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Analyse Égocentrique
de Scènes Audio-Visuelles

Une Approache par Apprentissage Automatique
et Traitement du Signal

Xavier Alameda-Pineda

15 Octobre 2013

Résumé

Depuis les vingt dernières années, l’industrie a developpé plusieurs produits com-

merciaux dotés de capacités auditives et visuelles. La grand majorité de ces pro-

duits est composée d’un camescope et d’un microphone embarqué (téléphones

portables, tablettes, etc). D’autres, comme la Kinect, sont équipés de capteurs

de profondeur et/ou de petits réseaux de microphones. On trouve également

des téléphones portables dotés d’un système de vision stéréo. En même temps,

plusieurs systèmes orientés recherche sont apparus (par exemple, le robot hu-

manoı̈de NAO). Du fait que ces systèmes sont compacts, leurs capteurs sont po-

sitionés près les uns des autres. En conséquence, ils ne peuvent pas capturer la

scène complète, mais qu’un point de vue très particulier de l’interaction sociale

en cours. On appelle cela “Analyse Égocentrique de Scènes Audio-Visuelles”.

Cette thèse contribue à cette thématique de plusieurs façons. D’abord, en

fournissant une base de données publique qui cible des applications comme la

reconnaissance d’actions et de gestes, localisation et suivi d’interlocuteurs, anal-

yse du tour de parole, localisation de sources auditives, etc. Cette base a fait

l’objet d’une publication [Alameda-Pineda 12b] et a été utilisé en dedans et en

dehors de cette thèse. Nous avons aussi travaillé le problème de la detection



d’événements audio-visuels. Nous avons montré comme la confiance en une des

modalités (issue de la vision en l’occurrence), peut être modélisée pour biaser

la méthode, en donnant lieu à un algorithme d’espérance-maximisation visuelle-

ment supervisé [Alameda-Pineda 11]. Cette dernière publication a eu le “Ou-

standing Paper Award” à la conférence ICMI’11. Ensuite, nous avons modifié

l’approche pour cibler la détection audio-visuelle d’interlocuteurs en utilisant le

robot humanoı̈de NAO. Les détails sont publiés dans [Sanchez-Riera 12b]. En

parallèle aux travaux en détection audio-visuelle d’interlocuteurs, nous avons de-

veloppé une nouvelle approche pour la reconnaissance audio-visuelle de com-

mandes. Nous avons evalué la qualité de plusieurs indices et classeurs [Sanchez-Riera 12a],

et confirmé que l’utilisation des données auditives et visuelles favorise la recon-

naissance, en comparaison aux méthodes qui n’utilisent que l’audio ou que la

vidéo. Plus tard, dans [Alameda-Pineda 13c], nous avons cherché la meilleure

méthode pour des ensembles d’entraı̂nement minuscules (5-10 observations par

catégorie). Il s’agit d’un problème intéressant, car les systèmes réels ont be-

soin de s’adapter très rapidement et d’apprendre de nouvelles commandes. Ces

systèmes doivent être opérationnels avec très peu d’échantillons pour l’usage

publique. Pour finir, nous avons contribué au champ de la localisation de sources

sonores, dans le cas particulier des réseaux coplanaires de microphones. C’est une

problématique importante, car la géometrie du réseau est arbitraire et inconnue.

En conséquence, cela ouvre la voie pour travailler avec des réseaux de micro-

phones dynamiques, qui peuvent adapter leur géométrie pour mieux répondre à

certaines tâches. De plus, la conception des produits commerciaux peut être con-

trainte de façon que les réseaux linéaires ou circulaires ne sont pas bien adaptés.

Dans un premier temps, nous avons publié le cadre général et un algorithme dans

[Alameda-Pineda 12a]. Nous avons présenté la totalité du modèle géometrique et

une méthode plus robuste dans [Alameda-Pineda 13b].

En conclusion, nous avons abordé différents problèmes concernant l’analyse

de scènes audio-visuelles, avec des données égocentriques. Les méthodes pro-

posées font partie du domaine de l’apprentissage statistique et discriminative ainsi

que du domaine de l’optimisation non-linéaire; toujours appuyées sur une base

solide de traitement du signal. Les résultats et les contributions ont été publiés

dans de conférences et journaux internationaux de très haut niveau.



Egocentric Audio-Visual Scene Analysis

A Machine Learning and Signal Processing Approach

Xavier Alameda-Pineda

October, 15
th, 2013

Abstract

Along the past two decades, the industry has developed several commercial prod-

ucts with audio-visual sensing capabilities. Most of them consists on a video-

camera with an embedded microphone (mobile phones, tablets, etc). Other, such

as Kinect, include depth sensors and/or small microphone arrays. Also, there

are some mobile phones equipped with a stereo camera pair. At the same time,

many research-oriented systems became available (e.g., humanoid robots such as

NAO). Since all these systems are small in volume, their sensors are close to each

other. Therefore, they are not able to capture de global scene, but one point of

view of the ongoing social interplay. We refer to this as “Egocentric Audio-Visual

Scene Analysis”.

This thesis contributes to this field in several aspects. Firstly, by providing

a publicly available data set targeting applications such as action/gesture recog-

nition, speaker localization, tracking and diarisation, sound source localization,

dialogue modelling, etc. This work has been published in [Alameda-Pineda 12b]

and used later on inside and outside the thesis. We also investigated the problem

of AV event detection. Published in [Alameda-Pineda 11], we show how the trust

on one of the modalities (visual to be precise) can be modelled and used to bias the

method, leading to a visually-supervised EM algorithm (ViSEM). This paper got

the Outstanding Paper Award at ICMI’11. Afterwards we modified the approach

to target audio-visual speaker detection yielding to an on-line method working

in the humanoid robot NAO. The details can be found in [Sanchez-Riera 12b].



In parallel to the work on audio-visual speaker detection, we developed a new

approach for audio-visual command recognition. In [Sanchez-Riera 12a] we ex-

plored different features and classifiers and confirmed that the use of audio-visual

data increases the performance when compared to auditory-only and to video-

only classifiers. Later, in [Alameda-Pineda 13c] we sought for the best method

using tiny training sets (5-10 samples per class). This is interesting because real

systems need to adapt and learn new commands from the user. Such systems

need to be operational with a few examples for the general public usage. Finally,

we contributed to the field of sound source localization, in the particular case of

non-coplanar microphone arrays. This is interesting because the geometry of the

microphone can be any. Consequently, this opens the door to dynamic micro-

phone arrays that would adapt their geometry to fit some particular tasks. Also,

because the design of commercial systems may be subject to certain constraints

for which circular or linear arrays are not suited. At a first stage we published in

[Alameda-Pineda 12a], where we presented the general framework and one algo-

rithm working up to a certain extent. Later on we submitted the full geometric

model together with a much more solid algorithm in [Alameda-Pineda 13b].

In summary, we face different real problems of AV scene analysis using ego-

centric data. Methods vary from statistical and discriminative learning to non-

linear programming, always on top of a solid basis of signal processing. Results

and contributions have been peer-reviewed by the international research commu-

nity and published in international top conferences and journals.



Anàlisi Egocèntrica
d’Escenes Audio-Visuals

Estratègies Basades en l’Aprenentatge Automàtic
i en el Processat del Senyal

Xavier Alameda i Pineda

15 d’Octubre del 2013

Resum

Durant les darreres dues dècades, la indústria ha desenvolupat diversos productes

comercials amb habilitats sensorials auditives i visuals. La gran majoria con-

sisteixen en una càmera i un micròfon encastat (telèfons mòbils, tablets, etc).

D’altres, com el Kinect, inclouen sensors de profunditat i/o arrays petits de micròfons.

A més a més, hi ha alguns telèfons mòbils amb un equip d’estèreo-visió. Al

mateix temps, nombrosos sistemes orientats a la recerca han esdevingut disponibles

(e.g., robots humanoides com NAO). Atès que aquests sistemes són petits, els

sensors estan a prop els uns dels altres. Per tant, no són capaços de capturar la

globalitat de la escena, només un punt de vista interactions socials del moment.

Ens referim a això com “Anàisi Egocèntrica d’Escenes Audio-Visuals”.

Aquesta tèsi contribueix en diversos aspectes. Primerament, fent pública una

base de dades per a applicacions com el recineixement d’accions i gests, la lo-

calització i seguit d’interlocutors, l’anàlisi del torn de paraula, la localització de

fonts sonores, etc. Això es va publicar à [Alameda-Pineda 12b] i s’ha utilitzat

dins i fora de la present tèsi. També hem investigat el problema de la detecció

i localització d’events audio-visuals. A [Alameda-Pineda 11], vam mostrar que

la confiança en una de les modalitats (la visual en el nostre cas) es pot modelar



i usar per a esbiaixar la metodologia, donant lloc a un algorisme d’esperança-

maximització visualment supervisat. Aquest article obtingué el “Outstanding Pa-

per Award” a la conferència ICMI’11. Després, vam modificar l’estratègia per

applicar el mètode a la deteció d’interlocutors, produint un algorisme de pro-

cessat on-line executable en el robot humanoı̈de NAO. Els detalls es poden tro-

bar a [Sanchez-Riera 12b]. Paral·lelament, als treballs de detecció audio-visual

d’interlocutors, hem desenvolupat une nova estratègia per al reconeixement audio-

visual de commandes. A [Sanchez-Riera 12a] hem explorat diverses caracterı́stiques

i classificadors i hem confirmat que l’utilització de dades audio-visuals millora la

qualitat de reconeixement en comparació amb els mètodes que utilitzent només

l’àudio o el vı́deo. Més tard, a [Alameda-Pineda 13c], hem cercat el millor

metode utilitzant conjunts d’entrenament minúsculs (5-10 observacions per cat-

egoria). Això és interessant perquè els sistemes reals s’han d’adaptar i aprendre

noves commandes a partir d’exemples de l’usuari. L’utilització massiva d’aquests

sistemes, obliga que siguin operacionals amb molt pocs exemples. Per acabar,

hem contribuit en l’àrea de la localització de fons sonores, en el cas particu-

lar de xarxes no-coplanars de micròfons. El fet que la geometria de la xarxa

és arbitraria fa el problema interessant. A més a més, obre la porta a xarxes de

micròfons dinàmiques, que podrien adaptar la seva geometria per a satisfer criteris

diversos o taskes precises. D’altra banda, el disseny de sistemes comercials pot

imposar restriccions, per a les quals les xarxes linears o circulars no són apropi-

ades. D’entrada vam publicar el marc general i un algorisme de localització a

[Alameda-Pineda 12a]. Més tard, el model geometric complet i una metodologia

de localització molt més robusta es van presentar a [Alameda-Pineda 13b].

Per resumir, ens hem enfrontat a diversos problemes reals de l’anàlis audio-

visual de la escena, utilizant dades egocèntriques. Els mètodes usats van des de

l’aprenentatge estadı́stic i discriminatiu fins a l’optimització no-lineal, sempre

amb uns bons fonaments de processat del senyal. Els resultats i les contribucions

han estat revisades per la comunitat internacional de recerca i publicats en revistes

i conferències internacionals d’alt nivell.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

In recent years, robots have gradually moved from production and manufacturing Multimodal human-robot interaction

environments to populated spaces, such as public spaces, e.g., museums and en-

tertainment parks, offices, hospitals, homes, etc. There is an increasing need to

develop robots that are capable of interacting and communicating with people in

unstructured, unconstrained and unknown environments in the most natural way.

For robots to fulfil interactive tasks, not only they need to recognize humans,

human gestures, intentions and speech, they equally need to gather data from dif-

ferent sensing modalities as well as to coordinate their perceptive, communicative

and motor skills, i.e., multimodal human-robot interaction.

Data gathered with different sensory modalities need to be combined in or- Audio-visual fusion, but why?

der to extract the semantic content of a complex environment and hence build an

internal representation of the real world. Vision and audition are the modalities

the most suitable to be used by a robot due to the wide availability of associated

sensors, namely cameras and microphones. Combining auditory and visual data

is naturally performed by human beings. Indeed, many behavioural, electrophysi-

ological and imaging studies [Calvert 04, Ghazanfar 06, Senkowski 08] postulate

that the fusion of different sensorial modalities is an essential component of per-

ception.

Immediately, the interesting question on how to fuse information coming from Challenges of audio-visual fusion

the two modalities (vision and hearing) arises. Because the gathered data corre-

spond to two different physical phenomena, the intrinsic meaning of the informa-

tion carried in the data is also different. On one side, visual information encodes

the reflection of light-rays onto the different surfaces composing the scene. On

the other side, auditory information encompasses the variations of the air pressure

produced by different emitting devices. Moreover, the spatio-temporal distribu-

tion of the data is radically different. While visual information is continuous

1
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in time and space, auditory information is not only sparse in time (existing only

when the emitter is active) but also spare is space (coming from the sound sources’

position plus the eventual reverberations). In addition, auditory and visual streams

are corrupted in different ways. On one hand, visual data suffers from occlusions,

self-occlusions, limited field-of-view and lighting conditions. On the other hand,

auditory data suffers from microphone noise, reverberations and interferences.

Humans interact with complex environments in a daily basis. In other words,Egocentrinc Audio-Visual Scene

Analysis people solve the audio-visual fusion problem in a natural way thus interpreting

auditory and visual input in their everyday life. For instance, they have no dif-

ficulties in focusing their attention onto a dialogue between two speakers in an

extremely noisy environment, i.e., in the presence of a multitude of other audi-

tory and visual events. More interestingly, human beings perform this task with

a set of sensors placed in a small volume compared to the scene space, in other

words, the auditory and visual sensors are close to each other. We refer to this as

“Egocentric Audio-Visual Scene Analysis”. In particular, our interest is to build

up solid methodologies whose associated algorithms provide robust AV capabili-

ties to an agent-centered architecture such as a humanoid robot.

In all, the problem we address have several attributes in terms of the dataData properties

used, the methods derived and the results desired. Indeed, the data acquired by

the robot is (D1) egocentric, that is captured with a sensor network fitting in a

small volume, with all sensors placed near to each other, as in the human head,

(D2) multimodal, or more precisely, audio-visual, thus consisting in image flows

and sound tracks, (D3) corrupted, as described, by occlusions and bad lighting

conditions on the visual side and by noise, reverberations and interferences on

the auditory side.

Some properties would desirably characterize the methods and their associ-Method properties

ated algorithms: (M1) efficient, so the limited resources of advanced platforms

such as humanoid robots are not misused, (M2) fast, ensuring that the produced

results correspond to the ongoing social interplay and not to expired acts of com-

munication, (M3) robust, avoiding that small/medium perturbations of the scene

and of the system have a devastating effect on the method’s performance, (M4)

adaptable, making of the robot a widely-usable system able to work in a large

variety of environments, (M5) reliable, such that other applications can build on

them and provide higher-level capabilities to the robot.

In order to guarantee the quality of the final system, the outcome shouldOutcome properties

be (O1) temporally coherent, ensuring that the final system does not lead to a

“moody” and overreactive robot, (O2) spatially consistent, so that the manage-

ment of the robot’s space is correctly performed, (O3) semantically meaningful,

providing the opportunity to build a natural answer for the other members of the

interaction, e.g., humans.
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1.2 Socio-Economic Context

Along the past two decades, the industry has developped several comercial prod- Socio-economic context & impact

ucts with audio-visual sensing capabilities. Most of them consists on a video-

camera with an embedded mircophone (mobile phones, tablets, etc). Other, such

as Kinect, include depth sensors and/or small microphone arrays. Also, there

are some mobile phones equiped with a stereo camera pair. At the same time,

many research-oriented systems became available (e.g., humanoid robots such as

NAO). Far from capturing the global scene, these systems are small in volume.

Consequently theur sensors are close to each other.

One of the consequences of this socio-economic context is the Sixth and Sev- Funding consequences: the EU

projectsenth Framework Programs (FP6, FP7) of the European Union. Research and

research organisations may find gere different ways to get funding for their re-

search. This PhD Thesis is related to two particular projects issued form the FP6

and FP7 calls: the POP project and the HUMAVIPS project, respectively. Thanks

to them I have been able to work with high technology devices and collaborate

with researchers from different countries.

The POP project proposed to develop a new approach, perception on purpose The POP Project: FP6-IST-027268

(POP), based on five principles: (i) visual and auditory information should be

integrated in both space and time, (ii) active exploration of the environment is re-

quired to improve the audiovisual signal-to-noise ratio, (iii) the enormous poten-

tial sensory requirements of the entire input array should be rendered manageable

by multimodal models of attentional processes, (iv) bottom-up perception should

be stabilized by top-down cognitive function and lead to purposeful action and (v)

all parts of the system should be underpinned by rigorous mathematical theory,

from physical models of low-level binocular and binaural sensory processing to

trainable probabilistic models of audiovisual scenes1.

Thanks to the fact that the Perception Team at INRIA was the coordinator

of the POP project, we posses one POPEYE robot (see Figure 1.1a). POPEYE

is equipped with four microphones and two cameras providing for auditory and

visual sensory faculties. The four microphones are mounted on a dummy-head

designed to imitate the filtering properties associated with a real human head.

Both cameras and the dummy head are mounted on a four-motor structure that

provides for accurate moving capabilities. I used POPEYE several times during

my Thesis to acquire data in order to test the algorithms I developped. Hence,

POPEYE has been an extremly useful tool for my research

The objective of HUMAVIPS has been to endow humanoid robots with audio- The HUMAVIPS Project: FP7-ICT-

247525visual (AV) abilities: exploration, recognition, and interaction, such that they ex-

hibit adequate behavior when dealing with a group of people. Developed research

and technological developments have emphasized the role played by multimodal

perception within principled models of human-robot interaction and of humanoid

1Extracted from [POP 09].
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(a) The POPEYE Robot (b) Tha NAO Robot

Figure 1.1: The two robotic platforms available in the Perception Team. (a) The POPEYE robot head: the

colour-camera pair as well as two (front and left) out of four microphones are shown in the image. POPEYE

was specifically manufactured for the POP project. (b) The humanoid robot NAO with the new audiovisual

head that is composed of a synchronized camera pair and two microphones. The new head was designed and

manufactured in the framework of the HUMAVIPS project.

behavior. An adequate architecture has implemented auditory and visual skills

onto a fully programmable humanoid robot (the consumer robot NAO). A free

and open-source software platform has been developed to foster dissemination

and to ensure exploitation of the outcomes of HUMAVIPS beyond its lifetime2.

As in the case of the POP project, INRIA coordinated the HUMAVIPS project.

Thanks to it, we we able to work and experiment with the NAO robot (see Fig-

ure 1.1b). This has been a rich experience since we understood many issues

related to on-line applications: computational resource optimization, information

loss, reaction time, ... In addition to the material, the HUMAVIPS project also

helped me attending conferences and other research meetings. Amon them, the

project scientific meetings and the code camps have been useful to eachange in-

formation, impressions and opinions on everyone’s work. In all, a very fulfiling

experience that enriched my research.

1.3 Research Context and Contributions

Egocentric Audio-Visual Scene Analysis is related to many research fields suchAudio-visual signal processing ap-

plications as: speaker detection and localization, source separation, face detection and recog-

nition, voice recognition, action/gesture recognition, identity recognition, dia-

logue modelling, role identification, feedback recognition, emotion recognition,

nod recognition and intention recognition. Numerous researchers investigated the

2Extracted from [HUMAVIPS 13].
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fusion of auditory and visual cues in a variety of domains such as event classi-

fication [Natarajan 12], speech recognition [Barker 09], sound source separation

[Naqvi 10], speaker tracking [Hospedales 08], [Gatica-Perez 07] and speaker di-

arisation [Noulas 12]. However, these approaches are not suitable for robots ei-

ther because the algorithmic complexity is too high, or because methods use a

distributed sensor network or because the amount of training data needed is too

high, drastically reducing the robots’ adaptableness. Unfortunately, much less ef-

fort has been devoted to design audio-visual fusion methods for humanoid robots.

Nevertheless, there are some interesting works introducing methods specifically

conceived for humanoid robots on speech recognition [Nakadai 04], beat track-

ing [Itohara 11], [Itohara 12], active audition [Kim 07] and sound recognition

[Nakamura 11]. Far from being an exhaustive list, this is representative of what is

possible with auditory and visual signal processing. In this PhD I focused on three

topics: audio-visual robot command recognition, audio-visual speaker detection

and localization and sound source localization. In the following, the main con-

tributions of this PhD are detailed and the structure of the rest of the manuscript

is given. Since different applications are addressed, a detailed description of the

closest existing work to each of them is given in the corresponding chapter.

In order to be able to test the methods and algorithms outcomming from the An egocentric data set: RAVEL

research process, some data was needed. Together with other members of the

HUMAVIPS projects we decided to acquire a dataset: since the existing ones

would not fulfil our requirements. We recorded the RAVEL data set and it is fully

described in Chapter 2. We required a dataset targeting many different applica-

tions, since many members of the project worked in different topics. In addition,

recordings should be stereoscopic and (at least) binaural, since, in our group, we

are interested in 3D localization from audio and video. This discards all data sets

recorded with one camera and/or with one microphone [Hazen 04, Patterson 02].

The third condition is that the data should be egocentric, meaning that all the sen-

sors should be mounted in a device of a small size compared to the scene size. In

other words, we could not use the datasets recorded in smart-rooms using spread

camera/microphone networks such as [Mostefa 07, Lathoud 05]. Hence, we con-

tributed by providing a publicly available data set targeting applications such as

action/gesture recognition, speaker localization, tracking and diarisation, sound

source localization, dialogue modelling, etc. This work has been published in

[Alameda-Pineda 12b] and used later on inside and outside the thesis.

The first application we targeted is audio-visual speaker detection and lo- Audio-visual speaker detection and

localisationcalization. Several mid-level applications such as tracking, beamforming and

voice recognition benefit from knowing where the speakers are and when they

are speaking. Hence, this is a key point in Egocentric Audio-Visual Scene Anal-

ysis. Many work has been done in this field, see Chapter 3 for more details. We

contributed by developing a new approach for AV event detection. Published in

[Alameda-Pineda 11], we show how the trust on one of the modalities (visual) can

be modelled and used to bias the method AVS1 , leading to a visually-supervised

EM algorithm (ViSEM) AVS2 . This paper got the Outstanding Paper Award at
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ICMI’11. Afterwards, we modified the approach to target audio-visual speaker

detection yielding to an on-line method working in the humanoid robot NAO

AVS3 . The details can be found in [Sanchez-Riera 12b].

The second application we addressed is the audio-visual robot command recog-Audio-visual command recognition

nition (see Chapter 4). By means of auditory and visual recordings we recognize a

robot command, that is a visual gesture accompanied by a short sentence. This is

of vital importance because most of these commands represent a direct and imme-

diate interaction between people or aim to trigger a certain reaction on the recog-

nition system (e.g., robot). Recognition of AV gestures has been of course inves-

tigated before inter alia [Mühling 12, Natarajan 12, Ye 12]. We first explored in

[Sanchez-Riera 12a] different features and classifiers and confirmed that the use

of audio-visual data increases the performance when compared to auditory-only

and to video-only classifiers AVG1 . Later, in [Alameda-Pineda 13c] we sought

for the best method using tiny training sets (5-10 samples per class) AVG2 . This

is interesting because real systems need to adapt and learn new commands from

the user. Such systems need to be operational with a few examples for the general

public usage.

Finally, we found interesting to investigate the field of sound source localiza-Multichannel sound source localisa-

tion tion. Because, often, the acquiring devices do not have a regular geometry, we

focused our attention to the use of arbitrarily shaped (non-coplanar) microphone

arrays. This is interesting because the geometry of the microphone can be any.

Consequently, this opens the door to dynamic microphone arrays that would adapt

their geometry to fit some particular tasks. Also, because the design of commer-

cial systems may be subject to certain constraints for which circular or linear

arrays are not suited. Multichannel time delay estimation for sound source local-

ization has been addressed before in [Chen 03b]. At a first stage we published

in [Alameda-Pineda 12a], where we presented the general framework GTDE1

and a local optimization algorithm GTDE2 . Later on we published the full geo-

metric model GTDE3 together with a much more solid algorithm GTDE4 in

[Alameda-Pineda 13b].

In summary, this thesis has several scientific contributions:

1. The acquisition of the RAVEL data set, consisting on several scenarios tar-

getting different human-robot-interaction applications. Auditory and visual

data was gathered with from an egocentric view of the scene [Alameda-Pineda 12b].

2. A hybrid probabilistic/deterministic model for audio-visual data fusion

aiming the detection and localisation of speakers in the scene [Alameda-Pineda 13a].

3. The Motion-Guided AV fusion algorithm, that maps the motion-related

visual observations into the auditory feature space working on egocentric

data [Alameda-Pineda 11].

4. The Face-Guided AV fusion algorith, inspired from the one above, and de-
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signed to work on-line with the humanoid platform NAO [Sanchez-Riera 12b].

5. The convex-weighting scheme for AV command recognition, able to cope

with classifiers of different nature [Sanchez-Riera 12a].

6. A benchmarking on tiny training sets of AV command recognition meth-

ods, pushing their limits to get the best trade-off between user-adaptability

and recognition performance [Alameda-Pineda 13c].

7. A sound source localisation algorithm for non-coplanar microphone arrays

from multichannel time delay measurements [Alameda-Pineda 12a].

8. A deep study of the constraints on multichannel time delay estimation asso-

ciated to the arbitrary geometry of a microphone array [Alameda-Pineda 13b].

In conclusion, we faced different real problems of AV scene analysis, using

egocentric data. Methods vary from statistical and discriminative learning to non-

linear programming, always on top of a solid basis of signal processing. Results

and contributions have been peer-reviewed by the international research commu-

nity and published in international top conferences and journals.

1.4 Related Events: Internships and Workshops

This PhD Thesis originated many events. First, two internships in the Perception

Team were related to this Thesis and co-advised between Prof. Radu Horaud

and myself. In addition, two workshops were organized, jointly with two other

researchers as detailed below.

During my PhD I co-organized two Grand Challenges together with Dr. Ro- Workshop organisation

man Bednarik3, Researcher at the School of Computing, University of Eastern

Finland and Dr. Kristiina Jokinen4, Adjunct Professor of Language Technology

at University of Helsinki.

Within the framework of the Call for Challenges at ICMI 2012, the D-META

Grand Challenge proposed to set up the basis for comparison, analysis, and fur-

ther improvement of multimodal data annotations and multimodal interactive sys-

tems. Such machine learning-based challenges do not exist in the Multimodal

Interaction community. The main goal of this Grand Challenge was to foster re-

search and development in multimodal communication and to further elaborate

algorithms and techniques for building various multimodal applications. Held

by two coupled pillars, method benchmarking and annotation evaluation, the D-

META challenge envisioned a starting point for transparent and publicly available

application and annotation evaluation on multimodal data sets.

3http://cs.joensuu.fi/\tilderbednari/
4http://www.ling.helsinki.fi/˜kjokinen/
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Unfortunately, D-META did not have the expected success. We re-oriented

the prupose of the challenge to target a specific applications. This lead to the

Multimodal Conversational Analytics (MCA) Grand Challenged, organized in the

framework of ICMI 2013. The challenge aims to bring together researchers from

across disciplines related to multimodal conversational analytics. The challenge

follows the D-META Challenge organized at the ICMI 2012 in Santa Monica.

Unfortunately for us, the MCA did not have neither the expected success. Conse-

quently and sadly, we could not extract any conclusions of the research status on

the field of MCA.

I co-advised, together with Prof. Radu Horaud, two Masters interships. FirstlyMaster thesis/internships

we guided Maxime Janvier through the machine hearing literature to investi-

gate several sound recognition techniques and evaluate them in the framework

of robot audition. Maxime did a very nice job, which got him the Diploma of

Engineer in Signal Processsing and, on top of this, an article published in the

International Conference on Humanoid Robots [Janvier 12]. He is, nowadays,

since October 2012, a PhD candidate in our Team on the topic of sound recog-

nition for humanoid robots. Secondly, we advised Israel-Dejene Gebru in the

field of audio-visual speaker detection. More precisely, we investigated the use

of observation-associated relevance information in the framework of probabilistic

graphical models. Israel-Dejene Gebru is in the Masters in Telecommunications

Engineering at Trento University, and he will join the Perception team as a PhD

candidate from October 2013.

1.5 Logistic Context

This PhD Thesis was carried out at the Perception Team5 at INRIA GrenoblePerception and Mistis teams

Rhône-Alpes6. Dr. Radu Horaud, the head of Perception, is Director of Research

at INRIA and has been the main supervisor of the present Thesis. Dr. Florence

Forbes, the head of the Mistis7 Team at INRIA and also Director of Research, co-

advised the Thesis in conjunction with Dr. Radu Horaud. Their complementary

background, in computer vision, signal processing and robotics on one side and

in statistical, signal and image processing on the other side, has been of great

help and extremely instructive. There is no need to say how much I learnt about

the research world from them both, acquiring skill on teaching, lecturing, grant

proposal writing, student supervision and paper writing and reviewing.

INRIA in general and the Perception Team in particular are extremely wellINRIA has robots

equipped. Indeed, as outlined before, I could perform experiments on data gath-

ered with the POPEYE robot Figure 1.1a as well as with the NAO robot Fig-

ure 1.1b. On one side, the POPEYE robot allowed me to test the developed

methods on high quality data. Thus, models and algorithms were validated in a

5http://perception.inrialpes.fr/
6http://www.inria.fr/centre/grenoble
7http://mistis.inrialpes.fr/
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controlled processing pipeline, in which real-time inherent issues such as comput-

ing time and data loss did not have play any role. On the other side, once methods

were validated, the NAO robot allowed me to test them under the particularities

of real-time processing. Usually, changes on the design and implementation of

the algorithms were applied to overcome these challenges.

A part from these two robotic platforms, the Perception Team possesses sev- Computational requirements

eral computers, shared between all members, to perform the scientific experi-

ments. In the following, the computational power and implementation issues of

each chapter are commented.

The acquisition of the RAVEL data set did no require any particular set up,

expect for a PC with two hard-disks (one per image flow). We used the software

provided by 4DViews8 for the visual acquisition and Audacity9 for the sound

recording.

The experiments of Chapter 3 were performed in two different platforms. Re-

garding the results on synthetic data and on real data, they were obtained by a

MATLAB/C++ implementation and run in one core of a HP Z800 Workstations

at 2.53 GHz. Approximately, the algorithm needed 30 second per visual frame.

The optimized real-time implementation was entirely coded in C++ and running

in a PC with an i7 core at 2.5 GHz. The bottleneck of the pipeline was in the

image delivering module. Consequently, our algorithm was able to perform at

full-rate, that is, 17 frames per second.

The classifiers of Chapter 4 were also trained and tested in the Z800 Worksta-

tion. The training and testing on tiny datasets, that is the learning and evaluation

of more than 150,000 SVMs were coded using Python to interface the Shogun

C++ library. It took no more than one night to train and test all the SVMs. It is

worth mentioning that, in these experiments, we needed to use R’s implementa-

tion of k-means, because the one of MATLAB was not able to handle the amount

of features we had, resulting in a memory overflow.

Finally, in Chapter 5, we implemented everything in MATLAB. The slowest

methods were the local-optimization grid-based methods, which took one week

to estimate the time delays from the 189 positions. Always in the Z800, the

global optimization method took less than three days. Notice that this code was

not designed for real-time processing. Much faster implementations should be

possible with a more adapted programming language such as C++.

1.6 Manuscript Structure

The rest of the manuscript is structured as follows. Chapter 2 describes de RAVEL data

set. The scenarios, recordings devices and environments, acquired data, annota-

8http://www.4dviews.com/
9http://audacity.sourceforge.net/
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tion and examples of use are given. Afterwards in Chapter 3, we describe our

contribution to audio-visual speaker detection and localisation and present two

vision-guided robot hearing algorithms. Chapter 4 is devoted to detail our inves-

tigation on audio-visual command recognition. Chapter 5 shows the last experi-

mental contribution of this Thesis: multichannel time delay estimation for sound

source localisation using non-coplanar microphone arrays. Finally, Chapter 6

presents the conclusions and the vision of the forthcoming years in the research

of Egocentric Audio-Visual Scene Analysis.



CHAPTER 2

THE RAVEL DATA SET

We introduce RAVEL (Robots with Audiovisual Abilities), a publicly available data set

which covers examples of Human Robot Interaction (HRI) scenarios. These scenarios

are recorded using the audio-visual robot head POPEYE, equipped with two cameras and

four microphones, two of which being plugged into the ears of a dummy head. All the

recordings were performed in a standard room with no special equipment, thus provid-

ing a challenging indoor scenario. This data set provides a basis to test and benchmark

methods and algorithms for audio-visual scene analysis with the ultimate goal of en-

abling robots to interact with people in the most natural way. The data acquisition set up,

sensor calibration, data annotation and data content are fully detailed. Moreover, three

examples of using the recorded data are provided, illustrating its appropriateness for car-

rying out a large variety of HRI experiments. The RAVEL data are publicly available at:

http://ravel.humavips.eu/

2.1 Introduction

In this chapter we describe the publicly available data set RAVEL (Robots with The RAVEL data set in a nutshell.

Audiovisual Abilities). This dataset was recorded in the framework of the HU-

MAVIPS project. Designed to fulfil the needs of all the partners, the data set con-

sists of three categories: human activities, robot-commands and interaction. A

detailed description of the categories and of the scenarios inside the categories is

given below. Two of the scenarios are particularly important for this PhD Thesis:

the cocktail party problem scenario (which is part of the “interaction” category)

used in Chapter 3 and the robot-command category used in Chapter 4. Figure 2.1

presents some snapshots of the recorded scenarios in all three categories. All

scenarios were recorded using an audio-visual (AV) robot head, shown in Fig-

ure 2.2a, equipped with two cameras and four microphones, which provide mul-

timodal and multichannel synchronized data recordings.

Researchers working in multimodal human-robot interaction can benefit from Relevance of RAVEL for the research

community.RAVEL for several reasons. First of all, four microphones are used in order to be

11
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(a) Talk on the phone (b) Stop! (c) Where is the kitchen? (d) Cheers!

(e) Cocktail party (f) Hand-shaking (g) Let me introduce you! (h) Someone arrives

Figure 2.1: Scenario examples from the RAVEL data set. (a) Human activity – talk on the phone–, (b) Robot

command – stop!–, (c) Asking the robot for instructions, (d) Human-human interaction, (e) Cocktail party, (f)

Human introducing a new person (g) Robot introducing a new person, and (h) New person.

able to study the sound source separation problem; robots will face this problem

when interacting with humans and/or other robots. Secondly, the simultaneous

recording of stereoscopic image pairs and microphone pairs gives an opportunity

to test multimodal fusion methods [Luo 89] in the particular case of visual and

auditory data. Moreover, the fact that a human-like robot head is used, makes

the data appropriate to test methods intended to be implemented on humanoid

robots. Finally, the scenarios are designed to study action and gesture recogni-

tion, localization of auditory and visual events, dialogue handling, gender and

face detection, and identity recognition. In summary, many different HRI-related

applications can be tested and evaluated on this data set.

The RAVEL data set was published in [Alameda-Pineda 12b] and is novelContributions and novelty of the

RAVEL data set. since it is the first data set devoted to study the human robot interactions con-

sisting of synchronized binocular image sequences and four channel audio tracks.

The stability of the acquisition device ensures the repeatability of recordings and,

hence, the significance of the experiments using the data set. In addition, the sce-

narios were designed to benchmark algorithms aiming at different applications as

described later on. To the best of our knowledge, there is no equivalent publicly

available data set in terms of data quality and scenario design.

The remainder of the chapter is structured as follows. Section 2.2 delineates

the related existing data sets. Section 2.3 is devoted to describe the acquisition

set up: the recording device, the recording environment and the characteristics of

the acquired data. A detailed description of the categories and of the scenarios is

given in Section 2.4. Afterwards, the data set annotation procedure is discussed

(Section 2.5). Before drawing the conclusions (Section 2.7), some examples of

usage of the RAVEL data set are given (Section 2.6).
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2.2 Related Work

The RAVEL data set is at the cross-roads of several HRI-related research topics,

such as robot vision, audio-visual fusion, sound source separation, dialogue han-

dling, etc. Hence, there are many public data sets related to RAVEL. These data

sets are reviewed in this section and the most relevant ones are described.

Accurate recognition of human actions and gestures is of prime importance Related data sets: action segmenta-

tion, isolated & continuous action

recognition.
in HRI. There are two tasks in performing human actions recognition from vi-

sual data: classification of actions and segmentation of actions. There are sev-

eral available data sets for action recognition. KTH [Schüldt 04], Youtube Ac-

tion Classification [Liu 09] and Hollywood1 [Laptev 08] are data sets devoted

to provide a basis for solving the action classification task. For the segmenta-

tion task two data sets are available: Hollywood2 [Marszalek 09] and Coffee and

Cigarettes [Willems 09]. All these data sets provide monocular image sequences.

In contrast, the INRIA XMAS data set [Weinland 06] provides 3D visual hulls

and it can be used for the classification and localization tasks. In the INRIA

XMAS data set, the actors perform actions in a predefined sequence and are

recorded using a complex multiple camera set up that operates in a specially ar-

ranged room. The Opportunity data set [OPPORTUNITY 11] serves as a data set

for the challenge with the same name. The focus of this challenge is benchmark-

ing the different state-of-the-art action recognition methods. Last, but not least,

there are three data sets concerning the daily activities on a “kitchen” scenario

namely: the KIT Robo-Kitchen Activity Data Set [Rybok 11], the University of

Rochester Activities of Daily Living Data Set [Messing 09] and the TUM Kitchen

Data Set [Tenorth 09].

Audio-visual perception [Kim 07, Khalidov 11] is an useful skill for any en- Related data sets: audio-visual

speaker detection and tracking,

face and voice recognition.
tity willing to interact with human beings, since it provides for a spatio-temporal

representation of an event. There are several existing data sets for the AV re-

search community. In particular, a strong effort has been made to produce a

variety of multimodal data sets focusing on faces and speech, like the AV-TIMIT

[Hazen 04], GRID [Cooke 07], M2VTS [Pigeon 96], XM2VTSDB [Messer 99],

Banca [Bailly-Baillire 03], CUAVE [Patterson 02] or MOBIO [Marcel 10] data

sets. These data sets include individual speakers (AV-TIMIT, GRID, M2VTS,

MOBIO, XM2VTSDB, Banca) or both individual speakers and speaker pairs

(CUAVE). All have been acquired with one close-range fixed camera and one

close-range fixed microphone. Two corpora more closely related to RAVEL are

the AV16.3 data set [Lathoud 05] and the CAVA data set [Arnaud 08]. Both in-

clude a range of situations. From meeting situations where speakers are seated

most of the time, to motion situations, where speakers are moving most of the

time. The number of speakers may vary over time. Whilst for the AV16.3 data

set three fixed cameras and two fixed 8-microphone circular arrays were used, for

the CAVA data set two cameras and two microphones were mounted in a person’s

head. Instead, RAVEL uses an active robot head equipped with far-range cameras

and microphones.
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(a) The POPEYE robot head. (b) Environment set up

Figure 2.2: The acquisition set up at a glance. (a) The POPEYE robot head was used to collect the RAVEL data

set. The colour-camera pair as well as two (front and left) out of four microphones are shown in the image. Four

motors provide the rotational degrees of freedom and ensure the stability of the device and the repeatability of

the recordings. (b) Two views of the recording environment. The POPEYE robot is in one side of the room. As

shown, the sequences were shot with and without daylight providing for lighting variations. Whilst two diffuse

lights were included in the set up to provide for good illumination, no devices were used to modify neither the

illumination changes nor the sound characteristics of the room. Hence, the recordings are affected by all kind

of audio and visual interferences and artefacts present in natural indoor scenes.

Concerning human robot interaction data sets, [Zivkovic 08] provides typi-Related data sets: human-robot-

interaction cal robot sensors’ data of a “home tour” scenario annotated using human spatial

concepts; this allows to evaluate methods trying to semantically describe the ge-

ometry of an indoor scene. In [Mohammad 08], the authors present a new audio-

visual corpus containing information of two of the modalities used by humans to

communicate their emotional states, namely speech and facial expression in the

form of dense dynamic 3D face geometries.

Different data sets used different devices to acquire the data, depending on

the purpose. In the next section, the acquisition set up used in RAVEL, which

includes the recording environment and device, is fully detailed. Furthermore,

the type of recorded data is specified as well as its main properties in terms of

synchronization and calibration.

2.3 Acquisition Setup

Since the purpose of the RAVEL data set is to provide data for benchmarkingTwo main properties of RAVEL’s

acquisition set up: egocentric data

and realistic environment.
methods and techniques for solving HRI challenges, two requirements have to be

addressed by the set up: an egocentric collection of accurate data and a realistic

recording environment. In this section the details of this set up are given, show-

ing that these two requisites are satisfied to a large extent. In a first stage the

recording device is described. Afterwards, the acquisition environment is delin-

eated. Finally, the properties of the acquired data in terms of quality, synchrony

and calibration are detailed and discussed.

The POPEYE robot was designed in the framework of the POP project [POP 09].The POPEYE robot head is RAVEL’s

acquisition device.
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This robot is equipped with four microphones and two cameras providing for

auditory and visual sensory faculties. The four microphones are mounted on a

dummy-head, as shown in Figure 2.2a, designed to imitate the filtering proper-

ties associated with a real human head. Both cameras and the dummy head are

mounted on a four-motor structure that provides for accurate moving capabilities:

pan motion, tilt motion and camera vergence.

The POPEYE robot has several remarkable properties. First of all, since the Main properties of POPEYE.

device is alike the human being, it is possible to carry out psycho-physical stud-

ies using the data acquired with this device. Secondly, the use of the dummy

head and the four microphones, allows for the comparison between using two

microphones and the Head Related Transfer Function (HRTF) against using four

microphones without HRTF. Also, the stability and accuracy of the motors ensure

the repeatability of the experiments. Finally, the use of cameras and microphones

gives to the POPEYE robot head audio-visual sensory capabilities in one device

that geometrically links all six sensors.

All sequences from the data set were recorded in a regular meeting room, The recording environment is a

regular indoor officeshown in Figure 2.2b. Whilst two diffuse lights were included in the set up to

provide for good illumination, no devices were used to modify neither the effects

of the sunlight nor the acoustic characteristics of the room. Hence, the record-

ings are affected by exterior illumination changes, acoustic reverberations, out-

side noise, and all kind of audio and visual interferences and artefacts present in

unconstrained indoor scenes.

For each sequence, we acquired several streams of data distributed in two Data acquired: technical description

of the sensing devices.groups: the primary data and the secondary data. While the first group is the data

acquired using the POPEYE robot’s sensors, the second group was acquired by

means of devices external to the robot. The primary data consists of the audio

and video streams captured using POPEYE. Both, left and right, cameras have a

resolution of 1024×768 and two operating modes: 8-bit gray-scale images at 30

frames per second (FPS) or 16-bit YUV-color images at 15 FPS. The four Sound-

man OKM II Classic Solo microphones mounted on the Sennheiser MKE 2002

dummy-head were linked to the computer via the Behringer ADA8000 Ultragain

Pro-8 digital external sound card sampling at 48 kHz. The secondary data are

meant to ease the task of manual annotation for ground-truth. These data con-

sist of one flock of birds (FoB) stream (by Ascension technology) to provide the

absolute position of the actor in the scene and up to four wireless close-range mi-

crophones PYLE PRO PDWM4400 to capture the audio track of each individual

actor.

Both cameras were synchronized by an external trigger controlled by software. Synchronization and calibration of

the acquisition sensors.The audio-visual synchronization was done by means of a clapping device. This

device provides an event that is sharp – and hence, easy to detect – in both audio

and video signals. The FoB was synchronized to the visual stream in a similar

way: with a sharp event in both FoB and video signals. Regarding the visual

calibration, the state-of-the-art method described in [Bouguet 08] uses several

image-pairs to provide an accurate calibration. The audio-visual calibration is
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Table 2.1: Summary of the recorded data size per scenario.

Scenario Trials Actors Video in MB Audio in MB

AR 12 12 4,899 2,317

RG 11 11 4,825 1,898

AD 6 6 222 173

C 5 4 118 152

CPP 1 1 440 200

MS 7 6 319 361

IP 5 7 327 204

Total – – 11,141 5,305

manually done by annotating the position of the microphones with respect to the

cyclopean coordinate frame [Hansard 08].

Following the arguments presented in the previous paragraphs it can be con-

cluded that the set up suffices conceptual and technical validation. Hence, the

sequences have an intrinsic value when used to benchmark algorithm targeting

HRI applications. The next section is devoted to fully detail the recorded scenar-

ios forming the RAVEL data set.

2.4 Data Set Description

The RAVEL data set has three different categories of scenarios. The first one isThe three categories: action recogni-

tion, robot gestures and interaction. devoted to study the recognition of actions performed by a human being. With

the second category we aim to study the audio-visual recognition of gestures ad-

dressed to the robot. Finally, the third category consists of several scenarios; they

are examples of human-human interaction and human-robot interaction. Table 2.1

summarizes the amount of trials and actors per scenario as well as the size of the

visual and auditory data. Figure 2.1 (a)-(h) shows a snapshot of the different sce-

narios in the RAVEL data set. The categories of scenarios are described in detail

in the following subsections.

2.4.1 Action Recognition [AR]

The task of recognizing human-solo actions is the motivation behind this cate-

gory; it consists of only one scenario. Twelve actors perform a set of nine actions

alone and in front of the robot. There are eight male actors and four female ac-

tors. Each actor repeats the set of actions six times in different – random – order,

which was prompted in two screens to guide the actor. This provides for various

co-articulation effects between subsequent actions. The following is a detailed list

of the set of actions: (i) stand still, (ii) walk, (iii) turn around, (iv) clap, (v) talk on

the phone, (vi) drink, (vii) check watch (analogy in [Weinland 06]), (viii) scratch

head (analogy in [Weinland 06]) and (ix) cross arms (analogy in [Weinland 06]).
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Actor (enters the scene)

Actor Excuse me, where are the toilets?

Robot Gentleman/Ladies are to the left/right and straight on 10 meters.

Actor (leaves the scene)

Script 1: The script encloses the text spoken by the actor as well as by the robot in the “Asking for directions”

scenario.

2.4.2 Robot Gestures [RG]

Learning to identify different gestures addressed to the robot is another challenge

in HRI. Examples of such gestures are: waving, pointing, approaching the robot,

etc. This category consists of one scenario in which the actor performs six times

the following set of nine gestures: (i) wave, (ii) walk towards the robot, (iii) walk

away from the robot, (iv) gesture for ‘stop’, (v) gesture to ‘turn around’, (vi)

gesture for ‘come here’, (vii) point action, (viii) head motion for ‘yes’ and (ix)

head motion for ‘no’. In all cases, the action is accompanied by some speech

corresponding to the gesture. In total, eleven actors (nine male and two female)

participated in the recordings. Different English accents are present in the audio

tracks which makes the speech processing challenging.

2.4.3 Interaction

This category contains the most interactive part of the data set, i.e. human-human

as well as human-robot interaction. Each scenario consists of a natural scene in

which several human beings interact with each other and with the robot. In some

cases one of the actors and/or the robot act as a passive observer. This category

contains six different scenarios detailed in the following. In all cases, a person

emulated the robot’s behavior.

§ Asking for Directions [AD]

In this scenario an actor asks the robot for directions to the toilets. The robot

recognizes the question, performs gender identification and gives the actor the

right directions to the appropriate toilets. Six different trials (four male and two

female) were performed. The transcript of this scenario is in Script 1.

§ Chatting [C]

We designed this scenario to study the robot as a passive observer in a dialogue.

The scenario consists of two people coming into the scene and chatting for some

undetermined time, before leaving. There is no fixed script – occasionally two ac-

tors speak simultaneously – and the sequences contain several actions, e.g. hand

shaking, cheering, etc. Five different trials were recorded.
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Figure 2.3: A frame of the CPP sequence representative of the complexity of this scenario.

§ Cocktail Party Problem [CPP]

Reviewed in [Haykin 05], the Cocktail Party Problem has been matter of study

for more than fifty years (see [Cherry 53]). In this scenario we simulated the

cocktail party effect: five actors freely interact with each other, move around,

appear/disappear from the camera field of view, occlude each other and speak.

There is also background music and outdoor noise. In summary, this is one of

the most challenging scenarios in terms of audio-visual scene analysis, action

recognition, speech recognition, dialogue engaging and annotation. In the second

half of the sequence the robot performs some movements. Figure 2.3 is a frame

of the (left camera of the) CPP scenario. Notice the complexity of the scene in

terms of number of people involved, dialogue modelling, etc.

§ Where Is Mr. Smith? [MS]

The scenario was designed to test skills such as face recognition, speech recog-

nition and continuous dialogue. An actor comes into the scene and asks for Mr.

Smith. The robot forwards the actor to Mr. Smith’s office. However, he is not

there and when he arrives, he asks the robot if someone was looking for him. The

robot replies according to what happened. The transcript for the scenario is in

Script 2. Seven trials (five male and two female) were recorded to provide for

gender variability.

§ Introducing People [IP]

This scenario involves a robot interacting with three people in the scene. There

are two versions of this scenario: passive and active. In the passive version the

camera is static, while in the active version the camera is moving to look directly

at speakers’ face. Together with the Cocktail Party Problem scenario, they are the

only exception where the robot is not static in this data set.

In the passive version of the scenario, Actor 1 and Actor 2 interact together

with the Robot and each other; Actor 3: only interacts with Actor 1 and Actor 2.

The transcript of the passive version is in Script 3. In the active version, Actor

1 and Actor 2 interact with the Robot and each other; Actor 3 enters and leaves

room, walking somewhere behind Actor 1 and Actor 2, not looking at the Robot.

The transcript of the active version is detailed in Script 4
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Actor (enters and positions him in front of the robot)

Actor I am looking for Mr. Smith?

Robot Yes Sir, Mr. Smith is in Room No. 22

Actor (leaves the scene)

Mr. Smith (enters the scene)

Mr. Smith Hello Robot.

Robot Hello Mr. Smith.

Robot How can I help you?

Mr. Smith Haven’t you seen somebody looking for me?

Robot
Yes, there was a gentleman looking for you 10 minutes

ago.

Mr. Smith Thank you Bye.

Robot You are welcome.

Mr. Smith (leaves the scene)

Script 2: Detail of the text spoken by both actors (Actor and Mr. Smith) as well as the Robot in the “Where is

Mr. Smith?” scenario.

2.4.4 Background Clutter

Since the RAVEL data set aims to be useful for benchmarking methods working

in populated spaces, the first two categories of the data set, action recognition

and robot gestures, were collected with two levels of background clutter. The

first level corresponds to a controlled scenario in which there are no other actors

in the scene and the outdoor and indoor acoustic noise is very limited. During

the recording of the scenarios under the second level of background clutter, other

actors were allowed to walk around, always behind the main actor. In addition,

the extra actors occasionally talked to each other; the amount of outdoor noise

was not limited in this case.

2.4.5 Data Download

The RAVEL data set is publicly available at http://ravel.humavips.eu/

where a general description of the acquisition set up, of the data, and of the sce-

narios can be found. In addition to the links to the data files, we provide previews

for all the recorded sequences for easy browsing previous to data downloading.

2.5 Data Set Annotation

Providing the ground truth is an important task when delivering a new data set;

this allows to quantitatively compare the algorithms and techniques using the data.

In this section we present two types of annotation data provided together with the

data set.
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Actor 1
(enters room, positions himself in front of robot and

looks at robot)

Actor 1 Hello, I’m Actor 1.

Robot Hello, I’m Nao. Nice to meet you.

Actor 2
(enters room, positions himself next to Actor 1 and looks

at robot)

Robot Excuse me for a moment.

Robot
Hello, I’m currently talking to Actor 1. Do you know

Actor 1?

Actor 2 No, I don’t know him.

Robot Then let me introduce you two. What is your name?

Actor 2 Actor 2

Robot Actor 2, this is Actor 1. Actor 1 this is Actor 2.

Actor 3
(enters room, positions himself next to Actor 1, looks at

Actor 1and Actor 2)

Actor 3 Actor 1 and Actor 2, have you seen Actor 4?

Actor 2 No I’m sorry, we haven’t seen her.

Actor 3 Ok, thanks. I’ll have to find her myself then. Bye.

Actor 3 (leaves)

Actor 2 Actor 1, (turn heads towards robot)

Actor 1 We have to go too. Bye

Robot Ok. See you later.

Script 3: Detail of the script of the scenario “Introducing people - Passive”. The three people interact with the

robot. The robot is static in this scenario.

2.5.1 Action/Command Performed

The first kind of annotation we provided is related to the action recognition andManual annotation of the performed

action. Each frame is labelled to the

performed action/gesture, if any.
robot gesture scenarios of the data set. This annotation is done using a classical

convention, that each frame is assigned a label of the particular action. Since

the played action is known only one label is assigned to each frame. Because

the annotation we need is not complex a simple annotation tool was designed for

this purpose in which a user labels each start and end of each action/gesture in the

recordings. The output of that tool is written in the standard ELAN [Brugman 04]

annotation format. A screen shot of the annotation tool is shown in Figure 2.4.

2.5.2 Speaker Position and Speaking State

The second kind of annotations concern the interaction part of the data set and

consists on the position of the actors (both in the images and in the 3D space)

and on the speaking state of the actors. In both cases the annotator uses a semi-

automatic tool that outputs an ELAN-readable output file. The semi-automatic

procedures used are described in the following.

Regarding the annotation of the actors’ position, the tracking algorithm de-Speaker’s position semi-automatic

annotation procedure.
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Actor 1
(enters room, positions himself in front of robot and

looks at robot)

Actor 1 Hello, I’m Actor 1.

Robot Hello, I’m Nao. Nice to meet you.

Actor 2
(enters room, positions himself next to Actor 1 and looks

at robot)

Robot Excuse me for a moment.

Robot (turns head towards Actor 2)

Actor 1 (turns head towards Actor 2)

Robot
Hello, I’m currently talking to Actor 1. Do you know

Actor 1?

Actor 2 No, I don’t know him.

Robot Then let me introduce you two. What is your name?

Actor 2 Actor 2

Robot
Actor 2 this is Actor 1. (turns head towards Actor 1)

Actor 1 this is Actor 2.

Actor 3
(enters room, walks somewhere behind Actor 1 and Ac-

tor 2, leaves room)

Actor 1 We have to go now. Bye

Robot (turns head towards Actor 1)

Robot Ok. See you later.

Script 4: Detail of the script of the scenario “Introducing people - Active”. Two out of the three people interact

with the robot. The latter is a moving robot.

scribed in [Kalal 12] is used to semi-automatize the process. The annotator is

asked for the object’s bounding box, which is then tracked along time. At any

point, the annotator can reinitialize the tracker to correct its mistakes. Once the

object is tracked along the entire left camera image sequence, the correspondent

trajectory in the other image is automatically estimated. To do that, the classi-

cal approach of maximizing the normalized cross-correlation across the epipolar

constraint is used [Hartley 04]. From these correspondence pairs, the 3D location

is computed at every frame using the DLT reconstruction procedure [Hartley 04].

The location of the speaker in the images is given in pixels and the position in

the 3D space are given in millimeters with respect to the cyclopean coordinate

reference frame [Hansard 08].

Concerning the speaking state, the state-of-the-art voice activity detector de- Speaker’s speaking state semi-

automatic annotation procedure.scribed in [Brookes 11] is used on the per-actor close range microphones. In a

second step, the annotator is in charge of discarding all false positives generated

by the VAD, leading to a clean speaking state annotation per each actor.
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Figure 2.4: The annotation tool screen shot. Two time lines are shown below the image. The first one (top) is

used to annotate the level of background clutter. The second one (bottom) details which action is performed at

each frame.

2.6 Data Exploitation Examples

In order to prove the relevance and usability of the RAVEL data set, a few data

exploitation examples are provided. Three different examples, showing how di-

verse applications can use the presented data set, are explained in this section: a

scene flow extraction method, an event-detection algorithm based on statistical

audio-visual fusion techniques and two machine learning-based action recogni-

tion methods.

2.6.1 Scene Flow

Since the entire data set is captured by synchronized and fully calibrated cameras,What is scene flow?

it is possible to compute a 3D scene flow [Vedula 05], which is a classical low-

level computer vision problem. The 3D scene flow is defined as a motion field

such that each reconstructed pixel for a frame has assigned a 3D position and

a 3D velocity. It leads to an image correspondence problem, where one has to

simultaneously find corresponding pixels between images of a stereo pair and

corresponding pixels between subsequent frames.

After the 3D reconstruction using the known camera calibration, these cor-Scene flow results on RAVEL.

respondences fully determine the 3D scene flow. A projection of a scene flow

is shown in Figure 2.5, as a disparity (or depth) map and horizontal and verti-

cal optical flow maps. These results are computed using a recent seed growing

algorithm [Čech 11]. The scene flow results can be used for further processing

towards the understanding of a dynamic scene.
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(a) Left image (b) Depth

(c) Horizontal motion (d) Vertical motion

Figure 2.5: Results of the scene flow algorithm. The original left image is shown in (a). The actual results

are colour coded. For depth map (b), warmer colours are closer to the camera. For horizontal (c) and vertical

(d) motion maps, green colour stands for zero motion, while colder colours correspond to right and up motion

respectively, warmer colours the opposite direction. Black colour stands for unassigned disparity or optical flow.

2.6.2 Audio-Visual Event Detection

How to detect audio-visual events, i.e. events that are both heard and seen, is a What can we use to detect audio-

visual events on RAVEL?topic of interest for researchers working in multimodal fusion. An entire pipeline

– from the raw data to the concept of AV event – is exemplified in this section.

This pipeline consists of three modules: visual processing, auditory processing

and audio-visual fusion. In the following, the method is roughly described; in-

terested readers can find a more detailed explanation in [Alameda-Pineda 11] and

Chapter 3.

The algorithm was applied onto the CPP sequence of the RAVEL data set. Speaker detection on the CPP se-

quence.Figure 2.6 shows the results of the method in nine frames of the sequence. In this

sequence the AV events are people in an informal social gathering. Although the

method has some false positives, it correctly detects and localizes 26 objects out

of 33 (78.8%).
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Figure 2.6: A sample of the AV events detected in the CPP sequence of the RAVEL data set. The ellipses

correspond to the localization of the events in the image plane. The method correctly detects and localizes 26

objects out of 33 (78.8%).

2.6.3 Action Recognition

To demonstrate some of the potentialities of the RAVEL data set we establish a

baseline for the Action Recognition subset of RAVEL. In this section we show the

performance of the state-of-the-art methods when applied to the RAVEL data set.

The results are split depending on the application: either “isolated” recognition

or “continuous” recognition.

§ Isolated Recognition

Among all the different methods to perform isolated action recognition, we decideOverview of the Bag-of-words

to use the one described in [Laptev 05]. Its performance is comparable to the

state-of-the-art methods and binaries can be easily found and downloaded from

here1. This method represents an action as a histogram of visual words. Once

all the actions are represented, a Support Vector Machine (SVM) is used to learn

each class (action) to afterwards determine if an unknown action belongs to one

of the classes previously trained. This methodology is known as a Bag-of-Words

(BoW) and it can be summarized into five steps: (i) collect set of features for all

actions/actors for each video clip, (ii) apply clustering algorithm to these features,

for instance, k-means, (iii) apply 1-NN to classify the features of each action into

the centroids found by k-means, (iv) obtain a histogram of k bins and (v) Train a

classifier with these histograms, for instance, SVM.

In this experiment the Laptev features are used. These features correspond toOur particular set up: the use of

Laptev features and SVM a set of spatio-temporal Harris detected points described by a concatenation of

Histogram of Oriented Gradients (HOG) and Histogram of Optical Flow (HOF)

descriptors [Dalal 05]. The clustering method to select the k most representative

features (visual words) is k-means. We then represent each action as a histogram

1http://www.irisa.fr/vista/Equipe/People/Ivan.Laptev.html
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Table 2.2: Results of the experiments on isolated action recognition. Recognition rates of the Laptev features

using different number of clusters for the k-means algorithm for the controlled and normal levels of background

clutter.

k 500 1000 2000 3000

Controlled 0.6320 0.6883 0.6926 0.6797

Normal 0.4892 0.4675 0.4762 0.5281

of visual words. Finally a linear multiclass SVM is trained on these histograms.

In order to obtain statistically significant results, we evaluate the method’s perfor-

mance using a leave-one-out cross-validation strategy.

In addition to the recognition rates we show several confusion matrices. The Results of isolated action recogni-

tion.ijth position of a confusion matrix represents the amount of instance of the i
category classified as the j category. Figures 2.7a, to 2.7f show the confusion

matrices when the characters 2, 3 and 11 were tested. The matrices on the top

correspond to the scenarios under controlled background clutter and the matrices

on the bottom to the scenarios under normal background clutter. We can ob-

serve the expected behaviour: the matrices under the controlled conditions report

much better results than those under normal conditions. In addition, we observe

some variation across different actors on where are the wrong detections. This

is caused by two effects: the different ways of performing the actions and the

various co-articulations. All together justifies the use of a cross-validation evalu-

ation strategy. Figures 2.7g and 2.7h report the global confusion matrices, from

which we can observe that the expected behaviour regarding the performance on

controlled vs. normal clutter level, observed before is extensible to the entire data

set. Finally, Table 2.2 reports the average recognition rate (that is the average of

the diagonal of the confusion matrix) for different values of k.

§ Continuous Recognition

Continuous action recognition, or joint segmentation and classification, refers to Continuous action recognition

the case where a video to be analysed contains a sequence of actions played by

one actor or by different actors. The order of the actions in the video is not known.

Most of the earlier methods assume that the segmentation and classification tasks

may be carried out completely independently of each other, i.e., they consider an

isolated recognition scenario where the boundaries of action in videos are known

a priori. In continuous recognition scenarios the objective is to find the best label

sequence for each video frame. The isolated recognition framework of represent-

ing an action as a single histogram of visual words can be modified to perform

continuous action recognition.

In [Shi 11], the authors propose a method which uses SVM for classification Two approaches for continuous

action recognitionof each action and the temporal segmentation is done efficiently using dynamic

programming. Multi-class SVMs are trained on a segmented training set. In

the classification stage, actions are searched over several temporal segments at

different time scales. Each temporal segment is represented by a single histogram.
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(e) Character 11 - Controlled
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(f) Character 11 - Normal
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Figure 2.7: Confusion matrices with k = 2000 clusters using Laptev features. The first column corresponds to

the controlled background and the second column to the normal scenario. First row uses the 2nd actor as test,

second row uses the 3rd actor, third row uses the 11th actor and last row is the global confusion matrix.



27

Table 2.3: Accuracy of the continuous recognition methods using artificially merged actions (Weizmann and

Hollywood) and actions involving smooth transitions (RAVEL).

Dataset: Weizmann Hollywood RAVEL

Shi et. al. [Shi 11] 69.7 34.2 55.4

Hoai et. al. [Hoai 11] 87.7 42.2 59.9

The search over the time scale is restricted by the maximum and minimum lengths

of actions computed from the training set. Each of these segments are classified

by SVM trained on the action classes. This classification yields ordered sets of

labels for the segments. To find the best set of labels for the whole video one

needs an optimization criteria. In [Shi 11] the optimization criteria is to maximize

the sum of the SVM classifier scores computed by concatenating segments over

different temporal scales. This optimization is efficiently cast in the dynamic

programming framework.

Both [Shi 11] and [Hoai 11] are similar in the way they perform continuous

action recognition, i.e., the classification is done at different temporal scales using

SVMs, while the segmentation is efficiently done using dynamic programming.

The crucial difference between these two methods is the optimization criteria

used for dynamic programming. In [Shi 11], the sum of the SVM scores for the

concatenated segments is maximized. This ensures the best sequence of labels

for the whole video but does not ensure that the best label is assigned to each

segment. This problem is overcome in [Hoai 11] where a difference between

the SVM score of the winning class label for a segment and the next best label

is computed. The sum of these differences computed for each segment is then

maximized over concatenated segments at different time scales over the whole

video. This optimization is also cast in the dynamic programming framework.

Results on the RAVEL dataset using the state-of-art continuous recognition Results of continuous action recog-

nitionalgorithms [Hoai 11, Shi 11] are shown in Table 2.3. The accuracy of the algo-

rithms were measured by percentage of correctly labeled frames. The recog-

nition accuracy is also computed on Weizmann [Gorelick 07] and Hollywood

datasets [Laptev 08]. Since these dataset contain isolated actions only, we cre-

ated a sequence of multiple actions by concatenating single-action clips following

the protocol of [Hoai 11]. This concatenation creates abrupt artificial inter-action

transitions. In contrast, the RAVEL dataset is recorded continuously in one shot

per actor. The actions are played by the actors in random order (given by a hidden

prompt) and moreover we did not instruct the actors to come to a rest position after

every action. Therefore this dataset is well suitable for the the continuous action

recognition. In Figure 2.8 we show the estimated labels of two video sequences

by [Hoai 11, Shi 11] in a comparison with the ground-truth segmentation.
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Ground-truth

[Shi 11]

[Hoai 11]

(a) actor 1 (b) actor 4

Figure 2.8: Continuous action recognition results on the RAVEL datasets. Colours encodes action labels of

frames of the video sequences. Top row shows ground-truth labelling, while two rows below show results of

two state-of-the-art algorithms [Shi 11, Hoai 11]. The results are shown for two selected actors.

2.7 Conclusions

This chapter introduces the RAVEL data set, which consists of multimodal (visual

and audio) multichannel (two cameras and four microphones) synchronized data

sequences. The data set embodies several scenarios designed to study different

HRI applications. This new audiovisual corpus is important for two main reasons.

On one hand, the stability and characteristics of the acquisition device ensure the

quality of the recorded data and the repeatability of the experiments. On the other

hand, the amount of data is enough to evaluate the relevance of the contents in

order to improve the design of future HRI systems.

The acquisition set up (environment and device) was fully detailed. Techni-

cal specifications of the recorded streams (data) were provided. The calibration

and synchronization procedures, both visual and audio-visual, were described.

The scenarios were detailed; their scripts were provided when applicable. The

recorded scenarios fall in three categories representing different groups of appli-

cations: action recognition, robot gesture and interaction. Furthermore, the data

set annotation method was also described. Finally, three examples of data ex-

ploitation were provided: scene flow extraction, audio-visual event detection and

action recognition. These prove the usability of the RAVEL data set.



CHAPTER 3

AUDIO-VISUAL

SPEAKER LOCALISATION

Natural human-robot interaction in complex and unpredictable environments is one of the

main research lines in robotics, scene understanding and social computing. In typical

real-world scenarios, humans are at some distance from the robot and the acquired sig-

nals are strongly impaired by noise, reverberations and other interfering sources. In this

context, the detection and localisation of speakers plays a key role since it is the pillar on

which several tasks (e.g.: speech recognition and speaker tracking) rely. We address the

problem of how to detect and localize people that are both seen and heard by a humanoid

robot. We introduce a hybrid deterministic/probabilistic model. Indeed, the deterministic

component allows us to map the visual information into the auditory space. By means of

the probabilistic component, the visual features guide the grouping of the auditory fea-

tures in order to form AV objects. The proposed model and the associated algorithm are

implemented in real-time (17 FPS) using a stereoscopic camera pair and two microphones

embedded into the head of the humanoid robot NAO. We performed experiments on (i)

synthetic data, (ii) a publicly available data set and (iii) data acquired using the robot. The

results we obtained validate the approach and encourage us to further investigate how

vision can help robot hearing.

3.1 Introduction

In this chapter, we address the problem of detecting and localizing objects that

can be both seen and heard, e.g., people emitting sounds such as speech, sounds

produced by foot steps and clothe chafing, etc. This immediately raises the inter-

esting question of how to optimally associate, fuse, and cluster observations that

are gathered with physically different sensors, e.g., cameras and microphones,

and that live in semantically different spaces, e.g., how to associate spatiotempo-

ral visual features with temporal auditory signals.

29
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Figure 3.1: A typical scenario in which a companion humanoid robot (NAO) performs audio-visual fusion in an

attempt to detect the auditory status of each one of the speakers in the room. The system described processes the

raw data gathered with the robot’s camera and microphone pairs. The system output is a speaking probability

of each one of the actors together with the 3D location of the actors’ faces.

Among all possible applications using audio-visual data, we are interested inMultispeaker detection and localisa-

tion detecting multiple speakers in informal scenarios. A typical example of such a

scenario is shown in Figure 3.1, in which two people are sitting and chatting in

front of the robot. The robot’s primary task (prior to speech recognition, lan-

guage understanding, and dialogue) consists in retrieving the auditory status of

several speakers along time. This will allow the robot to concentrate its attention

on one of the speakers, i.e. , use the speaker’s location to optimize the emitter-to-

receiver pathway and to attempt to separate the auditory and visual data coming

from several speakers. We note that this problem cannot be solved within the

traditional human-computer interaction paradigm which is based on tethered in-

teraction (the user must wear a close-range microphone) and which primarily

works for a single-person-to-robot communication. This considerably limits the

the range of potential interactions between robots and people engaged in a co-

operative task or simply in a multi-party dialogue. In this chapter we investigate

untethered interaction thus allowing a robot with its onboard sensors to perceive

the status of several people at once and to communicate with them in the most

natural way. Consequently, we are restricted to the use of egocentric data. The

Thesis’ contribution to this topic is three-fold.

First, a hybrid deterministic/probabilistic model for audio-visual fusion AVS1 .Contributions

On one hand, the deterministic components allow us to model those characteris-

tics of the scene that are known with precision in advance. They may be the

outcome of a very accurate calibration step, or the direct consequence of some

geometrical or physical properties of the sensors. On the other hand, the prob-

abilistic components model random effects. In all, the hybrid model provides a

link between the auditory and visual feature spaces and a maximum likelihood

framework to estimate the number of speakers, their position and their speaking

status. Second, an audio-visual expectation-maximization algorithm that is the-

oretically sound, efficient, intuitive, and yields very interesting results AVS2 .
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Indeed, it performs clustering in the one-dimensional Interaural Time Difference

(ITD) space associated with two microphones and it takes full advantage of a gen-

erative model that allows, first to project visual observations onto this space and

second to back-project the detected 1D clusters into the 3D physical space without

any additional computational effort. We show experiments performed on the pub-

licly available data set CAVA that were published in [Alameda-Pineda 11]. Third,

an original system approach to tackle the problem of on-line audio-visual detec-

tion of multiple speakers using the companion humanoid robot NAO1 AVS3 .

Implemented on top of a platform-independent middleware, the algorithm works

on-line with good performance. The 3D positions of the speakers’ heads are ob-

tained from the stereo image pair, and Interaural Time Difference (ITD) values

are extracted from the auditory data. These cues are then fused in a probabilistic

manner in order to compute the speaking status of each person over time (see

[Sanchez-Riera 12b]).

The remainder of the chapter is organized as follows: Section 3.2 delineates

the related published work, Section 3.3 outlines the hybrid deterministic/probabilistic

model, Section 3.4 gives the details of the auditory and visual extracted features,

Sections 3.5 and 3.6 describe the multimodal inference procedure as well as its

on-line implementation on the humanoid robot NAO, Section 3.7 shows the re-

sults we obtained and Section 3.8 draws some conclusions and future work guide-

lines.

3.2 Related Work

The existing literature on speaker detection and localisation can be grouped into Non-parametric approaches

two main research lines. On one side, many statistical non-parametric approaches

have been developed. Indeed, [Gurban 06], [Besson 08b] and [Besson 08a] in-

vestigate the use of information theory-based methods to associate auditory and

visual data in order to detect the active speaker. Similarly, [Barzelay 07] pro-

poses an algorithm matching auditory and visual onsets. Even though these ap-

proaches show very good performance results, they use speaker/object dedicated

cameras, thus limiting the interaction. Moreover, the cited non-parametric ap-

proaches need a lot of training data. The outcome of such training steps is also

environment-dependent. Consequently, implementing such methods on mobile

platforms results in systems with almost no practical adaptability.

On the other side, several probabilistic approaches have been published. In Parametric approaches

[Khalidov 08], [Khalidov 11], the authors introduce the notion of conjugate GMM

for audio-visual fusion. Two GMMs are estimated, one for each modality (vision

and auditory) while the two mixture parameter sets are constrained through a

common set of tying parameters, namely the 3D locations of the AV events being

sought. Recently in [Noulas 12], a factorial HMM is proposed to associate au-

ditory, visual and audio-visual features. All these methods simultaneously detect

1http://www.aldebaran-robotics.com
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and localize the speakers but they are not suitable for real-time processing, be-

cause of their algorithmic complexity. [Kim 07] proposed a Bayesian framework

inferring the position of the active speaker and combining a sound source local-

isation technique with a face tracking algorithm on a robot. The reported results

are good in the case of one active speaker, but show bad performance for multi-

ple/far speakers. This is due to the fact that the proposed probabilistic framework

is not able to correctly handle outliers.

Unlike these recent approaches, we propose a novel hybrid deterministic/Main attributes of our approach

probabilistic model for audio-visual detection and localisation of speaking peo-

ple. Up to the authors’ knowledge, we introduce the very first model with the

following remarkable attributes all together: (i) theoretically sound and solid, (ii)

designed to process egocentric data, (iii) accommodating different visual and au-

ditory features, (iv) robust to noise and outliers, (v) requiring a once-and-forever

tiny calibration step guaranteeing the adaptability of the system, (vi) working on

unrestricted indoor environments, (vii) handling a variable number of people and

(viii) implemented on a humanoid platform.

3.3 A Hybrid Deterministic/Probabilistic Model

We introduce a multimodal deterministic/probabilistic fusion model for audio-Model unknowns

visual detection and localisation of speaking people that is suitable for real-time

applications. The algorithms derived from that hybrid model aim to count how

many speakers are there, find them in the scene and ascertain when they speak. In

other words, we seek for the number of potential speakers, N ∈ N, their positions

Sn ∈ S (S ⊂ R
3 is the scene space) and their speaking state en ∈ {0, 1} (0 – not

speaking and 1 – speaking).

In order to accomplish the detection and localization of speakers, auditoryModel observations

and visual features are extracted from the raw signals (sound track and image

flow), during a time interval ∆t. We assume ∆t to be short enough such that

the speakers remain approximately in the same 3D location and long enough to

capture small displacements and oscillatory movements of the head, hands, torso

and legs. The auditory and visual features extracted during ∆t are denoted by a =
{a1, . . . ,ak, . . . ,aK} ⊂ A and by v = {v1, . . . ,vm, . . . ,vM} ⊂ V respectively,

where A (V) is the auditory (visual) feature space.

We aim to solve the task from the auditory and visual observations. That is,Formal task

we want to compute the values of N , {Sn}N
n=1 and {en}N

n=1, that best explain the

extracted features a and v. Therefore, we need a framework that encompasses all

(hidden and observed) variables and that accounts for the following challenges:

(i) the visual and auditory observations lie in physically different spaces with dif-

ferent dimensionality, (ii) the object-to-observation assignments are not known in

advance, (iii) both visual and auditory observations are contaminated with noise

and outliers, (iv) the relative importance of the two types of data is unassessed, (v)

the position and speaking state of the speakers has to be gauged and (vi) since we
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Figure 3.2: Perceptual auditory (A) and visual (V) mappings of NAO. The extracted auditory ak and lay around

A(S) and V(S) respectively. An audio-visual mapping needs to be built to link the two observations spaces.

want to be able to deal with a variable number of AV objects over a long period

of time, the number of AV object that are effectively present in the scene must be

estimated.

We propose a hybrid deterministic/probabilistic framework performing audio- Model decomposition

visual fusion, seeking for the desired variables and accounting for the outlined

challenges. On one hand, the deterministic components allow us to model those

characteristics of the scene that are known with precision in advance. They may

be the outcome of a very accurate calibration step, or the direct consequence of

some geometrical or physical properties of the sensors. On the other hand, the

probabilistic components model random effects. For example, the feature noise

and outliers, which is a consequence of the contents of the scene as well as the

feature extraction procedure.

3.3.1 The Deterministic Model

In this section we delineate the deterministic components of our hybrid model: Visual and auditory mappings

namely the visual and auditory mappings. Because the scene space, the visual

space and the auditory space are different we need two mappings: the first one,

A : S → A, links the scene space to the auditory space and the second one, V :
S → V, links the scene space to the visual space. Both mappings are represented

in Figure 3.2. An AV object placed at S in the scene space, is virtually placed at

A(S) in the auditory space and at V(S) in the visual space.
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The definition of A and V provide a link between the two observations spaces,Audio-visual mapping

which corresponds either to A ◦ V−1 or to V ◦ A−1. Depending on the ex-

tracted features and on the sensors, the mappings A and V may be invertible.

If that is not the case, A ◦ V−1 or V ◦ A−1 should be estimated through a

learning procedure. There are several works already published dealing with this

problem in different ways. In [Alameda-Pineda 11, Sanchez-Riera 12c], V is

invertible and A is known, so building A ◦ V−1 is straightforward. In sound

source localization approaches (inter alia [Nakadai 04]) A is invertible and V is

known so V ◦ A−1 is easily constructed. In [Khalidov 08, Khalidov 11], none

of the mappings are inverted, but used to tie the parameters of the probabilistic

model. So the link between A and V is not used explicitly, but implicitly. In

[Butz 05, Kidron 05, Kidron 07, Liu 08], the scene space is undetermined and the

authors learn a common representation space (the scene space) at the same time

they learn both mappings.

In our case, we chose to extract 3D visual feature points, and represent them

in the scene coordinate system (see Section 3.4.2). Thus, the mapping V is the

identity, which is invertible. The auditory features correspond to the Interaural

Time Differences (see Section 3.4.1), and a direct path propagation model defines

A. The mapping A ◦ V−1 is accurately built from the geometric and physical

models estimated through a calibration step (see Section 3.4.3). Consequently,

we are able to map the visual features v = {v1, . . . ,vM} onto the auditory space

A. We will denote the projection of vm by ṽm:

ṽm = (A ◦ V−1)(vm).

Summarizing, we use the mapping from V to A to map all visual features onto

the auditory space. Hence, all extracted features lie, now, in the same space, and

we can perform the multimodal fusion in there.

3.3.2 The Probabilistic Model

Thanks to the link built in the previous section, we obtain a set of projected visualHidden variables

features ṽ = {ṽ1, . . . , ṽM}, laying in the same space as the auditory features a.

These features need to be grouped to construct audio-visual objects. However,

we do not know which observation is generated by which object. Therefore, we

introduce two sets of hidden variables Z and W :

Z = {Z1, . . . , Zm, . . . , ZM}
W = {W1, . . . ,Wk, . . . ,WK},

accounting for the observation-to-object assignment. The notation Zm = n (m ∈
{1, . . . ,M}, n ∈ {1, . . . , N + 1}) means that the projected visual observation

ṽm was either generated by the nth 3D object (n ∈ {1, . . . , N}) or it is an outlier

(n = N + 1). Similarly, the variable Wk is associated to the auditory observation

ak.
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We formulate the multimodal probabilistic fusion model under the assumption The generative model

that all observations ṽm and ak are independent and identically distributed. The

nth AV object generates both visual and auditory features normally distributed

around A(Sn) and both the visual and auditory outliers are uniformly distributed

in A. Therefore, we write:

P(ṽm|Zm = n, Θ) =

�

N (ṽm; µn, σn) n = 1, . . . , N
U(ṽm; A) n = N + 1

.

where Θ contains the Gaussian parameters, that is µn = A(Sn) and σn (the mean

and the standard deviation of the nth Gaussian). The exact same rule holds for

P(am|Wm = n, Θ). Thus we can define a generative model for the observations

x ∈ A:

p (x; Θ) =
N

�

n=1

πn N (x;µn, σn) + πN+1 U(x; A), (3.1)

where πn is the prior probabilities of the nth mixture component. That is, πn =
P(Zm = n) = P(Wk = n), ∀n, m, k. The prior probabilities satisfy

�N+1
n=1 πn =

1. Summarizing, the model parameters are:

Θ = {π1, . . . , πN+1, µ1, . . . , µN , σ1, . . . , σN}. (3.2)

Under the probabilistic framework described, the set of parameters is esti- Maximum likelihood formulation

mated within a maximum likelihood formulation:

L (ṽ, a; Θ) =
M
�

m=1

log p (ṽm; Θ) +
K

�

k=1

log p (ak; Θ) . (3.3)

In other words, the optimal set of parameters is the one maximizing the log-

likelihood function (3.3), where p is the generative probabilistic model in (3.1).

Unfortunately, direct maximization of (3.3) is an intractable problem. Equiva-

lently, the expected complete-data log-likelihood will be maximized [Dempster 77]

(see Section 3.5).

We recall that the ultimate goal is to determine the number N of AV events, The final goal

their 3D locations S1, . . . ,Sn, . . . ,SN as well as their auditory activity e1, . . . ,
en, . . . , eN . However, the 3D location parameters can be computed only indi-

rectly, once the multimodal mixture’s parameters Θ have been estimated. Indeed,

once the auditory and visual observations are grouped in A, the ṽm ↔ vm corre-

spondences are used to infer the locations Sn of the AV objects and the grouping

of the auditory observations a is used to infer the speaking state en of the AV

objects. The choice of N as well as the formulas for Sn and en are given in Sec-

tions 3.5.2 and 3.5.3 respectively. Before these details are given and in order to

fix ideas, we devote next section to describe the auditory and visual features, jus-

tify the existence of V−1 and detail the calibration procedure leading to a highly

accurate mapping A ◦ V−1.
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3.4 Finding Auditory and Visual Features

In this section we describe the auditory (Section 3.4.1) and the visual (Section 3.4.2)

features we extract from the raw data. Given this features, the definition of A and

V is straightforward. However, the computation of the mapping’s parameters is

done through a calibration procedure detailed in Section 3.4.3.

3.4.1 Auditory Features

An auditory observation ak corresponds to an Interaural Time Difference (ITD)

between the left and right microphones. Because the ITDs are real-valued, the

auditory feature space is A = R. One ITD value corresponds to the different

of time of arrival of the sound signal between the left and right microphones.

For instance, the sound wave of a speaker located in the left-half of the scene

will obviously arrive earlier to the left microphone than to the right microphone.

We found that the method proposed in [Christensen 07] yields very good results

that are stable over time. The relationship between an auditory source located at

S ∈ R
3 and an ITD observation a depends on the relative position of the acoustic

source with respect to the locations of the left and right microphones, ML and

MR. If we assume direct sound propagation and constant sound velocity ν, this

relationship is given by the mapping A : S → A defined as:

A(S) =
�S − ML� − �S − MR�

ν
. (3.4)

3.4.2 Visual Features

The visual observations are 3D points extracted using binocular vision. We used

two types of features: the Harris-Motion 3D (HM3D) points and the faces 3D

(F3D).

HM3D The first kind of features we extracted are called Harris-motion points.

We first detect Harris interest points [Harris 88] in the left and right image

pairs of the time interval ∆t. Second, we only consider a subset of theses

points, namely those points where motion occurs. For each interest-point

image location (u, v) we consider the image intensities at the same location

(u, v) in the subsequent images and we compute a temporal intensity stan-

dard deviation τ(u,v) for each interest point. Assuming stable lighting condi-

tion over ∆t, we simply classify the interest points into static (τ(u,v) ≤ τM )

and dynamic (τ(u,v) > τM ) where τM is a user-defined threshold. Third,

we apply a standard stereo matching algorithm and a stereo reconstruction

algorithm [Hartley 04] to yield a set of 3D features v associated with ∆t.

F3D The second kind of features are the 3D coordinates of the speakers’ faces.

They are obtained using the face detector in [Šochman 05]. More precisely,
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the center of the bounding box retrieved by the face detector is matched to

the right image and the same stereo reconstruction algorithm as in HM3D

is used to obtain v.

Both 3D features are expressed in cyclopean coordinates [Hansard 08], which are

also the scene coordinates. Consequently, the visual mapping V is the identity

mapping. In conclusion, because we are able to accurately model the geometry

of the visual sensors, we can assume that V is invertible and explicitly build the

linking mapping A ◦ V−1.

3.4.3 Calibration

In the two previous sections we described the auditory and the visual features

respectively. As a consequence, the mappings A and V are defined. However,

we made implicit use of two, a priory unknown, objects. On one hand the Stereo-calibration

stereo-matching and the 3D reconstruction algorithms need the so-called stereo-

calibration. That is, the projection matrices corresponding to the left and right

cameras which are estimated using [Bouguet 08]. It is worth to remark that the

calibration procedure allows us to accurately represent any point in the field-of-

view of both cameras as a 3D point. On the other hand, and in order to use A, Audio-visual calibration

we need to know the positions of the microphones ML and MR in the scene co-

ordinate frame, which is slightly more complex. Since the scene coordinates are

the same as the visual coordinates, we refer to this as “audio-visual calibration”.

We manually measure the values of ML and MR with respect to the stereo rig.

However, because these measurements are imprecise, an affine correction model

needs to be applied:

A(S) = c1 A(S) + c0 = c1
�S − ML� − �S − MR�

ν
+ c0, (3.5)

where c1 and c0 are the adjustment coefficients. In order to estimate c1 and c0,

a person with a speaker held just below the face moves in a zig-zag trajectory in

the entire visual field of view of the two cameras. The 3D position of the person’s

face and the ITD values were extracted. We used white noise because it correlates

very well resulting in a single sharp peak in ITD space. In many experiments, we

did not observe any effect of reverberations, because the reverberant components

are suppressed by the direct component of the long lasting white noise signal. The

optimal values for c1 and c0, in the least square sense, were computed from these

data. Figure 3.3 shows the extracted ITDs (red-circle), the projected faces before

(blue) and after (green) the affine correction. We can clearly see how the affine

transformation enhanced the audio-visual linking mapping. Hence the projected Final mapping

visual features have the following expression:

ṽm = (A ◦ V−1)(vm) = c1
�vm − ML� − �vm − MR�

ν
+ c0. (3.6)
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Figure 3.3: Affine correction of the audio-visual calibration. Extracted ITD values are plot in red-circled.

F3D features projected into the ITD space using Equation (3.4) are plot in blue. F3D features projected using

Equation (3.6), that is after the audio-visual calibration step, are plot in green.

The outlined calibration procedure has three main advantages: (i) it requires

very few training data, (ii) it lasts a long period of time and (iii) it is environment-

independent, thus guaranteeing the system’s adaptability. Indeed, in our case, the

calibration ran on a one-minute audio-visual sequence and has been successfully

used for the last 18 months in several rooms, including project demonstrations

and conference exhibits. Consequently, the robustness of the once-for-all tiny

audio-visual calibration step is proved up to a large extent.

3.5 Multimodal Inference

In Section 3.3 we set up the maximum-likelihood framework to perform AV fu-Remaining issues

sion. The 3D visual features are mapped into the auditory space A through the

audio-visual mapping (A ◦ V−1). This mapping takes the form in (3.6) when

using the auditory and visual features described in Section 3.4. However, three

of the initial issues remain unsolved: (i) the relative importance of each modality,

(ii) the estimates for Sn and en and (iii) the variable number of AV objects, N . In

this Section we described EM-based method solving the ML problem with hidden

variables and accounting for these unsolved issues.
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3.5.1 Visual Guidance

Previous papers do not agree on how to balance the relative importance of each Relative modality importance

modality. After a deep analysis of the features’ statistics, we choose to use the

visual information to guide the clustering process of the sparse auditory obser-

vations. Indeed, because the HM3D visual features are more dense and have

better temporal continuity than the ITD values, we start by fitting a 1D GMM

to the projected visual features {ṽm}M
m=1. This is done with the standard EM

algorithm [Bishop 06]. In the E step of the algorithm the posterior probabilities

αmn = P(Zm = n|ṽ,Θ) are updated via the following formula:

αmn =
πn P(ṽm|Zm = n, Θ)

�N+1
i=1 πi P(ṽm|Zm = i,Θ)

. (3.7)

The M step is devoted to maximize the expected complete data log-likelihood

with respect to the parameters, leading to the standard formulas (with ᾱn =
�M

m=1 αmn):

πn =
ᾱn

M
,

µn =
1

ᾱn

M
�

m=1

αmnṽm,

σ2
n =

1

ᾱn

M
�

m=1

αmn(ṽm − µn)2.

Once the model is fitted to the projected visual data, i.e., the visual informa- The visual guidance

tion has already been probabilistically assigned to the N objects, the clustering

process proceeds by including the auditory information. Hence, we are faced with

a constrained maximum-likelihood estimation problem: maximize (3.3) subject

to the constraint that the posterior probabilities αmn were previously computed.

This leads to vision-guided EM fusion algorithm in which the E-step only updates

the posterior probabilities associated with the auditory observations while those

associated with the visual observations remain unchanged. This semi-supervision

strategy was introduced in the context of text classification [Nigam 00, Miller 03].

Here it is applied to enforce the quality and reliability of one of the sensing modal-

ities within a multimodal clustering algorithm. To summarize, the E-step of the

algorithm updates only the posterior probabilities of the auditory observations

βkn = P(Wk = n|a,Θ):

βkn =
πn P(ak|Wk = n, Θ)

�N+1
i=1 πi P(ak|Wk = i,Θ)

, (3.8)

while keeping the visual posterior probabilities, αmn, constant. The M-step has a

closed-form solution and the prior probabilities are updated with:

πn =
γn

M + K
, n = 1, . . . , N + 1,
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with γn =
�M

m=1 αmn +
�K

k=1 βkn = ᾱn + β̄n. The means and variances of the

current model are estimated by combining the two modalities:

µn =
1

γn

�

M
�

m=1

αmn ṽm +
K

�

k=1

βkn ak

�

, (3.9)

σ2
n =

�M
m=1 αmn (ṽm − µn)2 +

�K
k=1 βkn (ak − µn)2

γn
. (3.10)

3.5.2 Counting the Number of Speakers

Since we do not know the value of N , a reasonable way to proceed is to estimateBIC for model selection

the parameters ΘN for different values of N using the method delineated in the

previous section. Once we estimated the maximum likelihood parameters for

models with different number of AV objects, we need a criterion to choose which

is the best one. This is estimating the number of AV objects (clusters) in the scene.

BIC [Schwarz 78] is a well known criterion to choose among several maximum

likelihood statistical models. BIC is often chosen for this type of tasks due to its

attractive consistency properties [Keribin 00]. It is appropriate to use this criterion

in our framework, due to the fact that the statistical models after the vision-guided

EM algorithm, fit the AV data in an ML sense. In our case, choosing among these

models is equivalent to estimate the number of AV events N̂ . The formula to

compute the BIC score is:

BIC(ṽ, a,ΘN ) = L (ṽ, a; ΘN ) − DN log(M + K)

2
, (3.11)

where DN = 3N is the number of free parameters of the model.

The number of AV events is estimated by selecting the statistical model cor-

responding to the maximum score:

N̂ = arg max
N

BIC(ṽ, a,ΘN ). (3.12)

3.5.3 Detection and Localisation

The selection on N leads to the best maximum-likelihood model in the BIC sense.

That is, the set of parameters that best explain the auditory and visual observations

a and ṽ. In the following, v are used to estimate the 3D positions in the scene and

a to estimate the speaking state of each AV object.

The locations of the AV objects are estimated thanks to the one-to-one corre-Estimating Sn

spondence between 3D visual features and the 1D projected features, ṽm ↔ vm.

Indeed, the probabilistic assignments of the projected visual data onto the 1D

clusters, αmn, allow us to estimate Sn through:

Ŝn =
1

ᾱn

M
�

m=1

αmnvm. (3.13)
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The auditory activity associated to the nth speaker is estimated as follows (τA Estimating en

is a user-defined threshold):

ên =

�

1 if β̄n > τA

0 otherwise
(3.14)

This two formulas account for the last remaining issue: the 3D localization

and speaking state estimation of the AV objects. Next section describes some

practical considerations to take into account when using this EM-based AV fusion

method. Afterward, in Section 3.5.5, we summarize the method by providing an

algorithmic scheme of the multimodal inference procedure.

3.5.4 Practical Concerns

Even though the EM algorithm has proved to be the proper (and extremely pow- Three technical issues

erful) methodology to solve ML problems with hidden variables, in practice we

need to overcome two main hurdles. First, since the log-likelihood function has

many local maxima and EM is a local optimization technique, a very good ini-

tialization is required. Second, because real data is finite and may not strictly

follow the generative law of probability (3.1), the consistency properties of the

EM algorithm do not guarantee that the model chosen by BIC is meaningful re-

garding the application. Thus, a post-processing step is needed in order to include

the application-dependant knowledge. In all, we must account for three practical

concerns: (i) EM initialization, (ii) eventual shortage of observations and (iii) the

probabilistic model does not fully correspond to the observations.

It is reasonable to assume that the dynamics of the AV objects are somehow EM Initialization

constrained. In other words, the positions of the objects at a time interval are close

to the positions at the previous time interval. Hence, we use the model computed

in the previous time interval to initialize the EM based procedure. More precisely,

if we denote by N (p) the number of AV objects found in the previous time interval,

we initialize a new 1D GMM with N clusters, for N ∈ {0, . . . , Nmax}. In the case

N ≤ N (p), we take the N clusters with the highest weight. For N > N (p), we

incrementally split a cluster at its mean into two clusters. The cluster to be split

is selected on the basis of a high Davies-Bouldin index [Davies 79]:

DWi = max
j �=i

σi + σj

�µi − µj�
.

We chose to split the cluster into two clusters in order to detect AV objects

that have recently appeared in the scene, either because they were outside the

field of view, or because they were occluded by another AV object. This provides

us with a good initialization. In our case the maximum number of AV objects is

Nmax = 10.
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A shortage of observations usually leads to clusters whose interactions mayToo few observations

describe an overall pattern, instead of different components. We solve this prob-

lem by merging some of the mixture’s components. There are several techniques

to merge clusters within a mixture model (see [Hennig 10]). Since the compo-

nents to be merged lie around the same position and have similar spread, the

ridgeline method [Ray 05] best solves our problem.

Finally, we need to face the fact that the probabilistic model does not fullySpurious clusters

represent the observations. Indeed, we observed the existence of spurious clus-

ters. Although the 3D visual observations associated with these clusters may be

uniformly distributed, their projections onto the auditory space ṽm may form a

spurious cluster. Hence these clusters are characterized by having their points

distributed near some hyperboloid in the 3D space (hyperboloids are the level

surfaces of the linking mapping defined in (3.6)). As a consequence, the vol-

ume of the back-projected 3D cluster is small. We discard those clusters whose

covariance matrix has a small determinant. Similarly as in (3.13), the clusters’

covariance matrix is estimated via:

Σ̂n =
1

ᾱn

M
�

m=1

αmn

�

vm − Ŝn

� �

vm − Ŝn

��
. (3.15)

3.5.5 Motion-Guided Robot Hearing

Algorithm 3.1 below summarizes the proposed method. It takes as input the vi-

sual (MH3D) and auditory (ITD) observations gathered during a time interval ∆t.
The algorithm’s output is the estimated number of clusters N̂ , the estimated 3D

positions of the AV events {Ŝn}N̂
n=1 as well as their estimated auditory activity

{ên}N̂
n=1. Because the grouping process is supervised by the HM3D features,

we name the procedure Motion-Guided Robot Hearing. The algorithm starts by

mapping the visual observations onto the auditory space by means of the linking

mapping defined in (3.6). Then, for N ∈ {1, . . . , Nmax} it iterates through the

following steps: (a) Initialize a model with N components using the output of the

previous time interval (Section 3.5.4), (b) apply EM using the selected N to model

the 1D projections of the visual data (Section 3.5.1), (c) apply the vision-guided

EM fusion algorithm to both the auditory and projected visual data (Section 3.5.1)

in order to perform audio-visual clustering, and (d) compute the BIC score asso-

ciated with the current model, i.e., (3.11). This allows the algorithm to select the

model with the highest BIC score, i.e., (3.12). The post-processing step is then

applied to the selected model (Section 3.5.4) prior to computing the final output

(Section 3.5.3).

3.6 Implementation on NAO

The previous multimodal inference algorithm has desirable statistical properties

and good performance (see Section 3.7). Since our final aim is to have a stable
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Algorithm 3.1 Motion-Guided Robot Hearing

1: Input: HM3D, {vm}M
m=1, and ITD, {ak}K

k=1, features.

2: Output: Number of AV events N̂ , 3D localization
�

Ŝn

�N̂

n=1
and auditory

status {ên}N̂
n=1.

3: Map the visual features onto the auditory space, ṽm = (A◦V−1)(vm) (3.6).

4: for N = 1 → Nmax do

5: (a) Initialize the model with N clusters (Section 3.5.4).

6: (b) Apply EM clustering to {ṽm}M
m=1 (Section 3.5.1).

7: (c) Apply the Vision-guided EM fusion algorithm to cluster the audio-

visual data (Section 3.5.1).

8: (d) Compute the BIC score (3.11).

9: end for

10: Estimate the number of clusters based on the BIC score (3.12).

11: Post-processing (Section 3.5.4).

12: Compute the final outputs {Ŝn}N̂
n=1 and {ên}N̂

n=1 (Section 3.5.3).

component working on a humanoid robot (i.e., able to interact with other compo-

nents), we reduced the computational load of the AV fusion algorithm. Indeed, we

adapted the method described in Section 3.5 to achieve a light on-line algorithm

working on mobile robotic platforms.

In order to reduce the complexity, we substituted the Harris-Motion 3D point Adapting to NAO

detector (HM3D) with the face 3D detector (F3D), described in Section 3.4.2.

F3D replaces hundreds of HM3D points with a few face locations in 3D, {vm}M
m=1.

We then consider that the potential speakers correspond to the detected faces.

Hence we set N = M and Sn = vn, n = 1, . . . , N . This has several crucial con-

sequences. First, the number of AV objects corresponds to the number of detected

faces; the model selection step is not needed and the EM algorithm does not have

to run Nmax times, but just once. Second, because the visual features provide a

good initialization for the EM (by setting µn = (A ◦ V−1)(Sn)), the visual EM

is not required and the hidden variables Z do not make sense anymore. Third,

since the visual features are not used as observations in the EM, but to initialize

it, the complexity of the vision-guide EM fusion algorithm is O(NK) instead of

O (N(K + M)). This important because the number of HM3D points is much

bigger than the number of ITD values, i.e., M � K. Last, because the visual

features provide the Sn’s, there is not need to estimate them through (3.13).

3.6.1 Face-Guided Robot Hearing

The resulting procedure is called Face-Guided Robot Hearing and it is summa-

rized in Algorithm 3.2 below. It takes as input the detected heads (S1, . . . ,SN )

and the auditory (a) observations gathered during a time interval ∆t. The algo-

rithm’s output is the estimated auditory activity {ên}N
n=1.
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Algorithm 3.2 Face-Guided Robot Hearing

1: Input: Faces’ position {Sn}N
n=1 and auditory {ak}K

k=1 features.

2: Output: AV objects’ auditory status {ên}N̂
n=1.

3: Map the detected heads onto the auditory space, µn = (A ◦ V−1)(Sn) (3.6).

4: Apply EM clustering to {ak}K
k=1 (Section 3.5.1).

5: Compute the final outputs {ên}N̂
n=1 (Section 3.5.3).

3.6.2 System Architecture

We implemented our method using several components which are connected by aThe RSB middleware

middleware called Robotics Services Bus (RSB) [Wienke 11]. RSB is a platform-

independent event-driven middleware specifically designed for the needs of dis-

tributed robotic applications. It is based on a logically unified bus which can span

over several transport mechanisms like network or in-process communication.

The bus is hierarchically structured using scopes on which events can be pub-

lished with a common root scope. Through the unified bus, full introspection of

the event flow between all components is easily possible. Consequently, several

tools exist which can record the event flow and replay it later, so that application

development can largely be done without a running robot. RSB events are auto-

matically equipped with several timestamps, which provide for introspection and

synchronization abilities. Because of these reasons RSB was chosen instead of

NAO’s native framework NAOqi and we could implement and test our algorithm

remotely without performance and deployment restrictions imposed by the robot

platform. Moreover, the resulting implementation can be reused for other robots.

One tool available in the RSB ecosystem is an event synchronizer, which syn-Synchronization tools

chronizes events based on the attached timestamps with the aim to free applica-

tion developers from such a generic task. However, several possibilities of how to

synchronize events exist and need to be chosen based on the intended application

scenario. For this reason, the synchronizer implements several strategies, each of

them synchronizing events from several scopes into a resulting compound event

containing a set of events from the original scopes. We used two strategies for the

implementation. The ApproximateTime strategy is based on the algorithm avail-

able in [ROS 12] and outputs sets of events containing exactly one event from

each scope. The algorithm tries to minimize the time between the earliest and

the latest event in each set and hence well-suited to synchronize events which

originate from the same source (in the world) but suffered from perception or

processing delays in a way that they have non-equal timestamps. The second al-

gorithm, TimeFrame, declares one scope as the primary event source and for each

event received here, all events received on other scopes are attached that lie in a

specific time frame around the timestamp of the source event.

ApproximateTime is used in our case to synchronize the results from the left

and right camera as frames in general form matching entities but due to indepen-

dent grabbing of both cameras have slightly different timestamps. Results from
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Figure 3.4: Within this work we used a new audio-visual head that is composed of a synchronized camera pair

and two microphones. This “orange” head replaces the former “blue” head and is fully interfaced by the RSB

middleware previously described in this section.

the stereo matching process are synchronized with ITD values using the Time-

Frame strategy because the integration time for generating ITD values is much

smaller than for a vision frame and hence multiple ITD values belong to a single

vision result.

3.6.3 Modular Structure

The implementation is divided into components shown in the pipeline of Fig-

ure 3.6. Components are color-coded: modules provided by the RSB middleware

(white), auditory (red) and visual (green) processing, audio-visual fusion (purple)

and the visualization tool (blue) described at the end of this Section.

The visual processing is composed by five modules. Left video and Right Visual processing

video stream the images received at left and right cameras. The Left face detec-

tion module extracts the faces from the left image. These are then synchronized

with the right image in Face-image synchronization, using the ApproximateTime

strategy. The F3D Extraction module computes the F3D features. A new audio-

visual head for NAO was used for this implementation. The new head (see Fig-

ure 3.4) is equipped with a pair of cameras and four microphones, thus providing

a synchronized VGA stereoscopic image flow as well as four audio channels.

The auditory component consists of three modules. Interleaved audio samples Auditory processing

coming from the four microphones of NAO are streamed by the Interleaved audio

module. The four channels are deinterleaved by the Sound deinterleaving module,

which outputs the auditory flows corresponding to the left and right microphones.

These flows are stored into two circular buffers in order to extract the ITD values

(ITD extraction module).

Both visual and auditory features flow until the Audio-visual synchronization Audio-visual fusion

module; the TimeFrame strategy is used here to find the ITD values coming from
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Figure 3.5: Snapshot of the visualization tool. The top-left (blue-framed) image is the original left image plus

one bounding box per detected face. In addition, an intensity-coded circle appears when the speaker is active.

The darker the colour is, the higher the speaking probability is. The top-right (green-framed) image corresponds

to the bird-view of the scene, in which each circle corresponds to a detected head. The bottom-left (red-framed)

image represents the ITD space. The projected faces are represented by an ellipse and the histogram of extracted

ITD values is plot.

the audio pipeline associated to the 3D positions of the faces coming from the

visual processing. These synchronized events feed the Face-guided robot hearing

module, which is in charge of estimating the speaking state of each face, en.

Finally, we developed the module Visualization, in order to get a better insightVisualization

of the proposed algorithm. A snapshot of this visualization tool can be seen in

Figure 3.5. The image consists of three parts. The top-left part with a blue frame

is the original left image plus one rectangle per detected face. In addition to the

face’s bounding box, a solid circle is plot on the face of the actor codding the

emitting sound probability, the higher it is, the darker the circle. The top-right

part, framed in green, is a bird-view of the scene, in which the detected heads

appear as circles. The bottom-left part, with a red frame, represents the ITD

space. There, both the mapped heads (ellipses) and the histogram of ITD values

are plot.

3.6.4 Implementation Details

Some details need to be specified regarding the implementation of the face-guided

robot hearing method. First, the integration window F and the frame shift f of the

ITD extraction procedure. The bigger the integration window is the more reliable

the ITD values are and the more expensive its computation becomes. Similarly,

the smaller f is the more ITD observations are extracted and the more computa-

tional load we have. A good compromise between low computational load, high

rate, and reliability of ITD values was found for W = 150 ms and f = 20 ms.

We also used an activity threshold: when the energy of the sound signals is lower

than EA = 0.001, the window is not processed. Thus saving computational time

for other components in the system when there are no emitted sounds. Notice that

this parameter could be controlled by a higher level module which would learn
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Figure 3.6: Modular structure of the Face-Guided Robot Hearing procedure implemented on NAO. There are

five types of modules: streaming & synchronization (white), visual processing (green), auditory processing

(red), audio-visual fusion (purple) and visualization (blue).

the characteristics of the scene and infer the level of background noise. We ini-

tialize σ2
n = 10−9, since we found this value big enough to take into account the

noise in the ITD values and small enough to discriminate speakers that are close

to each other. The threshold τA has to take into account how many audio observa-

tions (K) are gathered during the current time interval ∆t as well as the number

of potential audible AV objects (N ). For instance, if there is just one potential

AV object, most of the audio observations should be assigned to it, whereas if

there are three of them the audio observations may be distributed among them

(in case all of them emit sounds). The threshold τA was experimentally set to

τA = K/(N + 2). The entire pipeline was running on a laptop with an i7 proces-

sor at 2.5 GHz.

3.7 Results

In order to evaluate the proposed approach, we ran three sets of experiments.

First, we evaluated the Multimodal Inference method described in Section 3.5 on

synthetic data. This allowed us to assess the quality of the model on a controlled
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scenario, where the feature extraction did not play any role. Second, we evalu-

ated the Motion-Guided Robot Hearing method on a publicly available dataset,

thus assessing the quality of the entire approach. Finally, we evaluated the Face-

Guided Robot Hearing implemented on NAO, which proves that the proposed

hybrid deterministic/probabilistic framework is suitable for robot applications.

In all our experiments we used a time interval of 6 visual frames, ∆t = 0.4s;An example of auditory and visual

observations gathered within ∆t of

the publicly available data set
time in which approximately 2,000 HM3D observations and 20 auditory obser-

vations are extracted. A typical set of visual and auditory observations are shown

in Figures 3.7 and 3.8. Indeed, Figure 3.7 focuses on the extraction of the HM3D

features: the Harris interest point detection, filtered by motion, matched between

images and reconstructed in 3D. Figure 3.8 shows the very same 3D features

projected in to the ITD space. Also, the ITD values extracted during the same

time interval are shown. These are the input features of the Motion-Guided Robot

Hearing procedure. Notice that both auditory and visual data are corrupted by

noise and by outliers. Visual data suffer from reconstruction errors either from

wrong matches or from noisy detection. Auditory data suffer from reverberations,

which enlarge the pics’ variances, or from sensor noise which is sparse along the

ITD space.

To quantitatively evaluate the localization results, we compute a distance ma-Evaluation metric

trix between the detected clusters and the ground-truth clusters. The cluster-to-

cluster distance corresponds to the Euclidean distance between cluster means. Let

D be the distance matrix, then entry Dij = �µi − µ̂j� is the distance from the

ith ground-truth cluster to the jth detected cluster. Next, we associate at most one

ground-truth cluster to each detected cluster. The assignment procedure is as fol-

lows. For each detected cluster we compute its ground-truth nearest cluster. If

it is not closer than a threshold τloc we mark it as a false positive, otherwise we

assign the detected cluster to the ground-truth cluster. Then, for each ground-

truth cluster we determine how many detected clusters are assigned to it. If there

is none, we mark the ground-truth cluster as false negative. Finally, for each of

the remaining ground-truth clusters, we select the closest (true positive) detected

cluster among the ones assigned to the ground-truth cluster and we mark the re-

maining ones as false positives. We can evaluate the localization error and the

auditory state for those clusters that have been correctly detected . The localiza-

tion error corresponds to the Euclidean distance between the means. Notice that

by choosing τloc, we fix the maximum localization error allowed. The auditory

state is counted as false positive if detected audible when silent, false positive if

detected silent when audible and true positive otherwise. τloc was set to 0.35 m in

all the experiments.

3.7.1 Results on Synthetic Data

Four synthetic sequences containing one to three AV objects were generated.Synthetic sequences

These objects can move and they are not necessarily visible/audible along the

entire sequence. Table 3.1 shows the visual evaluation of the method when tested
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(a) (b)

(c) (d)

(e)

Figure 3.7: Interest points as detected in the left (a) and right (b) images. Dynamic interest points detected in

the left (c) and the right (d) images. (e) HM3D visual observations, {vm}M
m=1

. Most of the background (hence

static) points are filtered out from (a) to (c) and from (b) to (d). It is worth noticing that the reconstructed HM3D

features suffer from reconstruction errors.

with synthetic sequences. The sequence code name describes the dynamic char-

acter of the sequence (Sta means static and Dyn means dynamic) and the varying

number of AV objects in the scene (Con means constant number of AV objects

and Var means varying number of AV objects). The columns show different eval-

uation quantities: FP (false positives), i.e., AV objects found that do not really

exist, FN (false negatives), i.e., present AV objects that were not found, TP (true

positives) and ALE (average localization error). Recall that we can compute the

localization error just for the true positives. First, we observe that the right de-

tection rate is always above 65%, increasing to 96% in the case where there are

3 visible static clusters. We also observe that the fact that the number of AV ob-

jects in the scene varies does not impact the localization error. The effect on the

localization error is due, hence, to the dynamic character of the scene; if the AV

objects move or not. The third observation is that both the dynamic character of

the scene and the varying number of clusters have a lot of impact on the detection

rate.

Table 3.2 shows the auditory evaluation of the method when tested with syn- Results on synthetic data



50 CHAPTER 3. AUDIO-VISUAL SPEAKER LOCALISATION

−25 −20 −15 −10 −5 0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

ITD

Density of visual obervations

(a)

−40 −30 −20 −10 0 10 20 30 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Density of auditory observations

ITD

(b)

Figure 3.8: Observation densities in the auditory space A: (a) of the projected HM3D features, {ṽm}M
m=1

, and

(b) of the ITD features, {ak}
K
k=1

. In this particular example, we observe three moving objects (corresponding

to the three people in the images). In addition, two of them are emitting sound (left and middle) and one is

silent (right). We remark that auditory as well as visual observations are contaminated by noise (enlarging the

Gaussian variances) and by outliers (uniformly distributed in the auditory feature space).

Table 3.1: Visual evaluation of results obtained with synthetic sequences. Sta/Dyn states for static or dynamic

scene; the AV objects move or do not move. Var/Con states for varying or constant number of AV objects. FP

stands for false positives, FN for false negatives, TP for true positives and ALE for average localization error

(expressed in meters).

Seq. FP FN TP ALE [m]

StaCon 12 16 (3.9%) 392 (96.1%) 0.03

DynCon 43 139 (34.1%) 269 (65.9%) 0.10

StaVar 46 69 (30.1%) 160 (69.9%) 0.03

DynVar 40 82 (35.9%) 147 (64.1%) 0.11

thetic sequences. The remarkable achievement is the high number of right detec-

tions, around 80%, in all cases. This means that neither the dynamic character

of the scene nor the fact that the number of AV objects varies have an impact on

sound detection. It is also true that the number of false positives is large in all the

cases.

3.7.2 Results on Real Data

The Motion-Guided Robot Hearing method was tested on the CTMS3 sequenceThe CTMS3 sequence of CAVA

of the CAVA data set [Arnaud 08]. The CAVA (computational audio-visual anal-

Table 3.2: Audio evaluation of the results obtained with synthetic sequences. Sta/Dyn states for static or

dynamic scene; the AV objects move or do not move. Var/Con states for varying or constant number of AV

objects.

Seq. FP FN TP

StaCon 161 33 (13.4%) 214 (86.6%)

DynCon 144 56 (21.2%) 208 (78.8%)

StaVar 53 33 (18.8%) 143 (81.2%)

DynVar 56 34 (19.7%) 139 (80.3%)
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ysis) data set was specifically recorded to test various real-world audio-visual

scenarios. The CTMS3 sequence2 consists on three people freely moving in a

room and taking speaking turns. Two of them count in English (one, two, three,

...) while the third one counts in Chinese. The recorded signals, both auditory

and visual, enclose the difficulties found in natural situations. Hence, this is a

very challenging sequence: People come in and out the visual field of the two

cameras, hide each other, etc. Aside from the speech sounds, there are acoustic

reverberations and non-speech sounds such as those emitted by foot steps and

clothe chafing. Occasionally, two people speak simultaneously.

Figure 3.9 shows the results obtained with nine time intervals chosen to show Results on CTMS3

both successes and failures of our method and to allow to qualitatively evaluate

it. Figure 3.9a shows one extreme case, in which the distribution of the HM3D

observations associated to the person with the white T-shirt is clearly not Gaus-

sian. Figure 3.9b shows a failure of the ridgeline method, used to merge Gaussian

components, where two different clusters are associated into one. Figure 3.9c is

an example with too few observations. Indeed, the BIC points as optimal the

model with no AV objects, thus considering all the observations to be outliers.

Figure 3.9d clearly shows that our approach cannot deal with occluded objects,

because of the instantaneous processing of egocentric data, the person occluded

will never be detected. Figures 3.9e, 3.9f and 3.9g are examples of success. The

three speakers are localised and their auditory status correctly guesses. However,

the localisation accuracy is not good in these cases, because one or more covari-

ance matrices are not correctly estimated. The grouping of AV observations is,

then, not well conducted. Finally, Figures 3.9h and 3.9i show two case in which

the Motion-Guided Robot Hearing algorithms works perfectly, three people are

detected and their speaking activity is correctly assessed from the ITD observa-

tions. In average, the method correctly detected 187 out of 213 objects (87.8%)

and correctly detected the speaking state in 88 cases out of 147 (59.9%).

3.7.3 Results on NAO

To validate the Face-Guided Robot Hearing method using NAO, we performed

a set of experiments with five different scenarios. The scenarios were recorded

in a room around 5 × 5 meters with just a sofa and 3 chairs where NAO and the

other persons sat respectively. We designed five scenarios to test the algorithm in

different conditions in order to identify its limitations. Each scenario is repeated

several times and consists on people counting from one up to sixteen.

In scenario S1, only one person is in the room sitting in front of the robot The NAO scenarios

and counting. In the rest of the scenarios (S2-S5) three persons are in the room.

People are not always in the field of view (FoV) of the cameras and sometimes

they move. In scenario S2 three persons are sitting and counting alternatively

one after the other. The configuration of scenario S3 is similar to the one of

S2, but one person is standing instead of sitting. These two scenarios are useful

2http://perception.inrialpes.fr/CAVA_Dataset/Site/data.html\#CTMS3
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.9: Results obtained with the CTMS3 sequence from the CAVA data set. The ellipses correspond to

the 3D covariance matrices projected onto the image. The circle at each ellipse center illustrates the auditory

activity: speaker emitting a sound (white) or being silent (black) during each time interval. The plot associated

with each image shows the auditory observations as well as the fitted 1D mixture model.

to determine the precision of the ITDs and experimentally see if the difference

of height (elevation) affects the quality of the extracted ITDs. The scenario S4

is different from S2 and S3 because one of the actors is outside the FoV. This

scenario is used to test if people speaking outside the FoV affect the performance

of the algorithm. In the last scenario (S5) the three people are in the FoV, but they

count and speak independently of the other actors. Furthermore, one of them is

moving while speaking. With S5, we aim to test the robustness of the method to

dynamic scenes.
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In Figure 3.10 we show several snapshots of our visualization tool. These Results on S1-S5.

frames are selected from the different scenarios aiming to show both the suc-

cesses and the failures of the implemented system. Figure 3.10a shows an exam-

ple of perfect alignment between the ITDs and the mapped face, leading to a high

speaking probability. A similar situation is presented in Figure 3.10b, in which

among the three people, only one speaks. A failure of the ITD extractor is shown

in Figure 3.10c, where the actor in the left is speaking, but no ITDs are extracted.

In Figure 3.10d we can see how the face detector does not work correctly: two

faces are missing, one because of the great distance between the robot and the

speaker, and the other because it is partially out of the field of view. Figure 3.10e

shows a snapshot of an AV-fusion failure, in which the extracted ITDs are not sig-

nificant enough to set a high speaking probability. The Figure 3.10f, Figure 3.10g

and Figure 3.10h show the effect of reverberations. While in Figure 3.10h we see

that the reverberations lead to the wrong conclusion that the actor on the right is

speaking, we also see that the statistical framework is able to handle reverbera-

tions (Figure 3.10f and Figure 3.10g), hence demonstrating the robustness of the

proposed approach.

Table 3.3 shows the results obtained on scenarios (that were manually anno-

tated). First of all we notice the small amount of false negatives: the system

misses very few speakers. A part from the first scenario (easy conditions), we

observe some false positives. These false positives are due to reverberations. In-

deed, we notice how the percentage of FP is severe in S5. This is due to the

fact that high reverberant sounds (like hand claps) are also present in the audio

stream of this scenario. We believe that an ITD extraction method more robust

to reverberations will lead to more reliable ITD values, which in turn will lead to

a better active speaker detector. It is also worth to notice that actors in different

elevations and non-visible actors do not affect the performance of the proposed

system, since the results obtained in scenarios S2 to S4 are comparable.

FP FN TP

S1 13 23 (13.4%) 149 (86.6%)

S2 22 31 (14.9%) 176 (85.1%)

S3 19 20 (11.3%) 157 (88.7%)

S4 37 12 (6.7%) 166 (93.3%)

S5 53 32 (19.0%) 136 (81.0%)

Table 3.3: Quantitative evaluation of the proposed approach for the five scenarios. The columns represent, in

order: the amount of correct detections (CD), the amount of false positives (FP), the amount of false negatives

(FN) and the total number of counts (Total).

3.8 Conclusions and Future Work

This chapter introduces a multimodal hybrid probabilistic/deterministic frame- Overview

work for simultaneous detection and localization of speakers. On one hand, the

deterministic component takes advantage of the geometric and physical properties
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(a) S1 (b) S2

(c) S4 (d) S5

(e) S5 (f) S2

(g) S3 (h) S3

Figure 3.10: Snapshots of the visualization tool. Frames selected among the five scenarios to show the method’s

strengths and weaknesses. The faces’ bounding box are shown superposed to the original image (top-left). The

bird-view of the scene is shown in the top-right part of each subimage. The histogram of ITD values as well as

the projected faces are shown in the bottom-left. See Section 3.6.3 for how to interpret the images above.
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associated with the visual and auditory sensors: the audio-visual mapping (A◦V)
allows us to transform the visual features from the 3D space to an 1D auditory

space. On the other hand, the probabilistic model deals with the observation-to-

speaker assignments, the noise and the outliers. We propose a new multimodal

clustering algorithm based on a 1D Gaussian mixture model, an initialization pro-

cedure, and a model selection procedure based on the BIC score. The method is

validated on a humanoid robot and interfaced through the RSB middleware lead-

ing to a platform-independent implementation.

The main novelty of the approach is the visual guidance. Indeed, we de- Visual guidance, the spirit

rived to EM-based procedures for Motion-Guided and Face-Guided robot hear-

ing. Both algorithms provide the number of speakers, localize them and ascertain

their speaking status. In other words, we show how one of the two modalities

can be used to supervise the clustering process. This is possible thanks to the

audio-visual calibration procedure that provides an accurate projection mapping

(A◦V). The calibration is specifically designed for robotic usage since it requires

very few data, it is long-lasting and environment-independent.

The presented method solves several open methodological issues: (i) it fuses Solved issues

and clusters visual and auditory observations that lie in physically different spaces

with different dimensionality, (ii) it models and estimates the object-to-observation

assignments that are not known, (iii) it handles noise and outliers mixed with

both visual and auditory observations whose statistical properties change across

modalities, (iv) it weights the relative importance of the two types of data, (v) it

estimates the number of AV objects that are effectively present in the scene dur-

ing a short time interval and (vi) it gauges the position and speaking state of the

potential speakers.

One prominent feature of our algorithm is its robustness. It can deal with Practical advantages

various kinds of perturbations, such as the noise and outlier encountered in un-

restricted physical spaces. We illustrated the effectiveness and robustness of our

algorithm using challenging audio-visual sequences from a publicly available data

set as well as using the humanoid robot NAO in regular indoor environments. We

demonstrated good performance on different scenarios involving several actors,

moving actors and non-visible actors. Interfaced by means of the RSB middle-

ware, the Face-Guided Robot Hearing method processes the audio-visual data

flow from two microphones mounted inside the head of a companion robot with

noisy fans and two cameras at a rate of 17 Hz.

There are several possible ways to improve and to extend our method. Our Future work

current implementation relies more on the visual data than on the auditory data,

although there are many situations where the auditory data are more reliable. The

problem of how to weight the relative importance of the two modalities is under

investigation. Our algorithm can also accommodate other types of visual cues,

such as 2D or 3D optical flow, body detectors, etc., or auditory cues, such as

Interaural Level Differences. We used one pair of microphones, but the method

can be easily extended to several microphone pairs. Each microphone pair yields

one ITD space and combining these 1D spaces would provide a much more robust
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algorithm. Finally, another interesting direction of research is to design a dynamic

model that would allow to initialize the parameters in one time interval based

on the information extracted in several previous time intervals. Such a model

would necessarily involve dynamic model selection, and would certainly help to

guess the right number of AV objects, particularly in situations where a cluster is

occluded but still in the visual scene, or a speaker is highly interfered by another

speaker/sound source. Moreover, this future dynamic model selection should be

extended to provide for audio-visual tracking capabilities, since they enhance the

temporal coherence of the perceived audio-visual scene.



CHAPTER 4

AUDIO-VISUAL

COMMAND RECOGNITION

In this chapter we address the problem of audio-visual command recognition. Such com-

mands consist on a combination of a gesture and a short sentence. For instance, someone

asks the companion robot to get closer. In addition, because such commands play an

important role in human-robot communication, it is desirable that robots interacting with

people have an excellent command recognition system available. We propose a normal-

ized convex weighting scheme to perform multimodal classification. The method is able

to merge multiple monomodal classifiers of different nature. Moreover, because this com-

mands are culture-, language- and user-dependant, methods need to learn from very few

examples. We present a benchmark of several command recognition methods using tiny

training sets. All experiments are conducted on the publicly available data set Ravel.

4.1 Introduction

For the last decade, human-computer interaction methods have rapidly evolved What an Audio-Visual command is

and why their recognition is relevant.towards flexible multimodal systems; There is a clear need to understand human

commands. In this context, we are interested in the recognition of audio-visual

commands, that is a combination of a gesture and a short phrase. For instance, a

person asks his/her companion robot to perform a task. In addition, because such

commands play an important role in human-robot communication, it is desirable

that robots interacting with people have an excellent command recognition system

available. In this chapter we present the results of our research on AV command

recognition with special emphasis on the particularities associated to humanoid

robots.

The AV command recognition task is challenging for several reasons. First, Challenges associated to AV com-

mand recognitionthe data may be corrupted. On one side auditory recordings may be contaminated

by reverberations, noise and interferences. On the other side, visual data might

suffer from occlusions or bad lighting conditions. Hence, proper cues need to be

57
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extracted from the data flow. Second, despite the empirical advantages of com-

bining auditory and visual cues, there no agreement on a common audio-visual

representation. Thus, we need to seek for the most appropriate representation

in our case. Third, because these commands are culture-, language- and user-

dependant, methods need to constantly adapt. Consequently we are interested on

the methods able to learn from very few examples.

The contribution of this thesis to AV command recognition is two-fold. FirstThesis contributions

we proposed a multimodal normalized convex weighting scheme. Based on a

high-performance and solid learning technique, the method uses binocular and

monocular visual features and monaural auditory features. Audio-visual recog-

nition is performed at a later stage in which the classification scores from audio

and video are combined to get the final audio-visual score, yielding to important

increasings on the Average Recognition Rate (ARR). This work was published in

[Sanchez-Riera 12a] AVG1 . Second we analysed the performance of different

AV learning methods when trained on tiny training sets, in order to seek for the

method with the highest adaptableness. These experiments and their conclusions

were published in [Alameda-Pineda 13c] AVG2 .

This chapter is structured as follows. Section 4.2 describes the published work

related to the topic. Section 4.3 delineates the auditory and visual features we

built upon. These features are used to construct per-instance and per-frame rep-

resentations (see Section 4.4). The general framework for AV categorization is

described in Section 4.5, before detailing the experimental conditions, i.e., the

dataset and the evaluation metric in Section 4.6. Section 4.7 introduces the nor-

malized Convex Weighting Scheme. Afterward, different AV learning schemes

are benchmarked on tiny training sets (Section 4.8). Finally, some conclusions

and a few exciting future guidelines are drawn in Section 4.9.

4.2 Related Work

Audio-visual discriminative classification approaches can be grouped depending

on the way the audio-visual command is represented. Early Fusion applies when

the representation is audio-visual, i.e., one observation vector corresponds to joint

audio-visual information. Late Fusion applies when two different observations

represent the modalities (auditory and visual). In the following, we present the

existing literature on audio-visual discriminative classification.

Early Fusion: In [Jiang 09] an audio-visual representation named short-termRelated work on early fusion

audio-visual atom is proposed. It is a concatenation of color/texture, motion and

auditory features. Targeting semantic concept detection, the method is evaluated

on a dataset of 3,000 sequences. In [Monaci 06], the authors learn dictionar-

ies of multimodal features extracted from the raw data by means of generative

functions. More recently, a different way to combine audio-visual features at

an early stage is proposed in [Ye 12], where a bipartite graph quantizes features

coming from auditory and visual channels. The authors evaluate the audio-visual
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event detection performance on a dataset of about 9000 sequences. The authors

in [Liu 08] target a speech detection application, and perform the audio-visual

fusion at a feature level as well. Principal component analysis (PCA) features are

taken from the face images and Mel Frequency Cepstral Coefficients (MFCC) are

the auditory features. Both types of features are then projected in a joint subspace

using canonical correlation analysis (CCA). A Gaussian mixture model (GMM)

is used for classification. In [Mühling 12] audio-visual video concept detection

is targeted and the approach consists of concatenating the visual and auditory de-

scriptors, thus forming an audio-visual representation. Tests are performed on a

dataset of around 45,000 videos. The reader is referred to [Luo 08] for a study us-

ing support vector machines (SVM) that compares feature-level fusion techniques

to classification-level fusion techniques.

Late Fusion: Also in [Mühling 12], the auditory and visual representation Related work on late fusion

are fused through Multiple Kernel Learning (MKL). This technique is popular

because the relative relevance of different kernels is learned from the data. A

two-stage strategy is proposed in [Natarajan 12]. First, MKL is used to clas-

sify auditory and visual features separately. Second, the normalized scores are

merged using a Bayesian model. This is tested in a dataset of about 45,000

videos. In [Wu 10] several auditory and visual features are computed. After-

wards, they are classified separately and a convex combination of the unimodal

classification scores allows to choose the best audio-visual score. The method

is tested on a dataset of 900 videos and 12 classes. In [Lopes 06] two methods

based on feature selection are compared. The complete set of audio-visual fea-

tures is a 3000-dimensional vector, from which 35 to 70 features are selected.

Tests are performed on a data set with 15 training instances per class. Among the

classification-level fusion methods we remark [Lacheze 09], in which the authors

experiment different combination strategies for object detection. Visual features

are based on texture description and entropy-based variable-size patches. Audi-

tory features correspond to the energy of the signal’s gammatone filter bank de-

composition. Monocular video and monaural audio are used and there is a strong

need of uniform visual background. Object recognition based SVMs is used

in [Saenko 08] where a probabilistic method combining posterior class probabil-

ity output by each classifier is proposed; mainly, this means that each modality is

trained separately and then combined. SIFT descriptors are used as visual features

and a commercial speech recognizer is used to classify the incoming audio sig-

nal. A different approach from the ones mentioned so far is described [Xiong 05]

which finds sport highlights using a coupled hidden Markov model (CHMM).

Several video features are used such as quantization average motion vectors and

colour. On the auditory side, the authors chose to use MFCC features. Both these

features train a CHMM to perform the classification.

From the presented literature review we extract several conclusions:

• Most of the approaches use MFCC features to describe the sound track.

This choice is also supported by many decades of fruitful research in speech

recognition.
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• There is no clear agreement on the visual feature to use though. As a matter

of fact, there are some papers extracting many features and performing a

dimensionality reduction step before the classification takes place.

• The use of audio-visual data clearly enhances performance. Albeit, there

is no agreement neither on when to fuse the two modalities nor on how to

classify them. Indeed, Early fusion and Late fusion approaches have similar

ARR depending on the application targeted, the data used for evaluation and

the classifier (SVM, GMM, HMM, etc).

• In the Late fusion literature, when two different classifiers are used, the fu-

sion scheme is usually specifically built for the particular classifiers. No

general scheme is used to unify the output of two completely different (un-

known?) classifiers.

• In the majority of the published works, the training set is large. Thousands

of videos are used to learn the chosen AV command models.

Consequently, we addressed the problem of AV command recognition in the

following manner. First, we designed the normalized convex weighting scheme

able to deal with classifiers of different nature that use various types of visual

features. The audio track is described using the features designed for speech

recognition, MFCC, in agreement to the vast majority of the existing works. A

variety of classifiers are tested in order to evaluate this new Late Fusion scheme.

Second, one particular combination among the previously ones is chosen to be

evaluated on tiny training sets together with other existing monomodal and mul-

timodal methods.

4.3 Audio and Visual Features

In this Section we describe the auditory and visual descriptors we used along

this chapter. It is not our aim to develop new descriptors/representations, but

to investigate how to fuse both modalities and how to overcome the challenges

associated to the use of humanoid robots. Section 4.3.1 is devoted to the auditory

descriptor and Section 4.3.2 is devoted to the visual descriptor.

4.3.1 The Auditory Features

The auditory stream is represented by the Mel Frequency Cepstral CoefficientsThe auditory features: Mel Fre-

quency Cepstral Coefficients (MFCC), widely used for speech/sound analysis and recognition (see [Ramasubramanian 11,

Rabiner 11]). It has proven extremely good performance on speech recognition,

specially when used together with the Hidden Markov Models. They are com-

puted following the three steps: (i) perform the short-time Fourier transform

(STFT), (ii) map the power spectrum onto the Mel scale and (iii) take the dis-

crete cosine transform of these mapped powers. The are three main parameters
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Figure 4.1: Mel Frequency Cepstral Coefficients for one voice-command instance. From the raw signal (top)

to the extracted MFCC (bottom).

associated with MFCC features. First, the frame size defines the length of the

STFT (denoted by W ). Second, the frame shift (F ) determines the time between

two consecutive STFT windows. Third, the amount of cepstral coefficients (D),

that sets the dimension of the output MFCC representation. The parameters to

compute the MFCC features were set to the standard ones in speech recognition:

W = 21.3 ms, F = W/2 and D = 13. We note by mn the nth extracted feature

for n = 1, . . . , Nm, where Nm =
�

T−W
F

�

is the number of time frames and T
the sequence length. Figure 4.1 shows an example of the MFCC features for a

particular instance of an AV command.

4.3.2 The Visual Features

As we pointed out from the literature, there is no clear agreement on the opti-

mal visual feature for action description. This, we chose to use two different vi-

sual descriptors, because of their very good performance on visual gesture/action

recognition.

The first one was proposed in [Sanchez-Riera 12c] and it is based on the scene The first visual descriptor: scene-

flow based features.flow, which is the 3D equivalent of the optical flow [Čech 11]. The scene flow is

represented by the optical flow plus the depth at each image position. Together

with the camera calibration, this is equivalent to a vector field of 3D position and

associated 3D velocities. This intrinsic representation is potentially less sensitive

to changes of texture and illumination than the intensity images. Moreover, the

notion of depth allows to focus on the actor, while discarding any activity from

the background. We assume that the actor of interest is the person closest to the

camera. This is a reasonable assumption, since it holds in most of the human-
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: Construction of the proposed descriptor. The actor’s face is detected from the left input image (a).

The raw disparity map (b) is segmented, such that all pixels having the lower disparity than the actor’s face

are discarded (c). The descriptor is then computed for all remaining pixels undergoing non-zero motion, such

that it consists of the pixel’s position relative to the face, it’s disparity (d), and horizontal (e) and vertical (f)

components of optical flow.

robot-interaction applications and on movies. The final descriptor consists on

the position and disparity relatives to the actor’s face plus the optical flow (see

Figure 4.2 for an example and [Sanchez-Riera 12c] for detailed explanation). sn,p

denotes the pth scene flow feature extracted from the nth image, for p = 1, . . . , Pn,

n = 1, . . . , Nv, where Nv is the number of images and Pn is the number of scene

flow features extracted from the nth image.

The second descriptor, STIPs, was proposed in [Laptev 05]. This descriptorThe second visual descriptor:

spatio-temporal interest points consists on the histogram of gradients concatenated to the histogram of optical

flow (HOG-HOF), applied at Harris 3D interest points. Notice that, while the

first descriptor uses stereo-vision and has low dimension (5), the second uses

monocular vision and is high dimensional (200). Furthermore, while the former

has a semi-dense nature, the latter is sparse in the spatio-temporal domain. ln,q

denotes the qth scene flow feature extracted from the nth image, for q = 1, . . . , Qn,

n = 1, . . . , Nv, where Nv is the number of images and Qn is the number of scene

flow features extracted from the nth image.

4.4 Per-instance and Per-frame Representations

We are interested in two types of representations, namely: per-instance and per-

frame. While the first one corresponds to one vector representing the entire com-

mand, the second one corresponds to a sequence of “instantaneous” vectors.
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4.4.1 Per-instance Representations

The per-instance representations are useful in the framework of the Bag-of-Words The per-instance representation:

averaging along the command(BoW) paradigm, which consists of five different steps: (i) extract local descrip-

tors, (ii) cluster them to get a vocabulary, (iii) map each of the descriptors to

the vocabulary, (iv) build a histogram of word occurrence and (v) feed these

histogram-based representations to a classifier. During the first three steps, a

codebook of size K is built. Subsequent steps are used to represent instances

and learn a classifier from these representations. Later for recognition, an unla-

belled audio-visual sequence is first represented as a histogram which is fed to

the classifier to estimate the sequence’s class.

The choice of BoW is justified by the vast literature proving efficiency and

robustness. The power of BoW rises from the quality and quantity of the descrip-

tors as well as the discriminability of the classifier. We denote by hm the Bag-of-

Words representation corresponding to the MFCC features {mn}Nm

n=1 and write,

hm = BoW
�

{mn}Nm

n=1

�

. Similarly, we write hs (respectively hl) to denote the

Bag-of-Words representation corresponding to the scene-flow features (respec-

tively the Laptev features), and write hs = BoW
�

{sn,p}Pn,Nv

p=1,n=1

�

(respectively

hl = BoW
�

{ln,q}Qn,Nv

q=1,n=1

�

).

4.4.2 Per-frame Representations

The auditory per-frame representations correspond to the MFCC features, since The per-frame representation: a

sequence of instantaneous vectorsthey already provide a sequence of instantaneous vectors. In the visual case, we

use per-frame Bag-of-Words representations, that is to say, we generate one his-

togram per image: fs
n = BoW

�

{sn,p}Pn

p=1

�

and f l
n = BoW

�

{ln,q}Qn

q=1

�

. How-

ever because, the HOG-HOF descriptor is sparse (there are many empty frames),

it is not well suited for a per-frame representation.

4.5 Audio-Visual Categorization

A multiclass classifier consists of a discriminant function f : X × C → R, where

X is the feature space, C = {1, . . . , C} is the set of labels and C is the number

of classes. Here X represents a generic feature space. Given a feature vector (or

sequence of feature vectors) x ∈ X , f(x; c) is the score of classifying x as c. The

higher the score is, the more likely c is the class of x. Hence, a new unlabeled

observation x ∈ X is classified as:

c∗(x) = arg max
c∈C

f(x; c).

In the following, X will denote the training set, i.e. a set of feature vectors X =
{xn}N

n=1 which class is known, and that is used to train the classifiers. The set of

training festures of class c will be denoted by Xc.
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4.5.1 Per-instance Learning: Support Vector Machines

In order to classify the commands from their per-instance representations, we

used Support Vector Machines. Widely studied, SVMs have proven excellent

discriminability power when used in combination with the BoW representation.

SVM’s are a discriminative binary classification method, based on a function

hc(x) learnt from a set of positive and negative examples. The points satisfying

hc(x) = 0 form a hyperplane in the space induced by a kernel function k(·, ·).
h(x) > 0 means that x should be classified as positive and h(x) < 0 as negative.

We refer the reader to [Bishop 06] for details on the formulation. Importantly, a

parameter Q regulates the amount of allowed misclassification in the training set,

such that SVMs deal with overlapping classes. One way to extend SVMs to the

multiclass classification problem is to train the function hc(x) with Xc as positive

examples and X \ Xc as negative examples. In all, the function f is defined as:

f(x; c) =
N

�

n=1

βn,ck(x,xn),

where {xn}N
n=1 is the training set, k(·, ·) is the kernel function and βn,c ∈ R are

computed during the training phase.

4.5.2 Per-frame Learning: Hidden Markov Models

The Hidden Markov Models (HMM) belong to the family of graphical models.

In a HMM the observations depend on a hidden discrete random variable usu-

ally called state, taking values from 1 to S. The probability of the observations

given the state value is called emission probability. The state is assumed to be

Markovian, that is, the state at time t only depends on the state at time t − 1.

In addition, we could constrain the dynamics of the HMM, forcing the states to

happen in order, i.e. state s before the state s + 1; this is usually known as left-to-

right HMM. The emission probability is usually GMM. One model ξc per class

is learnt (through an EM algorithm). The model consists of the parameters of the

emission probability and the parameters modelling the Markovian dynamics. The

function f is the log-likelihood of the model:

f(x; c) = ln p(x|ξc).

We refer the reader to [Rabiner 11, Bishop 06] for more details about HMM.

4.6 Experimental conditions

4.6.1 The Data Set

The experimental validation is performed on the “Robot Gestures” scenario of

the Ravel data set (see Chapter 2 and [Alameda-Pineda 12b]). We use eight se-

quences, each one containing three instances of the nine command categories.
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The set of voice-and-gesture commands are the followings: (i) wave (“Hello!”),

(ii) walk towards the robot (“I am coming.”), (iii) walk away from the robot

(“Bye!”), (iv) stop hand-wave (“Stop!”), (v) turn around gesture (“Turn around.”),

(vi) come here gesture (“Come here.”), (vii) point action (“Look!”), (viii) head

motion for yes (“Yes”) and (ix) head motion for no (“No”). In all cases, the hu-

man gesture is accompanied by the speech corresponding to the command, shown

above in brackets. Notice that all the actors in the data set are non-native English

speakers of five different nationalities, hence there is a large variability in the pro-

nunciation. This data set is used in Section 4.7 and in Section 4.8 to evaluate and

compare the proposed methods.

4.6.2 Evaluation Metric

Evaluating multicategory classifiers means providing the confusion matrices. The

ijth entry of such matrix contains how many instances of the ith class have been

classified as class j. By averaging the elements of the diagonal, one obtains the

average recognition rate (ARR) of the classifier. Moreover, in order to obtain

statistically significant results and properly evaluate the different classifiers, a

cross-validation strategy is applied. The dataset is split into a training subset

and a testing subset, and this is repeated several times. Once the framework is

set, one can focus on the contributions of this Thesis to the field of AV scene

understanding.

4.7 The Normalized Convex Weighting Scheme

This Section contributes to the field in a double manner. On one side we need

to understand how the different representations and classifiers we have chosen

perform when used alone (Section 4.7.1). On the other side, we present the nor-

malized Convex Weighting Scheme for AV command recognition (Section 4.7.2).

4.7.1 Monomodal Categorization

In a first stage we would like to evaluate the different combinations of features

and classifiers. We evaluated five different monomodal representation/classifier

pairs, as shown in Table 4.1. We remark that the feature space is different for each

of the cases in the previous table. Indeed, in the case of lSVM, sSVM and aSVM

the dimension of X is the number of histogram bins of teh BoW representation,

which was set to 500. X has dimension K × Nv in the case of sHMM, where

K is the dimension of the per-frame BoW, set to 20. Finally, X is 13 × Nm-

dimensional in the case of aHMM, since we use the classical configuration of 13
MFCC coefficients.
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Table 4.1: The different combinations of features and representations/classifiers evaluated.

Representation/Classifier

Per-instance Per-frame

Features

[Laptev 05] h
l+SVM (lSVM) Not used1

[Sanchez-Riera 12c] h
s + SVM (sSVM) h

s
n+HMM (sHMM)

MFCC h
m + SVM (aSVM) mn+HMM (aHMM)

§ Results on Visual Categorization

Figures 4.3a, 4.3b and 4.3c show the confusion matrices for the sSVM, the sHMM

and the lSVM classifiers. Notice that sSVM performs very well in five out of nine

gestures (Hello, I am coming, Look, No and Bye), well in two gestures (Yes and

Come here) and poorly in two gestures (Stop and Turn around). However, the

sHMM classifier performs poorly compared to sSVM. Indeed, it gets good re-

sults for most of the actions, very good results for just two of them (Hello and

Bye) and poor results in three gestures (Yes, Stop and Turn around). Notice also

that there is no much difference between the sSVM and the lSVM classifiers.

Actually, they mainly differ in two of the gestures No and Turn around.
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Figure 4.3: Confusion matrix of the three visual classifiers: (a) sSVM, (b) sHMM and (c) lSVM.
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Figure 4.4: Confusion matrix of the two auditory classifiers: (a) aSVM and (b) aHMM.

§ Results on Auditory Categorization

The confusion matrix of aSVM and aHMM can be seen in figures 4.4a and 4.4b

respectively. The SVM-based classifier performs very good in six out of nine

actions, good in two of them (Bye and Stop) and poorly just in one command (Turn

around). However the aHMM classifier has very good performance everywhere

except for the Bye and Turn around commands.

4.7.2 Multimodal Categorization: the normalized Convex Weighting Scheme

§ The Method

Until here we evaluated the auditory and visual representations separately. This An overview

gives us a lower bound on what we should expect from multimodal classifiers.

The classifier we propose consists on a convex combination of monomodal clas-

sifiers. More precisely, it is built in three steps: (i) train separate monomodal clas-

sifiers, (ii) normalize the classification scores and (iii) train the convex weighting

parameter.

The outcome of the first step are two monomodal classifiers whose discrim- Detailed explanation

inant functions will be noted by: fA and fV for audio and video respectively.

Afterwards, the normalization step takes place: for each modality separately, the

mean (denoted µA
c and µV

c , respectively) and the spread (denoted σA
c and σV

c ) of

the classification scores are computed. Last, a multimodal discrimination func-

tion is defined by taking a convex combination of the normalized monomodal

scores:

fWS(xAV ; c) = λ
fA(xA; c) − µA

c

σA
c

+ (1 − λ)
fV(xV ; c) − µV

c

σV
c

,

where xAV contains both the auditory representation xA and the visual represen-

tation xV . The normalization step is necessary to bring all discriminant functions
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to a similar value range. The weighting parameter λ can be set either by hand or

learnt from the data. The value of λ determines the trust we put on each modality.Meaning of the weighting factor λ

Actually, some cases deserve a special mention:

λ = 0 is equivalent to audio-based classification.

λ = 0.5 the auditory and visual scores stand on equal foot,

λ = 1 is equivalent to vision-based classification, and

In general, λ > 0.5 means that we put more trust on the visual classification

score, whereas λ < 0.5 means that we do it with the auditory score. This way of

combining the two classifiers allows us to evaluate the relative trust we put on the

modalities

§ Results on Audio-Visual Categorization

It is worth to notice that, for instance, some actions that are difficult to recognizeAnalysis of the performance as a

function of λ by sSVM as Stop or Come here are easily classified by aSVM, and viceversa

with the actions Bye or Hello. This supports the idea that the combined classifier

should outperform both unimodal classifiers. Figure 4.5 show the ARR of the

combined classifier as a function of the weighting parameter l. Please remark

that when using the same underlying model (curves aSVM-sSVM, aSVM-lSVM

and aHMM-sHMM) the maximum performance of the combined classifier is

achieved for values of l around 0.5. However, when the temporal classifier is

combined with a non-temporal classifier, the maximum performance of the com-

bined tends to shift towards the modality with temporal modeling. Furthermore,

the temporally modeled classifier performs much better when some global infor-

mation (coming from the non-temporal classifier) is taken into account. In that

sense, it is worth to notice that, except for one case (left side of aSVM-sHMM),

the combined classifiers outperform the unimodal ones when a small weight is

given to the other modality’s classifier.

Finally, Figures 4.6a-4.6f show the confusion matrix of all the multimodalDetailed performance at the optimum

working point classifiers for the optimal weighting parameter l. Generally speaking, we no-

tice that the performance of these combined classifiers improved with respect

to the unimodal ones. Most of them obtain outstanding results for some of the

commands and very good results for most of the commands. We need to re-

mark that the aHMM-sSVM and the aHMM-lSVM classifiers achieve an ARR

of 77%, that represents a considerable increment respect the ARR computed on

each modality independently.

4.8 Audio-Visual Command Recognition on Tiny Training Sets

In the previous experiments we noticed that (i) multimodal classifiers work sys-Why tiny training sets?

tematically better than monomodal ones and (ii) many of the representations seem
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Figure 4.5: Average Recognition Rate as a function of the multimodal weighting parameter l.

to have similar optimal ARR. From a user point of view, it is convenient that the

system efficiently learns from a very reduced number of examples. The focus

of this contribution is on the performance of different audio-visual discrimina-

tive classifiers using tiny training sets. This is important because these AV com-

mands are culture-, language- and user-dependant. Therefore, methods need to

constantly adapt and learn from very few examples.

More precisely, we would like to answer three research questions: (1) which

is the best classification method? (2) how the methods’ accuracy vary when re-

ducing the size of the training set? (3) does the benchmark correspond to the

ones obtained using larger training sets? To answer them, we conducted an ex-

tensive set of experiments on the RAVEL data set, thus assessing the quality of

different approaches and setting a basis for method comparison. For the sake of

generality, we ran the experiments with signals acquired using one colour camera

and one microphone, the minimal sensor configuration needed to perform audio-

visual classification. This disables the use of the scene-flow visual descriptor. In

any event, there is no need to keep on comparing both features since we obtained

similar performances. Moreover, since we are interested in tiny training sets, we

discard the use of the HMM classifier (and hence the per-frame representation) to

avoid overfitting problems2.

We compared five SVM-based methods, with the following discriminant func-

tions:

2One may think that regularization techniques may help in this case. However, in our particular framework,

the dimension of the feature space is too big compared to the size of the training set, and the overfitting problems

remain.
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(d) sHMM-aHMM (l = 0.3)
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Figure 4.6: Confusion matrix of the optimal combined classifiers: (a) sSVM-aSVM (l = 0.4), (b) sSVM-

aHMM (l = 0.1), (c) sHMM-aSVM (l = 0.8), (d) sHMM-aHMM (l = 0.3), (e) lSVM-aSVM (l = 0.6)

and (f) aHMM,lSVM (l = 0.1).
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aSVM: Audio-only

fA(xA, c) =
N

�

n=1

βAS

n,c k(xA,xA
n ).

lSVM: Video-only

fV(xV, c) =
N

�

n=1

βV

n,c k(xV ,xV
n ).

cSVM: Audio-visual concatenation

fCAT(xAV, c) =

N
�

n=1

βCAT

n,c k(xAV ,xAV
n ).

wsSVM: The convex Weighting Scheme described in the previous Section3

fWS(xAV, c) = λfA(xA, c) + (1 − λ)fV(xV, c)

mkSVM: The Multiple Kernel framework

fMK(xAV, c) =
N

�

n=1

βMK

n,c(µkA(xA,xA
n ) + (1 − µ)kV (xV , xV

n )).

Notice that the aSVM and lSVM use only auditory and visual data respec-

tively. Thus, these two methods do not perform any fusion. On the contrary,

cSVM performs early fusion, and mkSVM and wsSVM perform late fusion. The

difference between wsSVM and mkSVM is that, while the first one estimates the

SVM coefficients and λ in two different stages, the second performs a joint opti-

mization. In addition, wsSVM trains two SVMs instead of one as mkSVM, thus

twice the number of parameters. A priory, wsSVM is faster but less accurate than

mkSVM.

4.8.1 Audio-Visual Categorization

We evaluated the methods splitting actor-wise the dataset into a training subset The (tiny) training sets

and a testing subset several times, following a standard cross-validation strategy.

We named the experiments En, where n is the number of actors in the training

set. Hence, En is the average of
�

8
n

�

different training sets, in which there are 3n
observations per class. We conducted experiments for values of n = 3, 4, 5, 6, 7,

so a total of 218 different training sets.

Since this is the first work (up to the authors’ knowledge) that compares audio- The different tested kernels

visual command classification methods on tiny datasets, we believe necessary to

test different possibilities regarding the kernels used and their parameters. The

3Because we are using only SVM, there is no need for the normlization step.
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Table 4.2: Accuracy results (%) of the methods aSVM, lSVM and cSVM on training sets of different sizes.

Bold indicates the best kernel choice.

E M\ k L P G C S

E7

aSVM 65.3 65.3 64.8 71.3 64.8

lSVM 59.3 64.4 64.8 69.0 65.3

cSVM 74.1 78.2 78.2 84.3 77.3

E6

aSVM 62.2 63.4 64.2 68.2 62.4

lSVM 58.9 63.3 64.3 68.5 64.4

cSVM 73.4 75.9 75.9 81.5 75.9

E5

aSVM 60.2 60.9 61.7 66.0 60.3

lSVM 58.2 61.6 62.5 65.9 62.7

cSVM 72.0 73.5 73.5 78.8 73.8

E4

aSVM 56.0 57.6 58.6 63.2 57.6

lSVM 56.6 59.6 60.6 63.7 60.7

cSVM 69.9 71.5 71.5 76.0 71.7

E3

aSVM 49.0 52.6 54.4 58.8 54.2

lSVM 54.9 57.0 57.8 61.0 57.8

cSVM 66.7 67.9 67.9 72.4 69.0

tested kernels are: [L] linear kL(x,x�) = xtx�, [P] polynomial kP (x,x�; d) =
(xtx� + 1)d, [G] Gaussian kG(x,x�;σ2) = exp(−�x − x��2/2σ2), [C] χ2

kχ2(x, x�; ν) = exp
�

− 1
ν

�K
k=1

(xk−x�

k
)2

xk+x�

k

�

(where x = (x1, . . . , xK)) and [S]

sigmoid kS(x,x�; a, c) = tanh(axtx� + c). The kernel parameters are: d ∈
{2, 3, 4, 5, 6}, σ2, ν ∈ {10−2, 10−1.5, 10−1, 10−0.5, 100, 100.5, 101} and a = 20,

c ∈ {−0.5,−0.25, 0, 0.25, 0.5}. The codebook size was set to K = 500.

For each sub-experiment (training set) and for all choices of kernel(s) and

kernel parameter(s), the five methods were evaluated. Notice that for each sub-

experiment there are 25 kernel choices for the methods aSVM, lSVM and cSVM

and 625 for the methods wsSVM and mkSVM. In summary, we trained more

than 150,000 SVMs4 to present this study.

4.8.2 Benchmark Results

In order to compare different methods and kernels we compute the global accu-How to read the tables

racy of the classifiers, i.e., the percentage of correct classifications. Tables 4.2

and 4.3 show the global accuracies for all the experiments we conducted. Before

going into the numeric details we explain how these results are presented in there.

First, M denotes the method (aSVM, lSVM, cSVM, wsSVM or mkSVM), k in-

dicates the kernel used (L, P, G, C or S) and E refers to the experiment (E3, E4,

E5, E6 or E7). Second, each entry of the table corresponds to the best kernel

parameter. Last, the numbers in bold denote the best kernel(s) choice given an

experiment E and a method M.

4At this point we would like to mention the MKL C++ library SHOGUN [Sonnenburg 10] and thank the

reactivity of its developers, specially Sergey Lisitsyn.
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Table 4.3: Accuracy results (%) of the methods wsSVM and mkSVM on training sets of different sizes. Bold

indicates the best kernel choice.

M wsSVM mkSVM

E k L P G C S L P G C S

E7

L 71.8 77.3 79.2 78.2 78.7 76.4 71.8 71.8 69.0 65.3

P 65.3 66.7 68.1 68.1 68.5 65.3 75.9 75.9 75.9 73.1

G 78.2 79.2 80.6 78.2 77.8 71.8 75.9 75.9 75.9 74.5

C 71.3 71.3 71.3 71.3 71.3 71.3 75.9 80.6 81.0 77.3

S 71.8 76.9 79.6 80.6 81.5 64.8 74.5 79.6 77.8 77.8

E6

L 66.0 68.8 69.8 70.4 70.3 74.2 71.0 70.8 68.5 64.4

P 63.4 63.7 64.1 64.0 64.2 63.4 74.7 74.8 74.9 70.6

G 74.9 77.2 76.2 77.0 72.2 70.6 74.5 74.7 75.5 74.3

C 68.2 68.2 68.2 68.2 68.2 68.2 76.1 79.8 79.8 77.0

S 69.8 72.4 72.4 72.4 72.7 62.4 72.8 76.4 76.9 75.6

E5

L 62.5 64.8 65.1 65.8 65.2 72.1 68.8 68.7 65.9 62.7

P 60.9 60.9 60.9 60.9 60.9 60.9 73.2 73.3 72.8 69.5

G 72.1 73.1 72.6 72.7 68.7 68.6 73.1 73.3 73.4 73.2

C 66.0 66.0 66.0 66.0 66.0 66.0 74.7 78.4 78.4 75.7

S 65.1 65.5 65.8 65.7 66.0 60.3 64.7 74.2 75.3 74.2

E4

L 57.6 59.5 59.7 60.4 59.9 69.6 66.5 66.6 63.7 60.7

P 57.6 57.6 57.6 57.6 57.6 57.6 70.7 70.7 70.5 67.6

G 65.5 67.1 66.3 66.7 64.2 66.4 70.6 71.1 71.4 71.2

C 63.2 63.2 63.2 63.2 63.2 63.2 69.1 75.4 76.3 73.7

S 59.9 60.2 60.4 60.8 60.6 57.6 57.8 71.7 72.7 71.7

E3

L 49.1 49.4 49.6 49.6 49.7 61.1 63.9 63.9 61.0 57.8

P 52.6 52.6 52.6 52.6 52.6 52.6 66.9 67.0 67.2 65.1

G 57.3 59.9 59.2 59.8 57.9 63.8 66.7 67.3 68.5 67.2

C 58.8 58.8 58.8 58.8 58.8 58.8 59.4 72.2 72.6 70.7

S 55.0 55.2 55.6 55.4 55.3 54.2 54.2 68.4 69.7 68.5

Table 4.4: Average time per multiclass classifier.

Method aSVM/lSVM cSVM wsSVM mkSVM

Time Spent [s] 0.79 0.86 1.59 3.27

Table 4.2 shows the accuracy results of three of the methods, namely: aSVM, Results of aSVM, lSVM and cSVM

lSVM (no fusion) and cSVM (early fusion). We first notice that the audio-visual

method performs systematically better than both unimodal approaches. Second,

there is no significant difference between methods aSVM and lSVM. It is also

worth noticing how the accuracy of the classifiers decreases when the size of

the training set decreases. Indeed, when there is not enough training data, the

classifier does not capture the underlying structure of the data, thus causing an

accuracy drop.

Table 4.3 shows the performance of the methods wsSVM and mkSVM. The Results of wsSVM and mkSVM

columns and rows correspond to the kernel used on visual and auditory data re-

spectively. We remark in the first place that mkSVM works better than any uni-

modal classifier. However, wsSVM does not: its accuracy is roughly the same

as the unimodal classifiers on the smallest training sets. It is also worth to no-

tice that the mkSVM and the cSVM methods are comparable and both perform

better than the wsSVM approach. This last statement is in disagreement with
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Figure 4.7: χ2’s accuracy for different methods as a function of the training set’s size.

[Mühling 12], where mkSVM outperforms cSVM. Albeit, the experimental con-

ditions are not the same. Indeed, both the size of the training set and the number

of classes are smaller here. wsSVM shows bad accuracy for smaller datasets

compared to mkSVM or cSVM because wsSVM has to train twice the number

of parameters than mkSVM and cSVM. Moreover, the training of those parame-

ters is performed in each modality independently, not allowing, for instance, the

auditory information compensate for visual misrepresentations. Hence, when the

size of the training set is reduced, the accuracy drop of wsSVM is stressed.

We would also like to remark that the best kernel to use is the χ2 with most ofχ2 is the best kernel, let us take a

deeper look the tested methods. This statement goes accordingly with the existing literature,

and there is a simple explanation for that. When using histograms, differences on

full bins are less important that differences in almost empty bins. This kind of

touch is exactly what the χ2 kernel accounts for.

In order to present a final comparison, Figure 4.7 shows the accuracy results

of the five methods using the χ2 kernel on the different experiments. From this

plot it is clear that (i) audio-visual fusion increases the accuracy, (ii) mkSVM and

cSVM perform equivalently and better than wsSVM and (iii) when the size of the

training set decreases, the accuracy drops, specially in the case of wsSVM

Table 4.4 shows the average time spent on the training and testing of oneComputation time

multiclass classifier for the benchmarked methods. As expected, unimodal clas-

sifiers are the fastest, closely followed by cSVM. mkSVM is the slowest method,

spending more than twice the time used by the wsSVM method.

4.9 Conclusions and Future Work

In this chapter we presented the contributions to the field of AV command recog-Summary

nition. An AV command is a gesture accompanied by a short sentence or by a
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word. For example waving while saying “hello”. We set up a learning frame-

work to understand (i) weather the combination of the two modalities enhances

the recognition and (ii) which method performs the best when trained with very

few examples.

More precisely, in our first contribution we introduced the wsSVM method: First contribution: the wsSVM

methoda late fusion technique able to combine classifiers of different nature. Based

on a high-performance and solid learning technique, the method uses binoc-

ular/monocular visual features and monaural auditory features. Audio-visual

recognition is performed at a later stage in which the classification scores from

audio and video are combined to get the final audio-visual score, yielding to im-

portant increasings on the ARR. The method is tested in leaving-one-out fashion

on a publicly available data set. Results show the importance of using both modal-

ities for recognition. Moreover, from Figure 4.5 it is clear that the choice of the

feature/classifier does not have a crucial effect on the performance of the wsSVM

method. Thus, the classifier will not be chosen regarding its performance, but

following other criteria such as training/testing time, overfitting effects, etc.

Our second contribution deals exactly with this kind of questions, looking Second contribution: learning on

tiny training setstowards a real-world scenario. Among all the properties desirable for such appli-

cations, we chose to evaluate their performance, speed and user-adaptivity. Since

the first two are provided by the BoW+SVM paradigm, we focused on reduc-

ing the size of the training set, thus looking for the method yielding the highest

user-adaptability. We presented an extensive set of experiments providing for a

solid benchmark framework, between three state-of-the-art methods. At the light

of these results we answer now the original research questions. In our particular

set up, the best trade off between speed, robustness and user-adaptivity is given

by cSVM. When the size of the training set is reduced, all methods experiment

an accuracy drop, as expected. We remark that this drop is much more stressed

in the case of wsSVM. Finally, the results show that cSVM and mkSVM react

similarly when reducing the size of the training set.

This work can be extended in several ways. First, by conducting experiments Future work

on datasets with higher number of classes. In addition, we would like to perform

tests on other audio-visual command datasets recorded in different languages and

countries, providing for a large variety of gesture and speech utterances, thus

evaluating the cultural influence on the proposed approaches. This will throw the

basis for future work towards a continuous audio-visual command recognition

method. Last, the methods should be tested on a robot platform with limited

resources to produce a robust and highly-adaptive recognition method yielding to

a real-world scenario application.





CHAPTER 5

MULTICHANNEL

SOUND SOURCE LOCALISATION

This chapter addresses the sound source localisation (SSL) problem from multichannel

time delay estimates (TDE) using non-coplanar microphone arrays. The problem is cast

into a non-linear constrained optimisation task. On one side, the cost function is derived

from the signal model. On the other side, the constraint ensure that the resulting time

delay estimate is feasible, i.e., corresponds to a location in the sound source space. The

geometry associated to the propagation model guarantees the uniqueness of the sound

source position for any feasible set of time delays. Moreover, a localisation mapping is

built, thus providing a closed-form to recover the sound source position. Two optimization

techniques are proposed to solve the multichannel TDE-SSL problem. We report and

extensive set of experiments and comparisons with state-of-the-art methods on simulated

and real data in the presence of noise and reverberations, that validate the introduced

model and the proposed algorithms

5.1 Introduction

For the last decades, source localisation from time delay estimates (TDEs) has The importance of Time Delay

Estimationproven to be an extremely useful methodology with a variety of applications

in such diverse fields as aeronautics, telecommunications and robotics. This

problem is highly related to the one of estimating time delays. We are partic-

ularly interested in the development of a general-purpose TDE-based method for

sound-source localisation in indoor environments, e.g, human-robot interaction,

ad-hoc teleconferencing using microphone arrays, etc. This type of consumer-

oriented applications are extremely challenging for several reasons: (i) there may

be several sound sources and their number varies over time, (ii) regular rooms are

echoic, thus leading to reverberations, and (iii) the microphones are often embed-

ded in devices (robot heads, smart phones, etc.) generating high-level noise.

77
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During this thesis we introduced several contributions to the field of soundContributions

source localisation from time delay estimates. First, we cast the time delay es-

timation problem for sound source localisation using non-coplanar microphone

arrays into a non-linear constrained optimization method GTDE1 . Second, a

local minimization algorithm was proposed to solve the task GTDE2 . Both

contributions were published in [Alameda-Pineda 12a]. Third, the full geometric

model – the responsible of the optimization constraints – was derived GTDE3 .

Finally, a global optimization algorithm was introduced in GTDE4 and pub-

lished in [Alameda-Pineda 13b] together with the geometric model.

The remaining of the chapter is structured as follows. Section 5.2 describesChapter structure

the state-of-the-art on the topic. Section 5.3 contains the basics of the approach,

namely, the signal model and the propagation model. Section 5.4 presents the first

contribution, that is, the full geometric model, together with the formal proofs.

Section 5.5 castes the estimation task into a non-linear constrained multivariate

optimization problem: our second contribution to this field. Sections 5.6 and 5.7

respectively introduce the grid-based local optimization technique and the global

optimization technique to solve the TDE task. Finally, the conclusions and future

work guidelines are drawn in Section 5.9.

5.2 Related Work

The time delay estimation (TDE) problem applied to sound source localisation

(SSL) has been very well investigated. We grouped the existing works depend-

ing on how the received auditory signals are used for localisation. We name

Bichannel SSL to the group of approaches using two microphones. Multilatera-

tion denotes the methods using more than two microphones, but performing SSL

from binaural cues extracted from all microphone pairs. Finally, Multichannel

SSL states for those algorithms that localize the sound source from multichannel

measurements.

Most of the algorithms performing sound source localisation with one pairBichannel TDE-SSL

of microphones lead to a method estimating the azimuth of the sound source,

see [Liu 08, Mandel 07, Viste 03, Woodruff 12]. There are some approaches,

however, able to localize the direction (azimuth-elevation) of the sound source

from binaural cues [Kullaib 09, Deleforge 12a]. Other approaches track the sound

sources using binaural cues [Keyrouz 06, Keyrouz 07]. In all of these cases, mod-

els and methods are specifically designed for the binaural case, i.e., using two

microphones. Unfortunately, it is not obvious how to extend most of the cited

methods to use more than two microphones. However, one can always estimate

the time delays pair-wise and then perform sound source localisation from these

pair-wise TDE. This procedure is called multilateration.
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As outlined before, methods performing multilateration separate the estima- Multilateration

tion of the time delays from the localisation of the sound source in two differ-

ent steps. Moreover, most of the approaches emphasize the localisation mod-

ule, borrowing an off-the-shelf time delay estimation algorithm. The localisa-

tion task is cast into a least squares problem in several previous works [Smith 87,

Brandstein 97a, Brandstein 97b, Friedlander 87, Huang 01, Canclini 13], with im-

proved algorithms handling the hard-least-square problem [Beck 08] and dealing

with time delay estimate outliers [Galati 06]. Two recent methods include the

reverberations in the model in order to learn the effect they have on the input sig-

nals. On one side, in [Brutti 08] the authors use the acoustic maps together with

the GCC-PHAT technique to localize sound sources from TDE’s. On the other

side, the model in [Ribeiro 10] includes the reverberations in order to enhance the

localisation performance while using a uniform circular array of microphones.

Another set of methods perform the SSL task in a maximum likelihood frame-

work [Chen 03a, Sheng 05, So 08, Urruela 04, Strobel 99, Zhang 07, Zhang 08].

A geometry-based localisation method is described in [Chan 94]. We refer the

reader to [Seco 09, Pertilä 09] for two nice surveys on multilateration. The main

advantage of splitting the task into time delay estimation and sound source local-

isation is that one can try many combinations of TDE algorithms and SSL algo-

rithms. The main disadvantage of such two-step framework is that the obtained

time delay estimates may be inconsistent. Indeed, independently estimated time

delays may be in disagreement with the geometry of the microphone array. For

example, in a linear array with three microphones, the sound wave cannot reach

the second microphone after reaching the first and the third microphones. The

consistent orders are 1 → 2 → 3, 3 → 2 → 1 and 2 → 1, 3, but 1 → 3 → 2 is

not physically possible since 2 is in the propagation path from 1 to 3. This may

be avoided by considering the estimation of all the time delays at once, that is,

multichannel TDE.

The problem of localizing a sound source from multichannel measurements Multichannel TDE-SSL (I)

has been very well investigated and a recent review can be found in [Chen 06].

Methods addressing multichannel TDE can be roughly divided into two cate-

gories: methods estimating the acoustic impulse responses and methods exploit-

ing the redundancy among several microphones. The estimation of the impulse

responses from the raw data is an extremely challenging task, since the effects of

the environment as well as those of the microphone array are coupled. [Doclo 03,

Salvati 13, Huang 03] estimate these responses by means of the generalized eigen-

value decomposition. In [Lim 13] the authors use canonical correlation analysis,

claiming robustness towards low SNR. Because all these methods do not make use

of any information related neither to the microphone array nor to the acoustic en-

vironment, the impulse responses are learnt directly from the data. Consequently,

all these methods need a lot of training data, and complex training phases need to

be run before using the algorithm. Furthermore, since the methods do not decou-

ple the microphone array from the acoustic environment, but learn the effects of

both all together, a new training is required for every new environment. This is

an undesirable feature for mobile platforms that need high adaptableness to new
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unconstrained environments.

The second category is represented by [Chen 03b] where a multichannel cri-Multichannel TDE-SSL (II)

terion based on cross-correlation is proposed to estimate time delays using a lin-

ear microphone array. This approach was extended in [He 13b] by using tem-

poral prediction. Also [Chen 03b] is proven to be equivalent to two information

theory-based criterion for TDE [He 13a, Benesty 07], under some statistical as-

sumptions. However all these methods are designed for the particular case of

linear microphone arrays. There exists approaches performing SSL designed for

other array geometries such as circular [Pavlidi 13] and spherical [Sasaki 12].

In all these cases, the geometry array is directly encoded into the cost func-

tion/probability model. As a consequence, most of these frameworks are not

easily extendible to arbitrarily-shaped microphone arrays.

Unlike existing approaches for multichannel TDE, we did not include the ge-

ometry of the array into the minimization criterion, because it is not known in

advance. Hence, we developed a new framework introducing several contribu-

tions. First, we analysed the geometry of the problem derived from the direct

path propagation model. This lead to a full characterization of the feasible time

delays (those corresponding to a position in the ambient space), to the uniqueness

of the sound source position and to a closed-form solution for source localisation.

Second, we cast the TDE problem into a multivariate optimization problem under

these feasibility constraints. This formulation allowed us to look for the best min-

imization technique to solve the TDE task. Third, we used a local optimization

procedure using grid-based initialization to evaluate the geometric model in the

framework of sound source localisation. Last, we proposed a global optimization

technique to reduce the computing time associated to the grid-based method.

5.3 Signal and Propagation Models

In this Section we describe the signal model and the propagation model allowingSignal model

to relate time delays with the relative position between source and microphones.

We introduce the following notations: the position of the sound source S ∈ R
N ,

the number of microphones M , as well as their positions, {Mm}m=M
m=1 ∈ R

N .

Let x(t) be the signal emitted by the source. The signal received at the mth

microphone writes:

xm(t) = x(t − tm) + nm(t), (5.1)

where nm is the noise associated with the mth microphone and tm is the time-of-

arrival from the source to that microphone. The microphones’ noise signals arePropagation model

assumed to be zero-mean independent Gaussian random processes. Throughout

the chapter, constant sound propagation speed is assumed, denoted by ν. Hence

we write tm = �S − Mm�/ν. Using this model, the expression for the time

delay between the mth and the nth microphones, denoted by tm,n, writes:

tm,n = tn − tm =
�S − Mn� − �S − Mm�

ν
. (5.2)
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Figure 5.1: Geometry associated with the two microphone case, located at Mm and Mn (see Lemma 1).

Hm,n is the mid-point of the the microphones (in red) and Vm,n the vector Mm − Mn (in dashed-blue).

LMAX
m,n and LMIN

m,n are the two half lines represented in green and yellow respectively.

5.4 Time Delay Feasibility

We recall that the task is to estimate the time delays to further localize the sound Overview of the main result

source. In this Section, we provide the three main theoretical results: (i) the con-

ditions under which a set of time delays correspond to a sound source (such sets

will be called feasible sets) and (ii) the uniqueness of the sound source position

for any feasible set and (iii) a closed-formula for localisation, i.e., to retrieve the

position of the sound source from a feasible set. Even if, in practice the problem is

set in the ambient space, R
3, the theory presented here is valid in R

N , N ≥ 2. In

the following, Section 5.4.1 studies the case of two microphones and Section 5.4.2

exploits the geometry of the M microphone case.

5.4.1 The Case of Two Microphones

We start by formally characterizing the set of possible sound-source locations in Characterization of S satisfying

t̂m,n = tm,n(S)the case of two microphones located at Mm and Mn. For a given time delay

t̂m,n, we characterize S satisfying t̂m,n = tm,n(S). Because (5.2) is a hyper-

boloid in R
N , this equation embeds the hyperbolic geometry of the problem. For

completeness, we state the following lemma (Figure 5.1):

Lemma 1 The set of sound-source locations S ∈ R
N satisfying tm,n(S) = t̂m,n

is:

(i). empty if |t̂m,n| > t∗m,n, where t∗m,n = �Mm − Mn�/ν,

(ii). the half line LMAX
m,n (or LMIN

m,n), if t̂m,n = t∗m,n (or if t̂m,n = −t∗m,n), where

LMAX
m,n = {Hm,n+µV m,n}, LMIN

m,n = {Hm,n−µV m,n}, µ ≥ 1/2, Hm,n =
(Mm + Mn)/2 and V m,n = Mm − Mn,

(iii). the hyperplane passing by Hm,n perpendicular to V m,n, if t̂m,n = 0 or

(iv). one sheet of a two-sheet hyperboloid with foci Mm and Mn for other val-

ues of t̂m,n.
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Proof: Using the triangular inequality, it is easy to see −t∗m,n ≤ tm,n(S) ≤
t∗m,n, ∀S ∈ R

N , which proves (i). (ii) is proven by rewriting S = Hm,n +

µ1V m,n +
�N

k=2 µkW k, where (V m,n,W 2, . . . ,W N ) is an orthogonal basis

of R
N , and deriving with respect to the µi’s. In order to prove (iii) and (iv) and

without loss of generality, we can assume Mm = e1, Mn = −e1 and ν = 1,

where e1 is the first element of the canonical basis of R
N . Equation (5.2) rewrites:

(t̂m,n)2 + 4x1 = −2t̂m,n

�

(x1 + 1)2 +
N

�

k=2

x2
k

�

1

2

, (5.3)

where (x1, . . . , xN )t are the coordinates of S. By squaring the previous equation

we obtain:

a(4 − a) + 4a

N
�

k=2

x2
k − 4(4 − a)x2

1 = 0, (5.4)

where a =
�

t̂m,n

�2
. Notice that if t̂m,n = 0 we get x1 = 0, which corresponds

to the statement in (iii). For the rest of values of a, that is 0 < a < (t∗m,n)2 =
4, equation (5.4) represents a two-sheet hyperboloid, since all coefficients are

strictly positive except the one of x2
1, that is strictly negative. We can rewrite (5.4)

as:

x2
1 =

a(4 − a) + 4a
�N

k=2 x2
k

4(4 − a)
. (5.5)

We observe that the set of solutions of (5.4) can be split into two subsets S+
m,n

and S−
m,n parametrized by (x2, . . . , xN ), corresponding to the two solutions for

x1 of equation (5.5). These two sets are the two sheets of the hyperboloid defined

in (5.4). Moreover, one can easily verify that tm,n

�

S+
m,n

�

= −tm,n

�

S−
m,n

�

, so

either tm,n

�

S+
m,n

�

= t̂m,n or tm,n

�

S−
m,n

�

= t̂m,n, but not both. Hence the set

of points S satisfying tm,n(S) = t̂m,n is either S+
m,n or S−

m,n, so one sheet of a

two-sheet hyperboloid.

We remark that some solutions of equation (5.4) are not solutions of (5.3).Understanding the spurious solutions

Because (5.4) only depends on a = (t̂m,n)2 and not on t̂m,n, the sign of t̂m,n

is irrelevant for the solutions of (5.4). Consequently, the solutions of (5.4) con-

tain, in addition to the genuine solutions (those of (5.3)), a set of spurious solu-

tions satisfying (5.3) with −t̂m,n instead of t̂m,n. However, since tm,n(S+
m,n) =

−tm,n(S−
m,n), we are able to disambiguate the genuine solutions from the spu-

rious ones. The previous Lemma performs a deep geometrical analysis of the

consequences of equation (5.2) on S. The next natural step is to consider the con-

sequences of all the equations (5.2) at once, analysing the geometry of the most

general microphone set up.
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Figure 5.2: Localization of the source using four microphones. Their position is shown in black (M1), blue

(M2), red (M3) and green (M4). The sound source is placed in the white marker. The blue hyperboloid

corresponds to t̂1,2, the red to t̂1,3 and the green to t̂1,4. The intersection of the hyperboloids corresponds to

the sound source position.

5.4.2 The Case of M Microphones in General Position

In this Section we characterize the set of possible sound-source locations in the Linear coupling between time delays

case of M microphones. We first notice that if a set of time delays t̂ = {t̂m,n}m=M,n=M
m=1,n=1 ∈

R
M2

satisfies (5.2) ∀m, n, then the time delays are coupled by t̂m,n = −t̂1,m +
t̂1,n. Hence, we only need to consider the time delays t = (t1,2, . . . , t1,M ) which

lie in a (M − 1)-dimensional vector subspace W ⊂ R
M2

.

Consequently, there are M − 1 equations of the form (5.2). Geometrically, The original system of equations

this is equivalent to seek the intersection of M − 1 hyperboloids in R
N (see

Figure 5.2). Algebraically, this is equivalent to solve a system on M − 1 non-

linear equations in N unknowns. In general, this leads to search for the roots

of a high-degree polynomial. However, in our case the hyperboloids share one

focus, namely M1. As it will be shown below, the problem in this case reduces

to solving a second-degree polynomial plus a linear system of equations. The

M − 1 equations write:











νt̂1,2 = �S − M2� − �S − M1�
...

νt̂1,M = �S − MM� − �S − M1�
. (5.6)

Because the M microphones are in general position (they do not lie in the Summary of the reasoning

same hyperplane), we have M ≥ N +1, hence the number of equations is greater

or equal than the number of unknowns. We now provide the conditions on t̂

under which (5.6) yields a real and unique solution for S. More precisely, firstly

we provide a necessary condition on t̂ for (5.6) to have real solutions, secondly we

prove the uniqueness of the solution and build a mapping to recover the solution

S, and thirdly we provide a necessary and sufficient condition on t̂ for (5.6) to

have a real and unique solution.
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Notice that each equation in (5.6) is equivalent to (νt̂1,m + �S − M1�)2 =Expressing the original system in

matrix form �S−Mm�2, from which we obtain −2(M1−Mm)tS+p1,m�S−M1�+q1,m =
0, where p1,m = 2νt̂1,m and q1,m = ν2(t̂1,m)2+�M1�2−�Mm�2. Hence, (5.6)

can now be written in matrix form:

MS + P �S − M1� + Q = 0, (5.7)

where M ∈ R
(M−1)×N is a matrix with its mth row, 1 ≤ m ≤ M − 1, equal to

(Mm+1 − M1)
t, P = (p1,2, . . . , p1,M )t and Q = (q1,2, . . . , q1,M )t. Notice that

P and Q depend on t̂.

Without loss of generality and because the points M1, . . . ,MM do not lieSplitting (5.7) into two subsystems

in the same hyperplane, we assume that M can be written as a concatenation of

an invertible matrix ML ∈ R
N×N and a matrix ME ∈ R

(M−N−1)×N such that

M =

�

ML

ME

�

. Similarly P =

�

P L

P E

�

and Q =

�

QL

QE

�

. Thus, (5.7)

rewrites:

MLS + P L�S − M1� + QL = 0, (5.8)

MES + P E�S − M1� + QE = 0, (5.9)

where P L, QL are vectors in R
N and P E , QE are vectors in R

M−N−1. If we

decompose t̂ into t̂L and t̂E , we observe that P L and W L depend only on t̂L

and that P E and QE depend only on t̂E . Notice that (5.6) is strictly equivalent

to (5.8)-(5.9). In the following, (5.8) will be used for defining the necessary

conditions on t̂ as well as localizing the sound source. The study of (5.9) is

reported further on. By introducing a scalar variable w, (5.8) can be written as:The first subsystem is the intersec-

tion between a straight line and a

quadric MLS + wP L + QL = 0, (5.10)

�S − M1�2 − w2 = 0. (5.11)

We remark that the system (5.10)-(5.11) is defined in the (S, w) space. Notice

that (5.10) represents a straight line and (5.11) represents quadric. Hence the

solution to (5.10)-(5.11) is the intersection of a straight line and a quadric. In

such systems there are two possible configurations: (i) the quadric contains the

straight line, and there are an infinite number of solutions, or (ii) the straight line

crosses the quadric, and there are two (maybe complex) solutions. In fact, the

first case, (i), does not occur. Notice that the quadric is a two-sheet hyperboloid.

Because two-sheet hyperboloids are not ruled surfaces, (5.11) does not contain

any straight line. Consequently the system has two (maybe complex) solutions.

In order to solve (5.10)-(5.11), we first rewrite (5.10) asSolving (5.10)-(5.11)

S = Aw + B, (5.12)

where A = −M−1
L P L and B = −M−1

L QL, and then substitute S from (5.12)

into (5.11) obtaining:

(�A�2 − 1)w2 + 2 �A,B − M1�w + �B − M1�2 = 0. (5.13)
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We are interested in the real solutions, that is, S ∈ R
N . Because A, B ∈ R

N , The solutions need to be real: de-

riving the necessary condition for

t̂
the solutions of (5.10)-(5.11) are real, if and only if, the solutions to (5.13) are

real too. Equivalently, the discriminant of (5.13) has to be non-negative. Hence

the solutions to (5.10)-(5.11) are real if and only if t̂ satisfies:

∆(t̂) := �A, B − M1�2 − �B − M1�2(�A�2 − 1) ≥ 0. (5.14)

The previous equation is a necessary condition for (5.10)-(5.11) to have real so-

lutions. Albeit, we are interested in the solutions of (5.8). Obviously, if S is a

solution of (5.8), then (S, �S − M1�) is a solution of (5.10)-(5.11). However,

the reciprocal is not true; these two systems are not equivalent. Indeed, since

∆(t̂) = ∆(−t̂), one of the solutions of (5.10)-(5.11) is the solution of (5.8) and

the other is the solution of (5.8) replacing t̂ by −t̂. In other words, the two solu-

tions of (5.10)-(5.11), namely (S+, w+) and (S−, w−), satisfy either:
�

t(S+) = t̂

t(S−) = −t̂
or

�

t(S+) = −t̂

t(S−) = t̂

Consequently, the solution to (5.8) is unique. Moreover, we can use (5.12) to Symmetry in the t space: the solu-

tion of (5.10)-(5.11) is unique and

has a closed-form
define the following localisation mapping, which retrieves the sound-source po-

sition from a feasible t̂:

L(t̂) :=

�

S+ = Aw+ + B if t(S+) = t̂

S− = Aw− + B otherwise.
(5.15)

Until now we provided the condition for equation (5.8) to have real solutions, The sufficient condition for t̂

the uniqueness of the solution and a localisation mapping. However, the original

system includes also equation (5.9). In fact, (5.9) adds M − N − 1 constraints

onto t̂. Indeed, if (L(t̂), �L(t̂) − M1�) is the solution to (5.8), then in order to

be a solution of (5.8)-(5.9), it has to satisfy:

E(t̂) := MEL(t̂) + P E�L(t̂) − M1� + QE = 0. (5.16)

Moreover, the reciprocal is true. Summarizing, the system (5.8)-(5.9) has a unique

solution L(t̂) if and only if ∆(t̂) ≥ 0 and E(t̂) = 0.

The mappings ∆, E and L are explicitly constructed solely from the micro- Summary

phone locations M. Hence, these mappings are not only an interesting mathemat-

ical finding in its own right, but also useful from a computational perspective. In

addition, the mappings ∆ and E can be understood from two points of view. Ge-

ometrically, they characterize the time delays corresponding to a sound source.

Algebraically, ∆ and E represent the feasibility constraint to the time delay es-

timation problem, i.e., the time delay estimate should satisfy the necessary and

sufficient conditions for the existence of S. L has to be understood as the closed-

form solution for localisation, allowing to recover S from any feasible t̂.

In all, this can be formalized as: The formal result

Theorem 1 Let M = {Mm}M
m=1 ⊂ R

N be a set of known points in general

position (i.e., not lying in the same hyperplane). Let be ν ∈ R, ν > 0. Consider

also an unknown point S ∈ R
N . The following statements hold:
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Geometric Characterization The set of feasible values for t̂ (i.e., the values sat-

isfying (5.2) ∀m, n) is a bounded N -dimensional manifold with boundary,

denoted by T , contained in a M − 1 vector subspace W ⊂ R
M2

.

Algebraic Characterization Moreover, there exist two mapping ∆ : W → R

and E : W → R
M−N−1, built solely from M, such that ∀t̂ ∈ W:

t̂ ∈ T ⇔ (∆(t̂) ≥ 0 and E(t̂) = 0).

Localization There exists a mapping L : T → R
N , such that S = L(t̂) satisfies

(5.6), ∀t̂ ∈ T .

Proof: During this section we have already proven the stated result. The

Algebraic Characterization is proven in equations (5.14) and (5.16). Notice that,

because E is defined from W to R
M−N−1, the dimension of the feasible values is

reduced to M − 1− (M −N − 1) = N . Thus t̂ lay in a N -dimensional manifold

T . The boundary of the manifold is considered because the points satisfying

∆(t̂) = 0 are feasible points. More precisely, the boundary of the manifold is

defined as:

∂T = {t̂ ∈ W|∆(t̂) and E(t̂) = 0}.
Last, T is bounded because t̂ are bounded too (see Lemma 1). Consequently

we also proved the Geometric Characterization. The Localization mapping L is

naturally built (5.15). The reader may verify the remaining details.

5.5 TDE-SSL as Non-linear Constrained Optimization

In this section we show how the TDE estimation problem can be cast into a mul-TDE as an optimization problem

tivariated non-linear optimization problem. We first derive a criterion to choose

the best value for t and the formally set up the optimization task.

5.5.1 A Criterion for Multichannel TDE

The criterion used in [Chen 03b] was built from the theory of linear predictors.The criterion: linear prediction error

The authors presented this criterion in the framework of linear microphone ar-

rays. We here generalise it to arbitrarily-shaped microphone arrays following a

similar line of though. Given the M received signals {xm(t)}m=M
m=1 , we would

like to estimate the time delays between them. As explained before, only M − 1
of the delays are independent. Without loss of generality we choose the delays

t1,2, . . . , t1,m, . . . , t1,M . We select x1(t) as the reference signal and set the fol-

lowing prediction error:

ec,t(t) = x1(t) −
M
�

m=2

c1,m xm(t + t1,m), (5.17)
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where c = (c1,2, . . . , c1,m, . . . , c1,M )t
is the vector of the prediction coefficients

and t = (t1,2, . . . , t1,m, . . . , t1,M )t
is the vector of the prediction time delays. No-

tice also that, when t takes the true value, the signals xm(t+t1,m) and xn(t+t1,n)
are on phase. The criterion to minimize is the expected energy of the prediction

error (5.17), leading to a (right now) unconstrained optimization problem:

(c∗, t∗) = arg min
c,t

J̃(c, t) = arg min
c,t

E
�

e2
c,t(t)

�

,

where E{·} denotes the expectation. The optimal value for c is c∗(t) = R̃
−1

(t)r(t),
with:

R̃(t) =









R2,2(0) R2,3(t1,3 − t1,2) · · ·
R2,3(t1,3 − t1,2) R3,3(0) · · ·

...
...

. . .









and

r(t) =
�

R1,2(−t1,2) R1,3(−t1,3) . . .
�t

,

where we denoted by Ri,j(τ) = E {xi(t)xj(t − τ)} the cross-correlation func-

tions. We assume that the direct propagation path is dominant with respect to the

reverberant paths. Hence, Ri,j(τ) has its maxima at the true value of ti,j . By

setting c = c∗, the optimization problem becomes:

t∗ = arg min
t

J̃(c∗(t), t) = arg min
t

�

R1,1(0) − rt(t)R̃
−1

(t)r(t)
�

. (5.18)

In addition, it can be shown (see Section 5.A) that this optimization problem is An equivalent criterion

equivalent to the following one:

t∗ = arg min
t

J(t), (5.19)

where J(t) = det (R(t)) with R(t) ∈ R
M×M being the real matrix of normal-

ized cross-correlation functions evaluated at t. That is R(t) = [ρi,j(t)]ij with:

ρi,j(t) =
E {xi(t + t1,i)xj(t + t1,j)}

�

EiEj

,

where Ei = Ri,i(0) = E
�

x2
i (t)

�

is the energy of the ith signal. This is how the

time delay estimation problem is cast into a non-linear optimization problem. The

problem is multivariate due to the fact that the signal model does not encode the

geometry of the array, as in [Chen 03b]. Moreover, we could use the feasibility

constraints derived in the previous section to constrain the minimization.
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5.5.2 The Non-linear Constrained Optimization Problem

In Section 5.4 we characterized the feasible values of t (i.e., those correspondingThe optimization task

to a sound source position) and in the previous section we introduced a criterion

to choose the best value for t̂. Of course, the next step is to look for the best value

among the feasible ones. We call this operation geometrically-constrained time

delay estimation and it is naturally cast into the following non-linear constrained

optimization problem:











min
t

J(t),

s.t. t ∈ W, −t∗ ≤ t ≤ t∗,
∆ (t) ≥ 0, E (t) = 0,

(5.20)

where W , t∗, ∆ and E are defined in Section 5.4. This new formulation was first

published in [Alameda-Pineda 12a] and then used again in [Alameda-Pineda 13b].

5.6 Local Optimization

The third contribution is a local optimization method with grid-based initialisa-Local optimization using a log-

barrier dual interior point method tion to estimate the time delays. Here, the minimization of (5.20) is carried out

using a publicly available MATLAB implementation [Carbonetto 08] of the log-

barrier dual interior point (DIP) method [Boyd 04]. This method is designed for

continuous convex optimization problems with non-linear constraints. Indeed,

the inequality constraint of the problem, ∆(t) ≥ 0, is added to the cost by means

of a log-barrier function. The optimization problem in (5.20) is converted into a

sequence of problems indexed by a real parameter µ ≥ 0:







min
t

J(t) − µ log(∆(t)),

s.t. t ∈ W, −t∗ ≤ t ≤ t∗, E (t) = 0.
(5.21)

The solutions of these problems form a sequence of optimal solutions t̂µ also

indexed by µ. Moreover, t̂µ → t̂ when µ → 0. In other words, the solution

of (5.21) is close enough to the solution of (5.20) for a value of µ small enough.

Once the inequality is included in the cost function, a gradient-based optimization

method is applied and the parameter µ of the algorithms decreases with the itera-

tions. In order to increase the convergence speed and the accuracy, we computed

the analytical gradient and Hessian of the original cost function J and constraint

function ∆. This can be found in Sections 5.B and 5.C respectively. As anyGrid-based global optimization

gradient-based technique, the DIP method is likely to fail in finding the global

optimum of non-convex problems such as (5.21). To overcome this issue, our al-

gorithm starts from several initial points, i.e., the set SI = {tI
i }P

i=1. For each one

of these initializations a local minimum is found, then the minimum over these

local minima is selected.
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5.7 Global Optimization

In this section we present our last contribution to the field: a global optimization Branch & bound for global optimiza-

tion of Lipschitz functionstechnique to solve (5.20). If the functions ρi,j are continuously differentiable,

the cost function J is Lipschitz continuous in the compact set −t∗ ≤ t ≤ t∗,

and hence a branch and bound (B&B) global optimization algorithm is appro-

priate. The skeleton of the B&B method is shown in Algorithm 5.1. The input

is the Lipschitz constant L, and a list I = {(t(i), s(i))}I
i=1 of initial sets, where

(t(i), s(i)) represents the cube of center t(i) and side 2s(i). The Branch and Bound

routines are alternated until convergence. While the Branch method splits the sets

in I into cubes of side s(i) (half of the original size), the Bound method bound

the cost function on the recently created cubes. The Bound routine is shown in

Algorithm 5.2. The upper and lower bound of all the sets in I are computed.

Those sets whose lower bound is bigger than the minimum of the upper bounds

are discarded, since the optimum cannot lie inside those sets. In order to stop

the iterative procedure we could use at least two possible convergence criteria:

the size of the sets in I (as a precision for the solution) and the variation of the

minimum cost function during the algorithm. After convergence, we choose the

set in I with minimum cost among those satisfying the constraint. If no such set

exists in I, we rerun the B&B algorithm on O.

Algorithm 5.1 Branch and Bound

1: Input: The Lipschitz constant L and a list of sets I
2: Output: A list of potential solutions I and a list of discarded solutions O.

3: repeat

4: (a) I = Branch(I)

5: (b) [I, U] = Bound(I,L)

6: (c) O = O ∪ U
7: until Convergence

Algorithm 5.2 Bound subroutine of Algorithm 5.1

1: Input: The Lipschitz constant L and a list of sets I
2: Output: A list of currently inlier sets I and a list of outlier sets U .

3: for (t(i), s(i)) ∈ I do

4: (a) l(i) = J(t(i)) − s(i)L.

5: (b) u(i) = J(t(i)) + s(i)L.

6: (c) τ = mini=1,...,|I| u
(i).

7: end for

8: for i = 1, . . . , |I| do

9: if l(i) > τ then

10: Move (t(i), s(i)) from I to U .

11: end if

12: end for
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Table 5.1: Results obtained on simulated data with SNR = 0 dB. The second column corresponds to the

values of T60 in seconds. The six remaining columns correspond to each of the evaluated methods. For each

combination SNR, T60 and method there are three values: the proportion of inliers (angular error < 30
degrees), the inlier angular error mean and standard deviation.

SNR T60 pi-tde tde i-gtde fg-gtde sg-gtde bb-gtde

0

0.0

53.7% 38.3% 80.3% 75.3% 46.9% 82.1%

11.31 15.89 15.75 10.54 11.63 9.59

5.55 7.47 7.11 4.57 5.54 3.66

0.1

53.3% 36.2% 77.4% 75.4% 46.7% 82.8%

12.47 16.15 15.94 11.55 12.58 10.49

6.17 7.30 7.18 5.26 6.17 4.47

0.2

44.3% 33.3% 62.4% 67.5% 40.9% 73.8%

14.60 17.01 16.49 13.54 14.79 12.65

6.92 7.46 7.38 6.51 6.98 6.14

0.4

30.3% 23.3% 41.2% 44.6% 27.9% 48.3%

16.81 17.94 17.04 15.53 17.05 14.99

7.33 7.30 7.50 7.21 7.33 7.09

0.6

23.6% 19.2% 30.2% 33.4% 22.2% 35.7%

17.67 18.60 17.76 16.25 17.67 16.10

7.60 7.69 7.48 7.22 7.13 7.30

5.8 Results

In order to accurately validate the two optimization algorithms, we developed aEvaluation protocol

formal evaluation protocol using simulated and real data. The set up is the same

in both cases: a 4 × 4 × 4 meter room with an array of four microphones at (in

meters) M1 = (2.0, 2.1, 1.83)t, M2 = (1.8, 2.1, 1.83)t, M3 = (1.9, 2.2, 1.97)t

and M4 = (1.9, 2.0, 1.97)t and the sound source at 189 different positions on

a 1.7 m radius sphere around the microphones. The source emitted speech frag-

ments randomly chosen from [Garofolo 93]. One hundred millisecond cuts of

these sounds are the input of the evaluated methods. In the simulated case, we

control two parameters. First, the SNR, regulating the amount of noise added

to the received signals, and taking the following values (in dB): −10, −5 and

0. Secondly the T60, used in the Image-Source Model [Lehmann 08] (available

at [Lehmann 12]) to control the amount of reverberations, taking the following

values (in s): 0, 0.1, 0.2, 0.4 and 0.6. In the real case, we used the acquisition

protocol defined in [Deleforge 12b], replacing the dummy head by the tetrahedron

microphone array.

Several algorithms are compared. pi-tde is a pair-wise independent time de-

lay estimation by maximizing the cross-correlation function. tde corresponds to

the time delay estimation based on unconstrained optimization of (5.19), that is

the generalisation of the method in [Chen 03b] to arbitrarly-shaped microphone

arrays. The method is initialized on a uniform grid, SI of P = 4096 points. The

bounds of the grid are defined by the geometry of the proble (see Lemma 1). i-

gtde consists on taking the minimum of the cost function at the subset of feasible
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Table 5.2: Results obtained on simulated data with SNR = −5 dB. The columns rows have the same meaning

as in Table 5.1

SNR T60 pi-tde tde i-gtde fg-gtde sg-gtde bb-gtde

-5

0.0

41.4% 37.5% 78.3% 80.4% 39.3% 84.1%

13.24 16.76 15.80 11.74 13.41 10.46

6.11 7.38 7.12 5.52 6.41 4.64

0.1

41.5% 37.0% 74.0% 77.9% 40.8% 82.7%

14.23 16.92 16.09 12.99 14.58 11.58

6.71 7.36 7.15 6.35 6.74 5.45

0.2

32.7% 31.5% 57.7% 61.9% 34.4% 68.6%

16.50 17.71 16.48 14.74 16.60 13.91

7.09 7.41 7.35 6.91 7.21 6.75

0.4

21.9% 21.4% 34.8% 36.8% 23.6% 41.1%

18.12 18.48 17.53 16.54 17.76 16.07

7.15 7.30 7.55 7.63 7.33 7.44

0.6

16.9% 16.7% 26.9% 28.0% 18.7% 29.8%

18.08 18.74 17.82 17.11 18.19 16.97

7.43 7.26 7.45 7.38 7.28 7.35

poitns of SI , that we will denote SF . fg-gtde consists on the log-barrier method

described in Section 5.6, initialized on SF . sg-gtde is the very same log-barrier

method, intialized on a sparse grid. We conjecture that the global minimum of J

corresponds to local maxima of the functions ρ1,m. Thus, for each microphone

pair (1, m), we extract K local maxima of ρ1,m to construct a grid with all pos-

sible combinations of these values, ending up with KM−1 points. bb-gtde is the

B&B algorithm described in Section 5.7, initialized with a big cube covering the

feasible domain. All these algorithms provide a time delay estimate, t̂, used to

retrieve the sound-source position using the localisation mapping (5.15).

Tables 5.1, 5.2 and 5.3 show the localisation results on simulated data for dif- Results on simulated data

ferent values of SNR. The first two columns correspond to the value of SNR and

of T60 respectively. The six other columns correspond to the evaluation methods

described in the previous paragraph. For each combination SNR-T60-Method,

three quantities are given, namely: the percentage of localisation inliers (angular

error less than 300), the angular error mean of inliers, and their standard devi-

ation (both in degrees). We first observe that all methods behave as expected

when increasing the level of noise and reverberations. Indeed, their performance

strictly decreases with the amount of noise and reverberations. Secondly, we no-

tive that the tde method has very bad performance. In other words, using the

generalisation of the criterion derived by [Chen 03b] without any additional in-

formation about the microphone array gives very bad results, even in easy scenar-

ios. Thirdly, we notice that mtehods pi-tde and sg-gtde have comparable results.

The differences are found in the percentage of localisation inliers. While in easy

conditions of noise and reverberations the independent estimations works better,

in harder conditions the performance of pi-tde decreases much faster than sg-

gtde. Fourthly, the relative situation of i-gtde and fg-gtde is quite similar as the
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Table 5.3: Results obtained on simulated data with SNR = −10 dB. The columns and rows have the same

meaning as in Table 5.1.

SNR T60 pi-tde tde i-gtde fg-gtde sg-gtde bb-gtde

-10

0.0

29.6% 33.4% 60.4% 66.6% 31.0% 77.5%

17.04 17.28 16.65 14.69 17.13 13.45

7.19 7.51 7.30 6.90 7.36 6.56

0.1

28.9% 29.2% 51.3% 56.5% 29.7% 66.6%

17.76 17.75 16.90 16.01 17.85 14.35

7.17 7.62 7.31 7.19 7.31 6.85

0.2

20.8% 21.6% 35.6% 36.3% 22.1% 44.5%

18.92 18.67 17.86 17.27 18.46 16.53

7.49 7.34 7.33 7.37 7.00 7.36

0.4

14.7% 14.3% 21.4% 20.6% 14.5% 24.8%

18.98 18.95 18.76 18.28 19.17 18.29

7.58 7.21 7.29 7.30 7.41 7.29

0.6

12.5% 11.6% 16.3% 15.8% 13.2% 19.0%

19.25 19.54 19.03 18.61 19.65 18.63

7.22 7.03 7.34 7.20 7.26 7.26

Table 5.4: Results obtained on real data. The rows have the same meaning as in Table 5.1.

pi-tde tde i-gtde fg-gtde sg-gtde bb-gtde

13.24% 13.37% 16.69% 27.48% 12.86% 22.28%

18.80 18.50 19.34 16.04 19.03 17.51

7.09 7.15 7.00 7.55 6.88 7.53

previous case. Counterintuitively, i-gtde performs better than fg-gtde in easy sce-

narios. However, we observe that the performance of i-gtde decreases faster thant

the performance of fg-gtde. Thus the robustness of fg-gtde to noise and reverber-

ations is higher than the robustness of i-gtde. Finally we remark that, both, the

performance and the robustness of bb-gtde are higher than the performance and

robustness of any other of the tested methods. Generally speaking, we could say

that methods involving the constraints derived from the propagation model are

more robust than the others.

Table 5.4 presents the results on real data. The rows have the same meaningResults on real data

than in Table 5.1. In this case we observe that only good global optimization

techniques, i.e., fg-gtde and bb-gtde, show decent results. Indeed, they both per-

form much better than the rest. We also remark that, contrarily to the simulated

case, in the real scenario fg-gtde outperforms bb-gtde. Last we notice that the

results on real data roughly correspond to the simulated case with T60 = 0.6 s

and SNR = −5 dB, which is a very challenging scenario.

In general, the methods perform as expected with respect to the environmen-Effects of the noise and the reverber-

ations tal conditions. That is, the higher the SNR value the better the methods estimate

the time delays, the higher the percentage of inliers and the lower the localisa-

tion error. We can also observe a clear trend with respect to the reverberation

level: the methods’ performance decreases with T60. However the SNR and the
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T60 have different effects on the function to minimize. On one side, the sensor

noise decorrelates the microphones’ signals leading to much more (and randomly

spread) local minima and increasing the value of the true minimum. If this ef-

fect is extreme, the hope for a good estimate decreases fast. On the other side,

the reverberations produce only a few strong local minima. This perturbation is

systematic given the source position in the room. Hence, there is hope to learn

the effect of such reverberations in order to improve the quality of the estimates.

These types of perturbations (noise and reverberations) of the function to mini-

mize have clearly different effects on the results.

5.9 Conclusions and Future Work

In this chapter, we addressed the problem of time delay estimation for sound

source localisation using non-coplanar microphone arrays. The starting point is

the signal and propagation models, from which we are able to analyze the ge-

ometry of the problem. This analysis describes the feasible values of the time

delays, i.e., those that correspond to a position in the source space. Cast into

an optimization problem, the time delay estimation is subject to the feasibility

conditions. On one hand, they represent a geometric characterization and on the

other hand they provide for two explicit mappings constraining the optimization

problems. Furthermore, two different approaches are proposed to solve the TDE

and sound source localisation tasks. These approaches are evaluated using simu-

lated data and data recorded in a natural indoor environment. From the extensive

experiments on both simulated and real data, we conclude that both methods out-

perform the state-of-the-art, thus validating the geometric model as well as the

optimization procedures.

The are several ways to extend this work. As outlined before, it would be

very useful to learn the effect the reverberations have on the objective function as

in [Ribeiro 10]. Also, it is worth to consider the multiple source case, following

approaches like [Chen 03a]. Besides that, a frequency decomposition stage may

be useful to avoid the analysis in non-informative frequency bands [Valin 06].

Thirdly, by evaluating the model in the framework of dynamic sound sources.

Fourth, adapting the methodology into a calibration task, where the position of

the sound source may be known, but not the microphones’ position. Finally,

performing experiments using a large number of microphones and evaluating the

influence of their positions.
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5.A Criteria Equivalence

In Section 5.5 we stated that the optimization criteria from Equations (5.18) and

(5.19) are equivalent. We recall their expressions:

J̃(t) = R1,1(0) − rt(t)R̃
−1

(t)r(t) J(t) = det (R(t)) .

In order to prove this statement, we will start from the expression of J̃ and recover

the expression of J . Notice that we can rewrite J̃ as:

J = det (R) = det
�

R̃
�

−
M
�

i=2

(−1)i+1ρ1,i det
�

R̃i

�

,

where

R̃i =



 r R̃1 · · · R̃i−1 R̃i+1 · · · R̃M



 .

and R̃i is the ith column of the matrix R̃. The reader should make the difference

between the matrix R̃i and the vector R̃i. We can further develop det
�

R̃i

�

:

det
�

R̃i

�

=

M
�

j=2

(−1)j+1ρ1,j det(R̃i,j),

where det(R̃i,j) is the ijth minor of R̃ (since R̃ is symmetric). Finally,

det (R) = det
�

R̃
�

−
M
�

i,j=2

(−1)i+jρ1,iρ1,j det
�

R̃i,j

�

= det
�

R̃
�



1 −
M
�

i,j=2

(−1)i+jρ1,iρ1,j
det

�

R̃i,j

�

det
�

R̃
�





= det
�

R̃
�



1 −
M
�

i,j=2

(−1)i+jR1,iR1,j
det

�

R̃i,j

�

det
�

R̃
�

E1

√
Ei

�

Ej





=
det

�

R̃
�

E1



E1 −
M
�

i,j=2

(−1)i+jR1,i

�

R̃
−1

�

i,j
R1,j





=
det

�

R̃
�

E1

�

E1 − rtR̃
−1

r
�

⇒ J =
det

�

R̃
�

E1
J̃

It is worth to notice that both criteria are equivalent if and only if the quantity

det(R)/E1 is well defined and strictly positive. Since E1 > 0 (because of the
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sensor’s noise), this is equivalent to say that both criteria are equivalent if and

only if det(R) > 0. We refer the reader to [Chen 03b], since the positiveness of

that determinant is proven there.

5.B The Derivatives of the Cost Function

The interior point algorithm relies on the use of the gradient and the Hessian of

both, the objective function and the constraint(s). Providing the analytic expres-

sion for them would lead to a much more efficient and precise algorithm than

estimating them using finite differences. Hence, this section is devoted to the

derivation of both, the gradient and the Hessian of the criterion.

In order to do that we need three laws of matrix calculus. Let Y : R →
R

M×M , be a matrix function depending on y, the following formulas hold:

• ∂ det (Y(y))

∂y
= det(Y(y))trace

�

Y(y)−1 ∂Y(y)

∂y

�

• ∂ trace (Y(y))

∂y
= trace

�

∂ Y(y)

∂y

�

• ∂ Y(y)−1

∂y
= −Y(y)−1 ∂Y(y)

∂y
Y(y)−1

Recall that the function we want to derivative is J = det (R). From the rules

of matrix calculus we have:

∂J

∂t1,k
=

∂ det (R)

∂t1,k
= det (R) trace

�

R−1 ∂ R

∂t1,k

�

. (5.22)

In addition we can compute:

∂2 J̃

∂t1,j∂t1,k
=

∂

∂t1,j

�

det (R) trace

�

R−1 ∂ R

∂t1,k

��

= det (R) trace

�

R−1 ∂ R

∂t1,j

�

trace

�

R−1 ∂ R

∂t1,k

�

+

det (R) trace

�

−R−1 ∂ R

∂t1,j
R−1 ∂ R

∂t1,k
+ R−1 ∂2 R

∂t1,j∂t1,k

�

.

Hence, to be able to evaluate the gradient and the Hessian of J̃ we need to com-

pute the first and second derivatives of the matrix R. For clarity purposes, we

first rewrite the derivatives of R in terms of the derivatives of R̃ and r to finally

compute these last ones. Notice that:

R = D









E1 rt

r R̃









D, (5.23)
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where D = diag
�

E
−1/2
1 , . . . , E

−1/2
M

�

is a diagonal matrix containing the square

roots of the signals’ energy Ei = Ri,i(0). Since the matrix D does not depend on

t, the derivatives of R look like:

∂R

∂t1,k
= D

















0
∂r
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t
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∂t1,k

















D, (5.24)

and

∂2R

∂t1,j∂t1,k
= D
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t
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The partial derivative of R̃ is matrix filled with zeros expect for its kth row and

its kth column that are equal to the following vector:

�

. . . , R�
k−1,k(t1,k − t1,k−1), 0,−R�

k+1,k(t1,k+1 − t1,k), . . .
�t

.

The partial derivative of r is:

∂r

∂t1,k
=

�

0, . . . , R�
1,k(t1,k), . . . , 0

�t
. (5.26)

We will differentiate two cases when computing the second derivative:

j = k This will fill the diagonal of the Hessian matrix. Notice that:

∂2r

∂t21,k

=
�

0, . . . , R��
1,k(t1,k), 0, . . .

�t
(5.27)

and that the partial second derivative of R̃ is matrix filled with zeros expect

for its kth row and its kth column that are equal to the following vector:

�

. . . , R��
k−1,k(t1,k − t1,k−1), 0, R��

k+1,k(t1,k+1 − t1,k), . . .
�t

.

j > k This fills the lower triangular matrix of the Hessian (and the upper trian-

gular since we assume that the hessian is symmetric, i.e., that J̃ is twice

continuously differentiable). The second derivative of r is null in this case,

however the second derivative of R̃ is not. Actually just two positions in

the second derivative are not necessarily null: the jkth and the kjth being

−R��
k,j(t1,k − t1,j).
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5.C The Derivatives of the Constraint

As we have done in the previous Section for the criterion, in this section we

compute the formulae for the first and the second derivatives of the non-linear

constraint ∆. Recall the expression from (5.14):

∆ = �A,B − M1�2 − �B − M1�2
�

�A�2 − 1
�

,

where A = −2νM‡t and B = M‡
�

K − ν2t2
�

. It is easy to show that:

∇∆ = 2
�

�A,B − M1�
�

Jt

A(B − M1) + Jt

BA
�

−

− (�A�2 − 1)Jt

B(B − M1) − �B − M1�2Jt

AA
�

(5.28)

where JA = −2νM‡ and JB = −2ν2M‡ diag(t). We can also compute the

Hessian of ∆:

H∆ = 2

�

�

Jt

A(B − M1) + Jt

BA
� �

Jt

A(B − M1) + Jt

BA
�t

+

+ �A,B − M1�
�

Jt

AJB + D + Jt

BJA

�

−

−
�

2(Jt

B(B − M1))(J
t

AA)t + (�A�2 − 1)(E + Jt

BJB) +

+ 2(Jt

AA)(Jt

B(B − M1))
t + �B − M1�2Jt

AJA

��

(5.29)

where D = −2ν2 Diag (M†A) and E = −2ν2 Diag (M†(B − M1)).
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CONCLUSIONS

This PhD was devoted to collect better insights in the processing of auditory and

visual signals acquired by means of an egocentric set of sensors for the purpose

of scene understanding. Among the different addressable tasks in that broad field,

we chose to work in three, namely: audio-visual speaker detection, audio-visual

gesture recognition and multichannel sound source localisation. This is challeng-

ing because the data is (D1) egocentric, that is, acquired with a sensor network

fitting in a small volume, thus providing very similar points of view of the scene,

(D2) audio-visual, that is coming from two different modalities, hence requiring

fusion strategies able to extract meaningful objects from the data while exploiting

the complementarity inherent to the use of two modalities and (D3) corrupted, be-

cause unrestricted environments are characterized by visual occlusions, auditory

interferences and reverberations and sensor noise. Moreover, when developing

robotic applications, the methods should be (M1) efficient, such that the limited

resources of the platform are not misused, (M2) fast, ensuring that the output

corresponds to the ongoing social interaction, (M3) robust, that is not easily per-

turbed by noise and interfering artefacts, (M4) adaptable, thus guaranteeing the

wide usability of the system, and (M5) reliable, such that higher-level applica-

tions can build on them. Similarly, we desire the outcome of such algorithms

to be (O1) temporally coherent, providing results that are stable over time, (O2)

spatially consistent, to ensure the correct management of the robot’s space and

(O3) semantically meaningful, such that the resulting interaction is natural and

smooth.

6.1 The RAVEL Data Set

In order to properly evaluate the developed methods, we recorded the RAVEL data

set, consisting on three categories: action recognition, gesture recognition and in-

teraction. The scenarios on these categories are designed to study action and

gesture recognition, localization of auditory and visual events, dialogue handling,
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gender and face detection, and identity recognition. RAVEL was recorded with the

POPEYE robot, providing a stereo-image flow and a four-channel sound track.

The environment set up and recording device are fully detailed ensuring the re-

peatability of the recordings. Likewise, the scenarios are outlined and their their

script is provided. Finally, application examples are shown proving that RAVEL is

useful for testing methods on action recognition, scene flow extraction and audio-

visual speaker detection.

6.2 Vision-Guided Speaker Detection

The first task addressed is the detection and localisation of speakers using audio-

visual data. Fusing audition and vision is challenging regarding this application

because data may be corrupted. Occlusions, noise and reverberations present in

regular indoor environments make the detection task very difficult. We developed

a hybrid probabilistic/deterministic framework AVS1 to perform multimodal fu-

sion. On one hand, the deterministic components allow us to model those charac-

teristics of the scene that are known with precision in advance. On the other hand,

the probabilistic components model random effects, such as noise and outliers.

Through this framework we showed how vision can guide audition leading

to vision-guided speaker detection algorithms. Indeed, an EM-based procedure

named Motion-Guided Robot Hearing AVS2 is used to associate sound-emitting

directional features to motion-related directional features. Consequently, active

sound regions are associated to moving regions creating AV objects. In a later

stage, we implemented this on the humanoid robot NAO. To do that, we simplified

the EM procedure by using a face detector, thus resulting in a Face-Guided Robot

Hearing algorithm AVS3 . The proposed model was validated using synthetic

data and the derived algorithms were evaluated using real data.

The real data used for evaluation satisfies the three properties (D1), (D2) and

(D3), as explained in Chapter 3, AVS2 is (M1) efficient, (M3) robust, (M4)

highly adaptable and (M5) reliable. Its real-time implementation is much (M2)

faster and equally (M1) efficient, (M3) robust and (M4) adaptable. However,

AVS3 is not as reliable as AVS2 , because its performance depends on the one

of the face detector. None of the presented algorithms ensure the (O1) temporal

coherence of their results, since no tracking is involved. Albeit, both offer (O2)

spatially consistent, because of the localisation capabilities of the algorithms di-

rectly provided by the 3D stereo reconstruction and (O3) semantically meaning-

ful, outputting motion-emitting regions and speaking faces respectively.

6.3 Audio-Visual Command Recognition

We also addressed the task of audio-visual command recognition. These com-

mands are gestures accompanied by a short sentence or by a word. This problem
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is challenging because (i) there is no standard audio-visual representation and (ii)

these commands are culture-, language- and user-dependant.

First, we evaluate different features and representations based on the state-of-

the-art. Immediately, the problem of how to mix two different classifiers raised.

We proposed a novel manner to combine two different classifiers AVG1 . The

normalized convex weighting scheme consists on a whitening of the training clas-

sification scores before learning the optimal convex combination of the two clas-

sifiers. We evaluated the performance of several features, representations and

classifiers.

Secondly, we analysed the performance of SVM-based classifiers when trained

with tiny data sets AVG2 . This is useful because it will lead to systems that

are adaptable and robust at the same time, i.e., able to build accurate models of

the audio-visual commands from very few examples. We evaluated five different

methods on training sets from 9 to 21 observations. Preliminary conclusions were

expected, showing that the Multiple Kernel Learning framework is the one that

better suits that task. However, further experiments with data sets consisting of

higher number of classes need to be done to confirm this preliminary conclusions.

In this application the data was as complex as in the previous case: (D1) ego-

centric, (D2) multimodal and (D3) corrupted. The normalized convex weighting

scheme AVG1 is inherently (M4) adaptable. Its (M1) efficiency, (M2) speed,

(M3) robustness and (M5) reliability depend on the classifiers used. HMM are

slower and less efficient thatn SVMs, but SVMs are not able to learn the temporal

structure of the commands. AVG2 shows that the best method in our set up is

the Multiple Kernel Learning (MKL). The training of such classifier is slightly

slower that training a regular SVM, however this is compensated by far with the

(M3) robustness given by the SVMs, its (M2) efficiency, since we train one clas-

sifier for the two modalities and its (M5) reliability. MKL reported excellent

performance results on audio-visual command recognition with tiny training sets.

Because we used SVMs there is no point on considering the (O1) temporal coher-

ence or (O2) spatial consistency. However, the semantic meaning of the outcome

is indisputable, because the methods provides a label carrying a well-defined con-

tent.

6.4 Multichannel Sound Source Localisation

The last application we worked on is the localisation of sound sources by means

of multichannel time delay estimates using non-coplanar microphone arrays. Re-

verberations and microphone noise are the main issues when addressing the es-

timation of the time delays. Because, in our case, the geometry of the array is

not known beforehand, we cannot include it in the cost function directly. Hence,

we introduced a framework for localising the sound sources from the estima-

tion of the time delays. A multichannel TDE criterion is proposed for arbitrary

microphone arrays, and the TDE problem is cast into a non-linear optimisation
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task GTDE1 . The minimization is carried out by a log-barrier interior-point

local method initialized in a grid GTDE2 . The consequence of the direct path

propagation model are deeply analysed and lead to a set of non-linear equations

constraining the optimisation task GTDE3 . Finally, a global optimisation pro-

cedure - a branch and bound algorithm - is also proposed GTD4 .

While in the other applications the data was (D2) multimodal, inhere we used

only auditory data. However, the data is still (D1) robocentric and (D3) corrupted

by noise and reverberations. Both methods, GTDE2 and GTDE4 , are (M3)

robust, (M4) highly adaptable and (M5) reliable. However, we did not spend

time on developing a smart implementation, Therefore, they are rather (M1) in-

efficient and (M2) slow. The results produced by the proposed method are not

(O1) temporally coherent since they do not track the source. However, they are

(O2) spatially consistent, because they provide for the sound source position and

(O3) semantically meaningful since they guess which regions in the scene carry

auditory content.

6.5 Forthcoming Years

Audio-visual signal processing is a broad research field which has not reached

yet its maturity. This topic feeds and is fed from many other research fields

such as speech recognition, sound source separation, visual recognition, track-

ing, dialogue modelling, social computing and human-robot interaction. Conse-

quently, it is a constantly evolving field. Indeed, the learning tools and signal rep-

resentations used highly depend on the application targeted and even on the data.

Moreover, the small number of existing reviews and their recentness are another

evidence of the field’s youth (see, for instance, [Shivappa 10, Gatica-Perez 09,

Vinciarelli 09]). In my humble opinion, in the forthcoming years researchers

will draw AV signal processing together and outcome conventions and standards

from the deep understanding of the challenges and issues associated to the field.

In addition, the interconnections with other research field will become stronger.

Summarizing, the topic os AV signal processing will start acquiring the maturity

which is lacking of nowadays.

6.6 Final Conclusion

During this PhD we faced real problems by creating adapted models and deriv-

ing their computational answers to the research questions. All the applications

we addressed were in the framework of egocentric audio-visual scene analysis.

Methods were systematically evaluated on synthetic and on real data. It is worth

noticing that all the contents of this thesis have been already published/are under

review in top international conferences and journals.

Moreover, the experience collected by the candidate exceeds the limits of the

contents of that manuscript, as outlined in the introduction. Indeed, the partic-
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ipation in international research projects, teaching, the supervision of Masters

students, paper reviewing and the organisation of workshops in conferences have

also taken place during this PhD, and therefore are part of the acquired experi-

ence. In all, this PhD has been a complete research experience, highly enriching,

that encourages the candidate to pursue his research career starting a new life as

a senior researcher.
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