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Thèse dirigée par Philippe Eyssidieux
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Resultats de la thèse . . . . . . . . . . . . . . . . . . . . . . . . . . 20
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Introduction

In this thesis, we propose a construction of a universal twisted harmonic map,
together with its infinitesimal study up to the second order. We make use
of these results to analyze the critical points and the positivity properties of
the energy functional on the space of representations of a Kähler group.

Background and motivations

Corlette’s theorem on twisted harmonic maps

Let pM, gq be a connected compact Riemannian manifold with a base point
x0, Γ “ π1pM,x0q its fundamental group, G a real connected algebraic group,
and K a maximal compact subgroup. In this introduction, we are going to
assume that G is semisimple, although reductive suffices for most results. De-
note N “ G{K the associated Riemannian symmetric space of non-compact
type and fix a representation ρ : Γ Ñ G. Since Eells and Sampson began
the study of harmonic mappings between manifolds in [ES64], a great deal of
work has been done on the subject. Notably for our discussion, the seminal
paper by Corlette [Cor88] gave a necessary and sufficient condition for the
existence of a harmonic ρ-equivariant mapping f : M̃ Ñ N , where M̃ is the
universal cover ofM . Here, by “ρ-equivariant” we mean that it is equivariant
with respect to the action of Γ on M̃ by deck transformations, and on G{K
by isometries via ρ. Harmonicity can be characterized as critical points of
the energy

Epfq “
1

2

ż

M

›

›df
›

›

2
dVolg,

where the norm is the product metric on TM̃˚ bTN and the integral can be
taken equivalently on any fundamental region of the covering. As in [ES64],
another way to express harmonicity is the vanishing of the tension field τpfq,
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that in terms of a local frame tEju can be expressed as

τpfq
loc
“ ´

ÿ

j,k

gjk∇Ek
dfpEjq,

where ∇ is the connection on f˚TN induced by the Levi-Civita connection
on N and gjk is the inverse matrix of the metric. Finally, denote by Imagepρq
the real Zariski closure of the image ρpΓq Ă G, and by H “ ZGpImagepρqq
its centralizer. Then the theorem of Corlette reads:

Theorem (Corlette). A harmonic ρ-equivariant map f : M̃ Ñ N exists if
and only if Imagepρq0 is reductive. When it exists, it is unique, modulo
multiplication on the left by an element of H.

The multiplication by an element of H is not avoidable: If f is any such
map, then for every h P H , the map f̃ “ h ¨ f is again harmonic (since
H acts by isometries) and equivariant, as h commutes with every ρpγq, for
γ P Γ. Because of this lack of uniqueness, one cannot find a “universal twisted
harmonic map” taking the form

H : RBpM,Gqss ˆ M̃ Ñ N, H pρ, ¨q is harmonic and ρ-equivariant.

where RBpM,Gq “ HompΓ, Gq is the space of G-representations of Γ, and ss
stands for “semisimple representations”, that is, those such that Imagepρq is
reductive. In the following, we will deal with this difficulty.

Hitchin’s moduli space

In its groundbreaking paper [Hit87], Hitchin introduced and studied thor-
oughly the moduli space of solutions to the self-duality equation on a rank
2 vector bundle of odd degree on a Riemann surface M “ Σ of genus g ą 1.
This turns out to be very rich in structure, being a hyperkähler manifold of
complex dimension 6g ´ 6. Furthermore, it coincides with the moduli space
of flat PSLp2,Cq-connections and with that of connections A on a principal
SOp3q-bundle P together with a Higgs field Φ which, in the case of a Riemann
surface, is just a B̄A-holomorphic p1, 0q-form with values in the Lie algebra
bundle adpP q b C (of course, all these object must be taken up to suitable
isomorphism in order to obtain a finite dimensional moduli space).

This paper has generated a series of works aiming to replicate the same
results, especially those regarding the topology of the moduli space, with
more general groups G instead of PSLp2,Cq. Among these, one can cite an-
other paper by Hitchin [Hit92], dealing with SLpn,Rq or, more generally, any
split real form of a complex semisimple group, Gothen’s thesis [Got95] and
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Garćıa-Prada–Gothen–Mundet i Riera [GPGMiR13], where G “ Spp2n,Rq
is treated and Bradlow–Garćıa-Prada–Gothen [BGPG03] who have focused
on G “ Upp, qq. The base idea of these works is to use the Morse theory
applied to the function

µpA,Φq “ 2i

ż

Σ

tracepΦ ^ Φ˚q “
›

›Φ
›

›

2

L2
,

which is a moment map for the S1-action induced by eiθpA,Φq “ pA, eiθΦq
and also a proper and pluri-subharmonic perfect Morse function. The study
of this map, particularly of the positivity of the Hessian at its critical points,
allows them to infer results on the topology of the spaces.

In fact, it turns out that, interpreting the (isomorphism classes of) flat G-
connections as (conjugacy classes of) representations ρ : Γ Ñ G, the moment
map above coincides, up to a constant multiple, with the energy of any
harmonic ρ-equivariant map f : H2 “ Σ̃ Ñ G{K. Thus, the study of µ
is a special case of a more general theory regarding the twisted harmonic
mappings and their energy. In the following, we will attempt this more
general work, proving and generalizing several of the properties of µ to more
general manifolds M .

Again for Riemann surfaces, Toledo proved in a recent paper [Tol] the
pluri-subharmonicity of the energy of a twisted harmonic map in the different
setting where one keeps the representation ρ fixed and allows the complex
structure J to vary in the Teichmüller space. This work was also a source of
inspiration for us.

Simpson’s moduli spaces

Simpson [Sim92] generalized the correspondence between flat connections
and “Higgs bundles” (holomorphic bundles carrying a Higgs field θ, that is
a p1, 0q-form satisfying the same requirements as Φ above, plus θ^ θ “ 0) to
higher dimensional compact Kähler manifolds X . Successively, in [Sim94],
he constructed moduli spaces for these objects, this time for smooth projec-
tive varieties X ; the stated correspondence gives a homeomorphism between
the moduli spaces. The idea of the correspondence is as follows: Given a
representation in a reductive algebraic group ρ : Γ Ñ G Ď GLpn,Cq one has
the flat bundle pV, Dq “ X̃ ˆΓ Cn consisting of the equivalence classes un-
der the relation px̃, vq – pγx̃, ρpγqvq. A metric on this bundle corresponds
to an equivariant family of positive definite hermitian matrices and, since
GLpn,Cq{Upnq classifies the positive definite hermitian matrices, a metric is
just a ρ-equivariant map

f : M̃ Ñ GLpn,Cq{Upnq.
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Then one can define a harmonic metric as a metric such that the correspond-
ing map is harmonic. The conditions for existence of a harmonic metric are
determined by Corlette’s theorem, which also grants that, when such a met-
ric exists, we can take it to be in G{K (remark that G{K is a totally geodesic
subspace of GLpn,Cq{Upnq, so the notion of harmonicity is independent of
the composition with the inclusion). Simpson proves that when M “ X is
a Kähler manifold, a metric is harmonic if and only if it establishes a cor-
respondence between flat bundles and Higgs bundles (with some stability
condition and vanishing Chern classes), namely, that writing D “ B ` B̄ ` β,
where B ` B̄ is the metric-preserving part of D and β is self-adjoint, and
letting θ be the p1, 0q-part of β, the holomorphic bundle E “ pV, B̄q together
with θ forms a Higgs bundle. This has several consequences; for example,
the space of Higgs bundles is equipped with a natural C˚-action (extending
the S1-action above) defined by

t ¨ pE , θq “ pE , tθq.

The fixed points of this action are known as complex variations of Hodge
structure, which have been introduced by Deligne [Del87]. They are C8 flat
bundles pV, Dq with a decomposition V “

À

r`s“w Vr,s and a flat hermitian
form S such that D respects a “transversality” condition, the decomposition
is S-orthogonal and S is definite of sign p´1qr on each Vr,s (see definition
1.9.1 for more details).

Associating to every representation ρ the energy of any ρ-equivariant
harmonic map defines a non-negative function on the representation space
RBpM,Gq (which descends to the moduli space MBpX,Gq “ RBpX,Gq{{G).
When X is Kählerian, this coincides with the L2-norm of the Higgs field θ,
as in the case of a surface. The main applications of our results will be in
studying the infinitesimal behavior of this functional.

Results of the thesis

Construction of the universal harmonic map and defini-
tions

The main object of our discussion is a “universal twisted harmonic map”.
We discuss such an object in chapter 2; however, as mentioned above, we
must introduce a new parameter in order to ensure uniqueness. Fix a base
point x̃0 in M̃ . Since the non-uniqueness of the harmonic map is due to
multiplication by an element of H , it is enough to fix the value of fpx̃0q;
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because of this, we define the set Y as:

Y “

"

pn, ρq P N ˆRBpM,Gq
ˇ

ˇ

ˇ

D f : M̃ Ñ N ρ-equivariant and harmonic
such that fpx̃0q “ n

*

.

Then, Corlette’s theorem allows us to construct a well-defined universal map

H : Y ˆ M̃ Ñ N,

simply by denoting H pn, ρ, ¨q the unique ρ-equivariant harmonic map such
that fpx̃0q “ n. Writing RBpM,Gq “

Ť

iRi for the decomposition into
irreducible components and giving each Ri the reduced structure, we let Ui

denote the open subset of the smooth part Rsm
i given by representations

whose image is Zariski-dense in G. The main result regarding H is then the
following:

Proposition. The set Y Ă N ˆ RBpM,Gq is closed. The universal map
H : Y ˆ M̃ Ñ N is continuous and its restriction to Y X pN ˆ Uiq ˆ M̃ is
smooth.

The proof of the generic smoothness is a simple adaptation of the original
proof by Corlette; closedness of Y and continuity of H are obtained thanks
to Arzelà-Ascoli theorem and an estimate on the derivatives of harmonic
mappings. Since the energy is a continuous functional (with respect to the
Sobolev W 1,2-norm) and thanks to an argument relating the energy of a
representation to that of its semi-simplification, we get

Corollary. The energy functional is continuous on the whole of RBpM,Gq.
If Ui is not empty, the energy functional is smooth there.

The remaining part of the thesis focuses on an infinitesimal study of
the map H . This relies on several technical results, which are gathered
in chapter 1, where we introduce the notion of “polarized harmonic local
systems”.

Definition. A complex (resp. real) polarized harmonic local system is a
harmonic bundle pV, D, fq with an involution σ and a flat hermitian (resp.
symmetric or skew-symmetric) form S, such Sp¨, σp¨qq gives the metric f .

For such objects we introduce some further structure and prove general
results. First of all, we define a “Maurer-Cartan” 1-form β with values in
EndpVq as the pull-back of the right Maurer-Cartan form on N (extrinsecally,
β “ df ¨ f´1; when M “ X is a Kähler manifold this is, in fact, the same
β introduced above); this allows us to define the canonical connection as
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dcan “ d´ β, which is thus metric, and to deduce a Weitzenböck formula for
the codifferential d˚. Finally, we prove that the global sections of the local
system are acted upon by σ (see corollary 1.6.9).

The main example of real polarized harmonic local system is the “adjoint”
one on the symmetric space N , whose flat bundle is N ˆ g, with the identity
map as harmonic metric, the Killing form as symmetric form and a Cartan
involution as σ; in this case, the Maurer-Cartan form is in fact the usual
one, acting through ad, and the canonical connection corresponds to the
usual canonical connection on a Riemannian symmetric space through the
identification

ϑTN : N ˆ g Ñ TN

pn, ξq ÞÑ
B

Bt

`

expptξq ¨ n
˘

ˇ

ˇ

ˇ

t“0
.

We can construct other examples taking any ρ-equivariant harmonic map
f : M̃ Ñ N and considering the pull-back of the adjoint local system, which
actually lives on M . These are in fact the only examples to which we will
apply our results.

This theory has special features when M “ X is a Kähler manifold.
In this case, one also has functoriality of polarized harmonic local systems
with respect to holomorphic maps (i.e. the pull-back through ϕ : X Ñ X 1

of a polarized harmonic local system on X 1 gives one on X). Furthermore,
complex (resp. real) variations of Hodge structure give complex (resp. real)
polarized harmonic local systems, simply by disregarding the decomposition
of V and keeping only the involution

σ “
ÿ

r,s

p´1qrIdVr,s.

Although this is per se a polarized harmonic local system pV, σ, Sq via the
harmonic metric f induced by the period mapping, in the following we will
usually work with the structure obtained by pulling back the adjoint structure
through f . It turns out that this the same as the “endomorphism polarized
harmonic linear system” EndpV, σ, Sq.

First order analysis

The study of the first order of H at a given point coincides with the study of
a first order deformation of a fixed harmonic ρ0-equivariant map f : M̃ Ñ N .

Definition. A first order deformation v of f is a section of f˚TN .
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Since we want to allow the representation to change, we need to introduce
the notion of the first order deformation of a representation:

Definition. A first order deformation ρ
p1q
t of ρ0 : Γ Ñ G is a representation

ρ
p1q
t : Γ Ñ TG projecting to ρ0.

Here, TG is given the structure of an algebraic group in any of the fol-
lowing equivalent ways: Either one sees G as the group of the real points
of a connected algebraic group G, and then TG “ GpRrεs{pε2qq; or one can
write an explicit bijection TG “ Gˆg, and put on the latter a natural group
structure (cfr. [BS72]). In either way, a first order deformation of a repre-
sentation is equivalent to the data of a 1-cocycle c for the adjoint action of
Γ on g. Then, one can define equivariant deformations thanks to the natural
action of TG on TN . Explicitly, this reads:

vpx̃q ´ ρpγq˚vpγ´1x̃q “ ϑTN

`

fpx̃q, cpγq
˘

.

Finally, one has to deal with harmonicity. One calls a first order deformation
v harmonic if it is a zero of the Jacobi operator, which has been introduced
by Mazet in [Maz73]. In terms of a local frame tEju this reads:

J pvq “ ´
ÿ

j,k

gjk
´

∇Ej
∇Ek

v ` RN
`

dfpEjq, v
˘

dfpEkq
¯

“ 0,

where ∇ is the pull-back connection on f˚TN and RN the curvature tensor
on N .

Of course, the main examples of first order deformations are of the form
v “ Bft

Bt

ˇ

ˇ

t“0
, where ft : M̃ Ñ N is a smooth family of smooth maps, for some

real parameter t P p´ε, εq. Then one checks that if every ft is harmonic, then
v is, and if every ft is ρt-equivariant for a family of representation ρt, then
v is ρ

p1q
t -equivariant, where ρ

p1q
t is determined by cpγq “ Bρtpγq

Bt

ˇ

ˇ

t“0
¨ ρ0pγq´1.

The main result of chapter 3 is then a construction which gives all the first
order ρ

p1q
t -equivariant and harmonic deformations. To state this, let ω P

H1pM,Adpρ0qq be the harmonic representative of the 1-cohomology class
represented by c (here we are exploiting the usual isomorphism H1pΓ, gq –
H1pM,Adpρ0qq). Pulling back ω to M̃ , we obtain a g-valued closed 1-form
on M̃ , which we can thus integrate to a map F : M̃ Ñ g. One can further
impose such an F to verify the equivariance relation:

F pγx̃q “ Adρ0pγqF px̃q ` cpγq.

We call such maps “ρ
p1q
t -equivariant of harmonic type”; one can prove that

they always exist, and in fact form a torsor over h, the Lie algebra of H
(hence, an affine space). The main theorem of chapter 3 is then:
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Theorem A. The natural map ϑTN : Nˆg Ñ TN induces a surjective affine
map

"

F : M̃ Ñ g : ρ
p1q
t -equivariant

of harmonic type

*

ϑTNÝÝÝÑ

"

v P C8pf˚TNq harmonic
and ρt-equivariant.

*

On Kähler manifolds, the construction is functorial.

In chapter 4 we apply this result to compute the first variation of the
energy of a family of harmonic and equivariant maps. The formula (given in
proposition 4.1.3) reads:

BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ω, β
D

dVolg.

Here, BEt

Bt
is just a notation; it can be seen as the the actual derivative of the

energy of any smooth family ft extending pf, vq, which is supposed to be ρ
p1q
t -

equivariant and harmonic. Thanks to this result, we are able to investigate
the critical points of the energy. Since the spaces we work on are not smooth,
we actually define a critical point as one for which

ş

M
xω, βy “ 0 for every

ω P H1pM,Adpρ0qq. The generic smoothness of the map H ensures that this
coincides with the usual notion at smooth points. Then we prove:

Theorem B. Let M “ X be a compact Kähler manifold. Then the critical
points of the energy functional on RBpX,Gq are exactly the representations
coming from complex variations of Hodge structure.

The proof that every complex variation of Hodge structure is a critical
point is just the observation that, in this case, β can be written as pD2´D1qγ,
for some section γ of X̃ ˆ g, and then, thanks to the Kähler identities, one
uses that ω is both D2- and D1-harmonic. For the converse, one investigates
the special deformation pE , tθq, proving that the variation of the energy in
this direction coincides with }ω}2

L2. Thus, in a critical point one must have
ω “ 0, which links to θ being zero in Dolbeault cohomology and in turn to
pE , θq being a complex variation of Hodge structure.

Remark that when X “ Σ is a Riemann surface, this result was already
in [Hit87]: Since the energy is the moment map for the circle action, a point
is critical if and only if it is fixed; but being fixed by S1 or by the whole of
C˚ is, in fact, equivalent. This fact allows one to deduce easily theorem B
in the case where X is projective and the Kähler class is integral and very
ample; thus the theorem is really new only when X is just supposed to be
Kähler.
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Second order analysis

For the study of the second order analysis we proceed along the same steps
as for the first order case. However, definitions are less natural here, and
some obstruction arises.

A second order deformation of a map f : M̃ Ñ N can be defined either as
a section of f˚J2N , the pull-back of the second jet bundle, or as a pair pv, wq
of sections of f˚TN . The two constructions are related by the canonical
connection, which gives an isomorphism of the two bundles. We have chosen
the second approach; to fix the ideas, for a smooth family ft : M̃ Ñ N , the
section w is defined by

w “
D

Bt

Bft
Bt

ˇ

ˇ

ˇ

t“0
,

where D
Bt

“ ∇ B
Bt

is the covariant derivative along Bft
Bt

ˇ

ˇ

t“0
. As in the first

order case, one can start with a family of ρt-equivariant (resp. harmonic)

maps, and deduce formulas for ρ
p2q
t -equivariant (resp. harmonic) second order

deformations. Precise definitions can be found in section 5.1, here we remark
only that the condition of harmonicity is again expressed in terms of the
Jacobi operator J and the Riemann curvature tensor RN , and that again a
second order deformation ρ

p2q
t of ρ

p1q
t : Γ Ñ TG is the same thing as a map

k : Γ Ñ g making the pair pc, kq a 1-cocycle for the adjoint action Adpρ
p1q
t q

of Γ on g ˆ g – g b Rrts{pt2q.

Then one proceeds to define ρ
p2q
t -equivariant maps pF, F2q : M̃ Ñ gˆ g of

harmonic type. The definition for equivariance is just in the same spirit as
the first order: One requires that

pF, F2qpγx̃q “ ρ
p1q
t pγq ¨

`

F px̃q, F2px̃q
˘

` pcpγq, kpγqq.

On the other hand, harmonicity is more complicated: The 1-form dF2 is not
even a section of Adpρ0q, so we modify it defining the 1-form ψ as:

ψ “ dF2 ` rω, F s.

This 1-form is Adpρ0q-valued, but neither closed nor co-closed: We say that
pF, F2q is of harmonic type if ψ satisfies the following equations (in terms of
a local orthonormal frame tEju):

dψ “ ´rω, ωs; d˚ψ
loc
“

ÿ

j

“

σpωpEjqq, ωpEjq
‰

, (5.10)

where σ is the involution of the polarized harmonic local system on M̃ ˆ g.
Then one can define a map ϑJ2N : N ˆ g ˆ g Ñ TN ˆN TN , by:

ϑJ2N pn, ξ, µq “

ˆ

ϑTNpn, ξq, ϑTN

´

n, µ `
“

ξrks, ξrps
‰

¯

˙

.
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Here, rks “ rksn (resp. rps) designates the projection to the 1-eigenspace (resp.
the ´1-eigenspace) of σ. In particular, this map is no longer linear, but one

can prove nevertheless that it sends ρ
p2q
t -equivariant pF, F2q of harmonic type

to ρ
p2q
t -equivariant and harmonic second order deformations.
In this way, we have again a way to construct second order harmonic

and ρ
p2q
t -equivariant deformations. However, unlike the first order case, here

there are obstructions to the existence of these objects. We collect the main
results in the next theorem.

Theorem C. Let ρ
p2q
t : Γ Ñ J2G be a second order deformation of ρ

p1q
t “

pρ0, cq and f : M̃ Ñ N be harmonic and ρ0-equivariant. The existence of

a 1-form ψ satisfying (5.10) implies that every first order ρ
p1q
t -equivariant

and harmonic pf, vq extends to a second order ρ
p2q
t -equivariant and harmonic

pf, v, wq. Furthermore:

• If G is complex, there is a converse: Such a ψ exists if, and only if,
we can find second order harmonic deformations pf, v, wq and pf, ṽ, w̃q
equivariant one for pρ0, cq and the other for pρ0, icq (the second orders
of the representations are not significant).

• The 1-form ψ exists if, and only if, ω is a critical point for the L2-
norm in its orbit under the adjoint action of H “ ZGpImagepρ0qq on
H1pM,Adpρ0qq. Hence, if G is complex, given pρ0, cq there exists a
metric f for which ψ exists if, and only if, ω is polystable for this
action.

• A sufficient condition for the existence of ψ for every metric f is
H1pM,Adpρ

p1q
t qq being a flat Rrts{pt2q-module. When G is complex,

this is also necessary.

We give examples of ρ
p1q
t “ pρ0, cq for which there is no metric f ad-

mitting a second order deformation pf, v, wq which is both harmonic and

ρ
p2q
t -equivariant (again, for any ρ

p2q
t extending ρ

p1q
t ). However, we currently

know of no example for which pρ0, cq admits such a metric but pρ0, icq does
not, that is, an example of a deformable f for which ψ does not exist.

Under the assumption of the existence of ψ, we can give a formula for the
second variation of the energy similar to that we gave for the first variation:

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

M

´

@

ψ, β
D

` }ωrps}2
¯

dVolg.

With this result at hand, we can prove the following:

12



Theorem D. If G is a complex group, the energy is a strictly pluri sub-
harmonic function on the smooth points of the moduli space. Consequently,
it gives a pluri-subharmonic function on its normalization.

Finally, in the Kählerian case, we are able to study the positivity of the
Hessian of the energy at the critical points, in terms of the eigenvalues of
the local generator of the S1-action, in the same spirit as [Hit92]. To stress
this parallelism, we introduce the following notation: For every g-valued 1-
form α, denote αrks (resp. αrps) the 1-form such that, for every (real) tangent
field χ P ΞpXq, exponents rks and rps denote projection on the corresponding
subspaces:

αrkspχq “ αpχqrks P rks “ Kerpσ´ Idq, αrpspχq “ αpχqrps P rps “ Kerpσ` Idq.

Furthermore, let α1 (resp. α2) denote the holomorphic (resp. anti-holomor-
phic) part of α. Then define 9A “ pωrksq2 and 9Φ “ pωrpsq1 (see [Hit87] for a
more direct interpretation of these symbols, in the case of a Riemann surface
X “ Σ).

Theorem E. Let G be complex, ρ0 : Γ Ñ G and f : X̃ Ñ N the harmonic
map induced by the period mapping. Then, the second order variation of the
energy along ω P H1pX,Adpρ0qq can be written as

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ˆ

ÿ

p

´p
›

› 9A´p,p
›

›

2
` p1 ´ pq

›

› 9Φ´p,p
›

›

2
˙

dVolg,

where ξ “
ř

p ξ
´p,p, for ξ P g, denotes the Hodge decomposition of g induced

by the complex variation of Hodge structure. In the special case where ω
takes values in the Lie algebra of the real Zariski closure of Imagepρ0q, this
expression may be rewritten in terms of the Deligne’s Hodge structure ω “
ř

P`Q“1 ω
pP,Qq as

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

ˆ

ÿ

P”0

P
›

›ωpP,Qq
›

›

2
`

ÿ

P”1

Q
›

›ωpP,Qq
›

›

2

˙

dVolg.

Corollary. If the representation ρ0 is induced by a complex variation of
Hodge structure whose period domain is of Hermitian symmetric type, then
the Hessian of the energy at ρ0 is semi-positive definite along all deformations
ρt : Γ Ñ G0, where G0 denotes the real Zariski closure of Imagepρ0q.
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Organization of the thesis

Chapter 1 is devoted to background material and technical results about
polarized harmonic local systems. The definition is given in section 1.2, and
the main example is discussed in section 1.3. After discussing briefly the
structure of the tangent bundle of a Riemannian symmetric space of non-
compact type, the main results about polarized harmonic local systems are
given in sections 1.5 and 1.6. In sections 1.7 and 1.8 we discuss the special
cases M “ S1 and M “ X Kähler, and the notion of complex variation of
Hodge structure is reviewed in section 1.9.

In chapter 2 we extend Corlette’s theorem to the construction of a “uni-
versal twisted harmonic map”. We prove it to be continuous in section 2.2;
with some additional work, we can then prove the continuity of the energy
on the whole of RBpM,Gq. Then, in section 2.3, we extend Corlette’s proof
to show that both objects are smooth over the locus of Zariski dense repre-
sentations.

Chapter 3 is devoted to the study of the first order deformations of har-
monic maps, aiming to prove theorem A. Equivariant first order deformations
are defined and discussed in section 3.2, and harmonic ones in section 3.3.
In section 3.4 we show how the constructive process of theorem A works,
and we prove that this gives all equivariant and harmonic deformations in
section 3.5. Finally, we give a precise statement for theorem A in section 3.6,
and in section 3.7 we analyze the results when G “ GLp1,Cq (in which case
non-abelian cohomology reduces to the usual one).

The results thus obtained are applied in chapter 4 to the study of the
first variation of the energy functional, which starts by proving the formula
in terms of the scalar product of ω and β mentioned above. This allows us
to prove that complex variations of Hodge structure are critical points of the
energy: This is done in section 4.2. In section 4.3 we prove the converse, by
analyzing the variation of the energy under the C˚-action.

The second order analysis is carried through in chapter 5, which is devoted
to the proof of theorem C. We first give all the definitions and the matchings
between them in sections 5.1 and 5.2. Then we introduce the action of H on
H1pM,Adpρ0qq, in terms of which we construct ρ

p2q
t -equivariant maps pF, F2q

of harmonic type. This is done in sections 5.3 and 5.4. The link between
existence of pF, F2q and that of a deformation pv, wq of f is analyzed in

section 5.5. Section 5.6 is devoted to the example of a representation ρ
p1q
t

for which there exists no second-order deformable metric, and in section 5.8
we prove that when one has a smooth family of maps ft, for t P p´ε, εq, the
definitions we gave coincide with the natural ones. Remark that what we
denoted with theorem C in this introduction is split into proposition 5.4.6,
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proposition 5.5.5, theorem 5.7.1 and proposition 5.7.2.
Finally, in chapter 6, we apply these results to give a formula for the

second variation of the energy in terms of ω and ψ (under the assumption
that this exists). This allows us to prove, on the one hand, the pluri sub-
harmonicity of the energy of theorem D, which is done in section 6.2 and, on
the other hand, the formula of theorem E. This last part is the content of
section 6.3.
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Introduction (version française)

Dans cette thèse, on propose une construction d’une application harmonique
tordue universelle et son étude infinitésimale jusqu’à l’ordre deux. On utilise
ces résultats pour analyser les points critiques et les propriétés de positivité
de la fonctionnelle de l’énergie sur l’espace des représentations d’un groupe
de Kähler.

Contexte et motivations

Le théorème de Corlette sur les applications harmo-
niques tordues

Soit pM,Gq une variété riemannienne compacte et connexe avec un point base
x0; soit Γ “ π1pM,x0q son groupe fondamental, G un groupe algébrique réel
connexe et K un de ses sous-groupes compacts maximaux. Dans cette intro-
duction, on va supposer G semi-simple, même si pour la plupart des résultats
réductif suffirait. Notons N “ G{K l’espace riemannien symétrique du type
non-compacte associé, et fixons une représentation ρ : Γ Ñ G. Depuis le
début de l’étude des applications harmoniques par Eells et Sampson ([ES64]),
une quantité importante de travail a été faite dans ce sujet. D’importance
pour notre discussion est le papier fondateur de Corlette [Cor88], qui a donné
une condition nécessaire et suffisante pour l’existence d’une application ρ-
équivariante et harmonique f : M̃ Ñ N , où M̃ dénote le revêtement uni-
versel de M . Ici, “ρ0-équivariant” signifie qu’elle est équivariante par rap-
port à l’action naturelle de Γ sur M̃ et par isométries sur N “ G{K via
ρ. L’harmonicité peut être caractérisée comme l’être un point critique de
l’énergie

Epfq “
1

2

ż

M

›

›df
›

›

2
dVolg,

où la norme est induite par la métrique produit sur TM̃˚ bTN et l’intégrale
est prise de façon équivalente sur n’importe quel domaine fondamental du
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revêtement. Comme est déjà noté dans [ES64], être harmonique équivaut à
l’annulation du champs de tension τpfq, qui est l’équation d’Euler-Lagrange
du problème variationnel et en termes d’un repère orthonormé local tEju
peut s’exprimer par

τpfq
loc
“ ´

ÿ

j,k

gjk∇Ek
dfpEjq,

où ∇ est la connexion sur f˚TN induite par la connexion de Levi-Civita
sur N et gjk est la matrice inverse de la métrique. Finalement, notons
par Imagepρq l’adhérence de Zariski de l’image ρpΓq Ă G, et par H “
ZGpImagepρqq son centralisateur. Alors, le théorème de Corlette affirme:

Theorem (Corlette). Une application harmonique et ρ-équivariant f : M̃ Ñ
N existe si et seulement si Imagepρq0 est un sous-groupe réductif. Quand
elle existe, elle est unique, à multiplication par un élément h P H près.

La multiplication par un élément de H n’est pas évitable: si f est une
application harmonique tordue, alors pour chaque h P H l’application f̃ “
h ¨ f est encore harmonique, car H agit par isométries, et équivariante, car
h commute avec ρpγq pour tout γ P Γ. À cause de ce manque d’unicité, on
ne peut pas trouver une “application harmonique tordue universelle” de la
forme

H : RBpM,Gqss ˆ M̃ Ñ N, H pρ, ¨q est harmonique et ρ-équivariante.

où RBpM,Gq “ HompΓ, Gq est l’espace des G-représentations de Γ et ss
signifie “représentations semi-simples”, c’est-à-dire, telles que Imagepρq est
réductif. Dans la suite, on s’occupera de cette difficulté.

L’espace des modules de Hitchin

Dans son célèbre papier [Hit87], Hitchin a introduit et étudié minutieusement
l’espace des modules des solutions aux équations d’auto-dualité sur un fibré
vectoriel de rang 2 au-dessus d’une surface de Riemann M “ Σ de genre
g ą 1. Cet espace se révèle être muni d’une structure très riche, étant une
variété hyperkählerienne lisse de dimension complexe 6g ´ 6. De plus, il
cöıncide avec l’espace de modules des PSLp2,Cq-connexions plates et avec
celui des connexions A sur un SOp3q-fibré principal P avec un champs de
Higgs Φ qui, dans le cas d’une surface de Riemann, est simplement une
forme p1, 0q, holomorphe par rapport à B̄A, à valeurs dans le fibré adpP q bC

(bien sûr, tous ces objets sont pris à isomorphismes près, pour obtenir des
espaces de modules de dimension finie).
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Cet article a engendré une suite de travaux essayant de reproduire des
résultats similaires, notamment ceux regardants la topologie de l’espace de
modules, avec un groupe plus général G à la place de PSLp2,Cq. Parmi
ceux, on peut citer un autre article de Hitchin [Hit92], qui traite le cas
G “ SLpn,Rq ou, plus généralement, n’importe quelle forme réelle “split”
d’un groupe semi-simple complexe; la thèse de Gothen [Got95] et Garćıa-
Prada–Gothen–Mundet i Riera [GPGMiR13], oùG “ Spp2n,Rq; et Bradlow–
Garćıa-Prada–Gothen [BGPG03], qui se sont concentrés sur G “ Upp, qq.
L’idée de base de ces travaux est d’utiliser la théorie de Morse appliquée à
la fonction

µpA,Φq “ 2i

ż

Σ

tracepΦ ^ Φ˚q “
›

›Φ
›

›

2

L2
,

qui est une application des moments pour l’action de S1 induite par eiθpA,Φq “
pA, eiθΦq et aussi une fonction de Morse parfaite, propre et pluri sous-har-
monique. L’étude de cette application, en particulier de la positivité de
la matrice hessienne dans ses points critiques, a leur permis d’obtenir des
résultats sur la topologie de ces espaces.

Il s’avère en fait que, en interprétant les (classes d’isomorphisme des) G-
connexions plates comme (classes de conjugaison de) représentations ρ : Γ Ñ
G, l’application des moments ci-dessus cöıncide, à un multiple constant près,
avec l’énergie de n’importe quelle application f : H2 “ Σ̃ Ñ G{K harmo-
nique et ρ-équivariante . Par conséquent, l’étude de µ est un cas particulier
d’une théorie plus générale concernante les applications harmoniques tordues
et leurs énergie. Dans la suite, on visera cet étude plus générale, démontrant
et généralisant plusieurs parmi les propriétés de µ pour des variétés M plus
générales.

Pour des surfaces de Riemann, Toledo a démontré dans un travail récent
[Tol] la pluri sous-harmonicité de l’énergie d’une application harmonique tor-
due dans le cadre différent où l’on fixe la représentation ρ et varie la structure
complexe J dans l’espace de Teichmüller. Ce travail a aussi été une source
d’inspiration.

Les espaces de modules de Simpson

Simpson [Sim92] a généralisé la correspondance entre les connexions plates
et le “fibrés de Higgs” (fibrés holomorphes avec un champ de Higgs θ, qui est
une forme de type p1, 0q avec les mêmes propriétés que Φ ci-dessus, et aussi
telle que θ^θ “ 0) à des variétés kähleriennes compactes lisse X de dimension
supérieure. Dans un second moment [Sim94], il a construit des espaces de
modules pour ces objets, cette fois pour des variétés X projectives lisses; la
correspondance qu’on vient de mentionner induit alors un homéomorphisme
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entre les espaces de modules. L’idée de la correspondance est: donnée une
représentation dans un groupe réductif ρ : Γ Ñ G Ď GLpn,Cq, on a le
fibré plat pV, Dq “ X̃ ˆΓ C

n formé des classes d’équivalence sous la rela-
tion px̃, vq – pγx̃, ρpγqvq. Une métrique sur ce fibré correspond à une famille
équivariante de matrices définies positives et, comme GLpn,Cq{Upnq classifie
les matrices hermitiennes définies positives, une métrique est une application
ρ-équivariante:

f : M̃ Ñ GLpn,Cq{Upnq.

On peut alors définir une métrique harmonique comme une métrique telle que
l’application correspondante est harmonique. Les conditions pour l’existence
d’une métrique harmonique sont déterminées par le théorème de Corlette, qui
assure aussi que, quand cette métrique existe, on peut la prendre à valeurs
dans G{K (remarquons que G{K est un sous-espace totalement géodésique
de GLpn,Cq{Upnq, donc la notion d’harmonicité est indépendante de la com-
position avec l’inclusion). Simpson démontre que quand M “ X est une
variété de Kähler, une métrique est harmonique si et seulement si elle établit
une correspondance entre fibrés plats et fibrés de Higgs (avec une condition de
stabilité et classes de Chern nulles). Explicitement, en écrivant D “ B`B̄`β,
où B ` B̄ est la partie qui préserve la métrique et β est auto-adjointe, et
définissant θ la partie p1, 0q de β, le fibré holomorphe E “ pV, B̄q avec θ forme
un fibré de Higgs. Ceci a plusieurs conséquences; par exemple, l’espace des
fibrés de Higgs est muni d’une action naturelle de C˚ (qui étend l’action de
S1 définie auparavant) par

t ¨ pE , θq “ pE , tθq.

Les points fixes de cet action sont connus comme “variations complexes de
structures de Hodge”, introduites par Deligne [Del87]. Ils sont des fibrés
C8 plats pV, Dq avec une décomposition lisse V “

À

r`s“w Vr,s et une forme
hermitienne parallèle S telles que D vérifie une condition de “transversalité”
par rapport à la décomposition, que la décomposition est orthogonale par
rapport à S et que S est définie de signe p´1qr sur chaque Vr,s (voir Définition
1.9.1 pour plus de détails).

Associer à chaque représentation ρ l’énergie d’une application harmonique
ρ-équivariante donne une fonction non-négative sur l’espace des représenta-
tions RBpM,Gq (qui descend à l’espace de modulesMBpX,Gq “ RBpX,Gq{{G).
Quand X est Kähler, ceci cöıncide avec la norme L2 du champ de Higgs θ,
comme pour le cas des surfaces. Les applications principales de nos résultats
seront dans l’étude du comportement infinitésimal de cette fonctionnelle.
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Résultats de la thèse

Construction de l’application harmonique tordue uni-
verselle et définitions

L’objet principal de notre discussion est une “application harmonique tordue
universelle”. On examine cet objet dans le chapitre 2; par contre, on a
mentionné ci-dessus qu’on est obligé d’introduire un nouveau paramètre pour
assurer l’unicité. Fixons un point base x̃0 dans M̃ . Comme la non-unicité de
l’application harmonique est due à une multiplication par un élément de H ,
il suffit de fixer la valeur de fpx̃0q; à cause de cela, on définit un ensemble Y
par:

Y “

"

pn, ρq P NˆRBpM,Gq
ˇ

ˇ

ˇ

D f : M̃ Ñ N ρ-équivariante et harmonique
telle que fpx̃0q “ n

*

.

Alors, le théorème de Corlette nous permet de construire une application
universelle bien définie

H : Y ˆ M̃ Ñ N,

notant simplement par H pn, ρ, ¨q l’unique application harmonique et ρ-équi-
variante telle que fpx̃0q “ n. En notant RBpM,Gq “

Ť

iRi la décomposition
dans des composantes irréductibles et donnant à chaque Ri la structure
réduite, on pose Ui le sous-ensemble ouvert des points lisses Rsm

i formé par les
représentations dont l’image est Zariski-dense dans G. Le résultat principal
sur H est alors le suivant:

Proposition. L’ensemble Y Ă N ˆ RBpM,Gq est fermé. L’application uni-
verselle H : Y ˆ M̃ Ñ N est continue et sa restriction à Y X pN ˆ Uiq ˆ M̃

est lisse.

La preuve de la lissité générique est une simple adaptation de la preuve
originale du théorème de Corlette; l’être fermé de Y et la continuité de H

sont obtenus grâce au théorème de Arzelà-Ascoli et une estimation sur les
dérivées des applications harmoniques. Puisque l’énergie est une fonction-
nelle continue (par rapport à la norme de Sobolev W 1,2) et grâce à un argu-
ment qui relie l’énergie d’une représentation à celle de sa semi-simplification,
on obtient:

Corollaire. La fonctionnelle de l’énergie est continue sur RBpM,Gq. Si Ui

n’est pas vide, l’énergie est lisse sur cet ouvert.

La partie restante de la thèse se focalise sur une étude infinitésimale de
l’application H . Ceci repose sur plusieurs résultats techniques, qui nous
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collectionnons dans le chapitre 1, où on introduit la notion de “système local
harmonique polarisé”.

Définition. Un système local harmonique polarisé complexe (resp. réel) est
un fibré harmonique pV, D, fq avec une involution σ et une forme quadratique
plate hermitienne (resp. symétrique) S telle que Sp¨, σp¨qq donne la métrique
f .

On discute de la structure de ces objets et de certains résultats généraux
sur eux. Premièrement, on définit une 1-forme de “Maurer-Cartan”, β, à
valeurs dans EndpVq, comme le pull-back de la forme de Maurer-Cartan
droite sur N (de façon extrinsèque, β “ df ¨ f´1; quand M “ X est kähleri-
enne, c’est en fait la même β qu’on a introduit plus haut); ceci nous permet
de définir la connexion canonique par dcan “ d´β, qui est ainsi une connexion
métrique et de déduire une formule de Weitzenböck pour la codifferentielle
d˚. Finalement, on démontre que les sections globales du système local sont
invariantes par σ (cfr. Corollaire 1.6.9).

L’exemple principal de système local harmonique polarisé réel est celui du
système “adjoint” sur un espace symétrique N , dont le fibré plat est N ˆ g,
la métrique harmonique est donnée par l’identité, la forme symétrique par la
forme de Killing et σ par une involution de Cartan. Dans ce cas, la forme de
Maurer-Cartan est l’usuelle, qui agit par ad, et la connexion canonique corre-
spond à la connexion canonique usuelle sur un espace riemannien symétrique
par l’identification

ϑTN : N ˆ g Ñ TN

pn, ξq ÞÑ
B

Bt

`

expptξq ¨ n
˘

ˇ

ˇ

ˇ

t“0
.

On construit d’autres exemples en considérant une application harmonique
ρ-équivariante f : M̃ Ñ N et prenant le pull-back du système local adjoint,
qui, de plus, peut s’identifier à un système local sur M . En fait, tous les
exemples qu’on considère sur les chapitres suivants seront de cette forme.

Cette théorie a des propriétés meilleures quand M “ X est une variété
kählerienne. Dans ce cas, on a aussi la fonctorialité des systèmes locaux
harmoniques polarisés par rapport aux applications holomorphes (c’est-à-
dire, le pull-back par ϕ : X Ñ X 1 d’un système local harmonique polarisé sur
X 1 en donne un autre sur X). De plus, les variations complexes de structures
de Hodge (resp. réelles) donnent des systèmes locaux harmoniques polarisés
complexes (resp. réels), simplement en oubliant la décomposition de V et
gardant uniquement l’involution

σ “
ÿ

r,s

p´1qrIdVr,s.
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Même si cet objet donne un système local harmonique polarisé pV, σ, Sq grâce
à la métrique harmonique f induite par l’application de périodes, dans la suite
on travaillera d’habitude avec la structure obtenue par pull-back via f de la
structure adjoint. Il s’avère alors que ceci est la même chose que le “système
local harmonique polarisé endomorphisme”, EndpV, σ, Sq.

Analyse du premier ordre

L’étude du premier ordre de H dans un point donné cöıncide avec l’étude
d’une déformation au premier ordre d’une application harmonique ρ0-équi-
variante donnée f : M̃ Ñ N .

Définition. Une déformation au premier ordre v de f est une section de
f˚TN .

Puisqu’on veut permettre des changements dans la représentation, on doit
introduire la notion de déformations au premier ordre des représentations:

Définition. Une déformation au premier ordre ρ
p1q
t de ρ0 : Γ Ñ G est une

représentation ρ
p1q
t : Γ Ñ TG qui est envoyée sur ρ0 par TG Ñ G.

Ici, TG a une structure de groupe algébrique dans une des manières
équivalentes: soit on voit G comme le groupe des points réels d’un groupe
algébrique connexe G, et alors TG “ GpRrεs{pε2qq; soit on écrit de façon ex-
plicite une bijection TG “ Gˆg et on met ensuite une structure de groupe na-
turelle sur le côté droit (cfr. [BS72]). Dans les deux cas, une déformation au
premier ordre d’une représentation est équivalente à considérer un 1-cocycle
c pour l’action adjointe de Γ sur g. Alors, on peut définir les déformations
équivariantes grâce à l’action naturelle de TG sur TN . Explicitement, on
obtient:

vpx̃q ´ ρpγq˚vpγ´1x̃q “ ϑTN

`

fpx̃q, cpγq
˘

.

Finalement, on doit traiter l’harmonicité. Une déformation du premier ordre
v est dite harmonique si elle est le zéro de l’opérateur de Jacobi, qui a été
introduit par Mazet dans [Maz73]. En termes d’un repère orthonormé local
tEju, ceci donne:

J pvq “ ´
ÿ

j,k

gjk
´

∇Ej
∇Ek

v ` RN
`

dfpEjq, v
˘

dfpEkq
¯

“ 0,

où ∇ est la connexion pull-back sur f˚TN et RN est le tenseur de courbure
sur N .

Naturellement, les exemples principaux de déformations au premier ordre
sont de la forme v “ Bft

Bt

ˇ

ˇ

t“0
, où ft : M̃ Ñ N est une famille lisse d’applications
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harmoniques, pour un paramètre réel t P p´ε, εq. Alors on vérifie que si
chaque ft est harmonique, alors v l’est, et si chaque ft est ρt-équivariante
(pour une famille de représentations ρt) alors v est ρ

p1q
t -équivariante, où

ρ
p1q
t est déterminé par cpγq “ Bρtpγq

Bt

ˇ

ˇ

t“0
¨ ρ0pγq´1. Le résultat principal du

chapitre 3 est alors une construction qui donne toutes les déformations ρ
p1q
t -

équivariantes et harmoniques. Pour l’énoncer, soit ω P H1pM,Adpρ0qq le
représentant harmonique de la classe de 1-cohomologie donnée par c (ici, on
exploite l’isomorphisme usuel H1pΓ, gq – H1pM,Adpρ0qq). En tirant arrière
ω à M̃ , on obtient une 1-forme fermée à valeurs dans g, qui peut être intégrée
à une fonction F : M̃ Ñ g. De Plus, on peut imposer que F satisfasse la con-
dition d’équivariance:

F pγx̃q “ Adρ0pγqF px̃q ` cpγq.

On appelle de telles applications “ρ
p1q
t -équivariantes et de type harmonique”;

on peut démontrer qu’elles existent toujours et en fait elles forment un torseur
sur h, l’algèbre de Lie de H (donc, il s’agit d’un espace affine). Le théorème
principal du chapitre 3 s’énonce alors:

Théorème A. L’application naturelle ϑTN : N ˆ g Ñ TN induit une appli-
cation affine surjective

"

F : M̃ Ñ g : ρ
p1q
t -équivariante

de type harmonique

*

ϑTNÝÝÝÑ

"

v P C8pf˚TNq harmonique
et ρt-équivariante.

*

Sur des variétés kähleriennes, la construction est fonctorielle.

Dans le chapitre 4 on applique ce résultat pour calculer la variation
première de l’énergie d’une famille d’applications harmoniques et équivariantes.
La formule (donnée dans la Proposition 4.1.3) est:

BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ω, β
D

dVolg.

Ici, BEt

Bt
est uniquement une notion, qui peut être vue comme la vraie dérivation

de n’importe quelle famille lisse ft qui étend pf, vq, qui est supposée être ρ
p1q
t -

équivariante et harmonique. Grâce à ce résultat, on est capable d’enquêter
sur les points critiques de l’énergie. Puisque les espaces avec lesquels on
travaille ne sont pas lisses, on définie un point critique comme un point tel
que

ş

M
xω, βy “ 0 pour tout ω P H1pM,Adpρ0qq. La lissité générique de

l’application H assure que ceci cöıncide avec la définition usuelle dans les
points lisses. Alors on démontre:
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Théorème B. Soit M “ X une variété compacte kählerienne. Alors les
points critiques de la fonctionnelle de l’énergie sur RBpX,Gq sont exactement
les représentations qui proviennent des variations complexes de structures de
Hodge.

La preuve que toute variation complexe de structures de Hodge est un
point critique de l’énergie repose sur la remarque que, dans ce cas, β peut
être écrit comme pD2 ´ D1qγ pour une certaine section γ de X̃ ˆ g; ensuite,
grâce aux identités de Kähler, on a que ω est à la fois D2- est D1-harmonique.
Pour la direction opposée, on enquête sur la déformation spéciale pE , tθq et
on démontre que la variation de l’énergie le long de cette direction cöıncide
avec }ω}2L2. Ainsi, dans un point critique on doit avoir ω “ 0, qui se relie à
l’annulation de θ en cohomologie de Dolbeault; ce fait est en fait équivalent
à demander que pE , θq soit une variation complexe de structures de Hodge.

Remarquons que quand X “ Σ est une surface de Riemann, ce résultat
était déjà dans [Hit87]: comme l’énergie est une application moment pour
l’action du cercle, un point est critique si et seulement s’il est fixé; mais être
fixé par S1 ou par C˚ est en fait la même chose. Ceci nous permet de déduire
aisément Théorème B dans le cas où X est projectif et la classe de Kähler
est intégrale est très ample; notre théorème n’est donc vraiment nouveau que
dans le cas Kähler général.

Analyse du second ordre

On procède, pour l’étude du second ordre d’une application harmonique, sur
les mêmes procédés; par contre, les définitions deviennent moins naturelles
et on trouve des obstructions à l’existence des déformations au second ordre.

Une déformation au second ordre d’une application f : M̃ Ñ N peut être
définie soit comme une section de f˚J2N , le fibré tiré arrière du fibré des 2-
jets, soit comme un couple pv, wq de sections de f˚TN . Les deux définitions
sont liées par la connexion canonique, qui donne un isomorphisme entre les
deux fibrés. On a choisi la deuxième approche; pour fixer les idées, pour une
famille lisse d’applications ft : M̃ Ñ N , la section w est définie par

w “
D

Bt

Bft
Bt

ˇ

ˇ

ˇ

t“0
,

où D
Bt

“ ∇ B
Bt

est la dérivée covariante le long de Bft
Bt

ˇ

ˇ

t“0
. De la même

façon que dans le cas du premier ordre, on peut commencer par une famille
d’applications ρt-équivariantes (resp. harmoniques) et déduire des formules

pour ρ
p2q
t -équivariantes (resp. harmoniques) déformations du second ordre.

Des définitions précises se trouvent dans la section 5.1; ici, on se limite à
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remarquer que la condition pour l’harmonicité s’exprime encore en termes de
l’opérateur de Jacobi J et du tenseur de courbure riemannienne RN , et qu’à
nouveau une déformation du second ordre ρ

p2q
t de ρ

p1q
t : Γ Ñ TG est la même

chose d’une application k : Γ Ñ g qui rend le couple pc, kq un 1-cocycle pour

l’action adjointe Adpρ
p1q
t q de Γ sur g ˆ g – g b Rrts{pt2q.

Ensuite, on procède à définir des fonctions ρ
p2q
t -équivariantes et de type

harmonique pF, F2q : M̃ Ñ g ˆ g. La définition d’équivariance est dans le
même esprit que pour le premier ordre: on demande que

pF, F2qpγx̃q “ ρ
p1q
t pγq ¨

`

F px̃q, F2px̃q
˘

` pcpγq, kpγqq.

Par contre, l’harmonicité est plus compliquée: la 1-forme dF2 n’est même
pas une section de Adpρ0q, donc on la modifie en définissant la 1-forme ψ
par:

ψ “ dF2 ` rω, F s.

Cette 1-forme est à valeurs dans Adpρ0q, mais ni fermée ni co-fermée. On dit
que pF, F2q est de type harmonique si ψ satisfait les équations suivantes (en
termes d’un repère local orthonormé tEju):

dψ “ ´rω, ωs; d˚ψ
loc
“

ÿ

j

“

σpωpEjqq, ωpEjq
‰

, (5.10)

où σ est l’involution du système local harmonique polarisé sur M̃ ˆ g. On
peut alors définir une application ϑJ2N : N ˆ g ˆ g Ñ TN ˆN TN par:

ϑJ2N pn, ξ, µq “

ˆ

ϑTNpn, ξq, ϑTN

´

n, µ `
“

ξrks, ξrps
‰

¯

˙

.

Ici, rks “ rksn (resp. rps) denote la projection sur l’espace propre de valeur
propre 1 (resp. ´1) de σ. En particulier, cette application n’est plus
linéaire, mais on peut quand même démontrer qu’il envoie des fonctions
ρ

p2q
t -équivariantes et de type harmonique pF, F2q dans des déformations har-

moniques et ρ
p2q
t -équivariantes.

Par conséquent, on a à nouveau une façon de construire des déformations
harmoniques et ρ

p2q
t -équivariantes du second ordre. Par contre, contrairement

au cas du premier ordre, il y a des obstructions à l’existence de ces objets.
On collecte les résultats principaux dans le théorème suivant:

Théorème C. Soit ρ
p2q
t : Γ Ñ J2G une déformation au second ordre de

ρ
p1q
t “ pρ0, cq et f : M̃ Ñ N une application harmonique et ρ0-équivariante.

L’existence d’une 1-forme ψ qui satisfait (5.10) implique que chaque déforma-

tion du premier ordre pf, vq qui est harmonique et ρ
p1q
t -équivariante s’étend

à une déformation du second ordre pf, v, wq harmonique et ρ
p2q
t -équivariante.

De plus:
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• Si G est complexe, il y a une réciproque: une telle ψ existe si, et
seulement si, on peut trouver deux déformations harmoniques du second
ordre pf, v, wq et pf, ṽ, w̃q, équivariantes l’une pour pρ0, cq et l’autre
pour pρ0, icq (les seconds ordres des représentations ne jouent aucun
rôle).

• La 1-forme ψ existe si, et seulement si, ω est un point critique de la
norme L2 dans son orbite sous l’action adjointe de H “ ZGpImagepρ0qq
sur H1pM,Adpρ0qq. Par conséquent, si G est complexe et si pρ0, cq est
donné, il existe une métrique f pour laquelle ψ existe si, et seulement
si, ω est un point polystable pour cette action.

• Une condition suffisante pour l’existence de ψ pour toute métrique f est
que H1pM,Adpρ

p1q
t qq soit un Rrts{pt2q-module plat. Si G est complexe,

cette condition est aussi nécessaire.

On donne des exemples de ρ
p1q
t “ pρ0, cq pour lesquels il n’y a aucune

métrique f admettant une déformation au second ordre pf, v, wq à la fois

harmonique est ρ
p2q
t -équivariant (encore une fois, pour n’importe quel ρ

p2q
t

qui étend ρ
p1q
t ). Par contre, à ce moment on ne connâıt aucun exemple où

pρ0, cq admet une telle métrique mais pρ0, icq ne l’admet pas, c’est-à-dire, un
exemple d’une f déformable telle que ψ n’existe pas.

Sous l’assomption de l’existence de ψ, on peut donner une formule pour la
variation seconde de l’énergie, qui ressemble celle pour les variations premières:

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

M

´

@

ψ, β
D

` }ωrps}2
¯

dVolg.

Avec ce résultat à disposition, on peut démontrer le théorème suivant:

Théorème D. Si G est un groupe complexe, l’énergie est une fonction
strictement pluri sous-harmonique sur les points lisses de l’espace des mod-
ules. Par conséquent, il donne une fonction pluri sous-harmonique sur sa
normalisation.

Finalement, dans le cas kählerien, on arrive à étudier la positivité de la
matrice hessienne de l’énergie dans les points critiques, en termes des valeurs
propres du générateur local de l’action de S1, dans le même esprit que [Hit92].
Pour souligner le parallélisme, on introduit la notation suivante: si α est une
1-forme à valeurs dans g, notons αrks (resp. αrps) la 1-forme telle que pour
chaque champ tangent (réel) χ P ΞpXq, les exposants rks et rps dénotent les
projections sur les sous-espaces correspondants:

αrkspχq “ αpχqrks P rks “ Kerpσ´ Idq, αrpspχq “ αpχqrps P rps “ Kerpσ` Idq.
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De plus, soit α1 (resp. α2) la partie holomorphe (resp. anti-holomorphe) de
α. Définissons 9A “ pωrksq2 et 9Φ “ pωrpsq1 (voir [Hit87] pour une interprétation
plus directe de ces symboles dans le cas d’une surface de Riemann X “ Σ).

Théorème E. Soit G un groupe complexe, ρ0 : Γ Ñ G et f : X̃ Ñ N

l’application harmonique induite par l’application des périodes. Alors, la
variation du second ordre de l’énergie le long de ω P H1pX,Adpρ0qq peut
s’écrire comme

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ˆ

ÿ

p

´p
›

› 9A´p,p
›

›

2
` p1 ´ pq

›

› 9Φ´p,p
›

›

2
˙

dVolg,

où ξ “
ř

p ξ
´p,p, pour ξ P g, dénotes la décomposition de Hodge de g induite

par la variation complexe de structure de Hodge. Dans le cas particulier où
ω est à valeurs dans l’algèbre de Lie de l’adhérence de Zariski de Imagepρ0q,
cette expression peut se récrire en termes de la structure de Hodge-Deligne
ω “

ř

P`Q“1 ω
pP,Qq:

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

ˆ

ÿ

P”0

P
›

›ωpP,Qq
›

›

2
`

ÿ

P”1

Q
›

›ωpP,Qq
›

›

2
˙

dVolg.

Corollaire. Si la représentation ρ0 est induite par une variation complexe de
structures de Hodge dont le domaine des périodes est un espace symétrique du
type hermitien, alors la matrice hessienne de l’énergie en ρ0 est semi-définie
positive le long de toute déformations ρt : Γ Ñ G0, où G0 dénote l’adhérence
de Zariski réelle de Imagepρ0q.

Structure de la thèse

Le chapitre 1 est dédié au contexte et aux résultats techniques sur les systèmes
locaux harmoniques polarisés. La définition est donnée dans la section 1.2
et l’exemple principal est traité dans la section 1.3. Après avoir brièvement
discuté du fibré tangent d’un espace riemannien symétrique du type non-
compacte, les résultats principaux sur les systèmes locaux harmoniques po-
larisés sont donnés dans les sections 1.5 et 1.6. Dans les sections 1.7 et 1.8 on
discute les cas spéciales M “ S1 et M “ X kahlerien. Finalement, la notion
de variation complexe de structures de Hodge est révisée dans la section 1.9.

Dans le chapitre 2 on étend le théorème de Corlette en construisant une
“application harmonique tordue universelle”. On démontre qu’elle est con-
tinue dans la section 2.2; avec un peu plus de travail, on peut alors démontrer
que l’énergie est continue sur tout RBpM,Gq. Finalement, dans la section
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2.3, on étend la preuve du théorème de Corlette pour montrer que les deux
objets sont lisses sur le lieu des représentations Zariski-denses.

Le chapitre 3 est consacré à l’étude des déformations au premier ordre
des applications harmoniques, avec le but de démontrer le théorème A. Les
déformations équivariantes du premier ordre sont décrites dans la section 3.2
et celles harmoniques dans la section 3.3. Dans la section 3.4 on montre la
procédé constructive du théorème A et on démontre qu’en fait il donne toute
déformation harmonique et équivariante dans la section 3.5. Finalement, on
donne un énoncé précis pour le théorème A dans la section 3.6, et dans 3.7
on analyse les résultats quand G “ GLp1,Cq (dans ce cas, la cohomolgie
non-abelienne se réduit à celle habituelle).

Les résultats ainsi obtenus sont appliqués dans le chapitre 4 à l’étude de
la variation première de la fonctionnelle de l’énergie, qui a comme premier
objectif de démontrer la formule en termes du produit scalaire entre ω et β
cité ci-dessus. Ceci nous permet de démontrer que les variations complexes
de structures de Hodge sont les points critiques de l’énergie: ceci est fait
dans la section 4.2. Dans 4.3 on démontre l’autre implication, analysant la
variation de l’énergie par rapport à l’action de C˚.

L’analyse du second ordre est effectuée dans le chapitre 5, qui est con-
sacré à la preuve du théorème C. On commence en donnant les définitions et
les liens entre eux dans les sections 5.1 et 5.2. Ensuite, on introduit l’action
de H sur H1pM,Adpρ0qq et en termes de cette action on construit des appli-

cations ρ
p2q
t -équivariantes et de type harmonique pF, F2q. Ceci est fait dans

les sections 5.3 et 5.4. Le lien entre l’existence de pF, F2q et celle d’une
déformation pv, wq de f est analysé dans la section 5.5. La section 5.6 est

dédiée à l’exemple d’une représentation ρ
p1q
t pour laquelle il n’existe aucune

métrique déformable au second ordre, et dans la section 5.8 on démontre que
quand on a une famille lisse d’applications ft, pour t P p´ε, εq, les définitions
données cöıncides avec les définitions naturelles. Remarquons que ce qu’on a
noté comme Théorème C dans cette introduction est scindé en Proposition
5.4.6, Proposition 5.5.5, Théorème 5.7.1 et Proposition 5.7.2.

Finalement, dans le chapitre 6 on applique les résultats du chapitre pré-
cédent pour obtenir la formule pour la variation seconde de l’énergie en ter-
mes de ω et ψ (sous l’assomption que celle-ci existe). Ceci nous permet de
démontrer d’un côté la pluri sous-harmonicité de l’énergie du théorème D,
ce qui est fait dans la section 6.2. De l’autre côté, on obtient la formule du
théorème E dans la section 6.3.
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Chapter 1

Riemannian symmetric spaces
and Polarized harmonic local
systems

Introduction au chapitre

Dans ce chapitre on introduit la notion de systèmes locaux harmoniques
polarisés sur une variété riemannienne M qui représentent l’outil technique
principal qu’on va exploiter dans la suite de la thèse. Il s’agit d’étudier
des fibrés harmoniques pV, D, hq (c’est-à-dire, des fibrés V avec une con-
nexion plate D et une métrique h qui induit une application harmonique
M̃ Ñ GLpr,Cq{Oprq, r étant le rang de V), munis de plus d’une involution
σ : V Ñ V telle que, si on définit Spv, wq “ hpv, σpwqq, alors S donne une
forme quadratique parallèle, symétrique ou anti-symétrique. Une notion ana-
logue existe pour des fibrés complexes (dans ce cas, on demande que S et
h soient hermitiens). L’exemple principal de système local harmonique po-
larisé est défini comme suit: soit G un groupe algébrique réductif, N “ G{K
l’espace symétrique riemannien associé et pVad, Dq “ pN ˆ g, dq, g étant
l’algèbre de Lie de G. En notant par σ0 l’involution de Cartan associée
au compact maximal K, on définit σadpvq en dessus d’un point n P N par
Adnpσ0pAdn´1vqq. En prenant une forme symétrique induite par la forme
de Killing sur la partie semi-simple de g on obtient un système local har-
monique polarisé (en fait, la métrique hermitienne h ainsi définie est même
totalement géodésique), qu’on appellera système adjoint. On peut voir que,
donné n’importe quel autre système local polarisé harmonique V sur une
variété riemannienne M , celui induit sur EndpVq est essentiellement le pull-
back par l’application harmonique du système adjoint.
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Tous les systèmes locaux harmoniques polarisés sont munis d’une con-
nexion canonique dcan donnée par la partie métrique de D. En écrivant
d “ dcan ` β, on obtient une 1-forme β à valeurs dans les endomorphismes
auto-adjoints de V. Grâce à la description usuelle du fibré tangent d’un
espace symétrique, en notant par N ˆ g “ rks ‘ rps la décomposition en es-
paces propres de σ, on a alors que le pull-back de β à M̃ donne une 1-forme
β̃ P A1

M̃
prpsq. On démontre dans la Proposition 1.5.7 que β̃ correspond à df

sous l’identification canonique ϑTN : rps
„
ÝÑ TN et que dcan commute à σ.

Les résultats sur les systèmes locaux harmoniques polarisés les plus im-
portants pour la suite sont démontrés dans la Section 1.6, sous l’hypothèse
de compacité pour M . Notamment, on donne une formule pour le laplacien
∆ “ d˚d dans le Lemme 1.6.6, qui entraine en particulier la commutation en-
tre ∆ et σ. Une autre conséquence importante est donnée dans le Corollaire
1.6.9, qui implique que l’espace vectoriel des sections globales plates admet
une décomposition plate induite par σ.

Deux cas particuliers sont traités dans les dernières trois sections. Pre-
mièrement, quandM “ S1, les applications harmoniques définies sur M̃ “ R

sont des géodésiques; on révise comment les résultats d’existence des ap-
plications harmoniques tordues de Corlette [Cor88] peuvent se relire dans
ce contexte en termes des isométries semi-simples, l’énergie étant le carré
de la distance de translation. Deuxièmement, on considère le cas M “ X

d’une variété kählerienne. Cela étant le cas motivant de l’analyse, on ex-
plique comment les variations polarisées de structure de Hodge (réelles ou
complexe) sont des prototypes de systèmes locaux polarisés harmoniques
sur ces variétés. Dans ce cas, les systèmes locaux harmoniques polarisés
possèdent aussi des meilleures propriétés de fonctorialité par rapport au cas
général; on donne le lien avec la théorie des fibrés de Higgs, fournissant des
interprétations des objets introduits dans le chapitre. En particulier, on
donne des preuves de la cloture de la 2-forme tracepθ^ θ˚q, qui est aussi une
conséquence d’un Théorème de Mok [Mok92], et du fait que, en conséquence
des identités de Kähler, le pull-back d’une 1-forme harmonique à valeurs dans
un fibré harmonique est encore harmonique.

1.1 Definitions and notations

The purpose of this section is to fix notations and list some standard results.
For the ease of reference, concerning Riemannian geometry and harmonic
mappings we will try to keep the same notations and conventions as [EL83].

Let pM, gq be a connected, orientable Riemannian manifold, and let E Ñ
M be a vector bundle on M . We denote by AppEq “ ΛppT ˚Mq bE the real
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vector space of E-valued smooth p-forms, and by C8pEq “ A0pEq the space
of smooth sections.

Denote by TM the tangent bundle of M and by C8pMq the space of
smooth real functions on M , so that C8pTMq is a C8pMq-module. Given
a connection ∇ on E, we still denote by ∇ its extension to E-valued forms.
Further, we define the associated exterior differential operator d: AppEq Ñ
Ap`1pEq as the anti-symmetrization of ∇ (cfr. [EL83], (1.15) and (1.16)).

For any connection ∇ on E Ñ M we define its curvature R : Λ2C8pTMqb
C8pEq Ñ C8pEq by

RpX, Y qσ “ ´∇X∇Y σ ` ∇Y∇Xσ ` ∇rX,Y sσ,

so that for every φ P AppEq,

d2φ “ ´R ^ φ.

Given a connection ∇ and a metric x¨, ¨y on E, and letting d be as above,
we define the codifferential operator d˚ : AppEq Ñ Ap´1pEq associated to
x¨, ¨y1 by:

ż

M

xdφ, ψydVolg “

ż

M

xφ, d˚ψydVolg,

where φ P Ap´1pEq, ψ P AppEq, with φ compactly supported, and dVolg
denotes the volume unit for the metric g.

Given a metric and a connection, we define the associated Laplacian as
∆ “ d˚d`dd˚ : AppEq Ñ AppEq. We say that a p-form φ is harmonic (with
respect to the given metric and connection) if ∆φ “ 0.

A direct computation in [EL83], (1.20) proves that if ∇ is metric with
respect to x¨, ¨y andM is compact, then for every 1-form α P A1pEq and tEiu
a local frame of TM ,

d˚α “ ´trace∇α “ ´
ÿ

i,j

gij∇Ej
αpEiq. (1.1)

Let M,N be Riemannian manifolds, with M compact, and let π̃ : M̃ Ñ
M be the universal cover of M . Let ρ : Γ “ π1pM,x0q Ñ IsompNq be a

1Or, rather, to the metric induced by x¨, ¨y and g, that is, for p-forms φ and φ1, Ei a

local frame of TM and gij the inverse matrix of gpEi, Ejq,

xφ, φ1y “
ÿ

i1ă...ăip
j1ă...ăjp

gi1j1 ¨ ¨ ¨ gipjpxφpEi1 , . . . , Eipq, φ1pEj1 , . . . , Ejpqy
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representation. A smooth mapping f : M̃ Ñ N is called harmonic if it is an
extremal point of the energy

Epf 1q “

ż

M̃{Γ

ˇ

ˇdf 1
ˇ

ˇ

2
,

amongst all ρ-equivariant maps f 1 : M̃ Ñ N . Here the integral is equivalently
taken over any fundamental domain for the action of Γ on M̃ , and the norm
involves both the metric on M and that on N . A function f is harmonic if
and only if its tension field vanishes, that is, it satisfies the Euler-Lagrange
equation:

τpfq “ trace
`

∇df
˘ loc

“
ÿ

i

∇Ei
dfpEiq “ 0. (1.2)

Here the connection is induced by the Levi-Civita connection on N , and
the trace is in terms of the Riemannian metric on M , that is, Ei is a local
orthonormal frame for M̃ .

Recall the following fundamental result for the existence of harmonic
maps:

Theorem 1.1.1 ([Cor88]). LetM be a compact manifold, and Γ “ π1pM,x0q
its fundamental group. Further let G be a real reductive algebraic group,
ρ : Γ Ñ G a representation, G0 the real Zariski closure of its image and
K0 ă K maximal compact subgroups of G0, G, respectively. There exists a
ρ-equivariant harmonic map f : M̃ Ñ G0{K0 Ă G{K if, and only if, G0 is
reductive. Furthermore, this map is unique up to isometry of the ambient
space commuting with G0 (i.e. the ρ-equivariant harmonic map f : M̃ Ñ
G{K is unique up to multiplication by an element of the centralizer H “
ZGpG0q).

1.2 Complex and real polarized harmonic lo-

cal systems

We are interested in the study of certain local systems onM enjoying special
properties. Simpson [Sim92] introduced the following notion of harmonic
bundles :

Definition 1.2.1. A harmonic bundle is a flat complex bundle pV, Dq on M
together with a harmonic metric h, that is, such that the map it defines:

fh : M̃ Ñ GLpn,Cq{Upnq, (1.3)

is harmonic.
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We recall briefly how the map f “ fh is constructed from h. Fix a base
point x0 P M and an isomorphism Vx0

– Cn, so that π̃˚V – M̃ ˆ Cn. Then
h gives a positive definite nˆ n hermitian matrix at every point x̃ P M̃ , say
Apx̃q. Since the symmetric space GLpnq{Upnq classifies such matrices, we get
a function f as stated, which is such that fpx̃q ¨ fpx̃q˚ “ Apx̃q´1. Indeed, for
every v, w sections of π̃˚V, we have

hpv, wq “
@

vpx̃q, Apx̃qwpx̃q
D

Cn “
@

fpx̃q´1vpx̃q, fpx̃q´1wpx̃q
D

Cn (1.4)

(here, fpx̃q´1 is defined only after taking a lifting M̃ Ñ GLpn,Cq of f , but
the result is independent of the chosen lift). Remark that the choice of a base
point x0 P M and a trivialization Vx̃0

„
ÝÑ Cn also gives a monodromy repre-

sentation ρ : π1pM,x0q Ñ GLpn,Cq, and the f thus defined is ρ-equivariant.
Let us introduce a class of harmonic bundles having slightly better fea-

tures than general ones.

Definition 1.2.2. A triple pV, σ, Sq will be called a complex polarized har-
monic local system (C-phls for short) if it consists of:

1. A local system V of C-vector spaces;

2. A flat C-vector bundle pV, Dq such that V “ kerpDq;

3. A hermitian, non-degenerate form S on V, which is flat, that is, DpSq “
0;

4. A C-linear involution σ : V Ñ V such that V` “ kerpσ ´ Idq and
V´ “ kerpσ ` Idq are orthogonal with respect to S, which is positive
definite on the former and negative definite on the latter;

5. The induced positive definite metric, xv, wy “ hpv, wq “ Spv, σpwqq, is
required to be harmonic.

In particular, of course, pV, D, hq is a harmonic bundle.

Lemma 1.2.3. Let pV, σ, Sq be a complex phls on M . Fix a point x0 P M ,

and an isomorphism Vx0

η
ÝÑ Cn, so that we have a monodromy representation

ρ : Γ “ π1pM,x0q Ñ GLpn,Cq. Let G0 be the real Zariski closure of the image
of ρ. Then G0 is contained in UpS ˝η´1q – Upr`, r´q where r˘ “ rkV˘, and
Sx0

is G0-invariant, that is, for g P G0 and v, w in Vx0
,

Spg ¨ v, g ¨ wq “ Spv, wq.
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Proof. The first assertion follows from the second one, since the unitary group
for S is isomorphic to Upr`, r´q. The second statement follows from flatness
of S, which implies that S is ρpΓq-invariant.

Corollary 1.2.4. Let pV, σ, Sq be a C-phls on M , and denote by G0 the
monodromy group and by g0 its Lie algebra. Then the hermitian form S is
M̃ ˆΓ g0 invariant, where Γ acts on G0 by Adpρq, meaning that for every
A0 P C8pM̃ ˆΓ g0q,

SpA0pvq, wq ` Spv, A0pwqq “ 0.

Notation 1.2.5. From now on, we will denote by G0 the real Zariski closure
of the image of the monodromy, K0 a maximal compact subgroup, and N0 “
G0{K0. Unless otherwise stated, we will always assume that G0 be reductive
(the motivation for this lies in Corlette’s theorem 1.1.1). We will denote
by f0 a harmonic metric taking values in the totally geodesic subset N0 of
GLpn,Cq{Upnq (cfr. [Hel78], chapter IV, theorem 7.2), andH “ ZGLpn,CqpG0q
the centralizer of G0 (or, equivalently, of Imagepρq). Later on, we will work
with intermediate reductive groups G0 Ď G Ď GLpn,Cq, in which case we
will denote by H “ ZGpG0q.

Let us explain the reasons behind this. Corlette’s theorem 1.1.1 implies
that, for f to exist, the group G0 must be reductive. Under this hypothesis, it
also grants the existence of a harmonic metric f0 : M̃ Ñ G0{K0. Furthermore,
all harmonic metrics with values in some (possibly bigger) symmetric space
N “ G{K only differ by an isometry of this space, hence by multiplication by
a fixed element g of G. Equivariance implies that this element must commute
with Imagepρq, that is, g P H . Thus, given any harmonic metric f : M̃ Ñ N ,
we can always find a f0 as in the notations above and an h P H such that
f “ h ¨ f0.

Definition 1.2.6. A real (even or odd) polarized harmonic local system is
a triple pVR, σ, Qq, where:

1. The local system VR is of real vector spaces;

2. There is a flat R-vector bundle pVR, Dq such that VR “ kerpDq;

3. The flat, non-degenerate form Q is symmetric in the even case and
symplectic in the odd case;

4. There is an R-linear involution σ : VR Ñ VR such that, again denoting
the eigenspaces by V` and V´, they are orthogonal, and, in the even

34



case, Q is positive definite on V` and negative definite on V´. In the
odd case, defining,

Spv, wq “ iQCpv, w̄q, @v, w sections of VC “ VR b C,

the complexification of the involution σ : VC Ñ VC is required to satisfy
the same properties as in the complex setting of definition 1.2.2.

5. In both cases, the positive definite metric (which is symmetric on VR

in the even case and hermitian on VC in the odd case) is required to be
harmonic.

The same notational remarks after definitions of complex phls apply here,
too. Letting again G0 denote the real Zariski closure of the monodromy of D
and H its centralizer, then there exists f0 : M̃ Ñ G0{K0, such that f “ h ¨ f0
for some h P H and
#

G0{K0 Ď Opr`, r´q{pOpr`q ˆ Opr´qq Ă GLpn,Rq{Opnq in the even case

G0{K0 Ď Spp2n,Rq{Upnq Ă GLpn,Cq{Upnq in the odd case.

Lemma 1.2.7. Let pVR, σR, QRq be a R-phls. Then we obtain a C-phls
pV, σ, Sq by defining, in the even case:

V “ VR bR C; σpvq “ σCpvq; Spv, wq “ QCpv, w̄q,

for all v, w in VR bRC, where σC and QC denote the C-multilinear extensions
of σR and QR, respectively.

Proof. For odd R-phls, the statement is part of the definition. In the even
case, the verification of the first four properties of the definition are immedi-
ate. For harmonicity, we only have to remark that if f : M̃ Ñ GLpn,Rq{Opnq
is harmonic, then

i ˝ f : M̃ Ñ GLpn,Rq{Opnq Ñ GLpn,Cq{Upnq

is, as well, because the map i : GLpn,Rq{Opnq Ñ GLpn,Cq{Upnq is totally
geodesic.

Lemma 1.2.8. There are natural definitions of tensor products and duals
of (real or complex) phls; in the real case, the tensor product is additive on
parity, and dualizing preserves it. In particular, if pV, σ, Sq is a phls on a flat
bundle V, the bundle EndpVq supports a structure of phls (which is always
even in the real case).
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Proof. Everything follows at once from the definitions. For example, if
pV, σV , SVq and pW, σW, SWq are two phls, then the non-degenerate form and
the involution on the tensor product are defined on pure products as

Spv b w, v1 b w1q “ SVpv, v1qSWpw,w1q, σpv b wq “ σVpvq b σWpwq.

Again, for example in the real case, harmonicity of the obtained metric follows
from the “tensor map”

GLpn,Rq{Opnq ˆ GLpm,Rq{Opmq Ñ GLpnm,Rq{Opnmq

being totally geodesic. This map associates to the symmetric, positive def-
inite matrices A P MnpRq, B P MmpRq the symmetric and positive definite
matrix A b B such that, if teiu and tfju are the canonical basis of Rn and
Rm, respectively,

pei b fjqpAb Bqpek b fhq “ AikBjh.

For the dual, we only remark that the map GLpn,Rq{Opnq Ñ GLpn,Rq{Opnq
associating to a metric f the metric on the dual bundle V_ is the one sending
the symmetric matrix Apx̃q “ pfpx̃q ¨ fpx̃qtq´1 to its inverse Apx̃q´1. This is
because, if we write V “ M̃ ˆΓ Rn, with Γ acting on Rn by ρpx̃q, the dual
structure is obtained by the action pρpx̃qtq´1. The complex hermitian case is
completely analogous.

1.3 The adjoint polarized harmonic linear sys-

tem

Let G be a reductive connected real algebraic group, and denote by G “
GpRq. Let K ă G be a maximal compact subgroup and denote by N “ G{K
the associated Riemannian symmetric space (which is diffeomorphic to Rn,
see [Hel78], Chapter VI, Theorem 1.1). Thanks to the reductivity hypothesis,
decompose the Lie algebra g of G as

g “ gss ‘ a “ pss ‘ kss ‘ ap ‘ ak,

where gss is a semisimple ideal, a “ zpgq “ ak‘ap is the center of g, k “ kss‘ak

is the Lie algebra of K, and p “ pss ‘ ap is an AdpKq-invariant complement
of k.

Definition 1.3.1. Let w be an AdpKq-invariant vector subspace of g. We
define rws Ñ N the fiber subbundle of the trivial bundle N ˆ g whose fiber
over y P N is

rwsy “ Adypwq.
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To be more precise, given y P N , we should take g P G such that y “ gK,
and write rwsy “ Adgpwq. This is well-defined because of the invariance
hypothesis.

Proposition 1.3.2. The constant local system on N with fiber g possesses
a structure of even R-phls pVad, σad, Qadq given by

pVad, Dq “ pN ˆ g, dq; σad,ypξq “ ξrks ´ ξrps;

Qadpξ, ξq “ ´Killpξss, ξssq ` }ξa
k

}2 ´ }ξa
p

}2,

where ξrks, ξrps, ξss, ξa
k

, ξa
p

denote the projections of ξ on rks, rps, gss, ak,
ap, respectively, Kill is the Killing form of the real semisimple Lie algebra
gss and the squared norm is taken with respect to some fixed positive definite
scalar product on a – Rn.

Proof. Notice that gss “ rgsss “ rks ‘ rpsss gives, at every point y P N , a
Cartan decomposition of the semisimple Lie algebra gss, which we define to
be σad,y. Hence

´Kill
`

ξ, σadpξq
˘

ą 0 @ξ ‰ 0, ξ P gss,

and the stated expression for S induces a symmetric, positive definite form
on g.The only thing left to check is harmonicity; we claim that the map
induced by the metric

fad : N Ñ GLpgq{Opgq

is even totally geodesic. That is because the map is induced by the inclusion
of groups as inner automorphisms

G //

��

GLpgq

��

N // GLpgq{Opgq,

which is well defined because K ă Opgq. To see that the map is as stated,
fix a base point y0 “ eK P N , so that we have a Cartan decomposition σ0
and a reference metric hy0pξ, ξq “ ´Killpξss, σ0pξssqq ` }ξa}2. Then we have

hypξ, ηq “ hy0
`

Ad´1
y pξq,Ad´1

y pηq
˘

,

that by (1.4) means exactly that the harmonic map associates to y P N the
adjoint automorphism Ady of g.
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Corollary 1.3.3. Let M be a Riemannian manifold, ρ : Γ “ π1pMq Ñ G

a representation and f : M̃ Ñ N a ρ-equivariant and harmonic map. Then
we can define on M a structure of even R-phls by pulling back the adjoint
structure on N .

Proof. First start by constructing a R-phls on M̃ . All of the properties
of a R-phls pull back without problems, except possibly the harmonicity
requirement. In this case, this follows from the proof of proposition 1.3.2,
because fad is not only harmonic, but even totally geodesic, and composition
of a harmonic map with a totally geodesic one is again harmonic.

To pass to M , notice that f˚pVad, dq “ pM̃ ˆ g, dq, so we may define

V “ M̃ ˆΓ g,

where Γ acts on M̃ by deck transformations and on g by the adjoint action
Adρ. This action commutes with d, so we have a flat bundle on M . The
involution f˚σad is defined by adjunction:

f˚σadpξqx̃ “ ξrksfpx̃q ´ ξrpsfpx̃q ,

so it passes to the quotient as well. The same is true for f˚Sad, since it is
induced by Kill, which is AdpGq-invariant. The metric on V is clearly given
by f ˝ fad, as above, so it is harmonic.

Fact 1.3.4. Let pV, σ, Qq be a R-phls on a Riemannian manifold M . Fix
a point x̃ P M̃ , and let f : M̃ Ñ GLpn,Rq{Opnq be the harmonic metric on
V. Let g0 be the Lie algebra of G0, defined as in notation 1.2.5. Then on
M̃ ˆΓ g0 Ď M̃ ˆΓ g, the two R-phls structures induced by f˚pVad, σad, Qadq
and EndpV, σ, Sq coincide.

Analogously, if pV, σ, Sq is a C-phls and g “ g0 b C, and defining Sad

from Qad as in lemma 1.2.7, f˚pVad b C, σad b C, Sadq induces on M̃ ˆΓ g

the same C-phls structure as EndpV, σ, Sq.

Proof. We will first focus on the real, even case. Let f0 : M̃ Ñ N0 “ G0{K0 Ď
GLpn,Cq{Upnq be a harmonic metric as in notation 1.2.5, so that f “ h ¨ f0
for some h P H . Both the pull-back of the adjoint phls and EndpVq live on
isomorphic bundles:

V – M̃ ˆΓ R
n ùñ EndpVq – M̃ ˆΓ glnpRq.

The flat bundle M̃ˆΓg0 is a subbundle of this one. Note that f and f0 induce
the same metric on this bundle: Indeed, since f “ h ¨ f0 and h commutes
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with all of g0, the metrics defined as in (1.4) coincide. By Corlette’s theorem
1.1.1, the Lie algebra g0 is reductive; write it as

g0 “
à

i

gi ‘ a,

where gi is simple and a is abelian. We will prove that the two phls structures
f˚Vad and EndpVq induce the same positive definite metric h, and that the
flat symmetric structures Q coincide on each factor gi, up to possibly some
constant factor λi. This will conclude the proof: First of all, the involution σ
is uniquely determined on the abelian factor a, since it must be the identity
on ak “ a X k. Secondly, let σ1, σ2 be the two involutions defined on a
semisimple factor gi by the two different phls structures. Then, for every A,
B in gi, we obtain

hpA,Bq “ λih
`

A, σ1pσ2pBqq
˘

ùñ σ1 ˝ σ2 “ λi ¨ Id ùñ σ2 “ λiσ1.

This implies λi “ ˘1. But since at every point x̃ P M̃ both σ1 and σ2 have
a Lie algebra as `1-eigenspace and something that is not closed under Lie
bracket as ´1-eigenspace, we must have λ “ 1, hence all structures coincide.

The metric on EndpVq is induced by the composition

M̃ ÝÑ GLpn,Rq{Opnq ˆ GLpn,Rq{Opnq
b

ÝÝÑ GLpn2,Rq{Opn2q,

where the first map sends x̃ to pApx̃q, A´1px̃qq, as in the proof of lemma 1.2.8.
On the other hand, the metric on f˚Vad is induced by the adjoint action:

M̃
f

ÝÝÑ GLpn,Rq{Opnq Ñ GLpglnpRqq{UpglnpRqq.

These two maps amount to the same thing: Denoting by ei b ej the matrix
with one 1 at the place pi, jq only, we have, for the first definition:

pei b ejqpAb A´1qpek b ehq “ Aik ¨ Ajh,

and for the second one

@

pei b ejq, A ¨ pek b ehq ¨A´1
D

“ Aik ¨Ajh.

The equality of the S’s on each gi, up to a constant factor, is easy, using
the definition with f0 instead of f : Both SEnd and f˚

0 Sad give, on each point
x̃ P M̃ , a symmetric and, by the real version of corollary 1.2.4, g0-invariant
form on g0, so it is the Killing form on each factor, up to some multiple.
These multiples must be constant in x̃ because, by hypothesis, both forms
are flat.
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The complex case (hence, the odd real one) is treated analogously, with
only slightly more attention needed. Indeed, since g0 Ă glnpCq, we may
suppose g Ď glnpCq, so the equality of the positive definite metrics works just
as well, substituting everywhere GLnpCq to GLnpRq and Upnq to Opnq above.
For the flat quadratic forms, in this case we are given two hermitian forms
on g, S1 and S2, which are only g0-invariant. However, the same method
works: Since g0 is reductive, g is, hence we reduce as above to the case where
g is simple. Then, the two hermitian matrices representing S1 and S2 can be
simultaneously diagonalized, hence there is a λ such that KerpS1 ´λS2q ‰ 0.
The application S1 ´ λS2 is only g0-invariant, but clearly this implies that
its kernel is g0 bC-invariant, hence a non-empty ideal of g, which must then
coincide with g. In the real, odd case, the equality of S1 and S2 implies that
between Q1 and Q2.

1.4 The tangent bundle of a symmetric space

Recall that there is a canonical surjective map of vector bundles:

ϑTN : N ˆ g Ñ TN (1.5)

px, ξq ÞÑ
´

x,
B

Bt
pexpptξq ¨ xq

ˇ

ˇ

t“0

¯

.

It is easy to see that the kernel of ϑTN is rks. Thus the restriction to the
complement

ϑTN

ˇ

ˇ

rps
: rps Ñ TN

is an isomorphism of vector bundles over N . Henceforth, the inverse of this
isomorphism will be denoted by βN , which is thus a 1-form βN P A1

Npgq
inducing on every stalk the isomorphism of vector spaces TyN – rpsy.

Definition 1.4.1. The 1-form βN defined above is called the Maurer-Cartan
form of the symmetric space N .

The name comes from the more general construction which holds on any
reductive homogeneous space N 1 “ G{H : Taking N 1 “ G, then βN 1 coincides
with the usual right Maurer-Cartan form (cfr. [BR90], chapter 1).

One can easily check equivariance for the 1-form βN :

g˚βN “ Adg ˝ βN . (1.6)

In 1.3 we defined a phls structure on N ˆ g. We may restrict this to the
subbundle rps Ñ N , which is thus endowed with a metric. Thanks to ϑTN

and βN , this gives TN a G-invariant metric.
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The total space of the tangent bundle TN of a Riemannian symmetric
space N is not a Riemannian symmetric space itself when N is not flat, see
[Kow71]. On the other hand, it is naturally a homogeneous space, as proved
in [BS72]. We resume this result in the following, adapting notations to our
setting:

Proposition 1.4.2. The total space of the tangent bundle TN is a homo-
geneous space with transformation group TG. Explicitly, if we define the
diffeomorphism:

r : TG Ñ G ˙ g

pg, vq ÞÑ
`

g, Rg´1
˚
v
˘

,

we obtain a commutative diagram

TG
r

//

dπN

��

G ˙ g

��

N ˆ g

ϑTNzzvv
v
v
v
v
v
v

TN

(1.7)

where the vertical arrow on the right is quotient by K either seen as a sub-
group of TG or equivalently by acting by right multiplication on G and ad-
junction on g.

Remark 1.4.3. We adopted the semidirect notation G ˙ g because the mul-
tiplication induced by r on G ˙ g is exactly

pg, ξq ¨ ph, ηq “
`

gh, ξ ` Adgpηq
˘

.

Remark 1.4.4. Since we are assuming that G is the group of real points
of a connected reductive algebraic group G, in the analysis of the tangent
space we can take the algebraic perspective as well. First of all, since K
is maximal compact, it intersects every connected component of G, so that
G{K is connected. Secondly, by the Weyl unitarian trick, K consists of the
elements of G which are orthogonal for some positive definite symmetric form
q. Thus, letting K “ GXOpqq, we have K “ KpRq. Denote by N “ G{K the
scheme-theoretic quotient. We have an equality NpRq˝ “ G{K “ N , where
NpRq˝ is the neutral connected component of NpRq. Then the connected
component of Rrεs{pε2q-points of N coincides with the tangent space:

TN “ N
`

Rrεs{pε2q
˘˝

“ TG{TK “ G
`

Rrεs{pε2q
˘

M

K
`

Rrεs{pε2q
˘

.
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1.5 The canonical connection

We are going to introduce a connection on any complex phls (but everything
works equally well for real ones), the canonical connection, which is metric
with respect to h and depends on f only. For a start, we define a canonical
1-form β P A1

MpVq, which is essentially the differential of f .

Definition 1.5.1. Let pV, D, hq be a complex harmonic bundle on M , and
f : M̃ Ñ P “ GLpn,Cq{Upnq as in (1.4). We define the 1-form β̃ P A1

M̃
pglnpCqq

as
β̃ “ f˚βP ,

and β P A1
MpEndpVqq the 1-form such that β̃ “ π̃˚β.

Remark 1.5.2. The 1-form β̃ is the pull-back of an EndpVq-valued 1-form β

on M , because, thanks to (1.6), β̃ is equivariant:

β̃γx̃ “
`

ρpγq ¨ fpx̃q
˘˚
βP “ f˚

`

ρpγq˚βP
˘

“ Adρpγqβ̃x̃.

First of all, remark that if we have a reductive subgroup G Ď GLpn,Cq
such that f : M̃ Ñ N “ G{K Ď P “ GLpn,Cq{Upnq, then we can equiva-
lently define β̃ as the pullback of βN :

Lemma 1.5.3. Let G ă G1 be an inclusion of reductive algebraic Lie groups,
K a maximal compact subgroup of G, and extend it to a maximal compact
subgroup K 1 of G1. Then, denoting by i : N “ G{K Ñ N 1 “ G1{K 1 the totally
geodesic embedding, i˚βN 1 “ βN .

Proof. This follows easily from the compatibility of the exponential map-
pings.

For the special case of the adjoint phls, then, since the harmonic map is
given by adjunction, the canonical 1-form β P A1

NpEndpgqq is just βN under
the adjoint representation, that is, for every tangent vector field Y on N and
ξ P g,

βpY qpξq “ rβNpY q, ξs. (1.8)

Corollary 1.5.4. Let pV, σ, Sq be a phls on M , f a harmonic metric, and β
the corresponding 1-form. Then the 1-form βEnd P A1

`

EndpEndpVqq
˘

corre-
sponding to EndpV, σ, Sq is adpβq, that is, for every A P EndpVq, we have

βEndpAq “ β ˝ A´ A ˝ β.
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Proof. It is enough to prove this when f “ f0, as in notation 1.2.5, so that β
takes values in g0, since if f “ hf0, then β changes only by adjunction by h.
By fact 1.3.4, the pullbacks π̃˚EndpV, σ, Sq and f˚pVad, σad, Sadq coincide on
M̃ ˆΓ g0 (or its complexification, in the C-phls case). By (1.8), the 1-form
associated to the adjoint phls on N “ GLpn,Cq{Upnq is adpβNq, and the
pull-back of βN to M̃ is β̃, by definition.

Lemma 1.5.5. The 1-form β takes values in EndpVq´, the p´1q-eigenspace
of σEndpVq (which is the subspace exchanging V` and V´).

Proof. This follows from fact 1.3.4. Indeed,

βN : T
`

GLpn,Cq{Upnq
˘ „

ÝÝÑ rps “ V´
ad,

where p Ă gln is the subspace of symmetric or Hermitian matrices, hence
σadpβN pY qq “ ´βNpY q for every Y P T pGLpn,Cq{Upnqq. Composing with
df gives the result.

Definition 1.5.6. Let pV, σ, Sq be a phls on M , pV, Dq the associated flat
bundle and f a harmonic metric. Let v be a section of V. We define the
canonical connection on pV, σ, Sq by any of the following two expressions:

1. dcanv “
`

Dpv`q
˘`

`
`

Dpv´q
˘´

;

2. dcanv “ Dv ´ β ¨ v.

Here, v` and v´ are the projections of v on V` and V´, respectively, and
β ¨ v P A1pVq is defined by applying the EndpVq-part of β to v. We will

denote by
can

∇ : AppVq Ñ Ap`1pVq the covariant derivative of tensors, and
by dcan : AppVq Ñ Ap`1pVq the exterior covariant derivative, that is, the

anti-symmetrization of
can

∇ (they coincide for p “ 0).

Proposition 1.5.7. The two definitions in 1.5.6 coincide, and define a met-
ric connection for h.

Lemma 1.5.8. Let pV, σ, Sq be a phls on M , x P M a point, ρ : π1pMq Ñ
G0 Ď GLpn,Cq the monodromy representation. Let f : M̃ Ñ GLpn,Cq{Upnq
be a harmonic metric, and s : M̃ Ñ GLpn,Cq a lift of f . Then

σ0
def
“ s´1 ˝ σ ˝ s

is flat, i.e. Dpσ0q “ 0.

43



Proof. This follows easily from the existence of an f0 : M̃ Ñ N0 such that
f “ h ¨ f0, as in notation 1.2.5. Work with pull-backs to M̃ for ease, and let
s0 : M̃ Ñ G0 be a section of f0. In particular, spx̃q “ h¨s0px̃q “ s0px̃q¨h. If we
prove that s´1

0 ˝σ˝s0 is flat, then the same is true for σ0 “ h´1˝s´1
0 ˝σ˝s0˝h.

Hence, from now on, we suppose that f “ f0 so that s takes values in G0.
Let v, w be any two sections of Ṽ “ M̃ ˆ Cn. Then, by the definition of

f in (1.4),
hpv, wq “ S

`

v, σpwq
˘

“
@

s´1v, s´1w
D

Cn.

In terms of v1 “ s´1v and w1 “ s´1w, we obtain, thanks to corollary 1.2.4,

S
`

v1, σ0pw1q
˘

“ S
´

v1, s´1 ¨
`

σpsw1q
˘

¯

“ S
´

sv1, σpsw1q
¯

“
@

v1, w1
D

Cn .

Now, by hypothesis S is flat, and the constant scalar product on Cn is clearly
flat as well. Since v1 and w1 are arbitrary functions M̃ Ñ C

n, the involution
σ0 must be flat, too.

Lemma 1.5.9. With the same notations of the preceding lemma, let N “
G{K be any totally geodesic subspace of GLpn,Cq{Upnq such that f takes
values in N , so that s : M̃ Ñ G Ď GLpn,Cq. Let α “ s˚θr “ ds ¨ s´1 be the
pull-back of the Maurer-Cartan form θr of G, which is thus a g “ LiepGq-
valued 1-form on M̃ . Then:

1. β̃ “ αrps, where p is the subspace of g on which σad is negative definite
and rpsx̃ “ Adspx̃qppq.

2. Let v be a section of Ṽ, the pull-back of V to M̃ . Then

∇αv
def
“ Dv ´ α ¨ v “ s ¨

`

Dps´1vq
˘

.

3. The connection ∇α is metric for π˚h and sends sections of Ṽ` to Ṽ`-
valued 1-forms, and similarly for Ṽ´.

Proof. 1. We will just prove this when G “ GLpn,Cq but the proof is exactly
the same in the general case (actually, lemma 1.5.3 tells us that proving this
case is enough). We know that β̃ takes values in the subbundle rglnpCq´s of
M̃ ˆ glnpCq, where f˚σad is negative definite; to prove that

β̃ “ f˚βN “ s˚p˚pβNq “ α´ “ s˚pθ´
r q,

where θ´
r is the projection on rglnpCq´s of θr, we prove directly the equality

p˚βN0
“ θ´

r . Equivalently, taking the composition with ϑTN , we shall prove
that

p˚pXq “ ϑTN ˝ θ´
r pXq, @X P TG.
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Both βN and θr are AdpGq-equivariant, hence it suffices to prove this in the
point e P G. But there ϑTN is p˚ by definition, and θr is the identity.

2. This is a simple computation:

s ¨Dps´1 ¨ vq “ Dv ´ s ¨ s´1 ¨ dpsq ¨ s´1 ¨ v “ Dv ´ α ¨ v.

3. This follows from lemma 1.5.8. Since σ0 is D-flat, we have also that
σ is s ˝ D ˝ s´1-flat, that is, ∇α commutes with σ. In particular, it respects
the decomposition Ṽ “ Ṽ` ‘ Ṽ´. It also respects the metric:

dhpv, wq “ dxs´1v, s´1wyCn “
@

dps´1vq, s´1w
D

Cn `
@

s´1v, dps´1wq
D

Cn

“ h
`

ps ˝ D ˝ s´1pvq, w
˘

` h
`

v, s ˝ D ˝ s´1pwq
˘

.

Lemma 1.5.10. Let pV, σ, Sq be a phls on M . Then, with respect to the
metric structure h “ Sp¨, σp¨qq, the decomposition

EndpVq “ EndpVq` ‘ EndpVq´

coincides with the decomposition into anti self-adjoint and self-adjoint endo-
morphisms, respectively.

Proof. We prove that an element A P EndpVq` is anti self-adjoint, the other
part being identical. Write f “ h ¨ f0, with f0 : M̃ Ñ G0{K0. Then the
structure given by f0 defines another decomposition V “ V`0 ‘ V´0 , hence
a decomposition of EndpVq, such that

EndpVq` “ AdhEndpVq`0 .

Thanks to fact 1.3.4, we know that EndpVq`0 is the pull-back under f0 of
rglnpCq`s, that is, for every A0 therein, s´1

0 ¨ A0 ¨ s0 P glnpCq` is an anti-
hermitian matrix. It follows that for every A in EndpVq`, also s´1 ¨ A ¨ s is
anti-hermitian. The result follows by the definition of h with respect to s:

hpAv, wq “
@

s´1Av, s´1w
D

Cn “
@

s´1As ¨ s´1v, s´1w
D

Cn “ ´hpv, Awq.

Proof of proposition 1.5.7. First we prove that the second definition of dcan

respects the V` ‘ V´ decomposition: Indeed, thanks to point 1. of lemma
1.5.9,

dcanv “ Dv ´ β ¨ v “ Dv ´ α ¨ v ` α` ¨ v “ ∇α ` α` ¨ v;
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now the first summand respects the decomposition thanks to point 3. of
lemma 1.5.9, and the second one does too, because by definition α` takes
value in EndpVq`.

Now take, for example, a section v of V`; then, the two definitions yield

dcanv “ pdvq`;

dcanv “ dv ´ β ¨ v. (1.9)

To prove that they are equal, simply observe that, thanks to lemma 1.5.5,
β ¨ v is a V´-valued 1-form. Hence, (1.9) being a V`-valued 1-form thanks to
the above discussion, it must coincide with the projection on V` of dv, that
is, the first definition.

Finally, dcan is a metric connection, because point 1. of lemma 1.5.9
implies that it differs from the metric connection ∇α only by an EndpVq`-
valued form, which is anti self-adjoint by lemma 1.5.10.

Remark 1.5.11. The origin of the name “canonical connection” is that, in
the case when M̃ “ N is a symmetric space equipped with the adjoint phls,
the connection thus defined restricts, on the subbundle rps Ď N ˆ g, to the
canonical connection of N , which can be defined in several ways, for example
as the Levi-Civita connection associated to any invariant metric on N , or
as the principal connection on the K-bundle G Ñ N determined by p (cfr.
[KN63], pag. 302, [Hel78], pag 217 and [BR90], Chapter 1).

Lemma 1.5.12. Let pV, Dq be a flat bundle with a phls structure. Let φ
be a V-valued p-form. Then, if we write d for the flat exterior differential
associated to D, the exterior differential dcanφ can be written in either of the
following ways:

dcanφ “
`

dpφ`q
˘`

`
`

dpφ´q
˘´

;

dcanφ “ dφ ´ β ^ φ.

Proof. This is just a direct computation with the definition of exterior dif-
ferential. We only notice that the definition of β ^ φ can be taken to be

β ^ φpX1, . . . , Xp`1q “
p`1
ÿ

i“1

p´1qi`1βpXiq ¨ φpX1, . . . , X̂i, . . . , Xp`1q.

Here ¨ denotes the action of EndpVq on V.

Corollary 1.5.13. Let pV, σ, Sq be a phls with a harmonic metric f , and
β the associated 1-form. Then β is parallel with respect to the canonical
connection on EndpV, σ, Sq. Explicitly, we have the Maurer-Cartan equation:

dβ “ rβ, βs (1.10)
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(notice the absence of a factor 1
2
with respect to the usual Maurer-Cartan

equation on a Lie group).

Proof. By the lemma above plus corollary 1.5.4, equation (1.10) is exactly
dcanβ “ 0. To prove this parallelness, work on the universal cover M̃ and
compute dcanα, where α is the pull-back of the right Maurer-Cartan form, as
in lemma 1.5.9:

dcanα “ dα ´ rαrps, αs “
1

2
rα, αs ´ rαrps, αs “

1

2
rαrks, αrkss ´

1

2
rαrps, αrpss.

This proves that dcanα is a rks-valued 2-form, and since dcanβ “ pdcanαqrps, it
follows that dcanβ “ 0.

Thanks to this expression, one can easily compute the curvature of the
canonical connection:

Rcanp¨, ¨qv “ ´rβ, βs ¨ v ` β ¨ pβ ¨ vq. (1.11)

In the special case of the adjoint phls on a symmetric space, where β ¨ v “
rβ, vs etc., this clearly reduces to the usual curvature formula for a symmetric
space via the Jacobi identity:

Rcanp¨, ¨qv “
1

2

“

rβ, βs, v
‰

. (1.12)

1.6 The codifferential and the Laplacian

Let pV, σ, Sq be a (complex or real) phls structure on M , which we again
suppose compact. The purpose of this section is to compute the codifferential
d˚ of the connection D with respect to the metric h on 1-forms, and deduce
a formula for the Laplacian ∆ “ d˚d on sections. We will always work with a
complex phls, but everything translates without problems in the real setting.

Definition 1.6.1. Define the connection ∇̃ on V by:

∇̃v “
can

∇v ´ β ¨ v “ Dv ´ 2β ¨ v, @v P C8pVq.

Again, denote by d̃ the associated exterior differential.

Remark 1.6.2. When V “ Vad is the adjoint phls structure on a symmetric
space N , then ∇̃ is flat. To see this, first apply the definition of d̃ to get

d̃
2
v “ d̃

´

dv ´ 2rβ, vs
¯

“ ´2rdβ, vs ` 2rβ, dvs ´ 2rβ, dvs ` 4
“

β, rβ, vs
‰

.
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Then, using (1.10) and the graded Jacobi identity:

d̃
2
v “ ´2

“

rβ, βs, v
‰

` 4
“

β, rβ, vs
‰

“ 2
“

v, rβ, βs
‰

` 2
“

β, rβ, vs
‰

´ 2
“

β, rv, βs
‰

“ 0.

Lemma 1.6.3. Let α be a V-valued 1-form. Let x P M be a point, and
denote by tEsu a local frame, and gst the inverse matrix of the metric. Then:

d˚α “ dcan˚α`
ÿ

s,t

gstβpEsq ¨ αpEtq “ ´trace
`

∇̃α
˘

.

Proof. By definition of the codifferential and of dcan, for every section v of
V,

ż

M

xd˚α, vydVolg “

ż

M

xα, dvydVolg

“

ż

M

xα, dcanvydVolg `

ż

M

xα, β ¨ vydVolg

“

ż

M

xdcan˚α, vydVolg `

ż

M

xα, β ¨ vydVolg

Now, locally dcan˚α “ ´
ř

s,t g
st
can

∇Et
αpEsq, by (1.1), and

xα, β ¨ vy “
ÿ

s,t

gstxαpEsq, βpEtq ¨ vy “
ÿ

s,t

gstxβpEsq ¨ αpEtq, vy,

where in the last equality we have used that βpEsq is self-adjoint, thanks to
lemmas 1.5.5 and 1.5.10.

This gives a formula for the codifferential of V-valued 1-forms. Pulling
back to M̃ , we obtain a formula for the codifferential of ρ-equivariant Ṽ-
valued forms α̃ “ π̃˚α. We extend these definitions to every Ṽ “ M̃ ˆ Cn-
valued 1-form:

Definition 1.6.4. Let α̃ P A1pM̃ ˆ Cnq be a 1-form and v : M̃ Ñ Cn a
smooth function (that is, a section of Ṽ). We define, in terms of a local
frame tEsu,

dcan˚α “ ´trace
can

∇α, d˚α “ dcan˚α `
ÿ

s,t

gst
`

rβ̃pEsq, α̃pEtqs
˘

,

∆canpvq “ dcan˚dcanv, ∆pvq “ d˚dv.
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Definition 1.6.5. Let v : M̃ Ñ Cn be a section of Ṽ “ M̃ ˆ Cn. We define
the Jacobi operator as

Jpvq “ ∆canpvq `
ÿ

s,t

gstβ̃pEsq ¨ pβ̃pEtq ¨ vq.

This object has been introduced in a different context for the study of
variations of non-twisted harmonic maps, cfr. [EL83, Maz73], and will be
central in the next chapters. The following useful statement, and its corol-
laries, is the reason we introduced phls.

Lemma 1.6.6. Let v : M̃ Ñ Cn be a section of Ṽ “ M̃ ˆ Cn. Then we have
the following Weitzenböck formula:

d˚dv “ Jpvq.

Proof. Denote by Es a local orthonormal system near a point x̃ P M̃ . Then

d˚dv “ ´
ÿ

s

´can

∇Es
DEs

v ´ β̃pEsq ¨DEs
v
¯

“
ÿ

s

´
can

∇Es

can

∇Es
v ´

can

∇Es

`

β̃pEsq ¨ v
˘

` β̃pEsq ¨
can

∇Es
v ` β̃pEsq ¨

`

β̃pEsq ¨ v
˘

“ ∆canv `
ÿ

s

β̃pEsq ¨
`

β̃pEsq ¨ v
˘

´
can

∇Es
pβ̃pEsqq ¨ v,

where in the last equality we have used lemma 1.6.7 below. Finally, we claim
that

ÿ

s

can

∇Es
β̃pEsq “ 0

is in fact equivalent to the metric f being harmonic. First recall from (1.2)

that f is harmonic if and only if its tension field τpfq “
ř

s

N

∇Es
dfpEsq

vanishes, where
N

∇ is the Levi-Civita connection of N . Now, denoting by
P “ GLpn,Cq{Upnq and by βP its Maurer-Cartan form, we compute:

βP pτpfqq “ βP

´

ÿ

s

N

∇Es
pdfpEsqq

¯

“
ÿ

s

can

∇Es
β̃pEsq,

where we have used fact 1.3.4, the fact that for the adjoint phls the canonical
connection corresponds to the Levi-Civita connection, and the definition of
β̃pEsq “ f˚βP pEsq. Since βP is injective, this concludes the proof.
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Lemma 1.6.7. The canonical connection is compatible with the product, that
is, if v is a section of V and A is a section of EndpVq, we have

dcanpA ¨ vq “ dcanpAq ¨ v ` A ¨ dcanpvq.

Proof. We prove this after pull-back to M̃ . Using dcanv “ dv ´ β̃ ¨ v, and
dcanA “ dA ´ rβ̃, As, plus the trivial relation dpA ¨ vq “ dA ¨ v ` A ¨ dv, we
obtain the result.

Corollary 1.6.8. The Laplacian ∆ “ d˚d on a phls respects the decomposi-
tion

V “ V` ‘ V´.

Proof. Indeed, in the definition of J , which we have just proved to coincide
with ∆, the Laplacian ∆can respects the decomposition, since dcan does, and
β̃, which exchanges the factors of the decomposition, is applied twice.

Corollary 1.6.9. Let V be the vector space of global sections of V, that is,

V “
 

v P C8pVq : Dv “ 0
(

.

Then σ leaves V invariant, and it induces a decomposition

V “ V ` ‘ V ´.

Proof. It is enough to prove that if v P V , then also v` P V ; this further
reduces to proving that Dpv`q “ 0. Since Dpvq “ 0, we have Jpvq “ d˚dv “
0, and we can integrate by parts:

0 “

ż

M

xJv, vydν

“

ż

M

xdcan˚dcanv, vydν `
ÿ

s

ż

M

xβ̃pEsq ¨
`

β̃pEsq ¨ v
˘

, vy

“

ż

M

}dcanv}2W `

ż

M

}β̃ ¨ v}2,

since βpEsq is self-adjoint (lemma 1.5.10). Hence both summands must van-
ish, and we obtain:

dcanv “ 0; β ¨ v “ 0.

But then, since dcan preserves the decomposition and β exchanges it,

dcan
`

v`
˘

“
`

dcanv
˘`

“ 0; β ¨
`

v`
˘

“
`

β ¨ v
˘´

“ 0.

Hence also dpv`q “ dcanpv`q ` β ¨ v` “ 0.
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1.7 The case M “ S1

In this section we analyze briefly the special case whereM “ S1. Although in
many other sections we will requireM to be a Kähler manifold, the case of S1

has a special interest in his own, since the harmonic maps f : M̃ “ R Ñ N are
the geodesics parametrized by a multiple of the arc length. We know that the
symmetric spaces of non-compact type are complete and uniquely geodesic
spaces, so given any two points y0, y1 in N we may find a unique geodesic
arc connecting them. However, the existence of equivariant geodesics is more
subtle.

In this case, since Γ “ Z, we have for the representation space RBpM,Gq
def
“

HompΓ, Gq “ G. The moduli space MBpΓ, Gq identifies then with the GIT
quotient of G modulo its action by conjugation, MBpM,Gq “ G{{G. Ev-
ery element here is represented by a semisimple element of G (in the case
G “ SLpn,Cq, this is a diagonalizable matrix). The energy defines a func-
tional on RBpM,Gq defined for g “ ρp1q P G by:

Epgq “ inf

"

1

2

ż 1

0

›

›

›

Bfpxq

Bx

›

›

›

2

dx : f : R Ñ N, fpx` 1q “ g ¨ fpxq

*

. (1.13)

This infimum is a minimum if, and only if, a g-equivariant harmonic map
exists. The energy functional induces one on MBpM,Gq, since if g1 “ hgh´1

and f is g-equivariant, then f 1 “ h ¨ f is g1-equivariant, and the energy of
these two functions coincide (as G acts by isometries on N). Remark that
we can redefine the functional as:

Epgq “ inf
yPN

dist
`

y, g ¨ y
˘2
. (1.14)

Indeed, on the one hand, for every curve f : r0, 1s Ñ N such that fp0q “ y,

fp1q “ g ¨ y, as is every f in (1.13), we have 1
2

ş1

0

›

›

Bfpxq
Bx

›

›

2
dx ě distpy, g ¨

yq2, since the length of every curve is bigger than the distance of the two
points, and using the Cauchy-Schwarz inequality. On the other hand, we
can approximate this distance arbitarily well by smooth curves: Start with a
geodesic arc connecting y to g¨y, parametrized by a multiple of the arc length,
and juxtapose to it the translated by g. If this process gives a smooth curve,
then it is an equivariant geodesic (but this is not always the case, see figure
1.2); conversely, by uniqueness of the geodesics, if an equivariant geodesic
exists, it must be constructed in this way. If the curve is not smooth, we
can approximate it arbitrarily well with equivariant and smooth curves, thus
obtaining the equality of (1.13) and (1.14). In particular, the infimum in
(1.14) is atteined if and only if the g-equivariant geodesic exists, that is, if
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and only if the Zariski closure of the 1-parameter subgroup generated by g
is reductive. This is equivalent to g being semisimple, so that:

min
yPN

dist
`

y, g ¨ y
˘

exists ðñ g is semisimple. (1.15)

i

ie

ie´1

i

ie

Figure 1.1: For G “ SLp2,Rq and g “

ˆ

e
1

2 0

0 e´ 1

2

˙

, taking a geodesic arc

from i to g ¨ i “ ei and prolonging it gives the geodesic fptq “ iet.

i i ` 1i´ 1i i` 1

Figure 1.2: For g “

ˆ

1 1
0 1

˙

, taking a geodesic arc from i to g ¨ i “ i` 1 and

prolonging it gives a non-smooth curve.

The square root of (1.14) is known as the translation length, and widely
used for example in the study if CATp0q spaces (cfr. [BH99], §II.6.1, where
(1.15) is proved in this more general setting). For general finitely gener-
ated groups Γ instead of Z, Parreau [Par11] proves a similar result for the
analogous function

inf
yPN

ÿ

sPS

distpy, ρpsq ¨ yq2,

where S is a finite set of generators of Γ. That is, she proves that the infimum
is achieved if and only if ρ is semisimple. By Corlette’s theorem, the same is
true for the energy functional.
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1.8 Polarized harmonic local systems on Kähler

manifolds

Complex polarized harmonic local systems enjoy particularly nice properties
on Kähler manifolds. Let us start by pull-backs of phls.

Lemma 1.8.1. Suppose that X 1 and X are compact Kähler manifolds, and
ϕ : X 1 Ñ X is holomorphic. Let pV, σ, Sq be a (complex or real) phls on
X. Then there is an induced pull-back (complex or real, respectively) phls
ϕ˚pV, σ, Sq on X 1.

Proof. The first four points of the definition pull-back with no problem in
the more general setting of a smooth map between Riemannian manifolds.
However, if f : X̃ Ñ GLpn,Cq{Upnq is harmonic, in general ϕ˝f , which is the
map giving the pull-back metric, will not be, even when ϕ is harmonic. But it
does in our setting, as it follows from general results on (pluri)-harmonic maps
and (pluri)-harmonic morphisms on Kähler manifolds. On the one hand, a
map from a Kähler manifold to a symmetric space of non-compact type is
harmonic if and only if it is pluriharmonic (that is, the restriction to every
complex curve is harmonic). This follows from the Siu-Sampson Bochner’s
formula, cfr. [ABC`96], chapter VI. Then, thanks to [Lou99], we know that
a holomorphic map between Kähler manifolds is a pluriharmonic morphism,
that is, it pulls back pluriharmonic maps to pluriharmonic maps.

Furthermore, since a phls gives us in particular a flat bundle with a
harmonic metric, as in [Sim92] we also have the structure of a Higgs bundle:

Definition 1.8.2. A Higgs bundle pE , θq on a compact Kähler manifold X
consists of a holomorphic vector bundle pE , B̄q and θ P A1pEndEq a (1,0)-form
such that

B̄pθq “ 0; θ ^ θ “ 0.

Here, θ^ θ is, up to a factor 2, what we wrote above as rθ, θs, that is, we
take wedge product on forms and the commutator of endomorphisms. We do
not recall here the construction of the Higgs bundle associated to a phls, but
we content ourselves to list how it fits in our setting (all of these properties
are proved, or implicitly stated, in [Sim92]).

Proposition 1.8.3. The Higgs bundle associated to a C-phls pV, σ, Sq has
the following properties:

1. The smooth vector bundle underlying E is V;
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2. The 1-form β splits in p1, 0q and p0, 1q parts as

β “ θ ` θ˚,

where θ˚ is the adjoint of θ, that is, for every two sections v, w of V
and χ a (real) tangent vector,

h
`

θpχq ¨ v, w
˘

“ h
`

v, θ˚pχq ¨ w
˘

.

3. The p0, 1q-part of the canonical connection is the holomorphic structure
B̄.

We can reformulate the definition of the energy of a map f : X̃ Ñ N in
terms of the Higgs bundles. Indeed, the pull-back f˚h of the metric on the
symmetric space pN, hq gives a symmetric 2-form whose p1, 1q part (which
is closed, cfr. [Mok92], §1, Theorem 4) turns out to be 2 ¨ tracepθ ^ θ˚q
(here the trace is taken on the endomorphism part). This follows easily from
f˚h “ Spβ, βq, where S is the hermitian 2-form of the C-phls, plus point
2. of proposition 1.8.3. Writing the energy density and the volume form in
terms of a local orthonormal basis and denoting by Ω the Kähler form on X ,
then, it is immediate to show that

Epfq “
1

n!

ż

X

tracepθ ^ θ˚q ^ Ωn´1. (1.16)

In particular, it follows from (1.16) that the energy of the harmonic map is
independent of the metric on X in its Kähler class.

Remark 1.8.4. One can also prove directly that tracepθ^θ˚q is closed: Indeed,
recalling that d “ B ` B̄ ` adpθq ` adpθ˚q, the p2, 0q and p0, 2q terms of
the Maurer-Cartan equation dcanβ “ pB ` B̄qpθ ` θ˚q “ 0, together with
B̄pθq “ θ ^ θ “ 0, imply dθ “ rθ˚, θs “ dpθ˚q. Thus:

d
`

tracepθ ^ θ˚q
˘

“ trace
`

rθ˚, θs ^ θ˚ ´ θ ^ rθ, θ˚s
˘

.

Now each term vanishes independently thanks to the cyclic symmetry of the
trace:

trace
`

rθ˚, θs ^ θ
˘

“ trace
`

rθ, θs ^ θ˚
˘

“ 0.

Of particular interest to us are the Kähler identities, which are proved in
[Sim88], Lemma 3.1. Define the operators D1 and D2 by

D1 “ B ` θ˚; D2 “ B̄ ` θ.
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Fix a Kähler metric on X , so that we have an adjoint Lefschetz operator
Λ: Ap,qpVq Ñ Ap´1,q´1pVq. Then the usual Kähler identities hold for the
dual operators D1˚ and D2˚ in terms of rΛ, D2s and rΛ, D1s. In particular,
a form is harmonic if and only if it is ∆1 “ D1˚D1 ` D1D1˚-harmonic (or
equivalently, ∆2-harmonic). We will use the following consequence of this
fact:

Lemma 1.8.5. Let X be a Kähler manifold, pV, σ, Sq a phls on it (or, more
generally, pV, D, hq a harmonic bundle). Then a 1-form ω P A1pVq is har-
monic if and only if it is both D1- and D2-closed.

Proof. The “only if” part is true in general, since if ω is harmonic then
∆1ω “ ∆2ω “ 0, and integrating by parts also D1ω “ D2ω “ 0. For the “if”
part, we need ω to be a 1-form. Then, by the Kähler identities:

D1˚ω “
i

2
rΛ, D2sω “

i

2
ΛD2ω “ 0.

This forces ω to be ∆1-harmonic, hence harmonic.

Corollary 1.8.6. Let ϕ : X 1 Ñ X be a holomorphic map between Kähler
manifolds, pV, σ, Sq a phls on X and ω P H1pX,Vq a V-valued harmonic
1-form. Then the pull-back ϕ˚ω, which takes values in the pull-back phls, is
harmonic, as well.

Proof. The pull-back of a closed form is again closed. We prove that the
same is true for D2-closeness, so that the result follows from the lemma. For
the rest of the proof, every primed object, except possibly D1 and D2, will
live on X 1. First notice that since the structure on X 1 is defined by pull-
back, the 1-form β 1 and consequently the canonical connection dcan1 are the
pull-back of β, dcan, respectively. Taking p1, 0q and p0, 1q-parts, according to
proposition 1.8.3, we have

ϕ˚θ “ θ1; ϕ˚B̄ “ B̄1.

Denoting by ω1 “ ϕ˚ω, we have

D2ω1 “ D2ϕ˚ω “ ϕ˚D2ω “ 0.

We conclude this section with what could be thought as an infinitesimal
correspondence between the moduli space of flat connections and that of
Higgs bundles (which, however, holds true also in the Kähler, non-projective,
setting). Let pV, Dq be a flat bundle and pE , D2q a Higgs bundle on X ,
corresponding through a ρ-equivariant, harmonic metric f : X̃ Ñ N .
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Definition 1.8.7. A first order deformation of D is a closed 1-form ω P
Z1pX,EndpVqq. A first order deformation of D2 is a Dolbeault 1-cocycle
B P Z1

DolpX,EndpEqq.

The reason for this terminology is evident: On the one hand, d ` tω is a
flat derivation; on the other hand, D2 ` tB is an operator of the form needed
to give rise to a Higgs bundle. Simpson proves a formality result, which for
our needs will be:

Lemma 1.8.8 ([Sim92], pag 24). There is a natural isomorphism

H1
DRpX,EndpVqq – H1

DolpX,EndpEqq – H1
`

A‚pEq, D2
˘

.

The first two cohomology spaces are indeed isomorphic to the space of
harmonic 1-forms, which embeds in the spaces of 1-cocycles. Hence, given
a first order deformation of a flat connection, we can construct (up to a
coboundary) a first order deformation of a Higgs bundle, and conversely.

1.9 Complex Variations of Hodge structure

We recall the definition of complex variations of Hodge structure (C-VHS for
short), which provide a crucial class of polarized harmonic local systems on
a compact Kähler manifold X .

Definition 1.9.1. A complex variation of Hodge structure (C-VHS for short)
on X is a C8 flat complex vector bundle pV, Dq Ñ X with a Hodge decom-
position

V “
à

p`q“w

Vp,q

such that the flat connection satisfies the Griffiths transversality condition:

D : Vp,q Ñ A0,1pV p`1,q´1q ‘ A1,0pV p,qq ‘ A0,1pV p,qq ‘ A1,0pV p´1,q`1q. (1.17)

We require further that the structure be polarized, that is, that there exists
a flat hermitian form S which makes the Hodge decomposition orthogonal
and that is positive definite on Vp,q for p even and negative definite on Vp,q

for p odd. The integer w is called the weight of the C-VHS.

We denote the Hodge filtration by

Fp “
à

sěp

Vs,w´s.
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Lemma 1.9.2. Let X be a compact Kähler manifold, and let pV, D, Sq be a
C-VHS on it. Then there is a corresponding C-phls structure on the same
bundle.

Proof. The flat bundle and local system structures are the same, as is the
polarization S. The involution σ is clearly defined as p´1qp on Vp,q. The
only non-trivial part is the harmonicity of the metric, but this is classic. We
will review the construction, without detailing the proof.

Fix a point x0 P X , we write F p Ě F p`1 Ě . . . for the flag of subspaces
of Vx0

induced by F‚. Let G0 inside GLpVx0
q be the orthogonal group of S,

and V0 the compact subgroup fixing the flag tF ‚u. Then D “ G0{V0 is called
the period domain and the C-VHS determines a period mapping

Φ: X̃ Ñ D “ G0{V0

which is holomorphic. Let K0 be the maximal compact subgroup containing
V0. Composing Φ with the projection we obtain a map

f : X̃
Φ

ÝÝÑ D
π

ÝÝÑ N “ G0{K0 Ñ GLpVx0
q{K

which is harmonic. This is the harmonic metric of the phls.

Remark 1.9.3. Thanks to [Sim92], we can work in a “smaller” setting: If we
consider G the complex Zariski closure of the image of the monodromy ρ0,
and let G0 be the subgroup preserving S, then we obtain another, smaller
period domain of the form G0{V0. In fact, in this case G0 coincides with the
real Zariski closure of ρ0pΓq, so it is a group of Hodge type (in particular,
reductive) and a real form for G.

As we did in section 1.8, since we have a phls structure on a Kähler
manifold, there is an induced structure of Higgs bundle pE , θq. Simpson calls
the Higgs bundle thus obtained a “system of Hodge bundles” (cfr. [Sim88]):

Definition 1.9.4. A system of Hodge bundles is a Higgs bundle pE , θq with
a decomposition of locally free sheaves E “

À

Er,s such that

θ : Er,s Ñ Er´1,s`1 b Ω1
X .

Remark 1.9.5. Since we know that d “ dcan ` β “ B ` B̄ ` θ ` θ˚, the
transversality condition (1.17) means exactly that

B : Vp,q Ñ A1,0pVp,qq, θ : Vp,q Ñ A1,0pVp´1,q`1q,

and similarly for B̄ and θ˚.

57



There is another characterization of Higgs bundles which are induced by
a C-VHS, in terms of the C˚-action on the space of Higgs bundles:

@t P C
˚, t ¨ pE , θq “ pE , tθq. (1.18)

One can check immediately that for every t, the pair pE , tθq is again a Higgs
bundle. Then, Simpson proves:

Theorem 1.9.6 ([Sim92], Lemma 4.1). A Higgs bundle pE , θq is induced by
a C-VHS if and only if there is an isomorphism of Higgs bundles

pE , tθq – pE , θq

for some (hence, for every) t which is not a root of 1.
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Chapter 2

The universal twisted harmonic
map

Introduction au chapitre

Le but de ce chapitre est de construire une application harmonique équivariante
universelle H , d’en démontrer la continuité et d’utiliser ce dernier fait pour
déduire la continuité de la fonctionnelle de l’énergie sur l’espace des repré-
sentations HompΓ, Gq.

Par la non-unicité dans le théorème de Corlette, pour obtenir une appli-
cation universelle il faut fixer un paramètre supplémentaire. En considérant
un point x̃0 P M̃ , soit Y les sous-ensemble des pn, ρq dans N ˆHompΓ, Gq tel
qu’il existe une application harmonique, ρ-équivariante et telle que fpx̃0q “ n.
On a alors une application bien définie H : Y ˆ M̃ Ñ N . La continuité de
cette application est démontrée dans la Proposition 2.2.1; cela suit des faits
que l’énergie est localement bornée sur HompΓ, Gq, de l’estimation du mod-
ule de Lipschitz d’une application harmonique qui ne dépend que de son
énergie (voir par exemple [Lin99]) et des itérations usuelles sur l’équation
d’harmonicité (qui est semi-linéaire et elliptique).

La continuité de H entraine sans problèmes la continuité de la fonc-
tionnelle de l’énergie sur l’espace des modules des représentations, qui est le
quotient des représentations semi-simples par l’action de G par conjugaison.
En démontrant que l’énergie d’une représentation est égale à l’énergie de
sa semi-simplifiée (c’est-à-dire, la fonctionnelle de l’énergie est constante sur
l’adhérence des orbites), et grâce à un argument utilisant la propreté du quo-
tient de Kempf–Ness, on arrive à démontrer la continuité de la fonctionnelle
de l’énergie sur l’entièreté de HompΓ, Gq.

Il faut noter que tous ces résultats sont évidents si on ne considère que
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des représentations Zariski-dense: en effet, dans ce cas on peut construire
les applications harmoniques en famille, et l’application H est même lisse,
voir [Cor91] (toute représentation Zariski-dense est automatiquement semi-
simple).

2.1 Upper semi-continuity of the energy

We start by fixing a base point x0 P M in order to construct a universal
harmonic and equivariant mapping over the semisimple locus RBpM,x0, Gqss.

Definition 2.1.1. Fix x̃0 a preimage of x0. We will denote by Y the subset
of N ˆ RBpM,x0, Gq given by the points pn, ρq such that there exists a ρ-
equivariant harmonic map f verifying fpx̃0q “ n.

The projection of Y on the second component, π2pY q, gives exactly the
semisimple representations, by Corlette’s theorem 1.1.1. Tautologically, we
have a universal harmonic mapping H : Y ˆM̃ Ñ N defined by H pn, ρ, x̃q “
fpx̃q, where f is the unique harmonic ρ-equivariant map such that fpx̃0q “ n.
Recall that the energy functional on RBpM,Gq is defined by:

Epρq “ inf
fPC8pM̃ ;Nq
ρ´equivariant

Epfq.

Then, since harmonic maps to a symmetric space of non-compact type are
energy-minimizing, the restriction to RBpM,Gqss is given by

Epρq “ E
`

H pρ, n, ¨q
˘

,

where n P N is such that pn, ρq P Y . In particular, continuity or smoothness
of E will follow from the corresponding properties of H .

Lemma 2.1.2. Let ρt : Γ Ñ G be a smooth family of representations, for t in
some smooth parameter space T , and f : M̃ Ñ N a ρ0-equivariant map. Then
we can always find a smooth family ft : M̃ Ñ N of ρt-equivariant maps, such
that f0 “ f . In particular, the energy functional is upper semi-continuous
on all of RBpM,Gq.

Proof. As usual, smooth ρt-equivariant maps correspond to metrics on Vt “
M̃ ˆΓ Cn, which is a smooth family of vector bundles over M . All those
bundles are trivialized over common open subsets (namely, sufficiently small
open subsets U of M which are well-covered by M̃ Ñ M), with a flat local
frame:

stU : U ˆ C
n Ñ π´1

t U

px, eq ÞÑ rx̃, es,
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where πt : Vt Ñ M and x̃ P Ũ is a preimage of x (the construction depends
on the choice of connected preimages Ũ for each U , independent of x). The
map f corresponds to a metric h0 on V0, and in turn to a family of metrics
on Cn, one for every pair px, Uq with x P U , given by

@

e, f
D

x,U
“ hx

`

s0Upx, eq, s0Upx, fq
˘

, e, f P C
n.

The compatibility condition reads xe, fyx,U “ xe, fyx,V every time x P U X V .
Let tχUu be a partition of the unity subordinated to the open cover tUu, and
define the family of metrics by

htx
`

vt, wtq “
ÿ

UQx

χUpxq
@

pstUq´1pvtq, ps
t
Uq´1pwtq

D

.

This is smooth in t and extends the metric h0, as wanted.
Semi-continuity of the energy follows easily: Let ρ0 : Γ Ñ G be any

representation, and fn : M̃ Ñ N be an energy-minimizing sequence of ρ0-
equivariant maps. Given any converging family of representations ρt Ñ ρ0,
we deform each fn to an fn

t as above. Since fn
t is a smooth family, fn

t con-
verges to fn in L

1,2
loc, so that in particular Epfn

t q converges to Epfnq (since
the integral defining the energy is taken on a compact fundamental domain).
Hence

Epρ0q “ lim
n
Epfnq ě lim

n
Epfn

t q ´ εptq ě Epρtq ´ εptq,

for some infinitesimal function εptq. Passing to the limit in t, we obtain
Epρ0q ě lim supt Epρtq.

Remark that, in particular, the energy functional is locally bounded.

2.2 Continuity of the universal harmonic map

In this section, thanks to a Lipschitz estimate due to Lin [Lin99], we shall
prove the continuity of H and the closure of Y .

Proposition 2.2.1. The subset Y Ă N ˆ RBpM,x0, Gq is closed. The uni-
versal harmonic mapping H : Y ˆ M̃ Ñ N is continuous.

Proof. Take a converging sequence pnt, ρtq Ñ pn8, ρ8q of points in Y , and let
ft be the harmonic ρt-equivariant mapping such that ftpx̃0q “ nt. We want
to prove that ft converges in C0 and in W 2,p to some function, which will
necessarily be the harmonic ρ8-equivariant map f8 such that f8px̃0q “ n8.
This fact will easily imply both statements.
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By lemma 2.1.2, the energy of the family ft is bounded. We can apply
Theorem A of [Lin99]: This (or rather, its proof, see Section 5, loc. cit.) im-
plies that inside a sufficiently small geodesic ball Bpx̃, Rq in M̃ the sup norm
of dft is bounded by a constant which depends only on the geodesic ball, on
the geometries of M̃ and N and on the energy Epftq. In particular, restrict-
ing ourselves to any compact subset K Q x̃0 of M̃ , the family ft

ˇ

ˇ

K
consists

of Lipschitz maps, with a uniform Lipschitz constant L. This, together with
the condition ftpx̃0q Ñ n8, implies that they are also uniformly bounded.
Then, we can apply the W 2,p-estimates (cfr. [GT77], theorem 9.11) to the
semi-linear second order elliptic equation of the harmonic maps, which in
local coordinates is:

0 “ τpfqα “ ´∆fα ` NΓα
βγf

β
i f

γ
j g

ij. (2.1)

This gives a uniform bound on the W 2,p-norm of ft and, in turn, a W 1,p uni-
form bound on the right hand side of (2.1). Iterating the argument we obtain
uniform bounds in every W k,p; in particular, thanks to the Sobolev embed-
ding theorem and Arzelà–Ascoli theorem, we can extract a subsequence con-
verging in C2 to some smooth map f . This is automatically ρ8-equivariant
and satisfies fpx̃0q “ n8, and it is harmonic being a strong solution to (2.1).
This proves that Y is closed.

To obtain the continuity of H , we only need to remark that in fact
the whole sequence ft converges to f8: Taking any subsequence ft1 and
applying the argument above, we find a converging sub-subsequence ft2 ; the
uniqueness of f8 allows us to conclude that lim ft2 “ f8. This forces ft Ñ
f8; then, an easy argument using uniform convergence and the triangular
inequality gives the continuity of H .

Recall that, given any representation ρ : Γ Ñ G, there is an associated
semisimplification, defined as the graded associated to any composition se-
ries. Considering the action of G by conjugation on the set of representations,
we will call the semisimplification of ρ any point of the unique closed orbit
included in the closure of the orbit of ρ. This is defined only up to conju-
gation, but that will be of no consequence in our setting. In the following,
denote by ρss such a semisimplification of ρ.

Lemma 2.2.2. Let ρ : Γ Ñ G be any representation. Then Epρq “ Epρssq.

Proof. First remark that the proof of Corlette’s theorem in [Cor88] allows us
to construct a sequence of ρ-equivariant maps fn such that Epfnq converges
to Epρq and also such that Lp norms of the first two derivatives of fn are
bounded. Indeed, in §4, Corlette proves that, given any flat connection D0
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(for us: any metric f̃0) the heat flow starting from D0 is defined for every
time, thus constructing Dt (hence, f̃t). Furthermore, the energy is decreasing
along the flow, and, denoting by Φt his moment map for Dt (which is just the
tension field of f̃t), we have }Φ}L8 Ñ 0. This follows since, in his notations,

›

›Φt

›

›

L2
“

d

dt

›

›θt
›

›

L2
Ñ 0 and

B

Bt

ˇ

ˇΦt

ˇ

ˇ ` ∆
ˇ

ˇΦt

ˇ

ˇ ď 0.

The greatest part of his proof is devoted to giving an estimate on the W 1,p-
norm of θt “ df̃t depending only on the L2-norm of θt (whose square is the
energy) and the L8 norm of Φt (the other constants depending only on the
geometry of M and N). Observe that, since the latter converges to 0, for t
big enough such W 1,p norms ultimately depend only on }θt}L2, hence in turn
on }θ0}L2 (since this norm is decreasing along the flow).

Now take any minimizing sequence gn for ρ, i.e., a sequence of ρ-equivariant
maps such that Epgnq Ñ Epρq in a monotone way. For each n, start the heat
flow from gn; we obtain a family gnt with the properties above. By what we
have just said, we can find for t big enough a gnt such that the W 1,p norms
of dgnt are bounded by a constant depending only on the geometries of M
and N and on Epgnq ď Epg0q. Define fn “ gnt , for such a choice of t; in this
way fn has bounded energy and also the first and second derivatives have
bounded Lp norms.

Now suppose that ρ is not already semi-simple and fix a point x̃0 P M̃ .
Clearly, in this case, the convergence of fnpx̃0q must fail, otherwise, thanks to
the derivative estimates, we could construct a limit map as in the preceeding
proposition, which would be a harmonic ρ-equivariant mapping. So let gn P G
be such that fnpx̃0q “ gnK. In this way, g´1

n fnpx̃0q “ eK and so an adequate
subsequence of f̃n “ g´1

n fn converges up to the first derivatives to some
map f̃8, which a priori is just C1. Define ρ̃n “ g´1

n ¨ ρ ¨ gn, so that f̃n is
ρ̃n-equivariant. We claim that ρ̃n converges to some ρ̃8. Indeed, for every
γ P Γ, the Lipschitz estimate applied to f̃n implies:

dist
`

eK, ρ̃npγqK
˘

“ dist
`

f̃npx̃0q, f̃npγx̃0q
˘

ď L ¨ distpx̃0, γx̃0q “ Cpγq

(in fact here the Lipschitz constant L depends on γ, as well). Denoting by
π : G Ñ G{K the projection g ÞÑ gK, we have that ρ̃npγq P π´1pBpeK,Cpγqqq,
which is compact, hence there is a subsequence ρ̃n1pγq converging to some
ρ̃8pγq. Repeating the procedure over a finite set of generators we find the de-
sired limit representation. In this way, we have constructed a ρ̃8-equivariant
map f̃8, which is C1 and in fact must be harmonic since it is a minimizer
of the energy. To see this, remark that Epf̃nq “ Epfnq converges on the
one hand to Epρq, by construction of fn, and on the other hand to Epf̃8q,
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by convergence in W 1,2. Then, making use of the semi-continuity of lemma
2.1.2, we get

Epf̃8q ě Epρ̃8q ě lim supEpρ̃nq “ Epρq “ limEpfnq “ Epf̃8q.

Hence Epf̃8q “ Epρ̃8q, as claimed, and also Epρq “ Epρ̃8q; but as ρ̃8

admits a equivariant harmonic mapping, hence it is semisimple, and since it
belongs to the closure of the orbit of ρ, we have ρ̃8 “ ρss, which concludes
the proof.

Proposition 2.2.3. The energy functional is continuous on the whole of
RBpM,Gq.

Proof. We start by proving the proposition on the subspace RBpM,Gqss.
So consider a converging sequence of semisimple representations ρt Ñ ρ8,
and suppose that ρ8 is semisimple as well. First suppose that there exists a
sequence nt P N such that pnt, ρtq P Y and that nt converges to some n8 P N
as t tends to 8. Then, by closedness of Y , pn8, ρ8q P Y , hence we can apply
the W 1,2 convergence in the proof of the proposition to get

Epρtq “ E
`

H pnt, ρt, ¨q
˘ tÑ8

ÝÝÑ E
`

H pn8, ρ8, ¨q
˘

“ Epρ8q.

If such a sequence does not exist, choose some n8 such that pn8, ρ8q P Y .
Then there exist gt P G such that

pn8, ρ̃tq P Y, ρ̃t “ gt ¨ ρt ¨ g´1
t .

Proceeding as in the proof of the lemma, one obtains that ρ̃t converges to
some ρ̃8. Again, this is semisimple (in this case it follows directly from
proposition 2.2.1, since pn8, ρ̃8q must be in Y ). Hence, ρ̃8 is in fact conjugate
to ρ8, since the moduli space MBpM,Gq is Hausdorff if one only considers
semisimple (i.e. closed) points. Then, using what we already proved in the
first part with nt ” n8, we conclude that:

Epρtq “ Epρ̃tq
tÑ8
ÝÝÑ Epρ̃8q “ Epρ8q.

We now proceed to the general case. After taking a faithful linear rep-
resentation of G inside GLpn,Cq, which gives an immersion RBpM,Gq Ď
RBpM,GLpn,Cqq, we only need to prove the statement for the case G “
GLpn,Cq, since the energy of a representation is independent of totally
geodesic embeddings G{K Ă GLpn,Cq{Upnq. In fact, we will only need to
suppose G to be a complex reductive algebraic group, which we do from now
on (K will still denote one of its maximal subgroups). Consider a converging
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sequence of representations ρn Ñ ρ8, call ρ
ss
n , ρ

ss
8 the respective semisim-

plifications, and denote by tρssn u, tρss8u the closed points of MBpM,Gq they
represent. Since the functions on MBpM,Gq are generated by the traces, and
tracepρnq “ tracepρssn q converges to tracepρ8q “ tracepρss8q, we have conver-
gence of the closed points in MBpM,Gq. Then, the homeomorphism given
by the Kempf-Ness theorem reads

MBpM,Gq – µ´1p0q{K, µ´1p0q Ď RBpM,Gqss,

where µ is a moment map and the quotient is meant in the usual sense.
Then, the closed points tρssn u can be lifted to some ρ̃ssn in µ´1p0q, which, by
hypothesis, are conjugated to ρssn . By properness of the projection µ´1p0q Ñ
µ´1p0q{K, a subsequence of this converges to some ρ̃ss8 P µ´1p0q. Its class
in MBpM,Gq must be that of ρss8, hence ρss8 is conjugated to ρ̃ss8. Applying
what we already proved on semisimple representations together with lemma
2.2.2, we conclude the proof:

Epρnq “ Epρssn q “ Epρ̃ssn q
nÑ8
ÝÝÑ Epρ̃ss8q “ Epρss8q “ Epρ8q.

2.3 Generic smoothness of the universal har-

monic map

Now we want to prove that over points corresponding to Zariski dense repre-
sentations the function H is smooth, so that the same is true for the energy
functional. This part of the argument is only a step-by-step check that the
proof of Corlette’s theorem works equally well in families.

Write RBpM,Gq “
Ť

iRi for the decomposition into irreducible compo-
nents, and give to the smooth part Rsm

i the C8-structure induced by the
reduced structure on Ri. Define

Ui “
 

ρ P Rsm
i : Imagepρq Ă G is Zariski-dense

(

.

This is a (possibly empty) open subset.

Lemma 2.3.1. The restriction of H to Y X pN ˆUiq is smooth. Hence, the
energy functional is smooth on Ui.

Proof (See also [Cor91], Proposition 2.3). Fix a faithful representation G Ď
GLpn,Cq and let ρs : Γ Ñ G, for s P p´ε, εq, be a 1-parameter family of
Zariski-dense representations. We want to prove that H is smooth along this
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family, by retracing Corlette’s construction of the harmonic metric in [Cor88].
Denote by pVs, D0psqq the corresponding family of flat bundles constructed
as M̃ˆΓC

n. For a start, suppose that we are in the “stable and simple” case,
so that the harmonic map is unique even without fixing the value in a point.
Following Corlette’s proof one can construct, for every fixed s, a family Dtpsq
of flat connections so that the following is true: Write Dtpsq “ Dtpsq

can `βt,s
for the decomposition into the metric part and the self-adjoint 1-form βt,s
which is essentially the derivative of the metric (or, rather, the pullback of
the Maurer-Cartan form, as in section 1). Then we impose

BDtpsq

Bt
“ ´Dtpsq

`

dtpsq
can,˚βt,s

˘

. (2.2)

Recall that dcan˚β “ 0 is exactly the condition for the metric to be harmonic.
Corlette proves that such a family exists for every t, and then that the limit
for t Ñ 8 exists and gives a flat connection D8psq in the same orbit as D0psq
which leads to a harmonic metric. We need to prove that these connections
are smooth with respect to s.

We can collect the Vs in a vector bundle V over M ˆ p´ε, εq. We want
to repeat the steps in [Cor88] for all s at the same time, to get smooth
connections. Short time existence of the solution of (2.2) poses no problem,
since it is achieved by an implicit function theorem, the only care being
taken to find a solution on r0, ε1q uniformly on, say, M ˆ r´ε{2, ε{2s. For
long time existence, one argues as in Corlette’s proof to extend the solution
from r0, T q to r0, T s. In this way, Dtpsq is constructed smooth in both t

and s P p´ε{2, ε{2q for all finite t. Then one needs to apply Uhlenbeck’s
theorem [Uhl82], the proof of which holds for bundles over M ˆ p´ε, εq as
well (possibly after shrinking the interval again). Indeed, all of the steps
in Uhlenbeck’s proof rely on finite covers of M , so the same reasonings on
M ˆ t0u automatically extend to some small neighborhood M ˆ p´ε2, ε2q.
The only care is needed in using Sobolev embeddings, that however hold true
(using compactly supported norms) thanks to [Can74]. In this way, one gets
a flat connection on M ˆ p´ε2, ε2q, which by elliptic regularity is smooth. It
is easy to see that the harmonic condition holds true also after restricting to
M ˆ ts0u for a fixed s0: To prove that, just compute:

0 “
@

d8psqcan,˚βt,s, ξ
D

“
ÿ

j

@

βt,spEjq, D8psqcanEj
ξ
D

`
@

βt,sp
B

Bs
q, D8psqcanB

Bs

ξ
D

,

where Ej is a local orthornormal frame of M and ξ a section of AdpVq. Now
ξ can be taken D8psqcan-parallel in the direction of s locally around s0 and
the second summand vanishes. The family of connections thus defined gives
a smooth family of harmonic ρt-equivariant metrics ft : M̃ Ñ N .
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To handle the general reductive case, notice that, since all representations
ρt have by hypothesis the same monodromy group, they induce the same
decomposition of Cn. More precisely, we can find a smooth decomposition
in subbundles Vt “

À

α V
α
t . Then we can argue as above to find a smooth

family ft of harmonic connections. To get the smoothness of H , just note
that ΓH Ď Y ˆ M̃ ˆ N , the graph of H , can be seen as the image of the
graph Γft of ft under the action of the center Z “ ZpGq:

Γft “
 

pftpx̃0q, ρt, x̃, ftpx̃qq P Y ˆM̃ˆN
(

;Z Q h ¨ pn, ρ, x̃, n1q “ phn, ρ, x̃, hn1q.

Remark that the isotropy group at every point is the same: A point is fixed
if hn “ n and hn1 “ n1, but since h is central, this is equivalent to h P HXK,
for every pair of points n, n1 P G{K.
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Chapter 3

First order harmonic maps

Introduction au chapitre

Dans ce chapitre on va fixer une représentation semi-simple ρ0 : Γ Ñ G

et une application harmonique ρ0-équivariante f : M̃ Ñ N . On se pro-
pose de décrire toute déformation v de f qui est à la fois harmonique et
équivariante le long d’une déformation au premier ordre ρ

p1q
t de ρ0. On com-

mence par définir les déformations au premier ordre ρ
p1q
t et v, modelées sur les

dérivées premières Bρt
Bt

ˇ

ˇ

t“0
et Bft

Bt

ˇ

ˇ

t“0
, respectivement; ensuite, on dit qu’une

déformation v de f est harmonique (respectivement: ρ
p1q
t -équivariante) si

elle satisfait la même condition au premier ordre que la dérivée d’une famille
d’applications harmoniques (respectivement: ρt-équivariantes). Le point cru-
cial pour ce qui suit est qu’une déformation harmonique est le zéro d’un
opérateur (l’opérateur de Jacobi) formellement identique à l’expression trou-
vée pour le laplacien ∆ dans le chapitre 1.

Le théorème principal du chapitre est un résultat permettant de con-
struire toute déformations harmoniques et ρ

p1q
t -équivariantes comme suit: la

déformation ρ
p1q
t correspond à un 1-cocycle de groupes c P Z1pΓ, gq. Sa

classe de cohomologie peut être représentée, grâce au théorème de Hodge, par
une 1-forme harmonique ω à valeurs dans le système local adjoint Adpρ0q.
N’importe quelle primitive F : M̃ Ñ g de cette 1-forme vérifie l’équation
∆pF q “ 0, en donnant donc un candidat pour une déformation harmonique.
En effet, on arrive à démontrer qu’on peut toujours imposer de plus la
bonne équivariance à F , d’une façon à ce que la projection ϑTN pf, F q soit

une déformation v harmonique et ρ
p1q
t -équivariante. De plus, toutes telles

déformations se construisent de cette façon car l’application ϑTN est affine et
surjective de l’espace des primitives F , qui est un h-torseur, h étant l’algèbre
de Lie du centralizateur H “ ZGpImagepρ0qq sur l’espace des déformations
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harmoniques ρ
p1q
t -équivariantes, qui est un h X rps-torseur. En particulier,

toute application harmonique est déformable au premier ordre, le long de
n’importe quelle déformation de ρ0.

Le chapitre se termine avec un résultat de fonctorialité dans le cas où
M “ X est une variété kählerienne suivi d’une déscription élementaire du
cas abelien, c’est-à-dire, en supposant G “ C˚.

3.1 First order deformations

Definition 3.1.1. A first order deformation of a smooth map f : M̃ Ñ N of
a manifold M̃ into another such manifold N is a smooth map v : M̃ Ñ TN

such that πN ˝ v “ f .

Slightly abusing notation, we will always see v as a section of f˚TN , and
sometimes write v “

`

f, Bft
Bt

ˇ

ˇ

t“0

˘

. For the greatest generality, and motivated
by the algebraic case, where TN “ NpRrts{pt2qq˝ (see remark 1.4.4 and the
conditions therein), we will just work with t a formal parameter such that
t2 “ 0.

If v : M̃ Ñ TN is a first order deformation, a lift of v is a smooth map
F : M̃ Ñ g such that ϑTN ˝ pf, F q “ v. Such lifts exist (for example take
F “ βNpvq), but they are not unique, since the rks part is undetermined:
In general, for every lift F , we may write F “ βNpvq ` κpxq, where κ P
C8pM̃, rksq, i.e. F rps “ βNpvq.

Definition 3.1.2. Let ρ0 : Γ Ñ G be a representation. A first order defor-
mation of ρ0 is a representation ρ

p1q
t : Γ Ñ TG that lifts ρ0 (here t is meant as

a formal parameter such that t2 “ 0). The associated 1-cocycle c is defined
as

cpγq “
dρ

p1q
t pγq

dt

ˇ

ˇ

t“0
¨ ρpγq´1 P g. (3.1)

Indeed, it is easy to see that the data of a first order deformation of a
representation is equivalent to that of a representation ρ0 together with a
1-cocycle c for the adjoint action, that is, a map c : Γ Ñ g such that

cpγηq “ cpγq ` Adρ0pγqpηq.

3.2 Equivariant deformations

Definition 3.2.1. Let ρ
p1q
t “ pρ0, cq : Γ Ñ TG be a first order deformation of

ρ0 : Γ Ñ G, and f : M̃ Ñ N a ρ0-equivariant map. A first-order deformation
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v of f is ρ
p1q
t -equivariant if vpγx̃q “ ρ

p1q
t pγq¨vpx̃q, where ¨ stands for the action

of TG on TN . Explicitely, using the description of the action of section 1.4,
this is equivalent to:

vpx̃q ´ ρpγq˚vpγ´1x̃q “ ϑTN

`

fpx̃q, cpγq
˘

,

where ϑTN is defined as in (1.5)

Example 3.2.2. Of course, the main example of a ρ
p1q
t -equivariant first order

deformation v of f is obtained considering smooth families of representations
ρt : Γ Ñ G, for t P p´ε, εq and of ρt-equivariant maps ft : M̃ Ñ N . Then, a
straightforward computation proves that, defining

cpγq “
Bρtpγq

Bt

ˇ

ˇ

ˇ

t“0
¨ ρ0pγq´1, vpx̃q “

Bftpx̃q

Bt

ˇ

ˇ

ˇ

t“0
,

we obtain a first order ρ
p1q
t -equivariant deformation v of f .

Definition 3.2.3. Let ρ
p1q
t be a first-order deformation of a representation

ρ0 : Γ Ñ G. A function F : M̃ Ñ g is ρ
p1q
t -equivariant if

F pγx̃q “ Adρ0pγqF px̃q ` cpγq.

Lemma 3.2.4. A map pf, F q : M̃ Ñ N ˆ g is ρ
p1q
t -equivariant in the sense

above if and only if it is for the action of TG on N ˆ g given by diagram
(1.7). Hence, if pf, F q is equivariant, then the first order deformation of f
defined by

pf, vq “ ϑTN pf, F q (3.2)

is equivariant, as well.

Remark 3.2.5. The converse is, in general, false: For example, if pf, vq is a

ρ
p1q
t -equivariant first-order deformation and we define F “ βN pvq, then pf, F q

is a lift of pf, vq, but it is not equivariant unless cpγq P rpsx̃ for every x̃ P M̃ .

3.3 First-order harmonic deformations

Definition 3.3.1. Let f : M Ñ N be a smooth map. The Jacobi operator
J : C8pf˚TNq Ñ C8pf˚TNq is defined as

J pvq “ ´trace
´N

∇
N

∇v ` RNpdfp¨q, vqdfp¨q
¯

loc
“ ´

ÿ

i,j

gij
´ D

Bxi

D

Bxj
v ` RN

` Bf

Bxi
, v
˘ Bf

Bxj

¯

.
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This is the original definition of the Jacobi operator, as in [EL83]. The
one we have defined in 1.6.5 coincides with this when we consider the adjoint
phls over a symmetric space N , through an application of the isomorphism
βN (recall that in this case the curvature of dcan corresponds to RN , and is
given by the formula in (1.12)).

Proposition 3.3.2. Let F : M̃ˆp´ε, εq Ñ N , be any smooth one-parameter
family of smooth maps, denote ftpx̃q “ Fpx̃, tq and let v “ Bft

Bt

ˇ

ˇ

t“0
. Then

D

Bt
τft

ˇ

ˇ

t“0
“ ´J pvq,

where τft P f˚
t TN Ă F˚TN is the tension field and the covariant differential

is given by the pull-back connection of the Levi-Civita connection of N .

Proof. The skeleton of the proof is the following chain of equalities:

D

Bt

ÿ

s

p
N

∇Es
dftpEsqq

ˇ

ˇ

t“0
“
ÿ

s

D

Bt

N

∇Es
dftpEsq

ˇ

ˇ

t“0

pIIq
“

ÿ

s

N

∇Es

D

Bt
dftpEsq

ˇ

ˇ

t“0
` RNpdfpEsq, vqdfpEsq

pIIIq
“

ÿ

s

N

∇Es

N

∇Es
v ` RNpdfpEsq, vqdfpEsq “ ´J pvq.

Let us explain them in more details. First of all, since F is defined on a
product variety M̃ ˆ p´ε, εq, we may compute the trace (that involves only
the “spatial” coordinates x̃) in terms of a fixed orthonormal basis Es of TM̃ .
Then pIIq follows by definition of curvature (or rather using lemma 3.3.3, part
2., for the curvature of the pull-back connection), since B

Bt
Es “ Esp

B
Bt

q “ 0
implies rX,Ess “ 0. Finally, pIIIq is an immediate application of lemma
3.3.3, part 1. (symmetry of covariant derivative and differentiation).

Lemma 3.3.3. Let M and N be two Riemannian manifolds, f : M Ñ N a
smooth map, and let X, Y be two local vector fields on M such that rX, Y s “
0. Denote by ∇ the pull-back of the Levi-Civita connection on N , so that ∇X

and ∇Y are defined, let R be the curvature tensor on N and V P C8pf˚TNq
any vector field along f . Then

1. ∇XdfpY q “ ∇Y dfpXq;

2. ∇X∇Y V ´ ∇Y∇XV “ R
`

dfpY q, dfpXq
˘

V.

Proof. See [dC92], Chap 3, Lemma 3.4 and Chap 4, Lemma 4.1.
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Definition 3.3.4. A first order deformation v : M̃ Ñ TN of a harmonic map
f : M̃ Ñ N is said to be harmonic if

J pvq “ 0.

Example 3.3.5. Proposition 3.3.2 implies that if v comes from a deformation
ft : M̃ Ñ N , with ft harmonic for every t P p´ε, εq, then v “ Bft

Bt

ˇ

ˇ

t“0
is

harmonic.

Definition 3.3.6. A map pf, F q : M̃ Ñ N ˆg is said to be of harmonic type
if f is harmonic and

JpF q “ 0.

Remark that, by lemma 1.6.6, this is equivalent to ∆pF q “ 0. This is the
reason why in that section we worked with arbitrary maps M̃ Ñ g instead
of sections of V (here V “ M̃ ˆΓ g is the pull-back of the adjoint phls on N).

Lemma 3.3.7. Let pf, F q : M̃ Ñ N ˆ g be of harmonic type. Then the
first-order deformation v of f defined as in (3.2) is harmonic, as well.

Proof. We have already observed that βN exchanges J and J . Furthermore,
the map defined by

βN ˝ ϑTN : N ˆ g Ñ TN Ñ N ˆ g

is just the projection on rps. Hence:

βN
`

J pvq
˘

“ J
`

βNpvq
˘

“ J
`

F rps
˘

“ JpF qrps,

where for the last equality we have used corollary 1.6.8 applied to the phls
on M̃ ˆ g given by f˚pVad, σad, Sadq.

3.4 Construction of the harmonic deforma-

tions

In this section we want to construct ρ
p1q
t -equivariant harmonic deformations

of a ρ0-equivariant harmonic map f : M̃ Ñ N by a procedure which in next
section will be proved to provide all such deformations. Thanks to lemmas
3.2.4 and 3.3.7, we know that it is enough to construct a map F such that
pf, F q : M̃ Ñ N ˆ g is harmonic and ρ

p1q
t -equivariant.
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Lemma 3.4.1. Let V be a fixed vector space of finite dimension, and τ : Γ “
π1pMq Ñ GLpV q a representation. Denote by V the associated local system
and let φ P Z1pM,Vq be a closed 1-form; let z P Z1pΓ, V q be a 1-cocycle such
that the cohomology classes of φ and z correspond through the isomorphism
H1pM,Vq – H1pΓ, V q. Then the set

 

F : M̃ Ñ V : dF “ π̃˚φ and F pγx̃q “ τpγq ¨ F px̃q ` zpγq
(

(3.3)

forms a non-empty torsor over V Γ “ H0pM,Vq.

Proof. Denote by φ̃ “ π̃˚φ the pull-back of φ to M̃ . For any F : M̃ Ñ V

such that dF “ φ̃, define zF pγq “ zF pγ, x̃q “ F pγx̃q ´ τpγq ¨ F px̃q. This is in
fact independent from x̃:

dpzF pγ, x̃qq “ γ˚φ̃ ´ τpγq ¨ φ̃ “ 0.

Take a base point x̃0 P M̃ . The isomorphism of cohomology H1pM,Vq –
H1pΓ, V q is then induced by the mapping at the level of cocycles:

Z1pM,Vq ÑZ1pΓ, V q

φ ÞÝÑ
´

γ ÞÑ

ż γx̃0

x̃0

φ̃
¯

.

The integral in this expression equals F pγx̃0q ´ F px̃0q. Observe that, by
definition of zF ,

F pγx̃0q ´ F px̃0q “ zF pγq ` τpγq ¨ F px̃0q ´ F px̃0q “ zF pγq ` δ
`

F px̃0q
˘

pγq,

where δ denotes the codifferential of group cohomology. Thus zF differs from
z by a coboundary.

Now consider any F̃ such that dF̃ “ φ̃, so that F “ F̃ ` v, where v P V
is fixed. Then

zF “ zF̃ ´ δpvq.

In particular, every 1-cocycle cohomologous to zF̃ can be obtained in this
way, and thus we find a v such that F belongs to the set (3.3). If now F1

and F2 are two elements of this set, F1 “ F2 ` v for some fixed v P V , since
dF1 “ dF2. Further, dpvq “ 0, that is, v P V Γ is fixed by the action of Γ.

In the following, we shall denote by H the centralizer of the image of ρ0
and by h its Lie algebra. Observe that, under the action of Γ on g by Adpρ0q,

h “ H0pM,Adpρ0qq “ gΓ
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that is, the global sections of the local system V “ f˚Vad.
Now let c P Z1pΓ, gq define a first-order deformation of ρ0, as in definition

3.1.2. By Hodge theory with local coefficients, we can find a harmonic 1-form

ω P H1pM,Adpρ0qq

that represents rcs P H1pM,Vq.

Lemma 3.4.2. Let pf, F q : M̃ Ñ N ˆ g be ρ
p1q
t -equivariant and of harmonic

type. Then dF “ π̃˚ω.

Proof. Differentiating the equivariance condition F pγx̃q “ Adρ0pγqF px̃q`cpγq
one finds that dF is the pullback of an Adpρ0q-valued 1-form. By definition,
JpF q “ d˚dF “ 0, hence dF is harmonic. To investigate the cohomology
class it represents, just integrate and use the equivariance condition once
again:

ż γx̃0

x̃0

dF “ F pγx̃0q ´ F px̃0q “ Adρ0pγqF px̃0q ` cpγq ´ F px̃0q

“ δ
`

F px̃0q
˘

` cpγq,

where δ denotes group coboundary. Thus dF represents rcs, and by unique-
ness dF “ π̃˚ω.

Proposition 3.4.3. Let ρ
p1q
t “ pρ0, cq : Γ Ñ TG be a first order deformation

of the representation ρ0. Let f : M̃ Ñ N be harmonic and ρ0-equivariant.
Take any F given by lemma 3.4.1 with z “ c and φ “ ω. Then v “ ϑTN pf, F q
is an harmonic and equivariant first order deformation.

Proof. The F thus constructed is such that pf, F q is ρ
p1q
t -equivariant and

harmonic. This last fact follows from lemma 1.6.6, since

0 “ d˚ω “ d˚dF “ JpF q.

Then, lemmas 3.2.4 and 3.3.7 give the conclusion.

3.5 Uniqueness of harmonic deformations

The purpose of this section is to prove that every equivariant and harmonic
first order deformation arises by the construction of proposition 3.4.3. In
the following, M is equipped with the phls pV, σ, Sq which is the pull-back
of the adjoint phls on N , as in corollary 1.3.3. Applying corollary 1.6.9 to
our setting, we obtain a decomposition h “ hp ‘ hk of the sub-algebra h of g
centralizing the action of Γ.
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Proposition 3.5.1. Every equivariant harmonic first order deformation is
constructed by the means of 3.4.3. Furthermore, the set of such deformations
is a (non-empty) torsor over hp.

Proof. Observe that the second statement implies the first one, since we
already know how to construct one deformation from a function F as in
proposition 3.4.3, that such F ’s form a torsor over h and that passing from
F to v “disregards” the rks-part. In fact, we only need to prove that the
difference of any two harmonic and equivariant first order deformations v,
v1 is in hp, since the aforementioned proposition grants the existence of one
such deformation.

Applying the Maurer-Cartan form βN to J pvq “ J pv1q “ 0,

d˚d
`

βNpv ´ v1q
˘

“ J
`

βNpv ´ v1q
˘

“ 0.

Since the equivariance condition vpγx̃q “ cpγqfpγx̃q ` ρpγq˚vpx̃q is affine, we
have

βN pvq ´ βNpv1q “ Adρ0pγqβN pvq ´ Adρ0pγqβNpv1q,

that is, βNpv ´ v1q is a section of V. An integration by part then gives

dβNpv ´ v1q “ 0, hence βNpvq “ βNpv1q ` ξ,

for some fixed ξ P g. Equivariance of v and v1 (or rather of their difference)
then implies ξ P h. On the other hand, ξ has been written as βN pvq´βNpv1q P
rps, so

ξ P h X rps “ hp.

Conversely, if v is an equivariant and harmonic first-order deformation and
ξ P hp, then βNpv1q “ βNpvq ` ξ gives another equivariant and harmonic
first-order deformation, hence the result.

Corollary 3.5.2. Let ρ
p1q
t “ pρ0, cq : Γ Ñ TG be a first order deformation of

ρ0 : Γ Ñ G, and f : M̃ Ñ N a harmonic and ρ0-equivariant mapping. The
following conditions are equivalent:

1. f admits a unique ρ
p1q
t -equivariant and harmonic deformation to the

first order;

2. hp “ 0.

Clearly, these conditions are implied by h “ 0, and, in turn, by asking
Imagepρ0q to be Zariski-dense.
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3.6 Conclusions

Summing up the results of this section, we have proved:

Theorem 3.6.1. Let M be a compact Riemannian manifold, G an alge-
braic reductive group, G “ GpRq the Lie group of its real points, ρ

p1q
t “

pρ0, cq : π1pMq Ñ G a first-order deformation of ρ0 and f : M̃ Ñ N a
harmonic and ρ0-equivariant map. Then every first order harmonic and
ρ

p1q
t -equivariant deformation v of f comes from a harmonic 1-form ω P

H1pM,Adpρ0qq representing rcs. More precisely, the map

"

F : M̃ Ñ g : dF “ ω is harmonic
and F pγx̃q “ Adρ0pγqF px̃q ` cpγq

*

ϑTNÝÝÑ

"

v P C8pf˚TNq harmonic

and ρ
p1q
t -equivariant.

*

is affine and surjective, and corresponds to the linear projection on the asso-
ciated vector spaces:

h “ H0pM,Adpρ0qq ÝÑ H0pM,Adpρ0qq X p “ hp.

Thanks to this theorem, in the following sections we will be able to trans-
late every appearance of the variation of f (e.g. to compute the variation of
the energy) in terms of the harmonic 1-form ω. To conclude, we will prove the
following functoriality statement with respect to holomorphic maps between
Kähler manifolds:

Proposition 3.6.2. Let X, X 1 be Kähler manifolds, ϕ : X 1 Ñ X a holo-
morphic map. Let ρ

p1q
t “ pρ0, cq : π1pXq Ñ G be a first order deformation

of ρ0, and define ρ
p1q
t

1
“ pρ1

0, c
1q “ ρ

p1q
t ˝ ϕ˚. Let f : X̃ Ñ N be a harmonic

and ρ0-equivariant map, and define f 1 “ f ˝ϕ. Then f 1 is harmonic and ρ1
0-

equivariant, and the construction of theorem 3.6.1 is functorial with respect
to ϕ, that is, we have a commutative diagram:

"

F : X̃ Ñ g : dF “ ω is harmonic
and F pγx̃q “ AdρpγqF px̃q ` cpγq

*

ϑTN
// //

ϕ˚

��

"

v P C8pf˚TNq harmonic

and ρ
p1q
t -equivariant.

*

ϕ˚

��
"

F 1 : X̃ 1 Ñ g : dF 1 “ ω1 is harmonic
and F 1pγx̃q “ AdρpγqF

1px̃q ` c1pγq

*

ϑTN
// //

#

v1 P C8pf 1˚TNq harmonic

and ρ
p1q
t

1
-equivariant.

+

Remark that ρ1
0-equivariance of f 1 is obvious, and harmonicity is the

content of lemma 1.8.1.

76



Proof. First notice that the vertical arrow on the left is well-defined thanks
to corollary 1.8.6: If F : X̃ Ñ g is such that dF “ ω, letting F 1 “ F ˝ ϕ we

have JpF 1q “ d˚ϕ˚ω “ 0. Equivariance follows from the definition of ρ
p1q
t

1
:

For every γ P π1pX 1q,

F 1pγx̃q “ F
`

ϕpγx̃q
˘

“ F
`

ϕ˚pγq ¨ ϕpx̃q
˘

“ Adρ0pϕ˚γqF
`

ϕpx̃q
˘

` c
`

ϕ˚γ
˘

“ Adρ1
0

pγqF
1px̃q ` c1pγq. (3.4)

Theorem 3.6.1 implies that the horizontal arrows are surjective. The good
definition of the ϕ˚ on the right follows by combining this same theorem with
corollary 1.8.6: If v P C8pf˚TNq is a harmonic and ρ

p1q
t -equivariant first-order

deformation of f , and v1 “ ϕ˚v, equivariance of v1 follows as in (3.4). For
harmonicity, we prove that JpβN pv1qq “ 0 follows from ϕ˚pJpβNpvqq “ 0: Let
F : X̃ Ñ g be such that JpF q “ 0 and F rps “ βNpvq, and define F 1 “ ϕ˚pF q,
so that F 1rps “ βNpv1q. Then:

JpβNpv1qq “ J
`

F 1rps
˘

“ J
`

ϕ˚pF qrps
˘

“ J
`

ϕ˚pF q
˘rps

“ ϕ˚
`

JpF q
˘rps

,

thanks to the commutativity of J and projection on rps (corollary 1.6.8) and
that of J and ϕ˚, provided that dF is an Adpρ0q-valued 1-form.

The commutativity of the diagram in proposition 3.6.2 is clear.

3.7 Example: the case G “ GLp1,Cq

To give a description of the result in the easiest possible case, in this sec-
tion we briefly analyze the special case G “ GLp1,Cq. Explicitely, G “
GLp1,Cq “ C˚, K “ Up1q and N “ Rą0. The main simplification here is
that the group (and the Lie algebra) are abelian. If f : M̃ Ñ N is a mapping,
let g : X̃ Ñ R be given by g “ logpfq.

Once a representation and a harmonic and equivariant f are given, the
structure of section 1 becomes much easier, since inside g “ C we have
rps “ p “ R and rks “ k “ iR. The scalar product on M̃ ˆg is constant, that
is, independent of the function f and the point x̃ P M̃ ; since the Lie algebra
is abelian, dcan “ d gives the metric connection on V “ M ˆ g. The 1-form
β̃ is simply dg, as it may be seen for example by means of lemma 1.5.9, since
df ¨ f´1 “ exp g¨dg

exp g
“ dg (here we do not need to take a section of f , and

consequently no projection on p, either).
Now fix a representation ρ0 : Γ Ñ C˚. Write ρ0 “ ρc ¨ ρnc where ρcpγq P

Up1q and ρncpγq “ |ρ0pγq| P Rą0. Then f is ρ0-equivariant when fpγx̃q “
ρncpγqfpx̃q, and g when gpγx̃q “ log ρncpγq ` gpx̃q. Define r : Γ Ñ R as
r “ logpρncq, so that r gives a 1-cohomology class onM . Since the logarithm
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is an isometry between N and R, the mapping f is harmonic if and only if g
is a harmonic function; in particular, every two harmonic and equivariant g’s
differ by a constant (the difference is harmonic and defined on M , which is
compact). To construct such a g, take any harmonic 1-form β representing
the cohomology class given by r, let β̃ be its pull-back to M̃ , and define

gpx̃q “

ż x̃

x̃0

β.

Then dg “ β̃, as wanted, which is harmonic by hypothesis, so that g is a
harmonic function.

In this case, the objects appearing in theorem 3.6.1 are as follows: We
have two functions F : M̃ Ñ C and βNpvq : M̃ Ñ R. The definitions of har-
monic type for F and harmonic for v reduce simply to both being harmonic
functions. Equivariance conditions for F and v are the same, the latter in-
volving cpγqrps “ Repcpγqq. Clearly, the sets consisting of the F ’s and the one
consisting of the v’s are in correspondence through ϑTN , which is essentially
Re. Finally, Adpρ0q is trivial, hence h “ H0pM,Cq “ C, and hp “ R. The
difference of any two F 1s or v1s being defined on M , the last statement of
the theorem only expresses that such differences must be constant.

When M “ X is a Kähler manifold, one can further consider the holo-
morphic 1-form α representing the cohomology class, thanks to the Dolbeault
isomorphism. Then one simply has β “ Repαq and θ “ 1

2
α. Harmonicity of

these forms are a consequence of the (classical) Kähler identities.
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Chapter 4

First variation of the energy:
C-VHS as critical points

Introduction au chapitre

Ce chapitre se concentre sur l’étude des variations du premier ordre de la
fonctionnelle de l’énergie sur l’espace de modules des représentations semi-
simples. Plus en général, on se donne une déformation au premier ordre v,
harmonique et ρ

p1q
t -équivariante, d’une métrique harmonique f et on étudie la

variation de l’énergie le long de v. Pour le faire, on définit l’énergie de pf, vq
comme le premier ordre de l’énergie d’une famille ft telle que Bft

Bt

ˇ

ˇ

t“0
“ v.

Ensuite, une application directe du théorème du chapitre 3 permet d’identifier
ce premier ordre avec le produit scalaire L2 entre ω, la 1-forme harmonique
induite par ρ

p1q
t , et β (la 1-forme correspondante à df). En fait, comme

d˚β “ 0, le résultat ne changerait pas en remplaçant ω par n’importe quelle
autre 1-forme harmonique représentant ρ

p1q
t .

Des cas particuliers sont examinés: si M “ X est kählerienne, ce premier
ordre a une interpretation cohomologique ressemblante à celle usuelle pour
l’énergie; dans le cas abelien, l’étude des points critiques de l’énergie est très
simple, car les seuls points critiques sont des minima globaux. Le reste du
chapitre est dédié à la preuve du théorème principal, qui, sous l’hypothèse de
Kähler sur M “ X , identifie les points critiques de l’énergie avec les varia-
tions complexes de structures de Hodge. Ceci est une généralisation du même
résultat, déjà connu dans le cas où X est une surface de Riemann et l’espace
de modules est lisse (cfr. [Hit87]). D’un côté, les variations de structures de
Hodge complexes sont des points critiques de l’énergie en conséquence du fait
que le générateur infinitesimal γ de l’action de S1 a pour espaces propres les
facteurs de la décomposition de Hodge induite sur les endomorphismes, ce
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qui permet d’identifier β avec Dcγ. On obtient l’autre identification en con-
siderant la variation infinitesimale induite par l’action de C˚. On remarque
que, comme la variation de l’énergie peut être calculée en remplaçant ω par
n’importe quelle autre 1-forme dans sa classe de cohomologie, le théorème
est valable aussi dans les points singuliers, en définissant un point critique
celui qui annulle les dérivées le long de toutes directions dans le tangent de
Zariski de HompΓ, Gq.

4.1 First variation of the energy

Here M denotes a compact Riemannian manifold. We want to make use of
theorem 3.6.1 to give a formula for the first variation of the energy.

Lemma 4.1.1. Let ρ
p1q
t “ pρ0, cq : Γ Ñ TG be a first order deformation of

ρ0 and v P C8pf˚TNq a ρ
p1q
t -equivariant first order deformation of f . Then

the quantity
@
N

∇v, df
D

defines a Γ-invariant function on M̃ .

Proof. We can equivalently prove the result after applying βN to both sides,
that is, we want to prove that

@
can

∇βNpvq, β̃
D

pγx̃q “
@
can

∇βNpvq, β̃
D

px̃q. (4.1)

Applying βN (which is a right inverse of ϑTN ) to definition 3.2.1 we get

βN pvqγx̃ “ Adρ0pγqβNpvqx̃ ` cpγq
rps
γx̃. Hence the term on the left hand side of

(4.1) equals
Acan

∇
`

Adρ0pγqβNpvq ` cpγq
rps
γx̃

˘

,Adρ0pγqβ̃
E

γx̃
.

Since, by definition of the metric (1.4) and of the canonical connection:

Acan

∇
`

Adρ0pγqβN pvq
˘

,Adρ0pγqβ̃
E

γx̃
“
@
can

∇βNpvq, β̃
D

x̃
,

we only need to prove the vanishing of xcpγq
rps
γx̃,Adρ0pγqβ̃y. As

can

∇ commutes

with projection on rps and cpγq is constant, that is, d
`

cpγq
˘

“ dcancpγq `

rβ̃, cpγqs “ 0, we have

can

∇cpγqrps “ ´
“

β̃, cpγq
‰rps

“ ´
“

β̃, cpγqrks
‰

.
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Thus:
A´

´
“

β̃, cpγq
‰

¯rps

γx̃
, β̃γx̃

E

γx̃
“ ´

A

“

β̃γx̃, cpγq
‰

, β̃γx̃

E

γx̃

“ ´
ÿ

i,j

gij
A

cpγq,
”

β̃γx̃
` B

Bxi

˘

, β̃γx̃
` B

Bxj

˘

ıE

γx̃
“ 0.

Definition 4.1.2. Let ρ
p1q
t be a first order deformation of a representation

ρ0, and v a ρ
p1q
t -equivariant first order deformation of a ρ0-equivariant map

f : M̃ Ñ N . We define its energy as

Et “ Epf, vq “ Epfq ` t

ż

M

@
N

∇v, df
D

P Rrts{pt2q. (4.2)

When ft is defined for t P p´ε, εq, this definition agrees with the first
order jet of t ÞÑ Epftq, since

B

Bt
Epftq

ˇ

ˇ

ˇ

t“0
“

1

2

ż

B

Bt
}dft}

2 “

ż

@D

Bt
df, df

D

“

ż

@

∇v, df
D

,

where for the last equality we have used lemma 3.3.3. Composing with
βN : TN Ñ rps Ď N ˆ g we obtain:

Epftq “
1

2

ż

}β̃}2 ` t

ż

@
can

∇βNpvq, β̃
D

. (4.3)

Proposition 4.1.3. Let ρ
p1q
t “ pρ0, cq : π1pMq Ñ TG a first order deforma-

tion of ρ0, and ft : M̃ Ñ N a ρ
p1q
t -equivariant, harmonic first-order deforma-

tion of f . Then
BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ω, β
D

dVolg, (4.4)

where ω is the harmonic representative of rcs.

Proof. Thanks to theorem 3.6.1, there is an F such that pf, F q is ρ
p1q
t -equi-

variant, dF “ ω and ϑTN pf, F q “ v. Fix one such F , so that in particular
βN pvq “ F rps. Then, pulling back to M̃ , the right hand side of (4.4) can be
written as

ż

M̃{Γ

xω̃, β̃y “

ż

xω̃rps, β̃y “

ż

@
can

∇F rps, β̃
D

`
@

rβ̃, F rkss, β̃
D

.

The second summand vanishes because the Lie bracket by F rks is anti self-
adjoint. Since βNpvq “ F rps, this concludes the proof, using (4.3).
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We list some examples to illustrate how the energy functional behaves (in
particular, describing its critical points) in several special cases.

Example 4.1.4. When M “ X is a Kähler manifold, equation (4.4) is
independent of the particular metric chosen on X “ M in its Kähler class.
This follows just as we did in equation (1.16) for the energy of f , since in
this case (4.4) can be rewritten as

BEt

Bt

ˇ

ˇ

ˇ

t“0
“

ż

X

@

ω ^ ˚β
D

“ ´
1

n!

ż

X

trace
`

ω ^ pθ˚ ´ θq
˘

^ Ωn´1,

where, for the last equality, we have used that ˚β “ pθ˚ ´ θq ^ Ωn´1 takes
values in the anti self-adjoint part of g b C, hence the scalar product equals
the Killing form, up to a negative constant. We need to prove that tracepω^
pθ ´ θ˚qq is closed. Since dω “ 0, and recalling that dθ “ dpθ˚q “ rθ, θ˚s,
the conclusion is immediate. This same result will also follow from the more
general lemma 6.1.6.

Example 4.1.5. We now continue the discussion of the case G “ C˚ from
section 3.7, keeping the same notations therein. To make the discussion
simplier and independent from previous results, we will assume everything
to be defined for t P p´ε, εq.

Consider ρt : Γ Ñ C
˚, a deformation of ρ0, suppose ft : M̃ Ñ Rą0 to be

harmonic and ρt-equivariant, and define β̃t consequently (we have seen in
section 3.7 that β̃t “ d logpftq). Then the real part of the harmonic 1-form

ω is simply ωrps “ Bβ̃t

Bt

ˇ

ˇ

t“0
. To see this, first notice that in this case ωrps is the

real part of ω, hence it is the harmonic representative of the real part of the

1-cocycle c. Harmonicity of Bβ̃t

Bt

ˇ

ˇ

t“0
follows from that of β̃t, for every t (since

derivations commute): On the one hand, d˚β̃t “ 0 is one way to express
harmonicity of ft and on the other hand β̃t “ d logpftq implies dβ̃t “ 0. Now
equation (4.4) follows from the flat derivation being metric:

B

Bt

ˇ

ˇ

ˇ

t“0

1

2

ż

}βt}
2 “

ż

@ B

Bt
β̃t

ˇ

ˇ

ˇ

t“0
, β̃
D

“

ż

xωrps, βy “

ż

xω, βy.

Finally, when M “ X is assumed to be Kähler, the Betti and Dolbeault
moduli spaces (cfr. [Sim94] for the terminology) are very easy to describe,
as is the homeomorphism between them and the C

˚-action:

MBpX,C˚q “ HompΓ,C˚q – Pic0pXq ˆ H0pΩ1q “ MDolpX,C
˚q,

where the moduli space of Higgs bundles splits as the product of Pic0pXq, the
moduli space of degree 0 holomorphic line bundles, and the space of global
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holomorphic 1-forms H0pΩ1q. Then the fixed points of pE , θq ÞÑ pE , tθq are
only those with θ “ 0, so these are the C-VHS. In particular, every C-VHS
has β “ θ` θ˚ “ 0, so that the energy vanishes (i.e. f is constant) and they
are clearly critical points (indeed, the only ones, and they are also minima)
of the energy.

Example 4.1.6. When M “ Σ is a Riemann surface of genus g ą 2, the
energy functional has been intensively studied in [Hit87] and the subsequent
literature (cfr. e.g. [Hit92]). Up to some constant, there a functional on the
moduli space of Higgs bundles is defined by

pE , θq ÞÑ

ż

Σ

}θ}2.

This coincides with our definition 1
2

ş

M
}β}2 since β “ θ` θ˚, and also θ and

θ˚ are adjoint, hence have the same norm.
In the case of a Riemann surface, the energy functional gives a proper

functional on the moduli space of Higgs bundles (hence, on that of represen-
tations). Furthemore, it is a moment map for the circle action eit ¨ pE , θq “
pE , eitθq. In particular, the smooth critical points are fixed points of this
action, that is, C-VHS. We will generalize this last result in the upcoming
sections. Results about the second order derivative of f (index, or positivity)
will be analyzed in section 6.

Example 4.1.7. To conclude our list of examples, let us resume the example
of M “ S1 so that Γ “ Z and a representation is just the data of an element
g “ ρ0p1q. A deformation of the representation g is, in this case, just an
element ξ P g of the Lie algebra of G; this gives the group 1-cocycle c : Z Ñ g

by defining, for n ą 0,

cpnq “ ξ ` Adgξ ` ¨ ¨ ¨ ` Adgn´1ξ,

and similarly up to n` 1 if n ă 0. The 1-coboundaries are given by

δpηqpnq “ Adgnξ ´ ξ.

Hence the 1-cohomology of Z with values in g identifies with g{pAdg ´ 1qg.
An equivariant and harmonic first order deformation v is a vector field along
f that satisfies:

JpβN pvqq “ 0; vpx ` 1q “ g˚vpxq ` ϑTNpfpxq, ξq.

By the first equation it is a Jacobi field (hence the name of J). In this case,
in terms of a global coordinate x on R, ω may be written as ω “ ηpxqdx,
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and the harmonicity condition becomes

d˚ω “ ´
Bηpxq

Bx
` 2

”

β
`Bfpxq

Bx

˘

, ηpxq
ı

“ 0.

Then, the first order derivative of the energy functional (that is, of the square
of the translation length) may be expressed in terms of the Killing form as

BEpgtq

Bt

ˇ

ˇ

ˇ

t“0
“

ż 1

0

Kill
´

ηpxq, β
`Bfpxq

Bx

˘

¯

dx.

4.2 C-VHS are critical points of the energy

functional

Let X be a compact Kähler manifold, G “ KC a complex semisimple alge-
braic group (hereK is a maximal compact subgroup), and ρ

p1q
t “ pρ0, cq : Γ Ñ

TG, where t2 “ 0, a first order deformation of ρ0, which is supposed to be in-
duced by a C-VHS. Suppose further that pf, vq is a first order ρ

p1q
t -equivariant

and harmonic deformation of f “ f0, which is induced by the period mapping
Φ: M̃ Ñ G0{V0 (notations are coherent with those of 1.2.5). The purpose
of this section is to prove that then f0 is a critical point for the energy

Epftq “ Epfq ` t
ş

x
N

∇v, dfy, i.e. that BEt

Bt

ˇ

ˇ

t“0
“ 0. First of all, we remark

that in the case when X is a smooth projective variety, we can deduce this
result from the case of curves (cfr. example 4.1.6):

Proposition 4.2.1. Let X be a smooth projective variety, G “ KC a complex
algebraic group. Then ρ0 : Γ Ñ G is a critical point for the energy if and only
if it is a fixed point of the S1-action on the moduli space.

Proof. When dimCX “ 1, this is due to Hitchin (cfr. example 4.1.6). We
reduce the general case to this one. Let dimCX “ n, and Ω be a Kähler form.
By projectivity, Ω may be supposed integral and very ample, so that we find
n´1 general hyperplane sections H1, . . . , Hn´1 in the class of Ω. Write C for
the complete intersection of H1, . . . , Hn´1, so that C is a smooth curve such
that rΩs “ rCs in H2pX,Zq. In particular, the formula for the energy (1.16)
may be expressed in terms of a Higgs bundle pE , θq corresponding to ρ0 as:

Epρ0q “

ż

X

trace
`

θ ^ θ˚
˘

^ Ωn´1 “

ż

C

trace
`

θ
ˇ

ˇ

C
^ θ

ˇ

ˇ

˚

C

˘

.

Now Simpson ([Sim92], sections 1 and 4) proves that the construction as-
sociating a Higgs bundle to a representation is functorial with respect to
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pull-backs, and also that, when i : C ãÑ X is a complete intersection, ρ0 is
induced by a C-VHS if and only if i˚ρ0 is. These two facts together complete
the proof.

For the general Kähler case, we need some preparation.

Lemma 4.2.2. Let f0 : X̃ Ñ G0{K0 be induced by the period mapping Φ
associated to a C-VHS pV, D, Sq, fix a base point x0 P X and let G be a
complex subgroup of GLpVx0

q containing G0. Then, denoting by g the Lie
algebra of G, the flat bundle X̃ˆg has a Hodge decomposition of weight zero,
compatible with the Lie bracket, which we write as

X̃ ˆ g “
à

pPZ

“

gp,´p
‰

.

Proof. We will regard G0 as a group of automorphisms of Vx0
. Then g0, its

Lie algebra, and its complexification g0,C both consist of endomorphisms of
Vx0

“
À

V r,s. We can decompose the complexified Lie algebra according to
how it behaves on the Hodge structure:

g
p,´p
0,C “

 

ξ P g0,C : ξ ¨ V r,s Ď V r`p,s´p
(

.

This gives a C-Hodge structure of weight 0 on g0,C. We define an action
S1 Ñ SLpg0,Cq by

z ¨ ξp,´p “ z2pξp,´p. (4.5)

Thanks to this action, we extend the Hodge structure to all of g via the
embedding SLpg0,Cq Ď SLpgq:

gp,´p “
 

ξ P g : z ¨ ξ “ z2pξp,´p
(

.

Now we define the C-VHS structure on f˚pN ˆ gq “ X̃ ˆ g by letting

X̃ ˆ g “
à

pPZ

“

gp,´p
‰

,

where rgp,´ps “ AdΦpx̃qpg
p,´pq. Notice that here we need to take adjunction

by Φ instead of f , because the Hodge decomposition on N ˆ g is only V0-
invariant, not K0-invariant.

Remark 4.2.3. Note that, in general, this decomposition will not be com-
patible with the pull-back of the adjoint phls to give a C-VHS structure on
X̃ ˆ g, unless G is the complexification of G0.
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Lemma 4.2.4. With the same notations as in the previous lemma, let v0 be
the Lie algebra of V0. Then there exists a parallel section γ of rv0s such that,
for every ξ P C8pX̃ ˆ gq, we have

rγ, ξs “
ÿ

p

ipξ´p,p, where ξ “
ÿ

p

ξ´p,p, ξ´p,p P rg´p,ps.

Proof. Let pE , θq be the Higgs bundle corresponding to ρ0 via the harmonic
metric f0, so that there is a decomposition E “

À

Er,s. Consider the action
of C˚ on E given by multiplication by tr on Er,s. Then, Simpson proves in
[Sim92], Lemma 4.4, that the restriction of this action to Up1q induces a
1-parameter family of automorphisms of G0. Denote by φθ P AutpG0q the
action given by e´iθ; then, since φ0 “ id and since G0 being reductive implies
that the map G˝ Ñ AutpG0q

˝ is surjective (cfr. Simpson, loc. cit., 4.4.1.
and 4.4.2.), we have φθ “ Adgθ for some gθ in the identity component of G0.
Thanks to the AdpV0q-invariance of the action of gθ we can define, for every
x̃ P X̃,

γpx̃q “ AdΦpx̃q

`

γx0

˘

, where γx0
“

Bgθ
Bθ

ˇ

ˇ

ˇ

θ“0
P g0.

This is in fact a section of rv0s Ñ X and parallel with respect to dcan, simply
because we constructed it by parallel transport (here we use the first defini-
tion of dcan in definition 1.5.6). From the definition of the Hodge decomposi-
tion on X̃ ˆ g, it follows that Adgθpξ´p,pq “ eipθξp,´p for every ξp,´p P rg´p,ps.
Thus, adγpξ´p,pq “ ipξ´p,p; in particular, γ P rg0,0s, and since γ P rg0s, we
have also γ P rv0s.

Lemma 4.2.5. Let ρ0 be induced by a C-VHS and f0 : X̃ Ñ G{K be induced
by the period map Φ: X̃ Ñ G0{V0, where G0 Ď G Ď GLpVx0

q, as above. Then

θ “ iD2γ;

θ˚ “ ´iD1γ.
(4.6)

Proof. Since dcanγ “ 0, both Bγ and B̄γ vanish. Hence

D1γ “ Bγ ` rθ˚, γs “ ´rγ, θ˚s; D2γ “ B̄γ ` rθ, γs “ ´rγ, θs.

Now rγ, θs “ iθ, since θ P A1prg´1,1sq, and rγ, θ˚s “ ´iθ˚ so we obtain
(4.6).

Corollary 4.2.6. When f0 comes from a VHS, we may write

β “ Dcγ,

where Dc “ ´ipD2 ´ D1q is the real operator constructed with respect to the
total Weil operator C (cfr. [Zuc79]).
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Corollary 4.2.7. Let X be a compact Kähler manifold, ρ
p1q
t a first order

deformation of a representation ρ0 : Γ “ π1pXq Ñ G, and v a first order

harmonic and ρ
p1q
t -equivariant deformation of f0 : X̃ Ñ G{K. Suppose that

ρ0 and f0 “ π ˝ Φ are induced by a C-VHS as above. Then

BEpftq

Bt

ˇ

ˇ

ˇ

t“0
“ 0. (4.7)

Proof. By proposition 4.1.3 and (4.6) we have

BEpftq

Bt

ˇ

ˇ

t“0
“

ż

X

@

ω, β
D

“ i

ż

@

ω, pD2 ´ D1qγ
D

.

As already noted in the discussion preceding lemma 1.8.5, being d-harmonic
is equivalent to being D1-harmonic or D2-harmonic, hence D1˚ω “ D2˚ω “ 0,
that gives the result.

4.3 Variation of the energy under the C
˚-action

Let now X be a smooth Kähler manifold. In this section we want to investi-
gate how the energy behaves under the C˚-action on Higgs bundles given by
(1.18). We will obtain from this discussion the converse to corollary 4.2.7,
namely, that the only extremal points of the energy are C-VHS.

Remark 4.3.1. the action of S1 Ă C˚ on a Higgs bundle pE , θq leaves the
energy constant: As Simpson points out, if t P S1, then the harmonic metric
K for pE , θq will still be harmonic for pE , tθq, since harmonicity is equivalent
to the vanishing of the curvature F “ B̄BK ` BK B̄ ` rθ, θ˚

Ks of the connection
corresponding to pE , θq, and the connection corresponding to pE , tθq under
the same metric K has curvature B̄BK ` BK B̄ ` rtθ, t̄θ˚

Ks “ F , when t P S1.
Thus from now on we shall assume t to be real.

Fix a smooth family of harmonic metrics ft for pE , tθq, so that we get a
corrisponding family of flat bundles, whose monodromy representations we
denote by ρt : Γ Ñ G. To compute the variation of the energy by means of
proposition 4.1.3, then, we have to identify the harmonic representative ω of
the cohomology class of cpγq “ Bρtpγq

Bt

ˇ

ˇ

t“1
¨ ρ1pγq´1 P H1pΓ, adpρ1qq. In the

following, we denote by pV, σ, Sq the C-phls on V Ñ X induced by pull-back
of the adjoint phls as in corollary 1.3.3. Recall that, by fact 1.3.4, this phls
coincides with the one on EndpEq induced by pE , θq and f0.

Proposition 4.3.2. Let ω be the harmonic representative of the first order
variation of Higgs bundles pE , tθq. Then:

BEpE , tθq

Bt

ˇ

ˇ

ˇ

t“1
“

ż

X

}ω}2dVolg ě 0.

87



Proof. Since the family of Higgs bundles is given by pE , tθq, its first order
deformation is B “ θ; hence, using the isomorphism of Dolbeault cohomology
and harmonic forms, as in lemma 1.8.8, we can write the harmonic 1-form ω

as
ω “ θ ` D2η “ θ ` B̄η ` rθ, ηs, (4.8)

for some section η of V.
Thanks to proposition 4.1.3, and recalling that β̃ “ θ` θ˚, equation (4.8)

allows us to write

BEpE , tθq

Bt

ˇ

ˇ

ˇ

t“1
“

ż

xω, θ ` θ˚y “

ż

xω, θy ` xB̄η, θ˚y. (4.9)

Notice that, using Stokes theorem and the fact that B̄θ “ 0, which implies
0 “ ΛBpθ˚q “ ´2i

ř

j Bjθ
˚pB̄jq,

ż

@

B̄η, θ˚
D

“
ÿ

j

ż

B̄j

@

η, θ˚pB̄jq
D

´

ż

@

η, Bjθ
˚pB̄jq

D

“ 0.

The result follows at once recalling that ω “ θ ` D2η, so that

BEpE , tθq

Bt

ˇ

ˇ

ˇ

t“1
“

ż

xω, θy “

ż

}ω}2 ´ xω,D2ηy “

ż

}ω}2,

since D2˚ω “ 0.

Example 4.3.3. Thanks to Simpson’s theorem 1.9.6, we know that rE , θs
comes from a VHS if and only if pE , θq is isomorphic to pE , tθq for every
t P C˚. In particular, in this case the energy functional must be constant, so
the derivative of proposition 4.3.2 must vanish. Recall from section 4 that,
when pE , θq comes from a VHS, we have

θ “ irθ, γs “ i
`

B̄ ` adpθq
˘

pγq.

In particular, the Dolbeault 1-cohomology class of θ is null, so ω “ 0.

Lemma 4.3.4. Let pE , θq be a Higgs bundle. Then it is a C-VHS if, and
only if, the 1-cohomology class

tθu P H1
Dol

`

X,EndpEq
˘

vanishes, i.e., θ “ D2pηq for some η P EndpEq.
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Proof. The equivalence between θ vanishing in cohomology and being in the
image of D2 is the last isomorphism of lemma 1.8.8.

On the one hand, if θ is a C-VHS, we only have to apply lemma 4.2.5 and
take η “ iγ. On the other hand, if θ “ D2pηq, as D2 “ B̄ `adpθq and θ being
of type p1, 0q, we must have θ “ rθ, ηs. Define a group of automorphisms of
E by gt “ expptηq. Then a simple computation proves:

Adgtpηq “ e´tθ.

This implies that the automorphism gt P AutpEq sends θ to etθ, hence pE , θq
must be a C-VHS.

Definition 4.3.5. We say that the energy functional E has a critical point
at a conjugacy class of representations tρ0u P MBpX,Gq if for every ω P
H1pX,Adpρ0qq

ż

X

@

ω, β
D

“ 0.

By the results of chapter 2, this definition coincides with the usual one
at least over Zariski-dense representations.

Corollary 4.3.6. The critical points of the energy functional on MBpX,Gq
are exactly the representations coming from complex variations of Hodge
structures.

Proof. The fact that all C-VHS are extrema of the energy is the content of
corollary 4.2.7. Conversely, suppose that pE , θq is a Higgs bundle correspond-
ing to a conjugacy class of representations tρ0u which is a critical point of
the energy. Letting ω be as in proposition 4.3.2, the hypothesis plus the
mentioned proposition imply ω “ 0, that is, tθu “ 0 in H1

DolpX,EndpEqq. By
lemma 4.3.4, then, pE , θq must be a C-VHS.
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Chapter 5

Second order harmonic maps

Introduction au chapitre

Dans ce chapitre, on propose une analyse infinitésimale au second ordre des
déformations des applications harmoniques tordues. La discussion suit celle
faite pour le premier ordre : toutes les définitions impliquées sont données
dans la Section 5.1, où l’on précise les concepts des déformations au second
ordre ρ

p2q
t et w et de quand ce dernier est harmonique ou ρ

p2q
t -équivariante. Il

s’agit toujours des définitions induites par le cas d’une “vraie” déformation le
long d’un groupe à un paramètre de représentations, en posant w “ D

Bt
Bft
Bt

ˇ

ˇ

t“0
,

mais les calculs dans ce cas sont plus lourdes; pour cette raison, ils sont
reportés à la section 5.8. On donne aussi des définitions pour un couple de
fonctions pF, F2q : M̃ Ñ g ˆ g “de type harmonique et ρ

p2q
t -équivariantes”,

qui jouent le même rôle que la primitive F de ω dans le chapitre 3. Par
contre, les définitions dans ce cas sont moins évidentes que dans l’analyse
au premier ordre, ce qui reflète l’existence d’obstructions. Néanmoins, on
donne une application ϑJ2N qui associe à chaque pF, F2q de type harmonique

et ρ
p2q
t -équivariante une déformation au second ordre w harmonique et ρ

p2q
t -

équivariante.
Grâce à l’étude de l’action du centralisateur H “ ZGpImagepρ0qq sur

H1pM,Adpρ0qq, on arrive à donner des conditions nécessaires et suffisantes
pour l’existence de pF, F2q. Tout d’abord, cette existence ne dépend que du

premier ordre de la représentation, ρ
p1q
t . Deuxièmement, donnée pF, F2q on

peut définir une 1-forme ψ à valeurs dans Adpρ0q par ψ “ dF2`rω, F s. Cette
forme vérifie alors:

dψ “ ´rω, ωs;

d˚ψ “ ´ω˚pωq;
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où ω˚pωq est la section de Adpρ0q définie en termes d’un système local or-
thonormé tEju par ω˚pωq “

ř

jrωpEjq
˚, ωpEjqs, le ˚ indiquant l’adjointion.

L’existence d’une solution aux équations pour ψ est alors une condition
nécessaire pour l’existence de pF, F2q; on démontre qu’elle est aussi suff-
isante. Notons que la solubilité de la première équation est en fait immédiate:
l’existence d’une déformation au second ordre ρ

p2q
t de ρ

p1q
t est équivalente

à l’annulation de la classe de cohomologie de rω, ωs (cfr. [GM87]). Par
conséquent, une autre condition équivalente à l’existence de pF, F2q est que
ω˚pωq soit dans l’image de d˚; on peut reformuler cette condition en de-
mandant que ω soit un point critique de la norme L2 dans son orbite sous
H . Dans le cas où G est un groupe complexe, la théorie des applications
moments nous permet de conclure que ceci est équivalent à minimiser la
norme L2. Toujours dans le cas complexe, on arrive à démontrer que ceci
est aussi équivalent à l’existence de deux déformations harmoniques, l’une
pρ0, cq-équivariante et l’autre pρ0, icq-équivariante. Ceci suggère que la bonne
notion de déformabilité à considérer est celle le long d’une droite tangente
complexe, et non pas réelle (par ailleurs, nous ne sommes pas arrivés à don-
ner un exemple d’application déformable le long d’une direction réelle pρ0, cq
mais pas de pρ0, icq).

Ensuite, on donne des exemples explicites de déformations au premier
ordre ρ

p1q
t telles qu’aucune application harmonique ρ0-équivairante f n’admet

aucune déformation au second ordre harmonique et ρ
p2q
t -équivariante, pour

n’importe quelle déformation au second ordre ρ
p2q
t de ρ

p1q
t (en effet, comme

pour le pF, F2q, en toute généralité la déformabilité de f ne dépend que du
premier ordre de la représentation). En accord avec le théorème de Corlette,
on trouve de tels exemples en déformant la représentation triviale par des
représentations unipotentes. Finalement, on observe que, si G est un groupe
complexe, la déformabilité au second ordre de toutes métriques f (le long de

la droite tangente complexe engendrée par ρ
p1q
t ) est équivalente à la platitude

de H1pM,Adpρ
p1q
t qq en tant que Rrts{pt2q-module.

5.1 Definitions

We start by the definition of second order deformations pf, v, wq of a smooth
map f : M̃ Ñ N with values in a symmetric space, as well as second order
deformations ρ

p2q
t “ pρ0, c, kq of a representation ρ0 : Γ Ñ G in terms of the

spaces J2G and J2N of 2-jets of G and N , respectively. Then we proceed
to defining, for the triples pf, v, wq and for maps pF, F2q : M̃ Ñ g ˆ g, the

concepts of ρ
p2q
t -equivariance and harmonicity.
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In the following, we will make free use of the following isomorphisms:
Recall that G is the Lie group of the real points of a connected reductive
algebraic group G. The space of 2-jets of G is identified as follows:

J2G
def
“ G

`

Rrts{pt3q
˘

ÐÑ G ˆ g ˆ g

where the bijection is the “right trivialization” making an infinitesimal curve
gptq correspond to pg, ξ, µq P G ˆ g ˆ g defined by

g “ gp0q; ξ “
Bgptq

Bt

ˇ

ˇ

ˇ

t“0
¨ g´1; µ “

B

Bt

´Bgptq

Bt
¨ gpt´1

¯ˇ

ˇ

ˇ

t“0
.

This bijection gives Gˆgˆg the following group structure (cfr. [Ber08], §23
and §24):

pg, ξ, µq ¨ ph, η, νq “
`

gh, ξ ` Adgpηq, µ` Adgpνq ` rξ,Adgpηqs
˘

. (5.1)

The quotient J2G{K identifies naturally, via this bijection, to N ˆ g ˆ g

(even as a bundle, the trivial bundle N ˆ g ˆ g identifies with J2G ˆG N).
The space of 2-jets of N is defined accordingly, and as in remark 1.4.4,
connectedness implies

J2N “ N
`

Rrts{pt3q
˘˝

“ J2G{J2K.

We shall need a splitting of J2N , induced by the canonical connection on N .
This gives an isomorphism of bundles

J2N – TN ˆN TN

by mapping a second order infinitesimal curve nptq to

pv, wq
def
“

´Bnptq

Bt

ˇ

ˇ

ˇ

t“0
,
D

Bt

Bnptq

Bt

ˇ

ˇ

ˇ

t“0

¯

.

With these premises, the following definitions are natural:

Definition 5.1.1. Let N be a symmetric space, f : M̃ Ñ N a smooth map.
A second order deformation of f is a triple:

´

f, v
not
“

Bft
Bt

ˇ

ˇ

ˇ

t“0
, w

not
“

D

Bt

Bft
Bt

ˇ

ˇ

ˇ

t“0

¯

, (5.2)

where v and w are two sections of f˚TN . Equivalently, a second order
deformation of f is a section of f˚J2N .
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Definition 5.1.2. A second order deformation pv, wq of a harmonic map
f : M̃ Ñ N is said to be harmonic (to the second order) if, in terms of a local
orthonormal frame tEju of M̃ ,

J pvq “ 0; J pwq “ 4
ÿ

j

RN
`

dfpEjq, v
˘
N

∇Ej
v.

The fact that if ft is a smooth family of harmonic maps, pv, wq defined
as in (5.2) is harmonic to the second order is proved in section 5.8.

Definition 5.1.3. A representation ρ
p2q
t “ pρ0, c, kq : Γ Ñ J2G – G ˆ g ˆ g

will be called a second order deformation of the representation ρ0 : Γ Ñ G.

Notation 5.1.4. Given a second order deformation ρ
p2q
t “ pρ0, c, kq, we will

always denote by ρ
p1q
t “ pρ0, cq : Γ Ñ TG the first order order deformation of

ρ0 it determines.

Lemma 5.1.5. Let ρ
p1q
t “ pρ0, cq : Γ Ñ TG. The data of a second order

deformation ρ
p2q
t of ρ

p1q
t is equivalent to that of a map k : Γ Ñ g such that

pc, kq P Z1pΓ, gˆgq is a 1-cocycle for the adjoint action of Γ on gbRrts{pt2q –
g ˆ g, which is given by

γ ¨ pξ ` tµq “ Adρ0pγqpξq ` t
´

Adρ0pγqpµq `
“

cpγq,Adρ0pγqpξq
‰

¯

. (5.3)

Proof. Let ρ
p2q
t “ pρ0, c, kq be a second order deformation of ρ0. The product

law (5.1) implies:

ρ
p2q
t pγηq “

´

ρ0pγηq, cpγq`Adρ0pγqcpηq, kpγq`Adρ0pγqkpηq`
“

cpγq,Adρ0pγqcpηq
‰

¯

.

One sees at once that this coincides with the expression given by the cocycle
law, that in terms of our action (5.3), becomes:

pc`tkqpγηq “ cpγq ` tkpγq ` γ ¨
´

cpηq ` tkpηq
¯

“
´

cpγq ` Adρ0pγqpηq
¯

` t
´

kpγq ` Adρ0pγqkpηq `
“

cpγq,Adρ0pγqcpηq
‰

¯

.

Definition 5.1.6. Let ρ
p2q
t : Γ Ñ J2G be a second order deformation of a

representation. A second order deformation pv, wq of a ρ0-equivariant map

f : M̃ Ñ N is called ρ
p2q
t -equivariant if:

fpγx̃q “ ρ0pγq ¨ fpx̃q;

vpγx̃q “ ρ0pγq˚vpx̃q ` ϑTN

`

fpγx̃q, cpγq
˘

;

wpγx̃q “ ρ0pγq˚wpx̃q

` ϑTN

´

fpγx̃q, kpγq ` 2
“

cpγq
rks
γx̃,Adρ0pγqβN pvpx̃qq

‰

`
“

cpγq
rks
γx̃, cpγq

rps
γx̃

‰

¯

.
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Recall that by cpγq
rks
γx̃ we mean the projection of cpγq P g onto rksγx̃ “

Adfpγx̃qpkq, and similarly for rps. Again, these equations will be proved when
pv, wq are constructed from a smooth ρt-equivariant family ft in section 5.8.

We now pass to the analysis of an application pF, F2q : M̃ Ñ g ˆ g. As
we did for F in section 5, the idea is to give a definition of equivariance
and harmonicity for these applications, too, and construct a correspondence
sending a pair pF, F2q to a second order deformation pv, wq.

Definition 5.1.7. Let ρ
p2q
t be a second order deformation of ρ0. An applica-

tion pF, F2q : M̃ Ñ g ˆ g will be called ρ
p2q
t -equivariant if

pF pγx̃q, F2pγx̃qq “
`

AdρpγqpF px̃qq ` cpγq

AdρpγqpF2px̃qq ` rcpγq,AdρpγqpF px̃qqs ` kpγq
˘

.

This is clearly equivalent to asking that F be equivariant with respect to
the representation ρ

p2q
t and the natural action

J2G – G ˆ g ˆ g ýN ˆ g ˆ g – pG ˆ g ˆ gq{K – J2G{K – N ˆG J
2G.

Definition 5.1.8. Let ρ
p1q
t “ pρ0, cq be a first order deformation of ρ0 and

ω P H1pM,Adpρ0qq the harmonic representative of the 1-cohomology class
tcu, with respect to a metric f : M̃ Ñ N . Let ω̃ be its pull-back to M̃ . We
define the operators D2 : A

p

M̃
pg ˆ gq Ñ A

p`1

M̃
pg ˆ gq and D2,˚ : A

1
M̃

pg ˆ gq Ñ

A0
M̃

pg ˆ gq by

D2 “

ˆ

d
adpω̃q d

˙

, D2,˚ “

ˆ

d˚

ω̃˚ d˚

˙

,

where we define ω̃˚ : A1
M̃

pgq Ñ C8pM̃, gq sending α̃ to the contraction of
adpω̃˚qpα̃q “ ´adpσpω̃qqpα̃q, that is, in terms of a local orthonormal frame
tEju:

ω̃˚pα̃q “
ÿ

j

“

ω̃pEjq
rps ´ ω̃pEjq

rks, α̃pEjq
‰

.

Remark 5.1.9. The D2 thus defined induces a flat connection on M̃ ˆ g ˆ g,
which is Γ-invariant for the adjoint action of Γ on both factors g, hence it
induces one on V ‘ V, where V “ M̃ ˆΓ g is the flat bundle underlying the
pull-back of the adjoint phls on N . The definition of ω̃˚ is given in a way as
to induce a ω˚ : A1pVq Ñ C8pVq such that for every section ξ of V and for
every V-valued 1-form α, we have

@

rω, ξs, α
D

“
@

ξ, ω˚pαq
D

.
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Definition 5.1.10. An application pF, F2q : M̃ Ñ g ˆ g is said to be of
“harmonic type” (relatively to ω) if

D2,˚D2

ˆ

F

F2

˙

“ 0.

Definition 5.1.11. The correspondence ϑJ2N : N ˆ g ˆ g Ñ TN ˆN TN is
defined (in terms of ϑTN : N ˆ g Ñ TN as in section 1.4) by:

ϑJ2Npf, F, F2qx̃ “
´

f, v “ ϑTN pF px̃qq, w “ ϑTN

`

F2 ` rF rkspx̃q, F rpspx̃qs
˘

¯

(here, as usual, F rpspx̃q equals the projection of F px̃q on rpsx̃ “ Adfpx̃qppq).

Lemma 5.1.12. The following diagram commutes:

J2G
r

//

πN,˚

��

G ˆ g ˆ g

{K

��

N ˆ g ˆ g

ϑ
J2N

��

J2N
„

// TN ˆN TN

Proof. Take a nptq “ πN,˚ ˝ r´1pg, ξ, µq. We want to prove that the image
of nptq through the trivialization induced by the canonical connection is the
same as ϑJ2Npg, ξ, µq “

`

ϑTN pgK, ξq, ϑTN

`

gK, µ ` rξrks, ξrpss
˘˘

. Recall that
the canonical connection is induced by dcan “ d ´ rβ, ¨s. Thus, the image of
nptq is

pv, wq “
´

ϑTNpgK, ξq, ϑTN

`

gK, µ´
“

βp
B

Bt
q, ξ

‰˘

¯

.

Now βp B
Bt

q “ βNpvq “ ξrps by definition, so that

w “ ϑTN

´

gK, µ´
“

ξrps, ξ
‰

¯

“ ϑTN

´

gK, µ´
“

ξrps, ξrks
‰

¯

,

since ϑTN keeps the projection on rps only. This last expression equals the
second term of ϑJ2NpgK, ξ, µq.

In section 5.2 we will prove that, given pF, F2q of harmonic type and

ρ
p2q
t -equivariant and defining pv, wq “ ϑJ2NpF, F2q we obtain a harmonic and

ρ
p2q
t -equivariant second order deformation of f . Thus, to construct second

order deformations of a metric f it is enough to construct a ρ
p2q
t -equivariant

pF, F2q of harmonic type.
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5.2 The correspondence ϑJ2N

In this section, ρ
p2q
t “ pρ0, c, kq : Γ Ñ J2G will be a second order deformation

of ρ0, and f : M̃ Ñ N will be ρ0-equivariant and harmonic.

Lemma 5.2.1. Let pF, F2q : M̃ Ñ g ˆ g be ρ
p2q
t -equivariant. Define

pv, wq “ ϑJ2Npf, F, F2q. (5.4)

Then pf, v, wq is equivariant, in the sense of definition 5.1.6.

Proof. The equivariance of v has already been proved in section 3. As for w,
recalling that pAdρ0pγqpξqq

rps
γx̃ “ Adρ0pγqpξ

rps
x̃ q, where ξ : M̃ Ñ g and ξ

rps
x̃ denotes

the projection of ξpx̃q onto Adfpx̃qppq, the equivariance of pF, F2q implies

pF
rps
2 pγx̃qq “ Adρ0pγq

`

F
rps
2 px̃q

˘

`
“

cpγq,Adρ0pγqpF px̃qq
‰rps

γx̃
` kpγq

rps
γx̃

“ Adρ0pγq

`

F
rps
2 px̃q

˘

`
“

cpγq
rps
γx̃,Adρ0pγqF

rkspx̃q
‰

`
“

cpγq
rks
γx̃,Adρ0pγqF

rpspx̃q
‰

` kpγq
rps
γx̃,

“

F rkspγx̃q, F rpspγx̃q
‰

“
“

cpγq
rks
γx̃, cpγq

rps
γx̃

‰

` Adρ0pγq

“

F rkspx̃q, F rpspx̃q
‰

`
“

cpγq
rks
γx̃,Adρ0pγqF

rpspx̃q
‰

´
“

cpγq
rps
γx̃,Adρ0pγqF

rkspx̃q
‰

.

Adding these expressions together, we get

`

F
rps
2 ` rF rks, F rpss

˘

pγx̃q “ Adρ0pγq

`

F
rps
2 px̃q ` rF rks, F rpsspx̃q

˘

` kpγq
rps
γx̃

` 2
“

cpγq
rks
γx̃,Adρ0pγqF

rpspx̃q
‰

`
“

cpγq
rks
γx̃, cpγq

rps
γx̃

‰

.

If pv, wq is ρ
p2q
t -equivariant, then βNpwq has exactly the same kind of equiv-

ariance.

Lemma 5.2.2. Let ξ, η : M̃ Ñ g be functions. Then, in terms of a local
orthonormal frame tEju,

J
`

rξ, ηs
˘

“
“

Jpξq, η
‰

`
“

ξ, Jpηq
‰

`2
ÿ

j

´

“

rβpEjq, ξs, rβpEjq, ηs
‰

´r
can

∇Ej
ξ,

can

∇Ej
ηs
¯

.

Proof. Recall from lemma 1.6.6 that J “ d˚d, where d˚α “ ´
ř

j ∇̃Ej
αpEjq,

∇̃ “
can

∇ ´ adpβq and d “
can

∇ ` adpβq. Further, with the same proof as in
lemma 1.6.7, one proves that ∇̃rξ, ηs “ r∇̃ξ, ηs ` rξ, ∇̃ηs. Then one only has
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to compute

J
`

rξ, ηs
˘

“ rJpξq, ηs ` rξ, Jpηqs ´
ÿ

j

´

“

dEj
ξ, ∇̃Ej

η
‰

`
“

∇̃Ej
ξ, dEj

η
‰

¯

“ rJpξq, ηs ` rξ, Jpηqs ´
ÿ

j

”can

∇Ej
ξ `

“

βpEjq, ξs,
can

∇Ej
η ´

“

βpEjq, ηs
ı

´
ÿ

j

”can

∇Ej
ξ ´

“

βpEjq, ξs,
can

∇Ej
η `

“

βpEjq, ηs
ı

,

and notice that every “mixed term” cancels out.

Lemma 5.2.3. Let pF, F2q be of harmonic type relatively to ω, and suppose
that dF “ ω. Then pv, wq defined as in (5.4) is a second order harmonic
deformation of f .

Proof. Again, since the first component of the definition 5.1.10 gives JpF q “
0, the problem has already been solved for v in section 3, so we focus on
computing J pwq, or, equivalently, JpβNpwqq. Also recall that J respects the

rps ‘ rks decomposition, hence JpF
rps
2 q “ JpF2q

rps.
Using dF “ ω, the second component of the definition 5.1.10 gives an

expression for JpF2q:
ˆ

d˚

ω˚ d˚

˙ˆ

dF
rω, F s ` dF2

˙

“

ˆ

0

ω˚pωq ´
ř

j

“

ωpEjq, ∇̃Ej
F
‰

` JpF2q

˙

“

ˆ

0
0

˙

,

that is:
JpF2q “

ÿ

j

“

ωpEjq, ∇̃Ej
F
‰

´ ω˚pωq. (5.5)

Start by analyzing the second summand ´ω˚pωq of (5.5). Writing ω “
ωrks ` ωrps, this equals

´ω˚pωq “
ÿ

j

“

ωrkspEjq ´ ωrpspEjq, ωpEjq
‰

“ 2
ÿ

j

“

ωrkspEjq, ω
rpspEjq

‰

P rps.

Using ω “ dF “
can

∇F ` rβ, F s, we get:

´ω˚pωq “ 2
ÿ

j

”can

∇Ej
F rks ` rβpEjq, F

rpss,
can

∇Ej
F rps ` rβpEjq, F

rkss
ı

“
ÿ

j

2
“

rβpEjq, F
rpss,

can

∇Ej
F rps

‰

` 2
“
can

∇Ej
F rks,

can

∇Ej
F rps

‰

´ 2
”

“

βpEjq, F
rks
‰

,
“

βpEjq, F
rps
‰

ı

´ 2
“

rβpEjq, F
rkss,

can

∇Ej
F rks

‰
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Since ωpEjq “
can

∇Ej
F ` rβpEjq, F s and ∇̃Ej

F “
can

∇Ej
F ´ rβpEjq, F s, one gets

immediately that the first summand of (5.5) equals 2
“

rβpEjq, F s,
can

∇Ej
F
‰

. Its
projection on rps is

2
“

rβpEjq, F s,
can

∇Ej
F
‰rps

“ 2
“

rβpEjq, F
rkss,

can

∇Ej
F rks

‰

`2
“

rβpEjq, F
rpss,

can

∇Ej
F rps

‰

.

Summing this expression to the one obtained for ´ω˚pωq,

JpF
rps
2 q “

ÿ

j

4
“

rβpEjq, F
rpss,

can

∇Ej
F rps

‰

` 2
“
can

∇Ej
F rks,

can

∇Ej
F rps

‰

´ 2
”

“

βpEjq, F
rks
‰

,
“

βpEjq, F
rps
‰

ı

.

Now, since JpF rksq “ JpF rpsq “ 0, lemma 5.2.2 gives

J
`

rF rks, F rpss
˘

“
ÿ

j

2
”

“

βpEjq, F
rks
‰

,
“

βpEjq, F
rps
‰

ı

´ 2
“
can

∇Ej
F rks,

can

∇Ej
F rps

‰

,

and adding the two expressions we find exactly

JpβN pwqq “
ÿ

j

4
“

rβpEjq, F
rpss,

can

∇Ej
F rps

‰

“ βN

´

ÿ

j

RN pdfpEjq, vq
N

∇Ej
v
¯

.

Corollary 5.2.4. Let pF, F2q : M̃ Ñ gˆg be ρ
p2q
t -equivariant and of harmonic

type. Then pv, wq defined as in (5.4) is ρ
p2q
t -equivariant and harmonic.

Proof. We only need to apply the two lemmas above, combining them with
lemma 3.4.2, which grants that dF “ ω.

Remark 5.2.5. Thus, if pF, F2q is ρ
p2q
t -equivariant and of harmonic type, the

first component of

D2

ˆ

F

F2

˙

is uniquely determined. However, this needs not be true for the second one,
as it will become clear in the next sections (cfr. corollary 5.4.3).
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5.3 The action of H on H1pM,Adpρ0qq

Recall that in section 3 we defined H “ ZGpImagepρ0qq and denoted by
h its Lie algebra. This group acts by conjugation on both Z1pM,Vq and
Z1pΓ,Adpρ0qq (and those actions pass to cohomology, where they coincide).
Fix a metric f : M̃ Ñ N . ThenH1pM,Vq – H1pM,Vq, the space of harmonic
1-forms. The group H acts on this space by adjunction as well:

Lemma 5.3.1. The action of H on Z1pM,Vq leaves the subspace H1pM,Vq
invariant. In particular:

@ξ P h, ω P H1pM,Vq, rω, ξs is harmonic. (5.6)

Proof. We want to prove that for every h in H , if ω is a harmonic form then
also Adhpωq is. It is evidently d-closed. We start by proving d˚-closedness
when h P HXK, which we may assume to be the maximal compact subgroup
of H . Observe also that Adhpωq is harmonic for the metric f if and only if
ω is harmonic for h´1f , since for every ξ P C8pVq,
@

Adhpωq, dξ
D

f
“
@

ω,Adh´1pdξq
D

h´1f
“
@

ω, dξ1
D

h´1f
, ξ1 “ Adh´1ξ P C8pVq.

Thus we may also suppose that f “ f0 : M̃ Ñ G0{K0, as in notation 1.2.5.
Then the above can be expressed in terms of a section s0 : M̃ Ñ G0 of f0 as

@

ω, dξ1
D

h´1f0
“ Spω,Ads´1

0

Adhσ0Adh´1Ads0dξ
1q.

Now the flat Cartan involution σ0 is the one fixing k ‘ p, hence it is AdpKq-
invariant. This implies that

@

ω, dξ1
D

h´1f0
“ Spω,Ads´1

0

σ0Ads0dξ
1q “

@

ω, dξ1
D

f0
“ 0.

To complete the proof, we only need to prove (5.6), sinceH “ H˝¨pHXKq,
where H˝ denotes the identity component of H , and the connected group H˝

leaves H1pM,Adpρ0qq invariant if and only if its Lie algebra h does. On the
one hand, both ω and ξ are d-closed, so their bracket is, too. On the other
hand, by lemma 1.6.3, we have, for an orthonormal basis Ej ,

d˚rω, ξs “ ´
ÿ

j

∇̃Ej
rωpEjq, ξs “

ÿ

j

´rωpEjq,
can

∇Ej
ξs `

“

ωpEjq, rβ̃pEjq, ξs
‰

,

where we have used that ´
ř

∇̃Ej
ωpEjq “ d˚ω “ 0 and that by definition

∇̃Xpξq “
can

∇Xpξq ´ rβ̃pXq, ξs. Then, as in the proof of corollary 1.6.9, one

can integrate by parts the equality 0 “ xJξ, ξy to obtain both
can

∇ξ “ 0 and
rβ̃, ξs “ 0, thus proving the claim.
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Notation 5.3.2. We denote by Adpρ
p1q
t q the local system M̃ˆΓpgbRrts{pt2qq

associated to the action of Γ on g b Rrts{pt2q in (5.3).

We have an exact sequence of sheaves

0 Ñ Adpρ0q
ˆt

ÝÝÑ Adpρ
p1q
t q

mod t
ÝÝÑ Adpρ0q Ñ 0. (5.7)

Remark that H0pM,Adpρ0qq “ h.

Lemma 5.3.3. Let h1 Ă h be the image ofH0pM,Adpρ
p1q
t qq Ñ H0pM,Adpρ0qq.

Then
h1 “ tξ P h : rω, ξs “ 0u (5.8)

is the Lie algebra of H 1, the subgroup of H fixing tcu (or, equivalently, ω).

Proof. The global sections of the bundle Adpρ
p1q
t q are the ξ`tµ P gbRrts{pt2q

invariant under the action of Γ, that is:
"

Adρpγqpξq “ ξ;
Adρpγqpµq “ µ ´ rcpγq, ξs.

(5.9)

In particular, the ξ’s appearing in this expression are exactly the ξ P h

such that rcpγq, ξs “ δpµqpγq, where δ : C0pΓ, gq Ñ Z1pΓ, gq denotes the
coboundary of group cohomology. This means exactly ξ P h1.

5.4 Construction of F2 and obstructions

Definition 5.4.1. Let pF, F2q be ρ
p2q
t -equivariant and of harmonic type. De-

fine the V-valued 1-form ψ “ ψpF, F2q by
ˆ

ω

ψ

˙

“ D2

ˆ

F

F2

˙

“

ˆ

dF
dF2 ` rω, F s

˙

.

Since D2 is flat and pF, F2q is of harmonic type, as in definition 5.1.10,
the 1-form ψ satisfies the following equations:

dψ “ ´rω, ωs;

d˚ψ “ ´ω˚pωq “ 2 ¨
ÿ

i

“

ωpEiq
rks, ωpEiq

rps
‰

P C8pV´q. (5.10)

In this section we will prove that the existence of a solution to (5.10) is

not only necessary, but also sufficient, for the existence of a ρ
p2q
t -equivariant

pF, F2q of harmonic type. We prove that the existence of F2 does not depend
on the first order F chosen:
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Lemma 5.4.2. Let pF, F2q be ρ
p2q
t -equivariant and of harmonic type, and let

F 1 “ F ` ξ, with ξ P h, be any other map which is ρ
p1q
t -equivariant and of

harmonic type. Then

pF 1, F 1
2q “

`

F ` ξ, F2 ` rF, ξs
˘

is ρ
p2q
t -equivariant and of harmonic type.

Proof. To compute equivariance:

F 1
2pγx̃q “ F2pγx̃q ` rF pγx̃q, ξs

“ Adρ0pγqF2px̃q `
“

cpγq,Adρ0pγqF px̃q
‰

` kpγq ` Adρ0pγqrF px̃q, ξs ` rcpγq, ξs

“ Adρ0pγq

`

F2px̃q ` rF px̃q, ξs
˘

`
“

cpγq,Adρ0pγqF
1px̃q

‰

` kpγq.

For the harmonicity, observe that

ˆ

ω1

ψ1

˙

“ D2

ˆ

F 1

F 1
2

˙

“

ˆ

ω

dF 1
2 ` rω, F 1s

˙

“

ˆ

ω

ψ ` 2rω, ξs

˙

. (5.11)

Since pF, F2q being of harmonic type is equivalent to ψ1 satisfying (5.10), and
since 2rω, ξs is harmonic by lemma 5.3.1, we conclude.

Corollary 5.4.3. Given ρ
p2q
t and f , the 1-form ψ “ ψpF, F2q is unique if,

and only if, h “ h1.

Proof. Let pF, F2q and pF 1, F 1
2q be two ρ

p2q
t -equivariant maps of harmonic

type, so that F 1 “ F ` ξ. By the lemma, every ξ P h can occur. Then F 1
2 ´

F2 ´rF, ξs is Adpρ0q equivariant and is killed by J , hence F 1
2 “ F2 `rF, ξs`η,

for some η P h. In particular, the 1-form ψ1 it defines is the one in (5.11),
namely,

ψ1 “ ψ ` 2rω, ξs.

Thus, ψ1 “ ψ if and only if ξ P h1.

Now we study the problem of the existence of a ψ satisfying (5.10).

Fact 5.4.4. If the representation ρ
p1q
t “ pρ0, cq : Γ Ñ TG can be extended to

the second order, denoting by ω the harmonic representative of c, then the
following 2-cohomology class vanishes:

0 “
 

rω, ωs
(

P H2pM,Adpρ0qq.
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Proof. Also see [GM88], §4.4. By hypothesis, c P Z1pAdpρ0qq can be extended
to pc, kq, that is, it is in the image of

mod t : Z1pΓ, g b Rrts{pt2qq Ñ Z1pΓ, gq.

In particular, its cohomology class is in the image of the corresponding map.
Since group cohomology equals the cohomology of local systems, we can
interpret this fact in terms of the long exact cohomology sequence of (5.7),
thus obtaining:

Ñ H1pM,Adpρ
p1q
t qq

mod t
ÝÝÑ H1pM,Adpρ0qq

δ
ÝÝÑ H2pM,Adpρ0qq Ñ . . .

Then, tcu being in the image of mod t forces δptcuq “ tc Y cu “ 0, hence
trω, ωsu “ 0.

From now on, we suppose that ρ
p1q
t can be extended to a second order

deformation ρ
p2q
t . Hence, fact 5.4.4 grants the existence of some ψ0 such that

dψ0 “ ´rω, ωs. To construct ψ, we look for a section η P C8pVq such that
Jpηq “ d˚dη “ ´ω˚pωq ´ d˚ψ0.

Lemma 5.4.5. The self adjoint operator J : C8pVq Ñ C8pVq determines an
orthogonal decomposition

C8pVq “ h ‘ ImagepJq,

Further, this splitting is compatible with projections to rps and rks.

Proof. This is essentially the Hodge theorem on the Riemannian manifold
M with coefficients in the vector bundle V. Indeed, J is an elliptic self-
adjoint operator, hence the space of sections of V is the orthogonal sum of
KerpJq and ImagepJq (see for example [Dem], chap. VI, Corollary 2.4). Now
h “ C8pVq X Kerpdq, so we have KerpJq “ Kerpd˚dq Ď Kerpdq, but in fact
we have equality, as an integration by parts shows.

Compatibility with rps ‘ rks follows from the decomposition h “ hp ‘ hk

of corollary 1.6.9 and corollary 1.6.8.

With these results at hand, we can prove that solving (5.10) is equivalent

to finding a ρ
p2q
t -equivariant pF, F2q of harmonic type, and characterize when

this is possible.

Proposition 5.4.6. The following are equivalent:

1. The system (5.10) admits a solution;
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2. The section ω˚pωq is orthogonal to h;

3. The 1-form ω is a critical point for
ş

}ω}2 in its orbit

H ¨ ω Ď H1pM,Adpρ0qq;

4. There exists a pair pF, F2q which is ρ
p2q
t -equivariant and of harmonic

type;

5. For every F : M̃ Ñ g such that dF “ ω and F pγx̃q “ Adρ0pγqF px̃q `

cpγq, there exists a F2 : M̃ Ñ g such that pF, F2q is ρ
p2q
t -equivariant and

of harmonic type.

Proof. (1) ùñ (2): If a ψ satisfying (5.10) exists, then d˚ψ “ ´ω˚pωq,
hence xω˚pωq, ξy “ ´xψ, dξy “ 0 for all ξ P h.

(2) ðñ (3): This follows at once from:

0 “
@

ω˚pωq, ξ
D

“
@

ω, rω, ξs
D

“ ´
1

2

d

dt

›

›Adexpptξqpωq
›

›

ˇ

ˇ

ˇ

t“0
.

(4) ùñ (1): This is just the definition of equations (5.10).
(2) ùñ (4) : Suppose that ω˚pωq is in the image of J , and fix a

F 0 : M̃ Ñ g such that pf, F 0q is ρ
p1q
t -equivariant and dF 0 “ ω. Let ω0 ` tω0

2

be a closed, Adpρ
p1q
t q-valued 1-form representing the cocycle c`tk. Then there

exists s P C8pVq such that ω “ ω0 ` ds. Then, letting ω1
2 “ ω0

2 ` drF 0, ss,

we have that pω, ω1
2q is again a closed, Adpρ

p1q
t q-valued 1-form representing

c` tk. Define:
ψ0 “ ω1

2 ´ rF 0, ωs, ψ “ ψ0 ` dη,

where η is such that Jpηq “ ´ω˚pωq ´ d˚ψ0. In this way, ψ satisfies (5.10).

Finally, define ω2 “ ω1
2 ` dη. Again, ω ` tω2 is a closed Adpρ

p1q
t q-valued

representative of c ` tk. We can apply lemma 3.4.1 to the vector space
V “ g b Rrts{pt2q, the 1-form φ “ ω ` tω2 and the action (5.3). In this way,
we construct a pair F ` tF2 : M̃ Ñ g b Rrts{pt2q such that

d

ˆ

F

F2

˙

“

ˆ

ω

ω2

˙

; pf, F, F2q is ρ
p2q
t -equivariant.

Retracing definitions, we obtain:

D2

ˆ

F

F2

˙

“

ˆ

ω

ω2 ´ rF, ωs

˙

“

ˆ

ω

ψ ´ rF ´ F 0, ωs

˙

.

Since rF ´ F 0, ωs is harmonic, pF, F2q is also of harmonic type.
(4) ðñ (5): This is lemma 5.4.2.
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Corollary 5.4.7. If G is a complex algebraic group, we can complete the list
by:

6. ω minimizes the energy in its orbit H ˆ ω Ď H1pM,Adpρ0qq.

Such a minimum exists if and only if the orbit is closed (that is, ω is a
polystable point). Furthermore, every two points ω, ω1 in the minimum locus
are conjugate by an element of H X K, and the stabilizer H 1 “ StabHpωq is
the complexification of StabHXKpωq, hence reductive.

Proof. This follows from classic results on moment maps, cfr. e.g. [Kir84],
Part 1. In our notations, if we write

µpωqpξq “ ´
i

2

ż

M

@

rξ, ωs, ω
D

ξ P hk,

µ is a moment map for the action of the compact subgroup H X K, and its
vanishing is in fact equivalent to ω˚pωq K h, since the vanishing of the above
integral for ξ P hp (that is, for iξ P hk) is always satisfied, as we already
remarked that ω˚pωq takes values in rps.

5.5 Obstruction to the existence of w

Thanks to proposition 5.4.6 and corollary 5.2.4, we know that the existence of
a solution to (5.10) is a sufficient condition for the existence of a second order

harmonic and ρ
p2q
t -equivariant deformation pv, wq of f . Furthermore, under

this hypothesis, every first order deformation v extends, since by theorem
3.6.1 every such v comes from a F , and we have seen that then every F can
be extended to a pF, F2q. We now inquire on the converse, namely, whether
the existence of w is equivalent to that of F2. The answer is particularly neat
when G is a complex algebraic group. We start with a two lemmas that hold
in the real case, as well.

Lemma 5.5.1. Let ρ
p2q
t “ pρ0, c, kq and ρ̃

p2q
t “ pρ0, c, k̃q be two second or-

der deformations of ρ0, coinciding to the first order, and let v be a first
order harmonic and ρ

p1q
t -equivariant deformation of f . Then there exists a

ρ
p2q
t -equivariant and harmonic deformation w if and only if there exists a

harmonic and ρ̃
p2q
t -equivariant one w̃.

Proof. The equations for the difference w̃ ´ w read:

w̃pγx̃q ´ wpγx̃q “ ρ0pγq˚

`

w̃px̃q ´ wpx̃q
˘

` k̃pγqrps ´ kpγqrps; J pw̃ ´ wq “ 0.
(5.12)
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Further, k̃´k is a 1-cocycle for the adjoint action of ρ0. Hence, the existence
of a section w̃ ´ w of f˚TN satisfying (5.12) is always assured by theorem
3.6.1, substituting w̃ ´ w to v and k̃ ´ k to c.

Lemma 5.5.2. Let ρ
p2q
t “ pρ0, c, kq be a second order deformation of ρ0,

and suppose that there exists a ρ
p2q
t -equivariant and harmonic second order

deformation pf, v, wq. Then every other ρ
p1q
t -equivariant and harmonic first

order deformation pf, ṽq extends to the second order, as well.

Proof. Let F, F̃ : M̃ Ñ N be ρ
p1q
t -equivariant and of harmonic type, such

that ϑTN pf, F q “ v and ϑTN pf, F̃ q “ ṽ. Then there exists a ξ P h such that
F̃ “ F ` ξ. Define:

w̃ “ w ` 2
“

F rks, ξp
‰

` rξk, ξps.

We claim that pf, ṽ, w̃q is a ρ
p2q
t -equivariant and harmonic second order de-

formation of f . For equivariance, just compute:

βNpw̃qpγx̃q “ Adρ0pγqβNpwq ` 2
“

cpγqrks,Adρ0pγqβNpvq
‰

`
“

cpγqrks, cpγqrps
‰

` kpγqrps ` 2Adρ0pγq

“

F rks, ξp
‰

` 2
“

cpγqrks,Adρ0pγqβNpvq
‰

`
“

ξk, ξp
‰

“ Adρ0pγqβNpw̃q ` 2
“

cpγqrks,Adρ0pγqβNpṽq
‰

`
“

cpγqrks, cpγqrps
‰

` kpγqrps,

that proves equivariance. For harmonicity, we simply have to remark that,
on the one hand, J pw̃q “ J pwq and, on the other hand, RNpdf, vq∇v “
RN pdf, ṽq∇ṽ. For the first equality, apply lemma 5.2.2, and conclude using

that rβ, ξs “
can

∇ξ “ 0 for every ξ P h, as we noted in the proof of corollary
1.6.9. The statement of same corollary implies that ξp and ξk are in h.
The second equality is analogous, since after applying βN to both terms, it
becomes

“

rβ, βNpvqs,
can

∇βNpvq
‰

“
”

rβ, βNpvq ` ξps,
can

∇
`

βN pvq ` ξp
˘

ı

.

Corollary 5.5.3. For extending either an F to a pF, F2q of harmonic type

and ρ
p2q
t -equivariant, or a v to a pv, wq harmonic and ρ

p2q
t -equivariant, the

obstruction depends on f and c only.

Definition 5.5.4. We say that a harmonic metric f : M̃ Ñ N is second
order-deformable along a first order deformation ρ

p1q
t “ pρ0, cq if there exist

a second order deformation ρ
p2q
t of ρ

p1q
t and a ρ

p2q
t -equivariant and harmonic

deformation pv, wq of f .
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In the following, recall that in the complex case G is the complexified of
K, that is, G “ KpCq and G “ ResC{RpKq (scalar restriction à la Weil), so
that G “ GpRq and multiplication by i exchanges rks and rps. Our aim is

to prove that the existence of a ρ
p2q
t -equivariant pF, F2q of harmonic type is

equivalent to the metric f being deformable along both pρ0, cq and pρ0, icq.
Before proving it, we briefly explain the idea behind this: Ideally, one would
like to recover at least F

rps
2 from w, as one can do in the first order case,

where F rps “ βNpvq. In this case, however, we have

F
rps
2 “ βNpwq `

“

F rks, F rps
‰

,

that is, in order to recover F
rps
2 we need to know w, F rps “ βN pvq but also F rks.

In the complex case, then, since multiplication by i exchanges rks and rps,
one is naturally led to investigate on F rks “ iβN pṽq, where ṽ is a first order
pρ0, icq-equivariant harmonic deformation of f (the condition on equivariance

is chosen so that F “ F rps `F rks becomes ρ
p1q
t -equivariant). This really works,

as the following proposition shows:

Proposition 5.5.5. Let G be a complex algebraic group, ρ
p1q
t “ pρ0, cq and

ρ̃
p1q
t “ pρ0, icq be first order deformations of ρ0 and f : M̃ Ñ N a harmonic

metric. Then, for any ρ
p2q
t and ρ̃

p2q
t extending themfor e:

1. The existence of a ρ
p2q
t -equivariant pF, F2q of harmonic type is equivalent

to the existence of a ρ̃
p2q
t -equivariant pF̃ , F̃2q of harmonic type;

2. The existence of pF, F2q as above is equivalent to f being deformable

along both ρ
p1q
t and ρ̃

p1q
t .

Proof. 1. Since ic is represented by iω and piωq˚ “ ´iω˚, we have piωq˚piωq “
ω˚pωq, hence proposition 5.4.6, point 2 is invariant under passage from c to
ic. Hence the existence of F2 (point 4 of the same proposition) must be, too.
However, in the following we will need an explicit expression for pF̃ , F̃2q, so
we will also give a direct proof of this fact.

Given a pF, F2q we will construct a pF̃ , F̃2q. We have already remarked
that the existence of such a map depends only on f and c̃ “ ic, so we are
free to choose k̃ as we like. The following is a natural choice:

ρ̃
p2q
t “ pρ0, c̃, k̃q “ pρ0, ic,´kq. (5.13)

The verification that pic,´kq is a cocycle for the action (5.3) is immediate.
Since we know that pF, F2q exists, by proposition 5.4.6 we can fix a section
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η P C8pVq such that Jpηq “ 2ω˚pωq. Then we claim that pF̃ , F̃2q can be
defined as follows:

pF̃ , F̃2q “ piF,´F2 ´ ηq.

The equations for equivariance and harmonicity of F̃ are evident. For the
remaining part, to check equivariance, compute:

F̃2pγx̃q “ ´Adρ0pγqF2 ´
“

cpγq,Adρ0pγqF
‰

´ kpγq ´ Adρ0pγqpηq

“ Adρ0pγqF̃2 `
“

icpγq,Adρ0pγqF̃
‰

´ kpγq.

To check that pF̃ , F̃2q is of harmonic type, recall that we also have to use
ω̃ “ iω in the flat connection D2:

D2

ˆ

F̃

F̃2

˙

“

ˆ

d 0
adpiωq d

˙ˆ

iF

´F2 ´ η

˙

“

ˆ

iω

´rω, F s ´ dF2 ´ dη

˙

.

Now, ψ “ rω, F s ` dF2 is a 1-form such that d˚ψ “ ´ω˚pωq, hence, recalling
that piωq˚ “ ´iω˚,

D2,˚D2

ˆ

F̃

F̃2

˙

“

ˆ

d˚

´iω˚ d˚

˙ˆ

iω

´ψ ´ dη

˙

“

ˆ

id˚ω

ω˚pωq ` ω˚pωq ´ d˚dη

˙

“ 0.

2. The fact that the existence of pF, F2q implies the existence of both
pv, wq and pṽ, w̃q follows from corollary 5.2.4 and point 1, so we only have to

prove the converse. Given a harmonic ρ
p2q
t -equivariant pv, wq and a harmonic

and ρ̃
p2q
t -equivariant pṽ, w̃q, where ρ̃

p2q
t is defined as in (5.13), we claim that

if we let
η “ βNpwq ` 2i

“

βN pṽq, βNpvq
‰

` βNpw̃q,

then η is a section of V such that Jpηq “ ´2ω˚pωq. This concludes by
proposition 5.4.6 and lemma 5.4.5.

To check that η is a section of V, we only have to write down all the
equivariances, keeping in mind that multiplication by i exchanges rks and
rps:

βNpwqpγx̃q “ Adρ0pγqβN pwq ` kpγqrps

` 2
“

cpγqrks,Adρ0pγqβN pvq
‰

`
“

cpγqrks, cpγqrps
‰

;

βNpw̃qpγx̃q “ Adρ0pγqβN pw̃q ´ kpγqrps

` 2
“

icpγqrps,Adρ0pγqβNpṽq
‰

`
“

icpγqrps, icpγqrks
‰

;

2i
“

βNpṽq, βNpvq
‰

pγx̃q “ 2iAdρ0pγq

“

βN pṽq, βNpvq
‰

` 2i
“

Adρ0pγqβN pṽq, cpγqrps
‰

` 2i
“

icpγqrks,Adρ0pγqβNpvq
‰

` 2i
“

icpγqrks, cpγqrps
‰

.
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Adding these three expressions together, one checks that every term which
is not in Adρ0pγqpηq cancels out.

Finally, to compute Jpηq, we preliminarily notice that F “ βpvq´ iβpṽq is

ρ
p1q
t -equivariant and of harmonic type, hence dF “ ω by lemma 3.4.2. Then,

on the one hand

Jpηq “ 4
ÿ

j

“

rβpEjq, βNpvqs,
can

∇Ej
βNpvq

‰

`
“

rβpEjq, βNpṽqs,
can

∇Ej
βNpṽq

‰

` 4i
“

rβpEjq, βNpṽqs, rβpEjq, βNpvqs
‰

´ 4i
“
can

∇Ej
βN pṽq,

can

∇Ej
βN pvq

‰

.

On the other hand, writing F rps “ βNpvq and F rks “ ´iβN pṽq, one has

´ ω˚pωq “ 2
ÿ

j

”can

∇Ej
F rks ` rβpEjq, F

rpss,
can

∇Ej
F rps ` rβpEjq, F

rkss
ı

“ 2
ÿ

j

´i
“
can

∇Ej
βNpṽq,

can

∇Ej
βNpvq

‰

´
”can

∇Ej
βNpṽq,

“

βpEjq, βNpṽq
‰

ı

`
”

“

βpEjq, βNpvq
‰

,
can

∇Ej
βNpvq

ı

´ i
”

“

βpEjq, βNpvq
‰

,
“

βpEjq, βNpṽq
‰

ı

5.6 Example: an explicit case where w does

not exist

We now want to give an explicit example of a first order deformation ρ
p1q
t “

pρ0, cq along which no metric f : M̃ Ñ N is extendable.

Remark 5.6.1. We really need to check every metric f , since, as soon as
the dimension fo H0pM,Adpρtqq jumps, we expect the existence of a second
order deformation to depend on the harmonic metric chosen. For example,
suppose that ρt : Γ Ñ G is a smooth family of representations, and ft are
ρt-equivariant and harmonic; suppose further that H0pM,Adpρtqq vanishes
for every t ‰ 0, but not for t “ 0. Then, for every h P H , the map h ¨ f0
is again harmonic and equivariant, but ft will be the unique harmonic and
ρt-equivariant map, so h ¨ f0 should be obstructed to a certan order. This
obstruction is also reflected in the existence of ψ: If the orbit H ¨ ω is not a
point, the condition of Adhpωq being extremal (that is equivalent to h´1 ¨ f
admitting a ψ) will depend on h.

The setting of our example will be as follows: ρ0 : Γ Ñ SLpn,Rq is the

trivial representation, and ρ
p2q
t “ pρ0, c, kq is such that cpγq and kpγq are
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upper strictly upper triangular for every γ P Γ (actually, as we noted in
lemma 5.5.1, only c is significative). Denote:

cpγqi,j “

#

0 if i ě j

λi,jpγq otherwise;
kpγqi,j “

#

0 if i ě j

µi,jpγq otherwise.

The harmonic, ρ0-equivariant maps f : M̃ Ñ N “ G{K “ SLpn,Rq{SOpnq
all descend to M , hence are constant. So fpx̃q “ gK, for some g P G and
df “ 0, hence β “ 0. In particular, the canonical connection is just the flat
derivation, which is metric for the positive definite form on M ˆ g, which is
simply the (twisted) Hilbert–Schimdt scalar product:

@

A,B
D

gK
“
@

Adg´1pAq,Adg´1pBq
D

“ trace
`

At ¨ gtg ¨B ¨ pgtgq´1
˘

.

Lemma 5.6.2. 1. xAdgpAq, ByeK “ xA,AdgtpBqyeK;

2. If d˚ denotes the codifferential with respect to the metric x¨, ¨yeK, then,
for every g P G, d˚ commutes with Adg.

3. The codifferential d˚ is independent of the metric fp¨q “ gK.

Proof. 1. This is just a computation

@

AdgpAq, B
D

eK
“ trace

´

`

gAg´1
˘t

¨B
¯

“ trace
´

AtgtBpgtq´1
¯

“
@

A,AdgtpBq
D

eK

2. Let α be a g-valued 1-form, η : M̃ Ñ g. Then

@

Adgd
˚α, η

D

eK
“
@

d˚α,Adgtη
D

eK
“
@

α,Adgtdη
D

eK
“
@

d˚Adgα, η
D

eK
.

3. Keeping the same notations, denoting by d˚g the codifferential with
respect to the metric fp¨q ” gK and using what just proved,

@

d˚gα, η
D

gK
“
@

α, dη
D

gK
“
@

Adg´1pαq, dAdg´1pηq
D

eK

“
@

Adg´1pd˚αq,Adg´1pηq
D

eK
“
@

d˚α, η
D

gK
.

Corollary 5.6.3. The Jacobi operator J coincide with the Laplace-Beltrami
operator for every metric fp¨q ” gK.
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Proof. In general, Jpvq “ ∆canpvq ´ tracepRN pdf, vqdfq, where ∆can is the
Laplacian associated to the canonical connection and the metric f . In this
case, df “ 0 and dcan “ d, hence Jpvq “ d˚gd, in the notations of the
lemma. By the last point above, then, Jpvq “ d˚d, which is the usual
Laplace-Beltrami operator.

Thanks to this corollary, the definition of harmonic second order defor-
mation pv, wq becomes simply

∆βN pvq “ ∆βNpwq “ 0.

Here βN pvq and βNpwq are (symmetric, null-trace) n ˆ n matrices, and the
Laplace-Beltrami operator is taken componentwise.

Lemma 5.6.4. Let f0px̃q “ eK and fpx̃q “ gK, for some g P G. By the
G “ NAK decomposition we can suppose g to be upper triangular, so that
Adgpcpγqq and Adgpkpγqq are still strictly upper triangular. Then setting
βN pvq “ AdgpβNpv0qq and βN pwq “ AdgpβNpw0qq gives an isomorphism of
sets
"

pf0, v0, w0q
harmonic and pρ0,c,kq
equivariant second
order deformations

*

Ø

"

pf, v, wq
harmonic and pρ0,Adgpcq,Adgpkqq

equivariant second
order deformations

*

.

In particular, if f0 is not deformable along pρ0, cq, no other metric is de-
formable.

Proof. Corollary 5.6.3 states that the harmonicity condition on the left hand
side coincides with that on the right hand side, namely we ask v0, w0, v and
w to be harmonic functions. The fact that this is preserved by adjunction is
point 2. of lemma 5.6.2.

Compatibility of equivariance conditions is essentially trivial, since the
projection on rks and rps commute, by definition, with Adg (in fact, the non-
trivial part is hidden in the NAK-decomposition, that is, the fact that the
stated map acts on upper triangular deformations of the trivial representa-
tion). For example, denoting c “ Adgpc0q and k “ Adgpk0q, the equivariance
condition for w is

βpwpγx̃qq “ βpwpx̃qq`kpγqrpsgK `2
“

cpγqrksgK , βNpvpx̃qq
‰

`
“

cpγqrksgK , cpγqrpsgK
‰

.

This is simply the equivariance condition for w0, after applying Adg to every
term.

Thanks to this lemma, from now on we will suppose fpx̃q “ eK for
every x̃. In this way, projections to rks and rps become, respectively, anti-
symmetrization and symmetrization. Let ω be the harmonic representative
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of the cohomology class given by c. Then it is a strictly upper triangular
matrix, with above-diagonal components ωi,j P H1pM,Rq, that is, harmonic
1-forms. Consequently, F is strictly upper triangular, too, and the non-zero
components Fi,j are harmonic functions. The equivariance relations read
Fi,jpγx̃q “ Fi,jpx̃q ` λi,jpγq. Projecting F on rps, that is, symmetrizing F ,
we obtain the expression for βNpvq, which is thus a symmetric matrix with
zero entries on the diagonal and, for every i ă j, βNpvpx̃qqi,j “ βN pvpx̃qqj,i “
1
2
Fi,jpx̃q.
We now want to write down the equations for w to prove that it cannot

exist (unless, of course, c “ 0). We have already noted that harmonicity
means simply harmonicity of the components, that is, ∆w “ 0. On the other
hand, equivariance (definition 5.1.6) reads

βNpwpγx̃qq “ βN
`

wpx̃q
˘

` kpγq
rps
γx̃ ` 2

”

cpγq
rks
γx̃, βN

`

vpx̃q
˘

ı

`
“

cpγq
rks
γx̃, cpγq

rps
γx̃

‰

.

We shall prove that the p1, 1q entry of w, which we denote simply by w1,
cannot exist, unless the first line of cpγq is trivial, then we will proceed by
induction. Explicitely, for w1 the equivariance and harmonic equations read:

w1pγx̃q “ w1px̃q `
n
ÿ

j“2

λ1,jpγqF1,jpx̃q `
1

2

n
ÿ

j“2

λ1,jpγq2; ∆pw1q “ 0. (5.14)

Lemma 5.6.5. Let M̃ be a smooth manifold, and Γ a group acting properly
discontinuously and cocompactly on M̃ . Let τ1, . . . , τm : Γ Ñ R be represen-
tations, and F1, . . . , Fm : M̃ Ñ R harmonic functions such that Fipγx̃q “
Fipx̃q ` τipγq. If there exists a harmonic function h : M̃ Ñ R such that

hpγx̃q “ hpx̃q `
m
ÿ

i“1

τipγqFipx̃q `
1

2

m
ÿ

i“1

τipγq2, (5.15)

all of the Fi’s must be constant, hence all of the τi’s must be trivial.

Proof. One has only to remark that any h as in (5.15) has the same kind of
equivariance as 1

2

řm
i“1 Fip¨q2. Indeed:

1

2
Fipγx̃q2 “

1

2

´

Fipx̃q2 ` 2τipγqF1px̃q ` τipγq2
¯

.

In particular,
řm

i“1
1
2
Fip¨q2 ´h is Γ-invariant, that is, it is defined on the com-

pact manifold M “ M̃{Γ. This function is the difference of a subharmonic
function and a harmonic one, hence it is subharmonic; thus, by the maximum
principle it must be constant. But then

řm
i“1 Fip¨q2 would be harmonic as

well, hence every Fi must be constant (the Laplacian of this function being
the sum of the squared norms of the gradients of Fi).
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Thanks to this lemma, λ1,jpγq must vanish for every j; then one can
proceed by induction, since, under this vanishing hypothesis, the equivariance
equation for the p2, 2q entry of w, which we denote by w2, becomes:

w2pγx̃q “ w2px̃q `
n
ÿ

j“3

λ2,jpγqF2,jpx̃q `
1

2

n
ÿ

j“3

λ2,jpγq2.

Proceeding as above, we find by recurrence that cpγq must vanish. In this
case, of course, the second order deformation exists, since the equations for
w are formally the same as those for v (exchanging the µi,j to the λi,j).

Example 5.6.6. When M “ S1 and G “ SLp2,Rq, then the family of
representations takes the form

ρtp1q “ gt “

ˆ

1 λt

0 1

˙

.

Then the “natural” candidates for ρt-equivariant smooth maps are the curves
ftpx̃q “ 1` tλx, which are indeed such that ftpx̃`1q “ gt ¨ftpx̃q “ ftpx̃q` tλ.
Clearly, these are not geodesics for t ‰ 0, but they are (rescaled) horocycles,

as }∇ 9ft
9ft} “ t2λ2.

5.7 Conclusions

We summarize here the main results of the section.

Theorem 5.7.1. Let ρ
p2q
t “ pρ0, c, kq be a second order deformation of ρ0,

and f a harmonic metric. If one of the equivalent conditions in proposition
5.4.6 holds, then the map

ϑJ2N :

"ˆ

F

F2

˙

ρ
p2q
t -equivariant

of harmonic type

*

ÝÑ

"ˆ

v

w

˙

ρ
p2q
t -equivariant

and harmonic

*

ˆ

F

F2

˙

ÞÝÑ
´

ϑTNpf, F q, ϑTN

`

f, F2 ` rF rks, F rpss
˘

¯

is surjective, and in fact every ρ
p1q
t -equivariant and harmonic first order de-

formation pf, vq extends to a second order ρ
p2q
t -equivariant and harmonic

pf, v, wq.
When G is a complex algebraic group, the condition above is in fact equiv-

alent to the existence of two harmonic and equivariant second order deforma-
tions, one for pρ0, cq and the other for pρ0, icq. In this case, up to changing
f to h´1f , for some h P H, the condition can be satisfied if and only if the
orbit H ¨ ω is closed in H1pM,Adpρ0qq.
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Proof. The only statement that does not appear elsewhere in the section
is the surjectivity, but this follows easily from point 5 of propositon 5.4.6.
Let pv, wq be any ρ

p2q
t -equivariant and harmonic second order deformation

of f . Then v “ ϑTN pF q for some F , which by hypothesis can be ex-

tended to a ρ
p2q
t -equivariant pF, F̃2q of harmonic type. Projecting we obtain

pv, w̃q “ ϑJ2NpF, F̃2q, another second order harmonic and ρ
p2q
t -equivariant

deformation. We claim that

pF, F2q “
`

F, F̃2 ` βN pw ´ w̃q
˘

ÞÑ ϑJ2NpF, F2q “ pv, wq.

Indeed, since w and w̃ extend the same v, defining ξ “ βN pw ´ w̃q we have
Jpξq “ 0 and γ˚ξ “ Adρ0pγqpξq, hence ξ P h. Adding to pF, F̃2q such an

element p0, ξq gives another ρ
p2q
t -equivariant map of harmonic type, and the

result follows easily.

Let us now summarize all of the main results about existence of second
order harmonic and equivariant deformations of a harmonic metric f : M̃ Ñ
N , in the case of a complex group G.

Proposition 5.7.2. Let G be a complex algebraic group and ρ
p2q
t “ pρ0, c, kq : Γ Ñ

J2G a second order deformation of a representation ρ0. Then, in the follow-
ing list, the same numbers with different priming denote equivalent state-
ments, and numbers are decreasing in strength, i.e., p1q ùñ p2q ùñ p3q.

(1) The Rrts{pt2q-module H0pM,Adpρ
p1q
t qq is flat.

(11) H “ H 1, that is, ω is a fixed point of the action H ýH1pM,Adpρ0qq,
or equivalently we have an exact sequence

0 Ñ h
ˆt

ÝÝÝÑ H0pM,Adpρ
p1q
t qq

mod t
ÝÝÝÑ h Ñ 0.

(12) We have the inclusion hp Ă h1.

(13) Every harmonic ρ0-equivariant map f : M̃ Ñ N is deformable along
both pρ0, cq and pρ0, icq.

(14) For every harmonic ρ0-equivariant map f : M̃ Ñ N , for any two second

order deformations ρ
p2q
t , ρ̃

p2q
t of ρ

p1q
t “ pρ0, cq and ρ̃

p1q
t “ pρ0, icq, respec-

tively, and for any two v, ṽ, first order harmonic ρ
p1q
t -equivariant (resp.

ρ̃
p1q
t -equivariant) deformations for f , there exist w and w̃, second order

harmonic and ρ
p2q
t -equivariant (resp. ρ̃

p2q
t -equivariant) deformations of

pf, vq (resp. pf, ṽq).
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(2) The orbit H ¨ ω is closed.

(21) There exists a harmonic ρ0-equivariant map f : M̃ Ñ N which is de-
formable along both pρ0, cq and pρ0, icq.

(22) There exists a harmonic ρ0-equivariant map f : M̃ Ñ N such that

for any two second order deformations ρ
p2q
t , ρ̃

p2q
t of ρ

p1q
t “ pρ0, cq and

ρ̃
p1q
t “ pρ0, icq, respectively, and for any two v, ṽ, first order harmonic

ρ
p1q
t -equivariant (resp. ρ̃

p1q
t -equivariant) deformations for f , there ex-

ist w and w̃, second order harmonic and ρ
p2q
t -equivariant (resp. ρ̃

p2q
t -

equivariant) deformations of pf, vq (resp. pf, ṽq).

(3) The stabilizing subgroup H 1 is reductive.

Proof. For example, p11q ùñ p2q is trivial, and p2q ùñ p3q is corollary
5.4.7. Lemma 5.3.3 gives the equivalence in p11q.

p1q ðñ p11q: Since the only non-trivial ideal of A “ Rrts{pt2q is ptq,

letting M denote the A-module H0pM,Adpρ
p1q
t qq, flatness of M means injec-

tivity of ptq bA M Ñ M. This map sends to zero the elements of the form
t b tη, where tη P M, so flatness is equivalent to asking that

@tη P M, t b tη “ 0 P ptq bA M.

On the one hand, tb tη “ 0 in ptq bM is equivalent to η P M; on the other
hand, from (5.9) we see that tη P M ðñ η P h, so that flatness is in turn
equivalent to h Ď M. This last property is exactly the surjectivity of the
map H0pM,Adpρ

p1q
t qq Ñ h, that is, the exactness of the sequence of point

p11q.
p11q ðñ p12q: One direction is trivial; the other one follows by h and

h1 being complex Lie algebras, so that h “ ih and h1 “ ih1. On the other
hand, multiplication by i exchanges rps and rks, so that ihp “ hk. Hence from
hp Ď h1 it follows also hk Ď h1, that is, h Ď h1.

p11q ùñ p13q: The equality h “ h1 means that for every ξ P h, the har-
monic 1-form rω, ξs vanishes. In particular, xω, rω, ξsy “ 0, that is, ω˚pωq K h.

By proposition 5.4.6 we can construct a ρ
p2q
t -equivariant pF, F2q of harmonic

type, hence, by proposition 5.5.5, every harmonic matric is deformable along
both ρ

p1q
t and ρ̃

p1q
t .

p13q ðñ p14q: This follows at once from lemmas 5.5.1 and 5.5.2.
p13q ùñ p11q: By proposition 5.5.5, we know that a pF, F2q exists for

every harmonic metric f , that is, the equivalent statements of proposition
5.4.6 hold. Fix one such metric f0; then every other is obtained as f “ h´1f0,
for h P H . We thus have that ω is a critical point of

ş

}ω}2f in its H-orbit for

114



every such f , that implies that
ş

}Adhω}2f0 is independent of h. That is, the
L2-norm is constant on the orbit; by corollary 5.4.7, the minimum locus is a
pH X Kq-orbit, hence H “ pH X Kq ¨ H 1. But this implies H “ H 1, since,
again by corollary 5.4.7, H 1 is reductive, hence its Lie algebra decomposes
as h1 “ hk

1
‘ hp1. Suppose, by contradiction, we had a ξ P hkzh1, and write

iξ “ ηk ` η1, for some ηk P hk and η1 P h1. Since hk ‘ hp is a direct sum
decomposition, ξ must be the projection of η1 to hp1, hence it must belong to
h1. But h1 being complex, this implies also ξ P h1.

p2q ðñ p21q ðñ p22q: One simply needs to replicate the same
arguments done for the equivalences of p11q, p12q and p13q, after having chosen
the metric for which ω is a minimum of the energy. Such a metric exists since
H ¨ ω is closed, thanks to corollary 5.4.7.

In the real case, the picture is slightly less satisfying. Conditions p1q,
p11q are still equivalent, but, in general, stronger than p12q. Any of these
conditions implies the non-obstruction of pρ0, cq, but, of course, we cannot
speak about pρ0, icq. Furthermore, to my knowledge the theorem relating
closedness of the orbit, existence of minima of the norm and reductivity of
the stabilizer is only valid in the complex setting.

Both in the complex and in the real case, it is currently unknown wheter
there exists any “exceptional” deformation pv, wq which is not induced by

a ρ
p2q
t -equivariant pF, F2q of harmonic type; in the complex case, of course,

this is equivalent to the existence of a metric f which is deformable along
ρ

p1q
t “ pρ0, cq but not along pρ0, icq.

Example 5.7.3. Working in SLpn,Cq instead of SLpn,Rq, all of the examples
given by “unipotent deformations of the identity” in section 5.6 are made
of metrics which are not deformable neither along pρ0, cq nor along pρ0, icq.
This is clear, since the proof is independent of the specific c chosen among
the strictly upper triangular ones; more explicitly, one can see that in this
case the equation (5.14) remains unchanged after passing from c to ic and
from F to iF (the minus sign appearing is taken care of by the switching of
rks and rps, which, for upper triangular matrices, is exactly a change a sign).

5.8 Motivation for the definitions

First of all, we motivate the definitions for second order harmonic and ρ
p2q
t -

equivariant deformation, proving that if we are given a family of represen-
tations ρt : M̃ Ñ G and ft : M̃ Ñ N is a smooth family of harmonic (resp.
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ρt-equivariant) maps for t P p´ε, εq, then defining

v “
Bft
Bt

ˇ

ˇ

ˇ

t“0
; w “

D

Bt

Bft
Bt

ˇ

ˇ

ˇ

t“0

gives a harmonic (resp. ρ
p2q
t -equivariant) second order deformation of f .

Proposition 5.8.1. Let F : M̃ˆp´ε, εq Ñ N , be any smooth one-parameter
family of smooth maps, denote ftpx̃q “ Fpx̃, tq and let v “ Bft

Bt

ˇ

ˇ

t“0
, w “

D
Bt

Bft
Bt

ˇ

ˇ

t“0
. Suppose further that f0 is harmonic. Then, in terms of a local

frame t B
Bxj

u,

D

Bt

D

Bt
τft

ˇ

ˇ

t“0
“ ´J pwq ` 4

ÿ

j,k

gjk
´

RNp
Bf

Bxj
, vq

N

∇ B
Bxk

pvq
¯

.

Proof. This is just computation in the spirit of proposition 3.3.2. Starting
from the result of that same proposition (or rather from step pIIIq of its
proof), we may write, in terms of a local orthonormal frame tEsu,

D

Bt
τpftq “

ÿ

s

N

∇Es

N

∇Es

Bft
Bt

` RN
´

dftpEsq,
Bft
Bt

¯

dftpEsq.

We derive again this expression with respect to t, making use twice of the
formula for the curvature:

D

Bt

N

∇Es

N

∇Es

Bft
Bt

“
N

∇Es

N

∇Es

D

Bt

Bft
Bt

`
N

∇Es
RNpdfpEsq,

Bft
Bt

q
Bft
Bt

` RN pdfpEsq,
Bft
Bt

q
N

∇Es

Bft
Bt
.

Now N is (locally) symmetric, hence
N

∇pRNq “ 0. We can thus distribute
the covariant derivative to every term of the curvature, obtaining:

D

Bt

N

∇Es

N

∇Es

Bft
Bt

ˇ

ˇ

ˇ

t“0
“

N

∇Es

N

∇Es
w ` RNpdfpEsq, vq

N

∇Es
v ` RNpτpfq, vqv

` RNpdfpEsq,
N

∇Es
vqv ` RN pdfpEsq, vq

N

∇Es
v.

Again since RN is parallel, we get

D

Bt

´

RN
`

dftpEsq,
Bft
Bt

˘

dftpEsq
¯ˇ

ˇ

ˇ

t“0
“ RNp

N

∇Es
v, vqdfpEsq

` RNpdfpEsq, wqdfpEsq ` RNpdfpEsq, vq
N

∇Es
v.
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Summing up these two expressions and using that τpfq “ 0, we have

D

Bt

D

Bt
τft

ˇ

ˇ

t“0
“ ´J pwq `

ÿ

s

3RNpdfpEsq, vq
N

∇Es
v ` RN pdfpEsq,

N

∇Es
vqv

` RNp
N

∇Es
v, vqdfpEsq.

Recall the symmetry of the Riemannian tensor:

Rpa, bqc` Rpb, cqa ` Rpc, aqb “ 0;

applying this to a “ dfpEsq, b “
can

∇Es
and c “ v, the sum of the last two

terms coincides with ´RN pv, dfpEsqq
N

∇Es
v “ RNpdfpEsq, vq

N

∇Es
v.

Lemma 5.8.2. Let F : M̃ˆp´ε, εq Ñ N be a smooth family of smooth maps,
such that ft “ Fp¨, tq is ρt-equivariant. Define v, w as above; then the second

order deformation pf, v, wq is ρ
p2q
t -equivariant, according to definition 5.1.6.

Proof. We have already proved the statement regarding f and v, so it only
remains to prove the formula for wpγx̃q. It will be somehow more convenient
to work with βN pwq, that is, to prove that

βN pwqpγx̃q “ Adρ0pγqβNpwq`kpγqrps`2
“

cpγqrks,Adρ0pγqβN pvq
‰

`rcpγqrks, cpγqrpss.
(5.16)

We will denote by B
Bt

the derivation with respect to the flat connection and
D
Bt

the covariant derivation with respect to the canonical connection, so that,

for every vector field Xt “ Xtpx̃q on M̃ ˆ p´ε, εq,

D

Bt
Xt

ˇ

ˇ

ˇ

t“0
“

BXt

Bt

ˇ

ˇ

ˇ

t“0
´
”

f˚
t βN

` B

Bt

˘

, Xt

ıˇ

ˇ

ˇ

t“0
“

BXt

Bt

ˇ

ˇ

ˇ

t“0
´
”

βNpvq, X0

ı

. (5.17)

First notice that

βN

´D

Bt

Bft
Bt

¯ˇ

ˇ

ˇ

t“0
“
D

Bt
βN

`Bft
Bt

˘

ˇ

ˇ

ˇ

t“0
“

B

Bt

´

βN
`Bft

Bt

˘

¯ˇ

ˇ

ˇ

t“0
,

since in this case the second term of (5.17) vanishes. Hence, using the equi-
variance condition on v,

βN pwqpγx̃q “
B

Bt

´

βN
`Bft

Bt

˘

¯

pγx̃q
ˇ

ˇ

ˇ

t“0
“

B

Bt

´

AdρtpγqβN
`Bft

Bt

˘

` ctpγq
rps
γx̃

¯ˇ

ˇ

ˇ

t“0
.

Then, on the one hand

B

Bt
AdρtpγqβN

`Bft
Bt

˘

ˇ

ˇ

ˇ

t“0
“ Adρ0pγqβNpwq `

“

cpγq,Adρ0pγqpβN pvqq
‰

; (5.18)
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on the other hand, to compute the derivative of ctpγqrps we switch back to the
covariant derivative by means of (5.17), and use that the canonical connection
commutes with the projection to rps. Thus we get:

B

Bt

´

ctpγq
rps
γx̃

¯

“
´D

Bt
ctpγq

¯rps

γx̃
`
”

βNpvqγx̃, cpγq
rps
γx̃

ı

.

Using the equivariance for v, the second term becomes
”

βNpvqγx̃, cpγq
rps
γx̃

ı

“
”

Adρ0pγqβNpvqx̃ ` cpγq
rps
γx̃, cpγq

rps
γx̃

ı

, (5.19)

which reduces to rAdρ0pγqβNpvqx̃, cpγq
rps
γx̃s. The first one becomes

´D

Bt
ctpγq

¯rps

γx̃
“
´Bctpγq

Bt

ˇ

ˇ

ˇ

t“0
´ rβpvqγx̃, cpγqs

¯rps

γx̃

“ kpγq
rps
γx̃ ´

“

βpvqγx̃, cpγq
rks
γx̃

‰

“ kpγq
rps
γx̃ ´

“

Adρ0pγqβpvqx̃, cpγq
rks
γx̃

‰

´
“

cpγq
rps
γx̃, cpγq

rks
γx̃

‰

.

(5.20)

Adding together (5.18), (5.19) and (5.20), the terms of the type rcpγqrps, βNpvqs
cancel out, and those of type rcpγqrks, βNpvqs sum together, proving (5.16).

Finally, as a motivation for equations (5.10), hence for the operators
D2 and D2,˚, we analyze the specially simple case when, defining for every
t P p´ε, εq and the 1-form ωt as the harmonic representative of ctpγq “
Bρtpγq

Bt
¨ ρtpγq´1, then ωt depends smoothly on t. We adopt the notational

convention that, if α P A1pVq is a V-valued form, then α̃ “ π̃˚α is its pull-
back to M̃ , which is thus g-valued. Define:

ω̃2 “
Bω̃t

Bt

ˇ

ˇ

ˇ

t“0
; ψ̃ “ ω̃2 ´ rF, ω̃s.

Then ψ̃ is equivariant, thus descends to a ψ P A1pVq. To see this, one derives
γ˚ω̃t “ Adρtpγqω̃t to obtain, thanks to equivariance of F ,

γ˚ψ̃ “ Adρpγqpω̃2q `
“

cpγq,Adρpγqω̃
‰

´
“

AdρpγqF ` cpγq,Adρpγqω̃
‰

“ Adρpγqψ̃.

We claim that this 1-form ψ satisfies equations (5.10). The first of those
equations follows from dω̃2 “ 0, dF “ ω and dω “ 0. To prove the second
one, derive with respect to t the equality 0 “

ş

M
xωt, dξty “

ş

Σ
xω̃t, dξ̃ty, where

Σ is a fundamental domain for the action of Γ on M̃ and ξt is a section of Vt

(the flat bundle associated to the local system Adpρtq), to obtain

0 “

ż

Σ

B

Bt
xω̃t, dξ̃ty “

ż

Σ

@D

Bt
ω̃t

ˇ

ˇ

t“0
, dξ̃

D

`
@

ω̃,
D

Bt
dξ̃t

ˇ

ˇ

t“0

D

“

ż

Σ

@

ψ̃ ` rF rks, ω̃s, dξ̃
D

`
@

ω̃,
B

Bt
dξ̃t

ˇ

ˇ

t“0
´ rF rps, dξ̃s

D

,
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where we have used that D
Bt

ˇ

ˇ

t“0
“ B

Bt

ˇ

ˇ

t“0
´ rf˚

t βNp B
Bt

q
ˇ

ˇ

t“0
, ¨s “ B

Bt

ˇ

ˇ

t“0
´ rF rps, ¨s

and the definition of ψ. Now d and B
Bt

commute and the Lie bracket by F rks

is anti-selfadjoint, so that

0 “

ż

Σ

xd˚ψ̃, ξ̃y ` xω̃, d
Bξ̃t
Bt

ˇ

ˇ

t“0
´ rF, dξ̃sy.

Finally, since γ˚ξ̃t “ Adρtpγqpξ̃tq, the quantity Bξ̃t
Bt

ˇ

ˇ

t“0
´ rF, ξ̃s is the pullback

of a section of V, so that d˚ω “ 0 implies
ş

Σ

@

ω̃, dpBξ̃t
Bt

ˇ

ˇ

t“0
´ rF, ξ̃sq

D

“ 0.
Thus, recalling that dF “ ω, the expression simplifies to give

0 “

ż

M

xd˚ψ, ξy ` xω, rω, ξsy “

ż

M

xd˚ψ, ξy ´ xω˚pωq, ξy.

In this case, of course, F2 exists, and it is given by BFt

Bt

ˇ

ˇ

t“0
, where dFt “ ωt

and Ftpγx̃q “ AdρtpγqFtpx̃q ` ctpγq.
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Chapter 6

Second variation of the energy
and minimality of VHS

Introduction au chapitre

Dans ce chapitre on va appliquer les résultats du chapitre 5 à l’étude de la
variation seconde de l’énergie. Pour pouvoir appliquer la théorie développée,
on va supposer dans la suite que l’application harmonique ρ0-équivariante f
soit déformable le long d’une déformation au second ordre ρ

p2q
t au sens fort,

c’est-à-dire, que les conditions équivalentes de la Proposition 5.4.6 soient
vérifiées. On peut alors parler de la 1-forme ψ issue de pF, F2q; en termes de
cette 1-forme, on donne une formule pour la variation seconde de l’énergie
ressemblante à celle pour le premier ordre. En effet, on obtient que cette
variation est égale à

ş

xψ, βy ` }ωrps}2, l’indice rps indiquant la partie autoad-
jointe de ω. Comme on avait fait pour l’énergie et pour sa variation première,
on donne, dans le cas Kähler, une interprétation cohomologique de cette for-
mule, qui implique en particulier qu’elle ne dépend pas de la forme de Kähler
choisie dans sa classe de cohomologie.

La première application de la formule de la variation seconde concerne la
plurisousharmonicité de l’énergie. Ici, G doit être un groupe complexe, mais
àM on ne demande que d’être riemannienne, et l’hypothèse de déformabilité
“forte” est en fait automatique, grâce à la Proposition 5.5.5. On prouve alors
que l’énergie est plurisousharmonique par rapport à la structure complexe de
MBpM,Gq.

Deuxièmement, on s’intéresse aux valeurs propres de la matrice hessienne
de l’énergie dans les points critiques. Ici on suppose que M “ X soit Kähler
pour pouvoir appliquer la théorie des variations de structures de Hodge.
Le résultat est une généralisation de celui démontré par Hitchin en [Hit92]
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et on va adopter une notation similaire à la sienne pour mieux décrire le
théorème. Posons alors 9A “ pωrksq2 (la partie de tipe p0, 1q de la partie anti-
autoadjointe de ω) et 9Φ “ pωrpsq1. Écrivons 9A “

ř

9A´p,p et 9Φ “
ř

9Φ´p,p en
correspondance à la variation de structure de Hodge de poids 0 induite sur
X̃ ˆΓ g, d’une façon à ce que le générateur infinitesimal γ de l’action de S1

agisse avec un poids de ip sur 9A´p,p et sur 9Φ´p,p. On démontre alors que la
matrice hessienne de l’énergie a pour valeurs propres ´2p dans la direction
9Ap,p et 2p1 ´ pq dans la direction 9Φ´p,p (le facteur 2 ajouté par rapport à
Hitchin est dû à un choix différent dans la métrique). Cette formule s’explique
plus clairement dans le cas où l’on suppose que la déformation se produise
dans le sous-groupe G0 ă G donné par la monodromie de ρ0; on a alors
une décomposition de l’énergie par rapport à la structure de Hodge-Deligne
de poids 1 sur H1pX,Adpρ0qq, qui permet en particulier de déduire que, si
le domaine des périodes G0{V0 est de type Hermitien symétrique, alors la
matrice hessienne est semi-définie positive et les directions le long desquelles
elle est nulle sont exactement celle qui restent au premier ordre des variations
de structures de Hodge.

6.1 The second variation of the energy

Definition 6.1.1. Let ρ
p2q
t “ pρ0, c, kq : Γ Ñ J2G be a second order de-

formation of a representation and pf, v, wq a ρ
p2q
t -equivariant second order

deformation. We define its energy as

Epf, v, wq “ Epfq ` t

ż

x∇v, dfy`

t2

2

ż

x∇w, dfy `
ÿ

i,j

gijRN
` Bf

Bxi
, v, v,

Bf

Bxj

˘

` }∇v}2. (6.1)

To see that when ft is defined for t P p´ε, εq this coincides, up to the

second order, with Epftq, we derive with respect to t the equality BEpftq
Bt

“
ş

x∇Bft
Bt
, dfty, and obtain:

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

AD

Bt
∇

Bft
Bt

ˇ

ˇ

ˇ

t“0
, df

E

`

ż

A

∇
Bft
Bt
,
D

Bt
dft

Eˇ

ˇ

ˇ

t“0

“

ż

A

∇
D

Bt
v, df

E

`
ÿ

i,j

RN
´ Bf

Bxi
, v, v,

Bf

Bxj

¯

`
›

›∇v
›

›

2
,

where in the second equality we have made use of lemma 3.3.3.
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Applying βN to equation (6.1) and using the formula for the curvature of
a symmetric space (1.12), we get the alternative expression:

B2Epf, v, wq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

@
can

∇βN pwq, β̃
D

`
@“

rβ̃, βNpvqs, βNpvq
‰

, β̃
D

`
›

›

can

∇F rps
›

›

2

“

ż

@
can

∇βN pwq, β̃
D

`
›

›rβ̃, βN pvqs
›

›

2
`
›

›

can

∇F rps
›

›

2
(6.2)

Lemma 6.1.2. The integrals in (6.1) are well defined.

Proof. Up to the first order, this is just lemma 4.1.1. For the integral multi-
plying t2, we will prove the good definition for the equivalent expression in
(6.2). Letting Σ be a fundamental domain for the action of Γ on M̃ , we have
to see that integrating over Σ or over γΣ gives the same result. Otherwise
said, we have to substitute in (6.2) the values in γx̃, according to definition
5.1.6, and check that all the extra terms cancel out. So let us see how each
term of (6.2) changes under multiplication by γ:

@
can

∇βNpwq, β̃
D

γx̃
“
@

Adρ0pγq

can

∇βN pwq, β̃γx̃
D

`
@
can

∇kpγqrpsγx̃ , β̃γx̃
D

` 2
A

“
can

∇cpγqrksγx̃ , βNpvq
‰

, β̃γx̃

E

` 2
A

“

cpγqrksγx̃ ,
can

∇βN pvq
‰

, β̃γx̃

E

`
A

“
can

∇cpγqrksγx̃ , cpγqrpsγx̃
‰

, β̃γx̃

E

`
A

“

cpγqrksγx̃ ,
can

∇cpγqrpsγx̃
‰

, β̃γx̃

E

.

Since kpγq is constant, we have
can

∇kpγq “ ´rβ̃, kpγqs, so that x
can

∇kpγq, β̃γx̃y “

0, as in the proof of lemma 4.1.1; also,
can

∇cpγqrps “ ´
“

β̃, cpγqrks
‰

and
can

∇cpγqrks “

´
“

β̃, cpγqrps
‰

, since
can

∇ is compatible with projections on rks and on rps, while

Lie bracket with β̃ exchanges them. Recalling that rks ‘ rps is the decompo-
sition in anti-selfadjoint and selfadjoint parts, we get:

@
can

∇βNpwq,β̃
D

γx̃
“
@

Adρ0pγq

can

∇βNpwq, β̃
D

´ 2
A

“

β̃, cpγqrps
‰

,
“

β̃,Adρ0pγqβNpvq
‰

E

` 2
A

Adρ0pγq

can

∇βNpvq,
“

β̃, cpγqrks
‰

E

´
A

“

β̃, cpγqrpss,
“

β̃, cpγqrps
‰

E

´
A

“

β̃, cpγqrkss,
“

β̃, cpγqrks
‰

E

.

For the other two terms in (6.2), we obtain through analogous but easier
computations:

›

›rβ̃, βNpvqs
›

›

2

γx̃
“
›

›rβ̃, βNpvqs
›

›

2

x̃
`
›

›rβ̃, cpγqrpss
›

›

2
` 2

A

“

β̃, βNpvq
‰

,
“

β̃, cpγqrps
‰

E

;

›

›

can

∇βNpvq
›

›

2

γx̃
“
›

›

can

∇βNpvq
›

›

2

x̃
`
›

›

“

β̃, cpγqrks
‰›

›

2
´ 2

Acan

∇βN pvq,
“

β̃, cpγqrks
‰

E

.
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Adding the three expressions together, the “extra terms” cancel out, giving
the desired result.

Proposition 6.1.3. Let ρ
p2q
t “ pρ0, c, kq : π1pMq Ñ G be a second order

deformation of ρ0, f : M̃ Ñ N a harmonic metric, and suppose that pv, wq “
ϑJ2NpF, F2q as in theorem 5.7.1. Let ψ “ dF2 ` rω, F s. Then, we have the
following expression for the second variation of the energy Et “ Epftq:

B2Et

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

M

@

ψ, β
D

` }ωrps}2. (6.3)

Proof. Recall that the relation between pv, wq and pF, F2q is:

βNpvq “ F rps; βNpwq “ F
rps
2 `

“

F rks, F rps
‰

.

Since ω “ dF , by definition of dcan we get

ωrps “
can

∇F rps ` rβ̃, F rkss, hence
›

›ωrps
›

›

2
“
›

›

can

∇F rps
›

›

2
`
›

›rβ̃, F rkss
›

›

2
` 2

@
can

∇F rps, rβ̃, F rkss
D

.

Thus, comparing (6.2) to (6.3), we are reduced to proving that

x
can

∇βN pwq, β̃y ` }rβ̃, βNpvqs}2 “ xψ, β̃y ` }rβ̃, F rkss}2 ` 2x
can

∇F rps, rβ̃, F rkssy.
(6.4)

The relation between F2 and ψ can be written as
can

∇F2 ` rβ̃, F2s “ dF2 “
ψ ` rF, ωs, and thanks to the above relation between pF, F2q and pv, wq we
get

can

∇βN pwq “
´

ψ ` rF, ωs ´ rβ̃, F2s
¯rps

` r
can

∇F rks, F rpss ` rF rks,
can

∇F rpss.

Note that xrβ̃, F2s, β̃y “
ř

ixF2, rβ̃pEiq, β̃pEiqsy “ 0. Replacing ω by the
corresponding terms in F rks and F rps we get

x
can

∇βNpwq, β̃y “
@

ψ `
“

F rps,
can

∇F rks ` rβ̃, F rpss
‰

`
“

F rks,
can

∇F rps ` rβ̃, F rkss
‰

, β̃
D

`
@

r
can

∇F rks, F rpss ` rF rks,
can

∇F rpss, β̃
D

“
@

ψ ` 2
“

F rks,
can

∇F rps
‰

`
“

F rps, rβ̃, F rpss
‰

`
“

F rks, rβ̃, F rkss
‰

, β̃
D

“ xψ, β̃y ` 2x
can

∇F rps, rβ̃, F rkssy ´ }rβ̃, F rpss}2 ` }rβ̃, F rkss}2,

which is exactly (6.4).
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Remark 6.1.4. Equation (6.3) implies that
ş

M
xψ, βy is independent of ψ, even

when it is not uniquely determined (cfr. corollary 5.4.3). We can see this
directly, too: In this same corollary, we prove that if ψ1 is another 1-form
that can arise, then ψ1 “ ψ ` 2rω, ξks, where ξk P hk. Then

ż

M

xψ1, βy “

ż

xψ, βy ` 2xω, rξk, βsy “

ż

M

xψ, βy,

as rξ, βs “ 0 for all ξ P h.

Example 6.1.5. As in example 4.1.4, we want to prove that when M “
pX,Ωq is a Kähler manifold the second variation of the energy is independent
of the metric in its Kähler class. First, observe that the 1-forms involved are
independent of the metric in its Kähler class, since they are all constructed
starting from the metric on the bundle and the Hodge ˚ on X , which depends
only on Ω. Then we may conclude thanks to the following lemma (which also
includes the case of example 4.1.4).

Lemma 6.1.6. Let α1, α2 be two g-valued 1-forms on a compact Kähler
manifold pX,Ωq, and suppose that at least one of them takes values in the
subbundle rps. Then their L2 product

ż

X

@

α1, α2

D

Ωn “

ż

X

@

α1 ^ ˚α2

D

(6.5)

is independent of the metric chosen in the Kähler class Ω.

Proof. We may suppose that both forms take values in rps, since the pro-
jection g Ñ rps depends only on the metric on the bundle and not on that
on X . Write α2 “ α1

2 ` α2
2 for its decomposition into p1, 0q and p0, 1q parts;

then, since α2 is self-adjoint, they are on the adjoint of the other, so we may
write α2 “ ϕ ` ϕ˚, where ϕ “ α1

1. In particular, one sees immediately that
we have

˚α2 “ pϕ˚ ´ ϕq ^ Ωn´1.

The quantity in (6.5) may then be rewritten (up to a constant) as
ż

X

trace
`

α1 ^ pϕ ´ ϕ˚q
˘

^ Ωn´1.

Thus we only need to prove that tracepα1 ^ pϕ ´ ϕ˚qq is a closed 2-form.
Observe that ϕ ´ ϕ˚ takes values in the anti self-adjoint part of g b C.
Recalling that d “ dcan ` adpβq is the decomposition into the metric and
self-adjoint parts of the connection, we thus have

trace
´

d
`

α1^pϕ´ϕ˚q
˘

¯

“ trace
´

“

β, α1s^pϕ´ϕ˚q
¯

´trace
´

α1^
“

β, pϕ´ϕ˚q
‰

¯

.
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However, this last expression vanishes: Indeed, by the cyclic symmetry of
the trace, any expression of the form traceprα1, α2s ^ α3q is invariant under
cyclic permutations; however, since we are dealing with 1-forms, we also have
rα1, α2s “ rα2, α1s, hence the above expression is invariant under any permu-
tation of t1, 2, 3u. For analogous reasons, it also equals tracepα1, rα2, α3sq,
thus we obtain the desired cancellation.

Example 6.1.7. We continue the example of section 3.7 to express the sec-
ond order of the energy when G “ C

˚. We have seen that the (real) harmonic

form ωp in this case is simply Bβ̃t

Bt

ˇ

ˇ

t“0
; thanks to the description of section 5.8

and the Lie algebra being abelian, the expression of ψp “ ω
p
2 is just as simple:

ψp “ B2β̃t

Bt2

ˇ

ˇ

t“0
. Deriving Eptq “ 1

2
}β̃t}

2 twice, we have

B2Eptq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

B

Bt

ABβ̃

Bt
, β̃t

Eˇ

ˇ

ˇ

t“0
“

ż

AB2β̃t

Bt2

ˇ

ˇ

ˇ

t“0
, β̃
E

`

›

›

›

›

Bβ̃t
Bt

ˇ

ˇ

ˇ

t“0

›

›

›

›

2

.

When f0 : M̃ Ñ Rą0 is induced by a C-VHS, then we have seen that β̃ “
0, hence the first term vanishes, coherently with the fact that C-VHS are
minima of the energy (the only directions along which the energy remains
constant are those along k, i.e., unitary deformations of the representation).

6.2 Pluri-sub harmonicity with respect to the

Betti complex structure

In this section we suppose that G is a complex group to deduce that the en-
ergy is strictly pluri-subharmonic (PSH) with respect to the complex struc-
ture JB on the Betti moduli space. To do so, we have to add to the expression
in (6.3) the analogous expression in terms of ω1 and ψ1, the 1-forms arising
from c1 and k1, the deformations of ρ0 obtained by deriving with respect to
JBp B

Bt
q.

Example 6.2.1. When X “ Σ is a Riemann surface, the energy functional
is a Kähler potential for the Betti complex structure, hence it is strictly
plurisubharmonic and exhaustive (that is, proper). Cfr. [Hit87], Proposition
(9.1).

Definition 6.2.2. Let tρ0u be a smooth point of MBpM,Gq, so that the
tangent space is H1pM,Adpρ0qq. Then, the Betti complex structure is given
by

tc1u “ JBptcuq “ ticu P H1pM,Adpρ0qq.
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We may write JBp B
Bt

q “ i B
Bt
; in particular, then, k1 “ ´k.

Proposition 6.2.3. The energy functional defines a strictly plurisubhar-
monic function on smooth points of the Betti moduli space MBpM,Gq. More
precisely, if a deformation ft of f0 is induced by a harmonic 1-form ω, we
have:

ˆ

B2

Bt2
`
´

JB
B

Bt

¯2
˙

Epftq “

ż

M

}ω}2dVolg ě 0.

Proof. By definition, ω1 “ iω. Fix some pF, F2q such that pv, wq “ ϑJ2NpF, F2q.
We deduce an expression for pF 1, F 1

2q, relative to pc1, k1q as in proposition 5.5.5,
hence for ψ1. Namely, we have

ˆ

F 1

F 1
2

˙

“

ˆ

iF

´F2 ´ η

˙

,

where η is a section of V such that Jpηq “ 2ω˚pωq. Hence

ψ1 “ dF 1
2 ` rω1, F 1s “ ´dF2 ´ dη ´ rω, F s “ ´ψ ´ dη.

Let us now sum the expression (6.3) with the corresponding one, in terms
of ω1 and ψ1. Recalling that multiplication by i exchanges rps and rks, and
that the (real) metric on G is the real part of the hermitian one, we obtain
ˆ

B2

Bt2
`
´

JB
B

Bt

¯2
˙

Epftq “

ż

xψ, βy `
›

›ωrps
›

›

2
` x´ψ ´ dη, βy `

›

›piωqrps
›

›

2

“

ż

›

›ωrps
›

›

2
´ xdη, βy `

›

›iωrks
›

›

2
“

ż

}ω}2,

where for the last equality we have used that d˚β “ 0. This is follows from
lemma 1.6.3, together with dcan˚β “ 0, which is exactly the harmonicity of
f and

ř

i,j g
ijrβp B

Bxi
q, βp B

Bxj
qs “ 0.

Corollary 6.2.4. The energy functional is plurisubharmonic on the normal-
ization of MBpM,Gqred. In particular, when M is a Riemann surface, the
energy is plurisubharmonic on the whole of MBpM,Gq.

Proof. The fact that MBpM,Gq is normal when M is a Riemann surface has
been proved in [Sim94], section 11. To prove plurisubharmonicity on the
singularities, one uses the argument in [FN80], section 3.

Remark that, when M is a Riemann surface, the energy functional thus
provides an exhaustive plurisubharmonic function, since the energy is ex-
haustive if and only if it is proper, which is the case for Riemann surfaces
(cfr. [Hit87], section 7).
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Example 6.2.5. The energy functional is not, in general, log-psh (that is,
logpEq is not psh). To see this, first derive twice logpEpftqq, thus getting

B2

Bt2
logE

`

ft
˘

“
1

Epfq3

ˆ

B2Epftq

Bt2
Epfq ´ 2

´BEpftq

Bt

¯2
˙

.

Summing the expression along pω, ψq to the one along piω,´ψq, as in the
proof of proposition 6.2.3, one gets
ˆ

B2

Bt2
`
´

JB
B

Bt

¯2
˙

logE
`

ft
˘

“
1

Epfq3

ˆ
ż

X

}ω}2 ¨
1

2

ż

X

}β}2 ´ 2
´

ż

X

xω, βy
¯2

´ 2
´

ż

X

xiω, βy
¯2
˙

.

This is positive if, and only if,

}β}L2 ¨ }ω}L2 ě 2

b

@

ω, β
D2

L2
`
@

iω, β
D2

L2
. (6.6)

This is strictly stronger than the Cauchy-Schwarz inequality }β}L2 ¨ }ω}L2 ě
xω, βyL2, so any case where one is allowed to take ω “ β gives a counter-
example to (6.6). This is the case, for example, whenG “ C˚ as in section 3.7;
in that case, we are given a non-trivial 1-cocycle r : Γ Ñ R and a harmonic
function g : M̃ Ñ R such that gpγx̃q “ gpx̃q ` rpγq. We have noticed that in
this case β is a harmonic 1-form representing c, so that one can take ω “ β, for
example by considering the deformation rtpγq “ etrpγq and gtpx̃q “ etgpx̃q.
Then xiω, βy “ 0, thus

ˆ

B2

Bt2
`
´

JB
B

Bt

¯2
˙

logE
`

ft
˘

“ ´
3

Epftq2
ă 0.

6.3 Minimality of VHS with Hermitian sym-

metric period domain

In this section, M “ X will be a compact Kähler manifold, G a complex
algebraic group, ρ0 : Γ Ñ G a representation induced by a C-VHS, G0 the
closure of its image, K0 a maximal subgroup therein, and K a maximal
subgroup of G containing K0. Let f : X̃ Ñ G0{K0 Ă G{K be induced by

the period mapping, ρ
p2q
t a second order deformation of ρ0 along which f is

deformable in the strong sense, that is, a ψ as in definition 5.4.1 exists. We
want to inquire on the positivity of the Hessian of the energy at this critical
point, and to give a formula for the second derivative of the energy in terms
of the eigenvalues of γ.
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This problem has been intensively studied in the case where X “ Σ is
a Riemann surface of genus g ą 1. In that case, the energy functional is a
perfect Morse function, so the study of its minima and Morse indices gives
information on the topology of the moduli space of representations (e.g. the
number of connected components equals that of the minima locus). Even in
the simplest cases, if we admit complex deformations (that is, such that ρt
quits G0), one does not hope to obtain non-trivial minima:

Proposition 6.3.1 (Hitchin, [Hit87], (7.1)). In MBpΣ,PSLp2,Cqq the only
critical value of index 0 is 0 (i.e. the local minima are indeed global ones and
correspond to unitary representations). The other critical values are of the
form pd´ 1

2
qπ, with 0 ă d ă g ´ 1, and have index 2pg ` 2d ´ 2q ą 0.

To analyze the analogous problem for different groups, Hitchin [Hit92],
§9, proves another result relating the eigenvectors of the Hessian of the en-
ergy to those of γ, defined as in lemma 4.2.4. Recall that in the case of the
Riemann surfaces, the moduli space is constructed as a quotient of the (infi-
nite dimensional) affine space AˆΩ, where A is the space of flat connections
on a principal G-bundle P and Ω “ Ω0,1pΣ, adpP q b Cq is the space of Higgs
bundles. In particular, the tangent vectors to the moduli space lift to pairs
p 9A, 9Φq; notice that, in our notations, one has

9A “
`

ωrks
˘2
; 9Φ “

`

ωrps
˘1
, (6.7)

where αrkspχq “ αpχqrks for real tangent fields χ P ΞpΣq (and similarly for
rps) and α1 (resp. α2) stands for the holomorphic (resp. anti-holomorphic)
part of a 1-form α. Then Hitchin proves (cfr. also [Got95], sec. 2.3.2, for a
different proof):

Proposition 6.3.2 (Hitchin,Gothen). If the S1 action on p 9A, 9Φq has weights
pm,nq, that is, γ acts on it with eigenvalues pim, inq, then the Hessian of the
energy has eigenvalues p´m, 1 ´ nq on the image of p 9A, 9Φq.

This result is used for example by Hitchin, loc. cit., to study the topology
of MBpΣ,PSLpn,Rqq, by Gothen for that of MBpΣ, Spp2n,Rqq, by Bradlow–
Garćıa-Prada–Gothen [BGPG03] for that of MBpΣ, Upp, qqq, to cite a few.
Our aim is to generalize this result to higher dimension. Before stating
the results, we introduce some nomenclature for the different objects in this
setting.

Denote by GC
0 the complex Zariski closure of G0. By hypothesis, ρ0 being

induced by a C-VHS means that there is a faithful linear representation
GC

0 ãÑ GLpr,Cq such that the resulting vector bundle V “ pX̃ ˆ Crq{Γ
supports a C-VHS; we give EndpVq “ pX̃ ˆ glnpCqq{Γ the induced C-VHS
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structure of weight 0. Then we know thatG0 is the intersection ofGC
0 with the

subgroup Upp, qq of GLpr,Cq respecting the polarization; letting u denote the
Lie algebra of Upp, qq, if we set ku “ uX

À

p”0 g
´p,p and pu “ uX

À

p”0 g
´p,p we

obtain a Cartan decomposition for u. We define k “ ku ‘ ipu and p “ pu ‘ iku
for the induced Cartan decomposition on g. Then since f takes values in
G0{K0, every two terms of the decomposition g “ ku ‘ pu ‘ iku ‘ ipu are
orthogonal with respect to the metric on X̃ ˆ g, which is twice the real
part of the Hermitian extension x¨, ¨yC of the metric x¨, ¨y induced on u by f .
Taking an adequate faithful representation, then, we can suppose without
loss of generality that g “ glrpCq. Explicitely, for every ξ, η in g:

xξ, ηy “ 2Rexξ, ηyC. (6.8)

The reason for the “2” here is that, according to our definitions, one has to
regard g as a real Lie algebra, and define the scalar product on it by the
(real) Killing form one obtains. This is twice the real part of the complex
Killing form on g (that coincides with the complexification of the real one on
g0). Of course, one can modify the definitions to get rid of this coefficient,
but we keep notations coherent with our preceeding chapters in order to be
able to use (6.3) without modifications.

Denote σ0 the Cartan involution associated to u “ ku ‘ pu, and σC its C-
linear extension. Then, with respect to the Hodge decomposition of lemma
4.2.2, for every ξ “

ř

ξ´p,p P g one has

σCpξq “ ξrpu`ipus ´ ξrku`ikus “
ÿ

p

p´1qp`1ξ´p,p.

For every ξ “ ξ1 ` iξ2, with ξi P u, write ξ̄ “ ξ1 ´ iξ2 and ξ˚ “ ξrps ´ ξrks (so
that adpξq is adjoint to adpξ˚q with respect to x¨, ¨y). Then we have:

ξ˚ “ ´σC
`

ξ̄
˘

. (6.9)

Finally, recall that on H1pX,Adpρ0qq there is the Deligne’s Hodge structure
of weight 1 indexed by pairs pP,Qq with P ` Q “ 1, that we write as

ωpP,Qq “ pω1qP´1,1´P ` pω2qP,´P . (6.10)

Lemma 6.3.3. Let ρ
p2q
t “ pρ0, c, kq : Γ Ñ J2G be a second order deformation

of ρ0, and pf, v, wq a second order harmonic and ρ
p2q
t -equivariant deformation

of f . Suppose that X is Kähler and that f0 is induced by a C-VHS. Then,
the second variation of the energy reads

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

@

Λrω, ωs, γ
D

` }ωrps}2.
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In particular, the second order variation depends on the f and c only, in-
dipendently of any second order data.

Proof. Thanks to the Kähler identities (cfr. [Zuc79] or [Sim92]), corollary
4.2.6 and the identity dψ “ ´rω, ωs in (5.10), we have

ż

xψ, βy
4.2.6
“

ż

xψ,Dcγy “

ż

xDc˚ψ, γy
KI
“

ż

x´rΛ, dsψ, γy
(5.10)

“

ż

xΛrω, ωs, γy.

We are ready for the proof of theorem 6.3.10. However, in the special
case where ω is only allowed to take values in X̃ ˆΓ g0, the proof simplifies
significantly, and we also get an interpretation in terms of the Deligne’s
Hodge structure (which does not hold in the general setting). This will give
a positivity result for such deformations (corollary 6.3.8). For these reasons,
and to guide the reader through the longer general proof, we start by this
special case.

Proposition 6.3.4. Suppose that ρ0 : Γ Ñ G is a representation, where
G is a complex algebraic group, G0 “ Imagepρ0q and ρ0 is induced by a
complex variation of Hodge structure. Let f : M̃ Ñ G0{K0 Ă G{K be the

harmonic map induced by the period mapping, ρ
p2q
t : Γ Ñ J2G a second order

deformation of ρ0, and suppose that:

• the harmonic 1-form ω constructed from f and ρ
p1q
t takes values in

X̃ ˆΓ g0;

• the pair pf, cq has vanishing obstruction for the existence of ψ, that is,
any of the conditions of proposition 5.4.6 is verified.

Then, the following equivalent expressions for the second variation of the
energy hold:

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

p

cp
›

›pω1q´p,p
›

›

2
, cp “

#

p, if p is even,

1 ´ p, if p is odd.

“ 2

ż

X

´
ÿ

p”0

p
›

›pω2q´p,p}2 `
ÿ

p”1

p1 ´ pq
›

›pω1q´p,p
›

›

2

“

ż

X

ÿ

P`Q“1

cP }ωpP,Qq}2 “

ż

X

ÿ

P even

2P }ωpP,Qq}2.
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Proof. Since all the terms appearing in 6.3.3 depend on ρ0, f and ω only, we
can and will suppose that G is the complexification of G0.

The coordinate expression for the dual Lefschetz operator applied to
rω, ωs gives:

Λrω, ωs “ ´2i
ÿ

j

rω, ωspBj, Bjq “ ´i
ÿ

j

“

ωp2Bjq, ωp2Bjq
‰

.

Using (6.8), then, the first term in lemma 6.3.3 then becomes (omitting
summations on j):

ż

@

Λrω, ωs, γ
D

“

ż

Re
´

´ 2i
A

ωp2Bjq,
“

γ, ωp2Bjq
˚
‰

E

C

¯

“

ż

Re
´

´ 2i
A

ωp2Bjq,
“

γ,´σC
`

ωp2Bjq
˘‰

E

C

¯

,

where we have used (6.9) and the fact that ω is real, so that ωpBjq “ ωpBjq.
Thus:

“ 2Re
´

i
A

ωp2Bjq,
ÿ

p

“

γ, p´1qpωp2Bjq
´p,p

‰

E

C

¯

“ 2Re
´

i
ÿ

p

A

ωp2Bjq
´p,p, p´1qpipωp2Bjq

´p,p
E

C

¯

“ 2
ÿ

p

p´1qpp
›

›ωp2Bjq
´p,p

›

›

2

C
“
ÿ

p

p´1qpp
›

›ωp2Bjq
´p,p

›

›

2

“ 2
ÿ

p

p´1qpp
›

›pω1q´p,p
›

›

2
.

As to the second term of lemma 6.3.3, first note that for every g-valued
1-form α one has }α}2 “ }α1}2 ` }α2}2, that applied to ω´p,p gives:

}ω´p,p}2 “
›

›pω1q´p,p
›

›

2
`
›

›pω2q´p,p
›

›

2
“
›

›pω1q´p,p
›

›

2
`
›

›pω1qp,´p
›

›

2
(6.11)

(here we have used that, ω being real, ω´p,p is conjugated to ωp,´p). Again
since ω is real, its rps-part coincides with the projections on rg´p,ps for odd
p, so that:

}ωrps}2 “
ÿ

p”1

}ω´p,p}2
(6.11)

“ 2
ÿ

p”1

}pω1q´p,p}2.

Adding the two expressions together gives the first line of the statement. The
one in the second line follows again by switching ω1 and ω2 as in equation
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(6.11) for even p, and noticing that p exchanges with ´p, hence the sign
changes. To see that the last expression in terms of pP,Qq bidegree coincides
with the one we found, we split ωpP,Qq as in (6.10), thus getting:

ÿ

P`Q“1

cP
›

›ωpP,Qq
›

›

2
“

ÿ

P”0

P
´

›

›pω1qP´1,1´P
›

›

2
`
›

›pω2qP,´P
›

›

2
¯

`
ÿ

P”1

p1 ´ P q
´

›

›pω1qP´1,1´P
›

›

2
`
›

›pω2qP,´P
›

›

2
¯

.

Now, on the one hand, thanks to the real hypothesis, we have }pω2qP,´P }2 “
}pω1q´P,P }2; on the other hand, for the two terms already in ω1, we simply
change indexes from P to Q “ 1 ´ P , to get:

“
ÿ

Q”1

p1 ´ Qq
›

›pω1q´Q,Q}2 `
ÿ

P”0

P
›

›pω1q´P,P }2 `
ÿ

Q”0

Q
›

›pω1q´Q,Q}2

`
ÿ

P”1

p1 ´ P q
›

›pω1q´P,P }2,

which is exactly what we want. To get the last expression, one uses that
similar symmetries entrain }ωpP,Qq} “ }ωpQ,P q}.

Remark 6.3.5. The second expression for the variation of the energy in propo-
sition 6.3.4 corresponds exactly to that in proposition 6.3.2, the factor “2”
being again due to our choices in the metrics involved. This is the statement
we will generalize in theorem 6.3.10. We added the other expressions here
because they can be thought to provide a justification in terms of the Deligne
Hodge structure on H1pX,Adpρ0qq of the coefficients cp involved, since the
last line of proposition 6.3.4 may be rewritten as:

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

ÿ

P”0

P
›

›ωpP,Qq
›

›

2
`

ÿ

P”1

Q
›

›ωpP,Qq
›

›

2
.

Corollary 6.3.6. In the moduli space MBpX,PSLp2,Rqq, at every critical
point the Hessian of the energy is semipositive definite.

Proof. At every C-VHS, one has a decomposition g “
À

prg´p,ps such that

γ P rg0,0s ‰ 0, and θ P A1,0prg´1,1sq so that rg´1,´1s ‰ 0. Since dim sl2pRq “
3, this forces

g “ sl2pCq “
1
à

p“´1

rg´p,ps.

Thus the P ’s involved in the last expression of proposition 6.3.4 are only 0
and 2.
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As a further corollary of the proposition, we now propose to prove that
when G0 “ Imagepρ0q and G0{V0 is a Hermitian symmetric domain, then
again the Hessian is semipositive definite along directions in MBpX,G0q.

Definition 6.3.7. Let ρ0 : Γ Ñ G be a representation induced by a C-VHS,
and denote by G0 the monodromy of ρ0. We say that ρ0 is of Hermitian
symmetric type if G0{V0 is a Hermitian symmetric domain, where LiepV0q “
g0 X rg0,0s, as in lemma 1.9.2.

This is known to be equivalent to the Hodge structure on g0 of lemma
4.2.2 being reduced to g “ rg´1,1s ‘ rg0,0s ‘ rg1,´1s.

Corollary 6.3.8. Let ρ0 be induced by a C-VHS, and G0 be the (real) Zariski
closure of its image. If ρ0 is of Hermitian type, then the Hessian is semi-
positive definite along directions in MBpX,G0q; the directions along which it
vanishes are exactly those along which the deformation ft remains C-VHS to
the first order.

Before proving the corollary, let us explain what we mean by “remaining
C-VHS to the first order”. Recall that a holomorphic map Φ0 : X̃ Ñ G0{V0
comes from a C-VHS if and only if it is horizontal. In our terms, this means
asking that θ, the p1, 0q-part of β, takes values in rg´1,1s.

Definition 6.3.9. Let pf, vq be a first order deformation of a harmonic, ρ0-
equivariant f , which we suppose to be induced from a C-VHS. Then pf, vq
is said to be C-VHS to the first order if

Bβpvq P A1,0
`

rg´1,1s
˘

.

Some justification is in order. Suppose that ρt and ft are defined and
smooth for t P p´ε, εq; then, pulling back the Maurer-Cartan form, we obtain
a 1-form βt on X̃ ˆ p´ε, εq, and we let θt be its p1, 0q-part (for every fixed t).
Then, if ft is induced by a VHS for every t, we have θt P A1,0prg´1,1sq. The
1-form βt verifies the Maurer-Cartan equation in both tangent vectors to X̃
and to p´ε, εq, so that

0 “ dcanβt

´ B

Bt
, X

¯

ùñ
can

∇Xβt

´ B

Bt

¯

“
D

Bt
βtpXq.

Now βtp
B
Bt

q “ βpvq. Considering vectors X of type p1, 0q, we obtain that

Bβpvq “
D

Bt
θt P A1,0

`

rg´1,1s
˘
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Proof of corollary 6.3.8. If ρ0 is of Hermitian symmetric type, so that the
only p appearing in rg´p,ps are ˘1 and 0, the last expression in proposition
6.3.4 becomes simply

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“

ż

X

4
›

›pω1q1,´1
›

›

2
.

We prove that the vanishing of this terms is equivalent to asking that pf, vq
is C-VHS to the first order. Since for every X tangent vector, ωpXq “
can

∇XF ` rβpXq, F s, we have:

ωpBjq “ BjF ` rθpBjq, F s.

The second summand is necessarily in rg´1,1s ‘ rg0,0s, so it does not affect
ωpBjq

1,´1. Hence, the metric connection B being compatible with the Hodge
decomposition, and since F rps “ F rp0s “ F´1,1 ` F 1,´1,

ωpBjq
1,´1 “ BF 1,´1 “ 0 ðñ

D

Bt
θt

ˇ

ˇ

ˇ

t“0
“ BF rps P A1,0prg´1,1sq.

Theorem 6.3.10. Let G be a complex algebraic group, and ρ0 : Γ Ñ G a
representation induced by a complex variation of Hodge structure. Denote by
G0 the real Zariski closure of ρ0, by f : M̃ Ñ G0{K0 Ă G{K the harmonic

map induced by the period mapping, and by ρ
p2q
t : Γ Ñ J2G a second order

deformation of ρ0 for which a ψ exists. Then, denoting by p 9A, 9Φq the tangent
direction in the moduli space as in (6.7), the second variation of the energy

along ρ
p2q
t is given by:

B2Epftq

Bt2

ˇ

ˇ

ˇ

t“0
“ 2

ż

X

ÿ

p

´p
›

› 9A´p,p
›

›

2
` p1 ´ pq

›

› 9Φ´p,p
›

›

2
. (6.12)

Proof. As the proof is rather long and computational, we introduce some
shorter notation. For an orthonormal local system of coordinates B

Bxj
, B

Byj
“

i B
Bxj

, we write:

ω
` B

Bxj

˘

“ ξ1 ` iξ2; ω
` B

Byj

˘

“ η1 ` iη2, ξ1, ξ2, η1, η2 P u

(here we drop the j in the notation to lighten it). Then we define ξp1 , ξ
p
2 , etc.,

as the projection to rg´p,ps of ξ1, ξ2, etc. (remark that those live only in g

and no more in u). Denoting Bj “ 1
2

B
Bxj

´ i
2

B
Byj

as usual, one gets immediately:

ωp2Bjq “ ξ1 ` η2 ` i
`

ξ2 ´ η1
˘

, ωp2B̄jq “ ξ1 ´ η2 ` i
`

ξ2 ` η1
˘

.

134



The proof consists in showing that both the expression of lemma 6.3.3 and
equation (6.12) reduce to the following expression:

ż

X

ÿ

p

p´1qp4pIm
´

@

ξ
p
2 , η

p
2

D

C
´
@

ξ
p
1 , η

p
1

D

C

¯

`
ÿ

p”1

2}ξp1}2C ` 2}ηp1}2C

`
ÿ

p”0

2}ξp2}2
C

` 2}ηp2}2
C
.

(6.13)

Let us start from the expression in lemma 6.3.3; we claim that the term
involving the imaginary part in (6.13) equals the first term in the lemma,
while terms involving squared normes in (6.13) correspond to }ωrps}2. The
latter identification is easy, since

}ωrps}2 “
›

›

›
ω
` B

Bxj

˘rps
›

›

›

2

`
›

›

›
ω
` B

Byj

˘rps
›

›

›

2

“ }ξ
rpus
1 }2 ` }piξ2q

rikus}2 ` }η
rpus
1 }2 ` }piη2qrikus}2.

Now one simply uses that rpu ` ipus “
À

p”1rg
´p,ps and that rku ` ikus “

À

p”0rg
´p,ps to get the result. As for the first summand, we start as in the

proof of proposition 6.3.4, but here things are more complicated as ω does
not commute with conjugation. We obtain:

ż

X

@

Λrω, ωs, γ
D

C
“

ż

X

Re
´

´ 2i
A

ωp2Bjq,
“

γ, ωp2Bjq
˚
‰

E¯

(6.14)

“

ż

X

Re
´

´ 2i
A

ξ1 ` η2 ` i
`

ξ2 ´ η1
˘

,
“

γ,
`

ξ1 ´ η2 ` i
`

ξ2 ` η1
˘˘˚‰D

C

¯

.

First of all, recall that multiplication by i anti-commutes with adjunction,
so that pξ1 ´ η2 ` ipξ2 ` η1qq˚ “ ξ˚

1 ´ η˚
2 ´ iξ˚

2 ´ iη˚
1 . Then, disregarding the

purely imaginary terms, we obtain:

(6.14) “ 2

ż

X

@

ξ1 ` η2,
“

γ, ξ˚
2 ` η˚

1

‰D

C
`
@

ξ2 ´ η1,
“

γ, ξ˚
1 ´ η˚

2

‰D

C
.

Remark that these quantities are, in fact, real, since every object involved is
in g0. Furthermore, since ξ1 (and ξ2, etc.) is real, the adjunction and Hodge
decomposition are compatible, that is:

ξ˚
1 “

ÿ

p

p´1qp`1ξ
p
1 , ξ˚

2 “
ÿ

p

p´1qp`1ξ
p
2 , etc.

Thus, by the definition of γ, we have rγ, ξ˚
2 s “

ř

pp´1qp`1ipξ
p
2 (and similarly

135



for the others), and we get:

(6.14) “ 2

ż

X

ÿ

p

p´1qpip

ˆ

@

ξ
p
1 , ξ

p
2

D

C
`
@

η
p
2 , ξ

p
2

D

C
`
@

ξ
p
1 , η

p
1

D

C
`
@

η
p
2 , η

p
1

D

C

˙

`
ÿ

p

p´1qpip

ˆ

@

ξ
p
2 , ξ

p
1

D

C
´
@

ξ
p
2 , η

p
2

D

C
´
@

η
p
1 , ξ

p
1

D

C
`
@

η
p
1, η

p
2

D

C

˙

.

Now recall that all of this must be real, so we are really only interested
in the imaginary parts of the hermitian product in this equation. Since
@

ξ
p
1 , ξ

p
2

D

C
`

@

ξ
p
2 , ξ

p
1

D

C
is real (and similarly for η’s), they cancel out. The

other terms are summed up, and we obtain exactly the first half of (6.13).
It remains to prove that (6.13) equals (6.12). To do that, we need to

compute the norms of 9A´p,p and 9Φ´p,p in terms of ξp1 , etc. For example for
the first one, we have

›

› 9A´p,p
›

›

2
“
›

›ωrksp2B̄jq
´p,p

›

›

2

C
“
›

›

›

´

ω
` B

Bxj

˘rks
` iω

` B

Byj

˘rks
¯´p,p›

›

›

2

C

“
›

›

›

´

ξ
rkus
1 ` iξ

rpus
2 ` i

`

η
rkus
1 ` iη

rpus
2

˘

¯›

›

›

2

C

“
›

›

›

´

ξ
rkus
1 ´ η

rpus
2 ` iξ

rpus
2 ` iη

rkus
1

¯›

›

›

2

C

“
ÿ

p”0

›

›ξ
p
1 ` iη

p
1

›

›

2

C
`
ÿ

p”1

›

›iξ
p
2 ´ η

p
2

›

›

2

C
.

Similarly, one obtains:

›

› 9Φ´p,p
›

›

2
“

ÿ

p”0

›

›iξ
p
2 ` η

p
2

›

›

2

C
`
ÿ

p”1

›

›ξ
p
1 ´ iη

p
1

›

›

2

C
.

Thus we can compute (6.12):

(6.12) “ 2
ÿ

p”0

´p
›

›ξ
p
1 ` iη

p
1

›

›

2

C
` p1 ´ pq

›

›iξ
p
2 ` η

p
2

›

›

2

C

` 2
ÿ

p”1

´p
›

›iξ
p
2 ´ η

p
2

›

›

2

C
` p1 ´ pq

›

›ξ
p
1 ´ iη

p
1

›

›

2

C

We develop the identity further, using that for any a, b P g, }a ` ib}2
C

“
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}a}2
C

` }b}2
C

` 2Imxa, byC:

(6.12) “ 2
ÿ

p”0

´p
´

›

›ξ
p
1

›

›

2

C
`
›

›η
p
1

›

›

2

C
` 2Im

@

ξ
p
1 , η

p
1

D

C

¯

` p1 ´ pq
´

›

›ξ
p
2

›

›

2

C
`
›

›η
p
2

›

›

2

C
` 2Im

@

η
p
2 , ξ

p
2

D

C

¯

` 2
ÿ

p”1

´p
´

›

›ξ
p
2

›

›

2

C
`
›

›η
p
2

›

›

2

C
` 2Im

@

ξ
p
2 , η

p
2

D

C

¯

` p1 ´ pq
´

›

›ξ
p
1

›

›

2

C
`
›

›η
p
1

›

›

2

C
` 2Im

@

η
p
1 , ξ

p
1

D

C

¯

Finally, we notice that ξ1, etc., being real, }ξp1}2
C

“ }ξ´p
1 }2

C
, etc., so that all

such norms multiplied by p cancel out with the ones multiplied by ´p. For
the same reason, the terms involving, for example, Imxξp2 , η

p
2yC cancel out

unless they are multiplied by p, since:

ÿ

p

Im
@

ξ
p
2 , η

p
2

D

C
“

ÿ

pě0

Im
´

@

ξ
p
2 , η

p
2

D

C
`
@

ξ
´p
2 , η

´p
2

D

C

¯

“
ÿ

pě0

Im
´

@

ξ
p
2 , η

p
2

D

C
`
@

ξ
p
2 , η

p
2

D

C

¯

“ 0

(the term involving ξ02 vanishes since ξ02 and η02 are in g0). We are left with:

(6.12) “ 2
ÿ

p”0

›

›ξ
p
2

›

›

2

C
`
›

›η
p
2

›

›

2

C
` 2

ÿ

p”1

›

›ξ
p
1

›

›

2

C
`
›

›η
p
1

›

›

2

C

` 4
ÿ

p”0

pIm
´

@

η
p
1, ξ

p
1

D

C
`
@

ξ
p
2 , η

p
2

D

C

¯

` 4
ÿ

p”1

pIm
´

@

η
p
2, ξ

p
2

D

C
`
@

ξ
p
1 , η

p
1

D

C

¯

,

which is exactly (6.13).
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Boston, MA, 1992. Translated from the second Portuguese
edition by Francis Flaherty.
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voisinage d’une application harmonique. J. Differential Geom-
etry, 8:279–296, 1973.

[Mok92] Ngaiming Mok. Factorization of semisimple discrete represen-
tations of Kähler groups. Invent. Math., 110(3):557–614, 1992.

[Par11] Anne Parreau. Espaces de représentations complètement
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