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The computation of the Casimir force1 at thermal equilibrium T is 
well understood between parallel plates (Fabry-Pérot cavity).  
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But when T1≠T2, we deal with the Casimir force out-of-thermal equilibrium and the 
radiative heat flux2. These are well understood between parallel plates, but real 
technological applications rarely display such simple geometries.  
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[2] D. Polder and M. V. Hove, Phys. Rev. B 4, 3303 (1971). 
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We will consider nanostructured surfaces, where the calculation of 
these observables is considerably less trivial due to the diffraction of 
the modes.  
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Calculations of these observables so far relied on approximation 
methods. We use an exact method based on scattering theory.  
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D e r j a g u i n ’ s P r o x i m i t y 
Approximation (PA) considers 
the total force as a sum of the 
local plane-plane contributions.  
 
 
 
T h e  E f f e c t i v e  M e d i a 
Approximation (EMA) considers 
rough surfaces as planes with 
mixed permittivities between the 
media at interface.  
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The quantum theory predicts a non-zero vacuum energy per mode :  

Casimir plane-plane theory at T=0 

  for 

 
This leads to the Casimir force as a pressure from vacuum, written as a sum 
over all field  modes characterized by frequency ξ (= -iω), k, and polarization p : 
 

z 
x 
y 



Evanescent waves are present by necessity in the vicinity of an 
interface. They contribute to the Casimir effect and especially to 
the heat flux.  
 
 
 
 
 
 
 
 
 
 
 
 
Ordinary propagative waves belong to the range (ω>c|k|) and 
evanescent waves to (ω<c|k|). 
 

Casimir theory at T=0 



Casimir between gratings at T=0 
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[3] M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, J. Opt. Soc. Am. A 12, 1068 (1995). 
[4] P. Lalanne and G. M. Morris, J. Opt. Soc. Am. A 13, 779 (1996). 

We consider two gratings made of rectangular periodic corrugations, 
separated by a vacuum slit. We determine each grating’s S-matrix through the 
Rigorous Coupled-Wave Analysis (RCWA)3,4.  
 
 
 
 
 
 
 
 
 
 
 
 
 
The reflection is no longer specular as in the plane-plane case. We need the 
S-matrix associated with each grating : then we can compute both the Casimir 
energy and the heat flux.  



Casimir between gratings at T=0 
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We need to find the longitudinal components outside the corrugated region    
(z > a) and within the transmitted region (z < 0). We consider p incident modes 
and n diffracted modes, with p, n ∈ [2N +1], as basis of our S-matrix.  

1st Brioullin zone 



Casimir between gratings at T=0 
Then for Ip, Rnp, and Tnp being the incidence, reflection, and transmission 
matrices of dimension 2N+1, we can generalize the Rayleigh expansion for an 
incident monochromatic wave for the field outside the corrugations (z > a) :  
 
 
 
 
 
 
and within the transmitted region (z < 0) : 
 
 
 
 
For :  



Casimir between gratings at T=0 
 
We rewrite the Maxwell equations inside the corrugated region   
0 < z < a through a set of first-order differential equations :  
 
 
 
 
for M a constant square matrix of dimension 8N + 4. The solution 
of the fields is then of the form :  
 
 
 
 
From now on, our strategy will be to write the fields inside the 
grating in this form, and match them by continuity relations for 
each Ey, Hy, Ex, Hx, with our previous equations at boundary       
z = a for z > a, and at boundary z = 0 for z <0.  



Casimir between gratings at T=0 
The Casimir force between gratings eventually becomes5 :  

[5] A. Lambrecht and V. Marachevsky, Phys. Rev. Lett. 101, 160403 (2008). 

Specular (no coupling) Non-specular (coupling) 



•  Casimir force (∝r2) much larger for metals than for dielectrics.  
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Casimir force VS distance F(L) at T=0 
d=200nm, a=100nm, p=50% 
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•  At a = 0 nm, we recover the plane-plane values of separation distances L = 200 nm.  
•  Slow decrease of F with groove depth.  
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Casimir force VS groove depth F(a) at T=0 
L=200nm, d=200nm, p=50% 
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Casimir between arbitrary gratings at T=0 
 
Arbitrary profiles can be modeled as stacks of K horizontal rectangular slices  : 
 
 
 
 
 
 
 
 
 
 
 
 
 
A similar differential equation can be solved within each slice (i) to relate the 
fields at boundary z = ia/K and z = (i+1)a/K, so that the field at z = a is related 
to the field at z = 0 via the relation : 
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Casimir between arbitrary gratings at T=0 
Eventually we can define all kinds of arbitrary periodic profiles : 
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Casimir between arbitrary gratings at T=0 
L=100nm, d=400nm, a=50nm, d1(z)>200nm, Si 

Casimir energy as a function of lateral shift E(δ) for four different 
(but proportionally equivalent) arbitrary periodic profiles : 
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Casimir between gratings at T≠0 
For T≠0, we must take into account the thermal contribution to the vacuum energy 
density E(ω,T). This will appear as a coth factor in the integrand of the Casimir force 
expression, with its poles appearing as Matsubara frequencies (avoided by η) :  

      
      Matsubara frequencies :  
 

The zero temperature limit is recovered when : 
 
 
 
 
So for distances beyond the value of λT/2, the thermal contributions to the zero 
temperature Casimir force become important.  



•  Regardless of the chosen material, the value of the Casimir energy at long 
separation distances increases with temperature.  

•  This is especially true for larger distances due to the thermal wavelength 
contribution. 

Casimir energy VS distance L for T≠0 
Gratings have d=200nm, a=100nm, p=50%.  
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Casimir between gratings for T1≠T2 
First let us define the wave vector k = (k⊥,kz) such that :  
 
 
 
 
We define the following projectors on the propagative and 
evanescent sectors6,7 :   

[6] G. Bimonte, Phys. Rev. A 80, 042102 (2009).  
[7] R. Messina and M. Antezza, Phys. Rev. A 84, 042102 (2011). 

with 



Casimir between gratings for T1≠T2 
Eventually we obtain the normalized scattering expression of the Casimir force 
out-of-thermal equilibrium8 for real frequencies :  
 
 
 
 
 
 
 
 
 
 
 
 
 

For :  for 

[8] M. Antezza, L. Pitaevskii, and S. Stringari, Phys. Rev. Lett. 95, 113202 (2005). 



•  We can expect the total Casimir force to converge with larger a’s beyond a 
groove depth of a > 500 nm. 
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Casimir Ftot(a) between gratings for T1≠T2 
L=100nm, d=500nm, p=50%, T1=250K, T2=350K, SiO2/SiC 



Casimir Fneq(L) between planes for T1≠T2 
⟨T⟩=350K, SiO2/SiC 

•  Existence of a separation distance Ls where all profiles have the same Fneq=0. 
•  For L>Ls the contribution Fneq is negative and the total force may be potentially 

repulsive.  
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∆Fneq/Feq between planes for T1≠T2 
L=3000nm, SiO2/SiC 

•  Eventually we find the larger ratio Fneq/Feq at greater separation distances.   
•  Possibility of experimental measurements, and further study towards the 

repulsive regime7.  

[7] R. Messina and M. Antezza, Phys. Rev. A 84, 042102 (2011) 
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Heat flux in the scattering theory 
We can use our former scattering formalism for the Casimir force out of thermal 
equilibrium and use the cavity statistical quantum average to derive the 
radiative heat transfer coefficient between two gratings6 at temperatures T1 and 
T2 :  

with :  

[6] G. Bimonte, Phys. Rev. A 80, 042102 (2009).  
 



Heat flux between various plates 
T1=290K, T2=310K 
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•  In contrast to the Casimir force, stronger flux (∝1-r2) for dielectrics than 
metals.  



Heat flux between SiO2 plates 
We see three domains of respective power laws with contributions from specific physical 
effects : A- the extreme near-field below 200nm (dipole-dipole interaction), B- the near-
field from 200nm to 10µm (surface phonon-polaritons), and C- the domain of Stefan–
Boltzmann’s law beyond 10µm (classical radiative heat transfer).  
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Flux as a function of distance h(L) for gratings  
d=1500nm, p=20%, a=500nm, T1=290K, T2=310K, SiO2 

 l  Large variation between δ/d=0% et δ/d=50% and in near-field, 
but convergence beyond 0.5µm.  
l  Usefulness of an exact method instead of an approximation.  

PA 



The flux modulation factor between δ/d=0% and δ/d=50% 
at L=25nm on the first plot is 36.   

Hence the idea of application of a thermal modulator9 
based on the simple lateral shift of two gratings in extreme 
near-field.  

Heat flux between gratings 

[9] J. Lussange, R. Guérout, F. Rosa, J.-J. Greffet, A. Lambrecht, and S. Reynaud, Phys. Rev. B 86, 085432 (2012) 



l  Smooth transition with lateral shift, with application of progressive 
modulation.  

Flux as a function of lateral shift h(δ) for gratings   
L=100nm, d=a=500nm, p=30%, T1=290K, T2=310K, SiO2 
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Scattering 
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Flux as a function of period h(d) for gratings   
L=100nm, p=20%, a=500nm, T1=290K, T2=310K, SiO2 

 
l  Great difference between δ/d=0% et δ/d=50% for larger periods. 
l  The Proximity Approximation is inaccurate for smaller periods.  

PA 



l  When non-shifted, straight line fitting the plane-plane cases p=0% 
and p=100% !  
l  Maximum modulation at p = 20% for these parameters.  

Flux as a function of filling factor h(p) for gratings  
L=100nm, d=500nm, a=500nm, T1=290K, T2=310K, SiO2 
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l  Fast convergence beyond an inflexion point a > 100nm.  
l  The flux decreases with larger groove depths, in contrast to gold.  

Flux as a function of groove depth h(a) for gratings  
L=100nm, d=500nm, p=20%, T1=290K, T2=310K, SiO2 
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l  Increase of the flux with groove depth due to digging of wave-guides 
enhancing the surface-plasmon polariton coupling10.  
l  Additional modes in the thermal frequency window contributing to the 
heat transfer. 

Flux as a function of groove depth h(a) for gratings  
L=1µm, p=50%, T1=290K, T2=310K, Au 

[10] R. Guérout, J. Lussange, F. Rosa, J.-P. Hugonin, D. Dalvit, J.-J. Greffet, A. Lambrecht, and S. Reynaud,  
Phys. Rev. B 85, 180301(R) (2012) 
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Conclusion 

By deriving the S-matrix of a given profile through the RCWA, we 
have performed the first exact numerical calculations based on 
scattering theory of both the Casimir force and the radiative heat 
transfer between nanostructured surfaces. Most notably, our 
calculations present new insights on :  
 

1.  The Casimir force between arbitrary gratings, with direct 
engineering applications.  

2.  The Casimir force between gratings out-of-thermal equilibrium, 
with a presentation of the first results for experimentalists.  

3.  The heat flux between gratings, with large modulations in the 
case of a lateral shift of the profiles.  



Conclusion 

Finally, this theoretical work has direct potential applications : 

 
•  Potential modulation of the Casimir force and hence of reducing 

the problem of stiction in NEMS and MEMS through a 
temperature control of gratings.  

 
•  Many electromechanical systems must be grounded, often 

through the use of gold coatings. Importance of non-trivial heat 
flux issues in the case of gold gratings.  

•  The heat flux between gratings, with the potential design of a 
thermal modulator of factor 36.  
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