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Abstract

Growing diversity of agents in current communication networks and increasing capac-
ities of concurrent technologies in the network environment has lead to the consider-
ation of a novel distributed approach of the network management. In this evolved
network environment the increasing need for bandwidth and rare channel resources,
opposes to reduction of the total energy consumption.

This thesis focuses on application of distributed mechanisms and learning methods
to allow for more autonomy in the heterogeneous network, this in order to improve
its performances. We are mainly interested in energy efficient stochastic mechanisms
that will operate in a distributed fashion by taking advantage of the computational
capabilities of all the agents and entities of the network. We rely on application of
Game theory to study different types of complex systems in the distributed wireless
networks with dynamic interconnectivity.

Specifically, we use the stochastic reinforcement learning tools to address issues
such as, distributed user-network association that allows achieving an efficient dy-
namic and decentralized radio resource management. Then, we combine access se-
lection procedures with distributed optimization to address the inter-cells interferences
coordination (ICIC) for LTE-advanced networks using dynamic power control and de-
sign of fractional frequency reuse mechanisms. Moreover we address in non-hierarchical
networks, more precisely in Delay Tolerant Networks (DTNs), decentralized methods
related to minimization of the end-to-end communication delay. In this framework we
are interested, in addition to Nash equilibrium, to the notion of evolutionary stable
equiliria in the different context of Evolutionary Games, Markov Decision Evolution-
ary Games and Minority Games. As the major parts of our work includes testing and
validations by simulations, eventually we present several implementations and inte-
grations materials for edition of simulation platforms and test beds.
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Résumé

La diversité croissante des différents agents constituant les réseaux de communication
actuels ainsi que capacité accrue des technologies concurrentes dans l’environnement
réseau a conduit à la prise en compte d’une nouvelle approche distribuée de la ges-
tion du réseau. Dans cet environnement réseau évolué, le besoin en accroissement de
la bande passante et en ressources rares, s’oppose à la réduction de la consommation
énergétique globale.

Dans notre travail nous nous intéressons à l’application de mécanismes distribués
et de méthodes d’apprentissages visant à introduire d’avantage d’autonomie dans les
réseaux hétérogènes, mobiles en particulier, tout en améliorant les performances par
rapport aux débits et à la qualité de service. Notre étude se concentre principalement
sur l’élaboration de mécanismes distribués stochastiques et énergétiquement efficaces
en profitant des capacités de calcul de tous les agents et entités du réseau. Divers out-
ils de la théorie des jeux nous permettent de modéliser et d’étudier différents types de
systèmes dont la complexité est induite par la grande taille, l’hétérogénéité et le car-
actère dynamique des interconnexions. Plus spécifiquement, nous utilisons des outils
d’apprentissage par renforcement pour aborder des questions telles que l’attachement
distribué des utilisateurs permettant une gestion dynamique, décentralisée et efficace
des ressources radio. Nous combinons ensuite les procédures de sélection d’accès à
des méthodes d’optimisation distribuées du type gradient stochastique, pour adresser
le problème de coordination des interférences intercellulaires (ICIC) dans les réseaux
LTE-A. Cette approche se base sur un contrôle de puissance dynamique conduisant à
une réutilisation fractionnaire des fréquences radios. Par ailleurs nous adressons dans
les réseaux decentralisés non-hiérarchiques, plus précisément les réseaux tolérants aux
délais(DTNs), des méthodes décentralisées liées à la minimisation du délai de trans-
mission de bout en bout. Dans ce cadre nous nous intéressons, en outre des équilibres
de Nash, à la notion d’équilibre évolutionnairement stables dans différents contextes de
jeux évolutionnaires, jeux évolutionnaires décisionnels markoviens et jeux de minorité.
Enfin, la majeure partie du travail effectué se rattachant aux tests et validations par sim-
ulations, nous présentons plusieurs éléments d’implémentations et d’intégrations liés
à la mise en place de plateformes de simulations et d’expérimentations.

Mots clés : Réseau de télécommunication sans fil, évaluation des performances, algo-
rithmique distribuée et protocoles de communication.
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General context

In first generations of communication networks, one generally considers centralized in-
telligence in the network at the opposite of distributed systems. This choice was done
especially in order to reduce as much as possible the computational burden and com-
plexity in equipments of the networks end-users. This way of conceiving the networks
and in particular hierarchical networks (like cellular mobile networks), is generally suit-
able when there is only one technology monitored by a single operator of the network.
In the area of mobile communications, mainly in mobile cellular networks, there have
been a prominent evolution with the advent of several new technologies of commu-
nication based on improved techniques and enhanced devices. From the first to the
third generation of mobile communications technologies, considerable improvement
of transmission rates has allowed the introduction of new applications and develop-
ment of considerable amount of services for the end-users. As a result of this dramatic
increase of the network capacity, the nature of the end-users equipments in the net-
work has then extended from simple land-line phone and mobiles phones, to smart
phones and even laptops, fridge, appliances . . . with the capability to communicate
between each other. From another side, in the domain of computer networks, ad-hoc
networks have moved from the intranet to wider areas, thanks to the occurrence of the
INTERNET and evolutions of processor capacities at the end-user. Those two main
types of communications networks, namely mobile and computer networks, have thus
constantly evolved to eventually merge inside the core and even the air interface of the
communication networks as we know today(the Global Unified Network). As a matter
of fact, several new technologies are now forced to coexist inside a common network
area (local area networks access points, hot-spots, mobile networks Bases Stations, etc.).
As a consequence of this heterogeneity interoperability has become a crucial aspect in
the evolved new paradigm of mobile communications for example and yielded from
the research community and standardization organisms the release of several new stan-
dards see [64] and [30]. From the network management standpoint, incumbent opera-
tors no longer detain the monopoly of the market and one has witnessed during recent
years raise of new comers as well as growth of virtual operators in the sector of telecom-
munications all around the world. Users are thus offered access to several concurrent
technologies with more or less similar capacities and monitored by different operators
of the network. As an example, in the mobile cellular networks, the HSDPA, EV-DO
and UMTS mobile communication standards have been observed to provide compara-
ble performances to end-user in the reverse link[58]. Similarly, from HSPA+, WiMAX
1.5 to current fourth generation of mobile communication technology, LTE, analogous
performances in terms of network capacity was announced inside a tight range of val-
ues [43][125]. The current communication systems have thus become more and more
complex and have dramatically evolved toward heterogeneous network architectures
with a high demand of traffic making centralized management stringent and mostly
suboptimal.
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Motivation and general overview

The question of how to manage and how to take efficiently advantage of the pool of
available resources has then become prominent. Indeed, there has been a growing in-
terest on how users should be assigned to exploit those resources more efficiently. Many
proposals appeared in the network architecture as well as in the design of new proto-
cols. Some approaches are based on joint Radio Resource Management (RRM) in order
to efficiently share the scarce network resource with the objective to take advantage
of all the heterogeneous resources available. But resource management for QoS provi-
sioning in heterogeneous wireless network is a complex task because of heterogeneity
of policies and mechanisms used for QoS provisioning in different wireless networks,
along-with highly probabilistic behavior of network traffic. Moreover, the presence of
the multiple radio access technology provides roaming capability in different wireless
networks through vertical handovers. Those handover operations may cause signifi-
cant degradation to QoS provisions though. To address this problem, authors propose
in the literature new approaches such as joint radio resource (JRRM) mechanism to
achieve an efficient usage of a joint pool of resources. For example, [68] and [69]propose
a framework for a JRRM based on fuzzy neural methodology and reinforcement learn-
ing algorithms. Apart from advances in the network architecture, major advances in the
field of electronics on the mobile user side have allowed for more computational capa-
bilities at mobile agent’s terminals (the so called Smart-phones). For example the user
equipment in 3Gs networks is capable of operating on several accesses at the same time
using the multi-homing technique. Furthermore, integration of proximity communica-
tions unlike,infrared or bluetooth on another hand has encouraged the development of
peer to peer like communications with mobile phones in ad hoc mode where mobile
devices can communicate between each other without resorting to an access point.

Next generation wireless systems are indeed expected to enable versatile and flex-
ible communications between mobile and autonomous users even in case where no
infrastructure is available. In these regimes, in fact, due to nodes’ mobility, network
topology may change rapidly and in a non-deterministic way in time. All customary
network functionalities such as topology discovery, routing and messaging have there-
fore to be handled by the mobile nodes, thereby creating the need for efficient decen-
tralized algorithms. The design of such algorithms under continuous topology changes
and using only local information available at mobiles requires a specific design effort.
On one hand, high mobility and frequent network partitioning rule out Internet routing
protocols which operate poorly under uncertain networking conditions, high mobility
and frequent network partitioning. But, on the other hand, many users carry advanced
computing devices such as smart-phones, netbooks, etc. As we just mentioned, such
devices are equipped with wireless interfaces so that it is possible to sustain communi-
cation by leveraging intermediate nodes acting as relays, the so called carry-store-and-
forward strategy. Messages can thus arrive at their destination thanks to the mobility of
some subset of nodes that carry copies of the message stored in their local memory. The
idea of networks with such characteristics has been introduced in literature as Delay (or
Disruption) Tolerant Networks (DTNs) [5, 99, 70]. The DTN thus comes as a solution to
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the design of a new network architecture where the mobile user plays a central role in
the structure of the network. We will address particularly the DTNs in the third part of
our thesis. This new paradigm of the network has then motivated the interest in decen-
tralized systems which come to define how it is possible to establish a trade-off between
network performances and signalization load under the dynamics of the ever chang-
ing environment. This new highly heterogeneous and dynamic environment thus raise
among several others, the problems of agent coordination for overall performances op-
timizations, global energy consumption through signaling or distributed computations
for self-organization and interoperability. However, if we resort to distributed comput-
ing it will be important to analyze how will perform a decentralized approach of the
network in this predesignated environment. We will expect from the study of decen-
tralized systems, to motivate the design of more flexible networks and technologies,
which will adapt to the dynamic of the environment and introduce some level of fair-
ness while serving a large population of mobile clients. Nevertheless, the major down-
side of the decentralized architecture comes from the fact that, the more the system is
distributed the more the computation burden at distributed agents is increased, which
can generate an additional energy cost for computation. In order to skirt this problem
mainly constrained by fast draining and very limited life time of batteries in mobile
devices, several approaches such as automatic screen light management, the execution
of optimized codes in the mobile, clouds phones and many others was proposed in
the literature. However, all those technical solutions that rely mainly on the optimiza-
tion of internal processing performances are still insufficient. In [12] authors developed
throughout their thesis several methods for energy conservation and optimization re-
lated to sleep mode management and network card operations management. Indeed
one of the major causes observed of the energy consumption in smart phones is due to
data upload/download using the network resources of the mobile [88].

But our approach is different. In our thesis, we seek to introduce some distributed
intelligence in the network, through the design and implementation of new strategic
behaviors and protocols for the network agents, this in order to optimize the overall
network performances. As a matter of fact, in distributed network architectures the
optimization of energy expenditure at a mobile does not totally depend on the solely
behavior of the mobile itself but also depends by the behavior of the population of other
mobiles with which it is in interaction. This imposes to the user some strategic behav-
ior toward its surrounding environment and poses a coordination problem which is
interesting to address in the dense architecture of current networks where the cost of
cooperation can be exponential. Users of the networks then need to find autonomously
their optimal strategies. We will study how distributed mechanisms and learning meth-
ods can be used to allow for more autonomy in the heterogeneous network. Learning is
a crucial aspect of intelligence as it allows individuals to learn by they own the accurate
behavior or strategy to adopt in face of a particular situation. More specifically, machine
learning is a scientific discipline that is concerned with the design and development of
algorithms that allow computers to evolve behaviors based on empirical data, such as
from sensor data or databases [119]. Machine learning has emerged as a vibrant disci-
pline with objective of developing machines with learning capacities. There are many
effort in different disciplines, all contributing in the direction of improving the intel-
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ligence of machines in several dimensions. As previously motivated future network
management techniques should be able to minimize human intervention, set their own
parameters, optimize these parameters, and heal problems by themselves when they
occur. This requires to improve the intelligence of devices to be able to select the best
action by repeated interactions with unknown random environment. One of the most
important branch of Artificial intelligence, is the reinforcement learning which allows
devices or software agents to learn their behaviors based on feedback from the environ-
ment and automatically determine the ideal behavior in order to maximize its perfor-
mance. For these reasons, we are interested to use the tools of reinforcement learning to
develop some learning schemes for the distributed network environment. The first part
of this thesis will then be dedicated to a survey on reinforcement learning algorithms.

Our objective thus lies in the definition of new methods in order to improve the
network performances, this using different tools such as Game theory, Markov and
Markov decision processes, Queuing theory, design of stochastic algorithms, optimiza-
tion and control theory. Our central argument is to design some reinforcement learning
techniques as a tool to study the different problems related to decentralized networks.
We will address problems such as resource allocation and optimal power control mech-
anism for energy efficiency. As described in figure 1 we will investigate in this thesis
frameworks in which learning methods in a distributed environment can be applied to
study interaction between several actors in a situation of game. Let’s briefly define what
we understand by the notion of game. We define a Game as a situation where smart
agents (featured with the capability of making decisions) interact strategically with the
objective of maximizing their own profit. This assumption which tends to assimilate
mobiles devices to decisional agents is very important for application of Game theory
models in networking. In fact, the development of more and more complex algorithms
on board of mobile phones makes the user equipment more autonomous which makes
this constraining assumption valid. One can simply consider that strategical decision
schemes can be implemented on board of the mobile agent. In a game individuals are
given to select actions among a predefined set of actions given a predefined context
where Game theory is used to analyze the interactions between players and generally
one tends to compute an equilibrium strategy profile of the game given those inter-
actions. The application of Game Theory(GT) in communication networks although
recent is not novel and has been successfully employed in particular in wireless and
communication networks. All along this thesis we will refer to several tools from game
theory which will be defined as they are introduced in the document.
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Figure 1: Connexion between distributed learning and game framework

Contributions and Organization of the thesis

The different contributions of this thesis can be separated over two main aspects of net-
works performances optimization. First we identified and focused on the problems of
distributed resources allocation including network load management and mitigation of
inter-cell interference load in a distributed fashion for mobile cellular networks. Sec-
ond we focused on the problem of optimal routing strategies and forwarding control
mechanisms design in DTNs under the constraint of overall energy consumption for ad
hoc networks. We can split our contributions in the following points :

Mobile cellular networks : Here we propose some mechanisms for interoperability
in a context of small cells or coexistence between two different technologies. We pro-
pose a novel approach to achieve an efficient dynamic and decentralized radio resource
management in heterogeneous wireless network scenarios. We base on reinforcement
learning techniques to solve a problem related to user network association. The net-
work framework is set and clearly defined relying on propositions of tight and loose
coupling of concurrent network architectures in the cellular network environment. The
objective of this approach is to perform dynamically and efficiently, regarding overall
network performances, offloading or load-balancing between different network severs
or coexisting severs in general. Specifically our approach applies in a network situation
where several mobiles users are in presence of different communications technologies
and need to select in an autonomous way the access to be connected with. Note that
in heterogeneous networks mobile users are frequently subject to such situations. In
the heterogeneous environment, an implicit interaction thus takes place between the
population of mobile users through the different servers or access nodes. This network
scenario models as a non-cooperative game between users where the mobile agents
observe their utilities as a function of the throughput obtained in result of the action
taken. In this game users actions are to select the sever on which to send their tasks.
During the transient states of the system, players interact over several rounds of itera-
tions and we rely on a distributed reinforcement learning algorithm, implemented on
board of each device, to drive the whole system to a steady state corresponding to the
Nash Equilibrium of our non-cooperative game. This approach thus provides by the
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design of an autonomous decision making scheme, a stochastic adaptive solution to
the user-network association problem. Furthermore, we design a fractional frequency
reuse technique for inter-cell interference coordination(ICIC) in an OFDMA small cells
network using game theoretical setting. We define a Stackelberg game and propose a
hierarchical algorithm to allow distributed convergence towards the Stackelberg equi-
librium. Here the idea is to combine our approach for access selection with stochastic
power control for interference management. Recent works such as fractional frequency
reuse [47, 107] and soft frequency reuse [2] allowing users in different channel condi-
tions to benefit from different reuse patterns have been proposed in this subject. Still,
all of these schemes are static interference management approaches, where a specific
reuse pattern is predetermined a priori by a network operator at off-line. Our approach
goes in the same line with [26] where authors use the Gibbs sampler to simulate a SON,
using power control and user association to minimize the system energy cost as the
sum of the inverse of user’s experienced SINR. The main difference with this approach
is that they assume a predefined discrete set of power levels and a nested user associ-
ation optimization with the premiere objective of minimizing the system energy cost.
Stolyar and Viswanathan scheme [110] is related to ours in the sense that they use a
shadow algorithm to solve a linear program in order to find a reallocation of users on
sub-bands that minimizes the power utilization, given a current power allocation con-
figuration. Then they prove that for any user allocation, there exists a corresponding
power allocation which corresponds to a Nash equilibrium. But their theoretical work
based on fluid approximation does not describe a clear implementation directive with
respect to the current mobile network architecture and resources which is the main
purpose of our approach. Other techniques such as [42, 112] focus on the bandwidth
allocation, channel resources management and compute the spectral efficiency. A con-
strained geometrical and geographical topology of the network is usually assumed and
the resources are assigned considering inner and edge cell users while the powers lev-
els are generally assumed constant and uniformly distributed [9]. Our approach is to
consider a reuse 1 scheme and propose a mechanism independent of any predefined
spatial repartition of users in the cells. The work of authors in [111] is similar to ours
but they use differently the implementation of the gradient algorithm and their virtual
scheduling algorithm does not clearly address the users association. The proposed al-
gorithm here works at two distinct levels. At the higher level, we use a gradient descent
based algorithm to set a power control mechanism at the eNodeBs. User equipments
at the lower level solve the attachment problem using the pursuit distributed learning
algorithm that will be defined in part I. An extensive analysis of the behavior of our
approach under a perturbed environment has allowed us to conclude on the expected
performances of our algorithms in a nearly realistic environment. We then follow on
with implementation aspects of integration and simulation of our self-organizing algo-
rithm. In this perspective, we contributed to the evolution of the LTE simulator from
university of Vienna and presented the results obtained through simulations of our ap-
proach in a nearly realistic environment.

Routing configuration game in mobile ad hoc networks : We propose an autonomous
routing configuration scheme for relays in DTNs. Our scheme allows mobile users to
configure dynamically and autonomously their routing policies according to network
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reward and other users configurations. The idea has been to define a decentralized non
cooperative and energy efficient game which leads to an optimal trade-off between the
successful delivery probability and the number of infected relays at the equilibrium.
The aim is to provide a scheme which maximizes the expected delivery rate while sat-
isfying a certain constant on the number of forwarding per message. We assume that
each mobile may decide which routing protocol it wants to use for delivering packets.
We also restrict to the case that only two routing protocols are available to mobiles:
epidemic routing and two-hops. Epidemic routing on one hand, tends to maximize
the probability of successful transmission of the message by flooding the network with
several copies of the message originated at the source. On the other hand two-hops
routing tends to limit energy consumption in the network using a hard control of the
message forwarding. In two-hops routing relay nodes deliver a message, received from
the source node only to the destination. We then try to define an optimal proportion of
epidemic versus two-hop nodes in the population of mobiles. In our model we estimate
the probability of successful transmission by modeling the propagation of the message
from the source to the destination as a fluid model using mean field approximation. By
considering two different overlapping regions, each containing respectively the source
and destination nodes, we define a migration pattern for the messages trough a region
of interaction from the source to the destination. The proposed scheme requires the
introduction of a notion of a rewarding mechanism, in order to incite the mobile agents
to find autonomously the appropriate stable policy to adopt which corresponds to the
defined equilibrium of our game. By comparison of our mechanism performances with
the utility achieved by the global optimum we also provide an insight about the worst
possible performance degradation, using our approach. This is the notion of the price
of anarchy.

Mechanism design and stochastic approximation for forwarding control in DTN : In
this point, we provide a so-called mechanism design for controlling the evolutionary dy-
namics of the activation profile of the population of relays through the choice of appro-
priate forwarding control at the source of a DTN. This is a particular way of governing
the replicator dynamics: such an approach provides very interesting insight into the
feasibility of optimal mechanism design and, the technique appears novel compared to
known results in literature. This approach operates at two different stages and bases on
a two-hops routing technique. In fact, this routing protocol has two major advantages:
first, compared to epidemic routing, it performs natively a better trade-off between the
number of released copies and the delivery probability. Second, forwarding control
can be implemented on board of the source node. Under two hop routing, the source
transmits a message copy to mobiles devices it encounters. Relays, conversely, forward
to the destination only. In this context, the higher the number of relays joining the for-
warding process, the higher the success probability. However, battery lifetime of mobile
devices may deplete due to continuous beaconing operations, which may be a critical
factor discouraging the usage of mobile devices as relays for DTN-based applications.
A solution is to design reward-based forwarding mechanisms where the probability of
forwarding becomes function of the competition within a population of mobiles: a re-
lay receives a unit of reward if it is the first to deliver the message to the destination.
For each message generated by the source, a relay may choose two different actions
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that affect message relaying: full activation or partial activation, i.e., being active for a
shorter time period and then go back to low power mode, thus saving batteries. The
population profile thus define the proportion of the population that decides to be fully
active and conversely to not be active. The study of the evolutionary dynamics of the
population dynamic give some insight about the consistency of the network efficiency.
Furthermore, we propose a hierarchical algorithm that allows the source to achieve the
optimal forwarding control by iterative learning procedure, with the objective of max-
imizing the probability of success. Then we extend our approach in a new framework
of population game in DTN where diversity of sources and destinations give birth the
occurrence of several local interactions for which we study a competition for good be-
tween the mobile agents. The competition is ruled by and activation control game, in
which agents need to find the appropriate strategy to adopt. The novelty here is that the
strategy of a mobile relay determines not only the immediate reward but also the tran-
sition probability to its next battery energy state. Compared to the previous approach,
we introduce here the constraint of battery life-time. Indeed the more the node is ac-
tive the more it has a chance to drain out its battery. The decision of being active thus
depends by the battery state that the mobile is experiencing at a given moment. The
problem is formulated as a Markov Decision Evolutionary Game (MDEG), where each
relay wishes to maximize the expected utility. We provide a characterization of the
Evolutionary Stable Strategies (ESS) for these games and show a method to compute
them. We eventually highlight a paradox by showing that the success probability is
not always increasing with the number of message copies, and may well decrease under
some conditions, which is adding an intriguing novel facet to the control of forwarding
in DTNs.

A framework for coordination without cooperation in DTNs Eventually, we remain
in the context of activation control game and propose a framework based on the princi-
ple of coordination without cooperation in DTNs. This framework relies on a Minority
Game(MG) setting. Our approach is pivoted around the following idea: by model-
ing competition of relay nodes as a coordination game we show that it is possible to
enforce a behavior of cooperation within a population of relays through competition.
The relay activation control in this context is fully decentralized and does not require
additional control messages. In this purpose, we use a novel and specific utility struc-
ture. Such utility is rooted on the following trade off: the success of a tagged relay
depends explicitly on the number of opponents met, namely, nodes adopting the same
strategy. In fact, the bigger the number of relays participating to the message delivery,
the higher the delivery probability for the message, but indeed the less the chance for
the tagged relay to receive a reward from the system. There comes the minority rule of
our activation control game. Indeed, the global activation target settles the number of
opponents of a randomly tagged relay, i.e., the active fraction of the population so that
nodes always try to avoid non-positive utility. The objective of our approach in DTN
is the global one : finding a trade-off between the energy consumption and successful
forwarding of messages originated at source nodes. Since the MG scheme rules the
number of active relays, the message source can achieve a target performance figure,
e.g., the probability of successful message delivery, by setting the rewarding mecha-
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nism appropriately. Conversely, the source can reduce the quality of service in order to
reduce the relays energy consumption. Thus, our incentive mechanism can match qual-
ity of service metrics such as delivery probability to the available resources. Compared
to existing literature, the novelty of this approach stands in the way the activation and
forwarding process is jointly controlled by the operator of the network acting on a dis-
tributed mechanism which takes place among the competing relays based on the MG.
We decline our approach for homogeneous population where all nodes present simi-
lar technical characteristics such as communication range and battery profile. Then we
extend to heterogeneous population of nodes in the DTN. Eventually we design a dis-
tributed algorithm to attain the defined equilibriums of the game.

The organization of the thesis is the following. As announced previously, in a first
part we will give a survey on leaning algorithms and mainly, reinforcement learning
algorithms. The second part discusses in two chapters, the contributions presented for
mobile cellular networks. In a third part, we address different sort of games for per-
formances optimization in DTNs. The three chapters in this part, focus on the contri-
butions related to routing configuration game in mobile ad-hoc networks, mechanism
design and stochastic approximation for forwarding control in DTNs and framework
design for coordination without cooperations in DTNs. The last part of the thesis is
dedicated to implementations and integrations for evolution of a simulation platform
for LTE system level simulations.
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Part I

State of Art of Learning Algorithms :
Focus on reinforcement learning

algorithms and application in games
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Introduction

In this part we will present a general theoretical background behind learning mech-
anisms. Note that the majority of the developments here are drawn from one of the
deliverables for the ECOSCELLS project to which we have participated. We essentially
focus here on the notion of reinforcement learning. Reinforcement learning is defined
not by characterizing learning algorithms, but by characterizing a learning problem.
In many situations, the reinforcement that can be supplied as an evaluation, is itself a
random variable. Hence all actions have to be tried a number of times to evaluate the
mean reinforcement associated with them in order to find the best action. For success-
ful learning, there should be an appropriate mechanism for action selection and rein-
forcement that can utilize the experience in the form of action selected during learning.
However, each action should be tried many time in order to evaluate each action in
view of the randomness of the environment. Such a learning model is useful in many
scenarios in small cells network for example and networking application in general
when often information available to agent is a set of training examples. Hence it would
be attractive to have an algorithm that can learn to make good choices based on some
’noisy’ feedback regarding the ’goodness’ of the choices.

Stochastic optimization

Optimization with noisy corrupted measurements is a common problem in many areas
of engineering. Many efficient methods like the steepest descent method and Newton
method are available when gradient is explicitly available. But usually due to the lack of
sufficient information concerning the structure of the system, only the noise corrupted
value of function at any chosen point can be observed. Several important classes of
algorithm are available for solving the optimization problem when only the noise cor-
rupted observations are available : Stochastic approximation [65], learning automata
[81, 80], and reinforcement learning with function approximation.

Stochastic approximation

The stochastic approximation algorithms, introduced by Robbins and Monro in [95]
and by Kiefer and Wolfowitz in [61], have been the subject of large number of appli-
cations. In general a stochastic approximation algorithm is a discrete time stochastic
process whose general form can be written as

Xn+1 = Xn + ǫnYn (1)

where Xn takes its values in some Euclidean space, Yn is a random variable function
of "noise-corrupted" observations taken on the system when the parameter is set to
Xn, and ǫn is the step size with ǫn > 0. Typically Xn represents the parameter of a
system which is adapted over time and Yn = f (Xn, ξn). At each time step the system
receives a new information ξn that causes Xn to be updated according to an algorithm
characterized by the function f . For example, the function f is used so that some goal
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(estimation, optimization, cooperation, etc) is achieved. Robbin and Monro in [95],
developed a stochastic algorithm for finding the value of X, X0, satisfying f (X) = α
where f is unknown. In that case the random sequences Yn is a "noisy" estimate of
value of f (Xn) obtained by averaging many observations, i.e, E[Yn(X)|X] = α− f (X).
Moreover, they considered that the step sizes in the parameter updates of the algorithm,
go to zero in order to obtain an implicit averaging and eliminate the effect of the noise.
In particular, they assumed that the sequences ǫn satisfy

ǫn → 0 and ∑
n

ǫn = ∞ (2)

Under some conditions on the function f and random variable Yn, then the sequence
Xn converges to X0 with probability one. Kiefer-Wolfowitz [61] introduced an algo-
rithm based on stochastic approximation in which the gradient of function f is ap-
proximated by a finite difference method and using the evaluation function obtained
at points which are chosen close to each other. This algorithm is useful to find the
maximum of the unknown f (x). The theory of stochastic approximation has been ex-
tensively used in problems of signal process, adaptive control [65, 73, 7] and recursive
estimation [60]. Much of the classical works in stochastic approximation dealt with the
situation where it is convenient to rewrite the noise term as

Yn = F(Xn) + Mn (3)

where F : R
m → R

m is a deterministic vector field obtained by suitable averaging. In
some situation the noise in each observation Mn is martingale difference, i.e.,

E[Mn|Mi, i < n] = 0

The asymptotic behavior of the algorithm can be approximated by the asymptotic be-
havior of the solution to the Ordinary Differential Equation (ODE)

dx

dt
= F(x) (4)

This method called (ODE) was introduced by Ljung [72]. In the next simple example,
we present the connection between the asymptotic behavior of the algorithm and that
of the mean ODE. Let the stochastic approximation in (1) and suppose that E[|Yn|2] < ∞

and the function F is continuous. We have

Xn+m+1 − Xn =
m

∑
i=n

ǫiF(Xi) +
m

∑
i=n

ǫi Mi

Since expected of the second term is of the order
m

∑
i=n

O(ǫ2
i ), the noise will go to zero, and

the sequence Xn will follow the mean trajectory of E[Xn+1] = E[Xn] + ǫnF(E[Xn]). Then
when n→ ∞, the step size go to zero and then the mean trajectory can be approximated

by the solution to the mean ODE
dx

dt
= F(x).

In the sequel, we present different learning and machine learning technic developed
in stochastic approximation
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• Stochastic approximation to gradient descent : The stochastic gradient descent
(SGD) method [90] is a particular case of stochastic approximation, and is of par-
ticular interest in the context of distributed stochastic optimization. It is an algo-
rithm to maximize a sum of convex function in a distributed manner. In particu-
lar, we consider a utility function U, that aggregates the utility of I entities,

U(x) =
I

∑
i=1

Ui(x)

each of which depends on a parameter vector x, x = (x1, .., xL). A typical SGD
update equation of the parameter α can be written as

Xn+1 = Xn − α
I

∑
i=1

∆Ui(Xn) (5)

• Q-Learning : Q-learning algorithm is a reinforcement learning method that ap-
plies to Markov decision problems with unknown costs and transition proba-
bilities; it may also be viewed as a direct adaptive control mechanism for con-
trolled Markov chains (see [13]). Q-Learning might be the most often imple-
mented among standard reinforcement learning methods. The main idea of the
algorithm consists in evaluating the current policy π(a|s) through a value func-
tion (Qπ(s, a)) which is updated from observed reward and transited state. This
step is referred to as "policy evaluation" or "critic". A policy is inferred from this
value function and re-injected in the algorithm in order to update the value func-
tion. This step is referred to as "policy improvement" or "actor". Such kind of al-
gorithm is thus often called "actor-critic architecture". The value function Q tends
to approximate the optimal value function (fixed-point technique) for which the
associated policy π is the seek optimal policy.

In this algorithm, exploration/exploitation compromise can be implemented through
the use of greedy policies to explore the state-action space. The choice of the
learning rate is not really sketchy for most of applications: if one wants to track
non-stationarity of the optimal policy, a fixed value will be set, otherwise if one
wish to obtain accurate estimations of the optimal policy (in case of probabili-
ties computations for a random optimal policy for instance), a sequence of small
values converging towards 0 will be chosen. Standard version of the Q-Learning
algorithm can be improved by including the current action chosen in the updating
computation of the value function (this kind of algorithm is referred to as SARSA).
Another possible improvement is to use memory signals (called eligibility traces,
often with exponential decay) for every state-action pair in order to update the
value function for several or all pairs at every iteration, instead of just one. This
result is an acceleration of the learning phase for the optimal policy which can be
significant for some applications, as well as value function estimates more robust.

• Stochastic Recursive Inclusion The stochastic recursive inclusion is strongly mo-
tivated by certain problems in economics and games theory. This type of algo-
rithms is used as approximation algorithms to analyze non-continuous stochastic
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process, such as the best-response process in zero-sum games. This algorithm
represents an important generalization of the previous stochastic approximation.
The idea is to replace the ordinary differential equation by the stochastic recursive
inclusion which defined as

dx

dt
∈ F̃(x) (6)

where F̃ is a set-valued map given by x → c̄o(F(x)) with c̄o(A) is the closed
convex hull of A. However, the stochastic recursive inclusion refers to the scheme

Xn+1 = Xn + ǫn[zn + Mn] (7)

where zn ∈ F̃(Xn). Note that differential inclusion limit in this case is one of
the standard solution concepts for differential equations with discontinuous right
hand sides [41].

Learning automata

Learning automata is a simple model for adaptive decision making devices that oper-
ates in unknown random environment and progressively improve their performance
via a learning process. Learning automata is very useful for optimization of multi-
modal function when the function is unknown and only noise-corrupted evaluations
are available. Such a learning model is useful in many applications involving adaptive
decision making. Learning automata methods have two distinct advantages over the
stochastic approximation algorithms. The first advantage is that the action space need
not be a metric space because as in stochastic approximation algorithms the new value
of the parameter is to be chosen close to the previous value. The second advantage is
that the methods based on learning automata lead to global optimization because at ev-
ery stage any element of the action set can be chosen. In general, the learning automata
proceed as follows : Each time the agent randomly chooses an action from action space
based on some probability distribution. Based on the feedback of this action, the agent
updates its action probability distribution. This algorithm is able to choose the best
action if the probability to choose this action converge to unit while the other action
probability go to zero. As discussed before, a good advantage of learning automata
approach is the action space need not be a metric and allows to consider complete gen-
erality of the concept of action.

In the sequel, we will present some learning automata

• Finite action-set learning automata In this part we present an automata with
finitely many actions. Let q(n) = [q1(n), q2(n).., qK(n)]

T where qi(n) is the prob-

ability to choose action i at step n. We have qi(n) ≥ 0 and
K

∑
i=1

qi(n) = 1. The

learning algorithm for updating q(n) is of the form

q(n + 1) = Γ(q(n), i(n), β(n)) (8)
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where Γ is some function, i(n) is the action selected at step n and β(k) is the feed-
back of the environment to the selected action i(n). The set of possible random
variable β(k) may be discrete or continuous. However, since each action is tried
many time, the learning automata may estimate the utility using this action given
by

Ui = E[β(k)|a(k) = i]

Hence the goal of learning is to find the best action which is the one that gives
maximum expected reinforcement, i.e U∗ = Ul = max

i
{Ui}.

There are different types of learning algorithms that can be used by finite action-
set learning automata (8). One interesting of those algorithms is the Linear Re-
ward algorithm where the action probability vector q(n) is updated when the
action selected at step n is ai

qi(n + 1) = qi(n) + ǫnβ(k)(1− pi(k)) (9)

qj(n + 1) = qj(n)− ǫnβ(k)pj(k) (10)

where ǫn > 0. This learning algorithm has been extensively used as it is simple
and has several nice proprieties (see [82]). The Markov process q(n) generated
by the updating in (9)-(10) has K unit vectors as absorbing state. Although q(n)
converges to any unit vector, but by choosing ǫn → 0 when n go to infinity, the
Markov process q(n) converge to the optimal solution, i.e the unit vector el .

In attempting to design faster converging learning algorithms, Thathachar and
Sastry [117] opened another avenue by introducing a new class of algorithms,
called pursuit algorithms. As their names suggest, these algorithms are charac-
terized by the fact that the action probability vector pursues the action that is
currently estimated to be the optimal action. The estimator algorithms presented
thus far update the probability vector based on the long-term properties of the en-
vironment, and no consideration is given to a short-term perspective. In contrast,
the linear reward algorithm (9)-(10) relies only on the short-term (most recent re-
sponses) properties of the environment for updating the probability vector. The
first step consists of choosing an action based on the probability distribution. The
second step is to increase the component of whose reward estimate is maximal
(the current optimal action), and to decrease the probability of all the other ac-
tions. Vectorially, the probability updating rules can be expressed as follows:

qi(n + 1) = qi(n) + ǫn(1− pi(k)) (11)

qj(n + 1) = qj(n)− ǫn pj(k) for j 6= i (12)

where i is the action that maximizes the total reward obtained in response to ac-
tion i till n. An interesting aspect of the pursuit algorithm is that the updating
of the probability actions does not directly involve the environment response and
hence it is an order of magnitude faster than linear reward algorithms. The con-
vergence property of these algorithms is given in [117]. Although most learning
automata methods deal with the case of finitely many actions for the automaton,
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there are also models of continuous-action-set learning automata (see [118]). If the
set of action is the real line, in [118] authors considered the action probability dis-
tribution is a normal distribution characterized by its mean and variance. For this
algorithm, it is shown [118] that, if the reward function is well behaved (specif-
ically, f is continuously differentiable and the derivative function is Lipschitz),
then under some assumptions in parameters and for small ǫ, q(k) converges to a
point arbitrarily close to a local maximum of the reward function.

Fast-learning through function approximation

An interesting approach which has been developed lately is to estimate the real value
function and/or policy of the system through parametric approximations. It is thus
possible to store only representation parameters throughout the optimization process
instead of the whole state-action space which are often of higher dimension or cardinal-
ity. One can then consider standard optimization techniques to find the representation
parameters of optimal value functions and policies. Such a method is for instance the
Least-Squares Policy Iteration algorithm [71] where linear architectures are considered
to approximate the value function and the computation of optimal parameters is im-
plemented via a subspace projection technique. Another approach, Policy Gradient
[15] and [63], consists in estimating the gradient of the reward function with respect to
the policy representation parameter.

Learning algorithms in Games

In the previous section, we briefly indicate that the learning algorithms are useful in
application that operate in unknown random environment and only noise-corrupted
evaluations are available. But in the presence of multi agents, the learning problem con-
sists of devising a learning algorithm for single agent to learn a policy in the presence
of other learning agents. However the learning algorithm in the presence of multiple
agents, can be viewed as a problem of a "moving target". In typical multi-agent sys-
tems, agents lack full information about their counterparts, and thus the multi-agent
environment constantly changes as agents learn about each other and adapt their be-
haviors accordingly. The Stochastic games (SGs) has been used as a framework to study
the multi-agent learning problem, where an agent tries to learn a policy in the presence
of other agents. Each play of the game consists of each of the learners get a payoff
from the environment and payoffs (which may be different for different learners) are
random.

Game Theory traditionally studies equilibrium states in settings of full information
and connectivity. However, in a large distributed network with multiple entities hav-
ing limited information, it is crucial to understand both how network structure affects
equilibria, and what can one expect in terms of dynamics when players are using learn-
ing to adapt their behavior. In the non-cooperative games with finite number of agents,
the solution concept is the Nash equilibrium (Nash, 1951). In a Nash equilibrium, each

34



player effectively holds a correct expectation about the other players’ behaviors, and
acts rationally with respect to this expectation. Acting rationally means the agent’s
strategy is a best response to the others’ strategies. Any deviation would make that
agent worse off. Despite its limitations, such as non-uniqueness, Nash equilibrium
serves as the fundamental solution concept for non-cooperative games.

There are mainly two kind of strategies for solving reinforcement learning prob-
lems. First, finding behaviors that performs well in the environment. The second is
to use statistical techniques to estimate behavior of other players. Different learning
algorithms are available for solving the game problem when only the noise corrupted
observations are available.

Stochastic automata games

Sastry et al [91] presents a distributed algorithm which considers finite number of play-
ers having finitely possible actions and playing one every stage of the game. In fact,
each player updates his strategy basing only on his current action and his received pay-
off after each stage of the game. The assumption that players haven’t any knowledge
about neither payoffs’ distribution nor strategies or actual actions of others players is
token. They considered learning automata models (9) for game problem and showed
that the algorithm (9)-(10) converge in general to the set of unit vector with probabil-
ity one. When the game has one pure Nash equilibrium, then the learning algorithm
converges to that Nash Equilibrium. But it is well known that in some games, the pure
Nash equilibrium does not exist but there exist always a mixed Nash equilibrium. In
such situation, it converges to one of the absorbing state, i.e., unit vector. Yiping et all
[129], proposed a new algorithm, called the linear reward-penalty algorithm, which is
useful especially when a pure Nash equilibrium does not exist. In this algorithm, the
probability updating rules can be expressed as follows:
if the action selected at step n, is i, the q(n) is update as

qi(n + 1) = qi(n) + ǭnβ(n)(1− qi(n))− ǫ̃n(1− β(n))qi(n) (13)

qj(n + 1) = qj(n)− ǭnβ(n)qj(n)− ǫ̃n(1− β(n))(
1

K− 1
− qj(n)), j 6= i (14)

With linear reward algorithm (9)-(10), the Markov process q(k) generated by the up-
dating in (9)-(10), converge to a unit vector. In the reward-penalty algorithm, there is
always a chance that the probability of the selected action is decreased. Yiping et all
[129] showed that the limiting value probability of action i, would essentially be pro-

portional to
1
di

where di is the reward probability of action i. A recent work in [129],

used the reward penalty algorithm to design a stochastic power control algorithm for
cellular network. Conditions when more than one stable Nash equilibrium or even only
mixed equilibrium may exist are also studied. Experimental results are presented for
several cases and compared with the continuous power level adaptation solutions.
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Erev and Roth

The basic Erev and Roth model [39] is a reinforcement algorithm assuming that m pos-
sible actions would be taken. The algorithm associate at each action a reinforcement
level Ai(n) which is updated every play if the action is chosen by adding the payoff
πi(n) of this action at this stage. We can therefore write:

Ai(n + 1) = {Ai(n)+πi(n+1)
Ai(n)

(15)

This reinforcement level is the main factor in the choice of the action to be played. In
fact, the Erev and Roth player chooses an action with the probability:

Pi(n + 1) =
Ai(n)

∑j Aj(n)
(16)

We can easily follow that if an action is chosen, then it’s reinforced and will be more
likely to be chosen in future. The basic Erev and Roth model has manly two limits. The
first is the experimentation issue that can be viewed as an extension of the law of effect
(see [105, 22]). In fact, it’s true that choices which were successful would be employed in
the future, but also similar choices will be employed often as well and then the player
will not rapidly converge to one choice in exclusion of all others. The second, called
recency, can be viewed as interaction between the law of effect and the power low of
practice. Recency means that recent experiences may be more important in determining
behavior than past ones. The basic Erev and Roth algorithm use equal weight on all
experiences however Recency is a robust effect as considered and observed by John
B. Watson [123] and Edwin R. Guthrie [51]. These two issues can be dealt with the
introduction of "forgetting" into the Erev and Roth model. This can be resumed in the
modification of the following equations:

pnj(t + 1) = (1− φ)pnj(t) + Ek(j, R(x)) (17)

where φ is a recency parameter and Ek(j, R(x)) is an experimentation function. Erev
and Roth [39] studied reinforcement learning in experimental games with unique, mixed
strategy equilibrium. Borgers and Sarin [20] analyzed a reinforcement learning model
discussing its relationship to the replicator dynamics used in biology and gave good re-
sult on some type of economic agents. There are many studies which have focused on
fictitious play and it’s variant. Benaim and Hirsch [17] have been interested by conver-
gence of strategies in games with randomly perturbed games. Fudenberg and Levine
[44] summarized studies of proprieties of smoothed version of fictitious play which is
quite optimal than fictitious play itself. Hart and Mas-Collel [54] studied models based
on "regret" which share these proprieties. It’s well known that fictitious play and regret
based strategies still require greater knowledge about the game and sophistication.

Q-Learning algorithms in non-cooperative games

We can classify multi-agent reinforcement learning into two categories. In the first one,
we consider heterogeneous environment where agents don’t know how others agents
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react. The second category assumes homogeneous environment where agents use the
same algorithm, apply some equilibrium from games theory to calculate agents’ policy.
The multi-agent Q-Learning algorithms still simple and haven’t a concrete orientation
to the real world problems. In a Q-Learning algorithm, we consider a finite number of
agents having a finite number of possible states. Each agent has a set of action choosing
one every play. We consider also a transition function from current state basing on
some actions to resultant state, and an immediate reward function for each agent. Let
Q∗(s, a) be the expected discounted reinforcement when choosing action a in the state
s. The expected Q-Learning value is described by the following equation:

Q∗(s, a) = R(s, a) + γ ∑
s′∈S

T(s, a, s′)max
a′

Q∗(s′, a′) (18)

The Q-value V∗(s) = max
a

Q∗(s, a) is the value assuming we are choosing the action

which optimize our utility function and π∗(s) = arg max
a

Q∗(s, a) is the optimal policy.

The Q-Learning rule is :

Q(s, a) = Q(s, a) + α(r + γ max
a′

Q(s′, a′)−Q(s, a)) (19)

where α is a parameter, s is the current state, s′ is the resultant state, a is the chosen
action and r is the received payoff.

No-regret algorithms

One of the most popular reinforcement algorithms is the regret minimization known as
the no-regret algorithm. These kinds of algorithms take a sequence of loss function or
regret function lt as input and produce as output a sequence of action at to play in the
stage t. The main learner object is to minimize its cumulative loss Lt.

A general class of no-regret algorithms is called Φ-no-regret learning, which span
the spectrum into no-internal-regret learning and no-external-regret learning. The sim-
plest regret type is the external regret which is the difference between the actual achieved
loss and the smallest possible loss, and is defined as follows: Agent can replace its se-
quence of action a1 . . . at with φ(a1) . . . φ(at), where φ is some action transformation that
maps A into itself. We note Φ the set of these action transformations. In designing A,
our Φ-regret minimizing algorithm, we assume that we have access to subroutines A′

and A′′ and we define the Φ-regret algorithm as:

For t = 1, ..., T:

1. Send transformation φt to the fixed-point algorithm A′, along with accuracy pa-

rameter ǫt =
1√

t
. Receive action at satisfying ‖φt(at)− at‖A ≤ ǫt.

2. Play at; observe loss function lt and incur loss lt(at).

3. Define mt : Φ→ R by mt(φ) = lt(φ(at)).
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4. Send mt to the no-external-regret algorithm A′′. Receive transformation φt+1 ∈ Φ.

Fictitious Play

From the most used learning algorithms, we can cite fictitious play and its variants.
Agents using this model behave as they are facing unknown stationary distribution
of opponents’ strategies. In the fictitious play mode, with a finite strategy space and
payoff function, each user chooses the best response to its beliefs about its opponents,
which is given by the time average of past play. Each user must know the empirical
frequency vector of its past actions. This distributed algorithm has been applied to
a power control game in [14]. Note that this algorithm can be used for continuous
decision variables. Basing on that strategy, the player assigns to others players the
follow probability that they will choose a strategy s−i:

γi
t(s
−i) =

Ki
t(s
−i)

∑s̃−i∈S−i Ki
t(s̃
−i)

(20)

Then, the player chooses a strategy basing on γi
t(s
−i), probability that it assigns to

player −i playing s−i. We must remember that many fictitious play rule exist and con-
sequently there are maybe more than one best response to a particular assessment.

Stochastic Fictitious Play

This small variation of the Fictitious play has been introduced in [44]. In order to con-
tend discrete changes in behavior because of small changes of beliefs, authors propose
that each player maximizes a perturbed utility. A typical example of perturbation is the
entropy function.

Stochastic fictitious play is a variant of fictitious play in which players chooses their
actions basing on a stochastic best response function. Here the payoff to each player
or agent is perturbed by an i.i.d. noise that private information to that agent and at
each play agents chooses a rule mapping their payoff to their strategies. Stochastic
fictitious play avoids inherent discontinuity of fictitious play process in which behavior
can totally change face to small mutation in data.

Replicator dynamics and evolutionary dynamics

Evolutionary game dynamics has been originated in the field of evolutionary biology
providing a population dynamical method to game theory. There are many reasons
for the interest on the evolutionary dynamics by the game theory. First, the replicator
dynamics was originally motivated by biological evolution and some type of economic
agents. Second, the gradient evolutionary dynamic which is a cultural model repre-
senting characters that are determined largely by learning rather than genetics. Both
the replicator dynamics and the gradient evolutionary dynamics are composed of a
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Algorithm Info required Equilibrium Convergence
Linear
reward
automata

only his payoff Pure Slow convergence

Pursuit al-
gorithm

Only his payoff Pure Fast convergence

Reward-
penalty

Only his payoff Mixed Slow convergence

Erev and
Roth

Only his payoff Pure/mixed If Nash equilibrium ex-
ists, then the play will
converge with positive
probability

Q-Learning The reward matrix Pure/mixed If Nash equilibrium ex-
ists, then the play will
converge with positive
probability

No-regret More information
generally about
itself

Pure/mixed It has been proven to
converge to a Nash
equilibrium in any
two-player, two-action
game.

FP/SFP More information
about others players

Pure/mixed Proven to converge in
some type of games

Figure 2: Reinforcement learning algorithms characteristics
selection and mutation components. It was proved that there is also a mathematical
connection between these two evolutionary models. P. Taylor and T. Day in [115] have
proved in their stability study of replicator dynamics and gradient dynamics that the
mean and the variance dynamics are essentially identical in both models under the
assumption that the population distribution is normal.

Conclusion

Throughout this chapter we discussed over different aspects, how learning processes
can be useful to automation of distributed learning agents and presented how their are
developed. This theoretical basis also set the mathematical background necessary for
the validation of the different approaches that we are going to develop throughout this
document. Note that each algorithm obeys to some specific constraints and assump-
tions which makes it relevant for a particular network scenario. The major downside
with the reinforcement learning algorithms and learning algorithms in general as we
presented in the chapter resides in the calibration of the different parameters mainly
the learning rate. This aspect is important when it comes to the design of learning
algorithms for implementation on real devices.
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Part II

Distributed Reinforcement learning
in cellular mobile networks
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Chapter 1

Learning and population game for
Nash Equilibrium : (Interoperability
and coexistence of two technologies)

1.1 Introduction

In the world of wireless networks, the emergence of new technologies induce that mo-
biles will have the possibility to have access to different technologies at the same lo-
cation. Indeed, with the growing offers for 3G+ access everywhere from telephony
providers, more and more users equipped with laptops, netbooks, new generation
phones have access simultaneously to WiFi and 3G. Moreover, the emergence of wide
area wireless networks based on WiMAX or LTE will complicate the allocation problem
for mobiles. Indeed those technologies have their own advantage in terms of through-
put for the mobiles.

The goals and benefit of multiple possible connectivities should satisfy the following
requirement :

• Load Balancing: In current wireless networks, each mobile scans the wireless
channel to detect BSs and associate itself with BS that has the strongest received
signal (SNR), while ignoring its load. As user are not uniformly distributed, most
of them may be associated with a few BSs while adjacent AP, may carry only light
load or idle. This motivates for more efficient method to select a BS.

• Permanent and ubiquitous access: To provide an extended area via distinct access
technologies. For instance, IEEE 802.11 has a typical coverage of 100 m, whereas
a WiMAX or UMTS can usually a radius of over 1 km. Thus it is possible for a
node to use different access technologies at different time to assure a permanent
connectivity.

• Fairness: An important problem in wireless networks is rate allocation, i.e ensur-
ing that the available network bandwidth is shared among user in a fair manner.
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1.1. Introduction

This type of fairness is know as max-min fairness as discussed by Bertsekas and
Gallager [18].

Mechanisms for optimizing and controlling mobiles in an area where there is coexis-
tence of wireless technologies is studied in [126] with cognitive radios WiFi cells inside
a WiMAX cell. Another approach is described in [67] with the technology 802.11(e) and
a central controller. Those studies propose a centralized approach. In this chapter we
deal with a fully distributed algorithm for that kind of problem but in which the en-
vironment is dynamic. Actually, the dynamic is about the number of mobiles that are
looking, through reinforcement learning for their best associated technology.

Reinforcement learning techniques have been first applied in a wireless network
for studying optimal power control mechanism in [62]. Their distributed algorithm is
based on [91] in which authors propose a decentralized learning algorithm for Nash
equilibrium. The advantage of that mechanism is twofold. First, the algorithm is fully
distributed. Each agent doesn’t need a lot of information to update his decision, he
needs only his perceived utility which depends on other players actions but which can
be easily obtained (for example if we consider that the utility depends on QoS metrics
like the throughput and/or the delay). Second, it has been theoretically proved that this
decentralized mechanism, if it converges, converges to a Nash equilibrium. Moreover,
if the non-cooperative game has some properties like having a potential (like in [89]),
then this algorithm necessary converges to a Nash equilibrium. Numerous applications
of this algorithm or small variants have been proposed in the literature: spectrum shar-
ing in a cognitive network [128], routing protocols in an ad hoc network [93], reparti-
tion of traffic between operators [28], pricing [86]... Mainly, those studies consider fixed
number of players. But, the algorithm takes a certain amount of time and depending on
the system, the number of users playing the game can evolve very quickly. This is the
case with our user-network association problem in which mobiles are moving through
different wireless cells. Then the number of mobiles competing for wireless access to
different technologies in an overlapping area is always evolving. This is the novelty of
our approach compared to all other studies that consider a reinforcement learning for
converging to a nash equilibrium.

Throughout this chapter, we consider a cell with two co-localized radio access tech-
nologies (RAT). Since in most practical scenarios, distributed algorithms are preferred
over centralized ones (centralized algorithms tend to be complex and not easily scal-
able), we address the association problem through a fully distributed algorithm. We
assume that the mobiles take alone the decision about which technology to be con-
nected to. The utility of a user is given by the throughput perceived which depends
on the number of users in the system as well as the channel condition. We model the
problem as a non-cooperative game where the players are the mobiles and the strategy
of a player is the choice of the technology. Whenever the system state changes (new ar-
rivals or departures of players), every player remaining in the system, try to maximize
his utility function.
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Chapter 1. Learning and population game for Nash Equilibrium : (Interoperability
and coexistence of two technologies)

1.1.1 Main contributions and organization

We develop all along this chapter a novel framework to achieve an efficient dynamic
and decentralized radio resource management in heterogeneous wireless network sce-
narios. A description of the mobile network architecture for which our approach holds
is given in section 1.2. A detailed equilibrium analysis under our game theoretical
model is provided in section 1.3. Our analysis shows that there exists at most two Nash
equilibria and we characterize sufficient conditions to have uniqueness of Nash equi-
librium. In section 1.4, we design a fully distributed algorithm that can be employed
for convergence to a pure Nash equilibrium. The major contributions in this chapter
are listed as follow:

• The novelty of the proposed algorithm is that under a dynamic environment
(variable number of players), this algorithm is still robust and provides fast con-
vergence to pure Nash equilibrium.

• Under the assumptions set in this work for a seamless dynamic (described in
section 1.5.1), if there is a new arrival, each mobile in the system always stays
connected to a single base station which avoids repeated vertical handovers.

• We eventually study the impact of partial overlapping area on the performance
of this algorithm.

We present in section 1.5 an application of the proposed mechanism in a context of Pois-
son games and describe how physical rates capacities can be used to design a suitable
utility function. The performances of our mechanism in a dynamic environment are
described with several simulations and statistics in section 1.6.2. Finally, we conclude
the chapter in section 1.7.

1.2 Problem Statement

In a context of heterogeneous networks, we consider the presence of two different tech-
nologies in a common network area. This network structure has been frequently issued
in the literature, and comes to meet the increasing demand of mobile communications
with high data rates. We can differentiate two main scenarios of coexistence.

First, we consider a geographical area divided into two neighboring cells with dif-
ferent technologies as depicted in Figure 1.1. This scenario is an application of a hetero-
geneous system made of a wide UMTS cell and several small Wifi cells. In this scenario,
the two technologies are not totally overlapped. That kind of scenario is called com-
plementary network architecture because the two technologies are increasing the total
coverage (the Wifi cells extend the coverage of wide UMTS or WiMAX cells). Users are
spread into the cells and some of them are located out of the area of coexistence. Those
later are connected to a single base station(technology) and have a heavy influence on
the dynamic game of users inside the overlapping area.
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1.3. Game theoretic Model

Overlapping cells. Area of coexistence

WiMAX BS

UMTS NodeB

Figure 1.1: Complementary networks architecture

WiMAX BS

UMTS NodeB

Figure 1.2: Concurrent networks architecture

The second scenario introduces a concurrent networks architecture: for example,
the inter-networking between mobile WiMAX and HSxPA systems, with co-localized
base stations as shown in Figure 1.2. Here, the mobiles are always in presence of the
two coexisting technologies. Many of the radio access technologies in next generation
heterogeneous networks are characterized by higher rates and frequency range coupled
with a relatively low coverage in order to ensure the optimization of distribution and
reuse of radio resources. This scenario is thus an application of network tight coupling
architecture and can be applied in a context of small cells in restricted areas or city
centers.

In both scenarios, a mobile can be faced to a decision problem. A mobile may de-
cide on which base station or technology to be connected to. This decision can be based
on individual performance. Mobile performance at each base station/technology is de-
termined by a QoS metric which depends on the number of the mobiles connected as
well as the physical rate being used by the technology chosen. Every mobile would like
to find the technology that maximize his individual performance. But, as this perfor-
mance depends on the actions of the other mobiles, the system can be described as a
non-cooperative game.

1.3 Game theoretic Model

1.3.1 Static environment

We consider two systems : system 1 and system 2. At each slot, every mobile decides
on which system to be connected to. Let N be the total number of users in the area
of coexistence system. We define by n1 (resp. n2) the number of users connected to
system 1 (resp. 2). For every user, we consider that the utility function is equal to the
throughput perceived by the user. The throughput is determined by the number of
users as well as physical rate being used by the technology chosen. We assume also
that the mobiles connected to the same system will receive the same throughput (the
game is symmetric). This means that the utility function of any mobile depends only
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on the number of user in the system. This type of non-cooperative game is a congestion
game [97]. Let Ui be the utility function of a user connected to the system i. As the
game is symmetric, a Nash equilibrium (NE) (n∗1 , n∗2) is given by the two conditions:

U1(n
∗
1) ≥ U2(n

∗
2 + 1) and U2(n

∗
2) ≥ U1(n

∗
1 + 1) (1.1)

The previous definition means that no user connected to a system has an incentive to
move to the other system. Now we consider the following assumptions:
Assumption

• Ui is bounded and decreasing,

• there exists an integer nth
i such that Ui is strictly decreasing for all n ≥ nth

i .

The last assumption immediately implies that, in any NE (n∗1 , n∗2) such that n∗i ≥ nth
i ,

at least one inequality in (1.1) is a strict inequality. We have the following proposition
saying that there exists always a Nash equilibrium
Proposition 1.3.2. For every N, there exist a Nash equilibrium.

Proof. Without loss of generality, we assume that U1(1) ≥ U2(1). Let nth = max{n :
U1(n) ≥ U2(1)}. If n ≤ nth then the partition (n, 0) is a NE. We first show that there
exists a NE for N = 2. Indeed, if U1(2) ≥ U2(1), then (2, 0) is a NE, otherwise (1, 1) is
a NE. Using the method of mathematical induction, we assume that there exists a NE
(n∗1 , n∗2) for N, and show that the above proposition is true for N + 1. To this end, we
prove that the following relations hold :

If U1(n
∗
1 + 1) ≥ U2(n

∗
2 + 1) then (n∗1 + 1, n∗2) is a NE (1.2)

If U1(n
∗
1 + 1) ≤ U2(n

∗
2 + 1) then (n∗1 , n∗2 + 1) is a NE (1.3)

We shall only prove (1.2), since (1.3) is symmetric. Given that (n∗1 , n∗2) is a NE for N,
then

U2(n
∗
2) ≥ U1(n

∗
1 + 1) ≥ U1(n

∗
1 + 2) (1.4)

where the last inequality follows from the monotonicity of U1. With the assumption in
(1.2) it has been established (n∗1 + 1, n∗2) is a NE.

The following proposition characterizes the number of equilibria and sufficient con-
ditions to have uniqueness of NE.
Proposition 1.3.3. For each N, the non-cooperative game has one or two Nash equilibrium.
Furthermore,

1 If U1(n
∗
1) > U2(n

∗
2 + 1) and U2(n

∗
2) > U1(n

∗
1 + 1), then (n∗1 , n∗2) is the unique N.E.

2 If U1(n
∗
1) = U2(n

∗
2 + 1), then there are two Nash equilibria : (n∗1 , n∗2) and (n∗1 − 1, n∗2 −

1).

3 If U1(n
∗
1 + 1) = U2(n

∗
2), then there are two Nash equilibria : (n∗1 , n∗2) and (n∗1 + 1, n∗2 −

1).
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Proof. First we start to show that for each k ≥ 2 the partition (n∗1 − k, n∗2 + k) is not a
NE. Let us assume that is not true, i.e., there exists a k ≥ 2 such that (n∗1 − k, n∗2 + k) is
a Nash equilibrium. Thus we have

U2(n
∗
2 + k) ≥ U1(n

∗
1 − k− 1) > U1(n

∗
1) ≥ U2(n

∗
2 + 1) (1.5)

This therefore contradicts the fact that the function U2 is a decreasing function in n. In
the same way, we may show that (n∗1 + k, n∗2 − k) is not a NE.

(1) To this end, we shall only prove that (n∗1 + 1, n∗2 − 1) is not a Nash equilibrium.
Assume that (n∗1 + 1, n∗2 − 1) is a NE. Thus,

U2(n
∗
2 + 1) ≥ U1(n

∗
1) > U2(n

∗
2 + 1)

This therefore contradicts the fact that the decreasing function U2 is a decreasing
in n.

(2) We have

U2(n
∗
2 + 1) = U1(n

∗
1) and (1.6)

U1(n
∗
1 − 1) ≥ U1(n

∗
1) ≥ U2(n

∗
2 + 1) ≥ U2(n

∗
2 + 2) (1.7)

which prove that (n∗1 − 1, n∗2 + 1) is a NE. It is easy to show that from equality
(1.6), (n∗1 + 1, n∗2 − 1) is not a NE.

(2) The proof is similar to that of (2).

The main focus of our analysis is to adapt a totally decentralized algorithm to a
stochastic environment of players. This point is very important for our networking
scenario and architecture. In such system, new users arrive according to a stochastic ar-
rival process, and each user has a finite sized file to transmit. A user leaves the system
when the entire file is transmitted. Then every mobile stays in the area of coexistence
following a random amount of time. This sojourn time will depend on the throughput
assigned to him. We mention that the non-cooperative game is played as a sequence of
one stage static games where each one, we have proved, have at least a Nash equilib-
rium (see proposition 1.3.3).

1.4 Stochastic approximation algorithm

The algorithm we have used is based on a reinforcement of mixed strategies. The play-
ers are synchronized such that the decision of all players (playing a pure strategy) in-
duce the utility perceived for each one.

In [91] we can find the original algorithm on which we based our work. It has been
proved that for a fixed number of players if this algorithm converges, it will always
do to a Nash Equilibrium. But in mobile telecommunications systems, mobility and
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user’s activity is such that the number of users evolves rapidly. Nonetheless, with two
objectives in mind, we will try to apply this algorithm, with as few modifications as
possible, when the number of users in the system (its state) is dynamic. The first one
is to confirm whether this modified algorithm can be used to induce the system to
be at the Nash equilibrium as frequently as possible. The second one is to make the
algorithm as much distributed as possible, meaning that we would like to get from
the base stations just the essential information on the state of the system or even no
information at all.

The result is presented in Algorithm 1, in which we use the idea of individual con-
vergence, taken from [89]. The algorithm is based on an reinforcement of mixed strate-
gies with utility obtained by playing pure strategies.

Let Nt be the total number of users in the system at time t. Given a set of strategies
C = {1, 2}, each player p ∈ {1, . . . , Nt} chooses the pure strategy c = 1 with probability

β
(p)
t (and conversely chooses the strategy c = 2 with probability 1− β

(p)
t ).

As the utility perceived by user p at time t depends on his strategy as well as that of
the other users, his utility function can be expressed as

u
(p)
t = 1{

c
(p)
t =1

} ·U1(n
t
1) + 1{

c
(p)
t =2

} ·U2(Nt − nt
1) (1.8)

where nt
1 is the number of users that chose c = 1 (conversely, Nt − nt

1 is the number of
users that chose c = 2)

A reinforcement learning approach is used to update the probability β
(p)
t according

to u
(p)
t ∈ [0, 1], making:

β
(p)
t = β

(p)
t−1 + b ·

(
1{

c
(p)
t =1

} − β
(p)
t−1

)
· u(p)

t . (1.9)

The reinforcement learning calculations are carried out by each user until a thresh-
old ǫ on consecutive results of probability β is not surpassed. Reaching individual
convergence means that each user has no incentive on changing strategies, and there is
no need to keep expending energy on calculations.

However, there are some cases where a user that has already converged, needs to
restart his calculation process. In [89], even though it is not explicitly stated, it can
be inferred that information about arrivals and departures is distributed to every user
from a centralized entity. When this information reaches a user that has converged, his
probability is reset.

We will keep the idea of having users restart calculations from a point α (conversely,
1− α) close to zero (conversely, one) for users that have already converged to strategy
c = 1 (conversely, c = 2). Instead of broadcasting the information about the state of the
system to all users, we define different methods that users who already converged use
to estimate when an event occurs and, accordingly, restart calculations. In other words,
our algorithm is defined such that users can adapt themselves to changes in the system.
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The first method involves comparing at time t, the utility obtained by a user in a
window of the last n iterations, against a distinctive pattern that indicates the occur-
rence of an event. This pattern is composed of n− 2 points with the same utility value
and the remaining 2 points with a different one. If the latest two points in the window
have a smaller value than the remaining have, we can say there has been an arrival to
the technology selected by the user. If, however, these points have a bigger value, we
can say there has been a departure on the technology selected by the user. Depending
on the size of the window used, false positives are more or less frequently signaled.

The method for detecting changes will be applied to infer changes in both, the tech-
nology to which the user is connected, as well as the other technology. In the former, the
user will detect a reduction of the available throughput that induce a possible change in
strategy. In the latter, a reduction of the noise level signals a rise in available throughput
and an evaluation of a change in strategy. The user’s decision about making a handover
will be taken using this information.

Detecting changes in noise, on the technology the user is not connected to, requires
probing it, increasing energy consumption. It is for this reason that our second method
tries to capture the departure rate of the system, making users that have converged to
restart calculations periodically.

This policy might be costly in terms of energy consumption, as users in both tech-
nologies are going to restarting frequently, so the third policy we use does not require
that a user who already converged to restart calculations, leaving the choice of technol-
ogy to users arriving to the system.

After a departure, the system might be left in a different point than the Nash equilib-
rium, until the arrival of new users returns the system to equilibrium. We will evaluate
the impact of this policy in the system’s performance, but we expect faster convergence
as well as a drastic reduction in the number of vertical handovers.

Algorithm 1 Dynamic Distributed Algorithm.

1. Initialize β
(p)
t−1 as starting probability for new players in P.

2. For each player p:
(a) If player p has converged and restarting conditions are met, then:

i. If β
(p)
t−1 ≈ 1 set β

(p)
t−1 = 1− α.

ii. If β
(p)
t−1 ≈ 0 set β

(p)
t−1 = α.

(b) If player p has converged and restarting conditions are not met, move to
player p + 1

(c) Player p performs a choice, over C, according to β
(p)
t−1.

(d) Player p updates his probability β
(p)
t according to his choice using (3.13).

(e) If
∣∣∣β(p)

t − β
(p)
t−1

∣∣∣ < ǫ then player p has converged.
3. Remove players that departed, make t = t + 1 and go to step 1.

In the next section we will apply and recall the results obtained in the general setting
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to the concept of Poisson games and in a realistic setting of coexistence between two
wireless technologies.

1.5 Applications

1.5.1 Poisson game

As before let our system modeled as a non-cooperative game between finite number
of players. At each slot, every user decides on which base station/technology to be
connected with. The throughput received by each user depends then on the number
of mobile connected to his base station. We assume that the total number of user in
the area of coexistence at time t is N. We define by n∗ the number of users connected
to WiMAX at that instant. For every user i, we consider that the utility function is
equal to the throughput perceived by the user. For simplicity of analysis we assume
that the throughput in one technology is equal to a constant (s1 for WiMAX and s2 for
UMTS) divided by the number of users connected to. As a consequence, let’s denote by
Nt =

{
nc0

t , nc1
t

}
players performing different actions, over the set C = {c0, c1} at time

t. Considering for each technology a constant total throughput in the set S = {sc0 , sc1},
the choice performed by user p at step t will result in an individual utility given by:

u
(p)
t = s

c
(p)
t

/
(

n
c
(p)
t

t ·max (S)
)

. (1.10)

This type of non-cooperative game is a congestion game. It has been firstly studied
in [97] where it is proved that this game has almost one nash equilibrium. A repartition
(n∗, N− n∗) is a nash equilibrium of this game if any user has no interest to change uni-
laterally his decision. As the game is symmetric, no distinction is made between users,
the two necessary and sufficient conditions for a repartition n∗ to be a nash equilibrium
are

s1

n∗
≥ s2

N − n∗ + 1
, (1.11)

(none users from the first set, connected to the base station 1, has an incentive to move
to the other base station) and

s2

N − n∗
≥ s1

n∗ + 1
, (1.12)

(conversely, none users from the second set has an incentive to move to the first base
station). From [97], we know that there exists almost one Nash equilibrium in our
congestion game. We have the following result saying that there are at most 2 nash
equilibria.
Proposition 1.5.2. Our congestion game has almost one Nash equilibrium and at most two
Nash equilibria.

50



1.5. Applications

Proof. Combining the two necessary and sufficient conditions 1.11 and 1.12 we obtain:





s1

n∗
≥ s2

N − n∗ + 1
s2

N − n∗
≥ s1

n∗ + 1

=

{
s1 (N − n∗ + 1) ≥ s2n∗

s2 (n
∗ + 1) ≥ s2 (N − n∗)

=

{
n∗ (s1 + s2) ≤ s1N + s1

n∗ (s1 + s2) ≥ s1N − s2

which will mean that:

s1N − s2

s1 + s2
≤ n∗ ≤ s1N + s2

s1 + s2
.

If we make α =
s1N − s2

s1 + s2
and β =

s1N + s2

s1 + s2
, then β− α = 1. If α is not an integer,

there is always an integer between α and β, which corresponds to n∗. If α is an integer,
then α and β are both Nash equilibria.

Then we have proved the existence and the non-uniqueness of Nash equilibrium in
our system. Our aim is to propose a totally decentralized mechanism that converges to
these nash equilibrium, in a stochastic environment. First of all, we define the metrics
which will be used for evaluate the performance of our algorithm.

Description of environment dynamics The main focus here is to adapt a totally de-
centralized algorithm to a stochastic environment of players. This point is very im-
portant for our networking scenario and architecture. In particular we consider that
mobiles are moving and enter in the coexisting area following a Poisson process with
rate λ. Moreover, their sojourn time in this area of coexistence technologies is assumed
to be exponentially distributed with average 1/µ. Note that the sojourn time of a mo-
bile in the system does not depend on the throughput. Our system can be modeled
as a M/M/∞ queue and then the number of mobiles in the system follows a Poisson
process with average ρ = λ/µ.

That kind of stochastic environment has been considered for auction mechanism in
[75, 109] where users come into the system following a Poisson process and leave it
after an exponentially distributed sojourn time. They have shown that this stochastic
environment induces very different results in the auction process.

In Poisson games [79] the number of players is a random variable following a Pois-
son process. Those games have at least one Nash equilibrium by applying Kakutani
fixed-point theorem when actions set and types of players are finite and utility func-
tions are bounded. The main difference with our analysis is that in [79], the number of
players, which is a Poisson random variable, is a common knowledge for every player.
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1.5.3 Utility function for WiMAX and UMTS physical rates

In this section we extend our analysis to the use of WiMAX and UMTS, which at the end
will only help for setting the network model to which the theory developed here will
apply. We now consider a fixed capacity sw (resp. sh) for the WiMAX (resp. HSDPA)
system. In WiMAX systems, the available throughput is gradually shared between
users, depending on the number of available sub-carriers. Considering there is no inter-
cell interference, we assume that the global system capacity sw is constant. The utility
u
(w)
t perceived by every user in WiMAX at time t is given by:

u
(w)
t = sw/

(
nt

w ·max (sw, sh)
)

. (1.13)

On the other hand, in HSDPA systems, the throughput per user is mainly affected by
intra-cell interferences, created by the increasing number of users connected to the sys-
tem. The type of modulation and coding scheme used, inter-cells interference and the
distance factor are also taken into consideration. The throughput allocated to each user
p, is computed for a given value of the signal to interference-and-noise ratio (SINR),
estimated by:

SINRp =
gp ∗ Pp

σ2 + ∑
j 6=p

gjPjδjp
(1.14)

where inter-cells interferences are not considered, gp, Pp respectively the channel gain
and transmission power of user p, δjp the orthogonality factor and σ2 the additive back-
ground noise. The throughput for user p is then,

Tp = Rp f (SINRp), (1.15)

with Rp the user’s transmission rate and f (.) the cumulative distribution function of
the efficiency [23] estimated by f (SINRp) ≃ (1 − exp(−SINRp))

M, where M is the
packet length.

We will assume that the users are identical and the global throughput is a decreasing
function of the number of users present in the system, that will be shared between those
users. The utility perceived by each user connected to the HSDPA system at time t is
u
(h)
t = sh f (SINRnt

h
)/
(
nt

h ·max (sw, sh)
)
.

In the next section, we then observe by simulation how behaves our distributed
algorithm in a dynamic environment where there exists a coexistence area between
two wireless wireless technologies.

1.6 Simulations

As presented so far in the previous sections we will study in the simulations and nu-
merical analysis the coexistence between the WiMAX and HSDPA technologies. Given
this configuration of the simulations, we will look at the impact of the variation of the
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WiMAX Cell HSDPA Cell

Adjacent cells Total overlapping cells

Partially overlapping cells

Figure 1.3: Joint coverage area

overlapping region between the different technologies on the convergence of the algo-
rithm. Moreover, we will consider different proportions of the coexistence area, from
the superposition of the cells to near adjacent cells. Another consideration will be to
observe the impact of the arrival rate on the performance in term of convergence to
Nash equilibrium, when the load of the system is constant. First of all, we define the
metrics which will be used for evaluate the performance of our algorithm.

1.6.1 Metrics

For the performance evaluation of the algorithm we will use some metrics that will
allow us to compare the different mechanisms inside the algorithm in terms of both,
convergence and computational cost. To this purpose we calculate, over a sliding non
overlapping window h of 900 iterations of each simulation, a weighted average of the
samples obtained using the kernel smoothing method:

KS(t) =
∑i K

(
t−i
h/2

)
f (i)

∑i K
(

t−i
h/2

) ; K(u) =
3
4

(
1− u2) · 1{|u|≤1}, (1.16)

where t is the point in the middle of the window and i ∈ h are the iterations in the
window.

Convergence will be evaluated through the cumulative convergence to Nash equi-
librium, defined by:

CC(t) = KS(t) : f (i) = 1{NE}

i.e. the average proportion of iterations the system is at the Nash equilibrium in the
window whose middle point is the iteration t.tells in the long run the proportion of
time the repartition is a nash equilibrium.
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Computational cost will be evaluated through the percentage of users in each sim-
ulation that, at iteration t, have not reached individual convergence and, hence, are
performing calculations:

UC(t) = KS(t) : f (i) =
∑ 1{p∈Ci}

Ni
, (1.17)

where Ct is the set of users running the reinforcement learning algorithm at each itera-
tion i ∈ h, and Ni is the number of users in the system at each iteration i ∈ h. Therefore,
UC measures the average proportion of users running the reinforcement learning al-
gorithm in the window whose middle point is the iteration t. This metric allows to
compare how often the policies make the users perform the reinforcement learning
algorithm. A good balance between both metrics is desired. Finally, a normalized en-
tropy metric will be calculated to see how the changes of state affect the performance
of player p at iteration t:

Q
(p)
t =

∑
w−1
m=0

∑
w
n=m+1(m−n)·sign

(
u
(p)
t−m−u

(p)
t−n

)

∑
w
j=m+1(m−u)

w− 1
, (1.18)

where w is the size of the window (number of slots) to evaluate the entropy for player
p, u

p
i is the normalized utility for player p at the beginning of slot t and:

sign(x) =





1 if x > 0

0 if x = 0

−1 if x < 0 .

(1.19)

1.6.2 Simulation scenario

In our model, we have considered that users who are trying to send files with exponen-
tially distributed sizes, arrive following an exponentially distributed inter-arrival time
rounded to the closest iteration. There are no simultaneous arrivals, since the iteration
when the next arrival happens, is calculated with each new arrival. This first set of
simulations scenarios has the following structure:

1. Change of state detection (Case):

Case 1 - Original algorithm: as control case we used the original algorithm from
[91], in which changes of state are not detected and individual users never stop
calculating because convergence is taken globally.

Cases 2, 3, 4 and 5 - Pattern of n-iteration memory: as shown in Figure 1.4, we
have used predefined patterns to detect the case of arrivals. We will take the set
of n + 1 red dots, where the rightmost dot is the most recent value of utility a user
has. Starting from that point we would like to know if there has been a drop on
the performance obtained n slots before, and if this drop in performance has been
recurrent. For departures we have used the same strategy, but with the mirror
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(a) n=1 (b) n=2 (c) n=5 (d) n=10

Figure 1.4: Patterns for n-iteration memory (arrivals).

pattern, i.e., “lows” become “highs” and viceversa. We evaluated patterns for 1,
2, 5 and 10 iteration memory.

Case 6 - No restarting after individual convergence: there is no restarting for
changes of state.

Case 7 - Restarting on changes of state: information about changes of state is
broadcasted by the base station to each user that has converged so they can restart
calculations.

Case 8 - Entropy detection with w = 5: players that have already converged

evaluate changes in the system through (1.18). If
∣∣∣Q(p)

t

∣∣∣ > τ, ∀τ ∈ [0, 1) a change
of the state has been detected an the user should restart. In our simulation we
have used τ = 0.8.

2. Starting probabilities for new users were set according to two strategies: a) using
random values from a uniform distribution ; and b) using always 0.5.

3. Users that needed to restart calculations followed one of two strategies: a) restart-
ing all of them; and b) restarting them with probability 1/Pjt.

This simulation scenario is composed of 120 simulations, one for each set of conditions.
For each simulation, 25 independent runs were made. Each independent run was com-
posed of 2500 iterations of the algorithm.

The arrival and departure process can be modeled as an M/M/∞ queue, where
ρ will be the average number of users in the system. For all simulations we will use
ρ = 5 = 3000/600.

We will start simulations with 5 users. The maximum available througputs for each
technology will be fixed at S = {su = 1, sw = 3}, where su is the maximum available
thorughput for UMTS users and, conversely, sw will be the one for WiMAX users. We
have picked an acceleration parameter b = 0.3, a convergence threshold ǫ = 10−4 and
restarting probability α = 0.3.
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Figure 1.5: Distribution of CC2500 for simulations of
Cases 1-6-7-8, ρ = 3000/600, split by number of users
that restart after a change of state (with probability 1/Pjt

on bottom), and starting probability: random on the left
(white) side, 0.5 on the right (black) side).
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users that restart after a change of state (with proba-
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1.6.3 Firsts results and analysis

In Figure 1.6 we plotted the distribution of cumulative convergence at t = 2500 (CC2500)
for the independent runs made of simulation cases 2, 3, 4 and 5, with ρ = 300/310,
being this the mid-level rate we studied. On the top plot we have simulations when
all the users that converged restart after a change of state detection, and on the bottom
plot we have those where users only restart with probability 1/Pjt. The left (white) side
of each case shows the results for random starting probability used for new players and
the right (black) side those when new players use 0.5 as starting probability. The black
dotted line shows the global average, while the thick black lines show the average for
that particular simulation. As we can see, averages on the left (white) side of the plot
are always smaller than those on the right (black) side, meaning that fixing starting
probability for new users with a value of 0.5 leads to better convergence rates. Also, we
can see that the bigger (case 2 is the smallest, case 5 is the biggest) the pattern used for
a change of state, the better cumulative convergence levels we achieve. This plot leads
us to use only case 5 for further analysis.

Figure 1.5 shows us the same plot but with cases 1, 6, 7 and 8. Again, performance
obtained when assigning new players a random starting probability is always worst
than when they are assigned a fixed starting probability. This will lead us to remove
the case of random starting probabilities from further consideration. On the other hand,
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Figure 1.7: Distribution of CC2500 for simulations of Cases 1-5-6-7-8, ρ = 3000/600 and fixed starting
probability, split by number of users that restart after a change of state (all, on the left (white) side, with
probability 1/Pjt on the right (black) side).

this plot would not allow us to discard any other simulation case.

In Figure 1.7 we can see, for the remaining cases, the cumulative convergence fixing
the starting probability at 0.5. Simulations when all the users that converged restart af-
ter a change of state detection are on the left (white) side and those where users restart
with probability 1/Pjt are on the right (black) side. There seems to be a marginal dif-
ference on CC2500 between both strategies within each case that use restarting criteria
(cases 5, 7 and 8), being better the strategy of restarting all converging users. Nonethe-
less, this could lead to a bigger proportion of users making calculations at any given
time, so we should explore UCt. From this same figure we can discard case 8 as it offers
lower performance that the other cases. The original algorithm (case 1) seems to be the
best of the group in terms of cumulative convergence, but there is, as we can see later,
a big drawback to this performance.

In Figures 1.8 and 1.9 we present the average over the 25 independent runs for
both CCt (dashed lines) and UCt (solid lines) for cases 1, 5, 6 and 7. We have also
plotted the strategies for restarting users as red lines, when we restart all converging
users, or as blue lines, when they are restarted with probability 1/Pjt. As we can see,
there are no significant differences in cumulative convergence for the different cases,
but case 6 achieves the same level of cumulative convergence with a lower proportion
of users calculating at any given time. This means that after users select one of the
two technologies, they should keep their choice for as long as their call last. This can
pose a problem at departures when both the service and arrival rates are small, because
converging users will not be restarting and they could end in a partition that is not a
Nash equilibrium for a long time. Nonetheless. this might be a good deal to have if
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Figure 1.8: Evolution of CCt (dashed lines) and UCt (solid lines) for ρ = 3000/600 and starting
probability fixed at 0.5. No restarting strategies are considered for these cases.

arrival rates are high, as this will keep an steady flow of new users who will always
move the partition to a Nash equilibrium.

Summary From our first set of analysis we can conclude that the best strategy to fol-
low for arrivals and departures seems to be keeping the probabilities achieved for the
previous state and using them as starting probabilities for the new state, leaving players
that already reached convergence in the technology originally selected. This strategy
doesn’t affect convergence and reduces the proportion of users calculating to achieve
the Nash equilibrium.

In the following of our numerical investigations, we will go through extended anal-
ysis with the best scenario obtained in previous simulations. We then refine the sce-
narios and select Case 5 as Case A, an enhanced version of Case 5 as Case B as will
be defined later and Case 6 as Case C. Under our new settings, the sojourn time will
depend on the throughput assigned to each user, which means they are being served
by a M/M/1 queue with Processor Sharing (PS) discipline. This simulation scenario
has the following structure:

1. Change of state detection (Case):

• Case A: In this case, every user that have converged is actively detecting the
restarting pattern on either of the two technologies using a window of 10
iterations.

• Case B: In this case, users actively detect the restarting pattern using a win-
dow of 10 iterations on the technology in which they are connected with a
forced periodic restarting that follows the departure rate. In this case, users
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Figure 1.9: Evolution of CCt (dashed lines) and UCt (solid lines) for ρ = 3000/600 and starting
probability fixed at 0.5. The strategies for restarting users are shown as red lines, when we restart all
converging users, or as blue lines, when they are restarted with probability 1/Pjt.

that detect the pattern will restart with probability 0.5.

• Case C: In this case users do not restart after individual convergence.

2. We used three different sets of rates with constant load ρ = 0.95, by taking λ ∈
{1/6000, 1/4500, 1/3000} and setting µ accordingly.

3. The percentage of overlapping area of both technologies to the total area covered
by both base stations, α, was taken in {25%, 50%, 100%}.

For each simulation, 10 independent runs were made. Each independent run was
composed of 1000000 iterations of the algorithm.

We started each simulation with 5 users. The maximum available throughput for
each technology is fixed at S = {sh = 2.5, sw = 3}. We have picked an acceleration
parameter b = 0.3, a convergence threshold ǫ = 10−6 and restarting probability α = 0.5.

1.6.4 Final results and analysis

First, we will see how the different strategies to restart calculations work. Figure 1.10
shows the behavior of users who follow the pattern of utility to detect changes in the
state of the system (Case A). On the left side (iteration 18600), users in WiMAX detect a
change on the system (most probably an arrival on the non-overlapped region covered
by the WiMAX base station) and restart calculations, converging most of them in less
than 500 iterations. On the right side (iteration 20800), there is a detection of a change
in the system by the users that are using HSDPA. They restart accordingly and then one
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Figure 1.10: Users in a simulation using as strat-
egy the detection of changes on both technologies
(Case "A").
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Figure 1.11: Users in a simulation using as strat-
egy the detection of changes on the technology
they are connected to and restart periodically to
follow the departure rate (Case "B").

chooses to stay in HSDPA and the other picks WiMAX.

An interval of a simulation of Case B is shown on Figure 1.11. Users restart when
feeling changes of utility on the technology they are using, but also some of them restart
periodically following the departure rate. Here, we can see that the blue and red users
restart when they reach the time mark (the period is completed), and both of them go
to WiMAX. Later, between iterations 6000 and 6500, there seems to be a change in the
system (again, probably an arrival on the WiMAX non-overlapped region), that triggers
a restarting flag for all users that converged to WiMAX. We see that the blue user is not
affected by this event.
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Figure 1.12: Average proportion of iterations that a simulation is in the Nash Equilibrium, with 95%
bootstrap confidence intervals.
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Figure 1.13: Average proportion of users performing the reinforcement learning algorithm at each itera-
tion, with 95% bootstrap confidence intervals.

On Figure 1.12 we can see that CC(t) is inversely proportional to both α and the
rates, but is not very sensitive to the policy used in the algorithm. The smallest the
overlapped area, the smallest the number of users playing the game and, therefore, the
better performance obtained. The same behavior is observed with the change of rates,
but in this case higher rates imply faster changes in the state of the system and, there-
fore, worst performance is achieved. As for the policy used, the best performance is
attained making users feel changes of state in both technologies (Case A), while letting
users that have converged stay in the selected technology for the remainder of their call
(Case C) offers the worst performance in general, although margins of difference are
not quite dramatic.

On the other hand, differences in UC(t) for changes in any of the parameters are
big (see Figure 1.13). For policies 1 and 2, the biggest the overlapped area, the biggest
the proportion of users performing calculations at any given iteration. Policy 3 does
not follow this pattern of behavior, but this might be due to the difference of at least
one order of magnitude with respect to the other two policies, which makes absolute
differences very small. Another cause for the differences might be that the number
of users in the overlapped region is small in with α = 25%, but they are responsible
to get the system to the Nash equilibrium, making them more active and taking them
longer to converge. As the size of the region increases (α = 50%), the number of users
grows proportionally, but they are not able to easily converge. Finally, when the area is
completely overlapped (α = 100%), all users can play the game and converge quickly,
leaving the responsibility to make the system reach the Nash equilibrium to new users.
Changes in rates do not create the regular patterns of changes for UC(t) that were
observed in CC(t).

1.7 Conclusion

In this chapter we have studied the problem of access network selection under a net-
work framework of coexistence between the WiMAX and UMTS(R-8). For the two con-
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sidered RATs the nominal capacities are similar and the rate obtained by each node at-
tached to a given cell depends not only on the channel condition but also and mainly on
the load of each cell. This fact has allowed us to build a model of competition between
the mobile users of the network, with the objective to select the best access. This defines
a classical problem of access selection for user-network association. Along this chap-
ter, we have modeled the problem as a game where players are the mobiles nodes and
their strategies are selection of either of the two technologies. We studied the problem
under a game theoretical setting and defined the possible equilibria. We then defined
the policies by which mobile players can attain the different equilibria in a distributed
fashion. To do so, we made use of reinforcement learning techniques. We designed a
learning algorithm that would be implemented on board of mobiles and allow to reach
the desired equilibria. We have also analyzed the impact of overlapping areas giving
rise to an extra load of users located out of the study area of competition. We have ex-
plored several scenarios and obtained the following results under adaptation to Poisson
Games:

• Frist, it is possible to follow the basic algorithm used in this work, originally de-
veloped for a fixed state (number of players in the system), and use it for a dy-
namic environment (variable number of players due to an M/M/1 queue with
PS discipline) with excellent levels of convergence to the Nash equilibrium (above
90%) in scenarios with low rates of arrivals and departures (λ = 1 = 6000), inde-
pendently of the size of the overlapped area.

• However, the algorithm decreases its performance with more users, due to higher
motion rates or bigger overlapped area. Nonetheless, convergence to the Nash
equilibrium is not very sensitive to the policy used in the algorithm.

• The policy of not doing anything in the case of arrivals clearly has the best perfor-
mance with respect to the proportion of users calculating at any given iteration
(one order of magnitude smaller than the other policies), which coupled with its
fairly good convergence (close to the other policies) makes it the best strategy
tested.

In summary, a totally decentralized algorithm with no information broadcasted by the
base station, can be used by each user to collectively reach a Nash equilibrium reducing
the total number of vertical handovers performed. However, note that other reinforce-
ment learning algorithms can be used in the same framework developed in this chapter,
such as fictitious play, Q-learning, no-regret learning and others.
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Chapter 2

Hierarchical game and
reinforcement learning without
memory

2.1 Introduction

Recently, the use of Self Organizing Network (SON) features in a framework of general
policy management has been suggested. In such frameworks SON entities are used as a
mean to enforce high level operator policies, introduced in the management plane, and
are translated into low-level objectives guiding coordinated SON entities [3]. Among
the most important self-optimization mechanisms in Radio Access Networks (RAN)
are interference coordination [111], mobility management, and energy saving [84]. Sev-
eral such problems need further investigation to fully benefit from SON in RAN, in
areas where little material has been published. Examples are autonomous cell outage
management, and coverage capacity optimization [27]. It is noted that the problem
of coordinating simultaneous SON processes is an open and challenging problem that
needs to be addressed in order to allow the deployment of SON mechanisms.

We propose in this chapter a self-optimization framework for Inter-Cell Interference
Coordination (ICIC) in an orthogonal frequency division multiple access (OFDMA) net-
work. Inter-cell interference can dramatically degrade cell performance and perceived
Quality of Service (QoS), particularly at cell edge. We are interested in distributed so-
lutions that can be implemented in a flat architecture (e.g. LTE-Advanced architec-
ture). To coordinate interference between neighboring cells, eNodeBs need to exchange
information. In the case of LTE for example, signaling between eNodeBs can be ex-
changed over the X2 interface (see Figure 2.1). Recent studies such as fractional fre-
quency reuse [47, 107] and soft frequency reuse [2] allowing users in different channel
conditions to benefit from different reuse patterns have been proposed. Still, all of
these schemes mentioned above are static interference management approaches, where
a specific reuse pattern is predetermined a priori by a network operator at off-line.
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Figure 2.1: The multi-cell network model.

Specifically, we assume that the fractional frequency-reuse (FFR) of a cell can be
configured dynamically. In that case, some base stations (BSs or eNodeBs) would be
enabled to adjust their FFR in order to provide coverage/capacity for other neighbor-
ing cells. We further model the network behavior as a Stackelberg game between the
network manager and the mobile users using the game theory framework [45].

At the core lies the idea that introducing a certain degree of hierarchy in non-cooperative
games not only improves the individual efficiency of all users but can also be a way of
reaching a desired trade-off between the global network performance at the equilibrium
and the requested amount of signaling. The proposed approach can be seen as inter-
mediate scheme between the totally centralized policy and the non-cooperative policy.
It is also quite relevant for flexible networks where the trend is to split the intelligence
between the network infrastructure and mobile users’ equipments. In the Stackelberg
game, the network manager is acting as the leader and mobile users as the followers. In
the first stage, the leader chooses its strategy profile and announce it to the followers.
Then, the followers decide their respective outcomes depending on the strategy profile
of the leader. Under our scenario, the network manager maximizes the total network
throughput by means of power control and announces its strategy profile to mobile
users. Each mobile will decide individually to which of the available base stations it is
best to connect according to its radio condition and the strategy profile broadcasted by
the network.

We also propose a two-stage self optimization algorithm for both the leader and the
followers. The objective is to achieve dynamically an efficient frequency-reuse pattern
based on their past experience and their learning capabilities. The leader’s algorithm
is based on stochastic gradient descent algorithm which requires some information to
be exchanged between neighboring base stations. For user association, we propose an
iterative distributed algorithm based on automata learning mechanisms. Both algo-
rithms have been shown to converge to the Stackelberg equilibrium while providing
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substantial gain compared to optimal solution and fixed full reuse scheme.

We further explore the case when the network environment is dynamic. By dynamic
we mean that the number of users varies in time with mobiles arriving and departing
the system. Through extensive simulations based on a realistic network setting, the
proposed approach is shown to be robust and scalable. In this latter setting, we also give
some insight on how designing a trade-off between the global network performance at
the equilibrium and the requested amount of signaling.

2.1.1 Main contributions and organization

The original contributions in this chapter are presented as follows:

• Investigating fractional frequency reuse technique for inter-cell interference coor-
dination in an OFDMA network,

• Modeling the interaction between the network and mobiles using a Stakelberg
game framework,

• Proposing a hierarchical algorithm that allows convergence towards the Stackel-
berg equilibrium,

• Exploring the robustness of the proposed approach with time-varying number of
users

• Giving some insight on the ways of finding a desired trade-off between the de-
sired global network performance and the amount of control feedback,

• At the equilibrium, our mechanisms achieve up to 90% of the optimal association
policy,

The chapter is organized as follows. The system model is exposed in Section 2.2.1.
Section 2.2.2 provides a description of the network scenario adopted throughout the
chapter. In Section 2.3, we present the game theoretic framework and propose formally
how the network manager and mobile users can obtain their respective equilibria by
means of a Stackelberg formulation. In Section 2.4, the proposed hierarchical algorithm
is investigated for both the leader and the followers. In Section 2.5, simulation results
under realistic wireless network settings are shown to exhibit interesting features in
terms of self-optimizing deployment for inter-cell interference coordination. Section
2.6 eventually concludes the chapter.

2.2 Scenario Description

2.2.1 The System Model

Consider the downlink of a multi-cell system, operating in an OFDMA context giving
rise to an inter-cell interference phenomenon. Power control is used by the base sta-
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tions in an effort to preserve power and to limit interference and fading effects. With
the same goal of maximizing their payoff, mobiles users try to connect to the best serv-
ing cell. Specifically, we considerM = {1, ..., M} as the set of all possible serving base
stations (or cells) within the network and K = {1, ..., K} a set of K mobile users ran-
domly distributed over the network. Each cell operates in a multi-band context with
N ≥ K physical resource blocks (PRB). Let N = {1, ..., N} be the set of N PRBs per
cell. Mobile users strategies sk are the choice of a PRB n at a given BS j, i.e., sk = (j, n).
Hence, the signal received by a mobile user k using strategy sk, depends not only on
the BS transmit power but also on the interferences introduced by the other cells. The
Signal-to-Interference plus Noise Ratio (SINR) measured at the user k associated with
BS j can be expressed for all j ∈ M and k ∈ K as:

SINRj,k =
hj,k · P(sk)

σ2 + ∑
l 6=k

hj′,k · P(sl) · f (sk, sl)
(2.1)

where hj,k is the block fading process measured at user k associated with BS j, P(sl) is
the power received from BS i at PRB n′ for mobile user l with sl = (j′, n′), and σ2 is the
noise variance. The interference function f (sk, sl) is defined as:

f (sk, sl) =





1, if n = n′

0, otherwise
(2.2)

2.2.2 Network Resources

A key example of dynamic resource allocation is that of power control, which serves
as means for both battery savings at the mobile, as well as interference management
in the network. Formally, we assume that the network manager optimizes its global
utility by means of power control optimization. Let P be the (M × N) power control
matrix whose element P(j, n) represents the power received from BS j ∈ M at PRB
n ∈ N . Given these optimized power levels P, mobile users choose the association
actions that optimize their individual utilities. Notice that the maximization of the total
throughput by the network manager is based on information sent by mobile users on
interferences experienced from neighboring cells. We further assume that each base
station can allocate a PRB to only one mobile user at a given time slot.

2.3 Hierarchical game formulation

We make use of a hierarchical equilibrium solution concept, i.e., the Stackelberg game,
where the network manager is acting as the leader and mobile users are the followers.
In view of maximizing its utility, the leader enforces its strategy on the followers that
react rationally to this enforcement. A mobile user can decide to either transmit data or
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stay silent depending on its utility1. We assume that each mobile k has a target SINR
noted by ηk which reflects its required QoS. Let Hk ⊂ M be the set of base stations

within a radius of r from user k such that r ≤ (
Pmax

ηk · σ2 )
1/β where β is the pathloss

coefficient and Pmax is the maximum power at each base station. The motivation behind
doing so is that, for computation purpose, one may only consider the subset Hk rather
than the original set M. Let wk be the user’s strategy when the user decides to stay
silent on that specific slot. Hence, the set of mobile user actions is Ωk = Hk ×N ∪ wk.
Mobile user utility function for each choice of strategy is the following

vk (sk) =





(
Rj,k + ǫ

)
1I{SINRj,k>ηk} − ǫ, i f sk 6= wk

0, otherwise

(2.3)

where ǫ is a small positive value and Rj,k = log
(
1 + SINRj,k

)
is the throughput of user k

associated to BS j. This means that if a mobile user decides to transmit, it obtains either
a utility equal to its transmission rate (Rj,k) or a negative utility (−ǫ) depending on its
SINR. Otherwise, the mobile user decides to stay silent (v(sk) = 0). As a result, this
tends to lead users which do not contribute enough utility, to outweigh the interference
degradation and remain silent. In order to provide a right balance between efficiency
and fairness between cells, one possible remedy would be to use the so-called α-fairness
[77]. This guarantees that any point in which one BS is shut down cannot be a local
maxima. The global utility can be expressed as:

U =





1
1− α∑

j

U1−α
j , if α 6= 1

∑
j

log
(
Uj

)
, if α = 1

(2.4)

where Uj = ∑
k

Rj,k and α is the fairness parameter. The network manager is assumed to

perfectly know the set of strategies and the utilities of the K mobile users. Similarly, it
is guaranteed under this setting that the followers can observe the actions of the leader
through the broadcast channel. Accordingly, the Stackelberg game can be formulated
as :

PSE = argmax PU(P(sNE))

s.t.
N

∑
n=1

P(j, n) ≤ Pmax ; ∀j ∈ M (2.5)

where sNE is a Nash equilibrium among K mobiles considering the strategy of the
leader. Let S = {Ω1 × · · · × ΩK} the strategy space of our one shot game and s =
(sk, s−k) a strategy profile in the game. Mathematically, the Nash Equilibrium can be
expressed by the following inequality for all association strategies s ∈ S :

vk(sk, s−k) ≥ vk(rk, s−k); ∀ k = 1, ..., K (2.6)

1Though some users stay silent, they may be active during the next scheduling period.
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for every rk ∈ Ωk and s−k ∈ Ω−k where Ω−k = {Ω1 × · · · ×Ωk−1 ×Ωk+1 × · · · ×ΩK}
is the joint feasible strategy space of all users but the k-th one.

2.4 Learning for optimal decision

The interaction between the leader and the followers provides a potential incentive for
both agents to make a decision process based on their respective perceived payoff. This
section focuses on how to reach the Stackelberg equilibrium for both the leader and
the followers. To accomplish the task of global optimization problem, a two-stage op-
timization algorithm is proposed. One difficulty in our context is that mobile users do
not know the payoffs (thus the strategy) of each other at each stage. Thus, the envi-
ronment of each mobile user, including its opponents, is dynamic and may not insure
convergence of the algorithm. In [53], authors develop a a Nash-Stackelberg fuzzy
Q-learning in a heterogeneous cognitive network. As an alternative way, we adopt a
hierarchical algorithm. The proposed approach requires neighboring base stations to
exchange load (or interference) information experienced at user level on regular inter-
vals. Consequently, the hierarchical algorithm is performed based on a coordination on
both local (user level) and global scope (network level), which could scale accordingly.

As far as the two-stage learning algorithm is concerned, this can be conducted in
the following steps: First, every user reports to its serving base station the experienced
interference from neighboring cells. Then, the interference information is exchanged
between base stations over the X2 interface while trying to optimize the global network
utility by means of power control. Based on these power levels (broadcasted by BSs),
each user check distributively whether the serving BS is still the best choice according
to its utility. Otherwise, it can perform a handover to the other RANs after checking
that it could be admitted on it. As a result, this approach tends to substantially reduce
signaling overhead from the base stations.

2.4.1 Leader: Gradient computation mechanism

In this section we propose an operational way of computing the derivative of the global
utility in a distributive fashion. At each time epoch, consider that each mobile user k re-
ports to its base station j the matrix (b

1j
k , . . . , b

Mj
k ), where b

mj
k = (P(m, n′) · hm,k, n′ ∈ N )

is the vector of interferences perceived by user k from base station m or its signal
strength on sub-band n when m = j. In the scope of this work, and without lost
of generality, we consider that only one user can interfere per base station with an-
other user from a neighboring base station if they use corresponding channels. Hence,
adjacent channel interferences are not included and we assume that users are not al-
located more than one PRB at the time. The vector b

mj
k restrics then to a single in-

terference value for each m. Base station j will then be able to built the hyperma-
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trix B =




b
1j
1 . . . b

1j
K

. . .

. . .

. . .
b

Mj
1 . . . b

Mj
K




, and send the matrices aj = (a
j
k, k = 1, ..., K), with

a
j
k = ∑

m

b
mj
k and bj =

(
b

j′ j
1 , . . . , b

j′ j
K

b
jj
1 , . . . , b

jj
K

)
to each base station j′. The derivative of

the utility from base station j computed here below, is obtained in base station j′ for
sub-band n by:





∂Uj (P(j′, n))

∂P(j′, n)
=

K

∑
i=1

(
b

j′ j
i /P(j′, n)

σ2 + a
j
i

− b
j′ j
i /P(j′, n)

σ2 + a
j
i − b

jj
i

)
and

∂Uj′ (P(j′, n))

∂P(j′, n)
=

K

∑
i=1

(
hj′,k

σ2 + a
j′
i

) (2.7)

So far,
dU

∂P(j′, n)
= U−α

j′ ∑
j

∂Uj

∂P(j′, n)
. We then need to express

∂Uj

∂P(j′, n)
for all j, assuming

we are considering cell j′. Because the derivative goes the same for every sub-band, we

will focus only on one particular sub-band n. It can be easily shown that
∂Uj

∂P(j′, n)
is

given by:







hj′,k

σ2 + ∑
m

P(m, n) · hj,m
− hj′,k

σ2 + ∑
m 6=j

P(m, n) · hj,m


 ; i f j 6= j′


 hj,k

σ2 + ∑
m

P(m, n) · hj,m


 ; i f j = j′

The pseudo-code for the proposed gradient descent approach is given in Algorithm
1.

Note that the implementation of gradient like algorithms is familiar in optimization
problems. The convergence of such algorithms have been shown in [19], under some
specifics conditions such as the derivative of objective function is Lipschitz continuous
which is satisfied here, and for an accurate choice of γt.
Proposition 2.4.2. The derivative of our utility function is Lipshitz continuous

Proof. If sk 6= wk, the utility function is given by

U =

{
−ǫ i f SINRjk > ηk

Rjk + ǫ otherwise

Again SINRjk > ηk =⇒ U = Rjk + ǫ. Let’s show that ∇U is Lipschitz continous.

We have,
∂Uj

∂P(j′, n)
=
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Algorithm1
In each base station j′

1. Find the value of
dU

∂P(j′, n)
(Pt(j′, n)) at time t, given the current power level

Pt(j′, n).

2. Express Pt+1(j′, n) = Pt(j′, n) + γt
∂U

∂P(j′, n)
(Pt(j′, n)), to have new values of the

power vector at time t + 1.
3. Allocate the powers to each sub band and let the users associate(see Algorithm2).
4. Receive feed-back from users and build the hypermatrix B.
5. Send aj′ and bj′ to each base station j.

6. If
(

max
n

(
Pt+1(j′, n)− Pt(j′, n)

))
≤ ǫ stop; else go to 1.

End algorithm.





hj′k

σ2 + ∑
m

P(m, n)hm,k
− hj′k

σ2 + ∑
m 6=j

P(m, n)hm,k
i f j 6= j′

hjk

σ2 + ∑
m

P(m, n)hm,k
i f j = j′

Then for another value q of power level on channel n, we obtain

‖ ∂Uj

∂P(j′, n)
− ∂Uj

∂P(q, n)
‖ ≤ ‖ ∂Uj

∂P(j′, n)
‖+ ‖ ∂Uj

∂P(q, n)
‖

Moreover, ∀ P(j′, n), we have

‖ ∂Uj

∂P(j′, n)
‖ ≤ ‖ hjk

σ2 + ∑
m

P(m, n)hm,k
‖

≤ H

σ2 where H is the line of sight

channel gain.

which implies that

‖ ∂Uj

∂P(j′, n)
− ∂Uj

∂P(q, n)
‖ ≤ 2H

σ2

yielding ∃ A, K > 0 s.t

‖ ∂Uj

∂P(j′, n)
− ∂Uj

∂P(q, n)
‖ ≤ K× ‖P(j′, n)− P(q, n)‖

with K = A× 2H

σ2 . This ends the proof.
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In our computations, we use the implementation of WOLFE linear search to find an
appropriate value of γt at each iteration.

On another hand, at each iteration, the gradient algorithm delivers the values of the
powers vector for each base station, that can go out of the bounds of the allowed space.
To handle this problem, we implement a computational mechanism to satisfy the power
constraint in (2.5). We define the constraint c (P(j, n), Pmax) to relax the problem, where
c is built as follows:
de f ine ξ = {n ∈ N s.t. P(j, n) > pth} ; where pth is a threshold value for every PRB

n s.t. ∑
n

pth = Pmax. Let δ =

(
Pmax − ∑

Nrξ

P(j, n)−∑
ξ

pth

)
;

i f ∃ k ∈ ξ and ∑
n

P(j, n) ≥ Pmax set the values of each P(j, n), using the projection

P̄(j, n) = min
(

δ

|ξ| + pth, P(j, n)

)
. It is to say that the remaining power on each BS

power budget, if any, is evenly shared among the channels requiring a power level
above the threshold value.

2.4.3 Followers: Pursuit algorithm

At the user level of our stakelberg framework, we use the pursuit algorithm as a tool
to allow user to reach iteratively and individually a Nash Equilibrium. The pursuit
algorithm is a distributed association algorithm proposed in [118] allowing each indi-
vidual in a set of players to select a given strategy, among several others, that will best
maximize its utility within a limited number of iterations.

Algorithm2
At each iteration t

1. Select a strategy sk ∈ Ωk according to the current powers level P.
2. Update the vector of average utilities uavg,k, using the chosen strategy sk

(
uavg,k

)
,

provided utility vk (sk).
3. Find the strategy sk = arg max(uavg,k), that gives the best average.

4. Make

{
psk

(t + 1) = psk
(t) + δ (1− psk

(t))

psi
(t + 1) = psi

(t)− δpsi
(t) , i 6= k

5. if max (|psi
(t + 1)− psi

(t) | < ǫ) stop, else go to 1.
End Algorithm

It has been proven in [118] that the pursuit algorithm always converges under some
specifics conditions on the step size parameter. They show that when the step size
parameter is very small, the game converges to a stable equilibrium for the learning
automata game. This algorithm has the property to converge to an extremum of the
game when there exist a pure equilibrium. To reach mixed equilibrium, authors in
[129] present a distributed algorithm that can be used in such situations. However,
mixed equilibria are not efficient in our context since it will lead mobile users to pro-
cess continuously handovers between bases stations. To avoid mixed equilibria, we
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Table 2.1: Simulations settings

Parameters descriptions Values

Number of cells 7
Number of PRBs per cell 10
Number of users per cell 4

Outer Radius of hexagonal cells 200 meters
Distance to insure target SINR 300 meters

fairness parameter α = 1
iterations scale 2 1 for 30

introduce a cost of handovers in the utility function to give more incentive to mobile
users in reaching pure equilibria.

Discussion on cost of handover As stated in the previous paragraph, a major
weakness of the learning algorithm in mobile networks is the number of handovers,
especially when the algorithm converges to mixed equilibria. We try to tackle this issue
by introducing a cost of handover as a reward in the utlity function to users who are
not operating handovers. Users utility function is given by, vk (sk) =





(
Rj,k + ǫ

)
1I{SINRj,k>ηk} − ǫ + αh, i f sk 6= wk

0, otherwise

(2.8)

where αh = βh(1 − 1I{handoff}) and βh is a small positive value. In figure 2.2 we

compare the number of handovers with and without the defined handover control.
On the figure we can see that the handover control policy decreases considerably the
number of handovers and the system remain stable after a few iterations. Interestingly,
we noticed in our simulations that users are more motivated in following the handover
control when the control is a reward rather than a penalty as we suggested in a first
place. A trade-off on using such control can be seen at the utility side. As shown in
figure 2.3 the gap in utility between the two policies can be marginal.

2.5 Implementation and Validation

To go further with the analysis, we resort to realistic network simulations. We consider
a cellular radio network as described in Figure 2.1 where users are attempting to com-
municate during a downlink transmission, subject to mutual inter-cell interferences.
Specifically, a hexagonal cellular system functioning at 1.8 GHz where cell radius is
equal to R = 200 meters is considered. Note that this radius only stands for geographi-
cal positions in the network. It does not prevent users located out of this area to connect

2This is the scale of iterations between the gradient and Pursuit algorithms
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with another base station in case of significant connection opportunity. Channel gains
are based on the COST-231 path loss model [1] including log-normal shadowing with
standard deviation of 10 dB, plus fast-fading assumed to be i.i.d. circularly symmetric
with distribution CN (0, 1). The peak power constraint is given by Pmax = 100 mWatts.
We evaluate under those settings the joint processing of the gradient descent algorithm
with the pursuit algorithm. Without loss of generality, we assume that every cell has
the same number of users randomly positioned inside the cell. We consider a cluster
of 7 interfering cells, featured with 10 PRBs each. The values of the other parameters
are set in Table 2.1. The iteration scale parameter in Table 2.1 traduces how frequently
BSs update the gradient algorithm and set new values of powers. By tunning this pa-
rameter, one can control the amount of signalization between BSs. We consider in our
simulations that users run 30 iterations of the association algorithm for 1 iteration of the
gradient. We first build the framework for a fairness parameter α = 1 which represents
the proportional fairness algorithm, and then extended it to different values of α.

2.5.1 Dynamic fractional frequency reuse

In Figure 2.4, we illustrate the snapshot of the dynamic fractional frequency reuse pat-
tern at the equilibrium. The small colored disks indicate the positions of users inside
the cells and the faces colors are the frequencies used by those users. Disks are indexed
with a couple of values (BS, power) where the first value represents the base station
to which this user is connected and the second the power level assigned by the base
station on that frequency. As expected, users close to each other are attributed different
frequencies and power levels are set accordingly, to avoid high level of interferences.
From the same figure, we also have an overview on user-network association. Indeed,
many cases appear where users would rather associate in a neighboring cell rather than
in the cell where they are positioned, due to the influence of path-loss and/or interfer-
ence impairments. For instance, in Figure 2.4, user indexed (2, 7.5) in cell 2 is connected
to BS 2 and is assigned frequency F2 with a high power level. This reflects the maxi-
mization goal of the gradient algorithm, since frequency F2 is reused only once by a
user far away in cell 7 at a low power level.

2.5.2 Utility maximization

In Figure 2.5, we compare the proposed FFR algorithm with a traditional fixed reuse
patterns namely, the full reuse. The exhaustive search algorithm, in dash, considers all
possible combinations of PRB selection given the power level of the gradient algorithm.
This will thus serve as an optimal association solution for users and will demonstrate
just how much gain may theoretically be exploited through the pursuit algorithm. It
clearly appears that the joint gradient and pursuit algorithm performs better than the
full reuse and reduce considerably the gap with the exhaustive search. As it is shown
in Figure 2.5, we reach up to 90% of overall network throughput compared to the ex-
haustive (optimal) association search.
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Figure 2.2: Comparision of the number of handover.
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Figure 2.4: Snapshot of the dynamic fractional frequency
reuse pattern at the equilibrium for α = 1.
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Figure 2.5: Network utility for α = 1.

2.5.3 Fairness Issues

In this section, we intend to show the impact of fairness on the global utility maxi-
mization by simulating different values of the α-fairness parameter. For α = 0 (the
maximum throughput algorithm), we can see from Figure 2.6 that some BSs (BS 6 for
instance) are set to idle. Several other channels in the network are also switched off
while a few number of users are attributed very high levels of power. This behavior
was somehow expected since using α = 0 means that the major goal of the network
is to maximize the overall network utility. Nevertheless as it is shown in Figure 2.7,
this policy does not help to tighten the gap to the exhaustive association search (71%),
as much as using a value of α = 1. Further analysis of the max-min fairness policy
(α → ∞) shows that most of BSs are set to idle, and only few channels are activated.
Being too fair leads then the network to follow the policy of highly loaded BSs, thus
providing an overall network utility almost null. Finally, we plot in Figure 2.8 the net-
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work block call rate (BCR) for increasing number of iterations obtained when users
follow the strategy corresponding to the Stackelberg equilibrium. We can observe that
the BCR can be substantially reduced as the number of iteration increases. Moreover,
the fairness policy has a negligible influence on the BCR which remains less than 10%
for the different fairness policies.
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Figure 2.6: Snapshot of the FFR system pattern (α = 0).
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Figure 2.7: Network utility for α = 0.
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2.5.4 Robustness and scalability

Next, we evaluate in this section a seamless adaptation of our algorithms to a dynamic
environment. We simulate a discrete time system over several iterations, and gener-
ate a burst of users arrival at a specific time instant during the simulation time. Indeed,
while new arrivals generally occur every minute in the cellular systems, our association
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algorithm converges at the order of a few ms. This speed of reactivity and adaptation
show improved performances of our hierarchical algorithm and is traduced in figures
2.9, 2.10 and 2.11. We consider two rings of a small cells network where each base sta-
tion is featured with 4 PRBs and contain each 3 users randomly positioned inside the
cell at the beginning of the simulation. In this new setting, we assume that the algo-
rithms iteration scale is 1 for 100. For each of the simulated schemes, we assume that
each BSs can exchange interferences information only with a subset of all the interfer-
ing neighbors. This consideration helps to understand how the proposed scheme reacts
when the amount of information exchanged between BSs is limited.

For the first (figure 2.9), second (figure 2.10) and third (figure 2.11) scenario, we con-
sider that each BS exchange data respectively with the first ring neighbors, only with
the 2 first closest neighbors and finally with all the interfering neighbors from the two
considered rings. By comparison of the different scenarios, it is observed that more
exchanged information lead, as one can intuitively expect, to an increased outcome in
utility. However, although this can be imputed to randomness, when comparing figures
2.9 and 2.11 we see that the system stability is not necessarily insured by an increase
of exchanged information rate. On another hand, even with very few amount of ex-
changed information our algorithm preserves a convergence to 97% of the exhaustive
association search utility. From the same figures, we address the scalability of our algo-
rithms, with the introduction of a burst of new arrivals in the system at iteration 200.
Although this event in not clearly captured in figure 2.10, case when less information is
exchanged, we can observe from figures 2.9 and 2.11 that our mechanism adapts very
fast to the system evolution in order to reach the new point of convergence.
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Figure 2.9: Network utility for α = 0.98 with
first ring interferences informations.
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Figure 2.10: Network utility for α = 0.98 with
two neighbors interferences informations.

2.6 Conclusions

In this chapter, we have investigated the idea of a hierarchical learning game for frac-
tional frequency reuse in an OFDMA network. In this framework, both the network
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Figure 2.11: Network utility for α = 0.98 with all neighbors interferences informations.

manager and mobile users learn to reach an equilibrium that optimizes the global net-
work utility while ensuring individual utility optimization for mobile users. We have
first proposed formally a game model to define how the network manager and mo-
bile users can obtain their respective equilibria by means of a Stackelberg formulation.
Then, we have presented a two-stage learning algorithm for finding a Stackelberg equi-
librium and the corresponding mobiles’ association strategies. Practical directions for
implementability of our solution are also presented. We have showed using several nu-
merical examples the efficiency of the obtained equilibrium compared to the exhaustive
(optimal) solution and a fixed full frequency reuse pattern. In particular, in the case of
proportional-fair policy, the proposed FFR approach offers approximately 90% of the
optimal association policy and 40% of gain with respect to the fixed full reuse. Indeed,
for implementation purposes and in order to adapt to the dynamic of the mobile en-
vironment, the number of iterations before convergence should remain in the order of
a few tens. Eventually, we have addressed interesting issues such as fairness, robust-
ness and scalability and offered insights into how to design such scenario in a wireless
network environment.
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Chapter 3

Delay Tolerant Networks in partially
overlapped networks: A
non-cooperative game approach

3.1 Introduction

Delay tolerant mobile ad-hoc networks have gained attention in recent research. In-
stantaneous connectivity is not needed any more and messages can arrive at their des-
tination thanks to the mobility of some subset of nodes that carry copies of the message.
A naive approach in forwarding a message to the destination consists in the use of an
epidemic routing strategy, in which any mobile that has the message keeps on relaying
it to any other mobile that arrives within its transmission range and which does not still
have the message. This would minimize the delivery probability at a cost of inefficient
use of network resources in terms of energy used for transmission. The need for a more
efficient use of network resources has motivated the use of more economic packet for-
warding strategies such as the two-hop routing protocols, in which the source transmits
copies of its message to all mobiles it encounters, but these relay the message only if
they come in contact with the destination. The performance of the two-hop forwarding
protocol along with the effect of the timers have been evaluated in [4]. In this study we
consider an alternative approach that offers a way of analyzing the successful delivery
probability and energy consumption. We aim to provide a scheme which maximizes the
expected delivery rate while satisfying a certain constant on the number of forwardings
per message. To do this, we assume that each mobile may decide which routing pro-
tocol it wants to use for delivering packets. We restrict the case that only two routing
protocols are available to mobiles: epidemic routing and two-hops. This scheme al-
lows us to exploit the trade-off between delivery delay and resource consumption. The
higher number of users use epidemic (resp. two hops) routing , the higher (resp. lower)
probability of success and the higher (resp. lower ) consumption of resource.

In our study we assume that each mobile like to find the routing protocol that maxi-
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mizes his utility function. But, as this utility depends on the action of the other mobiles,
the system can be described as a non-cooperative game. We show that this game has at
least one Nash equilibrium, and we designed a distributed algorithm to reach it. This
algorithm is implemented at each node, allowing the system to reach the Nash equi-
librium in a completely distributed way. Since the estimation of some parameters of
the system, is very difficult in DTN, due to the lack of persistent connectivity, the pro-
posed algorithm also allows the nodes to converge to the Nash equilibrium without
any information.

Delay Tolerant Networks (DTNs) have recently attracted attention of the research
community. Delay Tolerant Networks (DTNs) are sparse and/or highly mobile wire-
less ad hoc networks where no continuous connectivity guarantee can be assumed
[122, 100]. There are several results of real experiments on DTNs [56, 31, 48]. In
[127], the authors studied the optimal static and dynamic control problems using a
fluid model that represents the mean field limit as the number of mobiles becomes very
large. In [35], the optimal dynamic control problem was solved in a discrete time set-
ting. The optimality of a threshold type policy, already established in [36] for the fluid
limit framework, was shown to hold in [35] for the actual discrete control problem. A
game problem between two groups of DTN networks was further studied in [35].

3.1.1 Main contributions

The major contributions in this chapter are the following:

• We address a routing configuration game in DTN by allowing users to change
dynamically their routing policy according to network reward and other users
configurations.

• Our game is energy efficient and leads to an optimal trade-off between the suc-
cessful delivery probability and the number of infected relays at the equilibrium.

• We give some analytical insight to model the propagation of the message from
the source to the destination as a fluid model using mean field approximation.

• We define a reward mechanism to give the incentive to users of using one strat-
egy or the other by introducing a reward on participation in successful message
delivery.

• We eventually rely on a learning algorithm to allow users to determine the best
strategy to adopt and converge to a NE.

The rest of the chapter is organized as follow. In section 3.2 we decline the network
model and DTN framework. In section 3.3 we establish the existence of a Nash equi-
librium for our game. Section 3.4 presents the stochastic approximation for our leaning
process and we define our reinforcement learning algorithm. We analyze in section 3.5
the network efficiency and compare to global optimum using the price of anarchy. We
eventually conclude the chapter in section 3.6.
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S2

Ŝ

S1

ds

N1 N

Figure 3.1: Overlapped Network Region Ŝ

3.2 The Model

Let us consider two overlapping network regions, where source and destination nodes
are each in distinct regions. By network region we mean a region with moving nodes
that can establish a connection between them. We assume that nodes have random
way-point mobility (see [49]) which is confined to the region it is associated . In context
of DTN the transportation of data relies mainly on mobility, so the overlapping region
plays an important role. Overlapping regions are the only place where nodes can ex-
change data from one region to another. Consider that network region S1 contains a
source S, and N1 mobile nodes, and that network region S2 contains the destination
node d and N2 mobile nodes. Since source and destinations are in different regions,
data can be transported from source to destination by mobile nodes only through the
overlapping region Ŝ. Let us parameterize the overlapped(normalized) region, denoted
by S̃ = Ŝ/ max{S1, S2}. Notice that the overlapping region S̃, when parameterized
reduces to (assume S1 = S2 for simplicity) the following special cases : “Unified net-
work", i.e., when S̃ = S1 = S2, and “Overlapped network" when 0 < S̃ < 1.

We assume that each mobile node is equipped with some form of proximity wireless
communications device. The network regions are assumed to be sparse, so that, at any
time instant, nodes are isolated with high probability. Communication opportunities
arise whenever, due to mobility patterns, two nodes get within mutual communication
range. We refer to such events as “contacts”. The time between subsequent contacts of
any pair of nodes is assumed to follow an exponential distribution. The validity of this
model for synthetic mobility models (including, e.g., Random Walk, Random Direction,
Random Waypoint) has been discussed in [4]. In [49], the authors derived the following
estimation of the pairwise meeting rate λ :

λ =
2wRE[V∗]

S
, (3.1)

where w is a constant specific to the mobility model, E[V∗] is the average relative speed
between two nodes and R is the range. Let λ1 (resp. λ2) be the rate of meeting of any
pair of nodes in region S1 (resp. S2). Let λS denote the rate of meeting between the
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source and a node in region S2. From (3.1), we have

λ1 =
2wRE[V∗1 ]

S1
, λ2 =

2wRE[V∗2 ]
S2

and λs =
2wRE[V∗s ]

S1
.

Similarly, the rate of meeting between a node (resp. source) in S1 and a node in S2 is

given by λ12 =
2wRE[V∗12]

Ŝ
, λs2 =

2wRE[V∗s2
]

Ŝ
,

where Vs2 is the average relative speed between source and a node in region S2.
There can be multiple source-destination pairs, but we assume that at a given time
there is a single message, eventually with many copies, spreading in the network. For
simplicity we consider the message originated at time t = 0. We also assume that the
message that is transmitted is relevant only during some time τ. The message contains
a time stamp reporting its generation time, so that it can be deleted at all nodes when it
becomes irrelevant.

A mobile terminal is assumed to have a message to send to a destination node. We
consider in our approach two types of routing in DTN networks: epidemic routing and
two-hop routing.

• Epidemic routing: At each encounter between a mobile that has the message and
another one that does not, the message is relayed to the one that does not have it.

• Two-hop routing: At each encounter between the source and a mobile that does
not have the message, the message is relayed to that mobile. If a mobile that is
not the source has the message and it is in contact with another mobile then it
transfers the message if and only if the other mobile is the destination node.

In this chapter we study the competition between individual mobiles in a game the-
oretical setting. Each mobile can decide whether to use epidemic or two-hop routing,
depending on which strategy maximizes his utility function. We assume that the source
node S stays in region S1 while the destination node d stays in region S2. Naturally, the
nodes in S1 needs to forward the packet to the nodes in S2. Hence, the nodes in S1 are
of "Epidemic” type only, while nodes in S2 may be of either type.

Consider that there are N1 mobiles among the total Ntot1 in region S1 which par-
ticipate in forwarding the packet using epidemic routing. We assume that N mobiles
among Ntot in region S2 can choose between epidemic and two-hop routing. Let N0

e

(resp. N0
t ) be the number of mobiles that always use epidemic (resp. two-hop) routing.

Then, we have:
Ntot = N + N0

e + N0
t

The source in region S1 has a packet generated at time 0 that wishes to send to the
destination d in region S2. In region S2, let Ne (resp. Nt) be the number of users that
use epidemic routing (resp. two-hop routing). Let Xe(t) (resp. Xt(t)) be the number of
mobile nodes (excluding the destination and source) that use epidemic routing (resp.
two-hop) and have at time t a copy of the packet. Denote by Di(τ) the probability of
a successful delivery of the packet by time τ. Then, given the process Xi (for which
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a fluid approximation will be used), we have the probability of successful delivery of
packet as:

Psucc(τ) = 1− e(−λd

∫ τ
0 (Xe(t)+Xt(t))dt) (3.2)

where λd denotes the inter-meeting rate between the destination and a node in S2.
Consider that on successful delivery of the packet is rewarded with ᾱ which is shared
among all the participating nodes. Let the reward is shared among the two region as
αS1 for region S1 and α for S2, where ᾱ = αS1 + α. In region S1 there are only epidemic
type user, the reward is shared equally among X1(τ) users. While in region S2, the re-
ward α is further shared as αe (resp. αt = α− αe) among the mobiles that have at time τ
a copy of the message and use epidemic (resp. two-hop) routing. Hence, the utility Ue

(resp. Ut) for a player using epidemic (resp. two-hop) routing is given by

Ue(Ne) =
(αePsucc(τ)

Xe(τ)
− βτ

)
¶1 (3.3)

Similarly, the utility for a player use two-hop routing is given by

Ut(Ne) =
(αtPsucc(τ)

Xt(τ)
− γτ

)
¶1 (3.4)

where β and γ are the energy cost ,and ¶1(t) = 1 − e−
∫ t

0 (λs2+λ12X1(s)+λ2Xe(s)ds) which
denotes that the probability of receiving a packet by time t.

3.2.1 Fluid Approximation

We consider the following standard fluid approximation (based on mean field analysis)

dX1(t)

dt
= (λs + λ1X1(t) + Xe(t)λ21)(N1 − X1(t)), (3.5)

dXe(t)

dt
= (λs2 + λ12X1(t) + Xe(t)λ2)(Ne − Xe(t)), (3.6)

dXt(t)

dt
= (λs2 + λ12X1(t) + Xe(t)λ2)(Nt − Xt(t)). (3.7)

. The message is spread directionally, which means that nodes from region S1 can for-
ward the packet to nodes in S2, while the reverse is not allowed,so λ21 = 0. On solving
the ODE’s given in eq. (3.5)-(3.7) using the suitable initial conditions, we obtain

X1(t) =
λsN1 (1− exp (−t (λs + λ1N1)))

λs + λ1N1 exp (−t (λs + λ1N1))
, (3.8)

Xe(t) =
Ne

[
ψ(t)

(
1− Ne

∫ t
0

λ2
ψ(u)

du
)
− 1
]

ψ(t)
(

1− Ne

∫ t
0

λ2
ψ(u)

du
) , (3.9)

Xt(t) = Nt

(
1− exp

[
− λ12

∫ t

0
X1(u)du + λ2

∫ t

0
Xe(u)du + tλs2

])
. (3.10)
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where ψ(t) = exp
(∫ t

0
(λs2 + λ12X1(u) + λ2Ne) du

)
.

3.3 The DTN game

As explained before, there is but a single choice for the nodes in region S1, i.e., to
participate or not in epidemic forwarding. However in region S2, a node can choose
between participating or not, and, if so, it can choose between epidemic forwarding
or two hop forwarding to deliver the packet to destination. This raised the game sit-
uation among the players to choose a strategy. A strategy of a mobile is to choose
between epidemic and two-hop routing. Every mobile would like to find the strategy
that maximizes his individual utility. But, as his utility depends on the actions of the
other mobiles, the system can be described as a non-cooperative game. As the game is
symmetric, a Nash equilibrium (NE) N∗e is given by the two conditions:

Ue(N∗e ) ≥ Us(N∗e − 1) and Ut(N∗e ) ≥ Ue(N∗e + 1)

The previous definition means that no user using epidemic routing (resp. two-hop
routing), has an incentive to use two-hop routing (resp. epidemic routing). It can be
shown that the equilibrium is given by the equivalent condition

Ue(N∗e ) ≥ max{ αe(N∗e + Ne
0)

αt(N − N∗e + Nt
0)
(Ue(N∗e − 1) + β)− γ,

αt(N − N∗e + Nt
0)

αe(N∗e + Ne
0)

(Ue(N∗e + 1) + γ)− β} (3.11)

.
Proposition 3.3.1. For each N, total number of players, there is at least one Nash equilibrium
which is characterized by inequality (3.11).

The proof of the proposition follows from [98].

3.4 Stochastic approximation for Nash equilibrium

In this section we introduce a distributed method to achieve the Nash equilibrium in
the case where some parameters (i.e., N, λ and λs) are unknown. We show that simple
iterative algorithms may be implemented at each node, allowing them to discover the
Nash equilibrium in spite of the lack of information on such parameters. Note that the
estimation of N, λ and λs, is very difficult in DTN because of the lack of persistent con-
nectivity. This distributed algorithm proposed in [91] was proved, for a fixed number
of players, that if it converges, it will always do to a Nash equilibrium. In order to in-
crease the speed of convergence, each user decides to stop his update mechanism after
reaching a given threshold [89]. It is not a global convergence criteria, as we can find
in centralized algorithms, but an individual convergence criteria that let each user stop
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calculations. The algorithm is based on a reinforcement of mixed strategies and players
are synchronized in such a way that the decision of all players (playing pure strategy)
induce the utility perceived for each one.

The algorithm works in rounds. Each round corresponds to the delivery of a mes-
sage by the source. Let Ne(t) be the number of players that use epidemic routing at
round t. At each round t, each user i chooses epidemic routing over the set C = {e, t}
of strategies, with probability pt (and chooses the two-hop routing with probability
1 − pt). The utility perceived by user i at round t depends on his action and on the
actions of the other mobiles. This utility ui

t is expressed as follows:

ui
t = 1{ct=e} ·Ue(Ne(t)) + 1{ct=t} ·Ut(Ne(t)) (3.12)

Then, each player updates his probability according to the following rule (see Algo-
rithm 2):

pi
t = pi

t−1 + b ·
(
1{ct=e} − pi

t−1

)
· ui

t, (3.13)

Algorithm 2 Dynamic Distributed Algorithm.

1. Initialize pi
0 as starting probability for the player i.

2. For each player i:
(a) If player i has converged move to the next player.
(b) Player i performs a choice over C, according to p

(i)
t−1.

(c) Player i updates his probability p
(i)
t according to his choice using (3.13).

(d) If
∣∣∣p(i)t − p

(i)
t−1

∣∣∣ < ǫ then player i has converged.
3. Make t = t + 1 and go to step 2.

Figure 3.2 shows the evolution of the probabilities and the convergence to Nash
Equilibrium for a set of 10 players, using a treshold of convergence at ǫ = 10−6.

3.5 Global optimum repartition and Nash Equilibrium

In this section, we are interested in the network efficiency as the maximization of the
global optimum of the system. We want to optimize the overall network energy-efficiency
with respect to the aforementioned degrees of freedom. For this purpose, we consider
the optimal social welfare, which is well known in game theoretic studies, and compare
it with the performance achieved at Nash Equilibrium.

The following simulations allow us to see the range of values for different param-
eters which minimizes the gap in total utility between the Nash equilibrium and the
global optimum. For different rates of λs and different values of the reward on epi-
demic routing αe, we compute the price of anarchy, using the total utility at the global
optimum repartition and at Nash Equilibrium.
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Figure 3.2: Convergence to Nash Equilibrium

The social welfare of the network is measured by the total utility of the system ex-
pressed by

Ws = Xe(τ)Ue(Ne) + Xt(τ)Ut(Ne) (3.14)

and the price of anarchy is measured as follows:

PoA = (W
Opt
s −WNE

s )/W
Opt
s (3.15)

where W
Opt
s (resp. WNE

s ) is the social welfare at the global optimum (resp. at the Nash
Equilibrium.)
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Figure 3.3: Infected users using epidemic or two-hop routing
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Figure 3.4: Price of anarchy depending on λ2

Through the different simulations for several set of values for the main parameters
of our DTN network, we observe the network stability and efficiency. In figure 3.3 we
plot the evolution of the number of users infected using either two hops or epidemic
routing. As we can notice, the rate of infection of users using epidemic routing increases
with the inter-meeting rate in the second region before reaching a stability point, that is
mainly influenced by the relevant time of packet delivery which increases the probabil-
ity of success and makes the infection rate independent on λ2. This rate is always bigger
with the surface of overlapping and the reward on using epidemic routing. We observe
the same behavior for the infection rate of users using two-hop routing, except that the
infection rate become smaller with the reward on using epidemic routing. Figure 3.4
present on the other hand the price of anarchy (PoA) at Nash Equilibrium. For small
values of the inter-meeting rate λ2 in the second region, the PoA takes it highest val-
ues and is almost independent on S̃. The optimality of the Nash equilibrium (obtained
when the PoA is near or equal to zero) is achived for small values of λ2 by increasing
αe or S̃.

3.6 Conclusion

This chapter presents a framework to analyze the trade-off between the successful data
delivery probability and energy costs. We formulate the problem as a non-cooperative
game in which each mobile has to decide which routing protocol it wants to use for
packet delivering: Epidemic routing or Two-hop routing. We explore the scenario
where the source and the destination mobiles are enclosed in two different regions,
which are partially overlapped. We showed the impact of overlapping area on price of
anarchy and Nash equilibrium. To complete this contribution, we plan to analyze the
system when there are new arrivals to the area of interaction and mobiles within this
area will be active for a limited period of time. This configuration makes the system
dynamic in the number of mobiles, a more realistic approach to a DTN case.
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Chapter 4

Evolutionary forwarding games in
Delay Tolerant Networks:
equilibria, mechanism design and
stochastic approximation

4.1 Introduction

Cellular telecommunication networks have enabled voice and data communications
for mobile users, achieving global connectivity. This crucial advance has revolution-
ized everyday habits in our society: nevertheless, mobile applications are posing new
technical challenges. Telecommunication networks in fact are nowadays struggling to
support the fast adoption of data-centric applications running on newly available plat-
forms such as M2M modules, smart-phones or tablets. Thus, operators of telecommu-
nication networks are seriously considering off-loading techniques such as encourag-
ing the use of Wifi at home. Furthermore, Internet protocols have been designed for
network access with very slow user’s mobility and cannot efficiently support mobile
applications. This is mainly due to the intermittent connectivity with the infrastructure
as experienced, e.g., in the metro or in very dense areas.

But, mobile applications call also for more flexible ways to exchange data, e.g, in
ad hoc mode with other co-localized users. Thus, next generation wireless systems
are expected to enable versatile and flexible communications between mobile and au-
tonomous users even in case where no infrastructure is available. Such flexibility comes
at a price though. In these regimes, in fact, due to nodes’ mobility, network topology
may change rapidly and in a non-deterministic way in time. All customary network
functionalities such as topology discovery, routing and messaging have therefore to be
handled by the mobile nodes, thereby creating the need for efficient decentralized algo-
rithms. The design of such algorithms under continuous topology changes and using
only local information available at mobiles requires a specific design effort; this is also

89



Chapter 4. Evolutionary forwarding games in Delay Tolerant Networks: equilibria,
mechanism design and stochastic approximation

the main motivation for this work.

On one hand, high mobility and frequent network partitioning rule out Internet
routing protocols which operate poorly under uncertain networking conditions, high
mobility and frequent network partitioning. But, on the other hand, many users carry
advanced computing devices such as smart-phones, netbooks, etc. Such devices are
equipped with wireless interfaces so that it is possible to sustain communication by
leveraging intermediate nodes acting as relays, the so called carry-store-and-forward strat-
egy. Messages can arrive at their destination thanks to the mobility of some subset of
nodes that carry copies of the message stored in their local memory. Networks with
such characteristics are named in literature Delay (or Disruption) Tolerant Networks
(DTNs). Sometimes they are also known as opportunistic networks because commu-
nication opportunities appear at random, e.g., when a novel device enters radio range
of a mobile node, and data exchange is possible while in radio range. However, as a
result of mobility, a full path between source and destination may break too frequently
or may never exist, thus preventing the adoption of end-to-end communications.

The idea of designing DTNs to sustain communications in spite of lack of persistent
end-to-end connectivity is well documented in literature [5, 99, 70] and several real
experiments over DTNs were performed in the past [56, 31] 1

Yet, the fundamental issue for DTNs is how to trade-off between the number of
released message copies and the delay for a message to reach the destination. In fact,
the more the copies relays have, the higher the probability to deliver the message within
a given time-line, but, the more the energy the network consumes.

As a consequence, several mechanisms for message forwarding in DTNs have been
proposed. For instance, if mobiles having the message keep on relaying to any other
mobile that enters its transmission range and which does not have the message yet
[127], one would maximize the delivery probability. This is the well known epidemic
routing, which is very expensive in terms of network resources. A smarter forwarding
strategy such as the two hop routing protocol acts in a more efficient way. The source
transmits copies of its message to all mobiles it encounters: relays in turn are forced to
relay the message only to the destination.

In what follows, we confine our analysis to the two hop routing protocol because of
two major advantages: first, it performs natively a good trade-off between the number
of released copies and the delivery probability [36]. Second, forwarding control can
be implemented on board of the source node: under two hop routing, the source can
control the number of message copies released to mobiles it encounters. As it will be
clear in the rest of this work, this is a convenient feature to connect the game-theoretical
mechanism design and the stochastic approximation techniques in order to attain de-
centralized blind online optimal control.

In literature, several previous works elaborated mechanisms for efficient message

1We observe that DTNs in principle do not restrict to mobile networks: the DTN concept was actually
conceived for satellite and space communications where long periods of out-of-reach conditions were
inherently part of the communication requirements.
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forwarding in DTNs using tools from both control theory and game theory (see Sec. 4.2
for related works). In this chapter, we make use of evolutionary games, which are novel in
this context: within such framework, we are able to model the competition of relays in a
DTN and reduce it to a distributed control problem. Compared with existing literature
the forwarding policy is determined by strategies played by the relay nodes. Even
more important, forwarding dynamics is determined by the fraction of the population
of relays that comply to each given strategy. There are two advantages of this novel
approach: first, we can provide a strong notion of equilibrium for the system which
permits to identify robustness of stable system configurations, namely Evolutionary
Stable Strategies (ESSs) – ESSs are defined against deviations of a certain fraction of
the population of mobiles. Second, we can apply the general convergence theory of
replicator dynamics, and several stability results that we introduce in future sections.

We consider that relays can adopt two types of behaviors: they can either undergo
full activation or decide for partial activation for energy saving reasons. It is clear that
devices owners would indeed turn off any relaying functionality for the sake of bat-
tery lifetime. However, a rewarding mechanism can be designed to incentive relays to
participate to the forwarding process. This is the main contribution of this chapter: we
model the competition of relays as a distributed control problem where the forward-
ing policy is determined by the strategies played by the relays themselves in order to
increase their utility.

An additional degree of freedom is that the strategies played by relays evolve with
time, e.g., due to some periodic strategy revision policy. Hence, we characterize the
equilibria of the DTN forwarding dynamics. It is possible to identify cases in which
at ESS, only one population prevails (namely, an ESS in pure strategies) and others,
in which an equilibrium between several population types is obtained (namely, ESS in
mixed strategies). Once determined the possible ESS equilibrium, we could also deter-
mine feasibility conditions for optimal forwarding control at the source node through a
controlled rewarding policy. Observe the novelty compared to similar control problems
seen in DTNs literature: here the source node cannot hope to just increase the success
delivery probability by unilaterally increasing the number of released message copies.
The point is that in some cases this unilateral action results in decreasing the utility of
relays and reducing the number of those which take part to message forwarding with
full activation. Finally, this in turn can produce exactly the opposite effect, i.e., the
success probability decreases.

4.1.1 Main contributions

In this chapter, we aim at devising a so called mechanism design for controlling the evo-
lutionary dynamics through the choice of appropriate forwarding control at the source.
In this way it is possible to govern the replicator dynamics: such an approach provides
very interesting insight into the feasibility of optimal mechanism design and, the tech-
nique appears per se novel compared to known results in literature.

Finally, we propose a hierarchical algorithm that allows the source to achieve the
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optimal forwarding control, with the objective of maximizing the probability of success.
The proposed algorithm is based on stochastic approximation theory. As clarified in
the related section, the power of such techniques lies in the capability to infer online
the optimal control in a blind fashion.

The chapter is organized as follows. In Sec.4.2 we report on previous works in the
field of DTNs and evolutionary games. In Sec. 4.3 we introduced the network model
and notions of evolutionary game theory used in the chapter. The equilibria of the
system are also characterized in Sec. 4.3.5. A specific reward mechanism that will be
used in the rest of the chapter is presented in Sec. 4.4, whereas Sec. 4.5 is devoted to
mechanism design techniques for both static and dynamic control of forwarding at the
source node. A stochastic approximation algorithm is proposed in Sec 4.6 and numer-
ical outcomes are collected in Sec. 4.7. We eventually conclude our developments in
Sec. 4.8.

4.2 Related Works

Several previous works address the control of forwarding schemes in DTNs [122, 83, 4,
36]. The work [4] proposed to control two hop forwarding and optimized the system
performance by choosing the average duration of timers for message discarding. In
[57], the authors describe an epidemic forwarding protocol and show that it is possible
to increase the message delivery probability by tuning the parameters of the underlying
SIR model. In [127], the authors studied optimal static and dynamic control problems
using a fluid model that represents the mean field limit as the number of mobiles be-
comes very large. In [122] and its follow-up [114], the authors optimize network perfor-
mance by designing the mobility of message relays. Some other works that explicitly
address the control of forwarding and related to our work are [6, 83]. The optimality of
a threshold type policy, already established in [36] for the fluid limit framework, was
shown to hold in [35] for the actual discrete control problem. Another work [33] pro-
poses the optimization of two hop forwarding based on the theory of linear-quadratic
regulators.

Energy consumption is a major issue that should be taken into account in order
to increase the lifetime of the network. Some devices may have very limited energy
sources, like a small battery. The main issue is how nodes with finite energy budget
can optimally decide that if and when to activate in order to be able to take part to the
forwarding protocol. Several solutions have been proposed to overcome this problem
in a homogeneous network [34], [52], [85].

Evolutionary games

The theory of evolutionary games has been developed by biologists to predict popula-
tion dynamics in the context of interactions between populations [106]. Although ESS has
been defined in the context of biological systems, it is highly relevant to engineering as
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well [34, 52]. Global dynamics is determined through the description of local interac-
tions, i.e., interactions that characterize the competition within a certain portion of the
population (in our case, the local interaction will be represented by the delivery of a
message from a certain source to a certain destination). This formalism studies Evolu-
tionary Stability, and Evolutionary Game Dynamics. The Evolutionarily Stable Strategy
(ESS), first defined in [106], is characterized by robustness against invaders (mutations):
(i) if an ESS is reached, then the proportions of each population do not change in time,
(ii) at ESS, the populations are immune from being invaded by other small populations.
Observe that this notion is stronger than Nash equilibrium: for a Nash equilibrium, in
fact, it is only requested that an individual would not benefit by a change (mutation)
of its behavior. Standard references for evolutionary games are [124] and [121]. In the
biological context, the replicator dynamics is a model to explain observed variations
in populations’ size. In engineering, we can go beyond characterizing and modeling
existing evolution. The evolution of protocols in DTNs can be engineered by provid-
ing guidelines or regulations for the way to upgrade existing ones and to determine
critical parameters which can impact both the performance of the network and services
deployed on top of the network through a properly designed incentive mechanism.

4.3 Network Model

We consider a Delay Tolerant Network with several sources si, destinations di and a
large number of mobiles acting as relay nodes in the system. We assume mobiles are
randomly placed over a plan following a distribution process. Each mobile is equipped
with a wireless interface allowing communication with other mobiles in their proximity.
Messages are generated at the source nodes and need to be delivered to the destination
nodes; however, each such message is relevant for a time interval of length τ: this is
also the horizon by which we intend to optimize network performance. The network
is assumed to be sparse: at any time instant, nodes are isolated with high probability.2

Nevertheless, due to mobility patterns, communication opportunities arise whenever
two nodes get within mutual communication range, i.e., a “contact” occurs. The time
between subsequent contacts between any two nodes is assumed to follow an exponen-
tial distribution with parameter λ. The assumption for synthetic mobility models has
been discussed in [4] and has been widely adopted to make analytical model tractable
[127, 96]. Consider a message generated at t = 0: each source node attempts to deliver
the message to its destination; it does so eventually with several copies spread between
the relays nodes. Each such message contains a time stamp reporting its age and can be
deleted when it becomes irrelevant, e.g., after time τ. Due to lack of permanent connec-
tivity, we exclude the use of feedback that allows the sources or other mobiles to know
whether the message has been successfully delivered to its destination or not. For the
same reason, the design of our activation mechanism should not require centralized
coordination and any such scheme should indeed run fully distributed on board of the

2This is also the case when disruption caused by mobility occurs at a fast pace compared to the typical
operation time of protocols, e.g., the TPC/IP protocol suite.
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relay nodes. This is a standard description of DTN frameworks that we will be using
in the following chapters as well.
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Figure 4.1: Snapshot of the network: the figure is portraying the typical working conditions for the DTN.

4.3.1 Network Game

In a conventional game, the objective of a player is to choose a strategy that maximize its
utility. In contrast, evolutionary games are played repeatedly by players drawn from a
population. In this section we apply evolutionary games to non-cooperative ‘live time’
selection: the aim is to study a competition framework among individual mobile relays.
Basically, we formulate a DTN routing game, where the relays represent the players of
the game. There are again many local interactions among players belonging to large
populations of mobile relays. Those players need to take some actions with respect to
messages that are generated by severals source-destination pairs in a local interaction
(see figure 4.1).

Now, we detail the utility structure of the proposed mechanism. When a message
is generated by source nodes in a local interaction, the competition takes place during
the message lifetime, i.e., with duration τ. The message live time in turn is dictated by
the strategy adopted by relays: a relay node can decide the duration of the interval of
time during which it participates to the forwarding process. For simplicity, let us as-
sume that each relay node chooses two different live times for the message: τ, i.e., full
activation, and τ′, i.e., partial activation. Without loss of generality let τ′ < τ. Notice
that switching off the radio interface at τ′ < τ acts as a power saving technique since
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the relay reduces battery depletion due to idle listening and beaconing. Moreover, re-
lay interacts severals times with other relays, the actions of the relay along with those
with which it interacts determine the immediate reward of the relay. An mobile relay
can be seen as trying to maximize the expected sum of its immediate reward during
the game. Without loss of generality, we assume that at a local interaction, there is ns

source-destination pairs in which the source has packet generated at some time ti = iτ,
which is then relevant up to time ti + τ = ti+1, when another message is released and
local interaction (i + 1)-th begins. In that local interaction, a mobile relay may interact
with the actions of some N (possibly random number of) other relays. Hence, the im-
mediate reward is designed in such a way that, upon successful delivery of message
to destinations, a relay can receive a reward based on the reward mechanism used by
the source-destination pairs in the system. In what follows, there are also a few as-
sumptions that are not standard in evolutionary games; they follow from the fact that,
in the type of games we deal with, a message is possibly delivered leveraging several
relays, i.e., players, at once. To this respect, in our framework, a fundamental assump-
tion is that the incentive to relay a message is a certain reward that each relay may
receive upon delivering the message. However, competing relays perceive each other
as interfering to their final goal to attain the reward. Let (y, 1− y) be the distribution of
strategies among the population of relays, where y represents the proportion of mobile
relays choosing strategy τ (full active). A distribution y is sometimes called the "state"
or the "profile" of the population.

• The number of mobile relays interfering with a given randomly selected user is a
random variable K ∈ N.

• A mobile relay does not know how many players would interfere with it.

• Let K be the number of relays in a local interaction and Ps
succ(a, K, y) be the prob-

ability that a relay receives a reward from the source s when its action is a and
profile of the population is y. By assuming that all relays have enough buffer
capacity to store all messages forwarded by sources in a local interaction, the ex-
pected immediate reward can be written as

R(a, K, y, S) = ∑
(s,d)∈S

rs,dPsucc(a, K, y, (s, d))− ga

where S is the set of source-destination pairs in a local interaction and g is the
energy spent by a relay by unit of time when it remains active. We observe
that during the interval [0, τ′], all relays are active and the probability that a re-
lay receives a reward before τ′ doesn’t depend on the profile of population, i.e.,
Psucc(τ

′, K, y, (s, d)) = Psucc(τ
′, K, (s, d)) for all (s, d), y.

For ease of presentation, in the following we consider the homogeneous case:

– Psucc(a, K, y, (s, d)) = Psucc(a, K, y), in which the relay and sources have simi-
lar physical characteristic, e.g. transmission range, mobility patterns, energy
capacities, and

– The reward mechanism is fixed for all source-destination pairs, i.e., rs,d = r
for all (s, d).
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– The number of source-destination pairs in a local interaction is a random
variable follows a general (arbitrary) distribution with mean ns.

The expected reward becomes

R(a, K, y) = nsrPsucc(a, K, y)− ga

The expected payoff of a relay playing strategy a when the state of the population
is y, is given by

Uav(a, y) = ∑
k≥0

P(K = k)R(a, K, y),

Hence the average payoff of a population in state y is given by

F(y, y) =
I

∑
i=1

yjUav(j, y).

• The game is played many times; we call each round of the game a local interaction
and there are many local interactions at the same time;

Remark 4.3.2. We observe that in our system, relays do not need to be synchronized to the
source clock. In fact, it is sufficient that they decide their strategy at the time when they meet
the source. At that time, they can be made aware of the deadline τ using a time-to-live counter
that is decreased over time at the source node.
Remark 4.3.3. Our model may also cover the scenario in which a mobile node can be a source
and a relay at once. By assuming that the arrival of messages at a mobile node follows a Poisson
process with rate µ and the mobile does not generate new message as long as a previous mes-
sage is not yet transmitted, the distribution of the number of source-destination pairs in a local
interaction with K relays can be computed a follows:

P(Ns = ns) = CK
ns
(qa)

ns(1− qa)
K−ns

where qa is the probability that a source generates a new message during a slot. In sight of the
Poisson arrival assumption, we have qa = 1− e−µτ. Hence, the expected reward becomes

R(a, K, y) =
K

∑
ns=1

P(Ns = ns) rPsucc(a, K, y)− ga

= KqarPsucc(a, K, y)− ga

4.3.4 Evolutionary Stable Strategy

The evolutionarily stable strategy (ESS), first defined in [106], is characterized by ro-
bustness against invaders (mutations). This notion is stronger than Nash equilibrium
in which it is only requested that a single user would not benefit by a change (mutation)
of its behavior. Although ESS has been defined in the context of biological systems, it is
highly relevant to engineering as well [37, 116]. There are two advantages in doing so
within the framework of evolutionary games:
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• it provides the stronger concept of equilibria, the ESS, which allows us to identify
robustness against deviations of more than one mobile, and

• it allows us to apply the generic convergence theory of replicator dynamics, and
stability results that we introduce in future sections.

Now, we detail the ESS concept for our network game. Suppose that, initially, the
population profile of relays is (y, 1− y). Now suppose that a small group of mutants
relays enters the population playing according to a different profile (mut, 1− mut). If
we call ǫ ∈ (0, 1) the size of the subpopulation of mutants relays after normalization,
then the population profile after mutation will be ǫ · mut + (1− ǫ)y. After mutation,
the average payoff of non-mutants will be given by

F(y, ǫ ·mut + (1− ǫ)y).

Note that Uav need not to be linear in the second variable. Analogously, the average
payoff of a mutant is

F(mut, ǫ ·mut + (1− ǫ)x).

Notice that the second argument of the average payoff is expressing the “average” in-
terferer profile that is faced by a relay picked at random.
Definition 4.3.4.1. A strategy y∗ ∈ M is an ESS if for any mut 6= y∗, there exists some
ǫmut ∈ (0, 1), which may depend on mut, such that for all ǫ ∈ (0, ǫmut) one has

F(y∗, ǫ mut + (1− ǫ)y∗) > F(mut, ǫ ·mut + (1− ǫ)y∗)

which can be rewritten as

N

∑
j=1

(y∗j −mutj)Uav(j, ǫ ·mut + (1− ǫ)y∗) > 0.

That is, y∗ is an ESS if, after mutation, non-mutants are more successful than mutants. Bor-
rowing the expression from population dynamics [102], under an ESS profile, mutants cannot
invade the population and will eventually get extinct.

When the ESS is such that the whole population plays a certain pure strategy, we
say that the ESS is in pure strategy. If not, we say the ESS is in mixed strategies. We
now state the assumption required for the function Psucc(τ, k, s)
Assumption A
The function Ps

succ(τ, k, Y) is decreasing in y, i.e., number of active relays.
The above assumption reflects that the bigger the number of relays participating to
the message delivery with full activation, the higher the delivery probability for the
message, but indeed the less the chance for the tagged relay to receive a reward from
the system. The global activation target settles the number of opponents of a randomly
tagged relay, i.e., the active fraction of the population.

97



Chapter 4. Evolutionary forwarding games in Delay Tolerant Networks: equilibria,
mechanism design and stochastic approximation

4.3.5 Existence and uniqueness of ESS

In the rest of the chapter, we will employ an auxiliary function H̃ defined as

H : y ∈ (0, 1) → Uav(τ, y)−Uav(τ
′, y)

=
∞

∑
N=1

P(K = N)
(

Psucc(τ, K, y)− Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
(4.1)

In this section, we characterize the existence and uniqueness of the ESS. A very
compact result exists that ties together the main parameters of the system:
Theorem 4.3.5.1. The ESS exists and it is unique, furthermore

(1) The strategy τ dominates the strategy τ′ if and only if

∞

∑
N=1

P(K = N)
(

Psucc(τ, K, 1)− Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
≥ 0.

so that y = 1 is the ESS in pure strategy

(2) The strategy τ′ dominates the strategy τ if and only if

∞

∑
N=1

P(K = N)
(

Psucc(τ, K, 0)− Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
≤ 0

so that y = 0 the ESS in pure strategy

(3) If
∞

∑
N=1

P(K = N)
(

Psucc(τ, K, 0) − Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
> 0 and

∞

∑
N=1

P(K =

N)
(

Psucc(τ, K, y)− Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
< 0, then there exists an unique ESS y∗

which is given by

y∗ = H−1
(

0
)

Proof. (1) The strategy τ dominates the strategy τ′ if and only if Uav(τ, y) ≥ Uav(τ
′, y)

for all y ∈ [0, 1]. Since H is a decreasing function and H(1) =
∞

∑
N=1

P(K =

N)
(

Psucc(τ, K, 1)− Psucc(τ
′, K)

)
− g(τ − τ′)

nsr
≥ 0, thus H(y) = Uav(τ, y)−Uav(τ

′, y) >

0 for all y ∈ [0, 1]. This completes the proof for (1)

(2) The strategy τ′ dominates the strategy τ if and only if Uav(τ, y) ≤ Uav(τ
′, y) for

all y ∈ [0, 1]. Since the function H is a decreasing function and H(0) =
∞

∑
N=1

P(K =

N)
(

Psucc(τ, K, 0)− Psuccτ′, K)
)
− g(τ − τ′)

nsr
≤ 0, thus H(y) = Uav(τ, y)−Uav(τ

′, y) ≤
0 for all β ∈ [0, (1−Qτ)]. This completes the proof for (2).

98



4.4. Reward mechanism : First place winner

(3) A strictly mixed equilibrium y∗ is characterized Uav(τ, y∗) = Uav(τ
′, y∗) i.e H(y∗) =

0. The function H is continuous and strictly decreasing monotone on (0, 1) with
H(0) > 0 and H(1) < 0. Then the equation H(y∗) = 0 has a unique solution in
the interval (0, 1). This completes the proof.

4.4 Reward mechanism : First place winner

In this section, we consider the following mechanisms used by the system for receiving
a reward by relays. In particular, for each message generated by a source, a mobile may
receive a unit of reward if it is the first to deliver a copy of the packet to the destination.
A utility function is introduced as the difference between the expected reward and the
energy cost, i.e., the cost spent by the relay to sustain forwarding operations. Hence,
during a certain local interaction, the probability for a tagged mobile to relay the copy
of the packet to the destination within live time τ is then given by 1− Qτ where Qτ is
given by

Qτ = (1 + λτ)e−λτ

and the probability that it relays the copy of the message if it chooses live time τ′ is
given by 1−Qτ′ where Qτ′ = (1+λτ′)e−λτ′ . Hence the probability that a relay receives
a reward from a source when its action is τ′, becomes

Psucc(τ
′, N) = (1−Qτ′)

N−1

∑
k=1

CN−1
k−1

(1−Qτ′)
k−1(1− (1−Qτ′))

N−k

k
=

1−QN
τ′

N
(4.2)

The utility for a mobile using live time τ′ is

Uav(τ
′, y) =

∞

∑
N=1

P(K = N)
r · ns(1−QN

τ′)

N
− gτ′

where g is energy cost spent for being active during a unit of time. The linear energy
expenditure, in particular, may express the cost of activating the RF interface and the
cost of periodic beaconing. Now the probability that a mobile receives the unit award,
if it chooses live time τ, is given by

Psucc(τ, N, y) = Psucc(τ
′, N, y) + (Qτ′)

N β
N−1

∑
k=1

CN−1
k−1

βk−1yk−1(1− yβ)N−k

k

= Psucc(τ
′, N) + (Qτ′)

N 1− (1− βy)N

Ny
(4.3)

where β = 1− Qτ

Qτ′
= 1− 1 + λτ

1 + λτ′
e−λ(τ−τ′).

From theorem 4.3.5.1, we have directly the following results :
Corollary 4.4.1. The ESS exists and it is unique, furthermore
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(1) The strategy τ dominates the strategy τ′ if and only if

∞

∑
N=1

P(K = N)
QN

τ′(1− (1− β)N)

N
≥ g(τ − τ′)

r · ns
.

so that y = 1 is the ESS in pure strategy

(2) The strategy τ′ dominates the strategy τ if and only if

∞

∑
N=1

P(K = N)QN
τ′β− g(τ − τ′) ≤ g(τ − τ′)

r · ns

so that y = 0 the ESS in pure strategy

(3) If
∞

∑
N=1

P(K = N)QN
τ′β >

g(τ − τ′)
r · ns

and
∞

∑
N=1

P(K = N)
QN

τ′(1− (1− β)N)

N
<

g(τ − τ′)
r · ns

,

then there exists an unique ESS y∗ which is given by

y∗ = H−1
(

0
)

The above result states that we should always expect a unique ESS; also we should
either expect a ESS in pure strategy, namely in cases (1) and (2), or a unique ESS in
mixed strategies, namely in case (3). In the following we consider specific examples for
the above result in the case when the statistics of the number of nodes K meeting in
local interactions is known.

4.4.2 Poisson distribution

Let nodes be distributed over a plane following a Poisson distribution with density γ.
The probability that there exist N nodes during a local interaction is given by the fol-

lowing distribution: P(K = k) =
γk−1

(k− 1)!
e−γ, k ≥ 1. The expression in Thm. 4.3.5.1(3)

can be derived in closed form, since the unique ESS y∗ is the unique solution of the fol-

lowing equation:
e−γ(1−Qτ′ )(1− e−Qτ′ βy∗γ)

γy∗
=

g(τ − τ′)
r · ns

. Thus, the equilibrium is given

by

y∗ =
1

γQτ′β

(
LambertW(−Ze−Z) + Z

)

with Z =
r · ns Qτ′βe−γ(1−Qτ′ )

g(τ − τ′)
and LambertW is the inverse function of f (u) = ueu.

4.4.3 Dirac distribution

This is the case when there exists a fixed number of nodes in a local interaction. We
suppose that the population of nodes is composed by many local interactions between
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N nodes where N > 2. The unique ESS y∗ of this game is the unique solution of the
following equation:

(Qτ′)
N − (Qτ′ −Qτy)N = y

g(τ − τ′)
r · ns

Since this polynomial has degree N, we can have an explicit expression only for
N ≤ 5. We find here the closed form expression of the ESS for some values of N. For
example:

N = 2 =⇒ y(2Qτ′Qτ −Q2
τy− g(τ − τ′)

r · ns
) = 0

which gives, y∗ = 0 or y∗ =
1

Q2
τ

(2QτQτ′ −
g(τ − τ′)

r · ns
). We also observe that y∗ >

0 ⇐⇒ 2QτQτ′ >
g(τ − τ′)

r · ns
.

For N = 3, y∗ is the solution of the equation

yQτ(y
2 + 3QτQτ′y− 3Q2

τ′ +
g(τ − τ′)
r · ns Qτ

) = 0

The feasible solutions are 0, and the pair (
3Qτ′ +

√
k

2Qτ
,

3Qτ′ −
√

k

2Qτ
), given that

g(τ − τ′)
r · ns

>
3
4

Q2
τ′Qτ for the positivity of the discriminant.

4.5 Mechanism design

It sight of the characterization of the ESS for the system described before, we are in-
terested in controlling the system in order to optimize for energy consumption and
delivery probability. Let us assume that the system controls the forwarding of mes-
sage copies: during a local interaction a copy of the message is relayed with probability
u = u(t) upon meeting a node without a message copy, i.e., using a static or dynamic
forwarding policy [36]. In our analysis, the main quantity of interest is denoted Ps and
it is the success probability of a message at a local interaction; under the same assump-
tions of linearity in [36], the average energy expenditure in a local interaction is E = εΨ,
where ε > 0 is the source energy expenditure per relayed message copy and Ψ is the
corresponding expected number of copies released at that local interaction.

4.5.1 Static forwarding policy

Let us consider first the static forwarding control, i.e., u is a constant. We assume that
the sources wish to control the system in order to optimize for the energy consumption,
i.e., the number of message copies, and the delivery probability by static forwarding
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policies. In this case, a tagged mobile relay playing τ, (resp. τ′) may deliver a copy of
the message to the destination within time τ (resp. τ′) with probability 1− Qu

τ (resp.

1− Qu
τ′) where Qu

τ is given by Qu
τ =

e−λuτ − ue−λτ

1− u
and Qu

τ′ =
e−λuτ′ − ue−λτ′

1− u
so that

the success probability in a local interaction with N mobiles at the equilibrium is

Ps(u, N) = 1−
[(

Qu
τ′

)N(1−y(u))
·
(

Qu
τ

)Ny(u)]
(4.4)

⇒ Ps(u) = 1−
∞

∑
k=0

P(N = k)
[(

Qu
τ′

)k(1−y(u))
·
(

Qu
τ

)ky(u)]

where y(u) is the fraction of mobiles playing action τ when k nodes are present in
the local interaction. We can determine the the above the expressions of Qu

τ and Qu
τ′

by letting A, B two random variables determining the time spent by a given relay to
respectively, receive a copy of the message from the source and deliver the message to
the destination once it was received at the source node.

Qu
τ′ = 1− P(A + B ≤ τ′) = 1−

∫ τ′

0
P(B ≤ τ′ − t | A = t) P(A = t)dt

= 1−
∫ τ′

0
(1− e−λ(τ′−t)) λue−λtdt

= 1− (−e−λuτ′ + 1) + u
∫ τ′

0
(λe−λ(τ′−t+ut)) dt

= e−λuτ′ +
u

1− u
(e−λτ′ + e−λτ′u)

=
e−λuτ′ − ue−λτ′

1− u
.

We replace τ′ by τ to find the expression of Qu
τ . It is then possible to define all relevant

quantities as a function of u, i.e., Uu(τ, y), Uu(τ′, y) and also Hu(·, k). Recall that the
system wants to maximize the delivery probability of the message to the destination
and meet a given constraint on the energy expenditure, i.e., message copies. The ex-
pected number of copies generated by a sources given k nodes in a local interaction is
given by the expected number relays the source meets in [0, τ′], namely k · (1− e−λuτ′),
plus the expected number of relays under full activation which the source meets in
[τ′, τ], namely k · y(u) · (e−λuτ′ − e−λuτ). Since there is (in average) ns source-destination
pairs, the constraints can be expressed as

ns

(
E{N}(1− e−λuτ′) + E{Ny(u)}(e−λuτ′ − e−λuτ)

)
= Ψ (4.5)

Using the previous relation, it is possible to design an optimal control mechanism
at each source in the system.
Proposition 4.5.2. Let us assume 0 < τ′ ≤ τ, then the following holds:
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1. Let u∗ = min

{− ln(1− Ψ
ns·E{N} ))

λτ
, 1

}
: if

∞

∑
N=1

P(K = N)(Qτ′)
N β ≤ g(τ − τ′)

r · ns
, then

u∗ is the optimal control. If not go to step 2.

2. Let u∗ = min

{− ln(1− Ψ
ns·E{N} ))

λτ′
, 1

}
: if

∞

∑
N=1

P(K = N)
QN

τ′(1− (1− β)N)

N
≥

g(τ − τ′)
r · ns

, then u∗ is the optimal control. If not go to step 3.

3. Let u∗ solve for
Ψ
ns
− E{N}(1− e−λuτ′)

e−λuτ′ − e−λuτ
= E

{
NH−1

u (0, N))
}

, then u∗ is the optimal

control.

Notice that in this case an optimal static forwarding policy always exists: this is a
consequence of the fact that all relays are active. The proof of proposition 4.5.2 derives
directly from relation (eq:constraints). Also, should we consider the case 0 = τ′ ≤ τ,
then the following result on the monotonicity of the ESS holds.
Corollary 4.5.3. If we consider the case of activation control (i.e τ′ = 0), then the ESS y∗(u)
is an increasing function of the source control u.

Proof. The idea of the proof is to use in a first place the fact that the fitness function
H, which depends on the utility attained for being active or not, is decreasing with the
population profile y. Then we show that the function H is increasing in u to conclude
eventually that the ESS y∗ is also an increasing function of the source control u. Recall
that y∗ = H−1(0), where y∗ is projected onto interval [0, 1].

(1) Let’s show that H is a decreasing function of y. We borrow the expression of
H(y, u) from the live time control:

H(y, u) = r · ns

∞

∑
N=1

P(K = N)(Qu
τ′)

N 1− (1− βy)N

Ny
− g(τ − τ′)

Let f (y) =
1− (1− ρuy)N

Ny
. It is easy to check If f is decreasing with y then H is

also decreasing with y. We have

d f (y)

dy
=

Nρu (1− ρuy)N−1 Ny− N
(

1− (1− ρuy)N
)

(Ny)2

=
Nρuy (1− ρuy)N−1 − 1 + (1− ρuy)N

Ny2

=
(1− ρuy)N−1 (Nρuy + 1− ρuy)− 1

Ny2

=
(1− ρuy)N−1 ((N − 1) ρuy + 1)− 1

Ny2
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Let’s show that (1− ρuy)N−1 ((N − 1) ρuy + 1)− 1 is negative. In fact we have

(1− ρuy)N−1 ((N − 1) ρuy + 1)− 1 ≤ 0⇔ (N − 1) ρuy + 1 ≤ 1

(1− ρuy)N−1

which is true since
d((N − 1) ρuy + 1)

dy
|(y=0)=

d
(

1
(1−ρuy)N−1

)

dy
|(y=0)= ρu(N − 1)

and
d2
(

1
(1−ρuy)N−1

)

d2y
=

(ρu)2 (N − 1) (N + 1)

(1− ρuy)N+2 > 0 . Thus H is a non-increasing

function of y.

(2) Now we show that H is increasing with u. As done for the previous point, we use
the function f . For fixed y, we have,

d f (y, u)

du
=

dρu

du
(1− ρuy)N−1

Since ρu is increasing then
d f (y, u)

du
> 0. It follows that H is increasing with u.

From (2) we know that H is increasing with u for any given y. This implies that
i f ∃ u s.t H(u) = 0 for a given y then, u is unique in [0, 1].
From (1) we have, ∀(y1, y2) s.t. y1 ≤ y2, ⇒ H(y1, u) ≥ H(y2, u). It follows that i f ∃ u1, u2 s.t. H(y1, u1) =
H(y2, u2) = 0 then u1 ≤ u2 and y∗(u) is an increasing function of u as stated in the
corollary and this completes the proof.

4.5.4 Dynamic forwarding policy

We now consider the case of dynamic forwarding policies, i.e., when control u = u(t) ∈
[umin, 1]. Again, aim is to optimize for the energy consumption by trading off the num-
ber of message copies for the delivery probability.

In [35] authors show that optimal forwarding control at the source node has thresh-
old form: the source should forward the message with probability umax up to a certain
time tth from the message generation time, and with probability umin after time tth. Thus
the control has form:

u(t) =

{
umax if t ≤ tth

umin if t > tth

Without loss of generality we assume that umax = 1. Taking into account the thresh-
old policy, the expression for Qτ and Qτ′ are slightly modified: in particular, a tagged
mobile relay playing τ′ (resp. τ) may deliver a copy of the message to the destination
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within time τ′ (resp. τ) with probability 1− Qτ′(tth) (resp. 1− Qτ(tth)) where expres-
sion for Qτ′(tth) (resp. Qτ(tth)) is given by

Qτ′(tth) =





e−λtth(1 + λtthe−λ(τ′−tth))− umine−λumintth

1− umin
(1− e−λ(τ′−tth)) if tth ≤ τ′,

(1 + λτ′)e−λτ′ if tth > τ′.
(4.6)

and

Qτ(tth) = e−λtth(1 + λtthe−λ(τ−tth))− umine−λumintth

1− umin
(1− e−λ(τ−tth)) (4.7)

so that the success probability in a local interaction with k mobiles at the equilibrium is

Ps(tth, k) = 1−
[(

Qτ′(tth)
)k(1−y(tth)) ·

(
Qτ(tth)

)ky(tth)]
(4.8)

⇒ Ps(tth) = 1−
∞

∑
k=0

P(N = k)
[(

Qτ′(tth)
)k(1−y(tth)) ·

(
Qτ(tth)

)ky(tth)]

where y(tth) is the fraction of mobiles playing τ when k nodes are present in the local
interaction. As done before for the static control, we can define all relevant quantities
as a function of tth, i.e., Utth(τ, y), Utth(τ′, y) and also Htth(·, k). Considering a Poisson
distribution of nodes, the ESS y∗ is the unique solution of the following equation:

e−γ(1−Qτ′ (tth))(1− e−Qτ′ (tth)β(tth)y
∗γ)

γy∗
=

g(τ − τ′)
nsr

Hence, at the equilibrium we have:

y∗(tth) =
1

γQτ′(tth)β(tth)

(
LambertW(−Z(tth)e

−Z(tth)) + Z(tth)
)

with Z(tth) =
nsrQτ′(tth)β(tth)e

−γ(1−Qτ′ (tth))

g(τ − τ′)
and β(tth) = 1− Qτ(tth)

Qτ′(tth)
.

The probability of success is:

Ps(tth) = 1− e−γ
[
eγ(Qτ′ (tth))

(1−y(tth))·(Qτ(tth))
y(tth) − 1

]
.

In the following section we will present a learning algorithm to find the threshold tth as
a function of the source control. Here we provide the derivation that leads to (4.6) and
(4.7). Again, let A, B two random variables determining the time spent by a given relay
to respectively, receive a copy of the message from the source and deliver the message
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to the destination once it was received by the source node. If tth ≥ τ′ then u = 1,

Qτ′(tth) = 1− P(A + B ≤ τ′)

= 1−
∫ τ′

0
(P(B ≤ τ′ − t|A = t) · P(A = t))dt

= 1−
∫ τ′

0
(1− e−λ(τ′−t)) · λe−λtdt

= 1 + τ′λe−λτ′ + e−λτ′ − 1

= (1 + τ′λ)e−λτ′ .

Similarly, if tth ≤ τ′, then

Qτ′(tth) = 1−
∫ tth

0
(1− e−λ(τ′−t)) · λe−λtdt−

∫ τ′

tth

(P(B ≤ τ′ − t|A = t) · P(A = t))dt

= (1 + (τ′ − tth)λe−λ(τ′−tth))e−λtth −
∫ τ′

tth

(P(B ≤ τ′ − t/A = t) · P(A = t))dt

= (1 + (τ′ − tth)λe−λ(τ′−tth))e−λtth −
∫ τ′

tth

(1− e−λ(τ′−t)) · uminλe−uminλtdt

= e−λtth + λtthe−λτ′ −
( −e−λτ′

1− umin
+ e−uminλtth +

umin

1− umin
e−λ(τ′−tth+umintth)

)

= e−λtth + λtthe−λτ′ +
umin

1− umin

(
e−λtthumin − e−λ(τ′−tth+umintth)

)

= e−λtth(1 + λtthe−λ(τ′−tth))− umine−λumintth

1− umin
(1− e−λ(τ′−tth)).

The expression for Qτ(tth) can be derived using exactly the same reasoning and it is
omitted for the sake of space.

Recall that the source wants to maximize the delivery probability of the message to
the destination and meet a given constraint on the energy expenditure, i.e., number of
message copies released. In this case, the number of copies generated given k nodes

in local interaction is k ns

(
y(tth) (e

−λ(τ′−tth)umin − e−λ(τ−tth)umin) + (1− e−λ(τ′−tth)umin) +

(1− e−λtth)
)

if tth ≤ τ′ and

k ns

(
y(tth) (e

−λτ′ − e−λtth + (1− e−λ(τ−tth)umin)) + (1− e−λτ′)
)

if tth > τ′. From those

expressions, the constraint writes

Ψ = X(tth)

where X(tth) is the number of copies generated by ns sources in a local interaction
which is given by

X(tth) =



nsE{Ny(tth)}
(

e−λ(τ′−tth)umin − e−λ(τ−tth)umin

)
+ nsE{N}

(
1− e−λ(τ′−tth)umin

)

+nsE{N}
(

1− e−λtth

)
if tth ≤ τ′,

ns E{Ny(tth)}
[
e−λτ′ − e−λtth + (1− e−λ(τ−tth)umin)

]
+ ns E{N}

(
1− e−λτ′

)
if tth > τ′.

(4.9)
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Using the previous relation, it is possible to design an optimal threshold mechanism at
the source node to find the switching time tth.
Proposition 4.5.5. Assume 0 < τ′ ≤ τ and let 0 ≤ tth ≤ τ.

If umin ≥
ln(1−Ψ/(ns, E{N}))

λτ′
then there is no possible threshold policy. Otherwise there

exist an optimal threshold policy as given in the following.

1. Let t̃th solve for e−λ(τ′−tth)umin + e−λtth = 2− Ψ/(ns E{N}). Let t∗th = min {t̃th, τ}:
given that tth ≤ τ′ and

∞

∑
N=1

P(K = N)(Qτ′)
N β ≤ g(τ − τ′)

nsr
, then t∗th is the optimal

threshold. If not go to step 2.

2. Let t̃th solve for e−λ(τ−tth)umin + e−λtth = 2− Ψ/ns · E{N}. Let t∗th = min {t̃th, τ}: if
∞

∑
N=1

P(K = N)
QN

τ′(1− (1− β)N)

N
≥ g(τ − τ′)

nsr
, then t∗th is the optimal control. If not

go to step 3.

3. Let t∗th solve for Ψ− X(tth) = 0, if exists, then t∗th is the optimal threshold. Otherwise
use tth = τ.

Notice that in case 1., if tth > τ′ then u is constant and u = 1 until time τ′. Since action τ′

dominates action τ, no user will use action τ thus, the game ends at τ′ and there will be no
switching.

Proof. A threshold policy that respects the constraint is such that the number of copies
generated by ns sources during the interval [0, τ], is not larger than Ψ. We hence deter-
mine the conditions such that, X(tth) ≥ Ψ ∀tth ⇒ min

tth

(X(tth)) ≥ Ψ.

We have, min
tth

(X(tth)) = min
tth

(ns E{N}(1− e−λ(τ′−tth)umin) + ns E{N}(1− e−λtth)). Let

f (tth) = ns E{N}(1− e−λ(τ′−tth)umin) + nsr E{N}(1− e−λtth)

f ′(tth) = λns E{N}(1− umine−λτ′eλtth(1+umin))

f ′(tth) ≤ 0⇒ 1− umine−λτ′eλtth(1+umin) ≤ 0

It gives that,

tth ≥
−1

λ(1 + umin)
(ln(umin)− λτ′umin) (4.10)

From (4.10) we first deduce that X has at most one absolute maximum. Secondly,
for tth ≪ 1, (4.10) is not verified and X is increasing. Otherwise X is decreasing and as

a consequence has only one maximum at tth =
−1

λ(1 + umin)
(ln(umin)− λτ′umin). It fol-

lows that min
tth

(X) = min{X(0) , X(τ′)} = min{ns E{N}(1− e−λτ′umin) , ns E{N}(1−
e−λτ′)} = nsr E{N}(1− e−λτ′umin). Therefore,

min
tth

(X(tth)) ≥ Ψ⇒ ns E{N}(1− e−λτ′umin) ≥ Ψ⇒ umin ≥
ln(1−Ψ/(ns E{N}))

λτ′
.
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1. and 2. follow respectively when the constraint Ψ is saturated in case that the strategy
of choosing life-time τ′ dominates the strategy of choosing τ and vice-versa. 3. follows
when there exists an ESS in the interval (0, 1) : See Theorem 4.3.5.1 for the conditions
of existence of the ESS. In the case the constraint is not saturated, it means that number
of copies generated by ns sources during the interval [0, τ] is always less than Ψ. Thus
the source will rather use u = 1 all the time and then switch with policy tth = τ. This
completes the proof.

As obtained in the static policy case, if we consider the case of activation control
with 0 = τ′ ≤ τ, the same result on the monotonicity of the ESS holds.
Corollary 4.5.6. If we consider the case of activation control (i.e τ′ = 0), then the ESS y∗ is an
increasing function of the threshold policy tth.

The proof of this corollary comes from the fact that Qτ(tth) is decreasing in tth and
we can use the same reasoning as for corollary 4.5.3.

4.6 Learning of Optimal threshold strategy

One issue that makes the control of DTNs an interesting technical challenge is that
collecting network parameters, e.g.„ number of nodes and intermeeting intensities, is
per se a difficult task due to lack of persistent connectivity. We prove in the next Section
that it is possible to design distributed online protocols that attain the optimal control
described in Proposition 4.5.2 and in Proposition 4.5.5 at the source node in a blind
fashion. In practice this means that the source node can perform the optimal control of
forwarding – as devised before through mechanism design – by tracking the number
of infected relays only. Observe that for the two hop routing this is indeed a quantity
available at the source node. For the sake of clearness, we restrict our analysis to the
case of τ′ = 0.

4.6.1 Evolutionary Game Dynamics

In order to study the behavior of a population of relays, it is convenient to represent
this game as a dynamical system. The evolutionary system is described by differential
equations that govern the rate of change of subpopulations playing a particular strat-
egy. As mentioned above, it is assumed here that individuals play only pure strategies,
mixed strategies result when fractions of the population play different pure strategies.
Evolutionary game dynamics give a tool for observing the evolution of strategies in the
population in time. The most famous one is the replicator dynamics, based on replica-
tion by imitation, which we consider in this subsection for observing the evolution of
the activation rate of the population of relays.
Theorem 4.6.1.1. The ESS given in Thm. 4.3.5.1 is an asymptotically stable equilibrium of the
replicator dynamics for every non trivial state y0
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Proof. The replicator dynamic when the source uses policy u, is given by

dy(t, u)

dt
= y(t, u)(Uu

av(τ, y, u)− Fu(y, y, u)) (4.11)

= y(t, u)(Uu
av(τ, y(t))− y(t)Uu

av(τ, y(t, u))) (4.12)

= y(t, u)(1− y(t, u))Hu(y(t, u)) (4.13)

We can consider the Lyapunov function V(y) = (y− y0)
2, and non trivial ESS 0 <

y0 < 1, then

V̇(y) =
d

dy
V(y) ẏ = 2(y− y0)

(
y(1− y)Hu(y)

)
(4.14)

By definition, y0 = H−1(0), so that H(y0) = 0. Also, recall that function Hu(y) is
decreasing on (0, 1) (see Corollary 4.5.3). For y < y0, Hu(y) > 0 so that V̇(y) < 0, and
for y > y0, Hu(y) < 0 so that V̇(y) < 0. Indeed, V̇ ≤ 0 and V̇(y) = 0 iff y = y0, so that
the ESS is asymptotically stable according to the Lyapunov stability method.

This result makes it possible to formulate some qualitative statements about the ESS
by analyzing the corresponding replicator dynamics. Hence the replicator dynamic can
be used by sources in order to observe the evolution of strategies in the population.
In the next subsection, we propose a new online algorithm that allows the sources to
converge to the optimal solution.

4.6.2 Stochastic algorithm for adaptive optimization

In this subsection we propose an on-line algorithm to attain optimal control of for-
warding for both the static case and the dynamic case. It is designed based on stochas-
tic approximation theory. This algorithm is blind: it does not require a priori knowl-
edge of network parameters (inter-meeting intensities, density of relays). Let us denote

α =
∫ τ

0
u(t) dt determined from policy u. For the static policy, u(t) = u = α/τ, while

for the threshold policy it holds tth = α. The algorithm works in rounds and each round
of the algorithm corresponds to the delivery of a set of messages. During a round, the
source adopts a certain control policy.

Let Ψ/ns be the maximum number of relay mobiles that the source can infect in a
local interaction. For the sake of notation, we let X̂s(α(n), y(n)) the number of copies
that are potentially delivered by the source s using policy αs(n) and the profile of relay
population is y(n) (the fraction of relay mobiles using full activation action τ) in the
current round. This quantity can be estimated by averaging over several consecutive
slots (a slot corresponds to the delivery of a message to destination). Although it is ob-
vious that the source node knows the exact number of relay nodes met at every round,
by simply keeping track of the successive contacts, in our simulation it is necessary to
approximate the randomness of the contact and infection events. We maintain at each
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round the vector X̃n that records the average number of nodes that are potentially in-
fected at any time instant up to time τ. Using interpolation, the source node is able to
obtain an estimate the average number of copies X̂(α(n), y(n)) that could potentially
be infected by the source using policy αs(n).

Using X̄s
n = X̂s(αs(n), y(n)), we update αs(n) according to the following relation:

αs(n + 1) = Π[0,τ]

(
αs(n) + an(

Ψ

ns
− X̄s

n)
)

.

where Π[0,τ] is the projection of the values of α(n) over the set [0, τ] at each iteration.
The algorithm is described in Algorithm 4.6.2.

In the following theorem we resume the convergence properties of our algorithm.

Theorem 4.6.2.1. If the sequence {an} is chosen such that (an) verifies: an > 0, ∀n
+∞

∑
n=0

an =

+∞ and
+∞

∑
n=0

a2
n < +∞, then the sequence (α(n)) converges to the optimal threshold t∗s (y

∗)

where y∗ is the ESS.

Proof. First we show that the sequence α(n) converges to some limit set of the following
Ordinary Differential Equation (ODE)

α̇s(t) = G(αs(t)) + z(t) = Ψ− E[Xs| αs(t), y∗(αs(t))] + z(t), z ∈ −C(αs) (4.15)

where y∗(α) is the solution of the replicator dynamic when the source uses policy α, i.e.,

ẏ(t, αs) = y(t)(1− y(t))H̃α(y(t, αs)) (4.16)

and z is the minimum force needed to keep the solution αs in I = [0, τ]. If αs is in I
on some time interval, then z(.) is zero on that interval (C(αs) contains only the zero
element). If αs is on the interior of a boundary of I (i.e., αs equals either 0 or τ ) and
G(αs) points out of I, then z(.) points backward inside I, i.e. C(α) is the infinite convex
cone generated by the outer normals at αs of the faces on which αs lies. For example,
let αs = τ, with G(αs) > 0, then, z(t) = −G(αs). Note that the solution y∗(αs) is
global asymptotically stable equilibrium of the ODE (4.16). As discussed in [66], the
convergence of such stochastic algorithm is guaranteed when the sequence (an) verify,

an > 0, ∀n,
+∞

∑
n=0

an = +∞ and
+∞

∑
n=0

a2
n < +∞.

We now need to show that (α∗, y∗(α∗)) is globally asymptotically stable solution of
the system (4.15)-(4.16). From theorem 4.6.1.1, proposition 4.5.2 for the static policy and
proposition 4.5.5 for dynamic policy, it is easy to see that (α∗, y∗(α∗)) solves (4.15)-(4.16).
In order to show the stability of the ODE (4.15), we need to show that the function
E[Xs| αs, y∗(αs)] is increasing function in α on [0, τ]. From equations (4.9) and (4.5), we
have
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E[Xs| αs, y∗(αs)] =

{
E{Ny(αs)}(1− e−λαs

) for the static policy

E{Ny(αs)}
[
2− (e−λαs

+ e−λ(τ−αs)umin)
]

for the dynamic policy

(4.17)
From Corollary 4.5.3 and Corollary 4.5.6, for either static or dynamic case, the function
y(αs) is increasing function. It follows from (4.17), that E[Xs| αs, y∗(αs)] is increasing

function. Then the derivative of the function
Ψ

ns
− E[X| αs, y∗(αs)] at the optimal solu-

tion α∗ is negative. Hence the optimal solution is asymptotically stable.

Algorithm: ADAPTIVE OPTIMIZATION

Initialize the values of tth(0) and X0.
At each round n

1. Update tth with tth(n + 1) = Π[0,τ]

(
tth(n) + an(Ψ− X̂(tth(n)))

)

2. Find the corresponding value of X̂(tth(n + 1)):
• Generate randomly the number k of users in a local interaction
• Use the replicator dynamica to find the profile y(tth(n+ 1)) of the population.

• Estimate Xn+1 and maintain X̃n+1 =
n · X̃n + Xn+1

n + 1
3. Estimate X̂(tth(n + 1)) = interp(X̃n, tth(n))
4. If |tth(n + 1)− tth(n)| < ǫ stop, else go to 1.

End Algorithm

asource nodes in local interactions uses the replicator dynamic to determine the population profile.
Note that the replicator dynamic converges exponentially, so that the discovery of the population profile
can be achieved over a limited number of slots.

4.7 Numerical analysis

We extend our analysis with numerical experiments. In particular, the population of
competing nodes is assumed to be Poisson distributed, with mean γ. This means that
the number of mobiles interfering in each local interaction is a Poisson random variable,
as discussed in previous sections. The inter-meeting rate λ between a pair of relay
nodes follows a Random Way-point mobility process. In lemma 4. of [96] authors
derived the following estimation of the pair-wise meeting rate :

λ =
2ωrE{V∗}

L2

where, ω = 1.3683 is a constant specific to the mobility model, here the random way
point mobility, r is the communication range radii and L is the playground size. In
our simulations, we have considered a playground of size, L = 1000m, r = 50m
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and E{V∗} = 2.5m/s when, [vmin , vmax] = [4, 10]Km/h. Other parameters are set in
Tab. 4.1.

- λ τ τ′ umin γ

Settings (g = 0.000015) 0.0004 1000 0 0.01 100

Table 4.1: Parameters values

We depict in Fig. 5.3 the different values of the number of nodes that would be in-
fected depending on the threshold policy tth. We simulate the forwarding of message
copies and track the average number of them released within live-time τ, according
to expression (4.9). We observe that the set of parameters chosen for the numerical
experiments indeed allows for the existence of an optimal threshold policy within the
interval (0, τ), i.e., the forwarding control can saturate the energy constraint by infect-
ing the maximum allowed number of infected nodes Ψ (see Prop. 4.5.5). In the same
figure we can also observe the target optimal threshold policy, as computed using a
centralized approach, i.e., under the assumption that every parameter of the network
is known.
However, in the rest of our simulations we focus on the performance of our learning
algorithm, which is based on a decentralized approach.
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infected nodes in function of the threshold control
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Figure 4.3: Learning algorithm convergence to
the optimal threshold policy for several rounds

In Fig. 5.4, we plot the trajectory of sequence (tth(n)) and a confidence interval of
90% with 1000 runs each consisting of several rounds of our stochastic adaptive al-
gorithm, meant to measure convergence to the optimal threshold policy tth∗. Fig. 4.4
shows several runs of our learning algorithm for the sequence (tth(n)) without aver-
aging. In Fig. 4.5, we plot the evolution of the number of infected nodes for several
rounds of our learning algorithm. This can be seen for each run, as the cost spent dur-
ing learning, in terms of constrain overflow.

In the following, we evaluate the behavior of the learning algorithm once the learn-
ing process converged at the equilibrium (ESS). Our objective here is to observe the
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influence on the ESS and on the probability of success of parameters such as partial
live-time activation τ′ and infection constraint Ψ. In figure 4.6 we plot the ESS y∗ and
probability of success Ps as a function of τ′: by increasing τ′ the difference (τ − τ′)
decreases, untill it no longer satisfies existence condition of a threshold policy (see
Prop. 4.5.5). It can be noticed that the probability of success is maximized for a value of
τ′ that approaches τ but this value is just above the value of the probability of success
when τ′ is null: in that regime, a large proportion of the population is fully active. As τ′

approaches τ there are less and less relays nodes that select to be fully active, so that the
population profile of fully active nodes decrease with τ′. A joint analysis of both plots
from figure 4.6 shows that at the value of τ′ s.t. y∗(τ′) = 0, the plot of the probability
of success changes suddenly the sens of its monotonicity. This is due to the fact that the
probability of success decreases when y∗ decreases and increases in case y∗ is constant.
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Figure 4.4: Several runs (5) of the learning pro-
cess to find the optimal threshold
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Figure 4.5: Evolution of the number of infected
nodes during several (5) runs of the learning pro-
cess

Fig. 4.7 shows the behavior of the probability of success Ps and ESS y∗ depending
on Ψ. As expected, the less the system is constrained, i.e., the larger Ψ, the larger the
number of nodes that take part to live-time τ strategy to relay the message, and larger
the success probability. However, saturation appears in Ψ: this confirms the intuition
that the probability of success is not constantly increasing with the constrain Ψ, but
attains a maximum that depends on the set of physical parameters, such as τ, λ and γ.

For small values of Ψ, on the other hand, the condition of existence of a threshold
policy is not attained. In this case, the source not will either not transmit or will be
transmitting with probability umin all the time as the constraint is too tight and cannot
be fulfilled. Using the settings adopted before, this happens for Ψ < 1. Finally we
depict in figure 4.8 the evolution of the probability of success as a function of the inter-
meeting rate λ. We observe that as λ increases the probability of success approaches
unity. Indeed the higher the inter-meeting rate the larger the chance for a message
to reach its destination. The small variations observed around λ = 0.01 are due to
simulations artifact when λ takes too big values.
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Figure 4.6: Equilibrium analysis : Evolution of the ESS y∗ and the probability of success Ps with τ′
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Figure 4.7: Equilibrium analysis : Evolution of the ESS y∗ and the probability of success Ps with Ψ

4.8 Conclusions

This work introduces a novel general framework for competitive forwarding in DTNs
ruled by two hop routing. Within the context of routing games, part of the forwarding
control is demanded to relays. Relays, in fact, may accept to spend some energy to
participate to the forwarding process. However, since forwarding has some cost, relays
can trade energy expenditure for some reward upon delivery to the destination. This
type of incentive mechanism may prove crucial in order to incentive owners of mobiles
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Figure 4.8: Evolution of the probability of success in
function of λ

to sacrifice part of the battery charge of their devices in order to take part to the relay
process. Eventually, if several relays do compete for reward, the delivery probability is
increased. In turn, the challenging technical problem is how to design routing in this
context, i.e., exploit efficiently the incentive mechanism by means of the forwarding
control operated by the source. In this chapter, we have proposed a complete model
for such incentive mechanisms accounting for several aspects of DTN forwarding, in-
cluding energy expenditure at relays and number of released message copies. We have
been using competitive games: we assumed that the activation of a relay during a lo-
cal interaction depends solely on the expected reward in delivering with success the
message to the destination and on the energy expenditure to perform forwarding oper-
ations. Evolutionary game theory was employed to elaborate necessary and sufficient
conditions for the existence of evolutionary stable strategies, depending on energy and
delivery probability only. Compared to existing works in literature, this is a novel con-
text for routing control in DTNs because the forwarding control at the source depends
on the whole evolutionary dynamics and ultimately on the unique ESS that is reachable
given the forwarding control chosen at the source. This has been developed precisely
as a mechanism design problem, both in the case of optimal static control policies and
dynamic ones. Finally, we demonstrated that such a mechanism can be implemented
in a decentralized fashion, with no need to estimate system parameters at runtime, e.g.,
the number of nodes or inter-meeting intensity. In fact, a stochastic approximation algo-
rithm can attain the optimal forwarding policy. However, with respect to the last result,
we had to restrict to activation control case (τ′ = 0). With this choice, it was possible
to ensure the asymptotic stability of the equilibrium of our learning process. In future
work, however, we will investigate the general case of of live-time control (τ′ ≥ 0), and
the conditions for stability of the learning process.
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Chapter 5

Markov Decision Evolutionary
Game for Energy Management in
Delay Tolerant Networks

5.1 Introduction

Delay tolerant networks (DTNs) emerged recently as a novel communication paradigm.
Throughout this chapter, we focus on a specific class of DTNs where persistent connec-
tivity cannot be guaranteed due to limited coverage and high mobility [122]. For such
networks, forwarding strategies have been designed purposely to solve the problem
of intermittent connectivity: a message is delivered to the intended destination, lever-
aging the motion of a subset of nodes, i.e., relays, which carry copies of the message
stored in their local memory. This is the so called carry-store-and-forward routing. The
DTN paradigm has been validated by several experimental deployments [56, 31].

In order to reach the destination, a straightforward strategy is to disseminate multi-
ple copies of the message in the network. This approach is known as epidemic forward-
ing [120], in analogy to spread of infectious diseases. The aim in doing so is to let some
of such message copies reach the destination with high probability within some target
deadline [108, 36]. We confine our analysis to the two hop routing protocol. In fact, it
has two major advantages: first, compared to epidemic routing, it performs natively a
better trade-off between the number of released copies and the delivery probability [36].
Second, forwarding control can be implemented on board of the source node. Under
two hop routing, the source transmits a message copy to mobiles devices it encounters.
Relays, conversely, forward the message to the destination only.

In this context, the higher the number of relays joining the forwarding process, the
higher the success probability. However, battery lifetime of mobile devices may deplete
due to continuous beaconing operations [10], which may be a critical factor discourag-
ing the usage of mobile devices as relays for DTN-based applications. A solution is
to design reward-based forwarding mechanisms where the probability of forwarding

116



5.2. Basic notions on evolutionary games

becomes function of the competition within a population of mobiles: a relay receives a
unit of reward if it is the first to deliver the message to the destination. For each message
generated by the source, a relay may choose two different actions that affect message
relaying: full activation or partial activation, i.e., being active for a shorter time period
and then go back to low power mode, thus saving batteries.

5.1.1 Main contributions

In this chapter we extend a similar framework studied by El-Azouzi et al. [37]. The
novelty here is that the strategy of a mobile relay determines not only the immediate
reward but also the transition probability to its next battery energy state. The prob-
lem is formulated as a Markov Decision Evolutionary Game (MDEG), where each relay
wishes to maximize the expected utility. We characterize the Evolutionary Stable Strate-
gies (ESS) for these games and show a method to compute them. Once determined the
possible equilibria for the game, the optimal forwarding control at the source node
that maximizes the forwarding probability has been derived. We show that the success
probability is not always increasing with the number of message copies, and may well
decrease under some conditions, which is adding an intriguing novel facet to the control
of forwarding in DTNs.

5.2 Basic notions on evolutionary games

We consider the standard setting of evolutionary games :

• There is one population of users. The number of users in the population is large.

• We assume that there are finitely many pure strategies or actions. Each member
of the population chooses from the same set of strategies A = {1, 2, . . . , I}.

• Let M := {(y1, . . . , yI) | yj ≥ 0,
I

∑
j=1

yj = 1} be the set of probability distributions

over the I pure actions. I can be interpreted as the set of mixed strategies. It is also
interpreted as the set of distributions of strategies among the population, where
yj represents the proportion of users choosing the strategy j.

• The number of users interfering with a given randomly selected user is a random
variable K in the set {0, 1, . . .}.

• A player does not know how many players would interact with it.

• The payoff function of all players depends of the player’s own behavior and
the behavior of the other players. The expected payoff of a user playing strat-
egy j when the state of the population is y, is given by Uav(j, y) = ∑

k≥0
P(K =

k)U(j, k, y), where U(j, k, y) is the payoff of a user playing strategy j when the
state of the population is y and given that the number of users interfering with a
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given randomly selected user is k. Hence the average payoff of a population in

state y is given by F(y, y) =
I

∑
i=1

yjUav(j, y).

• The game is played many times and there are many local interactions at the same
time

This framework defines the necessary tools for application of the concept of ESS defined
in 4.3.4 of chapter 4.

5.3 Model

Consider a standard description of a DTN framework with several sources and destina-
tions under two-hops routing( see Chapter 4: section 4.3). We use evolutionary games
to study the competition between individual mobiles in a routing game in DTN based
on non-cooperative live-time selection.

Specifically, we assume that each relay node can choose two different live times for
the message: τ, i.e. full activation and τ′ i.e., partial activation, where τ′ < τ. At
each slot, a mobile has to take a decision to be fully active or partially active, based
on his battery energy sate. To simplify, we assume that the state can take three values :
{F, A, E} for Full, Almost empty or Empty. At state F only action τ is available, and at E
participation on forwarding message is not possible any more. In state A, each mobile
chooses between the two actions τ (full activation) or τ′ (partial activation). The life
time of mobile is defined as the number of slots during which its battery is nonempty.
Local Interaction : Without loss of generality, we assume that the network is composed
of several local interactions. In each local interaction, there is a source-destination pair
in which the source has packet generated at each time ti+1− ti = nτ where i = 1, 2.. and
t0 = 0. Let N be the number of mobiles (possibly random) in an area which is assumed
fixed during time slot. We denote by y (resp. 1− y) the fraction of mobiles sharing the
strategy Sτ (resp. Sτ′), playing action τ(resp. τ′), in state A.

Some notation

Consider an active mobile in a local interaction with source si, destination di and N
opponents. We introduce the following notations:

• Pi(a) is the probability of remaining at energy level i when using action a. Since
at state F only action τ is available, we write PF instead of PF(τ).

• Let M := {(y, 1− y)} be the set of probability distributions over the 2 pure actions
τ and τ′ in state A. M can be interpreted as the set of mixed strategies.

We denote by α the proportion of mobiles that uses the action τ in the population
whatever their state. This proportion is exactly equal to the fraction of time that a
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mobile uses action τ during his life. Then we have the following relation between α
and y:

α(y) =
T(F)

Tτ(A) + T(F)
+ y

Tτ(A)

Tτ(A) + T(F)
, (5.1)

where Tτ(A) =
1

1− PA(τ)
(resp. T(F) =

1
1− PF

) is the expected time a mobile spends

at state A (resp. F).

The probability that the tagged mobile relays the copy of the packet to the destina-
tion within live time τ is given by 1−Qτ where Qτ is given by Qτ = (1 + λτ)e−λτ and
the probability that it relays the copy of the message if it chooses live time τ′ is given
by 1−Qτ′ where Qτ′ = (1 + λτ′)e−λτ′ . Let Psucc(τ, N, α(y)) (resp. Psucc(τ

′, N, α(y))) be
the probability that the tagged mobile receives the unit reward, if it chooses live time τ
(resp. τ′). Now this success probability is expressed by:

Psucc(τ
′, N, α(y)) = (1−Qτ′)

N

∑
k=1

CN−1
k−1

(1−Qτ′)
k−1(1− (1−Qτ′))

N−k

k
=

1− (Qτ′)
N

N
.

The gain obtained by a mobile using live time τ′ is given by

U(τ′, y) =
∞

∑
N=1

P(K = N)Psucc(τ
′, N, α(y))

Now the probability that a mobile receives the unit reward, if it chooses live time τ, is
given by

Psucc(τ, N, α(y)) = Psucc(τ
′, N, α(y)) + (Qτ′)

N β
N

∑
k=1

CN−1
k−1

βk−1α(y)k−1(1− yβ)N−k

k

= Psucc(τ
′, N, α(y)) + (Qτ′)

N 1− (1− βα(y))N

Nα(y)
.

where β = 1− Qτ

Qτ′
. The utility for a mobile using live time τ is thus,

U(τ, α(y)) =
∞

∑
N=1

P(K = N)Psucc(τ, N, α(y)).

A general policy u is a sequence u = (u1, u2, ...) where ui is the strategy used at time
ti if the state is A. We shall use a pure stationary policy in which there exist two pure
stationary policies; the one that always choose τ and the one that always choose τ′.

Fitness

Let assume that an active mobile during [ti, ti+1], will receive a unit of reward r if it
is the first to deliver a copy of the packet to the destination. Assume that y is fixed
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and does not change in time (Note that assuming that y is fixed in time does not mean
that the actions of each player are fixed in time. It only reflects a situation in which
the system attains a stationary regime due to the averaging over a very large popula-
tion, and the fact that all mobiles choose an action in a given individual state using the
same probability low). Then the expected optimal fitness of an individual starting at
a given initial state can be computed using the standard theory of total-cost dynamic
programming, that states in particular that there exists an optimal stationary policy (i.e.
a policy for which at any time that the individual is at state A, the action ai of choosing
T ∈ {τ, τ′} is the same). We shall therefore restrict to stationary policies unless stated
otherwise.

Let Vτ(i, α(y)) (respectively Vτ′(i, α(y))) be the total expected fitness of a user given
that it is in state i, that it uses action τ(respectively τ′) and given the population profile
α(y).

We proceed by computing the individual’s expected total utility and remaining life-
time that correspond to a given initial state and a stationary policy. We have Vτ(A, α(y)) =
U(τ, α(y)) + PA(τ)Vτ(A, α(y)) which gives that

Vτ(A, α(y)) =
U(τ, α(y))

1− PA(τ)
.

The total expected utility for a mobile starting from state F and using strategy Sτ, is
given by

Vτ(F, α(y)) = U(τ, α(y)) + PFVτ(F, α(y)) + (1− PF)Vτ(A, α(y)),

= U(τ, α(y))(
1

1− PF
+

1
1− PA(τ)

).

Similarly, the total expected utility for a mobile starting from state F and using strategy
Sτ′ , is given by

Vτ′(F, α(y)) =
U(τ, α(y))

1− PF
+

U(τ′, α(y))

1− PA(τ′)
.

Our game has a more complex structure than a standard evolutionary game. In partic-
ular, the fitness that is maximized is not the outcome of a single interaction but of the
sum of fitness obtained during all the opportunities in the mobile’s lifetime. Let H be
the function defined as

H : y ∈ (0, 1)→ Vτ(F, α(y))−Vτ′(F, α(y))

=
U(τ, α(y))

1− PA(τ)
− U(τ′, α(y))

1− PA(τ′)
)

=
U(τ, α(y))(1− PA(τ

′))−U(τ′, α(y))(1− PA(τ))

(1− PA(τ′))(1− PA(τ))

=
H̃(y)

(1− PA(τ′))(1− PA(τ))
,
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with H̃(y) := U(τ, α(y))(1− PA(τ
′))−U(τ′, α(y))(1− PA(τ)). Thus this function can

be written as:

H(y) =

∞

∑
N=1

P(K = N)
[
(Qτ′)

N 1−(1−βα(y))N

Nα(y)
(1− PA(τ

′))− 1−(Qτ′ )
N

N (PA(τ
′)− PA(τ))

]

(1− PA(τ′))(1− PA(τ))
.

Existence and Uniqueness of ESS

In this section, we are now looking at the existence and uniqueness of the ESS
Proposition 5.3.1.

(1) The strategy Sτ dominates the strategy Sτ′ if and only if

PA(τ
′)− PA(τ) ≤

∞

∑
N=1

P(K = N)
[

Q′Nτ
(
(1− β)N(1− PA(τ

′))
)
+ 1− PA(τ)

]
, A1

(2) The strategy Sτ′ dominates the strategy Sτ if and only if

PA(τ
′)− PA(τ) ≥

∞

∑
N=1

P(K = N)QN
τ′

(
Nβ(1− PA(τ

′)) + PA(τ
′)− PA(τ

′)
)
, A0

(3) If PA(τ
′)− PA(τ) > A1 and PA(τ

′)− PA(τ) < A0, then there exists an unique ESS
y∗ which is given by y∗ = H̃−1(0)

Proof. (1) The strategy Sτ dominates the strategy Sτ′ if and only if Vτ(F, α(y)) ≥
Vτ′(F, α(y)) for all y ∈ [0, 1]. Since H̃ is a decreasing function and H̃(1) = A1 −
(PA(τ

′) − PA(τ)) ≥ 0, thus H̃(y) ≥ 0 for all y ∈ (0, 1). Then Vτ(F, α(y)) −
Vτ′(F, α(y)) = H(y) =

H̃(y)

(1− PA(τ′))(1− PA(τ))
≥ 0 for all yT ∈ [0, 1]. This

completes the proof for (1)

(2) The strategy Sτ′ dominates the strategy Sτ if and only if Vτ′(F, y) ≥ Vτ(F, y) for all y ∈
[0, 1]. Since the function H̃ a is decreasing function and H̃(0) = A0 − (PA(τ

′)−
PA(τ)) ≤ 0, thus H̃(y) ≤ 0 for all y ∈ (0, 1). Then Vτ′(F, y)−Vτ(F, y) = H̃(y) =

H̃(y)

(1− PA(τ′))(1− PA(τ))
≤ 0 for all β ∈ [0, (1− Qτ)]. This completes the proof

for (2)

(3) A strictly mixed equilibrium y∗ is characterized Vτ(F, α(y∗)) = Vτ′(F, α(y∗)). The
function H̃ is continuous and strictly decreasing monotone on (0, 1) with H̃(0) >
0 and H̃(1) < 0. Then the equation H̃(y) = 0 has a unique solution in the interval
(0, 1). This completes the proof.

5.3.2 Poisson distribution

We consider that nodes are distributed over a plan following a Poisson distribution
with density γ. The probability that there is N nodes in local interaction is given by the
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following distribution : P(K = k) =
γk−1

(k− 1)!
e−γ, k ≥ 1. Using a Poisson distribution

of the nodes and from previous theorems, the unique ESS y∗ is unique solution of the
following equation:

eγQτ′ − eQτ′ (1−βα(y∗))γ

α(y∗)
= (eγ − eQτ′γ)

PA(τ
′)− PA(τ)

1− PA(τ)

Thus, the equilibrium is given by

α(y∗) =
LambertW(− ρβe−

ρ(βeρ−c)
c

c )c + ρβeρ

cρβ
, (5.2)

where ρ = Qτ′γ and c = (eγ − eQτ′γ)
PA(τ

′)− PA(τ)

1− PA(τ)

Dirac distribution

We consider that at a given time there is a fixed number of nodes in a local interaction.
In this part, we suppose that the population of nodes is composed with many local
interaction between N nodes where N > 2. Using the Dirac distribution, the unique
ESS y∗ of this game is the unique solution of the following equation:

1− (1− βα(y∗))N

α(y∗)
=

1− (Qτ′)
N

(Qτ′)N
. (5.3)

Since (5.3) corresponds to a polynome of order N, we can only have an explicit
expression for N ≤ 5. Therefore, we restrict to show some properties of the stable
equilibrium by numerical computations in the next section.

For example:

N = 2 =⇒ α(y∗) =
(1− (Qτ′)

2)G− 2Qτ′(Qτ′ −Qτ)

(Qτ′ −Qτ)2

with G =
PA(τ

′)− PA(τ)

1− PA(τ)
. One can easily show that α(y∗) > 1 thus y∗ = 1.

For N = 3, α(y∗) is the solution of the equation

y2 +
3
β

y− k = 0

with k =
3
β2 −

1− (Qτ′)
3

β3(Qτ′)3 G. δ =
9
β2 + 4k with

k =
3(Qτ′)

2[Qτ′ −Qτ]2 + (Qτ′)
4 − [Qτ′ −Qτ]

β2(Qτ′)2[Qτ′ −Qτ]2
> 0
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The realizable solution is α(y∗) =
− 3

β +
√

δ

2
. In this case the solution α(y∗) is posi-

tive when the conditions from proposition 5.3.1 are satisfied.

5.4 Mechanism design

In sight of the characterization of the ESS, we are interested in controlling the system
in order to optimize for the energy consumption and the delivery probability. Let us
assume that the source node controls the forwarding of message copies: a copy of the
message is relayed with constant probability u upon meeting a node with no message
during a local interaction, i.e., using a static forwarding policy. The main quantity of
interest is denoted Ps and it is the success probability of a message at a local interaction.
Under the same assumptions of linearity in [36], the average energy expenditure at
the source node is E = εΨ, where ε > 0 is the source energy expenditure per relayed
message copy and Ψ is the corresponding expected number of copies released.

Live-time control

Now consider the live time control. The probability that the tagged mobile relays the
copy of the packet to the destination within live time τ is given by 1− Qu

τ where Qu
τ is

given by Qu
τ =

e−λuτ − ue−λτ

1− u
and the probability that it relays the copy of the message

if it chooses live time τ′ is given by 1−Qu
τ′ where Qu

τ′ is given by Qu
τ′ =

e−λuτ′ − ue−λτ′

1− u
.

Then the success probability in a local interaction with N mobiles is:

Ps(u|N = k) = 1−
[(

Qu
τ′

)k(1−α(y(u)))
.
(

Qu
τ

)kα(y(u))]

⇒ Ps(u) = 1−
∞

∑
k=1

P(N = k)
[(

Qu
τ′

)k(1−α(y(u)))
.
(

Qu
τ

)kα(y(u))]
.

Using the same notations for the ESS and the Poisson distribution, at the equilibrium
we have :

α(y∗(u)) =
LambertW(− ρβe−

ρ(βeρ−c)
c

c )c + ρβeρ

cρβ

where ρ = Qu
τ′γ , c = (eγ − eQu

τ′γ)
PA(τ

′)− PA(τ)

1− PA(τ)
and β = 1− Qu

τ

Qu
τ′

.

The probability of success is:

Ps(u) = 1− e−γ
[
eγ(Qu

τ′)
(1−α(y(u))

.(Qu
τ)

α(y(u)) − 1
]
.

In the following theorem we give some results about the probability of success ac-
cording to the behavior of the ESS when the controls change at the source.
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Theorem 5.4.0.1. The maximum value of the probability of success is attained for y∗ =
argmax{Ps(1), Ps(u0)}, where u0 satisfies y∗(u0) = 1 and y∗(u0 + δ) ≤ 1, δ > 0.

We avoid the proof of the theorem here for clarity of the developments. The reader
can refer to appendix 7.5 for a detailed proof of this theorem. Analysis from simula-
tions validate our result that increasing the control at the source does not alway insure
a higher probability of success given that the ESS y∗ changes accordingly. A similar
observation can also be deduced for the Dirac distribution.
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distribution
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5.5 Replicator Dynamics

Another important feature of the Evolutionary Game framework is the Replicator Dynamics[124].
Through differential equations, also known as the replicator equations, they describe
how the fraction of the population that uses different actions evolves over time. These
equations are obtained by making assumptions on the way that the probability of us-
ing an action increases as a function of the fitness that an individual that has chosen the
action is receiving. Those equations are based on the fact that the average growth rate
per individual that uses a given strategy is proportional to the excess of fitness of that
action with respect to the average fitness.

Recall that α (resp. α′) represents the proportion of the population that uses strategy
τ (resp. τ′) and y is the proportion of individuals who play strategy τ in state A. Then,
the replicator dynamic equation which describes the evolution of the proportion y is
given by:

ẏ = y [Vτ(F, α(y))− (yVτ(F, α(y)) + (1− y)Vτ′(F, α(y)))] ,

= y(1− y)(Vτ(F, α(y))−Vτ′(F, α(y))),

= y(1− y)H(y). (5.4)

Using the argument proposed in [101], we conclude our replicator dynamic has the
property of positive correlation which ensures that any equilibria of our game are the
stationary points of the replicator dynamics. Finally, given this important property, for
all interior point α0 ∈]0, 1[, the replicator dynamic defined in equation (5.4) converges
to the ESS y∗.

5.6 Conclusion

Throughout this chapter Markov decision evolutionary games are used to model com-
petition between individual mobiles acting as relay nodes in a DTN routing game. The
objective of the source node is to maximize the probability of success of delivering a
message to destination. However, mobiles decide to join message relaying based on
their current energy state, which in turn is influenced by the forwarding control used
by the source, in trade for reward.

Under this framework, we studied a source-controlled evolutionary game aimed
at optimizing the energy consumed by relays. We observed a clear trade-off, where
the optimal solution in general does not correspond to forwarding at full rate at the
source node, and we showed cases where such a greedy strategy is well sub-optimal in
maximizing the probability of success at the equilibrium.
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Chapter 6

Energy efficient Minority Game for
Delay Tolerant Networks

6.1 Introduction

Delay Tolerant Networks (DTNs) are designed to cope with scarce coverage. Thus, the
standard problem is how to maximize the delivery probability of a message under con-
straints on the resources spent to forward it to destination. To this respect, efficient
routing was studied first. Aim is to avoid greedy solutions such as epidemic rout-
ing where the success probability is maximized together with the number of message
copies [127, 92]. In an effort to optimize the network performance under various re-
sources constraints, several other studies have further included the use of activation
and/or forwarding control at relays [83, 6, 38]. However, due to limited energy or
memory capacity, not always relays can be active and participate to message routing.
For instance, owners of relay devices such as smartphones or tables may not be willing
to have battery depleted to sustain DTNs communications. From the forwarding stand-
point, in turn, massive de-activation of relays becomes a core threat. Under two hop
routing, for instance, a linear decrease in the number of relays determines the exponen-
tial decay in the delivery probability. In our framework we assume that the decision
to participate to relaying or not, is taken autonomously by relay nodes according to an
incentive scheme. Incentives engender a competition among relays that play strategies
on their activation. The objective here is to attain an operating point for the DTN which
is the solution of a joint optimization problem involving the number of active relays
and the energy cost. The relay activation control in turn is fully decentralized and does
not require additional control messages. In order to do so, we use a novel and specific
utility structure. Such utility is rooted on the following trade off: the success of a tagged
relay depends explicitly on the number of opponents met, namely, nodes adopting the
same strategy. In fact, the bigger the number of relays participating to the message
delivery, the higher the delivery probability for the message, but indeed the less the
chance for the tagged relay to receive a reward from the system. The global activation
target settles the number of opponents of a randomly tagged relay, i.e., the active frac-
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tion of the population. Overall, the chapter is pivoted around this new approach: by
modeling competition of relay nodes as a coordination game we show that it is possible
to enforce a behavior of cooperation within a population of relays through competition.
In fact, we will rely on the theory of the Minority Game (MG) [78] which is rooted on
dynamical competition. MG does not require explicit coordination among the relay
nodes: this makes it attractive because control messages among DTN nodes may expe-
rience unpredictable delays due to lack of persistent connectivity. In the last part of this
chapter, we investigate how to account for the presence of heterogeneous agents. The
MG rules performance of competing relays and welfare of the DTN (number of mes-
sage copies and delivery message) and thus configures as an appropriate tool to drive
the network to a desired operating point. We thoroughly investigate the properties of
our coordination game in which relays compete to be in the population minority. Fi-
nally, since the MG scheme rules the number of active relays, the message source can
achieve a target performance figure, e.g., the probability of successful message delivery,
by setting the rewarding mechanism appropriately. Conversely, the source can reduce
the quality of service in order to reduce the relays energy consumption. Thus, our in-
centive mechanism can match quality of service metrics such as delivery probability to
the available resources.

Compared to existing literature, the novelty of this approach stands in the way the
activation and forwarding process is jointly controlled by the operator of the network
acting on a distributed mechanism which takes place among competing relays based
on the MG. We will specialize the new mechanism in two frameworks: the first one
is the single-class model (namely, the homogeneous DTN case), the second takes into
consideration the existence of several classes of nodes (namely, the heterogeneous DTN
case). Finally, we provide an algorithmic formulation of the game and demonstrate that
the solution of the MG can be attained under adaptation of each ones expectation about
the future.

6.1.1 Background and contribution

The minority game studies how individuals of a population of heterogeneous agents
may reach a form of coordination when sharing resources for which the utility de-
creases in the number of competitors. Upon introducing adaptation of strategies based
on each one’s expectation about the future, the game can describe a dynamical sys-
tem with many interacting degrees of freedom where cooperation is implicitly induced
among agents. The MG was first introduced in literature as a simplification of the El
Farol Bar’s attendance problem [78, 59]. In the El Farol bar problem [46] N users decide
independently whether to go to the unique bar in Santa Fe that offers entertainment.
However, the bar is small, and they enjoy only if at most Ψ of the possible N attendees
are present, in which case they obtain a reward r at a cost 0 ≤ c ≤ r for going to the bar.
Otherwise, they can stay home and watch stars with utility 0. Players have two actions:
go if they expect the attendance to be less than Ψ people or stay at home and watch
stars if they expect the bar will be overcrowded. The original formulation as a single

stage game, El Farol bar game has (N
Ψ
) pure Nash equilibria and a single symmetric
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mixed Nash equilibrium at zero utility where each player uses the value of p such that
Ψ−1

∑
h=0

(
N − 1

h

)
ph = c.

The extension of the game introduces a learning component based on the belief of
future attendance that every player has: the only information available is the number
of people who came to El Farol in past weeks. In particular, [104] and its follow up
[103] apply the concept of evolutionary MG to complex networks including random
and scale-free networks. Authors of [74] apply MGs to cognitive radio networks for the
design of MAC layers. All those works consider an odd number of interacting agents
and do not suggest the exact analysis of equilibrium points as we suggest in this work;
a further key added value of our work is the application of a standard economic estima-
tor, namely, the logit belief model, which provides a suitable convergence framework
for our mechanism design. Finally, from the application standpoint, and to the best of
our knowledge, it is the first time the concept of MG is applied to DTNs with the aim
to derive a mechanism to induce coordination in a non-cooperative fashion.

The remainder of the chapter is organized as follows. In Sec. 6.2 we introduce the
system model and the notation used throughout the chapter. Results for the equilibria
of the MG are derived in in Sec. 6.3. The extension to the multiclass DTN case is pro-
vided Sec. 6.4. A distributed reinforcement learning algorithm able to drive the system
to the desired operating point is derived in Sec. 6.5. In Sec. 6.6 we study a particular
case of application. Numerical results for validating the outcomes of the theoretical
analysis are reported and discussed in Sec. 6.7. Final remarks are reported in Sec. 6.8

6.2 Network model

Consider a standard description of a DTN framework with several sources and des-
tinations ( see chapter 4: section 4.3). In a particular scenario in section 6.6, we will
consider the two hop routing scheme, in which any mobile that receives a copy of the
packet from a given source can only forward it to its destination.
Remark 6.2.1. Since in DTNs the sources cannot predict neither the forwarding path nor the
minority community nodes, some rewarding models assume for example that, the reward is
distributed by the current intermediate nodes without the involvement of the source. This can
be realized using, for example, the layered coin method proposed in [130].

6.2.2 Network Game

In this section we detail the payoff structure of the proposed mechanism. When a mes-
sage is generated by a source node, the competition takes place during the message
lifetime, i.e., with duration τ. Each mobile has two strategies: either to participate to
forwarding, i.e., pure strategy transmit (T), or not to participate, i.e., pure strategy silent
(S). Mixed strategies, i.e., probability distributions over the two possible actions, are
also possible and will be described later on.
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Each strategy corresponds to a certain utility for the relay. Let’s now detail how the
minority game develops. First, let Ψ > 0 be the threshold fixed by some operator (e.g.,
the source nodes): it defines the majority/minority of nodes using the two policies.
Hence, the utility of player is designed in such a way that, upon successful delivery of
message to the destination, an active mobiles may receive a positive expected reward
conditional to the fact the actives mobiles represent the minority and the mechanism
selected by network operator. Other nodes receive in this case the opposite as a non-
positive expected reward. The customary way to interpret this non-positive reward is
that of a regret for abstention. Formally, let N be the total number of nodes involved in
the competition. The probability that an active mobile relays the copy of the packet to
the destination within time τ is denoted by 1− Qτ where Qτ is the probability for the
tagged relay for not succeeding in message relaying to destination. At time t = 0, each
relay plays T or plays S: players who take the minority action win, whereas the majority
loses. Now, let N = NT + NS, where NT (resp. NS) is the number of agents selecting
strategy T (resp. S). A tagged relay playing strategy T is member of the minority if
NT ≤ Ψ, otherwise it loses; silent agents win as NS ≤ N − Ψ. The probability of
receiving a reward R, for an active relay is a function of inter-meeting rate, live time,
reward mechanism used by the operator and number of active relays. The total reward
R = ∑

s

rsPs
succ(T, k, s) with Psucc(T, k, s), the probability of an active node to receive a

reward rs from source s when k nodes are active. We denote by g the energy spent
by a relay node when it remains active during [0, τ]. From the sources point of view,
performance should be guaranteed above some target level: Ds

succ ≥ Dth
succ, where Ds

succ

is the probability of successful delivery of a message:

Ds
succ(NT) = 1−

NT

∏
k=1

Qk
τ = 1−QNT

τ (6.1)

and Dth
succ is the performance threshold imposed by the source. Recall the fundamental

trade-off: larger successful delivery comes at the price of larger value of NT and then
larger energy cost for active nodes. The connection between the network performance
and the game depends on the total reward R set by the network operator for successful
delivery where each rs is decided by the source s: larger rewards causes more nodes to
be active which yields a higher delivery probability at the expense of battery depletion,
and network’s lifetime. How to define the reward in order to attain a given performance
level: we let threshold Ψ obey to the relation

∑
s

rs · Ps
succ(T, Ψ, s) = gτ

where g ≥ 0 is a constant cost of activation per second for each relay. Note that Ψ is
chosen such as to equalize the total energy cost spent by nodes for being active in [0, τ]
and the expected reward obtained for a successful delivery (see Fig. 6.1). In the homo-
geneous case (Ps

succ = Psucc ∀s), in which the relay and sources have similar physical
characteristic, e.g. transmission range, mobility patterns, energy capacities etc, the last
relation becomes

nsr · Psucc(T, Ψ) = gτ (6.2)
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Figure 6.1: Outcome picture of the game as observed by an active node: the intersection corresponds to
the threshold value for the minority being attained by active nodes, i.e., NT = Ψ.

where ns is the number of sources in the network. We now state the assumption re-
quired for the function Psucc(T, k, s)
Assumption A
The function Ps

succ(T, k, s) is decreasing in k, i.e., number of active relays. Now we can
introduce two utility functions for our game, under the assumption that the population
of sources is homogeneous: Ps

succ(T, k, s) = Psucc(T, k) ∀s:

Scenario 1 Zero-sum utility

U(T, NT) = ∑
s

rs · Ps
succ(T, NT, s)− gτ, U(S, NS) = −U(T, NT)

Scenario 2 Fixed regret utility

U(T, NT) = ∑
s

rs · Ps
succ(T, NT, s)− gτ, U(S, NS) = −α, ∀ NS

where in the second case the utility of non-active nodes expresses the regret or satisfac-
tion for not participating to message relaying. In particular, we assume α ≥ 0, and we
define Nα

T such that U(T, Nα
T) = −α.

The formulation of Scenario 1, requires nodes to estimate Psucc. This can be calcu-
lated over time by interrogating neighboring nodes and averaging their success rate:
this amounts to run a pairwise averaging protocol as in [50]. In case we want to avoid
the use of gossip mechanisms, we can model regret of non-active nodes as a constant
negative perceived utility, which corresponds to Scenario 2.
Remark 6.2.3. In minority games with odd number of opponents, different types of equilibria
have been characterized numerically, e.g., see Challet and Zhang [25], Moro [78]. The minority
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rule sets the comfort level at (NT, NS) = (Ψ, N −Ψ) and computer simulations show that the
participation rate fluctuates around Ψ in a (Ψ, N −Ψ) configuration of people that participate
or not. For fixed regret, it can be anticipated that the comfort level will set around (Nα

T, N −
Nα

T).

6.3 Characterization of equilibria

In this section we provide the exact characterization of the equilibria induced by the
game: we distinguish pure Nash equilibria and mixed Nash equilibria.

6.3.1 Pure Nash Equilibrium

The definition of a Nash Equilibrium in pure strategy for our game requires the follow-
ing two conditions to be satisfied:

U(S, NT) ≥ U(T, NT + 1) (6.3)

U(S, NT − 1) ≤ U(T, NT) (6.4)

Thus, no player can improve its utility by unilaterally deviating from the equilibrium.
Proposition 6.3.2. Under assumption A, there exists a pure Nash Equilibrium for our game.
Moreover
(i) for scenario 1, there exists a unique NE obtained when exactly Ψ among the total population
of N nodes play T.
(ii) scenario 2, there exists two Nash equilibria which are obtained when the total number of
active relays is such that: NT ∈ {Nα

T, Nα
T − 1}

Proof. Scenario 1: First, we show that NT = Ψ is a pure Nash equilibrium:

U(S, Ψ) = U(T, Ψ) = 0 ≥ U(T, Ψ + 1).

which is first condition (6.3). In the same way

U(S, Ψ− 1) = −U(T, Ψ− 1) ≤ 0 = U(T, Ψ)

and we have second condition (6.4).

Second, we show that at the NE: (NT, NS) = (Ψ, N − Ψ). By contradiction: let
NT > Ψ⇒ U(S, NT) ≥ U(T, NT + 1), i.e., (6.3) holds. However,

U(S, NT − 1) = −U(T, NT − 1) ≥ 0 > U(T, NT)

and (6.4) fails. Conversely, let NT < Ψ ⇒ U(S, NT − 1) ≤ U(T, NT) so that (6.4) holds.
But,

U(S, NT) = −U(T, NT) < 0 ≤ U(T, NT + 1)
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and (6.3) fails. Hence, NT = Ψ is the only possible pure Nash equilibrium. Scenario 2:
Let NT ∈ {Nα

T, Nα
T − 1} we have,
{

U(S, NT) = −α = U(T, Nα
T) ≥ U(T, NT + 1),

U(S, NT − 1) = −α = U(T, Nα
T) ≤ U(T, NT),

where equality holds in the first relation for NT = Nα
T − 1 and in the second for NT =

Nα
T. We show that if NT 6∈ {Nα

T, Nα
T − 1} then (NT, N − NT) then (6.3) or (6.4) fails. In

fact, if NT > Nα
T we have,

U(S, NT) = −α = U(T, Nα
T) ≥ U(T, NT + 1), but:

U(S, NT − 1) = −α = U(T, Nα
T) > U(T, NT)

Second, if NT < Nα
T − 1 we have,

U(S, NT − 1) = −α = U(T, Nα
T) < U(T, NT), but:

U(S, NT) = −α = U(T, Nα
T) < U(T, NT + 1)

Which concludes the proof for the second scenario.

Remark 6.3.3. A crucial design issue is how to relate the parameters of the game to the per-
formance of the DTN at the equilibrium. From (6.1), the number of active nodes required to

attain Dth
succ is Nth

T =
log(1− Dth

succ)

log(Qτ)
. Besides, from Proposition 6.3.2 it must be Ψ = Nth

T .

Replacing in (6.2) we obtain:

r∗ = gτ
1

nsPsucc(T, Nth
T )

Message reward r at the equilibrium is proportional to energy cost g through a positive constant.

6.3.4 Mixed Nash Equilibrium

Let’s consider now that relay nodes maintain a probability distribution over the two
actions. Compared to pure strategy game, in the mixed strategy game every node can
define the strategy by which it will be active only for a fraction of the time and stay
silent the rest of the time. This kind of equilibrium is desirable for an homogeneous
population of nodes with similar energy constraints.

In the mixed strategy game, node i can choose to play action T with probability
pi and play S with probability (1 − pi). We let, p = (p1, p2, ..., pN), pi ≥ 0, ∀i the
mixed strategy profile of our game. If 0 < pi < 1, ∀i then p is a fully mixed strategy
profile of the game. A standard companion notation that we use for p is (pi, p−i): it
denotes the strategy profile of the game when relay i uses strategy pi and others use
p−i = (p1, .., pi−1, pi+1, .., pN). Let’s denote by Vi( p̃, p−i) the utility of node i playing
action T with probability p̃. We have the following definition of the mixed strategy
Nash Equilibrium:
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Definition 6.3.4.1. (i) A mixed strategy Nash Equilibrium specifies a mixed strategy
p∗i ∈ [0, 1] for each player i (where i = 1 . . . N) such that :

Vi(p∗1 , .., p∗i−1, p∗i , p∗i+1, .., p∗N) ≥ Vi(p∗1 , .., p∗i−1, pi, p∗i+1, .., p∗N) (6.5)

for every mixed strategy pi ∈ [0, 1].

(ii) We call a Fully mixed Nash Equilibrium a mixed strategy Nash equilibrium p =
(p1, .., pi, .., pN) with pi 6∈ {0, 1}, ∀i.

From now on we will denote by the term ’mixer’ a relay who uses a mixed strategy
0 < pi < 1. The following proposition states that any mixed equilibrium p with pi 6∈
{0, 1}∀i, is symmetric, i.e. pi = p ∀i. This result comes from the fact that given any
pair of mixers, a player is better off if the other chooses differently. Moreover, at the
equilibrium each player must be indifferent on whether it is active or silent.
Proposition 6.3.5. Assume assumption A holds. Let p be the mixed strategy profile of our
game s.t pi 6∈ {0, 1}, then at the equilibrium, all mixers must use the same probability p, i.e.,
pi = pj ∀ mixer i, j.

Proof. Assume that the set of mixers is not empty and let suppose that there are l relays
that select pure strategy T and r pure strategy S. Without loss of generality let the
strategy profile at the equilibrium :

p = (p1, . . . , pN−l−r, 1, . . . , 1, 0, . . . , 0)

Scenario 1: The utility for a mixer relay i writes

Vi( p̃, p−i) = (2p̃i − 1)F(p1, p2, . . . , pi−1, pi+1, . . . , pN)

with

F(p1, p2, . . . , pi−1, pi+1, . . . , pN) =
N−l−r

∏
j 6=i

(1− pj)U(T, l + 1) +
N−l−r

∑
j 6=i

pj

N−l−r

∏
j′ 6∈{i,j}

(1− pj′)U(T, l + 2) +

N−l−r

∑
j,j′ 6=i

pj pj′
N−l−r

∏
j′′ 6∈{i,j,j′}

(1− pj′′)U(T, l + 3) + ... +
N−l−r

∏
j 6=i

pjU(T, N − r).

Note about this function that:

• F is strictly decreasing by any unilateral increase of pj by node j. This comes from
the fact that the utility function of an active node is decreasing with the number
of active nodes (assumption A).

• For any two mixers j 6= j′, pj and pj′ are indifferently interchangeable variables in
F.

At mixed equilibrium p,
∂Vi(p)

∂ p̃i
= 0 ∀ i ∈ {1, . . . , N − l − r}. This implies that:

F(p1, p2, . . . , pi−1, pi+1, . . . , pN) = 0, ∀mixer i
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. Now suppose that there exists two mixers i and j, s.t. p∗i 6= p∗j . Without lost of
generality assume that p∗i < p∗j , then

0 = F(p, .., pi−1, pi+1, .., pj, .., pN) > F(p1, .., pi−1, pi+1, .., pi, .., pN)

= F(p1, .., pj−1, pj+1, .., pN) > 0

which is absurd. Thus pi = pj, ∀mixers i, j.

Scenario 2: As in Scenario 1, the utility perceived by a given mixer i when the strategy
profile is p = (p1, p2, . . . , pN) is given by:

Vi( p̃, p−i) = p̃iF(p−i)− α(1− p̃i)
[N−l−r

∏
j 6=i

(1− pj) +
N−l−r

∑
j 6=i

pj

N−l−r

∏
j′ 6∈{i,j}

(1− pj′)

+
N−l−r

∑
j,j′ 6=i

pj pj′
N−l−r

∏
j′′ 6∈{i,j,j′}

(1− pj′′) + ... +
N−l−r

∏
j 6=i

pj

]

At the equilibrium we have, ∀mixer i,
∂Vi(P)

∂pi
= F′(p−i) = 0, where F′ has exactly

the same shape as F with U(T, k) replaced by U(T, k) + α, k ∈ {l + 1, . . . , N − r}.
We then use the same reasoning as done with function F and conclude that, p∗i =
p∗j , ∀mixers i, j.

In the following corollary, we restrain the result of proposition 6.3.5 to the special
case when every nodes act as mixers.

Corollary 6.3.6. Under assumption A, any fully mixed equilibrium p with pi 6∈ {0, 1}, ∀i, is
symmetric, i.e. pi = p ∀i.

The following proposition characterize the existence and uniqueness of a fully mixed
Nash Equilibrium.

Proposition 6.3.7. Under assumption A, there exists a unique fully mixed Nash Equilibrium
p∗. Moreover, p∗ is solution to:

• Scenario 1 :

A(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−kU(T, k) = 0. (6.6)

• Scenario 2 :

A′(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−k[U(T, k) + α] = 0.

Proof. Let p the symmetric mixed strategy adopted by every node in the game, pi =
p, ∀i.
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Scenario 1: The utility of one relay i when the strategy profile (pi, p−i) is played is given
by:

Vi( p̃i, p−i) = p̃i

N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k) + (1− p̃i)

N−1

∑
k=0

CN−1
k pk

−i(1− p−i)
N−k−1U(S, k + 1)

= p̃i

N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k) + (1− p̃i)

N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(S, k)

= (2p̃i − 1)
N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k)

Let A(N, p−i) =
N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k)

if A(N, p−i) < 0, pi = 0 is the best response for player i and conversely, p = 1 is a
best response when A(N, p−i) > 0. A mixed strategy is obtained when A(N, p−i) = 0.
Also, we have

A(N, 0) = U(T, 1) > 0 > A(N, 1) = U(T, N)

thus there exists a mixed symmetric Nash Equilibrium which is unique since A(N, p−i)
is strictly decreasing with p. The mixed equilibrium is thus characterized by equation
(6.6).

A(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−kU(T, k) = 0.

Scenario 2: The utility of one relay i when the strategy profile ( p̃i, p−i) is played is given
by:

Vi( p̃i, p−i) = p̃i

N

∑
k=1

CN−1
k−1 pk−1

−i (1− p−i)
N−kU(T, k)− α(1− p̃i)

At the Nash equilibrium we have, ∀ player i,
∂Vi(p∗)

∂p∗
= A′(N, p∗) = 0 with

A′(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−k[U(T, k) + α]

Since α is a fixed positive constant, A′(N, p∗) has the same properties as A(N, p∗)
from the proof of scenario 1. Then we easily conclude that, p∗ is unique and character-
ized by :

A′(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−k[U(T, k) + α] = 0.
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6.3.8 Equilibrium with mixers and non-mixers

We study here the existence of equilibrium when the population of agents is composed
of pure strategy players: active or non-active, as well as mixers. In this case, a non-pure
Nash equilibrium can be represented by the triplet (l, r, p∗), where l, r ∈ {0, 1, . . . , N}
denote respectively the number of agents choosing pure strategy T or S, and p∗ ∈ (0, 1)
the probability with which the remaining N− l− r mixers choose strategy T. Moreover,
we denote by vT(l, r, p)(resp. vS(l, r, p)) the expected payoff to a player choosing T(resp.
S). The expressions of vT(l, r, p) and vS(l, r, p) write as follow:

vT(l, r, p) =
N−l−r

∑
k=0

CN−l−r
k pk(1− p)N−l−r−kU(T, l + k) (6.7)

and

vS(l, r, p) = −
N−l−r

∑
k=0

CN−l−r
k pk(1− p)N−l−r−kU(T, l + k) (6.8)

Proposition 6.3.9. Using the previous notations, a strategy profile of type (l, r, p∗) is a Nash
equilibrium with at least one mixer if and only if:

vT(l + 1, r, p∗) = vS(l, r + 1, p∗) (6.9)

We prove that this result holds for Zero-sum utility and fixed regret utility for non-active
nodes(resp. Scenario 1 and Scenario 1)

Proof. The condition (6.9) describes that a mixer is indifferent whether it chooses a pure
strategy T or S. This is a necessary condition for the strategy profile (l, r, p∗) to be a
Nash equilibrium.
In order to show sufficiency, we need to show that pure strategy players as well, can-
not improve their expected utility through unilateral deviation from the equilibrium
profile. Without loss of generality, suppose that there is at least one player using pure
strategy T, we have

vT(l, r, p∗) ≥ vT(l + 1, r, p∗) = vS(l, r + 1, p∗)

≥ vS(l − 1, r + 1, p∗)

≥ p∗vT(l, r, p∗) + (1− p∗)vS(l − 1, r + 1, p∗)

This last relation, states that an active user cannot improve its expected utility by
unilaterally deviating from the strategy profile (l, r, p∗) using any strategy p∗ ∈ [0, 1),
given relation (6.9). As done for Scenario 1, in Scenario 1, we have, vS(l, r + 1, p∗) =
−α, let vS(l + 1, r, p∗) = −α then:

vT(l, r, p∗) ≥ vT(l + 1, r, p∗) = −α ≥ vS(l − 1, r + 1, p∗)

≥ p∗vT(l, r, p∗) + (1− p∗)vS(l − 1, r + 1, p∗)

moreover,
vS(l + 1, r− 1, p∗) ≤ vT(l + 1, r, p∗) = −α = vS(l, r, p∗).

This completes the proof.
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Discussion on existence of (l, r, p∗) type equilibria
It is possible to isolate several cases where the relation (6.9) that characterizes a Nash
Equilibrium of type (l, r, p∗), cannot be satisfied.
We denote by, p = 0+(resp. p = 1−) the mixed strategy infinitely close to zero(resp.
to one), with which at least one mixer select to be active. Since, vT(l, r, p∗) is strictly
decreasing with l and p∗, we have, vT(l + 1, r, p∗) = vS(l, r + 1, p∗)

⇐⇒
{

vT(l + 1, r, 0+) > −vT(l, r + 1, 0+)
vT(l + 1, r, 1−) ≤ −vT(l, r + 1, 1−),

(1) If l ≥ Ψ, then there is no Nash equilibrium of the desired type. Indeed, l > Ψ,
then vT(l, r + 1, 0+) ≤ 0 and

vT(l + 1, r, 0+) ≤ 0 ≤ −vT(l, r + 1, 0+).

Then there is no possible Nash Equilibrium according to relation (6.9).

(2) If l + r + 1 > N − 1, then there is no Nash equilibrium. We already have l < Ψ,
let l + r + 1 = N then,

vT(l + 1, r, p) = C1 ≥ 0 ∀ p and

vS(l, r + 1, p) = C2 > 0 ∀ p.

Since vT is decreasing with l, we have, 0 ≤ C1 < C2 which contradicts relation
(6.9).

A Nash Equilibrium of type (l, r, p∗) exists then only for l < Ψ and for l + r ≤ N − 2,

thus there are exactly Ψ(N − 2)− Ψ(Ψ− 1)
2

Nash equilibria. In the following proposi-

tion we go further and decline some properties of the symmetric mixed strategy p∗ at
the equilibrium.
Proposition 6.3.10. The mixed strategy p∗ at the equilibrium increases as r increase and re-
versely decreases as l increase.

Proof. For a fixed number l of nodes playing pure strategy T, the utility of a mixer when
there are less nodes playing pure strategy S, decreases faster than when there are more
nodes playing pure strategy S. For example we have,

∂vT(l + 1, 0, p)

∂p
>

∂vT(l + 1, 1, p)

∂p

Similarly, we will have
∂vT(l, 1, p)

∂p
>

∂vT(l, 2, p)

∂p
.

Since, vT(l + 1, 0, 0+) = vT(l + 1, 1, 0+) and vT(l, 1, 0+) = vT(l, 2, 0+) then if p∗1 , p∗2 are
such that vT(l + 1, 0, p∗1) = −vT(l, 1, p∗1) and vT(l + 1, 1, p∗2) = −vT(l, 2, p∗2), it follows
that p∗1 < p∗2 .
The same reasoning holds for every k < k′ and p∗1 , p∗2 s.t. vT(l + 1, k, p∗1) = −vT(l, k +
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1, p∗1) and vT(l + 1, k′, p∗2) = −vT(l, k′ + 1, p∗2) then p∗1 < p∗2 .
We apply a similar reasoning reversely and conclude that for a fixed number r of nodes
playing pure strategy S, for every k < k′ and p∗1 , p∗2 s.t. vT(k + 1, r, p∗1) = −vT(k, r +
1, p∗1) and
vT(k

′ + 1, r, p∗2) = −vT(k
′, r + 1, p∗2) then p∗1 > p∗2 .

Summary on characterization of equilibria Throughout this section we have charac-
terized the following different equilibria : Under assumption A we have

1. pure equilibrium : We shown that for the Zero-sum utility there exists a unique pure
N.E. that sets at exactly Ψ active relay nodes. For the Fixed regret utility scenario,
there exists two possible N.E. for a number of active nodes NT ∈ {Nα

T, Nα
T − 1}.

2. fully mixed equilibrium : For both scenarios we shown that any fully mixed equilib-
rium p with pi 6∈ {0, 1}, ∀i, is symmetric. Moreover, the mixed N.E. of our game is

unique and characterized by : A(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1− p∗)N−kU(T, k) =

0 for the zero-sum utility scenario and characterized by A′(N, p∗) =
N

∑
k=1

CN−1
k−1 (p∗)k−1(1−

p∗)N−k[U(T, k) + α] = 0 for the fixed regret scenario.

3. equilibrium with mixers and non-mixers: The last characterized type of equilibrium
is related to a population of relays composed of mixers and non-mixers. Here we
shown that such type of equilibrium is characterized by a specific relation, namely
relation (6.9). Moreover, we established that a Nash Equilibrium of this type exists

only for l < Ψ and for l + r ≤ N− 2, thus there are exactly Ψ(N− 2)− Ψ(Ψ− 1)
2

Nash equilibria.

6.4 The multi-class case

In the first part we adhered to a common simplifying assumption in many earlier works
on modeling performances of DTNs, i.e., we assumed that DTN nodes have all similar
physical characteristics, e.g. transmission range, mobility patterns, energy capacities
etc., i.e., the DTN is homogeneous. In this section we will design a model to allow a fair-
ness between mobiles relays based on their capacities. We extend our results to DTNs
with several classes of nodes. In fact, DTNs nodes may belong to different categories,
e.g., mobile, laptop, PDA and/or have related communication/energy-autonomy fea-
tures depending on transmission range, mobility, memory, energy capacity and active
radio interface such as WiFi and Bluetooth. A DTN with different types of nodes is
classified as heterogeneous [24, 29].

To this respect, we assume nodes to fall into classes according to their physical char-
acteristics: the aspect we focus on is the heterogeneity energy budget/consumption of
nodes. For example, devices using Bluetooth radio instead of WiFi consume between
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10 to 50 times less power [40]. More precisely, WiFi interface’s power consumption in
an active data transfer state is of the order of 890 mW, compared to only 120 mW for
Bluetooth due to a limited range and a simpler radio architecture. For small devices
such as cell-phones and PDAs, with limited power budgets, the power consumption of
a WiFi radio represents a significant proportion of the overall system power [87][94][8].

The extension of the game is done by devising a class-dependent reward mecha-
nism. In fact, nodes of classes with larger battery capacity might choose to be more
active to collect the reward, while nodes of classes with a limited battery capacity may
participate less in order to save energy. As before, the sources wish to satisfy perfor-
mance requirements in a way that conserve energy consumption and achieve consump-
tion fairness.

6.4.1 The model

Heterogeneous DTNs considered in this section are composed of M classes of relay nodes:
class j, 1 ≤ j ≤ M, contains Nj nodes with inter-meeting intensity λj > 0, and N =

∑
j

Nj. We let each class j has its own threshold Ψj that defines the majority/minority of

nodes from class j. We will often refer to the case M = 2 for the sake of clarity; results
shown later easily extend to hold in general unless otherwise stated.

The energy consumed by nodes, when active, i.e., playing T, has a large impact
on the lifetime of the battery-operated mobile nodes due to limited energy budget in
DTNs. This depletion of energy depends not only on the wireless technology used
by each class’s nodes but also on the type of these nodes (the rate at which energy is
consumed by PDA-based phones is very high compared to laptops, thus, these devices
can quickly drain their own batteries). We let gj the energy cost for a relay node of
class j when it remains active during a unit of time and we consider the inter-meeting
intensity is the same for all classes, i.e. λj = λ, ∀1 ≤ j ≤ M.1 For the case M = 2 we
assume that g1 > g2 such that nodes of class 1 has higher energy requirements than
nodes from class 2 to be active.

The utility function for an active node of class j is:

Uj(T, NT) = rjPsucc(T, NT)− gjτ

while the utility for a silent node is:

Uj(S, NT) = −rjPsucc(T, NT) + gjτ

The thresholds Ψj as previously defined satisfies the following relation:

∀1 ≤ j ≤ M : rjPsucc(T, Ψj) = gjτ (6.10)
1Future extensions of the model will account for heterogeneity in the inter-meeting intensities [38, 24].
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6.4.2 Characterizing the equilibria

Proposition 6.4.3. In the multi-class framework: There exists a unique pure NE attained when
(Ψj)j∈{1,...,M} nodes among the total population select to be active for relays of each class j.

Proof. The Nash Equilibrium is obtained when the following two conditions are satis-
fied:

∀1 ≤ j ≤ M :
{

Uj(S, NT) ≥ Uj(T, NT + 1)
Uj(S, NT − 1) ≤ Uj(T, NT)

(6.11)

Assume that for any class j exactly Ψj nodes are active, then we have:

Uj(S, Ψj) = Uj(T, Ψj) = 0 ≥ Uj(T, Ψj + 1),

in the same way we have:

Uj(S, Ψj − 1) = −Uj(T, Ψj − 1) ≤ 0 = Uj(T, Ψj),

then we have the conditions in (6.11) satisfied.

We now show that there are no other pure Nash equilibria. Let, for a class j, Ψ
′
j 6= Ψj,

without loss of generality, let Ψ
′
j > Ψj then U(S, Ψ

′
j) ≥ U(T, Ψ

′
j + 1): first condition of

(6.11). However,

U(S, Ψ
′
j − 1) = −U(T, Ψ

′
j − 1) ≥ 0 > U(T, Ψ

′
j)

and the second relation is not satisfied. Continuing with the same reasoning used in
the proof of proposition (6.3.2), we obtain that at the equilibrium there are exactly Ψj

active nodes hence the proof.

As in the case of homogeneous DTNs, we can extend the result to mixed strategies.
Proposition 6.4.4. Let the fully mixed strategy profile of our game in the multi-class framework
p = (p11, ..., pN11, ..., p1j, ...pNi j, ..., p1M, ..., pNM M). At the equilibrium, all players of the same
class must use the same fully mixed strategy: pij = pj, ∀i; ∀1 ≤ j ≤ M; the result holds both
Scenarios 1 and 2.

Proof. We denote by (pij, p−i) the fully mixed strategy profile of the game when relay i
of class j uses strategy pij and others use p−i = (p11, ..., pN11, ..., p1j, ..., pi−1j, pi+1j, ..., pNj j, ..., p1M, ..., pNM M)
Scenario 1: The utility perceived by a given player i of class j when the strategy profile
is P is given by:

Ui
j(p) = (2p̃i − 1)Fi(p−i)

with

Fi = ∏
k 6=i

(1− pk)Uj(T, 1) + ∑
k 6=i

pkm ∏
k′ 6∈{i,k}

(1− pk′m)Uj(T, 2) ∑
k,k′ 6=i

pkm pk′m ∏
k′′ 6∈{i,k,k′}

(1− pk′′m)Uj(T, 3)

+... + ∏
k 6=i

pkmUj(T, N)

∀1 ≤ m ≤ M. Note about this function that:
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• Fi is strictly decreasing by any unilateral increase of pkm by player k of class m.

• For any two k 6= k′ of the same class m, the mixed strategies pkm, pk′m are indiffer-
ently interchangeable variables in Fi.

At the equilibrium we have, ∀ player i, ∀1 ≤ j ≤ M,
∂Ui

j(p)

∂pij
= 0. This implies that :

Fi = 0. Moreover, the strategy profile p = (p∗11, ..., p∗N11, ..., p∗1j, ..., p∗Nj j
, ..., p∗1M, ..., p∗NM M)

is a Nash equilibrium if no user can increase its utility by any unilateral deviation. Now
suppose that there exists i, k of class j, such that, p∗ij 6= p∗kj. Without lost of generality
assume that p∗ij < p∗kj, we have,

0 = Fi(..., p∗1j, ..., p∗i−1j, p∗i+1j, ..., p∗kj, ..., pN∗j j, ..., p∗NM M)

> Fi(..., p∗1j, ..., p∗i−1j, p∗i+1j, ..., p∗ij, ..., pN∗j j, ..., p∗NM M)

= Fi(..., p∗1j, ..., p∗k−1j, p∗k+1j, ..., pN∗j j, ..., p∗NM M)

> 0

which is absurd. Thus p∗ij = p∗kj, ∀ i, k of class j.
Scenario 2: As in scenario 1, the utility perceived by a given player i when the strategy
profile is P = (p1, p2, . . . , pN) is given by:

Ui
j(P) = pij ∗ Fi(p−i)− α(1− pij)

[
∏
k 6=i

(1− pkm) + ∑
k 6=i

pkm ∏
k′ 6∈{i,k}

(1− pk′m)

+ ∑
k,k′ 6=i

pkm pk′m ∏
k′′ 6∈{i,k,k′}

(1− pk′′m) + ... + ∏
k 6=i

pkm

]

At the equilibrium we have, ∀ player i,
∂Ui

j(P)

∂pij
= F′i (p−i) = 0, where F′i has exactly the

same shape as Fi with Uj(T, k) replaced by Uj(T, k) + α, k ∈ {1, . . . , N}. We then use
the same reasoning as done with function Fi and conclude that, p∗ij = p∗kj, ∀ i, k of class
j.

Let pj the symmetric mixed strategy adopted by every node of class j, pij = pj, ∀i, j.
For reasons of clarity, we characterize the mixed strategy p∗j in a two-class scenario
without any loss of generality (M = 2).
Proposition 6.4.5. There exists a unique fully mixed Nash equilibrium (p∗1 , p∗2) for the multi-
class case. Moreover it is the solution of, A1(N, p∗1 , p∗2) = A2(N, p∗1 , p∗2) = 0 where:

A1(N, p∗1 , p∗2) =
N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

p∗k1
1 (1− p∗1)

N1−k1−1CN2
k2

p∗k2
2 (1− p∗2)

N2−k2)U1(T, k1 + k2)

and

A2(N, p∗1 , p∗2) =
N1

∑
k1=0

N2−1

∑
k2=0

(CN2−1
k2

p∗k2
2 (1− p∗2)

N2−k2−1CN1
k1

p∗k1
1 (1− p∗1)

N1−k1)U2(T, k1 + k2)

Moreover,
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(i) if
g1

r1
=

g2

r2
then we have p1 = p2.

(ii) if
r1

g1
<

r2

g2
then g1 > g2 ⇒ p1 < p2. As a consequence we have Ψ1 < Ψ2.

Proof. Scenario 1 : The utility of one relay i of class 1 when the strategy profile (pi1, p−i)
is played is given by:

Vi
1(pi1, p−i) = pi

N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

pk1
1 (1− p1)

N1−k1−1CN2
k2

pk2
2 (1− p2)

N2−k2)U1(T, k1 + k2)

+(1− pi)
N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

pk1
1 (1− p1)

N1−k1−1CN2
k2

pk2
2 (1− p2)

N2−k2)U1(S, k1 + k2)

= (2pi − 1) ∗ A1(N, p1, p2)

In the same way we can write the utility of a relay i of class 2 as:

Vi
2(pi2, p−i) = (2pi − 1) ∗ A2(N, p1, p2)

where A1(N, p1, p2), A2(N, p1, p2) are defined as follows:

A1(N, p1, p2) =
N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

pk1
1 (1− p1)

N1−k1−1CN2
k2

pk2
2 (1− p2)

N2−k2)U1(T, k1 + k2),

and

A2(N, p1, p2) =
N1

∑
k1=0

N2−1

∑
k2=0

(CN2−1
k2

pk2
2 (1− p2)

N2−k2−1CN1
k1

pk1
1 (1− p1)

N1−k1)U2(T, k1 + k2).

As motivated in the proof of proposition (6.3.7), a mixed Nash equilibrium(p∗1 , p∗2) is
obtained here when

A1(N, p∗1 , p∗2) = A2(N, p∗1 , p∗2) = 0. (6.12)

Scenario 2: The utility of an active user of Class 1 is given by:

Vi
1(pi1, p−i) = pi

N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

pk1
1 (1− p1)

N1−k1−1CN2
k2

pk2
2 (1− p2)

N2−k2)U1(T, k1 + k2)− (1− pi)α

= pi

N1−1

∑
k1=0

N2

∑
k2=0

(CN1−1
k1

pk1
1 (1− p1)

N1−k1−1CN2
k2

pk2
2 (1− p2)

N2−k2)[U1(T, k1 + k2) + α]− α

and utility of user i from Class 2 writes

Vi
2(pi2, p−i) = pi

N1

∑
k1=0

N2−1

∑
k2=0

(CN2−1
k2

pk2
2 (1− p2)

N2−k2−1CN1
k1

pk1
1 (1− p1)

N1−k1)[U2(T, k1 + k2) + α]− α
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By replacing, Uj(T, k1 + k2) by Uj(T, k1 + k2) + α in the first case we obtain the same
conclusions. The proof is thus similar to the Scenario 1.Hence the existence of a mixed
Nash equilibrium. Now let

C(i) =
N1−2

∑
k1=0

N2−2

∑
k2=0

P(K1 = k1, K2 = k2)riPsucc(T, k1 + k2 + ei + 1)

for user i, where ei = 1 if user i is active and ei = 0 otherwise. We can thus rewrite the
expressions of A1(N, p∗1 , p∗2) and A2(N, p∗1 , p∗2) as follows:

A1(N, p∗1 , p∗2) = r1 p2C(1)− r1(1− p2)C(0)− gτ (6.13)

A2(N, p∗1 , p∗2) = r2 p1C(1)− r2(1− p1)C(0)− gτ (6.14)

It follows that, A1(N, p∗1 , p∗2) = A2(N, p∗1 , p∗2) = 0 =⇒

p2C(1)− (1− p2)C(0) =
g1τ

r1
(6.15)

p1C(1)− (1− p1)C(0) =
g2τ

r2
(6.16)

letting
g1τ

r1
=

g2τ

r2
we have, p1 = p2. This completes the proof of (i).

Now, let γ1 =
g1τ

r1
, γ2 =

g2τ

r2
then from (6.15) and (6.16) we have:

(p2 − p1)C(1) + (p2 − p1)C(0) = γ1 − γ2

⇒ (p2 − p1)(C(0) + C(1)) = γ1 − γ2

Since, C(0) > C(1) > 02, then, γ1 > γ2 ⇒ p2 > p1. This tells that in order to have
fewer nodes active in class 1 we should allocate smaller reward. However, if we come
back to the definition of Ψ1 we have,

r1Psucc(T, Ψ1)− g1τ = 0 ⇒ Psucc(T, Ψ1) =
g1τ

r1
>

g2τ

r2

⇒ r2Psucc(T, Ψ1) > g2τ ⇒ Psucc(T, Ψ1) > Psucc(T, Ψ2)

Under assumption A we have, Ψ2 > Ψ1.Hence the proof of (ii).

The last result allow us to extend the the minority game with only one threshold
to a minority game with several thresholds allowing to control the average number of
active users in each class at equilibrium. Due to the complexity of the expressions, it’s
in general difficult to obtain an explicit solution of (6.12). We are able however to obtain
numerical solution as shown in Fig. 6.2.

2This comes from the fact that the more number of active nodes, the less is the probability of obtaining
the reward for a tagged node.
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Figure 6.2: The mixed Nash equilibrium: multi-class, where g1 = 0.8× 10−4, g2 = 0.5× 10−4, r2 =
0.15, λ = 0.03, τ = 100, N1 = 20, N2 = 20

6.5 Distributed reinforcement learning algorithm

In this section we introduce a distributed reinforcement learning algorithm: it permits
to relays to adjust strategies they play over time in the framework of the DTN MG de-
signed in section 6.2. The analysis of convergence of the algorithm relies on a stochastic
model that gives rise to an associated continuous time deterministic dynamic system.
It will be proved that this process converges almost surely towards a stationary state
which is characterized as ǫ-approximate Nash equilibrium.

In DTNs, limited computational power and low energy budget of relays requires
adaptive and energy-efficient mechanisms letting relays adapt to operating conditions
at low cost. The learning algorithm proposed here matches this reality of DTNs since,
as we shall see, it has the following attractive features:

• It is genuinely distributed: strategy updating decision is local to relays;

• It depends uniquely on the realized payoffs: nodes utilize local observations to
estimate their own payoffs;

• It uses simple behavioral rule in the form of logit rule.

We assume that each relay node i has a prior perception xi of the payoff perfor-
mance for each action (To be active, or not), and makes a decision based on this piece
of information using a random choice rule. The payoff of the chosen action is then
observed and is used to update the perception for that particular action. This proce-
dure is repeated round after round, each round of duration τ generating a discrete time
stochastic process which is the learning process.

For notation’s sake, denote A = {T, S} the set of pure strategies, and ∆i is the set of
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mixed strategies for player i with i ∈ {1, ..., N}. Let Vi(.) the payoff function for player
i. The algorithm works in rounds of duration τ, at round k, each relay node i takes an
action ak

i according to a mixed strategy πk
i = σi(xk

i ) ∈ ∆i. The fully mixed strategy is
generated according to the vector xk

i = (xk
ia)a∈A which represents its perceptions about

the payoffs of the available pure strategies. In particular, relay node i’s fully mixed
strategies are mapped from the perceptions based on the logit rule:

σia(xi) =
eβxia

eβxiT + eβxiS
(6.17)

where β is commonly called the temperature of the logit. The temperature has a smooth-
ing effect: when β→ 0 it leads to the uniform choice of strategies, while for β→ ∞ the
probability concentrates on the pure strategy with the largest perception. We assume
throughout that σia is strictly positive for all a ∈ A.

At round k, the perceptions xk
ia will determine the mixed strategies πk

i = σi(xk
i ) that

are used by each player i to choose at random action T (to be active) or S (to be silent).
Then each player estimates his own payoff ũk

i , with no information about the actions or
the payoffs of the other players, and uses this value (ũk

i ) to update its perceptions as:

xk+1
ia =

{
(1− γk)xk

ia + γkũk
i if ak

i = a

xk
ia otherwise,

(6.18)

where γk ∈ (0, 1) is a sequence of averaging factors that satisfy ∑
k

γk = ∞ and ∑
k

(γk)2
<

∞ (examples of such factor are γk =
1
k

or γk =
1

1 + k log k
). A player only changes the

perception of the strategy just used in the current round and keeps other perceptions
unchanged. Algorithm (3) summarizes the learning process. The discrete time stochas-
tic process expressed in (6.18) represents the evolution of relay node perceptions and
can be written in the following equivalent form:

xk+1
ia − xk

ia = γk[wk
ia − xk

ia], ∀i ∈ {1, .., N}, a ∈ A (6.19)

with

wk
ia =

{
ũk

i if ak
i = a

xk
ia otherwise.

(6.20)

In what follows we will prove that this algorithm can attain a steady state for the
coordination process among players. Also, the information it needs to operate is mini-
mal.

6.5.1 Convergence of the Learning Process

Based on the theory of stochastic algorithms, the asymptotic behavior of (6.19) can be
analyzed through the corresponding continuous dynamics [16]:

dx

dt
= E(w|x)− x, (6.21)
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Algorithm 3 Distributed reinforcement Learning Algorithm

1: input: k = 1, each relay node i chooses its action (T or S) according to distribution pi and
set its initial perception value x0

i = 0.
2: while max(|xk+1

iT − xk
iT |, |xk+1

iS − xk
iS|) > ǫ do

3: Each relay node i updates its fully mixed strategy profile at iteration k according to (6.17).

4: Relay node i selects its actions using its updated fully mixed strategy profile.
5: Relay node i estimates its payoff ũk

i .
6: Relay node i updates its perception value according to (6.19).
7: k← k + 1
8: end while

where x = (xia, ∀i ∈ {1, .., N}, a ∈ A) and w = (wia, ∀i ∈ {1, .., N}, a ∈ A).

Let us make equation (6.21) more explicit by defining the mapping from the percep-
tions x to the expected payoff of user i choosing action a as Gia(x) = E(Vi|x, ai = a).
Proposition 6.5.2. The continuous dynamics (6.21) may be expressed as

dxia

dt
= σia(Gia(x)− xia) (6.22)

Proof. Using the definition of the vector w, the expected value E(w|x) can be computed
by conditioning on player i’s action as:

E(wia|xia) = πiaU(a, π−i) + (1− πia)xia

= σiaGia(x) + (1− σia)xia (6.23)

which with (6.21) yields (6.22).

This can be interpreted as follows: when the difference between the expected payoff
and the perception value is large, the perception value, from (6.19), will be updated
with a large expected value wk

ia − xk
ia and this difference will be reduced.

In the following theorem, we prove that the learning process admits a contraction
structure with a proper choice of the temperature β .

Theorem 6.5.2.1. Under the logit decision rule (6.17), if the temperature satisfies β <
1

nsr
,

then the mapping from the perceptions to the expected payoffs G(x) = [Gia(x), ∀i ∈ {1, .., N}, a ∈
A)] is a maximum-norm contraction.

Proof. Recall that Gia(x) is the expected payoff of relay node i choosing action a given
the perceptions for all players x. Assume the chosen action is to be active (T), then
GiT(x) can be written as:

GiT(x) =
N

∑
j=0

nsrPsucc(T, j)CN
j (σiT(xi))

j(1− σiT(xi))
N−j − gτ
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Now consider the difference GiT(xi) − GiT(x̂i) given two arbitrary perceptions xi

and x̂i of a relay node i :

|GiT(xi)− GiT(x̂i)| = |σiT(xi)
N−1

∑
j=1

CN−1
j−1 (σiT(xi))

j−1(1− σiT(xi))
N−jU(T, j)

−σ̂iT(x̂i)
N−1

∑
j=1

CN−1
j−1 (σ̂iT(x̂i))

j−1(1− σ̂iT(x̂i))
N−jU(T, j)|

≤ |σiT(xi)
N−1

∑
j=0

nsr
(

CN−1
j (σiT(xi))

j(1− σiT(xi))
N−j
)

−σ̂iT(x̂i)
N−1

∑
j=0

nsr
(

CN−1
j (σ̂iT(x̂i))

j(1− σ̂iT(x̂i))
N−j
)
|

≤ |σiT(xi)nsr− σ̂iT(x̂i)nsr|
≤ nsr|σiT(xi)− σ̂iT(x̂i)|

We know that σia(xi) is continuously differentiable, then by the mean value theorem,
there exists x̄ia = δ(xia − x̂ia) with 0 < δ < 1 such that:

σiT(xi)− σ̂iT(x̂i) =
eβxiT

∑a∈A eβxia
− eβx̂iT

∑a∈A eβx̂ia

= β
[ eβx̄iT (∑a∈A eβx̄ia)− e2βx̄iT

(∑a∈A eβxia)2 (xiT − x̂iT)− ∑
a
′∈A,a′ 6=T

β
eβx̄

ia
′ eβx̄iT

(∑a∈A eβxia)2 (xia
′ − x̂ia

′ )
]

= β
[
CT(xiT − x̂iT)− ∑

a
′∈A,a′ 6=T

βCa
′ (xia

′ − x̂ia
′ )
]

where CT =
eβx̄iT (∑a∈A eβx̄ia)− e2βx̄iT

(∑a∈A eβxia)2 and Ca
′ =

eβx̄
ia
′ eβx̄iT

(∑a∈A eβxia)2 . We can easily observe

CT = ∑
a
′∈A,a′ 6=a

Ca
′ and 2Ca ≤ 1. Then:

|σiT(xi)− σ̂iT(x̂i)| ≤ βCT|xiT − x̂iT|+ ∑
a
′∈A,a′ 6=T

βCa
′ |xia

′ − x̂ia
′ |

≤ β(CT + ∑
a
′∈A,a′ 6=T

Ca
′ )||xi − x̂i||∞

≤ β||x− x̂||∞. (6.24)

Combining (6.24) and (6.24), we obtain

|GiT(x)− GiT(x̂)| ≤ βnsr||x− x̂||∞

We obtain the same result when player i chooses to be silent (S). Observing that since by

the minority game rule GiT(·)GiS(·) ≤ 0, then if β <
1

nsr
, indeed G(x) is a maximum-

norm contraction.
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Based on the property of contraction mapping, there exists a fixed point x∗ such that
G(x∗) = x∗. In the following theorem we show that the distributed learning algorithm
also converges to the same limit point x∗.
Theorem 6.5.2.2. If G(x) is a ||.||∞-contraction, its unique fixed point x∗ is a global attrac-
tor for the adaptive dynamics (6.22), and the learning process (6.19) converges almost surely
towards x∗. Moreover the limit point x∗ is globally asymptotically stable.

Proof. Since G(x) is a ||.||∞-contraction, it admits a unique fixed point x∗. According
to general results on stochastic algorithms the rest points of the continuous dynamic
(6.22) are natural candidates to be limit point for the stochastic process (6.19). All to-
gether with ([16], corollary 6.6), we have the almost sure convergence of (6.19), given
that we exhibit a strict Lyaponuv function φ.
Now let φ(x) = ||xia − x∗||∞, then φ(x∗) = 0, φ(x) > 0, ∀x 6= x∗. Let i ∈ {1, ..., N}, a ∈
A be such that φ(x) = |xia − x∗ia|. If xia ≥ x∗ia, then φ(x) = xia − x∗ia. Since Gia(x)
is a maximum norm contraction, there exist a Lipschitz constant ξ such that Gia(x)−
Gia(x∗) ≤ ξ(xia − x∗ia), and Gia(x∗) = x∗ia. All together combined with equation (6.22),
we can write:

dφ(x)

dt
=

d(xia − x∗ia)
dt

=
dxia

dt
= σia(Gia(x)− xia) = σia(Gia(x)− Gia(x∗) + x∗ia − xia)

≤ σiaξ(xia − x∗ia) + x∗ia − xia = −(1− σiaξ)φ(x) < 0, ∀x 6= x∗.

and a similar argument for the case xia ≤ x∗ia also shows that
dφ(x)

dt
< 0, ∀x 6= x∗. Thus

the function φ(x) is a strict Lyaponuv function and x∗ is globally asymptotically stable,
hence the proof.

6.5.3 Approximate Nash Equilibrium

From lemma (6.5.2.1) and theorem (6.5.2.2), we have:

Gia(x∗) = E(Vi|x∗, ai = a) = x∗ia.

This is a property of the equilibrium (x∗) of the distributed learning algorithm: its value
x∗ia is an accurate estimation of the expected payoff in the equilibrium. Moreover we
show that the fully mixed strategy

p∗ = (σ∗ia =
eβx∗ia

eβx∗iT + eβx∗iS
, ∀a ∈ A, i ∈ {1...N})

is an approximate Nash equilibrium.
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Proposition 6.5.4. Under the Logit decision rule (6.17), the fully mixed strategy p∗ = σ∗(x∗)
at the equilibrium x∗ is a ǫ-approximate Nash equilibrium for our game (proposition 6.3.7) with

ǫ = − 1
β ∑

a∈A

σ∗ia(ln(σ
∗
ia)− 1).

Proof. A well-known characterization of the logit probabilities gives:

σia(x∗) = arg max
σi=[σiT ,σiS]

∑
a∈A

σiaE(Vi|x∗, ai = a)− 1
β ∑

a∈A

σia(ln(σia)− 1)

=
eβE(Vi |x∗,ai=a)

eβE(Vi |x∗,ai=T) + eβE(Vi |x∗,ai=S)
=

eβx∗ia

eβx∗iT + eβx∗iS
,

and since ([21], pp.93)

max
σi

∑
a∈A

σiaE(Vi|x∗, ai = a)− 1
β ∑

a∈A

σia(ln(σia)− 1) ≤ max
σi

∑
a∈A

σiaE(Vi|x∗, ai = a)

then, we have:

∑
a∈A

σ∗iaE(Vi|x∗, ai = a) ≥ max
σi

∑
a∈A

σiaE(Vi|x∗, ai = a)− ǫ

where ǫ = max
i∈{1...N}

{− 1
β ∑

a∈A

σia(ln(σia)− 1)}.

Hence the fully mixed strategy p∗ = σ∗(x∗) in the equilibrium x∗ is a ǫ-approximate
Nash equilibrium.

Observe that the parameter ǫ illustrates the effect of the temperature β. A larger ǫ
(smaller β) means worse learning performance.

6.6 Application : Two-hops routing and exponential inter-contacts

In the previous sections we presented under a general context of DTN how a controlled
minority game can be used to induce a stable cooperative behavior among the relays
without actual cooperation. So far we assumed that the inter-contact time between
nodes follows a random distribution and relay nodes can adopt any relaying policy.
In this section and for the numerical analysis, we will assume that relay nodes use the
two hop routing scheme, in which any mobile that receives a copy of the packet from
the source can only forward it to the destination. The time between subsequent contacts
of a node with any other node in the network is now assumed to follow an exponential
distribution with parameter λ > 0. The validity of this model for synthetic mobility
models has also been discussed in [4]. In particular, regarding the rewarding policy
adopted by the source nodes, we assume that upon successful delivery of a message,
the relay node receives a positive reward R if and only if it is the first one to deliver the
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message to the corresponding destination.
Under those assumptions, we can obtain the expressions of different quantities: in par-
ticular the probability that an active node relays a copy of a received packet to destina-
tion within time τ is 1−Qτ where the expression of Qτ is given by [11]:

Qτ = (1 + λτ)e−λτ. (6.25)

Now, the probability of successful delivery of the message for an active node is:

Psucc(T, NT) = (1−Qτ)
NT−1

∑
k=1

CNT−1
k−1

(1−Qτ)k−1QNT−k
τ

k

=
1−QNT

τ

NT
(6.26)

where Ck
h =

(
k

h

)
, such that each node seeks to be the first to deliver a given message

to its destination.

6.7 Numerical Results

In this section, we provide a numerical analysis of the performance achieved by DTN
nodes following the distributed reinforcement learning mechanism proposed in section
6.5. First, we focus on the achieved performance in a homogeneous network where all
nodes have the same energy constraint (g). Second, we examine the performance of
our algorithm in a multi-class framework (heterogeneous DTN), where we consider
the existence of two classes of nodes. Then we will verify the intuitive result obtained
in proposition (6.4.5) which states that by allocating smaller reward to a class, fewer
nodes of this class will choose to be active. The results presented here take into account
the utility functions defined in Scenario 1. The parameters λ = 0.03, τ = 100 are used
through out the numerical analysis.

Homogeneous DTN The performance of our learning algorithm in the homogeneous
case is shown in Fig. 6.3. In this case we consider g = 6.6 × 10−4, N = 40. We set

the sequence γk =
1
k

for all iterations k, and the temperature β → ∞, note that this

choice of β is a good deal since it allows our algorithm to attain the Nash equilibrium
(proposition (6.5.4)).

In Fig. 6.3(a) we observe that the probability to be active for a node i (pi, ∀i ∈
{1...N}) converges to the symmetric equilibrium (p∗ = 0.35) which is the solution of
(6.6). Moreover, it is interesting to notice that the average number of active nodes at the
equilibrium approaches the value of (Ψ = 15) where Ψ defines the comfort level of the
minority game in pure strategy (Fig. 6.3(b)). Such behavior is, in fact, a convergence
to the strictly mixed Nash equilibrium discussed in proposition (6.3.7). The same ob-
servation is recorded in Fig. 6.3(c,d) where a smaller energy consumption parameter
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(b) g = 6.6× 10−4
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(d) g = 3.3× 10−4

Figure 6.3: Learning the mixed strategy: homogeneous case.

g = 3.3× 10−4 yields a larger activation rate which can be noticed in the convergence
of pi to the mixed Nash equilibrium (p∗ = 0.75). As a result, there is in average more
active nodes (Ψ = 30) at the equilibrium.

Heterogeneous DTN The performance of the learning algorithm in the heteroge-

neous DTN is investigated in two cases, symmetric (i.e. when
g1

r1
=

g2

r2
) and asymmetric

(
g1

r1
6= g2

r2
). We consider first the symmetric case. We consider g1 = 0.8× 10−4, g2 =

0.5 × 10−4, N1 = 20, N2 = 20 then setting r2 = 0.15 we obtain r1 = 0.24. In Fig.
(6.4)(a) we observe that the probability of being active of nodes of both classes (p1, p2)
converges to the symmetric Nash equilibrium discussed in proposition (6.4.5), and the
value it converges to (p∗1 = p∗2 = 0.78) is the solution of the equation (A1(N, p∗1 , p∗2) =
A2(N, p∗1 , p∗2) = 0) as shown in Fig(6.2). The average number of active nodes, depicted
in Fig (6.4)(b), converges to Ψ = 30 that satisfies the relation (6.10).

In Fig(6.5), we depict the asymmetric case, when g1 > g2 and r1 <
g1r2

g2
. In
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Figure 6.4: Learning the mixed strategy: heterogeneous symmetric case, where: g1 = 0.8× 10−4, g2 =

0.5× 10−4, r2 = 0.15.

Fig(6.5)(a,c,e) we observe that (p2 > p1), in other words, the nodes with high energy
constraint (class 1)are less active, thus by allocating smaller reward (r1), fewer nodes
of class 1 are active. Notice in Fig(6.5)(b,d,f) that the average number of active nodes
Ψ1 ≤ NT < Ψ2.

6.8 Conclusions

Coordination of mobiles which are part of a DTN is a difficult task due to lack of per-
manent connectivity. Operations in DTNs, in fact, do not support the usage of timely
feedback to enforce cooperative schemes which may be implemented on mobile nodes.
Nevertheless, coordination is worth indeed in order to attain efficient usage of re-
sources. Moreover, selfish behavior and activation control becomes core when owners
of relay devices may need incentive to spend memory and battery.

To this respect, our approach provides a novel mechanism designed using the the-
ory of Minority Games (MGs). MGs are non-cooperative games which apply to contexts
where the payoff of players decreases with the number of those who compete. We could
design a reward mechanism for two hop routing protocols that runs fully distributed
and with no need for any dedicated coordination protocol. I.e., the source controls how
many nodes to activate in order to attain a target message delivery probability. It does
so by setting the reward for nodes who deliver first and such in a way to avoid over
provisioning of activated relays. Finally, we developed a distributed stochastic learning
algorithm able to converge to the optimal solution.

Future works will investigate how to extend the models and the properties of con-
vergence of our algorithm to other types of networks such as cognitive radios and peer-
to-peer networks.
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(b) r1 = 0.056, r2 = 0.05, Ψ1 = 7, Ψ2 = 10.
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(c) r1 = 0.2, r2 = 0.14, Ψ1 = 26, Ψ2 = 28.
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(d) r1 = 0.2, r2 = 0.14, Ψ1 = 26, Ψ2 = 28.
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(e) r1 = 0.12, r2 = 0.125, Ψ1 = 15, Ψ2 = 25.
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(f) r1 = 0.12, r2 = 0.125, Ψ1 = 15, Ψ2 = 25.

Figure 6.5: Learning the mixed strategy: heterogeneous asymmetric case, where: g1 = 0.8× 10−4, g2 =

0.5× 10−4.
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Part IV

Implementations and design of
experimental platforms
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Chapter 7

Evolutions and integrations in
matlab LTE simulator

7.1 Introduction

This chapter is dedicated to the development of a simulation platform. In networking
research, it is a common issue to provide reliable and repeatable experimentations for
the purpose of validations or explorations. On one hand physical experiments on de-
vices are liable to provide realistic measurement data, given some measurement errors
and bias depending on the environment. Besides it is not always possible to afford
having the appropriate equipment for every single test and even when it is possible
attrition of repetition is yet another limitation. A regular way of proceeding is then
to first rely on simulators, which will support tests without any risk of damage errors
and/or severe crashes, this before implementations on board of real devices. However,
simulators are not necessarily standardized and there always exists a gap between the
results outputted by a simulator and results of same experiments that would be ob-
tained on real devices. It is thus necessary, for the validation of the developed ap-
proaches throughout a research project to use a reliable and well-constructed simulator
rather than self-developed codes. A reliable simulator needs however to be inspired
from standards and specifications documents. There are several such simulators in the
literature (for example: NS-2 or 3, Omnet++, etc) that are usually employed to simu-
late realistic experiments in a networking area. The most popular simulators like, NS
2 or even Omnet ++ however do not implement all the necessary features to simulate
for example a system level scenario for the latest mobile communication standards (in
our case LTE). This fact has motivated the development of new simulators and the evo-
lution of existing ones(for example: Although NS-3 is the third version of the NS-2,
it presents totally differently and bases on C++ object oriented logic rather than TCL
scenario description codes in NS-2).

In the scope of the ECOSCELLS project, which includes the major part of the work
achieved in this thesis, it has been question for validation purpose, to select a simu-
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lator. Indeed, as we mentioned before, simulation is a crucial point in validation of
algorithms or heuristics which are generally based on constrained mathematical mod-
els. We were interested in validation of different algorithms developed by the partners
in the project, that will operate at the system level. The objective of system level simu-
lations is to allow for the analysis of several aspects of network performances observed
from the global functioning of the network. For its flexibility and for the specific context
of the ECOSCELLS project, we selected the matlab LTE simulator from the University
of Vienna. The simulator was chosen for different other reasons and in conjunction
with the partners. This simulator thoroughly developed by a network team from uni-
versity of Vienna, directed by Josep Colom Ikuno, Martin Wrulich and Markus Rupp,
yet does not include all the necessary features needed for integration and simulation of,
for example, FFR, ICIC or MRO algorithms. Our approach has then been to develop,
adapt and integrate new features in the simulator in order to support simulations of
such algorithms in a realistic environment.

7.1.1 Main contributions

Throughout this chapter we will present the simulator with its building blocks and
highlight its lacks in necessary features. We will mention our development procedure
and the contributions brought to the enhancement of the simulator. As contributor
to algorithm design and integration in the scope of the ECOSCELLS project, we put in
front the different analysis made to the simulator and present a diagram of implementa-
tion. The rest of the chapter is organized as follow. In section 7.2 we precise our specific
context of implementations, we define the concept of system level simulations and give
a description of the simulator with its functional analysis. In section 7.3 we develop
the different integrations and development to to be done on the system level simulator
for its evolution with new features. Section 7.4 presents the simulation and experimen-
tation settings and also decline the results obtained through simulations. Section 7.5
eventually concludes this chapter.

7.2 LTE System level simulator from university of Vienna

In this section we detail the structure, composition and goals of the simulator. First of
all we define what we understand by system level simulations.

7.2.1 System level simulations (concerns and metrics)

The system level simulations in the mobile wireless network are dedicated to observa-
tion of phenomenon such as scheduling, interference, mobility and propagation. This
includes the evaluation of the performances of the network entities at the layers 2 and
3 in addition to the environment of propagation. At the UE, some pre-simulated out-
puts map from the mac layer are used to make the correspondence between variables

157



Chapter 7. Evolutions and integrations in matlab LTE simulator

such as channel conditions (some propagation models are generally used to simulate
the channel conditions ex: Okumura model, the COST-231 Walfish-Ikegami model,. . .),
mobility and the obtained BLER. Referring to the LTE stack architecture (figure 7.1) the
operations are concerned mainly with the RLC layer at layer2. At the eNodeBs, the
physical layer is also abstracted by simplified models that capture its essential char-
acteristics. The concerned mechanisms are essentially Inter cell RRM(for example FFR
algorithms operating over the X2 interface), Resource Bearer Control, CMC, RAC, Mea-
surements and scheduling on top of RRC mechanisms working with simulated outputs
of the RLC layer. The LTE simulator from university of Vienna develops all the afore-
mentioned structure that we detail in the following.

Figure 7.1: LTE Stack architecture and system level entities

7.2.2 Description of the simulator

As previously announced, the purpose of the LTE system layer simulator is to observe
effects of issues such as cell planning, scheduling, or interference in the cellular net-
work, in our case the LTE network. A run of simulation operates over a Region Of
Interest (ROI) in which the eNodeBs and UEs are positioned for a simulation length in
Transmission Time Intervals (TTIs) which is defined at the beginning of the simulation.
The simulator operates in three distinct phases:

• Input parameter description.

• Initializations, loading of physical layer traces and main loop.

• Traces saving and outputs generation.

Those different phases of the simulator operation are represented on figure 7.2. Each
phase is also represented by a given matlab script in the execution hierarchy:
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• LTE_sim_launcher.m : This is a batch file that allows loading a configuration
file of choice of the form "LTE_load_params_xxx.m" where ’xxx’ represents the
specific scenario to be launched. A call to the execution of the LTE_sim_main.m
main simulation file is also done.

• LTE_sim_main.m : It is the main simulation file that contains the initialization
and the main loop of the simulator.

• LTE_load_params.m : Holds the list of the different parameters that can be con-
figured depending on the scenario.

If we go back to the building block structure, the simulator is composed of two main
building blocks, namely the link measurement model and link performance model. A
detailed picture of the composition of each building block can be found in [55]. Es-
sentially, the link measurement model defines the network layout that can be either
generated or loaded from some network planning tool and the mobility management
model which influences the interference structure. The traffic model is also defined
here as well as the resource scheduling strategy adopted at the eNodeBs. Power allo-
cation strategy on resource blocks, propagation models and precoding scheme are set
in this block. On the other hand, the link performance model, which is subsequent to
the link measurement model, includes features such as link adaptation strategy (CQIs,
SINR and MCS mapping) and SINR averaging methods (EESM or MIESM). The execu-
tion flow of the simulator is presented in figure 7.3 where→ represents the data flow
in and out of the simulator’s link abstraction model. For the scope of the ECOSCELLS
project some necessary features are thus already implemented allowing essentially to
simulate multi-cell, multi users scenarios, frequency reuse mechanisms light mobility
and handover procedure, and scheduling.

Figure 7.2: Operational structure and organization of the simulator
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Figure 7.3: Execution flow of the main loop of the simulator

7.2.3 Functional analysis

For our implementations purpose it was necessary to identify the lacking features for
the algorithms that are going to be implemented. A thorough functional analysis of the
simulator has allowed to identify the absence of essentially the X2 interface, dynamic
power allocation, minimum bit rate requirement for QoS provision, exchange of specific
control messages between UEs and eNodeBs instead of only classical feedbacks(PMI,
CQIs, Layers, quantized SINR...), channel models with non-hexagonal structure and
complete implementation of handover procedures. Particularly as contributor to the
project we focused on the following implementations :

• Specific exchanges in the uplink : This new feature is dedicated to additional
information to be forwarded to the eNodeB by the UE; it includes exchange of
specific neighbors interferences and received signal power on allocated resources
blocks.

• Generation of neighbors lists on non-hexagonal network structure : The original
implementation of the simulator allows only simulation of an hexagonal network.
Moreover, only the seven closest neighbors are illegible to appear in the node
neighbor list. Here we added some flexibility to this feature using a pathloss
respective neighbor list. A maximum number of neighbors have also been set to
avoid situations of handover to unknown neighbors.

• Integration of X2 API developed by Bell Labs Alcatel lucent : We have integrated
in the main loop some functions of the X2 interface implemented by partners from
Bell Labs Alcatel lucent.

• Definition of new private X2 message for ICIC : An additional ICIC specific X2
private message was created for utilization in integrated algorithms.
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7.3 Development and integrations

Recall that the objective of using the LTE system level simulator is to simulate and
evaluate the performances of our algorithms. Specifically we have focused of the im-
plementation of the Bi-levels optimization algorithm for self-organization in the small-
cells network. The algorithm is distributed and aims at performing fractional frequency
reuse for small-cells networks (e.g. LTE ) including users association. The proposed ap-
proach is therefore distributed and allows the bases stations, using a light collaboration,
to achieve an efficient utilization of the frequencies, with the optic of maximizing the
total system utility. The model includes both downlink and uplink transmissions and
assume a resource allocation scheme with a single user per RB. The algorithm is pre-
sented in chapter 2 and is based, at the higher layer on the gradient descent algorithm
and at the second layer on a learning algorithm namely the pursuit algorithm. In figure
7.4 we depicted the exchange flow of information which have motivated the imple-
mentation of additional features in the simulator. The exchange of information works
as follow :

(1) The UE collects interference informations from each neighbors over every allo-
cated RBs and forward the obtained vector to its serving eNodeB.

(2) Once information is received at the eNodeB from all the attached users, an inter-
ference matrix is built that contains interferences information from each neighbors
(M neighbors on the figure).

(3) Interferences load are then put on format for each neighbors

(4) Finally, each neighbor receives on the X2 interface the interference informations
concerning all the covered mobiles.

(1)

(2)
(3) (4)

Figure 7.4: Exchange of information sequence
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The integration of our algorithm holds in two different parts. We design in a first
part a new scheduler based on the existing Round Robin(RR) scheduler of the simulator.
The new scheduler works in the following steps :

1- Collect users feedbacks for each of the "k" RBs: using the new feedbacks structure.

2- Make the interference data on format as a matrix : Double[nrNeighbors][k] B, for
future exchange with neighbors.

3- Share local ICIC data on the X2 channel with interfering neighbors, Double[k] a
and Double[2][k] b.

4- Receive ICIC data from interfering neighbors. Here, since users are handled by
the eNodeBs sectors and there exists an X2 interface only between eNodeBs, a
new procedure was initiated at the integration of X2 API that allows to collect
received ICIC messages at eNodeBs and forward to the destination sector.

5- Express the next powers vector using the gradient descent algorithm. We have
defined the following function :

function Vector<double> P = dynamicPowerOpti (Vector<double> currentP,
Double[nrNeighbors][k] a’, Double[nrNeighbors][2][k] b’)

6- Make optimized power assignation

7- Perform RBs allocation using RR scheduling functions.

The second stage of our integrations consists in the implementation of the pursuit
Algorithm inside the simulator. In figure 7.5 we present the work flow diagram of the
algorithm also described in chapter 2.

The implementation is done in the following steps :

1- After calculation of the current SINR and expression of the corresponding utili-
ties, UEs must update their association strategies

2- The following function is then triggered:

function [int eNodeB_id, integer sub-band_id] = dynamicAssocOpti(Vector<Integer>
neighbor_eNodeBs, double current_SINR)

The function allows to select the best eNodeB among neighbors, iteratively, with
a common update process with other mobiles.

3- Trigger a handover request to the new access selected.

7.4 Simulations results

Next to the different integrations, we follow on with the simulation of our scheme in
a nearly realistic environment. We use the new version of the simulator, including the
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Figure 7.5: Execution flow of the pursuit algorithm

different implementations and integrations brought by the different partners and our-
selves. Note that the simulator is still in progress of development and at this stage
we cannot include all the settings of the simulation due to privacy terms. The simula-
tions here will then just compare the results obtained after simulation of our approach
with results obtained using the former implementation of round robin scheduling and
homogeneous power allocation in the simulator. The simulations framework includes
pedestrian straightforward mobility model, and the propagation environment is a pre-
generated volcano model from partners in the project(SIRADEL). Other settings are :

• System Frequency = 2.14Ghz

• Operating Bandwidth = 10Mhz
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• UEs are placed over the whole ROI (density is divided however by 5)

• Target sector: Center sector

• Number of TXs = 2

• Number of RXs = 2

• Transmission Mode = TxD(MIMO)

• Max Number of sector Neighbors = 21

• Simulation duration = 100 TTIs

• Latency time scale = 25 TTIs (used to calculate the average throughput)

• Network source = volcano (loaded)

• Shadow fading = not considered

• Micro-scale fading = volcano

• Antenna gain pattern = TS36.942

• Scheduler = round robin or stochastic gradient

By lack of time for full integration, the results presented in the following do not
include actual execution of handovers but the handovers advices are counted. In fig-
ure 7.6 we plot the mean BLER by RB for several eNodeBs and small cells of the net-
work. If we compare with figure 7.7 we can see that the power control applied at the
scheduler doesn’t affect ostensibly the resource allocation policy and the RBs allocation
patterns are very similar for both figures. This sets a common basis for comparison of
obtained performances. Note that the fluctuations of the BLER are essentially due to
the randomization of the wireless channel. In figure 7.8, we can see that for several eN-
odeBs the dynamic power allocation applies effectively on the allocated resource block.
Compared to figure 7.9 where all the eNodeBs use homogeneous power allocation pol-
icy over all the resources blocks, the power levels are set accordingly to reduce the
level of inter-cell interferences. Indeed, as we can notice from the figure 7.8 only small
cells bases stations that are more exposed to the inter-cell interferences phenomenon
have their power allocation vectors modified over time while homogeneous allocation
is optimal at the Macro eNodeB. On the basis of the convergence properties exposed in
chapter 2, we expect the power allocation vectors to stabilize over time. From figures
7.10 and 7.11 one can notice that the average data traffic on each site remain the same
with however a deep degradation of transmission in figure 7.11 that can be imputed to
stochasticity of the optimization method. Since users traffic model is full buffer, and the
allocated resource blocks are similar for both scenarios, we should expect the amount
of transmitted data to also be similar. Eventually we plot in figure 7.13 the throughput
obtained by each user using our ICIC mechanism, we also plot the average throughput
that easily compare with the average throughput obtained by users without any op-
timization and homogeneous power allocation in figure 7.12. Both approach seems to
achieve the same average level of throughput for user in the ROI at the last iteration de-
spite some bounces for our iterative approach. However we can notice that the capacity
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is more fairly distributed to some users that receive some more capacity when apply-
ing our ICIC scheme. The gap between the two simulated scenarios can also become
larger with the number of iterations. The statistics maintained on the number of han-
dovers allows to highlight the adaptivity of our algorithm which reduces the number
of advised HO procedure from 100% to less than 10% within a few iterations. Although
some users are still incited to proceed with handovers, we expect those remaining users
to stabilize with iterations. However since users are not actually tacking the handovers
advises, this metric only give some incite but does not really reflect the performances
of our approach.
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Figure 7.6: Schedulers traces over TTIs for several BSs using the classical round robin scheduler
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Figure 7.7: Schedulers traces over TTIs for several BSs using the stochastic gradient scheduler
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Power allocation on resource blocks
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Figure 7.10: Proportion of data transmitted by several
eNodeBs over TTIs when using RR scheduler
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Figure 7.11: Proportion of data transmitted by several
eNodeBs over TTIs when using the stochastic gradient
scheduler

7.5 Conclusion

In this chapter we have presented different aspects of integration and evolution of a
simulation plateform for the LTE network. We based on a public version for academic
use of the LTE system level simulator from university of Vienna. We have presented the
different evolutions brought to the simulator in order to integrate and simulate the self-
organizing scheme proposed in the firsts chapters of the thesis. The list of evolutions
have been presented as well as our integration policy of the proposed scheme. Eventu-
ally we have tried to compare using the classical Round Robin scheduler as a reference
case, the performances of the algorithms in a particular mobile network scenario. This
has allowed to confirm the announced performances of the bi-level self-organization
algorithm. However, since all the integration are not effectively implemented in the
simulator, the results obtained in this chapter are not exhaustive and full integration of
the algorithm will effectively present the out performances of our approach on existing
FFR mechanisms.
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Figure 7.12: Per user and average throughput and number of HO over TTIs obtained using the round
robin scheduler
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Summary and general discussion

In this thesis we have focused on application of Game theoretical tools such as learning
mechanisms, especially reinforcement learning algorithms to address system’s perfor-
mance evaluation in communication networks. With the growing density of current
networks, composed of several technologies and an increasing diversity of terminals at
the end users, a centralized approach of the network management has become partic-
ularly difficult. On one hand thanks to the improvements of modulation and coding
techniques for transmission, as well as radio access methods, the new technologies of
communications are now capable of offering very high bit rates to the end users. Sev-
eral technologies with considerable capacities have therefore emerged from telecom-
munication networks as well as computer science networks and are now merged in-
side the overall structure of the new Next Generation Networks. On another hand, the
improvement of processing capabilities of the user equipment has motivated design of
non-hierarchical networks where the mobile terminal plays a central role in distributed
and ad-hoc networks using proximity communications. This fuliginous progress in
the system capacity obeys to the well known law of Moore who predicted a period
often quoted as "18 months" for a doubling in electronic systems performances. The
scalability of the network, due to the popularization of modern communications, has
also incited the research community in finding some new ways of addressing the man-
agement of the network. Communications networks have thus become distributed by
nature and have lead to exploration of decentralized ways of conceiving the network
management.

Our approach in this thesis has been to take advantage of this distributed architec-
ture of the network environment to introduce some level of autonomy, self-configuration
and self-organization at the network agents. In a first place, we have addressed the
problem of user-network association in which mobile users of the network have to
select among a pool of access nodes, the one providing the best conditions of trans-
mission, given that other nodes seek for the same outcome. The problem has been
modeled as a non-cooperative game where the players are the mobile users and for
which we have defined the possible Nash equilibria. The notion of Nash equilibrium
was very important to us since it defines a stable state of the system in which no player
can improve its utility by unilateral deviation from the equilibrium. Different type of
utility functions have been modeled and we have shown that some fully distributed
reinforcement learning algorithms can be implemented on board of the mobile agent to
achieve the Nash equilibrium yielding better capacities for the user and thus improving
the network performances. In another work, we have combined access selection proce-
dures with distributed optimization in a framework of mobile communication technol-
ogy namely LTE-advanced networks, to address the inter-cells interferences cancella-
tion(ICIC) issue. We used the notion of stackelberg game and defined a bi-levels algo-
rithm performing joint dynamic power control for FFR using stochastic power control,
and attachment selection by means of a powerful distributed reinforcement learning
mechanism. Here also the approach was proved to be conclusive and relatively effi-
cient depending on appropriate time-scales selection and effectiveness of exchanges of
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data. Moving from hierarchical to non-hierarchical networks, the same technique of
distributed reinforcement learning mechanism has been employed to address a prob-
lem of routing configuration selection in DTNs. Indeed the control of the routing policy
is a crucial matter for performance improvement in DTNs in order to establish a trade-
off between energy expenditure and high successful delivery probability. In this type
of networks, the more the mobile relays are active, the higher the delivery probability
but indeed the more the energy cost for delivery is increased. By defining a specific
rewarding mechanism for successful delivery, we set an incentive policy allowing the
mobile agents to select the routing configuration that maximizes their personal reward
in trade of energy expenditure. Again our objective was to find a stable configuration
of the network in the form of Nash equilibrium. The computation of the Price of An-
archy allowed us to compute the maximal gap to the global optimum solution of our
problem. In DTNs the scalability of the population of users of the networks while be-
ing a major strength for an increased successful delivery probability, however limits the
impact of a single user on the outcome of the overall population. It is then difficult to
stick to the only concept of Nash equilibrium. Thus we have extended our analysis to
the notion of evolutionary stable equiliria which defines an evolutionary stable strat-
egy (ESS) profile of the population. We used the notion of ESS to study how a control
of message forwarding at the source node in the DTN can help to improve successful
delivery probability while satisfying a constraint on the total energy spent. Under this
framework of large population of competing relays, we analyzed the activation control
problem which defines the strategy by which a relay in the DTN can decide to partici-
pate or not to message relaying. We have computed the ESS (population profile) for our
activation control game and study the influence of some systems parameters on the ESS
as well as its behavior depending on the source forwarding control. So far the consider-
ation of energy constraint has focused on the number of relays involved in the relaying
but does include energetic level of relays and its evolution in time. To consider the
battery state in the decisions of relays, we use the concept of MDEG(Markov Decision
Evolutionary Games) for which the decision of mobile depends on the energy state in
which their are currently operating. This adds some level of complexity to our model
of activation control game while considering several assumptions of a more realistic
environment. In the same context of DTNs, we focused on a new model for coordina-
tion without cooperation in DTNs. This model bases on the concept of Minority games
for which we computed different type of pure and mixed Nash equilibria. We have
presented a two scale approach allowing the operator of the network to tune the rest
point of the defined competition in order to insure a QoS level or efficiency of the net-
work. We ended up by devising a distributed reinforcement learning algorithm using a
logit rule based updating mechanism. The performance evaluation of our approach by
numerical investigations has shown fast convergence and stability properties. As the
major parts of our work include testing and validations by simulations, we have been
involved during our thesis in several implementations and integrations of simulation
platforms. The last chapter of the thesis has then been dedicated to the different inte-
grations and development brought to a system level simulator for mobile networks. We
have presented our different contributions and the performances obtained in result of
the different integrations. Overall, we are convinced that diversity and auto reconfigu-
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rations can be exploited in the heterogeneous networks to design new architectures of
cooperation between the agents of the network, where autonomous learning agents can
interact to improve the overall and/or individual capacity of users of the network. The
application of the different distributed learning techniques developed throughout this
thesis are then liable to be applied in many other scenarios for network performance
optimization.

Some perspectives

Several directions are available in the following of this work in the area of wireless
communication networks.

Learning and hierarchical learning : Throughout our work we used some learning
algorithms for reinforcement learning, mainly classical LR−I mechanism by Sastry, and
the pursuit algorithm from the same authors, for convergence to pure Nash equilib-
rium. However, other reinforcement learning algorithms can be used in the same
framework developed in this thesis such as fictitious play, Q-learning, no-regret learn-
ing and other reinforcement mechanisms. As exposed in the theoretical background
section of the introduction, each learning algorithm can be used to match a specific net-
work scenario. For example, when the pure Nash equilibrium does not exist and there
always exists a mixed Nash equilibrium, the algorithm as it is converges to one of the
absorbing state, i.e., unit vector. Yiping et all [129], proposed a new algorithm, called
the linear reward-penalty algorithm, which is useful especially when a pure Nash equi-
librium does not exist and convergence to mixed Nash Equilibrium can be achieved.
Such algorithm is usually desirable when users consider load sharing between several
servers in case of multi-homing for example. The reinforcement learning algorithms are
also generally constrained from different aspects such as : appropriate parameters cal-
ibrations(step size...), number of state observations( switching from states to states) or
accuracy of the received feed-back. An approach to those limitations can be to consider
introduction of hierarchical learning algorithms, which allow to define an additional
layer where costs tuning and appropriate parameters calibration can be achieved on
top of the learning mechanism.

Robustness and seamless dynamic: We have studied different network architecture
mainly coexistence of different technologies with overlapping areas from one side and
DTN networks architectures from the other side. In our works we explored cases when
the population of users is homogeneous so that they have similar constraints and up-
dating patterns. We can assume different updating rules(step sizes for example) in
order to introduce some heterogeneity between users. Another aspect is related to
repartition of users over the coverages of coexisting technologies. We noticed that hav-
ing some users outside the area of coexistence, where the competition for better access
holds, leads to better performances in average, this because it can compensate the de-
faults of the strategies used in the area of coexistence. In an extension of this dynamic,
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we can study the impact of users mobility in this specific context, where users will al-
ternately enter an exit the area of competition. In DTN configurations from another
side, it would be interesting to study forwarding scheme with recovering capabilities
for nodes in the network. By allowing arrivals and departures of users in the networks,
we can simulate nodes recovering from infections, as arrivals of fresh nodes at the fol-
lowing of departure of some infected nodes. This configuration makes the system dy-
namic in the number of mobiles, a more realistic approach to a DTN case. However this
adds a higher complexity to the infection rate model as a fluid propagation model in a
tube with perforated holes. In the same context of DTNs, considering live time control
games, we restricted activation control in our analysis for the design of our learning
algorithm. It will be interesting to investigate the general case of live-time control with
actual partial activation, and study the conditions for stability of the learning process
with increased dynamic.
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Appendix A : Proof of optimal source forwarding control policy
in DTN

Proof of theorem 5.4.0.1 In the proof of this theorem we require the two following
lemma on the costs function H(y, u), and other general results.
Lemma 7.5.1. For a fixed number of users N in a local interaction, the costs function H is
concave in u for every given value of the population profile α(y).

Proof. For N fixed and a given value of the population profile α(y), let

hN(u) = (Qu
τ′)

N 1− (1− βα(y))N

Nα(y)
A− 1− (Qu

τ′)
N

N
η

with A = (1− PA(τ
′)) and η = (PA(τ

′)− PA(τ)) , from the expression of H(α(y), u).

If h is concave in u for any N then H(α(y), u) is also concave. Using β(u) = 1− Qu
τ

Qu
τ′

we

have,
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Let B = A + α(y)η; we express the derivative of hN(u):

dhN(u)
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=
−1

α(y)

[
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Let f (α(y), u) = Qu
τ′(1− α(y)) + Qu

τα(y) then f (0, u) = Qu
τ′ .

dhN(u)

du
=

1
α(y)

[
A f N−1(α(y), u)(− f ′(α(y), u))− B( f (0, u))N−1(− f ′(0, u))

]

=
1

α(y)

(
( f (0, u))N−1[A(− f ′(α(y), u))− B(− f ′(0, u))] +

A(− f ′(α(y), u))[ f N−1(α(y), u)− f N−1(0, u)]
)

We know that ˙(Qu
τ) ≤ ˙(Qu

τ′), f is decreasing in u and ˙(Qu
τ′) = ˙(Qu

τ′)(1 − α(y)) +
˙(Qu
τ′)α(y) then ˙(Qu

τ′) ≥ ˙(Qu
τ′)(1− α(y))+ ˙(Qu

τ)α(y) this implies that f ′(0, u) ≥ f ′(α(y), u)

and f N−1(α(y), u)− f N−1(0, u) is decreasing. Let’s show that A(− f ′(α(y), u))− B(− f ′(0, u))
is also decreasing.

A(− f ′(α(y), u))− B(− f ′(0, u)) = A[ f ′(0, u)− f ′(α(y), u)] + α(y)η f ′(0, u)
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⇒
d(A(− f ′(α(y), u))− B(− f ′(0, u)))

du
= Aα(y)( ¨(Qu

τ′)− ¨(Qu
τ)) + α(y)η ¨(Qu

τ′)

=
B
[
e−λuτ′((λτ′)2(1− u)2 + 2)− 2ue−λτ′
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(1− u)3

−
A
[
e−λuτ((λτ)2(1− u)2 + 2)− 2ue−λτ

]

(1− u)3

Though the negativity of this last expression has been observed for all the several set
of values we experimented, it is not obvious to see here. We will then assume that it is
negative and conclude that the function H is concave in u.
This completes the proof.

Lemma 7.5.2. Let ỹ∗ the solution of the equation H(y) = 0. The following assertions are
verified:

• Qu
τ′ is a decreasing function in u.

• Qu
τ is a decreasing function in u.

• ỹ∗ is a decreasing function in u .

• Under some specific conditions we have ỹ∗(ǫ) ≥ 1 otherwise ỹ∗(ǫ) ≤ 0 with ǫ a very
small positive number.

Proof. The proof of the two first points derive intuitively from the fact that the higher
the value of the source control the higher the chance for a given relay to deliver the
message to the destination. Thus Qu

τ′ and Qu
τ are decreasing functions in u. We prove

here the two last points.

• To show that ỹ∗ is a decreasing function in u, we first show that H is a non-
increasing function of y. Indeed, we have,

H(y) =

∞

∑
N=1
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[
(Qτ′)
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.

Only the term f (y) =
1− (1− βy)N

Ny
, in the expression of H is dependent on y.

For every parameters (other than y) fixed, we have:
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=
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176



Let’s show that (1− βy)N−1 ((N − 1) βy + 1)− 1 is negative. (1− βy)N−1 ((N − 1) βy + 1)−
1 ≤ 0⇒ (N − 1) βy+ 1 ≤ 1

(1− βy)N−1 which is true since
d((N − 1) βy + 1)

dy
|(y=0)=

d
(

1
(1−βy)N−1

)

dy
|(y=0)= β(N − 1) and

d2
(

1
(1−βy)N−1

)

d2y
=

β2 (N − 1) (N + 1)

(1− βy)N+2 > 0 .

Thus H is a non-increasing function of y.
Using lemma 7.5.1 we have i f ∃ u s.t H(u) = 0 for a given y then, u is unique in [0, 1].
∀y1 ≤ y2, H(y1, u) ≥ H(y2, u), then i f ∃ u1, u2 s.t. H(y1, u1) = H(y2, u2) = 0
then u1 ≥ u2 and ỹ∗ is a decreasing funtion of u.

• We have, H(y, u) = Vτ(F, y)− Vτ(F, y), let’s find a condition on τ and τ′ so that
H(y, u) ≥ 0,
⇒ Vτ(F, y) ≥ Vτ(F, y), ⇐⇒

U(τ, y)(
1

1− PF
+

1
1− PA(τ)

) ≥ U(τ, y)

1− PF
+

U(τ′, y)

1− PA(τ′)
U(τ, y)

1− PA(τ)
≥ U(τ′, y)

1− PA(τ′)
1− PA(τ

′)
1− PA(τ)

U(τ, y)

U(τ′, y)
≥ 1

T
U(τ, y)

U(τ′, y)
≥ 1

with T =
1− PA(τ

′)
1− PA(τ)

≤ 1. When u is taken very small, we have,

U(τ, y)

U(τ′, y)
=

∑
∞
N=1 P(K = N)(Psucc(τ′, N, y) + (Qτ′)

N 1−(1−βy)N

Ny )

∑
∞
N=1 P(K = N)Psucc(τ′, N, y)

= 1 +
∑

∞
N=1 P(K = N)(Qτ′)

N 1−(1−βy)N

Ny

∑
∞
N=1 P(K = N)

1−(Qτ′ )N

N

= 1 +
∑

∞
N=1 P(K = N) d

du
1−(1−βy)N

Ny

∑
∞
N=1 P(K = N) d

du (−(Qτ′))

Considering u small, we have,
d

du
(−(Qτ′)) = λτ′ + e−λτ′ − 1 and

d

du
(

1− (1− βy)N

Ny
) =

d
du [1− (1− βy)N ](Ny− (Nẏ(1− (1− βy))))

Ny2

=
(1− βy)N−1 d

du (βy)

y

assuming that ẏ is bounded

d

du
(

1− (1− βy)N

Ny
) =

βẏ + β̇y

y
= β̇
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Thus,
U(τ, y)

U(τ′, y)
= 1 +

β̇

λτ′ + e−λτ′ − 1
=

λτ + e−λτ − 1
λτ′ + e−λτ′ − 1

and H(y, u) ≥ 0 ⇐⇒ 1
T
≤ λτ + e−λτ − 1

λτ′ + e−λτ′ − 1
.

– If
1
T
≤ λτ + e−λτ − 1

λτ′ + e−λτ′ − 1
then H(y, u) > 0 and y∗ = 1.

– If
1
T

>
λτ + e−λτ − 1
λτ′ + e−λτ′ − 1

then H(y, u) ≤ 0 and y∗ = 0.

This completes the proof.

We give now the proof of the theorem 5.4.0.1.

Proof. Given the expression of the probability of success, maximizing Ps(u) comes down
to minimize the expression (Qu

τ′)
(1−y(u)) . (Qu

τ)
y(u). Let

f (u) = (1− y(u)) log(Qu
τ′) + y(u) log(Qu

τ)

, we need to minimize f (u).

f ′(u) = y′(u)
[

log(Qu
τ)− log(Qu

τ′)
]
+ (1− y(u))

(
(Qu

τ′)
′

(Qu
τ′)
− (Qu

τ)
′

(Qu
τ)

)
+

(Qu
τ)
′

(Qu
τ)

.

For u small, using lemma 7.5.2, we have: y∗ = 1 or y∗ = 0

If y∗ = 0, given that y∗ is decreasing in u then y∗ = 0 ∀ u. f ′(u) =
(Qu

τ′)
′

(Qu
τ′)
≤ 0 thus, f

is decreasing and Ps(u) is always increasing on [0, 1].
On the other hand, if y∗ = 1 for u small, we need to prove that if Ps(u) = Pmax then
u ∈ [u0, 1]. Since y∗ is a decreasing function of u, we have, ȳ∗(0) = 1 =⇒ ∃u0 s.t.
ȳ∗(u0) = 1 and ȳ∗(u0 + δ) ≤ 1, δ > 0. Where ȳ∗ is the projection of y∗ on the interval
[0, 1].y∗ = 1 for u ∈ [0, u0]⇒ f is decreasing and Ps is always increasing f or u ∈ [0, u0].
This completes the proof.
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