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ABBREVIATIONS 

A 

APC: Antigen-presenting cell 

B  

BCG: Bacille de Calmette et Guérin 

BCL-2: B-cell lymphoma 2 

C 

CCL: Chemokine (C-C motif) ligand 

CCR: Chemokine (C-C motif) receptor 

CR: Complement receptor 

CTS: Cathepsin 

D 

DC: Dendritic cell 

DC-SIGN: DC-specific intracellular adhesion molecule grabbing non integrin 

DC-STAMP: DC -specific transmembrane protein 

E 

EEA1: Early endosomal antigen 

ER: Endoplasmic reticulum  

ESAT-6: Early secreted antigenic target-6  

F 

FasL: Fas ligand 

FBGC: Foreign body giant cell 

G 

GM-CSF: granulocyte macrophage colony-stimulating factor 

GMIC: giant myeloid inflammatory cell 

H 

HIV: Human immunodeficiency virus 

I 

ICL: isocitrate lyase 



IFN-γ: interferon-gamma 

IL: interleukin 

iNKT: Invariant natural killer T 

iNOS: Inducible nitric oxide synthase  

L 

LAM: Lipoarabinomannan  

LCH: Langerhans cell histiocytosis 

LSP: large sequence polymorphism  

LXA4: lipoxin A4  

M 

M.: Mycobacterium 

ManLAM: Mannosylated lipoarabinomannan 

M-CSF: Macrophage colony-stimulating factor 

MDR-TB: Multidrug-resistant tuberculosis 

MGC: Multinucleated giant cell 

MHC: Major histocompatibility complex  

MMP: Matrix metalloproteinase  

MP: Macrophage 

Mtb: Mycobacterium tuberculosis 

N 

NADPH ox: nicotinamide adenine dinucleotide phosphate-oxidase 

NEMO: NF-κB essential modulator 

NF-κB: nuclear factor-kappa B 

NK: Natural Killer 

NLR: Nucleotide–binding oligomerization domain (NOD)-like receptor 

NO: nitric oxide 

NOD: Nucleotide–binding oligomerization domain  

O 

OC: osteoclast 
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P 

PG: Peptidoglycans  

PGE2: prostaglandin E2  

PI3P: Phosphatidylinositol 3-phosphate 

PIM: Phosphatidyl inositol mannosides  

PMN: polymorphonuclear neutrophil  

PRR: Pathogen receptor recognition 

R 

RANKL: Receptor activator of nuclear factor kappa-B ligand 

RD1: Region of deletion 1 

RNI: Reactive nitrogen intermediates  

ROI: Reactive oxygen intermediates  

T 

TB: Tuberculosis  

TCR: T cell receptor 

TGF-β: Transforming growth factor beta 

Th: T helper lymphocyte 

TLR: Toll-like receptor 

TNF-α: Tumor necrosis factor-alpha 

TRAF: TNF receptor-associated factor 

TRAIL: TNF-related apoptosis-inducing ligand 

TST: Tuberculin skin test  

V 

V-ATPase: Vacuolar ATPase 

W 

WHO: World health organization 

WT: wild-type 

X 

XDR-TB: Extensive drug resistant tuberculosis 
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1 Part I: Immune response to Mycobacteria with focus on Tuberculosis 

 

Mycobacteria belong to the Mycobacterium genus, the single genus within the family of 

Mycobacteriaceae in the Corynebacterineae suborder of the Actinomycetales order. They fall 

into two main groups: slow and fast growers. Slow-growers include several pathogens (strict 

and opportunistic) while most of the fast growers are non-pathogenic Mycobacteria. Among 

strict pathogens, two species, Mycobacterium tuberculosis (Mtb) and Mycobacterium leprae, 

cause two of the world's oldest diseases: tuberculosis (TB) and leprosy, respectively. 

TB is mainly a pulmonary disease characterized by the formation of small inflammatory 

nodules formed by a collection of immune cells in lungs. The formation of these structures 

requires cell recruitment and clustering and is driven by several cytokines and chemokines. 

TB granuloma consists of a myeloid cell core surrounded by T lymphocytes. A cellular 

hallmark of granulomas is the presence of multinucleated giant cells (MGCs) formed by the 

fusion of several myeloid cells. In humans, mechanisms of granuloma and MGC formation 

and their functions are largely unclear. 

Recent data showed that the cytokine IL-17A is involved in the formation of TB 

granulomas in mice. Moreover, our group discovered that this cytokine induces the fusion of 

human myeloid dendritic cells (DCs) into MGCs in vitro. Based on these data, we suggested a 

potential role of IL-17A in the formation of human giant cell-associated granulomas. 

During this thesis, we investigated the molecular mechanisms which regulate the 

survival, clustering and MGC formation in the IL-17A-dependent pathway. We also searched 

if similar mechanisms are involved in the formation and maintenance of granulomas in TB as 

well as in another giant cell-associated granulomatous disease called pulmonary Langerhans 

cell histiocytosis (pLCH). Then, we investigated the phenotype, the immune functions and the 

anti-mycobacterial abilities of the IL-17A-induced MGCs that we called GMICs (giant 

myeloid inflammatory cells). 

To introduce this work in its scientific context, we first present Mycobacteria and their 

characteristics with a focus on TB disease. Then, we describe the innate immune response and 

its main effectors against Mycobacteria and show how pathogenic strains can evade this 

response. Afterwards, we present the adaptive granulomatous response to Mycobacteria and 

we document essential host factors required for granuloma formation and maintenance. 

Finally, we describe the different types of myeloid giant cells with a focus on the IL-17A-

dependent pathway as well as the characteristics and biological functions of IL-17A. 
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1.1 Main species and general characteristics of Mycobacteria 

1.1.1 Main pathogenic and opportunistic Mycobacterium species 

Mycobacterium is a highly diverse genus [1] in which we distinguish the following 

species: 

 
 

-The Mtb complex: this complex is formed by species closely related to Mtb at the genetic 

level, but with distinct host tropisms. Mtb is the main etiologic agent of most cases of TB in 

humans who are reservoir of this pathogen. In addition to Mtb,  Mtb complex contains M. 

bovis, M. africanum, M. microti, M. canettii, M. caprae and M. pinnipedi [2] [3]. M. Bovis 

causes TB in cattle and humans which serve as reservoirs. An attenuated strain of M. Bovis is 

called Bacille de Calmette et Guérin (BCG) and is used as a TB vaccine. M. africanum 

specifically infects humans and is a significant cause of TB in the western countries of Africa. 

M. canettii is a rare strain of the Mtb complex and was isolated from TB patients mostly in the 

horn of Africa. M. microti specifically causes disease in small rodents; M. caprae infects 

goats, while M. pinnipedii primarily affects seals.   

 

-M. leprae: a slow growing intracellular pathogen and the etiologic agent of leprosy, a 

chronic but curable human disease affecting the skin, peripheral nerves, eyes and mucosa of 

the upper respiratory tract. Leprosy is a granulomatous inflammation driven by mycobacterial 

antigens that activate a destructive immune response [4]. Even though its prevalence has 

decreased dramatically, 228 474 new cases of leprosy were detected worldwide in 2010, thus 

indicating active M. leprae transmission. Human beings are the principal reservoir of 

infection. However, the exact mechanism of transmission is not fully clear although the 

aerosol spread of nasal secretions is considered as the predominant transmission mode [4]. 

 

-M. ulcerans:  behind Mtb and M. leprae, M. ulcerans is the third most common 

mycobacterial pathogen of humans. M. ulcerans is a slow-growing pathogen and the causative 

organism of Buruli ulcer disease characterized by devastating necrotic lesions called ulcers 

and resulting in extensive destruction of the skin and soft tissues [5] [6]. Infection by M. 

ulcerans seems to occur in or near stagnant water and slow flowing rivers in humid tropical 

regions [5] [6]. The mode of transmission in humans is unknown, but it was suggested that 

aquatic insects and salt marsh mosquitoes may be involved in transmission [5] [6].  
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-M. avium complex: This complex consists of a heterogeneous group of Mycobacteria 

including, among others, M. avium and M. intracellulare. M avium is further divided into 

various subspecies including M. avium avium and M. avium paratuberculosis. All these 

species are slowly-growing environmental Mycobacteria [7] considered as opportunistic 

microorganisms that mostly induce diseases in immuno-compromised patients. In humans, M. 

avium infection is widely associated with disseminated infections immuno-compromised 

human beings. M. intracellulare is more common among immuno-competent individuals. M 

avium paratuberculosis is a well-known causative agent of paratuberculosis (Johne's disease), 

a chronic granulomatous enteric disease of ruminants. In addition an etiologic link between 

this Mycobacterium and Crohn’s disease in humans was proposed but remains controversial 

and to be proven. 

 

-M. marinum: an environmental/atypical Mycobacterium which was first discovered in salt 

water fish. M. marinum was lately identified as an opportunistic pathogen in humans in whom 

infection may cause localized nodular skin lesions called “swimming pool granuloma” or 

“fish tank granuloma”.  

 

1.1.2 M. tuberculosis consists of six lineages with differential geographic 

distribution 

Traditionally, it was thought that the Mtb complex is a highly homogeneous clonal 

population which displays limited genetic variability [8] [9]. However, recent advances in 

mycobacterial comparative genomics revealed that substantial genetic variation exists at the 

whole-genome level of this complex, suggesting that it is more heterogeneous than 

appreciated initially [10]. Using large sequence polymorphisms (LSPs) genetic markers, 

Gagneux and colleagues found that Mtb consists of six main strain lineages, designated 

Lineage 1 through Lineage 6, two of which were initially designated M. africanum (Fig.1,  

Top) [10]. They can be further divided into “ancient” and “modern” lineages based on the 

presence or absence of a genomic deletion known as TbD1 [11]. Importantly, the six 

identified Mtb strain lineages show biogeographic specificities as they are associated with 

particular geographic regions and human populations (Fig.1, bottom) [10].  
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Figure 1: Global phylogenetic classification and phylogeographic distribution of Mtb. 
Adapted from ref [10]. 
Top: The global population structure of Mtb consists of six main strain lineages (1 to 6). Each 
lineage is symbolized by a colored circle. Numbers in rectangles refer to LSP markers. Pks: 
polyketide synthase gene. (A): Ancient lineage. (M) Modern lineage. 
Bottom: Global phylogeography of Mtb. Colored circles indicate the dominant lineage in 
country.  
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1.1.3 General microbiologic properties of Mycobacteria 

Mycobacteria are thin and long bacilli that measure about 1 to 10 µm. A distinctive 

characteristic of Mycobacterium species is the property of acid-fastness as they resist 

decolorization with a mixture of acid and alcohol due to their specific cell wall composition. 

However, they are routinely stained with the Ziehl-Neelsen colorization, a basic carbofuchsin 

staining method. Mycobacterium slow-growers need prolonged incubation periods. For 

example, Mtb divides every 15–20 hours, which is a particularly slow generation time 

compared to other bacteria. Mycobacterial growth requires selective solid or liquid culture 

media including the commonly used Middlebrook media. Cultures of slow-growing 

Mycobacteria including Mtb require four to eight weeks of incubation to grow on solid media 

while liquid media allow more rapid mycobacterial growth. In vitro-grown Mtb colonies 

appear as small, friable, rough and white to light-yellow colored colonies (Fig. 2) [12].  
 

 
Figure 2: Mtb Colonies on a solid culture medium. Centers for Disease Control and 
Prevention (CDC). 
 

1.1.4 M. tuberculosis activates a specific latent genetic program during hypoxic 

conditions 

In response to environmental stresses such as nutrient deprivation and hypoxia inside 

host cells, Mtb bacilli precede to a dormant state defined as a stable but reversible non-

replicating state [13]. In this dormancy phase, bacilli persist with a reduced metabolic activity 

that facilitates their survival under hypoxic conditions [14]. However, dormant bacilli keep 

their ability to resume growth when conditions become favorable [15]. Mtb ability to 

terminate replication and shut down its own central metabolism renders these bacilli 

extremely resistant to both host defense and drugs [14]. 

Voskuil et al. revealed that hypoxic microenvironment activates a specific genetic 

program leading to latent Mtb survival [16]. They showed that inhibition of respiration by NO 
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(nitric oxide) production and O2 limitation, constrains Mtb replication rates. This non 

replicating state is driven by a 48-gene regulon under the control of a transcription factor 

named DosR [16]. DosR adapts the organism for survival during prolonged periods of in vitro 

dormancy. It is also required for maintaining energy levels and redox balance for Mtb survival 

during anaerobic dormancy and ensures rapid Mtb recovery and optimal transition from an 

anaerobic or nitric oxide-induced nonrespiring state to aerobic growth [17].  

1.1.5 Intracellular growth of dormant M. tuberculosis bacilli relies on lipid 

catabolism 

Several lines of evidence indicate that, in hypoxic conditions, Mycobacteria switch to 

lipid catabolism to ensure their survival. Genomic studies and transcriptomic analysis of 

entirely sequenced Mtb genome show that this bacillus displays a wide range of diverse 

lipophilic molecules involved in lipogenesis and lipolysis [18]. For example, there are 250 

distinct enzymes related to fatty acid metabolism in Mtb compared with only 50 in 

Escherichia coli [18]. Among them, several enzymes could catalyze the first step in fatty acid 

degradation providing thus different metabolites and fuel for the bacteria [18]. Functional 

studies of some of these enzymes have revealed that they play an important role in the 

persistence of Mtb in their hosts. For example, isocitrate lyase (ICL), an enzyme induced by 

oxygen limitation and essential for the metabolism of fatty acids, has been reported as 

required for persistence and virulence of Mtb [19]. ICL is a key component of the glyoxylate 

shunt, by which microorganisms bypass the tricarboxylic acid cycle to incorporate carbon 

from acetate and fatty acids into carbohydrates. ICL regulates Mtb long-term survival in the 

murine lung while its deletion attenuates Mtb virulence as ICL-deficient mutant survived in 

resting but not in activated macrophages (MPs) contrary to the Wild-type (WT) strain [19]. 

Mtb persists in a non-replicating state inside adipocytes and accumulates lipid droplets 

inside these cells [20]. This suggests that the adipose tissue might constitute one important 

cellular reservoir in which Mtb could persist in a dormancy-like state. Consistent with these 

findings are data showing that Mtb metabolize host-derived cholesterol and that disruption of  

the mce4 gene, encoding a cholesterol transporter, results in the failure of Mtb to maintain 

chronic infection in mice [21]. A recent report showed also that Mtb residing within the 

phagosomes of hypoxic human MPs utilizes, accumulates and stores host triacylglycerol in 

the form of intracellular lipid droplets [22]. In these conditions, Mtb replication is severely 

inhibited and bacilli acquire a dormancy-like phenotype [22]. In mice, BCG infection induces 

time- and dose-dependent lipid body formation in infected MPs [23]. More recently, a study 
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revealed that Mtb, namely through its oxygenated mycolic acids, triggered the differentiation 

of human MPs into lipid laden foamy cells in which Mycobacteria switched to dormant non-

replicative bacilli and accumulate host cell lipids [24].  

Taken together, these data suggest that, during dormancy, Mtb intracellular growth relies on 

the lipid catabolism as the main carbon source. This ensures not only survival in hypoxic 

conditions, but also its adaptation to carbohydrate starvation. 

1.1.6 Mycobacteria are characterized by an unusual cell wall structure  

Mycobacteria have a specific cell wall structure which distinguishes species of the 

Mycobacterium genus from other prokaryotes [25]. this unusual cell wall structure is 

responsible of the acid fastness property of Mycobacteria and is related to mycobacterial 

resistance to drying, alkali, many chemical disinfectants and therapeutic agents [26]. It 

consists of three major parts: the plasma membrane, the cell wall core and the capsule-like 

outermost layer (Fig. 3) [25]. The cell wall core is close to the plasma membrane and consists 

of a mycolyl-arabinogalactane-peptidoglycan (mAGP) complex. This core unit is an insoluble 

complex formed by peptidoglycans (PG) covalently attached to arabinogalactans (AG) which 

in turn covalently bound mycolic acids [25] [27]. These latter, for which the Mycobacteria are 

named, constitute ~ 60% of the bacillus total weight. They are very long chain (C60-90) α-

branched, β -hydroxy fatty acids and are considered as the most distinctive feature of the 

mycobacterial cell wall.  

The capsule-like outermost layer of the cell wall is composed of a variety of free 

lipids, lipoglycans, and proteins including porins (pore-forming proteins) [25]. Lipoglycans, 

including lipoarabinomannan (LAM) and phosphatidylinositol mannosides (PIMs), are 

prevalent components of the mycobacterial cell wall. In contrast to the insoluble cell wall 

core, free lipids, proteins, LAM and PIMs are solubilized and form signaling, 

immunologically active effector molecules which play important biological functions in the 

pathogenesis of Mtb [25] [27]. 
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Figure 3: Schematic representation of the unique wax-rich cell wall of Mycobacteria. 
Adapted from ref [28].  
Close to the plasma membrane is the (mAGP) complex. It forms the core unit of the 
mycobacterial cell wall and consists of PG connected to AG which are covalently linked to 
mycolic acids. The upper segment is the capsule-like outermost layer which includes a variety 
of free lipids. The mycobacterial cell wall contains many signaling and effector molecules 
including LAM and PIM which support mycobacterial survival and virulence. Porins cross 
the cell wall to allow molecule diffusion into Mycobacteria. 
 

1.2 Tuberculosis disease 

1.2.1 The natural history of tuberculosis 

In 1882, the German scientist Robert Koch identified Mtb as the etiologic agent of 

human TB disease. In 1998, the complete genome sequence of the well characterized H37Rv 

strain of Mtb was determined. It comprises 4,411,529 base pairs, contains approximately 4047 

predicted genes, and has a very high guanine + cytosine (G+C) content [18]. Although Mtb 

was identified more than 130 years ago, it remains currently one of the most pernicious of 

human pathogens, and TB disease is more prevalent in the world today than at any other time 

in human history. In 2010, the world health organization (WHO) reported an annual burden of 

~ 8.8 million cases of disease resulting in ~1.4 million deaths which mostly occurs in poor 

world countries [29]. 

Mtb infection occurs by an efficient person-to-person transmission mode and the main 

infection route is the respiratory tract (Fig. 4). Bacilli are transmitted via airborne droplets 
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expelled into the atmosphere by patients with active pulmonary TB most commonly during 

coughing or sneezing. These droplets can be later inhaled by healthy individuals in who they 

proceed distally to the lung where Mtb can induce the infection. However, exposure to Mtb 

bacilli results in a wide spectrum of outcomes. It is estimated that only 30% of exposed 

individuals get infected [30]. This suggests that innate immune responses in exposed but not 

infected persons may rapidly clear the inhaled bacilli, although this has not been formally 

proven. Among infected individuals, a minority (around 10% - most commonly infants or 

children of young age) progress to primary active TB disease with clinical symptoms within 

1-2 years following infection. In contrast, the majority (90%) of infected individuals remains 

asymptomatic and free of tissue damage. However, they carry viable but dormant bacilli 

which can persist for decades, thereby developing latent TB infection [14] [30] [31]. 

Individuals with latent TB don’t transmit Mtb bacilli to other persons but are the largest 

reservoir for potential subsequent transmission [30]. They show an equilibrium state in which 

they develop an effective acquired immune response that controls but not entirely eradicate 

Mtb bacilli. Unfortunately, they have a subsequent 10% risk of reactivation and development 

of post-primary (secondary) TB throughout their life time [30] [31].  

TB is a multifactorial disorder: in addition to pathogen, several environmental and 

host risk factors are associated with Mtb reactivation and disease development. The most 

potent risk factor is HIV  but other factors including anti-TNF therapy, host genetic factors, 

malnutrition, smoking, alcohol and bad life conditions are also involved in this process [31] 

[32]. TB is mainly a pulmonary disease: in 85% of immuno-competent infected individuals 

disease preferentially occur in lungs [33]. However, Mtb can also spread to any part of the 

body and TB can develop in different organs resulting in extrapulmonary TB [34]. 

extrapulmonary TB develop most commonly in lymph nodes (tuberculous Lymphadenitis), 

pleura, bones and joints (with a form affecting the spine, called Pott’s disease) and central 

nervous system (the most common presentation is tuberculous meningitis affecting meninges) 

[34]. Other sites include pericardium (tuberculous pericarditis), the gastrointestinal and 

genitourinary tracts [34]. 
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Figure 4: Natural history and outcome spectrum of TB. 

TB is a contagious disease caused by Mtb infection. Bacilli are acquired by the inhalation of 
airborne droplets containing Mtb. Infection occurs in ~30% of exposed individuals. Only 
~10% of infected individuals develop active disease: ~5% at primoinfection and ~5% 
following reactivation after latent infection. TB disease mainly affects lungs, but can also 
develop in other organs (extrapulmonary TB). If treated, the majority of patients with drug-
susceptible-TB are cured while a high mortality occurs in untreated patients. Several risk 
factors increase the risk of TB development (orange box). Smokers, alcoholics and 
individuals having weak immune systems, genetic impairment, unfavorable living conditions 
or compromised by some diseases, malnutrition, or medical intervention show a higher risk of 
Mtb reactivation and TB development.  

 

1.2.2 M. tuberculosis and HIV: dangerous liaison for a lethal combination 

HIV-infected persons are more likely to develop active TB, and clinical studies 

suggest that HIV leads to an increased risk of developing TB shortly after HIV infection. 

Moreover, while healthy persons are mostly resistant to M. avium complex infections, patients 

with AIDS (acquired immunodeficiency syndrome) are susceptible to M. avium complex and 

develop disseminated disease upon infection with these opportunistic species. Progression to 

active TB can in turn increase HIV replication and accelerate the progression to AIDS [35]. 

Additionally, while TB is restricted to the lungs in most cases, Mtb/HIV co-infected persons 
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easily develop systemic and more quickly lethal TB [36]. Indeed, HIV+ TB, opposed to HIV- 

TB patients, include a higher proportion of cases with extra-pulmonary or disseminated 

disease involving multiple organs. Referring to WHO, people immuno-compromised by HIV 

and infected with Mtb are up to 20-37 times more likely to develop active TB in their life-

time than people who are HIV–. Recent WHO report revealed that in the 8.8 million new 

persons infected with Mtb in 2010, 12.5% were co-infected by HIV [29]. In addition, of the 

1.4 million people who died of TB in 2010, 25% were co-infected by HIV [29]. Both diseases 

are associated to poverty and unfavorable low-social life conditions and their highest 

prevalence are found in the same regions of the world (Fig. 5).  

 

HIV infects CD4+ cells which are not only T cells, but also alveolar MPs, the primary 

target of Mtb [37] [38]. HIV and Mtb can therefore share the same host cell. Several studies 

showed that these two pathogens potentiate one another to increase and exacerbates its risk. 

Several hypotheses were proposed to explain how this occurs and a recent paper summarizes 

these hypotheses in four main points: (i) HIV replication is increased at sites of Mtb infection, 

leading to increased pathology, (ii) HIV induces primary or reactivated TB through killing of 

CD4+ T cells (mandatory for TB control), (iii) HIV manipulation of MP function prevents 

Mtb killing, and (iv) HIV induces functional changes in Mtb-specific T cells that decrease 

their ability to contain Mtb [39].  

 

Overall, Mtb-induced TB and HIV-induced AIDS form together a lethal combination 

in which each speeding the other's progress. 
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Figure 5 : Estimations of: TB incidence rates in 2010 (top), HIV prevalence rate in individuals aged 
15-49 in 2009 (middle) and HIV prevalence in new TB cases in 2010 (bottom). Note that both 
diseases are highly prevalent in the same countries of the World. 
Sources: Top and bottom: WHO report, global tuberculosis control, 2011. Middle: UNAIDS, report on 
the global AIDS epidemic, 2010. 
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1.2.3 Tuberculosis histopathology 

Typically, Mtb infection induces a specific type of inflammation characterized by the 

formation of granulomas, small focal inflammatory nodules formed by a collection of 

immune cells. In humans, TB granulomas are highly organized with specific architectural 

structures forming an interface between bacteria, host immune response and host tissues (See 

1.4.1). 

Many of TB granulomas persist as solid structures showing an equilibrium state which 

is generally successful in containing, although not eliminating, Mtb bacilli. However, 

granuloma can proceed either to localized sterilization of the infection and mineralization of 

the lesion or to localized central necrosis [40]. Necrosis induces the extracellular release of 

Mtb bacilli and results in characteristic necrotic centers called caseum, essentially formed by 

host cell debris. Granulomas with caseating material are known as caseous granulomas and 

their development characterize the progression toward disease [41].  Caseating material 

greatly supports the extracellular growth and replication of Mtb. It has a yellow-white color 

with an initial solid cheesy texture. In advanced stages, it liquefies and cavitates the lung 

causing ruptures into the lung airway and release of infectious Mtb bacilli. In patients with 

active TB, all granuloma forms (solid, necrotic and caseous) can coexist.  

1.2.4 Tuberculosis symptoms and diagnosis  

(Fig. 6, left) 

TB patients may show several symptoms which are often vague and non specific 

including persistent cough (pulmonary TB), anorexia, weight loss, chest pain, hemoptysis, 

and night sweats. In extra-pulmonary TB, symptoms can vary according to the affected 

organ(s). However, symptoms might be absent in some TB patients especially in the early 

stages of disease [32].  

Most common tests used for TB diagnosis include cultures, sputum smear microscopy, 

nucleic acid amplification tests, radiology, the tuberculin skin test (TST) and IFN-γ release 

assays (IGRAs) [42]. In contrast to other methods which detect active TB cases, TST and 

IGRAs are used for the immuno-diagnosis of latent TB by identifying the existence of an 

adaptive immune response to mycobacterial antigens [42]. 

TB can be difficult to diagnose, especially in children, HIV-infected individuals and 

patients developing extrapulmonary forms [32]. Moreover, different diagnostic tests cited 

above provide information only on the state of the disease in a precise single time point 

(active or latent TB). Therefore, a major obstacle to TB control is the lack of reliable 
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biomarkers for different stages of infection [43]. Such biomarkers are needed to help to diag-

nose TB, to provide correlates of risk of TB and correlates of protection against active 

disease, and to determine the response to therapy [44]. Moreover, TB biomarkers may also 

accelerate screening and early selection of potential TB drug and vaccine candidates [43]. 

Figure 6: Current situation, obstacles and challenges in TB diagnosis, treatment and vaccination 
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1.2.5 Tuberculosis treatment  

(Fig. 6, middle) 

TB is considered as a treatable disease provided that a full course of anti-tubercular 

drugs is regularly taken. However, treatments of TB are very long, difficult, expensive, 

complex and have a risk of toxic side effects. Essential anti-TB drugs, discovered in 50’s and 

60’s, are isoniazid (INH), ethambutol (EMB), rifampicin (RIF), and pyrazinamide (PZA). 

Isoniazid and ethambutol interfere with the biosynthesis of the mycobacterial cell wall by 

targeting mycolic acids and arabinogalactan, respectively. Rifampicin is an inhibitor of 

transcription which blocks the synthesis of Mtb messenger RNA by inhibiting bacterial RNA 

polymerase. Pyrazinamide is a prodrug converted by bacterial pyrazinamidase into its active 

form: the pyrazinoic acid. Recently, Shi et al. found that pyrazinoic acid binds to the 

ribosomal protein S1 (RpsA) in the ribonucleoprotein complex realizing trans-translation, a 

key process that ensures high fidelity protein translation. Following error detection, this 

complex releases ribosomes (scarce in dormant bacteria), while tagging abnormal bacterial 

proteins for their downstream degradation. Inhibition of trans-translation control by 

pyrazinoic acid may thus explain the ability of this drug to eradicate persisting Mtb bacilli 

[45]. These cited four standard anti-TB drugs form the first-line treatment of TB. In drug-

sensitive TB patients, treatment involves a combination regimen with an initial phase with all 

four drugs for the first two months followed by a continuation phase of four months of 

isoniazid and rifampicin [46] [47] [48]. Such combination is efficacious and up to 95% of 

people with drug-sensitive TB can be cured in six months with this four-drug regimen [48]. 

However, several problems may occur including interactions between different TB drugs and 

interference with the efficacy of HIV-1 antiretrovirals in Mtb/HIV-1 co-infected individuals 

[46]. Moreover, Zhang et al. showed that the standard four-drug therapy results in drug 

resistance in immune-deficient mice [49]. This may present serious implications for the 

treatment of immuno-compromised individuals such as those with AIDS [46]. 

Misuse of anti-TB drugs and/or lack of adherence to the treatment regimen allow the 

emergence of drug resistant Mtb strains such as MDR-TB (multidrug-resistant TB) and lately 

XDR-TB (extensive drug resistant TB). Drug resistant TB treatment requires second-line 

drugs and is longer, more expensive and more complex than the standard first line with higher 

toxic side effects. Both MDR-TB and XDR-TB patients can be cured with this second line of 

treatment, but the likelihood of success of XDR-TB is much smaller than in patients with 

MDR-TB. Unfortunately, recent last years witnessed the development of strains that are 

resistant to all anti-TB drugs (totally drug-resistant TB) as reported in Italy, Iran  South Africa  
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and more recently in India [50]. Currently, a pipeline for new anti-TB drugs is advancing with 

several candidates under clinical investigation [29]. Development and validation of new anti-

TB drugs may result in shorter and more effective treatments not only in drug-susceptible but 

also drug-resistant TB patients. For example, a very recent clinical trial reports positive 

results for one of these new drugs, delamanid, in people with MDR-TB [51]. Delamanid, also 

termed OPC-67683 is an inhibitor of mycolic acid synthesis. 

1.2.6 Tuberculosis vaccination: current challenges and future strategies  

1.2.6.1 Bacille de Calmette et Guérin : success and limitations  

(Fig. 6, right) 

Currently, BCG is the only available vaccine against TB. This vaccine is a live 

attenuated strain of M. bovis which has lost its virulence, but not antigenicity, by continual 

passaging in artificial media for years. It was first administered to humans in 1921 in France. 

Dissemination of the BCG vaccine over many years and geographic regions has led to the 

derivation of multiple sub-strains.  

The attenuation of BCG compared to Mtb or M. bovis may be explained by genetic 

deletions. Behr et al. showed that 11 regions (encompassing 91 open reading frames) of Mtb 

H37Rv were absent from one or more M. bovis strains and that in addition to these deletions, 

BCG isolates uniformly lack one region and are polymorphic for four other deletions [52]. An 

important differentially expressed region identified by comparative genomic analyses is a 9.5-

kb DNA region called region of deletion 1 (RD1). RD1 is present in virulent Mtb and M. 

bovis strains but is deleted in all attenuated BCG vaccine strains suggesting that its deletion 

was an original attenuating mutation which arose in the derivation of BCG [52] [53]. Deletion 

of RD1 region from Mtb results in attenuation similar to BCG [54]. RD1 encodes components 

of the mycobacterial ESX-1 specialized protein secretion system. This latter, is responsible 

for the secretion of two proteins ESAT-6 (early secreted antigenic target-6) and CFP-10 

(culture filtrate protein-10) which are important immuno-dominant Mtb antigens which elicit 

potent immune responses. 

BCG vaccination consists of a single intradermal dose delivered soon after birth. 

Important characteristics of BCG are its protective effect, low cost and high safety. BCG 

confers consistent protection against severe forms of childhood TB including TB meningitis 

and disseminated TB. Unfortunately, BCG is not able to prevent the establishment of 

persistent latent TB, and fails to afford protection against the predominant adolescent and 

adult pulmonary form of TB which accounts for the major burden of global TB mortality and 
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morbidity worldwide. Different trials showed that BCG has a protective efficacy of between 0 

and 80% against pulmonary TB [55]. BCG vaccine may also present additional 

complications. For example, HIV-infected infants have a higher risk of disseminated BCG 

disease compared to their uninfected counterparts [56], and HIV infection in infants severely 

impairs the BCG-induced immune response [57]. BCG may be therefore unsafe and provide 

little, if any, vaccine-induced benefit in HIV-infected infants. Consequently, BCG vaccination 

in HIV-infected infants is no longer recommended by WHO.  

1.2.6.2 New candidates and strategies for tuberculosis vaccination 

Regarding BCG limitations and its safety issues in infants with HIV infection, more 

effective and safer TB vaccines are urgently needed. 15 candidates are currently evaluating in 

clinical trials (Table I). Most of them aim to over-express immunodominant Mtb antigens in 

(i) attenuated Mycobacteria (e.g. recombinant BCG), (ii) live, non-replicating viral vectors or 

(iii) protein/adjuvant formulations [58] [59] [60]. Some of these vaccines (e.g. 

rBCGΔureC:Hly)  aim to induce a broad immune response which includes not only CD4+ but 

also CD8+  T cell activation. This occurs by the expression of a protein which facilitates the 

passage of mycobacterial antigens to the cell cytosol, thereby inducing cross-priming (class I 

antigen presentation).  Other vaccines (e.g. Hybrid 56-IC31) express antigens of the 

dormancy phase of Mtb and may thus protect against reactivation of this pathogen. Other TB 

vaccination strategies rely on the use of detoxified and fragmented Mtb bacilli or atypical 

Mycobacteria (e.g. M. vaccae) which provide cross-reactive antigens (shared with Mtb) [58].  

Additional vaccine candidates in preclinical trials are based on live attenuated Mtb 

strains lacking virulence genes. Examples include MTBVAC01 and MtbΔRD1ΔpanCD. 

MTBVAC01 vaccine is based on attenuation of Mtb by inactivation of phoP (a virulent 

transcription factor) and fadD26 (required for the biosynthesis of phthiocerol 

dimycocerosates) genes [61]. MtbΔRD1ΔpanCD strain lacks RD1 region and has two 

mutated genes, panC and panD, required for the synthesis of pantothenate, essential for Mtb 

virulence [62]. Finally a recent report highlights a new vaccine candidate termed IKEPLUS 

based on the fast grower M. smegmatis strain in which the esx-3 locus encoding for a 

secretion system was replaced with that of Mtb [63].  
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Vaccine Status Description 

Recombinant live vaccines 

rBCG30 Phase I 
(completed) rBCG expressing the 30 kDa Mtb Antigen 85B 

rBCGΔureC:Hly 
(VPM1002) 

Phase II 
rBCG expressing the lysterial protein listeriolysin (to perforate the 
phagosomal membrane) and carries a urease deletion (to ensure an 

acidic pH required for listeriolysin activity in phagosomes) 

Aeras-422 Phase I rBCG expressing perfringolysin and Ag85A, 85B and Rv3407 

Subunit and live vector-based vaccines 

Fusion proteins 

M72 Phase II 
Recombinant fusion of Mtb antigens Rv1196 and Rv0125 and 

adjuvant AS01 or AS02 

Hybrid1-IC31 Phase II Recombinant fusion of Ag85B-ESAT-6 in IC31 adjuvant 

Hybrid 1-CAF01 Phase I Recombinant fusion of Ag85B-ESAT-6 in CAF01 adjuvant 

HyVac4/Aeras-404-
IC31 

Phase I Recombinant fusion of Ag85B-TB10.4 in IC31 adjuvant 

Hybrid 56-IC31 Phase I 
Fusion of Ag85B, ESAT-6, and the dormancy antigen Rv2660 in 

IC31 adjuvant 

Viral vectors-based vaccines 

MVA85A Phase IIb Modified vaccinia Ankara vector expressing Mtb Ag85A 

AERAS 402 Phase IIb 
Replication-deficient adenovirus 35 vector expressing Mtb antigens 

85A, 85B and TB10.4 

AdAg85A Phase I Replication-deficient adenovirus 5 vector expressing Mtb Ag85A 

Inactivated whole-cell mycobacterial vaccines 

M. vaccae Phase III 
(completed) Heat-Inactivated M. vaccae 

(M. indicuspranii) Phase III Whole cell saprophytic Mycobacterium 

M. smegmatis Phase I 
(completed) Whole cell extract 

RUTI Phase II Detoxified and fragmented Mtb in liposomes 

 

Table I: New TB vaccine candidates in clinical trials currently. Adapted from: 

Tuberculosis vaccine candidates-2011 (Stop TB Partnership Working Group on New TB Vaccines) 

http://www.tbvi.eu/fileadmin/user_upload/Documenten/News/TB_Vaccine_Pipeline_2011.pdf 

http://www.tbvi.eu/fileadmin/user_upload/Documenten/News/TB_Vaccine_Pipeline_2011.pdf�
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 Future vaccination strategies must follow two different approaches: pre-exposure and 

post-exposure vaccination [58] [64] (Fig.7). The former aims at prevent disease in uninfected-

individuals while the second intend to inhibit disease reactivation in latent infected-

individuals. Moreover, some emerged vaccines (e.g. detoxified and fragmented Mtb bacilli or 

atypical Mycobacteria) may be used as therapeutic vaccines for application after disease 

development [59] [64] . Pre-exposure vaccines will most likely prevent TB disease, without 

achieving sterile eradication of Mtb bacilli [59] [64]. They contain either recombinant live 

mycobacterial vaccines such as genetically modified BCG which aim to replace the current 

BCG or subunit and live vector-based vaccines consisting of recombinant Mtb derived-

antigens. Importantly, Pre-exposure TB vaccine development is currently focused on the 

consecutive use of these two types in a so-called “heterologous prime-boost strategy” which 

combine both formulations. In this strategy, newborns are “primed” with BCG or 

recombinant/genetically modified BCG and then “boosted” with subunit vaccines delivered in 

a different way, hence “heterologous” [65]. 

 

 

Figure 7: A global view of future TB vaccination strategies. Adapted from ref [60]. 
Soon after birth, BCG or BCG replacement vaccine (e.g. rBCG) will be given then boosted by 
viral vectors or protein/adjuvant formulations. Upon infection, latent infected-individuals 
must be vaccinated with post-exposure vaccines in which it might be an advantage to include 
dormancy antigens. In persons who develop active TB, inactivated whole-cell mycobacterial 
vaccines can be used as immuno-therapeutics along with anti-TB drugs.  
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1.3 Innate response can be not sufficient against M. tuberculosis 

After inhalation, infectious Mycobacteria are recognized by several host innate receptors 

known as pattern recognition receptors (PRRs). PRRs are expressed in phagocytes including 

MPs, DCs and polymorphonuclear neutrophils (PMNs), but also in non immune cells (e.g. 

lung epithelial cells) which can be also infected. Here we focused on mycobacterial 

interaction with phagocyte PRRs. 

1.3.1 Host innate receptors involved in mycobacterial recognition. 

Specific receptors involved in Mycobacterium recognition include TLRs (Toll-like receptors), 

C-type lectin receptors, NLRs (nucleotide–binding oligomerization domain (NOD)-like 

receptors),  CRs (complement receptors), SRs (scavenger receptors) and other receptors such 

as FcγR (Fc receptor γ chain) and CD14 [66] [67] [68] [69]. This diversity of PRRs involved 

in mycobacterial infections may be explained by the complexity of the mycobacterial cell 

wall. 

This panel of PRRs interacts with both opsonized and non opsonized Mycobacteria and some 

of these interactions regulate bacterial internalization into phagocytes. For example, Bacilli 

opsonized with complement molecules is internalized  via the complement receptor 3 (CR3) 

[70] while IgG-opsonized Mycobacteria may be internalized through the FcγR (Fc receptor γ 

chain) [71]. Other receptors such as the mannose receptor (MR) mediate direct uptake of non 

opsonized Mycobacteria after a direct interaction with their cognate mycobacterial ligands 

expressed essentially in the cell wall. Receptors of the TLR family are considered as signaling 

receptors rather than phagocytic receptors and are essentially involved in the modulation of 

the immune response through the induction of signaling cascades. Several TLR receptors 

including TLR2, TLR4 and TLR9 were involved in the recognition of mycobacterial ligands. 

However, whether TLRs are host protective in mycobacterial infection in vivo remains 

unresolved [72]. 

Mtb infects MPs and DCs by using different receptors of these cells. While CR3 and MR are 

the main Mtb receptors on MPs, this pathogen infects DCs essentially via ligation of the C-

type lectin receptor DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3 

grabbing nonintegrin) [73]. DC-SIGN was found expressed in freshly isolated human lung 

DCs. Importantly, mycobacterial antigens were detected within DC-SIGN-expressing cells, 

possibly DCs, within the lymph nodes of TB patients, suggesting that Mtb effectively 

interacts with DC-SIGN in vivo during TB [73]. Additional studies showed that DC-SIGN is 
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also induced in alveolar MPs of TB patients and constitutes an important receptor for the 

bacillus in these cells [74]. DC-SIGN interact with mannose-containing motifs of several 

mycobacterial ligands including ManLAM and α-glucan [75] [73].  Internalized Mycobacteria 

and their derived-components can also interact with endosomal receptors such as TLR9 and 

cytosolic receptors such as the NLR family member NOD2. TLR9 may recognize CpG motifs 

from mycobacterial DNA [76] while NOD2 senses muramyl dipeptide, a component of 

bacterial peptidoglycan [77]. 

1.3.2 Mycobacterium-receptor interactions determine infection outcomes 

The signaling pathways activated by innate receptors direct host responses and 

cytokine secretion, thereby dictating the outcome of infection. Although recognition of Mtb 

may be beneficial for the host in that it activates innate immune responses, it may also allow 

mycobacterial persistence and development within host phagocytes. Indeed, while receptors 

such as TLRs may elicit pro-inflammatory signals, others such as the mannose receptor 

repress inflammatory signals and may thus contribute to bacterial persistence [67]. Early 

studies suggested that DC-SIGN might enable Mtb to escape the immune system [78]. 

However, recent in vivo findings in the murine model suggest that this receptor 

mediates protection against Mtb, possibly through the secretion of pro-inflammatory 

cytokines including tumor necrosis factor (TNF) [79]. 
 

1.3.3 Mycobacteria resist phagocytosis-induced destruction 

Phagocytosis of a pathogen results normally in its destruction and clearance. However, 

Mtb has developed several strategies to escape phagocytosis-mediated destruction. 

1.3.3.1 Phagosome maturation  
Phagocytosis is the cellular engulfment of large particles (≥ 0.5 μm in diameter) into a 

phagosome, generated from the cell plasma membrane [80]. The phagosome undergoes then 

sequential fusion and fission events with components of the endocytic pathway. This process, 

known as phagosome maturation, leads to the modification of the composition of the 

phagosomal membrane and contents [80]. During maturation, phagosome progress in three 

essential stages: early phagosome, late phagosome and the phagolysosome (Fig. 8).  

Nascent phagosome interacts firstly with early endosome to form an early phagosome 

expressing Rab5, a member of the Rab GTPases (guanosine triphosphate phosphohydrolase). 

Rab5 recruits additional effectors such as VPS34 and EEA1 (early endosomal antigen). 

VPS34 is a kinase which catalyzes the generation of phosphatidylinositol 3-phosphate (PI3P) 
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on endosomal membranes [81]. PI3P promotes proper membrane trafficking events within the 

endosomal system and ablation of VPS34 kinase activity dramatically impairs phagosome 

maturation [81]. Phagocytosis is accompanied by the increase in cytosolic Ca2+ required to the 

activation of VPS34 and subsequent PI3P production [82]. This occurs through the Ca2+-

binding protein calmodulin which associates with various effector proteins including CaMKII 

(Ca2+/calmodulin kinase II). EEA1, which promotes the fusion of cellular organells [83] is 

recruited to endosomal membranes by both Rab5 and PI3P [84]. 

Early phagosome progresses to a more mature stage leading to the formation of late 

phagosome. These organelles interact with late endosomes and are characterized by the 

acquisition of distinct markers including lysosomal-associated membrane proteins (LAMPs) 1 

and 2, the small GTPase Rab7 and the Rab7-interacting lysosomal protein (RILP), which 

replace the early phagosomal markers such as Rab5 [80].  

The terminal step of phagosome maturation is the biogenesis of the phagolysosome, 

formed as a result of the fusion of late phagosome with lysosomes.  phagolysosomes showed 

a  highly acidic and oxidative milieu and contain destructive lysosomal enzymes necessary for 

target degradation [80]. 
 

 
Figure 8: Essential steps of phagosome maturation and phagolysosome formation.  
Each step is characterized by specific membrane markers. Accumulation of V-ATPases 
gradually acidifies phagosomal organelles. Within phagolysosomes, low pH, cathepsins, 
hydrolases, ROI and RNI induce collectively pathogen degradation and destruction. 
 

1.3.3.2 Acidification and microbicidal properties of phagolysosomes 

phagosome maturation is associated with a gradual acidification of these organelles due to 

delivery of H+ protons into the phagosomal lumen via the multi subunit protein-pump 

complex vacuolar ATPase (V-ATPase) (Fig. 8). The acidic milieu promotes phagosomal 
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destructive properties by restricting microbial growth and activating proteolytic enzymes such 

as cathepsins. Moreover, mature phagosomes produce reactive oxygen and nitrogen 

intermediates  (ROI and RNI) which play important roles in phatogen destruction [80]. ROI 

are produced by the NADPH oxidase (nicotinamide adenine dinucleotide phosphate oxidase) 

enzyme. NADPH oxidase is composed of a membrane-bound catalytic core comprised of 

gp91phox/NOX2 and p22phox , and four cytosolic proteins (p40phox , p47phox , p67phox and Rac2) 

[85]. In unstimulated cells this complex is unassembled. However, once phagocytes are 

activated, cytosolic proteins translocate and associate with the catalytic core resulting in a 

fully functional enzyme which catalyzes the formation of superoxide anions (O2
-). Then O2

- 

dismutates H2O into hydrogen peroxide (H2O2), a reactive component that generates toxic 

hydroxyl radicals (ROI). RNI production requires iNOS (inducible nitric oxide synthase) 

which generate nitric oxide (NO), a toxic product per se, which can also react with ROI to 

form additional toxic RNI. ROI and RNI act in synergy to damage vital microbial molecules 

and impair bacterial growth [86].  

Overall, phagosomes undergo maturation and acidification to convert into potent 

microbicidal organelles central to pathogen clearance and host protective responses.  

1.3.3.3 M. tuberculosis blocks phagosome maturation and acidification 

Mtb exploits phagocytosis through a variety of effector molecules which alter 

phagosome maturation and ensure bacterial persistence  (Fig. 9) and (Table II) [87]. Mtb-

carrying phagosome expresses the early Rab5 but not the late Rab7 phagosomal marker 

suggesting that it is arrested at the early stage of maturation [88]. The recruitment of Rab5 

effectors, EEA1 and VPS34 to the mycobacterial phagosomes is also greatly impaired  [89]. 

Consequently, VPS34-dependent PI3P generation and accumulation are reduced. A recent 

report showed that the mycobacterial nucleoside diphosphate kinase (Ndk) inhibits 

phagosome maturation through the inactivation of both Rab5 and Rab7 and the inhibition of 

the recruitment of their respective effectors EEA1 and RILP [90].  

Mycobacterial LAM inhibits the activity of VPS34 which generates PI3P most likely 

by preventing the increase in Ca2+ fluxes and by interfering with the Ca2+/calmodulin/CaMKII 

pathway within the infected cells [82].  Another mycobacterial product called SapM (secreted 

acid phosphatase of Mtb) dephosphorylates and removes PI3P from the phagosome, thus 

inhibiting fusion with late endosomes/lysosomes [91]. By preventing PI3P accumulation on 

the phagosomal membrane, LAM and SapM also alter the PI3P-dependent recruitment of 

EEA1 which is strengthened by its binding to PI3P [89] [84].  
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Mtb possesses the protein tyrosine phosphatase (PtpA) which interferes with host 

trafficking processes by dephosphorylating VPS33B (vacuolar protein sorting 33B), a 

regulator of membrane fusion [92]. PtpA is also involved in the blockage of phagosome 

acidification by binding to subunit H of V-ATPases, thus excluding these proton pumps from 

the phagosome during infection [93]. 

Mycobacterial lipoamide dehydrogenase C (LpdC) interacts with a host actin-binding 

protein called coronin-1 /TACO [94]. In normal conditions, coronin-1 associates transiently 

with normal phagosomes. Strikingly, it remains retained by Mycobacterial phagosomes, and 

this prevents phagosome maturation and cargo delivery to lysosomes [95]. It was proposed 

that Coronin-1 retention on phagosomes activates the Ca2+-dependent phosphatase 

calcineurin, which blocks phagosome-lysosome fusion [96]. Retention of coronin-1 by 

mycobacterium containing phagosome was identified in murine MPs. However, a report 

showed that this is not the case in human MPs and authors suggest that other proteins or lipids 

are responsible for the block in phagosome maturation in these cells [97]. 

Mtb also uses a secreted serine/threonine protein kinase G (PknG) to mediate 

phagosome maturation inhibition. In MPs, PknG is secreted within phagosomes, accesses the 

cytosol and inhibit phagosome-lysosome fusion [98]. The mechanism of cytosolic 

translocation of PknG and its precise action on host trafficking machinery are unclear. 

However, it was proposed that PknG may act through the phosphorylation of an unknown 

host protein thereby preventing its activity in carrying out phagosome-lysosome fusion [96].  

In addition to studies that identify individual bacterial components which block 

phagosome maturation and acidification, other studies used various genome-wide approaches 

to identify mycobacterial virulence factors involved in this blockade process. Such studies 

mainly rely on genetic screens that facilitate the isolation of mutants defective in arresting the 

maturation of their phagosomes [99] [100] [101]. For example, a recent study which 

combines such screening technologies with automated confocal microscopy analyzed an 

11,180-member mutant library and identifies ten mutants that had lost their ability to resist 

phagosome acidification [101]. Importantly, molecular characterization of these mutants 

revealed that they carry genetic disruption in genes involved in cell envelope biogenesis, 

ESX-1 secretion system, molybdopterin biosynthesis and production of acyltrehalose-

containing glycolipids. Such approaches which investigate microbial virulence genes involved 

in phagosome maturation arrest are useful for the study of intracellular parasitism by different 

pathogenic microorganisms, to identify new targets for vaccines as well as to discover new 

anti-microbial drug. 
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Figure 9: Effector mycobacterial molecules (green) involved in the arrest of phagosome 
maturation and acidification with indication of their host targets (blue). 
 

 

 

 

 

 

 

 

effector Mechanism Ref 

Ndk Inactivates Rab5 and Rab7, thereby inhibiting their respective effectors 
recruitment 

[90] 

LAM Interferes with the Ca2+/calmodulin/CaMKII pathway, suppressing 
VPS34 activation 

[82] 

SapM Hydrolyzes PI3P, inhibiting phagosome-late endosome fusion [91] 

PtpA 
Dephosphorylates VPS33B, arresting phagolysosome fusion [92] 

Blocks V-ATPase trafficking and phagosome acidification [93] 

LpdC Retains coronin-1 on the phagosomal membrane, arresting phagosome 
maturation possibly via calcineurin activation 

[94] 
[96] 

PknG Possibly  phosphorylates a host molecule,  preventing its activity in 
mediating phagosome-lysosome fusion 

[96, 
98]  

 

Table II: Effector mechanisms suggested to be used by pathogenic Mycobacteria to 
block phagosome maturation and acidification 
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1.3.3.4 Mtb counteracts the toxic microbicidal effects of ROI and RNI  

Activation of infected phagocytes by inflammatory signals such as IFN-γ enables them 

to overcome the inhibition of phagosome maturation and promote RNI and ROI production. 

However, Mtb has evolved several strategies to detoxify and scavenge ROI and RNI (Fig. 10) 

[102].  

Mycobacterial LAM is a potent scavenger of toxic oxygen free radicals [103]. Mtb 

produces also the catalase peroxidase KatG, which can deactivate ROI by decomposing 

hydrogen peroxide (H2O2) into water and oxygen [104]. Mtb lacking katG displayed no 

catalase activity and was hyper susceptible to H2O2 in culture [104]. A variety of mechanisms 

contribute also to Mtb resistance to toxic effects of RNI and nitrosative stress. Mtb truncated 

hemoglobin, HbN, is a nitric oxide scavenger which, due to its nitric oxide dioxygenase 

activity, very efficiently converts NO into harmless nitrate [105]. Mtb encodes also a 

proteasome which promotes its defense against RNI possibly by functioning in the 

elimination or refolding of proteins damaged by RNI [106] [96]. More recently, it was shown 

that mycobacterial coenzyme F420 reduced and converted NO2 back to NO and might thus 

protect Mtb from nitrosative damage as this pathogen is more sensitive to NO2 than NO under 

aerobic conditions [107]. 

Finally, it is important to note that Mtb may block the initial event which promotes 

phagocyte activation and phagosome maturation such as IFN-γ stimulation. Indeed, in vitro, 

Mtb uses two distinct components, the 19-kDa lipoprotein and the cell wall PG, to inhibit the 

IFN-γ signaling pathway in human and murine MPs at a transcriptional level [108].   
 

 
Figure 10: Mycobacterial molecules involved in the blockage of IFN-γ signaling and the 

counteraction of ROI and RNI toxic effects.  
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1.3.4 Innate cells involved in anti-mycobacterial responses  

(Fig. 11) 

1.3.4.1 Differential growth of M .tuberculosis in resident phagocytes 

In the alveolar lung space, Mtb bacilli are rapidly surrounded by resident airway myeloid 

phagocytes such as alveolar MPs and DCs. Alveolar MPs have been considered as the first 

immune cells to encounter and engulf the bacilli, and the vast majority of TB literature has 

focused on the interactions of Mtb with this cell type. However, DCs are present as a dense 

network in the airway mucosa and several in vitro and in vivo studies showed that they 

internalize and respond to Mycobacteria. In vitro, uptake of Mtb and BCG activate human 

monocyte-derived DCs [109] [110]. In vivo, using green fluorescent protein (GFP)-labeled 

BCG, it was shown that bacilli not only infect alveolar MPs but also DCs in the murine lungs 

[111]. Myeloid DCs are one of the major cell populations infected with Mtb in mouse lungs 

and lymph nodes [112]. Importantly, in addition to lung resident DCs, murine monocyte-

derived DCs are recruited to the lung interstitium from the bloodstream and take up live GFP-

labeled BCG bacilli within 48 h of intranasal infection [113]. 

In their resting state, infected MPs form the primary host cell for Mtb replication. In such 

cells, Mtb blocks phagosome maturation and acidification to evade killing. Moreover, Mtb-

containing phagosomes in MPs showed permanent fusion events with host cell endosomes, 

thereby ensuring continuous access of the pathogen to extracellular nutrients [114]. In 

contrast, studies with both murine and human DCs showed that these cells are not permissive 

for intracellular mycobacterial growth, even though bacilli are not killed [115] [116]. Tailleux 

et al. showed that, as observed in MPs, Mtb-containing vacuoles are not acidic and don’t fuse 

with lysosomes in human DCs [116]. However, these vacuoles have no access to DC 

recycling endosomes and biosynthetic pathways in contrast to that observed within MPs. 

Authors suggest that this process impairs access of intracellular Mycobacteria to host 

molecules including possible essential nutrients such as iron and cholesterol, resulting in 

constrained intracellular survival of Mtb in DCs [116]. More recently, transcriptomic 

approaches which study simultaneous gene expression of both the host and the pathogen 

showed that Mtb induces differential responses in human MPs and DCs, and respond 

differently to phagocytosis by these two cell types [117]. These studies suggest that, in 

comparison to MPs, DCs restrict access of intracellular Mycobacteria to important nutrients. 

On the pathogen side, many mycobacterial genes overexpressed in DCs are known to be 

induced during dormancy in vivo, during nutrient starvation and in limiting O2 conditions. 
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Therefore, Mtb perceives the DC phagosome as a well constraining environment in which it 

develops a clear mycobacterial stress response signature and probably a dormancy genetic 

program. In contrast, Mtb gene expression inside MPs reflects a profile of replicating bacteria.  

1.3.4.2 Resident phagocytes initiate inflammation and recruit neutrophils and innate 

lymphocytes 

Innate interaction and internalization of Mtb by resident MPs and DCs, results in the 

secretion of several pro-inflammatory cytokines and chemokines [118] (Fig. 11). Among 

others, the wide range of pro-inflammatory mediators induced after Mtb-interaction with MPs 

and DCs include TNF-α, IL-12, IL-15, IL-18 and IL-23 cytokines as well as CXCL8/IL-8, 

CCL2, CCL3 and CCL5 chemokines [118] [119] [120]. Consequently, focal infected 

phagocytes attract and activate additional innate inflammatory cells.  TNF-α orchestrates 

early induction of chemokines which recruit additional leukocytes to control mycobacterial 

infection as shown in the murine model [121]. CXC chemokines such as CXCL8 sustain the 

intense recruitment of PMNs to the site of infection. At this early stage, IL-12, IL-15 and IL-

18 stimulate IFN-γ-production by γδ T, NK (natural killer) and NKT (natural killer T) cells 

while IL-23 stimulate IL-17A secretion by γδ T cells [122]. However, Mtb may also induce 

the production of anti-inflammatory mediators which impair the host response but also limit 

tissue destruction [118]. For example several studies showed that the anti-inflammatory 

cytokine IL-10 was produced by murine and human MPs after phagocytosis of Mtb [123] 

[124]. IL-10 can promote Mtb survival by blocking phagosome-lysosome fusion in infected 

phagocytes, down-regulating IL-12 secretion and antagonizing MP activation [125] [126]. 

1.3.4.3 Cooperation between resident and recruited phagocytes 

Although both clinical and experimental studies have shown that acute pulmonary TB 

is accompanied by an influx of PMNs, the exact role of these cells in host defense against Mtb 

remains conflicting and poorly understood [127]. Recruited PMNs internalize Mycobacteria, 

and were recently shown to be the predominant cell type infected with Mtb in the airways of 

TB patients [128]. While some studies using antibody-mediated depletion of murine PMNs 

advocate a role for these cells in TB control, others do not [72]. Moreover, whether PMNs 

play a role in Mtb killing remains controversial. Indeed, while some reports suggest that these 

cells kill or restrict the growth of Mtb in both mouse and humans, other studies showed that 

they form a permissive site for active replication of the bacilli (reviewed in [127]). However, 

PMNs recruited to the infection sites produce TNF-α and additional chemokines, amplifying 

thus the initial innate response [119].  
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DCs infected with Mycobacteria undergo maturation and travel to lymph nodes where 

they activate host naïve lymphocytes, thus linking innate and adaptive immune responses. In 

vivo, mice with deficient DC migration from the lungs to the lung draining lymph nodes fail 

to induce naïve T cell activation [129]. However, Mtb may also use DCs as a vehicle to 

spread inside the host, as migration of Mtb-containing DCs to lymph nodes may contribute to 

its extra-pulmonary dissemination. Importantly, in a study using a murine model of 

intradermal infection with BCG expressing enhanced GFP, the group of N. Winter showed 

that PMNs carried BCG from the skin into the draining lymph nodes [130]. BCG-infected 

PMNs activated DCs via physical interactions and this cooperation promoted human and 

mouse T cell responses in vitro [131]. More recently, a study showed that murine PMNs are 

mandatory for efficient DC migration from the lung to mediastinal lymph nodes in vivo [132]. 

The authors suggest that PMNs deliver Mtb to DCs and this process promote DC migration 

and T cell responses.  

Previous in vitro studies showed that human MPs and PMNs infected with Mtb undergo 

apoptosis [133] [134] [135]. In this context, it has been observed that apoptotic vesicles 

containing mycobacterial antigens can be engulfed by bystander DCs facilitating thus their 

presentation through MHC-I and CD1 molecules, a process referred to as cross-presentation 

[133] [136]. Phagocytosis of Mtb-induced apoptotic PMNs by other phagocyte can also 

promote inflammatory responses. For example, it up-regulates the production of TNF-α by 

human MPs [134] [135] and induced functional maturation and activation of human DCs 

[137]. 

1.3.4.4 The role of innate lymphocytes 

Innate NK, γδ T and NKT are involved in the activation of Mtb-infected phagocytes, 

essentially through IFN-γ secretion, thereby promoting their bactericidal functions (e.g. ROI 

and RNI production).  

Human NK cells can be activated and produce IFN-γ by direct binding of their NKp44 

receptor to the mycobacterial cell wall, although the ligand remains undetermined [138]. In 

Mtb-infected mice, NK cells increased in the lungs over the first 21 days and produce IFN-γ 

[139]. In the same way, the pleural fluid of patients with TB pleurisy is enriched for NK cells 

which form the predominant source of IFN-γ [140].  

In healthy humans, the majority of γδ T cells express Vγ9Vδ2 TCRs. They recognize 

phosphorylated antigens (phosphoantigens), and mycobacterial phosphoantigens were 

identified as potent stimulators of Vγ9Vδ2 T cell functions [141]. In vitro, human γδ T cells 
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are an important source of IFN-γ production in the presence of Mtb-infected monocytes [142] 

and γδ T cells from BCG-infected mice proliferate and produce IFN-γ upon stimulation with 

Mtb [143]. More recently, it was shown that murine γδ T cells are an important source of the 

pro-inflammatory cytokine IL-17A following mycobacterial infections in both mice and 

humans [122] [144] [145]. In vitro, murine γδ T cells produce IL-17A facing to DCs provided 

that they were infected with Mtb and produced IL-23 [122]. IL-17A induces the release of 

CXC chemokines especially from epithelial cells, thereby promoting PMN recruitment [120].  

NKT cells recognize glycolipid antigens presented by CD1d molecule. They are divided 

into two subsets: diverse NKT with diverse TCR rearrangement, and invariant NKT 

(iNKT) showing a highly conserved TCR rearrangement. Mycobacterial PIM is recognized in 

a CD1d-restricted fashion by murine and human NKT cells resulting in IFN-γ release [146]. 

In vitro, Mtb-infected murine MPs activate iNKT cells, which in turn produce IFN-γ that 

stimulate NO production by infected-MPs, thus suppressing Mtb growth [147].  

In vitro studies showed that innate lymphocytes play also a direct role in the destruction 

of Mtb-infected cells. In vitro, human NK cells were able to directly lyse Mtb-infected 

monocytes and alveolar MPs. This depends on the NK receptors NKG2D and NKp46, which 

respectively bind to stress-induced ligand protein and vimentin expressed by infected 

mononuclear phagocytes [148]. However, the mechanism by which NK cells lyse Mtb-

infected cells is unclear, and it was proposed that it is independent from both cytotoxic 

granule release (perforin/granzyme/granulysin system) and Fas/Fas ligand-dependent 

mechanisms [149]. Human Vγ9Vδ2 T cells kill Mtb-infected MPs and intracellular bacilli 

through perforin and granulysin, in vitro [150] [151]. These cells were also able to kill 

extracellular Mtb, in a perforin-independent, but granulysin-dependent mechanism [151]. In 

the same way, in vitro, human activated NKT cells exerted lytic activity and restricted the 

growth of intracellular Mtb within phagocytic cells in a mechanism which potentially depends 

on granulysin secretion [152].  

Despite in vitro evidences of a role of innate lymphocytes against Mtb, in vivo studies 

suggest that innate lymphocytes may not be required for optimum anti-mycobacterial 

responses. Indeed, mouse models in which NK cells are defective or are depleted in vivo 

showed that NK cells are not essential for immunity to TB [139]. In the same way, although 

mice lacking γδ T cells were more susceptible to Mtb in high dose intravenous infection 

models [153], they showed similar survival and bacterial containment to that of WT animals 

in low dose aerosol infection models [154]. Previous studies suggest also that mice deficient 

in NKT cells or CD1d molecule required for NKT cell antigen presentation were not 



 

37 
 

significantly different in their susceptibility to infection than control mice. However more 

recent studies showed that adoptively transferred iNKT cells mediate protection against Mtb 

infection in mice, suggesting an in vivo contribution of these cells to host defense [147]. The 

cytotoxic activity of innate lymphocytes may be also impaired in vivo. For example, the lytic 

function of NK cells isolated from TB patients was reduced and may be modulated by 

monocyte-secreted regulatory cytokines such as IL-10 [155]. Moreover, although in vitro 

studies showed that perforin is required for Mtb killing by some innate lymphocytes, in vivo 

studies reported that the course of Mtb infection in perforin deficient mice is the same as  

reported in WT animals [156] [157] 

 

 
 

Figure 11: Innate host effectors and responses against Mtb.  

In response to Mtb, alveolar MPs and resident DCs are rapidly activated and release several 
pro-inflammatory cytokines and chemokines leading to the recruitment and activation of both 
PMN and innate lymphocytes (γδ T, NK and iNKT cells). Mtb-infected phagocytes produce 
also the anti-inflammatory cytokine IL-10 which can circumvent the protective host response. 
PMN amplify the anti-mycobacterial response by the release of several inflammatory 
mediators including TNF-α. γδ T cells produce IL-17A which activates epithelial cells to 
release CXC chemokines, thus increasing PMN recruitment. Innate lymphocytes are an 
important early source of IFN-γ which synergizes with TNF-α to promote the bactericidal 
functions of phagocytes through the induction of ROI and RNI.  
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1.3.5 Processing of intracellular mycobacterial antigens 

Phagocytes are antigen-presenting cells (APCs) which can present Mtb-derived 

antigenic peptides to adaptive T lymphocytes. The pivotal role in this process is played by 

DCs which travel to lymph nodes where they encounter and stimulate naïve T cells. APCs 

present Mtb peptides by several pathways involving major histocompatibility complex class II 

(MHC-II), MHC-I and CD1 molecules. This leads to the activation of different T cell 

populations.  

1.3.5.1 Classical MHC-II direct presentation is biased by Mtb 

MHC-II molecules are synthesized and assembled in the endoplasmic reticulum (ER) then 

transported to endosomes and phagosomes. During phagosome maturation, proteins from 

captured pathogens are degraded into peptides able to associate with MHC-II molecules. The 

resulting peptide-MHC-II complexes are then transported to the cell surface for presentation 

to αβ CD4+ T cells.  

Following phagocytosis, residence of Mtb within the phagosomal compartment can 

ensure that mycobacterial antigens have access to the MHC-II antigen-

processing/presentation machinery [158]. However, Mtb may block the presentation of its 

peptide antigens by MHC-II molecules using different mechanisms including reduced 

transcription and surface expression of these molecules [159]. Mtb interferes also with 

phagosome maturation and functions, essential for MHC-II-dependent presentation [159]. 

Nevertheless, arrest of phagosomal maturation by Mtb is incomplete and some phagosomes 

mature to form phagolysosomes, especially in activated phagocytes (e.g. IFN-γ-stimulated 

cells) [158]. The presentation of Mtb antigens by MHC-II molecules is reflected by the 

activation of αβ CD4+ T cell which play important protective roles against Mtb (see 1.4.3.3). 

1.3.5.2 Presentation of M. tuberculosis antigens by MHC-I and CD1a molecules 

MHC-I and CD1 molecules share structural similarities in that they are formed of a 

heavy α chain non-covalently associated with a light β2-microglobulin (β2m) chain. Both 

chains are synthesized and assembled in the ER.  

MHC I-restricted T cells are CD8+ lymphocytes while the CD1-restricted T cells 

express either CD4, CD8, both or none of these co-receptors. MHC-I molecules bind peptides 

that come from cytosolic antigens degraded through the proteolytic activity of the cell 

proteasome and transported into the ER by transporter proteins called TAP (transporter 

associated with antigen processing).  In contrast, CD1 molecules bind self or foreign lipids for 

presentation to T cells. As described before, the mycobacterial cell wall contains abundant 
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and diverse lipids. A variety of these molecules can be processed and presented by both group 

I (CD1a, CD1b and CD1c) and group II (CD1d) CD1 molecules (Table III). CD1 molecules 

may bind mycobacterial lipid-derived antigens in different endosomal and phagosomal 

compartments because they have contact with the phagosomal continuum at different stages 

of its maturation  [158] [160]. 

 

Mycobacterial antigen CD1 isoform 

Mycolic acids CD1b 

Glucose monomycolate (GMM) CD1b 

Sulpholipid (diacylated sulphoglycolipid) CD1b 

Phosphatidylinositol mannosides (PIMs) CD1b, CD1d 

Mannosylated lipoarabinomannan (ManLAM) CD1b 

Mannosyl-β1-phosphomycoketides (MPM) CD1c 

Didehydroxymycobactin (DDM) CD1a 
 

Table III: Mycobacterial lipid antigens recognized and presented by CD1 molecules. 
From ref [161]. 

 

CD8+ T cells specific for mycobacterial antigens are detected in TB patients, 

indicating active MHC-I-dependent presentation of Mtb peptides [162]. However, as MHC-I 

molecules present only cytosolic-derived peptides, it was unclear how Mtb, believed to be 

restricted to phagosomes, could stimulate these cells. Currently, several findings may explain 

how this occurs. Among them, the process of cross-presentation is strongly believed to be 

relevant to Mtb infection [163]. Cross-presentation allows the presentation of antigens from 

phagosome-enclosed pathogens (e.g. Mycobacteria) on MHC class I molecules and stimulate 

CD8+ T-cell immunity. This may occur through a direct passage of mycobacterial antigens 

from the phagosome to the cytosol. Indeed, it was suggested that Mycobacteria permeabilize 

the phagosomal membrane allowing bacterial proteins < 70 kDa in molecular size to cross the 

phagosomal membrane [164] [165]. This process may involve mycobacterial secretion 

systems and their proteins such as ESX-1 and ESAT-6 in Mtb [166] or other ESX complexes 

and ESAT-6 homologues in other Mycobacteria [163]. Another possibility relies on a role of 

apoptotic bodies generated by Mtb-infected MPs or PMNs and captured by bystander DCs to 

facilitate the cross-presentation of Mtb antigens [133] [136]. Within DCs, Mtb antigens loaded 

in apoptotic bodies may be released into the cytosol through several mechanisms. One 
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possibility is the fusion between the apoptotic body and ER membrane resulting in the 

transport of Mtb antigens by TAP into the cytosol. Peptide antigens may thus gain access to 

the proteasome and are then processed and presented by the MHC-I machinery.  Apoptotic 

bodies from BCG-infected murine MPs injected in mice cross-prime CD8 T cells in vivo, and 

this process requires homing of DCs to draining lymph nodes [167]. Remarkably, vaccination 

with these apoptotic bodies generated immunity that protected mice against challenge with 

virulent Mtb. 

As host cell apoptosis promotes cross-presentation and protective anti-mycobacterial 

responses, virulent Mtb might inhibits apoptosis and triggers necrosis in a process which 

depends on prostaglandin E2 (PGE2) inhibition. Prostaglandin induce plasma membrane 

repair and prevent mitochondrial damage; together these events protect infected macrophages 

against necrosis and instead promote apoptosis. Recent findings showed that 

virulent Mtb strongly induces the production of lipoxin A4 (LXA4), which prevents PGE2 

biosynthesis [168]. Without the protective actions of PGE2, the infected MP is more likely to 

undergo necrosis which allows for the bacteria to escape into the extracellular space and 

infect surrounding MPs. Necrosis-induced death prevents the cross-presentation of Mtb 

antigens by DCs and alters the initiation of T cell immunity [169]. However, viable 

Mycobacteria released after necrosis can be also phagocytosed by DCs. In these experiments, 

cross-presentation through apoptotic bodies was not possible since necrosis of infected cells 

replaced apoptosis. Source of Mycobacterium antigen for cross-presentation can only come 

from phagosomes. Therefore, absence of cross-priming may signify that Mtb antigens cannot 

cross the phagosomal membrane to be cross-presented, apoptosis of infected cells is required 

for efficient cross-presentation. 

Importantly, in addition to mycobacterial proteins, apoptotic bodies contain glycolipid 

antigens of these bacilli. In general, group I CD1 molecules are only highly expressed on 

DCs. Therefore, transfer of mycobacterial lipid antigens from infected MPs to DCs through 

apoptotic bodies may represent a key mechanism in promoting cross presentation of CD1-

dependent antigens. This process is involved in the presentation of Mtb -derived lipids by 

CD1b [133]. However, Mtb infection can cause a reduced CD1 transcription and cell surface 

expression, thus interfering with this pathway [159]. 
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1.4 The anti-mycobacterial adaptive immunity relies on a granulomatous 
response 

Innate immunity to Mtb represents the initial stage of the host response which may be 

successful in the people who are not latently infected. However, it is not sufficient to fully 

control Mtb in infected individuals and a next stage of host response is therefore required. 

This second stage is characterized by the emergence of cell-mediated adaptive immunity and 

the formation of specific histological structures called granulomas. Classically, these 

structures are considered as protective structures which imprison Mycobacteria and prevent 

further dissemination of the disease in the short term.  

1.4.1 Structure and cellular composition of granulomas 

Granulomas are small nodules classically described as compact collections of mature 

mononuclear phagocytes which may or may not be accompanied by accessory features such 

as infiltration of other inflammatory leukocytes or necrosis [170].  In addition to TB, 

granulomas are described in several inflammatory disorders. Part of them is formed following 

other infections such as schistosomiasis granulomas, others appears after foreign body 

reaction, and finally some granulomas of unknown etiologies such as crohn’s disease, 

sarcoidosis  and Langerhans cell histiocytosis (LCH) destroy the host tissues through an 

immunopathological process. In TB granulomas,  myeloid cells exhibit several phenotypes 

including DCs [171],  epithelioid MPs, foamy MPs, and MGCs [170] [171] (Fig. 12). 

Epithelioid showed a morphology which differs from MPs and DCs and resembles to 

epithelial cells. Foamy MPs contain high amounts of lipid and may constitute a nutrient-rich 

reservoir used by Mtb for long-term persistence [40]. MGCs result from the fusion of multiple 

mononuclear phagocytes and form the cellular hallmark of a variety of granulomatous 

structures. Myeloid/epithelioid cells of TB granuloma are surrounded by T lymphocytes.  

An important physical characteristic of the caseous granulomatous lesions in which Mtb 

resids is hyoxia, as demonstrated in human samples of  tuberculous lung tissues as well as in 

several animal models including guinea pigs, rabbits, and nonhuman primates [172] [173]. 

This implies that in vitro studies should mimic this physical feature.  
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Figure 12: Schematic representation of TB granuloma. 

TB granuloma is the archetype of granulomatous structures with a well-organized texture. 
Building blocks of this structure are essentially mononuclear phagocytes which can be present 
under different forms including epithelioid MPs (large mature cells), foamy MPs (lipid laden 
cells) and MGCs (fused cells with several nuclei). DCs are also present within these 
structures. Mononuclear phagocytes form the myeloid/epithelioid core of the granuloma 
which is surrounded by T lymphocytes.  

1.4.2 Granuloma myeloid cells are long-lived and express destructive enzymes 

In a mouse model of infection with BCG, Egen et al. reported that myeloid MPs which 

capture and internalize BCG persist at least several weeks after infection [174]. Indeed, 

myeloid cells in the infection site at three weeks post infection represent the same population 

that was present prior to infection [174]. This showed that MP persistence did not result from 

cell proliferation, but rather from long-term survival. These findings are in line with 

histological observations which reflected the absence of mitosis and division of myeloid cells 

in human TB granulomas. Moreover, in their study, Egen et al. showed that persistent 

myeloid cells nucleate the formation of granulomas through the attraction of uninfected MPs 

and blood monocytes [174]. Therefore, myeloid cells of the granuloma can survive for long 

periods and are supplemented by additional myeloid cells recruited to these sites. Together, 

these two features ensure granuloma maintenance. Although myeloid cell recruitment to 

granulomas is largely studied, myeloid cell survival within these structures is less understood. 

Increased myeloid cell survival may be explained by two mechanisms: the effect of 
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exogenous activators of cell survival (i.e. hematopoietic growth factors) and the blockade of 

apoptosis. Here we focus on the inhibition of apoptosis of myeloid cells after Mtb infection, in 

vitro, and within mycobacterial granulomas. 

1.4.2.1 Extrinsic and intrinsic pathways of apoptosis 

Apoptosis is a natural process of programmed cell death. It can be initiated by two main 

pathways: the death receptor or ‘extrinsic’ and the mitochondria-mediated or ‘intrinsic’ 

pathways (Fig. 13). Apoptosis involves the activation of a group of cysteine-proteases called 

caspases which are constitutively expressed in their inactive form but become proteolytically 

active upon apoptosis induction.   

 

 
Figure 13: Schematic illustration of the extrinsic and intrinsic pathways of apoptosis. 

In the extrinsic pathway, the binding of extracellular death ligands to their receptors results in 
the activation of caspase 8 which subsequently activate the effector caspase 3. In the intrinsic 
pathway, BAX-BAK channels mediate the mitochondrial release of Cytochrome c. Anti-
survival BH3 only proteins of the BCL-2 family enhance this effect while pro-survival BCL-2 
proteins inhibit it. Cytochrome c promotes apoptosome assembly and caspase 9 activation 
leading to the activation of caspase 3.  Caspase 3 activation by both extrinsic and intrinsic 
pathways culminates in apoptosis. 
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The extrinsic pathway of apoptosis is activated by transmembrane death receptors 

belonging to the TNF receptor superfamily such as Fas receptor (Fas/CD95), TNF receptor 1 

(TNFR1) and TNF-related apoptosis-inducing ligand (TRAIL) receptors (TRAIL-R1) and 

(TRAIL-R2). Interaction of these receptors with their cognate ligands (FasL, TNF-α and 

TRAIL, respectively) results in the recruitment and activation of procaspase-8. This leads to 

the activation of additional effector or executioner caspases such as caspase-3 which cleave 

numerous cellular proteins resulting in cell death. Apoptosis mediated by death receptors can 

be prevented by the recruitment of the degenerated caspase homologue c-FLIP (cellular 

FLICE-inhibitory protein) which modulate activation of procaspase-8 [175]. In some 

instances, this pathway can be also blocked by TNFR associated factors (TRAFs). These 

proteins are intracellular adaptors which can initiate signaling pathways that promote cell 

survival [176]. 

Mitochondria-mediated or intrinsic pathway of cell death is triggered by several stimuli 

including DNA damage, inhibition of DNA repair and cellular stress. It involves proteins of 

the BCL-2 (B-cell lymphoma 2) family which regulate cytochrome c release from 

mitochondria into cytoplasm leading to caspase-9 activation. This leads to the activation of 

other caspases including caspase-3, culminating in apoptosis. BCL-2 proteins form a family 

of cell death regulators which can be either pro-apoptotic such as BAX, BAK, BAD, BID 

and BIM or anti-apoptotic such as BCL-2, BCL-XL, BCL-w, MCL1 and BFL1(also termed 

A1) [177]. BCL-2family members share sequence homology in their BCL-2 homology (BH) 

domains. Some as Bad, Bid and Bim possess only the BH3 motif and are known as BH3-only 

proteins. The pro-apoptotic proteins BAX and BAK have an essential role in mediating 

cytochrome c release from mitochondria as they can oligomerize to form pores in the outer 

mitochondrial membrane. The BH3-only proteins can activate BAX and BAK, thereby 

triggering the release of cytochrome c. In contrast, anti-apoptotic BCL-2 proteins such as 

MCL1 and BFL1counteract the activation of BAX and BAK and maintain cell survival.  

1.4.2.2 Mycobacterial infection inhibits apoptosis of myeloid cells 

Although some studies have suggested that under some conditions Mycobacteria may 

induce apoptosis of infected cells, several others showed that these intracellular bacilli 

stimulate and support strong anti-apoptotic mechanisms.  

Mycobacteria are able to interfere with the extrinsic apoptosis pathway. For example, 

infection of human MPs with virulent Mtb enhanced the release of soluble TNF-α receptor 

class 2 (TNFR2), leading to the inactivation of TNF-α [178]. This results in less stimulation 
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of the TNFR1, thereby reducing apoptosis signaling. In addition, Mtb-infected human MPs 

showed reduced susceptibility to FasL-induced apoptosis, potentially through bacilli-mediated 

down-regulation of Fas expression on these cells [179]. Down-regulation of Fas mRNA 

expression was also reported in Mtb-infected murine macrophagic cells of the J774 cell line 

[180]. In THP-1 cells, lipoglycans of the Mtb cell wall stimulated the activation of NF-κB via 

TLR-2 leading to the up-regulation of cFLIP and resulting in inhibition of FasL-mediated 

apoptosis [181]. In situ, Ordway et al. showed that during the chronic stage of Mtb infection, 

myeloid cells of the granuloma express high levels of several anti-apoptotic proteins of the 

TRAF family (TRAF-1, TRAF-2 and TRAF-3) [182]. This was associated with resistance to 

apoptosis, and authors conclude that anti-apoptotic mechanisms are more predominant than 

apoptosis within the granuloma environment. 

Mycobacteria interfere also with the intrinsic apoptosis pathway. In vitro studies 

showed that BCG infection prevents apoptosis of resting human monocytes and murine MPs 

and demonstrated that this was associated with the up-regulation of BFL1 mRNA levels [183] 

[184]. BCG-mediated inhibition of apoptosis was abrogated in murine MPs derived from 

BFL1-deficient mice, indicating a requirement of this anti-apoptotic protein for the survival of 

infected-cells [184]. J774 murine MP cell line infected with virulent Mtb was found to 

express BCL-2 mRNA which leads to anti-apoptotic activity [180]. Mtb infection of the 

human promonocytic cell line THP-1 or human monocyte-derived MPs induces the 

expression of MCL1, and knocking down MCL1 expression using anti-sense oligonucleotides 

increases apoptosis of infected cells [185]. Similarly, it was suggested that M. leprae restricts 

apoptosis in THP-1 cells by up-regulating MCL1 and down-regulating BAD and BAK mRNA 

expression [186]. In lung tissues of Mtb-infected mice, Mogga et al. reported an increased 

expression of BCL-2 and reduced expression of BAX in MPs containing Mtb [187].  

Overall, Mycobacteria able to inhibit induction of host cell apoptosis via multiple 

mechanisms which interfere with both intrinsic and extrinsic pathways of this process. 

1.4.2.3 Mycobacterium-infected myeloid cells express proteolytic enzymes 

Mtb-infected myeloid cells express a variety of proteases, especially of matrix 

metalloproteinases (MMP) and cathepsin (CTS) families.  

MMPs are zinc-dependent proteases which consist of two conserved domains, a 

prodomain and a catalytic domain. They are essentially involved in the degradation of the 

extracellular matrix components. MMPs are not stored in cells, except PMNs, and their 

expression is tightly regulated at the transcription level [188]. Several studies reported that 
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Mtb drives the expression of some MMPs in infected-myeloid cells. In vitro, Mtb-dependent 

expression of MMP9 is described in murine and human myeloid cells [189] [190] [191]. In 

the same way, Mtb infection of human MPs induces gene expression and secretion of MMP1 

and MMP7 in vitro [192]. In situ, immunohistochemical staining revealed that MMP9, MMP1 

and MMP7 were highly expressed by the myeloid cells in the center of granulomas in Mtb-

infected patients [193] [192]. 

CTSs are a large family of lysosomal serine, cysteine or aspartic proteases. They function 

in intra-lysosomal protein degradation and participate in tissue remodeling responses by 

degrading extracellular matrix proteins. Mtb-infection up-regulates the expression of several 

CTS proteases in myeloid cells in vitro and within TB granulomas. For example, the 

expression of lysosomal CTSB and D was up-regulated in THP-1 cells upon Mtb infection 

[194]. CTSB, D and H were increased in lung granulomas of Mtb-infected mice and their 

expression was associated with MP within these structures [195]. CTSG expression was also 

detected in MPs of hypoxic lung granulomas in mice as well as in caseous human granulomas 

of patients with active pulmonary TB [196]. Similarly, CTSK was highly expressed in 

myeloid mono-and multinucleated giant cells within human TB granuloma [197]. 

Therefore, Mtb-infection up-regulates the expression of several proteolytic enzymes of the 

MMP and CTS families, and TB granuloma myeloid cells express these proteases in situ. 

Such proteases participate in the formation of granulomatous structures [198]. 

1.4.3 Different phases of granuloma formation 

Granuloma formation is a dynamic process based on a series of different steps which can 

be schematically divided into four stages: initiation, maturation/maintenance, effector, and 

resolution or calcification [199].  

1.4.3.1 Initiation 

In this initial step, mononuclear phagocytes are the first cells which attempt to contain the 

danger (resistant pathogen, foreign body or unknown stimulus). This allows the basic 

formation of the granulomatous structure and depends on the sequential production of 

chemokines and expression of adhesion molecules for the spatial organization of granuloma. 

Initiation of granuloma formation by mononuclear phagocytes (e.g MPs) can occur without 

the need of specific antigen recognition as in foreign body granulomatous reactions. The 

contribution of other cells such as T lymphocytes at this stage seems less required and some 

previous reports demonstrated the initiation of granuloma formation in a T-cell independent 

manner [200] [201]. However, it was proposed that non-granuloma T cells specific for other 
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antigens and present in the organism may infiltrate and participate but still play an auxiliary 

role in this phase [199].  

1.4.3.2 Maturation/maintenance  

This stage of granuloma formation is characterized by an intense cell accumulation and 

organization. After initiating the granulomatous response, mononuclear phagocytes continue 

to play important roles in granuloma maturation through the induction of cell-mobilizing 

molecules. However, the dominant role in this phase is  played by CD4+ T lymphocytes [199]. 

For example, mice with deleted genes for CD4 or MHC-II molecules (necessary to CD4+ T 

cell activation) are markedly susceptible to Mycobacteria and show disorganized 

granulomatous lesions [202] [203] [204]. Similarly, failure of granuloma formation after 

infection with Schistosoma mansoni, was observed in mice lacking CD4+ T cells after 

depletion or due to deficiency in MHC-II molecules [205] [206]. In humans, evidence of the 

role of CD4+ T cells in granuloma maturation comes from HIV patients having a marked 

quantitative drop in this cell type and showing high susceptibility to pathogens that induce a 

granulomatous response including Mycobacteria (Mtb, M. avium) [207] and Fungi 

(Histoplasma capsulatum, Pneumocystis carinii). In HIV/Mtb co-infected patients, it has been 

suggested that HIV-induced depletion of CD4+ T cells within granulomas leads to a direct 

disruption of the containment of Mtb infection [39].  

Overall, CD4+ T cells appear to play a central role in this maturation/maintenance phase 

of granuloma formation, and are mandatory in organizing the cell infiltrate into a well-

structured granuloma. 

1.4.3.3 Effector  

Events occurring during the effector phase are highly variable depending on the type of 

granuloma and its inciting event. This phase involves an intense communication and 

interaction between different granuloma components especially mononuclear phagocytes and 

lymphocytes. Here again, CD4+ T cells play important roles through the secretion of key 

inflammatory cytokines. However, the nature of the cytokine response depends on the 

granuloma type [208]. For example, TB granuloma is considered as a Th1-type granuloma, as 

Th1 related cytokines such as IL-12, IFN-γ, and TNF-α are essential players against Mtb. In 

contrast, helminth-induced granulomas such as schistosomiasis granulomas are Th2-type 

granulomas in which Th2 related cytokines (IL-4, IL-5 and IL-13) predominate and play 

pivotal roles. Cytokines produced in the granuloma micro-environment regulate cellular 

interactions and functions. In TB granuloma, IL-12 primarily produced by phagocytes is 
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essential for the induction and the maintenance of  CD4+ Th1 cells [209] which in turn 

produce IFN-γ. IFN-γ synergizes with TNF-α to promote phagocyte bactericidal functions, 

especially through RNI and ROI production. RNI are mandatory for Mtb control in mice. 

Animals unable to generate RNI show rapid mycobacterial growth with high burdens in 

affected organs associated with necrotic granulomas and rapid death [210]. However, mice 

unable to express ROI are slightly susceptible to Mtb infection and show only a transient loss 

of resistance to pulmonary TB (Table IV) [211]. In contrast, in humans, it is unclear if RNI 

play a protective role against Mycobacteria, while a critical protective role of ROI is well 

established.  This is reflected by the phenotype of individuals deficient in NADPH oxidase 

who develop chronic granulomatous disease (CGD) and are highly susceptible to TB [212]. 

Moreover, in these patients, disseminated BCG-osis, local disease (BCG-itis) and disease 

caused by M. avium pneumonitis have been reported. 

 

In addition to CD4+ T cells, other T cell subsets are also involved in the effector phase 

during TB. αβ CD8+ MHC-I-restricted T cells are required for the optimal host resistance to 

Mtb. They can produce IFN-γ but also play cytolytic roles to kill infected MPs and 

Mycobacteria [158] [162]. Mice lacking the T-cell accessory molecule CD8 were unable to 

control a chronic pulmonary infection with Mtb (Table IV) [213] [214] . CD1-restricted T 

cells may also contribute in effector granuloma mechanisms by producing IFN-γ and 

expressing cytolytic activity [158]. Importantly, mice deficient for β2m (shared by MHC-I and 

CD1 molecules) thus lacking both CD8+ and CD1-restricted T cell activities were more 

susceptible than CD8-deficient mice to Mtb [215], suggesting an important role of CD1-

restricted T cells. However, several reports showed that CD1d-deficient mice were not 

significantly different in their susceptibility to Mtb infection than control mice [213] [216]. 

Therefore, further investigation is required to clarify the important role of β2m in 

mycobacterial infections. β2m may participate to a new unknown pathway of antigen 

presentation, important for the processing of mycobacterial antigens, and involving other 

molecules than MHC-I and CD1. 
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KO 
strain 

Survival 
(days) 

effects Ref 

CD4 150 
Increased bacterial growth, poor mononuclear cell 
recruitment, increased PMN, the normal granulomatous 
response did not occur. 

[204] 

CD8 >150 
Increased bacterial growth,  increased PMN, Normal 
granuloma development initially apart from increased 
lymphocytes 

[214] 

β2m ~85 
High susceptibility, extensive pathology, diffused histiocytic 
infiltration and lower numbers of lymphocytes 

[213] 

CD1 Normal No increased susceptibility, normal granuloma formation 
[213] 
[217] 

iNOS  33–45 
No RNI, high susceptibility, rapid bacterial growth, necrotic 
granulomatous pneumonitis 

[210] 

NADPH 
oxidase 

Normal 
No ROI, normal control of infection, normal granuloma 
formation with some showing increased PMN numbers. 

[211] 

 

Table IV: Effects on the anti-mycobacterial host response in mice lacking different T 
cell subsets, β2m, iNOS (RNI) or NADPH oxidase (ROI).  

1.4.3.4 Resolution or calcification 

As the essential function of granulomas is the containment and clearance of the inciting 

agent, these structures may resolve if this aim is achieved. An example of this process is the 

response to BCG vaccine. Indeed, cutaneous inflammatory papules and granulomas are 

common within the first few weeks after vaccination. This then develops into an ulcer healing 

within three months of onset to leave a small flat scar. 

Previous studies suggested that γδ T lymphocytes may down-modulate the granulomatous 

inflammation. In mice with Mtb-induced granulomas, it was proposed that γδ T cells may 

limit the access of inflammatory cells that do not contribute to protection but may cause tissue 

damage [154]. Similarly, a previous report suggested that γδ T cells down-regulate αβ T cell 

responses during Listeria monocytogenes-induced granulomatous inflammation [218].  
Instead of resolution which doesn’t alter the tissue in which they are embedded, 

granulomas may progress toward fibrosis. This process involves the accumulation of 

fibroblasts and extracellular matrix around and within the granulomas resulting in formation 
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of fibrotic visible scares which may undergo subsequent calcification. This can cause 

progressive organ damage and is a significant part of the pathology associated with 

granulomatous diseases. Cytokines such as IL-4, IL-13 and TGF-β regulate fibrosis, activate 

fibroblasts and promote collagen formation and deposition [219] [220] [221]. 

1.4.4 Pivotal regulators of the granulomatous immune response in tuberculosis 

Formation of mycobacterial granuloma is a complex process involving several cellular 

and molecular effectors which interact to coordinate cell recruitment, stabilize granuloma 

architecture and control the danger.  

1.4.4.1 GM-CSF is mandatory for granulomatous control of Mycobacteria in mouse 

GM-CSF (granulocyte macrophage colony-stimulating factor), a monomeric protein, is a 

hematopoietic growth factor produced by different cell types including T cells, MPs, 

endothelial cells and fibroblasts in response to cytokine or inflammatory stimuli. Its receptor, 

expressed essentially on myeloid cells, is a heterodimeric complex composed of α and β 

subunits. GM-CSF stimulates survival, proliferation, differentiation, and functional activation 

of myeloid cells, including monocytes, MPs, PMNs and DCs. 

Facing to Mycobacteria, GM-CSF facilitate containment of these pathogens in granulomas 

and preserves alveolar structure [222] [223]. Mtb-infected mice lacking GM-CSF showed 

lower numbers of monocytes, MPs, and DCs in their lungs compared to infected WT mice 

[222]. Concomitantly, they had impaired ability of controlling aerosol Mtb infection as 

reflected by their high bacterial load and their rapid death [222]. Compared to WT mice, those 

lacking GM-CSF also showed defective and markedly attenuated granuloma formation facing 

to Mycobacteria [222] [223] (Table V). This was associated with the development of 

extensive lesions with severe necrosis, edema and alveolar epithelial destruction in the Mtb-

infected lungs [222] [223]. More recently, a study showed that delivery of GM-CSF to the 

lungs, expressed by recombinant BCG vaccine, resulted in increased pulmonary DC numbers 

and IL-12 secretion and accelerated CD4+ T cell priming and recruitment, leading to an 

increased protection against Mtb infection [224]. 

In humans, GM-CSF mRNA levels were significantly more abundant in TB granulomas than 

in control biopsies, and expression of this cytokine was detected in both epithelioid cells and 

lymphocytes surrounding and infiltrating the lesions [225]. In vitro, GM-CSF contributes to 

the up-regulation of the T cell-stimulating activity of Mycobacterium-infected human MPs by 

promoting Th1 cell-mediated immunity [226] [227]. Recent studies showed that GM-CSF is 

essential for the successful control of Mtb replication in human MPs in vitro [228]. The 
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dramatic susceptibility to Mtb in GM-CSF-deficient mice is similar to that observed in mice 

lacking IFN-γ (see 1.4.4.2). Nevertheless, while deficiency in IFN-γ signaling is associated 

with human susceptibility to Mycobacteria, there are no clinical case reports on GM-CSF/ 

GM-CSF receptor deficiency. Consequently, the exact role of GM-CSF in the anti-

mycobacterial response in humans in vivo is not clearly defined 

1.4.4.2 IL-12/IFN-γ axis is critical in mouse and human anti-mycobacterial responses  

IL-12 is a pro-inflammatory heterodimeric cytokine which share structural similarities 

with another cytokine called IL-23 (Fig. 14). Due to this, and before the characterization of 

IL-23, some functions of this latter were attributed to IL-12. Both cytokines share a common 

p40 subunit that is linked either to a p35 subunit to form IL-12 or to a p19 subunit to form IL-

23 [229]. Receptors of these two cytokines also shared a common IL-12Rβ1chain paired to 

IL-12Rβ2 to form IL-12 receptor or to IL-23R chain to form the receptor of IL-23 [229].  IL-

12Rβ2 chain is expressed on naive T cells whereas IL-23R is expressed on activated memory 

T cells [230].  

 

 
 
Figure 14: Schematic illustration of the molecular structure of IL-12, IL-23 and their 
receptors. Adapted from ref [229] 
 
Phagocytic cells and APCs, including monocytes, MPs and DCs are the primary producers of 

IL-12. This cytokine induces IFN-γ production by NK and NKT cells in the early phases of 

the immune response, and induces the differentiation of naive CD4+T cells into IFN-γ-

producing Th1 cells [229]. IFN-γ is a dimeric prototypic cytokine which signals through a 
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ubiquitously expressed heterodimeric receptor (IFN-γR) formed by two chains: IFN-γR1 and 

IFN-γR2. IFN-γ retro-activates IL-12 secretion by APCs. 

Deficiencies in IL-12 or IFN-γ signaling leads to a similar phenotype after mycobacterial 

infections in both mouse and human: they are highly susceptible to mycobacterial infections. 

Mice lacking IL-12p40 or having a disrupted IFN-γ gene were unable to contain Mtb 

infection. They showed higher bacterial burden, reduced survival and defective granuloma 

formation compared to WT mice [231, 232] [233] (Table V). The maintenance of a protective 

Th1 host response as well as granuloma formation and bacterial control in Mtb-infected mice 

require a continuous and persistent IL-12 production [234]. In humans, gene mutations in IL-

12p40, IL-12Rβ1, IFN-γR1 or IFN-γR2 are associated with increased susceptibility to 

mycobacterial infections [235] (Fig. 15).  Disseminated BCG and M. avium infections were 

reported in individuals with such mutations. More recently, IL-12Rβ1 chain deficiency was 

also shown associated with Mtb infection and TB development in both children and adults 

[236] [237]. Human studies revealed also that other elements of the IL-12/IFN-γ axis are 

required for anti-mycobacterial responses. Indeed, IL-12 production by APCs is regulated by 

two signaling pathways: the first involves IFN-γ, STAT1 (signal transducer and activator of 

transcription 1) and IRF8 (Interferon regulatory factor 8) while the second is dependent of 

CD40, NEMO (NF-κB essential modulator) and NF-κB (nuclear factor-kappa B). Human 

mutations in genes encoding STAT-1, NEMO and more recently IRF8 were found associated 

with disseminated BCG and M. avium infections  [238].  

Altogether, data presented above emphasize the critical role of the IL-12/IFN-γ axis in the 

control of mycobacterial infections. Importantly, a very recent study identified ISG15 as a 

novel player in the IFN-γ-dependent immunity to Mycobacteria [239]. ISG15 is an 

intracellular IFN-α/β-inducible protein that conjugates to proteins in an ubiquitin-like fashion. 

Humans with inherited deficiency in ISG15 had reduced IFN-γ production and showed 

enhanced susceptibility to mycobacterial disease. In the same way, mice lacking ISG15 

encoding gene succumbed earlier than WT counterparts upon Mtb infection. Authors found 

that the lack of mycobacterium-induced ISG15 secretion by leukocytes, mainly granulocytes, 

reduced the lymphocytic IFN-γ production, especially by NK cells [239]. Consequently, they 

proposed that the ISG15/IFN-γ axis, operating between granulocytes and NK, may be an 

“innate” complement to the more “adaptive” IL-12/IFN-γ axis, operating between 

mononuclear phagocytes and T cells. 
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Figure 15: Mutations in seven molecules (pink) of the IL-12/IFN-γ axis are associated 
with human genetic predisposition to mycobacterial infections. Adapted from ref [238]. 

1.4.4.3 Recent implication of the IL-23/1L-17A axis in mycobacterial infections 

At the beginning of this thesis, there was accumulating evidence for a role of the pro-

inflammatory cytokine, IL-17A, in mycobacterial infections in animal models. 

 IL-17A is mostly, but not exclusively, produced by CD4+ Th17 cells whose expansion 

and maintenance depends of the cytokine IL-23 produced by MPs and DCs (See 1.5.4.3). 

Previous studies documented the production of IL-23 by Mtb-infected murine DCs, and 

showed that Th17 cells are present and expanded in the lungs during infection [122] [240]. In 

the aerosol model of Mtb infection, the absence of IL-23 resulted in a profound reduction in 

the frequency and number of Th17 cells and in local IL-17A mRNA production in the lung. 

This revealed that IL-23 is essential for the expression of Th17 cells and IL-17A response 

during Mtb infection in mice. 

Additional studies showed that IL-17A production occurs rapidly upon mycobacterial 

infection. IL-17A mRNA was detected in the lungs of BCG-infected animals as early as one 

day after infection [144]. Importantly, these studies reported that IL-17A was mainly 

produced by γδ T cells rather than CD4+ T lymphocytes in both Mtb- and BCG-infected 

animals[122] [144]. IL-23 is also mandatory for IL-17A production by γδ T cells. Indeed, 

supernatants from Mtb-infected DCs that contain IL-23 could induce IL-17A secretion by γδ 

T cells purified from naïve or Mtb-infected mice [122]. 

Compared to the IL-12/IFN-γ axis, the IL-23/IL-17A pathway is less important in the 

control of mycobacterial infections than the IL-12/IFN-γ axis [240]. Indeed, mice lacking IL-
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23 or deficient for IL-17A signaling (IL-17AR-deficient mice) were not more susceptible than 

WT control mice to Mtb [240] [241]. However, in the absence of functional IL-12, IL-23 

provide some protective immunity by promoting the generation of IFN-γ producing CD4+ T 

cells, thus compensating IL-12 effects.  These results obtained in mice with low dose aerosol 

Mtb infection suggest that IL-17A is not essential to anti-mycobacterial responses. However, 

subsequent studies in mice infected intratracheally with a high dose of BCG showed that IL-

17A produced by γδ T cells is directly involved in the regulation of mycobacterial granuloma 

formation (Table V) [144]. BCG-infected mice lacking IL-17A showed impaired granuloma 

formation as reflected by the reduced number and size of granulomas in their lungs compared 

to WT control animals. Granulomas in IL-17A-deficient mice were also less densely packed 

with mononuclear cells. A role of the IL-23 and IL-17A was also demonstrated in 

vaccination-induced protection against Mtb in mice. In this model, vaccination induces a 

population of antigen-specific IL-17A producing memory T cells which populate the lungs 

[242]. IL-17A produced by this population of induced several chemokines which promote the 

recruitment of memory Th1 cells, thus enhancing protective responses [242]. Taken together, 

data obtained from murine models revealed that in the presence of functional IL-12/IFN-γ 

axis, IL-23/IL-17A axis is not crucial for primary protection against mycobacterial infections, 

but play important roles in vaccine-induced immunity and granuloma formation.  

In humans, the role of the IL-23/IL-17A pathway in mycobacterial infections is less clear. 

In response to Mtb, human DCs preferentially produce IL-23 [243]. Mycobacteria specific 

human Th17 cells have been described, in peripheral blood of persons exposed to or diseased 

by Mycobacteria [244]. Additional report showed that peripheral blood human γδ T cells are 

an important source of IL-17A, and the subset of IL-17A-producing γδ T cells increased in 

TB patients [145]. However, if IL-17A is essential to human anti-mycobacterial responses 

remains largely unclear. 

1.4.4.4 Antagonistic roles of TNF-α and IL-10 in mycobacterial responses 

TNF-α versus IL-10 play opposite roles during mycobacterial infections: TNF-α improves 

granuloma formation and maturation while IL-10 antagonizes these effects. 

TNF-α is a multifunctional cytokine which mediates its pleiotropic actions through two 

distinct cell surface receptors: TNFR1 and TNFR2. During Mycobacterial infections, TNF-α 

is produced by phagocytes and synergizes with IFN-γ for the maximal activation of their 

bactericidal mechanisms (NO production) as well as for granuloma formation [245] [246]. 

TNF-α regulate both formation and maintenance of granulomas by inducing several 
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chemokines including CCL3, CCL4, CCL5, CXCL9 and CXCL10 thus attracting T and 

myeloid cells [121] [247]. In BCG-infected mice, TNF-α neutralization increases bacterial 

numbers and dramatically impairs with the development of granulomas both in number and 

size [248]. During Mtb infection, reduced survival time associated with higher bacterial 

burden and granuloma necrosis were observed in mice lacking TNF-α or TNFR1 but not in 

control animals [249]. In humans, the use of Infliximab, a monoclonal antibody against TNF-

α utilized for the treatment of rheumatoid arthritis and Crohn’s disease, reactivates latent TB 

in infected patients causing progression to active TB disease. Same effects were also reported 

in a mouse model of latent TB [250]. These data highlight the key role of TNF-α in promoting 

granuloma maturation and maintenance of their integrity (Table V).  

IL-10 is a homodimeric cytokine generally considered as an anti-inflammatory 

cytokine with a broad spectrum of immunosuppressive and anti-inflammatory effects. Many 

cell types can produce IL-10, including phagocytes, T, B, and NK cells. The IL-10 receptor is 

composed of two subunits, IL-10R1 and IL-10R2. Both chains of the IL-10 Receptor are 

expressed on many hematopoietic cells, including lymphocytes, monocytes and PMNs. 

During Mtb infection, IL-10 is produced early by myeloid phagocytes and later by CD4+ T 

lymphocytes [125]. Transgenic mice constitutively expressing IL-10 showed large numbers of 

Mycobacteria and were less capable of clearing BCG infection [251]. Similarly, mice 

overexpressing IL-10 were more susceptible to Mtb and showed evidence of TB reactivation 

with a highly significant increase in bacterial numbers during the chronic phase of the 

infection [252]. Concomitantly, such mice showed decreased mRNA production for TNF-α 

and IL-12p40 [252]. In contrast, IL-10 deficient mice infected with Mtb showed enhanced 

control of the infection with reduced bacterial pulmonary load, accelerated Th1 responses in 

lungs and decreased dissemination to the spleen [253]. IL-10 negatively influences granuloma 

formation during mycobacterial infection. In the absence of this cytokine, BCG-infected mice 

had an enhanced granulomatous response characterized by an increased number of 

granulomas showing higher cellularity and increased size as compared to WT mice [254] 

(Table V). In humans, patients with active TB have reduced IFN-γ levels compared to healthy 

individuals, and this effect may depend on IL-10 [255]. Indeed, studies on PBMCs (peripheral 

blood mononuclear cells) obtained from such patients have shown that neutralization of 

endogenous IL-10 increased IFN-γ release by enhancing monocyte IL-12 production 

[255].Therefore, IL-10 counteracts the inflammatory protective anti-mycobacterial response 

and limits granuloma formation. However, by dampening the Th1 inflammatory response, IL-

10 may also limit fatal host-mediated immunopathology as reported recently [256]. 
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Mouse 
Myco 

strain 
Bacterial 
growth 

Mouse 

survival (days) 
IFN-γ 

production 
Granuloma 

formation 
Ref 

WT Mtb 
BCG Controlled yes +++ Normal  

GM-CSF-KO Mtb ++ No (35) +  
Highly 

impaired 
[222] 

IL-12p40-KO Mtb +++ No (40-45) +/-  Defective [231] 

IFN-γ-KO Mtb +++ No (15-32) Absent Defective 
[232] 
[233] 
[257] 

TNF-α-KO Mtb ++ No (28-35) +++ Impaired [258] 

IL-17A-KO 
BCG Controlled yes ++ Impaired 

[144] 
[259] 

Mtb ++ ND ND Impaired [259]* 

IL-10-KO 
BCG Decreased yes 

Slightly 
increased 

Increased [254] 

Mtb Decreased yes Increased ND [253] 

 
Table V: Survival and immune responses upon mycobacterial (Mtb, BCG) infection of 
mice with transgenic gene inactivation of selected cytokines. ND: not determined.  
*: recent paper published during the thesis, discussed later in the discussion part. 

1.4.4.5 Cellular recruitment to granuloma depends on chemokines 

Chemokines are a class of small proteins that play essential roles in immune responses. 

Specifically, they mediate constitutive and inflammatory recruitment of leukocytes such as 

lymphocytes and phagocytic cells from the blood into tissues by directing their trafficking and 

organizing their migration [260]. Chemokines exert their biological effects through seven-

transmembrane domain/G protein-coupled receptors. Released chemokines form 

concentration gradients, thereby recruiting cells expressing their cognate receptors. The 

human chemokine system is complex, with approximately 50 chemokines and 20 receptors 

identified currently [260]. Chemokines and their receptors are classified into four structurally 

related families designated CC, CXC, C, or CX3C. This classification is defined on the basis 

of  the position of the cysteine residues at their amino terminus (C represents the cysteine 

amino acid; X/X3, one or three non-cysteine amino acids) [260]. Chemokine ligands are 

named with an ‘L’ and the receptors with an ‘R’. 
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During the host response to mycobacterial infections, the establishment of chemokine 

gradients is crucial for the recruitment of different type of inflammatory cells and their 

aggregation to form granulomas [261]. In response to Mycobacteria or their derived antigens, 

host cells produce a wide range of both CC (CCL2, CCL3, CCL4, CCL5, CCL19, CCL20, 

CCL21, and CCL22) and CXC (CXCL1, CXCL2, CXCL7, CXCL8, CXCL9 and CXCL10) 

chemokines in vitro [262] [263]. Compared to healthy controls, elevated levels of CCL2, 

CCL3, CCL5, CCL20, CXCL8 and CXCL10 have also been reported in the serum and/or 

bronchoalveolar lavage fluid of TB patients [261] [264]. However, chemokine/chemokine 

receptor system shows an elevated degree of redundancy with the possibility that a chemokine 

binds different chemokine receptors, and one receptor may be the target of several 

chemokines [260]. This forms an important difficulty to dissect the exact role of each of these 

factors in host anti-mycobacterial response and granuloma formation. In this way, mice 

deficient for one chemokine or chemokine receptor were generally no more susceptible to 

Mycobacterial infections than control mice. Indeed, deficient mice showed a transiently 

impaired response at early stage but were finally able to control infection and form granuloma 

as well as WT mice at more advanced times (Table VI). For example, BCG infection of mice 

deficient in CCR6, the unique receptor of CCL20 involved in immature DC and memory T 

cell recruitment, showed impaired clearance of Mycobacteria at early stage. Nevertheless, 

CCR6 was not required for the establishment of T cell-mediated adaptive immunity and 

CCR6-deficient mice eliminated Mycobacteria [265]. Similarly, mice deficient for CCL2 or 

CCL5 chemokines showed an early reduced recruitment of immune cells to the lungs after 

Mtb infection. However, later, they were able to establish normal responses and granuloma 

formation, most likely as a result of compensation by other chemokines [266] [267]. In the 

case of CCL5-deficient mice, it was shown that the CCL5-related ligand CCL4, but not 

CCL3, partially compensates for the lack of CCL5 during early Mtb infection. Therefore, the 

chemokine/chemokine receptor network is working with a high redundancy and the lack of 

one element is compensated by others to ensure optimal host responses. Notably, it was 

shown that after high dose intravenous Mtb infection, CCR2-deficiency markedly impairs MP 

recruitment to sites of inflammation, inducing the mouse death early after infection with 100-

fold more Mycobacteria in their lungs compared to WT mice [268].  However, subsequent 

studies showed that this effect was dose dependent: after low-dose Mtb infection, mice 

lacking CCR2 did not have increased bacterial loads in the lungs compared to WT mice and 

successfully formed granulomas [269]. 
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Chemokine 
or receptor 

strain Effects compared to WT control animals Ref 

CCR1 Mtb No effect on bacterial growth or granuloma formation [261] 

CCR2 Mtb 

high dose: mice succumb rapidly, defects in early MP and 
later DC and T cell accumulation in lungs 

[268] 

Low dose: normal immunity and granuloma formation [269] 

CCR4 BCG 
Impaired early bacterial clearance, normal bacilli elimination 
later, reduced late stage inflammation,  abrogated recall 
granuloma formation (in response to myco antigen-coated beads) 

[270] 

CCR5 Mtb Control of bacterial growth, normal granuloma formation [271] 

CCR6 BCG 
Early bacterial clearance defect – Normal T cell-mediated 
adaptive immunity and bacilli elimination later. 

[265] 

CCR7 Mtb 

Impaired DC migration from lungs to lymph nodes, higher 
bacterial burden and compromised resistance to high dose 
infection, generation of adaptive immunity and almost similar 
survival as WT animals following low dose infection. 

[272] 

CXCR2 M. avium No difference in bacterial growth , normal PMN recruitment  [273] 

CXCR3 Mtb 
Early and transient defect in granuloma formation, normal 
granulomas development later 

[274] 

CX3CR1 Mtb Normal bacterial load and granuloma formation [275] 

CCL2 Mtb 
Minor and transient increase in bacterial load, fewer 
mononuclear cells in granulomas by day 70 post infection 

[266] 

CCL5 Mtb 
Early and transient increase in bacterial burden and delayed T 
cell migration, control of bacterial growth and normal 
granuloma formation at more advanced times 

[267] 

 

 Table VI: Anti-mycobacterial responses and granuloma formation in chemokine- or 

chemokine receptor-deficient mice. 
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1.5 Origins and key mediators of giant cell formation 

1.5.1 Physiological and pathological giant cells  

Giant cells are observed in both physiological and pathological conditions. Physiological 

giant cells include syncytial trophoblast in placenta, syncytial myofibers in skeletal muscles, 

the bone marrow megakaryocytes responsible for the production of blood platelets and OCs, 

the bone-resorbing cells critical for bone homeostasis. Pathological MGCs are described in 

chronic inflammatory granulomatous conditions including already cited diseases: TB, 

schistosomiasis, foreign body reaction sarcoidosis, crohn’s disease and LCH. Giant cells 

originate from both non hematopoietic (syncytial trophoblast and syncytial myofibers) and 

hematopoietic (megakaryocytes, OCs, pathological MGCs) precursor cells. Except of 

megakaryocytes formed by a process called endomitosis (repeated incomplete mitosis without 

cell division), giant cells generally results from cell-cell fusion. In inflammatory 

granulomatous conditions, MGCs arise from the fusion of myeloid cells at the granulomatous 

site [276] [277]. In this part we will focus on giant cells which originate from cell-cell fusion 

of hematopoietic myeloid cells: OCs and pathological MGCs. 

Among the different myeloid giant cells, OCs were the most studied. In contrast, precise 

phenotype, mechanisms of cell fusion and functions of pathological MGCs are less known.  

1.5.2 Osteoclast: the bone-resorbing giant cell 

OC formation, also termed osteoclastogenesis, is important for the homeostasis of the bone 

tissue. Indeed, the maintenance of bone remodeling is tightly controlled by a fine balance 

between bone formation by osteoblasts and bone resorption by OCs. OCs are large giant cells 

which contain 15 to 20 nuclei. Three different origins of OC formation were identified so far: 

bone-marrow progenitors [278], monocytes [279] and immature DCs [280]. Differentiation of 

OC precursors into mature OCs involves an extrinsic pathway which requires two cytokines: 

M-CSF (macrophage colony stimulating factor) and RANKL (receptor activator for nuclear 

factor κB ligand) [281-284] (Table VII). M-CSF is a growth factor required for the survival, 

proliferation and differentiation of precursors of the monocyte/macrophage lineage. RANKL 

(also designated TRANCE, OPGL or ODF) is a homotrimeric member of the TNF receptor 

ligand family. The critical role these two cytokines in osteoclastogenesis was confirmed in 

deficient mice which lack osteoclasts and have a profound defect in bone resorption resulting 

in osteopetrosis, characterized by high bone density [284-286].  

https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#138567d4d4e1e904__Toc326745555�
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Chemotactic stimuli are also required for OC formation. In this context, it was shown that 

CCL2 is mandatory for the fusion of both human and murine myeloid cells into giant OCs 

[287-290]. Neutralization of CCL2 significantly reduced human osteoclastogenesis in vitro 

[289], and OC formation was notably inhibited in cells derived from CCL2-deficient mice 

[290].   

The mechanisms that allow myeloid cells to fuse into OCs remain poorly understood, 

although some molecular mediators were identified. One of these mediators is a membrane 

protein called DC-STAMP (DC -specific transmembrane protein). Yagi et al. found that DC-

STAMP was highly expressed in OCs but not in MPs, and showed that cell fusion into OC 

was completely abrogated in DC-STAMP-deficient mice [291]. The ligand for DC-STAMP 

involved in cell-cell fusion is not known. Additional molecule belonging to the 

immunoglobulin superfamily such as MFR/SIRPα (macrophage fusion receptor) was strongly 

expressed in MPs at the onset of fusion and is involved in myeloid cell fusion leading to 

multinucleation [292]. MFR regulates this process by virtue of interacting with its ligand 

CD47 which also belongs to the immunoglobulin superfamily [293].  

OCs are responsible for the degradation of the bone matrix. During activation towards bone 

resorption, OC cytoskeleton undergoes extensive reorganization. These cells are characterized 

by the presence of podosomes composed of a central actin-bundle core surrounded by 

surrounded by a ring of by a ring of vinculin and talin and stabilized by microtubules [294]. 

Mature OCs plated on glass organize their podosomes into a precisely defined circle at the 

cell periphery (large belt-like structure). Podosome belt is thought to evolve into the sealing 

zone in actively resorbing OCs [295]. The sealing zone delineates an isolated extracellular 

compartment known as resorption lacuna between bone surface and the plasma membrane of 

OC [296]. Within the resorption lacuna, the bone matrix is degraded by an intense 

acidification and secretion of proteolytic enzymes including CTSK, TRAP (tartrate resistant 

acid phosphatase) and MMP9 [297]. 

A growing body of  evidences has indicated that the skeletal and immune systems are closely 

related through cellular and molecular interactions, and the term osteoimmunology is 

currently used to describe the interface between bone biology and immunology [298] [299]. 

Immune function played by bone cells such as OCs represents an example of the cross-talk 

between bone and the immune system. Indeed, as OCs are differentiated from the same 

precursor of MPs and DCs, it is reasonably possible that OC themselves have immune 
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functions. In this context, a recent study showed that mature bone-resorbing OCs activated 

with lipopolysaccharide (LPS) or IFN-γ up-regulated their of expression both MHC-I and 

MHC-II molecules as well as the cofactors CD80, CD86 and CD40, necessary for antigen 

presentation [300]. Importantly, the study argued that OCs are also capable of presenting 

antigens to stimulate both CD4+ and CD8+ T cells. These results revealed that OCs can act as 

functional APCs in vitro.  

Several cytokines are positively or negatively involved in the regulation of OC 

formation (Table VII) [298]. For example, cytokines such as IL-17A and TNF-α activate 

osteoclastogenesis through RANKL induction on mesenchymal cells (IL-17A and TNF-α) 

and synergy with RANKL effects (TNF-α). In contrast, others such as IFN-γ and GM-CSF 

inhibit RANKL signaling and negatively regulate OC formation. 
 

Cytokine Effect on OC formation Mechanism 

M-CSF Activation Survival and RANK induction 

RANKL Activation OC differentiation induction 

TNF-α Activation 
RANKL induction on mesenchymal cells; synergy 
with RANKL 

IL-17A Activation RANKL induction on osteoblastes 

IFN-γ Inhibition RANKL signaling inhibition 

GM-CSF Inhibition RANKL signaling inhibition 

 

Table VII: effect of some cytokines on osteoclastogenesis. Adapted from ref [298]. 

1.5.3 The myeloid giant cells formed in chronic inflammation   

While OC formation occurs in a well defined localization, granuloma-associated MGCs can 

be found in a wide range of tissues. They were firstly identified in TB granuloma by 

Langhans in 1868 and lately described in several granulomatous diseases of known or 

unknown etiologies. Stimuli which induce MGC formation are largely unclear. MGCs were 

historically classified into two major types: (i) Langhans’ giant cells showing a relatively 

small number of nuclei distributed in a peripheral circular fashion and (ii) foreign body giant 

cells (FBGCs) with much larger numbers of nuclei scattered in an irregular central manner 

[301]. Similarly to OCs whose extrinsic cytokine stimuli regulate their formation, several 

cytokine including IL-4 and IL-13 as well as IFN-γ and GM-CSF were proposed to be 

https://mail.google.com/mail/?ui=2&view=bsp&ver=ohhl4rw8mbn4#138567d4d4e1e904__Toc326745557�
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involved in MGC formation [302] [303]. However the in vivo relevance of these factors was 

only confirmed for IL-4 involved in the formation of FBGCs. Indeed, injection of IL-4 

neutralizing antibodies reduced the FBGC density while its exogenous administration 

increased it in mice with implanted-biomaterials [304]. 

Some mycobacterial components also promote MGC formation. Recent research using 

an in vitro human model of granuloma induced by mycobacterial antigen-coated beads 

showed that some of the major lipoglycans from Mtb cell wall are responsible for the 

aggregation and fusion of MPs in MGC [305]. In particular, mycobacterial PIMs, lipomannan, 

and trehalose 6,6'-dimycolate (TDM) promote MGC formation in a TLR-2-dependent 

pathway, whereas phosphatidylinositol and ManLAM do not [305]. However, if this 

promotion of MGC formation occurs through the production of extrinsic factors is unclear. 

In 2008, our group identified a novel extrinsic pathway of myeloid cell fusion. The 

group demonstrated that in vitro, IL-17A induces the fusion of human monocyte-derived DCs 

resulting in MGC formation [306]. IL-17A-treated monocytes were unable to undergo cell 

fusion. However, when treated with a combination of both GM-CSF and IL-17A, monocytes 

become able to fuse in MGCs. IFN-γ potentiates this IL-17A-dependent pathway and 

significantly increases MGC size and nuclear content. These data identified IL-17A as a novel 

fusion mediator. In the next part we describe the properties and functions of this cytokine. 

1.5.4 IL-17A characteristics and biological functions 

1.5.4.1 Molecular characteristics of IL-17A 

IL-17A was firstly described in 1993 after the characterization of its encoding gene in a 

rodent T cell library by subtractive hybridization [307]. This cytokine has ~58% of homology 

to an open reading frame encoded within Herpesvirus saimiri and was first called CTLA‑8 

(cytotoxic T lymphocyte antigen 8 (CTLA-8)). The human IL-17A was later characterized in 

T lymphocytes [308]. Subsequent genomic sequencing studies and database searches led to 

the characterization of several IL-17A homologue cytokines, forming thus the IL-17 cytokine 

family. In addition to IL-17A, this family includes IL-17B, IL-17C, IL-17D, IL-17E (also 

designated IL-25), and IL-17F [309].  

IL-17A is the prototype and the best characterized member of the IL-17 cytokine family. In 

humans its encoding gene is located on chromosome 6p12 and is composed of three exons 

and two introns extending on 4252 bp of the human genome. The amino acid sequence of 

human IL-17A shares ~ 55% of homology with IL-17F which is also encoded by a gene 

closely located to the IL-17A gene in the same chromosomal region. Both IL-17A and IL-17F 
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can be secreted as homodimers, but they can also form a heterodimeric cytokine called IL-

17A/F [310]. The human IL-17A chain is composed of 155 amino acids. A disulfide bond 

links two chains in the glycosylated homodimer [309]. 

1.5.4.2 IL-17A Receptor and signal transduction 

Members of the IL-17 family signal through IL-17 receptors (IL-17R) that also form a 

family of five subunit members (IL-17RA to IL-17RE) [311]. IL-17A and IL-17F 

homodimers as well as IL-17A/F heterodimer signal through the same heteromeric complex 

receptor composed by IL-17RA and IL-17RC subunits. Both IL-17RA and IL-17RC are type 

I transmembrane proteins. IL-17RA is ubiquitously expressed, with particularly high levels in 

immune cells while IL-17RC is preferentially expressed in non-immune cells  [311]. 

Therefore, it is not clear how myeloid cells which are IL-17RA+/IL-17RC- bind IL-17A. Like 

other members of the IL-17R family, IL-17RA and IL-17RC have cytoplasmic motifs with 

homology to a TIR domain (TLR/IL-1 receptor like signaling domain), termed ‘‘SEFIR’’ (for 

similar expression of fibroblast-growth-factor genes, and IL-17Rs) [312]. 

IL-17A binding to its receptor induces the recruitment of the adaptor molecule Act1 

which also contains the conserved SEFIR domain, thus interacting with IL-17R through 

homotypical interaction via their respective SEFIR domains [313]. Interaction between Act1 

and IL-17R is followed by the recruitment of another adaptor molecule, TRAF6 then the 

kinase TAK1 (transforming growth factor β-activated kinase 1). The formation of the Act1/ 

TRAF6/TAK1 complex activates the transcription factors NF-κB, C/EBP (CCAAT/Enhancer 

binding proteins) and AP-1 [309].  

In 2011, two different studies characterized an original TRAF6-independent axis of IL-

17R signaling. This pathway involves the inducible kinase IKKi (inducible inhibitor of NF-

κB (IκB) kinase) which is recruited to the IL-17R-Act1 complex and mediates Act1 

phosphorylation [314] [315]. 

1.5.4.3 Discovery and characterization of CCR6+ Th17 lymphocytes 

Activation and differentiation of naive CD4+ T cells is directed by APCs and leads to the 

development and expansion of different Th cell subsets depending of the “local cytokine 

environment” (Fig. 16). Previously, two distinct effector Th subsets, termed Th1 and Th2, 

were identified by Mosmann & Coffman based on their different patterns of cytokine 

production [316] [317]. More recently, researchers characterized a distinct Th subset called 

Th17 because they form an essential source of IL-17A production [318] [319] [320]. 
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However, more recent studies showed that IL-17A cytokine is also secreted by other cell 

types than Th17 [321]. 

 
Figure 16: Schematic representation of the differentiation pathways of naive CD4 T cells 
with their molecular requirements in mice. 
 

Although IL-17A was characterized in the 90’s, Th17 were only identified in 2005. In 

addition to IL-17A, they produce a variety of cytokines including IL-17F, IL-21, IL-22, TNF-

α and IL-6 in mice and IL-26 in humans. In mouse, several studies showed that Th17 cells 

originate mainly in the presence of TGF-β and IL-6 [322]. However, more recent reports 

challenged the requirement of these cytokines in Th17 polarization [323] [324]. In humans, 

the exact combination of cytokines that stimulate Th17 cell differentiation is a matter of 

debate, although several studies underline an important role of  TGF-β, IL-1β and IL-6 

cytokines in this process [325]. Several cytokines, such as IL-23, IL-21, IL-1β and TNF-α 

amplify Th17 cell differentiation and responses. IL-23 is necessary for expansion, 

maintenance and stabilization of the Th17 phenotype and may also serve as a survival factor 

for Th17 cells [326]. In vivo, both human and mouse Th17 cells characteristically express the 

chemokine receptor CCR6 [327] [328]. CCR6 forms an important functional marker for Th17 

cells and contributes to their preferential migration to inflammation sites (See 1.5.4.4). Since 

discovery, Th17 cells have received considerable attention regarding their dual role in 
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protective and pathological host immune responses. Indeed, IL-17A produced by these cells 

plays a crucial protective role in host immunity against a wide range of pathogens but is also 

major effector actor which drive chronic inflammation and autoimmune disorders [309] [329] 

[330] [331]. 

1.5.4.4 Immunological functions of IL-17A  

IL-17A plays pleiotropic biological activities essentially by inducing or up-regulating the 

expression of several genes. IL-17A target genes include cytokines, chemokines, adhesion 

molecules, enzymes, matrix metalloproteinases and anti-microbial molecules [332] [333]. 

Through such induced-molecules, IL-17A regulates several host responses. 

Early studies showed that, in vitro, IL-17A induces the production of G-CSF and CXCL8 

by human stromal cells such as fibroblasts, epithelial and endothelial cells, [334]. IL-17A also 

up-regulates the expression of CXCL1, CXCL2 and CXCL5 chemokines in several stromal 

cell types including epithelial cells [333]. G-CSF sustains PMN production and survival and 

CXC chemokines are essential for their recruitment. Both in vitro and in vivo studies showed 

that IL-17A promotes granulopoiesis and PMN recruitment through these molecules [334] 

[335] [336]. For example, over-expression of IL-17A in mice induced a marked expansion of 

PMN progenitors in bone marrow and spleen and increase mature PMNs in peripheral blood, 

and this effect was markedly attenuated by neutralization of G-CSF [335]. Similarly, in vivo 

administration of IL-17A induced a selective recruitment of PMN which was blocked by anti-

CXC chemokine antibodies [337] [338]. 

Through the induction of other CXC chemokines such as CXCL9, CXCL10 and CXCL11, 

IL-17A participates also in the recruitment of Th1 cells as cited previously upon BCG 

vaccination [242]. IL-17A also induces the expression of CCL20 in fibroblasts, epithelial cells 

and synoviocytes [333]. This cytokines mediate recruitment of immature DCs and CCR6+ T 

cells. IL-17A response creates a positive loop that further attractsIL-17A-producing CCR6+ 

cells through CCL20 induction [339]. Moreover, activated human tissue-infiltrating Th17 

themselves express CCL20, thus creating a particular inflammatory environment favoring 

their own recruitment and sequestration [340]. 

IL-17A is also involved in host defense mechanisms to infectious pathogens. Rapid IL-

17A production has been documented during the early stages of bacterial infection suggesting 

a role of this cytokine in host anti-bacterial immune responses [341] [342]. This was 

demonstrated by showing that IL-17A neutralization or abrogation of its signaling increases 

the susceptibility to several pathogens. Indeed, neutralization of IL-17A in mice infected with 
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Escherichia coli [341] or Pseudomonas aeruginosa [342] led to impaired bacterial clearance. 

In the same way, mice lacking IL-17RA showed enhanced susceptibility to infection with 

extracellular bacteria (Klebsiella pneumonia) [343], fungi (Candida albicans) [344] and 

parasites (Toxoplasma gondii) [345]. Impaired host immunity in mice lacking IL-17A 

responses was essentially due to impaired production of CXC chemokines, resulting in a 

defective recruitment of PMNs. The role of IL-17A against intracellular bacteria is less 

pivotal but this cytokine may contribute in the induction and maintenance of protective Th1 

responses against some of such pathogens [346] [347]. 

In vitro, IL-17A potentiated the killing ability of human PMN and mouse MP  facing to 

Streptococcus pneumoniae and Bordetella pertussis respectively [348] [349]. IL-17A also 

induces epithelial cells and keratinocytes to produce anti-bacterial peptides such as β-

defensins, mucins, calgranulins and lipocalines required for host responses against infectious 

microorganisms [333]. Importantly, β-defensins can also play important chemotactic roles as 

shown for human β-defensins 1 and 2 which bind to CCR6, inducing chemotaxis in immature 

DCs and memory T lymphocytes [350]. In humans, numerous genetic diseases resulting in 

infectious phenotypes and linked to abnormalities in IL-17A responses have been recently 

identified (Table VIII). Patients with these genetic defects in the Th17 axis suffer from 

recurrent infections with Candida albicans and Staphylococcus aureus. 

Therefore, IL-17A is involved in protective responses against a variety of pathogens being 

required for some of them and helpful for others such as Mycobacteria [144] 
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Disease Infectious manifestations Mechanism Affected 
gene Ref 

hyper-IgE syndrome 
(HIES) 

mucocutaneous candidiasis 
staphylococcal abscesses 

impairment  in 
Th17 cells STAT3 [351] 

Dectin-1 deficiency 
 mucocutaneous candidiasis impairment  in 

Th17 cells 
Dectin-1 

 [352] 

CARD9 deficiency mucocutaneous candidiasis impairment  in 
Th17 cells 

CARD9 

 
[353] 

autoimmune 
polyendocrinopathy-

candidiasis-
ectodermal dystrophy 

(APECED) 

mucocutaneous candidiasis 
auto-antibodies 

against IL-17A, IL-
17F, and/or IL-22 

AIRE 

 
[354] 

IL-17RA deficiency 
mucocutaneous candidiasis 

staphylococcal infections 
defects in  IL-17A 
& IL-17F signaling 

IL-17RA 

 
[355] 

IL-17F deficiency 
mucocutaneous candidiasis 

staphylococcal infections 

defects in IL-
17A/F & IL-17F 

signaling 
IL-17F [355] 

 
 

Table VIII: Human genetic diseases characterized by recurrent fungal (C. 
albicans) and bacterial (S. aureus) infections involving IL-17A responses 
 

Dectin-1 is involved in the development of Th17 responses; CARD9 is an adaptor molecule 
for dectin-1; Mutations in AIRE gene cause defects in thymic self-tolerance induction. 
 

1.5.4.5 Immunopathological role of IL-17A 

IL-17A is linked to the pathogenesis of a variety of inflammatory and autoimmune diseases. 

IL-17A concentrations are elevated in multiple human autoimmune disorders including 

multiple sclerosis, rheumatoid arthritis, psoriasis and inflammatory bowel disease [356]. 

Studies conducted in animal models revealed that IL-17A participates in the pathogenesis of 

these disorders. For example, IL-17A-deficient mice exhibited a delayed onset and 

diminished disease severity in EAE, while passive transfer of IL-17A-producing cells induced 

severe EAE in recipient mice [319]. Similarly, mice lacking IL-17A are resistant to collagen-

induced arthritis (the animal model of rheumatoid arthritis) whereas local adenoviral IL-17A 

injection in mice accelerated the disease onset [357] [358]. In humans, polymorphisms in the 

IL-23R gene, necessary to maintain IL-17A responses, are associated with inflammatory 

bowel disease [359] and psoriasis [360]. IL-17A promotes inflammation by a variety of 
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mechanisms and acts in synergy with other pro-inflammatory mediators and cytokines. For 

example, in arthritis, it was proposed that IL-17A stimulates inflammatory mediators such as 

IL-1, IL-6, TNF-α and CXCL8 in a variety of local cells, thus promoting inflammation [361]. 

IL-17A may also enhance the development of this disease by inducing MMPs and RANKL 

which can respectively degrade cartilage matrix and stimulate osteoclastogenesis and bone 

erosion [361]. 

1.5.4.5.1 The role of IL-17A in langerhans cell histiocytosis 

In 2008, our group demonstrated that IL-17A is also involved in langerhans cell 

histiocytosis (LCH), a rare inflammatory granulomatous disease of unknown etiology.  

LCH belongs to the histiocytic disorders characterized by abnormal infiltration of 

certain organs by immune cells derived from monocyte/macrophage or dendritic cell lineage. 

In affected tissues, LCH is characterized by an abnormal accumulation of DCs in non-well 

organized and poorly defined granulomas containing MGCs [362]. Pathological DCs present 

in LCH lesions show several characteristics of the epidermal langerhans cells (LCs) 

distinguished by the presence of intracellular Birbeck granules, the organelles that are formed 

upon ligand binding to surface Langerin/CD207 [362]. In addition, these pathological cells 

express CD1a which, in humans, is a marker of LC but also of monocyte-derived DCs. LCs 

have many of the features of DCs, including morphology and capacity to stimulate allogeneic 

T-cell proliferation in vitro after activation. They develop from embryonic CX3CR1+CD45+ 

myeloid precursor cells that populate the epidermis before birth. However, unlike DCs, 

epidermal LCs are selfrenewing in situ as they are able to repopulate locally independently of 

circulating precursors [363]. It has been shown that LCs are present in CSF1/M-CSF-deficient 

mice but absent from CSF1 receptor-deficient mice suggesting the existence of another ligand 

for this receptor. Importantly, a recent work by Colonna et al. identified IL-34 as an 

alternative ligand of CSF1 receptor that can partially compensate for the absence of CSF1 

[364]. Through the use of IL-34-deficient reporter mice, authors found that keratinocytes were 

the main sources of IL-34 and showed that such mice selectively lacked LCs, thus identifing 

this cytokine as a growth factor that direct the differentiation of LC progenitors in the skin 

epidermis. An epidermal LC, stimulated by either an inflammatory agonists or an oncogenic 

process might be capable of leaving the epidermis and migrating to skin-distant tissues to 

fund an extra-skin LCH lesion. Indeed, in normal conditions, maturation signal induces the 

egress of LCs from the epidermis to the skin-draining lymph node in a manner that is dictated 

by patterns of chemokine receptor expression. However, additional possible origins of 
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pathological cells in LCH were also proposed including dermal Langerin+ DCs, lymphoid 

tissue-resident Langerin+ DCs and mononuclear phagocyte precursors [362]. 

LCH disease occurs predominantly in children and may be classified as active or 

inactive. Clinical manifestations are heterogeneous and can vary from a single self-resolving 

lesion to a severe life-threatening systemic form. Multiple organs may be affected including 

skin, bone, lymph nodes, endocrine glands and central nervous system. LCH cumulates 

symptoms that are found separately in various IL-17A–related diseases, such as aggressive 

chronic granuloma formation, bone resorption and soft tissue lesions with occasional 

neurodegeneration. Our group showed that serum samples of LCH patients revealed a 

significantly higher IL-17A content in patients with active LCH, than in patients with inactive 

LCH and controls. Working on biopsies of LCH patients, the group demonstrated that IL-17A 

is strikingly produced by DC and MGCs inside LCH granuloma [306].  Based on these in situ 

findings and in vitro observations that IL-17A induces DC fusion in MGCs, it was suggested 

that, in LCH granulomas, IL-17A produced by DCs induce their fusion in MGCs. However, 

there is a controversy around IL-17A production in LCH as a recent paper reveals the absence 

of this cytokine in LCH biopsies [365]. Nevertheless, several technical problems were not 

screened by the reviewers in this alternative report including the negativity of positive 

controls (tonsils), or the use of IL-17A antibodies in inadequate applications such as western 

blot instead of ELISA. Therefore we maintain that IL-17A is produced in LCH. It was 

decided in 2008 to investigate IL-17A expression in another form of LCH: pLCH which 

occurs in adults [366]. pLCH mainly affects lungs of smokers, with an incidence peak at 20–

40 years of age. In pLCH, DC granulomas destroy distal bronchioles then cavitate the lungs 

and form thick- and thin-walled cysts, which enlarge airway lumina resulting in respiratory 

function invalidation. Although childhood and pulmonary adult LCH display similar 

histopathological signs with granuloma of DCs and DC-derived MGCs, involvement of IL-

17A in adult pLCH is not yet documented. 

 

In conclusion, TB and LCH (childhood or pulmonary) are granulomatous diseases that 

share similar clinical and histological features such as the destructive ability, the possible 

dissemination to all organs and the chronic course. However, they differ in some histological 

details inside the granulomatous structures as well as in their etiology which is infectious for 

TB and unknown for LCH. Consequently, the treatments are also different: antibiotics in the 

case of TB and chemotherapy associated to immune suppressors in the case of LCH. For each 

disease, the pathways regulating recruitment, phenotype, survival and functions of the mono 
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and multinucleated myeloid cells are a challenge to limit associated immunopathology. 

Elucidating the molecular mechanisms that shape the myeloid cell fate and functions may 

preside not only to better understand the myeloid cell-mycobacterium interaction, but also to 

progress on the pathophysiological mechanisms associated to granuloma formation. Such 

scientific breakthroughs may lead to the discovery of new therapies to improve the treatment 

of the granulomatous diseases. 
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2 Part II: RESULTS 
 

Our work during this thesis led to four manuscripts, two submitted and two in preparation: 

 

I- BFL1, a new biomarker of long lifespan and chemoresistant human dendritic cells: 

application to Langerhans cell histiocytosis treatment. (Submitted) 

 

II- IL-17A-dependent maintenance of human tuberculosis granuloma is mediated by BFL1, 

CCL20 and CCL2. (Submitted) 

 

III- Giant Myeloid Inflammatory Cell: a new anti-Mycobacterium effector of the immune 

system. (In preparation) 

 

IV- IL-17A+MMP-12+CSTD+ DC accumulation leads to bronchoepithelium destruction: 

relevance in pulmonary LCH. (In preparation) 
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ABSTRACT (244 / 250 words) 

Background 

Langerhans cell histiocytosis (LCH) ranges from a self-resolving to a fatal disease following 

tissue damage by granulomas, enriched in dendritic cells (DC) and derived giant cells. We 

investigated Bcl-2 family member expressions, lifespan and chemoresistance of DC in LCH. 

Design and Methods 

DC were derived from peripheral blood monocytes of 13 LCH patients and compared to 

healthy donors. Bcl-2 family members were studied by transcriptome, flow cytometry and 

immunohistology. Flow cytometry quantification of viable versus apoptotic cells was 

performed following DiOC6 and propidium iodide stainings. We also investigated the 

sensitivity of BFL1-expressing DC to 17 chemotherapy agents in vitro. 

Results 

Healthy DC express one pro-survival Bcl-2 member named MCL1 and display a short 2-day 

lifespan. IL-17A induces NF-kappaB translocation, transcription of the Bcl2 family pro-

survival member BCL2A1/BFL1 and increase of the DC lifespan beyond 14 days. Monocyte-

derived DC of LCH patients constitutively express both MCL1 and BFL1 and exhibit a long 

lifespan. BFL1 is also expressed in LCH lesions, thus providing a new molecular link 

between monocyte-derived and lesional LCH DC. BFL1-expressing DC are broadly 

chemoresistant but apoptosis was induced by vinblastine following the decrease of MCL1 

expression or by exposure to anti-IL-17A following BFL1 inhibition. Vinblastine and anti-IL-

17A synergize to induce LCH DC death. 

Conclusions 

Expression of BFL1 induced by IL-17A enhances DC survival. Exposure to a low dose of 

vinblastine, combined with anti-IL-17A, in vitro, inhibits MCL1 and BFL1 expressions, and 

induces apoptosis in LCH DC. These results suggest a novel therapeutic approach for patients 

with LCH. 
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INTRODUCTION 

Since more than twenty years, immunologists have studied the biology of immature 

human dendritic cells (DC) generated from monocytes in the presence of GM-CSF and IL-4, 

in vitro. The in vivo relevance of monocyte-derived DC was recently established in the 

mouse.1 Monocytes and DC share phagocyte functions, the ability to differentiate into 

macrophages when cultured with M-CSF and to fuse into multinucleated giant cells (MGC) 

which are authentic osteoclasts when cultured with M-CSF and RANKL.2 Two functional 

properties discriminate DC from monocytes. First, DC initiate adaptive immune responses 

versus tolerance, as demonstrated in mouse models of DC short-term ablation, in vivo.3 

Second, DC but not monocytes undergo cell fusion in the presence of IL-17A, a mechanism 

highly potentiated by IFN- γ.4 MGC survive long term, thus demonstrating that survival 

pathways are activated along the DC fusion process, in vitro. Proteins of the Bcl-2 family 

regulate survival and sensitivity to apoptosis by governing mitochondrial outer membrane 

permeabilization.5 They are divided into pro-apoptotic and pro-survival proteins. Each cell 

type expresses a specific subset of these proteins. MCL1 was first discovered as an early 

induction gene during the differentiation of a human myeloblastic leukemia cell line6 and is a 

pro-survival member as well as BCL2A1/BFL1, discovered in 1995 in B cell lymphoma.7,8 

Inhibition of pro-survival Bcl-2 proteins in cancer cells counteracts chemoresistance and 

cures cancer in a high percentage of mice.9 

In the rare disease called Langerhans Cell Histiocytosis (LCH), IFN-γ -expressing 

DC,10 form pathogenic granulomas following their accumulation and survival without 

proliferation (index <2%).11 We have previously reported a new IL-17A-dependent pathway 

of DC fusion in LCH4. We detected IL-17A (by Elisa, flow cytometry and 

immunohistochemistry, and six different commercial antibodies) in serums from LCH 

patients, intracellularly in their monocyte-derived DC and in most of the lesional DC and 

MGC, in situ.4 Recently, Allen et al12 did not detect IL-17A mRNA in sorted DC from the 

LCH lesions, thus raising a controversy on the presence of IL-17A or IL-17A-like molecules 

which was recently discussed by Hogarty13. Thus, further studies on IL-17A and IL17A-like 

molecules appear warranted in oder to define the possible indication to their clinical 

application in prospective trials. 

Killing the lesional DC in LCH may be achieved in most patients by chemotherapy 

regimens containing the combination of prednisone and vinblastine (VBL) or, in salvage 

settings, cladribine (2CdA) and cytarabine (AraC).14-16 Yet, 20% of patients with 

disseminated disease affecting vital organs remain at risk of death. Most of them are included 
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in the one third of patients who fail to respond promptly to chemotherapy. LCH-induced 

morbidity is characterized by liver and pulmonary fibrosis, multiple hormone deficiencies, 

bone deformities and progressive neurodegeneration.17,18 Thus, novel therapeutic approaches 

are warranted with the aims of improving survival in patients at higher risk of early death and 

also reducing the number of disease reactivations and late sequelae in the remaining patients. 

In order to identify novel therapeutic pathways for LCH, we investigated the role of Bcl-2 

family gene expressions and associated chemoresistance in monocyte-derived DC from 

patients and healthy donors, in vitro.13 
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DESIGN AND METHODS 

Patients 

We obtained blood samples from 23 healthy adult volunteers (Etablissement Français 

du Sang, Lyon, France) and from 13 patients with LCH, from Sweden (n = 8) and Italy (n = 

5) (Table 1). We carried out immunohistological studies on LCH bone lesions from Sweden 

(n = 2). The local ethics committees (Karolinska Institutet, Stockholm; AOU Meyer, 

Florence; Research Committee for the Hospices Civils de Lyon) approved this study and we 

obtained informed consents. 

 

Reagents 

We purchased recombinant human GM-CSF, IFN-γ, IL-4 and IL-17A from 

PeproTech. Flow cytometry: CD14, CD1a, HLA-DR, CD40 and isotype controls were 

purchased from Becton Dickinson, anti-BFL1 (3401 anti- A1) from BioVision; anti-MCL1 

(Y37) from Abcam. Biological assays: neutralizing anti-IL-17A (eBio64CAP17) from 

eBioscience. Toxic compounds: dexamethasone, 6-mercaptopurine and fludarabine were 

purchased from Sigma Aldrich and the remaining drugs were kindly provided by the 

Karolinska University Hospital pharmacy. The magnitude of the microenvironment 

concentration around cells, in vivo, following clinical dose administration, was calculated by 

approximating that the drug could be distributed in half of the body aqueous volume (30L) 

with the formula: [(injected concentration) x injected volume] / 30. The results are in the 

range of those indicated by pharmacokinetics studies. The following list includes class, target: 

name (abbreviation), in vitro range (optimal dose to kill IL-17A and IFN-γ -stimulated DC 

when efficient) in µM, and clinical dose in µM, respectively. Glucocorticoids, immune 

system: hydrocortisone (HC), 0.01-100, 10; methylprednisolone (MP), 0.01-100, 50; 

prednisolone (P), 0.01-100, 5; betamethasone (BM), 0.01-100, 1; dexamethasone (DEX), 

0.01-100, 0.5. 11-aminoacid cyclic peptide, calcineurin and immune system: cyclosporine 

(CSA), 0.008-80, 0.5. Macrolide, calcineurin and immune system: tacrolimus (FK-506), 

0.0001-1, 0.02. Purine analogues, DNA synthesis: cladribine (2CdA), 0.00035-3.5 (3), 0.02; 

6-mercaptopurine (6-MP), 0.05-500, 5; fludarabine (FLU), 0.01-10, 5. Pyrimidin analogue, 

DNA synthesis: cytarabine (AraC), 0.8-800 (40), 14-140. Folate acid antagonist, DNA 

synthesis: methotrexate (MTX), 5-5000, 1.5-75. Organomettalic complex and purine linker, 

DNA synthesis: cisplatin (CIS), 0.17-170 (100), 20. Alkaloid, topoisomerase II: etoposide 

(ETO), 0.1-100, 12. Anthracycline antibiotic and intercalating agent, topoisomerase II: 
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doxorubicin (DOX), 0.001-10 (1), 0.2. Alkaloids, microtubule functions: vinblastine (VBL), 

0.06-60 (0.6), 1.5; vincristine (VCR), 0.0001-1 (1), 0.2. 

Monocyte purification, dendritic cell differentiation 

CD14+ monocytes were purified (>95% CD14+) from the peripheral blood by ficoll 

and percoll gradients, followed by negative magnetic depletion of cells expressing CD3 or 

CD56 or CD19. HLA-DR+low CD1a+ CD83– immature monocyte-derived DC (>98%) were 

generated, in vitro, after 6 days of culture with 50 ng/ml GM-CSF and 500 U/ml IL-42. 

Cultures 

Cells were seeded in RPMI (Life Technologies) supplemented with 10% FCS, 10mM Hepes, 

2 mM L-glutamine, 40 µg/mL gentamicin (Life Technologies) in the presence of IL-17A (2 

ng/mL) and IFN-γ (2 ng/mL), at 4,800 cells/mm2 replenished every week. We added 

neutralizing antibodies at 15 µg/ml. 

Affymetrix genechip study 

 RNA were purified from DC, either untreated, or cultured for 12 days with the above 

mentioned cytokines: after cell lysis, extraction in Trizol (Invitrogen) and purification on 

MEGAclear column (Ambion) to reach an RNA integrity number > 9 with Agilent 

bioanalyser, "ProfileXpert" (www.profilexpert.fr) performed the chip study (see 

supplementary methods). 

Flow cytometry 

Immunostaining of cells were performed in 1% BSA and 3% human serum-PBS, then 

quantified on a LSRII (Becton Dickinson) and analyzed using CellQuest Pro software. We 

used 2 µg/ml of primary or secondary (PE-F(ab')2 goat to mouse IgG, 115-086-062, Jackson 

Immunoresearch) antibodies. For intracytoplasmic staining, we blocked the Golgi apparatus 

with BD GolgiStopTM, fixed and permeabilized the cells with the Cytofix/Cytoperm reagents 

according to procedures from the manufacturer (Becton Dickinson). 

Flow cytometry quantification of viable versus dead cells 

DiOC6(3) (3,39-diexyloxacarbocyanine)-propidium iodide (PI) double staining was 

performed to detect apoptotic cells by flow cytometry until day 7 of culture. Cells were 

incubated 15 min at 37°C with 40nM DiOC6 (Molecular Probes) in culture medium to 

evaluate mitochondrial transmembrane potential (∆Ψm). Viable cells have stable ∆Ψm 

whereas ∆Ψm decreases with cell commitment to apoptosis. PI (0.5 µg/ml) was added before 

FACS analysis of the cells and incorporates into DNA of dead cells whose membrane is 

permeabilized. Living cells remain DiOC6
+PI– whereas apoptotic cells are DiOC6

–PI+. Cells 

http://www.profilexpert.fr/�
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were numbered by a time-monitored flow cytometry analysis during 2 min at high speed (1 

µl/s). After day 7, cells strongly attached to the plastic and undergo cell fusion in the presence 

of IL-17A, therefore flow cytometry were replaced by TRAP/Hoechst staining as described 

below. 

Tartrate resistant acidic phosphatase (TRAP) and Hoechst staining 

We assessed TRAP activity using the Leukocyte acid phosphatase kit (Sigma-

Aldrich). We stained DNA of the nuclei with 10 μg/ml of Hoechst 33342 (Sigma) for 30 min 

at 37°C and fixed with 1% formaldehyde. Following this staining, we counted the total 

number of active nuclei inside mononucleated and multinucleated cells to calculate the 

percentage of nuclei still active which reflects the percentage of viable DC. Counts were 

reported for 1 million of DC put in culture at day 0. 

Immunocytofluorescence labeling 

Cells were fixed, then labeled with anti-p65 / RelA (C-20, Santa Cruz Biotechnology, 

California, USA). We observed them using a Leica TCS-SP5 laser scanning confocal 

microscope (Leica, Wetzlar, Germany). Fixed bone biopsies were deparaffinized, rehydrated, 

labeled with mouse anti CD1a, (Acris Antibodies, DM363, 1:20 dilution) and rabbit anti-

BFL1 (Biovision,A1/3401-100, 4µg/mL) and then analyzed by confocal microscopy using a 

Carl Zeiss MicroImaging Inc. LSM 510 confocal microscope. Image acquisition was 

performed using MetaMorph 7.0 Software (Molecular Devices). 

Statistical analysis 

Polynomial statistical analysis and Mann-Whitney U test from GraphPad Prism 5 

software was applied to detect differences between subgroups; the cutoff level of p < 0.05 was 

significant. 
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RESULTS 

IL-17A induced NF-κB translocation and BCL2A1 / BFL1 in human dendritic cells from 

healthy donors 

We cultured monocyte-derived DC from healthy donors with or without IL-17A and 

IFN-γ, in vitro. mRNA studies performed at day 12 indicated a major impact of IL-17A on 

BCL2A1 expression, a pro-survival member of the Bcl2 family genes (Figure 1A). MCL1, 

another pro-survival member, was also highly expressed but already present in untreated DC 

from healthy donors. Addition of IFN-γ did not strongly affect Bcl2 family gene expression. 

RelA is a known regulator of BCL2A1 gene expression.19 We investigated NF-κB nuclear 

translocation in DC by immunofluorescence detection of the nuclear factor NF-κB p65 / RelA 

subunit (Figure 1B). In untreated immature DC, RelA was located in the cytoplasm, as 

demonstrated by fluorescent cytoplasm and black nuclei analyzed by confocal microscopy. 

One hour after IL-17A-stimulation, fluorescence stained nuclei in about 90% of the DC. 

Moreover, the NF-κB inhibitor Bay-11-7085 blocked IL-17A-dependent BCL2A1 mRNA 

induction in healthy DC (data not shown). Translocation indicates that IL-17A induces NF-

κB activation leading to BCL2A1 induction. Quantitative RT-PCR confirmed induction of 

BCL2A1 mRNA by IL-17A as soon as day 2 (data not shown) and intracellular flow 

cytometry demonstrated the detection of the related protein, called BFL1, in three healthy 

donors (Figure 1C). Dose responses of IL-17A (eight points from 2 to 0.016 ng/ml) were 

performed to quantify MCL1 and BFL1 expressions in DC. All cells expressed MCL1 whose 

intensity remained stable and independent of the dose of IL-17A introduced in DC culture. By 

contrast, BFL1 percentages increased, according to the dose of IL-17A provided, with a 

plateau at 1-2 ng/mL, depending on the donors. 

In conclusion, healthy untreated human DC constitutively express MCL1, but IL-17A 

stimulation induces NF-κB p65 / RelA subunit translocation and a strong and stable 

expression of an additional pro-survival member of the Bcl2 family gene called 

BCL2A1/BFL1. 

 

BCL2A1 / BFL1 expression induced by IL-17A enhances dendritic cell lifespan 

Healthy untreated DC, which only express MCL1, survived for 48h (Figure 2A), 

indicating that MCL1 alone is associated to a short lifespan. Exposure to IL-17A increased 

DC survival and converted short into long lifespan as demonstrated by the survival of about 

50% of DC after two weeks. Dose responses of IL-17A (eight points from 2 to 0.016 ng/ml) 

were performed on DC from three healthy donors and showed that IL-17A sustained DC 
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survival in a dose-dependent manner, optimally at 1-2 ng/mL, depending on the donors 

(Figure 2B). Introduction of sh/siRNA by lipofection or nucleofection affected survival and 

phenotype of stimulated DC in the control experiment so that we could not directly 

investigate the consequences of BCL2A1 mRNA blockade (data not shown). Therefore, we 

used a statistical approach to study the putative link introduced by IL-17A treatment on the 

three parameters that we quantified: MCL1 intensity, BFL1 induction and DC survival 

(Figures 1C and 2B). For three independent healthy donors and cultures, we separately 

plotted eight couples of two data (BFL1, survival), (MCL1, survival) and (MCL1, BFL1), 

corresponding to each of the eight doses of IL-17A put in culture (Figure 2C). The statistical 

analysis showed that regardless of whether the donor was a moderate (donor C) or a good 

(donors A and B) responder to IL-17A (Figure 2B), the ability of DC to survive was linked to 

BFL1 expression by a two parameter polynomial statistical analysis with a good correlation 

factor (Figure 2C). Although MCL1 intensity was not modified by IL-17A treatment, we 

noticed that healthy donors with higher MCL1 intensity (donor A and B), survived better 

when BFL1 was induced by IL-17A. 

In conclusion, MCL1 is sufficient for short-term DC survival whereas additional 

strong and stable expression of BFL1, induced by IL-17A, establishes a long-term lifespan of 

DC. 

 

BCL2A1 / BFL1 is expressed in monocyte-derived dendritic cell and delineates 

pathogenic myeloid cells in biopsies from patients affected by Langerhans cell 

histiocytosis  

We performed mRNA studies at day six of DC differentiation from peripheral blood 

monocytes. Contrary to healthy donors, monocyte-derived DC from LCH patients (Table 1) 

showed a high constitutive expression of the BCL2A1 gene (Figure 3A). We studied survival, 

BFL1 and MCL1 expressions of monocyte-derived DC from 11 patients with LCH by flow 

cytometry. As documented by lines that did not cross on the figure (Figure 3B), the better the 

DC survived, the more they expressed BFL1. We previously documented that IL-17A is 

expressed by DC and MGC inside LCH lesions.4 We hypothesized that some pathogenic DC 

from LCH lesions may come from accumulation of CD1a+ BFL1+ monocyte-derived DC that 

survive long-term under the influence of IL-17A. We looked for intralesional BFL1 

expression with double staining (CD1a, BFL1) on LCH tissue sections from two patients (P7, 

P8) (Figure 3 C-D). In both cases, green color stained CD1a+ DC and red color stained 

BFL1+ cells. Zoom showed that CD1a and BFL1 were co-expressed in DC, at the membrane 
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and in the cytoplasm, respectively (Figure 3C). Strikingly, the BFL1 staining delineated LCH 

lesions better than CD1a (Figure 3D) and was expressed not only by CD1a+ DC but also by 

MGC (asterisk) and CD1a myeloid cells inside the granuloma. 

This is the first demonstration that monocyte-derived DC from LCH patients as well 

as aggressive DC accumulated in LCH lesions, actually strongly express BFL1, an unusual 

pro-survival Bcl2 family member for the myeloid cells. 

BFL1-expressing dendritic cells develop chemoresistance 

BFL1 is known to confer chemoresistance in B cell leukemia.20 Therefore, we next 

investigated the ability of drugs to affect BFL1+ DC and MGC survival. IFN-γ was added to 

increase MGC formation, as previously documented4. We evaluated the resistance of IL-17A 

and IFN-γ-treated DC from healthy donors to chemotherapy agents targeting glucocorticoid 

receptors, calcineurin, DNA synthesis, topoisomerase II or microtubules (Figure 4A). At 

optimal culture conditions, we observed no cytotoxic effect of four glucocorticoids, 

fludarabine or etoposide, and unexpected pro-survival effects of dexamethasone, both 

calcineurin inhibitors, 6-mercaptopurine and methotrexate. Cyclosporine A has been 

clinically evaluated in LCH and was ineffective.21 On the contrary, 2CdA, AraC, cisplatin 

(CIS), doxorubicin (DOX), VBL and vincristine (VCR) killed cytokine-stimulated DC. VBL 

and DOX were effective already at four hours, VCR and CIS at 24 hours, and AraC and 

2CdA at 72 hours (Figure 4B). Dose response studies showed that CIS, DOX and 2CdA 

killed only at high doses, exceeding the therapeutic doses (Figures 4 C-D, H) while, 

interestingly, VBL, VCR and AraC killed at low doses (Figures 4 E-G). We observed that 

24h of pre-incubation with the cytokines facilitated DC killing by CIS while, conversely, it 

protected DC from death induced by low doses of VBL or AraC. Altogether, these data 

demonstrate that IL-17A and IFN-γ-stimulated DC are chemoresistant to 11 of the 17 

chemotherapy agents tested but highly sensitive to VBL and AraC, at concentrations used in 

clinical settings. 

 

Anti-IL-17A neutralizing antibodies increase chemosensitivity of dendritic cells from 

patients with Langerhans cell histiocytosis 

High but not low doses of VBL strongly decreased MCL1 expression and survival 

(Figure 5A) of IL-17A and IFN-γ-treated healthy DC. As expected, we also documented that 

VBL disorganized microtubules (data not shown). VBL did not affect BFL1 expression. 

Therefore BFL1 alone is unable to maintain healthy DC alive. We studied survival, MCL1 
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and BFL1 expressions of monocyte-derived DC from 11 patients with LCH. In the attempt to 

mimic current LCH therapies, we also added VBL. High doses of VBL decreased MCL1 

expression and killed the DC (Figure 5B), while BFL1 expression was not affected. DC from 

one patient (P5) were resistant to high doses of VBL. Working with sub-lethal doses of toxic 

compounds, we added anti-IL-17A neutralizing antibodies, in vitro. As measured by flow 

cytometry, we observed that addition of anti-IL-17A alone impaired LCH DC survival and 

strongly decreased BFL1 expression (Figure 5C). Combination of VBL to anti-IL-17A 

neutralizing antibodies offered the best conditions to kill LCH DC, in vitro. We found similar 

results with the combination of AraC and 2CdA, the salvage therapy used in LCH. 

Interestingly, addition of anti-IL-17A biotherapy overcame the VBL resistance of patient P5. 

In Figure 5D, we calculated the specific anti-IL-17A-dependent cytotoxicity for each of the 

11 patients. Anti-IL-17A licensed DC killing with sub-optimal doses of chemotoxic 

compounds and adding VBL was statistically more efficient than AraC and 2CdA.  

As a conclusion, the combination of moderate chemotherapy with inhibition of IL-17A 

activity so far appears to be the best solution to kill DC from LCH patients, in vitro.  
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DISCUSSION 

We demonstrated that while MCL1 sustains a 2-day-short DC lifespan, additional 

BFL1 expression induced by IL-17A increases DC lifespan beyond 14 days. Monocyte-

derived DC from patients with LCH, as well as DC and MGC in LCH lesions, abnormally 

constitutively express BFL1. This extended survival of DC and MGC is also associated with 

resistance to most chemotherapy agents. They are nevertheless sensitive in vitro to VBL and 

AraC, two drugs revealed by clinical studies to be effective in LCH. The blockade of IL-17A 

activity results in a dramatic increase of VBL efficacy to kill LCH DC, in vitro. These 

findings help in the understanding of LCH and may provide the rationale for novel therapeutic 

approaches, targeting IL-17A, to be considered for future clinical trials. 

 

Nuclear translocation of NF-κB provides the basis for up-regulation of BFL1 by 

dendritic cells in response to IL-17A 

When IL-17A interacts with its receptor chain IL-17RA, Act1 and TRAF6 are 

recruited and further activate NF-κB (reviewed in22). In mastocytes, NFAT1 is alternatively 

used downstream IL-17RA.23 We studied translocation of RelA because NFAT1 mRNA was 

undetectable in the transcriptomes of IL-17A-stimulated DC, and among the five NF-κB 

proteins known in mammals, only RelA was expressed. Furthermore, a RelA responsive 

element is located in the promoter of BCL2A1 gene and positively regulates BFL1 

expression.19 We demonstrate that NF-κB is activated downstream IL-17A-stimulation in DC 

and activates BCL2A1 transcription, as assessed by the shut off operated by NF-κB inhibitor. 

Thus, nuclear translocation of NF-κB provides the basis for up-regulation of BFL1 by IL-17A 

in DC. 

 

Towards a monocytic origin for dendritic cells in Langerhans cell histiocytosis 

In 2008, we proposed that LCH is a DC-related disease rather than an LC-related 

disease. We designed a model for LCH pathogenesis where monocyte-derived DC drive LCH, 

then leading to an uncontrolled accumulation process of long-term surviving aggressive DC, 

resistant to apoptosis4. This may explain why LCH lesions include various myeloid cells: 

mostly DC of the CD1a+ families as Langerhans cell and monocyte-derived DC, but also 

macrophages. Monocytes may provide a continuous large source of DC precursors thus 

suggesting how sometimes large granulomatous LCH lesions are built in a very short time by 

their recruitment.  
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Following analysis of phenotype (IL-17A, mixed macrophage–DC markers, MMP-9 

and MMP-12) and DC fusion, we have also proposed that IL-17A combined to IFN-γ is a 

potential driver of LCH-associated pathology. 

To advance on the biology of LCH DC, we decided to study expression of the Bcl2 

family molecules, in parallel with survival and chemoresistance of LCH DC. Interestingly, 

BFL1, a pro-survival member, was induced by recombinant IL-17A in healthy DC and 

constitutively produced by LCH DC. The molecule that stimulates BFL1 expression in LCH 

DC was blocked by the neutralizing anti-IL-17A antibody from e-biosciences 

(eBio64CAP17). This molecule may come from canonical but possibly transient or unstable 

human IL-17A mRNA; alternatively, it is transcribed from a different (genetically mutated or 

infection-derived) sequence encoding an IL-17A-receptor binding domain. BFL1 provides a 

new molecular link between monocyte-derived and lesional DC in LCH. This observation is 

consistent with the involvement of monocytes as lesional DC precursors. 

 

Reconciliation of malignancy and reactive immune response as the etiology of 

Langerhans cell histiocytosis  

Although BFL1 expression and survival are correlated as a function of IL-17A 

concentration in healthy DC, other signals may increase DC lifespan, in vivo. In addition, 

expansion of the DC number may be related to other processes than the increase of the DC 

lifespan in some LCH patients. A high prevalence of a single BRAF missense mutation has 

been identified in LCH lesions of half of the patients studied25. The authors suggested an 

inhibition of the RAF pathway as a treatment option. This finding awaits validation but is 

interesting because the BRAF pathway is used downstream of receptors of cytokines such as 

M-CSF or GM-CSF, expressed at the DC surface.26,27 The association of IL-17A signaling 

and the MAP pathway activation closely resembles a co-treatment of DC by IL-17A and GM-

CSF, which is a powerful cytokine combination to greatly expand DC, as recently 

demonstrated in mouse, in vivo.28 

 

Refining therapy of Langerhans cell histiocytosis by a combination of vinblastine 

chemotherapy and anti-IL-17A biotherapy 

By targeting LCH DC survival with chemotherapy agents, we could not achieve a 

complete DC apoptosis: at least 6% of the DC survived. This finding might be related to the 

high frequency of reactivation of LCH in patients with multisystem disease despite that they 

had a good response to the current standard chemotherapy regimens.29 Although anti-IL-17A 
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biotherapy alone was less efficient than chemotherapy agents, the combination of 

chemotherapy and anti-IL-17A biotherapy synergized in achieving DC killing, in vitro. Our 

work provides clues to approach the mechanisms of VBL-induced DC death in LCH. VBL 

was first known as an agent targeting the microtubule network, increasing the ratio between 

free tubulin fragments and the centrosome anchored, polymerized tubulin forming 

microtubules.30 Interestingly, recent results documented other activity of two microtubule-

targeted agents: VCR and Taxol.31 In response to these toxic compounds, kinases 

phosphorylate MCL1, thus licensing the recruitment of an ubiquitine-ligase complex that 

degrades MCL1 and induces cell death. We actually found that VBL, whose formula is close 

to VCR, also decreases amount of MCL1 when DC are killed. 

Most LCH reactivations occur in patients soon after completion of 6-12 months of 

standard VBL therapy, possibly suggesting that a minority of pathogenic DC may escape 

VBL-mediated killing, as in cancer cell lines32. The combination of AraC and 2CdA is 

effective as a rescue therapy for patients with LCH refractory to steroids and VBL. However, 

this therapy is associated with a life-threatening toxicity in children. BFL1 expression was not 

impaired by these toxic compounds. Adding anti-IL-17A biotherapy to VBL let us target both 

MCL1 and BFL1 leading to the most powerful BFL1+ DC death, in vitro. Our interpretation is 

that (i) MCL1 is required for short-term DC survival but unable to sustain DC survival longer 

than 48h ; (ii) BFL1 is required for long-term DC survival, in parallel with MCL1. This would 

explain why it is possible to recover LCH DC death by inhibiting BFL1 expression with anti-

IL-17A antibodies and why it is so efficient to combine toxic compounds degrading MCL1 

with anti-IL-17A antibodies preventing BFL1 induction. The role of other molecules in 

induction of BFL1 in LCH should also be investigated further.13 

In conclusion, data obtained with LCH DC and human in vitro models of primary DC 

cultures offer interesting hints to devise novel therapeutic strategies for LCH patients. Our 

work supports the view that accumulated DC, which are the effectors for tissue damage in 

LCH and express BFL1 could be targeted by the combination of lower VBL chemotherapy 

and neutralization of IL-17A binding domain with anti-IL-17A biotherapy, now in preclinical 

development, internationally, for use in inflammatory diseases. Alternatively, development of 

BFL1 inhibitors may provide a future treatment opportunity. 
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TABLE 1. Main features of the patients with Langerhans cell histiocytosis. 

Case 

Sex / Age 
at 

diagnosis 
Organs involved during 

disease course 
LCH chemo-immunotherapy 

Received Age at study 
Disease activity 

at evaluation 

Disease 
activity 
class¤ 

Ongoing LCH 
chemo-

immunotherapy at 
samplings Sequelae 

1 
(ab) 

M / 6 yr Bone*, ears*, pituitary*, 
skin, nd 

Local (extirpation) + VBL + 
CST + 6-MP + MTX  

2CdA  6-MP + MTX + 
CST 

18  20 yr AD, chronic 2  1 6-MP + MTX + 
CST  

6-MP + MTX 

Panhypopituitarism 
CNS-ND 

2 
(ab) 

M / 4 yr Bone*, pituitary*, nd Local (steroids) 13  15 yr NAD, sequelae 0 None DI, GHD 

3 M/ 14 mo Bone*, skin*, spleen* VBL+CST  2CdA +ARAC 24 mo NAD 0 None None 
4 F / 2 mo Skin*, spleen Local (steroids) 

 VBL + CST + 
6-MP + MTX 

6 yr AD, chronic 1 6-MP + MTX None 

5 F / 5 mo Bone*, skin, spleen, liver, 
bone marrow, thym, 

pituitary, nd 

CST  
VBL + MTX + 6-MP  

Etanercept + 2CdA + IVIG 
 

VBL + 6-MP + MTX + CST 
 6-MP + CST  VBL 

11 yr AD, Chronic 2 None DI, GHD, 
CNS-ND 

6 M / 2.4 yr Bone*, mm, lungs, 
pituitary 

VBL + CST 2.6 yr AD, better 1 VBL + CST DI 

7 M / 19 yr 
 

Bone * untreated 19 yr 
 

Active 2 None 
 

Walking 
impairment 

8 F / 4 yr Bone* None 5 yr NAD 0 None None 
9 M / 8 m Skin*, lymph node*, 

liver*, ears*, spleen, bone 
marrow, intestines, bone 

VBL+CST, MTX, VP-16  
2CdA +ARAC  

VBL+MTX+6-MP+CST  
MTX+6-MP 

5 yr AD, better 2 6-MP + MTX None 

10 M / 2.8yr Skin* untreated 2.8yr Active, diagnosis 2 None  
11 M / 3 yr Bone* VBL + CST 3.6yr AD, better 1 VBL + CST  
12 F / 7.6yr Bone* untreated 7.6yr Active, diagnosis 2 None  
13 M / 2 yr Bone* VBL + CST 3 yr AD, better 2 VBL + CST None 

2CdA, Cladribine; 6-MP, 6-mercaptopurine; AD, active disease (persistence of signs and symptoms; no new lesions); ARAC, cytarabine; Chronic, Chronic disease; CNS-ND, symptomatic CNS 
neurodegeneration; CST, corticosteroids; DI, Diabetes insipidus; GHD, Growth hormone deficiency; IVIG, intravenous immunoglobulin; local, local corticosteroid injection; Mm, mucous 
membranes; MTX, methotrexate; NAD, no active disease, resolution of all clinical signs and symptoms; nd, CNS involvement with neurodegeneration evidenced by MRI; Progression, 
progressive disease (progression of signs and symptoms and/or appearance of new lesions).; VBL, vinblastine; VP-16, etoposide;  second (or further) line treatment. Disease activity classes: 
, sampled two or three times, a, b and c; 0, resolution (no signs of active disease); 1, mild (regression of active disease or mild chronic disease; no hypoalbuminemia or ESR elevation); 2, 
moderate (moderately active disease; mild thrombocytosis, hypoalbuminemia, or ESR elevation); * indicates organ involved at diagnosis. 
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Figure Legends 

Figure 1. Study of the Bcl-2 family gene expression and immunocytology of p65 / RelA 

in monocyte-derived DC from healthy donors 

(A) Bcl-2 family mRNA relative expression in DC at day 0 (None) and after 12 days of 

culture with IL-17A or IL-17A and IFN-γ, transcriptome data representative of n = 3 donors. 

Left horizontal bar separates pro-apoptotic members (top) from pro-survival members 

(down). (B) Nuclear translocation of p65/RelA before and after 1h of IL-17A treatment on 

monocyte-derived DC from healthy donors. Right panel is a zoomed view of the left panel, 

representative of n = 3 donors. Scale bars, 10µm. (C) Dose response studies of IL-17A 

treatment (eight points from 2 to 0.016 ng/ml) on DC from three healthy donors. Mean 

fluorescence intensity (MFI) of MCL1 (all cells express MCL1) and percentages of BFL1 

intracellular expressions in DC, quantified by flow cytometry. 
 

Figure 2. Study of survival in parallel to MCL1 and BFL1 expressions in IL-17A and 

IFN-γ-treated DC from healthy donors 

(A) Kinetic study of DC survival with indicated cytokines, percentages of viable DC were 

quantified by TRAP/ Hoechst staining. Mean and SD of n > 5. (B, C) Dose response studies 

of IL-17A treatment (eight points from 2 to 0.016 ng/ml) on DC from three healthy donors. 

(B) Percentages of DiOC6
+PI– viable DC at day 7 relative to day 0, quantified by flow 

cytometry. (C) Two parameter polynomial statistical analysis of the three couples of data 

measured for each value of IL-17A concentration (Figure 1C and 2B) : percentages of BFL1+ 

DC and viable DC (left) or MCL1 intensity and viable DC (center) or MCL1 intensity and 

percentages of BFL1+ DC (right) were plotted as x and y, respectively. The equations of the 

statistical curves of tendency (left) are: donor A, y= -0.0023x2+0.7211x+0.3834; donor B, y= 

-0.0041x2+0.8444x+1.0192; donor C, y= -0.0024x2+0.4677x+0.9366 with a correlation factor 

of 0.9975, 0.9937 and 0.9789, respectively. 
 

Figure 3. Study of the Bcl-2 family gene expression, survival, MCL1 and BFL1 

expressions in monocyte-derived and lesional DC from patients with LCH 

(A) Bcl-2 family mRNA relative expression in monocyte-derived DC at day 0 from three 

LCH patients (p1a, p2a, p3) and one healthy donor representative of n = 4. Left horizontal bar 

separates pro-apoptotic members (top) from pro-survival members (down). (B) DC survival 

(DiOC6
+ PI– viable DC at day 7 relative to day 0), percentages of BFL1 intracellular 

expression and MFI of MCL1 expression in DC from 11 LCH patients (p1b, p2b, p4-p13), 

quantified by flow cytometry. (C, D) Representative confocal microscopy images of 



 

94 
 

immunofluorescence staining of bone lesions from patients (C) p8 and (D) p7 with LCH. 

CD1a (DC, green) and BFL1 (red) are stained. * indicates MGC. Scale bars, 50µm (5 x 

10µm), n = 3.  
 

Figure 4. Chemoresistance of IL-17A and IFN-γ-treated DC from healthy donors in the 

presence of 17 chemotherapy agents  

(A-H) DiOC6
– PI+ dead cells were quantified by flow cytometry. Percentages of dead DC 

relative to day 0 were calculated at 4 h, 24 h or 72 h. (A) In gray, untreated monocyte-derived 

DC cultured 72 h in medium alone. In black, IL-17A and IFN-γ-stimulated DC cultured with 

or without chemotherapy agents. Results of the screening are presented at optimal killing 

effect (see the “Design and method” section for full names of toxic compounds and optimal 

dose) then (B to H) detailed results are shown for the six toxic compounds that killed 

cytokine-stimulated DC. (B) Kinetic study at optimal concentration according to C to H. 

Mean of a triplicate experiment representative of n = 3, SD were below 10%. (C to H) Dose 

response study at optimal time, 24 or 72 h after addition of toxic compounds, according to B. 

Toxic compounds were added in DC cultures either concomitantly (black) or 24 h later (gray, 

preincubation) stimulation with IL-17A and IFN-γ. Mean and SD of a triplicate experiment 

representative of (A) n = 5, (C to H) n = 3. p-values : #, not significant: *, significant P < 

0.05; **, very significant P < 0.01; ***, highly significant P < 0.001. 
 

Figure 5. Study of BFL1 and MCL1 expressions and survival of monocyte-derived DC 

cultured with toxic compounds and neutralizing anti-IL-17A antibodies 

 (A-D) “High” doses were 0.6, 40 and 3 µM of VBL, AraC and 2CdA, respectively. “Low” 

doses were ten time less. DC survival (DiOC6
+ PI– viable DC at day 7 relative to day 0), MFI 

of MCL1 and percentages of BFL1 intracellular expressions were quantified by flow 

cytometry in (A) IL-17A and IFN-γ -stimulated DC from healthy donors and in (B-D) DC 

from LCH patients. Intracellular stainings of MCL1 and BFL1 were measured 12h after toxic 

compound treatment, prior DiOC6
 PI staining which was performed at optimum death: 24h 

and 48h for VBL and AraC+2CdA, respectively. One symbol per patient; monocyte-derived 

DC from 11 LCH patients (p1b, p2b, p4-p13) were analyzed. (C, D) neutralizing anti-IL-17A 

or isotype control was added 24h before toxic compounds. (D) Specific anti-IL-17A-

dependent cytotoxicity was calculated with [survival without anti-IL-17A – survival with 

anti-IL-17A] / survival without anti-IL17A x 100 for each 11 patients from the data shown in 

(C). Bars represent the mean for all 11 patients. Statistical significance was determined by the 

Mann-Whitney test. *, significant P < 0.05; **, very significant P < 0.01. 
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Supplementary methods 

Affymetrix Genechip study, microarray analysis: 

Target labelling: Microarray analysis was performed using a high-density 

oligonucleotide array (Genechip human genome U133 Plus 2.0, Affymetrix, Santa Clara, CA, 

USA). Labeled target for microarray hybridization was prepared using the Genechip 

expression 3’ Amplification One-cycle target labeling (Affymetrix). Briefly, total RNA (2 

microg) was converted into double stranded cDNA with a modified oligo(dT)24-T7 promoter 

primer. After purification, cDNA was converted into cRNA and biotinylated using the IVT 

labeling kit (Affymetrix). Reaction was carried out for 16 hours at 37°C then at the end of 

incubation biotin-labeled cRNA was purified by the Genechip sample clean up module 

(Affymetrix). cRNA quantification was performed with a nanodrop and quality checked with 

the bioanalyzer 2100 (Agilent technologies, Inc, Palto Alto, CA, USA). 

Arrays hybridization and scanning: Hybridization was performed following 

Affymetrix protocol (http://www.affymetrix.com). Briefly, 20 microg of labeled cRNA was 

fragmented, mixed in hybridization buffer (50 pM control oligo B2, 1X eukaryotic 

hybridization controls, 0,1mg/ml Herring sperm DNA, 0.5 mg/ml BSA and 1x hybridization 

buffer, 10% DMSO for a total volume of 300 ul), denaturated during 5 minutes at 95°C and 

hybridized on chip during 16 hours at 45°C with constant mixing by rotation at 60 rpm in an 

Genechip hybridization oven 640 (Affymetrix). After hybridization, arrays were washed and 

stained with streptavidin-phycoerythrin (Invitrogen Corporation, CA, USA) in a fluidic 450 

(Affymetrix) according to the manufacturer’s instruction. The arrays were read with a 

confocal laser (Genechip scanner 3000, Affymetrix) and analyzed with GCOS software. 

Absolute expression transcript levels were normalized for each chip by globally scaling all 

probe sets to a target signal intensity of 500. The detection metric (presence, absence or 

marginal) for a particular gene was determined by means of default parameters in the GCOS v 

1.4 software (Affymetrix). Quality of RNA amplification and labeling were checked by using 

B.subtilis poly adenylated RNA spikes-in controls (Lys, phe, thr, dap) mixed to RNA sample 

before performing reverse transcription. Hybridization quality was checked by using E.coli 

biotinylated target (Bio B, BioC, BioD and CRE). Filtering of results was performed using 

Genespring ver 7.0 software (Agilent).  
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ABSTRACT 

In tuberculosis, granulomas are constituted by a collection of myeloid cells, including giant 

cells, surrounded by a ring of lymphoid cells. In humans, the mechanisms of granuloma 

formation and maintenance are largely unknown. We characterized the molecular profile of 

granulomas from ten tuberculosis patients. We detected the pro-survival Bcl-2 family gene 

BFL1, CCL20 and CCL2 in CCR6+CD68+ myeloid cells and GM-CSF and IL-17A in 

lymphoid cells. In vitro, we generated immature dendritic cells from monocytes with GM-

CSF and IL-4. IL-17A induced long-term survival, clustering and fusion of either GM-CSF-

treated monocytes or dendritic cells. IFN-γ only potentiated clustering and fusion without 

affecting survival. BFL1 induced by IL-17A correlated with long-term survival. CCL20 and 

CCL2 chemokine expression, induced by IL-17A, were mandatory for clustering and fusion, 

without affecting survival. Blocking CCL2 resulted in epithelioid morphology, suggesting 

that morphological changes, controlled by CCL2, authorized clustering and fusion. We show 

that in addition to GM-CSF, IL-17A potentially promotes tuberculosis granuloma 

maintenance through myeloid cell survival driven by the BFL1 gene, and through myeloid 

cell recruitment and fusion mediated by CCL20 and CCL2. These findings are at the interface 

of innate and adaptive immunity and will open novel strategies to control granuloma 

formation. 
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INTRODUCTION 

The hallmark of tuberculosis (TB) is the formation of granulomas consisting of 

accumulated immune cells under the control of chemokines which direct cell migration. 

Human TB granulomas are composed of a core made up of pauci-bacillary multi and 

mononucleated myeloid cells, referred to as Langhans and epithelioid cells, respectively.  A 

coat of lymphocytes and a tight external shell of fibroblasts surround this myeloid core. 

Chronic granulomatous responses will arise from antigens resisting immune elimination. And, 

if uncontrolled, can damage host tissues. Thus, it is crucial to understand the mechanisms how 

they are formed, maintained and resolved.  

Differences in the role granulomas play have been reported in several animal models: 

in the embryos of the inferior vertebrate Zebrafish, the early spreading of Mycobacterium 

marinum-infected macrophages from primary granulomas (Davis and Ramakrishnan, 2009) 

suggests that granulomas favor mycobacterial expansion and dissemination. Conversely, in 

mice, infected macrophages are retained within the granulomas (Egen et al., 2008) thus 

protecting the host from bacterial spreading (Flynn and Chan, 2001; Lawn et al., 2002; 

Ulrichs and Kaufmann, 2006). Likewise, in humans, disruption of TB granuloma by TNF-α-

neutralization induces reactivation of latent tuberculosis (Gardam et al., 2003), therefore 

demonstrating that granulomas control Mycobacteria. 

Scientists have identified that TNF-α, GM-CSF, IFN-γ and IL-17A control murine 

granulomas. TNF-α affects both formation and maintenance by inducing CCL5, CXCL9 and 

CXCL10 thus attracting T and myeloid cells (Algood et al., 2005; Bean et al., 1999; Kindler 

et al., 1989). GM-CSF or IFN-γ-deficient mice, infected by Mycobacterium tuberculosis 

(Mtb) cannot form granulomas and rapidly succumb (Cooper et al., 1993; Gonzalez-Juarrero 

et al., 2005). GM-CSF deficiency prevents induction of CCL4 and CCL5 while IFN-γ 

contributes to CXCL9 and 10 chemokine productions (Fenton et al., 1997; Gonzalez-Juarrero 

et al., 2005). IL-17A plays a critical anti-Mycobacterium role through the induction of 

granuloma formation and maintenance (Lockhart et al., 2006; Okamoto Yoshida et al., 2010; 

Umemura et al., 2007) and is known to induce production of CXCL9, CXCL10 and CXCL11, 

in vivo (Khader et al., 2007). 

Very little is known on the functional and sequential role of the chemokines in 

granuloma maintenance. Notably, CCR2-deficiency markedly impairs macrophage 

recruitment to sites of inflammation, inducing the mouse death early after infection with 100-
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fold more Mycobacteria in their lungs compared to wild-type mice (Peters et al., 2001a). 

However, mice lacking CCL2, a CCR2 ligand, form granulomas and control Mycobacterium 

infection, suggesting that additional ligands contribute to the macrophage recruitment (Kipnis 

et al., 2003; Vesosky et al., 2010).  

In humans, predisposition to Mycobacteria infections is associated to a deficient IL-12/ 

IFN-γ /Th1 axis (Casanova and Abel, 2002). Circulating Mtb-specific memory T cells express 

CCR6, the only known receptor for CCL20 (Acosta-Rodriguez et al., 2007b). Twenty per cent 

of these Mtb-specific CD4+ T cells produce IL-17A (Scriba et al., 2008), consistent with the 

identification of CCR6 as a marker for IL-17A-producing lymphocytes (Annunziato et al., 

2007). However, in situ detection and the role of GM-CSF, IL-17A and CCL20/CCR6 remain 

to be investigated in human TB chronic granuloma as well as the mechanisms ensuring 

myeloid cell survival. 

Here, we localized cells (CD3, CD68 and CCR6), cytokines (GM-CSF, IL-17A), 

chemokines (CCL20, CCL2) and the pro-survival protein BFL1, from the Bcl-2 family in the 

granulomas of ten TB patients. We determined that IL-17A was a potent inducer of BFL1, 

CCL20 and CCL2 in myeloid cells. We studied consequences on their survival, clustering and 

fusion. Altogether, our results support that GM-CSF combined with IL-17A maintain the 

human myeloid core of the TB granulomas by regulating BFL1, CCL20 and CCL2 

expressions of CCR6+CD68+ myeloid cells. 
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RESULTS AND DISCUSSION 

BFL1, CCL20 and CCL2 are expressed by myeloid cells in the heart of tuberculosis 

granuloma 

We performed immunostainings on granulomas from ten TB patients. The GM-CSF-

producing lymphoid cells (red, Fig. 1 A) localized in the T cell-rich granuloma periphery 

(Fig. 1 B, C, D red CD3). A T cell sub-population expressed CCR6 and IL-17A (Fig. 1 C-

inset white). In the myeloid heart of TB granuloma, mono- and multinucleated giant cells 

expressed the CD68 macrophage marker (Fig. 1 A brown, B green and E blue) and the CCR6 

chemokine receptor (Fig. 1 C, D blue). CD68+ mono- and multinucleated cells also expressed 

BFL1 (Fig. 1 B yellow) and CCL2 (Fig. 1 E light blue). The CCL20+ myeloid cells expressed 

CCR6 (Fig. 1 D light blue) but also co-expressed CCL2 (Fig. 1 F ~70% yellow) previously 

demonstrated to characterize CD68+ cells. Therefore, most of the myeloid cells express 

CD68, CCR6 and co-expressed the BFL1 survival protein, and the CCL20 and CCL2 

chemokines. 

First, this study revealed BFL1 expression in myeloid cells of TB granulomas. As 

other members of the Bcl-2 family, BFL1 regulates sensitivity to apoptosis by governing 

mitochondrial outer membrane permeabilization (Frenzel et al., 2009). Expression of this pro-

survival molecule is common in B cell lymphoma, but unusual in primary myeloid cells 

which only express the pro-survival member MCL1 at steady-state (Feuerhake et al., 2005; 

Monti et al., 2005). However, BFL1 can be induced by BCG in human monocytes (Kremer et 

al., 1997) and by the virulent Mtb strain H37Rv in a human monocytic cell line (Dhiman et 

al., 2007; Pattingre et al., 2005). Therefore BFL1 induction may result from Mtb infection. 

Secondly, we found a homogeneous phenotype between most of the mononucleated and the 

giant myeloid cells, suggesting that myeloid cells which undergo cell fusion inside TB 

granuloma express CCR6, CD68, BFL1, CCL20 and CCL2. 

GM-CSF combined with IL-17A licenses long-term survival and human myeloid cell 

fusion, in vitro 

We have previously demonstrated that DC undergo cell fusion in the presence of IL-

17A, whereas monocytes cannot (Coury et al., 2008). To further understand the role of GM-

CSF, IL-17A and IFN-γ in myeloid cell survival, clustering and fusion, independently of 

Mycobacterium stimulation, we purified human monocytes and generated immature DC in the 
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presence of GM-CSF and IL-4. Monocytes or DC were cultured for 14 days in the presence of 

none, GM-CSF, IL-17A, IFN-γ alone or in combination. DC underwent cell fusion in the 

presence of IL-17A (Fig. 2 A). When treated with GM-CSF, 20% of monocyte survived (Fig. 

2 B), contrary to IFN-γ or IL-17A alone. In GM-CSF-stimulated monocytes like in immature 

DC, IL-17A dose-dependently induced long-term survival, cell clustering and fusion (Fig. 2 

B-D). IFN-γ accelerated clustering which was visible at 4h (Fig. 2 A), but did not affect 

myeloid cell survival (Fig. 2 B). IFN-γ also increased the number of cell clusters (Fig. 2 C) 

and enhanced fusion efficiency (Fig. 2 D) without affecting the kinetics of the fusion process 

(data not shown). 

Murine myeloid cells within chronic Mtb granulomas highly express CD40, MHCII, 

CD11c and CD11b, which are markers typically expressed on DC (Ordway et al., 2005). 

Pathologists call the myeloid cells of TB granuloma: epithelioid cells, because their 

morphology resembles epithelial cells (Adams, 1976). In terms of phenotype, epithelioid cells 

co-express macrophage and DC markers. The control of Mtb replication realized by 

epithelioid myeloid cells is achieved in vitro by either monocytes or macrophages treated with 

GM-CSF (Denis and Ghadirian, 1990; Vogt and Nathan, 2011) or by DC, derived from 

monocytes in the presence of GM-CSF and IL-4 or IL-13 (Tailleux et al., 2003b). Moreover, 

a recent report confirmed that M-CSF, the cytokine used for canonical macrophage 

differentiation, in vitro, failed to control virulent Mtb contrary to GM-CSF (Vogt and Nathan, 

2011). Here we show that GM-CSF conditioned monocytes to respond to IL-17A, similarly to 

the DC. Overall, the biology of epithelioid myeloid cells appears closely related to DC or 

GM-CSF-treated monocytes regarding their ability not only to control Mtb growth, but also to 

undergo cell fusion in the presence of IL-17A and IFN-γ, two cytokines highly expressed in 

TB granuloma. 

IL-17A induces BFL1, CCL20 and CCL2 in human DC 

We studied the expression of BFL1, CCL20 and CCL2 in IL-17A-stimulated DC. 

Quantitative mRNA and protein detection established that IL-17A induced BFL1 in DC (Fig. 

3 A, B). IFN-γ did not affect BFL1 expression. We measured that exposure to IL-17A 

increased the percentage of BFL1+ DC in a dose-dependent manner (Fig. 3 C). We studied 

the statistical correlation between DC survival and BFL1 induction (Fig. 3 D). We found that 

the ability of DC to survive was statistically linked to BFL1 expression and in agreement with 

good (donors A and B) or moderate (donor C) response to IL-17A. 
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IL-17A signaling activates NF-κB (reviewed in(Chang and Dong, 2011)) and NF-κB 

p65 / RelA subunit is a known regulator of the BFL1 gene (D'Souza et al., 2004). In Mtb-

infected THP1 epithelioid cell line, BFL1 transcription occurs downstream of NF-κB nuclear 

translocation. Therefore myeloid cells in TB granuloma may receive two available signals to 

induce BFL1: Mtb detection (Dhiman et al., 2007) and IL-17A signal transduction. According 

to our results, induction of BFL1 may favor long-term survival of myeloid cells inside 

granulomas. 

In IL-17A-treated DC, the quantification of CCL20 and CCL2 chemokine expressions 

indicated early induction of ccl20 mRNA in the first 12 hours then decreased while ccl2 

mRNA increased (Fig. 3 E). Intracellular CCL20 and CCL2 proteins were detected by flow 

cytometry (Fig. 3 F) and immunocytology (Fig. 1 G) showing that CCL20 was induced by 

IL-17A stimulation contrary to our observation that CCL2 was already expressed in immature 

DC then up-regulated by IL-17A. This may explain the difference in chemokine secretions 

quantified by ELISA, showing much more CCL2 than CCL20 in supernatants of IL-17A-

stimulated DC (Fig. 3 G). The two chemokines were stored in distinct cytoplasmic vesicles 

(Fig. 1 G-inset). Their expressions and secretion, were not affected by adding IFN-γ (Fig. 3 

E, G). Overall, IL-17A changed the phenotype of BFL1─CCL20─CCL2+ immature DC in 

BFL1+CCL20+CCL2high myeloid cell, comparable to the main phenotype we previously 

observed in TB granuloma. 

The sequential induction of ccl20 then ccl2 mRNA may orchestrate the anti-

Mycobacterium immune response. Contrary to CCL2/CCR2, little knowledge is available 

concerning the role of CCR6 and its ligand CCL20, in Mycobacterium infections. CCL20 

production has been documented in TB patients (Lee et al., 2008). In mice, following 

intratracheal infection with BCG, CCL20 was induced during the early innate stage of 

infection (Stolberg et al., 2011), maybe in agreement with the IL-17A production by γδ T 

cells (Umemura et al., 2007). In sarcoidosis, another disease with structured granulomas, 

CCL20 is also expressed by epithelioid and multinucleated cells infiltrating the granulomas, 

surrounded by IL-17A-producing T cells (Facco et al., 2007; Facco et al., 2011). It would be 

interesting to quantify CCL20-expressing mono and multinucleated myeloid cells in 

Mycobacterium-infected IL-17A-deficient mice and in IL-17A-transgenic mice which 

spontaneously form multinucleated myeloid cells in lungs after three month of age (Park et 

al., 2005). 
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CCR6 is expressed by myeloid immature DC, mature B cells and subpopulations of 

memory/effector T cells (Kucharzik et al., 2002). Intratracheal infection of CCR6-deficient 

mice with BCG recently established that, despite its purported role in DC function, CCR6 was 

not required for the establishment of T cell-mediated adaptive immunity against Mycobacteria 

: the CCR6-/- mice eliminate BCG. However, in these mice, an impaired early stage 

mycobacterial clearance was observed and associated to a 90% decrease in the recruitment of 

CD1d-restricted T cells known as iNKT cells (Stolberg et al., 2011), which provided innate 

resistance to Mtb (Sada-Ovalle et al., 2008). Thus, murine data only established a role of 

CCL20 in the early phase of Mtb infection. But murine granulomas are not structured like 

human granulomas and the CCL20/CCR6 co-expression we observed in myeloid cells 

suggests an original role for this interaction in the TB granuloma cohesion. 

IL-17A-dependent expression of CCL20 and CCL2 are necessary for DC clustering and 

fusion 

To evaluate the respective role of CCL20 and CCL2 in IL-17A-dependent survival, 

clustering and fusion, we conducted inhibitory assays using neutralizing antibodies on DC 

cultured with IL-17A and IFN-γ. Isotype control antibodies had no effect on the previous 

documented observations. Blocking CCL20 and CCL2 did not impact on the number of viable 

cells (Fig. 4 A, B). However, CCL20 inhibition prevented clustering and giant cell formation 

(Fig. 4 C, D). In addition, CCL2 blockade not only inhibited DC fusion, but also reproducibly 

modified the DC morphology which became elongated (Fig. 4 F, A, E). However, when we 

treated DC with recombinant CCL20 and/or CCL2, DC clustering occurred without cell 

fusion (data not shown). This indicated that additional unknown molecular modifications, 

under the control of IL-17A are mandatory for the fusion process. Therefore both CCL20 and 

CCL2 are necessary but not sufficient to trigger IL-17A-dependent DC fusion. 

Early innate IL-17A production (Lockhart et al., 2006) may switch on CCL20 

secretion thus attracting available CCR6+ myeloid cells such as immature lung DC and 

memory IL-17A-producing T cells (Acosta-Rodriguez et al., 2007b; Khader et al., 2007; 

Scriba et al., 2008) (Fig. 5). Then IL-17A-mediated CCL2 secretion may recruit peripheral 

blood monocytes to differentiate into Mtb controller phagocytes in the presence of GM-CSF, 

IL-17A and IFN-γ. In vitro, we showed that a massive CCL2 production, driven by IL-17A, 

regulates myeloid cell morphology, favoring clustering and fusion. Thus, intra-granuloma IL-

17A-dependent CCL2 production may represent an important player in the maintenance of 
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human granulomatous structure as well as CCL20 which is also maintained, in vivo, in 

chronic TB granuloma. In mice, IL-17A drives mature granuloma formation (Umemura et al., 

2007) while IFN-γ-producing Th1 cells limit the IL-17A-producing T cell population and the 

subsequent myeloid cell recruitment, granuloma size and granulomatous immunopathology 

(Cruz et al., 2010; Cruz et al., 2006). IFN-γ also inhibits IL-17A production by human 

peripheral blood mononuclear cells of TB patients (Scriba et al., 2008). Therefore, in parallel 

to its role in stimulation of phagocyte microbicidal activities, IFN-γ may limit granuloma size 

and number while potentiating cell fusion of BFL1+CD68+CCR6+CCL20+CCL2+ long-term 

surviving epithelioid cells. 

As previously discussed, the crucial role of CCR2, the early impact of CCR6 and the 

redundant role of CCL2 have been documented in murine Mycobacterium granuloma 

formation. However, analysis of CCR6 expression inside granuloma is lacking in mouse 

models. For the first time, we document expressions of CCR6/CCL20 inside human TB 

granulomas and the requirement of IL-17A-dependent CCL20 induction for in vitro myeloid 

cell clustering and fusion, thus opening new strategies to monitor granuloma maintenance. 

Another myeloid cell fusion process is under the control of M-CSF and RANKL to form the 

physiological giant bone-resorbing cell called osteoclasts (Gallois et al., 2010; Rivollier et al., 

2004b). IL-17A up-regulates RANKL production by murine osteoblasts thus promoting bone 

resorption following overproduction of osteoclasts (Kotake et al., 1999). Conversely, IFN-γ 

completely abrogates osteoclast formation (Takayanagi et al., 2000) and GM-CSF blocks 

RANKL-induced CCL2 expression and osteoclast formation (Kim et al., 2005). CCL2 is a 

common secondary messenger for cell fusion to generate osteoclasts as well as IL-17A-

dependent giant myeloid inflammatory cells. Thus CCL20 but not CCL2 blockers may 

represent interesting therapeutics in granulomatous diseases to decrease inflammatory 

granulomatosis without lowering physiological osteoclastogenesis. IFN-γ inhibition is 

harmful in Mycobacterium infection. We ignore if deficiency in GM-CSF or GM-CSFR could 

account for Mycobacterium sensitivity in humans as is the case in mice. Finally, in 

granulomatous diseases, blocking IL-17A appears the best strategy to limit tissue damages. 
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MATERIALS AND METHODS 

Tuberculosis tissue samples  

We selected formalin-fixed, paraffin-embedded tissue of lung (n=5), pulmonary lymph node 

(n=4) and pleura (n=1) from 10 Tuberculosis patients (Centre Hospitalier Lyon Sud, France). 

Diagnosis of Mtb infection was confirmed by culture and genome PCR detection. Sections 

were routinely stained with haematoxylin-phloxine-safran to identify granuloma area 

including giant cells. The local ethics committees (Research Committee for the Hospices 

Civils de Lyon) approved this study, informed consent were obtained from each subject for 

the research use of their biopsy. 

Reagents. To perform flow cytometry, we purchased the following antibodies from Becton 

Dickinson : PE-CD1a (HI149), FITC-CD3 (UCHT1), FITC-CD14 (M5E2), PE-CD196 

(CCR6) (11A9), PerCP-Cy5.5-MHC II (HLA-DR) (G46-6), from R&D Systems: PE-CCL20 

(67310) and IL-17A (41802) and from Beckman Coulter : isotype controls. To perform 

biological assays, we used anti-human CCL20 (MAB360, R&D System) and anti-human 

CCL2 (500-P34, Peprotech). Recombinant human M-CSF, GM-CSF, IL-4, IL-17A, IFN-γ, 

CCL2 and CCL20 were purchased from PeproTech.  

Immunochemistry, triple colour immunofluorescence and confocal microscopy 

4-µm paraffin-embedded TB biopsies were cut, deparaffinized and subjected to heat-mediated 

antigen-retrieval in a microwave using citrate buffer (10mM, pH6.0). The tissue sections were 

incubated 30 minutes in PBS-1% BSA with 3% human serum to block Fc receptors. For 

immunochemistry, primary monoclonal biotinylated antibodies directed against CD68 (clone 

KP1, Dako) were detected with avidin-peroxidase revealed by its substrate, the 

diaminobenzidine (Serotec), which gives a brown color to the positive cells, counterstained 

with Mayer’s hematoxylin.  For immunofluorescence, we incubated tissue sections overnight 

at 37°C  with primary antibodies to CD68 (KP1, 2 µg/ml) and CD3 (A0452, 12 µg/ml) from 

DAKO, to GM-CSF (FL-144, 4 µg/ml) from Santa Cruz, to BFL1 (3401-100, 4 µg/ml) from 

Biovision and to CCR6 (53103, 25 µg/ml), IL-17A (41802, 10 µg/ml), CCL20 (67310.111, 

10 µg/ml), and CCL2 (23002, 25 µg/ml) from R&D Systems or to isotype controls (mouse 

IgG1 X0931 from DAKO, mouse IgG2b MOPC-195 from Immunotech-Beckman Coulter and 

rabbit IgG (AB105-C from R&D Systems). After three washes in PBS-1% BSA, detection of 

the primary antibodies was performed with isotype-specific secondary Alexa Fluor 488, 546 
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and 647-conjugated antibodies (Invitrogen) at 10µg/mL for 30min. After 3 washes in PBS-

1%BSA, the sections were mounted using Mowiol and then analyzed by confocal microscopy 

using a Carl Zeiss MicroImaging Inc. LSM 510 confocal microscope. 

Cells: cells cultured in Lab-Tek Chamber Slide™ System were first fixed for 20 minutes with 

2% paraformaldehyde in PBS. Epitope retrieval was performed twice in 0,1% glycine for 10 

minutes each time. Cells cultured were permeabilized with 0.1% Triton X-100 in PBS for 5 

minutes then stained for CCL20 and CCL2 as described above. 

Monocyte purification and dendritic cell differentiation. 

Blood was obtained from healthy adult volunteer donors (Etablissement français du 

sang, Lyon Gerland, France). CD14+ monocytes were purified (>95% CD14+) from the 

peripheral blood by ficoll and percoll gradients, followed by negative magnetic depletion of 

cells expressing CD3 or CD56 or CD19. HLA-DR+low CD1a+ CD83– immature monocyte-

derived DC (>98%) were generated, in vitro, after 6 days of monocyte culture seeded at 

0,8.106 cells/mL with 50 ng/ml GM-CSF and 500 U/ml IL-4 (Rivollier et al., 2004b) in RPMI 

1640 (Gibco) supplemented with 10 mM Hepes (N-2-hydroxyethylpiperazine-N’-2-

ethanesulfonic acid), 2 mM L-glutamine, 40 µg/mL gentamicin (Gibco), 10% heat-inactivated 

FCS (Boehringer Mannheim) 

Cell culture, giant cell formation, time lapse study, cluster counts, TRAP assay and 

Hoechst DNA staining 

DC were seeded at 4800 cells/mm2 in RPMI supplemented with 10% FCS, 2 mM L-

glutamine, 10 mM HEPES, 40 µg/mL gentamicin, in the presence of IL-17A (2 ng/mL) 

without or with IFN-γ (2 ng/ml). Cytokines were added at the beginning of the culture and 

then replenished every week. We added neutralizing antibodies at indicated concentrations. 

For time lapse study, the plate was placed at 37°C and heated in a 5% CO2 atmosphere and 

cells were imaged by Metamorph software v6 with a Coolsnap HQ monochrome camera 

associated with a time lapse microscope (Axiovert 100 M) and a 10× (numerical aperture, 

0.25) Plan-Apochromat objective (Zeiss). Meta Imaging Series 4.5 (Universal Imaging, West 

Chester, PA) was used to make Quick-Time movies from image stacks from metamorph 

software. One picture was made every 10 min for 96h, and every second of movie represents 

235.4 min (3.92 h) of culture. Images extracted from stacks were processed with Adobe 

Photoshop 6.0 (Adobe Systems, San Jose, CA). Cell clusters (strictly bigger than 50 nm) were 
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counted at day 5 with Image_J freeware. At day 12 of culture, TRAP (tartrate resistant acidic 

phosphatase) activity was assessed using the Leukocyte acid phosphatase kit (Sigma-Aldrich). 

DNA of the nuclei were then stained with 10 μg/mL of Hoechst 33342 (Sigma) for 30 min at 

37°C. The staining was fixed with 1% formol. Counts were made of the total number of 

nuclei and the number of nuclei included in giant cells (strictly more than two nuclei) to 

calculate the percentage of nuclei included in giant cells among total nuclei which quantifies 

the fusion efficiency. Culture and TRAP/hoechst pictures were analyzed using a Leica 

DMiRB microscope equipped with x40/0.30 NA or x40/0.55 NA objective lenses (Leica) a 

Leica DC300F camera and the Leica FW400 software. 

Flow cytometry quantification of viable versus dead cells 

DiOC6(3) (3,39-diexyloxacarbocyanine)-propidium iodide (PI) double staining was 

performed to detect apoptotic cells by flow cytometry until day 7 of culture. Cells were 

incubated 15 min at 37°C with 40nM DiOC6 (Molecular Probes) in culture medium to 

evaluate mitochondrial transmembrane potential (ΔΨm). Viable cells have stable ΔΨm 

whereas ΔΨm decreases with cell commitment to apoptosis. PI (0.5 µg/ml) was added before 

FACS analysis of the cells and incorporates into DNA of dead cells whose membrane is 

permeabilized. Living cells remain DiOC6
+PI– whereas apoptotic cells are DiOC6

–PI+. Cells 

were numbered by a time-monitored flow cytometry analysis during 2 min at high speed (1 

µl/s). 

Real-time quantitative PCR 

Total RNA from 2 millions of cells was extracted using Trizol® (Invitrogen) and 

RNeasy Mini Kit® (Qiagen) to reach an RNA integrity number >9 with Agilent bioanalyzer. 

RT-PCR reactions were performed with SuperScript® II Reverse Transcriptase (Invitrogen). 

One µg total RNA was reverse-transcribed using oligo(dT)12-18 Primers (Invitrogen). For 

expression studies, 25ng of cDNA were amplified in Stratagene Mx3000P apparatus (Agilent 

Technologies), using the QuantiTect® SYBR®Green PCR Kit (QIAGEN). Primer sequences 

were as follows: BFL1/Bcl2A1, ACAGGCTGGCTCAGGACTATCT (forward), 

CTCTGGACGTTTTGCTTGGAC (reverse); GAPDH, CACCCACTCCTCCACCTTTGAC 

(forward), GTCCACCACCCTGTTGCTGTAG (reverse); Ccl2, QuantiTect® primers specific 

Hs_CCL2_1_SG QuantiTect Primer Assay (Qiagen) ;  Ccl20, QuantiTect® primers specific 

Hs_CCL20_1_SG QuantiTect Primer Assay (Qiagen) ; TBP, QuantiTect® primers specific 

Hs_TBP_1_SG QuantiTect Primer Assay (Qiagen). All samples were normalized to 
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expression of GAPDH or TBP. 
 

Western blot analysis 

Three millions of cells were harvested, sonicated and lysed 1h at 4°C with RIPA buffer 

(50mM Tris-HCl, pH7.5, 150mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 0.1% SDS, 

and 1mM DTT) containing protease inhibitor cocktail (Roche). Cellular debris were pelletted 

by centrifugation (10,000g 15 min at 4°C) and protein extracts (100µg per lane) were loaded 

onto a 12% SDS-polyacrylamide gel and blotted onto PVDF sheet (Bio-Rad Laboratories). 

Filters were blocked with 5% BSA in PBS/0.1% Tween 20 (PBS-T) for 2 h and then 

incubated over-night at 4°C with anti-BFL1, 0.9 µg/mL in PBS-T (rabbit polyclonal ab75887, 

Abcam). After three washes with PBS-T, filters were incubated 1 h with Biotin-conjugated 

goat anti-rabbit IgG, 2µg/mL in PBS-T, 5% BSA (Molecular Probes/Invitrogen). After three 

washes with PBS-T, filters were incubated 1 h with HRP-conjugated Streptavidin 

(StrepTactin-HRP, Bio-Rad Laboratories) dilution 1:50000 in PBS-T, 5% BSA. Detection 

was performed using Immun-StarTM WesternCTM Kit chemiluminescence system (Bio-Rad 

Laboratories). Actin staining was realized using a rabbit polyclonal anti-βActin from Santa 

Cruz (sc-130656, Santa Cruz). 

 

Flow cytometry intracytoplasmic staining 

Immunostaining of cells were performed in 1% BSA and 3% human serum-PBS, then 

quantified on a LSRII (Becton Dickinson) and analyzed using CellQuest Pro software. We 

used 2 µg/ml of primary antibodies to BFL1 (3401-100, 4 µg/ml) from Biovision and to 

CCL20 (67310.111, 10 µg/ml) and CCL2 (23002, 25 µg/ml) from R&D Systems then 

secondary antibodies to rabbit IgG (PE-F(ab’)2 111-116-144 from Jackson Immunoresearch) 

or to mouse IgG (PE-F(ab')2 goat, 115-086-062, Jackson Immunoresearch). For 

intracytoplasmic staining, we blocked the Golgi apparatus with BD GolgiStopTM, fixed and 

permeabilized the cells with the Cytofix/Cytoperm reagents according to procedures from the 

manufacturer (Becton Dickinson). 
 

Measurements of CCL2 and CCL20 secretions by ELISA  

CCL2 and CCL20 levels in cell culture supernatants were measured using commercial ELISA 

kits (PeproTech). Samples were run in triplicate. Results were analyzed by the Multiskan 

Spectrum Spectrophotometer with SkanIt Software 2.2 (Thermo Electron). 
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CCL2 and CCL20 blocking Experiments  

In vitro blocking assays of CCL2 and CCL20 were performed in 48-well cell culture plates at 

37°C with 5% CO2. Anti-human CCL2 or CCL20 or isotype controls were added at day 0 of 

culture. In addition to viability staining performed at day 7, cluster counts at day 5, cell 

fixation and TRAP/Hoechst staining at day 12 to calculate the fusion efficiency, we counted 

elongated cells revealed by using anti-CCL2: 100 nuclei were counted and the percentage of 

elongated cells was determined. 
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Figure 1 

Study of GM-CSF, CD68, CCR6, CD3, IL-17A, CCL20 and CCL2 in tuberculosis 

granuloma, ex vivo and CCL20 and CCL2 in human myeloid cells, in vitro 

(A-F) Representative confocal microscopy images of immunofluorescence stainings of 

tuberculosis granuloma (n=10). (A) GM-CSF (up left, red) and CD68 (brown) versus nuclei 

(blue); (B) CD68 (green) versus CD3 (red) or BFL1 (red), yellow stained CD68+BFL1+ 

myeloid cells; (C) CD3 (red) versus CCR6 (blue) and IL-17A (green), three times enlarged 

inset shows white triple stained cells; (D) CD3 (red) versus CCR6 (blue) and CCL20 (green), 

light blue stained CCR6+CCL20+ cells; (E) CD3 (red) versus CD68 (blue) and CCL2 (green), 

light blue stained CD68+CCL2+ cells; (F) CCL2 (red) versus CD3 (blue) and CCL20 (green), 

yellow stained CCL2+CCL20+ cells. (G) Representative confocal microscopy images of 

immunofluorescence staining of human monocytes or monocyte-derived DC at day 0 or 

stimulated 8 days with IL-17A +/- IFN-γ (n=3), seven times enlarged inset shows the storage 

of CCL20 and CCL2 in distinct intracytoplasmic vesicles. On all photos, bar scale length is 

50µm (5x10µm). * indicates giant cells. 
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Figure 2 

Video-microscopy study and quantification of survival, clustering and cell fusion of human 

monocytes versus dendritic cells treated with IFN-γ, GM-CSF, IL-17A or their 

combinations 

(A) Pictures extracted from a video-microscopy study at indicated time. DC were cultured in 

the presence of IL-17A with or without IFN-γ, bar scale length is 50µm (5x10µm), n = 4; (B-

D) Monocytes in white, DC in black and DC with IFN-γ in gray, were cultured with indicated 

cytokines, n = 5. Measurements of survival, clustering and fusion: mean +/- SD of (B) 

percentages of DiOC6
+ PI─ viable cells at day 7 relative to day 0, (C) counts of DC clusters 

(>50 μm diameter) at day 5, (D) fusion efficiency at day 12: cultures were fixed and 

TRAP/hoechst staining was performed to count the percentages of nuclei included in 

multinucleated giant cell versus the total number of nuclei. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

130 
 



 

131 
 

Figure 3  

Regulations of BFL1, CCL20 and CCL2 expressions by IL-17A in human dendritic cells 

 (A) mRNA levels of BFL1 gene measured by real-time PCR in DC at day 0 and day 2 after 

culture with IFN-γ or IL-17A or both. Mean and SD of duplicate of relative gene expression 

(compared with GAPDH) for one donor, representative of n = 3. (B) Western blot analysis of 

related BFL1 protein expression at day 5 (n = 4). (C, D) Dose response studies of IL-17A 

treatment (eight points from 2 to 0.016 ng/ml) on DC from three healthy donors. With flow 

cytometry (SD were below 1%), we measured (C) the percentages of BFL1 intracellular 

expressions in DC, and (D) the percentages of DiOC6
+ PI– viable DC at day 7 relative to day 

0. A two parameter polynomial statistical analysis of BFL1 intracellular expression versus 

viability, measured for each value of IL-17A concentration, defined the statistical curves of 

tendency For donor A: y=-0.0023x2+0.7211x+0.3834, donor B: y=-0.0041x2+0.8444x+1.019 

and donor C: y=-0.0024x2+0.4677x+0.9366 with the correlation factors 0.9975, 0.9937 and 

0.9789, respectively. (E) Kinetics study of ccl20 and ccl2 mRNA levels measured by real-

time PCR in DC with IL-17A +/- IFN-γ. Relative gene expression compared with TBP for 

one donor, representative of n = 3. (F) Flow cytometry analysis of CCL20 and CCL2 

intracellular expressions in IL-17A-treated DC at day 0 and 3, n = 3. (G) Quantification of 

CCL20 and CCL2 chemokine secretion by ELISA at day 0, 3 and 5 in supernatants of DC 

cultured with IL-17A +/- IFN-γ. Mean and SD of triplicate, representative of n = 3 donors. 
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Figure 4  

Regulations of survival, clustering, morphology and cell fusion following CCL20 or CCL2 

blockades in IL-17A and IFN-γ treated human dendritic cells 

 (A-F) DC treated with IL-17A and IFN-γ in the presence of none, isotype controls or 

antibodies directed against CCL20 or CCL2, as indicated on figures. (A) Photo cultures (top), 

cell fixation and TRAP/hoechst staining (bottom) at day 12. (B) Percentages of DiOC6
+ PI– 

viable DC at day 7 relative to day 0. (C) Counts of DC clusters (>50 μm diameter) at day 5. 

(D, F) Fusion efficiency at day 12. (E) Kinetics study of the number of elongated cells 

observed only in the presence of anti-CCL2. 

 

 

Figure 5  

Model for IL-17A-triggering of Giant Myeloid Inflammatory Cell formation in tuberculosis 

granuloma 

See associated comment in discussion. 
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INTRODUCTION  

The myeloid lineage is plastic as demonstrated by the ability of monocytes or 

macrophages to differentiate into dendritic cells (DC), and to monocytes or DC to 

differentiate into osteoclasts [1], the bone-resorbing myeloid multinucleated giant cells 

(MGC). We then documented that, despite significant differences between monocytes and 

DC, their derived OC are very similar [2]. We have previously described two pathways of DC 

fusion: the M-CSF and RANKL pathway that gives rise to OC formation [1] and the IL-17A-

dependent pathway, characterized in the rare disease Langerhans Cell Histiocytosis [3]. 

However, we ignore to which extend the IL-17A-dependent MGC are genetically different 

from previously characterized mono or multinucleated myeloid cells such as OC or 

Mycobacterium-induced MGC, as observed in tuberculosis (TB) granuloma or after myeloid 

cell infection by Mycobacterium tuberculosis (Mtb) or bovis strain Calmette-Guérin (BCG). 

DC are immune sentinels of the immune system that can detect danger signals which 

induce a mature phenotype including high expression of MHC-II molecules, CD80/86 co-

signal molecules and CD40. Immature DC exert innate immune functions, shared with 

monocytes or macrophages, such as phagocytosis and TRAIL-mediated innate cytotoxicity 

[4]. DC are characterized by their unique ability to activate naïve T cell proliferation. A 

function which can be evaluated by mixing alloreactive T cells with myeloid cells: they only 

proliferate in the presence of DC. When stimulated by a danger signal, immature DC residing 

in the periphery undergo a maturation program leading to their migration to the draining 

lymph nodes where they interact with naïve T cells. During this DC-T cell crosstalk, the 

maturation program is achieved when DC receive CD40L signal from activated T cells. As 

part of a mycobacterial infection, the CD40L membrane antigen and IFN-γ soluble cytokine, 

delivered by activated T cells, are essential for granuloma formation that effectively controls 

Mycobacterium infection. 

We previously demonstrated that IL-17A and IFN-γ are expressed in TB granuloma 

(manuscript 2). We also documented that IL-17A controls survival, clustering and fusion of 

GM-CSF-stimulated myeloid cells. Long-term survival is under the control of IL-17A-

induced BCL2A1/BFL1, a pro-survival member of the Bcl-2 family molecules (manuscript 

1). DC fusion is conditioned by the recruitement of DC under the control of IL-17A-induced 

CCL20 and CCL2 chemokines (manuscript 2). However, the ability of IL-17A-dependent 

giant cells to control Mycobacterium growth is unknown. In this study, we compared the 

phenotype and functions of giant myeloid cell induced by IL-17A to the other mono and 

multinucleated myeloid cells and investigated their ability to control Mycobacterium avium or 
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BCG growth. These cells are original newly described effectors of the immune system that we 

call Giant Myeloid Inflammatory Cells. Moreover, we demonstrate that BCG but not 

Mycobacterium avium have adapted to replicate into GMIC, depending on the activatory 

signal they receive. 

 

RESULTS 

The Giant Myeloid Inflammatory Cell (GMIC): a new multinucleated effector coming 

from IL-17A-dependent dendritic cell fusion  

We purified peripheral blood monocytes of healthy donors and differentiated them 

into DC, in the presence of GM-CSF and IL-4. DC were cultured with either M-CSF and 

RANKL to generate OC or IL-17A-treatment with or without IFN-γ. We studied the intra- 

and extra-cellular tartrate-resistant acidic phosphatase (TRAP) activity as well as bone 

resorption function thank to functional test performed on bone slices. The MGC formed in 

response to IL-17A, with or without IFN-γ, had a very strong TRAP activity proportional to 

the pink/purple color of the enzymatic product accumulated after the TRAP activity assay 

(Figure 1a). Both intra-and extra-cellular TRAP activity were very high. Unexpectedly, these 

giant cells were unable to resorb bone (Figure 1b). 

We performed a transcriptomic analysis to compare the gene expression profiles of the 

IL-17A-treated DC to the following myeloid cells: monocytes, DC, OC derived from either 

monocytes or DC and BGC-induced giant cells. OC were formed at day 14 while BGC-

induced and IL-17A-dependent MGC number were stabilized at day 12. We calculated the 

correlation coefficients between transcriptomes, two by two. Transcriptome results are 

presented as scatter plots of mRNA intensities (Figure 1c) and a table of the respective values 

of correlation coefficients (Figure 1d). IL-17A activates an additional genetic program (of 

#2000 genes) to the transcriptome (#9000 gene transcribed) of untreated DC. This gene 

expression profile resulting from IL-17A treatment is barely affected by the addition of IFN-γ 

and is responsible for the formation of a new multinucleated effector, in the immune system, 

different from the OC as well as from monocytes or DC. Unexpectedly, the genetic program 

initiated by IL-17A in DC is almost identical (R = 0.99) to the one induced by BCG infection 

in DC. 

We finally searched in the transcriptome, differential molecular markers to identify the 

different myeloid cell types and we checked, at the protein level by immunocytofluorescence, 

the key differential molecules. IL-17A-dependent MGC were equipped with an original and 

rich enzyme profile, as demonstrated by the study of the cathepsin (CTS) and matrix 
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metalloprotease (MMP) families. IL-17A induced in DC a wide mRNA pannel of CTS and 

MMP, different from that of OC (Table 1). Confocal microscopy analyses identified that IL-

17A-dependent MGC produced increased MMP-12 and CTSD, compared with OC (Figure 

1e). By contrast, they synthesized MMP-9, CTSH, CTSS, CTSL and CTSK similarly as OC.  

These results demonstrate that IL-17A induces the formation of an original giant cell 

that we propose to call GMIC for Giant Myeloid Inflammatory Cells. GMIC genetic program 

is different from the ones of monocytes, DC, OC. GMIC differs from OC for their function 

but also expression of three key enzymes. OC are TRAP+ MMP-12–/low CTSD– bone resorbing 

giant cells while GMIC are TRAPhigh MMP-12high CTSD+ and do not resorb bone. 

 

IL-17A-producing T cells and CTSD-expressing myeloid cells in tuberculosis granuloma 

 We then performed immunohistofluorescence study by confocal microscopy in ten 

epithelioid granulomas from surgical lung, lymph node and pleural tuberculosis biopsy whose 

origin has been confirmed by culture and PCR identification of the tuberculosis complex. We 

looked for IL-17A, active MMP-12 and CTSD expression in TB granuloma. We used CD3 as 

T cell marker and Langerin/CD207 as DC marker. CD207 is expressed by Langerhans cell, a 

sub-population of DC which is enriched in the lung. CD207 expression was unknown in TB 

granuloma. We found that TB granuloma is rich in IL-17A-expressing T cells, as 

demonstrated by the predominace of the yellow color in the periphery of the myeloid cells 

(Figure 2a). We detected very few cells expressing Langerin. In the heart of the granuloma, 

myeloid cells were all expressing CTSD while active MMP-12 was absent, contrary to what 

was found for GMIC (Figure 2b). CTSD is the first specific marker establishing a molecular 

link between mononuclear myeloid cells and giant cells (Figure 2c) inside granuloma, thus 

reinforcing that giant cell may be formed from the recruited mononuclear myeloid cells, by a 

fusion process. We conclude that, in TB granuloma, the main source of IL-17A is T cells and 

the myeloid mononucleated and giant cells highly express CTSD but not active MMP-12.  

 

IL-17A induces a mixed DC-macrophage phenotype and preserves DC functions 

To functionally characterize the GMIC, we studied whether IL-17A stimulation 

impairs DC functions. We investigated their phenotype, phagocytic function, TRAIL-

mediated cytotoxicity as well as their ability to activate alloreactive T cells. After 48h of 

culture, IL-17A induced a mixed phenotype combining markers of monocytes (CD14), 

macrophages (CD68) to DC markers (CD1a) (Figure 3a). IL-17A-treated DC dysplay a semi-

mature phenotype, including CD1a+ CCR6+ CD83– HLA-DRlow and CD40high as expressed by 
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immature and mature DC, respectively. Addition of IFN-γ did not change this phenotype. 

BCG infection, as expected, induced a complete DC maturation characterized by CD1a– 

CCR6– CD83+ HLA-DRhigh and CD40high. The transcriptome study realized at day 12 showed 

that CD1a mRNA disappeared and revealed that, as observed with BCG, IL-17A induced M-

CSF expression in DC, the cytokine that usually drives macrophage differentiation (Figure 

3b). IL-17A-treated DC retained phagocytic functions as demonstrated by engulfment of inert 

particles in the presence of zymosan, a TLR2-stimulating protein-carbohydrate complex from 

yeast, as well as with the two Mycobacterium species tested: avium and BCG (Figure 3c). 

Recombinant GFP-BCG let us visualize phagocytosis of the Mycobacteria by GMIC (Figure 

3d). TRAIL-mediated cytotoxicity was evaluated by stimulating DC with either double-

stranded RNA stimulation (poly I:C) or infection with Measles virus (Figure 3e). TRAIL 

synthesis was induced in both cases and could kill a TRAIL-sensitive cell line independently 

of IL-17A treatment (Figure 3f). Therefore TRAIL-mediated cytotoxic innate function was 

preserved in IL-17A-treated DC. A unique property of DC is to activate naïve T cell 

proliferation of co-cultured allogeneic T cells. We used the fluorescent dye CFSE to stain 

allogeneic T cells and then quantify T cell divisions by the twice decreased of its fluorescence 

(Figure 3g). Alloreactive function of DC is increased when they are stimulated by their CD40 

antigen to activate their maturation, as demonstrated by the increased proportion of T cell 

(>50%) having completed over three divisions. After 12 days of culture with IL-17A, DC-

derived giant cells still exhibited alloreactive functions while DC-derived OC, in the presence 

of M-CSF and RANKL did not. 

In conclusion, IL-17A induces a mixed monocyte-macrophage-DC semi-mature 

phenotype while preserving the classical functions of DC in the GMIC: phagocytosis, TRAIL-

mediated-cytotoxicity and alloreactivity. 

 

CD40-stimulation and IFN-γ potentiate GMIC formation 

CD40L signal and IFN-γ synthesis by activated T cells are essential for granuloma 

formation that controls Mycobacterium infection. We studied their role in GMIC versus OC 

formation. Quantifying the number of MGC and number of nuclei per MGC enables us to 

calculate the percentage of nuclei included in the MGC which reflects the fusion efficiency. 

IFN-γ only increased GMIC formation while it completely abolished OC formation (Figure 

4a) and bone resorption activity (data not shown). CD40L activation potentiated both 

pathways of DC fusion (Figure 4b). IL-17A did not induce GMIC formation from monocytes 

(Figure 4c) whereas we previously published that GM-CSF-treated monocytes could 
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differentiate into GMIC. Neither IFN-γ nor CD40 activation induced GMIC formation from 

monocytes. 

Therefore when both CD40L and IFN-γ signals are provided in the microenvironment, 

GMIC but not OC formation is sustained from DC or GM-CSF-treated monocytes.  

 

BCG but not Mycobacterium avium divide into GMIC when it is activated by CD40L 

We studied the GMIC molecular equipement to understand how GMIC may interact 

with Mycobacteria. In particular for the molecules involved in adhesion of Mycobacteria to 

phagocytes and the different phase of the phagocytosis such as oxidative stress and vacuole 

acidification (Table 2). The profile of receptors used by Mycobacteria is modified by IL-17A 

stimulation at the surface of DC. After 12 days of culture, GMIC express more TLR2 and 

CD14 mRNA, but less DC-SIGN (CD209), Dectin-1 and mannose receptor (MR) mRNA than 

untreated DC. Thus, DC exhibit the following phenotype: CD14– MRhigh CD209high Dectinhigh 

while GMIC are CD14+ MR+ CD209low Dectinlow. Among the molecules involved in 

oxidative stress, the GMIC are characterized by an increased expression of CYBB/gp91phox, 

while the interaction with BCG increases the expression of NCF1/p47phox and SOD2. Among 

the molecules involved in vacuolar acidification, IL-17A increases gene expression of 

ATP6V1H and retains a profile similar to DC for other molecules of this functional profile. 

We studied the microbicidal functions of GMIC through the measure of the NADPH 

oxidase activity and nitric oxide production. The presence of NADPH oxidase was confirmed 

at the functional level by NBT test. Treatment by IL-17A is very effective to increase 

NADPH oxidase activity of DC, transformed in GMIC (Figure 5a). The lack of expression of 

NOS2 was confirmed by the negativity of the Griess test (data not shown). We studied the 

microbicidal activity by the quantification of Mycobacteria that survive in GMIC compared to 

what happens with DC. DC were pre-treated with either CD40L activation or IL-17A and 

IFN-γ or the combination for 24 hours and then infected with either M. avium or BCG. The 

quantification of Mycobacteria was realized by the technique of CFU (colony forming unit 

for) within two weeks after infection. Growth of M. avium was controlled by three donors of 

five by immature DC (Figure 5b). When DC were previously stimulated by CD40L 

activation or IL-17A and IFN-γ or both, M. avium growth was controlled by all donors. By 

contrast, BCG survived in DC without replicating as long as no CD40L is provided. 

Electronic microscopy study demonstrated that DC treated with CD40L, IL-17A and IFN-γ 

and then infected by BCG accumulated lipid droplets and license BCG replication (Figure 

5c). Quantification of BCG growth by CFU revealed that CD40L activation alone induced 
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replication of BCG whereas IL-17A and IFN-γ did not. Strikingly, combination of CD40L, 

with IL-17A and IFN-γ was very potent to sustain survival and intracellular division of BCG. 

In conclusion, GMIC are molecularly equipped to deal with Mycobacteria with 

especially high NADPH oxidase activity. They are highly microbicidal against M. avium 

when activated by CD40L, IL-17A and IFN-γ, whereas under the same conditions, BCG not 

only resists to their microbicidal activity but also replicate in GMIC. 

 

DISCUSSION 

see PhD manuscript discussion 

 

MATERIALS AND METHODS 

Tissue samples 

We selected formalin-fixed, paraffin-embedded tissue of lung (n=5), pulmonary lymph node 

(n=4) and pleura (n=1) from 10 patients (Centre de Ressources Biologiques des Hospices 

Civils de Lyon, France). Diagnosis of Mycobacterium tuberculosis infection was confirmed 

by culture and PCR. Sections were routinely stained with haematoxylin-phloxine-safran. 

Multinucleated giant cells were seen in 7 biopsies out of 10.  

 

Reagents and Mycobacteria 

We used the following antibodies for cytofluorimetry: PE-CD1a (HI149), FITC-CD14 

(M5E2), PerCP-Cy5.5-MHC II (HLA-DR) (G46-6) from Becton Dickinson (Le Pont de 

Claix, France), isotype controls and PE-CD80 (MAB104), FITC-CD83 (HB15a), PE-CD86 

(HA5.2B7) from Beckman Coulter (Villepinte, France), CD68 (EBM11) from DAKO 

(Glostrup, Denmark). Recombinant human macrophage colony-stimulating factor (M-CSF), 

granulocyte/macrophage colony-stimulating factor (GM-CSF), interferon-γ (IFN-γ), IL-17A 

and receptor activator of NF-κB ligand (RANKL) were purchased from PeproTech (Rocky 

Hill, NJ) and LPS (L-2387, salmonella typhosa) from Sigma. dsRNA was poly(I:C) obtained 

from Amersham Pharmacia Biotech (Piscataway, NJ). We used Mycobacterium avium and 

BCG strain from Pasteur Institute. 

 

Monocyte and T cell purification, dendritic cell differentiation 

Monocytes and T cells were purified from the blood of healthy adult volunteers 

(Etablissement français du sang, Lyon Gerland, France) after ficoll and percoll gradients and 

then negative magnetic depletion. Monocyte-derived DC were generated in vitro, as 
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previously described. Briefly, monocytes were seeded at 0.8x106 cells/mL and maintained in 

RPMI 1640 (Gibco, Paisley, Scotland) supplemented with 10 mM Hepes (N-2-

hydroxyethylpiperazine-N’-2-ethanesulfonic acid), 2 mM L-glutamine, 40 µg/mL gentamicin 

(Gibco), 10% heat-inactivated Fetal Calf Serum (Boehringer Mannheim, Meylan, France), 50 

ng/mL hrGM-CSF and 500 U/mL hrIL-4. After 6 days of culture, more than 95% of the cells 

were immature DC as assessed by CD1a+ CD83– labeling.  

 

Bone resorption assays 

To assess resorption activity, cells were cultured on bone slices (Nordic Bioscience 

Diagnostics, Herlev, Denmark), for 21 days in a 5% CO2 incubator. Following complete cell 

removal by immersion in water, bone slices were stained with toluidine blue in order to detect 

resorption pits under a light microscope. Bone resorption tracks, cell culture observations as 

well as TRAP/Hoechst pictures were performed using a Leica DMiRB microscope equipped 

with x40/0.30 NA or x 40/0.55 NA objective lenses (Leica, Wetzlar, germany), a Leica 

DC300F camera and the Leica FW400 software. Bone resorptions were quantified by the 

release of C-terminal type I collagen fragments (CTX), consecutive to resorption of bone 

slices, in the culture supernatants, using the CrossLaps ELISA kit (Nordic Bioscience 

Diagnostics, Herlev, Denmark).  

 

MGC and osteoclast formation, TRAP assay and Hoechst DNA staining 

MGC and osteoclast-derived DC were generated in vitro, as previously described[3]. Briefly, 

DC were seeded from 1600 to 3200 cells/mm2 in RPMI supplemented with 10% fetal calf 

serum, 2 mM L-glutamine, 10 mM HEPES, 40µg/mL gentamicin, in the presence of IL-17A 

(2 ng/mL) and IFNγ (2ng/mL) or M-CSF (25 ng/mL) and RANKL (100 ng/mL). Cytokines 

were added at the beginning of the culture and then replenished every three days (M-CSF, 

RANKL) or every week (IL-17A, IFN-γ). Counts were made of the total number of nuclei, 

the number of MGC-included nuclei and the number of MGC (strictly more than two nuclei) 

at the same time in each condition. These three counts allowed the calculation of the number 

of mononucleated cells, the mean number of nuclei per MGC and the percentage of MGC-

included nuclei in comparison to the total number of nuclei (fusion efficiency). TRAP activity 

was assessed using the Leukocyte acid phosphatase kit (Sigma-Aldrich, Saint Quentin 

Fallavier, France). DNA of the nuclei were then stained with 10 μg/mL of Hoechst 33342 

(Sigma) for 30 min at 37°C. The staining was fixed with 1% formol. 
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Affymetrix genechip study.  

We purified RNA after cell lysis, extraction in Trizol (Invitrogen) and purification on a 

MEGAclear column (Ambion) to reach an RNA integrity number >9 with Agilent 

bioanalyser. As previously described[3], the whole RNA human profile is analyzed on HG-

133_plus2 affymetrix chips for either unstimulated cells, monocytes or DC, or cells cultured : 

monocytes or DC with M-CSF and RANKL, DC or BCG-infected DC with IL-17A and with 

or without IFN-γ. ProfileXpert (www.profilexpert.fr

Target labelling: Microarray analysis was performed using a high-density oligonucleotide 

array (Genechip human genome U133 Plus 2.0, Affymetrix, Santa Clara, CA, USA). Labeled 

target for microarray hybridization was prepared using the Genechip expression 3’ 

Amplification One-cycle target labeling (Affymetrix). Briefly, totalRNA (2g) was converted 

into double stranded cDNA with a modified oligo(dT)24-T7 promoter primer. After 

purification, cDNA was converted into cRNA and biotinylated using the IVT labeling kit 

(Affymetrix). Reaction was carried out for 16 hours at 37°C then at the end of incubation 

biotin-labeled cRNA was purified by the Genechip sample clean up module (Affymetrix). 

cRNA quantification was performed with a nanodrop and quality checked with the 

bioanalyzer 2100 (Agilent technologies, Inc, Palto Alto, CA, USA). 

) carried out the chip analysis as follow: 

Arrays hybridization and scanning: Hybridization was performed following Affymetrix 

protocol (http://www.affymetrix.com). Briefly, 20 g of labeled cRNA was fragmented, 

mixed in hybridization buffer (50 pM control oligo B2, 1X eukaryotic hybridization controls, 

0,1mg/ml Herring sperm DNA, 0.5 mg/ml BSA and 1x hybridization buffer, 10% DMSO for 

a total volume of 300 ul), denaturated during 5 minutes at 95°C and hybridized on chip during 

16 hours at 45°C with constant mixing by rotation at 60 rpm in an Genechip hybridization 

oven 640 (Affymetrix). After hybridization, arrays were washed and stained with streptavidin-

phycoerythrin (Invitrogen Corporation, CA, USA) in a fluidic 450 (Affymetrix) according to 

the manufacturer’s instruction. The arrays were read with a confocal laser (Genechip scanner 

3000, Affymetrix) and analyzed with GCOS software. Absolute expression transcript levels 

were normalized for each chip by globally scaling all probe sets to a target signal intensity of 

500. The detection metric (presence, absence or marginal) for a particular gene was 

determined by means of default parameters in the GCOS v 1.4 software (Affymetrix). Quality 

of RNA amplification and labeling were checked by using B.subtilis poly adenylated RNA 

spikes-in controls (Lys, phe, thr, dap) mixed to RNA sample before performing reverse 

transcription. Hybridization quality was checked by using E.coli biotinylated target (Bio B, 
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BioC, BioD and CRE). Filtering of results was performed using Genespring ver 7.0 software 

(Agilent).  

 

Immunofluorescence and confocal microscopy 

DC cultured on glass coverslips were first fixed for 20 minutes with 2% paraformaldehyde in 

PBS and after epitote retrieval performed in 0,1% glycine for 10 minutes, cells cultured were 

permeabilized with 0.1% Triton X-100 in PBS for 5 minutes. 4-mm paraffin-embedded 

biopsies were cut, deparaffinized and rehydrated. Epitope retrieval was performed in citrate 

buffer (10mM, pH6.0) using a water bath. Cells or tissue sections were incubated with 

primary antibodies, overnight at 37°C, in a humidity chamber. Replacement of the primary 

antibodies by non-relevant antibodies of the same immunoglobulin isotype was used as 

negative control. Table provides a summary of the antibodies used. Following 3 washes in 

PBS-1%BSA, slides were treated for 15 min in PBS-1% BSA with 10% normal goat serum or 

rabbit goat serum, the species in which the secondary antibodies were developed, to block 

non-specific staining. Detection of the primary antibodies was then performed with goat anti-

mouse, goat anti-rabbit or rabbit antigoat isotype-specific secondary Alexa Fluor 488, 546 and 

647-conjugated antibodies (Invitrogen, Breda, NL) for 30 min. Following 3 washes in PBS-

1%BSA, the coverslips or the sections were mounted using Mowiol and then analyzed by 

confocal microscopy using a Carl Zeiss MicroImaging Inc. LSM 510 confocal microscope. 

Specimens of normal human gut and Crohn disease gut were used, respectively, as negative 

and positive controls for IL-17A staining. 
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Table. Characteristics of antibodies used in immunohistochemical studies 

Antibody Clone Species/isotype source 

IL-17A 41802 mouse IgG1 R&D Systems 

CD3  rabbit IgG DAKOCytomation 

Langerin 12D6 mouse IgG2b Novocastra 

CCR6 53103.111 mouse IgG2b R&D Systems 

CCL20  67310.111 mouse IgG1 R&D Systems 

cathepsin D E-7 mouse IgG1 Santa Cruz Biotechnology 

cathepsin H  rabbit IgG Proteintech 

cathepsin K  goat IgG Santa Cruz Biotechnology 

cathepsin L S-20 goat IgG Santa Cruz Biotechnology 

cathepsin S  goat IgG R&D Systems 

MMP-9 4A3 mouse IgG1 Santa Cruz Biotechnology 

MMP-12 82902 mouse IgG2b R&D Systems 

 

Flow cytometry 

Immunostaining were performed in 1% BSA and 3% human serum-PBS then quantified on a 

FACSCalibur (Becton Dickinson) and analyzed using CellQuest software. Direct 

immunostainings were performed using 2 mg/ml of conjugated Abs. Indirect 

immunostainings were performed using 2 mg/ml of the first mouse mAb and detected with 2 

mg/ml of the PEconjugated, F(ab')2 goat anti-mouse IgG antibodies (115-086-062) (Jackson 

Immunoresearch, West Grove, PA). To perform cytoplasmic TRAIL immunostaining, 30-min 

permeabilization with 0.33% saponin was required. Cells were labeled by using a 

biotinconjugated anti-TRAIL polyclonal Ab (2.5 μg/ml; R&D Systems, Minneapolis, MN) 

revealed by using PE-conjugated streptavidin (Caltag Laboratories, Burlingame,CA). 

 

Quantification of phagocytic, priming and cytotoxic activities 

For phagocytic activity evaluation, DC cultured on glass coverslips with or without IL-17A 

for 2 days were washed twice and then put in medium without antibiotic, in contact with 

green fluorescent (FITC or GFP) Mycobacterium avium or BCG or bovine serum 
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albumincoated latex beads and zymosan (50 particles/cell) for 2 hours and washed twice with 

fresh medium to remove unbound particles. Phagocytosis of bacteria was determined as 

described previously335. Briefly, cells were fixed with 3.7% paraformaldehyde in PBS 

containing 15 mM sucrose, pH 7.4 for 20 min at room temperature. After neutralization with 

50 mM NH4Cl, extracellular mycobacteria were labeled with rabbit polyclonal antibodies 

directed against Mycobacteria (Camelia antibody, 1:100), revealed by a red fluorescent 

(TRITC) secondary antibody. MGC containing at least one green Mycobacterium were 

counted out of 100 cells in duplicate samples. 

For cytotoxic activity evaluation, TRAIL-sensitive MDA231 cells were labeled with 100 

μCi of Cr for 1 h at 37°C, washed three times, and resuspended in complete medium. Then 

Crlabeled MDA231 cells (104/well) were incubated with varying numbers of DC stimulated 

with IL-17A for 8 h. TNR-R1:Fc (10 μg/ml;R&D Systems), TRAIL-R2;Fc (10 μg/ml) were 

added to some assays. 

For alloreactivity evaluation, T CD4+ cells were suspended at 107 cells/mL in alpha-MEM 

medium containing 2% FCS. After 13 min of incubation in the presence of 10 μM of 

carboxyfluorescein diacetate succinimidyl ester (CFSE), the CFSE incorporation was blocked 

by the addition of a large excess of alpha-MEM medium, containing 2% FCS. T cells were 

then washed twice by centrifugation at 1500 rpm for 10 min at 4 °C in alpha-MEM medium 

containing 2% FCS and seeded in alpha-MEM medium containing 10% FCS with DC or 

MGC. Cells were then harvested after 5 days of culture and expression of CFSE was 

measured with a FACSCalibur. 

 

Nitric oxide and Nitroblue tetrazolium (NBT) assay 

For iNOS activity evaluation, we assessed nitric oxide production using Griess reagent kit, 

according to the manufacturers’ specifications (Molecular Probes). Samples were incubated 

with Griess reagent for 30 min at room temperature and absorbance was measured at 540nm. 

For NADPH oxydase activity evaluation, NBT (0.1%) was prepared in PBS by adding 10 

mg of NBT powder (Sigma Chemical Co, St. Louis, USA) to 100 mL of PBS (pH 7.2) and 

stirred at room temperature for 1 hour. NBT solution was filtered with a 0.2 μm filter. Equal 

volumes of 0.1% of NBT solution were added in each well and incubated for 30 minutes at 

37°C. 
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Microbicidal activity 

cDC were seeded at 3000 cells/mm2 in 12-well plates in DMEM (Gibco) supplemented with 

10% FCS, 2 mM L-glutamine, 10 mM HEPES, without antibiotic, in the presence of M-CSF 

(25 ng/mL) and RANKL (100 ng/mL) or GM-CSF(200ng/ml), IL-17A (1 ng/mL) and IFN-g 

(1ng/mL) and cultured together with or without 0,2.106/well human irradiated CD40L 

fibroblasts. Cytokines were added at the beginning of the culture and then replenished every 

three days (M-CSF, RANKL) or every week (IL-17A, IFN-g). After 24h of incubation with 

cytokines, cells are infected either with BCG or Mycobacterium avium (MOI=5). At different 

time points (2h, 7 days, 14 days), lysis with 0,1% Triton X-100 was performed and followed 

by centrifugation at 4000 rpm. Lysats were cultured in Middlebrook 7H9 medium for 21 days 

and then colony forming unit (CFU) contained in the supernatant were quantified. 

Immunoelectron Microscopy 

Cells were fixed at 37°C [5], and ultrathin sections were examined under a Philips CM 120 

BioTwin electron microscope (120 kV) (Philips, Eindhove, The Netherlands). 
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FIGURE LEGENDS 

Figure 1 

Giant Myeloid Inflammatory Cells: a new IL-17A-dependent multinucleated DC-derived 

myeloid effector different from OC 

(a) TRAP activity detection (standard activation/pink to over-activation/purple cytoplasm 

colour) and Hoechst DNA staining (blue nuclei). Values quantify soluble acidic phosphatase 

activity in cell culture supernatant of DC, IL-17A-treated DC with or without IFN-γ and DC-

derived OC after 20 days of culture. (b) Microscopic pictures of bone slices show resorptive 

capacities and quantification of CTX (collagen fragment) release in culture supernatants of 

DC cultured in the same conditions. (c) Scatter plots comparing gene expression between both 

differenciation pathways into MGC-derived DC in the presence of M-CSF and RANKL or IL-

17A and IFN-γ, between IL-17A-stimulated DC and DC unstimulated, between monocytes 

and DC, between both differenciation pathways into OC from DC and monocytes in the 

presence of M-CSF and RANKL, between IL-17A-stimulated DC and DC stimulated with IL-

17A and IFN-γ and between BCG-infected DC and IL-17A-treated DC. (d) Correlation 

coefficient table comparing monocytes or monocyte-derived DC at day 0, monocytes or DC 

after 12 days of culture with M-CSF and RANKL, which give rise to OC, DC treated with IL-

17A with or without IFN-γ after 12 days and BCG-infected DC with or without IL-17A and 

IFN-γ. (e) MMP-12 and CTSD staining on permeabilized OC versus GMIC. Scale bars, 50μm 

(5x10μm). 

Figure 2 

Presence of IL-17A and CTSD inside human tuberculosis granuloma 

 (a-c) Representative confocal microscopy images of immuno-fluorescence staining of 

tuberculosis granuloma. (a) Langerin (Langerhans cells, dark blue), CD3 (T cells, red) and IL-

17A (green) were stained. Yellow cells are CD3+ IL-17A+ T cells that secrete IL-17A. (b-c) 

CTSD (green) and active MMP-12 (red) were stained. The green staining delineates (b) the 

myeloid heart of granuloma which includes mono and (c) multinucleated myeloid cells. Scale 

bars, 50μm (5x10μm). 
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Figure 3 

IL-17A treatment induces a mixed DC-monocyte-macrophage phenotype, but preserves DC 

functions 

(a) Maturation phenotype of monocyte-derived DC cultured for two days alone or after 

activation with LPS or with IL-17A or infected with BCG. Bars delineate positive regions. (b) 

mRNA expression of phenotype and maturation markers shown for DC at day 0 and for DC 

after 12 days of culture with M-CSF and RANKL or IL-17A and IFN-γ and after infection or 

not with BCG. Results are means for n = 4 (none day 0), n = 2 (M-CSF+RANKL), n = 3 (IL-

17A+ IFN-γ), n = 2 (BCG-infected+IL-17A+ IFN-γ) experiments. (c) Phagocytosis assay of 

zymosan, M. avium and BCG by DC stimulated with or without IL-17A. (d) Vizualisation of 

the phagocytosis of recombinant GFP-BCG in GMIC. Immunocytofluorescent confocal 

analysis was performed after MHC-II staining in red and Hoechst staining of the nuclei in 

blue. (e) TRAIL expression in DC and IL-17A-stimulated DC by flow cytometry analysis. IL-

17A-stimulated DC were either stimulated with dsRNA poly (I:C) (0.2 μg/ml) or infected 

with MV at 0.1 PFU/cell, then placed in culture for 24 h. DC were permeabilized and then 

stained with an isotypic control or an anti-TRAIL antibody. (f) Cytotoxic activity of IL-17A-

stimulated DC. IL-17A stimulated DC were infected with MV and then placed in culture for 

12h. Harvested DC were then cultured with 51Cr-labeled MDA-231 target cells at the 

indicated effector-to-target cell (E/T) ratios. TRAIL-R2:Fc or TNF-R1:Fc chimeras were 

added or not added to the assay to inhibit TRAIL or TNF-α-induced cell death, respectively. 

51Cr release was measured 8 h later. (g) Allostimulatory properties of DC cultured for 5 days 

in the presence of T cells purified from allogeneic donors (n = 2). Immature DC versus CD40-

stimulated DC were tested.The decrease of CFSE fluorescence attested when T cell 

proliferate. 

Figure 4 

Differential role of IFN-γ and CD40L on OC and GMIC formation 

(a) Photo culture of DC fusion induced by M-CSf and RANKL or IL-17A with (right) or 

without (left) IFN-γ. Cells were fixed at day 15 and we performed a May-Grünwald-Giemsa 

coloration to visualize cytoplasm and nucleus morphology. (b-c) We quantified at day 12 the 

MGC counts (top), average number of nuclei per MGC (middle) and fusion efficiency via the 

percentage of nuclei included in MGC in comparison to the total number of nuclei (bottom). 



 

151 
 

Mean and SD of triplicate experiments. (b) Role of CD40 activation was addressed when DC 

is cultured in the presence of M-CSF and RANKL or IL-17A with or without IFN-γ. (c) 

Monocytes were compared to DC for their ability to undergo cell fusion in the two pathways 

of cell fusion. 

Figure 5 

BCG but not M. avium subverts CD40L-activated GMIC functions 

 (a) NADHPoxidase activity in cell culture of DC pretreated with (bottom) or without (top) 

IL-17A and IFN-γ : DC were then either left unstimulated or stimulated with LPS or BCG-

infected and we performed a May-Grünwald-Giemsa coloration to visualize cytoplasm and 

nucleus morphology. (b-d) Monocyte-derived DC from healthy donors were infected at MOI 

= 5 with Mycobacteria. Colony forming Units were quantified at 2h and 336h (14 days) after 

infection in cell culture lyzates. DC were either untreated or received CD40L signal and/or 

IL-17A and IFN-γ, as indicated. (b) To compare the five different donors, we plotted the 

M.avium growth at 336h as a percentage of 100 M. avium counted at 2h. (c) Electronic 

microscopy photos of DC infected with BCG and activated with CD40L signal, IL-17A and 

IFN-γ. Black arrows indicate lipid droplets (LD) and BCG. Red arrow indicates division of 

BCG. Scale bars, 5μm (5x1μm) (d) BCG count for one donor, representative of n = 3. 

Table 1 

mRNA expression of CTS and MMP is shown for DC at day 0 (mononucleated cells, n = 4), 

for DC after 12 days of culture with IL-17A and IFN-γ (GMIC, n = 3) or with M-CSF and 

RANKL (OC, n = 2). 

Table 2 

mRNA expression of innate receptors involved in mycobacterial interaction, in oxidative 

stress and in vacuole acidification is shown for DC at day 0 (n = 3) or cultured with IL-17A 

and IFN-γ (GMIC, n = 3), or BCG-infected and cultured with IL-17A and IFN-γ (GMIC, n = 

2).  
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Table 2 
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ABSTRACT 

Langerhans cell histiocytosis (LCH) is a rare granulomatous disease characterized by an 

abnormal accumulation of IL-17A-expressing DCs in involved tissues. LCH predominately 

affects children but an isolated rare form of this disease, called pulmonary LCH (pLCH), 

occurs in adults destroying their lungs. As in childhood LCH, we identified, for the first time, 

that pathological DCs in pLCH express IL-17A. Moreover, we also found IL-17A-expressing 

multinucleated giant cells (MGC) in lung granulomas. Surprisingly, most of pathological IL-

17A-expressing DCs express CD1a but not CD207. Serum studies demonstrated that IL-17A 

is systemically distributed in patients developing either active childhood or adult pulmonary 
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forms of LCH. Pathological DCs express CCL20 and CCL2 chemokines in pLCH lesions as 

revealed by immunofluorescent staining and high levels of CCL2 are detected in serum from 

patients affected with this disease. Using immunofluorescence, we also found that matrix 

metalloproteinase 12 (MMP-12) and cathepsin D (CTSD) proteases are expressed by 

pathological DCs in pLCH lesions. Importantly, using an in vitro co-culture system, we 

revealed that IL-17A-treated DCs exhibit potent aggressive functions as they were able to 

destroy bronchial epithelial cells. Our data supports that IL-17A-expressing DCs is 

responsible for the bronchiole destruction observed in pLCH patients, possibly through their 

aggressive proteases. Since DC granulomas constitute the hallmark of pLCH, targeting these 

cells and their aggressive functions may provide new avenues in pLCH treatment. 

 

Figure 1 legend: A/ Triple CD207/blue, CD3/red and IL-17A/green staining on section “n”, 

with CD1a/purple staining on side-section “n-1” and CD207/blue, CD3/red and IgG1 

isotype/green control staining on side-section “n+1” of adult pulmonary LCH biopsy (case 

pulm 8). The enlarged inset picture shows the presence of IL-17A+ giant cells (as previously 

detected in childhood LCH). Scale bars, 50 μm (5 x 10 μm). C/ Percentages of CD1a, CD3, 

CD207, IL-17A expressing cells in adult pulmonary Langerhans cell histiocytosis. B and D/ 

IL-17A measurement in childhood, adult LCH and control sera and in monocyte or monocyte-

derived DC compared to control. E/ GM-CSF staining in pLCH patient in  granuloma (gr) and 

bronchio-alveolar cells (br). Scale bars, 50 μm (5 x 10 μm) 

Figure 1 results: Most of IL-17A expressing CD1a+DC are CD207-negative 

In adult pulmonary LCH lesions, we consistently found more CD1a+ DC than CD207+ LC, 

thus numerous CD1a+ CD207– DC were detected. We demonstrate that most, but not all, IL-

17A-secreting DC are CD1a+ CD207– non-LC DC, ranging from 2 to 52% of the CD1a+ DC 

(fig 1A, C). Few or no T cells express IL-17A in LCH lesions. IL-17A is increased in sera of 

pLCH patients as well as in monocyte-derived DC but not in monocytes (Fig 1 B, D). GM-

CSF is strongly expressed in bronchial alveolar cells and slightly increased in granuloma. 

GM-CSF and IFN-γ are not expressed in LCH patient sera (data not shown). 
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Figure 1: Cytokine environment in biopsy & serum in pulmonary LCH patients 

 

  



 

162 
 

Figure 2: Chemokine CCL20 and CCL2 in PLCH lesions and serums. 

 

Figure 2 legend : (A) Triple CCR6/blue, CD3/red and CCL20/green staining on section “n”, with 

CD1a/purple staining on side-section “n-1” and CD207/blue, CD3/red and IgG1 isotype/green control 

staining on side-section “n+1” of adult pulmonary LCH biopsy (case pulm X). The enlarged inset 

picture shows the presence of epithelial cells CCL20+ close to the granuloma.  Specificity of 

immunostainings was demonstrated using isotype controls (not shown). Scale bars, 50 μm (5 x 10 

μm). (B) Triple CD3/blue, CCL2/red and CD1a/green staining of adult pulmonary LCH biopsy. (C) 

Patient’s sera measurement of CCL2. 

Figure 2 results: CCL20 and CCL2 drive DC accumulation in pLCH. CCL20 and CCL2 were 

expressed in situ by LCH-DC (Fig2A and B). Here we show that CCL20 was also expressed by 

broncho-epithelial cells, in contact with DC granuloma. CCL2 was detected in patient serums contrary 

to CCL20 (data not shown), suggesting a distinct endocrine versus paracrine role in cell recruitment 

(Fig2C). 
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Figure 3: Detection of CTSD and MMP families in IL-17A-rich microenvironment 

 

 

Figure 3 legend: CTSD and MMP12 expression within pLCH lesions. Double CTSD/green, MMP-

12/red staining on section “n”, with CD1a/purple staining on side-section “n-1” of adult pLCH lesions 

(case pulm 6). Yellow color revealed that pLCH-DC and DC-derived MGC coexpress MMP-12 and 

CTSD. Staining is representative of nine studied patients. MMP12 is also expressed by the bronchial 

epithelial cells. Specificity of immunostainings was demonstrated using isotype controls (not shown). 

Bar scale length is 50μm (5x10μm). 

  

Figure 3 results: Active MMP-12 & CTSD were expressed in pulmonary LCH.. In pLCH lesion, 

MMP-12 was expressed by broncho-epithelial cells and LCH-DC. CTSD was expressed by large or 

multinucleated DC inside granuloma (Fig 3C). 
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Figure 4: BEAS2B destruction assessment of IL-17A treated DC 

 

Figure 4 legend: (A) Double TRAP (purple) /Hoechst (blue) staining of  BEAS-2B cells incubated 

with or without IL-17A and IFN-γ cytokines (top panels), with DC alone (middle panels), or with IL-

17A and IFN-γ-treated DC (down panels). DC are double stained whereas BEAS-2B are only Hoechst 

positive. (B) High magnification picture of BEAS-2B cells incubated with IL-17A and IFN-γ-treated 

DC. Holes in BEAS-2B layer are observed (black arrows) around TRAP+ cells. Data are representative 

of two experiments. Bar scale length is 50μm (5x10μm).  

Figure 4 results: IL-17A-treated DC induced tissue destruction.To investigate whether IL-17A-

treated DC can damage bronchial epithelial cells, we have set up an in vitro co-culture system 

involving immortalized bronchial epithelial cells (BEAS-2B) and primary monocyte-derived DC. We 

cultured immature DC either alone or with IL-17A and IFN-γ. In parallel, we cultured a confluent 

monolayer of human bronchial epithelial cells from the cell line “BEAS-2B” which has been 

immortalized with Sv40/Ad12 virus hybrid contruct. We then added treated DC on bronchial epithelial 

cells for 12h, before performing a TRAP/Hoechst staining to discriminate the two cell types. Hoechst 

staining localized the nuclei of all viable cells while TRAP identified DC because BEAS-2B are 

TRAP-negative. BEAS-2B alone displayed a nice confluent layer of blue nuclei stained by Hoechst 

(Fig. 4A top). Addition of IL-17A and/or IFN-γ did not affect BEAS-2B viability (Fig. 4A top). 
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Untreated DC were unable to induce the destruction of BEAS-2B cells (Fig. 4A middle) since Hoechst 

staining indicated that BEAS-2B were still alive. As previously published, IL-17A treatment increased 

TRAP expression in DC (Coury et al., 2008) thus explaining the higher color intensity of the DC in the 

bottom panel. These treated DC destroyed the BEAS-2B layer (Fig. 4A down) leading to the 

formation of several holes as shown at higher magnification (Fig. 4B). Treated DC were required to 

kill the BEAS-2B cells since neither DC nor cytokine, alone, could destroy the BEAS-2B cell layer. 

These data demonstrate that IL-17A and IFN-γ-treated DC exhibit a specific potent ability to destroy 

human bronchial epithelial cells, in vitro. 
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Figure 5: Model of bronchiole destruction by pathological infiltrating DC in pLCH lesions 

Figure 5 shows a model of bronchiole destruction in pLCH lesions visualized owing to a CD1a red 

staining of DC with a counter coloration of nuclei performed with hematoxylin (blue). Aligned narrow 

blue nuclei localize healthy bronchial epithelium (square1). In square 2, red pathological DC are 

localized near the bronchial epithelial cells. We propose that IL-17A induces CCL20 mainly by 

bronchial epithelial cells, thus attracting CCR6+ cells such as DC. CCL2 production by pathological 



 

167 
 

DC may further increase monocyte and DC recruitment. Finally, bronchial epithelium destruction 

(square 3) indicates that bronchial epithelial cells have been killed and digested. We propose that 

MMP-12 and CTSD may play an essential role in this destructive process. IL-17A, CCL20 and CCL2 

as well as proteolytic enzymes like CTSD and MMP-12 may constitute several essential therapeutic 

targets in LCH treatment.   
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Material & methods:  

Reagents 

 We used the following antibodies for DC phenotype analysis by cytofluorimetry: FITC-CD1a 

(21270013S), FITC-CD3 (21270033S), FITC-CD14 (21270143S), PE-HLA-DR (21278994S) all from 

Immunotools and FITC-CD83 (HB15a) from Beckman Coulter. We used recombinant human IL-17A 

and IFN-γ from PeproTech.  

Patients  

Biopsy section samples from 9 patients, all current or ex-smokers (7 women and 2 men, aged 

40.3 ± 17 years), referred to (Centre de référence de l’Histiocytose Langerhansienne, France) and 

diagnosed as having pLCH, were examined in this study. For each patient, we obtained 5 Serial 

section slides with one previously stained for CD1a expression as well as with hematoxylin to 

revealed nuclei. Clinical data and manifestations of the 9 patients are shown in table 1. Serum samples 

from 22 pLCH patients were also obtained from the same source. Serum from 38 childhood LCH 

patients were collected from blood samples obtained from Sweden and Italy. 

Table 1: Clinical data of patients included in the pLCH study  

 

Case Sex / Age at 

sampling 

Smoking status Extrathoracic involvement Treatment 

at sampling 

Pulm1 F / 47 years Current smoker none none 

Pulm2 M / 37 years Ex-smoker skin, bone, anterior pituitary 
insufficiency with diabetes insipidus 

desmopressin and 
hormonal substitution 

Pulm3 F / 23 years Current smoker diabetes insipidus desmopressin 

Pulm4 F / 53 years Current smoker none none 

Pulm5 F / 48 years Ex-smoker none none 

Pulm6 F / 36 years Current smoker none none 

Pulm7 F / 45 years Ex-smoker none none 

Pulm8 M / 24 years Current smoker diabetes insipidus desmopressin 

Pulm9 F / 50 years Current smoker none none 

Immunohistofluorescence and confocal microscopy 

IL-17A and IFN-γ-treated DC cultured on glass coverslips were first fixed for 20 minutes with 

2% paraformaldehyde in PBS. Cells cultured were permeabilized with 0.1% Triton X-100 in PBS for 

5 minutes.   
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4-µm paraffin-embedded lung biopsies were deparaffinized and rehydrated. Epitope retrieval 

was performed in citrate buffer (10mM, pH6.0) using a water bath for one hour at 99°C.  

Cells or tissue sections were incubated 30 minutes in phosphate buffered saline (PBS) -1% 

bovine serum albumin (BSA) with 3% human serum to block Fc receptors. They were then incubated 

with primary antibodies, overnight at 37°C, in a humidity chamber. Replacement of the primary 

antibodies by non-relevant antibodies of the same immunoglobulin isotype was used as negative 

control. Table 2 provides a summary of the primary antibodies used. Following 3 washes in PBS-

1%BSA, slides were treated for 15 min in PBS-1% BSA. Detection of the primary antibodies was then 

performed with suitable isotype-specific secondary Alexa Fluor 488, 546 and 647-conjugated 

antibodies (Invitrogen, 1:200 dilution) for 30min. Following 3 washes in PBS-1%BSA, the sections 

were mounted using Mowiol and then analyzed by confocal microscopy using a Carl Zeiss 

MicroImaging Inc. LSM 510 confocal microscope. Immunostainings for CD1a and GM-CSF were 

performed by immunochemistry. Incubation with appropriate dilutions of anti-CD1a antibody (O10; 

Immunotech, Marseille, France) or a sheep anti-human GM-CSF polyclonal antiserum (National 

Institute for Biological Standards and Control, Hertfordshire, UK) conjugated to alkalin phosphate, 

were realized. Positive cells were revealed using the Vectastain ABC-alkaline phosphatase kit system 

obtained from Vector Laboratories (Burlingame, CA). We quantified percentage of positive and 

negative cells with ImageJ freeware of National Center for Biotechnology Information. 

Table 2: Characteristics of primary antibodies used for immunohistofluorescent stainings 

Antibody              Clone            Species/isotype             source              concentration μg/ml 

IL-17A                   MAB3171         Mouse/IgG1                R&D Systems                                10 

CD207/langerin    ab49730-100    Mouse/IgG2b             Abcam                                             20 

CD3                       A0452              Rabbit/IgG                 DakoCytomation                            12 

MMP-12                 82902               Mouse/IgG2b             R&D Systems                                 25 

CTS D               E-7: sc-13148      Mouse/IgG1      santa cruz biotechnology                          4 

CCR6                    53103               Mouse/IgG2b             R&D Systems                                  25 

CCL20                  67310               Mouse/IgG1                R&D Systems                                 10 

CCL2                    MAB2791        Mouse/ IgG2b            R&D Systems                                  25 

CD1a                     DM363             Mouse IgG1               Acris antibodies                              40 

IL-17A, MMP, CCL20 and CCL2 detection  

Serum  amounts  of IL-17A  and CCL2 were measured in the serum of patients diluted at 1:2 

using human ELISA development kit or Luminex to detect IL-17A (Peprotech, 900-K84), CCL2 

(Peprotech, 900-K31), CCL20 (R&D) and MMP . Samples were run in duplicate to ensure 
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reproducibility. Results were analyzed by the Multiskan Spectrum Spectrophotometer with SkanIt 

Software 2.2 (Thermo Electron).  

Cell purification, differentiation and culture: 

Blood was obtained from healthy adult volunteer donors (Etablissement français du sang, 

Lyon Gerland, France). Monocytes isolation and purification was performed as previously described 

(Fugier-Vivier et al., 1997). Briefly, monocytes were obtained after Ficoll (Lymphocyte separation 

medium, Eurobio, CMSMSL01-01) and percoll (GE Healthcare, 17-0891-01) density-gradient 

centrifugation, respectively. They are then  seeded at 106 cells/mL and maintained in RPMI 1640 (Life 

Technologies, Paisley, United Kingdom) supplemented with 10 mM HEPES (N-2-

hydroxyethylpiperazine-N'-2-ethanesulfonic acid), 2 mM L-glutamine, 40 μg/mL gentamicin (Life 

Technologies), 10% heat-inactivated fetal calf serum (FCS; Boehringer Mannheim, Meylan, France), 

50 ng/mL human recombinant GM-CSF (hrGMCSF), and 500 U/mL hrIL-4. After 6 days of culture, 

cells developed into typical immature DC being CD14−, CD1a+, human leukocyte antigen (HLA)-DR+,  

and CD83− (not shown). 

Affymetrix gene chip study 

mRNA were extracted from either unstimulated DC or DC cultured with IL-17A with or 

without IFN-γ, after cell lysis, extraction in Trizol (Invitrogen) and purification on a MEGAclear 

column (Ambion) to reach an RNA integrity number >9 with Agilent bioanalyser. ProfileXpert 

(www.profilexpert.fr) carried out the chip analysis study. 

Culture of BEAS-2B cells and coculture with IL-17A and IFN-γ- treated DC  

The BEAS-2B cell line, which is an immortalized line of normal human bronchial epithelium derived 

by transfection of primary cells with an adenovirus12-SV40 hybrid virus, was obtained from ATCC. 

Cells were cultured and  maintained at 37°C with 5% CO2 in 75 cm2-cell culture flasks precoated with 

a mixture of fibronectin (1:50 dilution; Sigma F0895) and Bovin I collagen (1:100 dilution; Invitrogen 

A1064401) both dissolved in LHC-9 serum-free medium (Invitrogen, 12680-013) . Cells were 

passaged every three days. For coculture assays of BEAS-2B and IL-17A and IFN-γ-treated DC; 

10 000 BEAS-2B cells were plated onto 24-well cell culture plates at 37°C with 5% CO2 until 

confluence to cell monolayer. DC were cultured separately in LHC-9 medium with human 

recombinant IL-17A (2ng/ml) and IFN-γ (1ng/ml) for 6 days and then added (106cells/ml/well) over 

the BEAS-2B layer. 24 hours after, monolayers were examined, photographed, then cells were fixed 

and a double TRAP/Hoechst staining was performed. Experiments were repeated twice. 
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TRAP/Hoechst staining    

TRAP activity was assessed using the Leukocyte Acid Phosphatase kit (Sigma-Aldrich). Nuclear 
DNA was stained with a 10 μg/ml solution of Hoechst 33342 (Invitrogen H3570) for 30 min at room 
temperature. Cells are then washed and fixed with 1% formol. Culture and TRAP/hoechst pictures 
were analyzed using a Leica DMiRB microscope equipped with x40/0.30 NA or x40/0.55 NA 
objective lenses (Leica, Wetzlar, Germany) a Leica DC300F camera and the Leica FW400 software  
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3 Part III: DISCUSSION 

3.1 Differential physiopathological roles of granulomas among species & 
diseases 

3.1.1 Evolution of the granuloma role in vertebrates 

Although granulomas were discovered and extensively studied since 200 years, their 

definitive functions in TB remain enigmatic [367]. Classically, they were considered as host-

protective structures and their formation was regarded as a host beneficial strategy. In this 

context, granulomas are thought to contain the infection in a limited area of the body where 

immune response is activated against intracellular Mycobacteria, thus impairing their 

replication and avoiding their spread.  

Molecular signals of the immune system regulate the organization of the granulomatous 

response. Working with human biopsies of TB patients, we documented an in situ expression 

of several cytokines (IL-17A, GM-CSF) and chemokines (CCL20, CCL2) as well as pro-

survival proteins (BFL1). In vitro, we found that IL-17A induced the expression of CCL20, 

CCL2 and BFL1 human myeloid DCs. In vitro, IL-17A promotes DC survival dependently on 

BFL1, and fusion under the control of CCL20 and CCL2 dependent recruitment. Cell cultures 

containing IL-17A dependent MGCs were more potent in the killing of certain mycobacterial 

species. Altogether, our results provide new insights on the molecular mediators and 

mechanisms which may regulate the maintenance of human TB granulomas.  

More recently, the classical protective function of granulomas was challenged by 

studies conducted in the model of zebrafish embryos infected with M. marinum. Findings in 

this model showed that granulomas may help to promote infection, rather than to control it 

[368] [369] [370]. An important advantage of zebrafish as a TB model is its optical 

transparency in early life allowing the visualization of living bacteria by real-time intravital 

imaging [370]. Using this model, the group of L. Ramakrishnan showed that during early 

stages of infection, granuloma serves to expand bacterial numbers and enhances their 

replication by recruitment and infection of new phagocytic cells [368]. Functionally, M. 

marinum-infected MPs of the nascent lesion promote the attraction of additional MPs 

recruited through rapid and continuous migration. Infected cells then die, and are 

phagocytosed by the newly arriving MPs which become infected. Newly infected MPs thus 

provide a new growth niche for bacilli, sustaining their continued proliferation. Early 

granuloma can therefore constitute a site for bacterial expansion [368]. In a subsequent study, 

the same group showed that ESAT-6 is released from M. marinum-infected MPs and induces 
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the secretion of MMP9 in neighboring epithelial cells [369] (Fig. 17). MMP9 secretion 

facilitates the migration of uninfected MPs into the nascent granuloma, promoting their 

infection and leading to bacterial expansion [369]. MMP9 activity may result from its ability 

to degrade extracellular matrix components as well as to activate chemokines [188]. 

 

 

 

 

 

 

 

 

 

 

Figure 17: ESAT-6-mediated MMP9 induction in epithelial cells promotes phagocyte 
recruitment and infection in M. marinum-infected zebrafish embryos. This promotes 
mycobacterial dissemination and expansion. From ref [370]. 

In contrast to the zebrafish model, granulomas in humans are commonly regarded as 

protective structures. This concept is supported by several observations. First, in persons who 

did not die from TB, calcified granulomas were found : most of them being sterile while few 

others contains live Mycobacteria [371] indicating that these structures are efficiently 

involved in mycobacterial killing. Second, the blockade of TNF-α which leads to the 

reactivation of latent TB, results in granuloma breakdown and disintegration, along with 

mycobacterial dissemination [372]. These observations suggest that granulomas in humans 

are host-protective structures which counteract mycobacterial growth and limit the 

dissemination of the infection. 

Therefore, the role of the granuloma is differentially understood in various hosts. 

However, can findings in M. marinum-infected zebrafish be extrapolated to human TB  
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disease? And are they relevant for the understanding of the role of human mycobacterium-

induced granuloma? Actually, there are several differences between M. marinum infection in 

zebrafish embryos and TB in humans [373]:  first, M. marinum is not Mtb and zebrafish have 

no lungs. Second, experimental infection in zebrafish model is by injection and not aerosol 

inhalation like in TB disease. Third, the immune system is probably immature in the embryos 

of zebrafish and the role of granuloma may change with the immune system development. 

Finally, granulomas in zebrafish larvae are formed exclusively by innate immune cells and are 

not under the control of adaptive activated T lymphocytes. The role of granulomas may be 

different in various groups of vertebrates: it appears negative in lower vertebrate (fish 

embryos) and positive in higher vertebrate (mammal adults). Does it result from the evolution 

of the vertebrate immune system facing to Mycobacteria between fish and mammals? Or does 

it come from the differential development of the immune system between embryo and adult? 

The analysis of the evolution of the vertebrate adaptive immune system may allow a 

better understanding of these discrepancies in the future.  

3.1.2 Contributions and limitations of the murine models to understand 

granulomatogenesis   

We studied two granulomatous diseases: TB and pLCH. pLCH has no currently any 

experimental model and a major difficulty in the field of TB is the lack of a suitable animal 

model. Our studies on TB patient biopsies and human myeloid cells showed that CCL20 and 

CCL2 chemokines are expressed by both myeloid mono and multinucleated giant cells of the 

human TB granuloma. We demonstrated that these chemokines are involved in human 

myeloid cell clustering and fusion in vitro. Taken together, these data suggest an important 

role of CCL20 and CCL2 in myeloid cell recruitment and fusion within human TB 

granulomas.  

 The mouse was widely used as a TB model and has provided considerable contribution 

in our knowledge in TB granulomatogenesis. Indeed, most of cytokine, chemokine and 

cellular requirements for granuloma formation and maturation were provided by the murine 

model. However, there are several significant differences in the granulomatous response to 

Mtb in the lung between human and mice [172].  

Human TB granulomas are highly organized suggesting a potential role of chemokines, 

which control cell migration and clustering, in the regulation of these structures. They contain 

a core of epithelioid MPs and MGCs and are surrounded by T cells. Human granulomas 
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progressively become devoid of blood vessels and hypoxic [172] and are characterized by 

necrosis and caseation during TB pathology.  

In mouse, the architecture of the granuloma is less organized with diffuse cellular 

infiltration described as a loose collection of activated cells. Studies showed that chemokines 

have redundant roles in the granulomatous response in this animal (Table VI). In addition to 

epithelioid MPs and lymphocytic clusters, elevated numbers of PMNs are present while 

MGCs are absent in murine granulomas. Necrosis and caseation are also rarely observed 

within these granulomas and these structures are relatively aerobic [172].  

Studies conducted in Mtb-infected mice deficient for CCL2 and the CCL20 receptor, 

CCR6, showed that these deficiencies don’t affect the adaptive granulomatous response to this 

pathogen and revealed that deficient mice clear Mycobacteria [266] [265]. Nevertheless, 

based on the fact that murine granulomas are loosely organized and don’t contain MGC while 

those of humans are well-structured and contain such giant cells, CCL2 and CCL20 roles may 

be different in murine and human granulomas. 

In conclusion, the mouse model does not reflect the full spectrum of human granuloma 

formation upon infection, thus presenting certain limitations in the understanding of the 

human granulomatogenesis in TB [374]. The murine model was certainly fruitful to 

understand the role of adaptive cytokines required for granulomatogenesis (e.g. IL-12, IFN-γ, 

GM-CSF…). However, the role of this animal model is questionable regarding the chemokine 

requirements of granuloma maintenance as well as concerning the mechanisms of MGC 

formation and functions.  

3.1.3  Emergence of the role of granulomas in the chronic control of cancer cells 

Actually, it becomes well admitted that the immune system forms an important barrier 

facing to tumor growth and progression. Interplay between immunity and tumors may result 

in the elimination of cancer cells, their escape or a continuous equilibrium between them and 

the immune system. Importantly, the anti-mycobacterial immune response is clinically used as 

a tumor treatment in some instance. Indeed, since the 70’s, BCG-immunotherapy constitutes 

the optimal choice and the most potent treatment against invasive bladder cancer. This 

immunotherapy is based on several intravesical instillation of BCG (inside the bladder), and 

results in 70% response rate. However, dramatic consequences are observed in 30% of 

patients related to a hypo or hyper immune responses. Moreover, the exact molecular 

mechanisms of this therapy are largely unknown. 
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It is unknown if IL-17A and IFN-γ are involved in the activation of myeloid cells to 

become able to control and/or destroy cancer cells. However, it is possible that such 

stimulated myeloid cells become able to kill cancer cells or to suppress their proliferation.  In 

vitro, we set up a co-culture system between DCs and BEAS-2B, a human a transformed 

human cell line immortalized by an Adenovirus12-SV40 hybrid virus. Using this system, we 

showed that IL-17A and IFN-γ-treated DCs with BEAS-2B induces the destruction of 

immortalized BEAS-2B cells, while untreated DCs were unable to mediate this effect. The 

anti-tumoral activity was effective in close contact with the effector cytotoxic DCs and 

therefore probably not mediated by a soluble death ligand, although the mechanism is not 

characterized. 

In 2007, an elegant study by Koebel et al. demonstrated, for the first time, that cancer 

cells can be chronically controlled by granulomas including giant cells, thus underling an anti-

tumoral granulomatous immune response [375]. After chemical carcinogen injection in mice, 

authors found both tumor-developing and tumor-free animals. Importantly, tumor-free mice 

were not really free but had latent dormant cancer cells contained by granulomatous structures 

of 2-8 mm size, including giant cells [375]. Tumor control in this model was a result of both 

increased apoptosis and decreased proliferation of cancer cells. However, when treated with 

an antibody cocktail depleting CD4+ and CD8+ cells and neutralizing IFN-γ, these mice 

develop sarcomas, thus demonstrating that adaptive immune system is required for this anti-

tumoral granulomatous response. Several similarities exist between the anti-tumoral response 

in this mouse model and the anti-Mycobacterium granulomatous responses. Both contained 

latent (dormant) cells which can be controlled for decades in giant cell-associated granulomas 

but can be re-activated after immune suppression [376]. Moreover, the adaptive immunity is 

required for both response types. However, the role of IL-17A was not evaluated in this study. 

Neutralization of IL-17A in mouse models with such induced tumors is an important issue 

that should be investigated in the future. 

In human patients with breast cancer, occult cancer cells can be maintained in a dormant 

state [377] and a recent study described that long-term dormancy of breast cancer cells is 

maintained by small “growth-restricted micrometastasis” [378]. However, it is not clear if a 

granulomatous response is involved in the control of cancer cells in such patients. In the 

future, it would be intriguing to characterize the anti-tumoral granulomatous response in 

humans. in situ investigation of an IL-17A-dependent anti-tumoral granulomatous response in 

human biopsies will clarify if IL-17A is involved in such response. 
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3.2 IL-17A-induced genetic program promotes granulomatogenesis 

3.2.1 Is IL-17A a constitutive molecular player in granulomatogenesis? 

Granuloma formation is driven by several cytokines which can positively or negatively 

regulate this process (Table V). We documented an in situ expression of IL-17A within both 

human TB and pLCH granuloma. In TB, we found that IL-17A is mostly expressed by CD3+ 

T cells which surround the epithelioid core. In contrast, IL-17A expression was restricted to 

CD1a+ DC and MGCs in pLCH granulomas. Our results suggest that IL-17A may induce 

granuloma maintenance by promoting myeloid cell survival, clustering and fusion. 

IL-17A expression in granulomas was documented in several human granulomatous 

diseases including crohn’s disease [379], childhood LCH [306] and very recently sarcoidosis 

[380] [381] and Blau syndrome [382]. IL-17A was initially considered as a T cell cytokine 

produced by Th17 lymphocytes. However, recent studies showed that this cytokine is also 

expressed by a wide range of myeloid cells including DCs, MPs and PMNs [306] [321]. In the 

context of granulomatous diseases, IL-17A expression was documented in both lymphoid and 

myeloid cells. IL-17A was expressed by Th17 cells as well as by myeloid epithelioid cells and 

MGCs in the granulomas of crohn’s disease [379] sarcoidosis [380] [381] and Blau syndrome 

[382] patients, while it was exclusively expressed by myeloid DCs and MGCs in childhood 

LCH granulomas [306] 

Our results suggesting a role of IL-17A in promoting granuloma maintenance are in line 

with those recently reported in the murine model of mycobacterial infection. In this model, 

IL-17A positively regulates mature granuloma formation and maintenance [144] [259]. In the 

absence of this cytokine, mice infected with BCG were able to form nascent but not mature 

granulomas characterized by an impaired cellular accumulation and organization [259].More 

recent findings underline also a positive correlation between IL-17A and the formation of 

large granulomatous lesions in a bovine TB model [383]. 

A growing body of evidences suggests that IL-17A plays also an essential role in 

granuloma formation and maintenance in other granulomatous disorders. In murine 

schistosomiasis, IL-17A is directly associated with the severity of the granulomatous 

inflammation. Indeed, the development of severe and large schistosoma -induced granulomas 

correlated with high levels of IL-17A and mice injected with this cytokine showed enhanced 

granulomatous inflammation [384] [385]. In contrast, reduced size of granulomas was 

associated with the production of lower amounts of IL-17A [386]. Moreover, antibody-

mediated IL-17A neutralization led to a significant reduction of the granuloma size [384] 
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[385]. IL-17A deficiency alters the establishment of granuloma in mice infected with listeria 

monocytogenes as demonstrated by the disorganized granulomatous structures with dispersed 

cell organization compared with WT animals [387]. In the same way, inhibition of Th17 cell 

development reduced the granulomatous response in a murine model of Propionibacterium 

acnes-induced granuloma in the liver while enhanced Th17 cell differentiation exacerbated 

such response [388]. IL-17A plays also a role in granuloma formation in non infectious 

granulomatous diseases. For example, IL-17A was proposed as a central player in granuloma 

formation in the murine model of anti-neutrophil cytoplasmic antibodies (ANCA)-induced 

systemic vasculitis [389]. 

Overall, these data showed that IL-17A is now documented in a variety of 

granulomatous disorders in both human and animals, thus supporting the evidence that this 

cytokine participates in the regulation of granuloma formation and maintenance. An important 

remaining issue in our work is to determine the nature of the T cell subpopulation that 

produces IL-17A in human TB granulomas: are they Th17 cells or other IL-17A producing 

cells such as γδ T cells as described in murine Mycobacterium-induced granulomas [259]? 

Further in situ immunohistofluorescence investigations will clarify this question in the future. 

Another important matter is to go on investigating IL-17A expression in additional 

granulomatous diseases. For example, the literature reports the presence of granulomas during 

infections with the filamentous, but not the yeast, form of fungi, and recent studies showed 

that the filamentous form triggers the polarization of Th17 cells in vitro while the yeast form 

does not [339]. It would be therefore interesting to investigate the expression and the role of 

IL-17A in filamentous fungal granulomas. Finally it is important to characterize all the 

molecular events which explain why IL-17A is a constitutive factor in granulomatogenesis. 

3.2.2 The role of IL-17A-induced CCL20 and CCL2 in granulomatogenesis 

The recruitment of a variety of immune cell types during granuloma formation is 

essentially orchestrated by an intense local production of chemokines involved in the 

regulation of cell trafficking and migration. We focused on the role of two chemokines: 

CCL20 and CCL2. CCL20 is the only identified chemokine which binds the chemokine 

receptor CCR6 while CCL2 is one of the several ligands of CCR2. CCL20 induces 

chemoattraction of immature CCR6+ DCs and subpopulations of effector/memory 

lymphocytes including IL-17A-producing lymphocytes. CCL2 regulates migration and 

infiltration of several immune cells, especially CCR2+ monocytes/MPs and T cells.  
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Our results demonstrate the rapid induction of CCL20 and CCL2 chemokines by human DCs 

after treatment with IL-17A. While CCL2 was continually produced in large quantities until 

the 12th day of treatment, CCL20 was transiently produced in the initial phase with lower 

amounts. This demonstration may explain the correlations that we observed in two kinds of 

granuloma. Indeed, IL-17A expressing granulomas in TB and pLCH showed a simultaneous 

expression of both CCL20 and CCL2 chemokines by their myeloid cells. We also detected 

large amounts of circulating CCL2 in the serum of patients with LCH whereas CCL20 was 

undetectable. CCL20 and CCL2 chemokines may play important roles in the recruitment of 

myeloid cells to the granuloma, thereby promoting its formation and maintaining its integrity. 

Few reports demonstrate a direct effect of IL-17A on the production of CCL2 and CCL20. 

Previously, it was shown that this cytokine up-regulates the expression of CCL20 and CCL2 

in human renal and airway epithelial cells, respectively [390] [391]. More recently, a study 

reports that IL-17A treatment of human MPs induces the production of CCL2 and CCL20 by 

these cells in vitro [392].  

Several studies underline a correlation between IL-17A, CCL20 and/or CCL2 and 

granuloma formation, maturation and/or size. A recent report in mouse showed that following 

intratracheal infection with BCG, CCL20 was induced during the early innate stage of 

infection [265] maybe in agreement with the IL-17A production by γδ T cells [259]. In 

humans, CCL20 expression was detected by the myeloid mono and multinucleated giant cells 

of both childhood LCH [393] and sarcoid [394] granulomas in which IL-17A expression was 

also documented in separated studies [306] [380]. In LCH, CCL20 may cause the recruitment 

and retention of additional lesional CCR6+ DCs [393] while in sarcoidosis, it may essentially 

drive the recruitment of CCR6+ Th17 cells from the blood toward the granuloma [380].  

In animals, increase in granuloma size during murine schistosomiasis was associated 

with increased CCL2 expression in granuloma MPs and higher levels of IL-17A in granuloma 

cells compared to those of control animals [395]. Upon mycobacterial infection, CCL2 levels 

were found reduced in IL-17A-deficient mice showing impaired granuloma formation and 

maturation [259]. In humans, a recent study suggests a role for CCL2 in both establishment of 

latency and maintenance of the integrity of granulomas in asymptomatic individuals with 

latent TB [396]. In addition, a recent study suggests that CCL2 forms an important mediator 

in recruiting inflammatory CCR2+ cells during pulmonary sarcoidosis [397].  

IL-17A-induced CCL20 and CCL2 may be involved in two essential phases of 

granuloma formation: initiation and maintenance. In mycobacterium-infected mice, the early 

IL-17A secretion [259] may rapidly induce CCL20 secretion by lung resident DCs, thereby 
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recruiting nearby CCR6+ lung DCs to initiate early granuloma formation. The IL-17A-

mediated expression of CCL2 becomes then rapidly massive and ensures the recruitment of 

peripheral blood monocytes. These cells differentiate in situ in MPs or DCs according to the 

local cytokine environment to promote bacterial containment. BCG-infected mice which over-

express CCL2 by type-II alveolar epithelial cells showed higher bacterial clearance, a 

constitutively increased mononuclear phagocyte subset accumulation in their lungs and a 

rapid and accelerated induction and resolution of lung granuloma, compared to WT animals 

[398].  

Overall, through CCL20 and CCL2 chemokines, the host is able to immediately attract 

local available tissue myeloid cells around a pathogen, such as Mtb, via CCL20 and then 

induces massive recruitment of peripheral blood cells via CCL2. These effects could promote 

granuloma initiation and maintenance.  

3.2.3 The role of IL-17A-induced CCL20 and CCL2 in cell-cell fusion 

Chemotaxis and cytoskeleton rearrangement direct cell clustering and fusion [276]. Our 

in vitro experiments showed that neutralizing antibodies against CCL20 or CCL2 efficiently 

abrogated the fusion of IL-17A-treated DCs. While anti-CCL20 antibodies block DC 

clustering and fusion without affecting their rounded shape, CCL2 neutralization also induces 

a morphological change in these cells. Indeed, anti-CCL2 antibodies convert the rounded DCs 

into elongated fusiform cells. The morphological change observed with anti-CCL2 revealed 

that this chemokine is involved in the regulation of the cell cytoskeleton to achieve fusion and 

MGC formation. These results underline the mandatory role of CCL20 and CCL2 in the 

chemotaxis for DC-derived MGC formation and revealed an additional role of CCL2 in the 

regulation of DC cytoskeleton.  

CCL2 is already known to be pivotal in chemotaxis required for myeloid cell fusion. It 

is involved in both FBGC [399] and OC [287] formation. Indeed, Kiryakides et al. 

demonstrated that after subcutaneous foreign body (biomaterial) implantation, mice lacking 

CCL2 show a marked impairment in FBGC formation due to compromised MP fusion 

compared to their wild-type counterparts [399]. In vitro, authors showed that a CCL2 

inhibitory peptide or an anti-CCL2 antibody reduces FBGC formation from peripheral human 

blood monocytes. In osteoclastogenesis, although CCL2 alone is unable to induce OC 

formation, this chemokine is required for the fusion of human [287] [288] [289] mouse [290] 

and rat [400] myeloid cells into giant OCs. In human myeloid cells, RANKL/RANK signaling 

activates the transcription factor NFATc1 (nuclear factor of activated T-cells, cytoplasmic 1) 
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resulting in CCL2 expression [287]. Human monocyte fusion into OCs was inhibited by 

cyclosporin A, which blocks NFATc1, and addition of CCL2 after this pharmacological 

blockade restored the formation of multinucleated cells although they were unable to resorb 

bone [287]. Human monocytes treated with M-CSF and CCL2 fused and form giant cells 

which express several OC markers [288]. OC formation was significantly inhibited in cells 

derived from CCL2-deficient mice and this inhibition was restored by addition of 

recombinant CCL2 [290].  

The role of CCL20 in cell-cell fusion is less documented. However, in vitro, 

recombinant human CCL20 significantly increased the number of multinucleated OCs, and 

blocking anti-CCL20 antibodies inhibits this pro-osteoclastogenic effect [401]. 

CCL2 is already known to be involved in cytoskeleton rearrangement even in the 

absence of cell fusion. Antibody-mediated CCL2 neutralization induces remarkable changes 

in the morphology and size of human monocyte-derived MPs infected with HIV, reflecting 

important changes in their cytoskeleton organization [402]. However, this morphological 

change is different to what we see in DCs as it results in an increase in cell size. This suggests 

that morphological change under the control of CCL2 may depend on the cell type. CCL2-

mediated effects on cytoskeleton are also required to cell-cell fusion. Indeed, the defective 

fusion of CCL2-null MPs in FBGCs was associated with their inability to undergo 

cytoskeletal remodeling, indicating a role of this chemokine in the regulation of this process 

[403] [404].  

Overall, CCL2 and CCL20 regulate essential features of cell-cell fusion to form giant 

cells. However, we found that DCs cultured with both CCL20 and CCL2 in the absence of IL-

17A did not undergo cell fusion (data not shown). This indicates that these chemokines are 

necessary but not sufficient for the IL-17A-dependent fusion process. Consequently, IL-17A 

induces additional unknown fusogenic molecules required to achieve cell fusion and MGC 

formation. According to our transcriptomic data, a potential candidate is DC-STAMP. The 

mRNA of this molecule, known to regulate both OC and FBGC formation [291], is highly 

expressed in IL-17A-treated DC while absent from untreated cells. DC-STAMP may thus 

forms a common molecule necessary for multinucleation induced by different exogenous 

stimuli. However, validation of this hypothesis requires additional functional analysis and 

blocking assays. DC-STAMP is a cell surface seven-transmembrane protein, thereby 

resembling chemokine receptor structures. Although the ligand for DC-STAMP is unknown, 

it was proposed that CCL2 may serve as a DC-STAMP ligand [405]. In this hypothesis, IL-
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17A may simultaneously induce both DC-STAMP and its potential ligand CCL2 in DCs, 

thereby potentiating their fusion into MGCs. 

3.2.4 The role of IL-17A-induced BFL1 in myeloid cell maintenance 

In latent TB, granulomas persist for several decades reflecting the long-term 

maintenance of these structures. We were precisely interested in the maintenance of myeloid 

granuloma cells: are their maintenance is a result of a local proliferation and/or a long term 

survival? 

We found that IL-17A-treated DCs did not proliferate in vitro. However, while 

unstimulated DCs did not survive more than few days, the number of IL-17A-treated DCs was 

stabilized at day 12, thus demonstrating that IL-17A activates long-term survival pathways in 

these cells. Our in vitro results showed that IL-17A induced a rapid NF-κB activation 

(revealed by the nuclear translocation of the p65/RelA subunit) which in turn stimulates the 

expression of the pro-survival protein BFL1. This IL-17A-dependent BFL1 induction in DCs 

was blocked by an NF-κB inhibitor. Finally, statistical analysis showed that BFL1 expression 

positively correlates with the survival of IL-17A-treated DCs. 

IL-17A signaling is known to induce NF-κB activation [309]. Importantly, the promoter 

of the gene encoding BFL1 possesses a p65 / RelA responsive element which positively 

regulates BFL1 expression [406]. Therefore, in our model of human myeloid DCs, IL-17A-

mediated nuclear translocation of NF-κB provides the basis for BFL1 up-regulation. 

Several reports showed that the capacity of cell proliferation within granulomas is very 

limited. For example, in LCH granulomas, the proliferation marker Ki-67 was found in less 

than 3% of lesional DCs [407]. In situ [3H]-thymidine labeling of sarcoid granuloma revealed 

that proliferation and cell division is rare in granuloma myeloid/epithelioid cells and absent in 

their derived-MGCs [277]. In the same way, during mycobacterial infections, BrdU 

incorporation assay showed no differences in MP proliferation between BCG-infected and 

uninfected mice during the first 2 weeks of granuloma development [174].  

Regarding this reduced ability of cell proliferation and clonal expansion, inhibition of 

apoptosis of granuloma cells may form an important factor which prevents granuloma 

disruption and maintains the integrity of these structures. In this context, it was shown that 

granuloma cells express several and pro-survival proteins. For example, myeloid cells of the 

Mtb-induced granuloma express several pro-survival proteins of the TNF receptor-associated 

factor family [182], increased expression of the pro-survival protein BCL-2 and reduced 

expression of the anti-survival protein BAX [187]. Similarly, the pro-survival protein AIM 
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(apoptosis inhibitor expressed by macrophages) was found expressed in the murine MPs at the 

peripheral area of BCG-induced liver granulomas [408]. Apoptotic events are also reduced 

within sarcoid granulomas, and myeloid cells within these structures specifically express the 

cyclin-dependent kinase inhibitor p21Waf1 [409]. Foreign body (silica) chronic granulomas 

were also highly resistant to apoptosis and showed a dramatic up-regulation in BCL-2 

expression within granulomas myeloid MPs [410].  

Overall, the long lifespan of myeloid granuloma cells is probably due to the activation 

of survival pathways. IL-17A may be involved in myeloid cell maintenance by inducing the 

BFL1, a well known pro-survival protein belonging to the BCL-2 family. 

3.2.5 Multiple stimuli for NF-κB -dependent activation of BFL1 in granuloma, 

in vivo 

In addition to IL-17A, a large number of diverse stimuli lead to the activation of the 

NF-κB transcription factor, and may subsequently result in an NF-κB -dependent activation of 

BFL1. In situ, we found that BFL1 is strongly expressed by the myeloid mono and 

multinucleated giant cells of both LCH and TB granuloma in which IL-17A is also detected. 

This provides a correlation between IL-17A and BFL1 expressions in these structures. 

However, in vitro, we showed that infection of human DCs with BCG or M. avium induced 

BFL1 expression by these cells (data not shown). DC infection by these Mycobacteria did not 

result in IL-17A production (data not shown), indicating that they induce BFL1 independently 

of this cytokine.  

As cited in the introduction, Mycobacteria are potent inducers of BCL2 family members 

including BFL1 in myeloid cells (see 1.4.2.2). In THP-1 cells infected with Mtb H37Rv, 

BCL2A1 gene encoding BFL1 was also activated in a NF-κB dependent manner [411]. In 

addition, some cytokines involved in the regulation of the TB granuloma, such as TNF-α, are 

potent physiological inducers of NF-κB [412]. TNF-α-mediated NF-κB activation led to the 

induction of BFL1 in several human cell lines [413] [414] and NF-κB inhibition results in 

reduced BFL1 expression and impaired survival in human MPs [415]. 

Therefore in addition to IL-17A, Mycobacteria and other granuloma cytokines can induce 

NF-κB -dependent activation of BFL1. Consequently, myeloid cells in TB granuloma may 

have several available molecular signals to induce this pro-survival protein which may favor 

long-term survival.  
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3.3 The IL-17A-induced Giant Myeloid Inflammatory Cell (GMIC) 

3.3.1 GMIC: a novel multinucleated cell type of the immune system characterized 

by MMP12 & CTSD co-expression 

OC is the most well-characterized myeloid giant cell type. Recent studies used 

transcriptomic analysis to compare the genetic profile of these cells to monocytes and DCs 

[416]. In the same way, we compare IL-17A-dependent MGCs to monocytes, DCs and OCs 

by transcriptional profiling using microarrays. In addition to a common core shared by these 

myeloid cells, we identified transcriptional signatures that are specific to each cell type (Fig. 

18). Monocytes dramatically differ from all other cell types.  IL-17A treatment of DCs, which 

leads to MGC formation, results in the induction of about 1000 new genes. This indicates that 

IL-17A induces a novel genetic program in DCs and underlines that IL-17A-dependent MGCs 

are different from DCs. Importantly, the genetic profile of IL-17A-induced MGCs shows 

similarities with that of DC-derived OCs, and MGCs express mRNAs of characteristic OC 

markers such as TRAP, CTSK and MMP9. However, further investigations at the protein 

level showed that IL-17A-induced MGCs co-express two proteolytic enzymes, MMP12 and 

CTSD, which were respectively absent and slightly expressed in DC-derived OCs.  Moreover, 

in vitro, OCs and IL-17A-induced MGCs showed differential mechanisms of initial cell 

clustering mandatory for their fusion. Indeed, video microscopy (time lapse) experiments 

showed that OC formation occurs through a cell by cell fusion process which progressively 

increases the giant cell size. In contrast, the IL-17A-induced MGC formation requires an 

initial clustering of cells which subsequently undergo a simultaneous cell fusion process. 

Finally, while OCs are defined as bone-resorbing giant cells, IL-17A-induced MGCs were 

functionally unable to mediate bone resorption activities.  

Comparative transcriptomic studies revealed a closer molecular profile between DCs and 

OCs than between monocytes and OCs, showing that OC formation can be more efficiently 

induced from DCs than monocytes [416] (Fig. 18) . In the IL-17A-dependent pathway of cell 

fusion, both DCs and monocytes can fuse into MGCs, but monocyte fusion requires 

additional signal provided by GM-CSF [306] (Fig. 19).  As DC differentiation also requires 

GM-CSF, it can be assumed that the genetic program induced by this cytokine is mandatory 

for the myeloid cell fusion in response to IL-17A. However, the exact role of GM-CSF in this 

process is currently unclear and requires future analysis of the genetic profile of GM-CSF +/- 

IL-17A-treated monocytes. 
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Figure 18:  Dendrogram (Pearson correlation) representing the hierarchical clustering 
of the transcriptional distance between monocytes, DCs, OCs, BCG-infected DCs and 
IL-17A+/- IFN-γ-treated DCs.  
Mo: monocyte; Mo-OC: Mo-derived OC; DC-OC: DC-derived OC; DC-17: IL-17A-treated 
DC; DC-γ17: IL-17A+IFN-γ-treated DC, BCG-DC: BCG-infected DCs. 
 

 

Although both OCs and IL-17A-induced MGCs could originate from the same myeloid 

cells (DCs and monocytes), these giant cells are different. While they have several 

similarities, we showed that they differentially express the MMP12 and CTSD proteolytic 

enzymes and develop differential functional activities. These results establish IL-17A-

dependent MGCs as a novel type of multinucleated cells of the immune system that we called 

Giant Myeloid Inflammatory Cells (GMICs). The newly characterized GMICs further 

increase the already known high degree of plasticity in the world of the mono and 

multinucleated giant myeloid cells (Fig. 19). 
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Figure 19: Myeloid cell plasticity. Details in the text – (see 3.3.1) 

3.3.2 Comparison of GMICs with the giant cells of LCH and TB granulomas 

The exact origin and role of giant cells within granulomas are poorly understood. 

Therefore an important issue is the in vivo relevance of GMIC phenotype and functions. Our 

results showed that IL-17A treatment of DCs induces a mixed phenotype which associates 

markers of both MP (CD68) and DC (CD1a) in these cells until day 8. At day 12, when the 

number of IL-17A-dependent GMIC is stabilized, CD1a marker has been down-regulated, 

while CD68 remained expressed. Importantly, we also found that BCG or M. avium infection 

induces the fusion of human DCs into giant cells in vitro. Strikingly, BCG-induced giant cells 

were very similar to GMICs at the transcriptomic level and express the mRNA of MMP12 

and CTSD proteases. In situ, we found that both enzymes were co-expressed by the myeloid 

mono and multinucleated giant cells in pLCH while only CTSD was expressed by these cells 

in TB granuloma. 

Previous studies described the giant cells in LCH granulomas as OC-like cells as they 

express characteristic OC markers [417]. However, the fact that these cells co-express also 

CTSD and MMP12 in pLCH granulomas is in favor of their similarities with GMICs. CTSD 

expression by these cells was not reported previously. Nevertheless, MMP12 was already 
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documented in childhood LCH inside the myeloid cells and its expression was associated with 

a bad prognosis, suggesting that this protease plays a detrimental role in this disease [418].  

In TB, both epithelioid cells and MGCs were historically considered as MP derivatives 

[170]. This is contradictory with the fact that GMICs originate from monocytes or DCs. 

However, this traditional suggestion was never been formally demonstrated in vivo. In 

addition, within murine chronic Mtb granulomas, myeloid cells highly express characteristic 

DC markers such as CD11b, CD11c, and DEC205 [182]. In terms of phenotype, epithelioid 

cells are different from the canonical monocytes, MPs or DCs, because they showed a mixed 

MP-DC phenotype. Interestingly, in vitro control of Mtb replication is achieved by monocytes 

or MPs provided they were treated with GM-CSF [419] [228] as well as with DC, generated 

from monocytes in the presence of GM-CSF and IL-4 [116]. Recent report confirmed that M-

CSF, the cytokine mostly used for canonical MP differentiation, in vitro, was highly 

counterproductive to control virulent Mtb contrary to GM-CSF. As cited above, GM-CSF 

conditioned the monocytes to survive and to respond to IL-17A, similarly as DCs. However, 

M-CSF could not replace GM-CSF for these effects [306]. We therefore suggest that the 

biology of epithelioid myeloid cells in TB granuloma, seems closer related to DCs or GM-

CSF-treated monocytes than to monocytes or canonical MPs. This is supported by the in vitro 

ability of these cells to control Mtb growth and to undergo cell fusion in the presence of IL-

17A expressed in TB granuloma. It can be therefore suggested that giant cells of TB 

granuloma may result from the fusion of DCs or GM-CSF-treated monocytes as observed for 

IL-17A-dependent GMICs, in vitro. The fact that TB granulomas highly express IFN-γ and 

GM-CSF [225], which positively impact GMIC formation, strengthens this hypothesis. As 

previously cited, both IFN-γ and GM-CSF inhibits osteoclastogenesis (Table VII), thus 

weakening the possibility of a link between TB giant cells and RANKL-induced cell fusion. 

CTSD expression was previously reported in the granuloma myeloid cells of Mtb-

infected mice [195]. We documented the expression of this protease in the giant cells of 

human TB granuloma, adding an argument on their similarity with GMICs. However, we 

failed to detect MMP12 in these giant cells. This suggests two hypotheses: first, giant cells of 

the TB granulomas share strong similarities with GMICs but are different from them; second, 

as MMP12 mRNA was expressed upon BCG infection in human DCs in vitro, pathogenic 

Mtb may specifically inhibit the expression of this protease. This second hypothesis is 

attractive because MMP12 is a bactericidal molecule [420] (see 3.3.3). It would be interesting 

to study MMP12 expression and regulation upon Mtb infection in GMICs. 
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In conclusion, giant cells in LCH granuloma possess several GMIC characteristics while 

this is questionable in the case of TB giant cells due to their lack of MMP12 expression. In the 

future, it would be interesting to compare the genetic profile of the giant cells of LCH and TB 

granulomas with that of IL-17A-dependent GMICs. This can be done through comparative 

transcriptomic analysis after giant cell isolation from granulomas by laser micro-dissection, a 

technique used to isolate individual cells from tissue sections 

3.3.3 Microbicidal role of GMIC against Mycobacteria, in vitro 

In humans, TB granulomas with giant cells are thought to control mycobacterial growth, 

thereby playing a protective role. In human DC, transcriptomic data showed that IL-17A 

modulates the expression of molecules implicated in intracellular vesicle trafficking and 

vacuole acidification. It also regulates the expression of oxidative stress molecules and 

exacerbates NADPH oxidase activity. In vitro studies showed that IL-17A-treated DCs kept 

classical DC functions such as phagocytosis, TRAIL-mediated cytotoxicity and 

allostimulatory properties. IFN-γ, which potentiates the IL-17A-dependent fusion of DCs, 

does not change the transcriptome induced by IL-17A, and would therefore act as a post-

transcriptional modulator. Regarding these features, we asked if IL-17A and IFN-γ-treated 

DCs and their derived GMICs may play a bactericidal role facing to two different 

mycobacterium strains, M. avium and BCG. We found that bacilli of both strains were more 

efficiently controlled by IL-17A and IFN-γ-treated DCs than by untreated DCs. Stimulation 

with CD40L result in a most potent killing of M. avium in both untreated and IL-17A and 

IFN-γ-treated DCs. In contrast BCG bacilli grow in CD40L-stimulated cultures of DCs and 

this effect was potentiated by IL-17A and IFN-γ cytokines. Electronic microscopy confirms 

this finding by showing that BCG bacilli divide and replicate within CD40L-stimulated cells 

while this was not observed in other conditions. 

Bacterial killing occurs through several microbicidal mechanisms, including protease 

activities. An elegant study showed that MMP12 is able to kill bacteria within murine MPs, 

thereby directly contributing to their antimicrobial properties [420]. Authors demonstrated 

that mice lacking MMP12 exhibit impaired bacterial clearance and increased mortality when 

challenged with bacteria. Functionally, after bacterial ingestion, MMP12 is mobilized to MP 

phagolysosomes where it adheres to bacterial cell walls and disrupts cellular membranes 

resulting in bacterial death. In this way, IL-17A-mediated up-regulation of MMP12 may play 

protective roles. However, the bactericidal activity of MMP12 was demonstrated facing to 

both Gram+ and Gram- bacteria, while it is unknown if it may exert a similar effect against 
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Mycobacteria, characterized by their unique resistant cell wall. However, if this is the case, it 

can be assumed that MMP12 is an important player against BCG and M. avium, and 

efficiently contribute in their killing within IL-17A and IFN-γ -treated DCs and their derived 

GMICs. This can be verified through the use of selective MMP12 inhibitors in these infected 

cells, followed by colony-forming unit (CFU) studies to evaluate their killing abilities in the 

absence of this protease. It would be also interesting to evaluate MMP12 expression in 

CD40L-stimulated cultures in which we found that BCG, instead of being killed, showed a 

striking strong replication. As discussed above, Mtb may potentially inhibit MMP12 

expression to avoid its destructive effects, and this must be verified by investigating if this 

protease is expressed or not by Mtb-infected myeloid cells treated with IL-17A and IFN-γ 

CTSD may be also involved in the microbicidal activities of GMICs. CTSD is a 

lysosomal aspartyl protease which is essentially involved in the proteolytic activity within 

acidic compartments. Inhibition of CTSD in human monocyte-derived MPs led to enhanced 

replication of virulent Mtb in these cells, underlying the important role of this protease in 

restricting intracellular Mtb growth [421]. In mycobacterium-infected murine MPs, CTSD 

plays a major role in the processing and presentation of a mycobacterial antigen 85B epitope 

[422]. Inhibition of CTSD synthesis using RNA interference resulted in a marked decrease in 

the presentation of this process, indicating that CTSD take part in microbial degradation 

within phagolysosomes. 

In addition to MMP12 and CTSD, IL-17A up-regulates the mRNA levels of other 

destructive enzymes including NADPH oxidase and TRAP. In vitro, IL-17A and IFN-γ-

treatment potentiates NADPH oxidase activity and TRAP expression. As previously noted, 

NADPH oxidase may play a protective role against Mtb infection [212]. The knockdown 

of gp91phox/NOX2 subunit of this enzyme inhibited the antimicrobial activity against viable 

Mtb in human MPs through the modulation of the expression of the antimicrobial peptide 

cathelicidin [423]. TRAP is expressed in human OCs, activated MPs [424], and DCs [425]. It 

has two distinct enzymatic functions: a phosphatase activity required for bone resorption and 

a catalyzing activity required for the production of oxygen radicals at neutral pH. Indeed, this 

enzyme possesses two isoforms: TRAP-5a, expressed in MPs and DCs, which is involved in 

bacterial killing, and TRAP-5b, expressed in the OC, which contributes to the fragmentation 

of bone matrix components [426] [427].Transgenic mice that overexpress TRAP exhibit 

osteoporosis and MPs from these mice produce more oxygen radicals (ROI) and showed 

increased bactericidal capacity [428]. The tests we used did not distinguish the two isoforms 

of TRAP-5, but it is likely that the significant increase in expression of TRAP activity, we 
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have highlighted in GMICs, is more related to TRAP-5a. It would be interesting to 

complement these results by a specific study of these isoforms of TRAP [427] and then, 

depending on the results, check if this enzyme is involved in the microbicidal activities of 

GMICs through blocking assays. 

IL-17A and IFN-γ-treatment as well as BCG or M. avium infection of human DCs 

induces the formation of giant cells. However, Mycobacterium-infected DCs acquire the 

ability to efficiently kill the bacilli when treated by IL-17A and IFN-γ. This suggests that 

cytokine treatment rather than the presence of giant cells is important to kill Mycobacteria. 

Nevertheless, a previous report showed that multinucleation is important for the restriction of 

mycobacterial growth through a physical sequestration which may limit their cell to cell 

spread [429]. To investigate if multinucleation is required for mycobacterial killing, 

mycobacterium-infected DCs can be treated with IL-17A and IFN-γ along with fusion 

inhibitor molecules such as anti-CCL20 or CCL2 antibodies. The comparison of the 

mycobacterial growth in such GMIC-free cultures with that of GMIC-containing cultures will 

answer this question. 

Finally, as we found that CD40L signaling promotes BCG growth within GMICs, it 

would be interesting to repeat this experiment using virulent Mtb to evaluate if, as BCG, 

CD40L activation stimulates Mtb replication in GMICs. This may identify a new critical point 

in the interaction between pathogenic Mycobacteria and the human immune system effectors. 

In TB, the specific structure of the granuloma regionalizes the expression of the CD40L signal 

in the periphery on activated T lymphocytes far from the Mtb-enriched core of myeloid cells. 

In the hypothesis that CD40L signaling promotes Mtb replication, such specific granuloma 

structure may result from an adaptation of the human immune system to prevent Mtb growth 

as long as bacteria are captured in the myeloid cells. This may also explain why it is crucial to 

maintain granuloma structure to prevent the development of active TB 

3.3.4 The destructive role of GMIC against human broncho-epithelial cells 

Although granulomas may play a protective role by containing infectious agents (e.g. 

Mtb), these structure also destroy the host tissues were they are embedded (e.g. lungs). 

Moreover, in granulomatous diseases such as pLCH in which no infectious agents were 

identified, granulomas play only destructive roles without any apparent benefice for the host. 

In this way, granulomas may form an immunopathological factor which promotes severe 

tissue destruction. We found that IL-17A and IFN-γ-treated DCs and their derived GMICs 

play aggressive roles as reflected by their ability to destroy a human bronchial epithelial cell 
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line (BEAS-2B). GMIC proteases such as MMP12 and CTSD may be potentially involved in 

such destructive activities  

MMP12 can play important pathological roles in the destruction of the pulmonary 

tissue. The main substrate of MMP12 is elastin [430], a major component which ensures the 

elasticity of the pulmonary tissue. MMP12 is also involved in the degradation of other 

extracellular matrix proteins including type IV collagen and gelatin as well as non-matrix 

proteins such as myelin basic protein [431]. This protease was found markedly increased in 

sputum of patients chronic obstructive pulmonary disease (COPD) [432] and mice deficient 

for MMP12 were resistant to emphysema, a form of COPD [433]. Although we did not detect 

MMP12 expression in TB granuloma, this protease was expressed in pLCH myeloid cells. 

Others also reported a high MMP12 expression in the myeloid cells of LCH [418] and sarcoid 

[434] granulomas and underlined its correlation with the severity of these lung diseases. 

Previously, our group showed that MMP12 is tightly regulated at both transcriptional and 

post-transcriptional levels in DCs. IL-17A induces the accumulation of inactive MMP12 in 

DCs while cleavage of this inactive form in active MMP12 requires the addition of IFN-γ. 

Moreover, MMP12 extracellular secretion requires the presence of a danger signal such as the 

TLR4 agonist, LPS [306]. IL-17A and IFN-γ are expressed in both sarcoid and LCH 

granulomas [380] [435] [306] [436]. However, the presence of a pathogen which delivers 

danger signals to facilitate MMP12 release by myeloid cells is not documented in these 

diseases. Further work is needed to clarify LCH and sarcoidosis myeloid cells secrete MMP12 

and how this process is regulated. 

In addition to its role in antigen presentation CTSD plays also a role in several 

biological functions such as apoptosis and autophagy [437].  Moreover, this protease was 

found released extracellularly as reported from human MPs and keratinocytes [437] [438] 

[439]. CTSD expression and activity was detected in extracellular matrix, and components of 

this latter have been found among CTSD substrates [437]. This protease was also described as 

a tissue marker associated with bad prognosis and metastasis in several cancers such as breast 

cancer and malignant gliomas [437]. In vitro, breast cancer cells secreted an extracellular pro 

CTSD which was auto-activated at acidic pH and digested extracellular matrix components, 

suggesting a role of this protease in facilitating tumor invasion [440]. Moreover, efficient drug 

(Tamoxifen) was shown to decrease secretion of CTSD in breast cancer, in vivo [441]. These 

data showed that CTSD, especially through its extracellular form, is playing destructive 

functions and promotes extracellular matrix degradation and tumor cell invasion. In a model 

of cavitary TB in rabbits, high levels of CTSD were present in the live and dead MPs that 
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surround caseous and liquefied pulmonary lesions, suggesting that this enzyme is a major 

protease in the liquefaction process of pulmonary caseous foci [442]. We showed that 

granuloma myeloid cells in TB and pLCH express CTSD. It would be interesting to know if 

they secrete this protease extracellulary, thus promoting a possible mechanism of host tissue 

damage. In vitro models of human mycobacterial granulomas were previously developed 

using either BCG or beads coated with Mtb antigens [443]. Both systems are able to trigger a 

cellular aggregation reminiscent of natural mycobacterial granulomas, in terms of morphology 

and cell differentiation.  Extracellular CTSD expression could be investigated in the medium 

of these structures and its destructive role may be then evaluated. 

Overall, IL-17A and IFN-γ-treated DCs and their derived GMICs can play destructive 

roles which potentially depend on their aggressive CTSD and MMP12 proteases. The 

blockade of IL-17A or its induced-MMP12 and/or CTSD may thus represent a possible 

therapeutic strategy in diseases in which the IL-17A-dependent granulomas efficiently 

damage host tissues, as in pLCH or sarcoidosis. 

3.3.5 Regulation of IL-17A-mediated responses 

To avoid aggressive tissue destruction, granulomas must be tightly regulated and 

limited in size and number, and controlled in term of effector destructive functions. As 

discussed above, IL-17A promotes myeloid cell recruitment through chemokines, survival via 

pro-survival proteins and aggressive activities through destructive enzymes. If not regulated, 

such IL-17A-mediated effects exacerbate granuloma formation and promote its aggressive 

functions, thereby enhancing host immunopathological responses and tissue destruction. In 

this context, a recent paper showed that repeated BCG vaccination of Mtb-infected mice led to 

increased IL-17A production which results in pathological consequences [444]. This was 

reflected by enhanced lung neutrophila and high mortality of infected mice. These 

pathological effects were completely dependent on IL-17A as they were abrogated in animals 

treated with IL-17A-blocking antibodies. Enhanced pathology in these mice was 

characterized, macroscopically, by a larger number of detectable lesions and, microscopically, 

by lesions of increased size compared with control mice [444]. Exaggerated IL-17A 

production in murine schistosomiasis induces also enhanced pathology characterized by more 

severe and larger granulomatous lesions [384] [385]. These data reflects clear deleterious and 

pathological roles of excessive IL-17A production in granulomatous inflammation, indicating 

that this process must be finely regulated to avoid pathological consequences.  
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Several reports revealed an immunomodulatory role of IFN-γ which restrains and antagonizes 

exacerbated IL-17A-dependent effects to avoid immunopathology. Th1 cell-produced IFN-γ 

inhibits the differentiation of Th17 cells during BCG or Mtb infection in mice, thus reducing 

pathogenic IL-17A-mediated PMN accumulation and preventing severe granulomatous 

responses [445] [446]. In vitro, IFN-γ up-regulates IL-12 (which promotes Th1 responses) 

and down-regulates IL-23 (which promotes Th17 responses) in BCG-infected murine DCs 

[445]. Chimeric mice in which non-hematopoietic lung epithelial and endothelial cells were 

unable to respond to IFN-γ showed overexpressed IL-17A with massive pathological 

neutrophilic inflammation [447]. Rutitzky et al. reported that IFN-γ also regulates the IL-

17A-dependent deleterious granulomatous response in mice with induced severe 

schistosomiasis. In this model, animals deficient in T-bet (lacking Th1 responses and IFN-γ 

production) or in IFN-γ, showed a greater enhancement of hepatic immunopathology which 

correlate with a marked increase in IL-17A production by Th17 cells. This correlated with a 

concomitant influx of PMNs to granulomas resulting in larger and poorly circumscribed 

lesions compared to WT animals [448] [449].  

In humans, Mycobacterium-infected individuals with a partial deficiency in the IFN-γ 

receptor (partial IFN-γR1 deficiency) developed a response which clinically and 

histologically mimicked LCH, thus reflecting a severe non controlled granulomatous response 

[450]. The role of IL-17A was not evaluated in such patients, but it can be assumed that the 

impairment of the immunomodulatory function of IFN-γ leads to excessive and non-regulated 

IL-17A responses which results in such severe response.  

A fine balance between IFN-γ and IL-17A responses is therefore essential in 

regulating granulomatous responses, and disruption of this balance may lead to important 

immunopathological consequences. In this equilibrium state, IFN-γ regulates IL-17A 

production and counteracts its detrimental effects. This occurs most likely by inhibiting the 

generation of Th17 cells and limiting their dependent response, thus blocking an essential 

source of IL-17A. However, Th17 cells are not the exclusive source of IL-17A. Consequently, 

the role of IFN-γ in limiting deleterious IL-17A effects may be ineffective in cases where IL-

17A is essentially produced by other cells than Th17 lymphocytes. This might be the case in 

LCH in which IL-17A and IFN-γ are both secreted by the same lesional myeloid DCs (Fig. 

20). In such conditions, IFN-γ cannot limit IL-17A effects, but in contrast it potentiates their 

impact on myeloid cell recruitment, clustering and fusion in destructive MGCs within 

granulomas. This may explain the potent aggressive granuloma functions in the highly 

destructive LCH disease. 
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Figure 20: IFN-γ differentially regulates IL-17A-mediated effects in TB and LCH.  
 
Top: In TB, IFN-γ limits the expansion of IL-17A-producing T cells and may thus regulate 
IL-17A effects on myeloid cells and attenuate its destructive and pathological-dependent 
consequences.  
 

Bottom: in pLCH, the initial production of IFN-γ by Th1 is limited by Tregs [407]. IFN-γ 
produced by the same IL-17A-expressing myeloid cells is unable to inhibit IL-17A production 
but, in contrast, enhances IL-17A functions leading to a positive amplification loop which 
promotes the accumulation of pathological DCs and their destructive abilities. 
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4 Part IV: CONCLUSIONS & PERSPECTIVES 

In 2008, our group demonstrated that IL-17A induces the fusion of human DCs into MGCs 

[306]. In this work we characterized this IL-17A-dependent fusion pathway and demonstrated 

that in vitro, IL-17A positively regulates survival, clustering and fusion of DCs. We investigated 

the molecular mechanisms by which IL-17A regulates these three features. We found that IL-17A 

treatment of DCs induces the production of BFL1, a pro survival protein of the BCL2 family. IL-

17A-mediated BFL1 production was correlated with DC survival, indicating the role of BFL1 in 

promoting the prolonged lifespan of these cells. We also found that IL-17A induces CCL2 and 

CCL20 in DCs, and demonstrated that these chemokines are critical mediators in regulating DC 

clustering and fusion in MGCs. However, CCL20 and CCL2alone were not sufficient to mediate 

DC fusion, indicating that IL-17A induces additional molecules required for the fusion process. It 

would be interesting to determine IL-17A-induced fusogenic molecules in our transcriptomic data, 

and then validate their involvement in this fusion pathway using in vitro blocking assays. As 

several fusion mediators were identified in other pathways of giant cell formation (OCs, FBGCs); 

such experiments would clarify if the IL-17A-dependent fusion pathway relies on the same or on 

different fusogenic molecules. 

MGCs are the hallmark of granulomas in several granulomatous disorders including TB. In 

human TB granuloma, we found that IL-17A was expressed by T lymphocytes while BFL1, 

CCL2 and CCL20 were expressed by mono- and multinucleated myeloid giant cells within these 

structures. We also found that IL-17A, BFL1, CCL2 and CCL20 were expressed by the myeloid 

granuloma cells in pLCH, another pulmonary granulomatous disorder. Along with our in vitro 

findings, these results suggest that IL-17A may participate in the maintenance of human 

granulomas by promoting myeloid cell survival through BFL1 as well as clustering and fusion 

trough CCL2 and CCL20. In diseases in which granulomas play destructive roles such as pLCH, 

IL-17A and/or its induced BFL1, CCL2 and CCL20 may form potential therapeutic targets. 

Several types of giant cells were previously described including bone-resorbing OCs. Our 

transcriptomic data showed that IL-17A-induced MGCs are different from OCs, and in vitro 

experiments revealed that they were unable to resorb bone. Moreover, MGCs were characterized 

by the co-expression of MMP12 and CTSD and such co-expression may form marker of these 

cells. Investigating the nature and the origin of giant cells in granulomatous diseases may open 

new avenues for the understanding, classification and treatments of these disorders. Regarding the 

origin and characteristics of the IL-17A-induced MGCs we called them GMICs (giant myeloid 

inflammatory cells) and we suggest that they form a novel myeloid effector of the immune 

system. Methodological skills depicted in a recent paper which characterize follicular helper 
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CD4+ T cell dynamics during Simian immunodeficiency virus infection [451] can be used to 

better characterize GMICs. Indeed in this paper, authors elegantly characterized follicular 

helper T cells in rhesus macaques at the phenotypic, molecular, functional and tissue 

localization level. The techniques depicted in this publication will indeed allow investigating 

the relationship between cellular subsets, which means that any divergent functions of cells 

such as giant cells could be spatially resolved within an environment tractable to in depth 

characterization. 

IL-17A-treated DCs and their derived GMICs, have a mixed DC-MP phenotype, kept DC 

immune functions, express destructive enzymes and possess potent microbicidal functions. 

They were more potent in Mycobacterium (M. avium and BCG) killing than untreated DCs. 

Strikingly, when stimulated by CD40L, they showed differential bactericidal abilities: they 

better control M. avium while become unable to control BCG growth and replication. Mtb 

ability to grow within unstimulated or CD40L stimulated GMIC is an important issue which 

must be investigated to clarify the behavior of this pathogen in these giant cells. 

 Importantly, in addition to their bactericidal roles, we found that IL-17A-treated DCs and their 

derived GMICs are potent destructive cells. In vitro, they were able to destroy a layer of 

bronchial epithelial cells, while untreated DCs did not. Further investigations are needed to 

identify the exact molecular mediators involved in this destructive process. Based on recent 

findings which associate IL-17A-induced MMP12 to pulmonary tissue damage in lung 

inflammatory diseases such as emphysema [452], this enzyme may represent a potential 

candidate. CTSD may also represent another candidate as this protease was found released 

extracellulary where it promotes tissue damage. Neutralization of IL-17A-induced destructive 

enzymes such as MMP12 may be thus beneficial to avoid tissue damage destruction by 

aggressive granulomas. 

Although granulomas can be detected in vivo (e.g. using radiology or computed 

tomography), the monitoring of the temporal evolution of a granulomatous response is 

difficult. We showed that CTSD is highly and specifically expressed by the myeloid cells of 

IL-17A-dependent granulomas in pLCH and TB. The use of a CTSD substrate (commercially 

available) may be therefore used as a screening tool to localize and follow IL-17A-dependent 

granulomas through medical imaging techniques. For example, a CSTD substrate can be 

coupled to a radioactive medicine to create a “radiotracer”. The substrate targets the 

radiotracer to the CTSD rich myeloid cells of the granuloma and a nuclear imaging technique 
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such as positron emission tomography (PET) scan can be used to localize and follow these 

CTSD+ structures. This technique can be used as a diagnostic tool which may provide useful 

information on granuloma presence, localization, number and size and allows a precise 

monitoring of the stability of these features. This may help the treatment as it may become 

easier to decide when treating, with which drugs and for how many time.   

Finally, granulomatous structures may be found in the vicinity of the tumors, and granulomatous 

reaction may be associated with a better prognosis as reported in some cancers [453]. Recent 

data from animal models suggest that tumoral cells, similar to Mtb, may be packaged and 

chronically controlled within giant cell-associated granulomas [375]. The anti mycobacterial 

response induced by BCG is used to treat invasive bladder cancer through intravesical 

instillation of live BCG. However, mechanisms of this treatment remain poorly understood. 

Based on the facts that i) BCG induces a granulomatous response ii) granulomas may control 

tumoral cells and iii) IL-17A promotes BCG-induced granuloma formation; we propose that the 

unknown mechanism which control bladder cancer, following BCG therapy, is an IL-17A-

dependent anti-tumoral granulomatous response induced by BCG infection. Moreover, as we 

showed that IL-17A induces myeloid cell fusion into destructive GMICs, it can be suggested that 

these cells may control and/or destroy bladder tumoral cells as we reported for the transformed 

BEAS-2B cells in vitro. Validation of this hypothesis requires an in vitro model of co-culture 

between GMIC and bladder cancer cell lines such as T24, to investigate if they are destroyed by 

GMICs. The set-up of this system is already initialized in the laboratory to determine optimal co-

culture conditions. Moreover, it would be interesting to co-culture bladder cancer cells along with 

the in vitro granuloma models induced by BCG or mycobacterial antigens to understand if these 

granulomas are able to control cancer progression and to determine the role of IL-17A in this 

process. If IL-17A-associated to mycobacterial antigens, can lead to the same granulomatous 

response with GMIC formation, able to control and/or destroy cancer cells, this could improve 

bladder cancer treatment, avoiding side effects seen in 30% of patients due to infection with 

live BCG. Moreover, understanding the molecular mechanisms of BCG immunotherapy may 

open new avenues to control cancer cells in other tumors. 
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ABSTRACT 

Tuberculosis (TB), caused by Mycobacterium tuberculosis infection, is a deadly disease 

which mainly affects lungs. The histological hallmark of TB is the formation of small nodules 

called granulomas in affected tissues. These structures, crucial to restrict mycobacterial 

growth, are formed by a myeloid cell core, containing multinucleated giant cells (MGCs) and 

surrounded by T lymphocytes. In humans, mechanisms of granuloma and MGC formation 

and functions are largely unclear.  

Previously, our group showed that the pro-inflammatory cytokine IL-17A induces the fusion 

of human dendritic cells (DCs) in MGCs. In this work, we identified IL-17A-dependent 

molecules that regulate DC survival such as the pro-survival protein BFL1, and clustering and 

fusion such as the chemokines CCL20 and CCL2, to form MGCs in vitro. Working on human 

TB granulomas, we showed that IL-17A was expressed by T lymphocytes while BFL1, 

CCL20 and CCL2 were expressed by the mono and MGCs of the myeloid core. This suggests 

a role of IL-17A in granuloma maintenance and giant cell formation by promoting survival, 

clustering and fusion of myeloid cells. 

Using transcriptomic analysis and in vitro experiments, we then characterized the phenotype, 

the immune functions and the microbicidal roles of IL-17A-treated DC and their derived 

MGCs. They showed a mixed DC-macrophage phenotype, kept classical DC functions, co-

express the destructive proteases matrix metalloproteinase 12 and cathepsin D, and have 

increased microbicidal activities against Mycobacteria. In vitro, IL-17A-induced MGCs were 

also able to destroy a human bronchial epithelial cell line. We called these IL-17A-dependent 

giant cells GMICs for Giant Myeloid Inflammatory Cells, and propose that they constitute a 

new inflammatory myeloid effector with strong bactericidal and destructive activities. We 

found that infection of human DCs with Mycobacteria induces the formation of giant cells 

independently of IL-17A. We compared giant cells of TB granuloma to myeloid giant cells 

either generated in vitro such as osteoclasts, GMICs, BCG-induced giant cells or generated in 

vivo in other granulomatous disease such as Langerhans cells histiocytosis. IL-17A-induced 

GMICs share striking similarities and genotypic and phenotypic characteristics with 

Mycobacterium-induced giant cells. 

Altogether, our results show that IL-17A may maintain the integrity of the myeloid core of the 

human TB granuloma and promotes the formation of original myeloid giant cells with potent 

microbicidal and destructive functions. These results offer a better understanding of the 

molecular mechanisms of granuloma and giant cell formation and functions and may help the 

development of new TB therapeutic and vaccination strategies.  
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