
HAL Id: tel-00879986
https://theses.hal.science/tel-00879986

Submitted on 5 Nov 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detection of thin, curvilinear structures : Advances,
Algorihms and Implementations

Petr Dokládal

To cite this version:
Petr Dokládal. Detection of thin, curvilinear structures : Advances, Algorihms and Implementations.
Image Processing [eess.IV]. Université Paris-Est, 2013. �tel-00879986�

https://theses.hal.science/tel-00879986
https://hal.archives-ouvertes.fr


Université Paris-Est
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Abstract

The habilitation is an opportunity to stop to make an appraisal of the past and think of the future
of one’s career. Following this idea, this report is a retrospective of the last twelve years of my
career, years that I have spent with the Centre of Mathematical Morphology of Mines-ParisTech,
where I have been developing my research.

I have compiled in this text a synthesis of my work, structured around two principal axis.
The first axis, a methodological one, lists methodological advances regarding the detection of

thin objects. The second axis – an algorithmic one, lists a few original algorithms, and an efficient
implementation, always presented in the context of the detection of thin structures.

In the first axis one can find three principal contributions:
- a spatially-variant mathematical morphology approach, steered by a local analysis of struc-

tures – referenced hereafter as the morpho-hessian approach.
- parsimonious path opening – an approach to detect thin, not necessarily straight, structures.

The parsimonious variant that we propose is obtained by decoupling the research of paths and the
filtering. It not only allows to define new operators, but also decrease in a significant manner the
complexity and, consequently, the computation time.

- attribute thinnings based on an original attribute - the geometric diameter, allowing very
efficient extraction of thin structures.

In the second axis one can find the following contributions :
- a 1-D dilation algorithm and two different algorithms of 1-D morphological opening. These

three algorithms have interesting properties allowing an efficient implementation.
In the Implementations part one can find a few real implementations for image processing

applications running under heavy real-time constraints:
- several FPGA implementations, and
- one GPU implementation.
Based on these implementations we could validate the computation efficiency of these algo-

rithms. Precisely, we have proposed the first implementation of morphological neighbourhood
processor using an arbitrarily large neighbourhood. The size of the neighbourhood (even a large
size) does not bring any implementation difficulties, nor have a negative impact on the computation
efficiency.

A whole chapter is dedicated to technology transfer to the industrial sector. The principal
section is devoted to industrial application from the domain of material science, and particularly,
those linked to the inspection or control. The following section comes from the medical and
biomedical domain. Finally, the third section, a shorter one, is dedicated to special or embedded
applications.

This report is completed by a selection of my principal publications allowing to find the most
important bibliographic references of the text.
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Résumé

L’habilitation à diriger des recherches est une occasion de s’arrêter et prendre un moment pour faire
le point sur le passé et de réfléchir sur l’avenir de sa carrière. Dans cette optique, ce mémoire est
une rétrospective des douze dernières année de ma carrière, des années que j’ai passées au Centre
de Morphologie Mathématique de Mines-ParisTech, où j’ai mené mes travaux de recherche.

Dans ce mémoire, j’ai répertorié ces travaux autour de deux axes principaux. Le premier axe,
méthodologique, fait état des avancées méthodologique de la détection d’objets fins. Le second
axe - algorithmique - répertorie des algorithmes originaux, et mises en pratiques efficaces, toujours
présentés dans le contexte de détection d’objets fins.

Dans le cadre du premier axe, on répertorie trois contributions principales :
- une approche morphologique variant dans l’espace, contrôlée par une analyse locale des struc-
tures, nommée approche morpho-hessienne.
- ouverture parcimonieuses par chemins - est une variante parcimonieuse des ouvertures par chemin,
obtenue en découplant la recherche des chemins et leur filtrage. Cette approche permet non seule-
ment de définir des opérateurs nouveaux, mais également de baisser de manière significative la
complexité et, par conséquent, le temps de calcul.
- amincissement par attributs - basés sur un attribut original - le diamètre géométrique, permettent
l’extraction d’éléments fins de manière très efficace.

Dans le cadre du second axe - algorithmique - on répertorie des algorithmes originaux, et mises
en pratiques efficaces, toujours présentés dans le contexte de détection d’objets fins. Dans ce volet,
nous retrouvons:
- un algorithme de dilatation 1-D et - deux algorithmes différents d’ouverture morphologique 1-D.
Ces trois algorithmes présentes des propriétés intéressantes pour une mise en œvre efficace.

Dans le volet de mises en pratique efficaces nous retrouvons des réalisations pour des applica-
tions de traitement d’images travaillant sous fortes contraintes temps réel:
- plusieurs réalisation matérielle (FPGA), et
- une réalisation GPU, ont permis de valider l’efficacité calculatoire de ces algorithmes. Entre
autre, nous avons pu proposer une première réalisation de processeur morphologique à taille de
voisinage arbitrairement large. La taille du voisinage (même très grande) n’introduit ni de difficulté
de réalisation, ni d’impact négatif sur l’efficacité de calcul.

Un chapitre entier est consacré à la partie applicative, faisant état des collaborations indus-
trielles. La section principale est consacrée aux applications industrielles, du domaine de sciences
de matériaux, et plus particulièrement l’inspection ou le contrôle. Le deuxième section vient
du domaine médical et biomédical. Enfin, une troisième section, plus courte, est consacrée aux
applications spéciales ou embarquées.

Ce mémoire est annexé par une sélection de mes principales publications scientifiques permet-
tant de retrouver aisément les références bibliographiques les plus importantes de ce mémoire.



4



Acknowledgements

First of all, I would like to express my gratitude to the members of the board for having honored
me by their presence in the board, and particularly the reviewers for having accepted to evaluate
this manuscript. I also want to thank Dominique Jeulin who has accepted to play the role of the
advisor of this habilitation. He has provided number of valuable suggestions and completions to
this text.

I ought to mention Gilles Bertrand, my PhD advisor who opened me the doors of discrete
geometry in the image processing framework. When I joined the Centre of Mathematical Mor-
phology (CMM), Jean-Claude Klein was my first close collaborator after my arrival to CMM,
and I appreciated “doing electronics” with him. I also wish to mention Fernand Meyer, the head
of the CMM, who creates a constructive, motivating and pleasant working environment. I will
not forget individually all other colleagues from the Center of Mathematical Morphology for their
availability for interesting discussions, and generally, for their kindness, and ability to create a
pleasant working environment.

I wish to thank the PhD students who have accepted to participate in these projects. Every-
thing was much easier thank to your willingness, volunteering and skills. I loved discussing with
you after lunch – a cup of tea in hand – an extremely fuzzy idea, and discover to my surprise by
the evening the very same day that you have implemented it – and that it works.

Lastly but of outmost importance, I’d like to mention the people most special to me, my family,
my parents, children Maxim and Hugo, and my wife Eva who has always been of an incomparable
support and source of encouragement to me.

... to Maxim, Hugo and Eva

5



6



Contents

I Curriculum Vitæ, Research&Teaching activity, Publications 9

1 Curriculum Vitæ 11

2 Research&Teaching activity 14

2.1 Teaching Activity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2 Journals’ Reviewer Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Member in Research Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 PhD Candidates Supervision 16

4 Academic Collaboration 18

5 List of Publications 19

II Detection of thin objects 23
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Morpho-Hessian Approach 26

7 Parsimonious Path Openings 28

8 Attribute Thinnings 31

III Algorithms 35

9 Morphological algorithms 37

9.1 Efficient 1-D Dilation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

9.2 Efficient 1-D Opening: Algorithm 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

9.3 Efficient 1-D Opening: Algorithm 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

9.4 Massive Marching: A Massively Parallel Watershed Algorithm . . . . . . . . . . . 40

10 Implementations 41

10.1 Curve-Evolution PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.2 Spatially-Variant Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.3 Parallel implementation of serial morphological filters . . . . . . . . . . . . . . . . 44

10.4 Massively parallel implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

10.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

7



IV Contractual Research and Applications 49
10.6 Material Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

10.6.1 The Tocata project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.2 The Colas project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
10.6.3 The Aedinca project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
10.6.4 The Cocascope project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

10.7 Medical&Biomedical Science . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
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Chapter 1

Curriculum Vitæ

This chapter aims at presenting briefly my career, including the education and the appointments
that I held. I start by giving the principal dates and milestones completed below by a few details
and retrospective appraisal on my professional route.

Petr Dokládal

Research Engineer

Centre of Mathematical Morphology (CMM)
Department of Mathematics and Systems
MINES ParisTech
35, rue Saint-Honoré
77305 Fontainebleau, FRANCE
Tel. : + 33 (0) 1 64 69 47 98
Fax. : + 33 (0) 1 64 69 47 07
E-mail : petr.dokladal@mines-paristech.fr

PERSONAL DATA

First name: Petr, Family name: Dokládal

Date and Place of Birth: August 31st 1971, Brno, Czech Republic

Nationality : Czech Republic

Languages: - Czech - mother’s tongue
- French - fluent
- English - fluent
- Spanish - basics

Marital status: Married, two children
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EDUCATION

1996 - 2000 PhD from Marne la Vallée University, France,
Title: Segmentation of Grey-Scaled Images : A Topological Approach,
Hosting laboratory : A2SI, ESIEE, Advisor : Gilles Bertrand
Defended : January 31st 2000, Defense board : J.-M. Chassery and J. Jan
(reviewers), I. Bloch, D. Arquès, J. Smékal and G. Bertrand

1994 - 1996 PhD cursus - 2 year equivalent of the french DEA, option Signal Processing
1989 - 1994 Engineer in Telecommunications, Faculty of Electrotechnical Engineer-

ing, Technical University Brno, Czech Republic

APPOINTMENTS

since 2000 on Research Engineer, CMM (Centre of Mathematical Morphology), Mines-
ParisTech

2000 (Feb - Nov) Post Doctoral researcher, TSI (Traitement du Signal et Image),
Telecom-ParisTech, Paris
RNRT project : Study of radio-electric field impact on the human cerebral
activity, construction of an individual head atlas from a MRI acquisition

1997 - 1998 Military service (Sep - Sep), Czech Republic
1994 - 1996 Assistant Professor, Department of Telecommunications, Faculty of Elec-

trotechnical Engineering, Technical University Brno, Czech Republic

My educational background is that of a telecommunications engineer. I have followed the
undergraduate training in acoustic signal processing, with focus on filtering, speech recognition,
and implementation of filters. Obviously, signals in telecommunications are processed in real-time,
with possibly as low latency as possible. I have really appreciated – and still do – this domain.

I have completed my engineer education by a 2-year postgraduate course, that – at that time
– made a part of PhD. It consisted of a series of lectures equivalent to the former french DEA, or
the present European master of research course. It was – and still is – usual that during that time
the PhD candidates have a quarter- to half-time lecturer’s appointment to give lectures, ensure
lab sessions and supervise diploma projects. The rest of the time is to be devoted to research. It is
expected that the candidates defend the PhD after one additional year. Given the volume of the
lectures, and the teaching appointment, this is unreal, and nobody actually manages to complete
the PhD in only three years.

I have followed another way. After completing the 2-year postgraduate course I have – essen-
tially because of personal interest – diverted to image processing. I have applied to – and have
been selected for – a co-supervised PhD scholarship from the french embassy in Prague. This
scholarship covered three 6-month periods in France to prepare a co-supervised PhD under the
joint guidance of two advisers.

I have prepared my PhD at the A2SI lab, at ESIEE Paris, under the guidance of Gilles Bertrand.
Before I completed I had to accomplish my military service, at that time still compulsory, not
only in the Czech Republic, but also in few other European countries. One of the results of my
PhD thesis was topologically controlled image segmentation based on the simple point concept.
This approach is interesting wherever the correct topology of the result is known and should be
respected.

I have used this approach during my Post Doc internship, where I was in charge of the image
segmentation task of the RNRT project Comobio, aiming at evaluation of harmful effects of an
excessive exposure to the electromagnetic field of mobile phones. It was modeled by computing the
energy dissipation in various internal organs of the head, located close to the mobile antenna. The
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local energy dissipation was computed by application of the Maxwell equations on the segmented
3-D image of the head. In such an application the topological correctness of the result is of utmost
importance.

At the end of 2000, I have joined the Center of Mathematical Morphology at Mines-Paristech
(formerly School of Mines of Paris). I had since then the occasion to work on a number of topics.
Immediately after my arrival at CMM, my engineer’s background was was very useful when I was
working on topics far from the image processing:

- modeling and system identification for the diabetes regulation (Cosmeca project)
- electronics and embedded system programming (Cosmeca project)

Despite this brief “return to origins”, my interests have always been revolving around the image
processing, and algorithms.

Now, when I look back trying to set up this retrospective balance sheet - and the Habilitation
is an excellent occasion to do so – I find that my engineer’s education has influenced my career
and choices to a non-negligible extent. This is actually the reason why efficient algorithms and
implementation would always remain in my center of interest.

One example can be found in the efficient 1-D dilation and opening algorithms that – seen as
the sup-convolution and an analogy of low-pass filter – can also be implemented in a way usual in
the signal processing, the FIR filter implementation.

I have progressively focused to detection of thin objects – a frequent topic in image processing
– present in numerous domains, namely biomedical or medical or material image processing. Thin
objects are indeed a model that can be used to represent a variety of objects. Their size is often
very small compared to the inspected area. This brings an additional difficulty, an overwhelming
amount of data to process. For these reasons I have also proposed fast algorithms applicable to
the extraction of thin objects. I detail my principal contributions to this domain in this report.
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Chapter 2

Research&Teaching activity

2.1 Teaching Activity

The teaching activity of researchers at Armines/Mines-Paristech is generally quite limited. I admit
to have had less occasion to teach than I would wish since I consider that marrying teaching and
research activity is beneficial for both sides, the students and the lecturer.

Having an active and recent experience in research allows bringing live applicative examples
from various domains, making the lecture attractive and motivating for the students. Motivating
because it allows to show a close contact of the matter with the real world, attractive because
of examples or exercises from real applications. Conversely, a live contact with students, gives
a researcher an opportunity to stay in contact with students, find and enroll valuable trainees.
Lastly - but this remains a personal appreciation - I find satisfactory sharing acquired knowledge
with other people. Consequently, in the years to come I wish to enlarge my implication in teaching.

To sum up, I have opened and/or participated in existing courses by giving the following
lectures:

• During my post-gradual courses, from 1994 to 1996, at Technical University Brno, I have
given a number of labs, practical sessions and supervised diploma projects, from the discrete signal
processing domain.

• During my PhD, from 1996 to 1999 - I have provided a number of lecture and lab sessions
at ESIEE, Paris, essentially in the C/C++ programming, either in the engineer cycle, or in the
’formation continue’ cycle.

Since 2003, I have regularly provided the following lectures.

• ENSTA Paris - Partial Differential Equations in Image Processing. I have proposed and
opened a lecture on image processing techniques using partial differential equations. In the be-
ginning, it recalls basic terms from the geometry. Then it introduces image segmentation by
using active contours, image filtering, and continuous mathematical morphology. The lecture is
supported by a lab session in Matlab.

• ENSTA Paris - Real Time Image Processing on FPGA. I have proposed and opened a lecture
on real time implementation of image processing technique on FPGA. The lecture introduces
fundamental concepts of pressing data in a flow, parallel execution, and synchronization. The
lecture is greatly supported by labs, where the students implement a contour detection application
by using the zero-crossing of the laplacian. The application is connected to a webcam, and the
result is projected on a VGA screen in the real-time.

• Université Paris Descartes/ParisTech - I have partially taken over, and remodeled, an existing
series of lectures in the Image Processing track of the Biomedical Engineering Master. The lectures
provide an introductory insight into image processing and segmentation techniques, before focusing
more specifically to mathematical morphology tools. The sessions are open to students from two
domains, engineering and medical, with different prerequisites. The lectures are supported by labs
and projects.
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• ESIEE Paris - Image processing for mobile systems. This lecture, together with lab sessions,
introduces image processing and filtering fundamentals. It is supported by lab sessions, where
the students are to develop a simple application supposed to run in real time, processing the
webcam image stream. The students become acquainted with OpenCV, color conversion and
motion detection.
• ESIEE Paris - Optimization methods in image processing. This lecture focuses on algorith-

mic aspects and optimal implementation of image processing techniques. It explains the necessity
of good understanding the code, data dependence, memory management to achieve efficient im-
plementation of applications. Using the Deriche contour detection, and the Hough transform, it
shows a funny application example of lane departure detection for car drivers.

2.2 Journals’ Reviewer Service

I regularly (usually oscillating from three to four times a year) provide a review service to several
journals in the domain of image processing an object recognition. This list is not exhaustive (only
the most recent, since 2009).
• Image Analysis and Stereology
• Signal Processing
• IMAVIS
• TCAS
• Signal Processing: Image Communication
• Signal, Image and Video Processing
• IET, Image Processing
• Journal of Mathematical Imaging and Vision

2.3 Member in Research Groups

• IAPR Technical committee #15 - Graph-based Representation
• GDR 720, ISIS - Groupe de Recherche, Information Signal Image Vision
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Chapter 3

PhD Candidates Supervision

During my stay at CMM, since the end of 2000, I had the occasion to participate in the direction
of several PhD students, listed below. The list is divided into two groups according to my impli-
cation: i) a co-direction properly speaking, where my role was an official co-director, and ii) an
implication in the guidance, during a temporary stay of the PhD candidate, during which he has
been working under my guidance.

Co-direction (in inverse chronological order) :

1. Jan Bartovský [defended 2012] - co-directed with M. Akil, E. Dokládalová (ESIEE) and V.
Georgiev (Univ. West Bohemia). Jan’s main contributions include the proposition of an
efficient algorithm for 1-D morphological opening, a two-level parallelism allowing efficient
implementation of sequential morphological filters. Jan has developed on an FPGA the first
morphological processor with arbitrarily large neighborhood, allowing to obtain previously
unachieved performances.

2. Vincent Morard [defended 2012] - co-directed with E. Decencière. Vincent has contributed to
the detection of thin curvilinear objects in combination with statistical learning. He has con-
tributed to path filtering, adaptive structuring elements, attribute thinnings, parsimonious
statistical analysis (AdaCOS), and has proposed an efficient algorithm for morphological
opening. Application to material imaging, industrial control.

3. Olena Tankyevych [defended 2010] - co-directed with H. Talbot. The objective of Olena’s
work is the enhancement and detection of thin objects in presence of noise. Morpho-hessian -
a contribution to spatially-variant morphological filtering. Application to enhancement and
detection of thin objects in medical images : detection of vessel systems (MRI of the head),
detection of catheter (computer assisted cardio surgery).

4. Raffi Enficiaud [defended 2007] - I have directed Raffi’s PhD work from 2003 to 2004, when
he was affected to the Cosmeca project, and particularly to the car drivers’ drowsiness
detection. I have stopped advising Raffi’s PhD after 2004 when his topic has diverted to
object oriented programming applied to image processing.

5. Eva Dejnožková [defended 2004] - co-directed from 2000 to 2004 with J.-C. Klein. Eva
has proposed Massive Marching - a first massively parallel algorithm for computing the
propagation of a front. It can be used for solving the eikonal equation, or as the first fully
parallel algorithm for computation of the watershed.

Implication in scientific guidance.

Hugo Hedberg and Pavel Karas have done - during their PhD preparation - a several months
stay in France, at CMM and at ESIEE, respectively, during which we had the occasion to work
together. They could produce, under my guidance, an interesting scientific output.
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❼ Pavel Karas [to be defended 2013] - direction Michal Kozubek, Faculty of Informatics,
Masaryk University, Brno, Czech Republic. Under my guidance, in the framework of his
PhD, oriented towards efficient implementations of morphological operators on various plat-
forms, Pavel Karas has evaluated several 1-D opening algorithms in the view of their efficient
implementation on a massively parallel platform, a Tesla GPU. This evaluation has allowed
choosing the Morard opening algorithm as the best candidate to implement. Pavel has
adapted the Morard algorithm to the HW specificities, and to working under different orien-
tations to compute the pattern spectrum. His implementation allows obtaining a previously
unachieved throughput for high-end industrial applications.

❼ Hugo Hedberg [defended 2008] - direction Viktor Öwall, Head of the Department of Electrical
and Information Technology, Lund University, Sweden. During his internship at CMM, Hugo
has proposed an efficient algorithm for spatially varying binary morphological dilation, and
its implementation of FPGA.

Master project supervision:

I had the occasion to advise one Paris-Est University master student, Petr Šebesta, during
his internship in CMM. Petr has developed and implemented on a GPU an interactive viewer
application for large 3-D medical data using a progressive resolution ray-tracing rendering.
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Chapter 4

Academic Collaboration

1. Department of Electrical Engineering, University of Lund - efficient FPGA implementation
of spatially-variant binary morphological operators for application in intelligent-camera sys-
tems, hand-held devices, etc. I have provided a scientific guidance to a PhD candidate
Hugo Hedberg, who has spent a four-month internship, working at CMM. The results of this
collaboration were published in [41].

2. ESIEE Paris - co-direction of two PhD students:

• Ollena Tankyevych - a PhD thesis co-supervised with Hugues Talbot, associate professor
at ESIEE Paris.

• Jan Bartovský - PhD thesis co-directed by Mohammed Akil, E. Dokládalová, professor and
associate professor at ESIEE Paris and Vjačeslav Georgiev, associate professor at University
of West Bohemia, Pilsen, Czech Republic. We have received Jan at CMM for a one-year
internship during his PhD. Under my guidance, Jan has developed and implemented on
a FPGA a collection of morphological operators in a very efficient way. The results were
published [3–5]. Some results were also used in [6].

3. Institute of Experimental and Applied Physics (Czech Technical University of Prague). De-
tection and classification of particle tracks recorded by the Medipix and Timepix devices.
These devices are matrix detectors able to record energetic deposits freed during the impact
of a charged particle (alpha, gamma or electron). These particles leave a different shape
tracks that can be used for various purposes: analysis of radioactive fluxes, high-contract
material or biological radiography, low-dosage scintigraphy, etc.

I have provided a scientific guidance to two student master projects. Previous results have
been published in [6], other results are to be published.

4. Laboratoire d’Optique et Biosciences, Ecole Polytechnique - detection and analysis of ori-
entation of collagen fibres in microscope images. This tool is used for two applications: i)
as aid to the development of the image acquisition by ellipsometry, by providing a ground
truth data for the orientation measurement [78], and ii) for diverse biological studies, e.g.
evaluation of the answer of the skin under mechanical stress. This work is still being in
progress, the results are to be published.
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Chapter 5

List of Publications

International journals (peer reviewed)

1. E. Decencière, E. Tancrède-Bohin, P. Dokládal, S. Koudoro, A.-M. Pena and T. Baldeweck,
Automatic 3D segmentation of multiphoton images: a key step for the quantification of
human skin. Skin Research and Technology, DOI: 10.1111/srt.12019

2. J. Bartovský, P. Dokládal, E. Dokládalová, M. Bilodeau, M. Akil. Real-Time Implemen-
tation of Morphological Filters with Polygonal Structuring Elements. J. Real-Time Image
Processing, 2012, DOI 10.1007/s11554-012-0271-8

3. O. Tankyevych, A. Dufour, B. Naegel, H. Talbot, C. Ronse, J. Baruthio, P. Dokládal and
N. Passat. Filtering and segmentation of 3D angiographic data: Advances based on mathe-
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16. P. Dokládal and E. Dokládalová. Grey-scale Morphology with Spatially-Variant Rectangles
in Linear Time. Acivs, October 2008,
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Chapter 6

Morpho-Hessian Approach

Again, the motivation of this work is enhancement and detection of elongated, curvilinear objects.
The classical morphological method to reconnect noise-corrupted thin objects is to use a spa-

tially variant closing by a segment, aligned with the structure to restore. The local orientation
can be detected in various ways. However, this needs to be done with an extreme caution, since
artifacts can be created wherever two thin objects approach or in junctions. We propose a logical
solution to this issue by detecting the local orientation and size and then using a spatially-variant
closing steered by a local analysis of the structures to restore.

We propose a hybrid second-order-derivative analysis and morphological filtering method within
the framework of scale-space theory. We detect the local orientation by using the regularized, par-
tial, second derivatives of the 3D input image, see Frangi [35]. These derivatives are obtained by
convolving the image with partial second derivatives of a gaussian kernel at some scale σ, [34,52].
Collected and written in a matrix notation, the derivatives form the Hessian matrix. The eigen-
decomposition of this matrix can be used to detect the local shape, see e.g. Sato et al. [35,87]. For
example, a thin, curvilinear shape gives λ1 ≪ λ2, λ3 and the eigenvectors e2, e3 define the plane
orthogonal to the local orientation vector.

Based on these observations, Frangi et al. [35] have developed a discriminant function allowing
enhancing tubular structures and attenuating other morphologies. Applied at different scales σ,
the vesselness allows to detect structures of different size, each at its appropriate scale.

The vesselness function gives a probability for a pixel to belong to a tubular object. It offers
a possibility to segment tubular objects by thresholding the vesselness η above some threshold.
Whereas the orientation field is quite reliable inside the objects it gives a sparse orientation
information outside. Hence, the orientation field is propagated from inside to the vicinity of the
object by dilation of the vector orientation field.

The reconnection of discontinued objects is then done by using a spatially-variant morphological
closing by a segment oriented at every voxel in the direction of the local orientation. We compose
the closing as ϕ = εBδB̂ . The dilation by the reflected SE B̂ acts by propagating values from the
position of the SE’s origin to the other voxels covered by the SE. The reason is that the orientation
field is reliable inside the objects and random outside. Fig. 6.1 gives an example of the results.

This hybrid morpho-hessian filter has been explored in the PhD thesis of Ollena Tankyevych
[101], principally motivated by medical applications: by the diagnosis, treatment planning and
follow-up of vascular diseases.

i) The first application, the assessment of arteriovenous malformations (AVM) of cerebral
vasculature. The small size and the complexity of the vascular structures, coupled to noise, image
acquisition artifacts, and blood signal heterogeneity make the analysis of such data a challenging
task.

ii) The second application concerns the processing of low dose X-ray images used in interven-
tional radiology therapies requiring the insertion of guide-wires in the vascular system of patients.
Such procedures are used in aneurysm treatment, tumor embolization and other clinical proce-
dures. Due to low signal-to-noise ratio of such data, guide-wire detection is needed for their
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(a) (b) (c)

Figure 6.1: Morpho-Hessian filtering results (cyan) on a brain vessel image (yellow).

visualization and reconstruction. The results have been published in [102].
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Chapter 7

Parsimonious Path Openings

The Heijmans’ path openings and closings [42,43] have been proposed to extract thin, long and not
necessarily straight structures. Short structures, supposedly introduced by noise are eliminated,
whereas the long ones remain unchanged. These structures are modeled by connected paths
allowing a limited local curvature. The opening explores all paths from a defined connectivity
class, and filters them against a length criterion.

The Heijmans’ path openings admit a dual – the path closings. Whereas the path openings
select and filter bright structures, the path closings (after inversion of the image) select and filter
the dark structures in an image.

The original path openings by Heijmans are not invariant under rotation. Indeed, the length of
diagonal paths is overestimated. An improvement of this bias has been proposed by Hendriks [44].
The Hendrick’s solution consists of partially constraining the connectivity graph. The connectivity
of the graph globally retains its flexibility, but local oscillations of the paths are attenuated.

Path opening is a costly operator since the number of paths passing through a pixel is combi-
natorial. Optimizations have soon been proposed by Appleton et al. [1, 100], allowing to decrease
the complexity to logarithmic. A recent contribution in Cokelaer [20] has proposed an efficient
implementation of incomplete paths in 3-D.

Despite a number of optimizations, the path openings – and especially the incomplete path
openings – still remain prohibitive for time-critical industrial applications. Knowing that pro-
cessing all paths makes the process generally slow and that a great majority of these paths bring
redundant information we introduce parsimonious path openings based on an incomplete scan of
the image, see Morard et al. [73]. Compared to the original version, there are two major modifi-
cations: i) a relevant subset of paths is selected according to the content of the image and, ii) the
research of paths is decoupled from the operator applied alongside these paths.

We propose a parsimonious scan of the image support with a parameter allowing to prefer
either local or global search. Whereas the local search offers better accuracy, the global search
offers better robustness to noise.

The parsimonious path openings bring three major improvements: i) they extract preferentially
relevant structures in the image, ii) they prevent the overestimation of the length of diagonal paths,
and iii) finally, they can advantageously be implemented with the efficient, 1-D opening algorithm
discussed in Sec. 9.2. Together with the incomplete scan of the support, and the algorithmic
efficiency for any data accuracy (integer or real data), we have accelerated the timings by several
orders of magnitude.

Consider for some image f a family of paths πi ∈ Πf . The signal f(x), x ∈ [x1, . . . , xn] = πi is
a 1-D signal. Let γπi

L (f) denote the PPO opening of size L on f alongside πi. Then we also have

ϕπi

L (f) = −γπi

L (−f) (7.1)

the closing of size L on f alongside πi. Such a path closing possesses all the properties of closings
(increasingness, extensivity and idempotence). The opening and closing γπ and ϕπ admit the
composition of sequential filters provided they are applied alongside the same path π.
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Chapter 8

Attribute Thinnings

The path openings relax the local curvature limit of supremum of openings by a rigid segment
to detect thin, curvilinear structures. As said above, instead of using rigid linear structuring
elements, they use flexible paths inferred from an underlying connectivity graph. The paths are
kept if, and only if, their length is longer than a given constant. Nonetheless, randomly tortuous,
or coiled structures cannot be entirely detected.

In Morard et al. [75] we relax any existing constraint on the tortuosity. We wish to keep or delete
objects according to intuitive attributes like length, tortuosity, elongation or circularity. Given
some connected component Xi, these attributes will be respectively denoted L(Xi), T (Xi), E(Xi)
and C(Xi). These attributes allow to define criteria like “longer than or equal to” (L(.) ≥ λ), or
“less tortuous than” (T (.) < λ), with some λ ∈ R+. Formally, a criterion χ is a function mapping
the set of connected components of D into {0, 1}, where 0 can be interpreted as false and 1 as
true.

In mathematical morphology, an attribute opening is an idempotent, anti-extensive and in-
creasing operator, which filters image connected components which do not fulfill a given criterion.
However, the above-listed attributes do not necessarily form increasing criteria. Without the
increasingness, we obtain the – more general – attribute thinnings.

Whereas binary attribute openings naturally extend to gray-scale images through the thresh-
olding, the extension of the non-increasing attribute thinnings is not straightforward. Some fil-
tering rules are reported in the literature to construct this extension [12, 86, 106]. The choice of
the rule depends on the application. However, it is shown in [105, 106], that the subtractive rule
is preferable. This is the only rule that fulfills two intuitive requirements: (i) after filtering, all
the structures that do not meet the criterion are removed; and (ii) the difference image f − ρχ(f)
contains only the structures that do not meet the criterion. The crack detection application re-
quires the separation of cracks from the background and the subtractive rule is perfectly suitable.
Therefore, we are using [75] the subtractive rule, to extend thinnings to gray scale images.

Additionally, the above-mentioned attributes, based on the objects’ length, usually use the
costly geodesic diameter, initially proposed by Lantuéjoul and Beucher [56]. The direct approach
to compute the geodesic diameter of an object X consists of computing, for each point of the
boundary, the geodesic distance within X to all other points of X. The maximum of the supre-
mum of the distances is the geodesic diameter. The complexity of this algorithm is high (depends
on the area and the perimeter). Schmitt [88] showed that using a subset of the boundary points
is sufficient. However, despite the important speed-up thus achieved, still too many propaga-
tions remain to compute. Maisonneuve and Lantuéjoul designed an efficient parallel algorithm to
compute the geodesic diameter in a hexagonal grid [57]. Using a particular propagation in the
hexagonal grid, starting from the object’s boundary, the algorithm gives the geodesic diameter in
a single propagation. However, the object needs to be simply connected, otherwise the algorithm
never ends. This limitation is too restrictive, since a group of cracks may represents a non-simply
connected object (see below Fig. 8.3(a)).

In Morard et al. [75] we propose a new measure, the barycentric diameter that only uses two
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distance calculations, and evaluate its accuracy. Secondly, we propose an original algorithm to
efficiently compute an attribute thinning on gray-scale images using the subtractive rule, for any
criterion based on the barycentric diameter. The algorithm uses a queue, and simulates the relief
emerging process. We start with the relief completely submerged by water, and let the water
progressively sink. As soon as appears the first (global) maximum, its connected component
is progressively reconstructed and tested on the criterion, see Fig. 8.1 component 1. Other local
maxima progressively appear, but are not yet process and we reconstruct all connected component
at lower threshold sets that are supersets of the global maxima. Finally, other local maxima are
processed in the same way but the aggregation stops when a CC is already processed (Fig. 8.1
components 2 and 3).

�

�

�
�

Figure 8.1: Illustration of the algorithm principle for a one-dimensional signal with three local
maxima. The component 1 is analyzed first, followed by the components 2 and 3.

Its worst-case complexity is O(n2(log(m)), with n the number of pixels in the image, and m
the mean number of pixels in the queue. In practice though the computation time is far from this
worst-case bound and is rather linear with the number of pixels.

To conclude, the barycentric-diameter attribute thinnings have been developed to detect thin,
tortuous objects, see examples in Figs 8.2 and 8.3. Albeit developed to detect cracks, they can be
used to detect other kinds of similar fibrous structures. We illustrate the use of these thinnings in
time-critical industrial applications such as automated non-destructive surface inspection. They
use the subtractive rule that allows to decompose the image on components verifying/not-verifying
the criterion. Compared to path openings [43] the attribute thinnings relax any constraint on the
tortuosity or the local curvature, and have proven to be efficient, and faster even than the efficient
implementation proposed in [44,100].

There are two possible and interesting future generalizations of the proposed algorithm to
efficiently compute other operators based on geodesic attribute thinnings. On the one hand,
the morphological pattern spectra [61] estimate the size and shape distribution of the searched
structures. On the other hand, ultimate openings [7, 45] extract structures with the highest
contrast. Typically, these operators require the computation of a family of thinnings of increasing
size. Using this algorithm, we can compute pattern spectra and ultimate thinnings within only
one “relief emerging” process.
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Algorithms
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Chapter 9

Morphological algorithms

9.1 Efficient 1-D Dilation Algorithm

We have proposed an efficient algorithm for 1-D functional, morphological dilation with interest-
ing properties. It processes data from the left to the right, with zero latency, very low memory
consumption, a constant complexity per pixel O(1) and the faculty to process any scalar data of
arbitrary accuracy. The combination of these properties allows an extremely efficient implemen-
tation of the fundamental morphological operation that is the dilation. We show how to compute
in one pass an Alternate Sequential Filter (ASFn) regardless the number of stages n.

It is the first algorithm combining these properties compared to the state of the art. Indeed, the
first to propose a constant complexity algorithm is van Herk [109], followed by Gil andWerman [39],
and later by Lemonnier and Klein [59]. On the other hand, they all require a forward and backward
scans. Indeed, the first to propose a streaming algorithm with constant complexity is Lemire [58].
However, an intermediate storage of local maxima results in a random access to the input data.

The combination of the properties of zero latency and processing sequentially from the left
to the right inherits under concatenation, and transposes to compound operations. This finds its
importance at two practical levels:
• At the first hand, concatenation of dilations and erosions gives birth to sequential morpho-

logical filters, starting by opening and closings, up to ASF of arbitrary size. Another application
are granulometries, that are sequences of openings with increasing size.
• At the second hand, concatenation of the same operation using orthogonal linear segments

allows extension to higher dimensions. For example, a rectangular structuring element R decom-
poses as R = H ⊕V where H and V are horizontal and vertical segments and ⊕ is the Minkowski
addition. Then the dilation by a rectangle R can be computed by

δR = δV (δH) (9.1)

When non-orthogonal segments are used, one can obtain polygons. For example, the dilation by
a 2n-top (n ∈ N) regular polygon SE P2n decomposes into a set of n dilations by inclined linear
segments Lαi

δP2n
(f) = δLα1

( . . . δLαn︸ ︷︷ ︸
n times

(f)) (9.2)

This separability is known since years, see Matheron [64], or later Serra [90]. However, the
properties of the 1-D dilation algorithm make that this decomposition can be seen under a new
light. Indeed, the sequential access to data at all levels, zero latency, low memory and constant
complexity O(1), are inherited under concatenation, and make the computation of Eqs. 9.1-9.2
sequential, and very efficient.

Figure 9.1 illustrates the propagation of real image data through an ASF 4 after having read
approximately one third of the input image. The SE is a square of size s+1 at the s-th stage. The
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Chapter 10

Implementations

10.1 Curve-Evolution PDEs

Methods described by partial differential equations have gained a considerable interest because
of indubitable advantages such as an easy mathematical description of the underlying physics
phenomena, subpixel precision, isotropy, or direct extension to higher dimensions. Though their
implementation within the level set framework, introduced by Osher and Sethian [79] in 1988, offers
other interesting advantages, their vast industrial deployment is slowed down by their considerable
computational effort.

The importance of finding an optimal solution can be seen on the considerable effort con-
centrated at this topic. Solutions have been sought either in i) mathematical - Weickert [115]
proposes a stable scheme for filters, later extended to contours by Smereka [94], another solution
was proposed by Goldenberg et al. [40], ii) algorithmic - Precioso and Barlaud use splines [81]
or iii) implementation on a specialized hardware. Holmgren and Wallin [46] and Sethian [92] use
supercomputers. Rumpf and Strzodka [84, 85], Cates et al. [13] or Sigg et al. [93] use a graphic
hardware. Hwang et al. [47] propose an orthogonal architecture designed for numerical solution
of PDEs, not inevitably related to the image processing, and Gijbels et al. [38] propose a VLSI
architecture for nonlinear diffusion.

In Dejnožková [120], we exploit the high parallelization potential of the level set framework and
propose a scalable, asynchronous, multiprocessor platform suitable for system-on-chip solutions,
see Fig. 10.1. We focus on the HW-based implementation issues of the level set techniques on
embedded, one-chip devices that will be easily (i) scalable, to adapt their computational power
to the requirements of the chosen application, (ii) programmable with conventional programming
tools, (iii) by far less energy consuming than Pentium-based desktop machines with comparable
computational power, and (iv) as small sized as possible.

The contribution of the paper Dejnožková [120] is twofold. In its first part, it proposes a
unifying insight into the level set framework from the system design point of view, to propose a
unique type of iteration with two different types of memory access: random memory access and
sequential memory access. Then it analyzes the data flow to define, in the second part, a scalable
architecture fitting the real-time needs and taking into account the limited energy autonomy of
embedded platforms and the silicium surface on commercially available FPGAs. we have evaluated
the performance on two benchmarks. The first one, computation of a weighted distance (used for
initialization of the narrow band), to verify the uniformity of the data flow and the distribution
of the computation over all the processing units. The second benchmark implements an active-
contour-based object-tracking algorithm.

10.2 Spatially-Variant Morphology
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diamonds) in two raster scans. This algorithm is interesting for various use cases: cascade mor-
phological filters running on systems under heavy time and space constraints such as embedded
or communication systems or possibly also low-end user terminals.

An extension of SV dilation to gray-scale images using the same principle goes through com-
puting the distance transform to all changes in the signal value. We develop the principle in the
following section.

Spatially-Variant Functional Dilation

In [31] we have proposed a 1-D functional dilation algorithm for spatially varying structuring
elements. The algorithm has interesting properties. It processed the signal in stream, that is it
reads/writes the input/output signal from the left to the right, produces the result with minimal
latency, and can also work in place. The algorithm is extremely efficient, competing with the most
efficient TI dilation algorithms. The complexity is O(1) per pixel, hence the computing time is
independent of the structuring element size.

The extension to 2-D is not straightforward. Indeed, a SV 2-D dilation is not separable into
two perpendicular SV 1-D dilations. We have discussed these issues in Dokládal [28], where we
explain that in this way one only can obtain an approximated, inexact result, where the shape of
the SE is deformed. A second limitation is brought by the processing in stream, which also infers
restrictions. The structuring function must be a continuous function.

Obviously, the shape inaccuracy of the SE limits the applicability where the exact shape of
the SE is necessary. Nonetheless, wherever the shape is not strictly required, the efficiency of
algorithm is handy. A good example is processing video streams in embedded systems. Using the
exact direct and adjunct dilation or erosion – implemented by definition – is computed in O(LN2),
which might become prohibitive in embedded systems.

Illustrations: Detection of license plates is an example of application where the SE size is
controlled by an external parameter, the distance to the camera. Using TI SE would have caused
that i) the license plates come out only in a restricted (camera equidistant) zone and ii) false
detections appear frequently in other zones. Using SV SE allows respecting the perspective.

The application is based on a cascade of morphological operators (see [27] or [82], we omit
details here), such as: gray valued top-hat, closing and opening with a rectangular SE, with size
constant (for TI SE) and progressively increasing (for SV SE). Compare the performance obtained
with a TI and SV SE in Fig. 10.5. Optimal memory and latency also ease obtaining real-time
performances on low-end systems (e.g. portable cameras).

A second example is a content-aware image preprocessing, e.g. image simplification, noise
reduction. Consider an contour preserving filter in the example given by Fig. 10.6. To efficiently
filter noise but preserve the contours, the filter needs large structuring elements, that do not cross
these contours. The contours, can be detected by any usual contour detecting operator (c). Then,
one can design a SE map of squared SE with side size equal half the distance to contours, as given
by (d). Any filter using this SE map will preserve these contours. The rest of the image is strongly
simplified.

10.3 Parallel implementation of serial morphological filters

In Sec. 9.1, we have seen an original algorithm with interesting properties for efficient computa-
tion of 1-D functional dilation. The most interesting properties for implementation on parallel
platforms are processing the signal from the left to the right, with minimal latency.

For practical applications on images, however, we need an extension into higher (2-D or 3-D)
dimensions. It is widely known that dilations by rectangles and polygons are separable under
the Minkowski addition into a concatenation of orthogonal or inclined 1-D dilations. We have
seen that the combination of these properties is inherited under concatenation. In this scope, we
have proposed in Bartovský et al. [5] : i) a stream-preserving separation of rectangles into linear
segments, and ii) a spatial parallelism allowing a further increase of performances.
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(a) detection using a translation-invariant SE (b) detection using a spatially-variant SE

Figure 10.5: License plates detection under perspective deformation

(a) Original (b) Zoom (c) Contours (d) SE size map

(e) Opening fast (f) Opening exact

Figure 10.6: Contour-aware opening and closing on the Manet’s painting “Le joueur de flûte”.

In the following paper Bartovský et al. [4] we have extended the computation to dilations by
polygons. This paper overcomes a number of issues: a correct handling of thick borders needed for
decomposition of polygons, a partition of the 2-D image support into independent computation
corridors, where every pixel is visited once and only once.

As a result a polygonal structuring element can be assembled from several inclined line segments
with the sequential access to data at all levels, see Fig. 10.7. The input image is sequentially read
line by line from the left to the right. The result, at the origin of the SE – assume here in the
centre of the polygon (d), is available as soon as all data covered by the SE are read, that is, when
the reading position reaches the down-right corner (a) of the hexagon, refer to Bartovský et al. [4]
for details.

Conclusions: The combination of the previous allows obtaining previously unachievable per-
formances of applications consisting of long concatenations of dilations and erosions like ASF or
granulometries. We have obtained performances for high-end industrial applications running un-
der severe time constraints. To give a concrete example, we could match real-time performances
corresponding to 100Hz 1080p HD TV standard.

10.4 Massively parallel implementation

45



Figure 10.7: Stream concatenation of three Lαi
into hexagonal SE P ; rp/wp - reading/writing

position.

Traditionally – and still quite often – thin, curvilinear objects in images are enhanced/detected
by using morphological openings by linear segments. If the orientation angle is a priory unknown,
the opening must be repeated a number of times, to test all possible angles. As a by-product
of this operation, at the same time, one detects the local preferential orientation. The number
of tested angles increases when the objects are thinner or more tortuous, since the structuring
element less likely fits in the object. This operation being costly, an efficient implementation is
needed especially for high-resolution, industrial applications running under timing constraints.

We address this issue in Karas et al. [49]. We start from the 1-D opening algorithms discussed
in Secs. 9.2 to 9.3 and implement them on a GPU to benefit from their massive parallelism
capabilities. We use the nVIDIA Tesla C2050 GPU device with 14 multi-processors, having 448
cuda cores, allowing running hundreds of threads in parallel.

We can benefit from this potential by mapping individual, and independent image rows (ori-
ented under the angle α) to one thread, see Soille [95]. Small images, that do not offer a sufficient
number of rows are subdivided into horizontal, overlapping straps processed independently. After
a comparison, we achieve the best performance from the Bartovský opening algorithm, Sec. 9.3 for
several reasons: i) the access to both input and output data are regular, making the execution of
the threads synchronous, and reducing the thread divergence. ii) the maximum memory footprint
(the size of the FIFO) per thread corresponds to the size of the SE. This strongly limits the overall
memory footprint, especially important to process large, high-resolution images. Finally, different
types of data (input, output and temporary data) have been mapped to different memory spaces,
to fully utilise the available memory bandwidth of the device.

With all optimisations we could reach the performance over 1 Gpix/s for openings of arbitrary
size, and regardless the orientation for high-resolution images.

10.5 Conclusion

Thanks to the properties of the original 1-D dilation algorithm, we could obtain a tremendous
performance increase compared to the current state of the art.

Regarding specialised HW implementations: Compared to existing HW implementations with
limited size of SE, [17, 19, 26], we could propose streaming morphological processors on a FPGA
with arbitrarily large structuring elements. We could achieve on an FPGA a 200 Mpix/s through-
put, for arbitrarily long sequential morphological filter, conforming to real-time specifications of
the 100Hz 1080p FullHD TV standard. This is far above what has been reported in the literature
up to this date.

Regarding massively parallel platforms, we could obtain the performance over 1 Gpix/s for
large, high-resolution images. This allows to conclude that the premises (sequential memory
accesses, small memory footprint, stream execution) used to design an algorithm for specialised
HW such as FPGA (Bartovský algorithm Sec. 9.3) are in fine applicable to other types of parallel
hardware such as GPGPU. At the same time, pretending that the same premises are ubiquitous
constants is also misleading. On most commonly used platforms such as the PC, the same premises
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may not lead to obtaining the highest performances. We have seen an example with the Morard
opening, Sec. 9.3, that overrun all other concurrent algorithms on a usual PC CPU.
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Part IV

Contractual Research and
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10.6 Material Science

10.6.1 The Tocata project

The Tocata (Technologie Optique Couplée à l’Analyse Topologique Automatisée) project is a
3-year (2009-2012), Fond Unique Interministériel (FUI) project, grouping 13 partners. I have
provided the administrative and scientific responsibility of this project jointly with E. Decencière.
The software development was entirely ensured by Vincent Morard in the scope of his PhD project.

The objective of Tocata is to develop an industrial system for automated surface inspection of
metallic parts. The benefits of this goal are two - economical and ecological. The current inspection
process is done manually, and it is a rather slow and polluting process (usage of chemicals and
consuming water).

The inspected parts come from the aeronautics and nuclear industry. The parts can be very
different and come from different assembly groups (and provided by different manufacturers). The
size of the parts ranges from centimeters to meters. The manufacturing processes include molding,
lamination, forging, welding or a combination of these processes.

The parts can be inspected either new for manufacturing defects or periodically, after a life
cycle for fatigue defects. The Tocata project focuses on superficial defects, and encompasses three
detection modes. Armines (Center of Mathematical Morphology) was charged by the development
of the optical way of defect detection. The defects are of various nature and are not necessarily
visible by eye.

The difficulties to levy come from the variability of the observed structures. Indeed, these
structures are either fatal defects (cracks, ruptures), after which a part is eliminated, or non-
eliminating defects (scratches, corrosion, etc.).

A second difficulty comes from the huge amount of data to process in a limited time. In some
applications, tiny defects (unobservable by bare eye) are to be detected in large parts, requiring
scanning m2 surfaces with a µm pixel resolution, which generates an overwhelming amount of
data. At the same time the image processing part must conform to the timing constraints of the
industrial cycle.

Regarding the variability of the defects, the developed method must be highly polyvalent.
Indeed, to the existing defect register can be added other defects in the future. Given the timing
constraints we have proposed a sparse statistical learning strategy to discriminate the fatal from
the non-eliminating defects while conserving the polyvalence and adaptability. We have used a
set of descriptors more or less sensitive to various defects, and a proposed an original, sparse
descriptor-selection method (called AdaCOS, confidential) able to take into account both the
descriptor’s efficiency and its computational cost. The descriptor selection accepts a maximum
time budget available for the processing, as specified by the user. Given the timing constraints
it selects the most efficient subset of descriptors fitting in the processing-time budget. A priority
can be given either on the accuracy of the detection or the timing constraints.

The research results have been implemented in a software application made available to the
Tocata consortium for testing purposes. Some results have been published [70–72, 75], and the
entire detection procedure is to be patented. The optical detection procedure is going to be used
on line by the Tocata industrial partners in complement to the two other detection modes.

A fully functional prototype has been developed at the end of the Tocata project, see Fig. 10.8.

10.6.2 The Colas project

The Colas project is a three year collaboration with the Centre d’expertise et de documentation
of Colas a.s. I have provided the administrative and scientific responsibility of this project.

The objective of the project is the assessment of the degradation of the surface pavement of
roads by the means of image processing. Next to other measures evaluating the degradation, the
objectives here were two-fold: first, the detection and analysis of cracks, and second, the detection
of surface torn offs, by the means of texture analysis techniques. The detected cracks are submitted
to a variety of measurements and classification.
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(a) (b)

Figure 10.8: A fully functional prototype of non-destructive industrial testing. (a) the robotic
arm used for the Tocata demonstrator. (b) The camera and lighting equipment mounted on the
arm.

I have provided the software development for the crack detection part. The software devel-
opment for the texture analysis part was provided by Vincent Morard, in the scope of his PhD
thesis, under my guidance.

The cracks are classified into groups of severity according to the width. Further, the cracks are
analyzed according to the position and local, mutual distance and grouping. An analysis report is
produced to identify the major phenomena causing the aging (traffic, meteorological phenomena,
and others).

Regarding the second task, the torn offs are not thin but patchy defects stretching over areas
of variable size. They are caused essentially by the tires of the vehicles that virtually tear off
the pavement material. They are observed as modifications of the texture. This modification is
variable and may affect the mean or the variance of local intensity of the texture, size of the grain,
frequency properties, etc. Different torn offs can be observed simultaneously in a road.

The difficulties come from the nature of the structures to detect and from the environment.
The cracks are thin, erratic and tortuous structures found in the texture of the road surface.
Another difficulty comes from the variety of existing surfaces, presence of dirt (soil, tree leaves,
vegetation), intrusions (vegetation, sewer grids, paving blocks) or even the white, lane marking.

Again, given the amount of data to analyze (often tens of kilometers of roads scanned with
1 mm/pix resolution) our industrial partner has formulated timing constraints on the execution
time.

The detection of cracks is done in several steps. First, the images are downsized using an
adaptive subsampling. The cracks are enhanced by the difference of gaussians filter, and detected
via an adaptive thresholding combined with an adaptive filtering.

Additionally, a set of auxiliary tools is used such as suppression of the white lane marking,
detection of the standard vehicle position, detection and suppression of decorative pavings, etc.

Regarding the texture modification. The a priory unknown properties of the torn offs require
adopting a two phase method. In the first phase, a statistical classifier learns the properties of
the sane road texture, and of the other textures possibly present in the images (the defects and
the intrusions). The choice of the descriptors is user dependent. According to the context, one
may (or not) use some descriptors. For example, one may want to use descriptors sensitive to the
mean gray level.

The research developments carried out in the framework of this project were implemented in a
software tool, which has been successfully tested on line, and is now routinely used by the Colas
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Figure 10.10: Example of a fiber-reinforced composite material illustrating a local modification of
the injection flow in the center of the image (a 2-D slice extracted from a 3D X-ray scan).

positions. These sampling positions can typically situate at known zones of weakness of the
component. The samples (of size of 1 mm3) are scanned in a tomograph which yields 3-D images.
We are interested in extracting the individual fibers, to analyze their length and local orientation.
The segmentation of the fibers is a challenging task. First, the resolution of the reconstruction
being at the limits of the capabilities of the device (optics, sensor, wavelength), the images are
noisy and fuzzy. Second, the fibers have a non uniform length and are heavily tangled.

Several methods of local orientation analysis are known and have been used for specific pur-
poses. Directional morphological filtering Soille and Talbot [96], [98]. Nonetheless, even though
efficient algorithms for computing openings with multiple structuring elements has been proposed
by Urbach and Wilkinson [104] the computational cost makes that this approach is unusable for
large 3-D data. In addition to that, to evaluate the length of every fiber would require to let vary
also the SE length. Other approaches come from the orientation space introduced by Chen and
Hsu [14], Van Vliet and Verbeek [111], Chen et al [16] or Ginkel [108]. It works well on isolated
objects. Using a bank of filters infers a trade off between accuracy and locality. This drawback
makes that this approach is not usable for tangled objects. Also, the computational cost, induced
by applying a set of filters, is quite high. Adding supplementary dimensions for the orientation
increases the memory requirements. The orientation in 2-D is one, and in 3-D two values. An-
alyzing 3-D images requires working with 5-D data. Perona and Malik [80] or Frangi [36] use
extraction of local orientation for enhancement of thin, elongated, tubular objects. The detection
of orientation is local, based on second (or higher) derivatives. It is not suitable for noisy images.
Stein et al. [99] use graphs to analyze the geometry of collagen gel images acquired by a confocal
microscope. This work is perhaps the most similar to our approach, described below.

Starting from X-ray micro-tomographic images, the objective is to extract 3-D presentational
maps of fibers in components manufactured by molding from fiber-composite materials. The map
will serve as a support for the simulation of alignment of fibers in the flowing, liquid matrix during
the molding process.

The proposed method proceeds in two steps. First step, it extracts the skeleton of the fibers
by a thinning. Second, individual fibers are reconstructed from the skeleton.

The reconstruction process is formulated and implemented using the theory of graphs. It uses
basic, local graph operations as the edge or vertex contraction. The graph models a real object.
Its geometrical properties must not alter during the simplification. They are encoded as weights
associated to the graph. During the contraction of the graph, the weights are iteratively inherited,
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until the ultimate state, beyond which no additional simplification is possible.

After that, we perform a statistical analysis of geometric properties of the material, such as
distribution of the orientation and length of the fibers.

The segmentation process has been described in [30]. The application we have developed has
been successfully tested and is now routinely used in industry.

10.6.4 The Cocascope project

The Cocascope project is a collaborative, ANR funded MATETPRO project starting in the begin-
ning of 2013, grouping laboratories (ECP, CEA/IRFM, CEA/IRFU, INSA Lyon and Armines) and
one industrial partner (Nexans). I am providing the administrative and scientific responsibility of
this project.

The electrical conductivity of superconducting cables depends of the local mechanical strain
the cables undergo. An accurate modeling of their mechanical and electrical behavior is required
to optimize their global performances.

Superconducting cables display a multiscale internal structure. At the first level, the cable is
made of an assembly of elementary strands arranged together according to more or less complex
architectures, depending on their application. At a following scale, strands appear as composite
structures formed either by superconducting microfilaments embedded in a metallic matrix, or by
a thin superconducting layer deposited onto a metallic substrate. Both reversible and irreversible
conductivity losses are encountered for these superconducting components at microscopic scale,
depending on the magnitude of local strains.

Given the complexity of local configurations of various types of cables, statistical tools will
be developed in order to compare relevant geometrical deformations and to validate simulation
results against those identified experimentally.

The project focuses to identify - at the scale of the strands - the mechanical and electrical be-
havior as a function of cyclic mechanical bending stress induced by axial compression at cryogenic
temperatures.

The validation of the statistical tools will be done via geometrical analysis of the cables by the
means of image processing. A 3D image of a section will be acquired either by tomography, either
via a collection of equidistant axial cuts.

From this image, every filament will be isolated, and its trajectory identified. A statistical
analysis will be performed and compared with results obtained by simulation, and those by exper-
imentation. Particularly, a precise analysis of the local curvature will be compared to the results
of simulation of stress induced by bending.

Figure 10.11: An illustration of filaments of a superconducting cable. The local curvature is
expressed in false colors.
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10.7 Medical&Biomedical Science

10.7.1 The L’Oréal partnership

The collaboration with L’Oréal is a successful partnership between CMM and L’Oréal/Research-
&Innovation, started in 2008. I have contributed to this partnership as one of several software
developers. I have also provided scientific guidance of the dermis collagen and elastin fiber network
analysis task. This task is developed here below.

Recent technological advances in microscopy, and particularly the multi-photon microscopy,
has allowed direct in vivo imaging - up to several hundreds microns of depth - of structures
previously observable in histological cuts and after coloration.

We have used multi-photon microscopy to acquire images of two fibrous structures found in
the dermis - collagen and elastin - that provide the skin with mechanical properties such as the
rigidity and elasticity. These mechanical properties get progressively lost in aging or damaged1

skin. The main objectives are understanding of biological processes that take place in the skin,
evaluation of medical or cosmetic products but also the development of bio-materials. Within this
context we were brought to study various structures in different skin layers.

The quantification of the alteration induced by the aging (or photo-aging) process is only
feasible through an accurate characterization of the fibrous structures. The aging fibers can
be visually recognized from young fibers by an expert through some visually easily discernable
characteristics (such as the length). Other characteristics are not easily observable by eye and
need to be characterized numerically.

However, the automated characterization of the fibrous structures is uneasy because of several
reasons. The population of fibers is not homogeneous. It is widely accepted that the fibers become
shorter in the old skin. However, in young skin, only a limited number of fibers are long. The
fibrous structure is geometrically quite a complicated object, difficult to characterize. Only the
superficial layer of the dermis is visible. The in vivo imaging with the multi-photon microscope
yields images with progressively decreasing SNR with depth.

We have used a pool of young and old volunteers (under 25 and over 60) to acquire a database
of multi-photon images of the skin from the dorsal and ventral side of the forehand.

We have developed a segmentation technique to identify different skin layers (several layers of
the epidermis and of the dermis). We have developed a battery of descriptors and analyzed the
structures found in each layer. We have trained a statistical classifier to identify the variance of
every descriptor and its potential to characterize the aging-related alteration of the skin.

The proportion of long individuals in the whole population of fibers can be assessed from
the distribution of lengths. This is not easy to measure since the fibers are thin, tortuous and
heavily entangled. The parsimonious path openings, proposed in Sec. 7, can successfully be used
to discriminate the short fibers from the long ones, and measure the distribution of the length.

The developed methods were implemented, and successfully tested in a software which is now
routinely used by our partner for various studies. The developments are protected by a patent [37],
and have partially been published in [2,25], and will entirely be published after the acceptation of
the patent.

10.8 Other research

10.8.1 The Freia project

FREIA is an ANR funded project making cooperate two research centers (CMM and CRI) of
Armines and one industrial partner (Thales). The development of one part of this project was
ensured by Jan Bartovský, during his internship in CMM – in the scope of his PhD – under my
guidance.

1essentially due to sun exposure; so called photo-aging
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Following our previous algorithmic achievements in efficient computation of serial morphologi-
cal filters (developed in Secs. 9.1 and 9.3), implemented in FPGA (Sec. 10.3), we have contributed
to FREIA by providing efficient dilation and opening blocks.

The principal scientific achievement stems from the principal properties of the underlying
algorithms. We have already seen that both algorithms run with constant complexity O(1) and
have minimal (further irreducible) memory consumption and latency. We have also seen that the
combination of these properties is inherited under concatenation, which is particularly interesting
for serial filters.

Additionally, both algorithms can be implemented in HW using the finite state machine con-
cept. This brings an advantage of having constant (or almost constant) HW resources w.r.t. the
image resolution. Practically, this allows achieving the HW scalability through only using a smaller
or larger external memory, keeping the logic resources constant. Given that the image resolution
is programmable in the logic, having constant resources allows using only a small FPGA for a
whole range of resolutions provided a sufficiently large external memory is available.

Implemented in one HW block, preserving all these properties, we could obtain the first mor-
phological neighborhood processor with arbitrarily large structuring element. This is a substantial
improvement unexampled in the existing, where only small-sized-neighborhood processors have
been published and used [17,19,26,51]. Indeed, prior to our work, large size neighborhood opera-
tions where implemented in three ways: i) by using the invariance under scaling (homothecy), ii)
by decomposition, or iii) directly in the logic. None of these approaches combines all the proper-
ties that we could obtain: irreducible latency and memory, programmable SE size, constant logic
resources, and scalability exclusively through a scalable external memory.

Figure 10.12: The implementation of arbitrary size structuring element processors on a Virtex 6
development board.

10.8.2 The Cosmeca project

We group in this section two subsequent projects, a RNRT project Cosmeca (Continuité de Service
de Mobilité Evaluée dans un Contexte Automobile) and a European project GST (Global Systems
for Telematics). I have provided the software end electronics development for the Cosmeca and
GST projects, and the administrative responsibility for the GST project.

In the context of the Cosmeca project Armines/CMM was in charge of the risk management of
drivers of road vehicles, and particularly the prevention of sleepiness, and the risk of hypoglycemia
of diabetic drivers.
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The diabetes prevents from correct metabolic regulation of the blood glucose levels. The
hypoglycemia and hyperglycemia bring about dangerous short-time and long-time complications.
One of possible ways how to obtain a correct regulation is the prediction of the blood glucose
evolution. This evolution depends on several factors: insulin medication, carbohydrates intake,
physical activity and to some extent the physical condition. Consequently, the blood glucose level
evolution can only be done on a short time scale, up to the next event (meal, insulin intake, etc.)
and ideally several hours. A reliable blood glucose prediction can serve to administrate accurate
medication, in function to the current situation but also, reversely to control holters and insulin
pumps.

The principal difficulty comes from the fact that the blood glucose level is not observable
except in laboratory condition by a medical staff. One can only reliably measure the capillary or
interstitial glucose, that only is roughly correlated to the glucose in blood.

Numerous and very different techniques have been considered in the past: i) purely mathe-
matical models such as neural networks or ii) metabolism-based models, such as a compartimental
model taking into account other organs (stomach, liver, gut, ... etc., in addition to the pancreas).
The neural networks are often used in situations where no mathematical description of the mod-
eled phenomena is available. In turn, they need to be trained on the whole domain of possible
input data. However, the acquisition of the training data is a medical and ethical problem. One
cannot deliberately provoke a dangerous state in other individuals. Nonetheless, it is precisely in
the dangerous levels where the neural networks have to be accurately trained. The compartimental
models are reasonably reliable but need more data than those that are routinely observable.

We could identify, and validate in rats, a model able to simulate the level of glucose in blood
according to the change of the flow of interstitial glucose under conditions close to the conditions
under which the model was identified. We note that the flow of insulin is not a parameter acting
in a linear way. Two models obtained under two different flows of insulin will not be a linear
combination one of the other. In other words, insulin acts as well on the reaction speed of the
organization as on the values of stabilization. Partial results have been published in Chollet et
al. [18].
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Part V

Perspectives

59



Chapter 11

Perspectives

Après s’être arrêté sur le passé, il arrive le moment de regarder vers le futur. Après ma thèse de
doctorat en traitement d’image, et mon post-doc dans ce même domaine, j’ai passé douze ans,
c’est à dire, l’essentiel de ma carrière dans le Centre de Morphologie Mathématique, centre de
recherche commun de Mines-ParisTech et Armines. L’activité de ce centre de recherche et, par
conséquent, l’environnement intime de mes activités est celui de la recherche appliquée. Elle va de
pair avec la formation dispensée à Mines-ParisTech, étroitement liée et orientée vers l’industrie.

Au fil des années, je suis arrivé à conviction que ce modèle de recherche constitue une vraie
symbiose, de la recherche et le monde économique industriel, mutuellement bénéfique aux deux
parties engagées. Les nouveaux besoins et problèmes identifiés par l’industrie constituent une
source inépuisable d’inspiration et de nouvelles thématiques pour la recherche. Notons, qu’elle est
également génératrice d’emplois - essentiellement pour les jeunes chercheurs de stagiaires maste-
riens aux post-docs. Inversement, la recherche apporte au monde industriel des nouvelles solu-
tions, menant tant qu’il se peut à la création de nouvelles technologies et ouvertures de nouveaux
marchés. J’évolue dans ce contexte, et je ne souhaite guère le changer.

Regardant mes axes de recherche future, ils s’inscrivent bien évidemment dans la continuité
avec le passé. Dans les mois à venir je vais approfondir l’axe de la détection et de l’analyse des
éléments fins. D’une part, une extension des ouvertures par chemins parcimonieux vers l’ouverture
par chemins ultime semble logique et facilement réalisable, ainsi que son application à la mesure
des distributions des longueurs. Nous avons également évoqué l’erreur dont souffre la mesure de
la longueur. Plusieurs phénomènes sont à l’origine de cette erreur et y contribuent de différentes
manières. Différentes idées ont surgi afin de réduire l’erreur de cette mesure.

Toujours dans le même axe concernant les éléments fins et tortueux, il serait intéressant
d’explorer l’utilisation d’autres types de connexité afin de réduire la sensibilité au bruit et améliorer
les performance de la détection.

De manière plus générale, et à plus long terme, d’autres descripteurs devront être développés.
Plus particulièrement, il faudra répondre au besoin de développer des descripteurs des formes
capables de décrire des objets individuels dans des populations d’objets inséparables les uns des
autres. Des descripteurs applicables dans des situations où l’on n’arrive pas à extraire ou individ-
ualiser les objets par segmentation d’image. Au jour d’aujourd’hui dans ces situations on recourt
aux descripteurs qui sont principalement basés sur des mesures statistiques. En effet, elles servent
très bien à décrire des textures, des milieux aléatoires ou des populations d’objets. Cependant,
elles souffrent de deux principaux inconvénients inhérents à leur nature statistique: i) d’une part,
elles mesures les propriétés de la population, et sons donc insensibles aux variations isolées des
objets individuels et, ii) d’autres part, elles se situent à un niveau sémantique relativement bas.
Un niveau sémantique plus élevé, plus proche du raisonnement humain, mais utilisant toutefois
des descripteurs géométriques simples, n’ayant pas besoin d’avoir préalablement individualisé les
objets sera applicable dans des contextes variés, à l’instar de la classification, contrôle ou diagnos-
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tique.

J’avais constaté au début de ce manuscrit une activité d’enseignement relativement limitée.
Notons que l’enseignement est pour moi une source de plaisir et de motivation. La motivation
elle vient surtout à travers l’échange avec les étudiants, et de leur satisfaction avec le cours. Je
me suis vite aperçu que la symbiose de la recherche et du monde industriel et aussi bénéfique
pour l’enseignement. Elle permet d’insérer le cours dans un contexte applicatif et concret. Elle
apporte une motivation de par son application immédiate, très appréciée par les élèves. Pour ces
raisons, je souhaite dans le future élargir mon activité d’enseignement, sans pour autant devenir
enseignant à part entière. De manière générale, je souhaite maintenir un équilibre entre mes
activités contractuelles, de la recherche et de l’enseignement à raison de 40%, 50% et 10% environ.
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[41] H. Hedberg, P. Dokládal, and V. Öwall. Binary morphology with spatially variant structuring
elements: Algorithm and architecture. IEEE Transactions on Image Processing, 18(3):562–
572, March 2009.

[42] H. Heijmans, M. Buckley, and H. Talbot. Path openings and closings. CWI. Probability,
Networks and Algorithms [PNA], (E 0403):1–21, 2004.

[43] H. Heijmans, M. Buckley, and H. Talbot. Path openings and closings. Journal of Mathe-
matical Imaging and Vision, 22(2):107–119, 2005.

[44] C.L.L. Hendriks. Constrained and dimensionality-independent path openings. IEEE Trans-
actions on Image Processing, 19(6):1587–1595, 2010.

[45] J. Hernández and B. Marcotegui. Ultimate attribute opening segmentation with shape
information. Mathematical Morphology and Its Application to Signal and Image Processing,
pages 205–214, 2009.

[46] S. Holmgren and D. Wallin. Performance of high-accuracy pde solvers on a self-optimizing
numa architecture. In Lecture Notes in Computer Science, volume 2150. Springer, Berlin,
Germany, 2001.

[47] K. Hwang, P. S. Tseng, and D. Kim. An orthogonal multiprocessor for parallel scientific
computations. IEEE Trans. Comput., 38(1):47–61, 1989.

[48] M. Iwanowski and M. Swiercz. Fast, parallel watershed algorithm based on path tracing.
In ICCVG 2010, Part II, Lecture Notes in Computer Science, volume 6375, pages 317–324,
2010. DOI: 10.1007/978-3-642-15907-7 39.

64
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[70] V. Morard. Détection de structures fines par traitement d’images et apprentissage statistique
: application au contrôle non destructif. PhD thesis, Mines-ParisTech, 2012.
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nings based on the barycentric diameter. submitted to JMIV, 2012.

[76] M. N. T. Natsuyama. Edge preserving smoothing. Computer Graphics and Image Processing,
9:394–407, 1979.

[77] D. Noguet. A massively parallel implementation of the watershed based on cellular au-
tomata. In IEEE International Conference on Application-Specific Systems, Architectures
and Processors, pages 42–52, July 1997.

[78] N. Ortega-Quijano, B. H. Haj Ibrahim, S. Bancelin, M.-C. Schanne-Klein, A. Nazac,
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The Annexe gathers a collection of selected papers to provide supplementary details to the
summary research activity report above. We group the papers into like categories.

❼ Detection of Thin Objects

1. Parsimonious path openings, at page 73

2. Efficient geodesic attribute thinnings based on the barycentric diameter, at page 85

3. Filtering and segmentation of 3D angiographic data: Advances based on mathematical
morphology, at page 100

❼ Efficient Algorithms

1. Computationally Efficient, One-Pass Algorithm for Morphological Filters, at page 118

2. One-dimensional openings, granulometries and component trees in O(1) per pixel, at
page 129

❼ Implementations

1. Binary Morphology with Spatially Variant Structuring Elements: Algorithm and Ar-
chitecture, at page 139

2. Parallel Implementation of Sequential Morphological Filters, at page 150

3. Real-Time Implementation of Morphological Filters with Polygonal Structuring Ele-
ments, at page 165

4. GPU Implementation of Linear Morphological Openings with Arbitrary Angle, at page
176

5. A parallel architecture for curve-evolution PDEs, at page 190

6. Embedded real-time architecture for level-set-based active contours, at page 202
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Parsimonious path openings
Vincent Morard, Petr Dokládal and Etienne Decencière

Abstract—Path openings and closings are morphological tools
used to preserve long, thin and tortuous structures in Gray level
images. They explore all paths from a defined class, and filter
them with a length criterion. However, the great majority of the
paths bring redundant information, making the process generally
slow.

Parsimonious path openings are introduced in this paper to
solve this problem. These operators only consider a subset of
the paths considered by classical path openings, thus achieving a
substantial speed-up, while obtaining similar results. Moreover,
a recently introduced one dimensional (1-D) opening algorithm
is applied along each selected path. Its complexity is linear with
respect to the number of pixels, independent of the size of the
opening. Furthermore, it is fast for any input data accuracy
(integer or floating point) and works in stream.

Parsimonious path openings are also extended to incomplete
paths, i.e. paths containing gaps. Noise-corrupted paths can thus
be processed with the same approach and complexity.

These parsimonious operators achieve a several orders of
magnitude speed-up. Examples are shown for incomplete path
openings, where computing times are brought from minutes to
tens of milliseconds, while obtaining similar results.

Index Terms—Parsimonious path openings, path openings,
mathematical morphology, complete and incomplete paths.

I. INTRODUCTION

Thin structures extraction is a non-trivial task in image
processing. It requires adapted tools, used in a great range
of applications, from the biomedical field to the industrial
domain. Blood vessels extraction from eye fundus images
[1], [2], road detection from remote sensing images [3], [4]
or automated cracks detection from metallic pieces for non-
destructive testing [5], [6] are some examples.

In the literature, the typical approach to enhance thin
structures is to compute the supremum of openings with linear
structuring elements (SE) in many orientations [7], [8]. The
same strategy can be used with a bank of directional Gabor fil-
ters or difference of Gaussians filters [9], [10]. However, tortu-
ous structures are difficult to detect with this kind of approach.
Using adaptive mathematical morphology methods improves
the detection. Tankyevych et al. [11] introduced hessian based
filters to detect curvilinear lines. In [6], the SE are able to
adapt their shapes to enhance very thin cracks of any tortuosity.
Area openings, introduced by Vincent [12], are considered as
the first attribute openings, later generalized by Breen and
Jones to obtain attribute thinnings [13]. Indeed, using non-
increasing criteria to build attribute thinnings yields interesting
filters to detect thin structures. For instance, the inertia of
the connected components, weighted by their area, gives an
interesting shape descriptor for elongated structures [14], [15].
More recently, thinnings based on geodesic attributes have
been shown to efficiently characterize structures according to
their length, tortuosity or elongation [5], [16]. Finally, the so-

called path openings (PO) [17], [18] use underlying oriented
acyclic graphs to measure the path length.

All these methods have the same drawback: their lack
of robustness with respect to noise. Indeed, thin elongated
structures we are looking for can be easily corrupted by noise,
resulting in disconnected paths. Talbot and Appleton [19] have
proposed incomplete path openings, able to deal with gaps in
paths. It has logarithmic complexity w.r.t. the length of the
paths and linear w.r.t. the width of the gaps, resulting in long
computation timings, unsuitable for time-critical applications.

The approach developed in this paper is motivated by the
need to detect thin, long, tortuous and possibly noisy structures
in a computationally demanding framework. The methods
from the state of the art that fulfill the best these requirements
are indeed path openings with complete or incomplete paths
[19]. Here, we propose Parsimonious path openings (PPO)
a fast method to detect the same structures, using complete
or incomplete paths. PPO only explore a relevant subset of
all paths in the image, to reduce the computation time by
several orders of magnitude. PPO are fast, accurate and robust
to noise.

This paper is organized as follows. We first recall the
theory of classical path openings (Sec. II). Then, we describe
the extraction of the relevant subset of paths in the image
(Sec. III), the filtering strategies available (Sec. IV), the
practical considerations (Sec. V) and the operator accuracy
(Sec. VI). Finally, we present some results through an appli-
cation: the detection of cracks from road pavement images.
We also study the algorithmic complexity and we propose a
timing comparison with classical path openings (Sec. VIII).

II. BASIC NOTIONS ON PATH OPENINGS

Path openings [17], [18] were introduced to offer a higher
flexibility compared to the supremum of linear openings. We
briefly recall here their definition and characteristics.

A. Connectivity graph and maximal paths

A two-dimensional binary image X can be described as a
subset of a rectangular sub-domain D of Z2. We equip D with
a directed acyclic graph G : D →P(D), where P(D) is the
power set of D. For any two points x and y of D, we say that
x is linked to y on G if, and only if, y ∈ G(x). G− is the
inverse of G, defined by G− : D → P(D) and for all x in
D, y ∈ G−(x) (i.e. x is linked to y on G−) if, and only if,
x ∈ G(y) (i.e. y is linked to x on G). GX is the subgraph of
G obtained when the graph is restricted to X .

Fig. 1 illustrates the classical graphs used in practice for G.
Let us introduce now the definition of a path on GX :

Definition 1
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In what follows, we present and illustrate this work with
the extraction of bright structures in an image, with no loss
of generality. Path closings (resp. parsimonious path closings)
are computed using path openings (resp. parsimonious path
openings) on the inverted image.

III. PARSIMONIOUS SET OF PATHS

The principal idea behind the notion of parsimonious paths

is to work with a restricted set of paths instead of exploring
all of them. In fact, the set of paths will be so sparse, that
most points in the image will not be crossed by any of them.

In the original definition of path openings, the number of
paths grows exponentially with the size of the image. However,
only few out of these paths bring relevant information. In the
following, we deal with the problem of building a relevant
subset of paths.

For the extraction of bright structures, the relevant paths
have to follow the brightest structures of the image. Since this
will usually leave other pixels devoided of a path, we will
speak about parsimonious path openings.

Two strategies of selection of relevant paths and a general-
ization are proposed in this section. Hereafter, D, the definition
domain or support of f , will be a rectangular subset of Z

2,
and G will be a directed acyclic graph.

A. Locally maximal paths

The strategy called locally maximal paths (LMP) performs
a local search for bright structures. Definition 1 relative to a
path is extended as follows:

Definition 2

πLMP = (x1, . . . xn) is a locally maximal path if, and only

if, the starting point of the path belongs to a boundary of D
and if, ∀xi ∈ πLMP , 0 ≤ i ≤ n, we have:

xi+1 ∈ argmax
xj∈G(xi)

{f(xj)}. (6)

Equation 6 is used to iteratively construct a path from a
starting point. The path ends when there is no successor to
xn. We note that several successors of a pixel xi may have the
same gray-scale value. In that case, the principal orientation is
preserved by selecting the central pixel defined by the graph.

Pixels from the boundary of D are used as starting points
for each selected graph. Thus, we define ΠLMP

f :

Definition 3

The set ΠLMP
f = {πLMP

1 , . . . , πLMP
p }, is the set of locally

maximal paths of f .

Fig. 4(b) proposes an illustration of this set. Pixels which
belong to at least one path of the set appear as white ; other
pixels are black. The original image shows a DNA molecule
observed with an electron microscope [17] (Fig. 4(a)). We
note that the number of paths in the image is very low in
comparison with the number of paths considered by path
openings. We also observe that most pixels are black (no path

crossing them). This method is not only sparse with respect
to paths, but also with respect to pixels.

With this strategy, the search for the next pixel of a path is
only local and the required time is very low. However, such
paths are not very robust to noise. For instance, impulsive
noise can disturb and deviate a path from a thin structure. To
improve noise robustness, we make a global search for the
paths with a second strategy, namely globally maximal paths

(GMP).

B. Globally maximal paths

To build a path, we use graph theory to search for the
highest path between two pixels of the image. To explain the
notion of highest path, let us see the image as a topographical
surface where high (resp. low) gray-scale values correspond
to high (resp. low) altitudes. A globally maximal path (GMP)
is a path between two points such that the average gray-
scale value is the highest one among all available paths.
The Dijkstra algorithm allows such search. However, given
that the graph is directed and acyclic, specific algorithms
can be used to provide fast algorithms. They are part of
dynamic programming approaches and known as longest path

algorithms [24]–[27]. The definition of a globally maximal
path is given as follows:

Definition 4

πGMP = (x1, . . . xn) is a globally maximal path if, and

only if, the starting and end points of the path belong to a

boundary of D and if we have:

πGMP ∈ argmax
π∈ΠG

(
1

card(π)

∑

xi∈π

f(xi)

)
. (7)

For a given point from the boundary of D, several globally
maximal paths can be found. In practice, we select the path that
preserves the principal orientation of the graph. Computing a
GMP from all boundary pixels of the support D and for every
considered graph, we obtain ΠGMP

f :

Definition 5

ΠGMP
f = {πGMP

1 , . . . , πGMP
p }, is the set of globally

maximal paths of f .

This set is depicted on Fig. 4(g). We observe that the
paths tend to go straight towards a bright structure, and then
they follow it as far as they can. It is a global approach,
robust to noise. With this strategy, the size of zones with no
information (no path going through them) is larger than with
locally maximal paths. We call these zones blind regions, since
structures localized in these regions are not analyzed. With
globally maximal paths, large and bright structures attract all
paths; short and a bright structures found in their vicinity might
not be seen.

GMP need more computation time than LMP and the size
of blind regions is larger. Nevertheless, the robustness w.r.t
noise is much higher than with LMP. Below we introduce a
new general formalism that allows for intermediate strategies.
We call this generalization the β-maximal paths (βMP).
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C. β-maximal paths

The idea of βMP is to compute globally maximal paths
on stripes of width β pixels. With a given graph, say south to
north (Fig. 1(a)), the image is divided into several, horizontally
oriented stripes of height β, as illustrated in Fig. 3.

�

�

�

�

�

Fig. 3. Construction of β maximal paths with the concatenation of globally
maximal paths.

From a starting point x1 localized on the bottom boundary
of the support D, we compute πGMP = (x1, . . . , xβ) on the
first stripe. Then, xβ is the new starting point and we iterate
this process until there is no successor to xn with the graph
G.

Definition 6

πβMP = (x1, . . . , xn) is a β maximal path if, and only if, the

starting point of the path belongs to a boundary of D and if

πβMP is the concatenation of globally maximal paths πGMP

on stripes of size β.

Computing βMP from all boundary pixels of the support D
and for every graph G, we get ΠβMP

f :

Definition 7

ΠβMP

f = {πβMP
1 , . . . , πβMP

p }, is the set of all the β maximal

paths of f .

By definition, β maximal paths generalize previous methods:
LMP are obtained with β=1 and GMP with β=∞. This method
unifies the path extraction strategy and is used to compute the
set of paths of Fig. 4. Thus, we control the trade-off between
noise robustness and blind regions size. The choice of β is
application dependent. On a noisy image, a high value for β
is preferable. On the contrary, if the signal to noise ratio is
high, a small value will reduce the size of blind regions.

Now that we have proposed a general strategy to compute
parsimonious paths, we have to:

• process them;
• build a final 2D image from the results on paths.
These problems are treated in the following section.

IV. PATHS OPERATORS

We will see in this section how, from an operator working
on single paths, we can build an operator working on the whole
image.

(a) Input image (500×160 pixels)

(b) ΠLMP : locally maximal paths

(c) Π5MP : β maximal paths (β = 5)

(d) Π10MP : β maximal paths (β = 10)

(e) Π30MP : β maximal paths (β = 30)

(f) Π50MP : β maximal paths (β = 50)

(g) ΠGMP : global maximal paths

Fig. 4. Illustration of the sets of parsimonious paths on a given image (a).
Pixels in white belong to at least one path of the set; other pixels appear in
black.76
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(a) Input image (500×160 pixels) (b) PPO γΠ

L
L=50

Fig. 5. A molecule (a) on textured background. The PPO nicely filters background noise, but the contrast of some molecule sections is partially lost.

A. General strategy

Recall that D is the support of function f , also written
spt(f), and Π = {πi} denotes a collection of paths of D.
The restriction of f to the path π, denoted by f/π , can be
considered as a one-dimensional signal.

Let ξf/π be the application of a 1-D operator ξ to f
restricted to π. Using ξ we obtain a result for each path πi of
Π. Notice that for any x belonging to the intersection of two
different paths πi and πj , one generally obtains ξf/πi

(x) 6=
ξf/πj

(x). Hence, we need a method to produce a single value.
Let spt(Π) denote the support of Π, i.e. the set of all

points of D which belong to at least one path of Π. The
illustrations of different sets of parsimonious paths given in
Fig. 4 correspond in fact to this domain. We can extend ξf/π
to spt(Π) by taking:

ξf(x) = ⊗
π∋x
π∈Π

ξ(f/π)(x), (8)

where ⊗ is a binary operator such as
∨

or
∧

(i.e. supremum
or infimum). In practice, the choice of the binary operator will
depend upon the desired properties of the resulting operator.
Several examples are described in the following sections.

We now have a result on all points belonging to at least one
path. Indeed, Eq. 8 does not define ξf(x), for x outside the
support of Π.

For some applications this might be enough, but we also
may need to compute a value outside spt(Π). This choice is
very application-dependent.

The first and simpler strategy consists of using a constant
value outside spt(Π), e.g. the minimum or maximum of V , or
even the original f . Another strategy is using a morphological
reconstruction under/above f in order to propagate the results
to the entire D. We will come back to this strategy in
section V-D.

B. Parsimonious path openings

The first step to obtaining parsimonious path openings

(PPO) is the choice of a convenient ξ. We naturally take the
1-D opening of size L, γL and use

∨
in Eq. 8 to compute a

value for each x ∈ spt(Π):

γΠL (f)(x) =





∨
π∋x
π∈Π

γL(f/π)(x), x ∈ spt(Π)

0 otherwise
(9)

we pad D outside spt(Π) by zeros to ensure the anti-
extensiveness of the operator.

Based on the fact that γΠL is built from openings using
supremums, and that outside spt(Π) the result is set to the
minimal value of V , i.e. zero, it can be demonstrated that this
operator is an opening.

Note that if the set of paths Π is the complete set of paths
associated to a graph, such as in Fig. 1, then spt(Π)=D, no
padding is necessary, and one obtains a classical path opening.

Concerning path closings, as in the classical path opening
definition by Heijmans et al. [18], they can be obtained by
duality: ϕ(f)=−γ(−f). However it should be noted that Πf

and Π−f are not the same. Whereas Πf selects the bright
structures Π−f selects the dark ones.

C. Interlude: are parsimonious path openings really open-

ings?

The set of paths Π is a function of the image f , written
Πf . So, what can we say about γΠf

L ? It can be shown that
although the anti-extensivity remains a valid property, the
increasingness and idempotence are lost. Therefore this more
general operator is not an opening any more.

From a practical point of view, to avoid an unexpected
behavior of serially composed operators, once Πf is defined, it
should be set constant. For example, for building granulome-
tries [28] (see Section VI later) it is necessary to use the same
Π in all stages. Similarly, when computing alternate sequential
filters, it is logical to compute once the Πf and Π−f and use
them, respectively, in computing all subsequent openings and
closings.

Hence, provided the above mentioned precautions are met,
PPO are openings.

D. Parsimonious Incomplete path openings (PIPO)

In presence of noise, long, thin structures are likely to
appear disconnected, implying an underestimation of their
length. See for example the result of a PPO in Fig. 5. Notice
that while the background texture has been filtered out, some
portions of the molecule are lost as well. We propose solutions
below.

Consider a signal disconnected by one “noisy” pixel (Fig. 6,
top). A path opening γL fails to detect a part of it (Fig. 6,
middle, blue). To solve this problem, Talbot and Appleton
[19] introduced Incomplete Path Openings (IPO), tolerating
gaps (Fig. 6, middle, dashed red). However, the computation
complexity of IPO is high, giving in practice one order of
magnitude longer timings.
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Fig. 6. Complete and incomplete parsimonious path openings. From top to
bottom: input signal f . The opening γL(f), L=5 fails to detect a portion of
the signal due to noise. A closing ϕǫ(f) of size ǫ=2, followed by the opening,
γLϕǫ(f), detects correctly the entire structure. The infimum with the original
f ∧ γLϕǫ(f) is used to ensure the anti-extensiveness of the result.

To achieve the same objective within our framework, we
propose to use a small closing ϕǫ of size ǫ to close the gap,
followed by an opening of size L, see Fig. 6 bottom, dashed
red. The 2-D operator version is built by using the supremum:

ζΠL,ǫ(f)(x) =





∨
π∋x
π∈Π

γLϕǫ(f/π)(x), x ∈ spt(Π)

0 otherwise.
(10)

See Sec. VIII below for results on real images.
The original IPO verify the anti-extensivity of openings.

To obtain an anti-extensive result from Eq. 10 one can take
the infimum with the original image to obtain a parsimonious
incomplete path opening γΠL,ǫf = f∧ζΠL,ǫf (see Fig. 6 bottom,
blue).

V. PRACTICAL CONSIDERATIONS

The construction of PPO comprises two steps: path extrac-
tion and path processing. We give here some details on the
algorithms used to speed up both steps. Next, we introduce
a parsimony parameter and we allow the detection of thick
structures by assigning a value to all pixels of the resulting
image, by means of the morphological reconstruction.

A. Path extraction: efficient algorithm

1) Local maximal paths: The LMP strategy (Sec. III-A)
extracts paths from the input image with a local search, by
using the definition corresponding to Eq. 6. Thanks to the
locality, the LMP extraction is extremely efficient.

On the other hand, the extraction of β maximal paths by
using the definition corresponding to Eq. 7 is slow. Below,
we propose an efficient implementation using a fast, two-step
algorithm.

2) Globally maximal paths: The extraction of GMP is in
principle similar to the classical path opening on binary sets
(Sec. II-B). This method was first introduced by Schmitt [29]
to extract the longest path in a binary set, and extended later to
gray level images by Vincent and Jeulin [30] to detect fracture

lines in porous media or to extract correlogram tracks from
noisy sonar data [27].

Starting from the input image f we compute the upstream
λ+ and downstream λ− weighted distance maps with G and
G−, by extending equations 1 and 2:

λ+(x) = max
y∈G(x)

λ+(y) + f(x), (11)

λ−(x) = max
y∈G−(x)

λ−(y) + f(x). (12)

Then, we sum these two distance maps to get, for each pixel
of the image, the weighted length of the longest and brightest
path going through it:

λ(x) = λ−(x) + λ+(x). (13)

Finally, GMP are obtained by using the LMP search (Eq. 6),
on the map λ.

To obtain βMP, we divide the image into several, β-pixel
wide stripes oriented perpendicularly to the main direction of
the selected graph, and we compute GMP on each of these
stripes.

To conclude, the LMP extraction and the map λ are both
computed in O(1) per pixel. Consequently, GMP (and βMP)
are extracted with the same O(1) complexity per pixel as LMP.
Nonetheless, the execution time of GMP (and βMP) is longer
due to the time needed to compute λ.

B. Path filtering: efficient algorithm

The βMP strategy individualizes each path π of the set
ΠβMP. The image alongside a path, f/π , is a 1D signal.
Efficient algorithms are available in the literature for 1D
openings or closings that run in one scan of the signal with
a O(1) cost per pixel. The fastest algorithm for 1D openings
is the one invented by Van Droogenbroeck and Buckley [31].
However, it uses a histogram, consequently the whole signal to
be processed must be known in advance, and the pixel values
are limited to 8-bits. Instead, we propose using another fast
algorithm [32], [33], which offers the following additional
advantages: (i) it computes the output signal progressively,
each time a pixel is added to a path; (ii) it can handle the
signal borders in two different ways, by padding with zeros
or with ∞; (iii) it can handle any input data accuracy (integer
or floating point) with no extra cost; (iv) the complexity is
independent of the size of the opening; (v) it is fast and GPU
compliant, as shown by Karas et al. [34].

In the next section, a parsimony parameter k is introduced
to further reduce the computation time.

C. Parsimony parameter k

By observing the images of Fig. 4, we note that many
paths, with close starting points, converge to follow the
same structures. This phenomenon increases with increasing
β. Thus, many paths from the set ΠβMP

f do not bring new
information and can be removed. Since paths with close
starting points have a high probability of being attracted by
the same structures, k will be the distance between starting
points of two adjacent paths.
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(a) PO of size L=50 (b) PPO of size L=50 (β=5)

(c) IPO of size L=50 (ǫ=2) (d) PIPO of size L=50 (ǫ=2, β=5)

Fig. 7. Comparison between path openings (first column) with parsimonious path openings with a reconstruction step (second column) for complete or
incomplete paths.

Thus, we divide by k the total number of paths, as well
as the cost of the algorithms. On the other hand, the PPO
accuracy is slightly reduced (see section VI).

D. Morphological reconstruction

PPO is a sparse operator and yields a thin representation of
objects. Should one need a thick detection, PPO results can be
reconstructed under the original image. Efficient implementa-
tions of the morphological reconstruction are available in the
literature [35], [36]. Their complexity is linear with reference
to the image size.

Fig. 7 illustrates the DNA molecule extraction from the
noisy background using parsimonious path openings followed
by a reconstruction to ease the comparison with classical path
openings. Figs. 7(a) and 7(b) compare PO and PPO with
complete paths whereas Figs. 7(c) and 7(d) illustrate the results
for incomplete paths with a tolerance ǫ of 1 pixel. Very similar
results are obtained with PPO in comparison with PO with a
significant reduction of the timings (see Sec. VII-B).

Using incomplete paths improves the detection since thin
structures are reconnected. However, it also reconnects noisy
pixels, preserving some structures in the image background.
Thus, tuning the parameter ǫ is a trade-off between the size
of the gaps to fill and the level of noise.

In the following section, the accuracy of PPO with respect
to length measurements is studied

VI. ACCURACY OF PPO

In order to evaluate the accuracy of PPO, we will apply
them to binary images containing segments of known length,
and compare the measured length distribution using PPO with
the theoretical one.

Size distributions are usually computed by a residual ap-
proach with a collection of increasing-size filters commonly
known as granulometry, introduced by Matheron [28], [37].
Let us us consider a binary image f , and a set of paths Πf

computed on f . The family of PPO {γΠL}L≥1 is a granulom-
etry. Note that we have droped the f index on Π, as the set

of paths is computed once and for all, and then kept constant,
for reasons explained in section IV-C. The corresponding size
distribution is, for non-negative integers L:

SDL =Meas(γΠL − γΠL−1). (14)

In the present case, the measure Meas is the number of
connected components of the binary image. Eq. (14) measures
the length distribution.

PPO suffer from two types of error. The first one is the
anisotropy of the length measurement, also present in the
original PO. It comes from the discretisation of the path on
the Z

2 grid. The second error is due to the parcimonious scan
of the support. The following text analyses the phenomena at
the origin of these errors and their impact on the accuracy.

Let x be a measurement, and m the correct value. The
relative measure error is:

err =
x−m
m

. (15)

A positive err means overestimation, whereas a negative err

means underestimation.
In our case x and m are distributions (expressed as proba-

bility density functions or frequencies in case of histograms).
A number of measures exist to compare probability density
functions or histograms (see [38] for a review of most common
distances or divergences). However, none of these suits our
case for the following reasons: i) The metric behind the
majority of the distances considers the probability density
function as a vector in an orthogonal space. Nonetheless, the
histogram bins in our case are not orthogonal. ii) A distance is
always positive, which does not reflect the difference between
under- and over-estimation of a measure. iii) No distance
or metric is correlated to the usually used relative measure
error as in eq. 15. This means that for singleton distributions
(containing only one point) we would not obtain the same
value as with eq. 15.

Consequently, we define an equivalent of Eq. 15 for two
histograms X and M , with respective mean values equal
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(a) Road Cracks (1776×1134 pixels) (b) Pre-processing of (a)

(c) PPO γL, L=80 (d) PIPO γL,ǫ, L=140, ǫ=3

Fig. 19. The detection of road cracks with various path operators. All operators use the collection of parsimonious paths ΠβMP with β=36 and k=1. (The
contrast of all images has been enhanced for printing purposes).

between an interesting methodological tool (path openings)
and a practical, computation intensive, real-world application.

This work opens different research perspectives. For in-
stance, the proposed strategy only uses paths seeded at the
image border. Other starting points could be considered, for
example with a random placement, as is in the geodesic
voting approach [40]. This could help obtaining information
on blind regions. Other morphological parsimonious image
representations can be also considered, based for example on
image extrema, or image ridges and valleys.
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arbitrary orientation in O(1) per pixel,” in Acoustics, Speech and Signal

Processing, IEEE International Conference on. IEEE, 2011, pp. 1457–
1460.
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Abstract An attribute opening is an idempotent, anti-
extensive and increasing operator, which removes from

an image connected components which do not fulfil a
given criterion. When the increasingness property is
dropped, we obtain a – more general – attribute thin-

ning. In this paper, we propose efficient grey scale thin-
nings based on geodesic attributes.

Given that the geodesic diameter is time consum-
ing, we propose a new geodesic attribute, the barycen-
tric diameter to speed up the computation time. Then,
we give the theoretical error bound between these two

attributes, and we note that in practice, the barycentric
diameter gives very similar results in comparison with
the geodesic diameter. Finally, we present the algorithm

with further optimisations, to obtain a 60× speed up.

We illustrate the use of these thinnings in auto-

mated non-destructive material inspection: the detec-
tion of cracks. We discuss the advantages of these oper-
ators over other methods such as path openings or the

supremum of openings with segments.

Keywords Geodesic attributes · geodesic diameter ·
barycentric diameter · elongation · tortuosity ·
thinnings · thickenings · mathematical morphology

1 Introduction

Automated optical inspection for non-destructive test-
ing is an economically important, fast developing do-
main. One of its main tasks, the detection of cracks,
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requires efficient image processing methods. The detec-
tion of cracks (usually long, thin and randomly tortuous

structures) in the presence of noise is a challenging task.

Generally speaking, filtering of unwanted objects
(e.g. noise) while preserving the desired information is

a frequent pre-processing step. Mathematical morphol-
ogy [12,25,26] is based on a set approach and classically
uses structuring elements to obtain information on the

morphology of the objects. In their overview of mor-
phological filtering, Serra and Vincent [27] noticed that
simple openings and closings with square, disk or hexag-
onal structuring elements, are often good enough for

the filtering task. However, noise reduction and feature
enhancement properties can be improved by adapting
the shape and size of the structuring elements to the

image content (see e.g. [2], [3] and [14]). Openings and
closings by reconstruction are also considered as a part
of shape-adaptive morphology. This led Vincent [33] to

propose area openings and later Breen and Jones more
general attribute openings and thinnings [4]. Later, Ur-
bach and Wilkinson [32,34] proposed thinnings based
on the inertia to detect elongated objects in the image.

In order to enhance thin structures of random ori-
entation, one can use the supremum of linear openings
over all orientations. Although this suffices when the

structures have a bounded local curvature, it fails for
randomly tortuous thin cracks. In order to relax the cur-
vature limit, Heijmans et al. [5] introduced path open-

ings. Instead of rigid linear structuring elements, they
use flexible paths inferred from an underlying connec-
tivity graph. The paths are kept if, and only if, their
length is longer than a given constant. Nonetheless, very

tortuous structures still cannot be entirely detected.

The geodesic diameter, initially proposed by Lantué-
joul and Beucher [8], is particularly useful to measure

the length of thin structures. We associated, in Morard
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et al. [13], attribute thinnings and geodesic attributes
to build a new family of operators. These geodesic at-
tribute thinnings increase the shape flexibility by re-
moving any constraint on the tortuosity. Albeit devel-

oped to detect cracks, they can be used to detect other
kinds of similar fibrous structures. Nevertheless, the
geodesic diameter being computationally expensive, it

is unsuitable for time-critical industrial applications.

This paper extends [13], by introducing and deeply
analysing a new, fast and accurate geodesic attribute:
the barycentric diameter. We also propose further ex-

periments, results and an efficient algorithm, which is
faster than path openings and readily usable for time-
critical industrial applications.

We start by reviewing attribute thinnings and geo-
desic binary attributes in sections 2 and 3. Section 4

introduces the barycentric diameter. Section 5 explains
the method to construct geodesic attribute thinnings.
Section 6 illustrates their interests through two appli-

cations and provides a detailed comparison with path
openings, initially developed to solve similar problems.
Lastly, section 7 focuses on an efficient implementation,

the complexity and the timings.

2 Background: attribute thinnings

Even if most definitions used in this paper can be given
in a continuous domain, for practical reasons we con-
sider a discrete domain.

Let I : D →{0; 1} be a binary image, with D a finite
(typically rectangular) subset of Z2. A binary operator
(or operator, when there is no ambiguity) is a function
that transforms a binary image into another binary im-

age. The set X contained in I is X = {x ∈ D|I(x) = 1}
and we denote Xc its complement in D. We associate
to D a local neighbourhood describing the connection

between adjacent pixels. In this study, each pixel is
connected to its eight nearest neighbours. With this
8-connectivity, we introduce the collection of the con-
nected components (CC) of X as {Xi}. From now on,

by object we understand one connected component from
the collection {Xi}.

2.1 Connected components and attributes

We wish to keep or delete the objects in an image ac-

cording to intuitive attributes like length, tortuosity,
elongation or circularity. Given some connected compo-
nent Xi, these attributes will be respectively denoted

L(Xi), T (Xi), E(Xi) and C(Xi). Their definitions will
be given later. These attributes allow to define criteria

like “longer than or equal to” (L(.) ≥ λ), or “less tor-

tuous than” (T (.) < λ), with some λ ∈ R+. Formally, a
criterion χ is a function mapping the set of connected
components of D into {0, 1}, where 0 can be interpreted

as false and 1 as true.
The binary operator based on criterion χ is then

defined as:

ψχ(Xi) =

{
Xi if χ(Xi) is true

∅ otherwise,
(1)

for all CCs Xi included in D.

2.2 Binary attributes thinnings

Based on the binary operator ψχ, the corresponding
attribute thinning of X is

ρχ(X) =
⋃

i

ψχ(Xi). (2)

This is equivalent to scanning, one by one, the different

CCs of X, and either preserving them intact or remov-
ing them, depending on the criterion χ.

Attribute thinnings are anti-extensive and idempo-
tent (see [4] for the proof). Moreover, if the criterion is

increasing, then the corresponding attribute thinning is
also increasing and the operator becomes an attribute
opening.

The dual transform of a thinning is called a thick-
ening, and is obtained using the complementation:

δχ(X) = [ρχ(X
c)]

c
. (3)

In what follows, we restrict our study to thinnings for
simplicity, since the computation of thickenings is straight-
forward with equation 3.

In the next section, we will discuss the extension of

thinnings to grey level images.

2.3 Grey level attribute thinnings

A grey level image f is a mapping from D into V =

{0, . . . ,M − 1}. Image f can be decomposed into a col-
lection of sets obtained by thresholding. Hereafter,Xh(f)
denotes the threshold of f above h ∈ V :

Xh(f) = {x | x ∈ D, f(x) ≥ h}, (4)

and Xh
i (f) the i-th connected component of Xh(f).

Any increasing binary operator, such as an opening,
can be generalised to grey level images by applying it

to all the threshold sets Xh(f), and stacking the results
to recompose the grey-level image again [11]:

(ρdirectχ (f))(x) = ∨{h ∈ V | x ∈ ρχ(Xh(f))}. (5)
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However, the computation of the geodesic diame-
ter is computationally intensive and we are interested
in efficient implementation of the thinnings based on
geodesic attributes. Therefore, we introduce in the next

section the barycentric diameter – a new attribute, ap-
proximating the geodesic diameter, but much faster to
compute.

4 Barycentric diameter

The aim of the barycentric diameter is to replace the

geodesic diameter by a similar measure with a lower
complexity. We first describe the available algorithms
for computing the geodesic diameter. Then, we intro-

duce the new attribute.

4.1 Review on the computation of the geodesic
diameter

The direct approach to compute the geodesic diameter
of an object X consists of computing, for each point of
the border, the geodesic distance within X to all other

points of X (starting from one pixel, this operation
is called a propagation). The highest geodesic distance
computed, is the geodesic diameter. The timings of this

algorithm are high and depend on both the area of the
object and the number of boundary pixels. We notice
that there are many redundant propagations, leading to
an inefficient implementation. Schmitt [24] showed that

it is enough to consider a subset of the border points as
starting points for the propagations. However, despite
the important speed-up thus achieved, still too many

propagations remain to compute.

Maisonneuve and Lantuéjoul designed an efficient
parallel algorithm to compute the geodesic diameter in

a hexagonal grid [9]. Let X be a non-porous connected
component (without “holes”), and Y the set of bor-
der points of X. Using a particular propagation in the

hexagonal grid, starting from Y , the algorithm gives the
geodesic diameter in a single propagation. However, this
algorithm requires that X is not porous. Otherwise, the

propagation never stops, turning infinitely around the
holes in X. This characteristic makes the algorithm in-
adequate for our application. Indeed, a group of cracks
can represent a porous connected object, e.g. Fig. 10(a).

Given that we have not found a method to efficiently
compute the geodesic diameter, we propose what we

consider a convenient - an efficient - approximation of
the geodesic diameter: the barycentric diameter.

4.2 Definition of the barycentric diameter

For any point x of X, we can compute the length lx(X)

of the longest geodesic arc starting at x in a single prop-
agation. Could this value replace L(X)? Is it a good
approximation? How to choose a convenient x?

Let us consider a maximal geodesic arc of X, and let
y1 and y2 be its extremities. This means that dX(y1, y2)
is equal to L(X). Given that the geodesic distance is
a distance [9], thanks to the triangular inequality we

have, for any x belonging to X:

dX(y1, y2) ≤ dX(y1, x) + dX(x, y2). (12)

Moreover, by definition lx(X) is larger than both dX(y1, x)
and dX(x, y2), and smaller than L(X), therefore we fi-

nally obtain:

L(X) ≥ lx(X) ≥ L(X)

2
. (13)

Thus, the relative error (L(X)− lx(X))/L(X) obtained
when approximating L(X) with lx(X) is smaller than
50%.

In order to improve this approximation, it is tempt-
ing to iterate the propagation, starting this time from
the farthest points from x. If Y is the subset of X con-
taining the farthest points from x:

Y = {y | y ∈ X, dX(x, y) = lx(X)}, (14)

we can introduce the iterated maximal geodesic dis-
tance starting from x, defined as:

l2x(X) = sup
y∈Y

ly(X). (15)

One can easily show that:

L(X) ≥ l2x(X) ≥ lx(X) ≥ L(X)

2
, (16)

and more generally that lnx(X) converges, ∀n ∈ Z+:

L(X) ≥ lnx(X) ≥ ln−1
x (X) ≥ L(X)

2
. (17)

Nonetheless, as it will be seen below, the limit is
not necessarily equal to L(X). In practice though, we

observe that the convergence is fast, and that going be-
yond l2x(X) is not interesting. We will come back to
this point at the end of the section. Fig. 4 provides an

example where l2x(X) gives a much better approxima-
tion than lx(X), and where further iterations do not
improve the result.

In the following, the approximations of L(X) will

be based on l2x(X). But we still have to choose x.
Does the choice of x within X have an influence

on the quality of the approximation? Experiments have

shown that indeed it is the case. Several strategies have
been tested:
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Table 1 Summary of the relative error between the geodesic diameter and 5 approximations of this geodesic diameter. These
statistics are computed on 51400 binary shapes on total. The automatic generation of these shapes is presented in the Appendix.

Methods LBar LBarNearest LGeoCentre LGeoCentreNearest LRandom

Mean (%) 0.24 0.24 0.47 0.56 1.92
Convex objects Std (%) 0.85 0.84 1.41 1.53 3.36

Max (%) 10.04 11.20 15.9 17.24 22.59
Mean (%) 0.43 0.40 0.74 0.85 2.68

Pixel aggregation Std (%) 1.09 1.03 1.58 1.71 3.59
Max (%) 10.76 9.27 12.87 12.87 24.59
Mean (%) 0.22 0.22 0.23 0.59 1.21

Ball aggregation Std (%) 0.72 1.26 1.52 2.31 4.53
Max (%) 7.17 12.75 13.84 16.85 28.83
Mean (%) 0.13 0.28 0.24 0.53 1.31

Random walk Std (%) 0.66 1.03 1.08 1.61 3.27
Max (%) 9.97 21.7 21.48 21.48 29.96
Mean (%) 0.12 0.16 0.21 0.40 0.76

Perlin noise Std (%) 0.74 0.80 1.21 1.50 2.61
Max (%) 10.87 10.14 16.55 13.61 31.90
Mean (%) 0.25 0.43 0.34 0.58 0.66

Database MPEG7 Std (%) 1.12 1.93 1.44 1.91 2.38
Max (%) 20.36 22.31 19.16 19.21 30.11

Mean (%) 0.23 0.29 0.37 0.58 1.42
All Objects Std (%) 0.86 1.49 1.37 1.76 3.29

Max (%) 20.36 22.31 21.48 21.48 31.90

�

(a) Input

� ��
�

��

(b) First propaga-
tion step

� ��
�

�

(c) Second propa-
gation step

Fig. 4 A black and white cherry: illustration of the barycen-
tric diameter. Point B is barycentre of the CC and the start-
ing point of the first propagation (x) is the farthest point from
B. Then, the first propagation gives lx and the second propa-
gation, starting from y, leads to a much better approximation
of the geodesic diameter: l2x

– When x is one of the farthest points from the ba-
rycentre of X, we obtain what we call the barycen-
tric diameter LBar(X). Note that the barycentre of

X does not necessarily belong to X, so we use the
Euclidean distance when looking for these farthest
points. By taking one of the farthest points from

the barycentre, we suppose that it will be close to
an extremity of X (even though it is not always
the case for non-convex shapes). Alternatively, in-
stead of taking one of the farthest points from the

barycentre, we can take one of the closest, thus ob-
taining another approximation: LBarNearest(X).

– A geodesic centre of X can also be used as refer-

ence point, instead of the barycentre. We obtain
then two other approximations, LGeoCentre(X) and

LGeoCentreNearest(X). Note that this strategy is only
proposed for comparison; in practice, computing the

geodesic centre is computationally intensive.
– Finally, we have also considered as starting point

the first point of the object found with a raster scan,
called LRandom(X).

Therefore, five methods are available to approxi-
mate the geodesic diameter with only two propagation
steps. To compare them, we apply them to six differ-

ent sets of binary objects and we compute the geodesic
diameter as well as the approximations defined above.
For each object, we store L(X) and l2x(X) and we fi-

nally compute some statistics for each database : the
mean relative error (L(X)− l2x(X))/L(X), its standard
deviation, and its maximum.

Five sets correspond to realisations from a random

connected component model. Each one contains 10000
realisations. We give in the Appendix further explana-
tions on the automatic generation of these objects. The

sixth set is a standard database of 1400 binary objects
(MPEG7 CE Shape-1 Part B database2).

Table 1 summarises the results. A first general ob-
servation concerns the fact that relative errors are, in

practice, much lower than the 50% theoretical limit. All
mean errors are in fact smaller than 1%. Even the maxi-
mal error is far from reaching the theoretical limit. Note

also that the barycentric diameter achieves the smallest

2 Database available in www.imageprocessingplace.com/

root files V3/image databases.htm
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�����

����	A B���C D���EF� ����AFC

����AF�D��������E�A B�����
Fig. 7 Filtering with geodesic attributes criteria: (first column) initial image, (second column) barycentric diameter thin-
nings, (third column) geodesic elongation thinnings, (fourth column) geodesic tortuosity thinnings and (fifth column) geodesic
circularity thinnings.

��������

�������
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Fig. 8 Illustration of the thinnings based on geodesic attributes on a grey scale image. The first line uses classical geodesic
distance and the second line presents the results of thinnings based on the generalised geodesic distance [28], written with a ∗
(e.g. L∗, E∗, T∗ and C∗)

5.2 Grey level images

We present some results on the application of geodesic
attribute thinnings to a grey scale image. Fig. 8 shows

a fingerprint with long and tortuous structures, and
the resulting images after application of thinnings with
length, elongation, tortuosity and circularity criteria,

using the subtractive rule. Different structures are en-
hanced and we can make the distinction between long,
elongated or tortuous structures with these filters. Fi-
nally, the circularity attribute naturally erases most

structures from the image.

In section 3, we have presented both the classical
geodesic distance [9] and the generalised geodesic dis-
tance [28]. We compare, in Fig. 8, thinnings with both

methods and we note the similarity of the results; the
main visible difference corresponds to a fingerprint ridge

around the center of the tortuosity image. The gener-
alised geodesic distance is more accurate, but the com-

putation times are longer (see Tab. 2). According to
whether one prefers speed or accuracy, one may choose
the classical or the generalised geodesic distance.

6 Results

First, we propose an application3 where geodesic at-

tribute thinnings are particularly adapted. Fig. 9(a)
shows the image of a DNA molecule acquired with an
electron microscope4. These structures are long, thin,

3 A demonstration version is available http://cmm.ensmp.

fr/~morard/DemoGeoThinnings.html
4 Image from the Institute for Molecular Virology. Univer-

sity of Wisconsin - Madison http://www.biochem.wisc.edu/

faculty/inman/empics/dna-prot.htm
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and extremely tortuous. In order to evaluate the re-
sults we have visually compared them with two other
methods, classically used for this sort of application:

1. The supremum of openings (Fig. 9(b), 60-pixel long
segments oriented every 2 degrees) only preserves
straight parts, and fails with tortuous structures.

Note that the length λ is very low compared to the
other methods. Longer segments (100-pixel long)
would completely remove the molecule. A smaller
length would preserve the background noise.

2. The path opening, see Heijmans et al. [5], (Fig. 9(c),
length 160 pixels), tolerates some tortuosity. It yields
better result than the previous method. The noise is

considerably reduced but some parts of the molecule
are also discarded. This operator is not able to follow
the entire structure, and therefore underestimates

its length.
3. The barycentric diameter thinning (Fig. 9(d), size

600 pixels) yields a better result, since the molecule
is correctly extracted. It relaxes any constraints on

the tortuosity, and offers a better flexibility than
path openings.

4. The geodesic elongation thinning (Fig. 9(e), elon-

gation superior to 50), filters out all the noise and
offers a very efficient detection. Any other non elon-
gated structures are similarly deleted.

5. The geodesic tortuosity thinning (Fig. 9(f), tortuos-

ity superior to 2.5), filters out every structure that
is not tortuous. Hence, this molecule is easily ex-
tracted with this tool.

These attribute thinnings have been used in an in-
dustrial non-destructive material-inspection application
to detect long, narrow and randomly tortuous cracks.

Fig. 10 offers a crack enhancement example with the
same operators. Similar conclusions on the results can
be pointed out: geodesic thinnings yield the best detec-

tion. The tortuosity thinning (Fig. 10(f)) enhances the
crack as well as some noise in the background image.
However, the noise has a lower grey level value than

the crack and a simple threshold suffices to extract the
crack.

7 Algorithm, practical considerations and

optimisation

We describe the algorithm used to build geodesic at-

tribute thinnings. We compare it with the algorithm
previously used by the authors [13], where the geodesic
diameter is computed exhaustively from the contour

points. Furthermore, we propose a comparison with path
openings [5].

7.1 Geodesic attribute thinnings algorithm

Attribute filters are often implemented using a tree rep-
resentation of the image calledmax-tree (see e.g. Salem-
bier et al. [23]). The max-tree creation relies on a recur-

sive flooding procedure starting from the lowest pixel in
the image. Its worst-case time complexity is quadratic
O(N×M), withM the cardinal of the set of values and

N the number of pixels of the image, see [15]. However,
the worst case is rare and in practice, Salembier et al.
algorithm is faster than the algorithm of Najman and

Couprie [15] for 8 bits images, even if the construction
of max-tree is done in quasi linear time with the size of
the image, using an union find approach. Other efficient
implementations exist, see e.g. Ngan et al. [16].

A max-tree structure is adapted for attributes that
can be updated each time a new pixel is aggregated to

a CC. This is not the case of the barycentric diame-
ter which needs to be recomputed and needs to access
all the pixels of a connected component. This requires

some modifications of the max-tree algorithm and pro-
hibits the recursion. The algorithm Najman and Cou-
prie [15] maintains several tree-like structures at a time

and accessing the pixels is uneasy either.

Instead, we start with the relief completely sub-

merged by water, and let the water progressively sink.
As soon as appears the first (global) maximum, its con-
nected component is progressively reconstructed and
tested on χ. When other local maxima appear, they

are not process yet and we reconstruct all connected
component at lower threshold sets that are supersets of
the global maxima (see Fig. 11 component 1). Finally,

other local maxima are processed in the same way but
the aggregation stops when a CC is already processed
(Fig. 11 components 2 and 3).

�

�

�
�

Fig. 11 Illustration of the algorithm principle for a one-
dimensional signal with three local maxima. The components
in light grey (marked by one) are analysed first, followed by
the components marked by 2 and 3.

The Alg. 1 simulates this principle. It uses a prior-

ity queue HQueue that supports operations (modifying
the content), and queries (not modifying the content):
the operation Push(x, p) inserts an element x with a

given priority p, and (x, p) = Pop() retrieves the cur-
rently highest-priority element x and its priority p. The
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(a) Input (b) Opening with rotating segments of
length 60 pixels

(c) Path openings of size 160 pixels

(d) Barycentric diameter thinning (sub-
tractive rule) (L ≥ 600)

(e) Geodesic elongation thinning (sub-
tractive rule) (E ≥ 50)

(f) Geodesic tortuosity thinning (subtrac-
tive rule) (T ≥ 2.5)

Fig. 9 DNA molecule extraction: we compare five different methods to detect this thin structure. We note that path openings
and segment opening completely underestimate the length of this tortuous structure. By opposition, geodesic attribute thinnings
easily enhance this molecule and correctly evaluate its length.

(a) Input (b) Opening with rotating segments of
length 21 pixels

(c) Path openings of size 220 pixels

(d) Barycentric diameter thinning (sub-
tractive rule) (L ≥ 220)

(e) Geodesic elongation thinning (sub-
tractive rule) (E ≥ 4)

(f) Geodesic tortuosity thinning (subtrac-
tive rule) (T ≥ 1.1)

Fig. 10 Crack detection: to detect these thin structures, we use five different methods. Geodesic attribute thinnings yield the
best enhancement.
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queries: p = Prio() returns the currently highest prior-
ity, and Empty() tests the emptiness of HQueue.

In the beginning, the output image g is initialised
by the input f , and the local maxima of f are extracted
by a function FindLocalMax (code lines 4 and 5). The

list LocalMax contains one pixel per every maximum,
and is sorted by decreasing order of the level.

The for cycle (lines 8 to 28) runs over all the local
maxima to process. Line 9 reads from LocalMax the
position p of next maximum to process. The repeat-until

cycle (lines 14 to 28) simulates the decreasing water
level to progressively reconstruct the associated com-
ponent associated, and tests it against χ (line 26). The
extraction of the component uses two auxiliary flag ar-

rays State : D → Z and Level : D → V (lines 2 to 3),
initialised to 0 for all image pixels (lines 6 to 7). State
receives −1 whenever a pixel is pushed in the queue

(line 11), and later the index of the local maximum to
which component it belongs to (line 18), cf. Fig. 11.

We initialise the region growing algorithm by push-
ing p in the hierarchical queue with the priority f(p)
(line 10), by marking this pixel (lines 11 to 12) and
by initialising CC to the empty set. Then, a region-

growing algorithm (code lines 15 to 25) extracts a con-
nected component CC to which the pixel p belongs to.
Criteria χ based on the barycentric diameter LBar need

to access the connected component as a set. When the
region growing at this level is finished (line 25), CC con-
tains all pixels of this connected component such that

f(x) ≥ h, ∀x ∈ CC. Then, if the test χ(CC) is false,
we apply the subtractive rule by removing the contrast
of this connected component for all pixels belonging to
CC. The function contrast(CC) returns the difference

between the level h and the highest grey level of the
neighbours of CC.

The same process is repeated until all regional max-
ima are processed.

The Fnct. LBar illustrates how to compute the ba-
rycentric diameter when χ is based on this attribute.
First, it computes the barycentre p of CC, i.e. the mean

of the coordinates (code line 1). Then, it searches one
of the farthest point from the barycenter with the Eu-
clidean distance (line 2). Finally, it computes twice the

geodesic distance inside CC (see Eq. 6, and lines 3 and
4), and returns the result l2X of the second iteration.

Note : Algorithm 1 is set up to compute the sub-

tractive rule. However, if one wants to apply the di-
rect rule, only two modifications of the algorithm are
required: the output image is initialised with 0 and if

χ(CC) is true, we write the CC in g by taking the max-
imum value between h and g.

Algorithm 1: g ← GeoAttrThinning (f , χ)

Input: f : D → V - input image
χ - criterion

Result: g : D → V - output image

/* Declare auxiliary variables */

HQueue = {}; /* Init HQueue to empty */1

State : D → Z;2

Level : D → V ;3

/* Initialize */

g = f ;4

LocalMax = FindLocalMax(f); /* get sorted list5

of local maxima */

State(:) = 0;6

Level(:) = 0;7

/* Run over all local maxima */

for i = 1 . . .Card(LocalMax) do8

p = LocalMax(i);9

HQueue.Push(p, f(p));10

State(p) = −1 ; /* pixel enqueued */11

Level(p) = f(p);12

CC = {};13

/* Simulate decreasing water level */

repeat14

/* Extract a CC to test on χ */

repeat15

(q, h) = HQueue.Pop();16

CC = CC ∪ {q};17

State(q) = i;18

foreach n ∈ Neighbour(q) do19

if f(n)>Level(n) and State(n) 6=i then20

hmin = min(h, f(n));21

HQueue.Push(n, hmin);22

State(n) = −1 ; /* pixel enqueued */23

Level(n) = hmin;24

until h < HQueue.Prio() ;25

if not χ(CC) then26

g(CC) = g(CC)− contrast(CC)27

until HQueue.Empty() ;28

Function l2x ← LBar(CC)

Input: CC - A connected component
Result: l2x: Barycentric diameter of CC

b = p, p ∈ CC;1

x = argmaxy∈CC ||y, b||;2

x1 = arg supy∈CC dCC(x, y);3

x2 = arg supy∈CC dCC(x1, y);4

l2x = dCC(x1, x2);5

return l2x6

7.2 Complexity

The complexity analysis is split into two parts; the com-

plexity of the CC’s extraction (Alg 1) and the complex-
ity of the computation of the attribute.
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Table 2 Running times for different images of size 256x256
for a geodesic diameter thinning or thickening for λ = 20.
See section 7.4 for details. Timings are in seconds. Laptop
computer: Intel Core2 Duo T7700 @ 2.40GHz

From [13] From this paper
Images Lno opt Lopt LBar L∗

Bar

Coffee 36 0.079 0.0028 0.0062
Eutectic 37 0.015 0.0029 0.0069
Grains 3650 5.4 0.041 0.328
Macula 3850 2.7 0.031 0.220
Relief 1024 0.99 0.022 0.139
Retina 1820 1.56 0.024 0.136

First, we detail the complexity of Alg. 1. The func-
tion FindLocalMax fills the array LocalMax using a re-
gion growing process with a queue, and sorts the ar-

ray LocalMax with a linear complexity radix sort [17],
which gives a complexity of O(N) for this function
(N = Card(D)). Finally, from the local maxima, we use

a relief emerging approach using a hierarchical queue,
which adds log(M) in the complexity. Every local max-
imum is processed sequentially and the worth case is
a highly nested signal. Then, for the worst signal, a

pixel is analysed N/4 times in average, which leads to
a complexity of O(N2 log(M)), just like the algorithm
presented by Breen and Jones [4]. We note however,

that the computation times are very far from this upper
bound5 and in practice, we observe a linear evolution
of the computation time with the number of pixels.

All geodesic attributes are based on the length mea-
surement. Therefore, all attributes are computed with
the complexity of Fcnt 2.

For a connected component having n pixels, the
computation of the attribute value is done in 4 steps.
The barycenter and the farthest point both require one

scan over all pixels, giving O(n). Then, two propaga-
tions are performed to get the barycentric diameter.
For the propagation step, according whether L1 or L2

is used for the distance, one needs a queue (or a priority
queue, resp.) giving a complexity of O(1) (or O(log(m)
resp.) per pixel, with m the mean number of elements
in the priority queue.

This is an improvement in comparison with the com-
plexity of the geodesic diameter. With a propagation

from all boundary points, the complexity is O(n2) (the
worst case is a thin line, which needs n propagations).
With the Schmitt’s method, the number of boundary
points is reduced however, the worth case still requires√
n propagations (for a disc).

5 We made an experiment on more than 100 natural im-
ages showing that a pixel is processed less than two times in
average.

(a) Eutectic (b) Coffee (c) Grains

(d) Macula (e) Relief (f) Retina

Fig. 12 Images used to build table 2. They have all the same
size: 256× 256 pixels.

7.3 Optimisations

The first and probably, the most important optimisa-
tions is that we can stop the propagation step whenever
the criterion value is reached. This acceleration is only
available for the barycentric diameter, or the geodesic

elongation and it does not change the complexity of the
algorithm.

The acceleration also comes from other optimisa-

tions, which are computer’s tricks:

– We compute simple attributes such as the barycen-
tre or the area during the region growing process,

in order to avoid useless scan of all the pixels of CC
in Fnct. 2.

– We also compute the contrast of the CC during the

region growing process.
– In Fnct. 2, we remove the distance map during the

propagation step. Instead, we enqueue the distance

value with its position whenever a pixel is stored in
a queue or in the hierarchical queue.

– We manage our own queue, which is specialised for
this algorithm. Therefore, we can remove all the el-

ements from a queue in only one assignation.
– For 8 bits images, we can merge the buffers State

and Level. Then, we use the first byte to store the

buffer Level and the other bytes for the variable
State. Then, we get the value of two variables in
only one access of the memory.

These optimisations does not change the complex-
ity of this algorithm, however, the timings have been
reduced by a very large factor, as shown in the next

section.

7.4 Timings

We compare in this section all the benefits brought by
the optimisations, accelerations presented in section 7
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and the barycentric diameter (section 4). Table 2 col-
lects the timings for the images of Fig. 12, where we

compare four methods: a thinning based on the geodesic
diameter with no optimisation (Lno opt), the geodesic
diameter with the stop of the propagation when the

front wave is larger than λ (Lopt), the barycentric di-
ameter with all the discussed optimisations (LBar) and
the barycentric diameter using the generalised geodesic

distance (L∗
Bar).

Timings have been reduced by a large factor be-

tween thinnings using Lopt and LBar (around 60 in av-
erage for these 6 images). Moreover, using a generalised
geodesic distance increases the computation time by at

least a factor of 2, in comparison with LBar. The over-
head is introduced by the computation of the distance
map for every connected component. This distance map
also cuts down the benefits of the optimisation, where

the propagation step is stopped if the criterion is ful-
filled during the propagation.

7.5 Efficiency comparison with path openings

Path openings [5] have been developed to solve applica-
tions similar to those treated in this paper. In section 6,
it has been shown that they provide indeed interesting

results, even if they cannot detect objects as tortuous
as those detected by geodesic attributes thinnings. For
the comparison to be complete, we now compare their
computational performance.

In Fig. 13, we plot a comparison between the thin-

nings based on geodesic attributes (barycentric diam-
eter) and an efficient implementation of path openings
[30,6]. The timings were computed on the image pre-
sented in Fig. 10(a). On this crack image (768x576 pix-

els), thinnings are faster than path openings and this
tendency is the same for other images.

Finally, we can state that the resulting implemen-
tation of geodesic attribute thinnings is at least as effi-
cient as other operators that have been designed with

similar objectives, which makes them interesting for a
large number of industrial applications.

8 Conclusion and future work

A new geodesic attribute is introduced, the barycentric
diameter to approximate the costly geodesic diameter.
We give the theoretical upper error bound of this ap-

proximation, and show that the typical error is negligi-
ble.

This, as well as other shape attributes, such as the
geodesic length, elongation and circularity, is combined
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Fig. 13 Benchmark on a crack image (768x576 pixels, 8 bits)
with regard to the size of the attribute, for path openings
and thinnings based on the barycentric diameter with the
subtractive rule.

with attribute thinnings to obtain a new family of oper-
ators. They are ideal for characterising long, elongated

or tortuous objects. We show that their shape flexibility
is superior to that of classical linear openings or path
openings.

We use the subtractive filtering rule, proposed by

Urbach and Wilkinson [32], and we provide an effi-
cient algorithm for computing the resulting operators.
We report competitive timings, which allow using these

operators in time-critical, industrial applications. The
geodesic attribute thinnings are not only more flexi-
ble than path openings, but also faster. Furthermore,
geodesic attribute thinnings readily generalise to 3-di-

mensional images, by only changing the connectivity.

At present, geodesic thinnings fail to extract thin,
curvilinear structures disconnected by noise. Indeed,
their length will be underestimated. A possible solu-

tion shall consist in using a generalised connectivity,
like the second generation connectivity introduced by
Ouzounis and Wilkinson [18].

Future work will concern the generalisation of the

proposed algorithm to efficiently compute other oper-
ators based on geodesic attribute thinnings. On the
one hand, morphological pattern spectra [10] estimate

the size and shape distribution of the searched struc-
tures. On the other hand, ultimate openings [1,7] ex-
tract structures with the highest contrast. Typically,
these operators require the computation of a family of

thinnings of increasing size. Using this algorithm, we
can compute pattern spectra and ultimate thinnings
within only one “relief emerging” process.
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97



14 Vincent Morard et al.

de Bourgogne”, and has been financed by the French “Dépar-
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Appendix: random connected component mod-

els

Many strategies exist to generate random binary shapes. The
results of the comparison between the geodesic diameter and
its approximations are linked to the method used to generate
these shapes. Therefore, we use five different methods to have
a high variety of objects. For each method, 5 realisations are
presented in Fig. 15. The size of the support of these random
shapes is a 500 by 500 pixels square.

Convex shape

A random number of points (between 10 and 100) are ran-
domly and uniformly picked on D. The final connected com-
ponent is the convex hull of these points.

Pixel aggregation

This method is used to generate relatively dense objects,
which are almost convex. The set is initialised with a sin-
gle point. At each iteration, a randomly chosen neighbour
point is added to the set. The procedure is iterated a random
number of times.

Ball aggregation

This method uses the same process as the pixel aggregation
method, except that we iteratively aggregate a ball instead
of a point to the set. The ball radius is chosen randomly
between 5 and 40 pixels, for each ball. The generated shapes
are much more complex than the shapes generated using the
pixel aggregation method.

Random walk

We start from a ball in the centre of the domain. Then, we
use a Brownian motion to choose the next location of the ball.
At each iteration, the radius of the ball is chosen randomly.

Perlin noise

Perlin noise [21] is a procedural texture primitive. It has a
pseudo random appearance that is highly controllable and
multiscale. Fig. 14 provides an illustration of a realisation
of this noise. By thresholding this image, we get a set of
objects and we select the biggest CC of this set (Fig. 14).
Some resulting objects can be very smooth, whereas others
can have a high tortuosity.

Fig. 14 Object generation with Perlin noise. Left to right:
Perlin noise, thresholding, selection of the biggest CC.
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Fig. 15 Examples of random connected components, ob-
tained with five different models.
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a b s t r a c t

In the last 20 years, 3D angiographic imaging has proven its usefulness in the context of various clinical
applications. However, angiographic images are generally difficult to analyse due to their size and the
complexity of the data that they represent, as well as the fact that useful information is easily corrupted
by noise and artifacts. Therefore, there is an ongoing necessity to provide tools facilitating their visualisa-
tion and analysis, while vessel segmentation from such images remains a challenging task. This article
presents new vessel segmentation and filtering techniques, relying on recent advances in mathematical
morphology. In particular, methodological results related to spatially variant mathematical morphology
and connected filtering are stated, and included in an angiographic data processing framework. These fil-
tering and segmentation methods are evaluated on real and synthetic 3D angiographic data.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The important rise of medical imaging during the 20th century,
mainly induced by physics breakthroughs related to nuclear mag-
netic resonance and X-rays, has led to the development of imaging
modalities devoted to visualise vascular structures. The analysis of
such angiographic images is of great interest for several clinical
applications. Initially designed to generate 2D data, these imaging
modalities progressively led to the acquisition of 3D images, en-
abling the visualisation of vascular volumes.

However, such 3D data are generally quite large, being com-
posed of several millions of voxels, while the useful vascular infor-
mation generally represents less than 5% of the whole volume. In
addition to this sparseness, the frequent low signal-to-noise ratio
and the potential presence of artifacts (due to acquisition, patient
movements, etc.) make the analysis of such images a challenging
task. In order to assist practitioners in the use of such data (radiol-
ogists, clinicians, etc.), it is therefore necessary to design software
tools enabling them to exploit as well as possible the relevant
information embedded in these images.

One of the main ways to perform such a task is to develop filter-
ing and/or segmentation methods, i.e., routines that enhance or ex-
tract the vessels from angiographic images. In particular, such
methods are required to be as ergonomic as possible, for instance
by providing user-friendly and time-saving interactive modus

operandi.
Recently, several methodological works have been conducted in

the field of mathematical morphology. Some of them, and espe-
cially those related to spatially-variant mathematical morphology
and connected filtering, can be efficiently involved in the design
of relevant tools for vessel filtering and segmentation from 3D
angiographic data, especially Computed Tomography Angiography
(CTA) and Magnetic Resonance Angiography (MRA). This article
aims at presenting some of these new mathematical morphology
concepts, and their applicative use in this complex field of medical
image processing.

The remainder of this article is organised as follows. Section 2
proposes a synthetic state of the art related to mathematical mor-
phology in medical image processing, and vessel segmentation
from 3D angiographic data. Section 3 provides the background no-
tions required to describe the methods developed in the sequel of
the article. The next two sections represent the main contributions
of this article. Section 4, which is an improved version of the
conference articles (Tankyevych el al., 2009b,a), describes a vessel
filtering method based on a hybrid strategy, merging both
new spatially-variant mathematical morphology algorithms and
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derivative-based approaches. Section 5, which is an improved ver-
sion of the conference articles (Passat and Naegel, 2011b; Dufour
et al., 2011a), describes an example-based interactive vessel seg-
mentation method relying on a component-tree-based technique.
In particular, it describes a way to consider fuzzy examples and
how the filtered images provided in Section 4 can be used as exten-
sive masks for connectivity improvement. Section 6 describes and
discusses experimental results related to vessel segmentation and
filtering performed on angiographic phantom images and in vivo

cerebral MRA data. Concluding remarks emphasising contributions
and remaining challenges are proposed in Section 7.

2. State of the art

2.1. Mathematical morphology in medical imaging

Mathematical morphology is a well-established theory of non-
linear, order-based image analysis (Serra, 1982; Najman and Talbot,
2010). It relies on basic operations (namely erosions, dilations,
openings, closings), involving geometric patterns (structuring ele-
ments, or SEs for brief). These low-level SE-based operations made
it possible to design some of the first image processing segmenta-
tion methods (e.g., for 2D vessel segmentation (Thackray and
Nelson, 1993)), and remained frequently used in this domain (e.g.,
for 2D (Zana and Klein, 2001) and 3D vessel segmentation (Cline
et al., 2000), or for skull stripping (Dogdas et al., 2005)).

Based on these basic mathematical morphology operations,
higher-level image processing techniques have been developed
and used in the context of medical image processing. Watersheds
(Vincent and Soille, 1991) have been used for many applications,
including 3D vessel segmentation (Passat et al., 2007), 3D verte-
brae labelling (Naegel, 2007), 4D heart segmentation (Cousty
et al., 2010), or 3D brain structure segmentation from newborn
brain MRI (Gui et al., 2011). The grey-level hit-or-miss transform
(Naegel et al., 2007b) has been also utilised, essentially in the field
of 3D vessel segmentation (Naegel et al., 2007c; Bouraoui et al.,
2010). Finally, connected filters (for a recent survey, see (Salembier
and Wilkinson, 2009)) and especially those based on component-
trees (described in Section 3.4) have been involved in several
(bio)medical applications, including 3D vessel filtering and
segmentation (Wilkinson and Westenberg, 2001; Urbach and
Wilkinson, 2002; Caldairou el al., 2010), 3D brain structures
segmentation (Dokládal et al., 2003), 2D melanocytic nevi segmen-
tation (Naegel et al., 2007a), or interactive visualisation of 3D data
(Westenberg et al., 2007).

The use of mathematical morphology in these techniques has
been, in particular, motivated by the ability of the involved opera-
tors to efficiently integrate and model a priori knowledge enabling
an efficient detection of the structures of interest with a wide
range of usage policies (automated, semi-automated, knowledge-
based and/or interactive ones).

2.2. Filtering and segmentation of 3D angiographic data

Filtering and segmentation of vascular structures (generally
from MR and CT angiography) has been an active research field
since the end of the 1980s (see, e.g., (Eichel et al., 1988; Kitamura
et al., 1988) for pioneering works). These intensive efforts were
motivated by the potential use of such segmentation results, e.g.,
for pathology detection and quantification, or for surgical planning.
A complete state of the art is beyond the scope of this article. The
reader may find up-to-date surveys on 3D angiographic segmenta-
tion in (Lesage et al., 2009b; Tankyevych et al., 2011).

Most image processing and analysis concepts have been consid-
ered in the development of 3D vessel segmentation methods.

Non-exhaustively, one can cite: region-growing (Tizon and
Smedby, 2002), deformable models (Lorigo et al., 2001; Descoteaux
et al., 2008), statistical analysis (Chung et al., 2004; Sabry
Hassouna et al., 2006), minimal path-finding (Li and Yezzi, 2007),
vessel tracking (Flasque et al., 2001; Manniesing et al., 2007), dif-
ferential analysis (Sato et al., 1998), or mathematical morphology
(discussed in Section 2.1). Despite this wide range of methodolog-
ical contributions, results provided by segmentation methods gen-
erally remain perfectible. The handling of under-segmentation
(e.g., in the case of small vessels, of signal variation, or of partial
volume effect) and over-segmentation (e.g., in the case of neigh-
bouring with other anatomical structures, or of high intensity arti-
facts); robustness to image degradations (low signal-to-noise
ratio); low computational cost; guarantee of termination and con-
vergence, are all desirable properties that are not often satisfied
together.

Consequently, a reasonable trend over the last few years has
been to use synergies across methodologies. Indeed, hybrid vessel
segmentation methods present a range of solutions for overcoming
certain weaknesses of each method and combining their advanta-
ges. One of the most popular hybrid strategies is based on the
combination of multi-scale differential analysis with deformable
models, such as level-sets (Chen and Amini, 2004), B-spline snakes
(Frangi et al., 1999) and maximum geometric flow (van Bemmel
et al., 2003). Deformable methods combined with multi-scale
statistical region-based analysis was proposed in (Hernandez and
Frangi, 2007). Tracking strategies reinforced by gradient flux of
circular cross-sections was considered in (Lesage, 2009a), while
in (Friman et al., 2009) multiple hypothesis tracking was used with
Gaussian vessel profile and statistical model fitting. In (Wong
and Chung, 2007), a probabilistic method for axis finding was
proposed within a minimal path finding strategy. We note finally
that mathematical morphology has also been used in combination
with other techniques, for instance in (Kobashi et al., 2001), water-
sheds and neural networks were combined, and in (Sun and Sang,
2008), multi-scale morphology was used together with Gabor
wavelets.

An alternative way to improve vessel segmentation efficiency
consists of injecting high-level guiding knowledge in the segmen-
tation process. This can be achieved by designing vascular atlases
devoted to explicitly guide segmentation tools (Passat et al.,
2005; Passat et al., 2006). Also, instead of using atlases, it is possi-
ble to use segmentation examples, thus leading to the design of
example-based segmentation processes. A last strategy is to di-
rectly take advantage of users skills in order to guide the segmen-
tation process, thus leading to interactive methods. This last
strategy however requires the interaction to be simple and quick,
since medical experts generally cannot afford to spend much time
with segmentation tasks.

These considerations motivate, in particular, the new filtering
and segmentation methods described in the next sections. Indeed,
in Section 4, a hybrid strategy, mixing differential analysis and
mathematical morphology is proposed for 3D vessel filtering. In
Section 5, an interactive and example-based segmentation method,
relying on connected filtering, is described. These two methods
take advantage of recent methodological advances in mathemati-
cal morphology. We show that they can also be conveniently fused,
leading to improved results.

3. Background notions

This section includes the formal notions required to correctly
describe the filtering and segmentation approaches developed in
Sections 4 and 5. In particular, Section 3.1 provides general nota-
tions, while Sections 3.2, 3.3, 3.4 focus on differential analysis
and mathematical morphology concepts, respectively.
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3.1. Notations

Let E ¼Q3
i¼1½½0; d� 1�� (with d 2 N

�) be a subset of Z3. The set E
provides a (discrete) model for the part of R3 where the considered
3D images are defined. An element of E (called point, or voxel), is
noted x ¼ ðx1; x2; x3Þ.

Let V � Z be a finite interval of integers. Without loss of gener-
ality, we can assume that V ¼ ½½0;M � 1��. The set V provides a (dis-
crete) model for the value space of the considered 3D images. An
element of V (called value, or grey level), is noted v.

A (grey-level) image I is defined as a function

I : E ! V

x# v

���� ð1Þ

and we note I : E ! V or I 2 VE. The set E is called the support of I. By
abuse of notation, a (binary) image B : E ! f0;1g will also be con-
sidered as the set B�1ðf1gÞ ¼ fx 2 E j BðxÞ ¼ 1g.

The thresholding function at value v 2 V is defined by

kv : VE ! 2E

I# fx 2 E j v 6 IðxÞg

����� ð2Þ

The cylinder function of support X# E and of value v 2 V is defined
by

CX;v : E ! V

x#
v if x 2 X

0 otherwise

�
�������

ð3Þ

The impulse function at point p 2 E and of value v 2 V is defined by

ip;v : E ! V

x#
v if x ¼ p

0 otherwise

�
�������

ð4Þ

In particular, we have ip;v ¼ Cfpg;v .

3.2. Hessian-based analysis

One of the main challenges in image analysis is to design oper-
ators that are translation, rotation and scale-invariant. Translation
invariance is satisfied by all convolution kernels, by definition.
Rotation invariance can be guaranteed either by using rotation-
invariant kernels or when the preferred direction is fixed relatively
to the image. Scale invariance can be satisfied by derivatives of
Gaussian filters. Linear combinations of derivatives of Gaussian fil-
ter kernels constitute, in particular, the basic feature detectors
within linear scale-space theory (Lindeberg, 1994).

The Hessian matrix H is obtained from the Gaussian second
derivative analysis of a 3D image F at each voxel in the principal
directions

H ¼

@2F
@x2

1

@2F
@x1@x2

@2F
@x1@x3

@2F
@x2@x1

@2F
@x2

2

@2F
@x2@x3

@2F
@x3@x1

@2F
@x3@x2

@2F
@x2

3

2
66664

3
77775

ð5Þ

This Hessian matrix H can be decomposed into three eigenvalues,
k1; k2 and k3 (with k1j j 6 k2j j 6 k3j j) associated to three eigenvectors
e1; e2 and e3. When k1 is close to zero and much smaller than k2 and
k3, the locally characterised shape is a line-like (bright) structure,
e.g., a vessel in angiographic data. Its orientation is then given by
e1 (e2 and e3 then form a basis for the plane orthogonal to the
line-like bright structure).

When appropriately designed and applied at multiple scales,
combinations of the three eigenvalues, often called vesselness func-
tion, should give the strongest response at one particular scale

corresponding to the plate-, blob-like and/or tubular objects (Sato
et al., 1998; Frangi et al., 1999). Hereafter, and in the remainder of
this article, we consider the vesselness function proposed in (Fran-
gi et al., 1999) (which has been experimentally assessed as the
most robust in the current applicative context). For a 3D grey-level
image, observed at a point x, and a scale r (directly linked to the
standard deviation of the considered Gaussian kernel), this vessel-
ness function m is formulated as follows

mðx;rÞ ¼
0 if k2 > 0 or k3 > 0

1� exp
�R2A
2a2

� �� �
� exp � R2B

2b2

� �
� 1� exp �S2

2c2

� �� �
otherwise

(

ð6Þ

with

RA ¼ k2j j
k3j j

RB ¼ k1j jffiffiffiffiffiffiffiffiffi
k2k3j j

p

S ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP3

j¼1k
2
j

q

8
>>>>><

>>>>>:

ð7Þ

where RA differentiates between planar and line-like objects, RB

differentiates blob-like ones, and S accounts for the intensity
difference between objects and background. The parameters a; b
and c influence the sensitivity of the filter to the corresponding
measures.

As stated in Formula (6), the filter can be applied at different
scales, which then provide results in a large range of object sizes.
After normalisation, the maximal vesselness value is selected for
each point x. The corresponding scale then provides an estimate
of the object width.

3.3. (Spatially-variant) mathematical morphology

We introduce hereafter some notions of mathematical mor-
phology and spatially-variant mathematical morphology (SVMM).

Definition 1 (Adjunction). Let L and M be two complete lattices
(i.e., partially ordered sets ðX;6Þ, such that every subset S of X has
an infimum in X denoted

V
S, and a supremum in X denoted

W
S).

Two operators d : L ! M and e : M ! L form an adjunction ðe; dÞ
if and only if for all x 2 L and all y 2 M, we have

ðdðxÞ 6 yÞ () ðx 6 eðyÞÞ ð8Þ
From these notions, it is then possible to introduce the basic

operators of morphology, namely, dilation, erosion, opening and
closing.

Definition 2 (Erosions, dilations, openings and closings). With the
same hypotheses as in Definition 1, the operator d commutes with
the supremum operator

W
and is called a dilation, while the

operator e commutes with the infimum operator
V

and is called an
erosion. Moreover, the operator c ¼ de is called an opening, and the
operator u ¼ ed is called a closing.

We have the following general properties of openings and
closings.

Property 3. LetL andM be two complete lattices. Let c and u be the

opening and closing induced by an adjunction for L;M. Let x; x0 2 L

and y; y0 2 M. Then we have

ðIdempotenceÞ
cc ¼ c

uu ¼ u

(
ð9Þ

ðIncreasingnessÞ ðx 6 x0Þ ) ðuðxÞ 6 uðx0ÞÞ
ðy 6 y0Þ ) ðcðyÞ 6 cðy0ÞÞ

�
ð10Þ
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ððAnti�Þextensiv ityÞ
x 6 uðxÞ

cðyÞ 6 y

(
ð11Þ

These properties are useful from both algebraic and practical points
of view. Indeed, the behaviour of morphological operators is well
defined. It is therefore possible to design new operators (e.g., gradi-
ents, top-hats) exploiting differences between these operators.

We now assume that L ¼ M. In the ‘‘grey-level’’ case (e.g., in
flat morphology (Heijmans, 1991)), L is the family of grey-level
images VE equipped with the point-wise partial order on functions
6. Let B# E be a binary set, also called structuring element (SE). Let
dB; eB : VE ! VE be the dilation and the erosion induced by B. The
dilation of the impulse function ip;v (with p 2 E and v 2 V) is de-
fined as dBðip;v Þ ¼ CBp ;v , with Bp ¼ fxþ p j x 2 Bg. From this expres-
sion, we derive the classical definitions of the dilation and
erosion for a function f : E ! V

dBðf ÞðxÞ ¼
_

p2B
f ðx� pÞ ¼

_

p2�Bx

f ðpÞ ð12Þ

eBðf ÞðxÞ ¼
^

p2B
f ðxþ pÞ ¼

^

p2Bx
f ðpÞ ð13Þ

where �B ¼ f�p j p 2 Bg is the transpose of B.
In the (more general) case of SVMM (Bouaynaya et al., 2008;

Bouaynaya and Schonfeld, 2008), the involved SE B is often denoted
as structuring function and is actually defined as B : E ! 2E. Conse-
quently, BðxÞ is the structuring element considered at point x 2 E.
The transpose of a structuring function B, still noted �B : E ! 2E, is
now defined, for all x 2 E by

�BðxÞ ¼ fy 2 E j x 2 BðyÞg ð14Þ

Here, the dilation of the impulse function ip;v is defined as
dBðip;vÞ ¼ CBðpÞ;v . From this expression, we derive the spatially-vari-
ant definition of the dilation and erosion for a function f : E ! V

dBðf ÞðxÞ ¼
_

p2�BðxÞ
f ðpÞ ð15Þ

eBðf ÞðxÞ ¼
^

p2BðxÞ
f ðpÞ ð16Þ

With the definitions given above, the standard and SV morpholog-
ical erosion and dilation form an adjunction. Then, we can define,
in both cases, the morphological opening and closing, as

cB ¼ dBeB ð17Þ
uB ¼ eBdB ð18Þ

The transpose �B of B is used in Formula (15) for the computation of
dB. In addition to being computationally expensive, it can, under
some conditions, be of larger extent than any of the B functions,
although if the family of B is bounded, so is �B. This becomes compu-
tationally problematic for implementing filters based on adjunc-
tions of dilations and erosions in order to compute a closing or an
opening. However, by considering the following – equivalent –
alternative writing of Formula (15)

dBðf Þ ¼
_

p2E
CBðpÞ;f ðpÞ ð19Þ

it turns out that the computation of dBðf Þ is performed indepen-
dently of �B, then leading to the following result.

Proposition 4. The SV dilation and the SV adjunct erosion can be

computed with the same algorithmic cost OðMNÞ where N ¼ jEj, and
M ¼ Oðmaxx2EfjBðxÞjgÞ.

We note that for this property to be true, it is required that the
structuring function defining B must remain constant when com-
puting Formula (17).

3.4. Component-trees

Let us consider a given connectivity on Z
3, for instance the stan-

dard 6- or 26-connectivity (Kong and Rosenfeld, 1989) (in the se-
quel of this article, some alternative morphological connectivities
will also be considered). For a given binary image B defined on E,
we denote by C½B� the set of the connected components (i.e., the
maximal connected sets) of B with respect to this connectivity.
Note that a grey-level image I 2 VE can be expressed as

I ¼
_

v2V

_

X2C½kv ðIÞ�
CX;v ð20Þ

Let K ¼ S
v2VC½kvðIÞ� be the set of the connected components gen-

erated by the thresholdings of I at all values v 2 V . The Hasse dia-
gram of the partially ordered set ðK; # Þ is a tree (i.e., a
connected acyclic graph), and more especially a rooted tree, the root
of which is the supremum k0ðIÞ ¼ E. This tree is called the compo-

nent-tree of I.

Definition 5 (Component-tree). Let I 2 VE be a grey-level image.
The component-tree of I is the rooted tree T ¼ ðK; L;RÞ such that:

K ¼
[

v2V
C½kvðIÞ� ð21Þ

L ¼ fðX;YÞ 2 K
2jðY � XÞ ^ ð8Z 2 K; Y# Z � X ) Y ¼ ZÞg ð22Þ

R ¼ supðK; # Þ ¼ k0ðIÞ ¼ E ð23Þ

The elements of K (resp. of L) are the nodes (resp. the (oriented)

edges) of T. The node R is the root of T. For any N 2 K, we set
chðNÞ ¼ fN0 2 K j ðN;N0Þ 2 Lg; chðNÞ is the set of the children of N.

An example of component-tree defined for a 2D image is illus-
trated on Figs. 1 and 2. Component-trees can be used to develop
image processing/analysis procedures based on filtering or seg-
mentation strategies (Jones, 1999). Such procedures generally con-
sist of determining a subset cK#K among the nodes of the
component-tree T ¼ ðK; L;RÞ of a considered image I : E ! V . (In
the case of filtering, some alternative strategies devoted to visual-
isation have also been proposed to preserve all the nodes, by only
modifying their associated grey-level value (Westenberg et al.,
2007).)

When performing segmentation, the (binary) resulting image
B# E is defined as the union of the nodes of cK, i.e., as

B ¼
[

X2bK
X ð24Þ

In this context, determining the nodes to be preserved is a complex
issue, which can be handled by considering attributes (Urbach el al.,
2005) (i.e., qualitative or quantitative information related to each
node) to characterise the nodes of interest. An alternative solution,
based on an example-based paradigm, can also be considered. We
describe such a strategy in Section 5.

4. Vessel filtering: a morpho-Hessian approach

4.1. Motivation

3D angiographic imaging modalities (e.g., MRA, CTA) provide a
detailed visualisation of vascular networks up to the resolution
of the generated data. However, the small size and complexity of
vascular structures, coupled to noise, acquisition artifacts, and
blood signal heterogeneity (especially signal discontinuity) make
the analysis of such data a hard task, thus justifying intensive ef-
forts devoted, in particular, to filtering (i.e., vessel enhancement).

Vessel filtering has often been considered via the use of Gauss-
ian second derivative analysis, and more specifically via the analy-
sis of the Hessian matrix (see Section 3.2). This approach enables
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the detection of thin objects and their principal directions, at dif-
ferent scales. Compared with first derivative (i.e., gradient) ap-
proaches, the Hessian matrix can also capture some shape
characteristics. In particular, the eigenvalues of the Hessian matrix
can be combined into vesselness functions in order to discriminate
such shapes (Lorenz et al., 1997; Sato et al., 1998; Frangi et al.,
1999; Krissian et al., 2000).

An alternative to these linear approaches is proposed by spa-
tially-variant mathematical morphology (see Section 3.3). The
algorithms defined in this framework are formulated with the pur-
pose of filtering images in a way that depends on the location in
the dataset (Maragos and Vachier, 2009; Verdú-Monedero and
Angulo, 2008; Dokládal and Dokládalová, 2008). Such filtering
techniques provide solutions for reducing noise and reconnecting
vessels despite signal decrease/loss, by taking advantage of local
shape knowledge.

The combination of linear and non-linear techniques is moti-
vated by several facts. Hessian analysis is robust and fast for object
direction detection as well as multiple scales, whereas orientation
analysis using purely mathematical morphology methods would
require directional sampling, which is prohibitive in 3D. Con-
versely, for reconnection and noise reduction, anisotropic diffu-
sion, that has been previously used together with Hessian
analysis, e.g., in (Manniesing et al., 2006), requires several itera-
tions and is subject to convergence issues, while a spatially-variant
closing or opening converges in a single iteration.

This combination of simple modeling and quick convergence
comes in contrast to more geometric models, such as found in
(Gooya et al., 2008). Indeed in this approach a level-set formulation
of a directional diffusion process is proposed, which is shown to be
able to reconnect vessels at long ranges. However this comes at the
price of a long convergence time and a parametric model.

4.2. Methodology

In this section, we propose a hybrid (morpho-Hessian) filtering
method devoted to 3D angiographic image analysis. It especially
aims to retrieve the smallest (low-intensity) vessels and correctly
reconnect them. Based on the analysis of the Hessian, we distin-
guish vessel-like objects from the background and compute their
local orientation. Then, we perform a spatially-variant morpholog-
ical closing (assuming that vessels are bright structures on a dark
background) according to these local directions.

A first version of this work was proposed in Tankyevych et al.
(2009a,b). In this article, we have improved it by regularizing the
orientation field (see Section 4.2.3).

4.2.1. Outline of the method

The method takes as input:

� a 3D grey-level angiographic image Iin : E ! V , e.g., a MRA or
CTA image.

Depending on the quality of the input (1T vs. 3T for instance), it can
be useful to denoise this input image. We have used the bilateral
filter in order to better preserve contrast and edges (Tomasi and
Manduchi, 1998). The proposed filter is fully automatic. It is how-
ever parametric, in order to allow the user to choose the size of the
vessels to detect, and the gap length between vessels to reconnect.
The process, visually summarised in Fig. 3, is divided into three
main steps:

1. The Hessian matrix of Iin is computed for each point of E at dif-
ferent scales, resulting into a vesselness image Ives and leading
to define three images corresponding to the principal vessel
directions: Ix1 ; Ix2 and Ix3 (see Section 4.2.2).

2. From a thresholded version of Ives and the direction images
Ix1 ; Ix2 ; Ix3 , and with the help of morphological thinning and dila-
tion, dense and regular vessel direction fields Idx1 ; I

d
x2

and Idx3 are
obtained (see Section 4.2.3).

3. A family of structuring elements, composed of segments of
fixed length, oriented with respect to Idx1 ; I

d
x2

and Idx3 , is involved
in an SV morphological closing operation carried out on Iin (see
Section 4.2.4).

The method finally provides as output:

� a 3D grey-level filtered image FðIinÞ : E ! V of the input image
Iin, such that Iin 6FðIinÞ (i.e., IinðxÞ 6FðIinÞðxÞ for any x 2 E), and
enabling in particular to reconnect relevant high intensity line-
like structures of Iin.

4.2.2. Step 1: vessel detection

Given a set of different scalesS enabling to characterise vessels
among different radii, the image Iin is first convolved with a Gauss-
ian kernel Gðx; sÞ ¼ ð2ps2Þ�N=2 � exp � xj j2

2s2

� �
at each scale s 2 S. For

Fig. 1. (a) A grey-level image I : E ! V ¼ ½½0;4�� (from 0, in black, to 4, in white). (b–f) Threshold images kv ðIÞ (in white) for v varying from 0 (b) to 4 (f).

Fig. 2. The component-tree T of I (see Fig. 1a). The letters (A–P) in nodes correspond
to the associated connected components in Fig. 1b–f.
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each point x 2 E, its Hessian matrixHs is then computed. The eigen
form of this matrix, i.e.,

Hs ¼
k1 0 0

0 k2 0

0 0 k3

2
64

3
75 ð25Þ

enables the computation of a score in x from the vesselness function
defined in Formula (6). The maximal score among the scales of S
is chosen for each point x as its best response mmaxðxÞ ¼
maxs2Sfmðx; sÞg.

The associated basis vectors ðe1; e2; e3Þ (forming the basis of the
eigen form of Hs) are assumed to define the orientation of the
characterised shape in x. In particular, the vectors e1 are stored
in three images as the principal directions (along the principal
axes): Ix1 ; Ix2 ; Ix3 : E ! ½�1;1�, defined, for all x 2 E, by

e1ðxÞ ¼ Ix1 ðxÞ:ex1 þ Ix2 ðxÞ:ex2 þ Ix3 ðxÞ:ex3 ð26Þ

where ðex1 ; ex2 ; ex3 Þ is the canonical basis of R3.

4.2.3. Step 2: directional field correction

In order to propagate objects outside their own boundary with
the spatially-variant morphological closing, it is necessary to ben-
efit from a direction vector field that extends beyond these bound-
aries. In our case, the directional information is necessary only as
far as the dilation can reach. In the literature, Verdú-Monedero
and Angulo (2008) have proposed to use a gradient vector flow
(Xu and Prince, 1998) to this end. Similarly, Deguchi et al. (2002)
have proposed to use the structure tensor within a diffusion
scheme to obtain a dense direction field.

However, simply diffusing the directions obtained by second-
order derivatives is not sufficient. Indeed, directions are typically
unreliable at the end of tubular object segments. This is likely to
cause problems in methods that use them in further procedures.
To solve this, we regularize the direction vector field. Here, in order
to obtain both an extended and regularized direction field, we have
come up with a procedure based on a combination of morpholog-
ical operations.

First, similar to (Ouzounis and Wilkinson, 2007) in 2D, we
ignore directions when they are not strong. For this, as the expres-
sion of vesselness (see Formula (6)) expresses the probability of
being a vessel for each point (thus varying between 0 and 1), the
vesselness image Ives is thresholded so that most of the vessel-like
objects are preserved. By using the thresholded vesselness result
It
ves, we ensure that we use the tubular objects as markers for direc-
tion field propagation. Then, we perform a binary morphological

thinning of the direction field (Ix1 ; Ix2 and Ix3 ) guided by the thres-
holded vesselness result It

ves with a structuring element of fixed
size. We then perform the adjunct dilation – solely of the direction
field – guided by the thresholded vesselness result. This results
into an extended and regularized direction fields Idx1 ; I

d
x2

and Idx3 . A
schematic representation of the operation is illustrated in Fig. 4.

4.2.4. Step 3: vessel reconnection

In this last step, an SV morphological closing operation is per-
formed over the image Iin with the aim of reconnecting vessels.
First, a morphological dilation is applied with a structuring func-
tion B : E ! 2E (see Section 3.3), providing, for each x 2 E, a struc-
turing element BðxÞ centred on x, of fixed length, and oriented
according to e1ðxÞ. The (discrete) direction e1 of BðxÞ is approxi-
mated from the images of regularized direction fields, Idx1 ; I

d
x2

and
Idx3 , by defining a discrete segment.

The SE-based adjunct dilation, resulting in the image dBðIinÞ, is
followed by the adjunct erosion eB. Both computations (dB and
eB), whose results are formally defined by Formula (19) and (16)
respectively, then provide the final filtering result FðIinÞ ¼ uBðIinÞ
with a low algorithmic cost (see Proposition 4). Also note that this
processing ensures idempotence, guaranteeing that the filter obeys
morphological rules. This methodology is validated in Section 6.

5. Interactive vessel segmentation: a component-tree based

approach

5.1. Motivation

Most 3D vessel segmentation techniques are designed to be
globally automated (except, sometimes, for initialization and/or
termination, or for the determination of parameters). Automation
is generally justified by the difficulty for medical experts to spend
too much time in guiding such segmentation methods. In contrast,
such automatic methods do not take enough advantage of the
user’s expertise (e.g., clinician, radiologist, etc.), thus leading to
possible segmentation errors (in addition to a frequently high com-
putational cost).

The recent rise of interactive segmentation in several applica-
tion fields modifies this conception of vessel segmentation
(McGuinness and O’Connor, 2010). Indeed, in contrast to standard
automatic segmentation, interactive segmentation strongly relies
on the user’s skills. In particular, the user must generally initialize
the process, by providing (background and/or object) markers
which strongly influence the results (for instance in the case of

Fig. 3. Visual outline of the filtering method described in Section 4.2. Step 1: vessel detection (see Section 4.2.2). Step 2: directional field regularization (see Section 4.2.3).
Step 3: vessel reconnection (see Section 4.2.4).
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watersheds (Vincent and Soille, 1991), graph-cuts (Boykov and
Jolly, 2001) or binary partition tree algorithms (Salembier and
Garrido, 2000)). Interaction also requires such methods to be very
efficient, especially in terms of computational cost (see, e.g.,
(Westenberg et al., 2007)).

Such guidance is potentially time consuming for the user, espe-
cially in the case of 3D images. However, a compromise between
automatic and interactive segmentation exists through the concept
of example-based segmentation, which has been considered in
several application fields before being applied to medical imaging
(see, e.g., (Faisan et al., 2011)). Indeed, the use of segmentation
examples leads to an automatic pre-segmentation of the image,
which can be used as object markers.

The component-tree (see Section 3.4) is a graph-based structure
which models some characteristics of a grey-level image by con-
sidering its binary level-sets obtained from successive threshold-
ing operations (see, e.g., (Najman and Talbot, 2010), Chapter 7). It
has been involved, in particular, in the development of morpholog-
ical operators (Breen and Jones, 1996; Salembier et al., 1998), and
used for designing segmentation procedures in several medical
applications (see Section 2.1).

By definition, component-trees are particularly well-suited for
the design of methods devoted to process and/or analyse grey-level
images based on a priori hypotheses related to the topology (con-
nectedness) and the specific intensity (locally/globally minimal
or maximal) of structures of interest. Several works related to com-
ponent-trees have been devoted to enable their efficient computa-
tion (Salembier et al., 1998; Najman and Couprie, 2006; Wilkinson
et al., 2008). In practice, the choice of the algorithm should be
based on the input image depth. Salembier’s algorithm, which is
based on a recursive flooding of the image, is one of the most effi-
cient when the image pixels are coded on 8 bits. In our experi-
ments, which involve such images, it is twice as fast as Najman’s
algorithm, which is based on Tarjan’s union-find operations. There-
fore, in the sequel, all the results are computed using Salembier’s
algorithm. We propose in the sequel an interactive segmentation
method, based on component-trees, that combines the advantages
of example-based segmentation in terms of automation (since it
avoids manual marker positioning or presegmentation by the user)
and the ability to take into account the skills of the user in a quite
simple and intuitive fashion. Indeed the only interaction consists of
a thresholding process, which only requires a few seconds. In par-
ticular, Section 5.2 proposes an improved version of the theoretical
framework developed in (Passat and Naegel, 2011b), which now
deals with fuzzy examples instead of only binary ones. This use
of fuzzy examples, together with the potential use of mask-based
connectivity derived from the extensive filtering procedure pro-
posed in Section 4 also enables us to obtain an improved version
of the segmentation approach initially developed in (Dufour
et al., 2011a). This segmentation strategy is described in
Section 5.3.

5.2. Theory

A way to consider the previously described segmentation
problem is to search the set of nodes cK#K, which generates a
binary object being as similar as possible to a given approximate
precomputed segmentation. In (Passat and Naegel, 2011b), this
issue is formalised as the resolution of the following optimisation
problem

cK ¼ arg min
K0#K

d
[

N2K0
N;M

 !( )
ð27Þ

where M# E is a (binary) approximate segmentation, and d is a
measure on 2E. This measure considers the amount of false posi-
tives/negatives induced by X ¼ SN2K0N with respect to M

d
aðX;MÞ ¼ a � jX nMj þ ð1� aÞ � jM n Xj ð28Þ

where a 2 ½0;1� controls the trade-off between the tolerance to false
positives and false negatives.

This binary formulation of the segmentation problem can be
generalised in order to consider fuzzy examples, and not only bin-
ary ones. Indeed, by defining (without loss of correctness) the bin-
ary segmentation X ¼ SN2K0N# E induced by a set of nodes
K0#K as a function X : E ! f0;1g, and the considered (fuzzy)
example as a grey-level image M : E ! ½0;1�, Eq. (27) remains valid
while the measure d

a (on 2E) provided in Formula (28) can be ex-
tended as the measure Da (on ½0;1�E) defined by

Fig. 4. Vector field regularization. (a) Original broken cylinder. (b) Orientation field
in the broken cylinder. Observe they are incorrect at the extremities. (c) Restriction
of the orientation to the thinning of the cylinder. (d) Propagation of the orientation
field by guided dilation. (e) Filtered reconstructed cylinder by SV oriented closing.
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DaðX;MÞ ¼
Z 1

0
d
aðkvðXÞ; kvðMÞÞ � dv ð29Þ

¼ a
X

x2X�1ðf1gÞ

ð1�MÞðxÞ þ ð1� aÞ
X

x2X�1ðf0gÞ

MðxÞ ð30Þ

The function F
a proposed hereafter (that generalises the one pro-

posed in (Passat and Naegel, 2011b)) makes it possible to build a
binary image whose connected components form a set cK, which
is a solution of Eq. (27). (The proofs of the following propositions,
which rely on the framework initially considered in (Guigues
et al., 2006), follow the same scheme as the ones developed in (Pas-
sat and Naegel, 2011b)) for Propositions 6 and 7 and in (Passat et al.,
2011) for Proposition 8.

Proposition 6. Let I 2 VE be a grey-level image. Let T ¼ ðK; L;RÞ be
the component-tree of I. Let M : E ! ½0;1�. Let a 2 ½0;1�. Let

F
a : K ! 2K and ca : K ! R

þ be the functions recursively cross-

defined, for all N 2 K, by

F
aðNÞ ¼

fNg if a � nðN;MÞ < ð1� aÞ � p�ðN;MÞ þ
X

N02chðNÞ
caðN0Þ

[

N02chðNÞ
F

aðN0Þ otherwise

8
>>><

>>>:

ð31Þ

and

caðNÞ¼

a:nðN;MÞ if a �nðN;MÞ< ð1�aÞ �p�ðN;MÞþ
X

N02chðNÞ
caðN0Þ

ð1�aÞ �p�ðN;MÞþ
X

N02chðNÞ
caðN0Þ otherwise

8
>>><

>>>:

ð32Þ

where

p�ðN;MÞ ¼
P

x2Nn
S

N02chðNÞN
0MðxÞ and nðN;MÞ ¼

P
x2Nð1�MÞðxÞ.

Let Ma ¼ SN2FaðEÞN. Then, we have

DaðMa;MÞ ¼ caðEÞ ¼ min
K

0
#K

Da
[

N2K0
N;M

 !( )
ð33Þ

We notice that such a solution can be computed in linear time.

Proposition 7. The set FaðEÞ ¼ C½Ma� (and thus Ma) are computed

with the linear algorithmic complexity OðmaxfjKj; jEjgÞ.

Moreover, the increasing property of thresholding is actually
inherited by the developed method.

Proposition 8. Let I 2 VE be a grey-level image. Let M : E ! ½0;1�. Let
a1;a2 2 ½0;1�. Then we have

ða1 < a2Þ ) ðMa2 #Ma1 Þ ð34Þ

Remark 9. A consequence of this property is the ability to store
k > 2 different results obtained for k increasing values
0 6 a1 < a2 < . . . < ak�1 < ak 6 1, as a grey-level image Sk :

E ! ½½1; k�� defined, similarly to Formula (20), by

Sk ¼
_k

i¼1

CMai ;i ð35Þ

where Mai # E is the binary result of the segmentation method for
the parameter ai. In such a situation, we can avoid storing k distinct
binary images, and the interactive choice of the result by the user is
made (in real-time) by actually performing a standard thresholding
of Sk among the values ½½1; k��.

5.3. Methodology

In this section, we focus on the description of a methodology for
vessel segmentation by means of a fuzzy example. This method is
automated in the first part of its process, and only requires user
interaction once a set of binary results has been precomputed
and stored in a grey-level image. The interactive part of the method
is, in particular, a single thresholding step where the user can tune
a parameter controlling the trade-off between false positives and
false negatives between the segmentation example and the ex-
pected result.

5.3.1. Outline of the method

The method takes as input:

� a 3D grey-level angiographic image Iin : E ! V , e.g., a MRA or
CTA image;

� a 3D vessel segmentation example consisting of a fuzzy (i.e.,
grey-level) image Bex : E ! ½0;1� of vascular structures similar
to those present in Iin, and the grey-level image Iex : E ! V from
which this segmentation has been obtained.

(In Section 5.3.2, it will be observed that it may be also required to
provide images Jin; Jex : E ! V for visualising the morphological
structures neighbouring the vessels visualised in Iin; Iex.) The only
parameter is a threshold value a 2 ½0;1� (see Section 5.2), which
needs to be tuned by the user at the end of the segmentation.
The process, visually summarised in Fig. 5, is divided into two main
steps:

� The first one consists of fitting the fuzzy image Bex onto the
image Iin using a registration procedure (see Section 5.3.2).

� Once Bex is correctly positioned, the second step mainly consists
of the interactive a-tuned segmentation process described in
Section 5.2 (see Section 5.3.3).

The method finally provides as output:

� the 3D binary vessel segmentation Bout# E, associated to Iin, and
induced by the example Iex and the chosen parameter a.

5.3.2. Step 1: example fitting

Fitting the binary example Bex onto Iin requires a registration/
warping process to be performed. Registration of vascular images
is a complex task. Indeed, while registration algorithms have argu-
ably reached a satisfactory degree of efficiency for the processing
of compact, dense images, such as morphological cerebral data
(Holden, 2008), the development of efficient registration proce-
dures in the case of sparse – and specifically angiographic – data
seems to remain a globally open question, despite few recent
works (Aylward et al., 2003; Jomier and Aylward, 2004; Suh
et al., 2010). This is a fortiori the case for interpatient registration
(it is indeed infrequently the case that Iin and Iex are images of a
same patient).

In some cases, the angiographic images contain a sufficient
amount of morphological information, (e.g., Time-of-Flight MRA,
depending on the acquisition parameters (Ozsarlak et al., 2004)).
In most other cases, it may be necessary to associate to each angio-
graphic data, namely Iin and Iex, a corresponding morphological
profile of the same patient (e.g., a T1 MRI acquisition). Since it is
usual in clinical practice to acquire such data (which are even di-
rectly available via certain acquisition protocols (Dumoulin et al.,
1991)) during an angiographic image acquisition, thus providing
couples of morphological/angiographic data ðIin; JinÞ; ðIex; JexÞ, such
a requirement remains acceptable.
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Under these conditions (and as proposed in this work), registra-
tion algorithms devoted to morphological images can be involved
in the current step. These algorithms consist of determining a
deformation field D : E ! E such that the composition of D and
Iex is ‘‘semantically’’ equal to Iin, or, more formally, that for all
x 2 E, we have

IinðxÞ ’ ðIex �D�1ÞðxÞ ð36Þ

Such registration procedures are based on various strategies leading
to different degrees of accuracies, (i.e., rigid, affine, or nonrigid
deformation fields D). In the proposed work we have considered
the nonrigid approach developed in (Noblet et al., 2005), as well
as standard approaches for rigid and affine registration.

OnceD is (automatically) computed from the angiographic data
Iin and Iex (or, in our case, from the morphological ones Jin and Jex),
the segmentation example Bex remains to be fitted onto the vascu-
lar image Iin to be segmented. This is actually equivalent to com-
puting Bin : E ! ½0;1� in the same way as in Formula (36), which
is done here by following a standard (polynomial) interpolation ap-
proach (Noblet et al., 2006).

5.3.3. Step 2: interactive segmentation

Once Bin has been computed, the segmentation of Iin can be car-
ried out, guided both by the example Bin (which provides a model
of the structures of interest in Iin), and by the user (who controls
the adequacy in terms of false positives/negatives between this
model and the expected result).

In the proposed methodological framework, this task is based
on the approach developed in Section 5.2 (the example M

defined in this section actually corresponds to the example Bin

considered here). In particular, once the component-tree
T ¼ ðK; L;RÞ of Iin is computed, the purpose is to determine
the set of nodes cK#K defined in Eq. (27), i.e., the set of binary
connected components which leads to the best possible segmen-
tation (Ma, in Section 5.2, which corresponds to Bout , here) with
respect to the chosen measure Da, that controls the trade-off of
false positives/negatives between this solution Ma=Bout and the
example M=Bex.

Practically, as stated in Remark 9, it is necessary to compute
several segmentation results for distinct values of the parameter
a, leading to a grey-level image (see Formula (35)). The level-sets
of this image allows the user to choose the best segmentation
Bout by a simple thresholding.

5.4. Mask-based connectivity

As stated at the beginning of Section 3.4, the connectivities con-
sidered when computing the component-tree of Iin are the ‘‘stan-
dard’’ ones (in our case, those induced by the well-known
notions of 6- or 26-adjacency).

A (morphological) alternative definition for connectivity has
been proposed with the notion of second-generation connectivity
(Ronse, 1998; Serra, 1998; Braga-Neto and Goutsias, 2002). In this
context, mask-based connectivity (Ouzounis and Wilkinson, 2007)
proposes to use some (grey-level) mask functions in order to char-
acterise the connected sets. In the binary case, and by only consid-
ering masks which are supersets of an image, we derive from
(Ouzounis and Wilkinson, 2007) the following definition.

Definition 10. (Mask-based connectivity) Let X# E be a binary
image. Let xðXÞ 	 X be a mask of X. The x-connected components
of X, noted Cx½X�, are the sets X \ Y , for any connected component
Y of xðXÞ.

In the sequel, for a given (grey-level) image I : E ! V , we con-
sider the extensive masks XðIÞ : E ! V , i.e., such that I 6 XðIÞ. We
call X-connected components of I the set of all the x-connected
components of kvðIÞ induced by the masks xðkv ðIÞÞ ¼ kv ðXðIÞÞ, at
all values v 2 V . Typical examples of masks verifying these proper-
ties are those induced by:

� (flat) dilations, e.g., I; dðIÞ, . . ., dkðIÞ, . . .;
� (flat) closings, e.g., I; ð� � dÞðIÞ, . . ., ð�k � dkÞðIÞ, . . .;

with a (well-chosen) structuring element, avoiding in particular
translation effects.

As for any other connectivity, it is possible to build the compo-
nent-tree of Iin induced by the X-connected components of the
successive level-sets of I (Passat and Naegel, 2011a). Note in partic-
ular that each element of the set KX of the X-connected compo-
nents of Iin will be composed of one or several connected
components of I. More precisely, the component-tree and the (X-
connected) component-tree of Iin induce a (surjective) morphism
between ðK; # Þ and ðKX; # Þ.

Broadly speaking, mask-based connectivity involving such
extensive masks makes it possible to semantically reconnect struc-
tures which are physically disconnected in Iin. In particular, we
consider as mask the filtered image FðIinÞ, computed with the
method proposed in Section 4. These masks present all the re-
quired properties, and allow us to correct the disconnection effects
resulting from noise, artifacts and/or signal loss. This leads us to an

Fig. 5. Visual outline of the segmentation method described in Section 5.3. Step 1: example fitting (see Section 5.3.2). Step 2: interactive segmentation (see Section 5.3.3).
Grey boxes: automatic steps; white box: interactive step. Continuous arrows: standard workflow; dash arrow: optional supplementary step (filtering, see Sections 4.2 and 5.4,
and Fig. 3).
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improved variant of the segmentation method proposed above.
This variant consists of computing Bout from Bex and Iin equipped
with the connectivity provided by the filtered mask FðIinÞ. This
strategy is experimentally assessed in the next section.

6. Experiments and results

This section presents experiments carried out to assess the
behaviour of the proposed two methods. The filtering method de-
scribed in Section 4 is evaluated in Section 6.2 from a quantitative
point of view, on synthetic images, and from a qualitative point of
view on samples of 3D (MR) angiographic data. The segmentation
method described in Section 5 is evaluated in Section 6.3, on 3D
(MR) angiographic data from the qualitative and quantitative
points of view, depending on the assessed criteria, and on the
available ground-truth.

6.1. Data

We describe hereafter the data considered for the experimental
validations carried out in this section. To the best of our knowl-
edge, there does not exist any unified framework for the validation
of 3D cerebral angiographic image analysis in the context of real
data. The closest framework – devoted to coronary angiography
image analysis (Schaap et al., 2009) – is indeed not suitable for
the current issues. As far as possible, validations have been carried
out in a quantitative fashion on synthetic data, in particular for
vessel filtering. To deal with the validations of vessel segmentation,
which indeed require real data, we chose to consider MRA images.
For some of these data, hand-made ground-truths have been de-
signed by medical experts. Since this is an intensive, time consum-
ing task, only three ground-truths are indeed available: two for
TOF MRAs and one for a couple of (TOF and PC) MRAs acquired
from the same subject. Note also that we chose (i) to consider
MRAs of various resolutions, in order to assess the ability of the
method to deal with a large spectrum of images, and (ii) to focus
on non-injected images, which present a growing interest due to
concerns about the safety of gadolinium-based contrast agents
(Miyazaki and Lee, 2008).

6.1.1. Synthetic data

We used the synthetic dataset considered in (Aylward and Bul-
litt, 2002) for vessel filtering validations (Section 6.2). This dataset
is based on a 100
 100
 100 isotropic image visualising a tortu-
ous, branching vessel-like object of varying radii (0.5–4 voxels),
which does not simulate a specific anatomical structure. The object
contained in this image is depicted in Fig. 6a. A slice of the corre-
sponding 3D grey-level image (at different levels of noise) is pro-
vided in Fig. 6b–e. The object cross-section intensities present a
parabolic profile, ranging from 150 at the object borders, to 200
at its medial axes, while the background intensity is 100, which
corresponds to a standard (intensity) model for MRAs, in small ves-
sels neighbourhoods.

6.1.2. Phase-Contrast MRA

A set of 10 PC MRA data was considered for vessel segmentation
validations (Section 6.3). The MRA exams were performed on a 1 T
whole-body scanner (Gyroscan NT/INTERA 1.0 T from Philips, gra-
dient slope 75 T/m/s). The flow encoding sequence (T1FFE/PCA)
uses a TR of 10 ms and a TE of 6.4 ms. A sagittal MIP of one of these
images are illustrated in Fig. 7a. The acquired images of dimen-
sions varying from 2562 
 150 to 2562 
 180 voxels, were made
of non-isotropic voxels of edges varying from 0.9 to 1.3 mm.

6.1.3. Time-of-Flight MRA

A set of 3 TOF MRA data was considered for vessel segmentation
validations (Section 6.3). The MRA exams were performed on a 3 T
whole-body scanner (Siemens verio 3 T, gradient slope 200 T/m/s).
The flow encoding sequence (Flash/TOF) uses a TR of 21 ms and a
TE of 3.6 ms. A sagittal MIP of one of these images is depicted in
Fig. 7b. The acquired images of dimensions varying from
2562 
 208 to 348
 284
 296 voxels, were made of isotropic vox-
els of edges varying from 0:5 to 1:0 mm.

6.2. Vessel filtering

We first assess the filtering method described in Section 4. This
is done in the context of vessel reconnection in 3D angiographic
data. Contrary to the case of vessel segmentation (see Section 6.3),
quantitative validations are hardly tractable on real data. Some
qualitative (i.e., visual) validations are provided on few 3D samples
of real data (same TOFMRAs as those used below, for segmentation
experiments), at the end of this section. However, most of the val-
idations presented hereafter, and in particular the quantitative
ones, are performed on the synthetic dataset considered in (Ayl-
ward and Bullitt, 2002).

In addition to the discrete sampling of the continuous object,
which generates errors (due, e.g., to partial volume effects), a
Gaussian noise is added to the data, with different standard devia-
tions, namely r ¼ 10; 20, 40 and 80, in the considered images (see
Fig. 6b–e). Note that r ¼ 20 corresponds to the expected noise in
MR or CT data, while r ¼ 40 is closer to the noise level expected
in ultrasound data. The standard deviation r ¼ 80 was also tested,
in order to explore the limits of the method in the worst cases,
which do sometimes happen in clinical applications.

These experiments aim at estimating the efficiency of the filter-
ing methodology, and in particular the cost of the reconnections in
terms of supplementary noise. This is done in a quantitative fash-
ion in Section 6.2.1, and in a more visual (and then subjective)
fashion in Section 6.2.2.

When performed on a standard personal computer (equipped
with a processor 3.0 GHz and 4 GB of memory), Step 1 (vessel
detection) requires 10 s per scale, Step 2 (directional field correc-
tion) requires 10 s, while Step 3 (vessel reconnection) requires
30 s, for an image 2563. It may be recalled that all these steps are
fully automated.

6.2.1. Experiments on synthetic data

In order to carry out these first validations, we consider the four
3D images Ir : E ! V , namely I10; I20; I40, and I80, illustrated in
Fig. 6b–e, where r is the standard deviation of the Gaussian noise
in the image Ir. Let G# E be the object visualised in this image,
viewed as a binary (ground-truth) object for Ir.

When performing a thresholding of Ir at a given value v 2 V , we
obtain a binary (segmented) result kvðIÞ# Ewhich approximates G.
From a quantitative point of view, this approximation is expressed
in terms of true positives (G \ kv ðIÞ) and false positives (kvðIÞ n G).

For experiments, parameters of vesselness were set to
a ¼ b ¼ 0:25 and c ¼ 5. We performed a multi-scale Hessian anal-
ysis with scales r 2 ½1;4� in geometric progression with 5 steps.

We first consider the global quality of the filtering procedures,
in terms of proportions of false positives/negatives induced by a
subsequent thresholding operation. These are visualised on ROC
curves, allowing for a comparison of the proposed filtering with
(i) the thresholding of the non-filtered image; (ii) the thresholding
of a Hessian-based vesselness function (Frangi et al., 1999); and
(iii) the thresholding of the image filtered by anisotropic diffusion
(Manniesing et al., 2006). The four induced ROC curves are com-
puted and compared for the four levels of noise r ¼ 10;20;40
and 80. The results of these experiments are shown on Fig. 8.
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The main purpose of the proposed morpho-Hessian filtering
method is to reconnect vessel-like structures without introducing
too much noise. The presence of noise in Ir may lead to a discon-
nection of the segmented object kv ðIÞ into several connected com-
ponents, especially as the object becomes thinner. On the other
hand, while reconnecting objects is desirable, it is also an inverse
operation that may lead to connecting noise to the main object.
In order to assess the ‘‘cost’’ of these reconnections in terms of sup-
plementary noise, for each one of the images previously considered
(namely the non-filtered image, vesselness function, anisotropic
diffusion image, and morpho-Hessian filtered image), we show
the first high accuracy reconnection on each ROC curve corre-
sponding to threshold value of the segmented image kv ðIrÞ. In
other words, these points correspond to the best accuracy result
for which the main object is still connected. These reconnection
points are depicted by triangular dots in Fig. 8.

For all noise levels, i.e., r = 10–80, we observe that the proposed
morpho-Hessian filter exhibits at least as good results compared to
the other methods. This is true whether we consider the overall
shape of the ROC or only the point at which reconnection is en-
sured. We further note that all other methods degrade more rap-
idly than the morpho-Hessian as noise increases.

6.2.2. Experiments on real data

In order to conclude this first part of the validations devoted to
the proposed morpho-Hessian filtering method, we now consider a
few examples obtained from real images. The samples depicted in
Fig. 9 show isosurface renderings of 3D angiographic data (namely
TOF images) altered by signal heterogeneity, resulting in visible
disconnections, depicted in yellow. The corresponding morpho-
Hessian filtered images associated to these data are superimposed

in blue. Qualitatively, these results confirm expectations derived
from the synthetic data, namely that the morpho-Hessian filter
reconnects vessel without amplifying noise significantly.

6.3. Vessel segmentation

We now assess the segmentationmethod described in Section 5.
The experiments aim at estimating not only the global efficiency of
the methodology, but also the influence of some key-elements
of the technique, such as registration accuracy, example accuracy,
interpatient anatomical variability, and effects of connectivity pol-
icies. Contrary to Section 6.2, only real data are considered. This is
justified by the fact that realistic example-based segmentation
cannot be performed on phantoms.

The experiments are carried out in the context of artery seg-
mentation from 3D angiographic data of the brain, namely PC
MRAs (10 images) and TOF MRAs (3 images). Some examples of
images of the considered datasets are illustrated in Fig. 7. These
datasets vary in resolution (millimetric for PC MRAs, and half-mil-
limetric for TOF MRAs) and quality (low SNR for PC MRAs, and
higher SNR for TOF MRAs, all data having been acquired without
contrast agent injection). Also note that some data visualise both
veins and arteries (PC MRAs, with a better contrast on venous
structures), or essentially arteries (TOF MRAs, where veins are vis-
ible but at a much lower intensity).

For each angiographic image, a morphological image of the pa-
tient (acquired during the same session) is also considered for reg-
istration purpose (a PC MRA magnitude image in the case of PC
MRAs, and a T1 MRI in the case of TOF MRAs). We note that
ground-truths are available for only a part of these MRA data.2

When performed on a standard personal computer (equipped
with a processor 3.0 GHz and 4 GB of memory), the registration
step requires between 2 and 3 min, however it can be carried out
prior to the segmentation step that involves the user. The segmen-
tation part of the method, namely the component-tree construc-
tion and the computation of a series of potential results for
various a values, requires respectively 10 s for the component-tree
construction and 1 s by a values. The interactive part, i.e., the a-
thresholding within these results is actually carried out in real
time.

6.3.1. Evaluation of the component-tree approach

These first experiments aim at assessing the relevance of the
example-based interactive approach, i.e., to validate the

Fig. 6. (a) Synthetic 3D object (Aylward and Bullitt, 2002) used for validations in Section 6.2. (b–e) Slices of the grey-level image for various levels of additive white Gaussian
noise: (b) r ¼ 10, (c) r ¼ 20, (d) r ¼ 40, and (e) r ¼ 80.

Fig. 7. Examples of data considered for vessel segmentation (maximal intensity
projection, sagittal plane). (a) Phase-Contrast MRA (resolution: 1.0 mm, no contrast
agent injection). (b) Time-of-Flight MRA (resolution: 0.5 mm, no contrast agent
injection).

2 Note, moreover, that the use of vascular ground-truth, and in particular manual
segmentations performed by experts, is neither a necessary nor a sufficient condition
to guarantee the correctness of validations. See, e.g., (Caldairou el al., 2010), where
some of the authors point out the significant variability in inter-experts segmentation
results, which strongly bias the quantitative measures provided by standard criteria.
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segmentation theory exposed in Section 5.2. In order to do so, we
consider an experimental context where neither the registration
nor the example quality may affect the results. This is done by
focusing on intra-patient and intra-image experiments.

Practically, for a given MRA image, for which a (binary) ground-
truth segmentation is available, we perform the example-based
interactive segmentation by using, as example, this same ground-
truth. This is actually done for one (low resolution, low SNR) PC
MRA, and three (high resolution, high SNR) TOF MRA.

Ideally, one may retrieve as result the ground-truth involved as
examples. This (expected) correlation is expressed here by using
the standard measures of sensitivity (Sen) and positive predictive
value (PPV)

Sen ¼ tp

tpþ fn
and PPV ¼ tp

tpþ fp
ð37Þ

where tp; fp, and fn are the true positives, false positives and false
negatives, respectively. Due to the ‘‘one-dimensional’’ nature of
the small vessels, which may bias the relevance of these volumic-
based measures, both sensitivity and positive predictive values
are computed on the 3D results (3D Sen and 3D PPV) and on the
skeletonised ones (1D Sen and 1D PPV). These results are summa-
rised in Table 1 and illustrated in Fig. 10.

They tend to show the correct behaviour of the method in the
case of a correct and well positioned example. Note that the results
are slightly less satisfactory for low resolution images. This is
shown here for PC #1, but also note that the 1D measures are

globally higher than the 3D ones, emphasising the ability of the
method to correctly detect the structure of the vessels, despite pos-
sible volumetric inaccuracies. It may also be noticed that the use of
an example to guide the segmentation process allows users to se-
lect specific structures of interest among a set of homogeneous
ones, for instance here, arteries among the whole arteriovenous
network.

6.3.2. Evaluation of the example quality

Secondly, we intend to evaluate the impact of the example qual-
ity on the segmentation accuracy, still without considering the ef-
fects of registration and of interpatient anatomical variability. We
also assess the relevance of considering fuzzy examples vs. binary
ones.

In order to do so, we consider two images of a single patient for
which the segmentation ground-truth is available. One of these
images is a (high resolution, high SNR) TOF MRA (TOF #1, consid-
ered above) thus associated to an accurate ground-truth. The other
one is a (low resolution, low SNR) PC MRA (PC #1, considered
above), associated with some less accurate ground-truth (which
may be seen as a ‘‘blurred subset’’ of the TOF MRA ground-truth).

From these two images and associated ground-truth, we then
perform four series of segmentations, which emphasise the behav-
iour of the segmentation method when applied on an accurate/
non-accurate image with an accurate/non-accurate example.
Moreover, in each series, these experiments are performed for a
binary example (namely, a ground-truth), but also for fuzzy
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Fig. 8. ROC curves of thresholding operations performed on the original image Ir , on its Hessian-based vesselness function, on the image obtained by anisotropic diffusion of
Ir , and on the image FðIrÞ obtained by multiscale morpho-Hessian filtering. The triangular dot on each curve indicates the point at which a correct reconnection of the
segmented structure has been obtained. Results for different levels of noise: (a) r ¼ 10, (b) r ¼ 20, (c) r ¼ 40, (d) r ¼ 80.
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examples obtained from this ground-truth by a grey-level (fuzzy)
dilation with a Gaussian-shape SE. In particular, several SEs Kn

(n 2 2Zþ 1) were considered, modeling kernels of support
n
 n
 n. For the sake of concision, we present only the most rel-
evant results with respect to the 3D and 1D validations, namely K5.

The obtained results, still expressed in terms of sensitivity and po-
sitive predictive value, are shown in Table 2 and partially illus-
trated in Fig. 11.

As mentioned above, the value of the standard measure are bet-
ter in 1D than in 3D, emphasising the ability of the method to de-
tect the structure of the vessels. Moreover, the obtained results
reveal several facts. First, the example has to present the same de-
gree of details as the visualised vessels, in order to maximise the
ability to correctly segment them (see, in particular the first and
fourth sets of rows in Table 2, vs. the second and third ones). Sec-
ond, the use of fuzzy examples increases the sensitivity, but leads
to a reduction of the positive predictive value. This is expected
behaviour, with respect to the proposed connected-filtering strat-
egy. Indeed, fuzzy examples capture a larger part of the space than
binary ones, allowing the method to catch possibly disconnected
vascular details (thus increasing tp, while decreasing fn), but also
possibly catching (disconnected) noisy structures, then increasing
fp. Despite this antagonist behaviour, it appears that fuzzy exam-
ples result in a better compromise between the appearance of false
positives and false negatives (i.e., similar mean value and lower
standard deviation between Sen and PPV). From this point on we
then only consider fuzzy examples for the remaining validations.

6.3.3. Impact of the interpatient anatomical variability

We now intend to estimate the robustness of the segmentation
method to vascular anatomical variations. These variations, which
are low for the largest vessels, tend to become higher for the smal-
ler ones, in particular by comparison to other (cerebral or non-
cerebral) anatomical structures. Our experiments were carried
out from a quantitative point of view on the four same images as
above, and from a qualitative point of view on a dataset of 10 PC
MRA images.

Experiments consist of performing segmentation with different
examples, namely one example obtained from a single PC MRA im-
age (not considered for segmentation here), and another example
which is a ‘‘mean image’’ obtained from the preliminary segmenta-
tion of 20 PC MRA images (not considered for segmentation here).
These two examples are fitted on the images to be segmented by
performing rigid registration.

The obtained results for the first four images are given in
Table 3. For the other 10 images, since no ground-truth is available,
the validations were performed from a visual analysis (partially
illustrated in Fig. 12).

It appears from Table 3 that the use of a mean image as example
provides similar results as a single image example in terms of Sen,
and significantly improves them in terms of PPV. This argues in fa-
vour of using such averaged examples, which are, in some ways,
comparable to vascular atlases (Chillet el al., 2003; Passat et al.,
2006). These model more accurately the anatomical variability
among a whole population. (These conclusions, stated here in the
context of examples fitted by rigid transformation, remain the
same for other kinds of registration policies.)

6.3.4. Evaluation of the registration

These experiments show that (i) the use of a mean image as
example provides better results than the use of a single segmenta-
tion, and (ii), the use of fuzzy examples also increases the robust-
ness of the method to both inter-individual variability and
potential example inaccuracies. In our next experiments, we then
only focus on mean and fuzzy examples.

Our purpose is here to evaluate the impact of the registration
accuracy on the segmentation quality. By considering the same
datasets of 4 and 10 images as above, three segmentations are
computed. We fit the example using a rigid, an affine, and a non-
rigid registration procedure. The obtained results for the first 4

Fig. 9. Morpho-Hessian filtering results on real images. 3D isosurface rendering of
the morpho-Hessian filter (in blue) superimposed over the initial image (in yellow).
(For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 1

Sensitivity and positive predictive value measures for experiments of Section 6.3.1
(see text and Fig. 10). The a value is the one for which the best segmentation has been
obtained. In the case of TOF #2 and #3 any a 2�0;1½ provides exact results.

Image a 3D 1D

Sen PPV Sen PPV

TOF #1 0.665 99.972 99.317 99.736 99.832
TOF #2 – 100.00 100.00 100.00 100.00
TOF #3 – 100.00 100.00 100.00 100.00
PC #1 0.510 95.391 97.542 98.877 97.305
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images are shown in Table 4. The results for all 10 images, analysed
in a visual fashion, are partially illustrated in Fig. 13.

First, it appears that both for 3D and 1D scores, nonrigid regis-
tration is never the best registration policy. This emphasises the
fact that despite good results in the case of morphological data,
dense image nonrigid registration techniques are as yet not well-
suited to handle vascular structures efficiently. Indeed, they may
lead to registration noise at the highest resolution, which is same
as that of the vessels. This should motivate in particular further
development in registration techniques, specifically devoted to
vascular structures. Such enhancements would enable us to better
take into account the specificities (sparseness, noise, etc.) of angio-
graphic data, as already stated in Section 5.3.2.

Fig. 10. Segmentation results in intra-patient cases, by using the associated ground-truths as examples (see Section 6.3.1 and Table 1). In green: true positives. In yellow:
false negatives. In red: false positives. (a–c) TOF MRAs (TOF #1 to #3). (d) PC MRA (PC #1). (For interpretation of the references to colour in this figure legend, the reader is
referred to the web version of this article.)

Table 2

Sensitivity and positive predictive value measures for experiments of Section 6.3.2
(see text and Fig. 11). The a value is the one for which the best segmentation has been
obtained. The best results for each data are depicted in bold fonts.

Image Example a 3D 1D

Sen PPV Sen PPV

TOF #1 TOF #1 0:665 99:972 99:317 99:736 99:832

TOF #1 dK5
ðTOF#1Þ 0:970 99:991 99:271 99:772 99:796

TOF #1 PC #1 0:810 90:848 96:966 94:923 97:825

TOF #1 dK5
ðPC#1Þ 0:775 91:192 95:588 95:339 97:237

PC #1 TOF #1 0:845 58:936 81:499 85:956 89:260

PC #1 dK5
ðTOF#1Þ 0:965 71:983 66:149 91:983 84.747

PC #1 PC #1 0:510 95:391 97:542 98:877 97:305

PC #1 dK5
ðPC#1Þ 0:250 96:237 96:014 99:021 96.992

Fig. 11. Segmentation results depending on example quality (see Section 6.3.2 and Table 2). In green: true positives. In yellow: false negatives. In red: false positives. (a and e)
TOF #1 segmentation using the TOF #1 ground-truth as example. (b and f) TOF #1 segmentation using the PC #1 ground-truth as example. (c and g) PC #1 segmentation using
the TOF #1 ground-truth as example. (d and h) PC #1 segmentation using the PC #1 ground-truth as example. (a–d) Use of binary examples. (e–h) Use of fuzzy examples
(dilated by K5). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Second, it appears that rigid registration provides similar results
as affine registration in terms of Sen, while it improves them in
terms of PPV. This can in particular be explained by the preserva-
tion properties of this (simple) registration policy, in areas of the
brain where registration remains an ill-posed problem due to the
potential signal homogeneity of morphological tissues. In this con-
text, the fuzzy policy considered for examples definitions indeed
makes it possible to handle registration inaccuracies (in the same
way as for inter-individual variability). Note that this finally leads
to low computational costs, since the registration step contributes
heavily to the total time cost of the method.

6.3.5. Evaluation of the connectivity

In these last experiments, we finally assess the influence of the
neighbourhood connectivity on the quality of the segmentation re-
sults. In particular, we compare on the one hand the segmentation
results obtained using the component-tree of an image I using the
connectivity induced by the 6- and the 26-adjacencies, respec-
tively; and on the other hand the results obtained using the com-
ponent-tree defined by the connectivity induced by the (extensive)
mask FðIÞ of I, computed in the way described in Section 4.

These comparisons are performed on the three TOF MRAs (TOF
#1, TOF #2 and TOF #3), by using the same mean image example

Table 3

Sensitivity and positive predictive value measures, plus mean values and standard deviations, for experiments of Section 6.3.3 (see text). The a value is the one for which the best
segmentation was obtained. The best (mean) results are depicted in bold fonts, for the mean image example.

Example Image a 3D 1D

Sen PPV Sen PPV

Mean image TOF #1 0.500 90.402 75.135 94.834 79.140
TOF #2 0.870 100.00 83.063 100.00 93.260
TOF #3 0.825 97.140 72.986 99.230 78.180
PC #1 0.895 69.828 69.770 90.722 82.839
Mean (std. dev.) – 89.343 (13.618) 75.238 (5.663) 96.177 (4.278) 83.355 (6.902)

One image TOF #1 0.710 90.579 71.218 94.744 77.672
TOF #2 0.915 97.290 77.590 99.118 91.802
TOF #3 0.900 100.00 68.081 100.00 75.136
PC #1 0.915 70.475 60.608 89.982 79.041
Mean (std. dev.) – 89.586 (13.342) 69.374 (7.058) 95.961 (4.601) 85.07 (7.783)

Fig. 12. Segmentation results on one of the 10 tested PC MRAs depending on the kind of example (see Section 6.3.3). (a and b) Example consisting of one segmented image:
(a) binary, (b) fuzzy (K5). (c and d) Example consisting of a mean image obtained from several segmented images: (c) binary, (d) fuzzy (K5). The a value indicated for each
subfigure is the one for which the best segmentation was obtained.

Table 4

Sensitivity and positive predictive value measures for experiments of Section 6.3.4 (see text and Fig. 13). The a value is the one for which the best segmentation was obtained. The
best (mean) results are depicted in bold fonts.

Registration Image a 3D 1D

Sen PPV Sen PPV

Rigid TOF #1 0.500 90.402 75.135 94.834 79.140
TOF #2 0.870 100.00 83.063 99.921 93.260
TOF #3 0.825 97.140 72.986 99.230 78.180
PC #1 0.895 69.828 69.770 90.722 82.839
Mean (std. dev.) – 89.343 (13.618) 75.238 (5.663) 96.177 (4.278) 83.355 (6.902)

Affine TOF #1 0.500 90.402 73.908 94.836 78.534
TOF #2 0.880 97.739 81.081 99.399 93.011
TOF #3 0.950 100.00 65.387 100.00 71.833
PC #1 0.920 70.192 69.387 90.712 82.979
Mean (std. dev.) – 89.583 (13.561) 72.441 (6.730) 96.237 (4.345) 81.589 (8.886)

Nonrigid TOF #1 0.430 91.610 73.352 95.694 79.496
TOF #2 0.970 96.574 75.914 98.930 91.503
TOF #3 0.680 97.736 67.420 99.358 72.882
PC #1 0.675 68.103 76.585 88.367 87.544
Mean (std. dev.) – 88.506 (13.858) 73.318 (4.171) 95.587 (5.084) 82.856 (8.317)
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as above, dilated with K5, and fitted by rigid registration. Numeri-
cal results are given in Table 5.

From a quantitative point of view, the sensitivity scores are all
comparable, however, PPV scores are much lower for the 6-con-
nectivity. This is due to the fact that 6-connected components
are likely to be much smaller, and therefore close to noise. The
use of 6-connectivity is therefore not recommended. With respect
to using 26-connectivity vs. filtered connectivity, we observe that
for the same sensitivity, PPV results can vary either way. Based
on our experiments, results vary according to the noise level. We
observe that the morpho-Hessian does not help much when
images are already quite clean. It helps more in the case of high
noise, e.g. with TOF #1. Since reconnections with the morpho-Hes-
sian filter happen for thin vessels, they occur at the extremities of

the network. These reconnections are visible but have relatively lit-
tle effects on the PPV numbers.

7. Conclusion

Two methods have been described for 3D angiographic image
filtering and segmentation. Both rely on recent advances in math-
ematical morphology. In particular, they take advantage of the
mixture of discrete and continuous approaches (filtering method,
Section 4.2.4), and of the low algorithmic cost of the involved strat-
egies (filtering method – Proposition 4, and segmentation method
– Proposition 7) leading to time-saving (fast, and automatic or
interactive) image processing and analysis tools. We have shown
how these two methods could be easily interfaced (Section 5.4)
to directly integrate the filtering results in the segmentation pro-
cess. Moreover, new results related to vector field regularization
(Section 4.2.3), and fuzzy example handling (Section 5.2) have
been obtained, thus extending the results initially proposed for
both filtering (Tankyevych el al., 2009b; Tankyevych et al.,
2009a) and segmentation (Passat and Naegel, 2011b; Dufour
et al., 2011a) approaches.

These methods were evaluated on synthetic and real angio-
graphic data, emphasising their relevance. The ability to discrimi-
nate specific parts of the vascular structures (example-based
approach) and to integrate the user’s skills with a low time cost
has, in particular, led to use them in processes involving possibly
large image datasets, for instance, the generation of statistical vas-
cular atlases (Dufour et al., 2011b).

The following further work may also lead to improvements of
these methods. Regarding vessel orientation computation (Sec-
tion 4.2.2), the consideration of not only second-order derivatives,

Fig. 13. Segmentation results depending on the registration policy (see Section 6.3.4). (a–c) Results on a TOF MRA (TOF #2, see also Table 4). In green: true positives. In
yellow: false negatives. In red: false positives. (d–f) Results on one of the 10 tested PC MRAs. (a and d) Rigid registration. (b and e) Affine registration. (c and f) Nonrigid
registration. The a value indicated for each subfigure is the one for which the best segmentation has been obtained. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 5

Sensitivity and positive predictive value measures for experiments of Section 6.3.5
(see text). The a value is the one for which the best segmentation was obtained. The
best results are depicted in bold fonts.

Connectivity Image a 3D 1D

Sen PPV Sen PPV

6- TOF #1 0.745 93.441 36.682 94.014 44.304
TOF #2 0.950 93.695 38.881 94.791 68.221
TOF #3 0.865 98.753 57.129 97.538 59.865

26- TOF #1 0.500 90.402 75.135 94.834 79.140
TOF #2 0.870 100.00 83.063 100.00 93.260
TOF #3 0.825 97.140 72.986 99.230 78.180

Filter TOF #1 0.145 92.707 76.180 95.226 81.417

TOF #2 0.730 100.00 83.053 100.00 93.919

TOF #3 0.825 97.140 56.089 99.230 71.734
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but also first-order ones may provide better robustness to noise,
and then improve vessel orientation estimates. Moreover, as for
linear scale-space approach, a more elaborate analysis could be
used, involving automatic scale selection (Lindeberg, 1998).
Regarding the morphological part of the filtering method, (Sec-
tion 4.2.4), the size of the spatially-variant structuring elements
could be made to vary (Dokládal and Dokládalová, 2008) according
to the eigenvalues of the Hessian matrix. In addition, it is envisaged
to use variable and more flexible structuring element shapes, such
as paths instead of segments.

Regarding vessel segmentation (Section 5.3.3), instead of com-
puting several segmentation results for different (chosen/sampled)
a values, an alternative solution may be to provide the exhaustive
(finite) set S of possible binary segmentations, modeled as a grey-
level image Iout : E ! ½1; jSj�. The mask-based connectivity ap-
proaches may also be more intensively involved in the proposed
segmentation paradigm, by considering not only extensive masks
(see Definition 10), but also antiextensive or mixed ones (Ouzounis
and Wilkinson, 2007). Extensions to hyperconnectivity (Ouzounis
and Wilkinson, 2011) or multi-scale connectivities (Passat and
Naegel, 2011a) may also be investigated.

Finally, vascular image registration (Section 5.3.2) also remains
a challenging issue, in the case of the proposed image segmenta-
tion technique. The way to use not only morphological information
from standard images, but also (sparse and varying) vascular infor-
mation from angiographic data, will also be considered in (longer
term) further work, with the purpose of improving the accuracy
of the example fitting.
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a b s t r a c t

Many useful morphological filters are built as long concatenations of erosions and dilations: openings,
closings, size distributions, sequential filters, etc. This paper proposes a new algorithm implementing
morphological dilation and erosion of functions. It supports rectangular structuring element, runs in lin-
ear time w.r.t. the image size and constant time w.r.t. the structuring element size, and has minimal
memory usage.
It has zero algorithm latency and processes data in stream. These properties are inherited by operators

composed by concatenation, and allow their efficient implementation. We show how to compute in one
pass an Alternate Sequential Filter (ASFn) regardless the number of stages n.
This algorithm opens the way to such time-critical applications where the complexity and memory

requirements of serial morphological operators represented a bottleneck limiting their usability.
� 2011 Elsevier Inc. All rights reserved.

1. Introduction

Since its introduction in late sixties, the mathematical morphol-
ogy provides a complete set of image processing tools from filter-
ing [1,2], multi-scale image analysis [3] to pattern recognition [4–
6]. They have been used in unrivalled number of applications [7,8].
The most significant examples include biomedical and medical
imaging, video surveillance, industrial control, video compression
[9], stereology or remote sensing [10].

Nonetheless, not all useful operators can be easily implemented
in real time with reasonable memory requirements. In demanding
image-interpretation applications requiring a high correct-decision
liability, one often uses robust but costly multi-criteria and/or mul-
ti-scale analysis.

These applications often consist of a serial concatenation of
alternating atomic operators dilation and erosion with progres-
sively increasing computing window called structuring element
(SE).

Such operators cannot be parallelized due to the sequential data
dependency of the individual atomic operators. The only possibil-
ity is to minimize the latency of each atomic operator and consider
computing in stream. The latency minimization reduces the time
to wait for individual pixel results. The stream computing allows
transferring them immediately to the next atomic operator, as
soon as they are available and before the entire image is processed.
Thus, these atomic operators can work simultaneously, on data

delayed in time. In such implementation, one has to sum the indi-
vidual working memories of every atomic operator. Then also the
memory may become penalizing for large, high-resolution images.

The work presented in this paper, aims to propose a new dila-
tion/erosion algorithm with a constant processing time, low la-
tency and low memory requirements for implementation of the
individual atomic operators. Consequently, it allows to implement
advantageously the following:

1. Alternate Sequential Filters (ASFs) – that are a concatenation of
openings and closings with a progressively increasing structur-
ing element, useful for multi-scale analysis [1].

2. Size distributions (granulometries) – that are a concatenation of
openings allowing to assess the size distribution of a population
of objects [3,11,12].

3. Statistical learning – a selected set of morphological operators ni
can be separately applied to an image f. Then for every pixel
f(x,y), the vector of values (ni(f)(x,y)) can serve as vector of
descriptors for pixel-wise learning and classification [6].
Obtaining them may be computationally intensive.

1.1. Paper organization

The remainder of the Introduction lists the most known fast
algorithms of morphological dilation and erosion and discusses
their properties, followed by the explanation of Novelties in this
paper.

The Preliminaries, Section 2, introduce the basic principles of
dilations, erosions and their combinations.

1047-3203/$ - see front matter � 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jvcir.2011.03.005
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The Section 3 outlines the principle of the new algorithm: (i) the
2-D decomposition preserving sequential access to data and zero
latency, (ii) elimination of useless values, (iii) the conversion of an
anti-causal structuring element into a causal one, necessary to pre-
serve the sequential access to data, and (iv) the encoding used to re-
duce the memory requirements and acceleration of computations.

Sections 4 to 5 discuss the properties and Section 6 presents the
case of the four stage ASF as an example.

The paper concludes by Benchmarks, general Conclusions and
Future extensions, Sections 7 to 9. The commented pseudo code
is given in the Appendix.

1.2. Existing work

The mathematical morphology relies on two fundamental, com-
plementary operations: erosion and dilation. They are local, de-
fined within a computing window, specified by the so-called
structuring element (SE), characterized by its size, its shape and
origin. It is well known that, with the increasing size of the SE,
the direct implementation leads to an extremely high computing
cost. Although the fastest existing algorithms [13–16] concentrate
mainly on the reduction of the number of comparisons, few of
them deal with the latency and memory requirements [17]. More-
over, the minimization of comparison number is not always pro-
portional to the overall performance improvement [15].

In the following paragraphs, we concentrate on the presentation
of the existing state of the art. We discuss it from the classical point
of view of complexity, based on the number of comparisons. We
bring it face to face with the latency and the memory require-
ments. For each algorithm, we analyze the possibility of its stream
implementation since it is a key feature allowing efficient chaining
of the atomic operators.

Let us start by the definition of the used basic terms. Consider a
system Y = f(X) with X and Y the input and output data streams. By
latency understand the distance between the same positions in the
two streams. It is a dimensionless value, expressed in number of
data samples. It is the sum of several factors:

(1) operator latency – is induced by non causal operators due to
the fact that the value to output depends on future signal
samples. Consider a basic max filter yj = max(xj�w/2, . . .,
xj+w/2). One cannot output yj before having read all xi until
xj+w/2,

(2) algorithm latency – some algorithms continue reading the
input even after all needed input data are available. Several
morphological dilation/erosion algorithms run in two (for-
ward and backward) data scans, e.g. [13,18]. Typically, in
[18], before processing one image line, one needs to read
the entire line. For 2-D dilation by a rectangle, implemented
separately in the horizontal and vertical direction, one
would need to wait the bottom of the image before writing
the result. In [13] these forward and backward scans can
be done on w pixels long intervals.

For example, the naive implementation of the morphological
dilation (Eq. 3) has a considerable computation complexity Oðw-
1) per pixel, with w the SE width (or area in 2-D), but no algorithm
latency.

The operator latency – inherent to the operator – is incompress-
ible. Consequently, the optimization effort should focus on the
algorithm latency and the computational complexity.

The first concern related to the latency is therefore the time re-
sponse of the system. Another concern related to the latency is the
memory requirements. This can intuitively be explained by the fact
that the latent (meaning ‘‘hidden’’) data need to be temporarily
stored somewhere to not to get lost. Obviously, a large latency

requires large storage. An interesting conclusion is that using lar-
ger SE will have larger memory requirements.

1.2.1. State of the art

The scientific community has adopted several approaches to
speed up the erosion/dilation computation. The first one, we call
direct computation, consists of a straightforward optimization of
the computation given the SE shape.

The second approach relies on the SE decomposition into a se-
quence of reduced SE. Consequently, the optimization effort con-
centrates on the computation of this smaller SE. The special
attention is paid to the SE decomposition into a series of 1-D SE,
very popular in numerous applications [19,20]. It allows better
data access, reuse of intermediate results and is easy to parallelize.

In the following, refer to Table 1 and 2 summarizing the prop-
erties of some algorithms cited below. By data memory understand
the temporary storage for input or output data if the algorithm
uses random data access. For instance the direct implementation
needs random access to input data, whereas the output is written
sequentially. It includes also the image transposition used by some
algorithms. The working memory is any supplementary memory
space required by the algorithm. It includes the data structures like
FIFOs, LUTs, histograms, etc. Temporary constants, scalar variables,
counters, etc., are omitted.

Direct 2-D computation. Optimized algorithms reduce the com-
puting redundancy by using some well-suited data structures to
keep the intermediate results. Themost naturalway is the approach
usedbyHuanget al. [21] formedianfiltering, byChaudhuri et al. [22]
for rank-order filtering, and later by Van Droogenbroeck and Talbot
[23]. They use a histogram to store the values within the span of the
SE at some position in the image. During the translation of the SE
over later image positions the histogram is updated by inclusion/
deletion of the values of the entering/leaving points. The family of
available shapes for the SE is arbitrary. On the other hand, using his-
togrammakes that the input data have to be integers.

SE decomposition. It has soon become evident that the SE
decomposition offers another possibility to obtain a fast imple-
mentation of more complex SEs both on specialized hardware as
well as on sequential computers, and the literature soon became
abundant see e.g. [24–31]. The speedup is obtained by dividing
the effort in two independent key aspects, an efficient decomposi-
tion and the algorithm used for computing the atomic operations.

Various types of decompositions have been proposed. Perhaps
the most known decomposition of linear sets is the linear decompo-

sitionwhich comes from the associativity of the dilation, see Math-
eron [28]. Pecht [29] has proposed a more efficient logarithmic
decomposition based on the extreme set of some SE. For example,
for a polygon, the extreme set contains the vertices.

VandenBoomgaard andWester [30] show that the Pecht decom-
position can be improved for convex shapes. They propose a decom-
position of an arbitrary shape into the union of convex shapes taken
from a fixed collection of basis, efficiently decomposable shapes.
Coltuc and Pitas [31] propose a factorization based algorithm run-
ning efficiently for 2n signals. Soille et al. [27] propose an extension
of the 1-D van Herk algorithm to 2-D. The SE is a line oriented in an
arbitrary angle. Thedecomposition is obtainedby saving the2-D im-
age as an 1-D array, and recomputing the pixel indices correspond-
ingly to the given orientation of the line. Another efficient algorithm
has been recently proposed byUrbachandWilkinson [16]. It decom-
poses a flat, arbitrary-shape SE by using a set of 1-D chords. Themin/
max statistics of the chords are stored in LUT.

1-D algorithms. The 1-D algorithms compute the partial 1-D
dilations after the SE decomposition into lines.

One of the earliest, and most often used 1-D algorithms, is the
van Herk algorithm [13] proposed in 1992. The same algorithm
completed by theoretical background was also published by Gil
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and Werman [32], and later improved by Gevorkian et al. [33] and
Gil and Kimmel [14]. The computational complexity is indepen-
dent of the SE size. It requires two passes on the input data: causal
and anti-causal. Consequently, computing in stream is impossible.
Another, similar algorithm was proposed in [34] using ring-type
buffers. Recently, Clienti et al. [35] propose an interesting modifi-
cation of the Van Herk algorithm reducing the memory to 2W,
implemented on an FPGA.

A different approach has been used by Lemonnier [18]. It iden-
tifies and propagates local extrema as long as it is required by the
SE size. Again, two passes are needed: causal and anti-causal.
Hence, the algorithm latency is N. The stream execution is
impossible.

Van Droogenbroeck and Buckley [15] publish an anchor based
algorithm for erosions and openings. The anchors are these por-
tions of signal that remain unchanged by the operator. The algo-
rithm gives good performance in terms of the computing time.
The erosion can not run in place and stream processing is probably
impossible. The principal disadvantage is in using histograms (sui-
ted only for integer values, and making the algorithm irregular).

Lemire proposes a fast, stream-processing algorithm for a left-
sided SE [17], and later for symetric SE [36]. Both versions simulta-
neously compute 1-D dilation and erosion, run on floating point
data and have low memory requirements and zero latency. How-
ever, even though the algorithms are supposed to run in stream,
the intermediate storage of coordinates of local extrema actually
represents a random access to the input data.

1.3. Latency issues

In order to asses the latency of 2-D algorithms we need to con-
sider separately these different algorithm categories:

� For decompositions of rectangles using R = H � V (R = rectangle,
H/V = horizontal/vertical segment, respectively) the latency in
2-D is a multiplicative factor of the latency in 1-D and the image
width. For two pass algorithms, e.g. Lemonnier [18], the 2-D
latency equals one image frame. For locally two-pass

algorithms, [13,32,33,27] a specific decomposition would have
to be found to optimize the latency in 2-D. The same holds also
for other 1-D algorithms that in 1-D allow streaming processing
[17,36,15].
� Regarding the direct computation in 2-D, though UW [16] could
theoretically read/write the input/output images sequentially,
the possibility of streaming processing is not mentioned; they
also use random accesses to intermediate data. Van Dro-
ogenbroeck–Talbot [23] and the naive implementation write
output sequentially, but use random accesses to input data.
� The computational complexity, used in the Table 1, may intro-
duce to the result a supplementary delay – the time to compute

the result. Whereas the two latencies are relative to the stream
rate, the additional delay depends on the implementation and
the computation platform. It can be (1) negligeable as in most
R = H � V decompositions, where the latency prevails, or (2)
dominant like in the direct implementation with large SE or
in 3-D.

1.4. Novelty of this paper

Although one can find several 1-D algorithms running with zero
algorithm latency, none of the above cited algorithms combines all
the features necessary for efficient implementation of composed
operators in the form n ¼ dBneBn�1 . . . dB2eB1 for 2-D images.

Suppose the atomic operators d, e implemented using an algo-
rithm with sequential access to data. This allows to run in parallel
the entire n despite its internal sequential data dependence. If the
atomic algorithm, in addition, has zero algorithm latency, then the
entire chain n inherits the same properties: sequential data access
and zero algorithm latency. This is an interesting property, since
computing n suddenly becomes very efficient: in stream, with only
the (further irreducible) operator latency of n. See the application
example Fig. 4.

In this scope, the novelty of this paper is multiple. It is the only
algorithm that combines all necessary features for efficient, paral-
lel implementation of serial morphological operators. It uses a
strictly sequential access to data, and can also run in place. The out-
put is produced with zero algorithm latency. The algorithm runs in
linear time w.r.t. the image size and constant time w.r.t. the SE size.

Its additional features include: very lowmemory requirements. A
natural support of floating point data (not all previous algorithms
can support floating point data). The origin can be arbitrarily placed
within the structuring element, which is useful for even sized SE or
specific SE decompositions.

2. Preliminaries

2.1. Morphological dilation and erosion

Let d, e : L ! L be a dilation and an erosion, performed on func-
tions f 2 L, defined as f : D? V. Below assume D = supp(f) = Zn,
n = 1,2, . . . and V = Z or R. dB, eB are parameterized by a structuring
element B, assumed rectangular and flat i.e. B � D and translation-
invariant.

Table 1

2-D algorithms comparison.

Algorithm SE type Complexity per pixel Algorithm latency Data memory Working memory

Naive 2-D User OðWHÞ 0 MN 0
Urbach- Wilkinson User OðNc þ log2ðLmaxðCÞÞÞ MN MN NH log2W
Van Droogenbroeck–Talbot User OðHlog2ðGÞÞ

� 0 NH WHG

This paper 2-D Rect. Oð1Þ 0 0 2(NH +W)

W � H = SE size (Width � Height); N �M = image size; G = number of gray levels; Lmax(C) = maximum chord length; Nc = number of chords; ⁄ square SE.

Table 2

Fast 1-D algorithms comparison.

Algorithm SE type Comparisons per
pixel

Algorithm
latency

Overall
memory

Naive 1-D User W � 1 0 N

van Herk Gil–
Wermann

Sym 3� 4
W

W N + 2W

Gil–Kimmel Sym
Even/
Odd

1;5þ log2W
W þO 1

W

� �
W N + 3W

Lemire Left 3 0 N +W

Lemonnier Sym nc N 2N
Van Droogen–

Broeck–
Buckley

Sym
Even/
Odd

nc 0 2N + G

This paper 1-D User Oð1Þ 0 2W

Sym = symmetric SE; Left = Left sided SE; User = user defined; W = SE size; N = line
size; G = number of gray levels; nc = not communicated.
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Functional (operating on functions) erosion and dilation by a
flat SE defined by extension to functions of the Minkowski set addi-
tion/subtraction definitions are given by

½dBðf Þ�ðxÞ ¼
_

b2B

fb

" #
ðxÞ ð1Þ

½eBðf Þ�ðxÞ ¼
^

b2bB
fb

2

4

3

5ðxÞ ð2Þ

where ^ denotes the transposition of the structuring element, equal
to a set reflection bB ¼ fxj � x 2 Bg, and fb denotes the translation of
the function f by some vector b 2 D. Hence, the definitions Eqs. (1, 2)
can be implemented by

½dBðf Þ�ðxÞ ¼max
b2B

f ðx� bÞ ð3Þ

½eBðf Þ�ðxÞ ¼ min
b2B

f ðxþ bÞ ð4Þ

Dilations and erosions combine to form other operators. We shall
focus on combinations obtained by concatenations that this algo-
rithm implements optimally.

The basic products obtained by concatenation1 are opening
cB = dBeB and closing uB = eBdB. Hence from, one forms the so called
Alternating Filters obtained as cu, uc, cuc and ucu. The number
of combinations obtained from two filters is rather limited. Other fil-
ters can be obtained by combining two families of filters. This leads
to morphological Alternate Sequential Filters (ASF), originally pro-
posed by [37], and studied in [1] Chap. 10. In general, it is a family
of operators parameterized by some k 2 Z+, obtained by alternating
concatenation of two families of increasing, resp. decreasing filters
{ni} and {wi}, such that wn 6 	 	 	 6 w1 6 n1 6 	 	 	 6 nn.

The most known ASF are those based on openings and closings,
obtained by taking w = c and n = u:

ASFk ¼ ckuk
. . . c1u1 ð5Þ

starting with a closing, and

ASFk ¼ ukck . . .u1c1 ð6Þ

starting with an opening.
This brief survey of theory allows to intuitively appreciate the

complexity and the challenge involved by the usage of such long
compound operators. If the algorithm does not deal at the same
time with the memory management as well as with the latency,
the overall performances could be (and generally they are) signif-
icantly lowered. We address this problem in Section 6 where we
show how to efficiently implement the concatenation of dilations
and erosions.

3. Principle of the algorithm

According to the algorithm classification presented in Section 1,
the proposed algorithm belongs to the SE decomposition approach
using an improved 1-D dilation algorithm.

3.1. Separation of 2-D into 1-D

Recall that separable operators are run in all directions sepa-
rately. This requires intermediate data storage between individual
runs. If the 1-D parts use sequential data access, it allows to com-
pose n-D dilations also using sequential data access. This elimi-
nates the necessity of intermediate data storage.

The input image is read in the raster scan order, line by line.
Every line is dilated horizontally. The result of the horizontal

dilation is immediately read, pixel by pixel, by the vertical dilation
in the corresponding column. The result of the vertical dilation part
is written to the output. The output image is also written in the
raster scan order.

Fig. 1a illustrates the computation of the result at position (k, l).
Assume that the input data have already been read until line i, col-
umn j. The ongoing computations (depicted by �) are: the horizon-
tal dilation part (Fig. 1b) is running on line i, with the reading
position (i, j) in the input image, writing position (i, l), immediately
read by the vertical dilation (Fig. 1c) with reading position (i, l) and
writing position (k, l), directly written to the output. The lines 1 to
i � 1 have already been horizontally dilated, and all columns have
already been vertically dilated up to the line k.

3.2. 1-D algorithm

3.2.1. Elimination of useless values

An efficient coding of the function profile can avoid a number of
comparisons during the computation of a dilation or an erosion.
One can drop all values that will never take over in the result of
the max or min, Eqs. (3, 4).

Consider a 1-D, connected structuring element B containing its
origin. Then, computing dBf(x) needs only those values of f(xi) that
can be seen from x when looking over the topographic profile of f.
The valleys shadowed by mountains contain unneeded values, see
Fig. 2. Notice that the masked values depend on f, and not on B.

Now, lets place ourselves in the context of streaming algo-
rithms. For simplicity assume a causal SE, i.e. containing its origin
at the right hand side. For causal SE, one only needs to look left-
wards, over the past samples. The search of the useless values
can be formalized by the Property 1 showing that values useless
at some time instant x remain useless also for the ‘‘future’’.

Proposition 1 (Useless values). In computing the dilation dBf, with

f : Z+? R, by some causal, connected structuring element B (a linear

segment) containing its origin, no f(i) such that f(i) 6 f(j), and i < j, will

influence the dilation

dBf ðxÞ; for 8xP j ð7Þ

Proof. From Eq. 3, any x such that i < j 6 x, if i 2 B(x) then j 2 B(x). If
f(i) < f(j), then f(i) < maxb2Bf(x � b), and f(i) has no impact on the
dilation result.

This means that all f(i) such that

f ðiÞ 6 f ðjÞ; with i < j; ð8Þ

may be dropped from the computations. h

This is a strong proposition that allows a considerable reduction
of the computational redundancy. One comparison f(i) 6 f(j), done
upon reading f(j), avoids computing j � i useless comparisons for
any later B(x) that covers i and j.

Two important points are to be noticed.

1. "xP j in Eq. 7 means that all values that become useless at the
position j remain useless in the future, "xP j.

2. Using a bounded and causal B � Z, i.e. an interval
B(x) = [x � b,x], with b <1, means that for computing dB(x),
one can also discard all values outside the SE span, i.e. f(xi), with
xi < x � b.

Remark 1. This proposition does not hold for non causal SE. The
values useless at time x may become useful for some k > x. This
algorithm utilizes the commutation of dilation with translation
to convert an anti-causal SE to a causal one.1 To be read from right to left.
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3.2.2. Anti-causal to causal SE conversion

Every SE B, B � D is equipped by an origin x 2 D. Assuming a
sequential access to the input data, the dilation dBf(x) depends of
points read before but also after x. We say that B is non causal.

One can transform a non causal SE to a causal SE by utilizing the
property that dilation commutes with translation (t 2 D)

dBþtf ðxÞ ¼ dBf ðx� tÞ ð9Þ

The translation consists of writing the result at the correct place
in the output. The horizontal and the vertical shifts are handled by
the 1-D horizontal or vertical dilation part, implemented by the
Function 1: page 8.

3.2.3. Function coding

Similarly as binary objects can be coded by using the distance to
their boundaries, functions need to be coded by computing the dis-
tance to every change of the value. Using the Property 1 and rela-
tive indexing, the samples f(x) used in computation dBf(xi) are
coded by pairs (distance, value) as given in Fig. 3.

The arrows indicate those values that enter in the computation
of dBf(xi). The values non indicated by an arrow are smaller or equal
to f(j) = 6 and have no impact on the result dBf(x), for xP j.

The Eq. 8 is used by the 1-D dilation algorithm to exclude from
the computation all useless values.

4. Algorithm complexity and latency

In this section we shall analyze the latency and the complexity
of the algorithm.

4.1. Latency

The overall algorithm latency is function of two factors: (i) the
latency of the 1-D dilation (Fnct. 1), and (ii) the latency of the 2-
D decomposition (Algorithm 2).

� 1-D dilation: the Function 1 writes the output as soon as the
reading position rp reaches the last position covered by the
structuring element (code lines 6 to 7). This corresponds to
the last output-to-input data dependency position, i.e. the oper-
ator latency.

Remark 2. The while loop, clearing from the FIFO the useless val-
ues, operates on past signal samples. Consequently, it does not
enter in the latency count. The latency of the Function 1 is there-
fore strictly equal to the operator latency.

� 2-D dilation: the 2-D dilation is decomposed in the way that
result of the horizontal 1-D dilation is directly fed to the corre-
sponding 1-D vertical dilations. Their results are recombined
into the output stream. Therefore, the algorithm latency of the
2-D decomposition is zero.

4.2. Computation complexity

The 2D_Dilation algorithm iterates over all coordinates of the
output image. The inner complexity of the 2D algorithm is OðNÞ,

i

k

1 l j N

B(k,l)

M

1

reading position

writing position

i

k

1 l j N

B(k,l)

M

1

writing position

reading position

i

k

1 l j N

B(k,l)

M

1

writing position

reading position

Fig. 1. Separation of computing: (a) rectangular element into (b) the horizontal and (c) vertical part. �� denote the data stored in the queue of the corresponding line or
column.

f

xi j

Fig. 2. Computing the dilation dBf(x): values in valleys shadowed by mountains
when looking from x over the topographic relief of f are useless.

2
1

3
4
5
6
7
8

(1,3)
(3,4)

(13,7)
(14,8)f(x)

(4,6)

x
x

j i

pairs (distance, value) used in x i

Fig. 3. Function coding. The useless values are discarded.
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where N is the number of pixels in the image. At every coordinate,
the 2D_Dilation calls twice the 1D_Dilation function: once for the
vertical dilation and once for the horizontal dilation part.

The 1D_Dilation part (Function 1: 1D_DILATION) contains a se-
quence of Oð1Þ operations, and one while loop (lines 1–2), clearing
useless values from the FIFO. We shall see that this while loop is
executed at most once per pixel, making the complexity of the
1D_Dilation algorithm constant per pixel.

Every incoming pixel is stored in the FIFO once and only once
(line 5). Every pixel is cleared from the FIFO once and only once,
either (i) when it becomes ‘‘too old’’, i.e. uncovered by the current
SE span (lines 3–4) or (ii) when it gets masked by another, higher
value (lines 1–2).

The deletion (lines 1–2) of every pixel can be delayed. Delete
pixels from FIFO later or sooner has no impact on the algorithm
complexity. However, it occurs that several pixels are deleted at
the same time. This implies using the loop while (lines 1–2). The
loop iterates at most once per pixel. Other pixels that become
’’too old’’ are deleted at lines 3–4. Hence, both ways of deletion
have the same complexity O(1) per pixel.

This allows to make the following conclusions:

(1) The FIFO size is upper-bounded by the SE width. This deter-
mines the memory requirements (detailed in the next
section).

(2) For every pixel, the number of the iterations of thewhile loop
is lower-bounded by zero and upper-bounded by the SE
width.

(3) The average number of iterations of the while remains in
[0,1] per pixel.

(4) The worst-case complexity of the 1D_Dilation per pixel is
bounded by OðWÞ.

Hence, we shall conclude that the overall complexity of the 2-D
dilation algorithm is OðNÞ, i.e. linear w.r.t the size of the image (N
pixels) and constant w.r.t the SE size.

Note: although both ways of deletion have the same complexity
Oð1Þ, they do not have the same cost (in terms of instruction
count). The deletion by shadowing is slower in C because of the
overhead of the loop while. The different timings obtained on var-
ious data (constant, random or natural images) are due to this
overhead. For nonincreasing intervals (e.g. a constant image – see
Benchmarks) the loop (lines 3–4) never executes. The probability
of either deletion being data dependent explains the slight varia-
tion of the execution time on the image content.

5. Memory requirements

In 1-D, the FIFO size is upper-bounded by the width of the SE,
which is the memory-worst case encountered whereever there
are no useless data to eliminate. This occurs at all monotonically
decreasing intervals of the signal that are longer than the SE width.
This is equivalent to results obtained in [15], where for computing
eBf(x), only the values f(xi), with xi = B(x), are needed. Similar results
hold for the dilation.

In 2-D, the memory requirements are given by the decomposi-
tion of the rectangle as R = H � V (R = rectangle, H/V = horizontal/
vertical segment respectively). The raster-scan data access makes
that the computations window (the SE) slides over the image from
left to right and from top downwards.

The vertical part of the 2-D dilation runs at all columns simul-
taneously, one pixel per each column at a time. All columns have
the memory-worst case equivalent to the height of the SE.

Consider an erosion (or a dilation) of an N �M image (width by
height) by a W � H rectangular (width by height) SE. The memory
requirements M are

M ¼ 2ðNH þWÞ

This means, N memory blocks of size 2H (vertical part) and one
memory block of size 2W (horizontal part). The multiplicative factor
2 comes from the fact that the stored data are indexed by their coor-
dinates (see Fig. 3, and Fnct. 1, line 5).

For example, an erosion of an 800 � 600 image by a 20 � 20
square will require 2 � (800 � 20 + 20) = 32,040 bytes. Compared
to this, storing an 800 � 600 image is costly, requiring 480,000 by-
tes (with 1 byte/pixel coding). Neither the input nor the output im-
age need to be stored in memory.

The memory requirements graphically correspond to storing
the image data from the lines currently intersected by the SE.

6. Application

In the following we give as example the implementation of an
ASFk given by Eq. (5). Rewrite the filter as a concatenation of ero-
sions and dilations

ASFk ¼ dBkeBkeBkdBk . . . dB1eB1eB1dB1 ð10Þ

and reduce it into its canonical form

ASFk ¼ dBkeBk�BkdBk . . . dB1eB1�B1dB1

This ASFk can be implemented in a stream in one raster scan of the in-
put image. The writing position of the preceding operator in the cas-
cade becomes the reading position of the following operator. The
operator latency of the entire ASFwill be given by the one introduce
by the result of Minkowski sum of all SE in Eq. 10, that isan

i¼1Bi.
Fig. 4 illustrates the propagation of real image data through an

ASF4 after having read approximately one third of the input image.
The SE is a square of size s + 1 for the s-th stage. The individual
operators, with sequential data dependence, are running simulta-
neously. There is no intermediate data storage between the stages;
the intermediate results are pipelined.

7. Benchmarks

This section illustrates the execution time of this algorithm,
w.r.t. various criteria, measured on an Intel Core 2 2 GHz CPU, with
2 GB 800 MHz Dual Port RAM, running Linux. The time reported
below is the processor time spent in the dilation/erosion algorithm
as reported by a profiler (obtained as a mean after several runs to
reduce inaccuracy).

The first experiment, see Fig. 5, illustrates the running time
w.r.t. the content of the image. We have used a constant and a
white-noise image to illustrate the fastest and the worst-case run-
ning time, and a natural image to illustrate the ‘‘expected’’ running
time on a natural scene. The measured time follows a linear func-

Fig. 4. Propagation of data throughout ASF4 after having read approximately one
third of input image (Manet’s painting ‘‘Le fifre’’).
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tion of the image size. Note also that the performance on the nat-
ural image actually coincides with the worst case performance ob-
tained on the white noise. (The various sizes of the natural image
were obtained by tiling side to side the original photography
mountain.pgm from [38].)

We have evaluated the performance of the algorithm against
different data types, see Table 3. The best performance has been
obtained for the word width corresponding to the used CPU archi-
tecture, i.e. the integer and float for a 32 bit CPU, and the double for
a 64 bit CPU. The penalty obtained for the unsigned char (8 bits) is
due to inefficient memory access on both architectures.

We have compared our algorithm with Urbach-Wilkinson2 [16]
and Van Droogenbroeck–Buckley3 [15], see Fig. 6.

The best timing was obtained with [15], the worst with [16],
which allows – on the other hand – SE of arbitrary shapes. The
algorithm from this paper remains competitive with the speed of
the other algorithms, even though the speed has been traded off
for memory consumption and latency.

Finally, the last experiment, see Fig. 7, illustrates that the com-
plexity of the algorithm is independent of the SE size. The SE is a
centered, 10k + 1 � 10k + 1 square, for k = 0 . . .9.

Note: the FIFO queues are implemented in C by using pointer-
addressed arrays.

8. Conclusions

This paper proposes a new algorithm for functional dilation or
erosion by a flat, rectangular structuring element for 2-D data (eas-
ily extensible to n-D images, and SE in form of n-D boxes).

The algorithm has zero algorithm latency and strictly sequential
access to data. The combination of these two properties allows
their inheritance to operators composed by concatenation. The en-
tire concatenation chain, despite its internal sequential data
dependence, can run simultaneously. The algorithm runs in linear
time w.r.t. the image size and constant time w.r.t. the SE size.

Regarding serial filters, if all the operators in the concatenation
run simultaneously – then result can also be obtained in constant
time w.r.t. the length of the concatenation.

The algorithm has low memory requirements, which eases its
implementation on systems with space constraints, such as
embedded or mobile devices, intelligent cameras, etc. The linear
time and zero latency allow efficient implementations on demand-
ing industrial systems with severe time constraints.

Even though the speed is not the principal concern here, the
algorithm remains competitive in term of execution time com-
pared to the recent proposed fast implementations.

9. Future extensions

9.1. Other SE shapes

The algorithm, described above with rectangles, can also be ex-
tended to other shapes decomposable into linear segments (e.g.
polygons as in [27]).

9.2. Spatially variant SE

This paper is the third step of a wider work towards an efficient
implementation of morphological operations with spatially variant
structuring elements that are useful for adaptive filters. The first
step has been the stream implementation of dilation/erosion of sets
[39]. It has the same algorithmic properties: zero latency and opti-
mal memory, sequential access to data. The second step was the
extension to the functional morphology; preliminary results have
already been published: 1-D spatially variant morphology [40]
and approximations of 2-D spatially variant rectangles [41].

The present algorithm is a simplified version of [41] limited
from spatially variant to translation invariant SE. This simplifica-
tion has brought a 10 � speed increase.

The goal is to obtain an algorithm for spatially-variant func-
tional dilations and erosions with structuring elements of uncon-
strained shapes.

9.3. Real-time HW accelerator

This algorithm can be easily implemented as a finite state ma-
chine, interesting for HW implementation. The sequential access al-
lows to read the image from a camera, process it, andwrite it out for
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Fig. 5. Execution time of erosion, with respect to the content of the image. Data
read from memory.

Table 3

Execution time in ms for 2-D dilation of the ’mountain.pgm’ image (800 � 600) by a
21 � 21 square for various data coding types.

Data type/ CPU type Int Float Unsigned char Double

Intel Core2 Duo 17.49 18.05 25.77 20.32
2.4 GHz (32 bits)
Dual Core
AMD Opteron 22.34 23.64 25.02 22.06
2.4 GHz (64 bits)
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Fig. 6. Execution time of erosion, with respect to the size of image. Structuring
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Fig. 7. Execution time of erosion with respect to the size of structuring element.
Image size 800 � 600.

2 Code courtesy of Erik Urbach.
3 Code available at [38].
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further processing or visualization. This allows processing large, or
infinite industrial images without storing them in the memory.
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Appendix A

A.1. Notation convention and preliminaries

 shall denote the assignment and =, <, 6, . . . tests. Curly braces
denote a collection of values, e.g. A {5,8}. To obtain an element
in a collection by its index we use brackets, e.g. A[1] = 5. The empty
set is denoted by {}. In a function call, parentheses denote the col-
lection of arguments; funct() is a function call without arguments.

FIFO: The algorithm uses FIFO (First In First Out) queues. The
FIFO supports the following operations: push – insert a new ele-
ment, pop – retrieve the oldest element, and dequeue – retrieve
the most recent element, and queries: front – read the oldest ele-
ment, back – read the newest element. The operations modify
the content of the FIFO whereas the queries do not. fifo {} ini-
tializes the fifo to empty.

In this algorithms, the elements inserted/read into/from the fifo
are always couples {value, position}. Hence, e.g. the query fifo.-

front()[1] yields the value of the oldest element in the queue.
Input/output images are assumed 2D, read and written in the

raster scan order one pixel at a time by x  in_stream.read() and
out_stream.write(x). The reading/writing position is always implic-
itly incremented by 1.

A.2. Algorithm description

This section details the algorithm principles in link to the algo-
rithm pseudo-code, see page 8.

A.2.1. 2-D Dilation algorithm

The 2-D Dilation, Algorithm 1, is to decompose the 2-D SE into
columns and to assemble the partial 1-D computations into a 2-D
stream, cf. Fig. 1.

The horizontal and vertical dilation parts are computed by the
same function 1 D_DILATION. It encodes the input data from the cur-
rent line or column and stores them in the FIFO. There is one FIFO

for the horizontal part dilation – h_fifo. For the vertical part,
there is an 1 . . . N array – v_fifo – one FIFO per image column.

The input image is read at lines 10 to 12. Missing data (to the
right of the image) are completed by the padding constant, line
14. The horizontal dilation is computed at line 16.

If the horizontal dilation part outputs a valid (non empty) value,
line 19, it is sent to the vertical dilation part, computed by the
same function, line 20. The vertical dilations also may require pad-
ding – typically below the image – where the horizontal dilation is
not called. Instead, dFx is directly set to the padding value, line 18.

Provided the vertical dilation outputs a valid result, line 21, it is
directly written to the output image, line 22.

A.2.2. 1-D Dilation function

Assume computing dF = dBF, where F, dF : [1, . . . ,N]? R. The
structuring element B is a linear segment, SE1 + SE2 + 1 pixels
long, with SE1, SE2 the offsets of the origin from the left- or the
right-most end.

Calling conventions: The function 1D_Dilation, see Function
1: page 8, is a function computing one sample of dF, to be written
at writing position wp.

Upon every call, rp must be incremented by one by the calling
function. Similarly, every time that 1D_Dilation outputs a valid
sample, wp is to be incremented by one.

The current fifo queue needs to be passed by reference.
Principle: The function proceeds in three steps:

1. Dequeue all smaller or equal values, lines 1 to 2. Removes from
the FIFO all values that become useless.

2. Delete too old value, lines 3 to 4, removes from the FIFO the
value that gets uncovered by the current SE B(wp).

3. Enqueue the current sample in the FIFO in the form of a couple
{value, position}.

4. Provided enough data have been read, line 6, return the dilation
result dF, line 7. At any moment, this value is found at the old-
est position of the FIFO.

Note: To obtain erosion instead of dilation:

1) Function 1: dF 1D_DILATION, line 1, replace 6 by P.
2) Algorithm 2, line 1, set the padding constant PAD to 1.

A.3. Algorithm pseudo-code
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One-dimensional openings, granulometries and
component trees in O(1) per pixel

Vincent Morard, Petr Dokládal and Etienne Decencière

✦

Abstract—We introduce a new, efficient and adaptable algorithm to

compute openings, granulometries and the component tree for one-

dimensional (1-D) signals. The algorithm requires only one scan of the

signal, runs in place in O(1) per pixel, and supports any scalar data

precision (integer or floating-point data).

The algorithm is applied to two-dimensional images along straight

lines, in arbitrary orientations. Oriented size distributions can thus be

efficiently computed, and textures characterised.

Extensive benchmarks are reported. They show that the proposed

algorithm allows computing 1-D openings faster than existing algorithms

for data precisions higher than 8 bits, and remains competitive with

respect to the algorithm proposed by Van Droogenbroeck when dealing

with 8-bit images. When computing granulometries, the new algorithm

runs faster than any other method of the state of the art. Moreover, it

allows efficient computation of 1-D component trees.

Index Terms—Algorithms, Mathematical Morphology, Opening, Granu-

lometry, Component Tree, Oriented size distribution, Filtering.

1 INTRODUCTION

In the framework of mathematical morphology [1], [2],
any anti-extensive, increasing and idempotent operator
is an algebraic opening. This fundamental family of
operators is often based on a structuring element (SE)
probing the image at different places; in this case, it
is called a morphological opening. Using a segment as
structuring element is useful to detect straight structures,
or to find the local orientation of thin objects. Indeed,
many practical applications involve a directional analy-
sis (Material characterisation, crack detection, biological
applications [3], [4]).

In this paper, the presentation is limited to openings,
but all results can be directly applied to their dual
operators, the closings.

Openings can be used to build granulometries [5]–
[7]. This tool was initially introduced to study porous
media [5] and it can be seen as a sieving process. Given
some powder composed of particles of different radii,
sieves of decreasing size are used to perform a size
analysis of these particles, by measuring the quantity
of powder left in each sieve. Many image processing
applications involve granulometries, size distribution,
image segmentations or texture characterisations [7]–[9].

The author are with MINES ParisTech, CMM - Centre of Mathematical
Morphology, 35, rue St. Honoré, 77305-Fontainebleau-Cedex, France.

Multi-scale image analysis can also be based on the
component tree (or max-tree). Introduced by Salembier
[10], it captures some essential features of an image. This
tree structure is used in many applications including im-
age filtering, image segmentation, video segmentation,
and image compression [11]–[13]. It is also at the basis
of the topological watershed [14].

All these operators are time consuming with naive
implementations and many authors have developed fast
and efficient algorithms to deal with this issue.

For morphological openings (i.e. openings using a
structuring element), Pecht [15] defined in 1985 a log-
arithmic decomposition of the structuring element. This
decomposition removes most of the redundancy. Later,
Van Herk [16] on the one side, and Gil and Werman
[17] on the other side, reduced the complexity to a
constant per pixel. This algorithm, called hereafter HGW,
is independent of the size of the structuring element for
the computation of one-dimensional (1-D) erosions and
dilations. Later, Clienti et al. improved HGW algorithm
by removing the backward scanning to ensure a low
latency [18]. Then, algorithms have also been proposed
to compute openings in only one pass of the entire
image, without computing successively the erosion and
the dilation. Van Droogenbroeck and Buckley developed
an algorithm based on so-called anchors [19]. The al-
gorithm uses image histogram. It is extremely efficient
on 8-bit data, but its performance decreases with higher
precision data. Later, Bartovský et al. [20] worked on a
new streaming algorithm with a minimal latency and a
low memory requirement.

For granulometries, a straightforward approach con-
sists in computing a set of openings of different sizes,
and measuring the residues between two successive
openings. This is a very computationally intensive task.
Vincent proposed an efficient algorithm based on the re-
cursive analysis of the regional maxima of the signal [21].
This algorithm is faster by several orders of magnitude
over the naive implementation and highly contributed
to the diffusion of this tool in the image processing
community.

In the literature, many authors have worked on the 1-
D component tree. Among them, Najman and Couprie
[22] built an algorithm in quasi linear time and more
recently, Menotti et al. [23] downed the complexity to a
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with Meas(), a given additive measure. In the discrete
case, the differential function is replaced by a subtraction
between two consecutive openings. By analysing these
residues, we get the measure of all the structures that
have been removed from the image at this scale. There-
fore, the discrete pattern spectrum is defined as follows:

(PS(f))(ν) = Meas(γν(f)− γν−1(f)), ν > 0. (8)

Fig. 2 explains how a 1-D signal is decomposed. The
pattern spectrum is saved into a discrete histogram,
where each bin stores the contribution of the signal to
its corresponding measure. Hereafter, the measurement
used in equations 7 and 8 is the volume, and the family
of openings are the openings with the length attribute,
γλ. Hence, block c3 is a 5 pixels long element having a
volume of 15; this adds 15 to the 5th bin. Elements c4 and
c6 have a length of 1 pixel; therefore, they contribute to
the first bin – and so on, until all the elements have been
processed.
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Fig. 2. Illustration of a grey scale pattern spectrum with

the volume measurement on a one-dimensional signal.

Openings and granulometries are computed efficiently
with the algorithm presented in the next section.

3 ALGORITHM FOR 1-D SIGNALS

This algorithm is able to compute granulometries, com-
ponent trees and attribute openings by length for a 1-D
signal. We first describe the decomposition used to get a
minimal and complete representation of the signal. Then,
we provide a detailed description of the algorithm.

3.1 Signal decomposition

Consider a 1-D signal f : D → V , with V equal to R
or Z . We recall that Xh = {x | f(x) ≥ h} denotes the
threshold of f at level h, and {Xh

i } the set of connected
components of Xh. Notice that one may obtain the same
connected component for different h. We wish to obtain
a representation of f by searching, for each Xh

i , for the
maximum h allowing to extract it.

First, we will re-index {Xh
i } into {Xj}. We will call

cord a couple c = (Xj , k) belonging to {Xj} × V , where

k = minx∈Xj
f(x) is the altitude of the cord. As Xj is

an interval of Z , we can write it [sp, fp], where sp and
fp denote its starting and end positions. Its length is
L(c) = fp−sp+1. Fig. 3(a) illustrates the decomposition
of a 1-D signal into its cords.
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Fig. 3. (a) 1-D signal and the associated cords, (b) the

component tree and (c) the current state of the stack

(given the reading position rp). (The continuous/dotted

line means already/not yet known elements.)

The length satisfies the inclusion property, since we
have, for all cords ci = (Xi, ki) and cj = (Xj , kj) of f ,
such that Xi ⊂ Xj , ki > kj . We say that cj is an ancestor
of ci and ci is a descendant of cj . The longest descendant
of cj (with respect to the cord length defined above) is
its child. If ci is the child of cj , then cj is the parent of ci.
With the parent-child relationship, we get a tree called
component tree, or max-tree.

Given a cord ci = (Xi, ki) and its parent cj = (Xj , kj),
the volume of cord ci is defined as:

V (ci) = (ki − kj)L(ci). (9)

The reconstruction of a signal f from its set of cords
C = {(Xi, ki)} is straightforward:

f(x) = max
(Xi,ki)∈C : x∈Xi

ki. (10)

Additionally, attribute openings by length and the pat-
tern spectrum of f can be directly computed on C:

γλ(C) = {ci|L(ci) ≥ λ}, (11)

(PS(C))(λ) =
∑

L(ci)=λ

V (ci). (12)

An efficient decomposition of a function into its set of
cords allows an efficient computation of openings, pat-
tern spectra and component trees by using only logical
or arithmetic operations. The following section presents
the 1-D algorithm. Its efficiency stems from several facts:
the signal is read sequentially; every cord is visited once,
and only once, in the order child-parent. Later, we will
see that all operations, including finding the maximum
in Eq. 10, are done in O(1) per pixel.
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3.2 Algorithm principle

By analysing Fig. 3, we immediately notice a couple of
properties of the signal:

1) Every uprising edge is a starting point of at least
one cord. Every downfalling edge is the end of at
least one cord.

2) When we read f from the left to the right, the
length of every cord is only known when the read-
ing position reaches its end. In Fig. 3, the already
known portion of each cord is represented with a
continuous line - up to rp - and the still unknown
portion with a dotted line.

3) Every cord can only be processed when the reading
position reaches its end.

4) The incipient cords, waiting to be processed, can be
stored in a Last-In-First-Out (LIFO) structure. The
stored cords are necessarily ordered according to the
inclusion relation (Fig. 3).

These properties are fundamental to get an efficient
algorithm.

3.3 Algorithm pseudo code

Alg. 1 reads the input signal sequentially, from left to
right (lines 4 and 5); rp denotes the current reading
position.

Algorithm 1: (fout or PS or CompTree) ← ProcessSig-
nal1D (f, λ, op)

Input: f : [1 . . . N ]→ R - input signal;
λ, parameter for the opening
op, selected operator

Result: fout = γλf or PS or CompTree

Stack ← ∅;1

CompTree← ∅;2

PS[1..N ] ← 0;3

for rp = 1..N do4

(fout or PS or CompTree)← ProcessPixel(f(rp), rp, λ,5

Stack, op)

Process Remaining Cords6

The cords are coded by a couple (sp, k), where sp
corresponds to the starting position, and k to the alti-
tude. The pending cords (of yet unknown length) are
stored in a LIFO-like Stack supporting the following
operations: push(), pop() and queries top() and empty().
Therefore, reading an attribute of the latest-stored cord
is Stack.top().att with att referring to k or sp. Inserting a
new cord into the stack will be written: Stack.push(k, sp)
while removing a cord: cordOut = Stack.pop(). At the
beginning Stack and CompTree are empty, and the
pattern spectrum PS is filled with zeros (lines 1 to 3).

Algorithm 2: (fout or PS or CompTree)← ProcessPixel
(k, rp, λ, Stack, op)

Input: k = f(rp)
rp, the reading position
λ, parameter for the opening
Stack, stack of cords (LIFO)
op, selected operator

Result: fout or PS or CompTree following op

if Stack.empty() or k > Stack.top().k then1

Stack.push(k, rp, FALSE);2

else3

while k < Stack.top().k do4

cordOut = Stack.pop();5

if Op ==Size distribution then6

Length = rp− cordOut.sp;7

PS[Length]+ =8

Length× (cordOut.k −max(k, Stack.top().k))
if Op ==Opening then9

if cordOut.Passed or rp− cordOut.sp ≥ λ10

then
fout ←WriteCords(cordOut, Stack, rp);11

Stack.push(k, rp, TRUE);12

break13

if Op ==Component tree then14

if Stack.empty() or Stack.top().k < k then15

currentNode.k = k;16

currentNode.Children.push(nodeOut);17

Stack.push(currentNode);18

break19

else20

Stack.top().Children.push(nodeOut)21

if Stack.empty() or k > Stack.top().k then22

Stack.push(k, cordOut.sp, FALSE);23

break24

Each pixel rp is processed by Alg. 2, processing dif-
ferently the rising and falling edges of the signal:

• Uprising edge (Alg. 2, line 1): is the beginning of at
least one cord, we store its position and altitude in
Stack (line 2).

• Downfalling edge: is the end of, at least, one cord.
The while cycle (lines 4 to 24) pops from Stack all
ending cords to process them one by one. At this
point, the processing of the ending cords depends
of the operator:

– Size distribution : We compute the cord’s length
and add its contribution to the corresponding bin
(indexed Length), lines 7 and 8. If the stack is
empty, a query top to the stack will return 0.

– Opening : We test the length of the cord (Eq. 11)
to discard those shorter than λ, line 10. Whenever
we find any cord longer than λ, we immediately
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reconstruct (Eq. 10) the opening fout = γλ(f) up
to the current reading position rp (lines 10 to 13).
The principle stems from the reasoning that the
length of every cord is only known when we
reach its end. As soon as we find the first cord
longer or equal to λ, from the inclusion property
we know that all cords stored in the LIFO are
(strictly) longer than λ. We do not need to wait
until their end to reconstruct the output up to rp.
We reconstruct the opening result fout using the
function WriteCords(). Thanks to the inclusion-
ordered LIFO we ensure that every pixel is writ-
ten only once. In the function WriteCords(), the
stack is emptied while we write the cords (see
Alg. 3). Hence, we add a flag Passed to the cord
structure to tell whether a cord is longer than λ.
Finally, we push the current cord into the stack,
with the flag Passed set to true (line 12). This
flag is essential, as we will not be able to access
its length later on.

– Component tree : We enrich the cord structure by
a new attribute Children. It is a list of pointers
on the cord structure. This attribute links every
parent to its children. Every ending cord needs to
be linked to its parent. Finding the correct parent
component involves three possible situations:

∗ If the stack is empty, we link cordOut with
currentCord (lines 16, 17 and 18).
∗ If the grey value of the new top-most node

in the stack is lower than currentCord grey
value, we also link cordOut with currentCord
(lines 16, 17 and 18).
∗ Otherwise, we link cordOut with the top-most

cord in the stack (line 21).

At the end of the 1-D signal (Alg. 1, line 6), some cords
may remain in the stack. We empty the stack and process
all the remaining cords according to the operator op.

Algorithm 3: fout←WriteCords(cordOut, Stack, rp)

Input: cordOut, last cord popped
Stack, stack of cords (LIFO)
rp, reading position

Result: fout = γλf

fout[cordOut.sp : rp] = cordOut.k;1

while not Stack.empty() do2

end = cordOut.sp;3

cordOut = Stack.pop();4

fout[cordOut.sp : end] = cordOut.k5

We notice that this algorithm only needs comparison
operations and subtractions between values. Therefore,
it can handle a large variety of data types, including
integer and floating point. In fact, from an algebraic
point of view, the set of values needs only to have the

(a) α-titanium alloy
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(c) β-titanium alloy
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Fig. 4. Oriented pattern spectrum for α- and β- titanium

alloys. See the text for explanation.

structure of an ordered group.
The complexity is studied in section 5 and this algo-

rithm is applied to 2-D images in the next section.

4 APPLICATION TO 2-D IMAGES

It will be explained in this section how to apply the pre-
vious algorithm to 2-D images, by means of partitioning
the image support into thin straight lines, at arbitrary
orientations. This strategy is applied to the computation
of Oriented Pattern Spectrum (OPS) [7]. Finally, some
hints to compute the 2-D component tree are given.

In this section, g : E → V is a 2-D image, where E
is rectangular domain of Z2 of the sort [1, N1] × [1, N2],
and V , as previously, is equal to Z or R.

4.1 2-D image scanning strategy

Alg. 2 takes one pixel as input, and is clearly indepen-
dent of the orientation of the line. Hence, we can apply it
to 2-D images, provided we have an appropriate image-
scanning strategy. Soille et al. [25] described a way to go
through all pixels of an image at a given orientation, by
using Bresenham lines [26]. Moreover, they addressed
the padding problems by adding constraints to avoid
any overlaps between two translated lines. Hence, the
logic behind the construction of these lines ensures that
each pixel will be processed only once. This allows the
algorithm to run in place. For openings in arbitrary
orientation, we add a line buffer to store the index
position of all the previous pixels of the line. Hence, we
could easily write the result of the filter in the output
image with no other extra computation.

Hereafter, image g is decomposed into a set of 1-D
signals {gα,k}k∈K , following direction α.
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4.2 Oriented Pattern Spectrum

We have seen that the local orientation on a given pixel
of a 2-D image can be measured by the supremum of lin-
ear openings. We may wish to additionally measure the
pattern spectrum for each orientation, which leads to the
Oriented Pattern Spectrum (OPS), initially introduced by
Maragos [7]:

OPS(g)(λ, α) =
∑

k∈K

(PS(gα,k))(λ). (13)

Computing the OPS can be very time consuming.
Using the presented algorithm reduces its computation
time. Fig. 4 illustrates the results of this operator. Ori-
ented pattern spectra are represented as 2-D images, one
column for each orientation. Fig. 4 (b) and (d) show the
OPS of the (a) α- and (c) β- titanium alloys, respectively.
We can see in (b) two peaks, giving evidence of an
alignment in the image. The majority of the structures
are oriented around 140◦ (measured anticlockwise from
the horizontal line), with a second peak around 40◦.
The majority of the structures are up to 80 pixels long,
with several individuals from 120 to 160 pixels long. The
β-titanium alloy is rather isotropic, with only a slight
alignment around 90◦.

4.3 Border effects

Consider a stationary, random process ξ of arbitrarily
placed, L-pixel long, non intersecting and non over-
lapping, straight lines, oriented in a constant direction
ϑ. The PS(ξ) in the direction of ϑ is δ(L), the Dirac
function at L. Now, consider a bounded, discrete support
[1, N ]2⊂Z2, and the realisation of ξ on D, see Fig. 5. The
intersection with a finite support introduces in the PS
a bias (a.k.a. border effects) due to the truncation of the
structures in ξ (see the red curve in Fig. 5).
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Fig. 5. Randomnly placed, 100-pixel long, straight lines

and the pattern spectrum: blue - expected pattern spec-

trum, red - effect of truncation on a bounded support.

The border effect is an ubiquitous problem, differently
handled in various applications. Van Droogenbroeck [19]
proposes an interesting discussion. He recommends to
add the maximal value of V (let us call it ∞) outside
the image support. On the other hand, in the domain
of connected filters, one often completes by adding the
minimal value of V .

In granulometries one often uses padding by ∞. In-
deed, ∞ is a recessive value that allows considering in
Eq. 7 the truncated structures (of unknown length) as
infinitely long, and makes them unaffected by γν , for
any ν <∞.

The proposed algorithm can easily handle both border
management strategies. Considering the infinite exten-
sion, every cord touching the border is ignored. For
openings, the flag Passed of the first cord pushed into
the stack and the cords remaining in the stack at the
end of the line, must be set to true. The timings stay
unchanged with this strategy.

4.4 2-D component tree

If we compute a tree for each 1-D image gα,k obtained
from the 2-D image g, we get a set of trees called a forest.
On its own, such a forest is not interesting, since it does
not describe the 2 dimensional patterns of the images.
However, Wilkinson et al. [27], and later Matas et al.
[28], [29] have described a method to merge all these
trees to get the 2-D component tree of the image. Hence,
the proposed algorithm can be seen as a part of a new
process to get the 2-D component tree in an efficient way.

5 COMPLEXITY

The computational complexity of this algorithm is evalu-
ated focusing first on the 1-D algorithm. Then, we study
the 2-D part.

5.1 1-D scan strategy

Consider a 1-D signal f : [1 . . . N ] → V , with V = Z or
R. The input signal is read sequentially from left to right
(Alg. 1, lines 4 to 6) and it calls Alg. 2 once per every
sample.
By analysing Alg. 2, we notice that every cord, where it
starts, is pushed once and only once into the LIFO stack
(line 2), and eventually retrieved (line 5), when it ends.
The retrieval is done in a cycle while (line 4) since several
cords may end simultaneously at one downfalling edge
(as e.g. the cords c2 and c5 in Fig. 3). The cycle while,
executes once per every cord. All remaining operators
in the Alg 2 are O(1) operations, like tests or operations
on the stack.
Hence, we may conclude, that Alg. 2 executes with the
average complexity of O(1) per pixel. However, because
of the conditions the execution time differs according
to the content of the image. The time will decrease for
smooth signals. The theoretical lower bound is reached
with constant signals, containing only one cord.
Regarding memory consumption, the maximum number
of cords pushed into the stack is bounded by the mini-
mum between the number of grey levels and the number
of pixels of the signal.

In the following paragraph, we will analyse the com-
plexity for 2-D supports.
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5.2 2-D scan strategy

We perform a complete scan of a 2-D rectangular image
with a set of parallel, α-oriented Bresenham lines. With
the Soille algorithm, this is done in O(1) per pixel.
Furthermore, this set of lines can be computed in parallel
since each line is independent from the others.

Therefore, the complexity does not increase with the
size of the openings λ and every pixel is computed in a
constant time. Next section is devoted to a comparison
of the timings with the state of the art.

6 TIMINGS AND COMPARISON WITH OTHER

METHODS

Beside its adaptability, this algorithm is designed for
speed. Thus, this section is devoted to compare this
algorithm with the state of the art for openings, gran-
ulometries and oriented size distributions. All these ex-
periments have been made on a laptop computer using
only one thread (Intel Core 2 Duo T7700 CPU @2.4GHz).

6.1 Timings for openings

Four benchmarks on openings have been computed to
test the speed of the proposed algorithm. First, we see
the correlation between the computation time and the
image content. Then, we compare openings in arbitrary
orientations for different algorithms. Finally, we make a
benchmark with reference to the orientation and with
reference to different input data types.

6.1.1 Benchmark with the image content

By analysing Alg. 2, we note that the number of op-
erations changes with the image content. Hence, we
measure the average time for 1000 horizontal openings
for different images of size 512×512 pixels: Goldhill, two
other versions of Goldhill (where the number of grey
levels has been set to 2 and 9, with no dithering), an
uniformly distributed random noise image and, finally,
a constant signal.

Fig. 7 collects the results. As expected, the constant
image gives the smallest computation time. We also note
that an image with uniform noise is computed faster
than Goldhill image. A general rule for this algorithm
is that timings are correlated to the mean number of
pixels into the stack. A random signal will have, in
average, fewer pixels in the stack than a natural image.
Furthermore, the fewer cords there are, the closer you
get to the theoretical lower bound.

6.1.2 Benchmark with other algorithms

For a comparison with the state of the art, we use
five other algorithms. The first one is an algorithm
by Van Herk, Gil and Werman [16], [17] (referred to
as HGW algorithm hereafter). Then, we use Clienti
et al.’s algorithm [18] (Clienti), Van Droogenbroeck et

(a) (b) (c) (d) (e)

Fig. 6. Image of size 512×512 used for Fig. 7. (a) goldhill,

(b) goldhill with 9 grey levels, (c) goldhill with 2 grey levels,

(d) random noise and (e) a constant image
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Fig. 7. Timings for horizontal openings of size λ for

different images, using the proposed algorithm (512× 512
pixels)

al.’s algorithm [16], [30] (Van Droogenbroeck), Bartovský
et al.’s algorithm [20] (Bartovsky) and finally a naive
implementation that follows the classical definition of
an opening (Naive). All these algorithms have a O(1)
complexity per pixel, excepted the naive algorithm O(λ).
They have been integrated to the same platform, in C++,
with exactly the same interface. Then, we average the
computation time of 1000 realisations of openings with
arbitrary orientations. The timings have been computed
on Goldhill image (Fig. 8) but we note that the results
are approximately the same with other images.

The difference between the naive implementation and
others methods is huge. The naive implementation’s
complexity is independent on the image content but
it does depend on the length of the openings. Our
algorithm is very fast. However, Van Droogenbroeck’s
method outperforms our algorithm, especially for large
values of λ. One reason can be pointed out to explain
this difference; for our algorithm, every pixel of the
output image is written exactly once. This can slow
down our algorithm compared to an algorithm that
only writes the modified pixels. We note, however, that
Van Droogenbroeck’s algorithm is not able to handle
efficiently 16 bits or floating-point data images.

6.1.3 Benchmark with orientation

Openings in arbitrary orientation require an extraction of
the lines. We use the same method for all the algorithms
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for different algorithms (Goldhill image 512× 512 pixels)

[25] excepted for the Bartovský algorithm, which uses its
own line extraction. We average the computation time of
1000 openings, for every orientation with λ = 41 pixels.
Fig. 9 collects the results and we note that the compu-
tation times are almost independent of the orientation.
The angle α = 0◦ and α = 90◦ are different since the
extraction of the lines is straightforward. We note that
the best situation for all the algorithms is α = 0◦ as
expected. This is due to the row major organisation of
our data, which minimises cache misses.

6.1.4 Benchmark with input data types

All the previous experiments have been computed with
8-bit images. This benchmark allows visualising the
overhead introduced by using other input data type: 8-,
16-, 32-bit, floating point (single and double precision)
for the computation of a horizontal opening. To avoid
any bias introduced by the image content, we use a
random uniform noise image of size 512 × 512 for our
experiments. We compute the average time of 1000 open-
ings for each input data type.

Note that the algorithm proposed by Van Droogen-
broeck – the fastest for 8-bit images – does not support
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Fig. 10. Timings for openings with regard to the input data

type (Uniform noise image 512× 512 pixels)
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Fig. 11. Timings for horizontal granulometries with refer-

ence to the image size. The proposed algorithm outper-

forms the algorithm by Vincent (Uniform noise images).

any other data type, hence, we have not included it into
this benchmark. The results are depicted in Fig. 10. We
note that our algorithm is the fastest.

6.2 Timings for granulometries

Compared to a naive implementation, the algorithm by
Vincent for granulometries is highly efficient [21]. Even
many years after its publication, it used to be the fastest
algorithm for 1-D granulometries. We have compared
these two algorithms and the timings are collected in
Fig. 11, where we plot the average time needed to
build a horizontal pattern spectrum with reference to
the number of pixels of the signal. Our method is 21%
faster than Vincent’s one, which becomes useful when
we compute the oriented size distribution. The OPS
requires many linear granulometries in all orientations:
we may need to compute 180n−1 granulometry for n-D
images. The computation times for the OPS of images
4(a) (322x322) and 4(c) (625x625) are respectively equal
to 0.37s and to 1.06s for 180 orientations.
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7 CONCLUSIONS

This paper introduces a new, flexible and efficient algo-
rithm for computing 1-D openings and granulometries.
Its theoretical complexity is linear with respect to the
number of image pixels, and constant with respect to
the opening size. Moreover, it can be applied to a large
set of image types; in fact, the image values only need
to have the structure of an ordered group. Extensive
benchmarks show that it is the fastest algorithm for com-
puting 1-D openings on images whose data precision is
higher than 8 bits (for 8-bit images, the algorithm by
Van Droogenbroeck remains unvanquished). It can also
be used to compute 1-D granulometries, running faster
than the algorithm proposed by Vincent, which has led
this category for many years. Moreover, 1-D component
trees can also be efficiently computed with the same
algorithm. From a software engineering point of view,
it should be noted that having the same algorithm for
computing different operators, with different data pre-
cisions, is very interesting. Futhermore, one can choose
between two border extensions to adapt these operators
to applications.

The proposed algorithm is applied to 2-D images in
several ways: i) the classical linear openings for oriented
filtering and/or enhancing of linear structures; ii) the
collection of size distributions for all orientations gives
the oriented pattern spectrum.

In the future, we shall focus on the computation of lo-
cal granulometries for analysing non-stationary signals,
or to segment textured images. A second extension is
to introduce new scan strategies, beyond straight direc-
tions, and use this algorithm to efficiently compute path
openings. Finally, small modifications of this algorithm
are required to compute openings by reconstruction for
1-D signals.
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streaming algorithm for 1-D morphological opening and closing
on 2-D support,” in Mathematical Morphology and Its Applications
to Image and Signal Processing, ser. LNCS, vol. 6671. Springer,
2011, pp. 296–305.

[21] L. Vincent, “Granulometries and opening trees,” Fundamenta In-
formaticae, vol. 41, no. 1-2, pp. 57–90, 2000.

[22] L. Najman and M. Couprie, “Building the component tree in
Quasi-Linear time,” Image Processing, IEEE Transactions on, vol. 15,
no. 11, pp. 3531–3539, 2006.

[23] D. Menotti, L. Najman, and A. de Albuquerque Araújo, “1d
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Binary Morphology With Spatially Variant
Structuring Elements: Algorithm and Architecture

Hugo Hedberg, Petr Dokladal, and Viktor Öwall, Member, IEEE

Abstract—Mathematical morphology with spatially variant
structuring elements outperforms translation-invariant struc-
turing elements in various applications and has been studied in the
literature over the years. However, supporting a variable struc-
turing element shape imposes an overwhelming computational
complexity, dramatically increasing with the size of the structuring
element. Limiting the supported class of structuring elements to
rectangles has allowed for a fast algorithm to be developed, which
is efficient in terms of number of operations per pixel, has a low
memory requirement, and a low latency. These properties make
this algorithm useful in both software and hardware implementa-
tions, not only for spatially variant, but also translation-invariant
morphology. This paper also presents a dedicated hardware archi-
tecture intended to be used as an accelerator in embedded system
applications, with corresponding implementation results when
targeted for both field programmable gate arrays and application
specific integrated circuits.

Index Terms—Hardware implementation, mathematical mor-
phology, spatially variant structuring elements.

I. INTRODUCTION

M ATHEMATICAL morphology is a nonlinear image pro-
cessing framework used to manipulate or analyze the

shape of functions or objects, originally developed by Matheron
and Serra in the late 1960s [1]. Mathematical morphology is set
theory-based methods of image analysis and plays an impor-
tant role in many digital image processing algorithms and ap-
plications, e.g., noise filtering, object extraction, analysis or pat-
tern recognition. The methods, originally developed for binary
images, were soon extended and now apply to many different
image representations, e.g., grayscale, color or vector images,
and more recently to matrices and tensor fields.

Real-time image processing systems have constraints on
speed or hardware resources. In addition, in embedded or mo-
bile applications, these systems require low power consumption
and low memory requirements. An example of such a system
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may be found in [2], in which a real-time automated digital
surveillance system with tracking capability is presented. The
system is intended to be included in a self-contained network
camera and the characteristics of the surveillance scene to-
gether with camera placement have a direct impact on system
performance. By letting a locally adaptive morphological filter
process the binary segmentation result, thereby exploring the
depth information in the scene, a more accurate tracking may be
observed. Therefore, due to the constraints and the performance
increase in such applications, the need for efficient hardware
(HW) architectures in terms of computational complexity and
memory requirement with low power characteristics for this
image representation becomes evident.

This paper is organized as follows: The remainder of this sec-
tion addresses the motivation of using locally adaptive, spatially
variant structuring elements (SV SEs), discusses the applica-
tion context, and puts it into perspective by comparing to previ-
ously published work. Section II discusses basic morphological
concepts and properties together with SV SEs in general and
inferred restrictions. Section III details the algorithm and Sec-
tion IV proposes a corresponding HW architecture. Section V
presents implementation results of the architecture when tar-
geted for both FPGA and ASIC. Section VI concludes the paper.

A. Application Context

Although translation-invariant structuring elements (TI SE)
are sufficient in many image processing applications, SV SEs
outperform them by their ability to adapt to local features. SE
functions are studied and several examples are given by Serra [3,
Ch. 2.2 and Ch. 4], and an early evaluation of the performance
of SV SEs versus TI SEs can be found in Chen et al. [4].

Generally, there are two strategies to control the shape and
size of the SE:

1) image-exogenous information, usually used to correct or to
adapt to an image anamorphism;

2) content dependent processing, e.g., contour preserving fil-
ters, and image restoration.

1) Image Exogenous Information: Processing images de-
formed by anamorphism (such as perspective or wide-angle de-
formations) can be done in two ways: i) apply usual TI oper-
ations after a previous distortion correction or ii) as proposed
here, use SV operators that adapt to the distortion. An example
of an application that will benefit from anamorphism-aware pro-
cessing is the road-traffic surveillance scene shown in Fig. 1(a),
where the images are deformed by the perspective, see, e.g.,
Beucher [5]. Extracting individual vehicles from the motion
mask, Fig. 1(b), may be done by an alternate morphological
filter [6], starting with an opening to eliminate noise, followed

1057-7149/$25.00 © 2009 IEEE
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Fig. 1. (a) Typical road surveillance application input image, (b) binary motion
mask, (c) and filtered motion mask using a TI SE. (d) Filtered motion mask using
a SV SE, increasing in size from top to bottom.

by a closing to close holes and smooth the contours of the ve-
hicle masks. One needs to use a SE sufficiently large to filter the
noise, but small enough to preserve the individual vehicles. Due
to perspective deformation, a TI SE will not produce a satisfac-
tory result in all regions of the image, Fig. 1(c). However, using a
SV SE, increasing in size from top to bottom of the image, elimi-
nates noise and correctly extracts all vehicles, Fig. 1(d). Another
application where a SV SE is useful is licence plate detection.
Provided the resolution suffices, the SV SE may be used to com-
pensate for the change of the apparent size of the licence plate.
Furthermore, wide-angle-camera compensation may be used to
correct anamorphism. This is used by Roerdink and Heijmans
to measure forest density [7], where a progressively changing
SE is used, different in the center and on the periphery of the
image, to compensate for the distortion.

For ordinary cameras, the SE size may be set manually, pro-
portional to the apparent size of the objects (as used here). In-
troducing other imaging techniques, such as range imagery, may
give access to distance-to-camera information. Since this infor-
mation relates to the apparent size of the objects, it allows direct
control of the size of the SV SE [8].

2) Content Dependent Processing: In the second use case,
the SE size is controlled by the content of the image. Note that
there is no alternative approach to restore the image distortion
and apply a TI operator as in the case of correction of anamor-
phism. There are several examples of such content dependent
filtering, e.g., the reversible image coding and its restoration
from skeleton [9], and also [1] and [10]–[13]. An example of
a binary object is shown in Fig. 2(a), which is represented by
its skeleton in 2(b). The skeleton is obtained by connecting the
centers of maximal balls contained in the object in 2(a). One can
associate weights to points on the skeleton which are equal to
the Euclidean distance to the complement, i.e., the radius of the
balls, and reconstruct the object by dilating the skeleton with the
corresponding ball (radius equal to the distance to complement).
During the restoration, the skeleton is dilated by large SV SEs,
Fig. 2(c).

Fig. 2. Object reconstruction from skeleton. (a) Binary object “tools” (b) its
skeleton, weighted by distance to the complement, (c) reconstruction from the
skeleton.

Filters with adaptable pixel neighborhoods have been thor-
oughly investigated over the years. Illustrations may be found
in the Nagao filter in Natsuyama [14], later in Wu and Maître
[15], or more recently in Lerallut [16]. Such SV filters together
with their pyramids and derived segmentation aspects are also
studied by Debayle and Pinoli in [17] and [18]. They illus-
trate applications of image denoising, enhancement, filtering,
and segmentation with SV SEs, which are compared with re-
sults obtained with TI SEs. The idea behind these filters is to
define a SV SE that fits inside the objects to prevent blurring
when the SE stretches across the boundaries of the objects. At
the same time, the SE increases in size towards flat zones to ob-
tain a stronger filtering effect.

SV morphology has also been investigated by Charif-
Chefchaouni and Schonfeld [19], and more recently by
Bouyanaya et al. in [20] and [21] for set-wise SV morphology
and SV morphology on functions.

All these references propose application examples or theo-
retical advances but no efficient implementations. Therefore,
the following sections will present an algorithm with a corre-
sponding architecture that is suitable for such applications as
discussed above.

B. Previous Optimization Efforts

In naive implementations of mathematical morphology oper-
ations, outputting one pixel requires the examination of its entire
neighborhood defined by the SE at this position. Consequently,
using large neighborhoods become particularly computationally
intensive and efforts have been made to make these operations
efficient.

Although considerable advances have been achieved in con-
ception of fast algorithms and HW accelerators for TI mor-
phology, little has been done for optimization of SV SE. Ex-
isting efforts group into different frameworks.

1) Fast Recursive Algorithms for Translation Invariant Struc-

turing Elements: The implementations by Van Herk [22] and
by Lemonier and Klein [23] support large linear SEs but need
three and two scans, respectively, to complete each operation,
requiring intermediate storage. The HW complexity is of
per pixel and memory requirement is of , where is the
width of a quadratic image. In addition, their extension to SV
SEs in not possible.

Van Droogenbroeck and Talbot [24] propose an algorithm
based on histograms. The histogram is updated as the SE slides
over the image. The respective value for the needed rank filter
(dilation, erosion, or median) is taken from the histogram. This
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algorithm naturally extends to SV SEs. However, computing the
histogram requires additional resources, and becomes cumber-
some for finely quantized data and impossible for .

2) FFT-Based Algorithms for Translation Invariant Struc-

turing Elements: There are also methods for fast computation
of morphological operations with large structuring elements
by thresholding convolutions computed as a product of Fourier
transforms, see [25]. However, SV structuring elements cannot
be written as a product of FFTs. Furthermore, even if there is
no increase in computational complexity for large structuring
elements, the computational complexity, and memory require-
ments of FFTs exceed the ones for recursive algorithms (item
a), or the one in this work.

3) Efficient Hardware Implementations: Concerning ef-
ficient HW implementations, Klein and Peyrard [26] have
designed a neighborhood processor for binary mathematical
morphology, executing dilations/erosions, thinnings/thicken-
ings, and geodesic operations (reconstructions).

Fejes and Vajda [27] and Velten and Kummert [28] both pro-
pose delay-line implementations. This classical approach sup-
ports arbitrary shaped SEs, but the computational complexity
is of , where is the width of a quadratic SE, and the
memory requirements is of , where is the width of
a quadratic image. Therefore, this type of implementation be-
comes unsuitable for large SEs and high resolution applications.
This is due to that each element in the SE increases the fan-in
of the computations as well as the required amount of memory
to delay the rows to extract the pixel neighborhood. In [29], an
architecture is proposed based on the observation that many cal-
culations between two adjacent pixels are redundant and can
be reused, giving the architecture its name: partial-result-reuse
(PRR). By this procedure, the computational complexity can be
reduced to , where is the width of a quadratic
SE ( is the ceiling function). However, it uses the same type
of delay-lines as in [27] and [28], thus resulting in the same
memory requirement.

Hedberg et al. [30] propose a low-complexity (LC) and low
memory requirement architecture. The complexity is reduced to

and memory requirement to , where is the width
of the input image, at the cost that the class of supported SEs is
limited to flat rectangles of arbitrary size. Erosions and dilations
are accomplished with only two summations and two compar-
isons independent of the structuring element size and resolution.

4) Spatially Variant Morphology: Recently, Cuisenaire [31]
proposes a fast algorithm for binary spatially variant mor-
phology based on thresholding the distance transform, widely
used for efficient implementation of dilations and erosions
[32], [33]. The class of allowed shapes is restricted to balls
of various norms. Various algorithms exist for computing the
distance map. They are either i) image scan operations [34], or
ii) equidistant propagations from the sources, (see surveys [35]
and [36] for overview and other citations). The former have
high memory requirements since they use a large intermediate
storage for partial results between the scans. The distance is
computed on the entire image, penalizing the performance
when small SEs are used. The latter, based on equidistant
propagation from the sources do not necessarily compute the
distance on the entire image and are more efficient. However,

they use ordered structures and random memory accesses,
penalizing performance on large data sets and are difficult to
implement in HW, see Dejnozkova [37] for discussion.

C. Main Contribution

This work fits into the framework of binary Mathematical
Morphology and represents the first step towards arbitrary
shaped SV SE in efficient HW and SW implementations. The
main contribution of this paper is twofold.

1) A new algorithm supporting a rectangular SV SE for bi-
nary mathematical morphology with very low computa-
tional complexity and memory requirements. An extension
to a richer class of structuring elements is possible.

2) A corresponding HW architecture, suitable for embedded
or mobile applications. The architecture has several im-
portant properties from a HW perspective, i.e., sequential
pixel processing, low-computational complexity, and low
memory requirement. Implementation results of the pro-
posed architecture are presented in terms of resource uti-
lization when targeted for both FPGA and ASIC.

The architecture proposed in this paper is a development from
the one published in [30]. The new architecture allows changing
the size of the rectangle within an image from pixel to pixel, and
can thereby locally adapt its size. Although having mainly the
same memory requirement, the SE flexibility comes at the cost
of increased computational complexity from to ,
being the SE width.

II. ALGORITHMIC ISSUES

Let be an input image : , with
being the domain and the set of values. In this paper, we place
ourselves in the context of binary images , where
objects are represented by 1, i.e., the object contained in a
binary image is .

All morphological operations are based on logical or arith-
metic calculations (for binary or valued images, respectively) on
a local neighborhood of a pixel. The neighborhood is a subset of
pixels defined by the shape of the structuring element ,
which has a corresponding , that determines the
position of the calculated value in the output image. The trans-
lation of by some is often denoted by .

When using a SV SE, the fixed set is replaced by a
flexible set given by with denoting the set
of subsets. This means that instead of a fixed one uses

, where for every point , the mapping
is not a translation but chosen as an element from the class of
allowed shapes, used locally at .

Spatially variant binary erosion and dilation are defined by
means of Minkowski addition and subtraction (see Serra [3, pp.
41 and 42]) according to

(1)

and

(2)
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Alternatively, SV binary erosion and dilation may be defined
based on set intersection and inclusion as

(3)

and

(4)

where denotes the transposition of , which may be defined
as the set of ancestors of according to

(5)

with . This definition is non local, and cumbersome since
the computation is done by exhaustive search. Notice the differ-
ence from the case of a TI SE where the transposition is a mere
set reflection, i.e., .

Adding arithmetic, (1)–(4) can be used to perform other oper-
ations and algorithms, e.g., morphological gradient or
morphological Laplacian . To form morpho-
logic filters, e.g., opening , closing ,
or more complex filters, one generally has two options: i) com-
bine adjoined definitions (1) and (4), or (2) and (3), or ii) use (5)
to transpose [3], [20].

The SE transposition (5), as well as the set inclusion/intersec-
tion versions of erosion/dilation, i.e., (3) and (4), are non local.
This means that to compute the result at some point , one needs
to examine the input at unknown points . Therefore, the result
cannot be generated directly by the presented algorithm. To ob-
tain adjunction and form filters, one needs to use the Minkowski
addition/subtraction-based definitions in (1) and (2), together
with precomputing the transposed SE according to (5).

A. Supported Structuring Elements

The structuring element defines which pixel values in the
input image to include in the calculation of the output value.
Whereas the geometric shape of a TI SE is constant throughout
the input image, the shape of a SV SE may change from pixel
to pixel in the generalized form. Restricting the set of allowed
shapes and the size distribution allows design of more efficient
algorithms.

Shape: The algorithm is based on computation of distance
function to object edges. Decomposing the computation of
into columns brings restriction to . Hence, in the HW real-
ization presented below, the allowed SE shapes are restricted to
rectangles (including -balls, squares). Note that Section V-A
discusses an extension to a richer class of shapes.

Scan Order: Other restrictions are required if the algorithm
is to be implemented in low complexity and low memory archi-
tectures with no intermediate storage. Usually, pixels arrive in
a stream in raster scan order and output pixels are produced in
a stream. Therefore, the output at location cannot be pro-
duced until the entire neighborhood has been processed. Con-
sequently, there is a latency between the input and the output
stream. For some pixel , the latency is given by

(6)

where is the width of the image , and are the coor-
dinates of the origin offset from the bottom-right corner (

and ), illustrated in Fig. 3.

Fig. 3. Example of a 5� 4 ������� ������	 rectangular SE with ���� �	 

�� �� �� �� 	 
 ��� �� �� �	.

When using a TI SE for the entire image, i.e.,
, , the latency is constant and the raster scan order is

maintained. However, if the structuring element changes from
pixel to pixel, the latency varies. For unconstrained SE sizes,
the output pixels will be produced in a different order with the
necessity to store them in intermediate memory to retain raster
scan order.

Under constraints, the intermediate storage may be dropped.
From (6), and may
be derived, which means that increasing/decreasing the size of
the SE by one pixel to the right will increase/decrease the latency
by one. Adding above and to the left has no impact on latency
since these pixels have already been read.

Unitary changes of from pixel to pixel, i.e.,
can be handled with no additional memory, by stalling the

input or output. Indeed, if increases/decreases, the latency
increases/decreases, and the output/input is stalled. Stalling

the output means that two input pixels are read before the next
output value is calculated, whereas stalling the input means that
two pixels are output before the next input pixel is read.

In order to avoid additional intermediate storage, for the rest
of the paper, a restriction is placed on the class of allowed
shapes to be rectangles, not necessarily symmetric around the
origin.1 Therefore, becomes a function ,
i.e., for every pair of coordinates . The function
yields a quadruple defining the position of the
origin with respect to the edges of the rectangle. These parame-
ters are tied to the width and height of by
and . The maximum width and height
found in the collection of , , are denoted
and , respectively. Fig. 3 shows an example of a struc-
turing element , being a 5 by 4

rectangle with the origin offset by 2 rows and 2 columns
from the lower-right corner.

From (6), means that increasing the size of
the SE by adding one bottom row, will increase the latency
by the entire width of the image. This substantial change of
latency can not be handled without using an additional buffer.
This means that from pixel to pixel, the rectangle can grow/di-
minish by one at all sides, except of adding/deleting one bottom
row, authorized only between two image row

(7)

1An asymmetric origin is useful for even widths or when approximating ec-
centric amoebas by rectangles.
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Fig. 4. (a) Synthetic test image containing black dots on a grid, corresponding
to the foreground. (b) Dilation (2) obtained with similar SE as in Fig. 1, i.e., a
rectangle increasing in size from the top left corner of the image downwards to
the right.

Fig. 5. (a) Synthetic input image when processing a pixel at location ��� ��
with ���� ��. (b) Zoom in of when processing the same pixel using ���� �� �
��� �� �� �� as structuring element. The numbers in bottom row of ���� �� show
the current distance values, which saturates at the value 8.

An example of synthetic test data (640 480 pixels) is illus-
trated in Fig. 4(a). The image contains a set of black spots (on
a uniform grid of 60 pixels). Applying a dilation to this input
image will enlarge the black spots. Fig. 4(b) illustrates a dilation
obtained with a rectangular SE progressively increasing in size
from the top-left towards the bottom right corner of the image:

.
Note that these restrictions are not valid in applications where

the SE size depends on the content of the image, e.g., contour fil-
tering, object restoration (Fig. 2). However, as discussed previ-
ously, the constraints in (7) only concern the stream implemen-
tation capability, and can be relaxed if an intermediate storage
is available, see Section V-A.

III. ALGORITHM DESCRIPTION

The algorithm reads the input image and writes the output
image sequentially in raster scan order. Let denote the
current reading and current writing position. Fig. 5(a)
gives a synthetic example image containing one ob-
ject—a car. The object constitutes of pixels equal to 1, and

the background constitutes of pixels equal to 0. Obviously, by
causality, the reading position precedes the writing posi-
tion . The latency between reading and writing the data
depends on the size and location of the origin of the currently
used structuring element , defined in (6). Since
varies for different coordinates, the latency will also vary.

The SE shape function is a parameter of the morphological
operation and is also read in the raster scan order at the same rate
and position as the output image .

The reading and writing positions are bound by

and

(8)

Suppose the currently processed pixel be and that the cor-
responding structuring element —placed by its origin at

—has just been read. Recall the size of is coded
by , e.g., equal to (2, 2, 3, 5) in the example
shown in Fig. 5. The input data need to be read to the bottom
right position of , indicated as .

The algorithm proceeds by decomposing the erosion into
columns. In each column of the input image , the
algorithm keeps track of the distance from the
currently processed line to the closest upward zero (back-
ground). For each column , the distance is updated as
is sequentially being scanned according to

if
if .

(9)

If , i.e., belongs to the object, the distance is
incremented, otherwise the pixel belongs to the background, and

is reset to zero.
In Fig. 5(a), currently known distances are indicated by
. Notice that for the currently processed pixel ,

the distances are calculated on a different row . The cor-
responding distance values for this particular example are
shown in Fig. 5(b). These distances are then compared,
column-by-column, to the height of the currently used struc-
turing element , given by . This evaluation,
at position in the output image, can be formalized as

if the comparison (10)

yields TRUE, for all , then
at position write 1, else write 0. The whole algorithm can
be written as follows.

Algorithm:

for � � � � � ��

for � � � � � � �

read �	�� �


read I up to (i,j) (8)

update d up to j (9)

�	�� �
 � ��
	�	�
 � �� � �� � �
 (10)

write O(k,l)

end

end
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Fig. 6. Block diagram of the proposed algorithm.

means 1 if comparisons for all such that
, yield TRUE, else 0 [see (10)]. For ex-

ample, since the distances in the example shown in Fig. 5, i.e.,
and , are smaller than the height

for the pixel located , the output at
is 0.

The distance calculation is an independent process of the
morphological operation being performed, resulting in that the
memory content is unrelated to the dimensions and origin of

. This means that no information about a former prop-
agates in the algorithm. It is this algorithmic property that allows
an adaptable SE, different for each individual pixel.

A. Block Diagram

A block diagram of the proposed algorithm is illustrated in
Fig. 6. A controller is needed to stall the input and output de-
pending on how parameters for the structuring element change.
Based on these control signals, the distances to the closest up-
ward zero, stored in the update stage, are updated. The output
value from the update stage is always equal to the last calcu-
lated distance for the column of the current pixel according to
(9). This distance is used as input to the compare stage and to
the serially connected Flip-Flops (FF-chain), in order to let the
distances propagate to be used in multiple calculations. The dis-
tances stored in the FF-chain (for the previous columns) are all
used as inputs to the compare stage and the controller selects for
each pixel which of these distances to include in the calculation,
i.e., which distances that are to be used in (10). The selected dis-
tances are then compared to the height given by the current .
If all are greater or equal to this height, output 1 else 0 at the
current location of the origin.

B. Software Implementation

Due to algorithmic properties such as the stream-like pro-
cessing and in-place execution, the algorithm is applicable for
software applications. As an example, if coded in , the al-
gorithm uses a small amount of memory (one image line) and
runs very fast even for large images. Experiments on an Intel
Centrino 2-GHz PC running Linux show that when eroding an
image with a resolution of 1,000 1,000 using a SV rectan-
gular SE of up to 100 100 pixels (similar to the one used in

Fig. 4), takes 81 ms. Eroding an even larger image with a reso-
lution of 10,000 1,000 image using the same SE takes 760 ms.
The execution time scales linearly with the image size even for
extremely large images, mainly coming from the stream-like
memory access pattern.

IV. ARCHITECTURE

A HW architecture for the proposed algorithm is illustrated
in Fig. 7. The architecture is divided into three stages: update,
FF-chain, and compare (refer to Fig. 6). In the update stage, a
row memory stores the distances for each column
in the input image and for each incoming pixel: if a 0 is en-
countered, the sum is reset to 0, else increased by 1. This is im-
plemented as an incrementer and a multiplexer (placed in the
middle of this stage in the figure). The input from the FIFO
(First In First Out) is the control signal to the multiplexer, which
outputs the reset or the increased sum for further processing.
If the distance is equal to the maximum supported SE height

, the sum saturates at this value, which also is the ini-
tial value in order to leave the result unaffected at the image
borders.

The FF-chain contains delay elements that stall the distances
to , which may be used in the current

calculation, i.e., may be evaluated against the columns in the
current . The FF-chain has individual access to the en-
tries (distances), and is implemented as a series of FFs that en-
ables each distance to propagate as long as they are to be reused
in a calculation. The block also includes multiplexers for initial-
ization on a new row in the input image.

The compare stage compares stored distances to the height of
the SE. The number of comparators equals the maximum sup-
ported SE width, . The results from the comparators
serve as input to the logic AND-operation. Notice that the fan-in
to this unit increases linearly with and, thus, affects
the critical path and is the major bottleneck of the architecture.
Hence, for large SEs or high speed applications, a pipeline may
be inferred. Using pipelining, one or several additional delays
are required to synchronize the output with the data valid signal.

The CTR block in Fig. 7 manages all control signals in
the architecture based on : the enable signal to decide
the number of active comparators (enable), which operation
to perform , and also border handling. By default, the
architecture performs a logic AND-operation (minimum) on
the selected distances, i.e., a subset of
to , which in mathematical morphology corresponds to an
erosion. To perform a dilation, simply calculate the distances to
the closest upward one for each column and perform a logical
OR-operation (maximum). This is due to the duality nature,
i.e., , where is the bit inverse. Therefore, the
other way to obtain a dilation and still use the default operation
is to simply invert the input and the output, accomplished in
HW by placing a multiplexer and an inverter at the input and
the output of the architecture, shown in Fig. 7.

A. Handling the Borders

Sliding the structuring element over the input image, some
output values are based on evaluating neighborhoods that re-
quire pixels located outside the image borders. These pixels, or
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Fig. 7. Overview of the implemented architecture. Note that the data valid signal is generated by the CTR block.

Fig. 8. (a) Illustration of when the structuring element stretches outside the
image (b) and when the distances outside the image are assumed infinite; they
will not affect the erosion.

in our algorithm distances, are referred to as padding. An ex-
ample of a SE requiring left padding is shown in Fig. 8(a). The
current architecture manages the padding pixels in one of two
ways: precalculated initial values (top, right, and left padding) or
pixels inserted into the data stream (bottom padding). The result
is a less complex controller but with the drawbacks of requiring
two clock domains and an input FIFO. The padding control is
included in CTR in Fig. 7 with corresponding control signals,
i.e., left-, top-, right, and bottom-padd.

Assume a rectangular SE, e.g., 1, 3, 1, 3, calculating
the second output pixels of a new row is an example requiring
left padding [Fig. 8(a)]. When starting at a new row, the dis-
tances to the left of the first column are assumed to be infinite, as

illustrated in Fig. 8(b). This assumption is implemented as ini-
tial values equal to , which are inserted simultaneously
by using the multiplexers in the FF-chain stage in Fig. 7. This
procedure causes the distances located beyond the image bor-
ders not to affect the calculation. When reaching and extending
the structuring element beyond the right image border, the same
initial value is inserted into the data stream and sent to the com-
pare stage through the rightmost multiplexer in the update stage.

Using the same assumption as above when processing the first
row in an image, the distances to the closest upward zero for the
preceding row is assumed infinite. Again, this is implemented as
initial values equal to (inserted into the adder through
the leftmost multiplexer in the update stage in Fig. 7). The initial
values are updated with the pixel value in the input image and
the result is sent to both the compare stage and written back into
the row memory.

Reaching the bottom segment of the input image, the struc-
turing element can stretch outside the bottom border. Depending
on the actual height of , additional “1”s are inserted in the
pixel stream (at most ) through the lower multi-
plexer in the update stage. This insertion is necessary to handle
the different latency that will occur in a video stream if different
sizes of the structuring element are used at the end of one image
to the beginning of the next. During the insertion of these extra
pixels, the input data stream is stalled (requiring the FIFO on
the input). Once the last pixel has been processed, the erosion
operation is complete and starts over with the next frame.
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B. Coding the Structuring Element Size

The structuring element size is controlled by the function
through the parameters , defined in Sec-

tion II-A. The parameters are generated outside the architecture
and are sent as input in parallel with the input pixel stream to the
controller in Fig. 7. Formally, becomes with

for video sequences and it is the user’s responsibility to
design the application-dependent generation process,
which must fulfill the conditions in (7).

In order to reduce the bandwidth of , one can use ef-
ficient coding. For example, the simplest coding scheme con-
sist of coding the difference between two adjacent
pixels on a line, instead of coding the size directly.
Limiting the difference to , the coding
can be represented by using two bits, i.e., increase, decrease,
no-change, reset, corresponding to a simple -code. The reset
value can be used to restore to an initial setting at the begin-
ning of each line. Thus, coding will require
bits between two adjacent pixels on a line (since is not al-
lowed to change in the middle of a line), and two more bits in
between two consecutive lines to represent , ending up with
a total number of 8 bits to code .

Virtually any appropriate coding system can be used, e.g., a
run-length coding applied separately to each , , and

will be useful if the size remains at least partially constant
in some zones. Using an efficient coding will be profitable es-
pecially if more complex shapes are used (see Section V-A),
since describing arbitrary shapes requires by far more informa-
tion, especially for large SEs.

C. Memory Requirements

The row memory located in the update stage stores the dis-
tances for each column and is the largest single internal com-
ponent in the architecture (excluding the input FIFO). The re-
quirement is linearly proportional to the resolution according to

(11)

where is the maximum supported SE height which
determines the number of bits per stored value according to

. Additional registers in the FF-chain are
needed to delay the stored distances ( content) serving
as input to the comparators, Fig. 7. The number of registers is
proportional to the maximum allowed SE width. Since their con-
tent should be compared to the maximum SE height, the number
of bits in these registers is

(12)

Combining (11) and (12), the total memory requirement for the
algorithm is equal to

(13)

D. Memory Organization

Concerning the implementation of in the update
stage, ideally, a value should be read, updated, and written back
to this memory in a single cycle. This require simultaneous read

Fig. 9. Row memory implemented with one double-width single-port memory,
which performs a read and write operation every other clock cycle. Note that the
width of each bus is expressed in �.

and write operations that are normally implemented using a
dual-port memory. However, this type of memory introduces an
area overhead mainly due to the dual address decoders. Another
observation is that the memory access pattern is the same as in
a FIFO, resulting in that the address generation becomes trivial
and can be implemented as a simple modulo-counter. Based
on these facts, can be advantageously implemented
using a single-port memory of double width and half length,
two registers, a multiplexer and a controller, running on the
same clock domain as the input data. As an example, consider
using a resolution of 640 480 , supporting
a maximum structuring element of size 63 63. Normally, a
memory of size with dual-port func-
tionality is required (11). Here, instead of using a dedicated
dual-port memory, a double-width, half-length single-port
memory with a size of can be used
that reads and writes two samples every other clock cycle. The
memory architecture is illustrated in Fig. 9 together with a
simple controller that manages the FFs and the multiplexer.

The functionality of the -bit flip-flop is to delay an input
value in order to concatenate it with the following one. By this
procedure, a bus is formed (of doubled width) constituting of
two values that are written into the memory. The -bit flip-flop

is used when reading from the memory. The multiplexer
gives access to one of these two values stored on each position
in the memory.

E. FIFO

In streaming data application environments, supporting a TI
SE, the padding pixels (discussed in Section IV-A) may be ad-
dressed on a controller level by simply omitting them from the
calculation without the need to stall the input data stream. How-
ever, supporting a SV SE requires the possibility to stall the
input data stream since the latency can vary from one side of
the image to the other (6). This requires two separate clock do-
mains, separated by an asynchronous FIFO located at the input.

The size of this FIFO is a trade-off between operating fre-
quency and memory resources. The size depends on many pa-
rameters, e.g., the relation between input data speed and op-
erating speed , image size, and maximum supported struc-
turing element size. It can optimized with respect to two objec-
tives: i) low memory requirement, or ii) low power.

The total time it takes to stream a complete frame may be
written as ), where is the image height

width. Furthermore, the total time required by the archi-
tecture to process a complete frame is determined by four fac-
tors: , the image size, the size of the structuring element, and
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the location of the origin. Assuming a centered origin, the total
time for the architecture to process a complete frame (including
padding) is equal to

, since half of the values can be inserted as ini-
tial values in the FF-chain, recall Section IV-A ( is the floor
function). The overall timing constraint for the architecture may
be written as , or expressed in operating frequency as

MHz

(14)
Assuming that the maximum supported structuring element is
small compared to the resolution, i.e.,
and , then according to (14).
Using this approximation, the architecture must at most stall

pixels during padding at
the lower boundary of the image. A resolution of 640 480 at a
frame rate of 25 fps, and supporting a maximum structuring ele-
ment of 63 63, results in input data speed of MHz.
Setting to 10 MHz, the required FIFO capacity becomes
21 kb (dimensioned for the padding at the lower boundary).
With this FIFO size and using (13), the total amount of memory
for the complete architecture is 25 kb. When increasing
to 100 MHz, the architecture requires a FIFO with a capacity of

2 kb, reducing the total amount of memory to 6 kb.
The FIFO size has impact on the both the dynamic power

consumption according to [38], and the static
power dissipation (area dependent). In practice, if minimizing
the dynamic power is of high priority, this means operating
at the lowest possible speed (for a given supply voltage), i.e.,
minimizing , resulting in a large FIFO. To summarize, the
memory requirement is dependent on the operating speed
and memory resources can be traded for low power properties.

V. IMPLEMENTATION RESULTS AND PERFORMANCE

Application: The algorithm runs optimally whenever the
structuring element conforms to (7). This is verified in appli-
cations where is generated by a continuous function
such as in application Fig. 1, where conforms to the image
anamorphism given by the perspective.

The result in Fig. 1(d) has been obtained by applying both
opening and closing operations on the motion mask in Fig. 1(b).
If implemented by definition, i.e., , using (1–4), it requires
three image scans, storage of two intermediate images, random
memory accesses, and a latency of three frames.

The sequential memory access of our algorithm allows
composing cascade filters without intermediate storage. Hence,
using our algorithm, the result in Fig. 1(d) can be obtained
from 1(b) in one image scan, with very low computational
complexity, low intermediate storage (three image lines), and
low latency (several image lines).

Architecture: The architecture has been implemented in
VHDL using a resolution of 640 480 and supporting a
flexible structuring element up to 63 63. Indeed, in order to
correctly filter the largest objects found in the image, we have
chosen the largest to be approximately 1/10 of the image
width. In general, there are no algorithmic restrictions on the

TABLE I
RESOURCE UTILIZATION IN A XILINX VIRTEX II-PRO FPGA AND IN UMC

0.13 �m CMOS PROCESS. IMAGE 640 � 480 AND SV RECTANGULAR

SE UP TO 63 � 63

largest supported structuring element size, but in (13) will
increase accordingly.

The implementation has been targeted for both FPGA and
ASIC: a Xilinx Virtex-II PRO FPGA (XC2VP30-7FF896) and
the UMC 0.13 m CMOS process, respectively. The most im-
portant implementation results and properties for both technolo-
gies are compiled in Table I, where the area is reported con-
taining all memory blocks. This includes an asynchronous input
FIFO of 21 kb, as discussed in Section IV-C (replaced by a
dual-port memory of the same size in the ASIC implementation
in order to support the simultaneous read and write function-
ality), resulting in that memory constitutes 86% of the total area
in this particular implementation. The gate count is based on a
2-input NAND-gate (5.12 m ).

As mentioned in Section IV, the combinatorial critical path
passes through the logical operation performed in the compare
stage. Pipelining this operation will not necessarily increase
the speed figures found in Table I since the bandwidth to the
memory is the limiting factor.

In order to compare this work to the PRR and LC architec-
tures discussed in Section I-B, important properties are com-
piled in Table II as a function of the resolution and the max-
imum supported SE. SE support refers to the class of supported
structuring elements and SE flexibility to the ability to change
the structuring element between two adjacent pixels. Naturally,
this should be distinguished from the ability to change the struc-
turing element in between frames which is supported by most
architectures. The complexity refers to the number of opera-
tions per pixel, e.g., in the case of PRR, number of compara-
tors; and in the case of LC, two summations and two additions.
The memory requirement is basically the same as for the LC ar-
chitecture but for the additional delay elements found in the
FF-chain. is reported in number of clock cycles (CC) to
process a complete frame but does not include the latency, which
is present in all architectures. Table II indicates that while still
maintaining low memory requirements, the ability to support
SV SEs comes at the cost of the complexity increase from 4 to

, found in the compare stage as an increased number of com-
parators, and multiplexers, making proportional to the max-
imum supported SE width .

A. Extensions

The present algorithm situates at the extreme end of opti-
mization, imposing restrictions on the SE shape. For more de-
manding applications, there are two possible extensions that in-
crease the applicability of the algorithm.
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TABLE II
IMPORTANT PROPERTIES OF VARIOUS ARCHITECTURES, WHERE � AND �

ARE THE SIDE IN PIXELS OF A SQUARE INPUT IMAGE AND STRUCTURING

ELEMENT �� � ���� �� ���

Extension to Richer Shapes: The currently supported class of
shapes, noncentered rectangles, includes -balls squares. The
benefit of this restriction is a considerable reduction of the com-
plexity (memory requirement, number of operations per pixel,
and latency), far below other algorithms supporting SV SE. This
shape restriction may be relaxed to include a richer class of
shapes. Indeed, convex shapes may be supported by splitting
them into two parts: above and below the origin, and applying
these two halves sequentially in direct and reverse raster scan.
For example, balls, disks can be implemented in two scans
using two half disks, see Fig. 10.

Supporting richer shapes is paid by some increase in com-
plexity. The number of operations per pixel becomes com-
parisons, instead of previously. The memory consumption
becomes , since a complete frame needs to be
stored, instead of previously one line only. Applying two
scans sequentially also increases the latency to more than one
frame, roughly image lines.

Concerning the HW implementation aspects, a richer shape
will require feeding the FF-chain stage of the architecture (see
Fig. 7) with a different value for each column. This will require a
more complex controller to manage all comparator inputs. Sec-
ondly, one will need a richer coding of the structuring element

. Having a richer shape will need additional resources just for
reading—at every new pixel of the input image—the exact
shape . A better encoding, and possibly compression, of

will become very useful to reduce the memory bandwidth
which can rapidly exceed the bandwidth of the input image.

Relaxing the Size Variability Constraints: As explained in
Section V, this algorithm runs optimally when is a contin-
uous function and its most advantageous use case is anamor-
phism-aware filtering, allowing to obtain results in one raster
scan. Besides that, it can also be used in other applications as
discussed in the introduction. For example, image coding and
restoration from skeletons in Fig. 2 belong to applications where
the SE size depends on the image content, i.e., circular SV SEs.
Since the radius of the circles are determined by the image con-
tent, such restriction as in (7) may not be maintained.

The restrictions in (7) concern only the streaming implemen-
tation of the algorithm and can be relaxed. Indeed, the only con-
sequence of violating (7) is that the output pixels do not arrive
in the raster scan order, and that the algorithm needs a memory
to store the output image.

Hence, the result in Fig. 2(c) has been obtained in two scans
by dilating the skeleton in Fig. 2(b) by two half circles (upper

Fig. 10. Implementation of richer SE shape classes. Example: dilation by a
disk, decomposed as sup of dilations by half-disks implemented in direct and
reverse raster scans.

and lower halves) with memory requirements equal to one
image size.

VI. CONCLUSION

This paper presents a novel algorithm for binary and sup-
porting spatially variant, rectangular structuring elements. The
memory data is decoupled from the structuring element size,
which is the property that enables the structuring element flex-
ibility. The complexity is far below other existing algorithms
supporting a SV SE, which makes it compete with algorithms
supporting only TI SEs. The sequential memory access pattern
allows composing cascaded filters with low latency, and without
intermediate storage. For more demanding applications there is
an extension to support richer SE shapes (balls, diamonds) in
two raster scans. Also, extending from binary to functional mor-
phology is possible and is currently under investigation. The
presented algorithm is interesting for various use cases: cas-
caded morphological filters running on systems under heavy
time and space constraints such as embedded or communica-
tion systems or possibly also low-end user terminals.

A corresponding HW architecture of the algorithm is also
presented, intended to be used as an accelerator in embedded
systems. The memory requirement of the architecture is mainly
proportional to the image width while the computational com-
plexity is proportional to the maximum supported SE width. The
image data is processed in raster scan order without storing the
image in memory, which allows processing high resolution im-
ages on low memory systems. The architecture has been suc-
cessfully verified on a Xilinx Virtex-II PRO FPGA and imple-
mented as an ASIC in the UMC 0.13 m CMOS process using
a resolution of 640 480 and supporting maximum SE of 63
63 at 25 fps.
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Abstr act In mathematical morphology, the circular struc-
turing elements (SE) are used whenever one needs angular
isotropy. Difficult to implement efficiently, the circlesareof-
ten approximated by convex, symmetric polygons that de-
composeunder theMinkowski addition to 1-D inclined seg-
ments.

In this paper, we show how to perform this decompo-
sition efficiently, in stream with almost optimal latency to
computegray-scale erosionand dilation byflat regular poly-
gons. We further increase the performanceby introducing a
spatial parallelism while maintaining the sequential access
to data.

We implement these principles in a dedicated architec-
ture that can be concatenated to efficiently computesequen-
tial filters, or granulometries in one scan. With a config-
urable image size, programmable SE size, this architecture
is usable in high-end, real-time industrial applications. We
show on an example that it conforms to the real-time re-
quirements of the 100Hz 1080pFullHD TV standard, even
for serial morphological filters using large hexagons or oc-
tagons.
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1 Intr oduction

Since its first introduction in late 1960’s, the mathematical
morphology has settled in the field of image processing as
a useful tool for analysis of the shape or the form of spatial
structures [14,16,17]. Over time it has foundits application
as awidely-used imageprocessing technique [7,15].

Thanks to the recent technological development of sen-
sors, the resolution of images increased to tens of megapix-
els. Certain morphological operations, e.g., top-hat trans-
formation, ultimate openings, granulometry, alternating se-
quential filters(ASF) [18], etc., onsuch largeimagesrequire
a large structuring element (SE), since its sizeshall be pro-
portional to thesizeof the image and its contents.

Existing hardware implementations either support rect-
angles using SE the decomposition (fast computation, but
angular anisotropic), or support arbitrarily-shaped SEsat the
cost of significant performancedecrease. Our work supports
polygonal SEs at the performance rate of the rectangular
SEs.

The paper is organized as follows: Section 2 brings a
small survey of existing morphological algorithms and ar-
chitectures. Section 3 outlines the basic aspects of morpho-
logical dilationanderosion, and how to decomposethepoly-
gons into a set of lines. Section 4 describes the algorithm,
and its use to decompose polygons while preserving the se-
quential accessto data, minimal memory consumption and
latency. Section 5 givesthefunctional implementation of the
algorithm. The principal result, a parallel version using two
levels of parallelism (temporal and spatial) is presented in
Section 6. Finally, Section 7 presents experimental results
achieved onan FPGA.

2 State of thear t

In this section we briefly discussthe state of the art of algo-
rithms for dilation and erosion followed by the introduction
of recently proposed morphological hardware implementa-
tions.
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Most efficient dilation/erosionalgorithmsusing 2-D SEs
are based on the SE decomposition [1, 19, 23]. These algo-
rithms are highly optimized within a reduced (usually 1-D)
scope achievingasignificant performancegain. The compo-
sition of the optimized 1-D algorithms accelerates the n-D
computationas well .

The first and still one of the the most popular 1-D algo-
rithms is van Herk [21] (proposed also by Gil and Werman
[10]). Althoughthe computation complexity is constant, it
requires two image scans: forward and backward. Lemon-
nier [13] proposed an approach of localizing local extrema
and propagating their values as longas they are covered by
the SE. Again the forward and backward image scans are
required. In [12], Lemireproposed a fast, stream-processing
algorithm for causal li near SE, but an intermediate storage
of local maximaresults in arandom accessto the input data.
Thisproblem is solved in Dokladal [9] who proposed anew
algorithm with sequential access to the data, zero latency,
and very low memory requirements. It allows a real “on-
the-fly” computing, and minimizes the amount of working
memory.

Soill e [20] uses polygons approximated by periodic
lines. The complete dilation by a polygon requires several
iterations over the image. Each iteration is then obtained by
the fast 1-D van Herk algorithm oriented by desired angle.

2.1 Hardware implementations

Velten andKummert [22] proposed anaive, delay-linebased
architecture supporting arbitrarily-shaped SEs. The com-
plexity is quadratic and the memory requirements are pro-
portional to the SE and to the width of the image due to the
need to storeall thepixels to be reused. It hasbeen partially
improved byChien et al. [5]. They removed arelevant num-
ber of redundant comparisonswithin the largeSEsby merg-
ing several adjacent smaller SEs together. Even thoughthe
presented architecture supports a small 5×5 disc SE only,
the proposed principle allows SEs to be extended to larger
polygonsat the cost of hardware resources.

Ikenaga and Ogura [11] developed a Content Address-
able Memory based architecture (CAM) with a large pro-
cessing element array (up to hundred thousand elements).
Theprocessingspeed of thisarchitecture for small 5×5 disc
SEs is very high (approx. 30 µs for 512×512 px image),
but the cost of CAM memories and their power consump-
tion becomelimitingfor largeimages. Thisarchitectureuses
the homothecy that is iterative usage of small SE to ob-
tain a larger SE. The iterativity significantly decreases per-
formances because multiple passes over the image must be
done.

Clienti et al. [6] published a highly parallel system
called Several neighborhoodProcessors-On-Chip (SPoC). It
is based ona set of neighborhood processors optimized for
3×3 SE, interconnected in a configurable pipeline. Larger
(and polygonal) SEs are obtained by homothecy that re-
quires instantiating a deep pipeline of these processors or
multiplepasses over the image.

Recently, Deforges et al. [8] designed a morphological
architecture supporting arbitrary convex polygons as SEs.
They decompose the SE into a set of causal two-pixel SEs,
whichareapplied inasequence. In the caseof morecomplex
SEs, however, the need of hardware resources significantly
increases.

Prior to this paper, Bartovsky et al. [2] reported an effi-
cient parallel design based onthe1-D dilationalgorithm [9].
However, it supports rectangular SEsonly.

From the previous paragraphs we can seethat there are
few hardware architectures capable of supporting polygo-
nal SEs, and none of them is optimized for polygons. These
architecturesareusually suitable for small SEsbut lose effi-
ciency for largeSEs. In thispaper wepropose anarchitecture
primarily dedicated to largepolygonal SEs.

2.2 Novelty

We present an original implementation of morphological
operations dilation and erosion with a polygon-shaped SE
(namely hexagonand octagon). We chiefly focuson the fol-
lowing:

1) Wediscustheissueof polygonSE. It isclosely related
to theSE decomposition –ageneralization of theoriginal 1-
D algorithm for operating under different angles, and border
handling.

2) We introduce apolyvalent hardware implementation
of 1-D dilation/erosion processing unit for large, different
angle oriented 1-D SE, so-called Line Unit (LU). Compu-
tation is carried out by a recently proposed 1-D dilation al-
gorithm (Dokládal [9]) with a stream-processing capabilit y.
The LU retains the original properties of this algorithm al-
lowing itseasy concatenation into apipeline.

3) We place4 LUs in a sequence to create the Poly-
gon Unit (PU) supporting multiple types of SEs: lines,
rectangles, hexagons, and octagons. This block allows a
run-time programming of the morphological function (dila-
tion/erosion), SE features (size and position of the origin),
and imagedimensions. Later, several PUs instantiated in the
Parallel PolygonUnit (PPU) allow to meet the requirements
of high-end industrial applications.

4) On a choosen application, an ASF, we demonstrate
how awholeprocessingchain can berealized using thepro-
posed PPU in asingle image raster scan.

The three last points represent the main contribution of
thispaper, themorphological hardwarearchitecturefor large
polygonal SEs. Such a solution remains efficient even for
large SEs that overwhelm the capabiliti es of other architec-
tures, asalready discussed in Section 2.1.

3 Basic Notions

Let δB, εB : Z2 → R be adilation and an erosion on gray-
scale images, parameterized by a structuring element B, as-
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sumed flat (i.e.,B⊂Z2) and translation-invariant, defined as

δB(f) =
∨

b∈B

fb ; εB(f) =
∧

b∈B̂

fb (1)

Thehat̂denotesthetransposition of theSE, equal to theset
reflectionB̂ = {x | −x ∈ B}, andfb denotesthetranslation
of the function f by some scalar b. The SE B is equipped
with an origin x ∈ B.

The basic concatenation of the dilation and erosion
formsother morphological operators. The closingand open-
ing on gray-scale images, ϕB, γB: Z2 → R, parameterized
by astructuringelement B, aredefined as

ϕB(f) = εB [δB(f)] ; γB(f) = δB [εB(f)] (2)

Furthermore, the concatenation of the closing and open-
ing forms sequential filters, e.g., ASF. The λ-order ASF is
composed of thesequenceof λ closingsandλ openingswith
a progressively increasing SE. It starts with either the clos-
ing or opening

ASFλ = ϕλγλϕλ−1γλ−1 . . . ϕ1γ1 (3)

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1 (4)

3.1 SE Decomposition

The separabilit y of n-D morphological dilation into lower
dimensions isawell -known property. Thedecomposed dila-
tionsare then applied in asequence according to the follow-
ingequation

δR(f) = δH⊕V (f) = δH(δV (f)) (5)

whereR denotes a rectangle,H andV horizontal and verti-
cal li ne segments, respectively. This decomposition applies,
in general, to convex shapes.

In order to suppress the angular anisotropy of rectan-
gles (note the differencebetween a side length and a diago-
nal length), one prefers using circles. Regarding the imple-
mentationaspects, circlesareoften approximated byregular
polygons (all sides have the same length) that are easily de-
composable, originally described in [1,23].

A 2n-top (n ∈ N) regular polygon SE P2n can be de-
composed into aset of n lineSEsLαi

P2n = Lα1
⊕ · · · ⊕ Lαn︸ ︷︷ ︸
n times

(6)

oriented byangleαi, such as

αi = (i− 1)
180◦

n
[◦] ; i ∈ N, i ≤ n (7)

The length of all Lαi
isequal to thesideof thedesired poly-

gon and can be computed from the circumcircle radius R
as

‖Lαi
‖ = 2R sin

(
180◦

2n

)
(8)

For example, a hexagon can be obtained by three Lαi
ori-

ented in αi = { 0◦, 60◦, 120◦} on a 6-connected grid, and
an octagon byfour Lαi

, αi = { 0◦, 45◦, 90◦, 135◦} usingan
8-connected grid, seeFig. 1.

=>

1α 2α

3α

1α 2α

=>

3α1α 2α

(a) Hexagon, αi = { 0◦, 60◦, 120◦}

=>

=>

=>

4α 4α

1α 2α 1α 2α

3α1α 2α

3α 3α1α 2α

(b) Octagon, αi = { 0◦, 45◦, 135◦, 90◦ }

Fig. 1 PolygonSE composition of line SEs. (a) hexagonis composed
of 3 segments, (b) octagon is composed of 4 segments. ⊕ operator
stands for theMinkowski addition; αi stands for Lαi .

Hence, from (5) and(6) a2-D dilation bya2n-top poly-
gonδP2n

of some function f : R2 → R can be obtained by
n consecutive 1-D dilations δLαi

by line segments oriented
by αi

δP2n
(f) = δLα1

( . . . δLαn︸ ︷︷ ︸
n times

(f)). (9)

The aforementioned decomposition holds true for the
unbounded support Z2. However, when using real images
with a bounded support D ⊂ Z

2, D = [1..M ] × [1..N ], de-
composition boundary effects appear if at least one Lαi

6=
{0◦, 90◦} is used. The cause is that the Minkowski addition
of all decomposed line segments of (6), which are cropped
by image boundaries after every Lαi

of that concatenation,
does not necessarily correspond to P2n cropped by image
boundaries just once as desired. It is expressed by the fol-
lowing expression where D∩ represents intersection with
the imagesupport D

D ∩ (Lα1
⊕ . . .⊕ Lαn

) 6= D ∩ (Lαn
⊕ . . .

. . .⊕D ∩ (Lα2
⊕D ∩ (Lα1

))).
(10)

The ill ustrative example of such boundary effects with
a hexagonal SE is depicted in Fig. 2. We can see that the
compositionα1 ⊕ α2 is incomplete compared to thedesired
one in Fig. 1; a small part of the SE is missing. It holds true
even for the entire hexagon, the compositionα1 ⊕ α2 ⊕ α3

is also incomplete. It is caused by the right boundary crop-
ping not only the final P2n, but also all i ntermediate results.
The cropped values are later missing to form an appropriate
polygonsection.

This issue is solved by adding a padding to the image.
The section of P2n contained inside the image support is
then complete, the missing part of P2n is located in the
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00
0

NN

M

0

M

missing

part

missing

part

(a) α1 ⊕ α2 incomplete (b) α1 ⊕ α2 ⊕ α3 incomplete

Fig. 2 PolygonSE compositionwithout padding. Thedesired SEspre-
sented in Fig. 1 are incomplete, asmall t riangle ismissing.

padding area. The added padding contains recessive values,
i.e., values that do not affect the computation of particular
morphological operator (for f :D → V , ∧V for dilation, ∨V
for erosion). The thickness of padding is different in hor-
izontal an vertical direction and is determined by the size
of oblique segments, particularly by the half of vertical and
horizontal projection

BH = ‖Lαi
‖ cos (α2) /2 [pixels] (11)

BV = ‖Lαi
‖ sin (α2) /2 [pixels]. (12)

4 Algor ithm Description

This section explains the algorithmic principles involved in
this paper. First, we expose the 1-D algorithm used for the
dilation by line segments with arbitrary orientation. Next,
we show how to combine these 1-D computations in order
to obtain polygonsrunning in stream. Theissueof boundary
handling is addressed afterwards.

4.1 1-D DilationAlgorithm

The implementation of (1) consists of searching the ex-
tremum of f within thescopeof SEB

[δB(f)](x) = max
b∈B

[f(x− b)] (13)

[εB(f)](x) = min
b∈B

[f(x+ b)] (14)

The algorithm used below is based on the property [9]
that for someB(x) (which contains its origin) the computa-
tion of thedilation δBf(x) needs only thosevaluesof f(xi)
that can “beseen” fromxwhen looking over thetopographic
profile of f , seeFig. 3. The values shadowed by the moun-
tains - that can not be maxima - are immediately excluded
from the computation.

From the implementation point of view, assuming a se-
quential accessto the input data f , the dilation δBf(x) de-
pends on points read after x. We say that B is non causal.
One can transform anoncausal SE to a causal oneby utili z-
ing theproperty that dilationcommutes with translation

δB+tf(x) = δBf(x− t), ∀t ∈ D (15)

These two principles are used by Alg. 1. For each pixel
of some input signal f : Z → R, the algorithm reads one

f

x
Fig. 3 Computing the dilation δBf(x): Values in valleys shadowed
by mountains when looking from x over the topographic relief of f
areuseless.

pixel F = f(rp) at the so-called reading position rp and
writes back one result pixel dF = δBf(wp) at the current
writing position wp, such as rp > wp. The wp coordinate
coincideswith theorigin of theSE, rp conforms to themost
recent input pixel of B. Indeed, thereading positionrp is its
right-hand side end, which conforms to the intuitive neces-
sity to have read all the samples covered by the SE before
computing thedilation.

Alg. 1 isto be called from an outer loopiterating over the
writing position in δBf , such as while wp<N. The writing
position wp is to be incremented whenever Alg. 1 outputs
a valid value. We give below the pseudocode, for detailed
descriptionsee[2].

Algor ithm 1: dF← 1D DIL (rp, wp, F, SE1, SE2, N)
Input: F - input signal samplef(rp); rp, wp - reading/writing

position; SE1, SE2 - SE sizetowards left and right; N -
length of thesignal

Result: dF - dilated signal sampleδBf(wp)
Data: Q - Queue (first in, first out)

1 whileQ.back()[1] ≤ F do
2 Q.dequeue() ; // Dequeue useless valuess

3 Q.push({F , rp}) ; // Enqueue the current sample
4 if wp − SE1 > Q.front()[2] then
5 Q.pop() ; // Delete too old value

6 if rp = min (N , wp + SE2) then
7 return (Q.front()[1] ) ; // Return valid value
8 else
9 return ({}) ; // Return empty

4.2 Stream-PreservingDecomposition of Polygons

The Alg. 1 can be used to compute the dilation byLαi
seg-

mentsin astream. Itspropertiesmakeit suitablefor compos-
ing concatenated operators, namely the sequential accessto
input and output data, andminimal latency. Therefore, when
the input image is read in ahorizontal raster scan mode, i.e.,
lineby line, andevery line from the left to the right, theout-
put of Alg. 1 instance conforms to thevery samescan order,
delayed by some latency defined by the distance between
reading rp and writingwp positions. It allows a direct con-
nection of several Alg. 1 instancesin asequencewithout any
need of couplingelements. Theresulting 2-D SE is then ob-
tained with minimal latency, that is as soonas all necessary
datahavebeen read.
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The example of decomposition of a hexagon into three
Lαi

is depicted in Fig. 4. The image is sequentially read by
horizontal L0◦ at thereading position of thepolygon(a). The
result of the horizontal segment is immediately provided as
an input to thefirst obliqueL60◦ at (b) so that thereading po-
sition of L60◦ coincideswith thewriting position of L0◦ . By
the very same rule, the result of theL60◦ is brought as input
data to the second obliqueL120◦ at (c), the writing position
of which is thewriting position of the completepolygon(d).
The total latency is then defined by distance between the
reading (a) and thewriting position (d) of thepolygon.

1 j n N
1

(d)

(a) � rpP = rp0°

(b) � wp0° =rp60°
i

m

M
(a)(b)

(c)

( ) ( ) p0 p60

(c) � wp60° =rp120°

(d) � wp120° = wpP

M
( )( )

Fig. 4 Stream concatenation of threeLαi into hexagonal SEP ; rp/wp
- reading/writing position.

The computational complexity of (9) remains almost
constant w.r.t. theSE size(except thepadding)

O((N + 2BH)(M + 2BV)) (16)

for an N ×M image, andBH, BV padding sizes. Provided
that of BH ≪ N andBV ≪M , it reaches the complexity of
rectanglesO(NM), see[2].

4.3 Discrete Inclined 1-D Segments

The oblique segments included in a hexagon and an oc-
tagon, i.e., Lαi

, αi = 45, 60, 120, 135◦, need appropriate
addressing to determine the pixels to process. Note that all
inclinations verify αi ≥ 45◦, and the coefficients ki ver-
ify ki = tanαi ≥ 1. If we use the 8-connectivity for
k45◦,135◦ = ±1, and the 6-connectivity for k60◦,120◦ = ±2,
we can very easily generate the pixel adressing - for every
inclination - by only modifying the original column index
col by an additive constant line/ki such as

colshift = (col + line/ki)mod (N + 2BH), (17)

where the inclination deviation from the vertical direction
line/ki is called offset and changes only with a new image
line.

5 Hardware Implementation

In this section, we present the hardware implementation
(called line unit LU) of Alg. 1 for the dilation byLαi

with

emphasizeon the inclined segments computation. Then, we
chain several elementary LU units into a pipeline to form
the polygonal processing unit PU. Finally we propose the
parallel polygonal unit PPU.

5.1 1-D Algorithm Implementation

Alg. 1 alongwith the colshift addressing feature is seen as a
simpleMealy finitestatemachine(FSM). ThisFSM controls
all algorithm operations over the queue, rp andwp pointers
etc. The state diagram (in Fig. 5) of the algorithm behavior
consists especially of 2 main states {S1,S2} and one auxil -
iary stateEOL. The basic operation of the direct algorithm
implementationcan befoundin [3,4]. TheS1 statemanages
the dequeuing loop and pushing of a new value, code lines
1–3; theS2 statehandlesthedeletion of outdated valuesand
returns the result, code lines4–9.

S1

S2 EOL

Start

Q.push({F, rp});
Q.pop();

return (Q.front()[1] );

return (Q.front()[1] );

Q.dequeue();

Q.back()[1] > F

End of data

not End of data/line

Q.back()[1] ≤ F
output:

output:

output:

End of line

Update offset;

output:
output:

Q.pop();

return (Q.front()[1] );

output:

End

Fig. 5 Statediagram of Alg. 1. Conditionsof statetransitionsaretyped
in bold, output actionsare located in gray rectangles.

The auxili ary stateEOL isentered only at the end of ev-
ery imageline. Itsmain purposeisto updatetheoffset value,
to determine the shifted column addressing. The generation
of the necessary inclination is extremely easy sincerequires
only elementary operations like incrementing, decrementing
or stalli ng.

5.2 1-D LineUnit Architecture

The architectureof theLU unit capableof dilation by differ-
ent line segments is shown in Fig. 6. The basic description
of thepreceding versionsupporting only horizontal and ver-
tical orientation can be found in [4]. Several modifications
have been applied to the former version to allow inclined
Lαi

. We have mainly added the Slope control unit that is
highlighted in Fig. 6.

The LU comprises two parts: an FSM part and a mem-
ory part containing a collection of double-ended queues.
TheFSM managesthewhole computing procedureandtem-
porarily stores values in the memory part. The memory
instantiates one queue in the case of horizontal segment,
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Fig. 6 Overview of the LU architecture. The FSM part manages com-
putation, thememory part containsdatastorage–queues.

N queues in the vertical case (N is the image width), or
N + 2BH queues in theoblique case. Input and output ports
aremultiplexed; hence amultiplexor select signal can easily
addressonequeueto work with. Theshifted column address
(colshift) isused as theselect signal.

The processing of one pixel proceeds as follows: In the
beginning of S1, the last queued pixel is invoked by the
Back() operation from the queue and fetched to Compara-
tor 1 where it is compared with the current sample, and de-
queued if necessary (code lines 1–2). The current pixel is
simply extended with the value of position counter 1 and
enqueued (line3).

The S2 invokes the oldest queued pair {F, rp} by the
Front() operation. Thisread pixel isoutput asa correct result
if the set of output conditions (code line 6) is fulfilled. The
deleting of an outdated value is managed by comparing the
stored position valuewith the current one in Comparator 2.

The purpose of the Slope control is to select the corre-
sponding queue memory which is currently used by Alg. 1.
The queues are addressed by the Colshift counter, which is
incremented with every pixel of the input image and reset at
the end of image line. The initial reset value of the colshift
counter is offset (seeSection 4.3). The offset is updated at
the end of every image line (stateEOL); its value is incre-
mented or decremented either every line or every other line
according to ki.

5.3 PolygonUnit Architecture

The previously described LU units can be arranged in a se-
quence to form a 2-D Polygon Unit (PU). The overall ar-
chitecture of the PU unit (seeFig. 7) is composed of three
different-purpose parts: computation part, controller, and
padding part.

The computation part mainly contains four LUs for dis-
tinct Lαi

orientations. There are the horizontal unit (α1 =
0◦), the first inclined unit (α2 = 45◦ or 60◦), the second
inclined unit (α3 = 135◦ or 120◦), and the vertical unit
(α4 = 90◦) connected in a simple pipeline; the output of
each unit is read by the successive unit which processes the

image by further Lαi
. The computation part is able to oper-

ate either with a hexagon or octagonSE. In the case of the
hexagonSE, thevertical unit isbypassed.

Notethat theoutput of every computation unit isan inter-
mediate result image, which can be brought out for another
purpose, e.g., a multi -scale analysis descriptor. Then the di-
lation byline, rectangle, and octagonSEs (all centered) can
beobtained duringasingleimagescan (considering unitsre-
ordering). Only the Remove padding block is to be copied
several times for each output datastream.

According to the boundary effects mentioned in Sec-
tion 4, the inclined unitsneed padding to extend theoriginal
image before the processing. The padding is removed after
the last 1-D unit. It is carried out by a pair of dual padding
blocksat thebeginningand the end of the computation part.

The controller ensures the correct global system behav-
ior. It accepts the SE diameter and the shape select signal,
then it determines the particular SE sizes for every LU and
padding from them, and initiates the computation. The en-
tire set of parameters, i.e., the image width and height, SE
features, and the morphological function select, is run-time
programmable at thebeginning of the frame.

To enable processing a uniform input stream, one needs
to handle unequal processing rates of LUs. It is caused by
variable algorithm latency to compute a dilation for one
pixel. Therefore, the balancing FIFO memories are inserted
in front of each 1-D unit, and to the input and output ports.
The depth of input and output FIFOs depends on the timing
of input datastream (possibilit y of stalli ng, synchronization,
etc.).

5.4 Memory Requirements

The most significant memory demand is made by the set
of queues. Although the algorithm works with separated
queues, the queues within each LU are merged into a sin-
gledual-port memory, mapped sideby side in a linear mem-
ory space. Every queue has a related pair of front and back
pointers which must be retained throughout the entire com-
putation processin thepointer memory. Thisapproach leads
to moreefficient implementation.

TheLUshavethefollowingmemory requirements(con-
sideringN×M imageincluding padding,Lαi

with bounding
boxesWx×Hx, and bpp bitsper pixel):

Mhor =WH(bpp+ ⌈log2(WH − 1)⌉) [bits] (18)

Mver =N((HV − 1)(bpp+ ⌈log2(HV − 1)⌉)
+ 2⌈log2(HV − 1)⌉) [bits]

(19)

Mslope =(N +WS)((HS− 1)(bpp+ ⌈log2(HS− 1)⌉)
+ 2⌈log2(HS− 1)⌉) [bits]

(20)

Example: Consider adilation of 8-bit, SVGA image(i.e.,
800×600=N×M ) by a hexagonwith radius 41 px. Such a
SE isdecomposed into horizontal SE21 pxwide, and 2slope
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Fig. 7 Overall architectureof thepolygonal PU unit. It containsoneLU for each δL
αi

of (9), control, and padding units.

SE each 11 pxwide and 19 pxtall (hexagon SE bounding
box is41×37 px).

The computationmemory (thequeues) requires (18–20)

Mhor =21(8 + 5) = 273 [bits]

Mslope =(811 + 11)((19− 1)(8 + 5) + 10) =

=200′568 [bits]

resulting in a total consumption of Mall =Mhor +2Mslope
∼=

392 kbits for the 2-D dilation by hexagon. This is far below
the mere size of the image itself Mimage = 800 × 600 ×
8bpp ∼= 3.66 Mbits which does not need to be stored at any
moment.

6 Parallel Implementation

This section describes the Parallel PolygonUnit (PPU) that
aims at increasing the computational performance while
maintaining as much as possible the beneficial streaming
propertiesof theproposed algorithm.

6.1 Partition of the Image

The parallelism is achieved throught utili zation of concur-
rently working units that simultaneously process different
parts of the image (spatial parallelism). The number of in-
stantiated units defines the parallelism degree (PD). Since
the processing runs in stream, we propose a solution that
transformstheinput stream into aset of PD streamsin away
to minimizethewaiting-for-dataperiodsof all units. For the
sake of clarity, we use PD=2 in the description hereafter. A
similar method has proven to beuseful in [2].

Thepartition of theinput imageistwofold, seeFig. 8: an
interleaved line-by-line partition for the horizontal α1 units,
and vertical stripes for the vertical and inclined α2, α3, α4

units. Thefinal imagepartition of 2-D image is the intersec-
tion of both.

Intuitively, the streams have to be transformed from one
type to the other between α1–α2, andα4–output in the PU.
Thetransformationisdoneby simple circular stream switch-
ing when a partition edge is encountered. With the begin-
ning of the image, it starts with the H1◦V1 segment at the

Horizontal

H1

H2

H1

. . .

. . .

. . .

Vertical & inclined

Stream switching

º =V1 V2

H1 o V1 H1 o V2

H2 o V1 H2 o V2

H1 o V1 H1 o V2

Final segments

Fig. 8 Exampleof imagepartitionfor PD=2: lineby linefor horizontal
orientation; vertical stripes for non-horizontal orientation.

first line. When the end of this segment is reached, the
streams are switched such that segments H1◦V2 (1st line)
andH2◦V1(2nd line) areprocessedat thesametime. Later, it
proceedsto segmentsH2◦V2 (2nd line) andH1◦V1 (3rd line)
andso forth. In general PD segments located onabackward
diagonal run simultaneously throughout theimage(notethat
thestreams aremutually delayed byN/PD pixels).

Processing the partition segments separately introduces
undesired border effects on each partition edge. A common
solution – similar to padding at image borders – is to in-
troduce an overlap. Contrarily to the padding that adds re-
cessive values, the overlap extends a partition by a portion
of the neighboring partition. The width of the overlap de-
pends on the sizeof the SE, and is equal to the width of the
horizontal paddingBH. Intuitively, theoverlap introducesre-
dundant computation, andslightly degradestheperformance
andminimal latency.

6.2 Parallel architecture

At this point, all the previously mentioned principles are
brought together to form the Parallel Polygon Unit (PPU).
The PPU (see Fig. 9) is scalable with respect to PD, the
number of parallel streams it can processat the time. Each
stream needs one pipeline of four LUs (αi, i = 1..4, just
like the PU), two add overlap blocks in front of inclined
LUs, two remove overlap blocks behind inclined LUs, add
padding at the front end, and remove padding at the back
end. The PPU also contains a pair of switches to transform
thestreamsfrom onetypeto theother, anda controller (om-
mited from Fig. 9).

Figure 10 shows the introduction of the overlap in a
course of the i-th image line. As we know, this line is split
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Fig. 10 Addition of overlap on one image line

into two streams. The streams are labelled I1, I2 before the
addition and O1, O2 after (refer also to Fig. 9). The entire
I1 stream plusBH pixels of I2 form O1 output stream with
overlap, and last BH pixels of I1 and the whole I2 stream
form O2.

During the overlap sections, either I1 or I2 stream is
mapped to both output streams at the same time. This data
duplicationtemporarily disallowsparallel processing of both
streamsandmay result in stalli ng of either stream. However,
the effect of theoverlap is negligible as longasBH ≪ N .

Two important properties are to be noted: (i) input and
output streams are mutually delayed byN/PD (ensured by
stream switching); (ii) several PPUs can be chained into a
pipe. The result schematic of some application, e.g., ASF,
may look like in Fig. 11. At the front end there is an in-
put buffer transforming the input stream (which isPD-times
faster than each of PD processingstreams) into PD process-
ing streams Hi (i = 1..PD). The transformation only needs
i-th image line to be stored in {imodPD}-th line buffer. In
this manner, the processing streams are properly delayed by
N/PD pixels. The output buffer transforms PD processing
streams into one fast stream in the opposite way. One can
place asmany PPUsasdesired between these two buffers in
apipelineor other topology.

The PPU involves the following limitations on the pro-
grammabilit y of parameters: theimagesizeis set beforesyn-
thesis, and paddingsizesBH, BV arecomputed for themax-

Input buffer Processing pipeline

Parallel

polygon

unit 1

(PPU)

Parallel

polygon

unit n

(PPU)

. . .

. . .

Output buffer

Stream clock Processing clock Stream clock 

line buffersline buffersmux demux

Fig. 11 Overall architectureof parallel ASFapplication.

imal allowed SE, specified before the synthesis. The reason
is that handling the varying SE and image sizes would in-
troduce an unreasonable hardware overhead of image par-
tition, padding, and overlap features. The SE remains fully
programmable.

7 Experimental results

Hereafter we discussthe results of the proposed implemen-
tation. First, we discussthe results of a single 2-D PU and
PPU unit, followed bytheir performancein applicationto an
ASF filter. We conclude by comparison with other architec-
tures.

The proposed PU and PPU architecture has been imple-
mented in VHDL and targeted to the Xili nx FPGA Virtex-
6 device (XC6VLX240T). The ultimate specification con-
forms to the following: 8-bit gray-scale images of size up
to 1080p(1920×1080 px), height of Lαi

up to 31 px(thus,
hexagonSE up to 61 px, and octagonSE up to 91 px), and
support of uniform stream processing. Notice that all three
previous factors affect the memory requirements that (in
contrast to the PC), have significant influence on the clock
frequency. Our specification implies the clock frequency of
100MHz.

The timing with respect to (shortly w.r.t.) the image size
and the sizeof the SE (Table 1 and 2) have been evaluated
onanatural photo image. Wereport several measures.

1) Thepixel rategives the averagenumber of clock ticks
to process one pixel. It is given by the overall number of
clock ticks divided by the image size. One can observe that
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Table 1 Timing of PU and PPU w.r.t. image size (SE size = 51 px,
PD=6).

ImageSize VGA SVGA XGA 1080p
Pixel Rate (PU) [clk/px] 2.61 2.53 2.53 2.44
Latency [image line] 25 25 25 25
FPS(PU) [frame/s] 125 82 50 19
FPS(PPU) [frame/s] 599 406 257 105
Speed-upPPU vs. PU [-] 4.79 4.94 5.1 5.34

Table2 Timing of PU w.r.t. SE size(SVGA image)

SE size[px] 21 31 41 51 61
Rate [clk/px] 2.42 2.46 2.49 2.53 2.58
FPS[frame/s] 85 84 83 82 81
Latency [image line] 10 15 20 25 30

the rate is almost constant w.r.t. both the size of the image
and the sizeof the SE. The slight variation is caused by the
sizeof theSE which affectsthesizeof thepaddingand over-
lap, increasing the number of effectively processed pixels,
see(16).

2) The latency is expressed in a number of image lines.
Observe that it is strictly a half of the SE size. This is a fur-
ther irreducible factor corresponding to the dependency of
the output on the input. This corresponds to the half-height
of the SE that we need to wait to have read enough data to
compute thedilation.

3) The last measure is the throughput in terms of the
number of frames per second (FPS). The ultimate result
we obtain is 105 fps for the 1080presolution, allowing the
100Hz 1080 FullHD TV standard to be processed in real
time.

The speed-up PPU vs PU measures the acceleration ob-
tained from theparallelization. Thedifferencefrom theideal
upper limit (PD=6) is due to the overlap. With increasing
imagesizethe accelerationconverges towards6 because the
SE size (and consequently the overlap) becomes negligible
with regard to the imagesize.

Table 3 outlines efficiency of the scalabilit y (that is the
parallelism degree PD) in terms of the FPSand speed-up.
One can observe that the real speed-up is somewhat lower
than the PD. The difference is due to two factors: (i) the
overlap, which demands redundant computation, and (ii)
thestream switchingthat needsinter-stream synchronization
which may introducewait cycles.

Table 4 reveals the cost of parallelization onFPGA re-
sources in termsof registers, LUTs, andBRAMsof thePPU
and thepair of input and output buffer as shown in Fig. 11.

7.1 AlternatingSequential Filter

The ASF filter is an essential method of morphological fil-
tering, see example Fig. 12. According to (4) the λ-order
ASF(referred to asASFλ) iscomposed of thesequenceof λ
closings andλ openings with the increasing SE, such as the

Table3 Speed-up of PPU w.r.t. PD (SVGA image, SE size= 31 px).

Parallelism degreePD 2 3 4 5 6
FPS[frame/s] 162 234 306 376 441
Speed-up [-] 1.92 2.77 3.62 4.44 5.22

Table4 FPGA resourcesw.r.t. PD (SVGA image, SE size= 91 px).

PD 1 2 3 4 5 6
Registers (P)PU 787 1,644 2,469 3,215 4,019 4,850
LUTs (P)PU 2,656 4,831 7,330 9,301 11,540 14,221
Block RAM (P)PU 39 39 59 42 53 63
Registersbuf 0 251 355 466 590 671
LUTs buf 0 1,296 1,929 2,545 3,158 3,748

sth stage (s ∈ N; s ≤ λ) hasoctagonal SE of width 2s+ 1.

ASFλ = γλϕλγλ−1ϕλ−1 . . . γ1ϕ1

= δBλ
εBλ

εBλ
δBλ

δBλ−1
εBλ−1

. . . εB1
δB1

The initial number of morphological operators 4λ can be
reduced using the associativity of dilations and erosions.
Hence, every two consecutive dilations or erosions may be
merged into one to obtain only 2λ+ 1 operators, such as

ASFλ = δBλ
εBλ⊕Bλ

δBλ⊕Bλ−1
. . . εB1⊕B1

δB1
. (21)

Since the ASF is applied as a sequence of alternating dila-
tions and erosions with a changing SE, it can be advanta-
geously implemented by chaining instances of the proposed
architecture into apipelinestructure. Theoutput of each op-
erator is immediately processed bya subsequent operator to
achieve the following beneficial properties: (i) all theopera-
tors are being applied in parallel (temporal parallelism), (ii)
the image is filtered with minimal latency inferred by the
Minkowski addition of all SEs.

Table 6 ill ustrates the performanceof ASFλ in terms of
the experimentally achieved FPSand the inferred latency.
Note that the frame rate of the whole ASF decreases with
respect to theorder λ sincelarger SE implies larger padding
and overlap. However, theperformanceof thefilters iscom-
parablewith the rateof asingleunit in Table1.

(a) Original (b) Filtered

Fig. 12 Exampleof ASF filtering. A zoom into original and theASF3

filtered “Mountain” image.
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Table5 Comparison of several FPGA andASIC architecturesconcerningmorphological dilationanderosion. N , M stand for the imagewidth
and height of respective architectures.

Processing unit HardwareSystem ApplicationExampleASF6

Technology Supported Throughput fmax Number of Supported Image FPS Latency
SE [Mpx/s] [MHz] units image scans [frame/s] [px]

Clienti [6] FPGA arbitrary 3×3 403 100 16 1024×1024 6 66.7 5NM + 84N
Chien [5] ASIC disc 5×5 190 200 1 720×480 45 12.2 44NM + 84N
Déforges [8] FPGA arbitrary convex 50 50 1 512×512 13 14.7 12NM + 84N
Thispaper FPGA regular polygon 195 100 13 1024×1024 1 185 84N

Table6 Timing of ASFλ; SVGA imagesize, PD=6.

Order of ASFλ 1 2 3 4 5 6
Number of δ, ε 3 5 7 9 11 13
Sizeof max. SE [px] 5 9 13 17 21 25
FPSby PUs [frame/s] 88 87 86 86 86 85
FPSby PPUs [frame/s] 491 483 466 440 415 387
Latency [image line] 4 12 24 40 60 84

7.2 ArchitectureComparison

The implementationand performance comparison of our ar-
chitecture with a few others is presented in Table 5. At first,
wetake into account single2-D unitsonly. Clienti [6] yields
ahigh throughput for an elementary SE 3×3. TheChien [5]
ASIC chip achieves a reasonable throughput with a small
5×5 diamondSE. Both architecturesuseshomothecy to ob-
tain larger SEs. On the other hand, Déforges [8] directly of-
fers large convex SEs. The maximal SE size and the pro-
grammabilit y is not mentioned, namely, the possibilit y to
control theSE shape after thesynthesis isnot clear.

All these solutions are efficient for small SE sizes or
short concatenations. They become more or less penal-
ized for longer concatenations, such as serial filters. As
an application example, consider ASF6 = δ13×13ε25×25 . . .
ε5×5δ3×3 that consists of 13 morphology operations. One
Clienti’s system instantiates 16 elementary 3×3 processing
units. Hence, it will require 6 image scans (the entire image
must bestored in thememory). Chien also uses thehomoth-
ecy, therefore, asmuch as45scansareto bedone. In the case
of Déforges, neither FPGA occupation nor possibilit y of us-
ing multiple instances in a single chip was communicated.
Therefore, we consider one imagescan for each operator.

Obviously, between two consecutive scans the data are
read/written from/into the memory that degrades perfor-
mance and significantly increases latency to orders of sev-
eral image scans. The dense memory traffic might also jam
the data bus. Our architecture processes an image in a sin-
gle image scan with minimal latency (84 image lines for
ASF6) and memory requirements. These features allows a
temporal-parallel execution of all atomic operatorsthat ises-
sential for achieving the real-time performancefor high de-
manding applications. In addition, the low memory require-
ments facilit ate embedding a several instances of proposed
computation unit in asingleFPGA circuit.

8 Conclusions

It is widely known that processing data in stream allows re-
ducing the latency, the memory consumption and increases
the system throughput. Until recently, computing morpho-
logical dilations or erosions in stream was only possible for
small , limited neighborhoods[5,6,8], or largerectangles[2].
Dilations by large polygons were computed iteratively, by
using the homothecy. This required an external memory for
intermediate data, limited the flexibilit y, and drastically in-
creased thesystem latency.

This paper opens the possibilit y of stream execution to
morphological dilation with large polygons. Althoughthe
decomposition of polygons into the Minkowski addition of
inclined lines is known since years [1], we bring several
propositions that—combined together—allow the execution
in stream.

We show how to implement the dilation byinclined lin-
ear segments with a sequential access to input and output
data.We show how to handle the border effects, and recall
(sincethis is lessknown) that it requires largepadding. Fur-
ther, we show how to partition an image to introduce ef-
ficient spatial parallelism while maintaining the sequential
access to data at all l evels. This avoids increasing the sys-
tem clock by dividing a fast data stream into several slower
streams to process at a slower rate. We show how to effi-
ciently handle theborder effects on thepartition.

The proposed polygon decomposition uses the sequen-
tial access to both input and output data. This allows
for the temporal parallelism, where in concatenations like
. . . δεδ . . . all these operators run simultaneously on the
time-delayed data. We attain a very low (nearly optimal)
latency, which has beneficial impacts on the memory con-
sumption. No external memory is used even for large SEs
and large images. All these aspects brought together allow
a considerabledatathroughput for sequential morphological
filters. We have implemented a programmable IP block, us-
able in industrial systems running under heavy timing con-
straints satisfying upto the 100Hz 1080p FullHD TV re-
quirements.
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Abstract Linear morphological openings and closings are
important non-linear operators from mathematical morphol-
ogy. In practical applications, many different orientations of
digital line segments must typically be considered. In this
paper, we (1) review efficient sequential as well as paral-
lel algorithms for the computation of linear openings and
closings, (2) compare the performance of CPU implemen-
tations of four state-of-the-art algorithms, (3) describe GPU
implementations of two recent efficient algorithms allowing
arbitrary orientation of the line segments, (4) propose, as the
main contribution, an efficient and optimized GPU imple-
mentation of linear openings, and (5) compare the perfor-
mance of all implementations on real images from various
applications. From our experimental results, it turned out
that the proposed GPU implementation is suitable for appli-
cations with large, industrial images, running under severe
timing constraints.

Keywords morphology, opening, closing, linear, 1-D SE,
parallel, efficient, algorithm, implementation, GPU

1 Introduction

Openings and closings are non-linear image operators of
mathematical morphology [1]. They are at the basis of sta-
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tistical measures called granulometries [2–5] and of a class
of non-linear morphological filters called Alternate Sequen-
tial Filters (ASF) [6, 7].

In practical applications, the granulometries allow esti-
mation of a priori unknown geometrical characteristics of
objects in the image. For illustration, we can cite (1) medical
imaging applications e.g., blood cell classification [8], (2)
automated document analysis [9], or (3) industrial control
[10]. The role of the ASF filters is to reduce the noise while
preserving the principal features in the image. They rep-
resent the principal element of numerous applications e.g.,
texture analysis [11] or remote sensing [12]. Even the mor-
phological openings themselves are useful for their filtering
properties in some industrial applications such as [13].

Generally speaking, to obtain the desired result–size
distribution or filtering effect–we have to use a sequence
of openings and/or closings with varying parameters of the
applied computing window, so-called structuring element
(SE). For a given shape of the SE, these variable parameters
are the progressively increasing size of SE and rotation
angle. In order to ensure the exhaustivity of the result,
applications often require computing of an enormous
number of iterations with greater SE, often approaching
hundreds of pixels. Considering continually increasing
image resolution used in industrial applications, one can
intuitively feel that it results in overwhelming requirements
on the computing power. This is true even despite recent
efficient algorithms [14, 15].

In this context, we study how to efficiently implement
the above mentioned operators on graphics cards with
the objective to reduce these computing requirements on
the system. Initially, graphics cards were designed for
graphics purposes only and were not programmable. Based
on numerous parallel processors they were very powerful
compared to their price. Current GPUs have passed the one
Tera FLOPS barrier, and there is no need to use dedicated
graphics languages any more since several frameworks
have been developed for GPGPU1 purposes: CUDA [16] by
nVidia and OpenCL [17] by the Khronos Group are today

1 General-purpose computing on graphics processing units
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(a) Horizontal SE (b) Vertical SE

Fig. 2 Comparison of CPU implementations for horizontal and vertical SEs of size approx. 5% of the image width.

and L the size of the SE, the complexity of the naïve ap-
proach is O(N×L). The computational complexity was im-
proved throughout the years to make the algorithm feasible
for practical applications. In 1985, Pecht [22] defined a loga-
rithmic decomposition of the SE. This decomposition, which
removes most of the redundancy, was further extended by
Coltuc [23], reducing the complexity to O(N× logL). Later,
the complexity was further reduced to linear O(N), hence
independent of the size of the structuring element, by Van
Herk, and Gil and Werman [24, 25]. The linear algorithm
will be referred to as the HGW algorithm hereafter. In [26],
Soille et al. extended this work to arbitrary-oriented open-
ings. In [27], Clienti et al. improved the HGW algorithm by
removing the image backward scanning to reduce latency.

Direct Computation: for the family of openings with
1-D SE, new algorithms were introduced recently to
directly compute openings in only one scan of the entire
image, preserving the complexity of O(N). In [28], Van
Droogenbroeck and Buckley introduced an algorithm
based on anchors, allowing very fast computation of the
linear openings. The anchors are points, which are not
affected by the opening. Nevertheless, the algorithm uses
a histogram. The main drawback of using a histogram is
the increasing memory consumption for finely quantized
data. Even though the memory is no longer an issue for
PC architectures, it becomes a penalizing factor for paral-
lelized implementations on other architectures with limited
memory like GPU. Secondly, search over a long histogram
becomes costly and finely, for floating point accuracy, the
histogram can not be used at all.

Later, Morard et al. [14] introduced a very simple al-
gorithm based on an ordered stack of cords where a cord
refers to a continuous set of pixels of intensity greater than
or equal to a certain value I. With the inclusion relation be-
tween cords and by analyzing the length of each cord, the
computation of linear openings and of linear granulometries

is straightforward. Finally, Bartovsky et al. [15] also devel-
oped an algorithm to build linear openings. It sequentially
scans the signal and erases every peak narrower than SE.
Further explanations on these algorithms are given in sec-
tion 4.

Connected component tree: such approach was de-
scribed in [29]. The approach is based on building
connected components, hence it can be adopted for more
complex tasks such as watershed segmentation [30]. The
drawback of the algorithm is that the complexity depends on
the number of gray levels in the image and requires random
access data, consequently it is not adapted for applications
running under strict time constraints.

3.1 Parallel Implementations

There are several implementations of HGW algorithm in the
literature since it can be easily parallelized. Brambor [31]
described a parallel implementation of the HGW algorithm
on SIMD architectures. Their implementation was tested
on an Intel CPU with the SIMD-SSE2 instruction set. Cli-
enti [27] improved the HGW algorithm and implemented2

it on a SIMD architecture as well. Domanski et al. [33]
used CUDA to implement the HGW algorithm on GPU,
achieving 13–33× speedup. There are several drawbacks
of the algorithm as it computes openings and closings by
dilation-erosion chaining, which requires more computa-
tions than direct approaches. It also has larger memory
requirements [34].

On the contrary, there are few parallel implementations
of the component tree algorithms, among which we can
cite Wilkinson [35], Menotti-Gomes [36] on multicore, and
also Matas [30] on ccNUMA 4-core. They are effectively

2 available in Fulguro image processing library [32]
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so complex that it is difficult to exhibit some parallelism in
these complex algorithms.

Finally, in order to improve the computing efficiency
by parallel implementation, direct computation algorithms
seem to be the best candidates compared to HGW and
component-tree algorithms. This is why we focus on this
class of algorithms in the remainder of this paper.

3.2 Selection of a Direct Linear Opening Algorithm

We need to select the best sequential algorithm candidate
for a parallel implementation leading to the most efficient
execution on a GPU platform. As explained above, such an
algorithm has to allow arbitrary angles computing using di-
rect linear opening for lower computation and complexity
requirements. Hence, there are three algorithms available
to benchmark and compare: (1) Van Droogenbroeck [28]
referred to as VanD, (2) Morard et al. [14] referred to as
Morard and (3) Bartovsky et al. [15] referred to as Bar-

tovsky. To this list, we will add Clienti algorithm [27] al-
though it is not a direct computation based algorithm. Effec-
tively, this is one of the fastest HGW implementation that
can consequently give a useful comparative point. It will be
referred to as Clienti.

For a fair comparison, all these algorithms were imple-
mented using the same image-processing library with the
same interface and with all the optimization flags turned on.
We used only one core of an Intel Core i7-870 2.93 GHz
CPU for this benchmark. These algorithms have been ap-
plied on the texture images shown in Fig. 12(a), (b).

Execution performances of the four algorithms for both
horizontal and vertical openings are presented in Fig. 2. The
performance P is computed as P = N/t, where N is the im-
age size and t is the computation time. This measure is con-
sequently independent of the image size. Note, however, that
the performance actually does depend on the image size (see
e.g. Fig. 2(b)). Each marked value in the plots represents the
performance computed from the mean computation of 100
openings. For each image the length of a structuring element
was chosen to be equal to 5 % of the image width/height be-
cause, in most applications, the length of SE is considerably
smaller than the image size.

From the benchmarks we see that for vertical SEs and for
large images, the performances significantly decreases for
all algorithms, except for the Bartovsky. This is explained
by the fact that this algorithm accesses the data sequentially
even for vertical structuring elements. It is clear that VanD
algorithm is the fastest, followed by Morard, Bartovsky, and
Clienti, for both vertical and horizontal orientation. While
VanD achieves the best performance, it is nevertheless un-
suitable for parallelization on a GPU because of its high
memory requirements especially for higher bit depths and
arbitrary oriented SEs. In contrast, Morard and Bartovsky
algorithms are able to compute openings and closings effi-
ciently regardless the orientation of the SE or the data type

Algorithm 1: Morard algorithm: G ←
Open1D(F,λ ,S)

Input: F – input 1-D signal, λ – size of SE, S – pointer to
LIFO stack

Result: G – output 1-D signal
Data: S – a stack of triplets (value, position, flag)
initialize S;
for rp← 0 to |F |−1 do

if S.empty() or F [rp]> S.top(value) then
S.push({F [rp],rp, f alse});

else
while F [rp]< S.top(value) do

f z← S.pop();
if f z(passed) or rp− f z(position)≥ λ then

WriteFlatZones(F,G,rp,S, f z);
process S;

process all zones remaining in S;

precision with minimum memory requirements. Therefore,
we selected these two algorithms for parallelization and im-
plementation onto the targeted GPU architecture.

4 Basic Implementation on GPU

4.1 Morard and Bartovsky Algorithms

In this section, we briefly introduce the Morard and Bar-
tovsky algorithms for computation of morphological open-
ings and closings with a linear SE. The detailed description
can be found in [14,15]. Both algorithms are able to compute
the operation in O(N) time with respect to the image size and
O(1) with respect to the size of SE. The Bartovsky algorithm
was originally designed for streaming architectures such as
FPGA and hence performs scanning of the input data in se-
quential order. Nevertheless, it can be simply modified to
perform scanning along lines according to the orientation of
SE, much like the Morard algorithm. During the scan, in-
tensity and position of each pixel is stored in an auxiliary
data structure if necessary. Whereas the Morard algorithm
uses the LIFO stack, the Bartovsky algorithm uses the FIFO
queue. For arbitrary directions, both algorithms use the Bre-
senham’s lines, as described in [26].

In the Morard algorithm, the image line is scanned for
pixels where the intensity changes. Whenever the current
pixel intensity is higher than the preceding, the current pixel
is pushed to the stack. In the opposite case, the stack is be-
ing emptied while necessary. The algorithm needs to store
an extra bit for a boolean flag indicating the status of a pixel.
The size of the stack is limited only by the size and the bit
depth of the image. After processing the stack, the output is
written. The outputs are irregular. A pseudo-code is shown
in Alg. 1.

In the Bartovsky algorithm, the image line is scanned for
so-called peaks. According to a peak configuration, either a
pixel is pushed to the queue or the queue is being emptied.
The size of the queue is limited by the size of SE. After
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Algorithm 2: Bartovsky algorithm: G ←
Open1D(F,λ ,Q)

Input: F – input 1-D signal, λ – size of SE, Q – pointer to
FIFO queue

Result: G – output 1-D signal
Data: Q – a double-end queue of pairs (value, position)
initialize Q;
for rp← 0 to |F |−1 do

while F [rp]≤ Q.back(value) do
process Q;

Q.push({F [rp],rp});
if rp = Q.front(position)+λ then

Q.pop();

if rp≥ λ then
G[rp−λ ]← Q.front(value);

processing the queue, the output is written. The writes are
regular and follow the reads with the well-defined latency
corresponding to the size of SE. A pseudo-code is shown in
Alg. 2.

4.2 GPU Parallel Architecture

Before we describe basic GPU implementations of the algo-
rithms, we briefly review some properties of the GPU archi-
tecture, as shown in Fig. 3.

From the hardware point of view, a GPU consists of hun-
dreds of so-called streaming multiprocessors (SM). Each in-
cludes a number of shader processor (SP) cores, a number of
registers, a small shared memory providing communication
between SPs, and fast ALU units for hardware acceleration
of transcendental functions. One global memory is shared
by all SMs and provides a capacity in order of GB and the
memory bandwidth in order of 100 GB/s. There are also two
additional read-only cached memory spaces accessible by
all threads: the constant and texture memory spaces. They
can help programmers to improve the performance of their
implementations [37,38]. In some recent GPU architectures,
such as FERMI by nVidia [39], the global memory is cached
as well.

From the programmer’s point of view, every program
consists of two parts, a host code for CPU, and a kernel code

for GPU. Before executing a kernel, the host program al-
locates a memory on GPU and transfers data if necessary.
Then a kernel is configured and executed. The configura-
tion defines the number of threads allocated for kernel ex-
ecution. Generally, the number of threads should be much
higher than number of processing units of GPU. This ap-
proach allows (1) the proper scaling on various hardware
configurations, and (2) hiding the memory latencies. The
threads form groups called blocks (as in CUDA [37]) or
work-groups (as in OpenCL [40]), following the hierarchy of
SMs and SPs. Synchronization of threads and data sharing
is possible within the group only. The threads are executed
concurrently in warps, usually of 32 threads each.

Fig. 3 Thread mapping and memory hierarchy in the GPU architec-
ture.

4.3 GPU Implementation of Morard and Bartovsky
Algorithms

Regarding the design of both algorithms, the input image
is scanned in the sequential manner. However, all lines
of the image can be scanned concurrently, as shown in
Fig. 4. Thus, the parallelism can be introduced by bind-
ing individual threads to individual lines of the image.
Each image line is processed independently using its own
algorithm-dependent stack or queue, respectively. This
requires the GPU memory to be large enough to contain all
auxiliary data structures. Here, the Bartovsky algorithm is
favorable, since the sizes of the queues used are limited to
the size of SE whereas the stacks used by Morard algorithm
are generally limited by the size of the image.

The mapping of threads for all SE orientations is de-
scribed in Fig. 4. For an arbitrary angle α , the overall num-
ber of threads can be simply computed as follows:

T = w+ ⌈h|cotα|⌉, α ∈ [45◦,135◦)∪ [225◦,315◦), (4a)

T = h+ ⌈w| tanα|⌉, α ∈ [−45◦,45◦)∪ [135◦,225◦), (4b)

where w and h are the width and the height of the input im-
age, respectively. Thus, generally T > w or T > h, respec-
tively. Some of threads spend a part of the computation time
outside the image domain where they do not compute any-
thing. Thanks to thread locality, this brings little overhead
only because in the GPU thread scheduler, thread warps that
fall outside the image domain are quickly replaced by those
that fall inside.

It should be noted that the processing of both the stack
and the queue is data-dependent, thus data accesses are irreg-
ular. Therefore, during this part of the computation, threads
are divergent. This limits the overall performance of the par-
allel implementation. In the Bartovsky algorithm, the data
accesses to both input and output images are regular.
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(a) Vertical SE (b) SE of angle α ∈ [45◦,135◦)∪ [225◦,315◦)

(c) Horizontal SE (d) SE of angle α ∈ [−45◦,45◦)∪ [135◦,225◦)

Fig. 4 The mapping of threads to the 2-D image grid in the GPU implementation of the algorithm for computing 1-D morphological open-
ings/closings. Each thread, denoted by its ID, is mapped to an individual image column or row, respectively.

(a) Image D15 (b) Image D47

Fig. 5 Comparison of basic GPU implementations of Morard and Bartovsky algorithms. Opening was computed with SE of both horizontal and
vertical direction and size approx. 5 % of image width.
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4.4 Experimental Results

The basic GPU implementations, described in the previous
section, were compared on nVidia Tesla C2050 GPU with
14 MPs at 1.15 GHz and 3 GB RAM. Again, all experiments
were made with the texture images shown in Fig. 12(a), (b).
Results are shown in Fig. 5. The presented performance does
not include the times needed for the data transfer between
CPU and GPU.

Contrarily to the performance on CPU, the Bartovsky al-
gorithm achieves better performance than the Morard algo-
rithm. However, its performance is highly sensitive to the
SE orientation, as shown in Fig. 5. For a horizontal SE, the
performance is significantly lower due to extensive L1 cache
misses, as detected by Nsight Visual Profiler [41]. As the L1
cache is stored in memory banks and memory accesses are
synchronized, most of cache queries are directed to the same
memory bank leaving other memory banks unused. This is
not the case of the Morard algorithm since it generally keeps
the memory accesses irregular.

5 Efficient Implementation of the Bartovsky Algorithm

The choice of the algorithm to optimize is guided by
the analysis of the Bartovsky and Morard algorithms in
sections 4.3 and 4.4. Despite higher performances of the
Morard algorithm on CPU, the Bartovsky algorithm has
several advantages:

(1) Both the data accesses to the input and output image
are regular. This helps to make the thread execution syn-
chronous and reduces the thread divergence.

(2) The maximum length of the FIFO queue is limited
by the length of SE. This strongly limits the memory re-
quirements. Recall that we are to bind one thread per im-
age line (Fig. 4). For large images, with potentionally many
threads, it is important to have a small memory footprint of
each thread.

In the basic implementation on GPU (contrarily to
CPU), the Bartovsky algorithm is sensitive to the SE
orientation. Hence, we shall introduce several optimization
steps not only to increase the overall performance but, par-
ticularly, to keep the performance stable for all orientations.
These steps are described in the following sections.

To prove the choice of the Bartovsky algorithm, we ap-
plied the optimization steps also on the Morard algorithm
and performed tests to compare both optimized GPU imple-
mentations. The results are shown in Section 6.

5.1 Parallelism Enhancement

In the basic implementation, the parallelism was introduced
by mapping GPU threads to individual image rows or
columns, creating the grid of h or w threads, respectively
(where h and w are height and width of a 2-D input image,
respectively). However, if an input image is not large

Fig. 6 Image split applied for opening/closing with vertical SE of size
2. Image is split into 2 zones, introducing twice more threads. The
threads are denoted by vertical arrows, analogously to Fig. 4.

enough, the GPU’s MPs are not fully occupied. Therefore,
we introduce more parallelism by splitting the image
into two or more parts. In the following text, we refer to
them as zones. As each pixel can be affected by (2λ − 2)
neighboring pixels (where λ is the length of SE), the zones
need to overlap by 2(λ − 1) pixels. An example of the
image split for a vertical SE is shown in Fig. 6.

It is evident that the theoretical speed-up s that can be
achieved depends on the SE length λ , the image size and the
number of zones Z. For vertical SE we get the following:

s = Z

[
1− (Z−1)(2λ −1)

h

]
, (5)

where h is the image height. For small λ we get s ≈ Z,
while for λ ≈ h/(2Z) we get s ≈ 1. It should be noted that
for large input images it is not necessary to introduce more
parallelism by splitting the image, it can even decrease the
performance. The optimal choice of the parameter Z is dis-
cussed in section 5.4.

5.2 Optimization of Data Accesses

To reduce the memory latency, the usage of the global mem-
ory should be avoided where possible. Alternative memory
spaces can be used for both the input image and the FIFO
queues. The input image can beneficially be stored in the
read-only cached texture memory. This is true also for the
recent FERMI architecture, which introduced L1 cache [39,
42], because the texture memory helps significantly improve
the performance for horizontal SEs where L1 cache fails due
to bank conflicts. The FIFOs can be stored in the shared
memory. As the amount of the available shared memory is
limited, the maximum length lmax of the FIFO is limited to
lmax = S/(Sb×d), where S is the amount of the shared mem-
ory available, Sb is the number of threads per block (work-
group) sharing the memory, and d is the size of the data type.
Hence, the most recent values of the FIFO are stored in the
shared memory in a circular buffer so the position of the first
element varies during the computation. The rest of the FIFO
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Fig. 7 FIFO storage in the shared and the global memory. The numbers
indicate the order of pushing the element into the FIFO. The marked
elements (the first one and the last two) are also cached in registers.

is stored in the global memory. The FIFO storage is shown
in Fig. 7.

The constraint on the FIFO length mentioned above
can be considered as a hard limit. However, using as much
shared memory as possible can lead to a performance de-
crease because in that case, the shared memory is allocated
for one thread block per MP only. Since the MPs are capable
of execution of more thread blocks, the optimal FIFO length
needs to be chosen carefully, as discussed further.

To conclude our choice of memory spaces, using L1 and
L2 caches for input data turned out to be inefficient for some
SE orientations, as explained in Section 4.4. The texture
memory is read-only, cached, and can be allocated up to
the size of the device memory. Therefore, it is suitable for
the input image. The size of the texture cache is relatively
small (8 kB per multiprocessor) but sufficient, thanks to the
spatial locality. The shared memory is rewritable, relatively
small (up to 48 kB per MP), and fast. In terms of latency, it is
comparable with registers, provided that block conflicts are
avoided—which is guaranteed in our implementation. Thus,
it is suitable for FIFO caching.

5.3 Consideration of Arbitrary Orientations

As noted in section 4.4, the performance of Bartovsky algo-
rithm on GPU is sensitive to SE orientation. Thus, a careful
attention should be paid to this issue when computing open-
ings in arbitrary directions. By using the texture memory, the
input image is cached and the latency of memory reads is re-
duced. The final step is to optimize the memory writes to the
output image. Experiments proved that openings with SEs
of orientation α ∈ (−45◦,45◦) are computed faster when
writing the output image transposed. The output image is
subsequently corrected using the modified transpose kernel
from [43].

5.4 Configuration of Performance Parameters

In the optimized GPU implementation, we have introduced
several parameters that influence the performance: the block
size (work-group size) Sb, the number of zones Z, and the
optimal length l of the FIFO buffer allocated in the shared
memory. They all depend on these properties: the image di-
mensions (w or h), the SE length λ , the number of the MPs
NMP available on the used device, the shared memory size

per MP S, the warp size W and the number of blocks (work-
groups) Nb that can be executed on a single MP. For optimal
configuration, the following set of rules should be satisfied:

1. Sb should be multiple of W ,
2. Z ≥ (Sb×Nb×NMP)/T where T is defined in Eq. (4),
3. Z ≤ h/(2λ ) or Z ≤ w/(2λ ) following Eq. (5),
4. l ≤ S/(Sb×d×Nb),
5. l should be a power of two allowing the bitwise operator

"&" to be used instead of the costly modulo operator for
addressing the FIFO queue items.

It should be noted that some of the rules cannot be sat-
isfied in some cases. In particular, rules (2) and (3) can be
conflicting for small input images. Performances for some
parameter configurations are presented in the following sec-
tion. CUDA programmers are advised to use a tool called
"CUDA Occupancy Calculator" which can help to compute
the optimal kernel configuration [43].

6 Experimental Results

We made the performance analysis of the optimized GPU
implementations, based on images with clear linear struc-
tures (see Fig. 12), and the results of our comparisons are
shown in Fig. 8, 9, and 10.

In the first experiment (Fig. 8), the comparison of opti-
mized GPU implementations of Bartovsky and Morard algo-
rithms is shown, in analogy to Fig. 5. We assumed that the
former is more suitable for the GPU architecture than the
latter. This assumption was confirmed by the experiments.
Thus, in the following experiments, we used the more suc-
cessful implementation.

In the second experiment (Fig. 9 and 10), we compared
the performance of our GPU implementation, referred to as
"GPU (Bartovsky)", to the corresponding CPU implementa-
tion, referred to as "CPU (Bartovsky)", and also to the state-
of-the-art implementation in the OpenCV library with the
GPU support (so-called OpenCV_GPU) [20], referred to as
"GPU (OpenCV)". It turns out that our GPU implementa-
tion is approximately 10–50× faster than the CPU imple-
mentation, depending on the input data size and the length
of the SE. Despite the fact that the Bartovsky algorithm it-
self is sequential so the parallelism introduced in its GPU
implementation is limited, our implementation is faster than
the OpenCV_GPU in every case. Whereas for small SEs the
difference between the two GPU implementations is negligi-
ble, for larger horizontal and vertical SEs the speedup is up
to 50×. For diagonal (and arbitrarily oriented) SEs, the per-
formance of the OpenCV_GPU implementation falls down
very quickly. This is because this implementation uses the
NVIDIA Parallel Primitives (NPP) library [44] which sup-
ports only simple SE shapes, therefore the line SE has to be
represented by a corresponding 2-D rectangle, i.e. a matrix
with elements correctly set to 0 or 1.

The most important performance limit of our implemen-
tation is the number of threads that can be executed. If the
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(a) Image D15 (b) Image D47

Fig. 8 Comparison of optimized GPU implementations of Morard and Bartovsky algorithms. For comparison with the basic GPU implementa-
tion, refer to Fig. 5.

(a) Image D15, SE size = 2 (b) Image D15, SE size = 5 % of image width

Fig. 9 Comparison of CPU and GPU implementations for various image sizes, various SE orientations, and fixed SE sizes.

(a) Image D15, 1280× 1280 px (b) Image D15, 5120× 5120 px

Fig. 10 Comparison of CPU and GPU implementations for fixed image sizes, various SE orientations, and various SE sizes.
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(a) Image D15, 640× 640 px (b) Image D15, 10240× 10240 px

Fig. 11 The contribution of the image split into performance for various image sizes: Z = 1 means no split, Z = 2, Z = 4 means split into 2 and
4 zones, respectively, as described in 5.1; Zp = 2, Zp = 4 means theoretical speedup, as predicted in Eq. (5).

Table 1 Optimal kernel configuration for nVidia graphics cards and
for a vertical SE. Choice of the optimal block size Sb, the Z parameter,
and the size of the shared memory l depend on many parameters, as
described in section 5.4. The Z parameter should be decreased if the
SE size is too large. Compute capability refers to a core architecture of
nVidia graphics cards [45].

Compute capability 1.x Compute capability 2.x

Sb Image width w Z l Sb Image width w Z l

32 < 64NMP 4 16 32 < 64NMP 4 32

64 < 128NMP 4 8 96 < 192NMP 4 16

64 < 256NMP 2 8 96 < 384NMP 2 16

64 ≥ 256NMP 1 8 96 ≥ 384NMP 1 16

input image is too small, there is not enough threads and the
GPU’s is underused. This can be avoided by splitting the im-
age in zones (refer to Fig. 6). Adjacent zones need to over-
lap to avoid border effects. For large SE sizes, the overlap
becomes large, with the consequence that the performances
decrease, see Fig. 10(a). For larger image sizes, the decrease
is proportionally lesser, see Fig. 10(b).

Thanks to the optimizations described in section 5.3 we
achieved stable performance for all SE orientations. The per-
formance was tested for all α ∈ [0◦,180◦), although for the
sake of simplicity, the graphs show only three orientations.
To conclude, our GPU implementation can be used for an ar-
bitrary SE length and direction, achieving the performance
more than 1000 Mpx/s. This allows computing one opening
on a 40 Mpx image with any 1-D SE in any orientation.

The contribution of splitting the image into zones is
shown in Fig. 11 and compared with a theoretical speedup,
as computed by Eq. (5). For smaller images, the opti-
mization increases the performance as expected. Note that

for large SE sizes, the performance does not decrease as
quickly as theoretically predicted. It is because the further
parallelism introduced by the split not only occupies more
MPs but it also helps to hide memory latencies. For larger
images, the number of threads is large enough to occupy
MPs, hence the image split does not introduce a further
speedup.

The optimal choice of parameters for nVidia graphics
cards and for a vertical SE is shown in Table 1. For AMD
Radeon graphics cards, the optimum values may differ. For
other orientations, the optimal parameters are analogous.

The performance values do not include the data transfers
between CPU and GPU. According to our measurements,
the time needed to transfer data is comparable with the time
needed for the computation of a single opening, hence the
overall speedup is half. Here, the GPU implementation is fa-
vorable for images larger than 6 Mpx. In the computation
of multiple openings, the data transfer overhead is negligi-
ble. The performance values for our GPU implementation
were obtained on top-class Tesla C2050 GPU (current price
1500 EUR), but we did several test also on 10× cheaper
GeForce GTX 470 GPU, and the results were comparable.

6.1 Practical Applications

In practice, linear openings and closings can be used for the
detection of either local or global orientations of linear struc-
tures. Hence, we tested and compared two CPU implemen-
tations (Bartovsky, Morard) and our GPU implementation
of linear openings and closings based on images from three
different application domains, namely fingerprint analysis,
texture characterization, and document analysis. In all cases,
we computed a set of linear openings allowing massive par-
allelism on GPU simply by computing linear openings in all
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Table 2 Comparison of CPU and GPU implementations for computation of an angular spectrum. The speedup is computed by comparing the
GPU implementation with the best CPU (Morard) implementation.

Image Image size No. of Time [ms] Speedup

angles CPU (Bart) CPU (Mor) GPU (Bart) GPU/CPU

Fingerprint 784× 1133 180 3768.7 3129.2 115.9 27.0

D15 640× 640 180 2425.8 2014.0 58.0 34.7

D47 640× 640 180 2397.7 2014.0 55.1 36.6

Music1 1000× 1411 81 5830.0 4840.7 129.3 37.4

Music2 1000× 1301 81 7297.1 4958.8 136.5 36.3

directions concurrently avoiding the problem with insuffi-
cient MPs occupancy. We will show that this leads to a sig-
nificant speed-up even for small input images. The bench-
mark results for all applications are shown in Table 2.

6.1.1 Local Orientation of Linear Structures in Fingerprint

Images

The first application was the computation of local orientation
of linear structures in a fingerprint image (Fig. 1). The oper-
ator ζλ ( f ) was computed according to Eq. (3). The GPU im-
plementation achieves a significant speedup (approximately
27×) even for small input images (0.9 megapixels).

6.1.2 Angular Spectrum of Texture Images

The second application was the computation of the angu-
lar spectrum of texture images. The spectrum was computed
in order to find the most important orientation(s) of linear
structures in the image. Two test images along with their
spectra are shown in Fig. 12. A spectrum σλ (α) of an image
f is computed as follows:

σλ (α) = ∑
x∈Ω( f )

[
γα

λ ( f )
]
(x). (6)

Again, the GPU implementation achieves a signifi-
cant speedup (approximately 35×) for input images of
0.4 megapixels.

6.1.3 Rotation Detection of Music Sheet Scans

In the third practical application, we detected the rotation
of music sheet scans. The music sheets were scanned and
stored in an electronic archive. In the process of scanning, a
random rotation could occur due to imperfect insertion of the
paper to the scanner. The rotation was detected by comput-
ing linear closings with large SEs (λ = 250) of 81 different
orientations within the angular range from −10◦ to 10◦ with
the step of 0.25◦. The angular spectrum was computed ac-
cording to Eq. (6). Two test images along with their spectra
are shown in Fig. 13. In this case, the achieved speed-up was
approximately 37×.

7 Perspectives - Extention to 2-D

The 2-D opening is not separable into two orthogonal 1-D
openings as is the dilation. Hence, one cannot directly com-
bine two orthogonal 1-D openings to obtain a 2-D opening.

It is known, that efficient GPU accelerations can only be
obtained with simple, regular threads, using as low mem-
ory as possible. Hence, the separability principle is useful.
Following this idea, one can form 2-D openings by concate-
nating 2-D erosion and 2-D dilation which are separable. A
1-D dilation algorithm with alike properties as the Bartovsky
algorithm has been published in [34].

Assume a 2-D rectangular B in Eq. (1). It can be decom-
posed into two (horizontal and vertical) 1-D dilations and
two 1-D erosions. Similarly, for hexagons we need to com-
pute three erosions and three dilations, and for octagons four
erosions and four dilations.

All these orthogonal operators need to be computed
sequentially. One cannot expect to obtain the same perfor-
mances in 2-D as with 1-D openings, since the execution
times of the orthogonal operators are added together.

8 Conclusions

We have reviewed and compared the most efficient linear
morphological opening/closing algorithms. At present,
the fastest approaches (Van Droogenbroeck and Buckley,
Morard et al., and Bartovsky et al.) compute the opening
within a single image scan. The algorithm of Van Droogen-
broeck and Buckley is the fastest one on CPU, however,
it is efficient for 8-bit gray-scale images and for vertical
and horizontal linear openings only. Morard and Bartovsky
algorithms are applicable to any data accuracy (including
floating point).

As described in the paper, both Morard and Bartovsky
algorithms themselves are sequential. Hence, the only pos-
sibility of introducing more parallelism is on the thread ex-
ecution level. We explain the choice of the algorithm (Bar-
tovsky) to implement with regard to the GPU architecture
(little memory, synchronous execution of threads). We have
used various optimization techniques to speed up the code.
Mapping various types of data (input, output and FIFOs) to
various memory spaces is a crucial aspect. The choice of
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(a) Image D15 (b) Image D47

(c) D15 Spectrum σ40(α) (d) D47 Spectrum σ20(α)

Fig. 12 Texture images [46] and their angular spectra.

(a) Image Music1 (b) Image Music2

(c) Music1 Spectrum σ250(α) (d) Music2 Spectrum σ250(α)

Fig. 13 Music sheet scans (courtesy of Josef Pilný, Big Band Lanškroun) and their angular spectra. The real (manually measured) rotation angle
is denoted by αr.
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memory spaces is described in detail in Section 5.2. We also
observed performance limits on small images, hence we try
to introduce more spatial parallelism by splitting small im-
ages. Finally, we give rules of optimal configuration regard-
ing input image size and the features of the available GPU.

We provide comparisons with the fastest implementa-
tions on CPU and on GPU. The current state-of-the-art stan-
dard, OpenCV_GPU, is suitable for GPU architecture but
has time complexity dependent on the SE size. The pro-
posed implementation obtained stable performance over all
orientations and sizes of the structuring element. For a sin-
gle opening of a large image, we have measured up to 50×
speedup compared with CPU. For small images, the gain is
significant (up to 37× speedup) if one computes a set of
openings in multiple directions. For example, within 60 ms,
the GPU implementation is capable of computing a single
opening at arbitrary angle of a 60 Mpx image, or a set of
openings in 180 directions of a 640×640 px image.

To conclude, this solution is suitable for applications
with large, industrial images, running under severe timing
constraints, such as production control in e.g. metallurgy or
textile industry. A typical such application requiring using
high-resolution images, and running under severe time
constraints is the surface control. Thin (often µm) cracks in
large surfaces require using high resolution images, and the
timing is given by the industrial cycle.

Source codes of the CPU and GPU implementations of
the Bartovsky algorithm are publicly accessible under GNU
GPL license [47].
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ABSTRACT

The computation of the distance function is a crucial and limiting element in many applications of image
processing. This is particularly true for the PDE-based methods, where the distance is used to compute various
geometric properties of the travelling curve. Massive Marchinga is a parallel algorithm computing the distance
function by propagating the solution from the sources and permitting simultaneous spreading of component
labels in the influence zones. Its hardware implementation is conceivable as no sorted data structures are used.
The feasibility is demonstrated here on a set of parallely-operating Processing Units arranged in a linear array.
The text concludes by a study of the accuracy and the implementation cost.

Keywords: distance function, hardware for image processing, partial differential equations, parallel computing.

aShort preliminary study published in: Dejnožková and Dokládal (2003b) (algorithm) and Dejnožková and Dokládal

(2003a) (architecture)

INTRODUCTION

Recently, the image processing methods based

on Partial Differential Equations (PDE) have gotten
an ever increasing attention. The examples of

application can be found in numerous domains such
as filtering (non-linear diffusion), active contours used

for segmentation of either static images (Voronoï
graph, watershed, shortest path, object detection) or

sequences (object tracking) or more recent methods
as shape from shading. The implementation of the

PDE-based method requires the computation of non-
linear functions. They are often solved by iterative

and recursive algorithms characterized by a high

computational cost. Therefore, only a limited number
of real-time applications exists. The most common

existing custom chips implement non-linear filtering,
i.e. the non-linear diffusion (Perona and Malik,

1988; Gijbels et al., 1994). One can find some
experiments with super-computers (Sethian, 1996) or

some examples of PDE-based segmentation using the
level-sets implemented on graphic hardware (Rumpf

and Strzodka, 2001).

The design of a custom chip becomes meaningful

not only for the acceleration but also for the
implementability on embedded systems (Suri et al.,

2002). Many authors put forth a considerable effort to
reformulate existing sequential algorithms in a parallel

form or to speed up the convergence (Weickert et al.,
1998). However the number of necessary iterations

remains excessively high.

The motivation of our work is to define a general

type of parallel architecture fitting the needs of

the above-mentioned applications. There are several

reasons why few architecture propositions have been

made for interface (curve-based) algorithms. The

curve traveling in a continuous space
�
n is implicitly

described in a discrete space ✁ n by the distance to the
curve, as proposed first in Osher and Sethian (1988).

The distance function is the computation support of

the level-set methods. Its zero-level set represents the

traveling interface. Its accurate computation is very

important because its geometrical properties (e.g. the

curvature) are then used to describe its evolution in

the time. The interface evolution imposes frequent

and random memory accesses. Also, the numerical

solution of a classical variational formulation leads

to deformations of the implicit description of the

curve (Kimmel, 1995) imposing more or less frequent

reinitializations. In the work of Zhao et al. (1996) and

Gomez and Faugeras (1992) can be found propositions

of algorithm without re-initialization paid by the

necessity to search the propagation speed on the

zero-level set even for the points situated elsewhere.

Because of the complexity and high computational

cost, the classical re-initialization approach is still

leading (Paragios, 2000). Repetitive re-initialization

alternated with another type of processing increases

the requirements on the implementing architecture.

Other applications, where the distance function is

the result and not only a support, are the reconstruction
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of 3D surfaces, minimal path search (Kimmel and
Sethian, 2001) or continuous watershed (Meyer and

Maragos, 1999).

In Gijbels et al. (1994) has been proposed a linear-
array, SIMD architecture for PDE-based filtering

by linear diffusion. An efficient hardware (parallel)
implementation of a (weighted) distance function

preserving the accuracy and the necessary sub-pixel

precision for the continuous interface evolution is still
needed. The goal of this paper is to show that the

same architecture type can also be used for interface

evolution algorithms.

This paper is organized as follows. After a brief

review of existing distance computing algorithms,

we analyse the principles of the Massive Marching.
Section “Hardware implementation” presents its

hardware implementation. Experiment results state
the achieved implementation parameters such as the

surface requirements, clock rate and necessary fixed-

point precision for a given error.

REVIEW OF EXISTING ALGORITHMS

The sub-pixel accuracy is one of the essential

features required from algorithms computing the
distance function for the level-set methods. The initial

condition, a closed curve ✂ 0 placed arbitrarily in � n ,
represents the zero-level set of the searched distance
function u ✄ x ☎ y ✆ . For n ✝ 2 we have:✂ 0 ✝✟✞✠✄ x ☎ y ✆☛✡ � 2 ☞ u ✄ x ☎ y ✆✌✝ 0 ✍✏✎ (1)

Recall that u is discrete, i.e. only u ✄ i ☎ j ✆✑☎ i ☎ j ✡✒✁ 2 is
known. Other necessary characteristics required from

the distance computing algorithms are the preservation
of the accuracy, computation on a narrow band for

the active contours and simultaneous propagation of

components labels.

Current algorithms used to find u given ✂ 0 are
from the hardware implementation aspect optimal only

for a particular type of applications. Two types of
algorithms exist: the first type proceeds by scanning

the entire image and the second type propagates a

narrow-band solution from the initial interface.

The algorithms using successive scannings are

simple to implement. However, they suffer from a
serious drawback that the next scan cannot begin

before the previous one ends. Therefore, the scanning-

based methods are optimal only for those applications
where the solution on the entire image is required.

A classical example is the algorithm of Danielsson

(1980) which is based on two coordinates description
and its overall complexity is ✓✔✄ N ✆ , where N is the
number of points in the image. It yields the square

of the distance function, which imposes to compute
the square roots before the distance can be used for
other computation, e.g. the curvature. Moreover, this
algorithm is not conceived to operate with a sub-pixel
precision. This problem is resolved in Tsai (2000)
which proposes a sweeping algorithm (inspired from
Boué and Dupuis (1999)). By using a new numerical
scheme, it yields the exact distance and not the square
and it reduces the numerical error of the classical
Godunov scheme. The complexity of this algorithm is✓✔✄ MN ✆ where M is the number of data points and N
is the number of grid points. However it is not possible
to calculate the influence zones of different sources.

The algorithms operating in the narrow band are
more appropriate for the propagation of labels. Their
implementation is complicated by using sophisticated
data structures and the complexity is ✓✔✄ Nlog ✄ N ✆✕✆ . The
Fast Marching introduced by Sethian (1996) is the
most often used propagation technique in combination
with the PDE-based methods. The algorithm allows
to compute the distance function by realizing the
principle of Huygens, as it is introduced in Verbeek
and Verwer (1990), by propagating equidistant waves.
For this, the Fast Marching algorithm needs to
use an ordered data structures with a real-number
priority. In every iteration can be processed only
the point with the highest priority. The maximum
priority represents a global information and makes
this algorithm sequential. Moreover, the hardware
implementation of data structures using a real-number
priority is difficult because of operations like insertion,
reading and re-positioning of elements.

This is not the case of the USP algorithm (Eggers,
1997) which does not use any sorted data structures.
However, the result it yields is the square of the
distance and it requires to memorize the current
iteration number. It does not operate in sub-pixel
accuracy and the complexity is ✓✔✄ n3 ✆ for images of
n ✖ n points.

IMPLEMENTATION ISSUES

The filtering as well as the segmentation
algorithms respond to some function of geometrical
properties of the level-set function u such as gradient or
curvature. These geometrical properties are obtained
directly from the values of u or its derivatives
(Sethian, 1996; Sapiro, 2000). The computation of
the derivatives is an elementary operation. For every
point concerned, these operations are performed on
the nearest neighborhood and are independent each
of the other. Hence they can be executed in parallel
(Dejnožková, 2002).

Since the PDE-based algorithms principally
consist in repetitive computation of the elementary

122

191



Image Anal Stereol 2003;22:121-132

operations, the SIMD (Single Instruction Multiple
Data Stream) architecture is the natural choice to
reduce the processing time. We propose a divide-
and-conquer approach in order to obtain a more
balanced processors’ activity and to limit the space
on the chip. Thus one can benefit from a quasi parallel
implementation by dividing the input data into blocks.

Recall that the SIMD architecture consists in an
array of processors with an interconnection network
for the communication. Each processor has its private
non-shared memory. A single controller broadcasts
instructions to all the processors. The processors then
execute the instructions simultaneously at a given time.

The choice of the algorithm to implement and
the architecture type come together. Compared to the
filtering, other techniques as the continuous watershed
or active contours require computation of a (weighted)
distance to the given markers. These algorithms
use sophisticated ordered data structures (such as
hierarchical queues or a sorted heap) which can
penalize the execution time on the SIMD architectures.
The processing of such data structures introduces a
sequential approach. Only one point (with maximal
priority) can be processed at a time. Another reason
why the SIMD architecture would be less efficient for
this type of algorithms is the random access to the
memory.

In the next section we show the implementation
of the Massive Marching algorithm used for the
computation of a distance function. This algorithm
is fully parallel. Hence the execution time on an
architecture with P processors is tparallel ✝ tsequential ✗ P.

MASSIVE MARCHING

ALGORITHM

Throughout this paper we use the following
notations. Let p ✝✙✘ xp ☎ yp ✚ be a point of an isotropic,
rectangular and unit grid. V ✄ p ✆ denotes the 4-
neighborhood of p defined as V ✄ p ✆✛✝✢✜✣✘ xp ☎ yp ✤ 1 ✚ ☎✘ xp ✤ 1 ☎ yp ✚✦✥ . The point q is a neighbor of p if q ✡ V ✄ p ✆ ,
u ✄ p ✆ denotes the value of the distance function in p.

NUMERICAL SCHEME

Numerical schemes allow to obtain the value of
the distance function in a point according to the
values of the neighbors. The numerical scheme is a
discretization of the eikonal equation:☞

∇u ☞ ✝★✧✩☎ (2)

where ✧ is the weight for a weighted distance. Some
propositions of numerical schemes can be found in

Sapiro (2000) or Tsai (2000). The most often used

scheme is, in the domain of the Level Set, the scheme

proposed by Godunov (Sethian, 1996).✪
max ✜ u ✄ p ✆✬✫ u ✄✭✘ xp ✤ 1 ☎ yp ✚ ✆✮☎ 0 ✥ 2 ✫
max ✜ u ✄ p ✆✬✫ u ✄✭✘ xp ☎ yp ✤ 1 ✚ ✆✣☎ 0 ✥ 2 ✯ 12 ✝✰✧✱✄ p ✆✲✎ (3)

In order to obtain the maximum values of the terms, we

have to consider the neighbors with minimum values

of u. The Godunov scheme requires to determine the

maximal real solution of a quadratic equation (3).

Suppose that the distance u in the point p

can be expressed by the following function of the

neighborhood V ✄ p ✆ of the point p and the weight✧✱✄ p ✆
u ✄ p ✆✳✝ umin ✄ p ✆✮✴ fdiff ✄ V ✄ p ✆✑☎✵✧✱✄ p ✆✶✆✷✎ (4)

umin ✄ p ✆ is the distance value of the minimal neighbor:
umin ✄ p ✆✸✝ minqi ✹ V ✺ p ✻ ✜ u ✄ qi ✆ ✥ . The formulation of fdiff
depends on the choice of the numerical scheme. The

Godunov scheme can be rewritten in the form of Eq.

(4) where fdiff reads as

fdiff ✝ ☞ ux ✄ p ✆✦✫ uy ✄ p ✆ ☞
2

✴ ✧✼✄ p ✆ 2
2

✫✾✽ ux ✄ p ✆✵✫ uy ✄ p ✆
2 ✿ 2 ☎

(5)

and where ux ✄ p ✆✸✝ min ✜ u ✄✶✘ xp ✤ 1 ☎ yp ✚ ✆ ✥ and uy ✄ p ✆❀✝
min ✜ u ✄✶✘ xp ☎ yp ✤ 1 ✚ ✆ ✥
In Eq. (5) the minimum real solution is considered.

If there is no real solution then the distance value is

computed only from the minimal neighbor and fdiff ✝✧✱✄ p ✆ .
INITIALIZATION✂ 0 is a closed curve which generally lies between

the points of the grid ✁ 2. Its accurate inter-pixel
location is identified by the distance map u to ✂ 0.
However, if it is to be described implicitly on a

discrete support ✁ 2, the curve ✂ 0 may not be placed
arbitrarily. Its location is determined by the switching

function ϕ ✄ p ✆ where sign ✄ ϕ ✄ p ✆✶✆ indicates whether a
given point p lies inside or outside ✂ 0 (as introduced
in Sethian (1996)). Hence, ✂ 0 is located between
adjacent points for which sign ✄ ϕ ✄❁✎❂✆✶✆ differs. The exact
distance u of these points to ✂ 0 is obtained by some
interpolation method.

The choice of the interpolation depends on the

requirements of the application. One can use either a

constant value or a bilinear or a more sophisticated

interpolation method allowing to detect more or
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less complicated forms (for examples see Osher and

Shu (1991); Siddiqi et al. (1997)). The majority of

practical applications use a linear approximation. In

the following, consider a linear interpolation and ☞ϕ ☞ ✝
const. for all p ✡❃✁ 2. Since u can only have a finite
number of constant values for all points adjacent to✂ 0, the initialization of the distance function reduces to
u : ✁ 2 ❄ ✜ c1 ☎ c2 ☎❁✎❁✎❁✎❅☎ cn ✥ , where all ci ✡ � . The number
of the constants depends on the number of neighbors

from which the interpolation is calculated. The Fig. 1

shows all the possible 4-neighborhood configurations

for the linear interpolation.
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Fig. 1. Configurations of the 4-neighborhood for the

initialization.

If the central point lies on the object’s edge, i.e. the

sign of neighbors changes with respect to the central

(interpolated) point only in one direction (see Fig.

1(a) or 1(b)), the interpolation is computed only from

ϕ ✄❁✎❂✆ of these neighbors. If the sign changes in both
directions (corner or isolated point) the resulting value

is computed from ϕ ✄◗✎❂✆ of the two neighbors (Fig. 1(c)
to 1(e)).

Hence the initialization of u ✄ p ✆ can be realized
efficiently as a logical function of sign ✄ ϕ ✄ p ✆✶✆✑☎
sign ✄ ϕ ✄ q1 ✆✕✆✑☎❘✎❁✎❁✎✶☎ sign ✄ ϕ ✄ q4 ✆✕✆ and the result of the
function is used to retrieve the corresponding value

from a look-up-table containing the constants ci.

PROPAGATION

We use the following sets to define the algorithm:❙
is the set of points initialized by the interpolation,❚
is the set of points marked as active

❚ ✝❯✜ qi ☞

qi ❱✡ ❙ and V ✄ qi ✆✬❲ ❙ ❱✝ /0 ✥ . The algorithm reads as
follows:

Initialization❳
Initialize the neighborhood of the curve with a

signed distance (set
❙
)❳

Initialize the distance value u of the other points

to ∞❳
Mark the neighbors of

❙
as active (set

❚
)

Propagation

while
❚ ❱✝❨✜ ✥ , do in parallel for all p ✡ ❚ :✜❩
Compute new distance value:❳
Jacobi step:

un ❬ 1 ✄ p ✆✳✝ unmin ✄ p ✆✶✴
min ✞ fdiff ❭ V ✄ p ✆✑☎❪✧✱✄ p ✆✶❫❴☎❵✧✼✄ p ✆ ✍ (6)❳

Gauss-Seidel step:

un ❬ 1 ✄ p ✆✳✝ un ❬ 1min ✄ p ✆✶✴
min ✞ fdiff ❭ V ✄ p ✆✑☎❪✧✱✄ p ✆ ❫ ☎❵✧✼✄ p ✆❛✍ (7)❩

Activation of new points to process:❳
delete p from

❚
, insert p in

❙❳
if u ✄ p ✆✳❜ NBwidth then for all qi ☎ qi ✡ V ✄ p ✆ such

that un ❬ 1 ✄ qi ✆❝✫ un ❬ 1 ✄ p ✆☛❞ ε ✄ qi ✆ (8)

insert qi
❄ ❚✥

where NBwidth is the desired width of the narrow

band1. (The values of unprocessed points in tn are
automatically carried over to the next iteration and are

noted as values at tn ❬ 1.)
At each iteration, the value is calculated for the

active points. The algorithm does not use any kind

of sorted processing. Consequently, the front of the

propagation is not equidistant to the initial curve. Two

situations exist where the points that are currently
being calculated will have to be reactivated later:

1. The value of the point is calculated on an

incomplete neighborhood which imposes a two-

step algorithm
2. The points are activated by a propagation front

coming from a source which is not necessarily the

closest one which is detected by activation rule.

1To obtain u on the entire image let NBwidth ❡ ∞
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Two-step based algorithm

We say that the point value is computed on an

incomplete neighborhood since adjacent (mutually

dependent) points may be processed simultaneously.

The calculation is therefore performed in two steps.

The steps are named after their similarity with the

algorithm of Markov chain approximation by PDE as

introduced in Boué and Dupuis (1999). The first one,

the Jacobi step, calculates the value of the distance

function at tn ❬ 1 given only the values obtained at tn.
The second one, theGauss-Seidel step, recalculates the

distance value at tn ❬ 1 by using also the values obtained
at tn ❬ 1.
The algorithm computes the value u ✄ p ✆ from the

least neighbor. Hence, the infinite values are not

considered for the computation. As mentioned above,

in the Jacobi iteration, the first estimation of un ❬ 1 ✄ p ✆
is obtained by using the values of neighbors from the

previous iteration which is recomputed once more in

the Gauss-Seidel step.

Activation rule

The activation rule has two important roles: the

supervision of the propagation end and the detection

of the overlapping of the propagation waves (see Fig.

2).

2
n n1

2

S1

2

n
1

A S

n

E

Fig. 2. Example of an overlapping of the propagating
waves and zone of reactivation (in gray). S1, S2 are

the propagation sources. The dashed lines represent

the propagation waves after n1 and n2 iterations.

We calculate the distance function u ✄ x ✆❢✝
min ✘ dist ✄ x ☎ S1 ✆✑☎ dist ✄ x ☎ S2 ✆ ✚ . Let E denote the set
of points equally distant from S1 and S2, E ✝✜ x ☞ dist ✄ x ☎ S1 ✆❣✝ dist ✄ x ☎ S1 ✆ ✥ . The points to the left
(resp. right) from E are closer to S1 (resp. S2). Note

that in this example E is a parabola. A denotes the set

of points activated simultaneously by the two fronts

coming from the two sources. Since the propagation

front of Massive Marching is not equidistant to the

propagation source, the sets A and E do not coincide.

The zone delimited by A and E contains points that

were activated from S2 whereas they are closer to S1.

These points will be reactivated again by the front

coming from S1 in order to lower their value from
dist ✄ x ☎ S2 ✆ to dist ✄ x ☎ S1 ✆ .
Suppose that un ✄ p ✆ has just been calculated and p

is deactivated. We search for an estimator of un ❬ 1 ✄ qi ✆
to know whether the neighbor qi of p should be
activated in order to compute or to re-compute its
value. Since the goal is to obtain the minimal solution

the main idea is to test whether the value u ✄ qi ✆ could
be brought down by considering p as the least neighbor

of qi. Suppose that p is the least neighbor of qi. Then
in the next iteration qi will receive its value from p.

From Eq. (4), fdiff ✄ p ✆ is the difference between the
distance value u ✄ p ✆ of a given point p and the least of
the neighbors umin ✄ p ✆ . The new value u ✄ qi ✆ will satisfy
u ✄ qi ✆❀❤ u ✄ p ✆✮✴ inf fdiff.
Let Kmin be the lower bound of fdiff:

Kmin ✄ p ✆✳✝ inf fdiff ✄ V ✄ p ✆✑☎✵✧✱✄ p ✆✶✆✳✎ (9)✧✼✄ p ✆ is an arbitrary but time invariant function.
Kmin is a predictor of the least increment of u in
one iteration. All neighbors qi of p such that u ✄ qi ✆✌✫
u ✄ p ✆✸❞ Kmin ✄ p ✆ should therefore be (re-)activated and
(re-)calculated since the new value u ✄ p ✆ may affect
u ✄ qi ✆ in the next iteration. Hence, ε in Eq. (8) must

satisfy:
ε ✄ p ✆✲❤ Kmin ✄ p ✆☛❞ 0 ✎

Remark: The lower bound of fdiff of the Godunov
scheme (from the section 2.1) is

Kmin ✄ p ✆✌✝❨✐ ✧✱✄ p ✆ 2
2

✎ (10)

Note that Kmin is constant whenever ✧ is constant in
(2) and becomes a function of ✧ whenever ✧ varies
over the image.

Setting ε ❜ Kmin is useless because it would
authorize the activation of points that will not be
updated and the propagation could go backwards.

By letting ε ❞ Kmin one can authorize fewer
reactivations (lower execution time) paid by some error

(proportional to ε ✫ Kmin) in the result (Dejnožková,
2002).

LABEL PROPAGATION

The propagation of the region labels can be
realized simultaneously with the computation of the

distance function to obtain the influence zones for
Voronoï tesselation or continuous watershed. Suppose

that the region labels are initialized during the Massive
Marching initialization stage. The algorithm modifies
as the distance must be computed from neighbors

having the same label.
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Jacobi step
if ux ✄ p ✆ and uy ✄ p ✆ have the same label then use Eq.
(6)
else use un ❬ 1 ✄ p ✆✠✝ unmin ✄ p ✆✮✴ F ✄ p ✆❳
Gauss-Seidel step

1. if ux ✄ p ✆ and uy have the same label use Eq. (6)
else use un ❬ 1 ✄ p ✆✌✝ un ❬ 1min ✄ p ✆✮✴ F ✄ p ✆

2. p receives the label of un ❬ 1 ✄ p ✆
COMPUTATION ERROR

Two types of error exist: numerical scheme error
and incomplete neighborhood error.

Numerical scheme error

As the majority of first order schemes also the
Godunov scheme suffers from “shortsightedness” as
it uses only the nearest neighborhood. Moreover,
Tsai (2000) explains that when the propagation starts
from isolated points it creates diamonds instead of
circles. In Sethian (1999) Sethian proposes a switching
mechanism between the first and second order scheme
in order to improve the accuracy. Nevertheless, in ∞

the Godunov scheme converges to the exact solution.

Incomplete neighborhood error

This error is caused by the computation on
an incomplete neighborhood (see section “Two-
step based algorithm”). Massive Marching calculates
simultaneously the values of adjacent points, i.e.
values depending each on the others. Therefore the
calculation is performed in two steps.

Also all the methods referenced in the introduction
allow to recalculate the points several times in order to
obtain more accurate solution to Eq. (2). The scanning-
based methods recalculate during each scanning all
the points of the image. Successive scannings have
to be repeated until the convergence. Methods for the
narrow band use a variable number of recalculations,
implemented by using a sorted heap, depending locally
on the neighborhood of every particular point. At
every recalculation the point receives a new value
of the distance according to the new values of the
neighbors. Massive Marching authorizes to reactivate
the neighbor qi if the point p receives a new value u ✄ p ✆
inferior to u ✄ qi ✆❵✫ ε (see condition Eq. 8).

An additive error (typically at the fourth decimal
place) may still appear in some special cases (as
corners etc.), see Dejnožková (2002). The experiments
have shown that the two-step calculation gives
sufficient accuracy for most practical applications (see
section “Experimental results”). Should more accurate
results be required then the Gauss-Seidel step can be
repeated.

COMPUTATION COMPLEXITY

In order to obtain the calculation complexity of
Massive Marching we first assume that ✧ ✝ const.
over the entire image.

The value of an active point p is obtained in a

constant time ✓✔✄ 1 ✆ after which the point deactivates
itself. The point activates all its neighbors that verify
the condition (8). The function (4) is strictly positive,

no point can therefore reactivate the neighbor from
which it has received the activation. If the propagation

starts from one point representing the source, the
algorithm complexity is ✓✔✄ N ✆ , with N be the number
of points in the image.

For sources having more complicated geometrical
forms or more than one source the complexity may

exceed ✓✔✄ N ✆ since some points may be activated more
than once. We show that the number of reactivations is
bounded. Consider two isolated points a and b such

that there is a point c, c ✡ V ✄ a ✆ , c ✡ V ✄ b ✆ and a ❱✡
V ✄ b ✆ . Suppose that the two propagation fronts arrive
respectively via a and b and meet in c. The two fronts
have different speed and in the iteration n the distance
values in a and b verify ☞ un ✄ a ✆✳✫ un ✄ b ✆ ☞ ❤ 2Kmin. The
faster front will stop in c whereas the slower one will
continue. It can be shown that its propagation will stop

after i iterations, where

i ❜ un ✄ b ✆❝✫ un ✄ a ✆
2Kmin

✫ 1 ✎
In images with ✧❥✝ const., the waves propagate with
unit increment of u in one iteration in vertical and
horizontal direction, whereas in the diagonal directions

the increment is obtained only after two iterations. See
illustration at Fig. 2. The waves arriving from S1 and
S2 meet first on the intersection of A and E since both

waves have the same speed on the horizontal direction.
Later, see the iteration n2 for example, the waves meet

outside the skeleton since the wave arriving from S1
arrives diagonally and is therefore slower. The slower
wave will continue its propagation up to the skeleton

of the distance E where it stops.

For images with bounded support, the term☞ un ✄ a ✆❦✫ un ✄ b ✆ ☞ is upper bounded and hence the number
of reactivations also. For images where ✧ ❱✝ const.,
this term is also limited and depends on ✧ .

HARDWARE IMPLEMENTATION

The main implementation issues are outlined in
the section “Implementation issues”. In this section we
present the implementation details and we discuss the

possible extensions of the proposed architecture.
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GLOBAL ARCHITECTURE

For the simulation and validation, we have chosen

the division of the input image into the columns, i.e.
one processing unit per column of the image. In a
given moment the processing units process in parallel

all the points in a row. We give below a description of
the proposed (and tested) access to the neighbors. The
processing units are controlled by the single Global

Control block. It reads high-level instructions from the
Code Memory. Each high level instruction indicates
the action executed on the entire image in one scan

and the code does not have to be decomposed in the
elementary operations. The algorithm for computing
a distance function on the entire image (given in

section “Propagation”) resumes to these high-level
instructions:

interpolate

loop (if any point is active)✜ Jacobi_Step

Gauss-Seidel_Step ✥
The condition any point is active is the OR operation

over all the activation flags.

The Global Control block not only controls the
execution of the algorithm but also allows to change
the values of the approximation registers inside

each processing unit. Thus we can implement the
approximation of almost any non-linear function.

Fig. 3. Global architecture with replicated Processing
Units (PUs).

PROCESSING UNIT

The Processing Unit (see Fig. 3) contains specific
blocks implementing different stages of the algorithm:

the INTERPOLATION BLOCK ensures the initialization
of the algorithm, and the APPROXIMATION BLOCK

computes new pixel values. Each PU has a register
containing the ACTIVATION FLAGs for its part of the

image. The activation flag is used as a mask controlling

the PU activity. All the Processing Units, whose

currently processed point is active (the activation flag

is set) execute the instructions, otherwise they are idle,

except of sending their values to the east- and west-

side neighbors.

Note that the input data are stored in a non-

shared data memory. Therefore, all the units can access

to its data simultaneously at the given time. The

memory is a double-port memory; before the execution

of the algorithm, the data are uploaded by using a

global access port (not given in the schematics) and

read after. Recall that the Massive Marching uses

the 4-neighborhood. In order to reduce the number

of interconnections, we use bi-directional buses for

the communication with the adjacent PUs. The bus

direction is controlled by the signals t_east and t_west

derived from clk ✗ 2.
Neighborhood retrieval

The complete neighborhood of a point (cf. Fig.

4(b)) is obtained in two clock cycles in the following

way (Fig. 4(a)). With a rising edge of the clock a

new SOUTH value is read from the local data memory

whereas the old values SOUTH and CENTER are shifted

upwards (e.g. 112, 113, 114). The values EAST and

WEST are read from the bus on the falling clock

edges. First, the WEST value is read from the west-

side adjacent PU while the SOUTH point value is being

sent to the east-side adjacent PU. On the next falling

edge is read the EAST point while the CENTER point is

being sent to the west-side adjacent PU. The complete

neighborhood is ready immediately after the reading

of the EAST point (indicated by the dashed line). The

same communication protocol also applies to filtering.

(a)

(b)

Fig. 4. Timing diagram of reading of the point

neighborhood.
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Note that the choice of the image division

affects only the communication procedure between

the adjacent processing units and not their internal

architecture.

Approximation block

Instead of computing the exact value of Eq. (5),

requiring computation of a square and square root, we

propose to use an approximation. The approximation

allows to preserve the necessary sub-pixel precision

while reducing the implementation cost. Two types

of approximations have been tested, the piecewise

linearization and look-up-table (LUT). The functional

scheme of the tested approximation blocks is given by

Fig. 5. The Eq. (5) is rewritten in the form

u ✄ p ✆✌✝ ux ✄ p ✆✮✴ uy ✄ p ✆
2

✴ gdiff ✄ ☞ ux ✄ p ✆❝✫ uy ✄ p ✆ ☞ ✆ (11)
which is, for the hardware implementation,

approximated by either a linear approximation or a

look-up-table

ûLin ❧ Approx ✄ p ✆✠✝ ux ✄ p ✆✮✴ uy ✄ p ✆
2

✴ ai ✄ ☞ ux ✫ uy ☞ ✆✮✴ bi
(12)

ûLUT ✄ p ✆✠✝ ux ✄ p ✆✮✴ uy ✄ p ✆
2

✴ ai (13)

The number of operations to obtain ûLin ❧Approx ✄ p ✆
reduces to three additions, one subtraction and

two multiplications and for ûLUT ✄ p ✆ only two
additions and one multiplication (paid by higher

memory requirements for comparable accuracy). The

computation is done with a fixed-point precision.

A comparative study of the implementation cost is

presented below.

The implementation of the approximation is given

by Fig. 5. The input signals are ☞ ux ✫ uy ☞ and ux ✴
uy. (The terms ux and uy are obtained by two

comparators in the MIN block (Fig. 3)). The former

enters also in the Interval Search block generating the

address (interval number) of the register containing the

corresponding approximation constants ai and bi (cf.

Fig. 6(a)). The SELECTION CONTROL block is testing

whether the values ux, uy are finite. If both values

are finite (pixels have already been activated) then the

distance is computed by using Eq. (11). If only one of

the values ux, uy is finite then the distance computation

reduces to addition of one to the finite value: the

approximation constants are replaced in order to add 1

to the minimal neighbor. Recall that both values cannot

be infinite in the same time since such a point would

not be activated.

(a)

(b)

Fig. 5. Internal block architecture of the

Approximation Block; (a) Piecewise linearization, (b)

Look-Up-Table.

Fig. 6. Interval Search and Activation Request block.

The computation process is completely pipelined.

After an initial latency of 10 clock periods, the result is

obtained in one clock period. The approximation block

as it is given here can calculate the distance in one

clock cycle only for ✧♠✝ 1. For ✧ ❱✝ 1, the multiplier
must perform two additional multiplications. The

overall bandwidth of the architecture will be lower

unless two additional multipliers (or approximations)

are used.

Pixel activation

Each pixel has its own flag controlling the activity

status of the processing unit. It indicates whether the

new value is to be computed or not. The activation

flag of the point x gets active whenever the condition

Eq. (8) is verified. The active points are testing their

activity for the next iteration by using the condition

Eq. (8) and may also activate their inactive neighbors

by sending them an activation request (see Fig. 6(b) for
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signals ARN, ARS, ARE, ARW - Activation Request

to North, South, etc.). As soon as all the flags are

inactive the algorithm ends.

EXPERIMENTAL RESULTS

In order to prove the validity of the algorithm,

we illustrate the behaviour of Massive Marching on

computation of the Voronoï tesselation for a given set

of points in a 2D euclidian space. In this case, we

consider ✧✱✄ p ✆✛✝ 1 for ♥ p ✡♣♦ (see Fig. 7). Note
that if needed, the propagation of labels can be done

simultaneously with the propagation of the distance.

(a) Exact, computed on Delaunay

triangulation

(b) Massive Marching

(c) Fast Marching

Fig. 7. The Voronoï tessellation obtained by Massive

Marching, compared to Fast Marching.

The result achieved by Massive Marching is
compared to the exact result and to the result obtained

by the sorted heap algorithm (Sethian, 1996). Slight

differerence is due to i) an error of the Fast Marching

induced by the direction of the scanning and ii) an

approximation error of Massive Marching.

We have tested the accuracy of the result with

respect to two factors: i) the approximation type of

the Godunov numerical scheme and ii) the number
of fractional bits of the fixed-point implementation of

the approximation block. We have observed the error

in q
∞
in the result with respect to the exact solution

simulated with “double” precision in C. Recall that the

norm q
∞
corresponds to the maximum of the vector

elements. Here, it represents the upper bound of the

error.
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(a) Original function of

the Godunov scheme
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(b) Linear approximation

with 4 intervals
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(c) Inequally spaced

LUT approximation

with 5 intervals
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(d) Inequally spaced

LUT approximation

with 15 intervals
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(e) Inequally spaced

LUT approximation

with 30 intervals

Fig. 8. Different approximations of fdiff.
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(a)

(b)

(c)

(d)

(e)

Fig. 9. Iso-distance lines obtained with various

approximations (8+8 bits of precision); (a)

Original function of the Godunov scheme,

(b) Linear approximation with 4 intervals,

(c) LUT approximation with 5 intervals, (d)

LUT approximation with 15 intervals, (e) LUT

approximation with 30 intervals.

Fig. 10. Error (in q
∞
) of the look-up-table

approximation compared to the exact solution

depending on the fractional part width. Rectangles:

LUT 5 intervals, circles: LUT 15 intervals, triangles:

LUT 30 intervals; asterisks: piecewise linearization.

Two approximation types of the function gdiff were

used: a piecewise linearization with four intervals

and look-up-table approximation with five, fifteen and

thirty steps, see Fig. 8. The first and the last elements in

the look-up-tables are exact (equal to 1 ✗❦r 2 and 1) in
order to minimize the error in the left, right, up and

down and diagonal directions. The other values are

obtained as to distribute the error evenly over the entire

interval ✚ 0 ☎ 1 ✘ . The distance results can be visually
assessed in Fig. 9 on the iso-distance lines given in

the same figure for 8+8 bit precision. The test image

contains three sources: a letter M, straight line and a

point. The approximation error (in q
∞
) with respect to

the exact result is given in Table 1.

Table 1. Error of approximation of the Godunov

scheme given by Fig. 9.

Approx. type Linear. LUT LUT LUT
(interval no.) 4 5 15 30

Error q
∞
(%) 0.3 3.9 1.2 0.9

The implementation of the approximation block

(cf. Fig. 5) was tested in fixed-point precision with 8

bits for the integer part and 4, 6, 8, 10, 12, 16, 20 and

24 bits for the fractional part. Note that the eight-bit

integer part limits the distance to 0 to 255 and has to be

increased if needed more. The overall (approximation

plus rounding) error is given by Table 2.
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Table 2. Overall (approximation plus rounding) error
in q

∞
of the result in Fig. 9(b, c, d and e) to the exact

result Fig. 9(a).

Approx. type Linear. LUT LUT LUT

(interval no.) 4 5 15 30

Error q
∞
8 bits

(%)

0.64 2.45 0.92 0.54

Error q
∞
16 bits

(%)
0.81 2.74 0.70 0.53

Simultaneously with the error introduced by the
approximation and rounding error, see Fig. 10, we

have observed the implementation cost in terms of

the number of equivalent NAND gates in the netlist,

reported by the compilator, before the optimization

and routing on a specific chip (only for precision 8+8
and 8+16 bit integer+fractional part). For the surface

estimation cf. Tables 3 and 4 below.

Table 3. Surface estimation of the approximation block 8+8 bits of precision (integer+fractional part).

Approx. type Piecewise lin. LUT LUT LUT

(interval no.) 4 5 15 30

Surface after optimization (NANDs) 10132 4031 6920 13856

Memory bits 128 80 240 480

Table 4. Surface estimation of the approximation block 8+16 bits of precision (integer+fractional part).

Approx. type Piecewise lin. LUT LUT LUT
(interval no.) 4 5 15 30

Surface after optimization (NANDs) 20044 5743 9056 16592

Memory bits 192 120 360 720

Note that when using the piecewise linearization

the surface requirements increase considerably (about

twice of equivalent NANDs) if the accuracy increases

from 8+8 to 8+16 bits (integer plus fractional part).

On the other hand the surface occupation grows

linearly when the look-up-table is used: increase by

some 20% to 40% of equivalent NANDs and by one

third of memory bits. The nonlinear increase of the

implementation cost between the 8+8 and the 8+16

accuracy is due to the use of a highly optimized

multiplier/accumulator.

CONCLUSIONS

This paper proposes a SIMD-type architecture for

curve-evolution PDEs. This architecture has already

been used for filtering by linear diffusion, see Gijbels

et al. (1994). In this paper is shown that the same

architecture type can also be used for the narrow-band

like algorithms.

Obviously, the activity of Processing Units

arranged in a linear array is unbalanced for

narrow-band like algorithms. The activity distribution

depends on the geometric form of the objects. This

inconvenience is the price paid for the advantage

that without major modifications this architecture
can run algorithms consisting of several stages, e.g.
filtering followed by watershed or voronoï tessellation
computation. The only modification consists in
reconfiguration of the approximation blocks by
uploading new values in the look-up-tables or the
linear approximation registers. The algorithm is then
executed by broadcasting corresponding high level
instructions to the Processing Units.

For implementation on a FPGA, the maximum
clock frequency we have obtained is 150MHz. One
point is processed in two clock cycles (Jacobi plus
Gauss-Seidel) which gives a theoretical bandwidth of
one Processing Unit 75 ✖ 106 points s 1. The worst
execution time estimation for the QCIF format (176
pixels wide by 144 high) with the distance source in a
corner is 400 µs.

We have observed that even if implemented
sequentially in some situations (for denoised filtered
images) theMassiveMarching outperforms algorithms
using ordered structures. For heavily noised input
images, the Massive Marching performance remains
comparable to other algorithms despite frequent
reactivations.

Future work: Extension of Massive Marching
to 3D seems promising. The execution of other
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algorithms on big 3D images is penalized by excessive

memory requirements of large, real-number-priority

ordered structures. The use of Massive Marching may

be advantageous because of the absence of any ordered

waiting structures.

A better activity distribution would be achieved

with processing units retrieving points waiting

in a FIFO-like queue. Suppose a completely

pipelined, random-access capable prefetch so that the

neighborhood is retrieved in one clock cycle. The

theoretical execution time will be ✓t✄ N ✆ ✗ P cycles,
where P is the number of pipelined processing units.

The surface activity will be more balanced. An

efficient neighborhood prefetch therefore needs to be

found so that several pipelined processing units could

be used.
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Centre of Mathematical Morphology, School of Mines of Paris, 35 Rue Saint Honoré, 77305 Fontainebleau Cedex, France
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Methods described by partial differential equations have gained a considerable interest because of undoubtful advantages such
as an easy mathematical description of the underlying physics phenomena, subpixel precision, isotropy, or direct extension to
higher dimensions. Though their implementation within the level set framework offers other interesting advantages, their vast
industrial deployment on embedded systems is slowed down by their considerable computational effort. This paper exploits the
high parallelization potential of the operators from the level set framework and proposes a scalable, asynchronous, multiprocessor
platform suitable for system-on-chip solutions. We concentrate on obtaining real-time execution capabilities. The performance is
evaluated on a continuous watershed and an object-tracking application based on a simple gradient-based attraction force driving
the active countour. The proposed architecture can be realized on commercially available FPGAs. It is built around general-
purpose processor cores, and can run code developed with usual tools.

Keywords and phrases: level set, partial differential equations, object tracking, real-time execution, embedded platforms.

1. INTRODUCTION

The level set was proposed in 1988 in [1] as a simple method
to modelize or analyze the motion of a travelling interface.
It offers a convenient and stable framework to implement
a large variety of methods where images are seen as sets of
curves. Since then, its applications have been extended to
other image processing fields such as the restoration (filtering
or contrast enhancement), segmentation (active contours,
watershed) to the form analysis (shortest path, shape-from-
shading). See [2] or textbooks [3, 4] for applications and a
general overview.

From the implementational point of view, the methods
can be divided into two groups: (i) filtering-like methods op-
erating on a set of constant-level curves describing the en-
tire image and (ii) methods that act on a single (or several)
contour(s), representing one (or several) object(s) present in
the image. Below, we reference these algorithms according to
their computation scope, the filtering-like methods as global-
scope-type and the active contours methods as narrowband
type.

1.1. Scope and objectives

The objective of this paper is to open the world of hand-held,
mobile devices such as PDAs, still picture or movie cam-

eras or mobile phones to powerful image processing methods
from the level set framework. The novelty of this paper re-
sides in the presentation of a reusable architecture capable to
run optimally various algorithm types from the level set fam-
ily. This architecture corresponds well to the system-on-chip
concept, and verifies the needs of hand-held devices concern-
ing their energy and implementational limitations. We par-
ticularly concentrate, among other aspects, on the execution
on multiprocessor, parallel, scalable architectures which is an
important aspect permitting to reduce the energic consump-
tion.

The rest of this paper is organized as follow. After re-
viewing the state of the art of existing implementations
and accelleration attempts, analyzing the family of the level-
set-based algorithms (Section 2), we present the architec-
ture (in Section 3) that best verifies the algorithmic needs
and remains efficient with respect to the HW implementa-
tion issues listed above. Its efficiency is demonstrated on a
contour-tracking algorithm proposed in Section 4.2. The text
concludes by presenting some benchmark results and general
conclusions.

1.2. State of the art and technological difficulties

The implicit representation of the travelling interface by us-
ing the level set increases the computational effort by one
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order of magnitude. A faster implementation obtained by
narrowbanding the computations around the travelling in-
terface (originally called the tube method) was proposed by
Adalsteinsson et al. [5] and Malladi et al. [6]. Despite the
narrowbanding which reduces considerably the number of
points to process, the level set methods remain computation-
ally expensive, because of (i) using nonlinear functions, and
(ii) a high number of iterations. The computational com-
plexity has unpleasant consequences on both the execution
time and the power consumption. If the execution time can
be reduced by parallel execution (provided that the algorithm
is parallelizable), the overall energy budget (following from
the number of necessary operations multiplied by the energy
to perform one basic operation) remains constant.

The numerous attempts to speed up the implementation
of PDE-based methods made in the past were done in various
axes.

(i) Algorithmic: as, for example, the implementation al-
ternative to the level set, using spline-based modeling
of the contours. Precioso and Barlaud [7] have ob-
tained a fast execution on Pentium-based machines
with spline-based active contours. A special care must
be done to handle the topology changes. Cserey et al.
study in [8] the implementation of linear and nonlin-
ear diffusions on neural networks. In general, the algo-
rithmic modifications are often applicable to only one
type of algorithms.

(ii) Mathematical: proposing a faster convergence either in
another space, or using another integration scheme.
Weickert et al. propose in [9] the semi-implicit inte-
gration scheme, and the AOS scheme with arbitrarily
large integration step for filters which can be written
in a specific form as in [10]. The semi-implicit scheme
increases the integration speed without affecting the
numerical stability; it deteriorates only the numerical
accuracy. Later, Goldenberg et al. [11] and Smereka
[12] use a semi-implicit scheme for the active con-
tours. However, the mathematical modifications are
often applicable to only a restricted family of algo-
rithms.

(iii) Hardware-based implementations are of three types.
(a) Supercomputers: Holmgren and Wallin [13] use

a self-optimizing nonuniform memory access
(NUMA) supercomputer implementing a high-
accuracy solver for several integration kernels.
Sethian [14] has studied study flame propagation
models on a CM-2 machine with 65K processors.
The author reports a true massively parallel cal-
culation with one processor per grid node.

(b) Graphic hardware: Rumpf and Strzodka bene-
fit from a high memory bandwidth and imple-
ment a nonlinear diffusion [15], and a level set
segmentation [16] on a graphic card. Cates et
al. [17] implement an active-contours-based seg-
mentation tool on a graphic hardware to increase
the interactivity when a number of parameters
must be tuned to obtain a correct segmentation

results. Sigg et al. implement a signed-distance
function transform on a graphic hardware [18].

(c) Specific HW accelerators: Hwang et al. [19] pro-
pose an orthogonal architecture designed for nu-
merical solution of PDEs, not inevitably related
to the image processing. It is built around n pro-
cessing units and n2 memory blocks. Each pro-
cessor is connected to the memories by buses
dedicated to only one processor, equipped with a
memory access controller. The drawback of this
design is that the number of interconnexions and
buses increases with the square of the number of
processors.
Gijbels et al. [20] propose a VLSI architecture
for nonlinear diffusion conceived for image im-
provement on image sequences. The authors use
an SIMD1 architecture with distributed memory
for parallel nonlinear diffusion (i.e., the global-
scope-type) used in some vision application. The
estimated performances are some 100 iterations
on a 256×256 image every 0.25 seconds, whereas
the processing units themselves are clocked at
20 MHz.

This paper focuses on the HW-based implementation
issues of the level set techniques on embedded, one-chip
devices that will be easily (i) scalable, to adapt their com-
putational power to the requirements of the chosen appli-
cation, (ii) programmable with conventional programming
tools, (iii) by far less energy consuming than Pentium-based
desktop machines with comparable computational power,
and (iv) as small sized as possible. The surface occupation
is important because it has a direct impact on the price of
both the chip itself and the embedding system (such as per-
sonal vehicles, hand-held devices, etc.). These contraints ex-
clude both the graphic hardware and supercomputer imple-
mentations, since they do not match the objectives of one-
chip devices, as well as the SIMD architecture, presented in
[20], which cannot be used either because of its considerable
number of used processing units (one unit per image col-
umn).

Generally speaking, it is essentially due to the algorith-
mic complexity that no embedded platforms have so far been
proposed for the narrowband-type algorithms. The issues to
handle include the following.

(i) Nonlinear computations employed in the integration
step, numerous iterations necessary to obtain the con-
vergence, and often required floating-point accuracy
impose using fast ALUs. Their considerable surface oc-
cupation and energy consumption exclude their repli-
cation in a great number on one chip.

(ii) The distance function computation represents another
difficulty of parallelization of the narrowband applica-
tions. Dejnožková and Dokládal [21] present a detailed
analysis of existing algorithms (namely fast march-

1Single instruction multiple data.
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Figure 1: PDE-based algorithms overview.

ing). It shows that they are sequential and ordered (ex-
plained below). The authors propose to remove the
bottleneck with the introduction of massive marching
[21]. It is a fully parallel algorithm, making use of a
nonequidistant propagation front.

Since we aim the entire algorithm family, whose common
denominator is the level set implementation, the architecture
has to be maximally flexible and scalable, and maximally us-
ing the occupied silicon surface. The recently emerging dy-
namic reconfiguration represents an alternative solution to
the tradeoff between the functional flexibility of complex sys-
tems and the occupied surface and energy consumption, see
for example [22, 23]. In some cases, the advantages of the dy-
namic reconfiguration may however be outmatched by the
drawbacks that constitute a lenghty and difficult design, the
need for special design tools [24], and external circuits con-
trolling the chip reconfiguration.

Our study demonstrates that for the level set domain, the
satisfying tradeoff between the flexibility and size can also be
obtained by the programmability, offered by on-chip embed-
ded processor cores and some DSP functions.

The following section presents the analysis of the ar-
chitectural choices, including the computational resources,
memory consistency model, and communication manage-
ment. The resulting system has been synthesized for com-
mercially available FPGAs.2 Their performance becomes al-
most comparable to the ASICs.3 Though the ASICs still out-
perform the FPGAs in the energy consumption (a key feature
in mobile devices), the FPGAs remain a useful prototyping
platform, and a possible intermediate development step to-
wards an ASIC.

2. ALGORITHM ANALYSIS

This section discusses hardware implementation issues of
several algorithm types from the level set context. All the

2Field-programmable gate array.
3Application-specific integrated circuit.

types consist of two basic steps: an initialization step that dif-
fers according to the method used, and the evolution step,
which makes the contour(s) travel in space and/or time ac-
cording to the given partial differential equation (PDE). Usu-
ally it makes use of some local integration kernel, and is re-
peated until stability. In general, only the use of a local infor-
mation is easily parallelizable. If the image is considered as a
continuous signal, then the PDEs can be seen as an iteration
of a local filter operating on the neighborhood [4].

Typically, the evolution proceeds by deforming one or
several curves (propagation front) or surface with a given
PDE. The PDEs methods can be classified into the following
categories (cf. Figure 1).

(1) Surface propagation includes diffusion filters [25], [26],
or [27] for a more comprehensive survey, geometric
smoothing [10, 28, 29], denoising, and morphological
operators [30], [31], [32] or [33] characterized by the
evolution equation ∂u/∂t = F (u)|∇u|, where u repre-
sents the evolving image. The input image represents
the initial conditions u0. All points in the image are
processed in every iteration. The temporal evolution
is based on the local neighborhood and generates the
evolution of the level sets in the space [4]. The evolu-
tion stops as soon the convergence or the given itera-
tion number is reached.

(2) Wave propagation includes algorithms of weighted dis-
tance, continuous watershed [34], Voronoi tesselations
[35], or shape-from-shading [36] that are controlled by
the Eikonal equation |∇u| = F . This steady-state so-
lution is propagated from the given sources (that may
be obtained from the initial image by other means) on
the entire image according to the defined speed F . The
algorithm operates locally, only on the narrowband of
the evolving front. The solution is propagated in waves
equidistant to the sources by using ordered data struc-
tures. This technique is being referred to as marching
methods, proposed by Sethian [37], as a special case of
the Dijkstra shortest-path algorithm.

(3) Deformable models. An important breakthrough in
the deformable models represents the introduction of
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Figure 2: Different stages of the level set family algorithms. (a)
Global-scope-type algorithms. (b) Narrowband-type algorithms.

active contours (or snakes) proposed by Kass et al.
[38] in 1987, and deformable surfaces by Terzopou-
los et al. [39] one year later. Another early example
of deformable models represents the ballons by Co-
hen [40]. Implicit representation of the interface as a
constant level set of another function was studied si-
multaneously and independently in 1993 by Caselles
et al. [41] and Malladi et al. [42], and later by Malladi
et al. [43, 44, 45]. The geodesic active contours were
proposed meanwhile in [46, 47]. Another model was
proposed later in [48].
We distinguish the types with regularizers (controlled
by statistical information of regions), without regular-
izers [27], or combined with other techniques (e.g.,
principal component analysis [49]). The evolution
equation writes in the form ∂u/∂t = Fcurvature(u) +
Fgrad(u) + Fregion(u). The algorithms proceed by de-
forming a given initial contour (given by u0 = 0).
The deformation is controlled by internal and external
forces obtained at each iteration from (i) the contour
itself and (ii) the geometrical (curvature, gradient) or
statistical characteristics (mean value of the region in-
tensity) found in the image [4].

(4) Optical flow is controlled by the equations ∂u/∂t =
f (∇u, I1) + g((∂I2/∂x),h), ∂v/∂t = f (∇v, I1) +
g((∂I2/∂y),h). The motion vector is obtained by solv-
ing some system of the above-given equations at each
point in the image (I1, I2 are the successive sequence
images, h is the searched motion vector field) [50].
Since the nature of the optical flow algorithms dif-
fers from the temporal curve evolution principle of the
three first groups, the proposed architecture does not
address this type of algorithms. On the other hand,
the optical flow often serves as a support for the three
other types.

All the computation steps of the first three categories
can be unified in two following iteration types, see Figure 2.

(1) Global-scope iteration type includes the surface evolution.
It operates sequentially on the entire image. (2) Narrowband
iteration type includes the wave propagation and deformable
models (curve evolution).

Indeed, applying narrowbanding to the curve evolution
algorithms changes the computational aspects. The points to
recalculate in every iteration are now taken from some subset
of the image. This set is commonly called narrowband, and
contains points situated closely (up to some chosen distance)
to the current position of the travelling interface. Two types
of operations are commonly applied on the narrowband: (i)
the curve motion scheme itself, and (ii) the (re-)construction
of the narrowband. The (re-)construction differs substan-
tially from the other algorithm types. Indeed, all HW im-
plementations of the active contours, cited in Section 1, use
fast marching; a progressive, equidistant construction of the
distance function. Fast marching itself belongs to the wave
propagation algorithm group. It requires ordered data struc-
tures based on the priority of points [3]. From the algorith-
mical point of view, the ordering introduces a great data de-
pendency, reducing the parallelization potential. From the
HW implementation point of view, algorithmic ordering of
the points to process introduces random accessing to the
memory.

Parallelize the wave propagation is a tough issue, call-
ing attention of many researches for a long time, compare
a survey by Roerdink and Meijster in [51]. The recent intro-
duction of massive marching opens the possibility to paral-
lelize also the computation of the distance function (cf. [52]
or [21]). Massive marching is similar to the fast march-
ing method (cf. [53] or [54]) and uses the same entropy-
satisfying upwind scheme. It differs from fast marching by
the fact that it eliminates its sorted propagation of the solu-
tion and makes the implementation fully parallelizable, with
a small grain and low data dependency.

For completeness, we mention another parallelization
strategy, called group marching, developed by Kim in [55].
Group marching identifies on the front groups of points that
are processed parallely in the same time. It requires nonethe-
less to maintain a global variable making a truly parallel im-
plementation difficult.

The next section analyzes the execution of the different
algorithm steps by considering the use of massive march-
ing for the narrowband construction. Note that the curve
evolution (both algorithm types) as well as the narrowband
construction (narrowband type) are time-critical. Many it-
erations may be needed to obtain the convergence and the
narrowband has to be reconstructed repetitively during the
evolution to preserve the required properties of the implicit
curve description.

2.1. Data-flow analysis of different algorithm steps

In the following, we assume that, except the methods where
regularizers4 are used, the new values that the points re-

4Statistical information, like colour for example, represents global vari-
ables.
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Figure 3: Curve evolution implemented by using several processing units operating in parallel: (a) data-flow chart, and (b) corresponding
memory accesses.

ceive are results of operations only on local neighbor-
hood.

Limiting the calculations to a narrowband around the
travelling contour corresponds formally to operating on
sparse matrices. Practically, in order to obtain the correct
evolution, all active points need to be recalculated in one iter-
ation, before the next iteration starts. Therefore, unless one
uses one processing unit per point, the values un+1 need to
be stored separately from un, until all the points are updated.
If this condition is verified, then the processing order is not
important, and both the iteration types can be unified under
the following form. The set A, respectively, represents either
the entire image or the narrowband set:

for all pi ∈A do (in parallel)
{ Retrieve Neighborhood un(N(pi)) and un(pi);

Calculate Value un+1(pi);
Update Value un+1(pi);
Activate New Points (insertion in A); }

Since our constraints exclude the massive parallelism (for
production cost’s reasons), we adopt a semiparallel approach
instead. The data-flow chart corresponding to a semiparallel
execution of this code on several processing units is given by
Figure 3a. The data u are stored in the data memory block
(two pages for un and un+1). The active points memory block
stores the set A, that is, the coordinates of the points to pro-
cess (not used for the global scope-type algorithms). The ac-
tive points are read and processed by several independently
operating processing units. Both the memory blocks are or-
ganized in two pages, for the present one and the next itera-
tion.

The width of the paths corresponds to the volumes of
transferred data. The most intensive data traffic is on the

shared blocks. The READ data memory flow is five times
larger than the WRITE data memory flow because the com-
plete four-neighborhood is read to update the central value
(cf. Figure 3b). Similarly, since one processed point may ac-
tivate several of its neighbors, the mean WRITE active points
memory flow is slightly higher than READ active points
memory.

The narrowbanding of active contours techniques im-
pose random memory access to the data memory block.
These aspects will be taken into account in Section 3.

2.2. Timing analysis

To optimize the data flow, limit simultaneous accesses to the
shared blocks, and obtain a balanced activity of all the used
blocks, it is necessary to consider also the timing of the algo-
rithm execution.

The global-scope type operates on the entire image, that
is, each point in the image is active and the set A = supp(I),
I = image. The narrowband type operates on A = {p |
|dist(p)| < NBwidth/2}, where NBwidth is the width of the
narrowband around the contour. For massive marching, the
definition of A slightly differs (see [21]).

This code has two major features.

(1) The retrieval of the point’s and its neighbors’ values
un(pi) and un(N4(pi)) requires five memory readings
and is usually faster than the following calculation of
un+1(pi), which usually involves nonlinear functions.
During the calculation of un+1(pi), the memory block
is idle.

(2) The execution of same parts of the code can have dif-
ferent length due to IF-conditions and various input
values.
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Whenever the memory is idle, it can (and should) be used
to retrieve other data to process. The fact that the algorithms
operate locally (using only the information from the neigh-
borhood) characterizes this algorithm family by a fine granu-
larity. On the other hand, the nonlinear functions categorize
these algorithms rather into the medium granularity group
because, in most cases, a fully functional ALU is necessary
to implement the computation. These considerations impose
the choice of an MIMD architecture. The processors operate
in the SPMD5 mode, corresponding best to the data flow di-
agram given by Figure 3.

After a synchronous start of all the processing units, the
variable length of some portions of the code gives birth to
an asynchronous execution, (cf. Figure 4). The asynchronous
execution is advantageous for parallelizable algorithms with
numerous IF-conditions, because it randomizes the access to
the shared blocks. Simultaneous accesses become rare and
their HW management is easier. After the analysis of various
algorithms, it becomes clear that the choice of asynchronous
execution of the code on several PUs is a natural choice for
the level family.

Note, that despite the asynchronous execution, the PDE-
based algorithms have one or more synchronization points:

5Single program multiple data—the processors execute asynchronously
the same program.

the end of one iteration. This is indicated by either (i) empti-
ness of one of the active points memory pages (narrowband-
type algorithms), or (ii) end of the raster scan of the image
(global scope-type algorithms). The end of the algorithm is
indicated by either (i) emptiness of both active points mem-
ory pages (for the narrowband-type algorithms), or (ii) the
number of necessary iterations (both algorithm types), or
(iii) the convergence (both algorithm types).

3. ARCHITECTURE

The image processing domain is known for various algo-
rithm granularity and data dependency. Indeed, the data de-
pendency and granularity are two factors that have major in-
fluence on the choice of parallel implementations. Histor-
ically, the fundamental model of parallel architectures has
been introduced by Flynn [56]. The further effort has been
concentrated, besides the computation resources, on the effi-
ciency of the communication configurations (see Cypher and
Sanz [57]).

The massive parallelism is efficient for regular algorithms
with fine granularity (cf. Gibbons and Rytter [58], Broggi et
al. [59] or artificial retine by Manzanera [60]). On the other
hand, if it used for random memory access implementations,
the chip activity versus occupied surface will become poor.
The same arguments are valid in the case of SIMD-type ar-
chitectures (see Cypher and Sanz [57] or e.g., survey in [61]).
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Figure 5: Global overview of the architecture.

Hence, the image analysis community started to consider,
as a possible execution platform for mean and high granular-
ity algorithms, in the late 1980s, programmable, multipro-
cessor, one-chip architectures. See for example [62], [63] or
the survey of multiprocessor architectures with shared and
distributed memory [64]. For another example and addi-
tional references, see a motion estimation on a set of video
signal processors by De Greef et al. [65], or watershed seg-
mentation in Moga et al. [66], Noguet [67], or Bieniek
[68].

The data flow of the active contours, analyzed in the pre-
vious section, makes them correspond better to “weaker”
parallelism models where the design effort concentrates on
the task and data dependency decomposition, task schedul-
ing, and efficient management of accessing to shared re-
sources. The architecture template, presented in this section
by Figure 5, is derived from the data-flow analysis given by
Figure 3. In the following, we detail the description of the in-
dividual blocks.

Processing and control units

The computation of the propagation speed F , which is gen-
erally a nonlinear function, is a challenge for an efficient
implementation. It seems necessary to use a fully functional
arithmetic logic unit (ALU).

The processing units were realized in VHDL and Han-
delC as a model of a RISC processor. They are equipped

with a set of registers. The used data word width is 32 bits
to store a fixed-point data (24 + 8 the integer and fractional
part).

Every processing unit is controlled by a control unit
(CU). The execution of the algorithm was simulated by cod-
ing the algorithm in HandelC. The advantage of this ap-
proach is that the functional model can be replaced by an-
other processor model or by an embedded core available on
some FPGAs.

Switching matrix

The medium granularity combined with intensive random
accesses to the data memory shows that no optimum fixed
interconnection network can be found for the level set algo-
rithm family. Rather than using a fixed network, one can use
a switching matrix which, coupled with semaphores and ar-
bitrage, permits to any processing unit access to any shared
block, provided that it is not currently being used by another
processing unit. Several PUs can access simultaneously to dif-
ferent shared blocks.

The address buses are 16 + 3 bits (16 bits for the data
addressing and 3 bits to address eight semaphores for the fol-
lowing eight shared blocks), four data memory blocks (data
PAGE(0), PAGE(1), FLAGS, and LABELS). The active points
memory is divided into two blocks, each equipped with a
bidirectional reading/writing channel since each of the stacks
is in one iteration either read or written but not both.
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Figure 6: Internal architecture of the processing and control units.

Figure 7: The “peppers” image: (a) gradient and manually placed
markers; (b) continuous watershed obtained with massive march-
ing on four processing units.

Semaphores and arbitrage

Every operation asking to access to a shared block uses the
semaphores (block semaphores ctrl at Figure 6). The code
that performs the semaphore-controlled access must respect
the following:

loop :
test semaphore x // test and lock immediately if free
if x isnot free jump loop // repeat otherwise
read/write // access to the memory
release semaphore x // release the semaphore

Whenever a semaphore is tested, it is (by the same instruc-
tion) immediately locked, provided that it was free. If not,
the test is repeated as long as the semaphore can be allo-
cated to the asking processor. After the reading/writing, the
semaphore is released. The semaphores are invisible to the
user provided that the compiler generates the corresponding
code.

Whenever a simultaneous access to a shared block oc-
curs, an arbitrage is used to prevent conflicts. The arbi-
trage is a standard block that makes part of most modern
multi-processor platforms. The ideal arbitrage, usually done
on the first-come-first-served basis, and often realized as a fi-
nite state machine, is quite costly in terms of the silicium
surface. We can benefit from the randomness of the asyn-
chronous execution, limiting the likelihood of simultaneous
accesses, and saving the space by using a simple arbitrage as-
signing the processors an uneven priority. Obviously, this is
only possible up to a certain number of processors however.

In this paper, we have evaluated the feasibility by measuring
the activity up to four processors (see Figure 8 showing the
activity distribution).

Data memory

A low data dependency that characterizes the level set fam-
ily algorithms permits to use a simple global shared mem-
ory management, being referred to in the literature as weak
consistency model, introduced in [69]. The weak consistency
is characterized by three conditions (cf. [70]). (i) Before a
READ or WRITE access for any processor is allowed, all syn-
chronizations must be achieved. (ii) Before a synchroniza-
tion access is allowed, all previous READ or WRITE accesses
must be achieved. (iii) Synchronization accesses are sequen-
tially consistent with respect to each other. Note that no
condition concerns the order in which the accesses are per-
formed. See [70] for details and comparison with other con-
sistency models.

The synchronization points are imposed by the iterative
nature of the algorithms. All active points must be processed
(in arbitrary order) in one iteration, before the following it-
eration can start. This is ensured on this architecture by the
fact that the data to process are read from one memory page,
and the results are written to the other. As soon as all the
points in one iteration are processed (all READ and WRITE
accesses are achieved), the roles of the pages PAGEs(i), i =
0,1, switch. Switching the roles of the memory pages repre-
sents the synchronization.

This architecture is conceived as scalable. According to
the computational power required by a given application,
one can use more or fewer processing units. It follows from
Figure 3 that the highest data traffic concentrates on the
shared memory blocks. Thanks to the nature of the code, the
reading and writing directions on both data and active points
memory blocks are separated into two one-directional chan-
nels. The results of the previous iteration (values un−1) are
read from one page and the new values (un) are written to
the other. This corresponds perfectly to the weak consistency
model.

Active points memory

The READ and WRITE accesses to perform on the image
data are controlled by data stored in the active points mem-
ory. It is organized in two pages. One page contains points
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Figure 8: (a) The execution time of the algorithm in function of the number of parallely working processing units. (b) The activity load
distributed over several processing units, number of points processed by every processing unit (X thousands).

to process in the current iteration. This page is progressively
emptied as the data are processed. The second page contains
points to process in the next iteration. It is progressively fed
with data. The emptiness of one page represents the synchro-
nization point. The roles of the pages (for both data and ac-
tive points memory) switch. The emptiness of both active
points pages represents the end of the algorithm.

The reading/writing direction to the data and active
points memory blocks is controlled by using a boolean vari-
able switch which commutes at the end of every iteration. For
the sake of universality, it is left to the programmer’s respon-
sibility to control the reading.

Thanks to the fact that the processing order is indifferent,
this memory can be implemented by using two LIFOs. Com-
pared to a FIFO, using LIFO eliminates the transport delay.

For most applications, the reading should always be
done on data page(switch) and LIFO(switch) and writing on
page(switch) and LIFO(switch). The binary switch value can
be derived from the zero bit of the iteration number n.

Flags

The labels and flags are similar to the data memory with a
smaller word size. The labels and flags are available to the
programmer for an additional algorithm control and region
propagation.

4. PERFORMANCE EVALUATION

The performance of this architecture has been tested by run-
ning two different types of PDE-based algorithms: a contin-
uous watershed and an object-tracking application.

The objective of the watershed computation is to justify
the choice to use an MIMD architecture by testing whether
the overall computational effort is uniformly distributed over

all the processors used. The objective of the tracking applica-
tion (cf. Section 4.2), is to evaluate the overall bandwidth of
the architecture, and the capability to run a computationally
expensive application in real time.

4.1. Evaluation test 1: A continuous watershed
implementation

Recall that, in terms of PDEs, watersheds can be obtained
by calculating a weighted distance function to a given
set of sources, corresponding to the markers [34], while
propagating simultaneously the labels

‖∇u(x, y)‖ =
1

‖∇I‖
. (1)

Recall that the set of sources must be identical with the set
of local minima in the image, as shown in [71]. The distance
function was computed in a semiparallel way, on four paral-
lely operating processing units, from a manually placed set of
markers, see Figure 7.

Figure 8b shows the execution time (in terms of total
clock cycles against the number N of processing units oper-
ating in parallel). The obtained number of clock cycles cor-
responds to the theoretical number of clock cycles calculated
as clkN = clk1/N . The measured execution time (expressed
in terms of clock cycles) slightly exceeds the theoretical value
because of the access to the shared blocks (memory, LIFO),
controlled by a semaphore. Figure ?? gives the computational
load distributed over the processing units in function of the
number of processing units used. The computational load is
expressed in terms of number of points processed by every
processing unit. If only one unit is used, the total computa-
tional load is covered by this unit. If more processing units
operate in parallel, the load is uniformly distributed.
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Table 1: The obtained bandwidth for watershed computation versus other platforms.

Platform Frequency Bandwidth (103points/s)

Proposed MIMD architecture
Four RISC processors

120 MHz
FPGA

2 610

PC with P4
Win 2000

1.6 GHz 827

IPAQ with Xscale
WinCE

400 MHz 120

IPAQ with Strong ARM
WinCE

200 MHz 50

Table 1 compares the bandwidth of weighted distance
computation with simultaneous propagation of source la-
bels, obtained by using massive marching implemented on
various platforms. The bandwidth is computed as the num-
ber of points in the image divided by the execution time.
The execution time of the proposed MIMD architecture was
obtained by counting the clock cycles during simulation
(HandelC code). The execution time obtained on a PC/P4,
IPAQ/Xscale and StrongARM corresponds to the processor
time spent in the process (programmed in C).

Note that the bandwidth of every given architecture is
somewhat lesser than the theoretical bandwidth because
some points are activated several times. The computation
complexity of massive marching is roughly O(N), with N be-
ing the number of points in the image. It exceeds N by the
number of reactivated points because of using a nonequidis-
tant propagation front.

4.2. Evaluation test 2: Object-tracking application

To test the performance of this architecture, we use a
model-free, gradient-based object-tracking algorithm pro-
posed in [72].

4.2.1. A gradient-based attraction field

Consider an image I and some gradient of I, g = ∇I. Let

gK = g ∗ K , (2)

where K is some triangular window Z2 → R
+, such that

K(x, y) =











1− α
(

x2 + y2
)1/2

if
(

x2 + y2
)1/2

<
1

α
,

0 otherwise.
(3)

Note that in the signal processing domain, convoluting with
such a window is a frequency filter. However, filtering is not
the objective here.

∇gK represents a gradient-dependent integrator with in-
teresting properties. Generally, the evolution of a curve C

writes

∂C

∂t
= F �n, (4)

where �n is the normal vector to C, and F represents the mo-

tion speed. For the contour-based tracking, we propose

F = ∇gK . (5)

It can be shown (by approximating g in (2) by a Dirac im-
pulse δ, and computing F in (5) in a discrete form) that∇gK
is a bidirectional integrator pointing towards the crest of the
gradient g from both sides.

The advantage of using a bidirectional integrator is
twofold: (i) it allows the contour to converge towards the gra-
dient maximum from both sides, and (ii) it eliminates the
necessity to use a constant one-directional attraction force
there, where the data is zero. This fact eliminates the problem
of local breaches in the gradient, often introducing leakage
in object reconstruction. Attempts to alleviate this problem
were made in [73] introducing a viscous watershed capable
to slow down the propagation in such narrow openings. Al-
though the leakage could probably be alleviated by using cur-
vature, the leakage problem does not occur when using∇gK ,
since on zero gradient the contour does not move.

Let φ represent some feature of the object to track. Sup-
posing that this feature is unstable in time, or perturbed by
external phenomena, one may need to employ an additional
cue to enhance the stability. Natural gesture speed is one of
the possible cues to track individuals. This fact is also used in
defining the capture range of the contours. Suppose that the
maximum interframe displacement of the object is bounded
by D. This information should be taken into account by let-
ting supp{(x, y) | K(x, y) > 0} be a circle of radius D, gener-
ating a nonzero attraction field in a narrow zone around the
contour. Hence, a convenient value of α in (3) is a = 1/D.

Indeed, as the attraction force stops on the zero cross-
ing of the gradient, its principle is similar to the Haralick
[74] edge detector, which detects edges on zero crossing of
the second derivative of I in the gradient direction. Kimmel
and Bruckstein in [75] reformulate the Haralick edge detec-
tor in terms of the level set framework and shows how it can
be combined with additive constraints to segment images. As
stated before, our objective is the contour-based object track-
ing. Whereas various motion predictors can be used to pre-
dict the displacement direction according to the past, arbi-
trary deformations of the object give birth to a displacement
field with locally varying direction. Any contour-based track-
ing must therefore be able to handle both partially forward
and backward displacements of the contour. A good overview
of other existing attraction vector fields can be found in [76].
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Figure 9: (a) The initial (dashed) and final (solid line) position of
the contour, and (b) zoom on the attraction force field F.

4.2.2. Application

By integrating (4), the current contour Cn of the object is ob-
tained by using the attraction field gnK generated by the cur-
rent frame In, and the contour Cn−1 in the previous frame
(cf. Figure 9):

Cn = lim
T→∞

∫ T

0
∇gnK (C)�n dt + Cn−1, (6)

with C(t = 0) = Cn−1, (7)

where gnK = g ∗ K ,

g(p) =
∇LabI(p)

1 + dΩ|φ(I(p))
. (8)

The ∇Lab denotes the gradient on the Lab colour space. The
particularity of the Lab space is that it is perceptually uni-
form, and ∇Lab is locally Euclidean. The dΩ|φ denotes the
distance to a given feature. We use a feature based on the
skin chroma. We take Ω′ ≡ HLS, and φ = {x ∈ HLS|xH ∈
[−20o, 50o]}. This feature is only related to hue, thus the dis-
tance dHLS|φ is the angular distance dα to the skin chroma
φ. The size of the triangular window K is ten pixels, that is,
α = 0.1, calculated from a natural gesture speed as seen by
our camera.

Initialization

The description of the initialization of the tracking is outside
the scope of this paper. It can be successfully done by com-
bining several features, see for example [77], using the face
colour and shape or [78] combining the colour and motion
(in a car application, no perturbing motion is present in the
background before the car runs).

4.2.3. Implementation

In the following, we outline the details concerning the im-
plementation of the object tracking on the proposed archi-
tecture.

This architecture has been simulated using the Han-
delC programming language. The control units have been
replaced by a pipelined model controlling each processing
unit, equipped with a fully functional ALU realizing the ba-
sic arithmetic/logic operations in fixed-point precision, and

Table 2: Frame parameters.

Frame size (X × Y) 324 × 428

Number of points in the frame 138 672

Frames per second 15

Data flow (points per second) 2 080 080

equipped with a set of registers. The algorithms have been
hardcoded in the control units in HandelC instructions. Note
that every HandelC instruction is executed in one clock cycle.

Application parameters

The video stream contains 15 frames per second, each 324 ×
428 pixels, giving total data flow 2.08 · 106 pixels per second
(cf. Table 2).

The narrowband width has been set to 20 points (ten to
each side of the contour) and the mean length of the con-
tour of the face (cf. Figure 10) to track is approximately 600
points, giving in average 12 000 active points to update per
iteration, see Table 3.

The above given face tracking application requires 25 it-
erations in every frame for the contour to adapt itself to the
new position of the face. (We consider that natural gesture
speed, camera resolution, and distance to the face limit the
interframe displacement of the drivers face to approximately
10 pixels.) Every five iterations, the narrowband needs to be
reinitialized (cf. Table 4).

Instruction count for various algorithm steps

The construction of the attraction force field requires one
convolution (cf. (2)). An N × N fast 2D convolution can be
efficiently implemented by a serie of 2N 1D FFT applied to
the columns and rows, N2 multiplications, and a series of 2N
1D IFFT. Efficient algorithms exist to perform FFT/IFFT in
place, see for example [79], and modern DSPs are equipped
with efficient, highly optimized blocks calculating fast the
FFT, for example [80].

We suppose that the convolution is computed on a com-
panion chip. In the following, we focus on the implemen-
tation of the level-set-based part of the application, that is,
the (i) initialization and construction of the narrowband, (ii)
contour evolution.

The gradient can be calculated with two additions and
two divisions (if central differences are used). The attrac-
tion force ∇gK calculated on the entire frame requires 277,
344 additions and as many multiplications (cf. Table 5). The
construction of the narrowband, by using massive march-
ing, requires two steps: (i) the interpolation to initialize the
contour can be done with 4 additions per point and (ii)
the propagation of the distance function requires 5 additions
and 6 multiplications per point. Performed twice (Jacobi and
Gauss-Seidel steps) on 12 000 points (narrowband size from
Table 3) gives 216 000 additions and 144 000 multiplication
required to construct the narrowband. The narrowband is
reconstructed five times per frame, giving the level set inher-
ent computational effort of 1 080 000 additions and 720 000
multiplications per image frame.
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Figure 10: Contour tracking applied to driver’s face extraction, using the weighted gradient (skin chroma being the feature of interest).
Randomly chosen images from a video sequence.

Table 3: Narrowband parameters.

Narrow bandwidth (points) 20

Approximate mean contour length (points) 600

Number of points in the narrowband 12 000

Table 4: Object-tracking application parameters.

Number of iterations before reinitialization 5

Reinitializations per frame 5

Number of iterations per frame 25

The actual curve evolution involves several steps: (i) the
evolution speed F requires 3 addition and 4 multiplications
(including the gradient of the distance function U), (ii) the
integration is done in one additions and one multiplication,
giving in total 4 additions and 5 multiplications per point.
Multiplied by 12 000 points in the narrowband (48 000 ad-
ditions and 60 000 multiplications) and by 25 iterations per
frame gives 1.2 · 106 additions and 1.5 · 106 multiplications
per frame. The total application effort is 2.56 · 106 additions
and 2.50·106 multiplications per frame, representing in total
75.8 MFLOPS to run in real time.

Table 6 presents the lower limits of the bandwidth ob-
tained for different steps of the object-tracking application.
The computation of the gradients ∇gK and ∇u requires the
same elementary operations (differences and extrema com-
putation on the neighborhood), and presents obviously the
same bandwidth 19.3 · 106. The limiting factor in this case
is the neighborhood extraction from the input image. We
have obtained the same bandwidth estimation for the inte-
gration step. The integration does not read the neighborhood
(already stored in the registers) but only writes the integra-
tion result. Its performance can sometimes be limited by the
bandwidth of the foregoing step.

The bandwidth 2.61 · 106 points/s, obtained for the nar-
rowband construction, includes the detection of the initial
contour position by interpolation and the propagation of the
distance function.

We evaluate the performance of the architecture by com-
puting the processing time of the each algorithm stage as a
function of the number of processed points and these mea-
sured worst-case bandwidths. The processing time of all the

steps is obtained by multiplying the worst-case bandwidth,
the number of iterations, and the number of the points to
process.

The sum of the processing times of individual steps gives
the frame-to-frame processing time 6.18 · 10−2 seconds, cor-
responding to 16.3 processed frames per second.

The performance, outlined in Table 7, compares the ex-
ecution time of one iteration of the above-detailed object-
tracking application on this architecture compared to simi-
lar results obtained on other platforms reported in the liter-
ature.

The nVIDIA GeForce2 graphic card, see [16], operates
in integer accuracy, and is therefore less useful for algorithms
requiring multiple iterations. The application running on PC
P4, see [81], was implemented by using the additive operator
splitting (AOS) scheme, permitting greater integration step,
and requiring thus fewer iterations.

4.3. Power assessment

As the silicium surface on FPGAs continues to grow (to be-
come comparable to ASICs), the computational power is no
longer a limiting factor for the design. Instead, the preoccu-
pations concern more and more the energy dissipation and
the system autonomy.

The energy budget of some algorithm can be character-
ized by the energy necessary to execute the elementary oper-
ation multiplied by the number this operation is executed.
Suppose that this algorithm is to be executed in a limited
time. A parallel execution (provided that the algorithm is
parallelizable) will allow to reduce the clock frequency (com-
pared to the clock frequency of the sequential implementa-
tion) and reduce the energy budget of the elementary opera-
tion.

Though it is important to take into account the energy
considerations as soon as possible during the design, at this
development stage, it is still difficult to estimate precisely
the power consumption. The execution of the algorithms
was simulated by using a general-purpose RISC processor
model. The power consumption was then estimated by using
the consumption reported by various soft-core processors
manufacturers: for Microblazer (Xilinx), see [82]; for ARM
9 family see [83]; and compared with typical-to-maximum
thermal dissipation reported for Pentium 4 at 1.6 GHz (see
[84]), compare Table 8.
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Table 5: Instruction count for various steps.

Instruction count for various steps Additions Multiplications

Preprocessing

∇gK (operations per point) 2 2

Total per frame (additions, multiplication) 277 344 277 344

Construction of the narrowband

Interpolation (additions, multiplications per point) 4 0

Propagation (additions, multiplications per point) 5 6

Total per initialization (additions, multiplication) 216 000 144 000

Total level-set-inherent computational effort 1 080 000 720 000

Curve evolution

Evolution speed F = ∇gK · ∇U 3 4

Integration (additions, multiplications per point) U = U − (F dt) 1 1

Curve evolution per point (additions, multiplications) 4 5

Curve evolution per iteration (additions, multiplication) 48 000 60 000

Total curve evolution per frame 1 200 000 1 500 000

Total application per frame (curve evolution + level set inherent) 2 557 344 2 497 344

Overall real-time computational effort (FLOPS) 75.8 · 106

Table 6: The Execution Time of the Object Tracking Application.

Algorithm step Estimated bandwidth (point/s) Number of iterations Number of points Processing time (s)

Initialization

Gradient∇gK 19.3 · 106 1 138 672 7.19 · 10−3

Narrowband construction 2.61 · 106 5 12 000 2.30 · 10−2

Evolution

Gradient∇u 19.3 · 106 25 12 000 1.56 · 10−2

Integration un+1 19.3 · 106 25 12 000 1.56 · 10−2

Total execution time (per frame) 6.13 · 10−2

Application frame processing rate (frame/s) 16.3

Table 7: The execution time of one iteration, compared to similar algorithms on other platforms.

Platform Frequency Execution time for one iteration (ms)

Proposed MIMD architecture
Four RISC processors

120 MHz/FPGA 1.25

Graphic hardware nVIDIA GeForce2 250 MHz 4

PC with P4/Win 2000 1.6 GHz 19.1

Table 8: Comparison of power consumption.

Processor Power consumption (W)

Microblazer / Xilinx 0.11

ARM9 / ARM 0.14

Pentium4 (1.6 GHz)/ Intel 60–75

5. CONCLUSIONS

In this paper, we present an embedded architecture for real-
time image processing using level-set-based active contours.
The contribution of this paper is twofold. In its first part, the
text proposes a unifying insight into the level set framework
from the system design point of view, to propose a unique it-
eration type with two different types of memory access: ran-

dom memory access and sequential memory access. Then it
analyzes the data flow to define, in the second part of the text,
a scalable architecture fitting the real-time needs and tak-
ing into account the limited energy autonomy of embedded
platforms and the silicium surface on commercially available
FPGAs.

The performance of the proposed architecture has been
studied on two benchmarks.

The first one, computation of a weighted distance trans-
form with simultaneous propagation of region labels, is to
verify the uniformity of the data flow and the distribution of
the computational burden over all the processing units. This
benchmark compares the real execution time against the the-
oretical execution time (obtained as the time needed by one
processing unit divided by the number of processing units
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operating in parallel). The results show a linear increase of
performance and a balanced activity at least up to four inde-
pendently operating processing units.

The second benchmark implements an active-contour-
based object-tracking algorithm. The purpose of this test is
to evaluate the capability of this platform to run in real-
time applications with intensive random memory accesses.
Section 4.2.3 lists the details concerning the computational
complexity of the application in terms of number of elemen-
tary operations. The simulation results show that the above-
presented contour tracking application can be run on this
architecture in real time, provided that the processors are
clocked at 120 MHz, and one instruction executes in one
clock cycle. Hence, the architecture specifications made in
the first part of the text are confirmed.

The scalability of this architecture consists in replicat-
ing the processing units. Physically, their number is lim-
ited by the silicium available on the chip; and logically,
by the data-flow balance on all the blocks of the archi-
tecture. A time-costly computation will allow a linear in-
crease of the performance up to a higher number of pro-
cessing units, before the busses and the memory blocks sat-
urate. From Figure 3, it follows that the highest data flow
concentrates on the READ data memory. Although it has
not been used in this paper, two possible improvements
will make the data flow on the individual memory blocks
more uniform: (i) the entire four-neighborhood can be re-
trieved in one clock cycle by using another memory orga-
nization, as proposed by Noguet in [67], or (ii) the READ
data memory flow can be divided by two by using a dual-
port memory for the data memory pages. However, both
options will lead to some increase of complexity of the
switch.
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[27] S. Schüpp, Prétraitement et segmentation d’images par mise
en oeuvre de techniques basées sur les équations aux dérivées
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