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Abstract. AMP-activated protein kinase (AMPK) is a central energy sensor and regulator of cellular 
energy state, but the AMPK signaling network is still incompletely understood. Two earlier non-
biased screens for AMPK interaction partners and substrates performed in the laboratory identified 
several candidate proteins, but functional and physiological roles remained unclear. Here we 
characterized the functional relationship of AMPK with four different protein interaction partners: 
gluthatione S-transferases (GSTP1 and GSTM1), fumarate hydratase (FH), an E3 ubiquitin-ligase 
(NRDP1), and vesicle-associated membrane proteins (VAMP2 and VAMP3). Each of these interaction 
partners seems to have a different function in AMPK signaling, either acting up- or down-stream of 
AMPK. GSTP1 and GSTM1 can contribute to AMPK activation by facilitating S-glutathionylation of 
AMPK under mildly oxidative conditions. This non-canonical regulation suggests AMPK as a sensor of 
cellular redox state. Mitochondrial FH was identified as the only clear AMPK downstream substrate, 
but surprisingly the phosphorylation site is present in the mitochondrial targeting prepeptide, 
possibly affecting mitochondrial import. NRDP1, whose expression as a full-length soluble protein 
was achieved here for the first time, is phosphorylated by AMPK only at low levels. The interaction 
does neither serve for AMPK ubiquitinylation, but rather affects NRDP1 turnover. Finally, interaction 
of VAMP2/3 with AMPK does not involve phosphorylation or activation events of one of the partners. 
Instead, we propose VAMP2/3 as scaffolding proteins that recruit AMPK to exocytotic vesicles which 
could favor phosphorylation of vesicular AMPK substrates for exocytosis. Collectively, our results add 
some new elements to the AMPK signaling network, suggesting that it is much more complex than 
anticipated. In addition to upstream kinases and downstream substrates, regulation of AMPK 
signaling occurs by secondary protein modifications other than phosphorylation, by effects on 
protein turnover, and probably also by specific subcellular recruitment of AMPK. 

 
Résumé. La protéine kinase activée par AMP (AMPK) est un senseur et régulateur central de l’état 
énergétique cellulaire, mais ces voies de signalisation ne sont pour le moment que partiellement 
comprises. Deux criblages non-biaisés pour la recherche de partenaires d’interaction et de substrats 
d’AMPK ont précédemment été réalisés dans le laboratoire. Ces derniers ont permis l’identification 
de plusieurs candidats (protéines), mais leur rôle fonctionnel et physiologique n’était pas encore 
établi. Ici nous avons caractérisé la fonction de la relation entre AMPK et quatre partenaires 
d’interaction : gluthation S-transferases (GSTP1 and GSTM1), fumarate hydratase (FH), l’E3 
ubiquitine-ligase (NRDP1), et les protéines associées à la membrane (VAMP2 and VAMP3). Chacune 
de ces interactions parait avoir un rôle différent dans la signalisation AMPK, agissant en amont ou en 
aval de la protéine AMPK. GSTP1 et GSTM1 contribueraient  à l’activation d’AMPK en facilitant la S-
glutathionylation d’AMPK en conditions oxydatives moyennes. Cette régulation non-canonique 
suggère que l’AMPK peut être un senseur de l’état redox cellulaire. FH mitochondrial est l’unique 
substrat AMPK clairement identifié. Etonnamment le site de phosphorylation se trouve dans le 
peptide signal mitochondrial, ce qui pourrait affecter l’import mitochondrial. NRDP1, protéine pour 
laquelle nous avons pour la première fois développé un protocole de production de la protéine 
soluble, est faiblement phosphorylée par l’AMPK. L’interaction ne sert pas à l’ubiquitination d’AMPK, 
mais affecte le renouvellement de NRDP1. Finalement, l’interaction de VAMP2/3 avec AMPK 
n’implique pas d’évènement de phosphorylation ou d’activation d’un des partenaires. Nous 
proposons un mécanisme de recrutement d’AMPK par VAMP2/3 (« scaffold ») au niveau des 
vésicules en exocytose. Ce recrutement favoriserait la phosphorylation de substrats de l’AMPK à la 
surface des vésicules en exocytoses. Une fois mis en commun, nos résultats enrichissent les 
connaissances sur les voies de signalisation AMPK, et suggèrent une grande complexité de ces 
dernières. Plus que les kinases en amont et des substrats en aval, la régulation de la signalisation 
d’AMPK se fait via des modifications secondaires autres que la phosphorylation, via des effets sur le 
renouvellement de protéines, et probablement via un recrutement spécifique de l’AMPK dans 

certains compartiments cellulaires.  
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An introduction to 

AMP-activated 

protein kinase 

(AMPK) 

Abstract. AMP-activated protein kinase (AMPK) is a 
heterotrimeric serine/threonine kinase. It is the most 
relevant kinase in the context of metabolic stability 
and energy homeostasis, playing a central role in 
sensing and regulating energy homeostasis at the 
cellular, organ and whole-body level. Activation 
involves covalent phosphorylation and allosteric 
binding of AMP or ADP that cooperate in a complex 
manner. Once activated, AMPK phosphorylates a 
broad range of downstream targets, resulting in the 
inhibition of anabolism and activation of catabolism, 
to maintain high levels of cellular ATP. Disturbance of 
energy homeostasis underlie a number of disease 
such as cardiovascular pathologies, 
neurodegenerative disease, cancer and type 2 
diabetes. Since few years AMPK has emerged as a 
potential therapeutic target for some of these 
pathologies. 
 
Résumé. La protéine kinase activée par l’AMP 
(AMPK) est une serine/thréonine kinase 
hétérotrimérique. Cette kinase est la plus 
importante dans le cadre de la stabilité métabolique, 
jouant un rôle central de senseur et régulateur de 
l’homéostasie énergétique au niveau de la cellule, de 
l’organe et de l’individu. Son activation requiert une 
phosphorylation covalente et une régulation 
allostérique par l’AMP ou l’ADP. Une fois activée, 
l’AMPK phosphoryle un grand nombre de cibles en 
aval, provoquant une inhibition de l’anabolisme et 
une activation du catabolisme, permettant le 
maintien d’un haut niveau d’ATP. Un grand nombre 
de pathologies sont sous-jacentes à des 
perturbations de l’homéostasie énergétique, telles 
les maladies cardiovasculaires, les maladies 
neurodégénératives, les cancers et le diabète de 
type 2. Depuis maintenant quelques années l’AMPK 
est considérée comme une cible thérapeutique 
potentielle. 
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Homeostasis of cell metabolism 

Metabolism 

Without external input of energy, entropy of a system will tend to a maximum; for living 

organisms, this disorder corresponds to death. Living organisms are highly organized, thus 

they need to constantly struggle against disorder. Oxidation of macromolecules generates a 

free energy reservoir in form of “high energy” compounds such as nucleotide triphosphates, 

which serves as fuel to maintain biological order. The overall metabolism process consists in 

coupling exergonic to endergonic reactions to maintain life, in other words metabolism utilizes 

the free energy to carry out vital functions such as biosynthesis of complex molecules, active 

transport, or mechanical work. (Atkins, 1984; Voet, 2011) 

 

Figure 1. General scheme of cellular metabolism. Catabolic reactions generating ATP (top), through coupling to 
anabolic reactions (biosynthesis, bottom) using ATP, maintain cell structural organization as an expression of the 
decrease of internal entropy (ΔSin < 0) and are also the source of energy for cellular work (Wc). Abbreviations: 
ΔSex, excess entropy; ΔSin, input entropy; ΔSt, total entropy; ΔGex, excess Gibbs free energy. For further details 
see text. Reproduced from (Saks, 2007). 

 

The chemical reactions of metabolism are organized into metabolic pathways, in which a 

macromolecule is transformed into another one by a series of consecutive enzymatic 
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reactions. (Alberts, 2002; Atkins, 1984; Voet, 2011). Their reactants, intermediates, and 

product are referred to as metabolites. There are two subfamilies of enzymatic reactions 

composing the metabolic pathway (Figure 1). 

(1) Catabolism, which  breaks down complex molecules (nutrients and cell constituents) 

into more simple ones to generate building blocks and conserve free energy in form of 

a small number of compounds. The latter occurs mainly through the synthesis of ATP 

from ADP and phosphate and the reduction of the coenzyme NADP+ to NADPH. 

Proteins, lipids and polysaccharides are broken down by enzymatic digestion into 

smaller molecules, such as amino acids, sugar, fatty acids and glycerol, respectively. 

Such small units can be taken up into the cell and oxidized. 

(2) Anabolism, which uses the free energy sources and building blocks provided by 

catabolic processes to synthesize again more complex molecules needed to sustain a 

living cell. Anabolic processes are powered by the hydrolysis of ATP. Processes such as 

gluconeogenesis, glycogenesis, lipogenesis and protein synthesis are all anabolic 

processes which tend towards “building up” organs and tissues. 

 

Metabolic reactions are accelerated by enzymes which are among the more effective catalysts 

known, capable of accelerating reactions up to a factor of 1014. They thereby allow reactions 

that would otherwise not proceed rapidly at cell temperatures. More than 4500 enzymatic 

reaction are listed to date. (Alberts, 2002; Fruton, 1999; Kornberg, 1991)  

 

Post-translational modification of proteins  

Post-translational modifications (PTMs) are all chemical protein modifications that occur after 

translation. Mostly, these are covalent modifications of amino acid residues. Reversible PTMs 

can occur rapidly and have regulatory roles in different physiological responses. Multiple PTMs 

on a single protein create a large combinatorial pattern or “mod-forms”. Distinct mod-forms 

can elicit distinct downstream responses and thus knowledge of PTMs is the most informative 

measure of a protein’s state (Khoury et al., 2011).  
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Over 200 types of PTM have been identified (Jensen, 2006), which can be divided in two kinds 

of processes. A first type of PTMs are polypeptide modifications such as covalent binding of 

ubiquitin (ubiquitinylation) and ubiquitin-like moieties (e.g. sumoylation, neddylation) 

(Schwartz and Hochstrasser, 2003). Addition of these polypeptide molecules requires an 

entire group of specific enzymes. A second type of PTMs is based on a group of smaller 

molecules (e.g. acetyl, ADP-ribosyl, phosphoryl) which are provided by metabolic donors (e.g. 

acetyl-CoA, NAD, ATP) that are derived from basic cell metabolism. The final covalent binding 

is processed by single enzymes (Prabakaran et al., 2012).  

 

Figure 2. Top experimentally observed post-translational modifications. Occurrence of experimentally detected 
PTMs, as curated from SwissProt. Figure from (Khoury et al., 2011). 

 

Phosphorylation events dominate by large the number of experimentally observed PTMs 

(Figure 2). However, these numbers probably do not reflect the physiological proportion of 

these PTMs, but rather the preponderance of phosphorylation studies in literature. 
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Phosphorylation plays a key role in cell signaling for a wide range of cellular processes by 

providing a simple “on”/“off” switch for enzymes or receptors. This PTM is catalyzed by 

protein kinases and reversed by protein phosphatases. AMPK is an important effector of 

cellular protein phosphorylation.  

 

AMPK, structure and localization 

Role of AMPK in metabolism 

Adenosine monophosphate-activated protein kinase (AMPK) is the most relevant kinase in the 

context of metabolic stability and energy homeostasis. AMPK is phylogenetically one of the 

most ancient eukaryotic protein kinases, conserved  in all eukaryotic genomes that have been 

sequence to date, from protozoa and yeast to plants and human (Hardie, 2003). AMPK 

participates in sensing and controlling cellular and whole-body energy balance by its sensitivity 

to AMP and ADP. AMPK is allosterically activated by increasing AMP:ATP and ADP:ATP ratios 

(Hardie et al., 2012a), and its covalent phosphorylation by upstream kinases. It operates as a 

“metabolic master switch” at cellular, organ and whole-body levels (Hardie and Carling, 1997; 

Winder and Hardie, 1999). Activation of AMPK generally aims at compensating ATP loss via 

acceleration of catabolism and inhibition of anabolism.  

 

AMPK structure 

AMPK is part of a structurally related family of serine/threonine protein kinases (the AMPK-

related-kinases [ARKs]) comprising around 14 members (Lizcano et al., 2004). It is a 

heterotrimeric complex consisting of a catalytic α-subunit and regulatory β- and γ-subunits 

(Figure 3). Further complexity is added by the existence of multiple subunit genes encoding 

each different isoforms of each subunit. In mammals, there are two genes encoding the AMPK 

α catalytic subunit (α1 and α2), two β genes (β1 and β2) and three γ subunit genes (γ1,γ2 and 

γ3) with γ2 and γ3 existing as splice variants (Hardie, 2007). Each of these subunit takes on a 

specific role in both the stability and activity of AMPK (Stapleton et al., 1996). 
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Figure 3. Schematic representation of AMPK subunits. Cartoon of the three AMPK subunits, highlighting key 
amino acid residues and regions implicated in the regulation of AMPK activity. The major upstream kinases 
phosphorylating Thr172 are LKB1 and CaMKKβ. AMP is shown bind to each of the three nucleotide-binding sites 
in the γ subunit. CBM, carbohydrate binding module; CBS, cystathionine β-synthetase.  Figure from (Carling et 
al., 2012).  

 

The α-subunit contains the catalytic domain and an inhibitory activation loop involved in its 

regulation (Crute et al., 1998; Pang et al., 2007). The key site for AMPK activation is found on 

the activation loop as threonine 172 (Thr172) which is phosphorylated by upstream kinases. 

The C-terminal α-domain is interacting with both the β-subunit and loop(s) contacting the γ-

subunit (Pang et al., 2007) 

The β-subunit tethers both α- and the γ-subunits (Iseli et al., 2005) as a scaffold protein with 

it C-terminal domain (aa 187 to 272) and also bears a carbohydrate binding module (CBM) 

(Hudson et al., 2003; Polekhina et al., 2003), that is found in a number of enzymes that 

metabolize polysaccharides, such as glycogen or starch (Hudson et al., 2003; Polekhina et al., 
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2003). Consistent with the presence of a CBM, AMPK can bind to glycogen in vitro (Hudson et 

al., 2003; Polekhina et al., 2003). Functions in subcellular targeting to glycogen granules and 

regulation of glycogen metabolism have been proposed (McBride et al., 2009).  

The γ-subunits Conserved in all γ-subunit are the four cystathionine β-synthetase (CBS) 

domains forming pairs called Bateman domains (Kemp, 2004) assembled in a head to head 

manner. The two Bateman domain bear four cavities to bind ligands, but since one site is non-

functional, there are only three binding sites for nucleotide (AMP, ADP and ATP). These three 

functional sites have different affinity for nucleotides and play different roles in allosteric 

activation of AMPK (Hardie et al., 2011; Xiao et al., 2007).  

 

AMPK subcellular localization 

There is some evidence that AMPK isoforms determine intracellular distribution, protein 

recognition or tissue-specific functions, and especially provide selectivity for specific subsets 

of substrates within the ever increasing list of AMPK substrates (Carling et al., 2012; Hardie et 

al., 2012a, 2012b). AMPK is generally observed as a soluble complex with diffuse cytosolic 

localization. Functional differences are reported for the two catalytic α subunits, particularly 

for their responsiveness to AMP and upstream kinases, as well as their nuclear localization 

(Hedbacker and Carlson, 2008). In fact, α2-containning complexes, when activated, can 

translocate into the nucleus to phosphorylate important substrates (transcription factors, 

histones, and histone deacetylases) as seen after exercise in skeletal muscle (McGee et al., 

2003; Suzuki et al., 2007). Also, α1 subunit has been shown to localize to the nucleus under 

some conditions (diurnal regulation) (Lamia et al., 2009). The β-subunit is post-translationally 

modified by myristoylation and phosphorylation, which has been shown to be required for 

proper activation of AMPK or its localization to membranes (Oakhill et al., 2010) which might 

favor membrane bound complex. AMPK may also be recruited into specific complexes via 

interaction with its upstream kinases, downstream substrates, or more general scaffolding 

proteins. Scaffolding proteins can provide specificity in cell signaling by isolating activated 

kinases from bulk signaling and directing the information flow into specific pathways.  
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Upstream regulation of AMPK 

The requirement of biological systems to maintain high cellular ATP:ADP ratios and 

concomitantly ATP:AMP ratios at all times, even under conditions of high metabolic workload, 

is reflected by the dynamic and stringent control of AMPK activity. Regulation of AMPK activity 

is an elaborate process involving at least two upstream kinases and one protein phosphatase, 

as well as allosteric mechanisms (Hardie and Sakamoto, 2006; Hardie et al., 2006). 

 

Allosteric regulation 

AMPK is a highly conserved sensor of intracellular adenosine nucleotide levels that is activated 

when even modest decreases in ATP production results in relative increases in AMP or ADP 

(Carling et al., 1989; Hardie et al., 1998). Under these conditions, AMP or ADP bind to the two 

tandem Bateman domains (Kemp, 2004; Oakhill et al., 2011; Xiao et al., 2011) on the  

regulatory  γ-subunit, leading to a conformational change that allosterically activates the 

kinase and protects the activating phosphorylation of AMPK at Thr172 (Bland and Birnbaum, 

2011; Hardie et al., 2011; Oakhill et al., 2011; Xiao et al., 2011) against dephosphorylation by 

protein phosphatases (Davies et al., 1995; Suter et al., 2006). It was originally reported that 

AMP also promoted phosphorylation of AMPK by an upstream kinase (Hawley et al., 1995), 

later identified as LKB1 (Hawley et al., 2003; Woods et al., 2003).  

 

Regulation by upstream kinases 

Full activation of AMPK requires phosphorylation of the Thr172 residue in the α-subunit by 

different upstream kinases (Hawley et al., 1996; Stein et al., 2000). So far, two protein kinases 

are certain to phosphorylate this residue in vivo, namely liver kinase B1 (LKB1) (Hawley et al., 

1995; Shaw et al., 2004a; Woods et al., 2003) and Ca²+/Calmodulin-dependent kinase, 

especially the β isoform (CaMKKβ) (Hawley et al., 2005; Hurley et al., 2005; Woods et al., 

2005).  

LKB1 is a serine/threonine kinase which plays vital roles maintaining cell polarity thereby 

inhibiting inappropriate expansion of tumor cells. Germinal mutations in the LKB1 gene have 
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been associated with Peutz-Jeghers cancer syndrome (PJS), characterized by the development 

of polyps in the gastrointestinal tract (Hemminki et al., 1997; Scott et al., 2008). More recent 

studies show a large number of somatic mutations of the LKB1 gene present in lung, cervical, 

breast, intestinal, testicular, pancreatic and skin cancer (Forbes et al., 2010; Sanchez-

Cespedes, 2007). LKB1 is an important upstream kinase of AMPK, thus suggesting an 

unexpected connection between AMPK and cancer (Luo et al., 2005; Motoshima et al., 2006; 

Shackelford and Shaw, 2009). LKB1 suppresses growth and proliferation by activating a group 

of 14 protein kinases, comprising AMPK and AMPK-related kinases (Ark) (Jaleel et al., 2005; 

Lizcano et al., 2004). Available evidence suggests that the tumor suppressor function of LKB1 

is related to AMPK activation, in particular the ability of the latter to inhibit mTor signaling 

that triggers cell growth and proliferation (Alessi et al., 2006; Inoki et al., 2003; Shaw et al., 

2004b).  

CaMKKβ is also capable of phosphorylating and activating AMPK, thereby linking cytoplasmic 

Ca²+ levels to AMPK activity (Hawley et al., 2005; Hurley et al., 2005; Woods et al., 2005).  

Modest elevation of intracellular Ca2+ provoked by K+-depolarization in neural tissue leads to 

a threefold activation of AMPK (Hawley et al., 2005). The tissue distribution of CaMKKs, with 

the highest levels in brain, suggests that they may play important roles in the nervous system. 

For example, brain AMPK may contribute to the survival of neurons under stress condition 

(Culmsee et al., 2001). Thus preservation of ATP levels by signaling from CaMKK to AMPK may 

represent a neuronal survival pathway. 

In addition some other kinases seem to phosphorylate AMPK. The mammalian transforming 

growth factor β-activated kinase (TAK1), in complex with its accessory protein TAB1, was 

identified as a third possible upstream kinase capable of phosphorylating AMPK at Thr172 for 

activation (Herrero-Martín et al., 2009; Momcilovic et al., 2006; Xie et al., 2006). Also 

phosphorylation of AMPK at other sites has been reported, such as Ser485 (in α1) or Ser491 

(in α2) by Akt/PKB (Horman et al., 2006; Kovacic et al., 2003), α-Ser173 by PKA (Hurley et al., 

2006) or even by autophosphorylation reactions which reduce the accessibility of Thr172 to 

upstream kinases (Horman et al., 2006; Hurley et al., 2006). 
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Inactivation by protein phosphatases 

Less known but not less important for the α-Thr172 phosphorylation state is regulation by 

protein phosphatases. Different phosphatases can dephosphorylate AMPK at Thr172 in vitro 

like protein phosphatase 2Cα (PP2Cα), protein phosphatase 2A (PP2A), and protein 

phosphatase 1 (PP1) (Davies et al., 1995; Marley et al., 1996). In heart and endothelial cells, 

the expression level of PP2A and PP2Cα are correlated with AMPK activation (Wang and 

Unger, 2005; Wu et al., 2007).  

 

AMPK consensus recognition motif 

AMPK phosphorylation sites have been described so far in more than 50 substrate proteins, 

especially during recent years. Many more sites may exist in substrate candidates resulting 

from large-scale screenings that are not yet characterized. Generally, to ascertain specificity 

in cell signaling, protein kinases recognize a specific motif on the surface of the substrate that 

is primarily defined by a particular amino acid sequence. In case of AMPK, a stringent motif 

has been proposed with the first substrates over 20 years ago: Φ(β,X)XXS/TXXXΦ, where  is 

a hydrophobic residue (predominantly M, V, L, I or F),  is a basic residue (R, K or H) and the 

parentheses indicate that the order of residues at the P-4 and P-3 positions is not critical (Dale 

et al., 1995). 

Detailed analysis of available data on AMPK phosphorylation sites reveals the presence of this 

stringent motif in about half of the described sites (Figure 4). However, another half of the 

identified sites corresponds only partially to this motif, either lacking one of the hydrophobic 

residues at P-5 and P+4, or the basic residue at P-3 or P-4 (Figure 5). With two sites, the motif 

is so N- or C-terminal in the sequence that part of the motif is missing. Also an AMPK phospho-

motif screen using a library of synthetic peptides indicated lower conservation of the original 

AMPK motif, in particular for the positions from -1 to +4 (Gwinn et al., 2008). These data 

indicate that substrate recognition by AMPK may be less stringent than thought earlier.  
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UniProt Name Ref. Abbr., P-site  5 4 3   0    4   

     Ф β   P    Ф   

Q9BZL4 Protein phosphatase 1 regulatory subunit 12C (Banko et al., 2011) hPP12c-Ser452 G L Q R S A S S S W L E G 

Q07866 Kinesin light chain 1 (McDonald et al., 
2010) hKLC1-Ser521 N M E K R R S R E S L N V 

Q16875 6-phosphofructo-2-kinase (Marsin et al., 2002) hF262-Ser461 P L M R R N S V T P L A S 

P49815 Tuberin (Inoki et al., 2003) hTSC2-Ser1387 P L S K S S S S P E L Q T 

P49815 Tuberin (Inoki et al., 2003) hTSC2-Thr1271 P L P R S N T V A S F S S 

Q53ET0 CREB-regulated transcription coactivator 2 (Koo et al., 2005; 
Screaton et al., 2004) 

hCRTC2-Ser171 A L N R T S S D S A L H T 

Q06210 Glucosamine-fructose-6-phosphate aminotransferase 1 (Li et al., 2007) hGFPT1-Ser261 N L S R V D S T T C L F P 

P41235 Hepatocyte nuclear factor 4-alpha (Hong et al., 2003) hHNF4A-Ser313 K I K R L R S Q V Q V S L 

O70405 Serine/threonine-protein kinase ULK1 (Egan et al., 2011; 
Shang et al., 2011) 

hULK1-Ser638 D F P K T P S S Q N L L A 

P04049 RAF proto-oncogene serine/threonine-protein kinase 
(Sprenkle et al., 
1997) hRAF1-Ser621 K I N R S A S E P S L H R 

P13834 Glycogen synthase, muscle (Carling et al., 1989) rbGYS1-Ser8 P L S R T L S V S S L P G 

A2RRU1 Glycogen synthase, muscle (Jørgensen et al., 
2004) 

rGYS1-Ser8 P L S R S L S V S S L P G 

Q95XA8 Protein CRTC-1 (Mair et al., 2011) ceCRTC1-Ser179 Q I N R A R S D P A I H N 

P51639 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Clarke and Hardie, 
1990) rHMDH-Ser871 H M V H N R S K I N L Q D 

P04035 3-hydroxy-3-methylglutaryl-coenzyme A reductase (Ching et al., 1996) hHMDH-Ser871 H M I H N R S K I N L Q D 

Q09472 Histone acetyltransferase p300 (Yang et al., 2001) hEP300-Ser89 E L L R S G S S P N L N M 

P50552 Vasodilator-stimulated phosphoprotein (Blume et al., 2007) hVASP-Ser322 T L P R M K S S S S V T T 

Q62600 Nitric oxide synthase, endothelial (Chen et al., 1999) hNOS3-Thr495 G I T R K K T F K E V A N 

Q9UQL6 Histone deacetylase 5 (McGee et al., 2008)  hHDAC5-Ser259 P L R K T A S E P N L K V 

O70405 Serine/threonine-protein kinase ULK1 (Egan et al., 2011) hULK1-Ser467 A I R R S G S T S P L G F 

Q05469 Hormone-sensitive lipase (Garton and Tonks, 
1994) 

rLIPS-Ser565 S M R R S V S E A A L A Q 

Q16526 Cryptochrome-1 (Lamia et al., 2009) hcry1-Ser71 N L R K L N S R L F V I R 

P13569 Cystic fibrosis transmembrane conductance regulator (King et al., 2009) hCFTR-Ser768 Q A R R R Q S V L N L M T 

Q8N122 Regulatory-associated protein of mTOR (Gwinn et al., 2008) hRPTOR-Ser792 K M R R A S S Y S S L N S 

Q92538 Golgi-specific GTP/GDP exchange factor 1 
(Miyamoto et al., 
2008) hGBF1-Thr1337 K I H R S A T D A D V V N 

Q8VIP2 Carbohydrate-responsive element-binding protein (Kawaguchi et al., 
2002) rChREBP-Ser568 L L R P P E S P D A V P E 

O00763 Acetyl-CoA carboxylase 2 (Merrill et al., 1997) hACC2-Ser222 T M R P S M S G L H L V K 

P35570 Insulin receptor substrate 1 
(Jakobsen et al., 
2001) rIRSI-Ser794 H L R L S S S S G R L R Y 

P11497 Acetyl-CoA carboxylase 1 (Munday et al., 1988) rACC1-Ser79 H M R S S M S G L H L V K 

Q8N122 Regulatory-associated protein of mTOR (Gwinn et al., 2008) hRPTOR-Ser722 R L R S V S S Y G N I R A 

 
 
Figure 4. AMPK substrates with the stringent AMPK 
consensus recognition motif. Phospho-sites of published 
AMPK substrates were analyzed for their compliance with 
the consensus sequence of AMPK substrate recognition (Dale 
et al., 1995; Scott et al., 2002) which is Φ(β,X)XXS/TXXXΦ (Φ 
being a hydrophobic residue and β any basic residue). Top: 
Sequences including six amino acids N- and C-terminal of the 
Ser or Thr phosphoacceptor (P) were aligned (UniProt 
identifiers, protein name and phosphosites are given; amino 
acids corresponding to the consensus sequence are color 
coded – orange: A,F,I,L,M,V,W; blue: K,R,H: green: S,T).  
Right: The frequency of individual amino acids at a specific 
position was calculated using the sequence logo algorithm 
(Crooks et al., 2004; Schneider and Stephens, 1990). 
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UniProt Name Ref. Abbr., P-site  5 4 3   0    4   

     Ф β   P    Ф   

Q9UQB8 Brain-specific angiogenesis inhibitor 1-assoc. protein 2 (Banko et al., 2011) hBAIP2-Ser366 T L P R S S S M A A G L E 

O70405 Serine/threonine-protein kinase ULK1 (Egan et al., 2011) hULK1-Thr575 K L P K P P T D P L G A V 

Q9UQL6 Histone deacetylase 5 (McGee et al., 2008) hHDAC5_Ser498 P L S R T Q S S P L P Q S 

P30260 Cell division cycle protein 27 homolog (Banko et al., 2011) hCDC27-Ser379 A L P R R S S R L F T S D 

O43524 Forkhead box protein O3 (Greer et al., 2007) hFOXO3-Ser413 L M Q R S S S F P Y T T K 

P52292 Importin subunit alpha-2 (Wang et al., 2004) hIMA2-Ser105 A A R K L L S R E K Q P P 

P46527 Cyclin-dependent kinase inhibitor 1B (Liang et al., 2007) hCDN1B-Thr198 G L R R R Q T - - - - - - 

O70405 Serine/threonine-protein kinase ULK1 (Egan et al., 2011) hULK1-Ser556 L G C R L H S A P N L S D 

Q16526 Cryptochrome-1 (Lamia et al., 2009) hCRY1-Ser280 K K V K K N S S P P L S L 

O60343 TBC1 domain family member 4 (Geraghty et al., 2007) hTBC1D4-Ser588 M R G R L G S V D S F E R 

O60343 TBC1 domain family member 4 (Geraghty et al., 2007) hTBC1D4-Thr642 F R R R A H T F S H P P S 

Q14654 ATP-sensitive inward rectifier potassium channel 11 (Chang et al., 2009) Hirk11-Ser385 K P K F S I S P D S L S - 

Q9UBS5 Gamma-aminobutyric acid type B receptor subunit 1 
(Terunuma et al., 
2010) hGABR1-Ser912 L R H Q L Q S R Q Q L R S 

Q9BU19 Zinc finger protein 692 (Inoue and Yamauchi, 
2006) hZN692-Ser470 A H R S S K S H P A L L L 

Q9NYV6 Transcription initiation factor IA (Hoppe et al., 2009) hTIFIA-Ser635 T H F R S P S S S V G S P 

Q62600 Nitric oxide synthase, endothelial (Chen et al., 1999) hNOS3-Ser1177 S R I R T Q S F S L Q E R 

P42345 Serine/threonine-protein kinase mTOR (Cheng et al., 2004) hMTOR-Thr2446 K R S R T R T D S Y S A G 

P50552 Vasodilator-stimulated phosphoprotein (Blume et al., 2007) hVASP-Thr278 A R R R K A T Q V G E K T 

Q07866 Kinesin light chain 1 
(McDonald et al., 
2010) hKLC1-Ser524 K R R S R E S L N V D V V 

P04637 Cellular tumor antigen p53 (Jones et al., 2005) hP53-Ser15 S V E P P L S Q E T F S D 

O95278 Laforin (Romá-Mateo et al., 
2011) 

hEPM2A-Ser25 E L L V V G S R P E L G R 

P49674 Casein kinase I isoform epsilon (Um et al., 2007) hKC1E-Ser389 G A P A N V S S S D L T G 

P13405 Retinoblastoma-associated protein (Dasgupta and 
Milbrandt, 2009) hRB-Ser804 Y I S P L K S P Y K I S E 

O00418 Eukaryotic elongation factor 2 kinase (Browne et al., 2004) hEFK2-Ser398 S L P S S P S S A T P H S 

Q9UQK1 Protein phosphatase 1 regulatory subunit 3C (Vernia et al., 2009) hPPR36-Ser33 R L C L A H S P P V K S F 

O75899 Gamma-aminobutyric acid type B receptor subunit 2 (Terunuma et al., 
2010) hGABR2-Ser783 T S V N Q A S T S R L E G 

Q13621 Kidney-specific Na-K-Cl symporter (Fraser et al., 2007) hNKCC2-Ser126 P K V N R P S L L E I H E 

Q95XA8 Protein CRTC-1 (Mair et al., 2011) ceCRTC1-Ser76 G H N L G G S L P N V H Q 

Q9UQK1 Protein phosphatase 1 regulatory subunit 3C (Vernia et al., 2009) hPPR36-Ser293 E S T I F D S P R L A S G 

Q13177 Serine/threonine-protein kinase PAK 2 (Banko et al., 2011) hPAK2-Ser20 A P P V R M S T I F S T G 

P26285 6-phosphofructo-2-kinase (Rider et al., 2004) bF262-Ser466 V R M R R N S V T P L A S 

P12277 B-type creatine kinase Ramirez unpubl. hBCK-Ser9  M P F S N S H N A L K L 

 
Figure 5. AMPK substrates with non-consensus recognition 
motifs. Phospho-sites of published AMPK substrates were 
analyzed for their compliance with the consensus sequence 
of AMPK substrate recognition (Dale et al., 1995; Scott et 
al., 2002) which is Φ(β,X)XXS/TXXXΦ (Φ being any 
hydrophobic residue and β any basic residue). Top: 
Sequences including six amino acids N- and C-terminal of 
the Ser or Thr phosphoacceptor (P) were aligned (UniProt 
identifiers, protein name and phosphosites are given; 
amino acids corresponding to the consensus sequence are 
color coded – orange: A,F,I,L,M,V,W; blue: K,R,H; green: 
S,T). Right: The frequency of individual amino acids at a 
specific position was calculated using the sequence logo 
algorithm (Crooks et al., 2004; Schneider and Stephens, 
1990). 
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AMPK signaling downstream 

Once activated, AMPK regulates a large number of downstream targets (Figure 6), shutting 

down anabolic pathways and stimulating catabolic pathways. Metabolic changes induced by 

AMPK are both acute changes due to direct phosphorylation of metabolic enzymes and 

chronic changes due to effect on gene expression by phosphorylation of transcription 

(co)factors and histone deacetylases (HDACs). Both result in the preservation  of ATP levels 

(Carling, 2005; Hardie and Sakamoto, 2006). AMPK also participates in the control of non-

metabolic processes such as cell proliferation and cell cycle (Beevers et al., 2006; Browne et 

al., 2004; Hay and Sonenberg, 2004).  

 

 

Figure 6. Metabolic changes known to be induced by AMPK in muscle. Question marks indicate that the direct 
target for AMPK responsible for the observed downstream is not known. (Hardie and Sakamoto, 2006). 

 



 

 

23 An introduction to AMP-activated protein kinase (AMPK) 

AMPK regulates carbohydrate metabolism 

Glucose uptake across the plasma membrane is dependent on the glucose gradient as well as 

a family of transmembrane glucose transporters (GLUT). GLUTs are stored in cytosolic vesicles 

that translocate to the plasma membrane in response to triggers like muscle contraction, 

AMPK activation and insulin. Importantly, during exercise, glucose uptake increases 

independent of the insulin signaling pathway (Jørgensen et al., 2006) due to AMPK activation. 

Active AMPK increases GLUT4 translocation in muscle, cardiomyocytes and adipocytes (Kurth-

Kraczek et al., 1999; Webster et al., 2010; Yamaguchi et al., 2005) and also increases GLUT3 

translocation in neurons (Weisová et al., 2009). The signaling events, by which activation of 

AMPK leads to the translocation of these transporters remain unclear. Some studies revealed 

a critical role for the Rab GTPases Akt substrate of 160 kDa (AS160) (Cartee and Wojtaszewski, 

2007; Sakamoto and Holman, 2008; Zaid et al., 2008). AMPK was shown to directly 

phosphorylate AS160, an effect which directly enhances binding to 14-3-3 (Geraghty et al., 

2007), which in turn regulates vesicle translocation (Sakamoto and Holman, 2008; Treebak et 

al., 2006). Finally, AMPK increases the subsequent glycolytic flux via phosphorylation and 

activation of 6-phosphofructosekinase-2 (PFK2) (Marsin et al., 2000).  

AMPK affects carbohydrate metabolism also in the long-term via transcriptional regulation. 

Phosphorylation of both peroxisome proliferator-activated receptor gamma co-activator-1 

alpha (PGC-1α) (Horman et al., 2006) and histone deacetylase (HDAC) 5 (McGee et al., 2008) 

mediates transcriptional up-regulation of rate-limiting enzymes for the uptake of glucose, 

such as GLUT4 (Steinberg and Kemp, 2009) and hexokinase II (HKII) (Stoppani et al., 2002).  

Hepatic glucose production, is negatively regulated by AMPK activation. Active AMPK 

downregulates the transcription of the gluconeogenic enzymes, L-type pyruvate kinase (L-PK) 

(Leclerc et al., 1998; da Silva Xavier et al., 2000), phosphoenol pyruvate carboxykinase (PEPCK) 

(Lochhead et al., 2000), and glucose-6-phosphatase (G-6-Pase) (Woods et al., 2000) by 

phosphorylation of transcription factor HNF-4α and transcriptional activator CREB (Steinberg 

and Kemp, 2009).  
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AMPK regulates lipid metabolism 

Uptake of fatty acids (FA), similar as in case of glucose, depends on a transmembrane 

transporter (FAT/CD36) that is stored in cytosolic vesicles and translocated to the plasma 

membrane after AMPK activation (van Oort et al., 2009; Schwenk et al., 2010), thus increasing 

FA uptake (Shearer et al., 2004, 2005). It is unknown whether AMPK acts directly on CD36 or 

indirectly as is the case of regulation of glucose uptake. 

AMPK is a main regulator of Acetyl-coA carboxylase (ACC), able to phosphorylate a number of 

serine residues on both cytosolic and mitochondrial ACC isoforms, (ACC1 and ACC2, 

respectively). The function of ACC is to regulate the metabolism of fatty acids. ACC catalyzes 

the carboxylation of acetyl-CoA to malonyl-CoA, a building block for FA synthesis and an 

allosteric inhibitor of mitochondrial carnitine palmitoyltransferase 1 (CPT1), a rate limiting 

enzyme for FA import and β-oxydation in the mitochondria (Bianchi et al., 1990; Merrill et al., 

1997; Munday, 2002; Merrill et al., 1997). AMPK-mediated short term inhibition of ACC 

suppresses FA synthesis and increases FA β-oxydation by relieving the inhibitory effect of 

malonyl CoA on CPT1 (Munday, 2002). 

The regulation of triglyceride (TG) turnover is a balance between biosynthesis and hydrolysis 

of TG, and AMPK is suggested to inhibit both. AMPK regulates TG synthesis via reducing 

activity of glycerol-3-phosphate acyl transferase (GPAT), which regulate one of the first steps 

of TG synthesis (Muoio et al., 1999). AMPK also appears to negatively regulate hormone-

sensitive-kinase (HSL) activity and thus TG degradation (Watt et al., 2006). 

Finally, AMPK phosphorylates and inhibits the rate-limiting enzyme for isoprenoid and 

cholesterol synthesis, the 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR), thus 

preventing energy consuming cholesterol synthesis (Clarke and Hardie, 1990).  

 

AMPK regulates protein metabolism, cell polarity, growth and apoptosis 

Protein synthesis accounts for a large proportion of cellular ATP use. AMPK-mediated 

inhibition of protein synthesis is thus an important mechanism to maintain high ATP level. 

AMPK blocks the ribosomal elongation step by phosphorylation and activation of the 

eukaryote elongation factor 2 kinase (eEF2K) which in turn inhibits eEF2 (Browne et al., 2004).  
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AMPK also acts via cross-talk with other major cellular signaling hubs like the mammalian 

target of rapamycin complex (mTORC) which is inhibited by activated AMPK via two major 

distinct mechanism. The first involves the phosphorylation of the tuberous sclerosis complex 

protein-2 (TSC2) (Inoki et al., 2003) upstream of mTORC. The second mechanism involves 

direct phosphorylation of the mTORC subunit Raptor, causing mTORC inactivation (Gwinn et 

al., 2008). mTORC is a serine/threonine protein kinase which controls many aspects of 

metabolism, peptide translation, ribosome biogenesis, but also cell growth, cell proliferation, 

cell motility, and apoptosis, suggesting that AMPK-mediated modulation of mTORC is involved 

in regulation of these pathway (Beevers et al., 2006; Hay and Sonenberg, 2004).  

 

AMPK regulates whole body energy metabolism 

AMPK is established since long as a cellular energy sensor. The finding that hormones (e.g. 

leptin, adiponectin) activate AMPK in muscle and liver provides evidence for AMPK regulation 

of whole body energy status (Orci et al., 2004; Wang et al., 2007, 2005). Hypothalamic AMPK 

regulates food intake (Minokoshi et al., 2004) by the anorexigenic hormone leptin which leads 

to a reduction in food intake and the orexigenic hormone ghrelin as well as pharmacological 

activation of AMPK in hypothalamus which both leads to increased food intake (Andersson et 

al., 2004).  

 

AMPK in human disease and as a therapeutic target 

Cardiovascular pathologies 

Several mutations in Bateman domains of the AMPK γ-subunits have been mapped and lead 

to a glycogen storage disorder and a related hereditary heart disease (Wolff-Parkinson-White 

syndrome), involving cardiac hypertrophy, contractile dysfunction and arrhythmias (Blair et 

al., 2001; Davies et al., 2006; Gollob et al., 2001; Milan et al., 2000; Scott et al., 2004). These 

mutations have been found to impair both the binding of AMP to the isolated Bateman 

domains and the activation of the heterotrimeric complex by AMP (Burwinkel et al., 2005; 

Scott et al., 2004). These mutations affect not only AMP binding, but also reduce ATP binding, 
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an inhibitory nucleotide (Burwinkel et al., 2005; Scott et al., 2004), resulting in increased basal 

activity of the mutated AMPK complexes (Arad et al., 2002; Burwinkel et al., 2005; Hamilton 

et al., 2001). The higher basal activity appears to cause excessive storage of glycogen in cardiac 

myocytes, possibly through increased basal glucose uptake (Arad et al., 2002; Burwinkel et al., 

2005). In cardiac myocytes, this excessive glycogen storage is harmful and leads to improper 

development and function of the heart muscle. Interestingly, a similar mutation (R200Q) 

affecting a conserved basic residue in the first CBS motif of the γ3 isoform (which is expressed 

at the highest levels in skeletal muscle) leads to abnormal deposition of glycogen in skeletal 

muscle of pigs (Milan et al., 2000).  

 

AMPK related neurodegenerative diseases 

Brain is the most energy-consuming organ in our body, but specific functions of AMPK in this 

organ have only recently been studied. The kinase is widely expressed in the brain, and AMPK 

activity is tightly coupled to the energy status of both neuronal and whole-body levels. Recent 

studies revealed an important role of AMPK in neurodegenerative disease.  

AMPK is particularly implicated in Alzheimer disease (AD) (Salminen et al., 2011)), which is 

characterized by accumulation of pathological protein aggregates like extracellular amyloid β 

(Aβ) plaques and intracellular neurofibrillary tangles, as well as by neuronal loss (Bettens et 

al., 2010; Bürklen et al., 2006; Jellinger, 2006). Aβ is the key molecule in AD, and it has been 

shown to be down-regulated by AMPK in primary cortical neurons and N2a neuroblastoma 

cells (Chen et al., 2009; Marambaud et al., 2005; Won et al., 2010). AMPK also has an inhibitory 

effect on Aβ production (Vingtdeux et al., 2010) and regulates Aβ degradation and removal 

from neurons (Vingtdeux et al., 2011).  

Although studies on the involvement of the AMPK signaling cascade in other 

neurodegenerative disorders are still scarce, the role of AMPK does not seem to be limited to 

AD. In Hutington disease (HD), the AMPKα1 subunit was selectively activated and enriched in 

the nucleus of striatal neurons. AMPK over-activation enhanced neuronal death and 

formation of Huntington aggregates. In contrast, suppression of AMPK activity showed a 

neuroprotective effect (Ju et al., 2011). Similar effects of AMPK activation has been observed 

in Parkinson disease (PD), (Choi et al., 2010). 
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AMPK is related to cancer  

Cancer is a broad group of pathologies involving unregulated cell growth. Cancer cells have a 

huge demand for energy to allow rapid growth and division. A large number of evidence 

suggests that basal AMPK activity, as well as its activation under energy-limiting conditions, 

antagonize cancer cell growth. First, activation of AMPK causes a reduction in anabolic 

pathways, ultimately leading to reduced cell growth (reviewed in (Shackelford and Shaw, 

2009)). Second, the AMPK signaling cascade contains a number of tumor suppressors including 

its upstream kinase LKB1 and its downstream targets p53, TSC1/2 and mTOR. AMPK activation 

affects these targets to decrease cell growth, thus acting as a tumor suppressor. Another 

pathway by which AMPK can affect tumors growth is via its impact on lipid synthesis. Cancer 

cells exhibit high rates of de novo fatty acid synthesis (Alò et al., 1999; Milgraum et al., 1997; 

Swinnen et al., 2000) and a number of studies have shown that inhibition of FA synthesis result 

in significant anti-tumor activity, by inhibiting growth and increasing apoptosis (Kuhajda, 

2000; Pizer et al., 2000). In the liver, FA synthase (FAS) gene expression is downregulated by 

AMPK (Foretz et al., 1998; Woods et al., 2000). As mentioned above, AMPK phosphorylates 

and inhibits also acetyl-CoA carboxylase (ACC), an important step in FA synthesis (Chajès et 

al., 2006; Hardie and Carling, 1997).  

All of these mechanisms imply that AMPK acts as a tumor suppressor and that activation of 

AMPK would be advantageous in treating cancer. However, more recent studies have 

emerged that lead to the opposite conclusion. In certain cancer cells (e.g. prostate), increased 

AMPK activity provides the cells with an advantage by increasing the rate of glucose uptake 

and glycolysis (Banko et al., 2011; Massie et al., 2011), increasing mitosis (Banko et al., 2011), 

and increasing cell migration (Frigo et al., 2011). Cells lacking AMPK can be resistant to 

oncogenic transformation (Laderoute et al., 2006). The levels of AMPK subunits α, β, and γ are 

elevate in 2% to 25% of human cancers (cancergenome.nih.gov) and cancer cell lines. There is 

now solid proof for AMPK supporting tumor proliferation (Liang and Mills, 2013).  

To date, it is difficult to reconcile these apparently opposing effects of AMPK on cell growth. 

Possibly, AMPK acts as a tumor suppressor only during the early events of oncogenic 

transformation, while in more developed, in particular solid tumors, its anti-stress effect 

facilitates tumor growth. More research is required to determine the precise role of AMPK in 

cancer. 
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AMPK a potential target for treatment of type 2 diabetes 

Type 2 diabetes is a metabolic disorder characterized by hyperglycemia and altered lipid 

metabolism, caused by the islet β cells being unable to secrete adequate amounts of insulin. 

Regular exercise is an effective method of treating insulin resistance and type 2 diabetes 

(Saltiel and Kahn, 2001), and this beneficial effect is at least partly mediated by AMPK 

activation (Fujii et al., 2008). Metformin, the most widely prescribed Type 2 diabetes drug, has 

been shown to activate AMPK (Zhou et al., 2001) and to do so in an LKB1 dependent manner 

(Shaw et al., 2005). In intact cells, metformin increases AMPK activity, resulting in increased 

fatty acid oxidation, downregulation of lipogenic genes, decreased hepatic glucose production 

and stimulation of glucose uptake (Zhou et al., 2001). Nonetheless, metformin, AICAR 

(AICAriboside, an indirect AMPK activator) (Halseth et al., 2002), and A769662 (a direct AMPK 

activator (Cool et al., 2006), as well as genetic expression of constitutively active AMPK in liver 

(Foretz et al., 2005) all lower blood glucose levels, suggesting AMPK activation as a primary 

target for diabetes prevention and therapy (Zhang et al., 2009).  
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Rationale of the project 

Intracellular sensors of cellular energy and nutrient status are emerging as key players in the 

regulation of cell metabolism in health and disease. AMP-activated protein kinase (AMPK) has 

a central role in the regulation of cellular and whole body energy metabolism, and an ever 

increasing number of studies imply AMPK in major pathologies affecting modern societies 

such as cancer, cardiovascular and neurodegenerative diseases, diabetes and metabolic 

syndrome (Carling et al., 2012; Chuang et al., 2013; Zaha and Young, 2012). AMPK seems to 

become a promising drug target for these diseases, and particular efforts have been invested 

so far in the development of AMPK activators as anti-diabetic drugs (Zhang et al., 2009; Zhou 

et al., 2001). However, while the pleiotropic physiological actions of AMPK have favored its 

role as a putative therapeutic target, they also suggest that AMPK activators or inhibitors 

should be envisaged with caution for clinical therapy. This has been recognized for example 

for the use of AMPK activation in anti-cancer therapy (Chuang et al., 2013). Thus, targeting 

AMPK to cure diseases requires more fundamental research to understand the essential and 

pleiotropic roles of AMPK in cell metabolism.    

Protein-protein interactions are essential for the majority of complex biological functions. 

Protein interactions include not only high affinity interactions leading to formation of stable 

protein complexes, but also lower affinity transient interactions, more frequent in signal 

transduction (e.g. ligand-receptor). In the latter case, interacting proteins can just provide a 

scaffold for another protein to recruit it to specific localizations, or they use the interaction to 

modify the interacting partner (e.g. via secondary modifications like phosphorylation). Indeed, 

proteins always have to interact to carry out their biological function.  

Identification of AMPK interactors is essential to understand its upstream regulation and 

downstream function. Emergence of high throughput screening methods has largely 

facilitated such approaches. So far, few large-scale screens yielded information on AMPK 

interaction partners and substrates: in vitro phosphoscreens (e.g. Thali et al., 2010; Tuerk et 

al., 2007), chemical genetic screens (Banko et al., 2011) and peptide library/bioinformatics 

approaches (Gwinn et al., 2008) for AMPK substrates, as well as yeast-two-hybrid (Y2H) 

screens (Moreno et al., 2009) and large scale anti-bait co-immunoprecipitation (IP) follow by 

LC-ESI-MS/MS (e.g. Ewing et al., 2007) for interaction partners. However, only few of the 
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identified putative AMPK substrates and interactors were confirmed by a second method 

and/or in vivo.  In particular co-IP studies do not allow confirming a direct interaction, so many 

of the identified proteins may interact only indirectly with AMPK.  

 

Aim of the project 

Different non-biased screening approaches for AMPK substrates (surface-plasmon-resonance 

(SPR) screening combined with LC-MS/MS and in vitro phosphorylation) and for AMPK 

interaction partners (Y2H screens), performed by our group, had yielded a number of 

candidate proteins. These screening procedures as well as some initial confirmation and 

characterization experiments for selected candidates, were carried out within the PhD thesis 

of Anna Brückner and the postdoctoral work of Cécile Polge and Alexandre Berthier. However, 

many molecular details (like e.g. interaction domains) and most importantly the physiological 

function of these interactions remained unclear. Other candidates were not yet characterized 

beyond the initial screening data. 

Table 1. Confirmed AMPK interactors.  
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 Biological functions 
AMPK 

phosphorylation 
consensus-site1 

Glutathione-S-transferase 
(GST) 

 Detoxification 
 Antioxidant 1 X X X X 

Fumarate hydratase (FH)  Mitochondrial: Krebs cycle 
 Cytosolic: tumor suppressor  

3 X  X X 

E3 ubiquitin-protein ligase 
NRDP1 (NRDP1) 

 Protein degradation 1 X X   

Vesicle associate membran 
protein (VAMP2/3) 

 Endo & exocytose 
 Glucose and fatty acid uptake - X X X X 

Interactions found by targeted analysis (green), SPR interaction/phosphorylation assays (red) and Y2H techniques (blue) were 
confirmed by at least two other, independent interaction methods. 1 Consensus sites were determined by sequence analysis 
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The goal of this thesis was therefore to further investigate some of the AMPK interactors and 

to understand the biological function of the interaction. From the list of putative AMPK 

interactors and substrates, four proteins have been selected based on their potential 

importance in metabolic pathways known to be regulated by AMPK (Table 1). The resulting 

sub-projects are presented in four separate chapters, followed by a general discussion:  

 

 Glutathione S-transferase (GST). Multiple evidence (Y2H, SPR and co-IP) demonstrated 

AMPK/GST interaction, and initial data suggested that this served to phosphorylate AMPK. 

However, subsequent mass spectrometry analysis indicated that the main 

phosphorylation occurred in the Strep-tag of the recombinant protein. Thus other putative 

functions AMPK/GST interaction had to be explored like GST-facilitated glutathionylation 

(Zmijewski et al., 2010) and glutathionylation-induced AMPK activation (Manevich et al., 

2004; Ralat et al., 2006; Townsend et al., 2009), which were both, albeit separately, 

described in literature. The aim of this sub-project was thus to set-up glutathionylation 

assays and to look into GST-dependent glutathionylation of AMPK. The results have been 

published in the meantime (Klaus et al., 2013).  

 

 Fumarate hydratase (FH). Initial Y2H and in vitro phosphorylation experiments had shown 

that FH interacts with and is phosphorylated by AMPK. The interaction was confirmed by 

SPR and another Y2H method. The aim of this sub-project was to further validate the 

interaction by co-IP, examine its consequences on FH activity in vitro and in vivo and 

identify the involved AMPK phospho-residue(s). Part of these results has been published 

(Klaus et al., 2012) 

 

 E3-ubiquitin-ligase (NRDP1). NRDP1 was the only entirely soluble candidate interactor 

found in the initial Y2H screen. In addition, other E3-ubiquitin-ligases have been shown to 

be regulated by AMPK like MuRF1 and Atrogin-1 (Baskin and Taegtmeyer, 2011), or to 

regulate AMPK like malin in complex with laforin (Moreno et al., 2010). The aim of this 

sub-project was to produce for the first time the full-length NRDP1 protein and examine 

both putative regulations: of NRDP1 by AMPK, and of AMPK by NRDP1.  
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 Vesicle-associated membrane proteins (VAMP2 and VAMP3). VAMP proteins seemed the 

most attractive candidate interactors in the initial Y2H screen, since they are key elements 

of energy-dependent exocytotic processes, but on the other hand they also improve 

energy state by cell surface expression of nutrient transporters. However, VAMPs turned 

out not to be phosphorylated by AMPK. The aim of the sub-project was thus to further 

characterize the VAMP/AMPK interaction and to study its function by developing a 

strategy for its disruption in vitro and in vivo. 
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Glutathione S-
transferase 
interacts with AMP-
activated protein 
kinase: evidence for  
S-glutathionylation 
and activation in 
vitro 

Abstract. AMP-activated protein kinase (AMPK) is 
a cellular and whole body energy sensor with 
manifold functions in regulating energy 
homeostasis, cell morphology and proliferation in 
health and disease. Here we apply multiple, 
complementary in vitro and in vivo interaction 
assays to identify several isoforms of glutathione 
S-transferase (GST) as direct AMPK binding 
partners: Pi-family member rat GSTP1 and Mu-
family members rat GSTM1, as well as 
schistosoma japonicum GST. GST/AMPK 
interaction is direct and involves the N-terminal 
domain of the AMPK β-subunit. Complex 
formation of the mammalian GST-P1 and -M1 
with AMPK leads to their enzymatic activation 
and in turn facilitates glutathionylation and 
activation of AMPK in vitro. GST-facilitated S-
glutathionylation of AMPK may be involved in 
rapid, full activation of the kinase under mildly 
oxidative physiological conditions. 
 
Résumé. La protéine kinase activée par l’AMP 
(AMPK) est  un senseur métabolique de la cellule 
et de l’organisme avec diverses fonctions dans la 
régulation de l’homéostasie énergétique, ainsi 
que dans la morphologie et la prolifération 
cellulaires, que ce soit en conditions 
physiologiques ou pathologiques. Dans cette 
étude nous avons appliqué divers tests 
d’interaction in vitro et in vivo pour 
l’identification d’isoformes de la glutathion S-
transferase (GST) interagissant directement avec 
l’AMPK: GSTP1 et GSTM1 (de rat) respectivement 
membre de la sous-famille Pi- et  Mu-GST, et la 
GST de schistosoma japonicum. L’interaction 
GST/AMPK est directe et implique le domaine N-
terminal de la sous-unité β de l’AMPK. La 
formation d’un complexe entre GSTP1 ou GSTM1 
avec l’AMPK conduit à leur activation 
enzymatique, facilitant la glutathionylation et 
l’activation de l’AMPK in vitro. La S-
glutathionylation de l’AMPK par GST peut être 
impliquée dans l’activation rapide et totale de la 
kinase en conditions physiologiques légèrement 
oxydatives. 

This part has been published in PLoS One [Klaus, A., Zorman, S., Berthier, A., Polge, C., Ramirez, S., 
Michelland, S., Sève, M., Vertommen, D., Rider, M., Lentze, N., et al. (2013). Glutathione S-Transferases 
Interact with AMP-Activated Protein Kinase: Evidence for S-Glutathionylation and Activation In Vitro. PloS 
One 8, e62497.]. I am co-first author of this publication, I did the functional study that concerns AMPK 
gluthathionylation and activation by GST 
 

  



 

 

  



 

 

51 

 

 

 

Introduction ................................................................................................................ 53 

Materials & Methods .................................................................................................. 56 

Cloning and protein production ........................................................................................ 56 

Yeast two-hybrid assays .................................................................................................... 56 

Rat liver extracts, protein ................................................................................................. 56 

GST pull-down, immunoprecipitation and immunoblotting ............................................ 57 

Surface Plasmon Resonance (SPR) and mass spectrometry (MS) .................................... 57 

AMPK glutathionylation .................................................................................................... 58 

AMPK phosphorylation ..................................................................................................... 59 

AMPK substrate phosphorylation ..................................................................................... 59 

Results ........................................................................................................................ 60 

GST-Mu and -Pi isoforms interact with AMPK in vitro ...................................................... 60 

GST-Mu and -Pi isoforms directly interact with AMPK β-subunits in Y2H assays ............ 60 

GST/AMPK interaction occurs in rat liver ......................................................................... 62 

GST/AMPK interaction is direct and rapid ........................................................................ 63 

GST/AMPK complexes do not lead to relevant GST phosphorylation but increase GST 
activity ............................................................................................................................... 65 

GST/AMPK complexes lead to AMPK glutathionylation and activation ........................... 66 

Discussion ................................................................................................................... 69 

Supplementary data .................................................................................................... 72 

References .................................................................................................................. 74 

 

 



 

 

  



 

 

53 Glutathion S-transferase interact with AMP-activated protein kinase 

Introduction 

AMP-activated protein kinase (AMPK) is an evolutionary conserved heterotrimeric 

serine/threonine kinase that plays a central role in sensing and regulating energy homeostasis 

at the cellular, organ and whole-body level (recently reviewed in (Carling et al., 2012; Hardie, 

2011; Hardie et al., 2012; Neumann et al., 2003a; Steinberg and Kemp, 2009; Viollet et al., 

2009; Zhang et al., 2009)). It exerts pleiotropic control of metabolic pathways and other 

physiological functions like cell growth, proliferation, motility or appetite control by affecting 

enzyme activities and transcription. This has made the kinase a prime pharmacological target 

for treating metabolic disorders or cancer (Fogarty and Hardie, 2010; Neumann et al., 2003b; 

Zhang et al., 2009). Activation of AMPK is triggered by a diverse array of external (e.g. 

hormones, cytokines, nutrients) and internal signals (e.g. AMP, ADP) linked to limited energy 

availability in physiological and pathological situations. Activation involves covalent 

phosphorylation of the α-subunit and allosteric binding of AMP or ADP to the γ-subunit. 

Covalent activation is complex, since it involves stimulated phosphorylation by upstream 

kinases (LKB1, CamKKβ) and inhibited dephosphorylation by phosphatases, both favored by 

binding of AMP and also ADP to different sites in the γ-subunit (Oakhill et al., 2011; Xiao et al., 

2011) and myristoylation at the β-subunit (Oakhill et al., 2010). 

Increasing evidence suggests that AMPK is also activated by reactive oxygen or nitrogen 

species (ROS, RNS), although the involved mechanisms are not entirely clear. The known 

inhibitory effect on mitochondrial ATP generation may simply increase cytosolic ADP/ATP and 

AMP/ATP ratios (Hawley et al., 2010), but also other, non-canonical activation mechanisms 

are conceivable. We and others have reported for example that ROS/RNS, in particular 

peroxynitrite, may interfere with AMPK upstream signaling (Xie et al., 2006, 2008; Zou et al., 

2004). Vice versa, AMPK activation is involved in downstream redox regulation that can 

prolong cell survival (Jeon et al., 2012) and induces expression of anti-oxidative proteins like 

superoxide dismutase (SOD), catalase or thioredoxin (Colombo and Moncada, 2009; Kukidome 

et al., 2006; Wang et al., 2010). 

More recently, S-glutathionylation of Cys299 and Cys304 in the AMPK α-subunit via exposure 

to the strong oxidant H2O2 was reported to activate AMPK (Zmijewski et al., 2010). This 

reversible posttranslational protein modification can act as a functional switch like the well-
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known protein phosphorylation and also protect thiol groups against further oxidation 

(reviewed in (Pastore and Piemonte, 2012; Pimentel et al., 2012; Xiong et al., 2011)). In case 

of AMPK, it probably causes activating conformational changes similar to those provoked by 

AMP-binding (Chen et al., 2012; Riek et al., 2008). Protein S-glutathionylation is often induced 

non-enzymatically upon expose to strong oxidants, in particular in vitro in combination with 

high glutathione levels (Pastore and Piemonte, 2012; Pimentel et al., 2012; Xiong et al., 2011), 

as shown for AMPK in presence of 200 mM H2O2 (Zmijewski et al., 2010). Intracellular levels 

of H2O2, e.g. in human fibroblasts, may at best reach the low nanomolar range (Arbault et al., 

1997), thus spontaneous S-glutathionylation in vivo would occur rather slowly and at low 

levels (Xiong et al., 2011). It may be more important in pathological, highly oxidative situations 

which change the cellular thiol redox state (ratio of reduced to oxidized glutathione, 

GSH/GSSG) and generate radical intermediates or oxidized cysteins. In vivo, protein 

glutathionylation is rather facilitated by specific enzymes that may constitute a dynamically 

regulated S-glutathionylation cycle (Anathy et al., 2012; Pimentel et al., 2012; Xiong et al., 

2011). Sulfiredoxins (SRx) and glutaredoxins (Grx) can act in protein deglutathionylation, and 

the latter enzyme also catalyzes the inverse reaction. More recently, isoforms of glutathione 

S-transferase (GST (Townsend et al., 2009)), mainly GSTP1, were identified as catalysts of 

protein S-glutathionylation (de Luca et al., 2011; Manevich et al., 2004; Ralat et al., 2006; 

Townsend et al., 2009; Wetzelberger et al., 2010) confirming earlier models proposed by 

Townsend, Tew and colleagues (for recent reviews see (Tew and Townsend, 2011, 2012; Tew 

et al., 2011)). 

GSTs occur as a large superfamily of mitochondrial and cytosolic proteins. In mammals, there 

are seven classes of cytosolic GSTs, including the Alpha-, Mu-, and Pi-families (Hayes et al., 

2005), and lower eukaryotes express orthologs of these. A GST of the unicellular parasite 

Schistosoma japonicum belonging to the Mu-family is well known as the GST-tag used in fusion 

proteins to favor solubility and purification of proteins (Smith, 2000). Historically, GSTs were 

characterized as class II detoxification enzymes that react glutathione with electrophilic 

compounds like by-products of oxidative stress and xenobiotics, thus facilitating their 

elimination from the cell (reviewed in (Frova, 2006; Hayes et al., 2005; Lo and Ali-Osman, 

2007)). However, some GSTs are now also emerging as ligands or modulators of signaling 

kinases like JNK, ASK1, PKC, PKA or EGFR, where either the interacting kinase or the GST is 
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modified, functionally altered or relocated within the cell (Adler et al., 1999; Cho et al., 2001; 

Gilot et al., 2002; Lo et al., 2004; Yin et al., 2000). 

In particular GSTP1 was proposed to initiate a coordinated redox regulation of stress kinases 

to reduce cell death (Adler et al., 1999; Cho et al., 2001; Gilot et al., 2002; Lo et al., 2004; Yin 

et al., 2000). While this kind of redox regulation relies exclusively on GST protein interactions, 

the catalytic activity of GST is required for its role in protein glutathionylation. By hydrogen 

bonding of glutathione to their active site tyrosine, GST-Alpha, -Mu and -Pi enzymes decrease 

the pKa of the glutathione thiol group (R-SH) and thus favor thiol deprotonation to form the 

highly nucleophilic thiolate anion (R-S2) (Graminski et al., 1989; Nieslanik and Atkins, 2000; 

Pimentel et al., 2012). Such activated glutathione is used in various detoxification reactions, 

but also allows for S-glutathionylation of sulfenic acids (-SOH) on proteins with low pKa 

cysteines (Manevich et al., 2004; Townsend et al., 2009; Wetzelberger et al., 2010). Inversely, 

it has been speculated that low GST peroxidatic activity in presence of peroxides could 

generate glutathione sulfenic acid intermediates that would react with protein cysteine 

thiolates (Pimentel et al., 2012). The exact biochemical determinants of GST-catalyzed S-

glutathionylation remain to be fully established. In particular, most studies so far were 

dedicated to the role of GSTP1 following expose to high concentrations of ROS or RNS, while 

few is known on its role under more physiological conditions and other GST isoforms (Xiong 

et al., 2011).  

Here we describe an in vitro glutathionylation and activation of AMPK that is catalyzed by two 

mammalian GST isoforms, GSTM1 and -P1, and relies on close and direct interaction of these 

GSTs with the AMPK β-subunit as evidenced by multiple assays. Such AMPK/GST complexes 

may amplify kinase activation under mildly oxidative, physiological conditions. 
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Materials & Methods  

Cloning and protein production 

Cloning, expression and purification of GSTM1, GSTP1, GSTSj, CamKKβ, AMPK α2β2γ1 

(221WT) and AMPK α2T172Dβ2γ1 mutant (221TD) is described in (Neumann et al., 2003b; 

Riek et al., 2009) and Methods S1. For phosphorylation assays, the N-terminal Strep-tag in 

GSTM1 and P1 was removed, since mass spectrometry identified a serine being 

phosphorylated by AMPK within this tag (peptide ASWpSHPQFEK, see Methods S1, Figure S1). 

 

Yeast two-hybrid assays 

Cytosolic yeast two-hybrid (Y2H) systems, Cyto-Y2H (Möckli et al., 2007) and Split-Trp-Y2H 

(Tafelmeyer et al., 2004), both as variants developed by Dualsystems Biotech (Schlieren, 

Switzerland), are described in Methods S1 and (Möckli et al., 2007). In short, GST and AMPK 

subunits were expressed as fusion proteins, in Cyto-Y2H with a membrane anchor and the C-

terminal end of ubiquitin conjugated to a transcription factor (bait) or with the N-terminal end 

of ubiquitin (prey), and in Split-Trp-Y2H with the C-terminal (bait) or the N-terminal (prey) 

portion of Trp1p. Selective media to control the presence of bait and prey plasmid lacked 

tryptophan and leucine (SD-WL, Cyto-Y2H) or uracil and leucine (SD-UL, Split-Trp-Y2H), and 

additionally adenine and histidine (SD-AHWL, Cyto-Y2H) or tryptophan (SDUWL, Split-Trp-

Y2H) for protein interaction analysis. Spotted plates were incubated 72 h at 30°C (Cyto-Y2H) 

or up to 9 days at 27°C (Split-Trp-Y2H). 

 

Rat liver extracts, protein 

Rat liver was obtained from animals anesthetized with sodium pentobarbital (40 mg/kg, i.p.) 

according to the protocol approved by the Grenoble Ethics Committee for Animal 

Experimentation (no. 36_LBFA-LK-01). Liver tissue was immediately extracted in 10 mM HEPES 

pH 7.4 (containing 220 mM mannitol, 70 mM sucrose, 0,1% bovine serum albumin (BSA), 0.2 

mM EDTA) and centrifuged twice (1000 g and 12 000 g for 10 min each) to obtain soluble 

proteins in the supernatant for pull-down and immunoprecipitation. Protein concentrations 
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were determined according to Bradford (Bradford, 1976) with the Biorad microassay (Biorad, 

Reinach, Switzerland) and BSA as standard. 

 

GST pull-down, immunoprecipitation and immunoblotting 

For pull-down assays, either 30 mg of purified recombinant protein (GST-Sj, rat GSTM1 and -

P1, or GST-tagged acetyl-CoA carboxylase, GST-ACC (Scott et al., 2002)) or 1 mg proteins from 

liver extract were incubated with 30 mg recombinant AMPK (α2β2γ1 wild type, 221WT; or 

T172Dα2β2γ1 mutant, 221TD) for 1 h in PD-buffer (20 mM HEPES pH 7.4, 50 mM NaCl, 2,5 

mM MgCl2, 10% glycerol, 6 g/L BSA, 0,5% Tween 20, 0,02% NaN3) before addition of 

Glutathione Sepharose beads and incubation for an additional hour at 4°C. Where indicated, 

1 mM glutathione was included. Sepharose beads were washed eight times and resuspended 

in SDS sample buffer. For immunoprecipitation, 1 mg protein from liver extracts were reacted 

with anti-GSTM (ab53942, Abcam) or GSTP1 (ab53943, Abcam) antibody (1:240) in PD-buffer 

overnight at 4°C. Protein A Sepharose was added, incubated for another hour at 4°C, and 

washed 8 times before being resuspended in SDS-PAGE sample buffer. Solubilized, denatured 

proteins were subjected to SDS-PAGE and immunoblotting using anti-AMPKα primary 

antibody (dilution 1: 1000, 2532, Cell Signaling Technology, Danvers, MA, USA) and anti-rabbit 

secondary antibody (1: 5000, NA934, GE Healthcare) for detection with a chemiluminescence 

kit (ECL plus, GE Healthcare) and a CCD camera (ImagerQuant LAS 4000, GE Healthcare). Bands 

were quantified densitometrically by Image J (imagej.nih.gov/ij) and normalized. Statistical 

analysis was done by students T-test. Where indicated, proteins stained in PAGE gels with 

colloidal Coomassie Blue were identified by MALDI-TOF/TOF mass spectrometry. 

 

Surface Plasmon Resonance (SPR) and mass spectrometry (MS) 

For SPR with BIAcore (GE Healthcare), GSTs were covalently immobilized by standard amine 

coupling (GE Healthcare) on the carboxylic functions of two different chips. Gold chips 

functionalized by mixed self-assembled monolayers as described (Boireau et al., 2009) were 

kindly provided by Wilfrid Boireau (FEMTO-ST, CNRS Besançon, France). They used 97% 11-

mercapto-1-undecanol to reduce non-specific adsorption of proteins to the surface, and 3% 
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16-mercaptohexadecanoic acid for protein immobilization to obtain well controlled, low 

ligand densities as convenient for initial experiments with GST-Sj. CM5 chips (GE Healthcare) 

allowing higher ligand surface densities were used for sequential analyte injection during 

detailed kinetic analysis. GST (30 mg/ml) in 10 mM acetate buffer pH 6 (GST-Sj), pH 5 (GSTM1) 

or pH 4 (GSTP1) were injected at 5 ml/min to immobilize <2.5 ng GST/ mm2. Interaction 

measurements were carried out in running buffer (10 mM HEPES pH 7.4, 100 mM NaCl, 50 

mM EDTA, 0.005% Surfactant P20) at a flow rate of 20 ml/min. AMPK diluted to different 

concentrations just prior to measurements was injected onto the GST surfaces for 180 to 300 

s at 20 or 30 ml/min which excludes mass transfer limitations (not shown). Experimental 

curves were corrected for bulk refractive index changes. Fitting of association and dissociation 

curves for kinetic analysis was done with BIAevaluation software. GSTs were identified by 

MALDITOF/TOF and peptide mass fingerprinting, potential phosphosites by LC-MS/MS as 

described in Methods S1. 

 

AMPK glutathionylation 

AMPK 221WT (1 mM, stocks preserved at -80°C) in 0.1 M phosphate buffer pH 6.5 was 

incubated with or without 10 mM glutathione alone or together with GSTM1 or -P1 (0.5 mM) 

for 10 min at 30°C. Alternatively, AMPK (1 mM, reduced by overnight incubation with 1 mM 

ß-mercaptoethanol in phosphate buffer as above) was incubated with EDTA (1 mM) at 30°C 

alone or together with GSTM1 or -P1 (10 mM, added after 5 min). After 15 min, 0.1 mM 

glutathione was added for 2 or 4 min. The reaction was stopped by heating in SDS sample 

buffer and samples separated by non-reducing SDS-PAGE and immunoblotted using primary 

anti-glutathione antibody (1:1000, MAB5310, Millipore Corporation, Billerica, USA) and anti-

mouse secondary antibody (1: 4000, 31430, Pierce, Rockford, USA) for luminescent detection 

and quantification as described above. Blotted proteins were also visualized by Ponceau 

staining to reveal Mr shifts due to glutathionylation. 
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AMPK phosphorylation 

AMPK 221WT (25 nM) was incubated for 10 min at 30°C with or without glutathione (10 mM) 

and in presence or absence of GSTM1 or -P1 (125 nM) in kinase buffer containing 200 mM [γ-

32P]ATP (specific activity 400 mCi/mmol ATP), 50 mM AMP, 5 mM MgCl2, 1 mM DTT, and 10 

mM HEPES (pH 7.4). Recombinant CamKKβ (1.25 nM) was added and samples were incubated 

for 3 min at 30°C. The reaction was stopped by heating in SDS sample buffer and AMPK 

phosphorylation at Thr-172 as an indicator of AMPK activity was probed by SDS-PAGE and 

immunoblotting with anti-phospho-T172 AMPKα primary antibody (1: 1000, 2531, Cell 

Signaling Technology, Danvers, MA, USA) and anti-rabbit secondary antibody for luminescent 

detection and quantification as described above. 

 

AMPK substrate phosphorylation 

To analyze GST phosphorylation in vitro, AMPK 221WT (4 pmol) was activated by incubation 

with CamKKβ (1 pmol) for 20 min at 30°C in kinase buffer with cold ATP. Purified GSTs and ACC 

(Scott et al., 2002) (200 pmol each) were then incubated for 3–60 min at 37°C in the presence 

or absence of pre-activated AMPK 221WT (4 pmol) in kinase buffer. For negative controls, 

GSTs were incubated with 1 pmol CamKKβ alone without AMPK. To analyze effects of 

GST/AMPK complexes on in vitro phosphorylation of AMPK substrates, AMPK 221WT (4 pmol, 

reduced as above) was pre-activated with CamKKβ in kinase buffer with cold ATP and 

glutathionylated with 0;1 mM glutathione in presence or absence of GSTM1 or -P1, both as 

described above. Then, ACC (200 pmol) (Scott et al., 2002) and [γ-32P]ATP were added and the 

mixture incubated for 2 min at 37°C. Kinase reactions were stopped as above, separated on 

SDS-PAGE and analyzed by Typhoon phosphoimager (GE Healthcare). 
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Results 

GST-Mu and -Pi isoforms interact with AMPK in vitro 

In the course of our interactomic research on AMPK, we repeatedly pulled down recombinant 

heterotrimeric AMPK with recombinant proteins fused to a GST-tag that is derived from 

S.japonicum GST (GST-Sj). In fact, GST-Sj alone can pull down AMPK 221WT (Figure 1). We first 

examined whether such heterologous interaction of GST-Sj with rat AMPK reflects an 

interaction that evolved with homologous rat GSTM1 (closest homologue of GST-Sj, 44% 

sequence identity) and GSTP1 (30% sequence identity). Both enzymes were cloned from a rat 

cDNA library, bacterially expressed and purified. In an assay with fivefold molar excess of GST, 

both GSTM1 and -P1 were able to pull down AMPK 221WT even after extensive washing 

(Figure 1). These results suggest that the GST/AMPK interaction evolved in at least two 

different eukaryotic GST classes: the Mu and Pi families. 

 

 

Figure 1. GST isoforms and GST-tag interact with full-length AMPK in pull-down assays. Pull-down of 

recombinant AMPK 221WT with GST-Sj (S. japonicum), GSTM1 or GSTP1 (R. norvegicus). In all assays, AMPK 

(0.075 mg/ml) was incubated with or without (negative control) GST proteins (0.075 mg/ml). Pull-down with 

Glutathione Sepharose 4B was subjected to immunoblot analysis using anti-AMPKα antibody. Left: 

representative data; right: quantification (mean ± SD, n = 3; * p<0.01 and # p<0.05 versus no GST). 

 

GST-Mu and -Pi isoforms directly interact with AMPK β-subunits in Y2H assays 

A potential direct interaction of GSTs with AMPK in vivo was verified by two different last-

generation Y2H assays (Brückner et al., 2009). Here, bait/prey interaction leads to 

reconstitution of split proteins in the yeast cytosol, either of ubiquitin (Cyto-Y2H) or an enzyme 

in tryptophan biosynthesis (Split-Trp-Y2H). Readout is provided via transcription factor release 

by ubiquitin-specific proteases that triggers transcription of reporter genes (Cyto-Y2H), or 

more directly by allowing growth on Trp-deficient medium (Split-Trp-Y2H) (Tafelmeyer et al., 

2004). While the transcriptional amplification of the Cyto-Y2H read-out makes it very sensitive 
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to detect even weak or transient interactions, the direct readout of the Split-Trp-Y2H is more 

proportional to interaction strength.  

The three examined GSTs (GST-Sj, GSTM1, GSTP1) did not interact with AMPK α -subunits in 

the sensitive Cyto-Y2H assay (Figure 2A). However, all three showed interaction with AMPK β-

subunits: β1 and β2 in case of GST-Sj, and preferentially β2 in case of GSTM1 and -P1. The N-

terminal domain of the β-subunits (Δβ1 or Δβ2, amino acids 1–54) was sufficient for GST/ 

AMPK binding, suggesting that it is part of the interaction domain. Control experiments 

confirmed expected GST homodimerization and AMPK α/β-subunit interaction, while no 

binding to unrelated protein Large T (LT) was detected. The Split-Trp-Y2H assay confirmed 

these data (Figure 2B), although the readout was weaker in some cases, as e.g. in case of the 

AMPK α-/β-subunit interaction. In both assays, results were similar, irrespective whether GST-

Sj was used as bait or prey (not shown). 

 

 

Figure 2. Y2H analysis identifies GST isoforms as AMPK interaction partners and the AMPK interaction domain. 

Two different cytosolic Y2H systems were applied to analyze interaction of AMPK with Schistosoma japonicum 

GST (GST-Sj) and mammalian (rat) GSTM1 and GSTP1. (A) Cyto-Y2H: interacting proteins lead to reconstitution 

of ubiquitin and a transcriptional readout allowing growth on medium lacking adenine and histidine (SD-AHWL). 

Spots represent yeast grown for 72 h at 30°C. (B) Split-Trp-Y2H: interacting proteins lead to reconstitution of 

Trp1p, an enzyme in tryptophan biosynthesis, and allow growth on medium lacking tryptophan (SD-UWL). Yeast 

was grown for 8–9 days at 27°C. Δβ, N-terminal domain of AMPK β-subunit. Controls: LT, Large T Antigen of 

Simian Virus (amino acids 84–704; negative control); GST, GST-Sj (positive control). A representative data set out 

of three independent experiments is shown. For more details see Materials and Methods and Supporting 

Information. 
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GST/AMPK interaction occurs in rat liver 

To test whether also endogenous rat GST isoforms bind to AMPK, we used crude rat liver 

extracts for co-immunoprecipitation and GST pull-down assays. Liver contains mainly GST-

Alpha and -Mu isoforms and few GST-Pi. Endogenous rat AMPK indeed co-

immunoprecipitated with antibodies specific for GSTM1/2 and GSTP1 (Figure 3A) and pulled 

down together with three major endogenous GST isoforms, GSTA1, GSTA3 and GSTM1, as 

identified by MALDI mass spectrometry (Figure 3B). If glutathione is then added to the extract, 

the pull-down assay becomes more stringent. Mainly GSTM1 is now pulled down, while GSTA1 

and GSTA3 are strongly reduced, without affecting the quantity of associated AMPK. Finally, 

when liver extracts were spiked with additional recombinant AMPK 221WT or 221TD, even 

more AMPK was pulled down (Figure 3C). More inactive AMPK 221WT was recovered as 

compared to AMPK 221TD, a mutant mimicking active AMPK (Stein et al., 2000). 

 

 

Figure 3. AMPK interacts with endogenous GST isoforms in rat liver. GST immunoprecipitation (A) or pull-downs 

(B, C) were performed with rat liver extract. AMPK in immunoprecipitates or pull-down fractions was detected 

by immunoblot analysis with anti-αAMPK antibody. The main liver GST isoforms in pull-down fractions were 

detected by Ponceau staining and mass spectroscopy. (A) Immunoprecipitation of endogenous AMPK by anti-

GSTM1/2 or anti-GSTP1 antibodies. (B) GST pull-down of endogenous liver AMPK by liver GST isoforms in absence 

or presence of glutathione. Note: Addition of glutathione reduces pull-down of GSTA isoforms without affecting 

pull-down of AMPK. (C) GST pull-down of added AMPK 221WT or constitutively active 221TD. Left: representative 

data sets; right: quantification (mean ± SD, n = 3; * p<0.01 and # p<0.05 versus no GST (A), GSTM1 (B) or no 

extract (C)). Extr, liver extract. 
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GST/AMPK interaction is direct and rapid 

To obtain quantitative data on the GST/AMPK interaction in respect to kinetics and affinity, 

we performed a series of in vitro experiments with surface plasmon resonance spectroscopy 

(SPR). The GST interaction partner was chosen for covalent immobilization since it appeared 

more stable in this setup. We first used a sensor chip where the gold surface had been 

functionalized with a self-assembled monolayer that reduces non-specific adsorption to the 

surface and allows immobilization of low ligand densities for analyzing GST-Sj. Sensorgrams 

with AMPK 221WT, 221TD or BSA (negative control) injected onto this surface confirmed a 

direct GST/AMPK interaction (Figure 4A) that was not affected by glutathione (not shown). 

The equilibrium response was 203641.5 RU for AMPK 221WT, which was reduced to 121627 

RU for AMPK 221TD, as compared to 863.7 RU for BSA (Figure 4B). Conventional CM5 sensor 

chips were then used to confirm a specific interaction of rat GSTM1 or GSTP1 with rat AMPK 

(Figure 4C) and to extract affinity data for GSTM1 by injecting an AMPK concentration series 

(Figure 4D). The simple kinetics could be very well fitted to a Langmuir 1:1 model (Figure 4D) 

as seen by the very low residuals of the fit (<1 RU). The fast association (ka = 3.1.105 M21 s21) 

and the very slow dissociation (kd= 1.6.10-3 s-1) resulting in a KD of about 5 nM. 
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Figure 4. Surface plasmon resonance identifies high 

affinity interactions between GSTs and AMPK. 

Freshly diluted, recombinant full-length AMPK was 

injected onto immobilized GST. (A) GST-Sj binding of 

10 nM AMPK 221WT (black full line), constitutive 

active AMPK 221TD (grey full line) or BSA (grey 

dotted line) at a flow rate of 20 ml/min (surface: self-

assembled monolayer). (B) Equilibrium response 

from (A), mean ± SD, 12 (221TD), 6 (221WT) or 3 

(BSA) independent experiments (* p<0.01 versus 

control; 1 p<0.01 versus AMPK-TD). (C) Comparison 

of GSTM1 (black) or GSTP1 (grey) association and 

dissociation kinetics of 10 nM AMPK 221WT (full 

lines) or 100 nM of BSA (dotted lines) and a flow rate 

of 30 ml/min (surface: CM5). (D) GSTM1 association 

and dissociation kinetics of AMPK 221WT at 

different concentrations (dashed black lines) and a 

flow rate of 30 ml/min (surface: CM5), single 

exponential fit of experimental data (grey lines) and 

corresponding residuals (to assess the quality of the 

fit, lower panel). Representative sensorgrams of at 

least two repetitions are shown. Bars on the top of 

sensorgrams indicate protein injection (association, 

black) or injection of running buffer (white). 
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GST/AMPK complexes do not lead to relevant GST phosphorylation but increase GST activity 

To gain insight into the putative role(s) of GST/AMPK complexes, we first examined whether 

they lead to GST phosphorylation and/or affect GST activity. In vitro phosphorylation assays 

with CamKKβ-activated AMPK and a 50-fold excess of GSTs revealed no phosphorylation of 

GST-Sj and slow, very low level phosphorylation of GSTM1 and GSTP1 as compared to ACC 

(Figure 5), reaching less than 7% of the ACC phosphorylation level within 1 hour (Figure S2). 

Presence of glutathione did not further increase this phosphorylation (not shown) as it was 

reported for PKA and PKC (Lo et al., 2004), and no specific phosphosites could be identified by 

mass spectrometry (not shown). However, in an activity assay using the model substrate 1-

chloro-2,4-dinitrobenzene (CDNB), addition of AMPK 221WT to GSTM1 or GSTP1 led to a 

moderate increase of vmax by about 25% at almost unchanged apparent Km (Table 1, Figure 

S3). This increase occurred only after mixing GST with AMPK, not with BSA, and did not require 

addition of active AMPK 221TD (Table 1). Thus, GST activation is not due to unspecific 

stabilization by protein addition and unrelated to the faint and slow GST phosphorylation. 

Rather, specific GST/AMPK complex formation itself altered the catalytic properties of GST, 

since GST activation also depended on the amount of AMPK 221WT added (Figure S3). 

 

Figure 5. GST is a poor AMPK substrate. AMPK 221WT (4 pmol) pre-activated by CamKKβ (1 pmol) does not 

phosphorylate GST-Sj and phosphorylates GSTM1 and -P1 only at low levels as compared to ACC (all at 200 pmol). 

In vitro phosphorylation assays were run for 3 min (GST-ACC), 30 min (GSTP1, GSTM1) or 60 min (GST-Sj) and 

analyzed by SDS-PAGE and Typhoon phosphoimager. Note the autophosphorylation of the AMPK β-

subunit.Representative data with quantification are shown. Detailed phosphorylation kinetics is shown in Figure 

S2.   

 

Table 1. Enzyme kinetic parameters of GSTP1 in presence or absence of AMPK or BSA. 

  Vmax  kcat  Km(CDNB)  

  (U mg-1)  (s-1)  mM  

 GSTM1 21.6±0.8  16.9±0.5  0.037±0.005  
 GSTM1 + BSA 20.9±0.8  16.4±0.5  0.033±0.006  
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 GSTM1 + AMPK 221 25.5±0.7  20.0±0.5  0.045±0.005  
 GSTM1 + AMPK 221TD 25.9±0.9  20.3±0.6  0.043±0.006  
 GSTP1 20.4±2.9  16.0±2.3  1.9±0.4  
 GSTP1 + BSA 24.6±1.1  19.3±0.9  1.5±0.1   
 GSTP1 + AMPK221-P 1) 26.8±0.5  21.0±0.8  1.7±0.1  
        
GST enzyme activity was determined with variable concentrations of model substrate 1-chloro-2.4-
dinitrobenzene at a fixed glutathione concentration (10 mM for GSTM1, 2 mM for GSTP1) at 25°C. Vmax and 
Km values were obtained by direct fitting of values to Michaelis-Menten kinetics. Enzyme activity given in U 
is equivalent to mmol/min. Values are means ± SD, n = 3. 1) AMPK221 preactivated by phosphorylation with 
CamKKβ. 

 

GST/AMPK complexes lead to AMPK glutathionylation and activation 

It has previously been shown that GSTM1 and -P1 were able to modulate signal transduction 

through an interaction with JNK and/or other stress activated kinases ((Adler et al., 1999; Yin 

et al., 2000), reviewed in (Lo and Ali-Osman, 2007)). Hence, we hypothesized that GST could 

modulate AMPK activity by glutathionylation as it was shown recently (Zmijewski et al., 2010). 

At very high glutathione concentrations of 10 mM, spontaneous auto-glutathionylation 

occurred with AMPK 221WT already in absence of mammalian GSTs (Figure 6A). However, at 

more limiting conditions using 0.1 mM glutathione and AMPK pre-reduced with β-

mercaptoethanol, auto-glutathionylation was almost absent (Figure 6B). In this case, presence 

of GSTM1 and -P1 increased glutathionylation of AMPK to immunodetectable levels, also 

visible as a partial shift of AMPK to a higher molecular mass (Figure 6B). 

 

 

Figure 6. Glutathionylation of AMPK is facilitated by GST. Glutathionylation assays were performed (A) with 

AMPK 221WT (1 mM) in absence or presence of GSTM1 or -P1 (0.5 mM) and 10 mM glutathione or (B) with AMPK 

221WT (1 mM, additionally pre-reduced with β-mercaptoethanol) in absence or presence of GSTM1 or -P1 (10 

mM) and 0.1 mM glutathione. AMPK modification was detected either as a molecular mass shift of GST protein 



 

 

67 Glutathion S-transferase interact with AMP-activated protein kinase 

in SDS-PAGE (see arrows in Ponceau protein stain, ‘‘protein’’) or by direct detection of glutathione by 

immunoblotting (‘‘glutathionylation’’). Note: As soon as glutathione is present, AMPK is almost quantitatively 

glutathionylated in (A), while additional presence of GST is needed for glutathionylation in (B). Left: 

representative data; right: quantification (mean, n = 2). 

 

We then analyzed the effect of AMPK S-glutathionylation for AMPK signaling. In vitro 

phosphorylation of AMPK 221WT at αT172 by its upstream kinase CamKKβ was identical in 

presence or absence of glutathione, and also not further modified by GSTM1 or -P1 (Figure 

7A). However, phosphorylation of the AMPK downstream substrate ACC was clearly increased 

with AMPK 221WT preparations that had been glutathionylated before in presence of 

glutathione by GSTM1 and -P1 as above, compared to controls lacking mammalian GSTs 

(Figure 7B). Activation of AMPK by CamKKβ was a prerequisite for this ACC phosphorylation. 

CamKKβ (Figure 7B) and AMPK alone (Figure S4) or combined with GSTs did not affect ACC 

phosphorylation. These results suggest that GST-dependent S-glutathionylation of AMPK in 

vitro indeed increases kinase activity in the same way as previously shown for H2O2-dependent 

AMPK glutathionylation (Zmijewski et al., 2010). 

 

 

Figure 7. AMPK glutathionylation does not affect its phosphorylation by CamKKβ, but increases 

phosphorylation of downstream substrate. (A) GSTM1 or -P1 (62.5 pmol) were pre-incubated with AMPK 221WT 

(12.5 pmol) with or without 10 mM glutathione, in presence of ATP prior to addition of CamKKβ (0.63 pmol). 

Phosphorylation assays were subjected to immunoblot analysis using anti-P-T172-α AMPK antibody. (B) AMPK 

221WT pre-activated with CamKKβ in kinase buffer with cold ATP and glutathionylated with 0,1 mM glutathione 

in presence or absence of GSTM1 or -P1, both as described above and in Figure 6, were incubated with ACC (200 

pmol) and [γ-32P]ATP. In vitro phosphorylation assays were analyzed by SDS-PAGE, Ponceau protein staining 

(lower panel) and Typhoon phosphoimager (upper panel) are shown. Left: representative data; right: 



  

 

68 Glutathion S-transferase interact with AMP-activated protein kinase 

quantification of lanes in presence of glutathione (mean ± SD, n = 4; * = p<0.01 versus no GST). A control 

experiment lacking CamKKβ is shown in Figure S4. Note: AMPK autophosphorylation of α- and β-subunits.  
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Discussion 

The energy stress sensor AMPK can be activated by ROS and RNS, possibly via different AMP-

dependent and -independent mechanisms (Hawley et al., 2010; Xie et al., 2006; Zou et al., 

2004) and is involved in cellular redox regulation (Jeon et al., 2012) and antioxidative defense 

via induced expression of various antioxidative pathways (Colombo and Moncada, 2009; 

Kukidome et al., 2006; Wang et al., 2010). Exposure of AMPK to the strong oxidant hydrogen 

peroxide at high glutathione concentrations induces non-enzymatic S-glutathionylation of 

AMPK α- and β-subunits which in turn activates the kinase (Zmijewski et al., 2010). Our study 

adds another element to such redox regulation: activation of AMPK via GST-facilitated 

glutathionylation in the absence of exogenous oxidant that may be relevant to normal 

physiological conditions. We provide evidence that mammalian GSTM1 and -P1 can rapidly 

interact with AMPK, become enzymatically activated by this interaction, and assist in turn in 

glutathionylation and activation of AMPK as we show in vitro. 

It has previously been demonstrated that GSTM1 and -P1 were able to modulate signal 

transduction through interactions with JNK and/or other stress activated kinases ((Adler et al., 

1999; Yin et al., 2000), reviewed in (Lo and Ali-Osman, 2007)), and that this can involve GST 

phosphorylation or modification of the interacting kinase (Adler et al., 1999; Cho et al., 2001; 

Gilot et al., 2002; Lo et al., 2004; Yin et al., 2000). However, interaction with AMPK led only to 

slow and low-level phosphorylation of GSTM1 and -P1; its importance (if any) remains to be 

elucidated. By contrast, complex formation alone was sufficient to increase activity of bound 

GST and, importantly, to glutathionylate and activate AMPK under in vitro conditions where 

auto-glutathionylation is low, i.e. in the absence of strong oxidants. It is worth noting that 

protein interaction partners of GST were mostly also identified as targets for S-

glutathionylation (e.g. (Cross and Templeton, 2004; Manevich et al., 2004; Wetzelberger et 

al., 2010)). The residues glutathionylated within AMPK, α-Cys299 and α-Cys304 (Zmijewski et 

al., 2010), activate AMPK rather due to direct conformational changes as those produced by 

allosteric AMP regulation. AMPK glutathionylation did not make AMPK a better substrate for 

the upstream kinase CamKKβ, at least with the recombinant enzymes in the reconstituted in 

vitro system applied here. 
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Reversible protein modification by cysteine glutathionylation is increasingly recognized as an 

important signaling mechanism by which cells can respond effectively and reversibly to redox 

inputs (Pastore and Piemonte, 2012; Xiong et al., 2011). S-glutathionylation inhibits or 

activates a number of protein kinases (PKA, PKC, MEKK1, ASK1) and phosphatases (reviewed 

in (Pastore and Piemonte, 2012)). Although the understanding of the S-glutathionylation cycle 

is still limited, there is evidence for the participation glutaredoxins and GST isoforms, including 

GSTM1 and -P1 (Tew and Townsend, 2011; Townsend et al., 2009; Wetzelberger et al., 2010). 

GSTP1P2 knockout mice and cells expressing dead mutants of GSTP have a diminished capacity 

to S-glutathionylate proteins (Townsend et al., 2009). GSTP plays an essential role in the S-

glutathionylation of 1-cys peroxiredoxin (Manevich et al., 2004; Noguera-Mazon et al., 2006; 

Ralat et al., 2006). Even more, a glutathionylation cycle was recently described to regulate 

aldose reductase (Wetzelberger et al., 2010). Here, sequential glutathiolyation/ 

deglutathioylation is catalyzed by GSTP and GRx in vitro and in vivo, correlated with physical 

association of the reductase with either GSTP or GRx (Wetzelberger et al., 2010). Since the 

GST catalytic activity is necessary for lowering the pKa of the glutathione cysteine thiol 

(Graminski et al., 1989), altered catalytic properties as we observed with GSTM1 and -P1 in 

complex with AMPK may be relevant for the GST glutathionylation function. 

These findings fit very well into the emerging role of AMPK as a redox switch in oxidative stress 

and redox signaling. AMPK is activated by ROS/RNS via different mechanisms: impaired 

mitochondrial ATP generation will translate into increased cytosolic AMP/ATP and ADP/ATP 

ratios that activate AMPK (Hawley et al., 2010), but ROS/RNS may also directly affect upstream 

mediators and kinases (Xie et al., 2006; Zou et al., 2004) or AMPK itself by glutathionylation 

(Zmijewski et al., 2010). Activated AMPK in turn up-regulates the cellular antioxidative defense 

machinery, mainly via the FOXO3 transcription factor: manganese superoxide dismutase 

(Colombo and Moncada, 2009; Kukidome et al., 2006; Wang et al., 2010), catalase (Colombo 

and Moncada, 2009; Wang et al., 2010), thioredoxin (Colombo and Moncada, 2009; Hou et 

al., 2010), metallothioneins (Greer et al., 2007), or uncoupling protein 2 (Xie et al., 2008). 

Among AMPK-FOXO3-induced genes are also γ-glutamylcysteine synthase, the first enzyme in 

glutathione biosynthesis (Colombo and Moncada, 2009), glutathione peroxidase (Wang et al., 

2010) that uses glutathione to reduce lipid and hydrogen peroxides, as well as GSTM1 (Greer 

et al., 2007).  
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The interaction leading to GST/AMPK complexes seems to be rather specific for the GST-Mu 

and -Pi families, since it was not observed with GST-Alpha and -Omega isoforms (not shown). 

It does not involve the AMPK a-subunit, as we have recently reported for fumarate hydratase 

(Klaus et al., 2012), but the β-subunit, as also seen with several other putative mammalian 

AMPK interactors (IntAct database, (Aranda et al., 2010)) and the yeast and plants orthologs 

(Polge et al., 2008; Vincent and Carlson, 1999). Our data suggest interaction with the very N-

terminal part of the β-subunit, a domain that is fairly well conserved across the AMPK protein 

family but lacks in the solved core structures of mammalian AMPK and its yeast ortholog ((Xiao 

et al., 2011); reviewed in (Sanz, 2008)), possibly due to its high flexibility. The physical 

interaction of AMPK with GST-Sj calls for a note of caution for using GST fusion proteins in 

pull-down assays to identify AMPK interaction partners. 

GST-mediated glutathionylation and activation of AMPK may be considered a possible 

additional layer of AMPK regulation linking the energy-stress sensor to redox regulation and 

antioxidative defense. Our present data are novel in that they provide a mechanism for 

glutathionylation-dependent AMPK activation at low oxidative capacity, as compared to the 

highly oxidative conditions used in an earlier study (Zmijewski et al., 2010) which may not 

mimic peroxide concentrations generated intracellularly (Arbault et al., 1997; Pimentel et al., 

2012). Further studies have to show the specific importance of this mechanism for in vivo 

regulation of AMPK activity. 



  

 

72 Glutathion S-transferase interact with AMP-activated protein kinase 

Supplementary data 

 

 

Figure S1. The Strep-tag in Strep-GST constructs is phosphorylated by AMPK. Phosphorylation of GSTP1 (200 

pmol) and GSTM1 (40 pmol) in Strep-tagged (P1, M1) and Strep-tag-free forms (P1c, M1c) by AMPK221 (4 pmol) 

activated by CamKKβ (1 pmol). In vitro phosphorylation for 10 min at 37°C was analyzed by SDS-PAGE and 

Typhoon phosphoimager (top panel) and control Coomassie stain for protein loading (bottom panel). Control 

lanes lack AMPK221 but contain CamKKβ. 

 

 

 

 

Figure S2. Substoichiometric phosphorylation of GSTP1 by AMPK in vitro. (A) Phosphorylation time course of 

GSTP1 or ACC (200 pmol each) by AMPK221 (4 pmol) activated by CamKKβ (1 pmol). In vitro phosphorylation for 

5 to 60 min at 37°C was analyzed by SDS-PAGE and Typhoon phosphoimager. Control lanes lack AMPK221 but 

contain CamKKβ. (B) Quantification of (A) using Image Quant TL, using normalization to maximal ACC 

phosphorylation and fitting to phosphorylation enzyme kinetics. 

 



 

 

73 Glutathion S-transferase interact with AMP-activated protein kinase 

  
Figure S3. GSTM1 and -P1 are activated in complexes with AMPK in vitro. Enzyme activity of or 20 mg GSTM1 

(A) or 30 mg GSTP1 (B) in absence or presence of 5 or 15 mg AMPK221WT at different concentrations of the 

model substrate CDNB and saturating glutathione concentrations. 

 

 

 

 

Figure S4. Increased phosphorylation of AMPK downstream substrate depends on the presence of AMPK 

activating upstream kinase CamKKβ. AMPK 221WT preactivated with CamKKβ in kinase buffer with cold ATP 

and glutathionylated with 0.1 mM glutathione in presence or absence of GSTM1 or -P1, both as described in 

Figure 6 and Figure 7, were incubated with ACC (200 pmol) and [γ-32P]ATP. In vitro phosphorylation assays were 

analyzed by SDS-PAGE, Ponceau protein staining (lower panel) and Typhoon phosphoimager (upper panel) are 

shown. Note: AMPK autophosphorylation in particular of the a-subunit. 
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Fumarate hydratase 

as AMPK substrate  

Abstract. AMP-activated protein kinase (AMPK) is 
emerging as a central cellular signaling hub involved in 
energy homeostasis and proliferation. Here we apply an 
original two-dimensional in vitro screening approach for 
AMPK substrates that combines biophysical interaction 
based on surface plasmon resonance with in vitro 
phosphorylation. By enriching for proteins that interact 
with a specific AMPK isoform, we aimed to identify 
substrates that are also preferentially phosphorylated by 
this specific AMPK isoform. Application of this screen to 
full-length AMPK α2β2γ1 and soluble rat liver proteins 
identified the tumor suppressor fumarate hydratase (FH). 
FH was confirmed to interact with and to be preferentially 
phosphorylated by the AMPKα2 isoform by using yeast-
two-hybrid and in vitro phosphorylation assays. In the 
second section we show that this phosphorylation occurs 
mainly at Ser19 in the amphiphatic N-terminal targeting 
peptide, and at a low level at Thr482 in the FH C-terminal 
domain 3. Out of some other mitochondrial proteins 
identified earlier as potential AMPK substrates by in vitro 
screening, also the pyruvate carboxylase prepeptide is 
phosphorylated by AMPK, suggesting that AMPK 
phosphorylations in prepeptides may occur more 
frequently with potential effects on mitochondrial protein 
import.  
Résumé. La protéine kinase activée par l’AMP (AMPK) est 
un point clé de l’homéostasie énergétique et de la 
prolifération cellulaire. Dans cette étude nous avons 
appliqué une approche novatrice de criblage en deux 
dimensions in vitro ciblant des substrats de l’AMPK, 
combinant interaction biophysique basée sur la méthode 
de résonance plasmonique de surface avec des tests de 
phosphorylation in vitro. En utilisant un isoforme 
spécifique de l’AMPK, nous avions pour but d’identifier des 
substrats qui seraient aussi préférentiellement 
phosphorylés par ce même isoforme. L’application de ce 
système de criblage sur l’AMPK α2β2γ1 et sur des 
protéines solubles de foie de rat ont permis l’identification 
du suppresseur de tumeur, fumarate hydratase (FH). Le 
double hybride en levure et les essais de phosphorylation 
in vitro ont confirmé que FH interagit et est phosphorylé 
préférentiellement par l’isoforme α2 de l’AMPK. Dans la 
seconde section nous montrons que c’est essentiellement 
la Ser19 qui est phosphorylée, présente en N-terminal au 
niveau du peptide signal amphiphatique. Thr482 est 
phosphorylée plus faiblement. Parmi d’autres protéines 
mitochondriales identifiées plus tôt comme potentiels 
substrats de l’AMPK dans des criblages in vitro, le 
prépeptide de la pyruvate carboxylase est phosphorylé par 
l’AMPK. Ceci suggère que la phosphorylation de 
prépeptides par l’AMPK peut arriver plus fréquemment, 
avec un rôle potentiel dans l’import mitochondrial. 
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Introduction 

AMP-activated protein kinase (AMPK) is member of a Ser/Thr kinase family conserved across 

the eukaryotic kingdom, including SNF1 complex in yeast and SnRK1 in plants. These kinases 

function as heterotrimeric complexes composed of one catalytic α-type subunit and two 

regulatory β- and γ-type subunits (Bouly et al., 1999; Davies et al., 1994; Jiang and Carlson, 

1997; Mitchelhill et al., 1994). Subunits of mammalian AMPK occur as different isoforms (α1, 

α2, β1, β2, γ1-3) and splice variants (of γ2 and 3), potentially generating multiple different 

heterotrimeric complexes. 

In mammals, AMPK functions mainly as an energy sensor, integrating signals from inside the 

cell, the cellular environment, and the whole organism (for reviews see (Carling et al., 2011; 

Hardie, 2007; Mihaylova and Shaw, 2011; Neumann et al., 2003a)). The activation mechanism 

involves AMP-induced conformational changes, covalent activation by the upstream kinases 

LKB1 or CamKKβ (Riek et al., 2008; Woods et al., 1996), and AMP- and ADP-dependent 

inhibition of AMPK dephosphorylation. Altered AMPK signaling has been associated with 

different human pathologies like diabetes and cancer, and the kinase is a promising drug 

target for these pathologies (Fogarty and Hardie, 2010; Steinberg and Kemp, 2009). Two of 

the major drugs used for treating diabetes type II, metformin and thiazolidinediones, activate 

AMPK (Fryer et al., 2002; Zhou et al., 2001) and many of their therapeutic effects are mediated 

by AMPK signaling (Shaw et al., 2005). The identification of LKB1, a known tumor suppressor, 

as an upstream kinase of AMPK (Woods et al., 2003) and the effect of metformin reducing 

cancer incidence (Libby et al., 2009) have generated substantial interest for the role of AMPK 

in cancer development. Activated AMPK negatively regulates cell proliferation and the cell 

cycle, mostly mediated by mTOR and p53, respectively (Alessi et al., 2006; Jones et al., 2005; 

Kimura et al., 2003). However, treatments based on a systemic activation of AMPK may not 

only be beneficial, given the largely pleiotropic effects to be expected from a growing number 

of AMPK substrates. 

Systemic activation may be avoided to some degree by targeting specific AMPK isoform 

combinations, since they show a partial tissue-specificity (Viollet et al., 2009) or may recognize 

specific substrates. However, information on putative determinants of kinase-substrate 

interaction is scarce. Few AMPK interactors have been independently verified by more than 
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one method (Polge et al., 2008; Vincent and Carlson, 1999; Woods et al., 2003), and most 

interaction data come from large-scale screening like immunoprecipitation-MS analysis with 

tagged AMPK (Ewing et al., 2007), which do even not proof direct interactions. The variable 

N-terminal region of the β-subunits has been proposed to mediate interaction of the kinase 

with its substrates in yeast (Kuramoto et al., 2007) and plants (Solaz-Fuster et al., 2006). In 

mammals, the α1 and α2 subunits were shown to exhibit subtle different substrate 

preferences when using variants of the SAMS peptide, suggesting that the two α isoforms 

could phosphorylate different substrates within the cell (Vernia et al., 2009), but this could 

not be confirmed so far for known AMPK substrates. 

To identify substrates that interact with a specific AMPK isoform combination and thus 

potentially represent preferential substrates of this AMPK species, we have set up a protocol 

involving prefractionation and a two-dimensional in vitro screening. This combines biophysical 

interaction assays using surface plasmon resonance (SPR) with in vitro phosphorylation assays 

and protein identification by mass spectrometry (MS) as successfully applied already in an 

earlier study (Tuerk et al., 2007). This approach identified the tumor suppressor fumarate 

hydratase (FH) as an interactor and preferential substrate of α2-containing AMPK complexes, 

with phosphorylation leading to enzymatic activation. 
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Materials & Methods  

Material 

AICA-Riboside (AICAR) was from Biotrend Chemicals (Zurich, Switzerland), rabbit polyclonal 

anti-P-Thr172 AMPKα and anti-His-tag antibodies from Cell Signaling Technology (Danvers, 

MA, USA), goat polyclonal anti-GSTpi and rabbit polyclonal anti-FH antibody from Abcam 

(Cambridge, UK), secondary antibodies coupled to horseradish peroxidase were from GE 

Healthcare Life Science (Buckinghamshire, UK) for rabbit IgG and Thermo Scientific (Rockford, 

USA) for goat IgG. 

 

Cloning and purification of proteins 

Plasmids pγ1β1His-α1, pγ1β1His-α1T172D, pγ1β2His-α2 and pγ1β1His-α2T172D (Neumann et 

al., 2003b) were used for bacterial expression and purification as published previously 

(Neumann et al., 2003b; Riek et al., 2009). For Y2H experiments, PCR-amplified inserts were 

introduced into Y2H vectors pCab and pDSL (Dualsystems Biotech AG, Schlieren, Switzerland). 

FH (GeneID: 24368) and fatty acid binding protein 1 (FABP1, GeneID:24360) were amplified 

from rat liver cDNA and introduced into yeast two-hybrid vectors or bacterial expression 

vectors pET-52b (+) (Merck KGaA, Darmstadt, Germany) and pGEX-4T-1 (GE Healthcare). The 

fusion constructs Strep-FH, Strep-FABP1, GST-FH, GST-FABP1, GST-ACC (plasmid kindly 

provided by G. Hardie, Univ. of Dundee, UK) (Scott et al., 2002) and GST-CamKKβ (plasmid 

kindly provided by H. Tokumitsu, Kagawa Medical University, Japan) were bacterially 

expressed and purified according to standard procedures and the tag proteolytically removed 

where necessary. For further details see the online Supplementary Material 1. 

 

Preparation and prefractionation of liver extract 

Total liver from one rat was snap-frozen in liquid nitrogen and homogenized in 15 ml ice-cold 

extraction buffer A (20 mM HEPES, pH 7.4, 100 mM NaCl, 50 μM EDTA, and anti-protease 

cocktail, 1 tablet per 50 ml solution, Roche Diagnostics, Basel, Switzerland) using a Polytron 

PT 3000 homogenizer at 24 000 rpm for 20 s. After centrifugation at 15000 g for 30 min at 4°C, 
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the supernatant was filtered through a 0.22 μm filter. Prefractionation was carried out on an 

Äkta Explorer 100 Air HPLC system (GE Healthcare). Three ml of liver extract were applied to 

a Ni-NTA column (2 ml bed volume; Qiagen) preequilibrated in buffer A. The column was then 

washed at a flow rate of 1 ml/min with 2 column volumes (CV) of buffer A. Proteins were 

eluted with imidazole buffer (20 mM HEPES, pH 7.4, 100 mM NaCl and 250 mM imidazole) 

and the first 5 ml collected. This process was repeated 3 times. Between each load, the column 

was washed with 4 CV imidazole buffer, 1 CV water, 1 CV NaOH 0.5 M and 5 CV buffer A. To 

reduce the volume, collected proteins were precipitated with 80% (w/v) ammonium sulfate 

for 2 hours at 4°C. The pellet was resuspended in 5 ml buffer A and further centrifuged at 15 

000 g for 10 min at 4 °C. The supernatant was filtered (0.22 mm filter) and applied to a 

Superdex 200 size exclusion column (separation range Mr 10 000-600 000; volume 120 ml; GE 

Healthcare) preequilibrated in buffer A. Proteins were then separated at a flow rate of 1 

ml/min and collected in 12 fractions of 5 ml each (S1 to S12) supplemented with anti-protease 

cocktail (Roche, 1 tablet per 50 ml solution) was added. 

 

Surface plasmon resonance interaction screening and yeast two-hybrid assays 

The SPR screening was performed with a BIAcore 2000 (GE Healthcare) using a NTA sensor 

chip (GE Healthcare) and as running buffer 10 mM HEPES pH 7.4, 100 mM NaCl, 50 μM EDTA 

and 0.005 % Surfactant P20. In each measurement cycle, the NTA surface was activated by a 

1 min-pulse of 500 μM NiCl2 and 50 nM His-tagged AMPK α2β2γ1 (AMPK221) was injected at 

5 μl/min until reaching 4000 response units (RU) of immobilization. An HPLC fraction was then 

injected onto the AMP221 surface at 20 μl/min for 120 s. Interacting protein was quantified 

at a reporting point 80 s after dissociation start, since the association phase was biased by an 

SPR signal caused by the chromatography sample buffer. After 120 s of dissociation, a protein–

free surface was regenerated by injection of 10 mM HEPES, pH 8.3, 150 mM NaCl, 350 mM 

EDTA and 0.005 % Surfactant P20. Binary protein-protein interactions were analyzed in vivo 

using the Cyto-Y2H system (Dualsystems Biotech) (Möckli et al., 2007) based on the split-

ubiquitin system (Johnsson and Varshavsky, 1994; Stagljar et al., 1998) (see online 

Supplementary Material 1).  
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Co-immunoprecipitation 

Strep-tagged FH (1μg) and His-tagged AMPK 221TD (1μg) were co-immunoprecipitated with 

anti-His-tag antibody (1:200) and protein G Sepharose (10% w/v) in IP buffer (30 mM Hepes 

pH 7.3, 300 mM NaCl, 6 g/l BSA, 0.5% w/v dodecylmaltoside) overnight at 4°C. Sepharose was 

washed twice (30 mM Hepes pH 7.3, 300 mM NaCl, 0.1% Tween 20) and resuspended in SDS-

PAGE sample buffer. Proteins separated by SDS-PAGE were probed for FH by immunoblotting. 

 

AMPK substrate phosphorylation screening 

AMPK phosphorylation assays were performed at 37 °C in a final volume of 25 μl containing 

12.5 μl of chromatography fractions and kinase buffer (200 μM [γ-32P]ATP (400 mCi/mmol 

ATP), 50 μM AMP, 5 mM MgCl2, 1 mM DTT and 10 mM HEPES pH 7.4), with or without 

recombinant constitutively active AMPK221 (50 pmol). The kinase reactions were stopped 

after 2 min by addition of 10 μl SDS sample buffer (105 mM Tris-HCl, pH 6.8, 4% (w/v) SDS, 

15% (v/v) glycerol, 1.2 M β-mercaptoethanol, and 0.02% (w/v) bromophenol blue), heated to 

95 °C for 5 min, and separated by SDS-PAGE. Following colloidal Coomassie staining, gels were 

air-dried and exposed to autoradiography films (GE Healthcare) for up to 2 weeks or to 

Typhoon imager (GE Healthcare). 

 

Trypsin digestion and mass spectrometry 

Radioactively labeled AMPK-specific bands were cut from the gels, in-gel trypsin-digested 

(Promega), and extracted peptides analyzed by MALDI MS and MALDI MS/MS using an 

Ultraflex TOF/TOF II (Bruker Daltonics, Bremen, Germany). Processed spectra were combined 

through BioTools software (Bruker Daltonics) to search the Uniref100 database (release 6.0), 

non-restricted to the taxonomy, using MASCOT software v. 2.0 (Matrix Science, London, UK). 

Probability-based MOWSE scores greater than 50 were considered significant. For details see 

the online Supplementary Material 2. 

 



 
90 Fumarate hydratase is phosphorylated by AMPK 

 

In vitro analysis of AMPK substrate phosphorylation 

To compare phosphorylation kinetics, purified FABP1, FH and ACC Strep- or GST-constructs 

(200 pmol) were incubated for 5, 10, 20, 30 and 60 min at 37°C with 200 μM [γ-32P]ATP 

(specific activity 650 mCi/mmol ATP) and AMPK221 (4 pmol) previously activated by 

incubation with 1 pmol CamKKβ for 20 min at 30°C in kinase buffer (200 μM ATP, 50 μM AMP, 

5 mM MgCl2, 1 mM DTT, 10 mM HEPES pH 7.4). To compare phosphorylation by different 

AMPK isoforms, purified Strep-FH and GST-ACC (200 pmol) were incubated for 8 min at 37°C 

in the presence or absence of 3 pmol previously activated AMPK (AMPK221, -211 or -111) in 

kinase buffer containing 200 μM [γ-32P]ATP (specific activity 650 mCi/m mol ATP). For 

negative controls, AMPK substrates were incubated with 1 pmol CamKKβ alone without 

AMPK. Kinase reactions were stopped by addition of SDS-PAGE sample buffer and subjected 

to SDS-PAGE and Typhoon phosphoimager (GE Healthcare). 

 

AMPK activation in cell culture 

HeLa cells were cultured in DMEM/F12 high glucose medium supplemented with 10% 

inactivated fetal calf serum (FCS) and 1% glutamate/streptomycine/penicillin. Endogenous 

AMPK of HeLa cells was activated by treatment with 1 mM AICAR for 1h at 37°C. Cells were 

then trypsinated, collected by centrifugation (1200 g, 5 min), and resuspended in lysis buffer 

(50 mM Tris/HCl pH 7.5, 100 mM NaCl, 5 mM MgCl2, 1 % NP-40, 0.1 % SDS) supplemented 

with protease (Roche) and phosphatase (Thermo Scientific) inhibitor cocktail. Cells were lysed 

by sonication and insoluble material was removed by centrifugation (10 min, 10 000 g, 4°C). 

AMPK activation was verified by immunoblotting using anti P-Thr172 AMPKα antibody. 

Immunoblot against GSTpi was used as a loading control. 

 

Fumarate hydratase enzyme activity 

AMPK221 was activated by CamKKβ and incubated with GST-FH in kinase buffer for 30 min at 

37°C prior to activity measurements. Enzyme activity of FH and phospho-FH was then 

determined at 25°C by a spectrophotometric assay measuring fumarate formation (240 nm) 

in 0.1 M potassium phosphate buffer pH 7.6 using 0.5 to 8 mM malate. Data were analyzed by 
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direct fitting to Michaelis-Menten kinetics and secondary plots using SigmaPlot 10 (Systat 

Software, USA). FH activity of HeLa extracts was measured under the same conditions using 

2.5 mM malate.  
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Results 

Setup of an in vitro AMPK substrate screen 

With the rationale to use the affinity between the kinase and its substrates as an additional 

parameter in a two-dimensional screening matrix for new substrates, we set out the following 

strategy (Figure 1): starting with soluble proteins within a cell extract of rat liver, we (i) 

eliminated proteins that non-specifically interact with Ni-NTA matrix, (ii) reduced complexity 

via size exclusion chromatography, (iii) screened for fractions containing AMPK interactors by 

using Biacore SPR with His-tagged AMPK221 immobilized on an NTA sensor chip, and finally 

(iv) screened SPR-positive fractions with in vitro phosphorylation assays using constitutively 

active AMPK221. 

Preliminary experiments had revealed a high degree of non-specific protein binding to the 

NTA surface during SPR (not shown), which could be eliminated by an initial Ni-NTA 

chromatography step. Prefractionation with size exclusion chromatography on a Superdex 

200 column had the additional advantage that eluted fractions contained proteins of similar 

size. This is an important prerequisite for the subsequent SPR experiments, since the SPR 

signal directly correlates with the mass bound at the chip surface, and thus not only with the 

number but also with the size of the bound protein. The unprocessed protein chromatography 

fractions were individually analyzed by Biacore SPR on surfaces covered with AMPK221 or left 

blank (Figure 2). Fractions were considered interaction positive when 80 s after dissociation 

start the SPR response on the AMPK221 surface was still higher as compared to the blank 

surface (fractions S1, S2, S3, S4, S10, S11 and S12). Fraction S1 contained mainly aggregates 

and was discarded; all other positive fractions were subjected to phosphorylation assays with 

or without constitutively active AMPK221 and separated by SDS-PAGE (Figure 3). Nine AMPK-

specific bands could be identified in these interaction–positive fractions. 
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Figure 1. Flow chart of the in vitro screening procedure. A tissue-derived extract containing soluble proteins is 

pre-fractionated by two step column chromatography with different sorbent chemistries. Each fraction is then 

analyzed by SPR for the presence of AMPK221 interacting proteins. Positive fractions are subjected to in vitro 

phosphorylation assays for detection of potential downstream substrates. After SDS-PAGE separation and 

autoradiography, positive lanes are excised and proteins identified by mass spectrometry. 
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Figure 2. SPR interaction screening. Representative association/dissociation kinetics of different fractions from 

size exclusion chromatography injected onto immobilized AMPK221 (full lines) or empty surface (control, dotted 

lines). 
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Figure 3. Phosphorylation assay screening. SPR positive fractions were subjected to in vitro phosphorylation 

assays with or without constitutively active αT172D AMPK221 using incubation with [γ-32P]ATP for 2min at 37 

°C. Assay mixtures analyzed by SDS-PAGE and Typhoon phospho-imager revealed AMPK auto-phosphorylation 

of α and β subunits and phosphorylation of putative AMPK substrates (bands indicated by small letters). 

Phosphorylation patterns of fractions S10 and S11 were similar to S12 and are not shown. 

 

Identification of candidate substrates of AMPK 

MALDI-MS/MS mass spectrometry of AMPK-specific phospho-bands identified several 

proteins with significant MASCOTT score (Table 1, online Supplementary Material 2). Three of 

them are at least partially localized in the cytosol and are thus the most likely candidate 

substrates of AMPK in vivo. The γ-actin was already identified as a putative AMPK substrate in 

our earlier in vitro AMPK substrate screen (Tuerk et al., 2007). Fumarate hydratase (FH) and 

fatty-acid binding protein 1 (FABP1 or FABPL) are newly identified AMPK candidate substrates. 

FH occurs in identical form in mitochondria and cytosol, but has different functions in the two 

compartments (Yogev et al., 2011). FABP1, a small protein of 14.6 kDa, is the liver isoform of 

a family of nine different FABPs in mammals (Storch and Corsico, 2008). These proteins were 

analyzed for putative AMPK phosphorylation sites, either corresponding to the stringent 

consensus motif (Scott et al., 2002) or to recognition sequences identified by peptide library 

profiling (Gwinn et al., 2008). While γ-actin did not contain a stringent AMPK site and was not 

further analyzed, FH preprotein and mature protein, as well as FABP1, contained at least one 

stringent AMPK site and additional less stringent sites.  
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Table 1. Protein identification by mass spectrometry. 

Fraction Band Identified protein Accession 

no.a  

Score b Mass 

(kDa) 

No. 

of peptides 

Consensus 

sites c 

Subcellular localization 

S2 a ATP synthase subunit α P15999 281 60 5 Yes Mitochondria 

  Cytochrome P45O 2D26 P10634 150 57 3 Yes Mitochondria 

 b 3-ketoacyl-CoA thiolase P13437 210 41 6 Yes Mitochondria 

S4 f Aldehyde dehydrogenase P11884 74 54 6 Yes Mitochondria 

 g Fumarate hydratase P14408 101 54 3 Yes Cytosol and 

mitochondria 

  γ-actin P63259 104 42 2 No Cytosol 

S12 i Fatty-acid-binding protein 1 P02692 53 15 1 Yes Cytosol 

Only vertebrate proteins identified with a significant MASCOTT score (>50) and different from AMPK subunits are shown. Candidate 
substrates (highlighted in grey) were selected due to cytosolic localization and presence of stringent AMPK consensus 
phosphorylation motifs: φ(X,β)XXS/TXXXφ (φ, hydrophobic residue; β, basic residue, (Scott et al., 2002)). a UniProt accession 
number. b Probability-based MOWSE scores greater than 50 were considered significant and not a random event. c Presence of at 
least one stringent AMPK consensus site (Scott et al., 2002). 

 

FH and FABP1 preferentially interact with AMPKα2 

We next wanted to confirm whether FH and FABP1 are indeed those proteins that were 

directly interacting with AMPK221 in the first dimension and phosphorylated by AMPK221 in 

the second dimension of our screen. A cytosolic yeast two-hybrid (Y2H) assay, the Cyto-Y2H 

(Brückner et al., 2009; Möckli et al., 2007), confirmed a direct protein-protein interaction in 

vivo between FH and the α2 and β2 AMPK subunits, but not the α1 and β1 subunits (Figure 4). 

 

 

Figure 4. FABP1 and FH directly interact with specific AMPK subunits in Y2H analysis. Cytosolic Y2H analysis of 

interaction between the baits FABP1 or FH and the preys AMPK subunits (α1, α2, β1, β2) or LT (Large T Antigen 

of Simian Virus, aa 84-704; negative control). Spots represent yeast grown for 72 h at 30°C (1/10 dilution) either 

on medium selecting for the presence of bait and prey plasmids (upper row) and on medium selecting for 

bait/prey interaction (lower row). For more details see online Supplementary Material 1. 

  

Direct interaction of AMPK221 with FH could be confirmed by co-immunoprecipiation (Figure 

5). FABP1 showed the same specificity for α2, while it interacted only very weakly with both 

β1 and β2 (Figure 4). These results confirm that FH and FABP1 are true interactors of AMPK. 

Importantly, they show specific interactions with the AMPK subunits used in the initial SPR 
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screen: the AMPKα2 catalytic subunit (in case of FH and FABP) and the AMPKβ2 regulatory 

subunit (in case of FH). 

 

 

Figure 5. FH co-immunoprecipitates with AMPK221. Strep-tagged FH and His-tagged AMPK221 were 

immunoprecipitated by using anti-His antibodies, and FH detected by immunoblot analysis with anti-FH 

antibodies. LC, primary antibody IgG light chain. 

 

FH is directly phosphorylated by AMPK221 

Direct phosphorylation of FH and FABP1 by AMPK was verified by in vitro phosphorylation 

assays with purified recombinant proteins. In principle, phosphorylation in complex mixtures 

could also occur by another protein kinase which is itself activated by AMPK. FH and FABP1 

were therefore expressed in E. coli as GST- and Strep-tagged proteins. GST-FH incorporated γ-

32P in presence of CamKKβ-activated AMPK221 in a time-dependent manner (Figure 6). 

Kinetics and extend of 32P incorporation were comparable to the reference AMPK substrate 

acetyl-CoA carboxylase (ACC). Similar results were obtained with Strep-tagged FH (Suppl. Fig. 

1), showing that FH phosphorylation was not due to an interaction of AMPK with the GST-tag 

(Klaus & Schlattner, unpublished data). By contrast, FABP1 constructs were not 

phosphorylated under these conditions (not shown). Thus, the screen correctly identified FH 

as a true and direct substrate of AMPK in vitro. 
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Figure 6. FH is a direct AMPK substrate. (A) Time course of FH phosphorylation by AMPK. AMPK221 (4pmol) first 

activated by CamKKβ (1 pmol) was incubated with purified GST-FH (100pmol) or GST-ACC (positive control, 100 

pmol) for 5 to 60 min at 37°C. In vitro phosphorylation assays were analyzed by SDS-PAGE and Typhoon 

phosphoimager. (B) Quantification of the phosphorylation time course using Image Quant TL. Data is normalized 

to maximal ACC phosphorylation. Symbols: GST-ACC (○), GST-FH (●). 

 

FH is preferentially phosphorylated by α2-containing AMPK complexes 

We then wanted to know whether FH not only interacts specifically with AMPK221, but is also 

specifically phosphorylated by this AMPK isoform combination. Like above, in vitro 

phosphorylation assays were conducted with FH and ACC, using three different AMPK 

complexes: AMPK221, AMPK211, and AMPK111, all previously activated by CamKKβ. ACC 

phosphorylation served to account for different specific activities of the AMPK complexes, 

since the ACC-derived SAMS peptide is an equally good substrate for α1- and α2-containing 

AMPK complexes (Vernia et al., 2009). We first investigated the effect of different α-subunits 

on FH phosphorylation (Figure 7A). The ratio P-ACC(221)/P-ACC(111) was 1.5, while the ratio P-

FH(221)/P-FH(111) was 5.0. If normalized to ACC, FH is still 3.3 times more phosphorylated by 

AMPKα2 as compared to AMPKα1. Complexes containing different β subunits (AMPK221 and 

AMPK211) phosphorylated both ACC and FH with similar efficiency (ratios of 1.1 for P-

ACC(221)/P-ACC(211) and 0.9 for P-FH(221)/P-FH(211); Figure 7B). Thus, at least in vitro, AMPK β-

subunits have no effect on FH phosphorylation. These results strongly suggest that AMPK 
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isoform composition can determine preference for specific substrates. FH interacts with 

AMPKα2 and is preferentially phosphorylated by α2-containing complexes. Although FH also 

interacts with the β2-subunit, this does not affect phosphorylation efficiency. 

 

 

Figure 7. AMPK isoform composition affects FH phosphorylation. (A) AMPK221 phosphorylates FH more 

efficiently than AMPK111. (B) AMPK221 and AMPK211 phosphorylate FH and ACC with similar efficiency. 

Conditions: 3 pmol AMPK221, -211 or -111 first activated by CamKKβ (1 pmol) were incubated with purified FH 

or ACC (200 pmol) for 8 min at 37°C. In vitro phosphorylation assays were analyzed by SDS-PAGE and Typhoon 

phosphoimager.  

 

FH phosphorylation by AMPK increases its enzyme activity in vitro and in vivo 

We have finally addressed the effect of FH phosphorylation on its enzymatic function, which 

catalyzes the reversible hydration/dehydration of fumarate to malate. Enzyme kinetics of FH 

were determined before and after in vitro phosphorylation by CamKKβ-activated AMPK221, 

using malate as substrate and measuring fumarate formation by spectrophotometry. FH 

phosphorylation led to a 37 % increase in kcat whereas the apparent Km remained almost 

unaffected (Figure 8; Table 2).  
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Figure 8. AMPK-mediated phosphorylation affects enzymatic catalysis of FH. Enzyme activity of phosphorylated 

(○) and non-phosphorylated (●) FH at different concentrations of malate, measured as described in material and 

methods. The direct fit to original data (large graph) and Lineweaver-Burk plot (insert graph) are shown. The 

derived catalytic constants are given in Table 2.  

 

Table 2. Phosphorylation by AMPK activates FH. Enzyme kinetic parameters of recombinant FH before and 

after phosphorylation with AMPK221 activated by CamKKβ. 

 Vmax 
(U mg-1) 

kcat 
(s-1) 

Km 

(malate) (mM) 
kcat/ Km 

(mM-1 s-) 

FH 32,9 ± 0,4 110,0 ± 1,3 4,2 ± 0,1 26,2 
P-FH 45,1 ± 1,4 150,8 ± 4,7 4,6 ± 0,3 32,8 

Measurements with variable concentrations of malate at 25°C (see figure 8). Enzyme activity is given in U, equivalent to 1 
μmol/min. Catalytic efficiency is calculated as kcat/ Km. Results are given as means ± SE (n=2) of two independent 
phosphorylation experiments. 

 

 

To investigate whether AMPK could also affect FH activity in vivo, we examined the effect of 

AMPK activation by its pharmacological agonist AICAR on FH activity in HeLa cells. Treatment 

of HeLa cells with 1 mM AICAR for 1 h led to a strong increase in AMPK αThr172 

phosphorylation (Figure 9A). This AMPK activation led to an average increase in FH activity by 

31.3 ± 6.4 % (Figure 9B). Similar results were obtained by activating AMPK with the Abbott 

compound A-769662 (not shown). 
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Figure 9. Pharmacological AMPK activation increases FH enzyme activity in HeLa cells. (A) Treatment of HeLa 

cells with 1 mM AICAR for 1 h increases AMPK activity as shown by immunoblotting for P-αThr172 AMPK with 

glutathione S-transferase pi (GST) as loading control. (B) FH activity in HeLa cells increases after AMPK activation 

as measured spectrophotometrically using malate as substrate (for details see material and methods). One 

representative experiment of three independent activation experiments is shown. 
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Discussion 

The original two-dimensional in vitro screen for protein kinase substrates presented here 

combines biophysical interaction based on SPR with phosphorylation assays. Our data provide 

proof of principle that such a screening protocol can reveal AMPK substrates that are 

phosphorylated in an AMPK isoform-specific manner. We identified FH (or fumarase) as a 

novel AMPK substrate, and show that mainly the α2-subunit of AMPK is involved in FH 

interaction and recognition, as well as in FH phosphorylation. This phosphorylation increases 

FH enzymatic turnover in vitro and in vivo. 

SPR technology has so far not been used to explore kinase/substrate interaction for screening 

of novel kinase substrates. It has only been applied as high-throughput readout device to 

measure interactions between phosphorylated kinase substrates and anti-phospho antibodies 

(Takeda et al., 2010). Highthoughput procedures have also been developed to screen for 

AMPK activators or inhibitors (e.g. (Anderson et al., 2004)). We show here that SPR can detect 

AMPK interactors in complex protein mixtures when different conditions are satisfied: (i) 

availability of highly pure, active kinase, as we have established by polycistronic bacterial 

expression of full-length AMPK complex (Neumann et al., 2003b); (ii) reversible, high density 

immobilization of the kinase on the chip surface for repeated use with fresh protein (e.g. by 

using Ni-NTA); (iii) the use of prefractionated extracts as source of soluble protein to reduce 

complexity; and in particular (iv) prior removal of proteins with non-specific affinity to the chip 

surface (especially relevant for Ni-NTA). We have assembled these conditions in a protocol 

(Figure 1) that provides useful data for AMPK and soluble liver proteins. The resolving power 

of the screen could be further improved by using multidimensional prefractionation (e.g. by 

additional ion exchange chromatography) or detection approaches (e.g. 2D-PAGE of 

interaction-positive fractions). 

From SPR-positive fractions, FH and FABP1 were identified as direct AMPK221-interacting 

proteins. Another FABP family member, the epidermal FABP5, and FH were also part of AMPK-

containing complexes in an earlier large-scale anti-bait co-immunoprecipitation study using 

AMPK-β1 (Ewing et al., 2007). However, here we show that both proteins exclusively interact 

with subunits used in our SPR screen: the α2- and (in case of FH) the β2-subunits. In addition, 

recombinant FH, but not FABP1, was also phosphorylated by AMPK in vitro. Possibly, FABP1 
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phosphorylation by AMPK requires additional factors (i.e. fatty acids) or secondary 

modifications missing in the bacterially expressed FABP1 but present in endogenous liver 

protein. Phosphorylation of FH constructs by AMPK221 occurred with kinetics and a degree of 

32P-incorporation per mol of protein that were similar to the well characterized AMPK 

substrate ACC. Like for FH/AMPK interaction, FH was phosphorylated predominantly by 

complexes containing the α2-subunit as compared to α1-complexes. This is one of the first 

reports showing a clear preference of mammalian AMPK complexes for one of its substrates 

(Vernia et al., 2009). Such substrate specificity may contribute to tissue- and compartment-

specific AMPK signaling whose mechanisms are so far largely unsolved. 

FH or fumarase is encoded by a single gene, but dual-targeted to mitochondria and cytosol 

(reviewed in (Yogev et al., 2011)). As studied in yeast, after cleavage of the signal peptide in 

mitochondria, identical mature FH variants relocate in a metabolically regulated process 

either to the mitochondrial matrix or to the cytosol. In humans or yeast, cytosolic FH (cFH) 

represents about half of the cellular FH pool and is the likely substrate of AMPK in vivo (Yogev 

et al., 2011). While mitochondrial FH is well known for its participation in the tricarboxylic acid 

cycle (TCC), converting fumarate into malate, the role of cFH is emerging only more recently. 

Recent research is driven by the tumor suppressor function of FH which suggests that 

metabolic signals can regulate carcinogenesis (reviewed in (Raimundo et al., 2011)). Cancer 

incidence is linked to cFH inhibition and/or the resulting cytosolic fumarate accumulation, 

which may act via different mechanisms. These include induction of pseudohypoxia via 

stabilization of HIF-1α (O’Flaherty et al., 2010), signaling via serum responsive factor 

(Raimundo et al., 2009), up-regulation of antioxidant-response element-controlled genes (Ooi 

et al., 2011; Tong et al., 2011), or inhibition of DNA damage response (Yogev et al., 2010). In 

the latter mechanism, cellular stressors leading to DNA damage, induce cFH translocation to 

the nucleus, where its enzymatic activity is required to activate the DNA repair machinery, 

thus avoiding genomic instability. Our study together with literature data suggest that 

phosphorylation and activation of cFH by AMPK could play an important role in this sequence 

of events. AMPK signaling is known to respond to DNA damage and genotoxic stress 

transmitted via p53 and the p53 targets Sestrin1 and Sestrin2 (Budanov and Karin, 2008) or 

the cellular damage sensor ataxia-telangiectasia mutated protein (ATM) (Alexander et al., 

2010). Furthermore, the nuclear functions of AMPK are mediated by α2-complexes (α1-
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complexes are not localizing to the nucleus) (Salt et al., 1998), exactly the isoform that 

preferentially phosphorylates cFH. 

In summary, we provide proof of concept that combining classical in vitro AMPK 

phosphorylation assays with SPR-based AMPK-protein interaction screening can not only 

identify novel AMPK substrates but also enrich for AMPK isoform-specific substrates. The 

newly identified AMPK substrate FH is exclusively interacting with and preferentially 

phosphorylated by α2-containing AMPK complexes. Both phosphorylation and activation of 

FH could contribute to the tumor suppressor function of FH. 
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Introduction  

AMP-activated protein kinase (AMPK) plays a central role in sensing and regulating energy 

homeostasis at the cellular, organ and whole-body level (Carling et al., 2012; Hardie, 2011; 

Hardie et al., 2012; Steinberg and Kemp, 2009). By regulating enzyme activity in metabolic 

pathways and transcription, it exerts pleiotropic control of metabolism and other physiological 

functions like cell growth, shape, motility and proliferation, including higher level functions 

such as appetite control. These functions suggested the kinase as a potential drug target for 

treating diabetes type II or cancer (Fogarty and Hardie, 2010; Viollet et al., 2009; Zhang et al., 

2009). Kinase activation is triggered by a diverse array of external (e.g. hormones, cytokines, 

nutrients) and internal signals (e.g. AMP, ADP) linked to limited energy availability and other 

stress signals in physiological and pathological situations. The complex activation mechanism 

involves covalent phosphorylation of the α-subunit and allosteric binding of AMP or ADP to 

the γ-subunit.    

In vitro screening that we carried out for novel substrates of AMPK repeatedly identified 

proteins that localize to mitochondria, in particular the mitochondrial matrix, like e.g. 

fumarate hydratae (fumarase, FH) (Klaus et al., 2012; Tuerk et al., 2007). Although the 

existence of different protein kinases within the mitochondrial compartment is emerging 

(Acin-Perez et al., 2009; Aponte et al., 2009; Padrão et al., 2013), AMPK has not yet been 

clearly localized with this organelle. An alternative possibility would be regulation of 

mitochondrial import of nascent protein that occurs already in the cytosol. It has been shown 

that phosphorylation of serine, threonine or tyrosine residues can either inhibit or promote 

mitochondrial targeting of nascent proteins, depending on the phosphorylated site and the 

nature of the targeting mechanism (Dasari et al., 2006; Robin et al., 2002, 2003). This would 

render subcellular localization dependent on dynamic signaling processes. Several studies 

provided evidence for phosphorylation within an N-terminal targeting sequence of 

mitochondrial proteins that reduces import efficiency (Chua et al., 2003; Lee et al., 2006; 

Merrill et al., 2013). 

Here we examined in more detail the in vitro phosphorylation of rat mitochondrial FH and 

show that this secondary modification occurs mainly in the cleavable prepeptide at Ser19 and 
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only at a much lower level at Thr482. Out of other mitochondrial matrix proteins that our 

studies suggested as AMPK substrate candidates ((Klaus et al., 2012; Tuerk et al., 2007) and 

unpublished data), also the prepeptide of pyruvate carboxylase is AMPK-phosphorylated. 

Such phosphorylations, if occurring in vivo, must happen already in the cytosol before 

mitochondrial import, and may thus affect import efficiency.  

  



 
113 Fumarate hydratase is phosphorylated by AMPK in the N-terminal targeting peptide 

Materials and Methods 

Vectors 

Plasmid pγ1β2His-α2AMPK was used for bacterial expression and purification as we have 

published previously (Neumann et al., 2003; Riek et al., 2009). FH (GeneID 24368) was 

amplified from rat liver cDNA and introduced into bacterial expression vector pET-52b (+) to 

obtain N-terminally tagged FH. Vectors for GST-ACC domain and GST-CamKKβ were kindly 

provided by G. Hardie (Univ. of Dundee, UK) (Scott et al., 2002) and H. Tokumitsu (Kagawa 

Medical University, Japan), respectively.  

 

Site-directed mutagenesis of fumarate hydratase by sequence and ligation-independent 

cloning 

FH plasmids were amplified by PCR using T4 DNA phusion polymerase (Thermo Scientific) and 

mutagenic primers listed in Table 1. After PCR amplification, 20 U DPN1 (New England BioLabs) 

were added to the reaction and the mixture was incubated at 37°C for 1 h to digest the 

template. Plasmid DNA was then purified by Nucleospin Extract II (Machinery-Nagel). 1 µg 

DNA was treated with 0.5 U T4 DNA polymerase (Invitrogen) in a 20 µl reaction mixture at 

22°C for 30 min giving the exonuclease activity of T4 DNA polymerase 20 bp at both 3’ end of 

the PCR product will be digested, forming sticky end between the two extremities of the PCR 

product to further recirculation of the plasmid. The reaction was stopped by purification with 

Nucleospin Extract II (Macherey-Nagel). Finally, 600 ng DNA, 2µl T4 DNA ligase buffer and 1µl 

T4 DNA ligase (New England BioLabs) were used in 20 µl reaction volume at room temperature 

for 2h for ligation. A 5µl aliquot of the annealing mix was used to transform 100 µl of 

competent MachT1 bacteria which were plated on Ampicillin plates. The sequence of all 

clones was verified by sequencing.  
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Table 1. Primers used for generating FH point mutations 

 

The sequence of the mutated amino acid is highlighted in grey; fw, forward primer; rev, reverse primer. 

 

Expression and purification of GST-tagged proteins 

All GST fusions protein constructs were transformed into competent BL21-Codon Plus (DE3)-

RIL E. coli cells (Stratagene) and incubated overnight on LB agar containing 100 µg/ml 

ampicillin and 30 µg/ml chloramphenicol. Cultures were grown in LB containing antibiotics at 

37°C with shaking until OD (600 nm) 0.7-0.9. Cells were then cooled down to 30°C and protein 

expression was induced for 4 hours with 2 mM isopropyl β-D-thiogalactopyranoside (IPTG) 

(Eurobio). Cells were harvested and suspended in lysis buffer: PBS (phosphate buffer saline) 

with complete EDTA-free protease inhibitor cocktail (Roche). After sonication, insoluble 

material was removed by centrifugation (40000 xg, 40 min at 4°C). Supernatant was applied 

to a Gluthatione Sepharose matrix (Qiagen) packed column, the column was washed with PBS, 

and proteins were eluted with 10 mM L-gluthatione reduced (Sigma-Aldrich) in 50 mM Tris-

HCL, pH 8. 

 

In vitro phosphorylation assays 

Purified GST-tagged FH proteins (200 pmol each), including WT and mutants S19A, S43A, 

S155A, S233A, T482A, T482V, T482V, T482G and N-terminally truncated FH (amino acids 1-

Mutation  Primers sequences : 5’ → 3’ 

S19A Fw GTCGCTTCCCGCGGGTCCCCGCCGCCGGTGCTGTATTGTCAGGGGAAGCG 

Rev GGCGGGGACCCGCGGGAAGCGAC 
S43A Fw TCTATACGGAAGGAATTTTGCGCCGCTGCCATTCGCACGACG 

Rev GCGCAAAATTCCTTCCGTATAGAATACGACACC 
S155A Fw TGAATGTAAATGAAGTGATCGCCAACAGGGCAATCGAAATGCTAGG 

Rev GGCGATCACTTCATTTACATTCATGTTCGTCTGG 
T233A Fw TAAAAATTGGGCGGACTCATGCGCAGGACGCTGTCCCTCTTACTCTT 

Rev CGCATGAGTCCGCCCAATTTTTATGAC 

T482A Fw ACGGATCCACCTTAAAGAAAGCGGCTATTGAACTTGGCTATCTCACAG  
Rev CGCTTTCTTTAAGGTGGATCCGTTCTTGTG 

T482D Fw ACGGATCCACCTTAAAGAAAGACGCTATTGAACTTGGCTATCTCACAG 
Rev GTC TTTCTTTAAGGTGGATCCGTTCTTGTG 

T482G Fw ACGGATCCACCTTAAAGAAAGGGGCTATTGAACTTGGCTATCTCACAG 
Rev CCCTTTCTTTAAGGTGGATCCGTTCTTGTG 

T482V Fw ACGGATCCACCTTAAAGAAAGTGGCTATTGAACTTGGCTATCTCACAG 
Rev CACTTTCTTTAAGGTGGATCCGTTCTTGTG 
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41), as well as GST-tagged ACC domain (control) were incubated for 30 min at 37°C with 200 

µM [γ-32P]ATP (specific activity 6000 Ci/mmol ATP) and AMPK221 (4 pmol) previously 

activated by incubation with 1 pmol CamKKβ for 20 min at 30°C in kinase buffer (50 µM AMP,  

5 mM MgCl2 , 1 mM DTT, 10 mM HEPES pH 7.4). For negative controls, AMPK substrates were 

incubated with 1 pmol CammKKβ without AMPK. Kinase reactions were stopped by addition 

of Laemmli buffer and subjected to SDS-PAGE and autoratiography by Typhoon 

phosphoimager (GE Healthcare).  

 

Mass spectrometry  

Phosphorylated samples were prepared with freshly purified AMPK221 to avoid the presence 

of glycerol normally needed for long term AMPK storage. FH-WT (100 pmol) was incubated 

for 30 min at 37°C with 2 pmol AMPK221 previously activated by incubation with 1 pmol 

CamKKβ for 20 min at 30°C in kinase buffer. As negative controls, ACC domain and FH-WT 

were incubated with 1 pmol CammKKβ without AMPK. The samples were conserved at 4°C. 

Samples were dried and solubilized in 20 µl of ammonium bicarbonate (50 mM) before 

performing a reduction of disulfide bonds, an alkylation of thiols and trypsin digestion. 

Aliquots of the digest were either used directly for mass spectrometry analysis or 

phosphopeptides were enriched using the Pierce kits TiO2 Phosphopeptide Enrichment or Fe-

NTA Phosphopeptide enrichment (Thermo Scientific) and then purified with Graphit Clean-up 

kit (Thermo Scientific). Of each aliquot, 10 pmol were subjected to nanoLC-MS/MS using an 

ESI-QTrap mass spectrometer (4000QTRAP, AB Sciex) directly connected to a nano-

chromatography system (3000 Ultimate nanoLC, Thermo Fischer). Bioinformatics analysis for 

identification of (phospho)peptides/proteins was performed using ProteinPilot 4 software 

(ABSciex) with both Paragon and Mascot algorithms and Swissprot (Rattus norvegicus species) 

as protein database. Validation of phosphopeptides was considered when their identification 

led to a high confidence level, i.e. confidence level >95% for Paragon algorithm and p<0.05 for 

Mascot algorithm. 
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Results 

Fumarate hydratase contains different putative AMPK phosphorylation sites 

Bioinformatics analysis of the full length sequence of rat mitochondrial FH suggested three 

AMPK sites, Ser19, Ser43 and Thr233, which correspond to the stringent AMPK 

phosphorylation motif. This motif is X,XXS/TXXX, where  is a hydrophobic residue 

(mostly M, V, L, I or F),  is a basic residue (R, K or H) and the parentheses indicate that the 

order of residues at the P-3 and P-4 positions is not critical (Dale et al., 1995).  

We then performed LC-MS/MS analysis of in vitro phosphorylated full-length FH for 

unbiased identification of phosphosites, with or without additional enrichment of 

phosphopeptides (Table 2). Different experiments revealed either predominant 

phosphorylation in the sequence of the mature enzyme (Ser43, Ser155 and Thr482) or in the 

mitochondrial prepeptide (Ser19). The Ser43 site was identified at lower confidence, but 

retained for further analysis since it occurred in both phosphopeptide enrichment procedures. 

Ser155 and Thr482 both do not conform to a stringent AMPK motif (Dale et al., 1995); 

however, the latter may correspond to a less stringent AMPK motif as based on a peptide 

screen (Gwinn et al., 2008). 

 

Table 2. Phosphorylation sites identified by mass spectrometry 

Phospho- Phosphorylation Identified phosphorylated peptides  

site motif sequence 
Without enrichment 

phosphopeptide enrichment with 

  TiO2 FeNTA 

S19 RRFPRVPSAGAVLS V17-R33 V17-R33  ND 
S43 PNVVRMASQNSFRI - P36-R48 N37-R48 

G21-R48 
P36-R48 

S155 MNVNEVISNRAIEM M148-K169 - - 
T482 NGSTLKETAIELGY N475-K501 

K480-K501 
- - 

The stringent AMPK motif is X,XXS/TXXX is hydrophobic;  is basic (Dale et al., 1995). Bold Peptides in 

bold letters were identified with a high degree of confidence (>99%) via the paragon algorithm. ND, not 

determined. 
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AMPK phosphorylates fumarate hydratase mainly at Ser19 

To unambiguously identify the FH phosphoresidues on the basis of the bioinformatic and MS 

data, all valid candidate Ser and Thr sites were mutated into a non-phosphorylatable alanine 

(Figure 1). Different mutations in the sequence of the mature enzyme, Ser43, Ser155 and 

Thr233, did not affect phosphorylation as compared to FH wild-type (WT). The T482A 

mutation reduced phosphorylation levels. This reduction was confirmed in some other Thr482 

mutants (T482D, T482G and T482V) even if this phenomenon was less exacerbated in those 

mutants (Figure 1A). Surprisingly, the most important effect on phosphorylated level was 

observed on Ser19 in the N-terminal targeting peptide of FH that is cleaved after 

mitochondrial import (Figure 1B). Also in a truncation mutant lacking this targeting peptide 

(N-terminal 41 amino acids), phosphorylation by AMPK was strongly reduced.  

 

 

Figure 1. In vitro phosphorylation of fumarate hydratase wild type and mutant proteins. Mitochondrial FH wild-

type (WT) together with (A) point mutants S43A, S155A, T233A, T482A, T482D, T482G, and T482V, or (B) 

truncated WT protein lacking the mitochondrial targeting peptide (amino acid 1-41, ΔWT) or point mutation 

S19A, as well as an acetyl-CoA carboxylase domain (ACC, positive control) were subjected to a standardized in 

vitro phosphorylation assay using AMPK221 heterotrimeric complex activated by CamKKβ (see Materials and 

Methods).  
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AMPK phosphorylates the prepeptide of pyruvate carboxylase 

Mitochondrial prepeptides are amphiphatic and contain numerous hydrophobic and basic 

residues which are essential in the stringent AMPK motif X,XXS/TXXX (Dale et al., 1995). 

We therefore hypothesized that AMPK could also phosphorylate other mitochondrial 

prepeptides, at least in vitro. All mitochondrial matrix proteins suggested in our earlier studies 

as putative AMPK substrates ((Klaus et al., 2012; Tuerk et al., 2007) and unpublished data) 

were thus analyzed for potential AMPK phosphorylation sites. The AMPK motif was detected 

in addition to fumarate hydratase also in citrate synthase (CS) and pyruvate carboxylase (PC), 

when alanine and glycine were allowed as hydrophobic residues (Table 3). Less stringent forms 

of the AMPK motif (Gwinn et al., 2008) were found in several other mitochondrial matrix 

proteins (not shown). We then tested phosphorylation of synthetic CS and PC prepeptides in 

the same in vitro phosphorylation assay as used for FH. Heavy incorporation of 32P label was 

observed in the prepeptide of PC, not of CS (Figure 2). 

Table 3. Putative AMPK phosphorylation sites in mitochondrial prepeptides 

Protein Uniprot Name localization Prepeptide Prepeptide sequence 4 

Fumarate hydratase 1 P14408 FUMH M, C 1-41 MNRAFCLLARSRRFPRVPSAGAVLSGEAATLPRCAPNVVRMASQN… 

Citrate synthase 2 O75390 CISY M 1-27   MALLTAAARLLGTKNASCLVLAARHASASST… 

Pyruvate carboxylase 3 P11498 PYC M 1-20              MLKFRTVHGGLRLLGIRRTSTAPAASPNVR… 

[1] Klaus et al. 2012 (Klaus et al., 2012); [2] Tuerk et al 2007 (Tuerk et al., 2007); [3] Ramirez (2010) thesis Université de 

Grenoble no. 00641109; [4] Black letters indicate the N-terminal prepeptide, bold letters indicate the sequence used in in vitro 

phoisphorylation assays, colors indicate key residues in the AMPK motif X,XXS/TXXX is hydrophobic;  is basic (Dale et 

al., 1995). Localization: M, matrix; IM, intermembrane space; C, cytosol. 

 

 

 

Figure 2. In vitro phosphorylation of mitochondrial 

prepeptides. Synthetic peptides corresponding to 

prepeptides of human citrate synthase (CS) or 

pyruvate carboxylase (PC), together with ACC domain 

(positive control) were subjected to a standardized in 

vitro phosphorylation assay using AMPK221 

heterotrimeric complex activated by CamKKβ (see 

Materials and Methods). Note autophosphorylation 

of AMPKα and –β subunits. 
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Discussion 

Several in vitro screens that we performed in recent years identified mitochondrial proteins, 

most in the matrix space, as candidates for AMPK substrates ((Klaus et al., 2012; Tuerk et al., 

2007) and unpublished data). However, no relevant phosphorylation site has been reported 

so far for these proteins. Here we further analyzed the mitochondrial isoform of rat fumarate 

hydratase that we recently described as being phosphorylated by AMPK in vitro (Klaus et al., 

2012). We identify Ser19 in the cleavable mitochondrial target peptide of FH as the main 

phosphorylated residue, and Thr482 as a putative secondary site.        

Our MS analysis clearly pinpoints Ser19 as the by far most predominant site, thus responsible 

for the near stoichiometric phosphorylation of FH that we have observed earlier (Klaus et al., 

2012). Although phosphorylation in the prepeptide is surprising at first glance, it could be 

physiologically relevant. Several studies have shown that phosphorylation within an N-

terminal mitochondrial targeting sequence reduces protein import efficiency (Chua et al., 

2003; Lee et al., 2006; Merrill et al., 2013). The amphiphatic cleavable presequences carry a 

net positive charge that is important for translocation into the negatively charged 

mitochondrial matrix by an electrophoretic mechanism (Neupert and Herrmann, 2007). 

Phosphorylation within this sequence reduces or neutralizes this positive charge and can 

retain the protein in the cytosol, leading to persistent cytosolic localization or degradation of 

the enzyme (Chua et al., 2003; Lee et al., 2006; Merrill et al., 2013). For example, 

phosphorylation of Ser9 and Ser22 in cNMP phosphodisesterase by PKC effectively inhibits 

targeting to the mitochondrial matrix and retains the protein in the cytosol (Lee et al., 2006). 

Also the actin-binding protein cofilin phosphorylated at Ser3 by LIM kinase is cytosolic, while 

dephosphorylation during apoptisis triggers mitochondrial import (Chua et al., 2003). 

Similarly, phosphorylation of so-called cryptic mitochondrial targeting signals, for example 

present in proteins with bimodal targeting to different compartments (Avadhani, 2011), can 

affect mitochondrial localization as in case of the cytochrome P450 family 

(Anandatheerthavarada et al., 1999; Dasari et al., 2006) or GSTA4-4 (Robin et al., 2003). 

Phosphorylation of Thr482 occurs only at low levels in vitro, but a regulatory role in vivo cannot 

be excluded. The site is well exposed at the protein surface and situated in the C-terminal 

domain 3 of FH (Figure 3) which may have regulatory functions. Interestingly, this domain is 
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phosphorylated at multiple threonine and tyrosine residues in mouse liver (see (Villén et al., 

2007) and www.phosphosite.org). 

 
Figure 3. Phosphorylation sites in the fumarate hydratase domain 3. Tetrameric molecular structure of human 

fumarate hydratase (3E04, monomers in green and blue colors) showing the localization of the minor AMPK site 

Thr485 identified here (red, Thr482 in rat) within the domain 3 (C-terminal 65 residues). This domain habors also 

other Tyr (orange) and Thr (pink) phosphorylation sites reported elsewhere ((Villén et al., 2007) and 

www.phosphosite.org). Phosphorylated amino acids are given in spacefill representation. Structure prepared by 

WebLabVierwer Pro 4.0. 

 

In conclusion, we unambiguously identify an AMPK phosphorylation site in the prepeptide of 

rat FH that targets the protein to mitochondria. Further studies will have to show whether this 

modification alters mitochondrial FH import.  
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E3 ubiquitin ligase 
NRDP1 – high level 
expression of full-
length protein and 
analysis of its 
interaction with 
AMPK 
 

 

Abstract. NRDP1, an E3 ubiquitin ligase, has been 
shown to interact with AMP-activated protein kinase 
(AMPK) in cytosolic split-protein yeast-two hybrid 
screens (Y2H). Here we developed a method to 
produce NRDP1 full-length protein at high yield by 
avoiding formation of inclusion bodies. Recombinant 
NRDP1 can be phosphorylated by AMPK in vitro, but 
does not ubiquinate AMPK in HEK293 cells. Cellular 
overexpression of AMPK in HeLa cells increases 
NRDP1 proteasomal degradation, suggesting that 
AMPK affects cellular steady state levels of NRDP1 
and thus NRDP1 functions.     
 
Résumé. Un crible cytosolique de double hybride en 
levure (Y2H) a montré que l’E3 ubiquitine ligase 
NRDP1 interagit avec la protéine kinase activée par 
l’AMP (AMPK). Nous avons alors développé une 
méthode afin de produire la protéine NRDP1 à haut 
rendement en évitant la formation de corps 
d’inclusions. La protéine recombinante NRDP1 peut 
être phosphorylée par l’AMPK in vitro, en revanche 
elle n’ubiquitine pas l’AMPK dans les cellules 
HEK293. La surexpression d’AMPK dans les cellules 
HeLa augmente la dégradation de NRDP1 via le 
protéasome, ce qui suggère que l’AMPK affecte le 
niveau basal de NRDP1 et donc ses fonctions.   

 
 
Research of this part was partially conducted in the group of Dr. Pascual Sanz, IBV, CSIC, Valencia, Spain. 
A manuscript based on this part [Zorman, S., Roma-Mateo, C., Sanz, P., Schlattner, U., High level 
expression and AMPK complex formation of E3 ubiquitin ligase NRDP] is submitted to Protein Expression 
and Purification.  
I was involved in all experiments, data analysis and manuscript writing.  
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Introduction 

The neuregulin receptor degradation protein 1 (NRDP1) is part of the E3 ubiquitin ligase family 

that is essential for the ubiquitination of proteins. This secondary protein modification, mostly 

known to target proteins to the proteasome for degradation (Hershko and Ciechanover, 1992) 

is among the most frequent in eukaryotes and occupies a pivotal role in regulating cell 

signaling and homeostasis (Dikic et al., 2009). The conjugation of an ubiquitin (Ub) moiety to 

a substrate protein serves as a recognition element for effector proteins. However, protein 

ubiquitination extends far beyond the well-known proteasome-linked protein degradation. It 

is critical for processes such as endocytosis, DNA repair, DNA damage tolerance, protein kinase 

regulation, autophagy, multivesicular bodies biogenesis or NF-кB activation and transcription 

(Dikic et al., 2009). Given the broad spectrum of ubiquitination events and substrates, it is not 

surprising that this modification is also involved in pathologies ranging from cancer to 

neurodegenerative disorders and infectious diseases, such as HIV (Weissman, 2013). Thus, 

there is intense interest in targeting enzymes involved in ubiquitination. 

 

The ubiquitination system  

Ub is a small, monomeric protein of 76 residues that is highly conserved in all eukaryotic 

organisms (except 3 amino acids, the sequence is identical between yeast and human 

proteins) (Ozkaynak et al., 1987). The lack of evolutionary divergence suggests that the entire 

sequence is functionally important. The conjugation of Ub to a substrate protein has been 

elucidated in detail by Avram Hershko & Aaron Ciechanover (Hershko and Ciechanover, 1998). 

It requires three enzyme subfamilies: E1, E2, and E3. ATP-dependent ubiquitin-activating 

enzyme E1 is a unique isoform in most organisms. It generates an activated E1-bound Ub able 

to be transferred to a cysteine in the active site of an E2 Ub conjugating enzyme. There are 

roughly 40 different E2 enzymes in mammals, working in conjunction with accessory E3 

proteins. Ubiquitin-protein ligase E3, the last effector of the machinery, provides substrate 

specificity. By formation of E2-E3 complexes, E3 will transfer the Ub from E2 to a Lys ɛ-amino 

group of its target substrate protein, thereby forming an isopeptide bond. Mammalian cells 

contain over 600 type of E3 enzymes (Weissman, 2013), each of which mediating the 
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ubiquitination of a specific set of substrate proteins and thereby alter their fate or function. 

The known E3 enzymes form two unrelated families: the HECT domain E3 (homologous to 

E6AP-C-terminus) and the RING finger E3 (really interesting new gene) (Ardley and Robinson, 

2005). The HECT E3 enzymes have a 350 residue HECT domain that mediates E2 binding and 

catalyzes the ubiquitination reaction, and a unique N-terminal domain that interacts with its 

target substrate proteins. The ubiquitin moiety is first transferred from E2 to E3 before it is 

attached to the substrate. RING finger-containing E3s have a RING finger domain of 40 to 60 

residues at their N-terminal tail which is thought to mediate a variety of protein-protein 

interactions and catalyzes a direct transfer of ubiquitin from E2 to a substrate protein (Figure 

1). 

In one round of ubiquitinylation, Ub is either directly bound to a lysine residue of a substrate 

protein, or to a lysine residue of protein-linked Ub, thus forming a polyUb chain. Ub has 7 

internal Lys residues in positions 6, 11, 27, 29, 33, 48 and 63. Earlier studies suggested that 

only Lys48 was involved in the formation of Ub chains (Chau et al., 1989; Dammer et al., 2011), 

More recent studies showed that homogeneous chains could be also based on linkage of Lys6, 

11, 27, and 29 (Dammer et al., 2011), and also Lys 33 (Bedford et al., 2009)and Lys 63 (Saeki 

et al., 2009). In addition, there are heterogeneous chains based on different internal linkages 

(Kirkpatrick et al., 2006), and more than one Ub can be linked to a proceeding Ub, thus creating 

branched Ub polymers (Kim et al., 2007).  These different Ub structures are recognized by an 

Ub-binding domain (UBD) on the effector proteins. The entire Ub polymer structure is critical 

to condition the fate of the target protein (Husnjak and Dikic, 2012). This pattern seems to be 

a complex language which needs a better understanding to decode the numerous signals 

generated by these different chains and to discover the mechanisms that underlie the 

diversity of encoded functions. 
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Figure 1. Enzymatic reactions involved in the ubiquitination of proteins. The ubiquitin-activating enzyme E1 

binds ubiquitin to activate it for transfer to ubiquitin-conjugation enzyme E2. E2 is forming a complex with 

ubiquitin-ligase E3 which ubiquitinates substrate proteins and confers substrate specificity. The exact mechanism 

differs between the two E3 families, the HECT-domain E3 (left) and the ring finger-domain E3 enzymes (right).  
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The E3 ubiquitin ligase NRDP1 

NRDP1 was first described in 2001, but only few publications are referring to it so far. This 

RING finger E3 ubiquitin ligase shows an ubiquitous expression in human adult tissues, with 

highest levels in heart, skeletal muscle and brain (Diamonti et al., 2002). Four different 

functions of NRDP1 have been described in literature: 

1/ NRDP1 interacts with the cytoplasmic tail of ErbB3 (Bouyain and Leahy, 2007) receptor, 

thus stimulating Erb3 ubiquitination and degradation by the proteasome (Qiu and Goldberg, 

2002; Sweeney and Carraway, 2004). ErbB3 is a component of the EGF receptor family that 

regulates cell survival, proliferation and differentiation. Overexpression of ErbB receptors is 

associated with the development of different types of human cancer (Berger et al., 1988; 

Gullick, 1996; Hynes, 2007; Press and Lenz, 2007; Sharma and Settleman, 2009).   Moreover, 

human NRDP1 and ErbB3 genes co-localize at the chromosomal locus 12q13 which is 

frequently rearranged in human tumors (Abdullah et al., 2001), and NRDP1 is even lost in 

certain mammary tumors (Yen et al., 2006), both suggesting a putative role of NRDP1 in tumor 

progression via increased Erb signaling. Degradation of ErbB via NRDP1 would thus be an 

attractive target for cancer therapy.  

2/ NRDP1 binds and catalyzes the ubiquitination of BRUCE, a member of the IAP (inhibitor of 

apoptosis proteins) family, thus targeting it to proteasomal degradation as shown by NRDP1 

overexpression (Qiu et al., 2004) and siRNA knock-downs (Qiu et al., 2004). Such BRUCE 

degradation is critical for the initiation of apoptosis (Bartke et al., 2004).  

3/ NRDP1 interacts with and regulates the stability of parkin, another E3 ubiquitin ligase. Loss 

of function in parkin causes accumulation and aggregation of its substrates and and inhibits 

mitophagy, leading to death of dopaminergic neurons in Parkinson disease (Mo et al., 2010; 

Yu and Zhou, 2008; Zhong et al., 2005).  

 4/ Finally, NRDP1 activity seems to be dependent on its antagonist USP8 (deubiquitinating 

enzyme 8) which is stabilizing both, NRDP1 and its target substrates, by deubiquitination 

(Avvakumov et al., 2006; De Ceuninck et al., 2013; Wu et al., 2004). This is important, since 

autoubiquitination of NRDP1 causes high cellular turnover of this protein (Qiu and Goldberg, 

2002; Wu et al., 2004). The balanced reciprocal cross regulation between NRDP1 and USP8 

thus decides about the fate of both proteins and their substrates. 
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NRDP1/AMPK interaction 

An unbiased yeast-two-hybrid (Y2H) interaction screen performed in our laboratory has 

revealed another potential regulation of NRDP1: an interaction with the AMP-activated 

protein kinase (AMPK). AMPK is a key sensor and regulator of energy metabolism and 

represents a signaling hub in a large network that maintains cellular and organism energy 

homeostasis (Hardie and Carling, 1997; Winder and Hardie, 1999). AMPK is regulating its 

substrates by activatory or inhibory phosphorylations at serine or threonine residues. 

Activated AMPK is increasing the ATP-generating catabolism and reduces ATP-consuming 

anabolism. Among the various additional functions mostly related to spare cellular energy 

expenditure is the reduction of protein synthesis and cell growth. This is mediated by 

inhibition of the mammalian target of rapamycin complex 1 (mTORC1) pathway.  

 

In this study, we report on the identification of AMPK as an NRDP1 interactor by two different 

Y2H screens. An NRDP1/AMPK interaction may have different, non-exclusive functional roles: 

(i) NRDP1 could be a putative substrate of AMPK, (ii) AMPK could be a putative substrate of 

NRDP1, or (iii) the interaction alone could affect NRDP1 or AMPK functions. Scaffolding, 

affecting conformation, stabilized or unstabilized one or both proteins. 

To study the NRDP1/AMPK interaction in vitro, we established an efficient bacterial expression 

and purification protocol for full-length NRDP1. Recombinant protein used for in vitro assays, 

together with cellular overexpression systems, revealed an effect of the NRDP1/AMPK 

interaction on NRDP1 stability, independent of an observed low level NRDP1 phosphorylation 

by AMPK. 
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Materials & Methods  

Cloning 

NRDP1 (E3 ubiquitin-protein ligase NRDP1, Accession no. BC032637) was amplified from 

vector pCMV-SPORT6 (Thermo Fisher Scientific, Waltham, Massachusetts, USA) with NRDP1-

fw (CAATGTATTGGCCATTACGGCCATGGGGTATGATGTAACCCGTTTC) and NRDP1-rev 

(CAATACATTGCAGGCCGAGGCGGCCCCTATCTCTTCCACGCCATGCGCAAATAT) primers 

containing sfi1 sites and introduced into yeast two-hybrid (Y2H) vectors pCab and pDSL 

(Dualsystems Biotech AG,  Schlieren, Switzerland) for Y2H experiments or in bacterial 

expression vector pGEX-4T-1 (GE-Healthcare Life Sciences, Pittsburgh, PA, USA), all plasmids 

containing Sfi1 sites (more details can be found  in the PhD thesis of A. Bruckner/Grenoble 

University). All construct were verify by sequencing (GATC-Biotech, Konstanz, Germany). The 

fusion constructs GST-NRDP1, GST-ACC (plasmid kindly provided by G.Hardie, Univ. of Dundee, 

UK) and GST-CamKKβ (plasmid kindly provided by H. Tokumitsu, Kagawa Medical University, 

Japan) all with GST-tag at n-terminal of the protein, were bacterially expressed as below. 

 

Yeast-two-hybrid 

Cytosolic yeast two-hybrid (Y2H) systems based on reconstitution of split proteins have been 

used for protein-protein interaction screening and pairwise protein-protein interaction 

analysis. The Cyto-Y2H (Möckli et al., 2007) (Dualsystems Biotech, Schlieren, Switzerland) is 

based on the split-ubiquitin system (Johnsson and Varshavsky, 1994; Stagljar et al., 1998). The 

membrane-anchored bait is fused to a reporter cassette composed of the C-terminal half of 

ubiquitin and the artificial transcription factor LexA-VP16, whereas the prey is fused to the N-

terminal half of ubiquitin. Bait/prey interaction leads to ubiquitin reconstitution and cleavage 

by ubiquitin-specific proteases that liberate the transcription factor for classical 

transcriptional read-out. In contrast to the published ER-membrane-anchored (Ost4P) bait, 

we apply here a novel version using a plasma membrane anchor (Aβ-domain, transmembrane 

domain of the Type 1 membrane protein APP). Cloning procedures using Sfi1 sites, 

transformation of yeast cell line NMY51 (MATa his3delta200 trp1-901 leu2-3,112 ade2 

LYS2::(lexAop)4-HIS3 ura3::(lexAop)8-lacZ (lexAop)8-ADE2 GAL4) and yeast spotting were 
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described earlier (Möckli et al., 2007). Selective media lacked either tryptophan and leucine 

(SD-WL) to control the presence of bait and prey plasmid, or additionally adenine and histidine 

(SD-AHWL) for protein interaction analysis. Spotted plates were incubated 72 h at 30°C. The 

Split-Trp is based on the split-protein sensor Trp1p (Tafelmeyer et al., 2004). A C-terminal part 

of Trp1p (CTrp) is fused to bait subunits and an N-terminal part of Trp1p (NTrp) is fused to 

prey. Upon interaction of bait and prey, active Trp1p is reconstituted from both domains, thus 

allowing growth of yeast strain CRY1 (MATa ura3-1 trp1-1 his3-11,15 leu2-3,112 ade2-1 can1-

100 GAL) on medium lacking tryptophan. CRY1 transformation and spotting were similar as 

above. Selective media either lacked uracil and leucine (SD-UL, controls) or additionally 

tryptophan (SD-UWL, protein interaction analysis). Spotted plates were incubated up to 9 days 

at 27°C.  

The Cyto-Y2H was used to screen a human brain cDNA library (preys) for interactors of the N-

terminal domain of AMPK- β1 and - β2 subunits (∆β1, ∆β2 amino acids 1-54 as baits). This 

domain was chosen to avoid interactions with other AMPK subunits, and because it has been 

identified as candidate AMPK interaction domain. About 6.2 × 106 and 3.4 × 106 clones were 

screened. Plasmids containing the cDNA sequence of putative interaction partners were 

extracted and reintroduced together with the corresponding ∆β -encoding bait vector into the 

reporter yeast strain in order to confirm the interaction. Reproducible interactors were 

sequenced and clones containing in-frame coding sequence ot known as false positives 

(Dualsystems, personal communication) were retained. To verify NRDP1/AMPK interactions, 

paired Y2H assays were performed using ∆β1 and ∆β2, full-length β1 and ∆β, as well as α1 and 

α2 subunits as baits and full-length NRDP1 as a prey. Interaction of GST with an unrelated bait, 

Large T antigen (Simian virus) was used as negative control. 

  

Expression and purification of GST-fusion protein 

All the GST fusions protein constructs were transformed into competent E. coli BL21-Codon 

Plus (DE3)-RIL cells (Stratagene, La Jolla, CA, USA) and incubated overnight on LB agar 

containing 100 µg/ml ampicillin and 30 µg/ml chloramphenicol. Cultures were routinely grown 

in standard LB medium containing antibiotics (100 µg/ml ampicillin and 30 µg/ml 

chloramphenicol) at 37°C in Erlenmeyer flasks with constant shaking until O.D. (600nm) 0.7-
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0.9 (if not indicated otherwise). Cells were then cooled down to 30°C and protein expression 

was induced for 4 hours (if not indicated otherwise) with 2mM isopropyl β-D-

thiogalactopyranoside (IPTG, Eurobio). Cells were centrifuged at 4000 g, 30 min at 4°C, 

harvested and suspended in PBS lysis buffer (phosphate buffer saline: 137 mM NaCl, 2.7 mM 

KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH 7.4). After 3x15s sonication at 85% of manual 

powered, insoluble material was removed by centrifugation (40000 g, 40 min at 4°C). All 

supernatant was applied by gravity flow to a 5 ml Gluthation Sepharose matrix (binding 

capacity up to 1g/ml, Qiagen, Hilden, Germany) self-packed in a column (diameter 1 cm). The 

column was washed with 3x5 column volumes PBS and proteins were eluted with 10 ml of 10 

mM reduced L-glutathione (Sigma-Aldrich) in 50 mM Tris-HCl, pH 8. Ten µl of each elution 

fraction were mixed with Laemli sample buffer, separated by SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE, 12% acrylamide), and stained with Coomassie. Protein 

concentrations were determined according to Bradford (Bradford, 1976) with the Biorad 

microassay (Biorad, Reinach, Switzerland) and BSA as standard. 

 

Protein expression in bioreactor 

GST-NRDP1 fusion protein constructs were transformed into competent E. coli BL21-Codon 

Plus (DE3)-RIL cells (stratagene, La Jolla, CA, USA) and incubated overnight on LB agar 

containing 100 µg/mL ampicillin and 30 µg/mL chloramphenicol. Precultures (30 mL) were 

grown in LB containing antibiotics at 37°C until O.D600. 1. Bacteria were harvested by 

centrifugation and added to second preculture of 300 mL complement M9 medium (6.8 g/L 

Na2HPO4.7H2O, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) containing antibiotics (100 µg/mL 

ampicillin and 30 µg/mL chloramphenicol), and grown overnight at 37°C and constant shaking. 

Cells were centrifuged (4000 g, 30 min at 4°C), resuspended in 20 mL M9 and injected with a 

100 mL-syringe (sterile) into the bioreactor (Minifors, Infors HT) containing 3 L of complement 

M9 medium with antibiotics (100 µg/mL ampicillin and 30 µg/mL chloramphenicol). Bioreactor 

conditions were maintained constant at pH 7.4, 37°C and stirring speed of 500 rpm. Cells were 

grown until O.D600. 8, cooled down to 16°C, and expression was induced by 2 mM IPTG 

(Eurobio, Courtaboeuf, France). Cells were harvested by centrifugation and treated as 

described above. 
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To follow bacteria growth, sample were taking every hour and O.D was measured at 600 nm.  

 

In vitro analysis of AMPK substrate phosphorylation kinetics 

Purified GST-ACC and GST-NRDP1 (200 pmol) were incubated for 5, 10, 20 and 40 min at 37°C 

with 200 µM [γ-32P] ATP (specific activity 6000 Ci/mmol ATP) and AMPK221 (4 pmol) 

previously activated by incubation with 1 pmol CamKKβ for 20 min at 30°C in kinase buffer (50 

µM AMP, 5mM MgCl2, 1mM DTT, in 10 mM HEPES pH 7.4). For negative controls, AMPK 

substrates were incubated with 1 pmol CamKKβ without AMPK. Kinase reactions were 

stopped by addition of Laemli buffer and subjected to SDS-PAGE (12%) with Coomassie 

staining and analysis by Typhoon phosphoimager (GE Healthcare). 

 

In vitro analysis of AMPK substrate phosphorylation stoichiometry 

Different concentrations of purified GST-ACC and GST-NRDP1 (25, 50, 100, 200 pmol) were 

incubated 40 min at 37°C with 200 µM [γ-32P] ATP (specific activity 6000 Ci/mmol ATP) and 

AMPK221 (4 pmol) previously activated by incubation with 1 pmol CamKKβ for 20 min at 30°C 

in kinase buffer. For negative controls, AMPK substrates were incubated with 1 pmol CamKKβ 

without AMPK. Kinase reactions were stopped by addition of Laemli buffer and subjected to 

SDS-PAGE. After Coomassie staining, the bands corresponding to the substrates (around 60 

kDa) were cut and incubated in 5 ml scintillation solution and subjected to measurements in 

a liquid scintillation counter (Packard). 

 

Sample preparation for mass spectrometry analysis  

To find NRDP1 phosphorylation(s) site(s) by AMPK, GST-ACC, GST-NRDP1 (300 pmol) were 

incubated for 1 h at 37°C with 6 pmol of freshly purified AMPK-221 (to avoid the presence of 

glycerol needed for long term AMPK storage) previously activated by incubation with 3 pmol 

CamKKβ for 20 min at 30°C in kinase buffer. As negative controls, GST-ACC and GST-NRDP1 

were incubated with 3 pmol CamKKβ without AMPK. The samples were conserved at 4°C.  
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Mass spectrometry to detect phosphosite(s) 

Samples were dried and solubilized in 20 µL ammonium bicarbonate (50 mM), trypsin-

digested. Part of them were enriched either in Pierce TiO2 Phosphopeptide Enrichment 

(Thermo Scientific) or in Pierce Fe-NTA Phosphopeptide enrichment kit (Thermo Scientific) 

then purified with Graphit Clean-up kit (Thermo Scientific). 30 pmol of each assay were 

injected in LC-MS/MS.  The analyses were proceed by a 4000QTrap mass spectrometer. 

Phosphopeptide identification was realized with ProteinPilot 4 (ABSciex) using Paragon and 

Mascot algorithms.  

 

Cell culture conditions 

Human embryonic kidney (HEK293) cells, were grown in DMEM supplemented with 100 

units/ml penicillin, 100 µg/mL streptomycin, 2 mM glutamine, 10% inactivated fetal bovine 

serum (FBS, GIBCO). Hepitheloid cervix carcinoma (HeLa) cells, were cultured in DMEM/F12 

high glucose medium supplemented with 10% inactivated fetal calf serum (FCS) and 1% 

glutamate/streptomycine/penicillin.  

 

Analysis of in vivo ubiquitination 

HEK293 cells cultured as describe above were transfected with one or several of the following 

plasmids (all gently provided by Pascual Sanz, IBV, Valencia, Spain): pCMV-His6xUbiq 

(encoding a modified ubiquitin, tagged in n-terminal with 6 His residues); pCMVmyc (encoding 

the different AMPK subunits α2, β2, and γ1 all tagged in N-terminal with myc), pcDNA3-HA-

NRDP1 (encoding N-terminally HA-tagged NRDP1), by using the Lipofectamine 2000 reagent 

(Invitrogen) according to the manufacturer’s instructions.  After 36 h of transfection, medium 

was removed and cells were frozen in liquid nitrogen, then scrapped in lysis buffer A (6 M 

guanidinium-HCl, 0.1 M sodium phosphate, and 0.1 M Tris-HCl, pH 8.0). To purify His-tagged 

proteins, 4 mg protein of a clarified extract (CE; centrifuged at 12000 g for 15 min) was 

incubated in 100 µl of TALON resin (Clontech) in the presence of 10 mM imidazole, for 3 h at 

room temperature on a rocking platform. The resin was then successively washed with 2 mL 

each of buffer B (buffer A plus 10 mM imidazole), buffer C (buffer B but with 8 M urea instead 
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of 6 M guanidin-HCL), and four more times with buffer C adjusted to pH 6.0. Bound proteins 

were eluted with 50 µl of 2X Laemli’s sample buffer and analyzed by Western blotting using 

appropriated antibodies. 

 

AMPK or ubiquitin overexpression in cell culture  

HeLa cells were transfected with one or several of the following plasmids (kindly provided by 

Pascual Sanz, IBV, Valencia, Spain): pCMV-myc (encoding the different AMPK subunit α2, β2, 

and γ1), pCMV-His6xUbiq (encoding a modified ubiquitin tagged with 6 His residues), and 

pCMV-His6xUbiqK48R or pCMV-HisxUbiqK63R (encoding mutated ubiquitin variants, were 

Lys48 and Lys63 is replaced by an arginine, by using the Lipofectamine 2000 reagent 

(Invitrogen) according to the manufacturer’s instructions. 24 h after transfection, medium was 

removed and cells were frozen in liquid nitrogen. To extract proteins, HeLa cells were lysed in 

Tris-buffer (10 mM pH7 containing complete with EDTA-free protease inhibitor cocktail tablet 

(Roche), sonicated 3 X 10 s and centrifuged at 12000 g for 15 min at 4°C. 

 

Proteasome inhibition in cell culture 

HeLa cells were cultured as described above. Inhibitor MG132 (Sigma, Saint Louis, MO, USA)  

prepared in DMSO at 4 µM final concentration was added four hours before the medium was 

removed and cells were frozen in liquid nitrogen. Proteins were extracted as described above. 

 

Immunoblotting 

50 µg of total protein from the clarified extracts prepared as described above were analyzed 

by SDS-PAGE (12%) and Western blotting using appropriate antibodies: anti-myc (Sigma-

Aldrich, diluted at 1/2000); anti-HA (Invitrogen, diluted at 1/1000); anti-NRDP1 (Bethyl dilute 

at 1/1000); anti-tubulin (Abcam diluted at 1/1000). All membranes were revealed at room 

temperature with ImageQuant CAS4000 CDD camera (GE Healthcare).  



 

 

138 E3 ubiquitin ligase NRDP1 – high level expression of full-length protein and interaction with AMPK 

Results 

Yeast-two-hybrid screening reveals an interaction between NRDP1 and AMPK   

A Y2H screen using the AMPK- β1 and - β2 N-teminal domains (∆β1, ∆β2 amino acids 1-54) as 

baits and a brain cDNA library as preys identified NRDP1 as a putative AMPK interactor. The 

applied novel cytosolic, split-ubiquitin-based system (Cyto-Y2H, (Möckli et al., 2007)) detects 

protein-protein interactions in a cytosolic environment, with bait and prey anchored to the 

plasma membrane, and uses a very sensitive transcriptional read-out that detects also weak 

or transient interactions. The identified NRDP1 clone contained the C-terminal domain of 

NRDP1, which also associates with receptor tyrosine-protein kinase ErbB3 to trigger its 

degradation (Diamonti et al., 2002; Yen et al., 2006).  

  

 

Figure 2. Cyto-Y2H reveals interaction of NRDP1 with AMPK β-subunits. Representative results of a cyto-Y2H 

assay to analyze interaction of AMPK-∆β subunits with the C-terminal domain of NRDP1 (amino acids 136-316). 

Presence of bait and prey plasmids are verified on selective media (SD-WL). Bait/prey interaction leads to 

reconstitution of ubiquitin and a transcriptional readout allowing growth on medium lacking in addition adenine 

and histidine (SD-AHWL). Spots represent yeast grown for 48h at 30°C. Δβ: N-terminal domain of AMPK β-subunit 

used for Y2H screening. For more details see Material and Methods. 

 

The NRDP1/AMPK interaction was then confirmed by different paired Y2H assays. First, in 

Cyto-Y2H, the identified NRDP1 clone interacted with both ∆β1 and ∆β2 subunits, (Figure 2). 

In another cytosolic Y2H assay, the Split-Trp-Y2H, protein-protein interaction reconstitutes an 

enzyme in tryptophane biosynthesis, allowing a direct readout that is more proportional to 

interaction strength (Figure 3). This assay confirmed interaction of NRDP1 with both truncated 

and full-length β subunits although interaction seemed to be less strong with full-length β1. 

When α-subunits were tested in this Y2H assay, NRDP1 interacted weakly with α2 and more 

strongly with α2TD (a constitutive active α2 mutant), but not with α1.  
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Figure 3. Split-Trp Y2H confirms interaction between NRDP1 and AMPK β subunits but also α2 subunit.  

Representative results of a Split-Trp-Y2H assay to analyze interaction of AMPK subunits with full-length NRDP1. 

Bait/prey interaction leads to reconstitution Trp1P essential for tryptophan synthesis, thus allowing growth on 

medium lacking tryptophan (SD-UWL). Spots represent yeast grown for 9 days at 27°C. α1, α2, β1, β2: AMPK 

subunits; α2TD: constitutive α subunit; Δβ: N-terminal domain of AMPK β-subunit used for Y2H screening. For 

more details see Material and Methods. 

 

Production of NRDP1 full-length protein 

Since our goal was to proceed with in vitro characterization of the NRDP1/AMPK interaction 

without prior knowledge of the involved domain(s), our primary aim was to produce 

recombinant full-length NRDP1. Previous publications have shown the difficulties to produce 

full-length NRDP1 (Wu et al., 2004), although it is a cytosolic and thus an a priori soluble 

protein. So far, only a C-terminally truncated version (amino acids 134 to 317) could be 

produced at low quantities (Qiu and Goldberg, 2002). We thus generated a NRDP1 construct 

carrying a GST-tag at the N-terminus for bacterial expression.   

 

Bacterial expression in shaking flask cultures  

First, a standard protocol for production of GST-tagged protein was applied, where bacteria 

were grown at 37°C until O.D600. 1 before expression was induced by IPTG (2 mM) for 4 h at 

30°C. Under these conditions, a predominant band at the size of full-length GST-NRDP1 

(around 60 kDa) appeared in E. coli lysates, reaching a maximum after about 3 hours (Figure 

4). Further bands between 25 and 50 kDa also increased during induction, possibly as a 

consequence of proteolytic degradation or incomplete translation.  
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Figure 4. Effect of expression time on 

quantity and quality of expressed 

NRDP1 (expression at 30°C). 

Expression profile of NRDP1 at 30°C 

after induction by IPTG (2 mM). 

Coomassie staining of a SDS-PAGE gel. 

Culture of BL21 bacteria transformed 

with pABGSTn-NRDP1 was done in 400 

ml LB. At O.D. 1, expression was 

induced with IPTG for 4 hours at 30°C. 

20 µL aliquots were taken at different 

expression time (0-4 h). M: molecular 

mass markers.  

  

However, when soluble protein of these expressions was subjected to affinity purification, full-

length GST-NRDP1 around 60 kDa occurred only as minor band as compared to the lower 

molecular mass bands (Figure 5), in particular the 23 kDa band that corresponds to the size of 

the GST-tag domain. A commercial protease inhibitor mix in the lysis buffer did not improve 

this result and was therefore not added in further experiments. The yield of these purifications 

reached only 0.12 mg/L, a too low value considering the small fraction of full-length protein 

in this preparation. Further analysis of lysate preparation revealed that it is not the sonication 

procedure itself that degrades NRDP1, but the presence of mainly insoluble full-length NRDP1 

that remains in the pellet after sonication (Figure 6). Thus, recombinant full-length NRDP1 

tends to form insoluble inclusion bodies in E. coli.  

 

 

 

 

Figure 5. Quantity and quality of purified 

NRDP1 (expression at 30°C). Elution 

profile of the NRDP1 peak from a 

glutathione sepharose column. 

Coomassie staining of a SDS-PAGE gel. 

Induction of expression at O.D. 1 for 4 

hours at 30°C. Bacterial lyses buffer: PBS 

pH.7.4 complemented with 20% glycerol 

and 1% Triton X-100. 2, 3, 4, 5, 6, 7, 8: 

NRDP1 peak elution fractions; NRDP1: 

full-length NRDP1; *: main band, possibly 

corresponding to a NRDP1 degradation 

product.     
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Figure 6. Full-length NRDP1 in 

soluble and insoluble fractions 

(expression at 30°C). Coomassie 

staining of a SDS-PAGE gel. 

Induction of expression at O.D. 1 

for 4 hours at 30°C. The bacteria 

were lysed in PBS pH 7.4, 20% 

glycerol and 1% Triton X-100, 

sonicated 7x10 s and centrifuged 

40 min at 25000 g.  NRDP1: full-

length NRDP1. 

 

 

Inclusion bodies are the consequence of incorrect or insufficient protein folding. We therefore 

modified the expression protocol by (i) repeating 4 times the sonication-centrifugation step, 

(ii) inducing expression at different O.D., and (iii) using growth at only 25°C to slow down the 

bacterial metabolism Repeated sonication rather solubilized preferentially the contaminating 

lower Mr bands in expressions induced at O.D. 0.8 and grown at 25°C and was not retained 

(Figure 7). 

Then, expression was induced at 25°C at different moments during growth: late lag phase 

(O.D. 0.5), exponential phase (O.D. 0.8) and early stationary phase (O.D. 1.5). The soluble 

fractions were directly applied to a glutathione Sepharose column to compare purity (Figure 

8) and protein yield. All these expressions increased protein yield by about 3-fold as compared 

to expressions at 30°C. In addition, expressions induced at O.D. 0.8 and 1.5 each increased 

protein yield by another 10% each, and these two preparations also contained a higher 

fraction of full-length NRDP1 as compared to early induction (O.D. 0.5) (Figure 8). Thus, late 

expression appears to be preferable for maximal quantity and quality of full-length NRDP1. 
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Figure 7. Full-length NRDP1 in soluble 

and unsoluble fractions (expression at 

25°C). Coomassie staining of a SDS-PAGE 

gel. Induction of expression at O.D. 0.8 

for 4h at 25°C. Protein extraction by 

consecutive sonication-centrifugation 

steps. Supernatants (supernatant 1 to 4) 

as well as resuspension of corresponding 

pellets in lysis buffer (pellet 2, 3 and 4) 

are shown. M: molecular mass markers; 

NRDP1: full-length NRDP1. 

 

 

 

 

 

Table 1. Effect of temperature and induction time point on the yield of purified NRDP1  

O.D. 1.0 0.5 0.8 1.5 4.3 

Temperature 30°C 25°C 25°C 25°C 10°C 

Expression  4h 4h 4h 4h 16h 

Yield (mg protein/L) 0.12 0.30 0.35 0.39 0.71  

 

 

 

 

Figure 8. Effect of induction time 

point on quality of purified NRDP1 

(expression at 25°C).  NRDP1 elution 

profiles from a glutathione Sepharose 

column using E. coli lysates from 

different induction growth phases. 

Coomassie staining of a SDS-PAGE 

gel. The expression was induced at 

O.D. 0.5, 0.8 or 1.5 at 25°C for 4 h. The 

fractions collected after purification 

represent the NRDP1 elution peaks. 

NRDP1: full-length NRDP1. 
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Since lower temperature seemed to be the major factor driving production of soluble full-

length NRDP1, bacteria were grown at 10°C and expression time was concomitantly increased 

to reach stationary phase as optimized above (Figure 8). 

 

 

 

 

Figure 9. Effect of low-temparture 

expression at 10°C on quality of 

purified NRDP1. Elution profile of a 

glutathione Sepharose column. 

Coomassie staining of a SDS-PAGE gel. 

Expression was inducted at O.D. 4.3 at 

10°C for 16 h. 1 to 8: fractions 

representing the NRDP1 elution peak; 

NRDP1: full-length NRDP1. 

 

 

Under these conditions, protein yield doubled to 0.71 mg/L as compared to expressions at 

25°C (table 1). Also purity seemed to improve slightly, although there still remained 

contaminating bands (Figure 9). Thus, late induction combined with very slow expression at 

10°C clearly increased production of soluble full-length NRDP1.  

 

Bacterial expression of NRDP1 in a bioreactor 

A bioreactor allows control of bacterial growth conditions by regulation of nutriment, pO2, pH 

and temperature of the medium. Such controlled conditions require however the use of a 

minimal medium which prolongs the lag phase as compared to complete LB medium. 

With NRDP1-transfected bacteria, a 2 L-bioreactor allowed to reach O.D. 27 (Figure 10) instead 

of O.D. 4 in batch culture.   
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Figure 11. Effect of bioreactor 

expression on quality of purified 

NRDP1. Elution profile of a 

glutathione Sepharose column 

following production in 

bioreactor. Coomassie staining of 

a SDS-PAGE gel. Expression was 

inducted at O.D. 8 at 16°C for 12 

h. 1 to 7: fractions representing 

the NRDP1 elution peak; pellet: 

insoluble protein after first 

sonication step, flow through: 

protein not binding to the 

column.  

  

 

According to the data obtained in batch culture, expression was induced at the rather high 

O.D. of 8, corresponding to early exponential growth phase, and continued for 12 h at the low 

temperature of 16°C. Full length NRDP1 was mostly soluble and appeared in the pellet only at 

low levels (Figure 11). The yield was 3.1 mg/L, meaning that a single run of the bioreactor 

followed by a single purification step yielded 6.2 mg of protein  

 

 

Figure 10. Typical bacterial growth curve in the bioreactor. Samples were taken every hour and O.D. was measured 

at 600 nm.  
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NRDP1 is directly phosphorylated by AMPK 221 

With recombinant protein we first tested whether NRDP1 could be directly phosphorylated 

by AMPK. An in vitro phosphorylation assay revealed that NRDP1 can be directly 

phosphorylated by AMPK 221 in a time-dependent manner, although at low levels (Figure 12). 

Incorporation of 32P into NRDP1 calculated by phosphoimager and scintillation counter 

reached about 30-40% of what was seen with the AMPK reference substrate acetyl-CoA 

carboxylase (ACC). Also the time course of NRDP1 phosphorylation was much slower than with 

ACC, reaching maximal activation only after 20 minutes (as compared to <5 min with ACC).  

 

 

 

Figure 12. NRDP1 is a direct AMPK 

substrate in vitro. (A) Time course of 

NRDP1 phosphorylation by AMPK. AMPK 

221WT (4 pmol) first activated by CamKKβ 

(1 pmol) was incubated with purified 

NRDP1 (200 pmol) or ACC (positive 

control, 200 pmol) for 5 to 40 min at 37°C. 

In vitro phosphorylation was analyzed by 

SDS-PAGE and Typhoon phosphoimager. 

(B) Quantification of the phosphorylation 

time course using ImageJ. Data are 

normalized to maximal ACC 

phosphorylation. (C)  Incorporation of 32P 

into ACC and NRDP1 by AMPK. Assay as 

above, but using varying amounts of 

purified NRDP1 or ACC (50-200 pmol) and 

analyzing bands in SDS-PAGE by 

scintillation counting. Lines and values of 

a linear regression fit is indicated. 

 

      

 

In silico analysis of the NRDP1 sequence identified Ser77 as a putative AMPK phosphorylation 

consensus sequence. However, mass spectrometry of in vitro phosphorylated NRDP1 did not 
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yield conclusive data. Thus, the significance of the observed phosphorylation remains to be 

shown. 

 

AMPK is not ubiquinated by NRDP1 

We therefore tested whether the NRDP1/AMPK complex could serve NRDP1 to ubiquitinate 

AMPK. We compared the effect of overexpression of two E3 ubiquitin ligases, NRDP1 and 

MDM2, on AMPK 221 ubiquitination in HEK293 cells. MDM2 served as a negative control for 

unspecific ubiquitination induced by ubiquitin and ubiquitin ligase overexpression. 

Experiments with both E3 ubiquitin ligases revealed AMPK γ1 as a highly ubiquitinated subunit, 

while AMPK α2 was ubiquitinated only at a low level and AMPK β2 seemed not to be 

ubiquitinated under these conditions (Figure 13). Ubiquitination by NRDP1 was however 

identical or even lower as with MDM2 control, indicating that NRDP1 is not a specific ubiquitin 

ligase of AMPK subunits in HEK293 cells. The AMPK/NRDP1 interaction would thus have no 

function in AMPK ubiquitination.   
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A

 

 
 
 
Figure 13. AMPK is not ubiquitinated by NRDP1. In 

vivo ubiquitination assay using overexpression of 

proteins (+) in HEK293 cells and corresponding control 

experiments for construct expression. (A) Pull-down 

for His-tagged ubiquitin with Ni-NTA resin analyzed by 

Western blot for AMPK subunits with anti-Myc Ab. (B) 

Overexpression of AMPK subunits (α2, β2, γ1) analyzed 

by Western blot with anti-Myc Ab. (C) Overexpression 

of E3 ubiquitin ligase (NRDP1 and MDM2) analyzed by 

Western blot with anti-HA and anti-MDM2 Ab. 

 

B

 

 C

 

 

HA-NRDP1 

HA-NRDP1 HA-NRDP1 
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NRDP1 proteasome targeting inactive ubiquitination of both lysine 48 and 63 

Independent of NRDP1/AMPK complexes, NRDP1 is rapidly auto-ubiquitinated for 

proteasomal degradation, but it is unknown how this occurs. We therefore applied a similar 

ubiquitination assay but using ubiquitin constructs mutated at specific lysine residues to 

address this question (Figure 14). Overexpression of ubiquitin wild-type in HeLa cells induced 

degradation of full-length NRDP1 via the proteasome since this decrease could be rescued by 

the proteasome inhibitor MG132. In case of overexpressed ubiquitin mutants K48R and K63R, 

unable to link ubiquitin moieties to Lys48 or Lys63, respectively, partial degradation in absence 

of MG132 still occurred. This result suggests that both lysine residues are involved to target 

NRDP1 to the proteasome.  

  

 

Figure 14. Ubiquitination NRDP1 topology for it proteasome degradation. Representative Western blot for 

NRDP1 levels in HeLa cells overexpressing wild-type or mutant (K48R, K63R) ubiquitin in absence or presence of 

protease inhibitor MG132. One representative out of four experiments is show. 

 

 

AMPK decreases NRDP1 levels 

We finally tested whether the high NRDP1 turnover due to auto-ubiquitination is modulated 

by AMPK (Figure 15). Two genuine NRDP1 bands can be detected in HeLa cells with NRDP1-

specific antibody (https://www.bethyl.com): a full-length NRDP1 at 36 kDa and a short form 

of NRDP1 (sNRDP1) at around 30 kDa. Overexpression of individual AMPK subunits (α,β or γ) 

had no significant impact on the levels of the two NRDP1 forms. However, co-expression of all 

three subunits supposed to form heterotrimeric complex decreased full-length NRDP1 levels 

by about 30%. 

 

NRDP1 



 

 

149 E3 ubiquitin ligase NRDP1 – high level expression of full-length protein and interaction with AMPK 

A

 

B 

 

Figure 15. Overexpressions of AMPK221 decreases NRDP1 levels. (A) Representative Western blot of NRDP1 

levels (bottom) under conditions of AMPK subunit overexpression (top) in HeLa cells for 24 h, Anti-myc Ab is used 

to verify overexpression of myc-tagged AMPK subunits α2, β2 and γ1 . NRDP1, full-length NRDP1; sNRDP1, lower 

Mr NRDP1. (B) Western blot quantification of full-length NRDP1 from four independent experiments by Image J, 

normalized to the level of tubulin.*p<0.05 versus ctl; n=4. 

 

 When expressing increasing levels of AMPK heterotrimer, levels of full-length NRDP1 

decreased, while sNRDP1 rather increased (Figure 16). These data suggest that sNRDP1 results 

from NRDP1 degradation and that AMPK/NRDP1 interaction plays a role in regulating cellular 

NRDP1 levels. 

To further test this hypothesis, we applied the proteasome inhibitor MG132 which reduces 

degradation of ubiquitin-conjugated proteins.     

In presence of MG132, as expected, NRDP1 levels increased in both controls and AMPK221 

overexpressing HeLa cells (Figure 17). Importantly, the decrease of NRDP1 by AMPK221 

overexpression is rescued by MG132 to levels comparable to control, suggesting that an 

AMPK-induced NRDP1 degradation via the proteasome pathway is operating here.  
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A 

 

Figure 16. Full-length NRDP1 levels are inversely 

correlated with AMPK levels. (A) Representative 

Western blot of AMPK221 and NDRP1 levels in HeLa 

cells transfected with different amounts of AMPK 

vector. Anti-myc Ab is used to verify overexpression 

of myc-tagged AMPK subunits α2, β2 and γ1 NRDP1, 

full-length NRDP1; sNRDP1, lower Mr NRDP1. (B) 

Western blot quantification of full-length NRDP1. (C) 

Western blot quantification of sNRDP1 Data in (B) 

and (C) were obtained by ImageJ, normalized to 

tubulin and AMPK control (0 µg AMPK plasmid). 

*/°p<0.05 versus 0 µg and 1 µg, respectively; n=4. 

B                         NRDP1 expression 

 

 

C                        sNRDP1 expression 

 

 

 

 

 

 

 

Figure 17. Induction of NRDP1 degradation by AMPK via proteasome. Representative Western blot of full-

length NRDP1 in HeLa cells overexpressing AMPK221, Cells were treated for 4h with MG132 (4µM) before lysis 

and analysis of NRDP1 levels by Western blot. One representative out of four experiments is show. 
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AMPK activity is not required for NRDP1 degradation 

AMPK-induced NRDP1 degradation could involve the above described NRDP1 

phosphorylation. We therefore overexpressed AMPK221 wild type (wt) or dominant negative 

AMPK221 mutant (T172A, an α2 subunit that cannot be activated). Both AMPKs (wt and 

T172A) caused a similar, significant degradation of NRDP1 (Figure 18). Thus, the kinase activity 

of AMPK is not required for NRDP1 degradation. 

 

 

 

 

Figure 18. Kinase activity of AMPK is not required for NRDP1 degradation. (A) Representative Western blot of 

NRDP1 levels (bottom) under conditions of overexpressing AMPKwt or dominant negative AMPK mutant (top) in 

HeLa cells for 24 h, Anti-myc Ab is used to verify overexpression of myc-tagged AMPK. (B) Western blot 

quantification of full-length NRDP1 by Image J, normalized to the level of tubulin.  *p<0.05 versus ctl; n=4   
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Discussion 

NRDP1 is an E3 ubiquitin ligase for which information is still scarce. Here we provide a bacterial 

expression protocol that yields as much as 3.1 mg/L full-length NRDP1 for in vitro studies. 

Further, we present evidence for a direct interaction of NRDP1 with the energy sensor and 

regulator AMPK.  This interaction involves the C-terminal domain of NRDP1 (amino acids 136 

to 317) and the N-terminal tail of AMPK β-subunits (amino acids 1 to 54). Complex formation 

increases NRDP1 turnover, independent of low-level phosphorylation by AMPK, but vice versa 

does not induce specific ubiquitination of AMPK by NRDP1. 

In the first part of this study, we describe highly efficient conditions for bacterial expression 

and purification of full-length NRDP1. So far, bacterial production of this protein was 

hampered by predominant formation of insoluble protein in bacterial inclusion bodies (Wu et 

al., 2004). Only a C-terminally truncated version (amino acids 135 to 317 aa) could be prepared 

at a satisfying yield (Qiu and Goldberg, 2002). In E.coli, host protein misfolding is not 

uncommon. It may result from premature termination of translation, failure of a newly 

synthesized chain to reach a correct conformation or loss of structural integrity triggered by 

environmental stress (Baneyx and Mujacic, 2004). Attempts to correlate the probability of 

inclusion body formation with particular properties of the recombinant protein, the 

expression system, or the host cell have for the most part been unsuccessful (Schein, 1990). It 

seems that overproduction by itself is sufficient to induce formation of inclusion bodies of 

cytosolic proteins (Gribskov and Burgess, 1983). Based on this finding a kinetic model was 

proposed that shows that the yield of native protein depends only on the rate of folding, the 

rate of aggregation, and the rate of protein synthesis (Kiefhaber et al., 1991). This model 

implies that the yield of native protein increases with a decreasing rate of protein expression. 

Thus, reducing growth rate by slowing down metabolism increases yield of native, soluble 

protein (Cabilly, 1989; Kopetzki et al., 1989; Schein, 1990). In our batch culture experiments, 

a decreased in expression temperature from 30°C to 10°C had the most pronounced effect, 

leading to a 6-fold higher yield of soluble full-length NRDP1. Induction at a later growth phase 

also slightly increased yield, but mainly had a positive effect by reducing co-purifying low 

molecular mass contaminants. This may be also due to more growth-limiting conditions 

(nutrient deprivation, acidification etc.). Up-scaling batch cultures to a bioreactor further 
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increased yield by at least 4-fold. Apparently, controlled bioreactor conditions provide all the 

benefits of slowing down metabolism by growth at 16°C, while avoiding potential 

disadvantages of batch cultures by keeping all growth conditions constant. Efficiency and 

reproducibility of a bioreactor culture thus allows maximum yield for a given volume of 

medium, particularly important in case of an expensive additions (e.g. carbon-14 labeled 

medium).  

In the second part of the study, we concentrated on the interaction of NRDP1 with AMPK that 

we have detected and confirmed by Y2H analysis. In an attempt to identify a functional role 

of this interaction, we primarily analyzed phosphorylation and ubiquitination events. Although 

NRDP1 can be phosphorylated by AMPK in vitro, it appeared to be a poorer substrate as 

compared to the AMPK reference substrate ACC, seen by both kinetic and stoichiometric 

measurements. Mass spectrometry (MS) did neither reveal any phosphorylated residue. The 

in vivo significance of NDRP1 phosphorylation remains to be clarified. 

Vice versa, in HEK293 cells, AMPK was not specifically ubiquinated by NRDP1, although it is 

known that AMPK can be ubiquitinated in vivo (Zungu et al., 2011) and some involved E3 

ubiquitin ligase have been identified (e.g. WWP1 and malin) (Lee et al., 2013; Moreno et al., 

2010). However, NRDP1 is also heavily autoubiquitinated, resulting in proteasomal 

degradation and concomitant high turnover rate (Wu et al., 2004) which are the key regulators 

of cellular activity of this protein. Our data with HeLa cells suggest that NRDP1/AMPK 

interaction accelerates proteasomal NRDP1 degradation. First, In vivo AMPK overexpression 

reduces levels of full-length NRDP1 while increasing levels of a shorter NRDP1 species, 

probably a first product of NRDP1 degradation. Second, such reduced NRDP1 levels do not 

occur when proteasomal protein degradation is inhibited. AMPK-dependent proteasomol 

NRDP1 degradation does not involve putative NRDP1 phosphorylation, since it occurs also 

with inactive AMPK. A similar regulation has been reported for other E3 ubiquitin ligases. 

Auto-ubiquitination and proteasomal degradation of certain inhibitor of apoptosis (IAP) is 

stimulated by interaction with SMAC/DIABLO (Dueber et al., 2011; Varfolomeev et al., 2007).  

The role of AMPK in NRDP1 autoubiquitination may involve activating conformational 

changes, a NRDP1 scaffolding function (bringing different NRDP1 proteins close to each other), 

or disrupting interaction of NRDP1 with ubiquitin carboxyl-terminal hydrolase 8 (USP8), a 

major stabilizing NRDP1 protein (Avvakumov et al., 2006). 
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 One consequence of AMPK-dependent NRDP1 degradation would be increased levels of 

known NRDP1 substrates like ErbB3. ErbB3 is the first effector of the ErbB3-PI3K-Akt-TSC2-

mTOR cascade, whose activation leads to cell survival, proliferation and differentiation, but 

also higher susceptibility for certain types of cancer (Gwinn et al., 2008; Inoki et al., 2003). 

Thus, formation of AMPK/NRDP1 complexes would activate ErbB3 signaling and proliferation 

which could be in contradiction with the well-described AMPK tumor suppressor effect, but 

since few years it clearly appear that AMPK also play a role in helping tumor cell survival 

(Banko et al., 2011; Frigo et al., 2011; Laderoute et al., 2006).       

This work establishes a link between AMPK and NRDP1. However, more research is needed to 

fully clarify its functional significance. 
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Abstract. AMP-activated protein kinase (AMPK) and 
the vesicle-associated membrane proteins VAMP2 
and VAMP3 are involved in exocytotic translocation 
of e.g. nutrient transporters GLUT4 and CD36 to the 
cell surface to increase glucose and fatty acid uptake, 
respectively. The exact molecular mechanism is still 
unclear. We found that VAMP2 and VAMP3 both 
interact with AMPK by using yeast two hybrid (Y2H) 
approaches, co-immunoprecipitation, pull-down and 
surface plasmon resonance (SPR). VAMP does not 
serve as AMPK substrate, but could be a scaffold for 
AMPK to recruit it to exocytotic vesicles. In support 
of this, we show direct AMPK/VAMP interaction of 
medium affinity as typical for reversible interactions, 
and the presence of putative AMPK substrates in 
exocytotic vesicles. The mapped AMPK and VAMP3 
interaction domains enabled the generation of an 
inhibitory construct. This construct is able to 
decrease AMPK-VAMP interaction in vitro and will be 
suitable for in vivo applications, in particular to study 
effects on the translocation of GLUT4 and CD36. 
 

Résumé. La protéine kinase activée par l’AMP 
(AMPK) ainsi que les protéines membranaires 
associées aux vésicules VAMP2 et VAMP3 sont 
impliquées dans l’exocytose et la translocation des 
transporteurs de nutriments à la surface cellulaire, 
tels GLUT4 et CD36 qui permettent respectivement 
l’entrée de glucose et d’acides gras dans la cellule. Le 
mécanisme moléculaire reste pour le moment 
indéfini. Par un système de double hybride en 
levures nous avons découvert que VAMP2 et VAMP3 
interagissent avec l’AMPK, résultats confirmés 
également  par co-immunoprécipitation, pull-down 
et résonance plasmon de surface. VAMP n’est pas un 
substrat de l’AMPK, mais pourrait être une protéine 
de recrutement (scaffold) d’AMPK vers les vésicules 
exocytotiques. Allant dans ce sens, nous avons 
montré qu’AMPK et VAMP interagissent de façon 
directe avec une affinité moyenne, typique des 
interactions réversibles. Nous avons aussi montré la 
présence de substrats putatifs de l’AMPK dans des 
vésicules exocytotiques. La détermination du 
domaine d’interaction entre AMPK et VAMP3 a 
permis la production d’une construction inhibant 
leur interaction. Cette construction est capable de 
diminuer l’interaction AMPK-VAMP in vitro et 
adaptée pour des expériences in vivo, en particulier 
pour étudier son effet sur la translocation de GLUT4 
et CD36. 

 

I was involved in all experiments following the yeast-two hybrid and VAMP phosphorylation assays data 
analysis and manuscript writing.  
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Introduction  

Vesicular transport mediates a continuous exchange of components between membrane 

enclosed distinct compartments. Since cells segregate proteins into separate membrane 

domains by assembling a special protein coat (which is a cage of protein covering the cytosolic 

face, (Kirchhausen, 2000)), a transport mechanism is necessary that extracts specific 

components from a compartment for delivery to another one. Transport vesicles will dock to 

the target membrane and fuse with it to deliver their cargo (Bonifacino and Glick, 2004). These 

vesicles are classified according to their origin and type of cargo (Rothman and Wieland, 1996). 

Vesicle-stored cargo could be a chemical element as neurotransmitter (synaptic vesicle), 

hormone (endocrine tissue), but also receptors or transporters present at the vesicular 

membrane which will incorporate into the target membrane during membrane fusion.   

To ensure an orderly flow of vesicular traffic, transport vesicles must be highly selective in 

recognizing the correct target membrane to fuse with. A vesicle is likely to encounter many 

potential target membranes because of the large diversity of membrane systems. To select 

the correct one, all transport vesicles display surface markers ensuring targeting specificity 

(Pfeffer, 1999). Target membranes display the complementary receptors that recognize the 

appropriate vesicle markers. However the precise mechanism for the specificity of this crucial 

process is still not entirely clear; it depends on two major types of proteins: Rab proteins that 

direct the vesicle towards the correct target membrane for a preliminary docking (Grosshans 

et al., 2006), and the soluble NSF attachment receptor (SNARE) proteins that catalyze the 

fusion of the lipid bilayers (Jahn and Scheller, 2006), (Figure 1).  

Rab proteins are the largest subfamily of monomeric GTPases with over 60 known members 

(Grosshans et al., 2006). Each Rab protein is associated with one or more membrane enclosed 

organelles, and each one of these organelles has at least one Rab protein on its cytosolic 

surface. Thus Rab proteins are ideal molecular markers for identifying membrane types and 

guiding vesicular traffic between them. Finally, Rab proteins bind to proteins called Rab 

effectors, which facilitate vesicle transport, membrane tethering, and fusion (Mizuno-

Yamasaki et al., 2012; Pfeffer, 2012).  
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SNARE proteins are transmembrane protein that catalyze the membrane fusion reactions in 

vesicular transport (Jahn and Scheller, 2006). Once a transport vesicle has been tethered to 

its target membrane, complementary sets of v-SNAREs and t-SNAREs, respectively found on 

vesicle membrane and target membranes (McNew et al., 2000), will be able to form 

complexes (Sutton et al., 1998). The resulting SNARE complexes lock the two membranes 

together and mediate membrane fusion by bringing the lipid bilayers of two membranes close 

enough so that they can join (Fasshauer, 2003). SNAREs also provide an additional layer of 

specificity, helping to ensure that only correctly targeted vesicles fuse (Scales et al., 2000).  

 

 

Figure 1. Process preceding membrane fusion. Tethering: Rab effector proteins tether a vesicle via interaction 

with active Rab protein (Rab-GTP) located on the vesicle membrane. Docking: the v-SNARE and t-SNARE assemble 

into a four-helix bundle forming a trans-SNARE complex. Fusion: Formation of multiple trans-SNARE complexes 

between vesicle and target membrane catalyzes the fusion of the two apposed lipid bilayers. 

   

Fusion does not always immediately follow v-SNARE- t-SNAREs pairing. In fact, to allow for 

additional regulation, fusion is delayed until e.g. secretion of cargo is triggered by a specific 

intra- or extracellular signal (Varlamov et al., 2004). These will cause the release of inhibitory 

proteins that prevent the complete zipping-up of the SNARE complexes. Rab proteins and Rab-

effectors are involved in the release of such SNARE inhibitory proteins (Pfeffer, 1999). 
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The vesicle-associated membrane proteins VAMP2 (or synaptobrevin) and its closest homolog 

VAMP3 (or cellubrevin) are two major members of the v-SNARE family. They are both involved 

in many exocytotic processes as e.g. neurotransmitter release from synaptic vesicles in neuron 

synapses (Mochida, 2000; Procino et al., 2008; Sai et al., 2013), or cell surface expression of 

nutrient transporters such as glucose transporter GLUT4 and long chain fatty acid (LCFA) 

transporter CD36. The latter occurs by translocation of storage vesicles from intracellular 

stores to the plasma membrane, followed by membrane fusion that inserts the transporters 

into the cell membrane (Holman and Cushman, 1994; Karylowski et al., 2004; Martin et al., 

1998; Schwenk et al., 2010). This is the rate-limiting step for cellular uptake of glucose and 

fatty acids, the predominant substrates for cellular energy conversion into ATP. Fusion of 

GLUT4 storage vesicles (GSVs) with the plasma membrane to trigger glucose uptake can occur 

insulin-dependent, e.g. under hyperglycemic conditions (Lizunov et al., 2005) in different 

peripheral organs, or insulin-independent, e.g. after physical exercise in muscle (Hayashi et 

al., 1997).   

The AMP-activated protein kinase (AMPK) is a key sensor and regulator of cellular energy 

homeostasis (Hardie and Carling, 1997). AMPK is activated to maintain cellular ATP level, 

increasing ATP-producing pathways while decreasing ATP-consuming pathways (Carling, 

2005; Hardie et al., 2006). Thus it is strongly implicated in transformation of the two major 

cellular sources of free energy, carbohydrates and fatty acids. Among many others, it regulates 

the cellular uptake of these nutriments. AMPK is implicated in exercise-induced GLUT4 and 

CD36 translocation to the plasma membrane (Kurth-Kraczek et al., 1999; Luiken et al., 2003; 

Webster et al., 2010). However the exact mechanism of how AMPK regulates GLUT4/CD36 

translocation is not entirely clear. 

 



 
166 AMPK interacts with vesicle associated proteins VAMP2 and VAMP3 – a role in exocytosis? 

 

Figure 2. Regulation of glucose uptake by AMP-activated protein kinase (AMPK). Exercise activates AMPK by a 

multiple pathways. Activated AMPK causes direct or indirect phosphorylation of the Akt substrate AS160 

(Geraghty et al., 2007; Treebak et al., 2006). AS160 interacts with IRAP (insulin-regulated aminopeptidase) (Park 

et al., 2012; Peck et al., 2006), a marker of Glut4 storage vesicles (GSV), which interacts itself directly with glucose 

transporter 4 (GLUT4) (Martin et al., 1997; Ross et al., 1996). Phosphorylation of AS160 triggers translocation of 

GSV to the plasma membrane, leading to incorporation of GLUT4 into the latter and increased glucose uptake.  

 

Both insulin-dependent and -independent pathways of GLUT4 translocation seem to involve 

Akt substrate of 160 kDa (AS160) (Cartee and Wojtaszewski, 2007; Sakamoto and Holman, 

2008; Zaid et al., 2008). This downstream effector protein is anchored to the GSV via cargo 

proteins like insulin-regulated amino peptidase (IRAP) (Larance et al., 2005), (Figure 2). AS160 

is a Rab GTPase-activating protein (RabGAP) that keeps the corresponding Rab in an inactive, 

GDP bound state (Mîinea et al., 2005). In response to insulin, AS160 is phosphorylated at 

Thr642 and other sites by protein kinase B/Akt (Baus et al., 2008; Kane et al., 2002). This leads 

to binding of AS160 to inhibitory 14-3-3 protein that relieves AS160 inhibition of Rab, thus 

triggering Rab-mediated GSV translocation and docking to the plasma membrane, where 

VAMP proteins initiate membrane fusion process (Sano et al., 2003). VAMP2 was identified in 

GSV membranes already in 1992 (Cain et al., 1992), later also VAMP3 and VAMP5 were 

implicated in translocation of GLUT4 and CD36 (Schwenk et al., 2010). The exocytotic process 
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thus finally leads to cell surface localization of GLUT4, CD36, IRAP and other cargo membrane 

proteins (Martin et al., 1997; Ross et al., 1996). More recently, AS160 was found 

phosphorylated by several protein kinases other than Akt. It has been suggested as a 

downstream effector of AMPK in response to exercise/contractile activity. The 

pharmacological AMPK-activator AICAR increases AS160 phosphorylation and contraction-

mediated AS160 phosphorylation is impaired in α2-AMPK knock-out (KO) and knock-down 

mice (Treebak et al., 2006). During post-exercise recovery in vivo, increased muscle AMPKα2 

activity correlates with AS160 phosphorylation state and muscle glucose uptake (Dreyer et al., 

2008). Consistent with this, AS160 has been shown to be phosphorylated by AMPK in vitro at 

Ser570 and Ser588 (Geraghty et al., 2007). Even though less is known for CD36 trafficking, 

there seems to be much similarity to GLUT4, suggesting a very similar mechanism (Schwenk 

et al., 2010). 

In the present study, we describe an interaction between AMPK and VAMP2 and -3 that we 

originally discovered in a yeast-two-hybrid (Y2H) screen for interacting proteins of the AMPK 

β-subunit and that we confirmed by co-immunoprecipitation, pull-down and surface plasmon 

resonance (SPR) with full-length AMPK complexes. We show that interaction does not involve 

VAMP phosphorylation by AMPK, but that VAMP may rather serve as a scaffold to recruit 

AMPK to exocytotic vesicles e.g. involved in cell surface expression of nutrient transporters 

like CD36 or GLUT4. In support of this, we show direct AMPK/VAMP interaction of medium 

affinity as typical for reversible interactions, and the presence of putative AMPK substrates in 

exocytotic vesicles. Finally, we map the involved interaction domains and present data on an 

inhibitory construct that is able to decrease AMPK-VAMP interaction in vitro.    
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Materials & Methods 

Yeast-two-hybrid assay: Cyto-Y2H  

Cytosolic yeast-two-hybrid (Y2H) systems based on reconstitution of split proteins have been 

used for protein interaction screening. The cytoY2H (Möckli et al., 2007) (Dualsystems Biotech, 

Schlieren, Switzerland) is based on the split ubiquitin system (Johnsson and Varshavsky, 1994; 

Stagljar et al., 1998). The membrane-anchored bait is fused to a reporter cassette composed 

of the C-terminal half of ubiquitin half and the artificial transcription factor LexA-VP16 

whereas the prey is fused to the N-terminal half of ubiquitin. Bait/prey interaction leads to 

ubiquitin reconstitution and cleavage by ubiquitin-specific protease that liberate the 

transcription factor thus leading to a classical transcriptional read-out. While the original 

system used an ER-membrane anchor (Ost4P) for the bait, we applied here a version that uses 

a plasma membrane anchor (Aβ-domain). Cloning procedures using Sfi1 sites, transformation 

of yeast cell line NMY51 (MATa his3delta200 trp1-901 leu2-3,112 ade2 lys2: (lexAop)4-HIS3 

ura3: (lexAop)8-ADE2 GAL4) with the lithium acetate method (Gietz and Woods, 2006) and 

yeast spotting were performed as described earlier (Möckli et al., 2007). Different dilutions (1, 

1/10, 1/100, 1/1000) of overnight yeast cultures were spotted on selective medium lacking 

tryptophan and leucine (SD-WL) for growth verification and on medium lacking tryptophan, 

leucine, adenine, and histidine (SD-AHWL) for protein interaction analysis. In some cases up 

to 5 mM 3 Amino-triazole (3-AT; Applichem, Darmstadt, Germany) was added to increase 

selection stringency (see also Y2H cDNA library screening procedures). The spotted plates 

were incubated 48-72 h at 30°C. 

The Cyto-Y2H was used to screen a human brain cDNA library (preys) for interactors of the N-

terminal domain of AMPK- β1 and - β2 subunits (∆β1, ∆β2; amino acids 1-54 as baits). This 

domain was chosen to avoid interactions with other AMPK subunits, and because it has been 

suggested as a putative AMPK interaction domain. A 3-AT concentration of 2.5 mM was 

determined by a pilot screen testing autoactivation by using empty library vector. About 6.2 × 

106 and 3.4 × 106 clones were screened. Plasmids containing the cDNA sequence of putative 

interaction partners were extracted and reintroduced together with the corresponding ∆β -

encoding bait vector into the reporter yeast strain in order to confirm the interaction. 

Reproducible interactors were sequenced and clones containing in-frame coding sequence 
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and not known as false positives (Dualsystems, personal communication) were retained. To 

verify VAMP2,3/AMPK interactions, paired Y2H assays were performed using ∆β1 and ∆β2, 

full-length β1 and ∆β, as well as α1 and α2 subunits as baits and VAMP2,3 as a prey. Interaction 

with an unrelated bait, Large T antigen (Simian virus), was used as negative control. 

 

Yeast-two-hybrid assay: Split-Trp-Y2H 

The Split-Trp Y2H is based on the split-protein sensor Trp1p (Tafelmeyer et al., 2004). A C-

terminal part of Trp1p (CTrp) is fused to bait subunits and an N-terminal part of Trp1p (NTrp) 

is fused to prey. Upon interaction of bait and prey, active Trp1p is reconstituted from both 

domains, thus allowing growth of yeast strain CRY1 (MATa ura3-1 trp1-1 his3-11,15 leu2-3,112 

ade2-1 can1-100 GAL) on medium lacking tryptophan. CRY1 transformation and spotting were 

similar as above. Selective media either lacked uracil and leucine (SD-UL, controls) or 

additionally tryptophan (SD-UWL, protein interaction analysis). Spotted plates were incubated 

up to 9 days at 27°C.  

 

Expression and purification of GST-fusion protein 

All the GST fusions protein constructs were transformed into competent E. coli BL21-Codon 

Plus (DE3)-RIL cells (Stratagene, La Jolla, CA, USA) and incubated overnight on LB agar 

containing 100 µg/ml ampicillin and 30 µg/ml chloramphenicol. Cultures were routinely grown 

in standard LB medium containing antibiotics (100 µg/ml ampicillin and 30 µg/ml 

chloramphenicol) at 37°C in Erlenmeyer flasks with constant shaking until O.D. (600nm) 0.7-

0.9 (if not indicated otherwise). Cells were then cooled down to 30°C and protein expression 

was induced for 4 hours (if not indicated otherwise) with 2mM isopropyl β-D-

thiogalactopyranoside (IPTG, Eurobio). Cells were harvested by centrifugation at 4000 g, 30 

min at 4°C, harvest and suspended in lysis buffer: PBS (phosphate buffer saline: 137 mM NaCl, 

2.7 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, pH7.4). After 3x15s sonication at 85% of manual 

powered, insoluble material was removed by centrifugation (40000 g, 40 min at 4°C). All 

supernatant was applied by gravity flow to a 5ml Gluthation Sepharose matrix (binding up to 

1 g/mL) (Qiagen, Hilden, Germany) self-packed in a column (diameter 1cm). The column was 
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washed with 3x5 column volumes of PBS and proteins were eluted with 10 ml of 10 mM L-

glutathione reduced (Sigma-Aldrich) in 50mM Tris-HCl, pH 8. Ten µl of each elution fraction 

were mixed with Laemli sample buffer, separated by SDS-polyacrylamide gel electrophoresis 

(SDS-PAGE, 12% acrylamide), and stained with Coomassie. Protein concentrations were 

determined according to Bradford (Bradford, 1976) with the Biorad microassay (Biorad, 

Reinach, Switzerland) and BSA as standard. 

 

Preparation of synaptic vesicles 

Synaptic vesicles were obtained from Wistar rat forebrains by differential centrifugation and 

a density gradient procedure (Whittaker et al., 1964). Rat forebrains were homogenized in 

sucrose buffer (0.32 M sucrose, 4 mM HEPES pH 7.4) and separated into fraction P1 (nuclei, 

large myelin fragments, tissue debris), P2 (mitochondria, synaptosomes, small myelin 

fragments, some microsomes) and S2 (microsomes, some small mitochondria and 

synaptosomes, and soluble proteins). The synaptosomal fraction (P2) was washed two times 

with sucrose buffer and re-suspended in water (2 ml/mg tissue) to disrupt synaptosomal 

membranes and liberate synaptic vesicles. Synaptic vesicles were then purified on a 

discontinuous sucrose density gradient composed of 20 mL 0.6 M sucrose, 5 mL 0.4 M sucrose 

and 5 mL sample. After centrifugation for 2 h at 53500 g (4°C), vesicles were located in the 0.4 

M sucrose phase. Enrichment of synaptic vesicles was verified by immunoblotting using anti-

VAMP2 antibody (1:3000, Pierce Biotechnology, Rockford, IL, USA). All protein concentrations 

of biological samples were determined using the BCA Protein Assay Kit according to provider’s 

instruction (Thermo Scientific, Rockford, IL, USA).  

 

In vitro analysis of AMPK phosphorylation on VAMP2/3 and synaptic fractions 

AMPK 221TD was activated by incubation in kinase buffer (200 µM ATP, 50 µM AMP, 5 mM 

MgCl2, 1 mM DTT, in 10 mM HEPES pH 7.4) for 20 min at 30°C. Purified GST-ACC (200 pmol) 

and GST-VAMP2 (200 pmol), GST-VAMP3 (200 pmol), synaptosomal proteins (20 µg) and 

vesicular proteins (1.3 or 2.6 µg) were incubated for 2-8 min at 37°C with 200 µM [γ-32P] ATP 

(specific activity 6000 Ci/mmol ATP) in presence or absence of 221TD (30 pmol) previously 
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activated by incubation with 1 pmol CamKKβ for 20 min at 30°C in kinase buffer. Kinase 

reactions were stopped by addition of Laemli buffer and subjected to SDS-PAGE (12%) with 

Coomassie staining and analysis by Typhoon phosphoimager (GE Healthcare). 

 

Co-immunoprecipitation of AMPK and VAMP2 

VAMP2 was immunoprecipitated from synaptic vesicle fractions (20 µg protein) incubated 

with 1 µg recombinant His-tagged AMPK (221TD) using anti-His-tag antibody (1:200, 2366, Cell 

Signaling Technology, Danvers, MA, USA) and protein A sepharose (10%) in IP-buffer (10 mM 

HEPES pH 7.3, 100 mM NaCl, 6 g/L BSA, 0.5 % dodecylmaltoside) overnight at 4°C. The 

Sepharose was washed 4 times with wash-buffer (10 mM HEPES pH 7.3, 100 mM NaCl, 0.1 % 

Tween 20), re-suspended in SDS-PAGE sample buffer, and the solubilized denatured proteins 

were subjected to SDS-PAGE and immunoblotting using anti-VAMP2 antibody (1:3000, Pierce 

Biotechnology, Rockford, IL, USA). 

 

Co-pull down of AMPK and VAMP2 

20 µg vesicle fraction were incubated with or without 1 µg recombinant His-tagged AMPK 

(221TD) overnight at 4°C in IP-buffer containing 10 mM imidazole and 10 % nickel-

nitrilotriacetic acid (NTA) Sepharose (Qiagen, Hilden, Germany). The Sepharose was washed 5 

times with wash-buffer containing 10 mM imidazole and proteins bound to the Sepharose 

beads were directly re-suspended and denatured  in SDS-PAGE sample buffer and subjected 

to SDS-PAGE and immunoblotting, using anti-VAMP2 antibody as above.  

 

Cloning of VAMP3 and AMPK constructs 

Truncated constructs of VAMP 3 (Q15836) were amplified from vector pDSL20-V3 obtained in 

our Y2H screen library (Dualsystems Biotech AG, Schlieren, Switzerland) using PCR with 

specific primers (Table 1).  
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Table 1. Primers used for amplification of VAMP3 clones. 

VAMP3 fw CAATGTATTGGCCATTACGGCCATGTCTACAGGTCCAACTGCTGC 

rev CAATACATTGCAGGCCGAGGCGGCCCCTGAAGAGACAACCCACACGATG 

SNARE-domain fw CAATGTATTGGCCATTACGGCCATGAGACTTCAGCAGACACAAAATC 

Rev CAATACATTGCAGGCCGAGGCGGCCCCCTTCCACCAATATTTCCTCTTC 

Ct-V3 Fw CAATGTATTGGCCATTACGGCCGACGCACTGCAGGCAGGCGCTTCTCAA 

Rev CAATACATTGCAGGCCGAGGCGGCCCCTGAAGAGACAACCCACACGATG 

Nt-V3 Fw CAATGTATTGGCCATTACGGCCATGTCTACAGGTCCAACTGC 

rev CAATACATTGCAGGCCGAGGCGGCCCCCTTGCAATTCTTCCACC 
Green:sfi1 restriction enzyme site/ Bold: hybridization site 

 

Amplified PCR sequences containing Sfi1 sites on 3’ and 5’ ends of the coding sequence were 

introduced into yeast two-hybrid (Y2H) vectors pCab and pDSL20 (Dualsystems Biotech AG, 

Schlieren, Switzerland) containing two additional Sfi1 sites for Y2H experiments.  

The Nter-GBD domain of AMPK β2 comprising the N-terminal VAMP interaction domain 

(amino acids 1-71) and the glycogen binding domain (amino acids 72-168) was PCR-amplified 

(Table 2) to be inserted into bacterial expression vector pAB52s (derived from pET52b(+), 

Novagen, by insertion of a second Sfi1 site and a N-terminal Strep-tag in the coding sequence), 

and in vector pcDNA3.1(-) (Invitrogen) for eukaryotic expression.  

Table 2. Primers used for PCR-amplification of Nter-GBD β2 AMPK domain.  

To be inserted in pAB52s 
 fw Sfi1 CAATGTATTGGCCATTACGGCCATGGGAAACACCACCAGCGA 

rev Sfi1 CAATACATTGCAGGCCGAGGCGGCCCCCTATAACTTTAAAGCATCGAACACCTCAAAATCA 

To be inserted in pcDNA3.1 
 fw Hind3 CAATGTATTCTCGAGATGGGAAACACCACCAGCGA 

rev Xho1 CAATACATTGCAAAGCTTCTATAACTTTAAAGCATCGAACACCTCAAAATCA 
Green: restriction enzyme site/ Bold: hybridization site 

 

Expression and purification of Strep-GBD Nter β2 domain 

The fusion protein construct Strep-GBDNter β2 domain was transformed into competent E.coli 

BL21-Codon Plus (DE3)-RIL cells (Stratagene) and incubated overnight on LB agar containing 

100 µg/ml ampicillin and 30 µg/ml chloramphenicol. Cultures were grown in LB containing 

antibiotics at 37°C with shaking until OD (600 nm) 0.7-0.9. Cells were then cooled down to 

30°C and protein expression was induced for 4 hours with 2 mM isopropyl β-D-

thiogalactopyranoside (IPTG, Eurobio). Cells were harvested and suspended in lysis buffer: PBS 

(phosphate buffer saline) with complete EDTA-free protease inhibitor cocktail (Roche). After 
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sonication, insoluble material was removed by centrifugation (40000 g, 40 min at 4°C). The 

supernatant was applied to a Strep Tactin Superflow column (Merck KGaA, Darmstadt, 

Germany) and Strep-fusion proteins were purified according to the purification protocol 

provided by the manufacturer.  

 

In vitro activation of AMPK by CamKKβ 

AMPK221 (4 pmol) was activated by incubation with 1 pmol CamKKβ for 20 min at 30°C in 

kinase buffer (200 µM ATP, 50 µM AMP, 5 mM MgCl2, 1 mM DTT, in 10 mM HEPES pH 7.4).  

 

Surface plasmon resonance  

Binding of inactive AMPK221 to the soluble, cytosolic domain of VAMP2 (amino acids 1-94, 

kind gift of Rothman lab, Yale University, USA) was analyzed by surface plasmon resonance 

(SPR) with a Biacore T100 instrument (GE Healthcare). The SPR signal is expressed in arbitrary 

response units (RU) which are proportional to the amount of material bound at a sensorchip 

surface. All experiments were carried out at 25°C in running buffer containing 10 mM HEPES 

(pH 7.4), 50 mM K-acetate, and 0.005 % Surfactant P20 (GE Healthcare), using stock solutions 

of VAMP2 domain (3.34 mg/mL in 25mM HEPES pH7.8 containing 100 µM TCEP, 200 mM KCl, 

10% glycerol and 400 mM Imidazole) and AMPK221 (3.1 mg/ml in phosphate buffer 50 mM 

pH8 containing 50 mM NaCl, 250 mM imidazole. Soluble VAMP2 domain was randomly 

immobilized on a carboxy-methylated dextran sensorchip (CM5; GE Healthcare) using routine 

covalent amine coupling according to the manufacturer’s instructions. Control lanes were only 

treated with amine coupling reagents without protein. A defined immobilization level of 

VAMP2 domain was achieved by multiple injections of VAMP2 onto the activated chip at a 

flow rate of 5 µl/min. AMPK association and dissociation kinetics (300 s each) were recorded 

at a flow rate of 30 µl/min. The initial baseline was recovered by injection of 150 μl 0.5 M NaCl. 

For determination of binding parameters, 400 RU VAMP2 were immobilized. AMPK221 stock 

solution, inactive or activated in vitro by CamKKβ, were diluted into running buffer to different 

concentrations (7.5 and 12.5 μM) just prior to injection. At lower or higher AMPK 

concentrations there was an unacceptable signal/noise ratio, possibly because AMPK became 
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unstable or bulk refractive index change was too important, respectively. Binding curves of 

inactive or active AMPK with VAMP2 domain were calculated as the difference between 

VAMP2-containing channels and control channels. Kinetic data were subjected to a global fit 

with a simple Langmuir 1:1 kinetics (Biacore software, GE Healthcare). The affinity KD 

(dissociation equilibrium constant) was derived from rate constants as KD = koff / kon.  

For competition binding experiments, 900 RU VAMP2 were immobilized, and the buffer of 

AMPK221 stock solution was exchanged against Biacore running buffer by 20 concentration-

dilution cycles using a Amicon-30 device (Merck Millipore). A constant concentration of 4 μM 

AMPK221 was pre-mixed with a concentration series (0, 1, 2, 4, 8, and 16 μM) of AMPK β-

subunit N-terminal domain (AMPK-βN; stock solution of 0.4 mg/ml in Tris-buffer 50 mM pH8). 

Control-corrected AMPK221 binding levels at a reporting point 150 s after injection were 

recalculated into percentage of bound AMPK221 vs. AMPK-βN using a calibration curve based 

on their different molecular mass (135 kDa vs. 20 kDa) and assuming a fixed number of binding 

sites shared by both proteins (Figure 3). These data were fitted to a sigmoidal dose-response 

curve using using Sigma Plot 10.0 (Systat Software).  

 

 

Figure 3. Calibration curve for competition binding assay of AMPK221/VAMP2 interaction and AMPK-βN as 

competitive inhibitor. Data given in Figure 13 were recalculated into percentage of bound AMPK221 vs. AMPK-

βN based on their different molecular mass (135 kDa vs. 20 kDa) and assuming a single binding site shared by 

both proteins. For further details see Materials & Methods. 
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Membrane fusion assay 

Full length t-SNARE and v-SNARE protein expression and purification were performed as 

described (Parlati et al., 1999; Weber et al., 1998). All lipids for proteoliposome preparation 

were obtained from Avanti Polar Lipids. For white vesicles, 100 µL of a 15 mM premixed lipid 

solution in chloroform (POPC (1-plamitoyl, 2-oleoyl phosphatidylcholine):DOPS (1,2-dioleoyl 

phosphatidylserine), in an 85:15 mol ratio), and for fluorescent (red) donor vesicles 100 µL of 

a 3 mM premixed lipid solution in chloroform (POPC (1-plamitoyl, 2-oleoyl 

phosphatidylcholine):DOPS (1,2-dioleoyl phosphatidylserine):rhodamine-DOPE (1,2-dioleoyl-

sn-glycero-3-phosphoethanolamine: PE-NBD (phosphatidylethanolamine), in a 82:15:1.5:1.5 

mol ratio), were dried down in 10x75 mm glass test tubes by a gentle stream of nitrogen (15 

min), and any remaining traces of chloroform were then removed under vacuum for 1 h, 

leaving a pure lipid film.  Then t-SNARE (SNAP25) (200 lipids/FLT) is added to the white lipid 

film and volume adjusted with 1% octyl-β-D-glucopyranoside (OG) in buffer A (25 mM Hepes-

KOH (pH7.4), 3 M KCl, 10% glycerol, 1 mM DTT) in order to have a final solution of 500 µL 

(3mM lipids), and v-SNARE (VAMP2) (40 lipids/FLV) is added to the red lipid film and volume 

adjusted with OG 1% in buffer A in order to have a final solution of 100 µL (3 mM lipids). In 

both cases, the lipids were dissolved by gentle agitation for 15 min at room temperature. 

Vesicles were then formed from these samples by rapid dilution followed by extensive dialysis 

as follows. While vortexing vigorously, the sample was diluted with twice the sample volume 

of buffer A (at room temperature), thereby diluting the detergent OG below its critical micellar 

concentration and promoting vesicle formation. Then detergent was removed by dialysis (in 

Spectrapore 6-8 kDa cut-off dialysis tubing) against 3 L of buffer overnight at 4°C (2-3 mL/min). 

For free protein removal, 1.5 mL of t-liposomes were mixed with 1.5 mL of HistoDenz 80% and 

poured into a MLS50 Beckman centrifuge tube (5 mL UltraClear) and overlayed with 1.5 mL of 

30% HistoDenz and 900 µL of buffer A. This was centrifuged 5 h at 46000 g, and twice 240µL 

were collected from each tube (~ 6.25 mM lipids). In analogy, 300 µL of v-liposomes were 

mixed with 300 µL of HistoDenz 80% and poured into a MLS50 Beckman centrifuge tube (0.8 

mL UltraClear) and overlaid with 100 µL of HistoDenz 30% and 75µL of buffer A. This was 

centrifuged 5 h at 46000 g, and twice 40 µL were collected from each tube (~ 7.5 mM lipids). 

Standard fusion assays were performed in white 96-well FluoroNunc plates (Nunc). 45 µL 

unlabeled t-liposome (white) were prewarmed in the plate at 37°C in presence or absence of 
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AMPK, then 5 µL of labeled v-liposomes (red) were added. The plates were then placed in the 

Fluorimeter (Fluoroskan II, Labsystems) equilibrated to 37°C. NBD fluorescence was followed 

with filters set at 460nm (excitation, half band width 25 nm) and 538 nm (emission, half band 

width 25 nm). NBD fluorescence was monitored every minute for 140 min. To obtain 

maximum intensity of fluorescence for normalization, 10 µL n-Dodecyl-β-maltoside (10%) was 

added.  
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Results 

Yeast-two-hybrid screen for AMPK interactors identifies VAMP3 

Putative interaction partners of the N-terminal domain of AMPK β-subunits (∆β) were 

identified in a Y2H screen using a human brain cDNA library. The applied novel split-ubiquitin 

cyto-Y2H system (Möckli et al., 2007) detects protein-protein interactions occurring in the 

cytosol. It is coupled to a transcriptional read-out that allows growth on nutrient-deficient 

medium that detects also weak or transient interactions. About 6.2 × 106 and 3.4 × 106 clones 

were screened for AMPK-∆β1 and -∆β2 subunits, respectively, yielding 102 primary interacting 

clones, including 38 that reproducibly interacted with ∆β in paired Y2H assays as compared to 

a negative control, the unrelated bait Simian virus large T antigen (Table 3). Sequencing 

confirmed 5 clones containing in-frame coding sequences not known or not supposed to be 

false positives in Cyto-Y2H (Dualsystems, personal communication) and corresponding to 

different proteins (Table 4). Sequencing of these clones identified mainly transmembrane 

proteins, including the vesicle associated membrane protein (VAMP) family member 3.    

Table 3: Cyto-Y2H screen for interactors of AMPK β1 or β2 N-terminal domain in a human cDNA library. 

 Δβ1 Δβ2 

Library human brain cDNA library human brain cDNA library 

Transformation efficiency 2.2x105clones/ug library 1.2x105clones/ug library 

Clones, total number ca. 6.2x106 ca. 3.4x106 

Clones, selected on SD-AHTL 69 33 

Clones, bait dependent 1 26 12 

Clones, selected 2 4 different 2 different        

1) Clones interacting with Δβ but not with LT. 2) Clones with in-frame CDS not corresponding to known false positives, 

corresponding to different proteins. In addition, known interactors of APP were excluded, since the transmembrane domain 

of APP is used as a membrane anchor in the Cyto-Y2H screen.  

 

Table 4. Putative AMPK interactors identified in the Cyto-Y2H screen. 

Bait Gene name Encoded protein 
SwissProt 

entry 
Identified part 
(amino acids) 

∆β2 VAMP3 Vesicle-associated membrane protein 3 Q15836 22-80 

∆β2 C14orf1 Probable ergosterol biosynthetic protein 28 Q9UKR5 1-140 

∆β1 NRDP1/RNF41 E3 ubiquitin-protein ligase Nrdp1 Q9H4P4 136-316 

∆β1 JWA/ARL6IP5 JWA protein or PRA1 family protein 3 O75915 1-188 

∆β1 CLDND1 Claudin domain-containing protein 1 Q9NY35 203-253 
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VAMP 2 and 3 are interacting with AMPK beta 

We further concentrated on VAMP proteins because of the apparent functional link between 

vesicle exocytosis and  AMPK activation. We first checked whether VAMP3 can interact with 

both ∆β constructs and also with full-length β-subunits, and whether such interactions are 

preserved in the highly homologous VAMP2 isoform. VAMP3 indeed interacted with both 

truncated and full-length β1 and β2, but not with isolated SNARE domain common to all 

VAMPs (amino acids 31-91 in VAMP2, 14-74 in VAMP3). All these interactions were conserved 

in VAMP2 (Figure 4). These results were confirmed by an independent Y2H assay, the Split-

Trp system (data not shown), as well as co-immunoprecipitation and pull-down of VAMP2 

from synaptic vesicles by heterotrimeric full-length AMPK (Figure 5). 

 

Figure 4. Two major VAMP isoforms interact with the AMPK β-subunit. Paired Cyto-Y2H was performed with 

∆β1, ∆β2, β1 and β2 as baits and VAMP2 or 3 (V2, V3) or the shared SNARE domain (SN, VAMP2 amino acids 31-

91) as preys. Presence of bait and prey plasmids are verified on selective media (SD-WL). Bait/prey interaction 

leads to reconstitution of ubiquitin and a transcriptional readout allowing growth on medium lacking in addition 

adenine and histidine (SD-AHWL). Spots represent yeast grown for 72h at 30°C. Negative controls: LT, Large T 

Antigen of Simian Virus (aa 84-704) and empty prey vector (---). Positive controls: AMPK -β dimerization. For 

more details see Materials and Methods. 

 

 

Figure 5. AMPK/VAMP2 interaction is confirmed by immunoprecipitation and pull-down. (A) Immuno-

precipitation of VAMP2 from purified synaptic vesicles with added constitutively active AMPK αT172D-Hisβ2γ1 

(221TD) using anti-His-tag antibody. (B) Pull-down of VAMP2 from purified synaptic vesicles by added 221TD 

using Ni-NTA Sepharose. VAMP2 was detected by immunoblot analysis with anti-VAMP2 antibody. 
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VAMP is not a substrate for AMPK 

For further in vitro assays, the soluble N-terminal domains of VAMP2 and -3 fused to an N-

terminal GST-tag (GST-ntVAMP3, GST-ntVAMP2) were produced in E. coli and purified. When 

these proteins were subjected to an in vitro phosphorylation assay, neither of both VAMPs 

was phosphorylated (Figure 6). The same negative results were obtained when Strep-

ntVAMP3 or a constitutive active AMPK 221TD mutant were used in such in vitro experiments 

(data not shown). Thus, at least the soluble, N-terminal VAMP domain is not an AMPK 

substrate. This coincides with the lack of any consensus AMPK phosphorylation recognition 

sites in both VAMP2 and VAMP3 (Prosite Scan for [MLIFV]-[XRKH]-[XRKH]-X-X-[ST]-X-X-X-

[MLIFV];  (Dale et al., 1995; Scott et al., 2002)). 

 

 

Figure 6. VAMPs are not AMPK substrates. AMPK 221WT (4 pmol) previously activated by CamKK (1 pmol) was 

incubated with GST-ntVAMP3 or GST-ntVAMP2 (200 pmol) or with GST-ACC (100 pmol) for 8 min at 37°C. In vitro 

phosphorylation assays were analyzed by SDS-PAGE and Typhoon phosphoimager. Note the AMPK 

autophosphorylation of α and β subunits. 
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VAMP is not directly regulated by AMPK-binding  

Since the v-SNARE VAMPs did not serve as an AMPK substrate, we hypothesized that the 

interaction alone could affect VAMP-mediated membrane fusion. In an in vitro assay for 

SNARE-complex induced membrane fusion, we tested whether addition of AMPK affects 

fusion of two vesicle populations containing either the v-SNARE VAMP2 or a t-SNARE SNAP25 

(Figure 7). However, the interaction of VAMP2 and AMPK did not affect SNARE-complex 

function in membrane fusion.  

 

 

Figure 7. AMPK/VAMP interaction does not affect vesicle fusion. Mixing of two vesicle populations containing 
either v-SNARE (VAMP2) or a t-SNARE (SNAP25) together with NBD- and rhodamine-labelled lipids leads to 
SNARE-mediated vesicle fusion, dilution of the fluorescent labels and thus loss of FRET between NBD and 
rhodamine. This is monitored by the increase in NBD fluorescence at 538 nm.  Grey and black symbols represent, 
respectively, membrane fusion in absence and in presence of AMPK. For further details see Materials & Methods. 
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Determination of the AMPK-VAMP interaction domain 

Since VAMPs were not phosphorylated by AMPK, we considered the possibility that they could 

act as scaffolding proteins to recruit AMPK to exocytotic vesicles, which could facilitate 

phosphorylation of vesicle-bound AMPK substrates. In support of this model, we could detect 

AMPK together with at least two putative AMPK substrates in a purified fraction of synaptic 

vesicles from rat brain (Figure 8, see arrow in B). 

 

 
Figure 8. AMPK and putative AMPK substrates in synaptic vesicles. (A) Representative immunoblots showing 
that AMPK is present in synaptosome fractions and can be activated. Synaptosomes were treated (+) or not (-) 
with AMPK activator A-769662 for 30 min at 37°C. Immunoblotting of 50 μg synaptosomal proteins probed with 
anti-phospho-ACC, anti-P172 AMPK (Ponceau staining as loading control) or anti-total AMPK antibodies. (B) In 
vitro phosphorylation assay for AMPK substrates. AMPK 221TD (30 pmol) was incubated with synaptic vesicles 
(2.6 or 1.3 µg) for 2 min at 37°C. In vitro phosphorylation assays were analyzed by SDS-PAGE and Typhoon 
phosphoimager. Note the AMPK autophosphorylation of α and β subunits. 

 

To further tackle such scaffolding function of VAMPs, we mapped the interaction domains 

situated in VAMP3 and the AMPK β2 subunit by applying Y2H analysis to different VAMP3 and 

AMPK β2 truncation constructs. Y2H data revealed that the very N-terminal domain of AMPK 

β (Δβ1/2, amino acids 1-54) is sufficient for interaction with full-length VAMP3 (Figure 9). 

However, the N-terminal truncation construct ∆1-54β2 is still able to interact with VAMP3, and 

N-terminal truncation up to the glycogen-binding domain (amino acid 72; construct ∆1-72β2) is 

necessary to suppress the interaction (Figure 9). These results clearly show that the entire N-

terminal sequence of AMPK β2 (amino acids 1-72) can interact with VAMP, and that sequences 

1-54 and 55-72 are sufficient for this interaction.  
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AMPK-β2 subunit constructs 
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Figure 9. Mapping of the AMPK-β2 domain interacting with VAMP2. Paired Cyto-Y2H was carried out as 
described in Figure 4. AMPK β2 subunit constructs used: β2, full length subunit; Δβ2, N-terminal amino acids 1-54; 
∆1-53β2, C-terminal amino acids 54-272;∆1-71β2, C-terminal amino acids 72-272; GBD, glycogen binding domain; 
α/γ-SBS , C-terminal α/γ-subunit binding sequence. (+) proteins interact, (-) no interaction between proteins, 
(ND) not determined. 

 

The mapping occurred to be more complex for VAMP. The VAMP3 clone identified in the 

original Y2H screen corresponds to a truncated version comprising amino acids 22-80, thus 

spanning a large part of the SNARE domain (amino acids 14-74). However, isolated SNARE 

domain did not interact with AMPK-β1/-β2 (Figure 4) or did so only more weakly with AMPK-

β2 and somewhat more weakly (Figure 10). 

We therefore checked separately the C-terminal 50 amino acids of VAMP3 bearing the 

transmembrane domain and a minor part of the SNARE domain, as well as the VAMP3 C-

terminal 14 amino acids which are VAMP-isoform-specific (Figure 10). No interactions were 

detectable with these constructs. Thus, the SNARE domain (in particular the region between 

amino acids 22 and 50) is necessary, but it does not seem to be sufficient for interaction.  Most 

likely, the SNARE domain requires the context of a more extended VAMP structure, as in case 

of the identified Y2H clone (amino acids 22-80), possibly for reaching a proper folding.  

We finally also tested VAMP interaction with the catalytic subunits α1, and α2. VAMP 3 

interacted with AMPK catalytic subunit α2, but not with the α1 isoform (Figure 10B). AMPK-α1 

and -α2 have only 74% sequence homology which may explain these differences. The AMPK γ 

subunit does not correctly express in yeast and cannot be used in Cyto-Y2H.  
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Figure 10. VAMP3 interaction with AMPK. (A) Mapping of the VAMP3 domain interacting with AMPK β1 and β2. 
Paired Cyto-Y2H was carried out as described in Figure 4. (+) proteins interact, (-) no interaction between proteins 
(see (B)). (B) Interaction of VAMP3 with different AMPK subunits. Paired Cyto-Y2H with different AMPK subunits 
or Large T (LT) as negative control (baits) and VAMP3 constructs (preys). Spots represent yeast grown for 48h at 
30°C on selective medium lacking tryptophan, leucine, adenine, and histidine (SD-AHWL). Different VAMP 
constructs used: V3, full-length VAMP3; SNARE, common SNARE domain of VAMP proteins (amino acids 14-74); 
Ct-V3, C-terminal 50 amino acids of VAMP3 bearing a part of the SNARE domain and the C-terminal 
transmembrane domain (TMD); Nt-V3, VAMP3 N-terminal 14 amino acids; α1, α2,, , β1, β2, AMPK subunits; α2 TD, 
a constitutively active AMPK subunit. 

 

Determination of AMPK-VAMP binding kinetics 

To further verify a function of VAMP in recruiting AMPK to transport vesicles, we applied 

surface plasmon resonance (SPR) spectroscopy to (i) test whether AMPK/VAMP interaction is 

direct, (ii) measure the kinetic and equilibrium binding parameters, and (iii) analyze how to 

experimentally interfere with AMPK/VAMP interaction. 
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Figure 11. Surface plasmon resonance identifies interaction of AMPK221 with VAMP2. Representative SPR 
traces of association (contact) and dissociation phase of 7.5 and 12.5 μM AMPK221 with soluble VAMP2 domain 
(thin lines). Global fitting of traces to 1:1 Langmuir kinetics (bold lines) and the corresponding residuals (below) 
are given. Data were recorded at 25°C and 30 μl/min flow rate. The calculated interaction parameters are: 
ka=2.5·102 M-1 s-1, kd=2.2·10-3 s-1, and KD=8.5·10-6 M. For further details see Materials & Methods. 

 

For SPR, we used an immobilized soluble N-terminal VAMP2 domain (amino acids 1 to 94) and 

injected AMPK221 heterotrimer in the flow (Figure 11). The data show that AMPK and VAMP 

interact directly with an affinity constant (KD) of 8.5µM. This rather low affinity argues for a 

more transient type of interaction, although in vivo additional factors may increase this 

affinity. We further tested whether VAMP interaction is different between AMPK in an active 

or inactive conformation by activating AMPK with CamKKβ prior to SPR experiments (Figure 

12). Activation of AMPK caused a slightly faster association rate without affecting dissociation, 

thus increasing affinity.  
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Figure 12. Surface plasmon resonance identifies differences between active and inactive AMPK in VAMP2 
interaction. Representative SPR traces of association (contact) and dissociation phase (thin lines) of AMPK at 
12,5 μM, either activated in vitro by CamKKβ (top trace) or inactive (bottom trace), with soluble VAMP2 domain. 
Data were recorded at 25°C and 30 μl/min flow rate. Traces were fitted individually to 1:1 Langmuir kinetics (bold 
lines) and the corresponding residuals (below) are given. The calculated interaction parameters are: ka=4,5·102 M-

1 s-1, kd=1,5·10-3 s-1, and KD=3,2·10-6 M (for active AMPK), and ka=2,5·102 M-1 s-1, kd=1,8·10-3 s-1, and KD=7,4·10-6 M 
(for inactive AMPK). For further details see Materials & Methods. 
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Inhibition of AMPK-VAMP interaction 

In the next step, we wanted to disrupt the interaction between VAMP and AMPK. Based on 

the mapping of the interaction domains (Figure 9 and Figure 10), we decided to generate an 

AMPK β2 construct comprising the N-terminal VAMP interaction domain (amino acids 1-71) 

and the glycogen binding domain (amino acids 72-168). This construct should be able (i) to 

fold correctly (with the GBD domain being successfully crystallized), (ii) to competitively inhibit 

the AMPK/VAMP interaction, while (iii) being unable to interact with α- and γ-subunits.  In a 

competition assay, using again soluble VAMP domain immobilized at the chip surface, we co-

injected both, AMPK221 complex and AMPK-βN domain. The assay clearly showed a decrease 

in AMPK221 binding with increasing concentrations of AMPK-βN in the lower micromolar 

range (Figure 13).   

 

Figure 13. Competition binding assay of AMPK221/VAMP2 interaction and AMPK-βN as competitive inhibitor. 
Representative SPR traces of association (contact) phase with 4 μM AMPK221 and (from top to bottom) 0, 1, 2, 
4, 8, or 16 μM AMPK-βN. Data were recorded at 25°C and 30 μl/min flow rate. For further details see Materials 
& Methods. 

 

The percentage of bound AMPK was then calculated from the binding response by correcting 

for bound AMPK-βN (which has much lower molecular mass) and assuming a fixed number of 

binding sites shared by both proteins. These data were fitted to a sigmoidal dose-response 

curve (Figure 14). They demonstrate that at an equimolar concentration of 4 μM of both 

proteins, AMPK221 and AMPK-βN, the interaction is inhibited by about 35%. Inhibition 

reaches 80% at higher AMPK-βN concentrations. Possibly, the remaining AMPK-βN-resistant 

AMPK/VAMP interaction is due to the interacting α subunit (Figure 10). The SPR study allowed 
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us to confirm a direct interaction between AMPK221 and VAMP2 that can be inhibited by a 

AMPK-βN construct. 

 

 

Figure 14. AMPK221 β-subunit N-terminal domain competes with AMPK221 for VAMP2 binding. Competition 
binding assay showing the effect of AMPK221 β-subunit N-terminal domain (AMPK-βN) on AMPK221/VAMP2 
interaction. SPR binding kinetics of 4 μM AMPK221 to soluble VAMP2 domain were determined as a function of 
the presence of 0, 1, 2, 4, 8, or 16 μM AMPK-βN. Reporting points taken at 150 s of association from Figure 13 
were used for calculation of data presented here. For further details see Materials & Methods. 
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Discussion  

One of the most interesting putative AMPK interactors identified in our Y2H assays were 

members of the large VAMP family, VAMP2 and VAMP3, both essential players in exocytosis. 

Localized at different intracellular storage vesicles, they are involved in their correct sorting 

and fusion with specific target membranes (Mochida, 2000; Procino et al., 2008; Sai et al., 

2013). Regulation of many of these exocytotic processes seems to involve also AMPK. The 

most prominent example is cell surface expression of the nutrient transporters GLUT4 

(glucose uptake) and CD36 (fatty acid uptake), playing a central role in regulating glucose and 

lipid uptake (Heather et al., 2013; Holman and Cushman, 1994; Karylowski et al., 2004). 

However, also the release of neurotransmitters like glutamate from synaptic vesicles in 

synapses is controlled by AMPK (Cunningham et al., 2012). In this study we provide insight 

into the molecular properties of the AMPK/VAMP interaction, and develop tools to further 

study its functional role in vitro and in vivo. Taken together with published data, our study 

suggests an AMPK scaffolding function for VAMP2 and VAMP3.  

The interaction between AMPK and VAMP2/3 found in Y2H assays was confirmed by multiple, 

independent interaction assays, including co-immunoprecipitation, pull-down and SPR. Thus 

the VAMP/AMPK interaction has been established in vivo. We could also map the interaction 

domains to a central portion of VAMP3 and more precisely to the N-terminal 72 amino acids 

of the AMPK β-subunit. In addition, an N-terminal AMPK-β domain was able to competitively 

inhibit AMPK/VAMP interaction in SPR assays. This domain could thus be used to disturb 

VAMP/AMPK interaction in vivo to study e.g. effects on exocytosis. Addition of the GBD-β 

domain (73-168 amino acids) which is an autonomously folding domain should help to 

correctly structure the entire N-terminal AMPK-β domain of 168 amino. 

There is ample evidence that both interaction partners, AMPK and VAMP2/3, are acting 

sequentially in the same signaling pathway of exocytosis. However, so far they have been 

involved at very different stages. In the best studied case, which is the exocytosis of GLUT4-

containg storage vesicles (GSV), AMPK acts upstream by phosphorylating AS160 at Ser570/588 

to trigger GSV release and translocation to the cell surface, the key event in exercise-

stimulated glucose uptake. In contrast, VAMP2 and VAMP3 seem to act very much more 

downstream in the docking and membrane fusion processes. Our data however suggest that 
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both proteins have a more intimate role to play here. This role does not include direct 

regulation of VAMPs by AMPK. As our in vitro data suggest, VAMPs are neither a direct 

substrate of AMPK nor are they regulated in their membrane fusion activity by bound AMPK. 

By contrast, VAMPs may represent a type of scaffolding protein that allows recruitment of a 

fraction of AMPK to the surface of storage vesicles. In support of this, our SPR experiments 

confirmed a direct interaction between both proteins with an affinity in the lower µM-range, 

increasing when AMPK was activated. Such affinities are typical for interactions mapped at 

the surface of GSVs, such as the interaction between the RabGAP AS160 and the insulin 

regulated amino peptidase (IRAP; Park et al., 2012). Interestingly, the GLUT4-interacting IRAP 

is like VAMP a transmembrane protein (Martin et al., 1997; Ross et al., 1996), and both may 

share a common functional feature: they represent scaffolds to recruit the “true” signaling 

molecules, AS160 and AMPK, respectively, to the storage vesicles.  

We would thus propose a model (Figure 15) in which VAMP2 and VAMP3 have an additional 

role at the initiation step of exocytosis. By interacting with AMPK or even more the activated 

form of AMPK, they would bring the kinase in close vicinity of its substrate AS160 for triggering 

downstream exocytosis. This concept may be generally true for exocytotic translocation 

processes which involve VAMP2 and VAMP3 as v-SNAREs. In addition to GLUT4 and CD36 

translocation to the plasma membrane, this could also concern the release of 

neurotransmitters from synaptosomes, which involves VAMP2-containing storage vesicles 

and possibly also activation by AMPK (Cunningham et al., 2012). In support of this, we found 

that synaptic vesicles (i) contain considerable amounts of AMPK, (ii) contain different putative 

AMPK substrates that could act similar to AS160, and (iii) fuse with the synaptosome 

membrane for glutamate release depending on the AMPK activation state (not shown).  

In summary, our data support formation of transient AMPK/VAMP complexes in vitro and in 

vivo. They suggest a role of VAMP2 and VAMP3 upstream of vesicle docking and membrane 

fusion, in form of a scaffolding function that recruits AMPK to storage vesicles for 

phosphorylation of vesicle-located substrates such as AS160. It has still to be tested whether 

such a model applies in vivo, either in case of nutrient transporter externalization or 

neurotransmitter release. Such experiments will employ the N-terminal AMPK β2-construct 

for which we have shown competitive inhibition of the AMPK/VAMP interaction. Its 

expression in cells should for example reduce AS160 phosphorylation and GLUT4 or CD36 
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appearance at the cell surface. It also remains to be established whether this novel function 

of VAMPs is a general feature of exocytotic processes. 

 

Figure 15. VAMP as a scaffold to recruit AMPK to glucose storage vesicles. Exercise causes AMPK activation. 
Interaction of AMPK with the VAMP scaffold then recruits AMPK transiently to the vicinity of its substrate AS160, 
anchored via the IRAP scaffold to the same GSVs. Thus, AMPK could easily phosphorylate AS160, which triggers 
translocation of GSVs to the plasma membrane, integration of cargo like GLUT4 and IRAP into the plasma 
membrane, and finally an increase in glucose uptake.  
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Conclusions and outlook  

During the three-year work on this thesis, over 4000 articles have been published about 

AMPK. Although some of them identified new AMPK interaction partners and substrates (Liu 

et al., 2013; Um et al., 2013; Zhang et al., 2012), few have applied large scale screening to 

characterize the AMPK signaling network (Banko et al., 2011; Thali et al., 2010). This thesis 

provides confirmation and further functional characterization of several novel AMPK 

interaction partners and substrates which emerged from two large scale screens performed 

in the laboratory. First, a two dimensional in vitro screen combining surface plasmon 

resonance (SPR) with in vitro phosphorylation assays allowed identification fumarate 

hydratase (FH) as new putative AMPK substrate. Second, split-ubiquitin based cytosolic yeast 

two-hybrid (Y2H) systems combined with complementary interaction methods (split-Trp1 

based Y2H, co-immunoprecipitation, SPR) led to the identification of two protein interaction 

partners of AMPK: E3 ubiquitin-ligase NRDP1 and vesicle-associated membrane proteins 2 and 

3 (VAMP2/3). Finally, glutathione S-transferase (GST) was found to interact with AMPK during 

our interactomics research on AMPK. The kinase was pulled-down with recombinant proteins 

fused to a GST-tag and we could show that GST alone is sufficient to interact with AMPK. 

During this thesis, several of these putative AMPK interaction partners and substrates could 

be characterized in more detail, in particular concerning their functional role in the AMPK 

signaling network. 

 

Analysis of the AMPK interactome 

New protein interaction partners of the AMPK complex were identified in two large scale 

screening interactomic strategies: (1) A novel procedure combining SPR and phosphorylation 

assay, which revealed new AMPK-interacting substrates such as FH. (2) A cyto-Y2H screen for 

new interactions partners of AMPKβ1 and AMPKβ2, which led to identification of five putative 

AMPK protein interaction partners. The latter approach seems particularly interesting since it 

is not limited to AMPK substrates. Most work in this thesis was done with two candidates that 

emerged from this screen: NRDP1 and VAMP3.  
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Both screens yielded less candidates than anticipated. Probably, this relates to the high 

stringency that we applied, but also screening protocols could be improved. All investigated 

proteins occurred to be true positive interaction candidates. Our approach also indicates that 

high throughput interactomic methods, although giving valuable new insight, should be 

followed by targeted studies to verify the actual relationships e.g. between two interaction 

partners in a complex network. This may reveal very different roles of a given interaction, 

going from pure scaffolding functions to different kinds of mutual modifications involving one 

or both interacting proteins.       

 

Glutathione S-transferase (GST)  

The GST of Schistosoma japonicum (GST-Sj) commonly used as GST-tag, and the rat GST 

isoforms GSTM1 and GSTP1 were shown to interact with heterotrimeric AMPK via the N-

terminal domain of the AMPK β-subunit in initial Y2H assays. Here we have confirmed the 

interaction between AMPK and GST by several independent procedures, such as pull-down 

and co-immunoprecipitation, SPR and Y2H. We have further investigated possible functions 

of this interaction, including putative phosphorylation and activation of GST by AMPK or 

glutathionylation and activation of AMPK by GST. We could show that formation of a 

GST/AMPK complex slightly increases GST activity and in turn GST glutathionylates AMPK, 

which increases AMPK activity. Such S-glutathionylation of AMPK leading to non-canonical full 

activation of AMPK under certain conditions could represent an additional layer of AMPK 

regulation. It would link AMPK signaling to redox regulation and position AMPK as a redox 

sensor. It has previously been shown in vivo that under highly oxidative conditions AMPK is 

glutathionylated and activated (Zmijewski et al., 2010). Here, we demonstrate in vitro that 

already under mildly oxidative conditions, GSTM1 and –P1 are able to catalyze AMPK 

glutathionylation. It is well established that reversible protein modification by 

glutathionylation could play a protective role against irreversible protein thiol oxidation which 

is usually associated with permanent loss of protein function and leads to protein degradation 

(Giustarini et al., 2004). Thus glutathionylation of AMPK in mildly oxidative conditions could 

be important for protecting AMPK. Further work should be done to demonstrate the 

significance of AMPK glutathionylation in vivo and to confirm the role of GST in this 

mechanism. To analyze the importance of AMPK glutathionylation, GST inhibitors like 
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ethacrynic acid (EA) or the peptidomimetic glutathione analog TLK199 ([γ-glutamyl-S-

(benzyl)cysteinyl-R-phenyl glycine diethyl ester]) (Tew, 2007) could be used in cells in vivo 

under different oxidative conditions, followed by pull-down of glutathionylated proteins and 

Western blot analysis to detect AMPK.  

 

Fumarate hydratase (FH) 

Among the five putative AMPK substrates found by combining SPR and in vitro 

phosphorylation screening, fumarate hydratase (FH) was confirmed by co-

immunoprecipitation and in vitro phosphorylation assays as AMPK interactor and substrate. 

FH phosphorylation by AMPK also affects its activity in vitro and in HeLa cells. However, after 

thorough phosphosite analysis by mass spectrometry (MS) and site-directed mutagenesis it 

appears that FH is primarily phosphorylated at serine 19 located in the cleavable 

mitochondrial transit or targeting peptide. FH is encoded by one unique nuclear gene and 

could be localized both to mitochondria or to cytosol (Yogev et al., 2011), and in mammals 

only the mitochondrial form contains the transit peptide. Phosphorylation of FH in the 

targeting peptide could thus affect its mitochondrial translocation and reduce the amount of 

mitochondrial FH. Activation of FH due to phosphorylation, as we initially observed, has to be 

reconsidered, since the phophorylatable residue is not present in the mature protein. 

Production of an antibody against phosphorylated serine 19 could provide a tool to study this 

process in vivo, but since lifetime of the native protein containing the targeting peptide is 

probably short, the phosphorylation may be difficult to observe. In addition, overexpression 

of wild type and S19A mutant FH could already give information on mitochondrial import 

efficiency by observation of FH localization (e.g. accumulation of FH-S19A in the cytosol). 

 

E3 ubiquitin-ligase NRDP1 (NRDP1) 

We describe here the first successful production of full-length NRDP1 protein. Previous 

attempts always yielded insoluble protein (Wu et al., 2004). We have also noticed the 

formation of a large proportion of inclusion bodies during NRDP1 production, but could reduce 

their formation and increase yield of soluble protein by reducing the temperature during 
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expression and applying bioreactor conditions. Bioreactor production yielded 3.1 mg of 

soluble NRDP1 protein per liter of culture.    

Y2H analysis led to detection and confirmation of an interaction between NRDP1 and AMPK, 

and allowed to identify the C-terminal domain of NRDP1 and the N-terminal tail of the AMPK 

β-subunit as interaction domains. In an attempt to clarify the functional consequences of this 

interaction, we primarily analyzed phosphorylation and ubiquitination events. Ubiquitination 

assays in HEK293 cells showed that even though AMPK can be ubiquitinated in vivo (Zungu et 

al., 2011), this is no specific function of NRDP1. In contrast, NRDP1 is phosphorylated in vitro, 

but the low level as compared to the AMPK reference substrate acetyl-CoA carboxylase (ACC) 

makes it uncertain whether this is of physiological relevance.  

Considering the high NRDP1 turnover rate caused by its strong autoubiquitination leading to 

proteasomal degradation, we have finally also investigated the effect of AMPK on cellular 

NRDP1 levels. We could show that in HeLa cells in vivo, AMPK overexpression reduces levels 

of NRDP1 by increasing its proteasomal degradation, probably via enhanced NRDP1 

autoubiquitination, independent of phosphorylation by AMPK. These results suggest a role of 

AMPK in NRDP1 turnover, which might be due to (i) activating conformational changes within 

NRDP1, (ii) a NRDP1 scaffolding function of AMPK which recruits several NRDP1 proteins close 

to each other, or (iii) a role for AMPK in disrupting NRDP1 interactions with ubiquitin carboxyl-

terminal hydrolase 8 (USP8), a major stabilizing NRDP1 protein  (Avvakumov et al., 2006). At 

present, our work suggests a functional link between AMPK and NRDP1. However more work 

is needed to understand its putative function in NRDP1 down-regulation. 

Immunocytochemistry combined with confocal microscopy could be used to analyze NRDP1 

localization in situations of AMPK overexpression. In addition work should be done to analyze 

the impact of NRDP1 downregulation on its targets.   

  

Vesicle associate membrane protein (VAMP) 

Interaction of VAMP2 and VAMP3 with AMPK was first shown by us in Y2H assays, and then 

confirmed by pull-down, co-immunoprecipitation and SPR. However VAMPs occurred not to 

be AMPK substrates. Further work on functional consequences of VAMP/AMPK interaction 

was less straight forward, since activity of VAMPs is relatively difficult to assess due to the fact 



 
203 Conclusions & Outlook 

that VAMPs have no simple enzymatic activity but cellular sorting functions. To be able to 

investigate VAMP/AMPK interaction, we have mapped the interaction domain with the idea 

to disrupt the interaction in vivo and to analyze the effect at the cellular level.  

Based on the mapping of the interaction domain, we decided to generate an AMPK β2 

construct comprising the N-terminal VAMP interaction domain (amino acids 1-71) and the 

glycogen binding domain (amino acids 72-168), that we call the AMPK-βN domain. SPR 

confirmed the interaction between VAMP and AMPK and in addition demonstrated that the 

AMPK-βN domain is able to competitively inhibit the interaction. In vitro, a membrane fusion 

assay involving VAMP2 and its in vivo partner t-SNARE (SNAP25) showed that the AMPK/VAMP 

interaction does not interfere with the final VAMP-mediated fusion of vesicles with the plasma 

membrane, indicating that the role of VAMPs in AMPK interaction may be situated further 

upstream.  

AMPK and VAMP2/3 are both implicated in translocation of glucose transporter GLUT4 and 

the long chain fatty acid (LCFA) transporter CD36 to the plasma membrane (Kurth-Kraczek et 

al., 1999; Martin et al., 1998; McGee et al., 2003; Schwenk et al., 2010; Webster et al., 2010). 

The mechanism of how AMPK regulates the translocation of these nutrient transporters is not 

entirely elucidated to date, and the interaction between VAMP and AMPK could be a major 

key to understand it. Therefore, the hypothesis should be tested whether VAMP represents a 

scaffold for AMPK, recruiting it to exocytotic vesicles. This would facilitate phosphorylation of 

AMPK substrates at the vesicle surface, such as AS160 (at serine 570 and 588 (Geraghty et al., 

2007)), to induce vesicle transfer to the cellular periphery. According to this model, 

overexpression of AMPK-βN domain in eukaryotic cells should inhibit AMPK/VAMP 

interaction, reduce AS160 phosphorylation and thus reduce translocation of CD36 or GLUT4, 

observable by combining immunohistochemistry and confocal microscopy.   

In addition to its implication in GLUT4 and CD36 translocation, AMPK/VAMP interaction could 

be of importance for other exocytotic processes that involve VAMP2 or VAMP3 like e.g. 

neurotransmitter release, and possibly also for other VAMPs that have not been tested for 

AMPK interaction. Such scaffolding mechanisms are relevant for understanding the role of 

AMPK localization which was first thought to be diffuse within the cytosol. AMPK secondary 

modifications have already been shown to localize AMPK in certain cellular compartment 
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(McGee et al., 2003; Oakhill et al., 2010; Suzuki et al., 2007); here we present a mechanism by 

which AMPK may be localized at specific sites via its interaction with another protein. 

 

Novel AMPK interactors in the context of the known AMPK signaling network 

The analysis of the four putative AMPK interacting proteins, GSTM1/GSTP1, FH; NRDP1 and 

VAMP2/VAMP3 confirmed all four as actual AMPK interactors, although the roles of the 

interactions seem to be very different in the four cases examined. The only interactor that is 

clearly downstream of AMPK is FH. Phosphorylation of FH within the mitochondrial targeting 

sequence strongly suggests a role of AMPK in FH translocation into mitochondria. Changing 

the charge of the transit peptide could influence its ability to pass through the mitochondrial 

membrane (part 4, p.79). Another interactor, GSTM1/GSTP1, is clearly upstream of AMPK, 

since it glutathionylates and activates the kinase. GST-facilitated-glutathionylation of AMPK 

adds a novel layer of complexity to AMPK activation, depending on the cellular redox state 

(part 3, p.49). The two other candidates, which were identified in the Y2H screen, NRDP1 and 

VAMP2/3, turned out not to be classical substrates. NRDP1 presents an example of a “cross-

talk” protein; this cross-talk would affect cellular levels of NRDP1 (part 5, p.123). Finally, 

VAMP2/VAMP3 (part 6, p.157) may function as scaffold protein to recruit AMPK, thus possibly 

adding yet another layer of complexity to AMPK signaling by introducing specific cellular 

localization of AMPK. This interaction proposes a novel model for the role of AMPK in 

regulating nutrient uptake.  

Taken together, the studies give new insight into regulation and role of AMPK and open 

several new perspectives for research in AMPK signaling.   
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Conclusions et perspectives 

Durant les trois ans qu’a duré ce travail de thèse, plus de 4000 articles en lien avec l’AMPK ont 

été publiés. Même si quelques-uns ont permis l’identification de nouveaux interacteurs et 

substrats de l’AMPK (Liu et al., 2013; Um et al., 2013; Zhang et al., 2012), peu ont appliqué des 

criblages à grande échelle afin de  caractériser les voies de signalisation de l’AMPK (Banko et 

al., 2011; Thali et al., 2010). Cette thèse a permis la confirmation ainsi que la caractérisation 

fonctionnelle de nouveaux partenaires d’interactions et substrats de l’AMPK provenant de 

deux criblages interactomique sans à priori réalisé dans le laboratoire. Premièrement, un 

criblage in vitro à deux dimensions combinant résonance plasmon de surface (SPR) avec des 

essais de phosphorylation in vitro a permis l’identification de nouveaux substrats putatifs de 

l’AMPK tel que la fumarate hydratase (FH). Par la suite, un système de double hybride 

cytosolique en levure (Y2H, basé sur une split-ubiquitine) combiné avec des méthodes 

complémentaires de confirmation d’interactions protéine/protéine (Y2H basé sur un split-

Trp1, co-immunoprecipitation, SPR) a conduit à la découverte de deux partenaires 

d’interaction de l’AMPK : l’E3 ubiquitine-ligase NRDP1 et les protéines associées à la 

membrane des vésicules VAMP2 et VAMP3. Finalement, la gluthation S-transferase (GST) a 

été identifiée comme interacteur de l’AMPK au cours de recherches interactomiques dans 

lesquelles nous avons fait des pull-down entre l’AMPK et des protéines recombinantes 

contenant un tag GST. Nous avons alors montré que le tag GST interagissait directement avec 

l’AMPK. Au cours de cette thèse, ces partenaires d’interaction et substrats de l’AMPK  ont été 

caractérisés en détail, en particulier pour leurs fonctions dans les voies de signalisation de 

l’AMPK. 

 

Analyse de l’interactome d’AMPK 

De nouvelles protéines partenaire d’interaction de l’AMPK ont été identifiées par deux 

stratégies de criblage interactomique : (1) une nouvelle procédure combinant SPR et essais de 

phosphorylation a permis la détection de nouveaux substrats interagissant avec l’AMPK tel 

que FH ; (2) un criblage Y2H cytosolique à la recherche de nouveaux partenaires de AMPKβ1 

et AMPKβ2 a conduit à l’identification de 5 interacteurs putatifs de l’AMPK. Cette deuxième 
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approche fut particulièrement intéressante, car ne se limitant pas à la recherche de substrats 

d’AMPK. Une grosse partie du travail de cette thèse est basée sur deux candidats établis par 

ce criblage : NRDP1 et VAMP3.  

Les deux criblages ont conduit à peu de candidats par rapport à ce que nous attendions. La 

sélectivité avec laquelle nous avons validé les candidats explique pour partie leur faible 

nombre, même si les protocoles appliqués pour le criblage pourraient également être 

améliorés. Toutes les protéines sélectionnées ont été confirmées comme réels interacteurs 

de l’AMPK. De plus, nos données montrent aussi que l’analyse ne peut pas se limiter à des 

approches d’interactomique à haut débit mais doivent être suivies par des études ciblées afin 

de vérifier la relation comme par exemple celle entre deux partenaires d’interaction au sein 

d’un réseau complexe de signalisation. Ces études ciblées peuvent révéler des rôles très 

différents pour une interaction, allant d’une fonction de recrutement à différents types de 

modifications venant de l’une ou même des deux protéines interagissant.  

   

Glutathion S-transferase (GST) 

Nous avons montré par un premier essai de Y2H que la protéine GST de Schistosoma 

japonicum (GST-Sj), communément utilisée comme tag GST, et les isoformes GST de rat 

GSTM1 et GSTP1 interagissent avec l’hétérotrimère AMPK via le domaine N-terminal de la 

sous-unité β de l’AMPK. Ici nous avons confirmé l’interaction entre l’AMPK et GST par 

plusieurs procédures indépendantes telles que par pull-down et co-immunoprecipitation, 

mais également par SPR et Y2H. Nous avons ensuite recherché les fonctions possibles de 

l’interaction, notamment la possible phosphorylation et activation de GST par l’AMPK ainsi 

que la possible glutathionylation et activation de l’AMPK par GST. Nous avons pu montrer que 

la formation du complexe GST/AMPK augmente légèrement l’activité GST, en retour GST 

glutathionyle AMPK, augmentant ainsi son activité. Une telle S-glutathionylation de l’AMPK 

conduit à son activation de façon non-canonique, dans certaines conditions rajoute un niveau 

de complexité liant la régulation AMPK à la signalisation redox, et possiblement positionne 

AMPK comme senseur du stress oxydant. Une étude in vivo a précédemment montré que dans 

des conditions fortement oxydatives l’AMPK est glutathionylée et activée (Zmijewski et al., 

2010). Ici nous démontrons qu’in vitro dans des conditions d’oxydation moyenne, GSTM1 et 
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GSTP1 favorisent une glutathionylation d’AMPK. De plus, la glutathionylation (qui est une 

modification réversible) peut jouer un rôle protecteur contre d’irréversibles oxydations des 

thiols de la protéine, qui sont en général associées avec une perte permanente de la fonction 

et qui conduisent à sa dégradation (Giustarini et al., 2004). Ainsi la glutathionylation de l’AMPK 

dans des conditions moyennes d’oxydation peut être essentielle pour protéger l’AMPK. Un 

travail plus poussé est nécessaire pour démontrer l’importance du mécanisme de 

glutathionylation d’AMPK in vivo et pour confirmer l’implication de GST dans ce mécanisme. 

Pour ce faire des inhibiteurs de GST (l’acide ethacrynique et l’analogue peptidomimétique du 

glutathion TLK199 [γ-glutamyle-S-(benzyl)cysteinyle-R-phenyle glycine diethyle ester]) (Tew, 

2007) pourraient être utilisés sur des cellules in vivo dans différentes conditions oxydatives, 

suivi par le pull-down de protéines glutathionylées et Western blot pour la détection de 

l’AMPK.  

 

Fumarate hydratase (FH) 

Parmi les cinq substrats putatifs de l’AMPK trouvés en combinant SPR et par criblage de 

phosphorylation in vitro, fumarate hydratase (FH) a été confirmée par co-

immunoprecipitation et phosphorylation in vitro comme interacteur et substrat direct de 

l’AMPK. La phosphorylation de FH par l’AMPK affecte son activité in vitro et dans les cellules 

HeLa. Cependant, la recherche minutieuse de phosphosites par spectrométrie de masse (MS) 

et mutagenèse dirigée a révélé que FH est principalement phosphorylée au niveau de la 

serine 19, localisée au niveau du peptide signal mitochondrial clivé dans la protéine mature. 

FH est codée par un unique gène nucléaire et peut être localisée aussi bien au niveau de la 

mitochondrie que du cytosol (Yogev et al., 2011). Chez les mammifères, seule la forme 

mitochondriale contient le peptide signal. La phosphorylation de FH au niveau du peptide 

signal pourrait affecter la translocation mitochondriale, en réduisant par exemple la quantité 

de FH mitochondriale. D’un autre côté, l’activation de FH due à la phosphorylation doit être 

reconsidérée en tenant compte de l’absence du résidu phosphorylable dans la protéine 

mature. La production d’un anticorps contre la serine 19 phosphorylée serait un outil pour 

son étude in vivo, mais considérant que la durée de vie de la protéine native contenant le 

peptide signal est probablement très courte, la phosphorylation est surement difficile à 

observer. De plus La surexpression de FH sauvage et d’un mutant FH en S19A pourrait donner 
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de premières informations sur l’implication de S19 dans l’import mitochondrial par 

l’observation de la localisation (ex. : accumulation de FH-S19A dans le cytosol). 

 

E3 ubiquitine-ligase NRDP1 (NRDP1) 

Nous donnons ici pour la première fois un protocole pour la production de la protéine NRDP1  

complète qui avait jusque-là toujours été décrite comme conduisant à la production de 

protéine insoluble (Wu et al., 2004). Nous avons également remarqué la formation en grande 

proportion de corps d’inclusions lors de la production de NRDP1, mais nous avons pu réduire 

leur formation et augmenter le rendement de protéine soluble en baissant la température 

durant l’expression, et par l’utilisation d’un bioréacteur. La production en bioréacteur permet 

d’obtenir 3,1 mg de protéine NRDP1 soluble par litre de culture.    

L’analyse en Y2H a conduit à la détection et la confirmation de l’interaction entre NRDP1 et 

AMPK, et permet de déterminer les domaines d’interaction telle que le domaine C-terminal 

pour NRDP1 et le domaine N-terminal de la sous-unité β de l’AMPK. Dans le but de découvrir 

les conséquences fonctionnelles de cette interaction, nous avons premièrement analysé la 

phosphorylation et l’ubiquitination. Les essais d’ubiquitination dans les cellules HEK293 ont 

montré que bien qu’ AMPK puisse être ubiquitinylée in vivo (Zungu et al., 2011) cette fonction 

n’est pas régulée de façon spécifique par NRDP1. D’un autre côté, NRDP1 est phosphorylée in 

vitro mais a un faible niveau comparé à l’acetyl-CoA carboxylase (ACC) – substrat de référence 

de l’AMPK – ce qui rend sa pertinence physiologique incertaine. 

En considérant le haut taux de renouvellement de NRDP1 du à son importante 

autoubiquitination (qui conduit à sa dégradation par le protéasome) nous avons finalement 

étudié l’effet de l’AMPK sur le niveau cellulaire de NRDP1. In vivo, la surexpression d’AMPK 

dans les cellules HeLa réduit le niveau de NRDP1 en augmentant sa dégradation par le 

protéasome, probablement en augmentant l’autoubiquitination de NRDP1. Ce phénomène 

est indépendant de la phosphorylation par l’AMPK. Ces résultats suggèrent un rôle de l’AMPK 

dans le renouvellement de NRDP1, qui peut être causé par (i) des changements 

conformationnels de NRDP1 causant son activation ; (ii) un recrutement de NRDP1 par l’AMPK, 

positionnant les protéines NRDP1 proches les unes des autres ; (iii) la perturbation via l’AMPK 

de l’interaction entre NRDP1 et l’ubiquitine carboxyl-terminal hydrolase 8 (USP8, une protéine 
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majeure pour la stabilisation de NRDP1) (Avvakumov et al., 2006). Notre travail suggère un 

lien entre AMPK et NRDP1, même si plus de travail est nécessaire pour comprendre son rôle 

in vivo et la fonction de cette diminution du niveau NRDP1. L’immunohistochimie combinée 

avec de la microscopie confocale pourrait être utilisée pour l’analyse de la localisation de 

NRDP1 dans différentes conditions de surexpression AMPK. De plus, un travail d’analyse de 

l’impact de la diminution du niveau NRDP1 sur ses cibles serait très intéressant.    

 

Protéine associée à la membrane des vésicules (VAMP) 

Nous avons pour la première fois montré l’interaction entre VAMP2, VAMP3  et l’AMPK par 

un essai Y2H, confirmés ensuite par pull-down, co-immunoprecipitation et SPR. VAMPs ne 

sont pas des substrats de l’AMPK. Un travail plus poussé sur les conséquences fonctionnelles 

de l’interaction VAMP/AMPK est complexifié du fait que VAMP n’ait pas d’activité 

enzymatique mais plutôt des fonctions de tri. Afin de pouvoir étudier l’interaction 

VAMP/AMPK, nous avons cartographié le domaine d’interaction avec l’idée de pouvoir gêner 

l’interaction in vivo et d’analyser l’effet au niveau cellulaire.  

En se basant sur la cartographie des domaines d’interaction, nous avons décidé de générer 

une construction à partir de la sous-unité β2 de l’AMPK comprenant le domaine N-terminal 

interagissant avec VAMP (acides aminés 1-71) et le « glycogen binding domain » (acides 

aminés 72-168), construction que nous avons appelée « domaine AMPK-βN ». La SPR confirme 

l’interaction entre VAMP et AMPK et démontre également que notre domaine AMPK-βN est 

capable d’inhiber de façon compétitive cette interaction. In vitro, un essai de fusion de 

membrane impliquant VAMP2 et son partenaire in vivo t-SNARE (SNAP25) montre que 

l’interaction AMPK/VAMP n’interfère pas avec l’étape finale de fusion prise en charge par 

VAMP, indiquant que le rôle de VAMPs dans son interaction avec AMPK se trouve surement 

en amont.  

AMPK et VAMP2/3 sont impliquées dans la translocation à la membrane plasmique du 

transporteur de glucose GLUT4 et du transporter CD36 (long chain fatty acid, LCFA; Kurth-

Kraczek et al., 1999; Martin et al., 1998; McGee et al., 2003; Schwenk et al., 2010; Webster et 

al., 2010). Le mécanisme par lequel AMPK régule la translocation de ces transporteurs de 

nutriments n’est pour le moment pas entièrement élucidé, et l’interaction entre VAMP et 
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AMPK pourrait jouer un rôle majeur. A ce niveau, l’hypothèse à tester est que VAMP serait 

une protéine de recrutement (« scaffold ») de l’AMPK vers les vésicules en exocytose, facilitant 

ainsi la phosphorylation de substrat de l’AMPK tel que AS160 (sur la  serine 570 et 588 

(Geraghty et al., 2007)) au niveau de ces vésicules pour induire leur transfert à la périphérie 

cellulaire. En se basant sur ce modèle, la surexpression du domaine AMPK-βN dans des cellules 

eucaryotes (inhibant l’interaction AMPK/VAMP) devrait réduire la phosphorylation d’AS160 

et ainsi réduire la translocation de CD36 et GLUT4, observable en combinant 

immunocytochimie et microscopie confocale.   

Finalement, en plus de son implication dans la translocation GLUT4 et CD36, l’interaction 

AMPK/VAMP peut être importante pour d’autre procédés exocytotiques impliquant VAMP2 

et VAMP3 (par exemple la libération de neurotransmetteurs) et ceci pourrait aussi inclure 

d’autres VAMPs que nous n’avons pour le moment pas testées pour leur interaction avec 

AMPK. Un tel mécanisme de recrutement de l’AMPK est important pour comprendre le rôle 

de sa localisation, qui était en premier lieu considérée diffuse dans le cytosol. Des 

modifications secondaires de l’AMPK ont déjà été montrées comme localisant AMPK dans 

certains compartiments cellulaires (McGee et al., 2003; Oakhill et al., 2010; Suzuki et al., 

2007). Nous présentons ici un mécanisme par lequel AMPK serait localisée à des sites 

spécifiques via son interaction avec une autre protéine. 

 

De nouveaux interacteurs de l’AMPK dans le contexte de ses voies de signalisation 

L’analyse des quatre interacteurs putatifs de l’AMPK, GSTM1/GSTP1, FH, NRDP1 and VAMP2/3 

les a confirmés comme interacteurs avérés de l’AMPK, avec pour les quatre interactions un 

rôle extrêmement différent. Le seul interacteur clairement en aval d’AMPK est FH. La 

phosphorylation de FH au niveau du peptide signal suggère fortement un rôle d’AMPK dans la 

translocation FH mitochondrial. En changeant la charge du peptide signal, AMPK peut 

influencer sa propension à passer à travers la membrane mitochondriale (partie 4, p.79). 

L’interacteur GSTM1/P1 est clairement en amont d’AMPK, étant donné qu’il glutathionyle et 

active la kinase. La glutathionylation d’AMPK, facilitée par GST, ajoute un nouveau niveau de 

complexité dans l’activation de l’AMPK dépendant de l’état redox de la cellule (partie 3, p.49). 

Les deux autres candidats tirés du criblage Y2H, NRDP1 et VAMP2/3, se sont révélés ne pas 



 
 

217 Conclusions & Perspectives 

être des substrats classiques de l’AMPK. NRDP1 présente un exemple de protéine « cross-

talk », ce dernier affecterait le niveau cellulaire de NRDP1 (partie 5, p.123). Finalement, 

VAMP2/3 (partie 6, p.159) aurait une fonction de protéine « scaffold » recrutant l’AMPK, ainsi 

probablement ajoutant un niveau de complexité à la signalisation AMPK en introduisant un 

aspect de localisation cellulaire. Cette dernière interaction supporte un nouveau mécanisme 

pour la régulation de l’assimilation des nutriments via l’AMPK.  

Globalement, ces études donnent un nouvel aperçu dans la régulation et le rôle de l’AMPK et 

ouvrent plusieurs nouvelles perspectives pour la recherche sur la signalisation AMPK.   
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