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ABSTRACT

The design of system architectures is a complex task which involves major stakes.
During this activity, system designers must create design alternatives and compare them

in order to select the most relevant system architecture given a set of criteria.

In order to investigate different alternatives, designers must generally limit their trade
studies to a small portion of the design-space which can be composed of a huge amount
of solutions. Traditionally, the architecture design process is mainly driven by enginee-
ring judgment and designers’ experiences and the selected alternatives are often adapted
versions of known solutions. The risk is then to select a pertinent but yet under optimal

solution.

In order to increase the confidence in the optimality of the selected solution, the co-
verage of the design-space must be increased. The use of computational design synthesis
methods proved to be an efficient way to support designers in the design of engineering
artifacts (structures, electrical circuits...). In order to assist system designers during the
architecture design process, a computational method for complex systems is defined. This
method uses an evolutionary approach (genetic algorithms) to guide the design-space ex-
ploration process toward optimal zones. The initial population of the genetic algorithm
is created thanks to a computational design synthesis technique which permits to create

different physical architectures and allocation mappings for a given functional architecture.

The method permits to obtain the optimal solutions of the stated design problem. These
solutions can be then used by designers for more detailed trade studies or for technical

negotiations with system suppliers.



RESUME

La conception d’architectures de systémes est une tache complexe qui implique des
enjeux majeurs. Au cours de cette activité, les concepteurs du systéme doivent créer des
alternatives de conception et doivent les comparer entre elles afin de sélectionner 1’archi-

tecture la plus appropriée suivant un ensemble de critéres.

Dans le but d’étudier différentes alternatives, les concepteurs doivent généralement
limiter leur étude comparative & une petite partie de I'espace de conception qui peut étre
composé d'un nombre immense de solutions. Traditionnellement, le processus de conception
d’architecture est principalement dirigé par le jugement et l'expérience des concepteurs, et
les alternatives sélectionnées sont des versions adaptées de solutions connues. Le risque est

donc de sélectionner une solution pertinente mais sous-optimale.

Pour gagner en confiance sur l'optimalité de la solution retenue, la couverture de l'es-
pace de conception doit étre augmentée. L’utilisation de méthodes de synthése calculatoire
d’architecture a prouvé qu’elle était un moyen efficace pour supporter les concepteurs dans
la conception d’artefacts d’ingénierie (structures, circuits électriques...). Pour assister les
concepteurs de systémes durant le processus de conception d’architecture, une méthode
calculatoire pour les systémes complexes est définie. Cette méthode emploie une approche
évolutionnaire (algorithmes génétiques) pour guider le processus d’exploration de 1'espace
de conception vers les zones optimales. La population initiale de 'algorithme génétique est
créée grace a une technique de synthése calculatoire d’architecture qui permet de créer dif-
férentes architectures physiques et tables d’allocations pour une architecture fonctionnelle

donnée.

La méthode permet d’obtenir les solutions optimales du probléme de conception posé.
Ces solutions peuvent étre ensuite utilisées par les concepteurs pour des études compara-

tives plus détaillées ou pour des négociations avec les fournisseurs de systémes.
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CHAPTER 1

GENERAL INTRODUCTION

With the development of emerging countries (China, Brazil, India...), the industrial
markets see the emergence of new competitors. This new context pushes the traditional
manufacturers to put innovation in a central place of their companies. Innovation must
permit to differentiate from competitors’ products but also to bring more valuable products

to the customers.

During the development of new products, innovation can be mainly achieved during
early design phases in which the degrees of freedom are numerous. In the field of systems,
this corresponds to the architecture design phase during which the building elements of the
system and their relations are defined. At this time, the constraints to be satisfied and the
needs to cover are known but the main characteristics of the system are not defined. This
permits to envisage innovative designs using new technologies, and /or new organizations of
existing technologies. Nevertheless, since alternatives can become numerous, methods are
needed to support the designers in the exploration of the design-space. Computer-aided
design techniques are particularly suited since they are able to handle the complexity of

current systems and the number of possible solutions to the design problem.

This dissertation presents the results of the research works that led to the definition of
a new design method for complex systems. This method shall allow designers to consider
large design-spaces in order to discover innovative and performing design alternatives for

their systems.



CHAPTER 2

RESEARCH CONTEXT

The research works started in January 2010 and have been lead within EADS Innovation
Works which is the corporate research center of the EADS group (Airbus, Eurocopter,
Astrium, Cassidian). The researches have been done in collaboration with the Industrial
Engineering lab (Laboratoire Genie Industriel) of Ecole Centrale Paris and with Airbus

France.

The research procedure started by the definition of the industrial needs and the anal-
ysis of current engineering practices within Airbus R&T teams. This analysis showed the
need for support in defining architectures for complex systems. Following the industrial
analysis, some existing methods and techniques were assessed to check their pertinence
with respect to the actual needs. Some interesting works were assessed but did not cover
entirely designers’ needs. Consequently, a proposition of method was made to Airbus sys-
tems designers to support them during the architecture design problem. The method was
applied to a cockpit design problem in order to be able to show the interest of the method

to Airbus design processes.
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Fig. 2.1: The research context



CHAPTER 3

OUTLINE

The first part of the thesis will introduce the industrial context of the research works. A
definition and examples of system architectures will be notably given. The needs perceived
through interactions with system designers will also be presented. The expected benefits

of the research works will be finally formulated.

An analysis of existing solutions to solve the system architecture design problem will be
presented in Part 3. This analysis will show that the domain of research is quite recent but
also very active. Nevertheless, the industrial needs stated in Part 2 require the definition

of a new method that will be presented in Part 4.

The method uses computational means to synthesize optimal design alternatives. In
order to demonstrate the feasibility and the pertinence of the method, a computer program
must be developed in order to apply the method and obtain results on a sample problem.

The architecture and the main characteristics of this software will be presented in Part 5.

Part 6 will first introduce the use-case which will be used as a test problem for the
method. The problem is the design of an aircraft cockpit: a complex and critical system
of the aircraft. The method will be applied to this problem using several sets of parame-
ters. This will permit to study the sensitivity of the results to the tuning of the method

parameters.

Finally, an analysis of the results will be conducted. Based on this analysis, perspectives

for future research works will be presented.
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INDUSTRIAL CONTEXT






CHAPTER 1

SYSTEMS

1.1 Definition

A gystem is defined as “a combination of interacting elements organized to achieve
one or more stated purposes” [INCOSE, 2007]. Systems include hardware, software and

humans.

For instance, a car is made of hardware elements (wheels, structure), software elements

(control software) and humans (driver !, passengers).

The purpose of a system is generally described as a set of requirements. These require-
ments describe the functions to be realized by the system (functional requirements) and
that participate to the realization of the system purpose as well as the expected perfor-

mances of these functions (non-functional requirements).

1.2 Hierarchy in systems

During its development, a system is decomposed in smaller entities called system ele-
ments or subsystems. This permits to split the development works into simpler and more
manageable design tasks. Each subsystem must participate to the realization of the system
functions and must bring value to the final product. The system elements can be themselves
considered as systems with their own system elements. The decomposition of systems into
subsystems stops when subsystems are simple enough to be considered as a whole or when
the subsystems are subcontracted to an industrial partner. An aircraft can be decomposed
into three main systems : structure, airframe systems and propulsion (ATA classification
Air Transport Association of America [1999]). Then, the "airframe systems" system can
be decomposed into its system elements : auto-flight, communications, landing gear... In
the same manner, the product can be considered as a subsystem of a higher level system

and participates to the creation of value at this higher level. For instance, an aircraft is

1. The driver shall be considered as an element of the car system. Indeed, the main purpose of the car

is to move people or objects and this purpose cannot be achieved without a driver.
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part of the air transportation system which comprises other aircrafts, airports, Air Traffic

Control,. . ..

Air transportation system
|

Airport Aircraft

Structure

Power plant

Fig. 1.1: Hierarchy in systems

In this thesis, we consider a system as a single layer object, i.e. we will consider the
physical elements of a system as indivisible. Consequently, we will call them components.

The assembly of these components is called the system architecture.

1.3 System architecture

A system architecture is the representation of the internal organization of a system.
It describes "the components of the system, their relationship to each other and to the
environment and the principles governing the design and evolution of the system" [IEEE,
2007].

Ulrich states the following:
"The architecture of the product is the scheme by which the function of the product is

allocated to physical components. I define product architecture more precisely as:

23
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1. the arrangement of functional elements
2. the mapping from functional elements to physical components

3. the specification of the interfaces among interacting physical components." [Ulrich,
1995]

This definition introduces the different views describing a system architecture:

— The functional view is a description of the functions to be realized by the system.
In this view, functions are linked to each other by hierarchical relations (function to
sub-function) or by logical relations (flows, execution sequence... ).

— The physical view is a description of the components of the system (sub-systems
or parts). In this view, components are linked to each other by hierarchical rela-
tions (component to sub-component) or by physical connections that will permit
components to exchange flows. The functional exchanges can be of different natures
(information/signal, matter, energy...).

The allocation view consists in a mapping between functions and components. The
mutual relations of this mapping state that a component realizes (alone) or con-

tributes to the realization (together with other components) of a function.

Figure 1.2 presents different physical architectures for the propulsion system of an
aircraft. These different architectures realize the same function : propel the aircraft, but
use different technologies and adopt different organizations (serie for a and b, parallel for
¢). Consequently, their performances will be different, each one having strength on some
evaluation criteria (e.g. fuel consumption for a hybrid propulsion system) and weaknesses

on others (e.g. maintenance).

24
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Fig. 1.2: Example of physical architectures for the propulsion system of an aircraft (adapted from
Hung and Gonzalez [2012])
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CHAPTER 2

THE SYSTEM ARCHITECTURE DESIGN PROBLEM

2.1 Description

The system architecture design process consists in the definition of the main char-
acteristics of the system under consideration. This includes the definition of the system
elements, their inter-relationships and their relations to the system environment. Specifi-
cations of the system elements are used as technical contracts with suppliers or with their

respective design teams.

The definition of the functions of the system, of their relations and of their expected

performances leads to the specification of the functional architecture of the system.

Concerning the design of the physical architecture, functions must also be allocated to
components i.e. the realization of the system functions must be attributed to one or several
components. These components must collaborate and are organized in a way that they are

able to realize the function.

2.2 Stakes

The design of a system architecture is an activity involving major stakes since it drives
significantly the overall performances and quality attributes of the system. For instance,
coming back to the previous example of propulsion system architecture, the difference in
performances between a classical and a hybrid propulsion system can be quite important.
When one of these architectures is adopted, the attainable performances are significantly
bounded, whatever the actual implementation (detailed specification of system elements)

of this architecture is.

2.2.1 An iterative process

The process of system architecture is often viewed as a linear transformation of a

functional architecture into a physical architecture. Nevertheless, some decisions made on
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the physical architecture have impacts on the functional one i.e. the use of some technologies

induce some functions that must be realized by the system.

For instance, some components may produce heat and may require a cooling function.
This function is part of the functional architecture due to the presence of an instance of the
heating component in the physical architecture. In order to have a complete and coherent
architecture, this function must be allocated to a set of components capable of realizing

the induced function.

Also, decisions made on other systems may have impacts on the architecture of the
system under investigation. Thus, iterations are necessary at the product level in order to

guarantee the coherence of the different systems.

2.3 Architecture design in the development process

During the development of a program, degrees of freedom are progressively fixed fol-
lowing the maturity gates (MG) or milestones go-through process. At each maturity gate,
decisions on aircraft design are taken and will constraint the following design activities.
The system architecture design happens in an early phase of the development process when
the main characteristics of the system must be fixed. In an Airbus context for instance, it
approximately goes from MG1 (feasibility study) to MG5 (conceptual design). In an the
space industry, it goes from phase 0 where constraints are identified and systems concepts
(concepts of operations, high level architectures...) are created until phase C where the

final architecture is frozen.

2.4 Actors

Architecture design activities are conducted by a team of designers with complementary

expertise. The design team is in charge of:

1. defining and refining requirements,

2. identifying interfaces and impacts to/from other systems,
3. defining design alternatives,
4

. selecting the baseline architecture on which the detailed development activities will
be based.

If the system is subcontracted as a whole, the architecture design is performed by the
system supplier. Nevertheless, the design team must be able to criticize and challenge the
design proposed by the subcontractor. For this, different alternatives must be created and
analyzed in order to better understand the design space and the performances reachable

by the system.

27
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MG1 MG3 MG5 MG7

v v v v

Feasibility Design Development

1 to3 months 12 to 24 months 12 to 24 months 4to 5 years

~ 10 vears

(a) Airbus development process

D: System
C: Final design assembly, tests
and launch

A: Concept and
Technology
Development

Pre-A: Concept B: Preliminary

design

Studies

3 to 9 months 3to months 3to months tol months 14 to 49 months

(b) Space industry development process (Source: [NASA, 2007; Guerra, 2008])

Fig. 2.1: Development processes in the aerospace industry

The architecture design problem presents several characteristics that make it one of

the most critic and complicated phase of the development process.

2.5 Characteristics of the problem

2.5.1 Complex

The architecture design problem is a complex task as designers generally have a huge
amount of possibilities (design alternatives) to realize the system functions. The process

of selecting the best alternative (baseline) is even more complex.
Complexity of the problem also lies in the complexity of the manipulated objects.
Indeed, systems are often complex because of:

their structure (number of components, connections)

— their behavior (emergent properties)

Designers must understand the interactions between the system elements and with
other systems in order to guarantee the required performances and to avoid any undesirable

emergent behavior.

28



IT. INDUSTRIAL CONTEXT

2.5.2 Multi-objective

The architecture design process includes high-impact decisions on the system structure.
These decisions importantly influence the performances of the system and the customer
perceived quality of the product. These decisions are not straightforward as they generally
consider several objectives. Moreover, some of these objectives may be conflicting i.e. the
improvement of an objective causes the degradation of another one. An example of conflict-
ing objectives is reliability and costs as reliable equipments are generally more expensive.
In these case, designers must make trade-offs and select the best compromise in terms of

performances.

2.5.3 Collaborative

The architecture design process at a system level (e.g. propulsion system) does not
aim at specifying the best system. Its goal is to find the system architecture that will
lead to the development of the best product (e.g. aircraft) within the project budget (time
and cost). Indeed, the optimal product may not be an assembly of the optimal systems
considered separately. In order to integrate their study in a product context, the design
team must take into account the impacts of its architecture definition on other systems

and the impacts of other systems on their system |Kroo, 2004].

There also exist collaborations within design teams since several designers may work
together on the system definition. Each designer generally have its own experiences, knowl-
edge and domains of interest. This is often a great deal to merge these different viewpoints

to obtain a consensus for the adoption of the final architecture.

2.5.4 Uncertain
In the system development process, the architecture design phase occurs during the first
months of the project and are generally initiated during the research projects preceding

the actual product development. At this time, several types of uncertainties are present :

Technological uncertainty The maturity of technologies and their performances at the time

of detailed specification are uncertain and must be anticipated. In order to estimate
performances of existing technologies through continuous improvement, designers
generally turn to an extrapolation of performance improvement through time (e.g.
Moore laws for computer power). Nevertheless, this estimation is rough as evolution of

technologies are not always continuous and may be subject to sudden improvements.

29
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Market evolution During the development project, the product market may evolve. This

fact can have impacts on the definition of value by the designers as objectives’ relative

importance may change.

These uncertainties can largely influence the decision (e.g. risky situation) or the qual-
ity of the decision perceived at the end of the project (e.g. under-optimal adopted solution).
Robust optimization techniques [Mulvey et al., 1995] can be used to obtain solutions that

are robustly optimal with respect to variations of uncertain parameters.

The architecture design problem is a complicated problem. To solve it efficiently, current
processes reach their limit. The need for a method enabling the design-space exploration

can be highlighted and industrial objectives of this method can be stated.

30
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THESIS INDUSTRIAL OBJECTIVES

The design of systems architectures is a key task of the development process as it
largely influences the quality of the final product. This stage requires the generation of
design alternatives by the system design team. Currently, this task is mainly performed
manually through brainstorming and/or analysis of existing product architectures. Given
the complexity of the current aeronautical systems, the design-space can be huge and only
a narrow part of it can be reasonably explored this way. In order to explore the design space
in a wider way, a method to generate design alternatives for the design problem is needed.
This will be the main objective of these research works. From an industrial viewpoint, the

proposed method shall:

Objective 1 generate a number of pseudo-optimal design alternatives for the physical ar-

chitecture of complex systems.

Objective 1.1 synthesize architectures for systems with multiple functions, possibly

exchanging flows between them.
Objective 1.2 be able to allocate several functions to a single system element.
Objective 1.3 be able to fulfill safety constraints by creating redundancies.

Objective 1.4 be able to add induced functions to the functional architecture and to

allocate them to system elements.

Objective 2 require a limited and simple design knowledge elicitation process. This objec-
tive is quite subjective but the idea behind it is that the user of the method must

not be constrained to describe explicitly the design space.

Objective 3 consider existing and emerging technologies. Particularly, the design knowl-

edge for new technologies must be able to be acquired by the method.

Given a capability to generate design alternatives, a number of architectures can be
obtained. It is then necessary to be able to select the best ones to allow a final decision to be
taken or to permit further studies to be carried out manually on a small set of alternatives.

This selection process is a multi-objective decision problem and requires being able to:
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— formalize objectives and constraints
— assess architectures
define the worth of an alternative
— treat the performance data to select best architectures

Consequently, the proposed method shall additionally be able to :

Objective 4 assess the performances of architectures with respect to diverse criteria (e.g.

mass, costs, safety...).

Objective 5 compare different alternatives based on their performances and on the design-

ers’ definition of the worth of an alternative.

Objective 6 select the best architectures to be presented to the designers’ for final decision-

making.

In the next part, the means currently available to solve this design problem will be

presented.
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Researchers in design engineering have interested since a long time to the problem of
architecture design. Their researches led to the definition of several methods ranging from
intuitive, based on an organization of knowledge, to computational methods, based on

computational algorithms.
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CHAPTER 1

INTUITIVE METHODS

The first methods that have been formalized to solve the system architecture design
problem are intuitive methods such as brainstorming [Osborn, 1953], brainwriting [Dennett,

1975], TRIZ |Altshuller, 1999| or the 635 method (|[Rohrbach, 1969; Shroer et al., 2010]).

These methods rely on the creativity of a group of experts, on their experiences and on
their own knowledge to produce solutions to a given problem. These methods are interesting

as they permit to mix these different experiences to produce innovative solutions.

The main limitation of these methods is their capability to handle complexity. Indeed,
humans are limited in their understanding of complex problems. As they are only based
on human cognition and interactions, complex design problems cannot be addressed using

intuitive methods.

Intuitive methods permit to generate innovative solutions for problems. Nevertheless,
they are limited in the complexity of the problems they can address and they lack of a

formal frame that gives confidence in the coverage of the solution-space.

To remedy to these weaknesses, methods making profits of the power of computers were

designed to support the design of systems architectures.



CHAPTER 2

COMPUTATIONAL METHODS

The birth of computational methods was based on the assessment that only computers
can handle complexity and bring formal solutions to a design problem. Computational
design synthesis (CDS) methods permit to generate solutions to a design problem based

on a formal description of it, by use of computational techniques.

The CDS methods are numerous. In 2005, Cagan et al. presented a framework to classify
these methods [Cagan et al., 2005]. This framework is based on 4 steps: representation,

generation, evaluation, and guidance (Figure 2.1).

User Defined:
Problem Descnption
Designer phrases Objectives & Corsiraints
problem in a manner
understandatie to

search process

Designer
interprets
salution
Final
Design

Fig. 2.1: llustration of Cagan et al. framework
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2.1 Representation

The first step of a CDS method is to describe the problem on which the method must
be applied. This constitutes the input of the method. The choice of a representation is very
important as it will condition the possibility to use certain means for the 3 following steps
(Generation, Evaluation, Guidance). Also, it can induce restrictions on the possibility to

represent every aspects of the design problem.

The representation of a real artifact (in our case, an architecture) is called a model. In
[Fritzon, 2004|, a model is defined as “anything an experiment can be applied to in order
to answer questions about the system”. This definition is, is a sense, quite restrictive as it
does not include sketches, drawings and even 3D models, that do not necessarily permit
to realize experiments but are means of representation of the modeled object. A more
complete definition of a model is “a representation of one or more concepts that may be
realized in the physical world” |[Friedenthal and Moore, 2011].

The following lines will introduce the major types of models used in CDS methods.

2.1.1 Matrixes and chromosomes

In the late 40s, Zwicky proposed a method to enhance designers creativity [Zwicky,
1948]. In this method, a solution to a given problem is represented as a set of characteristics.
Each characteristic has a set of options. The method generates solutions by assembling
options for each characteristic. Zwicky proposed to represent the problem under the form
of a table in which rows are characteristics of the solutions and options are cells of the
corresponding row. This representation is known as morphological box or matrix. Figure
2.2 is a morphological matrix for a motorcycle. The dotted lines represent two potential

solutions to the design problem.

Function Solution principles

. Combustion . . .
Propulsion . Electrical motor Hybrid propulsion

engine
Store electrical |, 4 attery NiCd battery Li-ion battery
energy
Store gasoline  |Gasoiine tank No tank
Support driver  |Steel frame Aluminum frame [Carbon fiber frame)|
Brake Disk brake Drum brake Regell'leratl'tle
electrical brake

Fig. 2.2: A morphological matrix for the motorcycle design problem (from Olvander et al. [2009])
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More recently, some methods inspired from morphological analysis represented the
problem and its solutions under the form of matrices. The problem is formalized by mod-
eling the functional architecture of the system as a function-to-function matrix which
describes the system functions and the flow exchanges between these functions. The com-
patibility of components can also be described as an input of the method under the form
of a component-to-component matrix. The solution to this problem is represented as a
function-to-component matrix (Domain Mapping Matrix) that represents the allocation of
a function to a component. Additionally, a component-to-component matrix (component
Design Structure Matrix) can represent the physical architecture showing the connections

between components.

DSM MDM

Functions :
(nxm) (mxm)

Converl Mechanical into Electrical Energy)

Convert Electrizal inls Meshanical Fnargy

Coneert Fuel inle Mechaniecal Energy

Blom Elecne Energy

Elome Fuel

¥ Inlemal Combustion Engine

B3 Genemlor
r2 Blarer

h: High Yallage Ratiery

& Fuel Tank

Stare Fusl 1
Store Electne Encrgy p
Converl Fuel \no Mechanical Energy 3
Converl Mechawcal nto Electrcal Energy 1

Conved Electrical into Mechanical Energy g

|
—
-+ -
* .

Fusl Tank 20] 1 11

High Vollage Battery 21 1 111

Intarnal Combustan Eng ne 22 1 1 1149
Generator 23 1 111

Starter 24 1 111

Fig. 2.3: Example of component DSM, function DSM and DMM (from [Gorbea et al., 2008])

The chromosomes, used in genetic algorithms (see Section 2.2.2), are very similar to

morphological matrices as they represent characteristics of the solution with their options.

The main strength of a matrix representation is that is is simple and easily under-
standable. Also, this representation permits to employ mathematical techniques (matrices

operations and manipulations, constraint programming).

But matrices are quite limited in their modeling power as they can only represent
(qualitative or quantitative) relations between pairs of objects. Also, the size of matrices
and chromosomes is fixed. This forces the designer to fix a priori the size of the solution
i.e. the maximum number of each type of components that can be in the architecture, and

can lead to ignore potential interesting solutions. At the contrary, setting to a two high
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size of matrices or chromosomes leads to a lower performance of the resolution technique

since many variables may be superfluous.

2.1.2 Graphs

A representation that is often used to represent system architectures is the graph repre-
sentation. A graph is a set of nodes linked by arcs (directed or not, valued or not). Graphs
can represent connections between functions, between components and between compo-
nents and functions (allocations). This representation is very close from the matrix one as

graphs are often represented as matrices (incidence, adjacency, Laplacian...).

This type of representation is particularly used because of its visual representation.
In some specific cases, graph theory can be used to solve design problems modeled as
graphs. Graphs can have variable size by addition or removal of nodes and connections.
This property in used in graph-grammar approaches where rules transform an initial graph

representing the architecture (see Sections 2.1.4 and 2.2.2).

2.1.3 Systems engineering models

Dealing with system architectures, systems engineering models are widely used. Systems
engineering models are made of objects and of relations between them. These objects and
relations can be of different types. An object of a model can be a function, a component,
a port or any concept that must be considered in the study. These concepts are defined in

a meta-model and implemented by a modeling language.

The System Modeling Language SysML |[OMG, 2010] is used in several CDS methods.
SysML permits to represent the different aspects of the system (structural and behavioral)
using visual constructs. Some recent research works [Masin et al., 2011] attempt to ex-
tend the language capabilities to model variability in systems in order to describe design
alternatives (e.g. different choices of technologies for a component, different number of

components).
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ibd [block] PowerSubsystem [CAN Bus description] )

epc:ElectricalPower ¥ =5 2 : ;

Controller trsm:Transmission ice:InternalCombustionEngine
7l - 7
fp-FS_EPC fp:FS_TRSM fp:FS_ICE
{CAN_Bus
epc:lFS_EPC etrsm:IFS_TRSM ice’IFS ICE
n Lyl
ecu:PowerControlUnit

Fig. 2.4: Example of diagram in SysML

AADL [Feiler et al., 2006] is also used to represent architectures of large-scale software-

intensive embedded systems.

Other formalism such as Modelica [Modelica Association, 2012] in [Rai, 2011] or bond-
graphs in [Seo et al., 2003] are used is CDS methods for the design of multi-physical
systems. These formalisms permit to represent energy flows between the components of a
system and energy transformation performed within the component thanks to differential

algebraic equations.

Systems engineering models can be viewed as graphs with different types of nodes (func-
tions, components...) and of edges (allocations, connections...). Thus, this representation
is very close to a graph representation and techniques applicable to graphs are generally

also applicable to models.

The representation of architectures under the form of models presents several advan-

tages among which :

— Models are able to capture large amount of complex information.
Models facilitates communication through a common language and visual means.

— Complex analyses can be applied to models.

Given these advantages of using models in engineering activities, the Model-Based Sys-
tems Engineering (MBSE) initiative |Estefan, 2007| encourages the intensive use of models
and the replacement of document-based processes by model-based ones. Nowadays, a large

number of companies are introducing this philosophy in their processes.
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The three previously presented types represent directly the modeled artifact : the
"what". At the contrary, grammars permit to represent the way the artifact was created
: the "how". Knowing the starting point of the creation process, they permit to indirectly

represent the artifact itself.

2.1.4 Grammars

The main idea of grammars is that an artifact can be represented under the form of an

initial state and of the transformations that lead to the represented artifact.

The representation, inspired from the works of Chomsky in linguistics, was first adopted
by Stiny in the 70s [Stiny, 1972] for the description of shapes. The shape-grammar describes
shapes as a set of transformations performed sequentially on an initial shape. Transforma-
tions are described as production rules that permit to transform a given shape (left hand

side) into another shape (right hand side).

The graph-grammar representation is a generalization of linguistic and shape grammars
working with graphs. A graph is represented by an initial graph and the production rules
applied to obtain it. The production rules are described as two graphs : a left-hand side
(initiator) that will allow the application of the rule and a right-hand side (generator) that
will replace the left-hand side in the new graph. Graphs are composed of nodes, belonging
to a so-called vocabulary that defines the nature of nodes, and of edges between these

nodes.

In [Alber and Rudolph, 2004], a graph-grammar was defined for the design of truss-like
structures. In this grammar, the vocabulary is a set of 6 structural elements (A, 1,2,3,4,T).
The element A constitutes the initial graph and the element T is a termination node i.e. it
is only present in the right-hand side of rules and thus terminates the generation process.

A list of production rules is also declared (see Figure 2.5).
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® ©) ©) @,
e A
F™ K =
u
Rule p:
Rule ps:
Rule p3:

Fig. 2.5: Example of a graph-grammar for the design of truss-like structures (from [Alber and
Rudolph, 2004])

Grammars can also be used with engineering models such as SysML |[Kerzhner and
Paredis, 2009] or Modelica |Rai, 2011|. The grammar is then similar to a graph-grammar

but can also work on model data (attributes, relations...).

The main interest of grammars is that they permit to trace the generation of an artifact
and thus to go back easily to a previous state. This notation is associated to rule-based
CDS methods (see p. 44).

2.2 Generation

The generation step of a CDS method consists in generating design alternatives that
are solutions to the design problem given as input of the method. For this step, one can

distinguish combination and transformation approaches.

2.2.1 Combination approaches

When the solutions to the design problem can be described as a set of characteristics
with options for each, a simple way to get a particular solution is to select an option
in each characteristic domain. For instance, in Figure 2.2 (38), the combination {Hybrid
propulsion, Li-ion battery, Gasoline tank, Carbon fiber frame, Regenerative electrical brake}
defines a solution. Generating all solutions of the problem can be done by generating all
combinations (thanks to a sequence of "for" loop in a computer program for instance).
Nevertheless, some options of a characteristic may not be coherent with options in other
characteristics (mutual exclusion) or, at the contrary, some options may imply the adoption
of some options for other characteristics. Also, some solutions may not be desirable for other
reasons (structural properties, low performances...). To handle these type of constraints,

constraint programming is widely used.
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Constraint programming (CP) is based on the construction and exploration of a tree
of solutions. For each characteristic, each option is represented as a node linked to the
upper node (an option of the previous characteristic) by an arc. The efficiency of CP
algorithms lies in mechanisms that permit to avoid the exploration of the whole solution
tree. For instance, the depth-first search algorithm gradually assigns values to variables
(solution characteristics) and reduces the domain (possible options) of the next variables
to the options that fulfill all constraints. Thus, when a conflict is detected (i.e. when the
domain of the next variable is empty), the algorithm aborts the exploration of the branch
and restarts from an upper state (backtracking). Other techniques, such as constraint
propagation, permit to limit the number of tree branches considered during the solution

search and to consequently save computation time.

In the literature, one can notice two strategies for the definition of design constraints :

— The first strategy consists in asking the designer to formalize its design knowledge by
defining design constraints explicitly. This process can be quite heavy as design con-
straints must describe every possible cases of elements assembly of a design problem.
Only considering component-to-component connection constraints, N components
will require (N — 1)? constraints. The omission of a constraint can cut a whole por-
tion of the design-space, possibly enclosing the optimal solution, or, at the contrary,
can consider solutions that are not acceptable.

— The second strategy consists in deducing constraints from existing architectures
[Bryant et al., 2005; Kurtoglu and Campbell, 2009]. For this, a design repository
gathering different technical solutions must be constituted and analyzed to get pos-
sible association of elements (functions and components). Compatibilities between
the different elements of the problem are then injected in the synthesis process. Pro-
ceeding so, historical occurrence of elements association can be taken into account
for guidance and/or decision-aiding [Bryant et al., 2005]. The main limitation of this
approach is that, since the analysis is performed on existing architectures, the design

knowledge for new technologies cannot be acquired.

2.2.2 Transformation approaches
Rule-based approaches

Rule-based approaches are based on an iterative modification of an initial object to gen-
erate solutions to a design problem. These techniques are generally associated to grammar

representations (Section 2.1.4).

Rules are a formal representation of the knowledge of designers. These rules describe

how designers reason to create architectures or to modify existing architectures.
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Rule-based CDS methods have been applied to a wide range of applications as they
provide flexibility to address different types of design problems.

Shape-grammar permits to generate paintings and sculptures. The vocabulary, com-
posed of basic 2D or 3D shapes, is used in production rules that permit to generate more

complex objects.

In the industrial field, such methods have been applied to different design problems :
pylons for power lines [Alber and Rudolph, 2004] , micromechanical resonators [Bolognini
et al., 2007|, vacuum cleaners [Wyatt et al., 2009|,... Many of these applications only
address the physical aspects of the system i.e. they only consider an assembly of components

without any link to the functional aspects.

Kurtoglu and Campbell [2009] proposed a method based on a grammar and on functions-
to-components rules that permit to generate system architectures Eligible parts of the
functional architecture (LHS) are replaced by structures of components (RHS). The algo-
rithm applies rules until all functions are replaced by components (in other words until
all function are allocated). If several rules are eligible (e.g. functions can be realized by
different graphs of components), the algorithm can create design alternatives for the sys-
tem architecture. The function-to-components rules permit to establish a link between the

functional and physical architectures (allocations).

m m ‘ Component 1 Component 2

Fig. 2.6: An hypothetical function to component rule (from [Kurtoglu and Campbell, 2009])

The booggie software [Technische Universitat Munchen, 2012] developed by the Tech-
nical University of Munich implements object-oriented graph-grammar. The tool permits
to declare a vocabulary, an initial graph, production rules and to apply a sequence of rules

to produce a new artifact.

The main interest is that with a limited set of simple rules, the process can generate
a large number of different designs ranging from simple to very complex ones. On the
other hand, forgetting a rule may lead to ignore a whole part of the design-space possibly
containing interesting solutions. Also, this technique is very similar to local optimization
techniques as new solutions are considered only in the neighborhood (in the transformation
sense) of the current solution. Thus, obtaining a solution may require a high number of

transformations and consequently an important computation time. In order to solve this
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problem, techniques issued from the Artificial Intelligence field, such as Genetic Algorithms
or Multi-Agent Systems, constitute a smart way to iteratively generate designs and to

progressively improve their quality (optimization).

Genetic algorithms

Genetic algorithms are based on natural evolutionary principles. A solution (or indi-
vidual) is described using a chromosome. This chromosome is constituted of genes that
represent characteristics of the solutions. Genes can take different forms: integers, floats,
strings, objects. .. A first population is created by randomly choosing values for each gene.
Each individual is evaluated and a selection of the best individuals is operated based on a
fitness function. A new population is then generated by applying genetic operators (mu-
tation or crossover) to selected individuals. This process is iterated until a termination

criterion (number of population or convergence indicator) is reached.

Genetics algorithm are mainly used to find the best combination of components in a
given system architecture |Gubitosa et al., 2009]. The genes of the chromosome represent
the abstract elements of the system (e.g. a piston) or parameters of these elements (e.g.
the flow of a pump). Each gene has a domain : elements options (e.g. ""32/22 piston") or
parameters ranges (e.g. flow € [3;10]). A solution is a chromosome where each gene has a

particular value comprised in their domain.

In [Sallak et al., 2002], genetic algorithms are applied to a graph of components. The
genes of the chromosomes correspond to the connections between available components.
The optimization process permits to find solutions which respond to safety requirements

at a minimal cost.

Initiated by Holland |Holland, 1975|, genetic algorithms are now widely used in differ-
ent domains and notably in design [Renner, 2003]. They are quite simple to understand
and to use and proved to be very robust in solving different types of problems: discrete/-

continuous/mixed, convex/non-convex, discontinuous. .. .

Genetic algorithms also present the advantage of being able to be parallelized Nowostawski
[1999]. Using parallelized genetic algorithms, a set of computers are used to perform the
optimization in order to reduce the computing time or to increase the number of considered

individuals (number of populations, population size).

The main limitation of genetic algorithms is that they work on a fixed-size problem
i.e. a chromosome. This requires to fix a priori the number of considered solutions and,
concerning the architecture design problem, the maximum number of components in the

architecture.
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Genetic programming

Unlike genetic algorithms, genetic programming work with trees and consequently do
not have a fixed problem size. Genetic programming algorithm exchange branches of dif-
ferent tree to mimic genetic algorithm crossover and change the composition and structure

of some branches to perform mutations.

Genetic programming is mainly used for the design of computer programs. A set of
elementary programs and variables are assembled to form a complete program realizing a

given function.

For technical systems, genetic programming is mainly used in association with rule-
based approaches. The application of rules forms a tree on which the genetic programming
principles are applied. This permits to progressively converge toward the sequence of pro-
duction rules that optimize objectives under constraints. For instance, in [Seo et al., 2003],
genetic programming is used to modify the tree of functions (add, insert, replace, arith-

metic) applied to an initial bond-graph embryo to obtain a given solution.

In [Koza et al., 1996], genetic programming is used in the same manner to synthesize
electrical circuits. The fact that the optimal synthesized circuits infringe on existing patents

shows the power of genetic programming to synthesize performing and innovative designs.

Multi-Agent Systems

Issued from artificial intelligence domain, Multi-Agent Systems (MAS) are systems
composed of agents collaborating to reach goals. Agents are autonomous software elements
that are able to communicate/negotiate with other agents. Thanks to these interactions,

agents are able to find a solution that:

satisfies their local constraints

— contribute to the coherence of the global solution (global constraints).

MASs were used for optimization of system architectures ([Welcomme, 2008]). In these
approaches, agents represent elements of the system (components, disciplines...), have de-
grees of freedom and constraints. When an agent has a violated constraint, it communicates
to its surrounding agents in order that they find a solution to make this constraint satisfied.
Thanks to this collaborative behavior, the MAS is able to find a solution. Nevertheless,
these methods only consider the behavior of agents as degrees of freedom and not their

organization (the architecture).

A MAS method tackling the problem of architecture design synthesis is the A-Design
System (|[Campbell et al., 2000]). In this approach, agents have the possibility to modify

47



CHAPTER 2. COMPUTATIONAL METHODS

L8 5
2 — VTV T
0.220uH Z0UT
VOUT
Lg
RLOAD
i 0.528uH 1k §

VSOURCE
-

L7
0.753uH

ZGND

| —
(e
<
=8
o=
A
!
m &
o
A
30
MW
N S Y S, e Ve Vo W TR N
~ o

23 24 25 26 27 28 29 30 31

(a) Program tree (b) Circuit

Fig. 2.7: Example of an electrical circuit and its program tree (from [Koza et al., 1996])
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the architecture (add/remove components, configure components...) following their own

rules in order to find optimal solutions.

MAS optimization methods are quite efficient since they can exploit heuristics to opti-
mize given criteria. On the other hand, they are problem-specific and require the elicitation

of design knowledge.

The above presented optimization permit to explore the design-space in a smart way,
looking for optimal solutions. In order to know the worth of a solution, it is necessary to

go through an evolution process.

2.3 Evaluation

The evaluation step of a CDS method consists in assessing the worth of every generated
alternatives. This is done by assessing the performances of each alternative along one or

several evaluation criteria.

Of course, since CDS method aim at generating a large amount of design alternatives,
this task must be automated. Depending on the problem, its representation and the con-
sidered evaluation criteria, different techniques can be employed. We give here after some

examples of evaluation techniques.

First, many criteria can be evaluated using simple (empirical) laws which are linear re-
lations between the characteristics of the architecture and its overall performance. Criteria
such as mass and cost are examples of criteria that are traditionally computed by these
types of evaluations. The use of heuristics is very convenient as they are easy to set up
and require low computation type. On the other hand, they only provide estimations of

the real system performances as they represent simplifications of the real system.

When more detailed analyses are needed, several computational techniques are gener-

ally available depending on the criterion to assess.

To assess signal-based system properties such as end-to-end transmission times in an
information system, discrete-time simulation can be used. The simulation evolve the state
of the system depending on occurring events (internal or external). Formal methods [Schar-
barg and Fraboul, 2010] (model-checking, network algebra, trajectory...) can also be applied
but often require large computation times which makes them unusable for optimization

purpose.

For physical systems, 0D-1D energy-based simulations can be used. For this, languages
such as Modelica or VHDL (and their associated platforms) or simulation tools such as
Amesim, Flowmaster or SABER can be used. During simulation, components of the sys-

tem exchange energy flows and signals. These flows and signals are quantified using the
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components’ behavior described under the form of equations (acausal form) or assignments

(causal form).

Geometrical and matter-related criteria are generally evaluated through the use of Fi-
nite Element Methods or Finite Volume Methods. These methods can evaluate mechanical
strength of structures [Alber and Rudolph, 2004, properties of MEMS ! [Bolognini et al.,
2007], propagation of fluids, thermal properties...

RAMS (Reliability, Availability, Maintainability, Safety) criteria are generally evaluated
thanks to reliability graphs [Robin et al., 1996] and their associated computation methods.
A reliability graph represents the elements of the system and their relations. Algorithms
permit to find minimal paths, minimal cuts and, finally, the reliability of the system. This
technique assumes that components have only one failure mode and that failures do not
propagate in the system. When a more detailed analysis is needed, safety models can be
used. The Altarica language [Arnold and Point, 1999] permits to construct such models
by describing the system structure, components failure modes and failure propagations.
Then advanced algorithms permit to compute the performances of architectures on the
considered RAMS criteria.

Since some evaluations may require large computational time (e.g. Finite Element
Method, Computational Fluid Dynamic or model-checking) and since optimization tech-
niques often requires to evaluate a large amount of alternatives, the choice of the evaluation
technique must be done carefully in order to have reasonable computation times. Also, dif-
ferent techniques can be used sequentially during the process : simple analyses to initiate

the search and more complex ones when interesting zones of the design-space are identified.

The computed performances are used to guide the search of new solutions.

2.4 Guidance

The guidance step permits to influence the generation step in order to generate im-
proved designs. It acts as a feedback loop on it. Based on the information (the performances
of generated alternatives) gathered by the evaluation process (sensor), the guidance step
will control the generation process in order to obtain better designs (output). This step is
necessary when the design-space is too large to permit the generation and evaluation of

every solutions, which is the case in most system design-problems.

1. Micro-Electro-Mechanical Systems
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Performances

. Guidance
Selection

Evaluation Generation

Fig. 2.8: The guidance process

2.4.1 Guidance in evolutionary algorithms

When evolutionary principles are used to generate design alternatives, guidance is per-
formed through the analysis of previous results (i.e. performances of generated solutions)
and the application of evolution mechanisms to the best solutions of the previous itera-
tion. For this, the worth of an alternative must be defined (absolutely or relatively to other
alternatives) to allow the selection process to select the best alternatives of the previous

population. This definition can be stated in different terms as described here after.

Fitness function

In genetic algorithms, a fitness function representing the worth of alternatives permits
to favor the reproduction of good individuals. The fitness function is a mathematical func-
tion (generally a weighted sum) of the considered criteria. Determining the fitness function
(e.g. determining the relative importance of criteria) is not straightforward and may lead to
different results. Even if some methods support the computation of these weights (Analyt-
ical Hierarchy Process [Saaty, 1980], Simple Multi-Attribute Rating Technique [Edwards,

1977]...), other selection processes permit to avoid defining a-priori fitness functions.

Pareto approaches

A classical manner to deal with multi-objectives problems is to use the Pareto dom-

inance rule. Following this rule, a solution A is said to dominate a solution B if it is no
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worse than B in all objectives and is strictly better than B in at least one objective. Sev-
eral algorithms among which NSGA-II [Deb et al., 2000] and SPEA2 [Zitzler et al., 2001]
use this rule to select efficient solutions and estimate the Pareto front of the problem. An
interest of this approach is that it permits to see the relationships between the different ob-
jectives ( i.e. how much a performance degrade when another one improves) thus allowing

the decision-maker to better understand the problem .

On the other hand, the solutions obtained are generally spread all along the Pareto
front which contains solutions that do not fit the decision-maker preferences (generally

extreme solutions).

Preference-based approaches

Some innovative multi-objective optimization approaches, arose for Operational Re-
search community, propose to aggregate objectives under a mathematical function that
takes into account decision-makers preferences. An example of such an approach is used
the NEMO algorithm [Branke et al., 2009]. In this algorithm, the performances G; € G on

every objectives are aggregated under a utility concept:

U(z) =Y ui(x) (2.1)
i=1

where u; are non-increasing marginal value functions, u; : G; — R.

Preferences of the decision-maker are elicited all along the process by comparing pairs
of alternatives. Then, the compatible utility functions are computed thanks to linear pro-
gramming and robust preference-based dominance relations are built. Using this approach,
designers directly influence the design-space exploration performed by the generation al-
gorithm. The solutions obtained at the end of the optimization algorithm are close to the
decision-maker expectations. Nevertheless, the implementation of this approach requires
that the designers are available all along the optimization process. Also, it requires more
computation time than Pareto approaches because of the time to solve a number of linear

problems.

2.4.2 Decision-aiding

If the size of the design-space allows the generation of all solutions or if the optimization
process leads to several alternatives, designers shall be supported to choose the solution to
adopt. Indeed, in the case of multiple criteria, such decision may not be straightforward as

no unique optimal solution (i.e. a solution that is optimal on each criterion) may exist.
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In order to support decision-making in case of multi-attribute problems, a wide variety
of methods were created during the last century. These methods are called multi-criteria
decision analysis (MCDA) methods (see [Guitouni and Martel, 1998]| for a review).

An MCDA process is basically made of 4 steps:

[a—y

. Collect alternatives

2. Collect criteria to take into account
3. Establish the performance table

4. Aggregate performances

During the last step, preferences of the decision-makers can be elicited and used for the

choice of a solution or for the ranking/sorting of several solutions.

Complete aggregation methods

These methods aggregate all criteria under a single indicator. The decision is then based
on the comparison of this indicator for all alternatives. In these methods, compensation is
allowed i.e. a bad evaluation on one criteria can be compensated by a good one on another

criteria. This is not always representative of the decision logics.

Examples of such methods are Analytic Hierarchy Process [Saaty, 1980] or TOPSIS
[Yoon and Hwang, 1995].

Outranking methods

These methods are based on a pair wise comparison of alternatives along every criterion
taken individually. Then, preference relations are built by considering the mono-criterion
outranking relations. This type of method presents the advantage to consider individually
every criterion limiting the compensation effect but the results and their exploitation can

be quite complex.

Examples of such methods are Electre [Figueira et al., 2005] or Rubis [Bidorff et al.,
2008].

2.5 Classification of some CDS methods

In this section, we demonstrate the use of the CDS framework by classifying some CDS

methods with respect to their characteristics on the 4 steps (Figures 2.1 and 2.2).

This analysis permits to highlight that few references propose a complete CDS process

(5 of 13). Other methods only generate designs randomly, and do not search best solutions,
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or generate every possible designs (full-factorial), which can lead to huge computational
costs depending on the size of the design-space (i.e. the number of solutions). Also, these
methods make the work of designers even heavier than working with classical design meth-
ods as they provide them with a large amount of raw information (the solutions) an do

not help them in choosing the final solution(s).

Another observation is that seldom are the methods considering functional aspects of
architectures in the process: [Kurtoglu and Campbell, 2009; Holley, 2011]. The first one is
based on graph-grammar, and thus, requires to describe explicitly, for each function, every
means to realize it. This can become a huge work and can be prone to errors. The second one
only considers independent functions, uses very simple evaluation means (Quality Function

Deployment) and does not use optimization techniques but a full-factorial approach.

Given the industrial needs presented in the first part and given the state-of-the-art on
the topic, it appears that it is necessary to develop a new method to support designers
during the architecture definition phase. In the next part, the scientific objectives of this
method will be highlighted.
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Reference H Representation Generation Evaluation Guidance Comments
. Starting points of the
Wyatt et al. Depth-First- )
Graph Any - search are known architec-
[2012] Search
tures
The method only suggests
Strawbridge et al. . Matrices components for a product
Matrices . - - . . .
[2002] computations based on their historical
occurrence.
) Analysis
Bryant et al. ] Matrices ] ) )
Matrices . (historical Ranking
[2005] computations
occurrence)
. The generation is per-
Agarwal and Shape production ) )
Shape-grammar - - formed via a manual appli-
Cagan [1998] rules _ .
cation of production rules
) ) Graph ) ) Safety structural require-
Rai [2011] Modelica model . Simulation - _
production rules ments are encoded in rules
Graph
production rules )
Kerzhner and . Structural Evolutionary *such as number of pumps
, SysML model + Evolutionary , : . C
Paredis [2009] . properties* programing in a hydraulic circuit
Programming
mechanisms
Helms and Shea Graph

[2009]

Graph

production rules

Tab. 2.1: CDS methods classification in the CDS framework (1 of 2)
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Reference H Representation Generation Evaluation Guidance H Comments
Production rules transform
function structures into
Kurtoglu and Graph
Graphs . - - component structures and
Campbell [2009] production rules o
are deduced from existing
products
) o Quality Function
Holley [2011] Matrices Combinations -
Deployment
Network )
. ) Pareto selection
. AADL model + Evolutionary properties .
Aleti et al. [2010)] . ) , or Fitness
Matrices mechanisms (bandwidth, .
selection

reliability...)

Seo et al. [2003]

Bond-graphs

Graph production
rules + Genetic
Programming

mechanisms

Causality analysis
+ State model

Fitness selection

Bolognini et al.

[2007]

Connected Node
System

Burst algorithm

FEM analysis

Pareto selection

Alber and
Rudolph [2004]

Trees

Graph

production rules

FEM analysis

Tab. 2.2: CDS methods classification in the CDS framework (2 of 2)
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THESIS SCIENTIFIC OBJECTIVES

Given the review of existing CDS method and comparing them to the industrial needs,

some objectives of the research works can be formulated.

Computational methods proved to be efficient in supporting the design activities. But
no method fits the current industrial needs (see p. 31). The main objective of this thesis will
be to design a method that covers the industrial needs. For this, building blocks of existing
methods may be reused in an original manner. Some new techniques may be developed in

case no existing mean is available to cover a need in the method.

The design method shall:

Objective 1 permit to generate design alternatives given a functional architecture of the

system and a library of component types.
Objective 2 permit to identify best design alternatives.

Objective 3 be able to work on large design-space where the evaluation of every solutions

is not possible.

Objective 4 not require the explicit description of compatibilities between the elements of

the problem (functions and components).

Objective 5 be in line with the Model-Based Systems Engineering initiative.
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CHAPTER 1

OVERVIEW

Given the industrial and scientific objectives of the research works, a need for a new
method supporting the architecture design process was highlighted. In this part, this new
method will be described.

Making reference to the framework proposed by Cagan et al. [2005], we can give the

composition of our CDS method :

Representation Model
Generation Tree search (Breadth-First Search) + Genetic operators
Evaluation Evaluation modules

Guidance Pareto selection or Preference-based selection

The following chapter will go into details for each step. Arguments for the choice of the

method characteristics are given.



CHAPTER 2

REPRESENTATION

2.1 Introduction

As seen in Part III many CDS methods rely on matrices or graphs to represent the
problem and its solutions. However, these representations are limited in their representation
power i.e. they can hardly enclose numerous and heterogeneous information on the elements
of the problem. On the other hand, system models permit to represent the problem along
several views and to store complex data. Also, they present the advantage of being reusable,
easily maintainable and to enhance communications between actors of the design process

when associated to graphical notations.

2.2 Model and meta-model

A model is a representation of a real artifact built for given purposes. In our case, the
artifacts to model are a design problem and its solutions. The purpose of the model is to
permit the synthesis of solutions to the design problem and their analysis. Nevertheless, as
a text needs to be associated to a language to be understood, a model needs its "language".

It is the meta-model (or data-model).

A meta-model defines the concepts that will be manipulated in the model. These con-
cepts must be defined explicitly and non-ambiguously to ensure the same comprehension

between different users of the meta-model.

Relations between the different concepts must also be defined. As concepts, relations
must be defined to guarantee their correct understanding. For instance, the UML meta-
model includes a composition relation between two classes which is defined in the language
specification [OMG, 2011]
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Expressed in
Metamodeling
Language

Metamodel

Level 2

Conforms To

describes
Modeling
Level 1 Langudge
Expressed in

Interpreted In

Level 0 Subject

Fig. 2.1: Meta-model, model and language (from [OMG, 2012])
2.3 Meta-model presentation

We analyzed different design problems coming from different industries and we looked
at the concepts manipulated in systems engineering and operational research literatures.
From this analysis, a meta-model that gathers all the necessary concepts for our method
was built. This meta-model is made of concepts related to the decision-making process and
to optimization and concepts related to the representation of system architectures. The
first ones permit to describe the worth of an architecture (criteria, objectives, constraints..)
while the second ones permit to describe the functional architecture, the components, the

system and its environment.

This meta-model is represented in Figure 2.2.

Model The model concept is used to organize the structure of the model. It comprises
objectives, criteria, constraints, populations, types as well as the definition of the

system.

2.3.1 The decision concepts

Alternative An alternative is a potential solution to a decision. This concept is used to
make the link between the architectural aspects and the decisional aspects. An al-
ternative is linked to an architecture.

Population A population is a set of alternatives. This concept is useful when an evolution-
ary optimization process is used.

Criterion A criterion is an aspect that will be considered during selection or decision-

making.
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Performance A performance is a value representing the evaluation of an alternative on a
criterion. Thus, attributes of an alternative such as mass or cost are considered as

performances of the alternative.

Objective An objective is a desired characteristic of alternatives. Objectives are consid-
ered to define the worth of alternatives. It is related to a criteria and comprises an
optimization direction defining the direction of improvement desired by the decision-

makers (minimize/maximize).

Constraint A constraint is a mandatory characteristic of alternatives. Constraints are con-
sidered to define the acceptability of alternatives. Generally speaking, a constraint is
defined as a boolean condition involving performances of the alternative. In our meta-
model, a constraint is defined by a criterion, a conditional operator (>, >, =, <, <, #)
and a target value. If the performance of an alternative on the defined criterion does
not fulfill the condition defined by the operator and the target (e.g. “>10") , then
the constraint is violated by the alternative. Depending on the selection process and
the context, it may be useful to give different importance to constraints. This can be

done by the use of a criticality index (integer).

Preference A preference is an information given by a stakeholder (or a group of stake-
holders) stating that, in its opinion, an alternative is at least as good as another. A
preference is composed of a preferred alternative and a dominated alternative. This

concept is used in preference-based selection algorithms.

Indifference An indifference is an information given by a stakeholder (or a group of stake-
holders) stating that two alternatives are equally preferred. A preference is com-
posed of a preferred alternative and a dominated alternative. This concept is used in

preference-based selection algorithms.

2.3.2 The architecture concepts

Architecture An architecture is the organization of the system. It comprises components
connected together by connections, functions of the system and interfaces with the

system environment (ports).

Type Types represent a classification of flows exchanged by functions or components. A
generic classification of types in engineering was proposed by Magee and De Weck
[2004] : matter, energy, information and value. Sub-types of these basic types can be

created (e.g. electrical energy).

Flow A flow represents an exchange of matter, energy, information or value between two

entities (functions or components).

Port Ports are points of interaction between components and/or systems. They permit the

exchange of flows. Ports are typed so that only compatible flows (i.e. flows having the
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same type or a child of the port type) can flow through them. A port has a direction
(in or out) that constraints the way flows can go in this port. A multiplicity attribute

states the maximum number of connections that can go from/to a port.

Component Type A component type is an abstract class that can be instantiated into an

architecture, thus creating components. Component types can be declared as abstract.
In this case, the component type is only used to simplify the description of children
component types (derived from it) thanks to the inheritance mechanism and cannot
be instantiated. For instance, an abstract “generic motor” component type can be
described and “DC motor” and “AC motor” component types will be declared by
inheritance of the “generic motor” component type. A constraint can be put on the
maximum number of instances of a component type that can be put in an architecture

through the maz instances attribute. Its default value is infinite.

Component A component is the concrete realization of a component type in an architec-
ture. It can exchange flows with other components or with the system environment
through its ports. Functions can be allocated to it. A component can embed vari-
ables. Variables are flows that are “known” by the component i.e. natively present in

the component or acquired through ports or by realization of a function.

Function A function is a task that transforms input flows into output flows. A function
can be realized by (allocated to) a single component or by a set of components. A

function can require capabilities from the components that realize it.

Capability A capability represents a resource required by a function to be performed. In
order to realize this function, the set of components allocated to the function must
embed the required capabilities of the function. A capability is only qualitative and

is represented by its name.

Attribute An attribute is a piece of information that can be used by the algorithms used
to synthesize and optimize architectures. They can be used, for instance, to compute
the performances of an architecture (e.g. mass) or to check compatibility between
elements of the problem (functions and components). An attribute is characterized

by its name and its value (e.g. name = Mass, value = 15).

The advantage of using a meta-model is that it can be used by software applications
to work on models. The model implements concepts defined by the meta-model. As the
application knows the meta-model, it is capable of interpreting the model. The meta-model

will notably be used by an algorithm for the generation of design alternatives.
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The design-space of complex system architectures is generally huge. Many functions can
be realized in many different ways i.e. allocated to different components. For this reason,

generating all solutions of the problem is unfeasible.

In order to explore the design-space in a smart way, the CDS method uses evolutionary
mechanisms. Evolutionary methods are based on a selection-evolution-evaluation scheme
which permits to iteratively discover solutions with increasing value. They proved to be ro-
bust ways to solve non-linear multi-objective optimization problems with discrete decision

variables.

Evolutionary algorithms consist in the following procedure :

Algorithm 1 Generic genetic algorithm

Create an initial population Py

Evaluate the performances of individuals

Select the best individuals {See Selection}

while Stop criterion is not met do
Create a new population based on selected individuals {See Evolution}
Evaluate the performances of individuals
Select the best individuals

end while

Generally, the first population of an evolutionary algorithm is generated randomly
i.e. individuals are created by selecting randomly a value in the domain of each solution
characteristic. However, proceeding so, there is a negligible probability that the initial
solutions are acceptable. Thus, the first iterations are dedicated to the discovery of feasible

solutions. This causes to spend computational time.

In order to increase the performances of the evolutionary approach, the initial popula-
tion of solutions is created thanks to a synthesis algorithm (see Section 3.1). This permits

to start the process with solutions already acceptable with respect to generic rules (See
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Section 3.2). In next iterations, genetic operators are applied to the current population to

obtain new solutions (see Section 3.3).

3.1 Architecture synthesis

3.1.1 Overview

The goal of the synthesis algorithm is to build design alternatives based on the infor-
mation of the model (system functions, system interfaces and component type library) and
on some rules. In order to generate architectures, the algorithm will add components to
an initially empty architecture and will allocate functions to them. For each function, the
algorithm will try to assembly components in order to form chains that will realize the
function. When trying to allocate functions, the algorithm considers component types of
the library but also components already present in the architecture. This permits to allo-
cate several functions to a same component. Functions are treated in a backward manner
i.e. from output functions (those which do not supply other functions) to input ones. The

pseudo code of the algorithm is presented in 2.

Algorithm 2 Synthesis algorithm

1: Create a new architecture
2: Put architecture functions in a stack Fto_treat and order them
3: while Fi, trear # () do
4:  Take (and remove) the first function f of the stack
Search sinks and sources for f
Search possible chains for f

5

6

7 Choose a chain randomly

8 Implement the chosen chain
9

: end while

3.1.2 Search algorithm for component chains

During step 6 , the algorithm searches possible component chains for the function F.
To do so, the algorithm will perform a breadth-first search (BFS).

It will first search chains of size 1 (one component) and test them, then of size 2 (two

components), etc. ..

The depth of the search is dynamically limited. When a possible chain of size N is
found, the algorithm will search chains of size up to N 4+ § where § is a user-defined

parameter of the algorithm. This parameter should be used with care as it can cut a part
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of the design-space if it is set to a low value. The introduction of the § parameter was

driven by 2 facts :

1. the objective of the search is not to find the shortest chain but a chain capable of
realizing a function. The search must be continued once a shortest chain has been

found.

2. the branches of the solution tree can be infinite and the search would be infinite

without a stop criterion.

Also, in order to limit the search, the algorithm only explore chains starting with a

component connectible to sources and ending with a component connectible to the sink.

Algorithm 3 Chain search algorithm
541

while No chain found and limit size not exceeded do
Search chains of size s
s s+1

end while

for t = stos + 6 do

Search chains of size ¢

end for

3.1.3 Introduction of a heuristic for reduction of complexity

In order to favor the reuse of existing components over the creation of new ones, a
parameter called Reuse probability € [0;1] is introduced in the synthesis algorithm. This
parameter is used during the breadth-first search of chains. At this time, the algorithm
collects component types and components into a list. During this collection, component
types are placed at the end of the list with the probability Reuse probability. If the

parameter is set to 0, then the order of the list is random.

By tuning this parameter, the complexity of synthesized architectures can be controlled.
This shall permit to improve the convergence of the optimization algorithm on complexity
related objectives but shall also have impacts on some safety related criteria as it may

create common nodes between functions.

3.1.4 Implementation of chains

At the end of the search of component chain, the selected chain is represented as a

list of component types from the library and of components present in the architecture.
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Components represent actual components that can be reused whereas component types

represent future instances that will be added to the architecture during ht implementation.

The implementation phase consists in modifying the architecture in order to include
the selected chain and to connect it to selected sinks and sources. It is performed in the

following way :

Algorithm 4 Implementation algorithm

1: for ¢ =1 — chain_size do
2 if C; is a component then

3 Add a components to the architecture — C'I;
4:  else {C; is a component}

5 C; — ClI,;

6: end if

7 Allocate the function to C'I;

8: if i # 1 then

9 Connect CI; to CI;_4

10: end if

11: end for

12: if sources # () then

13:  Connect sources to C'I;

14:  Add input flows to corresponding ports

15: end if

16: if ¢ = chain_size then

17:  Connect sinks to C1I;

18:  Add output flows to corresponding ports

19: end if

20: Add function input flows to C'I;

In components, variables are used to model the "awareness" of a flow by the component.
The first component of a chain will be aware of the inputs of a function which can be

— received from other components,

— received from the system environment,

— due to the realization of a function by the component itself .

Following the same principle, the last component of a chain realizing a function will be

aware of the outputs of the function and will have it in its variables.

This information is used by the algorithm to find sinks and sources and notably permits

the realization of a chain of functions by the same component.

For instance, in the architecture presented in Figure 3.10 ( 77), C1 1 owns the vari-
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ables f1 and f2 and C3 1 owns the variables f3, f4 and f5 as it realizes functions F2
and F'3. During the search of a chain to realize F'3, C'3_1 will be used as a sink since the

flow f4 is an output of the function and is contained in its variables.

As seen before, a weakness of state-of-the-art methods lies in the fact that compatibility
between components has to be stated explicitly or is based on existing products. In order
to generate coherent architectures, the algorithm uses implicit rules to make connections

between component instances and to allocate functions to components.

3.2 Rules

When looking for architecture concepts, designers consider both functional and tech-
nological aspects. In order to generate coherent architectures, the formal design synthesis
method must consider both aspects and formalize the associated constraints under the

form of rules.

3.2.1 Viability

On the physical side, designer only consider assemblies of components that can be
connected together and that can be connected to the environment if flows must go in or
out of the system. An architecture is said to be viable if all its connections are coherent.

A connection is considered as coherent if the ports that are connected are compatible.

Port compatibility
The compatibility between two ports is defined by the following sub-rules:

Direction The two connected ports must have opposite direction. An input port can only

be connected to an output port and vice-versa.

Type The two connected ports must have a compatible type. It can be the same type or

a parent type.

Multiplicity The two connected ports must have a strictly positive remaining multiplicity

rm. The remaining multiplicity of port p is
rmy = M, — ¢, (3.1)

with M), the initial multiplicity of the port and ¢, the number of connections con-

nected to the port.
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Other The rule can be completed depending on the problem. The added sub-rule can use
the attributes defined in the ports or in the components. For instance a "male/female"
sub-rule can be added. This rule checks that if a "male/female" attribute is defined

on each connected port, their value is opposite on each port.

The viability rule

The viability rule checks if the connections in a chain of components are coherent or
not. In other words, it checks if connected components are compatible. For this, the rule
checks, for each pair of connected components, if it exists ports on each component that

can be connected together.

3.2.2  Validity

On the functional side, designers look at assemblies of components that can realize the
system functions and that can make function inputs and outputs flow in,out or into the
system. An architecture is considered as valid if all its functions are fulfilled by chains of
components capable of realizing their allocated functions. A chain of components is capable

of realizing (valid for) a function if

crc |J C (3:2)
cEchain
where Uy is the set of required capabilities of the function f and C. is the set of offered

capabilities of the component c.

Furthermore, functions are realized by taking flows from some sources, transforming
them and sending the resulting flow(s) to sinks. Sources and sinks can be located at the
interfaces of the system i.e. input (respectively outputs) are gathered from (respectively
sent to) the environment of the system. Consequently, the viability of a chain is also
conditioned by its capacity to create (or to contribute to the creation of) a flow circulation

between inputs and outputs of the system.

These two aspects are formalized by the viability rule.

3.2.3 Other rules

To allow flexibility in the design rules, other rules can be defined by designers. These
user-defined rules will be considered by the algorithm during architecture synthesis in com-
plement to the viability and validity rules. These extensions must exploit the information

contained in the model.
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For instance, we define a "minimal chain" rule. This rule permits to limit the complexity
of architectures and the size of the design space. A chain is considered as minimal if and
only if no sub-chain (using the same components) of it is viable and valid. This permits to
eliminate chains with components that do not participate to the realization of a function
or to the connectivity with other components. Thus, only chains with the minimum size,

given a set of components, will be authorized to be inserted in architectures.

3.2.4 Example : Architecture synthesis

In order to illustrate the method in details, we propose a simple theoretical problem.
This problem does not permit to illustrate all cases encountered by the algorithm but most

commaon ones.

The system must realize 3 functions (F'1, F'2 and F'3),F'3 being a supplier of F'2. Func-
tions have inputs and outputs flows fx of types Tx. Furthermore, the function F'2 requires

a capability c.

Fig. 3.1: Functional architecture

Four component types (C1,C2,C3 and C4) are available to form the system architec-
ture. Each component type has an input and an output port. The type and multiplicity
(between parenthesis) of each port is indicated in 3.2. Component types C'2 and C3 have
a capability ¢. The component type C'3 has an induced function F'I3.

The system has three interfaces (system ports) that permit to exchange flows with the

environment.

Based on the problem description, we will illustrate the architecture synthesis process.

Let us suppose that the parameter § is set to 1.

First, let us consider that F1 is treated as it is an output function!. F2 could also

1. An output function is a function that has at least one output flow not supplied to another function
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C
C

Fig. 3.2: Component types

pl:T1(eo) >

> | p3:T2(o°)

p2: T3 (o) | >

Fig. 3.3: System
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be treated first. This would have no effect on the synthesis problem as the combinatorics

would remain the same.

As F1 is both an input? and an output function, the algorithm looks for sinks and

sources in architecture ports. For F'1, the unique solution is pl as source and p3 as sink.

The algorithm starts searching chains of order 1. C'1 can realize the function as it is
connectible to pl and p2. Then the algorithm searches chains of order 2 and finds that the
chain C3 — (C4 is also a possible chain.

The two chains have the same probability to be selected and can be implemented
(Figure 3.5).

pl: T1 (oo)| > > | p3:T2(°°)

Fig. 3.4: Treatment of F'1

>] p3: T2 (s0)

(a) Choice of C1 (b) Choice of C3 — C4

Fig. 3.5: Architectures after F'1 treatment for the two possible chains

Let us suppose that C1 is selected. The chain must be implemented. An instance
C1 1 of the component type C1 is added to the architecture and F'1 is allocated to it.
Two connections are added between pl and the input port of C'1 1 and between p2 and
the output port of C1_1. f1 and f2 are added to C'1__1 variables. f1 is added to the flows
of the input port of C'1 1 and f2 is added to the flows of the output port of C'1_1.

2. An input function is a function that has at least one input flow not supplied by another function
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|

p2: T3 (o°) | >

> | p3:T2 (o)

Fig. 3.6: Architecture after F'1 treatment

The second chain to be treated is F'2. F'2 is an output function so a sink must be looked
for in architecture ports. p3 is the only available port and is compatible with the output
flow f5 as they are both of type T2.

The chains that are eligible for realizing F'2 must be connectible to the sink p3 but
must also comprise the capability ¢. The component type C3 is able to realize the function
alone since it fulfills these conditions. For the same reason, the chain C2 — C'1 is eligible.
The chains ending with C'1 1 cannot realize the function because C1 1 cannot realize
the function by itself and cannot be connected to another component as its input port has
reached is maximum multiplicity (1). The two architectures corresponding to each option

are presented in Figure 3.5.

The chain C3 — C4 could realize the function. Nevertheless, if the "minimal chain"
rule is enabled, this chain is only an extension of the chain C'3 which can realize itself the

function. In this case (which we will consider here), the chain C'3 — C4 is ignored.

> | p3:T2 (o)

A EEEET DO EE O B E @

Fig. 3.7: Treatment of F2

Note that, if the Reuse probability would be set to 1, chains reusing C'1 1 would
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>] p3: T2 (o0) >] p3 : T2 (o)

273

(a) Choice of C3 (b) Choice of C2 — C1

Fig. 3.8: Architectures after F'2 treatment for the two possible chains

be checked before other chains. In the current case, since C'1 1 does not belong to any

possible chain, there is no impact.

The two options have the same probability to be selected. Let us suppose that C3 is
selected. In this case, the chain is implemented similarly to the previous implementation
(C1 for F1). However, as C3 owns an induced function FI3, an instance FI3 1 of this
function is added to the system functions. The list of functions to treat is [F'3; FI3_1].

F3 is now treated. The source for the input flow f3 is p2. The sink for the output
flow f4is C'3_1 as its variables includes this flow. For this function, the component C'3_ 1
is eligible since it is the sink of the function and it can be connected to p2. The chain

C2 — (4 is also a possible chain to realize ['2.

Let us suppose that C'3 1 is chosen to realize F'3. The architecture after implementa-

tion is presented in Figure 3.9.

[

> | p3:T2(0)

p2: T3 (o) | >

Fig. 3.9: Architecture after treatment of F'3

The last function to allocate is F'I3 1. The source is pl and the sink is the input port
of C3_1 (as it includes f7 1 in its flows). The only solution to realize the function is C4.
Once the implementation of the chain is performed, the synthesis of the architecture is

complete (Figure 3.10).
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pl:T1 (=) >

4 > [ p3:T2(=0)

p2: T3 (o0) | >

Fig. 3.10: Final architecture

Note that if, during the process, the breadth of the chain search exceeds a given limit

or if no sink/source is found, the synthesis process is restarted.

On this simple problem, the synthesis algorithm is able to find different solutions (6).

F1

F2

F3

FI3_1

Fig. 3.11: Different possibly generated architectures

The synthesis method presented above permits to generate potential solutions to the
design problem i.e. the synthesis of a physical architecture able to fulfill the system func-

tions. The combinatorics of the problem may be huge depending on the considered func-

7
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tions, components and constraints(up to 102! on some problems). Consequently, it is often
prohibitive to generate all solutions of the problem (full-factorial study). In this context,
it is interesting to use an optimization method that will perform a guided exploration of

the design space.

3.3 Evolution

As stated before, for complex systems, it is often impossible to generate every solutions
of the design-space. In this case, an optimization method must be used. We selected an
evolutionary approach adapted from genetic algorithms since :

— it permits to obtain a global optimum,

— it can work on multi-objective problems,

it is problem independent.

Genetic algorithms are mainly based on evolution mechanisms applied iteratively to a
populations of solutions. These evolution mechanisms are often called genetic operators.
Holland [1975], the "father" of genetic algorithms, defines two genetic operators : mutation
and crossover. Working with classical genetic algorithms using a chromosome, several types
of genetic operators are available (single point, 2-points, uniform crossover / bit inversion,
order changing mutations). Nevertheless, using these classical operators, there is no guar-
antee that the created individual will respect the constraints i.e. will be viable and valid
in the case of architectures. In order to generate only viable and valid architectures, we

propose to create genetic operators :

— adapted to our description of the problem (system models)

3

— that guarantee the satisfaction of the viability and validity rules.

3.3.1 Mutation

Mutation is a genetic operator that generates a child based on a single parent by mod-
ifying its characteristics. In classical genetic algorithms, mutation is realized by changing

some genes of the parent.

In our context, we define several types of mutation operators : simple mutation, redun-

dancy creation and redundancy removal.

This operators are very similar to the graph transformation rules used in graph-
grammar based methods. A part of the initial architecture is replaced to form a new
architecture. Nevertheless, there is no need to define explicitly every possible mutation

rule.
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Simple mutation

Simple mutation is realized by reviewing the realization of a functions.

Algorithm 5 Simple mutation algorithm

Select an output function F' and the direct and indirect supplier functions {Fs} of F
Select a network of components realizing F' and {Fs}

Remove allocation of F' and {F,} from the chain

Remove unused components , their associated induced functions and the chains realiz-
ing them
Remove unused connections
for F and {F;} do
Search possible chains {Same as initialization}

Select a chain

Implement the chain {Same as initialization}
10: end for

11: if Child # parent then

12:  return Child

13: else

14:  return () (null) {The mutation operation fails}
15: end if

In case the created child is identical to its parent (i.e. if the removed network is identical
to the added one), the operator returns nothing and has no effect on the new population
(no individual is added).

In the same manner as for the synthesis algorithm, the Reuse probability parameter is

considered to favor the reuse of existing components.

Example : Mutation

Let us consider that the "simple mutation" operator is applied to the final architecture
presented in Figure 3.10. The operator will first select a function (F'3) of the architecture

and will remove the corresponding chain.

Then, a chain to realize the removed function will be searched. The search considers the
sources (p2) and sinks (p3) used by the removed chain. As seen before, the chain C2 — C'1
is able to realize F2 and F'3 and can be implemented (Figure 3.13).

79



CHAPTER 3. GENERATION

p2: T3 (o0) | >

> [ p3:T2(e0)

Fig. 3.12: Architecture after the removal of chains (F2,F'3 and FI3;)

p2: T3 (o) | >

> [ p3:T2(0)

Fig. 3.13: Architecture after simple mutation
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Redundancy creation

Redundancy creation permits to create a new path realizing a function in parallel to
others paths realizing the same function. Adding redundancies is particularly important for
RAMS-related criteria as it permits to increase the reliability and availability of functions
by providing alternative means to realize them. The redundancy creation is realized in the
same way as simple mutation, except that no chain is removed. The algorithm selects a

function, search possible chains to realize it and adds the chain to the new architecture.

3.3.2 Crossover

The crossover operator is a two-parents operator. It mixes the characteristics of two
parents (A and B) in order to obtain two children (C and D). The crossover must operate
on common characteristics of the 2 parents. In our case, the only common characteristics
of parents are the system functions (architecture functions except induced functions). The
operator analyses the way these functions are realized in parents and reproduce similar

chains (using same component types) in C or D.

The crossing scheme of the crossover operator determines which functions must be
reproduced (A to C, B to D) and which must be exchanged (A to D, B to C). We selected
a random crossing scheme. When the operator is applied to parents A and B, functions to

reproduce are selected randomly and remaining functions are exchanged.

Algorithm 6 Crossover algorithm

Determine crossover scheme

for all Output functions to be reproduced do
Clone the chain from A to C
Clone the chain from B to D

end for

for all Output functions to be exchanged do
Exchange the chain from A to D
Exchange the chain from B to C

end for

The reproduction mechanism analyses chains realizing the function in the parent ar-
chitecture and reproduces it exactly in the child architecture. The mechanism builds a
mapping between parent components and child components. Consequently, if two repro-
duced functions are allocated to a component in the parent architecture, the functions will

also be both realized by the corresponding component in the child architecture.
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The exchange mechanism is slightly different as it considers the components already
present in the child after the application of reproduction. Thus, components can be reused
or new instances can be created. In the same manner as for the reproduction mechanism,

the exchange mechanism produces a mapping between parent and child components.

Nevertheless, it may be the case where, because of constraints on the problem, the
exchange mechanism cannot respect the mapping or cannot even respect the types of
components used to realize a function. For this reason, the exchange mechanism is given
more flexibility by allowing him to slightly diverge from the nature of the parent chain.
For this, the exchange mechanism uses the same breadth-first search algorithm as for

initialization, but places:

1. The component from the mapping (if existing) at the first position
2. The components of the same type and the component type in the following positions

3. All other components and component types at the end.

This way, the algorithm will first check if the chain issued from the mapping satisfies
the rules. If not, it will try to maximize the use of the mapping components or, as a second

criterion, to maximize the use of same types of components in the chain.

3.3.3 Example : Crossover

Let us consider that the "crossover" operator is applied to the two sample architectures.
The chain realizing F'1 are cloned from parentl to childl and from parent2 to child2. The
chain realizing F'2 and F'3 are exchanged (parentl to child2 and parent2 to childl)
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Parent 1

pl:T1 (o)

p2: T3 (o)

>] p3:T2(e0)

pl:T1(eo)

32

2: T3 (o0
P2 T3 () (F2+F3)

>] p3:T2 (o)
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Fig. 3.14: Crossover
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CHAPTER 4

EVALUATION

As the criteria on which decisions are made vary from one design problem to another,
the solution proposed to evaluate design alternatives is generic and must allow to evaluate

different kinds of performances.

We use the word "Evaluation module" to define algorithms, programs and softwares
that compute the performances of an architecture along a criterion. These modules gather
information from the model and aggregate them to compute the performance. Used infor-

mation can be structural and/or quantitative (attributes).

Evaluation modules can be custom computer programs, developed for the current design
problem, or can be commercial analysis or simulation tools. Custom programs are developed

specifically for the meta-model and are thus able to directly interpret models.

At the contrary, using commercial tools require to transform the model into the formal-
ism of the tool. For this, model-to-model or model-to-text transformation languages and
associated model transformation tools (ATL [Jouault et al., 2008|, Acceleo [Obeo, 2012]...)

can be used.

Setting up the model transformation represents an effort but is compensated by the
fact that the analysis or simulation algorithms are already developed. Commercial tools
shall be used only if:

the effort for setting up the model transformation is weaker than developing a custom
evaluation module

— and the computational cost for evaluation is not prohibitive.

Commercial tools must also if setting up a custom module requires knowledge that is not

available.

Often, the use of a custom program is generally made possible by making some simplifi-
cation hypothesis. For instance, the electrical consumption of a system shall be assessed by
using simulation on a representative scenario. Doing so would provide a precise measure-

ment of the consumption of the architecture but would require a model-transformation to
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be able to use a simulation tool such as Simulink (Figure 4.1) or Modelica platforms. Alter-
natively, the evaluation module can compute the mean of the average consumption of each
component. This assumes that every components of the architecture work at their mean
consumption. This mode of evaluation introduces more uncertainty than the simulation

mode but may be sufficient in a first stage of design optimization.
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Fig. 4.1: A Simulink model

A first strategy for the evaluation process consists in requesting evaluations of every
criteria systematically after the generation stage. Nevertheless, as it will be exposed in
Chapter 5, the selection process only looks at objectives when all constraints are fulfilled.
In order to improve the performances of the overall process, evaluations can be executed
on demand i.e. the performance on one criterion is computed only when the performance

is requested by the selector.
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Selector

getPerformance(criterionl)

Alternative

If the performance
was not already

computed, it is
computed

evaluate (alternative)

Criterion

Fig. 4.2: On-demand evaluations of performances
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SELECTION

The selection phase consists in selecting the best individuals of a population in order
to create a new population. In a multi-objective context, the definition of the worth of an
individual is not trivial. As stated in Part III, three approaches can be adopted to work
with multi-objective problems : fitness function use,a Pareto approach or a preference-based
approach. The fitness function apporach will not be considered because of the difficulty
to set up the fitness function and the sensitivity of the results with respect to the fitness

function choice.

The two remaining approaches have different modes of deployment : the Pareto ap-
proach does not require intervention from the user but gives generic solutions while preference-
based approaches require user interactions to select solutions that have high value in the
eyes of the user. Although the use of a preference-based approach is preferable because
it faster the convergence of the optimization process toward valuable solutions, the re-
quirement of having the user available all along the process is often too demanding to
be implemented in an industrial context. For these reasons, the two approaches are made
available to the method users that will have to choose one of them depending on the

context.

5.1 Pareto approach

The Pareto approach defines a dominance relation between two alternatives (or indi-

viduals) based on their performances:

A solution x; dominates a solution o (z1 = x2) if Vig;(z1) > gi(z2) and 3i such as
9i(x1) > gi(w2).
To implement this approach, we selected the famous NSGA-II algorithm |Deb et al.,

2000]. This algorithm is interesting as it is elitist (i.e. explicitly guarantees the survival of

best individuals) and comprises an explicit diversity preserving mechanism (in the objective
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space). The algorithm first sorts the solutions with respect to their Pareto dominance,

forming Pareto fronts Fj:

If 1 = 2o then 7 < j. with x; C F; and o C Fj

The non-dominated solutions in S (whole population) are on the first Pareto front Fj.

The non-dominated solutions in S — Fjy are on the second Pareto front F}, etc. ..

In order to obtain a complete ranking, a crowding distance is used to sort individuals

belonging to the same front. This crowding distance permits to favor diversity of solutions.

Once a complete ranking is obtained. The N first individuals are selected for the evo-

lution stage, N being the selection size (parameter of the algorithm).

The use of this approach is simple at it does not require any information from the
decision-makers. The result is a set of alternatives well distributed on the first Pareto
front. It permits to well understand the problem since exchange rates between criteria
and attainable performances are obtained. Nevertheless, because the algorithm aims at
preserving the diversity of solutions, the first Pareto front includes solutions that are non-
dominated but than may not be interesting for the decision-makers as their preferences are
not considered. For instance, decision-makers may look for a compromise alternative with
average performances on each objective. Using NSGA-II, extreme solutions (being the best
on one objective but bad on others) will be selected whereas the decision-makers’ interest

zone will comprise only few solutions (because of diversity).

5.2 Preference-based approach

In order to focus the selection of individuals on the inserting zone, a preference-based
approach can be used. This kind of approach defines a dominance relation between two
alternatives (or individuals) based on their performances and on the preferences of the

decision-makers.

We selected the NEMO algorithm [Branke et al., 2009], an interactive preference-based
selection algorithm based on ordinal regression. Using this principle, the preferences are
deduced from the interpretation of actions (decisions) made by the decision-makers. This
mode of preference elicitation requires low cognitive effort from the decision-makers and
permit to obtain more pertinent solutions. Indeed, the selected solutions are the closest

from the elicited preferences.

The NEMO algorithm is based on the UTA /GRIP methods|Greco et al., 2008; Figueira
et al., 2009]. Each evaluation criterion g; is associated to a marginal value function u;(g;(x))

which traduces the satisfaction of the decision-makers considering this criterion. In UTA
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and GRIP, these value functions are monotone (increasing or decreasing). The value of an

alternative is computed as the sum of marginal values.

During the optimization process, the decision-makers are regularly asked to compare

pairs of alternatives and to state! :

— the preference of one alternative over the other (x1 > x29)

the indifference between both alternatives (z1 ~ x2)

Given this preference information, the marginal value functions can be bounded by

putting, among others, the following constraints on the problem:

U($1) > U(Jjg) if x1 = 29

U(.%'l) = U(m'z) if 1 ~ X9

Solving a linear program, a robust partial order (necessary ranking) can be obtained.
It sorts individuals in fronts F; such as, if 1 is necessarily preferred to xo (21 > x2), then
i < j.with 21 C F; and oo C F} (the relation x; > x5 being deduced by the allowed ranges
of U(zy) and U(zy)).

In order to obtain a total order that favor the diversity of solutions, a crowding distance
is used. Contrarily to the one defined in |Deb et al., 2000|, this crowding distance is not
based on the performances of the alternatives but on their most representative marginal

values along each criterion.

The use of the NEMO algorithm is interesting as it permits to guide the design-space
exploration toward the decision-makers’ interest zone. Consequently, the density of solu-
tions present in this zone will be more important than using a Pareto approach and the
algorithm will converge faster in terms of solutions value. As it is an interactive method,
decision-makers shall be available during the process in order to give preference informa-

tion.

The selection process permits to select the best architectures of a population with
respect to the considered definition of the worth of an alternative. Selected individuals will

be used for the creation of a new population during the evolution stage.

1. We only consider the two kind of preference information of UTA whereas additional ones are con-
sidered by GRIP
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5.3 Considering constraints

In the two above-introduced approaches, only optimization objectives are considered.
But optimization problems and, more specially the architecture design problem, is also
made of constraints. In our method, some constraints are verified by construction thanks
to the use of rules considered during the initialization and the evolution of solutions. Other

constraints are considered during selection.

For this, the method introduced in [Deb, 2005] is used. In this method, each constraint
has a criticality index which represents its importance relatively to other constraints. The
dominance relation is redefined considering the constraint violation (sum of violated con-
straints criticality) of compared alternatives. Following this definition, optimization ob-
jectives are only considered to compare two feasible solutions. In this case, the Pareto-
dominance or the robust utility dominance are applied depending on the selected selection

process.
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TERMINATION AND POST-ANALYSIS

Evolutionary algorithms are iterative processes. Thus, the process requires a criterion

to stop this iterative process.

The definition of the stop criterion is very sensitive as it will determine the effort spent
to find optimal solutions. If the Stop criterion is too "low", the best solutions found by
the algorithm could be actually far from the real optimum as few solutions will have been
considered in order to find them. The opposite will lead to explore many solutions (even if
the real optimum solutions have been already found) and will increase the computational
cost. Generally, the second type of criterion is not used as performances of the architectures
are not a priori known and as the process looks for the best solutions and not for the first

acceptable solutions found.

The Stop criterion can consider :

— the number of created populations

— the quality of solutions of the current population (e.g. all performances above a

threshold)

— the improvement of solutions during a number of populations (e.g. no improvement

during N populations)

Once the process is ended, the designers must analyze the results of the optimization.
The most interesting solutions i.e. non-dominated solutions are presented to them. With
these results, designers are able to :

— check that no evaluable constraints have been omitted

— get the attainable performances of the architectures

understand the relations between the different objectives

— select the architectures that will be studied in a more detailed trade study.

For this last activity, the designers face a large number of alternatives. In order to
decrease the number of architectures to study in details, non-dominated solutions must be
ranked based on preferences. If the Pareto selection process was used, preferences must be
gathered. If the NEMO algorithm was used, preferences acquired during the optimization

process can be reused is this post-analysis ranking process. This must permit to reduce
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the amount of information presented for the decision making in order to simplify it. The
presentation of this information is crucial and is one of the fields of research directly linked

to the here presented works.

In this part, a new method to synthesize and optimize system architectures was pre-
sented. This method takes advantage of computer power. Thus, in order to apply it to an
engineering problem, a software must be developed. This software is presented in the next

part.
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CHAPTER 1

INTRODUCTION

In order to demonstrate adequacy of the method with stated needs and its added value
to the design process, a tool called SAMOA (System Architecture Model-Based OptimizA-
tion) was developed. The program was developed in the Java programming language [Java,
2012|. It implements the method (meta-model, synthesis and optimization algorithms,. .. )
and a set of additional tools that are useful to the execution of the design process (visu-
alization, model import and export...). The program is only a demonstrator and do not

have the ambition to be industrially usable.
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ARCHITECTURE

The tool is constituted of 6 main modules which will be presented in details in the next
chapter. Each module can call a number of methods owned by another module as soon as

they are declared as public.

Human-Machine Interface
— ¢ Max populations

* Reuse
e Selection algorithm

* Run algorithm

/

* Initial population size
* Population size —

e Selection size

e |Initialize population * Select alternatives

* Evolve population

=II

e Evaluate criterion

Synthesizer

e Save alternative
e Save report

Fig. 2.1: The SAMOA architecture

Data exchange between modules is mainly based on the model which can be read or
modified by modules methods. Modules can also exchange data directly through method

calls (return).
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MODULES

3.1 Master module

The Master module controls the process execution. The run() method permits to exe-

cute the optimization process and calls sequentially methods of other modules.

The main parameters of the Master module are the maz _pop and
max pop without improvement Integer parameters that are used to compute the stop
criterion value at each iteration of the algorithm. max_pop represents the maximum num-
ber of populations and
max__pop_without improvement represent the maximum number of population without
improvement i.e. without changes in the solution pool (see 3.5). For each parameter, if the

parameter value is set to 0, the sub-criterion is ignored.

The Master module is associated to an instance of the 5 following modules.

3.2 Evolution module

The Evolution module contains the methods necessary for the synthesis of architectures
(initialization and evolution) among which the chain search algorithm. It uses rules which
are methods that return boolean values with respect to their input parameters (chain,

sources, sinks, function. .. ).

The Evolution module also contains the methods necessary for the evolution of popu-
lation during the genetic algorithm loops. The evolution module considers a list of genetic
operators derived from two interfaces: single operator and double operator. The first one
takes a parent as input and sends back a child where the second one transforms two parent
architectures into two children. These interfaces can be seen as templates that can be used

to declare genetic operators.

During evolution, genetic operators are selected and applied until the new population

reaches its specified size (pop size parameter). The selection of genetic operators is prob-



CHAPTER 3. MODULES

abilistic i.e. each operator is associated to a selection probability and its chances to be

selected is proportional to this probability.

The main parameters of the module are :
— Initial population size : number of alternatives in the first population
Population size : number of alternatives in other populations
The size of the first population can be larger than the number of alternatives in later
populations. This enables to have a large but sparse exploration of the design space at the

first iteration and a more limited but guided one in following iterations.

3.3 Evaluation modules

Evaluation modules are specific modules that compute the performance of alternatives
along one criteria. For instance, a mass evaluator will gather information in the model
necessary to compute the mass of the system, make the computation and give back the
computed value. The computation is based on information contained in the model and on

computation rules owned by the evaluator.

During the declaration of the model, each criterion must be linked to an evaluation
module. For this, the Criterion class owns an abstract method called "evaluate". When
the designer creates an instance of the Criterion class, the method must be overridden by
declaring how the evaluation of the criterion must be performed. For readability of the
model, this method is often a simple call to another method. When a method wants to
know the performance of an alternative on a given criterion and that the performance has
not yet been computed, the evaluate method is called and returns the performance. Thus,

evaluations are performed on-demand, which permits to avoid useless computations.

In order to be flexible, the task of developing evaluators or of interfacing existing tools
to evaluate the performances of alternatives is left to the user. This way, evaluators can
be adapted to the context. For instance, the level of precision of the calculation can be
tuned and can consider different types of data contained in the models. The mass evaluator
can be a simple sum of component masses but can also be computed taking into account

location of components (for cable mass computation).

3.4 Selection module

The Selection module is responsible for selecting the "best" individuals of a population.
The two algorithms presented in 5 (NSGA-IT and NEMO) are contained in the module and
can be used by the Master module. In case NEMO is selected, preference information is

stored in the model (Preference and Indifference objects).
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The main parameter of this module, additionally to algorithm to be used, is the size
of the selection i.e. the number of individuals to select. This parameter must naturally be

lower to the size of the population.

3.5 Solution pool

In order to keep track of "best" alternatives, a solution pool is set up. The pool is used
to store the Pareto solutions of the problem considering all solutions discovered so far (not

only the last population).

When a new population is created, the pool is updated. For this, each individual of
the population is compared to the solutions of the pool. If a new solution dominates one
or several pool solution(s), the former replaces dominated solution(s) in the solution pool.

The dominance definition used in the solution pool is the Pareto one.

The solution pool also permits to determine the number of populations without im-
provement. Indeed, when the pool is updated with a new population and is modified by
this update (i.e. new solutions are inserted), a counter is reseted. Instead, it is incremented.
This counter is used by the Master module to determine the value of the stop criterion at

each iteration.

3.6 Human-Machine Interface

In order to facilitate the method use by system designers we developed a Human Ma-
chine Interface (HMI). This HMI uses the JavaFX 2.0 platform and provides a visual
support for:

— the analysis of the problem model in order to check its correctness,

— the parameterization of the algorithm through an access to modules parameters,

the process monitoring,

— the analysis of results.

It is organized in three modes : model, process, results.

3.6.1 The Model mode

The Model mode permits to import models and to visualize them.

A Model defined using a Java method returning a Model instance can be directly
imported. Models can also be defined in other formats. In this case, a parser must be used

to translate the elements of the model in the format into Java objects (see 3.7.1).
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The content of the imported model can be visualized as tables displaying elements of

the problem (functions, components. ..) and their properties.

3.6.2 The Process mode

The process mode has two functions : setting the parameters of the algorithm and

monitoring the optimization process.

Parameters of the process that can be modified in this mode are:

Initial population size

— Population size

Selection size
— Selection algorithm (NSGA-II or NEMO)

The monitoring of the optimization process is done by plotting the evolution of maxi-
mal, minimal and mean performances at each iteration and for each criterion. This permits

to visualize the convergence of the algorithm on every criteria.

Additionally, the user can visualize the performances of the last population as a scatter-
plot matrix. The scatter-plot matrix A contains all the pairwise scatter plots of the variables
i.e. each cell a;j of the matrix contains a scatter plot of the performances of the population
on the criteria ¢ versus the performances of the population on the criteria 5. The diagonal of
the matrix (a;i) contains histograms of the performances of the population on the criteria

i.

3.6.3 The Result mode

The Result mode permits to analyze individually solutions. For this, a table presents
the performances of all alternatives of a population. The user can navigate through the
populations (including the solution pool) and can access to an architecture. Then, the user
can visualize the selected architecture as a graph of component instances and system ports
(physical view) and can access the information of the components (function allocations,

variables, ports, attributes. .. ), of the system ports and of connections.

In the Result mode, the user can export current results:
— as an Excel sheet for alternatives performances
— as images for the architecture physical view

— as text file for the architecture complete view

as matrices (DSM+FCM) for the architecture complete view
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3.7 Other tools

3.7.1 Parsers

In order to be able to import models described in various formats, parsers must be used
to translate them into Java Model instances. Parsers read an input file, locate objects and

their class and create a Java instance of the same class.

In the current development state, the user can import models defined by:
— a Java method returning an instance of the Model class (does not require a parser)
an Excel sheet built from an Excel template
— an XML file
In the same way, Parsers can be used to export the current Model (e.g. the model after
optimization with all populations) or part of it. For instance, different Parsers are used to

export results in the Result mode (see 3.6.3).

3.7.2 SysML interface

SysML is becoming the standard modeling language for systems and the cornerstone of
MBSE approaches. In this context, it is interesting to be able to model the problem with
this language and to import it into the SAMOA tool. To do so, a capability was developed.

SysML modeling

In order to model the problem is SysML, the IBM Rational Rhapsody platform is used.
However, since many of the meta-model concepts do not have equivalents in SysML, a
profile needed to be defined. A profile permits to define new concepts based on existing

SysML concepts.
Using the SAMOA profile, a model of the problem can be built by declaring the nec-

essary elements (functions, component types...). One of the main advantage of SysML is
that the problem can be represented using several views (e.g. optimization view, system

view, component types view). A user guide for the SAMOA profile can be found in Annex

C.

SysML model import

The import of the model i.e. the transformation of the SysML objects into Java in-
stances is made thanks through the use of the Rhapsody Java API. The API permits to
browse the SysML model and, for each element of the model, to create an equivalent Java

mstance.
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The API would also permit to enrich the SysML model with architecture solutions
found by the SAMOA tool. This capability was not developed.
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MODELING

The meta-model presented in 2.3 was implemented in the Java programming language.
Thanks to its object-oriented property, this language permits to create instances from

meta-classes.

Each meta-class is a Java class and contains:
properties of the meta-class (e.g. name)

— relations to other meta-classes

— methods
The following presents an example of implementation of a class of the meta-model : the
Architecture class. The class has 6 fields (ID,description, functions, ports, components and
connections), 2 constructors (a simple one and a one that clones an architecture given as
parameter) and 48 methods (among which the getAllocatedComponents() one which gath-

ers components allocated to a given function).

package MetaModel;

import static com.wagnerandade.coollection.Coollection .x;
import com.wagnerandade. coollection. Coollection;

import java.util.x;

import Modules. Check;

import Modules. Rules;
public class Architecture implements Cloneable{

Integer ID;

List <Function> functions= new ArrayList<Function >();

List <Port> ports = new ArrayList<Port>();

List <Component> components = new ArrayList<Component>();
List <Connection> connections — new ArrayList<Connection >();

String description;

public Architecture () {
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super () ;

public Architecture(Architecture archi) {

public HashSet<Component> getAllocatedComponents(Function function) {
HashSet<Component> comps = new HashSet<Component>();

for (Component ¢ : this.components){
if (c.getAllocationsByName (function.getName()) != null)comps.add(c);
¥
return comps;
}
¥

Listing 4.1: Implementation of the Architecture class in the Java programming language

Methods are used to read and aggregate information contained in classes or to modify
them. In Java, getters and setters respectively permit to read and modify a data contained

into a class.

Based on the set of Java classes, models of design problems can be built. For this, the
user must create instances of meta-classes and fill in instance properties using constructor’s

parameters.

archi.getComponents () .add(new Component("sDDU 1" model.
getComponentTypeByName ("sDDU") ) ) ;

Listing 4.2: Creation of a component in an Architecture archi
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CHAPTER 1

PRESENTATION OF THE COCKPIT USE-CASE

1.1 Introduction

The cockpit system is the system permitting the control of the main functions of the
aircraft (flight control, main systems control, ...) and the monitoring of the aircraft state
by pilots. It is generally located at the front of the aircraft and provides control means

(control panels, levers, touchscreens,. .. ) and visualization means (screens, lights, ...).

Fig. 1.1: A380 cockpit

The cockpit system is exchanging data with the different systems of the aircraft in
order to monitor and control their state. For instance, in case of a fire detection, the
Fire Detection System sends an alarm message to the cockpit system. The cockpit system
displays this alarm to pilots which will react in consequence following the procedure and
will activate the Fire Extinction System in the impacted zone of the aircraft by acting on
the "Fire" control mean (button, virtual button on a touchscreen or even vocal command).

The Fire Extinction System will react to this order by activating its fire-fight means.
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Fig. 1.2: Cockpit interfaces
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1.2 Functions

The main functions of the cockpit are:

— To inform the pilot about the past, current and future state of the aircraft. The
information includes displays (information available all along the flight) and alerts
(punctual information given only in abnormal situations). Displayed information in-
cludes attitude, altitude, speed, position, flight plan, state of systems. ..

— To gather pilots orders and send them to aircraft systems (control)

These functions are critical as their failure (loss or erroneous behavior) can have haz-
ardous to catastrophic consequences (as defined by the Federal Aviation Administration
[FAA, 2000]) . This induces that the realization of the cockpit functions are subject to nu-
merous safety constraints. For instance, the failure of a single component in the architecture
must not lead to the loss of functions with a catastrophic severity. Safety constraints have
major impacts on the design of the system architecture as they impose the existence of

redundancies.

The perimeter of this study only considers the interface functions of the cockpit (display,
control, alert) and does not include other functions such as functions related to pilot
comfort (cockpit lightening, seats...), to pilot vision, and to communications with cabin
crew or Air Traffic Controllers (except the ATC Mail function).

1.3 Realizations

The functions of aircraft cockpits are quite fixed and stable in time. Only the represen-
tation of information varies from one manufacturer to the other. Also, the possibilities to
realize these functions are quite weak: the display of information must be done through a
screen or an instrument, the control of the on/off state of a system must be done through
a button. For this reason, one can note an apparent similarity between the cockpits of

different aircraft since the 80s. Some evolutions can be highlighted:

1. One can note the tendency to virtualize instruments (i.e. to replace dedicated instru-
ments by a displayed equivalent). Today, few critical instruments remain in current
cockpits for safety reasons (redundancy and dissimilarity) and are used as backup
information source. On A330, 4 analog instruments were present whereas on A380, no
mechanical or analogical instrument is present. The Integrated Standby Instrument
System (ISIS), that provides standby information to pilots, is made of two screens

that are able to display different kind of simple information.

2. The number of information to be displayed and the complexity of their represen-

tation is growing with the complexity of the aircrafts. Thus, the display surface is
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significantly growing and the display technologies are evolving (monochrome to color

display units).

3. New equipment appeared to increase or simplify interactions with pilots (keyboards,
KCCUs...)

If the visible part (HMI) of the cockpit system seems quite stable in time, the general
architecture of cockpits is also evolved very slowly until the 2000s. At this time, new
architectures were designed based on the Integrated Modular Avionics (REF) concept.

This concept aims at computational resources in order to

Nowadays, as needs evolve and large technological advances are done, cockpit designers
must consider new concepts involving new technologies and new interaction modes with
pilots. ... An example of an innovative concepts is the ODICIS single-display interactive

cockpit [2] which takes advantage of touch-screen capabilities.

1.4 Design process

The design of a cockpit system is a complex task because:

— the system itself is complex (numerous functions)
— the system requirements are constraining notably in terms of reliability, availability,
maintainability and safety (RAMS)

— the system is an HMI and human factors must be considered with care.

The component types available to the designers are few. Nevertheless, the possibilities
to assemble these components and to allocate functions to them (i.e. the design-space) are

huge.

A current solution to create design alternatives is to take previous or existing architec-
tures and to modify them to handle new functions, to integrate new technologies. Doing
so, new architectures are created but, as they are all issued from the same parent, they are

quite similar.

Another solution is to build a decision tree in order to obtain a lot of potential so-
lutions. Then, branches are analyzed by the designers on the base of their knowledge to
simplify the tree until it becomes humanly understandable. A try was given on the next
Airbus program. A filtered version of the tree gave more than 2000 alternatives only con-
sidering physical aspects (no allocations of functions). Nevertheless, as the elaboration of
the tree was only based on designers” knowledge and believes, many alternatives were not
considered (notably radical innovative ones). For instance, the single-display architecture

was not considered. Once alternatives have been identified, designers try to evaluate their
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capability to fulfill system requirements and compare their performances. Different criteria

are taken into account:

— Costs (recurrent and non-recurrent)

— Weight (direct and induced)
Energy consumption

— Operational performances (latencies. . .)

— Dependability (reliability, availability, maintainability, safety, integrity)
Robustness to environmental conditions (heat, dust...)

— Complexity

— Evolution capabilities

These criteria are technical criteria that can be assessed quite easily even on an ordinal
scale. Other criteria are more difficult to handle as they deal with economical, industrial

or societal aspects.

A criterion is particularly important for assessment of HMI but quite difficult to assess:
the "human factor" criterion. This criterion deals with the ease of usage of the system.
Its assessment is quite difficult as it must take into account the human whom behaviour
is very complex. The assessment of the system performance with respect to the human
factor criterion is mainly based on expertise of ergonomics experts. Some attemps to build
models of the human-machine interaction were made in the last few years. This models try
to estimate the cognitive load of pilots with respect to a given HMI configuration, scenarios

and environement conditions.

A big difficulty of system architecture design, and specially for cockpits considering
the technological progresses in HMI systems (touchscreens, mobile systems, wireless sys-
tems...), is the technological foresse Indeed, in the aeronautical field, architecture design
begins several years before the first flight. During the design process, technologies will ap-
pear and customer expectations may evolve. Designer must consider this by anticipating

the emergence of new technologies and of new customer needs.
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MODEL

2.1 Model presentation

In this Chapter, the method will be applied to the cockpit use-case. For this, a model
of the problem was built. Even if it does not contains all elements of the real problem

(functions, constraints...), it is representative of the complexity of the problem.

2.1.1 System

The system model consists in 9 ports which represent the interfaces of the system with

its environment :

— Pilot interfaces

— 2 visual interfaces (IC and IF') representing the eyes of each pilot through which
flows of the Image type can be received (output port).

— 2 haptic interfaces (CC and CF) representing the hands of each pilot through
which flows of the Control type can be sent (input port).

Systems interfaces (for readability of the model and of the results, a single interface

of each type for all systems is modeled)

— 1 system input interface (Sys_out) through which flows of the Data type can be
received by systems.
1 system output interface (Sys in) through which flows of the Data type can be

sent by systems.

2.1.2 Functions

The model, in its most complex version, is constituted of 19 independent functions (i.e.

not exchanging flows).
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Display functions

10 display functions are described in the model. These functions take raw data from
aircraft systems as input, generate an image from them and display this image to the pilots
(Captain and Flight Officer F/O). We will consider that the image must be displayed to at
least one pilot so there is only one image output to these functions. Display functions have
up to 35 input data flows. As display functions perform data aggregation and graphical

generation, they request a computing capability.

As an example, we present a display function Navigation Display (ND) which displays
the information relative to the mission on the horizontal plan (flight plan, Instrument
Landing System (ILS), VHF Omni-directional Range (VOR),...) .

ROSE ILS ROSE VOR ROSE NAV

ARC

Weather radar image
can be superimposed [

Fig. 2.1: Navigation Display

The function receives data from 12 systems : Automatic Direction Finder (ADF) |
Air Data and Inertial Reference System (ADIRS), Aircraft Environment Surveillance Sys-
tem (AESS), Distance Measuring Equipment (DME), Electronic Flight Instrument System
(EFIS) Control panel, Flight Control and Guidance Unit (FCGU), Flight Control Unit
Back-Up (FCU-BU), Flight Management System (FMS), Flight Warning System (FWS),
Multi Mode Receiver (MMR), Onboard Airport Navigation System (OANS) and VOR.
These data are aggregated and, depending on the current mode, the information is dis-
played (ND i Capt and ND i FO of type Image Capt and Image FO).
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Function Function name Description
acronym
ATC_ Mail Air Traffic Control Displays messages form Air Traffic Control
Mailing Box
Engine Engine status and Displays engine status (power rate, oil
performances temperature...
MFD Multi-Function Display | Displays miscellaneous information (Aircraft
Environment Surveillance, Air Traffic
Control...)
ND Navigation Display Displays the horizontal mission profile and
related data (traffic, weather...)
OIS _ Video Onboard Information Displays videos from the open world (e.g.
System Video cabin cameras)
PFD Primary Flight Display Displays speed, altitude and artificial
horizon
SD System Display Displays the state of the aircraft systems
SFTD Slats, Flaps and Trim Displays the state of slats, flaps and trim
Display
VD Vertical Display Displays the vertical mission profile
WD Warning Display Displays warnings

Tab. 2.1: List of Display functions
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Control functions

9 control functions are described in the model. These functions take inputs from the
pilots (button push, button rotation, lever action...) and transmit them to aircraft systems.
Controls can be given by the two pilots (captain or F/O). Consequently, control functions
have two control inputs, one for each pilot. An example of control function is depicted

below : the Anti-ice control function which permits to control the anti-icing system.

Antilce_C_Capt

Anti-ice Antilce_C_signal

Antilce_C_FO control

Fig. 2.2: Anti-Ice control function

Function name | Description

Comfort Control comfort parameters (loudspeakers’ vol-
ume, screens’ brightness...)
Braking Control braking modes
Engine Start /Stop engines and Auxiliary Power Unit
Fuel Select the fuel source
Fire Activates fire fight means
Smoke Activate smoke evacuation means
Air Select the air sources
Power Select the power sources
Anti-ice Control anti-ice systems

Tab. 2.2: List of Control functions

2.1.3 Component types

We consider 18 component types among which 5 are abstract. A detailled description

of component types can be found in Appendix A.

Each HUD has a Control induced function that represents the need of additional
components to control its functioning (brightness, alignment, etc.). During the availability
analysis, the hypothesis is made that the failure of any induced function of a component

leads to its failure.
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Component type Description Abstract
DU Display Unit Yes
sDU Shared DU Yes
pDU Private DU Yes
. sDDU Shared Dumb DU
Displays

sSDU Shared Smart DU

pDDU Private Dumb DU

pSDU Private Smart DU

HUD Head-Up Display

CPU Central Processing Unit

GPU Graphical Processing Unit
ICP Integrated Control Panel

Cable Generic cable Yes
dC Data Cable
eC Electrical Cable
Cables &
NW Network Yes
Networks

CAN Controller Area Network

ADCN Avionics Data Communication Network

eNW Electrical Network

Tab. 2.3: List of component types

Control panels (ICP) are generally custom parts dedicated to the function(s) they
realize. For instance, the over-head panel contains buttons for the different functions it
realizes (fire, smoke, air, etc...). Its attributes (e.g. mass) depend on its allocated functions.
In the model, as a simplification, we only consider a generic ICP with fixed attributes

whatever the functions it realizes.

2.1.4 Criteria, objectives and constraints

In the frame of this study, we consider 5 quantifiable criteria that permit to determine
the relative quality of an alternative. Each criterion is associated to an evaluator which

computes, for each alternative, its performance along the associated criterion.

Mass

The Mass criterion represents the direct mass of the system (the induced mass is not

considered). The evaluator sums the mass of each component of the system.
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For cables and networks, the mass is computed based on the length and on the linear
mass of the cable/network. The length is computed by the evaluator based on the location
of the connected components and on a table giving an average cable length between two

locations. In the model, the Location attribute takes two values (cockpit or bay).
For other components (DU, ICP, etc.), a Mass attribute value is considered.

This criterion is a classical one in the aeronautical industry as increasing the mass
increases recurring costs and has major impacts on the overall aircraft design (airframe

and engines sizing). We associate this criterion to a minimization objective.

Component number

This criterion is the sum of components present in the architecture.

The number of components must be minimized to decrease the complexity of the system

and the integration costs (non-recurring costs).

Part number

This criterion is the sum of component types used in the architecture. For instance, if
an architecture contains 2 DUs and 1 CAN, its part number is 2 whereas its component

number is 3.

The part number must be minimized to decrease the complexity of the system and the

non-recurring costs (integration, acquisition, maintenance).

Electrical consumption

This criterion is the sum of components mean electrical consumption. Components

(except cables and networks) have a Consumption attribute.

This criterion is associated to a minimization objective as it permits to decrease the

fuel consumption and to reduce the sizing of the power system.

Minimum availability

This criterion represents the minimum availability of output functions computed as
their Mean Time To Failure (MTTF) in hours.

To evaluate the MTTF of a function, the evaluator proceeds in the following manner :
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Algorithm 7 Function MTTF computation algorithm

1: Search paths realizing the function F' and its supplier functions

2: Determine minimal cut-sets mC;(F)
3: for all Components C' do
4:  if Component has an induced function then
Search paths realizing the induced function [ F' and its supplier functions

Determine minimal cut-sets mC;(IF)

5

6

7: for all Previous minimal cut-sets mC;(F') do
8 Clone the cut-set and replace C' by mC;(IF)
9 end for

10:  end if

11: end for

12: Compute MTTF of the function MTTF(F)

The MTTF of the function is computed based on the MTTF of the components
(MTTF,) present in the function minimal cut sets (mC;(F')) as follows :

1
MTTF(F) =
mCemC;(F) cemC
where
1
Ae = ————.
MTTEF,

2.2 Reference architecture

In order to give a reference point and to be able to compare the results of the method
to the results of a classical development process, a reference architecture is presented here
after. This architecture is inspired from a real architecture considered in the development
process of an Airbus aircraft. Only the functions considered in the model and their allocated

components are kept.
The physical architecture is depicted in Figure 2.3.

Display functions are allocated to 2 CAN, to 2 GPUs and to 2 CPUs to increase their
availability. The availability of a display function is very close from the MTTF of the
display unit allocated to it (64900h for a DDU, 38000h for a SDU or for a HUD).

Performances of the reference architecture are presented in Table 2.4. The availability
analysis is presented in B. This analysis only considers the nominal behavior of the cockpit

system i.e. the allocation of functions when no component is failed. Of course, in the real
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system, reconfigurations of the system occur in case of failure and permit to increase the

availability of critical functions and to satisfy safety requirements.

Of course, the reference architecture must not be considered as an optimal one for the
problem considered here as:
— it was designed to satisfy the actual system requirements that are not consider ex-
haustively in our model,
— it was designed considering other constraints (industrial, human-factor, economi-
cal...) that are not considered in our model.
It must be more understood as a reference point to compare the synthesized alternatives

to an alternative issued from a human-based design process.

’ Criteria ‘ Performance
Component number 22
Part number 8
Electrical consumption (W) 873
Mass (kg) 57.3
Min availability of functions (h) 38000

Tab. 2.4: Performances of the reference architecture

2.3 Results

2.3.1 Population initialization
Without reuse mechanism

A population of 1000 alternatives is created thanks to the initialization algorithm.
The reuse probability is set to 0.0 so that the algorithm considers component types and
components the same way during the search of chains. The process took 1h40 on a standard
laptop !. This duration comprises synthesis and evaluation of alternatives but also IHM

update and report generation.

Among the 1000 synthesized architectures, 118 do not violate any constraint. On these

remaining architectures, 6 are Pareto solutions.

The results of this run show that the algorithm is able to generate solutions with various
performances except for the Min availability criterion. Indeed, during initialization, no re-
dundancies are created and the solutions to realize control functions have a low availability

time.

1. Intel Core 2 Duo CPU P8600 @2.4GHz with 2Go RAM
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System Part Components Mean Min
mass number number electrical Availability
consumption Time
Ind 100 57 32 959 27055,7029
Ind 105 53,7 27 857 27055,7029
Ind 154 52,1 26 739 27055,7029
Ind 203 60,9 10 40 1011 27481,0491
Ind 693 54 33 873 26760,0737
Ind 752 69 33 1021 26760,0737
| Ref | 573 8 22 | 873 | 38000 |

Tab. 2.5: Pareto solutions after population initialization (reuse probability = 0.0)

Comparing the results to the reference architecture performances, one can notice that
the ranges of performances obtained by synthesis include the performances of the reference
architecture except on the Min availability criterion (for the aforementioned reason) and
on the Component number criterion. For this last criterion, this is due to the fact that
the algorithm does not seek to reduce the complexity of architectures by reusing existing
component instances. Indeed, during the search of chains, components and component
types are considered in a completely random order. In order to force the algorithm to

synthesize less complex architectures, the Reuse probability can be increased.

With reuse mechanism

A population of 1000 alternatives is created thanks to the initialization algorithm. The
reuse probability is set to 1.0 (existing components are considered before new instances of
component types). The process took 46 min.. On the 1000 generated alternatives, 236 do
not violate any constraint. Among these acceptable solutions, 14 are non dominated (in
the Pareto sense). The results are presented in Table 2.6 and a Pareto solution is depicted

in Figure 2.4.

Comparing the obtained solutions to the reference architecture, one can notice that
the performances of the synthesized architectures are equal to or better than the reference
one on the four first criteria. Only the minimum availability of the reference architecture
is better than the generated solutions. This is due to the fact that no redundancies are

created by the synthesis algorithm.

The complexity of synthesized architectures is decreased thanks to the increase of the
Reuse probability parameter. Concerning performances of the algorithm, an outcome is

that the Reuse probability mechanism permits to reduce the computation time. Indeed,
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System Part Components Mean Min
mass number number electrical Availability

consumption Time
Ind 7 40,4 8 17 576 27055,7029
Ind 165 41,7 9 18 619 27792,9155
Ind 306 37,4 9 16 626 27481,0491
Ind 526 39,9 8 20 728 27055,7029
Ind 530 37,3 9 22 642 27055,7029
Ind 557 374 7 23 626 27481,0491
Ind 616 43 8 14 662 27792,9155
Ind 617 44 7 18 812 27055,7029
Ind 648 38,6 7 22 685 27055,7029
Ind 654 425 8 19 678 27481,0491
Ind 706 43 8 22 662 27055,7029
Ind 725 33,4 7 24 649 27481,0491
Ind 785 42,5 7 19 678 27055,7029
Ind 930 445 7 16 796 27481,0491

| Ref | 573 8 22 | 873 | 38000 |

Tab. 2.6: Pareto solutions after population initialization (reuse probability = 1.0)
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Alt 7 (first population — synthesis — reuse = 1,0)
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ATC Mail] x| x| x| x| x| x| x| x
Engine X | X X | x X | x
MFD x| x| x| x X X | x
ND X X X
OIS_video X | x| x x| x| x X
PFD X x| x| x| x| x]x
SD X X X X
SFTD X | x| x X X | X
VD X x| x x| x X | x
WD X X X X
C_comfort x| x x| x
C_braking] x | x X X
C_engine X X X X
C_fuel X X X X
C_fire X X X X
C_smoke X X X X
C_air X X X X
C_power X X | x X
C_antiice X X X X

(b) Allocation table (DMM)

Fig. 2.4: A Pareto solution after initialization (reuse probability = 1.0)
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as less components are present in the architecture, the combinatorics for possible chains is

reduced.

When looking at the solution presented in 2.4 in details, one can notice some unde-
sirable structures of components. For instance, CAN5 is connected as a cable (one input
connection and one output connection). From an engineering perspective, this is incorrect
as a network must link more than two equipments. However, as networks have generally a
higher mass and a lower MTTF than cables, during optimization, they might be replaced
by cables or they might be merged with other networks with more than two connected

components.

2.3.2 Optimization
Mutation only

The first run of the optimization algorithm permits to see the effect of the optimization

using only the mutation mechanism.

Initial population size 500
Population size 100
Max. population 10

Selection size 20
Reuse 1.0
Operators Mutation

Tab. 2.7: Parameters of the first run (mutation only)

By comparing these results (Table 2.8) to the previous ones, one can note that the
solutions obtained by optimization (except the initial alternative 89) are not dominated by
solutions presented in Table 2.6. This observation confirms that the optimization mecha-

nism permits to discover better architectures.

Mutation and redundancy creation

A second run of the algorithm will show the effect of redundancy creation on the

Availability criterion.

On the 2500 synthesized architectures, 127 are Pareto solutions. For clarity, we removed

from Table 2.10 architectures with equal performances.

The results of this run show that the redundancy creation mechanism as a low effect on

the Min availability criterion. This is due to the fact that, in order to increase significantly
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System Part Components Mean Min
mass number number electrical Availability

consumption Time
Ind 89 48,1 8 14 714 27792,9155
Ind 502 42.6 9 17 662 28571,4278
Ind 541 36,6 10 14 567 27792,9155
Ind 580 31,5 8 15 515 27792,9155
Ind 609 42,6 9 17 662 28571,4278
Ind 669 36,6 10 14 567 27792,9155
Ind 671 30,2 9 13 472 27055,7029
Ind 646 31,5 8 15 515 27792,9155
Ind 686 31,5 8 15 515 27792,9155
Ind 693 31,5 8 15 515 27792,9155
Ind 698 31,5 8 15 515 27792,9155
Ind 704 36,6 10 14 567 27792,9155
Ind 725 31,5 8 15 515 27792,9155
Ind 776 31,5 8 15 515 27792,9155
Ind 790 31,5 8 15 515 27792,9155
Ind 819 31,5 8 15 515 27792,9155
Ind 924 31,5 8 15 515 27792,9155
Ind 1145 36,1 6 15 583 27792,9155
Ind 1187 36,1 6 15 583 27792,9155
Ind 1259 36,1 6 15 583 27792,9155

Ref 57.3 8 22 | 873 | 38000

Tab. 2.8: Pareto solutions after optimization (Mutation)

Initial population size 500
Population size 100
Max. population 20
Selection size 20
Reuse 1.0
Operators Mutation + Redundancy creation
(same probability to be applied)

Tab. 2.9: Parameters of the second run (mutation + redundancy creation)

125



CHAPTER 2. MODEL

System Part Components Mean Min
mass number number electrical Availability

consumption Time
Ind 24 42,5 7 15 678 27792,9155
Ind 235 49 8 15 757 28571,4278
Ind 349 35,9 8 18 751 27055,7029
Ind 366 37.9 8 15 610 27055,7029
Ind 421 36,2 10 22 567 27792,9155
Ind 537 41,9 7 20 710 27055,7029
Ind 829 37,8 9 15 626 27792,9155
Ind 871 33,5 9 19 633 27055,7029
Ind 886 32,9 8 24 665 27792,9155
Ind 846 33,5 9 20 633 27792,9155
Ind 1537 36,1 8 16 583 28571,4278
Ind 1777 40,4 8 16 576 28571,4278

Ref 57.3 8 22 | 873 38000 |

Tab. 2.10: Pareto solutions after optimization (Mutation + Redundancy creation)

this performance, all control functions must have redundant chains, which would require
the redundancy creation mechanism to be applied on one architecture as many times as

there are control functions in the model. Obviously, this probability is quite low.

Nevertheless, at a local level (i.e. for a function), the application of the redundancy
creation operator permits to increase the availability of functions. For instance, it can
increase the availability of a control function from 27792h to 40000h (see Figure 2.5).

2.3.3 Introduction of crossover

In this run, the crossover mechanism is introduced. The results (Table 2.11) show that
the crossover acts as a catalyst for the optimization process. Indeed, whereas single-parent
genetic operators explore the design-space locally, crossover permits to jump between dif-

ferent areas of the design-space.
The architecture 2067 is presented in Figure 2.6. One can notice that the functions of

the system are realized by few components. This can be explained by two reasons :

1. As the algorithm do not manage to increase the Min Awvailability Time criterion,
the creation of redundancies penalizes the generated architectures on other criteria.

Consequently, the algorithm will tend to keep architectures without redundancies.
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Alternative 5 Alternative 9
Min availability of C_fire = 27792 h Min availability of C_fire = 40000 h

Fig. 2.5: Effect of the redundancy creation operator on the availability of the Cire function
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2. No constraint is set on the segregation of functions so, ideally, only two chains of

components are needed : one for display functions and one for control functions.

System Part Components Mean Min
mass number number electrical Availability
consumption Time
Ind 166 41,8 9 16 603 28571,4278
Ind 844 36,2 7 16 567 28241,9495
Ind 2067 23,9 6 8 361 28241,9488
Ref 57.3 5 | 22 | 873 38000 |

Tab. 2.11: Pareto solutions after optimization (Crossover + Mutation + Redundancy creation)
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N

P

(a) Physical architecture
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(b) Allocation table (DMM)

XXX XXX XXX XXX [X|[X[X
XXX XXX [X|X|X|X
XXX [X XX [X]|X|X|X
XX XX XXX |X]|X

Fig. 2.6: A Pareto solution after optimization
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CHAPTER 1

OUTCOMES

1.1 Interests and added value

Analyzing the results obtained on the cockpit use-case, the first outcome is that the
method permits to identify interesting architectures given a design problem. Indeed, the
solutions obtained at the ed of the process are at least as good as those created by a

traditional process (except for the Min. Awvailability criterion).

1.1.1 Physical/Functional architectures update

An originality of the method is that, unlike other CDS or design optimization methods,
it does not only deal with the definition of a physical architecture but also updates the
functional architecture depending on technological choices. This is realized thanks to the

Induced functions mechanism.

1.1.2 Naturally-bounded design-space

It was stated in Part III, the setting up a the design-space is not straightforward and
may lead to ignore some interesting parts of it. Generally, the design-space must be set up
explicitly by, for instance, stating the maximum number of components that can be present
in the architecture. In some context, that might be useful (e.g. for integration purpose).

But most of the time, there is no rationale for these constraints.

Our method does not require the designer to set up bounds for the number of com-
ponents. Instead, the different algorithms have the freedom to use as many components
as they want if no constraints on the maximum number of instances of a component type

have been set.

Thanks to the Minimal chain rule, the chain search algorithm can be constrained to
use only the minimal set of components that it needs to realize the treated function.

Consequently, the design-space is naturally bounded by the needs of the functions.
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1.1.3 Compatibility with traditional process

The shift from traditional human-based design processes to computer-aided design pro-
cesses is a major challenge. Nevertheless, an interesting feature of our method is that results
of traditional design processes can be used. Indeed, known architectures can be modeled
and considered in the initial population of the evolutionary approach. Thus, interesting
architectures obtained thanks to a traditional process can be considered as starting points
of the solution search and can be compared to new solutions obtained by the optimization
method.

1.2 Limitations

As mentioned in the previous Part, a main limitation of the method is that its ability to
optimize solutions depends on the considered criteria. Indeed, some criteria like the Min.

Awailability one may require a huge number of iterations to be optimized.

Another limitation of the method deals with the modeling and use of capabilities. In-
deed, capabilities are only considered as qualitative and permanent. In some problems,
however, capabilities have to be considered in a more complex manner in order to generate

valid architectures.

In the last part, main outcomes of the study were presented. Based on these results,

some perspectives for future research works can be highlighted.
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PERSPECTIVES

2.1 Compatibility rules

2.1.1 Capability performances

In the method, we consider capabilities in a contract-based manner. This relation is
only qualitative i.e. the component instances have a capability required by a function.

Nothing ensures that:

1. the performances of the components are sufficient to effectively perform the function

(initially and in time),

2. the capability is able to be used by several functions.

Taking into account these aspects would restrict the design-space and obtained solutions

would be more pertinent. To do so, one should additionally specify:

— the capability performances required by functions,
— the capability performances offered by components,
the scheduling of functions execution,
— the ability of components capabilities to be shared by different functions at the same
time,
the durability of components capabilities (permanent vs. consumable capabilities).
This would permit to check that, at any time of a given scenario, no component exceeds

its performances while executing its allocated functions following their scheduling.

Note that capabilities performances can currently be taken into account during the
selection stage. This requires to declare criteria and constraints and to set up evaluators
that will compute, based on model data, the violation of the related constraints. The
evaluator would certainly require the declaration of a simulation scenario (e.g. pilot inputs

in the cockpit use-case).
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2.1.2 Other types of rules

Depending on the problem, it might be interesting to consider rules of different types
during the generation of architectures. At the moment, the rules are limited to compatibil-
ities between ports and contract-based compatibility between components and functions
thanks to the capability concept. Some other constraints such as technological exclusion
(i.e. if a technology is used in the architecture, another one cannot be used) or segrega-
tion constraints (i.e. two functions cannot be realized by the same component) are not
considered at the time being. Nevertheless, many of these constraints that do not require

complex evaluations can be easily included in the generation process.

2.1.3 Global initialization

The current initialization process treats solutions sequentially. It might be the case
where, because of previously made decisions, no solution can be found to realize function.
In this case, the initialization fails and restarts with a new (empty) architecture. Instead,

it would be interesting :

— to analyze previous decisions and go back to a state where no inter-blocking is present
(back-tracking)

— to solve the problem globally by considering all functions simultaneously.

This would permit to consider constraints impacting several functions but also to im-

prove the performances of the initialization algorithm.

2.2 Performances

In its current version, the algorithm that implements the method takes some seconds to
generate and evaluate an alternative. This performances in term of computation time could
be improved in several ways. An improvement could permit to generate more alternatives
and, consequently, to increase the explored portion of the design-space and the confidence

in the optimality of the final selected solutions.

2.2.1 Evolution strategies - Heuristics

The method presented in this thesis is based on evolutionary mechanisms, namely
mutation and cross-over. These mechanisms are purely random and do not consider the
weaknesses and strength of parent architectures. The idea of evolution strategies is to
analyses the parent architecture performances in order to apply to them modifications

that will improve the child architecture performances.
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Evolution strategies are heuristics. Although some generic strategies may be found,
evolution strategies are mostly domain or problem specific and require the elicitation of
designers’ knowledge. They are also generally related to a particular criterion as it may be

difficult to define evolution strategies that optimize conjointly all considered criteria.

For instance, a simple "decrease mass" evolution strategy would consist in analyzing the
parent architecture, finding the heaviest chains and trying to replace them by equivalent

but lighter ones.

Other evolution strategies could be implemented to improve the optimization of the
Availability criterion. A first strategy could consist in a reallocation of functions so that,
keeping the same physical architecture, the availability of each function would be max-
imized. As no other criterion is impacted by allocations, this strategy would have the
benefit to create at least as good architectures as their parents. A second strategy could
create redundancies in priority on the functions that represent the minimum availability
time among all functions. This would mechanically increase the performances of created

architectures on the Minimum availability criterion.

The introduction of evolution strategies, in complement to random mechanisms, shall
permit to improve the convergence of the optimization process toward the Pareto front of

the problem.

2.2.2 Mathematical programming

In our works, we decided to work directly on the model thanks to an algorithm. A
idea to improve the process performance would be to transform the model and the rules
into a mathematical problem and to use existing mathematical tools to solve it. For in-
stance, constraint programming, a technique that explores branches of a decision tree to
find acceptable solutions, could be used to find all solutions to the design problem in a
limited time. This approach is used in [Condat, 2011] to allocate functions to components
(modules). This technique would only permit to discover viable and valid architectures but
not to select the best ones. For this, architectures performances shall be assessed and best

architectures shall be selected thanks to selection schemes such as MCDA methods.

Linear programming would permit to optimize solutions by considering linear objectives
functions and constraints. This is clearly a limitation as some criteria cannot be assessed

by linear models without making simplifying assumptions.

The mathematical model could also be used by an evolutionary optimization algorithm.

This approach would present the advantage to be run on different CPUs (parallelization).
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2.2.3 Parallelism

Parallelism consists in assigning computation tasks to several cores. These tasks are
executed simultaneously. The evaluation of alternatives can be parallelized as an evaluation

process do not need data from other processes.

In the same manner, the synthesis and the genetic evolutions of our algorithm could

be easily parallelized. This would reduce dramatically the computation time.

For instance the synthesis process for one architecture can take from 5 to 60s and the
maximum evaluation time is 0.2s. For 100 architectures, a sequential process would take

around 50min whereas a parallel process would take 60s.

Sequential process
E(A) E(B) E(C)
A | |

S(A) S(B) S(C) E1(A) E2(A) E3(A) E1(B) E2(B) E3(B) E1(C) E2(C) E3(C)

Parallel process

\ 4

A= (n — 1) X (¢ +ZtEi)

where n is the number of alternatives, tg the time to
synthesize an alternative and tg; the time to evaluate the

alternative along the criterion i

Time

Fig. 2.1: Hlustration of sequential vs. parallel processes

2.3 Uncertainties

As the reader will probably notice, uncertainties are not considered in the method

although they can play an important role in the decision process. Indeed, during early
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design phases, many parameters of the study are uncertain (component characteristics,
functional requirements...). This can lead to take decisions that will turn out to be non

optimal (or even not adapted) later on, when uncertainties will be more reduced.

The introduction of uncertainties in the method will allow to make robust decisions
with respect to the possible evolutions of the design problem parameters. For this, uncer-
tainties must be modeled (distributions, ranges) and considered during the evaluation and
selection stages. Uncertainties shall be considered as well during the two generation stages

(initialization and evolution) if quantitative capabilities are considered (Section 2.1.1).

2.3.1 Evaluating with uncertainties

Considering uncertainties on the problem parameters, evaluation modules shall not
compute a single performance value but rather a performance distribution. The distribu-
tion of performances is obtained by propagation of uncertainties or by the Monte-Carlo

technique.

The evaluation means may also be uncertain. In order to be used in an evolutionary
approach, evaluations should be as quick as possible to limit the runtime of the optimization
algorithm. To achieve this, evaluation modules sometimes approximate real performances
by using simplified computation algorithms. The metrics produced by these evaluations are

thus uncertain. These uncertainties can also be considered by propagation of uncertainties.

2.3.2 Selection with uncertainties

The classical selection processes like the ones used in our method (NSGA-IT and NEMO)
consider single performance values. Nevertheless, because of uncertainties on the evalua-
tions and on the problem parameters, the selection process must ensure that selected
architecture are robustly optimal i.e. that a variation of their parameters in the uncertain
domain do not make the selected architectures not optimal. To address this problem, ro-
bust optimization (RBO) techniques are emerging (see [Beyer and Sendhoff, 2007] for a
review). These techniques include solution robustness measures in the selection of solutions,

in addition to optimization objectives.

2.4 Multi-system optimization

The defined method, as almost every CDS methods, only concentrate on one system
to be optimized. Nevertheless, as it was previously mentioned, the optimal system is not
necessarily the one with the best performances but the one that permits to increase the

worth of the upper-level system(s). Because of this, it is important to make the link between
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the system optimization process and the upper-system optimization. The objective of this
integration would be to drive the lower-level optimization processes depending on the
performances of the upper-level system. For instance, the mass criterion for the cockpit as
a very low incidence on the mass of the aircraft compared to other systems (propulsion,
networks...) so a low effort shall be put in optimizing this criterion. At the contrary, the
availability of the cockpit system has a major impact at the aircraft level as, in case of
unavailability of a function, the aircraft may not be allowed to take off and may require
maintenance. This objective should then be considered as more important than other

optimization objectives.
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CONCLUSION






The analysis of the industrial context that was performed in this study showed a need
of system designers for a method to support them in the architecture design process for
complex systems. To address this need, a review of existing computational design methods
was performed. This study underlined the weaknesses and limitations of current methods

to solve the design problems in the aerospace industry.

A new method for the synthesis and optimization of systems architecture was defined.
This method permits to create design alternatives that fulfill some structural rules (namely
viability and validity), satisfy some constraints and are pseudo-optimal with respect to
some criteria. The method is based on an engineering model formulated on the basis of
a meta-model defining the necessary (engineering and optimization) concepts. The model

contains all the information of the method :

— the input data of the optimization process (component library, functions, criteria...)
— the data gathered during the optimization process (designers’ preferences)

— the generated design alternatives and their performances

The model is also used for evaluation of the different criteria defined in the problem.

Evaluation modules gather data from the model to compute architecture performances.

By the use of an evolutionary optimization approach, the method is able to handle
large design spaces as it does not try to generate all solutions but rather sets up a smart
exploration of the design space. For this reason, the method is particularly suitable in trade

studies where a large design-space is considered.

Similar approaches

Many similar approaches are adopted by researchers but also by engineering tool ven-
dors. IBM recently proposed a method to use their tool suite for the optimization of systems
architectures [Broodney et al., 2012|. This shows the current interest of such optimization
approaches which shall permit to create better products with a reduced development time.
This different approaches shall now be tested in parallel to different types of problems
(different granularities, design-space sizes...) in order to compare their performances and
to determine the optimal scope for each method. Doing so, designers will be able to select,
depending on the characteristics of their problems and on the context of the study, the

most suitable approach.

The use of a method does not prevent from using other methods in complement. For
instance, a method like the one presented in this dissertation can be used in very early
design phases in which the considered design-space can be kept open and huge. Given the
results of the method, the design-space can be reduced and other methods (e.g. constraint

programming or linear programming) can be used on this reduced design-space.
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Industrialization

Currently, the architecture optimization methods gain in maturity. The next stage for
these methods will be their introduction in the industrial processes. A current brake to
this is the culture of designers and engineers, especially in the field of aeronautics. Indeed,
they are used to work on the basis of a single main alternative (baseline) and to create new
alternatives by modifying some characteristics of it. An important work for researchers is
now to demonstrate the interest and the effectiveness of global approaches on real design

problems.

Another axis of work for the adoption of these methods will be their tooling. Indeed,
in order to be introduced in the industrial processes, the tools used to implement the
different methods must be user-friendly and stable. They must also be in line with the
different policies and best practices of the company and must present some features such

as report generation, exchange with existing databases or use of on line services.
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In the following, component types considered for the cockpit study are described in

details. Data were modified for confidentiality reasons.

Information in italics are inherited informations.

| Pt | S Pt |

Name DU
Name in_port Name out_port
Basetype -
Direction IN Direction ouT
Abstract Yes
Type _ — — Type B
Max instances
Multiplicity - Multiplicity -
Capabilities -
Attributes - Attributes -
Attributes -
Flows - Flows -

Induced functions -

Fig. A.1: Display Unit (DU)

Pt | S Pt |

Name sDU
Name in_port Name out_port
Basetype bu
Direction IN Direction out
Abstract Yes
Type _ — — Type R
Max instances 2
Multiplicity Infinity Multiplicity Infinity
Capabilities -
Attributes - Attributes -
Attributes -
Flows - Flows -

Induced functions -

Fig. A.2: Shared Display Unit (sDU)

| Pt | S Pt |

Name pDU
Name in_port Name out_port
Basetype DU
Direction IN Direction out
Abstract Yes
Type _ — — Type B
Max instances
Multiplicity 1 Multiplicity 1
Capabilities -
Attributes - Attributes -
Attributes -
Flows - Flows -

Induced functions -

Fig. A.3: Private Display Unit (pDU)
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ComponentType

Name sDDU
Name in_port Abstract No Name out_port
Direction IN Max instances Direction out

Type Video —— Capabilities - — Type Image
Multiplicity Infinity Location Cockpit Multiplicity Infinity
Attributes portType female Mass 5,1 Attributes portType female

Attributes
Flows - Conso 52,0 Flows -
MTTF 4900

Fig. A.4: Shared Dumb Display Unit (sDDU)

ComponentType

Name pDDU
Name in_port Abstract No Name out_port
Direction IN Max instances Direction out
Type Video — Capabilities Perso_centered r— Type Image
Multiplicity Infinity Location Cockpit Multiplicity 1
Attributes portType female Mass 5,1 Attributes portType female
Attributes
Flows - Conso 52,0 Flows -
MTTF 4900
Fig. A.5: Private Dumb Display Unit (pDDU)
ComponentType
Name pSDU
Abstract No
Name in_port e — Name out_port
Direction IN . Direction ouTt
Computing
Type Video — Capabilities Graphical r— Type Image
Multiplicity Infinity RElE (e Multiplicity 1

Location Cockpit

Attributes portType female Attributes portType female

Mass 4
Flows - Attributes Flows -

Conso 95,0
MTTF 3 000

Fig. A.6: Private Smart Display Unit (pSDU)
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ComponentType

Name sSDU

Abstract No

Name in_port Name out_port
Direction IN painstonces Direction out
— . Computing

Type Vv Capabilities - Type |
Multiplicity Infinity Location Cockpit Multiplicity Infinity
Attributes portType female Mass 4 Attributes portType female

- Attributes - R
Flows Conso 95,0 Flows

MTTF 3 000

Fig. A.7: Shared Smart Display Unit (sSDU)

ComponentType

Name HUD
| Pt | Port

Basetype -
Name in_port Name out_port
Abstract No
Direction IN Direction ouT
Max instances 2
Type Video - - Type Image
Capabilities -
Multiplicity 2 Multiplicity 1
Location Cockpit
Attributes portType female Attributes . Attributes portType female
Mass P
Flows - Flows -
Conso 95,0
MTTF 3 000

Name Control
Inputs ¢ (Control)
Outputs cd (Data)
Capabilities -
Attributes -

157

Name control_port
Direction IN
Type Data
Multiplicity 1

Attributes portType female
Flows cd (Data)

Fig. A.8: Head-Up Display (HUD)
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ComponentType

Basetype -
Name in_port Name out_port
Abstract No
Direction IN Direction ouT
Max instances -
Type Data — _— Type Data
Capabilities Computing
Multiplicity Infinity Multiplicity Infinity
Location Bay
Attributes portType female Attributes portType female
Mass 0,
Flows - Attributes Flows -
Conso 59,0
MTTF 100000

Fig. A.9: Central Processing Unit (CPU)

ComponentType

Name GPU

Port Port
Basetype =
Name in_port Name out_port
Abstract No
Direction IN Direction ouT
Max instances S
Type VideoData — | Type Video
Capabilities Graphical
Multiplicity Infinity Multiplicity 2
Location Bay
Attributes portType male Attributes portType female
Mass 0,
Flows - Attributes Flows -
Conso 59,0
MTTF 100000

Fig. A.10: Graphical Processing Unit (GPU)

ComponentType
Port | Pt |

Basetype =
Name in_port Name out_port
Abstract No
Direction IN Direction ouT
Max instances =
Type Control _— Type Data
Capabilities -
Multiplicity Infinity Multiplicity Infinity
Location Cockpit
Attributes portType  female Attributes portType female
Mass 4,0
Flows - Attributes Flows -
Conso 1,0
MTTF 40000

Fig. A.11: Integrated Control Panel (ICP)
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Name in_port Name Cable Name out_port
Direction IN Basetype - Direction ouT
Type - — Abstract Yes — Type -
Multiplicity 1 Max instances - Multiplicity 1
Attributes portType male Capabilities - Attributes portType male
Flows - Attributes - Flows -

Fig. A.12: Cable

Name in_port Name dc Name out_port
Direction IN Basetype Cable Direction ouTt
Type Data = Abstract No = Type Data
Multiplicity 1 Max instances - Multiplicity 1
Attributes portType male Capabilities - Attributes portType male
Flows - Attributes Linear_mass ,15.103 Flows -

Fig. A.13: Data Cable (dC)

Name in_port Name dc Name out_port
Direction IN Basetype Cable Direction ouTt
Type Elec = Abstract No = Type Elec
Multiplicity 1 Max instances - Multiplicity 1
Attributes portType male Capabilities - Attributes portType male
Flows - Attributes Linear_mass 4,0.10°3 Flows -

Fig. A.14: Electrical Cable (eC)
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| pot | ComponentType

in_port
IN

Name
Direction
Type
Multiplicity
Attributes

Flows

| pot | SR

Name
Direction
Type
Multiplicity
Attributes

Flows

| pot | SRS

Name
Direction
Type
Multiplicity
Attributes

Flows

APPENDIX A. DESCRIPTION OF COMPONENT TYPES

Infinity

portType

in_port
IN
Data

Infinity

portType

in_port
IN
Data

Infinity

portType

male

male

Fig. A.16: Controller Area Network (CAN)

male

Name Network
Basetype =
Abstract Yes

Max instances =
Capabilities -
Attributes -

Fig. A.15: Network

Name CAN
Basetype -
Abstract Yes

Max instances -
Capabilities -
Linear_mass
Attributes

MTTF

Name ADCN
Basetype -
Abstract Yes

Max instances -
Capabilities -
Linear_mass

MTTF

Attributes

1,7.10°3
1020000

0,0

250000

Port
Name out_port
Direction ouTt
Type -
Multiplicity Infinity
Attributes portType male
Flows -
Port
Name out_port
Direction ouT
Type Data
Multiplicity Infinity
Attributes portType male
Flows -
Port
Name out_port
Direction ouTt
Type Data
Multiplicity Infinity
Attributes portType male
Flows -

Fig. A.17: Advanced Data Communication Network (ADCN)
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APPENDIX B. AVAILABILITY ANALYSIS OF THE REFERENCE
ARCHITECTURE

This Appendix presents the results of the Fault Tree Analysis (FTA) conducted on the
Reference architecture. The Availability time A of each function is computed thanks to the
analysis of the architecture and the building of a fault tree which decomposes the failure

of functions into failure of components.

The way functions are realized are very similar so only 3 FTA have to be conducted
: display function using a Dumb Display Unit (DDU), display function using a Head-Up
Display (HUD) and control function.

Display

function = 4 00h

failure

DDU 1 not fed
DDU 1 A=1,0e12

Failure

CAN 1 not fed
A=1,7e9

a

GPU 1 not fed GPU 2 not fed
A=7142 A=7142

CPU 1 not fed CPU 2 not fed
A=250000 A=250000

ADCN ADCN
1 1
Failure Failure

CAN 2 not fed
A=1,7e9

Fig. B.1: Fault tree of display functions using DDU
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€91

PFD failure A=3

000 h

HUD 1 not fed
A=1,0e12

=

CAN 1 not fed

Control_HUD 1
failure
A=1,4e9

CAN 2 not fed

SHOIANHdAY

NH 8uisn suoryouny Ae(dstp jo 991} yneq :g°qg Sy

CAN3 not fed CAN4 not fed
A=40000 CAN4 A=40000

A=1,7e9 A=1,7e9

Failure

GPU 2 not fed
A=7142

GPU 1 not fed
A=7142

CPU 1 not fed
A=250000

ADCN
1
Failure

CPU 2 not fed
A=250000

ADCN

1
Failure
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ARCHITECTURE

Control

function A =250000 h

failure

|
ADCN1 not fed
ADCN1 A=7,7e

Failure

CPU3 not fed CPU4 not fed
A=3 490 CPU4 A=3 490
Failure

CANS3 not fed CAN4 not fed
A=40000 CAN4 A=40000
Failure

Fig. B.3: Fault tree of control functions
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APPENDIX C. HOW TO USE THE SAMOA PROFILE

The profile was developed using the IBM Rational Rhapsody 7. .1 tool. Some constructs may be
dependent on this tool. Also, the parser uses the Rhapsody API.

Initiating the project
1. Create a new SysML model

2. Import the SAMOA profile (File > Add Profile To Model > SAMOA_Porfile.sbs > Add as Reference)

3. Create a “Problem Definition” package

Modeling the problem
1. Types
1. Create a BDD for the definition of types

2.

Create a block

bdd [Package] Problem definition [Types]

whlock FlawTypa»
I

JaN

wblock FlowTypex
C

whlock FlaowType»
I_fo

shlock FlowType»
I_capt

shlock FlowTypax
E

whlock, FlowType =

wblock FlowTypex
.

Ja

whlock,FlawType =
RD

shlock, FlowType =
¥

shlock,FlowType =
¥D

Figure 1 - Block Definition Diagram of Types

2. System
1. Create a block called “System”
2. Set the stereotype of the block as “Architecture”
3. Create an IBD of System and populate it with ports (see 3)
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ibd [«architectures block] Systern [IBD of

System ]
CC[*].C IC[*]:I_capnt
LT
CF[*]C IF[*]:I_fo
E
Sys_in[*]:RD Sys_out[*]:RD
[+

Figure 2 - Internal Block Diagram of System

3. Ports
1. Create a flow port
2. Set the type and multiplicity
3. Add attributes as Tags
4. Add flows by creating dependencies to corresponding pins

Note: The relation to Pins can, in theory, be done by adding Pins as Tags but the Pins are not accessible in
the Rhapsody version we used.

4. Functions
1. Create an activity diagram for System
Add an action
Add pins for inputs and outputs
Set the type of pins
Add capabilities (see 5)
Add attributes as Tags

vk wnN
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ack [«Architectures block] Swskem [ackivity _13]

ATC Mail ATC _Mail_i_capt

ATC_Mail_i_fa
in_ ATC Mail

Figure 3 - Activity Diagram of System

5. Capabilities
1. Add a Tag to the component type or to the function
2. Set the stereotype of the Tag as “Capability”

Or (reuse)

1. Locate the existing capability Tag
2. Create a dependency link from the component type or function to the Tag

GPU

Vales

E Location:char*=EBay
E Mass:double=0.5
E Conso:double=59
= MTTF:double=125

Tags
in_port[*]:0 a(g':'is.ﬂtbstracl::F‘\hpBDoIean=FaIse

ouk_port[*]:0
I:_HLgMaxInstances:thlnteger=inF =

1
.

«Tagn
Graphical:Capability

Figure 4 - A component type reusing an existing capability

6. Component types
1. Create aBDD
2. Create a block
3. Set the stereotype of the block as “ComponentType”
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Add ports (see 3)
5. Add attributes as block Attributes
Set maxInstances and isAbstract tags
7. Add Capabilities (see 5)

bdd [Package] Probler definition [Components]

Lrafras

Tags
& istbstract: RhpBoolean=True
£ MaxInstances:RhpInteger=6

DU
. -
| sDU pDU
Lrakies Lradkies
Tags Tags

fisAbstract:RhpBoolean=True & isabstract:RhpBoolean=True

AMaxIrstances:RhpInteger=2 £ ManInstances: Rhplnteger=6

sDDU
Lafes
4 Locationichar*=Cockpit
in_port[2iD 8 Mass:double=5.1
| = Consoidouble=52
" MTTF idouble=6.49e4

but_part[*]:1

Tage
| MisabstractiRhpBoolean=False
B MaxTrstances: RhpInteger=6

CcPu

L¥akres
B Lacation:char*=Bay
S Mazsidouble=1.2

& Conso:double=53
W MTTFdouble=1et

Tage
in_pert[*ip 5 Comptings Capability

out_part[*JiCr
“isAbstract:RhpBoolean=False -

[ | MaxInstances:Rhplnteger=inf

GPU
Lrafes
“ Location: char*=Bay
4 Mazz:double=0.8
% Consotdouble=53
4 MTTF:dauble=1e5

Tags
| “-;'ls.ﬂ\bstract:thBooIean=FaIse
i %9 MaxTnstancesRhpInteger=inf

oul_port*]:D
=

GraphicakCapability

Figure 5 - Block Definition Diagram for Component types

7. Criteria
1. CreateaBDD
2. Create a block
3. Set the stereotype of the block as “Criterion”
4. Set the value of the “evaluationMethod” tag

Note: The evaluation method tag corresponds to the name of the method contained in the
EvaluationMethods class of the Java project (SAMOA_v2 > src > Modules > EvaluationMethods).

8. Objectives

1. Create a block

2. Set the stereotype of the block as “Objective”
3. Set the value of the “Direction” tag
4

Create an Association relation between the objective and its criterion
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9. Constraints

1.

2.
3.
4

Create a block
Set the stereotype of the block as “Constraint”

Set the values of the “Direction”, “Threshold” and “Criticality” tags

Create an Association relation between the objective and its criterion

bdd [Package] Problem definition

[optim] ok Coratiants
E— Mazx allowed mass
= Hlock Obhpctivas
Minimize mass \Fatas

Lrafes

Tags Tae=
- G- T TR -
EDirection: ObjDirection=rnax [ cCriticality:RhpInteger=1

[a,_—,,nDirection:CstrDirection=equaI

1

-

*2Threshold:RhoReal=11

1

sblock Cribéricrs
Mass

«bliock, Crikesione
Consumption

Lralkres

Lraies

Tags
= Drescription:khpString
Ee\raluationMethod:thString=eu’aluateMass

Aperations

Tags
@Description:thString

ClevaluationMethad: FhpString=evaluateConso

Figure - Block Definition Diagram for Criteria, Objectives and Constraints
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