Graphes super-eulériens, problèmes hamiltonicité et extrémaux dans les graphes La théorie de graphe est une domaine très populaire et intéressante de mathématiques discrètes. La première article connue sur la théorie des graphes a été donnée par Euler E.

(1736), dans laquelle qu'il a présenté le problème de sept ponts de kÄonigsberg. Dans les années récentes, la théorie des graphes s'est développée très rapidement. Il y a beaucoup de problèmes connus sur la théorie des graphes, par exemple, le problème hamiltonien, le problème de quatre couleurs, le problème de postier chinois, le problème de l'attribution optimale etc. Par ailleurs, la théorie des graphes a des grandes applications à des problèmes pratiques, tels que la chimie, la biologie,l'informatique, réseaux de communication.

Dans cette thèse, nous concentrons sur les sujets suivants : les graphes super-eulériens, hamiltonien ligne graphes, le tolérants aux pannes hamiltonien laceabilité de Cayley graphe généré par des transposition arbres et plusieurs problèmes extrémaux concernant la (minimum et/ou maximum) taille des graphes qui ont la même propriété.

Un graphe G est un triplet (V (G), E(G), ψ G ) ordonné comprenant d'un ensemble non vide de sommets V (G), un ensemble des arêtes E(G) qui est disjoint de V (G), et une fonction d'incidence ψ G qui associe chaque arête de G avec une paire non ordonnées de sommets(non nécessairement distincts) de G. Si e est une arête et u et v sont des sommets tels que ψ G (e) = uv, alors e est dit de rejoindre u et v ; les sommets u et v sont appelés les extrémités de e.
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Les extrémités d'une arête sont dits des incidents de l'arête, et vice versa. Les deux sommets qui sont incidents à une arête commune sont adjacents, de même que les deux arêtes qui sont incidents au sommet commun. Un graphe est simple si il n'a pas de cycles et pas de deux de ses liens qui rejoindre la même paire de sommets. Un graphe non-simple est appelé multigraphe.

Un graphe

H est un sous-graphe of G (écrivant H ⊆ G) Si V (H) ⊆ V (G), E(H) ⊆ E(G), et ψ H est la restriction de ψ G pour E(H).
Si H est un sous-graphe de G, G est un super-graphe de H. Un sous-graphe couvrant de G est un super-graphe H avec

V (H) = V (G).
Cette thèse comprend six chapitres. Le premier chapitre présente des dénitions et indique la conclusion des résultats principaux de cette thèse, et dans le dernier chapitre, nous introduisons la recherche de future de la thèse. Les études principaux sont montrés dans les chapitres 2-5. Nous présentons d'abord les résultats principales de chapitre 2.

Un parcours eulérien est un chemin dans un graphe qui visite chaque arête exactement une fois. De même, un circuit eulérien ou un parcours eulérien fermé est un parcours Théorème 2. Chaque 4-arête-connecté graphe est super-eulérien.

Le reste pour le problème de graphe super-eulérien consiste à caractériser 2 et 3-arêteconnecté graphe. Pour étudier ce problème, Catlin a introduit une méthode puissante.

Pour un graphe G, suppose O(G) donne l'ensemble des sommets impairs de G. Étant donné un sous-ensemble R de V (G), un sous-graphe Gamma de G est appelé un R-sou-

graphe si O( Gamma) = R et G-E( Gamma) est connecté. Un graphe G est démontable si pour tout les sous-ensembles impairs R de V (G), G a un R sous-graphe. Notez que lorsque R = emptyset, un sous-graphe connecté couvrant H avec O(H) = emptyset est
un sous-graphe eulérien couvrant de G. Ainsi, un graphe démontable est super-eulérien.

En utilisant la méthode de Catlin, Lai et Yan en 2012 ont prouvé le suivant.

Théorème 3. Si G est un 2-arête-connecté simple graphe et α (G) ≤ 2, G sera super- eulérien ⇐⇒ G = K 2,t pour certains nombres impairs t.
Ils ont également conjecturé ce qui suit.

Conjecture 1. Si G est un 2-arête-connecté simple graphe avec α (G) ≤ 3, G se sera pas super-eulérien si et seulement si G ∈ {K 2,t , S n,m , K 1,3 (1, 1, 1)} pour certains nombres impairs t.

S n,m et K 1,3 (1, 1, 1)
Pour répondre à leur conjecture, nous avons montré ce qui suit.

Théorème 4. Si G est un graphe avec δ(G) ≥ 2 et α (G) ≤ 3, G ne sera pas supereulérien si et seulement si un de ces conditions suivantes satisfait :

1. Si G ∼ = K 2,t pour certains nombres impairs t. 2. Si G ∼ = S n,m , m ≥ n ≥ 1, un de n, m est un nombre pair.
3. Si G ∼ = C 6 (k; s, t, r), alors k = 0 or 1. En plus, si k = 1, puis les parités de s, t, r sont les mêmes, si k = 0, alors s, t, r sont diérents. Pour le 3-arête-connecté graphe, Chen et Lai in 1995 a proposé un conjecture.

Conjecture 2. Chaque 3-arête-connecté graphe et 6-arête-connecté graphe essentiel est démontable.

Ils ont prouvé ce qui suit.

Pour une arête e dans le graphe G, nous dénissons le degré de l'arête e :

d(e) = d(u) + d(v) -2.
En outre, le degré de l'arête minimum de graphe G est ξ(G) = min{d(e)|e inE(G)}.

Esfahanian en 1988 a montré ce qui suit. 

G

= K 2,n-2 , u = v et n est impaire. 3. G = K 2,n-2 , u = v, uv ∈ E(G), n est pair, et d(u) = d(v) = n -2.
4. u = v, et u est le seul sommet avec degré 1 dans le graphe G.

Pour le théorème ci-dessus, nous essayons de réduire la borne inférieure n à n -k pour quelques entiers k. Nous avons obtenu le théorème suivant.

Théorème 9. Suppose p(n) = 0 pour n pair et p

(n) = 1 pour n impaire, et suppose u, v ∈ V (G). Si d(x) + d(y) ≥ n -1 -p(n)
pour chaque arête xy ∈ E(G),alors soit G a un parcours couvrant (u, v), ou exactement l'une des conditions suivantes est satisfaite :

1. G ∈ {G 7 , G 7 , K 1,n-1 , K 2,n-3 } ou la réduction de G est K 1,t-1 pour quelque entiers t ≥ 2 2. G = K 2,n-2 , u = v et n est impaire 3. G = K 2,n-2 , u = v, uv ∈ E(G), n est pair, et d(u) = d(v) = n -2 G 7 G 7 '
Dans le troisième chapitre, nous examinons la l'hamiltonien de line graph. 

• • • p n ) dénote la permutation   1 2 • • • n p 1 p 2 • • • p n   , et (ij) dénote la permutation   1 2 • • • i • • • j • • • n 1 2 • • • j • • • i • • • n   (Il
est obtenu en échanger le i th et le j th objets de Déterminant la taille minimale et / ou la taille maximale des graphes ayant certaines propriétés données est un problème classique en théorie de graphe extrémal. Dans le chapitre 5, nous considérons que plusieurs de ces problèmes de graphes. En particulier, l'hypercube (n-cube) est une structure combinatoire intéressant, et il y a beaucoup de conjectures intéressantes sur hypercubes. Dans la section 1 du chapitre 5, nous considérons quelle est la taille maximum pour un sous-graphe induite de M sommets ( exm 2 ) dans un n-cube ? Nous abordons ce problème.

  1 2 • • • n 1 2 • • • n   ) qui est appelé une transposition. Il est facile d'observer que (p 1 • • • p i • • • p j • • • p n )(ij) = (p 1 • • • p j • • • p i • • • p n ). Suppose B être

  eulérien qui commence et se termine au même sommet. Ils ont d'abord été étudiés par Leonhard Euler quand il veut résoudre le célèbre problème Sept Ponts de KÄoigsberg en 1736. Le problème était assez simple -la ville de KÄonigsberg compose de deux îles et sept ponts. Est-il possible, en commençant n'importe où et se terminant n'importe où, de marcher à travers la ville en traversant ces sept ponts mais pas passer un pont deux fois ? Les sept ponts et leur graphe.

  G) ≤ ξ(G)si G n'est pas un graphe d'étoile. Donc, nous nous demandons si un graphe 3 -arte -connexe avec xi(G) ≥ 7 est pliables ? Plusieurs résultats partiels ont été obtenus dans cette thèse. Théorème 7. 1. Chaque 3-arête-connexe (multi)graphe avec ξ(G) ≥ 7, et λ 3 (G) ≥ 7 est pliable. 2. Chaque 3-arête-connexe simple graphe avec ξ(G) ≥ 7, et λ 3 (G) ≥ 6 est pliable. 3. Chaque 3-arête-connexe (multi)graphe avec ξ(G) ≥ 6, λ 2 (G) ≥ 4, et λ 3 (G) ≥ 6 avec au maximum 24 sommets de degré 3 est pliable. 4. Chaque 3-arête-connexe simple graphe avec ξ(G) ≥ 6, et λ 3 (G) ≥ 5 avec au maximum 24 sommets de degré 3 est pliable. Nous passons ensuite au parcours eulérien de graphe. Catlin en 1988 a montré le suivant. Théorème 8. Pour u, v ∈ V (G), si d(x) + d(y) ≥ n pour chaque arête xy ∈ E(G),alors soit G a un parcours couvrant (u, v), ou exactement l'une des conditions suivantes est satisfaite : 1. d(z) = 1 pour certains sommets z ∈ {u, v}.

  Foe bipancyclicity de G n , Tseng et al. a montré le suivant.Théorème 20. les graphes d'étoile sont (n -3)-arête faux-tolérant bipancyclic (à l'exception de 6-cycle).Et plus tard, Kikuchi et Aeaki considère le bubble-sort graphes.Théorème 21. Le bubble-sort graphes sont (n -3)-arête faux-tolérant bipancyclic.Dans la Section 2 du chapitre 4, nous généralisons les résultats ci-dessus pour tous lesG n .Théorème 22. G n est (n -3)-arête faux-tolérant bipancyclic (le graphe d'étoile est une exception).

  Un sommet est impair si son degré est impair et pair si son degré est pair. Un graphe est pair si tous les sommets sont pair. Un graphe est eulérien si il est connectée et pair. En 1736, L. Euler a montré le suivant. graphe est super-eulérien si il a un graphe eulérien couvrant. Boesch et al. en 1977 ont demandé quel est sont les graphes super-eulérien ? Pulleyblank en 1979 a montré que la détermination si un graphe planaire est super-eulérien est NP-complet. Donc, un problème naturel est sorti : quelles est les conditions pour garantir un graphe être super-

	Théorème 1. Un parcours eulérien existe dans un graphe connexe si et seulement si il y
	a soit aucun sommets impairs ou deux sommets impairs.

Un eulérien ? Pour ce problème, Jaeger en 1979 a obtenu un théorème bien connu comme suivant.

  Le line graph L(G) de G est le graphe avec l'ensemble de sommets E(G), et deux sommets dans notons que les line graphs sont sans-grie. En 1984, Matthews et Sumner a posé une conjecture plus forte de contexte diérent. Théorème 14. Tous les 3-connexe, essentiellement 11-connexe line graph (sans-grie) est hamiltonien connexe. 15. Tous les 3-connexe essentiellement 10-connexe line graph (sans-grie graphe) est hamiltonien connexe. Pour les 3-connexe line graphs, Lai et al. ont également demandé si chaque 3-connexe et essentiellement 4-connexe line graph est hamiltonien ? Nous répondons négativement ce problème en donner une famille de contre-exemples (l'un d'eux est montré dans la gure ci-dessous). Par ailleurs, nous avons montré ce qui suit. Théorème 16. Suppose L(G) est un 3-connexe, essentiellement 4-connexe line graph. Si G a au maximum 10 sommets de degré 3, alors soit L(G) est hamiltonien, soit G est contractible au graphe Petersen. Nous passons ensuite au chapitre 4. L'étude principale dans cette partie est due à la stimulation de plusieurs études de chercheurs en informatique. Comme l' Graphe de Cayley est largement appliquée dans la conception de réseaux, plusieurs familles de graphes de Cayley ont été retenus beaucoup d'attention. Cayley graphe qui est généré par des arbres de transposition est l'un des importants familles. Suppose S n dénote le groupe symmetrique dans {1, • • • , n}, (p 1 p 2

	Conjecture 4. Tous les 4-connexe sans-grie graphe est hamiltoniens. Plus tard, en utilisant un théorème de Nash-Williams, et Tutte nous renforçons le
	En 1997, RYJ 'a v CEK introduit une sorte de fermeture (R-fermeture) qui tourne résultat ci-dessus à nouveau.
	un graphe sans-grie à un line graph sans changer son l'hamiltonien. Ainsi, les deux
	conjectures sont équivalentes. Pour ces conjectures, Zhan a reporté le théorème suivant.
	Récemment, Lai et al a considéré le problème suivant : Pour un 3-connexe line graph,
	est-ce que la connectivité essentielle élevée peut garantir l'existence d'un cycle hamilto-
	nien ? Ils ont prouvé les théorèmes suivants.
	Théorème 13. Tous les 3-connexe, essentielle 11-connexe line graph est hamiltonien.

L(G) sont adjacentes si elles ont une extrémité commune. Il y a un problème intéressant sur le line graph : Quel line graph est hamiltonien ? Thomassen en 1986 a supposé le suivant. Conjecture 3. Tous les 4-connexe line graph sont hamiltoniens. Nous Théorème 10. Tous les 7-connexe line graph est hamiltonien-connexe. Utilisant R-fermeture, Ryjá£ek a prouvé le suivant. Théorème 11. Tous les 7-connexe sans-grie graphe est hamiltonien. Très récemment, un progrès important vers les conjectures a été obtenu par Kaiser et Vr 'ana.

Théorème 12. Tous les 5-connexe line graph avec le degré minimum au moins de 6 est hamiltonien.

Utilisant R-fermeture, le suivant est satisfait.

Corollaire 1. Tous les 5-connexe sans-grie graphe G avec le degré minimum au moins de 6 est hamiltonien.

Dans le chapitre 3, nous considérons que quel est le plus petit entier k tel que chaque 3connexe, essentiellement k -connexe line graph est hamiltonien. D'abord, nous renforçons le résultat ci-dessus en montrant le théorème suivant, Théorème

  un généré ensemble minimum de S n .Si ce généré ensemble minimum B est un ensemble de transpositions de S n , il s'appelle le généré ensemble minimum de transposition. Dans cet article, nous supposons toujours que le généré ensemble minimum est un généré ensemble minimum de transposition. Pour la commodité de la discussion, nous décrire le généré ensemble minimum de transposition B de S n par un généré ensemble de transposition ,écrit T B , ou l'ensemble de sommets de T B est {1, 2, • • • , n}, l'ensemble d'arêtes est {(ij)|(ij) ∈ B}. Notons que B est un généré ensemble minimum de transposition de S n , on voit que T B est un arbre que l'on appelle généré arbre de transposition. Cayley graphe Cay(S n , B) est appelé Cayley graphe généré par transposition généré arbre si B est un minimum transposition généré ensemble de S n , dénoté par G n . Il est bien connu que G n est appelé star graph et bubble-sort graphe si T B ∼ = K 1,n-1 et T B ∼ = P n (P n est un chemin avec n sommets), respectivement. Un bipartite graphe G est k-tolérants aux pannes hamiltonicité laceable si G -F est hamiltonien laceable pour tous les F ⊆ E(G) avec |F | ≤ k, ou l'ensemble F est appelé f aux arte ensemble, arêtes de F sont appelés faux arêtes, et arêtes de E(G) -F sont appelés sans-faux arêtes. Une bipartite graphe G est appelé bipancyclic si il comprit les cycles de tous les longueurs pairs de 4 à |V (G)|. Un bipartite graphe G est appelé k-arête faux-tolérant bipancyclic si G -F reste bipancyclic pour tous les ensembles F d'arêtes avec |F | ≤ k, ou F est appelé un f aux arte ensemble de f aux arte. Li et al. en 2004 a considéré le graphe d'étoile. Théorème 17. Les graphes d'étoile sont (n -3)-arête faux tolérant hamiltonien laceable. Plus tard, Aeaki et Kikuchi a montré le suivant.Théorème 18. Le bubble-sort graphes sont (n -3)-arête faux tolérant hamiltonien laceable.Dans la Section 1 du chapitre 4, nous généralisons les résultats ci-dessus pour tous lesG n .Théorème 19. G n est (n -3)-arête faux tolérant hamiltonien laceable.

Théorème 5. Chaque 3-arête-connecté graphe et 7-arête-connecté graphe essentiel est démontable.

Théorème 23.

Utilisant ce théorème, nous déterminons l'extra connectivité d'arête de hypercubes et de hypercubes plié.

Dans la section 2 du chapitre 5, nous considérons quelle est la taille minimale des graphes avec l'ordre n et avec un degré minimal donné par δ et un degré d'arête minimal

2 n + δk 2(δ+k) d δ . En plus, la formulation reste la même si et seulement si

Dans la section 3 du chapitre 5, nous déterminons la taille minimale des graphes satisfaisants la condition Ore.

Mots Clés : Super-eulérien graphe, Hamiltonien cycle, Ligne graphe, Conjecture de Thomassen, Hypercube, Arc-connectivité, La théorie de graphe extrémal.