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Assumptions

Assumptions (on the noise distribution):

AN1 The marginal CDF of the noise, denoted F, admits a PDF f w.r.t. the standard
Lebesgue measure on (R, B (R)).

ANZ2 The PDF f (v) is a strictly positive even function and it strictly decreases w.r.t. |v|.

AN3 F is locally Lipschitz continuous.
Assumptions (on the quantizer):

AQ1 Nj is considered to be an even natural number and the set Z where ;. is defined is
N N
=L . 1. LY
2 2
AQ2 The quantizer is symmetric around the central threshold. This means that the vector

of thresholds 7 is given by
-

/ / / /
T=|T Ny =T0—TN; " T-1=T0—T1 T0o T1=T0+T7T =" TNy =70+ Tn;
2 2 2 2

with the threshold vector elements forming a strictly increasing sequence and the non-
negative vector of threshold variations w.r.t. the central threshold given by

-
T'=|10=0 7 - Th, =400

2
AQ3 The quantizer output levels have odd symmetry w.r.t. 4:
i = —1N—i,

with n; > 0 for ¢ > 0.
Modified assumptions (on the quantizer):

AQ2’ The quantizer is symmetric around the central threshold which is equal to zero. This
means that the vector of thresholds 7 is given by the vector of threshold variations

T

/ / / /
2 2

where the threshold variations 7/ form an increasing sequence.
AQ3’ The quantizer output levels n, [i] are odd and the output levels n; [i] are even.
e [i] = = (=], s [i] = ns [=],
with 7, [¢] > 0 for i > 0 and n; [1] < 0.
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16 Assumptions

Assumptions on I, for the MLE update to have asymptotically optimal perfor-
mance:

A1.MLE ], (¢) is maximum for € = 0.

A2.MLE ], (¢) is locally decreasing around zero.

A3.MLE The function I, (¢) has bounded I, (0), dlgg(s) = 0, bounded %

fore accepting a Taylor approximation around zero (for small £'):

, there-
e=0

e d%1, (¢)
I () = 1, 0) + 5 —5

+o (8/2) ,
e=0

()

where the o (52) here is equivalent to say that the quantity —= tends to zero when 4

tends to zero.



Introduction

Quantization: the stranger in the room

Open a book, any basic book on digital signal processing (DSP), and count the number
of pages dedicated to the sampling theorem and discrete-time signal processing: FFT, Z-
transform, FIR and IIR filtering. Now, count the number of pages dedicated to quantization.
Even if half of the "digital world" comes from quantization, by reading some basic books on
DSP, we have the feeling that it is a completely unimportant subject.!

A curious person might think: is it really unimportant? Maybe it is simply so difficult to
be treated and explained in an easy way, that most DSP books skip a detailed description
of quantization. We think this explanation is the reason most of the texts presenting DSP
assume that signals are quantized with a very high resolution, so they have the possibility
of explaining quantization almost in a footnote. As a consequence, quantization seems to be
the stranger that comes to the "DSP party" and almost nobody wants to speak with (even
if it is one of the party organizers). Some signal processing domains find useful (and in some
circumstances they are not wrong) to refuse "contact" with quantization. Whenever they need
to address quantization issues they always call it in a derogatory way — "quantization noise".

In this thesis we expect to make one of the subjects in the signal processing party to
"talk" with quantization in a polite way, without detracting terms. The subject we chose is
estimation.

In the following, we will explain the motivation and the main points of their "conversation".

Sensor networks and quantization: the welcome guest

Although we do not explicitly design estimation algorithms using a sensor network architec-
ture, this thesis is intended to contribute in the development of estimation techniques that
can be applied or extended to sensor networks.

Sensor network emergence. With the reduction in cost and size of electronic devices such
as sensors and transceivers, a whole new field emerged under the name Sensor Networks. This
term, in general, means any set of sensors capable of communication and processing used for
a specific task, e.g. estimation, detection, tracking, classification, etc.

Sensor networks are attractive for many reasons [Akyildiz 2002|, [Intanagonwiwat 2000],
[Zhao 2004, pp. 7-8|:

!Note that the real problem of digitizing a signal by considering sampling and quantization as a joint
operation is simply a non-issue in signal processing literature. We do not study this problem in this thesis
either, but it is an interesting problem.

17
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fault-tolerance and flexibility. By using multiple sensors to realize a sensing task, even if
one of them is unable to measure, the other sensors guarantee that the sensing system is
still working. By proper design, the sensor network can reconfigure the way it operates,
so that if a failure occurs in a sensor or a small set of sensors, the performance of the
sensing system is not strongly affected.

FEasy deployment. The decreased cost of the sensors makes it possible to deploy large
quantities of sensors in a given area without detailed placement of the sensors. This
simplifies the deployment of sensing systems in difficult access and hostile environments.

Risky environment sensing. By allowing the sensors to communicate wirelessly, remote
sensing can be done in areas where human activity is impossible or cannot be sustained
for long periods of time.

No maintenance sensing. The fault tolerance capabilities of sensor networks allows it to
be applied in applications where maintenance of the sensing system is difficult.

Multi-hop communication. By using the communication capabilities of the sensors to
allow multi-hop communication, the total energy used in communication for the sens-
ing task may decrease, as the attenuation of transmitted signals is smaller for smaller
distances.

Enhanced signal-to-noise ratio. In tracking or detection applications, the performance
of the task is normally dependent on the signal-to-noise ratio of the measurements.
If we consider that the signal we measure attenuates with distance, then in a sensor
network, as the density of sensors can be high, it is expected that at least a few sensors
will measure the signal with high signal-to-noise ratio, enhancing in this way the final
performance.

Sensor network applications. Based on the advantages of sensor networks presented

above, a plethora of applications can be developed in many different domains [Arampatzis 2005],
[Chong 2003], [Durisic 2012|, [Puccinelli 2005]:

environmental monitoring. Habitat monitoring, bio-complexity mapping, weather fore-
casting and disaster prevention (volcanic eruptions, floods, earthquakes).

Agricultural monitoring. Precision irrigation, fertilization and pest control.

Civil engineering. Building automation, building emergency systems and structural
health monitoring.

Urban monitoring. Pollution monitoring, video surveillance and traffic control.

Health applications. Monitoring of human physiological data, tracking of doctors and
patients in a hospital.

Commercial applications. Support for logistics, production surveillance and automation.
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o Military applications. Self-healing landmines, soldier detection and tracking, shot origin
information, perimeter protection, chemical, biological and explosive vapor detection,
missile canister monitoring and blast localization.

The need for quantization. Even if progress in sensor and communication technologies
motivates the use of a large number of communicating sensors, practical considerations such
as the use of non replenishable energy sources (sensors are self-powered with batteries) and
maximum size constraints impose three design constraints:

e cnergy constraint: which comes directly from the choice that the sensors use a non
replenishable energy source.

e Rate constraint: this constraint is related to the fact that the communication channel
bandwidth must be shared by a large quantity of sensors and that the energy is also
constrained.

The energy spent in a sensor network can be divided mainly in three activities, sensing,
communication and processing. It is known that the major energy consumer of these
activities is communication [Akyildiz 2002]. As bandwidth is constrained, the simplest
solution to have reduced energy consumption is to find a way to achieve the same or
similar goal by communicating with a lower rate (number of bits per unit of time).

o Complexity constraint: although much less important in energy consumption, complexity
both in terms of processing and memory must be small to keep the cost and size of the
sensors small.

One way to treat these problems is to consider that the sensors quantize their measurements
before the realization of any other operations?. This allows to

e reduce complexity by using pre-stored tables for the computations and also by bounding
memory requirements.

e Reduce directly the rate by controlling the number of quantization intervals.

e Reduce energy requirements, as a consequence of the reduction in complexity and rate.

These are the main reasons for studying quantization in this thesis.

Different objectives and the scope of the thesis

In a sensing system the main task is to infer some information that is embedded in the
measurements. The two main classes of inference problems studied in signal processing are
detection and estimation. The literature on the joint subjects, detection based on quantized

2We do not claim here that imposing quantization of the measurements is the optimal solution. In some
cases, it can be shown that a complete analog scheme is optimal [Gastpar 2008].
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measurements and estimation based on quantized measurements, is not expressive if compared
with the literature on the separated subjects, however, as a consequence of the emergence of
sensor networks its size is increasing. Some references on these subjects are the following:

o Detection: |Benitz 1989, [Gupta 2003|, |[Kassam 1977|, [Longo 1990], |Picinbono 198§|,
[Poor 1977|, [Poor 1988|, [Tsitsiklis 1993], [Villard 2010], [Villard 2011].

e Estimation: |Aysal 2008|, [Fang 2008|, [Gubner 1993|, [Luo 2005], [Marano 2007,
[Papadopoulos 2001], [Poor 1988|, [Ribeiro 2006a], |Ribeiro 2006b|, [Ribeiro 2006c|,
[Wang 2010].

Estimation based on quantized measurements. As mentioned before, in this thesis we
will study the second of the subjects mentioned above, namely, estimation based on quantized
measurements. We will start by explaining the general estimation problem in a sensing system.
By making a sequence of simplifications in the general problem, we will get to the main scope
of this thesis.

In the general scheme, each sensor measures a continuous amplitude quantity X @ pro-
cesses locally its measurement and sends it to the point where the estimate will be evaluated.
The point of evaluation can be either a fusion center, one of the sensors or all sensors. In the
last case, all sensors broadcast their processed measurements. This scheme is shown in Fig.
1. The quantity in this case can be a sequence of vectors, a sequence of scalars, a constant
vector or a constant scalar.

XM . |
— Sensing —| Processing -—— Transmission XM
! ; J X(2)
L Semsor 1 |
X2 I T K X(.Ns)
— Sensing —| Processing H > issi »~
| g g | Transmission > Estimation ——
L Semsor2
X(Ns): 777777 [ . It /I
—{ Sensing |—| Processing -—— Transmission
| Sensor N, 1

Figure 1: Estimation problem using a sensing system. Multiple sensors send preprocessed
information to the final estimator that must recover the quantities of interest.

The first simplification that we will make is to consider only one of the terminals (sensors)
in the sensing system, eventually, we might consider the problem with multiple terminals but
with the same quantity being measured by all sensors. We will also consider that the quantity
to be estimated is either a sequence of scalars or one scalar. We will use the notation X}, for
the quantity to be estimated in both cases, k is the sample index and, in most cases, it will be
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also the discrete-time index. When X}, is a scalar constant, we have X, = x. The simplified
problem, which can also be called scalar remote sensing problem, is depicted in Fig. 2.

| T e A~
Xk
~ Transmission ~ Estimation ——

—{ Sensing —{ Processing

Sensor

Figure 2: Scalar remote sensing problem. A scalar single terminal simplification of the problem
depicted in Fig. 1.

The parameter X} is measured with continuous amplitude additive noise V. The contin-
uous measurement will be denoted Y, = X + V3.

The estimation problem we mainly deal here is location estimation, as X} in this case is
a location parameter characterizing the measurement distribution. Other technical consider-
ations about the noise sequence will be presented later. In some points of the thesis we will
not constrain Xy to be a location parameter and we will let it be a general parameter.

According to the previous discussion on the design constraints, the processing block is
replaced by a scalar quantizer. Thus, each noisy continuous measurement Yj will generate a
quantized measurement ij according to the quantizer function @ (.). Each quantized measure-
ment is defined in a finite set of values so the rate (number of possible values per measurement
of the alphabet) is fixed and known. We suppose that the rate in bits per unit of time is chosen
such that the transmission channel capacity is not exceeded, thus, by adding proper channel
coding in the transmission block, we can consider that the channel is perfect.

For each time k we are interested in estimating Xj based on the set of past measurements

i1, 42, * -+, . The problem is then depicted in Fig. 3.
Ve J ‘
Xl Y T ‘ A
ki k i | Perfect | . , X
"—‘é—‘Q(Yk) R g (i1, i) —
! Noi ' | transmission |
i o1se Quant.| | . ___________ . Estimation
~ Measurement

Figure 3: Estimation based on quantized measurements. A parameter is measured with addi-
tive noise, the measurements are then quantized and transmitted through a perfect channel.
Based on the past quantized measurements, the objective is to estimate Xy for each time k
with the sequence of mappings ¢ (.).

As it is shown in Fig. 3, we also consider that the quantizer structure can depend on the
past quantized measurements.

What we want to study. We want to propose algorithms for estimating X} based on ig.
The parameter Xj, which will be detailed later, can be either a deterministic constant or a
slowly varying random process.
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After proposing the algorithms, we want to evaluate their performance. Given the algo-
rithm performance, we want to study the effects of the quantizer function parameters, the
quantization thresholds, and of the quantizer resolution, the number of quantization intervals
or bits.

For assessing how quantization impacts on estimation, we will also compare the estimation
performance of the proposed algorithms with the estimation performance of their correspond-
ing continuous measurement versions.

The objective here is to estimate X}, based on the interval information (we know only in
which interval the measurement is) of a noisy version of it.

What we do not want to study (and we will not study). We do not want to reconstruct
the measurement Yj from the quantized measurements and then estimate Xj based on the
reconstructed measurements, as if they were continuous. By doing this, we would simply join
their optimal separated solutions, which are well known.

We do not want to consider quantization as additive noise either. We want to consider the
problem in its true form, that is to study how to exploit the information contained in intervals
and not in continuous values.

What we want to study but we will not study. To specify in a precise way the scope of
the thesis, we also have to state the problems we may have consciously overlooked. Consciously
overlooked in this case means that, differently from the class of problems above, we wanted
to study them, but to keep the subject simple, they will be neglected. These subjects are:
vector parameters and vector quantization, presence of noisy channels (fading or additive)
and channel coding, fast varying signals, estimation of continuous time signals and Bayesian
estimation of a random constant.
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Structure of the thesis and outline

This thesis is formed by a general introduction, two parts and a general conclusion. Each part
is divided in introduction, chapters and conclusion. In the first part, there are three chapters
and in the second a single chapter. Each chapter is subdivided in three parts: introduction
with the main contributions of the chapter, the main development and a summary/conclusion
with some directions for future work. The conclusions in the order thesis—part—chapter increase
in level of details. The thesis conclusion is a general overview, the part conclusion presents the
points that we think we must retain without explaining the technical details and the chapter
summary is a detailed account of the points observed in the chapter.

The thesis outline is the following:

e Part I: a study of algorithms/performance for estimation based on quantized measure-
ments.

— Chapter 1: the main details on the quantizer structure and noise are given. The
fundamental algorithms and performance for the estimation of a deterministic scalar
constant parameter are presented. Algorithms both for static quantization and
adaptive quantization are studied.

— Chapter 2: the time-varying parameter counterpart of Ch. 1 is presented. We
consider the parameter to be a slowly varying scalar Wiener process and we present
Bayesian algorithms for tracking the parameter.

— Chapter 3: Low complexity algorithms are proposed as alternatives to those pre-
sented in Ch. 1 and 2. We also study some extensions of the scalar location
problem: an extension that considers that the noise scale parameter is unknown
and an extension that considers multiple sensors.

e Part II: a high resolution (high-rate) approximate analytical expression for the estimation
performance.

— Chapter 4: an open problem from Part I is how to set completely the quantizer key
parameters so that estimation performance is maximized. In this chapter, we study
how to solve this problem approximately by considering high resolution approxi-
mations (small quantization intervals approximation). We give a practical solution
to obtain the optimal quantizer and the corresponding asymptotic estimation per-
formance.

Each part will begin with an example, which can be seen as a background for the presen-
tation of the problem. The examples serve only for presentation purposes and their specific
subjects (water management and deep-sea water mining) are not the main subject of this
work.

The appendices of this thesis are divided in three parts, one part for presenting proofs that
are considered not important to develop in the main text Why? - App. A.1l, another for
giving more details about a subject More? - App. A.2 and one part for explaining some
implementation issues How? - App. A.3.
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For defining a new abbreviation or acronym we write the expression in boldface with
the abbreviation in parenthesis (.). For citing a reference that was already cited similarly
elsewhere, we write the reference and the work where it was cited with (cited in ...).
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During this thesis three papers were presented in international conferences

e Rodrigo C. Farias and Jean-Marc Brossier, Adaptive Estimation Based on Quantized
Measurements, IEEE International Conference on Communications (ICC), 2013, Bu-
dapest, Hungary.

e Rodrigo C. Farias and Jean-Marc Brossier, Adjustable Quantizers for Joint Estimation
of Location and Scale Parameters , IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), 2013, Vancouver, Canada.

e Rodrigo C. Farias and Jean-Marc Brossier, Asymptotic Approzimation of Optimal Quan-
tizers for Estimation, IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), 2013, Vancouver, Canada.

One paper was accepted for presentation in a French conference

e Rodrigo C. Farias and Jean-Marc Brossier, "Quantification asymétrique optimale pour

lestimation d’un paramétre de centrage dans un bruit de loi symétrigue”, "Colloque
GRETSI", 2013, Brest, France

and one article was published

e Rodrigo C. Farias and Jean-Marc Brossier, Adaptive quantizers for estimation, Signal
Processing, Elsevier, vol. 93, november 2013.
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"A word to the wise is enough” - popular saying.

Motivation

As a background to introduce this part, we start with an application example. A recent trend
in placing water as a key element in government strategic decisions (including possible future
military interventions) lead to the choice of the motivational example.

Agriculture is responsible for 70% of freshwater withdrawals. Food production for satis-
fying the daily caloric needs of a person consumes 3000 liters of water, a very large quantity
when compared with the 2-5 liters used for drinking. Add to these ingredients the fact that
world population is growing and that a large part of the population is changing its diet, con-
suming more meat and vegetables and therefore even more water [Molden 2007] and we have
a possible recipe for future water scarcity.

One possible policy for preventing future water scarcity is to develop or improve irrigation
systems in sub-developed countries, where water use efficiency is very low [Molden 2007|. For
doing so, measuring accurately the soil moisture of crop fields is a main issue. Thus, as a
background scenario for introducing this chapter, we will consider the problem of estimating
the moisture level of crop fields.

Consider that multiple crop field areas will have each a set of sensors noisy measurements of
some quantities related to soil moisture. All the data will be transmitted to a central processor,
which after estimating the moisture levels, will decide which crops must be irrigated. As the
number of sensed areas can be large, for example, when the irrigation system is integrated for
an entire geographic region, quantization will be applied to respect communication constraints.

The solution to this problem can be simplified by assuming that the decision (control)
part of the problem can be decoupled from the estimation part. We will focus here only on
the estimation part. In a first approach, we can assume that the moisture levels are unknown
deterministic scalars, unrelated from one region to the other and that they are approximately
constant for a block of N independent measurements. If humidity sensors are used, from the
symmetry of the problem and the assumption that the moisture levels are not related, the
joint estimation problem of all levels decouples into many scalar estimation problems with
identical general form. This general form is the following:

(a) Estimate a constant scalar location parameter z, based on N
independent noisy measurements

Yin=Mi=2+V, -, Yy=2+Vy},

which are scalarly quantized with a quantizer function @ (to be
defined later)

ity ={i1=Q (Y1), -, in=Q(Yn)}.
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A more detailed meaning for "estimate" is

(1) Give an analytical form or a procedure describing the parameter estimator X.

(2) Give the estimation performance or an approximation of the estimation performance as a
function of

e number of measurements;
e noise characteristics;

e the quantizer function.

After giving a solution for this problem, we may be interested in considering a more
complex model for z, for instance, instead of considering it as a constant, we can assume that
it varies randomly with time.

A simple dynamical model is
X = X1 + W,

where k is the discrete-time index, Wj is an independent and identically distributed
(i.i.d.) Gaussian process, with zero mean and variance o2. Thus, if X, is Gaussian, Xy
is a Gaussian process known as a discrete-time Wiener process or as a discrete-time
random walk process. This type of process is commonly used to describe slowly varying
parameters when their evolution is random but with unknown form. A reason to use this
model is that by constraining the increments to be Gaussian distributed, minimal quantity of
information is imposed for a given increment variance (in terms of information theory quantity

of information).

Now, suppose we have statistics about precipitation on the crop field region, for example
its average, we also know the last quantities of water irrigated on the field and how to relate
both precipitation and irrigated water to average increase in moisture level, denoted uy. This
will allow us to use a more precise dynamical model for X}, using as increments Gaussian
random variables (r.v.) with mean uy. Consequently, our model will become a discrete-
time Wiener process with a deterministic drift.

The objective is the same as before, estimate X based on scalarly quantized Y;. However,
the relation between measurements can be exploited now. Instead of considering the static
estimation problem for separate blocks of measurements, we can now use all past measurements
in the estimation of the varying parameter, under the constraint that the parameter evolution
must follow the dynamical model.
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Therefore, we are also interested in solving the following problem:

(b) Estimate a varying random parameter X}, at time k based on the
last and present scalarly quantized measurements i.;.

This is a filtering problem, as estimates depend not only on past measurements but also
on the present measurement [Jazwinski 1970]. The problems of estimation based on past
measurements, i.e. prediction, and of estimation based on additional future measurements,
i.e. smoothing, will not be treated in this thesis.

Outline for this part

For the problem at hand, 3 types of model with increasing complexity can be considered, these
3 models are related to the two estimation problems (a) and (b) as it is shown below:

- N Location
Constant model (a)parameter
estimation

Scalar Wiener process model
(b)Filtering

Scalar Wiener process model with drift

\. J

Many other practical estimation problems rely on the models presented above and conse-
quently can be cast as (a) or (b). We will look now for their solutions.

First, we will present algorithms and performance for the estimation of a constant location
parameter. We will study maximum likelihood estimators and their asymptotic performance
through the Cramér—Rao bound. We will see that estimation performance is sensible to the
distance between the quantizer dynamic range and the parameter. For commonly used noise
models, we will see that estimation performance actually degrades when the dynamic range
is far from the parameter. As a solution, we will search for adaptive schemes that place the
dynamic range close to the parameter. We will show that in the binary case, the asymptotically
optimal adaptive algorithm is given in a simple recursive form.

After that, we will focus on filtering. A general solution using recursive integral expressions
will be given. As this solution is analytically intractable, an approximate solution based on
sequential Monte Carlo methods (particle filtering) will be considered. Its performance will
be assessed through a lower bound, the Bayesian Cramér—Rao bound. Then, by analyzing the
bound, we will see that a good estimation scheme can be obtained by quantizing the measure-
ment prediction error, usually called the innovation. We will show that the asymptotically
optimal filter based on the quantized innovation is also given in a simple recursive form when
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the parameter varies slowly.

Motivated by the recursive forms that are obtained asymptotically, both in the constant
and varying parameter cases, we will present a low complexity adaptive algorithm for estima-
tion using quantized measurements. The estimation performance and the optimal algorithm
parameters will be obtained for constant and Wiener process models. Extensions of the algo-
rithm for the cases when multiple sensors with a fusion center are used and when the noise
scale factor (a measure of its amplitude) is unknown will also be obtained.

At the end of this part some conclusions will be drawn on the overall aspects of estimation
based on quantized measurements.



CHAPTER 1

Estimation of a constant parameter:
what 1s done and a little more

In this chapter we study the problem of estimation of a constant location parameter based on
quantized measurements. We start the chapter with the measurement model, which is mainly
the noise model and the definition of the quantizer. The first sections of the chapter deal
with a fixed quantizer structure (fixed quantization thresholds), while in the last sections, we
present estimation schemes with an adaptive quantizer structure.

In the part concerning a fixed quantizer structure, we start by giving a general estimation
algorithm based on the maximum likelihood method. Its performance is given in terms of
the Cramér-Rao bound. Then, we study the general effects of quantization on estimation
performance. This is done through the analysis of the Cramér—Rao bound, a quantity that
is directly related to the Fisher information. We also analyze the performance of binary and
multibit quantization as a function of the quantizer tuning parameter. We give a detailed
implementation of the maximum likelihood estimator for general noise distributions in the
binary case, while in the multibit case, the maximum likelihood estimator is detailed for a
more restricted class of noise distributions, more precisely, log-concave distributions.

As a main result of the performance analysis for the fixed threshold scheme, we will see
that, for commonly used noise models, the estimation performance degrades as the quanti-
zation dynamic range is distant from the true parameter. This is used as a motivation to
study estimation schemes that adaptively place the quantizer dynamic range close to the true
parameter. We study two adaptive schemes. One based on a simple update of the quantizer
main parameter, but with the final estimate given by maximum likelihood estimation and the
other based on the use of the maximum likelihood last estimate as the quantizer main pa-
rameter. Their performances are given also in terms of the Cramér—Rao bound. We will also
see that the estimator based on the maximum likelihood threshold update is asymptotically
equivalent to a low complexity recursive algorithm.

We finish this chapter with a summary of the main points that were studied and with the
directions for further research. The directions will point for further work that is presented in
other chapters or that will be studied in the future.

31
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Contributions presented in this chapter:

o Global and local analysis for binary quantization. By reading carefully the literature on
the subject, we have the impression that setting the quantization threshold on the true
parameter value is optimal for symmetric distributions [Wang 2010, p. 265]. But this
affirmation is actually false. We present here global and local conditions on the noise
distribution that guarantees that this threshold value (equal to the parameter value) is
indeed optimal.

o Asymmetric threshold case. Differently from the literature where only the symmetric
cases are shown, we show some cases where the noise distribution is symmetric and the
optimal quantization threshold is not the median.

e Laplacian noise. In the literature, most of the analysis is focused on the Gaussian noise
case, where, as it is expected, quantization strictly decreases estimation performance.
Here, we study also the Laplacian case. The Laplacian case is easier to analyze and it
is a nice counterexample to the intuition that quantization strictly decreases estimation
performance (see p. 55).

o Adaptive binary quantization scheme in a finite grid. We present a method to obtain
the asymptotic threshold probabilities in the adaptive binary threshold scheme (see
(More? - App. A.2.4)). Differently from the method presented in [Fang 2008], where a
truncation approximation is used, in the method presented here, we define boundaries
on the possible threshold values so that the number of threshold values is finite and the
asymptotic probabilities can be evaluated analytically.

o Multibit adaptive scheme based on the mazimum likelihood estimator and its convergence.
We extend the binary adaptive scheme presented in [Fang 2008| to the multibit case and
we also extend its proof of convergence to the general multibit non Gaussian case.

o Asymptotic binary adaptive scheme based on the MLE. We give a less heuristic proof
that the adaptive quantization scheme based on the maximum likelihood estimator is
given asymptotically in a simple recursive form.
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1.1 Measurement model

We start by explaining the measurement model. The unknown deterministic scalar constant
parameter to be estimated is

z€eR

and it is measured N times, N € N*, with i.i.d. additive noise Vj. For k € {1,--- N} the
continuous measurements are

Yy = 2+ Vi (1.1)

1.1.1 Noise model

The continuous sequences of r.v. Yy and V}, are defined on the probability space P = (2, F,P)
with values on (R, B (R)). For simplification purposes the following hypotheses on the noise
distribution will be considered:

Assumptions (on the noise distribution):

AN1 The marginal cumulative distribution function (CDF) of the noise, denoted F,
admits a probability density function (PDF) f with respect to (w.r.t.) the
standard Lebesgue measure on (R, B (R)).

ANZ2 The PDF f (v) is a strictly positive even function and it strictly decreases w.r.t. |v|.

Assumption AN1 is a commonly used assumption that in practice will be used when the
derivative of F' w.r.t. its arguments is needed. AN2 means that the noise distributions are
unimodal and symmetric around zero and it will be used for the following reasons:

1. The unimodal behavior of the noise will allow to have a general qualitative characteriza-
tion of estimation performance as a function of quantization parameters. More precisely,
it will be observed that for unimodal densities very poor estimation performance occurs
for quantizers having the dynamical range far away from zx.

2. It will be used as a condition for the convergence of some new adaptive estimation
algorithms presented in this thesis.

3. In the lack of physical constraints (e.g. positivity), there should be no reason for the
components of the noise to be asymmetric. Thus, if we consider that the noise is a
normalized sum of an infinite number of symmetric i.i.d. r.v. (an infinite sum of small
perturbations), then it is known that the resulting noise r.v. distribution is a symmetric
stable distribution [Samorodnitsky 1994, which is unimodal.

Even if not all unimodal symmetric distributions are stable the generalized central limit
theorem above serves as an additional motivation.
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1.1.2 Quantization model

From the reasons presented in the Introduction and in the motivational example given above,
the measurements are quantized. We will consider that they are scalarly quantized, which
means that each measurement is quantized separately from the others. The quantizer output
can be written as

i = Q (Yx), (1.2)
where i is a value from a finite set Z of R with N; elements. Due to notation issues, we
denote both the quantized measurement random variable and its realization with lowercase i.
Ny is the number of quantization intervals. A simple example of quantizer ) with uniform
threshold spacing is given in Fig. 1.1.

ir =Q (Yk)
il
2 I
27 — |
1 | |
Ty = =00 To*(%*l)ATO—QA To—A To ! : |
| : : :Tgl+7{ T0+28 4 (B -1)A T =400 Y
| | —_—1 To+ A
| 1,

Figure 1.1: Quantizer function @ (Y;) with N; quantization intervals and uniform threshold
spacing with length A. The number of quantization intervals Ny is even, the quantizer is
symmetric around the central threshold 79 and the output indexes are integers without the
zZero.

Except for the uniform thresholds, Fig. 1.1 shows the main elements of the general quan-
tization model that will be used:

e the number of quantization intervals N; will be an even number, this will lead to a
clearer presentation, as in each analysis we will not need to deal with the additional
central interval.

e The outputs of the quantizer will be defined on a set of integers from —% to %, without
zero. This will simplify the notation of the algorithms that will be presented later. Note
that as we will consider that the output of the quantizer is obtained without additional
noise (it passes through a noiseless channel), the assignment of the output values iy is
not important, as long as the assigned values are different. For estimation purposes,
only a label is needed at quantization output. The estimator or parts of the estimation
procedure will carry out the role of the output quantization levels, as they are used in
standard quantization, by generating estimates (values) based on the information from
the intervals (indicated by the labels) where the continuous measurements lie.
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Observe that if we introduce in the model a noisy communication channel and constraints
on transmission power, the assignment of the output values becomes important. As it
was stated in the Introduction, we are not going to consider this model in this thesis,
but we can keep this extended problem as a possibility for future work.

e The quantizer is defined by Nj + 1 thresholds 7;, which can be separated in three types:
one central threshold 7y, % — 1 thresholds that are larger than 7y with an additional
threshold at 400 and % — 1 that are smaller with an additional threshold at —oco. We
will consider that the non central thresholds are symmetric w.r.t. 7y, thus, for example,
the threshold 7; is given by 79 plus a variation 7/ and the threshold 7_; is given by
To minus the same variation. In the figure, the variations are integer multiples of A,
which corresponds to uniform quantization. In general, we will not impose uniform
quantization.

The assumption on the symmetry of the quantizer is difficult to justify at this point, but
the main idea is that, as it will be shown further for commonly used noise models, the
best central threshold for estimation purposes is exactly z, thus if we set 79 = x, from
the assumption of noise symmetry, it seems reasonable to assume that the quantizer
(a good one) is symmetric. In Part II, it will be shown that for large N; the optimal
quantizer is indeed symmetric around 7y for symmetric noise distributions.

The infinite thresholds for the extreme positive and negative thresholds are used to
have the same notation for the probabilities of the granular (region inside the quantizer
input dynamic range) and overload regions (region outside the quantizer input dynamic
range).

From Fig. 1.1 and the explanations above, the quantizer function can be described as
follows: if we have a measurement Yy > 7 that falls in the quantization interval ¢; = [1;—1, 7;),
then its output will be i. Otherwise, if Y3, < 79 and it falls in ¢_; = [7—;, 7—iy1), then the
quantizer output will be —i.

As an example, consider that we have a uniform quantizer with 16 quantization levels,
7o = 0 and uniform quantization step-length A = 1, then for the input

yr10 = {—20, —8.5, —=3.4, —5.6, —0.1, 0.7, 3.2, 10.7, 7.1, —2.3},

we obtain

y1=—-20 — i3 = -8, ye = 0.7 — ig =1,
y2 = —85 — i2= -8, yr =32 — iy =4,
ys=—34 — 3= —4, yg = 10.7 — ig =S8,
ys = —56 — ig4=—6, Yy =71 — 1i9g=28,
ys = —0.1 — i5=—1, Y0 = —2.3 — d19= —3.
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Observe that by using the threshold variations 7/, we can write the input-output relation
in a more compact way:

i = isign (Y, — 1), for |Yy—70| € [ri_1, 7). (1.3)

Note that the index k here is the time or sample index and it is not the particular value of i.
Before proceeding, we will state explicitly the assumptions on the quantizer.

Assumptions (on the quantizer):

AQ1 Nj is considered to be an even natural number and the set Z where i is defined is

N N
T={-"L ... 11, 2L
2 2

AQ2 The quantizer is symmetric around the central threshold. This means that the vector
of thresholds 7 is given by (T is the transpose operator)

T
/ / / /
T=|T Nf=To—Tn; " T-1=T0—T] To TL=To+T " TNy =T0+ Ty,
2 = 2 =

with the threshold vector elements forming a strictly increasing sequence and the non-
negative vector of threshold variations w.r.t. the central threshold given by

T

T'=|1=0 7 - Tk, =400

2

1.2 Maximum likelihood, Cramér—Rao bound
and Fisher information

We want to estimate = based on 1.5 = {i1, -+ ,in} (problem (a)). For doing so, we will look
for an estimator

X (i1.5) - which is a r.v. as it is a function of r.v.,

that must be as close as possible to . In our case, we are going to choose the quantitative
meaning of "as close as possible" to be with minimum (or small) mean squared error

(MSE):
MSE = E [(Xx)Q] (1.4)

E is the expectation w.r.t. the joint distribution of the noise. The MSE is a commonly
used performance criterion for estimation problems. Although it is widely used, it has the
inconvenient that it is impossible to find in a general form the X minimizing it by direct
analytical minimization [Van Trees 1968, p. 64].
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1.2.1 Maximum likelihood estimator

A common solution for this problem is to suppose that IV is large, in theory N must tend to
infinity, and that X is constrained to be unbiased, which means

in this case, the optimal X minimizing the MSE is known to be the maximum likelihood
estimator (MLE) [Kay 1993, p. 160|. The MLE consists of maximizing the likelihood
function which is the joint distribution of the measurements considering that the measurements
are fixed parameters and that the parameter z is variable!. For the estimation problem
considered here, the likelihood for an independent block of measurements iq.y is

L(ziiry) = [[ P (irs2), (1.5)

where PP (ix; ) is the probability of having a quantizer output iy at time k for a parameter x.
This probability can be rewritten using the noise CDF and the thresholds:

P(‘ ) P(Tik—l <Y < Tik), if 7 >0,
Ip;x) =
F P(Tik ng <Tik+1), if i) <0,

using the definition of Y, = x + Vj; given by (1.1)

]P)( ) P(Tik,1<$+Vk<Tik),if ik>0,
;) =
]P’(Tik <z+4+Vp < TikJrl), if i <O,

B F (1, —x)— F (1,1 —x), if i >0, (1.6)
F(riy+1 —z)— F(m, —x), if i, <O0. .
The MLE is the value of x maximizing L (z;41.n) for a given i1.n:
XML,q = XML (iI:N) = argmaxL (33; il:N) . (17)
x

The subscript ¢ is used to make explicit that the estimation is done with quantized measure-
ments. As the logarithm is a strictly increasing function on R% and most used likelihood
functions are given in exponential form, it is common to solve an equivalent maximization
problem:

XML# = argmax log L (z;i1.n) .
X

LClearly, this is an inversion of roles from the modeling point of view and this is the main reason why we
do not call the likelihood function simply by joint PDF.
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1.2.2 Cramér—Rao bound and the Fisher information

The MLE is the procedure to find the estimate. We still need its performance. Unfortunately,
no finite sample (finite V) performance results are available for the MLE. We will focus then
on asymptotic results for which in some sense, as stated before, the MLE is optimal.

The MSE for the MLE can be written as
R 2 . 2 . )
E [(XML,q — :c) ] = [E (XML,q — x)} + Var (XML,q> = bias” + variance.
As it was stated, the MLE is asymptotically unbiased:
E [X } = = 1.8
MLy N—o0 v ( )

Therefore, it is characterized asymptotically only by its variance.

The Cramér—Rao bound (CRB) is a lower bound on the variance of any unbiased
estimator |Kay 1993, p. 30| and the bound is valid even for finite N. Under some regularity
conditions, the asymptotic variance of the MLE is known to be minimum and it attains the
CRB [Kay 1993, p. 160]:

Var (XML,q) .~ CRB, (1.9)

later, we will compare this CRB, with its corresponding version for continuous measurements

that we will denote CRB.. The symbol o used here means that both quantities are
— 00

equivalent

VYar (XML,q)
lim

—_— =1.
N—oo CRBq

As the MLE is asymptotically unbiased and with asymptotically minimum variance it is usually
called an asymptotically efficient estimator in classical estimation terms.

Note that the optimality in asymptotic variance does not imply optimality in MSE sense,
as a biased estimator can attain a lower asymptotic MSE when compared with the MLE.
Also, it is important to stress that the variance of the MLE will tend to the CRB only if the
maximum of the likelihood can be achieved. This can be an issue when we need to evaluate the
maximum of the likelihood through a numerical method, in this case we have to ensure that
the numerical method will converge to the global maximum. In what follows, we will assume
that the MLE, either evaluated analytically or numerically, is always the global maximum of
the likelihood. For further discussion on the issues of finding the MLE see (More? - App.
A2.1).

The CRB is the inverse of the Fisher information (FI) [Kay 1993, p. 30|. The FI is
given by the variance of the score function S;. As the expected value of the score function
is zero [Kay 1993, p. 67|, the FI is given by the second order moment of the score function.
Starting from the definition of the score function for N quantized measurements and going in



40

Chapter 1. Estimation of a constant parameter

the direction of the asymptotic variance of the MLE, we have the following expressions:

dlog L (x;i1.N)

Sqg.1:N = — - score function,
Olog L (x;11. 2
v = E[S2.4]= E{[g 6(x “V)} } _FIL
. 1 1 ,
Var (XML7q> ~ CRB, = = - variance and CRB.
N—o0 Iq,l;N E { [alogL(z;il;N)} 2}
ox

the subscript is used to indicate that these quantities are related to the quantized measure-
ments ¢1.. Due to the fact that the measurements are i.i.d., whenever we want to refer to the

score function and FI for one measurement i, we can drop the sample indexes, thus writing
Sy and I,. Under the assumption of independent measurements (independent noise), we have
the following:

the joint probability in the FI expression decomposes in a product of marginal proba-
bilities.

The logarithm of the product of marginal probabilities becomes the sum of the logarithm
of each probability.

After differentiating the sum of logarithms w.r.t. z, the square of the differentiated sum
can be decomposed in a sum of squared terms and a sum of products between different
terms.

The expectation of the products between different terms is zero because the factors in
the products are independent and with zero mean (they are score functions thus having
zero mean |[Kay 1993, p. 67]).

The expectation of each squared term is the FI for the corresponding individual mea-
surement.

Therefore, as the measurements are also identically distributed, the FI for N quantized mea-
surements is [V times the FI for one measurement I;:

1

Var (Xarng) ~_ CRB, = T (1.10)
The score function for one measurement S; is
7 ox - P (i) '
and the corresponding FI is
) OP(ig;x) 72
dlog L (x3iy)]? ) )
=25 5 st Pl
€L
[apgk;x)r
= - 1.12
P (i) 1
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Defining the difference between the central threshold and the parameter as ¢ = 79 — z, using
the CDF, PDF notations and the symmetry of the quantization thresholds we have

e ) I G A e A R A e
" zkzzzl F<5+T{k) —F(s+n~’k_1) " F(e—le 1) F(g_T{k) - (113)

The solution to problem (a) (p. 27) given by the MLE is the following:

Solution to (a) - MLE for a fixed thresholds set 7

(al) 1) Estimator

Xwmrg = argmaxL (z;41.n)
X
or

XML,q (i1.n) = argmax log L (z;i1.n),
x

with L (z;i1.y) given by (1.5)

,’:12

$ Zl N Zk‘a
k=1
2) Performance (asymptotic)
Xwm1L,q is asymptotically unbiased
E |:XML,q:| = T
N—o0

and its asymptotic MSE or variance is given by

. 1
Var (Xu) \ ORBy = 1

with I, given by (1.13).

The CRB given above is not only related to the MLE, but can be used to approximately
assess the performance of any good (close to optimal) estimator. In our case, it can be used to
characterize the performance of the measurement /estimation system (Fig. 1.2) independently
of the estimator.

1.2.3 Quantization loss

The solution given above does not contain any direct characterization of the estimation per-
formance as a function of Ny and/or 7. We are going to look into these details now.
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: Yin= 1N = Xq
N01s.y {yi, -+, Yn} o i1, -+, in} Parameter CRB,
continuous * Quantization "| estimation
measurements | N

| X
;L 7777777777777777777777777777777 l Parameter kﬂqlf‘Bc
estimation

Figure 1.2: Scheme representing the general measurement /estimation system. The continuous
measurements sequence Y7.n is scalarly quantized and the quantized sequence 1.y is used for
estimation. Xq and X, are the estimators based on quantized or continuous measurements
and CRB,; and CRB, are their respective CRB.

Loss with respect to the continuous measurement

We will start analyzing the general effect of quantization on estimation. An approximate way
of doing this (exact for N — 00) is to study the quantized FI for one measurement I, and its
difference with respect to the continuous measurement FI I.. I, was given in (1.13), while I,
is given by

I.=E[SZ], (1.14)
where S, is the score function for continuous measurements given by

_Ologfy—z)

Se(y) o

(1.15)

The difference between I. and I, can be obtained by evaluating the quantity E [(Sc — Sq)Q]
[Marano 2007]. Indeed,

E [(sc - sq)z} = E[S2] +E[S?] — 2B [S.S,] = L. + I, — 2E [S.S,)]
and it can be shown that E [S.S,] = E [S2] (Why? - App. A.1.1). Thus from above, we have?
I.—I,=E [(SC - sq)ﬂ >0, (1.16)

as the right-hand side (RHS) is the expectation of a squared function, the FI difference is
nonnegative, meaning that the FI for quantized measurements is always less or equal to its
continuous measurement equivalent. Therefore, as the corresponding CRB will have larger or
equal values, it is clear, as it was already expected, that quantization of measurements reduces
estimation performance (see Fig. 1.2 for the two estimation settings).

2Special attention must be given to the fact that to obtain (1.16), the measurement PDF form f (y — z) is
not used, in the proof in App. A.1.1 a general form f (y;z) is used, thus the conclusion above is also valid for
general parameter estimation problems, not only location parameter estimation.
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Loss with respect to the number of quantization intervals

Even if performance loss is positive or zero, nothing guarantees, until now, that estimation
performance increases with increasing N7, as it is intuitively expected. We will suppose that we
have a threshold set 7 for N; quantization intervals. We will suppose € = 0 for simplification.
We will add one threshold 7" between two thresholds 7,1 and 7; (; > 7/ > 7;-1), @ > 0 is
assumed only to simplify notation. The sum elements defining I, does not change, except for
the term corresponding to interval ¢;. The old and new FI only for this region are respectively

) = fr)l? [ f) = )]’
F(TZ) — F('ri—l) F(TZ) — F(Tz‘_l)

fmoey _ ) = f@P ) = f )]

ot F (7)) — F (1) F (1) = F (7i-1)
We can expand (1.17) adding and subtracting a term f(7/) in the numerator of the first
factor, adding and subtracting F'(7') in the denominator of the first factor and multiplying
and dividing the results numerator terms by F (r;) — F (') and F (7') — F (7;—1). This gives
2

17 = [F () = F (ric1)], (1.17)

(1.18)

o % £ () — F ()] + % [F' (1) = F (1i-1)] y
e [F(r;) = F ()] + [F (7') = F (1;-1)]

{[F (r;) — F (7'/)] + [F (7") — F(Ti,l)] } (1.19)

The Jensen’s inequality tells us the following [Hardy 1988, p. 74]: for a sequence of values a;,
positive weights b; and a convex function ¢ we have

> aib; > bid (ai)
Sh) S TS

Multiplying both sides of (1.20) by > b; and identifying in (1.19) b; with F (r;) — F (')

¢

(1.20)

and F (7') — F (1,-1), a; with &{:EZ;:JI;((TT/))]] and [[}J;E:,;:Q((Z:l))]} and ¢ (x) with 22, we have the

following;: )

I < I (1.21)
As it was expected, adding a threshold, or equivalently a quantizer interval, increases the FI
and, as consequence, it decreases the CRB, enhancing estimation performance. Note that
this is also true if we start with an optimal partition (a partition that maximizes the FI) and
we add a threshold arbitrarily, however, in this case, the final interval partition may not be
optimal within the class of quantizers with Nj + 1 intervals, even if we try to optimize the
new threshold position.

As adding thresholds increases the FI and as I, is bounded above by I., the FI tends to
a limit value when N tends to infinity. An interesting point to be studied is to know if we
can make it converge to I.. This will be done in Part II, where we will see that, under some
regularity assumptions on the quantizer intervals, I, converges to I..

Now, to have a more precise characterization of the estimation performance as a function
of Ny, we must first describe how it is influenced by 7. For the optimal 7, we will be able to
obtain the dependence of the estimation performance only on Ny and the noise characteristics.
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1.3 Binary quantization

We begin the analysis by the binary case, Ny = 2. For binary observations (7/; = —oo
and 7{ = 00), the CRB for N measurements can be written by using (1.13) in the CRB. As
fle+7)=0,f(e+7,)=0,1-F(e+7)=0and F(c+7,) =0 by assumption AN2,
we obtain

F(e)[l - F(e)]
CRBY = 1.22
N IS 2
The analysis of performance in this case reduces to the analysis of the function
F 1-F
B(s) = NCRBZ = e = FE)] (1.23)

f%(e)
1.3.1 The Gaussian case

This function was studied in the Gaussian noise case in [Papadopoulos 2001| and revisited in
[Ribeiro 2006al. In this case,

fle) = — (5’ (1.24)

€)= ——exp |— (= :
Jm PG |

where ¢ is the noise scale factor, which can be linearly related to the standard deviation o

(6 = v/20). By plotting B as a function of £ (see Fig. 1.3), it was noted in [Papadopoulos 2001]

that the minimum value B* is attained for ¢ = 0 and that B (¢) increases when |¢| increases.

Thus, the optimal threshold 7§ must be equal to # and the minimum value of B (¢) is B* =

1w
4f2(0) — S
to have an idea about the loss of performance. Using (1.14), (1.15) and the expression for the
PDF of the Gaussian distribution (1.24), we have:

1 2 2
BC:—: = *—3*7

1
I. E{{aloggiyx)r} T2

x_ T

B* = B.~ 1578,

. We can compare the CRB for one continuous measurement B, = % with B*,
c

or equivalently

The performance loss due to binary quantization is surprisingly small. However, note that
this requires 79 = =, which is impossible to do in practice as x is the unknown parameter to
be estimated. For increasing || > 0, we can observe that B increases in a rather sensitive
way.

An upper bound on B was given in |Ribeiro 2006a] by noting that the product in the
numerator can be bounded by the following exponential (Why? - App. A.1.2):

F(e)[l—F ()] < %exp [— (‘;ﬂ . (1.25)

This bound can be used in (1.23) with (1.24) to obtain

B() < B(e) = 7 exp [Jr (2)2] , (1.26)
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which is a function that increases exponentially with €. To confirm that the bound is tight,
at least for moderate ¢, we plot the function B also in Fig. 1.3.

T 1

|
[u—y
ot
I
—_
|
o
ot
Sl O -
o
at
=
=
at

Figure 1.3: Quantity related to the CRB for quantized measurements, B, as a function of the
normalized difference § between threshold and parameter. B is its upper bound, which has
an exponential form. The noise distribution is the Gaussian distribution and the normalizing
factor ¢ is the Gaussian noise scale parameter. The normalizations in both axis are done to

be able to have a plot independent of §.

Therefore, for the Gaussian case, we can conclude that the estimation performance loss
for the binary case is relatively small if we set the threshold at the true parameter value, but
it increases rapidly when we quantize far from it.

1.3.2 The Laplacian case

We can try to look to another symmetric unimodal distribution to see if the same hap-
pens. For example, we can consider the Laplacian distribution, whose PDF and CDF are

1 £ 1 sign(e) €
- —|& 1.2 _ - senErn _|&
f@=geo(-f5). 0 re=z+=E e ()] 0
where sign (¢) is the sign function
1 ,if e >0,
sign(e) =40 ,if =0,
-1 ,if <.

Applying (1.27) and (1.28) to (1.23), we get
o {2 e (DT} 5+ 52 - ew (- 5]
1 oxp (=25])
DI* _ dexp (= [5) — fexp (-2]5))

(1.29)
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and we can see that B and consequently the CRB is minimized for 79 = x and that it is
sensible to ¢, growing exponentially when we increase |e| = |19 — z|.

1.3.3 The general case

We can try to verify if the increasing behavior of B (¢) w.r.t. |¢| will be observed in the general
case, when the noise PDF is unimodal and symmetric.

Attempt of global analysis: dead end @

For unimodal symmetric distributions we have that f (¢) = f(—¢) and F'(¢) = 1 — F (—¢).
Therefore, as it was observed for the specific Gaussian and Laplacian cases, B (¢) is a sym-
metric function. For analyzing if the increasing behavior is true in general, we can concentrate
the analysis on the first derivative of B w.r.t. €, for € > 0. The derivative is

dB  f*(e)[1—-2F (g)] —2F () [1 = F ()] Y (e)
de /3 (e) ’

(1.30)

where f() (¢) is the first derivative of the PDF w.r.t. &, supposed to exist3. Observe that
if the distribution is symmetric, we have 1 — 2F (0) = 0 and only the second term in the
numerator can be nonzero for ¢ = 0. Adding the condition that () (0) = 0 makes ¢ = 0 to
be a local extremum of B, being a candidate point to be a local minimum.

In a first attempt to verify if ¢ = 0 is a global minimum, we can calculate the second
derivative and look if its sign is negative for all €. If we calculate the second derivative we get

PB _ <35(0) S (€) [L = 2F ()] + F (&) [L— F(2)] [6/V2 (2) — 2/ () /()]
de2 fA(e)

_2,

(1.31)
with f(2) (¢) the second derivative supposed to exist3. Even using the assumptions on the
noise distribution, we cannot get any conclusion on the sign of the second derivative. Thus,
we can try to go back to the first derivative and analyze its sign. Using the symmetry of B, a
sufficient condition for € = 0 to be a global maximum is that %—f > 0 for € > 0. The derivative
%—]EB has the same sign of the numerator in the RHS of (1.30), therefore, we can obtain the

condition
f?(e) [2F (e) — 1]
EAOES EOM-F@E)]

using the fact that the density is monotonically decreasing (f(1) () < 0 for ¢ < 0) and
symmetric ([2F () — 1] > 0 for € > 0), we can write

?(e)[2F (¢) — 1]
Fe)l-F(e)]

)f(l) (5)‘ > J; (1.32)

Unfortunately, by using the assumptions on the distribution we cannot go further. But, at
least, we can use the condition above (1.32) to verify empirically, for commonly used noise

3This rules out the evaluation of this quantity for ¢ = 0 in the Laplacian case, which is not a problematic
case, as we know analytically that B is strictly increasing with |e| in this case.
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models, the increasing behavior of B (¢) with |¢|. For doing so, we (re)tested the Gaussian
and Laplacian distributions with (1.32), we also added a heavy-tailed distribution* to see if
in this case the conclusions change. The heavy-tailed distribution is the Cauchy distribution
with PDF and CDF given respectively by

1 1
&)= =77 (1.33) _1. 1 (E)
0 [1 N (%)2] F(e)= 5t arctan 5) (1.34)
For the three distributions (Gaussian, Laplacian and Cauchy), we calculated the quantity M =
2
‘ f ’ — %, which must be positive to have the monotonic increasing behavior of
B w.r.t. |g|. The result is displayed in Fig. 1.4, where we observe that this is indeed true.
T T I
\ —— Gaussian
0.4 L Cauchy ||
\\\ - - - Laplacian
RS \
X '
= 02f |
0 \ ~ T
0 1 2 3 4 5

|y

Figure 1.4: M x 62 as a function of £ > 0. The plot is given for three types of noise distribution:
Gaussian, Cauchy and Laplacian. All distributions have a noise scale parameter denoted 4.
The function must be positive for the optimal threshold in binary quantization to be exactly
placed at the true parameter 7 = x. The normalizations in both axis are done to be able to
have a plot independent of 9.

Local analysis

As condition (1.32) is difficult to verify in general, we can try to analyze the local behavior of
B () around ¢ = 0. Even if the results will be weaker, as they will only be local results, we
can expect that the conditions for ¢ = 0 to be a local minimum of B (¢) will be easy to verify.

We saw above that if f(1) (0) = 0, then we have an extremum of B (¢) at € = 0. If we use
one more time the assumption f(!) (0) = 0 on the second derivative at zero and the symmetry
(F(0)[1 = F(0)] = 7), we get

d’B 1@ (0)

@520__5 f3(0)

YA heavy-tailed distribution is a distribution whose ratio between 1 — F (z +y) and 1 — F (z) is equal
to one when z tends to infinity [Sigman 1999]. A subclass of this family is the class of all sub-exponential
distributions, where the Student-t distributions (for which the Cauchy distribution is a special case) and
Paretian distributions are included.
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For ¢ = 0 to be a local minimum of B (¢), we have the condition C};?’ > 0. When we

apply this condition to the expression above, we can obtain the followmg condition on the
noise PDF and its second derivative:

— @ (0) > 4£3(0). (1.35)
For the Gaussian distribution this condition is satisfied as we have
1 2 1 4
—f@)( ) (5*37 4f3( )_ 53 ;
and also for the Cauchy distribution
12 14

_f(2)(0):§;>4f3( )_6371'3

1.3.4 Asymmetric threshold: surprising cases A\

Surprisingly, we can find symmetric distributions and even a class of unimodal symmetric
distributions for which the condition (1.35) is not satisfied, as a consequence, for these distri-
butions, e = 0 can be a local maximum instead of a local minimum.

The uniform/Gaussian case

A simple way to define a symmetric distribution that does not satisfy (1.35) is to set the values
of the PDF around zero to a nonzero constant, in this way f (0) > 0 and f® (0) = 0. This
makes the second derivative at € = 0 to be negative, leading to a local maximum of B (¢) at
that point.

As an example we can consider a noise PDF that is uniform in the interval [ 35 2] where
o € Ry, and that decreases as a Gaussian distribution with a standard deviation parameter
o outside this interval. We call this noise distribution the uniform/Gaussian distribution and
the analytic expression for its PDF is

a2
fGL (E) = %@exp |:—% <€+?2) :| s for e < —%,
fFl)=1fv(e) =gz for —9<e<g, (1.36)
L 1 a2
far(e) = Cfep[ (02)}, for e > 5,

where C' = 1+ is a normalization constant that makes the integral of the PDF to be
equal to one. Thlb PDF is depicted in Fig. 1.5.

To obtain the function B (¢), we have to describe the CDF of the uniform/Gaussian r.v..
If we denote @ (¢) the CDF of a standard Gaussian distribution (the CDF for a Gaussian with
o = 1), we obtain the following:

%@ <6J;%>, for e < -9,
Fle)=q¢ |5+ 7y (et 8)|, for —§<e<g, (1.37)
& ot (iﬁ) , fore>§
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[V]fe}

Figure 1.5: PDF for the uniform/Gaussian distribution. The center region is uniform with
width «, while the left and right sides are Gaussian with standard deviation parameter o.

Using (1.36) and (1.37) in the expression for B (¢) (1.23), we get

B(e) :F<e>f[12(—€)F<s>} _
arotexp | ()] @ (252) [o— o (1)), for e < -3,
= {2n0? [(; + %JQLM)Q - 2;;] , for —9<e<g, (1.38)
arotexp | (S2)] [oes + 0 (S5)] 1-0 (55)], fore> 3.

observe that in the interval [—%, %], the function is concave, so we really have a local maxi-
mum at zero.

For observing the global behavior of this bound, we plotted CRBqB for a number of samples
N =500, « = 1, 0 = 1 and for values of ¢ in the interval [—2, 2]. For verifying that the
behavior of the bound was close to the true MSE of the MLE, we simulated the MLE 10°
times for N = 500, the simulation results were used for evaluating a simulated MSE. The
details on the implementation of the MLE for binary quantization will be presented further in
(al.1) in Sec. 1.3.6 and for more specific implementation details about the uniform/Gaussian
case see (More? - App. A.2.2). The simulation of the noise was done by exploiting the fact
that the uniform/Gaussian distribution is a mixture of distributions that are easy to sample
(How? - App. A.3.1). The results are shown in Fig. 1.6.

We can observe the concave behavior of the bound around ¢ = 0 and the presence of
two minima at points different from € = 0. This shows that for this type of noise, binary
quantization must be done in an asymmetric way, by shifting the central threshold to a zone
where the noise is not uniform. Note also that if we shift too much, the performance starts
too degrade again. We suspect that this asymmetric behavior comes from the fact that for
the uniform distribution the most informative points in statistical sense are the boundaries of
the distribution (where it passes from a positive value to zero). Finally, we can also see that
the MSE for the MLE is quite close to the bound, indicating that we can use the bound for
analyzing the behavior of the MSE.
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1072

1.2

— CRB/
g --- Sim. — MLE

MSE

Figure 1.6: CRBqB and simulated MLE MSE for uniform/Gaussian noise. Both the bound
and simulated MSE were evaluated for a number of samples N = 500 and for ¢ in the interval
[—2, 2]. The MSE for the MLE was evaluated through Monte Carlo simulation using 10°
realizations of blocks with 500 samples. We considered the following noise parameters: a = 1
and o = 1.

The generalized Gaussian case

We can also look if there are noise distributions without the central uniform behavior for which
the condition on the second derivative (1.35) is not respected. All distributions that have zero
second derivative at ¢ = 0 will not respect the condition. To have zero second derivative at
zero, the PDF must be flat around zero. A class of distributions for which we can control the
flatness around zero by changing a parameter is the generalized Gaussian distribution
(GGD). A more detailed presentation of the GGD will be given in Ch. 3 with the motivation
for using it as a noise model. Here, we will present only its PDF and CDF, which are given
respectively by

fle) = ¢3>em3(—’§f>, (1.39)

20 (
1 (g8
F(e) = % 1+sign(€)7<57‘6‘> (1.40)

where ¢ is the noise scale parameter, 3 is a shape parameter which allows for controlling the
flatness around zero. Both § and /3 are constrained to be strictly positive § > 0, 8> 0. T'(.)
is the gamma function
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and 7 (s, 4) is the incomplete gamma function
w
v (z,w) = /le exp (—z) dz.
0

We need to calculate f(?) (¢) at € = 0. For doing so, we will evaluate the derivatives for € < 0
and € > 0 and then we will evaluate their limits when ¢ tends to zero.

For the first derivative we have
D (_Ta)ﬁ_l exp [— (_Ta)’ﬂ , fore <0,
fM(e) =
-D (%)ﬁ_1 exp [— (%)ﬁ} , fore >0,
where D = 262'1(32(/13). Observe that if 8 < 1, then the first derivative at zero is not defined.
For 8 > 1, the derivative is zero.

For the evaluation of the second derivative we will consider 8 > 1. We get the following
second derivative:

D[~ (F) 7+ 5 () ew |- (5)], fore<o,
f®(e) =
DI-EH () 5 ew[-(9)], fore>o0

We can see that for 1 < § < 2, the derivatives when e approaches zero are both —oo. For
these cases, the point € = 0 is a local minimum of B (g). In the Gaussian case 5 = 2, the
second derivative has a finite negative value and we saw before that € = 0 is a local minimum
(empirically we also observed that it is a global minimum). For the cases § > 2, the second
derivative is zero, thus corresponding to the special cases of local maximum that we were
looking for.

The function B (g), that we expect to be a "w" shaped function for 8 > 2, can be evaluated
using (1.39) and (1.40) in the expression for B (¢) (1.23). This gives

212 (1 21 1|8
rop-re PrG) [ 261 |8
B(e) = - | C AL LA 2 H . 1.41

(5) fz (E) 52 2 (%> exp S ( )
As in the uniform/Gaussian case, we also plotted CRBqB and the simulated MSE of the MLE.
We used N = 500, 8 =4, 6 =1 and values of ¢ in the interval [-1, 1]. We simulated the MLE
10° times and the results were used to obtain an estimate of the true MSE for this estimator.
For more specific implementation details about the MLE in the GGD case see (More? - App.

A.2.3). The GGD noise was generated using transformations of gamma variates (How? - App.
A.3.2). The results are shown in Fig. 1.7.

We can notice again that the optimal threshold must be placed in an asymmetric way
and also that the simulated estimation performance is close to the bound. Contrary to the
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MSE

3

Figure 1.7: CRB? and simulated MLE MSE for GGD noise. Both the bound and simulated
MSE were evaluated for a number of samples N = 500 and for ¢ in the interval [—1, 1]. The
MSE for the MLE was evaluated through Monte Carlo simulation using 10° realizations of
blocks with 500 samples. We considered the following noise parameters: 5 =4 and § = 1.

uniform/Gaussian case, we cannot have a clear interpretation on the position of the minimum
point. The minimum point was observed to be sensible to changes in 8 and . It was also
observed that as we set (3 closer to 2 (the Gaussian case), we obtain a difference of performance
between the point € = 0 and the minimum point that gets smaller. On the other hand, as we
increase 8 (getting closer to the uniform distribution), the difference seems to increase.

1.3.5 Conclusions on binary quantization performance
To conclude, we can say that the best estimation performance in the binary case for commonly

used noise models (CRBf ) is obtained for € = 0 or 79 =

FOOL-FO] 1
Nf20)  4Nf2(0)

CRBJ* = (1.42)
which is also a lower bound on the asymptotically achievable performance. However, even
under the unimodal symmetric assumption, this rather intuitive conclusion is not always true.
From the local condition on the second derivative, we can see that if the noise PDF is slightly
flat around zero, then a "w" shaped performance function will appear, leading to an optimal
threshold that might be placed asymmetrically w.r.t. to its input r.v. distribution.

The variation between the performance for the point ¢ = 0 and the minimum CRBqB *
in the asymmetric cases seems to depend on the flatness of the distribution. An increased
flatness around zero, seems to be related to an increased performance variation. This strong
dependence between the shape of the CRB and the noise distribution seems to be a good
subject for future work.

Another interesting direction for future work on this issue about asymmetry is to ana-
lyze how it can appear on the detection problem using binary quantized measurements. It
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appears that such behavior will be present for the same noise distributions considered above
(uniform/Gaussian and GGD) in the problem of local optimum detection of signals based
on binary quantized measurements. For this problem, it can be shown that the asymptotic
performance depends also on the FI for quantized measurements [Kassam 1977|.

1.3.6 MLE for binary quantization

The specific implementation of (al) in the binary case with a fixed threshold can be done
in a simple way |Papadopoulos 2001| (and revisited in |Ribeiro 2006a]). The sequence of N
quantized measurements can be observed as a sequence of N i.i.d. samples from a Bernoulli
distribution with probability p = P (i =1) = 1 — F (79 — z). Thus, hiding the functional
dependency on x and 7y, we can calculate the likelihood of p with the sequence iy.5.

The likelihood of p for é1.5 can be written in a simple form by observing the following:

e for a measurement iy, P(ix = 1;p) = p and P (i = —1;p) = 1 — p. We can write
P (iy;p) in a form p/10x) (1 — p)ffl(i’“), where the functions f; and f_; are respectively
1 and 0 when i, = 1, and 0 and 1 when i, = —1. A Simple choice for these functions is
fi(ix) = @ and f_ (i) = 1_2i’“.

e As the measurements are independent, the likelihood for the sequence 1.5 will be the
product of the marginal likelihoods P (i, = 1;p).

This leads to

zk—O—l 177519

(1-p)2

N
L (p> Z.I:N) - H
k=1

Calculating its logarithm and then evaluating the MLE for p denoted Pyrr, we get the following
[Wasserman 2003, p. 123]:

N .
~ 1 1+Zk
Py =— . 1.43
=y (1.43)

The MLE (in general) has the property that if we want to estimate a parameter z which is
an invertible function of z, x = g (z) and we know the MLE for z, Zy;r, then the MLE for x
is Xy =g (Z ML) [Kay 1993, p. 176]. This property is known as functional invariance. For

our problem we can write
z=g(p)=m—F'(1-p), (1.44)

F~1is the inverse of the noise CDF. By definition F'~! is invertible, as F is strictly increasing
due to the monotonicity assumption on F', so the function ¢ in this case is invertible. Thus,
by the functional invariance of the MLE, we can obtain XML,q, after replacing p in (1.44) by
Py given by (1.43). This leads to an analytical expression for the MLE:

(i) o

XML,q:g(PML> =7 —F! (1_15ML)—7'0_F_
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Therefore, the solution to problem (a) (p. 27) in the binary case can be detailed as follows

Solution to (a) - MLE for binary quantized measurements and fixed threshold 7

(al.1) 1) Estimator

XML,q =g (pML> = - F! (1 - pML)

(529

k=1

= T(]—F_l

2) Performance (asymptotic)
Xwyr, is asymptotically unbiased

E [XML,q} Ny T

—00

and its asymptotic MSE or variance is given by

F(ro—z)[1—F (10 — )]
Nf2(r0—x) ’

Var (XML,q> N:oo CRBqB =

which is minimal for commonly used noise models (Gaus-
sian, Laplacian and Cauchy distributions) if 7y = z, attain-
ing ﬁ%o) and increases with |1y — z|.

Notice that this algorithm can be used for any noise distribution, not only for symmetric
unimodal distributions.

1.4 Multibit quantization

Now, we study the multiple interval (multibit) case, Ny > 2. The expression characterizing
estimation performance for this case is given by (1.13):

) e =)~ f =)
9= g::l F(€+T{k) _F(EJFT{;l) ’ F<€_Tl{k—11) _F(E_T’{‘)

We remind that a larger I, (¢) gives a better asymptotic estimation performance. We will
start by analyzing the influence of the central threshold.
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For verifying symmetry, we replace € by —e.

2

N L R e | e W B d B
la (=)= Z; F(—E—l—Ti’k)—F(—g—i-T{kq) " F( £ = Tj 1)_F( S Z/’“)

The following equalities come from the symmetry assumptions:

fleetm) = fle-7), F(-e+m,)=1-F(e-7),
( 6+T 1) f(s Zk 1) F(—e—l—T{k_l):l— (6—7‘ ),
f(—e—1 1) fle+7i 1), F(—e—7 ) =1-F(c+7 _4),
f(—E—Tik) = f(e+7,), F(—e—1)=1-F(e+1]).

Applying these expressions to I, (—¢) and multiplying by —1 inside the squared terms we get
that I, () = I, (—¢), thus, the even symmetry observed in the binary case can be extended
to this case.

1.4.1 The Laplacian case

Now, we start with the Laplacian case which is easy to be treated analytically. If we set € = 0,

R A N e R ek
M= Z ) —r () () —r (o)

using also the symmetry assumption (similar development as above), one can easily observe
that the second term inside the sum terms is equal to the first, which means that we can
rewrite the sum as

ik:% 1Y — f (! 2

in=1 F(T{k) *F(T{k_l)

Using the PDF and CDF for the Laplacian distribution (1.27) and (1.28), separating the
last term of the sum and simplifying the notation for the absolute value and sign functions
(7{, > 0), we obtain

, , 2
=g -1 oy [exp <—Tg’€> — exp <—Tz’“51>} o

I,(0) = 2 Z /
- — :

ip=1

The terms inside the sum (in the ¥ operator) cancel each other except for the first and last
term, the last term and the term outside the sum also cancel each other. I, (0) is then given
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!
To

by only one term, which is I, (0) = 5% exp (—7), as 7, = 0, we have

1,(0) = 52

Surprisingly, this is exactly the same as the FI for continuous measurements (Why? - App.
A.1.3). Thus, this means that not only 79 = x is optimal for the Laplacian distribution but
also that no loss of performance is observed. As the quantized measurement FI can only
increase by adding quantization intervals and as it is upper bounded by the continuous FI,
we see that once we have placed the threshold at z, the quantized measurement FI will be
the same for all N; > 2. This means that in practice, as we want to minimize the rate, the
optimal choice of number of quantization intervals will be N; = 2.

1.4.2 The Gaussian and Cauchy cases under uniform quantization

Instead of diving into calculus for trying to obtain some characterization of I, as a function
of €, we preferred to directly plot its influence for a given set of thresholds. We evaluated
I, given by (1.13) as a function of § with § € [-10,10]. The evaluation was done for the
Gaussian and Cauchy distributions. The quantizer was assumed to have Ny = 8 and a
uniform step A between thresholds, which means that 7/ = [0 A 2A 3A + co|. Here,
uniform quantization was assumed only to simplify the presentation.® Three different A were
chosen for the evaluation, A = 0.1, A* and 2§. A* was chosen as the maximizer of I, when
¢ = 0 and it was obtained by exhaustive search. The results are given in Fig. 1.8 where the
continuous FI 1. is also plotted for comparison. Remember that for the Gaussian distribution

1. = 6%. For the Cauchy distribution we have I. = # (Why? - App. A.1.4).

Observe that in all cases the point € = 0 gives maximum I,. Note that differently from the
binary case, the FI does not strictly decrease when |e| increases, this only happens when |¢|
is outside the quantizer range. We can also see that the optimal A gives I, values very close
to I..

It is also interesting to observe that when we choose A very large compared with A*, we
obtain a maximum /, smaller than for A*, but this I, does not decrease to zero inside the
quantizer range. This indicates that when we have a prior information on the interval of values
where x is located, then a more robust solution can be found by using a large quantization step
(for example by using a A that is equal to the prior interval length divided by Ny). Clearly
in this case, the price to pay is that even if we have ¢ = 0 the performance is lower than the
optimal, being very close to the performance for a binary quantizer.

Differently from the binary case, after evaluating I, (¢) for the GGD with 8 > 2 and
Ny > 2, it was observed that when we use A* as quantization step, the symmetric quantizer
assumption seems to force the performance to be optimal for ¢ = 0. Less surprisingly now,
when the quantization step is chosen too large, the asymmetric behavior appears, this is due to
the fact that the performance around e = 7/ is very close to the binary quantizer performance.
In the same way as for the other noise distributions considered above, it was also observed
that when the parameter is outside the quantizer range the performance is degraded.

5Tt will be shown in Part II, that for large N;, the optimal quantization intervals may not be uniform.
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FI x 62
FI x 62

)

Figure 1.8: FI for a range [—10,10] of normalized difference § between the central threshold

7o and the true parameter z. The quantizer with Ny = 8 is uniform with quantization
interval length (in the granular region) A. In (a), the noise distribution is Gaussian and
A = 0.10, A* = 0.3996,20. A* is the optimal quantization step for & = 0. In (b), the Cauchy
noise distribution is used and A = 0.16, A* = 0.58786,26. A* is also the optimal quantization
step for § = 0. For both cases, I.. is the FI for the continuous measurement. In the Gaussian
case I, = 262, while in the Cauchy case I, = %52. The normalizations on the difference range

and also on FI were done to be able to have a plot independent of §.

In all tested cases® (under the symmetry assumptions), it was observed that when A* is
used, € = 0 is the optimal solution. Thus, we can say that for commonly used noise models,
if the quantization thresholds are well chosen, 79 = x is optimal. The "commonly used" term
here seems to be larger than in the binary case, as all the GGD with § > 2 do not have
anymore the asymmetric behavior for the optimal central threshold.

After setting 79 = x, we still need to characterize the other thresholds to have a full
performance characterization depending only on Ny. This can be equivalently stated as finding
the variations from the central thresholds 7/ maximizing I, (0) given by (1.46):

I} = argmax I, (0) . (1.47)

7_I

Unfortunately, an analytical solution cannot be found in general. An efficient solution for this
problem could be obtained if this problem was convex or convexifiable [Boyd 2004], but this is
not the case, so this is a very complicated multidimensional maximization problem. A possible
solution to it is to fix the quantizer to be uniform, then in this case the problem is still one
dimensional and it can be solved by exhaustive search (searching for the maximum on a fine
grid of possible values). Existence of a non-degenerate solution (0 < A* < 00) is guaranteed
by the following argument: for A* — 400, all the distribution is concentrated on the first
quantizer interval (remember that ¢ = 0), thus I, will be equal to the binary case I, and for
A* = 0, we get directly the binary quantization performance. As it was explained above, I,

5Two families of distributions were tested, the GGD and the Student-t distribution which will be presented
later in Ch. 3. They were tested with uniform symmetric quantizers.
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increases when we add thresholds, so at least one non-degenerate solution must exist. For
a non-uniform solution, we can try to use local approximations by using Taylor series, this
subject will be left to Part II.

1.4.3 Summary of the main points

Thus, up to this point we have:

e estimation performance based on quantized measurements is bounded above by the
estimation performance based on continuous measurements.

e Adding quantization levels does not decrease estimation performance (it might increase
in most of the cases).

e The optimal central threshold 79 must be placed at the true parameter x for commonly
used noise models (Gaussian, Laplacian, Cauchy distributions). If we consider N; > 2,
symmetric thresholds w.r.t. the central threshold and well chosen quantization intervals,
then it seems that 79 = = may be optimal for a large class of symmetric unimodal
distributions (for all the distributions above plus other members of the GGD).

e Maximizing the estimation performance w.r.t. the other thresholds (1.47) is in general
a complicated problem.

1.4.4 MLE for multibit quantization with fixed thresholds

As it was done in the binary case, we still need to precise how to implement the MLE. Note
that in this case the likelihood is given by (1.5)

N
L(zyinn) = H P (ig; x) .
k=1

Now, the MLE cannot be written in simple form and we must resort to numerical maximiza-
tion. In general, we could use a steepest ascent algorithm, to iteratively climb the likelihood
function. As it was developed in [Ribeiro 2006a], an efficient solution can be found when the
noise distribution is log-concave. A log-concave distribution is a distribution for which its
logarithm is concave, a simple example is the Gaussian distribution. If f is log-concave, it is
known that P (i; x) is log-concave [Boyd 2004, p. 107] and also that their product (expression
above) is log-concave [Boyd 2004, p.105|. Thus, under this assumption the log of L is concave,
an efficient solution for finding the MLE is the Newton’s algorithm [Boyd 2004, p. 496] given

by [Ribeiro 2006a]:
Olog P(iy;x)

% _ Y 0
XML,j — XML’jfl - W;(lk@) 9 (148)

3 .
Ox z=XnmrL,j-1

the subscript j is used to represent the iteration index and | means that the function

x:XZWL,jfl
on its left is evaluated at the point x = Xy j—1. After starting the algorithm with an



1.4. Multibit quantization 59

arbitrary X ML,0, the iterations are done until a pre-specified small minimum value €, for
the variations ‘X ML,j — X MmL,j—1| is crossed. All the interest in obtaining a concave problem
formulation comes from the fact that the Newton’s algorithm not only guarantees convergence
to a global maximum but also does it with quadratic convergence, i.e. when the iterates gets
close to the optimal value, at each iteration X ML gets 2 digits closer to x [Boyd 2004, p.
489].

Therefore, for Ny > 2, with a fixed set of thresholds and considering that the distribution
is log-concave we have the following solution for problem (a) (p. 27):

Solution to (a) - MLE for quantized measurements with log-concave
noise distribution, N; > 2 and fixed T

(al1.2) 1) Estimator
Define an initial guess on the estimate X,/ 0. Until

XML,j — XML,jfl < Emin> do

Olog P(iy;x)
% Y L Ox
XML’J - XML’]fl 02 log P(iy;x)

Ox2

z=XMpmL,j-1

and set j = j+ 1. Then, XML,q is set to the last XMLJ.

2) Performance (asymptotic)
Xy, is asymptotically unbiased

E [XML’q:| Njoo .

and its asymptotic MSE or variance is given by

1

var (Xurg) ~ CRB, =
q

with I, given by (1.13).
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1.5 Adaptive quantizers:
the high complexity fusion center approach

The analysis and results above indicate that to get optimal estimation performance from
quantized measurements we must, in general, place the central threshold close to the true
parameter’. This can be done by using the information given by the measurements to move
adaptively the central threshold. Main work that has been already done on this subject will
be presented in this section.

An adaptive scheme to estimate z based on a sensor network of binary quantizers is
presented in [Li 2007]|. The main idea is that enhanced estimation performance can be obtained
if the sensors can place dynamically their thresholds around x. Here, we present an equivalent
sequential version using only one sensor. The following is proposed:

1. a sensor can communicate binary measurements to a fusion center. The sensor measure-
ment noise sequence is supposed to be i.i.d..

2. The sensor starts with a known binary threshold 790, where the second subscript is for
the discrete-time index. Note that now the threshold will be considered to be varying.

3. At each instant k, the sensor obtains a binary quantized measurement iy, (i, € {—1, 1}).
4. The sensor then updates the threshold by the following simple cumulative rule:
Tok = T0k—1 + Viks (1.49)
where v is a constant positive adaptation step (see the remarks after the MLE definition).
5. The sensor sends its measurement i; to the fusion center.

6. The fusion center updates its 79, and stocks in a memory both i; and 79;. Note
that the fusion center threshold is exactly the same as the one obtained in the sensor
threshold update.

7. After a predefined number of iterations, for example N, or at each iteration k, the fusion
center can get a more precise estimate of x (more precise than 7 ;) by using a MLE
based on all past 7.

"The literature on the subject also points in the same direction.

The case when z is constrained to lie in a bounded interval X of R was extensively studied in
[Papadopoulos 2001]. Main attention was given to the effects of different schemes for setting 79. The schemes
considered were: fixed, varying but random and i.i.d, varying deterministically and based on feedback. For
each scheme, the worst case CRB, (z was chosen to maximize the CRB) was evaluated and divided by the
continuous measurement CRB to give a measure on the performance loss induced by quantization. The loss
was shown to be more sensible w.r.t. an equivalent signal-to-noise ratio (the interval X length divided by the
noise scale factor) in the fixed case and insensible in the feedback case. Some solutions based on iterative
maximum likelihood techniques, which puts the new threshold on the last ML estimate, were presented but
no theoretical proofs that they reach the minimum CRB4 were given.

In [Ribeiro 2006a|, where the binary quantization Gaussian noise case was mainly studied, it was pointed
out that the sensibility of the estimation performance to € and its optimality for € = 0 indicates that, to
enhance performance, we could move adaptively the binary threshold, placing it on the last available estimate
X to get closer and closer to the true z.
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1.5.1 MLE for the adaptive binary scheme

As the threshold is dependent on the measurements, the measurements are not independent
anymore. However, as a measurement i; is dependent only on past measurements and this
dependence is done through 7¢;_1, conditioned on the threshold that was used, the mea-
surements are independent. This leads to the following likelihood and log-likelihood for the
measurements until time NV:

N

L(zyitn) = Pliny;z) = [ [ Pliklin-1,- - i)
k=1

I
=

P(ig|m0,k—1; %)

k=1
N 1+, 1—iy,

= [[0-F(rop—1—2)] 7 Flrop1—2) 2 , (1.50)
k=1
N

log L (z;i1.8) = Z { ! —;Zk log[1 — F (10,1 — )] + ! ;Zk log F' (19 k-1 — x)} ,(1.51)
k=1
where the vertical bar inside the probability symbol means that the probability measure is
evaluated for the r.v. on the left side of the bar, conditioned on the r.v. on the right side of
the bar. The conditioning makes the output 45, depend on 79 ;_; as if it was a deterministic
parameter, that is why we can use the same notation with CDF F' parametrized by a fixed
nonrandom threshold.

At the fusion center at time N, all the thresholds and binary measurements are known,
the maximum likelihood estimator can then be calculated by maximizing (1.50) or (1.51):

N

XL, = argmax H 1—F (to,-1—x)]
T k=1

144y, 1—ip

2 F(T()’kfl — LL’)T (152)

or

N . ‘
- 1+ 1 —ig
XML = argma‘xz { 5 log [1 — F (to5—1 — )] + 5 log F (T -1 — ) ¢ -
T k=1

Note that the threshold moves with each measurement, while the estimate is obtained only
at the end of the measurement block. Observe also that when the noise distributions are log-
concave, the MLE can also be obtained by using the Newton’s algorithm, as it was discussed
in the previous section.

Remarks: it is intuitive to expect that the mean 7 ; will reach an equilibrium after some
time. If the threshold is above the parameter, iteration (1.49) will reduce its value, in the
other case, if the threshold is below the parameter, iteration (1.49) will increase its value. In

the mean equilibrium we have E [W} =E[ix] = 0, thus as i = 1 or i3 = —1 the only

possibility for this to happen is when P (i, = 1;2) = P (iy, = —1;2) = %, which in the case of
symmetric noise distributions means to say that E 1 ;] = .
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The variance of the thresholds will depend on the noise distribution but also on the pa-
rameter v, if we choose 7 to be relatively small, once the threshold is close to the parameter,
it will fluctuates around it with a small variance. The fact that the threshold updates are easy
to implement (it is just a cumulative sum) and that the estimator is a complex one goes well
with real implementation constraints, where complexity on the sensor side of the problem is
strongly constrained and on the fusion center side, it is less constrained.

1.5.2 Performance for the adaptive binary scheme

We must look now to the performance of this scheme. The performance analysis that is
presented here was proposed in [Fang 2008|.

Even if the measurements are dependent, it is known that, under some conditions that are
satisfied here, the MLE will still attain the CRB [Crowder 1976|. Thus, the main problem
here will be the evaluation of the FI. As the measurements are dependent, the FI for NV
measurements is not IV times the FI for one measurement and we need to evaluate it using
the score function for the entire block of measurements. The FI for N measurements is

Igi:n =E [Sq] =E

N ) 2
Z 0log P(ik|70k—1; )
ox

k=1

It was shown in [Li 2007] that this quantity is equal to

N
Laun=Y E [ 1 (o1 — ) ] : (1.53)
k=1

F(rop-1—2)[1 = F(104-1— )]

where the expectation is evaluated under the only r.v. that still appears on the expression,
7o k—1- If we assume that 799 = 0 then the 7 ;1 is a random walk in an infinite grid (more
specifically finite for finite k) with values {—o0, -+, =2y, —v, 0, 7, 27, -+, +00}.

For understanding how (1.53) was obtained, one can decompose the squared sum of score
functions into a sum of squared scores and a sum of score cross products. As the measurements
are independent, the expectation of each cross product will be the product of expectations.
The product of expectations will be zero because the expectation of a score function is zero
[Kay 1993, p. 67]. Therefore, I,1.n will be the expectation of the sum of squared scores.
Decomposing the expectation into an expectation on i conditioned on the thresholds and an
expectation on the thresholds, one gets (1.53).

Denoting the probability of having 70,1 = jv by P (tok—1 = j7) = pjk—1 we have:

N +oo

Lan=) >, % Gy = @) Pt (1.54)

= FlUy - [1—F( el

Note that this is equivalent to obtaining N measurements from a binary quantizer with a
random thresholding scheme that changes its prior threshold distribution pg_; in time. The
prior distribution changes in a way that when k — o0, it is expected that most of its probability
will be concentrated around the parameter. This is in contrast to the methods presented in
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[Ribeiro 2006a|, where z is random with a given prior and N binary thresholds are chosen
using a function of the prior distribution, in this case, having the right mode of the prior
distribution is crucial, while in the adaptive scheme above, the mode of p;_; will be around
x for large k without any initial prior.

Putting the factors of (1.54) in (infinite dimension) vector notation

LA IR ey s
-
FO-2)1-FO-a)] F(y—z)[1-F(y-=)] ’
Pk-1=["", P-1k-1, POk—1, Plk-1, "']T (1.56)
allows to rewrite the sum of the products as a scalar product. Thus, (1.54) becomes

al T

Igi:n = Z U, pi-1- (1.57)

k=1

Using the definition of the threshold evolution (1.49), it is possible to observe that a specific
threshold value jv has a probability of happening at instant k£ — 1 that depends on the
probabilities of having thresholds at (j — 1)~ or (j+ 1) and of measuring ix—1 = 1 or
ir—1 = —1 respectively. This gives rise to a recursive equation for p;;_1:

Pik—1=Dpj k21 =F(([G—-1)y—2)]+pjris2F(H+1)y—12). (1.58)

This shows that the threshold values form a Markov chain, as the present probability of the
threshold values depends only on the previous probabilities p;x_o. It is possible to write the
vector of threshold pg_; probabilities in recursive form

Pr = Tpi-1, (1.59)
where T is a (infinite dimensional) tridiagonal transition matrix, defined as follows
T =

i 0 i

1—F(—éy—x) 0' F(0—2x) 0 0

0 1—F(—y—2x) 0 F(—y—1x) 0

0 0 1-F(0—=x) 0 F(2y—x)

0

The stationarity theorem for Markov chains guarantees that px_; will attain an asymptotic
distribution ps [Fine 1968] (cited in [Fang 2008])® and this distribution can be obtained by
solving the system of equations

P = Tpoo'

81n [Fine 1968], it is shown that the possible threshold values can be separated in two classes of states, which
are periodic. The probability vectors for each class are shown to converge to unique asymptotic probability
vectors. The asymptotic probability vectors when put together form the vector peo.
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To solve this infinite dimensional system [Fang 2008] considered that only a part of the thresh-
olds around the true parameter will have a non negligible probability, for practical purposes
it was considered that non negligible thresholds are those in the interval

I, = [-boy, — |z|, Boy + |z]],

where o, is the standard deviation of the noise”. The non negligible probability vector, denoted

Poo Will have size 2 E’U%ﬂx‘—‘ + 1 = 2jmax + 1, where [y] is the closest integer that is larger

than y and the "4+1" comes from the zero threshold. The approximate threshold distribution
can then be obtained by solving

p_jmaxvoo

Poo = ]500,0 = Tpooa (1~60)

L pjmaX7OO

where T is the truncated transition matrix around the zero threshold (we show only the upper
left corner)

0 F (=7 (jmax — 1) +€) 0 0
1 — F (—Yjmax +¢) 0 F (=7 (jmax —2) +€) 0

0

One can also truncate I’y only for the non negligible probability elements

T=

. ‘ .
¥ S (—Yjmax +€) . 2 (Vjmax + €)

¢ F (—=7jmax +¢€) [1 - F (_7jmax + 5)]’ O F (VJmax + 5) [1 — F (Yjmax + 5)]

(1.61)
Following the development in [Fang 2008|, after a finite time N, the probability vector py will
be indistinguishable from p,, thus when N — oo, an infinity number of terms in I, 1.x will

=T . . . . .
behave approximately as I') Poo, Which leads to the following asymptotic approximation of
the FI:

N
. a =T _
LN = ;I Pt~ NI, P (1.62)

—

9For one of the noise distributions considered here, the Cauchy distribution, the standard deviation is
undefined. In this case, one can use the scale parameter § instead of the standard deviation o .
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This gives the following solution for problem (a) (p. 27):

Solution to (a) - MLE for binary quantized measurements with
adaptive thresholds given by a simple cumulative sum.

(a2.1) 1)

Estimator
Define an initial threshold 79 and a positive v, then from
k=1to N:

e the sensor obtains a binary measurement i), using 7 ;1.

o The sensor sends i; to the fusion center and updates
the threshold (1.49):

Tok = TOk—1 1+ Vik-

e The fusion center stores i;, and also evaluates and stores
TO,k-

With i1 y and 79 1.5, the fusion center evaluates the MLE
(1.52):

1+i 1—i
Qk F(To,kz—l —x) Qk

N
)A(ML@ = argmax H 1 —F (1o5-1— )]
k=1

2)

Performance (asymptotic and approximate)
Xwm1,q is asymptotically unbiased

E [XML,Q} Ny T

—00

and its asymptotic MSE or variance can be approximated
by
1

~T~ I

Var (X, W CRBy~ —
4 P

with T, given by (1.61) and p., by (1.60).

An alternative to have analytical results on the vector po, without using an approximation

with truncation can be obtained by considering that x lies in a symmetric interval [—A, A],

where A is a positive real. We can create boundaries on the possible values of the threshold in
such a way that the number of possible thresholds is finite. In this way, the threshold sequence
can be modeled as a Markov chain defined in a domain with a finite number of values and we

can evaluate the asymptotic threshold distribution without using truncation approximations
(More? - App. A.2.4).
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1.5.3 Adaptive scheme based on the MLE

One of the disadvantages of (a2.1) is that the threshold will fluctuate around z and it will not
converge to x, producing a performance that is still not optimal. A remedy for this problem
was proposed also in [Fang 2008| (and previously in [Papadopoulos 2001]). By accepting a
feedback from the fusion center and assuming that the fusion center has enough processing
power to evaluate the MLE for the past measurements at each time, instead of using the
cumulative sum for updating the threshold, we can use the last MLE estimate. Intuitively,
with a growing number of measurements for the MLE, the threshold will be placed closer and
closer to z, producing as a result an MLE with performance approaching the optimal one (for
T0,k—1 = ).

The new update is given by
Tk = XML ks (1.63)

where X Lk is the MLE for the measurements 7;.;. The asymptotic performance analysis was
also presented in [Fang 2008], the authors claim that in the binary quantization and Gaussian
case, the performance (variance) is asymptotically given by Z—Jé\?. Therefore, this update scheme

is asymptotically optimal as I, (0) = % is the maximum FI that can be achieved.

We will mimic some parts of their proof, but we will change some arguments to obtain a
more general result for Ny > 2.

1.5.4 Performance for the adaptive multibit scheme based on the MLE

Under an adaptive 79 with the vector 7/ fixed, we can rewrite the FI given in (1.53) for a
general N; using a parametrization on the error €, = 79 ;1 — , which now depends on time
and it is given as follows (Why? - App. A.1.5)

N
Iy = Y Ell ()], (1.64)
k=1

where ¢, is a sequence of r.v. defined on R, contrary to the previous case when the thresholds
were defined in a grid. The function I, (¢x) is given by (1.13).

For proceeding, we will make additional assumptions on I, (¢) (the assumptions on the
noise AN1 p. 34 and AN2 p. 34 are also assumed).
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Assumptions on I, for the MLE update to have asymptotically optimal perfor-
mance:

A1.MLE ], (¢) is maximum for ¢ = 0.

A2.MLE I, (¢) is locally decreasing around zero.

A3.MLE The function I, (¢) has bounded I, (0), dlq(e) = 0, bounded d21q2(s) , there-
q q de -0 de e=0
fore accepting a Taylor approximation around zero (for small £'):
e? d%I, (e
L) =L0+5 T @), (1.65)
e=0

0(6,’2)

=~ tends to zero when I

where the o (£2) here is equivalent to say that the quantity
tends to zero.

If we look to Fig. 1.8 (p. 57), we can see that these assumptions seem to be satisfied
by Gaussian and Cauchy distributions. Except for the Laplacian-like distributions with a
derivative discontinuity at € = 0, a large class of smooth symmetric unimodal distributions
satisfy these assumptions for N;y > 2 and well chosen quantizer intervals. Note that in the
binary cases, where the threshold must be placed asymmetrically, we can add a fixed bias in
the MLE threshold update to obtain a better performance. Also for the asymmetric cases, all
the assumptions can be stated around the maximum point for the FI instead of € = 0.

The objective now will be to bound above and below the quantity IéV{: y in such a way,

that when we make N — oo both bounds will "squeeze" I;V{: N on an interval that goes
asymptotically to NI, (0).

For a large number of measurements M < N, the MLE studied here is consistent even if
the measurements are dependent, for verifying this, one can check the regularity conditions
given in [Crowder 1976]. Thus, for ¢ > 0 and £ > 0, it is possible to choose a number of

measurements M such
P(!5k| Ss’) >1-¢, for k> M. (1.66)

Applying this inequality with the monotonicity property of A2.MLE, we can say that we can
find a M such
P(Iy(ep) 2 1, () >1-¢, for k> M. (1.67)

Now the sum in (1.64) can be separated in two sums, one for the terms with k < M, I 1.a7—1
and the other with & > M, I, N

M-1 N
N FRRVAREY ARV { Y E[L (é‘k)]} + { > E[L, (Ek)]} : (1.68)
k=1 k=M

Using A1.MLE and the fact that I, (¢x) is a nonnegative quantity, we know that I, (ex) €
[0, I, (0)]. Thus, the first term can be written as:

Iq71;M_1 = Q) (M - 1) Iq (0) N (1.69)
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with aps € [0,1]. The terms on I, ar.n can be lower bounded using the Markov’s inequality.
The Markov’s inequality states that for a nonnegative r.v. Y and value y > 0, we must have
[Wasserman 2003, p. 63]:

P(Y>y)§]E§JY).

Using this inequality for an arbitrary term of I, yr.y with the value I, (') gives

E Iy (ex)] > I (") P [Iq (ex) > 1o (€)] , for k> M. (1.70)

Then, supposing that the thresholds are updated using the MLE, we can use (1.67) in (1.70)
to have

E (I (er)] > Iy (€) (1 =¢), for k> M. (1.71)

For sufficiently large M (and consequently N), Ié\[l’: n can be lower bounded using (1.71) and
(1.69)

IN > o (M = 1)1, (0) + [N — (M = )] I, (') (1 - ). (1.72)

From A1.MLE the FI can be upper bounded by the optimal I,
N < NI, (0). (1.73)
Joining (1.72) and (1.73) gives the following:
anr (M = 1) I (0) + [N = (M = D], () (1 =€) < Iy NI (0).  (1L74)

For small £/, we can use A3.MLE to obtain

f dQIq (€)
2

aar (M = 1), 0) + [N = (01 = 1) [1,0) + T 4

+o0 (5'2)} (1-¢) < I\ < NI, (0).

= (1.75)
The term on the left of the inequality can be rewritten as
M—1 -(1- 2 42,
wi, 0 f -+ YD Aoy v - [ SR o] e,
€ e=0

Separating a factor NI, (0) we can write the term above as N1, (0) (1 — ¢') with

O U ICVELE O LS | EREACT R (I

(1.76)
Therefore, the inequality (1.74) becomes

e=0

NI, (0) (1-¢) < Iy < NIy (0).

By imposing N > M (N much larger than M) so that (MT_I) is arbitrary small and by

choosing M sufficiently large so that £ is small, we can make the first term in £’ to approach
zero. Using also N > M and choosing now M sufficiently large so that &’ is arbitrary small,
we can make the second term in ¢ to approach zero. Therefore, we can make the left side of
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the inequality above to be close to NI, (0) when N and M tend to infinity with the condition
N > M. As the upper bound on IéV{:N is also NI, (0), we have that

N
I N ol NI,(0), (1.77)
or equivalently
1
CRB (1.78)

I NSoo NI, (0)

We have now the following solution for problem (a):

Solution to (a) - MLE for quantized measurements with N; > 2 and
adaptive thresholds given by the MLE.

(a2.2) 1) Estimator
Define an initial threshold 7y, then from k£ =1 to N:

e the sensor obtains a binary measurement i, using 79 ;1.
e The sensor sends i) to the fusion center.

e The fusion center stores i, evaluates and stores
XML,k = T0,k following (1.63)
Tok = XML,]C)
where the estimate X ML, is given by
k
Xnr,r = argmax H P (3552, 70,j-1) -

e The fusion center sends 7y = Xy to the sensor.

2) Performance (asymptotic)
Xmr,g = XML k=N is asymptotically unbiased

E [XML’q} Njoo .CE

and its asymptotic MSE or variance attains the optimal

value
1

Var (XML"I) NSeo NI, (0)

Now, we have an estimator with adaptive thresholds (mainly the central threshold) that
attains the asymptotically optimal performance. The estimator guides the quantizer dynamic

9The threshold To,k—1 is added in the notation of the probabilities to make the dependence on time more
explicit.
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range close to the parameter by setting the central point of the quantizer with a decreasing
fluctuation around 7.

1.5.5 Equivalent low complexity asymptotic scheme

The main disadvantage of (a2.2) is its high complexity, since the MLE must be obtained at each
iteration. In [Papadopoulos 2001]| a heuristic based on an approximation of the expectation
maximization method for applying the MLE update with reduced complexity on the binary
quantization and Gaussian noise case was presented. The proposed threshold /estimate update
is given by the following recursive expression:

J

;{jik. (1.79)

Observe that the difference in complexity is large. In general, the MLE must be obtained

X =70k = Xp—1+

with a maximization algorithm, e.g. Newton’s algorithm, which itself has an inner recursive
procedure that may need multiple iterations for reaching convergence for each time k. In
(1.79), we have only a recursive procedure in k, which requires a multiplication of iy by a gain
and summation with the last estimate.

We can show that (1.79) can be generalized easily to non Gaussian noise cases. We will
use a less heuristic method (less than the method used to obtain (1.79)). We will assume,
additionally to symmetry, that the noise PDF has f(!) (0) = 0. If we consider that k is
large, then from the convergence of the CRB discussed above and the asymptotic normality
of the MLE [Kay 1993, p. 167] (or [Crowder 1976]), the error between the threshold used to

obtain iy, € = Xy k-1 — T = 7o — ¥, is Gaussian distributed with zero mean and variance

111,
(k=1)14(0)

fle) =/ E=DLO [_(’f—l)ﬂz@)&_z 7 (1.80)

27 2
where f. is the PDF of the error. We can try to estimate the random error using the new
quantized observation 7; and the knowledge about its distribution given by the PDF above.
After estimating it, we can correct X ML,k—1 using the estimate. As € is random, we will use an
estimator equivalent to the MLE, but for random parameters. In this case the maximum a
posteriori estimator (MAP) will be used. The posterior distribution (the one that might

be maximized) is the conditional PDF of ¢ given i;. Using Bayes theorem, it is given by

P (ixle) f2 ()

i) = 1.81
where in the binary case the conditional probability P (ix|e) is given by
144 1—i
P(iple) =[1— F(e)] 2 F(e) = . (1.82)

The denominator is the marginal probability of the output i; and it does no depend on e.
The MAP is then given by |[Kay 1993, p. 350]

Epmap = argmax p (elix) . (1.83)
3

1 Observe that here we are using the parametrization of the Gaussian distribution with its variance and not
with its scale parameter
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In the same way as for the MLE, we can maximize the logarithm of the posterior, as P (i)
does not depend on ¢, we can write an equivalent form for (1.83) as

Emap = argmaxlogp (elix)
= argrgnax{log [P (ikle)] + log [fe (€)] }- (1.84)

Using (1.81) and (1.80) in the RHS (1.84), we obtain

)log[l—F(e)]-i—(

1+ iy 1—ip (k—1)1,(0) ,

) log [F'(¢)] — € (1.85)

g elin) = (

Under consistency of the MLE, it is expected that for large k, the probability of |¢| being
small is close to 1. Thus, we can look for a maximum point of (1.85) around zero. This leads
us to expand log [1 — F' (¢)] and log [F' (¢)] around zero. The expansions are given by

N i d%log[l — F (2)]

log[l—F(e)] = log[l—F(0)]+e dlog Dd; F(z)] T3 P L +o0 (%),
0 2 g2 d®lo z
log [F(e)] = log[F(0)]+¢ dlgcf()} ) dliy;()] L + 0 (?)

Using the symmetry of the distribution (1— F (0) = F (0) = 3) the terms with logarithms are

log (%) = —log (2). The derivatives at the zero point are

dlog[l — F'(z)] f(0)

& - = —1_717(0) = _2f (0)7
dlog [F (2)] [
—& | - Fo YO

and using the assumption f(1) (0) = 0, the second derivatives are

dlog 1L F ) - - (;)Eg; -5 / 2;%)]2 — 42 (0),
“elfld) |- - fB o
Applying these expressions to the expansions above, we get
log[l — F(e)] = —log(2)—2ef(0)— 4622f2 (0) +o0 (%),
log[F (¢)] = —log(2)+2¢f(0) — 4522]‘“2 (0) 40 (£?).

These expansions can be used in (1.85), this gives the following:

ogpeli) = (52) {Flos@ -2 0 - 152 O +e () b+
1—1 g2
+ < 5 k) {—log(2)+2€f(0)—42f2(0)+o(52)}+
_ E=DLO) (1.86)
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To find the maximum, we differentiate logp (¢|ix) in (1.86) w.r.t. € and we equate it to zero.
This gives

G-050: = (F5E) (2O~ 1P 0)+o @) +

+ (1;ik> {2f(0) — 4ef*(0) + 0 (e)}

= —2f(0)ig — 4ef2(0) +o0(e).
For binary measurements, we know that I, (0) = 42 (0). Thus adding 42 (0) on both sides

gives

k4f?(0)e = —2f (0)ip + o (e).

Thus, we have

. Uk
MAP T 2f (0K

The optimal new threshold/estimate when k — oo is then given by

Xk:kal_éMAP%kal"i‘ (187)

ik
2kf (0)

This is exactly the same recursive estimator obtained by [Papadopoulos 2001] when the
_ 1

= 75
date/estimation procedure is asymptotically equivalent to the MLE update, as both procedures

(MLE and MAP) have equivalent error distribution for k& — co [Wasserman 2003, p. 181].

noise is Gaussian (f (0) for the Gaussian distribution). Note that this recursive up-

Clearly, some questions arise about the low complexity recursive estimator above:

e can (1.87) converge if we use it when the initial distance || = |79 — 2| is arbitrary (not
necessarily small)?

e Can we extend this low complexity recursive procedure to the Ny > 2 case?

Answers for these questions will be given in Ch. 3.
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1.6 Chapter summary and directions

We conclude this chapter with the main points observed until now and directions for future
work.

e Estimation performance in terms of MSE can be minimized asymptotically under an
unbiasedness constraint by the MLE (al). The asymptotic performance is then mainly
characterized by the CRB which is given in terms of the FI.

e The FI for quantized measurements is upper bounded by the FI for continuous measure-
ments and lower bounded by the FI for binary quantization. Moreover, it increases as
additional quantization intervals are used.

e The CRB and FI are very sensitive to the central threshold of the quantizer.

— For commonly used noise models (Gaussian, Laplacian and Cauchy), the threshold
must be placed exactly at the parameter.

— In the binary quantization case, even if we restrict the noise distribution to be
symmetric and unimodal this is not always true. We can find cases (GGD) where
quantizing the input r.v. asymmetrically can be optimal. In these cases, it was also
observed that the gain of performance obtained by using an asymmetric quantizer
seems to be dependent on the noise distribution, however, in general, the gain
from using the optimal asymmetric quantizer in the place of a symmetric quantizer
seems to be small when compared with the gain that can be obtained by using a
symmetric quantizer in the place of a poorly chosen asymmetric quantizer.

— An interesting subject for future research is to study in more detail the effect
of the noise distribution on the shape of the performance function B (g) in the
asymmetric cases, for example, we can try to characterize the loss incurred by
imposing symmetric quantization w.r.t. optimal quantization. Another possible
point for future research is to see if such asymmetric behavior also appears in the
problem of detection using binary quantized measurements.

— In all cases, under symmetry assumptions on the noise and on the quantizer, esti-
mation performance degrades when the quantizer dynamic (the quantizer threshold
in the binary case) is very distant to the true parameter.

— For multibit quantization, also under symmetry assumptions, it seems that if we
choose the quantizer thresholds (or equivalently the quantizer intervals) well, then
for a large class of unimodal distributions it is optimal to place the central thresh-
old at the true parameter. Note that, quantizing "well" in this case means that
we choose the quantization intervals to have a good symmetric quantization per-
formance. An interesting point for future analysis is to see if we can get a better
performance than in the symmetric case, when we optimize the quantizer intervals
for an asymmetric quantizer (one that is not centered at z). A partial answer for
this will be given in Part II, where we will see that when the number of quantization
intervals tends to infinity, the optimal quantizer is symmetric for symmetric noise
distributions.
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e Selection of optimal quantization intervals, or equivalently, optimal non central thresh-
olds, was observed to be a difficult problem for nonuniform quantization. The asymptotic
design of the optimal quantizer that approaches the optimal finite solution will also be
studied in Part II.

e The MLE for binary quantized measurements and a fixed threshold can be obtained in
closed form (al.1). While in the general case it might be obtained numerically. When
the noise distribution is log-concave, the Newton’s algorithm can be used as an efficient
numerical solution (al.2).

e As the performance degrades when the quantizer range is far from the parameter, the
quantizer central threshold must be placed adaptively around the parameter. A simple
solution in the binary case is to move the threshold up or down with a constant step.
Then, asymptotically, the threshold will settle its mean close to the parameter and it
will fluctuates around it. The measurements obtained in this case can be used to have a
MLE with asymptotic performance less sensitive to uncertainty on the true parameter
value (a2.1).

e By accepting an increased complexity, the central threshold (both in binary and non
binary cases) can be set closer and closer to the true parameter by updating it at each
time with the MLE based on all the past measurements (a2.2). This scheme asymptot-
ically attains a performance equal to the performance obtained when the threshold is
placed at the parameter, which is equivalent to say that this scheme is asymptotically
optimal for commonly used noise models.

e When the time goes to infinity the threshold update based on MLE is equivalent to a
simple recursive update with decreasing correction gain (1.87). Low complexity recursive
schemes of this type and their performance will be studied in detail in Ch. 3.



CHAPTER 2

Estimation of a varying parameter:
what 1s done and a little more

In this chapter we study the estimation of a varying parameter based on quantized measure-
ments. First, we will present the parameter evolution model and the measurement model.
Then, we will present the optimal estimator in the MSE sense and its performance. Due to
the difficulties that arise when we want to have analytical expressions for the optimal estima-
tor and its performance, we will obtain the optimal estimator using a numerical method. We
present and discuss a numerical solution known as particle filtering, which is a method based
on Monte Carlo simulation. We give then a bound on its performance using the Bayesian
Cramér—Rao bound. After the analysis of the bound, we present a particle filtering scheme
based on the quantized prediction error, which is commonly known as quantized innovation.
At the end of the chapter, we show that the optimal estimator has, asymptotically, a simple
recursive form for a slowly varying parameter. After obtaining the performance for the asymp-
totically optimal estimator and comparing it to the lower bound on the MSE, we conclude
the chapter with a summary and directions for work to be presented in other chapters or to
be presented in the future.

Contributions presented in this chapter:

e Motivation to use the quantized innovation. By analyzing a simple signal model, we can
obtain a detailed characterization of the bound on the mean squared error for estimation
based on quantized measurements. From the bound, we can see clearly that a good
estimation scheme can be obtained by quantizing the innovation. This differs from
[Ribeiro 2006¢| and [You 2008|, where the motivation for using the quantized innovation
does not come from any quantitative analysis and relies only on intuition.

o Asymptotically optimal estimator for a slowly varying parameter. We show that the
asymptotically optimal estimator for slowly varying Wiener process parameter can be
approximated by a low complexity recursive estimator. We also verify its optimality by
comparing it to a lower bound on the mean squared error. The Wiener process model
that we consider is a special case of the model in |Ribeiro 2006¢|, but we do not consider
that the noise is Gaussian and we do not impose the quantization to be binary.

75
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2.1 Parameter and measurement model

2.1.1 Parameter model

The parameter to be estimated now is a stochastic process X defined on the probability space
P = (Q, F,P) with values on (R, B (R)). At each instant k € N*, the corresponding scalar r.v.
X will be given by the Wiener process model:

X =Xp_ 1+ Wi, k>0, (2.1)

where W}, is the k-th element of a sequence of independent Gaussian r.v.. Its mean is given by
uy, and its variance is a known constant O' . If up, = 0 then X forms a standard discrete-time
Wiener process, otherwise, it is a Wiener process with drift. The initial distribution of X
is supposed to be Gaussian with known mean z{, and known variance 0[2). The PDF of X,
denoted, p (z¢) is also known as the initial prior of the stochastic process. For estimation
purposes, the initial mean represents a guess on the value of Xy and the initial variance
represents the degree of uncertainty on this guess.

From (2.1), we can see that conditioned on Xj_1, X} is independent from the past Xg.;—o.
Therefore, this process is a homogeneous Markov process. Until instant k, it can be charac-
terized by its joint PDF p (z¢.x), which factorizes as follows

p(zo:x) = p(x0 Hp (xjlaj—1) (2.2)
7=1

where p (zj|z;—1) is the conditional PDF of X; given X;_;. This conditional PDF can be
written using the Gaussian assumption on Wy as

p(e;ley1) = \ﬁaw exp[ L (W)QI (2.3)

Therefore, from the knowledge of p (zg), up and o, we can describe probabilistically the
process X until any arbitrary instant &k using (2.2) and (2.3).

2.1.2 Measurement model
Continuous measurement

The process X is measured with noise
Y, = X + V. (2.4)

The same assumptions on V}, as for constant z, AN1 and AN2, are considered in this case.

Quantizer

For tracking the varying parameter, the quantizer will be assumed to be dynamic with varying

threshold set 7:
T

Tk:[T Nrg "t T-1k Tok Tik """ TNp,
K 27
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The assumptions on the labeling of the outputs and symmetry, AQ1 and AQ2, are still consid-
ered to be valid. The quantized measurements are then given as the output of the quantization

function @ (.) defined in (1.2)
ir =Q (Yi),

where as in the adaptive case, the function () can change in time.

2.2 Optimal estimator

As it was stated at the beginning of this chapter, we are interested in solving problem (b) (p.
29). That is to estimate X} based on the past and present quantized measurements ij.;. In
what follows, we consider that 71.; is a fixed sequence. As in the constant case we want the
estimator, or filter in this case, to have minimum MSE (MMSE). We want for all £ an
estimator

~

X (Zlk)
minimizing the MSE
. 2
MSE, = E [(Xk . Xk) ] . (2.5)
As the parameter itself is random, the expectation is evaluated w.r.t. the joint distribution of

the measurements i1.;, and the parameter Xj.

Differently from the deterministic case, when the parameter is random, the general form
of the MMSE estimator can be obtained directly from the minimization of MSEg. It can be
shown that its general form is [Jazwinski 1970, p. 149]

where the subscript X |y;.x means that the expectation is evaluated w.r.t. the probability
measure of X} given a realization of 71.;. The MMSE estimator is then the posterior mean, i.e.
the conditional mean of the parameter X given a specific realization sequence of quantized
measurements iq.j .

The MMSE estimator is unbiased since
E [Xk} = Eiry [Exylinge (X0)] = Expin, (Xi) = E(X),

where the first equality comes from the decomposition of the expectation on the joint variables
and the second equality comes from marginalization of the 4;.x.

Similarly, we obtain that the MSE is the mean of the posterior variance

MSEy, = E;,, {EXWM { [Xi —Ex, i (Xk)]Q}} — B, [Vary,;,, (X3)] - (2.7)

Note that this estimator is different from the MAP, which is the maximum value z; that maximizes the
posterior p (zxl|i1:x). It can be shown that the MAP is the optimal estimator under the mean absolute error
[Van Trees 1968, pp. 56-57].
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Note that for a given realization i1, Vary,;,, (Xx) is the conditional MSE and it can be
used when online assessment of the MSE is needed. Online here means that the performance
is not averaged on the distribution of the measurements, but evaluated for a given realization.

All the information is contained in the posterior distribution. Its mean is the optimal
estimator and its averaged variance is the MMSE. Assuming that the posterior distribution
accepts a PDF p (xg|i1.k), the MMSE estimator and its MSE are given respectively by

A~

Xi = Ex,i, (Xx) = /:Ekp (zp|irg) dog, (2.8)
R
MSEk = Eil:k [Vaer‘ilzk (Xk)]

- Z / (‘Tk - EXklilzk (Xk))2p (wplire) dog p P (i) - (2.9)

il;kE:Z@k R

where Z®F is the joint set where the quantized measurements are defined. To simplify the
evaluation of the quantities above, a recursive form for p (zx|i1.x), and as a byproduct for
P (i1.£), can be obtained by using the Markovian property of the dynamical model for the
process X. The main idea is to write the PDF for prediction p (zy|i1.x—1) as a function of
P (Tg—1]i1.k—1) using the dynamical model information p (xp|rr—1) and then pass from the
prediction PDF to the posterior p (zxli1.x) using the information given by the measurement
P (ig|zk). These two expressions, one for prediction using the model and the other for update
using the measurement are given respectively by (Why? - App. A.1.6):

p(@xlive1) = / P (@rl2p-1) P (s inh1) dep1, (2.10)
R
P (ig|xk) p (xk|i1.6—1)

) = . 2.11
P (wfir) [P (iklz},) p (2 )irg—1) dag @1)
R

The denominator in the RHS of (2.11) is equal to P (ig|i1.x—1) (Why? - App. A.1.6), thus this
integral can be reused for writing PP (41.%) in recursive form for & > 1

P (il:k) =P (ik|i1;k_1) P (il:k—l) = /]P (’ik|ﬂfk)p (l‘k|i1;k_1) dﬂ?k P (ilzk—l) y (212)
R

for k = 1 this probability is

P(i1) = [ P(i1]zo) p (zo) dzo. (2.13)
!

In these expressions the prior p (z¢), as stated above, is a Gaussian function

7\ 2
1 1 (xg—x
p(@o) = V27oy P 2 00 ’
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the conditional PDF p (xg|rg—1) is given by (2.3) and the probability P (ix|zy) is given by
(1.6) with the dynamical threshold set 7 instead of only one fixed set:

F (Tik,k — I'k) — F (Tik—l,k — I’k) , if ik > 0,

P (ig|zx) = { (2.14)

F (Tik+1,k — l’k) - F (Tich — l‘k), if ik < 0.
The general solution to (b) (p. 29) given by the optimal filter is the following:

Solution to (b) - MMSE estimator for a fixed threshold set sequence 71

(b1) 1) Estimator
For each time k, the estimator is given by

Xk = ]EXk\il:k (Xk) = /xk’p (@klirk) dag,
R

where the posterior PDF p (z4|i1.x) can be evaluated recur-
sively using (2.10) and (2.11).

2) Performance (exact)
X}, is unbiased
E [Xk} — E[Xy]

and its MSE for each time £k is
MSEk = Eil:k [Varka:k (Xk)]
2 . .
= Z /(517k —Exylive (X&) p (@elivg) dog p P (i1)
il:keI@)k R

where now not only (2.10) and (2.11) are used, but also
(2.12) and (2.13) to obtain P (i1.;).

Some attention must be given to the fact that the MMSE estimator given above and the
recursive form for the evaluation of the posterior PDF are quite general and can be applied
in many other nonlinear filtering problems.

A major drawback with (bl) is that evaluating the integrals in the prediction/update
expressions and in the expectation is analytically intractable. Therefore, we must look for a
numerical method for solving it approximately. This will be done next.
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2.3 Particle Filtering

To obtain the posterior mean (2.8), we must evaluate the integral [ zgp (zxlirx) dag. A
R

general solution is to evaluate it numerically, for example, using a Monte Carlo integration
method.

2.3.1 Monte Carlo integration

The Monte Carlo integration method consists in approximating the expectation of a function
g9(X)
Ely (X)) = [ 9(@)p () da.

R

where p (x) is the PDF of X, by the sample mean calculated using multiple i.i.d. samples X ()
from the distribution of X |[Robert 1999, p. 83]

with Ng the number of samples and () the j-th i.i.d. sample realization.

The approximation is clearly unbiased

N,

E ]\}Ség()((j)) =]\ZiE[g(X(j))}=E[9(X)].

By the strong law of large numbers, it converges with probability one to the true expectation
E g (X)] [Robert 1999, p. 83|

Pl lim gy, =E[g(X)])=1.

(Jim_ox. =Els (x)])

Moreover, by using a central limit theorem, the asymptotic normalized approximation error
g tends to a zero mean Gaussian distribution with variance given by

Var (e5) = ]\ZVar 9 (X)].

Thus, if g (X)) has finite variance, the variance of the approximation reduces by increasing the
number of samples.

In our case, we want to approximate the posterior mean
1
A (4)
X~ o > x, (2.15)
j=1

with X ,gj )iid. samples from the posterior distribution.
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Observe that we can also rewrite the posterior mean in an equivalent way using the joint
posterior PDF p (z1.x]i1.1):

Xy, = /wkp (1x]i1k) dTicg. (2.16)
R
In this case we will sample independent trajectories X fjlz from p (z1.5|i1.x) and the posterior

mean is also given by (2.15).

The main problem here is that the posterior distribution and the joint posterior distribution
are usually difficult to sample directly. Therefore, to solve this problem we will use a method
called importance sampling.

2.3.2 Importance sampling

Retaining the second form of the posterior mean (2.16), the main idea of importance sampling
[Robert 1999, p. 92] is to multiply and divide the integrand in the expectation by a PDF
q (z1.1i1.%)? from which we know how to sample the trajectories Xi.,. This gives

> P\T1:k Z'1:k .
X = /.Cli'k(‘)q (x1:k|711:k) dry.g.
q (xl:k|7fl:k)

Note that the support of the PDF ¢ (z1.x|é1.x) might be strictly larger than the support of the
posterior. Denoting the ratio between PDF as an importance weight w (x1.x)

p(z1klits)
wlenk) = q (z1klive)’ (2.17)
the expectation can be approximated by
N 1 Ns . ,
Xy = /flikw (1) ¢ (T1:0li18) Aoy = s Z;XIEJ)U’ (ij)) ) (2.18)
R J=

where Xl(Jlg are i.i.d. trajectories from ¢ (x1.x|i1.x). We can divide the expectation by the
integral of the posterior as its value is equal to one, this gives

Ng . .
Jzrw (214) ¢ (w1:5]i1s) dog ‘21 X;ij)w (Xf]/%)
Jw (z1:) ¢ (x1:8]11:5) dog, Ns ;
R le (ijlg)
]:

Defining the normalized weights w <X g) as

(")
b (x0)) = AT ) , (2.19)
0

j=1

?Note that q (z1:x]%1:x) can depend on the measurements, after we will choose a simplified form which does
not depend on the measurements.
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we have that the posterior mean can be approximated by
Ns 4 A
S~ > x (X)) (2.20)
j=1

By comparing the approximation in (2.20) with the integral [ zyp (xx|i1.x) dzg, we realize
R

that this method is equivalent to approximate the posterior by a discrete distribution with
support values chosen randomly and with probabilities given by the normalized weights

p(Tg|i1g) =~ gsju? (x%) op (xk — :L‘]gj)> , (2.21)
j=1

where dp (.) is a Dirac distribution.

2.3.3 Sequential importance sampling

The remaining problems now are the choice of a PDF ¢ (z1.x]i1.5) easy to sample and the
evaluation of the weights.

To be able to sample the trajectory ijlz without modifying the past trajectory szjlzfl (so
that we do not need to resample the past trajectory), we must choose a distribution g (z1.x|i1.x)
for which the marginal distribution for £ — 1 is exactly ¢ (x1.5x—1|i1.6—1). This can be done

using the following form for g (z1.x|i1.) [Doucet 1998|:
q (zrkling) = g (@rp—1lite—1) ¢ (@k|T1K-1, 718 - (2.22)

In this case to extend a sample trajectory from realization xgjll_l to xgjll, we sample

q (xk|xgjl)€71, ilzk) to generate the new point of the trajectory :Ug).

To evaluate the weights, we develop p (x1.x|i1.x) using conditioning and the independence
assumptions on the model:

e X, is independent of X7.;_o and 41.;,_1 conditioned on Xj_1,

e i is independent of X7.,_1 and 41.,_1 conditioned on X.

This gives

P (ig|zx) p (zr]rr—1)
P (igli1n—1)

Replacing the simplified form of ¢ (z1.x|i1.x) (2.22) and the joint posterior above (omitting

P (i|é1.k—1), which is constant in z1.;) in the expression (2.17), we have the following weight

p(z1k)i1e) = P (z1:6-1]01:6—-1) - (2.23)

for the trajectory j:
P (i) (s402,) p (60 fs )

q ($§{;_1|Z’1:k—1) q <5U§J-:])€_1|i1:k—1> 7

(2.24)
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where o is the symbol for proportional. The fact that the weights are defined up to a pro-

portional factor is not important because for approximating the posterior mean we use the
(4) ;

. . P(lk—1liie—1) . . .

normalized weights. Note that the factor M is the weight for the samples at time

q\Ty.pe—1101:k—1

k — 1. Thus, we can write a recursive expression that relates the normalized weights for time

k — 1 with the weights for time k
P (Zk]xg)) D (:rg)m,(c{)l)

q (ﬁ;ﬁj)lxé{/)g_1’i1:k>

(2] ) (2.25)

We need now to define the PDF ¢ (zg|xo.x—1,71.x) Which is used to generate the samples.
The two most commonly used choices are the following:

e choice 1: p(xp|zK—1,iK), minimum weight variance distribution. The quality of the
approximation of the posterior by the discrete distribution (2.21) is dependent on the
variance of the weights and the variance depends on the PDF ¢ (zg|zo.k—1,71.1). It
can be shown that conditioned on the past trajectory xgjll_l realization and on the
measurements realization i1.x, the variance of the weights is minimized for [Doucet 1998|

q (xk|zok—1,%16) = P (Tk|TE—1,%%) - (2.26)

Unfortunately this distribution is difficult to sample directly. In our case, we can sample
from it by using a rejection method (More? - App. A.2.5).

o Choice 2: p(xk|TK—1,1k), prior distribution. In order to simplify the evaluation of the
weights we can choose

X 1 1 T — Xp—1 — U 2
q (Tx|zo:p—1,11:6) = P (Tk|THo1) = Nor exp [—2 < - - . (2.27)
w w

Thus for each previous x,@l, we are going to obtain a sample from a r.v. X ,ij

)

using
the distribution p (xk|x,(£1)3. In our case, this choice reduces the problem to sampling

from a Gaussian distribution, which is very simple, and updating the weights following
(we chose the proportionality factor to be one)

w <x§j2€) =P <ik|x,(€j)> W (xgjl)ﬂ_l) . (2.28)

Note that in both cases the sampling and evaluation of the weights do not require the past
measurements and the samples xgj,)g_Q This leads to memory requirements that do not increase
over time. If we compare both choices in terms of complexity, the second choice is better
because it only requires sampling from a Gaussian distribution and evaluating the weights
with the likelihood. Therefore, from now on, we will use the second choice for the sampling
distribution.

We have the following procedure:

3For details on how to sample from it using a standard Gaussian variate see (How? - App. A.3.3).
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1. Sample the prior distribution p (zp). This will generate Ng samples x(gl:NS). Set uniform

normalized weights w (iL‘(()j )> = NLS

For time k,

2. Create Ng samples each from the corresponding r.v. X,Ej) with PDF given by (2.27):

; 1 1 (-2 —u ’
» (xk|x<a> ) _ exp |—= [ F - Th-1 T Tk
k-t V2o 2 Ow
3. Evaluate the sample weights using the measurement and the last weights with (2.28):
w (mgjl)g) =P <1k|x,(€])> W (acg]])C_l) .

4. Normalize the weights using (2.19):

5. Obtain the estimate with the weighted mean
NS . .
T ~ xl(j)ﬁ) (:cgjl)g) .

J

Il
—

This procedure is the sequential extension of importance sampling applied to filtering and
this is the reason for its commonly used name - sequential importance sampling filter. As
this method is a special case of importance sampling, it has the same general characteristics,
namely, it is biased for a fixed number of samples, but it converges with probability one to
the optimal estimator when Ng — oo [Doucet 1998].

2.3.4 Sequential importance resampling

We would expect that by increasing the number of samples the filter would get closer and
closer to the optimal estimate. However, the convergence result is asymptotic, it works only
when Ng tends to infinity. When Ng is finite, it can be shown that the variance of the weights
increases over the time [Kong 1994]. This problem is known as the degeneracy problem and
what happens in practice is that after some time most of the normalized weights are close to
zero, which is equivalent to say that most of the samples are useless [Doucet 1998|.

In the case of sampling with p (xk\x,g@l), the cause of this problem is easy to understand.
We start with a given prior distribution, then during the procedure we evaluate the posterior
for values of X sampled randomly using p (xk|x,(£1>, as there is no feedback from the mea-
surements in the sampling processes, after some time, the samples can lie very far from the
values of X where the posterior has larger values. As a consequence, this will produce a very
poor discrete approximation of the posterior. A possible remedy for this problem is to drive
the sampling process using the measurements %..
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Resampling
(9)

This can be done in a simple way by reproducing the samples x;/” for which the posterior
approximation w (x%) is large and deleting the samples for which the posterior is small.

This procedure, known as resampling, can be carried out in practice by sampling Ng times?

the posterior discrete approximation given by

l'gjl)g) , ifxp= :vg),

otherwise.

P =" ( (2.29)
0,

After resampling, for retaining the posterior approximation, the weights of the samples are
set to 1

= (.0 _

w (:cl:k) = Ne (2.30)
As the posterior approximation is a multinomial distribution, the procedure of resampling
using the approximation of the posterior (2.29) is known as multinomial resampling. Multino-
mial resampling can be easily implemented using Ng independent uniform samples, for details
see (How? - App. A.3.4) (app4) and for other types of resampling techniques see [Hol 2006].

The process of resampling should not be performed every time as it leads to the impov-
erishment of the sample set |[Berzuini 1997|. Sample impoverishment comes as the opposite
extremum of the degeneracy problem, as in this case we simply neglect possible trajectories
of X with medium and low likelihood, leading to a not sufficiently rich approximation of the
posterior. For triggering the resampling process we can monitor the number of effective sam-
ples N, that is to say, the equivalent number of samples if we were using the true posterior
for Monte Carlo evaluation. This number can be approximated by [Doucet 1998|

1
Ny = ——. (2.31)

S ()

Therefore, each time Neg < Nihresh, where Nipresh € [1, Ng| is @ minimum acceptable number
of effective samples, the resampling process is triggered.

Sequential importance sampling with the resampling step for general Bayesian estimation
was first suggested in [Rubin 1988]|(cited in [Doucet 1998|) under the name sequential impor-
tance resampling. Its widespread use in filtering with the specific choice of p (zy|xr_1) as the
sampling distribution was initiated with [Gordon 1993] under the name of bootstrap filter.
This method was proposed for solving general nonlinear non Gaussian filtering problems.

The method presented above can be found in the literature under many other names, the
most common is particle filter (PF). In this case "particle" is the name given for a sample
3:,(6] ). We will use the terms particle filter and particle from now on.

A proof of convergence of the general PF is given in [Berzuini 1997| for the case with

resampling at each iterate. It is shown that when Ng — oo the error between the optimal

4We could resample more or less than Ng samples, we chose Ns because it is the most commonly used
choice in the literature.
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estimator and the PF estimate multiplied by v/ Ng tends to a Gaussian r.v. with fixed finite
variance. This means that, for a large number of particles, when the number of particles
increases the PF estimate is more and more concentrated around the optimal estimator.

Application of PF for estimation based on quantized measurements with a fixed sequence
of threshold sets are reported in [Ruan 2004] and [Karlsson 2005]. In [Ruan 2004| the main
focus is on analyzing the main issues related to the fusion of quantized measurements from
multiple sensors for tracking in general, the results reported therein are given by simulation.
A more restricted model with X given by a vector linear Gaussian evolution and quantized
linear Gaussian measurement is used in [Karlsson 2005], where a theoretical lower bound
on estimation performance is obtained and compared with simulation results. The bound
that is used is the equivalent counterpart of the CRB for random parameters the Bayesian
Cramér—Rao bound (BCRB).

2.4 Evaluation of the estimation performance

We have already explained how to obtain the estimates for our problem (b) (p. 29). We still
need to evaluate its performance.

2.4.1 Online empirical evaluation

The variance of the posterior approximation (supposing that Ng is sufficiently large for the
bias to be negligible)

MSEy, ~ %S: (e~ )2w (=22)
pt k k Lk ) >

gives an online estimate of the MSE. The problem with this approach is that the performance is
conditioned on the given measurement sequence i1.;. In this case, approximated performance
can be obtained only after having the measurements, thus no design of the system (choice of
the number of quantization intervals N7, choice of the sensor quality 0) can be done. Even if we
push more into the Monte Carlo philosophy and try to evaluate the mean of the approximated
MSE above using Monte Carlo integration, we will have to simulate a large number of times the
PF procedure by changing the parameters needed for system design (Ny, 6 , 02). Therefore,
it is better to turn our attention to analytical results on performance.

2.4.2 BCRB

The analytical form of the MSE (2.9) depends on the posterior distribution. Thus, for the
same reason, we cannot have an analytical expression for the estimator, we are not going to
have an analytical expression for the MSE. We must resort then to a bound on the MSE. As a
consequence, we will follow [Karlsson 2005| and we will also analyze the BCRB. As our case is
simpler (X is a scalar Wiener process) than the vector linear case studied in [Karlsson 2005],
we will be able to analyze the effects of the measurement system parameters in a more clear
and simple way.
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The BCRB at instant k£, BCRBg, is a lower bound on MSEy, it is given by the inverse of
the Bayesian information (BI) [Van Trees 1968, p. 84]

1
MSE; > BCRBy = —— (2.32)
k

The BI at time k, Jg, is given by

9*log p (X, i1:%)

Jy=-E
g dX?

(2.33)

As X}, is random, the expectation here is evaluated using the joint probability measure of X}
and 41.,. This result is general and it is not linked particularly to the quantization problem,
we could replace 1., by any measurement related to X.

By assuming that X}, is a Markov process (also here 7.5, can be any type of measurement),
in |Tichavsky 1998| a recursive form for evaluating the BI is obtained

B;
Jp=Cp, — 2.34
k=Ckm g (2.34)
2 9?2 | X 92 .
where® J; = —E [c’) l(:ag)?éXO)] and Ay = —E 10gg)(()§iillxk 1)]’ By — —E[ lg%g(g()?fﬁ 1)}’
. 9% log p(Xp| Xn_1) 0% log P(ip| X4)
Oy =~ | Froarea)| g | Sef )|
Using (2.3) for evaluating the terms Ay, By and Cj, we have
2 2
o108 { ot o [ (S| o [ (M)’
Ap = — = —-E
OX? | 0X? |
- 1
= =
In the same way
1
B = ——
k 0_121}7
1 0?1og P (i3] Xy)
C, = ——-E
F o2, [ 0X?

Decomposing the expectation above, we obtain

1 0?log P (i | X1)
ckza%+E&{E%wk[ o ]}.

The inner expectation is another form of expressing the FI for estimating X3 when X}, is con-
sidered to be a deterministic parameter [Kay 1993, p. 34|. Thus, by using the parametrization
of the FI for quantized measurements with the r.v. e, = 7 — X}, we can write

Ok =~ +E[, ()]

w

5Note that we are using the notation for discrete measurements i1., with P (ix|xr).
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where the expectation is evaluated using the probability measure of €. Using these results in
(2.34) gives

1 1 1
Ji =~ +Ell ()]~ 7, (2.35)
with Jy given by
2 1 1 [ Xo—z}\?
0°log oo OXP |72 ( - 0) .
0 8Xg 0(2) ( )

For commonly used noise models (Gaussian, Laplacian and Cauchy), the FI is maximized
for €, = 0. Thus, we can obtain a simple upper bound on the BI by assuming ¢ = 0 with
probability one. This gives

1 1 1
< /:7 _—_—— .
W= + 1, (0) o1 ( T 1), (2.37)

with Jj = Jp. This will give a simple lower bound on the BCRB and consequently on the
MSE, which can be used to assess approximately the performance of the PF.
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The solution to problem (b) (p. 29) given by the PF is
Solution to (b) - Particle filter for a fixed threshold set sequence 7

(b1.1) 1) Estimator

o Set uniform normalized weights w (xéj)) = NLS and initialize Ng
particles {x(()l), ey x(()NS)} by sampling the prior

12 2
1 1 (x0—xg
p(mo) = \/%O' exp _5 o0 .
0

e for j from 1 to Ng, sample the r.v. X]ij) with PDF
(How? - App. A.3.3)

, 2
, 1 1 (ar -2, —up
( | (7) )
Tk |x = exp |—= [ ——F——— ,
PAPkITe-1 V2o P 2 Ow

e for j from 1 to Ng, evaluate and normalize the weights
(4)

<j>) v (zlk)

For each time £k,

| o o (ol ,
w (23(1];)@) =P (Zk|x§gj)) w (asgj,i_J ) h % w (‘T(ljl)g)
i=1 ’

where P (zk|x§€]>> is given by (2.14).

e Obtain the estimate with the weighted mean

Ng
J=1

e Evaluate the number of effective particles

1

Neﬂ' = ]\,577
> @ (a]))
=1

if Neg < Nthresh, then resample using multinomial resampling
(How? - App. A.3.4) (app4).

2) Performance (lower bound)
The MSE can be lower bounded as follows
1
MSE,, > —,
k= A
with Jj, given recursively by

1 1 1
J,;:U—2+Iq(0)——

7 . N
(o 1

w (o‘z +’]ll€71)
w

2.5 Quantized innovations

For commonly used symmetrically distributed noise models (Gaussian, Laplacian and Cauchy
distributions), we saw in Ch. 1 that I, (¢) around € = 0 is a locally decreasing function with
e, thus from (2.35) we can see that closer 7q is to the parameter realization x, higher will
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be the BI. If we assume that the BCRB is sufficiently tight for accepting its behavior as an
approximation of the behavior of the MSE, closer g ;, is to the parameter realization xy, lower
will be the MSE. This indicates that the dynamical range of the quantizer must vary in time
in order to follow the parameter and produce enhanced estimation performance.

2.5.1 Prediction and innovation

Prediction. The main problem with the approach —7 ; = 3~ is that we do not know xy, if
we knew, we would not need to estimate it. We might then accept a small loss of performance
by using the closest value to xj that we have in hand, in our case, a prediction of zj using the
last estimate value Z,_1 and the drift ug. If kal is the MMSE estimator based on 41.5_1,
then the MMSE estimator of X, based also on 41.;_1, denoted Xk‘k,l, is the conditional mean
[Jazwinski 1970, p. 149|

X’“Vf—l = EXk|i1:k—1 (Xk) :

Using the dynamical model for X}, and the linearity of the conditional expectation
Xigh1 = By (Xro1+ Wa) = Ex iy (K1) + By, (Wa) -

The first term is the optimal estimate for Xz 1. As W} is independent of all W, with n # k
and it is also independent of all Vj, it does not depend on 41.,_;. Thus, the second term is
simply Eyw, (W), which is ug. This gives

Xilk—1 = Tok = Xg—1 + Ug-

Considering that the estimator is good enough (at least for large k), we expect to have the r.v.
e, with most of its probability concentrated around zero, thus leading to a higher E [I, ()]
and, consequently, to a lower MSE.

Quantizing the Innovation. Quantizing the prediction error is a known subject in stan-
dard quantization. It is widely known under the name predictive quantization |Gersho 1992,
Ch. 7]. Note that the procedure considered here is different. Instead of quantizing the predic-
tion error of reconstruction, we quantize the error between the prediction in estimation sense
and the noisy measurement Yz — X klk—1- The prediction error in this case is commonly called
the innovation process in continuous measurement linear filtering theory [Kay 1993, p. 433].
The name comes from the fact that it represents the previously unknown information brought
by the new measurement. As a consequence, the quantized prediction error for estimation
purposes is called quantized innovation.

We can slightly change solution (b1.1) (p. 90) by adding the adaptive replacement of the
central threshold with the prediction®. This is what was done in [Sukhavasi 2009b] under
the assumption of Gaussian noise, linear and Gaussian vector Xy, ( X = AXj_1 + Wy) and
binary quantization. Constraining Xj to be the scalar Wiener process considered here and
generalizing the algorithm for symmetrically distributed noise and N; > 2, we have

5As the measurements are now linked through the use of the prediction for quantizing, we cannot guarantee
the convergence of the particle approximation through standard results and more advanced results are needed
[Crisan 2000].
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Solution to (b) - Particle filter with adaptive threshold sequence 71

quantizing the innovation.

(b2.1) 1) Estimator

e Set uniform normalized weights @ (x(()j)) = NLS and initialize Ng
particles {m(()l), e méNS)} by sampling with prior

’ 2
(av)*i1 ex L (202
pixo) = V2mog P 2 (o] ’
For each time k,

for j from 1 to Ng, sample the r.v. Xlgj) with PDF
(How? - App. A.3.3)

_ ) 2
(:r |$(j)) ! e L S Sl
= xp | —=
b F¥e—1 V2o P 2 Ow ’

for j from 1 to Ng, evaluate and normalize the weights

@) v (x(j))
w (29) =P (inla) @ (+0)_,) e

1:k

Ns .
> w(2)
j=1
where P (zk|x§j>> is given by (2.14).
.

Obtain the estimate with the weighted mean

)

Ngs
j=1
Set the central threshold of the quantizer to the new estimate

Tok = Th—1 + Uk-
.

Evaluate the number of effective particles
1
Nep = ————,
2 2o (L)
Z w2 (m1:k>
j=1

if Neg < Nthresh, then resample using multinomial resampling
(How? - App. A.3.4) (app4).

2) Performance (lower bound)

The MSE can be lower bounded as follows

1
MSE; > —
k Z J]/C’
with J;, given recursively by
/ 1 1 1

S S
(5 +91)
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2.5.2 Bound for the quantized innovations

Observe that the lower bound is still valid because we still have E [I, (e;)] < I, (0). But, we
might have a performance closer to the bound, as ¢, might be concentrated mostly around
zero. It is also important to note that now even if the bound is tight (which might not be
true), we can get very close to it, but in general we cannot attain it. This is due to the fact
that the MSE for a varying parameter never goes to zero, leading to a residual spread on the

PDF of ¢, which makes E I, (ex)] < I, (0).

To have an approximation on the evolution of the MSE, we can analyze the lower bound
on the BCRB. Therefore, we are interested in analyzing the evolution of J;. We can start by
analyzing the evolution of its increments. Subtracting the expressions for J; and J;_,, we
have

/N ( 1 ) _ L Tic1 = Ty (2.38)
71 —_— — . .
o \er F e i) T () ()

The BI is positive by definition, as it is an expectation of a squared quantity, and o2 is also
positive by definition, thus the denominator of the expression above is always positive. This
leads to a sign of the increment at time k£ — 1 that is the same as the sign of the increment at

k — 2. As a conclusion, we can say that the BI is monotonic, it always increases or decreases.
For determining if the BI increases or decreases, we can see from the recursive expression

above that this will be determined by the first increment J| — Jj. By subtracting J} = %
0

from J{, we obtain

1 1 1 1
J—J)=—+1,00) - 7 — —.
e T s
Regrouping the terms with factor «%2 gives
1 1 1 1 1
J=J=L,0)+ %5 |1-——| - 5=L0)+ ———5 — .
A T B A A R
0
Thus, if
1 1
1, (0) > —

T2 2
o oy, + 0§

J] — Jj is positive and the BI is always increasing, otherwise it always decreases. As a
consequence, if the inequality is satisfied the BCRB is always decreasing, otherwise always
increasing.

As stated before, the information bound Jj, is bounded below by zero. By looking to (2.37)

1 1 1
e <= —+1,(0) = 77—,
Tw Tw <CT2 + JIQA)

1
o2

always positive. Joining the facts that Jj is lower and upper bounded with the fact that it

we can see that it is bounded above by I, (0) + as the other term that is subtracted is
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is always increasing or decreasing, we can conclude that J; will converge to a fixed point (a
fixed value). Except in the cases when the inequality above is an equality, from (2.38), we
see that the increment J; — J;_; cannot be zero, as it is equal to the last increment (which
is positive) multiplied by a positive value. Therefore, the fixed point of J, is expected to be
attained only asymptotically.

Denoting this asymptotic fixed point J.,, by definition it is the value of J; for which
J;. = J;_,. Thus, it can be found by solving

1 TR
Jo= s+ L (0) = —
T % (& + k)

which is equivalent to solve

JL2—1,(0)J, — LO) _

The solutions for the equation above are

1,(0) /12 (0) + 20

2

In order to have J._ positive (it is positive by definition), we must take the positive solution.
As %2(0) is positive, the positive solution is obtained for the positive sign. Therefore,

, L0+ /T (0) + 5
J = O (2.39)

2

and the asymptotic MSE is then lower bounded by the inverse of J.
2

I, (0) + /12 (0) + 2@

The following behaviors can then be obtained for the evolution of the bound: if we start with

MSEq, > (2.40)

a very small 03 (small compared with ﬁ), as we can see from the inequality related to the
monotonicity pattern, the lower bound on the MSE will always increase, tending asymptoti-
cally to J% If we start with a large 0(2), the lower bound will always decrease, also tending

asymptotically to J% .

From the analysis we can see that the MSE, as expected, is always strictly positive, it is

lower bounded by ag when this value is very small compared with —= and it is lower bounded

14(0)
1

by JL when o3 is large compared with 0"

2.5.3 Gaussian assumption and asymptotic estimation of a slowly varying
parameter

Other filtering methods based on the quantized innovation are proposed in the literature
under the Gaussian noise assumption. In [Ribeiro 2006¢|, binary measurements are obtained
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by applying the sign function to the innovation. A similar procedure to the well-known Kalman
filter [Kay 1993, Ch. 13] is derived by assuming that the posterior at instant k£ —1 is Gaussian.
In the same line, [You 2008] proposes a Kalman-like procedure for quantized innovations with
N; > 2. A careful reader of the literature on the subject might note that the idea of considering
Gaussian approximations of the posterior for filtering based on quantized data with Gaussian
noise dates back to [Curry 1970]. Also, the idea of quantizing the innovation seems to be first
exploited in [Borkar 19957 (cited in [Sukhavasi 2009a]).

The general algorithm presented in [You 2008]| has its approximate performance dependent
on I, (0), with I, (0) being evaluated for the Gaussian distribution with variance o2 = 1 (noise
scale factor § = v/2). The performance of the algorithms is enhanced by maximizing 1, (0).

This is in accordance with the lower bound on the MSE studied above for the Wiener process
1
Tllc7
that J; increases with I, (0)). This gives additional motivation for studying how to maximize

I, (0) w.r.t. the thresholds.

model with symmetric noise, MSEj, > -, which decreases with increasing I, (0) ((2.37) shows

The assumption that the posterior is a Gaussian distribution for all £ and all o, stated
in [Curry 1970], [Ribeiro 2006¢| and [You 2008] is a very rough approximation. For observing
this, consider that the assumption that the prediction PDF p (zy|i1.x—1) is Gaussian is correct.
Then, from the update expression (2.11), we know that the posterior is proportional to the
function P (ig|zk) p (zk|i1.k—1). The probability P (ig|zx) is a difference of CDF, which is a
function that is approximately a rectangular window with slowly decreasing borders centered
at the quantization interval for ij. If the standard deviation of the prediction is large or has
similar value of the equivalent width of P (ix|x) and the prediction distribution has a mean
that is different of the quantization interval center, then it is easy to see that the resultant
P (ig|xk) p (zk|ire—1) will be a skewed function, not similar at all to a Gaussian function. As
an additional remark, we can see that differently from the continuous measurement case, where
the measurement noise must be Gaussian for having a Gaussian posterior, the assumption of
Gaussian noise does not help here, as the function P (ig|zx) is not close to Gaussian even in
the Gaussian case.

We will use the Gaussian assumption when oy, is small and k tends to infinity. Under
these assumptions and considering that we quantize the innovations, we will obtain an ap-
proximation of the asymptotically optimal estimator and its performance. To verify that the
approximation is reasonable, we will compare the approximate asymptotic performance with
the asymptotic BCRB.

2.5.3.1 Asymptotic estimator for a slowly varying parameter

As it was discussed above, it is reasonable to accept that the estimator MSE will converge to
a constant o2,. When the Wiener process increment standard deviation ¢, is small compared
with the noise scale factor, the estimator has sufficient time for reducing the estimation vari-
ance before X} changes significantly, thus it is also reasonable to state that o2, is small. If

"In this case, the true innovation is quantized, i.e., the innovation obtained by using the estimator based on
the continuous measurements, this is different from the methods in [Ribeiro 2006¢| and [You 2008], where the
quantized innovation is the innovation obtained using the estimator based on the quantized measurements.
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we assume that the previous posterior after some time is approximately Gaussian with mean
E (X%_1) and variance o2, then, as the prediction PDF is the convolution (2.10) of p (z|7x_1),
which is Gaussian, with p(:ck|21:k_1) which is also Gaussian, we obtain that the prediction
PDF conditioned on the past observations is Gaussian distributed with mean E (Xj_1) + ug
and variance o2, + o2. For estimating the optimal X} we must evaluate the conditional mean

J kP (izr) p (xglize—1) dag
H{]P’ (inl@}) p () lire—1) dof,

The numerator in the last term of the RHS can be seen as the prediction mean of the r.v.
XiP (i| X%) (the mean w.r.t. p (xg|i1.x—1)), under the assumption that o is small, the factor
P (4| X%), which is given by (2.14)

P (ig|2r) p (ox]itn—1)

X, =
k= fIF’ (ik]z},) p (@) |irk—1) da),

dzy =

F (0, + Xt — Xk) _F (Tfik—u T Xk) : it iy >0,

P(Zk’Xk) - / % / e . .
L CANES TS AR I CUAES AEES AN A

can be well approximated by a first order Taylor series expansion around X kk—1 — Xk =0

P (k] Xe) = P (0] X5, ,_,=x, + (Xk|k 1 - Xk) Ja <Zkan|k: 17Xk) P
klk—1—

+o (Xk\k—l - Xk) ;o (2.41)

where fy (ik, Xk|k;—1» Xk) is the first derivative of P (ix| X)) w.r.t. the prediction error Xk|k_1 -
Xj. It can be written as a function of the noise PDF f

fa (ik,ka—ka) =
/ Tl’ik‘ + Xk|k71 - Xk) —f (T|/ik—1| + Xk\k 1— Xk> if i, > 0,
f —rlfz-k+1| + Xk|k—1 - Xk) - fl= |+ Xk,|k 11— Xk> if i, < 0.

(2.42)

|1k

Note that when )A(k‘k_l = X} the function fy (ikan:\k—lan) depends only on ix. Using

(2.41), the numerator in the estimator expression is then the prediction mean of

X (i | X3) = XiP (i Xi)l %, =x, (Xka|k 1 _Xk) Ja (ZkanUc 1,X/<;)

Xyjp-1=Xk
+ o (Xka’\k’—l — Xk) .

The prediction mean of X}, is the prediction X k|k—1, while X k|k—1 is simply a constant for the
evaluation of this mean. Thus, using linearity and the fact that

EXk\h k—1 (X&) — EXHH k—1 (Xk> Vaerhl k-1 (Xk) = (Ugo + ‘7121)) )
we have

/IBIJP’ (iklar) p (wrlive—1) dok = Xypo P (i Xe) 5, =x, +
R

— (0% +ou) fa <'Lkan|k 17Xk) +o(0% +02). (243)

Xpp-1=Xk
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To obtain the denominator in the estimation expression, we can use a similar procedure. Note
that now the prediction expectation is evaluated for the r.v. P (ix|X) instead of XiP (ix|Xk).
We will use the second order Taylor expansion of P (ix| X) in this case:

P (ia|X0) = P (el X0 5., —x, + (Kupeor = X0 ) Fa (i Kpers X )| .
klk—1—
A 2
(Xk\kq - Xk) o . 2
+ 7 fa (Zkaka—th) . +o |:<Xk|k—1 - Xk) } , (2.44)
Kijp—1=Xg

where f} (z’k, Xk|k,1, Xk) is the second derivative of P (ix| X)) w.r.t. the prediction error. By

differentiating fy in (2.42), we can observe that, for X klk—1 = Xk, this function also depends

only on i;. The mean of the first term above is the constant P(ik|Xk)’Xk‘k,1:Xk' For the

second term fj; is a constant and the mean of the prediction is zero, as the optimal predictor

is unbiased [Jazwinski 1970, p. 150]. The third and last terms depend on the prediction
. 2

mean of (Xk|k—1 — Xk> , which is equal to the prediction variance o2, + o2, also due to the

unbiasedness of the optimal predictor. This gives the following

/P (ZHI’;C) P (I'H'ilskfl) dl‘;g =P (ik‘Xk)‘Xk\k_1=Xk +
R
(Ugo + 0121,)

5 fa (ik,Xk\k—l,Xk> ’ . +o(oZ +op). (245)

Xijp—1=Xk

Dividing the RHS of the expressions (2.43) and (2.45), we have an expression for the estimator

. +o(ago+a?u)

Kijp—1=Xg

X1 P (0 X0) 5, ox, — (0% + %) fa (ik>Xk\k—lan>

X (0%+02) 41 (5 %
Xy—1=Xp s fd Zk?Xka—lka

~

Xy =

P (ix|Xk)

3 +o(0% + 02
Kppo1=Xs ( 0o w)

Dividing the numerator and denominator by P (ix|X})] Kpeyr WO get

fd(ikv)%k\k—l’Xk)‘f(k‘kflzxk

> 2 2 2
. Xypp—1 — (0% +02) by a— + o (02, +03) »
L e HOF Sy o
oot Mo i o 2 4
f,;(ik:Xk\k—l’Xk)|Xk|k71:Xk

If is bounded and 02, + 02 < 1, the denominator is approximately

P(ik\Xkﬂf(Mk_l:Xk

one and we can approximate the optimal estimator by®

fa (ik,Xk k—lan>
| Kijp—1=Xk

P (ig | X%

Xk ~ Xk\k—l — (Uc2>o + 0'121]) (247)

)’Xklk—lsz

8Note that a first order Taylor series of 14—% around x = 0 would produce a more precise approximation,

but this would generate a more complicated algorithm for the performance analysis.
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2.5.3.2 Performance of the asymptotic estimator

Now, we need to calculate the asymptotic MSE of this estimator, which is 02,. The idea here
to start is to rewrite the asymptotic prediction error as a sum of the estimation error plus a
function of the observations. Using (2.47) we have

fa (iank:\k—lan>

. . Xpjp—1=X
X — X = Xpppo1 — Xi — (0% +03) - e
P(Zk|Xk)‘Xk\k—1:Xk
subtracting the term with f; from both sides, we have
) Jd (ikan|k—17Xk> 4 _x A
Xy — X+ (O'go—i—ofu) - L :Xk\k—l — Xg.
]P)(Zk|Xk)|Xk|k—1:Xk
Squaring and taking the expectation gives
) fa <ik,Xk|k—1,Xk) .
5 5 2 2 Kijp—1=Xg
E {(Xk - Xp) } + 28 | (X — Xp) (0% +02) .
P(2k|Xk) Xk”c—l:Xk

— ~ 2
Xije—1=Xg =K I:(Xklk_l — Xk) ] .
Xio—1=Xx

, 13 (ikan\kflan>

2 2
+E (O’oo + O’w) P nlXr)

The first term is the asymptotic squared error o2,. The second term is the expectation of
the estimation error multiplied by a function of the measurement iy, for small o2, + o2, the
estimation procedure is optimal (it minimizes the MSE), thus this expectation equals zero
[Rhodes 1971]°. The constant (o2 + 0120)2 can leave the expectation and the term on the

RHS is the prediction error 02, + 2. Therefore, we have

fd Uy NElk—15<Vk
| Kije—1=Xk 2

2 2 2)? 2
O+ (0% +0,) E ; A "
< ( s w) P2 (Zk’Xk)|Xk|k,1=Xk h ’ | )

The expectation that still needs to be evaluated is an expectation under the marginal prob-
ability measure of iy, P (ix). This probability measure can be evaluated by marginalizing on
the prediction error ¢, = X5 — X}

P(Zk> = ]P’(zkla:k)p(ek) de’:‘k.
/

Remember that in the quantized innovation scheme P (igx|x) is a function of i, and ;. The
marginal can be also observed as the mean of P (ix|X}) evaluated w.r.t. the distribution of

9This is a more general form of the well-known orthogonal projection theorem.
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€k. For evaluating the mean, we can again use a second order Taylor series expansion around
er = 0. This will lead to the same expression as in (2.45). Then, the remaining expectation is

fd2 (ik’Xk\k—lan> . fc% (ilkaUC—lek)

Xplk—1=Xk | X —1=Xk
P2 (ik|Xk)|Xk|k71=Xk el P(ik|Xk)|Xk|k,1:Xk
2 (Zk X _ Xk) . ! (Zk X — Xk) N
. (0—2 +02) Z fd » Ak|lk—15 Kppo1=Xs fd » A klk—1> Kpho1=Xk
o0 w/ P2 (ig| Xk) | _
ivel Kina =X

+O(Ugo+0121;)'

The first term on the RHS can be identified as the FI I, (0). Considering that the sum in the
second term on the RHS is bounded, then, after multiplying by (Ugo + 03)2, the second term

is multiplied by (Ugo + 012”)3 which is a o [(ago + 012”)2} term. This leads to

13 (ik,ka_th)
P2 (i Xy)

X =X 2 2 2
RE— : - (Ooo Ow)2lq (O) |:(C 002 C w)z} :
|Xk|k—1—Xk

Using the expression above in (2.48), we obtain
0% + (0% +02)2 1, (0) + o [(ago + agﬂ =02 +02,

or equivalently

g N

(O'go—|—0' )2 O'%U
1, 0) ] A

(Ugo + 030)2 + o

If 02, is small enough so that the o term is negligible, we can obtain the following approximation

2.
for o%:

o2~ T 2 (2.49)

Considering that o, is small compared with /1, (0) and with one, we have a rough approxi-
mation for the asymptotic performance

o2~ Y (2.50)

Finally, replacing o2, from (2.49) in the approximate expression for X (2.47), the following
is obtained:

fa (ikan\k:—lan>

N . Ow Xpjk—1=Xk
Xy ~ Xgp-1— . =
| 1, (0) P (il Xkl 5, =x,
fa (%Xk\k—th) .
R X 1=X
X1 +up — —2 il il (2.51)

1, (0) P (i Xn)l 5, =x,
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A few remarks are important here. First, in a similar way as it happened for the adaptive
estimator of a constant parameter, the asymptotic estimation procedure is very simple, it is a
correction on the last estimate which depends on the observation through

fa (kX npn—1,Xx)
P(ig | Xk)

‘Xk\k—lzxk

|Xk|k—1:Xk ’

a function of iy only. This means that the corrections can be stored in a table. Second, the
correction gain now is even simpler than in the constant parameter case, it is a constant. Third,
the rough approximation for o2, (2.50) agrees with the intuition on estimation performance, if
0w increases, the MSE increases, as the estimator has less effective samples to estimate before
the parameter changes significantly. If I, (0) increases, which is equivalent to say that the
noise level is reduced and/or that the quantizer resolution is increased, the MSE decreases as
the statistical information given by each sample is reduced.

2.5.3.3 Asymptotic lower bound on the BCRB
for a slowly varying parameter

To check if the asymptotic estimator above is indeed close to optimal, we can compare its
estimation performance with the asymptotic MSE lower bound, which is given by (2.40):
2

I, (0) + /12 (0) + 2

Comparing with (2.50) must be done for small o,,. For evaluating the RHS above in this case,

2%. This will lead to

Jw

s

2
0) + /12 (0)+74{g12<00> ;q((;m [ I4( ©)c2 1
q

Using the expansion around z = 0, /14 = 14 § + o (z), on the square root above gives

MSEq >

we can multiply its numerator and its denominator by

Tw

2 I4(0)

- 1(0)ow 14(0)o3, )030
Ig (0) + /13 (0)4'4{;15,0) VORI +eolow)

where we used the fact that o2, is small compared with I, (0) for making the I, (0) to disappear
from the o term. Note that this was also supposed to get the rough approximation (2.50) above.

)

We can use again an expansion around zero. Now, we use :l—Tx =1— 2+ o(z). Supposing,
14(0)

additionally that o, is small compared with AL we can use a o term depending only on
q

o0w. Thus, we obtain

2 Ow B
0) + /12 (0) + 22 VL (0) [1 2v/14(0)



2.5. Quantized innovations 101

The squared terms can be assimilated to o (o) leading finally to

2
EQMy > S +o(ow),

I, (0) + /12 (0) + *42 V14 (0)

which for small o, is exactly the same as the rough approximation of the asymptotic estimator

performance. Consequently, we can say that the asymptotic estimator obtained above is
optimal, as in this specific case, it attains the lower bound.

As in the previous section, where the adaptive MLE scheme was shown to have a simple
recursive form asymptotically, a question arise:

e can the asymptotic estimator (2.47) for slowly varying X converge when we use it with
an arbitrary (not necessarily small) initial error?

The answer for this question will be given in Ch. 3.
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2.6 Chapter summary and directions

We sum up the main points of this chapter:

e instead of considering that the parameter is constant, we assumed that the parameter
can vary in time, more specifically, following a Wiener process model. We saw that, in
general, the optimal estimator can be obtained by evaluating the mean of the parameter
conditioned on the past and present quantized measurements. Thus, the core of the
problem was observed to be the evaluation of the posterior PDF (PDF of X} conditioned
on i1). For a Markov process X}, which is the case for a Wiener process model, the
posterior can be evaluated in a recursive way, first by obtaining a prediction PDF using
the posterior at time k — 1 and the evolution model, then by updating the prediction
PDF to the posterior at time k, incorporating the new measurement .

e The integrals involved in the recursive expressions are complicated to be evaluated ana-
lytically, so we must resort to numerical algorithms for solving them. One way of doing
this is to apply Monte Carlo integration. This leads to a PF solution. The PF solution
is a recursive simplified form of Monte Carlo integration applied to the filtering problem
with an additional resampling step. The performance of the optimal estimator could
also be obtained using Monte Carlo integration, but it would be very difficult and time
consuming to study the effects of the system parameters (noise level, Wiener process
increments variance and quantizer resolution) using the Monte Carlo results. Therefore,
we considered a simpler solution by using a bound on the MSE for which we can have a
simple analytical expression.

e In our case, we used the BCRB, which is the inverse of the Bayesian information. The BI
for the Wiener process X can be evaluated recursively. From its recursive expression,
we could see that the BI and consequently the bound were affected by the quantization
through a E[I; (ex)] term, where ¢, is the difference between the central threshold and
the parameter. If E[I, (ex)] is increased, then the bound decreases, if it decreases, the
bound increases. For commonly used noise models, I, (¢) is maximum at e = 0,
therefore, a practical lower bound can be obtained by using I, (0) instead of E [I; (e)].

o If we accept that the bound is tight enough to mimic the behavior of the MSE, another
consequence of the dependence of the bound on E [I, (¢x)] and the fact that I, () is large
close to ¢y is that the central threshold must be placed as close as possible to the true
parameter. This can be done in an approximate way, by setting the central threshold
to the prediction of X based on the past measurements. Thus, a good estimation
procedure might be based on the quantized innovation. In this case, it is expected that
the estimation performance will be closer to the bound, when compared with a quantizer
with arbitrary central threshold.

e When oy, is small and k tends to infinity, the optimal estimator can be approximated by
a low complexity recursive expression, with its MSE attaining the BCRB and given by

Tw
14(0)
w.r.t. the quantization threshold variations. As stated before, the asymptotic analysis

. This shows one more time, the importance of studying the maximization of I, (0)
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of this problem will be done in Part II. The simplicity of the asymptotic estimator when
X, varies slowly will be used as a motivation to study in more detail recursive algorithms
of the type - prediction + correction based on 4. This will be done in Ch. 3.

A generalization of the signal model used here can be obtained by considering that the
dynamical parameter is a vector X with size N and that it obeys a linear Gaussian
model of the type

X =P Xp_1+ Wy,

where ®; is a N x N matrix and Wy, is a sequence of independent Gaussian vectors.
The continuous measurement is a vector Y with dimension M

Y, = Hy Xy + Vi,

where Hy, is a M x N matrix and V} is a sequence of independent vectors. Quantization
can be done also scalarly, but we might consider two possibilities for the quantization
of each Y}, scalar quantization of each dimension or vector quantization of the entire
vector.

A direct application of the estimation problem with this model is the control of linear
systems under rate constraints. We will not go further in this direction in this thesis,
but we will keep this generalized version of the problem for future work.






CHAPTER 3

Adaptive quantizers for estimation

As we saw in the previous chapters, to obtain good estimation performance, the quantizer
dynamic might be adaptively set around the true parameter to be estimated. We also saw
that the asymptotically optimal estimator in the constant parameter case or in the slowly
varying parameter case has a simple recursive form. We asked at the end of each chapter:

e can the asymptotic estimator based on binary measurements converge when we use
its simplified form (the low complexity equivalent) with an arbitrary initial error (not
necessarily small)?

e Can we extend this low complexity recursive procedure to the case N;y > 27

e Can the asymptotic estimator for slowly varying X} converge when we use its simplified
form (the low complexity equivalent) with an arbitrary initial error (not necessarily
small)?

In this chapter we will answer these questions. For doing so, we will impose the estimation
algorithm to have a general recursive form that includes the asymptotically optimal estimators
as special cases.

We will start the chapter with a brief review of the signal models that will be used (con-
stant, Wiener process without and with drift) and with the definition of the quantizer to be
used. Then, we will define the estimation algorithm form and we will study its performance for
the signal models defined previously in terms of the mean error and of the MSE . Based on the
performance analysis, we will obtain the optimal estimator parameters and the corresponding
optimal performance. As in related work [Papadopoulos 2001], the optimal performance will
be used to obtain a measurement of performance loss due to quantization. This loss will be
evaluated for each signal model by using the corresponding optimal performance for estima-
tion based on continuous measurements. The performance results will be verified through
simulation.

We will also propose extensions of the adaptive algorithm in the following cases:

e quantized measurements from a sensor are used for estimating a constant parameter,
but in this case, the noise scale parameter is considered to be unknown.

e Multiple sensors and a fusion center are used to estimate a constant parameter. The
sensors can send only quantized measurements to the fusion center, while the fusion
center can broadcast continuous values to the sensors.

105
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In each of these cases we will follow a similar procedure. We will define the problem and the
estimation algorithm to be used. Then, we will obtain the optimal estimator parameters and
the corresponding optimal performance. Simulation will be used to check the validity of the
results.

At the end of the chapter, we will summarize the main results of the chapter and we will
give some directions for future work.

Contributions presented in this chapter:

e Design and analysis of an adaptive estimation algorithm based on multibit quantized
noisy measurements. This differs from [Li 2007] and |Fang 2008|, where only binary
quantization is treated.

e FExplicit performance analysis for tracking of a slowly varying parameter. Differently
from [Papadopoulos 2001, Ribeiro 2006a, Li 2007, Fang 2008], where the parameter is
set to be constant and all subsequent analysis is based on this hypothesis. Even if track-
ing is treated in a more general way in |Ribeiro 2006¢| and [You 2008], we do not state
assumptions on noise Gaussianity. Note that the assumption that the parameter varies
slowly seems more restrictive than the parameter models considered in [Ribeiro 2006¢|
and [You 2008|, actually, the slowly varying assumption is hidden in the performance
evaluation for the binary case given in [Ribeiro 2006¢|, where it is shown that the perfor-
mance of the proposed filter reaches the equivalent continuous when the sampling time
tends to zero.

o Low complexity algorithms. The algorithms proposed here are based on simple recursive
techniques that have lower complexity than the methods proposed in [Li 2007] and
[Fang 2008].

o Joint location and scale adaptive estimator. The algorithm that we propose is an exten-
sion of the location estimation problem. This extension is discussed in [Ribeiro 2006b|
but only for fixed quantization thresholds.

e Fusion center approach. This approach can be seen as a multisensor, multibit, low
complexity alternative to the adaptive techniques presented in [Li 2007] and [Fang 2008|
and also as an adaptive alternative for the optimal threshold distribution approach given
in [Ribeiro 2006a|, where a prior distribution on the parameter is needed.



107

Contents
3.1 Parameter model and measurement model . . . . ... .. ... .... 108
3.1.1 Parameter model . . . . . . . ... 108
3.1.2 Noisemodel . . . . . . ... 108
3.1.3 Adjustable quantizer model . . . . . ... ... oo oL 109
3.2 General estimation algorithm . .. ... ... .. ...... ..., 111
3.3 Estimation performance . ... ... ..... ... ... 0000 113
3.3.1 Mean ordinary differential equation. . . . . . . .. ..o 113
3.3.2 Asymptotic MSE . . . . ... 121
3.4 Optimal algorithm parameters and performance . . . ... ... .. .. 125
3.4.1 Optimal algorithm parameters . . . . . .. ... ... ... ... ..... 125
3.4.2  Algorithm performance for optimal gain and coefficients . . . . . . . . .. 128
3.5 Simulations . . . . . . e e e e e e e 135
3.5.1 General considerations . . . . . . ... ... 135
3.5.2 Theoretical performance loss due to quantization . . . . . ... ... ... 137
3.5.3 Simulated loss . . . . ... 138
3.5.4 Comparison with the high complexity algorithms . . . . . . . ... .. .. 143
3.5.5 Discussionon theresults. . . . . .. ... ... ... ... 147
3.6 Adaptive quantizers for estimation: extensions . ... ... ... ... 149
3.6.1 Joint estimation of location and scale parameters . . . . . . . . ... ... 149
3.6.2 Fusion center approach with multiple sensors . . . . .. ... ... . ... 155

3.7 Chapter summary and directions . . . . . . . ... ... 0 164




108 Chapter 3. Adaptive quantizers for estimation

3.1 Parameter model and measurement model

3.1.1 Parameter model

We will join the constant and varying models by using the dynamic model (2.1)
X = Xg—1 + W,

where {Wy, k = 1,2,---} is a sequence of independent Gaussian r.v. (also independent of X,,
for n < k) whose means form a deterministic sequence {ug, k =1,2,---} and its standard
deviation is gy,:

Wi N/\/'(uk,a,gu) .
Symbol ~ means "distributed according to" and N is the symbol for the Gaussian distribution.

Differently from what was considered previously, the sequence u; will be considered to be
a known or unknown constant v and we will assume that it has small value. We will also
assume that o,, is a known, small constant. "Small" in both cases means that these constants
are small when compared with the noise scale parameter. In the Gaussian noise case, this is
equivalent to say that they are small when compared with the noise standard deviation.

The fact that we use a constant u instead of the varying u; will allow to have asymptotic
performance results. In practice, all the results that will be presented will be valid for varying
ug, as long as the sequence wuy is small and slowly varying.

The model above is a compact form to describe the three parameter models that are
studied in this thesis:

e constant: by taking u = o,y = 0 and Xg = x, we have the constant parameter model.

e Wiener process: if u = 0, (small) nonzero o,, and Gaussian Xy with unknown mean and
variance, then Xy, is a (slowly) varying Wiener process.

o Wiener process with drift: in this case u and o, are non zero (and with small amplitudes).

3.1.2 Noise model
The continuous amplitude measurement is again given by the additive model
Y = Xp + Vi,
where the noise r.v. sequence Vj respects the assumptions considered previously:
e the sequence is i.i.d..
e AN1 (p. 34) — The marginal noise CDF denoted F (v) accepts a PDF denoted f (v).

e AN2 (p. 34) — f (v) is a strictly positive even function that strictly decreases w.r.t. |v|.
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An additional assumption will be considered on the noise CDF.

Assumption (on the noise distribution):
AN3 F is locally Lipschitz continuous.

A function F'(v) is Lipschitz continuous in an interval V), if for every two points v; and ve in
V there exists a constant L such that

|F (v1) — F (v2)| < L|vp — g,

the function is locally Lipschitz continuous if for every v € R, we can find an interval V'
containing v such that the function is Lipschitz continuous.

This assumption is required by the method of analysis that will be used to assess the
performance of the proposed algorithm. Most noise CDF considered in practice are Lipschitz
continuous, thus this assumption is generally satisfied.

3.1.3 Adjustable quantizer model

We saw in Ch. 1 and 2 that the quantizer central threshold must be dynamically updated
to obtain a good estimation performance. We will make explicit this feature by imposing the
quantizer to have an adjustable offset ;. For adjusting the amplitude of the quantizer input,
we can also consider that after offsetting the input, we apply an adjustable gain A%c' The

quantized measurements at the output of the adjustable quantizer are given by

ir=Q (Y’“A_kb’“> : (3.1)

By considering dynamic input offset and gain, we can fix the quantizer to have a static structure
with a central threshold that now can be set to zero. Thus, the quantizer thresholds are equal
to the threshold variations. This modifies assumption AQ2 (p. 37).

Assumption (on the quantizer):

AQ2’ The quantizer is symmetric around the central threshold which is equal to zero. This
means that the vector of thresholds 7 is given by the vector of threshold variations

-
T:T':[—TGVI---—T{ 0 —|—7‘{--~—|—7‘§LI ,
2 2
where the threshold variations 7] form an increasing sequence.
The adjustable quantizer output is given by
Y —b Yi—b
ik =Q < kAk k) = isign (Yy — bg), for W € [r_1,7). (3.2)

A scheme representing the adjustable quantizer is given in Fig. 3.1 . Note that even if the
quantizer is not uniform (with constant step-length between thresholds), it can be implemented
using a uniform quantizer with a compander approach [Gersho 1992].
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Static quantizer

AkTé
Adjustable gain -
TT

Y ik
OHE> o
/

— —7i+

by,
Adjustable offset

Figure 3.1: Scheme representing the adjustable quantizer. The offset and gain can be adjusted
dynamically, while the quantizer thresholds are fixed.

Based on the quantizer outputs, the main objective is to estimate Xj;. A secondary ob-
jective is to adjust the parameters b, and Ap to enhance estimation performance. As the
estimate X i of X will be possibly used in real time applications, it might be interesting to
estimate it online. Therefore, we are again interested in solving problems (a) and (b), the
main difference is that now we want to solve (a) for each time index k.

It was observed in the previous chapters that

e when estimating a constant, we can place the central threshold in the last estimate to
have an asymptotically optimal algorithm.

e When estimating a Wiener process, we can place the central threshold at the prediction.
For Wiener process without drift the prediction is exactly X1 and for Wiener process
with drift the prediction is Xj_1 + ug.

Based on these observations and for simplification purposes, we will set for all cases b, =
Xi_1. Also to simplify, we will consider that the gain is set to be a constant. For the algorithm
presented later, the fact that the offset is set to X;_1 will have as a consequence asymptotically
optimal parameters that do not depend on the mean of X}, thus simplifying the analysis.

Some remarks here are important:

e We will see that imposing the use of by = Xi_1, instead of using the prediction, will
make the algorithm parameters and the performance to be different for Wiener process
with and without drift.

o If we use the prediction, instead of the last estimate, for setting the quantizer offset and
for estimating X}, then all the results that we will obtain for a Wiener process without
drift will be valid also for the process with drift.

e In the special cases where the optimal central threshold is not the median of the contin-
uous amplitude measurement, we can evaluate the optimal quantizer offset e* w.r.t. the
true parameter (the point of minimum in the "w" shaped CRB curves) and then add
this value to the offset of the adaptive quantizer b, = X1 +¢*.
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e As most performance results will be given asymptotically, the simplification brought by
using a constant gain % can still be partially achieved if we constrain this gain to be
constant after some time or to achieve asymptotically a constant value. In this case,
the analysis of error convergence will have to take into account that the measurement

system varies in time and we must be able also to evaluate its asymptotic value.

e The gain % will be again considered to be variable further in the chapter, where we will
estimate jointly a constant Xj and the scale parameter of the noise. In this case, the
gain will not only be variable, but it will also depend on the measurements.

The general scheme for the estimation of X, is depicted in Fig. 3.2 and the main objective
will be to find the algorithm that will be placed in the block named Update.

Adjustable
Quantizer

I
I

I
I

I
I

I
I

I
I

I
I

I
! |
! I
: T 7'1 |
| I
I

|

[
I

I
I
I

ik
| / Quantized
: - —TiT measurements
| :
A
X1 Update ¢
k
Estimate

Figure 3.2: Block representation of the estimation scheme. The estimation algorithm and the
procedures to set the offset and the gain are represented by the Update block.

3.2 General estimation algorithm

At the end of Ch. 1, we saw that the estimator in the adaptive binary quantization scheme
based on the MLE is asymptotically given by (1.87)
X=Xk 1+ ——,
AT
whereas at the end of Ch. 2, we saw that the asymptotic expression for the optimal estimator
of a slowly varying Wiener process is (2.51)

fa (ik>Xk\k—1an)’ .

Kijp—1=Xk

Xk ~ Xk\k—l - -
,0)  PG@IXlg,, -x,
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Both asymptotic estimators have low complexity and both are special cases of the following

() e

where, 74, is a sequence of positive real gains and 7[-] is a mapping from Z to R

adaptive algorithm:

Xp=Xp 1+ V&N

n:Z — R
j — Ny, (34)

which is characterized by the sequence of Ny coefficients {77_&> ey =1 My ey Ny } Notice
2 2

that the coefficients n[-] can be seen as the "estimation equivalent" of the output quantization
levels used in standard quantization theory.

Even if nothing guarantees that the algorithm (3.3) is optimal for finite time, the fact that
it can be equivalent asymptotically to the optimal estimator and that it has low complexity
are strong motivations for using it. Other more intuitive motivations are the following:

e similarly to the binary grid method proposed by [Fang 2008|, for a slowly varying or
constant parameter, we can choose the coefficients n[-] in a way that the algorithm will
tend to be around true parameter at least in the mean.

e When estimating a constant, the maximum likelihood estimator can be approximated
by a simpler online algorithm using a stochastic gradient ascent algorithm, which has
the same form as (3.3). It will be shown later that for the optimal choice of 7;, algorithm
(3.3) is equivalent to a stochastic gradient ascent method to maximize the log-likelihood.

e To estimate a Wiener process, an approximate choice of estimator is a Kalman filter like
method based on the quantized innovation, which is also (3.3).

Due to the symmetry of the problem for commonly used noise models, when X}, is close to
X}, it seems reasonable to suppose that the corrections given by the output quantizer levels
have odd symmetry with positive values for positive 4. This symmetry will be useful later
for simplification purposes and we will add it to the other assumptions.

Assumption (on the quantizer output levels):

AQ3 The quantizer output levels have odd symmetry w.r.t. 4:

i = —1—i, (3:5)

with n; > 0 for ¢ > 0.

In the special cases where the threshold must be placed asymmetrically and we put an addi-
tional constant value in the quantizer offset (¢*), the assumption above may lead to an asymp-
totic estimation bias. For observing this, consider that the quantization offset is already at
the parameter. Then, the mean of the correction 7 [ix] will be zero, as the distribution of the
i is even and 7); is odd. Thus the algorithm is in a mean equilibrium point. As the offset is



3.3. Estimation performance 113

placed £* away from the estimate, the mean of the estimate has an equilibrium point that is
different from the true parameter.

The non differentiable non linearity @ in (3.3) makes it difficult to be analyzed. Fortu-
nately, an analysis based on mean approximations was developed in [Benveniste 1990] for a
wide class of adaptive algorithms. Within this framework, the function 7 can be a general
nonlinear non-differentiable function of Y; and Xk and it is shown that the gains . that
optimize the estimation of X} can be chosen as follows:

® Y X % when X}, is constant.
® ;. is constant for a Wiener process Xy.

2
e 7 is a constant which is proportional to u3 when X} is a Wiener process with drift.

Notice that the gains for the constant and Wiener process models given above have the same
form of the asymptotically optimal gains found in Ch. 1 and Ch. 2. The only difference is
the gain proportional to u’ in the case with drift, which reflects the choice of using Xj_1 in
the place of the prediction.

In the following sections we will consider the gains given above for the algorithm (3.3) and
we will apply the general analysis presented in [Benveniste 1990| to obtain its performance.

3.3 Estimation performance

To obtain the estimation performance, the analysis is separated in

e the analysis of the estimator mean. This gives a rough approximation of the estimator
behavior. With this information we can see if the estimator converges in the mean and
we can also characterize its bias.

e The analysis of the estimation variance. This analysis will give the details on the fluc-
tuation around the mean and it will be obtained, in most cases, asymptotically.

3.3.1 Mean ordinary differential equation

The core of the analysis that we use here and that is presented in a general setting in
[Benveniste 1990] is to approximate the mean E (X k) by Z (t), where & (t) is the solution of
the ordinary differential equation (ODE)
dz
— =h(z). 3.6
@) (3.
k

The correspondence between continuous and discrete time is given by ¢, = _ 7; and h (2) is
=1

wo-sfo(o(5)}

the following:
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where the expectation is evaluated w.r.t. the distribution of V', which is the noise marginal
distribution.

A simple heuristic to obtain the approximation is the following: first we rewrite (3.3) as

Xp. — X1 _ X~ Xp1 + Vi
—— =7 |Q A
Vi

)

then we consider that the parameter is approximately a constant X = x and that X._1 on the
RHS can be approximated by the mean at time k, i.e. X_1 = &. Evaluating the expectation

on both sides
E (Xk> “E (X,H) .
s prle ()}
Yk
we see now that the RHS is h (Z) and if we consider the algorithm gain as a small time step,

thon ELE)-E(Ken)
Tk

is an approximation of the time derivative.

For the approximation given by the ODE (3.6) to be valid as an approximation of E (X k)

at least after some time k and for using the results from [Benveniste 1990], some conditions
must be satisfied:

e conditions on the Gains. The gains must sum to infinity

oo
Z Ve = +00,
k=1

when they are decreasing, the sum of their power must be finite
o0
ZW? < 400, for some o > 1
k=1

and when they are not decreasing, they must tend to a finite limit
Yoo = lim 7y < 4-00.
k—o00

As the cumulative sum of the gains is an equivalent for the time in the ODE approxima-
tion, the condition that the sum of the gains goes to infinity is equivalent to say that the
time in the ODE can go to infinity, so that the algorithm does not get "stuck" in time.
The condition on the sum of the powers of the decreasing gains is used to guarantee that
the fluctuations of the estimator will decrease when we want to estimate a constant. The
last condition on the limit of the gains is used to have fixed asymptotic performance
results. We can see that all these conditions are satisfied for the three types of gain
defined previously.

e Conditions on the continuous measurements. For a fixed X = z, the continuous mea-
surements Yz form a Markov chain with a unique stationary asymptotic distribution.

This condition is also necessary to have fixed asymptotic results. In the problem con-
sidered here, the distribution of the continuous measurements given a fixed parameter z
is the distribution of the noise shifted by the parameter x. As the noise distribution is
i.i.d., the distribution of Y} is stationary for all k, thus clearly respecting this condition.
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o Regularity conditions on h(Z). The function h () is locally Lipschitz continuous.

The main point of using the analysis presented in [Benveniste 1990] is that it is not
necessary to have a continuous correction function n. The analysis is mainly based on
replacing the mean of the algorithm by the ODE approximations and then evaluating the
fluctuations around it. This analysis then reposes mainly on h and not on 7. For the local
existence, uniqueness and regularity of the ODE solution, we might impose regularity
conditions on h. Also, for evaluating the fluctuations around the ODE solution we might
look to local expansions of h, which then leads naturally to conditions as the one stated
above.

Using the assumptions on the quantizer thresholds and output levels, the expectation in
(3.7) can be written as:

h(£) = [niFq(i,&,2) — niFy(—i, &,2)], (3.8)
where Fj is a difference of CDFs:

Fa= 2 (3.9)
F(T{+1A+i’—x)—F(Ti’A—|—§c—x), ifie _17...7_71}_

F(TZ‘/A-f—:%—x)—F(Ti’_lA—{—:%—a:), ifiedl, - &}’

From assumption AN3, the function h is a linear combination of locally Lipschitz contin-
uous functions, this implies that h is also locally Lipschitz continuous, and the condition
is satisfied.

All the conditions are satisfied in our case, therefore, we can apply the performance results
from [Benveniste 1990].

Mean of the algorithm for estimating a constant

For estimating a constant, the gain of the algorithm is of the form [Benveniste 1990)|

y
= —. 1
M= (3.10)
The ODE is given by (3.6)
dz
= h(s
dt (l’) ?

k
with the time given by tx = v > % The ODE approximation is valid for small gains, so in
j=1
this case, it is valid for large k.

The estimation bias after a transient time can be approximated using the ODE above. By
denoting the bias as € (t) = & (t) — x, the bias ODE is
de

e he), (3.11)



116 Chapter 3. Adaptive quantizers for estimation

where h (¢) = h (¢ + x) is a function that does not depend on the true parameter z (to verify
this, use € + x in the place of Z in the expression for Fy).

As the function h (¢) depends on a sum of CDF which might not even have analytical form,
it is difficult to find analytical solutions for (3.11). The solution in general can be obtained
using a numerical method, for example a Runge-Kutta method (see [Golub 1991] for details
on numerical solvers).

Even if we cannot obtain in general a characterization of the bias for all £ using the ODE,
we can at least analyze what happens asymptotically to the mean of the algorithm.

Asymptotic stability and asymptotic unbiasedness

An interesting point to study is the asymptotic mean convergence of the algorithm. More
precisely, if we prove that e — 0 as t — oo for every £(0) € R, then we prove that the
algorithm is asymptotically unbiased, as its true mean can be approximated by the ODE. The
convergence in the mean is not only useful for showing that the algorithm indeed works, at
least in the mean, but it is also a requirement for the evaluation of the MSE that will be
presented later.

The fact that ¢ — 0 as ¢ — oo for every €(0) € R means that ¢ = 0 is a globally
asymptotically stable point [Khalil 1992|. Global asymptotic stability of € = 0 can be shown
using an asymptotic stability theorem for nonlinear ODEs. This will require the definition of
an unbounded Lyapunov function of the error. To simplify, a quadratic function will be used:

L(e) =€ (3.12)

which is a positive definite function and tends to infinity when € tends to infinity.

If h(e) =0 for e = 0 and % < 0 for € # 0, then by the Barbashin-Krasovskii theorem
[Khalil 1992, p. 124] e = 0 is a globally asymptotically stable point.

To show that both conditions are met, expression (3.8) can be rewritten as a function of

h(e) = m [Falie) = Fu(=ie)| (3.13)
i=1

where Fy (i,e) = Fj; (i,e + =, ) is also a function that does not depend on .

When e = 0, the differences between Fj in the sum are differences between probabilities
on symmetric intervals. The symmetry of the noise PDF stated in AN2 and the symmetry of
the quantizer stated in AQ2’ imply that h (0) = 0, fulfilling the first condition.

The second condition can be written in more detail by using the chain rule for the deriva-
tive: ar 4rd
E ~
S ETE 9 f . 14
ETal Py eh(e) <0, for €#0 (3.14)

Thus, h () has to respect the following constraints:

h(e) >0, fore <0 and h(e) <0, fore>0. (3.15)
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When € # 0, the terms in the sum that gives h (¢) are the difference between integrals of
the noise PDF under the same interval size but with asymmetric interval centers. Using the
symmetry assumptions, for € > 0, Fy (i,¢) is the integration of f over an interval more distant
to zero than for Fj; (—i,e), then by the decreasing assumption on f, Fy (i,e) < Fy(—i,e) and
consequently & (¢) < 0. Using the same reasoning for ¢ < 0 one can show that & (g) > 0.
Therefore, the inequalities in (3.15) are satisfied and % < 0 for € # 0.

Finally, as both conditions are satisfied, one can say that € = 0 is globally asymptotically
stable, which means that the estimator is asymptotically unbiased for estimating a constant.

Mean of the algorithm for estimating a Wiener process

When we want to estimate a Wiener process, the gain of the algorithm is considered to be a
constant

T =17

In this case, if we consider v to be a small constant, we can also write the ODE approximation

to the mean with (3.6)
dz
— =h(2).
3 — @)

Now, the constant z in the expression for A is the mean of the Wiener process (which is also
the mean of the initial condition X() and the time is t; = k.

Note that in this case, by imposing a - sufficiently small the ODE will be valid for all £ and
there will be no transient time. Actually, this could also be done for the constant parameter,
but as we will see later, the optimal v minimizing the asymptotic MSE may not be small for
estimating a constant and it will indeed be small for estimating a Wiener process with small
Ow-

The bias ODE is also given by (3.11), therefore, for small v the algorithm is also asymp-
totically unbiased in this case.

To show an example for which the ODE approximates well the estimation bias, we simu-
lated the adaptive algorithm for Ny = 2 and N; = 4 in the Gaussian noise case. The quantizer
gain was % = 1, the threshold variations and the output coefficients were chosen to be uniform,
=l =17=2", {m=1 =2} for Ny =2and 7/ = [T{ZlTéZQTéZBTizll]T,
{m =1, ne =2, n3 =3, ng =4} for Ny = 4. The noise scale parameter was chosen to be
d = 1, the Wiener process increment standard deviation o, = 1072 and the adaptive gain
v = 1073. We considered the mean of the Wiener process to be E (X}) = 0 and the initial
condition of the algorithm was set to be Xo = 1. To obtain an estimation of the bias, we
simulated the algorithm 10 times for blocks of 10* samples. For each sample (each index k)
we averaged the error through the different simulations. The solution of the bias ODE (3.11)
was obtained numerically with a Runge-Kutta method with order 4 and 5. The results are
displayed in Fig. 3.3.
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Figure 3.3: ODE bias approximation and simulated bias for the estimation of a Wiener process
with the adaptive algorithm. The noise was considered to be Gaussian with § = 1. Both
N; =2 and N; = 4 were considered with 7/ = [7j =175 =2]", {;1 =1, o =2} and 7/ =
[M=1m=2713=31= 4]T, {m =1, ne =2, n3 =3, ng = 4}. In both cases, the quantizer
input gain was considered to be one. The Wiener process increment standard deviation o,
and the adaptive gain were set to 1073. The algorithm was initialized with Xo = 1, while the
true mean of the Wiener process was set to zero. To obtain the simulated bias, we simulated
10 realizations of the estimation procedure for blocks with 10 samples. The simulated bias
was obtained through averaging of the simulations. The ODE approximation of the bias was

obtained by solving numerically the ODE (3.11) with a Runge-Kutta method.

We note that the ODE approximation corresponds well to the mean trajectory of the
estimation error. For this specific choice of parameters, which corresponds to the binary
constant step update presented in [Li 2007] and [Fang 2008] and to a multibit extension of it
(when Nj = 4), we see that the algorithm can set the mean of the central threshold, which in
this case is also the estimator, at the parameter mean even if the parameter is time-varying.
We also observe that for the choice of simulation parameters used here, the convergence time
of the algorithm for N; = 4 is smaller than the convergence time for Ny = 2.

As a final remark on the Wiener process case, when v — 0, the ODE approximation is
increasingly accurate as the inherent discretization error (from time discretization) decreases
to zero. Also when v — 0, we get the constant X}, case studied in [Li 2007] and [Fang 2008|.
Thus, the proof of asymptotic mean convergence given above is also a proof of convergence of
the fixed step algorithms presented in [Li 2007| and [Fang 2008] and multibit extensions of it,
when the step of the algorithm is small.

Mean of the algorithm for estimating a Wiener process with drift

When the Wiener process has a drift, we consider again that the algorithm has a constant
gain

Ve ="
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However, in this case as the mean of the parameter is not stationary, we cannot consider the
ODE approximation with a constant z in the function h.

To obtain the ODE, we will use again the heuristic presented above, but in this case, we
will include the dynamical model of the parameter. We start with the expectation of the
increments divided by ~

E(Xp) —EXer) _ w
"}/ )
E (Xk> “E (Xk_l) c— Vi
= En|Q(——F— ;
¥ A
then we approximate it by a pair of coupled ODEs

de_u
a4
ds _
dit” = h(@-a),

where the time for both equations is t; = k. Note that the algorithm ODE now depends on

the solution of the parameter ODE. By subtracting both expressions, we have an ODE for the
bias € d

e - u

— =h(e)——. 3.16

Tt (316)

As the parameter is now moving deterministically with the drift u, we can assume that most

of the algorithm tracking effort will be done to remove the bias €. Therefore, the algorithm

must be fast enough to follow the parameter and we must have v > w. This also makes %

to be small, thus if all 7; are not too small, we can find an e, such that & (e5,) = %, which

;a
means that e, is an equilibrium point for the bias.

It was shown above that the bias ODE without the forcing term % is globally asymptotically
stable, thus for a slowly varying parameter, we can expect that the algorithm will tend to get
close to the true parameter. After a time t;_1, we can assume that the algorithm is sufficiently
close to the true parameter, so that we can approximate the function h (¢) with a first order

taylor expansion around € = (
h(e)=h(0)+hM (0)e+ol(e),

where A1) (0) is the derivative of h (g) with respect to ¢ evaluated at ¢ = 0. The ODE can

then be rewritten as

d ~
Ei =7 (0)e — % +o(e), fort>tyi. (3.17)

For t;, sufficiently large we can neglect the o (¢) term. Thus, the bias ODE can be approximated
by a linear ODE. For the linear ODE approximation not to diverge we must impose the
condition

A (0) < 0. (3.18)

Therefore, under this condition the approximate bias will tend to an approximation of the
equilibrium point .
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Before obtaining the asymptotic bias given by the equilibrium point €4, we will verify
condition (3.18). The derivative of h (g) w.r.t. € is given by

h (e) = % => [fd (i,€) — fa (—z‘,s)} , (3.19)
=1

where f, (i,¢€) is

] f(rA+e) (i Ate), ifie {1 3},

o 3.20
fa(ise) flrigA+e) = f(riA+e), ifie _1"”’_%}' o

At point € = 0, fy(i,e) = fq(i,0) for i € {1, ,%} is negative because 7, > 7/_; and the
noise PDF is strictly decreasing by assumption. For —i, fd (—1,0) has the same absolute value
as fq(i,0) by the symmetry assumptions, but it is positive. Therefore, f;(i,0) — fq(—%,0) =
2f4(i,0) and this difference is always negative. The sum k() (¢) is then given by

A (0) =25 0 (6,0) (3.21)
=1

and it is also negative, as the output quantizer levels 7; are positive for positive ¢ by assumption.
This means that condition (3.18) is satisfied and the ODE linear approximation will converge
to an equilibrium point. For simplifying the notation, we will use k. in the place of A(1) (0)
from now on.

As the system is linear, the equilibrium point will be unique and independent of the initial
condition. We can obtain its expression by setting % to zero in the ODE approximation. This
leads to the following equation:

heew — 2 =0,

for which the solution is
U

vhe'

oo =

As the bias ODE is an approximation of the true bias, this is equivalent to say that for

small u
U

E (Xk - Xk> ~ (3.22)

k—ro0 ’yha‘
Note that differently from the constant and Wiener process cases, the estimator is not asymp-
totically unbiased. Observe also that if uy is not a small constant, but a small amplitude
slowly varying sequence, we could replace u by w (t) in the ODE approximation above and
for each time step (¢t € [tg, tx + 7)) approximate the varying w (t) by the constant uj. This
would lead to replace u by uy in the bias approximate expression above (3.22) and instead of
considering it as a valid expression for k — oo, we would say that it is valid for a large k.
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3.3.2 Asymptotic MSE

After characterizing the mean behavior of the algorithm, we must quantify its random fluctu-
ations. For doing so, we will mainly use asymptotic results on the variance of the algorithm.
With the asymptotic bias and the asymptotic variance we can obtain the asymptotic MSE.
The asymptotic MSE is a function of the parameter v, thus by minimizing it through ~, we
will obtain expressions for the MSE independent of 7.

Asymptotic variance for estimating a constant

Under the condition that the algorithm is asymptotically unbiased, it can be shown using a
central limit theorem, that the normalized estimation error is asymptotically distributed as a
Gaussian r.v. [Benveniste 1990, p. 109]

vk (Xk — x) e N(0,02), (3.23)

the symbol ~» means convergence in distribution. The asymptotic variance o2 is given by

2
9 ¥R
_ 3.24
70 T Tonh. — 1 (3.24)

where the term h. is the derivative of h (¢) w.r.t. € at ¢ = 0, as it was defined before. The

term R in the numerator is the variance of the adaptive algorithm normalized increments

Xi—Xp—1
Tk

Z, is equal to x. From the symmetry assumptions on the noise and on the quantizer, the

) when the mean of the algorithm, which is approximated by the ODE solution

normalized mean of the increments h () is zero when & = x. Thus, this variance is given by
the second order moment of the quantizer output levels:

o - (o)

=z
Ny Ny
2 2
= Z (n?Fd(l,[E,l‘) +7’/g2Fd(—Z,l’,I‘)) = 2277@2Fd (’i,LU,CC)
=1 =1
Ny
2 ~
= 2> niFy(i,0), (3.25)
i=1

where the third equality comes from the symmetry of the quantizer and the noise distribution
and the last equality is obtained using the Fj; notation.

For minimizing the asymptotic variance w.r.t. -, we must find the positive v for which

%%(7) = 0. The expression for the derivative is

do3, (7) 2y 29%he R 5
- R 4 = —29%h: — 27),
dry ~2vhe =1 (=2yh. — 1)*]  (=27yh. —1)? (=27he = 2)
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which equals zero for v = —h%. Note that this gain is positive as h. is negative. By rewriting
the derivative above as
do (1) —2Ryh < L1 >
= v M E
dy (—27he — 1) he
we can see that for > h , the derivative is positive and for v < h%’ the derivative is
negative, thus v = —+ — glves a minimum 02 . The optimum gain +* and its corresponding
variance are
1
= - 3.26
gl = (3.26)
R
2 _

Note that this result is valid under the condition that the estimator is asymptotically unbiased,
a condition that was shown to be true in the previous subsection.

Asymptotic variance for estimating a Wiener process

The MSE for a varying parameter and a constant adaptive gain can be expressed as a sum of
three terms

MSE; = E%fm»—xmw+E{{B¢—@uw}—M¢—xmﬂf}+ow>
= & (th) +E (&) +o(v), (3.28)

where €2 (t,) = E?[2 () — = (tx)] and &, = [X'k - @(tk)} — [ Xk —z (tg)]. The first term
g2 () is an approximation of the squared bias E? [¢;]. The second term is an approximation
of the error variance, which can be obtained by evaluating the second order moment of the
total fluctuation of the error ;. The last term is the error due to the approximations and if
v is small this term is negligible. As oy, is small by assumption, v must be small for tracking
X, without large fluctuations, thus this last term is expected to be negligible.

It was shown in the last subsection that the algorithm is asymptotically unbiased, thus
the first term of the decomposition tends to zero as k tends to infinity. As a consequence, the
asymptotic MSE, that we denote MSE, ,, depends mainly on the asymptotic characterization
of &;. Under the conditions that the estimator is asymptotically unbiased and that h. < 0,
which were both shown to be true in the previous subsection, it can be shown [Benveniste 1990,
pp. 130-131] that & tends to be a stationary Gaussian process with marginal distribution

N <0 Ug). The asymptotic variance Ug is given as a sum of two terms, one produced by the
fluctuations of the estimator 1tself and equal to % and the other due to the fluctuations of

the parameter and equal to thus giving

2h’

2 YR 0121;

%= Zon. T Toh.
and leading to the asymptotic MSE

YR on
. 3.29
I P to() (3.20)

MSE, o0 =
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Neglecting the o (), we can find the approximately optimal gain by equating to zero its
derivative w.r.t. 7. This gives the equation

AMSEooe () L (L o) _
dy 2h, 2
which is zero for v = %. The second derivative can be approximated by

d21\/ISEq,oo (7) o

2
_ Fw

d’72 ~ he 73 ’

as h. is negative and o2, is positive, the second derivative is positive for positive . This means
that choosing v = ”—\/% leads to a minimum MSE. Thus,

* Ow
=¥ 3.30
"= TR (3.30)
and the corresponding asymptotic MSE is
R
MSE 00 = U“);lr Fo(v). (3.31)
— e
We can express MSE, o, as a function of o given in (3.27). This gives
MSEg 00 = 0w0se +0 (77) . (3.32)

Observe that both the asymptotic MSE for estimating a Wiener process and for estimating
a constant depend on the quantizer parameters (7;, A and 7’) through an increasing function
of 02, therefore the asymptotically optimal quantizer parameters is the same in both cases.
The only difference in the adaptive algorithm for these two cases is the sequence of gains .

Asymptotic MSE for estimating a Wiener process with drift

When the Wiener process has a drift, the MSE can still be written as the sum of three terms
(3.28)
MSE; = &% (te) + E (§7) + o (7).

Even if v > u, we still expect it to be small, so that the algorithm is able to reduce the effects
of the measurement noise. Thus, we can still neglect the o ().

We will proceed similarly as for the Wiener process without drift. We will evaluate the
asymptotic MSE and then we will obtain the asymptotically optimal gain.

Differently, from the Wiener process without drift, the algorithm is not asymptotically
unbiased and we must use the expression for the asymptotic bias approximation (3.22)

_ u
Yhe

€0

in the first term of MSE; o. As it is explained in [Benveniste 1990, p. 133, by using v > u,
the fluctuations of the parameter around its ODE approximation are negligible when compared
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with the fluctuations of the algorithm. Therefore, we can approximate the asymptotic variance
of the fluctuation by

2 YR
Using the bias from (3.22) and the variance from (3.33), we obtain
2
R
MSE Y+ oy, (3.34)

@00 2p2 T 2h,
To obtain the minimum w.r.t. v, we must find ~ satisfying

dMSEg » () _ 2u? R

dy 75 BT 0

1
The solution of this equation in the variable v is v = (_4}:12}%) . To verify that this value of ~

corresponds to a minimum of MSE, ., we evaluate the second derivative

d*MSEg o (7) _ 6u?

R
We can verify that this quantity is positive. Therefore,
a? \ 3
* u 3
= 3.35
= (%) (3.35)
and its corresponding asymptotic MSE is
2
uR\3

Note that in practice, u may be unknown and it will be necessary to replace its value in
~* by an estimate of it &, which can be also obtained adaptively, for example by calculating
a recursive mean on X — Xg_1.

The asymptotic MSE in (3.36) can also be rewritten as a function of o2, with a dependence
on u

2
MSE, o ~ 3 (%ago) P o(vY). (3.37)

Also in this case the asymptotic MSE is an increasing function of o2 .

Remark: in the previous subsection, we remarked that if ug is a small amplitude slowly
varying parameter, the bias could be approximated by e ~ % for large k. Thus, following
the same development and considering that the gains 7, can be slowly variable, we have for

large k
1
o (A \E
Tk _th

and the corresponding asymptotic MSE

2
uplR\ 3 .
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3.4 Optimal algorithm parameters and performance

Now, we focus on the asymptotically optimal design of the quantizer parameters. From the
previous results, we can see that the asymptotic performance for the three cases is dependent
on an increasing function of ¢2,. Also, for the three cases the asymptotic performance de-
pends on the quantizer parameters (1;, A and 7’) only through o2 . Therefore, the optimal
parameters are the same for the three cases.

2 w.r.t. to the quantizer update coefficients

7;, then we will discuss on the choice of the input gain %. After that, we will present the

In the next subsections, first we will minimize o

optimal algorithm general form and its corresponding o2,. We then discuss on how to optimize
the performance w.r.t. the threshold variations set 7/. Finally, we will present the optimal gain
and performance for each of the three parameter models, by considering the optimal update
coefficients. In each case, we will also evaluate the performance loss due to quantization.

3.4.1 Optimal algorithm parameters
Update coefficients (output levels)
Using the expressions for h. (3.21) and R (3.25) in the expression for o2, (3.27), the opti-

mization of the algorithm performance w.r.t. the update coefficients can be written as the
following minimization problem:

R F
argmin — = argmin 177'1?72, (3.38)
n  he n 2(n'fy)
where 7 is a vector with the coefficients
-
n = [771 77%} : (3.39)
F4 is a diagonal matrix given by
~ - (N
Fq = diag |:Fd(170)7 ey By <2I70>:|’ (340)

with diag [.] the function that creates a matrix with the input sequence added to the diagonal
of a zero matrix. fg is the following vector

_ ~ /Ny T
fa=[fa(1,0) --- fq ?,0 . (3.41)
The minimization problem is equivalent to the following maximization problem:

(3.42)
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Using the fact that Fq is a positive semidefinite matrix (it is a diagonal matrix with nonzero
diagonal elements), we can rewrite (3.42) as

(ratn) (e ie)]
argmax

1\ T 1
" (Fain) (Fain)

the matrices Fd% and Fd_% are obtained by taking the square root and the inverse of the
square root of the diagonal elements in Fy. Using the Cauchy—Schwarz inequality on the
expression in the numerator gives

(rat)” (raie)]
(Fuln) (euln)

Fd%n x Fdiéfd.

9

<f4'Fq 'fa

and the equality happens for

Under the assumption that the update coefficients are positive for positive i AQ3 (p. 112),
the optimal 17 can be chosen to be

n* = —Fq 'fq. (3.43)
The minimum o2, w.r.t. n is
N -1
o2 = % = 222: {3 (Zi’o) (3.44)
2(fa Fa 'fq) — Fy(i,0)

We can recognize that the sum above is exactly equal to the FI given in (1.13) when the
central threshold is placed exactly at the parameter z, I, (0)

1, (0) = 22 1%228; (3.45)

Choice of the input gain

To simplify the choice of the constant A, we can consider that the noise CDF is parametrized
by a known scale parameter §, which means that

Fo =5 ().

where F), is the CDF for § = 1. In this case the key quantity that appears in the evaluation of
the quantizer output levels is %. Thus, the evaluation of the output levels can be simplified
by setting

A = cad, (3.46)
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where ca is a constant used to adjust the input gain when the quantizer threshold variation
range is fixed or to adjust the quantization step-length when the threshold variations are
uniform and fixed to a value that cannot be changed.

For given §, ca and F},, the coefficients do not depend on the true parameter value, neither
on the estimator value, so that they can be pre-calculated and stored in a table. In scalar
form the coefficients are _

7,0
= —7@(.’ ). (3.47)

Fd (,La 0)
Note that for A given by (3.46), n; depends on § only through a % multiplicative factor, the
other factor can be written as a function of the normalized PDF and CDF, thus it can be

pre-calculated based only on the normalized distribution.

An interesting observation is that 1} is given by the score function for estimating a constant
location parameter when considering that the offset is fixed and placed exactly at x, therefore
this algorithm is equivalent to a gradient ascent technique to maximize the log-likelihood that
iterates only one time per observation and sets the offset each time at the last estimate.

Optimal algorithm and general performance for the three cases

Using the 7 from (3.47) and the assumption on the symmetry of the output levels AQ3, the
adaptive estimator is
Xy = Xi—1 + i sign (ix) 0y, | (3.48)

o Yie—Xp
with iy = Q (%)
The asymptotic (v, n;)-optimized adaptive algorithm performance is approximated for all
the three cases (for the constant case it is exact) by

MSE o = 9 [14(0)], (3.49)

where 9 is a decreasing function of I, (0):

o constant: MSE), ~ m.

o Wiener process: MSE o ~ OR
q

win

o Wiener process with drift: MSE, o ~ 3 (415(0))

Optimal threshold variations

In the performance given in (3.49), the threshold variations set 7/ is influent only through
I, (0). Therefore, for optimizing the algorithm through 7/, we will have the same optimization
problem discussed in Ch. 1, namely (1.47)

I = argmax I, (0) .

q
s
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In Ch. 1, we saw that this problem is difficult in general. Two alternatives were proposed:
the first one would be to constrain the quantizer to be uniform and then obtain the optimal
quantizer interval step-length. The second would be to consider a general quantizer but with
a very large (tending to infinity) number of quantizer intervals. For the simulated results to
be presented later, Sec. 3.5, we will use the first approach. We consider that the positive
threshold variations are uniform and fixed to be

T
5 2

Then in this case, only ca need to be maximized and, as it was stated before, this can be done
using a grid method.

3.4.2 Algorithm performance for optimal gain and coefficients

We now present for each parameter model the optimal adaptive gain v} and the asymptotic
MSE for the update coefficients n*. In each case, after evaluating the asymptotic MSE, we
will also evaluate the effect of quantization on the estimation performance. This will be done
by evaluating the performance loss due to quantization L, defined by

MSE
Lq = 1010g10 <I\/I~S}L‘q’oo) s (351)
c,00

where MSEj  is the asymptotic MSE for the adaptive algorithm based on quantized measure-
ments and M~SEC7OO is a quantity related to the asymptotic performance of estimation based
on continuous measurements. M~SEQ<>O will be specified later for each case. Observe that the
loss L is a relative measure and it is expressed in decibels (dB).

Before proceeding to the performance evaluation for each case, we still need to determine
the quantities h. and R for the optimal update coefficients. Using the expression for n (3.47)
in the expression for k. (3.21) and R (3.25), we have

R TN RGO
he = 2;%(%0)_ 1,(0),  (3.52) R_2;Fd(i’0)—lq(0). (3.53)

3.4.2.1 Constant case: gain and performance

Replacing h. given by (3.52) in (3.26) and then the result in (3.10), we have the following

gains
1
*

Also, replacing (3.52) and (3.53) in the expression for o2, (3.27), we get

= . (3.55)
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In practice, this means that, for large k, the MSE will be

MSE;, ~ (3.56)

R, (0)

The continuous asymptotic performance 1\/I~SEC,oo can be obtained through the CRB. As the
measurements are independent, the FI for k& continuous measurements is k times the FI for
continuous measurements I., thus the continuous measurement bound CRB. is

1
B, = —. .
CRB. = 17 (3.57)

The expression for I. can be obtained by evaluating the expectation E [Scz], where the score

is given by (1.15) Dlog £ )
ogfly—=z
Se(y) = TELED),

Changing variables, I, is given by the following integral:

- [ (@ 2 d 3.58
c_/<f(x))f(:r) z. (3.58)

R

MSEq, 00
MSEc, 0o

MSE, _ I

The ratio CRB. = T,(0)’

is then given by klim leading to the loss
_>

o0

L, = —10logy <Iql(0)> : (3.59)

C
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We have the following solution to problem (a) (p. 27):

Solution to (a) - Adaptive algorithm with decreasing gain

(a3) 1) Estimator
For each time k, the estimate and threshold update is given
by (3.48)

Xy = 1o = Xp_1 + 7 sign (ix) Mia]»

o Y- X fa(i.0
with zk:Q< s 1), ’we:m and 7} = _;’Z((Zzo))

2) Performance (asymptotic)
X is asymptotically unbiased and its bias for large k& can
be approximated by ¢ (¢;), which is the solution of the ODE

(3.11)

de -
a_h(é—)v

where h(¢) = h(e+x), h is given by (3.7) and the time is
k
tr = Y 7. Its asymptotic MSE or variance is given by (3.56)

J=1

1
MSEx ~ kI, (0)’

where [, (0) is given by (1.13) with ¢ = 0, representing a loss
of performance w.r.t. the asymptotically optimal estimator
based on continuous measurements of (3.59)

I
L, = —10logyq < qI(O)> ,

with I, the continuous measurement FI given by (3.58).

3.4.2.2 Wiener process case: gain and performance
Using (3.53) in (3.30), we obtain the optimal constant gain

v = (3.60)

and for this gain, the asymptotic MSE is given by substituting (3.55) in (3.32)

T +o(ow). (3.61)

Note that we used the fact that v* in this case depends linearly on o, for writing the o term.
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The comparison with the continuous case can be done by using the asymptotic BCRB for
continuous measurements as MNSEQOO. The evaluation of the asymptotic BCRB follows in the
same line as the one presented in Ch. 2 for estimation based on quantized measurements.
The main difference is that in the continuous case, the FI I, is independent of the parameter
value, thus E [I;] = I. and we do not need to consider a lower bound on the BCRB. For small
oy (small compared with I..) the asymptotic BCRB can be approximated exactly in the same
way as for the lower bound on the MSE for quantized measurements

Ow

VI.

The loss of performance, in this case denoted LZV, is given as follows

BCRBeoo = —% + 0 (o) . (3.62)

Tw
MSEq o ) 0] i Tolow)
MSEq00 \ _ 1010

BCRB. o P10 "o (o)

LY =10log, ( (3.63)

We multiply the numerator and the denominator inside the logarithm of (3.63) by ‘;—f This
gives

Ic O(U’w)
14(0) Ow
LV = 10log,, | L2022 |
q 10 14 ogj)
where we have assimilated the /I in the o (o) term. Using the first order Taylor expansion
around z = 0, 14%1 =1—2x+ o(z), we can obtain
I o (ow)
LY =101 . = F
q 0g10 ( Iq (0) + Ow

Then factorizing , / ﬁ and using the first order Taylor expansion around x = 0, log;, (1 + z) =

ﬁ + o (x), where In is the natural logarithm, we have

LY~ 10logyg ( If(co)> Lolw) <Iq I(CO)> L olow)

q Ow Ow
Note that the first term is half the loss of performance for the constant case

© (Uw)'

Ow

1
w
L, = iLq + (3.64)
From the definition of the o term we also have

1
. w
alul;IEO Lq N iLq
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This gives the following solution to problem (b) (p. 29) when the parameter is modeled
by a Wiener process without drift:

Solution to (b) - Adaptive algorithm with constant gain for
tracking a Wiener process with small o,,.

(b3.1) 1) Estimator
For each time k, the estimate and threshold update is given
by (3.48)

Xp = Tok = Xi-1 +vsign (ix) ”ﬁklv

. S Yi—Xp—1 _ _ ow x __ Ja(i,0)
with i = Q( o’ ), v = ) and 7} = Fali0)"
2) Performance (approximated and asymptotic)
X, is asymptotically unbiased and its bias can be approx-
imated by ¢ (tx), which is the solution of the ODE (3.11)

de -

=g

T he),

where h (¢) = h (e +z), h is given by (3.7) and the time is
tr = k7. Its asymptotic MSE or variance is given by (3.61)

= ———=+0(0u),

where I, (0) is given by (1.13) with ¢ = 0, representing
a loss of performance w.r.t. the asymptotically optimal
estimator based on continuous measurements of (3.64)

W= _510g10 (Iq (0)) + O(Uw) _ qu n O(O'w)7

a 1. Ow 2 Ow

with I, the continuous measurement FI given by (3.58)
and L, the loss of the adaptive algorithm for estimating a
constant.

3.4.2.3 Wiener process with drift case: gain and performance

Replacing the expressions for h. (3.52) and R (3.53) in the expressions for v* (3.35) and
MSE, « (3.36), we obtain

o (%) ! , (3.65) MSE, o« = 3 <4Iq“(0)> *ho (7). (3.66)

If w is unknown, it might be estimated. It can be estimated by smoothing the differences




3.4. Optimal algorithm parameters and performance 133

between successive estimates
ﬁk = Uk,1 + ’y}j [(Xk — Xk,1> — kal} . (3.67)

where ;' is a sequence of small positive gains. The estimator U, can replace u in the evalu-
ation of the gain and of the asymptotic MSE. If the drift is not constant but slowly varying,
the adaptive algorithm above can also be used. In this case, additional information on the
evolution of the drift might be incorporated in (3.67) to have more precise estimates and get
an adaptive gain closer to the optimal.

For the evaluation of the loss due to quantization, we could use BCRB.  for the con-
tinuous measurement performance. However, this would result in an unfair comparison, as
the imposition of using X_1 instead of the prediction is known to be suboptimal. Therefore,
the evaluation of the loss will be done using the approximate performance for an adaptive
algorithm of the same form, but using continuous measurements instead of quantized mea-
surements. The algorithm has the following form:

Xy = X1 + 757 (Yk - qu) ,

where 75 and the non linearity 7. (x) are optimized to minimize the asymptotic MSE.

Using the same theory described for the quantized case it is possible to show that the
optimal v and 7. (x) are

= (4?) ’ ") =~

which exist under the constraint that I. converges and is not zero and that f’(z) exists for
every x.

The MSE can be approximated in a similar way as before

MSE gL’ 3.68
00 R [4]6] : (3.68)

This asymptotic MSE can be used as M~SEC’OO in the evaluation of the loss. Using similar

taylor expansions as in the previous Wiener model and denoting the loss in this case by L};VD ,
we have
2 2
0 0y, () o (uf)
LVP ~ 4 ==L, + =52, 3.69
q 3 0810 < I. + U % 374 + u % ( )

Note that here the limit result is on

2
. WD _
Wyt = ghe
However, note also that hidden in the approximation is the fact that o, must also tend to

Zero.
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We have the following solution to problem (b) (p. 29) when the parameter is modeled by
a Wiener process with deterministic drift:

Solution to (b) - Adaptive algorithm with constant gain for
tracking a Wiener process with small ¢, and small w.

(b3.2) 1) Estimator
For each time k, the estimate and threshold update is given
by (3.48)

Xk = 7o = Xp_1 + v sign (i) M)
1

2) Performance
(approximated and approximated asymptotic)
The estimation bias can be approximated by ¢ (¢;), which
is the solution of the ODE (3.16)

de - U
= (e = =
dt (6) 77
where h (¢) = h (¢ + z), h is given by (3.7), z is the mean of
the Wiener process and the time is {;, = kv. Its asymptotic
MSE or variance is approximated as follows (3.66)

2
u 3 2
MSE, o ~ 3 <4Iq (0)> fo (us) ,

where I, (0) is given by (1.13) with ¢ = 0, representing a loss
of performance w.r.t. the asymptotically optimal adaptive
estimator based on continuous measurements of (3.69)

@

2
3

9

2
0 (o0 °(4)
LgVDR““_glog1o<q )+

2
=-L
I. 3 ¢t

2
u3 U
with I. the continuous measurement FI given by (3.58)
and L, the loss of the adaptive algorithm for estimating a
constant.

Observe that the losses for the three models of X} depend directly on L, thus L, allows
to approximate how much of performance is lost for a specific type of noise and thresholds set
when comparing to the equivalent continuous measurements based algorithm.
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3.5 Simulations

Now, we are going to check the validity of the results through simulation. We will mainly
focus on obtaining a simulated version of the loss of performance for the three parameter
models and then we will compare the simulated loss with the theoretical one. After that,
we will compare the adaptive algorithm performance with the algorithms presented in the
previous chapters, namely the adaptive MLE scheme for estimating a constant and the PF
with dynamical central threshold for estimating a Wiener process. This comparison will allow
us to know if we lose in estimation performance and what we lose in estimation performance,
when we use the low complexity adaptive algorithm presented in this chapter, instead of the
algorithms presented in the previous chapters.

3.5.1 General considerations

Threshold variations. In what follows the threshold variations are considered to be uni-
form and given by (3.50)

T

T = —T&:—m---—T{Z—l 0 +T{:+1"'+T§VJZ+OO
S 2

Evaluation of /, (0) and the algorithm parameters

For a given type of noise, supposing that its noise scale parameter ¢ is known, for a fixed
Np, 1, (0) can be evaluated by using the normalized CDF and PDF, F, and f,, (CDF and
PDF for 6 = 1), in (3.45) (or (1.46)). Using the parametrization A = cad and the fact that

f (@) =%fn (%), we have

fal(i =1)ea]l = fn [icA]}2

2
(0= 52 2 lieal— Fulli— Deal]’ (3:70)

As I, (0) is now a function of ca only, it can be maximized by adjusting this parameter. Being
a scalar maximization problem this can be done by using grid optimization (searching for the
maximum in a fine grid of possible ca). After finding the optimal ¢}, the coefficients n; = 0}
can be evaluated using the normalized CDF and PDF in (3.47). This gives

g = LIl = D R) = fulics]
"OOF, fich] - F[(i—1) )]

(3.71)

Then, with ¢, the optimal I, (0) and depending on the model, o, or u, we can evaluate %, o
and then all the algorithm parameters are defined.

Discussion on the signal model

Note that it is supposed that the model for X is known, as setting =, depends on it. As
a consequence of this assumption, in a real application the choice between the three models
must be clear. When this choice is not clear from the application, it is always simpler to
choose X} to be a Wiener process, first, because the complexity of the algorithm is lower and
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second, because supposing that the increments are Gaussian and i.i.d. does not impose too
much information on the evolution of Xj. Still, o, must be known, in practice it can be set
based on prior knowledge on the possible variation of X}, or by accepting a slower convergence
and a small loss of asymptotic performance, it can be estimated jointly with X using an extra
adaptive estimator for it.

In the last case, when it is known that the increments of X; have a deterministic com-
ponent, the fact that the v depends on w is not very useful and prior information on the
variations of X} are not normally as detailed as knowing wu itself, making it necessary to ac-
cept a small loss of performance to estimate u jointly. The estimation of u can be done using
(3.67) where prior knowledge on the variations of u;, can be integrated in the gain v;'. If precise
knowledge on the evolution of uy, is known through dynamical models, it might be more useful
to use other forms of adaptive estimators known as multi-step algorithms [Benveniste 1990,
Ch. 4|.

Discussion on the noise model

The evaluation of the loss and the verification of the results will be done considering two
different classes of noise that verify assumptions AN1, AN2 and AN3, namely, generalized
Gaussian (GGD) noise and noise distributed according to the Student’s-t distribution
(STD). The motivation for the use of these two distributions comes from signal processing,
statistics and information theory.

In signal processing, when additive noise is not constrained to be Gaussian, a common
assumption is that the noise follows a GGD [Varanasi 1989]. This distribution not only con-
tains the Gaussian case as a specific example, but also by changing one of its parameters,
one can model the impulsive Laplacian distribution as well as distributions close to uniform.
In robust statistics, when the additive noise is considered to be impulsive, a general class
for the distribution of the noise is the STD [Lange 1989]. STD includes as a specific case
the Cauchy distribution, known to be heavy-tailed and used intensively in robust statistics.
Also, by changing a parameter of the distribution, an entire class of heavy-tailed distributions
can be represented. When looking from an information point of view, if no prior is used for
the noise, noise models must be as random as possible to ensure that the noise is an un-
informative part of the measurement. Thus, noise models must maximize some criterion of
randomness. Commonly used criteria for randomness are entropy measures and both distri-
butions considered above are entropy maximizers. The GGD maximizes the Shannon entropy
under constraints on the moments [Cover 2006, Ch. 12| and the STD maximizes the Rényi
entropy under constraints on the second order moment [Costa 2003].

Both families of distributions are parametrized by a shape parameter § € Ry and a scale
parameter 0. The CDF and PDF of the GGD were given in Ch. 1 by (1.39) and (1.40)

faan (@) = 2(Tﬁ<é)<e>qo (-151):
v (315

Feap () = % 1+sign(m)r(> )
B

—
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while for the STD, the CDF and PDF are respectively

(& 2] -2
fsrp (z) = (Wﬁé;é) [1+;<5>2} : (3.72)

Fsrp (x) = % {1 + sign () [1 — I( );32 <§, ;)] } , (3.73)
+8

I, (.,.) is the incomplete beta function

Iy (z,y) = /zx_l (1—2)¥""dz.
0

3.5.2 Theoretical performance loss due to quantization

The main quantity that must be evaluated before simulating the algorithm is the theoretical
loss Lg. This quantity will not only be useful to check the simulation results, but will also
be useful to observe how the performance evolves as we change the number of quantization
intervals and as we change the noise model.

To evaluate L, after evaluating I, (0) based on the CDF and PDF given above, we also
need to evaluate I.. The continuous measurement FI for the GGD can be obtained by using
(1.39) in the integral expression (3.58), this gives (Why? - App. A.1.7)

G- (1-3)

I.cap = 52 . (1> (3.74)

B

For the STD the continuous measurement FI is given by using (3.72) also in (3.58). Integrating,
we obtain (Why? - App. A.1.8)
16+1
2B+3
We evaluated the theoretical loss for Ny € {2,4,8,16,32}, which corresponds to Np =
log, (N7) € {1,2,3,4,5} numbers of bits, for shape parameters g € {1.5,2,2.5,3} for GGD
noise and 3 € {1, 2,3} for STD noise. The results are shown in Fig. 3.4. As it was intuitively
expected, the loss reduces with increasing Np. It is interesting to note that the maximum
loss, observed for Ng = 1, goes from approximately 1dB to 4dB, which represents factors less
than 3 in MSE increase for estimating a constant with 1 bit quantization. Also interesting is

Ie.stp = (3.75)

the fact that the loss decreases rapidly with Np, for 2 bit quantization all the tested types of
noise produce losses below 1dB, resulting in linear increases in MSE not larger than 1.3. This
indicates that when using the adaptive estimators developed here, it is not very useful to use
more than 4 or 5 bits for quantization.

The performance for one bit seems to be related to the noise tail. Note that smaller losses
were obtained for distributions with heavier tail (STD in general and GGD with g = 1.5).
This is due to the fact that for large tail distributions a small region around the median of the



138 Chapter 3. Adaptive quantizers for estimation

4 \ \
i 1 : :
—~GGD-f=15 ) 4 A-STD - 8 =1 (Cauchy)
—-©-GGD - 8 =2 (Gaussian) 0.8 > STD - 8 =2
3 — I _ I
_ +ggg—ﬂ—§~5 ' » <4-STD-8=3
g8 — “h= 2 06) A .
w 2 1%
2 z
S S 04f A :
1 N >
0.2 D > A |
g e
0 ® 0 ! ! 4 2
1 2 3 4 5 1 2 3 4 5
Number of bits [Np] Number of bits [Np|

(a) (b)
Figure 3.4: Adaptive algorithm loss of estimation performance due to quantization of measure-
ments corresponding to the constant case L, (theoretical). The loss is evaluated for different
types of noise, GGD noise in (a) and STD noise in (b), and different numbers of quantization
bits. For the other models of parameter studied here, the loss is proportional to L.

distribution is very informative, thus (as most of the information is contained there) when the
only threshold available is placed close to the median, the relative gain of information is greater
than in the other cases, leading to smaller losses. This can also be the reason for the slow
decrease of the loss for these distributions. As the quantizer thresholds are placed uniformly,
some of them will be placed in the non informative amplitude region and consequently, the
decrease in loss will be not as sharp as in the other cases.

The loss was not shown in Fig. 3.4 for the Laplacian distribution, because for this distri-
bution the adaptive optimal estimator in the continuous case is already an adaptive estimator
with a binary quantizer. One can see this by evaluating the coefficients 7;, which in this case
are constant for positive ¢ showing that only the sign of the difference between the measurement
and the last estimate is important. This behavior of optimality for binary quantization was
already observed in Ch. 1, where we showed that the CRB for binary quantized measurements
can be equal to the CRB for continuous measurements in the Laplacian case. Consequently,
the loss in this case is zero dB for all Np.

3.5.3 Simulated loss

To validate the results, we will simulate the loss of performance. The simulation results will
be presented in the same order as the theoretical results presented in the previous sections.
First the constant case, then the Wiener process case and finally the Wiener process with
drift. All the simulations are done for Np € {2,3,4,5}.

Simulated loss: constant case

In the constant case, the 7 types of noise with previously evaluated L, were tested, the value
of Xog = x was set to zero and the initial condition of the adaptive algorithm was set with a
small error (Xo € {0,10}). The number of samples was set to 5000 to ensure convergence.
The algorithm was simulated 2.5 x 10% times and the error results were averaged yielding a
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simulated MSE. Based on the simulated MSE a simulated loss was calculated. GGD noise
was simulated using a transformation of gamma variates (How? - App. A.3.2), while STD
noise was simulated using a transformation of independent uniform variates similar to the
transformation used for generating Gaussian variates (How? - App. A.3.5). The results are
shown in Fig. 3.5 for GGD noise and in Fig. 3.6 for STD noise.
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Figure 3.5: Quantization loss of performance for GGD noise and Np € {2,3,4,5} when Xj
is constant. For each type of noise there are 4 curves, the constant losses are the theoretical
results and the decreasing losses are the simulated results, thus producing pairs of curves of
the same type, for each pair the higher results represent lower number of quantization bits. In
(a) results for Ngp = 2 and 3 are shown. In (b) the results for Ng = 4 and 5 are shown. The
simulated results were obtained through Monte Carlo simulation using 2.5 x 10° realizations
of blocks of 5000 error samples, the true parameter value in all simulations was set to zero,
while X was set to have a small initial error (Xo € {0,10}). We used § = 1 in all simulations.
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Figure 3.6: Quantization loss of performance for STD noise and Np € {2,3,4,5} when Xj
is constant. For each type of noise there are 4 curves, the constant losses are the theoretical
results and the decreasing losses are the simulated results, thus producing pairs of curves of
the same type, for each pair the higher results represent lower number of quantization bits.
In (a) results for Np = 2 and 3 are shown. In (b) results for Ng = 4 and 5 are shown. The
simulated results were obtained through Monte Carlo simulation using 2.5 x 10° realizations
of blocks of 5000 error samples, the true parameter value in all simulations was set to zero,
while X was set to have a small initial error (Xo € {0,10}). We used § = 1 in all simulations.

Remarks:

e note that the losses are independent of ¢ as both I, (0) and I. depend on it through the

same multiplicative constant (%2

e The simulated results seem to converge to the theoretical approximations of L,, thus
validating these approximations. This also means that the variance of estimation tends
in simulation to the CRB for quantized observations m7 showing that the algorithm
is asymptotically optimal.

e The convergence time seems to be related to Np (when Np increases, the time to get
closer to the optimal performance decreases).
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Simulated loss: Wiener process case

For a Wiener process, L};V was evaluated by setting Xo randomly around 0 and Xy = 0, then
10* realizations with 10° samples were simulated and the MSE was estimated by averaging
the realizations of the squared error for each instant. As it was observed that the error was
approximately stationary after k = 1000, the sample MSE was also averaged resulting in an
estimate of the asymptotic MSE. Based on the obtained values of the MSE, a simulated loss
was evaluated. The results for the 7 types of noise and o, = 0.001 are shown in Fig. 3.7. As
expected, the results have the same form of the theoretical loss given in Fig. 3.4.

051 S GGD- B =15 i
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_ -+ GGD- =3
A 0.3¢ A-STD - B=1 (Cauchy) |
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Number of bits [Np]

Figure 3.7: Simulated quantization performance loss for a Wiener process X with o,, = 0.001,
different types of noise and numbers of quantization bits. The simulated losses were obtained
through Monte Carlo simulation. For each evaluated loss (each symbol on the curves) 10*
realizations with 10° samples were simulated. As it was observed that the error is stationary
after k£ = 1000, the sample MSE was also averaged leading to an estimate of the asymptotic
MSE and consequently of the loss. The simulations were done by setting the initial estimate
randomly around zero (with a Gaussian distribution) and also by setting Xy = 0. In all
simulations, we considered d = 1.

To verify the results for different values of o, the loss was evaluated through simulation
also for oy, = 0.1 in the Gaussian (GGD with § = 2) and Cauchy cases (STD with = 1). The
results are shown in Fig. 3.8, where the theoretical losses for these cases are also shown. These
results clearly show that Xj; may move slowly to give a performance close to the theoretical
results. However, it is also interesting to note that the simulated loss seems to have the same
decreasing rate as a function of Np when compared with the theoretical results. This means
that the dependence on I, (0) of the MSE seems to be still correct. Moreover, it indicates that
even in a faster regime for Xj, the threshold variations can be set by maximizing I, (0).
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Figure 3.8: Comparison of simulated and theoretical losses in the Gaussian and Cauchy noise
cases when estimating a wiener process with o, = 0.1 or o, = 0.001. The simulated losses
were obtained through Monte Carlo simulation. For each evaluated loss (each symbol on the
curves) 10% realizations with 10° samples were simulated. As it was observed that the error
is stationary after k = 1000, the sample MSE was also averaged leading to an estimate of the
asymptotic MSE and consequently of the loss. The simulations were done by setting the initial
estimate randomly around zero (with a Gaussian distribution) and also by setting Xy = 0. In
all simulations, we considered § = 1.

Simulated loss: Wiener process with drift case

For a Wiener process X with drift, W, was simulated with mean and standard deviations
u = 0, = 107%, which represents a slow drift with small random fluctuations. The initial
conditions were set to Xo = X = 0 and the drift estimator was set with constant gain
vy = 107, Its initial condition was set to the true u to reduce the transient time and,
consequently, the simulation time. As uy is constant, the loss evaluation was done in the same
form as for X} without drift, after averaging the squared error through realizations and time.
The results for the Gaussian and Cauchy cases are shown in Fig. 3.9.

The small offset between the simulated and theoretical results is justified by the joint
estimation of v and Xj. Note that keeping 7}’ small allows one to adaptively follow slow
variations in the drift. The convergence to the simulated loss in Fig. 3.9 was also obtained
for simulations including errors in the initial conditions. However, in this case, the transient
regime was very long, indicating that other schemes might be considered when the theoretical
performance is needed in a short period of time.

Note also that if the drift is known, the procedure simulated for tracking X is clearly
suboptimal. In this case, we can obtain better asymptotic results by using the prediction
(which includes the drift) in the adaptive algorithm. However, in practice, as we have to
estimate jointly the unknown drift, the simulated algorithm normally has a shorter transient
than the version using the prediction. This is an advantage when the drift can vary in time.
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Figure 3.9: Comparison of simulated and theoretical losses in the Gaussian and Cauchy noise
cases for estimating a Wiener process with constant mean drift u;, = 10~* and standard devia-
tion o, = 10~%. The simulation results were obtained with 10* realizations of 10° samples, for
evaluating the simulated asymptotic MSE, the squared error samples were averaged through
the realizations and through the time samples after the transient time (for & > 1000). The
initial estimate value and initial parameter value were both set to zero. The initial value of
the estimate of the drift was also set to the true parameter value to reduce the transient time.

3.5.4 Comparison with the high complexity algorithms

The adaptive algorithms that we propose will be compared with their equivalent counterparts
given in previous chapters. When the parameter is constant, we will compare the adaptive
algorithm with decreasing gain (a3) with the adaptive algorithm based on the MLE (a2.2)
presented in Ch. 1 (p. 69). We will discuss the main differences in terms of performance and
computational complexity.

Adaptive algorithm wvs adaptive MLE

Asymptotic performance. Asymptotically both algorithms are equivalent, since they are
asymptotically unbiased and their asymptotic variance is equivalent to m. This means that
for commonly used noise distributions both algorithms are asymptotically optimal under the
unbiasedness constraint. Thus, if there is a difference in performance, this difference might be
found in the transient, before getting close to the asymptotic performance.

Transient performance. The transient for both algorithms is difficult to study analytically.
For the adaptive scheme with decreasing gain, the first few steps will be mainly characterized
by the bias. Unfortunately, the bias approximation given by the ODE approximation cannot
be used in the initial transient as the size of the steps is too large. For the adaptive scheme
based on the MLE, we cannot obtain any result either, as the general behavior of the MLE is
known only asymptotically. Therefore, we will analyze the transient through simulations.

We simulated both algorithms for N; = 8 and two different types of noises, Gaussian
and Cauchy noises. The threshold variations were considered to be uniform with step-length
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chosen in the same way as for the evaluation and simulation of the losses. For evaluating
the simulated MSE for the transient, we simulated 1000 realizations of the algorithms, each
realization with 50 samples. The noise scale factor used for both cases was § = 1 and the
parameter and initial estimate were z = 0 and Xy = 1. For starting the adaptive scheme based
on the MLE, 10 samples with fixed thresholds were used for obtaining the first estimate. The
algorithm used in the maximization procedure of the MLE was a search algorithm®. The
results are shown in Fig. 3.10, where we also show the CRB for quantized measurements

when the central threshold is placed at the true parameter CRB} = Iql(o)'
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Figure 3.10: Minimum CRB and simulated MSE for the adaptive algorithm with decreasing
gain and for the adaptive algorithm based on the MLE. Both algorithms were simulated with
Ny = 8, optimal uniform thresholds, Gaussian and Cauchy noise with § = 1, x = 0 and Xo=1.
For evaluating the transient MSE, 50 samples were simulated 1000 times for each algorithm.
The scheme based on the MLE is started by applying the MLE with samples obtained with
fixed thresholds. The maximization in the MLE is done with a search algorithm!. In (a),
results for Gaussian noise are shown. In (b), the results for Cauchy noise are shown.

We would expect that the MLE based algorithm would produce better results, as it seems
that we treat the data in an intuitively better way (we maximize the likelihood of the data).
This is indeed the case when we consider Cauchy noise, but the opposite happens when we
test it with Gaussian noise. The decreasing gain algorithm is even slightly below the bound
initially (which is possible only because the algorithm is initially biased). Thus, we cannot

'More precisely we used the MATLAB® function fminsearch. We chose this function instead of Newton’s
method because it can handle non-convex problems. For Cauchy noise the likelihood is not convex.
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say that one of the algorithms is better than the other.

As the algorithms performance seems equivalent, a practical choice can be done in terms
of complexity.

Complexity. At time k, the adaptive scheme based on MLE must solve a maximization
problem using the last £ measurements ¢1.;. Each measurement produces an additional term
on the log-likelihood to be maximized, thus at time k, the evaluation of the log-likelihood
function itself requires k evaluations of the logarithm of the marginal likelihood. Note that
the marginal likelihood can be very costly to be evaluated as it is a difference of CDF.

For the adaptive algorithm with decreasing gains, the gains can be precalculated and stored
in a table, or they can be obtained by using one division, the update coefficients can also be
precalculated and stored in a table. To generate one estimate the adaptive algorithm then
requires: one search in a table to have the update coefficient, one division or one search in a
table to have the gain, one multiplication to obtain the total correction and one sum to have
the final estimate.

One can conclude that the adaptive algorithm with decreasing gains has far lower com-
plexity requirements when compared with the scheme based on the MLE. Note also that the
adaptive algorithm based on MLE needs a certain number of measurements with fixed (or not
adaptive) thresholds to start. This is due to the fact that the MLE for one measurement is
ill defined and produces estimates equal to +0o or —oo. Note that it can also happen with
more than one measurement, if all measurements are equal to +1 or if they are all equal to
—1. Thus, for the adaptive algorithm based on MLE we can have realizations with unbounded
values and this will happen especially in the cases when the initial quantizer dynamics is far
away from the parameter. Such behavior will not happen for the adaptive algorithm with
decreasing gains as the update coefficients are bounded above (considering PDF with upper
bounded fd and lower bounded from zero ﬁ’d). Therefore, for practical purposes the choice
between them is clear, we should choose the algorithm with decreasing gains (a3).

Adaptive algorithm vs PF

We compare now the adaptive algorithm (with fixed gain) and the PF procedure for tracking
a Wiener process.

Asymptotic performance for fast parameter evolution. In this case, for any o, the
PF is known to be optimal if the number of particles tends to infinity. Thus, for a very large
number of particles we expect the PF procedure to be as good as the adaptive algorithm.

Asymptotic performance for slow parameter evolution. When o, is small, the pro-
cedures have equivalent asymptotic performance. The PF is approximately unbiased, if we
choose a sufficiently large number of particles and the adaptive procedure is asymptotically
Ow
V14(0)

differences, if they exist, will also occur in the transient performance.

unbiased. Their asymptotic MSE is approximately Thus, when o, is small, the
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Transient performance. Similarly to the constant case, we analyze the transient perfor-
mance through simulation. We simulated both the adaptive algorithm and the PF for Ny = 8
and asymptotically optimal uniform quantization. The parameter model was a Wiener process
with increment standard deviation o, = 0.001, with initial standard deviation Var (Xg) = 0.1
and with initial mean equal to zero. We simulated the algorithms both for Gaussian and
Cauchy noise with § = 1. For obtaining the simulated transient MSE, 1000 samples were
simulated 2500 times for each algorithm and each noise distribution. The initial estimate for
both algorithms X0 was set to zero in all the cases. We used 5000 particles in the PF and its
resampling procedure was triggered each time the number of effective particles was below 50.

The results are shown in Fig. 3.11 where the asymptotically optimal performance ( ‘;“’(0)) for
q

small oy, is also presented.
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Figure 3.11: Asymptotic MSE for the optimal estimator of a Wiener process with small o,, and
simulated MSE for the adaptive algorithm with constant gain and for the PF with dynamic
central threshold. Both algorithms were simulated with N; = 8, optimal uniform thresholds,
Gaussian and Cauchy noise with § = 1, o, = 0.001, E (X) = 0, Var (Xg) = 0.1 and X, = 1.
The evaluation of the transient MSE was done with 2500 simulations of the algorithms for
blocks with 1000 samples. The PF was simulated with 5000 particles and its threshold for the
resampling procedure was set at Nipresh = 50. In (a) results for Gaussian noise are shown,
while in (b) we have the results for Cauchy noise.

In this case the expected results are obtained. The PF, which might be close to optimal
when the number of particles is large, is clearly faster to converge when compared with the
adaptive algorithm.

Complexity. When comparing the complexity of the algorithms the difference is impressive.



3.5. Simulations 147

At time k, for each particle in the PF, a Gaussian r.v. has to be simulated in the prediction
step and its likelihood has to be evaluated. After that, the weighted mean of the particles is
computed. It is then followed by the evaluation of the effective number of particles with a
possible resampling step.

For the adaptive algorithm the complexity is one search in a table, to obtain the update
coefficient, one multiplication with the constant gain and one sum with the previous estimate.

Therefore, one might choose the PF whenever there is no restriction on the complexity
of the algorithm?. If there is a strong complexity restriction, by paying the price of a slower
convergence, the adaptive algorithm can be a good solution.

3.5.5 Discussion on the results

We summarize the main points observed until now and we will discuss some of them.

e We proposed a low complexity adaptive algorithm to track one of three models, constant,
Wiener process and Wiener process with drift. Under the hypothesis that the noise PDF
is symmetric and strictly decreasing and that the quantizer is also symmetric with its
center placed on the previous parameter estimate, we could prove by using Lyapunov
theory that the algorithm is asymptotically unbiased for the estimation of a constant
and of a Wiener process. We showed that the asymptotic performance for the optimal
update coefficients is a function of the FI I, (0), which shows that this function plays an
important role in the choice of the threshold variations, as it was also observed in Ch.
1 and 2.

e For the optimal update coefficients, the adaptive algorithm that is obtained is a gener-
alization of the recursive algorithm found at the end of Ch. 1, being exactly equal if we
constrain Ny = 2.

In the case of estimating a Wiener process, the adaptive algorithm with optimal update
coefficients is equal to the asymptotic recursive algorithm presented at the end of Ch.
2. Therefore, the adaptive algorithm is a low complexity alternative to the algorithms
presented in Ch. 1 and 2 with equivalent asymptotic performance.

e For testing the results, we considered two different families of noises, generalized Gaus-
sian noises and Student’s-t noises, both tested with uniform quantization. First, we
evaluated the theoretical loss of performance due to quantization w.r.t. the continuous
measurement equivalent estimator for different numbers of quantization intervals. The
results indicate that with only a few quantization bits (4 and 5) the adaptive algorithm
performance is very close to the continuous measurement case and it was observed that
uniform quantization seems to penalize more estimation performance under heavy tailed
distributions.

e Estimation in the three possible scenarios was simulated and the results validated the
accuracy of the theoretical approximations.

2Note that the number of particles necessary to have close to optimal performance can be reduced by using
the optimal proposal distribution, thus reducing complexity. This can have an impact on the choice of the
algorithm when the restriction on complexity is not strong.
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In the constant case, it was observed that the algorithm performance was very close to
the Cramér—Rao bound.

In the Wiener process case it was observed that the theoretical results are very accurate
for small increments of the Wiener process and in the drift case it was seen that by
accepting a small increase in the MSE it is possible to estimate jointly the drift.

As the algorithms are asymptotically equivalent in performance to the adaptive scheme
based on the MLE in the constant case and to the PF in the Wiener process case, we
simulated their transient performance, to see if we lose in performance and how much
we lose by using the low complexity approach.

In the constant case, we cannot say that the adaptive scheme based on the MLE is
better, thus in practice, the adaptive algorithm with decreasing gain might be used as
it requires far lower complexity.

In the Wiener process case, the PF is superior to the adaptive algorithm with constant
gain, thus if no complexity constraints are considered, we might use the PF. If we have
strong complexity constraints, by accepting a slower convergence, the adaptive algorithm
gives a good solution.

An interesting link between standard quantization and the adaptive algorithm for track-
ing the Wiener process can be observed. In the binary case, the adaptive algorithm
proposed here is similar to delta modulation [Gersho 1992, p. 214, the difference is that
here we do not use the quantization noise approach for obtaining its performance and
we also consider the effect of the measurement noise on the final performance.

When Nj > 2 the algorithm that we propose can be seen as a form of predictive quan-
tization intended for estimation and not for reconstruction of the measurements.

Another interesting result is that a varying parameter has a loss of performance due to
quantization smaller than the loss for a constant parameter, thus a type of dithering effect
seems to be present. In this case, the variations of the input signal brings the tracking
performance of the estimator closer to the continuous measurement performance.

The fact that the number of quantization bits does not influence much the performance
of estimation leads to conclude that it seems more reasonable to focus on using more
sensors than using high resolution quantizers for increasing performance. Consequently,
this motivates the use of sensor network approaches. An approach of this type will be
presented in Subsec. 3.6.2.

As in practice sensor noise scale parameter and Wiener process increment standard
deviation can be unknown and slowly variable, it would be also interesting to study how
the algorithm design and performance would change by estimating all these parameters
jointly.

We will study the joint estimation of the constant x and the scale parameter in Subsec.
3.6.1. The joint estimation of o, in the Wiener process case will lead to a scheme similar
to delta modulation with variable gain, this is left for future work.
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3.6 Adaptive quantizers for estimation: extensions to location-
scale estimation and to the multiple sensor approach

We present now the two extensions discussed in the previous section.

The first extension that will be presented is the joint estimation of the unknown noise scale
factor. We will see that the adaptive estimation of z does not change, the only thing that
changes is the addition of the adaptive estimator of the scale parameter §. We will also see
that the fact that we do not know the scale parameter value does not degrade the asymptotic
estimation performance when compared with the location-only estimation problem.

We then present the multiple sensor approach based on a fusion center architecture. We
will see that the optimal correction of the adaptive algorithm based on multiple quantized
measurements from different sensors will be simply a weighted sum of their corrections in the
single sensor case.

3.6.1 Joint estimation of location and scale parameters

We start by stating the problem and defining the adaptive estimator. In a second step, we look
for its performance and we optimize the algorithm in a similar way as it was done previously.
We find the optimal adaptive gain, i.e. the optimal adaptive gain matrix. The optimal update
coefficients are obtained in a third step. At the end of the section, we present some simulations
and we discuss the results.

Problem statement and estimator

We consider that a sequence of i.i.d. r.v. Y, with marginal CDF Fj, (%) are quantized with
an adjustable quantizer (F, () is the noise CDF for 6 = 1), resulting in a sequence of discrete
measurements i1.5. The pair of parameters (z,d) is unknown and the objective is to estimate
it based on the quantized measurements. This is equivalent to the following modification of
problem (a) (p. 27):

(a’) Solve problem (a) when the noise scale parameter ¢ is unknown
and must be estimated jointly with z.

Observe that this problem is a joint location-scale estimation based on quantized measure-
ments.

The adjustable quantizer is given by (3.1), where for enhancing the estimation performance,
we set the offset and the input gain to be

bk = kal, Ak = CASkfl. (3.76)

Note that the main difference with the adjustable quantizer used previously is the use of the
last scale parameter estimate for setting the input gain.
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The adaptive estimation algorithm can be extended to include the joint estimation of the
scale parameter. The extended version is

ANES

Ok Ok—1
where T' is a 2 X 2 matrix of gains, 7, [i] and ns [i] are sequences of N; update coefficients
{7790 [_%] y oo Tz [%}} and {775 [_%} y oo 18 [%]}

The advantages of this extended version are the following:

+ %ék_l [ Z;” (ix) ] : (3.77)

e it is still a low complexity algorithm, requiring only a few operations more than the
initial adaptive algorithm.

e [t is an online algorithm. Making it possible for real-time applications to have access to
the recent estimates at any time k.

e Its performance can also be studied using the general results from [Benveniste 1990].

The noise and quantizer follow the assumptions AN1-AQ1, AQ2’ and AN3. For simplifi-
cation purposes and to have a stable algorithm, we will assume that both 7, [i] and s [i] are
symmetric, s [i] have even symmetry with negative? ns[1] = ns [—1], while n, [i] are defined
with odd symmetry and they are positive for positive 4, similarly as stated in AQ3.

Assumption (on the quantizer output levels):
AQ3’ The quantizer output levels 7, [i] are odd and the output levels 7; [i] are even.
e [i] = —ne (=], ms li] = ns [—], (3.78)

with 7 [7] > 0 for i > 0 and 7, [1] < 0.

The estimation scheme is depicted in Fig. 3.12, where the UPDATE block is the estimation
algorithm.

3This constraint on s [1] is imposed to guarantee the convergence of k. The idea here is that when the
quantized measurements are small, it means asymptotically (when X}, is close to x) that the quantizer range
is too large, thus the range and, consequently, 5% must be reduced. If we set the coefficients with the opposite
sign, S5 will diverge.
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Figure 3.12: Scheme representing the adjustable quantizer. The offset and gain are adjusted
dynamically using the estimates while the quantizer thresholds (the threshold variations) are

fixed.

Optimal parameters and performance

The analysis of the algorithm will be done using the results from [Benveniste 1990, Ch. 3.
We will analyze the bias and the asymptotic covariance matrix of the estimation error.

Similarly to the estimation of the constant location parameter, the algorithm mean can
be approximated by the solution of an ODE. However, in this case, we have a vectorial ODE
with one component for £ and one component for 9:

d |z s
Rl I :rh(ga). 3.79
dt [ 5 ] v (3:79)
k
The relation between continuous and discrete time is ¢ = % and h is the following mean
j=1
vector field:
. on. (Q (L3
h (1‘5) = E| ) Vead - (3.80)
ons (@ (2=
cad

B £ 061 {Fi (15.8) - B (6,00, ) |

;j)l 15 [i] {Fd (z 21,6, 5) o (—i, 21,0, 5) }

where the expectation is w.r.t. to the noise marginal probability measure, the second equality
comes from the symmetry assumptions and Fy is

F (58 + 552) = B (Tl 252 irie {1, ),

Fa= F, (Ti+160A5 + %) —F, (Ti%Ag + 52%:2) , ifie {_17... ’_%}.

(3.81)
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The conditions on the mean convergence of the algorithm are then conditions on the global
asymptotic stability of the point £ = x and = §. One necessary condition for asymptotic
stability is that the true parameters must be an equilibrium point of the ODE, which means

that h (ﬁ; =1,6= 5) must be zero. From the symmetry assumptions:

R - 0
h(mzm,ézé) = [ 277;]5‘366 ] ,
where the vector Fj* is

R = |l B [?HT

with elements Fy [i] = Fy (i,x,x,0,0) independent of the parameters. Then, the condition for
the parameters to be the equilibrium point is

ns Fi® = 0. (3.82)

Other conditions are necessary for the mean convergence of the algorithm. These conditions
can be found by the analysis of the ODE using Lyapunov theory. The analysis of these
other conditions will not be detailed here and under the assumptions already stated and the
constraint on 1 given in (3.82), it will be assumed that the algorithm converges in the mean
to the true parameters.

We turn our attention now to the asymptotic fluctuation of the algorithm, which is given
by its asymptotic covariance matrix. Under the assumptions stated previously (assumptions
AN1-AQ3’ and the assumption that the algorithm is asymptotically unbiased), it can be
shown [Benveniste 1990, pp. 110-113| that the normalized estimation error Vkej, tends in
distribution to a zero mean Gaussian random variable as follows

Vkey, o N(O.P), (3.83)

where P is the covariance matrix given by the optimal gain T'*. The matrices P and I'* are
the following:

mTcFasz 0
52 | (nTef”)
P-= : T Eams (3.84)
Te(0)\?
(nr2”)
and .
—_— 0
1 @
= ’758d o (3.85)
i

where Fy is a diagonal matrix Fq = diag [F}], fc(lm) = [fc(lx) iy --- féz) [%}]T and fa(la) =
[ f 55) 1] --- f 5(15) [%} |7 are the derivatives in vector form of the quantizer output probabilities

Fy (i,ﬁ:,x, 5, 5) multiplied by 6 when # = z and 6 = 6

U = fa(m) = fu(mic1), (3.86)
N = ealrifa(m) = micif (Tic1)]. (3.87)
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These results are obtained in an equivalent way as the results presented for the estimation
of . But in this case I'* is not the inverse of the scalar derivative of —h, but instead is the
inverse of the Jacobian matrix of —h evaluated at the point (@ = 3:,3 = 5). In the same way,
the normalized covariance for the optimal gain is the normalized covariance of the vector of
Nz (Zk)
ns (ik)
the factors being evaluated at (i = x,(§ = 5). The specific diagonal pattern of the I'* and P

corrections [ } pre and post-multiplied by the inverse of the Jacobian of h, with all

comes from the symmetry assumptions on the noise and the quantizer.

Minimization of the estimation variance can be done through the minimization of the
diagonal terms of P w.r.t. m, and 1;. The two minimization problems can be solved separately.
In the case of the optimization w.r.t. ms, the equilibrium constraint (3.82) has to be taken
into account. The optimal n, can be found by using the Cauchy-Schwarz inequality, while
the optimal 75 are obtained by casting the constrained minimization problem as a modified
eigenvalue problem solved in [Golub 1973] (Why? - App. A.1.9).

The optimal coefficients are

n, F;lfc(lx),
ns o FU0 —1fl9 — il

where 1 is a squared matrix with ones. The second equality comes from the fact that the sum
of ff) is zero. To respect the assumptions we can set

n, = —F'E7, (3.88)
—1p(0
ns = —F;'. (3.89)

Therefore, the optimal P and T'* are

1
0
52 f(I)TFflf(z)
P =§T" = S| g . (3.90)

()T m—1¢(5)
fd Fd fd

Note that the asymptotic variances are equal to the CRB for estimating the parameters based
on the quantized measurements, when the quantizer offset and input gain are placed exactly
at z and Kla'
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We have the following solution to problem (a’) (p. 149):

Solution to (a’) - Adaptive algorithm with decreasing gain
for estimating x and ¢

(a’1) 1) Estimator
For each time k, the estimate, the quantizer offset and the
quantizer input gain are obtained using (3.77)

):(k _ | ok | )gkfl +£5k X [ N (ik) }
O, o Ok—1 k0 Loms (i) |7
1
) @7 1)
with i = Q (=), T = 1| & Fodlfd ) and
A fé(s)TF;lfy)
) 757 lix)
s (ir,) _ 1]
Fylix]

2) Performance (assumed and asymptotic)
The estimator is assumed to be asymptotically unbiased.
When k — oo the normalized estimation error vector \/Eek
is Gaussian distributed with covariance matrix P given by

(3.90)
o [ = 0
P— L I e v
2 0 L

()T =105
fcl Fd fd

Observe also that the asymptotic performance can still be optimized through 7/ and ca.
As optimization through 7/ is difficult, in the simulation section we will consider again that
the thresholds variations are uniform as in (3.50)

T

T = —T?VJ:—OO---—T{:—I 0 +T{:+1~--—|—T§LI:+OO ,
2 2

thus the only free parameter for optimization is ca.

Simulations

The algorithm will be simulated to validate the theoretical results. The simulation will be
focused on the performance for the estimation of x. As it was mentioned, the quantizer is
uniform and ca will be chosen so as to minimize the variance of estimation of x. As this is a
scalar problem, it can be solved by an exhaustive search using a fine grid. After finding the
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optimal ca, the other parameters of the algorithm I', n,, and n5 can be evaluated using the
information from the noise distribution.

The Gaussian and Cauchy distribution will be used for modeling the noise. The algorithm
will be simulated for 5 x 10° blocks with 4 x 10* samples each. The simulated MSE for the
estimation of the location parameter will be evaluated by calculating the mean of the squared
error for each sample. Other simulation parameters are § = 1, S = 2, ¢ =0, Xo =1 and
Ny € {4,8,16,32}. For comparison purposes, the CRB for the estimation of x based on
continuous measurements CRB, will be also evaluated for Gaussian and Cauchy distributions.
Using the fact that the measurements are independent and the expressions for I, for the GGD
given in (3.74) with 8 = 2 and for the STD given in (3.75) with § = 1, the CRB,. for Gaussian
and Cauchy noise are respectively %% and 2%.

The results of the simulation are shown in Fig. 3.13, where we also plotted the CRB for
the estimation with quantized measurements when the offset and gain are static and set with
the true parameter values. The MSE was normalized by k£ and the logarithm scale is used in
both axis for better visualization.

It can be observed that after a transient time, the simulated performance becomes very
close to the asymptotic theoretical results, also it can be seen that the gain in performance
when increasing Ny is very small even for a small number of quantization intervals (N; = 8
or 16) and that the gap between the performance given by N; = 32 and the continuous
measurement bound is negligible.

Discussion on the results

Despite the very low complexity of the algorithm, its asymptotic performance for estimating
the parameters is not only decoupled (the covariance is diagonal) but it is also optimal. The
normalized asymptotic variance for estimating x is ﬁ and the variance for estimating § is
also the inverse of the corresponding FI. This optimal decoupling means that no degradation
of performance is brought by estimating jointly the scale parameter. As no degradation is
present, the asymptotic performance of the estimator of x has the same behavior as it was
shown previously, if we choose N; = 4 or 5 the estimation performance is very close to the
optimal continuous measurement performance. This indicates that even when § is unknown
there is no need to use high resolution quantizers, if we have a large number of samples.

3.6.2 Fusion center approach with multiple sensors

We present now the adaptive algorithm for estimating a constant parameter, when a fusion
center has access to quantized measurements from multiple sensors. We will define first, the
problem, the architecture to be used and the adaptive estimator. Then, similarly to the joint
location-scale problem, we obtain the algorithm performance and its optimal parameters. We
close this section with simulations and a discussion about our results.
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Figure 3.13: CRB for estimating a location parameter of Gaussian and Cauchy distributions
based on quantized and continuous measurements and simulated MSE for the estimation of
the location parameter with the adaptive location-scale parameter estimator. In all cases, we
considered the true scale parameter and its initial estimate 6 = 1, 50 = 2, for the location
parameter we considered = = 0, Xy = 1. The numbers of quantization intervals simulated
were Ny € {4,8,16,32}. For obtaining the simulated MSE for the location parameter, the
algorithm was simulated for 5 x 10° blocks with 4 x 10* samples each. The curves that are
asymptotically lower are related to a higher number of quantization intervals.

Problem statement and estimator

The scalar parameter is supposed to be a constant x and it is measured by N, sensors. Each
sensor measures the parameter with additive noise

YD =z4+v9 for je{l,-- N}, (3.91)

where Vk(j ) is the noise 1.v. for the sample k obtained at the sensor j. The sensor noises are
independent and each sensor noise is i.i.d.. The noise r.v. also respects assumptions ANI,
AN2 and AN3. Its marginal CDF for sample k of sensor j will be denoted as FU) (v) and its
PDF as f) (v).

The measurements at each sensor are quantized by a scalar adjustable quantizer, similar
to the quantizer used in the previous sections. The quantizers for the sensors are then char-

acterized by their input gains ﬁ, input offsets b](g ) and the vector of threshold variations
k
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(considered to be static) that defines the N I(j ) quantizer intervals

10) _ [T’(j)N, ) D) D))
2

2

We will consider again the following assumptions:

e AQ1 on the quantizer outputs: the set of possible quantizer outputs of the sensor j is
) N N
IOV = =1 =11, —E t

e AQ2 on the quantizer threshold variations: the quantizers have symmetric threshold
1(4) 1(4) '
= —T A

i —1

variations T with T/(()j) =0 and T’(Jf,z = +o00.

2

The output of quantizer j is then given by

G _ @)
, (Y~ j j
z'](CJ) = QW (lflf) = isign (Yk(j) - bg)) , for

‘Yk(j) _ b,(j)‘
A AL

G )
5 e [t 7). (3.92)
k

The noise CDF are considered also to have a known scale parameter §(). Therefore, similarly
to what was done before, we can use the noise scale factor to normalize the input of the
quantizer

AV = D5, (3.93)

where ca is a free parameter which, as it was explained before, can be used to adjust the
quantizer input range or to optimize quantization performance when the threshold variations
are fixed.

After obtaining the quantized measurements, the sensors send their measurements to a
fusion center. The transmission of the quantized measurements is supposed to be perfect,
as it was explained in the Introduction. The fusion center can feedback information to the
sensors through perfect continuous amplitude channels. Thus, we want to solve the following
modification of problem (a) (p. 27):

(a”) Solve problem (a) with independent quantized measurements
from N, sensors. The measurements from the N, sensors are
available at a fusion center that can process these measure-
ments and feedback information to the sensors through perfect
continuous amplitude channels.

Note that the simplifying assumption of perfect feedback channels means that the fusion
center has enough power and/or band for feedbacking real (or very finely quantized) noiseless
estimates.

To solve problem (a”), the fusion center generates an online estimate X}, that will be
broadcasted to the quantizers through the feedback channels, so that they can use it as their
next input offset for enhancing estimation performance. At time k, this means that

b = Xy s (3.94)



158 Chapter 3. Adaptive quantizers for estimation

UPDATE 4+

Figure 3.14: Scheme representing the sensor network. The fusion center updates the estimate
of the parameter and broadcasts it through a perfect channel to the sensors. The sensors then
use the new estimate as their quantizer input offset (their quantizer central threshold).

The general scheme is depicted in Fig. 3.14, where the UPDATE block contains an online
estimator of the parameter.

For estimating the parameter, we can use an extension of the adaptive algorithm with
decreasing gains

X = Xp i + %n (ir) | (3.95)

and

(1) «M)}T

where ~ is a positive gain, iy is the vector of quantized observations {zk R
n[i] is the update coefficient (or the quantizer output level) defined as a function from
{I(l), e ,I(NS)} to R. The main advantage of this algorithm when compared with an adap-
tive scheme based on the MLE is its low complexity both in terms of processing and memory
requirements.

Optimal parameters and performance

Using the results from [Benveniste 1990, Ch. 3|, the asymptotic variance of the estimation
error can be obtained under the condition that the mean error converges to zero as k — oc.
To prove this convergence, it would be sufficient to use the ODE approximation of the mean
of X} and then prove global convergence properties for the ODE using Lyapunov theory. Such
analysis is left for future work. Here, only the mean behavior of the algorithm at equilibrium
(X} = z) will be studied.
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When Xk—l = x, the normalized mean increment %E (Xk — Xk,1> is given by
k
v

where 7 is a vector regrouping all possible values of the output coefficients

T
n= [77 (i_N§1)’ S i_N§Ns)> 77(11]\];1)’ cee iN§NS>>]
2 2 2 2

and Fec = [ £y i) r with

E (X = Xp1) =E[n ()] = n"Fy, (3.96)

N,
Fali) = [ £y [N)] : (3.97)
j=1

where F (gj ) [i(j)] is the probability of having the output i) at the sensor j when X, =

FU) (T(j>cgj>5(j)) _ @ (Ti(z)lcgj)é(j)) it i el ... ,Néj) }

NP o 4 (4)
FG) (Ti(jr)lcgﬂ)g(ﬁ) _ @) (Ti(ﬂ)cgﬂ)(s(J)) it i@ ed 1, ,_Néj }
(3.98)

Thus, the following condition is needed to have an equilibrium point at the true parameter:

P {io‘)} -

nTFy = 0. (3.99)
Note that this is a necessary condition for asymptotic unbiasedness of the algorithm.

Assuming that the algorithm is asymptotically unbiased, similarly to the single sensor
case, we can use the results in [Benveniste 1990, pp. 110-113| to obtain the asymptotic distri-
bution of the estimation error, the optimal gain v* and the minimum normalized asymptotic
estimation error variance o2,. The asymptotic estimation error is Gaussian distributed and it
is given as follows

Vkep ~ N (0,02). (3.100)
k—o00
The optimal v and minimum o2, are then given by
1
= 3.101
and -
F
2 -0 ~di (3.102)
(n"fa)

The matrix Fy is a diagonal matrix diag [Fj*] and f; is the vector form (as n and F4°¢)
regrouping the elements

Ns N
fall =" fa [N)] 1 £ [N’)} , (3.103)
7j=1 jl =1
J#J
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where

)

' N , N , ()
F0) (Ti(i)lcgﬂ)5(3)> _ f0) (T;J)cgﬁ(;(a)), if i ed—1... ,_Ng

£0) (Tﬁj>cgj>5<j>)_f(j> (T(j)lcgj)5(1)>’if i) e 17...7N§”}7
i [19) = " ?
¢ _

(3.104)

The asymptotic performance can also be optimized through the choice of n, this can be
done by minimizing (3.102) w.r.t. 1 under the equilibrium constraint (3.99). This problem
can be solved in the same way as it was done for finding the optimal vector 1 in the joint
estimation of location and scale parameters. Consequently, we find the following optimal
vector n (Why? - App. A.1.9):

n X F;lfd —1f; = F;lfd.

The second equality comes from the fact that the sum of the elements of f; is zero. For
proving this, note that for each possible i there is —i. As the function f;[i] is odd and F} [i]
is even, we have fy[i] = — fy [—i]. Therefore, when adding f, [i] for all the possible i, the pairs
( fa HE fa [—i]) will cancel each other, resulting in a zero sum. Similarly to the previous cases

we will choose
n=-F;'f, (3.105)

For the update coefficients given by (3.105), the asymptotic normalized variance and the

optimal gain are .

2 *

o =7 = s (3.106)
ng 4 fa

o
Using the expressions for Fy [i] (3.97) and for fy[i] (3.103), for a given measurement vector
i the update coefficients are?

N ~ng) [i(j)]

P9 [i0
If we use the symmetry assumptions, the expression for the asymptotic normalized variance
and for the optimal gain (3.106) becomes (Why? - App. A.1.10)

n(i) = - (3.107)

j=1

1
o =" = . (3.108)

R SR
=1 ez FTi0)]

Observe that the update coefficients are the sum of the update coeflicients obtained in the
single sensor approach. The asymptotic normalized variance is equal to the inverse of the sum
of the FI I, (0) for each sensor, which means that the algorithm is asymptotically efficient.

4Using this specific form for the update coefficients, we can prove, similarly as it was done for the single
sensor case, that the algorithm is asymptotically unbiased.
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We have then the following solution to problem (a”) (p. 157):

Solution to (a”) - Adaptive algorithm with decreasing gain
for estimating = using multiple sensors and a fusion center

(a”1) 1) Estimator
For each time k,
e the sensors send i,(Cj) =QW (

ter.

Yk(j)—qu

OFr to the fusion cen-
CA 6(])

e The fusion center estimates the parameter using (3.95)

Xp =Xy + %77 (i) ,

FUD ()
x 1 N\ Ns fd [Z ]
where 7" = gy 2rd n ) = - 2% )
1,0 ez B9[]

e The fusion center then broadcasts the estimate to the
sensors through perfect channels to be used as the next
quantizers input offset.

2) Performance (assumed and asymptotic)
The estimator is assumed to be asymptotically unbiased.
When k — co the normalized estimation error ke, is Gaus-
sian distributed with variance o2 given by (3.108)
1
2
o5, = .
o0 Ns f[(ij)z[,i(j)]

OINT
ISier F 9]

1(7)
the same way as it was done previously, in what follows we consider that the threshold vari-
()

ations are uniform with unitary step-length and that only ci’ are used for optimizing the

Note that, again here, we can still optimize the performance through 7 and cg). In

performance.
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Simulations

The validity of the results will be verified through simulations. All the sensors within a
simulation will be considered to have the same type of noise and the same noise scale factor
0 = 1. The noise considered will be Gaussian or Cauchy distributed. Optimization w.r.t. ca
(the same gain for all sensors in this case, as the noise is identically distributed) will be done
by searching the maximum of the corresponding FI in a fine grid. After finding the optimal
ca, the coefficients —% and the gain v* can be calculated.

For all the following simulations, the length of the block of samples will be 5000 and for
evaluating the MSE the average of the squared error will be calculated using 5 x 10* blocks.

The parameter value and initial estimator value are x = 0 and Xo=1.

In the first simulation, it will be considered that all the quantizers have N; = 4 and N, will
be 1, 2 or 3, the results can be observed in Fig. 3.15 in log scale both in time and MSE. The
simulated results are compared with the theoretical approximations, for this algorithm they
are asymptotically equal to the CRB for quantized measurements obtained from a number of
sensors N, CRB(]]VS’*.

e e

. N., :

100 [ CRB,*"* Gaussian
2 -~ CRB}** Cauchy
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S Sim. — Cauchy
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Figure 3.15: Cramér—Rao bound and simulated MSE for the adaptive algorithm when N; = 4,
Ns; = 1,2,3 and the noise is Gaussian or Cauchy distributed, both with § = 1. For obtaining
the simulated MSE, the algorithm was simulated 5 x 10* times for blocks with 5000 samples.
For all simulations the true parameter was set to zero and the initial estimate was Xo = 1.
In each set of curves the results for the three different number of sensors are represented, the
highest MSE curves represents the performance for Ny = 1 and the lowest MSE represent
Ng = 3. The curves are plotted in loglog scales for better visualization.

As it was expected, the MSE decreases with the number of sensors and the simulated results
are very close to the theoretical approximation for a large number of samples. To have a more
appropriate comparison between different numbers of sensors, channel bandwidth constraints
must be considered.

In the second simulation, the total rate will be fixed to 5 bits. Two possible settings will
be considered, a single sensor approach using the 5 bits (N; = 32) and a multisensor approach
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with one sensor quantizing the measurements with 2 (N; = 4) bits and the other with 3
bits (N; = 8). We keep all the other simulation parameters from the previous simulation.
The results are shown in Fig. 3.16, also with a comparison with the asymptotic performance
(which again is equal to the optimal CRB for quantized measurements).
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Figure 3.16: Cramér—Rao bound and simulated MSE for the adaptive algorithm for Ny =1
and Ng = 5 and for Ny, = 2, one sensor with Ng; = 2 bits and the other with Ngo = 3
bits. The noise was considered to be Gaussian or Cauchy distributed, both with § = 1. For
obtaining the simulated MSE, the algorithm was simulated 5 x 10* times for blocks with 5000
samples. For all simulations the true parameter was set to zero and the initial estimate was
Xy = 1. In each set of results the higher curve represents the performance for Ny = 1. The
curves are plotted in loglog scales for better visualization.

For both types of noise, the theoretical and simulated results show that the multisensor
approach is superior.

Discussion on the results

The proposed algorithm shows that in practice, in a rate constrained context, a multiple sensor
approach with low resolution quantizers might be superior to a a high resolution single sensor
approach. Such observation motivates the use of low resolution sensor networks for estimation
purposes.

Note that in the case studied, we did not analyze the interaction between the noise scale
factor (it is considered to be constant over the sensors) and the number of quantization bits
used in each sensor. When the total number of bits to be transmitted to the fusion center
is constrained, an interesting problem for further investigation is the problem of optimal
allocation of number of bits to sensors as a function of their noise scale factors. This problem
will be studied in an approximate form in Part II.

The adaptive algorithm that is implemented in the fusion center has very low complexity.
The complexity is roughly linear in the number of sensors, as the optimal correction 7 is
equivalent to a weighted sum of the corrections given by the single sensor algorithm. Despite
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this fact, it can be very costly to implement this algorithm due to the perfect feedback channels
requirement. Thus in future work, we can consider that the feedback channels are not perfect,
for example, by considering that the estimates are fedback after being quantized and that they
are corrupted with additive noise.

3.7 Chapter summary and directions

We summarize now the main points observed in this chapter and we also present some subjects
that are interesting for further research.

e We presented an adaptive algorithm that can estimate three types of parameter: con-
stant, slowly varying with a Wiener process model without drift or slowly varying with
a Wiener process model with drift. The adaptive algorithm can be used for any even
number of quantization intervals and under the assumption that the noise is symmetric,
unimodal and has a regular CDF (locally Lipschitz continuous) it was shown that

— using decreasing gains, when the parameter is a constant, the algorithm converges
asymptotically in the mean to the true parameter value and its asymptotic perfor-
mance in terms of variance attains the minimum CRB for common noise distribu-
tions CRBj. Thus, the answers to the two initial questions (p. 105) are positive:
the algorithm with gain proportional to % converges and it can be extended to a
multibit setting.

— Using a constant gain, when the parameter is modeled by a slowly varying Wiener
process without drift, the algorithm also converges in the mean to the true param-
eter and the algorithm is approximately asymptotically optimal. This answers the
third question also in a positive way.

— Using a constant gain, when the parameter is modeled by a slowly varying Wiener
process with drift, the algorithm is biased and its asymptotic MSE can be minimized
by setting the gain as a function of the drift.

e Using the asymptotic performance results, we evaluated the loss of estimation perfor-
mance due to quantization for the algorithm. We observed the following;:

— the loss in all cases is a function of I, (0), showing one more time the importance of
studying the behavior of this quantity as a function of the threshold variations. We
remind that this problem will be studied with an asymptotic approach N; — oo in
Part II.

— When the parameter varies, the loss due to quantization is smaller than when the
parameter is constant. Thus, when using quantized measurements for estimation,
it seems that a type of dithering effect is present.

— The loss of performance is almost negligible in all cases for 4 or 5 quantization bits.
In a rate constrained scenario this seems to be a strong motivation for using a low
to medium resolution multiple sensor approach instead of a high resolution single
sensor approach. This was validated using an extension of the adaptive algorithm
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designed for multiple sensors that can communicate their measurements to a fusion
center.

e When comparing the adaptive algorithm with its equivalent counterparts studied in Ch.
1 and 2, the following was observed:

— for estimating a constant, the adaptive algorithm has a very low complexity when
compared with the adaptive scheme based on the MLE and their performance is
equivalent.

— for estimating a slowly varying Wiener process, the algorithm has also a very low
complexity when compared with the PF scheme using dynamical central threshold.
In this case the only drawback of the adaptive algorithm is that it has a longer
transient time.

Therefore, if complexity constraints are present, the adaptive algorithm seems to be the
best analyzed solution.

If no constraints on complexity are considered, then the adaptive algorithm is still the
best choice for estimating a constant, but it should be replaced by the PF for estimating
the slowly varying parameter. An interesting point for future work would be to look
for ways of choosing the quantizer update coefficients during the transient, so that the
adaptive algorithm performance would be similar to the PF performance.

e We presented two extensions of the algorithm, both for estimating a constant parameter.
They are the following:

— the joint location-scale adaptive estimator, for which we showed that even if we
do not know the noise scale parameter it is possible to estimate it with the same
asymptotic performance obtained for the case with known scale parameter.

— The fusion center approach with multiple sensors. In this extension of the algo-
rithm, we considered that measurements from multiple sensors are sent to a fusion
center. The role of the fusion center is to estimate the parameter and then broadcast
the estimate to the sensors, so that it can be used for setting the quantizers offset.
As it was mentioned above, with this approach we showed that a low to medium
resolution multiple sensor approach might be better for estimation purposes than a
high resolution single sensor approach. We remind that this was shown for sensors
with the same type of noise distribution and the same noise scale parameter value.
Thus, an interesting subject to study is the bit allocation problem among sensors,
when the total bandwidth is constrained and the sensors have the same type of
noise distribution but different scale parameters. This will be done in Part II, in
the case of a weak bandwidth constraint.

e Many other extensions can be the subject of future work. They are

— the joint estimation of the drift when we track a Wiener process with drift. Actually,
this was already done by adding a simple adaptive estimator of the drift. However,
in some cases we can have a more detailed dynamical model for the drift. By
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using adaptive multistep algorithms [Benveniste 1990, Sec. 4.2], we can use this
additional information to have a better estimate of the Wiener process.

The joint estimation of the Wiener process increment standard deviation and the
Wiener process itself. This will lead to a robust multibit generalization of delta
modulation with varying gain.

The joint estimation of a location parameter and the shape of the noise distribution.
In this case, we can consider that the noise CDF has an unknown shape but a known
structure, for example that it is locally polynomial, and that we want to estimate
jointly the location parameter and the parameters of the noise distribution.

The nonparametric estimation of the location parameter. We can consider for
example that we only know that the noise distribution is symmetric, without any
specific parametrization. Then we can try to define a nonparametric adaptive
algorithm based on adaptive histograms for getting as close as possible to the
parametric performance.

The joint estimation of location-scales parameters when the multiple sensor fusion
center approach is considered. This extension can be directly implemented by
joining the features of the adaptive location-scale estimator with the fusion center
approach. The main difference in this case is that for reducing the communication
complexity, the sensors will have to estimate their individual scale parameters for
setting their quantizers.

e We can also consider some extensions of the estimation problem itself for which modifi-

cations of the adaptive algorithm would be a good solution. Some examples are:

— a fusion center approach where the quantized measurements from the sensors are

transmitted through noisy channels. This is a problem that we decided not to treat
but it is an interesting and more realistic point for further development.

A fusion center approach where the information that is fedback is quantized and
passed through noisy channels. For this extension, we can consider an additional
adaptive algorithm at the sensors for smoothing out the noise from the feedback
channels. For dealing with quantization of the estimates we can consider including
a dither signal. With this extension we will be able to assess the importance of the
feedback channel quality, thus giving a more realistic global estimate of the sensor
network cost.

The main issue that makes these two extensions far more difficult to be studied
is that the output quantizer indexes cannot be defined arbitrarily, as they are
corrupted by the channel noise.

The estimation of a scalar parameter following an autoregressive model
Xy =aXp_1+ Wy

instead of the Wiener process model. This will lead to a robust generalization of
scalar predictive quantization.



3.7. Chapter summary and directions 167

— Compression of a Wiener process with drift. We can consider that at sensor level we
can store continuous measurements (or very finely quantized) and then we can apply
the adaptive algorithm for a block of measurements in both time directions (forward
and backward) and average the results to have final estimates with reduced bias.
By storing the initial and final continuous measurements and both the forward and
backward quantized sequence, we equivalently have stored a compressed estimate
of the true parameter sequence.






Conclusions of Part 1

The main objective of Part I was to propose and study the performance of algorithms for es-
timation based on quantized measurements. We assumed simple parameter and measurement
models:

e Parameter model — a scalar parameter that can be either constant or varying with a
Wiener process model.

e Measurement model (noise model) — the scalar constant is measured with independent,
unimodal and symmetrically distributed noise.

e Measurement model (quantizer) — the quantizer is symmetric.
Under these settings, we obtained the following conclusions:

e Adaptiveness is important. The performance of estimation based on quantized mea-
surements is mainly dependent on the FI for quantized measurements and this depen-
dence is direct. Increased FI is equivalent to increased estimation performance.

For the noise distributions considered, the FI is increased if we set the quantizer dynamic
range close to the parameter to be estimated and for commonly used noise distributions
(Gaussian, Laplacian, Cauchy), we must put the quantizer central threshold exactly at
the true parameter value. As we do not know the value of the parameter, for obtaining
optimal estimation performance, we must resort to adaptive algorithms that place the
quantizer range close to the true parameter value, for example by placing the quantizer
central threshold at the most recent estimate of the parameter. Therefore, this indicates
that adaptiveness of the quantizer is a main requirement for optimal estimation.

e Low complexity is possible and it might be even asymptotically optimal. It
is possible to estimate a constant and a slowly varying parameter with a low complexity
adaptive algorithm. The adaptive algorithm is not only convergent in the mean (with
a small bias in the drift case) but its parameters can be chosen in such a way that it is
exactly equivalent to the asymptotically optimal estimator. This observation goes in the
exact opposite direction of some proposed solutions (adaptive scheme based on the MLE
and the PF) which requires high complexity both in terms of memory and processing.

e Low to medium resolution is enough. Both for a constant and slowly varying pa-
rameter model, the loss of performance that is incurred by using quantized measurements
instead of continuous amplitude measurements seems to be negligible for a number of
quantization bits larger than 4 or 5. In a rate constrained context this means that us-
ing more sensors with less resolution may be better than using less sensors with more
resolution.
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"Finite — to fail, but infinite to venture” - part of a poem of Emily Dickinson.

Motivation

The introduction of this part will also be done using a motivational example.

To maintain their economic growth, emerging economies will have to look for new mineral
and material sources. This will generate a potential increase of exploration in unusual places,
for example the seafloor. Sulfur and metal base rich mineral deposits can be found at seafloor
in hydrothermal vent sites [Hoagland 2010].

Hydrothermal vents, also called black smokers, occur when seawater penetrates the oceanic
crust through fissures. The water penetrates so deeply in the oceanic crust that it enters in
contact with upper parts of magma chambers. A large increase in temperature (from =~ 2°C to
~ 400°C) is observed, along with a decrease in pH and Eh. The hot corrosive liquid rises then
through fissures carrying metal and sulfur from the rocks. The mineral rich water is released in
the seawater as hot black smoke. Precipitation of the elements present in the smoke happens
when the hot water is mixed with ocean cold water. As a result, a mineral rich chimney and
a massive sulfide deposit are formed around the hot water releasing point [Herzig 2002].

To mine the sulfide deposit, first, it must be located. One possible way to locate it is
by measuring the concentration of chemical compounds and elements in the seawater. The
chemical plume generated by the hydrothermal vent can be detected using CHy4, Fe, H, He
or Mn concentration measurements |[Baker 2004]. After detecting the plume, for example
using sensor measurements from multiple autonomous underwater vehicles (AUV) that
communicate with a fusion center, the source location must be found. This can be done by
following the ascent gradient direction of a chemical compound concentration. The gradient
direction can be obtained by exploiting the local information measured by the AUV.

Underwater communication is challenging as bandwidth is severely constrained in this
environment. To overcome this problem, quantization of the concentration measurements
from the AUV can be considered. As a consequence, to calculate an approximated gradient
at the fusion center we will have to deal with the same problem treated in Part I, which is the
following;:

e How to estimate a scalar constant (the concentration) based on noisy quan-
tized measurements?

Algorithms for doing this were presented in Part I, where it was noted that estimation per-
formance is given (at least asymptotically) by the FI for quantized measurements. However,

a question remained without answer:

e How to set the quantizer thresholds to have an optimized estimation perfor-
mance?

Only in some cases the answer for this question was given:
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1. In the binary case it was observed that for commonly used noise models, the quanti-
zation threshold should be placed exactly at the parameter.

2. In the multibit uniform quantization case, after setting the central threshold at the
parameter, the corresponding performance maximization is a one-dimensional optimiza-
tion problem, which can be solved using exhaustive search.

In the general nonuniform case, setting the threshold was observed to be a complicated opti-
mization problem.

Similarly to standard quantization [Gersho 1992, pp. 185-186|, where analytical charac-
terization of quantization performance is difficult for a finite number of quantization intervals,
when the number of quantization intervals is large, the set of intervals can be approximated
by an interval density. The interval density is a function whose integral over an interval gives
the fraction of the number of quantization intervals contained in that interval. By using small
interval approximations of the FI, we can obtain an asymptotic expression (N; — oo) for the
FI as a function of the interval density. The resulting FI can be maximized w.r.t. the interval
density to get an approximation of the optimal interval set. After that, the optimal interval
density can be used to have an approximated analytical expression for the optimal FI, thus
giving a complete asymptotic characterization of the estimation algorithms.

As the interval density is an asymptotic quantity, a main issue that must also be solved
is how to do a practical approximation of this density with a finite number of intervals. An
interesting question would be to find an analytical expression for the approximately optimal
quantization thresholds as a function of the number of intervals.

Writing it in a more detailed form, we want to do the following:

e Find an asymptotic (in terms of number of quantization bits)
approximation of the Fisher information for estimating a con-
stant parameter embedded in noise as a function of an interval
density.

(c) Find the asymptotically optimal interval density.

e Give an analytical expression approximating the maximum FI
for the optimal interval density.

e Obtain a practical approximation for the optimal quantization
thresholds.

Now, with the optimal thresholds given by the asymptotic approximation, the adaptive
estimation algorithms from Part I work (at least asymptotically) in an optimal way. We can
imagine that for reliability issues or for reducing measurement latency, multiple concentration
sensors are installed in each AUV. Due to deterioration, the sensors do not have exactly the
same noise levels. Thus, under a given rate constraint, another question arises:
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¢ How many quantization bits do we allocate for each sensor?

For an array of sensors with the same type of noise and considering the independence between
sensor noise, the only parameter that can change from sensor to sensor is the noise scale factor.
Thus, what we want to do precisely is

(d) Find the optimal or approximately optimal number of bits per
sensor as a function of the noise scale factors under a maximum
constraint on the total number of bits.

The problems presented above are quite general and they can appear in the performance
analysis of any optimal estimation algorithm in a constrained rate context. In what follows,
we will obtain insight on how we can solve these problems. As we have only one chapter in
this part, its outline will be given directly at the chapter introduction.






CHAPTER 4

High rate approximations of the FI

To obtain insight on how we solve problems (c) and (d), we will resort to an asymptotic
approach, that is, we will make the number of quantization intervals goes to infinity Ny — oo
and we will see how the FI behaves as a function of the quantizer. This approach can also
be found under the names high resolution or high-rate (in the title), the former is used to
emphasize that the quantizer intervals are supposed to be very small and the latter is used to
make explicit that the communication rate must be high, as the number of quantization bits
is large.

Note that making N;y — oo seems to contradict one of the conclusions of Part I, that states
that with only a few quantization bits we have a negligible loss of performance due to quan-
tization. However, even if we make N; — oo, we will see that the asymptotic approximations
still depend on Ny, so that, as we stated above, we can use it to gain some insight on the
estimation performance for finite Ny. Actually, we will see that for the location parameter
estimation problem studied in Part I, the asymptotic approximations are valid even for small
numbers of quantization bits (Np = 4 and Np = 5), which is very fortunate, as these cases
were observed to be the practical useful limit in quantization for estimation and also they are
the cases with lowest number of bits for which the maximization of the estimation performance
w.r.t. the quantizer thresholds is difficult to be done in a direct way.

When N; — oo, the quantizer can be characterized by its density of quantization intervals,
thus asymptotically, the behavior of the FI as a function of the quantizer can be characterized
by studying its behavior as a function of the intervals density. As a consequence, one of the
main objectives of this chapter is to obtain an asymptotic analytic expression of the FI as a
function of the interval density.

e [ized rate encoding. We will obtain this expression for scalar quantization and we will
not impose any strong constraints on the type of estimation problem that is treated (for
example, we will not constrain it to be a location estimation problem).

e Variable rate encoding. Additionally to the fixed rate encoding scheme, where all the
quantizer outputs use the same number of bits for encoding, we will also obtain the
optimal interval density maximizing the FI for the variable rate encoding scheme, where
we can use different numbers of bits for different quantizer outputs. We will also discuss
on the difficulties of implementing the variable rate encoding scheme in practice.

e Practical implementation. We will describe how to implement in practice an approxi-
mation of the optimal interval density.

177
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We will check the validity of the results in the location parameter case by comparing the
theoretical results for the maximum FI obtained with the optimal interval density with the FI
obtained with the practical approximation of the optimal density and with the FI for optimal
uniform quantization. We will show that in practice we can obtain the asymptotic performance
results by using the adaptive algorithm presented in Ch. 3. We will also look in some detail
the location and scale parameter estimation problems for GGD and STD measurements.

In the single sensor location parameter case, we will study the problem of deciding how
many quantization bits we might allocate to each sensor in a sensor network, when the total
rate is constrained and all the sensors have the same type of noise distribution but differ-
ent noise scale parameters. Approximate solutions for this problem will be given using the
asymptotic approximations.

To show the connections between the results found here and asymptotic results for other
inference problems, we will study the asymptotic approximation of a generalized inference
performance measure known as the generalized f—divergence. The asymptotic results for this
divergence were proposed in [Poor 1988|, mainly for the uniform vector quantization fixed rate
encoding case and they were stated but not proved in the non uniform case. Here, we will
give a simple derivation of the asymptotic approximation for this divergence in the scalar case
using the same procedure as the one that is used for the FI, we will also extend the results
to the variable rate encoding case. After obtaining the general optimal density of thresholds,
we will point out the similarities and differences between the way quantization must be done
for three different inference problems: classic estimation (considered in this thesis), Bayesian
estimation and detection.

At the end of the chapter we will summarize the main results and we will indicate some
possible points for future work.

Contributions presented in this chapter:

o Asymptotic approrimation of the optimal interval density for classic parameter estima-
tion. The asymptotic analysis presented in [Poor 1988| is only detailed for uniform
quantization, differently from the development that is presented here, where we consider
non uniform quantization with the interval density approach.

e Practical implementation of the optimal quantizer in the location parameter estimation
problem. In this chapter, we show that the asymptotically optimal quantizer depends
on the true parameter value and we also show that in practice we can achieve the
asymptotically optimal performance using the adaptive algorithm with decreasing gain
presented in Ch. 3. This shows the importance of the adaptive approach. No result of
this type seems to be present on the literature.

e Approzimate bit allocation for the multiple sensor approach. The approximations of the
optimal bit allocation among sensors seem to be new in the context of classic location
parameter estimation.
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4.1 Asymptotic approximation

4.1.1 General setting

The general setting considered here is the estimation of a scalar deterministic parameter x € R
of a continuous distribution based on N independent measurements from this distribution
Y=[YV1Ys - YN}T. Again here, we will consider that the estimation of x is not based on
Y. Instead, it is based on a scalar quantized version of Y denoted

i=[irip - in]” =[Q(V1) Q(¥a) - Q(YW)|".
The function @) represents the scalar quantizer and is given by
Q(Y) =1, if YEqZ- = [Ti_l,Ti), (4.1)

where ¢ € {1,--- , N1}, Ny is the number of quantization intervals ¢; and 7; are the quantizer
thresholds. The first and last thresholds will be set to 79 = Tiin and 7n, = Tmax. Note that
the setting considered here is more general than the setting presented in Part I, as we do not
restrict the estimation problem to be a location estimation problem and we do not impose
any symmetry on the quantizer. Observe also that the quantizer interval indexes now go from
1 to Nj.

It will be assumed that the marginal CDF of the continuous measurements parametrized
by = F (y;x) admits a PDF f (y; ) that is positive, smooth in both x and y and defined on
a bounded support. The bounded support assumption is needed to simplify the derivation of
the asymptotic results.

4.1.2 Loss of estimation performance due to quantization

For estimating a constant with quantized or continuous noisy measurements, we saw in Ch. 1
that the asymptotic performance of an optimal unbiased estimator attains the corresponding
CRB. This asymptotic characterization is not restricted to location parameter estimation.
Under regularity conditions on the likelihood, it can be applied to any situation where we
want to estimate a constant embedded in noisy measurements. Thus, for a general parameter
x and for a large number of samples, the estimation performance is still linked to the FI as

follows
1

Var [)A(} ~ CRB, = NI
q

(4.2)

where I, is the FI for a quantized measurement that was already presented in Ch. 1 (for a
location parameter). Rewriting the FI with the notation from this part, we have

I, = E[s]=E { [aloggm(i;x)r}

s (208 6, (1.3

ox
i=1



4.1. Asymptotic approximation 181

Sy is again the score function for quantized measurements and P (i;z) is the probability of
having the quantizer output i (parametrized by x):

P(i;z) = F (m;2) — F (1iz1; @) (4.4)

The FI for quantized measurements can be written as a function of the FI for continuous
measurements and the score functions, exactly in the same way as it was done in Ch. 1 (1.16
p. 42) (Why? - App. A.1.1)

I,=1.-E [(sc - sq)ﬂ , (4.5)

where S, = %x(y;x) is the score function for continuous measurements, L = E | (S, — Sq)Q]

is the loss of FI and consequently of estimation performance due to quantization. The main
objective from now on will be to minimize L through the choice of the quantizer intervals when

Ny is large. Notice that minimizing L defined here is equivalent to minimizing L, defined in
Ch. 3.

4.1.3 Asymptotic approximation of the loss

Similarly to standard quantization for measurement reconstruction, where optimal nonuniform
quantization intervals can be approximated for large Ny, an approximation for I, will now be
developed.

The loss L which is an expectation under the measure F' can be rewritten as a sum of
integrals, each term of the integral corresponding to the loss produced by a quantization
interval:

f(y;z)dy. (4.6)

L_i/ dlog f (y;z)  OlogP (i;x) 2
L Ox Ox
g

. Olog f(y;r)
First term T

For the interval with index ¢, the PDF can be approximated with a Taylor series around the

central point y; = Tﬁ‘%

f(yy)

; 2 2

Fyse) = Jit £ (= w) + 75— (v —9)* +oly—w)* (4.7)
where the superscripts indicate the variables for which the function is differentiated. The
subscript represents that the function (after differentiation) is evaluated at y;. It will be
assumed that the sequences of intervals for increasing Ny are chosen such that, for any € > 0,

it is possible to find a N} for which
2
o(y—ui)
2
(v — vi)
Under the assumption that f > 0, the logarithm of f at interval ¢; can be approximated also
using a Taylor series:

<e, forN;y> Nj, y€q. (4.8)

log f (y; @) = log f; + (log £)* (y — yi) + (log f){*¥) w +oly —u)
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and the derivative w.r.t. z is

dlog f (y; )

T _ (10g ) + (108 )07 (5~ )+ (o N U840y -, (a9)

2

which is an expression for the continuous score function on ¢; to be used in (4.6).

Second term al%l;(m)

Now, the other term in the squared factor must be calculated. Integrating the PDF in (4.7)
on the interval ¢;, which has length denoted by A;, one gets

IP( ) sz +f(yy ?3

Lo (A}). (4.10)

Note that the term in A? is zero as y; is the interval central point and the integral of (y — y;)
around it is zero. The logarithm of P (i, x) can be obtained by dividing the second and third
terms of the right hand side of (4.10) by the first term and then using the Taylor series for
log (1 4+ z) = x + o (z). Differentiating the resulting expression w.r.t. = gives

(z)
o1l j . (vy) A?
Ogg;(l’x) = (log /){" + (ff ) 3 o). (4.11)

24

i
Loss L

Subtracting (4.11) from (4.9) and squaring makes the leading term with least power in (y — y;)
or in A; to be (log f )Z(»yz) (y — yi). When we square this difference and multiply by the Taylor

2
series of f, we have a leading term [(log f)l(yx)} fily— yi)2 and all other terms have larger

powers of (y —y;) and/or A;. Therefore, after integrating the squared difference multiplied
by the Taylor series of f, we get

L = Zi{[logf y‘”fﬁﬁm(A?)}
- é{( ) f2+o(A3)} (4.12)

where we have used the fact that f is smooth enough so that we can change the derivative
order between y and x to get (log f)z(yw) = s

X
To obtain a characterization w.r.t. the quantization intervals, an interval density function
A (y) is defined

Ay) =X i=——, foryceg. (4.13)

The interval density when integrated in an interval gives, roughly, the fraction of the number
of quantization intervals contained in that interval. It is a positive function that always sums
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to one!. Rewriting (4.12) with this density gives

L= Z{(S(y)) 12N2A2 +o (;2> A } (4.14)

As N; — o0, it will be supposed that all A; converge uniformly to zero. Therefore,

0Sc(y;x 2
b NP (73(5 )) [ (y; )
Niseo 17712 A2 ()

dy. (4.15)

This asymptotic expression for the loss gives the following approximation for the FI

)\ 2
(7853(5’ )) f(y;z)
12N? A2 (y)

~
~

g~ 1. — dy, (4.16)
which is valid for large N;. Note that when N7 in (4.16) tends to infinity, if the quantizer
intervals are chosen in a way such that all A; tend to zero uniformly, then the asymptotic
estimation performance for quantized measurements will tend to the estimation performance

for continuous measurements.
4.1.4 Optimal fixed rate encoding
In the fixed rate encoding scheme, all the outputs of the quantizer are encoded with (binary)

words that have the same binary size, namely, Ng = log, (N7). Thus, we can rewrite (4.16)
using the number of bits Np instead of the number of intervals Njy. This gives

I, ~1.— 2_12;VB / (asc >(y)f( >dy. (4.17)

This shows that the FI for quantized measurements under fixed rate encoding tends exponen-
tially to the FI for continuous measurements with increasing number of bits. Moreover, the
constant that multiplies the exponential depends not only on the measurement distribution
and on the estimation problem, through f and S, but also on the quantizer intervals through

A

Optimal interval density

We can characterize asymptotically the optimal quantizer for estimation by defining an opti-
mization problem using (4.16) as the function to be maximized w.r.t. A. To find the optimal

Ny
!The Riemann sum is equal to one > ﬁAi =1~ [A(y)dy.
i=1 ’
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A when Np is large, we must solve the following optimization problem:

0Sc(y;x 2 i
minimize ( 3(5 )) [ (y;2) q
w.r.t. A(y) A2 (y) Y
subject to /)\ (y) dy =1,
Aly) >0,

where the equality and inequality constraints on A comes from its definition as a density.

This minimization problem can be solved using Holder’s inequality, which states [Hardy 1988,
p. 140] that for two functions h (y) and g (y)

1 1
P q
(/Ih(y)\p dy) (/ lg ()| dy> Z/!h(y)g(y)l dy,
with equality happening when h? (y) x g7 (y) and % + % =1
(252 )| * 2
Setting p=13,q=13, h(y) = 1’/\2—@) and ¢ (y) = A3 (y) in Holder’s inequality

and using the constraint that the integral of the density must sum to one, we have the following
optimal interval density:

9Sc(y;x)

N (y) = (8y)2 f13 (y;x) N <85’ca(y;x))§ f% (4:2) (4.18)
J (2557 13 (i) dy Y

and the corresponding maximum FI given by this density is
1 05, (y: )\ 5 ’
. 3 1
I~ T, — c SN 15 () dy| 419
P~ o [/( G2 i) dy (1.19)

Remark: in standard quantization for minimum MSE measurement reconstruction the op-

timal interval density is given by [Gersho 1992, p. 186]

_ fiy)
[ 5 (y;2) dy

Therefore, the main difference from standard quantization is the additional factor depending

Neee (1) x f5 (y; ).

on the derivative of the score function.

Practical approximation of the interval density

From the definition of the interval density, the percentage of intervals until interval g;, NLI
must be equal to the integral of the interval density from 7y to 7. Thus, a practical way of
approximating the optimal thresholds is to set

i

TZ,*:F)\_1<NI>, forie {1, ---, Ny -1}, (4.20)
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where Fy~ is the inverse of the cumulative distribution function (CDF) related to .

An important issue for evaluating the 7; is that they may depend explicitly on x, which is
the parameter we want to estimate. A possible solution for this problem is to initially set 7;
with an arbitrary guess of x, then estimate z using an initial set of measurements and finally
update the thresholds with the estimate. This procedure can be performed in an adaptive
way to get closer and closer to the optimal thresholds. We can use, for example, an adaptive
scheme based on the MLE for doing at the same time estimation and thresholds setting. For
the location parameter estimation problem, it was shown that this adaptive scheme converges,
thus in this case, if we set 7; according to 7,7, we expect to obtain the optimal asymptotic
performance when N — oo and Ny is large. Also in the location parameter case, a low
complexity alternative, which gives asymptotically the same performance as the scheme based
on the MLE, is the adaptive algorithm presented in Ch. 3. We will see through simulation
later that the low complexity adaptive algorithm with the thresholds chosen using 7;° achieves
asymptotically (N — o00) a performance close to I given by (4.19), even for a moderate
number of quantization intervals.
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We have the following solution to problem (c) (p. 174):

Solution to (c) - Asymptotic approximation of the FI
for fixed rate encoding

(c1) The asymptotic approximation of the FI is given by (4.16)

0Se(ysz)\? ¢,
1 © 12N? A2 (y)
)\ 2
o7 9—2Np (8308(,37 )> f(ya x)d
= o leT T X2 (1) Y

where I. and S, are the FI and the score function for continuous
measurements and )\ (y) is the interval density.

e Maximization of I, gives the optimal interval density (4.18)
a8, !
c(ys 3 ra
<#) f3 (y; )

; .
J(2552) £ (g ) ay

A (y) =

e The corresponding asymptotic approximation of I, is (4.19)

2 3
w1 08 (y; )\ 3 .1
Iy~ 1 N7 [/ <ay ) f3 (y; ) dy]

e A practical approximation of the asymptotically optimal
thresholds using a finite number of quantization intervals is
(4.20)

T{‘:F)\1<Z>, forie {1, ---, Nr—1},

where F\ ! is the inverse of the CDF related to the interval
density. This CDF may be dependent on the true parameter
x, therefore, it may be necessary to use an adaptive solution to
obtain approximately optimal thresholds.
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4.1.5 Variable rate encoding: dead end @

It is known from information theory that the minimum average length H required for describ-
ing a discrete r.v. with a binary word is obtained by encoding its possible values (index j)
with lengths [; given by the negative logarithm of their probabilities p; [Cover 2006, p. 111]

lj = —logy (p;) -

For a r.v. with n possible values, this way of encoding the r.v. gives the following average
length

n
H=-Y pjlog, (p;),
=1

which is the minimum average length and it is also the entropy of the r.v..

For achieving rate requirements in the problem of estimation based on quantized measure-
ments, instead of using the fixed rate encoding scheme, we can use a scheme with variable
rate, where the outputs of the quantizer are coded with binary words with possibly different
lengths. The lengths of the outputs can be defined as above, leading to the following minimum
average length

Ny
Hy=—> P(i,z)log, [P(i,)]. (4.21)
=1

Suppose that the communication channel imposes a constraint on the maximum H,, so that
for lower (or equal to the maximum) H,, transmission through this channel occurs without
any error, this constraint which is the capacity of the channel will be denoted R?. The main
objective now is to set the quantizer thresholds for a given Ny so that the FI I, is maximized
under the constraint H, < R. As this problem is complicated to solve for finite N7, we will
use again the asymptotic approach to obtain the characterization of the optimal quantizer
through .

The asymptotic expression for I, was already developed above and it is given by (4.16)

)\ 2
1 (7853(5’ )) f(y;z)
~ 12N? 22 (y)

I, ~ 1. dy.

We need now to develop an asymptotic approximation for the entropy H,. Using the Taylor
series development for PP (i, ) given in (4.10) in the expression for H, (4.21), we have

S (yy) A 3 () A 3

Separating the factor f;A; inside the logarithm, using the Taylor expansion for log, (1 + x)
and multiplying the terms in the resulting expression gives

Ny

Hy=— Z [fiAi log, (fi) + fililogy (A;) + o (Af)} ‘

=1

2We have supposed in the Introduction that efficient channel coding is used, so that we can assume no-error
transmission for rates below channel capacity.
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Using the interval density A; = ﬁ in the term with log, (4;) leads to

Ny

Hy == [filhilogy (f;) — fildilogy (\i) — fiA;logy (N7) + o (AZ)] .

=1

When Ny is large and A; are small, the sums can be approximated by integrals

Hy~ — / £ (5 2) ogy [f (v 2)] dy + / £ () logy [A (v)] dy + logy (N7)

Ny
where for obtaining the term log, (N7), we used the fact that > f;A; is asymptotically close

=1
to one as it is approximately the integral of the PDF. The integral — [ f (y; z)log, [f (y; z)] dy
is known [Cover 2006, p. 243| as the differential entropy of the r.v. Y, therefore, from now on
we will denote it h,

Hy~ hy + / £ () logy [A (4)] dy + logy (N7) (1.22)

For large N, using the integral in expression (4.16) and the approximation of the entropy
(4.22), we can define the following optimization problem

0S¢ (y;x 2 X
minimize ( a(;j )) f(y; ) d
wr.t. A(y) N2 (y) 4
subject to [ () lowy A (0)] dy < R Iy —log, (N
/A@NMZL
Ay) > 0.

The solution for this problem can be adapted from the development presented in [Li 1999].
First, we define the function p (y)

() s
p(y) = I (%5;@)2]0@;@ ay

then the integral that must be minimized can be rewritten as

c\y;x 2 .
J O o (] (250 ) [ 200

where we note that only the second factor depends on A. Thus we can redefine the optimization
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problem as
minimize / M dy.
w.r.t. A(y) A2 (y)
subject to [ £ (i) lowy A (0)] dy £ B Iy ~ log, (M),
/ Aly) dy =1,
A(y) > 0.

To find the optimal A\, we take the logarithm of the integral to be minimized

logy [ fg((yy)) dy] = log, [ / /\g(j)(mf (y; ) dy}

and we apply Jensen’s inequality (the logarithm is a concave function)

log, U Ag(ylg(ﬁzy;x)f(y;x) dy} > /10g2 [AQ(;;(J%] f(y;z) dy,

now we exponentiate both sides of the inequality

p(y) . flng % fysx) dy
/)ﬁ(y)f(y;x)f(y’x) dy > 2{ [ W) f (v; >] } (4.23)

To obtain equality in the Jensen’s inequality the term in the argument of the logarithm in
the RHS of (4.23) must be a constant, thus

W) 1 (BSc(y;w))2 2
ry |? dy
)\*(y)o( |: :| 95 () 3 )
J(2552) f (s w) dy
Integrating the constraint that A (y) is a PDF makes the constant in the denominator of the

expression above to disappear, thus giving

0Se(ysz)
Jy

[ ‘ 9Se(y;x)

M (y) = (4.24)

oy dy

The exponential in (4.23) can be written as a function of the rate constraint. We multiply
the rate constraint by —2 and we add h, in both sides. We have

1
/log2 [)‘2(9)10(%5’3)} [ (y;z) dy > —2R + 3hy + 2log, (V7).

Finally, we add [log, [p(y)] f (y; ) dy to obtain

J1o8 |55 20| i) dy = —2R-+3m, + 2108, () + [ o 0] () <iy§5>
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The integral in the RHS of (4

10%2{ 8( } (y; ) dy+/10gz Lf (y;2)] f (y;2) dy
) 2
/ogg{ ) f(y; ) dy}f(y’;w) dy’

= logQ{ }f(y;w) dy — hy
L)\ 2
—logz{/ <asca<§’ )> f(yi2) dy}-

Substituting the expression above in (4.25) and the result in (4.23), we obtain the minimum

/ logy [p ()] f (y;2) dy

value of the integral in the optimization problem. This value is

2—2{R hy— [ o, [| 25522 ] f(yia) dy+g1og2{f(—85g;w))2f<y;x> dy}—log2(N1)}

Substituting this value in the approximation of the FI, we get

Iq ~ Ic _ 1122_2{R_hy_f10g2 H%ﬁm ]f(yﬂ?) dy}‘ (426)

Notice that again here the FI for quantized measurements tends exponentially to the FI for
continuous measurements, the exponential decay rate is sensible to the randomness of the
continuous measurements and to the derivative of the score function. The difference in the
quantizer characterization w.r.t. to the fixed rate encoding scheme is that now the interval
density is dictated only by the derivative of the score function, we must put more intervals
around values of Y that have a larger score function variation.

Observe that the quantizer interval distribution may depend also on the true parameter
value, as the score function may be a function of it. Thus, similarly to the fixed rate scheme,
it will be necessary to set adaptively the thresholds. The main problem now is that we need
to know the quantizer outputs probabilities to encode the outputs with their proper length,
however as we do not know completely the measurement distribution, we cannot encode the
words properly. As a solution, we can also use an adaptive solution for encoding, using as
distribution for encoding, the distribution with the most recent estimate of the parameter.
The problem with this solution is that we cannot encode correctly at the beginning of the
adaptive estimation procedure, we will be penalized in terms of average length in the initial
part of the procedure and as a consequence we will not respect the rate constraints. Thus,
this solution is still not complete. Further work will be necessary, we can try to quantify the
increase in rate at the beginning of the estimation procedure or we can try to find an encoding
scheme with variable rate that quantize the measurements properly, without knowing the true
parameter value.

4.1.6 Estimation of GGD and STD location and scale parameters

We will apply the results given in solution (cl) (p. 186) for obtaining the approximately
optimal quantization thresholds for estimation of location and scale parameters of the GGD
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and the STD. Notice that even if their support is unbounded, as in standard quantization
theory, it is expected that the error caused by neglecting the extremal regions (overload
region) will be small.

Results for the estimation of a GGD location parameter

The first step for obtaining the approximately optimal thresholds is to evaluate the optimal
interval density given by (4.18). Thus, we start by calculating the derivative of the score
function w.r.t. x and y. Differentiating the logarithm of the GGD PDF (1.39)

)

B—2

Yy—x

e B Y=
f(y’x)_%r(é) p( ‘ 5

for 5 > 1, we obtain
0S¢ (ysx) _B(B-1)|y—=
oy 52 o

Note that for § < 1, which includes the Laplacian case, the score function is not differentiable

at x. Thus, we cannot evaluate the interval density for these cases. For 8 > 1, evaluating the
1
power % of the expression above and multiplying it by f3 (y; ), we have the following interval

Yy— 2[33_4 1l |y—=x B
45| eXp(‘ﬁ‘a‘)
gGD (y) = C ’ (4'27)

where C' is a constant normalizing the density. Using the symmetry of the density, this

density:

constant can be evaluated as the following integral:

e 2w 1 B
B y—x l/ly—ua
C—Z/( 5 > exp[?)( 5 >]dy

T

An expression for this integral can be obtained by using the change of variables ¢ = % (%)ﬁ
and identifying the resulting integral factor with the gamma function. This gives

C= 25(53§(2‘é)r [; <2 - ;)] :

Now, we can obtain the CDF related to the interval density. Exploiting again the symmetry
of the distribution, we can obtain the CDF by integrating the PDF only for values of y larger
than x. Also, by using the same change of variables used above for calculating C, we get

1 1) 1|y=z|f

. 1 sign(y—x)’y{g(z_B)?E‘%‘}
FA,GGD(?J):§+ 9 F[1<2 ; .
T

Using the inverse of this function we can obtain the approximately optimal thresholds (4.20).
Forie {1, ---, Nr}

2 1 1
TrGap = © -+ dsign (NZI — 1> {37_1 {3 <2 — ﬁ) ,

1

Rl e
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where 471 {.,.} is the inverse incomplete gamma function.

The interval densities for three GGD (8 = 1.5, 2 and 2.5) are shown in Fig. 4.1.

N I p—
'\ | —— B = 2 (Gaussian)
i B=25

Figure 4.1: Interval densities for the estimation of a GGD location parameter. The GGD
shape parameters are § = 1.5, 2 and 2.5. Both axis are normalized to have plots independent
of z and §.

A few remarks can be done based on the results above:

e in Ch. 1 we saw that the binary quantization is optimal for the Laplacian distribution, as
long as the quantizer threshold is placed at the true parameter. This singular behavior
might be related to the difficulties on defining the optimal interval density in this case.

e Observe that for 1 < g < 2 (see Fig. 4.1 for § = 1.5), the interval density tends
to infinity at zero showing the importance of quantizing around this point for these
distributions.

e Notice that within the subclass of GGD for which the density at x is finite, the Gaussian
distribution is the distribution with the lower 5. Notice also that for 8 > 2 (see Fig.
4.1 for B = 2.5), the maximum of the interval density is not placed exactly at zero,
showing that a possible relation might exist between the multimodality of the threshold
distribution and the asymmetric behavior of optimal binary quantization. It shows also
that the Gaussian distribution is exactly between two subclasses of the GGD family, one
subclass for which quantizing around the true parameter is very informative (1 < 8 < 2)
and another subclass for which quantizing symmetrically around the parameter, but not
at the parameter, is informative (5 > 2).

e Observing the symmetry of the interval density we can see that, asymptotically, the
best quantizer is symmetric around the parameter. Thus if we choose N; to be a large
even number, the optimal central threshold might be placed at z. For § > 2, if we
have a moderate odd number of quantization intervals, the interval density indicates
that the optimal quantizer will be probably asymmetric, as we will have to place more
quantization intervals around one of the modes of the interval density.
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Results for the estimation of a GGD scale parameter

We evaluate now the derivative of the logarithm of f (y;d) function w.r.t. 6 and y. This gives

957 (y;0) _ B o

y 82

y—x
0

Differently from the location problem, the derivative above exists for all positive 5. Using this
derivative and the expression for f (y;d) in (4.18), we have

y—a exp (=1 |¥=2|?
V)= 2 C< da ), (4:29)

28—2
3

where the normalizing constant can be obtained using the symmetry of the numerator

e w2 1 B
B y—x 1 /fy—x
C—2/< 5 ) exp[g( 5 )]dy.

xT

Changing the variables ¢ = % (%)B and using the gamma function for rewriting the result,

we get
el ()]
C==33\"8T|-(24+=]]|.
g 3 g
Using again the symmetry and a similar development as it was done for obtaining the CDF
for the interval density of the location problem, we have

1 1) 1|y—z|(B
5 1 sign(y—x)’y[g(Q—'_B)’E’%‘}
Feap (y) = 5 + 5 - [1 <2+ . .
F(2+3))

Its inverse gives the threshold approximation. For i € {1, ---, Ny}
1

T:gGD = x + Jsign (]3;] 1> {37_1 {:13 <2+;> ) ]%TZ] — 1’F [:13 (2+;)]}}ﬁ (4.30)

The main differences w.r.t. the location parameter case is that, now, it is the Laplacian

distribution that is in the border between the distributions for which x is a very informative
point and the distributions for which most of the information is around = but not at x. Note
also that the interval density is still dependent on §, thus, as it was said before, for placing
optimally the thresholds, an adaptive scheme is necessary.

Results for the estimation of a STD location parameter

Using the STD PDF (3.72)

) — F(%> L (y—= I
f(yvl’)—é\/ﬁ?F(g) 1+5< >] )
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the derivative of the score function is

oSy (y;z)  B+1 {1_ % (%)2}
o P e

Replacing this expression and the PDF expression above in the interval density (4.18), we

obtain
_ 1 (y=z)?
g‘TD(y):é [1 6( ° 2}9% (4.31)
EEICSNN

The constant C' and the corresponding CDF cannot be expressed analytically, with known

2
3

special functions. For obtaining a general expression for the thresholds, it might be necessary
to use numerical integration of the density for each y and then invert an interpolation of the
numerical integration.

In the special case of a Cauchy distribution (8 = 1), we can evaluate analytically the
constant in the density and the CDF. For this distribution the interval density is

y—x\2
\E () = éw (1.32)

1+ (5]

win

wiot

From the symmetry, the constant is

Wi

Cﬁjﬁ%wﬂs
2 (57

Using the change of variables tan (%) = %52, we obtain

=i o (8) - (2)] 2 [t

where the second equality was obtained using a relation between trigonometric functions and
the periodic pattern of the resulting function in the interval [0, 7). Using another change of
variables u = cos? () and identifying the resulting integral factor with the beta function, we

have L s
C=6B|(=,-].
(30)
Exploiting the symmetry of the interval density and using a similar development, we can
obtain the CDF related to the interval density

dé

T

—
ol

¢
sien (y — x f[cosz(e)
oW =+ =0
bR

(e[S}
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with ¢ = 2arctan (’yg—x’) Using again the change of variables u = cos? (), we can rewrite
the integral above using the incomplete beta function

Transforming ¢ into the initial variable, we have the following CDF

xS {0 (6

NI RIRPIEE:

2 > 6> ”{«T)} @Z)

Inverting the CDF we can obtain the approximate expression for the thresholds. For ¢ €

g _ . N
{1, -+, Ny} and i’ =i — 3£
( 1— | 171 (l é)
()0
. y 26 Ny y 1
x + dsign (i) — —, when [i/| < g,
1+ |1 s i (5’5)
B(1 g)<17 . >
TG = (4.33)

14 (171

x + dsign (i) ,  when [|{'| > 1,

where [ 3 )1 (v,+) is the inverse incomplete beta function.

An interesting point on the optimal interval density for the estimation of a location pa-
rameter of the STD is that it equals zero exactly at = &+//39 indicating that around this point
not much statistical information can be obtained about the location parameter. If we observe

the score function we will see that it is a function with "~"

shape, the zero derivative point is
then related to the maximum and minimum of the score, in a practical sense, the points larger
than the maximum and smaller than the minimum can be seen as outliers, so for estimation
purposes we might not be interested in quantizing around the transition point. Note however
that from a threshold placement point of view, the only practical way of having a zero interval
density at this point is by placing a threshold at it, therefore in practice, we are interested in

knowing if the measurement is an outlier or not.
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Results for the estimation of a STD scale parameter

For estimating the scale parameter of the STD, we have the following derivative of the score
function

952 (y;0)
0y

= 2 (B+1)

This leads to the following interval density

1 Yy—x
s _ 1 B (%5%)
Asrp (¥) = c ,

, (4.34)

with C given by

C=2 5
e [
1

s

C:\/B(SB<5 M).

Using a change of variables ¢ = [ )2] and identifying the resulting integral with the

beta function, we obtain

6 6
Exploiting the symmetry of the interval density and using the previous change of variables,
we have the following CDF related to the interval density

5 B+ 5 p+4
53580 -1 (259

1  sign(y —x) 1+4 (452
6 _ - AN
6° 6
For i € {1, ---, Ny}, the approximately optimal thresholds are then given by

1

~1 2
T:STD:x—i—(Smgn <NI_1> ﬂ{IB(g,ﬂg‘*)(l— %—1’) <6’6 —pBr . (4.35)
I

Note that similarly to the GGD scale parameter estimation case, the point z is not very
informative. Most of the quantizer intervals must be placed around x but not very close to x.

4.1.7 Location parameter estimation

To check the results, we will now focus on location parameter estimation.

First observe that using the normalized form for the PDF f (y;z) = % I (%), we can
rewrite the interval density given by (4.18)

win

() o [32log A (ygw)]r [1fn <y—x>]é . 42 (552) = fa Si)fn (4]

Oyox fn (555) ’
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where f,(Ll) and f,(f) are the first and second derivatives of f,, w.r.t. its argument. For a f,
with even symmetry, f,sl)2 is even, f}(f) is even and consequently A\* (y) is symmetric around
2. This means that for large Ny, the optimal quantizer is symmetric around x, indicating
that, asymptotically, the asymmetry of the optimal quantizer for binary quantization under
some distributions (Subsec. 1.3.4, p. 48) might disappear.

The asymptotic approximation of I, given by (4.19) can also be rewritten using the nor-

malized PDF
3

Ry 1020 - a0 12 )

— d 4.
2 BT Ja (© o (436)

where I, is the FI for estimating a location parameter when § = 1. Note that the FI approx-

imation can be written as N(é];"), where k is a functional depending only on the normalized

PDF and independent of x and é. Therefore, we can have a characterization of the optimal
estimation performance based on quantized measurements for a family of distributions with
different ¢ and = only by evaluating & (f,).

FI for the Gaussian and Cauchy cases
We will check the results using the Gaussian (GGD with 8 = 2) and Cauchy (STD with 8 = 1)
distributions.

For the Gaussian distribution, the interval density (4.27) and the asymptotic approxima-
tion of the FI (4.18) are given by

N () = ~——exp [_ (7 xﬂ | fom g [-mAT )
53w V36

We can note that the interval density in this case is exactly the same as for standard quantiza-
tion (proportional to f %) Thus, in the Gaussian case when Ny is large, the optimal quantizer
for estimating the location parameter and for recovering the continuous measurement is the
same. This coincidence between the optimal quantizer for estimation and for reconstruction
happens whenever the score function is constant. In the location parameter estimation case,
this happens only for the Gaussian distribution. If we look to the scale parameter case, this
will happen for the Laplacian distribution.

Observe also that if it was possible to implement the variable rate encoder in the Gaussian
case, then the optimal quantizer would be a uniform quantizer and it would coincide with the
optimal variable rate quantizer for reconstruction which is uniform [Gersho 1992, p. 299|.

For the Cauchy distribution, the interval density (4.32) and the asymptotic FI approxima-
tion are the following:

)\Jé(y):(SB(, ; lyo™ 553 |1~
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To evaluate the validity of the results, the FI (4.3) under both distributions for 6 = 1 was

evaluated for

e the optimal set of thresholds for Np € {1,2,3}. The optimal thresholds were obtained
through exhaustive search. For Np € {4,5,6,7,8} the theoretical results (4.37) and
(4.38) were used as an approximation.

e uniform quantization considering Np € {1,---,8}. After setting the central threshold
to z, the optimal quantization interval step-length A* was found by maximizing the FI
also using exhaustive search.

e the approximate optimal set of thresholds given by (4.28) and by (4.33), for Np €
{1,---,8).

The results are given in Tab. 4.1.

Gaussian (I3, = 2) Cauchy (I7,, =0.5)
. ] Practical ] . Practical
Np Optimal Uniform Optimal Uniform
approx. approx.

1 1.273239541 - 1.27323954 || 0.40528473" - 0.40528473
2 1.76503630T  1.76503630 1.75128300 || 0.434338967 0.43433896 0.40528473
3 1.93090199"  1.92837814 1.92740111 || 0.484748657 0.45600797 0.47893785
4 1.97874454*  1.97841622 1.98038526 || 0.49533850* 0.48136612 0.49504170
5 1.99468613*  1.99353005 1.99489906 || 0.49883463* 0.49204506 0.49879785
6 1.99867153*  1.99807736 1.99869886 || 0.49970866* 0.49656712 0.49970408
7 1.99966788*  1.99943563 1.99967136 || 0.49992716* 0.49851056 0.49992659
8 1.99991697* 1.99983649 1.99991741 || 0.49998179* 0.49935225 (0.49998172

Table 4.1: FI for the estimation of Gaussian and Cauchy location parameters based on quan-
tized measurements. Npg is the number of quantization bits. In Optimal’ the maximum
FI obtained by exhaustive search of the thresholds is shown. Optimal* is the theoretical
asymptotic approximation of the FI. Uniform shows the value of the FI for optimal uniform
quantization and Practical approx. gives the FI for the practical approximation of the
asymptotically optimal thresholds.

In all cases the fast convergence to the continuous FI with increasing Np is verified. Again
here, 4 or 5 bits are enough for obtaining an estimation performance close to the continuous
measurement performance. The difference of performance between uniform and nonuniform
quantization seems to be higher for the Cauchy distribution. In the Gaussian case, this
difference is negligible, indicating that in practice uniform quantization should be used (as it
is easier to implement). It can also be observed that the asymptotic approximation of the FI
and its true value for the practical approximation of the optimal threshold set are very close,
even for small values of Ng (Np = 4).

Verification with the adaptive algorithm

As it was pointed out before, an important issue for evaluating the practical approximation
of the optimal thresholds 7 is that they depend explicitly on . Thus a possible solution to,
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at the same time, obtain an estimate of the parameter and set the quantizer thresholds is to
use the adaptive algorithm proposed in Ch. 3

- A 1
X = X —n (7
k k 1+qu77(11<:)7

with the threshold variations set 7/ given by the practical approximation 7* with x in (4.20) set
(e yiw)—f(rti0)
F(T;;I)fF(T,Z:l;CE)
variance of the algorithm will be close to optimal and it will be given approximately by

to zero and 7 (ix) given by n (i) = — . If Ng > 4, for a large k, the asymptotic

Var [Xk} ~ CRB, = (4.39)

A

where I, is the asymptotic approximation given by (4.19).

This algorithm was tested under both distributions for Np = 4 and 5. The MSE for the
algorithm was evaluated using Monte Carlo simulation, 4 x 105 realizations of blocks with
5 x 10* samples were used. The initial error z — Xo and & were both set to be 1 in all
simulations. The MSE for the algorithm and the approximation given by (4.39) are both
given in Fig. 4.2, where they are multiplied by k for better visualization.

T LA T T T T TTIT] T LA T T T T TTIT] T T T
2
x 10703
=
[9p]
=
—— Algorithm
10—0,35 Lol Lol L1 [T T TTITIT T |
10° 10 102 103 104
Time [k]
(a)
1T T TTTTIT I T T UL T T T T T T 1
--- CRB,
& 10935 1 Algorithm h
X
A
Ll Ll Ll Ll L1
10° 10 102 10® 10*
Time [k]
(b)

Figure 4.2: Simulated MSE for the adaptive algorithm considering Gaussian (a) and Cauchy
(b) measurement distributions. The numbers of quantization bits are Ng = 4 and 5. The
initial estimation error and § were set to 1 in all the cases. The simulated MSE was obtained
through Monte-Carlo simulation, 4 x 108 realizations of blocks with 5 x 10% error samples were
used. The curves that have asymptotically higher values correspond to Ng = 4.
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We observe that the asymptotic algorithm performance is very close to the approximation.
For small k£ the CRB is not tight and that seems to be the reason for the algorithm to
perform better than the bound. In other simulations, it was also observed that using uniform
thresholds leads to faster convergence to the asymptotic performance. This indicates that in
practice an algorithm with changing thresholds can be used for obtaining better results. In the
convergence phase, a uniform set of thresholds is used, then after a given number of samples,
the thresholds change to the approximately optimal set.

4.2 Bit allocation for scalar location parameter estimation

The objective now is to solve problem (d) (p. 175). We have Ny sensors measuring indepen-
dently the same location parameter x and the continuous measurements from one sensor to
another have all the same noise type with normalized PDF f,,. The only difference between
the noise distribution from one sensor to another is the scale factor. For the Ny sensors, the
scale factors are denoted {d1, ---, dn,}. Each sensor i quantizes its measurements with a
number of bits Np; such that the total number of bits among the sensors is constrained to be
Np. The objective then is to find the allocation of bits {Np 1, ---, Npn,} that maximizes
the estimation performance.

The estimation performance for unbiased estimators in terms of variance can be character-
ized asymptotically by the CRB, which is related to the inverse of the FI. Thus, by maximizing
the FI, the asymptotic estimation performance is maximized. As the sensors measurements
are independent, the FI for the measurements from all the sensors I, is the sum of the FI
I, (Np,;) for each sensor

Ns
Iy = Zlq,i (NB.i) (4.40)
=1

where we made explicit the dependence of the FI for each sensor on the allocated number of
bits.

We will assume that the thresholds can be chosen so that I, ; (Np;) is maximum. This
can be done for example by using the adaptive algorithm with decreasing gain to set optimally
the central threshold and then by choosing optimally the threshold variations. Thus, we want
to solve the following optimization problem:

. . NS
maximize
w.r.t. Np; Iy = z;fq,i (NB,i)
iz
N
subject to ZNB,i = Np,
i=1

NB,i € N:
where I, ; (Np,) is the maximum FI for Np ;.

This problem can be solved exactly by evaluation of I, for all possible combinations of
the Np;. The numbers of allocated bits Np; can assume values from 0 to Np but their sum
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must be Np. Therefore, the Np; form a weak composition of Np into N parts. The number
N+ Ns—1 > _ (Np+N.—1)!

N, —1 = N.—1)INg!
problem for Ny = 20 and Np = 100, then the number of possible allocations that we have to
compare is approximately 4.9 x 10?!, which indicates that in practice the exact solution for
this problem is difficult to be obtained by exhaustive search.

of possible allocations is ( . If we have to solve the allocation

4.2.1 Unconstrained numbers of bits

If we neglect the constraint that Np; must be a non-negative integer and we suppose that
the asymptotic approximation of I, (4.36) is valid for all real Np;, then we can define a
maximization problem that can be solved analytically. Using the approximation (4.36), we
have that the total FI can be approximated by

2 3
N e M LG R ACERGCI A »
q~ g 5712 en 12 / fn (E) € . ( . )

Ns —ang
Maximizing the approximation in the RHS of (4.41) is equivalent to minimizing 26723’ as

=1
I7,, and the integral are constants if all the sensor noise types are equal. Thus the relaxed
form (without the integer constraints) of the bit allocation problem is the following:

minimize N: 9-2Npi
w.r.t. Ng; 62 7
' i=1 i
NS
subject to ZNB7i = Np.
i=1

We can solve this optimization problem by integrating the constraint in the function to be
minimized using a Lagrange multiplier. The Lagrangian (the function to be minimized) for
this minimization problem is

Ns 9—2Np, Ns
EZ 2;612 +)\ (z;NB,i>_NB]7

where A is the Lagrange multiplier. As the function is convex (it is a sum of negative expo-
nentials plus a sum of linear terms), the zero gradient point of the Lagrangian w.r.t. the Np;
gives a global minimum. The derivative of the Lagrangian w.r.t. Np; is

oL  —2In(2)2 Ve
ONp; 5?

(2

+ A,

which is zero for

_ log, [zln(é)] .

Np; = = (4.42)
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To find A it is necessary to use (4.42) in the sum constraint

Nglogy (A) — Nslogs [21n (2)] 4 2 [% log, (51)]

ZNB,i: 9 =1 :N37
thus,
Ng 2 [&
logy () = =2 . +logy [21In (2)] — N [; logy (61)] . (4.43)

Using (4.43) in (4.42) gives

Np  logy [2 In (2 1
Nj Ns

Z logy (6 ] log; (6

N log, [21n (2)]

NB,i = Z 10g2 ] — ].Og2 (52) + 9

NB
Ns

which can be rewritten as

Np 0;

N, log [ =
) N1 6
=1

This is a correction on the uniform bit allocation that depends on the weight of the distribution
scale parameter in the geometric mean of the scale factors.

Np,; = (4.44)

Note that the approximate allocation depends only on §; and no other information about
the distribution is required. In practice we can estimate d; for each sensor with an arbitrary
allocation and then we can use the estimates in (4.44) and round the results in a proper way
for obtaining for obtaining integer Np ;.

If we use the approximate solution from (4.44), we obtain

T ol 1 K/ (fn) al 272NB’1.
o ()| 4 [ -

(

. (=1 K (fn) J o= 2 AR
el e

=1 =1 7

Iy

%

[

.

N;
[HM (5%7 Tty 5]2\75) 12 GM (5%’ e

I(Q:Cn ! n 2_2NB
: K (fn) = )] 7 (4.45)
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Ns
where HM ((5%, cee (5]2\,) = NL and GM (5%, cee 5]2\,) = M1 (5? are the harmonic
R S i=1
1=1 671
and geometric means of the squared scale factors, k' (f,,) is the integral factor in (4.36) and
N = NT? is the number of allocated bits per sensor that would be obtained if we had used a

uniform bit allocation.

If we compare this result to uniform bit allocation

Ns Iz k' (fn)2—2N3:|

Ig~ HM (5%7 . 5]2\[3) on 12

Y

we can verify that, as the geometric mean is larger than the harmonic mean, the approximate
optimal bit allocation performs better than or equal to the uniform bit allocation.

If it was possible to implement this allocation scheme, an interesting point for future study
would be to study the influence of the variability of the precision of the sensors 5% on the

estimation performance. This might be done for example by considering that the 5% are i.i.d.

r.v. with a given distribution (a gamma distribution for example) with known parameters, then
by assuming large N, for a fixed N, we can apply the law of large numbers to the harmonic
and the geometric means in the approximation of I, (4.45) to obtain a characterization of the
approximately optimal FI as a function of the parameters of the precision distribution. This
approach, even if approximate, might give some insight on the performance of estimation of
asymptotically large heterogeneous sensor arrays under communication rate constraints.
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We have the following solution to problem (d) (p. 175):

Solution to (d) - Unconstrained approximate optimal bit allocation
for location parameter estimation

(d1) For i € {1, ---, N;}, the approximate optimal bit allocation is
given by (4.44)

N, 0
Np;=-2 — -

N TR T
KIS
j=1

Appropriate rounding can be used to obtain Np; € N.

e For the approximate optimal bit allocation, the FI is given by

(4.45)
Ien A (fa) 27N
Iq~ Ns 2 2\ 2 2 ’
HM (53, -+, 0%,) 12 GM (83, -+, 0%)
where [7, is the continuous FI for ¢ = 1, «'(fn) =

(1)2 (2) % 5
| PP e-h@2 @)
12 f fn(e)

de| , Np = % is the average number
S

of bits per sensor and HM and GM are the harmonic and geo-
metric means of the scale parameters.
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4.2.2 Positive numbers of bits

For obtaining a more realistic solution, we can constrain the numbers of bits to be nonnegative
reals. This gives the following optimization problem:

minimize Ne, 9=2Np,i
w.r.t. Ng; 62
’ i=1 i
N
subject to Z Np; = Np,
i=1
Np;i > 0.

The Lagrangian is the same as for the unconstrained problem. Using the zero gradient
condition, we have
log [7/\5? }
2 [ 2In(2)
NB; = — 5 =V~ log, (6;) ,

where v is a constant to be chosen. Note that the positivity constraint imposes the following
form for Np;
Np; = [v —logy (6], , (4.46)

with [z], = max (x,0). The sum constraint gives

N N
> Npi=> [v—1log,(6)], = Ng. (4.47)
=1 =1

Thus, the constant v is chosen so that (4.47) is satisfied and then the number of bits can be
chosen according to (4.46). Again here, appropriate rounding might be used to obtain integer
numbers of bits.

Observe that this approximate bit allocation is equivalent to water-filling, a common so-
lution to allocate power to carriers in multicarrier modulation. The main difference is that in
this case the channel noise is replaced by log, (0;) and the "water depths" are the number of
bits instead of the power levels.

In Fig. 4.3, both water-filling solutions are shown, for power allocation in multicarrier
systems and for approximate bit allocation in constrained rate sensing systems.

When the §; are also unknown, we can mix the two extensions of the adaptive algorithm
with decreasing gain presented in Ch. 3 (fusion center + joint estimation of the scale) to have
estimates of the scale parameters. Then, we can use the estimates to obtain the approximate
allocation. In practice, the value of v can be evaluated at the fusion center and broadcasted to
the sensors with the location parameter. The sensors can use the broadcasted v with a local
estimate of the location parameter for obtaining the optimal Np ;. The critical point with this
approach will be the final rounding step, which will require an agreement (and consequently
communication) between the sensors to respect the total bandwidth constraint.
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Noise Total "water volume"
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Figure 4.3: Both water-filling solutions for multicarrier modulation power allocation (a) and
for rate constrained sensing system bit allocation (b).

This gives the following solution to problem (d) (p. 175):

Solution to (d) - Constrained approximate optimal bit allocation
for location parameter estimation

(d2) For i € {1, ---, N;}, the approximate optimal bit allocation is
obtained by choosing v so that (4.47) is satisfied
N, N,
ZNB’i = Z[y—logg ((SZ)]Jr = NB.
i=1 i=1

With the value of v satisfying (4.47), the numbers of bits can
be obtained using (4.46)

Np;i = [v —logy (6;)], -

Integer Np; can be obtained with appropriate rounding. The
corresponding FI can be approximated by substituting the op-
timal Np; in (4.41).
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4.3 Generalization with the f-divergence

In this section, we will discuss a generalization of the asymptotic results to different inference
problems. The generalization that we will study is based on the generalized f—divergence
(GFD), which is presented in [Poor 1988]. The objective of this section is to show the main
differences between the asymptotically optimal quantizers for different inference problems.

4.3.1 Definition of the generalized f—divergence

The GFD is a generalization of the f-divergence (also known as the Ali-Silvey distance)
studied in [Ali 1966] (cited in [Poor 1988]). For a continuous r.v. Y, the GFD Dy is defined
as

Dy =E{fL(V)]}, (4.48)

where [ is a measurable function and f is a continuous convex function. For a quantized
measurement, ¢ from Y the GFD is defined as

Dpq=E{f{Eyi l()]}} =E[f (q)]- (4.49)

Developing the conditional expectation and supposing that Y accepts a PDF p(y), we can
rewrite (4.49) as

Ny
Dyg=Y fg)P (i), (4.50)
=1
where
P (i) = /p(y) dy, (4.51)
and Z

Jiw)p(y) dy
J

lys =

T Wy 52

4.3.2 Generalized f—-divergence in inference problems

The performance of some important inference problems can be written as a function of the
f—divergence. Three examples are given below.

Classical estimation

For classical estimation, we want to estimate a deterministic parameter x embedded in noisy
independent measurements Y7.. The quantized version of this problem is the main problem
treated in thesis.

Under some regularity conditions, we know that the asymptotic MSE of the optimal un-
biased estimator of x attains the CRB which is given by the inverse of the FI. The FI for N
independent measurements is given by N times the FI for one measurement.
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If we look to the forms of /. and I; we can see that the FI for one measurement is a GFD
with I (y) = S. (y;2) and f (1) = [?. Therefore, the GFD is directly linked to the asymptotic
performance of classical estimation.

Bayesian estimation

Consider that instead of estimating a deterministic parameter, we want to estimate a random
parameter X based on a noisy measurement Y.

From Ch. 2 (2.7) (p. 78), we know that MSE = Ey [Vary)y (X)], which can be rewritten
as Ey {EX‘Y (XQ) — Eg(ly (X)} This gives

MSE = E (X2) - Ey [}y (X)].

This function is decreasing w.r.t. the second term, which is a GFD. Proceeding similarly for
the quantized measurement version of the problem, we can conclude that the performance
depends on a GFD with I (y) = Eyjy—, (X) and f () = I.

For N identically distributed measurements, the MSE for Bayesian estimation can also
be rewritten as a GFD, but in this case a generalization to the non-scalar case is needed. In
[Marano 2007], we can find details for this case with a variable rate approach for quantization.
We can also approach Bayesian estimation for N measurements as a sequential single mea-
surement problem, where at each new observation we can use the last posterior as the new
prior. Using this approach for each measurement, the MSE will be given by the scalar version
of the GFD explained above.

Neyman—Pearson detection

We consider now the detection problem. We have N i.i.d. measurements Y;.n. The measure-
ments are all obtained from one of two distributions with PDF pq (y) or p;1 (y). Based on the
N measurements we want to decide from which of the two distributions the measurements are
obtained. The index of the true measurements distribution will be denoted H € {0,1} and
the decision that we make based on the N measurements will be denoted H.

For specifying the performance of the decision procedure we can consider a Neyman—
Pearson strategy [Van Trees 1968, p. 33]. In the Neyman—Pearson strategy, we set an upper
bound on the probability of deciding H =1 when H = 0 to a fixed constant o and the
performance of the decision procedure is given by the minimum probability 8 of deciding
H =0 when H = 1. When N is asymptotically large, the limit of 5 can be characterized
using Stein’s lemma [Blahut 1987] (cited in [Gupta 2003])

Nlirﬂwﬁﬁ = exp{—Dxz [po (v) llp1 ()]},

where Dgr, [po (y) ||p1 (v)] is the Kullback—Leibler divergence (KLD)

Dict oo () lo1 )] = [ o )10 [?’ 83] dy.
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For quantized measurements, a similar theorem can be stated by replacing pg (y) and p; (y)
by the corresponding probabilities of the quantizer outputs. Therefore, for this problem, the
KLD is the criterion to be maximized to increase detection performance. If we take the
opposite of the KLD, we can see that it is a GFD with [ the likelihood ratio I (y) = z?gzg and
f (1) = —log(l). The expectation in the GFD in this case is evaluated w.r.t. the probability

measure for H = 0.

Detection of weak signals

We can also consider the detection of a low amplitude signal. We follow a similar presentation
as in [Poor 1988]. For this problem, the Yy for k € {1,---,N} are i.i.d. and distributed
according to p (y;) or p (y; — Ox;), where p is the noise marginal PDF and x; is a known signal

_ N
with finite average power z2 = % > xz If we consider a large number of measurements
k=1

N — oo and small signal amplitude § — 0, then the performance of the optimal detector in
terms of 8 in the Neyman—Pearson strategy is related to the efficacy

2

dp(y) 2
- d _ 5 [ [dlogp(y)]
p—wQ/ p(?/) p(y) dy—wQ/{dy} p(y) dy.

When this quantity is maximized, we maximize asymptotic detection performance. Note that

the integral factor is exactly the FI for estimating a location parameter of the PDF p. Thus in
dp(y)

this case, the inference performance can also be written as a GFD with [ (y) = pf(lz) = dlo%[g(y)]
and f (1) = I2.

4.3.3 Asymptotic results

Similarly to the asymptotic development for the FI, we will write asymptotic approximations
for the loss of GFD incurred by quantization. After obtaining the asymptotic loss for the GFD,
we will obtain the optimal interval densities for the fixed rate and variable rate encoding cases.

Asymptotic GFD loss

The loss of GFD due to quantization can be defined as

Ny
Lf=Dsc—Dysq=Y Ly, (4.53)
i=1
where Ly ; is the loss for each quantization interval

L= [{F1W)] =7 ()} p ) d (4.5
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For obtaining the asymptotic approximation, we write the Taylor series expansions of [
and p around the central point y; and of f around a point I;

W) l(yy) ) )
Ly) =1+ (y_yi)+27(y_yi) +o(y—ui), (4.55)
(yy)
p() =pi+p" (= v0) + S (=) + oy — v, (4.56)
(1)
PO =it £ g e 12, (4.57)

Using (4.57) and (4.55), the function f [l (y)] on the interval ¢; can be written as

l(yy)

9 (y y’L)

()
@) = i+ 571 (=) + 25 +fi[(55”)2@—%)2]+o<y—yi>2.

2
(4.58)

We use (4.55) and (4.56) in (4.52) to evaluate [,

lg; =

k3

) lgyy)
S+ 8 (v —w) + 5

g5

. (yy)
(y—yi)?+o(y— yi)Q] {pz + 9 (y — i) + 5

(yy)
[ pi + 0 (y —yi) + 15

95

(=)’ +o(y—w)’| dy

(y—yi)?+o(y— yi)Q] dy

1Y) A3

) p2 A?
LipilN; + i 2— T ‘H(y) W 15+ o piTs + o (AY)

Z

(4.59)

(yy)

Pildi + Py A2 +o(A?)
To evaluate f [l,,] we will replace (4.59) in (4.58). We proceed first by evaluating l,, — [;

W) )2 4" A
l_ili_ly pi" 5+ p112+°(A3).

qi

(uy)

pilhi + P35 + o (A3)

Note that I, — [; has a factor A?, thus (l; — )} =o (A?). This leads to

W), (WA 1Y A3
fl ]*f-—l—f(l) lz‘y bi 1 7 Pi13 +O(A?)
qil — Jt i (yy) A3 3
pili +F o o (Az)

o (A%). (4.60)

Now, we will evaluate the two terms in Ly; (4.54). Multiplying the expansion of f [l (y)]
(4.58) by the expansion of p(y) (4.56) and integrating, we obtain

(yy) A3 3 (yy) 3
PZ A ) | ) <)A¢ L7 A
/f y) dy = fipil\i + fi—— +f P Ty TPty
£ w2 AF 3
= () Tepto (A (461)
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Using (4.60) and integrating the expansion for p (y), we get

(yy )A3 AS l(yy) A3
/f )P () dy = fipilA; +f1p’ S AU T4 Tl 4o (). (462)

Subtracting (4.62) from (4.61), we get the loss in the interval g;

Ay A 3
L= (1 ) TPt e (8.

Therefore, the total loss is

Ni [ () 3

_ fi )2 Aj 3

Lf_;[ — (1 ) pito (A7) (4.63)
Similarly to the asymptotic development for the FI, we have
2
FUO L) [ ()] (y)
lim N7L;= — dy. 4.64
Nimvso 1717 24 M2 (y) Y (4.64)
The optimal interval density for fixed rate encoding is then given by
R TONILCIO) REX0)

N () = Y wlry (4.65)

T FO5 ()] 19 ()] p7 () dy

If the PDF of the measurements is completely known and given by p (y), then a similar
development as it was done for the FI leads to the following optimal variable rate encoding

VIOLWIIY W]
SO )] 1) (y)] dy

interval density:

A:?" (y) -

4.3.4 Interval densities for inference problems

We will compare now the different interval densities for the inference problems described
above. In Tab. 2 we give the different functions defining the GFD for each problem and the
corresponding optimal interval density. We also give the optimal interval density for variable
rate encoding, whenever variable rate encoding is possible.
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Inference problem H l(y) ‘ I (1) H N (y) o ‘ Aor () o
Classical estimation Se (y; ) 12 (%j”) * s (y;2) -
Bayesian estimation || Exy—, (X) 12 ((mx'fli;”(x)) P ps (y) dEX‘Ei;y(X)

o | PO(Y) 1
N-P detection g?g; —log (1) {7(“ g[dil%] }3 ps () -
dp(y) 2 2 1 d2 lo [ ( )]
Weak signal detection pf(’z) 12 {%W} "7 (y) %‘

Table 4.2: Functions characterizing the GFD for different inference problems and interval den-
sities maximizing the inference performance based on quantized measurements. The interval
density A\* (y) is the density optimizing the performance when encoding is done with fixed
rate, A¥, (y) is the density for variable rate encoding,.

Notice that for Bayesian estimation and weak signal detection, we give expressions for
the variable rate optimal density. In Bayesian estimation, as we have a prior on the true
parameter, we know the probabilities of the quantizer outputs, thus we can define correct
lengths for the outputs. In weak signal detection, as the amplitude of the signal is small, we
can consider that the encoding can be done approximately by using the noise distribution.

While in classical estimation, we have the effect of the score function derivative, in Bayesian
estimation the optimal interval density is affected by the optimal estimator # = Ex|y—, (X)
function. Note also that, differently from the classical estimation case, where the interval
density is affected directly by the true parameter value, in Bayesian estimation the influence
of the parameter appears only through its prior. Thus even if x is unknown in the Bayesian
case, an optimal quantizer can be implemented in practice?.

Observe that classical estimation for a location parameter with value x = 0 and weak
signal detection have exactly the same interval density. Actually, the performance of weak
signal detection can be seen equivalently as the performance of estimating a small constant
with i.i.d noise and marginal PDF p(y). Thus it is not surprising that the optimal interval
densities are the same.

The optimal density for Neyman—Pearson detection that we have obtained here is exactly
the same as the one obtained in [Gupta 2003] in the scalar case. Note that similarly to Bayesian
estimation, where the sensibility of the key element for inference, the optimal estimator, has
a direct impact on the interval density, in detection, the sensibility of the logarithm of the
continuous measurement likelihood ratio plays an important role. Note also that the log-

likelihood ratio log [Z ?EZ” = log [po (y)] — log [p1 (y)] for two distributions parametrized by z

and x + ¢ with small € can be rewritten using an expansion around z

o5 o (1)) ~ 108 [p1 ()] = o p (y:2)] ~log [p (33 2+ )] = e B LD o )

The optimal interval density is then approximately given by the optimal density for classical
estimation. This makes explicit the link between the density for weak signal detection and for

30ptimal in this case for a given prior, if the prior does not represent well the reality, then the Bayesian
setting is not useful and optimality is meaningless.
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classical estimation.

4.4 Chapter summary and directions

We summarize the main points from this chapter and possible directions for future work:

e We developed an asymptotic high-rate approximation for the FI for quantized measure-

ments. The approximation shows that the FI for quantized measurements tends to the
FI for continuous measurements when the number of quantization intervals tends to
infinity. When the quantizer outputs are all coded with binary words with the same
length (fixed rate encoding), the approximation of the FI tends exponentially to the FI
for continuous measurements as a function of the number of quantization bits.

The asymptotic performance approximation obtained depends on the specific choice of
the quantizer intervals through the quantizer interval density. For fixed rate encoding,
the optimal interval density is shown to depend not only on the PDF through f %, as it
is common in standard quantization, but also on the derivative of the score function.

In practice for finite number of bits, the optimal interval density can be approximated by
setting the quantization thresholds using the inverse of the CDF related to the interval
density. As the CDF depends on the parameter that we want to estimate, a recursive
procedure for joint estimating and resetting the thresholds is necessary for obtaining
asymptotically optimal performance (asymptotic both in N and Ny). For example, we
can use the adaptive algorithms presented in Ch. 3 when we want to solve a location
estimation problem. In general we can use the adaptive MLE approach.

When the length of the binary words are chosen to minimize the mean length of the
quantizer output, the optimal density is shown to depend directly on the derivative
of the score function. The problem with this approach is that not only setting the
quantizer thresholds depends on the measurement distribution, but also the encoding
method depends on it. Even if we can attain the best asymptotic performance by using
an adaptive technique for setting the thresholds, we will not respect the rate constraint
during all the initial time of the estimation procedure, when the parameter estimate is
far from the true parameter value.

The practical approximation of the asymptotically optimal quantization thresholds was
obtained for the estimation of location and scale parameters of the GGD. For the STD,
we obtained the practical approximation in the Cauchy case for location and in general
for scale.

The asymptotic results were tested in the location problem with the Gaussian and
Cauchy distributions. We compared the asymptotic approximation of the FI with the FI
for optimal uniform quantization and with the FI for the practical approximation of the
optimal thresholds. We observed that, with only 4 bits, the FI obtained with the practi-
cal approximation is very close to the asymptotic approximation. We also observed that,
in the Gaussian case, the gain of performance obtained with nonuniform quantization is
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negligible, while in the Cauchy case it is small. This indicates that in practice uniform
quantization might be a better solution, as it requires a lower complexity.

By using the adaptive algorithm, we have shown that the asymptotically optimal results
can be obtained in practice. During the simulation of the adaptive algorithm, it was
observed that uniform quantization leads to faster convergence when compared with
nonuniform quantization. An interesting point for future research is then to study
adaptive algorithms that start with a threshold set optimized for faster convergence and
then change the threshold set, so that asymptotically the performance is also optimal.

By using the asymptotic results, we have obtained approximations for the optimal bit
allocation when we estimate a location parameter using multiple sensors and the total
number of quantization bits is constrained.

The first approximate solution was given by considering unconstrained numbers of bits
(positive and negative reals), the approximate optimal bit allocation is shown to be
a correction on the uniform bit allocation (equal number of bits for each sensor) that
depends on the weight of the noise scale parameter on the geometric mean of all the scale
parameters. The FI given by this approximate optimal bit allocation is shown to depend
on the harmonic and geometric means of the noise scale parameters. An interesting
point for future work is the analysis of the approximate FI for the optimal allocation
when the number of sensors is very large and the sensors scale parameters are random
with a given known distribution. As the approximate FI depends on the geometric and
harmonic means of the scale parameters, by using the law of large numbers, we expect to
obtain an approximation of the FI depending on the parameters of the scale distribution.

The second approximation was given by considering a more realistic scenario, with the
numbers of bits constrained to be positive. The approximate optimal bit allocation is
given by a water-filling solution, which is a well known solution for the problem of power
allocation in multicarrier modulations. For the bit allocation problem, the logarithm of
the scale parameter plays the equivalent role of the noise power in multicarrier power
allocation and the number of bits plays the role of the power to be allocated.

The water-filling solution depends on the scale parameters, in a fusion center approach,
the fusion center can use the estimates of the scale parameters to obtain an approximate
solution. The solution of the problem is mainly determined by only one parameter,
the "water level", after obtaining the approximate "water level", the fusion center can
broadcast it to the sensors so that they can set their quantizer resolution. A problem
that still need to be solved in this case is how the sensors will coordinate their final
choice on the numbers of bits (which are constrained to be integers) so that the total
rate constraint is respected.

As a final point of this chapter, we revisited the asymptotic approximation for the f-
divergence loss due to quantization presented in [Poor 1988|. The objective of this part
was to show that the asymptotic approximation of the FI presented in this chapter can be
seen as a special case of the asymptotic approximation of a general performance measure
for inference problems and to show the links between the asymptotic characterization of
the quantizers for different inference problems.
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We saw that there is a close link between quantization for weak signal detection and
for classical estimation of a location parameter. In practice, as we will use an adaptive
algorithm with static quantizer centered at zero for classical estimation, the quantizer
thresholds for these two problems are exactly the same. The link between Neyman—
Pearson detection and Bayesian estimation is that, for both, the quantizer depends on
the sensibility of their key quantities: the Neyman—Pearson detection optimal interval
density depends on the sensibility of the log-likelihood ratio and the Bayesian estimation
optimal density depends on the sensibility of the estimator.

e Additional to the points for further study presented above many other points can also
be investigated:

— The vector quantizer extension of the asymptotic approximation of the FI can
be considered: vector quantization is the most natural extension of the results
presented here.

— Further study of the Bayesian case: for one sample asymptotic characterization,
we saw that a recursive approach can be used. In practice, this solution may be
too complex to be implemented as we need to evaluate completely the continuous
measurement estimator and consequently the posterior for obtaining the optimal
quantizer at each sample. For obtaining a simple solution, we can consider high
resolution quantizers that are designed to optimize the asymptotic (large number
of samples) performance of Bayesian estimation.

— Dealing with the overload region: a main point that was neglected in the analysis is
that, in practice, most noise PDF that are used for modeling have infinite support.
In this chapter we considered explicitly that the noise PDF have bounded support,
so that it would not be necessary to deal with the overload region. In future work,
we can try to deal with the overload region.

— Asymptotic approximation of the optimal uniform quantizer for estimation: during
all this thesis we considered the explicit optimization through a grid search of the
optimal quantization step in uniform quantization. We can try to obtain an analytic
characterization of the optimal step by considering an asymptotic approach.
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In Part II, we studied the asymptotic performance of estimation of a scalar deterministic
parameter based on quantized measurements. Asymptotically in this case means:

e that the number of samples tends to infinity N — oo, so that we can use the FI to
characterize the estimation performance.

e That the number of quantization bits tends to infinity Ng — oo, so that we can use
high-rate approximations of the FI to determine analytically the loss of performance
induced by quantization.

We obtained the following conclusions:

e The asymptotic loss of performance due to quantization decreases exponen-
tially as a function of the number of bits. The loss of FI due to quantization is
shown to decrease exponentially with increasing numbers of bits. Even if the results are
asymptotic, they indicate that it is probably not useful to increase the sensor quantizer
resolution when a target performance is not met. Probably, it is more reasonable, as we
saw in Part I, to increase the number of sensors, or if it is possible, to increase sampling
frequency and to use sensors with smaller noise amplitude (smaller noise scale factor).

e Asymptotic may be low to medium resolution in practice. Using a practical
approximation of the asymptotically optimal thresholds for finite number of quantization
intervals in the location estimation problem (Gaussian and Cauchy cases), we have
shown that the corresponding FI is very close to the asymptotic approximation of the
FI for numbers of bits as low as 4. For 1,2 and 3 bits the optimal threshold variations
can be found easily by grid search and the central threshold can be adjusted in all
cases with an adaptive algorithm. This means that in practice, for all numbers of bits,
we can set, at least approximately, the quantizer thresholds to have asymptotically
optimal quantization for location parameter estimation under Gaussian and Cauchy
distributions.

A question that still remains unanswered is if this is true in general, for different types
of measurement distribution and for the estimation of other types of parameters.

e Uniform is not bad at all. Although we can use, in practice, nonuniform quantization
of the measurements to have asymptotically optimal performance. The gap between
the performance for optimal uniform quantization and the performance for nonuniform
quantization in location parameter estimation is small. As uniform quantization is easier
to be implemented, it seems that, in practice, uniform quantization may be a better
solution.
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Conclusions

Main conclusions

In this thesis, we have studied the problem of estimation based on quantized measurements,
a problem that has attracted increasing attention of the signal processing community due to
the emergence of sensor networks. More specifically, we treated the problem of estimating a
scalar parameter, either constant or varying with a Wiener model, based on quantized noisy
measurements of the parameter.

We observed that for most commonly used noise models, the estimation performance
degrades when the quantizer dynamic range is far from the true parameter value, indicating
that a good solution can be obtained by adaptively setting the quantizer range using the most
recent estimate of the parameter.

Using the adaptive scheme, the loss of estimation performance due to quantization seems to
be small. For all the tested cases (different noise PDF, constant or slowly varying parameter),
a small loss is observed when we use 1-3 quantization bits and a negligible loss is observed
for 4 or 5 quantization bits. This indicates that the solution of the remote sensing problem
under constrained communication rate is linked to low resolution sensor networks:

e If we consider that the problem is constrained to be solved with a sensor network ap-
proach, then from the results above, we can see that quantization with low resolution is
a solution to this problem.

e If we constrain the problem to be a remote sensing problem based on quantized mea-
surements, then a low resolution sensor network approach seems to be an appropriate
solution.

As the standard estimation algorithms for attaining the small loss of performance have high
complexity, we proposed a low complexity adaptive algorithm that achieves asymptotically the
same performance. Extensions of the algorithm were proposed for the cases when the noise
scale factor is unknown and when multiple sensors are available.

We also studied the problem of how to set the quantization thresholds for obtaining optimal
estimation performance when a large number of quantization intervals is available. We used the
asymptotic approach (the quantizer intervals tend to zero) to obtain an approximation of the
optimal thresholds, this approach also allowed to obtain an approximate analytical expression
for the estimation performance (the FI) as a function of the number of quantization bits. The
approximation of the FI for quantized measurements is shown to converge exponentially to the
FI for continuous measurements. The approximate analytic expression was shown to be valid
in the location estimation problem even for small numbers of bits (4 in this case), indicating
that the result, which is expected to be exact only when the number of bits tends to infinity,
can be useful in practice, if we consider non uniform quantization.
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From the asymptotic approach, we show that the optimal thresholds may depend on the
parameter, which is unknown. This reinforces the importance of the adaptive approach,
which allows to set the thresholds asymptotically according to their optimal values, leading
to asymptotically optimal estimation performance.

We also want to point out that the difference between using the optimal general threshold
scheme (non uniform) and the optimal uniform scheme for the location problem is small. In
practice, if low complexity is needed, then uniform quantization may be a better solution.

Perspectives

We finish this "conversation" between quantization and estimation, highlighting some subjects
for future discussion. Some details of these subjects were already discussed at the end of the
chapters, therefore here we give only the main lines.

o Vector parameter and vector quantization: this is the direct extension of the problem,
while the vector quantization extension might be straightforward to study, both in terms
of proposing algorithms and studying their asymptotic (in terms of numbers of samples
and quantization intervals) behavior, the vector parameter extension seems to be less
straightforward, specially because it would require a redefinition of the estimation per-
formance and it would require a full extension of the algorithms to vectors, for exploiting
correctly the correlation between the components.

e Noisy channels: in the "DSP party", most of the time, communication is not invited,
we can propose to invite it to the next party by adding the communication channel
in the problem. A noisy communication channel can be considered in multiple ways.
The simplest way for introducing it in the problem is by indexing the quantized mea-
surements with binary words and then considering the channel as an extension of the
binary symmetric channel. While for a fixed indexing the extensions of the algorithms,
specially the low complexity one proposed here, might be simple, the problem of optimal
estimation /indexing can be difficult.

Different extensions can be considered by introducing a continuous channel, for example
additive and fading channels. In this case we might consider the problem of indexing,
by assigning real values to the quantized measurements, this will generate again a joint
problem of estimation/codebook design.

e FEstimation under unknown noise distribution: we supposed that the noise distribution
is known, at least up to a scale factor, however, in practice, this assumption cannot be
always satisfied and we will need to look for different approaches to estimate the location
parameter based on quantized measurements.

There are other topics that were not discussed explicitly in this thesis, but they are inter-
esting subjects for future research. They are the following:
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e Fust variations: to develop some parts of this thesis, we considered that the parameter to
be estimated was a slowly varying Wiener process, under this hypothesis we have shown
that the loss of performance due to quantization is small. The unanswered question here
is whether this conclusion is true or false for the estimation of fast varying processes.

o Distributed problem: in this thesis, we treated the simplified remote sensing problem,
where we have only one sensor. In the only case where a multiple sensor approach
was treated, we used the fusion center approach. Thus, we still need to generalize the
concepts and algorithms developed here to a partially or completely distributed setting,
where a cluster head or each sensor wants to obtain estimates based on the information
from all the sensors.

e Continuous time: for a varying parameter, we considered that the parameter model was
inherently discrete and we did not discuss sampling issues. Thus a subject to be studied
is the estimation of a continuous process based on sampled and quantized measurements.
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Appendices

A.1 Why? - Proofs

A.1.1 Proof that E[S.S,] = E [S?]

We will consider a general parameter estimation problem in the proof. The density of the mea-
surement will be f (y; ) instead of f (y — ). Adding the dependence of S, on the quantizer
output index 4, y and x, the expectation of the product is

Biss] = [ P s )10 £ () a. (A1)

ox
R

Separating the integral in (A.1) in a sum of integrals on the different quantization intervals
" Dlog 1 (y:)

ogJs\y;@ .

ElSos) =Y [ BT S, (y)a) £ (i) dy.
1€T %

Sq is a constant function inside an interval g;, thus, in an interval, it does not depend on y
and it can leave the integral

, Odlog f (y; o

B85 = Y8 i) [ PO ) gy,

, ox
€L &

Rewriting the continuous measurement score function in ratio form gives

Of (y;7)

E[ScSq) = ) Sy (i52) % f (y;x) dy,
! ; T )

supposing that we can change the order of integral and the partial derivative leads to

E[5.5) = 38, (i) & (;; 2

1€T

Multiplying and dividing each term of the sum by its corresponding P (i; z), we have

OP(i;x)
_ ;. OJx ;.
E[ScS,] = Z Sq (i32) G I)P(z, z).
1€L
We can identify the score function as the second factor, leading to
E[SeSq =Y S (i2)P(i;2) =E [S2]. (A.2)
i€l
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A.1.2 Proof of the upper bound on F(¢)[1 — F (¢)] for the Gaussian distri-
bution

We can write F' (¢) [1 — F' ()] as the probability of two i.i.d. Gaussian r.v. X; and X3 to be
in the respective intervals [—oo, z] and [z, oc]. Thus, this probability can be written as the
integral of their joint PDF (see (1.24) for the marginal Gaussian PDF form)

2, .2
fiz (z1,m2) = f(21) f (22) = }52 exp [ (xl;;%)

on the area Ay + Ay of Fig. A.1. From the i.i.d. assumption, the integral on the area A; is
equal to the integral on the area A|. Therefore, F (¢)[1 — F (¢)] is equal to the integral of
fi2 (21, 22) on Ag + Al Tt is easy to see that the area outside the quarter circle C in the
fourth quadrant is not smaller than the area of Ag+ A). Denoting the area outside the quarter
circle in the fourth quadrant by C7, we can say that P (X1, X € Ag+ A1) <P (Xl, X5 € 61).
Changing the coordinates from rectangular (x1, z2) to polar (r, 8), where r = /2% + 23 is

the radius and 6§ = arctan ( ;) is the angle, we have that

P (X1, X2 € C1) // —5 7 exp TQ) drdf — — /rexp _(TQ) dr
) (52 262 52 .
—3

xT

Changing variables one more time " = &, we obtain
o0 oo

1 1 2
[t s - -]

P(X1,X,€C) =

N |

|8
|8

Consequently,

F(e)[1— F(e)] =P (X1, X € Ag+ A1) <P (X1, Xy € Gy) = iexp [ (:cﬂ |

A.1.3 Proof that the FI for estimating a Laplacian location parameter with
noise scale 0 is 5%.
The score function (1.15) for the location parameter of the Laplacian distribution is (PDF
given by (1.27)):
Olog f(y —z) _ 9 [log (55) - [*57|] _ 1

e o — ssien(y — a),

where we used the fact that the derivative of the absolute value function is the sign function.
The FI is then given by
) dy.

+oo
11 —

—0o0
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T
(0, z)
d '
C1 ) (z, 0) T2
(07 - l‘)
Al Ay

Figure A.1: Geometric scheme to show that the probability of the interval Ag+ A; is less than
the probability of the exterior region of the left quarter circle C7.

Changing variables ¢/ = <% and using the symmetry of exp (— [¢/|), we get

+o00
1 1
I. = 5 / exp (—y') dy = 52
0

A.1.4 Proof that the FI for estimating a Cauchy location parameter with

noise scale § is #.

The score function (1.15) for the location parameter of a Cauchy distribution (PDF given by
(1.33)) is the following:

g _Ologfly—=) _ 8[_log(”‘5)_l°g [1+ (%)2” _ 35
¢ Ox Ox [1 i (%)2} '

The FI can be evaluated then with the following integral

RGO,
_ 21 % e
e = E[Sc]_W(SQ {14_(91)2]3(1?/

— 00 5

+00 N2

8 y—z
_ 7r53/ (5 _a,

o1+ (57

where the second equality comes from the symmetry of the integrand. Changing variables
tan (0) = 5. We must change dy = dsec? () df and the integration limits also change to 0
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and Z. Using the trigonometric identity 1 + tan? (§) = sec? (6), we have

8 tan® (6) 8
1. 5/8 5(0) sec? 6/ ) cos? (6) dé.
0 0

Using trigonometric identities, we have that sin? (6) cos® (6) = & [1 — cos (4z)]. The integral
of the term cos (4z) is zero on the interval [0, Z]. Therefore, we finally obtain

1
df =

1
Ie= 262"

T o2

o\
(ME]

A.1.5 Proof that the FI for N measurements quantized adaptively with N;

quantization intervals is I)7 = Z E 1, (ex)]-

Making more explicit the dependence of P (i1.; ) on the adaptive central thresholds T0,0:N—1
by the conditional probability P (i1.n|70,0.nv—1;%) and exploiting the independence between
the measurements conditioned on the central threshold used to obtain them, we can write
that the joint probability used in the score function evaluation factorizes as follows:

=

P (i1:n]70,0:8-152) = | | P (ik|70,8-1; ) -

k=1
Thus, the log-likelihood is given by

N

log L (z;i1.n) = Z log P (ix |70 k—1; %) -
k=1

The FI is then given by

N 2
0 [Z log P (i |70, k—1; )

k=1
ox

2
- E{[alogL(x;leN)} }:IE
Ox

= E

N . 2
Z 0log P (ig| 70 k—1; )
Ox ’

k=1

where the expectation is evaluated w.r.t. the joint probability measure of the r.v. i1.n and
70,0:N—1. We can decompose the joint expectation in a composition of two expectations using
conditioning. For 2 r.v. X and Y and a function h, this is

Exy [h(Y,X)] = Ex {Eyx [h(X,Y)]}.
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The subscripts indicate the corresponding probability measure used for the evaluation. For
example, X|Y corresponds to the conditional probability measure of X given Y. Using this
decomposition on the FI above:

N

2
dlogP (ik‘T() k—1;T)
N, 7 ’
Iq I'= ETo,o:kfl IEi1:k|70,0:k—1 [Z Ox
k=1

By expanding the square of the inner sum, we have that the inner expectation is a sum of

2
. . 0logP(ig|m0. k—1;% .
expectations of squared score functions [ il gxo’k : )} and products of score functions for

. 0log P(ix|70,k—1;%) OlogP(3|70.i—1;
different samples —= (it Imo.4-150) Olog P(islmp 4-110)
oz ozx

with j £ k. As the samples are conditionally
independent given their central thresholds, the conditional expectations of the squared scores
are equal to the sum of conditional expectations, each conditional expectation will be evaluated
with the probability measure of its corresponding iy |7 ;—1. For the crossed terms the same
happens, but now each conditional expectation will be evaluated with respect to iy ;|70 1 ;, as
the pairs of measurements are conditionally independent, the conditional expectation of the
product of scores is the product of conditional expectations. Finally, as the expectation of
each score function is zero [Kay 1993, pp. 67|, the expectation of the sum of cross products is
zero. Therefore, we have

N . 2
0log P (ig|10 k—1; )
N 9 U
Iq I= ETO,O:kfl {ZEik|To,k—1 { [ O :

k=1

The terms in the inner sum depends each on a different 7 ;_1, thus by marginalization (inte-
gration w.r.t. others 79 _1), we get

N . 2
0log P (ix |10, k—1; )
N, s )
Iq I= ZETO,kq {Eiklm,k—1 { [ O :
k=1

Observe that the inner expectation is the FI for each observation i, parametrized by 79,1

and x. We can re-parametrize it by the difference e, = 79 x—1 — 2, writing it using the notation
of (1.13). Therefore, we obtain

N
IN = "B {1y (en)}
k=1

A.1.6 Proof that the posterior PDF can be written in recursive form using
prediction and update expressions

For obtaining a relation between the PDF p (zy|i1.x—1), that we will call prediction PDF,
and the posterior for instant k — 1, p (zx—1/i1.k—1), we will use conditioning on the joint
density /distribution (PDF for X and probability for i) of the variables Xy, X;_1 and 41.5_1

p(zk, Tr—1, t1:6-1) = P (Tk|Tr—1, t1:6—1) P (Tr—1li1:6—1) P (¢1:6—-1) -
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Exploiting the fact that conditioned on Xj;_q the r.v. X is independent of all the past
measurements, we have

P (Tky Th—1, t1k-1) = P (Tk|Tk—1) P (T-1li1:6-1) P (i1:6-1) -
On the other hand, conditioning only on the measurements, we obtain
p(Tky Th—1, t1k-1) = P (T, Th—1li1e—1) P (i14-1)
Equating the last expressions gives
p(Tk, Tr—1litk—1) = p (Tr|Tr—1) P (Th—1i1:6-1) -
Marginalization of Xj_; gives the prediction expression
p(wglite—1) = /p($k|xk—1)p($k—1’i1:k—1) drg_1.

R

As it was stated before, we can notice that for obtaining the prediction PDF we must use the
last posterior and the transition PDF p (xg|zr_1) that characterizes the dynamical model.

For obtaining the update expression, we will start by conditioning the joint density /distribution
function p (xg, ik, 1.6—-1)
P (Tky ik, i1k-1) = P (ig|zr, f16-1) P (Tklive—1) -
As i given xj is independent from all the other r.v., we have
P @k, ik, t1k-1) = P (ik|zr) p (@elive—1) P (i1e—1) -
Now, conditioning on the entire set of measurements
P (T, i, G1:k-1) = P (Tkling) P (irk) -
Using both last expressions, we get

P (ig|xg) p (zrlize—1) P (i1:6-1)

P (1) ’
this result can be simplified by applying conditioning on the denominator. Absorbing the
factor P (41.5—1), we have

p(xkling) =

P (ir|zk) p (k|i1—1)
P (ig|i1:6—1)

The conditional probability on the denominator can be expressed using marginalization of

p (xk‘llk) =

P (g, Th—1li1:6—1) = P (ix|zk) p (@klitk—1) ,

which finally gives the update expression

p(zplivn) = P (ir|ze) p (eki1e—1)
ST TP (inl2h) p (2 live—1) da,
R

Note that for updating the prediction to the posterior distribution, we introduced the infor-
mation from the measurement through P (ix|xy).
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1 BB-Dr(1-3)

70

The continuous measurement FI for the GGD distribution is obtained using the PDF expres-
sion (1.39) in the integral (3.58)

A.1.7 Proof that /. for the GGD is

[fGGD (x)r B3 o T\ 268-2 x\B
I.cep :R foan @) doe = jone <%) / (5) exp [— (5) ] dz,

where we used the fact that the function to be integrated is an even function for obtaining an
integral on [0, +00). We can now change the integration variable to z = (%)'B , this produces

dzr = 3 g _ldz, leading to the following integral

g  t°

Iecap = ——F— / AF exp (—z) dz.
()

0

The integral is equal to I" (2 ) thus using the property of the gamma function I" (1 4 z) =

1
1—3)

2I" (z), we have finally

1 BB-1r(
Ic,GGD:ﬁ )

1
F(B

A.1.8 Proof that I, for the STD is 6%%

For the STD, the continuous measurement FI is obtained using its PDF expression (3.72) in
(3.58). As the function to be integrated is an even function, we can integrate it only in the
positive real semi-axis. This gives

Iostp = x

|:fé'172D (x)r
/ JsTp () d

B+5

()] e

B+1

() o (ﬁ+1>227°( v >2
F(ﬁ) GVBym B ) \oVP

N

2

For evaluating this integral, we can change the integration variable to 6 using tan (6) = ﬁ,
2
this produces do = /B3¢ COSQ 1—1—( f) = ﬁ and an integration interval [0, %), leading
to
B+1 3
ISTD:F<2) L_(B+1) / ) cos ()P da
g |
0
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[Sljss

The integral factor multiplied by 2 can be identified to the beta function B (%,

beta function can be written using the gamma function
F
3 ﬂ
B(-,=—+1

which can be rewritten using the fact that I" (%) 5 ™ and the property of the gamma function
I'(1+ z) = 2I' (2). This gives

(3

2

3 5 8
B<2 2“) VTET i NES)

+1). The

/N

leading finally to

A.1.9 Minimization of the asymptotic variance w.r.t. n under the asymp-
totic zero mean constraint.

For simplifying the notation we will use 7 and f;, suppressing the subscripts and superscripts.
The problem we want to solve is

o« . . T
minimize Fy
. 02, = 4 =dl_ (A.3)
w.r.t. n n fdfd n
subject to FZeC’Tn =0,
n #0,

where F3*° is the diagonal of F 4 in vector form. This problem can be also cast as a maximiza-
tion problem

maximize 1 _ anden (A4)
w.r.t. m o2  n'Fun’ '
subject to FZGC’TTI =0,

n # 0.

As F; is a diagonal matrix it can be decomposed as the product of diagonal matrices
formed with the square roots of the diagonal terms

1 1
F,=F:F2.

Thus using the change of variables

_1
n="F,n,
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the problem (A.4) becomes

_1 _1
maximize n’TFd 28] F, 2’
’ T ’
w.r.t. n n'n
_1
subject to FZGC’TFd ’n’ =0,
n' # 0.

This problem can be solved by constraining i’ Tn’ to be equal to one and then maximizing
the numerator

maximize T. -1 1
wt. ' F i F (A.5)
subject to n'Tn' =1,
1
FZec,TFd gn/ — 07
n' # 0.

N|=

Note that FZeC’TF; is a transposed vector with the square roots of F4°. This term will be

1
denoted <Ffl ’vec) from now on. This problem has been treated in [Golub 1973| and we will
apply here the same development.

The Lagrangian of the maximization problem (A.5) is given by
_1 _1 1
L= TF AT F = A (0T = 1) + 2um B

where A and p are Lagrange multipliers. The zero derivative point of the Lagrangian w.r.t.
n’ is given as the solution of the following equation:

_1 _1 1
F, 2 6] F 20’ — g/ + uF2" = 0. (A.6)
1 T
. . 5,VEC .
Multiplying by <F§ ) gives

1 vec T -1 T -1 1 vec T 1 vec T 1 vec
(F;’ ) FdeddedQn’—)\<Ffl’ > n'+u<F§’ ) F2" = 0.

As F, are quantizer output probabilities, we have

l1}66 T l’I)EC
27 27 —
F: F2 =1,

Now, using the expression above and the second equality constraint (that the asymptotic mean
is zero) on the factor that multiplies A, we obtain

1oec) |1 1
M:_<F§’ > F, 2ff]F *n.
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Substituting this expression for p in (A.6), we get

S Laee)
I-F, (F?

where I is the identity matrix. Clearly,

1oec) |1 1
(F;’ > F, 2f,6] F >0’ = My,

1 L)
1-F, <Fd )

1 _1 _1
and the optimal n’ is the eigenvector of P’ <F§ ) F , 2Ef] F, 2 that gives the maximum

= P’ is a projection matrix

M. For a squared matrix A and projection matrix P/, we know that the maximum eigenvalue
function A (.) respects the following equality:

A(P'A) = A (P?A) = A (P'AP).
This means that the optimal 1’ can also be found as the eigenvector of
P’F;%fdfdT F;%P’
related to the maximum eigenvalue A. As the only non zero eigenvector of P’ F;%fddeF;%P’

_1
is P'F, *f4, this is the optimal n’. Changing back to the initial vector 1, we have

1L\
I-F, (Fd )

The proportional o< comes from the fact that the solution of (A.3) is defined up to a propor-

1

F,f,

N

nocF;

tional factor. Expanding the expression gives
1 —1_1oec 1 vec T -1
n x F, f3—-F,?F} F; F,*fy

0.8 F;lfd — ]lfd,

where 1 is a squared matrix filled with ones.

A.1.10 Proof that f[{Flglfd = 1 pRE) in the fusion center approach.

7=1,;0) ez() Féj)[l(”]
For simplifying notation the sensor superscript in FCEZ/) [i(l/)] and [ Cgl/) [i(l/)} will not be written,
the dependence on the sensor number will be done implicitly through the argument of the

function I [i(l/)] and fd [i(l/)] Using the fact that that F; is diagonal, we can write

2

I
Z;V:sl fa [Z’(J)] 1 Fu [i(a )]
=1
o,
deFglfd — Z - J 7& J
iCZ®Ns H Fy [i(j)}
j=1
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where Z®Ns is the set of all possible i. Developing the quadratic term, the sum above is equal
to the sum of two terms
f1F ;=1 + I,

with N v
s (o2 N LT 2
Py {fd [Z(J)]} j/E 1 {Fd [m )]}
0
= Y . J'#
ieZ®Ns H Fy [i0)]
j=1
and
Ne . _ Ny _oro N, ,
> X Ja [i(l)] fa [i(m)] I[I Fu {i(l) 11 Ey [z(m )]
=1 m =1 I = m! =
/ !/
I = Z #£1 ]lV;é l m #m
ieT®Ns [ E, [i@)]
j=1
/
Dividing the common factors in I» and rewriting the sum, we obtain
Ns N ) ) N,
L= YN Y (i [Zm} Iz [%m)} I % [Nﬂ
icZ®Ns [=1 m=1 p=
m #£ | p#l
pFm
N N _ ~ N ~
= Y Y ¥ i [im] Iz [me)] S I [i(m] 7
=1 1 iDez® imeztm) iezeNsr
m #£ | pF£l
{ p#Fm

where Z®N* is the set of all combinations of i, without considering i) and (™). The interior
sum in the RHS of the last equality equals to one because Fy [i(p)} is a probability. Thus I
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is given by

b - i z S {alolale])

— 1 ez itmezim

m 75 l
N N
= >3 A0 X ali™)]
=1 m=1 iWez® i(m)ez(m)
m #£ |

From the symmetry assumptions fd [z’(j )] is an odd function of i), therefore I = 0.

The term I; can be rewritten by dividing common factors from the numerator and denom-
inator. This gives

Ny fg i(j) N .
> S T Al

i€Z®Ns j=1

Changing the order of summation and separating the sum for the sensor index j from the
others, we obtain

, ZNS 3 i (9] > HNS By [i)]
1= ~ .- d 3
Taw | FaliV] got. =1
\ i # i )

where now Z®Vs* is the set of all possible i without considering ). As the inner sum is equal
to one, we finally have

£1F; 1fd_z Z [iY

j=1 1(J)eI(J)

and consequently
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A.2 More? - Further details

A.2.1 Discussion on the issues of finding the MLE

Binary quantization. In Subsection 1.3.6, we give an analytic expression for the MLE in
the binary quantization case. In this case the MLE depends on the noise distribution mainly
through the inverse of the CDF, thus existence and unicity of the MLE are guaranteed by the
monotonicity of noise CDF (implicitly stated in the assumption AN2).

Multibit and dynamic quantization: log-concave distributions. In the multibit case,
or even in the binary case when the threshold is not static, we cannot write a closed-form
expression for the the MLE. In this case, we have to use a numerical method for the evaluation
of the maximum.

In the case of log-concave distributions (the Gaussian distribution is an example), we can
show that, as it is explained in Subsection 1.4.4, the log-likelihood with quantized measure-
ments is concave. Thus, in this case the log-likelihood has only one maximum which can be
found very efficiently using the Newton’s algorithm.

Multibit and dynamic quantization: general distributions. If the distribution is not
log-concave, then the Newton’s algorithm does not necessarily converge. If it converges, it can
converge very slowly when compared to the log-concave distribution case. It can also happen
that the likelihood has multiple maxima, in this case, any technique based on the gradient
may fail to find the global maxima and other types of maximization techniques must be used.

As a simple example of non log-concave noise distribution, we can consider the Cauchy
distribution with PDF and CDF given by (1.33) and (1.34) respectively. The log-likelihood
for estimating  with § =1, 7 =[-3 —2 —1012 3]T and i, = {-3, =3, —4, 3, 3, 3} is
shown in Fig. A.2.

log (L)

Figure A.2: Log-likelihood function for estimating x based on the quantized measurements
ir = {—3, =3, —4, 3, 3, 3}. The quantizer has Ny =8 and 7 =[-3 —2 —10123]". The
distribution of the noise is Cauchy with § = 1.

We can clearly note the multimodality of the log-likelihood function.
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A.2.2 MLE for estimation of a constant based on binary quantized mea-
surements: uniform/Gaussian noise case.

The MLE for binary quantized measurements is given by (1.45)

N
1 1
= -
k=1
The function F~! (.) is the inverse of the noise CDF. For the uniform/Gaussian case, the CDF
is given by (1.37)

XML:To—F_l

L@ <€+T§>’ for e < -3,
P {albr s Erp)]. o -gesh

e+4<
["‘ +<I>(U2>], fore > g,

2wo

Q=

where C = 1+ \/%m. As the CDF is decomposed in three parts, for inverting the CDF we

. N
might distinguish three possible cases. Using the notation 1 — Py, = % (1 — % > z'k), the
k=1

cases are the following:

e 1— Py < 55,

1 D 1 (1
. @Sl—PML§§<§+\/2a—WU>a

° I—PML>%<%+\/%TU>.

Using the inverse of F'(.) for each case in the expression of the estimator above, we get

To+§—ocd! C(l—pML)}, forl—fDML<%,
Xur = T0+ 9 — V210 C(I—PML>—%}, fOf%ﬁl—pMLS%(%—F\/;—m),
70— §—od! C(l—PML)—ﬁ}, fOI‘l—pML>%(%+ ;W).

The function ®~! [.] is the inverse of the standard Gaussian CDF.
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A.2.3 MLE for estimation of a constant based on binary quantized mea-
surements: generalized Gaussian noise case.

For binary quantized measurements with a fixed threshold, the MLE is given by (1.45)

(48]

where F~1 (.) is the inverse of the noise CDF. In the GGD case the CDF is the following
(1.40):

Xyp=m—F!

<l E‘B)
1 , T\ B 15
F(e)==|1+sign(e) ———=
: r(3)
B
_ N
Therefore, denoting the average of the binary observations by ¢ = % > ik, we have the
k=1

following MLE:

XL = 7o + Osign (7) {’y_l [;, li| T <;>} }B ,

where 471 [.,.] is the inverse of the incomplete gamma function.

A.2.4 Adaptive binary threshold asymptotic probabilities when the thresh-
old is defined in a grid.

We consider here that the parameter lies in an interval [—A, A}, where A is a positive real.
For assimilating this information, we are going to change the update of the binary threshold.
The following is assumed:

e The step size «y is chosen so that

with N a positive integer.

e The initial threshold 79 is chosen to be an integer multiple of v, 790 = j7, so that
70,0 S [—A, A]

e The threshold cannot leave the interval [-A, A]. This means that when 79 ,_; = A and
ir, = 1, we will set 79, = A. When 79,1 = —A and we have i, = —1, we will set
705 = A. This changes the adaptive update of the threshold (1.49) to

—-A
Tok = § Tok = T0k—1 + Vik, (A7)
A, if T0,k—1 = A and ik =1.

if T0,k—1 — —A and ’Lk = —1,

)
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The threshold is now defined in a finite grid
(N—-1) A A (N —-1)
TO,k)E{ Au A N ) ) Na 07 N’ ) A ) Ab.

An iteration of the threshold update is depicted in Fig. A.3.

Time k — 1 T0,k—1 yr (measure)

B u @ ' . u N
—A —A(NJGI) AL A(z;l) _A(N]#) A
Time k 70,k

B u . n @ u u
—A —A(NJQI) AL A le) _A(N];n A

Figure A.3: An iteration of the binary threshold update in the grid where it is defined. The
values of the finite grid where the threshold is defined are indicated by the black squares.

Asymptotic probability distribution

In a similar way as for the infinite grid, we will define a transition matrix for the finite grid
T,. In this case the matrix will have size (2N + 1) x (2N + 1). Using the following notation

for the CDF elements
a; —_F<AN—£U) —_1—F<ZL‘—AN>,

the transition matrix is given by

a-N a_(N-1)
l—a_n 0

0 1-— a,(N,l)

0 0
ao
Ty = 0
1—ag
0 0
anN-—1 0
0 an

l—an-1 l1—an |

The Markov chain formed by the sequence 79 is an ergodic chain, as all threshold values
can be reached from all other threshold values and the borders —A and A make the chain to



A.2. More? - Further details 239

be aperiodic'. Thus, the sequence of thresholds admit a unique asymptotic distribution pase
[Gallager 1996, Ch. 4|. The asymptotic distribution is then the solution of

Poo = ngpooa

or equivalently

(Tfg —I) Poc = Rpoo =0, (A.8)

where I'is a (2N + 1) x (2N + 1) identity matrix and O is the zero vector. The problem is
then to find a vector from the null space of R

[ a_ny — 1 a_(N-1) i
l—a_n -1
0 l—a_(n—1y : O
. 0 0
ao
R = -1 )
1—ag
0 0
O : an_1 0
-1 an
i l—an-1 —an |

under the constraint that the vector is a probability vector: it sums to one
1'poo = 1,
where 1 is a vector with all elements equal to one, and all its elements are nonnegative
P = 0.
For solving (A.8), we start by solving its last line (the line at the bottom). We have
(1 —an—-1)PN-1,00 — ANPN,0o = 0,

which gives

an
PN—-1,00 = )pN,oo-

(I—an-1
For the next line (above), we obtain
ANPN,oo — PN—1,00 + (1 = aN—2) PN—2,00 =0

and solving it, we have
PN—-1,00 = GNPN,00

(1 — CLN,Q)

PN—-2,00 =

IThis is not the case for the thresholds defined in an infinite grid. In this case the thresholds must be
separated in two periodic classes [Fine 1968].
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Using the expression for py_1 . above, we get

an—_1an
(1—-an—2)(l—an—1)

PN—-2,00 =

Clearly, from the similarity of the equations for the other lines, we can proceed in the same

way to obtain

i—1
[] an—;
e ‘
PN—ioc0 = z]— DN,005 forZG{—N, cee N—l}.
[T 1—an—y)
j=1

If we denote
1—1

[T an—;
Jj=0

C; =

Y

ﬁ (1 —an—j)
7j=1

then, pn ~ can be found by using the constraint that the vector must sum to one

2N
(ZpN—i,oo) +pN,oo =1

i=1
Separating the factor py o which appears in all terms (see (A.9)), we get
1

PN,co = oN
1+ Z C;
=1

Using this and (A.9), we can obtain a general expression for the probabilities

/
C; .
PN—ioo = — 5> forie€{0, .-~ 2N},

1+ Zci
i=1

where

) {1, if k=0,
CZ':

¢;, otherwise.

(A.9)

(A.10)

(A.11)

By substituting the ¢, in (A.11), we get the following expressions for the asymptotic proba-

bilities
2N

1
PNoo = [T -an-),

(@) i
2N—-1

1
P—Noo = P(x) g aN—i,

3

2N

1 i—1
PN—ic0o = (.’L‘) ]]1)0’]\7.7 H (1 - (Iij) ;

j=i+1

g

(A.12)
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where the normalization factor P (x) is

=1 j=1 I=j+1

2N 2N—-1 2N-1 7—1 2N
P(z) = H(l—aN_j) + H an—; | + Z (H aNk> H (1—an—y)
w k_o (A.13

With the expressions above for the asymptotic probabilities of the thresholds, it is possible
to obtain exact values for the asymptotic FI using (1.62).

Maximum of the probability distribution

We are going to verify that the asymptotic threshold is indeed around the true parameter.
We will analyze the position of the maximum probability threshold and the increasing and
decreasing patterns of the asymptotic probabilities. For doing so, we will obtain the expres-
sions for the signs of the differences between neighboring (in threshold position) asymptotic
probabilities.

Starting at the negative extremum of the interval, the difference is the following:

9N—1 ON—2
( H GN—i) - H an—;j | (1 —a—p)
i=0 3=0

Making explicit the common factor, we have

)

1
P-Noo = P—-(N-1),00 = P (x)

P-N,00 = P—(N—-1),00 = P(z) a(n-1)—(1— a*N)] :
2N—-1
( 1T aN-%’) 2N-1
The factor lpr is positive because [][ an_; is positive, it is a product of probabilities,

i=0
and P (x) is also positive, it is a sum of products of probabilities. Therefore, to obtain the
sign of PN 0o —P—(N-1),00 a8 & function of z, we need only to analyze the sign of the difference

a_(ny—1) — (1 —a_n). Using the expressions for the a; terms, we have

sign (P—Nyo0 — P—(N—1),00) = Sign { [1 - F <x + AWA_[U)} —F(z+ A)} .

The difference in the sign on the RHS is the difference between a complementary CDF

parametrized by x and centered on —A%, 1-F (:L‘ _|_A(N]§1))7 and a CDF centered

on —A, F(x+ A). Using the facts that the complementary CDF is a decreasing function
(from one to zero), the CDF is an increasing function (from zero to one) and that CDF is
simply a reversed and shifted version of the complementary CDF, we obtain the following
conclusions:

_1
e the sign of the probability difference is positive for = € [—A, —A(NN2)>.
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_1
e The sign is negative for x > —A%.
. . . (N-1)
e The probability difference is zero when x = —A>—52~.
The difference between probabilities for ¢ € {1, ---, 2N — 1} is
1 i—1 2N
P(N=i)00 = PN=iD00 = By Moy ) | IT G —av-p)| -
j=0 j=it+1
i—2 2N
—(ITe~v—i | (110 —an-y)
j=0 j=i

and after factorization

1—2
[T an—;
j=0 j=it+1

P(N—i),00 = P(N—i+1),00 = P(z)

2N
I (- aNj)]
[

an—i+1 — (1 —an—s)]-
As the first factor on the RHS is positive, the sign of the difference is determined by

sigh (P(N—i).00 — P(N—i+1).00) = Sig { [1 —F <a: — AW)] —F ($ — A(N]\? i)> } .

The analysis of the sign above is similar to the negative extremum case. Thus we have the

following conclusions:

. . . . N—i+1
e the sign of the difference is positive for x < A(Nﬂ.

. . N—i+i
e We have a negative sign for x > Aw.

. . N—i+1
e The difference is zero when z = A(7N2).

Using a similar procedure for the positive extremum, we have that the sign of the difference
is given by

sign (P(v-1).00 — PN,00) = sign {[1 — @A) = (x - A(NJ\;D> } ’

which leads to the same conclusions as above, the exception is that ¢ = 0 in this case.

Joining all the results, we can see that the maximum of the asymptotic probability vector
always occurs at the point of the grid that is closest to x. Moreover, the distribution always
decreases when we consider thresholds with increasing distance to the maximum probability
threshold. This means that the distribution is unimodal with its maximum close to the
parameter, thus justifying the statement that the thresholds will be placed asymptotically
around the parameter.
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Small noise approximation

The analytical asymptotic probabilities expressions (A.13) are quite cumbersome to be eval-
uated when N is large. As the CDF are almost step functions (zero/one functions) for large
arguments and as the asymptotic probabilities are products of CDF, in the case when the
noise level is small compared with 7, we can obtain very simple approximate expressions for
the asymptotic probabilities that involve only a few CDF terms.

The small noise approximations for the complementary CDF and CDF are the following:

1, x < Aw,
(N —1i) (N—i+1)
a/N_i:l—F .T—AT = 0, $>AT,
1-F (o - alg2) A0S < aED,
0, T < A%,
(N —1) (N—i+1)
l—ay_;,=F x—A N = 1, 1’>AT, (A14)
Fo—algh), A0 < < AGED,

Independently of the value of x, we can get the following approximations of the CDF products
using (A.14):

2N

H(l—aN_j) ~ 1—an_1,
=1
2N—-1

H aAN—; = G_N+1,

i=0
j—1 2N
H aN—; H (1-an—)| = an—j1(1—an—j-1).
i=0 i=j+1

We can now apply these approximations to the asymptotic probabilities (A.13). Note that
)

the approximations will be dependent on the value of x. For x € [—A, —A(NT_l we have

1= F (o 4+ a0

o QoNHL
P=Neo ™9 0N 1+ F(x+A) 7’
l—any  F(z+A4)
e +F(z+ A)’
a_ N1 F(x—l—A%)
P-(N-2)00 ¥ 3 “an 1+ F(zx+ A)
P(N-i)oo =~ 0, forie{0,---, 2N —3}.
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N N
zero. The nonzero terms are

For x € (A(Nfifl) A(Nfi)} , we obtain 4 nonzero terms, all the others are approximately

P(N—i—2),00 = 5 = B) )
(N—1)
aN_i l—F(x—A NZ)
P(N—i—1),00 =~ 5 = 5 )
A (N—it+1)
_an-in F (m A )
P(N—-i),00 & 9 = 2 >
A (N=)
o ON—i42 F (x A N )
P(N—i+1),00 = D) = 5 .

Finally, for the positive extremum, x € (—AW}, the approximations give the

following:

17F(:137A(N7];1))

PN-2)00 7700 T 2—-F(x—-A)
~ anN - 1—F<$—A)
p(N—l),ooN 1+aN - 2—F<$—A)’
1_aN—1 F(ZE—A(N];I))
PN ™y T 2-F(a-A)
P(N—i)oo ~ 0, forie{3, ---, 2N}.

Under the small noise assumption, these approximations are not only useful for evaluating
the FI, but they can also be used for estimating the parameter when the number of measure-
ments is very large. Suppose that after a number of samples M, the threshold probabilities
reach approximately the asymptotic distribution, then, from this point on, we start to store
the measurements forming an histogram of the threshold values that were used. After a large
number of measurements, the histogram will be very close to the asymptotic threshold prob-
abilities. We can then search for the two largest values of the histogram and using one of the
correspondent empirical frequencies in the place of the true probability, we can inverse the
corresponding approximate expression for the probability to obtain x.

For example, suppose we have obtained the largest empirical frequencies at the points
N —i—1and N —i. The empirical frequency at N —i — 118 P(y_;_1),00, then inverting the
corresponding p(y_;_1),00 We get the estimate

(V-1

P = A
v N

+ P! (2B(N—i-1),00 — 1) -
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A.2.5 Particle filter using rejection sampling for tracking
a scalar Wiener process.

The optimal sampling distribution p (zx|xk_1,%x) can be rewritten as

P (Th, Tp—1,%) P (iglor) p (p]2r—1)

p(Tp-1,8) P (ik|zk-1) o< P (igla) p (wklor-1),  (A.1D)

p (xplrp—1,ix) =

where the proportional relation comes from the fact that, for a given iy, the probability

P (igx|rg—1) is a constant independent of xp. Note that as P (igx|zy) is a probability, it can

be bounded above by one, as a consequence P (ig|zk) p (zx|zr—1) can be bounded above by
()

p (zx|xp—1) which is a Gaussian PDF. Therefore, for each previous z;”,, a standard re-
jection sampling method [Robert 1999, pp. 50| can be applied to generate a sample from
P <$k|$](£1, zk) This can be done by sampling independently from the Gaussian distribution
p (xg|zK—1) and from the uniform distribution ¢ [0, 1]. The rejection sampling method that

gives the optimal samples x,&j ) is the following:

Rejection sampling for the optimal sampling distribution

(appl) For j =1 to Ng
e Set u,(ij) =1 and l,(cj) =0.
e While I < 4!, do

— Sample the Gaussian distribution
(How? - App. A.3.3)

2
() ) _ 1 1w Tty — U
P (ark!wk_l o exp | —5 -

— Evaluate l,(cj )

9 =P (e,
— Sample, independently from x,(cj ), the uniform
distribution ¢/ [0, 1].

Note that we accept a sample x,gj) only when the its likelihood P <2k|x,(€])> is larger than the

uniform sample.

By replacing (A.15) in the place of ¢ (xg|zo.x—1,%1.%) in the recursive expression for the
weights (2.25), we have the following update equation for the weights

w (a;§”) =P (ik|$§£1) w <x§j2¢—1) :
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Observe that we might evaluate P (zﬂx}j}l), which can be obtained similarly as P (2k|x,(j )>
with

F’ Tip,k — J}gg)l — uk> —F (Tikfl,k — x,(j_)l — Uk |, if ik > 0,

P (z’k\x@ ) - -1 ) (A.16)
kol F' (Ti 416 — wfﬁl - uk> —F (Tik,k — x,(i)l —uy ), if 4, <0,

where F' is the CDF for the r.v. that is the sum of the noise r.v. V}, and the centered X}

increment Wy — ug.

The procedure for tracking the Wiener process starts by sampling independently Ng times
the prior distribution p (z¢) and setting the initial weights all to N%g After obtaining the first
measurement i1, both the sampling with p (x1|xg_1,71) and the updates of the weights can be
done. Then, after normalizing the weights, the estimate 1 can be obtained with the weighted
mean. The procedure is then repeated for each time k in a sequential way.

This procedure may also suffer from the degeneracy problem explained in Sec. 2.3.4 (p.
85), thus a resampling step (How? - App. A.3.4) (app4) must be carried out each time the
number of effective samples is too low.

The performance of this sequential importance sampling algorithm can be obtained through
a lower bound, as it is discussed in Sec. 2.4.

Remark: to reduce the complexity of this algorithm, we could use a technique based on
local linearizations of the optimal proposal distribution [Doucet 2000]. The problem with this
approach is that it requires the logarithm of the optimal proposal to have a positive second
derivative and this cannot be guaranteed for all noise distributions considered here.
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The sequential procedure with the resampling step (particle filter) for solving (b) (p. 29)
is the following:

Solution to (b) - Particle filter with rejection for
a fixed threshold set sequence 7.

(b1.2) 1) Estimator '
o Set uniform normalized weights w (:céj )) = Nis and initialize

Ng particles {x(()l), e xéNS)

(20) 1 1 (:170 — x > 2
To) = ———€exp | —= .
pito V2mog P13 0o
For each time k,
e for j from 1 to Ng, sample the r.v. X,gj) with rejection sam-

pling (appl).
e for j from 1 to Ng, evaluate and normalize the weights

} by sampling the prior

olett) =p ) (i) T T
j=1

where P <Zk|:v](j_)1) is given by (A.16).

e Obtain the estimate with the weighted mean
Ty ~ Zx,(g)ﬁ) (zgjl)c) .
j=1

e Evaluate the number of effective particles

9

if Neg < DNinreshs; then resample using multinomial resam-
pling (How? - App. A.3.4) (app4).

2) Performance (lower bound)
The MSE can be lower bounded as follows

1
MSE;, > —
k_J]lc’

with J; given recursively by
1 1 1

Jp=—41,(0) - ——.
YA
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A.3 How? - Algorithms and implementation issues

A.3.1 How to sample from a uniform/Gaussian distribution.

We are going to consider that we can generate easily and independently uniform and Gaussian
variates. For generating uniform variates, one can use linear congruential generators (see
[Knuth 1997, Sec. 3.2| for details), while for generating Gaussian variates one can use the
Box-Muller transform which requires a pair of independent uniform variates [Box 1958|.

By looking to the specific form of the PDF (1.36)

a2
4o
fGL (E) = % Tﬂgexp |:—% <872> :| s for e < —%,

fe)=14fv(e) = g7 for —§<e<$,
_a\2
far(e) = 5 127w exp {—; (—EUQ) } , fore>%,

where C' =1+ QL, we can see that we can generate samples from it by generating samples
independently from the half Gaussian distributions

a2
2 exp[—% (?)], for e < —§,

far (e) = V2™
0, otherwise,
2_exp |—3 (E_%>2 fore > ¢
far(e) = q V2™ A ’ >
0, otherwise

and from the central uniform distribution

L for —2<e<
file)=1¢ 2o
0, otherwise

(Nl

)

and then choosing one of the samples randomly. For having the samples distributed correctly,

we will choose the sample from the left Gaussian r.v. with probability %, or the sample

from the uniform distribution with probability \/ﬁo G or from the right Gaussian also with

probability % .
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This gives the following algorithm for generating a sample from the uniform/Gaussian
distribution with parameters o and o:

Uniform/Gaussian sample generator

(app2) To generate a sample v do the following

e evaluate

1
c = =
1+ 7
_ 1
P11 = 207

_1(1, a
= \2 ono )
e Generate 2 independent uniform variates (from ¢/ [0, 1])

uo and u; and 2 standard (zero mean and o = 1) Gaussian
variates g; and go.

o If uy < p1, then

«
U:_<U|gl|+§)a

else if p; < wup < po, then
1
V= u1—§ ,

«
vza\gg\+§.

else

A.3.2 How to sample from a GGD.

We consider that an easy method for generating independent binary samples (samples with
values —1 or 1 that have equal probability) and gamma samples is available. For obtaining
binary samples one can simply take the sign of a sample from a uniform U [—0.5, 0.5] distri-
bution and for obtaining gamma variates one can use a rejection method [Marsaglia 2000].

It can be shown that a generalized Gaussian r.v. V'’ with shape parameter 8 and unit

scale parameter can be obtained with the following transformation of two independent r.v.
[Nardon 2009]:

1

V’:B(F%>E,

where B is a binary r.v. and I'1 is a gamma r.v. with shape parameter % If we want a

generalized Gaussian r.v. V with scale parameter §, we need only to multiply V' by 4.



250 A. Appendices

This gives the following algorithm for generating a sample from a GGD with parameters
B and 6:

Generalized Gaussian sample generator

(app3) To generate a sample v do the following

e generate independently a uniform sample u from U [0, 1]
and a gamma sample y 1 from I 1 with unitary scale pa-

rameter.

e Transform the uniform sample u into a binary sample b

with
b i 1
=Ssi1egn | u — — .
g 2

e Apply the transformation

vzéb(’yé)é.

A.3.3 How to sample from the distribution p (xk|x§j_)1> using a Gaussian

standard variate.

Suppose we can generate a Gaussian standard variate W, ~ N (0, 1), for example using the
Box-Muller transform on a pair of independent uniform variates [Box 1958]. We want to
generate a Gaussian variate with PDF

(4) 2
» (xk|x(j) ) _ 1 exp _1 T — T — Uk
k-l V2o, 2 Ow ’
(4)

where z;”,, uj and o, are known. Using the following properties of Gaussian r.v.:

e the product of a Gaussian r.v. by a constant gives a Gaussian r.v. with variance given
by the initial variance multiplied by the square of the constant;

e the sum of a Gaussian r.v. and a constant gives a Gaussian r.v. with mean shifted by
the value of the constant.

We have that the r.v. X lgj ) distributed according to p (:z:k|x,(€]_)1> can be generated as follows

X,gj) =owWn + w,(le + up.

A.3.4 Multinomial resampling algorithm.

In order to sample from

= (..(9) if o = )
]P’(ack) = :;J <$1:k) BTk Tk

otherwise,
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we can create an increasing sequence of cumulative weights

o =3 (o4),

where we define w (3:50]1) = 0. Thus, the intervals defined by the neighboring pairs of the

sequence (wg_l), wgf)] form a partition of the interval [0, 1] and their lengths equal the cor-

responding (ajgj ,)C) If we sample from the uniform distribution defined on [0, 1], U [0, 1],
and choose x,(j ) with j corresponding to the interval in the sequence w4 in which the uni-
form sample is contained, then the chosen x,(j ) are distributed according to the probability
distribution P (zy) above.

Resetting equal sample weights at the end of the procedure, we have the multinomial
resampling algorithm:

Multinomial resampling

(app4) For j =1 to Ng

e store the particle values in a sequence of auxiliary vari-

ables i\

with w (mi%) = 0.
e Create a sequence {u’l, cee u’NS} by sampling indepen-
dently Ng times from the distribution U/ [0, 1].

For j =1 to Ng,

e set x,(cj ) = :%l(jj ), where [; is chosen so that

uj € (wﬁj_l), wﬁj)} ,

e reset the normalized weights to a uniform distribution
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A.3.5 How to sample from a STD.

For generating samples from the STD, we consider that a simple method for generating uniform
U [0, 1] samples is available.

It is possible to show that a Student’s-t r.v. V' with shape parameter $ and unit
scale parameter can be obtained with the following transformation of two independent r.v.
[Bailey 1994]:

V' = [B (Ul_; - 1)] ’ cos (2rU3) ,

where U; and Us are independent r.v. with uniform ¢ [0, 1] distribution. If we want a
Student’s-t r.v. V with scale parameter §, we need only to multiply V' by 4.

Thus we have the following algorithm for generating a sample from a STD with parameters
5 and ¢:

Student’s-t sample generator

(app5) To generate a sample v do the following

e generate independently two uniform samples u; and uo
from U [0, 1].

e Apply the transformation

v=24 [5 <u1§ - 1)] : cos (2mus) .
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B.1 Introduction

Quantification : une inconnue dans la salle

Ouvrez un livre, un livre quelconque sur les fondements du traitement numérique du signal,
et comptez le nombre de pages dédiées au théoréeme de I’échantillonnage et au traitement du
signal & temps discret : la transformée de Fourier rapide, la transformée en Z, le filtrage a
réponse impulsionnelle finie et infinie. Maintenant, comptez le nombre de pages dédiées a la
quantification. Méme si la moitié du « monde numérique » est un résultat de la quantification,
si on lit quelques livres fondamentaux en traitement numérique du signal, on a I'impression
qu’elle est un sujet sans importance.

Toutefois, une personne curieuse peut se demander : la quantification est-elle un sujet
vraiment dépourvu d’importance ? Peut-étre qu’elle est si difficile & étudier et & expliquer de
fagon simple, que la plupart des références de base en traitement numérique du signal préférent
omettre une explication plus détaillée. Nous croyons que cette explication est a 1’origine de
I’omniprésence de la quantification fine des signaux dans la plupart des livres sur le traitement
numérique des signaux. En la considérant fine, les auteurs de ces livres peuvent reléguer la
quantification & une note de bas de page. On constate que la quantification semble étre
I’étrange participant de la « féte du traitement numérique des signaux » et que personne ne
veut discuter avec elle (méme si elle est un des organisateurs de la féte). Quelques domaines
du traitement du signal trouvent utile (et dans certaines circonstances ils n’ont pas tort)
de refuser tout contact avec la quantification. Chaque fois qu’ils ont besoin de traiter des
problémes induits par la quantification, ils I’appellent de facon dépréciative — « le bruit de
quantification ».

Dans cette thése, nous espérons faire « discuter » de facon respectueuse, sans termes
amoindrissants, un des participants de la féte du traitement du signal avec la quantification.
Le sujet que nous avons choisi est I’estimation.

Dans la suite, on expliquera la motivation et les points principaux de cette « discussion ».

Quantification et réseaux de capteurs : I'invitée d’honneur

Bien que nous ne traitions pas explicitement de la conception d’algorithmes d’estimation avec
une architecture du type réseau de capteurs, avec cette thése nous espérons contribuer au
développement de techniques qui peuvent étre utilisées ou étendues aux réseaux de capteurs.

L’essor des réseaux de capteurs. Avec la réduction des cofits et de la taille des dispositifs
électroniques, tels que les capteurs et les émetteurs-récepteurs, un nouveau domaine a émergé
sous le nom de « Réseaux de capteurs ». Ce terme, en général, désigne un groupe de capteurs
capables de communiquer et de traiter des données pour réaliser une tache donnée, e.g. : faire
de l'estimation, de la détection, du suivi d’un signal, de la classification, etc.

Les réseaux de capteurs sont intéressants en pratique pour plusieurs raisons, parmi les
plus mentionnées dans la littérature on peut trouver [Akyildiz 2002], [Intanagonwiwat 2000],
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[Zhao 2004, pp. 7-8| :

e tolérance auz défaillances et flexibilité.

e Déploiement facile.

o Possibilité d’utilisation en environnement dangereut.

o Possibilité d’utilisation sans maintenance.

e Utilisation de la communication pour réduire la quantité d’énergie utilisée.

e Rapport signal a bruit amélioré pour le suivi et détection d’événements dans une zone
donnée.

Applications des réseaux de capteurs. Les avantages cités plus haut ouvrent la voie pour
'utilisation des réseaux de capteurs dans un trés large spectre de domaines [Arampatzis 2005],
[Chong 2003], [Durisic 2012, [Puccinelli 2005]: surveillance de ’environnement, surveillance
pour l'agriculture, génie civil, surveillance urbaine, applications en santé, applications com-
merciales etapplications militaires.

Le besoin de quantifier. Méme si le progrés des technologies de conception des capteurs
et des dispositifs de communication nous améne a 'utilisation de réseaux & grand nombre de
capteurs, des considérations pratiques tels que l'utilisation de batteries et des contraintes sur
la taille maximale des capteurs imposent trois contraintes majeures pour la conception d’un
réseau de capteur : la contrainte énergétique, la contrainte sur le débit de communication et
la contrainte sur la complexité.

Pour respecter ces contraintes, on peut quantifier les mesures au niveau des capteurs. Ceci
permet de :

e réduire la complexité des opérations grace a des recherches dans des tableaux pré-stockés
et limiter la quantité de mémoire utilisée.

e réduire directement le débit binaire en sortie des capteurs par le réglage du nombre
d’intervalles de quantification.

e réduire la quantité d’énergie utilisée, comme conséquence de la réduction de la complexité
et du débit.

Voila les principales raisons pour lesquelles nous avons choisi d’étudier la quantification
dans cette thése.
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Différents objectifs et précisions sur le sujet de la thése

Dans un réseau de capteurs, on s’intéresse principalement & l'inférence d’une certaine informa-
tion enfouie dans les mesures. Les deux classes principales de problémes d’inférence étudiées
en traitement du signal sont la détection et 'estimation. Si on regarde la littérature sur les
problémes conjoints détection/quantification et estimation/quantification, on constate que, en
comparaison avec la littérature pour les problémes isolés (seulement détection ou seulement
quantification), sa taille n’est pas importante, en revanche, comme conséquence de 'essor des
réseaux de capteurs, elle ne cesse pas de grandir.

Quelques références sur ces problémes conjoints sont :

e Détection: |Benitz 1989], |Gupta 2003|, [Kassam 1977|, [Longo 1990|, [Picinbono 1988|,
[Poor 1977, [Poor 1988|, [Tsitsiklis 1993], [Villard 2010], [Villard 2011].

o Estimation: |Aysal 2008|, [Fang 2008|, [Gubner 1993|, [Luo 2005|, [Marano 2007,
[Papadopoulos 2001], [Poor 1988|, [Ribeiro 2006a], |Ribeiro 2006b|, [Ribeiro 2006c]|,
[Wang 2010].

Estimation a partir de mesures quantifiées. Dans cette thése on s’intéresse au second
probléme, I'estimation & partir de mesures quantifiées. On commence par la définition générale
du probléme d’estimation dans un réseau de capteurs pour, aprés une suite de simplifications,
arriver au sujet précis de la thése.

Dans le schéma général, chaque capteur : mesure une quantité a amplitude continue X @,
puis la mesure est traitée et transmise au point ot I'estimation sera faite. Ce point peut étre
un centre de fusion, un des capteurs ou tous les capteurs. Dans le dernier cas, tout les capteurs
diffuseront leurs mesures aprés traitement. Ce schéma est montré en Fig. B.1. La quantité
mesurée peut étre une suite de vecteurs, une suite de scalaires, un vecteur constant ou un
scalaire constant.

Comme premiére hypothése de travail, on considére que seulement un des terminaux (cap-
teurs) est utilisé dans le réseau de capteurs, éventuellement on peut considérer plusieurs ter-
minaux, mais dans ce cas la quantité a estimer sera la méme pour tous les capteurs. On
considére aussi que la quantité & estimer est une séquence de scalaires ou un seul scalaire, on
utilise la notation X pour cette quantité dans les deux cas, I'indice k£ désigne I’échantillon en
question ou le temps discret. Dans le cas oit X est une constante scalaire, on a X = z. Le
probléme simplifié, qui peut étre appelé probléme d’estimation scalaire & distance, est montré
en Fig. B.2.

Le paramétre X est mesuré avec du bruit additif V. La mesure & amplitude continue est
notée Y, = X + Vi. Le probléme que nous traitons dans cette thése est donc un probléme
d’estimation d’'un paramétre de centrage.

En raison des contraintes de conception discutées plus haut, le bloc de traitement est
remplacé par un quantifieur scalaire. Par conséquent, chaque mesure continue Yj génére
une mesure quantifiée i au travers d’une fonction de quantification @ (.). Chaque mesure
quantifiée est définie dans un ensemble fini de valeurs, ceci permet de fixer le débit binaire en
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X1 !
— Capteur —| Traitement » Transmission K XM
| | & (2)
| Capteur 1 } X
X[ N I > (N,
— Capteur | Traitement ——| Transmission . . X
| | > Estimation —
1 Capteur 2 |
x| [ ] 1 /
— Capteur | Traitement » Transmission
1 Capteur N, |

Figure B.1: Estimation avec un réseau de capteurs. Plusieurs capteurs transmettent des
informations pré-traitées a ’estimateur final qui doit récupérer les quantités d’intérét.

X
» Transmission - Estimation ——

,,,,,,,,,,,,,,,,,,,,,,,

Figure B.2: Probléme d’estimation scalaire & distance. Simplification scalaire et & un seul
capteur du probléme montré en Fig. B.1.

sortie du capteur. On suppose que le débit en bits par unité de temps est choisi de facon & ne
pas dépasser la capacité du canal de transmission, de cette maniére on peut considérer qu’un
code suffisamment performant peut étre mis en ceuvre pour rendre le canal parfait.

A chaque instant k, on est intéressé par l'estimation de X & partir d’'un bloc de mesures

passées i1, 12, - -, 1. Ce probléme est illustré en Fig. B.3.

7 T

X! iy Tl ‘ ¢

ki % Vg Canal l . , X
Y; : ‘ . —> y T —

! i @ (%) Clo parfait | 9 (i i)
i Bruit Quant. | o . Estimation
~ Mesure

Figure B.3: Estimation a partir de mesures quantifiées. Un parameétre est mesuré avec du bruit
additif, les mesures sont alors quantifiées et transmises & travers un canal de communication
parfait. A partir de mesures passées, I'objectif est d’estimer X & chaque instant k avec la
suite de fonctions g ().

En Fig. B.3, on voit que la structure du quantifieur peut dépendre aussi de mesures
quantifiées passées.
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Ce que l'on veut étudier. On veut proposer des algorithmes pour I'estimation de X} a
partir des ig. Le paramétre X}, qui sera défini de fagon plus précise dans la suite, peut étre
déterministe et constant ou aléatoire et lentement variable.

Apreés avoir proposé des algorithmes, on veut étudier leurs performances. Etant données
les performances des algorithmes, on veut aussi étudier les effets de différents parameétres du
quantifieur : seuils de quantification et résolution du quantifieur.

Pour évaluer I'impact de la quantification sur la performance d’estimation, on comparera
la performance des algorithmes proposés avec leurs pendants & mesures continues.

L’objectif ici est d’estimer X}, seulement & partir des informations sur les intervalles ou ses
versions bruitées se trouvent.

Ce que ’on ne veut pas étudier. On ne veut pas reconstruire la mesure Y a partir de la
mesure quantifiée pour ensuite estimer Xy & partir des mesures reconstruites comme si elles
étaient continues. En faisant cela, on se raménerait au groupement des solutions optimales des
deux problémes séparés, ces solutions ont déja été abondamment étudiées dans la littérature.

On ne veut pas non plus considérer la quantification comme du bruit additif. On veut
étudier le probléme dans sa forme originale, ¢’est-a-dire, le probléme d’estimation a partir des
informations contenues dans des intervalles et pas dans des valeurs continues.

Ce que 'on veut étudier mais que 'on n’étudiera pas. Pour spécifier de fagon plus
précise le probléme traité dans cette thése, on doit aussi mentionner les problémes que 1'on a
négligé sciemment pour rendre le sujet plus simple a traiter. Ces problémes sont les suivants :
paramétres vectoriels et quantification vectorielle, canaux de communication bruités et codage

canal, signaux a variations rapides, estimation de signaux & temps continu et estimation
Bayésienne d’une constante aléatoire.
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Plan du résumé

Le plan de ce résumé est le suivant :

e Estimation & partir de données quantifiées : algorithmes et performances

On détaille le probléme a traiter (présentation des modéles de signaux a estimer, du bruit
et du quantifieur), puis on étudie les algorithmes d’estimation et leurs performances.

— Estimation d’un parameétre constant.

D’abord, on se concentrera sur I'estimation d’un signal constant. On présentera
un estimateur du maximum de vraisemblance pour deux types de quantification :
binaire et multibit. Par l'analyse de sa performance asymptotique, donnée par
la borne de Cramér—Rao (BCR) ou de fagon équivalente par I'information de
Fisher, on regardera 'impact du réglage de la dynamique de quantification. Comme
conséquence de cette analyse, on montrera 'importance d’une approche adaptative
pour le réglage du quantifieur. Finalement, on présentera des algorithmes adap-
tatifs de haute complexité qui, conjointement, estiment la constante et réglent le
quantifieur. On montrera qu’asymptotiquement une de ces méthodes est équiva-
lente & un algorithme récursif de basse complexité.

Estimation d’un paramétre variable.

On passera ensuite au cas du parameétre variable. Aprés la présentation du modéle
de variation utilisé, on définira le critére de performance d’estimation et I’estimateur
optimal. Pour réaliser 'estimateur optimal, on utilisera une méthode numérique
d’intégration, dans ce contexte (estimation Bayésienne) cette méthode est con-
nue sous le nom de filtrage particulaire. On étudiera ses performances avec la
borne de Cramér—Rao Bayésienne (BCRB) et on montrera encore une fois
I'importance de 'adaptativité du réglage du quantifieur. Avec ’approche adapta-
tive, on montrera qu’asymptotiquement 1’estimateur optimal ainsi obtenu pour un
signal lentement variable peut étre mis, lui aussi, sous une forme récursive simple.

Quantifieurs adaptatifs pour 'estimation.

En se basant sur 'optimalité asymptotique des estimateurs vus précédemment, on
proposera des algorithmes adaptatifs de basse complexité pour 'estimation et le
réglage conjoint du quantifieur. On étudiera la performance de ces algorithmes pour
deux modeéles d’évolution de la quantité a estimer (constant ou lentement variable)
et on les optimisera par rapport & ses paramétres libres. Pour la performance opti-
male, on étudiera la perte de performance d’estimation par rapport & des schémas
équivalents pour des mesures continues.

On proposera deux extensions de 'algorithme adaptatif : une extension ou 'on
estime le paramétre = sans connaitre ’échelle du bruit (équivalent de 1’écart type)
et une autre ou plusieurs capteurs obtiennent des mesures quantifiées en paralléle
et les transmettent & un centre de fusion qui applique un algorithme adaptatif pour
I’estimation et diffuse son estimateur aux capteurs pour le réglage des quantifieurs.
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e Estimation a partir de données quantifiées : approximations & haute résolution. Con-

trairement aux développements précédents ot le réglage du quantifieur n’est fait qu’en
fonction du seuil central, on se concentrera ici sur le placement de tous les seuils de
quantification pour maximiser la performance d’estimation d’un paramétre arbitraire
(pas seulement de centrage). Vu que ce probléme est difficile a résoudre directement,
on utilisera une approche asymptotique, i.e. on trouvera des approximations pour le
quantifieur optimal quand le nombre d’intervalles de quantification est trés grand.

— Approximation a haute résolution de I'information de Fisher. Aprés avoir montré

I'importance de I'information de Fisher dans la performance d’estimation des al-
gorithmes proposés, on appliquera cette approche asymptotique pour la maximiser
en fonction des caractéristiques du quantifieur. Cette approche asymptotique per-
mettra de trouver une caractérisation optimale du quantifieur et une expression
analytique de l'information de Fisher optimale. On testera les résultats sur le
probléme d’estimation d’un paramétre de centrage. Pour avoir une approxima-
tion pratique des seuils de quantification optimaux, on proposera 'utilisation de
I’algorithme adaptatif présenté précédemment.

Avec les expressions analytiques de I'information de Fisher, on pourra aussi étudier
de fagon approchée le probléme d’allocation optimale de bits dans un réseau de
capteurs, i.e. le nombre total de bits que les capteurs peuvent envoyer a un centre
de fusion étant fixé, combien de bits faut-il allouer & chaque capteur ?

e Conclusions

On présentera les principaux points qui découlent des résultats de la thése et on regardera
les travaux qui peuvent étre développés dans le futur : des extensions de problémes traités
ici ou des problémes qui n’ont pas été traités pour avoir une premiére approche la plus
simple possible.
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B.2 Estimation et quantification : algorithmes et performances

B.2.1 Estimation d’un paramétre constant

Pour commencer cette section, on présente les modéles de mesure et de bruit utilisés.

Modéle de mesure
Le paramétre inconnu, constant et scalaire est
z € R,

il est mesuré N fois, N € N*, avec du bruit indépendant et identiquement distribué
(i.i.d.) V. Pour k € {1,---, N}, les mesures continues sont données par

Yo =2+ V. (B.l)

Modéle de bruit, hypothéses sur la distribution du bruit

Pour simplifier la suite, on considérera les hypothéses suivantes sur la distribution du bruit :

AN1 La fonction de répartition marginale du bruit, notée F', admet une densité de prob-
abilité (d.d.p.) f par rapport a la mesure de Lebesgue standard en (R, B (R)).

AN2 La d.d.p. f(v) est une fonction paire, strictement positive et elle décroit strictement
avec |v|.

Modéle du quantifieur

La sortie du quantifieur est donnée par
ir = Q (Y),

ou 4y, est choisi dans un ensemble fini de valeurs Z de R, cet ensemble posséde N; éléments.
Le nombre d’intervalles de quantification est par conséquent noté Ny. Un exemple simple de
quantifieur () avec seuils uniformes est donné en Fig. B.4.

A Texception de la quantification uniforme, que ’on n’imposera pas, cet exemple illustre
les principales hypothéses de travail sur la structure du quantifieur :

Hypothéses (sur le quantifieur) :

AQ1 Nj est un nombre naturel pair et I’ensemble Z, auquel i; appartient, est

[N N
2 2
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Figure B.4: Fonction de quantification @ (Yy) avec Ny intervalles de quantification uniformes
de taille A. Le nombre d’intervalles de quantification Ny est pair, le quantifieur est symétrique
autour d’un seuil central 7y et ses indices de sortie sont des entiers non nuls.

AQ2 Le quantifieur est symétrique autour d’un seuil central. Par conséquent le vecteur de
seuils 7 peut étre écrit sous la forme suivante (T est I'opérateur transposé)

T

/ / / /
T=|T Ny =T0—TNn; *** T-1=T0—T1 To T1=T0+T] - TNy =70+ Tn;
2 2 2 2

Les éléments de ce vecteur forment une séquence strictement positive et le vecteur de
variations de seuil par rapport au seuil central est donné par

-
=10 7 - T§v12+m

2

Avec les variations de seuils 7/, on peut écrire la relation entrée-sortie du quantifieur sous
une forme plus compacte :

i = isign (Yy — 1), pour |Yy— 1ol € [1i_{, 7). (B.2)

(2

Maximum de vraisemblance, borne de Cramér—Rao et information de Fisher

On veut estimer x & partir de i;.5 = {i1,--- ,in}, on cherche donc un estimateur

A~

X (i1.n) - qui est aléatoire, vu que les i1.y sont aléatoires aussi,

le plus proche de x. Proche dans ce cas peut étre traduit de fagon quantitative par un
critére de performance. Dans notre cas on considére comme critére de performance I'erreur
quadratique moyenne (EQM)

EQM = E [(X - xﬂ :
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Si 'on impose que I'estimateur soit non biaisé i.e.
E [X’ } =z,
au moins quand N — oo, on sait que 'estimateur qui minimise 'EQM asymptotiquement
(et donc qui maximise la performance asymptotiquement) est l'estimateur du maximum
de vraisemblance (MV) [Kay 1993, p. 160|. Le MV consiste & maximiser la fonction
de vraisemblance par rapport au paramétre inconnu. La vraisemblance est la distribution
conjointe des mesures (celles-ci étant figées aprés observation) et elle est une fonction du

paramétre inconnu (celui-ci considéré comme une variable). Pour le probléme que l'on traite
ici, la vraisemblance pour un bloc de mesures indépendantes 1.5 est

LU/LlN H]P)Zkv )

ou P (ig; x) est la probabilité d’avoir une valeur quantifiée i a U'instant k& pour un parameétre
x. On peut réécrire cette probabilité en fonction des seuils et de la fonction de répartition :

IP)(' ) P(Tz‘k—l <Y, <Tik), si i >0,
ik ) =
P(Tik < Yk < Tik+1), si ik < 0,

avec la définition Y, = z + V}, donnée par (B.1)

P (iy; 2) P(r—1 <az+ Vi <m,), si i >0,
1, T =
(Tzk x4+ Vi < le-i-l) sioip <0,

| F(my, —x) = F(7y-1— @), si g >0,
(le-i-l ) F (Tik — x), si i <O.
L’estimateur du MV est donné par
XMv,q = Xuv (i1.n) = argmax L (z;i1.5) ,
xr

ou de fagon équivalente par

XMV,q = argmax log L (z;i1.n) .
x

On se concentre maintenant sur les performances de cet estimateur, qui , & cause du
manque de résultats a taille d’échantillon finie, ne sont connues qu’en régime asymptotique.

L’EQM du MV peut étre écrit, en général, sous la forme suivante
N 2 N 2 “ 9
E|(Zuvg—2) | = [E(Znvg— )|+ Var (Xasv,) = biais? + variance.
Comme mentionné auparavant, le MV est asymptotiquement non biaisé:

E [XMv,q] N x.

—00
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Par conséquent, son EQM n’est caractérisée que par sa variance.

La variance asymptotique du MV atteint la BCR [Kay 1993, p. 160] (qui est aussi une
borne inférieure sur la variance des estimateurs non biaisés dans un contexte non asymptotique
[Kay 1993, p. 30]) :

Var (XMV,Q) .~ BCR,,

ou le symbole Na est utilisé pour représenter une équivalence.
—00

La BCR est I'inverse de I'information de Fisher [Kay 1993, p. 30] I, qui est la variance

de la fonction score S;. En partant de la fonction score pour N mesures quantifiées, on a les

expressions suivantes

Olog L (z; 1.
Sq,1:N = w - fonction score,

log L (z;i1.x) ]
o = i) o{ [T

1 B 1
1N E“alg%mr}

L’indice 1 : N est utilisé pour indiquer que ces quantités sont relatives & N mesures. Pour

- variance et BCR.

Var (X Mv,q) . BCR;=

simplifier, on utilisera la notation S, et I, dans le contexte d’'une mesure quantifi¢e arbitraire.

Sous I'hypothése de mesures indépendantes on a

. 1
Var ( mva) o BOR = Fp
La fonction score pour une mesure S, est
o _ dlogL(wsiy) _ GED
7 ox - P (i)

et I'information de Fisher correspondante est

- 2
[ rowgL(i)]? Fasn) 17
Iq—EH du = 2 |Blimy| P
i, €L
2

Si on note ¢ = 79 — x la différence entre le seuil central et le parametre, on peut réécrire I
sous la forme suivante :

S )~ F ) | ) = o= )]
IR ) ) ey
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Influence du quantifieur sur la performance

La performance de I'estimateur est donc caractérisée par BCR, ou de fagon équivalente par
I, par conséquent, pour étudier I'influence du quantifieur sur la performance d’estimation on
peut, de facon quantitative, étudier comment BCR, ou I; se comportent en fonction de Ny et
7. On commence par quelques propriétés générales de I :

Perte induite par la quantification : si on note S, et I, la fonction score et 'information
de Fisher du probléme d’estimation équivalent avec des mesures continues, on peut montrer
que

I~ I, =E[(S.~ 5,°| > 0.

Ce qui veut dire que I, est majorée par I. et qu'il existe une perte de performance inhérente

a la quantification donnée de maniére quantitative par [(SC — Sq)z}.

Monotonicité de I, : on peut montrer aussi que si I'on ajoute un seuil a un vecteur de
seuils 7, alors 'information de Fisher correspondant au nouveau vecteur de seuils est toujours
plus grande ou égale & l'information de Fisher précédente. Cela veut dire que l'information
de Fisher croit de fagon monotone en fonction de Ny (pour une séquence de seuils construite
en ajoutant des seuils).

Une question qui se pose pour la suite est : comme on peut construire une séquence de
seuils telle que I, croit de facon monotone en N et comme on sait que I, est majorée par I,
est-ce que I, converge vers I, 7 On répondra a cette question plus loin dans ce résumé.

Maintenant, on passe a I’étude de la performance d’estimation en fonction de la position
des seuils. On commence par le cas binaire.

Cas binaire : dans le cas binaire on peut utiliser ’expression de l'information de Fisher
(B.3) pour obtenir la BCR suivante
F(e)[1—F(e)]

Nf2(e)

B
BCRY =

L’analyse de la performance se réduit alors a ’analyse de la fonction

F(e)[1 - F(e)]
2 e

B(e) = NBCR} =

L’étude de cette fonction dans le cas Gaussien (f (¢) = ﬁ exp [— (%)2]) a été réalisée par

[Papadopoulos 2001] et [Ribeiro 2006a], son comportement est illustré en Fig. B.5.

On peut noter que la valeur minimale de B est atteinte lorsque € = 0 et que B (¢) augmente
lorsque |e| augmente. Par conséquent la valeur optimale du seuil 7 est égale & x et la valeur
1

minimale de B est B* = ; OB ”T‘SQ. Si on compare cette valeur avec la BCR pour les mesures

continues, BCR.x N = %, on peut constater que la perte produite par la quantification binaire
est d’environ 2dB, ce qui est, de fagon surprenante, trés peu.
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Figure B.5: BCR normalisée B en fonction de la différence normalisée § entre le seuil et le
paramétre. La distribution du bruit est Gaussienne et le facteur de normalisation § est le
paramétre d’échelle de la Gaussienne. Des normalisations sont réalisées sur les deux axes pour

que la courbe affichée soit indépendante de 6.

Notez que pour avoir cette petite perte, il faut que 79 = x, ce qui est impossible en pratique,
puisque z est le paramétre inconnu & estimer. Notez aussi que B est une fonction assez sensible
par rapport a la position du seuil, si l’on place 7y loin du paramétre la performance d’estimation
est trés dégradée.

On peut montrer que pour d’autres distributions couramment utilisées comme modéle de
bruit, tels que la distribution de Laplace et la distribution de Cauchy, des conclusions similaires
peuvent étre obtenues :

e La valeur optimale du seuil de quantification est 75 = x.
e La perte due a la quantification est petite, si on utilise 7.

e La performance se dégrade lorsque 7y s’éloigne de x.

Cas asymétriques : méme si pour plusieurs distributions de bruit couramment utilisées la
fonction B a un comportement symétrique en forme de « u », ce comportement ne se généralise
pas a toutes les distributions symétriques, comme on s’y attend intuitivement. Il suffit que la
condition suivante ne soit pas satisfaite

— f@(0) > 4% (0),

pour que la fonction B ait ¢ = 0 comme maximum local. Ceci veut dire que pour des
densités ne respectant pas cette condition, le point de quantification optimal n’est pas z et la
quantification optimale doit étre faite de maniére asymétrique par rapport a la distribution
des mesures.
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Un cas simple de distribution symétrique qui ne respecte pas cette condition est la distri-
bution ad hoc suivante

+2\2
fer (e) = %mexp [—é (%) ] , pour € < —,
f(e)= fU(€):Cl2m, pour — 5 <e < g,

_a\2
fer(e) = C%/%exp [—% <ST2) } , poure > §.
Un exemple de BCR obtenue avec cette distribution (et de la performance pratique du
MV) est donné en Fig. B.6

1072
1.2 :

QM

Figure B.6: BCRqB et EQM simulée du MV pour un bruit distribué selon la loi ad hoc. La
borne et 'EQM simulée ont été évaluées pour N = 500 et € dans l'intervalle [-2, 2]. L'EQM
du MV a été évaluée par une simulation Monte Carlo avec 10° réalisations de blocs de 500
échantillons. On a utilisé aussi : a =1et 0 = 1.

Cas multibit : pour 'estimation avec MV et une quantification multibit, la performance
en fonction du quantifieur peut étre étudiée au travers de ’analyse de I'information de Fisher
(B.3). Comme résultat de cette analyse on trouve que :

e la dynamique de quantification doit étre proche du paramétre pour maximiser la perfor-
mance d’estimation.

e Pour des variations de seuils symétriques bien choisies, le choix 79 = = est optimal pour
plusieurs types de bruit (pour une classe plus large que dans le cas binaire).

e La performance se dégrade rapidement quand la dynamique de quantification est placée
loin du paramétre & estimer.

e Le probléeme d’optimisation de I, en fonction de 7’ est difficile & résoudre pour Np =
log, (N7) > 3.
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Quantification adaptative : approche a4 haute complexité

La conclusion directe des résultats précédents est la suivante : on doit placer le seuil central
le plus proche possible du parameétre x. Or comme x est inconnu, on peut se baser sur les
derniéres mesures quantifiées pour estimer x, et comme on s’attend a ce que I'estimateur soit,
au moins aprés un certain moment, proche de z, on placera le seuil central de quantification
exactement sur cette derniére estimation. Ceci équivaut donc a une approche d’estimation ot
le processus de mesure, le quantifieur, est a tout instant adapté pour améliorer la performance
d’estimation.

Dans la littérature cette approche adaptative a été proposée en |Li 2007| et |[Fang 2008|,
dans le cas binaire et Gaussien.

La premiére méthode, proposée en |[Li 2007, consiste & générer des estimations simples du
paramétre au niveau du capteur avec la mise a jour du seuil central donnée par

Tok = T0k—1 T Vik,

ou « est un pas d’adaptation. Les mesures quantifiées sont donc transmises & ’estimateur
distant qui posséde suffisamment de puissance de calcul pour générer des estimations plus
précises en utilisant le MV. Dans ce cas, le MV consiste a maximiser la vraisemblance suivante

N
L(zjiry) = Plinnie) = [[Pllin-, - i)
k=1

I
=

P(ig|0,k—1; %)

k=1
N 141y, 1—ip,
= [[0-F(rop—1—2)] 7 Flrop1—2) 2 , (B.4)
k=1
N

) 141 1—1
log L (z541.8) = Z { 5 * log 1—F (to,-1—x)] + 5 " log F (Tok—1 — x)} .
k=1

Du fait de la symétrie du probléme, on espére que le seuil 79 va tendre en moyenne vers le
point x, de cette fagon le seuil central va fluctuer autour du vrai paramétre et donnera une
performance d’estimation proche de I'optimum.

La performance asymptotique de I'algorithme a été étudiée plus en détail dans [Fang 2008|.
Elle est obtenue a partir de 'inverse de I'information de Fisher

N
f? (top-1 — )
I, 1. :E E !
q,1:N e |:F(

T07k_1 — x) [1 — F (TO,k—l — .73)]

ol 'espérance est évaluée par rapport a la distribution de 79 1, qui maintenant n’est plus fixé,
ni déterministe. Sachant que la distribution des seuils tend vers une distribution asymptotique,
quand N 