
HAL Id: tel-00877962
https://theses.hal.science/tel-00877962v1
Submitted on 29 Oct 2013 (v1), last revised 11 Mar 2014 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Simulation Native des Systèmes Multiprocesseurs sur
Puce à l’aide de la Virtualisation Assistée par le Matériel

M.M. Hamayun

To cite this version:
M.M. Hamayun. Simulation Native des Systèmes Multiprocesseurs sur Puce à l’aide de la Virtualisa-
tion Assistée par le Matériel. Micro et nanotechnologies/Microélectronique. Université de Grenoble,
2013. Français. �NNT : �. �tel-00877962v1�

https://theses.hal.science/tel-00877962v1
https://hal.archives-ouvertes.fr

ISBN: 978-2-11-129179-9

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE
Spécialité : Informatique

Arrêté ministériel : 7 août 2006

Présentée par

Mian Muhammad HAMAYUN

Thèse dirigée par Frédéric PÉTROT

préparée au sein du Laboratoire TIMA
et de l’École Doctorale Mathématiques, Sciences et Technologies de
l’Information, Informatique (MSTII)

Simulation Native des Systèmes
Multiprocesseurs sur Puce à l’aide
de la Virtualisation Assistée par le
Matériel
« Native Simulation of Multi-Processor System-on-Chip
using Hardware-Assisted Virtualization »

Thèse soutenue publiquement le 04 juillet, 2013,
devant le jury composé de :

Mme. Florence MARANINCHI
Professeur, Institut Polytechnique de Grenoble, Présidente
M. Jean-luc DEKEYSER
Professeur, Université des Sciences et Technologies de Lille, Rapporteur
M. Guy BOIS
Professeur Titulaire, École Polytechnique de Montréal, Rapporteur
M. Alain GREINER
Professeur, Université Pierre et Marie Curie (Paris VI), Examinateur
M. Benoit DUPONT DE DINECHIN
Directeur du Développement Logiciel, KALRAY, Examinateur

M. Frédéric PÉTROT
Professeur, Institut Polytechnique de Grenoble, Directeur de Thèse

« I dedicate this dissertation to my father, Ashraf Ali Shad, whose love
and affection has no bounds and his lifelong efforts helped me reach

where I stand today »

Abstract

Integration of multiple heterogeneous processors into a single System-on-Chip (SoC) is a
clear trend in embedded systems. Designing and verifying these systems require high-speed
and easy-to-build simulation platforms. Among the software simulation approaches, native
simulation is a good candidate since the embedded software is executed natively on the
host machine, resulting in high speed simulations and without requiring instruction set
simulator development effort. However, existing native simulation techniques execute the
simulated software in memory space shared between the modeled hardware and the host
operating system. This results in many problems, including address space conflicts and
overlaps as well as the use of host machine addresses instead of the target hardware platform
ones. This makes it practically impossible to natively simulate legacy code running on the
target platform. To overcome these issues, we propose the addition of a transparent address
space translation layer to separate the target address space from that of the host simulator.
We exploit the Hardware-Assisted Virtualization (HAV) technology for this purpose, which
is now readily available on almost all general purpose processors. Experiments show that
this solution does not degrade the native simulation speed, while keeping the ability to
accomplish software performance evaluation. The proposed solution is scalable as well as
flexible and we provide necessary evidence to support our claims with multiprocessor and
hybrid simulation solutions. We also address the simulation of cross-compiled Very Long
Instruction Word (VLIW) executables, using a Static Binary Translation (SBT) technique to
generate native code that does not require run-time translation or interpretation support.
This approach is interesting in situations where either the source code is not available or
the target platform is not supported by any retargetable compilation framework, which is
usually the case for VLIW processors. The generated simulators execute on top of our HAV

based platform and model the Texas Instruments (TI) C6x series processors. Simulation results
for VLIW binaries show a speed-up of around two orders of magnitude compared to the cycle
accurate simulators.

Key Words

Design Automation, Simulation, System Level Design, Hardware-Assisted Virtualization (HAV),
System-on-Chip (SoC), Very Long Instruction Word (VLIW), Static Binary Translation (SBT).

TIMA Laboratory, CNRS/INP Grenoble/UJF iii

Résumé

L’intégration de plusieurs processeurs hétérogènes en un seul système sur puce (SoC) est
une tendance claire dans les systèmes embarqués. La conception et la vérification de ces
systèmes nécessitent des plateformes rapides de simulation, et faciles à construire. Parmi
les approches de simulation de logiciels, la simulation native est un bon candidat grâce à
l’exécution native de logiciel embarqué sur la machine hôte, ce qui permet des simulations à
haute vitesse, sans nécessiter le développement de simulateurs d’instructions. Toutefois, les
techniques de simulation natives existantes exécutent le logiciel de simulation dans l’espace
de mémoire partagée entre le matériel modélisé et le système d’exploitation hôte. Il en résulte
de nombreux problèmes, par exemple les conflits l’espace d’adressage et les chevauchements
de mémoire ainsi que l’utilisation des adresses de la machine hôte plutôt des celles des
plates-formes matérielles cibles. Cela rend pratiquement impossible la simulation native
du code existant fonctionnant sur la plate-forme cible. Pour surmonter ces problèmes, nous
proposons l’ajout d’une couche transparente de traduction de l’espace adressage pour séparer
l’espace d’adresse cible de celui du simulateur de hôte. Nous exploitons la technologie
de virtualisation assistée par matériel (HAV pour Hardware-Assisted Virtualization) à cet
effet. Cette technologie est maintenant disponibles sur plupart de processeurs grande
public à usage général. Les expériences montrent que cette solution ne dégrade pas la
vitesse de simulation native, tout en gardant la possibilité de réaliser l’évaluation des
performances du logiciel simulé. La solution proposée est évolutive et flexible et nous fournit
les preuves nécessaires pour appuyer nos revendications avec des solutions de simulation
multiprocesseurs et hybrides. Nous abordons également la simulation d’exécutables cross-
compilés pour les processeurs VLIW (Very Long Instruction Word) en utilisant une technique
de traduction binaire statique (SBT) pour généré le code natif. Ainsi il n’est pas nécessaire
de faire de traduction à la volée ou d’interprétation des instructions. Cette approche est
intéressante dans les situations où le code source n’est pas disponible ou que la plate-forme
cible n’est pas supportée par les compilateurs reciblable, ce qui est généralement le cas pour
les processeurs VLIW. Les simulateurs générés s’exécutent au-dessus de notre plate-forme
basée sur le HAV et modélisent les processeurs de la série C6x de Texas Instruments (TI). Les
résultats de simulation des binaires pour VLIW montrent une accélération de deux ordres de
grandeur par rapport aux simulateurs précis au cycle près.

Mots Clès

Conception Assistée par Ordinateur (CAO), Simulation, Conception Niveau Système,
Virtualisation Assistée par le Matériel (HAV), Système sur Puce (SoC), Mot d’Instruction Très
Long (VLIW), Traduction Binaire Statique (SBT).

TIMA Laboratory, CNRS/INP Grenoble/UJF v

Acknowledgments

First and foremost, I would like to thank my advisor Prof. Frédéric Pétrot for giving me the
opportunity to work in his research group and for his continuous support during the last
four years. I am also thankful to him for his guidance, kindness, patience and his technical
support during research and writing of this dissertation. Without his help and guidance, it
would have been impossible for me to finish this thesis.

I would like to thank Prof. Florence Maraninchi for presiding over my thesis defense
committee. My special thanks to Prof. Jean-luc Dekeyser and Prof. Guy Bois for taking the
time to review my thesis manuscript and their constructive remarks. I am very thankful to
the examiners, Prof. Alain Greiner and Dr. Benoit Dupont De Dinechin for their pertinent
questions and valuable remarks.

I would like to thank the French Ministry of Higher Education and Research for providing
the financial support during my PhD studies. I am also thankful to Higher Education
Commission (HEC) Pakistan, for awarding me the scholarship for Master program in France,
which lead to my PhD studies.

I would like to thank my colleagues, Patrice Gerin, Hao Shen and Marius Gligor1 for their
indispensable support during my thesis. I must also thank the permanent SLS team members
for their warm welcome and wonderful company, including Prof. Frédéric Rousseau, Hamed
Sheibanyrad, Stephane Mancini, Paul Amblard (Late), Nicolas Fournel and Olivier Muller2.
I should not forget Xavier Guerin, Luc Michel1, Ashraf Elantably1, Maryam Bahmani1, Sahar
Foroutan, Clément Deschamps, Etienne Ripert, Gilles Bizot, Wassim Mansour1, Yi Gang1

and Saif-ur-Rehman1 for their support. I would like to convey my best wishes to Guillaume
Sarrazin, who has accepted to continue working on native simulation technique for his thesis.

In my social circles, I would like to thank my dear friend Dr. Anis-ur-Rehman Khan, who
provided me the best possible fellowship one could expect from anyone. His presence of
mind, witty humor and sporting activities provided me with the necessary fresh air, during
stressful times. I must not forget Asif Iqbal Baba for his religious expressions and cricketing
enthusiasm, which brought the necessary physical activity to our lives. I am also very grateful
to the Grenoblois Pakistanais community, which organized many gatherings that gave us the
means to celebrate our cultural events, with friends and families.

In the end, I must thank my parents, my brothers Usman & Umar, my sister Ayesha,
my wife Fouzia and my children Shehryar & Mahnoor for their prayers and encouragement
during my studies. Without their moral support, things would have been much more difficult.
I will remain in their debt for the rest of my life!

Mian Muhammad Hamayun
25 September, 2013

1An additional thanks for their help in the preparations of my "Pot-de-Thèse".
2An additional thanks for his kind support in my teaching assignments as well as in general discussions.

TIMA Laboratory, CNRS/INP Grenoble/UJF vii

List of Figures

Page

1.1 Les tendances de marché SoC et complexité de conception 4
1.2 MPSoC de future avec plusieurs processeurs GPP et DSP 5
1.3 Encapsulation du logiciel pour la simulation native 6
1.4 Encapsulation du logiciel avec un système d’exploitation abstrait ou réal . . 7
1.5 Niveaux d’abstraction matérielle et couches d’interface du logiciel 8
1.6 L’exécution en couches du logiciel à différents niveaux de l’interface 8
1.7 Représentations de la mémoire cible et hôte (Adapté de [Ger09]) 10
1.8 Modification de la mémoire cible pour remmapage des adresses 11
1.9 Représentation uniforme de la mémoire . 12
1.10 Modes hôte et invité dans HAV (Les processeurs Intel) 13
1.11 Support pour la virtualisation de la mémoire dans HAV 14
1.12 Les unités de traitement natifs (NPU) et leur interfaces avec KVM 15
1.13 Le flux d’exécution dans la simulation native 16
1.14 Couche d’abstraction matérielle dépendant de la machine hôte 17
1.15 Accès mémoire et d’entrées / sorties . 18
1.16 Processeur natives, bibliothèque KVM, KVM et la pile logicielle invité 19
2.1 SoC Consumer Portable Design Complexity Trends 24
2.2 Future MPSoCs with Many GPPs along with a few DSPs and Hardware IPs . 25
3.1 Tasks in the MJPEG Application . 28
3.2 Architecture of a Software Node . 29
3.3 Multiple Software Nodes with Different Types of Processors 30
3.4 Communication Modeling Abstractions in SystemC 33
3.5 Abstraction Levels and Simulation Models . 35
3.6 Principle of Native Execution on a Transaction Accurate Platform 40
3.7 Target vs. Host Memory Representations . 42
3.8 Native Uniform Memory Representation . 45
3.9 Native Software Compilation with Target Specific Annotations 47
3.10 Generic Architecture of a VLIW Processor . 49
3.11 Pipeline Stages and Delay Slots in TI C6x Processors 50
3.12 RAW Hazards in VLIW Software . 50
3.13 WAR Hazards in Parallel to Scalar Conversion 51
3.14 WAW Hazards Resulting from Instruction Scheduling 52
3.15 Control Hazards in VLIW Processors . 53
4.1 Software Encapsulation in Native Simulation 58
4.2 Software Encapsulation with an Abstract/Real Operating System 59
4.3 Hardware Abstraction Levels and Software Interface Layers 60
4.4 Layered Software Execution at Different Interface Levels 61

TIMA Laboratory, CNRS/INP Grenoble/UJF ix

LIST OF FIGURES

4.5 Architecture of the HySim Framework . 63
4.6 Design Flow of the iSciSim Approach . 66
4.7 Basic Compiled Simulation/Static Translation Principle 68
4.8 Static Binary Translation Flow in UQBT . 69
4.9 Generic Principle of Dynamic Compiled Simulation 71
4.10 Principle of Hybrid Compiled Simulation . 72
5.1 Guest vs. Host Modes in Hardware-Assisted Virtualization 75
5.2 Memory Virtualization Support in Hardware-Assisted Virtualization 78
5.3 Native Processing Units and their interfacing with KVM 80
5.4 Execution Flow in Native Simulation . 81
5.5 Host Dependent Hardware Abstraction Layer 83
5.6 Multiple External Event Sources, their Cost and Load Condition 84
5.7 Hardware Abstraction Layer with Synchronizations 86
5.8 Memory and I/O Address Space Accesses . 87
5.9 Platform Address Decoder with Statically Allocated Addresses 90
5.10 Native Processor, KVM and Software Stack . 92
5.11 Basic Block Annotation Process using LLVM Infrastructure 93
5.12 Forwarding Annotation Calls to SystemC using PMIO 94
5.13 Handling External Events using Interrupt Injection in KVM 97
5.14 Guest Software Threads and VCPU Locking Issue 99
5.15 VCPU Execution Flow within KVM and Blocking States 101
5.16 SystemC Timing Modifications on Execution of Test and Set 103
5.17 Multiprocessor Simulation using KVM with Debug and Interrupt Support . 104
5.18 Hybrid Simulation Platform using DBT and Native Processors 105
6.1 Static Binary Translation Flow for VLIW Binaries 111
6.2 Intermediate Code Generation for VLIW Basic Blocks 114
6.3 Delay Slot Buffers for Register Updates . 116
6.4 Memory Mapping for Statically Generated VLIW equivalent Native Binaries 117
6.5 Code Generation Modes in Static Translation for VLIW Binaries 118
7.1 Functional Decomposition of Parallel-MJPEG Application 129
7.2 NaSiK MPSoC Simulation Platform for Native and VLIW Simulation 130
7.3 Hybrid Simulation Platform using KVM and QEMU Based Processor Models 131
7.4 Target Memory and I/O Address Space Accesses 132
7.5 Computation and I/O Speed Comparison between Rabbits, Native and NaSiK 134
7.6 Computation Performance of PI Application 135
7.7 Block and Console I/O Performance for Rabbits, Native and NaSiK 136
7.8 NaSiK Simulation Platform with Annotations and Annotation Buffers 137
7.9 Instruction and Cycle Accuracy Comparison between Rabbits and NaSiK . . 139
7.10 MPSoC Simulation Speed Comparison between QEMU and KVM Platforms . 141
7.11 Shared Memory Access between QEMU and KVM Processors 143
7.12 Performance of Compute vs. Control Dominant DSP Kernels 144
7.13 Performance Comparison for Different DSP Kernels 145
B.1 Virtual to Physical Address Translation and Translation Lookaside Buffer . . 157
B.2 Role of Shadow Page Tables in Guest Address Space Translation 158
B.3 Guest Page Table Accesses and Synchronization with Shadow Page Tables . . 158
B.4 Role of Extended Page Tables in Guest Address Space Translation 159
B.5 Guest Physical Address Translation using Extended Page Tables 160

x Mian-Muhammad Hamayun

List of Tables

Page

3.1 Nested Branch Control Flows in VLIW Software: An Example 53
5.1 Basic KVM APIs for Virtual Machine Initialization and Execution 80
5.2 Local Memories, I/O and Shared Memory Accesses in QEMU, Traditional Native

and KVM-based Platforms . 108
6.1 Operand Types in ISA Definitions . 112
6.2 Possible Code Generation Modes for VLIW Software Binaries 119
7.1 HAL API Functions for DNA-OS . 127
7.2 Selected DSP Kernels for VLIW Simulation 129
7.3 Computation Speed-up in KVM Simulation 133
7.4 I/O Speedup/Slowdown in KVM Simulation 135
7.5 KVM Simulation Performance With Annotations and Annotation Buffers . . 138
7.6 KVM Simulation Accuracy Best and Worst Cases 138
7.7 Decoding Time for 100 Frames using Parallel-MJPEG Application 141
7.8 Maximal Speed-ups of SBT Simulation using Hybrid Translation 146
A.1 Sensitive/Non-Sensitive vs. Privileged/Unprivileged Instructions 153
A.2 Sensitive Register Instructions in IA-32 (x86) 154
A.3 Sensitive Protection System Instructions in IA-32 (x86) 155

TIMA Laboratory, CNRS/INP Grenoble/UJF xi

Contents

Page

Abstract iii

Résumé v

Acknowledgments vii

List of Figures ix

List of Tables xi

I Résumé Français 1

1 Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel 3
1.1 Introduction . 3
1.2 Problématique . 5

1.2.1 Interfaces Matériel Logiciel . 7
1.2.2 Les Espaces d’Adressage Cible et Hôte 9

1.3 Virtualisation Assistée par le Matériel . 11
1.4 Simulation Native à l’Aide de la Virtualisation Assistée par le Matériel 14
1.5 Conclusion . 19

II Unabridged English Version 21

2 Introduction 23
2.1 The Hardware/Software Co-Design Challenge 23
2.2 Main Contributions and Organization . 25

3 Native Simulation of MPSoC: A Retrospective Definition & Problems 27
3.1 Generic Architecture of An MPSoC . 27
3.2 Architecture of Software Nodes . 28

3.2.1 Key Terms . 29
3.3 Description Languages for Simulation Models 30

3.3.1 SystemC: A Modeling Language . 31
3.4 Abstraction Levels and Simulation Models . 33

3.4.1 System Level . 34
3.4.2 Cycle Accurate Level . 34

TIMA Laboratory, CNRS/INP Grenoble/UJF xiii

CONTENTS

3.4.3 Virtual Architecture Level . 36
3.4.4 Transaction Accurate Level . 36

3.5 Native Transaction Accurate Simulation . 37
3.5.1 Hardware Abstraction Layer . 38
3.5.2 Native Software Execution . 38
3.5.3 Target vs. Host Address Spaces . 41
3.5.4 Using a Unified Address Space . 44
3.5.5 Software Performance Estimation . 46

3.6 VLIW Processor Architecture Simulation . 48
3.6.1 Modeling Parallelism and VLIW Pipelines 48
3.6.2 Memory Addressing in Translated Software 52
3.6.3 Software Execution Timings and Synchronization 53
3.6.4 Hybrid and Heterogeneous MPSoC Simulation 54

3.7 Conclusion and Key Questions . 54

4 State of the Art: On Software Execution for MPSoC Simulation 57
4.1 Native Platforms for MPSoC Simulation . 57

4.1.1 Software Encapsulation . 58
4.1.2 Hardware-Software Interfaces . 60
4.1.3 Hybrid Techniques . 62

4.2 Performance Estimation in Native Simulation 64
4.2.1 Source Level Simulation . 64
4.2.2 Intermediate Representation Level Simulation 65
4.2.3 Binary Level Simulation . 67

4.3 Discussion and Conclusions . 72

5 Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization 73
5.1 Hardware-Assisted Virtualization (HAV) . 74

5.1.1 Processor Virtualization . 74
5.1.2 Memory Virtualization . 76
5.1.3 I/O Virtualization/Emulation . 78

5.2 Native Simulation Using Hardware-Assisted Virtualization 79
5.2.1 Native Processing Units . 79
5.2.2 Host Dependent Hardware Abstraction Layer 80
5.2.3 Using Hardware Abstraction Layer as a Synchronization Point 83
5.2.4 Memory and I/O Address Space Accesses 86

5.3 Timing Annotations in Software . 91
5.3.1 Minimizing Guest vs. Host Mode Switches 95

5.4 MPSoC Simulation using Hardware-Assisted Virtualization 96
5.4.1 Asynchronous External Events . 96
5.4.2 Simulating Multiple Processors . 98
5.4.3 Virtual CPU Scheduling in Kernel Virtual Machine 101

5.5 Hybrid MPSoC Simulation . 104
5.5.1 Memory and I/O Access Comparison 106

5.6 Conclusions and Limitations . 106

xiv Mian-Muhammad Hamayun

CONTENTS

6 Static Binary Translation Targeting VLIW Processor Simulation 109
6.1 Static Binary Translation Principle and Constraints 109

6.1.1 Static Translation Specific Constraints 110
6.1.2 Virtualization Specific Constraints . 110

6.2 Retargetable Static Translation of VLIW Software 111
6.2.1 Instruction Representation . 112
6.2.2 Execute Packet Decoding and Basic Block Construction 113
6.2.3 Intermediate Code Generation . 113
6.2.4 VLIW Processor State and Circular Buffers 115
6.2.5 Data and Instruction Memory Accesses 116
6.2.6 Code Generation Modes . 117
6.2.7 Optimization and Inlining . 119

6.3 Conclusions and Limitations . 123

7 Experimentation and Results 125
7.1 Software Environment and Benchmarks . 125

7.1.1 MiBench Suite . 126
7.1.2 Parallel Motion-JPEG . 126
7.1.3 Audio Filter . 128
7.1.4 DSP Kernels . 129

7.2 Hardware Environment and Reference Platforms 129
7.2.1 Native MPSoC Simulation Platform . 130
7.2.2 Hybrid Simulation Platform . 131
7.2.3 Reference Platforms and Simulators 131

7.3 Mono-processor Experiments . 131
7.3.1 Software Execution in Target Address Space 132
7.3.2 Compute vs. I/O Intensive Applications 132
7.3.3 Software Annotations and Simulation Accuracy 137

7.4 Multi-processor Experiments . 140
7.4.1 Multi-threaded Applications on SMP Platforms 140
7.4.2 Hybrid Simulation Platform . 141

7.5 Simulation of Cross-Compiled DSP Kernels 142
7.6 Conclusions and Limitations . 146

8 Conclusions and Perspectives 149
8.1 Conclusions . 149
8.2 Perspectives . 151

A Sensitive and Unprivileged Instructions in IA-32 (x86) Architectures 153

B Memory Virtualization Support in Hardware-Assisted Virtualization 157
B.1 Memory Virtualization using Shadow Page Tables 158
B.2 Memory Virtualization using Extended Page Tables 159

C Code Generation Algorithms for VLIW Software Simulation 161
C.1 IR Generation for VLIW Basic Blocks . 161
C.2 IR Generation for VLIW Execute Packets . 162

TIMA Laboratory, CNRS/INP Grenoble/UJF xv

CONTENTS

Glossary 165

List of Publications 169

References 171

xvi Mian-Muhammad Hamayun

Part I

Résumé Français

TIMA Laboratory, CNRS/INP Grenoble/UJF 1

Le temps est un grand maître, dit-on, le malheur est
qu’il tue ses élèves.

Berlioz

1
Simulation Native de MPSoC à l’aide de la

Virtualisation Assistée par le Matériel

L’état actuel de l’art en matière de technologie de VLSI (VLSI pour Very-Large-Scale
Integration) permet la fabrication de plusieurs milliards de transistors sur une seule

puce. La conception et l’intégration du matériel avec un si grand nombre de transistors est
très difficile. Une solution simple pour les concepteurs de matériel est de mettre plusieurs
processeurs relativement simples sur une seule puce plutôt que de concevoir une machine
mono-processeur complexe. Par ailleurs, l’évolutivité des mono-processeurs est limitée par
les facteurs de dissipation de puissance, comme on ne peut pas simplement augmenter la
vitesse d’horloge pour obtenir d’avantage de performance.

Dans le domaine des systèmes intégrés, des problèmes de consommation et de rendement
nécessitent l’utilisation d’architectures simples. Il s’agit notamment de processeurs qui
disposent un rapport MIPS (MIPS pour Million Instructions Per Second) plus elevé par rapport
à la consommation en Watt. Cette tendance se poursuit vers des structures plus régulières et
homogènes mais comprenant encore, éventuellement, du matériel spécifique et des extensions
de jeu d’instructions dans les éléments de traitement. Ces multiprocesseurs spécifiques à une
classe d’application sont appelés MPSoC (MPSoC pour Multi-Processor System-on-Chip). De
nombreux secteurs industriels, tels que les télécommunications, l’aérospatiale, l’automobile,
le militaire et l’électronique grand public utilisent actuellement ces systèmes.

1.1 Introduction

La complexité de conception de MPSoC est en augmentation à cause du nombre et du type
d’éléments de calcul inclus dans ces systèmes. Selon l’ITRS, jusqu’à 6000 processeurs sont
attendus sur un seul SoC d’ici la fin de l’année 2026, comme indiqué dans la Figure 1.1. La
conception et la vérification d’une solution matérielle avec tel nombre d’éléments de calcul,
qui de plus tourne un logiciel encore plus complexe, est un énorme défi.

De même, les délais de mise sur le marché sont d’une importance primordiale dans

TIMA Laboratory, CNRS/INP Grenoble/UJF 3

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

l’électronique grand public, pour les fabricants de produits pour rester compétitif et de
réussir à répondre aux exigences du marché. Les delais dans la conception et la fabrication
de systèmes MPSoC plus en plus complexe minent cet objectif, car le développement du
logiciel dépend de la disponibilité du matériel. Les plates-formes virtuelles, ou modèles de
simulation, offrent une alternative, car le développement de logiciels peut commencer tôt et
en parallèle avec la conception du matériel. Par ailleurs, les équipes de développement du
logiciel ont besoin des plateformes de simulation, même si le matériel est disponible, car les
premiers prototypes sont généralement très coûteux.

Figure 1.1: Les tendances de marché SoC et complexité de conception des systèmes portable [ITR]

La simulation s’appuie sur des modèles et comme il peut être entendu que si les modèles
sont proches de la réalité, la simulation sera lente, et s’ils sont abstraits, la précision des
résultats peut être contestable. Plusieurs strategies de simulation existent pour l’exécution
du logiciel : la première s’appuie sur l’ISS (ISS pour Instruction Set Simulator) qui est
la technologie de virtualisation du processeur la plus mature et couramment utilisée.
L’ISS exécute les fichiers binaires cible (target) cross-compilé (Système d’Exploitation et
Applications) et imitent le comportement des processeurs cibles par l’interprétation exacte
des instructions [Bel73]. Leur principal inconvénient vient de la vitesse de simulation
très lente. La seconde repose sur l’émulation, principalement par DBT [Bel05] (DBT pour
Dynamic Binary Translation) mais nécessite des coûts de développement relativement élevé.
La troisième utilise la simulation native, c’est-à-dire l’exécution de code sans compilation
croisée. Des techniques de simulation natives [BBY+05, JBP06] atteingnent des vitesses de
simulation supérieures comme ils surmontent l’interprétation / coût de la traduction, par
la compilation du logiciel embarqué au format binaire hôte et l’exécutent directement sur
les processeurs hôtes. Afin d’accéder à des ressources matérielles modélisées, le logiciel
doit utiliser une API (API pour Application Programming Interface) spécifique, que ce soit
au niveau du Système d’Exploitation [GCKR12] ou niveau du HAL (HAL pour Hardware
Abstraction Layer) [GHP09].

Généralement la partie fonctionnelle des systèmes de simulation natifs ne dépend pas
de l’ISAs de processeurs cibles, ce qui les rend attrayant du point de vue du développement.

4 Mian-Muhammad Hamayun

1.2 Problématique

D’autre part cela rend le simulation subtilement différent du point de vue du flux de contrôle
d’exécution cible, comme les optimisations spécifiques cibles ne peuvent pas être facilement
appliquées sur le logiciel natif. En dehors du fait ci-dessus, les techniques de simulation
natives introduisent leurs propres problèmes qui les éloignent de l’architecture modélisée. Il
s’agit notamment de différences de l’espace d’adressage de la cible par rapport la machine
hôte, comme le logiciel natif utilise l’espace d’adressage de la machine hôte pour toutes les
références de mémoire. Cela se traduit par des espaces d’adressage contradictoires et qui
peuvent se chevaucher entre la machine hôte et les architectures cibles simulées. Certaines
interactions entre le matériel et le logiciel devienent impossibles, comme le DMA (DMA pour
Direct Memory Access) vers les régions de mémoire allouées par le logiciel.

Plus la complexité des architectures modélisées augmente (tant au niveau matériel
et logiciel), plus les solutions natives sont loin des architectures cibles. Ces situations
proviennent généralement lors de la modélisation des machines parallèles en utilisant des
techniques natives, c’est-à-dire en utilisant le logiciel compilé nativement pour modéliser
l’exécution d’un flux d’instructions parallèles, par exemple, dans le cas des architectures
VLIW (VLIW pour Very Long Instruction Word). Ainsi, la modélisation de MPSoC hétérogène
contenant des processeurs VLIW ainsi que des GPP est un objectif important. Nous devons
nous concentrer sur ces architectures futures à l’aide des solutions natives ainsi que sur des
solutions de simulation mixte. La Figure 1.2 illustre ces tendances dans les architectures
mpsoc hétérogènes du futur.

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

DSP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

DSP

I$ D$

RAM

DMA

TTY

DAC

ADC

Figure 1.2: MPSoC de future avec plusieurs processeurs GPP et DSP

1.2 Problématique

Simulation native de logiciel est un concept bien connu, allant des techniques primitives
basées sur l’exécution directe des algorithmes sur l’hôte pour la vérification fonctionnelle à
des implémentations plus avancées reposant sur l’HAL et les notions de liaison dynamique.

Dans sa formulation la plus générale, la simulation du logiciel natifs vise l’exécution

TIMA Laboratory, CNRS/INP Grenoble/UJF 5

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

directe du code logiciel sur la machine hôte à l’aide d’une "enveloppe" pour se connecter
à un environnement de simulation événementielle. Les propositions initiales suggèrent
d’encapsuler le code de l’application dans les modules TLM en utilisant des threads matériels,
comme si elles étaient implémentées comme des composants matériels [GCDM92, GYNJ01,
BYJ02, WSH08, CHB09a]. Un sous-ensemble des tâches logicielles est encapsulé dans
les modules matériel, c’est-à-dire des éléments de traitement de la plate-forme, comme
représenté sur la Figure 1.3. Le noyau de simulation matériel ordonance à la fois des fils
d’exécution matériels et logiciels, apportant concurrence implicite et non intentionnelle à
des tâches logicielles. Effectivement, cela ne permet pas de rendre compte du comportement
du système d’exploitation.

Communication Network

CPU#0

T1 T5

T4

CPU#1

T2 T6

Hardware
Node

T3

Figure 1.3: Encapsulation du logiciel pour la simulation native

Ces solutions sont simples mais présentent deux inconvénients graves. Premièrement,
le code simulé donne une forme très limité de parallélisme, c’est-à-dire des co-routines.
Deuxièmement, puisque le logiciel s’exécute dans un module matériel, toutes les allocations
de données par le logiciel sont alloués dans l’espace d’adressage du processus de simulation
au lieu de la mémoire de la plate-forme cible simulée. Il n’existe aucun moyen pour un
composant de la plate-forme d’accéder à un buffer alloué par le logiciel parce que le buffer
n’est pas visible d’elle alors qu’il doit l’être, les adresses de la plate-forme de simulation n’ont
aucun lien avec les adresses du processus de simulation. En outre, l’exécution du logiciel
est limité dans le contexte matériel, tels que la façon dont il accède aux ressources de la
plate-forme sous-jacente à l’aide des interfaces de la plateforme par exemple en utilisant les
ports dans les modèles TLM (TLM pour Transaction Level Modeling). Ces approches ne sont
clairement pas aptes à supporter le code pré-existant.

En raison de la complexité du logiciel embarqué et des exigences de dépendance
d’exécution, l’intégration de modèles abstraits du système d’exploitation directement
dans les environnements de simulation natifs a été proposé. L’objectif est de fournir
une implémentation légère d’un système d’exploitation en utilisant les primitives basées
sur des événements de l’environnement de simulation, ainsi chaque tâche logicielle
devient un module matériel. En utilisant cette approche, le RTOS (RTOS pour Real-Time
Operating System) modélisé repose sur l’ordonnanceur du simulateur de matériel au lieu de
l’ordonnanceur que le RTOS aurait utilisé, même si certaines solutions suggèrent de modifier
le noyau de simulation de matériel à cet effet. Ces travaux rendent compte des algorithmes
d’ordonnancement de RTOS à l’intérieur des de threads matériels simulés pour exécuter des
tâches d’application, avec diffèrents contraintes et des priorités. Un ensemble d’APIs HDS

(HDS pour Hardware Dependent Software) y compris la création des tâches, IPC (IPC pour
Inter-Process Communication) et services de sémaphores sont mises en oeuvre pour s’adapter
aux exigences de tâches d’application, comme montre le Figure 1.4.

6 Mian-Muhammad Hamayun

1.2 Problématique

Malheureusement, ces modèles de système d’exploitation ne sont pas suffisamment
détaillés car tous les appels de la bibliothèque C (entre autres), y compris les fonctions de
gestion de la mémoire, sont hors du contrôle du modèle de système d’exploitation. Cette
limitation rend le développement des pilotes des périphériques impossible en utilisants
ces modèles. De même, ces modèles nécessitent la réécriture du logiciel d’application, ils
empêchent effectivement l’utilisation du code "legacy".

Communication Network

Hardware
Node

T3

CPU#0

T1 T5T4

Generic Operating
System Model

HDS API

CPU#1

T2 T6

Generic Operating
System Model

HDS API

(a) Avec un modèle abstrait du système d’exploitation

Comm. Network

CPU#0

T1 T5T4

HAL

SystemC API

RTOS

(b) Avec un RTOS réel

Figure 1.4: Encapsulation du logiciel avec un système d’exploitation abstrait ou réal

Pour améliorer le réalisme de l’exécution du logiciel, certains travaux ont proposé
d’utiliser un RTOS réel au lieu d’un modèle de systèmes d’exploitation abstrait, comme
montré dans la Figure 1.4(b). La pile logicielle est toujours encapsulée dans les modèles
de matériel, mais le système d’exploitation est le même que celui de la plate-forme réelle.
Celui donne certains avantages, par exemple les fils logiciels sont ordonnancés par le RTOS

réel, fournissant une modélisation réaliste des propriétés des logiciels temps-réel. De même,
ces systèmes fournissent des moyens faciles pour l’exploration de l’architecture comme ils
prennent en charge différents niveaux d’abstraction et permettent la modification des types
de composants du matériel au logiciel et vice versa. Enfin, ces modèles permettent l’exécution
et la validation d’une certaine quantité de logiciel en utilisant la simulation native.

1.2.1 Interfaces Matériel Logiciel

L’abstraction est définie comme un processus de simplification où seules les détails essentiels
d’une entité complexe sont maintenus, pour un objectif spécifique. La notion d’abstraction
peut être appliquée au logiciel, ainsi que des composants de matériel d’un système MPSoC

donné. Une interface matérielle / logicielle sert comme une machine virtuelle, où elle
exécute des commandes, par exemple, des instructions, des fonctions, etc, depuis le logiciel et
interagit correctement avec la plate-forme matérielle. Des nombreuses interfaces matérielles
/ logicielles sont possibles dans des environnements de simulation MPSoC [BYJ04, SGP08,
GGP08]. Nous nous focalisons sur le niveau TLM pour les composants matériels et comparons
diffèrents niveaux d’abstraction du logiciel dans les plates-formes TA (TA pour Transaction
Accurate) ainsi que leurs interfaces c’est-à-dire HDS ¶, HAL · et ISA ¸, comme presenté dans
la Figure 1.5.

Les couches du logiciel bénéficent du fait que la plate-forme matérielle peut fournir
une véritable API pour interagir avec le monde du logiciel. Cette API définit le niveau de
l’interface et est généralement mis en oeuvre à l’intérieur des modèles de matériel en utilisant
un langage de programmation de logiciels. Cette interface d’API rend les couches logicielles

TIMA Laboratory, CNRS/INP Grenoble/UJF 7

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

ISA

HAL

HDS

FUN

CA

TA

VA

SL

H
ar

dw
ar

e
A

bs
tr

ac
ti

on
 L

ev
el

s

S
of

tw
ar

e
In

te
rf

ac
e

L
ay

er
s

2

1

3

Figure 1.5: Niveaux d’abstraction matérielle et couches d’interface du logiciel

CPU#0

Software API

Low Level
Software Layers

High Level
Software Layers

Hardware
Module

(SystemC)

Software
Code

(C/C++,...)

Comm. Network

(a) Principe d’exécution en couche

Hardware
Module

(SystemC)

CPU#0

HAL

Operating
System

C/Math/Comm.
Libraries

HDS API

Comm. Network

Software
Code

(C/C++,...)

Multi-threaded Applications

T1 T5T4

(b) Exécution sur la couche d’HDS

Hardware
Module

(SystemC)
CPU#0

HAL

HAL API

Comm. Network

Software
Code

(C/C++,...)

Operating
System

C/Math/Comm.
Libraries

Multi-threaded Applications

T1 T5T4

(c) Exécution sur la couche d’HAL

Hardware
Module

(SystemC)CPU#0

ISA 'API'

Comm. Network

Software
Code

(C/C++,...)
Operating

System
C/Math/Comm.

Libraries

Multi-threaded Applications

T1 T5T4

Hardware Abstraction Layer

(d) Exécution sur la couche d’ISA

Figure 1.6: L’exécution en couches du logiciel à différents niveaux de l’interface

supérieures complètement indépendants des modèles matériels inférieurs, car ils peuvent
être compilés et exécutés sur l’interface fournie. La Figure 1.6(a) montre le principe de ces
modèles d’exécution.

Les modèles de logiciels à couches les plus fréquemment utilisés [BBY+05, TRKA07,
PJ07, CSC+09] implémentent l’API HDS pour des applications logicielles de haut niveau. Il
s’agit d’une solution difficile car, pour construire des applications réalistes en utilisant cette
interface de haut niveau, les modèles matériels doivent mettre en oeuvre de nombreuses APIs.

8 Mian-Muhammad Hamayun

1.2 Problématique

La quantité de logiciels qui pourraient être validée en utilisant ces interfaces est très limitée,
ce qui reduit leur utilisation en pratique. Aucune de ces approches ne cible la création
dynamique des tâches ou de migration des threads entre les processeurs, comme cela a lieu
sur les plateformes SMP (SMP pour Symmetric Multi-Processor). La Figure 1.6(b) montre
l’organisation des plateformes de simulation à la base d’interfaces HDS.

Quelques approches [YJ03, YBB+03, BYJ04, GGP08] reposent sur la définition d’une
couche HAL fine qui doit être utilisé pour tous les accès liés au matériel. La couche HAL

est mise en oeuvre dans une enveloppe qui comprend un thread matériel pour chaque
processeur, appelé l’EU (EU pour Execution Unit). La pile logicielle entière au-dessus du
HAL peut être compilée de manière indépendante, y compris le système d’exploitation et
les bibliothèques standard et exécuté nativement. Chaque appel de fonction HAL est réalisé
dans le contexte d’un EU en supposant que tous EUs appartenant de l’enveloppe partagent
le code du système d’exploitation et des structures de données. Comme les fonctions de
commutation de contexte appartienent à la couche d’HAL, la migration des threads de logiciel
comme dans le SMP est pris en charge dans de telles plates-formes. La Figure 1.6(c) montre la
structure des modèles basés sur l’interface d’HAL.

Les plates-formes de simulation natives qui sont basées sur ce qu’on appelle l’API ISA (ou
ISA Hôte), comme montre la Figure 1.6(d), n’ont pas été discutées dans la littérature. Les
plates-formes TA les plus communes qui assurent un niveau d’exécution à l’ISA du logiciel,
cible l’usage des ISSes. La déficience principale de ces modèles ressort de l’utilisation soit
des ISSes [LP02, HJ08] ou des solutions à base de DBT [GFP09] (DBT pour Dynamic Binary
Translation), qui interprètent / traduisent les instructions au moment de l’exécution et
entraînent des simulations plus lentes. L’ensemble des techniques de simulation natives
discuté jusqu’ici souffre du problème des espaces d’adressages où le logiciel natif s’exécute
dans l’espace d’adressage d’hôte et la plate-forme matérielle simule l’espace d’adressage de
la cible. Ces différences rendent difficile la modelisation de certaines interactions entre le
matériel et le logiciel, comme expliqué dans la section suivante.

1.2.2 Les Espaces d’Adressage Cible et Hôte

Les plates-formes de simulation natives font face à deux types de dépendances, résultant
principalement de la compilation native du logiciel. Les différences dans ISA des processeurs
hôte et cible, ainsi que les détails spécifiques des modules matériel doivent être abordées
au départ. Ces différences sont résolues en utilisant explicitement l’API HAL pour toutes
les interactions entre les composants logiciels et matériels, ce qui donne une pile logicielle
indépendante du matériel, à l’exception de la mise en oeuvre de HAL. La deuxième source de
dépendance se manifeste par les représentations de la mémoire dans les composants matériels
et logiciels. Pour être précis, deux espaces d’adressage différents et parfois contradictoires
doivent être considérés, l’espace d’adressage cible (T) et hôte (H), comme montré dans la
Figure 1.7.

T La plate-forme matérielle, compilé sur la machine hôte, simule les adresses cibles qui
sont connues au moment de la compilation, c’est-à-dire le mappage des adresses dans
les composants matériels qui ont été définis à l’avance par le concepteur du système
et les décodeurs d’adresse de la plateforme utilisent ces plages d’adresses pour la
communication entre les modèles de matériel.

H La pile logicielle est compilé pour la machine hôte et toutes les références à la mémoire

TIMA Laboratory, CNRS/INP Grenoble/UJF 9

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

sont inconnues au moment de la compilation. Les adresses du logiciel sont connues à
l’exécution lorsque la bibliothèque représentant le logiciel est effectivement chargé dans
la mémoire de l’hôte. En général c’est le processus SystemC qui charge la bibliothèque
et fournit le contexte d’exécution.

Le problème des espaces d’adressage cible et l’hôte n’apparaît pas dans les plates-formes
de simulation basées sur l’ISS, où à la fois des composants matériels et logiciels voient le même
espace d’adressage, c’est-à-dire l’espace d’adressage cible. Ces différences dans les espaces
d’adressage ne permettent pas de modéliser certaines interactions entre les composants
matériels et logiciels.

Software Compiled as Dynamic Library

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

T

Simulated Target
Address Space

Communication Network

DMA ITCADC

HAL

EU0 Flash
HAL

EU1

1

RAM

Bridge

Bridge

ITC
DMA
ADC

RAM

Flash

H

Host (SystemC)
Address Space

S
of

tw
ar

e
 S

ta
ck

Lo
ad

ed
 in

 H
os

t M
em

o
ry

S
ys

te
m

C
 P

la
tfo

rm
Lo

ad
ed

 in
 H

os
t M

em
o

ry
.data
.bss
.text

.data

.text

.bss

2

Figure 1.7: Représentations de la mémoire cible et hôte (Adapté de [Ger09])

Deux principales classes de solutions ont été proposées pour résoudre ce problème, le
remappage des adresses et l’unification des espaces d’adressages.

1.2.2.1 Les Techniques de Remappage des Adresses

Des techniques simples de remappage effectuent la conversion d’adresses entre l’espace cible
et l’espace d’adressage du processus de simulation par l’utilisation de primitives spécifiques
pour les entrées / sorties. Cela ne résout pas le problème des accès externes vers des buffers
alloués nativement. Les stratégies de remappage plus complexes reposent sur le fait qu’une
exception du système d’exploitation de l’hôte sera soulevée lors d’un accès à une mauvais
adresse virtuelle.

Le principe est de marquer comme non valides (invalid) toutes les pages mémoires visibles
par les composants de la plateforme, en utilisant le système d’exploitation hôte. Tout les
accès à ces pages déclenchent une exception que le processus de simulation peut intercepter
et gérer. Il peut y avoir des problèmes de performance, si de nombreuses exceptions sont
levées, et les aspects techniques de manipulation des chevauchements entre les deux espaces
de la mémoire reste un problème. Par exemple, les adresses mémoire au delà de 3 Go

10 Mian-Muhammad Hamayun

1.3 Virtualisation Assistée par le Matériel

(0xC0000000) dans l’architecture x86 sont réservées pour le code du noyau Linux. La
Figure 1.8 met en évidence le principe général des techniques de remappage des adresses.

Communication Network

DMA ITCADC

FlashRAM

Bridge

CPU0

HAL

CPU1

HAL

Transaction Accurate HAL API

Software Compiled as Dynamic Library

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

T

Simulated Target
Address Space

H

Host (SystemC)
Address Space

.data

.text

.bssFlash

Bridge

ITC
DMA
ADC

.data

.text

.bss

RAM

.data

.bss

.text

Overlapping

Figure 1.8: Modification de la mémoire cible pour remmapage des adresses

1.2.2.2 Représentation de la Mémoire Uniforme et Edition de Liens Dynamiques

L’unification repose sur l’utilisation d’un mappage de mémoire unique pour le logiciel, et les
composants matériels de l’environnement de simulation natifs. Le mappage du processus
de simulation est sélectionné à cet effet comme il est également utilisé par la pile logicielle
de simulation. L’unification nécessite de modifier la plate-forme matérielle de sorte que
chaque composant exporte un ensemble de symboles obligatoires qui doivent être résolus
au moment de la liaison pour effectuer un remappage à faible coût. Ces plates-formes
requièrent également des modifications du système d’exploitation, afin qu’il accède au
matériel uniquement par le biais des appels de fonctions HAL et n’utilise jamais des adresses
codées en dur. La Figure 1.9 représente le principe de ces techniques.

Les inconvénients comprennent la modification des modèles de simulation pour créer
l’espace de mémoire unifié, l’ajout d’une étape de liaison spécifique visible à l’utilisateur, et
le port du système d’exploitation sur la couche HAL natif. Afin de simuler la bibliothèque C
complète, en particulier les fonctions de gestion de la mémoire, un espace d’adressage bien
séparés doit être fourni au système d’exploitation s’exécutant de façon native.

1.3 Virtualisation Assistée par le Matériel

La virtualisation des ressources informatiques physiques est un concept bien connu [Gol74,
Cre81] et fournit des moyens pour le partage de ces ressources pour améliorer l’utilisation du
système. Il est similaire à l’abstraction, mais les détails des ressources sous-jacentes ne sont

TIMA Laboratory, CNRS/INP Grenoble/UJF 11

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

D
y
n
m

ic
 L

in
ke

r

Li
st

 o
f S

ym
bo

ls

D

Software Compiled as Dynamic Library

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

H

Host (SystemC)
Address Space

S
of

tw
ar

e
 S

ta
ck

Lo
ad

ed
 in

 H
os

t M
em

o
ry

S
ys

te
m

C
 P

la
tfo

rm
Lo

ad
ed

 in
 H

os
t M

em
o

ry

C

Communication Network

HAL

EU0

HAL

EU1
Flash

.text

5

ITC

6

RAM
.data
.bss

3

DMA

2

ADC

1

Bridge

4

Address
Decoder
.text 5
.bss 3
.data 3
ADC 1
Bridge 4
DMA 2
ITC 6

E

.data
.bss
.text

.data

.bss

.text

ITC
DMA
ADC

RAM

Bridge

Flash

B

Symbol
name = ".data";
value = 0xb79e24d0;

Mapping
base = 0xb720ef00;
size = 16 MB

A

Figure 1.9: Représentation uniforme de la mémoire dans l’espace d’adressage de machine hôte

pas nécessairement cachés pour le logiciel, car il traite de la création de structures logiques
qui fonctionnent comme la machine physique réelle.

Dans un système non virtualisé, un seul système d’exploitation contrôle des ressources
matérielles alors que dans un environnement virtualisé une nouvelle couche logicielle est
introduite, connu sous le nom VMM (VMM pour Virtual Machine Monitor) ou hyperviseur,
qui contrôle et arbitre les accès aux ressources de la plateforme. Cela permet l’utilisation de
plusieurs systèmes d’exploitation sur une seule machine matérielle, communément connus en
tant qu’invités de la VMM. La VMM présente un ensemble d’interfaces virtuelle qui constituent
une machine virtuelle à chaque système d’exploitation invité, en leur faisant croire qu’ils
ont un contrôle total sur la machine "physique". La terme hôte est couramment utilisé pour
désigner le contexte d’exécution de VMM ou le système d’exploitation hôte.

Cette section présente la contribution principale de cet thèse et presente l’utilisation du
HAV dans le cadre d’environnements de simulation natifs événementiels pour la modélisation
des architectures MPSoC. La technologie d’HAV fournit du matériel dédié à la virtualization et
prend en charge les fonctionnalités clés suivantes:

v Nouveau mode de fonctionnement invité: Ce mode offre un nouveau contexte
d’exécution de la machine hôte dans lequel l’espace d’adressage peut être entièrement
adapté. Le logiciel invité s’exécute en mode de fonctionnement non-root alors que le
logiciel hôte et VMM s’exécutent en mode de fonctionnement root. La Figure 1.10(a)
montre les modes de fonctionnement invité et hôte.

v Commutation de contexte basée sur le matériel: Une prise en charge matérielle a été
introduite pour la commutation atomique entre les modes hôte et invité et vice-versa,
de manière complète et efficace. Le matériel commute les registres de contrôle, les
registres de segments et le pointeur d’instruction de telle sorte que la commutation
des espaces d’adressage et de transfert de contrôle sont effectué de façon atomique. La

12 Mian-Muhammad Hamayun

1.3 Virtualisation Assistée par le Matériel

Figure 1.10(b) montre les transitions de VM Entry et VM Exit entre les modes hôte et
invités.

v Rapport de changement de mode invité à hôte: Chaque fois que le logiciel invité
quitte le mode invité, il rend compte du motif de la sortie à la VMM, qui utilise cette
information pour prendre une action correspondant.

0
1
2

3VCPU

0
1
2

3CPU

Host
State Area

Guest
State Area

Virtual Machine Control
Structure (VMCS)

(a) La mode hôte vs. invité dans HAV

H/W VM Control
Structure (VMCS)

Host Processors
with

VT-x (or VT-i)

VMM

Memory and I/O
Virtualization

VMCS
Configurations

CPUn

VT-x

CPU1

VT-x

CPU0

VT-x

R
i
n
g

0

R
i
n
g

3

V
T
 R

o
o
t

O
p

e
ra

ti
o
n
s

V
T
 N

o
n
-R

o
o
t

O
p

e
ra

ti
o
n
s

VM0

Applications

Operating
System

VM1

Applications

Operating
System

VM
Entry

VM
Exit

(b) VMCS, operations VT root et non-root

Figure 1.10: Modes hôte et invité dans HAV (Les processeurs Intel)

Chaque transition VMX entre l’hôte et l’invité peut commuter des espaces d’adressage.
Cette fonction permet au logiciel invité d’utiliser son espace d’adressage complet, qui peut
être différent de celui de l’hôte et de la VMM. L’espace d’adressage invité fait partie de l’espace
d’adressage utilisateur sur la machine hôte, qui définit des traductions des adresses physiques
de l’invité vers les adresses virtuelles de l’hôte. La VMM fournit les traductions d’adresses
suivantes:

v La traduction de GPA (GPA pour Guest Physical Address) vers HPA (HPA pour Host
Physical Address) quand la pagination est désactivée dans mode invité et le logiciel
utilise des adresses physiques.

v Les traductions de GVA (GVA pour Guest Virtual Address) à GPA et à HPA quand la
pagination est activée en mode invité.

v Les traductions NGVA (NGVA pour Nested Guest Virtual Address) à NGPA (NGPA
pour Nested Guest Physical Address) à GPA et à HPA quand l’invité lance son propre
invité, et la pagination est activée à la fois dans l’invité et l’invité emboîté.

Les traductions précitées sont fournies en utilisant soit les SPT (SPT pour Shadow Page
Tables) ou en exploitant le support matériel de pagination à deux dimensions appelé EPT
(EPT pour Extended Page Tables) ou RVI (RVI pour Rapid Virtualization Indexing) par Intel
et AMD, respectivement. En essence, la VMM est responsable de l’exposition d’une MMU

(MMU pour Memory Management Unit) hôte au logiciel invité, lors de la traduction des

TIMA Laboratory, CNRS/INP Grenoble/UJF 13

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

VM0

Guest
Page Tables

VMn

Guest
Page Tables

VMM

I/O
Virtualization

Shadow
Page Tables

CPU0

TLB

Host Memory

Remap
Induced
VM Exits

(a) Using Shadow Page Tables (SPT) /
Utiliser Shadow Page Tableaux

VT-x
with EPT

VM0

Guest
Page Tables

VMn

Guest
Page Tables

CPU0

EPT
Walker

Host Memory

Extended
Page Tables
(EPT)

VMM

I/O
Virtualization

No VM Exits

(b) Using Extended Page Tables / Utilisant Extended
Page Tables

Figure 1.11: Support pour la virtualisation de la mémoire dans HAV

adresses virtuelles ou physiques invitées en adresses physiques de l’hôte, en utilisant l’une
de ces technologies.

La virtualisation de la mémoire en utilisant SPT est fourni par la VMM basé sur HAV par
d’interception des toutes les opérations de pagination du logiciel invité, y compris les défauts
de page, l’invalidations des pages et l’accès aux registres de contrôle émulés des invités
(CR0, CR2, CR3 et CR4). Essentiellement, toutes les tentatives du logiciel invité d’accéder au
matériel de traduction d’adresse sont trappées par la VMM et émulées.

Lorsque le support de pagination à deux dimensions est activé dans l’HAV, les adresses
physiques employées dans le mode de fonctionnement non-root i.e. invité, sont converties
en parcourant un ensemble de structures de pagination EPT. Ces structures sont mises en
oeuvre dans le matériel, et un composant matériel i.e. EPT Page Walker traduit les GPAs à
HPAs finaux qui sont utilisés pour accéder à la mémoire de l’hôte. Les Figure 1.11(a) et
Figure 1.11(b) montrent les principes génériques des pages shadow et des tables de pages
étendues.

1.4 Simulation Native à l’Aide de la Virtualisation Assistée par le
Matériel

Nous résoudrons le problème des espaces d’adressage cible et hôte dans la simulation native
en introduisant une couche de traduction d’adresses transparente et basée sur le support
matériel fourni par la technologie d’HAV. Cette technique de traduction est différente des
ISSes basés sur DBT (DBT pour Dynamic Binary Translation), qui invoquent des fonctions
de traduction d’adresses à base de logiciel pour chaque accès mémoire, dégradant ainsi
la performance de simulation. Cet section donne un aperçu de la façon dont on résout
le problème des espaces d’adressage en intégrant une VMM dans un environnement de
simulation basée sur les événements.

Concrètement, nous intégrons l’open source KVM basé sur Linux dans l’environnement

14 Mian-Muhammad Hamayun

1.4 Simulation Native à l’Aide de la Virtualisation Assistée par le Matériel

SystemC. Notre contribution n’est pas de créer une nouvelle machine virtuelle fondamentale
basé sur HAV, mais d’utiliser un existant et de l’intégrer dans un environnement de simulation
SoC événementiels pour résoudre le problème des espaces d’adressage décrit dans la
section Section 1.2.2.

Les NPU (NPU pour Native Processing Units) sont basées sur le concept de module
SystemC et constituent la base de notre framework de simulation. Chaque NPU modélise un
processeur natif et fournit l’interface entre les composants SystemC matériels et KVM. Pour
l’interfaçage avec KVM, il utilise la bibliothèque de l’espace utilisateur KVM, qui exporte
les fonctions clés pour la manipulation de la machine virtuelle. Le module de noyau KVM
expose l’ISA du processeur hôte à la pile logicielle, c’est-à-dire l’ISA x86 dans notre cas. La
pile logiciel, y compris le système d’exploitation embarqué, la couche d’HAL et l’application
est compilée au format binaire hôte et exécutée dans une machine virtuelle.

Chaque processeur natif comprend un fil SystemC pour modéliser le processeur et les
composants pour interagir avec la bibliothèque de l’espace utilisateur KVM, tels que les
fonctions de rappel et de fonctionnalités pour exploiter l’interface de la bibliothèque de
KVM. Les plate-formes de simulation natives demandent certains services à KVM, tels que la
création d’une nouvelle machine virtuelle comprenant un ou plusieurs VCPU (VCPU pour
Virtual CPU), l’initialisation de l’espace mémoire de l’invité et le lancement d’exécution du
logiciel. Chacune de ces demandes est envoyée au module KVM en utilisant l’interface ioctl
fournies par le noyau Linux. Chaque ioctl retourne une valeur pour indiquer le succès ou
l’échec du service demandé. La Figure 1.12 fournit une vue de haut niveau des unités de
traitement natifs et leur relation à KVM et la Figure 1.13 donne le flux global d’exécution de
la plate-forme de simulation natifs proposée.

User Mode Kernel Mode

KVM

K
V

M
 U

se
r

S
p
a
ce

 L
ib

ra
ry

SystemC/TLM Ports

I
O
C
T
L
(
)
s

C
a
l
l
b
a
c
k
s

E
x
i
t

R
e
a
s
o
n

VCPU

In Kernel
I/O Device
Emulation

Shadow
Page Tables

Host
State Area

Guest
State Area

VMCS

NPU

SC_THREAD MMIO

Semi-
Hosting

KVM Library Interface

A

B

Figure 1.12: Les unités de traitement natifs (NPU) et leur interfaces avec KVM en utilisant la
bibliothèque utilisateur

Les plates-formes de simulation natives font face à deux types de dépendances, résultant
principalement de la compilation native du logiciel. Les différences dans l’ISA des processeurs
hôtes et cible, ainsi que les détails spécifiques de modules matériel doivent être abordés au
départ. Ces différences sont résolues en utilisant explicitement l’API HAL pour toutes les
interactions entre les composants matériels et le logiciel. Il en résulte une pile logicielle
indépendante du matériel, à l’exception de la mise en oeuvre de la couche HAL. En
conséquence, notre approche est similaire à la paravirtualisation. La couche d’HAL fournit
une interface qui est spécifique au système d’exploitation s’exécutant sur le dessus de celui-ci
ainsi que met en oeuvre l’interface HAL en fonction de la plate-forme sous-jacente. Nous
avons mis en place notre approche basée sur HAV pour le DNA-OS [GP09]. La deuxième

TIMA Laboratory, CNRS/INP Grenoble/UJF 15

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

Execute Native
Code in Guest

VM Exit
(With Reason)

VM Entry

Guest ModeKernel ModeUser Mode

Native Processer
+ KVM Library

Save Guest,
Load Host

State

Handle
- Page Faults
- In Kernel I/O
- ...

Handle
Host IRQs

Update
Guest State

Save Host,
Load Guest

State

SystemC
World

MMIO Callback
Functions

Set and Handle
External Events

Semi-hosting
i.e. Annotations,

Profiling

Update Context
Raise IRQs

KVM RUN

Yes
MMIO?

No

PMIO?
Yes

No

R
e
tu

rn
 P

a
th

A B

C

E

F

G
D

Signal
Pending?

Yes

No

Yes

No

Debug
Exception?

Debugging
Interface

SystemC I/O
Modules/Events

SystemC
Comm. Module

Other SystemC
Based ISSes
i.e. QEMU

H

Figure 1.13: Le flux d’exécution dans la simulation native basée sur la virtualisation à l’assistance
matérielle

source de dépendances se manifeste par les représentations de la mémoire dans le matériel
et les composants logiciels, comme déjà discuté dans la Section 1.2.2. Comme nous basons
notre solution sur la technologie d’HAV, qui exporte l’ISA spécifique de l’hôte à ses invités, la
couche de d’HAL est implémentée en utilisant l’ISA hôte (x86 dans notre cas).

En utilisant la technologie d’HAV, toutes les interactions entre les composants logiciels
et matériels ont lieu au niveau ISA hôte, comme cela a été discuté dans Section 1.2.1 (Fig-
ure 1.6(d)). La couche d’HAL fournit les APIs pour gérer les contextes de processus, les
primitives de synchronisation, endianness, la mémoire et les accès entrée/sortié et la gestion
des interruptions. La Figure 1.14 indique le fait que l’ensemble des couches logicielles
supérieures d’HAL sont indépendantes de la plate-forme sous-jacente, et que l’HAL est
spécifique à l’architecture de la machine hôte.

Une fois l’exploration initiale de espace de conception terminée pour un SoC donné, la

16 Mian-Muhammad Hamayun

1.4 Simulation Native à l’Aide de la Virtualisation Assistée par le Matériel

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications CPU_CONTEXT_INIT(...){
/* Process context initialization
 routine in Host ISA. */
}
CPU_CONTEXT_SAVE(...){
/* Process context routine in Host
 ISA for saving the register state
 of current process in memory. */
}

CPU_TEST_AND_SET(...){
/* Test & Set primitive using the
 Host ISA or Equivalent */
}

...

H
ar

dw
ar

e-
In

de
pe

nd
en

t
S

of
tw

ar
e

 S
ta

ck

Figure 1.14: Couche d’abstraction matérielle dépendant de la machine hôte

même pile logicielle peut être re-compilée pour l’architecture cible sauf la couche HAL et
remplacée par une mise en oeuvre spécifique à la cible. Cela permet de valider une certaine
quantité de logiciel pour l’architecture cible, y compris le système d’exploitation et toutes
les couches logicielles au-dessus. Comme l’initialisation du contexte et des fonctions de
commutation sont inclus dans la couche d’HAL, la modélisation de la création de tâches
dynamique et de migration de threads dans les architectures SMP est possible - une condition
essentielle dans les systèmes sur puce récents.

La Figure 1.15 est empruntée de [KKL+07] et modifiée pour se concentrer sur la façon
dont à la fois la mémoire et entrées/sorties du système cible sont mappées dans l’espace
d’adressage de l’utilisateur, ce qui les rend accessibles au modèles de mémoire SystemC.
Pour la pile logicielle simulée qui ne connaît que l’espace d’adressage de la cible, les adresses
mémoire "physiques" utilisées par le binaire cible sont les adresses virtuelles mappées par le
module KVM du noyau Linux à une série de pages réelles de mémoire physique de la plate-
forme hôte. Tous les modèles SystemC peuvent accéder à ces pages physiques en utilisant un
autre mappage de la MMU qui est également maintenu par le module KVM. L’accès à ces pages
est entièrement transparent, c’est-à-dire qu’une application qui s’exécute en mode invité
restera en mode invité. Cela conduit à une partage optimale des données bi-directionnelles
entre les binaires cible et de l’environnement SystemC.

En outre les accès mémoire, le logiciel embarqué cible doit également accéder aux
périphériques d’entrée/sortie. Le MMIO (MMIO pour Memory-Mapped I/O) et le PMIO
(PMIO pour Port-Mapped I/O) sont les deux méthodes bien connues qu’un processeur peut
utiliser pour effectuer des accès entrées/sorties. Comme l’architecture x86 supporte les deux
méthodes, le logiciel cible simulé peut accéder aux périphériques d’entrée/sortie avec ces
deux méthodes. Cependant, puisque la plupart des processeurs embarqués ne supportent
que MMIO, comme ARM par exemple, nous supposons que les composants matériels sont
accessibles par MMIO seulement.

Par opposition à l’accès mémoire, le MMIO ne peut pas être mappé et être directement
accessible car le comportement de lecture / écriture d’accès à un registre matériel est
normalement différent de celui de la mémoire. Un accès registre du matériel peut déclencher
certaines actions du composant matériel cible au lieu de simplement lire / écrire une valeur
de données. Comme tous les périphériques d’entrée / sortie d’un MPSoC sont réellement
modélisés au sein de SystemC, à la place du vrai matériel, SystemC doit obtenir le contrôle et
le transmettre à des composants matériels, chaque fois qu’une instruction de chargement
ou stockage est exécuté. Ce processus peut se réaliser naturellement sur une plate-forme de
virtualisation basée sur KVM.

TIMA Laboratory, CNRS/INP Grenoble/UJF 17

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

Linux Kernel
+

KVM Kernel Module

Host Physical
Memory Pages

assigned to Guest

Memory Space Reserved
by Linux Kernel

Guest Memory Mapped to
SystemC Memory Model

SystemC kernel

SystemC
I/O Devices Models

Native Processor
+ KVM User-space Library

Target "Physical"
Memory Address Space

Target "Physical"
I/O Address Space

(MMIO+PMIO)

Host Address
Space in User Mode
H Target Address

Space in Guest Mode
T

Figure 1.15: Accès mémoire et d’entrées / sorties

Lorsque le logiciel cible simulé effectue l’accès MMIO d’une adresse qui n’appartient pas à
l’espace de mémoire, une exception de page est lancée par la MMU du matériel qui impose
au processeur de quitter le mode invité et permet au pilote KVM de gèrer l’exception. Le
pilote transfère l’accès MMIO à la bibliothèque KVM dans l’espace utilisateur, qui transmet
cet accès au processeur natif (NPU), en utilisant les fonctions de rappel installées lors de
l’initialisation, comme le montre la Figure 1.13 E . A l’aide de l’API KVM, le processeur
natif peut obtenir les adresses d’entrée/sortie cible et lancer les opérations d’accès SystemC
normales en utilisant les ports TLM et les composants de communication, comme le montre
la Figure 1.12 A .

Comme le logiciel invité utilise des adresses d’entrée/sortie cibles qui sont exactement
les mêmes que celle simulées par la plateforme SystemC, les composants de communication
peuvent utiliser des tables de décodage d’adresses attribuées de manière statique. Cet
aspect particulier nous donne la liberté d’utiliser des modèles de matériel non modifiés,
par opposition à la technique proposée dans [Ger09, GHP09], où les composants matériels
doivent être modifiés pour supporter la liaison dynamique, comme montre la Figure 1.9.
Grace à l’attribution des adresses statiques dans le décodeur de la plate-forme, la pile
logicielle compilé statiquement peut être utilisée, et ne nécessite pas de support de liaison
des composants de la plateforme à l’execution.

La solution globale se compose d’une couche HAL dependant de machine hôte, le module
KVM de noyau Linux, la bibliothèque KVM en espace utilisateur et les modèles de processeurs
natifs basés sur SystemC, comme le montre la Figure 1.16. Deux points importants doivent
être revus; tout d’abord, l’espace d’adressage de la mémoire visible par le logiciel invité
est le même que celui mappé par le modèle de mémoire SystemC et il est accessible de
façon transparente au logiciel invité. En second lieu, les accès d’entrée/sortie initiés par le
logiciel embarqué passent par le module KVM du noyau et une bibliothèque dans l’espace
utilisateur pour atteindre le modèle de processeur natif, ce qui lance les transactions réelles
de lecture/écriture sur le réseau de communication de la plate-forme matérielle.

18 Mian-Muhammad Hamayun

1.5 Conclusion

SystemC Address
Space

User Mode

Kernel
Mode

IOCTL()s

KVM Kernel Module

Exit Reason

VM Exit
Reason+Qualification

VM Entry

Guest Mode
Target Address Space

"P
h
y
si

ca
l"

 M
e
m

o
ry

M
e

m
o

ry
 A

cc
e

ssSoftware Stack (ELF Binary)

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

KVM User Space Library

KVM Library
Commands

MMIO/PMIO
Callbacks

Communication Network

NPU Semi-
Hosting

MMIO
Timer

1

TTY

2

RAM

3

ADC

4

DMA

5

Bridge

6

ITC

7

Address
Decoding Table m

m
a
p
(
)
e
d

M
e
m
o
r
y

ITC 0xA0000600
0xA000061F 7

RAM 0x00000000
0x07FFFFFF 3

TTY 0xC0000000
0xC000003F 2

Timer 0xC1000000
0xC100000F 1

ADC 0xB4000200
0xB400021F 4

Bridge 0xB4001000
0xB4100FFF 6

DMA 0xA0000500
0xA000051F 5

Device Addr. Range Port

Figure 1.16: Processeur natives, bibliothèque KVM, KVM et la pile logicielle invité

1.5 Conclusion

Ce chapitre a présenté la contribution principale de cette thèse. Nous avons démontré que le
problème des espaces d’adressage introduit par les techniques natives peut être résolu en
utilisant la technologie HAV. Les éléments clés de la solution proposée sont les NPUs, une
couche d’HAL dépendant d’hôte et des accès entrée / sortie à l’aide de MMIO fournie par KVM.

La solution proposée résout efficacement le problème des espaces d’adressage cible et hôte.
Elle permet d’utiliser le matériel et des composants logiciels non modifiés. En outre, elle
permet de valider une certain quantité de logiciel au dessus de la couche d’HAL et n’impose
pas de contraintes de codage du logiciel. La solution proposée est évolutive et peut être
utilisé pour la simulation de plusieurs éléments de traitement, et en même temps flexible
pour les modèles de plate-formes de simulation y compris de plate-formes hybrides (avec
d’autres technologies d’exécution du logiciel) et des modèles de mémoire partagée. La prise
en charge des techniques d’instrumentation automatique est également possible dans la
technique proposée.

Certaines limitations comprennent l’utilisation de la couche d’HAL et la nécessité pour
toutes les interactions de logiciel/matériel de passer à travers de cette couche. Les opérations
d’entrée/sortie nécessitent la commutation de mode invité à mode hôte, dégradant ainsi
la performance des applications intensives en entrée/sortie. La prise en charge de code
auto-modifiant n’est pas disponible dans notre solution, comme la pile logicielle est compilée

TIMA Laboratory, CNRS/INP Grenoble/UJF 19

Simulation Native de MPSoC à l’aide de la Virtualisation Assistée par le Matériel

statiquement et aucune aide pour la traduction à l’exécution est disponible. La précision
de la simulation du point de vue de l’estimation de la performance est très dépendante de
l’exactitude de l’annotation; ainsi l’estimation de la performance des architectures complexes
est difficile en utilisant des techniques d’annotation traditionnelles. Bien que la solution
proposée présente certaines limitations, l’intérêt de cette approche est indiscutable.

20 Mian-Muhammad Hamayun

Part II

Unabridged English Version

TIMA Laboratory, CNRS/INP Grenoble/UJF 21

A dream doesn’t become reality through magic; it takes
sweat, determination and hard work.

Colin Powell

2
Introduction

The current state-of-the-art in Very-Large-Scale Integration (VLSI) technology allows the
fabrication of several billion transistors on a single chip. Designing and integrating

hardware with such a huge number of transistors is very difficult. One simple solution for the
hardware designers, is to put many relatively simple processors on a single chip rather than
designing a complex uniprocessor machine. Moreover, the scalability of mono-processors is
constrained by the power dissipation factors, as one cannot simply increase the clock speed
to gain performance benefits.

High-Performance Computing field is going towards multi-core or Chip Multipro-
cessor (CMP) with dozens of high performance General Purpose Processors (GPPs). In the
integrated systems field, power and yield issues require the use of simpler architectures.
These include processors that feature a higher MIPS to Watt ratio, as well as specialized
hardware IPs. This trend continues towards more regular and homogeneous structures
but still including specific hardware and possibly instruction set extensions in processing
elements. These multiprocessors are specific to a design class known as Multi-Processor
System-on-Chip (MPSoC). Many industrial sectors, such as telecommunications, aerospace,
automotive, military and consumer electronics are currently using such systems.

2.1 The Hardware/Software Co-Design Challenge

The MPSoC design complexity is increasing due to the number and type of processing elements
found in such systems. According to ITRS, as many as 6000 processors are expected on a single
SoC by the end of year 2026, as shown in Figure 2.1. Designing and verifying a hardware
solution with such high number of processing elements, with even more complex software
including hundreds of applications to exploit it, is an enormous challenge.

Similarly, time-to-market is of prime importance in consumer electronics life-cycle, for
product manufacturers to remain competitive and be successful in meeting market demands.
The ever longer design and fabrication delays of MPSoC systems undermine this goal, as
software development depends on hardware availability. Virtual platforms i.e. simulation

TIMA Laboratory, CNRS/INP Grenoble/UJF 23

Introduction

models provide a feasible alternative, as software development can start early and in parallel
with hardware design. Moreover, software teams need simulation platforms, even if the
hardware is available, as early prototypes are usually very expensive.

Figure 2.1: SoC Consumer Portable Design Complexity Trends [ITR]

Simulation relies on models and as it can be understood that if the models are close
to reality, simulation will be slow, and if they are abstract, the accuracy of results may be
disputable. Several models exist for execution of software in simulation: the first one relies
on Instruction Set Simulators (ISSes) that are the most mature and commonly used processor
virtualization technology. ISSes execute the cross-compiled target binaries (Operating System
+ Applications) and mimic the behavior of target processors by using instruction accurate
interpretation [Bel73]. Their principle drawback comes from the very slow simulation speed.
The second one relies on emulation (mostly) through Dynamic Binary Translation (DBT) [Bel05]
but requires relatively high development cost. The third one uses native simulation i.e. code
execution without cross-compilation. Native simulation techniques [BBY+05, JBP06] achieve
higher simulation speed as they overcome the interpretation/translation cost, by compiling
the embedded software to the host binary format and executing it directly on the host
processors. In order to access the modeled hardware resources, the software must use a
specific Application Programming Interface (API), either at Operating System level [GCKR12]
or Hardware Abstraction Layer (HAL) level [GHP09]. For a detailed overview and comparison
of these software interpretation techniques, kindly refer to [PFG+10].

Usually the functional part of native simulation schemes does not depend on the
Instruction Set Architecture (ISA) of target processors, which makes them attractive from
development point of view. On the other hand this makes the simulation subtly different
from the target execution control flow perspective, as target specific optimizations cannot
be easily applied on the native software. Apart from the above fact, native simulation
techniques introduce problems of their own that take these solutions further away from
the modeled architecture. These include address space differences from the target, as the
native software uses host machine address space for all memory references. This results in

24 Mian-Muhammad Hamayun

2.2 Main Contributions and Organization

conflicting and possibly overlapping address spaces between the host machine and simulated
target architectures. Certain interactions between hardware and software become impossible,
such as Direct Memory Access (DMA) to software allocated memory regions.

As the complexity of modeled architectures increases (both in hardware and software),
native solutions lean away from the target architectures and provide far from realistic results.
Such situations usually arise when modeling parallel machines using native techniques i.e.
using natively compiled software to model the execution of a parallel instruction stream, for
example, in case of Very Long Instruction Word (VLIW) architectures. VLIW is an architecture
of choice for many DSPs, thanks to the simpler hardware design and sophisticated software
support. Examples include the TI C6000 series, Analog Devices SHARC DSPs and TriMedia
processors from NXP Semiconductors. Thus, modeling heterogeneous MPSoCs containing
VLIW as well as GPPs is a desired goal. We need to focus on such future architectures using
native as well as mixed simulation solutions. Figure 2.2 depicts such future trends in
heterogeneous MPSoC architectures.

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

DSP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

GPP

I$ D$

RAM

GPP

I$ D$

GPP

I$ D$

DSP

I$ D$

RAM

DMA

TTY

DAC

ADC

Figure 2.2: Future MPSoCs with Many GPPs along with a few DSPs and Hardware IPs

2.2 Main Contributions and Organization

The primary contribution of this thesis is in native simulation domain and we focus on
problems arising from the use of existing native techniques. We propose a novel Hardware-
Assisted Virtualization (HAV) based native simulation solution that removes a decisive
limitation of all previously proposed native techniques. We demonstrate the scalability
and flexibility of our technique using multiprocessor and hybrid simulation case-studies.
For the secondary contribution, we focus our attention on the simulation of VLIW processors
using native platforms. Thanks to our HAV based native approach, we investigate and propose
a Static Binary Translation (SBT) flow using a retargetable compiler-based components to
achieve fast and accurate simulations.

TIMA Laboratory, CNRS/INP Grenoble/UJF 25

Introduction

The rest of this thesis is organized as follows:

• Chapter 3: Defines the native simulation technique, its key components and principle
problems faced while realizing such a simulation platform. We also describe key issues
that must be addressed for simulating a VLIW processor architecture on scalar machines.

• Chapter 4: Reviews the state-of-the-art on native simulation techniques as well as
binary translation techniques for VLIW processors.

• Chapter 5: Explains our main contribution for native simulation of MPSoC using HAV

technology. We present the solution to main challenges of native simulation as well as
a hybrid simulation platform using different simulation technologies.

• Chapter 6: Augments the native simulation technique by a SBT flow for cross-compiled
VLIW software binaries. The translation flow is retargetable and generates native code,
which is directly executed on top of our HAV-based native platform.

• Chapter 7: Manifests a set of experiments and their results to validate the proposed
contributions of this thesis.

• Chapter 8: Summarizes the key contributions and concludes this work with possible
future directions and ideas.

26 Mian-Muhammad Hamayun

If I had only one hour to save the world, I would spend
fifty-five minutes defining the problem, and only five
minutes finding the solution.

Albert Einstein

3
Native Simulation of MPSoC: A Retrospective

Definition & Problems

The complexity of current Multi-Processor System-on-Chip (MPSoC) systems forbid the use
of analytical methods for their validation and Design Space Exploration (DSE). A number

of research efforts have established the importance of simulation models in MPSoC contexts.
Many of these techniques are based on the principle of native execution, in order to speed-up
the software simulation. However, it is difficult to handle all sources of timing dependencies.
Nevertheless, these models provide a feasible alternative and are an active area of research.

Simulation models can be developed for different abstraction levels, each answering a
different design and precision question. SystemC is an industry standard C++ based library,
which is commonly used in modeling and simulation of MPSoC systems and supports multiple
abstraction levels. We will elaborate on some of the key features of SystemC and how they
relate to our target abstraction level. Another objective of this chapter is to position our
work w.r.t. these abstraction levels and establish a list of questions that we intend to answer in
this thesis. In order to position our work in its context, we start by presenting the architecture
of a generic MPSoC system along with some basic concepts necessary for its comprehension.

3.1 Generic Architecture of An MPSoC

A generic MPSoC architecture can be considered as a set of processing nodes that execute
the overall tasks of the system. These tasks can be either in software or hardware and task
allocation to these nodes can be static or dynamic, depending on the system requirements,
such as performance and energy consumption.

A given node is termed as hardware node, if it is non-programmable and is dedicated
for a specific purpose such as hardware accelerators. For example a deblocking filter, which
improves the visual quality of decoded video frames by smoothing the sharp edges between
blocks, could be implemented as a hardware node. Hardware nodes exploit data parallelism
and are meant to improve the system performance. Software nodes are programmable and

TIMA Laboratory, CNRS/INP Grenoble/UJF 27

Native Simulation of MPSoC: A Retrospective Definition & Problems

Encoded
MJPEG
Stream

Decoded
Video

Stream
IZZIDCTLIBU

DEMUX VLD IQ
SCAN

COMMAND

HUFFMAN
TABLE

QUANTIZATION TABLE

BLOCK

B
LO

C
K

BLOCKBLOCK

IMAGE
SIZE

(a) Specifications of MJPEG Application (Tasks)

COMMUNICATION NETWORK

IZZLIBU

DEMUX VLD IQ

Software Node

IDCT

Hardware
Node

(b) An Example MPSoC Platform

Figure 3.1: Task Partitioning of the MJPEG Application on an MPSoC Platform

serve as general purpose processing elements in MPSoC platforms. These nodes are actually
composed of hardware and software parts, including processor subsystem (CPU, Caches,
Memories, Communication Network, etc.) and software stack (Applications, Operating
System (OS), Libraries and Hardware Abstraction Layer (HAL)).

Figure 3.1(a) shows the set of tasks comprising the Motion-JPEG (MJPEG) application,
where an MJPEG stream is decoded using these tasks and decoded video stream is produced,
which is subsequently displayed using a Framebuffer component. The Inverse Discrete Cosine
Transform (IDCT) task consumes most of the processing time and is fixed in nature, making it
a good candidate for hardware implementation. Figure 3.1(b) shows a possible partitioning
of MJPEG application on a generic MPSoC platform where software and hardware tasks execute
in parallel and communicate through the on-chip communication network.

3.2 Architecture of Software Nodes

A software node is composed of both hardware and software parts known as Processor
Subsystem and Software Stack, respectively, as shown in Figure 3.2. The hardware part
includes CPUs, Cache Memories, Random Access Memory (RAM), Interrupt Controllers, Direct
Memory Access (DMA), Communication Network and other peripherals. Interface components,
such as Bridges can be used to communicate with other hardware/software nodes using
the global on-chip communication network. Usually the processors in a software node are
identical, where they support at-least the same Instruction Set Architecture (ISA) and execute
the same software stack. Such nodes represent Symmetric Multi-Processor (SMP) architectures.
Moreover, these nodes are programmable and provide a great flexibility in MPSoC systems.

The software stack is composed of high level multi-threaded applications, Operating
System (OS), standard libraries (C, Math and Communication etc.) and Hardware Abstraction
Layer (HAL). Software applications are usually multi-threaded and concurrently execute
multiple tasks (true or false parallelism, depending on the underlying resources) for providing
the overall embedded software functionality. The software stack has two distinct Application
Programming Interface (API) layers e.g. the Hardware Dependent Software (HDS) API [JBP06,
DGM09] and HAL API, where the former provides OS-specific functionalities to the
applications and later provides processor subsystem specific services to the HDS layer.

28 Mian-Muhammad Hamayun

3.2 Architecture of Software Nodes

Hardware Abstraction Layer

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

S
o
ft

w
a
re

 P
a
rt

H
a
rd

w
a
re

 P
a
rt

P
ro

ce
ss

o
r

S
u
b

sy
st

e
m

S
o
ft

w
a
re

 S
ta

ck

A SOFTWARE NODE

ITC

RAMCPU#0

I$ D$

DMA

CPU#1

I$ D$

Bridge

Comm. Network

Figure 3.2: Architecture of a Software Node

The HDS provides services for coordinating multiple tasks and shares underlying processor
subsystem resources. The HAL layer is responsible for hiding the processor subsystem specific
details from the operating system, as to facilitate HDS layer portability across different
processor subsystems [YBB+03]. The structure of software stack, as presented here, is the
same as in classical computer systems [Tan84]. Such layered software structure could become
in-efficient in some specific cases, such as Digital Signal Processor (DSP) based systems, which
usually do not use operating systems.

As discussed above, the processing units in software nodes are identical thus repres-
enting SMP systems. Asymmetric Multi-Processor (AMP) systems can be represented using
multiple software nodes where each software node can use different type of processing
elements. As an example, we could consider an MPSoC system with two software nodes
where the first node contains General Purpose Processors (GPPs) and the other based on Very
Long Instruction Word (VLIW) DSPs, as shown in Figure 3.3. These software nodes could
communicate with each other directly using the global communication network and their
own local memories or in-directly via the shared memory.

3.2.1 Key Terms

v Simulation Platform : A hardware platform refers to the collection of hardware
components including one or more processors and the interconnection network. A
platform can be real such as a Field Programmable Gate Array (FPGA) and the final System-
on-Chip (SoC) or virtual that is based on a modeling language, allowing us simulate the
hardware and execute the software stack on top of it. In this thesis, all of the platforms
discussed are virtual and will be subsequently referred as simulation platforms.

TIMA Laboratory, CNRS/INP Grenoble/UJF 29

Native Simulation of MPSoC: A Retrospective Definition & Problems

Hardware Abstraction Layer

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

ITC

Comm. Network

RAMCPU#0

I$ D$

DMA

CPU#1

I$ D$

Bridge

Global Communication Network

Hardware Abstraction Layer

HAL API

DSP Application

ITC

Comm. Network

RAMDSP#0

I$ D$

DMA Bridge

DSP#1

I$ D$

Network Interface

Shared
Memory

Subsystem

Figure 3.3: Multiple Software Nodes with Different Types of Processors

v Target vs. Host Processor : The processor that will be actually used in the SoC platform
is referred as target processor. This includes the most frequently used processors
in embedded systems e.g. ARM, MIPS, SPARC processors and C6x DSPs. The host
processors, which execute the simulation platform, are usually different from the target
processors and are commonly found in desktop machines e.g. x86 series processors
from Intel and AMD.

v Execution vs. Native Execution : The execution of cross-compiled1 software on the
target processor will be referred to as execution. On the other hand, the execution of
software on the host processor, after compilation of source code for the host machine,
will be referred to as native execution. The execution of software on a target processor,
which is simulated by an Instruction Set Simulator (ISS) is not considered as native
execution.

3.3 Description Languages for Simulation Models

Programming languages have been used to describe the hardware component models as
to ease the Design Space Exploration (DSE) and validation of MPSoC architectures. Principal
problems associated with hardware modeling include the parallel semantics of hardware
components, their structural information (behavior/interfaces) and modeling of timing
behavior in these components, using software languages such as C/C++.

Many research efforts have resulted in new C/C++ based languages, which provide
the semantics necessary for hardware validation [KDM90, GL97, VKS00] and even syn-

1Cross-compilation refers to the generation of executable code for a platform other than the platform on which
the compiler is running.

30 Mian-Muhammad Hamayun

3.3 Description Languages for Simulation Models

thesis [DM99]. These languages raise the abstraction level of modeled hardware, by ignoring
the unnecessary low-level details, enabling the fast architecture exploration of MPSoC systems
that would otherwise be almost impossible using the lower abstraction levels, such as Register
Transfer Level (RTL) and gate level descriptions.

The last decade has seen the emergence of description languages based on C++, such as
SystemC [SYS] and the ones inspired by SystemC itself such as SpecC [GZD+00]. SystemC
has become an industry standard and is considered as a principle language for design and
validation of System-on-Chip (SoC). All simulation platforms presented in this thesis are
modeled using SystemC.

3.3.1 SystemC: A Modeling Language

The SystemC [SYS] is usually referred as a language just like VHDL and Verilog, but in reality
it is a library of C++ classes and macros providing support for the modeling of digital
systems. Besides the infrastructure for parallelism, hardware interconnections and time
modeling, it also includes an event-driven simulation kernel that allows for the Discrete Events
Simulation (DES) of the modeled hardware. The simulation platform and its components are
compiled using a standard C++ compiler and linked to the SystemC library. Thus, a SystemC
based model is an executable program and its execution represents the simulation of the
modeled system.

SystemC supports the hardware modeling at different abstraction levels, from high-level
functional models to the detailed cycle accurate RTL models (c.f . Section 3.4). The Accellera
Systems Initiative [Acc] merged with OSCI (Open SystemC Initiative) in 2011, is responsible
for preparing and disseminating the SystemC specifications and reference implementation.

3.3.1.1 Main Elements

SystemC addresses the modeling of both software and hardware using C++, but our primary
interest here is the architecture modeling of hardware components, so we focus on the
SystemC features that are specific to this domain. SystemC provides classes for structural
and functional modeling of hardware components. We describe the principle elements of
SystemC in the following text.

v Modules and Hierarchy : A SystemC module is simply a class definition that contains
functionality with state, behavior and structure for hierarchical connectivity. SystemC
modules are the basic building blocks of SystemC based design hierarchies, which are
interconnected using channels. A module contains a variety of elements that make-up
its body including constructors, data members, ports, channel instances, modules
instances, destructors, processes and helper functions. Only the constructor is required;
to be useful a module must contain either a process or other module instance(s).

v Interfaces : A SystemC interface is an abstract C++ class that contains no data members
and only provides the pure virtual declarations of methods referenced by SystemC
channels and ports. In other terms, a SystemC interface serves as an API to a set of
derived classes, and ensures independence between the definition and implementation
of communication mechanisms. This independence enables us to replace a given
communication mechanism with another one, provided they implement the same
interface without requiring any changes to the rest of system.

TIMA Laboratory, CNRS/INP Grenoble/UJF 31

Native Simulation of MPSoC: A Retrospective Definition & Problems

v Channels : A SystemC channel is a C++ class that implements one or more SystemC
interfaces and provides methods for communication between modules.

v Ports : A SystemC port is a class templated with and inherits from the SystemC
interface(s). Ports allows modules to communicate with other design elements, by
forwarding the interface method calls to the corresponding channels.

v Events and Sensitivity Lists : SystemC uses processes to model concurrency, and it
works in a cooperative multi-tasking fashion where processes are non-preemptive.
Each process executes a small chunk of code, voluntarily releases control and lets
other processes execute in the same simulated time space. Events are key to such
execution models, like in the SystemC simulation kernel. An event is the occurrence
of a notification at a single point in time and it does not have a duration or value. A
process has to be watching for an event to actually catch it. SystemC allows processes
to wait for events using sensitivity lists, which can be static or dynamic. Only two types
of actions are possible with events, either a process can wait for it to happen i.e. be
sensitive to it or a process can notify an event, resulting in the execution of waiting
processes.

v Processes : The simulation of concurrency in SystemC is the same as in any Hardware
Description Language (HDL). The processes are the main functional elements in SystemC
and have two main types i.e. methods and threads. As discussed earlier, each process can
be sensitive to a set of events. A method could be called many times by the SystemC
simulation kernel i.e. on every notification of events from its sensitivity list. A method
is executed atomically, from the simulated time perspective, and it cannot call the
SystemC time synchronization wait() function.

Threads on the other hand are called only once by the SystemC kernel, at the start
of simulation. Threads can call the SystemC synchronization wait() function, and
execute atomically between two such calls. Once a wait() function is invoked, the caller
thread is suspended and other process can be executed. A process can notify events,
resulting in the execution of sensitive methods and resumption of waiting threads.
A process can also notify timed events where the event will happen in future w.r.t.
to the simulated time. Once all of the resumed processes have been executed, the
SystemC simulation kernel advances the simulation time to the next timed event, and
the simulation continues until there are no more processes ready for execution.

3.3.1.2 Modeling Abstractions in SystemC

The SystemC elements discussed above allow modeling of electronic systems at multiple
abstraction levels. The Figure 3.4 shows two such levels, where communications between
two hardware components have been modeled using detailed and functional levels.

SystemC provides a channel class known as sc_signal, which can be used to model a
single electronic signal or a set of signals representing a bus. Figure 3.4(a) shows the detailed
modeling approach where each of the data, address and control signal has been modeled.
We can see how ports, interfaces and channels are connected. The ports can be used for
input (sc_in), output (sc_out) or both (sc_inout) and channels implement appropriate
interfaces e.g. sc_signal_in_if<>, sc_signal_out_if<> or sc_signal_inout_if<> of
the required size. To ensure proper signal transfers, the connected hardware models

32 Mian-Muhammad Hamayun

3.4 Abstraction Levels and Simulation Models

have to implement a precise communication protocol, usually in terms of a Finite State
Machines (FSMs).

Figure 3.4(b) shows the abstract modeling approach where the detailed signal level
communications have been replaced by equivalent but higher level function calls. Signals are
not used and the functionality of channels is moved inside the slave device models, which
implement a specific interface, such as if_read_write in this example. The implemented
methods e.g. read() and write() are made accessible to other modules using sc_export

type ports. Master devices connect to the slave devices using the sc_port type ports and
directly use the required functionality. This particular modeling style is known as Transaction
Level Modeling (TLM) and results in much faster simulation platforms than the ones modeled
at signal level.

C
h
a
n

n
e
l

Master Device
(Processor)

(Memory)
Slave Device

C
S

O
E

R
/W

A
D

D
R

[0
:3

1
]

D
A
TA

[0
:3

1
]

Po
rt

s

In
te

rf
a
ce

s

(a) Detailed Communication Modeling

Master Device
(Processor)

(Memory)
Slave Device

read() write()

sc_port<if_read_write>

sc_export<if_read_write>

virtual void read(uint32_t addr,
 uint32_t *data) = 0;
virtual void write(uint32_t addr,
 uint32_t data) = 0;

if_read_write

(b) Functional Communication Modeling

Figure 3.4: Communication Modeling Abstractions in SystemC

3.4 Abstraction Levels and Simulation Models

The use of multiple abstraction levels is indispensable for the design of complex systems, such
as MPSoC, and allows us to gradually refine a given specification to the final implementation.
The use of software programming languages for the purpose of hardware modeling was
a key factor in the genesis of these different abstraction levels [JBP06]. Each abstraction
level has an associated simulation model, which enables the validation of full or a part of
the software stack, with a certain level of architectural and timing accuracy. More recently,
the semi-conductor industry has moved towards the standardization of languages, which
support such abstraction levels i.e. [SYS] and [Ber06]

Simulation techniques are now widely in use by the actual SoC design teams [Ghe06] and
hardware/software co-simulation techniques have emerged as a viable and mature Computer-
Aided Design (CAD) technology. Using different abstraction levels, the designers of embedded
systems can perform precision vs. performance trade-offs, depending on the development stage
and many texts such as [MEW02, SLM06] have addressed these issues in detail. Figure 3.5
shows the principle abstraction levels, as proposed in literature, as well as the corresponding

TIMA Laboratory, CNRS/INP Grenoble/UJF 33

Native Simulation of MPSoC: A Retrospective Definition & Problems

simulation models (if applicable). In certain cases, hardware/software interactions are also
modeled, using a hybrid interface model. In the following sections, we briefly introduce
these abstractions levels, along with key benefits and shortcomings.

3.4.1 System Level

The System Level (SL) as shown in Figure 3.5 ¶ is the most abstract level and refers to the
executable specifications of the application. All tasks of the application communicate using
abstract channels and there is no difference between hardware and software tasks. Such a
simulation model could be implemented using a specific language such as Simulink [PJ07,
HHP+07], SystemC or it may even be realized using C/C++ [VKS00]. Simulation models at
this level offer high performance but are purely functional, as they contain neither platform
specific details nor timing information. The software tasks have no relation to the final
software stack and it is not yet decided as which of these tasks will be implemented in
hardware. Nevertheless, this level is used to verify certain functional properties of the
application and can serve as a reference model.

3.4.2 Cycle Accurate Level

On the other extreme, we consider the Cycle Accurate (CA) level shown in Figure 3.5 º, as it
offers the most precise modeling and simulation of hardware and software components w.r.t.
to the real hardware platform, that we consider in this thesis. At this level, the complete
software stack is cross-compiled for the target platform and the final binary is loaded into
the simulated memory during platform initialization. The simulation platform models all
of the hardware components with cycle accuracy and the interconnection components use
the detailed communication modeling approach, as shown in Figure 3.4(a) and all of the
signals are represented exactly as they are in a real platform. As all the functional parts of
the platform are modeled using hardware components, a hybrid hardware/software interface
model is not required. Moreover, as hardware components are modeled using cycle accuracy,
their simulation time advances on each clock cycle, consequently this abstraction level does
not require timing annotation of component models. This level is usually the last step in the
design flow, followed by the modeling of system at RTL level, in order the synthesize the final
circuit.

The target CPU is modeled by an Instruction Set Simulator (ISS), which simulates the
internal details of processor operations, including pipeline stages, instruction dependencies,
delay slots etc. using an infinite execution loop. During each iteration of this loop, the
processor fetches the next instruction from the instruction cache, using the current value
of program counter. The fetched instruction is then decoded and desired operations are
performed on the simulated registers and memory, including load/store, arithmetic and
logical operations. The memory write-back stage stores the resultant values, if any, into the
simulated data cache. In case of an instruction or data cache miss, the corresponding cache-
line is searched in the simulated memory using the cycle accurate interconnection models,
which implement the same communication protocol as in real hardware. Memory hierarchies
are also represented in an accurate fashion, such as cache-coherence in multi-processor
systems, enabling the modeling of software execution timings in a precise manner.

On the down side, this level suffers from very low simulation performance, as the ISS

decodes all the instructions, even if they are executed multiple times, and as a side effect of

34 Mian-Muhammad Hamayun

3.4 Abstraction Levels and Simulation Models

MJPEG
Stream

Video
Stream

DEMUX VLD IQ

IZZIDCTLIBU

Traffic
Generator

Framebuffer
(Visualization)

S/W H/W

Hybrid Interface
Model

P
re

ci
si

on
A

bs
tr

ac
ti

on
 /

P
er

fo
rm

an
ce

IDCT

H/W Node

Abstract HDS &
CPU Subsystem

HDS API

IZZLIBU

DEMUX VLD IQ

Multi-threaded
Application

Software Hybrid Interface Hardware

C
yc

le
 A

cc
ur

at
e

T
ra

ns
ac

ti
on

 A
cc

ur
at

e
V

ir
tu

al
 A

rc
hi

te
ct

ur
e

Sy
st

em
 L

ev
el

Binary Loaded
to Simulated Memory

2

1

3

4

5

COMM. NETWORK

Traffic
Generator

Bridge

Framebuffer
(Visualization)

RAM

ISS/CPU

S/W Node (Hardware Part)

C
la

ss
ic

 T
L

M
(T

L
M

/T
L

M
-T

)

Complete S/W Stack

Processor Specific HAL
HAL API

HDS API

OS C/Math Libs COM

IZZLIBU

DEMUX VLD IQ

Multi-threaded
Application

IDCT

H/W Node

S/W Node (Hardware Part)

COMM. NETWORK

BridgeRAM

Framebuffer
(Visualization)

Traffic
Generator

IDCT

H/W Node

Abstract
HAL & CPUN

at
iv

e
T

L
M

HAL API

HDS API

OS C/Math Libs COM

IZZLIBU

DEMUX VLD IQ

Multi-threaded
Application

IDCT

H/W Node

Cross Compile
& Link

Final Target Binary

S/W Node (Hardware Part)

COMM. NETWORK

Framebuffer
(Visualization)

Traffic
Generator

RAM Bridge

ISS/CPU

Figure 3.5: Abstraction Levels and Simulation Models

TIMA Laboratory, CNRS/INP Grenoble/UJF 35

Native Simulation of MPSoC: A Retrospective Definition & Problems

detailed component/communication modeling. However, this level is suitable for functional
validation of hardware components, such as their FSMs, low-level software implementations
and even synchronization mechanisms in multiprocessor systems that require precise time
modeling.

As the cycle accurate and system level models lie on two extremes, many researchers
have proposed intermediate abstractions including [CG03, Don04, vdWdKH+04, PGR+08],
offering a compromise between precision and performance. Following sections briefly discuss
these intermediate levels.

3.4.3 Virtual Architecture Level

The first refinement step i.e. Virtual Architecture (VA), partitions the hardware and software
tasks and defines a hybrid interface layer between them, as shown in Figure 3.5 ·. The
hybrid interface layer is an abstract implementation of Hardware Dependent Software (HDS)
and CPU subsystem providing operating system primitives, as well as explicit communication
components using abstract channels. These communication components specify an end-to-
end communication path, which could be useful in providing statistics about communication
requirements. The software is only dependent on the HDS API layer, further refinements do
not require modifications to the application code. As a result software application code can
be validated using this abstraction level.

3.4.4 Transaction Accurate Level

The next abstraction level is known as Transaction Accurate (TA) or more familiarly Transaction
Level Modeling (TLM), primarily focuses on communication abstractions to gain performance
benefits. The TA models operate in terms of transactions rather than signals, as shown
in Figure 3.4(b). Two main approaches have been proposed at this level, based on the
techniques used for simulating the software stack. The ISS-based platforms known as
Classic TLM models that benefit from abstractions in communication modeling only and use
target ISSes for interpreting instructions, as in cycle accurate models. The second approach,
known as Native TLM models, replaces the ISS based processors with abstract CPUs and HAL

implementations, in addition to the transaction level communication modeling, and profit
from performance benefits in both computations and communications.

3.4.4.1 Classic Transaction Accurate Level

The Classic TLM level is very similar to the CA level and is shown in Figure 3.5 ¹. At this level,
the signal-based communication interfaces in hardware component models are replaced
with transaction level function calls. As a result, the processing elements i.e. the ISSes also
use transactional interfaces while keeping the internal implementations similar to CA level.
The complete software stack remains unmodified w.r.t. to the CA level and is still cross-
compiled for target machine. The final target binary is loaded into the simulated memory
and interpreted by the ISSes.

Regardless of how precisely the component models and system architecture has been
defined, the overall simulation lacks precision. The principle inaccuracy comes from the TLM-
based communication modeling that does not advance the simulated time i.e. all transactions
take zero-time. Such simulation architectures that lack time modeling in communication
interfaces are also known as Programmer’s View (PV) models. The communication interfaces

36 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

can be time-annotated to improve the simulation accuracy and such models are commonly
referred as Programmer’s View with Time (PVT) [CMMC08] or Transaction Level Modeling with
Time (TLM-T) in literature [TAB07, HSAG10]. More recently, parallel simulation platforms
targeting multi-core machines have appeared in [MMGP10, PMGP10], which refer to such
interfaces as Transaction Level Modeling with Distributed Time (TLM-DT).

The principle deficiency in such models comes from the use of ISSes, which consume
significant processing time as they interpret instructions and large number of transactions
(instruction fetching and data accesses) that are issued on the communication network.
Due to these limitations, the validation of large software stacks such as image processing
applications running on top of an OS becomes impractical.

3.4.4.2 Native Transaction Accurate Level

The concept of native execution is well known to embedded system designers, where they
usually compile a sub-set of software stack for the host machine instead of the target
embedded system. The key benefit is faster execution at the price of a more abstract view of
the execution environment.

Embedded software is organized in layers, where each layer provides a set of APIs to
the upper layers and hides lower level implementation details. In lower software layers,
hardware dependence increases, making them less portable and thus decreasing their possible
validation using native execution. For example, an application which relies on the Portable
Operating System Interface (POSIX) standard, can be compiled on a native machine running a
Linux operating system as well as on an embedded system, which provides an equivalent API.

The key idea in recent native simulation [BBY+05] works lie in confining the hardware
specific details to the HAL and providing a target independent HAL-API to operating system
and libraries. An abstract HAL and CPU implementation provides the interface between
software and hardware models, as shown in Figure 3.5 ¸. As the hardware models do not use
an ISS-based CPU, timing annotations are directly inserted into the software stack [GHP09]
running on the abstract CPU implementation.

Compared to the classic TLM simulation, which uses ISSes as processing elements, native
simulation is much faster but less precise as it is strongly dependent on the annotation
accuracy for modeling of software execution timings. Native simulation, as of today, does
not come without its problems including how it resolves conflicts in the address-spaces of
simulated software and hardware platform and simulating software stacks that use Memory
Management Unit (MMU).

3.5 Native Transaction Accurate Simulation

The Native Transaction Accurate simulation platform proposed in [Ger09] is derived from
[BBY+05] and generic TLM techniques. The key aspect in this methodology is to organize
the software stack in layers, by providing well-defined interface layer APIs. This layered
organization improves software portability and allows for the validation of most of the
software stack. Only the hardware specific parts, which are encapsulated in the HAL layer,
cannot be validated using this approach as they will eventually be replaced with target
processor specific implementation (usually in target assembly) in the final software stack.

TIMA Laboratory, CNRS/INP Grenoble/UJF 37

Native Simulation of MPSoC: A Retrospective Definition & Problems

3.5.1 Hardware Abstraction Layer

Native execution of software is impossible if the interface between software and the
underlying hardware i.e. processor and platform, is not clearly defined. In essence the
hardware specific details should be confined to a single layer so that the rest of software
can be compiled for native machine. The lowest possible software API layer that could be
used to provide such portability, is commonly referred as Hardware Abstraction Layer (HAL)2.
The concept of HAL in SoC domain was introduced by [YJ03], which indicate the provision
of low-level functionalities including platform startup routines, context switching, cache
and virtual memory configurations, synchronization and all of the fine details for hardware
management.

In the native TA simulation platform, HAL declarations and implementation are segregated.
The software stack contains external HAL function declarations and the hardware platform
provides the actual HAL API implementation. Native software is compiled as a dynamic
library and provides definitions of all symbols except for HAL API calls. Dynamic library
manipulation facilities of the host machine are used to load the software stack into the
simulated memory and resolve the external HAL references. This scheme enables portability,
as the same software stack can be recompiled for a different hardware platform that provides
the same HAL interface, including the real hardware platform. In addition, it enables the
hardware platform to intercept all the HAL API calls and redirect them to appropriate platform
components.

Listing 3.1 shows how a HAL function is declared in the software stack and Listing 3.2
provides an example implementation of the same HAL function by the native simulation
platform. We can observe that the implementation uses load linked and store conditional
functions provided by the hardware platform to ensure proper semantics of the test_and_set
synchronization primitive. The m_cpu_id is taken from the current processor instance
and passed to load linked and store conditional operations for ensuring atomicity in
multiprocessor environments.

Listing 3.1 External Declaration of HAL API for CPU_TEST_AND_SET()

1 #ifndef __CPU_SYNC_H__
2 #define __CPU_SYNC_H__
3
4 extern long int CPU_TEST_AND_SET (volatile long int * spinlock);
5
6 #endif /* __CPU_SYNC_H__ */

Listing 3.3 gives an implementation of the same HAL API for ARMv6 processor based
platform, which can be used to generate cross-compiled software binaries. Such binaries
can be potentially used on a real ARMv6 based platform as well on an ISS-based TA or CA

simulation platform, as shown in Figure 3.5 ¹ and º, respectively.

3.5.2 Native Software Execution

Abstract HAL and CPU models form the hybrid interface layer in the native TA abstraction
level, as shown in Figure 3.5 ¸. Execution Units (EUs), as they are referred in [BBY+05, Ger09],

2 HAL is an abstraction layer, implemented in software and hides hardware architecture specific details from
the upper software layers that execute on top of it. Many types of HALs exist, where each operating system gives
its own definition and version of APIs, with more or less abstract descriptions.

38 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

Listing 3.2 HAL Implementation of CPU_TEST_AND_SET() for Native Processor

1 long int CPU_TEST_AND_SET(volatile long int * spinlock)
2 {
3 long int ret;
4
5 do {
6 if((ret = p_io->load_linked((uint32_t*)spinlock, m_cpu_id)) != 0)
7 break;
8 } while((ret = p_io->store_cond((uint32_t*)spinlock, 1, m_cpu_id)) != 0);
9

10 return ret;
11 }

Listing 3.3 HAL Function CPU_TEST_AND_SET() for ARMv6 Processor

1 long int CPU_TEST_AND_SET (volatile long int * spinlock)
2 {
3 register long int ret, temp = 1;
4
5 __asm__ volatile("ldrex %0, %3\n"
6 "cmp %0, #0\n"
7 "strexeq %0, %2, %1\n"
8 : "=&r" (ret), "=m" (*spinlock)
9 : "r" (temp), "m" (*spinlock)

10 : "memory"
11);
12 return ret;
13 }

are used to model this hybrid interface, by providing an implementation of HAL layer, as well
as hardware threads (SystemC Threads) to model the processing elements. Figure 3.6 shows
the detailed organization of HAL and CPU threads using the abstraction of EUs, as well as how
software executes on top of them. The dashed arrows indicate how the control flows between
hardware models and software components.

The software stack is compiled as a dynamic library, with external HAL API references,
and its execution is handled by one or more EUs. A C/C++ HAL interface layer, Figure 3.6 B

, bridges the gap between the HAL calls and their implementation in EUs. The software
execution context as provided by a processor, is modeled using a SystemC thread shown
as Figure 3.6 A . Multiple EUs can be used to model an MPSoC system where hardware
concurrency is provided by SystemC simulation kernel using SystemC threads. The execution
of software on an EU is very similar to a real CPU and following key steps are involved in this
process.

¶ At the start of simulation, each EU creates a thread for software execution, which calls
the reset() function implemented in HAL. This reset() function performs low level
initializations, including interrupt handlers, stack etc., before passing control to the
software entry point.

· Once the low level initializations are complete, the reset() function calls the software
entry point, usually the bootstrap code of operating system. The OS bootstrap initializes
services including memory and process management, file systems, device drivers etc.,
before passing control to the software application.

TIMA Laboratory, CNRS/INP Grenoble/UJF 39

Native Simulation of MPSoC: A Retrospective Definition & Problems

API HAL

12

HAL API

Communication Network

HAL
Execution

Unit#1
RAM

DMAADC

Flash

ITCBridge

E
xe

cu
ti

o
n
 U

n
it

#
0

HAL API

void EU::HAL_READ(...)
{
 wait();
 *data = p_io.read(addr);
}

void EU::reset()
{
 low_level_init();
 sw_entry();
}

HAL Implementation

H
a
rd

w
a
re

S
o
ft

w
a
re

1

C
/C

+
+

 H
A

L
In

te
rf

a
ce

void HAL_READ(uint32_t *addr, uint32_t *data)
{
 EU *current_eu_ptr;
 current_eu_ptr = EU::get_current();
 current_eu_ptr->HAL_READ(addr, data);
}

B

void EU::thread()
{
 reset();
}

1A

11

12

S
o
ft

w
a
re

 S
ta

ck

void function_a()

void sw_entry()

void function_b()

HAL_READ(0xA1002100, &data);

3

4

5

7

6

Figure 3.6: Principle of Native Execution on a Transaction Accurate Platform using HAL Interface
and Abstract CPU Models [Ger09]

¸ The software executes in a sequential and continuous fashion, without interacting with
the simulation platform i.e. software execution takes zero-time w.r.t. the simulated time
in the hardware platform. The software continuous to execute until a hardware specific
service is required e.g. read request for a specific device register, resulting in a HAL API

call.

¹ When the software is executing, the hardware platform completely loses control over it
until a HAL API call is invoked. Even though the EUs provide the HAL implementation,
they do not directly intercept HAL calls and a C/C++ interface layer B is introduced
for the following reasons.

à The interface layer is required when the software and hardware components use
different programming languages, such as C and C++ for software and hardware

40 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

implementations, respectively.

à The executing software does not have the knowledge of the underlying platform,
whether it is a real processor or an Execution Unit (EU) and the interface layer
bridges this gap by redirecting the HAL calls to the appropriate EUs.

º Once a HAL function in an EU executes, it gives control back to the SystemC simulation
kernel by calling the wait() function. The simulation kernel can then schedule other
processes running in parallel, as well as advance the simulated time. Meanwhile, the
calling process may be suspended for fixed time interval or until a future event takes
place.

» The HAL function forwards the request to the appropriate I/O port of the EU, as it
happens on a TLM based platform, where each such request translates to a read or write
function call that is invoked for the communication component.

¼ Finally the address decoder of the communication component decodes the I/O address
and forwards the request to the appropriate device model. Once the request has been
satisfied, the function call stack unwinds and software continues to execute sequentially
until another HAL API call is executed.

This approach enables the validation of a software stack, either with or without an OS

that is dependent on the HAL interface only. The capability to model multiple processing
elements is independent of the HAL abstraction. If the simulation platform is capable of
identifying these processing elements and provide synchronization mechanisms between
them, then the validation of an SMP operating system is possible, at the cost of porting the OS

for the given HAL.

3.5.3 Target vs. Host Address Spaces

Native simulation platforms face two types of dependencies, mainly resulting from the native
compilation of software. The differences in Instruction Set Architecture (ISA) of host and
target processors, as well as specific details of hardware modules, need to be addressed in the
first place. These differences are resolved by explicitly using the HAL API for all interactions
between software and hardware components, resulting in a hardware-independent software
stack, except for the HAL implementation. Second source of dependencies arise due to the
memory representations in hardware and software components. To be precise, two different
and possibly conflicting address-spaces have to be considered, namely target (T) and host
(H) address-spaces, as shown in Figure 3.7.

T The hardware platform, although compiled on the host machine, simulates the target
addresses that are known at compile time i.e. the hardware components address
mappings have been defined in advance by the system designer and the platform
address decoders use these mappings for communication between the hardware models.

H The software stack is compiled for the host machine and all memory references are
unknown at compile-time. The software addresses become known at runtime when
the software library is actually loaded into the host memory. Usually its the SystemC
process, which loads the software library and provides the execution context.

TIMA Laboratory, CNRS/INP Grenoble/UJF 41

Native Simulation of MPSoC: A Retrospective Definition & Problems

Software Compiled as Dynamic Library

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

T

Simulated Target
Address Space

Communication Network

DMA ITCADC

HAL

EU0 Flash
HAL

EU1

1

RAM

Bridge

Bridge

ITC
DMA
ADC

RAM

Flash

H

Host (SystemC)
Address Space

S
of

tw
ar

e
 S

ta
ck

Lo
ad

ed
 in

 H
os

t M
em

o
ry

S
ys

te
m

C
 P

la
tfo

rm
Lo

ad
ed

 in
 H

os
t M

em
o

ry

.data
.bss
.text

.data

.text

.bss

2

Figure 3.7: Target vs . Host Memory Representations. (Adapted from [Ger09])

The target vs. host address-spaces issue does not appear in ISS based simulation platforms,
as both hardware and software components view the same address-space i.e. the target
address-space. The differences in address-spaces, make it impossible to model certain
interactions between hardware and software components.

Listing 3.4 A software thread processing data input from ADC using DMA [Ger09]

1 #define ADC_RCV_REG 0xA0001004 /* In Target Address Space */
2
3 static int data_in[1024]; /* In Host(SystemC) Address Space */
4 static int data_out[1024]; /* In Host(SystemC) Address Space */
5
6 void thread_compute()
7 {
8 /* Local Variables, if any */
9 while(1)

10 {
11 /* Initiate the DMA Transfer */
12 DMA_TRANSFER(ADC_RCV_REG, data_in, 0x0, 0x4, 1024);
13 for(...)
14 {
15 /* Do computations in parallel to DMA transfer */
16 data_out[i] = compute(data_in[i]);
17 }
18 }
19 }

We illustrate this problem using a DMA based example, which is commonly found in
MPSoC systems. Listing 3.4 shows a software thread, which performs a certain computation
on the data input from an Analog to Digital Converter (ADC) component. In order to process

42 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

Listing 3.5 DMA initialization function for data transfer [Ger09]

1 #define DMA_BASE_ADDR 0xB0000000
2 #define DMA_CTL_REG DMA_BASE_ADDR
3 #define DMA_SRC_REG DMA_BASE_ADDR + 0x04
4 #define DMA_DST_REG DMA_BASE_ADDR + 0x08
5 #define DMA_SRC_INC DMA_BASE_ADDR + 0x0C
6 #define DMA_DST_INC DMA_BASE_ADDR + 0x10
7
8 void DMA_TRANSFER(void *src, void *dst, int src_inc, int dst_inc, int size)
9 {

10 HAL_WRITE_UINT32(DMA_SRC_REG, src); /* Write Source Address */
11 HAL_WRITE_UINT32(DMA_SRC_INC, src_inc); /* Write Source Incremement */
12 HAL_WRITE_UINT32(DMA_DST_REG, dst); /* Write Destination Address */
13 HAL_WRITE_UINT32(DMA_DST_INC, dst_inc); /* Write Destination Increment */
14 HAL_WRITE_UINT32(DMA_CTL_REG, size); /* Write Size & Start Transfer */
15 return;
16 }

the input data, the software thread needs to copy of this data in a software buffer, declared
as a local array data_in[]. It initiates a DMA_TRANSFER and starts to process the input data,
while the data is being copied in parallel by the DMA component.

Listing 3.5 shows the DMA initialization function, which setups the source and destination
addresses, as well as source and destination increments and data transfer size. Writing the
transfer size to control register of DMA, at Line 14, starts the actual data transfer. The DMA

needs to access two different address-spaces to perform this transfer:

À The source address, hard-coded as 0xA0001004 in software, lies in the simulated
target T address-space. The communication component knows this address from the
predefined address mappings, so it can forward requests from DMA to the appropriate
component i.e. ADC in this case, without any problems.

Á The destination address i.e. the memory address assigned to software buffer data_in[],
is resolved dynamically when the binary is loaded in the host (SystemC) address-space
H . As the communication component does not know this address because it lies in the
host H address-space, it cannot fulfill the write requests from DMA.

The DMA example highlights the limitations of the TA level native platforms, when
a hardware component wishes to access the memory seen by the natively executing
software. Without modifying the hardware communication mechanism or software code,
such interactions cannot be supported in native simulation. As discussed earlier, most of
the real architectures contain components like DMA or similar master devices, apart from
processors, which require such interactions.

Similarly, the inverse case also poses problems when the software tries to directly access
a hard-coded hardware address. Listing 3.6 shows an example where the software tries to
access the video memory using a pointer initialized with a hard-coded memory address. On
Line 13 of the vmem_clear_screen() function, a write to the buffer pointer would result in
a segmentation fault. This type of memory accesses do not cause problems in real or cycle
accurate platforms, whereas in native simulation such accesses are impossible as the software
application cannot see the memory regions modeled by the hardware components. In order
to tackle this problem, all accesses using hard-coded addresses are usually forbidden or an
intermediate API is used for accessing such memory zones.

TIMA Laboratory, CNRS/INP Grenoble/UJF 43

Native Simulation of MPSoC: A Retrospective Definition & Problems

Listing 3.6 A simplified implementation of a Video Memory Clear Screen function

1 #define VMEM_BASE_ADDR 0xC4000000
2 #define VMEM_WIDTH 256
3 #define VMEM_HEIGHT 144
4 #define VMEM_SIZE (4 * VMEM_WIDTH * VMEM_HEIGHT) /* 4 times for RGB + Alpha */
5 #define VMEM_LIMIT (VMEM_BASE_ADDR + VMEM_SIZE)
6
7 void vmem_clear_screen()
8 {
9 volatile unsigned int *vmem_ptr = (unsigned int *) VMEM_BASE;

10
11 while(vmem_ptr < VMEM_LIMIT)
12 {
13 *vmem_ptr = 0x00000000; /* Write to Video Memory */
14 vmem_ptr++;
15 }
16 }

3.5.4 Using a Unified Address Space

A key solution to the target vs. host address-spaces issue, was presented in [Ger09]. This
solution advocates the use of a uniform address-space for resolving the address-space conflicts
and proposes a number of modifications to both hardware and software components. We
briefly describe these modifications in this section using Figure 3.8, which shows the key
components of this solution.

As this solution unifies the target address-space into the host address-space, it necessitates
changes to the hardware platform components, as its first requirement, which is usually
un-acceptable to most of the hardware IP users. The host address-space and natively compiled
software have a dynamic character, as the software addresses become known at runtime.
Instead of using predefined address mappings, the solution proposes the use of dynamically
allocated host addresses in SystemC IP models.

As a second requirement, each slave component in the hardware platform provides
information about its Mappings A and Symbols B that it defines. A mapping defines
the memory regions and device registers used by a slave component, usually in terms of
base address, size and name. Symbols are defined as name and value pairs, which need
to be resolved in the software application. An operating system specific and non SystemC
component is introduced, known as Dynamic Linker, which inquires each of the hardware
components C , through the communication component, about their mappings and symbols,
and patches them D in software stack during platform initialization. The communication
component is also modified; instead of using statically known target addresses, it now uses
the dynamic mappings for constructing its address decoding table E . This decoding table
contains all the memory regions of the simulation platform that are accessible using the
interconnection component.

The software is also restricted, in the sense that hard-coded addresses cannot be used,
as to avoid segmentation faults. Instead the hardware specific address resolution is delayed
until the start of simulation, using external pointer declarations. Similarly the link time
symbols, usually defined in linker scripts, are also restricted and cannot be declared as
constants. Linker symbols are declared as pointers using a C/C++ source file and resolved
during platform initialization, by the dynamic linker.

44 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

D
y
n
m

ic
 L

in
ke

r

Li
st

 o
f S

ym
bo

ls
D

Software Compiled as Dynamic Library

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

H

Host (SystemC)
Address Space

S
of

tw
ar

e
 S

ta
ck

Lo
ad

ed
 in

 H
os

t M
em

o
ry

S
ys

te
m

C
 P

la
tfo

rm
Lo

ad
ed

 in
 H

os
t M

em
o

ry

C

Communication Network

HAL

EU0

HAL

EU1
Flash

.text

5

ITC

6

RAM
.data
.bss

3

DMA

2

ADC

1

Bridge

4

Address
Decoder
.text 5
.bss 3
.data 3
ADC 1
Bridge 4
DMA 2
ITC 6

E

.data
.bss
.text

.data

.bss

.text

ITC
DMA
ADC

RAM

Bridge

Flash

B

Symbol
name = ".data";
value = 0xb79e24d0;

Mapping
base = 0xb720ef00;
size = 16 MB

A

Figure 3.8: Native Uniform Memory Representation

3.5.4.1 Limitations of Unified Address Space

In the preceding section, we described the changes required for creating a unified address-
space. We list the key limitations of this approach in the following text:

v Each platform component, including the communication network, if it occupies a
memory zone must:

à allocate memory zones that are potentially accessible from software, respecting
the real memory mappings of the component.

à allow access to the descriptions of allocated memory zones.

v Each platform component must provide a list of symbols that are expected by software,
using a (name, value) pair and allow access to its symbols list.

v The communication network must build its decoding table by using descriptions of
allocated memory zones, once the hardware platform has been initialized. These zone
descriptions are provided by the peripheral devices and are accessible through the
input/output ports of these components.

v The memory components of the platform containing software segments (.bss, .data,
.text etc.), must make them accessible through the communication network. All memory

TIMA Laboratory, CNRS/INP Grenoble/UJF 45

Native Simulation of MPSoC: A Retrospective Definition & Problems

components must also provide descriptions of the allocated memory zones and these
are necessary for building the address decoding table of the communication network.

v The use of hard-coded addresses in software is not supported, as the addresses of
peripheral devices are unknown at compile time. Moreover, using such addresses on
the host machines generate segmentation faults, as these addresses are usually invalid
in the SystemC process mapping.

v Linker symbols cannot be directly defined during the software linking phase because it
is impossible to modify their addresses during execution, as required by the dynamic
linking phase. Instead pointers must be used in software, including the device drivers
and operating system, for defining physical memory addresses.

v Execution of complex multi-tasking operating systems such as Linux, which use Memory
Management Unit (MMU) for virtual memory management, are not supported using the
unified address-space approach.

3.5.5 Software Performance Estimation

The key strengths of native techniques are the improved simulation performance and ease of
functional validation. On the downside, native techniques suffer from the absence of time
modeling in software, making them inherently inaccurate.

Native software executes in the context of hardware threads such as Execution Units (EUs),
and renders control to the hardware process e.g. SystemC kernel, only when a HAL function is
executed. In between two HAL function calls, the native software executes in zero-time and the
hardware process has no control over it. This is a consequence of cooperative multi-tasking
approach in SystemC, as discussed in Section 3.3.1. To enable time modeling, the only
feasible solution is to insert performance annotations in software that could render control
back to the hardware process.

Annotations can be inserted at source level [GMH01, KKW+06, MSVSL08] or at an
intermediate level [WH09] using a compiler’s Intermediate Representation (IR). Quite a
few automated software annotation techniques have been proposed in literature [LP02,
CGG04, CHB09b, GHP09]. The IR, usually a kind of bytecode, contains all the semantic
information and is used throughout the compilation process including optimization phases,
as shown Figure 3.9. The idea is to run the retargetable compiler, such as Low Level Virtual
Machine (LLVM), as if the code will be generated for the target processor, including target-
specific optimizations, but instead of emitting assembly for the target machine X , either
emit it for the host Y or generate C and compile it for the host Z .

An annotation pass analyzes the target code and inserts calls to an annotation function
at the beginning of each basic block3 in the target aware IR. The annotated IR is then used to
generate a native binary object, which has an equivalent Control Flow Graph (CFG) to that
of the target object and can be simulated on the host machine. The values to be added as
annotations depend on the processor architecture and in addition on the platform, for the
ones that make external accesses.

3 A basic block is a set of consecutive instructions having exactly one entry and one exit point. At runtime, if
the first instruction in a basic block is executed, the rest of instructions must also be executed in exactly the same
order as they appear, before control is transfered to any other basic block.

46 Mian-Muhammad Hamayun

3.5 Native Transaction Accurate Simulation

Sources
C/C++, ...

Compiler
Front-end

Intermediate
Representation (IR)

Target Aware
IR

Annotated
Target Aware-IR

Native
Back-end

Native Object

Target
Back-end

Annotation
Pass

Code
Emitter

Target ObjectEquivalent CFG

Code
Emitter

C generation
Back-end

Native Object

C compiler

X

YZ

Figure 3.9: Native Software Compilation with Target Specific Annotations [PFG+10]

Execution of annotation calls provide the hardware platform (SystemC) with an
opportunity to advance the simulated time using wait() function calls, enabling software
performance estimation. The annotation techniques should consider all types of memory
accesses, including cache effects and software execution itself i.e. accesses to the program
memory. Reflecting memory access timings in native software execution is a difficult problem,
as all memory accesses take place natively i.e. the underlying platform is unaware of such
memory accesses.

One of the objectives of this work, is to propose a native simulation technique that could
decrease the number of limitations discussed in Section 3.5.4.1, while keeping support for
software performance estimation.

The above strategy works well for simple RISC processors but is difficult to apply for
complex Very Long Instruction Word (VLIW) architectures e.g. Texas Instruments (TI) C6x and
Nexperia PNX series processors. Following list gives a few factors limiting the applicability
of this approach to VLIW machines:

v A VLIW specific backend is required in the retargetable compilation frameworks, such
as in LLVM, in order to generate target specific code.

v The retargetable compiler is able to produce VLIW binary code, which is comparable to
a standard vendor-supplied VLIW compiler in terms of optimizations.

v A VLIW specific annotation pass is implemented, which takes performance measures
from parallel VLIW code and annotates them to serial IR code, to build a VLIW-aware
but VLIW-independent IR.

v Source code for the VLIW software binaries is available.

TIMA Laboratory, CNRS/INP Grenoble/UJF 47

Native Simulation of MPSoC: A Retrospective Definition & Problems

In the absence of a retargetable compilation framework that supports a VLIW architecture,
native simulation degrades to functional validation, as target specific annotations are
impossible. For example, LLVM compilation infrastructure does not support VLIW machines,
as of today. Even if such a compiler is available, the target specific optimizations are much
less efficient as compared to the vendor-supplied toolchains that are usually capable of
generating highly optimized VLIW binaries. This aspect further limits the generation of
native binaries that have an equivalent CFG w.r.t. the cross-compiled VLIW binaries.

Implementation of a VLIW specific annotation pass is difficult, as the compiler needs
to keep correspondence between target independent and target specific IRs. Such
correspondence would be hard to establish, as optimization passes applied by the VLIW

backend would be much different from the standard IR optimizations for non-VLIW machines.
This limitation emerges from the architectural differences between parallel and scalar
architectures.

Availability of software sources is also important, especially when the code has been
optimized for a certain architecture. Quite often, we find ourselves in situations when the
software vendors provide closed source libraries only, rendering performance estimation
using annotation techniques impossible.

Considering the above limitations, it is interesting to see if generation of native
executables is possible using the static translation4 principle, from the cross-compiled
VLIW binaries. We emphasize on static translation, in order to avoid any run-time translation
overheads and to generate optimized native binaries.

In the following text, we review fundamental features of VLIW machines and discuss key
problems during translation from parallel VLIW instructions to serial native code. We take
the example of TI C6x series processors as they exhibit some of the most problematic features
found in VLIW machines.

3.6 VLIW Processor Architecture Simulation

The VLIW processors can issue and complete more than one operation at a time, commonly
referred as Instruction Level Parallelism (ILP), which is the key to their increased performance
and justifies their use in broad range of applications. The VLIW software compiler has the
responsibility of encoding this concurrency information in the generated instructions. This
explicit encoding of parallelism, also known as static scheduling, results in reduced hardware
complexity, which makes VLIWs good candidates for demanding embedded devices. The
generic architecture of a VLIW processor is shown in Figure 3.10.

3.6.1 Modeling Parallelism and VLIW Pipelines

We demonstrate the difficulties associated with modeling of a VLIW architecture on a desktop
machine, using an example shown in Listing 3.7 that uses TI C6x processor instruction
set. On C6x processors, multiple RISC-like instructions are bundled together and execute in
parallel, in a single CPU cycle. These are known as Execute Packets and can contain upto eight
instructions. Listing 3.7 contains 10 instructions grouped into 5 execute packets, starting at
instructions 1, 5, 7, 9 and 10. The || symbol in front of an instruction specifies parallelism,

4Static translation refers to the off-line processing of input binaries, similar to compilation but partially in the
opposite direction, and does not require run-time translation support as in Dynamic Binary Translation (DBT).

48 Mian-Muhammad Hamayun

3.6 VLIW Processor Architecture Simulation

Instruction
Registers

General Purpose
Registers (GPRs)

Functional
Unit#0

Functional
Unit#1

Functional
Unit#2

Functional
Unit#3

INSTRUCTION
CACHE (I$)

DATA CACHE (D$)

Instruction Bus Operands
Bus

Figure 3.10: Generic Architecture of a VLIW Processor

such as before Line 2 through 4 indicating that these instructions belong to the first execute
packet, and will be executed in parallel to the ADD instruction at Line 1.

Listing 3.7 An Example VLIW Code (TI C6x)

1 [!B1] ADD.L1 B1,4,B3 ; DSP Cycle 0
2 || STW.D1 B6,*B5++[1]
3 || MV.S1 B3,A4
4 || [B0] B.S2 0x010100 ; 1
5 MPYSU.M1 B6,A4,B6
6 || MPYU.M2 A4,B4,A3 ; 2
7 SUB.L1 1,B0,B0
8 || SHR.S1 B1,0x1,A3 ; 3
9 NOP 5 ; 4,5,6 [7,8]

10 ADD.D1 4,A10,B4 ; 9

When VLIW compilers parallelize the sequential source code, they introduce certain
features that are valid only if the program is executed on the target VLIW processor but
introduce data and control hazards if we sequentialize these instructions for execution on
the native machine. Three types of data hazards are commonly recognized in literature that
should be considered during such a sequentialization process.

v A Read After Write (RAW) hazards results when an instruction uses the results that are
not yet available. Such hazards result from the existence of variable length pipelines,
where different instructions may take different number of pipeline cycles to complete.
Most of the instructions consume a single CPU cycle i.e. have zero delay slots5, however,

5Delay slots, as referred in TI’s literature, are the number of additional CPU cycles required for completing an
instruction execution.

TIMA Laboratory, CNRS/INP Grenoble/UJF 49

Native Simulation of MPSoC: A Retrospective Definition & Problems

PG PS PW PR DP DC E1 E2 E3 E4 E5

Fetch Decode Execute

P
ro

g
ra

m
 a

d
dr

es
s

G
en

er
at

e

P
ro

g
ra

m
 a

d
dr

es
s

S
en

d

P
ro

g
ra

m
 W

ai
t

P
ro

g
ra

m
 d

a
ta

R
ec

ei
ve

D
is

pa
tc

h

D
ec

od
e

E
xe

cu
te

 1

E
xe

cu
te

 2

E
xe

cu
te

 3

E
xe

cu
te

 4

E
xe

cu
te

 5

(a) Phases of the C6x Processor Pipeline

PG PS PW PR DP DC E1

(b) Single Cycle Instruction Pipeline

PG PS PW PR DP DC E1 E2

1 Delay Slot

(c) Two Cycle Instruction Pipeline

PG PS PW PR DP DC E1 E2 E3 E4

3 Delay Slots

(d) Four Cycle Instruction Pipeline

PG PS PW PR DP DC E1

Branch
Target PG PS PW PR DP DC E1

5 Delay Slots

(e) Branch Instruction Pipeline Phases

Figure 3.11: Pipeline Stages and Delay Slots of TI C6x Series Processors [Tex10]

quite a few instructions require non-zero number of delay slots. An instruction issued
before another instruction, does not necessarily finish its execution before the later one
i.e. out-of-order completion is possible. Figure 3.11 shows the generic pipeline stages
and a few delay slot examples for C6x processors.

Result R3 After 2 Delay Slots

R3 R1 R2

R4 R2R3

NOP

NOP

R3 R1 R2

R4 R2R3

A
dd

ed
 b

y
C

om
pi

le
r

Figure 3.12: RAW Hazards in VLIW Software

At lower optimization levels, VLIW compilers handle RAW hazards by inserting No
Operation (NOP) instructions, so that appropriate number of cycles pass before a given
instruction tries to use the results of previous ones, as shown in Figure 3.12. As a
result, such hazards require proper handling of NOP instructions on scalar machines
such as x86 processors, usually by advancing the pipeline stages of previously issued
instructions.

At higher optimization levels, VLIW compilers fill the delay slots with potentially useful
but independent instructions. As an example, a branch in C6x processors takes a single
execute cycle and five delay slots before executing the branch target instruction, as
shown in Figure 3.11(e), if the branch is actually taken. Considering that an execute
packet can contain upto eight parallel instructions on C6x processors, a maximum of

50 Mian-Muhammad Hamayun

3.6 VLIW Processor Architecture Simulation

forty (40) instructions can execute in the delay slot range of a single branch instruction.
Also, the C6x pipelines are never flushed i.e. once an instruction enters the pipeline it
completes its execution.

Multi-cycle NOP instructions or multi-nops are commonly used to fill the delay slots of
multi-cycle instructions. The processor effectively stops execution, except for advancing
the pipeline stages of already issued instructions. Multi-nop instructions could also
terminate earlier than their specified number of CPU cycles. Such situations usually
arise when multi-nops are issued after branch instructions. Line 4 in Listing 3.7 is
a conditional branch, which if taken will force the Early Termination of instruction
at Line 9 after the 6th CPU cycle, otherwise the multi-nop will complete its execution
and instruction at Line 10 will execute in the 9th CPU cycle.

R3 R1 R2R4 R2 R3

R3 R1 R2

R4 R2 R3

Parallel to Scalar
Conversion

(a) No WAR Data Hazard

R3 R1 R2 R4 R2 R3

R3 R1 R2

R4 R2 R3

Parallel to Scalar
Conversion

! Invalid
Result

(b) With WAR Data Hazard

Figure 3.13: WAR Hazards in Parallel to Scalar Conversion

v A Write After Read (WAR) data hazard represents a problem with concurrent execution.
In an execute packet a register can be the source and destination operand of multiple
instructions simultaneously. On a parallel machine, this feature does not pose any
problems irrespective of the order of instructions in an execute packet, as shown in
Figure 3.13. At the beginning of an execute packet, all instructions within this packet
see the same register state of the processor. On a scalar machine these instructions
will execute one-after-another and in the first case, shown in Figure 3.13(a), the WAR

data hazard does not appear but in the second case, shown in Figure 3.13(b), we get an
invalid result. This requires that source operands of each execute packet be preserved
during its execution on a scalar machine. As a concrete example, we can see a WAR

hazard in Listing 3.7 between instructions at Line 1 and 3 for register B3.

v The Write After Write (WAW) data hazards usually result from the concurrent execution
of instructions that write to the same destination operand. In such cases, the actual
availability of results in the destination operand differ, as instructions have different
delay slots. These hazards appear when instructions are scheduled within the delay
slot range of multi-cycle instructions, as shown in Figure 3.14 where two instructions
write to the same destination operand and the following execute packets use the values
of operands, as they become available.

On scalar machines the effect of instruction execution should be delayed, as shown
in Figure 3.14(a). A simple parallel-to-scalar conversion, as shown in Figure 3.14(b),
would evidently produce invalid results. As a concrete example, the SHR instruction
at Line 8 in Listing 3.7 uses register A3 as destination operand, which is also destination

TIMA Laboratory, CNRS/INP Grenoble/UJF 51

Native Simulation of MPSoC: A Retrospective Definition & Problems

of MPYU instruction at Line 6 but lies within its delay slot range. So the order of
execution or result assignment is important on a scalar machine.

Parallel to Scalar
Conversion

R4 R2 R3

R4 R1 R2

R5 R1 R4

R6 R4 R2

R4 R2 R3R4 R1 R2

R5 R1 R4

R6 R4 R2

Result Available
Immediately

Result After
1 Delay Slot

Delayed
Execution

(a) No WAW Data Hazard

Parallel to Scalar
Conversion

R4 R2 R3

R4 R1 R2

R5 R1 R4

R6 R4 R2

R4 R2 R3R4 R1 R2

R5 R1 R4

R6 R4 R2

Result Available
Immediately

Result After
1 Delay Slot

! Invalid
Result

! Invalid
Result

(b) With WAW Data Hazard

Figure 3.14: WAW Hazards Resulting from Instruction Scheduling within Delay Slots

Control hazards result from the pipeline-specific semantics of branch instructions on
VLIW machines. Branch instructions do not take effect immediately but require a certain
number of delay slots. Nested branch instructions are also possible i.e. when a branch
instruction appears within the delay slot range of a previous branch instruction. As discussed
earlier, once an instruction enters the processor pipeline, it finishes its execution.

Figure 3.15 shows control flow on a hypothetical VLIW machine where branch instructions
take effect after three delay slots. Two branch instructions are shown, BR1 and BR2 in execute
packets E0 and E2 , respectively. The second branch instruction appears within the delay
slot range of the first branch instruction. Depending upon the result of branch evaluations
and once the delay slots have been consumed, control flow could take place in four possible
ways, as summarized in Table 3.1. Apart from the simplest case when both branches are not
taken, control flow is convoluted to some extent and becomes interesting when both branches
are taken. In this case, the first branch modifies the control flow after its delay slots have
been consumed A , but the second branch is also in the pipeline, requiring its delay slots to
be accounted for at the destination of first branch instruction C , before its effect could take
place B2 . As a consequence of such control flow semantics in nested branch instructions, the
control flow should finally reach the target instruction of the last taken branch instruction
i.e. execute packet Em or Ep in this example. On more realistic VLIW machines, such as TI’s
C6x series, branch instructions take effect after five delay slots and compilers can potentially
schedule a branch instruction in each of these delay slots, resulting in control flows that are
considerably more intricate.

3.6.2 Memory Addressing in Translated Software

The target vs. host addressing issue was discussed in Section 3.5.3 where our objective was to
show the address-space differences in native host memory references and simulated address-
space in hardware models. This issue appears in the context of static translation of VLIW

52 Mian-Muhammad Hamayun

3.6 VLIW Processor Architecture Simulation

B
ar

n
ch

 2
 D

el
ay

 S
lo

ts

B
ra

n
ch

 1
(N

ot
 T

ak
en

)
B

ra
n

ch
 1

(T
ak

en
)

B
ar

n
ch

 2
 R

em
ai

ni
ng

D
el

ay
 S

lo
ts

E
xe

cu
tio

n

...

...

Inst0 BR1 Inst2 Instk...E0

Inst0 Inst1 Inst2 Instk...E1

Inst0 Inst1 Instk...BR2E2

Inst0 Inst1 Inst2 Instk...E3

Inst0 Inst1 Inst2 Instk...E4

Inst0 Inst1 Inst2 Instk...E5

Inst0 Inst1 Inst2 Instk...E6

Inst0 Inst1 Inst2 Instk...Em

Inst0 Inst1 Inst2 Instk...En

Inst0 Inst1 Inst2 Instk...Ep

B
ra

n
ch

 1
 D

el
ay

 S
lo

ts

A

C

B1

B2

Figure 3.15: Control Hazards in VLIW Processors

BR1 Not Taken BR1 Taken

BR2 Not Taken E0, E1, ..., E6, ... E0, E1, ..., E3, Em, En, ...
BR2 Taken E0, E1, ..., E5, Ep, ... E0, E1, ..., E3, Em, En, Ep, ...

Table 3.1: Possible Control Flows for Nested Branch Instructions

binaries as well, for their native execution. We cannot transform target addresses to native
counterparts, as there is no relationship between them, thus requiring a mechanism that
could use them in a transparent fashion.

Data memory accesses suffer from the address-space differences only, where as instruction
memory accesses incur an additional overhead of non-availability at translation time i.e.
indirect control flow instructions. These references become known at runtime, requiring
either some dynamic translation or interpretation support or static translation of all possible
destination addresses.

VLIW architectures also support different addressing modes to access data memories. For
example, the C6x processors support Linear and Circular addressing modes for address
calculation, depending on the contents of AMR register. Implicit modification of source
operands is also possible during address calculation, in addition to the destination operand(s)
of an instruction. Line 2 in Listing 3.7 shows a side effect update for register B5. These types
of instructions produce multiple outputs, usually with different delay slots.

3.6.3 Software Execution Timings and Synchronization

The native software executes without the knowledge of hardware models, and software
annotations or similar mechanisms are required in the compiled or translated software. In

TIMA Laboratory, CNRS/INP Grenoble/UJF 53

Native Simulation of MPSoC: A Retrospective Definition & Problems

case of binary translation, precise static timing information (instruction latencies, pipeline
effects, etc.) is easily available in native software as the final target instructions are used for
translation. Nevertheless, an annotation-like mechanism is needed for synchronization with
the underlying hardware platform components.

Time modeling of dynamic effects such as cache memories, requires either the use of
heuristics as suggested in [GHP09], for example 90% cache hit-rate, in order to produce faster
simulations. A predefined cache model could also be integrated with the translated software,
if the original target addresses are preserved in the translated software, producing accurate
but slower simulations. Data vs. instruction cache issues will be investigated. Instruction
cache accesses could be different as the translated software executes instructions that are
different from the original ones.

3.6.4 Hybrid and Heterogeneous MPSoC Simulation

Integration of simulation models that use different technologies such as combining dynamic
translation and native techniques in a single platform could provide some interesting
capabilities. Such as modeling of different processors, shared memory accesses and re-use of
existing platforms for modeling complex MPSoC architectures.

A simulation platform that combines different simulation techniques would be referred to
as a hybrid simulation platform. We will also investigate the integration of source compiled
and binary translation based simulation techniques to model heterogeneous architectures, as
shown in Figure 3.3, and will refer them as heterogeneous MPSoC simulation platforms.

3.7 Conclusion and Key Questions

Native simulation of software is a difficult problem although it might look elementary, as it
involves different types of problems that do not appear in ISS based TLM models and Cycle
Accurate platforms. In particular, the address-space differences in target and host machine
representations and the reflection of execution timings in the simulated software w.r.t. to the
real platform.

In case of VLIW machines, lack of supporting tools further aggravate this problem and
demand a different approach that could handle VLIW specific details, as well as being efficient.
Here are the key questions that we intend to answer in this thesis:

1. How can we efficiently support the simulated target address-space on host machines
without requiring dynamic linking/patching support ? More specifically we want to:

(a) Support the use of SystemC-based hardware IP models, without requiring
modifications for address mappings and symbols resolution.

(b) Minimize software coding constraints, such as the ability to use hard-coded
addresses and constant link-time symbols.

(c) To be able to simulate complex operating systems that make use of MMU based
virtual to physical address translations.

2. How can we define an automatic software annotation technique into the proposed
approach for MPSoC performance estimation ?

54 Mian-Muhammad Hamayun

3.7 Conclusion and Key Questions

3. How can we support native execution of VLIW software, without requiring any runtime
support ? More specifically we would like to emphasize on:

(a) A VLIW simulation approach, which is generic enough and can also be applied to
RISC machines.

(b) A source-free approach, requiring optimized VLIW binaries only for generating
native simulators.

(c) Accurate support for performance estimation of VLIW software.

TIMA Laboratory, CNRS/INP Grenoble/UJF 55

Research is what I’m doing when I don’t know what
I’m doing.

Wernher von Braun

4
State of the Art: On Software Execution for

MPSoC Simulation

Native software execution provides the ability to perform early validation of embedded
software, thanks to the higher simulation performance. The benefits in simulation speed

are largely obtained by the direct host execution of embedded software, avoiding runtime
software interpretation and translation overheads. A major drawback of native simulation
techniques is the almost entire absence of target-architecture knowledge in host compiled
software, which finds its roots in the very high level modeling of target machines and results
in functional simulations. In the absence of target-specific timing information, architecture
exploration is not only difficult but rather impossible, undermining the utility of native
techniques.

In order to introduce target-specific temporal information in native software, many
annotation techniques have been proposed in literature. Such techniques are usually based
on retargetable compilation frameworks that could generate software binaries for both target
and host machines. Specifically, in case of Very Long Instruction Word (VLIW) [Fis83, Fis09]
processors, such frameworks are rare and even if available, are not mature enough to match
the vendor-supplied toolchains, in terms of optimization. In such situations, using annotation
techniques will almost always produce very inaccurate results and would be rarely useful for
Design Space Exploration (DSE) purposes. Our focus will be to preserve target-architecture
knowledge as much as possible, either using compilation or static binary translation, so that
the resulting simulators reflect precise target processor timings.

4.1 Native Platforms for MPSoC Simulation

Native simulation of software is a well-known concept, ranging from primitive techniques
based on the host execution of algorithms for functional verification to more advanced
implementations relying Hardware Abstraction Layer (HAL) and dynamic linking concepts.

The primitive native platforms are based on the encapsulation of software tasks inside

TIMA Laboratory, CNRS/INP Grenoble/UJF 57

State of the Art: On Software Execution for MPSoC Simulation

hardware platform models. More advanced platforms profit from the layered organization
and support validation of software except the HAL layer, as this layer is provided by the
underlying hardware platform models. The HAL is usually replaced with a target-specific
one, when the software is finally compiled for the real platform. Hybrid and address
remapping/unification techniques have also been proposed in literature. We start our
discussion on native platforms by reviewing software encapsulation based techniques.

4.1.1 Software Encapsulation

In its most general formulation, native software simulation targets the direct execution of
software code on the host machine with the use of a wrapper to connect to an event-driven
simulation environment. Initial proposals suggest to encapsulate the application code into
TLM modules using hardware threads, as if they were implemented as hardware IPs [GCDM92,
GYNJ01, BYJ02, WSH08, CHB09a]. Only a subset of software tasks are encapsulated within
the hardware modules i.e. processing elements of the platform, as shown in Figure 4.1. The
hardware simulation kernel schedules both hardware and software threads, bringing implicit
and unintended concurrency to the software tasks and no way to account for the operating
system behavior.

Communication Network

CPU#0

T1 T5

T4

CPU#1

T2 T6

Hardware
Node

T3

Figure 4.1: Software Encapsulation in Native Simulation

These solutions are simple but suffer from two severe drawbacks. Firstly, the simulated
code provides a very limited form of parallelism i.e. co-routines. Secondly, since it executes
in a hardware module, all data allocations by the software are indeed allocated within the
simulator process address space instead of the simulated target platform memory. There is
no way for a platform device to access a buffer allocated by the software because the buffer is
not visible to it, and should it be, the addresses of simulated platform have no relationship
with the addresses of the simulator process. Moreover, the software execution is constrained
within the hardware context, such as how it accesses the underlying platform resources using
the platform interfaces e.g. ports in TLM models. These approaches are clearly not suitable
for supporting legacy code.

Due to the complexity of embedded software and execution dependency requirements,
integration of abstract OS models directly into the native simulation environments have been
proposed. The goal is to provide an implementation of a lightweight operating system using
the event based primitives of the simulation environment, thus each software task becomes
a hardware module. Using this approach, the modeled RTOS relies on the scheduler of the
hardware simulator instead of the scheduler that the RTOS would use, even though some
solutions suggest to modify the hardware simulation kernel for this purpose. These works
realize some RTOS scheduling algorithms inside the simulated hardware threads to execute

58 Mian-Muhammad Hamayun

4.1 Native Platforms for MPSoC Simulation

application tasks, with different constraints and priorities. A set of HDS APIs including task
creation, Inter Process Communication (IPC) and semaphore services are implemented to adapt
the requirements of application tasks [GCKR12], as shown in Figure 4.2(a). A few of such
solutions are based on SpecC [GYG03, SD08], whereas most others use SystemC [YNGJ02,
MVG03, LMPC04, PAS+06, NST06, EHV09, HSAG10] as the platform modeling language.
Some have even tried to model multiple Operating Systems (GPOS and RTOS) using this
technique [PVRM10]. Unfortunately, these OS models are not detailed enough as all of the C
library calls (among others), including memory management routines, are outside the control
of OS model. This limitation makes the device driver development impossible using such
models. Similarly, as these models require rewriting of application software, they effectively
prevent use of legacy code. Some instances of proprietary co-simulators [HWTT04] have also
been proposed that make use of the encapsulation concept.

Communication Network

Hardware
Node

T3

CPU#0

T1 T5T4

Generic Operating
System Model

HDS API

CPU#1

T2 T6

Generic Operating
System Model

HDS API

(a) With an Abstract Operating System Model

Comm. Network

CPU#0

T1 T5T4

HAL

SystemC API

RTOS

(b) With an Actual RTOS

Figure 4.2: Software Encapsulation with an Abstract/Real Operating System

To improve the realism of software execution, some works have proposed to use an actual
RTOS instead of an abstract OS model, as shown in Figure 4.2(b). For example, the SPACE
platform [CBR+04] uses an actual RTOS i.e. µC/OS-II and provides a SystemC-based API layer
to software tasks instead of the traditional HDS API. The software stack is still encapsulated
within the hardware models, but the OS is the same as it would be on the real platform,
resulting in certain advantages e.g. the software threads are scheduled by the real RTOS,
providing realistic modeling of the real-time software properties. Similarly, such frameworks
provide easy means for architecture exploration as they support different abstraction levels
and allow modification of component types from hardware to software and vice versa. Lastly,
such models enable the execution and validation of a significant amount of software using
native simulation.

In any variant of software encapsulation, the simulated software is strongly bound to
the platform models, thus modeling of SMP-like task migration is impossible. Additionally,
the amount of software that could be validated is limited and needs to be modified to
accommodate the low level platform interface requirements. In such techniques, the native
software executes independently on the host machine and the hardware platform has no
control over it, until the software explicitly returns control to it by invoking low level
platform service(s). In between the low level interaction points, native software executes
atomically w.r.t. the hardware platform and accesses the host machine resources directly. This
problem has been addressed in [KKW+06, WH09, CHB09b, GHP09], which propose different
annotation techniques to insert function calls in software, for modeling such accesses to

TIMA Laboratory, CNRS/INP Grenoble/UJF 59

State of the Art: On Software Execution for MPSoC Simulation

platform resources.

4.1.2 Hardware-Software Interfaces

Abstraction is defined as a simplification process where only the essential details of a
complex entity are kept, for a specific objective. The abstraction concept can be applied to
software, as well as hardware components of a given MPSoC system. Cycle Accurate (CA),
Transaction Accurate (TA), Virtual Architecture (VA) and System Level (SL) are the most
commonly recognized abstraction levels for hardware modeling. Similarly, the software
could be simulated at Instruction Set Architecture (ISA), Hardware Abstraction Layer (HAL),
Hardware Dependent Software (HDS) or Functional abstraction levels.

A hardware/software interface serves as a virtual machine where it executes commands
e.g. instructions, functions etc., from the software and interacts correctly with the
hardware platform. Many hardware/software interfaces are possible in MPSoC simulation
environments [BYJ04, SGP08, GGP08]. We focus on Transaction Level Modeling (TLM) [CG03]
of hardware components and discuss the most commonly used software abstraction levels in
TA platforms and their interfaces i.e. HDS ¶, HAL · and ISA ¸, as presented in Figure 4.3.

ISA

HAL

HDS

FUN

CA

TA

VA

SL

H
ar

dw
ar

e
A

bs
tr

ac
ti

on
 L

ev
el

s

S
of

tw
ar

e
In

te
rf

ac
e

L
ay

er
s

2

1

3

Figure 4.3: Hardware Abstraction Levels and Software Interface Layers

Layered software execution profits from the fact that hardware platform can provide a
real API for interacting with the software world. This API defines the interface level and is
usually implemented inside the hardware models using a software programming language.
This interface API makes the higher software layers completely independent from the lower
hardware models, as they can be compiled and executed on top of the provided interface.
Figure 4.4(a) shows the principle of such execution models.

Most frequently used layered software models [BBY+05, TRKA07, PJ07, CSC+09]
implement the HDS API for higher level software applications. It is a difficult solution because
to build realistic applications using such high level interface, the hardware models have to
implement numerous APIs. Theoretically speaking, this abstraction level has to provide all
APIs for the operating system (modeled or real) and the standard software libraries, such as
C and Math libraries. However, in reality such interfaces implement only a small subset of
these APIs, imposing constraints on the application software. The amount of software that
could be validated using such interfaces is very limited, thus undermining their practical use.
In certain cases, the standard C API functions available on the host machine are directly used,

60 Mian-Muhammad Hamayun

4.1 Native Platforms for MPSoC Simulation

CPU#0

Software API

Low Level
Software Layers

High Level
Software Layers

Hardware
Module

(SystemC)

Software
Code

(C/C++,...)

Comm. Network

(a) Principle of Layered Execution

Hardware
Module

(SystemC)

CPU#0

HAL

Operating
System

C/Math/Comm.
Libraries

HDS API

Comm. Network

Software
Code

(C/C++,...)

Multi-threaded Applications

T1 T5T4

(b) HDS Layer Based Execution

Hardware
Module

(SystemC)
CPU#0

HAL

HAL API

Comm. Network

Software
Code

(C/C++,...)

Operating
System

C/Math/Comm.
Libraries

Multi-threaded Applications

T1 T5T4

(c) HAL Layer Based Execution

Hardware
Module

(SystemC)CPU#0

ISA 'API'

Comm. Network

Software
Code

(C/C++,...)
Operating

System
C/Math/Comm.

Libraries

Multi-threaded Applications

T1 T5T4

Hardware Abstraction Layer

(d) ISA Layer Based Execution

Figure 4.4: Layered Software Execution at Different Interface Levels

thus the simulated software executes outside the framework of hardware platform resulting
in inaccuracies. Moreover, none of these approaches target dynamic task creation or thread
migration between processors, as it takes place on SMP platforms. Figure 4.4(b) shows the
organization of HDS interface-based simulation platforms.

A few approaches [YJ03, YBB+03, BYJ04, GGP08] rely on the definition of a thin HAL

layer that must be used for all hardware related accesses. The HAL layer is implemented in
a wrapper that includes a hardware thread per processor, commonly known as Execution
Unit (EU) (Figure 3.6). Entire software stack above the HAL can be compiled independently,
including the OS and standard libraries, and executed natively. Each HAL function call is
performed in the context of an EU assuming that all EUs belonging to the wrapper share the
Operating System code and data structures. As the context switching function belongs to the
HAL layer, SMP-like software thread migration is supported in such platforms. Figure 4.4(c)
shows the structure of HAL interface-based designs.

Native simulation platforms that are based on the so-called ISA ’API’ (or Host ISA Layer), as
shown in Figure 4.4(d), have not been discussed in literature. Most common TA platforms
which provide an ISA level software execution use target Instruction Set Simulators (ISSes)
instead, as discussed in the previous chapter (Section 3.4.4.1). The principle deficiency
of such models emerges from the use of either ISSes [LP02, HJ08] or Dynamic Binary

TIMA Laboratory, CNRS/INP Grenoble/UJF 61

State of the Art: On Software Execution for MPSoC Simulation

Translation (DBT) based solutions [GFP09], which interpret/translate instructions at run-time
and result in slower simulations.

All of the native simulation techniques discussed so far suffer from address spaces
problem where the native software executes inside the host address space and the hardware
platform simulates the target address space. These differences make it difficult to model
certain hardware/software interactions, as explained in the previous chapter (Section 3.5.3).
Two main classes of solutions have been proposed to solve this issue i.e. address remapping
and address space unification.

4.1.2.1 Address Remapping Techniques

Simple remapping techniques perform address conversion between the target address
space and the simulation process address space for I/O accesses identified by the use of
specific primitives. This does not solve the issue of external accesses to natively allocated
buffers. More complex remapping strategies rely on the fact that a host OS exception will be
raised [PV09] when an access to a bad virtual address takes place. The principle is to mark as
invalid all memory pages visible to the platform components, using the host operating system.
Any access to these pages will raise an exception that the simulator process can trap and
handle. There may be performance issues of this technique, if many exceptions are raised, and
the technical aspects of handling overlaps between both memory spaces remain a problem.
For example, the memory addresses over 3GB (0xC0000000) in the x86 architecture are
reserved for Linux kernel code only.

Yet another work [PDV11] uses host-to-target address conversion for data cache modeling.
This approach requires the sizes of native variables to be the same as in the target platform,
and accomplishes this task by implementing an XML-based code builder extension. Moreover,
it lacks support for dynamic memory allocation and would require the creation of a heap
manager for this purpose.

4.1.2.2 Uniform Memory Representation and Dynamic Linking

Unification relies on the use of a unique memory mapping for the software, as well as
hardware components of the native simulation environment [Ger09]. The simulator process
mapping is selected for this purpose as it is also the one used by the simulated software
stack. Unification requires to modify the hardware platform so that each IP exports a set of
mandatory symbols to be resolved at linking time to perform a low cost remapping. Such
platforms also require modifications the OS, so that it accesses the hardware solely through
HAL function calls and never uses hard-coded addresses.

The drawbacks include modification of the simulation models to build the unified memory
space, the addition of a specific linking stage visible to the user, and the OS port on the native
HAL layer, as discussed in Section 3.5.4. In order to simulate the full C library, especially the
memory management functions, a well separated address space should be provided to the
natively executing OS kernel.

4.1.3 Hybrid Techniques

Some researchers have proposed hybrid solutions that are partially based on native execution.
These solutions try to mix two different technologies together to improve on accuracy such
as offered by an ISS, while profiting from the higher simulation performance using native

62 Mian-Muhammad Hamayun

4.1 Native Platforms for MPSoC Simulation

execution. We can refer to [BPN+04, MRRJ05, KGW+07, KEBR08] as key propositions in
hybrid simulation platforms.

The HySim framework, initially proposed in [KGW+07], is composed of two key
components i.e. an ISS and a native processor. An external control logic manages the switching
between ISS and native processing elements but allows this switching to take place at function
call boundaries only i.e. a function simulated on the ISS may call a native function or vice
versa. Target-independent source code is compiled for the host machine using native compiler
and instrumented for defining the synchronization points, as well as performance estimation.
Rest of the software stack is compiled for the target machine and executed on the ISS.
Figure 4.5 shows the latest version of HySim framework as it appears in [MEJ+12], where
Target Simulator (TS) and Abstract Simulator (AS) are the ISS and native processing elements,
respectively.

A key problem in hybrid approaches is the control mechanism, which selects the execution
mode i.e. whether use the ISS or native processor for a given function during simulation. In
[KGW+07, GKL+07] stubs are used to translate function calls from ISS to native processor
and vice versa. These stubs are directly inserted in the instrumented code that runs on the
native processor, whereas the code running on ISS is monitored and inverse stubs are invoked.
The monitoring process is accomplished by the use of a control logic, also known as Control
Layer, as shown in Figure 4.5.

Figure 4.5: Architecture of the HySim Framework [MEJ+12]

The HySim platform as in [KGW+07, GKL+07, GKK+08] and other hybrid frameworks
suffer from hybridization-introduced decoupling, as native processors and ISSes could become
decoupled as a result of simulation speed differences. This limits the use of such MPSoC

simulation systems where reactive behavior and interprocessor interactions do not define
the system correctness and usability. Yet another type of decoupling referred as temporal
decoupling allows some of the components in a simulation platform to run ahead from rest of
the system, as they do not frequently interact with their environment. Temporal decoupling

TIMA Laboratory, CNRS/INP Grenoble/UJF 63

State of the Art: On Software Execution for MPSoC Simulation

is used to avoid unnecessary kernel synchronization points and context switches, which
usually cause significant overhead. In order to guarantee the correctness of a decoupled
MPSoC simulation environment, hybridization-introduced and temporal decoupling issues have
to be addressed as proposed in [MEJ+12], where they introduce a Hybrid Processor Model
including a Synchronization Layer to manage these issues, as shown in Figure 4.5.

In [MRRJ07a] calls to the native functions are statically inserted into the code interpreted
by the ISS, using a mechanism similar to Remote Procedure Call (RPC). The native function
selection is based on certain performance and energy estimation constraints. They try to
minimize the total simulation time under a maximum constraint on the error in energy
estimation, as proposed in [MRRJ07b].

Key limitations of the hybrid simulation platforms lie in the complexity of managing
interactions between fast native processing elements and the slow ISSes. Nevertheless,
such models have good precision as architecture-specific details are taken into account
using the low level simulators. However, the simulation performance remains a bottleneck
providing around an order of improvement for MPSoC simulations as compared to the ISS

only simulations.

4.2 Performance Estimation in Native Simulation

Many of the recent simulation approaches [KKW+06, TRKA07, HAG08] are based on the
native execution of software to take benefit from considerable simulation speedup. However,
most of them partially handle different sources of timing dependencies, to allow for reliable
performance estimation in a multiprocessor context.

The basic idea behind performance estimation in native simulation is to introduce target
specific performance metrics in the host compiled software. Even though the software is
executed directly on the host machine, it still reflects the timing behavior of target processor
architecture. These performance metrics, commonly inserted in software using annotations,
can be introduced by analyzing software at different abstraction levels. Software performance
estimation techniques are classified as:

v Source Level Simulation (SLS) (also known as System Level Simulation)

v Intermediate Representation Level Simulation (IRLS)

v Binary Level Simulation (BLS)

Many automated approaches like [LP02, CGG04] as well as manual ones [PMP+04] rely
on the insertion of timing information in the software. This timing information usually takes
into account memory accesses as addressed in [KKW+06] and sometimes cache memory
effects as in [CGG04], but it seems that none of them considers memory accesses generated
by the software execution itself. Specifically, access to the program memory are ignored,
while instruction cache size may be limited due to integration constraints and this may lead
to non-negligible conflicts in multiprocessor context.

In the following sections, we review the existing performance estimation techniques
within the context of RISC and VLIW machines.

4.2.1 Source Level Simulation

Source level estimation techniques [GMH01, KKW+06] introduce annotations to the original
software sources, in order to get approximate performance estimates. In most cases, these

64 Mian-Muhammad Hamayun

4.2 Performance Estimation in Native Simulation

estimations encompass only a certain portion of source code for estimating it’s execution
time, generated memory accesses or even energy consumption on a particular target machine.

Source-based performance estimation technique introduced in [BHK+00] converts
machine instructions into an abstract "C-view" of the assembly code using partial compilation
for target machine or a virtual instruction set using a virtual compiler. The number of
processor cycle estimates are specified using a processor description file instead of directly
inserting them into the annotations. Performing estimations for a different target processor
requires only to change the processor description file(s). These approaches are similar to
native software execution as the target cross-compiled code is finally converted into host
machine code. However, the executed software does not contain debug information for
validation and has a structure that is far from the original one. Similar techniques have been
proposed in [GMH01] and [MSVSL08].

The techniques proposed in [SBVR08, WSH08] compile the source code for the target
processor and then use debug information to establish correspondence between the generated
binary code and the original sources. These solutions remain complex as the structure of
generated code is very different from the original sources when the compiler optimizes the
code significantly.

The technique proposed in [PHS+04], does not directly instrument the software but
instead relies on polymorphism and operator overloading features of C++ language. They
overload all basic operators in C++, resulting in automatic insertion of performance
annotations during compilation and native execution of software. This solution seems
reasonable in terms of performance estimates but cannot cope with target processor specific
optimizations.

Such native approaches can provide application and OS timing information by embedding
simulator wait statements into the software code. However, most compiler optimizations
lead to executable code whose execution paths are not isomorphic to the ones of the source
code. This aspect is further aggravated in VLIW binaries, as the resultant code is parallel in
nature; thus, finding a match between the original sources and final binaries is much more
difficult. Source level annotations are therefore intrinsically inaccurate, giving at best rough
runtime estimates.

4.2.2 Intermediate Representation Level Simulation

More innovative approaches rely on the intermediate representation used by retargetable
compilers. Such representations, usually some kind of bytecode, contain all semantic
information and are used throughout the compilation process, including optimization passes.

Estimation techniques proposed in [KAFK+05, KKW+06] are based on the generation of
an IR in three address code format. This intermediate representation uses the C syntax and
could be directly instrumented and compiled for the host machine. This solution allows to
account for the compiler optimizations on IR and the dynamic aspects of software execution.

A basic block level annotation scheme is used in [CHB09b]. The result of this
annotation technique is a SystemC module containing generated C instructions of the
software program along with timing estimations. The generated SystemC modules can
be used in simulation platforms, in combination with the generic RTOS models introduced
in [LMPC04, NST06, EHV09]. This solution takes into account the compiler optimizations,
as well as target processor specific features such as branch prediction penalties and data
dependencies between instructions. Although data memory accesses are considered during

TIMA Laboratory, CNRS/INP Grenoble/UJF 65

State of the Art: On Software Execution for MPSoC Simulation

instrumentation but program memory accesses are ignored that are generated during the
program execution on the target machine. Moreover, this approach does not allow for
debugging of the original program sources, instead the instrumented code is visible during
the debug stage.

The IR based iSciSim approach proposed in [WH09] is an evolution of source level
instrumentation approach proposed in [WSH08]. The overall design flow of the iSciSim
approach is shown in Figure 4.6. The iSciSim technique is based on GIMPLE representation
of GCC compiler, which uses a C language style syntax. The instrumentation technique
relies on multiple compilation stages, where the source code is initially cross-compiled for
the target processor. At the end of first cross-compilation stage, the compiler produces IR

files in GIMPLE format that are converted to real C source code known as Intermediate Source
Code (ISC).

Figure 4.6: Design Flow of the iSciSim Approach [WH09]

A second compilation stage takes the ISC format sources and cross-compiles them for
the target processor again. In this stage the compiler instruments the IR with target-specific
metrics and generates instrumented ISC sources. Timing information is obtained from the
static analysis of generated target binary and analysis of debug information allows to extract
the memory mapping information, which is useful in modeling dynamic software behaviors
during simulation.

Finally, a third compilation stage takes the instrumented ISC representation and compiles
it for the host machine. This technique offers many advantages, including the static and
dynamic aspects of software execution, such as instruction latencies, pipeline effects, branch
prediction and cache memory effects. On the downside, this technique suffers from relatively
low simulation speed when the instrumentation accounts for cache memory effects, as a
direct consequence of high number of synchronizations with the hardware models. Moreover,
the software has to be debugged using the instrumented ISC representation, as it is quite
difficult to establish a correspondence between the original sources and ISC code. This

66 Mian-Muhammad Hamayun

4.2 Performance Estimation in Native Simulation

particular limitation makes it difficult to use this solution for software validation, within the
context of system simulation.

A similar but more efficient technique is proposed in [GHP09], which is based on LLVM

compilation infrastructure. The compiler at first compiles the source code as if the binary
code will be generated for the target machine including target-specific optimizations. The
compiler maintains two levels of intermediate representations i.e. machine-independent
and machine-specific ones. The target backend applies target-specific optimizations on
the machine-specific IR while the compiler maintains its correspondence to the machine-
independent IR, known as Cross-IR. At the end of target compilation stage, instead of emitting
code for the target machine, an annotation pass is introduced, which instruments the Cross-IR
to produce Annotated Cross-IR. The annotation pass analyzes the target code and inserts
calls to an annotation function, at the beginning of each basic block in Cross-IR. The second
compilation phase, invokes the host backend and generates native binary objects from the
Annotated Cross-IR.

This technique allows software debugging from original sources, as links between IR

and original sources are maintained by the compiler during all compilation stages, which
is an essential requirement for software validation. Moreover, this technique allows for
estimating static, as well as dynamic aspects of software execution including instruction
latencies, branch prediction and data dependencies. However, modeling of cache effects is
difficult, as target specific memory addresses are not available in host compiled software.
Additionally, architectural differences between host and target machines are difficult to
account for and authors suggest to use heuristics for this purpose.

In order to use IR based techniques for VLIW performance estimation, the compilers need
to support both host machine and target VLIW architectures. Once such a framework is
available, an appropriate annotation pass could be added to annotate the target-independent
IR and a subsequent host compilation would produce native software binaries, reflecting
VLIW execution timings. Unfortunately retargetable compilation frameworks, such as LLVM

still do not support VLIW backends, and we look into binary level simulation techniques for
VLIW machines.

4.2.3 Binary Level Simulation

Binary level simulation techniques [ZM96, LBH+00] are based on the analysis and conversion
of final target software binaries to native code. As these techniques start from the final
software binaries, they benefit from all target compiler optimizations and produce accurate
simulations. In most of these techniques, the binary code is converted to an equivalent
C language representation, which is then compiled for the host machine with additional
annotations to model its performance.

Simulation techniques for VLIW machines have primarily focused on the architectural and
micro-architectural modeling aspects [MME+97, BBCR02, BK07, WYW08]. Most of these
environments model the low-level processor pipeline details and are interpretive in nature,
resulting in very slow simulations. Some of these have even been developed for specific
objectives, like DLX [BK07] simulator for the Educational Purposes and offers very simplistic
view of a virtual VLIW machine.

The VLIW hardware is relatively simple as compared to superscalar processors (Sec-
tion 3.6), due to the explicit Instruction Level Parallelism (ILP) specification. Following sections
briefly review the compiled simulation and binary translation techniques, with a primary

TIMA Laboratory, CNRS/INP Grenoble/UJF 67

State of the Art: On Software Execution for MPSoC Simulation

focus on how such technologies could handle simulation and performance estimation of
VLIW software on native simulation platforms.

4.2.3.1 Compiled Simulation and Static Translation Techniques

The key idea that differentiates compiled simulation from interpreted ones, is the decoupling
between instruction fetch/decode steps and its execution. Figure 4.7 shows the basic principle
of such approaches, where a translation front-end decodes the target binary instructions and
generates an IR, which is then compiled for the host machine using native compiler. The
compiled simulator is loaded into the host machine memory and an execution runtime, calls
the instructions behaviors during simulation.

Compilation/Translation Time Run Time

Simulation
Compiler /
Translator
(Front-end)

Host Compiler/
Code Generator

(Backend)

Compiled/Translated
Simulator Binary

Target Software
Binary

Intermediate
Representation

add r1,r2,r3
sub r3,r4,#0

...

...

...

Host
Machine Memory

Instruction Behavior

Instruction Behavior

Instruction Behavior
Execute

Figure 4.7: Basic Compiled Simulation/Static Translation Principle [NBS+02]

The very first compiled simulation approach was proposed in [MAF91], which describes
how a high-level language could be used as IR for modeling ISA of RISC machines. Initial
compiled hardware/software co-simulation approach for programmable DSP architectures
was proposed in [ZTM95]. Rather than using a high-level language as the code generation
interface, [ZG99] improves the compiled simulation by using the host machines resources
and introducing a low-level code generation interface specialized for ISA simulation.

Many similar techniques have appeared in literature, such as [LEL99, LBH+00, RMD03,
BG04, NTN06]. Generation of both compiled and interpreted simulators has been proposed
in [LEL99], using a macro-based library of simulation functions. Key limitations include,
simulation of single instruction per cycle and construction of a topological sort order for
handling parallel instruction dependencies. Auxiliary variables are introduced to break
such cyclic dependencies, by storing the register contents temporarily. The Instruction Set
Compiled Simulation (IS-CS) technique proposed in [RMD03] uses a template customization
approach to instruction set simulation. Target binary instructions are decoded one-by-one
and custom templates are generated. These templates are subsequently compiled for the
host machine. Runtime behavior is very similar to an ISS, where each instruction is examined
before execution and redecoded, if necessary.

Many of these approaches fail to handle dynamic code behaviors, such as indirect branch
instructions and provide a fallback mechanism using interpretive mode simulations or
use techniques that slowdown the simulation speed. For example, SuperSim [ZM96] and
[LBH+00] treat every instruction as a possible target of an indirect branch instruction and

68 Mian-Muhammad Hamayun

4.2 Performance Estimation in Native Simulation

thus set a label before the translated code of each instruction. These labels limit the number
of optimizations that could be applied during host code generation, as the compiler must
assume that each label could be an entry point for control flow. Similarly, SyntSim [BG04]
and WSS [NTN06] propose to give control to an ISS, when an indirect jump is found during
simulation.

Compiled simulation benefits from much higher simulation performance, as the runtime
overheads of interpretation are avoided but suffer from the inability to handle dynamic code
behaviors, and frequently includes compiler-unfriendly features, as discussed in [NTN06].
For example, most of the techniques generate a single simulation function containing a
very big switch structure with many labels. Such code adversely effects the compilation
performance and limits the number of optimizations that could be applied during code
generation. Moreover, features like breakpoints and fast-forwarding are difficult to implement
in such systems. None of the solution is efficient, within a hardware/software co-simulation
environment, as target to host address mappings require a memory model and frequent
accesses to such a model significantly reduce the simulation speed.

Figure 4.8: Static Binary Translation Flow in UQBT [CVE00]

Static binary translation techniques like FX!32 [CHH+98], UQBT [CVE00], [CYH+08]
and LLBT [SCHY12] primarily focus on scalar architectures and porting of a given ISA to
another platform. FX!32 translates Windows NT/Intel instructions to run on the Windows
NT/Alpha platforms. Initially, an interpreter gathers some execution profiles that are
subsequently used to guide the static binary translator for generating native Alpha code.
Later executions of the same application can re-use the already generated native code.
Another static binary translation approach known as UQBT [CVE00], focuses on providing
adaptable binary translation. UQBT introduces HRTL, an intermediate representation, which
raises the abstraction level of input binary instructions and makes them source1 independent.

1In binary translation domain, source refers to the input machine architecture and target usually means the

TIMA Laboratory, CNRS/INP Grenoble/UJF 69

State of the Art: On Software Execution for MPSoC Simulation

Thus, allowing for the subsequent generation of native code that uses the native Application
Binary Interface (ABI) for improved performance. UQBT integrates an interpretor as well,
to handle the dynamic aspects of translated code. As the translation framework is static,
support for kernel code and dynamically linked libraries is not available. Figure 4.8 shows
the overall binary translation flow in UQBT.

A direct ISA-to-ISA binary translation system is proposed in [CYH+08] for ARM to MIPS-
like machines and includes some ISA optimizations to generate efficient code. Although such
direct mapping solutions could provide some specific optimization opportunities but are
generally very restricted. For example, the target architecture, MIPS in this case, has to
provide higher set of resources such as CPU registers, otherwise establishing a direct mapping
between source and target architectures is difficult. This is particularly valid in cases where
source machines, like VLIWs contain much higher number of registers as compared to the
target architectures, such as x86 machines. The direct ISA-to-ISA solution in not retargetable
and does not suit simulation systems, as multiple architectures need to be evaluated during
architecture exploration. Additionally, by making use of an IR, we can profit from already
available machine independent and target machine specific optimizations. For example,
LLVM provides many optimizations that are very time consuming, difficult to develop and
test for a direct ISA-to-ISA binary translation system.

Recently, a static translation scheme for ARM processors has been proposed in
LLBT [SCHY12], which is based on LLVM IR and profits from existing optimization and
retargetability features of LLVM infrastructure. This translation scheme provides some
interesting ideas including jump table recovery, reduced address mapping table, PC-relative
data inlining and avoiding the runtime translation requirement. The whole input binary
is treated as a single function and a very big main() function is generated, where each
instruction is labeled in the translated code, limiting optimizations during native compilation.
Their focus remains on scalar-to-scalar translation, as they target IA32, Intel x64 and MIPS
architectures for porting ARM applications.

4.2.3.2 Hybrid Compiled and Dynamic Simulation Techniques

Static translation and compiled simulation techniques have certain limitations, mostly
relating to dynamic software behaviors, making them less interesting for general purpose
computing systems. Thus, researchers are inclined towards dynamic and compiled simulation
techniques such as Shade [CK94], Embra [WR96], FastSim [SL98], Aries [ZT00], JIT-
CCS [NBS+02] and HIS-CS [RMD09]. All of these techniques try to combine the advantages
of compiled and interpretive techniques. We briefly discuss them, as to give the reader a
taste of existing techniques using dynamic principles, but our main focus will remain on
static and compiled simulation techniques.

The generic principle of dynamic compiled simulation is shown in Figure 4.9, where
techniques like Shade, Embra and Aries try to eliminate the compilation overhead
by performing more complex instruction decoding at run-time. The key feature that
distinguishes these techniques from interpreted ones, is the use of a translation cache as to
benefit from the repeated execution of instructions and amortize the instruction decoding
overhead. FastSim specifically refers to this feature as Memoization, where micro-architectural
states and corresponding simulation actions are cached, for later reuse at a much reduced
cost. Another benefit of such approaches, comes from the decoding of only those input

host or final execution platform.

70 Mian-Muhammad Hamayun

4.2 Performance Estimation in Native Simulation

Run Time

No

Yes
FETCH

UPDATE
CACHE

DECODE

Decoded
Instructions

Cache
EXECUTEDecoded ?

Target Software
Binary

Figure 4.9: Generic Principle of Dynamic Compiled Simulation

instructions that are actually executed, as opposed to static translation schemes where the
complete input binary is decoded.

Just-In-Time Cache-Compiled Simulation (JIT-CCS) [NBS+02, BNH+04] integrates a simula-
tion compiler into the interpretor and compilation for the target instructions take place at
runtime and results are cached. This technique improves on the ISS performance by removing
the instruction decoding overhead and triggers recompilation if input binary instructions are
modified. The translations are simple and unoptimized as to minimize the runtime overhead,
and applicability to VLIW machines has not been demonstrated.

Hybrid Instruction-Set-Compiled Simulation (HIS-CS) [RMD09] takes a slightly different
approach and instead of generating code for every instruction in the input binary, it generates
optimized code for decoding these instructions at runtime, using a template-customization
technique previously proposed in IS-CS [RMD03]. The generated decoder is specific to the
input binary, as it contains decoding templates for instructions found in the given input
binary only. The customized decoder along with the simulation engine is compiled using
native compiler to generate custom Hybrid IS-CS simulator, as shown in Figure 4.10. A key
feature of this technique is the reduced compilation time as the size of generated decoder is
much smaller than the source of decoded program. Additionally, the generated decoder is
optimized statically, as compared to fully dynamic techniques. Simulation still takes place at
instruction level and VLIW simulation specifics remain un-addressed.

Binary translation techniques have retained focus on scalar-to-parallel translations,
such as in the so-called Code Morphing Software (CMS), which targets the Transmeta
Crusoe [DGB+03] microprocessor architecture for full system level implementation of
x86 architecture. The Crusoe processor design consists of a hardware VLIW core and is
supported by the Code Morphing Software layer, which translates the x86 instructions to
native Crusoe VLIW instructions. Additionally, the translation system combines a dynamic
binary translator, an interpretor, optimizer and runtime system. Similar solutions have
appeared in DAISY [EA97] and Aries [ZT00]. These solutions are more complex than
traditional translation systems, as they have to extract ILP from the scalar input instruction
stream, so as to profit from the target architecture resources and achieve better performance.

A few efforts have focused on the simulation of SIMD instructions sets such as
FX!32 [CHH+98] for translating MMX SIMD instruction sets to Windows NT/Alpha platforms.
Similarly, more recent efforts from [MFP11] and [MFP12] have focused on adapting the
popular QEMU [Bel05] binary translation system to support SIMD and VLIW architecture
simulation on x86 hosts, respectively. These solutions are quite difficult to implement and

TIMA Laboratory, CNRS/INP Grenoble/UJF 71

State of the Art: On Software Execution for MPSoC Simulation

Compilation Time Run Time

No

Yes

FETCH
UPDATE
CACHE

DECODE

Decoded
Instructions

Cache
EXECUTE

Decoded ?
Native

Compiler
(C++)

Binary
Decoder

Decoder
Generator

Target Software
Binary

Hybrid Compiled
Simulator Binary

Decoded
Instructions

add r1,r2,r3
sub r3,r4,#0

...

...

...

Customized
Instruction Decoder

dec_add_t()
dec_sub_t()

...

...

...

Simulation
Engine

main(){
while(1){
fetch();
decode();
...

Target Software
Binary

Figure 4.10: Principle of Hybrid Compiled Simulation [RMD09]

simulation performance is bound to be limited, due to the runtime translation complexity.

4.3 Discussion and Conclusions

We presented some of the principle native platforms for MPSoC simulation and key
performance estimation techniques. We also focused on binary translation and compiled
simulation techniques to evaluate their feasibility for modeling VLIW machines. Simulation
techniques based on hardware/software interfaces are promising and provide realistic co-
simulation environments. We reviewed different interface layers and their typical use-cases
in native simulation platforms.

Key issues with the existing native platforms include address space differences, memory
overlaps, requirement for dynamic linking in software and modifications to the virtual
platform components. All of the native techniques require access to software sources and
frequently exploit retargetable compilers for modeling target- specific software performance.
Performance estimation techniques for the RISC machines are quite mature, providing
reasonably accurate results but techniques for VLIW software are scarce.

In the following chapters, we describe the principle contributions of this thesis including a
native MPSoC simulation platform based on Hardware-Assisted Virtualization (HAV) technology
and a Static Binary Translation (SBT) technique for modeling VLIW software on top of the same
native platform, with instruction level accuracy.

72 Mian-Muhammad Hamayun

Any sufficiently advanced technology is indistinguish-
able from magic.

Arthur C. Clarke

5
Native MPSoC Simulation Platform Using

Hardware-Assisted Virtualization

Virtualization of physical computing resources is a well-known concept [Gol74, Cre81]
and provides means for sharing these resources to improve system utilization. It is

similar to abstraction but details of underlying resources are not necessarily hidden from
the software, as it deals with the creation of logical structures that operate just like the real
physical machine. In a non-virtualized system only a single operating system is in control
of the hardware resources, whereas in a virtualized environment a new software layer is
introduced, known as Virtual Machine Monitor (VMM) or Hypervisor, which controls and
arbitrates accesses to the platform resources. This enables the use of multiple operating
systems on top of a single hardware machine, commonly known as guests of the VMM. The
VMM presents a set of virtual platform interfaces that constitute a Virtual Machine (VM) to
each of the guest operating system, making them believe they have full control over the
"physical" machine. The term host is commonly used to refer to the execution context of the
VMM or host the Operating System.

Virtualization technologies are broadly categorized into two types i.e. paravirtualization
and full virtualization. Paravirtualization technologies are transparent to the software
applications but not to the guest operating system, as it must be modified to use the API

defined by VMM in order to run in the virtual machine. Xen [BDF+03] uses paravirtualization
but preserves binary compatibility for user-space applications. Full virtualization requires
no modifications to the guest operating system, providing illusion of a complete physical
system, including processors, memory and I/O devices. Hardware Virtual Machine (HVM) is
the full virtualization mode supported by Xen and requires hardware support, as introduced
by AMD Pacifica [AMD05] and Intel Virtualization Technology (VT) [UNR+05].

The Hardware-Assisted Virtualization (HAV) technology provides support for full virtu-
alization and solves some of the key challenges to virtualization of IA-32 and Itanium
architectures. These include ring deprivileging (causing ring aliasing and address space
compression), non-faulting accesses to privileged state, interrupt virtualization and frequent
accesses to the privileged resources [NSL+06]. This chapter presents our first contribution

TIMA Laboratory, CNRS/INP Grenoble/UJF 73

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

and describes the efficient resolution of target vs. host address spaces problem, using the
HAV technology provided by state-of-the-art x86 processors, as discussed in Chapter 3. We
demonstrate the use of HAV in the context of event-driven native simulation environments
for modeling MPSoC architectures.

5.1 Hardware-Assisted Virtualization (HAV)

The HAV technology provides hardware assists for overcoming the difficulties associated with
the virtualization of IA-based systems. Principle architectures that support HAV include Intel
VT-x (x86), VT-i (IA-64) and AMD-V, previously known as AMD Secure Virtual Machine
(SVM). Recently other platforms including PowerPC, ARM Cortex A15 and SPARC have also
introduced support for hardware based virtualization.

Intel architectures provide a protection mechanism based on the concept of privilege
levels. Privilege levels are defined using a 2-bit field resulting in 4 levels, where 0 and 3
define the most and the least privileged levels, respectively. Privilege levels are also used for
controlling access to address-space, by employing them in segmentation (IA-32 only) and
paging structures. In the virtualization context, a host operating system cannot allow a guest
system to run at the same privilege level as itself, so it has to either deprivilege its guest or
find other means to accomplish this objective. Other significant difficulties include address
space translation and interrupt virtualization, which become performance bottlenecks in the
existing software based virtualization technologies. The HAV technology has been introduced
to target these complex problems by providing dedicated hardware [UNR+05, NSL+06] and
supports the following key features:

v New Guest Operating Mode: This mode provides a new execution context of the host
machine in which the address space can be fully customized. Guest software executes
in non-root operation mode whereas the host software and VMM execute in root operation
mode. The guest mode provides all four privilege levels except that the VMM can
configure for certain instruction executions and register accesses to be trapped.

v Hardware-based State Switch: Hardware support for atomic switching between guest
and host modes and vice versa., in a complete and efficient manner, has been introduced.
The hardware switches the control registers, the segment registers and the instruction
pointer so that both address space switching and control transfer are performed
atomically. Two new types of transitions are defined: a transition from root operation to
non-root operation mode known as VM Entry, and a transition from non-root operation
to root operation mode is called a VM Exit.

v Guest Mode Exit Reason Reporting: Each time the guest software quits guest mode,
it reports the exit reason to VMM, which uses this information to take an appropriate
action. Exceptions and interrupts are examples of reasons for leaving the guest mode.

5.1.1 Processor Virtualization

In traditional software based virtualization techniques, some guest software instructions
are not allowed to directly execute on the host processor. These are known as sensitive
instructions, as they can interfere with the processor state, affecting the host operating
system and VMM behavior. The guest operating system is executed in unprivileged mode

74 Mian-Muhammad Hamayun

5.1 Hardware-Assisted Virtualization (HAV)

so that execution of sensitive instructions results in traps and can be emulated by the VMM.
This strategy works fine, given that all of the sensitive instructions are privileged1 as well,
thus meeting the Popek and Goldberg [PG74] requirements on virtualizable architectures.
The x86 architecture contains around 17 instructions that are sensitive but unprivileged,
creating a difficult situations for software only virtualization techniques. For example the
IA-32 registers GDTR, LDTR, IDTR and TR contain pointers to data structures that control
processor operations. Software can write to these registers using LGDT, LLDT, LIDT and LTR

instructions at privilege level 0 only. However, it can read from the same registers using
SGDT, SLDT, SIDT and STR instructions at any privilege level. This means that the guest OS

can deduce existence of a virtual machine and the fact that it does not have full control over
the CPU, in situations when the VMM maintains unexpected values in these registers. See
Appendix A for more details on privileged and sensitive instructions.

0
1
2

3VCPU

0
1
2

3CPU

Host
State Area

Guest
State Area

Virtual Machine Control
Structure (VMCS)

(a) Host vs. Guest Mode in HAV

H/W VM Control
Structure (VMCS)

Host Processors
with

VT-x (or VT-i)

VMM

Memory and I/O
Virtualization

VMCS
Configurations

CPUn

VT-x

CPU1

VT-x

CPU0

VT-x

R
i
n
g

0

R
i
n
g

3

V
T
 R

o
o
t

O
p

e
ra

ti
o
n
s

V
T
 N

o
n
-R

o
o
t

O
p

e
ra

ti
o
n
s

VM0

Applications

Operating
System

VM1

Applications

Operating
System

VM
Entry

VM
Exit

(b) VMCS, VT Root and Non-Root Operations

Figure 5.1: Guest vs . Host Modes in Hardware-Assisted Virtualization (HAV) (Intel Processors)

HAV technology solves this problem by providing a dedicated guest execution mode, also
known as Virtual Machine eXtensions (VMX), without constraining the software by privilege
levels. Figure 5.1(a) shows the guest and host modes, where the host and guest softwares
have access to all four privilege levels. The guest and host states are maintained in the host
memory using structures designated as Virtual Machine Control Structure (VMCS) or Virtual
Machine Control Block (VMCB) by Intel and AMD, respectively (Figure 5.1(b)). One such
structure is allocated by the VMM for every Virtual CPU (VCPU) and stores the processor
state of host and guest modes in Host and Guest State Areas. This information includes
necessary configurations such as Segment Registers, CR3, IDTR and fields specifying the
interruptibility state of the guest processor. For performance reasons, the general purpose
registers are not saved in the guest/host state areas and this responsibility is delegated to the
VMM. The VMCS controls interrupts and exceptions; thus, it can configure guests to cause VM

Exit conditionally using the VM-execution control fields [UNR+05]. The VMCS also includes
VCPU state fields that are not represented in any software accessible register. Every VM Entry
and VM Exit loads and saves these fields, in order to preserve the VCPU state while the VMM is

1A privileged instruction, when executed in unprivileged mode results in a trap (General Protection Fault).

TIMA Laboratory, CNRS/INP Grenoble/UJF 75

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

running.
The VM entries save the host mode processor state to the host state area, and load guest

mode processor state from the guest state area. VM exits perform the reverse actions and
additionally store information about the cause of VM Exit in the VMCS i.e. the exit reason
and the exit qualification. The VMCS also specifies the conditions that control when the
VM entries and exits take place. For example, controls that specify interrupt virtualization,
including external interrupts and interrupt window exiting, to control the guest software
behavior. Moreover, the VMM can control guest paging operations by protecting certain bits
using register masks, and guest writes to these bits cause VM exits. Additionally, bitmaps can
be set for exceptions, I/O operations and Model Specific Registers (MSRs).

5.1.2 Memory Virtualization

Every VMX transition between the host and guest can switch address spaces because the CR3
register is included in the guest and host state areas of VMCS. This feature allows the guest
software to use its full address space, which can be different from that of the host and VMM.
All VMX transitions are controlled by VMCS and it resides in the physical address space of
host machine instead of the linear address space of guest system. This eliminates the need to
search the VMCS in the linear address space of guest, as it can be different from the linear
address space of VMM [UNR+05]. Guest address space is part of the user address space on
the host machine, which defines the guest physical to host virtual address translations. The
VMM provides the following types of address translations:

v Guest Physical Address (GPA) to Host Physical Address (HPA) translations when guest
paging is disabled and the software uses physical addresses directly.

v Guest Virtual Address (GVA) to Guest Physical Address (GPA) to Host Physical Address (HPA)
translations when guest paging is enabled.

v Nested Guest Virtual Address (NGVA) to Nested Guest Physical Address (NGPA) to Guest
Physical Address (GPA) to Host Physical Address (HPA) translations when guest launches
a guest of its own, and paging is enabled in both the guest and the nested guest.

The above-mentioned translations are provided using either Shadow Page Tables (SPT)
or by exploiting the two-dimensional paging hardware support known as Extended Page
Tables (EPT) or Rapid Virtualization Indexing (RVI)2 by Intel and AMD, respectively. In essence,
the VMM is responsible for exposing a standard x86 Memory Management Unit (MMU) to the
guest software, while translating guest virtual or physical addresses to the host physical
addresses, using either of these technologies.

5.1.2.1 Shadow Page Tables

Memory virtualization using Shadow Page Tables (SPT) is provided by HAV-based VMMs
by intercepting all paging operations of the guest software including page faults (#PF
exceptions), page invalidations (INVLPG) and accesses to the emulated guest control registers
(CR0, CR2, CR3, and CR4). Essentially, all attempts from the guest software to access address-
translation hardware are trapped by the VMM and emulated. The VMM must ensure that

2Formerly known as Nested Page Tables (NPT).

76 Mian-Muhammad Hamayun

5.1 Hardware-Assisted Virtualization (HAV)

accesses to page directories and page tables get trapped and this is accomplished using the
conventional page-based protection mechanisms. Additionally, traps for system registers
accesses are configured using the VMCS, which specify what actions the guest should perform
and when to do a VM Exit and give control to VMM. This usually happens when any of the
system register is accessed by the guest. Once VMM takes control, it updates its SPTs, which
provide GPA (or GVA or NGVA) to HPA translations.

Updates to SPTs are also triggered when the host modifies its own translations i.e. either
GPA to HVA or HVA to HPA. As the host OS maintains full control over its memory, it can even
swap-out some of the pages assigned to guest at anytime, typically when memory pressure
builds up in the system and the memory shrinker is activated. Such events also trigger
updates to the SPT entries maintained by the VMM.

Shadow page tables occupy significant amount of host memory, which is directly
proportional to the number of VMM guests. Secondly, the synchronization operations between
guest and shadow page tables cost valuable CPU time and degrade guest performance.
Thirdly, multi-tasking workloads suffer greatly, as on each context switch the shadow
page tables have to be invalidated and rebuilt for the new task. Reconstruction of
SPTs is much more expensive than refilling of the Translation Lookaside Buffer (TLB). To
reduce these overheads, caching techniques for SPTs across context switches have been
introduced [KKL+07]. Figure 5.2(a) shows the general idea behind SPTs. Kindly refer to
Appendix B.1 and Chapter#31 in [Int11] for further details.

5.1.2.2 Extended Page Tables

When two-dimensional paging support is enabled in HAV, the guest physical addresses as
used in non-root operation mode are translated by traversing through a set of EPT (or RVI)
paging structures. These structures are implemented in hardware, and an EPT page walker
translates the GPAs to final HPAs that are used to access the host memory. The guest operating
system is allowed to freely modify its page directories (referenced by CR3 register) and page
tables, as the guest paging structures become independent of the VMM and guests can directly
handle page faults. This feature eliminates the need to quit the guest mode for paging
operations, as is the case for shadow page tables, resulting in improved guest performance
and reduced memory consumption.

EPT paging structures are used to translate all guest memory operations that actually
access host physical memory, without requiring the guest OS to do a VM Exit. For example,
when guest maintains its own paging structures and uses them to translate guest virtual
addresses (GVAs) into guest physical addresses (GPAs), the EPT paging structures are involved
at each translation stage. During guest translation steps, the page directory entries and page
table entries go through EPT to access host memory and the resulting GPA is translated using
EPT to determine the final HPA.

The original VMX architecture requires flushing of TLBs and paging-structure caches on
each VMX transition (VM entries and VM exits). A new feature known as Virtual Processor
Identifiers (VPIDs) (named as Tagged TLBs by AMD) allows to associate logical processor
identifiers with TLB-caches and eventually cache translations for multiple linear address
spaces can be maintained. Kindly refer to Appendix B.2 and Chapter#28 in [Int11] for more
details on two-dimensional paging.

As discussed in Section 3.5.3, the key issue in native simulation is the transparent
handling of address translation in order for a target application to access the simulated

TIMA Laboratory, CNRS/INP Grenoble/UJF 77

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

VM0

Guest
Page Tables

VMn

Guest
Page Tables

VMM

I/O
Virtualization

Shadow
Page Tables

CPU0

TLB

Host Memory

Remap
Induced
VM Exits

(a) Using Shadow Page Tables (SPT)

VT-x
with EPT

VM0

Guest
Page Tables

VMn

Guest
Page Tables

CPU0

EPT
Walker

Host Memory

Extended
Page Tables
(EPT)

VMM

I/O
Virtualization

No VM Exits

(b) Using Extended Page Tables (EPT)

Figure 5.2: Memory Virtualization Support in Hardware-Assisted Virtualization (HAV)

memory and peripheral components, and symmetrically for a simulated processor or DMA

to access target allocated buffers. Memory virtualization capabilities provided by the HAV

technology can very conveniently help to resolve the target vs. host memory addressing
problem in native MPSoC simulation platforms, as elaborated in the up-coming text.

5.1.3 I/O Virtualization/Emulation

The HAV technology provides processor and memory virtualization capabilities, as discussed
in the preceding sections. For I/O device emulation HAV technology relies on the VMM to
provide either in-kernel support, or forward such requests to the user-space device emulators
such as Quick EMUlator (QEMU). Most of the host-specific devices such as Programmable
Interrupt Controller (PIC), Local APIC (LAPIC), Programmable Interval Timer (PIT) and I/O
APIC (IOAPIC) are emulated by th VMM in kernel mode.

More recently the concept of Input/Output Memory Management Unit (IOMMU) has
been introduced by Intel and AMD, named Intel VT-d (Direct I/O) and AMD-Vi (I/O
Virtualization), respectively. An IOMMU enables guest virtual machines to directly use
peripheral devices, such as Ethernet, accelerated graphic cards and hard-drive controllers
through DMA and interrupt remapping techniques.

This chapter will primarily focus on the use of processor and memory virtualization
capabilities for the purpose of native simulation. The I/O emulation capabilities provided by
VMM, such as Local APIC (LAPIC) for multiprocessor modeling, will be used and user-space
device models will be provided by a SystemC-based simulation platform.

78 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

5.2 Native Simulation Using Hardware-Assisted Virtualization

We solve the target vs. host address spaces problem in native simulation by introducing a
transparent and hardware-based address translation layer provided by the HAV technology.
This translation scheme is different from the Dynamic Binary Translation (DBT) based ISSes,
which invoke software based address translation functions for each memory access, thus
degrading the simulation performance.

The following sections provide detailed description of how we solve the address
spaces problem by integrating a VMM into an event driven simulation environment,
for the sake of concreteness, we integrate the open source Linux-based Kernel Virtual
Machine (KVM) [KKL+07] into SystemC environment. Our contribution is not to create
a fundamentally new HAV-based virtual machine monitor, but to use an existing one and
integrate it into an event-driven SoC simulation environment to solve the problems mentioned
in Chapter 3 (Sections 3.5.3 and 3.5.4).

KVM is composed of two parts, a Linux kernel mode driver (the VMM) and a user-space
library that bridges the gap between the kernel driver and user-space software such as
SystemC based virtual platforms. We will provide details on how we can simulate an entire
software stack including an operating system and multi-threaded software applications on
multiple processing elements.

5.2.1 Native Processing Units

The Native Processing Units (NPUs) are based on the SystemC module concept and form the
basis of our simulation framework. Each NPU models a native processor and provides the
interface between hardware SystemC components and KVM. For interfacing with KVM, it uses
the KVM user-space library, which exports key functions for virtual machine manipulation.
The KVM kernel module exposes the host processor ISA to the software stack e.g. the x86 ISA in
our case. The software stack, including the embedded OS, the HAL layer and the application
are compiled to the host binary format and executed on top of the VMM.

Each native processor includes a SystemC thread to model the processor and components
for interacting with the KVM user-space library, such as callback functions and features to
exploit the KVM library interface. The native simulation platform requests certain services
from the KVM, such as creation of a new Virtual Machine (VM) including one or more Virtual
CPU (VCPU), initialization of the guest memory space and launching the software execution.
Each of these requests is sent to the KVM kernel module across the user/kernel mode frontier
using the ioctl() mechanism provided by the Linux kernel. Each ioctl returns a value to
indicate success or failure of the requested service.

The native processors install certain callback functions into the KVM user-space library
that will be executed whenever the simulated software stack has some events for the SystemC
platform, or requires certain services neither provided the VMM nor by the user-space library.
These events include I/O accesses, exceptions, profiling and timing annotation requests,
which are transfered to the native processor that will either handle them locally or forward
them to the SystemC platform. On the hardware side, the native processor provides the
SystemC interfaces, including the TLM ports for transactions on the communication network.
Figure 5.3 provides a high-level view of native processing units and their relationship to
KVM. Table 5.1 summarizes the basic KVM APIs to create a new virtual machine, to assign
user-space memory to it, and to create VCPUs. The current maximum number of VCPUs limit

TIMA Laboratory, CNRS/INP Grenoble/UJF 79

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

User Mode Kernel Mode

KVM

K
V

M
 U

se
r

S
p
a
ce

 L
ib

ra
ry

SystemC/TLM Ports

I
O
C
T
L
(
)
s

C
a
l
l
b
a
c
k
s

E
x
i
t

R
e
a
s
o
n

VCPU

In Kernel
I/O Device
Emulation

Shadow
Page Tables

Host
State Area

Guest
State Area

VMCS

NPU

SC_THREAD MMIO

Semi-
Hosting

KVM Library Interface

A

B

Figure 5.3: Native Processing Units and their interfacing with KVM using the User-space Library

stands at 254 VCPUs per virtual machine in KVM on x86 hosts.

KVM API Description

KVM_CREATE_VM Create a new Virtual Machine, without any VCPUs and Memory.
KVM_CREATE_VCPU Create a new VCPU in an existing Virtual Machine.

KVM_SET_USER_MEMORY_REGION Create or modify a guest memory slot (Allocated in User-space).
KVM_[GET|SET]_[REGS|SREGS] Get or Set General Purpose or System Registers of a VCPU.

KVM_RUN Start or Resume Execution (Returns with an Exit Reason).

Table 5.1: Basic KVM APIs for Virtual Machine Initialization and Execution

The KVM_RUN API is the most important one and is used to start or resume execution on
a particular VCPU in a virtual machine. Each execution of this API results in host to guest
mode switch and the guest software is executed until it reaches an instruction that cannot
be executed in guest mode, or requires assistance from the host machine. The guest mode
quits and gives control to VMM, which restores the host state and tries to fulfill the guest’s
requirement within kernel mode. Often due to a page fault, an exception, an I/O request, or
the need to emulate an instruction, as the guest is not allowed to execute certain sensitive
instructions. For this purpose the VMM has access to exit reason and exit qualification fields
saved by the HAV support. The exit reason provides the general cause of guest exit to host
mode, while the exit qualification provides further details in certain cases, such as page
faults and debug exceptions. For example, in case of a guest page fault, the exit qualification
contains the linear address that caused the page fault. Figure 5.4 shows the overall execution
flow of native simulation using KVM. A very similar exit reason based switching structure is
used in KVM library for forwarding requests to appropriate user-space components, as given
in Listing 5.1.

5.2.2 Host Dependent Hardware Abstraction Layer

Native simulation platforms face two types of dependencies, mainly resulting from the
native compilation of software. The differences in ISA of host and target processors, as

80 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

Execute Native
Code in Guest

VM Exit
(With Reason)

VM Entry

Guest ModeKernel ModeUser Mode

Native Processer
+ KVM Library

Save Guest,
Load Host

State

Handle
- Page Faults
- In Kernel I/O
- ...

Handle
Host IRQs

Update
Guest State

Save Host,
Load Guest

State

SystemC
World

MMIO Callback
Functions

Set and Handle
External Events

Semi-hosting
i.e. Annotations,

Profiling

Update Context
Raise IRQs

KVM RUN

Yes
MMIO?

No

PMIO?
Yes

No

R
e
tu

rn
 P

a
th

A B

C

E

F

G
D

Signal
Pending?

Yes

No

Yes

No

Debug
Exception?

Debugging
Interface

SystemC I/O
Modules/Events

SystemC
Comm. Module

Other SystemC
Based ISSes
i.e. QEMU

H

Figure 5.4: Execution Flow in Hardware-Assisted Virtualization Based Native Simulation

well as specific details of hardware modules, need to be addressed in the first place. These
differences are resolved by explicitly using the HAL API for all interactions between software
and hardware components [YBB+03, GGP08], resulting in a hardware-independent software
stack, except for the HAL layer implementation. As a result, our approach is similar to
paravirtualization. Second source of dependencies arise due to the memory representations
in hardware and software components, as discussed in Section 3.5.3 and we address this
issue in the following section (c.f . Section 5.2.4).

HAL layer has to bridge the gap between two worlds; firstly it has to provide an interface
that is specific to the operating system running on top of it, and secondly it has to implement
the HAL interface in terms of the underlying platform. We have implemented our HAV based
approach for DNA-OS [GP09], so the HAL layer respects the interface expected by DNA-OS.
As we base our solution on top of the HAV technology, which exports host-specific ISA to its
guests so the HAL layer is implemented using the host ISA (x86 in our case). Using the HAV

TIMA Laboratory, CNRS/INP Grenoble/UJF 81

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

Listing 5.1 Execution Flow in KVM user-space library

1 int kvm_cpu_start(struct kvm_cpu *vcpu)
2 {
3 /* Local Variables */
4 reset_vcpu(vcpu);
5 ...
6 while (vcpu->is_running)
7 {
8 ioctl(vcpu->fd, KVM_RUN, 0);
9

10 switch (vcpu->exit_reason)
11 {
12 case KVM_EXIT_MMIO:
13 /* Handle MMIO request; forward to SystemC */
14 break;
15 case KVM_EXIT_IO:
16 /* Handle I/O request; used for Semi-hosting */
17 break;
18 case KVM_EXIT_INTR:
19 /* Handle Signal */
20 break;
21 case KVM_EXIT_DEBUG:
22 /* Handle debug exception */
23 break;
24 case KVM_EXIT_SHUTDOWN:
25 /* Stop VCPU */
26 return 0;
27 ...
28 default:
29 goto panic_kvm;
30 }
31 panic_kvm:
32 return 1;
33 }

technology, all interactions between software and hardware components take place at the
host ISA level, as was discussed in Section 4.1.2 (Figure 4.4(d)). The HAL layer provides APIs
for managing process contexts, synchronization primitives, endianness, memory and I/O
accesses and interrupt management. Chapter 7 will provide more details on these APIs.

Figure 5.5 shows the fact that all of the software layers above HAL are independent of the
underlying platform, and only HAL is specific to the host machine architecture. As a concrete
example, we give the implementation of CPU_TEST_AND_SET HAL API function in Listing 5.2,
in comparison with the Listings 3.2 and 3.3, which show the implementations for classic
native and ARM processor, respectively.

Once the initial design space exploration is finished for a given SoC, the same software
stack can be re-compiled for the target architecture excluding the HAL layer and replacing it
with a target specific implementation. This enables the validation of a significant amount of
software for the target architecture, including the operating system and all software layers
above it. As the context initialization and switching functions are included in the HAL layer,
modeling of dynamic task creation and thread migration within SMP architectures is possible
– a key requirement in recent SoCs.

The native software executes on top of a virtual machine and the VMM controls the
resources accessed by the guest software. Moreover, the simulated software does not know
the existence of a virtual machine, and executes in isolation. Thus, software execution is
very similar to that on the final target architecture, as host resources are invisible to the guest

82 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications CPU_CONTEXT_INIT(...){
/* Process context initialization
 routine in Host ISA. */
}
CPU_CONTEXT_SAVE(...){
/* Process context routine in Host
 ISA for saving the register state
 of current process in memory. */
}

CPU_TEST_AND_SET(...){
/* Test & Set primitive using the
 Host ISA or Equivalent */
}

...

H
ar

dw
ar

e-
In

de
pe

nd
en

t
S

of
tw

ar
e

 S
ta

ck

Figure 5.5: Host Dependent Hardware Abstraction Layer (HAL)

Listing 5.2 HAL Function CPU_TEST_AND_SET() for HAV-based Native Host (x86)

1 long int CPU_TEST_AND_SET (volatile long int * spinlock)
2 {
3 long int oldval = 0; /* Previous value to compare with. */
4 long int newval = 1; /* New value for taking the spinlock. */
5 unsigned char flag; /* flag: 0 -> Success, 1-> Failed to lock. */
6
7 __asm__ volatile (
8 "lock cmpxchgl %1, %2\n"
9 "setne %%al"

10 : "=a" (flag) /* Non-zero means lock is taken by someone else */
11 : "r" (newval), "m" (*spinlock), "0" (oldval)
12 : "memory");
13
14 return ((long int) flag); /* Return 0 means OK */
15 }

Key Point 5.1 Software Validation
All software layers above the HAL, including operating system, libraries and application
remain un-modified, thus validating a significant amount of software. In order to re-use the
same software stack on a different target platform, only the HAL has to be replaced with a
target-specific version and re-validated.

software. This is in contrast to approaches where the simulated software is allowed to directly
use the standard C API functions available on the host machine, resulting in inaccuracies as
the software executes outside of the simulation platform.

5.2.3 Using Hardware Abstraction Layer as a Synchronization Point

In the absence of annotations, software can only synchronize with hardware models when an
I/O takes place, or an external event occurs. To increase the synchronization granularity, we
can use the HAL layer as a synchronization point, in addition to its normal role of providing
hardware abstraction. This idea (proposed in [Ger09]) ensures that hardware simulation
kernel can update the simulated time and avoid deadlocks. For example, if a software
thread uses a loop to wait for a device register’s value to change, it requires that the SystemC
scheduler gets the control and advances the simulated time. Once the simulated time changes,
SystemC can executes a different software or hardware process, which might change the

TIMA Laboratory, CNRS/INP Grenoble/UJF 83

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

register contents. To give control back to SystemC kernel, the wait() function must be
invoked, otherwise the simulation cannot progress. Using this idea, each HAL API calls the
SystemC wait() function for consuming a certain amount of time and the above-mentioned
deadlock case can be avoided.

The principle difficulty with this idea lies in the total absence of information about
the time value that should be passed to the SystemC wait() function i.e. the value of
synchronization time variable TSYNCH . A key factor to this imprecision comes from the fact
that software executes in zero-time w.r.t. to the simulated hardware timings. The time value
has no significance when we use an un-timed hardware model. However, we cannot attribute
any arbitrary value to TSYNCH , as it can have a non-negligible impact on the application
behavior and this time value indirectly translates to the processor performance. The timing
aspect will cause problems when the software stack starts using the notion of time, for
example when scheduling different processes, or in case of real-time systems. To ensure the
functional correctness of an application, the load condition given in Equation (5.2.1) must be
respected when choosing a value for the synchronization time.∑

i ∈ E

Ci
Ti
≤ 1 (5.2.1)

where E is the set of external event sources, Ci is the cost of handling event i and Ti
represents the time separation between two occurrences of the i events. To make the concept
more clear, we present an example in Figure 5.6 where a single processor handles events
from three different sources: Event0, Event1 and Event2 occur every 10, 5 and 11 time units
and are handled in 2, 1 and 3 time units respectively. Calculating the load condition gives us:

C0

T0
+
C1

T1
+
C2

T2
=⇒ 2

10
+

1
5

+
3

11
≈ 0.67 ≤ 1

The result indicates that under the given conditions, system will continue to function
properly, which is also evident from the processor timings in the above example (Figure 5.6).
In summary, the cost of handling all external events must be less than or equal to unity, to
make sure that the processor does not miss any events.

CPU

Event0

Event1

Event2

t0 t5 t10 t15 t20

T0=10

T1=5

T2=11

C0 C0C2 C2C1 C1 C1 C1

Figure 5.6: Multiple External Event Sources, their Cost and Load Condition

On a real processor the value of Ci is the actual processing time for the event i, and this
time could be estimated using Worst Case Execution Time (WCET) techniques, or measured on

84 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

a cycle accurate or real platform. In case of native simulation, the granularity of software
execution w.r.t. hardware model is the HAL API calls, so the cost of handling event i becomes
the number of HAL API calls invoked during the handling of event i multiplied by the value
of time function TSYNCH . So the Equation (5.2.1) can be re-written as:

∑
i ∈ E

HAL_AP I_CALLSi × TSYNCH
Ti

≤ 1 (5.2.2)

Ideally, we should use the actual time spent by the target processor for executing such
events, but it is a difficult problem. Moreover, we do not have any mathematical model that
could approximate this time value. Two consecutive HAL function calls do not give us any
information about the number of target instructions executed in-between them, and the
same limitation holds for the total number of HAL API calls and the number of instructions
executed in a given application. Nevertheless, the above equation allows us calculate an
approximate value for TSYNCH , for use in un-timed software applications, and to properly
handle the hardware events such as interrupts, as shown in Figure 5.6. The choice of a value
for TSYNCH simply becomes a constant that respects the Equation (5.2.3).

0 < TSYNCH ≤
1∑

i ∈ E
HAL_AP I_CALLSi

Ti

(5.2.3)

The number of HAL_AP I_CALLSi can vary for different executions of the same event
handlers at different times, mostly due to different architectural states of the system
such as cache memories, communication congestion, etc. As a consequence, the value
of HAL_AP I_CALLSi in Equation (5.2.3) should represent the maximum possible number
of HAL API calls for handling an event i, in order to ensure that the system will always
respect the load condition. Lets suppose that Event0, Event1 and Event2 handlers require
a maximum of H0 = 1000, H1 = 1200 and H2 = 1500 HAL API calls, respectively. If all time
units are expressed in milliseconds i.e. T0 = 10ms, T1 = 5ms and T2 = 11ms, Equation (5.2.3)
gives us the following result:

1
1000

10×10−3 + 1200
5×10−3 + 1500

11×10−3

=⇒ 0 < TSYNCH ≤ 54.34ns

The result indicates that we can attribute any non-zero value below 54ns to TSYNCH , and
the processor will be able to handle all external events. We will refer readers to [Ger09] for
further explanation and experimental results of the HAL layer based synchronization concept.

As our proposed solution uses a HAL layer that executes within the virtual machine
environment, a direct call to the SystemC wait() function is impossible. We can nevertheless
support this idea by using a guest mode stub that takes each of the synchronize function
calls and transfers them to the SystemC simulator using Port-Mapped I/O (PMIO) support
on the host machine, as shown in Figure 5.7. We must emphasize that the use HAL layer
as a synchronization point is only to ensure functional correctness and proper handling
of external events. This concept does not relate, in anyway, to the software performance
estimation techniques, and is merely a mean to ensure a working solution in case of timed
hardware and software systems.

TIMA Laboratory, CNRS/INP Grenoble/UJF 85

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

CPU_CONTEXT_INIT(...){
 SYNCHRONIZE(TSYNCH);
/* Process context initialization
 routine in Host ISA. */
}

CPU_CONTEXT_SAVE(...){
 SYNCHRONIZE(TSYNCH);
/* Process context routine in Host
 ISA for saving the register state
 of current process in memory. */
}

CPU_TEST_AND_SET(...){
 SYNCHRONIZE(TSYNCH);
/* Test & Set primitive using the
 Host ISA or Equivalent */
}

...

#define SYNCHRONIZE(TSYNCH) \
/* Transfer Synchronize
Request to SystemC via PMIO */

void synchronize(sc_time tsync){
 wait(tsync);
}

Figure 5.7: Hardware Abstraction Layer with Synchronizations

5.2.4 Memory and I/O Address Space Accesses

Guest software believes that it has access to a full zero-based memory address space and the
VMM preserves this illusion either using shadow pages, or by employing hardware support
as discussed in Section 5.1.2. The key to memory virtualization is the translation of guest
addresses (GVA or GPA) directly to host physical addresses (HPA). In case of shadow pages,
guest accesses to un-mapped memory result in traps to kernel mode where the VMM walks
the guest page tables (if any) to determine the guest "physical" addresses. The VMM then
performs a translation of GPA to HPA and installs a shadow page entry containing GPA (or
GVA) to HPA translation and restarts the execution of faulting instruction. In case of hardware
support the translation of GPA to HPA is delegated to the dedicated hardware page tables.

The Figure 5.8 is borrowed from [KKL+07] and modified to focus on how both the memory
and I/O address spaces from the target system are mapped into the user address space,
making them accessible to SystemC memory models as well. For the simulated software
stack that knows only about the target address space, the "physical" memory addresses used
by the target binary are the virtual ones mapped by the KVM Linux kernel module to a series
of real physical memory pages of the host platform (small boxes). All SystemC modules
can access these physical pages by using another MMU mapping which is also maintained by
the KVM kernel driver. As access to these pages is fully transparent i.e. a program running
in guest mode will stay in guest mode, it leads to an optimal bi-directional data sharing
between the target binaries and the SystemC environment.

In the multi-core architectures, this memory can also be shared among multiple cores
(using the mmap() system call) and SystemC components, which fundamentally breaks the
bottleneck of native simulation mentioned in Section 3.5.3. User-space processes such as
SystemC can create multiple "physical" memory slots for their guests; thus, modeling of
different memory hierarchies is possible. Current limit on the number of memory slots stands
at 32 for a given virtual machine in KVM on an x86 host and total memory limit is subject to
the actual physical resources of the host machine.

The KVM kernel module provides the KVM_SET_USER_MEMORY_REGION API to build a
mapping relationship between the user-space allocated memory and share it with the guest.
Due to this memory mapping mechanism, the target software stack can stay in guest mode
and access the memory without notifying the SystemC memory components. At the same

86 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

Linux Kernel
+

KVM Kernel Module

Host Physical
Memory Pages

assigned to Guest

Memory Space Reserved
by Linux Kernel

Guest Memory Mapped to
SystemC Memory Model

SystemC kernel

SystemC
I/O Devices Models

Native Processor
+ KVM User-space Library

Target "Physical"
Memory Address Space

Target "Physical"
I/O Address Space

(MMIO+PMIO)

Host Address
Space in User Mode
H Target Address

Space in Guest Mode
T

Figure 5.8: Memory and I/O Address Space Accesses

time, this memory is shared among all of the SystemC components and even other ISSes.
The details of how to share memories among multiple processors in hybrid simulation
platforms will be discussed later (c.f . Section 5.5). Listing 5.3 gives a concrete example of
how user-space allocated memory can be registered with KVM and shared with the guest
software.

Key Point 5.2 MMU Based Operating Systems and Transparent Memory Access
Using HAV approach, all types of operating systems can be simulated, whether they use MMU-
based virtual addresses or directly manage the physical address space. Moreover, memory
accesses are transparent and software execution remains in guest mode for all memory
references, except for page faults and page table manipulations.

5.2.4.1 Memory-Mapped vs. Port-Mapped I/O

Besides memory accesses, target embedded software also needs to access I/O devices.
Memory-Mapped I/O (MMIO) and Port-Mapped I/O (PMIO) are the two well-known methods
that a CPU can use to perform I/O accesses. As the x86 architecture supports both methods,
theoretically, the simulated target software can access I/O devices with both MMIO and PMIO

methods. However, since most embedded processors only support MMIO, such as ARM, we
assume that IPs are accessed through MMIO only.

As opposed to the memory accesses, the MMIO cannot be mapped and accessed directly
as the behavior of hardware register read/write access is normally different from that of
the memory. A hardware register access may trigger some actions from the target hardware
component instead of just reading/writing a data value. As all I/O devices of an MPSoC are
actually modeled within SystemC, instead of the real hardware, SystemC should get the
control and pass it on to the hardware components, whenever an MMIO load/store instruction
is executed. This process can be naturally realized on a KVM based virtualization platform.

TIMA Laboratory, CNRS/INP Grenoble/UJF 87

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

Listing 5.3 KVM Set User Memory Region [Code snippet taken from KVM Library]

1 /*
2 * Note: KVM_SET_USER_MEMORY_REGION assumes that we don't pass overlapping
3 * memory regions to it. Therefore, be careful if you use this function for
4 * registering memory regions for emulating hardware.
5 */
6 int kvm_register_mem(struct kvm *kvm_inst, uint64_t guest_phys, uint64_t size,
7 void *userspace_addr)
8 {
9 struct kvm_userspace_memory_region mem = (struct kvm_userspace_memory_region)

10 {
11 .slot = kvm_inst->mem_slots++,
12 .guest_phys_addr = guest_phys,
13 .memory_size = size,
14 .userspace_addr = (unsigned long)userspace_addr,
15 };
16
17 return ioctl(kvm_inst->vm_fd, KVM_SET_USER_MEMORY_REGION, &mem);
18 }

Key Point 5.3 Software Coding Constraints and Memory Overlaps
Software can access the full address space including overlapping memory regions that usually
conflict with host operating system, in traditional native techniques. Guest software can use
any type of memory addressing including hard-coded addresses. If such an address falls
within the memory regions mapped by the VMM, it is transparently accessed, otherwise a
trap is generated to the VMM and an appropriate action/emulation is performed.

When the simulated target software performs MMIO accesses using an address that does
not belong to the memory space, a page fault exception is thrown by the hardware MMU

that causes the processor to leave the guest mode and lets the KVM kernel driver handle
the exception. The driver transfers the MMIO access to the KVM user-space library, which
forwards this access to the native processor, using the callback functions installed during
initialization, as shown in Figure 5.4 E . With the help of KVM API, the native processor
can get the target I/O addresses and launch the normal SystemC I/O operations using the
TLM ports and communication components, as shown in Figure 5.3 A . Listing 5.4 gives the
prototype from KVM library for installing an MMIO callback, which is placed in a red-black
tree for quick retrieval.

A native processor installs a callback function for each SystemC component that supports
MMIO accesses. Listing 5.5 gives the interface exported by each native processor to the KVM

library for use in callback functions. Each time the guest software performs an MMIO request,
the MMIO callbacks tree is searched for an address range match, if found the callback is
invoked. A read/write request is initiated on the communication component using the
functions shown in Listing 5.6, and calls to these functions correspond to TLM transactions.

As the guest software uses target I/O addresses that are exactly the same as simulated by
the SystemC platform, the communication components can use statically assigned address
decoding tables. This particular aspect gives us the freedom to use un-modified hardware
models, as opposed to the technique proposed in [Ger09, GHP09], which requires each
hardware component to report its Symbols and Mappings to a dynamic linker, as discussed in
Section 3.5.4 (Figure 3.8). Thanks to the static platform decoder address allocation, statically
compiled software stack can be used, and does not require run-time linking of platform

88 Mian-Muhammad Hamayun

5.2 Native Simulation Using Hardware-Assisted Virtualization

component mappings and symbols. Figure 5.9 shows an example where the hardware
platform uses compile-time allocated address decoding table for the communication network
modeling.

Listing 5.4 MMIO Callback Registration using KVM Library

1 typedef void (*kvm_mmio_callback_t)(struct kvm_vcpu *vcpu, uint64_t addr,
2 uint8_t *data, uint32_t len, uint8_t is_write, void *ptr);
3 bool kvm_register_mmio(struct kvm *kvm_inst, uint64_t phys_addr, uint64_t addr_len,
4 kvm_mmio_callback_t mmio_callback, void *ptr);

Listing 5.5 MMIO Call forwarding to SystemC

1 uint64_t systemc_mmio_read (kvm_native_cpu_t *_this, uint64_t addr, int32_t nbytes,
2 int32_t blocking);
3 void systemc_mmio_write (kvm_native_cpu_t *_this, uint64_t addr, uint8_t *data,
4 int32_t nbytes, int32_t blocking);

Listing 5.6 SystemC Read/Write Transactions

1 uint64_t read (uint64_t address, int nbytes, int blocking);
2 void write (uint64_t address, unsigned char *data, int nbytes, int blocking);

Using HAV the address spaces for both memory and MMIO can be exactly the same as
the ones on the real target platform, because the address mapping is user-defined and
maintained by the KVM user-space library. As opposed to most of the existing native
simulation technologies [PV09], our approach is completely independent from the address
space of the host machine (generally x86 processor based) and provides as much flexibility
as the traditional ISS based solutions. Thus the legacy embedded software can be simulated
using our solution, without requiring any modifications (including hard-coded memory and
I/O addresses).

Likewise the guest software can use the entire "physical" address-space, including the
addresses that are reserved on the host machine for the host operating system. For example,
Linux does not allow user-space applications to use virtual addresses above 0xC0000000 on
x86 machines, but using the HAV technology we can use such addresses for any purpose, as
shown in Figure 5.9. Thus, native simulation platform does not have to deal with memory
overlapping issues, as discussed in Section 4.1.2.1. The VMM manages the translation of
addresses from user-allocated guest memory address-space to the machine addresses.

As an additional advantage in HAV based approach, the software is allowed to use while
statements that block on some MMIO-mapped external resources such as a device register.
This is different from other native approaches that typically rely on memory-mapped registers
where such loop statements will halt the simulation, as SystemC cannot modify the register
value unless it gets the execution control. This feature does not imply that memory-mapped
external resources are usable in such while statements, even in HAV based approach, if they
block on some resource held by other processor(s). In such situations an interrupt must be
raised from the host platform to the guest software, or an alternative method must be applied
to give control back to SystemC (c.f . Section 5.4.2).

TIMA Laboratory, CNRS/INP Grenoble/UJF 89

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

Communication Network

NPU Semi-
Hosting

MMIO

Timer

1

TTY

2

RAM

3

ADC

4

DMA

5

Bridge

6

ITC

7

ITC 0xA0000600
0xA000061F 7

RAM 0x00000000
0x07FFFFFF 3

TTY 0xC0000000
0xC000003F 2

Timer 0xC1000000
0xC100000F 1

ADC 0xB4000200
0xB400021F 4

Bridge 0xB4001000
0xB4100FFF 6

DMA 0xA0000500
0xA000051F 5

Device Addr. Range Port

Figure 5.9: Platform Address Decoder with Statically Allocated Addresses

Key Point 5.4 Support for Un-Modified Hardware IP Models
The HAV-based simulation platform executes the guest software in target address space,
which matches the address space simulated by hardware IP models. This fundamental
property allows the use of un-modified hardware models and avoid dynamic linking of
software binaries for address re-mapping.

As a last note, PMIO accesses also cause the VCPU to leave the guest mode, and we use
this mechanism to provide a semi-hosting interface for profiling and debug support (c.f .
Section 5.2.4.2).

5.2.4.2 Semi-hosting and Annotation Support using Port-Mapped I/O

Most of the existing ISSes have the semi-hosting capability to communicate input/output
requests from the target software stack to the host machine. The semi-hosting functions,
such as functions to measure time on the host machine, are different from the normal I/O
operations of the SystemC based SoC platform components. This means that the semi-hosting
functions are available even when SystemC components are under development at the early
design stage. Hence, with the semi-hosting capability, the native processor can provide extra
functional support for debugging, profiling and timing annotations.

As the embedded software stack becomes complex, the semi-hosting function calls
provide a simple way to help developers debug their software stacks. Embedded software
can print out the debug information directly using the semi-hosting function calls without
interacting with the SystemC infrastructure. This feature becomes extremely useful when
the embedded software driver or the SystemC hardware terminal devices are not available,
or when they have bugs. The proposed solution is capable of debugging the entire software
stack using the hardware-assisted capabilities of KVM that can be used for hardware/software
co-debugging purposes (c.f . Section 5.4.2.3).

The simulation speed of different simulation methods can be compared by profiling
the target software stack. The semi-hosting capability is a suitable solution and provides a
method to access real clock time of the host machine. As the semi-hosting based profiling
functions do not interact with SystemC time management, and usually do not make any
transactions on the communication network, they do not influence simulation results. The
results of hardware platform simulation remain exactly same as the platform without

90 Mian-Muhammad Hamayun

5.3 Timing Annotations in Software

profiling information. Listing 5.7 gives an example that can be used by the guest software to
write current host time to a log file, using the semi-hosting interface. Working on the same
lines, the PMIO accesses can be used for providing annotation support to the guest software.
Section 5.3 will provide more details on the annotation technique used in the proposed
solution.

Listing 5.7 Profile Request to Write Current Host Time using the Semi-hosting Interface

1 #define CPU_PROFILE_CURRENT_TIME() \
2 do{ \
3 __asm__ volatile(\
4 " mov %0,%%dx\n\t" \
5 " mov %1,%%eax\n\t" \
6 " out %%eax,(%%dx)\n\t" \
7 ::"r"((short int) HOSTTIME_BASEPORT), \
8 "r"((hosttime_request_t) HOSTTIME_CURRENT_TIME) \
9 :"%dx","%eax" \

10); \
11 } while(0);

For providing the semi-hosting interface and annotation support, the technique used
is very similar to the MMIO implementation, with a separate set of callback functions for
each service, registered by each native processor using the KVM library (Figure 5.3 B). A
separate red-black tree for I/O ports is maintained by the KVM library, and each exit from
the guest mode goes through this tree to find the appropriate callback function and invokes
it (Figure 5.4 F and Listing 5.1). All of the semi-hosting functions terminate inside the
native processor, without SystemC knowledge except for the annotations calls that execute
the SystemC wait() function to advance the simulated time.

5.2.4.3 Putting It All Together

So far, most of the basic components of HAV based native simulation framework that solve
the target vs. host address spaces problem have been discussed. The solution comprises of a
Host Dependent HAL layer, KVM kernel module, KVM user-space library and SystemC based
native processor models, as shown in Figure 5.10. Two important points need to be revisited;
firstly, the memory address space visible to the guest software is the same as mapped to the
SystemC memory model (connected by a solid line) and is transparently accessible to guest
software. Secondly, the I/O accesses initiated by the embedded software go through the
kernel module and user-space library to reach the native processor model, which makes the
actual read/write transactions on the platform communication network.

Following sections will describe the timing annotation mechanism used in the proposed
framework, interrupt support for handling asynchronous external events and support for
debugging the software and hardware platform components.

5.3 Timing Annotations in Software

The proposed solution can support any annotation based performance estimation technique,
at source level and at basic block level. For the sake of concreteness, we take the annotation
scheme proposed in [GHP09] that is based on Low Level Virtual Machine (LLVM) [LA04].

TIMA Laboratory, CNRS/INP Grenoble/UJF 91

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

SystemC Address
Space

User Mode

Kernel
Mode

IOCTL()s

KVM Kernel Module

Exit Reason

VM Exit
Reason+Qualification

VM Entry

Guest Mode
Target Address Space

"P
h
y
si

ca
l"

 M
e
m

o
ry

M
e

m
o

ry
 A

cc
e

ssSoftware Stack (ELF Binary)

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

KVM User Space Library

KVM Library
Commands

MMIO/PMIO
Callbacks

Communication Network

NPU Semi-
Hosting

MMIO
Timer

1

TTY

2

RAM

3

ADC

4

DMA

5

Bridge

6

ITC

7

Address
Decoding Table m

m
a
p
(
)
e
d

M
e
m
o
r
y

ITC 0xA0000600
0xA000061F 7

RAM 0x00000000
0x07FFFFFF 3

TTY 0xC0000000
0xC000003F 2

Timer 0xC1000000
0xC100000F 1

ADC 0xB4000200
0xB400021F 4

Bridge 0xB4001000
0xB4100FFF 6

DMA 0xA0000500
0xA000051F 5

Device Addr. Range Port

Figure 5.10: Native Processor, KVM Library, KVM and Software Stack in Guest Mode

The key idea behind this approach was presented in Figure 3.9 (Section 3.5.5), where
the software is initially compiled for the target machine with target-specific optimizations,
but instead of emitting code for the target processor, an annotation pass is introduced. This
pass takes the optimized target-specific IR to annotate the target-independent IR, known as
Extended IR. Figure 5.11 shows the three steps involved in the annotation process for each
Basic Block. Very similar steps are used for annotating CFG arcs between the basic blocks, for
modeling branch penalties where new basic blocks are introduced containing the annotation
calls only.

¬ Analysis: A target specific module analyzes instructions in each basic block, by
consulting the processor data-sheet and returns an annotation database3 comprising
of instruction count, CPU cycles, memory read/write operation counts and energy
estimates, if available.

­ Identification & Storage: The identification step attaches labels to the annotation
databases and stores them in a globally accessible memory section of the object under
compilation, for use at run-time.

3An annotation database is a global data structure containing information for all target basic blocks.

92 Mian-Muhammad Hamayun

5.3 Timing Annotations in Software

® Instrumentation: Given a target basic block, the annotation pass finds the corres-
ponding target-independent basic block in extended IR and places a call for the
annotate() function at its start. The annotate() function is defined as an external
and implemented in HAL of Execution Units (EUs) in the SystemC platform. The address
of the corresponding annotation database is passed as an argument to the annotate()
function and used at runtime for performance estimation.

1 Analysis

BB#1
2 Instr.
3 Cycles
5 nJoules

2 Identification &
Storage

3 Instrumentation

cmp r3,#0
beq .L2B

B
#
1

ldr r2,.L6+4
mov r3,#23
str r3,[r2,#0]
b .L5

B
B
#
2

ldr r2,.L6+4
mov r3,#1228800
add r3,r3,#5760
add r3,r3,#7
str r3,[r2,#0]

B
B
#
3

Target IR CFG

B
B
#
3

movl $1234567,x

movl $3,(%esp)
call annotate

B
B
#
2

movl $23,x
jmp .L5

movl $2,(%esp)
call annotate

B
B
#
1

testl %eax,%eax
je .L2

movl $1,(%esp)
call annotate

Extended IR CFG

Figure 5.11: Basic Block Annotation Process using LLVM Infrastructure [GHP09]

A fundamental property of the annotation approach is the correspondence between
target-specific and target-independent IR CFGs. This property depends on the fact that the
two CFGs are equivalent, and it is possible to find a corresponding basic block in the extended
IR for a given target IR basic block. Such one-to-one correspondence cannot be established
between the host and target basic blocks when the code is optimized. In such cases aggregate
annotations are introduced, which sum-up the annotation details of multiple target-specific
basic blocks onto a single target independent basic block. Similarly, there are cases when
a target-specific basic block does not exist in correspondence to a target independent basic
block. This is usually due to optimizations and annotations for such basic blocks are skipped.
Similar optimizations are also expected from the host backend during host compilation.

At runtime, native basic blocks are executed for functional modeling of the target software,
whereas the annotate() function calls are used to estimate target processor timings. As the
annotation calls are placed at basic block level, it allows to estimate the execution timings
of basic blocks actually executed at run-time. The native platform proposed in [GHP09]
implemented the HAL layer in hardware SystemC models of processors, which also provided
the definition of annotate() function. In our case, the HAL implementation has been moved
to the software stack, compiled as a static binary and executed within the virtual machine
environment. Secondly, the SystemC models are hidden from software view, thus a direct
function call cannot be placed in the software stack and we have to use a different mechanism
for synchronizing software and hardware models.

We use the semi-hosting support for redirecting annotation calls, and provide a local
annotation function visible to and compiled with the software stack, as shown in Figure 5.12.
Each time the annotate() function is executed, it invokes the locally available annotation
function A . This function then generates a semi-hosting request to the hardware models on a
pre-defined I/O port B , as illustrated in Listing 5.7. The I/O request transfers the address of

TIMA Laboratory, CNRS/INP Grenoble/UJF 93

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

annotation database to the semi-hosting interface, and this address is in fact an offset into the
virtual memory allocated to the SystemC memory model. Once the effective address has been
calculated, the semi-hosting interface directly obtains the annotation information from the
database C . The SystemC wait() function is invoked to consume the number of processor
cycles, as defined in the annotation. The wait() call takes place within the processor model
context, it updates its local time and gives SystemC an opportunity to re-schedule another
hardware process, if necessary. The very same mechanism can be used for any annotation
based performance estimation technique.

K
e
rn

e
l

M
o
d

e
G

u
e
s
t

M
o
d

e
Ta

rg
e

t A
d

d
re

ss
 S

p
a

ce

KVM Kernel Module

Software Stack (Annotated)

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

void annotate(DB_t *pdb)
{............}

Calls to local
annotate() function

"P
h
y
si

ca
l"

 M
e
m

o
ryAnnotDBx

AnnotDBy

AnnotDBz

A

B

S
ys

te
m

C
 A

d
d

re
ss

S
p

a
ce

U
s
e
r

M
o
d

e

KVM User Space Library

R
A

M
 M

o
d

e
l

AnnotDBx

AnnotDBy

AnnotDBz

Direct Access to
Annotation DBs

C

Transfer
to SystemC
via PMIO

m
m
a
p
(
)
e
d

M
e
m
o
r
y

NPU

SC_THREAD

Semi-
Hosting

Figure 5.12: Forwarding Annotation Calls to SystemC using PMIO

The annotation technique defines three types of basic blocks: ENTRY, DEFAULT and RETURN.
When analyzing the cost of a given software function, these types are used to find out its
start and end. In some cases a given target-independent basic block could be split into
multiple basic blocks when compiled using the host backend, which makes the annotation
call placement a pertinent criterion. Thus, annotate() calls are placed at the beginning of
ENTRY and DEFAULT type basic blocks, whereas annotate() calls are placed immediately
before the return instruction in each RETURN type basic block. This change copes with cases
when a single RETURN type basic block is split into multiple basic blocks during optimization.

As each annotation call requires a guest-to-host mode switch, which is a costly operation
and should be avoided, whenever possible. Section 5.3.1 discusses how we can minimize
such transitions and improve simulation performance. Chapter 7 will provide results and
highlight the cost of such transitions.

94 Mian-Muhammad Hamayun

5.3 Timing Annotations in Software

Key Point 5.5 Automatic Software Annotation Support
Using the PMIO mechanism supported on HAV-enabled host machines, we can easily integrate
any type of software performance estimation technique. For avoiding excessive guest/host
mode switches, an annotation buffering scheme on the guest side is highly recommended.

5.3.1 Minimizing Guest vs. Host Mode Switches

In HAV based simulation, the guest-to-host mode switching is a costly operation, even though
the basic state switch is performed atomically by the hardware. The cost factor comes from
the additional state switch performed in by VMM software and includes general purpose,
floating point, debug and Model Specific Registers (MSRs). This design choice by HAV designers
is based on the fact that the state of these registers is better known to VMM software, as a result
the hardware implementation of state switch is simplified. In addition, the path between VM

Exit and VM Entry contributes significantly to this cost, which includes exit reason analysis,
in-kernel device and instruction emulation, and user mode support, if required. Evidently
all of these operations are costly and slow-down the simulation performance.

In order to achieve faster simulations this cost has to be reduced; either per guest-to-host
switch cost or minimizing the total number for switches for a given task. Following list gives
the guest events that cause a mode switch and require either kernel mode or user mode
support.

¶ Accesses to un-mapped memory or guest paging structures.
· Accesses to host specific device models (user-space or in-kernel).
¸ MMIO accesses to SystemC device models.
¹ Synchronization and annotation function calls.
º Profiling and debug exceptions.

If the host machine lacks extended page tables support (Section 5.1.2.2) then KVM module
provides guest memory virtualization using shadow pages. Maintaining these pages, in
correspondence with guest memory accesses, is a costly operation requiring guest mode
exiting (¶). On recent machines, EPT support is readily available and native simulation
should use EPT enabled KVM kernel module to improve simulation performance.

Host specific device models (·) are required to make the simulation work on native
machines. For example, on x86 machines, device models for LAPIC, PIC, or IOAPIC are
required for the guest software to believe that it has access to a real machine. These device
models can be either implemented in user-space i.e. within the KVM library (outside the
framework of SystemC) or provided inside the Linux kernel to avoid user-space accesses.
Realism of these device models depends on the guest operating system and its expectations.
We will provide more details on this topic in the following sections (c.f . Section 5.4.2).

Each MMIO operation may requires access to user-space SystemC models (¸), thus
reducing MMIO-induced guest-to-host switches is a desired property. KVM provides a different
type of MMIO operation known as Coalesced 4 MMIO that can be used to decrease MMIO

specific exits. This feature can be particularly useful if the MMIO is uni-directional i.e.
when the guest software performs write-only operations to certain devices such as the
Framebuffer and Terminal devices. Additionally, if writing to such devices does not cause

4Unified, united or merged MMIO

TIMA Laboratory, CNRS/INP Grenoble/UJF 95

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

any side-effects i.e. triggering of some hardware action, then it means that the devices
mimic a RAM-like behavior; that is, the MMIO operations can be coalesced. KVM provides
the KVM_REGISTER_COALESCED_MMIO API for this purpose, which registers a coalesced MMIO

region and is used to combine multiple MMIO requests that are treated on the next exit to
user-space.

Synchronizations (¹) and annotations also cause exits to user mode and are mutually
exclusive i.e. in case of annotations, HAL API based synchronization calls should not be used.
Annotations are buffered in guest mode, using a mechanism similar to the coalesced MMIO.
This buffering scheme keeps track of basic blocks that are executed by the current software
thread. Once a pre-defined threshold is reached, the annotation buffer address is sent to
an annotation port, and the annotation mechanism switches to the next available buffer.
This scheme helps in minimizing the number of guest-to-host mode switches at the cost of
simulation accuracy in multiprocessor platforms. Chapter 7 will provide detailed study of
annotation buffering and its influence on simulation performance and accuracy.

Lastly, the profiling and debug exceptions (º) also require user-mode support, considered
minor issues, as they are only used during the debug and profile stages of embedded software
development. When we talk about profiling, we refer to host-specific time measurements,
for comparing the simulation performance of our native platform w.r.t. other native and
non-native solutions.

5.4 MPSoC Simulation using Hardware-Assisted Virtualization

As discussed in Chapter 2 that integration of multiple heterogeneous processors into a single
SoC is a clear trend in embedded systems. Following this trend, we use KVM to separate the
target address space from the user-space, as discussed in Section 5.2.4. The proposed solution
has the flexibility to simulate multiple processors in a single SystemC platform. A wide range
of multiprocessor architectures can be modeled, such as the tightly coupled (Shared Memory
MP, SMP), loosely coupled (Distributed Memory MP) and even the ones in between that share
some memory regions only.

The KVM_CREATE_VM API is used to create a virtual machine without any Virtual
CPUs (VCPUs) and memories. Based on the requirement, we may add multiple VCPUs into the
virtual machine and share the same memory. If the architecture is fully distributed, we can
create multiple virtual machines and connect them together using SystemC interconnection
components. KVM also provides the ability to monitor the multiprocessor state of system,
enable/disable exceptions and interrupts, and to designate a boot processor. To model
a realistic MPSoC platform, support for asynchronous external events, such as interrupts,
should be supported as well. We start our discussion on external events and how we can
handle them using the HAV approach.

5.4.1 Asynchronous External Events

Asynchronous external events are used to decouple the processor from I/O intensive tasks
that can be performed independently, such as a DMA transfer or a block I/O request. On
completion of such requests the I/O device signals the processor, and the processor is required
to take immediate action by executing the appropriate event handling function.

Without using timing annotations, the native software can only synchronize with the
hardware platform when an I/O access takes place, a HAL API call is invoked or an external

96 Mian-Muhammad Hamayun

5.4 MPSoC Simulation using Hardware-Assisted Virtualization

event occurs. This corresponds to the loosely-time coding style of TLM 2.0 standard for high
simulation speed. Timings annotations and interrupts can help in improving the accuracy of
the system, at the cost of more synchronizations, thus reducing simulation performance.

KVM provides functions to set interrupt sensitivity before entering the guest mode, so
that the native processor can avoid deadlocks. External events are generated by external
device models and are handled by using the event injection mechanism supported by KVM.
Such events are delivered immediately after the next entry to guest mode and the VCPU takes
appropriate action. Figure 5.13 details the steps used for delivering such an external event
from SystemC models to the actual interrupt handler in guest mode:

¬ An external event is generated by a SystemC model, such as a TIMER and is delivered
to the interrupt control logic (ITC) inside the native processor.

­ The interrupt controller decides, considering the interrupt configurations (enable/dis-
able flags, masks etc.), whether to deliver the interrupt or mask it. If the interrupt is to
be delivered, it sends an interrupt injection request to the KVM library.

® KVM library requests the KVM module for interrupt injection using the KVM_IRQ_LINE
ioctl() and provides the IRQ line number to be asserted/de-asserted. The same
KVM_IRQ_LINE ioctl() can be used to check for the interrupt delivery status of
previously requested external events.

¯ KVM module maintains models of PIC and IOAPIC (on x86) and setups the interrupt
pending request on both of them. Interrupt delivery to software depends on whether
the guest software uses PIC or IOAPIC for interrupt management. The actual interrupt
injection takes place on the next VM Entry, if the guest is ready to receive interrupts
i.e. EFLAGS.IF = 1, otherwise the VMM can request interrupt-window exiting using
the virtual machine execution control in VMCS. The guest will perform a VM Exit as
soon as it is ready to receive external events.

° The VCPU receives the interrupt immediately after entry to guest mode and invokes the
appropriate interrupt handler using the guest Interrupt Descriptor Table (IDT), just as if
the interrupt had actually occurred immediately after the VM Entry.

User Mode Kernel Mode

KVM

I
O
C
T
L
(
)

K
V

M
 U

se
r

S
p

a
ce

 L
ib

ra
ryNPU

TIMER SC_THREAD

ITC

1 2 3 4

VCPU

5

void IT_handler()
{...}

V
M

E
n
t
r
y

Guest Mode

In
 K

e
rn

e
l

P
IC

/I
O

-A
P
IC

M
o
d
e
l

Figure 5.13: Handling External Events using Interrupt Injection in KVM

TIMA Laboratory, CNRS/INP Grenoble/UJF 97

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

5.4.2 Simulating Multiple Processors

Simulating multiple processors is a basic requirement for architecture exploration in MPSoC

context. We address this problem by using the un-modified version of KVM and implement
the required infrastructure around it to obtain a functional system, from the guest software
point of view only. This model is very similar to virtual machine based solution and uses
the SystemC components as I/O devices. In addition to the SystemC thread, every processor
creates a POSIX thread to avoid modifications to the KVM module, as it expects host threads
instead of SystemC threads. Details on how we remove the host threads to obtain a true
native MPSoC simulation platform, will be discussed later (c.f . Section 5.4.3).

5.4.2.1 Host Specific Processor Initialization

A key design feature of a VMM is to hide its existence from guest software view and mimic the
real machine behavior. The guest software thus needs to follow the real machine semantics
when initializing system resources, including processors and I/O devices. In mono-processor
context, this process is simple and has to deal with few details of host machine specific
initializations such as real and protected mode semantics of the boot process, on x86 hosts.

When implementing an SMP simulation solution, the guest software has to follow the
boot protocol of the host machine; to be more specific the MP Initialization protocol on x86
machines (Chapter#8 in [Int11]). This protocol specifies a sequence of interrupts that must
be sent by the bootstrap processor to other processors in a given real or virtual machine.
These interrupts include the Init and Startup Inter-Processor Interrupts (IPIs) to modify the
destination processor’s state.

Initially, every VCPU starts in the UNINITIALIZED state, except the boot VCPU, which is
RUNNABLE by default. All other VCPUs wait for interrupts and proceed to INIT_RECEIVED,
SIPI_RECEIVED and RUNNABLE states upon receiving the corresponding signals from boot
VCPU. This functionality is provided by the Local APIC (LAPIC) device model, as part of the
APIC virtualization within the KVM kernel module. The boot code programs the LAPIC model
and once all non-boot processors VCPUs have been initialized, the boot VCPU proceeds to the
operating system initialization. Non-boot VCPUs wait for the CPU_MP_PROCEED HAL API call
from the boot VCPU, before executing any software thread.

5.4.2.2 SMP Compatible Hardware Abstraction Layer

The HAL layer is the key component that hides the hardware specific details and directly
interacts with the VMM. In order to simulate a multiprocessor machine, the HAL has to
provide APIs that could provide each VCPU with it identification and ability to synchronize
with other processors. KVM provides an in-kernel Local APIC (LAPIC) device model for each
VCPU instance. In multiprocessor context the HAL layer has to interact with this device model
using the MMIO interface for implementing the SMP specific functions. Listing 5.8 provides
an example of how we can get the current VCPU ID, using the CPU_MP_ID HAL API call from
the guest software. The HAL provides another key API i.e. CPU_MP_SEND_IPI for sending IPIs
to VCPUs, including itself. This API provides the guest operating system with the ability to
suspend and dispatch software threads onto the available processors. The same HAL API is
used for enabling/disabling interrupts on different VCPUs.

In order to be fully compatible with the SystemC threads, none of the software functions
should use a spinlock that tries to take a global lock held on another processor. This situation

98 Mian-Muhammad Hamayun

5.4 MPSoC Simulation using Hardware-Assisted Virtualization

Listing 5.8 Getting the VCPU ID on an x86 Machine using Local APIC MMIO

1 .globl CPU_MP_ID
2 CPU_MP_ID:
3 movl 0xFEE00020, %eax /* Read the Local APIC ID Register */
4 shrl $0x18, %eax /* Drop the 24 LSBs by Right Shift */
5 ret /* Return EAX with the 8 MSBs i.e. VCPU-ID */

does not arise in the case of POSIX threads, as KVM can re-schedule another thread if a thread
gets blocked on some memory-mapped resource.

In our HAV based solution, the HAL layer is implemented for DNA-OS, and this situation
arises in CPU_MP_WAIT and CPU_TEST_AND_SET HAL API calls. In the first case, we know that
the CPU_MP_WAIT API has been executed by a non-boot processor, thus we can safely suspend
the execution of current VCPU and SC_THREAD until it receives the Init and Startup IPIs. We
implement this feature by sending an I/O request to a designated PMIO port and ask SystemC
to put the current native processor to sleep and wake another one. In the second case, for
CPU_TEST_AND_SET API, the guest software thread currently holding the lock is unknown.
However, we can find the processor ID on which the lock-holder thread is running, by saving
the processor ID in the lock. Once the lock holder processor is known, we can suspend the
execution of lock requester processor in SystemC and let others continue their execution
until the lock is released and SystemC re-schedules the lock requester processor.

In order to make sure that SystemC does not re-schedule the lock requester processor
immediately, the simulated time of the lock requester processor is advanced to match the
lock holder processor’s next wake-up time. Figure 5.14 explains this problem, where a guest
software thread in group "C" is currently holding the global spinlock and a thread in group "A"
on the currently active VCPU is trying to acquire the same lock using the CPU_TEST_AND_SET
instruction. This situation will lead to a deadlock on the current VCPU and simulation will
freeze unless the software is annotated, or the control is explicitly returned to the SystemC
scheduler.

VCPU-0 VCPU-1 VCPU-2

Hardware Simulation Scheduler

C1 C2

Thread Group "A" Thread Group "B" Thread Group "C"

Switch VCPU-1/VCPU-2

A1 A2

Cannot
Hold the

Same
Spinlock &

Sleep

Tries to
Acquire
Spinlock

using Test
and Set

B1 B2

Already
Holds the
Spinlock

Figure 5.14: Guest Software Threads and VCPU Locking Issue

To avoid the deadlock situation, no guest software thread should hold a global spinlock
on a VCPU and sleep, as other software threads may try to acquire the same lock. For example,
in Figure 5.14 the thread A2 cannot hold the same lock while the thread A1 is trying to

TIMA Laboratory, CNRS/INP Grenoble/UJF 99

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

acquire it. As a rule of thumb the lock holder thread should not sleep while holding the lock,
thus avoiding the possibility of getting scheduled-out and potentially deadlocking other
threads on the same processor. Section 5.4.3 will propose a different implementation of the
CPU_TEST_AND_SET HAL API for use with SystemC threads only for obtaining correct timing
behavior.

Using the SMP compatible HAL, along-with un-modified KVM kernel module and POSIX

threads, the simulation platform can provide functional execution support to the guest
software and uses SystemC device models for performing I/O operations. A key deficiency in
this model, comes from the sequential execution of VCPUs and simulated processor timings
in SystemC. Each processor contributes to the global simulated time instead of its own local
time, as the VCPU scheduling is under KVM control. Nevertheless this model is sufficient to
show that multiprocessor modeling is feasible and the HAL implementation is correct for
execution within the virtual machine environment. Section 5.4.3 addresses the POSIX threads
issue and the necessary changes to KVM, HAL and SystemC processor models to provide a
true MPSoC native simulation platform.

5.4.2.3 Hardware-Assisted Software Debugging

To make the simulation platform usable from software development point of view, debugging
support is an essential requirement for both operating system and application level codes.

KVM provides the ability to get and set general purpose, system and debug registers
for each VCPU in the virtual machine, using the KVM_GET_[REGS|SREGS|DEBUGREGS] and
KVM_SET_[REGS|SREGS|DEBUGREGS] ioctl()s. Similarly, the KVM_GUESTDBG_USE_HW_BP

and KVM_GUESTDBG_USE_SW_BP debug control flags can be used to activate the hardware 5

and software 6 breakpoints in guest mode. These features provide the bare-bones necessary
for providing debug support, but KVM user mode library lacks a debugging tool to efficiently
exploit these capabilities.

A GDB server implementation that can communicate with standard host debugger using
sockets, has been introduced in the proposed simulation framework. Once the debugging
mode is enabled using the KVM_GUESTDBG_ENABLE debug control flag, simulation control is
forwarded to the debugging interface on each debug exception in guest mode, as shown in
Figure 5.4 H . Once this capability is available, the guest software can be debugged from the
first boot instruction and all necessary support for setting breakpoints, examining memory
contents, modifications to the VCPU registers is included in the GDB server.

In order to debug complex hardware software interactions one cannot rely on software
only debuggers. In such situations, the GDB server can be used (for software debugging) in
combination with the standard host debugger (for hardware debugging) to understand the
source of difficult problems. One key caveat still remains a problematic case and is related to
the debugging of KVM module. It is usually difficult due to the kernel mode restrictions, and
one has to rely on kernel logs or setup multiple machines for this purpose.

5A hardware breakpoint uses dedicated debug registers and does not modify the memory contents. Hardware
breakpoints are architecture specific and limited in number e.g. x86 allows upto 4 hardware breakpoints.

6A software breakpoint inserts an invalid instruction in memory and then handles the exception, replaces the
original memory contents and then singles steps over the instruction.

100 Mian-Muhammad Hamayun

5.4 MPSoC Simulation using Hardware-Assisted Virtualization

A

B

Guest Mode

K
e
rn

e
l
M

o
d

e

KVM RUN

MP-STATE
SIPI?

No

Yes

MP-STATE
UN-INIT?

Yes No

Complete
MMIO

Reset VCPU
& LAPIC Model

Save VCPU
State

Need
User Mode
Support ?

No

Yes

MP-STATE
RUNNABLE?

NoYes

Block VCPU

Update State

Block VCPU

Handle
- Page Faults
- In Kernel I/O
- ...

Save Host,
Load Guest

State

Execute Native
Code in Guest

Save Guest,
Load Host

State

Handle User
Mode Exit

VCPU Blocking States
in KVM Kernel Module
(Linux reschedules a
different Host Thread)

User Mode

Figure 5.15: VCPU Execution Flow within KVM and Blocking States

5.4.3 Virtual CPU Scheduling in Kernel Virtual Machine

KVM expects each VCPU to execute within its own thread on the host machine, therefore
it can schedule each VCPU under the guest software control and independently from one
another. For example when a non-boot VCPU starts execution, it is in the UNINITIALIZED

state, as discussed in Section 5.4.2.1, as opposed to the boot VCPU which is RUNNABLE. KVM

cannot allow non-boot VCPUs to continue their execution while in UNINITIALIZED state, so
it blocks them on a wait queue until the boot VCPU sends an Init and Startup IPI. Moreover,
when a guest processor has no work to do, it switches to the idle thread and executes the HLT
instruction. KVM blocks such VCPUs and calls the host system scheduler to resume another
runnable process, a VCPU or another host system thread. Figure 5.15 illustrates the VCPU

execution flow within KVM and highlights the blocking states where VCPU threads can be
scheduled out and put in wait queues.

VCPU blocking is a problem from the simulation perspective as a blocked VCPU halts the

TIMA Laboratory, CNRS/INP Grenoble/UJF 101

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

whole simulator process, and the simulation cannot continue with other hardware threads.
This limitation comes from the fact that SystemC simulation runs within a single host thread,
although many SC_THREADs are present within the simulator. To solve this problem, we
remove these blocking states and give control back to SystemC processor model with special
error codes. The blocking state A in Figure 5.15 is simple to handle, as KVM can return to
the SystemC processor model with VCPU_BLOCK_SELF error code. The blocking state B can
result from either the VCPU entering the idle thread or when the current VCPU sends an IPI

to a different processor. In case of idle state, KVM returns with the same VCPU_BLOCK_SELF
error code and the SystemC processor model starts waiting on the RUNNABLE_EVENT. The
RUNNABLE_EVENT event is triggered when a processor sends an IPI to the current processor.
In case the current VCPU sends an IPI to another VCPU, the KVM arrives at state B as well.
The modified KVM gives control back to the SystemC processor model with target processor
ID and the RUNNABLE_EVENT of target processor is triggered. In order to ensure that the
target processor gets re-scheduled and enters the guest mode before the current processor
a SC_ZERO_TIME wait is introduced for the current processor. This wait ensures that the
current processor gets re-scheduled after the target processor has entered the guest mode
at-least once. Simulation can halt if the current processor sends two consecutive IPIs to
the same target processor, and the target processor does not get a chance to execute the IPI

handler and release the IPI lock, producing a deadlock.
Section 5.4.2.2 discussed the need to adapt HAL APIs when using SystemC threads only.

Two APIs were identified i.e. CPU_MP_WAIT and CPU_TEST_AND_SET for DNA-OS. The first
API behaves much like the VCPU_BLOCK_SELF error condition introduced in Figure 5.15 A

except that the guest software gets blocked on a global lock in this case. From KVM point of
view, the non-boot VCPU has been properly initialized and is now in RUNNABLE state and its
the HAL API that has to inform SystemC about the blocking condition.

The problem introduced by the second HAL API was illustrated in Figure 5.14, and we
propose a modified implementation of CPU_TEST_AND_SET API in Listing 5.9. Key idea is
to try to store the current VCPU ID+1 for taking the global lock and on failure, inform the
SystemC processor model about the situation. The lock requester VCPU’s processor model
receives the ID of VCPU currently holding the lock, and advances its own simulated time
to the next wake-up time of lock holding processor. Figure 5.16 shows an example where
VCPU-0 takes a locks at time t1 and VCPU-1 tries to acquire the same lock at time t3. In order to
know the next wake-up time of a given processor, each processor model is required to update
this information before calling the SystemC wait() function. The lock requester VCPU-1
at time t3 does not know when the lock will be released by VCPU-0, but it can nevertheless
advance its simulated time to the next wake-up time, t5 in this example. This solution avoids
deadlocks as SystemC scheduler will schedule VCPU-2 instead of VCPU-1 and simulation will
continue.

In situations when the lock requester VCPU is re-scheduled and the lock holder VCPU is
still holding the global lock, the native processor will use a SC_ZERO_TIME wait to invoke
the SystemC scheduler and cause scheduling of another VCPU. In certain cases, the SystemC
scheduler can re-schedule the lock holder VCPU before its expected wake-up time, for example
when it receives an IPI, and this situation would cause in-accuracies in the simulated time of
lock requester VCPU.

Once the above-mentioned changes are incorporated in processor models, KVM kernel
module and HAL APIs, simulation of a complete MPSoC platform is possible. Using this model,
simulated time is properly managed under SystemC control as only SC_THREADs are used.

102 Mian-Muhammad Hamayun

5.4 MPSoC Simulation using Hardware-Assisted Virtualization

t0 t1
VCPU-0

VCPU-1

VCPU-2

VCPU-3

T

t3 t5

Lock Taken
by CPU-0

Lock Request
by CPU-1

Next Wake-up
Time CPU-0

t2 t4

Lock Release
by CPU-0

t6

Simulated Time

Figure 5.16: SystemC Timing Modifications on Execution of Test and Set (Unsuccessful Case)

Creation of multiple virtual machines with different number of processors is possible and
is shown as Processor Wrappers (PWs) in Figure 5.17. Chapter 7 will provide experimental
evidence and validate the proposed solution.

Key Point 5.6 Inter-processor Locking and Memory Mapped Resources
Software threads cannot wait on locks held by other processors, as only one processor is
simulated at any instant. As a general rule, software should not block on any memory mapped
resource without advancing its own simulated time, thus giving hardware simulation kernel
an opportunity to re-schedule another processor and avoid deadlocks.

Listing 5.9 HAL Function CPU_TEST_AND_SET() for Native Simulation (SystemC threads)

1 #define SYSTEMC_TEST_N_SET_PORT 0x3000
2
3 long int CPU_TEST_AND_SET (volatile long int * spinlock)
4 {
5 long int oldval = 0; /* Previous value to compare with. */
6 int my_cpu_id = CPU_MP_ID() + 1; /* VCPU-ID + 1 for taking the spinlock. */
7 int locker_cpu_id = 0; /* Zero means unlocked */
8
9 __asm__ volatile (

10 "lock cmpxchgl %1, %2\n"
11 : "=a" (locker_cpu_id) /* Non-zero means locked by another VCPU */
12 : "r" (my_cpu_id), "m" (*spinlock), "0" (oldval)
13 : "memory");
14
15 if(locker_cpu_id != 0 && locker_cpu_id != my_cpu_id)
16 {
17 /* The lock is taken by someone else; tell SystemC about it */
18 CPU_IO_WRITE(UINT32, SYSTEMC_TEST_N_SET_PORT, locker_cpu_id);
19 return 1; /* Try again after the other VCPUs have run for some time */
20 }
21
22 return 0; /* OK, the current VCPU has this lock */
23 }

TIMA Laboratory, CNRS/INP Grenoble/UJF 103

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

S
ys

te
m

C
 A

d
d

re
ss

 S
p

a
ce

U
s
e
r

M
o
d

e

S
/W

D
e
b

u
g

S
u
p

p
o
rt

Communication Network

PW-N
PW-1

PW-0

BLK BridgeTIMERTIMERTIMER TTY

RAM

ADC

In
te

rr
u
p

t
C

o
n
tr

o
lle

r

...

N
P
U

-0

N
P
U

-1

N
P
U

-K

Kernel Mode

VM Exit
Reason+Qualification

VM Entry

G
u

e
s
t

M
o
d

e
Ta

rg
e

t A
d

d
re

ss
 S

p
a

ce

M
e

m
o

ry
 A

cc
e

ssSoftware Stack (ELF Binary)

Host Dependent HAL (SMP)

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

"P
h
y
si

ca
l"

 M
e
m

o
ry

m
m
a
p
(
)
e
d

M
e
m
o
r
y

KVM User Space Library

KVM Kernel Module (Modified)

...
VCPU-0 VCPU-1 VCPU-K

Figure 5.17: Multiprocessor Simulation using KVM with Debug and Interrupt Support

5.5 Hybrid MPSoC Simulation

In embedded systems domain, heterogeneous multi-core architectures have been used for
years to reach the required level of performance for a given power budget. Simulation
platforms that can model such architectures are difficult to develop, as different simulation
technologies may be used to model different types of processing elements. For example, an
ARM-based GPP along-with a DSP on top of the same simulation platform. Different types of
simulation technologies can be used for hybrid simulations, such as DBT [Bel05, GFP09] for
GPP and native simulation techniques [GHP09, PV09] for DSP processors.

Primary difficulty in such models comes from the memory and I/O address-space
representations in software and hardware models. For instance, DBT uses cross-compiled
software with target addresses for memory and I/O operations and expects the platform
models to simulate the same addresses. Traditional native techniques use the host system
addresses for all memory and I/O accesses, either by using host operating system exception
mechanisms or using the modified hardware platform models.

104 Mian-Muhammad Hamayun

5.5 Hybrid MPSoC Simulation

Native Compiled Software

Host Dependent HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

Communication Network

BLK Bridge TTYADC

RAM0
(Native) DBT ISS

RAM1
(QEMU)

RAM2
(Shared)

Cross-Compiled Software

Target Specific HAL

HAL API

Operating
System

C/Math/
Comm.

Libraries

HDS API

Multi-threaded Applications

Native Processor

A B C D

Figure 5.18: Hybrid Simulation Platform using DBT and Native Processors

The HAV-based native simulation approach can solve this problem, as the software stack
uses target addresses and does not require modifications to the platform device models. Thus,
the same set of device models are shared between DBT based ISSes and native processors.
In contrast to the proposed KVM solution, traditional native simulation solutions are not
transparent to the embedded OS and applications. The simulated software needs to know the
host addresses used by the simulation platform. This aspect makes the simulated software
difficult to design and very difficult to integrate with other target address based simulators,
such as QEMU.

The hybrid MPSoC simulation platforms with different kinds of processing elements
have as advantage the ability to put together existing processing elements using different
simulation technologies. Already available and tested processor models can be re-
used in hybrid simulation, and a better match between processor type and available
simulation technology results in increased performance and accuracy of the simulated
design. Figure 5.18 shows an example hybrid platform that uses two different types of
processing elements along-with their local memories i.e. RAM0 and RAM1 and corresponding
access methods. KVM uses memory mapping C and QEMU uses back-door access mechanism
for accessing local memories D .

The communication mechanism between these processors is also important, in order
to build a useful simulation platform. Here, the I/O accesses use the original mechanisms
supported by the processors, as the shared platform components that provide the same
interfaces to both of the processors. However, shared memory accesses, such as in RAM2

device model in Figure 5.18, can have two possible implementations for the native processors.

v MMIO Address Space: The shared memory component can be accessed from the native
processor using the MMIO address space along-with normal I/O accesses, as shown

TIMA Laboratory, CNRS/INP Grenoble/UJF 105

Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization

in Figure 5.18 A . This choice is costly in terms of simulation performance, as each
memory access requires a guest-to-host mode switch, but can be more accurate as each
shared memory access renders control to the SystemC kernel with a re-scheduling
opportunity.

v HAV-based Memory Mapping: The native processor can also establish a direct memory
mapping to the shared memory model using the KVM_SET_USER_MEMORY_REGION

capability as shown in Listing 5.3 and Figure 5.18 B . This choice is better in terms
of simulation performance, but can increase simulation inaccuracy, as the software
execution remains in guest mode for all shared memory accesses.

Both choices are transparent from the embedded OS and application point of views.
From the embedded software point of view, QEMU and KVM are identical and use the same
target address space, which makes it possible to partition and map one application onto
two different processors and perform communication using shared memories. To the best of
our knowledge, there exists no other native solution that can provide such high degree of
flexibility, by using the HAV-based transparent address translation and supports this kind-of
hybrid simulation models.

Endianness is an issue for the native processors in shared memory based communication
contexts. As the native binary is based on the host instruction set, the endianness is fixed to
either little or big endian. It is possible for the endianness of MPSoC platform to be different
from that of the host machine. The data and private memory accesses will have the same
endianness as the host processor. For I/O accesses, the native processor would be responsible
for swapping the endianness if the MPSoC platform has different endianness as compared to
the host processor. Due to the use of Direct Memory Interface (DMI), sharing memory between
a native simulator and an instruction accurate ISS of different endianness is still an open
problem.

5.5.1 Memory and I/O Access Comparison

This section briefly compares the memory and I/O address space access mechanisms used
in different simulation technologies. We compare the DBT-based QEMU, traditional Native
techniques and our proposed KVM-based native simulation platform. Three types of accesses
are compared including Local Memories, I/O Accesses and Shared Memories within these
techniques. Table 5.2 provides examples, addressing details and access implementations for
each of these technologies.

5.6 Conclusions and Limitations

This chapter presented the main contribution of this thesis. The first section was dedicated
to the essential concepts of Hardware-Assisted Virtualization (HAV) that provide the basis
for our solution. We demonstrated that the address spaces problem introduced by the
native techniques can be solved efficiently using the HAV technology. Key elements of the
proposed solution including, Native Processing Units (NPUs), Host Dependent HAL and I/O
accesses using Memory-Mapped I/O (MMIO) capability of KVM were discussed, in mono- and
multi-processor contexts.

Key benefits of the proposed solution include:

106 Mian-Muhammad Hamayun

5.6 Conclusions and Limitations

v Transparent memory accesses in software and mapping of exactly the same memory
address space to hardware memory models allowing for optimal bi-directional memory
accesses from software, as well as hardware models.

v Validation of a significant amount of software stack, including operating system and
applications, for the target architecture except the HAL implementation.

v Absence of software coding constraints such as the use of hard-coded addresses, or
specialized linker scripts.

v Use of un-modified hardware IP models and statically compiled software stack requiring
no dynamic linking or patching support.

v Native simulation of MMU-based operating systems is possible, as KVM provides the
required address translation in guest mode using SPT or EPT support.

v Support for automatic instrumentation techniques using PMIO or similar mechanisms
on host machines.

v Simulation of multiple processing elements and flexibility to model hybrid solutions
on top of a shared MPSoC platform.

And key limitations of the proposed solution are:

v All hardware/software interactions must take place through the HAL layer except
for memory accesses. This limitation requires a guest operating system specific
implementation of the HAL API, which could be a problem in case of complex operating
systems such as Linux.

v Software execution remains in guest mode for all compute and memory intensive tasks,
but I/O accesses require a guest-to-host mode switch, which is a costly operation and
degrades simulation performance.

v Support for Self-Modifying Code (SMC) is not available in our proposed solution, as the
software stack is compiled statically and no run-time translation support is available.

v Simulation accuracy from performance estimation perspective is highly-dependent on
annotation accuracy; thus performance estimation of complex architectures is difficult
using traditional annotation techniques.

Although our proposed solution has certain limitations but the interest of this approach
and benefits outweigh these limitations. Next chapter will present a Static Binary
Translation (SBT) technique for generating native code and simulating complex VLIW

architectures on top of the simulation platform proposed in this chapter.

TIMA Laboratory, CNRS/INP Grenoble/UJF 107

N
a
t
i
v
e
M
P
S
o
C
S
i
m
u
l
a
t
i
o
n
P
l
a
t
f
o
r
m
U
s
i
n
g
H
a
r
d
w
a
r
e
-
A
s
s
i
s
t
e
d
V
i
r
t
u
a
l
i
z
a
t
i
o
n

Local Memory Read/Write Access

Code Example Address of variable i Access Implementation

QEMU int i = 55; &i=? Target memory address Address translated during the basic block translation.
Native int i = 55; &i=? Host SystemC memory module address Accessed directly without translation.

KVM int i = 55; &i=? Target memory address Accessed directly using MMU mapping of the host processor.

Shared Memory Read/Write Access

Code Example Address of variable i Access Implementation

QEMU *(int *)0xBF001018 = 0x66; Target memory or I/O address Same as the Memory or I/O access.

Native
addr = SHARED_MEM_BASE + offset; Host SystemC shared memory module

Same as the Memory access.
*(int *)addr = 0x66; address

KVM *(int *)0xBF001018 = 0x66; Target memory or I/O address Same as the Memory or I/O access.

I/O Read/Write Access

Code Example Address of variable i Access Implementation

QEMU *(UART_ADDR) = 0x55; Target I/O address Access to the SystemC UART module by QEMU.
Native CPU_IO_WRITE(UART_ADDR, 0x55); Host SystemC UART module address Access to the SystemC UART module using special functions.

KVM *(UART_ADDR) = 0x55; Target I/O address Access to the SystemC UART module by KVM.

Table 5.2: Local Memories, I/O and Shared Memory Accesses in QEMU, Traditional Native and KVM-based Platforms

1
0
8

M
ian-M

uham
m

ad
H

am
ayun

Everything should be made as simple as possible, but
not simpler.

Albert Einstein

6
Static Binary Translation Targeting VLIW

Processor Simulation

Simulation of VLIW processors on scalar machines is an interesting topic, as it involves
many architectural aspects rarely found in RISC machines. This chapter presents a Static

Binary Translation (SBT) flow for VLIW processor simulation on x86 based native platforms.
The translation framework generates native code from cross-compiled VLIW executables
and simulates them on the HAV based platform presented in the previous chapter. This
approach is interesting in situations where either the source code is not available or the
target platform is not supported by any retargetable compilation framework, which is usually
the case for VLIW processors. Specialized toolchains are used to generate code for VLIW

processors, applying many target specific optimizations in the process. The SBT approach
has been implemented for Texas Instruments (TI) C6x series processors, as these processors
present some of the most interesting features found in VLIW architectures.

6.1 Static Binary Translation Principle and Constraints

Dynamic translators perform all of the processor pipeline stages at runtime and frequently
use a translation cache to amortize the cost of instruction fetch and decoding steps [SL98,
ZT00, Bel05]. Static translators separate the instruction fetch and decode stages from
execution, thus improving the runtime performance of generated simulators [CVE00,
CYH+08, SCHY12].

Basic static translation principle is highlighted in Figure 4.7, where the translation steps
are decoupled into two distinct phases. Firstly, the input instructions are converted to
an Intermediate Representation (IR) that is independent of both source and target machine
architectures, using a translation front-end. Secondly, the IR is converted to the target
machine-specific representation using a code generation backend. Using this principle,
a significant improvement in simulation performance can be achieved, as the expensive
decoding and translation stages are performed only once. At runtime, the simulator executes

TIMA Laboratory, CNRS/INP Grenoble/UJF 109

Static Binary Translation Targeting VLIW Processor Simulation

the translated instructions as many times as necessary, without any translation overheads.

We extend the same principle and propose a static translation flow for VLIW processors.
We use the Low Level Virtual Machine (LLVM)-IR as an intermediate language for the translation
process. This choice provides us with three key benefits. Firstly, the translation flow becomes
retargetable as LLVM-IR is independent of both source and target architectures. Secondly,
the existing optimizations of LLVM infrastructure can be re-used to optimize the quality of
generated code and lastly the LLVM-IR provides a set of infinite virtual registers, which bridge
the architectural differences between source and target architectures. For example, the TI

C64x processors have 64 general purpose registers and mapping all of these registers directly
to an x86 machine is rather difficult, as it has only 8 general purpose registers.

The proposed SBT technique ensures that the generated IR is correct w.r.t. to the VLIW

architectural semantics, as discussed in Section 3.6. We rely on LLVM optimization passes to
remove unnecessary instructions during optimization phase.

6.1.1 Static Translation Specific Constraints

Static translation performs everything at compile time, and it has some limitations w.r.t. to
dynamic code behaviors. Static branch targets can be easily identified and analyzed during
translation, as opposed to indirect branch instructions. There are two principle options
for handling indirect branch instructions i.e. either provide dynamic translation support or
do the static translation of all execute packets in addition to the higher level aggregations
e.g. VLIW basic blocks.

In certain cases, VLIW binaries can contain hand-written assembly code, with branch
instructions targeting the middle of execute packets, for optimization or code-size reasons.
Usually, VLIW compilers cannot produce this type of binary code, so we do not handle such
cases in the proposed translation flow. Self-Modifying Code (SMC) is another issue, which
usually emerges due to the presence of pointers and dynamic linking in software. Usually,
VLIW binaries do not contain such code segments, as most of the functionality is processing
intensive. In VLIW binaries, instructions are rarely modified during execution, so we do not
handle such cases as well.

6.1.2 Virtualization Specific Constraints

Native simulation requires that simulated software and hardware models share a uniform
view of system memory. For example, when software programs a DMA device to copy a
software allocated buffer into a hardware device, consistency of addresses must be assured.
Our HAV based native simulation platform shown in Figure 5.17, provides the capability to
simulate software in target address space and access simulated memory transparently. In this
virtualized memory context, runtime support from host operating system is not available
and the software executes as if running on a baremetal machine, limiting the possibility
of dynamic translations. For example, if the simulated software wishes to invoke a host
function, it cannot do it directly and has to rely on alternative means, such as semi-hosting
support as discussed in Section 5.2.4.2.

110 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

6.2 Retargetable Static Translation of VLIW Software

Our solution to the simulation for VLIW processors, relies on HAV based native platform
proposed in Section 5.2.4.3. The native platform provides the capability to access simulated
memory in target address space, without requiring any changes to hardware models and
software stack. The proposed static translation flow for VLIW processors is shown in Figure 6.1.
This design flow is based on a set components from LLVM compiler infrastructure. Thus, it
re-uses many of the already available optimization and code generation components. Broadly
speaking, the proposed translation flow uses four types of components:

Ta
rg

e
t
S

p
e

ci
fic

 I
S

A
 a

n
d

 T
a

rg
e

t
B

in
a

ry
In

p
u

ts

ADD...
SUB...
MUL...
SADD...

Target ISA
Definitions in C

Target Binary

VLIW Packet
Decoder

EXECUTE PACKETS

Basic Block
Construction

VLIW BASIC BLOCKS

Compiler
Frontend

ADD@IR...
SUB@IR...
MUL@IR...
SADD@IR...

Target ISA
Definitions in IR

IR Code
Generation

A
d
d
re

ss
M

a
p
p
in

g
s

Fu
n
ct

io
n
s

in
 I
R

Native
Backend

Native Binary

1 2

3 4

BE

Target Specific Decoding and VLIW Specific Basic Blocks
Decoding and Basic Blocking

Target Independent and VLIW/RISC Compatible
Intermediate Code Generation

H
o

st
 S

p
e

ci
fic

 B
a

ck
e

n
d

O
u

tp
u

t:
 C

o
d

e
 E

m
is

s
io

n

Optimizer

Figure 6.1: Static Binary Translation Flow for VLIW Binaries

1 This set contains target binary to be simulated and a collection of high-level functions
describing the behavior of target Instruction Set Architecture (ISA). The target binary is
generated from the target-specific toolchain, including all optimizations. Section 6.2.1
gives more detail on ISA behavior definition.

2 These include components that are specific to target architecture for instruction
decoding and adapted to VLIW architectures. The VLIW packet decoder implements the
binary decoding logic as well as extracts parallelism, forming decoded execute packets.
Section 6.2.2 will provide more details on this subject.

TIMA Laboratory, CNRS/INP Grenoble/UJF 111

Static Binary Translation Targeting VLIW Processor Simulation

3 These components include IR code generation modules, which take as input the target
ISA behavior in IR and generate intermediate functions from the execute packets and
basic blocks. The generated IR code can be optionally optimized using components in
this set. Section 6.2.3 gives detailed description of this process.

4 This set includes components for the final code generation. Inputs to this stage are
in LLVM-IR, so many different types of backends can be used, making it a retargetable
translation flow. We use the x86 backend to generate native code and simulate it on our
HAV based simulation platform.

The SBT proposed flow is generic and can be easily adapted for RISC processors. Only
three components need to be modified i.e. the ISA definitions, the instruction decoder and
basic block construction module. Rest of the static translation flow remains unchanged.

6.2.1 Instruction Representation

The VLIW ISA definitions in Figure 6.1 1 are provided in ’C’ language and used to generate
ISA definitions in LLVM-IR, using the compiler front-end. Each target instruction has a specific
behavior that is how and when it modifies the register, memory or control state of the processor.
Once the ISA is available in LLVM-IR, it can be used to compose LLVM-IR code for VLIW basic
blocks and execute packets.

Each VLIW instruction is represented with multiple definitions in LLVM-IR, exhaustively
covering all operand type combinations. This strategy simplifies the ISA definition process,
at the cost of size, which becomes irrelevant once definition generation process is automated.
In addition, it makes the optimization step easier and more robust as there are fewer
if/else/switch structures to be considered. For example, if an ADD instruction takes
two operand type combinations such as: ADD UInt32, UInt32, UInt32 and ADD UInt32,

UInt40, UInt40, then two corresponding ISA definitions will be given in ’C’ and converted
to LLVM-IR e.g. ADD_UR32_UR32_UR32(){...} and ADD_UR32_UR40_UR40(){...}. Table 6.1
gives the operand type naming convention used in ISA definitions. Listing 6.1 gives an
example ISA definition in ’C’.

Each ISA definition represents a macro-operation as compared to micro-operations in
QEMU [Bel05] i.e. an ISA definition specifies the complete behavior of a VLIW instruction
for a particular operand type combination, except for the instruction result storage. The
instruction result affectation is delegated to the IR code generation steps (c.f . Section 6.2.3).
For example, Lines 8 and 9 in Listing 6.1 read input operands from processor state, Line 10
specifies the instruction behavior and Line 11 saves the output in the result pointer passed
by the IR code generator. Line 13 indicates a normal instruction completion.

Operand Type Register (R) Constant (C)

Unsigned (U) _UR<#ofbits> _UC<#ofbits>
Signed (S) _SR<#ofbits> _SC<#ofbits>

Table 6.1: Operand Types in ISA Definitions

112 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

Listing 6.1 An Example ISA Definition in C

1 /// MPYSU - Multiply Signed 16 LSB x Unsigned 16 LSB.
2 uint32_t C6xMPYSU_SC5_UR16_SR32(C6x_DSPState_t * p_state, uint8_t is_cond,
3 uint8_t be_zero, uint16_t idx_rc, uint32_t constant, uint16_t idx_rb,
4 uint16_t idx_rd, C6x_Result_t * result)
5 {
6 if(Check_Predicate(p_state, is_cond, be_zero, idx_rc))
7 {
8 int16_t ra = C6XSC5_TO_S16(constant);
9 uint16_t rb = GET_LSB16(p_state->m_reg[idx_rb]);

10 int32_t rd = ra * rb;
11 SAVE_REG_RESULT(result, idx_rd, rd);
12 }
13 return 0;
14 }

Key Point 6.1 Target ISA Definitions in IR

Target ISA behaviors are provided in LLVM-IR and used to compose IR functions for target
VLIW binary code. Multiple ISA definitions are given depending on the operand types of a
VLIW instruction, for optimization reasons.

6.2.2 Execute Packet Decoding and Basic Block Construction

The target specific VLIW Packet Decoder shown in Figure 6.1 2 , decodes instructions, their
operands and creates in-memory objects for later use in translation. Listing 6.2 gives a code
snippet for decoding the MPYSU instruction of TI C6x ISA. Lines 8, 9 and 10 create objects for
operands and Line 11 creates the decoded instruction object. Each decoded instruction object
and its operands are able to return their types as a string, as shown in Table 6.1. These string
types are used for constructing function calls and naming ISA definitions. The VLIW Packet
Decoder also extracts parallelism from the input instruction stream and creates objects
representing execute packets. A simple branch analysis is also performed for marking all
of the statically known branch target instructions. This information is used as an additional
criteria for basic block construction.

Target VLIW basic blocks are formed by starting at either a statically known branch target
instruction or when a previous VLIW basic block must terminate due to the presence of a
branch instruction. When branch instructions do not have delay slots, as is usually the case
with RISC machines, basic blocks are terminated immediately. Contrarily in VLIW machines,
a branch instruction requires some delay slots, so the execute packets that lie within the the
delay slot range of preceding branch instruction are also included in the VLIW basic block, as
they will be executed even-if the branch is taken (Figure 3.15).

6.2.3 Intermediate Code Generation

The intermediate code generation components shown in Figure 6.1 3 are based on LLVM

framework, which provides classes and methods for generating functions, IR basic blocks,
control flows and data processing instructions. Target specific features are encapsulated in
decoded instruction objects whereas the target independent algorithms are generic and ask
the decoded objects for certain services. For example, ISA call generation, where a function
call is placed in a given IR basic block by considering the number and operand types of
the decoded instruction. This separation of concerns brings target independence to our

TIMA Laboratory, CNRS/INP Grenoble/UJF 113

Static Binary Translation Targeting VLIW Processor Simulation

Listing 6.2 Instruction Decoding Example

1 C6xOperand *src1, *src2, *dest;
2 ...
3 switch(dec_instr->GetOpcode())
4 {
5 case 0x1E :
6 {
7 /* MPYSU Integer Multiply 16lsb x 16lsb; scst5, xulsb16, sint */
8 src1 = new C6xConstant(true, 5, helper->GetSIntConst1());
9 src2 = new C6xRegister(false, 16, helper->GetCrossBankId(), helper->GetSrc2());

10 dest = new C6xRegister(true, 32, helper->GetDestBankId(),helper->GetDest());
11 dec_instr_eu = new C6xMPYSUInstr(dec_instr, dest, src1, src2);
12 }
13 break;
14 ...
15 }

Key Point 6.2 Hand-Written VLIW Packet Decoder
A hand-crafted VLIW packet decoder in object-oriented style is used to maximize code re-
use. This induces performance penalty during translation but makes the decoding process
compatible with LLVM infrastructure.

translation flow.

...

E
a
rl

y
 T

e
rm

in
a
ti

o
n

C
o
n

d
it

io
n

(E
T

C
 !

=
 0

)

PC Updated
(RPCT != 0)

Core IR
Basic Block

Entry IR
Basic Block

Return IR
Basic Block

P
e
r

E
x
e
c
u

te
 P

a
c
k
e
t

Update IR
Basic Block

Next
Core BB

ET0 = Call @ISA0(..., &R0);
ET1 = Call @ISA1(..., &R1);

ETn = Call @ISAn(..., &Rn);
...

ETC = ET0 | ET1 | ... | ETn

Branch(ETC!=0, BBReturn, BBUpdate);

...R0 R1 R2 Rn

Branch(RPCT!=0, BBReturn, BBCore);

Call @IncPC();
Call @IncCycles();
RPCT = Call @UpdateRegs();

C1

C2

C3

C4

U1

U2

Buffered(R0);Immediate(R0); or

... Buffered(R1);Immediate(R1); or

Buffered(Rn);Immediate(Rn); or

Figure 6.2: Intermediate Code Generation for VLIW Basic Blocks

Figure 6.2 shows the structure of a generated function, containing four types of IR basic
blocks i.e. Entry, Return, Core and Update types. Each generated function contains one
instance of Entry and Return IR basic blocks, whereas the Core and Update IR blocks depend
on the number of execute packets in the target VLIW basic block.

Each core basic block contains four groups of instructions, shown as C1 , C2 , C3 and
C4 . Group C1 includes memory allocation instructions for saving Results of ISA behavior
executions. The number of memory allocations depend on the size of input execute packet
and are shown by R0, R1, ..., Rn in Figure 6.2. These structures are allocated on the stack
of generated function, limiting their visibility and lifetime to the generated IR function.
Subsequently during code optimization, we analyze these structures for their scope and

114 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

remove unnecessary ones using LLVM optimization facilities.
For group C2 , we generate the actual ISA calls and pass the addresses of corresponding

Result structures. Each ISA computes and stores its result(s) in the callers stack memory
(Listing 6.1, Line 11). An ISA call also returns a status value shown as ET0, ET1, ..., ETn,
which if non-zero indicates an Early Termination request from the ISA call, as discussed in
Section 3.6.1. The Early Termination request is tested in group C4 and if true the control
returns to software runtime

The group C3 includes either Immediate or Buffered update calls for the ISA execution
Results, by considering delay slots associated with the VLIW instructions. This post update
scheme brings implicit parallelism to the sequential instructions in IR and avoids the data
hazards discussed in Section 3.6.1. Some target instructions can also have side-effects i.e.
modifications of registers other-than the destination operand(s), as is possible for load
and store instructions in TI C6x processors. Group C3 handles such cases as well, by
generating immediate update calls for side-effect results. Instructions in group C4 , evaluate
the individual ISA return values to determine if Early Termination Condition is set i.e. ETC , 0.
At runtime, the control flows to the Return basic block for non-zero ETC values, otherwise it
continues to the Update IR basic block.

Each Update IR basic block is composed of two groups i.e. U1 and U2 . In group U1 ,
instructions for updating processor state are generated including general purpose registers,
program counter and CPU cycles. The register updates deal with the buffered (delayed)
updates of registers, including the program counter for branch instructions issued earlier. In
cases when the PC is modified during UpdateRegs, the new value is saved in RPCT (Returned
Program Counter of Target) for use in group U2 . During simulation if RPCT , 0, it indicates
that a branch has been taken and control should be returned to the software runtime, which
finds the next native function using the RPCT value and passes control to it. The RPCT = 0
indicates that no branch was taken and the control flows to the next Core IR basic block in
the same function, as shown in Figure 6.2. This scheme handles nested branch instructions,
as discussed in Section 3.6.1 and Figure 3.15, because the RPCT value is tested at the end of
every Update basic block.

Our approach is similar to [NTN06] as we generate a native function for each target basic
block but we differ in the respect that we do not use any emulation or ISS based simulation.
We keep additional lower level translations for execute packets to achieve faster simulation
speed, at the cost of code size. Appendix C provides further details on the code generation
algorithms used for VLIW simulation.

Key Point 6.3 Target Independent IR Code Generation
The IR code generation algorithms are target independent as target specific instruction details
are encapsulated within the decoded instruction objects.

6.2.4 VLIW Processor State and Circular Buffers

The ISA behavior definitions discussed in Section 6.2.1 includes some additional target
specific features. These include the VLIW processor state and a mechanism to support delay
slots using circular buffers. The processor state includes the current simulated CPU cycle,
register banks and pointers to the circular buffers.

Figure 6.3 shows the structure of circular buffers including head and tail pointers.

TIMA Laboratory, CNRS/INP Grenoble/UJF 115

Static Binary Translation Targeting VLIW Processor Simulation

MAX_DELAY_SLOTS+1 circular buffers are created during initialization and each buffer
contains (MAX_DELAY_SLOTS * MAX_PACKET_SIZE * MAX_INSTR_RESULTS) delay nodes.
MAX_DELAY_SLOTS represents the maximum possible delay slots, MAX_PACKET_SIZE is the
maximum number of instructions in an execute packet and MAX_INSTR_RESULTS is the
maximum number of register results for any instruction.

...

RegID
Value

RegID
Value

RegID
Value

RegID
ValueHEAD

TAIL
[0]

RegID
Value

RegID
Value

RegID
Value

RegID
ValueHEAD

TAIL
[1]

RegID
Value

RegID
Value

RegID
Value

RegID
ValueHEAD

TAIL
[N]

MAX_DELAY_SLOTS * MAX_PACKET_SIZE * MAX_INSTR_RESULTS

M
A

X
_D

E
LA

Y
_S

LO
T

S
 +

 1

Figure 6.3: Delay Slot Buffers for Register Updates

Each time a VLIW instruction produces a result that requires delay slots, it is saved at the
end of a circular buffer, which is selected using the following formula:

Buf f erID = (CurrCPUCycle+DelaySlots+ 1) % (MAX_DELAY _SLOT S + 1)

On every simulated CPU cycle, the currently active buffer is selected using:

Buf f erID = CurrCPUCycle % (MAX_DELAY _SLOT S + 1)

and UpdateRegs function consumes all delayed registers in the current buffer. Figure 6.3
shows the Buffer[1] as active with two delay nodes containing registers to be updated, at the
end of current CPU cycle.

6.2.5 Data and Instruction Memory Accesses

The SBT solution is based on the same event-driven simulation framework as described in
Chapter 5, where all data and instruction addresses are kept in the original target address
space while benefiting from the HAV based address translation. At simulation start, a region
of dynamic memory is allocated in host user-space and assigned to KVM for simulating the
target address space.

The native simulator generated by the SBT flow accesses data memory using exactly the
same addresses as in the original VLIW binary. As the size of generated simulator is larger
than the original VLIW binary, it cannot fit within the same memory regions. We use the
notion of Extended Target Address Space, where we load both the original and translated
binaries in the simulated memory, as illustrated in Figure 6.4. For example if a VLIW DSP uses
256MB of memory, we allocate 384MB of memory space in KVM and use the target "physical"

116 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

addresses above 0x0FFFFFFF for the generated simulator.

Communication Network

Timer TTY RAM

ADC DMA Bridge ITC

N
P
U

VMM
Mapped
Dynamic
Memory

.bss

.text

.data

ITC
DMA
ADC
Bridge
Flash
TTY
Timer

Extended Target
Address Space

SystemC
Address Space

.data-n

.bss-n

.text-n

ITC
DMA
ADC
Bridge
Flash
TTY
Timer

.bss-t

.data-t

.rodata-t

.text-t

Target VLIW
Binary

Native VLIW
Simulator

E
xt

en
de

d
M

em
ro

y
R

eg
io

n
D

at
a

A
cc

es
se

s

Figure 6.4: Memory Mapping for Statically Generated VLIW equivalent Native Binaries

We load the original VLIW binary and its data sections to their original target memory
addresses. This aspect is very similar to UQBT [CVE00], which uses a link-map file generated
by the translator to retain the same virtual addresses. The target address preservation for
data memory accesses avoids additional computation overhead at runtime [CYH+08].

Once a native function completes its execution, it passes control to the software runtime,
which looks at the simulated processor state and maps the VLIW program counter to the next
native function. A simple option for accomplishing this control transfer is to generate a
global map containing target addresses and corresponding native function pointers. This
global map can be searched using traditional techniques, such as binary search or a hash
function.

Key Point 6.4 Mapping Target Instruction Addresses to Native Functions
Data memory accesses remain the same as in the original VLIW binary but the generated
simulator uses different addresses for instructions. Thus, the SBT for VLIW requires a software
runtime and target-to-native address mappings for the generated functions.

6.2.6 Code Generation Modes

Native code can be generated using different modes from the target VLIW binaries. The first
option is to generate native code for execute packets only, using the flow E in Figure 6.1. This
mode suffers from slow simulation speed, as the runtime overhead between native function
calls is non-negligible. Using this mode, the generated simulator does not require dynamic
translations, as we know that all branch instructions including indirect ones will jump to the
start of execute packets, as discussed in Section 6.1.1. This code generation mode is shown in
Figure 6.5(a).

TIMA Laboratory, CNRS/INP Grenoble/UJF 117

Static Binary Translation Targeting VLIW Processor Simulation

Address
Mappings

Software
Runtime

E
a
rl

y
 T

e
rm

in
a
ti

o
n

C
o
n

d
it

io
n

(E
T

C
 !

=
 0

)
PC Updated
(RPCT != 0)

Core IR
Basic Block

Entry IR
Basic Block

Return IR
Basic Block

Update IR
Basic Block

(a) One IR Basic Block Per Execute Packet

Address
Mappings

Indirect Branches
to Non-Startup

Execute Packets?

Software
Runtime

E
a
rl

y
 T

e
rm

in
a
ti

o
n

C
o
n

d
it

io
n

(E
T

C
 !

=
 0

)

PC Updated
(RPCT != 0)

Core IR
Basic Block

Entry IR
Basic Block

Return IR
Basic Block

N
 E

x
e
c
u

te
 P

a
c
k
e
ts

Update IR
Basic Block

(b) One IR Basic Block Per VLIW Basic Block

Address
Mappings

Software
Runtime

E
a
rl

y
 T

e
rm

in
a
ti

o
n

C
o
n

d
it

io
n

(E
T

C
 !

=
 0

)

PC Updated
(RPCT != 0)

Core IR
Basic Block

Entry IR
Basic Block

Return IR
Basic Block

N
 E

x
e
c
u

te
 P

a
c
k
e
ts

Update IR
Basic Block

E
a
rl

y
 T

e
rm

in
a
ti

o
n

C
o
n

d
it

io
n

(E
T

C
 !

=
 0

)

PC Updated
(RPCT != 0)

Core IR
Basic Block

Entry IR
Basic Block

Return IR
Basic Block

Update IR
Basic Block

Indirect Branches
to Non-Startup

Execute Packets

(c) IR Basic Blocks for VLIW Basic Blocks and Non-Startup Execute Packets

Figure 6.5: Code Generation Modes in Static Translation for VLIW Binaries

To improve the simulation speed, we can generate code for VLIW basic blocks only using
the flow B in Figure 6.1, but this option is impractical in case of static translation. The
presence of indirect branch instructions poses a key problem, as these instructions can jump
to execute packets1 that do not start a VLIW basic block. This implies a jump into middle of
the corresponding native function, which is rather impossible. Alternatively we can include
dynamic translation or interpretation support in the generated simulator, but this option
will make the simulation slower. This code generation mode, although impractical, is shown
in Figure 6.5(b).

This brings us to the hybrid translation mode using both B and E flows of Figure 6.1.
This option is practically feasible and interesting from the simulation point of view. This
mode is used to generate code for both VLIW basic blocks and execute packets in a mutually
exclusive manner i.e. in addition to generating code for basic blocks, we also generate code
for all non-startup execute packets. The resulting simulator is bigger in size but does not
require runtime translations. The simulation speed improves as the simulator remains in
basic block mode during most of the runtime and only goes to the execute packet mode
when a non-basic block address is encountered, as shown in Figure 6.5(c). Moreover, the

1We will refer such execute packets as non-startup execute packets.

118 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

Generation Mode Execute Packets (EP) Basic Blocks (BB) Hybrid (BB+EP)

Simulation Speed Slow Medium Fast
Simulator Size Medium Small Large

Dynamic Translations Not Required Required Not Required
SystemC Synchronizations Per EP Per EP/BB Per EP/BB

Self Modifying Code No Yes No

Table 6.2: Possible Code Generation Modes for VLIW Software Binaries

hybrid mode is better suited the VLIW context as the minimum translation granularity is an
execute packet, compared to an instruction in RISC machines. These translation modes are
summarized in Table 6.2.

6.2.7 Optimization and Inlining

LLVM infrastructure provides optimization facilities, known as passes that operate at IR

module, function and basic block levels. A module is composed of multiple functions, a
function in turn includes one or more basic blocks. Once the intermediate code is available,
its quality can be improved using these optimization passes. Some of the key optimization
passes include dead code elimination, constant propagation, instruction combining, CFG

simplification and instruction inlining.

Listing 6.3 The Dot Product Example in C

1 int dot_product(short * m, short * n, int count)
2 {
3 int i;
4 int sum = 0;
5 for (i=0; i < count; i++)
6 {
7 sum = sum + m[i] * n[i];
8 }
9 return(sum);

10 }

The proposed translation flow generates some extra code within execute packets, which
ensures the functional correctness of simulation. Once the IR is optimized, most of the
unnecessary code is removed and we effectively:

v Remove redundant predicate checks from un-conditional VLIW ISA definitions.
v Remove dead arguments to ISA calls, such as un-used predicate parameters.
v Merge IR basic blocks that are linked by un-conditional branch instructions.
v Simplify the early termination checks for execute packets containing fully executing

VLIW instructions i.e. instructions without early termination semantics.
v Remove temporary results stored on the generated function’s stack and replace them

with direct stores to processor state i.e. for immediate updates.
v Remove un-necessary ISA calls e.g. ISA calls for NOPs.

TIMA Laboratory, CNRS/INP Grenoble/UJF 119

Static Binary Translation Targeting VLIW Processor Simulation

Listing 6.4 The Dot Product Example in C6x Assembly Language

1 /* int dot_product(short * m, short * n, int count) */
2 /* Parameter m in A4, n in B4 and count in A6 */
3 dot_product:
4 ZERO A5 /* i = 0 */
5 || MV B4,A8 /* A8 = n */
6 CMPLT A5,A6,A1 /* A1 = (i < count) */
7 [!A1] B end_for
8 || [A1] LDH *+A8[A5],A9 /* A9 = n[i] */
9 [A1] LDH *+A4[A5],A7 /* A7 = m[i] */

10 ZERO A3 /* sum = 0 */
11 NOP 3 /* Branch Delay */
12 for_loop:
13 ADD A5,0x01,A5 /* i++ */
14 || MPY A9,A7,A7 /* A7 = n[i] * m[i] */
15 CMPLT A5,A6,A1 /* A1 = (i < count) */
16 [A1] B for_loop
17 || ADD A7,A3,A3 /* sum = sum + A7 */
18 || [A1] LDH *+A8[A5],A9 /* A9 = n[i] */
19 [A1] LDH *+A4[A5],A7 /* A7 = m[i] */
20 NOP 4 /* Branch Delay */
21 end_for:
22 B B3 /* Return to Caller */
23 MV A3,A4 /* A4 = sum */
24 NOP 4 /* Branch Delay */

We illustrate optimization effects using the Dot Product example given in Listing 6.3 and
its equivalent C6x assembly code given in Listing 6.4. We use ’C’ language style comments
to explain instruction in C6x assembler and LLVM-IR code. The execute packet at Lines 13
and 14 includes two instructions i.e. an ADD instruction with immediate effect and a MPY

instruction with 1 delay slot. The LLVM-IR code corresponding to this execute packet is given
in Listing 6.5, which seems overwhelmingly complex. The key reason to this complexity
comes from the constraints imposed by VLIW architecture and overheads of translation at
execute packet level.

The getelementptr (stands for Get Element Pointer) instruction appears very frequently in
LLVM-IR and deserves a little explanation. This instruction is used to index into aggregate
data types such as arrays and structures. It calculates the appropriate pointer only and
does not access the corresponding data element i.e. it dereferences nothing. During code
generation, the getelementptr instructions are translated to constant offsets.

Listing 6.5 includes four IR basic blocks at Lines 2, 5, 8 and 43. Variables for early
termination and results are allocated and initialized from Line 9 to Line 15. Lines 17 and
28 invoke the actual ISA behaviors. Immediate and delayed update functions are called at
Lines 36 and 38, respectively. The IR basic block at Line 43 updates the simulated VLIW

processor state.
To profit from optimizations across multiple ISA calls, we choose to inline function

definitions. This improves performance by two-folds, firstly by removing the parameter
passing cost of ISA calls and secondly by enabling inter-ISA optimizations. For example, when
a register is used as source operand in multiple ISA definitions. Similarly context-sensitive
optimizations of ISA definitions can also be enabled e.g. an ISA definition can be conditional
in one execute packet and un-conditional in another. On the negative side, inlining increases
the generated code size, which can become a problem in case of large VLIW binaries.

Listing 6.6 presents an optimized version of the same execute packet. This version

120 Mian-Muhammad Hamayun

6.2 Retargetable Static Translation of VLIW Software

Listing 6.5 LLVM IR Code for Execute Packet at Lines 13 and 14 in Listing 6.4

1 define i32 @SimEP_00000020(%struct.C62x_DSPState_t* %p_state) {
2 BB_Entry:
3 br label %BB_00000020_Core
4
5 BB_Return: ; preds = %BB_00000020_Update, %BB_00000020_Core
6 ret i32 0
7
8 BB_00000020_Core: ; preds = %BB_Entry
9 %0 = alloca i32, align 8 /* Allocate Early Termination Variable */

10 store i32 0, i32* %0 /* Initialize it with Zero */
11 %1 = alloca i32, align 8 /* Allocate Temporary Variable for ISA Return Values */
12 %instr_results = alloca %struct.C62x_Result_t, i32 2, align 8 /* 2 Results */
13 %2 = getelementptr %struct.C62x_Result_t* %instr_results, i32 0
14 %3 = getelementptr %struct.C62x_Result_t* %2, i32 0, i32 0
15 store i32 0, i32* %3 /* Initialize Result 1 with Zero */
16
17 %rvalADD = call i32 @C62xADD_SR32_UC5_SR32(%struct.C62x_DSPState_t* %p_state, i8 0,←↩

i8 0, i16 0, i16 5, i32 1, i16 5, i8 0, %struct.C62x_Result_t* %2)
18
19 store i32 %rvalADD, i32* %1 /* Update Return ISA Value */
20 %4 = load i32* %1 /* Get the Last Return ISA Value */
21 %5 = load i32* %0 /* Get the Early Termination Value */
22 %6 = or i32 %5, %4 /* Calculate Early Termination Flag */
23 store i32 %6, i32* %0 /* Update Early Termination Variable */
24 %7 = getelementptr %struct.C62x_Result_t* %instr_results, i32 1
25 %8 = getelementptr %struct.C62x_Result_t* %7, i32 0, i32 0
26 store i32 0, i32* %8 /* Initialize Result 2 with Zero */
27
28 %rvalMPY = call i32 @C62xMPY_SR16_SR16_SR32(%struct.C62x_DSPState_t* %p_state, i8 ←↩

0, i8 0, i16 0, i16 9, i16 7, i16 7, i8 1, %struct.C62x_Result_t* %7)
29
30 store i32 %rvalMPY, i32* %1 /* Update Return ISA Value */
31 %9 = load i32* %1 /* Get the Last Return ISA Value */
32 %10 = load i32* %0 /* Get the Early Termination Value */
33 %11 = or i32 %10, %9 /* Calculate Early Termination Flag */
34 store i32 %11, i32* %0 /* Update Early Termination Variable */
35 %12 = getelementptr %struct.C62x_Result_t* %instr_results, i32 0
36 %13 = call i32 @Update_Immediate(%struct.C62x_DSPState_t* %p_state, %struct.←↩

C62x_Result_t* %12)
37 %14 = getelementptr %struct.C62x_Result_t* %instr_results, i32 1
38 %15 = call i32 @EnQ_Delay_Result(%struct.C62x_DSPState_t* %p_state, %struct.←↩

C62x_Result_t* %14, i8 1) /* 1 Delay Slot for MPY */
39 %16 = load i32* %0 /* Load Early Termination Variable */
40 %17 = icmp ne i32 %16, 0 /* Check if Early Termination Variable is Set ? */
41 br i1 %17, label %BB_Return, label %BB_00000020_Update
42
43 BB_00000020_Update: ; preds = %BB_00000020_Core
44 call void @Update_PC(%struct.C62x_DSPState_t* %p_state, i32 8)
45 call void @Inc_DSP_Cycles(%struct.C62x_DSPState_t* %p_state)
46 %Upda = call i32 @Update_Registers(%struct.C62x_DSPState_t* %p_state)
47 br label %BB_Return
48 }

includes only one basic block at Line 2, as un-necessary control flows have been removed.
Input registers for MPY instruction are loaded and converted to 16-bits from Line 3 to Line 10.
Line 12 performs the actual multiplication. LLVM-IR instructions from Line 19 to Line 32 are
required for delay slot handling of MPY instruction. In contrast only three instruction are
necessary for simulating the ADD instruction i.e. Line 15 gets the register from processor state,
Line 16 performs the addition and Line 17 immediately updates the result. Instructions
between Line 35 and Line 40 update the simulated program counter and CPU cycles. As

TIMA Laboratory, CNRS/INP Grenoble/UJF 121

Static Binary Translation Targeting VLIW Processor Simulation

Listing 6.6 Optimized LLVM IR Code for Execute Packet at Lines 13 and 14 in Listing 6.4

1 define i32 @SimEP_00000020(%struct.C62x_DSPState_t* nocapture %p_state) nounwind {
2 bb3.i8:
3 %p_state.idx2 = getelementptr %struct.C62x_DSPState_t* %p_state, i32 0, i32 1, i32 ←↩

7
4 %p_state.idx2.val = load i32* %p_state.idx2, align 4 /* Get A7 Register */
5 %p_state.idx3 = getelementptr %struct.C62x_DSPState_t* %p_state, i32 0, i32 1, i32 ←↩

9
6 %p_state.idx3.val = load i32* %p_state.idx3, align 4 /* Get A9 Register */
7 %sext.i = shl i32 %p_state.idx3.val, 16 /* Convert A9 to 16 bits */
8 %0 = ashr i32 %sext.i, 16
9 %sext3.i = shl i32 %p_state.idx2.val, 16 /* Convert A7 to 16 bits */

10 %1 = ashr i32 %sext3.i, 16
11
12 %2 = mul nsw i32 %0, %1 /* MPY A9,A7,A7 */
13
14 %p_state.idx = getelementptr %struct.C62x_DSPState_t* %p_state, i32 0, i32 1, i32 5
15 %p_state.idx.val = load i32* %p_state.idx, align 4 /* Get A5 Register */
16 %3 = add nsw i32 %p_state.idx.val, 1 /* ADD A5,0x01,A5 */
17 store i32 %3, i32* %p_state.idx, align 4 /* Update Immediately */
18
19 %4 = getelementptr inbounds %struct.C62x_DSPState_t* %p_state, i32 0, i32 0
20 %5 = load i64* %4, align 4 /* Load Simulated Cycles */
21 %6 = add i64 %5, 2 /* MPY Delay Slots+1 to Get Delay Buffer */
22 %7 = urem i64 %6, 6 /* Calculate Destination Slot */
23 %8 = trunc i64 %7 to i32 /* Convert to 32 bits */
24 %9 = getelementptr inbounds %struct.C62x_DSPState_t* %p_state, i32 0, i32 2, i32 ←↩

%8, i32 1 /* Get Delay Buffer, 1 Slot Ahead from Now */
25 %10 = load %struct.C62x_Delay_Node_t** %9, align 4 /* Get the Tail Delay Node */
26 %11 = getelementptr inbounds %struct.C62x_Delay_Node_t* %10, i32 0, i32 0
27 store i16 7, i16* %11, align 4 /* Store Register ID (A7) */
28 %12 = getelementptr inbounds %struct.C62x_Delay_Node_t* %10, i32 0, i32 1
29 store i32 %2, i32* %12, align 4 /* Store Register Value */
30 %13 = getelementptr inbounds %struct.C62x_Delay_Node_t* %10, i32 0, i32 2
31 %14 = load %struct.C62x_Delay_Node_t** %13, align 4 /* Get Next Delay Node */
32 store %struct.C62x_Delay_Node_t* %14, %struct.C62x_Delay_Node_t** %9, align 4
33
34 %15 = getelementptr inbounds %struct.C62x_DSPState_t* %p_state, i32 0, i32 1, i32 ←↩

47
35 %16 = load i32* %15, align 4 /* Load Simulated PC */
36 %17 = add i32 %16, 8 /* Increment PC by 8 i.e. for ADD and MPY */
37 store i32 %17, i32* %15, align 4 /* Update PC */
38 %18 = load i64* %4, align 4 /* Load Simulated Cycles */
39 %19 = add i64 %18, 1 /* Increment by 1 */
40 store i64 %19, i64* %4, align 4 /* Update Cycles */
41 tail call fastcc void @Update_Registers(%struct.C62x_DSPState_t* %p_state)
42 ret i32 0
43 }

none of the instructions in this execute packet have early termination behavior, all such
instructions have been removed during the optimization process, which were present in
Listing 6.5.

One can clearly see that simulating a VLIW processor on a scalar machine poses many
overheads. Especially the delay slot handling and simulated processor state management.
Delay slot handling is necessary in order to avoid the data hazards. Processor state
management is done once per execute packet, so it is independent of the number of
instructions in the execute packet. Thus, optimized VLIW binaries simulate faster using
our SBT proposed technique, as compared to un-optimized ones. To further improve
the simulation speed, we recommend using the hybrid translation mode, as discussed in

122 Mian-Muhammad Hamayun

6.3 Conclusions and Limitations

Section 6.2.6. For example, all execute packets from Line 14 to Line 20 in Listing 6.4,
lie within a single VLIW basic block as per our VLIW basic blocking criteria, defined in
Section 6.2.2. Chapter 7 will present results highlighting the performance benefits of hybrid
translations as compared to execute packet only translations.

6.3 Conclusions and Limitations

In this chapter we introduced a static binary translation flow for VLIW processor simulation
on HAV based native platforms. The proposed flow is based on a set of algorithms that are
generic and retargetable in nature. Thus, the translation flow can be implemented using any
compilation infrastructure.

Few limitations of the proposed technique include:

v Redundancy in the generated code in hybrid translation mode, as the proposed solution
is completely static. To avoid redundancy, execute packet only translation mode can be
used.

v The current solution is semi-automatic as we use hand-written instruction decoder and
ISA behavior definitions. Automation of the decoder and ISA definition generation is
envisaged.

v Support for self-modifying code is not available in the proposed static translation flow.

And key benefits of the proposed technique are:

v Static translation of complex VLIW binaries to generate optimized native code, requiring
no runtime translation or interpretation support, thanks to our HAV based native
simulation platform.

v A retargetable approach based on an LLVM-IR, with the ability to generate code for
different HAV based platforms.

v A source free approach making it interesting for closed-source VLIW libraries and
application simulation.

v Well suited to VLIW architectures, as the minimal granularity of translation is an
execute packet for VLIW machines. Nevertheless, this solution can also be applied to
RISC architectures.

v Access to final code allows us to generate accurate software annotations during
translation for performance estimation and synchronizations with hardware models.

v Data memory accesses are performed using the exact target addresses, making the
solution interesting for data cache modeling. Target instruction addresses are available
at VLIW basic block and execute packet boundaries, thus, a coarse-grained instruction
cache modeling is also feasible.

Next chapter will present experimental results and discussion to validate the contributions
of this thesis.

TIMA Laboratory, CNRS/INP Grenoble/UJF 123

Anyone who has never made a mistake has never tried
anything new.

Albert Einstein

7
Experimentation and Results

This chapter presents the necessary experimental results, both in quantitative and
qualitative terms, to validate the contributions of this thesis. Initially, a short description

of the software and hardware environments, as well as reference benchmarks will be
described. Experimental results for mono-processor System-on-Chip (SoC) will be discussed in
detail, to demonstrate the pros and cons of our Hardware-Assisted Virtualization (HAV) based
native simulation solution. Multi-processor and hybrid simulation platform results will be
shown, to validate their technical feasibility. We will conclude this chapter by presenting
some results for Static Binary Translation (SBT) of Very Long Instruction Word (VLIW) software
binaries and a discussion on the benefits and limitations of the proposed techniques.

7.1 Software Environment and Benchmarks

Most of the applications used in the experimentation are based on the APplication Elements for
System-on-chips (APES) environment [GP09]. The APES environment provides a set of software
components for building embedded software stacks for multiprocessor architectures. These
components have well-defined interfaces and provide dedicated OS services. From native
simulation perspective, two key elements from the APES environment are considered i.e. the
DNA Operating System and the HAL layer.

The DNA Operating System has been conceived to target embedded multiprocessor
systems. It offers POSIX compatible multi-threading support, dynamic memory management,
inter-process communication and synchronization mechanisms. DNA-OS offers all the
essential services, with low impact on performance and memory footprint, and provides
an easy way to be portable across multiple target platforms, thanks to its HAL API interface.
As opposed to [Ger09], we do not make any modifications to the DNA-OS. This becomes
possible because the entire software stack is compiled for host machine ISA, but it is executed
inside the virtual machine environment provided by KVM i.e. in target address space. Thus
the software does not have to deal with the dynamically allocated addresses for simulation
on native machine and remains un-modified.

TIMA Laboratory, CNRS/INP Grenoble/UJF 125

Experimentation and Results

The HAL layer serves as a unique interface between software and hardware components,
and needs to be re-implemented for porting DNA-OS to a different architecture i.e. x86
architecture in our case. The HAL interface of layer is a great incentive from native simulation
perspective, as it the only place where hardware specific details are involved and rest of
the software stack is independent from the underlying hardware. Moreover the number
HAL APIs that need to be implemented for DNA-OS is low (around 30) as compared to
complex Operating Systems such as Linux, which would require hundreds of such APIs.
Table 7.1 provides the list of HAL API that have been implemented for host machines to enable
our solution.

DNA-OS does not support MMU thus all memory references are performed in target
"physical" address space and KVM has to provide Guest Physical Address (GPA) to Host Physical
Address (HPA) translations only, as discussed in Section 5.1.2. Listing 7.1 provides sample
implementations for 32-bit memory accesses, which are inline macro definitions and use
physical addresses for memory references.

Listing 7.1 Memory Read/Write Accesses using Guest Physical Addresses

1 #define CPU_READ_INT32(phy_addr, value) \
2 (value) = *(volatile uint32_t *)(phy_addr)
3
4 #define CPU_WRITE_INT32(phy_addr, value) \
5 *((volatile uint32_t *)(phy_addr)) = (value)

Using our solution, the software stack can use statically defined hardware peripherals
addresses and these symbols are defined at compile-time, using a linker script. An example
linker script is given in Listing 7.2, where DNA-OS specific configurations are defined from
Line 7 to Line 20, such as the number of device drivers, required file-systems, stack and heap
sizes. A few HAL specific symbols are shown between Line 21 and Line 33. These include
application entry point, system stack address, platform debug port, few device register
addresses and configuration parameters. The linker script is very similar to the one used for
actual target software stack. Following sections describe the set of applications that we will
use for our experiments.

7.1.1 MiBench Suite

The advantage of a native simulator is its high simulation speed as compared to cycle/bit
accurate simulators. In order to evaluate the performance of our native simulation approach,
we use the MiBench [GRE+01] benchmark suite, which includes several classes of embedded
applications such as Automotive/Industrial control, Network, Security, Consumer Electronics,
Office Automation and Telecommunication. We have selected a set of 12 applications from
MiBench with different computation and I/O access properties to characterize the simulation
performance of our solution. These applications will be used in mono-processor experiments.

7.1.2 Parallel Motion-JPEG

Motion-JPEG (MJPEG) is a multimedia format where each video frame is encoded
independently as a JPEG image. Each video frame can be decoded likewise, without requiring
inter-frame decoding information. The Parallel Motion-JPEG application is composed of
three types of tasks:

126 Mian-Muhammad Hamayun

7.1 Software Environment and Benchmarks

Category HAL Function Description

Cache
Management

CPU_CACHE_INVALIDATE()
CPU_CACHE_SYNC()

Cache Invalidation and Flushing.
(If Modeled)

Context CPU_CONTEXT_INIT()
CPU_CONTEXT_LOAD()
CPU_CONTEXT_SAVE()

Context management for supporting
multi-tasking applications.

Endianness PLATFORM_ENDIANNESS
CPU_ENDIANNESS
CPU_DATA_IS_BIG_ENDIAN()
CPU_DATA_IS_LITTLE_ENDIAN()
CPU_PLATFORM_TO_CPU()
CPU_CPU_TO_PLATFORM()

Platform and CPU Endianness
and Conversion APIs.

Memory and I/O
Support

CPU_[READ|WRITE]()
CPU_IO_[READ|WRITE]()
CPU_UNCACHED_[READ|WRITE]()
CPU_VECTOR_[READ|WRITE]()
CPU_VECTOR_TRANSFER()

Memory and I/O Device accesses;
Each API provides multiple modes of
operation (8, 16, 32, 64, SFLOAT, DFLOAT)

Multiprocessor
Support

CPU_MP_[ID|COUNT]()
CPU_MP_[WAIT|PROCEED]()
CPU_MP_SEND_IPI()

Multiprocessor support including
identification and interprocessor
synchronizations.

Power CPU_POWER_WAKE_ON_INTERRUPT() Power Management (Idle Thread)

Synchronization CPU_TEST_AND_SET()
CPU_COMPARE_AND_SWAP()

Synchronization primitives for providing
atomic accesses.

Traps CPU_TRAP_COUNT()
CPU_TRAP_ATTACH_[ESR|ISR]()
CPU_TRAP_MASK_AND_BACKUP()
CPU_TRAP_RESTORE()
CPU_TRAP_[ENABLE|DISABLE]()

Interrupts and Exception handling
(Attaching/Enabling/Disabling/Masking)

Timing CPU_TIMER_[GET|SET]()
CPU_TIMER_CANCEL()

Time Management.

Table 7.1: HAL API Functions for DNA-OS

v DISPATCHER: Parses the encoded input video stream from a file or a device model and
sends it to the decoder tasks using software channels.

v DECODER: Gets input video frames from the dispatcher and decodes them by applying
the Inverse Discrete Cosine Transform (IDCT) to each of the macroblocks. The number of
decoder tasks is configurable at application level and it is used to increase the software
parallelism.

v SERIALIZER: Takes the decoded video frames from one or more decoders and sends
them to the Framebuffer device model for visualization.

Figure 7.1 shows the functional decomposition of Parallel-MJPEG application. All of the
application tasks are implemented using software threads and execute on top of DNA-OS.

TIMA Laboratory, CNRS/INP Grenoble/UJF 127

Experimentation and Results

Listing 7.2 An Example Linker Script with DNA-OS and Hardware Device Configurations

1 SECTIONS
2 {
3 .init 0x0100000: { stext = .; *(.reset) } > mem :text
4 .text ALIGN(0x8): { *(.text) *(.text.*) } > mem :text
5 .data ALIGN(0x8) : { *(.data*) *(.glue_7*) *(.eh_frame*) } > mem :data
6
7 .os_config ALIGN(0x8): {
8 OS_N_DRIVERS = .; LONG(0x5)
9 OS_DRIVERS_LIST = .; LONG(soclib_platform_module) LONG(rdv_module)

10 LONG(fdaccess_module) LONG(soclib_fb_module)
11 LONG(tg_module)
12 OS_N_FILESYSTEMS = .; LONG(0x2)
13 OS_FILESYSTEMS_LIST = .; LONG(devfs_module) LONG(rootfs_module)
14
15 OS_THREAD_STACK_SIZE = .; LONG(0x8000)
16 OS_KERNEL_HEAP_ADDRESS = .; LONG(ADDR(.kheap))
17 OS_KERNEL_HEAP_SIZE = .; LONG(0x1000000)
18 OS_USER_HEAP_ADDRESS = .; LONG(ADDR(.uheap))
19 ...
20 } > mem :data
21 .hal ALIGN(0x8): {
22 APP_ENTRY_POINT = .; LONG(_main)
23 CPU_SYS_STACK_ADDR = .; LONG(ADDR(.sysstack))
24 CPU_BSS_START = .; LONG(ADDR(.bss))
25 CPU_BSS_END = .; LONG(__hal_bss_end)
26
27 PLATFORM_DEBUG_CHARPORT = .; LONG(0xC0000000)
28 SOCLIB_FB_NDEV = .; LONG(0x1)
29 SOCLIB_FB_DEVICES = .; LONG(256) LONG(144) LONG(0XC4001000)
30 SOCLIB_FDACCESS_NDEV = .; LONG(0x1)
31 SOCLIB_FDACCESS_DEVICES = .; LONG(2) LONG(5) LONG(0xC3000000)
32 ...
33 } > mem :data
34
35 .rodata ALIGN(16): { *(.rodata) } > mem :data
36 .sysstack ALIGN(0x8) + 0x10000 : { } > mem :stack
37 .bss ALIGN(16): { *(.bss) *(.rel*) *(COMMON) __hal_bss_end = .;} > mem :bss
38 .kheap ALIGN(0x8) : {} > mem :heap
39 .uheap ALIGN(0x8) + 0x1000000: {_end = .;} > mem :heap
40 edata = .;
41 }

7.1.3 Audio Filter

The Audio Filter1 application is frequently used in the communication domain. This
application will be used in hybrid simulation context to demonstrate the use of shared
memories between different types of simulation technologies. In hybrid simulation platform,
two software stacks will be used i.e. Natively compiled Audio Filter application on DNA-OS
and Cross-compiled DSP driver on Linux. The DSP driver sends an audio frame to the Audio
Filter application using shared memory. The Audio Filter example performs Fourier analysis
and synthesis to perform the filtering on shared memory data. Both software stacks use a
global shared memory lock for synchronization purposes.

1This application was provided by Thales Communications.

128 Mian-Muhammad Hamayun

7.2 Hardware Environment and Reference Platforms

DISPATCHER

DECODERK

...

DECODER2

DECODER1

SERIALIZER

MJPEG
Encoded File

10101100
11000110
01010011
10011101

...

Bitstream

B
lo

ck
s

B
locks

B
locks

B
lo

ck
s

Pixels

Framebuffer

Figure 7.1: Functional Decomposition of Parallel-MJPEG Application

7.1.4 DSP Kernels

A set of DSP kernels has been selected from the PolyBench [Pol] suite for testing the VLIW

simulation using the SBT technique proposed in Chapter 6. These include benchmarks for
Linear Algebra, Data Mining, 2-D Image Processing and 2-D Stencil computations. Additionally
compute and control dominant kernel are used to show the effect on simulation performance
of reference simulators and the proposed SBT generated simulators. Table 7.2 gives the list of
selected DSP kernels along with a short description.

DSP Kernel Short Description

ADI Alternating Direction Implicit solver.
Correlation Correlation computation.
Covariance Covariance computation.

Doitgen Multi-resolution analysis kernel (MADNESS).
FDTD-2D 2-D Finite Different Time Domain Kernel.

IDCT Inverse Discrete Cosine Transform.
Jacobi-2D 2-D Jacobi stencil computation.

LU LU decomposition.
MVT Matrix Vector product and Transpose.

Reg-Detect 2-D Image processing.

Table 7.2: Selected DSP Kernels for VLIW Simulation

7.2 Hardware Environment and Reference Platforms

The hardware models used in experimentation are based on the components taken from the
RABBITS framework [RAB]. These components have been principally developed for use in
QEMU based simulation platforms. Our KVM based solution can also use these components, as
the software execution takes place in target address space, thus exactly matching the binary
translation based simulation address spaces.

The hardware components define two types of device models i.e. master and slave devices.
Each master device maintains its address decoding table and can initiate transactions on the

TIMA Laboratory, CNRS/INP Grenoble/UJF 129

Experimentation and Results

communication component targeting a specific slave device. Slave devices react to requests
from master devices and respond accordingly, either by reading or writing to device registers,
and sending the response packets to the transaction initiating master device. The slave
devices are not allowed to initiate transactions on the communication network. A device
model can be defined as a master and slave device, and in such case it exports interfaces for
both types of device models.

7.2.1 Native MPSoC Simulation Platform

The native MPSoC platform will serve as our principle experimental testbed and most of the
experiments will use it for different types of software applications. Firstly this platform will
be used to demonstrate the software execution in target address space. The use of arbitrary
addresses for device models will highlight that overlapping addresses can be used in our
HAV based technique. In the case of mono-processor experiments, this platform will be used
to demonstrate the differences in simulation performance of compute and I/O intensive
applications. For multi-processor experiments, we will use the Parallel-MJPEG application
and highlight the effect of number of processing elements on simulation performance. Lastly,
this platform will be used for simulating VLIW DSP kernels, listed in Section 7.1.4. The SBT

technique proposed in Chapter 6, will be used for generating native code from cross-compiled
software kernels.

The platform shown in Figure 7.2 includes two Block Devices (BLK0 and BLK1)(Master
and Slave), two terminals (TTY)(Slaves), a Traffic Generator (TG) (Slave) and a Framebuffer
(FB) (Master and Slave) device models. Block devices are required for simulating the
MiBench applications, as these applications require file I/O support. The traffic generator
provides input data for the Parallel-MJPEG application and the Framebuffer model is used
for visualizing the decoded images. When simulating VLIW software binaries, multiple TTY
devices provide support for distinguishing between debug and standard output results. This
enables us to compare our simulation results with reference cycle-accurate platforms. The
device address mapping shown on the right side of the Figure 7.2 is shared by all master
devices in the platform i.e. All CPUs, Block Devices and Framebuffer models.

Communication Network

BLK0 TTY0 TTY1

RAM

Processor
Wrapper

In
te

rr
u
p

t
C

o
n
tr

o
lle

r

...

N
P
U

-0

N
P
U

-1

N
P
U

-K

BLK1

FB

TGTIMERTIMERTIMER

0 4

321657
8

9

RAM 0x00000000
0x0FFFFFFF 0

TTY1 0xC0000200
0xC00003FF 2

Timer0 0xC1000000
0xC100000F 7

TG 0xC3000000
0xC3000FFF 3

BLK0 0xC6000000
0xC60FFFFF 5

BLK1 0xC6500000
0xC65FFFFF 6

Device Addr. Range Port

FB 0xC4000000
0xC40FFFFF 4

TTY0 0xC0000000
0xC00001FF 1

Timer1 0xC1000010
0xC100001F 8

Timer2 0xC1000020
0xC100002F 9

Figure 7.2: NaSiK MPSoC Simulation Platform for Native and VLIW Simulation

130 Mian-Muhammad Hamayun

7.3 Mono-processor Experiments

7.2.2 Hybrid Simulation Platform

Hybrid simulation platform will be used to demonstrate the feasibility of mixed simulation,
where different types of processing elements are used on top of the same hardware platform.
We will use two different technologies i.e. KVM for native and QEMU based ISSes for cross-
compiled software execution. The Audio Filter application mentioned in Section 7.1.3 will
be executed on top of DNA-OS, and it will receive data for processing from a DSP driver
application running on Linux. Principle objective of this experiment is to show the feasibility
of shared memory accesses and mixing of different simulation technologies together in
a single platform. Figure 7.3 shows the overall design of the platform used for hybrid
simulation experiment with multiple memory models, timer devices and terminals.

Q
E
M
U
-P
W

K
V
M
-P
W

Communication Network

TTY0

KVM
RAM

ISS
RAMIn

te
rr

u
p

t
C

o
n
tr

o
lle

r

N
P
U

-K
N

P
U

-1
N

P
U

-0

TIMERTIMERTIMER

In
te

rr
u
p

t
C

o
n
tr

o
lle

r

TIMERTIMERTIMER

IS
S

-K
IS

S
-1

IS
S

-0

SHARED
RAM TTY1

Native Software Stack

DNA OS

Audio Filter Application

Cross-Compiled Software

Linux OS

DSP Driver Application

Figure 7.3: Hybrid Simulation Platform using KVM and QEMU Based Processor Models

7.2.3 Reference Platforms and Simulators

The simulation platform proposed in [GHP09] will serve as a principle reference for
comparison in native simulation domain. This platform will be referred to as Native in
all of the experimental results and discussion. The simulation platform proposed in [GFP09],
which uses QEMU based ISSes, will be referred to as Rabbits in the rest of this chapter. Results
from our HAV based native simulation solution will be referred to as NaSiK.

The SBT based solution for VLIW machines has been implemented for Texas Instruments (TI)
C6000 Series DSPs. We will use the Full Cycle Accurate (FCA) and Device Functional Cycle
Accurate (DFCA) simulators from TI for comparison with simulation of SBT generated native
code. These simulators will be referred to as TI-C6x-FCA and TI-C6x-DFCA, respectively.
The TI-C6x-FCA models all of system components with cycle accuracy and TI-C6x-DFCA
models the processor with cycle accuracy and rest of system components at functional level.

7.3 Mono-processor Experiments

This section presents experiments based on the platform introduced in Figure 7.2, with
a single native processor model. All of these experiments use the MiBench applications

TIMA Laboratory, CNRS/INP Grenoble/UJF 131

Experimentation and Results

introduced in Section 7.1.1. Key objectives of these experiments are to show that software
execution takes place in target address space and the KVM solution is very similar in speed to
the traditional native techniques and faster than the DBT techniques.

7.3.1 Software Execution in Target Address Space

The first experiment shows that the software execution takes place in target address space.
A single processing element, a RAM model and two I/O devices are shown in Figure 7.4, in
order to demonstrate the address usage. The memory model does not show any transactions
from the software execution, as all memory accesses are transparent and take place within
the guest mode. The RAM model will only show memory accesses when performed by a
hardware device model such as a DMA device, or when software accesses to the memory
model are mapped using MMIO mechanism. MMIO based memory accesses will be discussed
in Section 7.4.2.

I/O device accesses are shown for the terminal and the Framebuffer models in Figure 7.4.
When the CPU writes to 0xC0000000, which is the base address of terminal device, it is
shown as 0x00000000 A on the terminal’s trace log because the offset is zero. Similarly,
when the CPU writes to the Framebuffer, it uses the address 0xC4001000, which appears
as 0x00001000 B for the same reason. These memory references use addresses that are
usually unavailable to the user-mode software. In our solution, we can use such addresses
because these are mapped by the MMIO mechanism provided by KVM. Thus, memory address
overlapping issue between the host machines and the simulated software can be effectively
resolved.

121693 us 121694 us

C0000000 C4001000 C4001008 C4001010

+ + + 0+ + + + + + + + + + + + + + + 0+ + + + + + + + + + + + + + 0+ + + + + + + 00000000 + 00000000 + 00000000

1

WRITE

00000000

00000000

0

-

00000000

+ + + + + 0+ + + + + + + + + + + + + + 0+ + + + + + + + + + + + + + + 0+ + + 0000000A

1

-

00000000 00001000 00001008 00001010

00000000 + 00000000 + 00000000 + 00000000

0 1

-

Time
CPU-00:

ADDR=C4001000

DATA=00000001

WIDTH=1

OP=WRITE

RAM:

ADDR=00000000

DATA=00000000

WIDTH=0

OP=-

TTY:

ADDR=00000000

DATA=0000000A

WIDTH=1

OP=-

FB-SLAVE:

ADDR=00001000

DATA=00000001

WIDTH=1

OP=-

No Trasactions on RAM Model from Software

 as Memory Accesses are Transparent

CPU Writes to TTY Device
using Target Address

CPU Writes to FB Device
using Target Address

A

B

Figure 7.4: Target Memory and I/O Address Space Accesses

7.3.2 Compute vs. I/O Intensive Applications

In most of the selected MiBench applications, the I/O time is much larger than the
computation time, which makes it difficult to compare the simulation speed of computations
with reference platforms. For this reason a semi-hosting based profiling mechanism has been

132 Mian-Muhammad Hamayun

7.3 Mono-processor Experiments

used to separate computations from I/O accesses. The test applications are executed between
5 to 250 times, in order to arrive at a reasonable computation time. This count is mentioned
as XN after each application’s name where N denotes the number times an application is
executed to obtain the given result.

The Figure 7.5(a), shows the simulation performance w.r.t computations. At a glance, one
can see that the simulation speed of NaSiK simulation is much faster than Rabbits in all cases,
while we achieve almost the same performance level as compared to the previously proposed
Native simulation. However, there are a few cases, e.g. Dijkstra, Patricia, Cjpeg and Djpeg,
where NaSiK simulation performs better than the Native simulation. Further investigations
reveal that this speedup is due to the dynamic memory allocations/de-allocations, which
require HAL layer support in the Native strategy and this is not the case for NaSiK based
native technique. Results for statically allocated MiBench applications have also been shown
in Figure 7.5(a), with an asterisk (*) symbol to indicate this fact.

Although QEMU is recognized as an efficient dynamic binary translator, it has an obvious
performance drawback when compared to native simulation strategies and it is due to the
runtime instruction translation and basic block chaining overhead. Table 7.3 summarizes the
simulation speedup achieved by our NaSiK simulator as compared to Rabbits and Native
strategies. We highlight the best and worst cases for MiBench applications as plotted in
Figure 7.5(a), along with the overall averages for all applications except for the static memory
versions of Dijkstra and Patricia applications. The noteworthy numbers are 17.91X speedup
against the Rabbits simulator and 1.05X speedup against the Native technique.

In order to demonstrate that the computation performance of NaSiK and Native platforms
is the same, we present the test results of Pi example in Figure 7.6. The accuracy level of Pi
calculation is varied, between 1K to 100K decimal digits and computation time is compared
with the reference platforms. Results of Native and NaSiK solution are very similar, whereas
the Rabbits platform is slower by a constant factor of 14.67X at all accuracy levels. These
results agree with the ones shown in the Figure 7.5(a) and Table 7.3.

Simulation Platform
Best-Case Worst-Case Total Time
Rijndael Djpeg All Applications

Rabbits 18.081s 1.033s 104.099s
NaSiK 0.376s 0.148s 5.814s

Speedup/Slowdown 48.10X 6.96X 17.91X

Dijkstra Rijndael All Applications
Native 1.185s 0.246s 6.104s
NaSiK 0.846s 0.376s 5.814s

Speedup/Slowdown 1.40X 0.66X 1.05X

Table 7.3: Computation Speed-up in KVM Simulation

TIMA Laboratory, CNRS/INP Grenoble/UJF 133

E
x
p
e
r
i
m
e
n
t
a
t
i
o
n
a
n
d
R
e
s
u
l
t
s

0.05

0.1

0.5

1.0

5

10

25

SusanX5
QSortX100

DijkstraX10
Dijkstra*X10

PatriciaX5
Patricia*X5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

Average

C
o

m
p

u
ta

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Rabbits
Native
NaSiK

(a) Computation Speed Comparison

0.001

0.01

0.1

1.0

10

100

1000

SusanX5
QSortX100

DijkstraX10
Dijkstra*X10

PatriciaX5
Patricia*X5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

Average

I/
O

 T
im

e
 (

S
e

c
o

n
d

s
)

Rabbits
Native
NaSiK

(b) I/O Speed Comparison

Figure 7.5: Computation and I/O Speed Comparison between Rabbits, Native and NaSiK Platforms

1
3
4

M
ian-M

uham
m

ad
H

am
ayun

7.3 Mono-processor Experiments

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 10000

1K 2K 5K 10K 20K 30K 40K 50K 75K 100K

T
im

e
 (

S
e
c
o
n
d
s
)

Pi Accuracy (Decimal Digits)

Rabbits
Native
NaSiK

Figure 7.6: Computation Performance of PI Application for Different Accuracy Levels

The I/O communications are the real bottleneck in Rabbits, as well as Native simulators.
This is particularly true for the MiBench applications, and the situation is further deteriorated
in NaSiK, due to the guest-to-host mode switching overhead. Each time the CPU encounters
an I/O request, it has to save its current guest mode state and switch to the user mode
for fulfilling this request. Rabbits has a similar behavior as well, as it has to stop the
execution of translated binaries for the SystemC I/O operations. Moreover the Native
simulator has its own bottlenecks, like one of the key issue is its dependency on HAL layer
for performing I/O operations that lead to thread switching when accessing a SystemC
device. Figure 7.5(b) shows the simulation performance w.r.t. I/O accesses for the same set of
MiBench applications.

Simulation Platform
Best-Case Worst-Case Total Time
Blowfish StringSearch All Applications

Rabbits 314.190s 155.247s 916.112s
NaSiK 35.768s 385.659s 708.708s

Speedup/Slowdown 8.78X 0.40X 1.29X

Cjpeg QSort All Applications
Native 3.271s 48.946s 545.136s
NaSiK 1.801s 113.054s 708.708s

Speedup/Slowdown 1.82X 0.43X 0.77X

Table 7.4: I/O Speedup/Slowdown in KVM Simulation

In order to support and explain the I/O performance results of Figure 7.5(b), we will
initially focus on the results of two specialized I/O applications. In the first test, the block
size is varied at the application level for copying data from source to destination file (file size
= 4 MB) and compare the performance results of given platforms. Figure 7.7(a) shows that
the performance improves, as we increase the block size for all platforms. This improvement
is rapid in Rabbits, but it never surpasses the performance of Native and NaSiK platforms.

TIMA Laboratory, CNRS/INP Grenoble/UJF 135

Experimentation and Results

The improvement remains in the range of 11.45X (Block Size = 1) to 2.10X (Block Size =
1024). This lower performance is linked to the ratio of computation overhead introduced
by QEMU and the actual amount of I/O (Block Size) performed. As the block size increases,
this ratio decreases and I/O performance improves. Similarly, the I/O performance of Native
is in the range of 1.44X (Block Size = 1) to 1.37X (Block Size = 1024). On average, NaSiK
shows an improvement of 4.66X against Rabbits and 1.39X against Native solutions for the
block I/O test.

 0

 20

 40

 60

 80

 100

 120

 140

1 2 4 8 16 64 256 512 1024 4096

T
im

e
 (

S
e

c
o

n
d

s
)

Block Size (Bytes)

Rabbits

Native

NaSiK

(a) Block I/O Performance

 0

 10

 20

 30

 40

 50

 60

1 2 4 8 16 64 256 512 1024 4096

T
im

e
 (

S
e

c
o

n
d

s
)

String Size (Bytes)

Rabbits

Native

NaSiK

(b) Console I/O Performance

Figure 7.7: Block and Console I/O Performance for Rabbits, Native and NaSiK Simulation Platforms

The second test focuses on printing I/O operations where a string output function (fputs
in C) is used at application level to print 1MB of characters to the TTY device. Similar to the
first test, the string length is varied and its effect determines the platform performance. For
example, for string length of 1 byte, the string output function is called 1048576 times, and
for string length of 16 bytes the same function is invoked 65536 times. The output is flushed
after every function call, so that each platform quits its current operating mode (Guest
in NaSiK), and the output is immediately displayed on the terminal screen. Figure 7.7(b)
shows that Rabbits surpasses the performance of both NaSiK and Native solutions at string
lengths of 8 and 64 bytes respectively. The NaSiK solution ranges between 2.00X faster
(String Length = 1) to 0.33X slower (String Length = 4096), when compared to Rabbits. With
reference to Native platform, the NaSiK solution always remains slower in the range of 0.39X
(String Length = 1) to 0.55X (String Length = 1024). On the average a speedup of 1.02X
against Rabbits and a slowdown of 0.48X against Native solution is observed, for the Console
I/O test.

MiBench applications use either one or both types of I/O operations, and their
combination determines the overall I/O performance of a given application. For example, if
an application performs fine grain I/O operations i.e. Reads/Writes in characters instead of
large chunks of data, the cost of mode switching (especially in NaSiK) can become a dominant
factor in the overall I/O cost. This is the case for QSort, Dijkstra, Patricia, BitCount and
StringSearch applications.

On the other hand, if an application performs I/O operations using block devices, the
operating system ensures that we read a large block of data and quit the Guest Mode only
when a new block of data needs to be read or written. The operating system’s internal buffers
are used to meet the fine grain I/O needs of the application. This type of behavior is seen in

136 Mian-Muhammad Hamayun

7.3 Mono-processor Experiments

Susan, Blowfish, Rijndael, Sha, CRC32, Cjpeg and Djpeg applications. Table 7.4 summarizes
the I/O performance of all applications.

From the results and discussion above, we conclude that I/O communication cost is a
performance issue for the KVM based NaSiK platform, but it would be so for any solution
that relies on an event driven simulator (even at Transaction Level) to simulate the hardware
components.

7.3.3 Software Annotations and Simulation Accuracy

This section discusses the simulation performance of NaSiK simulation platform when
software annotations are enabled. The annotation strategy used in these experiments was
discussed in Section 5.3. Figure 7.8 shows the results for three different experiments, for the
same set of MiBench applications on the NaSiK simulation platform.

 1

 10

 100

 1000

 10000

 100000

SusanX5
QSortX100

DijkstraX10
PatriciaX5

BlowfishX5
RijndaelX5

ShaX20
CRC32X5

BitCountX5
CjpegX5

DjpegX10
StringSearchX250

S
im

u
la

ti
o

n
 P

e
rf

o
rm

a
n

c
e

 (
S

e
c
o

n
d

s
)

W/O Annotations, W/O Buffers

Annotations, W/O Buffers

Annotations, Buffer-64

Annotations, Buffer-256

Annotations, Buffer-1024

Figure 7.8: NaSiK Simulation Platform with Annotations and Annotation Buffers

In the first experiment, annotations are disabled and these results serve as a reference for
comparison with rest of the experiments where annotations are enabled and the annotation
buffer size is varied to observe its effect on performance. The annotation buffers are
maintained on the software side and guest-to-host mode switch takes place only when
a buffer overflows. At this instant the user mode is entered and the SystemC wait function
is called for all annotations present in the buffer. In this way, the mode switching cost as
well as the SystemC synchronization overhead is reduced; however, at the cost of simulation
accuracy.

In the second experiment, annotations are enabled and the annotation buffer size is
set to zero, forcing NaSiK to quit Guest mode on each annotation call. Results show that
the simulation becomes very slow in this case, with worst case slowdown reaching a factor
of almost 2000X and even in the best case, NaSiK simulation is slower by a factor of 10X.
These results highlight the importance of annotation buffering in order to achieve reasonable
simulation performance.

In the third experiment, annotation buffers are enabled and the annotation buffer size
is tweaked to see its effect. This experiment is repeated for K = 64, 256 and 1024, where
K is the annotation buffer size and results of this experiment show improved simulation
performance. The slowdown factor is reduced to 2.83X, 1.77X and 1.49X, respectively.
Table 7.5 summarizes these results.

TIMA Laboratory, CNRS/INP Grenoble/UJF 137

Experimentation and Results

Buffer Size
Best-Case Worst-Case Average Slowdown

StringSearch BitCount All Applications

0 10.38X 1862.38X 84.56X
64 1.20X 39.69X 2.83X

256 1.08X 17.00X 1.77X
1024 1.04X 11.12X 1.49X

Table 7.5: KVM Simulation Performance With Annotations and Annotation Buffers

Error Type
Best-Case Worst-Case Average Error Absolute Error
Rijndael StringSearch All Applications

Error Instructions -0.02% -16.60% -3.95% 5.80%
Error CPU-Cycles +0.55% -14.06% -2.77% 5.36%

Table 7.6: KVM Simulation Accuracy Best and Worst Cases

7.3.3.1 Simulation Accuracy

We discuss the accuracy of the used annotation scheme in terms of instruction and processor
cycle counts w.r.t. the Rabbits platform. The key idea of presenting these results is to
demonstrate the fact that NaSiK solution is compatible with all types of software annotations.
A subset of previously mentioned MiBench applications has been selected for accuracy
comparisons. We were forced to remove Susan and Patricia applications from these results
due to limitations in the compilation infrastructure and KVM, this will be discussed later.

To measure accuracy, each application is executed once and the cost of main function is
reported, in terms of the number of equivalent target instructions executed and the number
of target CPU cycles consumed by these instructions. Results of these measurements are
shown in Figure 7.9(a) where, for certain applications, a slight offset is visible in the plotted
results. To further highlight these differences, the percentage error in instructions and cycles
counts is given in Figure 7.9(b). Although the accuracy of these annotations is less than ideal,
nevertheless these results are usable in early design space exploration stages.

Table 7.6 gives the best and worst cases in performance evaluation. Key figures are given
in the last column, which shows that on average fewer number of instructions and CPU
cycles are reported. This is due to the absence of annotations in some of the software sources
that could not compiled using the LLVM toolchain. The absolute error for the selected set of
MiBench applications is about 6%.

7.3.3.2 Sources of Annotation Inaccuracies

As evident from the results, the annotation technique can be quite inaccurate in some cases.
There are a few fundamental limitations of the annotation approach used. The first type
of errors emerge due the absence of annotations when the given source code is comprised

138 Mian-Muhammad Hamayun

7.3 Mono-processor Experiments

 1e+07

 1e+08

 1e+09

 1e+10

 1e+11

QSort Dijkstra
Blowfish

Rijndael
Sha CRC32

BitCount
Cjpeg Djpeg StringSearch

S
im

u
la

ti
o

n
 A

c
c
u

ra
c
y

Instructions-Rabbits

Instructions-NaSiK

CPU-Cycles-Rabbits

CPU-Cycles-NaSiK

(a) Instructions and Processor Cycles Accuracy

-20

-15

-10

-5

 0

 5

 10

QSort Dijkstra
Blowfish

Rijndael
Sha CRC32

BitCount
Cjpeg Djpeg StringSearch

E
s
ti
m

a
ti
o

n
 E

rr
o

r
(P

e
rc

e
n

t)

Error Instructions
Error CPU-Cycles

(b) Percentage Error in Instruction and CPU-Cycle Estimation

Figure 7.9: Instruction and Cycle Accuracy Comparison between Rabbits and NaSiK

of assembly files, commonly found in NewLib and low-level software libraries. As the
annotation technique is based on the LLVM IR, we cannot compile and annotate assembly files
and there are around 20 such files present in the NewLib sources.

The second type of errors come from limitations of the compilation tools used to perform
the annotation. As we make a special use of the LLVM infrastructure for the compilation of
software where we initially compile the sources for the given target and annotate the IR, and
then recompile this modified representation for the host machine. This dual compilation
flow fails in some cases, for example when the source code contains long double data types
and we are interested in annotating for ARM targets on an x86 host machine.

Usually the front-end of a compiler is considered to be independent of the target
architecture. Unfortunately, in our case the front-end of LLVM is partially dependent on host
machine and sometimes generates host-specific intermediate code. For example, in case of
long double data types, the compiler front-end generates operands of type x86_fp80 in the
intermediate code, which are 80-bit floating point variables specific to the x86 host machines.
When this happens, we can neither use the LLVM backend for cross-compilation to another
target, say ARM, nor we can annotate the intermediate code for the given target machine and
recompile it for the host machine. We have observed this phenomenon in about 86 source
files from NewLib only.

Another limitation of the dual compilation flow are the mismatches in the compilation
passes executed in the LLVM target and host backends. These mismatches can introduce
discrepancies between the control flow graphs of target and host-specific intermediate

TIMA Laboratory, CNRS/INP Grenoble/UJF 139

Experimentation and Results

representations. This problem appears in the Patricia application and we get considerably
inaccurate results. For this reason we removed this application from the final results.

A third source of errors come from the hardware modeling strategy, as KVM has some
limitations. Such as the absence of support for for MMX instructions. In general, compiling
software using the GCC toolchains does not produce instructions that use MMX registers. But
for annotation purposes, the software stack is compiled using the LLVM compilation toolchain,
which sometimes generates code that makes explicit use of MMX registers. In order to avoid
the generation and use of MMX instructions, we compile and link the applications with
software floating-point libraries. These differences introduce further errors in performance
evaluation. This partially explains the over estimations in Figure 7.9(b), which means that we
execute significantly more instructions for such applications. All of the above measurements
are taken for a single processor system, but are equally applicable on multiprocessor
systems. Also, these measurements assume that caches are disable in both Rabbits and
NaSiK platforms.

Traditionally, native simulators suffer from the lack of correspondence between target
and host machine addresses. Our solution improves on this front, as the software is now
executed in target address space; that is the data and instruction memory references are very
close to the real target platform, although not exactly the same. It means that cache modeling
strategies can benefit from this capability, for example when modeling a 32-bit target machine
on top of 32-bit host platform, most of the data types and instruction addresses are similar.

In order to remain fast, we can make use of some heuristics, either based on simple
cache-hit or cache-miss rates, or on much more sophisticated metrics [TAM+08] that take
into account the number of load/store instructions in each basic block for estimating the
cache effects. Thus, our solution provides a framework for an effective initial design space
exploration.

7.4 Multi-processor Experiments

This section provides mostly qualitative results rather than quantitative ones, in order to
highlight the feasibility of multiprocessor and hybrid simulation solutions. We emphasize
that the proposed solution is scalable and can model from tens to hundreds of processors
and yet flexible enough to co-exist within a hybrid multiprocessor simulation platform.

7.4.1 Multi-threaded Applications on SMP Platforms

We use the Parallel-MJPEG application discussed in Section 7.1.2 for testing the multi-
threaded application. The application has been configured to create 10 software threads,
including 1 dispatcher, 1 serializer and 8 decoder threads. A total of 100 frames are decoded
for each execution, and the simulation time is reported using a semi-hosting mechanism.
The number of CPUs varies between 1 to 16. Results of the MPSoC simulation are shown in
Figure 7.10.

The multi-processor results are a little difficult to comprehend, as the timing behavior
of a multiprocessor system depends on many factors. These include timing delays that
influence task scheduling, cache contents (if present) and communication sequences on the
interconnection network. All of these factors are absent in mono-processor cases, as timing
delays in software execution appear exactly in the same order, resulting in consistent system
configurations, from one execution to another.

140 Mian-Muhammad Hamayun

7.4 Multi-processor Experiments

 0

 50

 100

 150

 200

1 2 4 6 8 10 12 14 16

T
im

e
 (

S
e
c
o
n
d
s
)

Number of CPUs

Rabbits

NaSiK

Figure 7.10: MPSoC Simulation Speed Comparison between QEMU and KVM Platforms

CPUs 1 2 4 6 8 10 12 14 16

Rabbits 14.52s 24.52s 44.37s 64.44s 84.98s 104.78s 124.84s 146.15s 166.28s
NaSiK 79.86s 82.36s 87.84s 89.80s 93.98s 97.23s 101.23s 103.13s 106.64s

Table 7.7: Decoding Time for 100 Frames using Parallel-MJPEG Application

These results indicate a key deficiency of the NaSiK solution i.e. the costly I/O operations
that require guest-to-host mode switching and thus reduce simulation performance. The
performance penalty due to I/O is visible for 1 to 8 CPUs where Rabbits performs better than
the NaSiK solution. This behavior is application dependent, as we have already discussed
it in Section 7.3.2. Another key observation is the scalability of NaSiK platform. As we
increase the number of processors, the additional cost for Rabbits solution increases more
rapidly as compared to the NaSiK solution. The Rabbits performance penalty is linked to
the higher number of SystemC synchronizations, although the simulated time is reduced in
MPSoC simulation [Gli10].

7.4.2 Hybrid Simulation Platform

This section details an industrial case study to demonstrate the feasibility of hybrid simulation
platforms. We provide an abstract model for such a hybrid platform, namely TI OMAP L138,
as shown in Figure 7.3. The platform includes two different processors (ARM GPP and a
C67 DSP) modeled for MPSoC simulation.

DSPs have a relatively complex instruction sets, which makes it difficult to develop ISSes
for them. Moreover, access to DSP compilation tools is often restricted. All native simulation
technologies, in general, can solve these issues as there are no ISS development efforts and
cross-compilation tools are not necessary. The additional advantage of HAV based approach is
to provide the ability to run an unmodified embedded Operating System, the DNA-OS in this
case, within the target address space. The ARM is modeled using Rabbits and an unmodified
Linux OS runs on it. As presented in Section 5.5, there exists no other native solution in the

TIMA Laboratory, CNRS/INP Grenoble/UJF 141

Experimentation and Results

literature that profits from such address translation layer and supports hybrid simulation.
In this case study, we present two embedded applications which can benefit from the

GPP+DSP structure i.e. a DSP driver which can be part of a more elaborate application,
such as a Motion-JPEG decoder and an Audio-Filter application. The best solution is to
partition the application and map these partitions to either GPP or DSP depending on their
computation or control nature.

The communication between them is also important, in order to build a useful simulation
platform. To demonstrate that shared memory based communications are possible, we show
a 64-byte data exchange between the two applications in Figure 7.11. Memory accesses are
synchronized using a shared memory based global lock, which signals the availability of data
to the DSP processor and is located at target address 0xAF000020. The KVM VCPU models the
DSP and starts by waiting for data at the target address 0xAF001000 in step 1 . The QEMU

processor acts as a DSP driver and starts writing data to the shared memory at step 2 and
signals the data availability at step 3 by unlocking the shared lock. The KVM processor then
starts processing the data at step 4 , and returns the filtered data to QEMU using the same
mechanism, in reverse direction.

In order to show that such memory hierarchies are possible, we have mapped the shared
memory to MMIO based access mechanism for the KVM processor. This option is slower
from simulation point of view, as all accesses by the KVM processor cause guest-to-host
mode switches. To improve the simulation speed in practical simulation platforms, memory
mapping based mechanism should be used (Figure 5.18 B and Listing 5.3).

7.5 Simulation of Cross-Compiled DSP Kernels

This section presents some basic results using the SBT technique proposed in Chapter 6. The
key idea of the proposed technique is to statically generate native code, with exactly the
same behavior as it would have on a real VLIW machine, without going through the expensive
decoding and pipeline stages. The generated code executes in the extended target address
space (Figure 6.4) and accesses to all target specific data locations are made using original
addresses. The simulated processor state is also maintained in the extended target address
space.

Figure 7.12 shows the simulation performance of compute vs. control dominant DSP

kernels. These results use three different configurations for the generated code i.e. Execute
Packet, Hybrid and Inline Hybrid code. Two simulators from Texas Instruments (TI) are used as
a reference i.e. TI-C6x-FCA and TI-C6x-DFCA, as discussed in Section 7.2.3. We use a compute
and a control flow dominant application to illustrate the simulation performance trends.
The IDCT example crunches on a number of input data blocks and shows the simulation
cost of a compute-intensive DSP kernel. The Fibonacci example tests the control dominant
behavior, by recursively calling itself twice until an index of 2 or less is reached, resulting in
a tree-like structure of function calls. Following three code generation modes are used for
the SBT technique:

v SBT (EP): A native function is generated for each VLIW execute packet. Function and
Module level optimizations are enabled, while ISA definition inlining is disabled.

142 Mian-Muhammad Hamayun

7
.
5
S
i
m
u
l
a
t
i
o
n
o
f
C
r
o
s
s
-
C
o
m
p
i
l
e
d
D
S
P
K
e
r
n
e
l
s

859600 us 859700 us 859800 us 859900 us

AF000020 AF001000 AF001008 AF001010 AF001018 AF001020 AF001028 AF001030 AF001038 AF000020

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 000000+ 00000+ 000000+ 00000+ 00000+ 0000000

4

- -

AF000020 AF001000 AF001008 AF001

00000000 000000+ 000000+ 00000+ 000000+ 00000+ 00000

4

- -

00000020 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 00000020 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 00001

00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 000+ 0+ 00000

4

- -

Time
QEMU-CPU-00:

ADDR=AF001000

DATA=00000050

WIDTH=4

OP=WRITE

KVM-CPU-00:

ADDR=AF000020

DATA=00000000

WIDTH=4

OP=-

SHARED-MEM:

ADDR=00001000

DATA=00000050

WIDTH=4

OP=WRITE

859553463 ns 859553464 ns 859553465 ns 859553466 ns 859553467 ns 859553468 ns 859553469 ns 859553470 ns 859553471 ns 859553472 ns

AF000020 AF001000

00000000 00000050 00000000

4

- WRITE -

AF000020

00000000

4

-

00000020 00001000

00000000 00000050 00000000

4

- WRITE -

Time
QEMU-CPU-00:

ADDR=AF001000

DATA=00000050

WIDTH=4

OP=WRITE

KVM-CPU-00:

ADDR=AF000020

DATA=00000000

WIDTH=4

OP=-

SHARED-MEM:

ADDR=00001000

DATA=00000050

WIDTH=4

OP=WRITE

859900870 ns 859900880 ns

AF000020

00000001

4

-

AF000020 AF001000

00000001 00000000 00000050

4

- READ -

00000020 00001000

00000001 00000000 00000050

4

- READ -

Time
QEMU-CPU-00:

ADDR=AF000020

DATA=00000001

WIDTH=4

OP=-

KVM-CPU-00:

ADDR=AF001000

DATA=00000050

WIDTH=4

OP=-

SHARED-MEM:

ADDR=00001000

DATA=00000050

WIDTH=4

OP=-

Buffer Reads by KVM CPUBuffer Writes by QEMU CPU

QEMU-CPU Writes to
Shared Memory

QEMU-CPU Starts
Wait on Shared Lock

KVM-CPU Waiting
on Shared Lock

KVM-CPU Reads
from Shared Memory

1

2 3

4

Figure 7.11: Shared Memory Access between QEMU and KVM Processors

T
IM

A
Laboratory,C

N
R

S/IN
P

G
renoble/U

JF
1
4
3

Experimentation and Results

v SBT (EP+BB): A native function is generated for each VLIW basic block, as well as for
non-startup execute packets. Function and Module level optimizations are enabled
with ISA definition inlining disabled.

v SBT (EP+BB+Inline): A native function is generated for each VLIW basic block, as well
as for non-startup execute packets. Function and Module level optimizations, and ISA

definition inlining are enabled.

-1

 0

 1

 2

 3

 4

 5

1 5 10 15 20 25 30 35 40

S
im

u
la

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

IDCT: Number of Blocks

SBT (EP)
TI-C6x-DFCA

TI-C6x-FCA

(a) Compute Dominant (Linear Scale)

 0

 50

 100

 150

 200

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
im

u
la

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Fibonacci Index

SBT (EP)
TI-C6x-DFCA

TI-C6x-FCA

(b) Control Dominant (Linear Scale)

 0.001

 0.01

 0.1

 1

 10

1 5 10 15 20 25 30 35 40

S
im

u
la

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

IDCT: Number of Blocks

SBT (EP)
SBT (EP+BB)

SBT (EP+BB+Inline)
TI-C6x-DFCA

TI-C6x-FCA

(c) Compute Dominant (Log Scale)

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

S
im

u
la

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

Fibonacci Index

SBT (EP)
SBT (EP+BB)

SBT (EP+BB+Inline)
TI-C6x-DFCA

TI-C6x-FCA

(d) Control Dominant (Log Scale)

Figure 7.12: Performance of Compute vs . Control Dominant DSP Kernels

Figures 7.12(a) and 7.12(b) plot results on linear scale, to show the difference in simulation
performance between cycle accurate simulators and execute packet level SBT code. We can
clearly see that the data processing kernels have a linear trend, which is proportional to the
number of data blocks being processed. On the other hand, the control dominant Fibonacci
kernel shows an exponential increase in simulation cost, as the amount of control flow
increases exponentially with the size of the tree structure being traversed. These are generally
well-known trends but the key idea here is to show that cycle accurate simulators cost a lot
more in comparison with the natively executing code. Figures 7.12(c) and 7.12(d) plot the
same results on logarithmic scale, and add two more results for the static translation case
i.e. the code generated using the hybrid approach and the code with inlining enabled. These
cases are added to show the potential improvements using these code generation modes. A

144 Mian-Muhammad Hamayun

7.5 Simulation of Cross-Compiled DSP Kernels

constant factor improvement between the results obtained from the cycle accurate simulators
and the statically generated code is clearly visible.

 0.01

 0.1

 1

 10

 100

 1000

ADI Correlation
Covariance

Doitgen
FDTD-2D

IDCT Jacobi-2D
LU MVT Reg-Detect

S
im

u
la

ti
o

n
 T

im
e

 (
S

e
c
o

n
d

s
)

TI-C6x-FCA
TI-C6x-DFCA

SBT (EP)
SBT (EP+BB)

SBT (EP+BB+Inline)

Figure 7.13: Performance Comparison for Different DSP Kernels

To further evaluate the SBT technique, the DSP kernels listed in Section 7.1.4 are used. Out
of the three translation options, the execute packet mode is the slowest one, as significant
portion of the execution time is spent in control flow between the execute packets, as well
as the additional cost for using the non-inlined ISA definitions. To improve the simulation
speed, the basic block only mode should be used. However, it is not possible without
dynamic translation support, as discussed in Section 6.2.6. Consequently, the hybrid (EP+BB)
translation mode is used where all of the non-startup execute packets are translated, in
addition to the VLIW basic blocks. Using the hybrid mode the code executes mostly using
basic blocks, instead of execute packets. This mode costs more in terms of generated code
size, but avoids the dynamic translation requirement as well as improves the simulation
speed.

To further improve the simulation speed ISA definitions are inlined in the generated code.
Results of these tests are shown in Figure 7.13. We observe a simulation speed-up of more
than two orders of magnitude compared to TI-C6x-FCA simulator, and an improvement of
around 32X compared to TI-C6x-DFCA simulator. Table 7.8 compares the results of inlined
mode with the cycle accurate simulators and shows a maximum simulation speedup of
around 140X and an average speedup of 117X.

The SBT technique is better suited for VLIW software binaries, as we can profit from a
higher translation granularity as opposed to the RISC software. Much better results can be
achieved, if the VLIW software binaries contain higher level of parallelism in their execute
packets, as these are the minimal translation unit for the SBT case. For example, in the TI C6x
software, a maximum of eight instructions can be grouped together in parallel. If most of the
execute packets contain the maximum number of instructions, the corresponding generated
native simulator code will be relatively faster.

The cross-compiled and translated binaries can also profit from the shared memory
accesses, as discussed in Section 7.4.2. This feature enables the modeling of heterogeneous

TIMA Laboratory, CNRS/INP Grenoble/UJF 145

Experimentation and Results

DSP Kernel TI-C6x-FCA TI-C6x-DFCA
SBT Speedup w.r.t. Speedup w.r.t.

(EP+BB+Inline) TI-C6x-FCA TI-C6x-DFCA

ADI 107.770s 31.718s 0.982s 109.80X 32.31X
Correlation 52.977s 14.970s 0.472s 112.23X 31.71X
Covariance 28.647s 7.718s 0.247s 115.98X 31.25X

Doitgen 19.726s 5.844s 0.172s 114.49X 33.92X
FDTD-2D 33.792s 9.695s 0.290s 116.51X 33.43X

IDCT 4.049s 1.008s 0.037s 109.12X 27.17X
Jacobi-2D 20.201s 6.000s 0.182s 111.18X 33.02X

LU 15.768s 4.144s 0.126s 124.73X 32.78X
MVT 91.198s 26.947s 0.789s 115.63X 34.17X

Reg-Detect 30.657s 7.687s 0.216s 141.99X 35.60X
Average — — — 117.17X 32.54X

Table 7.8: Maximal Speed-ups of SBT Simulation using Hybrid Translation

platforms where different types of software binaries are executed on different types of
processing elements to model a heterogeneous MPSoC architecture e.g. a GPP+VLIW model.

The proposed SBT technique has a couple of disadvantages. Firstly, as the translation is
static, we need to keep a certain level of redundancy in the generated code to avoid runtime
translation requirement. Secondly, the translation and optimization time is also a concern.
However its a minor issue, as it is performed only once, and it can be efficiently amortized for
long running simulations. All in all, simulation times can be improved by using optimized
translation toolchains, such as using multiple smaller translation units instead of one large
unit, as done in the current implementation. As a last note, the functional correctness of
generated native simulators has been established using the Execution Trace comparisons
with TI simulators.

7.6 Conclusions and Limitations

This chapter provides the necessary experimental evidence to validate our novel approach
of implementing native simulation. We use the Hardware-Assisted Virtualization (HAV)
technology as a software interpretation engine within a usual transaction-level MPSoC

simulation environment. As opposed to the previous works on this topic, it solves the
issue of conflicting and overlapping address spaces, and thus can support complex MPSoC

architectures and legacy software. Our experimentations show that the computation and
shared memory accesses are not the performance issues for this kind of native MPSoC

simulation platforms. Instead, most of the time is spent in I/O accesses, as hardware-
assisted virtualization provides a mean to access shared memory transparently, but it must
trap for accessing the modeled hardware components. Regardless of this issue, the proposed
native simulation technique provides a significant performance gain compared to techniques
based on dynamic binary translation.

Support for new ISA is another important aspect of hardware simulation, and we have

146 Mian-Muhammad Hamayun

7.6 Conclusions and Limitations

two principle approaches for native simulation in such contexts. Firstly, we can add a new
target-specific backend to the compilation framework, so we can execute target specific
annotation pass and annotate the target independent representation, which is then used
to generate native code. Secondly, a static translation of target binary towards native code
can be performed and executed in the target address space. We demonstrate the second
approach for VLIW ISA and took the example of TI C6x processors. This approach shows
performance benefits due to static translation process and HAV based native simulation
platform. Certain limitations such code redundancy, can undermine its applicability to
general purpose translation contexts. Nevertheless, the SBT approach is useful in early design
stages, if precision is more important than simulation speed or modeling of VLIW machines
is a requirement.

TIMA Laboratory, CNRS/INP Grenoble/UJF 147

I think and think for months and years. Ninety-nine
times, the conclusion is false. The hundredth time I
am right.

Albert Einstein

8
Conclusions and Perspectives

This thesis presents a novel native simulation technique for MPSoC using the Hardware-
Assisted Virtualization (HAV) technology. The proposed solution uses HAV technology

as a software interpretation engine within the usual transaction-level MPSoC simulation
environments. As opposed to the previous native techniques, our solution resolves the key
issues of conflicting, as well as overlapping address-spaces. Thus, it can support complex
MPSoC architectures and legacy software simulation.

Our experiments demonstrate that the computation and shared memory accesses are
not the performance issues for this kind of native simulation platforms. Instead, most of
time is spent in I/O accesses, as HAV technology provides a mean to access shared memories
transparently but must trap for accessing the modeled hardware components. However,
the performance gains that our native solution provides compared to the Dynamic Binary
Translation (DBT) based techniques that are currently considered the most efficient ones, is
still valuable.

8.1 Conclusions

We presented the key problems of native simulation in Chapter 3, where a set of questions
were asked that we intend to answer in this thesis. We repeat the same set of questions here
and provide answers to them in the following text.

1. How can we efficiently support the simulated target address-space on host machines
without requiring dynamic linking/patching support ?

In particular, how we can:

(a) Support the use of SystemC-based hardware IP models, without requiring
modifications for address mappings and symbols resolution.

(b) Minimize software coding constraints, such as the ability to use hard-coded
addresses and constant link-time symbols.

TIMA Laboratory, CNRS/INP Grenoble/UJF 149

Conclusions and Perspectives

(c) Simulate complex operating systems that make use of Memory Management
Unit (MMU) based virtual to physical address translations.

Our principle answer to all of the above questions is based on use of HAV technology to
separate the simulated target address-space from the host simulator one. Using the HAV

technology, the simulated software gets its own zero-based "physical" address-space in
guest mode and these addresses are fixed in nature. The dynamic address allocation
from the host user-space is hidden inside the Virtual Machine Monitor (VMM). Thus, the
software is compiled for the target address-space and run-time address translation is
provided by the VMM. The memory virtualization feature has two-fold benefit: firstly
the hardware models do not need to provide address mappings and symbols and remain
un-modified. Secondly the software stack does not require dynamic linking support, as
all of the simulated target addresses are known at compile-time.

As the guest-to-host address translation is managed by the VMM, hard-coded addresses
can be used, thus, removing the software coding constraints imposed by traditional
native techniques. Similarly, the simulated operating system can use its own page tables,
which reside in the guest "physical" address-space. All accesses to these structures
are either trapped by the VMM to maintain its own set of Shadow Page Tables (SPT) or
hardware based Extended Page Tables (EPT) to provide guest-to-host memory mapping.
Thus, MMU based operating systemes can be used in our native simulation platform.

2. How can we define an automatic software annotation technique into the proposed
approach for MPSoC performance estimation ?

In native techniques, the use of software annotations is considered as the only means for
performance estimation. Support for such annotation techniques is possible using the
HAV technology, as two different methods for performing I/O operations are supported
on x86 machines. We proposed the use of Memory-Mapped I/O (MMIO) accesses for
simulated hardware models and reserving Port-Mapped I/O (PMIO) for providing a semi-
hosting interface. This interface can be used for many purposes, including performance
annotations to synchronize with SystemC based hardware models.

3. How can we support native execution of VLIW software, without requiring any runtime
support ?

More specifically, how we can define:

(a) A VLIW simulation approach, which is generic enough and can also be applied to
RISC machines.

(b) A source-free approach, requiring optimized VLIW binaries only for generating
native simulators.

(c) Accurate support for performance estimation of VLIW software.

We propose a different solution for VLIW processors, where we use a Static Binary
Translation (SBT) flow to generate native code from cross-compiled target binaries.
The proposed solution does not depend on source code availability and is able to
generate native code that runs on top of our HAV based simulation platform, without
requiring run-time translation support. This solution is generic and well suited to
VLIW processors, due to the higher level translation granularity, and at the same time

150 Mian-Muhammad Hamayun

8.2 Perspectives

applicable to RISC machines. The translation flow uses LLVM-IR for two step translation
and is retargetable to multiple HAV based simulation platforms. As the translation
framework has access to final target instructions, accurate performance annotations
can be added to the generated software.

8.2 Perspectives

As the basic technology is now well defined, the future works will focus on finding a solution
to minimize the guest-to-host mode switching cost that incurs a high performance penalty
during I/O operations. We focused on reducing the number of such transitions, whereas
future works should consider the cost of individual transitions and how it could be reduced.

The use of IOMMU is possible in virtual machines for direct access to peripheral devices
but in case of simulation models such I/O accesses must go through SystemC communication
components. Another future direction would be to see if these two conflicting requirements
could be satisfied and remove the I/O bottleneck from HAV based simulation.

The annotation technique used in this thesis is useful only for simple RISC machines and
provides reasonable results. This is one of the reasons why we proposed the SBT technique
for VLIW processors. Future works in annotation context should focus on more complex
architectures such as superscalar and VLIW machines and see if the same dual compilation
principle can be extended for these processors.

For the SBT technique, the ISA definition and instruction decoder generation process
should be automated using a generic processor description language.

TIMA Laboratory, CNRS/INP Grenoble/UJF 151

A
Sensitive and Unprivileged Instructions in

IA-32 (x86) Architectures

This appendix briefly describes the sensitive and unprivileged instruction found in IA-32
(x86) architectures. A sensitive instruction can consult and modify the processor state, thus
effecting the execution mode of operating system and/or the Virtual Machine Monitor (VMM).
Table A.1 shows the possible scenarios for software based virtualization techniques, with
the problematic case when sensitive and unprivileged instructions are present in the
Instruction Set Architecture (ISA) under question. In order for an architecture to be efficiently
virtualizable, sensitive instructions from the guest operating system must not directly execute
on the host processor but must be trapped and emulated by the VMM. Table A.2 and Table A.3
detail sensitive but unprivileged instructions found in x86 architectures [RI00], thus Popek
and Goldberg [PG74] virtualization requirements cannot be met in the presence of these
instructions, without additional hardware support.

Sensitive Non-Sensitive

Privileged Trap and emulate Trap but no need to emulate (Rare case)
Unprivileged Cannot trap but must emulate Direct execution

Table A.1: Sensitive/Non-Sensitive vs . Privileged/Unprivileged Instructions

Most of the sensitive and unprivileged instructions described in Table A.2 and Table A.3
exhibit a single type of problem, usually emerging from the privilege level of guest software.
A VMM must preserve the illusion that the guest software executes at its intended privilege
level, thus it must emulate all of the sensitive instructions whether privileged or unprivileged.
Following list details the problems associated with the unprivileged execution of sensitive
instructions that prevent efficient virtualization of x86 architectures.

TIMA Laboratory, CNRS/INP Grenoble/UJF 153

Sensitive and Unprivileged Instructions in IA-32 (x86) Architectures

Instruction Description Problem

PUSHF (16-bit)
PUSHFD (32-bit)

Pushes the lower 16 (32) bits of the EFLAGS register onto the
stack and decrements the stack pointer by 2 (4).

A

POPF (16-bit)
POPFD (32-bit)

Pops a word from the top of the stack, increments the stack
pointer by 2 (4), and stores the value in the lower 16 (32) bits
of the EFLAGS register.

A

SGDT Stores the contents of the GDTR in a 6-byte memory location. B
SIDT Stores the contents of the IDTR in a 6-byte memory location. B
SLDT Stores the segment selector from the LDTR in a 16 or 32-bit

general-purpose register or memory location.
B

SMSW Stores the machine status word (bits 0 through 15 of CR0)
into a general-purpose register or a memory location.

B

Table A.2: Sensitive Register Instructions in IA-32 (x86)

A This type of problem appears in instructions that are sensitive and unprivileged i.e.
they do not generate traps when executed with insufficient privileges, but their effect
may not take place. Moreover, if successfully executed, these instructions can allow a
guest operating system to see and/or modify the processor state; thus, deducing the
existence of a Virtual Machine (VM) and effecting itself or the operating mode of VMM.

B This type of problem appears in instructions that are sensitive and unprivileged as well.
Such instructions allow the guest operating system to see the values of system registers
and segments e.g. GDT, LDT, IDT, CR0, CS, SS etc., even though the guest operating
system executes in the unprivileged mode. A guest might find unexpected values in
system registers/segments and behave incorrectly or halt completely.

C These instructions include references to protection system and include checks to see if
the Current Privilege Level (CPL) and/or Requested Privilege Level (RPL) are greater
than the Descriptor Privilege Level (DPL). A guest operating system usually executes
in unprivileged mode, but assumes that it is privileged; thus, it can access any segment
descriptors with its user mode CPL and cause problems. Some of the instructions
exhibiting this type of problem may try to access call gates or task gates of higher
privilege level as well e.g. as in CALL and JMP instructions.

154 Mian-Muhammad Hamayun

Instruction Description Problem

CALL Saves procedure linking information to the stack and branches to the
procedure given in its destination operand.

C

INT n Performs a call to the interrupt or exception handler specified by n.
It also pushes the EFLAGS register onto the stack in addition to the
return address.

C

JMP Transfers program control to another location in the instruction
stream but does not record the return address.

C

LAR Loads access rights from a segment descriptor into a general-purpose
register.

C

LSL Loads the segment limit from a segment descriptor into a general-
purpose register.

C

MOV Copies the source operand value to the destination operand. The
source operand can be an immediate value, general-purpose register,
segment register or a memory location; the destination operand can
be a general-purpose register, segment register or a memory location.

C

POP Loads a value from the top of the stack to a general-purpose register,
memory location or a segment register.

C

PUSH Allows a general-purpose register, memory location, an immediate
value or a segment register to be pushed onto the stack.

B

RET Transfers program control to a return address that is placed on the
stack (normally by a CALL instruction).

A C

STR Stores the segment selector from the task register into a general-
purpose register or a memory location.

A C

VERR Verifies whether a code or data segment is readable from the Current
Privilege Level (CPL).

C

VERW Verifies whether a code or data segment is writable from the Current
Privilege Level (CPL).

C

Table A.3: Sensitive Protection System Instructions in IA-32 (x86)

TIMA Laboratory, CNRS/INP Grenoble/UJF 155

B
Memory Virtualization Support in
Hardware-Assisted Virtualization

Memory Management Unit (MMU) based Operating Systems maintain a mapping between
virtual and physical address spaces using page tables. Each time the CPU generates a virtual
address, the Virtual Page Number (VPN) of the address is looked up in the Translation Lookaside
Buffer (TLB), which is an associative address translation cache. In case of a TLB hit, the physical
address is calculated from the Physical Frame Number (PFN) retrieved from the TLB and the
offset part of the virtual address. For a TLB miss, the paging structures are used to translate
the VPN to its corresponding PFN. The TLB is updated as well for later accesses to the same
VPN. The key feature of this translation mechanism is the use of TLB, as TLB hit rate is usually
very high and page table walks are quite rare. This processes is illustrated in Figure B.1.

Physical
Memory

CPU
VPN

T
LB

 H
it

TLB Miss

Offset

TLB

PFN Offset

+

+CR3

Page Tables

P
h
y
si

ca
l
A

d
d

re
ss

Virtual
Address

Update TLB

VPN PFN

Figure B.1: Virtual to Physical Address Translation and Translation Lookaside Buffer

TIMA Laboratory, CNRS/INP Grenoble/UJF 157

Memory Virtualization Support in Hardware-Assisted Virtualization

B.1 Memory Virtualization using Shadow Page Tables

In a virtualized environment, a guest operating system expects access to the "physical"
memory of the system, once it has obtained a physical address through its paging structures.
The guest OS maintains its own set of page tables and uses MMU for performing Guest Virtual
Address (GVA) to Guest Physical Address (GPA) translations. In order to access the real physical
memory of the system, an additional translation step is necessary to convert the Guest Physical
Addresses (GPAs) to Host Physical Addresses (HPAs). This is a costly operation, as every address
translation has to go through two different paging structures. Shadow Page Tables (SPT) avoid
this double bookkeeping by skipping the intermediate translation from GVAs to GPAs. Each
Shadow Page Table Entry (SPTE) makes a direct translation from GVA to HPA and provides the
MMU and TLB with these translations, when operating in guest mode. Figure B.2 illustrates
the role of SPTs in guest address translation.

Process # 1 Process # 2

Virtual Machine # 2

GPA

G
V

A

Process # 1 Process # 2

Virtual Machine # 1

GPA

G
V

A

HPA

S
P

T
E

S
P

T
E

Host Machine

Figure B.2: Role of Shadow Page Tables in Guest Address Space Translation [VMW09]

Guest
Page Tables

Guest CR3

Guest
Page Directory

Guest
Page Table

Guest
Page

Shadow
Page Tables

Shadow
Page Directory

Shadow
Page Table

Host
Page

Guest
Frame Number

to Physical
Frame Number

Shadow CR3

Write
Protected

Write
Protected

Load
to CR3

Figure B.3: Guest Page Table Accesses and Synchronization with Shadow Page Tables

158 Mian-Muhammad Hamayun

B.2 Memory Virtualization using Extended Page Tables

SPTs cause performance penalty as each update of the guest page tables requires an
equivalent bookkeeping on the shadow pages. The VMM achieves this objective by write
protecting the guest paging structures, as well as intercepting guest paging operations
including page faults, page invalidations and loads to the guest CR3 register. For example,
when load to the guest CR3 register is trapped by VMM, the hardware TLB is flushed and new
shadow page directory entry is loaded in the shadow CR3 register. This process is shown in
Figure B.3.

The SPT synchronization operations cause significant overheads in case of HAV based
virtual machines, as the costly VM Exit and VM Entry operations are required for such
synchronizations. VMM keeps the GPA to HPA mappings in its internal data structures and
exposes the GVA to HPA mappings to the actual hardware. The most recently used GVA to HPA

translations are cached in the hardware TLB and are used to transparently access the host
machine memory, from the guest.

B.2 Memory Virtualization using Extended Page Tables

In Extended Page Tables (EPT) (also known as Rapid Virtualization Indexing (RVI)) based systems,
the guest maintains its own paging structures and performs GVA to GPA translations, similar
to a non-virtualized system. The VMM maintains an additional level of page tables, known
as Extended or Nested page tables, which provide GPA to HPA translations, as shown in
Figure B.4.

Process # 1 Process # 2

Virtual Machine # 2

GPA

G
V

A

Process # 1 Process # 2

Virtual Machine # 1

GPA

G
V

A

HPA

EPT Based Translation

Host Machine

Figure B.4: Role of Extended Page Tables in Guest Address Space Translation [VMW09]

In EPT, both the guest and nested page tables are available to the address translation
hardware. For each TLB miss, the hardware page table walker traverses guest paging
structures and for each GPA access during this process, it also walks the nested paging
structures to get the corresponding HPA. This additional translation step removes the need
for shadow page tables and their synchronization with the guest paging structures. This
process is illustrated in Figure B.5.

The translation process now becomes costly, as a TLB miss can cause many references to
the guest and nested page tables. This additional cost can adversely effect the performance
of applications with high TLB miss rates, as compared to the shadow page tables. In cases
when the guests frequently update their paging structures, the performance of EPT is better
than the shadow pages, as guest-to-host mode switches are not necessary. Moreover, the
translation process does not require additional memory for shadow paging structures for the
guest processes.

TIMA Laboratory, CNRS/INP Grenoble/UJF 159

Memory Virtualization Support in Hardware-Assisted Virtualization

Directory Offset

GVA

nCR3

gCR3

+

nL1

nL2

GPA(L2)

HPA(L2)

GPA(L1) GPA

HPA(L1) HPA

+

nL1

nL2

+

nL1

nL2

N
e
st

e
d

Pa
g

e
 T

a
b

le
s

Host
Page

Table Offset Offset

Figure B.5: Guest Physical Address Translation using Extended Page Tables

Caching techniques for page table walks and TLBs are employed to reduce the cost of
EPT based address translation. The page walk cache mechanism provides hardware based
support for saving intermediate translations, which are accessed first to see if an intermediate
translation is available before going through the nested paging structures. Similarly, nested
TLBs are used to keep the most recently accessed GPA to HPA mappings in hardware, to
accelerate the EPT translation process.

160 Mian-Muhammad Hamayun

C
Code Generation Algorithms for VLIW

Software Simulation

We use a set of algorithms in our Static Binary Translation (SBT) technique and generate
LLVM-IR code from cross-compiled VLIW binaries, discussed in Chapter 6. The generated
code is compiled for the host machine and executed on top of our Hardware-Assisted
Virtualization (HAV) based native simulation platform, as discussed in Chapter 5. Following
sections provide details on these algorithms and explain the IR code generation process, as
discussed in Section 6.2.3 and Figure 6.2.

C.1 IR Generation for VLIW Basic Blocks

Algorithm 1 is the entry point in code generation process, which takes a VLIW basic block
as input and produces a corresponding function in LLVM-IR. It creates the overall structure
of the IR function i.e. the Entry, Return, Core and Update basic blocks and the control flows
between them. It does not create instructions that simulate the VLIW instructions, for this
purpose it uses the Algorithm 2 given in the following section.

The algorithm starts by creating Entry and Return IR basic blocks at Lines 3 and 4,
respectively. The main loop at Line 6 repeats for each execute packet in the VLIW basic
block. A pair of Core and Update IR basic blocks is created at Lines 7 and 8, followed by
a check to see if the previous Update basic block exists i.e. BBLast , φ. If true, comparison
and conditional branch instructions are created at Lines 10 and 11 and pushed at the end of
previous Update basic block.

The Algorithm 2 is invoked at Line 13 to generate code for the current execute packet.
Finally the algorithm links Entry basic block to the first Core basic block at Line 17 and the
last Update basic block to the Return basic block, at Line 18, creating the overall structure of
an IR function.

TIMA Laboratory, CNRS/INP Grenoble/UJF 161

Code Generation Algorithms for VLIW Software Simulation

Algorithm 1 Code Generation for Each VLIW Basic Block
Input: A VLIW Basic Block.
Output: A Function in LLVM-IR.

1: procedure GenerateIRBB(BBVLIW)
2: Set RPCT = φ and BBLast = φ
3: BBEntry ← Create BasicBlockIR
4: BBReturn← Create BasicBlockIR
5: I ← 1
6: for each EPVLIW in BBVLIW do
7: BBCore[I]← Create BasicBlockIR
8: BBUpdate[I]← Create BasicBlockIR
9: if BBLast , φ then

10: InstCMP ← Create a comparison instruction for RPCT , φ
11: Create a Branch to BBReturn if InstCMP is set else to BBCore[I]
12: end if
13: RPCT ← CALL GenerateIREP (EPVLIW , BBCore[I], BBUpdate[I], BBReturn)
14: BBLast← BBUpdate[I]
15: I ← I + 1
16: end for
17: Create Branch Instruction to BBCore[1] in BBEntry
18: Create Branch Instruction to BBReturn in BBLast
19: return
20: end procedure

C.2 IR Generation for VLIW Execute Packets

Algorithm 2 operates at Core and Update IR basic block pairs, for each execute packet.
It generates memory allocation instruction for saving results of ISA executions at Line 2
(Figure 6.2 C1). InstET is the IR function level early termination condition and InstRISA is
used to temporarily store the return value of each ISA execution.

The main loop at Line 5, executes for each VLIW instruction in the current execute packet.
It gets the decoded VLIW instruction and asks it to generate an ISA call for itself at Lines 6 and
7, respectively (Figure 6.2 C2). For ISA call generation, it provides the corresponding InstRes[]
memory reference as input, along with the generic parameters including simulated processor
state. The generated ISA behavior call serves as a reference and will be optimized-out at later.

Algorithm 3 is invoked at Line 11, to insert Immediate or Buffered update calls in the
current Core basic block (Figure 6.2 C3). Instructions at Lines 12 and 13 load the function
level early termination value and create a branch to Return or the Update basic block,
depending on the value of InstETC flag. Finally, this algorithm creates the simulated processor
state update calls at Lines 14 and 15 (Figure 6.2 U1). The UpdateRegs function performs
the delayed update of registers, including the target program counter.

Algorithm 3 inserts post update calls, either ImmediateUpdate or BufferedUpdate for
ISA results, in the current Core basic block (Figure 6.2 C3). It iterates over all instructions
in the given execute packet, gets the decoded target instruction InstDVLIW to determine the
number of delay slots, as shown at Lines 4 and 5. Depending upon the number of delay
slots, it either adds a call to BufferedUpdate at Line 8 or ImmediateUpdate at Line 14. This
algorithm also handles side-effects by inserting an ImmediateUpdate call at Line 11, as side
effects in C6x processors have zero delay slots.

162 Mian-Muhammad Hamayun

C.2 IR Generation for VLIW Execute Packets

Algorithm 2 Code Generation for Each VLIW Execute Packet
Input: A VLIW Execute Packet along with Core, Update and Return Basic Blocks in LLVM-IR.
Output: LLVM-IR Code for VLIW Execute Packet, Processor State Updates and Control Flows
between the Input IR Basic Blocks.

1: function GenerateIREP (EPVLIW , BBCore, BBUpdate, BBReturn)
2: Allocate Stack Space for InstRes[] of EPVLIW .Size()
3: Set InstET = φ and InstRISA = φ
4: J← 1
5: for each InstVLIW in EPVLIW do
6: InstDVLIW ← Get Decoded Instruction for InstVLIW
7: InstRISA← Ask InstDVLIW to place an ISA call in the current IR module using its

Operand Types, Operands and InstRes[J] for saving ISA results.
8: Update early termination condition InstET using InstRISA.
9: J← J + 1

10: end for
11: CALL GenerateIRP ostUpdates(EPVLIW , BBCore, InstRes[])
12: Create instruction for testing the early termination InstETC ← InstET , 0
13: Create a Branch to BBReturn if InstETC is set else to BBUpdate
14: Create Calls for IncP C() and IncCycles()
15: Create Call for UpdateRegs() and save its return value in InstRPCT
16: return (InstRPCT)
17: end function

Algorithm 3 Immediate or Buffered Register Updates
Input: A VLIW Execute Packet along with Core IR Basic Block and Results of VLIW ISA Executions.
Output: LLVM-IR Code for Buffered or Immediate Updates and handling Side Effects.

1: procedure GenerateIRP ostUpdates(EPVLIW , BBCore, InstRes[])
2: K ← 1
3: for each InstVLIW in EPVLIW do
4: InstDVLIW ← Get Decoded Instruction for InstVLIW
5: DelaySlots← Get Delay Slots from InstDVLIW
6: if DelaySlots , 0 then
7: if InstDVLIW .T ype , STORE then
8: Create Call to Buf f eredUpdate(InstRes[K], DelaySlots)
9: end if

10: if InstDVLIW .T ype = LOAD || InstDVLIW .T ype = STORE then
11: Create Call to ImmediateUpdate(InstRes[K])
12: end if
13: else
14: Create Call to ImmediateUpdate(InstRes[K])
15: end if
16: K ← K + 1
17: end for
18: return
19: end procedure

TIMA Laboratory, CNRS/INP Grenoble/UJF 163

Glossary

ABI Application Binary Interface

ADC Analog to Digital Converter

AMP Asymmetric Multi-Processor

APES APplication Elements for
System-on-chips

API Application Programming Interface

APIC Advanced Programmable Interrupt
Controller

ARM Advanced RISC Machines

CA Cycle Accurate

CAD Computer-Aided Design

CFG Control Flow Graph

CMP Chip Multiprocessor

CPU Central Processing Unit

DBT Dynamic Binary Translation

DES Discrete Events Simulation

DMA Direct Memory Access

DMI Direct Memory Interface

DSE Design Space Exploration

DSP Digital Signal Processor

EPT Extended Page Tables

EU Execution Unit

FPGA Field Programmable Gate Array

FSM Finite State Machine

GDB GNU DeBugger

GDTR Global Descriptor Table Register

GPA Guest Physical Address

GPP General Purpose Processor

GPOS General Purpose Operating System

GVA Guest Virtual Address

HAL Hardware Abstraction Layer

HAV Hardware-Assisted Virtualization

HDL Hardware Description Language

HDS Hardware Dependent Software

HIS-CS Hybrid Instruction-Set-Compiled
Simulation

HPA Host Physical Address

HRTL Higher-Level Register Transfer
Language

HVA Host Virtual Address

HVM Hardware Virtual Machine

IOAPIC I/O APIC

IDT Interrupt Descriptor Table

IDTR Interrupt Descriptor Table Register

IOMMU Input/Output Memory Management
Unit

IP Intellectual Property

IDCT Inverse Discrete Cosine Transform

ILP Instruction Level Parallelism

IPC Inter Process Communication

TIMA Laboratory, CNRS/INP Grenoble/UJF 165

Glossary

IR Intermediate Representation

ISA Instruction Set Architecture

IS-CS Instruction Set Compiled Simulation

ISS Instruction Set Simulator

IPI Inter-Processor Interrupt

ITRS International Technology Roadmap
for Semiconductors

JIT-CCS Just-In-Time Cache-Compiled
Simulation

JPEG Joint Photographic Experts Group

KVM Kernel Virtual Machine

LAPIC Local APIC

LDTR Local Descriptor Table Register

LLVM Low Level Virtual Machine

MJPEG Motion-JPEG

MMIO Memory-Mapped I/O

MIPS Million Instructions Per Second

MMU Memory Management Unit

MMX MultiMedia eXtension

MPSoC Multi-Processor System-on-Chip

MSR Model Specific Register

NGPA Nested Guest Physical Address

NGVA Nested Guest Virtual Address

NOP No Operation

NPU Native Processing Unit

OS Operating System

PFN Physical Frame Number

PIC Programmable Interrupt Controller

PIT Programmable Interval Timer

PMIO Port-Mapped I/O

POSIX Portable Operating System Interface

PV Programmer’s View

PVT Programmer’s View with Time

PW Processor Wrapper

QEMU Quick EMUlator

RAM Random Access Memory

RAW Read After Write

RISC Reduced Instruction Set Computers

RPC Remote Procedure Call

RTL Register Transfer Level

RTOS Real-Time Operating System

RVI Rapid Virtualization Indexing

SBT Static Binary Translation

SIMD Single Instruction, Multiple Data

SL System Level

SMC Self-Modifying Code

SMP Symmetric Multi-Processor

SoC System-on-Chip

SPT Shadow Page Tables

SPTE Shadow Page Table Entry

TA Transaction Accurate

TI Texas Instruments

TLB Translation Lookaside Buffer

TLM Transaction Level Modeling

TLM-T Transaction Level Modeling with
Time

TLM-DT Transaction Level Modeling with
Distributed Time

TR Task Register

VA Virtual Architecture

166 Mian-Muhammad Hamayun

VCPU Virtual CPU

VHDL VHSIC Hardware Description
Language

VLIW Very Long Instruction Word

VLSI Very-Large-Scale Integration

VM Virtual Machine

VMM Virtual Machine Monitor

VMCB Virtual Machine Control Block

VMCS Virtual Machine Control Structure

VMX Virtual Machine eXtensions

VPID Virtual Processor Identifier

VPN Virtual Page Number

WAR Write After Read

WAW Write After Write

WCET Worst Case Execution Time

XML Extensible Markup Language

TIMA Laboratory, CNRS/INP Grenoble/UJF 167

List of Publications

International Conferences

[1] Mian Muhammad Hamayun Frédéric Pétrot and Nicolas Fournel. Native Simulation of
Complex VLIW Instruction Sets using Static Binary Translation and Hardware-Assisted
Virtualization. In Proceedings of the 18th Asia and South Pacific Design Automation
Conference, ASP-DAC 2013, Yokohama, Japan, pages 576–581, January 2013.

[2] Patrice Gerin, Mian Muhammad Hamayun, and Frédéric Pétrot. Native MPSoC Co-
Simulation Environment for Software Performance Estimation. In Proceedings of the 7th
IEEE/ACM International Conference on Hardware/Software Codesign and System Synthesis,
CODES+ISSS 2009, Grenoble, France, pages 403–412, 2009.

International Journals

[3] Hao Shen, Mian Muhammad Hamayun, and Frédéric Pétrot. Native Simulation of
MPSoC Using Hardware Assisted Virtualization. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 31(7):1074–1087, July 2012.

[4] Frédéric Pétrot, Nicolas Fournel, Patrice Gerin, Marius Gligor, Mian Muhammad
Hamayun, and Hao Shen. On MPSoC Software Execution at the Transaction Level.
IEEE Design & Test of Computers, 28(3):2–11, 2010.

Book Chapters

[5] Frédéric Pétrot, Patrice Gerin, and Mian Muhammad Hamayun. On Software
Simulation for MPSoC: A Modeling Approach for Functional Validation and
Performance Estimation. In Gabriela Nicolescu, Ian O’Connor, and Christian Piguet,
editors, Design Technology for Heterogeneous Embedded Systems, pages 91–114. Springer,
2012.

TIMA Laboratory, CNRS/INP Grenoble/UJF 169

References

[Acc] Accellera Systems Initiative, http://www.accellera.org. 3.3.1

[AMD05] AMD64 Virtualization Codenamed “Pacifica” Technology: Secure Virtual
Machine Architecture Reference Manual, May 2005. Publication No. 33047,
Revision 3.01. 5

[BBCR02] I. Barbieri, M. Bariani, A. Cabitto, and M. Raggio. Multimedia-application-
driven Instruction Set Architecture Simulation. In Proceedings of the IEEE
International Conference on Multimedia and Expo, volume 2, pages 169 – 172,
2002. 4.2.3

[BBY+05] Aimen Bouchhima, Iuliana Bacivarov, Wassim Youssef, Marius Bonaciu, and
Ahmed A. Jerraya. Using Abstract CPU Subsystem Simulation Model for
High Level HW/SW Architecture Exploration. In Proceedings of the 10th Asia
South Pacific Design Automation Conference, pages 969–972, 2005. 1.1, 1.2.1,
2.1, 3.4.4.2, 3.5, 3.5.2, 4.1.2

[BDF+03] Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex
Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the Art of
Virtualization. In Proceedings of the Nineteenth ACM Symposium on Operating
Systems Principles, pages 164–177, New York, NY, USA, 2003. 5

[Bel73] James R. Bell. Threaded Code. Communication of the ACM, 16(6):370–372,
1973. 1.1, 2.1

[Bel05] Fabrice Bellard. QEMU, a Fast and Portable Dynamic Translator. In USENIX
Annual Technical Conference, FREENIX Track, pages 41–46, 2005. 1.1, 2.1,
4.2.3.2, 5.5, 6.1, 6.2.1

[Ber06] V. Berman. Standards: The P1685 IP-XACT IP Metadata Standard. IEEE
Design & Test of Computers, 23(4):316–317, April 2006. 3.4

[BG04] M. Burtscher and I. Ganusov. Automatic Synthesis of High-Speed Processor
Simulators. In 37th International Symposium on Microarchitecture, pages 55 –
66, December 2004. 4.2.3.1

[BHK+00] J.R. Bammi, E. Harcourt, W. Kruitzer, L. Lavagno, and M.T. Lazarescu.
Software Performance Estimation Strategies in a System-Level Design Tool.
In Proceedings of the Eighth International Workshop on Hardware/Software
Codesign, pages 82 –86, May 2000. 4.2.1

[BK07] Milos Becvár and Stanislav Kahánek. VLIW-DLX Simulator for Educational
Purposes. In Edward F. Gehringer, editor, WCAE, pages 8–13, 2007. 4.2.3

TIMA Laboratory, CNRS/INP Grenoble/UJF 171

http://www.accellera.org

REFERENCES

[BNH+04] G. Braun, A. Nohl, A. Hoffmann, O. Schliebusch, R. Leupers, and H. Meyr.
A Universal Technique for Fast and Flexible Instruction-Set Architecture
Simulation. IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 23(12):1625–1639, December 2004. 4.2.3.2

[BPN+04] Alex Bobrek, Joshua J. Pieper, Jeffrey E. Nelson, JoAnn M. Paul, and
Donald E. Thomas. Modeling Shared Resource Contention Using a Hybrid
Simulation/Analytical Approach. In Proceedings of the Conference on Design,
Automation and Test in Europe and Exhibition, pages 1144–1149, Washington,
DC, USA, 2004. 4.1.3

[BYJ02] M. Bacivarov, Sungjoo Yoo, and A.A. Jerraya. Timed HW-SW Cosimulation
using Native Execution of OS and Application SW. In Seventh IEEE
International High-Level Design Validation and Test Workshop, pages 51 – 56,
October 2002. 1.2, 4.1.1

[BYJ04] Aimen Bouchhima, Sungjoo Yoo, and Ahmed Jeraya. Fast and Accurate
Timed Execution of High Level Embedded Software using HW/SW Interface
Simulation Model. In Proceedings of the Asia and South Pacific Design
Automation Conference, pages 469–474, Piscataway, NJ, USA, 2004. 1.2.1,
1.2.1, 4.1.2, 4.1.2

[CBR+04] Jerome Chevalier, Olivier Benny, Mathieu Rondonneau, Guy Bois,
El Mostapha Aboulhamid, and Francois-Raymond Boyer. SPACE: A
Hardware/Software SystemC Modeling Platform Including an RTOS. In
Languages for System Specification, pages 91–104. 2004. 4.1.1

[CG03] Lukai Cai and Daniel Gajski. Transaction Level Modeling: An Overview.
In Proceedings of the 1st IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis, pages 19–24, New York,
NY, USA, 2003. 3.4.2, 4.1.2

[CGG04] Lukai Cai, A. Gerstlauer, and D. Gajski. Retargetable Profiling for Rapid,
Early System-level Design Space Exploration. In Proceedings of the 41st
ACM/IEEE Design Automation Conference, pages 281–286, July 2004. 3.5.5,
4.2

[CHB09a] E. Cheung, H. Hsieh, and F. Balarin. Memory Subsystem Simulation in
Software TLM/T Models. In Proceedings of the 14th Asia South Pacific Design
Automation Conference, Yokohama, Japan, pages 811–816, January 2009. 1.2,
4.1.1

[CHB09b] Eric Cheung, Harry Hsieh, and Felice Balarin. Fast and Accurate Performance
Simulation of Embedded Software for MPSoC. In Proceedings of the 14th Asia
South Pacific Design Automation Conference, Yokohama, Japan, pages 552–557,
January 2009. 3.5.5, 4.1.1, 4.2.2

[CHH+98] Anton Chernoff, Mark Herdeg, Ray Hookway, Chris Reeve, Norman Rubin,
Tony Tye, S. Bharadwaj Yadavalli, and John Yates. FX!32 - A Profile-Directed
Binary Translator. IEEE Micro, 18:56–64, 1998. 4.2.3.1, 4.2.3.2

172 Mian-Muhammad Hamayun

REFERENCES

[CK94] Bob Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for
Execution Profiling. SIGMETRICS Performance Evaluation Review, 22(1):128–
137, May 1994. 4.2.3.2

[CMMC08] J. Cornet, F. Maraninchi, and L. Maillet-Contoz. A Method for the Efficient
Development of Timed and Untimed Transaction-Level Models of Systems-
on-Chip. In Proceedings of the Conference on Design, Automation and Test in
Europe and Exhibition, pages 9–14, March 2008. 3.4.4.1

[Cre81] Robert Jay Creasy. The Origin of the VM/370 Time-sharing System. IBM
Journal of Research and Development, 25(5):483–490, 1981. 1.3, 5

[CSC+09] Jianjiang Ceng, Weihua Sheng, Jeronimo Castrillon, Anastasia Stulova, Rainer
Leupers, Gerd Ascheid, and Heinrich Meyr. A High-level Virtual Platform
for Early MPSoC Software Development. In Proceedings of the 7th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis,
Grenoble, France, pages 11–20, 2009. 1.2.1, 4.1.2

[CVE00] C. Cifuentes and M. Van Emmerik. UQBT: Adaptable Binary Translation at
Low Cost. IEEE Computer, 33(3):60–66, March 2000. 4.8, 4.2.3.1, 6.1, 6.2.5

[CYH+08] Jiunn-Yeu Chen, Wuu Yang, Tzu-Han Hung, Charlie Su, and Wei Chung Hsu.
On Static Binary Translation and Optimization for ARM based Applications.
In Proceedings of the 6th Workshop on Optimizations for DSP and Embedded
Systems, April 2008. 4.2.3.1, 6.1, 6.2.5

[DGB+03] James C. Dehnert, Brian K. Grant, John P. Banning, Richard Johnson, Thomas
Kistler, Er Klaiber, and Jim Mattson. The Transmeta Code Morphing Software:
Using Speculation, Recovery, and Adaptive Retranslation to Address Real-
Life Challenges. In Proceedings of the First Annual IEEE/ACM International
Symposium on Code Generation and Optimization, pages 15–24, 2003. 4.2.3.2

[DGM09] Rainer Dömer, Andreas Gerstlauer, and Wolfgang Müller. Introduction to
Hardware-dependent Software Design Hardware-dependent Software for
multi- and many-core Embedded Systems. In Proceedings of the 14th Asia
South Pacific Design Automation Conference, Yokohama, Japan, pages 290–292,
Piscataway, NJ, USA, 2009. 3.2

[DM99] G. De Micheli. Hardware Synthesis from C/C++ Models. In Proceedings of the
Design, Automation and Test in Europe Conference and Exhibition 1999, pages
382–383, 1999. 3.3

[Don04] Adam Donlin. Transaction Level Modeling: Flows and Use Models. In Pro-
ceedings of the 2nd IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, pages 75–80, New York, NY, USA, 2004. 3.4.2

[EA97] Kemal Ebcioglu and Erik R. Altman. DAISY: Dynamic Compilation for
100% Architectural Compatibility. SIGARCH Computer Architecture News,
25(2):26–37, May 1997. 4.2.3.2

TIMA Laboratory, CNRS/INP Grenoble/UJF 173

REFERENCES

[EHV09] Wolfgang Ecker, Stefan Heinen, and Michael Velten. Using a Dataflow
Abstracted Virtual Prototype for HdS-design. In Proceedings of the 14th Asia
South Pacific Design Automation Conference, Yokohama, Japan, pages 293–300,
2009. 4.1.1, 4.2.2

[Fis83] Joseph A. Fisher. Very Long Instruction Word Architectures and the ELI-
512. Proceedings of the 10th Annual International Symposium on Computer
Architecture, 11:3:140–150, June 1983. 4

[Fis09] J.A. Fisher. Retrospective: Very Long Instruction Word Architectures and the
ELI-512. IEEE Solid-State Circuits Magazine, 1(2):34 –36, spring 2009. 4

[GCDM92] R. K. Gupta, C. N. Coelho, Jr., and G. De Micheli. Synthesis and Simulation of
Digital Systems Containing Interacting Hardware and Software Components.
In Proceedings of the 29th ACM/IEEE Design Automation Conference, pages
225–230, 1992. 1.2, 4.1.1

[GCKR12] A. Gerstlauer, S. Chakravarty, M. Kathuria, and P. Razaghi. Abstract System-
Level Models for Early Performance and Power Exploration. In Proceeding of
the 17th Asia and South Pacific Design Automation Conference, pages 213–218,
February 2012. 1.1, 2.1, 4.1.1

[Ger09] Patrice Gerin. Modéles de Simulation pour la Validation Logicielle et l’Exploration
d’Architectures des Systémes Multiprocesseurs sur Puce. Ph.D Thesis, Institut
Polytechnique de Grenoble, Grenoble, November 2009. (document), 1.7, 1.4,
3.5, 3.5.2, 3.6, 3.7, 3.4, 3.5, 3.5.4, 4.1.2.2, 5.2.3, 5.2.3, 5.2.4.1, 7.1

[GFP09] Marius Gligor, Nicolas Fournel, and Frédéric Pétrot. Using Binary Translation
in Event Driven Simulation for Fast and Flexible MPSoC Simulation. In
Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, Grenoble, France, pages 71–80, 2009. 1.2.1,
4.1.2, 5.5, 7.2.3

[GGP08] Patrice Gerin, Xavier Guérin, and Frédéric Pétrot. Efficient Implementation
of Native Software Simulation for MPSoC. In Proceedings of the Conference on
Design, Automation and Test in Europe and Exhibition, pages 676–681, 2008.
1.2.1, 1.2.1, 4.1.2, 4.1.2, 5.2.2

[Ghe06] Frank Ghenassia. Transaction-Level Modeling with SystemC: TLM Concepts and
Applications for Embedded Systems. Springer-Verlag New York, Inc., Secaucus,
NJ, USA, 2006. 3.4

[GHP09] Patrice Gerin, Mian Muhammad Hamayun, and Frédéric Pétrot. Native
MPSoC Co-Simulation Environment for Software Performance Estimation. In
Proceedings of the 7th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, Grenoble, France, pages 403–412, 2009. 1.1,
1.4, 2.1, 3.4.4.2, 3.5.5, 3.6.3, 4.1.1, 4.2.2, 5.2.4.1, 5.3, 5.11, 5.3, 5.5, 7.2.3

[GKK+08] Lei Gao, Kingshuk Karuri, Stefan Kraemer, Rainer Leupers, Gerd Ascheid,
and Heinrich Meyr. Multiprocessor Performance Estimation using Hybrid

174 Mian-Muhammad Hamayun

REFERENCES

Simulation. In Proceedings of the 45th annual Design Automation Conference,
pages 325–330, New York, NY, USA, 2008. 4.1.3

[GKL+07] Lei Gao, Stefan Kraemer, Rainer Leupers, Gerd Ascheid, and Heinrich Meyr.
A Fast and Generic Hybrid Simulation Approach using C Virtual Machine.
In Proceedings of the 2007 International Conference on Compilers, Architecture,
and Synthesis for Embedded Systems, pages 3–12, New York, NY, USA, 2007.
4.1.3, 4.1.3

[GL97] R.K. Gupta and S.Y. Liao. Using a Programming Language for Digital System
Design. IEEE Design & Test of Computers, 14(2):72 –80, April 1997. 3.3

[Gli10] Marius Gligor. Fast Simulation Strategies and Adaptive DVFS Algorithm for Low
Power MPSoCs. Ph.D Thesis, Institut Polytechnique de Grenoble, Grenoble,
September 2010. 7.4.1

[GMH01] P. Giusto, G. Martin, and E. Harcourt. Reliable Estimation of Execution Time
of Embedded Software. In Proceedings of the Conference on Design, Automation
and Test in Europe and Exhibition, pages 580 –588, 2001. 3.5.5, 4.2.1

[Gol74] Robert P. Goldberg. Survey of Virtual Machine Research. IEEE Computer
Magazine, 7(6):34 –45, June 1974. 1.3, 5

[GP09] X. Guerin and F. Petrot. A System Framework for the Design of
Embedded Software Targeting Heterogeneous Multi-core SoCs. In 20th
IEEE International Conference on Application-specific Systems, Architectures and
Processors, pages 153 –160, July 2009. 1.4, 5.2.2, 7.1

[GRE+01] Matthew R. Guthaus, Jeffrey S. Ringenberg, Dan Ernst, Todd M. Austin,
Trevor Mudge, and Richard B. Brown. MiBench: A free, Commercially
Representative Embedded Benchmark Suite. In Proceedings of the IEEE 4th
Annual Workshop on Workload Characterization, 2001. 7.1.1

[GYG03] Andreas Gerstlauer, Haobo Yu, and Daniel D. Gajski. RTOS Modeling for
System Level Design. In Proceedings of the Conference on Design, Automation
and Test in Europe and Exhibition, page 10130, 2003. 4.1.1

[GYNJ01] P. Gerin, Sungjoo Yoo, G. Nicolescu, and A.A. Jerraya. Scalable and Flexible
Cosimulation of SoC Designs with Heterogeneous Multi-Processor Target
Architectures. In Proceedings of the 6th Asia South Pacific Design Automation
Conference, pages 63 –68, 2001. 1.2, 4.1.1

[GZD+00] Daniel Gajski, Jianwen Zhu, Rainer Dömer, Andreas Gerstlauer, and Shuqing
Zhao. SpecC: Specification Language and Methodologie. Kluwer Academic
Publishers, Boston, March 2000. 3.3

[HAG08] Yonghyun Hwang, S. Abdi, and D. Gajski. Cycle-Approximate Retargetable
Performance Estimation at the Transaction Level. In Proceedings of the
Conference on Design, Automation and Test in Europe and Exhibition, pages 3–8,
March 2008. 4.2

TIMA Laboratory, CNRS/INP Grenoble/UJF 175

REFERENCES

[HHP+07] Kai Huang, Sang-il Han, Katalin Popovici, Lisane Brisolara, Xavier Guerin,
Lei Li, Xiaolang Yan, Soo-lk Chae, Luigi Carro, and Ahmed Amine Jerraya.
Simulink-based MPSoC Design Flow: Case Study of Motion-JPEG and H.264.
In Proceedings of the 44th annual Design Automation Conference, pages 39–42,
New York, NY, USA, 2007. 3.4.1

[HJ08] C. Helmstetter and V. Joloboff. SimSoC: A SystemC TLM Integrated ISS for
Full System Simulation. In Proceedings of the IEEE Asia Pacific Conference on
Circuits and Systems, pages 1759–1762, December 2008. 1.2.1, 4.1.2

[HSAG10] Yonghyun Hwang, Gunar Schirner, Samar Abdi, and Daniel D. Gajski.
Accurate Timed RTOS Model for Transaction Level Modeling. In Proceedings
of the Conference on Design, Automation and Test in Europe and Exhibition,
pages 1333–1336, 2010. 3.4.4.1, 4.1.1

[HWTT04] S. Honda, T. Wakabayashi, H. Tomiyama, and H. Takada. RTOS-centric Hard-
ware/Software Cosimulator for Embedded System Design. In Proceedings of
the 2nd IEEE/ACM International Conference on Hardware/Software Codesign
and System Synthesis, pages 158–163, September 2004. 4.1.1

[Int11] Intel® 64 and IA-32 Architectures Software Developer’s Manual Volume 3 (3A,
3B & 3C): System Programming Guide, October 2011. Order Number: 325384-
040US. 5.1.2.1, 5.1.2.2, 5.4.2.1

[ITR] International Technology Roadmap for Semiconductors 2011 Edition: System
Drivers. 1.1, 2.1

[JBP06] A.A. Jerraya, A. Bouchhima, and F. Petrot. Programming Models and HW-SW
Interfaces Abstraction for Multi-Processor SoC. In 43rd ACM/IEEE Design
Automation Conference, pages 280–285, 2006. 1.1, 2.1, 3.2, 3.4

[KAFK+05] K. Karuri, M.A. Al Faruque, S. Kraemer, R. Leupers, G. Ascheid, and
H. Meyr. Fine-grained Application Source Code Profiling for ASIP Design. In
Proceedings of the 42nd Design Automation Conference, pages 329 – 334, June
2005. 4.2.2

[KDM90] David Ku and Giovanni De Micheli. HardwareC – A Language for Hardware
Design (Version 2.0). Technical report, Stanford, CA, USA, 1990. 3.3

[KEBR08] Matthias Krause, Dominik Englert, Oliver Bringmann, and Wolfgang
Rosenstiel. Combination of Instruction Set Simulation and Abstract RTOS
Model Execution for Fast and Accurate Target Software Evaluation. In
Proceedings of the 6th IEEE/ACM International Conference on Hardware/Software
Codesign and System Synthesis, pages 143–148, New York, NY, USA, 2008.
4.1.3

[KGW+07] Stefan Kraemer, Lei Gao, Jan Weinstock, Rainer Leupers, Gerd Ascheid,
and Heinrich Meyr. HySim: A Fast Simulation Framework for Embedded
Software Development. In Proceedings of the 5th IEEE/ACM International
Conference on Hardware/Software Codesign and System Synthesis, pages 75–80,
New York, NY, USA, 2007. 4.1.3, 4.1.3

176 Mian-Muhammad Hamayun

REFERENCES

[KKL+07] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. KVM: The Linux
Virtual Machine Monitor. In Proceedings of the Linux Symposium, volume 1,
pages 225–230, 2007. 1.4, 5.1.2.1, 5.2, 5.2.4

[KKW+06] Torsten Kempf, Kingshuk Karuri, Stefan Wallentowitz, Gerd Ascheid, Rainer
Leupers, and Heinrich Meyr. A SW Performance Estimation Framework
for Early System-Level-Design using Fine-Grained Instrumentation. In
Proceedings of the Conference on Design, Automation and Test in Europe and
Exhibition, Munich, Germany, pages 468–473, March 2006. 3.5.5, 4.1.1, 4.2,
4.2.1, 4.2.2

[LA04] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings of the
International Symposium on Code Generation and Optimization, Palo Alto,
California, pages 75–87, March 2004. 5.3

[LBH+00] M.T. Lazarescu, J.R. Bammi, E. Harcourt, L. Lavagno, and M. Lajolo.
Compilation-based Software Performance Estimation for System Level
Design. In Proceedings of the IEEE International High-Level Design Validation
and Test Workshop, pages 167 –172, 2000. 4.2.3, 4.2.3.1

[LEL99] R. Leupers, J. Elste, and B. Landwehr. Generation of Interpretive and
Compiled Instruction Set Simulators . In Proceedings of the Asia and South
Pacific Design Automation Conference, pages 339–342, January 1999. 4.2.3.1

[LMPC04] R. Le Moigne, O. Pasquier, and J-P. Calvez. A Generic RTOS Model for
Real-time Systems Simulation with SystemC. In Proceedings of the Conference
on Design, Automation and Test in Europe and Exhibition, pages 82–87, 2004.
4.1.1, 4.2.2

[LP02] Jong-Yeol Lee and In-Cheol Park. Timed Compiled-code Simulation of
Embedded Software for Performance Analysis of SOC Design. In Proceedings
of the 39th ACM/IEEE Design Automation Conference, pages 293–298, 2002.
1.2.1, 3.5.5, 4.1.2, 4.2

[MAF91] Christopher Mills, Stanley C. Ahalt, and Jim Fowler. Compiled Instruction Set
Simulation. Software–Practice and Experience, 21 (8):877–889, 1991. 4.2.3.1

[MEJ+12] L.G. Murillo, J. Eusse, J. Jovic, S. Yakoushkin, R. Leupers, and G. Ascheid.
Synchronization for Hybrid MPSoC Full-system Simulation. In Proceedings
of the 49th ACM/IEEE Design Automation Conference, pages 121 –126, June
2012. 4.1.3, 4.5, 4.1.3

[MEW02] Giovanni De Micheli, Rolf Ernst, and Wayne Wolf. Readings in
Hardware/Software Co-Design. Kluwer Academic Publishers, March 2002.
3.4

[MFP11] L. Michel, N. Fournel, and F. Petrot. Speeding-up SIMD Instructions Dynamic
Binary Translation in Embedded Processor Simulation. In Proceedings of the
Conference on Design, Automation and Test in Europe and Exhibition, Grenoble,
France, pages 1–4, March 2011. 4.2.3.2

TIMA Laboratory, CNRS/INP Grenoble/UJF 177

REFERENCES

[MFP12] Luc Michel, Nicolas Fournel, and Frédéric Pétrot. Fast Simulation of
Systems Embedding VLIW Processors. In Proceedings of the 10th IEEE/ACM
International Conference on Hardware/Software Codesign and System Synthesis,
Tampere, Finland, pages 143–150, 2012. 4.2.3.2

[MME+97] J. H. Moreno, M. Moudgill, K. Ebcioglu, E. Altman, C. B. Hall, R. Miranda,
S.-K. Chen, and A. Polyak. Simulation/Evaluation Environment for a VLIW
Processor Architecture. IBM Journal of Research and Development, 41(3):287–
302, May 1997. 4.2.3

[MMGP10] A. Mello, I. Maia, A. Greiner, and F. Pecheux. Parallel Simulation of SystemC
TLM 2.0 Compliant MPSoC on SMP Workstations. In Proceedings of the
Conference on Design, Automation and Test in Europe and Exhibition, pages
606–609, March 2010. 3.4.4.1

[MRRJ05] Anish Muttreja, Anand Raghunathan, Srivaths Ravi, and Niraj K. Jha. Hybrid
Simulation for Embedded Software Energy Estimation. In Proceedings of the
42nd annual Design Automation Conference, pages 23–26, 2005. 4.1.3

[MRRJ07a] A. Muttreja, A. Raghunathan, S. Ravi, and N.K. Jha. Hybrid Simulation for
Energy Estimation of Embedded Software. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 26(10):1843–1854, October
2007. 4.1.3

[MRRJ07b] Anish Muttreja, Anand Raghunathan, Srivaths Ravi, and Niraj K. Jha.
Automated Energy/Performance Macromodeling of Embedded Software.
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,
26(3):542–552, March 2007. 4.1.3

[MSVSL08] Trevor Meyerowitz, Alberto Sangiovanni-Vincentelli, Mirko Sauermann, and
Dominik Langen. Source-Level Timing Annotation and Simulation for a
Heterogeneous Multiprocessor. In Proceedings of the Conference on Design,
Automation and Test in Europe and Exhibition, pages 276–279, 2008. 3.5.5,
4.2.1

[MVG03] J. Madsen, K. Virk, and M. Gonzales. Abstract RTOS Modeling for
Multiprocessor System-on-Chip. In Proceedings of the International Symposium
on System-on-Chip, pages 147–150, November 2003. 4.1.1

[NBS+02] Achim Nohl, Gunnar Braun, Oliver Schliebusch, Rainer Leupers, Heinrich
Meyr, and Andreas Hoffmann. A Universal Technique for Fast and Flexible
Instruction-Set Architecture Simulation. In Proceedings of the 39th annual
Design Automation Conference, pages 22–27, New York, NY, USA, 2002. 4.7,
4.2.3.2, 4.2.3.2

[NSL+06] Gil Neiger, Amy Santoni, Felix Leung, Dion Rodgers, and Rich Uhlig.
Intel Virtualization Technology: Hardware Support for Efficient Processor
Virtualization. Intel Technology Journal, 10(3):167–177, August 2006. 5, 5.1

[NST06] H. Nakamura, N. Sato, and N. Tabuchi. An Efficient and Portable Scheduler
for RTOS Simulation and its Certified Integration to SystemC. In Proceedings

178 Mian-Muhammad Hamayun

REFERENCES

of the Design, Automation and Test in Europe, volume 1, pages 1–2, March
2006. 4.1.1, 4.2.2

[NTN06] T. Nakada, T. Tsumura, and H. Nakashima. Design and Implementation of
a Workload Specific Simulator. In Proceedings of the 39th Annual Simulation
Symposium, pages 230–243, April 2006. 4.2.3.1, 6.2.3

[PAS+06] H. Posadas, J. Adamez, P. Sanchez, E. Villar, and F. Blasco. POSIX Modeling
in SystemC. In Proceedings of the Asia and South Pacific Design Automation
Conference, pages 485–490, January 2006. 4.1.1

[PDV11] H. Posadas, L. Diaz, and E. Villar. Fast Data-Cache Modeling for Native
Co-Simulation. In Proceedings of the 16th Asia South Pacific Design Automation
Conference, pages 425 –430, January 2011. 4.1.2.1

[PFG+10] Frédéric Pétrot, Nicolas Fournel, Patrice Gerin, Marius Gligor,
Mian Muhammad Hamayun, and Hao Shen. On MPSoC Software
Execution at the Transaction Level. IEEE Design & Test of Computers,
28(3):2–11, 2010. 2.1, 3.9

[PG74] Gerald J. Popek and Robert P. Goldberg. Formal Requirements for
Virtualizable Third Generation Architectures. Communication of the ACM,
17(7):412–421, 1974. 5.1.1, A

[PGR+08] Katalin Popovici, Xavier Guerin, Frederic Rousseau, Pier Stanislao Paolucci,
and Ahmed Amine Jerraya. Platform-based Software Design Flow for
Heterogeneous MPSoC. ACM Transactions on Embedded Computing Systems,
7(4):39:1–39:23, August 2008. 3.4.2

[PHS+04] H. Posadas, F. Herrera, P. Sanchez, E. Villar, and F. Blasco. System-level
Performance Analysis in SystemC. In Proceedings of the Design, Automation
and Test in Europe Conference and Exhibition, volume 1, pages 378–383,
February 2004. 4.2.1

[PJ07] Katalin Popovici and Ahmed Amine Jerraya. Simulink based Hardware-
Software Codesign Flow for Heterogeneous MPSoC. In Proceedings of the
2007 Summer Computer Simulation Conference, pages 497–504, San Diego, CA,
USA, 2007. 1.2.1, 3.4.1, 4.1.2

[PMGP10] I.M. Pessoa, A. Mello, A. Greiner, and F. Pecheux. Parallel TLM Simulation
of MPSoC on SMP Workstations: Influence of Communication Locality. In
Proceedings of the International Conference on Microelectronics, pages 359–362,
December 2010. 3.4.4.1

[PMP+04] Joshua J. Pieper, Alain Mellan, JoAnn M. Paul, Donald E. Thomas,
and Faraydon Karim. High Level Cache Simulation for Heterogeneous
Multiprocessors. In Proceedings of the 41st annual Design Automation
Conference, pages 287–292, New York, NY, USA, 2004. 4.2

[Pol] PolyBench/C: The Polyhedral Benchmark Suite, http://www.cse.
ohio-state.edu/~pouchet/software/polybench/. 7.1.4

TIMA Laboratory, CNRS/INP Grenoble/UJF 179

http://www.cse.ohio-state.edu/~pouchet/software/polybench/
http://www.cse.ohio-state.edu/~pouchet/software/polybench/

REFERENCES

[PV09] Héctor Posadas and Eugenio Villar. Automatic HW/SW Interface Modeling
for Scratch-Pad and Memory Mapped HW Components in Native Source-
Code Co-simulation. In Analysis, Architectures and Modelling of Embedded
Systems, volume 310, pages 12–23. 2009. 4.1.2.1, 5.2.4.1, 5.5

[PVRM10] H. Posadas, E. Villar, D. Ragot, and M. Martinez. Early Modeling of Linux-
Based RTOS Platforms in a SystemC Time-Approximate Co-simulation
Environment. In Proceedings of the 13th IEEE International Symposium on
Object/Component/Service-Oriented Real-Time Distributed Computing, pages
238 –244, May 2010. 4.1.1

[RAB] RABBITS is an Annotation-Based Binary-Translation system Simulation.,
http://tima-sls.imag.fr/viewgit/rabbits/. 7.2

[RI00] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel Pentium’s
Ability to Support a Secure Virtual Machine Monitor. In Proceedings of the
9th USENIX Security Symposium, Denver, Colorado, USA, August 2000. A

[RMD03] M. Reshadi, P. Mishra, and N. Dutt. Instruction Set Compiled Simulation: A
Technique for Fast and Flexible Instruction Set Simulation. In Proceedings
of the 40th ACM/IEEE Design Automation Conference, pages 758–763, 2003.
4.2.3.1, 4.2.3.2

[RMD09] Mehrdad Reshadi, Prabhat Mishra, and Nikil Dutt. Hybrid-Compiled
Simulation: An Efficient Technique for Instruction-Set Architecture
Simulation. ACM Transactions on Embedded Computing Systems, 8(3):20:1–
20:27, April 2009. 4.2.3.2, 4.2.3.2, 4.10

[SBVR08] J. Schnerr, O. Bringmann, A. Viehl, and W. Rosenstiel. High-Performance
Timing Simulation of Embedded Software. In Proceedings of the 45th
ACM/IEEE Design Automation Conference, pages 290–295, June 2008. 4.2.1

[SCHY12] Bor-Yeh Shen, Jiunn-Yeu Chen, Wei-Chung Hsu, and Wuu Yang. LLBT: An
LLVM-based Static Binary Translator. In Proceedings of the International
Conference on Compilers, Architectures and Synthesis for Embedded Systems,
pages 51–60, New York, NY, USA, 2012. 4.2.3.1, 6.1

[SD08] G. Schirner and R. Domer. Introducing Preemptive Scheduling in Abstract
RTOS Models using Result Oriented Modeling. In Proceedings of the
Conference on Design, Automation and Test in Europe and Exhibition, pages
122–127, March 2008. 4.1.1

[SGP08] Hao Shen, Patrice Gerin, and Frédéric Pétrot. Configurable Heterogeneous
MPSoC Architecture Exploration Using Abstraction Levels. In Proceedings
of the 19th IEEE/IFIP International Symposium on Rapid System Prototyping,
pages 51–57, Washington, DC, USA, 2008. 1.2.1, 4.1.2

[SL98] Eric Schnarr and James R. Larus. Fast Out-of-Order Processor Simulation
using Memoization. ACM SIGOPS Operating Systems Review, 32(5):283–294,
October 1998. 4.2.3.2, 6.1

180 Mian-Muhammad Hamayun

http://tima-sls.imag.fr/viewgit/rabbits/

REFERENCES

[SLM06] Louis Scheffer, Luciano Lavagno, and Grant Martin. EDA for IC System Design,
Verification, and Testing. CRC Press, March 2006. 3.4

[SYS] Open SystemC Initiative Homepage, http://www.systemc.org. 3.3,
3.3.1, 3.4

[TAB07] A. Tsikhanovich, E.M. Aboulhamid, and G. Bois. Timing Specification in
Transaction Level Modeling of Hardware/Software Systems. In Proceedings of
the 50th Midwest Symposium on Circuits and Systems, pages 249 –252, August
2007. 3.4.4.1

[TAM+08] Shyamkumar Thoziyoor, Jung Ho Ahn, Matteo Monchiero, Jay B. Brockman,
and Norman P. Jouppi. A Comprehensive Memory Modeling Tool and its
Application to the Design and Analysis of Future Memory Hierarchies.
In Proceedings of the 35th Annual International Symposium on Computer
Architecture, pages 51–62, 2008. 7.3.3.2

[Tan84] A. Tanenbaum. Structured Computer Organization; (2nd ed.). Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1984. 3.2

[Tex10] Texas Instruments. Reference Guide: TMS320C64x/C64x+ DSP CPU and
Instruction Set, May 2010. SPRU732I. 3.11

[TRKA07] W. Tibboel, V. Reyes, M. Klompstra, and D. Alders. System-Level Design
Flow Based on a Functional Reference for HW and SW. In Proceedings of the
44th ACM/IEEE Design Automation Conference, pages 23 –28, June 2007. 1.2.1,
4.1.2, 4.2

[UNR+05] Rich Uhlig, Gil Neiger, Dion Rodgers, Amy L. Santoni, Fernando C. M.
Martins, Andrew V. Anderson, Steven M. Bennett, Alain Kagi, Felix H. Leung,
and Larry Smith. Intel Virtualization Technology. IEEE Computer, 38(5):48–
56, 2005. 5, 5.1, 5.1.1, 5.1.2

[vdWdKH+04] P. van der Wolf, E. de Kock, T. Henriksson, W. Kruijtzer, and G. Essink.
Design and Programming of Embedded Multiprocessors: An Interface-centric
Approach. In Proceedings of the 2nd IEEE/ACM International Conference on
Hardware/Software Codesign and System Synthesis, pages 206–217, September
2004. 3.4.2

[VKS00] D. Verkest, J. Kunkel, and F. Schrirrmeister. System Level Design using C++.
In Proceedings of the Conference on Design, Automation and Test in Europe and
Exhibition, pages 74–81, 2000. 3.3, 3.4.1

[VMW09] Performance Evaluation of Intel EPT Hardware Assist, March 2009. B.2, B.4

[WH09] Zhonglei Wang and A. Herkersdorf. An Efficient Approach for System-
level Timing Simulation of Compiler-optimized Embedded Software. In
Proceedings of the 46th ACM/IEEE Design Automation Conference, San Francisco,
California, pages 220 –225, July 2009. 3.5.5, 4.1.1, 4.2.2, 4.6

TIMA Laboratory, CNRS/INP Grenoble/UJF 181

http://www.systemc.org

REFERENCES

[WR96] Emmett Witchel and Mendel Rosenblum. Embra: Fast and Flexible Machine
Simulation. In Proceedings of the International Conference on Measurement
and Modeling of Computer Systems, pages 68–79, New York, NY, USA, 1996.
4.2.3.2

[WSH08] Zhonglei Wang, Antonio Sanchez, and Andreas Herkersdorf. SciSim:
A Software Performance Estimation Framework using Source Code
Instrumentation. In Proceedings of the 7th International Workshop on Software
and Performance, pages 33–42, New York, NY, USA, 2008. 1.2, 4.1.1, 4.2.1,
4.2.2

[WYW08] Peng Wang, Jianxin Yang, and Biao Wang. Simple-VLIW: A Fundamental
VLIW Architectural Simulation Platform. In Proceedings of the 7th
International Asia Simulation Conference on System Simulation and Scientific
Computing, pages 1258 –1266, October 2008. 4.2.3

[YBB+03] Sungjoo Yoo, I. Bacivarov, A. Bouchhima, Y. Paviot, and A.A. Jerraya. Building
Fast and Accurate SW Simulation Models based on Hardware Abstraction
Layer and Simulation Environment Abstraction Layer. In Proceedings of the
Conference on Design, Automation and Test in Europe and Exhibition, pages
550–555, 2003. 1.2.1, 3.2, 4.1.2, 5.2.2

[YJ03] Sungjoo Yoo and A.A. Jerraya. Introduction to Hardware Abstraction Layers
for SoC. In Proceedings of the Conference on Design, Automation and Test in
Europe and Exhibition, pages 336–337, 2003. 1.2.1, 3.5.1, 4.1.2

[YNGJ02] S. Yoo, G. Nicolescu, L. Gauthier, and A. Jerraya. Automatic Generation of
Fast Timed Simulation Models for Operating Systems in SoC Design. In
Proceedings of the Conference on Design, Automation and Test in Europe and
Exhibition, pages 620–627, Washington, DC, USA, 2002. 4.1.1

[ZG99] Jianwen Zhu and Daniel D. Gajski. A Retargetable, Ultra-Fast Instruction Set
Simulator. In Proceedings of the Conference on Design, Automation and Test in
Europe and Exhibition, pages 298–302, New York, NY, USA, 1999. 4.2.3.1

[ZM96] V. Zivojnovic and H. Meyr. Compiled HW/SW Co-Simulation. In Proceedings
of the 33rd ACM/IEEE Design Automation Conference, pages 690–695, June
1996. 4.2.3, 4.2.3.1

[ZT00] Cindy Zheng and Carol Thompson. PA-RISC to IA-64: Transparent Execution,
No Recompilation. IEEE Computer, 33(3):47–52, March 2000. 4.2.3.2, 4.2.3.2,
6.1

[ZTM95] V. Zivojnovic, S. Tijang, and H. Meyr. Compiled Simulation of Programmable
DSP Architectures. In Proceedings of the Workshop on VLSI Signal Processing,
pages 187–196, oct 1995. 4.2.3.1

182 Mian-Muhammad Hamayun

REFERENCES

TIMA Laboratory, CNRS/INP Grenoble/UJF 183

	Dedication
	Abstract
	Résumé
	Acknowledgments
	List of Figures
	List of Tables
	I Résumé Français
	Simulation Native de MPSoC à l'aide de la Virtualisation Assistée par le Matériel
	Introduction
	Problématique
	Interfaces Matériel Logiciel
	Les Espaces d'Adressage Cible et Hôte

	Virtualisation Assistée par le Matériel
	Simulation Native à l’Aide de la Virtualisation Assistée par le Matériel
	Conclusion

	II Unabridged English Version
	Introduction
	The Hardware/Software Co-Design Challenge
	Main Contributions and Organization

	Native Simulation of MPSoC: A Retrospective Definition & Problems
	Generic Architecture of An MPSoC
	Architecture of Software Nodes
	Key Terms

	Description Languages for Simulation Models
	SystemC: A Modeling Language

	Abstraction Levels and Simulation Models
	System Level
	Cycle Accurate Level
	Virtual Architecture Level
	Transaction Accurate Level

	Native Transaction Accurate Simulation
	Hardware Abstraction Layer
	Native Software Execution
	Target vs@let@token . Host Address Spaces
	Using a Unified Address Space
	Software Performance Estimation

	VLIW Processor Architecture Simulation
	Modeling Parallelism and VLIW Pipelines
	Memory Addressing in Translated Software
	Software Execution Timings and Synchronization
	Hybrid and Heterogeneous MPSoC Simulation

	Conclusion and Key Questions

	State of the Art: On Software Execution for MPSoC Simulation
	Native Platforms for MPSoC Simulation
	Software Encapsulation
	Hardware-Software Interfaces
	Hybrid Techniques

	Performance Estimation in Native Simulation
	Source Level Simulation
	Intermediate Representation Level Simulation
	Binary Level Simulation

	Discussion and Conclusions

	Native MPSoC Simulation Platform Using Hardware-Assisted Virtualization
	Hardware-Assisted Virtualization (HAV)
	Processor Virtualization
	Memory Virtualization
	I/O Virtualization/Emulation

	Native Simulation Using Hardware-Assisted Virtualization
	Native Processing Units
	Host Dependent Hardware Abstraction Layer
	Using Hardware Abstraction Layer as a Synchronization Point
	Memory and I/O Address Space Accesses

	Timing Annotations in Software
	Minimizing Guest vs@let@token .. Host Mode Switches

	MPSoC Simulation using Hardware-Assisted Virtualization
	Asynchronous External Events
	Simulating Multiple Processors
	Virtual CPU Scheduling in Kernel Virtual Machine

	Hybrid MPSoC Simulation
	Memory and I/O Access Comparison

	Conclusions and Limitations

	Static Binary Translation Targeting VLIW Processor Simulation
	Static Binary Translation Principle and Constraints
	Static Translation Specific Constraints
	Virtualization Specific Constraints

	Retargetable Static Translation of VLIW Software
	Instruction Representation
	Execute Packet Decoding and Basic Block Construction
	Intermediate Code Generation
	VLIW Processor State and Circular Buffers
	Data and Instruction Memory Accesses
	Code Generation Modes
	Optimization and Inlining

	Conclusions and Limitations

	Experimentation and Results
	Software Environment and Benchmarks
	MiBench Suite
	Parallel Motion-JPEG
	Audio Filter
	DSP Kernels

	Hardware Environment and Reference Platforms
	Native MPSoC Simulation Platform
	Hybrid Simulation Platform
	Reference Platforms and Simulators

	Mono-processor Experiments
	Software Execution in Target Address Space
	Compute vs@let@token . I/O Intensive Applications
	Software Annotations and Simulation Accuracy

	Multi-processor Experiments
	Multi-threaded Applications on SMP Platforms
	Hybrid Simulation Platform

	Simulation of Cross-Compiled DSP Kernels
	Conclusions and Limitations

	Conclusions and Perspectives
	Conclusions
	Perspectives

	Sensitive and Unprivileged Instructions in IA-32 (x86) Architectures
	Memory Virtualization Support in Hardware-Assisted Virtualization
	Memory Virtualization using Shadow Page Tables
	Memory Virtualization using Extended Page Tables

	Code Generation Algorithms for VLIW Software Simulation
	IR Generation for VLIW Basic Blocks
	IR Generation for VLIW Execute Packets

	Glossary
	List of Publications
	References

