" is

(1) Give an analytical form or a procedure describing the parameter estimator X̂.

(2) Give the estimation performance or an approximation of the estimation performance as a

function of

• number of measurements;

• noise characteristics;

• the quantizer function.

After giving a solution for this problem, we may be interested in considering a more

complex model for x, for instance, instead of considering it as a constant, we can assume that

it varies randomly with time.

A simple dynamical model is

Xk = Xk−1 +Wk,

where k is the discrete-time index, Wk is an independent and identically distributed

(i.i.d.) Gaussian process, with zero mean and variance σ2w. Thus, if X0 is Gaussian, Xk

is a Gaussian process known as a discrete-time Wiener process or as a discrete-time

random walk process. This type of process is commonly used to describe slowly varying

parameters when their evolution is random but with unknown form. A reason to use this

model is that by constraining the increments to be Gaussian distributed, minimal quantity of

information is imposed for a given increment variance (in terms of information theory quantity

of information).

Now, suppose we have statistics about precipitation on the crop field region, for example

its average, we also know the last quantities of water irrigated on the field and how to relate

both precipitation and irrigated water to average increase in moisture level, denoted uk. This

will allow us to use a more precise dynamical model for Xk, using as increments Gaussian

random variables (r.v.) with mean uk. Consequently, our model will become a discrete-

time Wiener process with a deterministic drift.

The objective is the same as before, estimate Xk based on scalarly quantized Yk. However,

the relation between measurements can be exploited now. Instead of considering the static

estimation problem for separate blocks of measurements, we can now use all past measurements

in the estimation of the varying parameter, under the constraint that the parameter evolution

must follow the dynamical model.
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Therefore, we are also interested in solving the following problem:

(b) Estimate a varying random parameter Xk at time k based on the

last and present scalarly quantized measurements i1:k.

This is a filtering problem, as estimates depend not only on past measurements but also

on the present measurement [Jazwinski 1970]. The problems of estimation based on past

measurements, i.e. prediction, and of estimation based on additional future measurements,

i.e. smoothing, will not be treated in this thesis.

Outline for this part

For the problem at hand, 3 types of model with increasing complexity can be considered, these

3 models are related to the two estimation problems (a) and (b) as it is shown below:

Constant model

Scalar Wiener process model

Scalar Wiener process model with drift

(a)
Location

parameter

estimation

(b)Filtering

Many other practical estimation problems rely on the models presented above and conse-

quently can be cast as (a) or (b). We will look now for their solutions.

First, we will present algorithms and performance for the estimation of a constant location

parameter. We will study maximum likelihood estimators and their asymptotic performance

through the Cramér–Rao bound. We will see that estimation performance is sensible to the

distance between the quantizer dynamic range and the parameter. For commonly used noise

models, we will see that estimation performance actually degrades when the dynamic range

is far from the parameter. As a solution, we will search for adaptive schemes that place the

dynamic range close to the parameter. We will show that in the binary case, the asymptotically

optimal adaptive algorithm is given in a simple recursive form.

After that, we will focus on filtering. A general solution using recursive integral expressions

will be given. As this solution is analytically intractable, an approximate solution based on

sequential Monte Carlo methods (particle filtering) will be considered. Its performance will

be assessed through a lower bound, the Bayesian Cramér–Rao bound. Then, by analyzing the

bound, we will see that a good estimation scheme can be obtained by quantizing the measure-

ment prediction error, usually called the innovation. We will show that the asymptotically

optimal filter based on the quantized innovation is also given in a simple recursive form when
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the parameter varies slowly.

Motivated by the recursive forms that are obtained asymptotically, both in the constant

and varying parameter cases, we will present a low complexity adaptive algorithm for estima-

tion using quantized measurements. The estimation performance and the optimal algorithm

parameters will be obtained for constant and Wiener process models. Extensions of the algo-

rithm for the cases when multiple sensors with a fusion center are used and when the noise

scale factor (a measure of its amplitude) is unknown will also be obtained.

At the end of this part some conclusions will be drawn on the overall aspects of estimation

based on quantized measurements.



Chapter 1

Estimation of a constant parameter:

what is done and a little more

In this chapter we study the problem of estimation of a constant location parameter based on

quantized measurements. We start the chapter with the measurement model, which is mainly

the noise model and the definition of the quantizer. The first sections of the chapter deal

with a fixed quantizer structure (fixed quantization thresholds), while in the last sections, we

present estimation schemes with an adaptive quantizer structure.

In the part concerning a fixed quantizer structure, we start by giving a general estimation

algorithm based on the maximum likelihood method. Its performance is given in terms of

the Cramér–Rao bound. Then, we study the general effects of quantization on estimation

performance. This is done through the analysis of the Cramér–Rao bound, a quantity that

is directly related to the Fisher information. We also analyze the performance of binary and

multibit quantization as a function of the quantizer tuning parameter. We give a detailed

implementation of the maximum likelihood estimator for general noise distributions in the

binary case, while in the multibit case, the maximum likelihood estimator is detailed for a

more restricted class of noise distributions, more precisely, log-concave distributions.

As a main result of the performance analysis for the fixed threshold scheme, we will see

that, for commonly used noise models, the estimation performance degrades as the quanti-

zation dynamic range is distant from the true parameter. This is used as a motivation to

study estimation schemes that adaptively place the quantizer dynamic range close to the true

parameter. We study two adaptive schemes. One based on a simple update of the quantizer

main parameter, but with the final estimate given by maximum likelihood estimation and the

other based on the use of the maximum likelihood last estimate as the quantizer main pa-

rameter. Their performances are given also in terms of the Cramér–Rao bound. We will also

see that the estimator based on the maximum likelihood threshold update is asymptotically

equivalent to a low complexity recursive algorithm.

We finish this chapter with a summary of the main points that were studied and with the

directions for further research. The directions will point for further work that is presented in

other chapters or that will be studied in the future.
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Contributions presented in this chapter:

• Global and local analysis for binary quantization. By reading carefully the literature on

the subject, we have the impression that setting the quantization threshold on the true

parameter value is optimal for symmetric distributions [Wang 2010, p. 265]. But this

affirmation is actually false. We present here global and local conditions on the noise

distribution that guarantees that this threshold value (equal to the parameter value) is

indeed optimal.

• Asymmetric threshold case. Differently from the literature where only the symmetric

cases are shown, we show some cases where the noise distribution is symmetric and the

optimal quantization threshold is not the median.

• Laplacian noise. In the literature, most of the analysis is focused on the Gaussian noise

case, where, as it is expected, quantization strictly decreases estimation performance.

Here, we study also the Laplacian case. The Laplacian case is easier to analyze and it

is a nice counterexample to the intuition that quantization strictly decreases estimation

performance (see p. 55).

• Adaptive binary quantization scheme in a finite grid. We present a method to obtain

the asymptotic threshold probabilities in the adaptive binary threshold scheme (see

(More? - App. A.2.4)). Differently from the method presented in [Fang 2008], where a

truncation approximation is used, in the method presented here, we define boundaries

on the possible threshold values so that the number of threshold values is finite and the

asymptotic probabilities can be evaluated analytically.

• Multibit adaptive scheme based on the maximum likelihood estimator and its convergence.

We extend the binary adaptive scheme presented in [Fang 2008] to the multibit case and

we also extend its proof of convergence to the general multibit non Gaussian case.

• Asymptotic binary adaptive scheme based on the MLE. We give a less heuristic proof

that the adaptive quantization scheme based on the maximum likelihood estimator is

given asymptotically in a simple recursive form.
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1.1 Measurement model

We start by explaining the measurement model. The unknown deterministic scalar constant

parameter to be estimated is

x ∈ R

and it is measured N times, N ∈ N
⋆, with i.i.d. additive noise Vk. For k ∈ {1, · · · , N} the

continuous measurements are

Yk = x+ Vk. (1.1)

1.1.1 Noise model

The continuous sequences of r.v. Yk and Vk are defined on the probability space P = (Ω,F ,P)
with values on (R,B (R)). For simplification purposes the following hypotheses on the noise

distribution will be considered:

Assumptions (on the noise distribution):

AN1 The marginal cumulative distribution function (CDF) of the noise, denoted F ,

admits a probability density function (PDF) f with respect to (w.r.t.) the

standard Lebesgue measure on (R,B (R)).

AN2 The PDF f (v) is a strictly positive even function and it strictly decreases w.r.t. |v|.

Assumption AN1 is a commonly used assumption that in practice will be used when the

derivative of F w.r.t. its arguments is needed. AN2 means that the noise distributions are

unimodal and symmetric around zero and it will be used for the following reasons:

1. The unimodal behavior of the noise will allow to have a general qualitative characteriza-

tion of estimation performance as a function of quantization parameters. More precisely,

it will be observed that for unimodal densities very poor estimation performance occurs

for quantizers having the dynamical range far away from x.

2. It will be used as a condition for the convergence of some new adaptive estimation

algorithms presented in this thesis.

3. In the lack of physical constraints (e.g. positivity), there should be no reason for the

components of the noise to be asymmetric. Thus, if we consider that the noise is a

normalized sum of an infinite number of symmetric i.i.d. r.v. (an infinite sum of small

perturbations), then it is known that the resulting noise r.v. distribution is a symmetric

stable distribution [Samorodnitsky 1994], which is unimodal.

Even if not all unimodal symmetric distributions are stable the generalized central limit

theorem above serves as an additional motivation.
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1.1.2 Quantization model

From the reasons presented in the Introduction and in the motivational example given above,

the measurements are quantized. We will consider that they are scalarly quantized, which

means that each measurement is quantized separately from the others. The quantizer output

can be written as

ik = Q (Yk) , (1.2)

where ik is a value from a finite set I of R with NI elements. Due to notation issues, we

denote both the quantized measurement random variable and its realization with lowercase i.

NI is the number of quantization intervals. A simple example of quantizer Q with uniform

threshold spacing is given in Fig. 1.1.
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Figure 1.1: Quantizer function Q (Yk) with NI quantization intervals and uniform threshold

spacing with length ∆. The number of quantization intervals NI is even, the quantizer is

symmetric around the central threshold τ0 and the output indexes are integers without the

zero.

Except for the uniform thresholds, Fig. 1.1 shows the main elements of the general quan-

tization model that will be used:

• the number of quantization intervals NI will be an even number, this will lead to a

clearer presentation, as in each analysis we will not need to deal with the additional

central interval.

• The outputs of the quantizer will be defined on a set of integers from −NI

2 to NI

2 , without

zero. This will simplify the notation of the algorithms that will be presented later. Note

that as we will consider that the output of the quantizer is obtained without additional

noise (it passes through a noiseless channel), the assignment of the output values ik is

not important, as long as the assigned values are different. For estimation purposes,

only a label is needed at quantization output. The estimator or parts of the estimation

procedure will carry out the role of the output quantization levels, as they are used in

standard quantization, by generating estimates (values) based on the information from

the intervals (indicated by the labels) where the continuous measurements lie.
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Observe that if we introduce in the model a noisy communication channel and constraints

on transmission power, the assignment of the output values becomes important. As it

was stated in the Introduction, we are not going to consider this model in this thesis,

but we can keep this extended problem as a possibility for future work.

• The quantizer is defined by NI +1 thresholds τi, which can be separated in three types:

one central threshold τ0,
NI

2 − 1 thresholds that are larger than τ0 with an additional

threshold at +∞ and NI

2 − 1 that are smaller with an additional threshold at −∞. We

will consider that the non central thresholds are symmetric w.r.t. τ0, thus, for example,

the threshold τi is given by τ0 plus a variation τ ′i and the threshold τ−i is given by

τ0 minus the same variation. In the figure, the variations are integer multiples of ∆,

which corresponds to uniform quantization. In general, we will not impose uniform

quantization.

The assumption on the symmetry of the quantizer is difficult to justify at this point, but

the main idea is that, as it will be shown further for commonly used noise models, the

best central threshold for estimation purposes is exactly x, thus if we set τ0 = x, from

the assumption of noise symmetry, it seems reasonable to assume that the quantizer

(a good one) is symmetric. In Part II, it will be shown that for large NI the optimal

quantizer is indeed symmetric around τ0 for symmetric noise distributions.

The infinite thresholds for the extreme positive and negative thresholds are used to

have the same notation for the probabilities of the granular (region inside the quantizer

input dynamic range) and overload regions (region outside the quantizer input dynamic

range).

From Fig. 1.1 and the explanations above, the quantizer function can be described as

follows: if we have a measurement Yk ≥ τ0 that falls in the quantization interval qi = [τi−1, τi),

then its output will be i. Otherwise, if Yk ≤ τ0 and it falls in q−i = [τ−i, τ−i+1), then the

quantizer output will be −i.
As an example, consider that we have a uniform quantizer with 16 quantization levels,

τ0 = 0 and uniform quantization step-length ∆ = 1, then for the input

y1:10 = {−20, −8.5, −3.4, −5.6, −0.1, 0.7, 3.2, 10.7, 7.1, −2.3} ,

we obtain

y1 = −20 → i1 = −8,

y2 = −8.5 → i2 = −8,

y3 = −3.4 → i3 = −4,

y4 = −5.6 → i4 = −6,

y5 = −0.1 → i5 = −1,

y6 = 0.7 → i6 = 1,

y7 = 3.2 → i7 = 4,

y8 = 10.7 → i8 = 8,

y9 = 7.1 → i9 = 8,

y10 = −2.3 → i10 = −3.
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Observe that by using the threshold variations τ ′i , we can write the input–output relation

in a more compact way:

ik = i sign (Yk − τ0) , for |Yk − τ0| ∈
[

τ ′i−1, τ
′
i

)

. (1.3)

Note that the index k here is the time or sample index and it is not the particular value of i.

Before proceeding, we will state explicitly the assumptions on the quantizer.

Assumptions (on the quantizer):

AQ1 NI is considered to be an even natural number and the set I where ik is defined is

I =

{

−NI

2
, · · · , −1, 1, · · · , NI

2

}

.

AQ2 The quantizer is symmetric around the central threshold. This means that the vector

of thresholds τ is given by (⊤ is the transpose operator)

τ =

[

τ−NI
2

= τ0 − τ ′NI
2

· · · τ−1 = τ0 − τ ′1 τ0 τ1 = τ0 + τ ′1 · · · τNI
2

= τ0 + τ ′NI
2

]⊤

with the threshold vector elements forming a strictly increasing sequence and the non-

negative vector of threshold variations w.r.t. the central threshold given by

τ ′ =

[

τ ′0 = 0 τ ′1 · · · τ ′NI
2

= +∞
]⊤

.

1.2 Maximum likelihood, Cramér–Rao bound

and Fisher information

We want to estimate x based on i1:N = {i1, · · · , iN} (problem (a)). For doing so, we will look

for an estimator

X̂ (i1:N ) - which is a r.v. as it is a function of r.v.,

that must be as close as possible to x. In our case, we are going to choose the quantitative

meaning of "as close as possible" to be with minimum (or small) mean squared error

(MSE):

MSE = E

[

(

X̂ − x
)2
]

, (1.4)

E is the expectation w.r.t. the joint distribution of the noise. The MSE is a commonly

used performance criterion for estimation problems. Although it is widely used, it has the

inconvenient that it is impossible to find in a general form the X̂ minimizing it by direct

analytical minimization [Van Trees 1968, p. 64].
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1.2.1 Maximum likelihood estimator

A common solution for this problem is to suppose that N is large, in theory N must tend to

infinity, and that X̂ is constrained to be unbiased, which means

E

[

X̂
]

= x,

in this case, the optimal X̂ minimizing the MSE is known to be the maximum likelihood

estimator (MLE) [Kay 1993, p. 160]. The MLE consists of maximizing the likelihood

function which is the joint distribution of the measurements considering that the measurements

are fixed parameters and that the parameter x is variable1. For the estimation problem

considered here, the likelihood for an independent block of measurements i1:N is

L (x; i1:N ) =

N
∏

k=1

P (ik;x) , (1.5)

where P (ik;x) is the probability of having a quantizer output ik at time k for a parameter x.

This probability can be rewritten using the noise CDF and the thresholds:

P (ik;x) =

{

P (τik−1 6 Yk < τik) , if ik > 0,

P (τik 6 Yk < τik+1) , if ik < 0,

using the definition of Yk = x+ Vk given by (1.1)

P (ik;x) =

{

P (τik−1 6 x+ Vk < τik) , if ik > 0,

P (τik 6 x+ Vk < τik+1) , if ik < 0,

=

{

F (τik − x)− F (τik−1 − x) , if ik > 0,

F (τik+1 − x)− F (τik − x) , if ik < 0.
(1.6)

The MLE is the value of x maximizing L (x; i1:N ) for a given i1:N :

X̂ML,q = X̂ML (i1:N ) = argmax
x

L (x; i1:N ) . (1.7)

The subscript q is used to make explicit that the estimation is done with quantized measure-

ments. As the logarithm is a strictly increasing function on R
⋆
+ and most used likelihood

functions are given in exponential form, it is common to solve an equivalent maximization

problem:

X̂ML,q = argmax
x

logL (x; i1:N ) .

1Clearly, this is an inversion of roles from the modeling point of view and this is the main reason why we

do not call the likelihood function simply by joint PDF.
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1.2.2 Cramér–Rao bound and the Fisher information

The MLE is the procedure to find the estimate. We still need its performance. Unfortunately,

no finite sample (finite N) performance results are available for the MLE. We will focus then

on asymptotic results for which in some sense, as stated before, the MLE is optimal.

The MSE for the MLE can be written as

E

[

(

X̂ML,q − x
)2
]

=
[

E

(

X̂ML,q − x
)]2

+ Var
(

X̂ML,q

)

= bias2 + variance.

As it was stated, the MLE is asymptotically unbiased:

E

[

X̂ML,q

]

=
N→∞

x. (1.8)

Therefore, it is characterized asymptotically only by its variance.

The Cramér–Rao bound (CRB) is a lower bound on the variance of any unbiased

estimator [Kay 1993, p. 30] and the bound is valid even for finite N . Under some regularity

conditions2, the asymptotic variance of the MLE is known to be minimum and it attains the

CRB [Kay 1993, p. 160]:

Var
(

X̂ML,q

)

∼
N→∞

CRBq, (1.9)

later, we will compare this CRBq with its corresponding version for continuous measurements

that we will denote CRBc. The symbol ∼
N→∞

used here means that both quantities are

equivalent

lim
N→∞

Var
(

X̂ML,q

)

CRBq
= 1.

As the MLE is asymptotically unbiased and with asymptotically minimum variance it is usually

called an asymptotically efficient estimator in classical estimation terms.

Note that the optimality in asymptotic variance does not imply optimality in MSE sense,

as a biased estimator can attain a lower asymptotic MSE when compared with the MLE.

Also, it is important to stress that the variance of the MLE will tend to the CRB only if the

maximum of the likelihood can be achieved. This can be an issue when we need to evaluate the

maximum of the likelihood through a numerical method, in this case we have to ensure that

the numerical method will converge to the global maximum. In what follows, we will assume

that the MLE, either evaluated analytically or numerically, is always the global maximum of

the likelihood. For further discussion on the issues of finding the MLE see (More? - App.

A.2.1).

The CRB is the inverse of the Fisher information (FI) [Kay 1993, p. 30]. The FI is

given by the variance of the score function Sq. As the expected value of the score function

is zero [Kay 1993, p. 67], the FI is given by the second order moment of the score function.

Starting from the definition of the score function for N quantized measurements and going in

2These general conditions are detailed in [Lehmann 1998, p. 441, 449 and 450]. See [Le Cam 1990] for some

examples where the MLE does not behave asymptotically as expected.
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the direction of the asymptotic variance of the MLE, we have the following expressions:

Sq,1:N =
∂ logL (x; i1:N )

∂x
- score function,

Iq,1:N = E
[

S2
q,1:N

]

= E

{

[

∂ logL (x; i1:N )

∂x

]2
}

- FI,

Var
(

X̂ML,q

)

∼
N→∞

CRBq =
1

Iq,1:N
=

1

E

{

[

∂ logL(x;i1:N )
∂x

]2
} - variance and CRB.

the subscript is used to indicate that these quantities are related to the quantized measure-

ments i1:N . Due to the fact that the measurements are i.i.d., whenever we want to refer to the

score function and FI for one measurement ik, we can drop the sample indexes, thus writing

Sq and Iq. Under the assumption of independent measurements (independent noise), we have

the following:

• the joint probability in the FI expression decomposes in a product of marginal proba-

bilities.

• The logarithm of the product of marginal probabilities becomes the sum of the logarithm

of each probability.

• After differentiating the sum of logarithms w.r.t. x, the square of the differentiated sum

can be decomposed in a sum of squared terms and a sum of products between different

terms.

• The expectation of the products between different terms is zero because the factors in

the products are independent and with zero mean (they are score functions thus having

zero mean [Kay 1993, p. 67]).

• The expectation of each squared term is the FI for the corresponding individual mea-

surement.

Therefore, as the measurements are also identically distributed, the FI for N quantized mea-

surements is N times the FI for one measurement Iq:

Var
(

X̂ML,q

)

∼
N→∞

CRBq =
1

NIq
. (1.10)

The score function for one measurement Sq is

Sq =
∂ logL (x; ik)

∂x
=

∂P(ik;x)
∂x

P (ik;x)
(1.11)

and the corresponding FI is

Iq = E

{

[

∂ logL (x; ik)

∂x

]2
}

=
∑

ik∈I

[

∂P(ik;x)
∂x

P (ik;x)

]2

P (ik;x) ,

=
∑

ik∈I

[

∂P(ik;x)
∂x

]2

P (ik;x)
. (1.12)
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Defining the difference between the central threshold and the parameter as ε = τ0 − x, using

the CDF, PDF notations and the symmetry of the quantization thresholds we have

Iq =

ik=
NI
2

∑

ik=1







[

f
(

ε+ τ ′ik−1

)

− f
(

ε+ τ ′ik
)]2

F
(

ε+ τ ′ik

)

− F
(

ε+ τ ′ik−1

) +

[

f
(

ε− τ ′ik
)

− f
(

ε− τ ′ik−1

)]2

F
(

ε− τ ′ik−1

)

− F
(

ε− τ ′ik

)







. (1.13)

The solution to problem (a) (p. 27) given by the MLE is the following:

Solution to (a) - MLE for a fixed thresholds set τ

(a1) 1) Estimator

X̂ML,q = argmax
x

L (x; i1:N )

or

X̂ML,q (i1:N ) = argmax
x

logL (x; i1:N ) ,

with L (x; i1:N ) given by (1.5)

L (x; i1:N ) =

N
∏

k=1

P (ik;x) .

2) Performance (asymptotic)

X̂ML,q is asymptotically unbiased

E

[

X̂ML,q

]

=
N→∞

x

and its asymptotic MSE or variance is given by

Var
(

X̂ML,q

)

∼
N→∞

CRBq =
1

NIq
,

with Iq given by (1.13).

The CRB given above is not only related to the MLE, but can be used to approximately

assess the performance of any good (close to optimal) estimator. In our case, it can be used to

characterize the performance of the measurement/estimation system (Fig. 1.2) independently

of the estimator.

1.2.3 Quantization loss

The solution given above does not contain any direct characterization of the estimation per-

formance as a function of NI and/or τ . We are going to look into these details now.
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Noisy

continuous

measurements

Y1:N =

{Y1, · · · , YN}
Quantization

i1:N =

{i1, · · · , iN} Parameter

estimation

Parameter

estimation

X̂q

CRBq

X̂c

CRBc

Figure 1.2: Scheme representing the general measurement/estimation system. The continuous

measurements sequence Y1:N is scalarly quantized and the quantized sequence i1:N is used for

estimation. X̂q and X̂c are the estimators based on quantized or continuous measurements

and CRBq and CRBc are their respective CRB.

Loss with respect to the continuous measurement

We will start analyzing the general effect of quantization on estimation. An approximate way

of doing this (exact for N → ∞) is to study the quantized FI for one measurement Iq and its

difference with respect to the continuous measurement FI Ic. Iq was given in (1.13), while Ic
is given by

Ic = E
[

S2
c

]

, (1.14)

where Sc is the score function for continuous measurements given by

Sc (y) =
∂ log f (y − x)

∂x
. (1.15)

The difference between Ic and Iq can be obtained by evaluating the quantity E

[

(Sc − Sq)
2
]

[Marano 2007]. Indeed,

E

[

(Sc − Sq)
2
]

= E
[

S2
c

]

+ E
[

S2
q

]

− 2E [ScSq] = Ic + Iq − 2E [ScSq]

and it can be shown that E [ScSq] = E
[

S2
q

]

(Why? - App. A.1.1). Thus from above, we have3

Ic − Iq = E

[

(Sc − Sq)
2
]

> 0, (1.16)

as the right-hand side (RHS) is the expectation of a squared function, the FI difference is

nonnegative, meaning that the FI for quantized measurements is always less or equal to its

continuous measurement equivalent. Therefore, as the corresponding CRB will have larger or

equal values, it is clear, as it was already expected, that quantization of measurements reduces

estimation performance (see Fig. 1.2 for the two estimation settings).

3Special attention must be given to the fact that to obtain (1.16), the measurement PDF form f (y − x) is

not used, in the proof in App. A.1.1 a general form f (y;x) is used, thus the conclusion above is also valid for

general parameter estimation problems, not only location parameter estimation.
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Loss with respect to the number of quantization intervals

Even if performance loss is positive or zero, nothing guarantees, until now, that estimation

performance increases with increasing NI , as it is intuitively expected. We will suppose that we

have a threshold set τ for NI quantization intervals. We will suppose ε = 0 for simplification.

We will add one threshold τ ′ between two thresholds τi−1 and τi (τi > τ ′ > τi−1), i > 0 is

assumed only to simplify notation. The sum elements defining Iq does not change, except for

the term corresponding to interval qi. The old and new FI only for this region are respectively

Iτq,i =
[f (τi)− f (τi−1)]

2

F (τi)− F (τi−1)
=

[

f (τi)− f (τi−1)

F (τi)− F (τi−1)

]2

[F (τi)− F (τi−1)] , (1.17)

I
{τ}∪{τ ′}
q,i =

[f (τi)− f (τ ′)]2

F (τi)− F (τ ′)
+

[f (τ ′)− f (τi−1)]
2

F (τ ′)− F (τi−1)
. (1.18)

We can expand (1.17) adding and subtracting a term f (τ ′) in the numerator of the first

factor, adding and subtracting F (τ ′) in the denominator of the first factor and multiplying

and dividing the results numerator terms by F (τi)− F (τ ′) and F (τ ′)− F (τi−1). This gives

Iτq,i =







[f(τi)−f(τ ′)]
[F (τi)−F (τ ′)] [F (τi)− F (τ ′)] + [f(τ ′)−f(τi−1)]

[F (τ ′)−F (τi−1)]
[F (τ ′)− F (τi−1)]

[F (τi)− F (τ ′)] + [F (τ ′)− F (τi−1)]







2

×

{[

F (τi)− F
(

τ ′
)]

+
[

F
(

τ ′
)

− F (τi−1)
]}

. (1.19)

The Jensen’s inequality tells us the following [Hardy 1988, p. 74]: for a sequence of values ai,

positive weights bi and a convex function φ we have

φ





∑

i

aibi

∑

i

bi



 6

∑

i

biφ (ai)

∑

i

bi
. (1.20)

Multiplying both sides of (1.20) by
∑

i

bi and identifying in (1.19) bi with F (τi) − F (τ ′)

and F (τ ′) − F (τi−1), ai with [f(τi)−f(τ ′)]
[F (τi)−F (τ ′)] and [f(τ ′)−f(τi−1)]

[F (τ ′)−F (τi−1)]
and φ (x) with x2, we have the

following:

Iτq,i 6 I
{τ}∪{τ ′}
q,i . (1.21)

As it was expected, adding a threshold, or equivalently a quantizer interval, increases the FI

and, as consequence, it decreases the CRB, enhancing estimation performance. Note that

this is also true if we start with an optimal partition (a partition that maximizes the FI) and

we add a threshold arbitrarily, however, in this case, the final interval partition may not be

optimal within the class of quantizers with NI + 1 intervals, even if we try to optimize the

new threshold position.

As adding thresholds increases the FI and as Iq is bounded above by Ic, the FI tends to

a limit value when NI tends to infinity. An interesting point to be studied is to know if we

can make it converge to Ic. This will be done in Part II, where we will see that, under some

regularity assumptions on the quantizer intervals, Iq converges to Ic.

Now, to have a more precise characterization of the estimation performance as a function

of NI , we must first describe how it is influenced by τ . For the optimal τ , we will be able to

obtain the dependence of the estimation performance only on NI and the noise characteristics.
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1.3 Binary quantization

We begin the analysis by the binary case, NI = 2. For binary observations (τ ′−1 = −∞
and τ ′1 = ∞), the CRB for N measurements can be written by using (1.13) in the CRB. As

f (ε+ τ ′1) = 0, f
(

ε+ τ ′−1

)

= 0, 1 − F (ε+ τ ′1) = 0 and F
(

ε+ τ ′−1

)

= 0 by assumption AN2,

we obtain

CRBB
q =

F (ε) [1− F (ε)]

Nf2 (ε)
. (1.22)

The analysis of performance in this case reduces to the analysis of the function

B (ε) = NCRBB
q =

F (ε) [1− F (ε)]

f2 (ε)
. (1.23)

1.3.1 The Gaussian case

This function was studied in the Gaussian noise case in [Papadopoulos 2001] and revisited in

[Ribeiro 2006a]. In this case,

f (ε) =
1√
πδ

exp

[

−
(ε

δ

)2
]

, (1.24)

where δ is the noise scale factor, which can be linearly related to the standard deviation σ

(δ =
√
2σ). By plotting B as a function of ε (see Fig. 1.3), it was noted in [Papadopoulos 2001]

that the minimum value B⋆ is attained for ε = 0 and that B (ε) increases when |ε| increases.

Thus, the optimal threshold τ⋆0 must be equal to x and the minimum value of B (ε) is B⋆ =
1

4f2(0)
= πδ2

4 . We can compare the CRB for one continuous measurement Bc = 1
Ic

with B⋆,

to have an idea about the loss of performance. Using (1.14), (1.15) and the expression for the

PDF of the Gaussian distribution (1.24), we have:

Bc =
1

Ic
=

1

E

{

[

∂ log f(y−x)
∂x

]2
} =

δ2

2
=

2

π
B⋆,

or equivalently

B⋆ =
π

2
Bc ≈ 1.57Bc.

The performance loss due to binary quantization is surprisingly small. However, note that

this requires τ0 = x, which is impossible to do in practice as x is the unknown parameter to

be estimated. For increasing |ε| > 0, we can observe that B increases in a rather sensitive

way.

An upper bound on B was given in [Ribeiro 2006a] by noting that the product in the

numerator can be bounded by the following exponential (Why? - App. A.1.2):

F (ε) [1− F (ε)] 6
1

4
exp

[

−
(ε

δ

)2
]

. (1.25)

This bound can be used in (1.23) with (1.24) to obtain

B (ε) 6 B̄ (ε) =
π

4
exp

[

+
(ε

δ

)2
]

, (1.26)
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which is a function that increases exponentially with ε. To confirm that the bound is tight,

at least for moderate ε, we plot the function B̄ also in Fig. 1.3.

−1.5 −1 −0.5 0 0.5 1 1.5
0

π/4

2

4

6

ε

δ

B
o
u
n
d

×
1 δ
2

B

B̄

Figure 1.3: Quantity related to the CRB for quantized measurements, B, as a function of the

normalized difference ε
δ

between threshold and parameter. B̄ is its upper bound, which has

an exponential form. The noise distribution is the Gaussian distribution and the normalizing

factor δ is the Gaussian noise scale parameter. The normalizations in both axis are done to

be able to have a plot independent of δ.

Therefore, for the Gaussian case, we can conclude that the estimation performance loss

for the binary case is relatively small if we set the threshold at the true parameter value, but

it increases rapidly when we quantize far from it.

1.3.2 The Laplacian case

We can try to look to another symmetric unimodal distribution to see if the same hap-

pens. For example, we can consider the Laplacian distribution, whose PDF and CDF are

f (ε) =
1

2δ
exp

(

−
∣

∣

∣

ε

δ

∣

∣

∣

)

, (1.27) F (ε) =
1

2
+

sign (ε)

2

[

1− exp
(

−
∣

∣

∣

ε

δ

∣

∣

∣

)]

, (1.28)

where sign (ε) is the sign function

sign (ε) =















1 , if ε > 0,

0 , if ε = 0,

−1 , if ε < 0.

Applying (1.27) and (1.28) to (1.23), we get

B =

{

1
2 − sign(ε)

2

[

1− exp
(

−
∣

∣

ε
δ

∣

∣

)]

} [

1
2 + sign(ε)

2

[

1− exp
(

−
∣

∣

ε
δ

∣

∣

)]

]

1
4δ2

exp
(

−2
∣

∣

ε
δ

∣

∣

)

=
1
4 − 1

4

[

1− exp
(

−
∣

∣

ε
δ

∣

∣

)]2

1
4δ2

exp
(

−2
∣

∣

ε
δ

∣

∣

) =
1
2 exp

(

−
∣

∣

ε
δ

∣

∣

)

− 1
4 exp

(

−2
∣

∣

ε
δ

∣

∣

)

1
4δ2

exp
(

−2
∣

∣

ε
δ

∣

∣

)

= δ2
[

2 exp
(∣

∣

∣

ε

δ

∣

∣

∣

)

− 1
]

(1.29)



46 Chapter 1. Estimation of a constant parameter

and we can see that B and consequently the CRB is minimized for τ0 = x and that it is

sensible to ε, growing exponentially when we increase |ε| = |τ0 − x|.

1.3.3 The general case

We can try to verify if the increasing behavior of B (ε) w.r.t. |ε| will be observed in the general

case, when the noise PDF is unimodal and symmetric.

Attempt of global analysis: dead end A

For unimodal symmetric distributions we have that f (ε) = f (−ε) and F (ε) = 1 − F (−ε).
Therefore, as it was observed for the specific Gaussian and Laplacian cases, B (ε) is a sym-

metric function. For analyzing if the increasing behavior is true in general, we can concentrate

the analysis on the first derivative of B w.r.t. ε, for ε > 0. The derivative is

dB

dε
=
f2 (ε) [1− 2F (ε)]− 2F (ε) [1− F (ε)] f (1) (ε)

f3 (ε)
, (1.30)

where f (1) (ε) is the first derivative of the PDF w.r.t. ε, supposed to exist4. Observe that

if the distribution is symmetric, we have 1 − 2F (0) = 0 and only the second term in the

numerator can be nonzero for ε = 0. Adding the condition that f (1) (0) = 0 makes ε = 0 to

be a local extremum of B, being a candidate point to be a local minimum.

In a first attempt to verify if ε = 0 is a global minimum, we can calculate the second

derivative and look if its sign is negative for all ε. If we calculate the second derivative we get

d2B

dε2
=

−3f2 (ε) f (1) (ε) [1− 2F (ε)] + F (ε) [1− F (ε)]
[

6f (1) 2 (ε)− 2f (ε) f (2) (ε)
]

f4 (ε)
− 2,

(1.31)

with f (2) (ε) the second derivative supposed to exist4. Even using the assumptions on the

noise distribution, we cannot get any conclusion on the sign of the second derivative. Thus,

we can try to go back to the first derivative and analyze its sign. Using the symmetry of B, a

sufficient condition for ε = 0 to be a global maximum is that dB
dε
> 0 for ε > 0. The derivative

dB
dε

has the same sign of the numerator in the RHS of (1.30), therefore, we can obtain the

condition

− f (1) (ε) >
f2 (ε) [2F (ε)− 1]

2F (ε) [1− F (ε)]
,

using the fact that the density is monotonically decreasing (f (1) (ε) < 0 for ε < 0) and

symmetric ([2F (ε)− 1] > 0 for ε > 0), we can write

∣

∣

∣f (1) (ε)
∣

∣

∣ >
f2 (ε) [2F (ε)− 1]

2F (ε) [1− F (ε)]
. (1.32)

Unfortunately, by using the assumptions on the distribution we cannot go further. But, at

least, we can use the condition above (1.32) to verify empirically, for commonly used noise

4This rules out the evaluation of this quantity for ε = 0 in the Laplacian case, which is not a problematic

case, as we know analytically that B is strictly increasing with |ε| in this case.
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models, the increasing behavior of B (ε) with |ε|. For doing so, we (re)tested the Gaussian

and Laplacian distributions with (1.32), we also added a heavy-tailed distribution5 to see if

in this case the conclusions change. The heavy-tailed distribution is the Cauchy distribution

with PDF and CDF given respectively by

f (ε) =
1

πδ

1
[

1 +
(

ε
δ

)2
] , (1.33)

F (ε) =
1

2
+

1

π
arctan

(ε

δ

)

. (1.34)

For the three distributions (Gaussian, Laplacian and Cauchy), we calculated the quantity M =
∣

∣f (1) (ε)
∣

∣− f2(ε)[2F (ε)−1]
2F (ε)[1−F (ε)] , which must be positive to have the monotonic increasing behavior of

B w.r.t. |ε|. The result is displayed in Fig. 1.4, where we observe that this is indeed true.

0 1 2 3 4 5
0

0.2

0.4

ε

δ

M
×
δ
2

Gaussian

Cauchy

Laplacian

Figure 1.4: M×δ2 as a function of ε
δ
> 0. The plot is given for three types of noise distribution:

Gaussian, Cauchy and Laplacian. All distributions have a noise scale parameter denoted δ.

The function must be positive for the optimal threshold in binary quantization to be exactly

placed at the true parameter τ⋆ = x. The normalizations in both axis are done to be able to

have a plot independent of δ.

Local analysis

As condition (1.32) is difficult to verify in general, we can try to analyze the local behavior of

B (ε) around ε = 0. Even if the results will be weaker, as they will only be local results, we

can expect that the conditions for ε = 0 to be a local minimum of B (ε) will be easy to verify.

We saw above that if f (1) (0) = 0, then we have an extremum of B (ε) at ε = 0. If we use

one more time the assumption f (1) (0) = 0 on the second derivative at zero and the symmetry

(F (0) [1− F (0)] = 1
4), we get

d2B

dε2

∣

∣

∣

∣

ε=0

= −1

2

f (2) (0)

f3 (0)
− 2.

5A heavy-tailed distribution is a distribution whose ratio between 1 − F (x+ y) and 1 − F (x) is equal

to one when x tends to infinity [Sigman 1999]. A subclass of this family is the class of all sub-exponential

distributions, where the Student-t distributions (for which the Cauchy distribution is a special case) and

Paretian distributions are included.
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For ε = 0 to be a local minimum of B (ε), we have the condition d2B
dε2

∣

∣

∣

ε=0
> 0. When we

apply this condition to the expression above, we can obtain the following condition on the

noise PDF and its second derivative:

− f (2) (0) > 4f3 (0) . (1.35)

For the Gaussian distribution this condition is satisfied as we have

− f (2) (0) =
1

δ3
2√
π
> 4f3 (0) =

1

δ3
4

π
3
2

and also for the Cauchy distribution

− f (2) (0) =
1

δ3
2

π
> 4f3 (0) =

1

δ3
4

π3
.

1.3.4 Asymmetric threshold: surprising cases B

Surprisingly, we can find symmetric distributions and even a class of unimodal symmetric

distributions for which the condition (1.35) is not satisfied, as a consequence, for these distri-

butions, ε = 0 can be a local maximum instead of a local minimum.

The uniform/Gaussian case

A simple way to define a symmetric distribution that does not satisfy (1.35) is to set the values

of the PDF around zero to a nonzero constant, in this way f (0) > 0 and f (2) (0) = 0. This

makes the second derivative at ε = 0 to be negative, leading to a local maximum of B (ε) at

that point.

As an example we can consider a noise PDF that is uniform in the interval
[

−α
2 ,

α
2

]

, where

α ∈ R+, and that decreases as a Gaussian distribution with a standard deviation parameter

σ outside this interval. We call this noise distribution the uniform/Gaussian distribution and

the analytic expression for its PDF is

f (ε) =



























fGL (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε+α
2

σ

)2
]

, for ε < −α
2 ,

fU (ε) = 1
C
√
2πσ

, for − α
2 ≤ ε ≤ α

2 ,

fGR (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε−α
2

σ

)2
]

, for ε > α
2 ,

(1.36)

where C = 1 + α√
2πσ

is a normalization constant that makes the integral of the PDF to be

equal to one. This PDF is depicted in Fig. 1.5.

To obtain the function B (ε), we have to describe the CDF of the uniform/Gaussian r.v..

If we denote Φ (ε) the CDF of a standard Gaussian distribution (the CDF for a Gaussian with

σ = 1), we obtain the following:

F (ε) =



















1
C
Φ
(

ε+α
2

σ

)

, for ε < −α
2 ,

1
C

[

1
2 + 1√

2πσ

(

ε+ α
2

)

]

, for − α
2 ≤ ε ≤ α

2 ,

1
C

[

α√
2πσ

+Φ
(

ε+α
2

σ

)]

, for ε > α
2 .

(1.37)
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σ σ

Figure 1.5: PDF for the uniform/Gaussian distribution. The center region is uniform with

width α, while the left and right sides are Gaussian with standard deviation parameter σ.

Using (1.36) and (1.37) in the expression for B (ε) (1.23), we get

B (ε) =
F (ε) [1− F (ε)]

f2 (ε)
=

=































2πσ2 exp

[

(

ε+α
2

σ

)2
]

Φ
(

ε+α
2

σ

) [

C − Φ
(

ε+α
2

σ

)]

, for ε < −α
2 ,

2πσ2
[

(

1
2 + α

2
1√
2πσ

)2
− ε2

2πσ2

]

, for − α
2 ≤ ε ≤ α

2 ,

2πσ2 exp

[

(

ε−α
2

σ

)2
]

[

α√
2πσ

+Φ
(

ε−α
2

σ

)] [

1− Φ
(

ε−α
2

σ

)]

, for ε > α
2 .

(1.38)

observe that in the interval
[

−α
2 ,

α
2

]

, the function is concave, so we really have a local maxi-

mum at zero.

For observing the global behavior of this bound, we plotted CRBB
q for a number of samples

N = 500, α = 1, σ = 1 and for values of ε in the interval [−2, 2]. For verifying that the

behavior of the bound was close to the true MSE of the MLE, we simulated the MLE 105

times for N = 500, the simulation results were used for evaluating a simulated MSE. The

details on the implementation of the MLE for binary quantization will be presented further in

(a1.1) in Sec. 1.3.6 and for more specific implementation details about the uniform/Gaussian

case see (More? - App. A.2.2). The simulation of the noise was done by exploiting the fact

that the uniform/Gaussian distribution is a mixture of distributions that are easy to sample

(How? - App. A.3.1). The results are shown in Fig. 1.6.

We can observe the concave behavior of the bound around ε = 0 and the presence of

two minima at points different from ε = 0. This shows that for this type of noise, binary

quantization must be done in an asymmetric way, by shifting the central threshold to a zone

where the noise is not uniform. Note also that if we shift too much, the performance starts

too degrade again. We suspect that this asymmetric behavior comes from the fact that for

the uniform distribution the most informative points in statistical sense are the boundaries of

the distribution (where it passes from a positive value to zero). Finally, we can also see that

the MSE for the MLE is quite close to the bound, indicating that we can use the bound for

analyzing the behavior of the MSE.
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Figure 1.6: CRBB
q and simulated MLE MSE for uniform/Gaussian noise. Both the bound

and simulated MSE were evaluated for a number of samples N = 500 and for ε in the interval

[−2, 2]. The MSE for the MLE was evaluated through Monte Carlo simulation using 105

realizations of blocks with 500 samples. We considered the following noise parameters: α = 1

and σ = 1.

The generalized Gaussian case

We can also look if there are noise distributions without the central uniform behavior for which

the condition on the second derivative (1.35) is not respected. All distributions that have zero

second derivative at ε = 0 will not respect the condition. To have zero second derivative at

zero, the PDF must be flat around zero. A class of distributions for which we can control the

flatness around zero by changing a parameter is the generalized Gaussian distribution

(GGD). A more detailed presentation of the GGD will be given in Ch. 3 with the motivation

for using it as a noise model. Here, we will present only its PDF and CDF, which are given

respectively by

f (ε) =
β

2δΓ
(

1
β

) exp

(

−
∣

∣

∣

ε

δ

∣

∣

∣

β
)

, (1.39)

F (ε) =
1

2



1 + sign (ε)
γ
(

1
β
,
∣

∣

ε
δ

∣

∣

β
)

Γ
(

1
β

)



 , (1.40)

where δ is the noise scale parameter, β is a shape parameter which allows for controlling the

flatness around zero. Both δ and β are constrained to be strictly positive δ > 0, β > 0. Γ (�)

is the gamma function

Γ (x) =

+∞
∫

0

zx−1 exp (−z) dz
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and γ (�, �) is the incomplete gamma function

γ (x,w) =

w
∫

0

zx−1 exp (−z) dz.

We need to calculate f (2) (ε) at ε = 0. For doing so, we will evaluate the derivatives for ε < 0

and ε > 0 and then we will evaluate their limits when ε tends to zero.

For the first derivative we have

f (1) (ε) =















D
(−ε

δ

)β−1
exp

[

−
(−ε

δ

)β
]

, for ε < 0,

−D
(

ε
δ

)β−1
exp

[

−
(

ε
δ

)β
]

, for ε > 0,

where D = β2

2δ2Γ
(

1
β

) . Observe that if β ≤ 1, then the first derivative at zero is not defined.

For β > 1, the derivative is zero.

For the evaluation of the second derivative we will consider β > 1. We get the following

second derivative:

f (2) (ε) =















D
[

− (β−1)
δ

(−ε
δ

)β−2
+ β

δ

(−ε
δ

)2(β−1)
]

exp
[

−
(−ε

δ

)β
]

, for ε < 0,

D
[

− (β−1)
δ

(

ε
δ

)β−2
+ β

δ

(

ε
δ

)2(β−1)
]

exp
[

−
(

ε
δ

)β
]

, for ε > 0.

We can see that for 1 < β < 2, the derivatives when ε approaches zero are both −∞. For

these cases, the point ε = 0 is a local minimum of B (ε). In the Gaussian case β = 2, the

second derivative has a finite negative value and we saw before that ε = 0 is a local minimum

(empirically we also observed that it is a global minimum). For the cases β > 2, the second

derivative is zero, thus corresponding to the special cases of local maximum that we were

looking for.

The function B (ε), that we expect to be a "w" shaped function for β > 2, can be evaluated

using (1.39) and (1.40) in the expression for B (ε) (1.23). This gives

B (ε) =
F (ε) [1− F (ε)]

f2 (ε)
=
δ2Γ2

(

1
β

)

β2



1−
γ2
(

1
β
,
∣

∣

ε
δ

∣

∣

β
)

Γ2
(

1
β

)



 exp

(

2
∣

∣

∣

ε

δ

∣

∣

∣

β
)

. (1.41)

As in the uniform/Gaussian case, we also plotted CRBB
q and the simulated MSE of the MLE.

We used N = 500, β = 4, δ = 1 and values of ε in the interval [−1, 1]. We simulated the MLE

105 times and the results were used to obtain an estimate of the true MSE for this estimator.

For more specific implementation details about the MLE in the GGD case see (More? - App.

A.2.3). The GGD noise was generated using transformations of gamma variates (How? - App.

A.3.2). The results are shown in Fig. 1.7.

We can notice again that the optimal threshold must be placed in an asymmetric way

and also that the simulated estimation performance is close to the bound. Contrary to the
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Figure 1.7: CRBB
q and simulated MLE MSE for GGD noise. Both the bound and simulated

MSE were evaluated for a number of samples N = 500 and for ε in the interval [−1, 1]. The

MSE for the MLE was evaluated through Monte Carlo simulation using 105 realizations of

blocks with 500 samples. We considered the following noise parameters: β = 4 and δ = 1.

uniform/Gaussian case, we cannot have a clear interpretation on the position of the minimum

point. The minimum point was observed to be sensible to changes in β and δ. It was also

observed that as we set β closer to 2 (the Gaussian case), we obtain a difference of performance

between the point ε = 0 and the minimum point that gets smaller. On the other hand, as we

increase β (getting closer to the uniform distribution), the difference seems to increase.

1.3.5 Conclusions on binary quantization performance

To conclude, we can say that the best estimation performance in the binary case for commonly

used noise models (CRBB
q ) is obtained for ε = 0 or τ0 = x:

CRBB,⋆
q =

F (0) [1− F (0)]

Nf2 (0)
=

1

4Nf2 (0)
, (1.42)

which is also a lower bound on the asymptotically achievable performance. However, even

under the unimodal symmetric assumption, this rather intuitive conclusion is not always true.

From the local condition on the second derivative, we can see that if the noise PDF is slightly

flat around zero, then a "w" shaped performance function will appear, leading to an optimal

threshold that might be placed asymmetrically w.r.t. to its input r.v. distribution.

The variation between the performance for the point ε = 0 and the minimum CRBB,⋆
q

in the asymmetric cases seems to depend on the flatness of the distribution. An increased

flatness around zero, seems to be related to an increased performance variation. This strong

dependence between the shape of the CRB and the noise distribution seems to be a good

subject for future work.

Another interesting direction for future work on this issue about asymmetry is to ana-

lyze how it can appear on the detection problem using binary quantized measurements. It
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appears that such behavior will be present for the same noise distributions considered above

(uniform/Gaussian and GGD) in the problem of local optimum detection of signals based

on binary quantized measurements. For this problem, it can be shown that the asymptotic

performance depends also on the FI for quantized measurements [Kassam 1977].

1.3.6 MLE for binary quantization

The specific implementation of (a1) in the binary case with a fixed threshold can be done

in a simple way [Papadopoulos 2001] (and revisited in [Ribeiro 2006a]). The sequence of N

quantized measurements can be observed as a sequence of N i.i.d. samples from a Bernoulli

distribution with probability p = P (ik = 1) = 1 − F (τ0 − x). Thus, hiding the functional

dependency on x and τ0, we can calculate the likelihood of p with the sequence i1:N .

The likelihood of p for i1:N can be written in a simple form by observing the following:

• for a measurement ik, P (ik = 1; p) = p and P (ik = −1; p) = 1 − p. We can write

P (ik; p) in a form pf1(ik) (1− p)f−1(ik), where the functions f1 and f−1 are respectively

1 and 0 when ik = 1, and 0 and 1 when ik = −1. A Simple choice for these functions is

f1 (ik) =
ik+1
2 and f−1 (ik) =

1−ik
2 .

• As the measurements are independent, the likelihood for the sequence i1:N will be the

product of the marginal likelihoods P (ik = 1; p).

This leads to

L (p, i1:N ) =

N
∏

k=1

p
ik+1

2 (1− p)
1−ik

2 .

Calculating its logarithm and then evaluating the MLE for p denoted P̂ML, we get the following

[Wasserman 2003, p. 123]:

P̂ML =
1

N

N
∑

k=1

1 + ik

2
. (1.43)

The MLE (in general) has the property that if we want to estimate a parameter x which is

an invertible function of z, x = g (z) and we know the MLE for z, ẐML, then the MLE for x

is X̂ML = g
(

ẐML

)

[Kay 1993, p. 176]. This property is known as functional invariance. For

our problem we can write

x = g (p) = τ0 − F−1 (1− p) , (1.44)

F−1 is the inverse of the noise CDF. By definition F−1 is invertible, as F is strictly increasing

due to the monotonicity assumption on F , so the function g in this case is invertible. Thus,

by the functional invariance of the MLE, we can obtain X̂ML,q, after replacing p in (1.44) by

P̂ML given by (1.43). This leads to an analytical expression for the MLE:

X̂ML,q = g
(

P̂ML

)

= τ0 − F−1
(

1− P̂ML

)

= τ0 − F−1

[

1

2

(

1− 1

N

N
∑

k=1

ik

)]

. (1.45)
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Therefore, the solution to problem (a) (p. 27) in the binary case can be detailed as follows

Solution to (a) - MLE for binary quantized measurements and fixed threshold τ0

(a1.1) 1) Estimator

X̂ML,q = g
(

P̂ML

)

= τ0 − F−1
(

1− P̂ML

)

= τ0 − F−1

[

1

2

(

1− 1

N

N
∑

k=1

ik

)]

.

2) Performance (asymptotic)

X̂ML,q is asymptotically unbiased

E

[

X̂ML,q

]

=
N→∞

x

and its asymptotic MSE or variance is given by

Var
(

X̂ML,q

)

∼
N→∞

CRBB
q =

F (τ0 − x) [1− F (τ0 − x)]

Nf2 (τ0 − x)
,

which is minimal for commonly used noise models (Gaus-

sian, Laplacian and Cauchy distributions) if τ0 = x, attain-

ing 1
4Nf2(0)

and increases with |τ0 − x|.

Notice that this algorithm can be used for any noise distribution, not only for symmetric

unimodal distributions.

1.4 Multibit quantization

Now, we study the multiple interval (multibit) case, NI > 2. The expression characterizing

estimation performance for this case is given by (1.13):

Iq (ε) =

ik=
NI
2

∑

ik=1







[

f
(

ε+ τ ′ik
)

− f
(

ε+ τ ′ik−1

)]2

F
(

ε+ τ ′ik

)

− F
(

ε+ τ ′ik−1

) +

[

f
(

ε− τ ′ik−1

)

− f
(

ε− τ ′ik
)]2

F
(

ε− τ ′ik−1

)

− F
(

ε− τ ′ik

)







.

We remind that a larger Iq (ε) gives a better asymptotic estimation performance. We will

start by analyzing the influence of the central threshold.
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For verifying symmetry, we replace ε by −ε.

Iq (−ε) =
ik=

NI
2

∑

ik=1







[

f
(

−ε+ τ ′ik
)

− f
(

−ε+ τ ′ik−1

)]2

F
(

−ε+ τ ′ik

)

− F
(

−ε+ τ ′ik−1

) +

[

f
(

−ε− τ ′ik−1

)

− f
(

−ε− τ ′ik
)]2

F
(

−ε− τ ′ik−1

)

− F
(

−ε− τ ′ik

)







.

The following equalities come from the symmetry assumptions:

f
(

−ε+ τ ′ik
)

= f
(

ε− τ ′ik
)

,

f
(

−ε+ τ ′ik−1

)

= f
(

ε− τ ′ik−1

)

,

f
(

−ε− τ ′ik−1

)

= f
(

ε+ τ ′ik−1

)

,

f
(

−ε− τ ′ik
)

= f
(

ε+ τ ′ik
)

,

F
(

−ε+ τ ′ik
)

= 1− F
(

ε− τ ′ik
)

,

F
(

−ε+ τ ′ik−1

)

= 1− F
(

ε− τ ′ik−1

)

,

F
(

−ε− τ ′ik−1

)

= 1− F
(

ε+ τ ′ik−1

)

,

F
(

−ε− τ ′ik
)

= 1− F
(

ε+ τ ′ik
)

.

Applying these expressions to Iq (−ε) and multiplying by −1 inside the squared terms we get

that Iq (ε) = Iq (−ε), thus, the even symmetry observed in the binary case can be extended

to this case.

1.4.1 The Laplacian case

Now, we start with the Laplacian case which is easy to be treated analytically. If we set ε = 0,

Iq (0) =

ik=
NI
2

∑

ik=1







[

f
(

τ ′ik
)

− f
(

τ ′ik−1

)]2

F
(

τ ′ik

)

− F
(

τ ′ik−1

) +

[

f
(

−τ ′ik−1

)

− f
(

−τ ′ik
)]2

F
(

−τ ′ik−1

)

− F
(

−τ ′ik
)







,

using also the symmetry assumption (similar development as above), one can easily observe

that the second term inside the sum terms is equal to the first, which means that we can

rewrite the sum as

Iq (0) = 2

ik=
NI
2

∑

ik=1







[

f
(

τ ′ik
)

− f
(

τ ′ik−1

)]2

F
(

τ ′ik

)

− F
(

τ ′ik−1

)







. (1.46)

Using the PDF and CDF for the Laplacian distribution (1.27) and (1.28), separating the

last term of the sum and simplifying the notation for the absolute value and sign functions

(τ ′ik ≥ 0), we obtain

Iq (0) = 2













































ik=
NI
2

−1
∑

ik=1

1
4δ2

[

exp

(

− τ ′ik
δ

)

− exp

(

− τ ′ik−1

δ

)]2

1
2

[

exp

(

− τ ′ik−1

δ

)

− exp

(

− τ ′ik
δ

)]



















+

1
4δ2

[

exp

(

−
τ ′NI

2 −1

δ

)]2

1
2 exp

(

−
τ ′
NI
2 −1

δ
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=
1

δ2





















ik=
NI
2

−1
∑

ik=1

[

exp

(

−
τ ′ik−1

δ

)

− exp

(

−
τ ′ik
δ

)]











+ exp



−
τ ′NI

2
−1

δ















.

The terms inside the sum (in the Σ operator) cancel each other except for the first and last

term, the last term and the term outside the sum also cancel each other. Iq (0) is then given
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by only one term, which is Iq (0) =
1
δ2

exp
(

− τ ′0
δ

)

, as τ ′0 = 0, we have

Iq (0) =
1

δ2
.

Surprisingly, this is exactly the same as the FI for continuous measurements (Why? - App.

A.1.3). Thus, this means that not only τ0 = x is optimal for the Laplacian distribution but

also that no loss of performance is observed. As the quantized measurement FI can only

increase by adding quantization intervals and as it is upper bounded by the continuous FI,

we see that once we have placed the threshold at x, the quantized measurement FI will be

the same for all NI ≥ 2. This means that in practice, as we want to minimize the rate, the

optimal choice of number of quantization intervals will be NI = 2.

1.4.2 The Gaussian and Cauchy cases under uniform quantization

Instead of diving into calculus for trying to obtain some characterization of Iq as a function

of ε, we preferred to directly plot its influence for a given set of thresholds. We evaluated

Iq given by (1.13) as a function of ε
δ

with ε
δ
∈ [−10, 10]. The evaluation was done for the

Gaussian and Cauchy distributions. The quantizer was assumed to have NI = 8 and a

uniform step ∆ between thresholds, which means that τ ′ = [0 ∆ 2∆ 3∆ +∞]. Here,

uniform quantization was assumed only to simplify the presentation.6 Three different ∆ were

chosen for the evaluation, ∆ = 0.1δ, ∆⋆ and 2δ. ∆⋆ was chosen as the maximizer of Iq when

ε = 0 and it was obtained by exhaustive search. The results are given in Fig. 1.8 where the

continuous FI Ic is also plotted for comparison. Remember that for the Gaussian distribution

Ic =
2
δ2

. For the Cauchy distribution we have Ic =
1

2δ2
(Why? - App. A.1.4 ).

Observe that in all cases the point ε = 0 gives maximum Iq. Note that differently from the

binary case, the FI does not strictly decrease when |ε| increases, this only happens when |ε|
is outside the quantizer range. We can also see that the optimal ∆ gives Iq values very close

to Ic.

It is also interesting to observe that when we choose ∆ very large compared with ∆⋆, we

obtain a maximum Iq smaller than for ∆⋆, but this Iq does not decrease to zero inside the

quantizer range. This indicates that when we have a prior information on the interval of values

where x is located, then a more robust solution can be found by using a large quantization step

(for example by using a ∆ that is equal to the prior interval length divided by NI). Clearly

in this case, the price to pay is that even if we have ε = 0 the performance is lower than the

optimal, being very close to the performance for a binary quantizer.

Differently from the binary case, after evaluating Iq (ε) for the GGD with β > 2 and

NI > 2, it was observed that when we use ∆⋆ as quantization step, the symmetric quantizer

assumption seems to force the performance to be optimal for ε = 0. Less surprisingly now,

when the quantization step is chosen too large, the asymmetric behavior appears, this is due to

the fact that the performance around ε = τ ′i is very close to the binary quantizer performance.

In the same way as for the other noise distributions considered above, it was also observed

that when the parameter is outside the quantizer range the performance is degraded.

6It will be shown in Part II, that for large NI , the optimal quantization intervals may not be uniform.
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Figure 1.8: FI for a range [−10, 10] of normalized difference ε
δ

between the central threshold

τ0 and the true parameter x. The quantizer with NI = 8 is uniform with quantization

interval length (in the granular region) ∆. In (a), the noise distribution is Gaussian and

∆ = 0.1δ,∆⋆ = 0.399δ, 2δ. ∆⋆ is the optimal quantization step for ε
δ
= 0. In (b), the Cauchy

noise distribution is used and ∆ = 0.1δ,∆⋆ = 0.5878δ, 2δ. ∆⋆ is also the optimal quantization

step for ε
δ
= 0. For both cases, Ic is the FI for the continuous measurement. In the Gaussian

case Ic = 2δ2, while in the Cauchy case Ic =
1
2δ

2. The normalizations on the difference range

and also on FI were done to be able to have a plot independent of δ.

In all tested cases7 (under the symmetry assumptions), it was observed that when ∆⋆ is

used, ε = 0 is the optimal solution. Thus, we can say that for commonly used noise models,

if the quantization thresholds are well chosen, τ0 = x is optimal. The "commonly used" term

here seems to be larger than in the binary case, as all the GGD with β > 2 do not have

anymore the asymmetric behavior for the optimal central threshold.

After setting τ0 = x, we still need to characterize the other thresholds to have a full

performance characterization depending only on NI . This can be equivalently stated as finding

the variations from the central thresholds τ ′ maximizing Iq (0) given by (1.46):

I⋆q = argmax
τ ′

Iq (0) . (1.47)

Unfortunately, an analytical solution cannot be found in general. An efficient solution for this

problem could be obtained if this problem was convex or convexifiable [Boyd 2004], but this is

not the case, so this is a very complicated multidimensional maximization problem. A possible

solution to it is to fix the quantizer to be uniform, then in this case the problem is still one

dimensional and it can be solved by exhaustive search (searching for the maximum on a fine

grid of possible values). Existence of a non-degenerate solution (0 < ∆⋆ < ∞) is guaranteed

by the following argument: for ∆⋆ → +∞, all the distribution is concentrated on the first

quantizer interval (remember that ε = 0), thus Iq will be equal to the binary case Iq and for

∆⋆ = 0, we get directly the binary quantization performance. As it was explained above, Iq

7Two families of distributions were tested, the GGD and the Student-t distribution which will be presented

later in Ch. 3. They were tested with uniform symmetric quantizers.
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increases when we add thresholds, so at least one non-degenerate solution must exist. For

a non-uniform solution, we can try to use local approximations by using Taylor series, this

subject will be left to Part II.

1.4.3 Summary of the main points

Thus, up to this point we have:

• estimation performance based on quantized measurements is bounded above by the

estimation performance based on continuous measurements.

• Adding quantization levels does not decrease estimation performance (it might increase

in most of the cases).

• The optimal central threshold τ0 must be placed at the true parameter x for commonly

used noise models (Gaussian, Laplacian, Cauchy distributions). If we consider NI > 2,

symmetric thresholds w.r.t. the central threshold and well chosen quantization intervals,

then it seems that τ0 = x may be optimal for a large class of symmetric unimodal

distributions (for all the distributions above plus other members of the GGD).

• Maximizing the estimation performance w.r.t. the other thresholds (1.47) is in general

a complicated problem.

1.4.4 MLE for multibit quantization with fixed thresholds

As it was done in the binary case, we still need to precise how to implement the MLE. Note

that in this case the likelihood is given by (1.5)

L (x; i1:N ) =

N
∏

k=1

P (ik;x) .

Now, the MLE cannot be written in simple form and we must resort to numerical maximiza-

tion. In general, we could use a steepest ascent algorithm, to iteratively climb the likelihood

function. As it was developed in [Ribeiro 2006a], an efficient solution can be found when the

noise distribution is log-concave. A log-concave distribution is a distribution for which its

logarithm is concave, a simple example is the Gaussian distribution. If f is log-concave, it is

known that P (ik;x) is log-concave [Boyd 2004, p. 107] and also that their product (expression

above) is log-concave [Boyd 2004, p.105]. Thus, under this assumption the log of L is concave,

an efficient solution for finding the MLE is the Newton’s algorithm [Boyd 2004, p. 496] given

by [Ribeiro 2006a]:

X̂ML,j = X̂ML,j−1 −
∂ log P(ik;x)

∂x
∂2 log P(ik;x)

∂x2

∣

∣

∣

∣

∣

x=X̂ML,j−1

, (1.48)

the subscript j is used to represent the iteration index and |
x=X̂ML,j−1

means that the function

on its left is evaluated at the point x = X̂ML,j−1. After starting the algorithm with an



1.4. Multibit quantization 59

arbitrary X̂ML,0, the iterations are done until a pre-specified small minimum value εmin for

the variations
∣

∣

∣
X̂ML,j − X̂ML,j−1

∣

∣

∣
is crossed. All the interest in obtaining a concave problem

formulation comes from the fact that the Newton’s algorithm not only guarantees convergence

to a global maximum but also does it with quadratic convergence, i.e. when the iterates gets

close to the optimal value, at each iteration X̂ML,j gets 2 digits closer to x [Boyd 2004, p.

489].

Therefore, for NI > 2, with a fixed set of thresholds and considering that the distribution

is log-concave we have the following solution for problem (a) (p. 27):

Solution to (a) - MLE for quantized measurements with log-concave

noise distribution, NI > 2 and fixed τ

(a1.2) 1) Estimator

Define an initial guess on the estimate X̂ML,0. Until
∣

∣

∣X̂ML,j − X̂ML,j−1

∣

∣

∣ < εmin, do

X̂ML,j = X̂ML,j−1 −
∂ log P(ik;x)

∂x
∂2 log P(ik;x)

∂x2

∣

∣

∣

∣

∣

x=X̂ML,j−1

and set j = j + 1. Then, X̂ML,q is set to the last X̂ML,j.

2) Performance (asymptotic)

X̂ML,q is asymptotically unbiased

E

[

X̂ML,q

]

=
N→∞

x

and its asymptotic MSE or variance is given by

Var
(

X̂ML,q

)

∼
N→∞

CRBq =
1

NIq
,

with Iq given by (1.13).
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1.5 Adaptive quantizers:

the high complexity fusion center approach

The analysis and results above indicate that to get optimal estimation performance from

quantized measurements we must, in general, place the central threshold close to the true

parameter8. This can be done by using the information given by the measurements to move

adaptively the central threshold. Main work that has been already done on this subject will

be presented in this section.

An adaptive scheme to estimate x based on a sensor network of binary quantizers is

presented in [Li 2007]. The main idea is that enhanced estimation performance can be obtained

if the sensors can place dynamically their thresholds around x. Here, we present an equivalent

sequential version using only one sensor. The following is proposed:

1. a sensor can communicate binary measurements to a fusion center. The sensor measure-

ment noise sequence is supposed to be i.i.d..

2. The sensor starts with a known binary threshold τ0,0, where the second subscript is for

the discrete-time index. Note that now the threshold will be considered to be varying.

3. At each instant k, the sensor obtains a binary quantized measurement ik (ik ∈ {−1, 1}).

4. The sensor then updates the threshold by the following simple cumulative rule:

τ0,k = τ0,k−1 + γik, (1.49)

where γ is a constant positive adaptation step (see the remarks after the MLE definition).

5. The sensor sends its measurement ik to the fusion center.

6. The fusion center updates its τ0,k, and stocks in a memory both ik and τ0,k. Note

that the fusion center threshold is exactly the same as the one obtained in the sensor

threshold update.

7. After a predefined number of iterations, for example N , or at each iteration k, the fusion

center can get a more precise estimate of x (more precise than τ0,k) by using a MLE

based on all past ik.

8The literature on the subject also points in the same direction.

The case when x is constrained to lie in a bounded interval X of R was extensively studied in

[Papadopoulos 2001]. Main attention was given to the effects of different schemes for setting τ0. The schemes

considered were: fixed, varying but random and i.i.d, varying deterministically and based on feedback. For

each scheme, the worst case CRBq (x was chosen to maximize the CRB) was evaluated and divided by the

continuous measurement CRB to give a measure on the performance loss induced by quantization. The loss

was shown to be more sensible w.r.t. an equivalent signal-to-noise ratio (the interval X length divided by the

noise scale factor) in the fixed case and insensible in the feedback case. Some solutions based on iterative

maximum likelihood techniques, which puts the new threshold on the last ML estimate, were presented but

no theoretical proofs that they reach the minimum CRBq were given.

In [Ribeiro 2006a], where the binary quantization Gaussian noise case was mainly studied, it was pointed

out that the sensibility of the estimation performance to ε and its optimality for ε = 0 indicates that, to

enhance performance, we could move adaptively the binary threshold, placing it on the last available estimate

X̂ to get closer and closer to the true x.
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1.5.1 MLE for the adaptive binary scheme

As the threshold is dependent on the measurements, the measurements are not independent

anymore. However, as a measurement ik is dependent only on past measurements and this

dependence is done through τ0,k−1, conditioned on the threshold that was used, the mea-

surements are independent. This leads to the following likelihood and log-likelihood for the

measurements until time N :

L (x; i1:N ) = P(i1:N ;x) =
N
∏

k=1

P(ik|ik−1, · · · , i1;x)

=

N
∏

k=1

P(ik|τ0,k−1;x)

=
N
∏

k=1

[1− F (τ0,k−1 − x)]
1+ik

2 F (τ0,k−1 − x)
1−ik

2 , (1.50)

logL (x; i1:N ) =
N
∑

k=1

{

1 + ik

2
log [1− F (τ0,k−1 − x)] +

1− ik

2
logF (τ0,k−1 − x)

}

,(1.51)

where the vertical bar inside the probability symbol means that the probability measure is

evaluated for the r.v. on the left side of the bar, conditioned on the r.v. on the right side of

the bar. The conditioning makes the output ik depend on τ0,k−1 as if it was a deterministic

parameter, that is why we can use the same notation with CDF F parametrized by a fixed

nonrandom threshold.

At the fusion center at time N , all the thresholds and binary measurements are known,

the maximum likelihood estimator can then be calculated by maximizing (1.50) or (1.51):

X̂ML,q = argmax
x

N
∏

k=1

[1− F (τ0,k−1 − x)]
1+ik

2 F (τ0,k−1 − x)
1−ik

2 (1.52)

or

X̂ML,q = argmax
x

N
∑

k=1

{

1 + ik

2
log [1− F (τ0,k−1 − x)] +

1− ik

2
logF (τ0,k−1 − x)

}

.

Note that the threshold moves with each measurement, while the estimate is obtained only

at the end of the measurement block. Observe also that when the noise distributions are log-

concave, the MLE can also be obtained by using the Newton’s algorithm, as it was discussed

in the previous section.

Remarks: it is intuitive to expect that the mean τ0,k will reach an equilibrium after some

time. If the threshold is above the parameter, iteration (1.49) will reduce its value, in the

other case, if the threshold is below the parameter, iteration (1.49) will increase its value. In

the mean equilibrium we have E

[

τ0,k−τ0,k−1

γ

]

= E [ik] = 0, thus as ik = 1 or ik = −1 the only

possibility for this to happen is when P (ik = 1;x) = P (ik = −1;x) = 1
2 , which in the case of

symmetric noise distributions means to say that E [τ0,k] = x.



62 Chapter 1. Estimation of a constant parameter

The variance of the thresholds will depend on the noise distribution but also on the pa-

rameter γ, if we choose γ to be relatively small, once the threshold is close to the parameter,

it will fluctuates around it with a small variance. The fact that the threshold updates are easy

to implement (it is just a cumulative sum) and that the estimator is a complex one goes well

with real implementation constraints, where complexity on the sensor side of the problem is

strongly constrained and on the fusion center side, it is less constrained.

1.5.2 Performance for the adaptive binary scheme

We must look now to the performance of this scheme. The performance analysis that is

presented here was proposed in [Fang 2008].

Even if the measurements are dependent, it is known that, under some conditions that are

satisfied here, the MLE will still attain the CRB [Crowder 1976]. Thus, the main problem

here will be the evaluation of the FI. As the measurements are dependent, the FI for N

measurements is not N times the FI for one measurement and we need to evaluate it using

the score function for the entire block of measurements. The FI for N measurements is

Iq,1:N = E [Sq] = E







[

N
∑

k=1

∂ logP(ik|τ0,k−1;x)

∂x

]2






.

It was shown in [Li 2007] that this quantity is equal to

Iq,1:N =

N
∑

k=1

E

[

f2 (τ0,k−1 − x)

F (τ0,k−1 − x) [1− F (τ0,k−1 − x)]

]

, (1.53)

where the expectation is evaluated under the only r.v. that still appears on the expression,

τ0,k−1. If we assume that τ0,0 = 0 then the τ0,k−1 is a random walk in an infinite grid (more

specifically finite for finite k) with values {−∞, · · · , −2γ, −γ, 0, γ, 2γ, · · · , +∞}.
For understanding how (1.53) was obtained, one can decompose the squared sum of score

functions into a sum of squared scores and a sum of score cross products. As the measurements

are independent, the expectation of each cross product will be the product of expectations.

The product of expectations will be zero because the expectation of a score function is zero

[Kay 1993, p. 67]. Therefore, Iq,1:N will be the expectation of the sum of squared scores.

Decomposing the expectation into an expectation on ik conditioned on the thresholds and an

expectation on the thresholds, one gets (1.53).

Denoting the probability of having τ0,k−1 = jγ by P (τ0,k−1 = jγ) = pj,k−1 we have:

Iq,1:N =

N
∑

k=1

+∞
∑

j=−∞

f2 (jγ − x)

F (jγ − x) [1− F (jγ − x)]
pj,k−1. (1.54)

Note that this is equivalent to obtaining N measurements from a binary quantizer with a

random thresholding scheme that changes its prior threshold distribution pk−1 in time. The

prior distribution changes in a way that when k → ∞, it is expected that most of its probability

will be concentrated around the parameter. This is in contrast to the methods presented in
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[Ribeiro 2006a], where x is random with a given prior and N binary thresholds are chosen

using a function of the prior distribution, in this case, having the right mode of the prior

distribution is crucial, while in the adaptive scheme above, the mode of pk−1 will be around

x for large k without any initial prior.

Putting the factors of (1.54) in (infinite dimension) vector notation

I′q =

[

· · · , f2 (−γ − x)

F (−γ − x) [1− F (−γ − x)]
,

f2 (0− x)

F (0− x) [1− F (0− x)]
,

f2 (γ − x)

F (γ − x) [1− F (γ − x)]
, · · ·

]⊤
, (1.55)

pk−1 = [· · · , p−1,k−1, p0,k−1, p1,k−1, · · · ]⊤ (1.56)

allows to rewrite the sum of the products as a scalar product. Thus, (1.54) becomes

Iq,1:N =
N
∑

k=1

I′⊤q pk−1. (1.57)

Using the definition of the threshold evolution (1.49), it is possible to observe that a specific

threshold value jγ has a probability of happening at instant k − 1 that depends on the

probabilities of having thresholds at (j − 1) γ or (j + 1) γ and of measuring ik−1 = 1 or

ik−1 = −1 respectively. This gives rise to a recursive equation for pj,k−1:

pj,k−1 = pj−1,k−2 [1− F ((j − 1) γ − x)] + pj+1,k−2F ((j + 1) γ − x) . (1.58)

This shows that the threshold values form a Markov chain, as the present probability of the

threshold values depends only on the previous probabilities pj,k−2. It is possible to write the

vector of threshold pk−1 probabilities in recursive form

pk = Tpk−1, (1.59)

where T is a (infinite dimensional) tridiagonal transition matrix, defined as follows

T =




























0
. . .

. . .
. . .

1− F (−2γ − x) 0 F (0− x) 0 0

0 1− F (−γ − x) 0 F (−γ − x) 0

0 0 1− F (0− x) 0 F (2γ − x)
. . .

. . .
. . .

0





























.

The stationarity theorem for Markov chains guarantees that pk−1 will attain an asymptotic

distribution p∞ [Fine 1968] (cited in [Fang 2008])9 and this distribution can be obtained by

solving the system of equations

p∞ = Tp∞.
9In [Fine 1968], it is shown that the possible threshold values can be separated in two classes of states, which

are periodic. The probability vectors for each class are shown to converge to unique asymptotic probability

vectors. The asymptotic probability vectors when put together form the vector p∞.
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To solve this infinite dimensional system [Fang 2008] considered that only a part of the thresh-

olds around the true parameter will have a non negligible probability, for practical purposes

it was considered that non negligible thresholds are those in the interval

Iτ = [−5σv − |x| , 5σv + |x|] ,

where σv is the standard deviation of the noise10. The non negligible probability vector,

denoted p̃∞ will have size 2
⌈

5σv+|x|
γ

⌉

+ 1 = 2jmax + 1, where ⌈y⌉ is the closest integer that

is larger than y and the "+1" comes from the zero threshold. The approximate threshold

distribution can then be obtained by solving

p̃∞ =

















p̃−jmax,∞
...

p̃∞,0
...

p̃jmax,∞

















= T̃p̃∞, (1.60)

where T̃ is the truncated transition matrix around the zero threshold (we show only the upper
left corner)

T̃ =















0 F (−γ (jmax − 1) + ε) 0 0
1− F (−γjmax + ε) 0 F (−γ (jmax − 2) + ε) 0

. . .
. . .

. . .

0















.

One can also truncate I′q only for the non negligible probability elements

Ĩ′q =

[

f2 (−γjmax + ε)

F (−γjmax + ε) [1− F (−γjmax + ε)]
, · · · , f2 (γjmax + ε)

F (γjmax + ε) [1− F (γjmax + ε)]

]⊤
.

(1.61)

Following the development in [Fang 2008], after a finite time Nc the probability vector pk will

be indistinguishable from p∞, thus when N → ∞, an infinity number of terms in Iq,1:N will

behave approximately as Ĩ′
⊤
q p̃∞, which leads to the following asymptotic approximation of

the FI:

Iq,1:N =
N
∑

k=1

I′⊤q pk−1 ∼
N→∞

N Ĩ′
⊤
q p̃∞. (1.62)

10For one of the noise distributions considered here, the Cauchy distribution, the standard deviation is

undefined. In this case, one can use the scale parameter δ instead of the standard deviation σv.



1.5. Adaptive quantizers: the high complexity fusion center approach 65

This gives the following solution for problem (a) (p. 27):

Solution to (a) - MLE for binary quantized measurements with

adaptive thresholds given by a simple cumulative sum.

(a2.1) 1) Estimator

Define an initial threshold τ0,0 and a positive γ, then from

k = 1 to N :

• the sensor obtains a binary measurement ik using τ0,k−1.

• The sensor sends ik to the fusion center and updates

the threshold (1.49):

τ0,k = τ0,k−1 + γik.

• The fusion center stores ik and also evaluates and stores

τ0,k.

With i1,N and τ0,1:N , the fusion center evaluates the MLE

(1.52):

X̂ML,q = argmax
x

N
∏

k=1

[1− F (τ0,k−1 − x)]
1+ik

2 F (τ0,k−1 − x)
1−ik

2 .

2) Performance (asymptotic and approximate)

X̂ML,q is asymptotically unbiased

E

[

X̂ML,q

]

=
N→∞

x

and its asymptotic MSE or variance can be approximated

by

Var
(

X̂ML,q

)

∼
N→∞

CRBq ≈
1

N Ĩ′
⊤
q p̃∞

,

with Ĩ′q given by (1.61) and p̃∞ by (1.60).

An alternative to have analytical results on the vector p∞ without using an approximation

with truncation can be obtained by considering that x lies in a symmetric interval [−A, A],
where A is a positive real. We can create boundaries on the possible values of the threshold in

such a way that the number of possible thresholds is finite. In this way, the threshold sequence

can be modeled as a Markov chain defined in a domain with a finite number of values and we

can evaluate the asymptotic threshold distribution without using truncation approximations

(More? - App. A.2.4).
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1.5.3 Adaptive scheme based on the MLE

One of the disadvantages of (a2.1) is that the threshold will fluctuate around x and it will not

converge to x, producing a performance that is still not optimal. A remedy for this problem

was proposed also in [Fang 2008] (and previously in [Papadopoulos 2001]). By accepting a

feedback from the fusion center and assuming that the fusion center has enough processing

power to evaluate the MLE for the past measurements at each time, instead of using the

cumulative sum for updating the threshold, we can use the last MLE estimate. Intuitively,

with a growing number of measurements for the MLE, the threshold will be placed closer and

closer to x, producing as a result an MLE with performance approaching the optimal one (for

τ0,k−1 = x).

The new update is given by

τ0,k = X̂ML,k, (1.63)

where X̂ML,k is the MLE for the measurements i1:k. The asymptotic performance analysis was

also presented in [Fang 2008], the authors claim that in the binary quantization and Gaussian

case, the performance (variance) is asymptotically given by πδ2

4N . Therefore, this update scheme

is asymptotically optimal as Iq (0) =
4N
πδ2

is the maximum FI that can be achieved.

We will mimic some parts of their proof, but we will change some arguments to obtain a

more general result for NI ≥ 2.

1.5.4 Performance for the adaptive multibit scheme based on the MLE

Under an adaptive τ0 with the vector τ ′ fixed, we can rewrite the FI given in (1.53) for a

general NI using a parametrization on the error εk = τ0,k−1 − x, which now depends on time

and it is given as follows (Why? - App. A.1.5)

I
NI

q,1:N =
N
∑

k=1

E [Iq (εk)] , (1.64)

where εk is a sequence of r.v. defined on R, contrary to the previous case when the thresholds

were defined in a grid. The function Iq (εk) is given by (1.13).

For proceeding, we will make additional assumptions on Iq (ε) (the assumptions on the

noise AN1 p. 34 and AN2 p. 34 are also assumed).
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Assumptions on Iq for the MLE update to have asymptotically optimal perfor-

mance:

A1.MLE Iq (ε) is maximum for ε = 0.

A2.MLE Iq (ε) is locally decreasing around zero.

A3.MLE The function Iq (ε) has bounded Iq (0),
dIq(ε)

dε

∣

∣

∣

ε=0
= 0, bounded

d2Iq(ε)
dε2

∣

∣

∣

ε=0
, there-

fore accepting a Taylor approximation around zero (for small ε′):

Iq
(

ε′
)

= Iq (0) +
ε′2

2

d2Iq (ε)

dε2

∣

∣

∣

∣

ε=0

+ ◦
(

ε′2
)

, (1.65)

where the ◦
(

ε2
)

here is equivalent to say that the quantity
◦(ε′2)
ε′2

tends to zero when ε′

tends to zero.

If we look to Fig. 1.8 (p. 57), we can see that these assumptions seem to be satisfied

by Gaussian and Cauchy distributions. Except for the Laplacian-like distributions with a

derivative discontinuity at ε = 0, a large class of smooth symmetric unimodal distributions

satisfy these assumptions for NI > 2 and well chosen quantizer intervals. Note that in the

binary cases, where the threshold must be placed asymmetrically, we can add a fixed bias in

the MLE threshold update to obtain a better performance. Also for the asymmetric cases, all

the assumptions can be stated around the maximum point for the FI instead of ε = 0.

The objective now will be to bound above and below the quantity I
NI

q,1:N in such a way,

that when we make N → ∞ both bounds will "squeeze" I
NI

q,1:N on an interval that goes

asymptotically to NIq (0).

For a large number of measurements M < N , the MLE studied here is consistent even if

the measurements are dependent, for verifying this, one can check the regularity conditions

given in [Crowder 1976]. Thus, for ε′ > 0 and ξ > 0, it is possible to choose a number of

measurements M such

P
(

|εk| ≤ ε′
)

≥ 1− ξ, for k ≥M. (1.66)

Applying this inequality with the monotonicity property of A2.MLE, we can say that we can

find a M such

P
(

Iq (εk) ≥ Iq
(

ε′
))

≥ 1− ξ, for k ≥M. (1.67)

Now the sum in (1.64) can be separated in two sums, one for the terms with k < M , Iq,1:M−1

and the other with k ≥M , Iq,M :N :

I
NI

q,1:N = Iq,1:M−1 + Iq,M :N =

{

M−1
∑

k=1

E [Iq (εk)]

}

+

{

N
∑

k=M

E [Iq (εk)]

}

. (1.68)

Using A1.MLE and the fact that Iq (εk) is a nonnegative quantity, we know that Iq (εk) ∈
[0, Iq (0)]. Thus, the first term can be written as:

Iq,1:M−1 = αM (M − 1) Iq (0) , (1.69)
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with αM ∈ [0, 1]. The terms on Iq,M :N can be lower bounded using the Markov’s inequality.

The Markov’s inequality states that for a nonnegative r.v. Y and value y > 0, we must have

[Wasserman 2003, p. 63]:

P (Y > y) ≤ E (Y )

y
.

Using this inequality for an arbitrary term of Iq,M :N with the value Iq (ε
′) gives

E [Iq (εk)] ≥ Iq
(

ε′
)

P
[

Iq (εk) ≥ Iq
(

ε′
)]

, for k ≥M. (1.70)

Then, supposing that the thresholds are updated using the MLE, we can use (1.67) in (1.70)

to have

E [Iq (εk)] ≥ Iq
(

ε′
)

(1− ξ) , for k ≥M. (1.71)

For sufficiently large M (and consequently N), INI

q,1:N can be lower bounded using (1.71) and

(1.69)

I
NI

q,1:N ≥ αM (M − 1) Iq (0) + [N − (M − 1)] Iq
(

ε′
)

(1− ξ) . (1.72)

From A1.MLE the FI can be upper bounded by the optimal Iq

I
NI

q,1:N ≤ NIq (0) . (1.73)

Joining (1.72) and (1.73) gives the following:

αM (M − 1) Iq (0) + [N − (M − 1)] Iq
(

ε′
)

(1− ξ) ≤ I
NI

q,1:N ≤ NIq (0) . (1.74)

For small ε′, we can use A3.MLE to obtain

αM (M − 1) Iq (0) + [N − (M − 1)]

[

Iq (0) +
ε′2

2

d2Iq (ε)

dε2

∣

∣

∣

∣

ε=0

+ ◦
(

ε′2
)

]

(1− ξ) ≤ INI

q,1:N ≤ NIq (0) .

(1.75)

The term on the left of the inequality can be rewritten as

NIq (0)

{

(1− ξ) +
(M − 1) [αM − (1− ξ)]

N

}

+ [N − (M − 1)]

[

ε′2

2

d2Iq (ε)

dε2

∣

∣

∣

∣

ε=0

+ ◦
(

ε′2
)

]

(1− ξ) .

Separating a factor NIq (0) we can write the term above as NIq (0) (1− ξ′) with

ξ′ =

{

−ξ + (M − 1) [αM − (1− ξ)]

N

}

+

[

1− (M − 1)

N

] [

ε′2

2

d2Iq (ε)

dε2

∣

∣

∣

∣

ε=0

+ ◦
(

ε′2
)

]

(1− ξ)

Iq (0)
.

(1.76)

Therefore, the inequality (1.74) becomes

NIq (0)
(

1− ξ′
)

≤ I
NI

q,1:N ≤ NIq (0) .

By imposing N ≫ M (N much larger than M) so that (M−1)
N

is arbitrary small and by

choosing M sufficiently large so that ξ is small, we can make the first term in ξ′ to approach

zero. Using also N ≫ M and choosing now M sufficiently large so that ε′ is arbitrary small,

we can make the second term in ξ′ to approach zero. Therefore, we can make the left side of



1.5. Adaptive quantizers: the high complexity fusion center approach 69

the inequality above to be close to NIq (0) when N and M tend to infinity with the condition

N ≫M . As the upper bound on INI

q,1:N is also NIq (0), we have that

I
NI

q,1:N ∼
N→∞

NIq (0) , (1.77)

or equivalently

CRBq ∼
N→∞

1

NIq (0)
. (1.78)

We have now the following solution for problem (a)11:

Solution to (a) - MLE for quantized measurements with NI ≥ 2 and

adaptive thresholds given by the MLE.

(a2.2) 1) Estimator

Define an initial threshold τ0,0, then from k = 1 to N :

• the sensor obtains a binary measurement ik using τ0,k−1.

• The sensor sends ik to the fusion center.

• The fusion center stores ik, evaluates and stores

X̂ML,k = τ0,k following (1.63)

τ0,k = X̂ML,k,

where the estimate X̂ML,k is given by

X̂ML,k = argmax
x

k
∏

j=1

P (ij ;x, τ0,j−1) .

• The fusion center sends τ0,k = X̂ML,k to the sensor.

2) Performance (asymptotic)

X̂ML,q = X̂ML,k=N is asymptotically unbiased

E

[

X̂ML,q

]

=
N→∞

x

and its asymptotic MSE or variance attains the optimal

value

Var
(

X̂ML,q

)

∼
N→∞

1

NIq (0)
.

Now, we have an estimator with adaptive thresholds (mainly the central threshold) that

attains the asymptotically optimal performance. The estimator guides the quantizer dynamic

11The threshold τ0,k−1 is added in the notation of the probabilities to make the dependence on time more

explicit.
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range close to the parameter by setting the central point of the quantizer with a decreasing

fluctuation around τ .

1.5.5 Equivalent low complexity asymptotic scheme

The main disadvantage of (a2.2) is its high complexity, since the MLE must be obtained at each

iteration. In [Papadopoulos 2001] a heuristic based on an approximation of the expectation

maximization method for applying the MLE update with reduced complexity on the binary

quantization and Gaussian noise case was presented. The proposed threshold/estimate update

is given by the following recursive expression:

X̂k = τ0,k = X̂k−1 +
δ
√
π

2k
ik. (1.79)

Observe that the difference in complexity is large. In general, the MLE must be obtained

with a maximization algorithm, e.g. Newton’s algorithm, which itself has an inner recursive

procedure that may need multiple iterations for reaching convergence for each time k. In

(1.79), we have only a recursive procedure in k, which requires a multiplication of ik by a gain

and summation with the last estimate.

We can show that (1.79) can be generalized easily to non Gaussian noise cases. We will

use a less heuristic method (less than the method used to obtain (1.79)). We will assume,

additionally to symmetry, that the noise PDF has f (1) (0) = 0. If we consider that k is

large, then from the convergence of the CRB discussed above and the asymptotic normality

of the MLE [Kay 1993, p. 167] (or [Crowder 1976]), the error between the threshold used to

obtain ik, ε = X̂ML,k−1 − x = τ0,k − x, is Gaussian distributed with zero mean and variance
1

(k−1)Iq(0)
12:

fε (ε) =

√

(k − 1) Iq (0)

2π
exp

[

−(k − 1) Iq (0)

2
ε2
]

, (1.80)

where fε is the PDF of the error. We can try to estimate the random error using the new

quantized observation ik and the knowledge about its distribution given by the PDF above.

After estimating it, we can correct X̂ML,k−1 using the estimate. As ε is random, we will use an

estimator equivalent to the MLE, but for random parameters. In this case the maximum a

posteriori estimator (MAP) will be used. The posterior distribution (the one that might

be maximized) is the conditional PDF of ε given ik. Using Bayes theorem, it is given by

p (ε|ik) =
P (ik|ε) fε (ε)

P (ik)
, (1.81)

where in the binary case the conditional probability P (ik|ε) is given by

P (ik|ε) = [1− F (ε)]
1+ik

2 F (ε)
1−ik

2 . (1.82)

The denominator is the marginal probability of the output ik and it does no depend on ε.

The MAP is then given by [Kay 1993, p. 350]

ε̂MAP = argmax
ε

p (ε|ik) . (1.83)

12Observe that here we are using the parametrization of the Gaussian distribution with its variance and not

with its scale parameter
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In the same way as for the MLE, we can maximize the logarithm of the posterior, as P (ik)

does not depend on ε, we can write an equivalent form for (1.83) as

ε̂MAP = argmax
ε

log p (ε|ik)

= argmax
ε

{log [P (ik|ε)] + log [fε (ε)]} . (1.84)

Using (1.81) and (1.80) in the RHS (1.84), we obtain

log p (ε|ik) =
(

1 + ik

2

)

log [1− F (ε)] +

(

1− ik

2

)

log [F (ε)]− (k − 1) Iq (0)

2
ε2. (1.85)

Under consistency of the MLE, it is expected that for large k, the probability of |ε| being

small is close to 1. Thus, we can look for a maximum point of (1.85) around zero. This leads

us to expand log [1− F (ε)] and log [F (ε)] around zero. The expansions are given by

log [1− F (ε)] = log [1− F (0)] + ε
d log [1− F (z)]

dz

∣

∣

∣

∣

z=0

+
ε2

2

d2 log [1− F (z)]

dz2

∣

∣

∣

∣

z=0

+ ◦
(

ε2
)

,

log [F (ε)] = log [F (0)] + ε
d log [F (z)]

dz

∣

∣

∣

∣

z=0

+
ε2

2

d2 log [F (z)]

dz2

∣

∣

∣

∣

z=0

+ ◦
(

ε2
)

.

Using the symmetry of the distribution (1−F (0) = F (0) = 1
2) the terms with logarithms are

log
(

1
2

)

= − log (2). The derivatives at the zero point are

d log [1− F (z)]

dz

∣

∣

∣

∣

z=0

= − f (0)

1− F (0)
= −2f (0) ,

d log [F (z)]

dz

∣

∣

∣

∣

z=0

=
f (0)

F (0)
= 2f (0)

and using the assumption f (1) (0) = 0, the second derivatives are

d2 log [1− F (z)]

dz2

∣

∣

∣

∣

z=0

=
−f (1) (0)
1− F (0)

− f2 (0)

[1− F (0)]2
= −4f2 (0) ,

d2 log [F (z)]

dz2

∣

∣

∣

∣

z=0

=
f (1) (0)

F (0)
− f2 (0)

F 2 (0)
= −4f2 (0) .

Applying these expressions to the expansions above, we get

log [1− F (ε)] = − log (2)− 2εf (0)− 4
ε2

2
f2 (0) + ◦

(

ε2
)

,

log [F (ε)] = − log (2) + 2εf (0)− 4
ε2

2
f2 (0) + ◦

(

ε2
)

.

These expansions can be used in (1.85), this gives the following:

log p (ε|ik) =

(

1 + ik

2

){

− log (2)− 2εf (0)− 4
ε2

2
f2 (0) + ◦

(

ε2
)

}

+

+

(

1− ik

2

){

− log (2) + 2εf (0)− 4
ε2

2
f2 (0) + ◦

(

ε2
)

}

+

− (k − 1) Iq (0)

2
ε2. (1.86)
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To find the maximum, we differentiate log p (ε|ik) in (1.86) w.r.t. ε and we equate it to zero.

This gives

(k − 1) Iq (0) ε =

(

1 + ik

2

)

{

−2f (0)− 4εf2 (0) + ◦ (ε)
}

+

+

(

1− ik

2

)

{

2f (0)− 4εf2 (0) + ◦ (ε)
}

= −2f (0) ik − 4εf2 (0) + ◦ (ε) .

For binary measurements, we know that Iq (0) = 4f2 (0). Thus adding ε4f2 (0) on both sides

gives

k4f2 (0) ε = −2f (0) ik + ◦ (ε) .
Thus, we have

ε̂MAP ∼
k→∞

− ik

2f (0) k
.

The optimal new threshold/estimate when k → ∞ is then given by

X̂k = X̂k−1 − ε̂MAP ≈ X̂k−1 +
ik

2kf (0)
. (1.87)

This is exactly the same recursive estimator obtained by [Papadopoulos 2001] when the

noise is Gaussian (f (0) = 1√
πδ

for the Gaussian distribution). Note that this recursive up-

date/estimation procedure is asymptotically equivalent to the MLE update, as both procedures

(MLE and MAP) have equivalent error distribution for k → ∞ [Wasserman 2003, p. 181].

Clearly, some questions arise about the low complexity recursive estimator above:

• can (1.87) converge if we use it when the initial distance |ε| = |τ0 − x| is arbitrary (not

necessarily small)?

• Can we extend this low complexity recursive procedure to the NI > 2 case?

Answers for these questions will be given in Ch. 3.
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1.6 Chapter summary and directions

We conclude this chapter with the main points observed until now and directions for future

work.

• Estimation performance in terms of MSE can be minimized asymptotically under an

unbiasedness constraint by the MLE (a1). The asymptotic performance is then mainly

characterized by the CRB which is given in terms of the FI.

• The FI for quantized measurements is upper bounded by the FI for continuous measure-

ments and lower bounded by the FI for binary quantization. Moreover, it increases as

additional quantization intervals are used.

• The CRB and FI are very sensitive to the central threshold of the quantizer.

– For commonly used noise models (Gaussian, Laplacian and Cauchy), the threshold

must be placed exactly at the parameter.

– In the binary quantization case, even if we restrict the noise distribution to be

symmetric and unimodal this is not always true. We can find cases (GGD) where

quantizing the input r.v. asymmetrically can be optimal. In these cases, it was also

observed that the gain of performance obtained by using an asymmetric quantizer

seems to be dependent on the noise distribution, however, in general, the gain

from using the optimal asymmetric quantizer in the place of a symmetric quantizer

seems to be small when compared with the gain that can be obtained by using a

symmetric quantizer in the place of a poorly chosen asymmetric quantizer.

– An interesting subject for future research is to study in more detail the effect

of the noise distribution on the shape of the performance function B (ε) in the

asymmetric cases, for example, we can try to characterize the loss incurred by

imposing symmetric quantization w.r.t. optimal quantization. Another possible

point for future research is to see if such asymmetric behavior also appears in the

problem of detection using binary quantized measurements.

– In all cases, under symmetry assumptions on the noise and on the quantizer, esti-

mation performance degrades when the quantizer dynamic (the quantizer threshold

in the binary case) is very distant to the true parameter.

– For multibit quantization, also under symmetry assumptions, it seems that if we

choose the quantizer thresholds (or equivalently the quantizer intervals) well, then

for a large class of unimodal distributions it is optimal to place the central thresh-

old at the true parameter. Note that, quantizing "well" in this case means that

we choose the quantization intervals to have a good symmetric quantization per-

formance. An interesting point for future analysis is to see if we can get a better

performance than in the symmetric case, when we optimize the quantizer intervals

for an asymmetric quantizer (one that is not centered at x). A partial answer for

this will be given in Part II, where we will see that when the number of quantization

intervals tends to infinity, the optimal quantizer is symmetric for symmetric noise

distributions.
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• Selection of optimal quantization intervals, or equivalently, optimal non central thresh-

olds, was observed to be a difficult problem for nonuniform quantization. The asymptotic

design of the optimal quantizer that approaches the optimal finite solution will also be

studied in Part II.

• The MLE for binary quantized measurements and a fixed threshold can be obtained in

closed form (a1.1). While in the general case it might be obtained numerically. When

the noise distribution is log-concave, the Newton’s algorithm can be used as an efficient

numerical solution (a1.2).

• As the performance degrades when the quantizer range is far from the parameter, the

quantizer central threshold must be placed adaptively around the parameter. A simple

solution in the binary case is to move the threshold up or down with a constant step.

Then, asymptotically, the threshold will settle its mean close to the parameter and it

will fluctuates around it. The measurements obtained in this case can be used to have a

MLE with asymptotic performance less sensitive to uncertainty on the true parameter

value (a2.1).

• By accepting an increased complexity, the central threshold (both in binary and non

binary cases) can be set closer and closer to the true parameter by updating it at each

time with the MLE based on all the past measurements (a2.2). This scheme asymptot-

ically attains a performance equal to the performance obtained when the threshold is

placed at the parameter, which is equivalent to say that this scheme is asymptotically

optimal for commonly used noise models.

• When the time goes to infinity the threshold update based on MLE is equivalent to a

simple recursive update with decreasing correction gain (1.87). Low complexity recursive

schemes of this type and their performance will be studied in detail in Ch. 3.



Chapter 2

Estimation of a varying parameter:

what is done and a little more

In this chapter we study the estimation of a varying parameter based on quantized measure-

ments. First, we will present the parameter evolution model and the measurement model.

Then, we will present the optimal estimator in the MSE sense and its performance. Due to

the difficulties that arise when we want to have analytical expressions for the optimal estima-

tor and its performance, we will obtain the optimal estimator using a numerical method. We

present and discuss a numerical solution known as particle filtering, which is a method based

on Monte Carlo simulation. We give then a bound on its performance using the Bayesian

Cramér–Rao bound. After the analysis of the bound, we present a particle filtering scheme

based on the quantized prediction error, which is commonly known as quantized innovation.

At the end of the chapter, we show that the optimal estimator has, asymptotically, a simple

recursive form for a slowly varying parameter. After obtaining the performance for the asymp-

totically optimal estimator and comparing it to the lower bound on the MSE, we conclude

the chapter with a summary and directions for work to be presented in other chapters or to

be presented in the future.

Contributions presented in this chapter:

• Motivation to use the quantized innovation. By analyzing a simple signal model, we can

obtain a detailed characterization of the bound on the mean squared error for estimation

based on quantized measurements. From the bound, we can see clearly that a good

estimation scheme can be obtained by quantizing the innovation. This differs from

[Ribeiro 2006c] and [You 2008], where the motivation for using the quantized innovation

does not come from any quantitative analysis and relies only on intuition.

• Asymptotically optimal estimator for a slowly varying parameter. We show that the

asymptotically optimal estimator for slowly varying Wiener process parameter can be

approximated by a low complexity recursive estimator. We also verify its optimality by

comparing it to a lower bound on the mean squared error. The Wiener process model

that we consider is a special case of the model in [Ribeiro 2006c], but we do not consider

that the noise is Gaussian and we do not impose the quantization to be binary.
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2.1 Parameter and measurement model

2.1.1 Parameter model

The parameter to be estimated now is a stochastic process X defined on the probability space

P = (Ω,F ,P) with values on (R,B (R)). At each instant k ∈ N
⋆, the corresponding scalar r.v.

Xk will be given by the Wiener process model:

Xk = Xk−1 +Wk, k > 0, (2.1)

where Wk is the k-th element of a sequence of independent Gaussian r.v.. Its mean is given by

uk and its variance is a known constant σ2w. If uk = 0 then Xk forms a standard discrete-time

Wiener process, otherwise, it is a Wiener process with drift. The initial distribution of Xk

is supposed to be Gaussian with known mean x′0 and known variance σ20. The PDF of X0,

denoted, p (x0) is also known as the initial prior of the stochastic process. For estimation

purposes, the initial mean represents a guess on the value of X0 and the initial variance

represents the degree of uncertainty on this guess.

From (2.1), we can see that conditioned on Xk−1, Xk is independent from the past X0:k−2.

Therefore, this process is a homogeneous Markov process. Until instant k, it can be charac-

terized by its joint PDF p (x0:k), which factorizes as follows

p (x0:k) = p (x0)
k
∏

j=1

p (xj |xj−1) , (2.2)

where p (xj |xj−1) is the conditional PDF of Xj given Xj−1. This conditional PDF can be

written using the Gaussian assumption on Wk as

p (xj |xj−1) =
1√
2πσw

exp

[

−1

2

(

xj − xj−1 − uj

σw

)2
]

. (2.3)

Therefore, from the knowledge of p (x0), uk and σw, we can describe probabilistically the

process X until any arbitrary instant k using (2.2) and (2.3).

2.1.2 Measurement model

Continuous measurement

The process X is measured with noise

Yk = Xk + Vk. (2.4)

The same assumptions on Vk as for constant x, AN1 and AN2, are considered in this case.

Quantizer

For tracking the varying parameter, the quantizer will be assumed to be dynamic with varying

threshold set τ k:

τ k =
[

τ−NI
2

,k
· · · τ−1,k τ0,k τ1,k · · · τNI

2
,k

]⊤
.
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The assumptions on the labeling of the outputs and symmetry, AQ1 and AQ2, are still consid-

ered to be valid. The quantized measurements are then given as the output of the quantization

function Q (�) defined in (1.2)

ik = Q (Yk) ,

where as in the adaptive case, the function Q can change in time.

2.2 Optimal estimator

As it was stated at the beginning of this chapter, we are interested in solving problem (b) (p.

29). That is to estimate Xk based on the past and present quantized measurements i1:k. In

what follows, we consider that τ 1:k is a fixed sequence. As in the constant case we want the

estimator, or filter in this case, to have minimum MSE (MMSE). We want for all k an

estimator

X̂ (i1:k)

minimizing the MSE

MSEk = E

[

(

X̂k −Xk

)2
]

. (2.5)

As the parameter itself is random, the expectation is evaluated w.r.t. the joint distribution of

the measurements i1:k and the parameter Xk.

Differently from the deterministic case, when the parameter is random, the general form

of the MMSE estimator can be obtained directly from the minimization of MSEk. It can be

shown that its general form is [Jazwinski 1970, p. 149]

X̂k = EXk|i1:k (Xk) , (2.6)

where the subscript Xk|y1:k means that the expectation is evaluated w.r.t. the probability

measure of Xk given a realization of i1:k. The MMSE estimator is then the posterior mean, i.e.

the conditional mean of the parameter Xk given a specific realization sequence of quantized

measurements i1:k
1.

The MMSE estimator is unbiased since

E

[

X̂k

]

= Ei1:k

[

EXk|i1:k (Xk)
]

= EXk,i1:k (Xk) = E (Xk) ,

where the first equality comes from the decomposition of the expectation on the joint variables

and the second equality comes from marginalization of the i1:k.

Similarly, we obtain that the MSE is the mean of the posterior variance

MSEk = Ei1:k

{

EXk|i1:k

{

[

Xk − EXk|i1:k (Xk)
]2
}}

= Ei1:k

[

VarXk|i1:k (Xk)
]

. (2.7)

1Note that this estimator is different from the MAP, which is the maximum value xk that maximizes the

posterior p (xk|i1:k). It can be shown that the MAP is the optimal estimator under the mean absolute error

[Van Trees 1968, pp. 56–57].
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Note that for a given realization i1:k, VarXk|i1:k (Xk) is the conditional MSE and it can be

used when online assessment of the MSE is needed. Online here means that the performance

is not averaged on the distribution of the measurements, but evaluated for a given realization.

All the information is contained in the posterior distribution. Its mean is the optimal

estimator and its averaged variance is the MMSE. Assuming that the posterior distribution

accepts a PDF p (xk|i1:k), the MMSE estimator and its MSE are given respectively by

X̂k = EXk|i1:k (Xk) =

∫

R

xkp (xk|i1:k) dxk, (2.8)

MSEk = Ei1:k

[

VarXk|i1:k (Xk)
]

=
∑

i1:k∈I⊗k







∫

R

(

xk − EXk|i1:k (Xk)
)2
p (xk|i1:k) dxk







P (i1:k) . (2.9)

where I⊗k is the joint set where the quantized measurements are defined. To simplify the

evaluation of the quantities above, a recursive form for p (xk|i1:k), and as a byproduct for

P (i1:k), can be obtained by using the Markovian property of the dynamical model for the

process X. The main idea is to write the PDF for prediction p (xk|i1:k−1) as a function of

p (xk−1|i1:k−1) using the dynamical model information p (xk|xk−1) and then pass from the

prediction PDF to the posterior p (xk|i1:k) using the information given by the measurement

P (ik|xk). These two expressions, one for prediction using the model and the other for update

using the measurement are given respectively by (Why? - App. A.1.6):

p (xk|i1:k−1) =

∫

R

p (xk|xk−1) p (xk−1|i1:k−1) dxk−1, (2.10)

p (xk|i1:k) =
P (ik|xk) p (xk|i1:k−1)

∫

R

P
(

ik|x′k
)

p
(

x′k|i1:k−1

)

dx′k
. (2.11)

The denominator in the RHS of (2.11) is equal to P (ik|i1:k−1) (Why? - App. A.1.6), thus this

integral can be reused for writing P (i1:k) in recursive form for k > 1

P (i1:k) = P (ik|i1:k−1)P (i1:k−1) =





∫

R

P (ik|xk) p (xk|i1:k−1) dxk



P (i1:k−1) , (2.12)

for k = 1 this probability is

P (i1) =

∫

R

P (i1|x0) p (x0) dx0. (2.13)

In these expressions the prior p (x0), as stated above, is a Gaussian function

p (x0) =
1√
2πσ0

exp

[

−1

2

(

x0 − x′0
σ0

)2
]

,
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the conditional PDF p (xk|xk−1) is given by (2.3) and the probability P (ik|xk) is given by

(1.6) with the dynamical threshold set τ k instead of only one fixed set:

P (ik|xk) =
{

F (τik,k − xk)− F (τik−1,k − xk) , if ik > 0,

F (τik+1,k − xk)− F (τik,k − xk) , if ik < 0.
(2.14)

The general solution to (b) (p. 29) given by the optimal filter is the following:

Solution to (b) - MMSE estimator for a fixed threshold set sequence τ 1:k

(b1) 1) Estimator

For each time k, the estimator is given by

X̂k = EXk|i1:k (Xk) =

∫

R

xkp (xk|i1:k) dxk,

where the posterior PDF p (xk|i1:k) can be evaluated recur-

sively using (2.10) and (2.11).

2) Performance (exact)

X̂k is unbiased

E

[

X̂k

]

= E [Xk]

and its MSE for each time k is

MSEk = Ei1:k

[

VarXk|i1:k (Xk)
]

=
∑

i1:k∈I⊗k







∫

R

(

xk − EXk|i1:k (Xk)
)2
p (xk|i1:k) dxk







P (i1:k)

where now not only (2.10) and (2.11) are used, but also

(2.12) and (2.13) to obtain P (i1:k).

Some attention must be given to the fact that the MMSE estimator given above and the

recursive form for the evaluation of the posterior PDF are quite general and can be applied

in many other nonlinear filtering problems.

A major drawback with (b1) is that evaluating the integrals in the prediction/update

expressions and in the expectation is analytically intractable. Therefore, we must look for a

numerical method for solving it approximately. This will be done next.
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2.3 Particle Filtering

To obtain the posterior mean (2.8), we must evaluate the integral
∫

R

xkp (xk|i1:k) dxk. A

general solution is to evaluate it numerically, for example, using a Monte Carlo integration

method.

2.3.1 Monte Carlo integration

The Monte Carlo integration method consists in approximating the expectation of a function

g (X)

E [g (X)] =

∫

R

g (x) p (x) dx,

where p (x) is the PDF of X, by the sample mean calculated using multiple i.i.d. samples X(j)

from the distribution of X [Robert 1999, p. 83]

E [g (X)] ≈ ḡNS
=

1

NS

NS
∑

j=1

g
(

x(j)
)

,

with NS the number of samples and x(j) the j-th i.i.d. sample realization.

The approximation is clearly unbiased

E





1

NS

NS
∑

j=1

g
(

X(j)
)



 =
1

NS

NS
∑

j=1

E

[

g
(

X(j)
)]

= E [g (X)] .

By the strong law of large numbers, it converges with probability one to the true expectation

E [g (X)] [Robert 1999, p. 83]

P

(

lim
NS→+∞

ḡNS
= E [g (X)]

)

= 1.

Moreover, by using a central limit theorem, the asymptotic normalized approximation error

εḡ tends to a zero mean Gaussian distribution with variance given by

Var (εḡ) =
1

NS
Var [g (X)] .

Thus, if g (X) has finite variance, the variance of the approximation reduces by increasing the

number of samples.

In our case, we want to approximate the posterior mean

X̂k ≈ 1

NS

NS
∑

j=1

X
(j)
k , (2.15)

with X
(j)
k i.i.d. samples from the posterior distribution.
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Observe that we can also rewrite the posterior mean in an equivalent way using the joint

posterior PDF p (x1:k|i1:k):
X̂k =

∫

R

xkp (x1:k|i1:k) dx1:k. (2.16)

In this case we will sample independent trajectories X
(j)
1:k from p (x1:k|i1:k) and the posterior

mean is also given by (2.15).

The main problem here is that the posterior distribution and the joint posterior distribution

are usually difficult to sample directly. Therefore, to solve this problem we will use a method

called importance sampling.

2.3.2 Importance sampling

Retaining the second form of the posterior mean (2.16), the main idea of importance sampling

[Robert 1999, p. 92] is to multiply and divide the integrand in the expectation by a PDF

q (x1:k|i1:k)2 from which we know how to sample the trajectories X1:k. This gives

X̂k =

∫

R

xk
p (x1:k|i1:k)
q (x1:k|i1:k)

q (x1:k|i1:k) dx1:k.

Note that the support of the PDF q (x1:k|i1:k) might be strictly larger than the support of the

posterior. Denoting the ratio between PDF as an importance weight w (x1:k)

w (x1:k) =
p (x1:k|i1:k)
q (x1:k|i1:k)

, (2.17)

the expectation can be approximated by

X̂k =

∫

R

xkw (x1:k) q (x1:k|i1:k) dx1:k ≈ 1

NS

NS
∑

j=1

X
(j)
k w

(

X
(j)
1:k

)

, (2.18)

where X
(j)
1:k are i.i.d. trajectories from q (x1:k|i1:k). We can divide the expectation by the

integral of the posterior as its value is equal to one, this gives

X̂k =

∫

R

xkw (x1:k) q (x1:k|i1:k) dxk
∫

R

w (x1:k) q (x1:k|i1:k) dxk
≈

NS
∑

j=1
X

(j)
k w

(

X
(j)
1:k

)

NS
∑

j=1
w
(

X
(j)
1:k

)

.

Defining the normalized weights w̃
(

X
(j)
1:k

)

as

w̃
(

X
(j)
1:k

)

=
w
(

X
(j)
1:k

)

NS
∑

j=1
w
(

X
(j)
1:k

)

, (2.19)

2Note that q (x1:k|i1:k) can depend on the measurements, after we will choose a simplified form which does

not depend on the measurements.
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we have that the posterior mean can be approximated by

X̂k ≈
NS
∑

j=1

X
(j)
k w̃

(

X
(j)
1:k

)

. (2.20)

By comparing the approximation in (2.20) with the integral
∫

R

xkp (xk|i1:k) dxk, we realize

that this method is equivalent to approximate the posterior by a discrete distribution with

support values chosen randomly and with probabilities given by the normalized weights

p (xk|i1:k) ≈
NS
∑

j=1

w̃
(

x
(j)
1:k

)

δD

(

xk − x
(j)
k

)

, (2.21)

where δD (�) is a Dirac distribution.

2.3.3 Sequential importance sampling

The remaining problems now are the choice of a PDF q (x1:k|i1:k) easy to sample and the

evaluation of the weights.

To be able to sample the trajectory X
(j)
1:k without modifying the past trajectory X

(j)
1:k−1 (so

that we do not need to resample the past trajectory), we must choose a distribution q (x1:k|i1:k)
for which the marginal distribution for k − 1 is exactly q (x1:k−1|i1:k−1). This can be done

using the following form for q (x1:k|i1:k) [Doucet 1998]:

q (x1:k|i1:k) = q (x1:k−1|i1:k−1) q (xk|x1:k−1, i1:k) . (2.22)

In this case to extend a sample trajectory from realization x
(j)
1:k−1 to x

(j)
1:k, we sample

q
(

xk|x(j)1:k−1, i1:k

)

to generate the new point of the trajectory x
(j)
k .

To evaluate the weights, we develop p (x1:k|i1:k) using conditioning and the independence

assumptions on the model:

• Xk is independent of X1:k−2 and i1:k−1 conditioned on Xk−1,

• ik is independent of X1:k−1 and i1:k−1 conditioned on Xk.

This gives

p (x1:k|i1:k) =
P (ik|xk) p (xk|xk−1)

P (ik|i1:k−1)
p (x1:k−1|i1:k−1) . (2.23)

Replacing the simplified form of q (x1:k|i1:k) (2.22) and the joint posterior above (omitting

P (ik|i1:k−1), which is constant in x1:k) in the expression (2.17), we have the following weight

for the trajectory j:

w
(

x
(j)
1:k

)

∝
P

(

ik|x(j)k

)

p
(

x
(j)
k |x(j)k−1

)

q
(

x
(j)
1:k−1|i1:k−1

)

p
(

x
(j)
1:k−1|i1:k−1

)

q
(

x
(j)
1:k−1|i1:k−1

) , (2.24)



84 Chapter 2. Estimation of a varying parameter

where ∝ is the symbol for proportional. The fact that the weights are defined up to a pro-

portional factor is not important because for approximating the posterior mean we use the

normalized weights. Note that the factor
p
(

x
(j)
1:k−1|i1:k−1

)

q
(

x
(j)
1:k−1|i1:k−1

) is the weight for the samples at time

k − 1. Thus, we can write a recursive expression that relates the normalized weights for time

k − 1 with the weights for time k

w
(

x
(j)
1:k

)

∝
P

(

ik|x(j)k

)

p
(

x
(j)
k |x(j)k−1

)

q
(

x
(j)
k |x(j)0:k−1, i1:k

) w̃
(

x
(j)
1:k−1

)

. (2.25)

We need now to define the PDF q (xk|x0:k−1, i1:k) which is used to generate the samples.

The two most commonly used choices are the following:

• choice 1: p (xk|xk−1, ik), minimum weight variance distribution. The quality of the

approximation of the posterior by the discrete distribution (2.21) is dependent on the

variance of the weights and the variance depends on the PDF q (xk|x0:k−1, i1:k). It

can be shown that conditioned on the past trajectory x
(j)
1:k−1 realization and on the

measurements realization i1:k, the variance of the weights is minimized for [Doucet 1998]

q (xk|x0:k−1, i1:k) = p (xk|xk−1, ik) . (2.26)

Unfortunately this distribution is difficult to sample directly. In our case, we can sample

from it by using a rejection method (More? - App. A.2.5).

• Choice 2: p (xk|xk−1, ik), prior distribution. In order to simplify the evaluation of the

weights we can choose

q (xk|x0:k−1, i1:k) = p (xk|xk−1) =
1√
2πσw

exp

[

−1

2

(

xk − xk−1 − uk

σw

)2
]

. (2.27)

Thus for each previous x
(j)
k−1, we are going to obtain a sample from a r.v. X

(j)
k using

the distribution p
(

xk|x(j)k−1

)

3. In our case, this choice reduces the problem to sampling

from a Gaussian distribution, which is very simple, and updating the weights following

(we chose the proportionality factor to be one)

w
(

x
(j)
1:k

)

= P

(

ik|x(j)k

)

w̃
(

x
(j)
1:k−1

)

. (2.28)

Note that in both cases the sampling and evaluation of the weights do not require the past

measurements and the samples x
(j)
1:k−2. This leads to memory requirements that do not increase

over time. If we compare both choices in terms of complexity, the second choice is better

because it only requires sampling from a Gaussian distribution and evaluating the weights

with the likelihood. Therefore, from now on, we will use the second choice for the sampling

distribution.

We have the following procedure:

3For details on how to sample from it using a standard Gaussian variate see (How? - App. A.3.3).
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1. Sample the prior distribution p (x0). This will generate NS samples x
(1:NS)
0 . Set uniform

normalized weights w̃
(

x
(j)
0

)

= 1
NS

.

For time k,

2. Create NS samples each from the corresponding r.v. X
(j)
k with PDF given by (2.27):

p
(

xk|x(j)k−1

)

=
1√
2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 .

3. Evaluate the sample weights using the measurement and the last weights with (2.28):

w
(

x
(j)
1:k

)

= P

(

ik|x(j)k

)

w̃
(

x
(j)
1:k−1

)

.

4. Normalize the weights using (2.19):

w̃
(

x
(j)
1:k

)

=
w
(

x
(j)
1:k

)

NS
∑

j=1
w
(

x
(j)
1:k

)

.

5. Obtain the estimate with the weighted mean

x̂k ≈
NS
∑

j=1

x
(j)
k w̃

(

x
(j)
1:k

)

.

This procedure is the sequential extension of importance sampling applied to filtering and

this is the reason for its commonly used name - sequential importance sampling filter. As

this method is a special case of importance sampling, it has the same general characteristics,

namely, it is biased for a fixed number of samples, but it converges with probability one to

the optimal estimator when NS → ∞ [Doucet 1998].

2.3.4 Sequential importance resampling

We would expect that by increasing the number of samples the filter would get closer and

closer to the optimal estimate. However, the convergence result is asymptotic, it works only

when NS tends to infinity. When NS is finite, it can be shown that the variance of the weights

increases over the time [Kong 1994]. This problem is known as the degeneracy problem and

what happens in practice is that after some time most of the normalized weights are close to

zero, which is equivalent to say that most of the samples are useless [Doucet 1998].

In the case of sampling with p
(

xk|x(j)k−1

)

, the cause of this problem is easy to understand.

We start with a given prior distribution, then during the procedure we evaluate the posterior

for values of Xk sampled randomly using p
(

xk|x(j)k−1

)

, as there is no feedback from the mea-

surements in the sampling processes, after some time, the samples can lie very far from the

values of Xk where the posterior has larger values. As a consequence, this will produce a very

poor discrete approximation of the posterior. A possible remedy for this problem is to drive

the sampling process using the measurements i1:k.



86 Chapter 2. Estimation of a varying parameter

Resampling

This can be done in a simple way by reproducing the samples x
(j)
k for which the posterior

approximation w̃
(

x
(j)
1:k

)

is large and deleting the samples for which the posterior is small.

This procedure, known as resampling, can be carried out in practice by sampling NS times4

the posterior discrete approximation given by

P (xk) =







w̃
(

x
(j)
1:k

)

, if xk = x
(j)
k ,

0, otherwise.
(2.29)

After resampling, for retaining the posterior approximation, the weights of the samples are

set to

w̃
(

x
(j)
1:k

)

=
1

NS
. (2.30)

As the posterior approximation is a multinomial distribution, the procedure of resampling

using the approximation of the posterior (2.29) is known as multinomial resampling. Multino-

mial resampling can be easily implemented using NS independent uniform samples, for details

see (How? - App. A.3.4) (app4) and for other types of resampling techniques see [Hol 2006].

The process of resampling should not be performed every time as it leads to the impov-

erishment of the sample set [Berzuini 1997]. Sample impoverishment comes as the opposite

extremum of the degeneracy problem, as in this case we simply neglect possible trajectories

of Xk with medium and low likelihood, leading to a not sufficiently rich approximation of the

posterior. For triggering the resampling process we can monitor the number of effective sam-

ples Neff, that is to say, the equivalent number of samples if we were using the true posterior

for Monte Carlo evaluation. This number can be approximated by [Doucet 1998]

Neff =
1

NS
∑

j=1
w̃2
(

x
(j)
1:k

)

. (2.31)

Therefore, each time Neff < Nthresh, where Nthresh ∈ [1, NS ] is a minimum acceptable number

of effective samples, the resampling process is triggered.

Sequential importance sampling with the resampling step for general Bayesian estimation

was first suggested in [Rubin 1988](cited in [Doucet 1998]) under the name sequential impor-

tance resampling. Its widespread use in filtering with the specific choice of p (xk|xk−1) as the

sampling distribution was initiated with [Gordon 1993] under the name of bootstrap filter.

This method was proposed for solving general nonlinear non Gaussian filtering problems.

The method presented above can be found in the literature under many other names, the

most common is particle filter (PF). In this case "particle" is the name given for a sample

x
(j)
k . We will use the terms particle filter and particle from now on.

A proof of convergence of the general PF is given in [Berzuini 1997] for the case with

resampling at each iterate. It is shown that when NS → ∞ the error between the optimal

4We could resample more or less than NS samples, we chose NS because it is the most commonly used

choice in the literature.
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estimator and the PF estimate multiplied by
√
NS tends to a Gaussian r.v. with fixed finite

variance. This means that, for a large number of particles, when the number of particles

increases the PF estimate is more and more concentrated around the optimal estimator.

Application of PF for estimation based on quantized measurements with a fixed sequence

of threshold sets are reported in [Ruan 2004] and [Karlsson 2005]. In [Ruan 2004] the main

focus is on analyzing the main issues related to the fusion of quantized measurements from

multiple sensors for tracking in general, the results reported therein are given by simulation.

A more restricted model with Xk given by a vector linear Gaussian evolution and quantized

linear Gaussian measurement is used in [Karlsson 2005], where a theoretical lower bound

on estimation performance is obtained and compared with simulation results. The bound

that is used is the equivalent counterpart of the CRB for random parameters the Bayesian

Cramér–Rao bound (BCRB).

2.4 Evaluation of the estimation performance

We have already explained how to obtain the estimates for our problem (b) (p. 29). We still

need to evaluate its performance.

2.4.1 Online empirical evaluation

The variance of the posterior approximation (supposing that NS is sufficiently large for the

bias to be negligible)

MSEk ≈
NS
∑

j=1

(

x
(j)
k − x̂k

)2
w̃
(

x
(j)
1:k

)

,

gives an online estimate of the MSE. The problem with this approach is that the performance is

conditioned on the given measurement sequence i1:k. In this case, approximated performance

can be obtained only after having the measurements, thus no design of the system (choice of

the number of quantization intervals NI , choice of the sensor quality δ) can be done. Even if we

push more into the Monte Carlo philosophy and try to evaluate the mean of the approximated

MSE above using Monte Carlo integration, we will have to simulate a large number of times the

PF procedure by changing the parameters needed for system design (NI , δ , σ2w). Therefore,

it is better to turn our attention to analytical results on performance.

2.4.2 BCRB

The analytical form of the MSE (2.9) depends on the posterior distribution. Thus, for the

same reason, we cannot have an analytical expression for the estimator, we are not going to

have an analytical expression for the MSE. We must resort then to a bound on the MSE. As a

consequence, we will follow [Karlsson 2005] and we will also analyze the BCRB. As our case is

simpler (Xk is a scalar Wiener process) than the vector linear case studied in [Karlsson 2005],

we will be able to analyze the effects of the measurement system parameters in a more clear

and simple way.
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The BCRB at instant k, BCRBk, is a lower bound on MSEk, it is given by the inverse of

the Bayesian information (BI) [Van Trees 1968, p. 84]

MSEk ≥ BCRBk =
1

Jk
. (2.32)

The BI at time k, JK , is given by

Jk = −E

[

∂2 log p (Xk, i1:k)

∂X2
k

]

. (2.33)

As Xk is random, the expectation here is evaluated using the joint probability measure of Xk

and i1:k. This result is general and it is not linked particularly to the quantization problem,

we could replace i1:k by any measurement related to Xk.

By assuming that Xk is a Markov process (also here i1:k can be any type of measurement),

in [Tichavsky 1998] a recursive form for evaluating the BI is obtained

Jk = Ck −
B2

k

Ak + Jk−1
, (2.34)

where5 J0 = −E

[

∂2 log p(X0)
∂X2

0

]

and Ak = −E

[

∂2 log p(Xk|Xk−1)

∂X2
k−1

]

, Bk = −E

[

∂2 log p(Xk|Xk−1)
∂Xk∂Xk−1

]

,

Ck = −E

[

∂2 log p(Xk|Xk−1)

∂X2
k

]

− E

[

∂2 log P(ik|Xk)
∂X2

k

]

.

Using (2.3) for evaluating the terms Ak, Bk and Ck, we have

Ak = −E















∂2 log

{

1√
2πσw

exp

[

−1
2

(

Xk−Xk−1−uk

σw

)2
]}

∂X2
k−1















= −E















∂2
[

−1
2

(

Xk−Xk−1−uk

σw

)2
]

∂X2
k−1















=
1

σ2w
.

In the same way

Bk = − 1

σ2w
,

Ck =
1

σ2w
− E

[

∂2 logP (ik|Xk)

∂X2
k

]

.

Decomposing the expectation above, we obtain

Ck =
1

σ2w
+ EXk

{

−Eik|Xk

[

∂2 logP (ik|Xk)

∂X2
k

]}

.

The inner expectation is another form of expressing the FI for estimating Xk when Xk is con-

sidered to be a deterministic parameter [Kay 1993, p. 34]. Thus, by using the parametrization

of the FI for quantized measurements with the r.v. εk = τ0,k −Xk, we can write

Ck =
1

σ2w
+ E [Iq (εk)] .

5Note that we are using the notation for discrete measurements i1:k with P (ik|xk).
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where the expectation is evaluated using the probability measure of εk. Using these results in

(2.34) gives

Jk =
1

σ2w
+ E [Iq (εk)]−

1

σ4w

1
(

1
σ2
w
+ Jk−1

) , (2.35)

with J0 given by

J0 = −E















∂2 log

{

1√
2πσ0

exp

[

−1
2

(

X0−x′
0

σ0

)2
]}

∂X2
0















=
1

σ20
. (2.36)

For commonly used noise models (Gaussian, Laplacian and Cauchy), the FI is maximized

for εk = 0. Thus, we can obtain a simple upper bound on the BI by assuming εk = 0 with

probability one. This gives

Jk ≤ J ′
k =

1

σ2w
+ Iq (0)−

1

σ4w

1
(

1
σ2
w
+ J ′

k−1

) , (2.37)

with J ′
0 = J0. This will give a simple lower bound on the BCRB and consequently on the

MSE, which can be used to assess approximately the performance of the PF.



90 Chapter 2. Estimation of a varying parameter

The solution to problem (b) (p. 29) given by the PF is

Solution to (b) - Particle filter for a fixed threshold set sequence τ 1:k

(b1.1) 1) Estimator

• Set uniform normalized weights w̃
(

x
(j)
0

)

= 1
NS

and initialize NS

particles
{

x
(1)
0 , · · · , x(NS)

0

}

by sampling the prior

p (x0) =
1√
2πσ0

exp

[

−1

2

(

x0 − x′
0

σ0

)2
]

.

For each time k,

• for j from 1 to NS, sample the r.v. X
(j)
k with PDF

(How? - App. A.3.3)

p
(

xk|x(j)
k−1

)

=
1√

2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 ,

• for j from 1 to NS, evaluate and normalize the weights

w
(

x
(j)
1:k

)

= P

(

ik|x(j)
k

)

w̃
(

x
(j)
1:k−1

)

,
w̃
(

x
(j)
1:k

)

=
w
(

x
(j)
1:k

)

NS
∑

j=1

w
(

x
(j)
1:k

)

,

where P

(

ik|x(j)
k

)

is given by (2.14).

• Obtain the estimate with the weighted mean

x̂k ≈
NS
∑

j=1

x
(j)
k w̃

(

x
(j)
1:k

)

.

• Evaluate the number of effective particles

Neff =
1

NS
∑

j=1

w̃2
(

x
(j)
1:k

)

,

if Neff < Nthresh, then resample using multinomial resampling

(How? - App. A.3.4) (app4).

2) Performance (lower bound)

The MSE can be lower bounded as follows

MSEk ≥ 1

J ′
k

,

with J ′
k given recursively by

J
′
k =

1

σ2
w

+ Iq (0)−
1

σ4
w

1
(

1
σ2
w
+ J ′

k−1

) .

2.5 Quantized innovations

For commonly used symmetrically distributed noise models (Gaussian, Laplacian and Cauchy

distributions), we saw in Ch. 1 that Iq (ε) around ε = 0 is a locally decreasing function with

|ε|, thus from (2.35) we can see that closer τ0,k is to the parameter realization xk, higher will
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be the BI. If we assume that the BCRB is sufficiently tight for accepting its behavior as an

approximation of the behavior of the MSE, closer τ0,k is to the parameter realization xk, lower

will be the MSE. This indicates that the dynamical range of the quantizer must vary in time

in order to follow the parameter and produce enhanced estimation performance.

2.5.1 Prediction and innovation

Prediction. The main problem with the approach –τ0,k = xk– is that we do not know xk, if

we knew, we would not need to estimate it. We might then accept a small loss of performance

by using the closest value to xk that we have in hand, in our case, a prediction of xk using the

last estimate value x̂k−1 and the drift uk. If X̂k−1 is the MMSE estimator based on i1:k−1,

then the MMSE estimator of Xk based also on i1:k−1, denoted X̂k|k−1, is the conditional mean

[Jazwinski 1970, p. 149]

X̂k|k−1 = EXk|i1:k−1
(Xk) .

Using the dynamical model for Xk and the linearity of the conditional expectation

X̂k|k−1 = EXk|i1:k−1
(Xk−1 +Wk) = EXk−1|i1:k−1

(Xk−1) + EWk|i1:k−1
(Wk) .

The first term is the optimal estimate for Xk−1. As Wk is independent of all Wn with n 6= k

and it is also independent of all Vk, it does not depend on i1:k−1. Thus, the second term is

simply EWk
(Wk), which is uk. This gives

X̂k|k−1 = τ0,k = X̂k−1 + uk.

Considering that the estimator is good enough (at least for large k), we expect to have the r.v.

εk with most of its probability concentrated around zero, thus leading to a higher E [Iq (εk)]

and, consequently, to a lower MSE.

Quantizing the Innovation. Quantizing the prediction error is a known subject in stan-

dard quantization. It is widely known under the name predictive quantization [Gersho 1992,

Ch. 7]. Note that the procedure considered here is different. Instead of quantizing the predic-

tion error of reconstruction, we quantize the error between the prediction in estimation sense

and the noisy measurement Yk − X̂k|k−1. The prediction error in this case is commonly called

the innovation process in continuous measurement linear filtering theory [Kay 1993, p. 433].

The name comes from the fact that it represents the previously unknown information brought

by the new measurement. As a consequence, the quantized prediction error for estimation

purposes is called quantized innovation.

We can slightly change solution (b1.1) (p. 90) by adding the adaptive replacement of the

central threshold with the prediction6. This is what was done in [Sukhavasi 2009b] under

the assumption of Gaussian noise, linear and Gaussian vector Xk ( Xk = AXk−1 +Wk) and

binary quantization. Constraining Xk to be the scalar Wiener process considered here and

generalizing the algorithm for symmetrically distributed noise and NI ≥ 2, we have

6As the measurements are now linked through the use of the prediction for quantizing, we cannot guarantee

the convergence of the particle approximation through standard results and more advanced results are needed

[Crisan 2000].
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Solution to (b) - Particle filter with adaptive threshold sequence τ 1:k

quantizing the innovation.

(b2.1) 1) Estimator

• Set uniform normalized weights w̃
(

x
(j)
0

)

= 1
NS

and initialize NS

particles
{

x
(1)
0 , · · · , x(NS)

0

}

by sampling with prior

p (x0) =
1√
2πσ0

exp

[

−1

2

(

x0 − x′
0

σ0

)2
]

.

For each time k,

• for j from 1 to NS, sample the r.v. X
(j)
k with PDF

(How? - App. A.3.3)

p
(

xk|x(j)
k−1

)

=
1√

2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 ,

• for j from 1 to NS, evaluate and normalize the weights

w
(

x
(j)
1:k

)

= P

(

ik|x(j)
k

)

w̃
(

x
(j)
1:k−1

)

,
w̃
(

x
(j)
1:k

)

=
w
(

x
(j)
1:k

)

NS
∑

j=1

w
(

x
(j)
1:k

)

,

where P

(

ik|x(j)
k

)

is given by (2.14).

• Obtain the estimate with the weighted mean

x̂k ≈
NS
∑

j=1

x
(j)
k w̃

(

x
(j)
1:k

)

.

• Set the central threshold of the quantizer to the new estimate

τ0,k = x̂k−1 + uk.

• Evaluate the number of effective particles

Neff =
1

NS
∑

j=1

w̃2
(

x
(j)
1:k

)

,

if Neff < Nthresh, then resample using multinomial resampling

(How? - App. A.3.4) (app4).

2) Performance (lower bound)

The MSE can be lower bounded as follows

MSEk ≥ 1

J ′
k

,

with J ′
k given recursively by

J
′
k =

1

σ2
w

+ Iq (0)−
1

σ4
w

1
(

1
σ2
w
+ J ′

k−1

) .
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2.5.2 Bound for the quantized innovations

Observe that the lower bound is still valid because we still have E [Iq (εk)] ≤ Iq (0). But, we

might have a performance closer to the bound, as εk might be concentrated mostly around

zero. It is also important to note that now even if the bound is tight (which might not be

true), we can get very close to it, but in general we cannot attain it. This is due to the fact

that the MSE for a varying parameter never goes to zero, leading to a residual spread on the

PDF of εk, which makes E [Iq (εk)] ≤ Iq (0).

To have an approximation on the evolution of the MSE, we can analyze the lower bound

on the BCRB. Therefore, we are interested in analyzing the evolution of J ′
k. We can start by

analyzing the evolution of its increments. Subtracting the expressions for J ′
k and J ′

k−1, we

have

J ′
k − J ′

k−1 =
1

σ4w

(

1
1
σ2
w
+ J ′

k−2

− 1
1
σ2
w
+ J ′

k−1

)

=
1

σ4w

J ′
k−1 − J ′

k−2
(

1
σ2
w
+ J ′

k−1

)(

1
σ2
w
+ J ′

k−2

) . (2.38)

The BI is positive by definition, as it is an expectation of a squared quantity, and σ2w is also

positive by definition, thus the denominator of the expression above is always positive. This

leads to a sign of the increment at time k− 1 that is the same as the sign of the increment at

k − 2. As a conclusion, we can say that the BI is monotonic, it always increases or decreases.

For determining if the BI increases or decreases, we can see from the recursive expression

above that this will be determined by the first increment J ′
1 − J ′

0. By subtracting J ′
0 = 1

σ2
0

from J ′
1, we obtain

J ′
1 − J ′

0 =
1

σ2w
+ Iq (0)−

1

σ4w

1
1
σ2
w
+ 1

σ2
0

− 1

σ20
.

Regrouping the terms with factor 1
σ2
w

gives

J ′
1 − J ′

0 = Iq (0) +
1

σ2w



1− 1

1 + σ2
w

σ2
0



− 1

σ20
= Iq (0) +

1

σ2w + σ20
− 1

σ20
.

Thus, if

Iq (0) >
1

σ20
− 1

σ2w + σ20
,

J ′
1 − J ′

0 is positive and the BI is always increasing, otherwise it always decreases. As a

consequence, if the inequality is satisfied the BCRB is always decreasing, otherwise always

increasing.

As stated before, the information bound J ′
k is bounded below by zero. By looking to (2.37)

Jk ≤ J ′
k =

1

σ2w
+ Iq (0)−

1

σ4w

1
(

1
σ2
w
+ J ′

k−1

) ,

we can see that it is bounded above by Iq (0) +
1
σ2
w
, as the other term that is subtracted is

always positive. Joining the facts that J ′
k is lower and upper bounded with the fact that it
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is always increasing or decreasing, we can conclude that J ′
k will converge to a fixed point (a

fixed value). Except in the cases when the inequality above is an equality, from (2.38), we

see that the increment J ′
k − J ′

k−1 cannot be zero, as it is equal to the last increment (which

is positive) multiplied by a positive value. Therefore, the fixed point of J ′
k is expected to be

attained only asymptotically.

Denoting this asymptotic fixed point J ′
∞, by definition it is the value of J ′

k for which

J ′
k = J ′

k−1. Thus, it can be found by solving

J ′
∞ =

1

σ2w
+ Iq (0)−

1

σ4w

1
(

1
σ2
w
+ J ′∞

) ,

which is equivalent to solve

J ′
∞

2 − Iq (0) J
′
∞ − Iq (0)

σ2w
= 0.

The solutions for the equation above are

Iq (0)±
√

I2q (0) +
4Iq(0)
σ2
w

2
.

In order to have J ′
∞ positive (it is positive by definition), we must take the positive solution.

As
4Iq(0)
σ2
w

is positive, the positive solution is obtained for the positive sign. Therefore,

J ′
∞ =

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

2
(2.39)

and the asymptotic MSE is then lower bounded by the inverse of J ′
∞

MSE∞ ≥ 2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

. (2.40)

The following behaviors can then be obtained for the evolution of the bound: if we start with

a very small σ20 (small compared with 1
Iq(0)

), as we can see from the inequality related to the

monotonicity pattern, the lower bound on the MSE will always increase, tending asymptoti-

cally to 1
J ′
∞

. If we start with a large σ20, the lower bound will always decrease, also tending

asymptotically to 1
J ′
∞

.

From the analysis we can see that the MSE, as expected, is always strictly positive, it is

lower bounded by σ20 when this value is very small compared with 1
Iq(0)

and it is lower bounded

by 1
J ′
∞

when σ20 is large compared with 1
Iq(0)

.

2.5.3 Gaussian assumption and asymptotic estimation of a slowly varying
parameter

Other filtering methods based on the quantized innovation are proposed in the literature

under the Gaussian noise assumption. In [Ribeiro 2006c], binary measurements are obtained
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by applying the sign function to the innovation. A similar procedure to the well-known Kalman

filter [Kay 1993, Ch. 13] is derived by assuming that the posterior at instant k−1 is Gaussian.

In the same line, [You 2008] proposes a Kalman-like procedure for quantized innovations with

NI > 2. A careful reader of the literature on the subject might note that the idea of considering

Gaussian approximations of the posterior for filtering based on quantized data with Gaussian

noise dates back to [Curry 1970]. Also, the idea of quantizing the innovation seems to be first

exploited in [Borkar 1995]7 (cited in [Sukhavasi 2009a]).

The general algorithm presented in [You 2008] has its approximate performance dependent

on Iq (0), with Iq (0) being evaluated for the Gaussian distribution with variance σ2v = 1 (noise

scale factor δ =
√
2). The performance of the algorithms is enhanced by maximizing Iq (0).

This is in accordance with the lower bound on the MSE studied above for the Wiener process

model with symmetric noise, MSEk ≥ 1
J ′
k
, which decreases with increasing Iq (0) ((2.37) shows

that J ′
k increases with Iq (0)). This gives additional motivation for studying how to maximize

Iq (0) w.r.t. the thresholds.

The assumption that the posterior is a Gaussian distribution for all k and all σw stated

in [Curry 1970], [Ribeiro 2006c] and [You 2008] is a very rough approximation. For observing

this, consider that the assumption that the prediction PDF p (xk|i1:k−1) is Gaussian is correct.

Then, from the update expression (2.11), we know that the posterior is proportional to the

function P (ik|xk) p (xk|i1:k−1). The probability P (ik|xk) is a difference of CDF, which is a

function that is approximately a rectangular window with slowly decreasing borders centered

at the quantization interval for ik. If the standard deviation of the prediction is large or has

similar value of the equivalent width of P (ik|xk) and the prediction distribution has a mean

that is different of the quantization interval center, then it is easy to see that the resultant

P (ik|xk) p (xk|i1:k−1) will be a skewed function, not similar at all to a Gaussian function. As

an additional remark, we can see that differently from the continuous measurement case, where

the measurement noise must be Gaussian for having a Gaussian posterior, the assumption of

Gaussian noise does not help here, as the function P (ik|xk) is not close to Gaussian even in

the Gaussian case.

We will use the Gaussian assumption when σw is small and k tends to infinity. Under

these assumptions and considering that we quantize the innovations, we will obtain an ap-

proximation of the asymptotically optimal estimator and its performance. To verify that the

approximation is reasonable, we will compare the approximate asymptotic performance with

the asymptotic BCRB.

2.5.3.1 Asymptotic estimator for a slowly varying parameter

As it was discussed above, it is reasonable to accept that the estimator MSE will converge to

a constant σ2∞. When the Wiener process increment standard deviation σw is small compared

with the noise scale factor, the estimator has sufficient time for reducing the estimation vari-

ance before Xk changes significantly, thus it is also reasonable to state that σ2∞ is small. If

7In this case, the true innovation is quantized, i.e., the innovation obtained by using the estimator based on

the continuous measurements, this is different from the methods in [Ribeiro 2006c] and [You 2008], where the

quantized innovation is the innovation obtained using the estimator based on the quantized measurements.
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we assume that the previous posterior after some time is approximately Gaussian with mean

E (Xk−1) and variance σ2∞, then, as the prediction PDF is the convolution (2.10) of p (xk|xk−1),

which is Gaussian, with p (xk|i1:k−1) which is also Gaussian, we obtain that the prediction

PDF conditioned on the past observations is Gaussian distributed with mean E (Xk−1) + uk
and variance σ2∞+σ2w. For estimating the optimal Xk we must evaluate the conditional mean

X̂k =

∫

R

xk
P (ik|xk) p (xk|i1:k−1)

∫

R

P
(

ik|x′k
)

p
(

x′k|i1:k−1

)

dx′k
dxk =

∫

R

xkP (ik|xk) p (xk|i1:k−1) dxk
∫

R

P
(

ik|x′k
)

p
(

x′k|i1:k−1

)

dx′k
.

The numerator in the last term of the RHS can be seen as the prediction mean of the r.v.

XkP (ik|Xk) (the mean w.r.t. p (xk|i1:k−1)), under the assumption that σ∞ is small, the factor

P (ik|Xk), which is given by (2.14)

P (ik|Xk) =







F
(

τ ′|ik| + X̂k|k−1 −Xk

)

− F
(

τ ′|ik−1| + X̂k|k−1 −Xk

)

, if ik > 0,

F
(

−τ ′|ik+1| + X̂k|k−1 −Xk

)

− F
(

−τ ′|ik| + X̂k|k−1 −Xk

)

, if ik < 0,

can be well approximated by a first order Taylor series expansion around X̂k|k−1 −Xk = 0

P (ik|Xk) = P (ik|Xk)|X̂k|k−1=Xk
+
(

X̂k|k−1 −Xk

)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
(

X̂k|k−1 −Xk

)

, (2.41)

where fd

(

ik, X̂k|k−1, Xk

)

is the first derivative of P (ik|Xk) w.r.t. the prediction error X̂k|k−1−
Xk. It can be written as a function of the noise PDF f

fd

(

ik, X̂k|k−1, Xk

)

=

=







f
(

τ ′|ik| + X̂k|k−1 −Xk

)

− f
(

τ ′|ik−1| + X̂k|k−1 −Xk

)

, if ik > 0,

f
(

−τ ′|ik+1| + X̂k|k−1 −Xk

)

− f
(

−τ ′|ik| + X̂k|k−1 −Xk

)

, if ik < 0.
(2.42)

Note that when X̂k|k−1 = Xk the function fd

(

ik, X̂k|k−1, Xk

)

depends only on ik. Using

(2.41), the numerator in the estimator expression is then the prediction mean of

XkP (ik|Xk) = XkP (ik|Xk)|X̂k|k−1=Xk
+
(

XkX̂k|k−1 −X2
k

)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
(

XkX̂k|k−1 −X2
k

)

.

The prediction mean of Xk is the prediction X̂k|k−1, while X̂k|k−1 is simply a constant for the

evaluation of this mean. Thus, using linearity and the fact that

E
2
Xk|i1:k−1

(Xk)− EXk|i1:k−1

(

X2
k

)

= −VarXk|i1:k−1
(Xk) = −

(

σ2∞ + σ2w
)

,

we have
∫

R

xkP (ik|xk) p (xk|i1:k−1) dxk = X̂k|k−1 P (ik|Xk)|X̂k|k−1=Xk
+

−
(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
(

σ2∞ + σ2w
)

. (2.43)
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To obtain the denominator in the estimation expression, we can use a similar procedure. Note

that now the prediction expectation is evaluated for the r.v. P (ik|Xk) instead of XkP (ik|Xk).

We will use the second order Taylor expansion of P (ik|Xk) in this case:

P (ik|Xk) = P (ik|Xk)|X̂k|k−1=Xk
+
(

X̂k|k−1 −Xk

)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+

+

(

X̂k|k−1 −Xk

)2

2
f ′d
(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
[

(

X̂k|k−1 −Xk

)2
]

, (2.44)

where f ′d

(

ik, X̂k|k−1, Xk

)

is the second derivative of P (ik|Xk) w.r.t. the prediction error. By

differentiating fd in (2.42), we can observe that, for X̂k|k−1 = Xk, this function also depends

only on ik. The mean of the first term above is the constant P (ik|Xk)|X̂k|k−1=Xk
. For the

second term fd is a constant and the mean of the prediction is zero, as the optimal predictor

is unbiased [Jazwinski 1970, p. 150]. The third and last terms depend on the prediction

mean of
(

X̂k|k−1 −Xk

)2
, which is equal to the prediction variance σ2∞ + σ2w, also due to the

unbiasedness of the optimal predictor. This gives the following
∫

R

P
(

ik|x′k
)

p
(

x′k|i1:k−1

)

dx′k = P (ik|Xk)|X̂k|k−1=Xk
+

+

(

σ2∞ + σ2w
)

2
f ′d
(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
(

σ2∞ + σ2w
)

. (2.45)

Dividing the RHS of the expressions (2.43) and (2.45), we have an expression for the estimator

X̂k =

X̂k|k−1 P (ik|Xk)|X̂k|k−1=Xk
−
(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦
(

σ2∞ + σ2w
)

P (ik|Xk)|X̂k|k−1=Xk
+ (σ2

∞+σ2
w)

2 f ′d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

+ ◦ (σ2∞ + σ2w)
.

Dividing the numerator and denominator by P (ik|Xk)|X̂k|k−1
, we get

X̂k =

X̂k|k−1 −
(

σ2∞ + σ2w
)

fd(ik,X̂k|k−1,Xk)|X̂k|k−1=Xk

P(ik|Xk)|X̂k|k−1=Xk

+ ◦
(

σ2∞ + σ2w
)

1 + (σ2
∞+σ2

w)
2

f ′
d(ik,X̂k|k−1,Xk)|X̂k|k−1=Xk

P(ik|Xk)|X̂k|k−1=Xk

+ ◦ (σ2∞ + σ2w)

. (2.46)

If

∣

∣

∣

∣

∣

f ′
d(ik,X̂k|k−1,Xk)|X̂k|k−1=Xk

P(ik|Xk)|X̂k|k−1=Xk

∣

∣

∣

∣

∣

is bounded and σ2∞+σ2w ≪ 1, the denominator is approximately

one and we can approximate the optimal estimator by8

X̂k ≈ X̂k|k−1 −
(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

. (2.47)

8Note that a first order Taylor series of 1
1+x

around x = 0 would produce a more precise approximation,

but this would generate a more complicated algorithm for the performance analysis.
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2.5.3.2 Performance of the asymptotic estimator

Now, we need to calculate the asymptotic MSE of this estimator, which is σ2∞. The idea here

to start is to rewrite the asymptotic prediction error as a sum of the estimation error plus a

function of the observations. Using (2.47) we have

X̂k −Xk = X̂k|k−1 −Xk −
(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

,

subtracting the term with fd from both sides, we have

X̂k −Xk +
(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

= X̂k|k−1 −Xk.

Squaring and taking the expectation gives

E

[

(

X̂k −Xk

)2
]

+ 2E







(

X̂k −Xk

)

(

σ2∞ + σ2w
)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk






+

+E







(

σ2∞ + σ2w
)2
f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P2 (ik|Xk)|X̂k|k−1=Xk






= E

[

(

X̂k|k−1 −Xk

)2
]

.

The first term is the asymptotic squared error σ2∞. The second term is the expectation of

the estimation error multiplied by a function of the measurement ik, for small σ2∞ + σ2w the

estimation procedure is optimal (it minimizes the MSE), thus this expectation equals zero

[Rhodes 1971]9. The constant
(

σ2∞ + σ2w
)2

can leave the expectation and the term on the

RHS is the prediction error σ2∞ + σ2w. Therefore, we have

σ2∞ +
(

σ2∞ + σ2w
)2

E







f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P2 (ik|Xk)|X̂k|k−1=Xk






= σ2∞ + σ2w. (2.48)

The expectation that still needs to be evaluated is an expectation under the marginal prob-

ability measure of ik, P (ik). This probability measure can be evaluated by marginalizing on

the prediction error εk = X̂k −Xk

P (ik) =

∫

R

P (ik|xk) p (εk) dεk.

Remember that in the quantized innovation scheme P (ik|xk) is a function of ik and εk. The

marginal can be also observed as the mean of P (ik|Xk) evaluated w.r.t. the distribution of

9This is a more general form of the well-known orthogonal projection theorem.
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εk. For evaluating the mean, we can again use a second order Taylor series expansion around

εk = 0. This will lead to the same expression as in (2.45). Then, the remaining expectation is

E







f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P2 (ik|Xk)|X̂k|k−1=Xk






=











∑

ik∈I

f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk











+

+
(

σ2∞ + σ2w
)

∑

ik∈I

f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

f ′d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P2 (ik|Xk)|X̂k|k−1=Xk

+

+ ◦
(

σ2∞ + σ2w
)

.

The first term on the RHS can be identified as the FI Iq (0). Considering that the sum in the

second term on the RHS is bounded, then, after multiplying by
(

σ2∞ + σ2w
)2

, the second term

is multiplied by
(

σ2∞ + σ2w
)3

which is a ◦
[

(

σ2∞ + σ2w
)2
]

term. This leads to

(

σ2∞ + σ2w
)2

E







f2d

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P2 (ik|Xk)|X̂k|k−1=Xk






=
(

σ2∞ + σ2w
)2
Iq (0) + ◦

[

(

σ2∞ + σ2w
)2
]

.

Using the expression above in (2.48), we obtain

σ2∞ +
(

σ2∞ + σ2w
)2
Iq (0) + ◦

[

(

σ2∞ + σ2w
)2
]

= σ2∞ + σ2w,

or equivalently
(

σ2∞ + σ2w
)2

+ ◦
[

(

σ2∞ + σ2w
)2

Iq (0)

]

=
σ2w
Iq (0)

.

If σ2w is small enough so that the ◦ term is negligible, we can obtain the following approximation

for σ2∞:

σ2∞ ≈ σw
√

Iq (0)
− σ2w. (2.49)

Considering that σw is small compared with
√

Iq (0) and with one, we have a rough approxi-

mation for the asymptotic performance

σ2∞ ≈ σw
√

Iq (0)
. (2.50)

Finally, replacing σ2∞ from (2.49) in the approximate expression for X̂k (2.47), the following

is obtained:

X̂k ≈ X̂k|k−1 −
σw

√

Iq (0)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

=

= X̂k−1 + uk −
σw

√

Iq (0)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

. (2.51)
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A few remarks are important here. First, in a similar way as it happened for the adaptive

estimator of a constant parameter, the asymptotic estimation procedure is very simple, it is a

correction on the last estimate which depends on the observation through

fd(ik,X̂k|k−1,Xk)|X̂k|k−1=Xk

P(ik|Xk)|X̂k|k−1=Xk

,

a function of ik only. This means that the corrections can be stored in a table. Second, the

correction gain now is even simpler than in the constant parameter case, it is a constant. Third,

the rough approximation for σ2∞ (2.50) agrees with the intuition on estimation performance, if

σw increases, the MSE increases, as the estimator has less effective samples to estimate before

the parameter changes significantly. If Iq (0) increases, which is equivalent to say that the

noise level is reduced and/or that the quantizer resolution is increased, the MSE decreases as

the statistical information given by each sample is reduced.

2.5.3.3 Asymptotic lower bound on the BCRB

for a slowly varying parameter

To check if the asymptotic estimator above is indeed close to optimal, we can compare its

estimation performance with the asymptotic MSE lower bound, which is given by (2.40):

MSE∞ ≥ 2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

.

Comparing with (2.50) must be done for small σw. For evaluating the RHS above in this case,

we can multiply its numerator and its denominator by σw

2
√

Iq(0)
. This will lead to

2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

=

σw√
Iq(0)

Iq(0)σw

2
√

Iq(0)
+

√

Iq(0)σ2
w

4 + 1
.

Using the expansion around x = 0,
√
1 + x = 1 + x

2 + ◦ (x), on the square root above gives

2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

=

σw√
Iq(0)

Iq(0)σw

2
√

Iq(0)
+ 1 +

Iq(0)σ2
w

8 + ◦ (σ2w)
,

where we used the fact that σ2w is small compared with Iq (0) for making the Iq (0) to disappear

from the ◦ term. Note that this was also supposed to get the rough approximation (2.50) above.

We can use again an expansion around zero. Now, we use 1
1+x

= 1 − x + ◦ (x). Supposing,

additionally that σw is small compared with
Iq(0)√
Iq(0)

, we can use a ◦ term depending only on

σw. Thus, we obtain

2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

=
σw

√

Iq (0)

[

1− Iq (0)σw

2
√

Iq (0)
+ ◦ (σw)

]

.
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The squared terms can be assimilated to ◦ (σw) leading finally to

EQM∞ ≥ 2

Iq (0) +
√

I2q (0) +
4Iq(0)
σ2
w

=
σw

√

Iq (0)
+ ◦ (σw) ,

which for small σw is exactly the same as the rough approximation of the asymptotic estimator

performance. Consequently, we can say that the asymptotic estimator obtained above is

optimal, as in this specific case, it attains the lower bound.

As in the previous section, where the adaptive MLE scheme was shown to have a simple

recursive form asymptotically, a question arise:

• can the asymptotic estimator (2.47) for slowly varying Xk converge when we use it with

an arbitrary (not necessarily small) initial error?

The answer for this question will be given in Ch. 3.



102 Chapter 2. Estimation of a varying parameter

2.6 Chapter summary and directions

We sum up the main points of this chapter:

• instead of considering that the parameter is constant, we assumed that the parameter

can vary in time, more specifically, following a Wiener process model. We saw that, in

general, the optimal estimator can be obtained by evaluating the mean of the parameter

conditioned on the past and present quantized measurements. Thus, the core of the

problem was observed to be the evaluation of the posterior PDF (PDF of Xk conditioned

on i1:k). For a Markov process Xk, which is the case for a Wiener process model, the

posterior can be evaluated in a recursive way, first by obtaining a prediction PDF using

the posterior at time k − 1 and the evolution model, then by updating the prediction

PDF to the posterior at time k, incorporating the new measurement ik.

• The integrals involved in the recursive expressions are complicated to be evaluated ana-

lytically, so we must resort to numerical algorithms for solving them. One way of doing

this is to apply Monte Carlo integration. This leads to a PF solution. The PF solution

is a recursive simplified form of Monte Carlo integration applied to the filtering problem

with an additional resampling step. The performance of the optimal estimator could

also be obtained using Monte Carlo integration, but it would be very difficult and time

consuming to study the effects of the system parameters (noise level, Wiener process

increments variance and quantizer resolution) using the Monte Carlo results. Therefore,

we considered a simpler solution by using a bound on the MSE for which we can have a

simple analytical expression.

• In our case, we used the BCRB, which is the inverse of the Bayesian information. The BI

for the Wiener process Xk can be evaluated recursively. From its recursive expression,

we could see that the BI and consequently the bound were affected by the quantization

through a E [Iq (εk)] term, where εk is the difference between the central threshold and

the parameter. If E [Iq (εk)] is increased, then the bound decreases, if it decreases, the

bound increases. For commonly used noise models, Iq (εk) is maximum at εk = 0,

therefore, a practical lower bound can be obtained by using Iq (0) instead of E [Iq (εk)].

• If we accept that the bound is tight enough to mimic the behavior of the MSE, another

consequence of the dependence of the bound on E [Iq (εk)] and the fact that Iq (εk) is large

close to εk is that the central threshold must be placed as close as possible to the true

parameter. This can be done in an approximate way, by setting the central threshold

to the prediction of Xk based on the past measurements. Thus, a good estimation

procedure might be based on the quantized innovation. In this case, it is expected that

the estimation performance will be closer to the bound, when compared with a quantizer

with arbitrary central threshold.

• When σw is small and k tends to infinity, the optimal estimator can be approximated by

a low complexity recursive expression, with its MSE attaining the BCRB and given by
σw√
Iq(0)

. This shows one more time, the importance of studying the maximization of Iq (0)

w.r.t. the quantization threshold variations. As stated before, the asymptotic analysis
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of this problem will be done in Part II. The simplicity of the asymptotic estimator when

Xk varies slowly will be used as a motivation to study in more detail recursive algorithms

of the type - prediction + correction based on ik. This will be done in Ch. 3.

• A generalization of the signal model used here can be obtained by considering that the

dynamical parameter is a vector Xk with size N and that it obeys a linear Gaussian

model of the type

Xk = ΦkXk−1 +Wk,

where Φk is a N × N matrix and Wk is a sequence of independent Gaussian vectors.

The continuous measurement is a vector Yk with dimension M

Yk = HkXk +Vk,

where Hk is a M ×N matrix and Vk is a sequence of independent vectors. Quantization

can be done also scalarly, but we might consider two possibilities for the quantization

of each Yk, scalar quantization of each dimension or vector quantization of the entire

vector.

A direct application of the estimation problem with this model is the control of linear

systems under rate constraints. We will not go further in this direction in this thesis,

but we will keep this generalized version of the problem for future work.





Chapter 3

Adaptive quantizers for estimation

As we saw in the previous chapters, to obtain good estimation performance, the quantizer

dynamic might be adaptively set around the true parameter to be estimated. We also saw

that the asymptotically optimal estimator in the constant parameter case or in the slowly

varying parameter case has a simple recursive form. We asked at the end of each chapter:

• can the asymptotic estimator based on binary measurements converge when we use

its simplified form (the low complexity equivalent) with an arbitrary initial error (not

necessarily small)?

• Can we extend this low complexity recursive procedure to the case NI > 2?

• Can the asymptotic estimator for slowly varying Xk converge when we use its simplified

form (the low complexity equivalent) with an arbitrary initial error (not necessarily

small)?

In this chapter we will answer these questions. For doing so, we will impose the estimation

algorithm to have a general recursive form that includes the asymptotically optimal estimators

as special cases.

We will start the chapter with a brief review of the signal models that will be used (con-

stant, Wiener process without and with drift) and with the definition of the quantizer to be

used. Then, we will define the estimation algorithm form and we will study its performance for

the signal models defined previously in terms of the mean error and of the MSE . Based on the

performance analysis, we will obtain the optimal estimator parameters and the corresponding

optimal performance. As in related work [Papadopoulos 2001], the optimal performance will

be used to obtain a measurement of performance loss due to quantization. This loss will be

evaluated for each signal model by using the corresponding optimal performance for estima-

tion based on continuous measurements. The performance results will be verified through

simulation.

We will also propose extensions of the adaptive algorithm in the following cases:

• quantized measurements from a sensor are used for estimating a constant parameter,

but in this case, the noise scale parameter is considered to be unknown.

• Multiple sensors and a fusion center are used to estimate a constant parameter. The

sensors can send only quantized measurements to the fusion center, while the fusion

center can broadcast continuous values to the sensors.

105
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In each of these cases we will follow a similar procedure. We will define the problem and the

estimation algorithm to be used. Then, we will obtain the optimal estimator parameters and

the corresponding optimal performance. Simulation will be used to check the validity of the

results.

At the end of the chapter, we will summarize the main results of the chapter and we will

give some directions for future work.

Contributions presented in this chapter:

• Design and analysis of an adaptive estimation algorithm based on multibit quantized

noisy measurements. This differs from [Li 2007] and [Fang 2008], where only binary

quantization is treated.

• Explicit performance analysis for tracking of a slowly varying parameter. Differently

from [Papadopoulos 2001, Ribeiro 2006a, Li 2007, Fang 2008], where the parameter is

set to be constant and all subsequent analysis is based on this hypothesis. Even if track-

ing is treated in a more general way in [Ribeiro 2006c] and [You 2008], we do not state

assumptions on noise Gaussianity. Note that the assumption that the parameter varies

slowly seems more restrictive than the parameter models considered in [Ribeiro 2006c]

and [You 2008], actually, the slowly varying assumption is hidden in the performance

evaluation for the binary case given in [Ribeiro 2006c], where it is shown that the perfor-

mance of the proposed filter reaches the equivalent continuous when the sampling time

tends to zero.

• Low complexity algorithms. The algorithms proposed here are based on simple recursive

techniques that have lower complexity than the methods proposed in [Li 2007] and

[Fang 2008].

• Joint location and scale adaptive estimator. The algorithm that we propose is an exten-

sion of the location estimation problem. This extension is discussed in [Ribeiro 2006b]

but only for fixed quantization thresholds.

• Fusion center approach. This approach can be seen as a multisensor, multibit, low

complexity alternative to the adaptive techniques presented in [Li 2007] and [Fang 2008]

and also as an adaptive alternative for the optimal threshold distribution approach given

in [Ribeiro 2006a], where a prior distribution on the parameter is needed.
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3.1 Parameter model and measurement model

3.1.1 Parameter model

We will join the constant and varying models by using the dynamic model (2.1)

Xk = Xk−1 +Wk,

where {Wk, k = 1, 2, · · · } is a sequence of independent Gaussian r.v. (also independent of Xn,

for n < k) whose means form a deterministic sequence {uk, k = 1, 2, · · · } and its standard

deviation is σw:

Wk ∼ N
(

uk, σ
2
w

)

.

Symbol ∼ means "distributed according to" and N is the symbol for the Gaussian distribution.

Differently from what was considered previously, the sequence uk will be considered to be

a known or unknown constant u and we will assume that it has small value. We will also

assume that σw is a known, small constant. "Small" in both cases means that these constants

are small when compared with the noise scale parameter. In the Gaussian noise case, this is

equivalent to say that they are small when compared with the noise standard deviation.

The fact that we use a constant u instead of the varying uk will allow to have asymptotic

performance results. In practice, all the results that will be presented will be valid for varying

uk, as long as the sequence uk is small and slowly varying.

The model above is a compact form to describe the three parameter models that are

studied in this thesis:

• constant: by taking u = σw = 0 and X0 = x, we have the constant parameter model.

• Wiener process: if u = 0, (small) nonzero σw and Gaussian X0 with unknown mean and

variance, then Xk is a (slowly) varying Wiener process.

• Wiener process with drift: in this case u and σw are non zero (and with small amplitudes).

3.1.2 Noise model

The continuous amplitude measurement is again given by the additive model

Yk = Xk + Vk,

where the noise r.v. sequence Vk respects the assumptions considered previously:

• the sequence is i.i.d..

• AN1 (p. 34) – The marginal noise CDF denoted F (v) accepts a PDF denoted f (v).

• AN2 (p. 34) – f (v) is a strictly positive even function that strictly decreases w.r.t. |v|.
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An additional assumption will be considered on the noise CDF.

Assumption (on the noise distribution):

AN3 F is locally Lipschitz continuous.

A function F (v) is Lipschitz continuous in an interval V , if for every two points v1 and v2 in

V there exists a constant L such that

|F (v1)− F (v2)| ≤ L |v1 − v2| ,

the function is locally Lipschitz continuous if for every v ∈ R, we can find an interval V ′

containing v such that the function is Lipschitz continuous.

This assumption is required by the method of analysis that will be used to assess the

performance of the proposed algorithm. Most noise CDF considered in practice are Lipschitz

continuous, thus this assumption is generally satisfied.

3.1.3 Adjustable quantizer model

We saw in Ch. 1 and 2 that the quantizer central threshold must be dynamically updated

to obtain a good estimation performance. We will make explicit this feature by imposing the

quantizer to have an adjustable offset bk. For adjusting the amplitude of the quantizer input,

we can also consider that after offsetting the input, we apply an adjustable gain 1
∆k

. The

quantized measurements at the output of the adjustable quantizer are given by

ik = Q

(

Yk − bk

∆k

)

. (3.1)

By considering dynamic input offset and gain, we can fix the quantizer to have a static structure

with a central threshold that now can be set to zero. Thus, the quantizer thresholds are equal

to the threshold variations. This modifies assumption AQ2 (p. 37).

Assumption (on the quantizer):

AQ2’ The quantizer is symmetric around the central threshold which is equal to zero. This

means that the vector of thresholds τ is given by the vector of threshold variations

τ = τ ′ =

[

−τ ′NI
2

· · · − τ ′1 0 + τ ′1 · · · + τ ′NI
2

]⊤
,

where the threshold variations τ ′i form an increasing sequence.

The adjustable quantizer output is given by

ik = Q

(

Yk − bk

∆k

)

= i sign (Yk − bk) , for
|Yk − bk|

∆k
∈
[

τ ′i−1, τ
′
i

)

. (3.2)

A scheme representing the adjustable quantizer is given in Fig. 3.1 . Note that even if the

quantizer is not uniform (with constant step-length between thresholds), it can be implemented

using a uniform quantizer with a compander approach [Gersho 1992].
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Yk

−

bk

Adjustable offset

1

∆k

Adjustable gain

0

τ
′

1

τ
′

2

−τ
′

1

−τ
′

2

Static quantizer

ik

Figure 3.1: Scheme representing the adjustable quantizer. The offset and gain can be adjusted

dynamically, while the quantizer thresholds are fixed.

Based on the quantizer outputs, the main objective is to estimate Xk. A secondary ob-

jective is to adjust the parameters bk and ∆k to enhance estimation performance. As the

estimate X̂k of Xk will be possibly used in real time applications, it might be interesting to

estimate it online. Therefore, we are again interested in solving problems (a) and (b), the

main difference is that now we want to solve (a) for each time index k.

It was observed in the previous chapters that

• when estimating a constant, we can place the central threshold in the last estimate to

have an asymptotically optimal algorithm.

• When estimating a Wiener process, we can place the central threshold at the prediction.

For Wiener process without drift the prediction is exactly X̂k−1 and for Wiener process

with drift the prediction is X̂k−1 + uk.

Based on these observations and for simplification purposes, we will set for all cases bk =

X̂k−1. Also to simplify, we will consider that the gain is set to be a constant. For the algorithm

presented later, the fact that the offset is set to X̂k−1 will have as a consequence asymptotically

optimal parameters that do not depend on the mean of Xk, thus simplifying the analysis.

Some remarks here are important:

• We will see that imposing the use of bk = X̂k−1, instead of using the prediction, will

make the algorithm parameters and the performance to be different for Wiener process

with and without drift.

• If we use the prediction, instead of the last estimate, for setting the quantizer offset and

for estimating Xk, then all the results that we will obtain for a Wiener process without

drift will be valid also for the process with drift.

• In the special cases where the optimal central threshold is not the median of the contin-

uous amplitude measurement, we can evaluate the optimal quantizer offset ε⋆ w.r.t. the

true parameter (the point of minimum in the "w" shaped CRB curves) and then add

this value to the offset of the adaptive quantizer bk = X̂k−1 + ε⋆.
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• As most performance results will be given asymptotically, the simplification brought by

using a constant gain 1
∆ can still be partially achieved if we constrain this gain to be

constant after some time or to achieve asymptotically a constant value. In this case,

the analysis of error convergence will have to take into account that the measurement

system varies in time and we must be able also to evaluate its asymptotic value.

• The gain 1
∆ will be again considered to be variable further in the chapter, where we will

estimate jointly a constant Xk and the scale parameter of the noise. In this case, the

gain will not only be variable, but it will also depend on the measurements.

The general scheme for the estimation of Xk is depicted in Fig. 3.2 and the main objective

will be to find the algorithm that will be placed in the block named Update.

1

∆
0

τ
′

1

τ
′

2

−τ
′

1

−τ
′

2

Xk Yk

Vk

Update

ik

Quantized
measurements

X̂k

Estimate

∆

X̂k−1

−

Adjustable
Quantizer

Figure 3.2: Block representation of the estimation scheme. The estimation algorithm and the

procedures to set the offset and the gain are represented by the Update block.

3.2 General estimation algorithm

At the end of Ch. 1, we saw that the estimator in the adaptive binary quantization scheme

based on the MLE is asymptotically given by (1.87)

X̂k = X̂k−1 +
ik

2kf (0)
,

whereas at the end of Ch. 2, we saw that the asymptotic expression for the optimal estimator

of a slowly varying Wiener process is (2.51)

X̂k ≈ X̂k|k−1 −
σw

√

Iq (0)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

.
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Both asymptotic estimators have low complexity and both are special cases of the following

adaptive algorithm:

X̂k = X̂k−1 + γkη

[

Q

(

Yk − X̂k−1

∆

)]

, (3.3)

where, γk is a sequence of positive real gains and η[·] is a mapping from I to R

η : I → R

j → ηj , (3.4)

which is characterized by the sequence of NI coefficients
{

η−NI
2

, . . . , η−1, η1, . . . , ηNI
2

}

. Notice

that the coefficients η[·] can be seen as the "estimation equivalent" of the output quantization

levels used in standard quantization theory.

Even if nothing guarantees that the algorithm (3.3) is optimal for finite time, the fact that

it can be equivalent asymptotically to the optimal estimator and that it has low complexity

are strong motivations for using it. Other more intuitive motivations are the following:

• similarly to the binary grid method proposed by [Fang 2008], for a slowly varying or

constant parameter, we can choose the coefficients η[·] in a way that the algorithm will

tend to be around true parameter at least in the mean.

• When estimating a constant, the maximum likelihood estimator can be approximated

by a simpler online algorithm using a stochastic gradient ascent algorithm, which has

the same form as (3.3). It will be shown later that for the optimal choice of ηi, algorithm

(3.3) is equivalent to a stochastic gradient ascent method to maximize the log-likelihood.

• To estimate a Wiener process, an approximate choice of estimator is a Kalman filter like

method based on the quantized innovation, which is also (3.3).

Due to the symmetry of the problem for commonly used noise models, when X̂k is close to

Xk, it seems reasonable to suppose that the corrections given by the output quantizer levels

have odd symmetry with positive values for positive ik. This symmetry will be useful later

for simplification purposes and we will add it to the other assumptions.

Assumption (on the quantizer output levels):

AQ3 The quantizer output levels have odd symmetry w.r.t. i:

ηi = −η−i, (3.5)

with ηi > 0 for i > 0.

In the special cases where the threshold must be placed asymmetrically and we put an addi-

tional constant value in the quantizer offset (ε⋆), the assumption above may lead to an asymp-

totic estimation bias. For observing this, consider that the quantization offset is already at

the parameter. Then, the mean of the correction η [ik] will be zero, as the distribution of the

ik is even and ηi is odd. Thus the algorithm is in a mean equilibrium point. As the offset is
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placed ε⋆ away from the estimate, the mean of the estimate has an equilibrium point that is

different from the true parameter.

The non differentiable non linearity Q in (3.3) makes it difficult to be analyzed. Fortu-

nately, an analysis based on mean approximations was developed in [Benveniste 1990] for a

wide class of adaptive algorithms. Within this framework, the function η can be a general

nonlinear non-differentiable function of Yk and X̂k and it is shown that the gains γk that

optimize the estimation of Xk can be chosen as follows:

• γk ∝ 1
k

when Xk is constant.

• γk is constant for a Wiener process Xk.

• γk is a constant which is proportional to u
2
3 when Xk is a Wiener process with drift.

Notice that the gains for the constant and Wiener process models given above have the same

form of the asymptotically optimal gains found in Ch. 1 and Ch. 2. The only difference is

the gain proportional to u
2
3 in the case with drift, which reflects the choice of using X̂k−1 in

the place of the prediction.

In the following sections we will consider the gains given above for the algorithm (3.3) and

we will apply the general analysis presented in [Benveniste 1990] to obtain its performance.

3.3 Estimation performance

To obtain the estimation performance, the analysis is separated in

• the analysis of the estimator mean. This gives a rough approximation of the estimator

behavior. With this information we can see if the estimator converges in the mean and

we can also characterize its bias.

• The analysis of the estimation variance. This analysis will give the details on the fluc-

tuation around the mean and it will be obtained, in most cases, asymptotically.

3.3.1 Mean ordinary differential equation

The core of the analysis that we use here and that is presented in a general setting in

[Benveniste 1990] is to approximate the mean E

(

X̂k

)

by x̂ (tk), where x̂ (t) is the solution of

the ordinary differential equation (ODE)

dx̂

dt
= h (x̂) . (3.6)

The correspondence between continuous and discrete time is given by tk =
k
∑

j=1
γj and h (x̂) is

the following:

h (x̂) = E

{

η

(

Q

(

x− x̂+ V

∆

))}

, (3.7)



114 Chapter 3. Adaptive quantizers for estimation

where the expectation is evaluated w.r.t. the distribution of V , which is the noise marginal

distribution.

A simple heuristic to obtain the approximation is the following: first we rewrite (3.3) as

X̂k − X̂k−1

γk
= η

[

Q

(

Xk − X̂k−1 + Vk

∆

)]

,

then we consider that the parameter is approximately a constant Xk = x and that X̂k−1 on the

RHS can be approximated by the mean at time k, i.e. X̂k−1 = x̂. Evaluating the expectation

on both sides
E

(

X̂k

)

− E

(

X̂k−1

)

γk
= E

{

η

[

Q

(

x− x̂+ Vk

∆

)]}

,

we see now that the RHS is h (x̂) and if we consider the algorithm gain as a small time step,

then
E(X̂k)−E(X̂k−1)

γk
is an approximation of the time derivative.

For the approximation given by the ODE (3.6) to be valid as an approximation of E
(

X̂k

)

at least after some time k and for using the results from [Benveniste 1990], some conditions

must be satisfied:

• conditions on the Gains. The gains must sum to infinity

∞
∑

k=1

γk = +∞,

when they are decreasing, the sum of their power must be finite

∞
∑

k=1

γαk < +∞, for some α > 1

and when they are not decreasing, they must tend to a finite limit

γ∞ = lim
k→∞

γk < +∞.

As the cumulative sum of the gains is an equivalent for the time in the ODE approxima-

tion, the condition that the sum of the gains goes to infinity is equivalent to say that the

time in the ODE can go to infinity, so that the algorithm does not get "stuck" in time.

The condition on the sum of the powers of the decreasing gains is used to guarantee that

the fluctuations of the estimator will decrease when we want to estimate a constant. The

last condition on the limit of the gains is used to have fixed asymptotic performance

results. We can see that all these conditions are satisfied for the three types of gain

defined previously.

• Conditions on the continuous measurements. For a fixed Xk = x, the continuous mea-

surements Yk form a Markov chain with a unique stationary asymptotic distribution.

This condition is also necessary to have fixed asymptotic results. In the problem con-

sidered here, the distribution of the continuous measurements given a fixed parameter x

is the distribution of the noise shifted by the parameter x. As the noise distribution is

i.i.d., the distribution of Yk is stationary for all k, thus clearly respecting this condition.
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• Regularity conditions on h (x̂). The function h (x̂) is locally Lipschitz continuous.

The main point of using the analysis presented in [Benveniste 1990] is that it is not

necessary to have a continuous correction function η. The analysis is mainly based on

replacing the mean of the algorithm by the ODE approximations and then evaluating the

fluctuations around it. This analysis then reposes mainly on h and not on η. For the local

existence, uniqueness and regularity of the ODE solution, we might impose regularity

conditions on h. Also, for evaluating the fluctuations around the ODE solution we might

look to local expansions of h, which then leads naturally to conditions as the one stated

above.

Using the assumptions on the quantizer thresholds and output levels, the expectation in

(3.7) can be written as:

h (x̂) =

NI
2
∑

i=1

[ηiFd (i, x̂, x)− ηiFd (−i, x̂, x)] , (3.8)

where Fd is a difference of CDFs:

Fd =







F (τ ′i∆+ x̂− x)− F
(

τ ′i−1∆+ x̂− x
)

, if i ∈
{

1, · · · , NI

2

}

,

F
(

τ ′i+1∆+ x̂− x
)

− F (τ ′i∆+ x̂− x) , if i ∈
{

−1, · · · ,−NI

2

}

.
(3.9)

From assumption AN3, the function h is a linear combination of locally Lipschitz contin-

uous functions, this implies that h is also locally Lipschitz continuous, and the condition

is satisfied.

All the conditions are satisfied in our case, therefore, we can apply the performance results

from [Benveniste 1990].

Mean of the algorithm for estimating a constant

For estimating a constant, the gain of the algorithm is of the form [Benveniste 1990]

γk =
γ

k
. (3.10)

The ODE is given by (3.6)
dx̂

dt
= h (x̂) ,

with the time given by tk = γ
k
∑

j=1

1
j
. The ODE approximation is valid for small gains, so in

this case, it is valid for large k.

The estimation bias after a transient time can be approximated using the ODE above. By

denoting the bias as ε (t) = x̂ (t)− x, the bias ODE is

dε

dt
= h̃ (ε) , (3.11)
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where h̃ (ε) = h (ε+ x) is a function that does not depend on the true parameter x (to verify

this, use ε+ x in the place of x̂ in the expression for Fd).

As the function h̃ (ε) depends on a sum of CDF which might not even have analytical form,

it is difficult to find analytical solutions for (3.11). The solution in general can be obtained

using a numerical method, for example a Runge–Kutta method (see [Golub 1991] for details

on numerical solvers).

Even if we cannot obtain in general a characterization of the bias for all k using the ODE,

we can at least analyze what happens asymptotically to the mean of the algorithm.

Asymptotic stability and asymptotic unbiasedness

An interesting point to study is the asymptotic mean convergence of the algorithm. More

precisely, if we prove that ε → 0 as t → ∞ for every ε (0) ∈ R, then we prove that the

algorithm is asymptotically unbiased, as its true mean can be approximated by the ODE. The

convergence in the mean is not only useful for showing that the algorithm indeed works, at

least in the mean, but it is also a requirement for the evaluation of the MSE that will be

presented later.

The fact that ε → 0 as t → ∞ for every ε (0) ∈ R means that ε = 0 is a globally

asymptotically stable point [Khalil 1992]. Global asymptotic stability of ε = 0 can be shown

using an asymptotic stability theorem for nonlinear ODEs. This will require the definition of

an unbounded Lyapunov function of the error. To simplify, a quadratic function will be used:

L (ε) = ε2, (3.12)

which is a positive definite function and tends to infinity when ε tends to infinity.

If h̃ (ε) = 0 for ε = 0 and dL
dt

< 0 for ε 6= 0, then by the Barbashin–Krasovskii theorem

[Khalil 1992, p. 124] ε = 0 is a globally asymptotically stable point.

To show that both conditions are met, expression (3.8) can be rewritten as a function of

ε:

h̃ (ε) =

NI
2
∑

i=1

ηi

[

F̃d (i, ε)− F̃d (−i, ε)
]

, (3.13)

where F̃d (i, ε) = Fd (i, ε+ x, x) is also a function that does not depend on x.

When ε = 0, the differences between F̃d in the sum are differences between probabilities

on symmetric intervals. The symmetry of the noise PDF stated in AN2 and the symmetry of

the quantizer stated in AQ2’ imply that h̃ (0) = 0, fulfilling the first condition.

The second condition can be written in more detail by using the chain rule for the deriva-

tive:
dL
dt

=
dL
dε

dε

dt
= 2εh̃ (ε) < 0, for ε 6= 0. (3.14)

Thus, h̃ (ε) has to respect the following constraints:

h̃ (ε) > 0, for ε < 0 and h̃ (ε) < 0, for ε > 0. (3.15)
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When ε 6= 0, the terms in the sum that gives h̃ (ε) are the difference between integrals of

the noise PDF under the same interval size but with asymmetric interval centers. Using the

symmetry assumptions, for ε > 0, F̃d (i, ε) is the integration of f over an interval more distant

to zero than for F̃d (−i, ε), then by the decreasing assumption on f , F̃d (i, ε) < F̃d (−i, ε) and

consequently h̃ (ε) < 0. Using the same reasoning for ε < 0 one can show that h̃ (ε) > 0.

Therefore, the inequalities in (3.15) are satisfied and dL
dt
< 0 for ε 6= 0.

Finally, as both conditions are satisfied, one can say that ε = 0 is globally asymptotically

stable, which means that the estimator is asymptotically unbiased for estimating a constant.

Mean of the algorithm for estimating a Wiener process

When we want to estimate a Wiener process, the gain of the algorithm is considered to be a

constant

γk = γ.

In this case, if we consider γ to be a small constant, we can also write the ODE approximation

to the mean with (3.6)
dx̂

dt
= h (x̂) .

Now, the constant x in the expression for h is the mean of the Wiener process (which is also

the mean of the initial condition X0) and the time is tk = kγ.

Note that in this case, by imposing a γ sufficiently small the ODE will be valid for all k and

there will be no transient time. Actually, this could also be done for the constant parameter,

but as we will see later, the optimal γ minimizing the asymptotic MSE may not be small for

estimating a constant and it will indeed be small for estimating a Wiener process with small

σw.

The bias ODE is also given by (3.11), therefore, for small γ the algorithm is also asymp-

totically unbiased in this case.

To show an example for which the ODE approximates well the estimation bias, we simu-

lated the adaptive algorithm for NI = 2 and NI = 4 in the Gaussian noise case. The quantizer

gain was 1
∆ = 1, the threshold variations and the output coefficients were chosen to be uniform,

τ ′ = [τ ′1 = 1 τ ′2 = 2]⊤, {η1 = 1, η2 = 2} for NI = 2 and τ ′ = [τ ′1 = 1 τ ′2 = 2 τ ′3 = 3 τ ′4 = 4]⊤,

{η1 = 1, η2 = 2, η3 = 3, η4 = 4} for NI = 4. The noise scale parameter was chosen to be

δ = 1, the Wiener process increment standard deviation σw = 10−3 and the adaptive gain

γ = 10−3. We considered the mean of the Wiener process to be E (Xk) = 0 and the initial

condition of the algorithm was set to be X̂0 = 1. To obtain an estimation of the bias, we

simulated the algorithm 10 times for blocks of 104 samples. For each sample (each index k)

we averaged the error through the different simulations. The solution of the bias ODE (3.11)

was obtained numerically with a Runge–Kutta method with order 4 and 5. The results are

displayed in Fig. 3.3.
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Figure 3.3: ODE bias approximation and simulated bias for the estimation of a Wiener process

with the adaptive algorithm. The noise was considered to be Gaussian with δ = 1. Both

NI = 2 and NI = 4 were considered with τ ′ = [τ ′1 = 1 τ ′2 = 2]⊤, {η1 = 1, η2 = 2} and τ ′ =

[τ ′1 = 1 τ ′2 = 2 τ ′3 = 3 τ ′4 = 4]⊤, {η1 = 1, η2 = 2, η3 = 3, η4 = 4}. In both cases, the quantizer

input gain was considered to be one. The Wiener process increment standard deviation σw
and the adaptive gain were set to 10−3. The algorithm was initialized with X̂0 = 1, while the

true mean of the Wiener process was set to zero. To obtain the simulated bias, we simulated

10 realizations of the estimation procedure for blocks with 104 samples. The simulated bias

was obtained through averaging of the simulations. The ODE approximation of the bias was

obtained by solving numerically the ODE (3.11) with a Runge–Kutta method.

We note that the ODE approximation corresponds well to the mean trajectory of the

estimation error. For this specific choice of parameters, which corresponds to the binary

constant step update presented in [Li 2007] and [Fang 2008] and to a multibit extension of it

(when NI = 4), we see that the algorithm can set the mean of the central threshold, which in

this case is also the estimator, at the parameter mean even if the parameter is time-varying.

We also observe that for the choice of simulation parameters used here, the convergence time

of the algorithm for NI = 4 is smaller than the convergence time for NI = 2.

As a final remark on the Wiener process case, when γ → 0, the ODE approximation is

increasingly accurate as the inherent discretization error (from time discretization) decreases

to zero. Also when γ → 0, we get the constant Xk case studied in [Li 2007] and [Fang 2008].

Thus, the proof of asymptotic mean convergence given above is also a proof of convergence of

the fixed step algorithms presented in [Li 2007] and [Fang 2008] and multibit extensions of it,

when the step of the algorithm is small.

Mean of the algorithm for estimating a Wiener process with drift

When the Wiener process has a drift, we consider again that the algorithm has a constant

gain

γk = γ,
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However, in this case as the mean of the parameter is not stationary, we cannot consider the

ODE approximation with a constant x in the function h.

To obtain the ODE, we will use again the heuristic presented above, but in this case, we

will include the dynamical model of the parameter. We start with the expectation of the

increments divided by γ

E (Xk)− E (Xk−1)

γ
=

u

γ
,

E

(

X̂k

)

− E

(

X̂k−1

)

γ
= E

{

η

[

Q

(

x− x̂+ Vk

∆

)]}

,

then we approximate it by a pair of coupled ODEs

dx

dt
=

u

γ
,

dx̂

dt
= h̃ (x̂− x) ,

where the time for both equations is tk = kγ. Note that the algorithm ODE now depends on

the solution of the parameter ODE. By subtracting both expressions, we have an ODE for the

bias ε
dε

dt
= h̃ (ε)− u

γ
. (3.16)

As the parameter is now moving deterministically with the drift u, we can assume that most

of the algorithm tracking effort will be done to remove the bias ε. Therefore, the algorithm

must be fast enough to follow the parameter and we must have γ ≫ u. This also makes u
γ

to be small, thus if all ηi are not too small, we can find an ε∞ such that h̃ (ε∞) = u
γ
, which

means that ε∞ is an equilibrium point for the bias.

It was shown above that the bias ODE without the forcing term u
γ

is globally asymptotically

stable, thus for a slowly varying parameter, we can expect that the algorithm will tend to get

close to the true parameter. After a time tk−1, we can assume that the algorithm is sufficiently

close to the true parameter, so that we can approximate the function h̃ (ε) with a first order

taylor expansion around ε = 0

h̃ (ε) = h̃ (0) + h̃(1) (0) ε+ ◦ (ε) ,

where h̃(1) (0) is the derivative of h̃ (ε) with respect to ε evaluated at ε = 0. The ODE can

then be rewritten as
dε

dt
= h̃(1) (0) ε− u

γ
+ ◦ (ε) , for t > tk−1. (3.17)

For tk sufficiently large we can neglect the ◦ (ε) term. Thus, the bias ODE can be approximated

by a linear ODE. For the linear ODE approximation not to diverge we must impose the

condition

h̃(1) (0) < 0. (3.18)

Therefore, under this condition the approximate bias will tend to an approximation of the

equilibrium point ε∞.
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Before obtaining the asymptotic bias given by the equilibrium point ε∞, we will verify

condition (3.18). The derivative of h̃ (ε) w.r.t. ε is given by

h̃(1) (ε) =
dh

dε
=

NI
2
∑

i=1

ηi

[

f̃d (i, ε)− f̃d (−i, ε)
]

, (3.19)

where f̃d (i, ε) is

f̃d (i, ε) =







f (τ ′i∆+ ε)− f
(

τ ′i−1∆+ ε
)

, if i ∈
{

1, · · · , NI

2

}

,

f
(

τ ′i+1∆+ ε
)

− f (τ ′i∆+ ε) , if i ∈
{

−1, · · · ,−NI

2

}

.
(3.20)

At point ε = 0, f̃d (i, ε) = f̃d (i, 0) for i ∈
{

1, · · · , NI

2

}

is negative because τ ′i > τ ′i−1 and the

noise PDF is strictly decreasing by assumption. For −i, f̃d (−i, 0) has the same absolute value

as f̃d (i, 0) by the symmetry assumptions, but it is positive. Therefore, f̃d (i, 0)− f̃d (−i, 0) =
2f̃d (i, 0) and this difference is always negative. The sum h̃(1) (ε) is then given by

h̃(1) (0) = 2

NI
2
∑

i=1

ηif̃d (i, 0) (3.21)

and it is also negative, as the output quantizer levels ηi are positive for positive i by assumption.

This means that condition (3.18) is satisfied and the ODE linear approximation will converge

to an equilibrium point. For simplifying the notation, we will use hε in the place of h̃(1) (0)

from now on.

As the system is linear, the equilibrium point will be unique and independent of the initial

condition. We can obtain its expression by setting dε
dt

to zero in the ODE approximation. This

leads to the following equation:

hεε∞ − u

γ
= 0,

for which the solution is

ε∞ =
u

γhε
.

As the bias ODE is an approximation of the true bias, this is equivalent to say that for

small u

E

(

X̂k −Xk

)

≈
k→∞

u

γhε
. (3.22)

Note that differently from the constant and Wiener process cases, the estimator is not asymp-

totically unbiased. Observe also that if uk is not a small constant, but a small amplitude

slowly varying sequence, we could replace u by u (t) in the ODE approximation above and

for each time step (t ∈ [tk, tk + γ)) approximate the varying u (t) by the constant uk. This

would lead to replace u by uk in the bias approximate expression above (3.22) and instead of

considering it as a valid expression for k → ∞, we would say that it is valid for a large k.
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3.3.2 Asymptotic MSE

After characterizing the mean behavior of the algorithm, we must quantify its random fluctu-

ations. For doing so, we will mainly use asymptotic results on the variance of the algorithm.

With the asymptotic bias and the asymptotic variance we can obtain the asymptotic MSE.

The asymptotic MSE is a function of the parameter γ, thus by minimizing it through γ, we

will obtain expressions for the MSE independent of γ.

Asymptotic variance for estimating a constant

Under the condition that the algorithm is asymptotically unbiased, it can be shown using a

central limit theorem, that the normalized estimation error is asymptotically distributed as a

Gaussian r.v. [Benveniste 1990, p. 109]

√
k
(

X̂k − x
)

 
k→∞

N
(

0, σ2∞
)

, (3.23)

the symbol  means convergence in distribution. The asymptotic variance σ2∞ is given by

σ2∞ =
γ2R

−2γhε − 1
, (3.24)

where the term h̃ε is the derivative of h̃ (ε) w.r.t. ε at ε = 0, as it was defined before. The

term R in the numerator is the variance of the adaptive algorithm normalized increments
(

X̂k−X̂k−1

γk

)

when the mean of the algorithm, which is approximated by the ODE solution

x̂, is equal to x. From the symmetry assumptions on the noise and on the quantizer, the

normalized mean of the increments h (x̂) is zero when x̂ = x. Thus, this variance is given by

the second order moment of the quantizer output levels:

R = Var

[

η

(

Q

(

x− x̂+ V

∆

))]∣

∣

∣

∣

x̂=x

=

NI
2
∑

i=1

(

η2i Fd (i, x, x) + η2−iFd (−i, x, x)
)

= 2

NI
2
∑

i=1

η2i Fd (i, x, x)

= 2

NI
2
∑

i=1

η2i F̃d (i, 0) , (3.25)

where the third equality comes from the symmetry of the quantizer and the noise distribution

and the last equality is obtained using the F̃d notation.

For minimizing the asymptotic variance w.r.t. γ, we must find the positive γ for which
dσ2

∞(γ)
dγ

= 0. The expression for the derivative is

dσ2∞ (γ)

dγ
= R

[

2γ

−2γhε − 1
+

2γ2hε

(−2γhε − 1)2

]

=
R

(−2γhε − 1)2
(

−2γ2hε − 2γ
)

,
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which equals zero for γ = − 1
hε

. Note that this gain is positive as hε is negative. By rewriting

the derivative above as
dσ2∞ (γ)

dγ
=

−2Rγhε

(−2γhε − 1)2

(

γ +
1

hε

)

,

we can see that for γ > − 1
hε

, the derivative is positive and for γ < − 1
hε

, the derivative is

negative, thus γ = − 1
hε

gives a minimum σ2∞. The optimum gain γ⋆ and its corresponding

variance are

γ⋆ = − 1

hε
, (3.26)

σ2∞ =
R

h2ε
. (3.27)

Note that this result is valid under the condition that the estimator is asymptotically unbiased,

a condition that was shown to be true in the previous subsection.

Asymptotic variance for estimating a Wiener process

The MSE for a varying parameter and a constant adaptive gain can be expressed as a sum of

three terms

MSEk = E
2 [x̂ (tk)− x (tk)] + E

{

{[

X̂k − x̂ (tk)
]

− [Xk − x (tk)]
}2
}

+ ◦ (γ)

= ε2 (tk) + E
(

ξ2k
)

+ ◦ (γ) , (3.28)

where ε2 (tk) = E
2 [x̂ (tk)− x (tk)] and ξk =

[

X̂k − x̂ (tk)
]

− [Xk − x (tk)]. The first term

ε2 (tk) is an approximation of the squared bias E
2 [εk]. The second term is an approximation

of the error variance, which can be obtained by evaluating the second order moment of the

total fluctuation of the error ξk. The last term is the error due to the approximations and if

γ is small this term is negligible. As σw is small by assumption, γ must be small for tracking

Xk without large fluctuations, thus this last term is expected to be negligible.

It was shown in the last subsection that the algorithm is asymptotically unbiased, thus

the first term of the decomposition tends to zero as k tends to infinity. As a consequence, the

asymptotic MSE, that we denote MSEq,∞, depends mainly on the asymptotic characterization

of ξk. Under the conditions that the estimator is asymptotically unbiased and that hε < 0,

which were both shown to be true in the previous subsection, it can be shown [Benveniste 1990,

pp. 130–131] that ξk tends to be a stationary Gaussian process with marginal distribution

N
(

0, σ2ξ

)

. The asymptotic variance σ2ξ is given as a sum of two terms, one produced by the

fluctuations of the estimator itself and equal to γR
−2hε

and the other due to the fluctuations of

the parameter and equal to σ2
w

−2γhε
, thus giving

σ2ξ =
γR

−2hε
+

σ2w
−2γhε

and leading to the asymptotic MSE

MSEq,∞ =
γR

−2hε
+

σ2w
−2γhε

+ ◦ (γ) . (3.29)
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Neglecting the ◦ (γ), we can find the approximately optimal gain by equating to zero its

derivative w.r.t. γ. This gives the equation

dMSEq,∞ (γ)

dγ
≈ 1

2hε

(

−R+
σ2w
γ2

)

= 0,

which is zero for γ = σw√
R

. The second derivative can be approximated by

d2MSEq,∞ (γ)

dγ2
≈ − σ2w

hεγ3
,

as hε is negative and σ2w is positive, the second derivative is positive for positive γ. This means

that choosing γ = σw√
R

leads to a minimum MSE. Thus,

γ⋆ =
σw√
R

(3.30)

and the corresponding asymptotic MSE is

MSEq,∞ =
σw

√
R

−hε
+ ◦ (γ⋆) . (3.31)

We can express MSEq,∞ as a function of σ∞ given in (3.27). This gives

MSEq,∞ = σwσ∞ + ◦ (γ⋆) . (3.32)

Observe that both the asymptotic MSE for estimating a Wiener process and for estimating

a constant depend on the quantizer parameters (ηi, ∆ and τ ′) through an increasing function

of σ2∞, therefore the asymptotically optimal quantizer parameters is the same in both cases.

The only difference in the adaptive algorithm for these two cases is the sequence of gains γk.

Asymptotic MSE for estimating a Wiener process with drift

When the Wiener process has a drift, the MSE can still be written as the sum of three terms

(3.28)

MSEk = ε2 (tk) + E
(

ξ2k
)

+ ◦ (γ) .
Even if γ ≫ u, we still expect it to be small, so that the algorithm is able to reduce the effects

of the measurement noise. Thus, we can still neglect the ◦ (γ).
We will proceed similarly as for the Wiener process without drift. We will evaluate the

asymptotic MSE and then we will obtain the asymptotically optimal gain.

Differently, from the Wiener process without drift, the algorithm is not asymptotically

unbiased and we must use the expression for the asymptotic bias approximation (3.22)

ε∞ =
u

γhε

in the first term of MSEq,∞. As it is explained in [Benveniste 1990, p. 133], by using γ ≫ u,

the fluctuations of the parameter around its ODE approximation are negligible when compared
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with the fluctuations of the algorithm. Therefore, we can approximate the asymptotic variance

of the fluctuation by

σ2ξ ≈ γR

−2hε
. (3.33)

Using the bias from (3.22) and the variance from (3.33), we obtain

MSEq,∞ ≈ u2

γ2h2ε
+

γR

−2hε
+ ◦ (γ) . (3.34)

To obtain the minimum w.r.t. γ, we must find γ satisfying

dMSEq,∞ (γ)

dγ
≈ − 2u2

γ3h2ε
+

R

−2hε
= 0.

The solution of this equation in the variable γ is γ =
(

4u2

−hεR

) 1
3
. To verify that this value of γ

corresponds to a minimum of MSEq,∞, we evaluate the second derivative

d2MSEq,∞ (γ)

dγ2
≈ 6u2

γ4h2ε
.

We can verify that this quantity is positive. Therefore,

γ⋆ =

(

4u2

−hεR

)
1
3

(3.35)

and its corresponding asymptotic MSE is

MSEq,∞ ≈ 3

(

uR

4h2ε

) 2
3

+ ◦ (γ⋆) . (3.36)

Note that in practice, u may be unknown and it will be necessary to replace its value in

γ⋆ by an estimate of it û, which can be also obtained adaptively, for example by calculating

a recursive mean on X̂k − X̂k−1.

The asymptotic MSE in (3.36) can also be rewritten as a function of σ2∞ with a dependence

on u

MSEq,∞ ≈ 3
(u

4
σ2∞
) 2

3
+ ◦ (γ⋆) . (3.37)

Also in this case the asymptotic MSE is an increasing function of σ2∞.

Remark: in the previous subsection, we remarked that if uk is a small amplitude slowly

varying parameter, the bias could be approximated by εk ≈ uk

γhε
for large k. Thus, following

the same development and considering that the gains γk can be slowly variable, we have for

large k

γ⋆k =

(

4u2k
−hεR

)

1
3

and the corresponding asymptotic MSE

MSEk ≈ 3

(

ukR

4h2ε

) 2
3

+ ◦ (γ⋆k) .
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3.4 Optimal algorithm parameters and performance

Now, we focus on the asymptotically optimal design of the quantizer parameters. From the

previous results, we can see that the asymptotic performance for the three cases is dependent

on an increasing function of σ2∞. Also, for the three cases the asymptotic performance de-

pends on the quantizer parameters (ηi, ∆ and τ ′) only through σ2∞. Therefore, the optimal

parameters are the same for the three cases.

In the next subsections, first we will minimize σ2∞ w.r.t. to the quantizer update coefficients

ηi, then we will discuss on the choice of the input gain 1
∆ . After that, we will present the

optimal algorithm general form and its corresponding σ2∞. We then discuss on how to optimize

the performance w.r.t. the threshold variations set τ ′. Finally, we will present the optimal gain

and performance for each of the three parameter models, by considering the optimal update

coefficients. In each case, we will also evaluate the performance loss due to quantization.

3.4.1 Optimal algorithm parameters

Update coefficients (output levels)

Using the expressions for hε (3.21) and R (3.25) in the expression for σ2∞ (3.27), the opti-

mization of the algorithm performance w.r.t. the update coefficients can be written as the

following minimization problem:

argmin
η

R

h2ε
= argmin

η

η⊤Fdη

2 (η⊤fd)
2 , (3.38)

where η is a vector with the coefficients

η =
[

η1 · · · ηNI
2

]⊤
, (3.39)

Fd is a diagonal matrix given by

Fd = diag

[

F̃d (1, 0) , · · · , F̃d

(

NI

2
, 0

)]

, (3.40)

with diag [�] the function that creates a matrix with the input sequence added to the diagonal

of a zero matrix. fd is the following vector

fd =

[

f̃d (1, 0) · · · f̃d
(

NI

2
, 0

)]⊤
. (3.41)

The minimization problem is equivalent to the following maximization problem:

argmax
η

(

η⊤fd
)2

η⊤Fdη
. (3.42)
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Using the fact that Fd is a positive semidefinite matrix (it is a diagonal matrix with nonzero

diagonal elements), we can rewrite (3.42) as

argmax
η

[

(

Fd

1
2η
)⊤ (

Fd
− 1

2 fd

)

]2

(

Fd

1
2η
)⊤ (

Fd

1
2η
)

,

the matrices Fd

1
2 and Fd

− 1
2 are obtained by taking the square root and the inverse of the

square root of the diagonal elements in Fd. Using the Cauchy–Schwarz inequality on the

expression in the numerator gives



















[

(

Fd

1
2η
)⊤ (

Fd
− 1

2 fd

)

]2

(

Fd

1
2η
)⊤ (

Fd

1
2η
)



















≤ fd
⊤Fd

−1fd

and the equality happens for

Fd

1
2η ∝ Fd

− 1
2 fd.

Under the assumption that the update coefficients are positive for positive i AQ3 (p. 112),

the optimal η can be chosen to be

η⋆ = −Fd
−1fd. (3.43)

The minimum σ2∞ w.r.t. η is

σ2∞ =
1

2
(

fd
⊤Fd

−1fd
) =






2

NI
2
∑

i=1

f̃2d (i, 0)

F̃d (i, 0)







−1

. (3.44)

We can recognize that the sum above is exactly equal to the FI given in (1.13) when the

central threshold is placed exactly at the parameter x, Iq (0)

Iq (0) = 2

NI
2
∑

i=1

f̃2d (i, 0)

F̃d (i, 0)
. (3.45)

Choice of the input gain

To simplify the choice of the constant ∆, we can consider that the noise CDF is parametrized

by a known scale parameter δ, which means that

F (x) = Fn

(x

δ

)

,

where Fn is the CDF for δ = 1. In this case the key quantity that appears in the evaluation of

the quantizer output levels is ∆
δ
. Thus, the evaluation of the output levels can be simplified

by setting

∆ = c∆δ, (3.46)
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where c∆ is a constant used to adjust the input gain when the quantizer threshold variation

range is fixed or to adjust the quantization step-length when the threshold variations are

uniform and fixed to a value that cannot be changed.

For given δ, c∆ and Fn, the coefficients do not depend on the true parameter value, neither

on the estimator value, so that they can be pre-calculated and stored in a table. In scalar

form the coefficients are

η⋆i = − f̃d (i, 0)

F̃d (i, 0)
. (3.47)

Note that for ∆ given by (3.46), ηi depends on δ only through a 1
δ

multiplicative factor, the

other factor can be written as a function of the normalized PDF and CDF, thus it can be

pre-calculated based only on the normalized distribution.

An interesting observation is that η⋆i is given by the score function for estimating a constant

location parameter when considering that the offset is fixed and placed exactly at x, therefore

this algorithm is equivalent to a gradient ascent technique to maximize the log-likelihood that

iterates only one time per observation and sets the offset each time at the last estimate.

Optimal algorithm and general performance for the three cases

Using the η⋆i from (3.47) and the assumption on the symmetry of the output levels AQ3, the

adaptive estimator is

X̂k = X̂k−1 + γk sign (ik) η
⋆
|ik|, (3.48)

with ik = Q
(

Yk−X̂k−1

c∆δ

)

.

The asymptotic (γ, ηi)-optimized adaptive algorithm performance is approximated for all

the three cases (for the constant case it is exact) by

MSEq,∞ ≈ ψ [Iq (0)] , (3.49)

where ψ is a decreasing function of Iq (0):

• constant: MSEk ≈ 1
kIq(0)

.

• Wiener process: MSEq,∞ ≈ σw√
Iq(0)

.

• Wiener process with drift: MSEq,∞ ≈ 3
(

u
4Iq(0)

) 2
3
.

Optimal threshold variations

In the performance given in (3.49), the threshold variations set τ ′ is influent only through

Iq (0). Therefore, for optimizing the algorithm through τ ′, we will have the same optimization

problem discussed in Ch. 1, namely (1.47)

I⋆q = argmax
τ ′

Iq (0) .
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In Ch. 1, we saw that this problem is difficult in general. Two alternatives were proposed:

the first one would be to constrain the quantizer to be uniform and then obtain the optimal

quantizer interval step-length. The second would be to consider a general quantizer but with

a very large (tending to infinity) number of quantizer intervals. For the simulated results to

be presented later, Sec. 3.5, we will use the first approach. We consider that the positive

threshold variations are uniform and fixed to be

τ ′ =

[

−τ ′NI
2

= −∞ · · · − τ ′1 = −1 0 + τ ′1 = +1 · · · + τ ′NI
2

= +∞
]⊤

. (3.50)

Then in this case, only c∆ need to be maximized and, as it was stated before, this can be done

using a grid method.

3.4.2 Algorithm performance for optimal gain and coefficients

We now present for each parameter model the optimal adaptive gain γ⋆k and the asymptotic

MSE for the update coefficients η⋆. In each case, after evaluating the asymptotic MSE, we

will also evaluate the effect of quantization on the estimation performance. This will be done

by evaluating the performance loss due to quantization Lq defined by

Lq = 10 log10

(

MSEq,∞
˜MSEc,∞

)

, (3.51)

where MSEq,∞ is the asymptotic MSE for the adaptive algorithm based on quantized measure-

ments and ˜MSEc,∞ is a quantity related to the asymptotic performance of estimation based

on continuous measurements. ˜MSEc,∞ will be specified later for each case. Observe that the

loss Lq is a relative measure and it is expressed in decibels (dB).

Before proceeding to the performance evaluation for each case, we still need to determine

the quantities hε and R for the optimal update coefficients. Using the expression for η⋆i (3.47)

in the expression for hε (3.21) and R (3.25), we have

hε = −2

NI
2
∑

i=1

f̃2d (i, 0)

F̃d (i, 0)
= −Iq (0) , (3.52) R = 2

NI
2
∑

i=1

f̃2d (i, 0)

F̃d (i, 0)
= Iq (0) . (3.53)

3.4.2.1 Constant case: gain and performance

Replacing hε given by (3.52) in (3.26) and then the result in (3.10), we have the following

gains

γ⋆k =
1

kIq (0)
. (3.54)

Also, replacing (3.52) and (3.53) in the expression for σ2∞ (3.27), we get

σ2∞ =
1

Iq (0)
. (3.55)
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In practice, this means that, for large k, the MSE will be

MSEk ≈ 1

kIq (0)
. (3.56)

The continuous asymptotic performance ˜MSEc,∞ can be obtained through the CRB. As the

measurements are independent, the FI for k continuous measurements is k times the FI for

continuous measurements Ic, thus the continuous measurement bound CRBc is

CRBc =
1

kIc
. (3.57)

The expression for Ic can be obtained by evaluating the expectation E
[

S2
c

]

, where the score

is given by (1.15)

Sc (y) =
∂ log f (y − x)

∂x
.

Changing variables, Ic is given by the following integral:

Ic =

∫

R

(

f (1) (x)

f (x)

)2

f (x) dx. (3.58)

The ratio
MSEq,∞

˜MSEc,∞
is then given by lim

k→∞
MSEk

CRBc
= Ic

Iq(0)
, leading to the loss

Lq = −10 log10

(

Iq (0)

Ic

)

. (3.59)
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We have the following solution to problem (a) (p. 27):

Solution to (a) - Adaptive algorithm with decreasing gain

(a3) 1) Estimator

For each time k, the estimate and threshold update is given

by (3.48)

X̂k = τ0,k = X̂k−1 + γk sign (ik) η
⋆
|ik|,

with ik = Q
(

Yk−X̂k−1

c∆δ

)

, γk = 1
kIq(0)

and η⋆i = − f̃d(i,0)

F̃d(i,0)
.

2) Performance (asymptotic)

X̂k is asymptotically unbiased and its bias for large k can

be approximated by ε (tk), which is the solution of the ODE

(3.11)
dε

dt
= h̃ (ε) ,

where h̃ (ε) = h (ε+ x), h is given by (3.7) and the time is

tk =
k
∑

j=1
γj. Its asymptotic MSE or variance is given by (3.56)

MSEk ∼
k→∞

1

kIq (0)
,

where Iq (0) is given by (1.13) with ε = 0, representing a loss

of performance w.r.t. the asymptotically optimal estimator

based on continuous measurements of (3.59)

Lq = −10 log10

(

Iq (0)

Ic

)

,

with Ic the continuous measurement FI given by (3.58).

3.4.2.2 Wiener process case: gain and performance

Using (3.53) in (3.30), we obtain the optimal constant gain

γ⋆ =
σw

√

Iq (0)
(3.60)

and for this gain, the asymptotic MSE is given by substituting (3.55) in (3.32)

MSEq,∞ =
σw

√

Iq (0)
+ ◦ (σw) . (3.61)

Note that we used the fact that γ⋆ in this case depends linearly on σw for writing the ◦ term.
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The comparison with the continuous case can be done by using the asymptotic BCRB for

continuous measurements as ˜MSEc,∞. The evaluation of the asymptotic BCRB follows in the

same line as the one presented in Ch. 2 for estimation based on quantized measurements.

The main difference is that in the continuous case, the FI Ic is independent of the parameter

value, thus E [Ic] = Ic and we do not need to consider a lower bound on the BCRB. For small

σw (small compared with Ic) the asymptotic BCRB can be approximated exactly in the same

way as for the lower bound on the MSE for quantized measurements

BCRBc,∞ =
σw√
Ic

+ ◦ (σw) . (3.62)

The loss of performance, in this case denoted LW
q , is given as follows

LW
q = 10 log10

(

MSEq,∞
BCRBc,∞

)

= 10 log10





σw√
Iq(0)

+ ◦ (σw)
σw√
Ic

+ ◦ (σw)



 . (3.63)

We multiply the numerator and the denominator inside the logarithm of (3.63) by
√
Ic

σw
. This

gives

LW
q = 10 log10





√

Ic
Iq(0)

+ ◦(σw)
σw

1 + ◦(σw)
σw



 ,

where we have assimilated the
√
Ic in the ◦ (σw) term. Using the first order Taylor expansion

around x = 0, 1
1+x

= 1− x+ ◦ (x), we can obtain

LW
q = 10 log10

(√

Ic

Iq (0)
+

◦ (σw)
σw

)

.

Then factorizing
√

Ic
Iq(0)

and using the first order Taylor expansion around x = 0, log10 (1 + x) =
x

ln(10) + ◦ (x), where ln is the natural logarithm, we have

LW
q = 10 log10

(√

Ic

Iq (0)

)

+
◦ (σw)
σw

= −5 log10

(

Iq (0)

Ic

)

+
◦ (σw)
σw

.

Note that the first term is half the loss of performance for the constant case

LW
q =

1

2
Lq +

◦ (σw)
σw

. (3.64)

From the definition of the ◦ term we also have

lim
σw→0

LW
q =

1

2
Lq.
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This gives the following solution to problem (b) (p. 29) when the parameter is modeled

by a Wiener process without drift:

Solution to (b) - Adaptive algorithm with constant gain for

tracking a Wiener process with small σw.

(b3.1) 1) Estimator

For each time k, the estimate and threshold update is given

by (3.48)

X̂k = τ0,k = X̂k−1 + γ sign (ik) η
⋆
|ik|,

with ik = Q
(

Yk−X̂k−1

c∆δ

)

, γ = σw√
Iq(0)

and η⋆i = − f̃d(i,0)

F̃d(i,0)
.

2) Performance (approximated and asymptotic)

X̂k is asymptotically unbiased and its bias can be approx-

imated by ε (tk), which is the solution of the ODE (3.11)

dε

dt
= h̃ (ε) ,

where h̃ (ε) = h (ε+ x), h is given by (3.7) and the time is

tk = kγ. Its asymptotic MSE or variance is given by (3.61)

MSEq,∞ =
σw

√

Iq (0)
+ ◦ (σw) ,

where Iq (0) is given by (1.13) with ε = 0, representing

a loss of performance w.r.t. the asymptotically optimal

estimator based on continuous measurements of (3.64)

LW
q = −5 log10

(

Iq (0)

Ic

)

+
◦ (σw)
σw

=
1

2
Lq +

◦ (σw)
σw

,

with Ic the continuous measurement FI given by (3.58)

and Lq the loss of the adaptive algorithm for estimating a

constant.

3.4.2.3 Wiener process with drift case: gain and performance

Replacing the expressions for hε (3.52) and R (3.53) in the expressions for γ⋆ (3.35) and

MSEq,∞ (3.36), we obtain

γ⋆ =

(

4u2

I2q (0)

)
1
3

, (3.65) MSEq,∞ ≈ 3

(

u

4Iq (0)

) 2
3

+ ◦ (γ⋆) . (3.66)

If u is unknown, it might be estimated. It can be estimated by smoothing the differences
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between successive estimates

Ûk = Ûk−1 + γuk

[(

X̂k − X̂k−1

)

− Ûk−1

]

. (3.67)

where γuk is a sequence of small positive gains. The estimator Ûk can replace u in the evalu-

ation of the gain and of the asymptotic MSE. If the drift is not constant but slowly varying,

the adaptive algorithm above can also be used. In this case, additional information on the

evolution of the drift might be incorporated in (3.67) to have more precise estimates and get

an adaptive gain closer to the optimal.

For the evaluation of the loss due to quantization, we could use BCRBc,∞ for the con-

tinuous measurement performance. However, this would result in an unfair comparison, as

the imposition of using X̂k−1 instead of the prediction is known to be suboptimal. Therefore,

the evaluation of the loss will be done using the approximate performance for an adaptive

algorithm of the same form, but using continuous measurements instead of quantized mea-

surements. The algorithm has the following form:

X̂k = X̂k−1 + γckηc

(

Yk − X̂k−1

)

,

where γck and the non linearity ηc (x) are optimized to minimize the asymptotic MSE.

Using the same theory described for the quantized case it is possible to show that the

optimal γck and ηc (x) are

γ
c,⋆
k =

(

4u2

I2c

)
1
3

, ηc (x) = −f
′ (x)
f (x)

,

which exist under the constraint that Ic converges and is not zero and that f ′ (x) exists for

every x.

The MSE can be approximated in a similar way as before

MSEc,∞ ≈ 3

[

u

4Ic

] 2
3

. (3.68)

This asymptotic MSE can be used as ˜MSEc,∞ in the evaluation of the loss. Using similar

taylor expansions as in the previous Wiener model and denoting the loss in this case by LWD
q ,

we have

LWD
q ≈ −20

3
log10

(

Iq (0)

Ic

)

+
◦
(

u
2
3

)

u
2
3

=
2

3
Lq +

◦
(

u
2
3

)

u
2
3

. (3.69)

Note that here the limit result is on u

lim
u→0

LWD
q =

2

3
Lq.

However, note also that hidden in the approximation is the fact that σw must also tend to

zero.
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We have the following solution to problem (b) (p. 29) when the parameter is modeled by

a Wiener process with deterministic drift:

Solution to (b) - Adaptive algorithm with constant gain for

tracking a Wiener process with small σw and small u.

(b3.2) 1) Estimator

For each time k, the estimate and threshold update is given

by (3.48)

X̂k = τ0,k = X̂k−1 + γ sign (ik) η
⋆
|ik|,

with ik = Q
(

Yk−X̂k−1

c∆δ

)

, γ =
(

4u2

I2q (0)

) 1
3

and η⋆i = − f̃d(i,0)

F̃d(i,0)
.

2) Performance

(approximated and approximated asymptotic)

The estimation bias can be approximated by ε (tk), which

is the solution of the ODE (3.16)

dε

dt
= h̃ (ε)− u

γ
,

where h̃ (ε) = h (ε+ x), h is given by (3.7), x is the mean of

the Wiener process and the time is tk = kγ. Its asymptotic

MSE or variance is approximated as follows (3.66)

MSEq,∞ ≈ 3

(

u

4Iq (0)

) 2
3

+ ◦
(

u
2
3

)

,

where Iq (0) is given by (1.13) with ε = 0, representing a loss

of performance w.r.t. the asymptotically optimal adaptive

estimator based on continuous measurements of (3.69)

LWD
q ≈ −20

3
log10

(

Iq (0)

Ic

)

+
◦
(

u
2
3

)

u
2
3

=
2

3
Lq +

◦
(

u
2
3

)

u
2
3

,

with Ic the continuous measurement FI given by (3.58)

and Lq the loss of the adaptive algorithm for estimating a

constant.

Observe that the losses for the three models of Xk depend directly on Lq, thus Lq allows

to approximate how much of performance is lost for a specific type of noise and thresholds set

when comparing to the equivalent continuous measurements based algorithm.
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3.5 Simulations

Now, we are going to check the validity of the results through simulation. We will mainly

focus on obtaining a simulated version of the loss of performance for the three parameter

models and then we will compare the simulated loss with the theoretical one. After that,

we will compare the adaptive algorithm performance with the algorithms presented in the

previous chapters, namely the adaptive MLE scheme for estimating a constant and the PF

with dynamical central threshold for estimating a Wiener process. This comparison will allow

us to know if we lose in estimation performance and what we lose in estimation performance,

when we use the low complexity adaptive algorithm presented in this chapter, instead of the

algorithms presented in the previous chapters.

3.5.1 General considerations

Threshold variations. In what follows the threshold variations are considered to be uni-

form and given by (3.50)

τ ′ =

[

−τ ′NI
2

= −∞ · · · − τ ′1 = −1 0 + τ ′1 = +1 · · · + τ ′NI
2

= +∞
]⊤

.

Evaluation of Iq (0) and the algorithm parameters

For a given type of noise, supposing that its noise scale parameter δ is known, for a fixed

NI , Iq (0) can be evaluated by using the normalized CDF and PDF, Fn and fn (CDF and

PDF for δ = 1), in (3.45) (or (1.46)). Using the parametrization ∆ = c∆δ and the fact that

f (x) = 1
δ
fn
(

x
δ

)

, we have

Iq (0) =
2

δ2

NI
2
∑

i=1

{fn [(i− 1) c∆]− fn [ic∆]}2
{Fn [ic∆]− Fn [(i− 1) c∆]}

. (3.70)

As Iq (0) is now a function of c∆ only, it can be maximized by adjusting this parameter. Being

a scalar maximization problem this can be done by using grid optimization (searching for the

maximum in a fine grid of possible c∆). After finding the optimal c⋆∆, the coefficients ηi = η⋆i
can be evaluated using the normalized CDF and PDF in (3.47). This gives

η⋆i =
1

δ

fn [(i− 1) c⋆∆]− fn [ic
⋆
∆]

Fn

[

ic⋆∆
]

− Fn

[

(i− 1) c⋆∆
] . (3.71)

Then, with δ, the optimal Iq (0) and depending on the model, σw or u, we can evaluate 1
∆ , γk

and then all the algorithm parameters are defined.

Discussion on the signal model

Note that it is supposed that the model for Xk is known, as setting γk depends on it. As

a consequence of this assumption, in a real application the choice between the three models

must be clear. When this choice is not clear from the application, it is always simpler to

choose Xk to be a Wiener process, first, because the complexity of the algorithm is lower and
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second, because supposing that the increments are Gaussian and i.i.d. does not impose too

much information on the evolution of Xk. Still, σw must be known, in practice it can be set

based on prior knowledge on the possible variation of Xk or by accepting a slower convergence

and a small loss of asymptotic performance, it can be estimated jointly with Xk using an extra

adaptive estimator for it.

In the last case, when it is known that the increments of Xk have a deterministic com-

ponent, the fact that the γk depends on u is not very useful and prior information on the

variations of Xk are not normally as detailed as knowing u itself, making it necessary to ac-

cept a small loss of performance to estimate u jointly. The estimation of u can be done using

(3.67) where prior knowledge on the variations of uk can be integrated in the gain γuk . If precise

knowledge on the evolution of uk is known through dynamical models, it might be more useful

to use other forms of adaptive estimators known as multi-step algorithms [Benveniste 1990,

Ch. 4].

Discussion on the noise model

The evaluation of the loss and the verification of the results will be done considering two

different classes of noise that verify assumptions AN1, AN2 and AN3, namely, generalized

Gaussian (GGD) noise and noise distributed according to the Student’s-t distribution

(STD). The motivation for the use of these two distributions comes from signal processing,

statistics and information theory.

In signal processing, when additive noise is not constrained to be Gaussian, a common

assumption is that the noise follows a GGD [Varanasi 1989]. This distribution not only con-

tains the Gaussian case as a specific example, but also by changing one of its parameters,

one can model the impulsive Laplacian distribution as well as distributions close to uniform.

In robust statistics, when the additive noise is considered to be impulsive, a general class

for the distribution of the noise is the STD [Lange 1989]. STD includes as a specific case

the Cauchy distribution, known to be heavy-tailed and used intensively in robust statistics.

Also, by changing a parameter of the distribution, an entire class of heavy-tailed distributions

can be represented. When looking from an information point of view, if no prior is used for

the noise, noise models must be as random as possible to ensure that the noise is an un-

informative part of the measurement. Thus, noise models must maximize some criterion of

randomness. Commonly used criteria for randomness are entropy measures and both distri-

butions considered above are entropy maximizers. The GGD maximizes the Shannon entropy

under constraints on the moments [Cover 2006, Ch. 12] and the STD maximizes the Rényi

entropy under constraints on the second order moment [Costa 2003].

Both families of distributions are parametrized by a shape parameter β ∈ R+ and a scale

parameter δ. The CDF and PDF of the GGD were given in Ch. 1 by (1.39) and (1.40)

fGGD (x) =
β

2δΓ
(

1
β

) exp

(

−
∣

∣

∣

x

δ

∣

∣

∣

β
)

,

FGGD (x) =
1

2



1 + sign (x)
γ
(

1
β
,
∣

∣

x
δ

∣

∣

β
)

Γ
(

1
β

)



 ,
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while for the STD, the CDF and PDF are respectively

fSTD (x) =
Γ
(

β+1
2

)

δ
√
βπΓ

(

β
2

)

[

1 +
1

β

(x

δ

)2
]−β+1

2

, (3.72)

FSTD (x) =
1

2

{

1 + sign (x)

[

1− I β

(x
δ )

2
+β

(

β

2
,
1

2

)

]}

, (3.73)

I� (�, �) is the incomplete beta function

Iw (x, y) =

w
∫

0

zx−1 (1− z)y−1 dz.

3.5.2 Theoretical performance loss due to quantization

The main quantity that must be evaluated before simulating the algorithm is the theoretical

loss Lq. This quantity will not only be useful to check the simulation results, but will also

be useful to observe how the performance evolves as we change the number of quantization

intervals and as we change the noise model.

To evaluate Lq, after evaluating Iq (0) based on the CDF and PDF given above, we also

need to evaluate Ic. The continuous measurement FI for the GGD can be obtained by using

(1.39) in the integral expression (3.58), this gives (Why? - App. A.1.7)

Ic,GGD =
1

δ2

β (β − 1) Γ
(

1− 1
β

)

Γ
(

1
β

) . (3.74)

For the STD the continuous measurement FI is given by using (3.72) also in (3.58). Integrating,

we obtain (Why? - App. A.1.8)

Ic,STD =
1

δ2
β + 1

β + 3
. (3.75)

We evaluated the theoretical loss for NI ∈ {2, 4, 8, 16, 32}, which corresponds to NB =

log2 (NI) ∈ {1, 2, 3, 4, 5} numbers of bits, for shape parameters β ∈ {1.5, 2, 2.5, 3} for GGD

noise and β ∈ {1, 2, 3} for STD noise. The results are shown in Fig. 3.4. As it was intuitively

expected, the loss reduces with increasing NB. It is interesting to note that the maximum

loss, observed for NB = 1, goes from approximately 1dB to 4dB, which represents factors less

than 3 in MSE increase for estimating a constant with 1 bit quantization. Also interesting is

the fact that the loss decreases rapidly with NB, for 2 bit quantization all the tested types of

noise produce losses below 1dB, resulting in linear increases in MSE not larger than 1.3. This

indicates that when using the adaptive estimators developed here, it is not very useful to use

more than 4 or 5 bits for quantization.

The performance for one bit seems to be related to the noise tail. Note that smaller losses

were obtained for distributions with heavier tail (STD in general and GGD with β = 1.5).

This is due to the fact that for large tail distributions a small region around the median of the
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Figure 3.4: Adaptive algorithm loss of estimation performance due to quantization of measure-

ments corresponding to the constant case Lq (theoretical). The loss is evaluated for different

types of noise, GGD noise in (a) and STD noise in (b), and different numbers of quantization

bits. For the other models of parameter studied here, the loss is proportional to Lq.

distribution is very informative, thus (as most of the information is contained there) when the

only threshold available is placed close to the median, the relative gain of information is greater

than in the other cases, leading to smaller losses. This can also be the reason for the slow

decrease of the loss for these distributions. As the quantizer thresholds are placed uniformly,

some of them will be placed in the non informative amplitude region and consequently, the

decrease in loss will be not as sharp as in the other cases.

The loss was not shown in Fig. 3.4 for the Laplacian distribution, because for this distri-

bution the adaptive optimal estimator in the continuous case is already an adaptive estimator

with a binary quantizer. One can see this by evaluating the coefficients ηi, which in this case

are constant for positive i showing that only the sign of the difference between the measurement

and the last estimate is important. This behavior of optimality for binary quantization was

already observed in Ch. 1, where we showed that the CRB for binary quantized measurements

can be equal to the CRB for continuous measurements in the Laplacian case. Consequently,

the loss in this case is zero dB for all NB.

3.5.3 Simulated loss

To validate the results, we will simulate the loss of performance. The simulation results will

be presented in the same order as the theoretical results presented in the previous sections.

First the constant case, then the Wiener process case and finally the Wiener process with

drift. All the simulations are done for NB ∈ {2, 3, 4, 5}.

Simulated loss: constant case

In the constant case, the 7 types of noise with previously evaluated Lq were tested, the value

of X0 = x was set to zero and the initial condition of the adaptive algorithm was set with a

small error (X̂0 ∈ {0, 10}). The number of samples was set to 5000 to ensure convergence.

The algorithm was simulated 2.5 × 106 times and the error results were averaged yielding a
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simulated MSE. Based on the simulated MSE a simulated loss was calculated. GGD noise

was simulated using a transformation of gamma variates (How? - App. A.3.2), while STD

noise was simulated using a transformation of independent uniform variates similar to the

transformation used for generating Gaussian variates (How? - App. A.3.5). The results are

shown in Fig. 3.5 for GGD noise and in Fig. 3.6 for STD noise.
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Figure 3.5: Quantization loss of performance for GGD noise and NB ∈ {2, 3, 4, 5} when Xk

is constant. For each type of noise there are 4 curves, the constant losses are the theoretical

results and the decreasing losses are the simulated results, thus producing pairs of curves of

the same type, for each pair the higher results represent lower number of quantization bits. In

(a) results for NB = 2 and 3 are shown. In (b) the results for NB = 4 and 5 are shown. The

simulated results were obtained through Monte Carlo simulation using 2.5 × 106 realizations

of blocks of 5000 error samples, the true parameter value in all simulations was set to zero,

while X̂ was set to have a small initial error (X̂0 ∈ {0, 10}). We used δ = 1 in all simulations.



140 Chapter 3. Adaptive quantizers for estimation

100 101 102 103
0

0.2

0.4

0.6

0.8

1

Time [k]

L
o
ss

[d
B

]

β = 1 (Cauchy)

β = 2

β = 3

(a)

100 101 102 103
0

0.1

0.2

0.3

0.4

Time [k]

L
o
ss

[d
B

]

β=1 (Cauchy)

β=2

β=3

(b)

Figure 3.6: Quantization loss of performance for STD noise and NB ∈ {2, 3, 4, 5} when Xk

is constant. For each type of noise there are 4 curves, the constant losses are the theoretical

results and the decreasing losses are the simulated results, thus producing pairs of curves of

the same type, for each pair the higher results represent lower number of quantization bits.

In (a) results for NB = 2 and 3 are shown. In (b) results for NB = 4 and 5 are shown. The

simulated results were obtained through Monte Carlo simulation using 2.5 × 106 realizations

of blocks of 5000 error samples, the true parameter value in all simulations was set to zero,

while X̂ was set to have a small initial error (X̂0 ∈ {0, 10}). We used δ = 1 in all simulations.

Remarks:

• note that the losses are independent of δ as both Iq (0) and Ic depend on it through the

same multiplicative constant 1
δ2

.

• The simulated results seem to converge to the theoretical approximations of Lq, thus

validating these approximations. This also means that the variance of estimation tends

in simulation to the CRB for quantized observations 1
kIq(0)

, showing that the algorithm

is asymptotically optimal.

• The convergence time seems to be related to NB (when NB increases, the time to get

closer to the optimal performance decreases).
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Simulated loss: Wiener process case

For a Wiener process, LW
q was evaluated by setting X̂0 randomly around 0 and X0 = 0, then

104 realizations with 105 samples were simulated and the MSE was estimated by averaging

the realizations of the squared error for each instant. As it was observed that the error was

approximately stationary after k = 1000, the sample MSE was also averaged resulting in an

estimate of the asymptotic MSE. Based on the obtained values of the MSE, a simulated loss

was evaluated. The results for the 7 types of noise and σw = 0.001 are shown in Fig. 3.7. As

expected, the results have the same form of the theoretical loss given in Fig. 3.4.
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Figure 3.7: Simulated quantization performance loss for a Wiener process Xk with σw = 0.001,

different types of noise and numbers of quantization bits. The simulated losses were obtained

through Monte Carlo simulation. For each evaluated loss (each symbol on the curves) 104

realizations with 105 samples were simulated. As it was observed that the error is stationary

after k = 1000, the sample MSE was also averaged leading to an estimate of the asymptotic

MSE and consequently of the loss. The simulations were done by setting the initial estimate

randomly around zero (with a Gaussian distribution) and also by setting X0 = 0. In all

simulations, we considered δ = 1.

To verify the results for different values of σw, the loss was evaluated through simulation

also for σw = 0.1 in the Gaussian (GGD with β = 2) and Cauchy cases (STD with β = 1). The

results are shown in Fig. 3.8, where the theoretical losses for these cases are also shown. These

results clearly show that Xk may move slowly to give a performance close to the theoretical

results. However, it is also interesting to note that the simulated loss seems to have the same

decreasing rate as a function of NB when compared with the theoretical results. This means

that the dependence on Iq (0) of the MSE seems to be still correct. Moreover, it indicates that

even in a faster regime for Xk, the threshold variations can be set by maximizing Iq (0).
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Figure 3.8: Comparison of simulated and theoretical losses in the Gaussian and Cauchy noise

cases when estimating a wiener process with σw = 0.1 or σw = 0.001. The simulated losses

were obtained through Monte Carlo simulation. For each evaluated loss (each symbol on the

curves) 104 realizations with 105 samples were simulated. As it was observed that the error

is stationary after k = 1000, the sample MSE was also averaged leading to an estimate of the

asymptotic MSE and consequently of the loss. The simulations were done by setting the initial

estimate randomly around zero (with a Gaussian distribution) and also by setting X0 = 0. In

all simulations, we considered δ = 1.

Simulated loss: Wiener process with drift case

For a Wiener process Xk with drift, Wk was simulated with mean and standard deviations

u = σw = 10−4, which represents a slow drift with small random fluctuations. The initial

conditions were set to X0 = X̂ = 0 and the drift estimator was set with constant gain

γuk = 10−5. Its initial condition was set to the true u to reduce the transient time and,

consequently, the simulation time. As uk is constant, the loss evaluation was done in the same

form as for Xk without drift, after averaging the squared error through realizations and time.

The results for the Gaussian and Cauchy cases are shown in Fig. 3.9.

The small offset between the simulated and theoretical results is justified by the joint

estimation of u and Xk. Note that keeping γuk small allows one to adaptively follow slow

variations in the drift. The convergence to the simulated loss in Fig. 3.9 was also obtained

for simulations including errors in the initial conditions. However, in this case, the transient

regime was very long, indicating that other schemes might be considered when the theoretical

performance is needed in a short period of time.

Note also that if the drift is known, the procedure simulated for tracking Xk is clearly

suboptimal. In this case, we can obtain better asymptotic results by using the prediction

(which includes the drift) in the adaptive algorithm. However, in practice, as we have to

estimate jointly the unknown drift, the simulated algorithm normally has a shorter transient

than the version using the prediction. This is an advantage when the drift can vary in time.
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Figure 3.9: Comparison of simulated and theoretical losses in the Gaussian and Cauchy noise

cases for estimating a Wiener process with constant mean drift uk = 10−4 and standard devia-

tion σw = 10−4. The simulation results were obtained with 104 realizations of 105 samples, for

evaluating the simulated asymptotic MSE, the squared error samples were averaged through

the realizations and through the time samples after the transient time (for k > 1000). The

initial estimate value and initial parameter value were both set to zero. The initial value of

the estimate of the drift was also set to the true parameter value to reduce the transient time.

3.5.4 Comparison with the high complexity algorithms

The adaptive algorithms that we propose will be compared with their equivalent counterparts

given in previous chapters. When the parameter is constant, we will compare the adaptive

algorithm with decreasing gain (a3) with the adaptive algorithm based on the MLE (a2.2)

presented in Ch. 1 (p. 69). We will discuss the main differences in terms of performance and

computational complexity.

Adaptive algorithm vs adaptive MLE

Asymptotic performance. Asymptotically both algorithms are equivalent, since they are

asymptotically unbiased and their asymptotic variance is equivalent to 1
kIq(0)

. This means that

for commonly used noise distributions both algorithms are asymptotically optimal under the

unbiasedness constraint. Thus, if there is a difference in performance, this difference might be

found in the transient, before getting close to the asymptotic performance.

Transient performance. The transient for both algorithms is difficult to study analytically.

For the adaptive scheme with decreasing gain, the first few steps will be mainly characterized

by the bias. Unfortunately, the bias approximation given by the ODE approximation cannot

be used in the initial transient as the size of the steps is too large. For the adaptive scheme

based on the MLE, we cannot obtain any result either, as the general behavior of the MLE is

known only asymptotically. Therefore, we will analyze the transient through simulations.

We simulated both algorithms for NI = 8 and two different types of noises, Gaussian

and Cauchy noises. The threshold variations were considered to be uniform with step-length
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chosen in the same way as for the evaluation and simulation of the losses. For evaluating

the simulated MSE for the transient, we simulated 1000 realizations of the algorithms, each

realization with 50 samples. The noise scale factor used for both cases was δ = 1 and the

parameter and initial estimate were x = 0 and X̂0 = 1. For starting the adaptive scheme based

on the MLE, 10 samples with fixed thresholds were used for obtaining the first estimate. The

algorithm used in the maximization procedure of the MLE was a search algorithm1. The

results are shown in Fig. 3.10, where we also show the CRB for quantized measurements

when the central threshold is placed at the true parameter CRB⋆
q = 1

kIq(0)
.
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Figure 3.10: Minimum CRB and simulated MSE for the adaptive algorithm with decreasing

gain and for the adaptive algorithm based on the MLE. Both algorithms were simulated with

NI = 8, optimal uniform thresholds, Gaussian and Cauchy noise with δ = 1, x = 0 and X̂0 = 1.

For evaluating the transient MSE, 50 samples were simulated 1000 times for each algorithm.

The scheme based on the MLE is started by applying the MLE with samples obtained with

fixed thresholds. The maximization in the MLE is done with a search algorithm1. In (a),

results for Gaussian noise are shown. In (b), the results for Cauchy noise are shown.

We would expect that the MLE based algorithm would produce better results, as it seems

that we treat the data in an intuitively better way (we maximize the likelihood of the data).

This is indeed the case when we consider Cauchy noise, but the opposite happens when we

test it with Gaussian noise. The decreasing gain algorithm is even slightly below the bound

initially (which is possible only because the algorithm is initially biased). Thus, we cannot

1More precisely we used the MATLABR© function fminsearch. We chose this function instead of Newton’s

method because it can handle non-convex problems. For Cauchy noise the likelihood is not convex.
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say that one of the algorithms is better than the other.

As the algorithms performance seems equivalent, a practical choice can be done in terms

of complexity.

Complexity. At time k, the adaptive scheme based on MLE must solve a maximization

problem using the last k measurements i1:k. Each measurement produces an additional term

on the log-likelihood to be maximized, thus at time k, the evaluation of the log-likelihood

function itself requires k evaluations of the logarithm of the marginal likelihood. Note that

the marginal likelihood can be very costly to be evaluated as it is a difference of CDF.

For the adaptive algorithm with decreasing gains, the gains can be precalculated and stored

in a table, or they can be obtained by using one division, the update coefficients can also be

precalculated and stored in a table. To generate one estimate the adaptive algorithm then

requires: one search in a table to have the update coefficient, one division or one search in a

table to have the gain, one multiplication to obtain the total correction and one sum to have

the final estimate.

One can conclude that the adaptive algorithm with decreasing gains has far lower com-

plexity requirements when compared with the scheme based on the MLE. Note also that the

adaptive algorithm based on MLE needs a certain number of measurements with fixed (or not

adaptive) thresholds to start. This is due to the fact that the MLE for one measurement is

ill defined and produces estimates equal to +∞ or −∞. Note that it can also happen with

more than one measurement, if all measurements are equal to +1 or if they are all equal to

−1. Thus, for the adaptive algorithm based on MLE we can have realizations with unbounded

values and this will happen especially in the cases when the initial quantizer dynamics is far

away from the parameter. Such behavior will not happen for the adaptive algorithm with

decreasing gains as the update coefficients are bounded above (considering PDF with upper

bounded f̃d and lower bounded from zero F̃d). Therefore, for practical purposes the choice

between them is clear, we should choose the algorithm with decreasing gains (a3).

Adaptive algorithm vs PF

We compare now the adaptive algorithm (with fixed gain) and the PF procedure for tracking

a Wiener process.

Asymptotic performance for fast parameter evolution. In this case, for any σw, the

PF is known to be optimal if the number of particles tends to infinity. Thus, for a very large

number of particles we expect the PF procedure to be as good as the adaptive algorithm.

Asymptotic performance for slow parameter evolution. When σw is small, the pro-

cedures have equivalent asymptotic performance. The PF is approximately unbiased, if we

choose a sufficiently large number of particles and the adaptive procedure is asymptotically

unbiased. Their asymptotic MSE is approximately σw√
Iq(0)

. Thus, when σw is small, the

differences, if they exist, will also occur in the transient performance.
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Transient performance. Similarly to the constant case, we analyze the transient perfor-

mance through simulation. We simulated both the adaptive algorithm and the PF for NI = 8

and asymptotically optimal uniform quantization. The parameter model was a Wiener process

with increment standard deviation σw = 0.001, with initial standard deviation Var (X0) = 0.1

and with initial mean equal to zero. We simulated the algorithms both for Gaussian and

Cauchy noise with δ = 1. For obtaining the simulated transient MSE, 1000 samples were

simulated 2500 times for each algorithm and each noise distribution. The initial estimate for

both algorithms X̂0 was set to zero in all the cases. We used 5000 particles in the PF and its

resampling procedure was triggered each time the number of effective particles was below 50.

The results are shown in Fig. 3.11 where the asymptotically optimal performance ( σw√
Iq(0)

) for

small σw is also presented.
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Figure 3.11: Asymptotic MSE for the optimal estimator of a Wiener process with small σw and

simulated MSE for the adaptive algorithm with constant gain and for the PF with dynamic

central threshold. Both algorithms were simulated with NI = 8, optimal uniform thresholds,

Gaussian and Cauchy noise with δ = 1, σw = 0.001, E (X0) = 0, Var (X0) = 0.1 and X̂0 = 1.

The evaluation of the transient MSE was done with 2500 simulations of the algorithms for

blocks with 1000 samples. The PF was simulated with 5000 particles and its threshold for the

resampling procedure was set at Nthresh = 50. In (a) results for Gaussian noise are shown,

while in (b) we have the results for Cauchy noise.

In this case the expected results are obtained. The PF, which might be close to optimal

when the number of particles is large, is clearly faster to converge when compared with the

adaptive algorithm.

Complexity. When comparing the complexity of the algorithms the difference is impressive.
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At time k, for each particle in the PF, a Gaussian r.v. has to be simulated in the prediction

step and its likelihood has to be evaluated. After that, the weighted mean of the particles is

computed. It is then followed by the evaluation of the effective number of particles with a

possible resampling step.

For the adaptive algorithm the complexity is one search in a table, to obtain the update

coefficient, one multiplication with the constant gain and one sum with the previous estimate.

Therefore, one might choose the PF whenever there is no restriction on the complexity

of the algorithm2. If there is a strong complexity restriction, by paying the price of a slower

convergence, the adaptive algorithm can be a good solution.

3.5.5 Discussion on the results

We summarize the main points observed until now and we will discuss some of them.

• We proposed a low complexity adaptive algorithm to track one of three models, constant,

Wiener process and Wiener process with drift. Under the hypothesis that the noise PDF

is symmetric and strictly decreasing and that the quantizer is also symmetric with its

center placed on the previous parameter estimate, we could prove by using Lyapunov

theory that the algorithm is asymptotically unbiased for the estimation of a constant

and of a Wiener process. We showed that the asymptotic performance for the optimal

update coefficients is a function of the FI Iq (0), which shows that this function plays an

important role in the choice of the threshold variations, as it was also observed in Ch.

1 and 2.

• For the optimal update coefficients, the adaptive algorithm that is obtained is a gener-

alization of the recursive algorithm found at the end of Ch. 1, being exactly equal if we

constrain NI = 2.

In the case of estimating a Wiener process, the adaptive algorithm with optimal update

coefficients is equal to the asymptotic recursive algorithm presented at the end of Ch.

2. Therefore, the adaptive algorithm is a low complexity alternative to the algorithms

presented in Ch. 1 and 2 with equivalent asymptotic performance.

• For testing the results, we considered two different families of noises, generalized Gaus-

sian noises and Student’s-t noises, both tested with uniform quantization. First, we

evaluated the theoretical loss of performance due to quantization w.r.t. the continuous

measurement equivalent estimator for different numbers of quantization intervals. The

results indicate that with only a few quantization bits (4 and 5) the adaptive algorithm

performance is very close to the continuous measurement case and it was observed that

uniform quantization seems to penalize more estimation performance under heavy tailed

distributions.

• Estimation in the three possible scenarios was simulated and the results validated the

accuracy of the theoretical approximations.

2Note that the number of particles necessary to have close to optimal performance can be reduced by using

the optimal proposal distribution, thus reducing complexity. This can have an impact on the choice of the

algorithm when the restriction on complexity is not strong.
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In the constant case, it was observed that the algorithm performance was very close to

the Cramér–Rao bound.

In the Wiener process case it was observed that the theoretical results are very accurate

for small increments of the Wiener process and in the drift case it was seen that by

accepting a small increase in the MSE it is possible to estimate jointly the drift.

• As the algorithms are asymptotically equivalent in performance to the adaptive scheme

based on the MLE in the constant case and to the PF in the Wiener process case, we

simulated their transient performance, to see if we lose in performance and how much

we lose by using the low complexity approach.

In the constant case, we cannot say that the adaptive scheme based on the MLE is

better, thus in practice, the adaptive algorithm with decreasing gain might be used as

it requires far lower complexity.

In the Wiener process case, the PF is superior to the adaptive algorithm with constant

gain, thus if no complexity constraints are considered, we might use the PF. If we have

strong complexity constraints, by accepting a slower convergence, the adaptive algorithm

gives a good solution.

• An interesting link between standard quantization and the adaptive algorithm for track-

ing the Wiener process can be observed. In the binary case, the adaptive algorithm

proposed here is similar to delta modulation [Gersho 1992, p. 214], the difference is that

here we do not use the quantization noise approach for obtaining its performance and

we also consider the effect of the measurement noise on the final performance.

When NI > 2 the algorithm that we propose can be seen as a form of predictive quan-

tization intended for estimation and not for reconstruction of the measurements.

• Another interesting result is that a varying parameter has a loss of performance due to

quantization smaller than the loss for a constant parameter, thus a type of dithering effect

seems to be present. In this case, the variations of the input signal brings the tracking

performance of the estimator closer to the continuous measurement performance.

• The fact that the number of quantization bits does not influence much the performance

of estimation leads to conclude that it seems more reasonable to focus on using more

sensors than using high resolution quantizers for increasing performance. Consequently,

this motivates the use of sensor network approaches. An approach of this type will be

presented in Subsec. 3.6.2.

• As in practice sensor noise scale parameter and Wiener process increment standard

deviation can be unknown and slowly variable, it would be also interesting to study how

the algorithm design and performance would change by estimating all these parameters

jointly.

We will study the joint estimation of the constant x and the scale parameter in Subsec.

3.6.1. The joint estimation of σw in the Wiener process case will lead to a scheme similar

to delta modulation with variable gain, this is left for future work.
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3.6 Adaptive quantizers for estimation: extensions to location-

scale estimation and to the multiple sensor approach

We present now the two extensions discussed in the previous section.

The first extension that will be presented is the joint estimation of the unknown noise scale

factor. We will see that the adaptive estimation of x does not change, the only thing that

changes is the addition of the adaptive estimator of the scale parameter δ. We will also see

that the fact that we do not know the scale parameter value does not degrade the asymptotic

estimation performance when compared with the location-only estimation problem.

We then present the multiple sensor approach based on a fusion center architecture. We

will see that the optimal correction of the adaptive algorithm based on multiple quantized

measurements from different sensors will be simply a weighted sum of their corrections in the

single sensor case.

3.6.1 Joint estimation of location and scale parameters

We start by stating the problem and defining the adaptive estimator. In a second step, we look

for its performance and we optimize the algorithm in a similar way as it was done previously.

We find the optimal adaptive gain, i.e. the optimal adaptive gain matrix. The optimal update

coefficients are obtained in a third step. At the end of the section, we present some simulations

and we discuss the results.

Problem statement and estimator

We consider that a sequence of i.i.d. r.v. Yk with marginal CDF Fn

(

y−x
δ

)

are quantized with

an adjustable quantizer (Fn (�) is the noise CDF for δ = 1), resulting in a sequence of discrete

measurements i1:k. The pair of parameters (x, δ) is unknown and the objective is to estimate

it based on the quantized measurements. This is equivalent to the following modification of

problem (a) (p. 27):

(a’) Solve problem (a) when the noise scale parameter δ is unknown

and must be estimated jointly with x.

Observe that this problem is a joint location-scale estimation based on quantized measure-

ments.

The adjustable quantizer is given by (3.1), where for enhancing the estimation performance,

we set the offset and the input gain to be

bk = X̂k−1, ∆k = c∆δ̂k−1. (3.76)

Note that the main difference with the adjustable quantizer used previously is the use of the

last scale parameter estimate for setting the input gain.
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The adaptive estimation algorithm can be extended to include the joint estimation of the

scale parameter. The extended version is

[

X̂k

δ̂k

]

=

[

X̂k−1

δ̂k−1

]

+
Γ

k
δ̂k−1

[

ηx (ik)

ηδ (ik)

]

, (3.77)

where Γ is a 2 × 2 matrix of gains, ηx [i] and ηδ [i] are sequences of NI update coefficients
{

ηx

[

−NI

2

]

, . . . , ηx

[

NI

2

]}

and
{

ηδ

[

−NI

2

]

, . . . , ηδ

[

NI

2

]}

.

The advantages of this extended version are the following:

• it is still a low complexity algorithm, requiring only a few operations more than the

initial adaptive algorithm.

• It is an online algorithm. Making it possible for real-time applications to have access to

the recent estimates at any time k.

• Its performance can also be studied using the general results from [Benveniste 1990].

The noise and quantizer follow the assumptions AN1–AQ1, AQ2’ and AN3. For simplifi-

cation purposes and to have a stable algorithm, we will assume that both ηx [i] and ηδ [i] are

symmetric, ηδ [i] have even symmetry with negative3 ηδ [1] = ηδ [−1], while ηx [i] are defined

with odd symmetry and they are positive for positive i, similarly as stated in AQ3.

Assumption (on the quantizer output levels):

AQ3’ The quantizer output levels ηx [i] are odd and the output levels ηδ [i] are even.

ηx [i] = −ηx [−i] , ηδ [i] = ηδ [−i] , (3.78)

with ηx [i] > 0 for i > 0 and ηδ [1] < 0.

The estimation scheme is depicted in Fig. 3.12, where the UPDATE block is the estimation

algorithm.

3This constraint on ηδ [1] is imposed to guarantee the convergence of δ̂k. The idea here is that when the

quantized measurements are small, it means asymptotically (when X̂k is close to x) that the quantizer range

is too large, thus the range and, consequently, δ̂k must be reduced. If we set the coefficients with the opposite

sign, δ̂k will diverge.
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Figure 3.12: Scheme representing the adjustable quantizer. The offset and gain are adjusted

dynamically using the estimates while the quantizer thresholds (the threshold variations) are

fixed.

Optimal parameters and performance

The analysis of the algorithm will be done using the results from [Benveniste 1990, Ch. 3].

We will analyze the bias and the asymptotic covariance matrix of the estimation error.

Similarly to the estimation of the constant location parameter, the algorithm mean can

be approximated by the solution of an ODE. However, in this case, we have a vectorial ODE

with one component for x̂ and one component for δ̂:

d

dt

[

x̂

δ̂

]

= Γh
(

x̂, δ̂
)

. (3.79)

The relation between continuous and discrete time is tk =
k
∑

j=1

1
j

and h is the following mean

vector field:

h
(

x̂, δ̂
)

= E





δ̂ηx

(

Q
(

y−x̂

c∆δ̂

))

δ̂ηδ

(

Q
(

y−x̂

c∆δ̂

))



 = (3.80)

= δ̂













NI
2
∑

i=1
ηx [i]

{

F̃d

(

i, x̂, x, δ̂, δ
)

− F̃d

(

−i, x̂, x, δ̂, δ
)}

NI
2
∑

i=1
ηδ [i]

{

F̃d

(

i, x̂, x, δ̂, δ
)

+ F̃d

(

−i, x̂, x, δ̂, δ
)}













,

where the expectation is w.r.t. to the noise marginal probability measure, the second equality

comes from the symmetry assumptions and F̃d is

F̃d =







Fn

(

τic∆δ̂
δ

+ x̂−x
δ

)

− Fn

(

τi−1c∆δ̂
δ

+ x̂−x
δ

)

, if i ∈
{

1, · · · , NI

2

}

,

Fn

(

τi+1c∆δ̂
δ

+ x̂−x
δ

)

− Fn

(

τic∆δ̂
δ

+ x̂−x
δ

)

, if i ∈
{

−1, · · · ,−NI

2

}

.
(3.81)
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The conditions on the mean convergence of the algorithm are then conditions on the global

asymptotic stability of the point x̂ = x and δ̂ = δ. One necessary condition for asymptotic

stability is that the true parameters must be an equilibrium point of the ODE, which means

that h
(

x̂ = x, δ̂ = δ
)

must be zero. From the symmetry assumptions:

h
(

x̂ = x, δ̂ = δ
)

=

[

0

2η⊤
δ F

vec
d

]

,

where the vector Fvec
d is

Fvec
d =

[

F̃d [1] · · · F̃d

[

NI

2

]]⊤
,

with elements Fd [i] = Fd (i, x, x, δ, δ) independent of the parameters. Then, the condition for

the parameters to be the equilibrium point is

η⊤
δ F

vec
d = 0. (3.82)

Other conditions are necessary for the mean convergence of the algorithm. These conditions

can be found by the analysis of the ODE using Lyapunov theory. The analysis of these

other conditions will not be detailed here and under the assumptions already stated and the

constraint on ηδ given in (3.82), it will be assumed that the algorithm converges in the mean

to the true parameters.

We turn our attention now to the asymptotic fluctuation of the algorithm, which is given

by its asymptotic covariance matrix. Under the assumptions stated previously (assumptions

AN1–AQ3’ and the assumption that the algorithm is asymptotically unbiased), it can be

shown [Benveniste 1990, pp. 110–113] that the normalized estimation error
√
kεk tends in

distribution to a zero mean Gaussian random variable as follows
√
kεk  

k→∞
N (0,P) , (3.83)

where P is the covariance matrix given by the optimal gain Γ⋆. The matrices P and Γ⋆ are

the following:

P =
δ2

2









ηT
xFdηx

(

ηT
x f

(x)
d

)2 0

0
ηT
δ
Fdηδ

(

ηT
δ
f
(δ)
d

)2









(3.84)

and

Γ⋆ = −1

2





1

ηT
x f

(x)
d

0

0 1

ηT
δ
f
(δ)
d



 , (3.85)

where Fd is a diagonal matrix Fd = diag [Fvec
d ], f

(x)
d = [f̃

(x)
d [1] · · · f̃ (x)d

[

NI

2

]

]T and f
(δ)
d =

[f̃
(δ)
d [1] · · · f̃ (δ)d

[

NI

2

]

]T are the derivatives in vector form of the quantizer output probabilities

F̃d

(

i, x̂, x, δ̂, δ
)

multiplied by δ̂ when x̂ = x and δ̂ = δ:

f̃
(x)
d [i] = fn (τi)− fn (τi−1) , (3.86)

f̃
(δ)
d [i] = c∆ [τifn (τi)− τi−1fn (τi−1)] . (3.87)
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These results are obtained in an equivalent way as the results presented for the estimation

of x. But in this case Γ⋆ is not the inverse of the scalar derivative of −h, but instead is the

inverse of the Jacobian matrix of −h evaluated at the point
(

x̂ = x, δ̂ = δ
)

. In the same way,

the normalized covariance for the optimal gain is the normalized covariance of the vector of

corrections

[

ηx (ik)

ηδ (ik)

]

pre and post-multiplied by the inverse of the Jacobian of h, with all

the factors being evaluated at
(

x̂ = x, δ̂ = δ
)

. The specific diagonal pattern of the Γ⋆ and P

comes from the symmetry assumptions on the noise and the quantizer.

Minimization of the estimation variance can be done through the minimization of the

diagonal terms of P w.r.t. ηx and ηδ. The two minimization problems can be solved separately.

In the case of the optimization w.r.t. ηδ, the equilibrium constraint (3.82) has to be taken

into account. The optimal ηx can be found by using the Cauchy-Schwarz inequality, while

the optimal ηδ are obtained by casting the constrained minimization problem as a modified

eigenvalue problem solved in [Golub 1973] (Why? - App. A.1.9).

The optimal coefficients are

ηx ∝ F−1
d f

(x)
d ,

ηδ ∝ F−1
d f

(δ)
d − 1f

(δ)
d = F−1

d f
(δ)
d ,

where 1 is a squared matrix with ones. The second equality comes from the fact that the sum

of f
(δ)
d is zero. To respect the assumptions we can set

ηx = −F−1
d f

(x)
d , (3.88)

ηδ = −F−1
d f

(δ)
d . (3.89)

Therefore, the optimal P and Γ⋆ are

P = δ2Γ⋆ =
δ2

2





1

f
(x)T

d
F

−1
d

f
(x)
d

0

0 1

f
(δ)T

d
F

−1
d

f
(δ)
d



 . (3.90)

Note that the asymptotic variances are equal to the CRB for estimating the parameters based

on the quantized measurements, when the quantizer offset and input gain are placed exactly

at x and 1
c∆δ

.
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We have the following solution to problem (a’) (p. 149):

Solution to (a’) - Adaptive algorithm with decreasing gain

for estimating x and δ

(a’1) 1) Estimator

For each time k, the estimate, the quantizer offset and the

quantizer input gain are obtained using (3.77)

[

X̂k

δ̂k

]

=

[

τ0,k
∆k

c∆

]

=

[

X̂k−1

δ̂k−1

]

+
Γ

k
δ̂k−1

[

ηx (ik)

ηδ (ik)

]

,

with ik = Q
(

Yk−X̂k−1

c∆δ̂

)

, Γ = 1
2





1

f
(x)T

d
F

−1
d

f
(x)
d

0

0 1

f
(δ)T

d
F

−1
d

f
(δ)
d



 and

[

ηx (ik)

ηδ (ik)

]

=







− f̃
(x)
d

[ik]

F̃d[ik]

− f̃
(δ)
d

[ik]

F̃d[ik]






.

2) Performance (assumed and asymptotic)

The estimator is assumed to be asymptotically unbiased.

When k → ∞ the normalized estimation error vector
√
kεk

is Gaussian distributed with covariance matrix P given by

(3.90)

P =
δ2

2





1

f
(x)T

d
F

−1
d

f
(x)
d

0

0 1

f
(δ)T

d
F

−1
d

f
(δ)
d



 .

Observe also that the asymptotic performance can still be optimized through τ ′ and c∆.

As optimization through τ ′ is difficult, in the simulation section we will consider again that

the thresholds variations are uniform as in (3.50)

τ ′ =

[

−τ ′NI
2

= −∞ · · · − τ ′1 = −1 0 + τ ′1 = +1 · · · + τ ′NI
2

= +∞
]⊤

,

thus the only free parameter for optimization is c∆.

Simulations

The algorithm will be simulated to validate the theoretical results. The simulation will be

focused on the performance for the estimation of x. As it was mentioned, the quantizer is

uniform and c∆ will be chosen so as to minimize the variance of estimation of x. As this is a

scalar problem, it can be solved by an exhaustive search using a fine grid. After finding the
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optimal c∆, the other parameters of the algorithm Γ, ηx and ηδ can be evaluated using the

information from the noise distribution.

The Gaussian and Cauchy distribution will be used for modeling the noise. The algorithm

will be simulated for 5 × 105 blocks with 4 × 104 samples each. The simulated MSE for the

estimation of the location parameter will be evaluated by calculating the mean of the squared

error for each sample. Other simulation parameters are δ = 1, δ̂0 = 2, x = 0, X̂0 = 1 and

NI ∈ {4, 8, 16, 32}. For comparison purposes, the CRB for the estimation of x based on

continuous measurements CRBc will be also evaluated for Gaussian and Cauchy distributions.

Using the fact that the measurements are independent and the expressions for Ic for the GGD

given in (3.74) with β = 2 and for the STD given in (3.75) with β = 1, the CRBc for Gaussian

and Cauchy noise are respectively 1
2
δ2

k
and 2 δ2

k
.

The results of the simulation are shown in Fig. 3.13, where we also plotted the CRB for

the estimation with quantized measurements when the offset and gain are static and set with

the true parameter values. The MSE was normalized by k and the logarithm scale is used in

both axis for better visualization.

It can be observed that after a transient time, the simulated performance becomes very

close to the asymptotic theoretical results, also it can be seen that the gain in performance

when increasing NI is very small even for a small number of quantization intervals (NI = 8

or 16) and that the gap between the performance given by NI = 32 and the continuous

measurement bound is negligible.

Discussion on the results

Despite the very low complexity of the algorithm, its asymptotic performance for estimating

the parameters is not only decoupled (the covariance is diagonal) but it is also optimal. The

normalized asymptotic variance for estimating x is 1
Iq(0)

and the variance for estimating δ is

also the inverse of the corresponding FI. This optimal decoupling means that no degradation

of performance is brought by estimating jointly the scale parameter. As no degradation is

present, the asymptotic performance of the estimator of x has the same behavior as it was

shown previously, if we choose NI = 4 or 5 the estimation performance is very close to the

optimal continuous measurement performance. This indicates that even when δ is unknown

there is no need to use high resolution quantizers, if we have a large number of samples.

3.6.2 Fusion center approach with multiple sensors

We present now the adaptive algorithm for estimating a constant parameter, when a fusion

center has access to quantized measurements from multiple sensors. We will define first, the

problem, the architecture to be used and the adaptive estimator. Then, similarly to the joint

location-scale problem, we obtain the algorithm performance and its optimal parameters. We

close this section with simulations and a discussion about our results.
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Figure 3.13: CRB for estimating a location parameter of Gaussian and Cauchy distributions

based on quantized and continuous measurements and simulated MSE for the estimation of

the location parameter with the adaptive location-scale parameter estimator. In all cases, we

considered the true scale parameter and its initial estimate δ = 1, δ̂0 = 2, for the location

parameter we considered x = 0, X̂0 = 1. The numbers of quantization intervals simulated

were NI ∈ {4, 8, 16, 32}. For obtaining the simulated MSE for the location parameter, the

algorithm was simulated for 5 × 105 blocks with 4 × 104 samples each. The curves that are

asymptotically lower are related to a higher number of quantization intervals.

Problem statement and estimator

The scalar parameter is supposed to be a constant x and it is measured by Ns sensors. Each

sensor measures the parameter with additive noise

Y
(j)
k = x+ V

(j)
k , for j ∈ {1, · · · , Ns} , (3.91)

where V
(j)
k is the noise r.v. for the sample k obtained at the sensor j. The sensor noises are

independent and each sensor noise is i.i.d.. The noise r.v. also respects assumptions AN1,

AN2 and AN3. Its marginal CDF for sample k of sensor j will be denoted as F (j) (v) and its

PDF as f (j) (v).

The measurements at each sensor are quantized by a scalar adjustable quantizer, similar

to the quantizer used in the previous sections. The quantizers for the sensors are then char-

acterized by their input gains 1

∆
(j)
k

, input offsets b
(j)
k and the vector of threshold variations
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(considered to be static) that defines the N
(j)
I quantizer intervals

τ ′(j) =

[

τ ′(j)
−NI

2

· · · τ ′(j)−1 τ
′(j)
0 τ ′(j)1 · · · τ ′(j)NI

2

]

.

We will consider again the following assumptions:

• AQ1 on the quantizer outputs: the set of possible quantizer outputs of the sensor j is

I(j) =

{

−N
(j)
I

2 , · · · ,−1, 1, · · · , N
(j)
I

2

}

.

• AQ2 on the quantizer threshold variations: the quantizers have symmetric threshold

variations τ ′(j)i = −τ ′(j)−i with τ ′(j)0 = 0 and τ ′(j)NI
2

= +∞.

The output of quantizer j is then given by

i
(j)
k = Q(j)

(

Y
(j)
k − b

(j)
k

∆
(j)
k

)

= i sign
(

Y
(j)
k − b

(j)
k

)

, for

∣

∣

∣Y
(j)
k − b

(j)
k

∣

∣

∣

∆
(j)
k

∈
[

τ
(j)
i−1, τ

(j)
i

)

. (3.92)

The noise CDF are considered also to have a known scale parameter δ(j). Therefore, similarly

to what was done before, we can use the noise scale factor to normalize the input of the

quantizer

∆
(j)
k = c

(j)
∆ δ(j), (3.93)

where c∆ is a free parameter which, as it was explained before, can be used to adjust the

quantizer input range or to optimize quantization performance when the threshold variations

are fixed.

After obtaining the quantized measurements, the sensors send their measurements to a

fusion center. The transmission of the quantized measurements is supposed to be perfect,

as it was explained in the Introduction. The fusion center can feedback information to the

sensors through perfect continuous amplitude channels. Thus, we want to solve the following

modification of problem (a) (p. 27):

(a”) Solve problem (a) with independent quantized measurements

from Ns sensors. The measurements from the Ns sensors are

available at a fusion center that can process these measure-

ments and feedback information to the sensors through perfect

continuous amplitude channels.

Note that the simplifying assumption of perfect feedback channels means that the fusion

center has enough power and/or band for feedbacking real (or very finely quantized) noiseless

estimates.

To solve problem (a”), the fusion center generates an online estimate X̂k that will be

broadcasted to the quantizers through the feedback channels, so that they can use it as their

next input offset for enhancing estimation performance. At time k, this means that

b
(j)
k = X̂k−1. (3.94)
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Figure 3.14: Scheme representing the sensor network. The fusion center updates the estimate

of the parameter and broadcasts it through a perfect channel to the sensors. The sensors then

use the new estimate as their quantizer input offset (their quantizer central threshold).

The general scheme is depicted in Fig. 3.14, where the UPDATE block contains an online
estimator of the parameter.

For estimating the parameter, we can use an extension of the adaptive algorithm with

decreasing gains

X̂k = X̂k−1 +
γ

k
η (ik) , (3.95)

where γ is a positive gain, ik is the vector of quantized observations
[

i
(1)
k · · · i(Ns)

k

]T

and

η [i] is the update coefficient (or the quantizer output level) defined as a function from
{

I(1), · · · , I(Ns)
}

to R. The main advantage of this algorithm when compared with an adap-

tive scheme based on the MLE is its low complexity both in terms of processing and memory

requirements.

Optimal parameters and performance

Using the results from [Benveniste 1990, Ch. 3], the asymptotic variance of the estimation

error can be obtained under the condition that the mean error converges to zero as k → ∞.

To prove this convergence, it would be sufficient to use the ODE approximation of the mean

of X̂k and then prove global convergence properties for the ODE using Lyapunov theory. Such

analysis is left for future work. Here, only the mean behavior of the algorithm at equilibrium

(X̂k = x) will be studied.
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When X̂k−1 = x, the normalized mean increment k
γ
E
(

X̂k − X̂k−1

)

is given by

k

γ
E
(

X̂k − X̂k−1

)

= E [η (i)] = ηTFvec
d , (3.96)

where η is a vector regrouping all possible values of the output coefficients

η =

[

η

(

i
−N

(1)
I
2

, · · · , i
−N

(Ns)
I
2

)

· · · η
(

i
N

(1)
I
2

, · · · , i
N

(Ns)
I
2

)]T

and Fvec
d =

[

· · · F̃d [i] · · ·
]⊤

with

F̃d [i] =

Ns
∏

j=1

F̃
(j)
d

[

i(j)
]

, (3.97)

where F̃
(j)
d

[

i(j)
]

is the probability of having the output i(j) at the sensor j when X̂k = x:

F̃
(j)
d

[

i(j)
]

=















F (j)
(

τ
(j)
i c

(j)
δ δ(j)

)

− F (j)
(

τ
(j)
i−1c

(j)
δ δ(j)

)

, if i(j) ∈
{

1, · · · , N
(j)
I

2

}

,

F (j)
(

τ
(j)
i+1c

(j)
δ δ(j)

)

− F (j)
(

τ
(j)
i c

(j)
δ δ(j)

)

, if i(j) ∈
{

−1, · · · ,−N
(j)
I

2

}

.

(3.98)

Thus, the following condition is needed to have an equilibrium point at the true parameter:

ηTFvec
d = 0. (3.99)

Note that this is a necessary condition for asymptotic unbiasedness of the algorithm.

Assuming that the algorithm is asymptotically unbiased, similarly to the single sensor

case, we can use the results in [Benveniste 1990, pp. 110–113] to obtain the asymptotic distri-

bution of the estimation error, the optimal gain γ⋆ and the minimum normalized asymptotic

estimation error variance σ2∞. The asymptotic estimation error is Gaussian distributed and it

is given as follows √
kεk  

k→∞
N
(

0, σ2∞
)

. (3.100)

The optimal γ and minimum σ2∞ are then given by

γ⋆ = − 1

ηT fd
(3.101)

and

σ2∞ =
ηTF dη

(ηT fd)
2 . (3.102)

The matrix F d is a diagonal matrix diag [Fvec
d ] and fd is the vector form (as η and Fvec

d )

regrouping the elements

f̃d [i] =

Ns
∑

j=1

f̃d

[

i(j)
]

Ns
∏

j′ = 1

j′ 6= j

F̃
(j′)
d

[

i(j
′)
]

, (3.103)
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where

f̃
(j)
d

[

i(j)
]

=















f (j)
(

τ
(j)
i c

(j)
δ δ(j)

)

− f (j)
(

τ
(j)
i−1c

(j)
δ δ(j)

)

, if i(j) ∈
{

1, · · · , N
(j)
I

2

}

,

f (j)
(

τ
(j)
i+1c

(j)
δ δ(j)

)

− f (j)
(

τ
(j)
i c

(j)
δ δ(j)

)

, if i(j) ∈
{

−1, · · · ,−N
(j)
I

2

}

.

(3.104)

The asymptotic performance can also be optimized through the choice of η, this can be

done by minimizing (3.102) w.r.t. η under the equilibrium constraint (3.99). This problem

can be solved in the same way as it was done for finding the optimal vector ηδ in the joint

estimation of location and scale parameters. Consequently, we find the following optimal

vector η (Why? - App. A.1.9):

η ∝ F−1
d fd − 1fd = F−1

d fd.

The second equality comes from the fact that the sum of the elements of fd is zero. For

proving this, note that for each possible i there is −i. As the function f̃d [i] is odd and F̃d [i]

is even, we have f̃d [i] = −f̃d [−i]. Therefore, when adding f̃d [i] for all the possible i, the pairs
(

f̃d [i] , f̃d [−i]
)

will cancel each other, resulting in a zero sum. Similarly to the previous cases

we will choose

η = −F−1
d fd. (3.105)

For the update coefficients given by (3.105), the asymptotic normalized variance and the

optimal gain are

σ2∞ = γ⋆ =
1

fTd F
−1
d fd

. (3.106)

Using the expressions for F̃d [i] (3.97) and for f̃d [i] (3.103), for a given measurement vector

i the update coefficients are4

η (i) = −
Ns
∑

j=1

f̃
(j)
d

[

i(j)
]

F̃
(j)
d

[

i(j)
]

. (3.107)

If we use the symmetry assumptions, the expression for the asymptotic normalized variance

and for the optimal gain (3.106) becomes (Why? - App. A.1.10)

σ2∞ = γ⋆ =
1

Ns
∑

j=1

∑

i(j)∈I(j)

f̃
(j) 2
d [i(j)]
F̃

(j)
d [i(j)]

. (3.108)

Observe that the update coefficients are the sum of the update coefficients obtained in the

single sensor approach. The asymptotic normalized variance is equal to the inverse of the sum

of the FI Iq (0) for each sensor, which means that the algorithm is asymptotically efficient.

4Using this specific form for the update coefficients, we can prove, similarly as it was done for the single

sensor case, that the algorithm is asymptotically unbiased.
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We have then the following solution to problem (a”) (p. 157):

Solution to (a”) - Adaptive algorithm with decreasing gain

for estimating x using multiple sensors and a fusion center

(a”1) 1) Estimator

For each time k,

• the sensors send i
(j)
k = Q(j)

(

Y
(j)
k

−X̂k−1

c
(j)
∆ δ(j)

)

to the fusion cen-

ter.

• The fusion center estimates the parameter using (3.95)

X̂k = X̂k−1 +
γ

k
η (ik) ,

where γ⋆ = 1
Ns
∑

j=1

∑

i(j)∈I(j)

f̃
(j) 2
d [i(j)]
F̃
(j)
d [i(j)]

and η (i) = −∑Ns

j=1

f̃
(j)
d [i(j)]

F̃
(j)
d [i(j)]

.

• The fusion center then broadcasts the estimate to the

sensors through perfect channels to be used as the next

quantizers input offset.

2) Performance (assumed and asymptotic)

The estimator is assumed to be asymptotically unbiased.

When k → ∞ the normalized estimation error
√
kεk is Gaus-

sian distributed with variance σ2∞ given by (3.108)

σ2∞ =
1

Ns
∑

j=1

∑

i(j)∈I(j)

f̃
(j) 2
d [i(j)]
F̃

(j)
d [i(j)]

.

Note that, again here, we can still optimize the performance through τ ′(j) and c
(j)
∆ . In

the same way as it was done previously, in what follows we consider that the threshold vari-

ations are uniform with unitary step-length and that only c
(j)
∆ are used for optimizing the

performance.
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Simulations

The validity of the results will be verified through simulations. All the sensors within a

simulation will be considered to have the same type of noise and the same noise scale factor

δ = 1. The noise considered will be Gaussian or Cauchy distributed. Optimization w.r.t. c∆
(the same gain for all sensors in this case, as the noise is identically distributed) will be done

by searching the maximum of the corresponding FI in a fine grid. After finding the optimal

c∆, the coefficients − f̃d[i]

F̃d[i]
and the gain γ⋆ can be calculated.

For all the following simulations, the length of the block of samples will be 5000 and for

evaluating the MSE the average of the squared error will be calculated using 5 × 104 blocks.

The parameter value and initial estimator value are x = 0 and X̂0 = 1.

In the first simulation, it will be considered that all the quantizers have NI = 4 and Ns will

be 1, 2 or 3, the results can be observed in Fig. 3.15 in log scale both in time and MSE. The

simulated results are compared with the theoretical approximations, for this algorithm they

are asymptotically equal to the CRB for quantized measurements obtained from a number of

sensors Ns, CRBNs,⋆
q .
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Figure 3.15: Cramér–Rao bound and simulated MSE for the adaptive algorithm when NI = 4,

Ns = 1, 2, 3 and the noise is Gaussian or Cauchy distributed, both with δ = 1. For obtaining

the simulated MSE, the algorithm was simulated 5× 104 times for blocks with 5000 samples.

For all simulations the true parameter was set to zero and the initial estimate was X̂0 = 1.

In each set of curves the results for the three different number of sensors are represented, the

highest MSE curves represents the performance for Ns = 1 and the lowest MSE represent

Ns = 3. The curves are plotted in log log scales for better visualization.

As it was expected, the MSE decreases with the number of sensors and the simulated results

are very close to the theoretical approximation for a large number of samples. To have a more

appropriate comparison between different numbers of sensors, channel bandwidth constraints

must be considered.

In the second simulation, the total rate will be fixed to 5 bits. Two possible settings will

be considered, a single sensor approach using the 5 bits (NI = 32) and a multisensor approach
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with one sensor quantizing the measurements with 2 (NI = 4) bits and the other with 3

bits (NI = 8). We keep all the other simulation parameters from the previous simulation.

The results are shown in Fig. 3.16, also with a comparison with the asymptotic performance

(which again is equal to the optimal CRB for quantized measurements).
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Figure 3.16: Cramér–Rao bound and simulated MSE for the adaptive algorithm for Ns = 1

and NB = 5 and for Ns = 2, one sensor with NB1 = 2 bits and the other with NB2 = 3

bits. The noise was considered to be Gaussian or Cauchy distributed, both with δ = 1. For

obtaining the simulated MSE, the algorithm was simulated 5× 104 times for blocks with 5000

samples. For all simulations the true parameter was set to zero and the initial estimate was

X̂0 = 1. In each set of results the higher curve represents the performance for Ns = 1. The

curves are plotted in log log scales for better visualization.

For both types of noise, the theoretical and simulated results show that the multisensor

approach is superior.

Discussion on the results

The proposed algorithm shows that in practice, in a rate constrained context, a multiple sensor

approach with low resolution quantizers might be superior to a a high resolution single sensor

approach. Such observation motivates the use of low resolution sensor networks for estimation

purposes.

Note that in the case studied, we did not analyze the interaction between the noise scale

factor (it is considered to be constant over the sensors) and the number of quantization bits

used in each sensor. When the total number of bits to be transmitted to the fusion center

is constrained, an interesting problem for further investigation is the problem of optimal

allocation of number of bits to sensors as a function of their noise scale factors. This problem

will be studied in an approximate form in Part II.

The adaptive algorithm that is implemented in the fusion center has very low complexity.

The complexity is roughly linear in the number of sensors, as the optimal correction η is

equivalent to a weighted sum of the corrections given by the single sensor algorithm. Despite
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this fact, it can be very costly to implement this algorithm due to the perfect feedback channels

requirement. Thus in future work, we can consider that the feedback channels are not perfect,

for example, by considering that the estimates are fedback after being quantized and that they

are corrupted with additive noise.

3.7 Chapter summary and directions

We summarize now the main points observed in this chapter and we also present some subjects

that are interesting for further research.

• We presented an adaptive algorithm that can estimate three types of parameter: con-

stant, slowly varying with a Wiener process model without drift or slowly varying with

a Wiener process model with drift. The adaptive algorithm can be used for any even

number of quantization intervals and under the assumption that the noise is symmetric,

unimodal and has a regular CDF (locally Lipschitz continuous) it was shown that

– using decreasing gains, when the parameter is a constant, the algorithm converges

asymptotically in the mean to the true parameter value and its asymptotic perfor-

mance in terms of variance attains the minimum CRB for common noise distribu-

tions CRB⋆
q . Thus, the answers to the two initial questions (p. 105) are positive:

the algorithm with gain proportional to 1
k

converges and it can be extended to a

multibit setting.

– Using a constant gain, when the parameter is modeled by a slowly varying Wiener

process without drift, the algorithm also converges in the mean to the true param-

eter and the algorithm is approximately asymptotically optimal. This answers the

third question also in a positive way.

– Using a constant gain, when the parameter is modeled by a slowly varying Wiener

process with drift, the algorithm is biased and its asymptotic MSE can be minimized

by setting the gain as a function of the drift.

• Using the asymptotic performance results, we evaluated the loss of estimation perfor-

mance due to quantization for the algorithm. We observed the following:

– the loss in all cases is a function of Iq (0), showing one more time the importance of

studying the behavior of this quantity as a function of the threshold variations. We

remind that this problem will be studied with an asymptotic approach NI → ∞ in

Part II.

– When the parameter varies, the loss due to quantization is smaller than when the

parameter is constant. Thus, when using quantized measurements for estimation,

it seems that a type of dithering effect is present.

– The loss of performance is almost negligible in all cases for 4 or 5 quantization bits.

In a rate constrained scenario this seems to be a strong motivation for using a low

to medium resolution multiple sensor approach instead of a high resolution single

sensor approach. This was validated using an extension of the adaptive algorithm
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designed for multiple sensors that can communicate their measurements to a fusion

center.

• When comparing the adaptive algorithm with its equivalent counterparts studied in Ch.

1 and 2, the following was observed:

– for estimating a constant, the adaptive algorithm has a very low complexity when

compared with the adaptive scheme based on the MLE and their performance is

equivalent.

– for estimating a slowly varying Wiener process, the algorithm has also a very low

complexity when compared with the PF scheme using dynamical central threshold.

In this case the only drawback of the adaptive algorithm is that it has a longer

transient time.

Therefore, if complexity constraints are present, the adaptive algorithm seems to be the

best analyzed solution.

If no constraints on complexity are considered, then the adaptive algorithm is still the

best choice for estimating a constant, but it should be replaced by the PF for estimating

the slowly varying parameter. An interesting point for future work would be to look

for ways of choosing the quantizer update coefficients during the transient, so that the

adaptive algorithm performance would be similar to the PF performance.

• We presented two extensions of the algorithm, both for estimating a constant parameter.

They are the following:

– the joint location-scale adaptive estimator, for which we showed that even if we

do not know the noise scale parameter it is possible to estimate it with the same

asymptotic performance obtained for the case with known scale parameter.

– The fusion center approach with multiple sensors. In this extension of the algo-

rithm, we considered that measurements from multiple sensors are sent to a fusion

center. The role of the fusion center is to estimate the parameter and then broadcast

the estimate to the sensors, so that it can be used for setting the quantizers offset.

As it was mentioned above, with this approach we showed that a low to medium

resolution multiple sensor approach might be better for estimation purposes than a

high resolution single sensor approach. We remind that this was shown for sensors

with the same type of noise distribution and the same noise scale parameter value.

Thus, an interesting subject to study is the bit allocation problem among sensors,

when the total bandwidth is constrained and the sensors have the same type of

noise distribution but different scale parameters. This will be done in Part II, in

the case of a weak bandwidth constraint.

• Many other extensions can be the subject of future work. They are

– the joint estimation of the drift when we track a Wiener process with drift. Actually,

this was already done by adding a simple adaptive estimator of the drift. However,

in some cases we can have a more detailed dynamical model for the drift. By
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using adaptive multistep algorithms [Benveniste 1990, Sec. 4.2], we can use this

additional information to have a better estimate of the Wiener process.

– The joint estimation of the Wiener process increment standard deviation and the

Wiener process itself. This will lead to a robust multibit generalization of delta

modulation with varying gain.

– The joint estimation of a location parameter and the shape of the noise distribution.

In this case, we can consider that the noise CDF has an unknown shape but a known

structure, for example that it is locally polynomial, and that we want to estimate

jointly the location parameter and the parameters of the noise distribution.

– The nonparametric estimation of the location parameter. We can consider for

example that we only know that the noise distribution is symmetric, without any

specific parametrization. Then we can try to define a nonparametric adaptive

algorithm based on adaptive histograms for getting as close as possible to the

parametric performance.

– The joint estimation of location-scales parameters when the multiple sensor fusion

center approach is considered. This extension can be directly implemented by

joining the features of the adaptive location-scale estimator with the fusion center

approach. The main difference in this case is that for reducing the communication

complexity, the sensors will have to estimate their individual scale parameters for

setting their quantizers.

• We can also consider some extensions of the estimation problem itself for which modifi-

cations of the adaptive algorithm would be a good solution. Some examples are:

– a fusion center approach where the quantized measurements from the sensors are

transmitted through noisy channels. This is a problem that we decided not to treat

but it is an interesting and more realistic point for further development.

– A fusion center approach where the information that is fedback is quantized and

passed through noisy channels. For this extension, we can consider an additional

adaptive algorithm at the sensors for smoothing out the noise from the feedback

channels. For dealing with quantization of the estimates we can consider including

a dither signal. With this extension we will be able to assess the importance of the

feedback channel quality, thus giving a more realistic global estimate of the sensor

network cost.

The main issue that makes these two extensions far more difficult to be studied

is that the output quantizer indexes cannot be defined arbitrarily, as they are

corrupted by the channel noise.

– The estimation of a scalar parameter following an autoregressive model

Xk = aXk−1 +Wk

instead of the Wiener process model. This will lead to a robust generalization of

scalar predictive quantization.
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– Compression of a Wiener process with drift. We can consider that at sensor level we

can store continuous measurements (or very finely quantized) and then we can apply

the adaptive algorithm for a block of measurements in both time directions (forward

and backward) and average the results to have final estimates with reduced bias.

By storing the initial and final continuous measurements and both the forward and

backward quantized sequence, we equivalently have stored a compressed estimate

of the true parameter sequence.





Conclusions of Part I

The main objective of Part I was to propose and study the performance of algorithms for es-

timation based on quantized measurements. We assumed simple parameter and measurement

models:

• Parameter model – a scalar parameter that can be either constant or varying with a

Wiener process model.

• Measurement model (noise model) – the scalar constant is measured with independent,

unimodal and symmetrically distributed noise.

• Measurement model (quantizer) – the quantizer is symmetric.

Under these settings, we obtained the following conclusions:

• Adaptiveness is important. The performance of estimation based on quantized mea-

surements is mainly dependent on the FI for quantized measurements and this depen-

dence is direct. Increased FI is equivalent to increased estimation performance.

For the noise distributions considered, the FI is increased if we set the quantizer dynamic

range close to the parameter to be estimated and for commonly used noise distributions

(Gaussian, Laplacian, Cauchy), we must put the quantizer central threshold exactly at

the true parameter value. As we do not know the value of the parameter, for obtaining

optimal estimation performance, we must resort to adaptive algorithms that place the

quantizer range close to the true parameter value, for example by placing the quantizer

central threshold at the most recent estimate of the parameter. Therefore, this indicates

that adaptiveness of the quantizer is a main requirement for optimal estimation.

• Low complexity is possible and it might be even asymptotically optimal. It

is possible to estimate a constant and a slowly varying parameter with a low complexity

adaptive algorithm. The adaptive algorithm is not only convergent in the mean (with

a small bias in the drift case) but its parameters can be chosen in such a way that it is

exactly equivalent to the asymptotically optimal estimator. This observation goes in the

exact opposite direction of some proposed solutions (adaptive scheme based on the MLE

and the PF) which requires high complexity both in terms of memory and processing.

• Low to medium resolution is enough. Both for a constant and slowly varying pa-

rameter model, the loss of performance that is incurred by using quantized measurements

instead of continuous amplitude measurements seems to be negligible for a number of

quantization bits larger than 4 or 5. In a rate constrained context this means that us-

ing more sensors with less resolution may be better than using less sensors with more

resolution.
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"Finite – to fail, but infinite to venture" - part of a poem of Emily Dickinson.

Motivation

The introduction of this part will also be done using a motivational example.

To maintain their economic growth, emerging economies will have to look for new mineral

and material sources. This will generate a potential increase of exploration in unusual places,

for example the seafloor. Sulfur and metal base rich mineral deposits can be found at seafloor

in hydrothermal vent sites [Hoagland 2010].

Hydrothermal vents, also called black smokers, occur when seawater penetrates the oceanic

crust through fissures. The water penetrates so deeply in the oceanic crust that it enters in

contact with upper parts of magma chambers. A large increase in temperature (from ≈ 2◦C to

≈ 400◦C) is observed, along with a decrease in pH and Eh. The hot corrosive liquid rises then

through fissures carrying metal and sulfur from the rocks. The mineral rich water is released in

the seawater as hot black smoke. Precipitation of the elements present in the smoke happens

when the hot water is mixed with ocean cold water. As a result, a mineral rich chimney and

a massive sulfide deposit are formed around the hot water releasing point [Herzig 2002].

To mine the sulfide deposit, first, it must be located. One possible way to locate it is

by measuring the concentration of chemical compounds and elements in the seawater. The

chemical plume generated by the hydrothermal vent can be detected using CH4, Fe, H, He

or Mn concentration measurements [Baker 2004]. After detecting the plume, for example

using sensor measurements from multiple autonomous underwater vehicles (AUV) that

communicate with a fusion center, the source location must be found. This can be done by

following the ascent gradient direction of a chemical compound concentration. The gradient

direction can be obtained by exploiting the local information measured by the AUV.

Underwater communication is challenging as bandwidth is severely constrained in this

environment. To overcome this problem, quantization of the concentration measurements

from the AUV can be considered. As a consequence, to calculate an approximated gradient

at the fusion center we will have to deal with the same problem treated in Part I, which is the

following:

• How to estimate a scalar constant (the concentration) based on noisy quan-

tized measurements?

Algorithms for doing this were presented in Part I, where it was noted that estimation per-

formance is given (at least asymptotically) by the FI for quantized measurements. However,

a question remained without answer:

• How to set the quantizer thresholds to have an optimized estimation perfor-

mance?

Only in some cases the answer for this question was given:



174

1. In the binary case it was observed that for commonly used noise models, the quanti-

zation threshold should be placed exactly at the parameter.

2. In the multibit uniform quantization case, after setting the central threshold at the

parameter, the corresponding performance maximization is a one-dimensional optimiza-

tion problem, which can be solved using exhaustive search.

In the general nonuniform case, setting the threshold was observed to be a complicated opti-

mization problem.

Similarly to standard quantization [Gersho 1992, pp. 185–186], where analytical charac-

terization of quantization performance is difficult for a finite number of quantization intervals,

when the number of quantization intervals is large, the set of intervals can be approximated

by an interval density. The interval density is a function whose integral over an interval gives

the fraction of the number of quantization intervals contained in that interval. By using small

interval approximations of the FI, we can obtain an asymptotic expression (NI → ∞) for the

FI as a function of the interval density. The resulting FI can be maximized w.r.t. the interval

density to get an approximation of the optimal interval set. After that, the optimal interval

density can be used to have an approximated analytical expression for the optimal FI, thus

giving a complete asymptotic characterization of the estimation algorithms.

As the interval density is an asymptotic quantity, a main issue that must also be solved

is how to do a practical approximation of this density with a finite number of intervals. An

interesting question would be to find an analytical expression for the approximately optimal

quantization thresholds as a function of the number of intervals.

Writing it in a more detailed form, we want to do the following:

(c)

• Find an asymptotic (in terms of number of quantization bits)

approximation of the Fisher information for estimating a con-

stant parameter embedded in noise as a function of an interval

density.

• Find the asymptotically optimal interval density.

• Give an analytical expression approximating the maximum FI

for the optimal interval density.

• Obtain a practical approximation for the optimal quantization

thresholds.

Now, with the optimal thresholds given by the asymptotic approximation, the adaptive

estimation algorithms from Part I work (at least asymptotically) in an optimal way. We can

imagine that for reliability issues or for reducing measurement latency, multiple concentration

sensors are installed in each AUV. Due to deterioration, the sensors do not have exactly the

same noise levels. Thus, under a given rate constraint, another question arises:
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• How many quantization bits do we allocate for each sensor?

For an array of sensors with the same type of noise and considering the independence between

sensor noise, the only parameter that can change from sensor to sensor is the noise scale factor.

Thus, what we want to do precisely is

(d) Find the optimal or approximately optimal number of bits per

sensor as a function of the noise scale factors under a maximum

constraint on the total number of bits.

The problems presented above are quite general and they can appear in the performance

analysis of any optimal estimation algorithm in a constrained rate context. In what follows,

we will obtain insight on how we can solve these problems. As we have only one chapter in

this part, its outline will be given directly at the chapter introduction.





Chapter 4

High rate approximations of the FI

To obtain insight on how we solve problems (c) and (d), we will resort to an asymptotic

approach, that is, we will make the number of quantization intervals goes to infinity NI → ∞
and we will see how the FI behaves as a function of the quantizer. This approach can also

be found under the names high resolution or high-rate (in the title), the former is used to

emphasize that the quantizer intervals are supposed to be very small and the latter is used to

make explicit that the communication rate must be high, as the number of quantization bits

is large.

Note that making NI → ∞ seems to contradict one of the conclusions of Part I, that states

that with only a few quantization bits we have a negligible loss of performance due to quan-

tization. However, even if we make NI → ∞, we will see that the asymptotic approximations

still depend on NI , so that, as we stated above, we can use it to gain some insight on the

estimation performance for finite NI . Actually, we will see that for the location parameter

estimation problem studied in Part I, the asymptotic approximations are valid even for small

numbers of quantization bits (NB = 4 and NB = 5), which is very fortunate, as these cases

were observed to be the practical useful limit in quantization for estimation and also they are

the cases with lowest number of bits for which the maximization of the estimation performance

w.r.t. the quantizer thresholds is difficult to be done in a direct way.

When NI → ∞, the quantizer can be characterized by its density of quantization intervals,

thus asymptotically, the behavior of the FI as a function of the quantizer can be characterized

by studying its behavior as a function of the intervals density. As a consequence, one of the

main objectives of this chapter is to obtain an asymptotic analytic expression of the FI as a

function of the interval density.

• Fixed rate encoding. We will obtain this expression for scalar quantization and we will

not impose any strong constraints on the type of estimation problem that is treated (for

example, we will not constrain it to be a location estimation problem).

• Variable rate encoding. Additionally to the fixed rate encoding scheme, where all the

quantizer outputs use the same number of bits for encoding, we will also obtain the

optimal interval density maximizing the FI for the variable rate encoding scheme, where

we can use different numbers of bits for different quantizer outputs. We will also discuss

on the difficulties of implementing the variable rate encoding scheme in practice.

• Practical implementation. We will describe how to implement in practice an approxi-

mation of the optimal interval density.
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We will check the validity of the results in the location parameter case by comparing the

theoretical results for the maximum FI obtained with the optimal interval density with the FI

obtained with the practical approximation of the optimal density and with the FI for optimal

uniform quantization. We will show that in practice we can obtain the asymptotic performance

results by using the adaptive algorithm presented in Ch. 3. We will also look in some detail

the location and scale parameter estimation problems for GGD and STD measurements.

In the single sensor location parameter case, we will study the problem of deciding how

many quantization bits we might allocate to each sensor in a sensor network, when the total

rate is constrained and all the sensors have the same type of noise distribution but differ-

ent noise scale parameters. Approximate solutions for this problem will be given using the

asymptotic approximations.

To show the connections between the results found here and asymptotic results for other

inference problems, we will study the asymptotic approximation of a generalized inference

performance measure known as the generalized f–divergence. The asymptotic results for this

divergence were proposed in [Poor 1988], mainly for the uniform vector quantization fixed rate

encoding case and they were stated but not proved in the non uniform case. Here, we will

give a simple derivation of the asymptotic approximation for this divergence in the scalar case

using the same procedure as the one that is used for the FI, we will also extend the results

to the variable rate encoding case. After obtaining the general optimal density of thresholds,

we will point out the similarities and differences between the way quantization must be done

for three different inference problems: classic estimation (considered in this thesis), Bayesian

estimation and detection.

At the end of the chapter we will summarize the main results and we will indicate some

possible points for future work.

Contributions presented in this chapter:

• Asymptotic approximation of the optimal interval density for classic parameter estima-

tion. The asymptotic analysis presented in [Poor 1988] is only detailed for uniform

quantization, differently from the development that is presented here, where we consider

non uniform quantization with the interval density approach.

• Practical implementation of the optimal quantizer in the location parameter estimation

problem. In this chapter, we show that the asymptotically optimal quantizer depends

on the true parameter value and we also show that in practice we can achieve the

asymptotically optimal performance using the adaptive algorithm with decreasing gain

presented in Ch. 3. This shows the importance of the adaptive approach. No result of

this type seems to be present on the literature.

• Approximate bit allocation for the multiple sensor approach. The approximations of the

optimal bit allocation among sensors seem to be new in the context of classic location

parameter estimation.
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4.1 Asymptotic approximation

4.1.1 General setting

The general setting considered here is the estimation of a scalar deterministic parameter x ∈ R

of a continuous distribution based on N independent measurements from this distribution

Y = [Y1 Y2 · · · YN ]⊤. Again here, we will consider that the estimation of x is not based on

Y. Instead, it is based on a scalar quantized version of Y denoted

i = [i1 i2 · · · iN ]T = [Q (Y1) Q (Y2) · · · Q (YN )]T .

The function Q represents the scalar quantizer and is given by

Q (Y ) = i, if Y ∈ qi = [τi−1, τi) , (4.1)

where i ∈ {1, · · · , NI}, NI is the number of quantization intervals qi and τi are the quantizer

thresholds. The first and last thresholds will be set to τ0 = τmin and τNI
= τmax. Note that

the setting considered here is more general than the setting presented in Part I, as we do not

restrict the estimation problem to be a location estimation problem and we do not impose

any symmetry on the quantizer. Observe also that the quantizer interval indexes now go from

1 to NI .

It will be assumed that the marginal CDF of the continuous measurements parametrized

by x F (y;x) admits a PDF f (y;x) that is positive, smooth in both x and y and defined on

a bounded support. The bounded support assumption is needed to simplify the derivation of

the asymptotic results.

4.1.2 Loss of estimation performance due to quantization

For estimating a constant with quantized or continuous noisy measurements, we saw in Ch. 1

that the asymptotic performance of an optimal unbiased estimator attains the corresponding

CRB. This asymptotic characterization is not restricted to location parameter estimation.

Under regularity conditions on the likelihood, it can be applied to any situation where we

want to estimate a constant embedded in noisy measurements. Thus, for a general parameter

x and for a large number of samples, the estimation performance is still linked to the FI as

follows

Var
[

X̂
]

∼ CRBq =
1

NIq
, (4.2)

where Iq is the FI for a quantized measurement that was already presented in Ch. 1 (for a

location parameter). Rewriting the FI with the notation from this part, we have

Iq = E
[

S2
q

]

= E

{

[

∂ logP (i;x)

∂x

]2
}

=

NI
∑

i=1

[

∂ logP (i;x)

∂x

]2

P (i;x) , (4.3)
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Sq is again the score function for quantized measurements and P (i;x) is the probability of

having the quantizer output i (parametrized by x):

P (i;x) = F (τi;x)− F (τi−1;x) . (4.4)

The FI for quantized measurements can be written as a function of the FI for continuous

measurements and the score functions, exactly in the same way as it was done in Ch. 1 (1.16

p. 42) (Why? - App. A.1.1)

Iq = Ic − E

[

(Sc − Sq)
2
]

, (4.5)

where Sc =
∂ log f(y;x)

∂x
is the score function for continuous measurements, L = E

[

(Sc − Sq)
2
]

is the loss of FI and consequently of estimation performance due to quantization. The main

objective from now on will be to minimize L through the choice of the quantizer intervals when

NI is large. Notice that minimizing L defined here is equivalent to minimizing Lq defined in

Ch. 3.

4.1.3 Asymptotic approximation of the loss

Similarly to standard quantization for measurement reconstruction, where optimal nonuniform

quantization intervals can be approximated for large NI , an approximation for Iq will now be

developed.

The loss L which is an expectation under the measure F can be rewritten as a sum of

integrals, each term of the integral corresponding to the loss produced by a quantization

interval:

L =

NI
∑

i=1

∫

qi

[

∂ log f (y;x)

∂x
− ∂ logP (i;x)

∂x

]2

f (y;x) dy. (4.6)

First term ∂ log f(y;x)
∂x

For the interval with index i, the PDF can be approximated with a Taylor series around the

central point yi =
τi+τi−1

2 :

f (y;x) = fi + f
(y)
i (y − yi) +

f
(yy)
i

2
(y − yi)

2 + o (y − yi)
2 , (4.7)

where the superscripts indicate the variables for which the function is differentiated. The

subscript represents that the function (after differentiation) is evaluated at yi. It will be

assumed that the sequences of intervals for increasing NI are chosen such that, for any ε > 0,

it is possible to find a N∗
I for which

o (y − yi)
2

(y − yi)
2 < ε, forNI > N∗

I , y ∈ qi. (4.8)

Under the assumption that f > 0, the logarithm of f at interval qi can be approximated also

using a Taylor series:

log f (y;x) = log fi + (log f)
(y)
i (y − yi) + (log f)

(yy)
i

(y − yi)
2

2
+ o (y − yi)

2
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and the derivative w.r.t. x is

∂ log f (y;x)

∂x
= (log f)

(x)
i + (log f)

(yx)
i (y − yi) + (log f)

(yyx)
i

(y − yi)
2

2
+ o (y − yi)

2 , (4.9)

which is an expression for the continuous score function on qi to be used in (4.6).

Second term ∂ log P(i;x)
∂x

Now, the other term in the squared factor must be calculated. Integrating the PDF in (4.7)

on the interval qi, which has length denoted by ∆i, one gets

P (i, x) = fi∆i + f
(yy)
i

∆3
i

24
+ o

(

∆3
i

)

. (4.10)

Note that the term in ∆2
i is zero as yi is the interval central point and the integral of (y − yi)

around it is zero. The logarithm of P (i, x) can be obtained by dividing the second and third

terms of the right hand side of (4.10) by the first term and then using the Taylor series for

log (1 + x) = x+ ◦ (x). Differentiating the resulting expression w.r.t. x gives

∂ logP (i, x)

∂x
= (log f)

(x)
i +

(

f (yy)

f

)(x)

i

∆2
i

24
+ o

(

∆2
i

)

. (4.11)

Loss L

Subtracting (4.11) from (4.9) and squaring makes the leading term with least power in (y − yi)

or in ∆i to be (log f)
(yx)
i (y − yi). When we square this difference and multiply by the Taylor

series of f , we have a leading term
[

(log f)
(yx)
i

]2
fi (y − yi)

2 and all other terms have larger

powers of (y − yi) and/or ∆i. Therefore, after integrating the squared difference multiplied

by the Taylor series of f , we get

L =

NI
∑

i=1

{

[

(log f)
(yx)
i

]2
fi
∆3

i

12
+ o

(

∆3
i

)

}

=

NI
∑

i=1

{

(

S
(y)
c,i

)2
fi
∆3

i

12
+ o

(

∆3
i

)

}

, (4.12)

where we have used the fact that f is smooth enough so that we can change the derivative

order between y and x to get (log f)
(yx)
i = S

(y)
c,i .

To obtain a characterization w.r.t. the quantization intervals, an interval density function

λ (y) is defined

λ (y) = λi =
1

NI∆i
, for y ∈ qi. (4.13)

The interval density when integrated in an interval gives, roughly, the fraction of the number

of quantization intervals contained in that interval. It is a positive function that always sums
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to one1. Rewriting (4.12) with this density gives

L =

NI
∑

i=1

{

(

S
(y)
c,i

)2
fi

∆i

12N2
I λ

2
i

+ o

(

1

N2
I

)

∆i

}

. (4.14)

As NI → ∞, it will be supposed that all ∆i converge uniformly to zero. Therefore,

lim
NI→∞

N2
I L =

1

12

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy. (4.15)

This asymptotic expression for the loss gives the following approximation for the FI

Iq ≈ Ic −
1

12N2
I

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy, (4.16)

which is valid for large NI . Note that when NI in (4.16) tends to infinity, if the quantizer

intervals are chosen in a way such that all ∆i tend to zero uniformly, then the asymptotic

estimation performance for quantized measurements will tend to the estimation performance

for continuous measurements.

4.1.4 Optimal fixed rate encoding

In the fixed rate encoding scheme, all the outputs of the quantizer are encoded with (binary)

words that have the same binary size, namely, NB = log2 (NI). Thus, we can rewrite (4.16)

using the number of bits NB instead of the number of intervals NI . This gives

Iq ≈ Ic −
2−2NB

12

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy. (4.17)

This shows that the FI for quantized measurements under fixed rate encoding tends exponen-

tially to the FI for continuous measurements with increasing number of bits. Moreover, the

constant that multiplies the exponential depends not only on the measurement distribution

and on the estimation problem, through f and Sc, but also on the quantizer intervals through

λ.

Optimal interval density

We can characterize asymptotically the optimal quantizer for estimation by defining an opti-

mization problem using (4.16) as the function to be maximized w.r.t. λ. To find the optimal

1The Riemann sum is equal to one
NI
∑

i=1

1
NI∆i

∆i = 1 ≈
∫

λ (y) dy.
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λ when NB is large, we must solve the following optimization problem:

minimize

w.r.t. λ (y)

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy,

subject to

∫

λ (y) dy = 1,

λ (y) > 0,

where the equality and inequality constraints on λ comes from its definition as a density.

This minimization problem can be solved using Hölder’s inequality, which states [Hardy 1988,

p. 140] that for two functions h (y) and g (y)

(∫

|h (y)|p dy

) 1
p
(∫

|g (y)|q dy

) 1
q

≥
∫

|h (y) g (y)| dy,

with equality happening when hp (y) ∝ gq (y) and 1
p
+ 1

q
= 1.

Setting p = 3, q = 3
2 , h (y) =

[
(

∂Sc(y;x)
∂y

)2
f(y;x)

λ2(y)

]
1
3

and g (y) = λ
2
3 (y) in Hölder’s inequality

and using the constraint that the integral of the density must sum to one, we have the following

optimal interval density:

λ⋆ (y) =

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x)

∫

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x) dy

∝
(

∂Sc (y;x)

∂y

) 2
3

f
1
3 (y;x) (4.18)

and the corresponding maximum FI given by this density is

I⋆q ≈ Ic −
1

12N2
I

[

∫ (

∂Sc (y;x)

∂y

) 2
3

f
1
3 (y;x) dy

]3

. (4.19)

Remark: in standard quantization for minimum MSE measurement reconstruction the op-

timal interval density is given by [Gersho 1992, p. 186]

λ⋆rec (y) =
f

1
3 (y;x)

∫

f
1
3 (y;x) dy

∝ f
1
3 (y;x) .

Therefore, the main difference from standard quantization is the additional factor depending

on the derivative of the score function.

Practical approximation of the interval density

From the definition of the interval density, the percentage of intervals until interval qi,
i

NI

must be equal to the integral of the interval density from τmin to τi. Thus, a practical way of

approximating the optimal thresholds is to set

τ⋆i = F−1
λ

(

i

NI

)

, for i ∈ {1, · · · , NI − 1} , (4.20)
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where F−1
λ is the inverse of the cumulative distribution function (CDF) related to λ.

An important issue for evaluating the τi is that they may depend explicitly on x, which is

the parameter we want to estimate. A possible solution for this problem is to initially set τi
with an arbitrary guess of x, then estimate x using an initial set of measurements and finally

update the thresholds with the estimate. This procedure can be performed in an adaptive

way to get closer and closer to the optimal thresholds. We can use, for example, an adaptive

scheme based on the MLE for doing at the same time estimation and thresholds setting. For

the location parameter estimation problem, it was shown that this adaptive scheme converges,

thus in this case, if we set τi according to τ⋆i , we expect to obtain the optimal asymptotic

performance when N → ∞ and NI is large. Also in the location parameter case, a low

complexity alternative, which gives asymptotically the same performance as the scheme based

on the MLE, is the adaptive algorithm presented in Ch. 3. We will see through simulation

later that the low complexity adaptive algorithm with the thresholds chosen using τ⋆i achieves

asymptotically (N → ∞) a performance close to I⋆q given by (4.19), even for a moderate

number of quantization intervals.
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We have the following solution to problem (c) (p. 174):

Solution to (c) - Asymptotic approximation of the FI

for fixed rate encoding

(c1) The asymptotic approximation of the FI is given by (4.16)

Iq ≈ Ic −
1

12N2
I

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy

≈ Ic −
2−2NB

12

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy,

where Ic and Sc are the FI and the score function for continuous

measurements and λ (y) is the interval density.

• Maximization of Iq gives the optimal interval density (4.18)

λ⋆ (y) =

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x)

∫

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x) dy

.

• The corresponding asymptotic approximation of Iq is (4.19)

I⋆q ≈ Ic −
1

12N2
I

[

∫ (

∂Sc (y;x)

∂y

) 2
3

f
1
3 (y;x) dy

]3

.

• A practical approximation of the asymptotically optimal

thresholds using a finite number of quantization intervals is

(4.20)

τ⋆i = F−1
λ

(

i

NI

)

, for i ∈ {1, · · · , NI − 1} ,

where F−1
λ is the inverse of the CDF related to the interval

density. This CDF may be dependent on the true parameter

x, therefore, it may be necessary to use an adaptive solution to

obtain approximately optimal thresholds.
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4.1.5 Variable rate encoding: dead end A

It is known from information theory that the minimum average length H required for describ-

ing a discrete r.v. with a binary word is obtained by encoding its possible values (index j)

with lengths lj given by the negative logarithm of their probabilities pj [Cover 2006, p. 111]

lj = − log2 (pj) .

For a r.v. with n possible values, this way of encoding the r.v. gives the following average

length

H = −
n
∑

i=1

pj log2 (pj) ,

which is the minimum average length and it is also the entropy of the r.v..

For achieving rate requirements in the problem of estimation based on quantized measure-

ments, instead of using the fixed rate encoding scheme, we can use a scheme with variable

rate, where the outputs of the quantizer are coded with binary words with possibly different

lengths. The lengths of the outputs can be defined as above, leading to the following minimum

average length

Hq = −
NI
∑

i=1

P (i, x) log2 [P (i, x)] . (4.21)

Suppose that the communication channel imposes a constraint on the maximum Hq, so that

for lower (or equal to the maximum) Hq, transmission through this channel occurs without

any error, this constraint which is the capacity of the channel will be denoted R2. The main

objective now is to set the quantizer thresholds for a given NI so that the FI Iq is maximized

under the constraint Hq ≤ R. As this problem is complicated to solve for finite NI , we will

use again the asymptotic approach to obtain the characterization of the optimal quantizer

through λ.

The asymptotic expression for Iq was already developed above and it is given by (4.16)

Iq ≈ Ic −
1

12N2
I

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy.

We need now to develop an asymptotic approximation for the entropy Hq. Using the Taylor

series development for P (i, x) given in (4.10) in the expression for Hq (4.21), we have

Hq = −
NI
∑

i=1

[

fi∆i + f
(yy)
i

∆3
i

24
+ o

(

∆3
i

)

]

log2

[

fi∆i + f
(yy)
i

∆3
i

24
+ o

(

∆3
i

)

]

.

Separating the factor fi∆i inside the logarithm, using the Taylor expansion for log2 (1 + x)

and multiplying the terms in the resulting expression gives

Hq = −
NI
∑

i=1

[

fi∆i log2 (fi) + fi∆i log2 (∆i) + ◦
(

∆2
i

)]

.

2We have supposed in the Introduction that efficient channel coding is used, so that we can assume no-error

transmission for rates below channel capacity.
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Using the interval density ∆i =
1

NIλi
in the term with log2 (∆i) leads to

Hq = −
NI
∑

i=1

[

fi∆i log2 (fi)− fi∆i log2 (λi)− fi∆i log2 (NI) + ◦
(

∆2
i

)]

.

When NI is large and ∆i are small, the sums can be approximated by integrals

Hq ≈ −
∫

f (y;x) log2 [f (y;x)] dy +

∫

f (y;x) log2 [λ (y)] dy + log2 (NI) ,

where for obtaining the term log2 (NI), we used the fact that
NI
∑

i=1
fi∆i is asymptotically close

to one as it is approximately the integral of the PDF. The integral −
∫

f (y;x) log2 [f (y;x)] dy

is known [Cover 2006, p. 243] as the differential entropy of the r.v. Y , therefore, from now on

we will denote it hy

Hq ≈ hy +

∫

f (y;x) log2 [λ (y)] dy + log2 (NI) . (4.22)

For large NI , using the integral in expression (4.16) and the approximation of the entropy

(4.22), we can define the following optimization problem

minimize

w.r.t. λ (y)

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy,

subject to

∫

f (y;x) log2 [λ (y)] dy ≤ R− hy − log2 (NI) ,
∫

λ (y) dy = 1,

λ (y) > 0.

The solution for this problem can be adapted from the development presented in [Li 1999].

First, we define the function p (y)

p (y) =

(

∂Sc(y;x)
∂y

)2
f (y;x)

∫

(

∂Sc(y;x)
∂y

)2
f (y;x) dy

,

then the integral that must be minimized can be rewritten as

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy =

{

∫ (

∂Sc (y;x)

∂y

)2

f (y;x) dy

}

[∫

p (y)

λ2 (y)
dy

]

,

where we note that only the second factor depends on λ. Thus we can redefine the optimization
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problem as

minimize

w.r.t. λ (y)

∫

p (y)

λ2 (y)
dy,

subject to

∫

f (y;x) log2 [λ (y)] dy ≤ R− hy − log2 (NI) ,
∫

λ (y) dy = 1,

λ (y) > 0.

To find the optimal λ, we take the logarithm of the integral to be minimized

log2

[∫

p (y)

λ2 (y)
dy

]

= log2

[∫

p (y)

λ2 (y) f (y;x)
f (y;x) dy

]

and we apply Jensen’s inequality (the logarithm is a concave function)

log2

[∫

p (y)

λ2 (y) f (y;x)
f (y;x) dy

]

≥
∫

log2

[

p (y)

λ2 (y) f (y;x)

]

f (y;x) dy,

now we exponentiate both sides of the inequality

∫

p (y)

λ2 (y) f (y;x)
f (y;x) dy ≥ 2

{

∫

log2

[

p(y)

λ2(y)f(y;x)

]

f(y;x) dy
}

. (4.23)

To obtain equality in the Jensen’s inequality the term in the argument of the logarithm in

the RHS of (4.23) must be a constant, thus

λ⋆ (y) ∝
[

p (y)

f (y;x)

] 1
2

=







(

∂Sc(y;x)
∂y

)2

∫

(

∂Sc(y;x)
∂y

)2
f (y;x) dy







1
2

.

Integrating the constraint that λ (y) is a PDF makes the constant in the denominator of the

expression above to disappear, thus giving

λ⋆ (y) =

∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣

∫

∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣
dy
. (4.24)

The exponential in (4.23) can be written as a function of the rate constraint. We multiply

the rate constraint by −2 and we add hy in both sides. We have

∫

log2

[

1

λ2 (y) f (y;x)

]

f (y;x) dy ≥ −2R+ 3hy + 2 log2 (NI) .

Finally, we add
∫

log2 [p (y)] f (y;x) dy to obtain

∫

log2

[

p (y)

λ2 (y) f (y;x)

]

f (y;x) dy ≥ −2R+ 3hy + 2 log2 (NI) +

∫

log2 [p (y)] f (y;x) dy.

(4.25)
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The integral in the RHS of (4.25) is
∫

log2 [p (y)] f (y;x) dy =

∫

log2

{

[

∂Sc (y;x)

∂y

]2
}

f (y;x) dy +

∫

log2 [f (y;x)] f (y;x) dy

−
∫

log2

{

∫ (

∂Sc (y;x)

∂y

)2

f (y;x) dy

}

f
(

y′;x
)

dy′

=

∫

log2

{

[

∂Sc (y;x)

∂y

]2
}

f (y;x) dy − hy

− log2

{

∫ (

∂Sc (y;x)

∂y

)2

f (y;x) dy

}

.

Substituting the expression above in (4.25) and the result in (4.23), we obtain the minimum

value of the integral in the optimization problem. This value is

2
−2

{

R−hy−
∫

log2

[∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣

]

f(y;x) dy+ 1
2
log2

{

∫

(

∂Sc(y;x)
∂y

)2
f(y;x) dy

}

−log2(NI)

}

.

Substituting this value in the approximation of the FI, we get

Iq ≈ Ic −
1

12
2
−2
{

R−hy−
∫

log2

[∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣

]

f(y;x) dy
}

. (4.26)

Notice that again here the FI for quantized measurements tends exponentially to the FI for

continuous measurements, the exponential decay rate is sensible to the randomness of the

continuous measurements and to the derivative of the score function. The difference in the

quantizer characterization w.r.t. to the fixed rate encoding scheme is that now the interval

density is dictated only by the derivative of the score function, we must put more intervals

around values of Y that have a larger score function variation.

Observe that the quantizer interval distribution may depend also on the true parameter

value, as the score function may be a function of it. Thus, similarly to the fixed rate scheme,

it will be necessary to set adaptively the thresholds. The main problem now is that we need

to know the quantizer outputs probabilities to encode the outputs with their proper length,

however as we do not know completely the measurement distribution, we cannot encode the

words properly. As a solution, we can also use an adaptive solution for encoding, using as

distribution for encoding, the distribution with the most recent estimate of the parameter.

The problem with this solution is that we cannot encode correctly at the beginning of the

adaptive estimation procedure, we will be penalized in terms of average length in the initial

part of the procedure and as a consequence we will not respect the rate constraints. Thus,

this solution is still not complete. Further work will be necessary, we can try to quantify the

increase in rate at the beginning of the estimation procedure or we can try to find an encoding

scheme with variable rate that quantize the measurements properly, without knowing the true

parameter value.

4.1.6 Estimation of GGD and STD location and scale parameters

We will apply the results given in solution (c1) (p. 186) for obtaining the approximately

optimal quantization thresholds for estimation of location and scale parameters of the GGD
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and the STD. Notice that even if their support is unbounded, as in standard quantization

theory, it is expected that the error caused by neglecting the extremal regions (overload

region) will be small.

Results for the estimation of a GGD location parameter

The first step for obtaining the approximately optimal thresholds is to evaluate the optimal

interval density given by (4.18). Thus, we start by calculating the derivative of the score

function w.r.t. x and y. Differentiating the logarithm of the GGD PDF (1.39)

f (y;x) =
β

2δΓ
(

1
β

) exp

(

−
∣

∣

∣

∣

y − x

δ

∣

∣

∣

∣

β
)

for β > 1, we obtain

∂Sx
c (y;x)

∂y
=
β (β − 1)

δ2

∣

∣

∣

∣

y − x

δ

∣

∣

∣

∣

β−2

.

Note that for β ≤ 1, which includes the Laplacian case, the score function is not differentiable

at x. Thus, we cannot evaluate the interval density for these cases. For β > 1, evaluating the

power 2
3 of the expression above and multiplying it by f

1
3 (y;x), we have the following interval

density:

λxGGD (y) =

∣

∣

y−x
δ

∣

∣

2β−4
3 exp

(

−1
3

∣

∣

y−x
δ

∣

∣

β
)

C
, (4.27)

where C is a constant normalizing the density. Using the symmetry of the density, this

constant can be evaluated as the following integral:

C = 2

+∞
∫

x

(

y − x

δ

)
2β−4

3

exp

[

−1

3

(

y − x

δ

)β
]

dy.

An expression for this integral can be obtained by using the change of variables ε = 1
3

(

y−x
δ

)β

and identifying the resulting integral factor with the gamma function. This gives

C =
2δ

β
3

1
3

(

2− 1
β

)

Γ

[

1

3

(

2− 1

β

)]

.

Now, we can obtain the CDF related to the interval density. Exploiting again the symmetry

of the distribution, we can obtain the CDF by integrating the PDF only for values of y larger

than x. Also, by using the same change of variables used above for calculating C, we get

F x
λ,GGD (y) =

1

2
+

sign (y − x)

2

γ
[

1
3

(

2− 1
β

)

, 13

∣

∣

y−x
δ

∣

∣

β
]

Γ
[

1
3

(

2− 1
β

)] .

Using the inverse of this function we can obtain the approximately optimal thresholds (4.20).

For i ∈ {1, · · · , NI}

τ
⋆,x
i,GGD = x+ δsign

(

2i

NI
− 1

){

3γ−1

{

1

3

(

2− 1

β

)

,

∣

∣

∣

∣

2i

NI
− 1

∣

∣

∣

∣

Γ

[

1

3

(

2− 1

β

)]}} 1
β

, (4.28)
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where γ−1 {�, �} is the inverse incomplete gamma function.

The interval densities for three GGD (β = 1.5, 2 and 2.5) are shown in Fig. 4.1.

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

y−x
δ

δ
×
λ
x G
G
D

β = 1.5

β = 2 (Gaussian)

β = 2.5

Figure 4.1: Interval densities for the estimation of a GGD location parameter. The GGD

shape parameters are β = 1.5, 2 and 2.5. Both axis are normalized to have plots independent

of x and δ.

A few remarks can be done based on the results above:

• in Ch. 1 we saw that the binary quantization is optimal for the Laplacian distribution, as

long as the quantizer threshold is placed at the true parameter. This singular behavior

might be related to the difficulties on defining the optimal interval density in this case.

• Observe that for 1 < β < 2 (see Fig. 4.1 for β = 1.5), the interval density tends

to infinity at zero showing the importance of quantizing around this point for these

distributions.

• Notice that within the subclass of GGD for which the density at x is finite, the Gaussian

distribution is the distribution with the lower β. Notice also that for β > 2 (see Fig.

4.1 for β = 2.5), the maximum of the interval density is not placed exactly at zero,

showing that a possible relation might exist between the multimodality of the threshold

distribution and the asymmetric behavior of optimal binary quantization. It shows also

that the Gaussian distribution is exactly between two subclasses of the GGD family, one

subclass for which quantizing around the true parameter is very informative (1 < β < 2)

and another subclass for which quantizing symmetrically around the parameter, but not

at the parameter, is informative (β > 2).

• Observing the symmetry of the interval density we can see that, asymptotically, the

best quantizer is symmetric around the parameter. Thus if we choose NI to be a large

even number, the optimal central threshold might be placed at x. For β > 2, if we

have a moderate odd number of quantization intervals, the interval density indicates

that the optimal quantizer will be probably asymmetric, as we will have to place more

quantization intervals around one of the modes of the interval density.
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Results for the estimation of a GGD scale parameter

We evaluate now the derivative of the logarithm of f (y; δ) function w.r.t. δ and y. This gives

∂Sδ
c (y; δ)

∂y
=
β2

δ2

∣

∣

∣

∣

y − x

δ

∣

∣

∣

∣

β−1

.

Differently from the location problem, the derivative above exists for all positive β. Using this

derivative and the expression for f (y; δ) in (4.18), we have

λδGGD (y) =

∣

∣

y−x
δ

∣

∣

2β−2
3 exp

(

−1
3

∣

∣

y−x
δ

∣

∣

β
)

C
, (4.29)

where the normalizing constant can be obtained using the symmetry of the numerator

C = 2

+∞
∫

x

(

y − x

δ

)
2β−2

3

exp

[

−1

3

(

y − x

δ

)β
]

dy.

Changing the variables ε = 1
3

(

y−x
δ

)β
and using the gamma function for rewriting the result,

we get

C =
2δ

β
3

1
3

(

2+ 1
β

)

Γ

[

1

3

(

2 +
1

β

)]

.

Using again the symmetry and a similar development as it was done for obtaining the CDF

for the interval density of the location problem, we have

F δ
λ,GGD (y) =

1

2
+

sign (y − x)

2

γ
[

1
3

(

2 + 1
β

)

, 13

∣

∣

y−x
δ

∣

∣

β
]

Γ
[

1
3

(

2 + 1
β

)] .

Its inverse gives the threshold approximation. For i ∈ {1, · · · , NI}

τ
⋆,δ
i,GGD = x+ δsign

(

2i

NI
− 1

){

3γ−1

{

1

3

(

2 +
1

β

)

,

∣

∣

∣

∣

2i

NI
− 1

∣

∣

∣

∣

Γ

[

1

3

(

2 +
1

β

)]}} 1
β

. (4.30)

The main differences w.r.t. the location parameter case is that, now, it is the Laplacian

distribution that is in the border between the distributions for which x is a very informative

point and the distributions for which most of the information is around x but not at x. Note

also that the interval density is still dependent on δ, thus, as it was said before, for placing

optimally the thresholds, an adaptive scheme is necessary.

Results for the estimation of a STD location parameter

Using the STD PDF (3.72)

f (y;x) =
Γ
(

β+1
2

)

δ
√
βπΓ

(

β
2

)

[

1 +
1

β

(

y − x

δ

)2
]−β+1

2

,
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the derivative of the score function is

∂Sx
c (y;x)

∂y
=
β + 1

βδ2

[

1− 1
β

(

y−x
δ

)2
]

[

1 + 1
β

(

y−x
δ

)2
]2 .

Replacing this expression and the PDF expression above in the interval density (4.18), we

obtain

λxSTD (y) =
1

C

[

1− 1
β

(

y−x
δ

)2
] 2

3

[

1 + 1
β

(

y−x
δ

)2
]

9+β
6

. (4.31)

The constant C and the corresponding CDF cannot be expressed analytically, with known

special functions. For obtaining a general expression for the thresholds, it might be necessary

to use numerical integration of the density for each y and then invert an interpolation of the

numerical integration.

In the special case of a Cauchy distribution (β = 1), we can evaluate analytically the

constant in the density and the CDF. For this distribution the interval density is

λxC (y) =
1

C

[

1−
(

y−x
δ

)2
] 2

3

[

1 +
(

y−x
δ

)2
] 5

3

. (4.32)

From the symmetry, the constant is

C = 2

+∞
∫

x

[

1−
(

y−x
δ

)2
] 2

3

[

1 +
(

y−x
δ

)2
] 5

3

dy.

Using the change of variables tan
(

θ
2

)

= y−x
δ

, we obtain

C = δ

π
∫

0

[

cos2
(

θ

2

)

− sin2
(

θ

2

)] 2
3

dθ = 2δ

π
2
∫

0

[

cos2 (θ)
]
1
3 dθ,

where the second equality was obtained using a relation between trigonometric functions and

the periodic pattern of the resulting function in the interval [0, π). Using another change of

variables u = cos2 (θ) and identifying the resulting integral factor with the beta function, we

have

C = δB

(

1

2
,
5

6

)

.

Exploiting the symmetry of the interval density and using a similar development, we can

obtain the CDF related to the interval density

F x
λ,C (y) =

1

2
+

sign (y − x)

2

φ
∫

0

[

cos2 (θ)
] 1
3 dθ

B
(

1
2 ,

5
6

) ,
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with φ = 2arctan
(∣

∣

y−x
δ

∣

∣

)

. Using again the change of variables u = cos2 (θ), we can rewrite

the integral above using the incomplete beta function

φ
∫

0

[

cos2 (θ)
]
1
3 dθ =







1
2

[

B
(

1
2 ,

5
6

)

− Icos2(φ)
(

1
2 ,

5
6

)]

, for φ ∈
[

0, π2
)

,

1
2

[

2B
(

1
2 ,

5
6

)

− Icos2(φ−π
2 )
(

1
2 ,

5
6

)

]

, for φ ∈
[

π
2 , π

)

.

Transforming φ into the initial variable, we have the following CDF

F x
λ,C (y) =

1

2
+

sign (y − x)

4B
(

1
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5
6

)
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1 + sign
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∣
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1 + sign
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∣
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∣
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.

Inverting the CDF we can obtain the approximate expression for the thresholds. For i ∈
{1, · · · , NI} and i′ = i− NI

2

τ
⋆,x
i,C =







































































x+ δsign (i′)
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√
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, 5
6)
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√

√

√
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)( 1
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, 5
6)
, when |i′| ≤ 1

4 ,

x+ δsign (i′)

√

√
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1+
√

√
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B( 1
2 , 56)
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√

√
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B( 1
2 , 56)

(

4|i′|
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−1

)( 1
2
, 5
6)
, when |i′| > 1

4 ,

(4.33)

where I−1
(�) (�, �) is the inverse incomplete beta function.

An interesting point on the optimal interval density for the estimation of a location pa-

rameter of the STD is that it equals zero exactly at x±√
βδ indicating that around this point

not much statistical information can be obtained about the location parameter. If we observe

the score function we will see that it is a function with "∽" shape, the zero derivative point is

then related to the maximum and minimum of the score, in a practical sense, the points larger

than the maximum and smaller than the minimum can be seen as outliers, so for estimation

purposes we might not be interested in quantizing around the transition point. Note however

that from a threshold placement point of view, the only practical way of having a zero interval

density at this point is by placing a threshold at it, therefore in practice, we are interested in

knowing if the measurement is an outlier or not.
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Results for the estimation of a STD scale parameter

For estimating the scale parameter of the STD, we have the following derivative of the score

function

∂Sδ
c (y; δ)

∂y
=

2

δ2
(β + 1)











1
β

(

y−x
δ

)

[

1 + 1
β

(

y−x
δ

)2
]2











.

This leads to the following interval density

λδSTD (y) =
1

C















[

1
β

(

y−x
δ

)

] 1
3

[

1 + 1
β

(

y−x
δ

)2
]

β+9
6















, (4.34)

with C given by

C = 2

+∞
∫

x















[

1
β

(

y−x
δ

)

] 1
3

[

1 + 1
β

(

y−x
δ

)2
]

β+9
6

dy















.

Using a change of variables ε = 1
[

1+ 1
β (

y−x
δ )

2
] and identifying the resulting integral with the

beta function, we obtain

C =
√

βδB

(

5

6
,
β + 4

6

)

.

Exploiting the symmetry of the interval density and using the previous change of variables,

we have the following CDF related to the interval density

F δ
λ,STD (y) =

1

2
+

sign (y − x)

2

[

B
(

5
6 ,

β+4
6

)

− I 1

1+ 1
β (

y−x
δ )

2

(

5
6 ,

β+4
6

)

]

B
(

5
6 ,

β+4
6

) .

For i ∈ {1, · · · , NI}, the approximately optimal thresholds are then given by

τ
⋆,δ
i,STD = x+ δsign

(
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− 1
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6
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− β







1
2

. (4.35)

Note that similarly to the GGD scale parameter estimation case, the point x is not very

informative. Most of the quantizer intervals must be placed around x but not very close to x.

4.1.7 Location parameter estimation

To check the results, we will now focus on location parameter estimation.

First observe that using the normalized form for the PDF f (y;x) = 1
δ
fn
(

y−x
δ

)

, we can

rewrite the interval density given by (4.18)

λ⋆ (y) ∝
[

∂2 log
[

1
δ
fn
(

y−x
δ

)]

∂y∂x

] 2
3 [1

δ
fn

(

y − x

δ

)] 1
3

∝

[

f
(1) 2
n

(

y−x
δ

)

− fn
(

y−x
δ

)

f
(2)
n

(

y−x
δ

)

] 2
3

fn
(

y−x
δ

) ,
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where f
(1)
n and f

(2)
n are the first and second derivatives of fn w.r.t. its argument. For a fn

with even symmetry, f
(1) 2
n is even, f

(2)
n is even and consequently λ⋆ (y) is symmetric around

x. This means that for large NI , the optimal quantizer is symmetric around x, indicating

that, asymptotically, the asymmetry of the optimal quantizer for binary quantization under

some distributions (Subsec. 1.3.4, p. 48) might disappear.

The asymptotic approximation of Iq given by (4.19) can also be rewritten using the nor-

malized PDF

I⋆q ≈ 1

δ2















Ixc,n − 2−2NB

12







∫

[

f
(1) 2
n (ε)− fn (ε) f

(2)
n (ε)

] 2
3

fn (ε)
dε







3














, (4.36)

where Ixc,n is the FI for estimating a location parameter when δ = 1. Note that the FI approx-

imation can be written as κ(fn)
δ2

, where κ is a functional depending only on the normalized

PDF and independent of x and δ. Therefore, we can have a characterization of the optimal

estimation performance based on quantized measurements for a family of distributions with

different δ and x only by evaluating κ (fn).

FI for the Gaussian and Cauchy cases

We will check the results using the Gaussian (GGD with β = 2) and Cauchy (STD with β = 1)

distributions.

For the Gaussian distribution, the interval density (4.27) and the asymptotic approxima-

tion of the FI (4.18) are given by

λxG (y) =
1

δ
√
3π

exp

[

−
(

y − x√
3δ

)2
]

, Ixq,G ≈ 2

δ2

[

1− π
√
3 2−(2NB+1)

]

. (4.37)

We can note that the interval density in this case is exactly the same as for standard quantiza-

tion (proportional to f
1
3 ). Thus, in the Gaussian case when NI is large, the optimal quantizer

for estimating the location parameter and for recovering the continuous measurement is the

same. This coincidence between the optimal quantizer for estimation and for reconstruction

happens whenever the score function is constant. In the location parameter estimation case,

this happens only for the Gaussian distribution. If we look to the scale parameter case, this

will happen for the Laplacian distribution.

Observe also that if it was possible to implement the variable rate encoder in the Gaussian

case, then the optimal quantizer would be a uniform quantizer and it would coincide with the

optimal variable rate quantizer for reconstruction which is uniform [Gersho 1992, p. 299].

For the Cauchy distribution, the interval density (4.32) and the asymptotic FI approxima-

tion are the following:

λxC (y) =
1

δB
(

1
2 ;

5
6

)

[

1−
(

y−x
δ

)2
] 2

3

[

1 +
(

y−x
δ

)2
] 5

3

, Ixq,C ≈ 1

2δ2

[

1− B
(

1
2 ;

5
6

)3

3π
2−2NB+1

]

. (4.38)
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To evaluate the validity of the results, the FI (4.3) under both distributions for δ = 1 was

evaluated for

• the optimal set of thresholds for NB ∈ {1, 2, 3}. The optimal thresholds were obtained

through exhaustive search. For NB ∈ {4, 5, 6, 7, 8} the theoretical results (4.37) and

(4.38) were used as an approximation.

• uniform quantization considering NB ∈ {1, · · · , 8}. After setting the central threshold

to x, the optimal quantization interval step-length ∆⋆ was found by maximizing the FI

also using exhaustive search.

• the approximate optimal set of thresholds given by (4.28) and by (4.33), for NB ∈
{1, · · · , 8}.

The results are given in Tab. 4.1.

Gaussian (Ixc,n = 2) Cauchy (Ixc,n = 0.5)

NB Optimal Uniform
Practical

approx.
Optimal Uniform

Practical

approx.

1 1.27323954† – 1.27323954 0.40528473† – 0.40528473

2 1.76503630† 1.76503630 1.75128300 0.43433896† 0.43433896 0.40528473

3 1.93090199† 1.92837814 1.92740111 0.48474865† 0.45600797 0.47893785

4 1.97874454⋆ 1.97841622 1.98038526 0.49533850⋆ 0.48136612 0.49504170

5 1.99468613⋆ 1.99353005 1.99489906 0.49883463⋆ 0.49204506 0.49879785

6 1.99867153⋆ 1.99807736 1.99869886 0.49970866⋆ 0.49656712 0.49970408

7 1.99966788⋆ 1.99943563 1.99967136 0.49992716⋆ 0.49851056 0.49992659

8 1.99991697⋆ 1.99983649 1.99991741 0.49998179⋆ 0.49935225 0.49998172

Table 4.1: FI for the estimation of Gaussian and Cauchy location parameters based on quan-

tized measurements. NB is the number of quantization bits. In Optimal† the maximum

FI obtained by exhaustive search of the thresholds is shown. Optimal⋆ is the theoretical

asymptotic approximation of the FI. Uniform shows the value of the FI for optimal uniform

quantization and Practical approx. gives the FI for the practical approximation of the

asymptotically optimal thresholds.

In all cases the fast convergence to the continuous FI with increasing NB is verified. Again

here, 4 or 5 bits are enough for obtaining an estimation performance close to the continuous

measurement performance. The difference of performance between uniform and nonuniform

quantization seems to be higher for the Cauchy distribution. In the Gaussian case, this

difference is negligible, indicating that in practice uniform quantization should be used (as it

is easier to implement). It can also be observed that the asymptotic approximation of the FI

and its true value for the practical approximation of the optimal threshold set are very close,

even for small values of NB (NB = 4).

Verification with the adaptive algorithm

As it was pointed out before, an important issue for evaluating the practical approximation

of the optimal thresholds τ⋆i is that they depend explicitly on x. Thus a possible solution to,
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at the same time, obtain an estimate of the parameter and set the quantizer thresholds is to

use the adaptive algorithm proposed in Ch. 3

X̂k = X̂k−1 +
1

kIq
η (ik) ,

with the threshold variations set τ ′ given by the practical approximation τ ⋆ with x in (4.20) set

to zero and η (ik) given by η (i) = − f(τ⋆i−1;x)−f(τ⋆i ;x)
F(τ⋆i ;x)−F(τ⋆i−1;x)

. If NB ≥ 4, for a large k, the asymptotic

variance of the algorithm will be close to optimal and it will be given approximately by

Var
[

X̂k

]

≈ CRBq =
1

kIq
, (4.39)

where Iq is the asymptotic approximation given by (4.19).

This algorithm was tested under both distributions for NB = 4 and 5. The MSE for the

algorithm was evaluated using Monte Carlo simulation, 4 × 106 realizations of blocks with

5 × 104 samples were used. The initial error x − X̂0 and δ were both set to be 1 in all

simulations. The MSE for the algorithm and the approximation given by (4.39) are both

given in Fig. 4.2, where they are multiplied by k for better visualization.
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Figure 4.2: Simulated MSE for the adaptive algorithm considering Gaussian (a) and Cauchy

(b) measurement distributions. The numbers of quantization bits are NB = 4 and 5. The

initial estimation error and δ were set to 1 in all the cases. The simulated MSE was obtained

through Monte-Carlo simulation, 4×106 realizations of blocks with 5×104 error samples were

used. The curves that have asymptotically higher values correspond to NB = 4.
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We observe that the asymptotic algorithm performance is very close to the approximation.

For small k the CRB is not tight and that seems to be the reason for the algorithm to

perform better than the bound. In other simulations, it was also observed that using uniform

thresholds leads to faster convergence to the asymptotic performance. This indicates that in

practice an algorithm with changing thresholds can be used for obtaining better results. In the

convergence phase, a uniform set of thresholds is used, then after a given number of samples,

the thresholds change to the approximately optimal set.

4.2 Bit allocation for scalar location parameter estimation

The objective now is to solve problem (d) (p. 175). We have Ns sensors measuring indepen-

dently the same location parameter x and the continuous measurements from one sensor to

another have all the same noise type with normalized PDF fn. The only difference between

the noise distribution from one sensor to another is the scale factor. For the Ns sensors, the

scale factors are denoted {δ1, · · · , δNs}. Each sensor i quantizes its measurements with a

number of bits NB,i such that the total number of bits among the sensors is constrained to be

NB. The objective then is to find the allocation of bits {NB,1, · · · , NB,Ns} that maximizes

the estimation performance.

The estimation performance for unbiased estimators in terms of variance can be character-

ized asymptotically by the CRB, which is related to the inverse of the FI. Thus, by maximizing

the FI, the asymptotic estimation performance is maximized. As the sensors measurements

are independent, the FI for the measurements from all the sensors Iq is the sum of the FI

Iq,i (NB,i) for each sensor

Iq =

Ns
∑

i=1

Iq,i (NB,i) , (4.40)

where we made explicit the dependence of the FI for each sensor on the allocated number of

bits.

We will assume that the thresholds can be chosen so that Iq,i (NB,i) is maximum. This

can be done for example by using the adaptive algorithm with decreasing gain to set optimally

the central threshold and then by choosing optimally the threshold variations. Thus, we want

to solve the following optimization problem:

maximize

w.r.t. NB,i
Iq =

Ns
∑

i=1

Iq,i (NB,i) ,

subject to

Ns
∑

i=1

NB,i = NB,

NB,i ∈ N,

where Iq,i (NB,i) is the maximum FI for NB,i.

This problem can be solved exactly by evaluation of Iq for all possible combinations of

the NB,i. The numbers of allocated bits NB,i can assume values from 0 to NB but their sum
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must be NB. Therefore, the NB,i form a weak composition of NB into Ns parts. The number

of possible allocations is

(

NB +Ns − 1

Ns − 1

)

= (NB+Ns−1)!
(Ns−1)!NB ! . If we have to solve the allocation

problem for Ns = 20 and NB = 100, then the number of possible allocations that we have to

compare is approximately 4.9 × 1021, which indicates that in practice the exact solution for

this problem is difficult to be obtained by exhaustive search.

4.2.1 Unconstrained numbers of bits

If we neglect the constraint that NB,i must be a non-negative integer and we suppose that

the asymptotic approximation of Iq (4.36) is valid for all real NB,i, then we can define a

maximization problem that can be solved analytically. Using the approximation (4.36), we

have that the total FI can be approximated by

Iq ≈
Ns
∑

i=1

1

δ2i















Ixc,n − 2−2NB,i

12







∫

[

f
(1) 2
n (ε)− fn (ε) f

(2)
n (ε)

] 2
3

fn (ε)
dε







3














. (4.41)

Maximizing the approximation in the RHS of (4.41) is equivalent to minimizing
Ns
∑

i=1

2
−2NB,i

δ2i
as

Ixc,n and the integral are constants if all the sensor noise types are equal. Thus the relaxed

form (without the integer constraints) of the bit allocation problem is the following:

minimize

w.r.t. NB,i

Ns
∑

i=1

2−2NB,i

δ2i
,

subject to

Ns
∑

i=1

NB,i = NB.

We can solve this optimization problem by integrating the constraint in the function to be

minimized using a Lagrange multiplier. The Lagrangian (the function to be minimized) for

this minimization problem is

L =

[

Ns
∑

i=1

2−2NB,i

δ2i

]

+ λ

[(

Ns
∑

i=1

NB,i

)

−NB

]

,

where λ is the Lagrange multiplier. As the function is convex (it is a sum of negative expo-

nentials plus a sum of linear terms), the zero gradient point of the Lagrangian w.r.t. the NB,i

gives a global minimum. The derivative of the Lagrangian w.r.t. NB,i is

∂L
∂NB,i

=
−2 ln (2) 2−2NB,i

δ2i
+ λ,

which is zero for

NB,i =
log2

[

λδ2i
2 ln(2)

]

−2
. (4.42)
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To find λ it is necessary to use (4.42) in the sum constraint

Ns
∑

i=1

NB,i =

Ns log2 (λ)−Ns log2 [2 ln (2)] + 2

[

Ns
∑

i=1
log2 (δi)

]

−2
= NB,

thus,

log2 (λ) = −2
NB

Ns
+ log2 [2 ln (2)]−

2

Ns

[

Ns
∑

i=1

log2 (δi)

]

. (4.43)

Using (4.43) in (4.42) gives

NB,i =
NB

Ns
− log2 [2 ln (2)]

2
+

1

Ns

[

Ns
∑

i=1

log2 (δi)

]

− log2 (δi) +
log2 [2 ln (2)]

2

=
NB

Ns
+

1

Ns

[

Ns
∑

i=1

log2 (δi)

]

− log2 (δi) ,

which can be rewritten as

NB,i =
NB

Ns
− log2
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Ns
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j=1
δj













. (4.44)

This is a correction on the uniform bit allocation that depends on the weight of the distribution

scale parameter in the geometric mean of the scale factors.

Note that the approximate allocation depends only on δi and no other information about

the distribution is required. In practice we can estimate δi for each sensor with an arbitrary

allocation and then we can use the estimates in (4.44) and round the results in a proper way

for obtaining for obtaining integer NB,i.

If we use the approximate solution from (4.44), we obtain

Iq ≈
[

Ixc,n
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=

= Ns

[

Ixc,n

HM
(

δ21 , · · · , δ2Ns

) − κ′ (fn)
12

2−2N̄B

GM
(

δ21 , · · · , δ2Ns

)

]

, (4.45)
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where HM
(

δ21 , · · · , δ2Ns

)

= Ns
Ns
∑

i=1

1

δ2
i

and GM
(

δ21 , · · · , δ2Ns

)

= Ns

√

Ns
∏

j=1
δ2j are the harmonic

and geometric means of the squared scale factors, κ′ (fn) is the integral factor in (4.36) and

N̄B = NB

Ns
is the number of allocated bits per sensor that would be obtained if we had used a

uniform bit allocation.

If we compare this result to uniform bit allocation

Iq ≈
Ns

HM
(

δ21 , · · · , δ2Ns

)

[

Ixc,n − κ′ (fn)
12

2−2N̄B

]

,

we can verify that, as the geometric mean is larger than the harmonic mean, the approximate

optimal bit allocation performs better than or equal to the uniform bit allocation.

If it was possible to implement this allocation scheme, an interesting point for future study

would be to study the influence of the variability of the precision of the sensors 1
δ2i

on the

estimation performance. This might be done for example by considering that the 1
δ2i

are i.i.d.

r.v. with a given distribution (a gamma distribution for example) with known parameters, then

by assuming large Ns for a fixed N̄B, we can apply the law of large numbers to the harmonic

and the geometric means in the approximation of Iq (4.45) to obtain a characterization of the

approximately optimal FI as a function of the parameters of the precision distribution. This

approach, even if approximate, might give some insight on the performance of estimation of

asymptotically large heterogeneous sensor arrays under communication rate constraints.
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We have the following solution to problem (d) (p. 175):

Solution to (d) - Unconstrained approximate optimal bit allocation

for location parameter estimation

(d1) For i ∈ {1, · · · , Ns}, the approximate optimal bit allocation is

given by (4.44)

NB,i =
NB

Ns
− log2













δi

Ns

√

Ns
∏

j=1
δj













.

Appropriate rounding can be used to obtain NB,i ∈ N.

• For the approximate optimal bit allocation, the FI is given by

(4.45)

Iq ≈ Ns

[

Ixc,n

HM
(

δ21 , · · · , δ2Ns

) − κ′ (fn)
12

2−2N̄B

GM
(

δ21 , · · · , δ2Ns

)

]

,

where Ixc,n is the continuous FI for δ = 1, κ′ (fn) =

1
12





∫

[

f
(1) 2
n (ε)−fn(ε)f

(2)
n (ε)

] 2
3

fn(ε)
dε





3

, N̄B = NB

Ns
is the average number

of bits per sensor and HM and GM are the harmonic and geo-

metric means of the scale parameters.



4.2. Bit allocation for scalar location parameter estimation 205

4.2.2 Positive numbers of bits

For obtaining a more realistic solution, we can constrain the numbers of bits to be nonnegative

reals. This gives the following optimization problem:

minimize

w.r.t. NB,i

Ns
∑

i=1

2−2NB,i

δ2i
,

subject to

Ns
∑

i=1

NB,i = NB,

NB,i ≥ 0.

The Lagrangian is the same as for the unconstrained problem. Using the zero gradient

condition, we have

NB,i =
log2

[

λδ2i
2 ln(2)

]

−2
= ν − log2 (δi) ,

where ν is a constant to be chosen. Note that the positivity constraint imposes the following

form for NB,i

NB,i = [ν − log2 (δi)]+ , (4.46)

with [x]+ = max (x, 0). The sum constraint gives

Ns
∑

i=1

NB,i =

Ns
∑

i=1

[ν − log2 (δi)]+ = NB. (4.47)

Thus, the constant ν is chosen so that (4.47) is satisfied and then the number of bits can be

chosen according to (4.46). Again here, appropriate rounding might be used to obtain integer

numbers of bits.

Observe that this approximate bit allocation is equivalent to water-filling, a common so-

lution to allocate power to carriers in multicarrier modulation. The main difference is that in

this case the channel noise is replaced by log2 (δi) and the "water depths" are the number of

bits instead of the power levels.

In Fig. 4.3, both water-filling solutions are shown, for power allocation in multicarrier

systems and for approximate bit allocation in constrained rate sensing systems.

When the δi are also unknown, we can mix the two extensions of the adaptive algorithm

with decreasing gain presented in Ch. 3 (fusion center + joint estimation of the scale) to have

estimates of the scale parameters. Then, we can use the estimates to obtain the approximate

allocation. In practice, the value of ν can be evaluated at the fusion center and broadcasted to

the sensors with the location parameter. The sensors can use the broadcasted ν with a local

estimate of the location parameter for obtaining the optimal NB,i. The critical point with this

approach will be the final rounding step, which will require an agreement (and consequently

communication) between the sensors to respect the total bandwidth constraint.
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ν–"water level"

(b)

Figure 4.3: Both water-filling solutions for multicarrier modulation power allocation (a) and

for rate constrained sensing system bit allocation (b).

This gives the following solution to problem (d) (p. 175):

Solution to (d) - Constrained approximate optimal bit allocation

for location parameter estimation

(d2) For i ∈ {1, · · · , Ns}, the approximate optimal bit allocation is

obtained by choosing ν so that (4.47) is satisfied

Ns
∑

i=1

NB,i =

Ns
∑

i=1

[ν − log2 (δi)]+ = NB.

With the value of ν satisfying (4.47), the numbers of bits can

be obtained using (4.46)

NB,i = [ν − log2 (δi)]+ .

Integer NB,i can be obtained with appropriate rounding. The

corresponding FI can be approximated by substituting the op-

timal NB,i in (4.41).
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4.3 Generalization with the f–divergence

In this section, we will discuss a generalization of the asymptotic results to different inference

problems. The generalization that we will study is based on the generalized f–divergence

(GFD), which is presented in [Poor 1988]. The objective of this section is to show the main

differences between the asymptotically optimal quantizers for different inference problems.

4.3.1 Definition of the generalized f–divergence

The GFD is a generalization of the f–divergence (also known as the Ali–Silvey distance)

studied in [Ali 1966] (cited in [Poor 1988]). For a continuous r.v. Y , the GFD Df is defined

as

Df,c = E {f [l (Y )]} , (4.48)

where l is a measurable function and f is a continuous convex function. For a quantized

measurement i from Y the GFD is defined as

Df,q = E
{

f
{

EY |i [l (Y )]
}}

= E [f (lqi)] . (4.49)

Developing the conditional expectation and supposing that Y accepts a PDF p (y), we can

rewrite (4.49) as

Df,q =

NI
∑

i=1

f (lqi)P (i) , (4.50)

where

P (i) =

∫

qi

p (y) dy, (4.51)

and

lqi =

∫

qi

l (y) p (y) dy

∫

qi

p (y) dy
. (4.52)

4.3.2 Generalized f–divergence in inference problems

The performance of some important inference problems can be written as a function of the

f–divergence. Three examples are given below.

Classical estimation

For classical estimation, we want to estimate a deterministic parameter x embedded in noisy

independent measurements Y1:N . The quantized version of this problem is the main problem

treated in thesis.

Under some regularity conditions, we know that the asymptotic MSE of the optimal un-

biased estimator of x attains the CRB which is given by the inverse of the FI. The FI for N

independent measurements is given by N times the FI for one measurement.
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If we look to the forms of Ic and Iq we can see that the FI for one measurement is a GFD

with l (y) = Sc (y;x) and f (l) = l2. Therefore, the GFD is directly linked to the asymptotic

performance of classical estimation.

Bayesian estimation

Consider that instead of estimating a deterministic parameter, we want to estimate a random

parameter X based on a noisy measurement Y .

From Ch. 2 (2.7) (p. 78), we know that MSE = EY

[

VarX|Y (X)
]

, which can be rewritten

as EY

{

EX|Y
(

X2
)

− E
2
X|Y (X)

}

. This gives

MSE = E
(

X2
)

− EY

[

E
2
X|Y (X)

]

.

This function is decreasing w.r.t. the second term, which is a GFD. Proceeding similarly for

the quantized measurement version of the problem, we can conclude that the performance

depends on a GFD with l (y) = EX|Y=y (X) and f (l) = l2.

For N identically distributed measurements, the MSE for Bayesian estimation can also

be rewritten as a GFD, but in this case a generalization to the non-scalar case is needed. In

[Marano 2007], we can find details for this case with a variable rate approach for quantization.

We can also approach Bayesian estimation for N measurements as a sequential single mea-

surement problem, where at each new observation we can use the last posterior as the new

prior. Using this approach for each measurement, the MSE will be given by the scalar version

of the GFD explained above.

Neyman–Pearson detection

We consider now the detection problem. We have N i.i.d. measurements Y1:N . The measure-

ments are all obtained from one of two distributions with PDF p0 (y) or p1 (y). Based on the

N measurements we want to decide from which of the two distributions the measurements are

obtained. The index of the true measurements distribution will be denoted H ∈ {0, 1} and

the decision that we make based on the N measurements will be denoted Ĥ.

For specifying the performance of the decision procedure we can consider a Neyman–

Pearson strategy [Van Trees 1968, p. 33]. In the Neyman–Pearson strategy, we set an upper

bound on the probability of deciding Ĥ = 1 when H = 0 to a fixed constant α and the

performance of the decision procedure is given by the minimum probability β of deciding

Ĥ = 0 when H = 1. When N is asymptotically large, the limit of β can be characterized

using Stein’s lemma [Blahut 1987] (cited in [Gupta 2003])

lim
N→+∞

β
1
N = exp {−DKL [p0 (y) ||p1 (y)]},

where DKL [p0 (y) ||p1 (y)] is the Kullback–Leibler divergence (KLD)

DKL [p0 (y) ||p1 (y)] =
∫

p0 (y) log

[

p0 (y)

p1 (y)

]

dy.
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For quantized measurements, a similar theorem can be stated by replacing p0 (y) and p1 (y)

by the corresponding probabilities of the quantizer outputs. Therefore, for this problem, the

KLD is the criterion to be maximized to increase detection performance. If we take the

opposite of the KLD, we can see that it is a GFD with l the likelihood ratio l (y) = p0(y)
p1(y)

and

f (l) = − log (l). The expectation in the GFD in this case is evaluated w.r.t. the probability

measure for H = 0.

Detection of weak signals

We can also consider the detection of a low amplitude signal. We follow a similar presentation

as in [Poor 1988]. For this problem, the Yk for k ∈ {1, · · · , N} are i.i.d. and distributed

according to p (yi) or p (yi − θxi), where p is the noise marginal PDF and xi is a known signal

with finite average power x̄2 = 1
N

N
∑

k=1

x2k. If we consider a large number of measurements

N → ∞ and small signal amplitude θ → 0, then the performance of the optimal detector in

terms of β in the Neyman–Pearson strategy is related to the efficacy

ρ = x̄2
∫





dp(y)
dy

p (y)





2

p (y) dy = x̄2
∫ {

d log [p (y)]

dy

}2

p (y) dy.

When this quantity is maximized, we maximize asymptotic detection performance. Note that

the integral factor is exactly the FI for estimating a location parameter of the PDF p. Thus in

this case, the inference performance can also be written as a GFD with l (y) =
dp(y)
dy

p(y) = d log[p(y)]
dy

and f (l) = l2.

4.3.3 Asymptotic results

Similarly to the asymptotic development for the FI, we will write asymptotic approximations

for the loss of GFD incurred by quantization. After obtaining the asymptotic loss for the GFD,

we will obtain the optimal interval densities for the fixed rate and variable rate encoding cases.

Asymptotic GFD loss

The loss of GFD due to quantization can be defined as

Lf = Df,c −Df,q =

NI
∑

i=1

Lf,i, (4.53)

where Lf,i is the loss for each quantization interval

Lf,i =

∫

qi

{f [l (y)]− f (lqi)} p (y) dy. (4.54)
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For obtaining the asymptotic approximation, we write the Taylor series expansions of l

and p around the central point yi and of f around a point li

l (y) = li + l
(y)
i (y − yi) +

l
(yy)
i

2
(y − yi)

2 + ◦ (y − yi)
2 , (4.55)

p (y) = pi + p
(y)
i (y − yi) +

p
(yy)
i

2
(y − yi)

2 + ◦ (y − yi)
2 , (4.56)

f (l) = fi + f
(l)
i (l − li) +

f
(ll)
i

2
(l − li)

2 + ◦ (l − li)
2 . (4.57)

Using (4.57) and (4.55), the function f [l (y)] on the interval qi can be written as

f [l (y)] = fi + f
(l)
i

[

l
(y)
i (y − yi) +

l
(yy)
i

2
(y − yi)

2

]

+
f
(ll)
i

2

[

(

l
(y)
i

)2
(y − yi)

2

]

+ ◦ (y − yi)
2 .

(4.58)

We use (4.55) and (4.56) in (4.52) to evaluate lqi

lqi =

∫

qi

[

li + l
(y)
i (y − yi) +

l
(yy)
i

2
(y − yi)

2 + ◦ (y − yi)
2

] [

pi + p
(y)
i (y − yi) +

p
(yy)
i

2
(y − yi)

2 + ◦ (y − yi)
2

]

dy

∫

qi

[

pi + p
(y)
i (y − yi) +

p
(yy)
i

2
(y − yi)

2 + ◦ (y − yi)
2

]

dy

=
lipi∆i + li

p
(yy)
i

2
∆2

i

12 + l
(y)
i p

(y)
i

∆3
i

12 +
l
(yy)
i

2 pi
∆3

i

12 + ◦
(

∆3
i

)

pi∆i +
p
(yy)
i

2
∆3

i

12 + ◦
(

∆3
i

)

. (4.59)

To evaluate f [lqi ] we will replace (4.59) in (4.58). We proceed first by evaluating lqi − li

lqi − li =
l
(y)
i p

(y)
i

∆3
i

12 +
l
(yy)
i

2 pi
∆3

i

12 + ◦
(

∆3
i

)

pi∆i +
p
(yy)
i

2
∆3

i

12 + ◦
(

∆3
i

)

.

Note that lqi − li has a factor ∆2
i , thus (lqi − li)

2 = ◦
(

∆3
i

)

. This leads to

f [lqi ] = fi + f
(l)
i





l
(y)
i p

(y)
i

∆3
i

12 +
l
(yy)
i

2 pi
∆3

i

12 + ◦
(

∆3
i

)

pi∆i +
p
(yy)
i

2
∆3

i

12 + ◦
(

∆3
i

)



+ ◦
(

∆3
i

)

. (4.60)

Now, we will evaluate the two terms in Lf,i (4.54). Multiplying the expansion of f [l (y)]

(4.58) by the expansion of p (y) (4.56) and integrating, we obtain

∫

qi

f [l (y)] p (y) dy = fipi∆i + fi
p
(yy)
i

2

∆3
i

12
+ f

(l)
i

[

l
(y)
i p

(y)
i

∆3
i

12
+
l
(yy)
i

2
pi
∆3

i

12

]

+
f
(ll)
i

2

(

l
(y)
i

)2 ∆3
i

12
pi + ◦

(

∆3
i

)

. (4.61)
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Using (4.60) and integrating the expansion for p (y), we get

∫

qi

f [lqi ] p (y) dy = fipi∆i + fi
p
(yy)
i

2

∆3
i

12
+ f

(l)
i

[

l
(y)
i p

(y)
i

∆3
i

12
+
l
(yy)
i

2
pi
∆3

i

12

]

+ ◦
(

∆3
i

)

. (4.62)

Subtracting (4.62) from (4.61), we get the loss in the interval qi

Lf,i =
f
(ll)
i

2

(

l
(y)
i

)2 ∆3
i

12
pi + ◦

(

∆3
i

)

.

Therefore, the total loss is

Lf =

NI
∑

i=1

[

f
(ll)
i

2

(

l
(y)
i

)2 ∆3
i

12
pi + ◦

(

∆3
i

)

]

. (4.63)

Similarly to the asymptotic development for the FI, we have

lim
NI→∞

N2
I Lf =

1

24

∫

f (ll) [l (y)]
[

l(y) (y)
]2
p (y)

λ2 (y)
dy. (4.64)

The optimal interval density for fixed rate encoding is then given by

λ⋆ (y) =
f (ll)

1
3 [l (y)]

[

l(y) (y)
]
2
3 p

1
3 (y)

∫

f (ll)
1
3 [l (y)]

[

l(y) (y)
] 2
3 p

1
3 (y) dy

. (4.65)

If the PDF of the measurements is completely known and given by p (y), then a similar

development as it was done for the FI leads to the following optimal variable rate encoding

interval density:

λ⋆vr (y) =

√

f (ll) [l (y)]
∣

∣l(y) (y)
∣

∣

∫
√

f (ll) [l (y)]
∣

∣l(y) (y)
∣

∣ dy
.

4.3.4 Interval densities for inference problems

We will compare now the different interval densities for the inference problems described

above. In Tab. 2 we give the different functions defining the GFD for each problem and the

corresponding optimal interval density. We also give the optimal interval density for variable

rate encoding, whenever variable rate encoding is possible.
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Inference problem l (y) f (l) λ⋆ (y) ∝ λ⋆vr (y) ∝
Classical estimation Sc (y;x) l2

(

∂Sc(y;x)
∂y

) 2
3
p

1
3 (y;x) –

Bayesian estimation EX|Y=y (X) l2
(

dEX|Y =y(X)

dy

) 2
3
p

1
3 (y)

∣

∣

∣

dEX|Y =y(X)

dy

∣

∣

∣

N–P detection p0(y)
p1(y)

− log (l)
{

d log
[

p0(y)
p1(y)

]

dy

}

2
3

p
1
3
0 (y) –

Weak signal detection
dp(y)
dy

p(y) l2
{

d
2 log[p(y)]

dy2

} 2
3
p

1
3 (y)

∣

∣

∣

d2 log[p(y)]
dy2

∣

∣

∣

Table 4.2: Functions characterizing the GFD for different inference problems and interval den-

sities maximizing the inference performance based on quantized measurements. The interval

density λ⋆ (y) is the density optimizing the performance when encoding is done with fixed

rate, λ⋆vr (y) is the density for variable rate encoding.

Notice that for Bayesian estimation and weak signal detection, we give expressions for

the variable rate optimal density. In Bayesian estimation, as we have a prior on the true

parameter, we know the probabilities of the quantizer outputs, thus we can define correct

lengths for the outputs. In weak signal detection, as the amplitude of the signal is small, we

can consider that the encoding can be done approximately by using the noise distribution.

While in classical estimation, we have the effect of the score function derivative, in Bayesian

estimation the optimal interval density is affected by the optimal estimator x̂ = EX|Y=y (X)

function. Note also that, differently from the classical estimation case, where the interval

density is affected directly by the true parameter value, in Bayesian estimation the influence

of the parameter appears only through its prior. Thus even if x is unknown in the Bayesian

case, an optimal quantizer can be implemented in practice3.

Observe that classical estimation for a location parameter with value x = 0 and weak

signal detection have exactly the same interval density. Actually, the performance of weak

signal detection can be seen equivalently as the performance of estimating a small constant

with i.i.d noise and marginal PDF p (y). Thus it is not surprising that the optimal interval

densities are the same.

The optimal density for Neyman–Pearson detection that we have obtained here is exactly

the same as the one obtained in [Gupta 2003] in the scalar case. Note that similarly to Bayesian

estimation, where the sensibility of the key element for inference, the optimal estimator, has

a direct impact on the interval density, in detection, the sensibility of the logarithm of the

continuous measurement likelihood ratio plays an important role. Note also that the log-

likelihood ratio log
[

p0(y)
p1(y)

]

= log [p0 (y)] − log [p1 (y)] for two distributions parametrized by x

and x+ ε with small ε can be rewritten using an expansion around x

log [p0 (y)]− log [p1 (y)] = log [p (y;x)]− log [p (y;x+ ε)] = ε
∂ log [p (y;x)]

∂x
+ ◦ (ε) .

The optimal interval density is then approximately given by the optimal density for classical

estimation. This makes explicit the link between the density for weak signal detection and for

3Optimal in this case for a given prior, if the prior does not represent well the reality, then the Bayesian

setting is not useful and optimality is meaningless.
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classical estimation.

4.4 Chapter summary and directions

We summarize the main points from this chapter and possible directions for future work:

• We developed an asymptotic high-rate approximation for the FI for quantized measure-

ments. The approximation shows that the FI for quantized measurements tends to the

FI for continuous measurements when the number of quantization intervals tends to

infinity. When the quantizer outputs are all coded with binary words with the same

length (fixed rate encoding), the approximation of the FI tends exponentially to the FI

for continuous measurements as a function of the number of quantization bits.

• The asymptotic performance approximation obtained depends on the specific choice of

the quantizer intervals through the quantizer interval density. For fixed rate encoding,

the optimal interval density is shown to depend not only on the PDF through f
1
3 , as it

is common in standard quantization, but also on the derivative of the score function.

In practice for finite number of bits, the optimal interval density can be approximated by

setting the quantization thresholds using the inverse of the CDF related to the interval

density. As the CDF depends on the parameter that we want to estimate, a recursive

procedure for joint estimating and resetting the thresholds is necessary for obtaining

asymptotically optimal performance (asymptotic both in N and NI). For example, we

can use the adaptive algorithms presented in Ch. 3 when we want to solve a location

estimation problem. In general we can use the adaptive MLE approach.

When the length of the binary words are chosen to minimize the mean length of the

quantizer output, the optimal density is shown to depend directly on the derivative

of the score function. The problem with this approach is that not only setting the

quantizer thresholds depends on the measurement distribution, but also the encoding

method depends on it. Even if we can attain the best asymptotic performance by using

an adaptive technique for setting the thresholds, we will not respect the rate constraint

during all the initial time of the estimation procedure, when the parameter estimate is

far from the true parameter value.

• The practical approximation of the asymptotically optimal quantization thresholds was

obtained for the estimation of location and scale parameters of the GGD. For the STD,

we obtained the practical approximation in the Cauchy case for location and in general

for scale.

The asymptotic results were tested in the location problem with the Gaussian and

Cauchy distributions. We compared the asymptotic approximation of the FI with the FI

for optimal uniform quantization and with the FI for the practical approximation of the

optimal thresholds. We observed that, with only 4 bits, the FI obtained with the practi-

cal approximation is very close to the asymptotic approximation. We also observed that,

in the Gaussian case, the gain of performance obtained with nonuniform quantization is
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negligible, while in the Cauchy case it is small. This indicates that in practice uniform

quantization might be a better solution, as it requires a lower complexity.

By using the adaptive algorithm, we have shown that the asymptotically optimal results

can be obtained in practice. During the simulation of the adaptive algorithm, it was

observed that uniform quantization leads to faster convergence when compared with

nonuniform quantization. An interesting point for future research is then to study

adaptive algorithms that start with a threshold set optimized for faster convergence and

then change the threshold set, so that asymptotically the performance is also optimal.

• By using the asymptotic results, we have obtained approximations for the optimal bit

allocation when we estimate a location parameter using multiple sensors and the total

number of quantization bits is constrained.

The first approximate solution was given by considering unconstrained numbers of bits

(positive and negative reals), the approximate optimal bit allocation is shown to be

a correction on the uniform bit allocation (equal number of bits for each sensor) that

depends on the weight of the noise scale parameter on the geometric mean of all the scale

parameters. The FI given by this approximate optimal bit allocation is shown to depend

on the harmonic and geometric means of the noise scale parameters. An interesting

point for future work is the analysis of the approximate FI for the optimal allocation

when the number of sensors is very large and the sensors scale parameters are random

with a given known distribution. As the approximate FI depends on the geometric and

harmonic means of the scale parameters, by using the law of large numbers, we expect to

obtain an approximation of the FI depending on the parameters of the scale distribution.

The second approximation was given by considering a more realistic scenario, with the

numbers of bits constrained to be positive. The approximate optimal bit allocation is

given by a water-filling solution, which is a well known solution for the problem of power

allocation in multicarrier modulations. For the bit allocation problem, the logarithm of

the scale parameter plays the equivalent role of the noise power in multicarrier power

allocation and the number of bits plays the role of the power to be allocated.

The water-filling solution depends on the scale parameters, in a fusion center approach,

the fusion center can use the estimates of the scale parameters to obtain an approximate

solution. The solution of the problem is mainly determined by only one parameter,

the "water level", after obtaining the approximate "water level", the fusion center can

broadcast it to the sensors so that they can set their quantizer resolution. A problem

that still need to be solved in this case is how the sensors will coordinate their final

choice on the numbers of bits (which are constrained to be integers) so that the total

rate constraint is respected.

• As a final point of this chapter, we revisited the asymptotic approximation for the f–

divergence loss due to quantization presented in [Poor 1988]. The objective of this part

was to show that the asymptotic approximation of the FI presented in this chapter can be

seen as a special case of the asymptotic approximation of a general performance measure

for inference problems and to show the links between the asymptotic characterization of

the quantizers for different inference problems.
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We saw that there is a close link between quantization for weak signal detection and

for classical estimation of a location parameter. In practice, as we will use an adaptive

algorithm with static quantizer centered at zero for classical estimation, the quantizer

thresholds for these two problems are exactly the same. The link between Neyman–

Pearson detection and Bayesian estimation is that, for both, the quantizer depends on

the sensibility of their key quantities: the Neyman–Pearson detection optimal interval

density depends on the sensibility of the log-likelihood ratio and the Bayesian estimation

optimal density depends on the sensibility of the estimator.

• Additional to the points for further study presented above many other points can also

be investigated:

– The vector quantizer extension of the asymptotic approximation of the FI can

be considered: vector quantization is the most natural extension of the results

presented here.

– Further study of the Bayesian case : for one sample asymptotic characterization,

we saw that a recursive approach can be used. In practice, this solution may be

too complex to be implemented as we need to evaluate completely the continuous

measurement estimator and consequently the posterior for obtaining the optimal

quantizer at each sample. For obtaining a simple solution, we can consider high

resolution quantizers that are designed to optimize the asymptotic (large number

of samples) performance of Bayesian estimation.

– Dealing with the overload region : a main point that was neglected in the analysis is

that, in practice, most noise PDF that are used for modeling have infinite support.

In this chapter we considered explicitly that the noise PDF have bounded support,

so that it would not be necessary to deal with the overload region. In future work,

we can try to deal with the overload region.

– Asymptotic approximation of the optimal uniform quantizer for estimation : during

all this thesis we considered the explicit optimization through a grid search of the

optimal quantization step in uniform quantization. We can try to obtain an analytic

characterization of the optimal step by considering an asymptotic approach.





Conclusions of Part II

In Part II, we studied the asymptotic performance of estimation of a scalar deterministic

parameter based on quantized measurements. Asymptotically in this case means:

• that the number of samples tends to infinity N → ∞, so that we can use the FI to

characterize the estimation performance.

• That the number of quantization bits tends to infinity NB → ∞, so that we can use

high-rate approximations of the FI to determine analytically the loss of performance

induced by quantization.

We obtained the following conclusions:

• The asymptotic loss of performance due to quantization decreases exponen-

tially as a function of the number of bits. The loss of FI due to quantization is

shown to decrease exponentially with increasing numbers of bits. Even if the results are

asymptotic, they indicate that it is probably not useful to increase the sensor quantizer

resolution when a target performance is not met. Probably, it is more reasonable, as we

saw in Part I, to increase the number of sensors, or if it is possible, to increase sampling

frequency and to use sensors with smaller noise amplitude (smaller noise scale factor).

• Asymptotic may be low to medium resolution in practice. Using a practical

approximation of the asymptotically optimal thresholds for finite number of quantization

intervals in the location estimation problem (Gaussian and Cauchy cases), we have

shown that the corresponding FI is very close to the asymptotic approximation of the

FI for numbers of bits as low as 4. For 1,2 and 3 bits the optimal threshold variations

can be found easily by grid search and the central threshold can be adjusted in all

cases with an adaptive algorithm. This means that in practice, for all numbers of bits,

we can set, at least approximately, the quantizer thresholds to have asymptotically

optimal quantization for location parameter estimation under Gaussian and Cauchy

distributions.

A question that still remains unanswered is if this is true in general, for different types

of measurement distribution and for the estimation of other types of parameters.

• Uniform is not bad at all. Although we can use, in practice, nonuniform quantization

of the measurements to have asymptotically optimal performance. The gap between

the performance for optimal uniform quantization and the performance for nonuniform

quantization in location parameter estimation is small. As uniform quantization is easier

to be implemented, it seems that, in practice, uniform quantization may be a better

solution.
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Main conclusions

In this thesis, we have studied the problem of estimation based on quantized measurements,

a problem that has attracted increasing attention of the signal processing community due to

the emergence of sensor networks. More specifically, we treated the problem of estimating a

scalar parameter, either constant or varying with a Wiener model, based on quantized noisy

measurements of the parameter.

We observed that for most commonly used noise models, the estimation performance

degrades when the quantizer dynamic range is far from the true parameter value, indicating

that a good solution can be obtained by adaptively setting the quantizer range using the most

recent estimate of the parameter.

Using the adaptive scheme, the loss of estimation performance due to quantization seems to

be small. For all the tested cases (different noise PDF, constant or slowly varying parameter),

a small loss is observed when we use 1–3 quantization bits and a negligible loss is observed

for 4 or 5 quantization bits. This indicates that the solution of the remote sensing problem

under constrained communication rate is linked to low resolution sensor networks:

• If we consider that the problem is constrained to be solved with a sensor network ap-

proach, then from the results above, we can see that quantization with low resolution is

a solution to this problem.

• If we constrain the problem to be a remote sensing problem based on quantized mea-

surements, then a low resolution sensor network approach seems to be an appropriate

solution.

As the standard estimation algorithms for attaining the small loss of performance have high

complexity, we proposed a low complexity adaptive algorithm that achieves asymptotically the

same performance. Extensions of the algorithm were proposed for the cases when the noise

scale factor is unknown and when multiple sensors are available.

We also studied the problem of how to set the quantization thresholds for obtaining optimal

estimation performance when a large number of quantization intervals is available. We used the

asymptotic approach (the quantizer intervals tend to zero) to obtain an approximation of the

optimal thresholds, this approach also allowed to obtain an approximate analytical expression

for the estimation performance (the FI) as a function of the number of quantization bits. The

approximation of the FI for quantized measurements is shown to converge exponentially to the

FI for continuous measurements. The approximate analytic expression was shown to be valid

in the location estimation problem even for small numbers of bits (4 in this case), indicating

that the result, which is expected to be exact only when the number of bits tends to infinity,

can be useful in practice, if we consider non uniform quantization.
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From the asymptotic approach, we show that the optimal thresholds may depend on the

parameter, which is unknown. This reinforces the importance of the adaptive approach,

which allows to set the thresholds asymptotically according to their optimal values, leading

to asymptotically optimal estimation performance.

We also want to point out that the difference between using the optimal general threshold

scheme (non uniform) and the optimal uniform scheme for the location problem is small. In

practice, if low complexity is needed, then uniform quantization may be a better solution.

Perspectives

We finish this "conversation" between quantization and estimation, highlighting some subjects

for future discussion. Some details of these subjects were already discussed at the end of the

chapters, therefore here we give only the main lines.

• Vector parameter and vector quantization: this is the direct extension of the problem,

while the vector quantization extension might be straightforward to study, both in terms

of proposing algorithms and studying their asymptotic (in terms of numbers of samples

and quantization intervals) behavior, the vector parameter extension seems to be less

straightforward, specially because it would require a redefinition of the estimation per-

formance and it would require a full extension of the algorithms to vectors, for exploiting

correctly the correlation between the components.

• Noisy channels: in the "DSP party", most of the time, communication is not invited,

we can propose to invite it to the next party by adding the communication channel

in the problem. A noisy communication channel can be considered in multiple ways.

The simplest way for introducing it in the problem is by indexing the quantized mea-

surements with binary words and then considering the channel as an extension of the

binary symmetric channel. While for a fixed indexing the extensions of the algorithms,

specially the low complexity one proposed here, might be simple, the problem of optimal

estimation/indexing can be difficult.

Different extensions can be considered by introducing a continuous channel, for example

additive and fading channels. In this case we might consider the problem of indexing,

by assigning real values to the quantized measurements, this will generate again a joint

problem of estimation/codebook design.

• Estimation under unknown noise distribution: we supposed that the noise distribution

is known, at least up to a scale factor, however, in practice, this assumption cannot be

always satisfied and we will need to look for different approaches to estimate the location

parameter based on quantized measurements.

There are other topics that were not discussed explicitly in this thesis, but they are inter-

esting subjects for future research. They are the following:
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• Fast variations: to develop some parts of this thesis, we considered that the parameter to

be estimated was a slowly varying Wiener process, under this hypothesis we have shown

that the loss of performance due to quantization is small. The unanswered question here

is whether this conclusion is true or false for the estimation of fast varying processes.

• Distributed problem: in this thesis, we treated the simplified remote sensing problem,

where we have only one sensor. In the only case where a multiple sensor approach

was treated, we used the fusion center approach. Thus, we still need to generalize the

concepts and algorithms developed here to a partially or completely distributed setting,

where a cluster head or each sensor wants to obtain estimates based on the information

from all the sensors.

• Continuous time: for a varying parameter, we considered that the parameter model was

inherently discrete and we did not discuss sampling issues. Thus a subject to be studied

is the estimation of a continuous process based on sampled and quantized measurements.
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Appendices

A.1 Why? - Proofs

A.1.1 Proof that E [ScSq] = E
[

S2
q

]

We will consider a general parameter estimation problem in the proof. The density of the mea-

surement will be f (y;x) instead of f (y − x). Adding the dependence of Sq on the quantizer

output index i, y and x, the expectation of the product is

E [ScSq] =

∫

R

∂ log f (y;x)

∂x
Sq (i (y) ;x) f (y;x) dy. (A.1)

Separating the integral in (A.1) in a sum of integrals on the different quantization intervals

qi:

E [ScSq] =
∑

i∈I

∫

qi

∂ log f (y;x)

∂x
Sq (i (y) ;x) f (y;x) dy.

Sq is a constant function inside an interval qi, thus, in an interval, it does not depend on y

and it can leave the integral

E [ScSq] =
∑

i∈I
Sq (i;x)

∫

qi

∂ log f (y;x)

∂x
f (y;x) dy.

Rewriting the continuous measurement score function in ratio form gives

E [ScSq] =
∑

i∈I
Sq (i;x)

∫

qi

∂f(y;x)
∂x

f (y;x)
f (y;x) dy,

supposing that we can change the order of integral and the partial derivative leads to

E [ScSq] =
∑

i∈I
Sq (i;x)

∂P (i;x)

∂x
.

Multiplying and dividing each term of the sum by its corresponding P (i;x), we have

E [ScSq] =
∑

i∈I
Sq (i;x)

∂P(i;x)
∂x

P (i;x)
P (i;x) .

We can identify the score function as the second factor, leading to

E [ScSq] =
∑

i∈I
S2
q (i;x)P (i;x) = E

[

S2
q

]

. (A.2)
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A.1.2 Proof of the upper bound on F (ε) [1− F (ε)] for the Gaussian distri-
bution

We can write F (ε) [1− F (ε)] as the probability of two i.i.d. Gaussian r.v. X1 and X2 to be

in the respective intervals [−∞, x] and [x, ∞]. Thus, this probability can be written as the

integral of their joint PDF (see (1.24) for the marginal Gaussian PDF form)

f1,2 (x1, x2) = f (x1) f (x2) =
1

πδ2
exp

[

−
(

x21 + x22
)

δ2

]

on the area A0 + A1 of Fig. A.1. From the i.i.d. assumption, the integral on the area A1 is

equal to the integral on the area A′
1. Therefore, F (ε) [1− F (ε)] is equal to the integral of

f1,2 (x1, x2) on A0 + A′
1. It is easy to see that the area outside the quarter circle C1 in the

fourth quadrant is not smaller than the area of A0+A
′
1. Denoting the area outside the quarter

circle in the fourth quadrant by C̄1, we can say that P (X1, X2 ∈ A0 +A1) ≤ P
(

X1, X2 ∈ C̄1

)

.

Changing the coordinates from rectangular (x1, x2) to polar (r, θ), where r =
√

x21 + x22 is

the radius and θ = arctan
(

x1
x2

)

is the angle, we have that

P
(

X1, X2 ∈ C̄1

)

=

0
∫

−π
2

∞
∫

x

1

πδ2
r exp

[

−
(

r2
)

δ2

]

drdθ =
1

2δ2

∞
∫

x

r exp

[

−
(

r2
)

δ2

]

dr.

Changing variables one more time r′ = r
δ
, we obtain

P
(

X1, X2 ∈ C̄1

)

=
1

2

∞
∫

x
δ

r′ exp
(

−r′2
)

dr′ = −1

4

∞
∫

x
δ

−2r′ exp
(

−r′2
)

dr′ =
1

4
exp

[

−
(x

δ

)2
]

.

Consequently,

F (ε) [1− F (ε)] = P (X1, X2 ∈ A0 +A1) ≤ P
(

X1, X2 ∈ C̄1

)

=
1

4
exp

[

−
(ε

δ

)2
]

.

A.1.3 Proof that the FI for estimating a Laplacian location parameter with
noise scale δ is 1

δ2
.

The score function (1.15) for the location parameter of the Laplacian distribution is (PDF

given by (1.27)):

Sc =
∂ log f (y − x)

∂x
=
∂
[

log
(

1
2δ2

)

−
∣

∣

y−x
δ

∣

∣

]

∂x
=

1

δ
sign (y − x) ,

where we used the fact that the derivative of the absolute value function is the sign function.

The FI is then given by

Ic = E
[

S2
c

]

=

+∞
∫

−∞

1

δ2
1

2δ
exp

(

−
∣

∣

∣

∣

y − x

δ

∣

∣

∣

∣

)

dy.
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x2

x1

C1

A0

A1

A′

1

(x, 0)

(0, x)

(0,− x)

Figure A.1: Geometric scheme to show that the probability of the interval A0+A1 is less than

the probability of the exterior region of the left quarter circle C1.

Changing variables y′ = y−x
δ

and using the symmetry of exp (− |y′|), we get

Ic =
1

δ2

+∞
∫

0

exp
(

−y′
)

dy′ =
1

δ2
.

A.1.4 Proof that the FI for estimating a Cauchy location parameter with
noise scale δ is 1

2δ2
.

The score function (1.15) for the location parameter of a Cauchy distribution (PDF given by

(1.33)) is the following:

Sc =
∂ log f (y − x)

∂x
=
∂
[

− log (πδ)− log
[

1 +
(

y−x
δ

)2
]]

∂x
=

2
δ

(

y−x
δ

)

[

1 +
(

y−x
δ

)2
] .

The FI can be evaluated then with the following integral

Ic = E
[

S2
c

]

=
4

πδ2

+∞
∫

−∞

(

y−x
δ

)2

[

1 +
(

y−x
δ

)2
]3 dy

=
8

πδ3

+∞
∫

x

(

y−x
δ

)2

[

1 +
(

y−x
δ

)2
]3 dy,

where the second equality comes from the symmetry of the integrand. Changing variables

tan (θ) = y−x
δ

. We must change dy = δ sec2 (θ) dθ and the integration limits also change to 0
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and π
2 . Using the trigonometric identity 1 + tan2 (θ) = sec2 (θ), we have

Ic =
8

πδ2

π
2
∫

0

tan2 (θ)

sec6 (θ)
sec2 (θ) dθ =

8

πδ2

π
2
∫

0

sin2 (θ) cos2 (θ) dθ.

Using trigonometric identities, we have that sin2 (θ) cos2 (θ) = 1
8 [1− cos (4x)]. The integral

of the term cos (4x) is zero on the interval
[

0, π
2

]

. Therefore, we finally obtain

Ic =
1

πδ2

π
2
∫

0

dθ =
1

2δ2
.

A.1.5 Proof that the FI for N measurements quantized adaptively with NI

quantization intervals is INI
q =

N
∑

k=1

E [Iq (εk)].

Making more explicit the dependence of P (i1:N ;x) on the adaptive central thresholds τ0,0:N−1

by the conditional probability P (i1:N |τ0,0:N−1;x) and exploiting the independence between

the measurements conditioned on the central threshold used to obtain them, we can write

that the joint probability used in the score function evaluation factorizes as follows:

P (i1:N |τ0,0:N−1;x) =
N
∏

k=1

P (ik|τ0,k−1;x) .

Thus, the log-likelihood is given by

logL (x; i1:N ) =
N
∑

k=1

logP (ik|τ0,k−1;x) .

The FI is then given by

INI
q = E

{

[

∂ logL (x; i1:N )

∂x

]2
}

= E





































∂

[

N
∑

k=1

logP (ik|τ0,k−1;x)

]

∂x



















2
















= E







[

N
∑

k=1

∂ logP (ik|τ0,k−1;x)

∂x

]2






,

where the expectation is evaluated w.r.t. the joint probability measure of the r.v. i1:N and

τ0,0:N−1. We can decompose the joint expectation in a composition of two expectations using

conditioning. For 2 r.v. X and Y and a function h, this is

EX,Y [h (Y,X)] = EX

{

EY |X [h (X,Y )]
}

.
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The subscripts indicate the corresponding probability measure used for the evaluation. For

example, X|Y corresponds to the conditional probability measure of X given Y . Using this

decomposition on the FI above:

INI
q = Eτ0,0:k−1







Ei1:k|τ0,0:k−1







[

N
∑

k=1

∂ logP (ik|τ0,k−1;x)

∂x

]2












.

By expanding the square of the inner sum, we have that the inner expectation is a sum of

expectations of squared score functions

[

∂ log P(ik|τ0,k−1;x)
∂x

]2

and products of score functions for

different samples
∂ log P(ik|τ0,k−1;x)

∂x

∂ log P(ij |τ0,j−1;x)
∂x

with j 6= k. As the samples are conditionally

independent given their central thresholds, the conditional expectations of the squared scores

are equal to the sum of conditional expectations, each conditional expectation will be evaluated

with the probability measure of its corresponding ik|τ0,k−1. For the crossed terms the same

happens, but now each conditional expectation will be evaluated with respect to ik,j |τ0,k,j , as

the pairs of measurements are conditionally independent, the conditional expectation of the

product of scores is the product of conditional expectations. Finally, as the expectation of

each score function is zero [Kay 1993, pp. 67], the expectation of the sum of cross products is

zero. Therefore, we have

INI
q = Eτ0,0:k−1

{

N
∑

k=1

Eik|τ0,k−1

{

[

∂ logP (ik|τ0,k−1;x)

∂x

]2
}}

.

The terms in the inner sum depends each on a different τ0,k−1, thus by marginalization (inte-

gration w.r.t. others τ0,k−1), we get

INI
q =

N
∑

k=1

Eτ0,k−1

{

Eik|τ0,k−1

{

[

∂ logP (ik|τ0,k−1;x)

∂x

]2
}}

.

Observe that the inner expectation is the FI for each observation ik parametrized by τ0,k−1

and x. We can re-parametrize it by the difference εk = τ0,k−1−x, writing it using the notation

of (1.13). Therefore, we obtain

INI
q =

N
∑

k=1

Eεk {Iq (εk)} .

A.1.6 Proof that the posterior PDF can be written in recursive form using
prediction and update expressions

For obtaining a relation between the PDF p (xk|i1:k−1), that we will call prediction PDF,

and the posterior for instant k − 1, p (xk−1|i1:k−1), we will use conditioning on the joint

density/distribution (PDF for X and probability for i) of the variables Xk, Xk−1 and i1:k−1

p (xk, xk−1, i1:k−1) = p (xk|xk−1, i1:k−1) p (xk−1|i1:k−1)P (i1:k−1) .
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Exploiting the fact that conditioned on Xk−1 the r.v. Xk is independent of all the past

measurements, we have

p (xk, xk−1, i1:k−1) = p (xk|xk−1) p (xk−1|i1:k−1)P (i1:k−1) .

On the other hand, conditioning only on the measurements, we obtain

p (xk, xk−1, i1:k−1) = p (xk, xk−1|i1:k−1)P (i1:k−1) .

Equating the last expressions gives

p (xk, xk−1|i1:k−1) = p (xk|xk−1) p (xk−1|i1:k−1) .

Marginalization of Xk−1 gives the prediction expression

p (xk|i1:k−1) =

∫

R

p (xk|xk−1) p (xk−1|i1:k−1) dxk−1.

As it was stated before, we can notice that for obtaining the prediction PDF we must use the

last posterior and the transition PDF p (xk|xk−1) that characterizes the dynamical model.

For obtaining the update expression, we will start by conditioning the joint density/distribution

function p (xk, ik, i1:k−1)

p (xk, ik, i1:k−1) = P (ik|xk, i1:k−1) p (xk|i1:k−1) .

As ik given xk is independent from all the other r.v., we have

p (xk, ik, i1:k−1) = P (ik|xk) p (xk|i1:k−1)P (i1:k−1) .

Now, conditioning on the entire set of measurements

p (xk, ik, i1:k−1) = p (xk|i1:k)P (i1:k) .

Using both last expressions, we get

p (xk|i1:k) =
P (ik|xk) p (xk|i1:k−1)P (i1:k−1)

P (i1:k)
,

this result can be simplified by applying conditioning on the denominator. Absorbing the

factor P (i1:k−1), we have

p (xk|i1:k) =
P (ik|xk) p (xk|i1:k−1)

P (ik|i1:k−1)
.

The conditional probability on the denominator can be expressed using marginalization of

p (ik, xk−1|i1:k−1) = P (ik|xk) p (xk|i1:k−1) ,

which finally gives the update expression

p (xk|i1:k) =
P (ik|xk) p (xk|i1:k−1)

∫

R

P
(

ik|x′k
)

p
(

x′k|i1:k−1

)

dx′k
.

Note that for updating the prediction to the posterior distribution, we introduced the infor-

mation from the measurement through P (ik|xk).
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A.1.7 Proof that Ic for the GGD is 1
δ2

β(β−1)Γ(1− 1
β )

Γ( 1
β )

.

The continuous measurement FI for the GGD distribution is obtained using the PDF expres-

sion (1.39) in the integral (3.58)

Ic,GGD =

∫

R

[

f
(1)
GGD (x)

]2

fGGD (x)
dx =

β3

δ3Γ
(

1
β

)

+∞
∫

0

(x

δ

)2β−2
exp

[

−
(x

δ

)β
]

dx,

where we used the fact that the function to be integrated is an even function for obtaining an

integral on [0, +∞). We can now change the integration variable to z =
(

x
δ

)β
, this produces

dx = δ
β
z

1
β
−1

dz, leading to the following integral

Ic,GGD =
β2

δ2Γ
(

1
β

)

+∞
∫

0

z
1− 1

β exp (−z) dz.

The integral is equal to Γ
(

2− 1
β

)

, thus using the property of the gamma function Γ (1 + z) =

zΓ (z), we have finally

Ic,GGD =
1

δ2

β (β − 1) Γ
(

1− 1
β

)

Γ
(

1
β

) .

A.1.8 Proof that Ic for the STD is 1
δ2

β+1
β+3

.

For the STD, the continuous measurement FI is obtained using its PDF expression (3.72) in

(3.58). As the function to be integrated is an even function, we can integrate it only in the

positive real semi-axis. This gives

Ic,STD =

∫

R

[

f
(1)
STD (x)

]2

fSTD (x)
dx

=
Γ
(

β+1
2

)

Γ
(

β
2

)

1

δ3
√
β
√
π

(β + 1)2

β
2

+∞
∫

0

(

x

δ
√
β

)2
[

1 +

(

x

δ
√
β

)2
]−β+5

2

dx.

For evaluating this integral, we can change the integration variable to θ using tan (θ) = x
δ
√
β
,

this produces dx =
√
βδ 1

cos2(θ)
, 1+

(

x
δ
√
β

)2
= 1

cos2(θ)
and an integration interval

[

0, π
2

)

, leading

to

Ic,STD =
Γ
(

β+1
2

)

Γ
(

β
2

)

1

δ2
√
π

(β + 1)2

β
2

π
2
∫

0

sin2 (θ) cos (θ)β+1 dx.



230 A. Appendices

The integral factor multiplied by 2 can be identified to the beta function B
(

3
2 ,

β
2 + 1

)

. The

beta function can be written using the gamma function

B

(

3

2
,
β

2
+ 1

)

=
Γ
(

3
2

)

Γ
(

β
2 + 1

)

Γ
(

β+1
2 + 2

) ,

which can be rewritten using the fact that Γ
(

3
2

)

=
√
π
2 and the property of the gamma function

Γ (1 + z) = zΓ (z). This gives

B

(

3

2
,
β

2
+ 1

)

=
√
π

β

(β + 3) (β + 1)

Γ
(

β
2

)

Γ
(

β+1
2

) ,

leading finally to

Ic,STD =
1

δ2
β + 1

β + 3
.

A.1.9 Minimization of the asymptotic variance w.r.t. η under the asymp-
totic zero mean constraint.

For simplifying the notation we will use η and fd, suppressing the subscripts and superscripts.

The problem we want to solve is

minimize

w.r.t. η
σ2∞ =

η⊤Fdη

η⊤fdf⊤d η
, (A.3)

subject to F
vec,⊤
d η = 0,

η 6= 0,

where Fvec
d is the diagonal of Fd in vector form. This problem can be also cast as a maximiza-

tion problem

maximize

w.r.t. η

1

σ2∞
=

η⊤fdf⊤d η

η⊤Fdη
, (A.4)

subject to F
vec,⊤
d η = 0,

η 6= 0.

As Fd is a diagonal matrix it can be decomposed as the product of diagonal matrices

formed with the square roots of the diagonal terms

Fd = F
1
2
dF

1
2
d .

Thus using the change of variables

η = F
− 1

2
d η′,
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the problem (A.4) becomes

maximize

w.r.t. η′

η′⊤F
− 1

2
d fdf

⊤
d F

− 1
2

d η′

η′⊤η′

,

subject to F
vec,⊤
d F

− 1
2

d η′ = 0,

η′ 6= 0.

This problem can be solved by constraining η′⊤η′ to be equal to one and then maximizing

the numerator

maximize

w.r.t. η′
η′⊤F

− 1
2

d fdf
⊤
d F

− 1
2

d η′, (A.5)

subject to η′⊤η′ = 1,

F
vec,⊤
d F

− 1
2

d η′ = 0,

η′ 6= 0.

Note that F
vec,⊤
d F

− 1
2

d is a transposed vector with the square roots of Fvec
d . This term will be

denoted

(

F
1
2
,vec

d

)⊤
from now on. This problem has been treated in [Golub 1973] and we will

apply here the same development.

The Lagrangian of the maximization problem (A.5) is given by

L = η′⊤F
− 1

2
d fdf

⊤
d F

− 1
2

d η′ − λ
(

η′⊤η′ − 1
)

+ 2µη′F
1
2
,vec

d ,

where λ and µ are Lagrange multipliers. The zero derivative point of the Lagrangian w.r.t.

η′ is given as the solution of the following equation:

F
− 1

2
d fdf

⊤
d F

− 1
2

d η′ − λη′ + µF
1
2
,vec

d = 0. (A.6)

Multiplying by

(

F
1
2
,vec

d

)⊤
gives

(

F
1
2
,vec

d

)⊤
F
− 1

2
d fdf

⊤
d F

− 1
2

d η′ − λ

(

F
1
2
,vec

d

)⊤
η′ + µ

(

F
1
2
,vec

d

)⊤
F

1
2
,vec

d = 0.

As Fd are quantizer output probabilities, we have

(

F
1
2
,vec

d

)⊤
F

1
2
,vec

d = 1.

Now, using the expression above and the second equality constraint (that the asymptotic mean

is zero) on the factor that multiplies λ, we obtain

µ = −
(

F
1
2
,vec

d

)⊤
F
− 1

2
d fdf

⊤
d F

− 1
2

d η′.
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Substituting this expression for µ in (A.6), we get
[

I− F
− 1

2
d

(

F
1
2
,vec

d

)⊤
]

(

F
1
2
,vec

d

)⊤
F
− 1

2
d fdf

⊤
d F

− 1
2

d η′ = λη′,

where I is the identity matrix. Clearly,

[

I− F
− 1

2
d

(

F
1
2
,vec

d

)⊤
]

= P′ is a projection matrix

and the optimal η′ is the eigenvector of P′
(

F
1
2
,vec

d

)⊤
F
− 1

2
d fdf

⊤
d F

− 1
2

d that gives the maximum

λ. For a squared matrix A and projection matrix P′, we know that the maximum eigenvalue

function λ (�) respects the following equality:

λ
(

P′A
)

= λ
(

P′2A
)

= λ
(

P′AP′) .

This means that the optimal η′ can also be found as the eigenvector of

P′F
− 1

2
d fdf

⊤
d F

− 1
2

d P′

related to the maximum eigenvalue λ. As the only non zero eigenvector of P′F
− 1

2
d fdf

⊤
d F

− 1
2

d P′

is P′F
− 1

2
d fd, this is the optimal η′. Changing back to the initial vector η, we have

η ∝ F
− 1

2
d

[

I− F
− 1

2
d

(

F
1
2
,vec

d

)⊤
]

F
− 1

2
d fd.

The proportional ∝ comes from the fact that the solution of (A.3) is defined up to a propor-

tional factor. Expanding the expression gives

η ∝ F−1
d fd − F

− 1
2

d F
1
2
,vec

d

(

F
1
2
,vec

d

)⊤
F
− 1

2
d fd

∝ F−1
d fd − 1fd,

where 1 is a squared matrix filled with ones.

A.1.10 Proof that 1
fT
d
F

−1
d

fd
= 1

Ns
∑

j=1

∑

i(j)∈I(j)

f̃
(j) 2
d [i(j)]
F̃
(j)
d [i(j)]

in the fusion center approach.

For simplifying notation the sensor superscript in F̃
(l′)
d

[

i(l
′)
]

and f̃
(l′)
d

[

i(l
′)
]

will not be written,

the dependence on the sensor number will be done implicitly through the argument of the

function F̃d

[

i(l
′)
]

and f̃d

[

i(l
′)
]

. Using the fact that that Fd is diagonal, we can write

fTd F
−1
d fd =

∑

i∈I⊗Ns



























∑Ns

j=1 f̃d
[

i(j)
]

Ns
∏

j′ = 1

j′ 6= j

F̃d

[

i(j
′)
]



























2

Ns
∏

j=1
F̃d

[

i(j)
]

,
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where I⊗Ns is the set of all possible i. Developing the quadratic term, the sum above is equal

to the sum of two terms

fTd F
−1
d fd = I1 + I2,

with

I1 =
∑

i∈I⊗Ns















































Ns
∑

j=1

{

f̃d
[

i(j)
]

}2 Ns
∏

j′ = 1

j′ 6= j

{

F̃d

[

i(j
′)
]}2

Ns
∏

j=1
F̃d

[

i(j)
]















































and

I2 =
∑

i∈I⊗Ns







































































Ns
∑

l=1

Ns
∑

m = 1

m 6= l

f̃d
[

i(l)
]

f̃d
[

i(m)
]



























Ns
∏

l′ = 1

l′ 6= l

F̃d

[

i(l
′)
]





















































Ns
∏

m′ = 1

m′ 6= m

F̃d

[

i(m
′)
]



























Ns
∏

j=1
F̃d

[

i(j)
]







































































.

Dividing the common factors in I2 and rewriting the sum, we obtain

I2 =
∑

i∈I⊗Ns

Ns
∑

l=1

Ns
∑

m = 1

m 6= l















































f̃d

[

i(l)
]

f̃d

[

i(m)
]

Ns
∏

p = 1

p 6= l

p 6= m

F̃d

[

i(p)
]















































=

Ns
∑

l=1

Ns
∑

m = 1

m 6= l

∑

i(l)∈I(l)

∑

i(m)∈I(m)















































f̃d

[

i(l)
]

f̃d

[

i(m)
]















































∑

i∈I⊗Ns⋆

Ns
∏

p = 1

p 6= l

p 6= m

F̃d

[

i(p)
]





























































































,

where I⊗Ns⋆ is the set of all combinations of i, without considering i(l) and i(m). The interior

sum in the RHS of the last equality equals to one because F̃d

[

i(p)
]

is a probability. Thus I2
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is given by

I2 =

Ns
∑

l=1

Ns
∑

m = 1

m 6= l

∑

i(l)∈I(l)

∑

i(m)∈I(m)

{

f̃d

[

i(l)
]

f̃d

[

i(m)
]}

=

Ns
∑

l=1

Ns
∑

m = 1

m 6= l







∑

i(l)∈I(l)

f̃d

[

i(l)
]













∑

i(m)∈I(m)

f̃d

[

i(m)
]







.

From the symmetry assumptions f̃d
[

i(j)
]

is an odd function of i(j), therefore I2 = 0.

The term I1 can be rewritten by dividing common factors from the numerator and denom-

inator. This gives

I1 =
∑

i∈I⊗Ns

Ns
∑

j=1































f̃2d
[

i(j)
]

F̃d

[

i(j)
]

Ns
∏

j′ = 1

j′ 6= j

F̃d

[

i(j
′)
]































.

Changing the order of summation and separating the sum for the sensor index j from the

others, we obtain

I1 =

Ns
∑

j=1

∑

i(j)∈I(j)































f̃2d
[

i(j)
]

F̃d

[

i(j)
]

∑

i∈I⊗Ns⋆































Ns
∏

j′ = 1

j′ 6= j

F̃d

[

i(j
′)
]





























































,

where now I⊗Ns⋆ is the set of all possible i without considering i(j). As the inner sum is equal

to one, we finally have

fTd F
−1
d fd =

Ns
∑

j=1

∑

i(j)∈I(j)

f̃2d
[

i(j)
]

F̃d

[

i(j)
]

and consequently
1

fTd F
−1
d fd

=
1

Ns
∑

j=1

∑

i(j)∈I(j)

f̃2
d [i(j)]

F̃d[i(j)]

.
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A.2 More? - Further details

A.2.1 Discussion on the issues of finding the MLE

Binary quantization. In Subsection 1.3.6, we give an analytic expression for the MLE in

the binary quantization case. In this case the MLE depends on the noise distribution mainly

through the inverse of the CDF, thus existence and unicity of the MLE are guaranteed by the

monotonicity of noise CDF (implicitly stated in the assumption AN2).

Multibit and dynamic quantization: log-concave distributions. In the multibit case,

or even in the binary case when the threshold is not static, we cannot write a closed-form

expression for the the MLE. In this case, we have to use a numerical method for the evaluation

of the maximum.

In the case of log-concave distributions (the Gaussian distribution is an example), we can

show that, as it is explained in Subsection 1.4.4, the log-likelihood with quantized measure-

ments is concave. Thus, in this case the log-likelihood has only one maximum which can be

found very efficiently using the Newton’s algorithm.

Multibit and dynamic quantization: general distributions. If the distribution is not

log-concave, then the Newton’s algorithm does not necessarily converge. If it converges, it can

converge very slowly when compared to the log-concave distribution case. It can also happen

that the likelihood has multiple maxima, in this case, any technique based on the gradient

may fail to find the global maxima and other types of maximization techniques must be used.

As a simple example of non log-concave noise distribution, we can consider the Cauchy

distribution with PDF and CDF given by (1.33) and (1.34) respectively. The log-likelihood

for estimating x with δ = 1, τ = [−3 − 2 − 1 0 1 2 3]⊤ and ik = {−3, −3, −4, 3, 3, 3} is

shown in Fig. A.2.

−4 −2 0 2 4

−22

−20

−18

−16

x

lo
g
(L

)

Figure A.2: Log-likelihood function for estimating x based on the quantized measurements

ik = {−3, −3, −4, 3, 3, 3}. The quantizer has NI = 8 and τ = [−3 − 2 − 1 0 1 2 3]⊤. The

distribution of the noise is Cauchy with δ = 1.

We can clearly note the multimodality of the log-likelihood function.
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A.2.2 MLE for estimation of a constant based on binary quantized mea-
surements: uniform/Gaussian noise case.

The MLE for binary quantized measurements is given by (1.45)

X̂ML = τ0 − F−1

[

1

2

(

1− 1

N

N
∑

k=1

ik

)]

.

The function F−1 (�) is the inverse of the noise CDF. For the uniform/Gaussian case, the CDF

is given by (1.37)

F (ε) =







































1
C
Φ
(

ε+α
2

σ

)

, for ε < −α
2 ,

1
C

[

1
2 + 1√

2πσ

(

ε+ α
2

)

]

, for − α
2 ≤ ε ≤ α

2 ,

1
C

[

α√
2πσ

+Φ
(

ε+α
2

σ

)]

, for ε > α
2 ,

where C = 1 + α√
2πσ

. As the CDF is decomposed in three parts, for inverting the CDF we

might distinguish three possible cases. Using the notation 1 − P̂ML = 1
2

(

1− 1
N

N
∑

k=1

ik

)

, the

cases are the following:

• 1− P̂ML <
1
2C ,

• 1
2C ≤ 1− P̂ML ≤ 1

C

(

1
2 + α√

2πσ

)

,

• 1− P̂ML >
1
C

(

1
2 + α√

2πσ

)

.

Using the inverse of F (�) for each case in the expression of the estimator above, we get

X̂ML =



















τ0 +
α
2 − σΦ−1

[

C
(

1− P̂ML

)]

, for 1− P̂ML <
1
2C ,

τ0 +
α
2 −

√
2πσ

[

C
(

1− P̂ML

)

− 1
2

]

, for 1
2C ≤ 1− P̂ML ≤ 1

C

(

1
2 + α√

2πσ

)

,

τ0 − α
2 − σΦ−1

[

C
(

1− P̂ML

)

− α√
2πσ

]

, for 1− P̂ML >
1
C

(

1
2 + α√

2πσ

)

.

The function Φ−1 [�] is the inverse of the standard Gaussian CDF.
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A.2.3 MLE for estimation of a constant based on binary quantized mea-
surements: generalized Gaussian noise case.

For binary quantized measurements with a fixed threshold, the MLE is given by (1.45)

X̂ML = τ0 − F−1

[

1

2

(

1− 1

N

N
∑

k=1

ik

)]

,

where F−1 (�) is the inverse of the noise CDF. In the GGD case the CDF is the following

(1.40):

F (ε) =
1

2



1 + sign (ε)
γ
(

1
β
,
∣

∣

ε
δ

∣

∣

β
)

Γ
(

1
β

)



 .

Therefore, denoting the average of the binary observations by ī = 1
N

N
∑

k=1

ik, we have the

following MLE:

X̂ML = τ0 + δsign (̄i)

{

γ−1

[

1

β
, |̄i|Γ

(

1

β

)]} 1
β

,

where γ−1 [�, �] is the inverse of the incomplete gamma function.

A.2.4 Adaptive binary threshold asymptotic probabilities when the thresh-
old is defined in a grid.

We consider here that the parameter lies in an interval [−A, A], where A is a positive real.

For assimilating this information, we are going to change the update of the binary threshold.

The following is assumed:

• The step size γ is chosen so that
A

γ
= N,

with N a positive integer.

• The initial threshold τ0,0 is chosen to be an integer multiple of γ, τ0,0 = jγ, so that

τ0,0 ∈ [−A, A].

• The threshold cannot leave the interval [−A, A]. This means that when τ0,k−1 = A and

ik = 1, we will set τ0,k = A. When τ0,k−1 = −A and we have ik = −1, we will set

τ0,k = A. This changes the adaptive update of the threshold (1.49) to

τ0,k =















−A, if τ0,k−1 = −A and ik = −1,

τ0,k = τ0,k−1 + γik,

A, if τ0,k−1 = A and ik = 1.

(A.7)
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The threshold is now defined in a finite grid

τ0,k ∈
{

−A, −A(N − 1)

N
, · · · , −A

N
, 0,

A

N
, · · · , A(N − 1)

N
, A

}

.

An iteration of the threshold update is depicted in Fig. A.3.

Time k − 1

−A
−A

(N−1)
N

· · ·

A i
N A

(i+1)
N

· · ·

A
(N−1)

N
A

τ0,k−1 yk (measure)

Time k

−A
−A

(N−1)
N

· · ·

A i
N A

(i+1)
N

· · ·

A
(N−1)

N
A

τ0,k

Figure A.3: An iteration of the binary threshold update in the grid where it is defined. The

values of the finite grid where the threshold is defined are indicated by the black squares.

Asymptotic probability distribution

In a similar way as for the infinite grid, we will define a transition matrix for the finite grid

Tfg. In this case the matrix will have size (2N + 1)× (2N + 1). Using the following notation

for the CDF elements

aj = F

(

A
j

N
− x

)

= 1− F

(

x−A
j

N

)

,

the transition matrix is given by

Tfg =





















































a−N a−(N−1)

1− a−N 0
. . .

0 1− a−(N−1)

...
... 0 0

... a0
0

1− a0
...

0 0
...

... aN−1 0
. . . 0 aN

1− aN−1 1− aN





















































.

The Markov chain formed by the sequence τ0,k is an ergodic chain, as all threshold values

can be reached from all other threshold values and the borders −A and A make the chain to
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be aperiodic1. Thus, the sequence of thresholds admit a unique asymptotic distribution p∞
[Gallager 1996, Ch. 4]. The asymptotic distribution is then the solution of

p∞ = Tfgp∞,

or equivalently

(Tfg − I)p∞ = Rp∞ = 0, (A.8)

where I is a (2N + 1) × (2N + 1) identity matrix and 0 is the zero vector. The problem is

then to find a vector from the null space of R

R =





















































a−N − 1 a−(N−1)

1− a−N −1
. . .

0 1− a−(N−1)
. . .

... 0
... 0

. . . 0
... a0

−1

1− a0
...

0
. . . 0

...

0
...

. . . aN−1 0

. . . −1 aN
1− aN−1 −aN





















































,

under the constraint that the vector is a probability vector: it sums to one

1
⊤p∞ = 1,

where 1 is a vector with all elements equal to one, and all its elements are nonnegative

p∞ � 0.

For solving (A.8), we start by solving its last line (the line at the bottom). We have

(1− aN−1) pN−1,∞ − aNpN,∞ = 0,

which gives

pN−1,∞ =
aN

(1− aN−1)
pN,∞.

For the next line (above), we obtain

aNpN,∞ − pN−1,∞ + (1− aN−2) pN−2,∞ = 0

and solving it, we have

pN−2,∞ =
pN−1,∞ − aNpN,∞

(1− aN−2)
.

1This is not the case for the thresholds defined in an infinite grid. In this case the thresholds must be

separated in two periodic classes [Fine 1968].
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Using the expression for pN−1,∞ above, we get

pN−2,∞ =
aN−1aN

(1− aN−2) (1− aN−1)
.

Clearly, from the similarity of the equations for the other lines, we can proceed in the same

way to obtain

pN−i,∞ =











i−1
∏

j=0
aN−j

i
∏

j=1
(1− aN−j)











pN,∞, for i ∈ {−N, · · · , N − 1} . (A.9)

If we denote

ci =











i−1
∏

j=0
aN−j

i
∏

j=1
(1− aN−j)











,

then, pN,∞ can be found by using the constraint that the vector must sum to one

(

2N
∑

i=1

pN−i,∞

)

+ pN,∞ = 1.

Separating the factor pN,∞ which appears in all terms (see (A.9)), we get

pN,∞ =
1

1 +
2N
∑

i=1
ci

. (A.10)

Using this and (A.9), we can obtain a general expression for the probabilities

pN−i,∞ =
c′i

1 +
2N
∑

i=1
ci

, for i ∈ {0, · · · , 2N} , (A.11)

where

c′i =

{

1, if k = 0,

ci, otherwise.

By substituting the c′i in (A.11), we get the following expressions for the asymptotic proba-

bilities

pN,∞ =
1

P (x)

2N
∏

i=1

(1− aN−i) ,

p−N,∞ =
1

P (x)

2N−1
∏

i=0

aN−i, (A.12)

pN−i,∞ =
1

P (x)





i−1
∏

j=0

aN−j









2N
∏

j=i+1

(1− aN−j)



 ,



A.2. More? - Further details 241

where the normalization factor P (x) is

P (x) =





2N
∏

j=1

(1− aN−j)



+





2N−1
∏

j=0

aN−j



+

2N−1
∑

j=1







(

j−1
∏

k=0

aN−k

)





2N
∏

l=j+1

(1− aN−l)











.

(A.13)

With the expressions above for the asymptotic probabilities of the thresholds, it is possible

to obtain exact values for the asymptotic FI using (1.62).

Maximum of the probability distribution

We are going to verify that the asymptotic threshold is indeed around the true parameter.

We will analyze the position of the maximum probability threshold and the increasing and

decreasing patterns of the asymptotic probabilities. For doing so, we will obtain the expres-

sions for the signs of the differences between neighboring (in threshold position) asymptotic

probabilities.

Starting at the negative extremum of the interval, the difference is the following:

p−N,∞ − p−(N−1),∞ =
1

P (x)





(

2N−1
∏

i=0

aN−i

)

−





2N−2
∏

j=0

aN−j



 (1− a−N )



 .

Making explicit the common factor, we have

p−N,∞ − p−(N−1),∞ =

(

2N−1
∏

i=0
aN−i

)

P (x)

[

a−(N−1) − (1− a−N )
]

.

The factor

(

2N−1
∏

i=0
aN−i

)

P (x) is positive because
2N−1
∏

i=0
aN−i is positive, it is a product of probabilities,

and P (x) is also positive, it is a sum of products of probabilities. Therefore, to obtain the

sign of p−N,∞−p−(N−1),∞ as a function of x, we need only to analyze the sign of the difference

a−(N−1) − (1− a−N ). Using the expressions for the ai terms, we have

sign
(

p−N,∞ − p−(N−1),∞
)

= sign

{[

1− F

(

x+A
(N − 1)

N

)]

− F (x+A)

}

.

The difference in the sign on the RHS is the difference between a complementary CDF

parametrized by x and centered on −A (N−1)
N

, 1 − F
(

x+A
(N−1)

N

)

, and a CDF centered

on −A, F (x+A). Using the facts that the complementary CDF is a decreasing function

(from one to zero), the CDF is an increasing function (from zero to one) and that CDF is

simply a reversed and shifted version of the complementary CDF, we obtain the following

conclusions:

• the sign of the probability difference is positive for x ∈
[

−A, −A(N− 1
2)

N

)

.
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• The sign is negative for x > −A(N− 1
2)

N
.

• The probability difference is zero when x = −A(N− 1
2)

N
.

The difference between probabilities for i ∈ {1, · · · , 2N − 1} is

p(N−i),∞ − p(N−i+1),∞ =
1

P (x)











i−1
∏

j=0

aN−j









2N
∏

j=i+1

(1− aN−j)



 −

−





i−2
∏

j=0

aN−j









2N
∏

j=i

(1− aN−j)











and after factorization

p(N−i),∞ − p(N−i+1),∞ =

(

i−2
∏

j=0
aN−j

)[

2N
∏

j=i+1
(1− aN−j)

]

P (x)
[aN−i+1 − (1− aN−i)] .

As the first factor on the RHS is positive, the sign of the difference is determined by

sign
(

p(N−i),∞ − p(N−i+1),∞
)

= sign

{[

1− F

(

x−A
(N − i+ 1)

N

)]

− F

(

x−A
(N − i)

N

)}

.

The analysis of the sign above is similar to the negative extremum case. Thus we have the

following conclusions:

• the sign of the difference is positive for x < A
(N−i+ 1

2)
N

.

• We have a negative sign for x > A
(N−i+ 1

2)
N

.

• The difference is zero when x = A
(N−i+ 1

2)
N

.

Using a similar procedure for the positive extremum, we have that the sign of the difference

is given by

sign
(

p(N−1),∞ − pN,∞
)

= sign

{

[1− F (x−A)]− F

(

x−A
(N − 1)

N

)}

,

which leads to the same conclusions as above, the exception is that i = 0 in this case.

Joining all the results, we can see that the maximum of the asymptotic probability vector

always occurs at the point of the grid that is closest to x. Moreover, the distribution always

decreases when we consider thresholds with increasing distance to the maximum probability

threshold. This means that the distribution is unimodal with its maximum close to the

parameter, thus justifying the statement that the thresholds will be placed asymptotically

around the parameter.
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Small noise approximation

The analytical asymptotic probabilities expressions (A.13) are quite cumbersome to be eval-

uated when N is large. As the CDF are almost step functions (zero/one functions) for large

arguments and as the asymptotic probabilities are products of CDF, in the case when the

noise level is small compared with γ, we can obtain very simple approximate expressions for

the asymptotic probabilities that involve only a few CDF terms.

The small noise approximations for the complementary CDF and CDF are the following:

aN−i = 1− F

(

x−A
(N − i)

N

)

=















1, x < A
(N−i−1)

N
,

0, x > A
(N−i+1)

N
,

1− F
(

x−A
(N−i)

N

)

, A
(N−i+1)

N
< x < A

(N−i−1)
N

,

1− aN−i = F

(

x−A
(N − i)

N

)

=















0, x < A
(N−i−1)

N
,

1, x > A
(N−i+1)

N
,

F
(

x−A
(N−i)

N

)

, A
(N−i+1)

N
< x < A

(N−i−1)
N

.

(A.14)

Independently of the value of x, we can get the following approximations of the CDF products

using (A.14):

2N
∏

i=1

(1− aN−j) ≈ 1− aN−1,

2N−1
∏

i=0

aN−i ≈ a−N+1,

(

j−1
∏

i=0

aN−i

)





2N
∏

i=j+1

(1− aN−i)



 ≈ aN−j+1 (1− aN−j−1) .

We can now apply these approximations to the asymptotic probabilities (A.13). Note that

the approximations will be dependent on the value of x. For x ∈
[

−A, −A (N−1)
N

]

we have

p−N,∞ ≈ a−N+1

2− a−N
=

1− F
(

x+A
(N−1)

N

)

1 + F (x+A)
,

p−(N−1),∞ ≈ 1− a−N

2− a−N
=

F (x+A)

1 + F (x+A)
,

p−(N−2),∞ ≈ a−N+1

2− a−N
=

F
(

x+A
(N−1)

N

)

1 + F (x+A)

p(N−i),∞ ≈ 0, for i ∈ {0, · · · , 2N − 3} .
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For x ∈
(

A
(N−i−1)

N
, A

(N−i)
N

]

, we obtain 4 nonzero terms, all the others are approximately

zero. The nonzero terms are

p(N−i−2),∞ ≈ aN−i−1

2
=

1− F
(

x−A
(N−i−1)

N

)

2
,

p(N−i−1),∞ ≈ aN−i

2
=

1− F
(

x−A
(N−i)

N

)

2
,

p(N−i),∞ ≈ 1− aN−i−1

2
=

F
(

x−A
(N−i−1)

N

)

2
,

p(N−i+1),∞ ≈ 1− aN−i

2
=

F
(

x−A
(N−i)

N

)

2
.

Finally, for the positive extremum, x ∈
(

A
(N−1)

N
, A
]

, the approximations give the follow-

ing:

p(N−2),∞ ≈ aN−1

1− aN
=

1− F
(

x−A
(N−1)

N

)

2− F (x−A)
,

p(N−1),∞ ≈ aN

1 + aN
=

1− F (x−A)

2− F (x−A)
,

pN,∞ ≈ 1− aN−1

1 + aN
=

F
(

x−A
(N−1)

N

)

2− F (x−A)

p(N−i),∞ ≈ 0, for i ∈ {3, · · · , 2N} .

Under the small noise assumption, these approximations are not only useful for evaluating

the FI, but they can also be used for estimating the parameter when the number of measure-

ments is very large. Suppose that after a number of samples M , the threshold probabilities

reach approximately the asymptotic distribution, then, from this point on, we start to store

the measurements forming an histogram of the threshold values that were used. After a large

number of measurements, the histogram will be very close to the asymptotic threshold prob-

abilities. We can then search for the two largest values of the histogram and using one of the

correspondent empirical frequencies in the place of the true probability, we can inverse the

corresponding approximate expression for the probability to obtain x.

For example, suppose we have obtained the largest empirical frequencies at the points

N − i− 1 and N − i. The empirical frequency at N − i− 1 is p̂(N−i−1),∞, then inverting the

corresponding p(N−i−1),∞ we get the estimate x̂

x̂ = A
(N − i)

N
+ F−1

(

1− 2p̂(N−i−1),∞
)

.
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A.2.5 Particle filter using rejection sampling for tracking
a scalar Wiener process.

The optimal sampling distribution p (xk|xk−1, ik) can be rewritten as

p (xk|xk−1, ik) =
p (xk, xk−1, ik)

p (xk−1, ik)
=

P (ik|xk) p (xk|xk−1)

P (ik|xk−1)
∝ P (ik|xk) p (xk|xk−1) , (A.15)

where the proportional relation comes from the fact that, for a given ik, the probability

P (ik|xk−1) is a constant independent of xk. Note that as P (ik|xk) is a probability, it can

be bounded above by one, as a consequence P (ik|xk) p (xk|xk−1) can be bounded above by

p (xk|xk−1) which is a Gaussian PDF. Therefore, for each previous x
(j)
k−1, a standard re-

jection sampling method [Robert 1999, pp. 50] can be applied to generate a sample from

p
(

xk|x(j)k−1, ik

)

. This can be done by sampling independently from the Gaussian distribution

p (xk|xk−1) and from the uniform distribution U [0, 1]. The rejection sampling method that

gives the optimal samples x
(j)
k is the following:

Rejection sampling for the optimal sampling distribution

(app1) For j = 1 to NS

• Set u
(j)
k = 1 and l

(j)
k = 0.

• While l
(j)
k < u

(j)
k , do

– Sample the Gaussian distribution

(How? - App. A.3.3)

p
(

xk|x(j)k−1

)

=
1√
2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 .

– Evaluate l
(j)
k

l
(j)
k = P

(

ik|x(j)k

)

.

– Sample, independently from x
(j)
k , the uniform

distribution U [0, 1].

Note that we accept a sample x
(j)
k only when the its likelihood P

(

ik|x(j)k

)

is larger than the

uniform sample.

By replacing (A.15) in the place of q (xk|x0:k−1, i1:k) in the recursive expression for the

weights (2.25), we have the following update equation for the weights

w
(

x
(j)
1:k

)

= P

(

ik|x(j)k−1

)

w̃
(

x
(j)
1:k−1

)

.
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Observe that we might evaluate P

(

ik|x(j)k−1

)

, which can be obtained similarly as P

(

ik|x(j)k

)

with

P

(

ik|x(j)k−1

)

=







F ′
(

τik,k − x
(j)
k−1 − uk

)

− F ′
(

τik−1,k − x
(j)
k−1 − uk

)

, if ik > 0,

F ′
(

τik+1,k − x
(j)
k−1 − uk

)

− F ′
(

τik,k − x
(j)
k−1 − uk

)

, if ik < 0,
(A.16)

where F ′ is the CDF for the r.v. that is the sum of the noise r.v. Vk and the centered Xk

increment Wk − uk.

The procedure for tracking the Wiener process starts by sampling independently NS times

the prior distribution p (x0) and setting the initial weights all to 1
NS

. After obtaining the first

measurement i1, both the sampling with p (x1|xk−1, i1) and the updates of the weights can be

done. Then, after normalizing the weights, the estimate x̂1 can be obtained with the weighted

mean. The procedure is then repeated for each time k in a sequential way.

This procedure may also suffer from the degeneracy problem explained in Sec. 2.3.4 (p.

85), thus a resampling step (How? - App. A.3.4) (app4) must be carried out each time the

number of effective samples is too low.

The performance of this sequential importance sampling algorithm can be obtained through

a lower bound, as it is discussed in Sec. 2.4.

Remark: to reduce the complexity of this algorithm, we could use a technique based on

local linearizations of the optimal proposal distribution [Doucet 2000]. The problem with this

approach is that it requires the logarithm of the optimal proposal to have a positive second

derivative and this cannot be guaranteed for all noise distributions considered here.
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The sequential procedure with the resampling step (particle filter) for solving (b) (p. 29)

is the following:

Solution to (b) - Particle filter with rejection for

a fixed threshold set sequence τ 1:k

(b1.2) 1) Estimator

• Set uniform normalized weights w̃
(

x
(j)
0

)

= 1
NS

and initialize

NS particles
{

x
(1)
0 , · · · , x(NS)

0

}

by sampling the prior

p (x0) =
1√
2πσ0

exp

[

−1

2

(

x0 − x′0
σ0

)2
]

.

For each time k,

• for j from 1 to NS, sample the r.v. X
(j)
k with rejection sam-

pling (app1).

• for j from 1 to NS, evaluate and normalize the weights

w
(

x
(j)
1:k

)

= P

(

ik|x(j)k−1

)

w̃
(

x
(j)
1:k−1

)

, w̃
(

x
(j)
1:k

)

=
w
(

x
(j)
1:k

)

NS
∑

j=1

w
(

x
(j)
1:k

)

,

where P

(

ik|x(j)k−1

)

is given by (A.16).

• Obtain the estimate with the weighted mean

x̂k ≈
NS
∑

j=1

x
(j)
k w̃

(

x
(j)
1:k

)

.

• Evaluate the number of effective particles

Neff =
1

NS
∑

j=1

w̃2
(

x
(j)
1:k

)

,

if Neff < Nthresh, then resample using multinomial resam-

pling (How? - App. A.3.4) (app4).

2) Performance (lower bound)

The MSE can be lower bounded as follows

MSEk ≥ 1

J ′

k

,

with J ′

k given recursively by

J ′

k =
1

σ2
w

+ Iq (0)−
1

σ4
w

1
(

1
σ2
w
+ J ′

k−1

) .
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A.3 How? - Algorithms and implementation issues

A.3.1 How to sample from a uniform/Gaussian distribution.

We are going to consider that we can generate easily and independently uniform and Gaussian

variates. For generating uniform variates, one can use linear congruential generators (see

[Knuth 1997, Sec. 3.2] for details), while for generating Gaussian variates one can use the

Box-Muller transform which requires a pair of independent uniform variates [Box 1958].

By looking to the specific form of the PDF (1.36)

f (ε) =



























fGL (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε+α
2

σ

)2
]

, for ε < −α
2 ,

fU (ε) = 1
C
√
2πσ

, for − α
2 ≤ ε ≤ α

2 ,

fGR (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε−α
2

σ

)2
]

, for ε > α
2 ,

where C = 1+ α√
2πσ

, we can see that we can generate samples from it by generating samples

independently from the half Gaussian distributions

f ′GL (ε) =







2√
2πσ

exp

[

−1
2

(

ε+α
2

σ

)2
]

, for ε < −α
2 ,

0, otherwise,

f ′GL (ε) =







2√
2πσ

exp

[

−1
2

(

ε−α
2

σ

)2
]

, for ε > α
2 ,

0, otherwise

and from the central uniform distribution

f ′U (ε) =

{

1
α
, for − α

2 ≤ ε ≤ α
2 ,

0, otherwise

and then choosing one of the samples randomly. For having the samples distributed correctly,

we will choose the sample from the left Gaussian r.v. with probability 1
2C , or the sample

from the uniform distribution with probability α√
2πσC

or from the right Gaussian also with

probability 1
2C .
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This gives the following algorithm for generating a sample from the uniform/Gaussian

distribution with parameters α and σ:

Uniform/Gaussian sample generator

(app2) To generate a sample v do the following

• evaluate

C =
1

1 + α√
2πσ

,

p1 =
1

2C
,

p2 =
1

C

(

1

2
+

α√
2πσ

)

.

• Generate 2 independent uniform variates (from U [0, 1])

u0 and u1 and 2 standard (zero mean and σ = 1) Gaussian

variates g1 and g2.

• If u0 < p1, then

v = −
(

σ |g1|+
α

2

)

,

else if p1 ≤ u0 ≤ p2, then

v = α

(

u1 −
1

2

)

,

else

v = σ |g2|+
α

2
.

A.3.2 How to sample from a GGD.

We consider that an easy method for generating independent binary samples (samples with

values −1 or 1 that have equal probability) and gamma samples is available. For obtaining

binary samples one can simply take the sign of a sample from a uniform U [−0.5, 0.5] distri-

bution and for obtaining gamma variates one can use a rejection method [Marsaglia 2000].

It can be shown that a generalized Gaussian r.v. V ′ with shape parameter β and unit

scale parameter can be obtained with the following transformation of two independent r.v.

[Nardon 2009]:

V ′ = B
(

Γ 1
β

) 1
β
,

where B is a binary r.v. and Γ 1
β

is a gamma r.v. with shape parameter 1
β
. If we want a

generalized Gaussian r.v. V with scale parameter δ, we need only to multiply V ′ by δ.
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This gives the following algorithm for generating a sample from a GGD with parameters

β and δ:

Generalized Gaussian sample generator

(app3) To generate a sample v do the following

• generate independently a uniform sample u from U [0, 1]

and a gamma sample γ 1
β

from Γ 1
β

with unitary scale pa-

rameter.

• Transform the uniform sample u into a binary sample b

with

b = sign

(

u− 1

2

)

.

• Apply the transformation

v = δb
(

γ 1
β

) 1
β
.

A.3.3 How to sample from the distribution p
(

xk|x(j)
k−1

)

using a Gaussian

standard variate.

Suppose we can generate a Gaussian standard variate Wn ∼ N (0, 1), for example using the

Box-Muller transform on a pair of independent uniform variates [Box 1958]. We want to

generate a Gaussian variate with PDF

p
(

xk|x(j)k−1

)

=
1√
2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 ,

where x
(j)
k−1, uk and σw are known. Using the following properties of Gaussian r.v.:

• the product of a Gaussian r.v. by a constant gives a Gaussian r.v. with variance given

by the initial variance multiplied by the square of the constant;

• the sum of a Gaussian r.v. and a constant gives a Gaussian r.v. with mean shifted by

the value of the constant.

We have that the r.v. X
(j)
k distributed according to p

(

xk|x(j)k−1

)

can be generated as follows

X
(j)
k = σwWn + x

(j)
k−1 + uk.

A.3.4 Multinomial resampling algorithm.

In order to sample from

P (xk) =







w̃
(

x
(j)
1:k

)

, if xk = x
(j)
k

0, otherwise,
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we can create an increasing sequence of cumulative weights

w
(j)
+ =

j
∑

i=1

w̃
(

x
(i)
1:k

)

,

where we define w̃
(

x
(0)
1:k

)

= 0. Thus, the intervals defined by the neighboring pairs of the

sequence
(

w
(j−1)
+ , w

(j)
+

]

form a partition of the interval [0, 1] and their lengths equal the cor-

responding w̃
(

x
(j)
1:k

)

. If we sample from the uniform distribution defined on [0, 1], U [0, 1],

and choose x
(j)
k with j corresponding to the interval in the sequence w+ in which the uni-

form sample is contained, then the chosen x
(j)
k are distributed according to the probability

distribution P (xk) above.

Resetting equal sample weights at the end of the procedure, we have the multinomial

resampling algorithm:

Multinomial resampling

(app4) For j = 1 to NS

• store the particle values in a sequence of auxiliary vari-

ables x̃
(j)
k

x̃
(j)
k = x

(j)
k ,

• create the sequence of cumulative weights

w
(j)
+ =

j
∑

i=1

w̃
(

x
(i)
1:k

)

,

with w̃
(

x
(0)
1:k

)

= 0.

• Create a sequence
{

u′1, · · · , u′NS

}

by sampling indepen-

dently NS times from the distribution U [0, 1].

For j = 1 to NS,

• set x
(j)
k = x̃

(lj)
k , where lj is chosen so that

uj ∈
(

w
(lj−1)
+ , w

(lj)
+

]

,

• reset the normalized weights to a uniform distribution

w̃
(

x
(j)
1:k

)

=
1

NS
.
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A.3.5 How to sample from a STD.

For generating samples from the STD, we consider that a simple method for generating uniform

U [0, 1] samples is available.

It is possible to show that a Student’s-t r.v. V ′ with shape parameter β and unit

scale parameter can be obtained with the following transformation of two independent r.v.

[Bailey 1994]:

V ′ =

[

β

(

U
− 2

β

1 − 1

)] 1
2

cos (2πU2) ,

where U1 and U2 are independent r.v. with uniform U [0, 1] distribution. If we want a

Student’s-t r.v. V with scale parameter δ, we need only to multiply V ′ by δ.

Thus we have the following algorithm for generating a sample from a STD with parameters

β and δ:

Student’s-t sample generator

(app5) To generate a sample v do the following

• generate independently two uniform samples u1 and u2
from U [0, 1].

• Apply the transformation

v = δ

[

β

(

u
− 2

β

1 − 1

)] 1
2

cos (2πu2) .
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Résumé détaillé en français (extended

abstract in French)

Ceci est un résumé détaillé en français des travaux réalisés dans cette thèse. L’introduction

et les conclusions des travaux sont traduites directement du manuscrit en anglais pour une

meilleure compréhension du contexte, les chapitres concernant les développements et résultats

théoriques seront présentés sous forme synthétique, avec seulement les principaux développe-

ments et résultats.
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B.1 Introduction

Quantification : une inconnue dans la salle

Ouvrez un livre, un livre quelconque sur les fondements du traitement numérique du signal,

et comptez le nombre de pages dédiées au théorème de l’échantillonnage et au traitement du

signal à temps discret : la transformée de Fourier rapide, la transformée en Z, le filtrage à

réponse impulsionnelle finie et infinie. Maintenant, comptez le nombre de pages dédiées à la

quantification. Même si la moitié du « monde numérique » est un résultat de la quantification,

si on lit quelques livres fondamentaux en traitement numérique du signal, on a l’impression

qu’elle est un sujet sans importance.

Toutefois, une personne curieuse peut se demander : la quantification est-elle un sujet

vraiment dépourvu d’importance ? Peut-être qu’elle est si difficile à étudier et à expliquer de

façon simple, que la plupart des références de base en traitement numérique du signal préfèrent

omettre une explication plus détaillée. Nous croyons que cette explication est à l’origine de

l’omniprésence de la quantification fine des signaux dans la plupart des livres sur le traitement

numérique des signaux. En la considérant fine, les auteurs de ces livres peuvent reléguer la

quantification à une note de bas de page. On constate que la quantification semble être

l’étrange participant de la « fête du traitement numérique des signaux » et que personne ne

veut discuter avec elle (même si elle est un des organisateurs de la fête). Quelques domaines

du traitement du signal trouvent utile (et dans certaines circonstances ils n’ont pas tort)

de refuser tout contact avec la quantification. Chaque fois qu’ils ont besoin de traiter des

problèmes induits par la quantification, ils l’appellent de façon dépréciative – « le bruit de

quantification ».

Dans cette thèse, nous espérons faire « discuter » de façon respectueuse, sans termes

amoindrissants, un des participants de la fête du traitement du signal avec la quantification.

Le sujet que nous avons choisi est l’estimation.

Dans la suite, on expliquera la motivation et les points principaux de cette « discussion ».

Quantification et réseaux de capteurs : l’invitée d’honneur

Bien que nous ne traitions pas explicitement de la conception d’algorithmes d’estimation avec

une architecture du type réseau de capteurs, avec cette thèse nous espérons contribuer au

développement de techniques qui peuvent être utilisées ou étendues aux réseaux de capteurs.

L’essor des réseaux de capteurs. Avec la réduction des coûts et de la taille des dispositifs

électroniques, tels que les capteurs et les émetteurs-récepteurs, un nouveau domaine a émergé

sous le nom de « Réseaux de capteurs ». Ce terme, en général, désigne un groupe de capteurs

capables de communiquer et de traiter des données pour réaliser une tâche donnée, e.g. : faire

de l’estimation, de la détection, du suivi d’un signal, de la classification, etc.

Les réseaux de capteurs sont intéressants en pratique pour plusieurs raisons, parmi les

plus mentionnées dans la littérature on peut trouver [Akyildiz 2002], [Intanagonwiwat 2000],
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[Zhao 2004, pp. 7–8] :

• tolérance aux défaillances et flexibilité.

• Déploiement facile.

• Possibilité d’utilisation en environnement dangereux.

• Possibilité d’utilisation sans maintenance.

• Utilisation de la communication pour réduire la quantité d’énergie utilisée.

• Rapport signal à bruit amélioré pour le suivi et détection d’événements dans une zone

donnée.

Applications des réseaux de capteurs. Les avantages cités plus haut ouvrent la voie pour

l’utilisation des réseaux de capteurs dans un très large spectre de domaines [Arampatzis 2005],

[Chong 2003], [Durisic 2012], [Puccinelli 2005]: surveillance de l’environnement, surveillance

pour l’agriculture, génie civil, surveillance urbaine, applications en santé, applications com-

merciales etapplications militaires.

Le besoin de quantifier. Même si le progrès des technologies de conception des capteurs

et des dispositifs de communication nous amène à l’utilisation de réseaux à grand nombre de

capteurs, des considérations pratiques tels que l’utilisation de batteries et des contraintes sur

la taille maximale des capteurs imposent trois contraintes majeures pour la conception d’un

réseau de capteur : la contrainte énergétique, la contrainte sur le débit de communication et

la contrainte sur la complexité.

Pour respecter ces contraintes, on peut quantifier les mesures au niveau des capteurs. Ceci

permet de :

• réduire la complexité des opérations grâce à des recherches dans des tableaux pré-stockés

et limiter la quantité de mémoire utilisée.

• réduire directement le débit binaire en sortie des capteurs par le réglage du nombre

d’intervalles de quantification.

• réduire la quantité d’énergie utilisée, comme conséquence de la réduction de la complexité

et du débit.

Voilà les principales raisons pour lesquelles nous avons choisi d’étudier la quantification

dans cette thèse.
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Différents objectifs et précisions sur le sujet de la thèse

Dans un réseau de capteurs, on s’intéresse principalement à l’inférence d’une certaine informa-

tion enfouie dans les mesures. Les deux classes principales de problèmes d’inférence étudiées

en traitement du signal sont la détection et l’estimation. Si on regarde la littérature sur les

problèmes conjoints détection/quantification et estimation/quantification, on constate que, en

comparaison avec la littérature pour les problèmes isolés (seulement détection ou seulement

quantification), sa taille n’est pas importante, en revanche, comme conséquence de l’essor des

réseaux de capteurs, elle ne cesse pas de grandir.

Quelques références sur ces problèmes conjoints sont :

• Détection: [Benitz 1989], [Gupta 2003], [Kassam 1977], [Longo 1990], [Picinbono 1988],

[Poor 1977], [Poor 1988], [Tsitsiklis 1993], [Villard 2010], [Villard 2011].

• Estimation: [Aysal 2008], [Fang 2008], [Gubner 1993], [Luo 2005], [Marano 2007],

[Papadopoulos 2001], [Poor 1988], [Ribeiro 2006a], [Ribeiro 2006b], [Ribeiro 2006c],

[Wang 2010].

Estimation à partir de mesures quantifiées. Dans cette thèse on s’intéresse au second

problème, l’estimation à partir de mesures quantifiées. On commence par la définition générale

du problème d’estimation dans un réseau de capteurs pour, après une suite de simplifications,

arriver au sujet précis de la thèse.

Dans le schéma général, chaque capteur : mesure une quantité à amplitude continue X(i),

puis la mesure est traitée et transmise au point où l’estimation sera faite. Ce point peut être

un centre de fusion, un des capteurs ou tous les capteurs. Dans le dernier cas, tout les capteurs

diffuseront leurs mesures après traitement. Ce schéma est montré en Fig. B.1. La quantité

mesurée peut être une suite de vecteurs, une suite de scalaires, un vecteur constant ou un

scalaire constant.

Comme première hypothèse de travail, on considère que seulement un des terminaux (cap-

teurs) est utilisé dans le réseau de capteurs, éventuellement on peut considérer plusieurs ter-

minaux, mais dans ce cas la quantité à estimer sera la même pour tous les capteurs. On

considère aussi que la quantité à estimer est une séquence de scalaires ou un seul scalaire, on

utilise la notation Xk pour cette quantité dans les deux cas, l’indice k désigne l’échantillon en

question ou le temps discret. Dans le cas où Xk est une constante scalaire, on a Xk = x. Le

problème simplifié, qui peut être appelé problème d’estimation scalaire à distance, est montré

en Fig. B.2.

Le paramètre Xk est mesuré avec du bruit additif Vk. La mesure à amplitude continue est

notée Yk = Xk + Vk. Le problème que nous traitons dans cette thèse est donc un problème

d’estimation d’un paramètre de centrage.

En raison des contraintes de conception discutées plus haut, le bloc de traitement est

remplacé par un quantifieur scalaire. Par conséquent, chaque mesure continue Yk génère

une mesure quantifiée ik au travers d’une fonction de quantification Q (�). Chaque mesure

quantifiée est définie dans un ensemble fini de valeurs, ceci permet de fixer le débit binaire en
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Capteur Traitement Transmission
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Figure B.1: Estimation avec un réseau de capteurs. Plusieurs capteurs transmettent des

informations pré-traitées à l’estimateur final qui doit récupérer les quantités d’intérêt.

Mesure Traitement Transmission

Capteur

Xk
Estimation

X̂k

Figure B.2: Problème d’estimation scalaire à distance. Simplification scalaire et à un seul

capteur du problème montré en Fig. B.1.

sortie du capteur. On suppose que le débit en bits par unité de temps est choisi de façon à ne

pas dépasser la capacité du canal de transmission, de cette manière on peut considérer qu’un

code suffisamment performant peut être mis en œuvre pour rendre le canal parfait.

A chaque instant k, on est intéressé par l’estimation de Xk à partir d’un bloc de mesures

passées i1, i2, · · · , ik. Ce problème est illustré en Fig. B.3.

g (i1, · · · , ik)

Mesure

Estimation

Xk X̂k

Vk

Bruit

Q (Yk)

Quant.

Yk ik Canal

parfait

Figure B.3: Estimation à partir de mesures quantifiées. Un paramètre est mesuré avec du bruit

additif, les mesures sont alors quantifiées et transmises à travers un canal de communication

parfait. A partir de mesures passées, l’objectif est d’estimer Xk à chaque instant k avec la

suite de fonctions g (�).

En Fig. B.3, on voit que la structure du quantifieur peut dépendre aussi de mesures

quantifiées passées.
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Ce que l’on veut étudier. On veut proposer des algorithmes pour l’estimation de Xk à

partir des ik. Le paramètre Xk, qui sera défini de façon plus précise dans la suite, peut être

déterministe et constant ou aléatoire et lentement variable.

Après avoir proposé des algorithmes, on veut étudier leurs performances. Etant données

les performances des algorithmes, on veut aussi étudier les effets de différents paramètres du

quantifieur : seuils de quantification et résolution du quantifieur.

Pour évaluer l’impact de la quantification sur la performance d’estimation, on comparera

la performance des algorithmes proposés avec leurs pendants à mesures continues.

L’objectif ici est d’estimer Xk seulement à partir des informations sur les intervalles où ses

versions bruitées se trouvent.

Ce que l’on ne veut pas étudier. On ne veut pas reconstruire la mesure Yk à partir de la

mesure quantifiée pour ensuite estimer Xk à partir des mesures reconstruites comme si elles

étaient continues. En faisant cela, on se ramènerait au groupement des solutions optimales des

deux problèmes séparés, ces solutions ont déjà été abondamment étudiées dans la littérature.

On ne veut pas non plus considérer la quantification comme du bruit additif. On veut

étudier le problème dans sa forme originale, c’est-à-dire, le problème d’estimation à partir des

informations contenues dans des intervalles et pas dans des valeurs continues.

Ce que l’on veut étudier mais que l’on n’étudiera pas. Pour spécifier de façon plus

précise le problème traité dans cette thèse, on doit aussi mentionner les problèmes que l’on a

négligé sciemment pour rendre le sujet plus simple à traiter. Ces problèmes sont les suivants :

paramètres vectoriels et quantification vectorielle, canaux de communication bruités et codage

canal, signaux à variations rapides, estimation de signaux à temps continu et estimation

Bayésienne d’une constante aléatoire.
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Plan du résumé

Le plan de ce résumé est le suivant :

• Estimation à partir de données quantifiées : algorithmes et performances

On détaille le problème à traiter (présentation des modèles de signaux à estimer, du bruit

et du quantifieur), puis on étudie les algorithmes d’estimation et leurs performances.

– Estimation d’un paramètre constant.

D’abord, on se concentrera sur l’estimation d’un signal constant. On présentera

un estimateur du maximum de vraisemblance pour deux types de quantification :

binaire et multibit. Par l’analyse de sa performance asymptotique, donnée par

la borne de Cramér–Rao (BCR) ou de façon équivalente par l’information de

Fisher, on regardera l’impact du réglage de la dynamique de quantification. Comme

conséquence de cette analyse, on montrera l’importance d’une approche adaptative

pour le réglage du quantifieur. Finalement, on présentera des algorithmes adap-

tatifs de haute complexité qui, conjointement, estiment la constante et règlent le

quantifieur. On montrera qu’asymptotiquement une de ces méthodes est équiva-

lente à un algorithme récursif de basse complexité.

– Estimation d’un paramètre variable.

On passera ensuite au cas du paramètre variable. Après la présentation du modèle

de variation utilisé, on définira le critère de performance d’estimation et l’estimateur

optimal. Pour réaliser l’estimateur optimal, on utilisera une méthode numérique

d’intégration, dans ce contexte (estimation Bayésienne) cette méthode est con-

nue sous le nom de filtrage particulaire. On étudiera ses performances avec la

borne de Cramér–Rao Bayésienne (BCRB) et on montrera encore une fois

l’importance de l’adaptativité du réglage du quantifieur. Avec l’approche adapta-

tive, on montrera qu’asymptotiquement l’estimateur optimal ainsi obtenu pour un

signal lentement variable peut être mis, lui aussi, sous une forme récursive simple.

– Quantifieurs adaptatifs pour l’estimation.

En se basant sur l’optimalité asymptotique des estimateurs vus précédemment, on

proposera des algorithmes adaptatifs de basse complexité pour l’estimation et le

réglage conjoint du quantifieur. On étudiera la performance de ces algorithmes pour

deux modèles d’évolution de la quantité à estimer (constant ou lentement variable)

et on les optimisera par rapport à ses paramètres libres. Pour la performance opti-

male, on étudiera la perte de performance d’estimation par rapport à des schémas

équivalents pour des mesures continues.

On proposera deux extensions de l’algorithme adaptatif : une extension où l’on

estime le paramètre x sans connaître l’échelle du bruit (équivalent de l’écart type)

et une autre où plusieurs capteurs obtiennent des mesures quantifiées en parallèle

et les transmettent à un centre de fusion qui applique un algorithme adaptatif pour

l’estimation et diffuse son estimateur aux capteurs pour le réglage des quantifieurs.
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• Estimation à partir de données quantifiées : approximations à haute résolution. Con-

trairement aux développements précédents où le réglage du quantifieur n’est fait qu’en

fonction du seuil central, on se concentrera ici sur le placement de tous les seuils de

quantification pour maximiser la performance d’estimation d’un paramètre arbitraire

(pas seulement de centrage). Vu que ce problème est difficile à résoudre directement,

on utilisera une approche asymptotique, i.e. on trouvera des approximations pour le

quantifieur optimal quand le nombre d’intervalles de quantification est très grand.

– Approximation à haute résolution de l’information de Fisher. Après avoir montré

l’importance de l’information de Fisher dans la performance d’estimation des al-

gorithmes proposés, on appliquera cette approche asymptotique pour la maximiser

en fonction des caractéristiques du quantifieur. Cette approche asymptotique per-

mettra de trouver une caractérisation optimale du quantifieur et une expression

analytique de l’information de Fisher optimale. On testera les résultats sur le

problème d’estimation d’un paramètre de centrage. Pour avoir une approxima-

tion pratique des seuils de quantification optimaux, on proposera l’utilisation de

l’algorithme adaptatif présenté précédemment.

Avec les expressions analytiques de l’information de Fisher, on pourra aussi étudier

de façon approchée le problème d’allocation optimale de bits dans un réseau de

capteurs, i.e. le nombre total de bits que les capteurs peuvent envoyer à un centre

de fusion étant fixé, combien de bits faut-il allouer à chaque capteur ?

• Conclusions

On présentera les principaux points qui découlent des résultats de la thèse et on regardera

les travaux qui peuvent être développés dans le futur : des extensions de problèmes traités

ici ou des problèmes qui n’ont pas été traités pour avoir une première approche la plus

simple possible.
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B.2 Estimation et quantification : algorithmes et performances

B.2.1 Estimation d’un paramètre constant

Pour commencer cette section, on présente les modèles de mesure et de bruit utilisés.

Modèle de mesure

Le paramètre inconnu, constant et scalaire est

x ∈ R,

il est mesuré N fois, N ∈ N
⋆, avec du bruit indépendant et identiquement distribué

(i.i.d.) Vk. Pour k ∈ {1, · · · , N}, les mesures continues sont données par

Yk = x+ Vk. (B.1)

Modèle de bruit, hypothèses sur la distribution du bruit

Pour simplifier la suite, on considérera les hypothèses suivantes sur la distribution du bruit :

AN1 La fonction de répartition marginale du bruit, notée F , admet une densité de prob-

abilité (d.d.p.) f par rapport à la mesure de Lebesgue standard en (R,B (R)).

AN2 La d.d.p. f (v) est une fonction paire, strictement positive et elle décroît strictement

avec |v|.

Modèle du quantifieur

La sortie du quantifieur est donnée par

ik = Q (Yk) ,

où ik est choisi dans un ensemble fini de valeurs I de R, cet ensemble possède NI éléments.

Le nombre d’intervalles de quantification est par conséquent noté NI . Un exemple simple de

quantifieur Q avec seuils uniformes est donné en Fig. B.4.

A l’exception de la quantification uniforme, que l’on n’imposera pas, cet exemple illustre

les principales hypothèses de travail sur la structure du quantifieur :

Hypothèses (sur le quantifieur) :

AQ1 NI est un nombre naturel pair et l’ensemble I, auquel ik appartient, est

I =

{

−NI

2
, · · · , −1, 1, · · · , NI

2

}

.
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Figure B.4: Fonction de quantification Q (Yk) avec NI intervalles de quantification uniformes

de taille ∆. Le nombre d’intervalles de quantification NI est pair, le quantifieur est symétrique

autour d’un seuil central τ0 et ses indices de sortie sont des entiers non nuls.

AQ2 Le quantifieur est symétrique autour d’un seuil central. Par conséquent le vecteur de

seuils τ peut être écrit sous la forme suivante (⊤ est l’opérateur transposé)

τ =

[

τ−NI
2

= τ0 − τ ′NI
2

· · · τ−1 = τ0 − τ ′1 τ0 τ1 = τ0 + τ ′1 · · · τNI
2

= τ0 + τ ′NI
2

]⊤
.

Les éléments de ce vecteur forment une séquence strictement positive et le vecteur de

variations de seuil par rapport au seuil central est donné par

τ ′ =

[

0 τ ′1 · · · τ ′NI
2

= +∞
]⊤

.

Avec les variations de seuils τ ′i , on peut écrire la relation entrée–sortie du quantifieur sous

une forme plus compacte :

ik = i sign (Yk − τ0) , pour |Yk − τ0| ∈
[

τ ′i−1, τ
′
i

)

. (B.2)

Maximum de vraisemblance, borne de Cramér–Rao et information de Fisher

On veut estimer x à partir de i1:N = {i1, · · · , iN}, on cherche donc un estimateur

X̂ (i1:N ) - qui est aléatoire, vu que les i1:N sont aléatoires aussi,

le plus proche de x. Proche dans ce cas peut être traduit de façon quantitative par un

critère de performance. Dans notre cas on considère comme critère de performance l’erreur

quadratique moyenne (EQM)

EQM = E

[

(

X̂ − x
)2
]

.
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Si l’on impose que l’estimateur soit non biaisé i.e.

E

[

X̂
]

= x,

au moins quand N → ∞, on sait que l’estimateur qui minimise l’EQM asymptotiquement

(et donc qui maximise la performance asymptotiquement) est l’estimateur du maximum

de vraisemblance (MV) [Kay 1993, p. 160]. Le MV consiste à maximiser la fonction

de vraisemblance par rapport au paramètre inconnu. La vraisemblance est la distribution

conjointe des mesures (celles-ci étant figées après observation) et elle est une fonction du

paramètre inconnu (celui-ci considéré comme une variable). Pour le problème que l’on traite

ici, la vraisemblance pour un bloc de mesures indépendantes i1:N est

L (x; i1:N ) =
N
∏

k=1

P (ik;x) ,

où P (ik;x) est la probabilité d’avoir une valeur quantifiée ik à l’instant k pour un paramètre

x. On peut réécrire cette probabilité en fonction des seuils et de la fonction de répartition :

P (ik;x) =

{

P (τik−1 6 Yk < τik) , si ik > 0,

P (τik 6 Yk < τik+1) , si ik < 0,

avec la définition Yk = x+ Vk donnée par (B.1)

P (ik;x) =

{

P (τik−1 6 x+ Vk < τik) , si ik > 0,

P (τik 6 x+ Vk < τik+1) , si ik < 0,

=

{

F (τik − x)− F (τik−1 − x) , si ik > 0,

F (τik+1 − x)− F (τik − x) , si ik < 0.

L’estimateur du MV est donné par

X̂MV,q = X̂MV (i1:N ) = argmax
x

L (x; i1:N ) ,

ou de façon équivalente par

X̂MV,q = argmax
x

logL (x; i1:N ) .

On se concentre maintenant sur les performances de cet estimateur, qui , à cause du

manque de résultats à taille d’échantillon finie, ne sont connues qu’en régime asymptotique.

L’EQM du MV peut être écrit, en général, sous la forme suivante

E

[

(

X̂MV,q − x
)2
]

=
[

E

(

X̂MV,q − x
)]2

+ Var
(

X̂MV,q

)

= biais2 + variance.

Comme mentionné auparavant, le MV est asymptotiquement non biaisé:

E

[

X̂MV,q

]

=
N→∞

x.
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Par conséquent, son EQM n’est caractérisée que par sa variance.

La variance asymptotique du MV atteint la BCR [Kay 1993, p. 160] (qui est aussi une

borne inférieure sur la variance des estimateurs non biaisés dans un contexte non asymptotique

[Kay 1993, p. 30]) :

Var
(

X̂MV,q

)

∼
N→∞

BCRq,

où le symbole ∼
N→∞

est utilisé pour représenter une équivalence.

La BCR est l’inverse de l’information de Fisher [Kay 1993, p. 30] Iq, qui est la variance

de la fonction score Sq. En partant de la fonction score pour N mesures quantifiées, on a les

expressions suivantes

Sq,1:N =
∂ logL (x; i1:N )

∂x
- fonction score,

Iq,1:N = E
[

S2
q,1:N

]

= E

{

[

∂ logL (x; i1:N )

∂x

]2
}

- Fisher,

Var
(

X̂MV,q

)

∼
N→∞

BCRq =
1

Iq,1:N
=

1

E

{

[

∂ logL(x;i1:N )
∂x

]2
} - variance et BCR.

L’indice 1 : N est utilisé pour indiquer que ces quantités sont relatives à N mesures. Pour

simplifier, on utilisera la notation Sq et Iq dans le contexte d’une mesure quantifiée arbitraire.

Sous l’hypothèse de mesures indépendantes on a

Var
(

X̂MV,q

)

∼
N→∞

BCRq =
1

NIq
.

La fonction score pour une mesure Sq est

Sq =
∂ logL (x; ik)

∂x
=

∂P(ik;x)
∂x

P (ik;x)

et l’information de Fisher correspondante est

Iq = E

{

[

∂ logL (x; ik)

∂x

]2
}

=
∑

ik∈I

[

∂P(ik;x)
∂x

P (ik;x)

]2

P (ik;x) ,

=
∑

ik∈I

[

∂P(ik;x)
∂x

]2

P (ik;x)
.

Si on note ε = τ0 − x la différence entre le seuil central et le paramètre, on peut réécrire Iq
sous la forme suivante :

Iq =

ik=
NI
2

∑

ik=1







[

f
(

ε+ τ ′ik−1

)

− f
(

ε+ τ ′ik
)]2

F
(

ε+ τ ′ik

)

− F
(

ε+ τ ′ik−1

) +

[

f
(

ε− τ ′ik
)

− f
(

ε− τ ′ik−1

)]2

F
(

ε− τ ′ik−1

)

− F
(

ε− τ ′ik

)







. (B.3)
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Influence du quantifieur sur la performance

La performance de l’estimateur est donc caractérisée par BCRq ou de façon équivalente par

Iq, par conséquent, pour étudier l’influence du quantifieur sur la performance d’estimation on

peut, de façon quantitative, étudier comment BCRq ou Iq se comportent en fonction de NI et

τ . On commence par quelques propriétés générales de Iq :

Perte induite par la quantification : si on note Sc et Ic la fonction score et l’information

de Fisher du problème d’estimation équivalent avec des mesures continues, on peut montrer

que

Ic − Iq = E

[

(Sc − Sq)
2
]

> 0.

Ce qui veut dire que Iq est majorée par Ic et qu’il existe une perte de performance inhérente

à la quantification donnée de manière quantitative par E

[

(Sc − Sq)
2
]

.

Monotonicité de Iq : on peut montrer aussi que si l’on ajoute un seuil à un vecteur de

seuils τ , alors l’information de Fisher correspondant au nouveau vecteur de seuils est toujours

plus grande ou égale à l’information de Fisher précédente. Cela veut dire que l’information

de Fisher croît de façon monotone en fonction de NI (pour une séquence de seuils construite

en ajoutant des seuils).

Une question qui se pose pour la suite est : comme on peut construire une séquence de

seuils telle que Iq croît de façon monotone en NI et comme on sait que Iq est majorée par Ic,

est-ce que Iq converge vers Ic ? On répondra à cette question plus loin dans ce résumé.

Maintenant, on passe à l’étude de la performance d’estimation en fonction de la position

des seuils. On commence par le cas binaire.

Cas binaire : dans le cas binaire on peut utiliser l’expression de l’information de Fisher

(B.3) pour obtenir la BCR suivante

BCRB
q =

F (ε) [1− F (ε)]

Nf2 (ε)
.

L’analyse de la performance se réduit alors à l’analyse de la fonction

B (ε) = NBCRB
q =

F (ε) [1− F (ε)]

f2 (ε)
.

L’étude de cette fonction dans le cas Gaussien (f (ε) = 1√
πδ

exp
[

−
(

ε
δ

)2
]

) a été réalisée par

[Papadopoulos 2001] et [Ribeiro 2006a], son comportement est illustré en Fig. B.5.

On peut noter que la valeur minimale de B est atteinte lorsque ε = 0 et que B (ε) augmente

lorsque |ε| augmente. Par conséquent la valeur optimale du seuil τ⋆0 est égale à x et la valeur

minimale de B est B⋆ = 1
4f2(0)

= πδ2

4 . Si on compare cette valeur avec la BCR pour les mesures

continues, BCRc×N = δ2

2 , on peut constater que la perte produite par la quantification binaire

est d’environ 2dB, ce qui est, de façon surprenante, très peu.
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Figure B.5: BCR normalisée B en fonction de la différence normalisée ε
δ

entre le seuil et le

paramètre. La distribution du bruit est Gaussienne et le facteur de normalisation δ est le

paramètre d’échelle de la Gaussienne. Des normalisations sont réalisées sur les deux axes pour

que la courbe affichée soit indépendante de δ.

Notez que pour avoir cette petite perte, il faut que τ0 = x, ce qui est impossible en pratique,

puisque x est le paramètre inconnu à estimer. Notez aussi que B est une fonction assez sensible

par rapport à la position du seuil, si l’on place τ0 loin du paramètre la performance d’estimation

est très dégradée.

On peut montrer que pour d’autres distributions couramment utilisées comme modèle de

bruit, tels que la distribution de Laplace et la distribution de Cauchy, des conclusions similaires

peuvent être obtenues :

• La valeur optimale du seuil de quantification est τ⋆0 = x.

• La perte due à la quantification est petite, si on utilise τ⋆0 .

• La performance se dégrade lorsque τ0 s’éloigne de x.

Cas asymétriques : même si pour plusieurs distributions de bruit couramment utilisées la

fonction B a un comportement symétrique en forme de « u », ce comportement ne se généralise

pas à toutes les distributions symétriques, comme on s’y attend intuitivement. Il suffit que la

condition suivante ne soit pas satisfaite

− f (2) (0) > 4f3 (0) ,

pour que la fonction B ait ε = 0 comme maximum local. Ceci veut dire que pour des

densités ne respectant pas cette condition, le point de quantification optimal n’est pas x et la

quantification optimale doit être faite de manière asymétrique par rapport à la distribution

des mesures.
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Un cas simple de distribution symétrique qui ne respecte pas cette condition est la distri-

bution ad hoc suivante

f (ε) =



























fGL (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε+α
2

σ

)2
]

, pour ε < −α
2 ,

fU (ε) = 1
C
√
2πσ

, pour − α
2 ≤ ε ≤ α

2 ,

fGR (ε) = 1
C
√
2πσ

exp

[

−1
2

(

ε−α
2

σ

)2
]

, pour ε > α
2 .

Un exemple de BCR obtenue avec cette distribution (et de la performance pratique du

MV) est donné en Fig. B.6

−2 −1 0 1 2

0.6

0.8

1

1.2
·10
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E
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BCRB
q

Sim. – MV

Figure B.6: BCRB
q et EQM simulée du MV pour un bruit distribué selon la loi ad hoc. La

borne et l’EQM simulée ont été évaluées pour N = 500 et ε dans l’intervalle [−2, 2]. L’EQM

du MV a été évaluée par une simulation Monte Carlo avec 105 réalisations de blocs de 500

échantillons. On a utilisé aussi : α = 1 et σ = 1.

Cas multibit : pour l’estimation avec MV et une quantification multibit, la performance

en fonction du quantifieur peut être étudiée au travers de l’analyse de l’information de Fisher

(B.3). Comme résultat de cette analyse on trouve que :

• la dynamique de quantification doit être proche du paramètre pour maximiser la perfor-

mance d’estimation.

• Pour des variations de seuils symétriques bien choisies, le choix τ0 = x est optimal pour

plusieurs types de bruit (pour une classe plus large que dans le cas binaire).

• La performance se dégrade rapidement quand la dynamique de quantification est placée

loin du paramètre à estimer.

• Le problème d’optimisation de Iq en fonction de τ ′ est difficile à résoudre pour NB =

log2 (NI) > 3.
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Quantification adaptative : l’approche à haute complexité

La conclusion directe des résultats précédents est la suivante : on doit placer le seuil central

le plus proche possible du paramètre x. Or comme x est inconnu, on peut se baser sur les

dernières mesures quantifiées pour estimer x, et comme on s’attend à ce que l’estimateur soit,

au moins après un certain moment, proche de x, on placera le seuil central de quantification

exactement sur cette dernière estimation. Ceci équivaut donc à une approche d’estimation où

le processus de mesure, le quantifieur, est à tout instant adapté pour améliorer la performance

d’estimation.

Dans la littérature cette approche adaptative a été proposée en [Li 2007] et [Fang 2008],

dans le cas binaire et Gaussien.

La première méthode, proposée en [Li 2007], consiste à générer des estimations simples du

paramètre au niveau du capteur avec la mise à jour du seuil central donnée par

τ0,k = τ0,k−1 + γik,

où γ est un pas d’adaptation. Les mesures quantifiées sont donc transmises à l’estimateur

distant qui possède suffisamment de puissance de calcul pour générer des estimations plus

précises en utilisant le MV. Dans ce cas, le MV consiste à maximiser la vraisemblance suivante

L (x; i1:N ) = P(i1:N ;x) =
N
∏

k=1

P(ik|ik−1, · · · , i1;x)

=

N
∏

k=1

P(ik|τ0,k−1;x)

=
N
∏

k=1

[1− F (τ0,k−1 − x)]
1+ik

2 F (τ0,k−1 − x)
1−ik

2 , (B.4)

logL (x; i1:N ) =
N
∑

k=1

{

1 + ik

2
log [1− F (τ0,k−1 − x)] +

1− ik

2
logF (τ0,k−1 − x)

}

.

Du fait de la symétrie du problème, on espère que le seuil τ0,k va tendre en moyenne vers le

point x, de cette façon le seuil central va fluctuer autour du vrai paramètre et donnera une

performance d’estimation proche de l’optimum.

La performance asymptotique de l’algorithme a été étudiée plus en détail dans [Fang 2008].

Elle est obtenue à partir de l’inverse de l’information de Fisher

Iq,1:N =

N
∑

k=1

E

[

f2 (τ0,k−1 − x)

F (τ0,k−1 − x) [1− F (τ0,k−1 − x)]

]

,

où l’espérance est évaluée par rapport à la distribution de τ0,k−1, qui maintenant n’est plus fixé,

ni déterministe. Sachant que la distribution des seuils tend vers une distribution asymptotique,

quand N → ∞, cette information de Fisher peut être approchée par l’information de Fisher

avec la distribution asymptotique des seuils p∞ :

lim
N→∞

Iq,1:N

N
= Ĩ′

⊤
q p̃∞,
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où

I′q =

[

· · · , f2 (−γ − x)

F (−γ − x) [1− F (−γ − x)]
,

f2 (0− x)

F (0− x) [1− F (0− x)]
,

f2 (γ − x)

F (γ − x) [1− F (γ − x)]
, · · ·

]⊤
.

p̃∞ étant de taille infinie, pour avoir la performance asymptotique en pratique, [Fang 2008]

propose de tronquer le vecteur p̃∞.

Un problème avec l’approche adaptative qui vient d’être présentée réside dans la présence

d’une fluctuation asymptotique sur l’emplacement de la dynamique de quantification, ceci

entraîne une sous optimalité asymptotique vu que l’on devrait avoir τ0,k = x pour une perfor-

mance optimale. Ce problème peut être résolu en utilisant un algorithme qui converge vers x

quand N → ∞. En ajoutant de la complexité au niveau du capteur ou un lien de retour de

l’estimateur vers le capteur, une idée assez directe consiste à utiliser la dernière estimation du

MV comme nouveau seuil central :

τ0,k = X̂MV,k.

Cette idée a été proposée initialement pour le cas binaire Gaussien dans [Fang 2008] où les

auteurs prétendent qu’asymptotiquement la performance en terme de variance est équivalente

à 1
NIq(0)

. Ce qui équivaut à dire que l’algorithme est asymptotiquement optimal.

On peut étendre de façon assez naturelle cette approche adaptative au cas multibit et

non Gaussien. Moyennant certaines contraintes sur la fonction Iq (ε), on peut montrer que la

performance asymptotique est aussi optimale

BCRq ∼
N→∞

1

NIq (0)
.

Pour réduire la complexité de l’algorithme, qui résout un problème d’optimisation à chaque

nouvelle mesure, dans [Papadopoulos 2001] une étude heuristique de la forme asymptotique du

MV dans le cas Gaussien binaire avec le seuil adaptatif a été réalisée, elle montre qu’asymptotiquement

le MV adaptatif a une forme récursive de très basse complexité :

X̂k = τ0,k = X̂k−1 +
δ
√
π

2k
ik.

En se basant sur les propriétés asymptotiques du MV et en considérant que l’estimateur

est suffisamment proche du vrai paramètre, on peut montrer que, même dans un contexte non

Gaussien, le MV adaptatif est équivalent à une forme asymptotique simple

X̂k ≈ X̂k−1 +
ik

2kf (0)
.

On peut se poser quelques questions sur la forme équivalente simple donnée ci-dessus :

• peut-elle converger quand l’erreur initiale |ε| = |τ0 − x| est arbitraire (pas nécessairement

petite) ?

• Peut-on étendre cet algorithme à basse complexité au cas NI > 2 ?

On donnera les réponses à ces questions en Sous-section B.2.3.
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B.2.2 Estimation d’un paramètre variable

On passe maintenant à l’estimation d’un paramètre variable.

Modèle du paramètre

Le paramètre à estimer est défini comme un processus stochastique, il n’est donc pas seulement

variable mais aussi aléatoire. A chaque instant k ∈ N
⋆, la variable aléatoire (v.a.) Xk est

donnée par le modèle de Wiener suivant :

Xk = Xk−1 +Wk, k > 0,

où Wk est le k-ème élément d’une séquence indépendante de v.a. Gaussiennes. Sa moyenne

est donnée par uk et sa variance est une constant connue σ2w. Si uk = 0, alors Xk forme un

processus de Wiener à temps discret classique, sinon, on l’appelle processus de Wiener avec

dérive. La distribution initiale Xk est supposée Gaussienne de moyenne x′0 et de variance

connue σ20.

Modèle du quantifieur

Pour poursuivre le paramètre, on suppose que le quantifieur peut être dynamique avec un

vecteur de seuils donné par τ k :

τ k =
[

τ−NI
2

,k
· · · τ−1,k τ0,k τ1,k · · · τNI

2
,k

]⊤
.

Les mesures quantifiées sont encore données par Q (�) définie en (B.2)

ik = Q (Yk) ,

mais dans ce cas, cette fonction peut varier dans le temps.

Estimateur optimal

De façon analogue au cas constant, on veut un estimateur

X̂ (i1:k)

qui minimise l’EQM

EQMk = E

[

(

X̂k −Xk

)2
]

.

Il est connu que l’estimateur optimal minimisant l’EQM est donné par la moyenne a posteriori

X̂k = EXk|i1:k (Xk) =

∫

R

xkp (xk|i1:k) dxk, (B.5)
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où p (xk|i1:k) est la densité a posteriori. Cet estimateur est non biaisé et sa performance est

donnée par

EQMk = Ei1:k

[

VarXk|i1:k (Xk)
]

=
∑

i1:k∈I⊗k







∫

R

(

xk − EXk|i1:k (Xk)
)2
p (xk|i1:k) dxk







P (i1:k) . (B.6)

Filtrage particulaire

La solution donnée par (B.5) est difficile à mettre en œuvre de façon analytique car, dans la

plupart des cas, l’évaluation directe de la densité p (xk|i1:k) et de l’intégrale n’est pas possible.

On doit donc utiliser une méthode numérique pour l’évaluation de la densité et de l’intégrale.

Dans notre cas, on peut utiliser la méthode de Monte Carlo, qui est une méthode d’intégration

numérique basée sur la simulation.

Dans le contexte du problème étudié, l’application de la méthode de Monte Carlo est

connue sous le nom d’échantillonnage d’importance avec rééchantillonnage, populairement,

elle est aussi connue sous le nom filtrage particulaire (FP), que l’on utilise pour la suite.

Un algorithme particulaire pour l’estimation du paramètre variable à partir de données

quantifiées est donné ci-dessous :

0. Définition des poids w̃
(

x
(j)
0

)

= 1
NS

et initialisation de NS particules (échantillons)
{

x
(1)
0 , · · · , x(NS)

0

}

par l’échantillonnage de la densité

p (x0) =
1√
2πσ0

exp

[

−1

2

(

x0 − x′0
σ0

)2
]

.

A chaque instant k,

1. pour j de 1 à NS , l’échantillonnage de X
(j)
k est réalisé avec la d.d.p.

p
(

xk|x(j)k−1

)

=
1√
2πσw

exp



−1

2

(

xk − x
(j)
k−1 − uk

σw

)2


 ,

2. pour j de 1 à NS , on évalue et on normalise les poids

w
(

x
(j)
1:k

)

= P

(

ik|x(j)k

)

w̃
(

x
(j)
1:k−1

)

,
w̃
(

x
(j)
1:k

)

=
w
(

x
(j)
1:k

)

NS
∑

j=1
w
(

x
(j)
1:k

)

,

où P

(

ik|x(j)k

)

est donnée par

P (ik|xk) =
{

F (τik,k − xk)− F (τik−1,k − xk) , si ik > 0,

F (τik+1,k − xk)− F (τik,k − xk) , si ik < 0.
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3. L’estimation est donc donnée par

x̂k ≈
NS
∑

j=1

x
(j)
k w̃

(

x
(j)
1:k

)

.

4. Finalement, on évalue le nombre effectif de particules utilisées

Neff =
1

NS
∑

j=1
w̃2
(

x
(j)
1:k

)

,

si Neff < Nseuil, alors une procédure de rééchantillonnage multinomial doit être réalisée

(rééchantillonnage des valeurs x
(j)
1:k avec les poids w

(

x
(j)
1:k

)

comme probabilités de tirage).

Evaluation de la performance

Quand NS tend vers l’infini, il est connu que le filtrage particulaire converge vers l’estimateur

optimal. Dans ce cas, si l’on considère qu’un NS suffisamment grand est utilisé, on peut utiliser

(B.6) pour obtenir la performance du filtrage particulaire. Cependant, l’expression (B.6)

souffre du même problème que (B.5), l’impossibilité d’être évaluée analytiquement dans la

plupart des cas. Comme solution, on pourrait donc avoir recours à une procédure d’intégration

numérique similaire à celle utilisée pour obtenir l’estimateur. Le problème avec cette dernière

approche réside dans le fait que si l’on voulait utiliser la performance de simulation pour

la conception d’un système de mesure (choix de la qualité du capteur, choix de NI , etc)

on serait obligé de réaliser des simulations pour plusieurs valeurs possibles des paramètres.

Ceci demanderait un temps de simulation très long. Comme alternative, on utilise une borne

inférieure sur l’EQM, qui peut être obtenue de façon analytique. Cette borne est la version

Bayésienne de la BCR, la BCRB.

EQMk ≥ BCRBk =
1

Jk
, (B.7)

où Jk est l’information Bayésienne donnée sous forme récursive par

Jk =
1

σ2w
+ E [Iq (εk)]−

1

σ4w

1
(

1
σ2
w
+ Jk−1

) . (B.8)

L’innovation quantifiée

Pour les modèles symétriques de bruit couramment utilisés (Gaussien, Laplacien et Cauchy),

on sait que Iq (ε) est maximisée quand ε = 0 et que Iq (ε) décroît quand |ε| augmente. Or,

d’après (B.8), on voit que plus τ0,k est proche de la réalisation du paramètre xk, plus grande

est l’information Bayésienne et, par conséquent, plus petite est la BCRB. Si l’on suppose

que la BCRB est une borne suffisamment serrée, de façon à ce que l’on puisse accepter son

comportement comme une approximation de l’EQM, alors plus proche τ0,k est de xk, plus
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petite est l’EQM. Ceci indique que pour avoir une performance d’estimation améliorée, la

dynamique de quantification doit se déplacer dans le temps de façon à suivre le paramètre.

L’approche –τ0,k = xk– est, encore une fois, impossible à mettre en œuvre car on ne connaît

pas xk. On doit alors accepter une perte de performance et utiliser la valeur la plus proche de

xk disponible, dans notre cas, la prédiction de xk. Ceci consiste donc à quantifier l’innovation

apportée par la nouvelle mesure. Avec le modèle d’évolution de Xk utilisé ici, on peut montrer

que cette prédiction est

X̂k|k−1 = τ0,k = X̂k−1 + uk. (B.9)

On peut donc modifier l’algorithme particulaire, pour inclure la mise à jour adaptative du

centre du quantifieur (B.9). La performance du nouvel algorithme peut être approchée par la

BCRB (B.7).

Si l’on suppose que le signal est lent, i.e. que σw est petit devant l’écart type du bruit

de mesure, alors on peut s’attendre à ce que l’erreur d’estimation soit petite après un certain

temps, vu que l’estimateur a le temps de « moyenner » les mesures avant un changement

important d’amplitude du signal. On peut donc remplacer E [Iq (εk)] par sa borne supérieure

Iq (0) dans l’expression récursive pour l’information Bayésienne. Si on calcule le point fixe de

l’expression résultante pour σw petit, on trouve une expression asymptotique simple pour la

borne sur l’EQM :

EQM∞ ≥ σw
√

Iq (0)
+ ◦ (σw) , (B.10)

où la notation ◦ (σw) est utilisée pour représenter un terme qui est négligeable devant σw
quand σw → 0, c’est-à-dire, quand le signal est lent.

Estimateur asymptotique optimal d’un signal lent

On peut se demander si, de la même façon que pour le MV, il existe une forme asymptotique

simple pour l’estimateur optimal d’un paramètre variable quand on utilise τ0,k = X̂k−1. En

effet, si l’on suppose encore une fois que σw est petit devant l’écart type du bruit, on peut

montrer que l’estimateur asymptotique optimal est donné par la forme récursive suivante :

X̂k ≈ X̂k−1 + uk −
σw

√

Iq (0)

fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

P (ik|Xk)|X̂k|k−1=Xk

, (B.11)

où P (ik|Xk)|X̂k|k−1=Xk
est la probabilité d’avoir la sortie ik quand X̂k|k−1 = Xk. Sa dérivée

par rapport à l’erreur εk évaluée au point εk = 0 est fd

(

ik, X̂k|k−1, Xk

)∣

∣

∣

X̂k|k−1=Xk

. Notez que

cette forme a une complexité encore plus basse que celle du MV adaptatif, car maintenant le

gain qui corrige l’estimateur à chaque instant est constant.

On peut montrer qu’une approximation de l’EQM asymptotique de cet algorithme est

EQM ≈ σw
√

Iq (0)
.
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Cette performance pour σw petit se raccorde bien avec la BCRB asymptotique donnée en

(B.10). On constate aussi que, de la même façon que pour le MV adaptatif, la performance

de l’estimateur optimal avec seuil central adaptatif dépend des caractéristiques de la mesure

(bruit et vecteur de seuils τ ′) au travers de l’information de Fisher Iq (0). Par conséquent,

pour caractériser complètement le quantifieur optimal pour l’estimation on doit, encore une

fois, maximiser Iq (0) par rapport à τ ′. Comme on l’a mentionné précédemment, ce problème

est difficile à résoudre de façon directe pour NB > 3, on doit donc essayer de trouver une

approximation de la solution, cette approximation sera le sujet de la Section B.3.

Comme dans le cas du paramètre constant, on peut se poser la question suivante :

• est-ce que la forme récursive (B.11) peut converger quand l’erreur initiale sur X̂k, |ε0| =
∣

∣

∣
X̂0 −X0

∣

∣

∣
, est arbitraire (pas nécessairement petite) ?

On répondra à cette question dans la suite.

B.2.3 Quantifieurs adaptatifs pour l’estimation

Dans cette sous-section on traite des questions posées précédemment au sujet de l’application

des algorithmes asymptotiques de basse complexité. Pour cela, on impose d’abord la structure

de quantification adaptative, puis on définit un algorithme d’estimation général qui a comme

cas spécifiques les formes asymptotiquement optimales vues précédemment. Après la défini-

tion de l’algorithme, on s’intéresse à l’analyse de sa performance : son biais et sa variance

asymptotique. Suite à l’optimisation de sa performance par rapport aux paramètres libres

de l’algorithme, on analyse la perte de performance d’estimation par rapport au cas continu

(mesures continues). A la fin, on présente aussi des extensions de l’algorithme à d’autres prob-

lèmes : estimation conjointe de x et de l’échelle du bruit δ et estimation à partir de mesures

obtenues par plusieurs capteurs.

Modèle du signal

Dans la suite, le paramètre à estimer est considéré soit constant Xk = x, soit lentement

variable Xk = Xk−1 +Wk (avec σw petit et uk = u petite ou nulle).

Modèle du quantifieur

On a vu que le seuil central du quantifieur doit être mis à jour dynamiquement pour améliorer

la performance d’estimation. Pour rendre explicite cette caractéristique du quantifieur, on

imposera un biais réglable bk à l’entrée du quantifieur, pour régler l’amplitude de l’entrée on

appliquera aussi un gain 1
∆ . La fonction de quantification est donc donnée par

ik = Q

(

Yk − bk

∆

)

.

Avec un biais réglable et un gain d’entrée, on peut fixer la structure du quantifieur avec un

seuil central statique à zéro et d’autres seuils qui seront égaux aux décalages τ ′.
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La sortie du quantifieur réglable est donnée par

ik = Q

(

Yk − bk

∆k

)

= i sign (Yk − bk) , pour
|Yk − bk|

∆
∈
[

τ ′i−1, τ
′
i

)

.

A partir des mesures quantifiées, l’objectif est d’estimer le paramètre Xk, un objectif

secondaire est de régler les paramètres bk et ∆ pour avoir une performance d’estimation

améliorée. Comme l’estimateur X̂k de Xk peut être utilisé dans des applications temps réel,

il serait intéressant de l’estimer en ligne.

Dans les sous-sections précédentes on a vu que :

• dans le cas où Xk = x, si on place le centre du quantifieur sur la dernière estimation, on

peut avoir un algorithme asymptotiquement optimal.

• dans le cas où Xk est variable, la performance peut être améliorée si on place le seuil

central sur la prédiction du signal. Quand le signal a pour modèle un processus de

Wiener, la prédiction et donc le seuil central sont donnés par X̂k−1 et quand le modèle

a une dérive uk, le seuil est donné par X̂k−1 + uk.

Etant données ces observations et pour simplifier le problème (avoir une seule forme d’algorithme

pour tous les signaux), on posera bk = X̂k−1.

Notez que ce choix entraîne une possible perte de performance quand le modèle a une

dérive. En réalité, si l’on utilise la prédiction X̂k−1 + uk au lieu de la dernière estimation,

les deux cas, sans et avec dérive, peuvent être traités de façon conjointe (ici on les traitera

sans perte de généralité comme étant le cas sans dérive). Le choix bk = X̂k−1 nous permet

d’étudier le comportement d’une approche sous-optimale.

Le schéma général d’estimation est donné en Fig. B.7. L’objectif maintenant est de définir

l’algorithme qui sera placé dans le bloc Mise à jour.

Algorithme d’estimation

On utilise comme estimateur l’algorithme adaptatif suivant :

X̂k = X̂k−1 + γkη

[

Q

(

Yk − X̂k−1

∆

)]

, (B.12)

où γk est une séquence de gains réels positifs et η[·] est une application de I vers R

η : I → R

j → ηj

caractérisée par NI coefficients
{

η−NI
2

, . . . , η−1, η1, . . . , ηNI
2

}

. Les coefficients η[·] peuvent être

vus comme des équivalents pour l’estimation des niveaux de sortie des quantifieurs dans un

contexte de quantification classique (quantification pour la reconstruction des mesures).
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∆
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Figure B.7: Schéma général d’estimation. L’algorithme d’estimation est réalisé dans le bloc

Mise à jour.

Cet algorithme a les avantages d’être un algorithme en ligne, d’avoir une basse complexité

et d’inclure comme des cas spéciaux les formes récursives optimales des estimateurs avec

quantification adaptative.

A cause de la symétrie du problème et pour simplifier les développements présentés dans

la suite, on impose ce qui suit :

Hypothèse (sur les niveaux de sortie du quantifieur) :

AQ3 Les niveaux ont une symétrie impaire en i:

ηi = −η−i,

avec ηi > 0 pour i > 0.

La non linéarité non différentiable en (B.12) rend difficile l’analyse directe de l’algorithme.

Pour s’en sortir, on peut utiliser les techniques présentées en [Benveniste 1990]. Ces tech-

niques d’analyse sont basées sur des approximations de la moyenne de l’algorithme et sont

valables pour une classe assez générale d’algorithmes adaptatifs. Dans le contexte des algo-

rithmes étudiés en [Benveniste 1990], la fonction η peut être une fonction non linéaire et non

différentiable et il est montré que les gains γk qui optimisent l’estimation de Xk ont les formes

suivantes :

• γk ∝ 1
k

pour Xk constant.

• γk est constant pour Xk avec un modèle de Wiener.

• γk est une constante proportionnelle à u
2
3 pourXk avec un modèle de Wiener qui contient

une dérive.
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Dans ce qui suit, on utilise en (B.12) les séquences de gains données ci-dessus et on obtient la

performance de l’algorithme avec les techniques présentées en [Benveniste 1990].

Performance d’estimation

L’analyse de la performance de l’algorithme adaptatif est séparée en deux parties : l’analyse de

la trajectoire moyenne de l’algorithme et, par conséquent, de son biais et l’analyse de l’EQM

ou de la variance asymptotique.

Analyse de la moyenne : cas constant et Wiener. Une approximation de la moyenne

de l’algorithme E

(

X̂k

)

dans le cas constant et Wiener est donnée par x̂ (tk), où x̂ (t) est la

solution de l’équation différentielle ordinaire (EDO) suivante :

dx̂

dt
= h (x̂) .

La correspondance entre temps discret et continu est donnée par la relation tk =
k
∑

j=1
γj et

h (x̂) est

h (x̂) = E

{

η

(

Q

(

x− x̂+ V

∆

))}

,

où l’espérance est évaluée par rapport à la distribution marginale du bruit V .

Cette approximation est valable lorsque les gains γk sont petits, ce qui veut dire que

l’approximation est valable après un certain temps dans le cas constant (vu que les gains

décroissent en k) et pour tout k dans le cas Wiener, si on choisit un petit gain γk = γ (ce qui

doit être le cas, car pour poursuivre avec peu d’erreur un signal lentement variable, il faut que

les variations de l’estimateur soient petites).

On peut utiliser cette approximation de la moyenne pour obtenir une approximation du

biais ε (t) :

dε

dt
= h̃ (ε) ,

où h̃ (ε) = h (ε+ x) est une fonction qui ne dépend pas du paramètre x.

En utilisant les hypothèses de symétrie AN2, AQ2 et AQ3, on peut démontrer que l’EDO

est globalement asymptotiquement stable, i.e., pour tout ε (0), on a ε (t) → 0 quand t → ∞.

Comme ε (t) approche le biais, l’algorithme est donc asymptotiquement non biaisé.

Analyse de la moyenne : cas Wiener avec dérive. Pour une dérive u petite, on s’attend

à ce que le gain γk = γ soit petit aussi (pour suivre le signal qui est lentement variable), dans

ce cas on peut aussi utiliser une approximation par EDO. Par contre, contrairement aux cas

précédents, on doit prendre en compte la variabilité de la moyenne de Xk. Ce qui fait que

maintenant, la moyenne de l’algorithme est obtenue en échantillonnant la solution de la paire
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d’EDO suivante :

dx

dt
=

u

γ
,

dx̂

dt
= h̃ (x̂− x) .

Si l’on soustrait les deux expressions, on a une EDO pour le biais

dε

dt
= h̃ (ε)− u

γ
. (B.13)

La principale différence dans ce cas est le second terme à droite, qui fait que le biais n’est

pas asymptotiquement nul. Si l’EDO sans le second terme est globalement asymptotiquement

stable, on s’attend à une convergence du biais vers une valeur petite. Pour des petites valeurs

de biais, on peut linéariser (B.13) autour de zéro et obtenir une approximation du biais

asymptotique. Cette approximation est

E

(

X̂k −Xk

)

≈
k→∞

u

γhε
.

où hε est la dérivé de h̃ (ε) évaluée en zéro.

EQM et variance normalisée. Les résultats de [Benveniste 1990] peuvent être utilisés

pour la caractérisation des fluctuations asymptotiques de l’algorithme adaptatif. Les fluc-

tuations asymptotiques dans ce cas sont la variance asymptotique normalisée de l’erreur

d’estimation de la constante σ2∞ = lim
k→∞

Var
[√

k
(

X̂k − x
)]

et l’EQM asymptotique pour

l’estimation de Xk variable EQMq,∞ = lim
k→∞

E

[

(

X̂k −Xk

)2
]

.

Les expressions asymptotiques des fluctuations étant dépendantes de γ, on peut les min-

imiser par rapport aux gains. Les expressions des paires (gain optimal γ⋆, performance opti-

male) sont données en Tab B.1.

Signal Gain optimal Performance

Constant γ⋆ = − 1
hε

σ2∞ = R
h2
ε

Wiener γ⋆ = σw√
R

EQMq,∞ = σw

√
R

−hε
+ ◦ (γ⋆) = σwσ∞ + ◦ (γ⋆)

Wiener avec dérive γ⋆ =
(

4u2

−hεR

) 1
3

EQMq,∞ ≈ 3
(

uR
4h2

ε

) 2
3
+ ◦ (γ⋆) = 3

(

u
4σ

2
∞
) 2

3 + ◦ (γ⋆)

Table B.1: Gains optimaux, EQM asymptotique et variance normalisée asymptotique de

l’algorithme adaptatif.

La quantité R dans ce tableau est la variance asymptotique normalisée des corrections de
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l’algorithme quand X̂k = Xk

R = Var

[

η

(

Q

(

x− x̂+ V

∆

))]∣

∣

∣

∣

x̂=x

= 2

NI
2
∑

i=1

η2i F̃d (i, 0) ,

F̃d (i, 0) est la probabilité d’avoir la sortie i du quantifieur aussi quand X̂k = Xk.

Algorithme optimal et performance

Les performances asymptotiques présentées ci-dessus indiquent que la performance de l’algorithme

dépend, dans les trois cas, de la quantité σ2∞, qui est une fonction du vecteur de coefficients

η =
[

η1 · · · ηNI
2

]⊤
. Par conséquent, pour maximiser la performance asymptotique, on doit

résoudre le problème de maximisation suivant

argmin
η

R

h2ε
= argmin

η

η⊤Fdη

2 (η⊤fd)
2 ,

où Fd est une matrice diagonale donnée par

Fd = diag

[

F̃d (1, 0) , · · · , F̃d

(

NI

2
, 0

)]

,

et fd est le vecteur des dérivées des probabilités de sortie du quantifieur par rapport à X̂k

quand X̂k = Xk

fd =

[

f̃d (1, 0) · · · f̃d
(

NI

2
, 0

)]⊤
.

Ce dernier peut être vu comme le vecteur des différences entre les valeurs de la d.d.p. du bruit

pour des variations de seuil consécutives τ ′i−1 et τ ′i .

Ce problème peut être résolu facilement à l’aide de l’inégalité de Cauchy-Schwarz. En

tenant compte de la contrainte de positivité sur les coefficients, on trouve

η⋆ = −Fd
−1fd.

Le σ2∞ minimum est donc

σ2∞ =
1

2
(

fd
⊤Fd

−1fd
) =






2

NI
2
∑

i=1

f̃2d (i, 0)

F̃d (i, 0)







−1

=
1

Iq (0)
.

Dans le tableau suivant, on donne les gains et les performances asymptotiques optimales.

Notez que dans le cas de l’estimation d’une constante et d’un processus de Wiener lent,

l’algorithme a des performances asymptotiques optimales. Il est donc une alternative à basse

complexité aux algorithmes vus précédemment (le MV adaptatif et l’estimateur optimal adap-

tatif).
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Signal Gain optimal Performance

Constant γ⋆ = 1
Iq(0)

σ2∞ = 1
Iq(0)

Wiener γ⋆ = σw√
Iq(0)

EQMq,∞ = σw√
Iq(0)

+ ◦ (σw)

Wiener avec dérive γ⋆ =
(

4u2

I2q (0)

) 1
3

EQMq,∞ ≈ 3
(

u
4Iq(0)

) 2
3
+ ◦ (γ⋆)

Table B.2: Gains optimaux, EQM et variance normalisée asymptotique de l’algorithme adap-

tatif pour η optimal.

Choix du gain d’entrée : pour simplifier le choix de la constante ∆, on peut considérer

que la fonction de répartition du bruit est caractérisée par un paramètre d’échelle δ :

F (x) = Fn

(x

δ

)

,

où Fn est la fonction de répartition pour δ = 1. Dans ce cas, ∆
δ

est un facteur clé pour

l’évaluation des coefficients η. Par conséquent, l’évaluation des coefficients peut être simplifiée

si on choisit

∆ = c∆δ.

La constante c∆ peut être utilisée pour régler le gain d’entrée du quantifieur ou pour régler le

pas de quantification quand les seuils τ ′ sont uniformes et fixés à des valeurs qui ne peuvent

pas être modifiées.

Seuils optimaux. On voit que, dans les expressions pour les performances de l’algorithme

(Tab. B.2), l’influence des variations de seuil τ ′ se fait à travers la quantité Iq (0), donc, pour

optimiser les performances par rapport aux seuils on doit résoudre le problème d’optimisation

suivant :

I⋆q = argmax
τ ′

Iq (0) .

Or, comme on l’a mentionné précédemment, ce problème est difficile à résoudre en général

(pour NB > 3) et une approximation de la solution optimale sera présentée dans la Section

B.3. Pour les simulations qui seront présentées dans la suite, on imposera les variations de

seuil d’être uniformes :

τ ′ =

[

−τ ′NI
2

= −∞ · · · − τ ′1 = −1 0 + τ ′1 = +1 · · · + τ ′NI
2

= +∞
]⊤

.

Sous cette contrainte, l’optimisation de la performance est faite par rapport à c∆. La valeur

optimale de c∆ peut être obtenue de façon simple par recherche exhaustive.

Perte induite par la quantification. On peut comparer les performances asymptotiques

de l’algorithme adaptatif avec les performances asymptotiques de son équivalent qui utilise

des mesures continues :
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• Cas constant : dans ce cas, on compare la performance asymptotique de l’algorithme

adaptatif à pas décroissant avec la performance du MV avec des mesures continues –

Var
(

X̂k

)

∼
k→∞

1
kIc

.

• Cas Wiener lent : la performance est comparée avec celle de l’estimateur optimal du

processus de Wiener lent avec des mesures continues – EQMc,∞ = σw√
Ic

+ ◦ (σw).

• Cas Wiener lent avec dérive : dans ce cas, on compare la performance de l’algorithme

adaptatif avec des mesures quantifiées avec celle de l’algorithme adaptatif avec des

mesures continues – EQMc,∞ ≈ 3
(

u
4Ic(0)

) 2
3
+ ◦

(

u
2
3

)

.

Les pertes de performance relative en dB sont données en Tab. B.3.

Signal Perte

Constant Lq = −10 log10

(

Iq(0)
Ic

)

Wiener LW
q ≈ 1

2Lq (σw petit)

Wiener avec dérive LWD
q ≈ 2

3Lq (σw et u petits)

Table B.3: Pertes de performance asymptotique induites par la quantification.

Ce qui est surprenant dans ces résultats est le fait que la perte de performance est plus

petite dans le cas variable que dans le cas constant, ceci indique une certaine ressemblance

avec le phénomène de « dithering », connu en quantification classique. Dans la quantification

classique, un ajout de variabilité à l’entrée du quantifieur (ajout de bruit) peut améliorer les

performances de reconstruction après quantification. Dans les résultats présentés ci-dessus,

on voit que la variabilité intrinsèque au signal induit une perte de performance d’estimation

plus petite que dans le cas constant.

Simulations

Modèle de bruit : pour les résultats de simulation présentés dans la suite deux modèles

de bruit (respectant les hypothèses de travail) ont été utilisés. Ces modèles sont caractérisés

par les distributions suivantes :

• Gaussienne généralisée (GG). Cette distribution a pour d.d.p.

fGGD (x) =
β

2δΓ
(

1
β

) exp

(

−
∣

∣

∣

x

δ

∣

∣

∣

β
)

,

où β est un paramètre de forme (réel et positif).

• Student-t (ST). Sa d.d.p. est

fSTD (x) =
Γ
(

β+1
2

)

δ
√
βπΓ

(

β
2

)

[

1 +
1

β

(x

δ

)2
]−β+1

2

.
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Perte théorique : les résultats de simulation de l’algorithme seront comparés aux pertes

théoriques qui dépendent toutes de Lq, l’évolution de cette quantité en fonction de NB est

donnée en Fig. B.8.
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ST - β = 2

ST - β = 3

Figure B.8: Perte Lq induite par la quantification dans le cas constant pour différents nombres

de bits et différents types de bruit.

Notez que dans tous les cas, la perte est faible pour la quantification binaire (de 1 à 4

dB) et qu’elle décroît très rapidement avec NB pour devenir négligeable pour 4 ou 5 bits de

quantification.

Simulation pour le cas constant : on vérifie la convergence des pertes simulées pour NB

de 2 à 5 et plusieurs distributions de bruit dans la Fig. B.9.

Simulation pour le cas Wiener : dans la Fig. B.10, on vérifie que si le signal est lent (σw =

0.001), alors les résultats asymptotiques simulés sont très proches des résultats théoriques. Par

contre, dès que l’on s’éloigne de l’hypothèse de signal lent (σw = 0.1), les résultats théoriques

et simulés ont un certain écart.

Simulation pour le cas Wiener avec dérive : la Fig. B.11 montre les performances

asymptotiques simulées de l’algorithme adaptatif pour la poursuite du processus de Wiener

avec dérive. Le petit écart entre les résultats théoriques et simulés vient du fait que le gain

optimal γ⋆ est calculé avec une estimation en ligne de u (qui est inconnue en pratique).

Comparaison avec les algorithmes à haute complexité : avant de passer aux ex-

tensions de l’algorithme adaptatif on discutera rapidement des différences entre l’algorithme

adaptatif proposé ici et les algorithmes vus dans les sous sections précédentes.

Etant donnée l’équivalence en termes de performance asymptotique de l’algorithme adap-

tatif et des solutions à haute complexité (le MV adaptatif et le FP adaptatif), des simulations
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Figure B.9: Perte induite par la quantification pour des distributions GG et ST et pour

NB ∈ {2, 3, 4, 5} quand Xk est constant. Pour chaque type de bruit il y a 4 courbes, les cons-

tantes sont les résultats théoriques et les courbes décroissantes sont les résultats simulés avec

l’algorithme adaptatif. Pour chaque paire de courbes, les résultats plus hauts correspondent

à moins de bits de quantification. En (a) on a les résultats pour un bruit GG avec NB = 2 et

3 et en (b) avec NB = 4 et 5. En (c) on présente les résultats pour un bruit ST avec NB = 2

et 3 et en (d) avec NB = 4 et 5.

des transitoires des algorithmes ont été réalisées pour les différencier de façon plus précise. Les

résultats de simulation indiquent que l’algorithme adaptatif peut atteindre des performances

similaires voire meilleures que le MV adaptatif pour l’estimation d’une constante et que, dans

le cas de la poursuite d’un signal variable, le FP semble être dans la plupart des cas plus per-

formant. En conclusion, pour l’estimation d’une constante, l’algorithme adaptatif semble être

la meilleure solution, car il a une complexité très basse en comparaison avec le MV. Toutefois,

dans le cas de l’estimation du processus de Wiener, l’algorithme adaptatif ne sera la meilleure

solution que si les contraintes de complexité empêchent d’utiliser le FP (aussi très complexe).

Extensions de l’algorithme adaptatif

Paramètre d’échelle inconnu : une extension possible du problème d’estimation d’une

constante consiste à considérer que le paramètre d’échelle δ est inconnu et donc que l’on doit

estimer conjointement la paire (x, δ) à partir de mesures quantifiées.

Pour améliorer la performance d’estimation on peut envisager non seulement l’utilisation

de X̂k−1 comme biais du quantifieur, mais aussi de δ̂k−1, pour régler le gain d’entrée du

quantifieur. Ceci est montré en Fig. B.12.
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Figure B.10: Perte induite par la quantification dans le cas Wiener pour différents nombres

de bits, écarts types des incréments du signal et types de bruits (Gaussien – GG avec β = 2

et Cauchy – ST avec β = 1).
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Figure B.11: Perte induite par la quantification dans le cas Wiener avec dérive pour différents

nombre de bits et types de bruit (Gaussien et Cauchy).
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Figure B.12: Schéma d’estimation/quantification pour retrouver conjointement le paramètre

de centrage x et d’échelle δ.

Pour la mise à jour, on peut encore une fois utiliser un algorithme adaptatif de basse

complexité :
[

X̂k

δ̂k

]

=

[

X̂k−1

δ̂k−1

]

+
Γ

k
δ̂k−1

[

ηx (ik)

ηδ (ik)

]

,

où Γ est une matrice 2× 2 de gains.

Sous certaines hypothèses de convergence en moyenne de l’algorithme, on peut montrer

que les coefficients optimaux ηx et ηδ sont donnés par

ηx = −F−1
d f

(x)
d ,

ηδ = −F−1
d f

(δ)
d ,

où Fd a déjà été détaillée plus haut et où f
(x)
d et f

(δ)
d sont des vecteurs de dérivées des prob-

abilités des sorties du quantifieur par rapport à X̂k et δ̂k respectivement. Ces dérivées sont

évaluées au point
(

X̂k = x, δ̂k = δ
)

.

Avec les coefficients optimaux on trouve les valeurs asymptotiques optimales de la covari-

ance normalisée d’estimation P et du gain Γ⋆ :

P = δ2Γ⋆ =
δ2

2





1

f
(x)T

d
F

−1
d

f
(x)
d

0

0 1

f
(δ)T

d
F

−1
d

f
(δ)
d



 .

Les éléments de la diagonale de P sont les informations de Fisher pour l’estimation de

x et δ à partir des données quantifiées, l’algorithme est donc optimal asymptotiquement et

on voit que le fait de ne pas connaître δ ne dégrade pas les performances asymptotiques de

l’estimateur de x.
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Approche multi capteur : une autre extension consiste à utiliser des mesures obtenues

de façon simultanée par plusieurs capteurs pour estimer un paramètre constant x.

Dans cette approche, chaque capteur quantifie une mesure continue

Y
(j)
k = x+ V

(j)
k , for j ∈ {1, · · · , Ns} ,

où Ns est le nombre de capteurs, et transmet la mesure quantifiée à un centre de fusion. Le

centre de fusion utilise toutes les mesures des capteurs pour générer une estimation X̂k de x

qui est diffusée à tous les capteurs pour être utilisée comme seuil central des quantifieurs. Le

schéma qui représente cette approche est montré en Fig. B.13.
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Figure B.13: Schéma d’estimation/quantification multicapteur avec un centre de fusion.

Pour la mise à jour, on peut utiliser l’extension suivante de l’algorithme adaptatif :

X̂k = X̂k−1 +
γ

k
η (ik) ,

où ik est le vecteur des mesures quantifiées
[

i
(1)
k · · · i(Ns)

k

]T

.

Les coefficients η optimaux sont donnés cette fois par

η (i) = −
Ns
∑

j=1

f̃
(j)
d

[

i(j)
]

F̃
(j)
d

[

i(j)
]

. (B.14)

Pour ces coefficients, on trouve la variance asymptotique d’estimation normalisée et le gain

optimal suivants

σ2∞ = γ⋆ =
1

Ns
∑

j=1

∑

i(j)∈I(j)

f̃
(j) 2
d [i(j)]
F̃

(j)
d [i(j)]

. (B.15)
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Les expressions (B.14) et (B.15) nous montrent que l’algorithme adaptatif pour l’approche

à un seul capteur s’étend de façon très naturelle à l’approche multicapteur : le coefficient

de l’algorithme η en multicapteur est la somme des coefficients en monocapteur et la perfor-

mance ainsi que le gain sont donnés par l’inverse de la somme des informations de Fisher en

monocapteur.

B.3 Estimation et quantification : approximations à haute ré-

solution

On présente maintenant des résultats concernant la caractérisation asymptotique des quanti-

fieurs optimaux pour l’estimation. Le mot « asymptotique » dans ce cas vient du fait que l’on

suppose que le nombre d’intervalles de quantification NI est très grand. Comme on impose

aussi que les tailles ∆i des intervalles de quantification tendent vers zéro, on les appelle aussi

approximations à haute résolution.

B.3.1 Approximation à haute résolution de l’information de Fisher

Pour trouver la caractérisation asymptotique des quantifieurs optimaux et la performance

correspondante en termes d’estimation, on s’intéresse aux questions suivantes :

• comment décrire l’information de Fisher pour l’estimation d’un paramètre x en fonction

du quantifieur quand NI est grand ?

• Comment maximiser l’information de Fisher par rapport à la caractérisation du quanti-

fieur ?

• Quelle est la performance optimale correspondante ?

Remarque : notez que dans la suite on n’impose pas que le problème soit un problème

d’estimation de paramètre de centrage.

Approximation asymptotique

Pour répondre à la première question, on va commencer par une réécriture de l’information

de Fisher :

Iq = Ic − E

[

(Sc − Sq)
2
]

. (B.16)

Le membre de droite dans (B.16) peut être vu comme la perte L induite par la quantification.

L’espérance en L peut être écrite comme une somme d’intégrales sur les différents intervalles

de quantification qi :

L =

NI
∑

i=1

∫

qi

[

∂ log f (y;x)

∂x
− ∂ logP (i;x)

∂x

]2

f (y;x) dy.
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Des développements en série de Taylor nous donnent

L =

NI
∑

i=1

{

(

S
(y)
c,i

)2
fi
∆3

i

12
+ o

(

∆3
i

)

}

, (B.17)

où S
(y)
c,i est la dérivée du score par rapport à y évaluée au centre de l’intervalle de quantification

qi et fi est la d.d.p. des mesures continues aussi évaluée au centre de l’intervalle.

Pour obtenir la caractérisation de la perte en fonction du quantifieur, on définit la densité

d’intervalles λ :

λ (y) = λi =
1

NI∆i
, pour y ∈ qi. (B.18)

La densité d’intervalles est une fonction qui, si on l’intègre dans un intervalle donné, donne la

fraction d’intervalles de quantification dans cet intervalle.

Si l’on utilise (B.18) dans (B.17), si l’on fait NI → ∞ et si les ∆i convergent uniformément

vers zéro, on obtient le résultat suivant

lim
NI→∞

N2
I L =

1

12

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy.

Si on revient à (B.16), le résultat asymptotique ci-dessus nous amène à l’approximation asymp-

totique de l’information de Fisher :

Iq ≈ Ic −
1

12N2
I

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy. (B.19)

Celle-ci est la réponse de la première question. On constate que si l’intégrale du membre à

droite converge, alors Iq converge vers Ic quand NI → ∞ et, de cette façon, on répond aussi

à une question qui avait été posée précédemment (p. 265).

Si toutes les valeurs possibles en sortie du quantifieur sont quantifiées avec des mots binaires

de même taille NB = log2 (NI), alors (B.19) peut être réécrite de la façon suivante :

Iq ≈ Ic −
2−2NB

12

∫

(

∂Sc(y;x)
∂y

)2
f (y;x)

λ2 (y)
dy.

On voit de façon explicite la convergence exponentielle en NB de Iq vers Ic.

Densité d’intervalles optimale : maintenant on répond à la deuxième question.

L’expression (B.19) nous montre directement que, pour maximiser la performance par

rapport au quantifieur, on doit minimiser l’intégrale de droite par rapport à λ. Ce problème

de minimisation peut être facilement résolu avec l’inégalité de Hölder, ce qui donne

λ⋆ (y) =

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x)

∫

(

∂Sc(y;x)
∂y

) 2
3
f

1
3 (y;x) dy

∝
(

∂Sc (y;x)

∂y

) 2
3

f
1
3 (y;x) . (B.20)
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Notez que, contrairement aux résultats asymptotiques pour la reconstruction des mesures

où λ⋆ (y) ∝ f
1
3 (y;x), en quantification optimale pour l’estimation le score du problème

d’estimation intervient sur la densité d’intervalles.

Si l’on remplace (B.20) en (B.19), on peut donner une réponse à la troisième question.

L’expression analytique de l’approximation asymptotique de l’information de Fisher optimale

est

I⋆q ≈ Ic −
1

12N2
I

[

∫ (

∂Sc (y;x)

∂y

) 2
3

f
1
3 (y;x) dy

]3

. (B.21)

Approximation pratique des seuils optimaux : la définition de la densité d’intervalles

nous dit que le pourcentage d’intervalles jusqu’à l’intervalle qi,
i

NI
doit être égal à l’intégrale

de la densité d’intervalles jusqu’à τi. Par conséquent, une approximation pratique des seuils

optimaux est donnée par

τ⋆i = F−1
λ

(

i

NI

)

, pour i ∈ {1, · · · , NI − 1} , (B.22)

où F−1
λ est l’inverse de la fonction de répartition obtenue par intégration de la densité

d’intervalles λ.

Remarque sur la solution à débit variable : on pourrait aussi considérer que les sorties

du quantifieur sont encodées avec des mots de tailles égales au logarithme de leur probabilité,

ceci entraînerait une possible réduction de la taille moyenne des mots en sortie du quantifieur.

Cette solution est connue sous le nom d’encodage à débit variable.

La taille moyenne des mots en sortie du quantifieur avec l’encodage à débit variable est

donnée par l’entropie des mots de sortie. De la même manière que précédemment, où en

imposant un NB on a trouvé la densité d’intervalles optimale pour des mots de sortie de

taille égale, on peut s’intéresser au problème de quantification optimale avec encodage à débit

variable. Si l’on impose un débit moyen R, on peut montrer que la densité optimale est

λ⋆ (y) =

∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣

∫

∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣ dy

et l’information de Fisher maximale

Iq ≈ Ic −
1

12
2
−2
{

R−hy−
∫

log2

[∣

∣

∣

∂Sc(y;x)
∂y

∣

∣

∣

]

f(y;x) dy
}

,

où hy = −
∫

f (y;x) log2 [f (y;x)] dy est l’entropie différentielle des mesures.

Le problème avec cette solution est que l’encodage des sorties du quantifieur dépend du

paramètre qui est inconnu. Même si on utilise une approche adaptative pour la quantification

avec une convergence vers l’encodage optimal, on ne respectera pas les contraintes de débit

moyen pendant toute la phase de convergence de l’algorithme adaptatif.
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Application à l’estimation d’un paramètre de centrage : pour la distribution Gaussi-

enne, la densité d’intervalles optimale et l’approximation de l’information de Fisher maximale

sont données par

λxG (y) =
1

δ
√
3π

exp

[

−
(

y − x√
3δ

)2
]

, Ixq,G ≈ 2

δ2

[

1− π
√
3 2−(2NB−1)

]

. (B.23)

Pour la distribution de Cauchy on a

λxC (y) =
1

δB
(

1
2 ;

5
6

)

[

1−
(

y−x
δ

)2
] 2

3

[

1 +
(

y−x
δ

)2
] 5

3

, Ixq,C ≈ 1

2δ2

[

1− B
(

1
2 ;

5
6

)3

3π
2−2NB+1

]

. (B.24)

Afin de valider les résultats théoriques, l’information de Fisher (B.3) a été évaluée avec

δ = 1 pour les deux distributions et pour

• les seuils optimaux pour NB ∈ {1, 2, 3}. Les seuils optimaux ont été obtenus par

recherche exhaustive. Pour NB ∈ {4, 5, 6, 7, 8} les résultats théoriques (B.23) et (B.24)

sont utilisés comme une approximation.

• la quantification uniforme pour NB ∈ {1, · · · , 8}. En plaçant le seuil central sur x,

l’intervalle de quantification optimal ∆⋆ est obtenu par maximisation de l’information

de Fisher. Dans ce cas aussi, le maximum est trouvé par recherche exhaustive.

• l’approximation pratique des seuils optimaux donnée par (B.22), pour NB ∈ {1, · · · , 8}.
Les résultats sont montrés en Tab. B.4.

Gaussien (Ixc,n = 2) Cauchy (Ixc,n = 0.5)

NB Optimal Uniforme
Approx.

pratique
Optimal Uniforme

Approx.

pratique

1 1.27323954† – 1.27323954 0.40528473† – 0.40528473

2 1.76503630† 1.76503630 1.75128300 0.43433896† 0.43433896 0.40528473

3 1.93090199† 1.92837814 1.92740111 0.48474865† 0.45600797 0.47893785

4 1.97874454⋆ 1.97841622 1.98038526 0.49533850⋆ 0.48136612 0.49504170

5 1.99468613⋆ 1.99353005 1.99489906 0.49883463⋆ 0.49204506 0.49879785

6 1.99867153⋆ 1.99807736 1.99869886 0.49970866⋆ 0.49656712 0.49970408

7 1.99966788⋆ 1.99943563 1.99967136 0.49992716⋆ 0.49851056 0.49992659

8 1.99991697⋆ 1.99983649 1.99991741 0.49998179⋆ 0.49935225 0.49998172

Table B.4: Information de Fisher Iq pour l’estimation d’un paramètre de centrage des dis-

tributions Gaussienne et Cauchy. En Optimal† se trouve l’information de Fisher maximale

obtenue par recherche exhaustive des seuils optimaux. Optimal⋆ est l’approximation asymp-

totique de l’information de Fisher maximale. En Uniforme, les valeurs de l’information

de Fisher pour la quantification uniforme optimale sont montrées. Les colonnes Approx.

pratique correspondent à l’information de Fisher obtenue avec l’approximation pratique des

seuils asymptotiquement optimaux.

On constate que, dans tous les cas, Iq converge rapidement vers Ic quand NB augmente.
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Ici encore, on voit que 4 ou 5 bits sont suffisants pour obtenir une performance d’estimation

proche de celle obtenue avec des mesures continues. La différence de performance entre la

quantification uniforme et non uniforme semble être plus importante pour la distribution de

Cauchy, mais pratiquement négligeable dans le cas Gaussien, ceci indique que la quantifi-

cation uniforme est probablement une meilleure solution en pratique (étant donnée sa sim-

plicité d’implantation). Finalement, on observe aussi que l’approximation asymptotique de

l’information de Fisher et sa valeur obtenue avec l’approximation pratique des seuils optimaux

sont très proches, même pour des valeurs petites de NB (NB = 4).

Utilisation de l’algorithme adaptatif : pour la réalisation pratique du quantifieur opti-

mal dans l’estimation d’un paramètre de centrage, un problème important est la dépendance

explicite au paramètre x de l’approximation pratique des seuils optimaux τ⋆i . Une solution

pour résoudre ce problème et atteindre une performance asymptotique optimale, même en ne

connaissant pas x, consiste à utiliser l’algorithme adaptatif proposé en Sous-section B.2.3 :

X̂k = X̂k−1 +
1

kIq
η (ik) ,

avec le vecteur de variations de seuil τ ′ donné par τ ⋆ avec x en (B.22) considéré comme étant

égal à zéro et η (ik) donnés par η (i) = − f(τ⋆i−1;x)−f(τ⋆i ;x)
F(τ⋆i ;x)−F(τ⋆i−1;x)

. Si NB ≥ 4, pour k grand, on

s’attend à une performance d’estimation proche de l’optimale et, par conséquent, proche de

l’approximation suivante :

Var
[

X̂k

]

≈ BCRq ≈
1

kIq
,

où Iq est l’approximation asymptotique (B.21).

Les résultats de simulation pour des distributions de Gauss et de Cauchy avec NB = 4 et

5 indiquent la validité cette approche. Ils sont montrés en Fig. B.14.

Allocation de bits pour l’estimation d’un paramètre de centrage scalaire

On suppose maintenant que Ns capteurs mesurent, avec du bruit additif et indépendant d’un

capteur à l’autre, une constante x. En raison des contraintes de communication, la somme

des nombres de bits par mesure alloués à chaque capteur NB,i est contrainte à être égale à

une valeur NB. Le question que l’on se pose est la suivante : quelle est l’allocation de bits qui

maximise la performance d’estimation sous la contrainte de communication ?

Ceci équivaut de façon quantitative à résoudre le problème de maximisation suivant :

maximiser

en NB,i
Iq =

Ns
∑

i=1

Iq,i (NB,i) ,

sujet à

Ns
∑

i=1

NB,i = NB,

NB,i ∈ N,

où Iq,i (NB,i) est l’information de Fisher maximale pour NB,i.
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Figure B.14: EQM simulée pour l’algorithme adaptatif avec les seuils non uniformes asymp-

totiquement optimaux. Les mesures continues sont distribuées selon la loi de Gauss (a) et de

Cauchy (b). Les nombres de bits de quantification utilisés sont NB = 4 et 5. Les courbes qui

ont des valeurs asymptotiques plus hautes correspondent à NB = 4.

On peut trouver la solution analytique de ce problème par la comparaison de toutes les

combinaisons possibles des NB,i. Cependant, l’aspect combinatoire de la solution rend impos-

sible en pratique l’application de cette solution, même pour quelques dizaines de capteurs.

Une autre solution possible consiste à utiliser les expressions asymptotiques analytiques

des informations de Fisher en levant la contrainte NB,i ∈ N. La solution du problème

d’optimisation sous ces nouvelles conditions peut être trouvée sous forme analytique et, si

on arrondi les NB,i trouvés de cette manière, on a une approximation pratique de la solution.

Solution à NB,i réels : si l’on considère que les distributions de bruit ont la même forme

mais des paramètres d’échelle δi différents, alors, en utilisant les approximations asymptotiques

on trouve

NB,i =
NB

Ns
− log2













δi

Ns

√

Ns
∏

j=1
δj













.

On voit que les NB,i optimaux ne dépendent que des paramètres d’échelle des bruits.
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L’approximation de l’information de Fisher dans ce cas est

Iq ≈ Ns

[

Ixc,n

HM
(

δ21 , · · · , δ2Ns

) − κ′ (fn)
12

2−2N̄B

GM
(

δ21 , · · · , δ2Ns

)

]

,

où Ixc,n est l’information de Fisher pour un paramètre d’échelle unitaire, κ′ (fn) est une

fonctionnelle de la d.d.p. du bruit aussi pour δ = 1, N̄B = NB

Ns
et HM

(

δ21 , · · · , δ2Ns

)

et

GM
(

δ21 , · · · , δ2Ns

)

sont les moyennes harmoniques et géométriques des paramètres d’échelle.

On peut démontrer que l’approximation de Iq optimale ainsi obtenue est toujours plus

grande que celle donnée par une allocation de bits uniforme.

Solution à NB,i réels et positifs : si l’on contraint les NB,i à être positifs, on peut

démontrer que la solution optimale est obtenue en deux étapes. D’abord on choisit un ν qui

satisfait
Ns
∑

i=1

[ν − log2 (δi)]+ = NB,

où [x]+ = max (x, 0), puis, on obtient les NB,i avec

NB,i = [ν − log2 (δi)]+ .

On peut facilement vérifier que cette solution est équivalente à la procédure de « water-

filling » qui est utilisée pour l’allocation de puissance aux sous porteuses dans les modulations

multi porteuses.

B.4 Conclusions

Dans cette thèse, nous avons traité le problème d’estimation à partir de mesures quantifiées,

un problème qui attire depuis quelque temps l’attention de la communauté de traitement du

signal, en raison de l’essor des réseaux de capteurs. Nous avons traité, plus spécifiquement,

le problème d’estimation d’un paramètre de centrage scalaire, soit constant, soit lentement

variable avec un modèle de Wiener.

B.4.1 Conclusions principales

Nous avons observé que, pour la plupart des modèles de bruit considérés en pratique, la

performance d’estimation se dégrade lorsque la dynamique de quantification est loin de la

vraie valeur du paramètre. Ceci indique qu’une bonne performance d’estimation peut être

obtenue par une approche adaptative, où l’on place la dynamique de quantification grâce à

l’information donnée par l’estimation la plus récente du paramètre.

Avec le schéma adaptatif, nous avons vu que la perte de performance d’estimation induite

par la quantification est petite. Pour tous les cas testés, nous avons observé une perte de

performance petite pour 1–3 bits de quantification et une perte négligeable pour 4 ou 5 bits.
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Ceci indique que dans un contexte d’estimation à distance, où le nombre de bits total est

contraint, il est possible qu’une solution multicapteur/basse résolution soit préférable à la

solution classique monocapteur/haute résolution.

Nous avons proposé des alternatives à basse complexité pour les algorithmes trouvés dans

la littérature et leurs extensions. Nous avons démontré que les algorithmes à basse complexité

proposés atteignent les mêmes performances asymptotiques que leurs pendants à haute com-

plexité. En utilisant les approches à basse complexité, nous avons présenté des solutions assez

naturelles pour traiter des extensions du problème de base : l’extension au cas d’un paramètre

d’échelle inconnu et l’extension à plusieurs capteurs.

Pour traiter le problème de placement des seuils optimaux pour l’estimation quand un

grand nombre d’intervalles de quantification est utilisé, nous avons étudié une approche asymp-

totique. Cette approche asymptotique nous a permis d’obtenir une approximation pratique

des seuils optimaux ainsi qu’une expression analytique de la performance d’estimation opti-

male, dans ce cas l’information de Fisher optimale. Nous avons vu aussi avec cette approche

que la performance d’estimation avec des mesures quantifiées converge exponentiellement vite

vers la performance avec des mesures continues quand le nombre de bits de quantification aug-

mente. En appliquant les résultats sur un problème d’estimation de paramètre de centrage,

nous avons constaté que l’approximation proposée, censée être valable seulement asympto-

tiquement, est valable pour un nombre petit de bits (4 dans ce cas), ceci indique que les

résultats asymptotiques peuvent être utilisés en pratique.

Nous avons montré, avec l’approche asymptotique, la dépendance des seuils asymptotique-

ment optimaux par rapport au paramètre inconnu. Ceci indique, encore une fois, l’importance

de l’approche adaptative qui permet de placer asymptotiquement les seuils sur leurs valeurs

optimales et donc d’obtenir une performance asymptotiquement optimale.

Nous voudrions aussi attirer l’attention sur le fait que la différence de performance entre

un schéma de quantification uniforme et un schéma non uniforme semble être petite pour

l’estimation d’un paramètre de centrage. Par conséquent, en pratique, si une forte contrainte

sur la complexité est présente, la quantification uniforme peut être préférable.

B.4.2 Perspectives

Cette « discussion » entre quantification et estimation sera terminée par la présentation des

possibles sujets de travaux futurs.

• Paramètre vectoriel et quantification vectorielle : ce sujet est une extension naturelle

du problème. Tandis que l’extension à la quantification vectorielle est assez directe (en

termes d’algorithmes d’estimation et de leurs performances asymptotiques), l’extension

aux paramètres vectoriels est moins directe car elle nécessitera une nouvelle définition

pour la performance d’estimation et un changement de la structure des algorithmes pour

prendre en compte les corrélations possibles entre les composantes vectorielles.

• Canaux bruités : un canal de communication bruité peut être intégré au problème de

différentes façons. La plus simple consistant à introduire un indice binaire pour chaque
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mesure quantifiée et un modèle de canal binaire symétrique. Avec un étiquetage fixe des

mesures quantifiées, des extensions de l’algorithme de basse complexité proposé peuvent

être directement conçues. Cependant, si les indices ne sont pas fixés, le problème qui en

résulte, avec l’étiquetage des sorties du quantifieur, peut être très difficile à traiter.

D’autres extensions peuvent être envisagées par l’introduction d’un canal à amplitude

continue, par exemple des canaux à bruit additif et à évanouissements. Dans ce cas,

on sera obligé, encore une fois, d’ajouter le problème d’étiquetage et donc de traiter un

problème conjoint de conception d’encodeur/estimation.

• Estimation avec distribution de bruit inconnue: on a supposé depuis le début que la

distribution du bruit est connue, en pratique ceci ne sera pas toujours le cas et on sera

obligé de trouver d’autres approches d’estimation.

• Variations rapides : dans certaines parties de cette thèse nous avons supposé que le

signal est lentement variable. Sous cette hypothèse, nous avons vu que la perte de

performance induite par la quantification est petite. On peut se poser la question de

savoir si cette conclusion reste vraie lorsque le signal varie rapidement.

• Problème distribué : pour arriver aux applications classiques des réseaux de capteur, on

doit généraliser les algorithmes et résultats obtenus ici pour un capteur à un contexte

partiellement distribué, où certains capteurs recueillent l’information des capteurs qui

sont autour, ou complètement distribué, où tous les capteurs recueillent l’information.

• Temps continu : dans le cas d’un paramètre variable, nous avons considéré, depuis le

début, que le temps est discret et nous n’avons pas traité de l’échantillonnage. Un

sujet qui reste ouvert est donc l’estimation d’un signal à temps continu, échantillonné

et quantifié.
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Abstract: With recent advances in sensing and communication technology, sensor networks

have emerged as a new field in signal processing. One of the applications of this new field is

remote estimation, where the sensors gather information and send it to some distant point

where estimation is carried out. For overcoming the new design challenges brought by this

approach (constrained energy, bandwidth and complexity), quantization of the measurements

can be considered. Based on this context, we study the problem of estimation based on

quantized measurements. We focus mainly on the scalar location parameter estimation prob-

lem, the parameter is considered to be either constant or varying according to a slow Wiener

process model. We present estimation algorithms to solve this problem and, based on perfor-

mance analysis, we show the importance of quantizer range adaptiveness for obtaining optimal

performance. We propose a low complexity adaptive scheme that jointly estimates the pa-

rameter and updates the quantizer thresholds, achieving in this way asymptotically optimal

performance. With only 4 or 5 bits of resolution, the asymptotically optimal performance

for uniform quantization is shown to be very close to the continuous measurement estimation

performance. Finally, we propose a high resolution approach to obtain an approximation of

the optimal nonuniform quantization thresholds for parameter estimation and also to obtain

an analytical approximation of the estimation performance based on quantized measurements.

Keywords: estimation, quantization, compression, adaptive algorithms.

Résumé : L’essor des nouvelles technologies de télécommunication et de conception des

capteurs a fait apparaître un nouveau domaine du traitement du signal : les réseaux de cap-

teurs. Une application clé de ce nouveau domaine est l’estimation à distance : les capteurs

acquièrent de l’information et la transmettent à un point distant où l’estimation est faite.

Pour relever les nouveaux défis apportés par cette nouvelle approche (contraintes d’énergie,

de bande et de complexité), la quantification des mesures est une solution. Ce contexte nous

amène à étudier l’estimation à partir de mesures quantifiées. Nous nous concentrons princi-

palement sur le problème d’estimation d’un paramètre de centrage scalaire. Le paramètre est

considéré soit constant, soit variable dans le temps et modélisé par un processus de Wiener

lent. Nous présentons des algorithmes d’estimation pour résoudre ce problème et, en se basant

sur l’analyse de performance, nous montrons l’importance de l’adaptativité de la dynamique

de quantification pour l’obtention d’une performance optimale. Nous proposons un schéma

adaptatif de faible complexité qui, conjointement, estime le paramètre et met à jour les seuils

du quantifieur. L’estimateur atteint de cette façon la performance asymptotique optimale.

Avec 4 ou 5 bits de résolution, nous montrons que la performance optimale pour la quantifi-

cation uniforme est très proche des performances d’estimation à partir de mesures continues.

Finalement, nous proposons une approche à haute résolution pour obtenir les seuils de quan-

tification non-uniformes optimaux ainsi qu’une approximation analytique des performances

d’estimation.

Mots clés : estimation, quantification, compression, algorithmes adaptatifs.

GIPSA-lab, 11 rue des Mathématiques, Grenoble Campus BP 46,

F-38402 Saint Martin d’Hères CEDEX
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