]. C. Turner, J. L. Xu, D. Joguet, J. Cizek, K. A. Khor et al., Menidjel, « Patentability searching for biomaterial and related polymers », World Patent Information Morks, « Plasma spraying of zirconia–titania–silica bio-ceramic composite coating for implant application « Synthesis and characterization on atomphospheric plasma sprayed amorphous silica doped hydrxoyapatite coatings Histological evaluation of bone healing using organic bovine bone in combination with platelet-rich plasma (an experimental study on rabbits), Three rules for bone adaptation to mechanical stimuli Medical Applications for Additive Manufacture Additive Manufacturing Technologies Economics of additive manufacturing for end-usable metal parts, pp.399407-46594665, 1998.

S. Hur, H. Kim, and S. Lee, STL File Generation with Data Reduction by the Delaunay Triangulation Method in Reverse Engineering, The International Journal of Advanced Manufacturing Technology, vol.19, issue.9, p.669678, 2002.
DOI : 10.1007/s001700200112

X. Li, C. Wang, W. Zhang, and E. Y. Li, Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process, Materials Letters, vol.63, issue.3-4, pp.34-403405, 2009.
DOI : 10.1016/j.matlet.2008.10.065

D. A. Ramirez, L. E. Murr, E. Martinez, D. H. Hernandez, J. L. Martinez et al., Novel precipitate???microstructural architecture developed in the fabrication of solid copper components by additive manufacturing using electron beam melting, Acta Materialia, vol.59, issue.10, p.40884099, 2011.
DOI : 10.1016/j.actamat.2011.03.033

M. Fantini, F. De-crescenzio, and E. L. Ciocca, Design and Rapid Manufacturing of anatomical prosthesis for facial rehabilitation, International Journal on Interactive Design and Manufacturing (IJIDeM), vol.22, issue.8, p.112, 2012.
DOI : 10.1007/s12008-012-0159-7

D. , M. Yunos, O. Bretcanu, and E. A. Boccaccini, Polymer-bioceramic composites for tissue engineering scaffolds, Journal of Materials Science, vol.43, issue.13, p.44334442, 2008.

W. Zhou, S. Lee, M. Wang, W. Cheung, and E. W. Ip, Selective laser sintering of porous tissue engineering scaffolds from poly(l-lactide)/carbonated hydroxyapatite nanocomposite microspheres, Journal of Materials Science: Materials in Medicine, vol.182, issue.335, p.25352540, 2008.
DOI : 10.1007/s10856-007-3089-3

J. Tan, C. Chua, and E. K. Leong, Fabrication of channeled scaffolds with ordered array of micro-pores through microsphere leaching and indirect Rapid Prototyping technique, Biomedical Microdevices, vol.334, issue.335, p.114, 2012.
DOI : 10.1007/s10544-012-9690-3

S. Park, G. Kim, Y. Jeon, Y. Koh, and E. W. Kim, 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system, Journal of Materials Science: Materials in Medicine, vol.128, issue.2203, p.229234, 2009.
DOI : 10.1007/s10856-008-3573-4

S. Dingal, T. Pradhan, J. Sundar, A. Choudhury, and E. S. Roy, « The application of Taguchi’s method in the experimental investigation of the laser sintering process, The International Journal of Advanced Manufacturing Technology, vol.38, issue.9, p.904914, 2008.

S. Kumar, Selective laser sintering: A qualitative and objective approach, JOM, vol.338, issue.1, p.4347, 2003.
DOI : 10.1007/s11837-003-0175-y

W. Zhou and D. Heesom, Georgakis, « Enhancing User-Centered Design by Adopting the Taguchi Philosophy, Human-Computer Interaction. Interaction Design and Usability

G. Taguchi, Introduction to quality engineering: designing quality into products and processes. 1986. [24] « SEER Training: Structure of Bone Tissue ». [Online] Available: http://training.seer.cancer.gov/anatomy/skeletal/tissue.html, pp.27-2012

L. L. Hench, R. J. Splinter, W. C. Allen, and T. K. Greenlee, Bonding mechanisms at the interface of ceramic prosthetic materials, Journal of Biomedical Materials Research, vol.66, issue.6, p.117141, 1971.
DOI : 10.1002/jbm.820050611

«. Le-tissu-osseux, Available: http://dossier.univ-st-etienne.fr/lbto/www/tissuosseux/index, html, pp.28-2012

K. Kirchhof, K. Hristova, N. Krasteva, G. Altankov, and E. T. Groth, Multilayer coatings on biomaterials for control of MG-63 osteoblast adhesion and growth, Journal of Materials Science: Materials in Medicine, vol.53, issue.Suppl. 1, p.897907, 2009.
DOI : 10.1007/s10856-008-3639-3

J. Brinkmann, T. Hefti, F. Schlottig, N. D. Spencer, and E. H. Hall, Response of Osteoclasts to Titanium Surfaces with Increasing Surface Roughness: An In Vitro Study, Biointerphases, vol.7, issue.1, pp.14-34, 2012.
DOI : 10.1007/s13758-012-0034-x

P. Nassoy and C. Lamaze, Stressing caveolae new role in cell mechanics, Trends in Cell Biology, vol.22, issue.7, pp.381389-2012
DOI : 10.1016/j.tcb.2012.04.007

URL : https://hal.archives-ouvertes.fr/hal-00821324

A. Butscher, M. Bohner, S. Hofmann, L. Gauckler, and E. R. Müller, Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing, Acta Biomaterialia, vol.7, issue.3, p.907920, 2011.
DOI : 10.1016/j.actbio.2010.09.039

J. Combes, Etude de l’adhésion d’ostéoblastes sur substituts apatitiques par microscopie à force atomique, pp.28-2009

S. Byers, J. D. Nuttall, A. C. Crawley, J. J. Hopwood, K. Smith et al., Effect of enzyme replacement therapy on bone formation in a feline model of mucopolysaccharidosis type VI, Bone, vol.21, issue.5, p.425431, 1997.
DOI : 10.1016/S8756-3282(97)00175-0

B. B. Aggarwal and B. Sung, Pharmacological basis for the role of curcumin in chronic diseases: an age-old spice with modern targets, Trends in Pharmacological Sciences, vol.30, issue.2, p.8594, 2009.
DOI : 10.1016/j.tips.2008.11.002

K. Uchida, O. T. Khor, T. Oya, T. Osawa, Y. Yasuda et al., Protein modification by a Maillard reaction intermediate methylglyoxal, FEBS Letters, vol.271, issue.2-3, p.313318, 1997.
DOI : 10.1016/S0014-5793(97)00610-8

D. Magalhães-padilha, G. Fonseca, K. Haag, A. Wischral, M. Gastal et al., Long-term in vitro culture of ovarian cortical tissue in goats: effects of FSH and IGF-I on preantral follicular development and FSH and IGF-I receptor mRNA expression, Cell and Tissue Research, vol.65, issue.3, p.19, 2012.
DOI : 10.1007/s00441-012-1498-1

«. Données-sur-le-marché-des-biomatériaux and |. ». Psevs, Available: http://www.psevs.eu/index.php?option=com_k2&view=item&id=6:donnees-marche- biomateriaux&Itemid=18, pp.29-2012

R. Wyre and S. Downes, An in vitro investigation of the PEMA/THFMA polymer system as a biomaterial for cartilage repair, Biomaterials, vol.21, issue.4, p.335343, 2000.
DOI : 10.1016/S0142-9612(99)00185-4

H. I. Kim, S. J. Park, S. I. Kim, N. G. Kim, and S. J. Kim, Electroactive polymer hydrogels composed of polyacrylic acid and poly(vinyl sulfonic acid) copolymer for application of biomaterial, Synthetic Metals, vol.155, issue.3, p.674676, 2005.
DOI : 10.1016/j.synthmet.2005.08.027

D. G. Anderson, D. Putnam, E. B. Lavik, T. A. Mahmood, and E. R. Langer, Biomaterial microarrays: rapid, microscale screening of polymer???cell interaction, Biomaterials, vol.26, issue.23, p.48924897, 2005.
DOI : 10.1016/j.biomaterials.2004.11.052

Y. S. Lipatov, Polymer blends and interpenetrating polymer networks at the interface with solids, Progress in Polymer Science, p.17211801, 2002.

J. Lee, H. Kim, and Y. Koh, Highly porous titanium (Ti) scaffolds with bioactive microporous hydroxyapatite/TiO2 hybrid coating layer, Materials Letters, vol.63, issue.23, 2009.
DOI : 10.1016/j.matlet.2009.06.023

H. U. Lee, Y. S. Jeong, S. Y. Park, S. Y. Jeong, H. G. Kim et al., Surface properties and cell response of fluoridated hydroxyapatite/TiO2 coated on Ti substrate, Current Applied Physics, vol.9, issue.2, p.528533, 2009.
DOI : 10.1016/j.cap.2008.03.020

S. Sathish, M. Geetha, S. T. Aruna, N. Balaji, K. S. Rajam et al., Studies on plasma sprayed bi-layered ceramic coating on bio-medical Ti???13Nb???13Zr alloy, Effect of embryonic bone tissue on bone regeneration, p.10171021, 2000.
DOI : 10.1016/j.ceramint.2010.12.012

B. Grosgogeat and J. Brugirard, « Les essais de corrosion des biomatériaux: leurs usages, leurs limites, leurs fondements, Matériaux et techniques, pp.56-1528, 2001.

A. Breithaupt-faloppa, W. De-lima, R. Oliveira-filho, and E. J. Kleinheinz, In vitro behaviour of endothelial cells on a titanium surface, Head & Face Medicine, vol.14, issue.2, p.19, 2008.
DOI : 10.1053/beha.2001.0132

K. Schwager, Titanium as a biomaterial for ossicular replacement: results after implantation in the middle ear of the rabbit, European Archives of Oto-Rhino-Laryngology, vol.255, issue.8, p.396401, 1998.
DOI : 10.1007/s004050050086

E. Zhang, H. Chen, and E. F. Shen, Biocorrosion properties and blood and cell compatibility of pure iron as a biodegradable biomaterial, Journal of Materials Science: Materials in Medicine, vol.76, issue.3, p.21512163, 2010.
DOI : 10.1007/s10856-010-4070-0

D. A. Puleo and A. Nanci, Understanding and controlling the bone???implant interface, Biomaterials, vol.20, issue.23-24, p.23112321, 1999.
DOI : 10.1016/S0142-9612(99)00160-X

M. Mehta, K. Schmidt-bleek, G. N. Duda, and D. J. Mooney, Biomaterial delivery of morphogens to mimic the natural healing cascade in bone, Advanced Drug Delivery Reviews, vol.64, issue.12, pp.12-12571276, 2012.
DOI : 10.1016/j.addr.2012.05.006

T. C. Holmes, Novel peptide-based biomaterial scaffolds for tissue engineering, Trends in Biotechnology, vol.20, issue.1, p.1621, 2002.
DOI : 10.1016/S0167-7799(01)01840-6

C. Y. Lin, N. Kikuchi, and S. J. Hollister, A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity, Journal of Biomechanics, vol.37, issue.5, p.623636, 2004.
DOI : 10.1016/j.jbiomech.2003.09.029

F. Dartigues, « La précipitation à la solidification du monoborure de titane dans l’alliage de titane (Ti-6Al-4V) peut-elle modifier sa microstructure et son comportement mécanique?, 2004.

D. M. Stefanescu, A. , and A. Handbook, Casting, 9 e éd, 1988.

P. Bertrand, F. Bayle, C. Combe, and P. Goeuriot, Smurov, « Ceramic components manufacturing by selective laser sintering, Applied Surface Science, vol.254, issue.4, p.989992, 2007.

T. Nishida, E. T. Nakamura, and . Kokubo, « Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia, vol.7, issue.3, p.13981406, 2011.

F. E. Wiria, K. F. Leong, C. K. Chua, and E. Y. Liu, « Poly-[epsilon]caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering, Acta Biomaterialia, vol.3, issue.1, p.112, 2007.
DOI : 10.1016/j.actbio.2006.07.008

L. Elomaa, S. Teixeira, R. Hakala, H. Korhonen, D. W. Grijpma et al., Preparation of poly(??-caprolactone)-based tissue engineering scaffolds by stereolithography, Acta Biomaterialia, vol.7, issue.11, p.38503856, 2011.
DOI : 10.1016/j.actbio.2011.06.039

«. Micro-stéréolithographie, Available: http://www.stereolithographie.fr/presentation_stereolithographie.htm, pp.18-2012

K. Arcaute, B. Mann, and E. R. Wicker, Stereolithography of spatially controlled multimaterial bioactive poly(ethylene glycol) scaffolds », Acta Biomaterialia, vol.6, issue.3, p.10471054, 2010.

P. Lan, J. Lee, Y. Seol, and D. Cho, Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification, Journal of Materials Science: Materials in Medicine, vol.12, issue.1, p.271279, 2009.
DOI : 10.1007/s10856-008-3567-2

G. Tang, H. Zhang, Y. Zhao, X. Li, X. Yuan et al., Prolonged release from PLGA/HAp scaffolds containing drug-loaded PLGA/gelatin composite microspheres, Journal of Materials Science: Materials in Medicine, vol.95, issue.1, p.419429, 2012.
DOI : 10.1007/s10856-011-4493-2

E. C. Santos, M. Shiomi, K. Osakada, and E. T. Laoui, Rapid manufacturing of metal components by laser forming, International Journal of Machine Tools and Manufacture, vol.46, issue.12-13, pp.1213-14591468, 2006.
DOI : 10.1016/j.ijmachtools.2005.09.005

T. Nishida, E. T. Nakamura, and . Kokubo, « Bioactive Ti metal analogous to human cancellous bone: Fabrication by selective laser melting and chemical treatments, Acta Biomaterialia, vol.7, issue.3, p.13981406, 2011.

Y. Seol, J. Y. Kim, E. K. Park, S. Kim, and D. Cho, Fabrication of a hydroxyapatite scaffold for bone tissue regeneration using microstereolithography and molding technology, Microelectronic Engineering, pp.46-14431446, 2009.
DOI : 10.1016/j.mee.2009.01.053

V. Karageorgiou and D. Kaplan, Porosity of 3D biomaterial scaffolds and osteogenesis, Biomaterials, vol.26, issue.27, p.54745491, 2005.
DOI : 10.1016/j.biomaterials.2005.02.002

T. P. Kunzler, T. Drobek, M. Schuler, and N. D. Spencer, Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients, Biomaterials, vol.28, issue.13, pp.13-21752182, 2007.
DOI : 10.1016/j.biomaterials.2007.01.019

«. Hydroxyapatite-properties and . Applications, Available: http://www.azom.com/Details.asp?ArticleID=107, pp.14-2009

T. Jollivet, A. Darfeuille, B. Verquin, and E. S. Pillot, Rapid manufacturing of polymer parts by selective laser sintering, International Journal of Material Forming, vol.2, issue.S1, p.697700, 2009.
DOI : 10.1007/s12289-009-0604-8

C. J. Jagger, T. J. Chambers, and J. W. Chow, « Stimulation of bone formation by dynamic mechanical loading of rat caudal vertebrae is not suppressed by

. Gallego, Influence of physiological effort of growth and chemical composition on antler bone mechanical properties, Bone, vol.41, issue.5, p.794803, 2007.

S. Judex and R. , Zernicke, « Does the mechanical milieu associated with high-speed running lead to adaptive changes in diaphyseal growing bone?, Bone, vol.26, issue.2, p.153159, 2000.

S. J. Mellon and K. E. Tanner, Bone and its adaptation to mechanical loading: a review, International Materials Reviews, vol.59, issue.7, pp.235255-235282, 2012.
DOI : 10.1177/154405910508400501

M. Csele, Fundamentals of Light Sources and Lasers, 2004.
DOI : 10.1002/0471675210

A. S. For-metals and M. Handbook, Properties and Selection!: Nonferrous Alloys and Pure Metals, 1989.

C. L. Yaws, Handbook of Thermal Conductivity Inorganic Compounds and Elements, 1 re éd, 1997.

D. N. Nikogosyan, Properties of Optical and Laser-Related Materials: A Handbook, 1 re éd, 1997.

G. Tani, L. Tomesani, and G. Campana, Fortunato, « Evaluation of molten pool geometry with induced plasma plume absorption in laser-material interaction zone, International Journal of Machine Tools and Manufacture, vol.47, issue.6, p.971977, 2007.

R. Rozman, I. Grabec, and E. E. Govekar, Influence of absorption mechanisms on laserinduced plasma plume, Applied Surface Science, vol.254, issue.11, p.32953305, 2008.

M. Rahman and V. Cooray, « NOx generation in laser-produced plasma in air as a function of dissipated energy, Optics & Laser Technology, vol.35, issue.7, p.543546, 2003.

T. H. Childs and C. Hauser, Badrossamay, « Mapping and Modelling Single Scan Track Formation in Direct Metal Selective Laser Melting, Annals -Manufacturing Technology, vol.53, issue.1, p.191194, 2004.

G. Tani, L. Tomesani, and G. Campana, Fortunato, « Evaluation of molten pool geometry with induced plasma plume absorption in laser-material interaction zone, International Journal

J. F. Li, L. Li, and F. H. Stott, Comparison of volumetric and surface heating sources in the modeling of laser melting of ceramic materials, International Journal of Heat and Mass Transfer, vol.47, issue.6-7, pp.67-11591174, 2004.
DOI : 10.1016/j.ijheatmasstransfer.2003.10.002

M. Pillet, Les Plans d’expériences pour la méthode TAGUCHI. Editions d’Organisation, 1997.

X. Xu, S. Xu, L. Jin, and E. E. Song, Characteristic analysis of Otsu threshold and its applications, Pattern Recognition Letters, vol.32, issue.7, p.956961, 2011.
DOI : 10.1016/j.patrec.2011.01.021

I. Yadroitsev, M. Pavlov, and S. I. , Bertrand Ph, « Mechanical properties of samples fabricated by selective laser melting, 2009.

D. Spenlé and R. Gourhant, Guide du calcul en mécanique!: Maîtriser la performance des systèmes industriels. Hachette, 2003.

J. D. Featherstone and D. Fried, Fundamental Interactions of Laserswith Dental Hard Tissues, Medical Laser Application, vol.16, issue.3, p.181194, 2001.
DOI : 10.1078/1615-1615-00022

E. H. Tabatabaei and . Woo, « Historical Aspects of Laser Therapy for Benign Prostatic Hyperplasia, European Urology Supplements, vol.7, p.363369, 2008.

A. G. Paleocrassas and J. F. Tu, Inherent instability investigation for low speed laser welding of aluminum using a single-mode fiber laser, Journal of Materials Processing Technology, vol.210, issue.10, p.14111418, 2010.
DOI : 10.1016/j.jmatprotec.2010.04.002

A. Sinha, Physical Metallurgy Handbook, 1 re éd, 2002.

T. B. Massalski, Binary Alloy Phase Diagrams, 2nd (3 volumes) Asm Intl, 1990.

E. M. Levin, Phase Diagrams for Ceramists: 1969 Supplementt

R. S. Smith, M. A. Clevinger, D. Mckenna, and E. G. Smith, Phase Diagrams for Ceramists: Cumulative Index for Volumes I-V. The American Ceramic Society, 1984.

E. M. Levin, Phase Diagrams for Ceramists: Volume III Figures 4150-4999, 1975.

F. Prima, Etude métallurgique d’un nouvel alliage de titane béta-métastable, Thèse, I.N.S.A de Rennes, 2000.

B. Soegijono and P. Guiraldenq, Etude des interfaces métal-céramique sur des alliages Co- Cr-Mo: rôle d’une addition de tungstène (W) et de manganèse(Mn) = The study of metal-ceramic interface for Co-Cr-Mo alloy: role of an addition element of tungstene and manganese

T. Traini, C. Mangano, R. L. Sammons, F. Mangano, A. Macchi et al., Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants, Dental Materials, vol.24, issue.11, p.15251533, 2008.
DOI : 10.1016/j.dental.2008.03.029

W. Bonfield and A. E. Tully, « Ultrasonic analysis of the Young’s modulus of cortical bone, Journal of Biomedical Engineering, vol.4, issue.1, p.2327, 1982.

A. Sharir, M. M. Barak, and E. R. Shahar, « Whole bone mechanics and mechanical testing », The Veterinary Journal, p.817, 2008.

E. A. Avallone and T. Baumeister, Marks Standard Handbook for Mechanical Engineers, Journal of Pressure Vessel Technology, vol.115, issue.1
DOI : 10.1115/1.2929486

D. Ryan, C. Gillen, E. A. Scott, . Woolfson, and . Design, Optimization and Characterisation of Polymeric Microneedle Arrays Prepared by a Novel Laser-Based Micromoulding Technique, Pharmaceutical Research, vol.28, issue.1, p.4157, 2011.

H. Cheikh, B. Courant, S. Branchu, X. Huang, J. Hascoët et al., Direct Laser Fabrication process with coaxial powder projection of 316L steel. Geometrical characteristics and microstructure characterization of wall structures, Optics and Lasers in Engineering, vol.50, issue.12, pp.12-17791784, 2012.
DOI : 10.1016/j.optlaseng.2012.07.002

URL : https://hal.archives-ouvertes.fr/hal-01006750

W. Piekarska and M. Kubiak, Modeling of thermal phenomena in single laser beam and laser-arc hybrid welding processes using projection method, Applied Mathematical Modelling, vol.37, issue.4
DOI : 10.1016/j.apm.2012.04.052

M. Kazaryan and Y. Timofeev, Spectral conversion in projection laser microscopes, Journal of Russian Laser Research, vol.10, issue.5, p.495500, 1996.
DOI : 10.1007/BF02090629