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SYNOPSIS 

The French “HDR” diploma (Habilitation à Diriger des Recherches) is necessary to be the principal 

supervisor of PhD theses in French Universities. The candidate must write a dissertation that is 

defended in front of an international Jury. Typically, a collection of published articles with accessory 

information may suffice as content of the manuscript. For my HDR I decided to write from scratch a 

coherent manuscript with a considerable amount of unpublished content. Since my contributions in 

scientific journals as first author concern mainly methodological works (see chapter I), I decided to 

compile a manuscript reminding the structure of a small handbook of advanced methods for EEG data 

analysis. As a matter of fact all methods presented in this manuscript may be understood as a way to 

study the latent variables hidden in EEG recordings, what we name here generically source analysis, 

concept that will be precised as the reading progresses. Such a work is meant to be expanded and 

enriched in the future. It is addressed to students and peers approaching the field of quantitative EEG 

data analysis. The aim of the manuscript is to provide a succinct overview of methods that find 

practical utility, at least in my humble experience. The manuscript focuses on exhaustive descriptions 

of the algorithms and practical suggestions for their purposeful use. Many of the methods are 

illustrated by means of extensive simulations and real data, the latter pertaining to clinical, cognitive 

and Brain-Computer Interface studies. This has given me an opportunity to present many of the studies 

in which I have participated. The manuscript is organized in ten short chapters:  

Chapter I contains a CV and other relevant information about my scientific career and achievements. 

It also contains a brief description of my research interests and main scientific collaborations. This 

chapter is meant to provide the member of the jury with objective information for evaluating my 

scientific status. Out of that, it plays no other role in this manuscript. The general reader may skip this 

chapter altogether. 

Chapter II includes a section on notation and nomenclature, which are used consistently throughout 

the manuscript. Much effort has been spent in defining a simple, yet powerful and consistent notation 

arranging and harmonizing the different families of methods treated in the manuscript. I must say that 

this has been actually the stronger involvement in writing the manuscript, since a clear and consistent 

notation is of paramount importance in the quick grasping of the meaning of equations. In defining the 

notation I have tried to avoid as much as possible the use of the same symbols for different topics. For 
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doing so, notation has been simplified considerably and several symbols are used generically to 

represent objects of the same kind. Furthermore, I have employed both the Latin and Greek alphabet. 

The reader is invited to study carefully the section Notation and Nomenclature, after which the 

equations in the manuscript should result clear at first glance. If this is not the case then I have not 

succeeded in my endeavor. The chapter then collects basic known results in linear algebra and 

statistics, to which the reader is referred throughout the ensuing chapters. All linear algebra results 

needed, with some more as a bonus, are collected in this section, named Linear Algebra. The expert 

reader may walk through quickly here. Finally, the chapter includes a short introduction to the 

physiology and physics of EEG, yielding the definition of the EEG sensor measurement, which is the 

starting point of all EEG data analysis, including the source analysis methods that we treat here.  

Chapter III introduces the family of regularized weighted minimum-norm inverse solutions. It 

addresses thus the problem of source localization. Emphasis is given to the two methods we have been 

using most, named sLORETA and eLORETA. Both the model driven and data driven version of these 

methods are presented, uncovering the connection with the well-known family of linearly constrained 

minimum-variance inverse solutions. Useful suggestions on the use of inverse solutions are provided. 

The chapter ends with a short overview of my contributions in regional current density estimations, 

particularly useful for real-time applications, including the use of data-independent filters known as 

beamformers and data-dependent filters designed to increase the signal to noise ratio, the classification 

accuracy, or any other sought purpose. This chapter has been included since inverse solutions are 

heavily employed in chapter VI and VII, hence I felt important to give an account of the mathematical 

background of these methods.   

Chapter IV, V, VI, VII teken together represent a long journey into the wide family of methods based 

on the diagonalization of matrices holding second-order statistics of the data (i.e., covariance matrices 

and similar). In Chapter IV a general framework for the (approximate) joint diagonalization of 

matrices estimated on multiple data sets is presented, showing that the same optimization in a least-

squared framework can be used to solve all problems encountered in these chapters. Two algorithms 

for solving the general optimization scheme are given. Chapter V treats basic spatial filters such as as 

principal component analysis, whitening, maximal covariance analysis, canonical correlation analysis 

and the common spatial pattern. The journey continue in Chapter VI with blind source separation 

(BSS) methods based on second-order statistics and associated algorithms, such as AMUSE, SOBI etc. 

In this chapter we investigate BSS theory and we provide a general conceptual framework and 

algorithm (AJDC) to deal with all major kinds of EEG data, namely, spontaneous, induced and evoked 

EEG. Finally, chapter VII treats group BSS methods and Joint BSS methods, which are extension of 
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the BSS methods when multiple subjects or multiple data sets are analyzed simultaneously. The 

different families of methods are illustrated with many real data examples.  

Chapter VIII and IX are the most original of the manuscript. Chapter VIII presents a new universal 

framework for BCI classification based on Riemann geometry. We show that the very same signal 

processing chain with minimal changes can be adapted to all current BCI modalities, including those 

based on the analysis of event-related (de)synchronizations, evoked-response potentials and steady-

state evoked potentials. The framework is well adapted to support a new generation of multi-user BCI 

functioning without calibration. Our claim is supported with the classification of several data sets for 

each BCI modality. We believe firmly that the Riamannian framework will receive more and more 

attention in the BCI community and candidates to become the “standard” very much sought by the 

field. Chapter IX presents, rather exhaustively, current and very recent advances in differential 

Riemannian geometry and the affine-invariant metric, that is, it treats the theoretical bases allowing 

the results presented in chapter VIII. While the Riemannian framework is at first sight mathematically 

hostile, it turns out to be extremely simple in actual usage, much more simple that most advanced 

methods presented in chapter III-VII. The reader facing these tools for the first time is invited to tackle 

this chapter slowly, with an open-minded and challenging attitude. The chapter ends with some 

theoretical investigations we have started during the very last months, disclosing, among other things, 

some connections between the Riemannian distance and geometric mean with the material presented 

in chapter V, VI and VII. Riemann geometry has appeared in EEG literature only five years ago, but is 

gaining momentum very rapidly. The material presented in chapter VIII and IX is still completely or 

rather unknown to most EEG specialists. It has been included especially thinking to the members of 

the Jury, who I hope will find in this chapter new interesting and stimulating ideas, besides sharp 

results in the field of BCI. 

To conclude, Chapter X contains an overall discussion of the entire manuscript and some persectives 

for future research. 

Chapters III to IX form the core of the manuscript. They are self-contained, thus they may be read 

independently, although several cross-references are included to preserve the unity of the manuscript 

and to show connections between different research fields; after all, the methods presented in section 

III and those presented in chapters V-VII are clearly complementary, whereas the connections between 

the methods presented in chapter VIII-IX and those presented in the others are largely to be 

uncovered. 
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PREFACE 

 

“We cannot solve the problems  
we have created  

with the same thinking that created them." 
 

- Albert Einstein, (1879 - 1955), 
1922 Nobel Laureate for Physics 

 

"Atrocities are not less atrocities  
when they occur in laboratories  

and are called medical research." 
 

- George Bernard Shaw (1856 - 1950), 
1925 Nobel Laureate for Literature 

 

 

Yesterday I came across a post, dated July 3rd 2013, that I found in a blog for video game players1. The 

post comments a video describing the advances of the OpenViBE2 project, to which I have 

participated (2009-2013). OpenViBE2 has assembled several research institutions and several actors 

of the video game industry with the aim of prospecting the introduction of brain-computer interface 

(BCI) technology in consumer video games. Here is my English translation of the post: 

 

… Here it is my friends, the stammering of the future! The first steps of a new 
adventure that we will experience shortly. Because finally, what a few months ago 
seemed to be just science-fiction, is rising now. Yes, we will experience one day 
much more than a video game! In our head, we will know, I am sure, the virtual 
world projected directly in our brain and we will be able to live parallel lives 
of our choice, where we will be like gods!… 

 

The enthusiasm of the blogger is a prototypical example of the increasing expectation about the 

possibilities of BCI technology, which is seen by some as a way to surpass natural human capabilities. 

I must admit that the idea to “live parallel lives of our choice, where we will be like gods!” has left me 

rather perplexed. Why one may find such a thing desirable? Is this blogger suggesting that BCI may be 

conceived as a way to edulcorate the human condition? Should our goal be escaping from our natural 

condition or rather should we try to understand how to live with it? I was still thinking to the 

implications of the post when, today, I found an article in “Paris Match” titled “The crazy project of a 

                                                      

1 http://www.team-vips.com/t4201-interface-cerveau-ordinateur 

http://www.team-vips.com/t4201-interface-cerveau-ordinateur
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Russian billionaire: eternal life”2. The goal of the so called “2045 Initiative” is to achieve, by 2045, 

the embedding of a brain with its consciousness in a chip. This is sometimes referred to as mind-to-

computer uploading. The billionaire at the origin of the project, which name is Dmitri Itskov, says: 

« I am going to get old and then die and all this for what? Life cannot resolve in 

this sad equation ». The project aims at an intermediary goal by 2020, which is to create an 

android avatar completely controlled by a BCI. Far from being just a rumor, it appears that the project 

has already involved several respectable and authoritative scientists. Again, BCI technology is evoked 

as a means to achieve what is naturally precluded to humans. Moreover, we must admit that the 

expectation is shared also by some experts. If yesterday I was perplexed, today I am puzzled. Why one 

may desire to “live” consciously in a chip?  Wouldn’t that be a nightmare? What could be human 

consciousness without human life?  

Undoubtedly, the possibility to allow communication without using the natural muscular and 

peripheral nerves pathways is a unique characteristic of BCI technology. This peculiarity fosters the 

dreams of the civilized mankind and there is nothing wrong in dreaming. However, we should be 

aware that BCI technology has risen in medical research - at least this has been its major showcase - as 

a possibility for those suffering of extremely disabling physical conditions preventing the 

communication with the external world. Today it is strongly motivated by military aims and is source 

of inspiration for the whole field of robotics. Put it simply, in my view pretending that BCI technology 

is meant to empower natural human abilities has nothing to do with science, thus I think it is about 

time for the BCI scientific community to start discussing seriously the many ethical questions 

concerning the role and purpose of BCI research in this world. 

 

                                                      

2 http://www.parismatch.com/Actu/International/Le-projet-fou-d-un-milliardaire-russe-la-vie-eternelle-521150 

http://www.parismatch.com/Actu/International/Le-projet-fou-d-un-milliardaire-russe-la-vie-eternelle-521150
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Biographical Sketch 

 

Marco Congedo obtained the Ph.D. degree in Biological Psychology with a minor in Statistics from the 

University of Tennessee, Knoxville, in 2003. From 2003 to 2006 he has been a post-doc fellow at the 

French National Institute for Research in Informatics and Control (INRIA) and at France Telecom R&D, 

in France. Since 2007 Dr. Congedo is a Research Scientist at the “Centre National de la Recherche 

Scientifique” (CNRS) in the GIPSA Laboratory, Grenoble, France. 

 

Dr. Congedo has been the recipient of several awards, scholarships and research grants. He is interested 

in basic human electroencephalography (EEG) and magnetoencephalography (MEG), real-time 

neuroimaging (neurofeedback and brain-computer interface) and multivariate statistical tools useful for 

EEG and MEG such as inverse solutions, blind source separation and Riemannian geometry. 

 

Dr. Congedo is a Fellow of the International Society for Neurofeedback and Research and a Consulting 

Editor for the Journal of Neurotherapy. 
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Studies and Positions 

Legend:  Studies;  Positions 

 

Since 2007 CNRS (Centre National de la Recherche Scientifique), Grenoble, France.  

  Chargés de Recherche 1ère classe   

  Research on Neurofeedback, Brain Computer Interface and Digital Signal Processing 

 

2005-2006 France Telecom R&D, Grenoble, France.  

  Post-doctoral fellowship  

  supervision: Dr. Denis Chêne. 

 

2003-2005 INRIA (National Institute for Research in Informatics and Control), Rennes and Grenoble, France.  

  Post-doctoral fellowship  

supervision: Dr. Anatole Lécuyer. 

 

2000-2007 Nova Tech EEG, Inc., Mesa, AZ, USA. 

  Hardware, Software and Services for Research and Education in Electroencephalography 

  R&D Director – and Co-Founder.  

 

1999-2003 University of Tennessee, Knoxville, USA. Department of Psychology 

  2003 - Philosophy Doctor major degree (PhD) in Biological Psychology. 

Supervision: Prof. Joel Lubar 

Thesis Title: “Tomographic Neurofeedback; a new Technique for the Self-Regulation of Brain Electrical Activity”. 

  2003 - Philosophy Doctor minor degree (PhD) in Statistics.  

Supervision: Prof. William Seaver 

  2001 - Master of Arts degree (M.A.) in Biological Psychology 
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Supervision: Prof. Joel Lubar 

Thesis Title: “On the Comparison to EEG Norms: A new Method and a Simulation Study”. 

 

1998-1999 Università di Bari, Bari, Italy,  

School of Medicine and Hospital, Department of Neurological and Psychiatric Sciences 

  Internship in Clinical Psychology and Electroencephalography.  

Supervision: Dr. Rita Carone 

 

1991-1998 Università di Padova, Padova, Italy. Department of Psychology 

  1998 – Laurea (undergraduate degree & M.A.) in Experimental Social Psychology  

Supervision: Prof. Dora Capozza 

Thesis Title: “Group Distance of the Self and Perception of Homogeneity”.  

 

1996  Université René Descartes (Paris V), Paris, France. Department of Psychology 

  Student exchange Program (ERASMUS) in Experimental Social Psychology  

Supervision: Dr. Françoise Askevis. 
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Publication Activity Summary 

 

Publications per Year 

 

 

Citations per Year 

 

Source: Google Scholar. h-index is the largest number h such that h publications have at least h citations.  

i10-index is the number of publications with at least 10 citations. 

 

 

Some Co-Authors 

Olivier Bertrand  (Lyon) 

E. Roy John   (New York) 

Christian Jutten  (Grenoble) 

Fabien Lotte   (Bordeaux) 

Joel Lubar   (Knoxville)  

Dinh-Tuan Pham   (Grenoble)  

Gert Pfurtscheller  (Graz) 

Alain Rakotomamonjy  (Rouen) 

Richard Silberstein  (Malbourne) 

Dirk De Ridder   (Antwerp) 
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List of Publications 

Legend:  Article in Peer-Reviewed Editorial Journals;  Article in Conference Proceedings;  Book Chapter 

 

2013 

 Barachant A., Bonnet S., Congedo M., Jutten C. (2013) Classification of covariance matrices using a 

Riemannian-based kernel for BCI applications, Neurocomputing, 112, 172-178. 

 Barachant A, Congedo M, Van Veen G, Jutten C (2013) Classification de potentiels évoqués P300 par géométrie 

riemannienne, GRETSI Proceedings, (in press). 

 Barachant A, Andreev A, Congedo M (2013) The Riemannian Potato: an automatic and adaptive artifact detection 

method for online experiments using Riemannian geometry, TOBI Workshop lV, Sion : Switzerland. 

 Chatel-Goldman J, Schwartz J-L, Jutten C, Congedo M  (2013) Nonlocal mind from the perspective of 

social cognition, Frontiers in Human Neuroscience (in press). 

 Chatel-Goldman J, Congedo M, Phlypo R (2013) Joint BSS as a natural analysis framework for EEG-hyperscanning, 

ICASSP 2013, Vancouver: Canada (in press) 

 Kopřivová J, Congedo M, Horáček J, Raszka M, Brunovský M, Praško J (2013) Standardized low-resolution 

electromagnetic tomography in obsessive-compulsive disorder – a replication study, Neuroscience Letters, 

548, 185-9. 

 Kopřivová J, Congedo M, Raszka M, Praško J, Brunovský M, Horáček J (2013) Prediction of Treatment 

Response and the Effect of Independent Component Neurofeedback in Obsessive-Compulsive 

Disorder: A Randomized, Sham-Controlled, Double-Blind Study, Neuropsychobiology, 67:210-223. 

 Mayaud L, Filipe S, Pétégnief L, Rochecouste O, Congedo M (2013) Robust Brain-computer interface for 

virtual Keyboard (RoBIK): project results, Ingénierie et Recherche Biomédicale / IRBM BioMedical Engineering and 

Research (in press). 

 Mayaud L, Congedo M, Van Laghenhove A, Figère M, Azabou E, Cheliout-Heraut F (2013) A Comparison of 

Recording Modalities of P300 Event Related Potentials (ERP) for Brain-Computer Interfaces (BCI) 

Paradigm, Neurophysiologie Clinique / Clinical Neurophysiology (in press). 

 Vanneste S, Congedo M, De Ridder D (2013) Pinpointing a highly specific pathological functional 

connection that turns phantom sound into distress, Cerebral Cortex (in press). 
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2012 

 Barachant A, Bonnet S, Congedo M, Jutten C (2012a) BCI Signal Classification using a Riemannian-based kernel, 

20th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN ), Bruges : Belgique 

 Barachant A, Bonnet S, Congedo M, Jutten C (2012b) Multi-Class Brain Computer Interface Classification 

by Riemannian Geometry. IEEE Transactions on Biomedical Engineering 59(4), 920-928. 

 Congedo M, Phlypo R, Chatel-Goldman J (2012) Orthogonal and Non-Orthogonal Joint Blind Source Separation in 

the Least-Squares Sense, 20th European Signal Processing Conference (EUSIPCO), Aug 27-31, Bucharest, Romania, 1885-9. 

 Jrad N, Congedo M (2012) Identification of spatial and temporal features of EEG, Neurocomputing, 90, 

66-71. 

 Rousseau S, Jutten M, Congedo M (2012a) Designing Spatial Filters Based on Neuroscience Theories to Improve 

Error-Related Potential Classification, IEEE International Workshop on Machine Learning for Signal processing, Santander : Spain. 

 Rousseau S, Jutten M, Congedo M (2012b) Time window selection for improving error-related potential detection, 

4th International Conference on Neural Computation Theory and Applications, Barcelone : Spain 

 Rousseau S, Jutten C, Congedo M (2012c) Closed-looping a P300 BCI using the ErrP, 4th International Conference on 

Neural Computation Theory and Algorithms, Barcelone : Spain 

 Rousseau S, Jutten C, Congedo M (2012d) The error-related potential and BCIs, 20th European Symposium on Artificial 

Neural Networks, Computational Intelligence and Machine Learning (ESANN), Bruges : Belgique 

 White D, Congedo M, Ciorciari J, Silberstein R (2012) Brain oscillatory activity during spatial navigation: 

Theta and gamma activity link medial temporal and parietal regions. Journal of Cognitive Neuroscience, 24(3), 

686-697. 

 

2011 

 Aguilar Herrero M, Congedo M, Minguez J (2011) A Data-Driven Process for the Development of an Eyes-closed 

EEG Normative Database, Proceedings of the 33rd International IEEE EMBS Conference, 7306-7309. 

 Barachant A, Bonnet S, Congedo M, Jutten C. (2011a) Réalisation d’un Brain-Switch EEG par Géométrie 

Riemannienne, GRETSI. 

 Barachant A, Bonnet S, Congedo M, Jutten C (2011b) A Brain-Switch Using Riemannian Geometry, Proceedings of the 5th 

International BCI Conference, Graz, Austria, 64-67. 
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 Cecotti H, Rivet B, Congedo M, Jutten C, Bertrand O, Mattout J, Maby E (2011) A Robust Sensor Selection 

Method for P300 Brain-Computer Interfaces, Journal of Neural Engineering, 8(1), 016001. 

 Congedo M, Goyat M, Tarrin N, Varnet L, Rivet B, et al. (2011)  “Brain Invaders”: a prototype of an open-source 

P300-based video game working with the OpenViBE platform, Proceedings of the 5th International BCI Conference, Graz, 

Austria, 280-283. 

 Congedo M, Phlypo R, Pham D-T (2011) Approximate Joint Singular Value Decomposition of an 

Asymmetric Rectangular Matrix Set, IEEE Transactions on Signal Processing, 59(1), 415-424. 

 De Ridder D, Vanneste S, Congedo M (2011) The distressed brain: a group blind source separation 

analysis on tinnitus, PLoS One, 6(10), e24273. 

 Jrad N. Phlypo R. Congedo M. (2011) SVM feature selection for multidimensional EEG data, International Conference 

on Acoustic, Speech and Signal Processing, (ICASSP), May 22-27, Praha, Czech Republic. 

 Jrad N, Congedo M (2011a) Identification of sparse spatio-temporal features in Evoked Response Potentials, 

European Symposium on Artificial Neural Networks (ESANN), April 27-29 Bruges, Belgium.  

 Jrad N, Congedo M. (2011b) Spatio-temporal feature extraction and classication of Event-Related Potentials. 

Conférence Francophone d'Apprentissage (CAP), Chambéry, France, May 17-20. 

 Jrad N, Congedo M, Phlypo R, Rousseau S, Flamary R, Yger F, Rakotomamonjy A (2011) sw-SVM : sensor 

weighting support vector machines for EEG-based Brain-Computer Interfaces, Journal of Neural 

Engineering, 8(5), 056004. 

 Kopřivová J, Congedo M, Horáček J, Praško J, Raszka M, Brunovský M, Kohútová B, Höschl C. (2011) EEG source 

analysis in obsessive–compulsive disorder. Clinical Neurophysiology, 122(9), 1735-1743. 

 Mayaud L, Congedo M, Filipe S, Charvet G, Schoettel R, Annane D (2011), Robust Virtual Keyboard for Brain-Computer 

Interface (ROBIK): An Halfway Update on the Project, Second IASTED International Conference on Robotics. 

 Phlypo R, Jrad N, Rousseau S, Congedo M (2011) A Non-Orthogonal SVD-based Decomposition for Phase Invariant 

Error-Related Potential Estimation, 33rd Annual International IEEE EMBS Conference. 

 van der Loo E, Congedo M, Vanneste S, Van De Heyning P, De Ridder D (2011) Insular Lateralization in 

Tinnitus Distress. Autonomic Neuroscience: Basic and Clinical, 165(2), 191-194. 
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2010 

 Barachant A, Bonnet S, Congedo M, Jutten C (2010a)  Common Spatial Pattern revisited by Riemannian Geometry, 

Proceedings of the IEEE International Workshop on Multimedia Signal Processing, 472-476. 

 Barachant A, Bonnet S, Congedo M, Jutten C (2010b) Riemannian Geometry Applied to BCI Classification, Proceedings 

of Latent Variable Analysis and Signal Separation Coference, Saint Malo, France, 6365, 629-636. 

 Cecotti H, Phlypo R, Rivet B, Congedo M, Maby E, Mattout J (2010)  Impact of the time segment analysis for P300 

detection with spatial filtering, Proceedings of the 3rd International Symposium on Applied Sciences in Biomedical and Communication 

Technologies (ISABEL), 11 July, Italy. 

 Cecotti H, Rivet B, Congedo M, Jutten C, Bertrand O, Maby E, Mattout J (2010)  Suboptimal Sensor Subset Evaluation in 

a P300 Brainn-Computer Interface, European Signal Processing Conference (EUSIPCO), August 23-27, Aalborg, Danemark.   

 Congedo M, John RE, De Ridder D, Prichep L (2010) Group Independent Component Analysis of 

Resting-State EEG in Large Normative Samples, International Journal of Psychophysiology, 78: 89–99.   

 Congedo M, John RE, De Ridder D, Prichep L, Isenhart B (2010) On the “Dependence” of “Independent” 

Group EEG Sources; an EEG Study on Two Large Databases, Brain Topography, 23(2), 134-138. 

 Congedo M, Sherlin L (2010) EEG Source Analysis: Methods and Clinical Implications. In 

"Neurofeedback and Neuromodulation Techniques and Applications", (Ed) Coben R., Evans J.R., 

Academic Press, New York (25-46). 

 Gouy-Pailler C, Congedo M, Brunner C, Jutten C, Pfurtscheller G (2010) Nonstationary brain source 

separation for multiclass motor imagery. IEEE Transactions on Biomedical Engineering. 57(2): 469-78. 

 Lécuyer A, Congedo M, Gentaz E, Joly O, Coquillart S (2010) Influence of Visual Feedback on Passive Tactile 

Perception of Speed and Spacing of Rotating Gratings, Eurohaptics Conference, Amsterdam, The Netherlands, July 8-10 2010: 

Lecture Note in Computer Science, 6192, 73-78.  

 Phlypo R, Congedo M (2010) An Extension of the Canonical Correlation Analysis to the Case of Multiple 

Observations of Two Groups of Variables, 32nd Annual International Conference of the IEEE Engineering in Medicine and Biology 

Society, Buenos Aires : Argentina.  

 Phlypo R, Jrad N, Rivet B, Congedo M (2010) Common SpatioTemporal Pattern Analysis, Proceedings of Latent Variable 

Analysis and Signal Separation Coference, Saint Malo, France, 6365,  596-603.   

 Renard Y, Lotte F, Gibert G, Congedo M, Maby E, Delannoy V, Bertrand O, Lécuyer A (2010) OpenViBE: An 

Open-Source Software Platform to Design, Test and Use Brain-Computer Interfaces in Real and Virtual 

Environments, PRESENCE : Teleoperators and Virtual Environments, 19(1), 35-53. 
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 Vanneste S, Plazier M, der Loo EV, de Heyning PV, Congedo M, De Ridder D (2010) The Neural Correlates of 

Tinnitus-Related Distress, Neuroimage, 52(2), 470-80. 

  

2009 

 Congedo M, Pham D-T (2009) Least-Squares Joint Diagonalization of a Matrix Set by a Congruence 

Transformation, SinFra'09 (Singaporean-French IPAL Symposium), Singapore, Feb 18-20. 

 Gouy-Pailler C, Mattout J, Congedo M, Jutten C (2009) Uncued brain-computer interfaces: a variational hidden 

markov model of mental state dynamics, Proceedings of European Symposium on Artificial Neural Networks Advances in 

Computational Intelligence and Learning - ESANN Belgium. 

 Gouy-Pailler C, Sameni R, Congedo M, Jutten C (2009) Iterative Subspace Decomposition for Ocular Artifact 

Removal from EEG Recordings, Independent Component Analysis and Signal Separation - 8th International Conference, ICA 2009, 

Brasil. 

 Kouijzer MEJ, de Moor JMH, Gerrits BJL, Congedo M, van Schie HT (2009). Neurofeedback improves 

executive functioning in children with autism spectrum disorders. Research in Autism Spectrum Disorders, 3, 

145-162. 

 Pham D-T, Congedo M (2009) Least Square Joint Diagonalization of Matrices Under an Intrinsic Scale 

Constraint, ICA 2009 (8th International Conference on Independent Component Analysis and Signal Separation), March 15-18, Paraty, 

Brasil, 298-305. 

 van der Loo E, Gais S, Congedo M, Vanneste S, Plazier M, et al. (2009). Tinnitus Intensity Dependent 

Gamma Oscillations of the Contralateral Auditory Cortex. PLoS ONE 4(10): e7396. 

doi:10.1371/journal.pone.0007396. 

 

2008 

 Congedo M, Gouy-Pailler C, Jutten C (2008) On the blind source separation of human 

electroencephalogram by approximate joint diagonalization of second order statistics. Clinical 

Neurophysiology, 119, 2677-2686. 

 Congedo M, Jutten C, Sameni R, Gouy-Pailler C, (2008) A new General Weighted Least-Squares Algorithm for 

Approximate Joint Diagonalization, Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course, 

Graz, Austria, 98-103. 
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 Gouy-Pailler C, Congedo M, Brunner C, Jutten C, Pfurtscheller G (2008) Multi-Class Independent Common Spatial 

Patterns: Exploiting Energy Variations of Brain Sources new General Weighted Least-Squares Algorithm for 

Approximate Joint Diagonalization. Proceedings of the 4th International Brain-Computer Interface Workshop and Training Course, 

Graz, Austria. 20-25. 

 Gouy-Pailler C, Congedo M, Jutten C, Brunner C, Pfurtscheller G (2008), Model-Based Source Separation for Multi-Class 

Motor Imagery, Proceedings of the 16th European Signal Processing Conference (EUSIPCO-2008), EURASIP, Lausanne, Switzerland, 

August 2008.  

 

2007 

 Cannon R, Lubar JF, Congedo M, Thornton K, Towler K, Hutchens T (2007) The Effect of Neurofeedback 

Training in the Cognitive Division of the Anterior Cingulate Gyrus, International Journal of Neuroscience, 

117(3), 337-357. 

 Congedo M, Joffe D (2007), Multichannel Tomographic Neurofeedback: Wave of the future?. In 

"Handbook of Neurofeedback: Dynamics and Clinical Applications ", (Ed) Evans J.R., Haworth Press, New 

York, (85-107).  

 Gouy-Pailler C, Achard S, Rivet B, Jutten C, Maby E, Souloumiac A, Congedo M (2007), Topographical dynamics of brain 

connections for the design of asynchronous brain-computer interfaces, Proceedings IEEE Eng Med Biol Soc, 1: 2520-2523. 

 Gouy-Pailler C, Rivet B, Achard S, Souloumiac A, Jutten C, Maby E, Congedo M (2007), Théorie des graphes et 

dynamique des connexions cérébrales pour la conception d’interfaces cerveau-machines asynchrones, Proceedings of 

the 21st Conference GRETSI, Troyes, France. 

 Lotte F, Congedo M, Lécuyer A, Lamarche F, Arnaldi B (2007) A Review of Classification Algorithms for 

EEG-based Brain-Computer Interfaces, Journal of Neural Engineering, 4(2), R1-R13. 

 Sherlin L, Budzynski T, Kogan-Budzynski H, Congedo M, Fischer ME, Buchwald D (2007) Low-resolution 

electromagnetic brain tomography (LORETA) of monozygotic twins discordant for chronic fatigue 

syndrome, Neuroimage, 34(4), 1438-1442. 

 Van der Loo E, Congedo M, Plazier M, Van de Heyning P, De Ridder D (2007), Correlation between 

Independent Components of scalp EEG and intra-cranial EEG (iEEG) time series, International Journal of 

Bioelectromagnetism, 9(4), 270-275. 
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2006 

 Congedo M (2006) Subspace Projection Filters for Real-Time Brain Electromagnetic Imaging, IEEE 

Transactions on Biomedical Engineering, 53(8), 1624-34. 

 Congedo M,  Lècuyer A, Gentaz E (2006) The influence of Spatial De-location on Perceptual 

Integration of Vision and Touch, PRESENCE Teleoperators and Virtual Environments, 15(3), 353-357. 

 Congedo M, Lotte F, Lécuyer A (2006) Classification of Movement Intention by Spatially Filtered 

Electromagnetic Inverse Solutions, Physics in Medicine and Biology, 51, 1971-1989. 

 

2005 

 Arrouët C, Congedo M, Marvie J-E, Lamarche F, Lècuyer A, Arnaldi B (2005) Open-ViBE: a 3D Platform for 

Real-Time Neuroscience, Journal of Neurotherapy, 9(1), 3-25. 

 Lécuyer A, Burkhardt JM, Le Biller J, Congedo M (2005), A4: A Technique to Improve Perception of Contacts with 

Uder-Actuated Haptic Devices in Virtual Reality, Proceedings of the World Haptics Conference, March 18-20, Pisa, Italia, 316-322. 

 Sherlin L, Congedo M (2005) Obsessive Compulsive Dimension Localized using Low Resolution 

Electromagnetic Tomography (LORETA), Neuroscience Letters, 387(2), 72-74. 

 

2004 

 Cannon R, Rothove J, Lubar JF, Thornton K, Wilson S, Congedo M. (2004), Limbic Beta Activition and 

LORETA; can Hippocampal and Related Limbic Activity be Recorded and Changes Visualized using 

LORETA in an Affective Memory Condition?, Journal of Neurotherapy, 8(4), 5- 24. 

 Congedo M, Lubar JF (2004), Parametric and Non-Parametric Analysis of QEEG: Normative 

Database Comparisons in Electroencephalography, a Simulation Study on Accuracy. In "Quantitative 

Electroencephalographic Analysis (QEEG) Databases for Neurotherapy. Description, Validation, and 

Application", (Ed) Lubar J.F., Haworth Press, New York, 1-29. 

 Congedo M, Lubar JF, Joffe D (2004), Low-Resolution Electromagnetic Tomography neurofeedback, 

IEEE Trans. on Neuronal Systems & Rehabilitation Engineering, 12(4), 387-397. 
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2003 

 Congedo M. (2003) Introducing the Logistic Discriminant Function in Electroencephalography, 

Journal of Neurotherapy, 7(2), 5-23. 

 Congedo M, Lubar JF (2003) Parametric and Non-Parametric Normative Database Comparisons in 

Electroencephalography: A Simulation Study on Accuracy, Journal of Neurotherapy, 7(3/4), 1-29. 

 Lubar JF Congedo M, Askew JH (2003) Low-Resolution Electromagnetic Tomography (LORETA) of 

Cerebral Activity in Chronic Depressive Disorder, International Journal of Psychophysiology, 49, 175-185. 

 

2002 

 Congedo M, Ozen C, Sherlin L (2002), Notes on EEG Resampling by Natural Cubic Spline 

interpolation, Journal of Neurotherapy, 6(4), 73-80. 

 

Grants 

Legend:  Grant Owner or Principal Investigator (Work Package Leader);   Investigator or other Minor Role 

 

Major Funded Projects 

 2012-13 RoBIK (Robust Brain-Computer Interface Keyboard)  

Founder: Association Française contre les Myophaties  – 97K€ 

 2009-12 RoBIK (Robust Brain-Computer Interface Keyboard) 

Founder: French National Agency of Research (TecSan)  – 156K€ 

 2009-12 Open-ViBE2 (Open Platform for Virtual Brain Environments) 

Founder: French National Agency of Research (ContInt 2010-2013)  – 122K€ 

 2009-12 Gaze&EEG (Joint synch. EEG signal and ET process. for spatio-temporal analysis of  neural activities) 

Founder: French National Agency of Research (BLANC 2010-2013)  

 2006-09 Open-ViBE (Open Platform for Virtual Brain Environments)  

Founder: French National Agency of Research (RNTL 2006-2009) 
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Minor Funded Projects 

 

 2011-13 Hyperscanning  

Founder: Grenoble INP (Grenoble Institute of technology)  – 13K€ 

 2009-10  Independent Component Neurofeedback – 15K€ 

Founder: Tinnitus Research Initiative (TRI) 

 2005-08  COST (European Cooperation in the Field of Scientific and Technical Research) B27 Electric Neuronal  

Oscillations and Cognition (President: Prof. J. Pop-Jordanov),  

Founder: European Framework Program 6 

 

Teaching at Universities 

 Since 2010 EDISCE PhD School, Grenoble 

   Master 2 Neuropsychologie et Neurosciences Cliniques, “Real-Time Applications of EEG”, 2h 

 Since 2008 EDISCE PhD School, Grenoble 

   Master 2 Sciences Cognitives, “Real-Time Applications of EEG”, 2h 

 2011  EDISCE PhD School, CNRS, INSERM, Pôle Grenoble Cognition, Grenoble, 

   Formation en Neuro-Imagerie, “Tests de permutations”, 45m 

 2003  University of Tennessee, Knoxville, USA. Department of Psychology.    

“Statistics in Psychology”, spring semester. 

 1999  University of Bari, ITALY. Department of Educational Science. 

   “Social Psychology”, spring semester. 

 

Prizes, Recognitions, Awards 

  2007 Fellow of the International Society of Neurofeedback and Research 

  2003 Best PhD Thesis of the Department of Psychology, The University of Tennessee, Knoxville. 
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Media Coverage 

Legend:  Press;  Interview;  Video Reportage 

 2013 Jul 10  Interview on Brain-Computer Interface at Rhône Alpes Regional TV France 3 – France 3, France 

 2013 Mar 1  The BCI video game Brain Invaders is reported in the Journal of CNRS (#271, p. 13)  

Journal du CNRS, FRANCE 

 2013 Feb 5  Interview on Brain-Computer Interface at national French radio BFM – BFM, France 

 2013 Jan 23  Le Cerveau, future manette de jeux video, Le Nouvel Observateur, FRANCE  

 2013 Jan 22  Congedo M, Bouchet A, Lécuyer A. Neurofeedback : un traitement non invasif du trouble du  

déficit de l’attention.  Interstice, FRANCE 

 2010 Oct 01  Quand le cerveau parle aux machines. Doc Sciences (13), p. 40-47, France 

 2008 Mai 26  Interview on BCI at national French radio “BFM” – L’Atelier Numerique, France 

 2008 Avr 29  Expert Opinion in Web Article - Les jeux vidéo peuvent-ils être prescrits par ordonnance ?  

     L'Atelier, FRANCE 

 

Review Consulting 

Funding Agencies 

 European Commission 

FP7 STREP Project BRAIN (2008-2011) – Interim Reviews 

FP7 CSA Project FUTURE- BNCI (2010-2012) – Interim Reviews 

FP7 STREP Project DECODER (2010-2013) – Interim Reviews 

FP7 STREP Project ABC (2012-2015)  – Interim Reviews 

FP7 STREP Project BackHome (2012-2015) –  Interim Reviews 

Two calls in ICT within FP7 (2011 and 2013) – Project Selection 

 French National Research Agency (ANR) – Project Selection 

 Natural Sciences and Engineering Research Council of Canada (NSERC) – Project Selection 

http://rhone-alpes.france3.fr/2013/07/10/gros-plan-sur-le-projet-robik-une-interface-cerveau-machine-285523.html
http://www.cnrs.fr/fr/pdf/jdc/271/index.html#/12/
http://dl.dropboxusercontent.com/u/3172454/20130204_atelier_1.ogg
http://obsession.nouvelobs.com/jeux-video/20130123.OBS6281/le-cerveau-future-manette-de-jeux-video.html
http://interstices.info/jcms/nn_72062/neurofeedback-un-traitement-non-invasif-du-trouble-du-deficit-de-lattention
http://www.atelier.net/radio/2010/09/18/4-world-tour-cyber-enquete-17
http://www.atelier.net/trends/articles/jeux-video-peuvent-etre-prescrits-ordonnance
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 Austrian Science Fund (FWF) – Project Selection 

 Ducth Ministry of Education, Culture and Science and the Ministry of Economic Affairs  

Project BRAINGAIN (2008-2013) – Interim reviews 

 

Scientific Editorial Journals 

  

Clinical Neurophysiology 

Computers in Biology and Medicine 

Human Brain Mapping 

IEEE Transactions on Signal Processing 

IEEE Transactions on Biomedical Engineering 

IEEE Transactions on Neural System and Rehabilitation Engineering 

Journal of Neuronal Engineering 

Journal of Neuroscience Methods 

Journal of Neurotherapy 

Journal of Statistical Planning and Interference 

Medical & Biological Engineering & Computing 

Neurocomputing 

Neuroscience Letters 

Nonlinear Biomedical Physics 

Statistics in Medicine 

 

 

Committees 

Scientific 

 2011   Formation en Neuroimagerie, organized by EDISCE PhD School, CNRS, INSERM, Pôle  

Grenoble Cognition, from October 10 to October 14 (30 students). 

 

PhD Theses Jury 

 2012 Sep 21  Candidate :Hayrettin Gürkök. University : University of Twente, THE NETHERLANDS.  

Title :  “ Mind the sheep ! User Experience Evaluation & Brain-Computer Interface Games “  

 2008 Mai 27  Candidate :Vincente Paquette. University : Université de Montreal, CANADA.  

Title :  “ L’effet de la psychoneurothérapie sur l’act. elect. du cerveau d’individus souffrant du 

trouble dépressif majeur unipolaire“ President of the Committee: Marc-André Bouchard. 
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Invited Lectures 

At International Scientific Conferences 

 2009 Group Independent Component Analysis of Brain Resting-State Networks: Nearly 
Identical Findings on Two EEG Databases, 17th Annual Conference of the International Society for Neuronal 

Regulation, Indianappolis, Indiana, USA. 

 2007 ICoN (Independent Component Neurofeeback), a freeware program for Blind Source 
Separation of continuous EEG and Extraction of Neurofeedback Weights. , 15th Annual Conference 

of the International Society for Neurofeedback and Research, San Diego, CA, USA. 

 2004 EEG in Real Time: New Perspectives and a Platform for 3D Visualization of Functional 
Brain Dynamics, 12th Annual Conference of the Int. Society for Neuronal Regulation, Fort Lauderdale, FL, USA. 

 

Other Lectures 

 2012  New Developments and Advanced Methods in Neurofeedback, The Future of Neurofeedback: 

insights from theory and practice Symposyum, Nijmegen, 28 Nov, THE NETHERLANDS. 

 2011  Il Cervello, meglio poco ma buono, Elementary School “Re David”, Bari, ITALY. 

 2011  Signal processing: BCI and the analysis of the Joint EEG of two individuals, 2nd 

Neurotherapy Symposium, Zurich, SWITZERLAND. 

 2009 Lagged Connectivity of EEG  Resting-State Indpependent Components, Opening of the 

BRAI²N Institute (Brain Research center Antwerp for Innovative and Interdisciplinary Neuromodul.), Antwerp, 

BELGIUM. 

 2007 Enhancing Neurofeedback by means of Multi-Channel Current Source Extraction 
Methods, Prague Psychiatric Center (3rd Medical Faculty), Charles University, Praha, CZECH REPUBLIC. 

 2006 Multichannel Neurofeedback; a family of methods to improve the specificity of 
neurotherapy, Neuroscience Center of Zurich (ZNZ), Department of Psychology, Zurich, SWITZERLAND. 

 2006 Linear Decomposition Methods for Real-Time Brain Electromagnetic Imaging, MEG 

Center, University of Tuebingen, Tuebingen, GERMANY. 

 2005 Recent Trends on Non-Invasive Self-Regulation of Brain Electrical Activity, 14e Journées 

Scientifiques du Centre de Recherche en Neuropsychologie Expérimentale et Cognition (CERNEC), Department of 

Psychology, University of Montreal, Montreal, CANADA. 
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Student Supervision  

PhD 

 2012-15 Michael Acquadro, Grenoble University, Grenoble, (co-supervised with Prof. A. Guerin) 

Title : TBA  

Defense date : To be defended 

 2010-13 Jonas Chatel-Goldman, Grenoble University, (co-supervised with Prof. C. Jutten and Dr. J.-L. Schwartz) 

Title : TBA   

Defense date : To be defended 

 2009-12 Alexandre Barachant, Grenoble University, (co-supervised with Prof. C. Jutten and Dr. S. Bonnet) 

Title : " Commande robuste d’un effecteur par une interface cerveau-machine EEG asynchrone "  

Defense date : 28 mars 2012 

 2009-12  Sandra Rousseau, Grenoble University, (co-supervised with Prof. C. Jutten and Dr. J.-L. Schwartz) 

Title : " Influence du retour sensoriel dans les ICM EEG: Etude du potentiel d'erreur "   

Defense date : 16 Oct 2012 

 2008-13  David White, Swinburne UT, AUSTRALIA (co-supervised with Dr. J. Ciorciari and Prof. R. Silberstein) 

Title : " An exploration of theta oscill. in the human EEG:Modulation via cognitive activity and real-time 

feedback"  

Defense date : 13 Mars 2013 (no actual Defense in this University) 

 2008-12  Žaneta Kopřivová, Charles University, Prague, CZECH REPUBLIC (co-supervised with Dr. J. Horáček) 

Title : " Functional-imaging and EEG correlates of OCD and their potential use in neurofeedback 

intervention "  

Defense date : 03 Dec 2012. 

 2008-12  Elsa van der Loo, Antwerp Uni., BELGIUM (co-supervised with Prof. P. Van De Heyning and Prof. D. de Ridder) 

Title : " The Neurology of Tininnitus Distress "  

Defense date : 13 Mars 2012 

 2007-11  Sven Vanneste, Antwerp Uni., BELGIUM (co-supervised with Prof. P. Van De Heyning and Prof. D. de Ridder) 

Title : " The Neural Correlates of Non-Pulsatile Tinnitus "  

Defense date : Mars 14 2011 

 2006-09 Cédric Gouy-Pailler, PhD. Grenoble University, (co-supervised with Prof. C. Jutten) 
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Title: " Vers une modélisation dynamique de l'activité cérébrale EEG pour la conception d'ICM asynchrones " 

Defense date : October 1 2009 

 

Master 2 

 2011-12  Gijs Van Veen, University of Twente, The Netherlands (Visitor Student, co-supervised with Prof. M. Poel)  

Title : “ Brain Invaders; a BCI-controlled video-game ” 

Defense date : 22 Avril 2013. 

 2011-12  Ayoub Maatallaoui, INPG, Grenoble.  

Title : “ Watching a movie together: investigation of cospectra in simultaneous electroencephalographic data recording “ 

Defense date : June 28 2012. 

 2011-12  Michael Acquadro, INPG, Grenoble  

Title : “ New frontiers in neuroimaging: a study of several synchronous electroencephalographic recordings “ 

Defense date : June 28 2012. 

 2009-10  Soeun Somuny Outdom, INPG, Grenoble (co-supervised with Prof. C. Jutten and Prof. J.-L. Schwartz).  

Title : “ High Quality of Dual EEG Recording “ 

Defense date : June 25 2010. 

 2009-10 Léo Varnet, INPG, Grenoble (co-supervised with Dr. B. Rivet).  

Title : “  Mise en place d'un prototype de jeux vidéo par une interface cerveau machine pour OrangeLab “ 

Defense date : Octobre 18 2010. 

 2008-09  Guillaume Lio, INPG, Grenoble (co-supervised with Prof. C. Jutten).  

Title : “  Valorisation de l’activité cérébrale par sLORETA & séparation aveugle de sources pour le neurofeedback “ 

Defense date : June 23 2009. 

 2007-08  Romain Grandchamps, INPG, Grenoble (co-supervised with Prof. C. Jutten).  

Title : “ Extraction d'activité neuronale par filtrage spatial en temps réel: application au neurofeedback “ 

Defense date : June 23 2008. 

 

Master 1 

 2009-10  Esteve Gallego, (ERASMUS), INPG, Grenoble (co-supervised with Prof. Prof. C. Jutten and Prof. J.-L. Schwartz).  

Title : “ Synchronous Electroencephalography (EEG) of two subjects: the analysis of their interaction “ 

Defense date : June 24 2010. 
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 2009-10  Víctor Luis Viña Nogueiras, (ERASMUS), INPG, Grenoble (co-supervised with Prof. C. Jutten and Prof. J.-L.  

Schwartz).  

Title : “ Synchronous Electroencephalography (EEG) of two subjects: the analysis of their interaction ”  

Defense date : June 24 2010. 

 

Undergraduate Internships 

 2008  Simon Rehn, INPG and Universität Karlsruhe (Germany), Grenoble (co-supervised with Prof. C. Jutten).  

Title : “ A Normative database for EEG Based in Independent Source Analysis “ 

Defense date : No defense. 

 

Before Holding a Permanent Position 

 2005  Fabien Lotte, M.S. at INRIA/INSA-Rennes, “ Classification De Données pour l’Utilisation Des Brain-Computer  

Interfaces en Réalité Virtuelle “  

 2004  Cédric Arrouët, M.S. at INRIA/INSA-Rennes,  “Activité Cérébrale et Réalité Virtuelle “. 

 2002-03  Rex Cannon, M.A. at University of Tennessee, “ The Effect of Neurofeedback Training in the  

Cognitive Division of the Anterior Cingulate Gyrus “. 
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WEB SITE 

 

Since 2010 I am maintaining a permanent web page holding relevant information about my 

scientific activities. The page (https://sites.google.com/site/marcocongedo/) contains  

 my CV  

 a publication list and publication statistics  

 a list of funded projects I have been working to  

 my national and international collaborations 

 a list of PhD students I have supervised 

 a list of reviews and grant agency that have been consulting me  

 my media interventions  

 the tutorials I have written to introduce some of my research topics 

 the stand-alone executable software I have made available to the public and the code 

of the approximate joint diagonalization methods I have proposed.  

 

The site is constantly updated. The aim of this web site is to disseminate my work 

worldwide through a unique and permanent web space. The figure below (top graph) shows 

the monthly number of visit to the site in the period February 2010 - Mars 2013. The bottom 

part reports other statistics for the period, such as the total number of visits (4571), unique 

visitors (2534) page views (15656), average number of page visited (3.43), average visit 

duration (2.52 min) and bounce rate (49%). The percentage of unique visitors with respect 

of the total number of visitors is 55.3%. 

 
Monthly visit to my home page in the period  February 2010 - Mars 2013 and other statistics  

(source: Google Analytics). 

https://sites.google.com/site/marcocongedo/
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CURSUS 

I have entered the CNRS (Centre National de la Recherche Scientifique) in 2007 as a CR1 (Research 

Scientist). The section of CNRS where I passed the public competition was an inter-disciplinary 

section. Indeed, merging knowledge from different disciplines and bridging upon them trying to 

connect researchers coming from different background has always been my natural tendency in 

science. My studies up until the PhD level have been focusing mainly on psychology.  

 

My thesis at Padua University3 was on experimental social psychology. I investigated the formation of 

stereotypes, prejudices, and the bias in the perception and judgment of the external and internal social 

group. Merging knowledge in psychology and philosophy I elaborated an original theory of the 

general perception of the psychological objects, the theory of the “distance from the self”. For the 

experimental part I performed computerized experiments that I programmed myself, having learnt to 

program in Turbo Pascal during my ERASMUS at University Paris V René Descartes. Then, 

unsatisfied by the arbitrary method of measurements in social psychology, I switched field of interest 

completely, turning toward electrophysiology. I had discovered the neurofeedback technique and I was 

fascinated by the idea that the human mind may volitionally acquire some form of control over brain 

functioning.  

 

In order to pursue this research I joined a worldwide renewed expert on neurofeedback: Prof. Joel 

Lubar, at the University of Tennessee, Knoxville (UTK), who has been a great mentor and to whom I 

own my entire attitude toward science. My Master thesis at UTK was on a new, non-parametric, way 

to build normative EEG databases (Congedo and Lubar, 2004). This work has proven very useful for 

my ensuing research on normative EEG databases based on blind source separation, published in 

Congedo, John, De Ridder and Prichep (2010). In the meanwhile I decided to focus on real-time 

electroencephalography, which was going to be the pivot of all my research activities since then and 

still to date. In 2000 I co-funded with another UTK student, Leslie Sherlin, a company providing 

software and services for research on EEG (Nova Tech EEG., Inc.). I left the company in 2007 as I 

entered the CNRS. 

                                                      

3 Italian undergraduate program of Psychology at that time was five years (or more) long and at the end a true 

dissertation had to be defended.  
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My PhD thesis at UTK was the first neurofeedback study using an EEG inverse solution to estimate 

on-line an EEG signal with higher spatial specificity (Congedo, Lubar and Joffe, 2004). This research 

was the first attempt to improve the neurofeedback method itself since its inception in the 60’s. It can 

be considered pioneering, since several independent groups have adopted the method several years 

later, in Austria (Bauer et al., 2011), Germany (Salari et al., 2012), USA (Choi, 2014), Korea (Im et 

al., 2007), Switzerland (Liechti et al., 2012) and Turkey (Surmeli and Ertem, 2009).  

 

While doing my PhD studies I started exploring statistics, especially permutation tests and object-

oriented computer programming using the Borland Delphi 5 RAD (Rapid Application Development), 

to which by chance I was exposed during my visit in Zurich to Dr. Pascual-Marqui in 2001. That visit 

turned out to be fatal for my interest in source analysis methods. I own to Roberto Pasucal-Marqui not 

only the first serious exposure to high-level computer code and mathematical knowledge, but also to 

an amazing passion for it.  

 

While approaching complex data analysis methods to be used in electroencephalography, I felt the 

need to understand in depth the methodology I employed. For this reason at UTK I took also a minor 

PhD in statistics. Then I looked for a post-doc in a virtual-reality (VR) laboratory, foreseeing some of 

the recent trends that are now under the eyes of everybody. To me at that time VR technology was an 

interesting and powerful tool for the self-exploration of the brain functioning in real-time. This way I 

arrived for a post-doc at INRIA in Rennes, and then at INRIA in Grenoble, both in France, where I 

dedicated myself, among other things, to the study of linear algebra, a necessary brick to start 

investigating in depth analysis methods such as linear inverse solution, spatial filtering and blind 

source separation. I started writing my own linear algebra library in object Pascal, which still today is 

continuously updated and constitutes the basis of all my original research articles. The encounter with 

my supervisor in Rennes, Dr. Anatole Lécuyer, would be at the foundation of the first important 

French national grant on Brain-Computer Interfaces, the OpenViBE ANR project (2006-2009), which 

has had the merit of drawing much attention to this field in France and has brought several French 

research groups in this arena.  
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RESEARCH INTERESTS AND COLLABORATIONS 

 

Because of this multi-disciplinary perspective, I have been collaborating with scientists in the medical 

and psychological field as well as with statisticians, software engineers and signal processing 

engineers. Thanks to these collaborations I have developed interest for a wild panel of research fields, 

certainly disparate, yet all covered under the umbrella of real-time EEG. The research fields where I 

have been active so far are schematically positioned in the figure below along three continua; see the 

caption for explanations. 

 

 

Research Interests of the candidate: Each ellipse in the figure represents a research 

interest. They are schematically arranged on a two-dimensional continuum going from 

"Basic" to "Applied" (bottom to top axis) and from "Signal Processing" to "Physiology" 

(left to right axes). The color of each ellipse codes a third continuum depending 

whether the topic is attacked relying on a "Filtering" or "Machine Learning" approach 

(red to green). Yellow color codes approaches that do employ neither spatial filtering 

nor machine learning. Fields of research were both spatial filtering and machine 

learning are equally important are painted with a red -to-green gradient. High bubbles 

(e.g., the four on the left of the graph) indicate methods of data analysis; wide bubbles 

fields of application. Strong links between research interests are represented by 

overlapping bubbles. 

Legend: BCI: Brain-Computer Interface; BSS: Blind Source Separation; EEG: 

Electroencephalography; ErrP: Error potential; MI: Motor Imagery;  
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Here below i briefly describe large research perimeters wherein I have been active, giving for each 

item the associated publications as they can be found in the CV above. Actually this description will 

serve to present my main scientific collaborations. The research interest are grouped in broad 

categories, so to highlight the relations among them and the multidisciplinary nature of the work 

undertaken4.  

 

BCI, P300, ErrP and MI single-trial classification, SVM, Riemann Geometry.  

 

Description: Brain-Computer Interface has been my central research interest from 2005 on. It was at 

the core of the research project presented to the CNRS at the time of my employment. It is also by far 

the research interest that has resulted in the highest scientific productivity since it has been supported 

by several research grants. Very recent developments are presented in chapter VIII and IX. 

BCI may aim at partially restoring communication capabilities for people affected by severe motor 

impairment, thus specifically target the clinical population or may aim at enriching the normal 

communication pathways creating new interfaces, thus specifically targeting healthy people. A recent 

trend in BCI research is to integrate BCI commands in video-games and more in general to enrich 

recreational applications via BCI control. In fact, the actual use of BCI by motor-disabled people is 

problematic for several reasons, including specific cognitive and sensory disabilities jeopardizing the 

performance of the BCI in clinical population and making the transfer rate achievable by some patients 

so far non competitive for any practical purposes. Whenever residual motor ability is preserved, albeit 

minimal, patients usually prefer alternative communication devices such as simple switches and eye-

trackers. However, the low transfer rate of a BCI is not a concern for recreational applications; as a 

consequence patients are usually willing to use BCI technology for recreational purposes such as 

video-games, painting applications, etc. On the other hand, healthy users can mobilize all available 

cognitive resources for the BCI therefore they easily achieve satisfactory performance. Among all 

healthy users, video-gamers are particularly motivated for trying new interface technology. Thus, a 

BCI video-game is an optimal choice to study the hardcore of a BCI, i.e., the interaction between the 

                                                      

4 For the citations in this section that cannot be found in the « Reference » section at the end of the manuscript the reader is 

kindly directed to the CV here above in this chapter. 
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interface and the whole signal processing chain, advancing the research toward practical applications 

that are likely to be used by both healthy users and people suffering from motor impairment. 

 

Collaborations and Publications: This research has started within the ANR (national research) 

project OpenVIBE (2006-2009), where I have investigated the classification of movement intention by 

a spatially filtered inverse solution (Congedo, Lotte and Lécuyer, 2006) and the use of data-driven and 

model driven subspace projection filters to increase the special sensitivity and specificity of an inverse 

solution when used on line (Congedo, 2006). This research is reminded in chapter III. These articles 

have been among the first to describe the use of EEG inverse solution for classifying BCI data. Project 

OpenViBE has been instrumental to develop the homonymous software platform for on line EEG 

analysis and visualization (Arrouët et al., 2005; Renard et al., 2010), which is since the basis of our 

research on BCI carried out at GIPSA-lab. The platform has been conceived with my arrival at INRIA 

as a post-doc supervised by Dr. Anatole Lécuyer in 2004. From 2006 to 2011 within the ANR project 

OpenViBE and OpenViBE2 we have designed and implemented the platform with the chief 

OpenViBE software engineer Yann Renard. In 2011 Yann left INRIA to create a spinoff company 

(Mensia Technologies5). From that moment OpenViBE has entered in a new phase of its life, 

becoming a self-sustained open-source platform with tens of developers in the community and with 

INRIA still continuously redesigning and improving the platform by means of other grants. Our recent 

developments for OpenViBE at GIPSA-lab are collected in the form of an open-source free add-on 

package6. Mensia technology is today using my free academic software to generate sLORETA 

(Pascual-Marqui 2002) and eLORETA (Pascual-Marqui, 2007) transformation matrices7 in some of 

their commercial service. 

As a successful story, we may tell that OpenViBE has entered the White House in February 2012, 

when US President Barack Obama has hosted the second annual White House Science Fair to 

celebrate student winners of science, technology, engineering, and math (STEM) competitions from 

all over across the United States8. Anand Srinivasan, 15 y.o., whose “EEG & Prosthetics” project was 

                                                      

5 http://www.mensiatech.com/ 

6 https://code.google.com/p/openvibe-gipsa-extensions/ 

7 https://sites.google.com/site/marcocongedo/software/ovtools 

8 e.g., http://neurogadget.com/2012/02/15 

http://www.mensiatech.com/
https://code.google.com/p/openvibe-gipsa-extensions/
https://sites.google.com/site/marcocongedo/software/ovtools
http://neurogadget.com/2012/02/15
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a finalist in the Google Science Fair 2011, impressed the president with a BCI project presented using 

the Emotiv EPOC headset and OpenViBE.  

 

Open VIrtual Brain Environments:  
OpenViBE is a powerful, flexible and 

modular software platform for the on-

line acquisition, processing and 

visualization of EEG data. A complete 

BCI processing chain, from acquisition 

to visualization, is built as a sequence 

of “bricks”, very much lke in popular 

software such as LabView and 

Simulink. While most bricks and the 

kernel are written in c++ for the sake 

of efficiency, new bricks can be 

developed in other languages such as 

Matlab and Phyton for fast testing and prototyping. OpenViBE is fully compatible with virtual 

reality technology for advanced visualization. It is open source and free for any kind of use, 

including academic and commercial (http://openvibe.inria.fr/). 

 

During the PhD thesis of Cédric Gouy-Pailler (2006-2009), co-supervised with Prof. Christian Jutten, 

blind source separation (BSS) strategies previously defined in Congedo, Gouy-Pailler and Jutten 

(2008) were used to improve single-trial detection of motor imagery over the state of the art common 

spatial patter method (Gouy-Pailler, Congedo, Jutten, Brunner and Pfurtscheller, 2008;  Gouy-Pailler, 

Congedo, Brunner, Jutten and Pfurtscheller, 2008, 2010). Methods to smooth the BCI output (Gouy-

Pailler, Mattout, Congedo and Jutten, 2009) and to remove ocular artifacts (Gouy-Pailler, Sameni, 

Congedo and Jutten, 2009) were also developed. This research is shown as example of BSS research 

in chapter VI. 

 

From 2010 the work on BCI has continued within the (second) ANR project Open-ViBE2 (2010-

2012), in collaboration with post-doc Nisrine Jrad. In this project it has been developed and tested a 

general support-vector machine (SVM) classification approach specifically adapted to EEG data. The 

method seeks the spatial filter for the data that optimizes the SVM cost function (the SVM finds in a 

high-dimensional space the hyperplane maximizing the margin with the two classes). The method 

effectively combines the search for the optimal spatial filter and optimal classifier in one algorithm, 

resulting in very good results that have been extensively documented in the case of P300 and Error-

Related Potential data (Jrad and Congedo, 2011a, b; 2012; Jrad et al., 2012; Jrad Phlypo and Congedo, 

2011; Phlypo et al., 2011). All this research is not included in this manuscript as we have found in the 

 

http://openvibe.inria.fr/
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meanwhile a more suitable classification framework that does not rely on cross-validation to set 

parameters.  

 

With the PhD thesis of Sandra Rousseau (2010-2012), co-supervised with Prof. Christian Jutten, we 

have investigated the single-trial detection of Error-Related Potentials (ErrP: Congedo, Rousseau and 

Jutten, in press) Rousseau, Jutten and Congedo, 2012a, b, c, d). ErrPs are a family of event-related 

potential (ERP) that can be elicited after the commission of an error. When the feedback is given by 

the interface the ErrP is characterized both by a negative deflection (an ERP named Ne) and an event-

related synchronization (ERS) in the theta band (4-7 Hz). Using the blind source separation framework 

defined in Congedo, Gouy-Pailler and Jutten (2008) we have been able to estimate simultaneously and 

separate the source responsible for the Ne and the source responsible for the ERS (Congedo, Rousseau 

and Jutten, 2014, in press). This research is reported in details in chapter VI as an example of BSS 

applied to extract ERPs and ERD/ERS. 

 

 

 

 

 

 

 

BSS analysis of Error Potentials:  Two uncorrelated sources were identified , one 

responsible for the Ne and one for the ERS. The grand-average (M=19) ERP of the Ne 

source (spatial filter) computed separately for error and correct trials is displayed in 

the top row (a). The ERP in the top row (b) is obtained using the spatial filter of the 

ERS source; although differences in amplitude between error and correct trials exist 

also for this latter source, they are not significant. The ERS generated by the ERS 

source for error trials is shown in the bottom row (b). The difference as compared to 

the ERS in the correct trial is significant. The ERS in the bottom row (a) is obtained 

using the spatial filter of the Ne source on the error trials; the ERS in this case 

disappears and is no longer significant as compared to the correct trials. On the right 

part of the figure the three slices (horizontal, sagittal and coronal) through the grand -

average (M=19) maximal sLORETA current density localizing the Ne source (top) and 

of the ERS source (bottom) as estimated by BSS. Legend: A=anterior; P=posterior.  
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In parallel to OpenViBE2, I participated to another ANR project on BCI (RoBiK, 2010-2012) 

(Mayaud, Congedo, Filipe et al., 2011), seconded by another homonymous grant given by the French 

Association for Myopathy (2012-2013). Both of the RoBIK grants focus on the clinical applications of 

P300-based BCIs and on the development of convenient BCI hardware for BCI (small wireless 

amplificators and a new headset). The main collaborator for the period 2010-2011 has been post-doc 

Hubert Cecotti, who has carried out work on optimal sensor selection (Cecotti, Rivet, Congedo et al., 

2010; Cecotti et al., 2011) and optimal time segmentation (Cecotti, Phlypo, Rivet et al., 2010) for 

P300 spatial filtering. This research is not reported in this manuscript since we have found a more 

suitable classification framework that does not rely on spatial filtering.  

 

Since 2012 the main collaborators has been post-doc Alexandre Barachant, who I had previously co-

supervised as a PhD student together with Prof. Christian Jutten and Dr. Stephan Bonnet. The work 

carried out with Alexandre has represented a major breakthrough in our BCI research group, leading to 

a universal framework for all kinds of BCI using the Riemannian geometry. The work of Alexandre 

carried out during the PhD (2009-2011) concerned the definition of the method for motor imagery BCI 

(Barachant, Bonnet, Congedo and Jutten 2010a, 2010b; 2011a, b; 2012a, b; 2013). The work carried 

out with us as a post-doc (2012-2013) has extended the Riemannian framework to SSVEP-based and 

P300-based BCIs (Barachant et al., submitted, in press; Barachant and Congedo, in press; Congedo 

and Barachant, submitted). The robustness of the Riemannian framework has allowed the initialization 

of the BCI with generic parameters derived from a database of other users. Then, an adaptive 

algorithm learns the optimal parameters for the user, effectively by-passing completely the calibration 

phase. In addition to this work, an automated on-line artifact-rejection algorithm has also been 

developed (Barachant, Andreev, Congedo, 2003). Taken together, this work has completely 

overridden our previous approaches to BCIs; the Riemannian method is more accurate, it generalizes 

well across subjects and across sessions, thus making the calibration unnecessary, and is even simpler 

algorithmically as compared to all our previous attempts based on sharp spatial filtering or machine 

learning. This research will be presented in details in Chapter VIII.  

 

The two RoBiK projects yielded also the employment of a Anton Andreev as a software engineer 

(2012-2013). In 2013 Anton has integrated our team thanks to a full permanent position at CNRS. 

Anton currently maintains our code and technically supports experimentation, constituting a precious 

resource for the whole team. 
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In 2011 we have published our prototype of the Brain Invaders, a very effective pure-BCI video-game 

inspired from the vintage game Space Invaders (Congedo et al., 2011). During spring and summer 

2012 a research project on BCI games has been carried out with a master student, Gijs Van Veen, in 

collaboration with Prof. Mannes Poel of Twente University (THE NETHERLANDS). With this 

student during 2012 the gameplay of the Brain Invaders has been improved considerably and Anton 

Andreev has made the code available as an open-source project of our team, along with our own 

extensions of the Open-ViBE platform that allows using the signal processing chain that has resulted 

from our research. An extensive experimental study using the Brain Invaders BCI is presented in 

chapter VIII. 

  

 

The Brain Invaders:  
As any old-fashion 

video game the Brain 

Invaders proceeds by 

levels. To finish a 

level the user must 

destroy a target alien, 

chosen at random 

within a grid of 36 

aliens and which is 

indicated by a red 

circle at the 

beginning of the 

level. Aliens may be 

of different color. The 

target alien is always 

red. Aliens move with 

patterns that are specific to each level. As in the P300 spellers a repetition of flashes consists in 12 

flashes of groups of 6 aliens chosen in such a way that after repetition each alien has flashed two 

times. After each repetition the system assigns to each alien the probability of being the target 

according to the signal processing and classification method implemented in the OpenViBE platform 

and destroys the alien with the highest probability (b). If this alien is the target the level ends, 

otherwise this alien is eliminated and another repetition of flashes starts. The process is continued 

until the target alien is destroyed or until 8 non-target aliens have been destroyed, after which 

another level starts. The current number of attempts per level is indicated by coloring the bullets on 

the bottom of the screen (a),(b),(c). Between two levels the points obtained in the last level and the 

cumulative score are shown to the player. The points obtained at each level are inversely 

proportional to the number of repetitions necessary to destroy the target. Fig ure a) shows the 

welcome screen. (b) shows the simplest level, in which the aliens move altogether from the l eft to the 

right of the screen as in the original game Space Invaders. (c) and (d) shows more complex levels, 

where aliens move according to elaborated patterns and several aliens are colored green or red, 

like the target. 
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ICA Neurofeedback 

 

Description: My PhD thesis was about the first neurofeedback study based on real-time estimation of 

intra-cranial current density by means of an inverse solution (Congedo, Lubar and Joffe, 2004). This 

work has been reiteraded later on by other research groups (Bauer, Pllana and Sailer, 2011; Liechti et 

al., 2012; Surmeli and Ertem, 2009). In the meanwhile we have investigated the idea of using blind 

source separation to design a filter with higher spatial specificity. In fact, current density estimation is 

focalized on the current flowing in all directions in a particular location. On the other hand a blind 

source separation filter is optimal for estimating the direction of current flowing, thus it yields a 

sharper filter. 

 

Collaborations and Publications:  This research has been carried out with PhD students Zaneta 

Koprivova in Praha (CZECH REPUBLIC), co-supervised with Dr. J. Horáček (Kopřivová et al., 2011, 

2013) and David White in Melbourne (AUSTRALIA), co-supervise with Prof. Richard Silberstein in 

Melbourne (White et al., 2012; White, 2012, unpublished PhD dissertation at Swimbourne University, 

Melbourne). 

 

EEG Hyperscanning and Approximate Joint Diagonalization 

 

Description: This is the most recent of our research interests and has acquired a growing importance 

in our activity since 2010. EEG Hyperscanning is a particular instance of data fusion where two or 

more individuals are scanned simultaneously and synchronously. We are interested in EEG 

hyperscanning to study the possible synchronization of the brains of two individuals, that is, whether 

corresponding areas of the two brains may start working in phase synchrony under special 

circumstances. This topic has appeared recently in the EEG literature and has soon gained worldwide 

attention.  

 

Many spatial filtering approaches in EEG work jointly diagonalizing two or more matrices describing 

relevant aspects of the spatial covariance structure. When more than two matrices are to be 

diagonalized simultaneously neither a closed form nor an exact solution exists in general. We employ 
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then approximate joint diagoonalization (AJD) iterative algorithms. We are interested in obtaining 

robust methods obtained by jointly diagonalizing many symmetric matrices. More recently, we have 

attacked the problem of joint blind source separation, which involves the simultaneous joint 

diagonalization of several matrix sets, notably with applications in data integration and data fusion 

modalities such as EEG hyperscanning.  

 

Collaborations and Publications: This research is currently carried out with PhD student Jonas 

Chatel-Goldman in Grenoble, that I co-supervise with Prof. Christian Jutten and Dr. Jean-Luc 

Schwartz (Chatel-Goldman, Schwartz, Jutten and Congedo, 2013; Chatel-Goldman, Congedo and 

Phlypo, 2013) and PhD student Michael Acquadro, co-supervised with Prof. Anne Guerin. 

Collaborations on the methodological aspects of EEG hyperscanning data analysis have included Prof. 

Emeritus D-T Pham at CNRS, Grenoble (Congedo and Pham, 2009; Congedo, Phlypo and Pham, 

2011; Pham and Congedo, 2009) and Ronald Phlypo (Congedo, Phlypo and Chatel-Goldman, 2012; 

Phlypo and Congedo (2010), a former post-doc currently working at the MLSP lab of the University 

of Maryland. During the spring and summer 2012, a research project on hyperscanning has been 

carried out with two master students, Michael Acquadro and Ayoub Maatallaoui. Previously, in 

academic year 2009-2010 I have supervised the work of two Spanish ERASMUS students on this 

subject. The methodological aspect of this research concerns the analysis of the data acquired at the 

same time on two or more individuals. The innovations proposed stems from our advances on blind 

source separation (BSS) and approximate joint diagonalization algorithms, which generalization to 

more than one dataset (Joint Blind Source Separation: JBSS) constitutes the core of the methodology. 

This research will be presented in chapter IV and VII. 

 

Normative EEG Database 

 

Description: using a large database of healthy individual EEGs it is possible to derive norms for a 

large number of EEG features such as scalp or current density power, coherence, etc. (Ahn et al., 

1980; John et al., 1980a, b, c). These norms serve as an aid in the diagnosis of clinical disorders. We 

have derived EEG norms based on a group BSS analysis. Such method allows to derive a more 

compact set of uncorrelated features, with expected improvement in the sensitivity and specificity. 
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Collaborations and Publications: this research is carried out in collaboration with Dirk de Ridder, 

formerly in Antwerp (BELGIUM) and now at University of Otago (NEW ZEALAND) and Leslie 

Prichep in New York (USA). I have been working closely on this subject with, and have been inspired 

by, senior researcher E. Roy John in New York, who I visited several time at New York University 

and School of Medicine before he disappeared in 2009. To Roy, a wonderful man, goes all my 

friendship and esteem. Our main paper describing the method is Congedo et al. (2010a). A 

complement can be found in Congedo et al. (2010). This research will be presented in chapter VII. 

 

Tinnitus 

 

Description:Tinnitu is the perception of sound within the human ear in the absence of corresponding 

external sound. Tinnitus is a complex clinical condition currently under investigation by the TRI 

(Tinnitus Research Initiative). We are interested in characterizing the neuronal correlates in order to 

design appropriate treatment strategies, especially those based on neurofeedback and neurostimulation.  

 

Collaborations and Publications: this research is carried with Dirk de Ridder since 2006, formerly 

located in Antwerp (BELGIUM) and now at University of Otago (NEW ZEALAND). With him i have 

co-supervised the work of three PhD students in Antwerp (Elsa van Der Loo, Svan Vanneste and Mark 

Plazier), collaborating on several publications (De Ridder, Vanneste and Congedo, 2011; Vanneste et 

al., 2010; Van der Loo et al., 2007, 2009; Vanneste, Congedo, De Ridder, 2013). Some of the research 

carried out on Tinnitus will be presented in chapter VI. 
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SOFTWARE DEVELOPMENT 

 

I have produced software for EEG data analysis since the beginning of the PhD at University of 

Tennessee in 2000. At that time I was programming in Borland Turbo Pascal 7. Starting 2001 I have 

switched to the much more productive Borland Delphi 5 rapid application development, based on the 

object Pascal language. I have written my own linear algebra library and some graphical objects for 

EEG data plotting. This software development environment is behind most of my publications. I have 

written many applications at the usage of my PhD students. Some of them have been released for free 

to the public. 

 

In the period 2000-2003 I have written software for company Nova Tech EEG, Inc. This software has 

been freely distributed since 2005. Noteworthy from this period are the two main modules of the NTE 

pack: 

 

Eureka3! 

Continuously recorded (resting-state) EEG data analysis, featuring FFT spectral analysis both in the 

sensor space and in the sLORETA source space (Pascual-Marqui, 1999; Pascual-Marqui et al., 2002), 

see also (Bosch-Bayard et al.,  2001). 

 

MHyT 

Multiple Hypothesis statistical testing for EEG group data (t-tests between, within and to compare the 

mean to a population value, correlations), adapted for the analysis of data in the frequency domain and 

both for the sensor space and the source space. The software is very flexible and implements state of 

the art multiple comparison p-min random permutation tests (Westfall and Young, 2003). 

 

More recent application developments that are freely distributed on my web site are: 
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NICA 

NICA performs group Blind Source Separation (gBSS), build gBSS databases, compares individuals 

to the databases and performs gBSS statistical tests for two-group designs, both between subjects and 

within subjects. NICA computes and tests not only source power, but also source (lagged) coherence. 

This application features very fast gBSS computations, powerful statistical tests (permutation t-max 

tests) and convenient plots of the results.  

 

Working Memory Trainer 

This is a program for training the working memory. The WM Trainer looks and behaves a little bit like 

a video-game and has been specifically conceived for children attending the primary school. However, 

it can be used purposefully by people of any age, including adult and elderly. This application features 

highest graphic quality, a powerful adaptive engine for the difficulty level, a database of users and 

statistical tools to evaluate the progress. Currently English, French and Italian are supported, but any 

language can be easily supported. An adaptation of this software has been used by PhD student Sandra 

Rousseau to carry out research on error potentials. 

 

 

Screenshots of the WM Trainer 

 

FDRw False Discovery Rate (weighted) 

Simple and efficient, this application performs the Weighted False Discovery Rate procedure of 

Benjamini and Hochberg (1997) to correct for multiple testing. It allows testing virtually any number 

of p-values obtained with any test-statistics for any data set. It also allows assigning a-priori weights to 
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give a better chance to those variables that are deemed important. In practice, this procedure is 

powerful only with a relatively small number of p-values. 

 

ICoN (Independent Component Neurofeedback) 

It is a program for off-line BSS (Blind Source Separation) based on second-order statistics. It has been 

specifically conceived for EEG data and it is fully automated. ICoN shows on the same screen the 

original data (top of the figure) and the source components (bottom of the figure), along with their 

Fourier spectra, Autocorrelation and Hurst exponent. The estimated sources are localized in brain-

space using the oldest version of LORETA-Key software, but supports sLORETA and eLORETA as 

well. ICoN exports the demixing vector to be used as a spatial filter in a program such as Open-ViBE. 

ICoN implements the AJDC BSS algorithm decribed in details in chapter VI. 

 

 

Screenshots of ICON 
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CHAPTER II   

BACKGROUND MATERIAL 
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NOTATION AND NOMENCLATURE 

 

A    an Integer 

N    Number of Channels in EEG recordings 

P≤N    Number of Sources or Components in linear transformations  

M    Number of Subjects or Data Sets 

Q    Number of Voxels for tomographic inverse solutions 

Z    Number of Classes in classification tasks 

K    Number of Matrices or Samples in a generic set 

F    Number of Frequencies in Fourier Analysis 


    

The Set of Real Numbers 

a     a real scalar or random variable, but also an index 

 1,...,a A    a set of indexes running from 1 to A 

r,c    row and column index for matrix entries 

Na     an N-dimensional column vector 

T Na    an N-dimensional row vector 

na  the nth entry of vector a  

 1,...,
RxC

C A a a  a matrix of dimension RxC, with 
R

c a  its cth column vector 

 1,...,
TT CxR

C A a a
 

matrix transposition 

rca  the (r,c) entry of matrix A 

 1,...,
RxCM

M A A  matrix partition  
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11 1

1

J

RIxCJ

I IJ

 
 


 
 
 

A A

A A

 another notation for matrix partition 

 1,...,k KA A A  a set of K matrices indexed by  1, ,k K   

CxRA    matrix pseudo-inverse 

 rank A    rank of a matrix 

  rcr c
tr a


A   trace of a matrix 

 
1

2

1
2 2T

rcF
r c

tr a


 
   

 
A A A Frobenius norm of a matrix 

 det A    determinant of a matrix 

N1     the unit vector, one in all entries 

RxC0    the null matrix, zero in all entries 

2NI    the identity matrix (of dimension NxN) 

2
1 T N

N  H I 11   the centering matrix 

2NQ    a square matrix 

2NL    a lower triangular matrix 

2NS    a symmetric matrix 

2ND    a diagonal matrix 

,n nnd d     two ways to denote the nth diagonal element of D 

2

, NU V    orthogonal matrices, eigevector and singular vector matrices 
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Λ     diagonal matrix of eigenvalues or singular values 

 n S     nth eigenvalue of matrix S 

 diag Q    matrix Q with off-diagonal elements nullified 

 off Q    matrix Q with diagonal elements nullified 

2NC    a symmetric positive-definite (SPD), covariance or Cospectra 

21 N C    symmetric inverse, such that 1 1  C C CC I  

21
2 NC    symmetric square root, such that 

1 1
2 2 C C C  

21
2 N

C    symmetric square root inverse, such that 
1 1 1 1

2 2 2 2
  

 C C C CC I  

RxCW    a whitening matrix 

2NP  a permutation matrix, the identity matrix with the rows or 

column shuffled 

2N
n E  the elementary diagonal matrix, enn=1, 0 elsewhere 

A B     affectation: B is written into A  

 A     A matrix depending generically on the argument in parentheses 

 n 
a     The nth vector of matrix A depending as above 

 1 2 C C    A symmetric distance or divergence between matrix 1C  and 2C  

nn
a     The sum 1 Na a   , short for 

1

N

n

n

a


   

nn
a    The product 1 Na a  , short for 

1

N

n

n

a


   

n     for all n{1,…,N} 
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iff     if and only if 

     much smaller than 

iid     independently and identically distributed 

SNR     signal to noise ratio 

Hz    Hertz (cycles per seconds) 

SPD    Symmetric Positive-Definite (matrix) 

  x     statistical expectation of random variable x 

~N(µ,σ2)   distributed as a Normal (Gaussian) with mean  and var 2 

~N(µ,Σ) distributed as a Multivariate Normal with mean vector  and 

Wishart matrix  

~lnN(µ,σ2) distributed as a log-Normal, that is, such that its exponential is 

distributed ~N(µ,σ2) 

ax, gx, hx,  Arithmetic, Geometric, Harmonic mean of random variable x 
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LINEAR ALGEBRA 

Invariances 

(1) Two square matrices are similar if an invertible matrix B exists such that  

1
1 2

Q B Q B  (Schott, 1997, p. 152). The product 1
2


B Q B  is named similar 

transformation. A function or a property of a matrix  f Q  is said similarity-

invariant if    1f f Q B QB . 

(2) Two square matrices are said congruent if a matrix A exists such that 1 2
TQ A Q A . 

The product 2
T

A Q A  is named congruent transformation or conjugation. A function 

or a property of a matrix  f Q  is said congruence-invariant if    Tf fQ A QA . 

(3) Two square matrices are said orthogonally congruent or that they are one the 

rotation of the other if an orthogonal matrix U exists such that 1 2
TQ U Q U . The 

product 2
T

U Q U  is named an orthogonal transformation or rotation (see Schott, 1997, 

p. 60). A function or a property of a matrix  f Q  is said rotation-invariant 

if    Tf fQ U QU . Congruence invariance (2) implies rotation invariance.  

 

The Rank of a Matrix 

(4) The rank of a matrix RxCA  is the number of linearly independent columns or, equivalently, 

the number of linearly independent rows.  

(5) A square matrix Q is invertible if it is full rank, meaning that the rank is equal to the 

dimension of the matrix. A full-rank symmetric matrix C has all positive eigenvalues. 

(6)    min ,rank R CA  

(7)        T T Trank rank rank rank  A A AA A A  
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(8)    min ,rank rank rankAB A B , for any CxQB  

 

The Trace of Square Matrix QNxN 

(9) Ttr trQ Q  

(10) tr c c tr Q Q  

(11)  1 2 1 2tr tr tr  Q Q Q Q  

(12) Trace of the product of two matrices:        1 2 1 2 2 1 2 1

T T T Ttr tr tr tr  Q Q Q Q Q Q Q Q  

(13) Trace of the product of more than two matrices (cyclic property):  

       1 2 3 4 2 3 4 1 3 4 1 2 4 1 2 3... ... ... ...tr tr tr tr  Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q Q   

(14) Trace of the product of three symmetric matrices: any permutation is allowed 

(15) The trace possesses the similarity and rotation invariance, but not the congruence invariance. 

 

The Symmetric Matrix SNxN 

(16) 
TS S  

(17) 
1

S is symmetric  

(18) 
T TSS S S  is symmetric 

(19) 
1 T S S I   

(20) The sum and difference of symmetric matrices is again symmetric 

(21) The product of two symmetric matrices is symmetric only if they commute in multiplication. 

For instance, for any positive integer P, P
S is symmetric 

(22) Every symmetric matrix is, up to a rotation (3), a diagonal matrix (see (37)). 
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(23) If two symmetric matrices commute in multiplication, they can be jointly diagonalized by 

orthogonal transformation (3) or by similar transformation (1) of an invertible matrix (Schott, 

1997, p. 154-157; Searle, 1982, p. 312).  

(24) For any matrix Q, its symmetric part is given by  1
2

TQ Q  and its anti-symmetric part is 

given by  1
2

TQ Q . The two parts sum up to Q . 

(25) Symmetry possesses the congruence-invariance (hence rotation-invariance) but not the 

similarity-invariance. 

(26) A Symmetric matrix is Semi-Positive Definite iff for any vector y , 0T y S y  

(27) It is Positive Definite if it is also invertible. In this case the equality in (26) holds only for y=0. 

 

Symmetric Positive-Definite (SPD) Matrix CNxN 

(28) 0det C  

(29) rank NC  

(30) Cx 0  holds only for x 0  

(31) All its eigenvalues are real and positive 

(32) If C1 and C2 are SPD matrices, so is C1+sC2, for any s > 0. 

 

Orthogonal Matrix UNxN 

A square matrix is Orthogonal if its transpose is its inverse, that is, 

(33) T T UU U U I  

(34) The product of two orthogonal matrices is always orthogonal 

 



EEG Source Analysis – HDR presented at University of Grenoble, October 2013 

Marco Congedo, Senior Researcher - Centre National de la Recherche Sientifique (CNRS) 65 

Eigenvalue-Eigenvector Decomposition (EVD) 

For a symmetric matrix SNxN and for a Positive-Definite matrix CNxN the EVD, also named 

spectral decomposition is 

(35)    
1

N
T T

n n n

n

EVD 


 S UΛU u u , 

where UNxN is the orthogonal matrix holding in columns the eigenvectors and NxN the diagonal 

matrix holding the eigenvalues. The eigenvalues are all real for S and also strictly positive for C. We 

have: 

(36) 
TS UΛU ; SU UΛ ; n n nSu u , n

 

(37) 
T U SU Λ

 

The sum of the first P<N terms in the right-end side of (35) yields the matrix S(P) of rank P closest to S 

in the least-square sense, that is (Good, 1969, p. 827) 

(38) 
   

1

P
T

n n nP
n




S u u  is the solution to the problem 
 

2

F

P
P

min S S , with 
  
P

rank PS . 

(39) The minimum is attained at 
1

N

q

q P


 


 

and is named Representation Error.  

 

Properties of Eigenvalues 

(40) 
1

N

n

n

tr


 S ;  
22 2

1

N

n F
n

tr


  S S ;  
1

N
k k

n

n

tr


 S  

(41) 
1

det
N

n

n




 S

 

(42)    ,T
n n n  Q Q  

(43)    ,T T
n n n  QQ Q Q  
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(44)    ,T
n n n  B SB S , for any invertible B. 

For both a diagonal matrix D and a lower triangular matrix L the diagonal elements are the 

eigenvalues: 

(45)  n nl  L ,  n nd  D   

(46) The eigenvalues of an orthogonal matrix U equal either 1 or -1. With an orthogonal 

transformation of the data, the eigenvectors with associated eigenvalue 1 determine a rotation 

of the axes, the eigenvectors with associated eigenvalue -1 determine a rotation and a 

reflection of the axes.  

The following is known as the basic result of the extremal properties of eigenvalues (Schott, 1997, p. 

104-128). Let 1 ... N    be the eigenvalues of S, then 

(47) 
0

T

NT
min 



u

u Su

u u
  and   1

0

T

T
max 




u

u Su

u u
. 

This normalized quadratic form is called the Rayleigh quotient. 

 

Power Iterations 

If the estimation of only one of the eigenvectors is sought one can use the power method or the inverse 

power method (Golub and Van Loan, 1996, p. 406; Strang, 2006, p. 359). For instance, the principal 

eigenvector u1 of positive-definite matrix C, i.e., the eigenvector associated with its maximal 

eigenvalue, is obtained by the following iterative algorithm.  

Algorithm (48): Power Iterations 

Initialize u1  with a clever guess or with a random unit norm vector 
Repeat 

1 1u Cu
 

1 1 1/
F

u u u
 

Until the angle between the new estimation and the preceding is smaller than a chosen  
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The convergence speed depends on the ratio between the first and second eigenvalue; the higher the 

ratio, the faster the convergence. The algorithm fails if the first two eigenvalues are too close to each 

other. 

 

Cholesky Decomposition 

For any symmetric positive definite matrix C it exists a lower triangular matrix L with all positive 

entries on the diagonal (positive eigenvalues, see (45)) such that  

(49) 
TC LL .   

Such matrix is unique (Schott, 1997, p. 147).  

 

Operators on Symmetric Positive-Definite Matrices 

Given C symmetric positive definite, using ( ) TEVD C UΛU  (35) we define the following operators 

using functions of eigenvalues: 

(50) Symmetric Inverse    1 1 1T T

n n nn
   C UΛ U u u    

(51) Symmetric Square Root    
1 1 1

2 2 2T T

n n nn
 C UΛ U u u  

(52) Symmetric Square Root Inverse   
1 1 1

2 2 2T T

n n nn
  

 C UΛ U u u  

(53) Symmetric Exponential      
0

!

i
T T

n nn
i

exp e e
i






   ΛC
C U U u u    

(54) Symmetric Logarithm   
 

      
0

1
i

i T T

n n nn
i

ln ln ln
i







    C C I U Λ U u u  

These functions act in analogy with the algebraic counterpart, for example, all the following are easy 

to verify: 

(55)    
1 1

2 2 exp ln ln exp  C C C C C ;  
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(56)    
1 1 1 1

2 2 2 2
1

1 exp ln
  

   C C C C C C ;  

(57) 
1 1 1 1 1 1 1 1

2 2 2 2 2 2 2 2 1 1             C CC C C C CC C C C CC C C I  

(58) exp(S) is always SPD if S is symmetric, that is, the operator exp is a projector in the space of 

SPD matrices.   

(59) For a positive definite diagonal matrix the diagonal elements are the eigenvalues, so all the 

above operators (50) to (54) just apply element-wise to the diagonal elements. 

 

Some Results on Matrix Exponential and Logarithm 

If D1 and D2 are positive-definite diagonal matrices, using properties of the logarithm we have 

(60)        1 1 1 1
2 1 1 2 1 2 2 1

F F F F
ln ln ln ln       D D D D D D D D

 

from 

(61)        1 2 2 1

2 1 1 2

2 2 2 2
n n n n

n n n n

d d d d

d d d dn n n n
ln ln ln ln        . 

(62)      1 2 1 2exp exp exp C C C C
 
and      1 2 1 2ln ln ln C C C C

 
iff 1C

 
and 2C  commutes 

in multiplication 

(63)    ln ln I I   

(64)    exp exp I I  

(65)  ln C
 
commutes with  

1



   C I I

 
,  > 0 

(66)      1 2 1 2   det exp det exp det exp C C C C  

(67)      ln det tr lnC C ;      det exp exp trC C
 

(68)        1 1 1 1;  ln ln exp exp    B CB B C B B CB B C B , for any invertible B. 
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(69)    1ln ln  C C ;    1ln ln  C C
 

(70)    
1

exp exp


   C C
 

(71)  k exp k ln C C , e.g.,  1 exp ln  C C  

  

Other Results on SPD Matrices 

(72) T B SB 0  implies SB 0   

 

Singular Value Decomposition (SVD) 

There are several possible definitions for the Singular-Value Decomposition of a matrix ARxC. We 

use 

(73)   TSVD A UΛV , 

where URxR is the orthogonal matrix holding in columns the left singular vectors, VCxC the 

orthogonal matrix holding in columns the right singular vectors, RxC the matrix holding at entry 

(1, 1),…,(P, P) the singular vectors and zeros elsewhere and P=min(R, C). We have  

(74) 
2T TAA UΛU  and 

2T TA A VΛV , 

with  in this case diagonal and of dimension RxR for the first expression and CxC for the second 

expression.  

 

Lödwin Orthogonalization 

Given a matrix A with   TSVD A UΛV (73), the matrix  

(75)  
1

2T T


 Z UV AA A
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is the closest orthogonal matrix in the least-squares sense to A (Carlson and Keller, 1957), i.e., it is the 

orthogonal matrix satisfying 
F

min 
Z

A Z , with Z orthogonal. 

 

Moore-Penrose Pseudo-Inverse and Pseudo-Operators 

For a given matrix A, there is a unique  Pseudo-Inverse 
A , satisfying the following four conditions: 

(76) 
 AA A A , 

  A AA A , both 


AA  and 


A A  are symmetric.  

The pseudo-inverse satisfies also 

(77)  


 A A ;    
T

T


A A ;   1
cc

 A A ;    T T
 

A A A A ;    T T
 

AA A A  

Using the SVD (73) we have for matrix ARxC the following pseudo-operators  (Golub and Reinsch, 

1970) 

(78) k k TA VG U  
 

where  if  >0, 0 otherwisek k k

p p p pg g   , with p=min(R, C). For instance, with k = -1 we obtain the 

pseudo-inverse 

 (79)  
1 T A VG U  where 1 1 1 if  >0, 0 otherwisep p p pg g     . 

The pseudo-inverse can also be found as 

(80)  
1

T T


 A A AA  if A is wide (C>R). This is also named the right-inverse, in that  AA I , 

but  A A I . 

(81)  
1

T T


 A A A A  if A is tall (R>C). This is also named the left-inverse in that  A A I , but 

 AA I . 
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Joint Diagonalization of Two Symmetric Matrices 

Given two positive-definite symmetric matrices 1C  and 2C , it always exists a matrix B  such that 

  (82) 
2 2

1 1

T

T

 




B C B D

B C B D
, 

where 1D  and 2D  are diagonal and holds all positive elements. This is called the generalized 

eigenvalue-eigenvector decomposition (GEVD). Matrix B is named the joint (or simultaneous) 

diagonalizer. The solution is given by the eigenvector matrix of 
1

2 1


C C . Since 
1

2 1


C C  is not 

symmetric in general, matrix B is not orthogonal in general, thus the EVD has not form (35); it is 

orthogonal iff 1C  and 2C  commute in multiplication. Actually the GEVD is defined for any two 

symmetric matrices 1S  and 2S  for which it exists a positive-definite linear combination 1 2a bS S  

(See Schott, 1997, p. 160-165). The GEVD can be obtained by EVD (35) with a two-step procedure 

(Fukunaga, 1990, p. 24-33), as it follows.  

 

Algorithm  (83): Generalized Eigenvalue-Eigenvector Decomposition (GEVD). 

Do  2

TEVD C UΛU  

Do  
1 1

2 2

1
T TEVD

 

Λ U CU Λ VDV  

The solutions is 
1

2T T

V Λ U  and its inverse 
1

2UΛ V .  
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FOURIER ANALYSIS 

 

For real data, if T is the length of the time window and S the sampling rate expressed in Hz, there are 

F=T/2+1 Fourier frequencies with resolution r=S/T equally spacing the range from 0 Hz (DC-level) to 

the folding frequency (0 Hz, 1r Hz, 2r Hz,…,T/2r Hz). Typically, we take both S and T as a power of 

two and spectral estimates may be averaged within arbitrary time intervals by sliding overlapping 

windows. The latter strategy allows arbitrary time intervals length. The Fourier cospectra and 

quadrature spectra are defined as the real and imaginary part of the Fourier cross-spectra 

(Bloomfield, 2000). They are estimations of, respectively, the in-phase (or with a half cycle phase 

shift, i.e., opposite sign) and out-of-phase (a quarter cycle in either direction) covariance structure at 

frequency f. The discrete Fourier transform of sampled time-series x(t) over an epoch of length T is 

given by 

(84)  

1
21

0

( )
T

ift

Tf x
t

d x t e 






  . 

Let 
 f x

d  and 
 f x

d   be the real and imaginary part of  f x
d , respectively9. Those coefficients are 

readily and efficiently estimated by fast Fourier Transform (FFT: Cooley and Tukey, 1965; Frigo and 

Johnson, 2005). Here below is the formula for computing the 2x2 cospectral matrix at frequency f for 

time-series x(t) and y(t): 

(85) 
               

               

f x f x f x f x f x f y f x f y

f

f y f x f y f x f y f y f y f y

d d d d d d d d

d d d d d d d d

       

       

  
 
  
 

C .  

The formula readily extends to any N-dimensional input time-series to obtain its N-dimensional 

cospectral matrix. Notice that the cospectral matrix is symmetric and that the diagonal elements are the 

auto-spectra, better known as power spectra.  

For an arbitrary long EEG segment we typically obtain an estimate of the cospectral matrix averaging 

Cf  over overlapping epochs of length T (Welch, 1967). Such estimates may then be summed across 

                                                      

9 For the first (0 Hz) and last (T/2r Hz) Fourier frequency the coefficients are real. 
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adjacent frequencies to obtain estimates within band-pass regions of interest. Summing all of them 

yields the covariance matrix out of a scaling factor as per Parseval’s theorem. 

 

STATISTICS 

 

Let  

(86)               1 , ,
T N

Nt x t x t x  

 be the EEG potential difference data vector for N electrodes unfolding along discrete time samples t. 

Throughout this manuscript we assume that the data has been band-pass filtered either during 

acquisition and/or as the unique pre-processing stage required before turning to the methods we treat 

here. Even if the band-pass region is large, say 0.1 Hz to 70 Hz, each EEG channel has then null 

expected average, such as 

(87)           Nt    x 0   

           

Mean 

We have (Searle, 1982, p. 66-68 and p. 349-352) 

(88) Mean:           
1 Tx t t
N

 x 1
 

 

Centering Matrix and Common Average Reference 

(89) The data referenced to the common average:           N

CAR t t x t t   x x 1 Hx  

(90) 
2

1 T N
N  H I 11 is named the centering matrix.  
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(91) The centering matrix has N-1 equal eigenvalues and one null eigenvalue corresponding to 

eigenvector 1.  

(92) The centering matrix has the following properties: 
2T H H H  ; T T  H1 H11 11 H 0 . 

 

Sum of Squares and Products 

Now let XNxT be a data segment (e.g., a trial for BCI) of T samples. We have (Searle, 1982, p. 349-

352)  

(93) Sum of squares and products:     
2T NXX  

(94) Sum of squares and products in common average reference: 
2T NHXX H  

   

Covariance Matrix 

Assuming (87) we obtain estimations of the  

(95) Sample Covariance Matrix:      
2

1
1

T N

T
 C XX   

(96) Sample Covariance Matrix in common average reference:  
2

1
1

T N

T
 C HXX H

 

NB: Hereafter by C we will indicate any form of covariance matrix and not just the sample covariance matrix.  
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EEG BASICS 

 

Advent and Standardization of EEG Recordings 

With approximately 1012 neurons in the central nervous system (CNS), 1015 synaptic connections 

releasing and absorbing 1018 neuro-transmitters and neuro-modulators per second, the human brain is a 

net of prodigious complexity. Faugeras et al. (1999) compare such an organ with a “computer” 

capable of processing 1012 Gigabits of “information” per second, all in about 1.6 Kg of weight and 

with a consumption of 10-15 Watts.  

The study of the brain “activity” through functional medical imaging devices is named neuroimaging. 

Based on the pioneering work on electricity of animal bodies by Luigi Galvani (1737-1798) and on 

exposed animal cortex by Richard Caton (1875), Hans Berger (1929) provided the first 

electroencephalogram (EEG) of a living human. In the whole neuroimaging community, this Berger’s 

finding is often evoked as a starting point. In order to record EEG, a set of electrodes are applied on 

the scalp so to establish electrical contact with the skin and in such a way to sample as evenly as 

possible the available scalp surface. To obtain congruence among different laboratories and different 

head shapes and sizes, standard placements have been soon proposed, basing the positioning on 

proportional distances along head anatomical landmarks (Jasper, 1958). Such standardization, with 

the seminal recordings on the exposed human cortex of Penfield and Rasmussen (1950) marks the 

beginning of modern electroencephalography. The number of electrodes used in research has 

increased over the years from around 19 of Jasper’s time to as many as 512 today, however the 10-20 

system with 19 electrodes is still the dominant standard in clinical settings and most research is carried 

out with 19 to 64 electrodes (fig. 2.1). 

 

Figure 2.1: (a), (b): the international 10-20 system (Jasper, 1958) seen from left (A) 

and above (B) the head. Figure labels: A = ear lobe, C=central, Pg=nasopharyngeal, 

P=parietal, F=frontal, Fp=fronto-polar, T=temporal, O=occipital. (c): location and 

nomenclature of the intermediate 10-10 system, as standardized by the American 

Electroencephalographic Society (redrawn from Sharbrough et al, 1991). Figure 

rearranged from Malmivuo and Plonsey (1995).  
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EEG and Other Neuroimaging Modalities 

In between late 60’s and 80’s several other neuroimaging techniques have been introduced. The best 

known are magnetoencephalography (MEG), positron emission tomography (PET), functional 

magnetic resonance imaging (fMRI) and functional near-infrared spectroscopy (fNIRS). 

Concurrently, studies on brain imaging have literally booming. Yet, the introduction of more 

sophisticated neuroimaging techniques has not undermined the popularity of EEG. On the contrary, 

EEG research and practice is still growing while we are writing. There are several reasons that may 

explain the popularity of electroencephalography. First, EEG research reposes on a long and well 

established tradition, comforted by intracranial recordings in humans and animals. Second, with the 

exception of fNIRS, all other modalities require much more bulky and expensive equipment. Third, 

PET and fMRI may observe brain activity only indirectly, through the metabolic consumption rate 

(hemodynamic), which changes slowly and which activation peak occurs around 4s after actual 

cellular activity. Similar arguments apply to fNIRS. On the other hand EEG (and MEG) observes 

instantaneous changes of post-synaptic potential differences, which are directly related to the cell 

polarization/depolarization, hence to their readiness to discharge. Fourth, EEG (and MEG) is truly 

non-invasive. There is no limit of time one can safely hold the electrodes on the scalp (EEG) or one 

may stay in a MEG scanner. Complete safety applies to individuals of any age, including newborn 

children. Because of this characteristic EEG alone serves in sleep studies and in intensive care units. 

Fifth, EEG can be recorded in natural settings. Latest EEG equipment may have the size and weight of 

a handy box, can be powered by common batteries and may wireless store the data on a distant server. 

EEG can be recorded everywhere there is not excessive electromagnetic interference. Using active 

electrodes and/or actively shielded electrode cables it can be recorded even on a slowly moving 

subject, which is a possibility under exploitation in recent times. That is not true for any of the other 

modalities, including MEG. The ability to be used in natural settings and the absence of acoustic noise 

(very strong, for example, in fMRI scanners) makes EEG an ideal instrument for research and large 

public applications, such as video games based on brain-computer interfaces.  

 

The Advent of Quantitative EEG Analysis 

First attempts to interpret EEG traces have been based on waveform inspection (morphology). As a 

matter of fact, current practice of EEG in neurology is still anchored on this kind of analysis. 

Typically, neurological hospitals perform EEG examinations only for epilepsy, sleep disorder, 

migraine and a few other pathological conditions for which the waveform bears diagnostic utility, as 
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for spikes, spindles, generalized slowing, temporal theta, etc. Meanwhile, electrophysiological 

research took a different path. The introduction of quantitative methods in EEG (qEEG) aided by the 

(re-)invention of the FFT algorithm (Cooley and Tuckey, 1965) and by the advent of digital 

equipments, marked the transition into the era of functional localization of EEG activity. Spectral 

analysis (compressed spectral arrays, topographic maps of amplitude, phase, coherence, etc., see for 

example Duffy et al., 1981) has been used since the 60’s in a plethora of cognitive and clinical studies, 

sustained also by concurrent advances in experimental paradigms. For instance, time-frequency 

analysis of event-related synchronization and desynchronization (ERS/ERD) has provided means to 

study brain dynamics in the scale of tens of ms, preserving both spatial and spectral information. This 

has enlarged the horizon of task-related brain studies beyond evoked response potentials, to allow 

investigations, for example, of movement-related potentials (for a review see Pfurtscheller and Lopes 

da Silva, 1999). 

 

EEG Norms 

On the clinical front, during the 70’s a considerable effort has been injected to establish normative 

databases for a large number of spectral measures (John et al., 1980a,b,c). Comparison of clinical 

patient to such databases has been shown to offer a powerful tool for aiding the diagnosis of a wide 

range of disorders including, among others, depression, schizophrenia, learning disabilities, attention 

deficit disorder with or without hyperactivity and dementia (Hughes and John, 1999; Lopes da Silva, 

2005a). The rationale behind normative databases resides in the fact that the normal EEG is largely 

determined genetically, so that similar space-frequency patterns are observed universally across 

genders, races and cultures (John et al., 1987). Their age-dependence, reflecting maturational changes 

during the developmental and aging period, can be taken explicitly into consideration (Ahn et al., 

1980).  

Another fundamental prerequisite of the validity of normative database comparisons is the intra-

subject reliability, which for EEG (especially in a rest condition with the eyes closed) is truly 

astonishing, even across long periods of time. This is not the case, for example, of fMRI 

measurements, for which norms still are not available for this reason. Recent extended investigations 

on vegetative state and minimally conscious patients has shown that EEG is more sensitive than fMRI 

in detecting residual cognitive abilities and signs of consciousness in non-responsive patients (Monti, 

2013, personal communication). 
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EEG Source Analysis 

Solid advances in our understanding of the human brain are achieved linking empirical neuroimaging 

findings to organic anatomical and physiological knowledge. This way we have reached fairly deep 

understanding of elementary mental tasks involving primary sensory and primary motor cortical areas. 

For these areas the positioning of neurons somatotopically maps the sensory and motor organs, hence 

the anatomical and physiological substratum of the observed findings can be established 

unambiguously. On the other hand, the spatial resolution of surface EEG is low and does not enable 

fine spatial discrimination. This effectively limits the precision of the brain dynamics we are able to 

visualize working in the so-called sensor space. As a consequence, much methodological EEG 

research has been recently devolved to the improvement of the spatial resolution. This is achieved 

working in the so-called source space, consisting in the study of linear combinations of the data 

aiming at extracting latent variables hidden in the EEG. Surface EEG topographies have been first 

enhanced mapping second spatial derivatives (Laplacian) of the potentials (Hjorth, 1991; Lemos and 

Fisch, 1991; Nunez and Pilgreen, 1991). These methods actually enhance the spatial resolution only 

for the radial current component (perpendicular to the scalp).  

More recently, EEG and MEG have benefit from several source localization and source extraction 

(separation) methods developed in other fields of research. Engineering studies on antenna array 

reception (beamforming: Van Veen and Buckley, 1988), physics studies on wave propagation in 

seismology (Backus and Gilbert, 1968) and statistical studies on blind source separation (Jutten and 

Herault, 1991) have all been adapted to the brain electromagnetic problem for the purpose of 

extraction of meaningful information and localization in brain space. Those efforts have been 

successful in providing reasonably accurate electromagnetic tomographies, i.e., true EEG or MEG 

based 3D volumetric functional images of the brain (Bosch-Bayard et al. 2001; Baillet, Mosher and 

Leahy, 2001; Chen et al., 2006; Greenblatt, Osssadtchi and Pflieger, 2005; Pascual-Marqui, Michel 

and Lehmann, 1994; Pascual-Marqui, 2002, 2207; Robinson and Vrba, 1999; Sekihara et al., 2004, 

2005). In parallel, spatial filtering (Cichocki and Amari, 2002), and blind source separation (Comon 

and Jutten, 2010) have yielded means to decompose and optimize the information hidden in the 

observed data, effectively empowering the analysis in EEG and MEG studies. More recently, tools 

developed in quantum physics, relativity, elasticity, mechanics, radar, image and diffusion MRI data 

processing, have been borrowed from the field of Riemann geometry to achieve effective classification 

of mental states (Barachant and Congedo, submitted; Barachant et al., 2012a; Congedo et al., 

submitted; Li, Wong and De Bruin, 2009, 2012).  All these evolutions and many others along the years 

have turned the study of the human electroencephalogram (EEG) in a strongly multidisciplinary field 
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of research. Besides neuroanatomy, psychology and neurophysiology, knowledge in signal processing, 

electromagnetism, and multivariate statistics proves nowadays essential prerequisite for high-level 

electrophysiological research. 

 

A Short Introduction to the Physiology and Physics of EEG 

It is well established that the generators of brain electric fields recordable from the scalp are 

macroscopic post-synaptic potentials created by assemblies of pyramidal cells of the neocortex 

(Speckmann and Elger, 2005). Pyramidal cells are aligned and oriented perpendicularly to the cortical 

surface. Their synchrony is possible thanks to a dense net of local horizontal connections (mostly 

<1mm). At recording distances larger than about three/four times the diameter of the synchronized 

assemblies the resulting potential behaves as if it were produced by electric dipoles; all higher terms of 

the multipole expansion vanish and we obtain the often invoked dipole approximation (Lopes da Silva, 

2004; Lopes Da Silva and Van Rotterdam, 2005; Nunez, 2005; Nunez and Srinivasan, 2006, Ch. 3, see 

fig. 2.2 therein).  

Three physical phenomena are important for the arguments we advocate in the ensuing chapters. First, 

unless dipoles are moving there is no appreciable delay in the scalp sensor measurement (Lopes da 

Silva and Van Rotterdam, 2005). Second, in brain electric fields there is no appreciable electro-

magnetic coupling (magnetic induction) in the frequencies up to about 1MHz, thus the quasi-static 

approximation of Maxwell equations holds throughout the spectrum of interest (Nunez and Srinivasan, 

2006, p. 535-540). Finally, for source oscillations below 40 Hz it has been verified experimentally that 

capacitive effects are also negligible, implying that potential difference is in phase with the 

corresponding generator (Nunez and Srinivasan, 2006, p. 61). These phenomena strongly support the 

superposition principle, according to which the relation between neocortical dipolar fields and scalp 

potentials may be approximated by a system of linear equations (Sarvas, 1987). We can therefore 

employ a linear conduction model. Because of these properties of volume conduction, scalp EEG 

potentials describe an instantaneous mixture of the fields emitted by several dipoles extending over 

large cortical areas (fig. 2.3). Whether this is a great simplification, we need to keep in mind that it 

does not hold true for all cerebral phenomena. Rather, it does at the macroscopic spatial scale 

concerned by EEG.  
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Figure 2.2: From left to right, the columnar organization of the mammalian neocortex, 

organized in six layers, intracranial recordings at the different layers in the visual 

cortex of the dog (Lopes Da Silva and Storm van Leeuwen, 1977) showing the polarity 

reversal at layer IV/V and the schematic representation of an electrical dipole 

(rearranged from Nunez and Srinivasan, 2006).  

 

As a consequence, averaging EEG signals or features extracted from the EEG signal across subjects at 

the sensor level is not optimal, as different subjects have different spatial patterns and the average is a 

rather smeared representation of the group activity. We can circumvent this problem in two ways, 

namely, estimating sources at the individual level and then average such sources or features extracted 

from such sources or using ad-hoc group source extraction techniques. We will treat both of these 

approaches. 

It is important to realize that the analysis of the scalp EEG signal does not allow per se establishing the 

position and orientation of sources. In fact, the scalp spatial pattern of the activity of a dipole depends 

very much on its orientation. This is shown in fig. 2.4 and 2.5.  

 



EEG Source Analysis – HDR presented at University of Grenoble, October 2013 

Marco Congedo, Senior Researcher - Centre National de la Recherche Sientifique (CNRS) 81 

 

Figure 2.3: Schematic representation of three electrical dipoles (indicated by arrows) 

of which two are cortical and one is ocular. The disks represent EEG electrodes. The 

schema indicates the mixing conduction model, wherein each electrode records the 

activity of all the dipoles.  

 

 

 

Figure 2.4: On the top left the orientation of a dipole located in the medial cortex is 

indicated by the arrow and the resulting scalp spatial pattern is shown. Since the dipole 

is radial to the scalp surface the scalp map is  monopolar. On the top right the dipole is 

lateral and tangential to the scalp surface; the resulting dipole is bipolar. On the 

bottom two dipoles are located in the same medial position of two brains, but with 

different orientation. The traces around the brain indicate schematically the amplitude 

and sign of what we would record from the scalp of the two brains.  
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Figure 2.5: Three sources were simulated in three different positions of the medial 

portion of the brain. The temporal course of the three sources (dipole current) is 

identical, however it happens in successive time intervals. A three -shell spherical head 

model is used to project the source on the 19 scalp electrodes according to a linear 

instantaneous conductive model. The three resulting EEG traces on the left part of the 

figure correspond to the observed potential with the sources oriented, from top to 

bottom, in the “x”, “y” and “z” direction. The three resulting scalp spatial patterns 

are completely different.  
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THE SENSOR MEASUREMENT 

 

The EEG is, by definition, a measure of potential difference. The reference problem is rarely taken 

into consideration in EEG studies. Arranging the measures at N electrodes in a vector, we may write 

the potential as a function of time such as 

( ) ( ) ( )s rt t t x x x N,         (97) 

where subscript s and r denote the scalp and respective reference leads. In practice time is sampled at 

regular intervals, ranging from hundreds to thousands of samples per seconds, depending on the study. 

Due to well-known results in A/D (analogue-to-digital) conversion, the sampling rate must be at least 

twice the maximal frequency contained in the sampled signal (Nyquist or folding frequency), thus the 

low-pass filter during data acquisition must be set accordingly.   

 

Bipolar and Monopolar Reference 

The choice of the reference is arbitrary. In clinical EEG sequential (transversal and longitudinal) 

bipolar recordings are preferred because of their higher signal-to-noise ratio. This is due to the fact 

that low spatial frequency noise cancels out when the difference is computed between two closely 

spaced leads. In research, monopolar recordings with a common reference for all electrodes are used 

because having a common reference for all leads allows treating the measurement vector with linear 

algebra tools (fig 2.6). Monopolar recordings have form 

( ) ( ) ( )st t t x x 1 , 
         (98)

 

where  is the electrical reference, which is now common to all leads and 1 the N-dimensional vector 

of 1’s. Changing the reference changes dramatically the observed potentials. This arbitrariness has 

been partially resolved with the advent of reference-free methods such as the Laplacian and the 

inverse solutions treated in chapter III. Blind source separation methods treated in chapter V, VI and 

VII are not reference-free. Riemannian operations (chapter VIII and IX) are completely invariant with 

respect to any reference one can construct by premultiplying the data with an invertible matrix. This is 

not the case, for example, of the common average reference (CAR), which is particularly relevant in 

chapter III.  
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Common Average Reference 

Given an arbitrary common reference (t), the CAR potentials is given by 

 ( ) ( ) ( )s st t t H x 1 Hx ,         (99) 

where H is the centering matrix (90) and the equality stems from (92). In CAR data the sum of the 

potentials across electrodes at each time instant is null and the centering matrix plays the role played 

by the identity matrix in raw potentials. For instance, regularizing the CAR covariance matrix (96) 

will be obtained adding H to it, with >0, whereas regularizing the covariance matrix in the original 

reference (95) is obtained adding I. Note that the covariance matrix of CAR data has at most rank N-

1, because one of its eigenvalues is null (91), thus the CAR is not a suitable reference for Riemannian 

operations, which are defined only for positive definite matrices. 

 

 

Figure 2.6: Longitudinal bipolar (A) and monopolar (referenced to the nose) (B) 

measurement. Notice the phase reversal between the first and third trace in (A). Figure 

edited and rearranged from Malmivuo and Plonsey (1995). 

 

NB: Throughout this work the data are considered in common average reference when dealing with 

inverse solutions (chapter III) and in the arbitrary original reference when dealing with spatial filters, 

blind source separation and Riemannian methods (chapters IV to IX).  
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 CHAPTER III 

DISTRIBUTED INVERSE SOLUTIONS 
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Introduction 

Research with quantitative methods in EEG has received a strong impulse since the introduction of 

EEG inverse solutions (Baillet, Mosher and Leahy, 2001). Hämäläinen and Ilmoniemi (1984) 

proposed the first inverse solution for EEG. Sarvas (1987) has first formalized the problem for 

magnetoencephalography, which has been then readily transposed to EEG. According to the linear 

instantaneous model of EEG generation discussed in chapter II, the electrical potential as measured on 

the scalp may be approximated by an instantaneous weighted sum of dipolar activity. The aim of an 

inverse solution is estimating the activity of the dipoles responsible of the observable measurement, 

given the observed measurement and a model of the conduction medium.  

There are two types of inverse solutions: they may attempt to estimate a pre-defined number of dipoles 

(e.g., Mosher, Lewis and Leahy, 1992) or to estimate the activity in all the cortical volume without 

fixing the number of active dipoles. This latter approach comprises the so-called distributed inverse 

solutions and is the object of this chapter. Also, inverse solutions differ depending on whether they 

aim at estimating current flowing in all directions within the whole cortical grey matter, or whether 

they limits themselves to the estimation of current flowing in one or two directions through the scalp. 

In the former case, known as the vector type, we obtain 3D volumetric images and we need to estimate 

current flowing in three orthogonal directions. In the latter, known as scalar type, we obtain cortical 

surface maps and typically we estimate current flowing in the radial direction only (EEG) or in the two 

tangential directions only (MEG). We treat here the more involving vector type.  

In a number of clinical, cognitive and methodological EEG papers we have used with success the well 

known LORETA method (Congedo Lubar and Joffe, 2004; Lubar, Congedo and Askew, 2003; Sherlin 

and Congedo, 2005; Sherlin et al., 2007) and, more recently, the sLORETA method (Congedo, 2006; 

Congedo et al., 2006, 2010; De Ridder et al., 2011; Kopřivová et al., 2011, 2013; van der Loo et al., 

2007, 2009;  Vanneste et al., 2010; White et al., 2012) and eLORETA method (van der Loo et al., 

2011).  

In this chapter we summarize useful knowledge to use these methods giving emphasis on practical 

issues and to material that cannot be found readily and compactly elsewhere. We also provide full but 

succinct algorithmic explanations and we report on how turning these model driven inverse solutions 

into data driven inverse solutions, establishing the relation between the minimum norm family of 

methods (Pascual-Marqui, 1999, 2007) and the minimum variance beamforming methods (Sekihara et 
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al., 2004; van Veen van Drongelen and Suzuki, 1997), which are the two most prominent families in 

current MEG and EEG literature.  

 

The Forward Problem 

Indicating by (t) the set of active dipoles at each instant time, the EEG model discussed in chapter II 

takes the simple linear form  

   
 

 i i

i t

t t t


 x K j 1          (100) 

where ji 3 holds the x, y, and z component of the dipolar current at space location i, x(t) is the 

sensor measurement and (t)1 is a common reference (98) used for recording. Given Q voxels10 

covering the entire solution space, typically restricted to the cortical grey matter, the matrices  

      , ,q q x q y q z
K k k k Nx3         (101) 

are the Q partitions of 

 1, , QK K K Nx3Q,          (102) 

which is referred to as the leadfield matrix. The leadfield embeds the physical properties of the volume 

conduction model, i.e., the conduction of the current in the head. More precisely, each column of the 

leadfield is the scalp field for unit-length dipole located at the qth position and pointing in one of three 

orthogonal directions, indicated in Cartesian coordinates by x, y and z (fig. 2.5). Notice that three 

orthogonal coordinates suffice to explain current flowing in any direction. Given an accurate head 

model and corresponding accurate leadfield11, the forward problem fully describes the sensor 

measurement, under the assumption that the current is generated within the solution space. The 

distributed forward problem is conveniently expressed by linear equation  

                                                      

10 Voxels stands short for “volume elements”. 

11 A research field is dedicated to leadfield modeling; see for example Fuchs et al. (2002) and Wolters et al. 

(2006). 
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     t t t x Kj 1
          (103)

 

where  

 1 , ,
T

T T
Qj j j 3Q; 

      , ,
T

q q x q y q z
j j jj 3, q{1,…,Q}    (104) 

now accounts for current originating anywhere with any direction within the solution space. First of 

all, we get rid of the reference issue (Pascual-Marqui, 2007). For any instant time we seek 

 
     

2
min

Ft
t t t


 x Kj 1          (105) 

The solution is  

      
T

T
t t t  

1
x Kj

1 1
.         (106) 

Plugging (106) into (103) we obtain 

     t tHx HK j ,          (107) 

where H is the centering matrix (90). Therefore, hereafter in this chapter the sensor measurement and 

the leadfield will always be assumed in the common average reference (89). The forward problem is 

then written simply as 

   t tx Kj . 
          (108)

 

 

The Inverse Problem  

We do observe scalp potentials and we wish to estimate the current source location and orientation. 

This is named the inverse problem. The distributed inverse problem consists in estimating the whole 

current vector j(t), given head model K and noisy scalp potentials x(t), both in common average 

reference, as we have seen. Typically Q>>N, that is, we divide the cortical space in thousands of 

voxels, but we have only tens of electrodes. Thus the inverse problem is strongly underdetermined 

(Cichocki and Amari, 2002) and has infinite solutions with form 

   T
t tj T x ,           (109) 
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where  

 1 , ,
T

T
QT T T 3QxN          (110) 

is a generalized inverse of K termed the Transfer matrix. Note that the current estimation for each 

voxel is given by 

   T

q qt tj T x 3,          (111) 

where matrices 
T

qT 3xN are the Q partitions of (110). Once obtained the current vector we usually 

compute the current density at each voxel, effectively discarding the information about the orientation 

of the current. The current density at each voxel is given by the sum of the squares of the current in the 

three orthogonal directions, that is, the square of the length of the vector formed by the three 

coordinates x, y and z at each location (104): 

             
2 2 2

q q x q y q z
t j t j t j t    .        (112) 

Notice that the current flowing in each one of the three orthogonal directions is analogous to the scalp 

voltage (it oscillates around zero), while the current density is analogous to the scalp power12.   

There are infinitely many possible definition of a transfer matrix with some desirable properties (Chen 

et al., 2006; Pascual-Marqui et al., 1994; Pascual-Marqui, 2002; Robinson and Vrba, 1999). Here we 

consider two of such properties. 

 

Inverse solutions satisfying the sensor measurement 

One may wish a transfer matrix satisfying the measurement, that is, substituting the right-end side of 

(109) into (108), T should satisfy then  

   Tt tx KT x , implying 
T KT H , 

         (113) 

                                                      

12 Like current density, the EEG scalp power is a non-negative sum of squares. In the time domain it is the 

square of the amplitude. In the frequency domain, e.g., in Fourier analysis, it is the sum of the squares of the 

sine and cosine (orthogonal) components at each discrete frequency.  
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where because of the common average reference the centering matrix plays the role of the identity 

matrix. Such a T is named the right-inverse of K (80).  

 

Inverse solutions with no localization error for noiseless sensor measurement 

A relevant property of a transfer matrix is the ability to always localize correctly single dipoles, 

regardless their location and orientation, at least in noiseless sensor measurement. To check this 

property one uses point spread functions (Pascual-Marqui, 1999, 2002).  As we have seen the scalp 

field for unit-length dipole located at the qth position and pointing in one of three orthogonal directions 

is one of the columns of leadfield K (102). We require that feeding the inverse solution with these 

columns, one by one, results in a current density vector having maximum at the location 

corresponding to the leadfield vector. That is, if 

 .
ˆ

q
j Tk             (114) 

is the current estimation for the leadfield vector representing the unit-length dipole located at the qth 

position and pointing in any of three orthogonal directions (the dot in parenthesis stands for orientation 

in x, y, or z direction) and  1, ,
T

Q γ  its current density (112) estimated for the entire volume, we 

require that the maximum in γ  is at the qth position. All point spread functions can be done at once 

and all relevant point spread function properties can be found in the Resolution Matrix of Backus and 

Gilbert (1968), which holds in its 3Q columns the collection of all 3Q point spread functions (114), 

such as  

T
T K 3Qx3Q.           (115) 

Note that the no-localization error property, as seen by point spread functions, is valid only for 

noiseless sensor measurement in the case of a single active dipole. Of course, this is a hypothetical 

situation with no practical utility; however it can be considered a minimal requirement for any good 

candidate as an EEG inverse solution. How the inverse solution behaves with noise and in case of 

multiple active dipoles can be analyzed theoretically (Greenblatt, Ossadtchi and Pflieger, 2005; 

Pascual-Marqui, 2007; Sekihara, Sahani and Nagarajan, 2005), by simulations like in Wagner, Fuchs 

and Kastner (2004) and empirically by crossing information obtained with multiple neuroimaging 

modalities and other investigation means (Pascual-Marqui et al., 2002).  
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The Minimum Norm Inverse Solution 

The first solution proposed has been to define T as the Moore-Penrose pseudo-inverse (79), with a 

Tikhonov regularization (Hämäläinen and Ilmoniemi, 1984). The minimum norm solution seeks the 

current vector j satisfying (113) with minimal norm 
2

F
j in the least-squares sense (Cichocki and 

Amari, 2002, p. 57-58). It is given by 

 
1

T T T


 T KK H K , for  ≥ 0,         (116) 

that is, for  = 0 (no regularization) (116) reduces to (80). For  > 0 the regularized solution becomes 

more robust to measurement noise imposing a weak smoothness constraint on the set of admissible 

solutions. All solutions belonging to the minimum norm family provide smooth and blurred current 

density reconstruction. Even if there is only one active dipole delimited within a single voxel, the 

reconstructed current density will cover a more or less large region, fading out in all directions with 

the distance from the location of the maximum. For vector type inverse solutions the minimum-norm 

(116) has large localization errors, that is, the maximum current density reconstructed for single 

dipoles is generally not in the dipole location. Particularly, it tends to localize dipoles always on the 

most superficial part of the volume. To alleviate this problem several weighting of the leadfield matrix 

have been proposed, but all of these first attempts have displayed large localization errors for the 

distributed case (Pascual-Marqui, 1999). The LORETA (low-resolution electromagnetic tomography) 

inverse solution (Pascual-Marqui, Michel and Lehmann, 1994) also displays localization errors, even 

if much smaller as compared to the previous attempts, thus we do not consider here it further. The first 

minimum-norm kind of solution with no localization error throughout the volume has been sLORETA 

(standardized LORETA: Pascual-Marqui, 2002), followed by eLORETA (exact LORETA: Pascual-

Marqui, 2007). Both of them are regularized, hence, before turning to their description, let us discuss 

how to deal with the  parameter. 

 

Regularization of Minimum Norm Inverse Solutions 

Whether the best value of α is exactly zero for noise-free measurements, for real data a positive value 

is necessary to prevent spurious reconstruction due to measurement noise. The optimal value of  

grows exponentially with noise and the number of electrodes. We have been using values as small as 0 

for 19 electrodes and high SNR data and as large as 104 for 64-electrode data. It is better to 
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overestimate then to underestimate . In fact, the underestimation of  in the presence of noise yields 

spurious current density distributions, very far from the expected ones. This can be easily checked by 

means of simulations. Yet, regularization engenders further smoothing, proportionally to α, which 

lowers the spatial resolution, that is, the ability to resolve two dipoles close to each other in space. 

Thus, we should always try to set  as close as possible to the optimal value. The optimal choice of  

can be estimated by cross-validation. A safe strategy with real data is to check different solutions with 

decreasing value of  and stop just before the solution deviates significantly in term of maxima 

location and spatial distribution of current sources. This is true for all minimum-norm kind of inverse 

solutions we consider in this chapter.  

  

Weighted Minimum-Norm Inverse Solutions 

The family of (symmetricly) weighted minimum-norm inverse solutions has general form 

 1 1T T T 


  T Θ K KΘ K H , with Θ3Qx3Q symmetric and invertible.   (117) 

For Θ I  we have the minimum norm solution (116). With other choices of Θ  we obtain other 

weighted minimum-norm solutions, which, for a given Θ  are solutions to the problem 

 2 T

F
min  

j
x Kj j Θj .         (118) 

eLORETA is obtained choosing Θ  block diagonal, with Q diagonal blocks mΘ 3x3, that is 

1 0

0 M

 
 

  
 
 

Θ

Θ

Θ

.
          (119)

 

 

Model-Driven sLORETA 

The general form of the transfer matrix (110) for the sLORETA solutions is 

 
1

2T T T

q q q q



 
  

T K ZK K Z , q{1,…,Q}, Ζ NxN symmetric,     (120) 
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where 
T

q qK ZK 3x3 and superscript -1/2 indicates the unique symmetric square root inverse (52). 

The original (model-driven) standardized low-resolution electromagnetic tomography (sLORETA) 

solution proposed by Pascual-Marqui (2007) is given by (120) with 

 T 


 Z KK H .          (121) 

Equivalently, one can show that sLORETA is obtained after minimum norm current estimation (109) 

(obtained using T in (116)) by the following voxel-by-voxel weighting (Pascual-Marqui, 2002)  

     
1

T T

q q qq
t t t



   j T K j , for all q{1,…,Q},      (122) 

where T

q
  T K 3x3

 
is the 3x3 diagonal block of the resolution matrix that we have already 

encountered in (115) and TT is again the minimum-norm transfer matrix. We see that sLORETA 

outputs a standardized estimate of current density. Eq. (122) has the form of the Mahalanobis distance 

of the current vector from the origin, i.e., the actual length of the vector, taking into account the 

covariance structure of its three components. As a consequence, standardized current density 

estimations are expressed on the same (dimensionless) metric all across the volume, regardless the 

norm of the leadfield columns. sLORETA is an unbiased estimator of source location in noiseless 

measurements, meaning that it is able to correctly estimate the location of a single active source 

regardless of location and orientation. This result has been demonstrated both by point spread 

functions (Pascual-Marqui, 2002), and theoretically (Greenblatt, Ossadtchi and Pflieger, 2005; 

Pascual-Marqui, 2007; Sekihara, Sahani and Nagarajan, 2005).  

sLORETA is also capable of separating simultaneously active sources given that their energy is 

comparable and that their distance exceeds the spatial resolution attained, which depends on head 

model and number of sensors (Wagner, Fuchs and Kastner, 2004). In general, the resolution with 

multiple sources increases as the orientation of dipoles diverges and superficial sources tend to 

dominate deeper sources.  

 

Data-Driven sLORETA 

Let us consider a “Bayesian” interpretation of (120) and (121); The resolution matrix is the estimated 

source covariance matrix assuming the identity matrix as its prior, αH as the noise covariance matrix 

prior and KKT+αH as the sensor measurement covariance prior (Pascual-Marqui, 2002). Assuming 
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KKT+αH as the sensor measurement covariance prior amount to the maximal incertitude about the 

active dipole location and orientation. In fact, by definition (108) and (115) notice that KKT is the 

sensor measurement covariance matrix that one would obtain if all Q dipoles throughout the whole 

volume are active with current flowing in all directions. Such a solution is completely “uninformed”, 

that is, it assumes no knowledge whatsoever about the number of active dipoles, nor about their 

location and orientation. This choice of Z can be used in any situation; however it will produce the 

maximally smooth solution. The maximally smooth solution is the one with minimal spatial 

resolution, i.e., minimal ability to resolve spatially close dipoles. On the opposite, for a single active 

dipole with leadfield k13, the maximally sharp solution is given by  T 


 Z kk H   . Similarly, if I 

dipoles are active in the time period under analysis, with i{1,…,I}, the maximally sharp solution is 

given by  T

i i ii
 



 Z k k H , where i is the strength of the ith dipole. In practice, we rarely have 

precise a-priori knowledge about the number, location and orientation of active dipoles for the time 

interval under analysis, nonetheless we can use its empirical estimations based on the observed sensor 

measurement covariance matrix. This yields the data-driven version of sLORETA. It is given by (120) 

with 

 


 Z C H           (123) 

and C the CAR data covariance matrix (96). Notice that we may use other estimations of Z, for 

example using instead of C in (123) the outer product of some columns of the mixing matrix estimated 

by blind source separation as we will see in chapter VI and VII. 

 

Model-Driven eLORETA 

eLORETA is a weighted minimum norm solution (117) and makes use of a block-diagonal form for 

the weighting matrix as per (119). The model driven eLORETA is defined choosing for (117) 

 
1

21 1T T T

q q q
 

  
  

Θ K KΘ K H K , for all q{1,…,Q}      (124) 

                                                      

13 We do not introduce further notation here. For a dipole located at the qth voxel, vector k here actually stands 

for the linear combination of the three orthogonal vectors in Kq  describing the actual direction of the dipole. 
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Notice that the computation of Θ  is nestled into itself. This prevents any closed-form solution, 

however the solution can be found by an efficient iterative algorithm. The eLORETA problem (124) is 

the optimization of (Pascual-Marqui, 2007) 

 
2

1 1 1T T

F

min 


    
  Θ

I Θ K KΘ K H KΘ  ,        (125) 

which satisfies the set of matrix equations 

 2 1T T
q q q


 Θ K KΘ K H K , for all q{1,…,Q}.      (126) 

The algorithm is 

Algorithm  (127) eLORETA 

Initialize Θ I  

Repeat 

 1 T 


 Π KΘ K H
        (128) 

 
1

21for =1 to  do T

q q qq Q


 Θ K ΠK
 

Until Convergence  

(the Frobenius norm of the difference between two successive update of Θ  is < ) 

Finally compute  
1 1T T T

q q q 
 

 T Θ K KΘ K H for all q{1,…,Q}  

Note that, being 
1

Θ 3Qx3Q block diagonal as per (119), we do not need to compute the full matrix 

multiplication 
1 T

KΘ K  as this matrix reduces in this case to  1 T

q q qq

 K Θ K . Also note that we do 

not need to invert the full matrix Θ  since, because of its block-diagonal structure, it holds 

1

1

1

1

0

0 Q







 
 

  
  
 

Θ

Θ

Θ

.         (129) 

We may notice that eLORETA assumes that there is no correlation between the current in different 

voxels and seeks the solution with least correlation among directions within each voxel. 
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Data-Driven eLORETA 

The data-driven version of eLORETA is obtained with the same algorithm (127), but with (128) 

replaced by 

 


 Π C H ,          (130) 

which is analogous to what we have done for the data-driven sLORETA (123). 

 

Similarity with the Minimum Variance Beamforming. 

The linearly constrained minimum variance beamforming is very popular in the MEG literature. 

(LCMV: Van Veen, Drongele and Suzuki, 1997). This is a data-driven method with solution 

 
1

1 1T T T

q q q q


  

  
T K C K K C , q{1,…,Q},       (131) 

where C is the sample covariance matrix and the current density obtained by this transfer matrix is 

somehow normalized (Sekihara et al., 2004; Sekihara, Sahani and Nagarajan, 2005). As we have seen 

the sLORETA data-driven solution is given instead by using  (123) in (120), yielding  

 
1

21 1T T T

q q q q


  

  
T K C K K C , q{1,…,Q}.       (132) 

If the dipole orientation at each voxel is constrained in the radial direction or the direction is estimated 

by a data-driven method, so that the leadfield is now a collection of Q vectors such as 

 1 , , QK k k , we have the scalar type LCMV solution 

 

 

1

1

T

qT

q
T

q q









 
 

 


 

k C H
t

k C H k

, q{1,…,Q}       (133) 

and the sLORETA scalar type solution 

 

 
1

2

1T

qT

q T

q q






 
  

  

k C H
t

k C H k
, q{1,…,Q}.       (134) 
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The difference between the two is just a different voxel-wise normalization. As a matter of fact 

sLORETA does not need further normalization, whereas the LCMV beamformer does. 

 

Point Spread Function Simulations 

Both sLORETA and eLORETA features zero localization error as seen by point spread functions, 

however they are quiet different solution mathematically. They also differ in the theoretical ability to 

give exact results in different theoretical noisy conditions (Pascual-Marqui, 2007). In order to compare 

them we have performed point spread function simulations using the three shell spherical head model 

implemented in the LORETA-Key Software (Pascual-Marqui, 1999). We have studied the behavior of 

these two inverse solutions plus the behavior of the sLORETA method informed with the position of 

the test dipole and the sLORETA method informed with both its position and orientation. To inform 

about the position we define matrix Z in (123), to be used in (120) to obtain the transfer matrix, as 

 T

q q



Z K K            (135) 

where for each one of the 3Q simulations, Kq corresponds to the true test location q. To inform about 

both the position and orientation we define matrix Z as 

    . .

T

q q



Z k k ,           (136) 

where for each one of the 3Q simulations, kq(.) is the exact leadfield vector used in the simulation. 

Notice that this latter case corresponds to the ideal situation where the maximum a-priori information 

is given to sLORETA, that is, the prior used is the exact prior describing just the simulated activity. 

Furthermore, the results presented herein concern simulations with only one active dipole and no noise 

whatsoever, thus they represent the upper limit of performance attainable by the inverse solution. 

Insomuch they are particularly interesting. We have performed point spread function simulations using 

19, 32, 64 and 90 electrodes. For each method and number of electrodes we have analyzed two kinds 

of errors: 

 

 The Spread Error,  

defined as the sum of the energy in the other locations divided by the energy in the test location. For 

each of the 3Q point spread functions the current density is computed all over the volume. No 

localization error is achieved if the maximum of the current density is found in the location where the 
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dipole was simulated. However, we wish that the current density in the other locations be as small as 

possible. Hence, the definition of the spread error; the lower the spread error the more focal the current 

density reconstruction around the maximum. In table 3.1 we report the spread error averaged across 

the 3Q point spread function simulations. 

 

 The Equalization Error, 

defined as the variance of energy across test locations and orientations. A desirable property of an 

inverse solution is that for a unit-length dipole simulation the energy in the test locations be equal 

wherever we place the dipole and whatever its orientation. For instance, we desire that deep and 

superficial sources with the same energy are reconstructed with similar energy. Therefore, we compute 

the current density at the test location for all 3Q simulations and we compute the variance of these 

values; the lower the variance the more homogeneous is the current density across test locations. In 

table 3.2 we report this variance multiplied by 104. 

 

Table 3.1: Average Spread Error across all 3Q point spread function simulation for 

eLORETA, sLORETA, sLORETA with exact dipole position information (Pos) and 

sLORETA with exact information of dipole position and orientation (Pos+Orient), for 

19, 32, 64 and 90 electrodes.  

Electrodes eLORETA sLORETA Pos Pos+Orient 

19 429.06 483.69 0.48 0.32 

32 281.26 350.14 0.28 0.19 

64 158.56 219.66 0.11 0.09 

90 109.28 151.53 0.03 0.03 

 

Table 3.2: Equalization Error for the 3Q point spread function simulation for 

eLORETA, sLORETA, sLORETA with exact dipole position information (Pos) and 

sLORETA with exact information of dipole position and orientation  (Pos+Orient), for 

19, 32, 64 and 90 electrodes.  

Electrodes eLORETA sLORETA Pos Pos+Orient 

19 0.0881 23.3484 0.3151 0.2256 

32 0.5328 54.5325 0.1824 0.1283 

64 2.1251 117.7894 0.1068 0.0722 

90 3.9541 160.6805 0.0194 0.019 
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About the spread error we can notice that the spatial resolution (inverse of the spread) increases with 

the number of electrodes for all methods, as expected. eLORETA features a lower spread error for all 

number of electrodes considered. We can also notice that informing the solution with position only 

engenders a dramatic reduction of the spread error, which is only slightly lowered further by adding 

information on the orientation as well. For what it concerns the equalization error we notice that it is 

about 265 times larger for sLORETA as compared to eLORETA with 19 electrodes and about 40 

times larger with 90 electrodes. Also for the equalization error, the reduction is important when adding 

information of the location of the dipole, while the further reduction obtained adding the information 

on the dipole orientation is not very strong.  

 

Conclusions 

We conclude that the eLORETA method clearly displays a favorable behavior as compared to 

sLORETA in noiseless point spread function simulations. Based on our simulations, we also conclude 

that the use of data-driven methods is clearly to be preferred whenever possible. Several things 

however should be considered before opting for a data-driven method: the transfer matrix must be 

computed for each data segment to be analyzed, whereas for the model-driven methods it is computed 

only once. Also, with real data the optimal regularization amount may need to be re-estimated for each 

data segment to be analyzed. Finally, the data segments used to estimate the prior (e.g., the covariance 

matrix) to be used in (123) for sLORETA and in (130) for eLORETA should reflect the activity of the 

smallest possible number of dipoles; if the activity of many dipoles is contained in the covariance 

matrix, the advantage of the data-driven computation of the transfer matrix becomes irrelevant. An 

interesting option is to use as prior the outer product of the columns of the mixing matrix estimated by 

blind source separation (see  chapter VI and VII), taken one at a time, instead of the whole covariance 

matrix. Such a prior is optimal to localize the sources estimated by BSS. In fact the columns of the 

mixing matrix are a decomposition of the EEG activity in a number of independent dipoles or dipole 

clusters, thus each column of the mixing matrix hold information about the activity of a much smaller 

number of dipoles as compared to the total number of active dipoles in the data. However, we have not 

investigated the effect of plugging into sLORETA and eLORETA data-driven equations non positive 

definite matrices. 

One should also consider that using a model-driven method is actually preferable if the covariance 

matrix estimation, or whatever is the prior used, is biased; informing the data-driven inverse solution 

with a biased prior may actually result in a worse reconstruction as compared to what is obtained with 
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a uninformed (model-driven) method. We have observed this in many simulations (data not shown). In 

practice, our opinion is that data-driven methods may result useful for very high SNR data (for 

example, for averaged evoked response potentials) or when the data is decomposed in a number of 

uncorrelated components and a data-driven transfer matrix can be computed for each of them 

separately.  

 

Current Density Estimation in Regions of Interest 

Besides our simulations, so far in this chapter we have presented material published by others and, 

particularly, the work of R.D. Pascual-Marqui. Hereafter we report some of our contributions. In many 

situations we are interested in the estimation of the current density in a region of interest (ROI), 

defined as a cluster of connected voxels covering the anatomical area of interest. This is the case for 

example in real-time applications such as neurofeedback based on EEG inverse solutions (Bauer, 

Pllana and Sailer, 2011; Choi, 2014; Congedo, Lubar and Joffe, 2004; Kopřivová et al., 2013; Liechti 

et al., 2012; Salari et al., 2012; Surmeli and Ertem, 2009) or real-time monitoring in general (Im et al., 

2007). To compute the total current density in the ROI we do not need to compute the current in all 

voxels belonging to the ROI via (109) and then summing the current density obtained via (112). 

Instead, we here show a faster method that also opens the way to model-based filters to attenuate the 

interference coming from other regions (beamformers). In fact in real-time the use of data-driven 

inverse solutions is impractical.  

The following developments apply to whatever linear inverse solution for which a model-driven 

transfer matrix TT has been computed (Congedo, 2006), as for example the sLORETA or eLORETA 

model and data driven transfer matrix. Let us indicate the ROI simply by a set of voxels . First notice 

that for the voxel at location i the current density estimation (112) can be written such as 

     T
i i it t t  j j .          (137) 

Substituting in (137)  the right-end side of (111) yields 

     T

i it t t  x Ξ x ,          (138) 

 where we name 

T
i i iΞ T T ,           (139) 
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the (quadratic) inverse operator. For estimating the total current density in ROI  we compute simply 

          T T
i

i

t t t t t 



  x Ξ x x Ξ x ,       (140) 

where  

i

i





Ξ Ξ .           (141) 

Notice that the inverse operator is always symmetric. For a point region, i.e., a single voxel at location 

i, rank(Ξi)=3. For an extended ROI, rank(Ξ)≥3, due to the fact that leadfield vectors corresponding to 

distant points in solution space progressively diverge.  

An even faster expression for the regional current density can be obtained using the factorization of 

inverse operator Ξ, given by  

T
  Ξ G G ,           (142) 

where 

 
1 1

2 2

1 1, , P P  G u u ,NxP         (143) 

P<N-114 and uP and P are the eigenvectors and associated eigenvalues of Ξ  arranged in descending 

order of eigenvalues (35). The current density in the ROI is then given by 

   
2

T

F
t t  G x .          (144) 

Equation (144) derives directly from (140) using factorization (142). We write first 

             T T T Tt t tr t t tr t t    x Ξ x x Ξ x x G G x , 

and then (144) follows from the properties of the trace. Typically, one wishes to compute the current 

density in the ROI for a time interval (e.g., a BCI trial or sliding overlapping windows in 

neurofeedback), given its covariance matrix (or Fourier cospectral matrix) C. In this case the current 

density estimation is given by 

                                                      

14 It is N-1 and not N because one dimension is already lost by the common average reference. 
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   T T
p pp

tr   G C G g C g ,        (145) 

where pg  is the pth column vector of G and 
T
pg  its transpose. 

 

Data-Independent Filters for Regional Inverse Solutions 

Actually, using (144) or (145) and choosing P in such a way that the representation error (39) is small 

(say, <0.01), one obtain a beamformer effectively suppressing the interference of current flowing 

outside the ROI (Congedo, 2006). Beamforming refers to the use of spatial filters in order to enhance 

the receptivity of the sensors to sources emitting from a chosen region. It has been widely applied to 

other emission/reception systems, like sonar, radar and satellite/antennas (Van Veen and Buckley, 

1988). The data is projected on a reduced space, called the beamspace, with dimension P<N-1. The 

aim of the beamforming filter considered here is to reduce the interference emitted by uninteresting 

sources, both cranial and extra-cranial. The method is illustrated here using the three-shell spherical 

head model available with the LORETA-Key software (Pascual-Marqui, 1999). The solution space in 

this head model includes 2394 voxel of dimension 7mm3 each. We define a deep ROI composed of 36 

voxels, roughly covering the anterior cingulate cognitive division, which, for instance, is of practical 

therapeutic utility in the treatment of the attention deficit disorder via neurofeedback (Chabot et al., 

2005; Congedo, Lubar and Joffe, 2004). The ROI covers only 36/2394=1.5% of the total solution 

space. We analyze the eigenvalue spectrum of the inverse operator defined on the ROI (141) using 6, 

12, 19, 32, 64 and 90 electrodes evenly spaced on the scalp (fig. 3.1). As it can be seen, for all 

electrode montages with the exception of 6 electrodes only, there is a large gap in between the third 

and fourth eigenvalue, with the eigenvalues dropping by two orders of energy. Thus the representation 

error setting P=3 in (143) is small and by using (144) with P=3 one can reduce the interference 

coming from other regions.  

Since data-independent filters exploit the model, but not the data, in general they are more effective on 

data-driven inverse solutions. For more information on beamformers and their application to inverse 

solutions see Bolton et al. (1999), Chen at al. (2006), Congedo (2006), Gross and Ioannides (1999) 

and Rodríguez-Rivera et al. (2006).   
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Figure 3.1: Left: medial view of the brain. Left of picture is front of the brain . The ROI 

is indicated by the dark shaded area and corresponds roughly to the cognitive division 

of the anterior cingulated. Right, eigenvalue spectrum including the first 6 eigenvalues 

arranged in descending order for the ROI’s inverse operator  (141) obtained with 

different number of electrodes.   

 

Data-Dependent Filters for Regional Inverse Solutions 

In order to derive filters for inverse solution we can also exploit the data. Contrary to what happens for 

data-independent filters, in general data-dependent filters will be more effective on model-driven 

inverse solutions.  

 

Measurement noise suppression 

Consider first the case when we want to suppress measurement noise, which is useful when using a 

large number of electrodes (say, >30). For doing so one filter the data x(t) before applying (144) or 

(145) with a principal component analysis, which we will encounter in the chapter V. The data is 

projected in the signal subspace such as 

   Tt tx UU x  ,           (146) 

for time points and  

T TC UU CUU
   

        (147) 

for time intervals given covariance matrix C, where  

 1, , PU u u NxP          (148) 
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and up  are the eigenvectors of the data covariance matrix sorted in descending order of corresponding 

eigenvalues. As for data-independent filters, P<N-1, with P chosen in such a way that the remaining 

N-P eigenvalues of the covariance matrix explain a small proportion of the total variance, that is, that 

the representation error is small. One then feed (144) and (145) with filtered data (146) and (147), 

respectively, depending whether time points or time segments are analyzed. 

 

Increasing classification accuracy 

One may also apply data-dependent spatial filters with specific properties. For example in Congedo, 

Lotte and Lécuyer (2006) we have used sLORETA to classify motor intention data in a BCI 

experiment. Here the filter aims at better separating the classes. Data comprised one subject and 

constituted the BCI competition 2003, dataset IV, provided by the Berlin BCI group, Berlin Institute 

of Technology (Blankertz et al., 2004). The task of the subject was to press with the index and little 

fingers keys using either the left or right hand, in a self-paced timing and self-chosen order. Epochs of 

500 ms were extracted ending 130 ms before the key press, thus only movement intention can be used 

for classification. The epochs were divided in a training set and a test set (316 and 100 trials, 

respectively). EEG data were acquired using 28 electrodes and sampled at 1000 Hz. Since there were 

two-classes, left and right hand motor intention, we have applied to sLORETA a common spatial 

pattern filter (see chapter V) for eliminating current not relevant for classification purposes. The 

common spatial pattern (CSP) filter is a matrix F diagonalizing simultaneously both the grand-average 

covariance matrix of left and right training trials. Once we find this matrix we keep a small numbers of 

vectors maximizing the ratio of the variance between the two classes, which we name FR for the right 

sensorimotor motor cortex (desynchronized during left-hand motor intention) and FL for the left 

sensorimotor cortex (desynchronized during right hand motor intention). Using training data we also 

defined two single-voxel ROIs, R  for the right sensorimotor cortex and L for the left sensorimotor 

cortex, to which regional inverse operator ΞR and ΞL (141) and their factorization GR and GL (143) 

corresponded. Since the ROIs comprise one single voxel, the rank of the inverse operator is exactly 

three and no data-independent beamforming can be applied15. Figure 3.2 shows the sLORETA source 

localization of the common spatial patter (CSP) spatial filters. This is obtained by feeding sLORETA 

                                                      

15 Note that in this case, since the ROI is composed of one voxel only, RG  ( LG ) is equal to the partition of the 

transfer matrix Tq corresponding to the voxel forming the R  (L) region. 
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with the columns of the pseudo-inverse of FT. Since data were re-referenced to the common average, a 

total of N-1=27 filters were estimated by the CSP. By construction of the CSP the first P<<N/2 

vectors of the filter are optimal for one class and the last P for the other class (see (201)). Based on the 

source localization of the filters (fig. 3.2) we define data-dependent filters  

 1, ,L PF f f NxP           (149) 

 and  

 1 1, ,R N P N  F f f NxP          (150) 

 as the first and last P columns of the CSP filter, respectively. In this study we have fixed P=2 based 

on results in fig. 3.2.  

For the test trials with covariance matrix C, the filtered data is then given by 

   
1 1

T T T T
L L L L L L L L L

    
      

C F F F F C F F F F
 

      (151) 

and 

   
1 1

T T T T
R R R R R R R R R

    
      

C F F F F C F F F F
 
      (152) 

for the left and right sensorimotor cortex, respectively. The final current density estimations in the 

right and left sensorimotor cortex are then 

 T
R R R Rtr  G C G           (153) 

and 

 T
L L L Ltr  G C G .          (154) 
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Figure 3.2: sLORETA cortical images of the spatial patterns associated with vector 1 -5 

and 23-27 of the spatial filter. For each image, from left to right, are shown the left 

lateral and medial view, the right lateral and medial view and the bottom  view. Each 

image is scaled to its own maximum. The activity is color -coded with black representing 

the maximum current density and white representing zero. Note that filter 1, 2, are 

localized in the left sensorimotor cortex and filter 26 and 27 in the right sensorimotor 

cortex. Based on these results vector 1 and 2 have been used to form the spatial filter 

FL for estimating current density in the left sensorimotor cortex, while vector 26 and 27 

have been used to form the spatial filter FR for estimating current density in the right 

sensorimotor cortex. Filter 3 and 25 are localized in pre -motor areas, however for 

these data they proved little useful for classification and were not used. Legend: 

A=Anterior; P=Posterior; S=Superior; I=Inferior; L=Left; R=Right;   

 

Given current density estimation L  and
 R

 
for a given trial, the classification is obtained simply by 

looking at the difference in current density; if R L   the synchronization in the right hemisphere has 

been stronger, therefore the trial is assigned to the “left-hand” class, otherwise it is assigned to the 

“right hand” class. This procedure yields a very simple classifier with no parameters to be set. The 

plots of  R
 
vs. L  are shown in fig. 3.3 for the unfiltered sLORETA method and the CSP-filtered 

sLORETA method here exposed. Results are presented for the training data (316 trials) and for the test 

data (100 trials). Using the filtered sLORETA the classification accuracy improves from 73.72% to 

83.65% for the training data and from 73% to 83% for the test data. The effect of the CSP filtering can 

be appreciated as mitigation of the scatter of the plots. These results are consistent and in line with the 

winner of that BCI competition, who used more features and more complex classification (Wang et 

al., 2004).  
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Figure 3.3: In each plot on the x-axis and y-axis is the source power in the left and 

right region of interest (ROI), respectively. Left column: results on the training set (159 

Left + 157 Right trials). Right column: results on the test set (49 Left + 51 Right 

trials).Top row: results obtained using the CSP filter. Bottom row: results obtained 

with no filter (raw sLORETA). The untrained classifier is represented by the thick grey 

line, which has equation y=x. Right fingers movement intention trials (black squares) 

are correctly classified if they fall above the line, while left fingers movement intention 

trials (white squares) are correctly classified if they fall below the line. The 

classification accuracy is printed as percentage of correctly classified trials nea r the 

bottom-right corner of each plot.  

 

Notice that in (151) and (152) we have employed projectors with general form  

 
1

T T


F F F F            (155) 

whereas in (146) and (147) the projector has general form  

 
1

T T T


U U U U UU ,          (156) 
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with the equality due to the orthogonality of the columns of U, which does not hold for the columns of 

non-orthogonal filters like the CSP16.  

 

Other Filters for Regional Inverse Solutions 

One may design other data-dependent filters with general form (155). For instance, they may derive 

from a blind source separation or any other decomposition method that we treat in details in chapter 

IV to VII (see eq. (218). One may also use both a data-dependent and data-independent filter. For data 

vectors this is achieved feeding equation (144) with filtered data such as (146). For data covariance 

matrices this is achieved feeding equation (145) with filtered covariance matrices such as (147) or 

(151)-(152). 

 

Co-Registration of Inverse Solutions with MRI 

Throughout this manuscript we present inverse solution images obtained using the free software 

LORETA-Key (Pascual-Marqui, 2001). A first version was presented briefly in Pascual-Marqui 

(1999). The newer version of the software makes use of revisited realistic electrode coordinates 

(Jurcak, Tsuzuki and Dan, 2007) and the head model (and corresponding leadfield matrix) produced 

by Fuchs et al. (2002), applying the boundary element method on the MNI-152 (Montreal neurological 

institute, Canada) template of Mazziotta et al. (2001). This sLORETA-key anatomical template 

divides and labels the neocortical (including hippocampus and anterior cingulate cortex) MNI-152 

volume in 6239 voxels of dimension 5 mm3, based on probabilities returned by the Demon Atlas 

(Lancaster et al., 2000). The co-registration makes use of the correct translation from the MNI-152 

space into the Talairach and Tournoux (1988) space (Brett et al., 2002). The cortical anatomical 

images are based on the CARET software (van Essen, 2005). 

 

                                                      

16 Note that in Congedo, Lotte and Lécuyer (2006) we have used by mistake as projectors T
L LF F  and T

R RF F , 

thus our published results possibly underestimate the classification accuracy of the method. 
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CHAPTER IV 

THE JOINT DIAGONALIZATION FRAMEWORK 
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Introduction 

This and the next three chapters are a long journey into diagonalization procedures encompassing a 

very large range of methods used ubiquitously over the last 20 years in EEG research and practice. 

This journey will give us an opportunity to summarize the knowledge in this domain, presented here in 

compact form, but also to present some of our own algorithmic contributions and the studies using 

them in which we have participated. This chapter gives an ensemble view of all diagonalization 

methods presented in chapter V, VI and VII from the point of view of optimization theory and presents 

a general algorithm for solving the most general case. The reader who is not familiar with optimization 

methods and blind source separation may want to skip this chapter and maybe come back to it after 

reading chapters V-VII.  

Let  tx be the observed EEG data. A linear transformation of EEG data  

   Tt ty B x             (157) 

is designed to diagonalize one or more matrices holding statistics of the data. For example, principal 

component analysis (PCA) is obtained computing the covariance matrix (95) of the data C and 

choosing the orthogonal matrix B in such a way that T
B CB  is diagonal. Such a choice outputs 

transformed time-series (157) with uncorrelated components. The simplest diagonalization procedure 

is indeed the PCA. The most involved is the joint blind source separation (JBSS), which is achieved 

by diagonalizing several matrices at the same time in each of several data sets.  In between them we 

find many well-known methods such as whitening, the common spatial pattern (CSP), maximal 

covariance analysis (MCA), canonical correlation analysis (CCA) with its several extensions, 

extensions of the singular value decomposition to handle several matrices, blind source separation 

(BSS) methods such as AMUSE, FOBI, SOBI, JADE, etc. The point we want to make here is that all 

these methods can be conceived as a way to solve the same general optimization problem. The general 

problem involves the diagonalization of K≥1 different forms of covariance matrices for M≥1 data sets, 

where M typically, but not necessarily, refers to the number of subjects analyzed simultaneously17. The 

case M=1, that is, the single-subject/single data set analysis scenario, is by far the most common. 

                                                      

17 For instance M may refer to different data modalities or data filtered in different frequency band-pass regions 

for the same individuals. 
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However, it can be seen as a special case of the more general setting M≥1, for which the data takes 

form 

 

 

 

1 

  

M

t

t

t

 
 

  
 
 

x

x

x

NM          (158) 

and the M  joint linear transformations are given by 

 

 

 

 

1 11
  

    

0

0

T

M MM

t t

t t

     
     

     
     
     

y xB

y xB

.        (159) 

Notice that for the sake of simplicity and in order to highlight the modularity of the diagonalization 

approach presented in this manuscript, setting 

1 0

0 M

 
 

  
 
 

B

B

B

NMxNM         (160) 

equation (159) is written as (157) regardless whether M=1 or M>1. However, there is an important 

differences in between the two cases: the K covariance matrices that can be derived from the multiple 

data set (158) have a block structure with 2M  blocks, such as. 

11, 1 ,

1, ,

k M k

M k MM k

 
 
 
 
 

C C

C C

NMxNM , k{1,…,K}.       (161) 

The NxN matrices on the diagonal (the diagonal blocks) hold the auto-statistics of the subject (or data 

sets in general), while the matrices on the off-diagonal (off-diagonal blocks), whenever they are 

available, hold the cross-statistics between subjects. The reader should pay attention to this composite 

form of covariance matrices as it will be found over and over again throughout the reminder of this 

manuscript. Working within setting M>1 is useful when we can assume that data is correlated 

between-subjects (or data sets), otherwise, as we will see precisely, the problem reduces to a collection 

of M independent diagonalization procedures for the case M=1. Each diagonalization procedure is 

defined by a specific choice of M, K and the kind of covariance information contained in the matrices 

to be diagonalized. However the resulting set of statistics have always general form (161). Whatever is 
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the diagonalization method, we end up with the task of diagonalizing all available matrices forming 

the NxN blocks in (161) by congruent transformation ,
T
i ij k jB C B , with i,j{1,…,M}. In linear algebra 

form this is written as 

1 11, 1 , 1 11, 1 ,

1, , 1, ,

0 0

0 0

T

k M k k M k

M k MM k M k MM kM M

      
      

      
      

      

B C C B Q Q

C C Q QB B

.

   

(162) 

As we will see in general the strip-diagonal form (162) cannot be obtained exactly. In a least-squares 

optimization framework the task is to find M matrices B1,…,BM minimizing the sum of squares of the 

off-diagonal elements of all products , ,
T

ij l i ij k jQ B C B , that is, making them all at the same time 

(jointly) as diagonal as possible. The general optimization problem is then written such as  

 
1

2

,
, ,

, 1 1M

M K
T
i ij k j

F
i j k

min off
 


B B

B C B .        (163) 

Some structural constraints have to be imposed on matrices B1,…,BM in order to avoid the trivial 

solution obtained setting them equal to 0. We will discuss them later. Table (4.1) lists some of the 

methods that may be solved by optimization (163), classified depending on the number of 

observations (K) and data sets (M) involved. Note that very diverse families of methods can be seen as 

a particular instance of the general optimization (163). In chapter V, VI and VII we will analyze in 

necessary details all these methods. For each of them we provide the “solutions” as matrices 

1 , ,T T
MB B

 
and their “inverse”. The solutions extract time series as per (159), reducing to (157) for the 

case M=1, while their inverse are the matrices holding the scalp spatial patterns associated to each 

extracted component. Chapter V treats several spatial filters. Chapter VI treats the family of blind 

source separation (BSS) methods. Chapter VII treats group BSS methods. All these families of 

methods provide linear transformation of the data possessing some statistical property. However, there 

is a fundamental difference between spatial filtering and blind source separation approaches: filters 

B1,…,BM and the corresponding scalp spatial patterns can be interpreted physiologically only in the 

case of blind sources separation; for generic spatial filters they have no physiological meaning.   

For all families the general optimization (163) is our unifying framework. The reader will realize that 

it will be optimized over and over again throughout the next three chapters, reducing to particular 

cases for each method. Here below is a short overview of the different cases of table 4.1. 
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Table 4.1: Taxonomy of several signal processing methods depending on the number of 

observations and data sets involved. All these methods are diagonalization procedures 

and can be solved by optimization (163). Legend: PCA=principal component analysis; 

CSP=common spatial pattern; AMUSE=algorithm for multiple source extraction; 

FOBI=fourth-order blind identification; SOBI=Second-order blind identification; 

JADE=Joint diagonalization of eigenmatrices; MCA=maximum covariance analysis; 

CCA=canonical correlation analysis; AJSVD=approximate joint singular value 

decomposition; JSSS=joint blind source separation.  

 

 

One data set, one matrix 

Suppose we have only one data set (M=1), that is, one subject, and one observation (K=1), for 

example, the only matrix to be diagonalized is the sample covariance matrix. Optimization (163) 

reduces in this case to 

 
2

T

F
min off

B
B C B .          (164) 

Constraining the solution B to be orthogonal the problem is the PCA and the solution is given by the 

eigenvector matrix of C. The minimum attainable is zero. With a specific constraint on the norm of the 

vectors of B the problem becomes the whitening problem. 

 

One data set, two matrices 

Suppose we have only one data set (M=1), that is, one subject, but two observations (K=2), that is, we 

require the diagonalization of two forms of covariance matrices. Optimization (163) reduces in this 

case to 
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 
22

1

T
kk F

min off


B
B C B .         (165) 

Depending on the constraints on the norm of the vectors of B and on the choice of C1 and C2 the 

problem is the CSP, AMUSE, FOBI,… and the solution is the generalized eigenvector matrix of some 

linear combination of C1 and C2. The minimum attainable is still zero, but B will be no more 

orthogonal, unless C1 and C2 commute in multiplication. 

 

Two data sets, one matrix 

Suppose we have two data sets (M=2), for example, two subjects, and only one observation (K=1), for 

example, we require the diagonalization of the covariance matrix of the two data sets stacked as in 

(158) having composite form (161). Optimization (163) reduces in this case to 

 
1 2

22

, 1
,

T
i ij ji j F

argmin off


B B

B C B .        (166) 

Depending on the constraints on the norm of the vectors of B1 and B2 the problem is the MCA or CCA 

problem and the solution is achieved by SVD. The minimum attainable is still zero. B1 and B2 will be 

orthogonal for the MCA and non-orthogonal for the CCA. 

 

One data set, several matrices 

Suppose we have one data set (M=1), for example, one subjects, and many observation (K>2), for 

example, we require the diagonalization of several covariance matrices. Optimization (163) reduces in 

this case to 

 
2

T
kk F

argmin off
B

B C B .         (167) 

Depending on the constraints on the norm of the vectors of B and on the choice of the matrices Ck the 

problem yields a wide family of BSS problems (SOBI, JADE, etc.) and the solution is achieved by 

approximate joint diagonalization iterative algorithms. The minimum attainable is no more zero. B 

will be non-orthogonal, unless all matrices in the set pair-wise commute in multiplication. 
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Several data sets, several matrices 

Suppose finally we have more than two data sets (M>2), for example many subjects, and many 

observations (K>2), for example, we require the diagonalization of several covariance matrices with 

composite form (161). Optimization (163) applies as it is in this case, since we have reached the most 

general form. The problem is the general JBSS problem. Let us now see how to solve this most 

general problem. 
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APPROXIMATE JOINT DIAGONALIZATION 

 

The optimization problems (163)-(167) may be solved by a panel of numerical methods. The cases 

(M=1, K=2) and (M=2, K=1) have closed form algebraic solutions. The others can be solved only by 

iterative algorithms. Here we tackle the most general problem when M≥2 and/or K≥2 (163). We 

present two algorithms for finding matrices B1,…,BM, one constraining the matrices to be orthogonal 

and the other constraining them to be just invertible. These two algorithms apply to simpler problems 

as well, particularly to the useful problem (167), yielding the many blind source separation solutions 

by approximate joint diagonalization (AJD) that we will treat in chapter VI and VII. In general, the 

simultaneous diagonalizer of more than two matrices has no closed form solution. There exist many 

AJD algorithms for the single subject case (M=1, K>2) (Afsari, 2008; Cardoso and Souloumiac, 1993; 

Congedo and Pham, 2009; Degerine and Kane, 2007; Fadaili, Moreau and Moreau, 2007; Flury and 

Gautschi, 1986; Iferroudjene, Abed-Meraim and Belouchrani, 2009; Li and Zhang, 2007; Mesloub, 

Abeb-Meraim and Belouchrani, 2013; Pham, 2001b; Pham and Congedo, 2009; Souloumiac, 2009, 

2011; Tichavsky and Yeredor, 2009; Wang, Liu and Zhang, 2007; Wax and Sheinvald, 1997; Vollgraf 

and Obermayer, 2006; Yeredor, 2002; Ziehe et al., 2004; Zhou et al., 2008). Recently, extensions to 

the multisubject case (M>1, K>2) that we treat here, have appeared as well (Anderson, Adali and Li, 

2012; Vía et al. 2011; Li, Adali and Anderson, 2011; Li et al., 2009). As we are contending, these may 

be seen as extension of the single-subject AJD case. 

The AJD algorithms proposed so far differ according to whether they estimate directly the demixing 

matrix or its inverse (the mixing matrix), the restrictions imposed on the matrices that can be 

diagonalized (Hermitian/symmetric, positive semi-definite, normal), the restrictions imposed on the 

joint diagonalizer sought (unitary/orthogonal or just invertible), their convergence rate and 

computational complexity per iteration. More importantly, they differ in terms of the cost function to 

be optimized. For the sake of efficiency some algorithms rely on heuristics (e.g., Souloumiac, 2009; 

Tichavsky and Yeredor, 2009; Ziehe et al., 2004), whereas others have focused on the more intuitive 

formulation based on the general Frobenius norm off-diagonal minimization that we have already 

introduced in (167) (Congedo and Pham, 2009; Degerine and Kane, 2007; Fadaili, Moreau and 

Moreau, 2007; Pham and Congedo, 2009; Vollgraf and Obermeyer, 2006). The AJD algorithms may 

perform poorly when the true mixing matrix to be estimated or the matrices in the diagonalization set 

are ill-conditioned. They may be more or less robust to noise, more or less prone to be trapped in local 

minima, more or less stable, etc. Therefore, the goodness of the AJD solution greatly influence the 
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goodness of the estimation of the (de)mixing matrix and the choice of the AJD algorithm is 

instrumental for the source separation tout court. It is out of the scope of this work the throughout 

analysis and review of AJD algorithms. Rather, we here present our contributions in AJD algorithm 

developments. The two algorithms we present here have been published in Congedo, Phlypo and 

Chatel-Goldman (2012). They are extensions of previous algorithms published in Congedo, Phlypo 

and Pham (2011), Congedo and Pham (2009) and Pham and Congedo (2009), which are restricted 

cases of the more general form we present here.  

 

Least-Squares Functional 

According to what we have said the optimization for the most general problem (163) leads to cost 

function 

   
2

,

, 1

M
OFF T

i ij k jk F
i j

Off


B B C B .        (168) 

Our task is to find the M matrices in (160) making the products 

, ,
T

ij k i ij k jQ B C B           (169)

 

as diagonal as possible. The overall strategy is to sequentially update each matrix Bi, for i{1,…,M} 

and iterate such sequential search until convergence. In the sequel, let us define the functional of 

interest for any given i as 

   
22

, ,|
1

2
i

M
off

ii k ij kk kF F
i j

off off
 

  B B
Q Q

 

     (170)

 

wherein we have separated the products of (169) for i=j (first Frobenius norm) and for i≠j (second 

Frobenius norm), corresponding to the diagonal and off-diagonal blocks of matrices in (162). Such 

partition of the total diagonalization functional is very useful for finding the gradient, but also 

illustrates exhaustively the fundamental difference between the case M=1 and M>1. One thing appears 

suddenly: if we do not consider the i≠j portion of (170), that is, if we do not assume that sources are 

correlated between subjects or data sets, the functional of interest reduces to a collection of M 

problem to be solved independently each with M=1. In fact, using (170) notice that the optimization of 

the i=j portion involves for each m only the Bm block of B (160). Thus the sequential update strategy 
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amounts to run M AJD algorithms independently; the update of the Bm block does not influence the 

other blocks. On the other hand, using the whole functional in (170) the update of each Bm block 

depends on the whole matrix B. So, each update influence and constraint the others. This dependencies 

is highlighted by notation Bi|B (read: “Bi given B”). Now, noticing that the functional (168) can be 

partitioned also as 

     
2 2

, ,

, 1 , 1

M M
OFF T T

i ij k j i ij k jk kF F
i j i j

Diag
 

  B B C B B C B ,     (171) 

we can rewrite it as 

| | | |i i i i

off tot diag tot diag     
B B B B B B B B

 ,        (172)

 

where the total and diagonal parts are 

   2
, , ,|

2
i

tot T
ii k ij k ij kk i j

tr tr


  
   B B

Q Q Q        (173)

 

and 

         , ,|
1 1

2
i

N N
diag T T

ii k ij kn i n i n i n jk
n i j n


  

 
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  
  B B

b C b b C b ,      (174)

 

respectively. In Eq. (174),  n i
b is the nth column vector of Bi, and  

T

n i
b  its transpose. 

 

The Orthogonal Mixing Matrices Case 

If we constraint the matrices Bm to be orthogonal as in Cardoso and Souloumiac (1993) the first 

expression in the right-end side of the cost function (171) is  

 
2

, , ,

, , 1

 
M M

T T T T
i ij k j i ij k j j ij k ik kF

i j i j

tr


 
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  
  B C B B C B B C B ,      (175) 

which for the orthogonality of all matrices Bm and for the rotation-invariance property of the trace  

simplifies to  
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 
, 1

M
T

k kk
i j

tr


 
 
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 C C .           (176) 

Hence, this term does not depend on B and can be dropped. Hence, the cost function (171)  reduces to 

   
2

,

, 1

M
OFF T

i ij k jk F
i j

Diag


 B B C B        (177) 

and we are left with the problem of maximizing iteratively the diag functional in (174), for 

i{1,…,M}. Let us rewrite the objective function (174) as 

   
22

, ,|
2

i
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ii k ij kk i jF F
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
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and then as 

    , , , ,|
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i

diag
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
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where matrix En is the elementary matrix filled with entry 1 at position (n,n) and 0 elsewhere. The 

above functional is a matrix polynomial of second degree in Bi. The derivative is of third degree in Bi 

for the first trace and of first degree in Bi for the second trace. However, using the symmetry of 

matrices Cii,k, the gradient simplifies to 
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Thus 
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where 

       , ,

1

M
T T

ij k ij ki n n j n jk
j

 R C b b C ,        (182)

 

In words, the gradient of the N vectors of Bi should be taken as the eigenvectors of corresponding 

matrices R(i)(n) associated with their largest eigenvalue, for all n{1,…,N}. In order to update these 
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vectors we limit ourselves to a single pass of power iterations (Congedo and Pham, 2009; Congedo, 

Phlypo and Pham, 2011; Pham and Congedo, 2009). After updating all vectors of Bi we need to 

orthogonalize Bi so as to ensure that at each step Bi stays in the orthogonal group. Therefore, we have 

the following simple updating rule: 

for all i=1 to M do           , ,

 

i i n n i i N N i

iorthogonalize

  
 
  

B R b R b

B

      (183) 

 

The iterative algorithm is summarized here below: 

Algorithm(184): Orthogonal Joint Least-Squares Diagonalization (OJLSD).  

Optimization (167). 

Initialize B1,…,BM by orthogonal clever guesses or by I if no guess is available.  

Repeat 

For i=1 to M do 

Obtain 
     1

,...,
i i N

R R  by (182) 

For n=1 to N do one pass of power iterations 
      n i i n n i
b R b     

Make Bi orthogonal by Lödwin orthogonalization  (75) 

End For i 

Until Convergence  

(The sum of difference of i Fi B in two successive iterations is smaller than ) 

 

Note that in practice the orthogonalization is computed as Bi←UVT, where UVT is the SVD of Bi. 

 

The Invertible Mixing Matrices Case 

In this case the total function is not invariant to B, hence we need to explicitly minimize the whole off 

functional in (168). Furthermore we need to avoid the trivial solution 
T
mB  =0, for any m{1,…,M}. 
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Several constraints on B may serve this purpose. For example orthogonality of mB , such that 

T
m m B B I , which we have just considered, or  0

T
m mdiag B C B I , where C0 is an arbitrary 

symmetric positive-definite matrix (Degerine and Kane, 2007; Vollgraf and Obermayer, 2006). In 

Congedo and Pham (2009) we have tackled the non-orthogonal (invertible) solution and introduced for 

the first time an intrinsic constraint, that is, a constraint on the norms of the vectors of mB  that does 

not depend on any matrices external to the diagonalization set. We minimize the off functional with a 

constraint (w.c.) on the norm of the column vectors of Bm, such as 

      | ,  w.c. 1
i

tot diag T

n i i n n i
  B B b R b , n{1,…,N},       (185) 

where matrices R(i)(n) are given in (182). We apply the method of Lagrange multipliers, leading us to 

minimize 
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where the multipliers νn are adjusted in order to satisfy constraint (185). Using the symmetry of the 

matrices Cii,k and exploiting the previous gradient results in (181) for the diag part, the gradient of the 

Lagrangian reads 
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which is    
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B
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Notice that matrices Γ(i) are the sum of the corresponding N R(i)(n) matrices found in (182), that is 

      , ,
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M
T T

ij k j j ij ki i nk n
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Setting the gradient to zero gives us a stationary point for our optimization, which for each Bi is given 

by  
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          1 1
,...,ii i i i N N i

Γ B R b R b .         (190) 

This is a set of N generalized eigenvalue-eigenvector problems for matrix pencils (Γ(i), R(i)(1)),…, (Γ(i), 

R(i)(N)). The N vector of Bi are the principal eigenvector of the N matrices Γ(i)
-1R(i)(1), …, Γ(i)

-1R(i)(N). In 

practice, in order to find the principal eigenvectors avoiding the inversion of Γ(i), we can update the 

vector bn(i) by a single-pass of a special power iteration. We compute the Cholesky decomposition (49) 

 
T

i
Γ LL , with L lower triangular and then solve two systems of linear equations by forward and 

backward substitution (Golub and van Loan, 1996,  p. 88-89). Limiting ourselves to one single power 

iteration per update step yields algorithm: 

Algorithm (191): Invertible Joint Least-Squares Diagonalization (IJLSD). Optimization (167). 

Initialize B1,…,BM by non-singular clever guesses or by I  if no guess is available.  

Repeat 

For  i=1 to M do 

Obtain 
     1

,...,
i i N

R R  by (182)  and heir sum (189)     i n in
 R Γ  

Obtain Cholesky decomposition  (49)  
T

i
Γ LL  

For n=1 to N do solve     i n n i
Lv R b  for v, T L z v  for z and update      

1
2T

n i i n



b z z R z  

End For m 

Until Convergence  (The difference of m Fm B  in two successive iterations is smaller than ). 

 

Simulations 

In this section, taken from Congedo, Phlypo and Chatel-Goldman (2012), the behavior of the proposed 

OJLSD and IJLSD algorithms is assessed by means of simulations18. For simulations input matrices 

Cij,k are generated according to the model  

                                                      

18 Notice that in that paper the two algorithms were given a different acronym and we have used a different 

notation. 
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11, 1 , 1 11, 1 , 1 11, 1 ,

1, , 1, , 1, ,

0 0

0 0

T

k M k k M k k M k

M k MM k M k MM k M k MM kM M

        
        

         
        

        

C C A D D A N N

C C D D N NA A

(192) 

where the matrices 
1 ,..., MA A  (mixing matrices, see chapter VI) are the inverse of 

1 ,...,T T

MB B . Matrices 

Dij,k are generated as square diagonal matrices with each diagonal entry randomly distributed as a chi-

squared with M degrees of freedom and divided by M. Noise is added to the generated matrices Cij,k as 

additive matrices Nij,k symmetric and with entries randomly Gaussian distributed with zero mean and σ 

standard deviation (sd). The parameter σ controls the signal to noise ratio of the input matrices. 

Several different values of σ are considered in the simulations. The data generating matrices Am, 

m{1,…,M}, are generated as orthogonal or non-orthogonal invertible. Orthogonal matrices are 

generated by first generating a matrix with entries randomly drawn from a Gaussian distribution with 

zero mean and sd=1 and then taking its left singular vector matrix. In this case the conditioning of the 

mixing matrices does not jeopardize the performance of the algorithms and we can evaluate their 

robustness with respect to noise. In order to generate non-orthogonal matrices, the matrices generated 

as above are perturbed by adding to each entry a number randomly drawn from a Gaussian distribution 

with zero mean and sd=1/2. In this case the mixing matrices have variable conditioning and we can 

evaluate the behavior of the algorithms with respect to the conditioning of the mixing matrices. 

The algorithms estimate the matrices 1 , ,T T
MB B  which, according to BSS theory (see chapter VI), 

should approximate the pseudo-inverse of actual mixing matrices 1, , MA A  
up to row scaling 

(including sign) and global permutation. Then, matrices 
T

m m mΦ B A  should approximate as much as 

possible a scaled permutation matrix. For each estimated demixing matrix we consider the Amari-like 

performance index (Comon and Jutten, 2010), which is computed as 

 
, ,

, ,

1 1 2 1
max max

m rc m rcc r

m r c

m rc m rc
c r

N N
 


 

    
        
    

   

 
       (193) 

where indexes r,c{1,…,N} are the rows and columns of matrices m, ,m rc  is the (r,c) entry of 

matrix m, and |.| denotes the absolute value of the argument. We define the composite performance as 

a function of the geometric mean of the performance indexes obtained over the M matrices, such as 
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  10log 1 1M
mm

              (194) 

Values of π above two indicate a very good performance. The higher the value of the composite index 

(194), the higher the performance. Likewise, the composite conditioning with respect to matrix inverse 

of the mixing matrices is defined as 

    10 max minm mm
log eig eig   A A ,       (195) 

where maxeig and mineig are the largest and smallest eigenvalue of the argument, respectively. Figure 

4.1 shows the performance (194) obtained by the OJLSD and IJLSD algorithms with orthogonal 

mixing (input) matrices, N=P=3 sensors/sources and several combinations of M (number of datasets), 

K (number of observations), and σ (noise level). One hundred simulations have been performed for 

each algorithm and for each combination of M, K and σ. Each dot represent the intersection of the 

performance obtained in one simulation when the algorithm is initialized with identity matrices (x-

axis), that is, possibly far from the optimal solution, and with the exact solutions (y-axis). Dots lying 

on the 45° line indicate that the algorithms have a stable attractor, despite the added noise. Dots lying 

above the 45° line indicate that the algorithm gets far from the exact solution. These results show that 

for both algorithms the degradation engendered by noise is mitigated by increasing either K or M. 

Also, when either M or K are much larger than N no divergence of the algorithms is noticed. Overall, 

IJLSD appears more stable than OJLSD. 

Figure 4.2 shows the performance of the IJLSD algorithm (y-axis) vs. the mixing matrices 

conditioning (195) with non-orthogonal mixing (input) matrices, N=P=3 and several combinations of 

M, K, and σ. Results show that the more noise there is in the system the more the conditioning affects 

the performance. Furthermore, the degradation is not mitigated by increasing K and only moderately 

mitigated by increasing M. 
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Figure 4.1: Composite performance of the OJLSD (top row: a to d) and IJLSD (bottom 

row: e to h) algorithms (194) when initialized with the identity matrices (x-axis) vs. 

when initialized with the inverse of the actual mixing matrices (y-axis), for N=P=3, 

three noise levels (σ) and several combinations of M and K.  

 

 

Figure 4.2: Composite performance of the ILSD algorithm (y-axis) vs. composite 

condition number (195) of mixing matrices. Same parameters as fig. 4.1. 

 

Conclusion 

We have presented two algorithms for solving in a least-squares framework the most general joint 

diagonalization problem (163). These algorithms will be considered to solve the joint blind source 

separation problem discussed in more details in chapter VII, where a further extension is also 

presented. These algorithms are very simple and can be implemented rapidly. Their computational 

complexity per iteration is low, however their convergence is only linear. Furthermore our simulations 

show that both OJLSD and IJLSD may be prone to be trapped in local minima in the presence of 

noise. As such, for single-subject (M=1) AJD problem we keep using state of the art AJD algorithms 
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such as the one by Tichavsky and Yeredor (2009). On the other hand for the case M>1 these 

algorithms are competitive against the state of the art. Future research will establish how to optimize 

the relevant functionals for the optimal weighted sum of input matrices in order to improve the 

convergence toward the optimal solution. 
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CHAPTER V 

SPATIAL FILTERS 
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Introduction 

Because of the linear instantaneous conduction of dipolar activity discussed in chapter II, each 

electrode on the scalp records a weighted sum of the underlying sources. As a consequence the 

covariance matrix of EEG data is highly non-diagonal, meaning that the EEG channels are highly 

correlated. The analysis of the data in the sensor space is problematic for this reason. Since the EEG 

acquired with multiple electrodes covering the whole scalp contains a considerable amount of spatial 

information, we can design spatial filters in order to represent the data in a different space possessing 

some desirable statistical property. Typically, such space is obtained enforcing uncorrelation, that is, 

diagonalization of some matrices holding statistics. What property the transformed data should possess 

is the rationale of each method and depends on the application. Referring to the arguments advanced 

in chapter IV, the spatial filters presented in this chapter belongs all to the case K=1 or K=2 and M=1 

or M=2, where at least one between M or K equals 1.  

 

Principal Component Analysis (PCA) 

PCA was proposed by Karl Pearson (1901) and Harold Hotelling (1933). Let NxTX  be a data 

segment composed of T samples drawn from process   Nt x  and let C its covariance matrix (95). 

Being C a positive-definite symmetric matrix, eq. (37) states that its eigenvector matrix U diagonalizes 

C by rotation as 
T U CU Λ . The eigenvalues in  after such rotation are all positive. The linear 

transformation TY U X  yields uncorrelated data with variance of the nth components equal to the 

respective eigenvalue n , that is, 1
1

T

T
YY Λ . We always arrange the eigenvectors in such a way that 

their respective eigenvalues are sorted in descending order of variance, such as 1 ... N   . Then 

because of (47) the first component (time-series) of Y holds the linear combination of X with maximal 

variance, the second the linear combination with maximal residual variance and so on, subject to 

T U U I . This is known as principal component analysis (PCA).  

 

Algorithm (196): Principal Component Analysis (PCA) . Optimization (164). 

Do ( ) TEVD C U ΛU  

The solutions is T
U  and its inverse U .  
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The time course and related spatial pattern of the PCA are not informative for interpreting EEG data in 

general, nonetheless the PCA remains possibly the most common and useful pre-processing step, with 

applications in data compression (dimensionality reduction), classification, eye-blinks extraction and 

much more.  

 

Whitening 

As before let C be the covariance matrix of a data segment. From (37) it follows that the matrix  

1
2T T

W Λ U             (197) 

diagonalizes and standardizes C by rotation and axes stretching, yielding T W CW I . Linear 

transformation TY W X then yields uncorrelated data with unit variance of all components. This is 

called whitening or sphering. Whitened data stays whitened after whatever further rotation. That is, for 

any orthogonal matrix V  it holds  

 1
1

T T T

T
   
 

V YY V V I V I .         (198) 

Hence there exist an infinite number of possible whitening matrices with general form 
1

2T T
V Λ U . 

Particularly important is the only symmetric one, which is the symmetric square root inverse (SSRI) 

1 1
2 2 T 
C UΛ U  (52) (Hyvärinen, Karhunen and Oja, 2001). It has been shown that if the mixing 

matrix is symmetric the SSRI whitening is the solution to the BSS problem (Cichocki and Georgiev, 

2003, theorem 1), but the mixing matrix is never symmetric with EEG data. Nonetheless whitening 

plays a fundamental role as a first step in many of the blind source separation algorithms we will 

encounter in chapter VI and VII and in countless other algorithms and situations. 

 

Algorithm (199):  Whitening . Optimization (164). 

Do ( ) TEVD C U ΛU  

The solutions is 
1

2T T T
W V Λ U  and its inverse is 

1
2UΛ V , with V  any orthogonal matrix. 

Typically T
V is taken as the identity or as U , yielding in this latter case the SSRI (52). 
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Common Spatial Pattern (CSP) 

A useful instance of the generalized eigenvalue-eigenvector decomposition (82) is the simultaneous 

diagonalization of two covariance matrices 1C , 2C  computed on data segments X1 and X2 drawn from 

two processes    1 2, Nt t x x  and of their sum 1 2 C C C  (Fukunaga, 1990, p. 31-33), yielding a 

spatial filter known as common spatial pattern. A solution in this case is given by the matrix holding 

the eigenvectors of 
1

1


C C  or, equivalently, of 
1

2


C C . The desired properties, however, are obtained 

with a two-step procedure:  

 

Algorithm (200): Common Spatial Pattern. Optimization (165) 

Given matrices 1C  and 2C  compute their sum 1 2 C C C , its SSR 
1

2C  (51) and SSRI (52) 
1

2


C   

do  
1 1

2 2

1 1 1 1

TEVD
 

C C C U ΛU     

The solution is 
1

2

1
T T 

B U C  and its inverse is 
1

2

1A C U .  

 

This solution verifies 

1 1

2 2 1

T

T

T

 





  

B CB I

B C B Λ

B C B Λ I Λ

           (201) 

That is to say, after congruent transformation, 1 ... N    are the eigenvalues of 1C  and 

11 ... 1 N      are the corresponding eigenvalues of 2C . We see that this particular GEVD 

maximizes the ratio between the variance of the corresponding components of transformed processes 

1 1
TY B X  and 2 2

TY B X , ratio which is given naturally ordered by descending order as  

   1 1/ 1 ... / 1N N       .         (202)  

If 1C  and 2C  are covariance matrices of two classes, the CSP is the joint diagonalizer maximizing the 

ratio between them, insomuch such decomposition in used for separating two classes, for example, in 

BCI based on motor imagery. An efficient spatial filter is obtained forming matrix 

2
1 2( , ) Nx P F F F  keeping in matrix  1 1, , PF b b  only P<<N among the first vectors of B and in 
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 2 1, ,N P N F b b  the corresponding last P vectors of B (typically P=2 or P=3 in BCI). The filter F 

then explains much of the variance ratio between the two classes. Given the covariance matrix of an 

unknown trial, filtering with F effectively removes components that are not useful for the 

classification. Since its inception in EEG (Koles, 1991; Koles and Song, 1998) and then in BCI 

research (Guger, Ramoser and Pfurtscheller (2000); Ramoser, Muller-Gerking, Pfurtscheller, 2000), 

the CSP with its adaptations and extensions has become the most popular spatial filter for improving 

class separability in BCI (Lotte et al., 2007; Lotte and Guan, 2011). 

 

Maximum Covariance Analysis (MCA) 

When two EEG data sets are recorded simultaneously, i.e., there is a one-to-one correspondence 

between the samples of the two data sets, we may be interested in analyzing their covariance. The 

extension of the covariance bivariate measure for multivariate measurements is the maximum 

covariance analysis (MCA). It can be conceived as the extension of a PCA on two data sets 

simultaneously (M=2). Given synchronized processes x1(t), x2(t) from which we draw data segments 

of T samples, let us stack vertically the data such as
  

1

2

 
  
 

X
X

X
2NxT,  (203) 

From which we have covariance matrix with form 

1 12 2 2

21 2

Nx N 
  
 

C C
C

C C
,  (204) 

the MCA finds two orthogonal bases, to be applied one to X1 and one to X2, maximizing their 

covariance. Note that by construction 12 21
TC C . We are looking for two orthogonal matrices 1U  and 

2U  yielding
 

1 12 2 2 21 1

T T U C U U C U Λ ,  (205) 

where sorted singular values 1 ... N    of the third expression hold the maximal covariances 

between the transformed data 1 1 1
TY U X  and 2 2 2

TY U X  under constraint of orthogonality of 1U
 
and 

2U . The set of equations (205) can be written in linear algebra form as 
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1 1 12 1 1

2 21 2 2 2

T

      
      

      

U 0 C C U 0 Λ Λ

0 U C C 0 U Λ Λ
       (206) 

The new bases are found as per 

 

Algorithm (207): Maximal Covariance Analysis (MCA). Optimization (166). 

Do  12 1 2

TSVD C U ΛU  

The solutions are 
1

T
U  and 

2

T
U  and their inverses are 

1U  and 
2U , respectively.  

 

Notice that the two data sets may be defined in any way, for example, they may be the recordings on 

two individuals, the electrodes on the right and left hemisphere on one individual, EEG and EMG 

electrodes, etc. As such the MCA method is pretty general. It should be kept in mind that MCA is 

sensitive to the amplitude of each process since the covariance is maximized and not the correlation. 

Thus, the covariance will be driven by the process with highest amplitude. 

 

Canonical Correlation Analysis (CCA) 

Much more common in these situations is the use of canonical correlation analysis (CCA). If the 

MCA is the multivariate extension of the bivariate covariance, the CCA is the multivariate extension 

of the bivariate (Pearson product-moment) correlation. It should better be called maximum correlation 

analysis, but the name has been kept for historical reasons (Hotelling, 1936). We work in the same 

framework as the previous paragraph on MCA. CCA finds matrices B1 and B2 such that 

 

1 1 1

2 2 2

1 12 2 2 21 1

T

T

T T

 





 

B C B I

B C B I

B C B B C B Λ

,         (208) 

with  holding in diagonal the correlation sorted by descending order 1 ... N  
 
of the transformed 

data  1 1 1
TY B X  and 2 2 2

TY B X . In linear algebra form the set of equation (208) reads 
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1 1 12 1

2 21 2 2

T

      
      
     

B 0 C C B 0 I Λ

0 B C C 0 B Λ I
.       (209) 

Notice that the difference with the MCA is only a scaling of the eigenvalues of the transformed data, 

however matrices 1B  and 2B  are no longer orthogonal. The solutions to the CCA 1B  and 2B  are 

given by the eigenvector matrix of (non-symmetric) 
1 1

1 12 2 21
 

C C C C  and 
1 1

2 21 1 12
 

C C C C , respectively. A 

numerically preferable solution, accommodating also the case where the dimension of  1 tx  and 

 2 tx  are different, is the following two-step procedure: 

 

Algorithm (210): Canonical Correlation Analysis. Optimization (166). 

For matrices 1C  and 2C compute their SSRI (52) 
1

2

1



C ,
1

2

2



C  and their SSR (51) 
1

2

1C , 
1

2

2C .  

Do  
1 1

2 2

1 12 2

TSVD
 

C C C UΛV     

The solutions are 
1

2

1 1
T T 

B U C  and 
1

2

2 2
T T 

B V C  and their inverse are 
1

2

1 1A C U  and 
1

2

2 2A C V , 

respectively.  

 

It holds 

1 1 1

2 2 2

1 2 12 2 1 21;  

T

T

T T

 





 

A A C

A A C

A ΛA C A ΛA C

,  (211) 

that is, CCA is a special kind of joint full-rank factorization of 1C  and 2C  respecting the third 

equalities here above. Since it maximizes the correlation, differently from the MCA, the CCA is not 

sensitive to the amplitude of the two processes. This should be kept in mind, as the correlation of two 

signals may be high even if the amplitude of one of the two signal is very low, say, at the noise level; 

in such a case the resulting correlation is spurious and meaningless19.  In general, methods such as 

                                                      

19 Similar considerations apply to the frequency-domain version of the (squared) correlation coefficient, the 

well-known coherence, which is a meaningless measure if one of the signals or both are of very low amplitude 

(Bloomfield, 2000). This is rarely checked in papers dealing with massive coherence (and similar 

synchronization measures) estimations.  
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MCA and CCA are meaningful when the amplitude of the two processes is comparable. The same 

applies to their extension, the joint blind source separation, which we will treat in chapter VII.  
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CHAPTER VI 

BLIND SOURCE SEPARATION 
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Introduction 

So far we have considered arbitrary transformations of the data possessing some specific properties. 

However, the resulting components (time course) of the transformed signal    Tt ty B x  and their 

corresponding spatial patterns given in the columns of the inverse of BT do not have any physiological 

meaning20. Here and hereafter we treat the much more involved task of finding transformations of 

EEG signals possessing some properties, as before, but also estimating the waveform and the spatial 

pattern of physiological sources generating the signal. BSS has enjoyed considerable interest 

worldwide only starting a decade after the pioneering works carried out in our laboratory in Grenoble 

(Ans et al., 1985; Hérault and Jutten, 1986), inspired by the seminal papers of Jutten and Hérault 

(1991), Comon (1994) and Bell and Sejnowski (1995). Thanks to its flexibility and power BSS has 

today greatly expanded encompassing a wide range of applications such as speech enhancement, 

image processing, geophysical data analysis, wireless communication and biological signal analysis 

(Comon and Jutten, 2010). In EEG BSS has enjoyed an amazing popularity starting at the end of the 

last millennium, being used, just to name a few examples, for improving brain computer interfaces 

(Kachenoura et al., 2008; Serby et al., 2005; Wang and James, 2007;), for increasing the SNR of 

single-trial time-locked responses (Cao et al., 2002; Guimaraes et al., 2007; Lemm et al., 2006; 

Sander et al., 2005; Tang et al., 2006; Zeman et al., 2007) and for denoising/artifact rejection (Crespo-

Garcia et al., 2008; Fitzgibbon et al., 2007; Frank and Frishkoff, 2007; Halder at al., 2007; Ille, Berg 

and Scherg, 2002; Iriarte et al., 2003; Joyce et al., 2004; Jung et al., 2000; Kierkels at al., 2006; 

Phlypo et al., 2007; Romero et al., 2008; Vigário, 1997; Vorobyov and Cichocki, 2002). 

This chapter begins with the consideration of early single-subject BSS attempts based on the 

simultaneous diagonalization of two matrices (GEVD), that is, referring to the argumants introduced in 

chapter IV, the cases M=1 and K=2. Then we illustrate a more flexible and accurate BSS scheme 

requiring the estimation of second-order statistics (SOS) only and based on the approximate joint 

diagonalization of several matrices (K>2). A general algorithm is described. The method operates in 

the same way in the time or frequency domain (or both at the same time) and is capable of modeling 

explicitly physiological and experimental source of variations with remarkable flexibility. At this stage 

we provide several examples illustrating the analysis of continuous recording EEG (spontaneous 

                                                      

20 In some circumstances the CSP and the CCA may output physiologically meaningful time course of 

components and associated spatial patterns. For CSP for example, this is when the data is chosen respecting the 

non-stationarity BSS framework presented in this section. We will comment further on this point. 
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activity), event-related de/synchronizations (induced activity) and event-related potentials (evoked 

activity).  

 

The BSS Problem for EEG 

For N scalp sensors and PN EEG dipolar fields with fixed location and orientation in the analyzed 

time interval, the linear BSS model simply states the superposition principle discussed in chapter II, 

i.e., 

       t t t t  x 1 As η ,  (212) 

where ( ) Nt x is the sensor measurement vector with common reference , 
N PA is assumed a 

time-invariant full column rank mixing matrix, ( ) Pt s holds the unknown time-course of the source 

components and ( ) Nt η is unknown additive noise, assumed temporally white, uncorrelated to ( )ts  

and with spatially uncorrelated components. We treat here the problem P≤N, that is, we try to estimate 

at most as many sources as available sensors. Equation (212) states in the language of linear algebra 

what has been said in words in chapter II, i.e., that the EEG sensor measurement ( )tx  is a linear 

combination (mixing) of sources ( )ts , given by the coefficients in the corresponding column of 

matrix A . In contrast to inverse solutions (chapter III) neither ( )ts  nor A  are supposed to be known, 

that is why the problem is said to be blind. Although this is the classical BSS model we need a few 

clarifications for the EEG case: by ( )tη  we model instrumental noise only. In the following we drop 

the noise term because the instrumental (and quantization) noise of modern EEG equipment is 

typically low (<1μV). Biological noise (extra-cerebral artifacts such as eye movements and facial 

muscle contractions) and environmental noise (external electromagnetic interference) may obey a 

mixing process as well, thus they are generally modeled as components of ( )ts , along with cerebral 

ones. Notice that while biological and environmental noise can be identified as separated components 

of ( )ts , hence removed, source estimation will be affected by the underlying cerebral background 

noise propagating with the same coefficients as the signal (Belouchrani and Amin, 1998). In contrast 

to the approach for inverse solutions seen in chapter III, where data is referenced to the common 

average in order to eliminate the reference (see (105) to (107)), we here leaves the estimation of 

sources up to the reference in order to preserve the full-rank of the data. We then obtain the simplified 

model 
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( ) ( )t tx As .   (213) 

 Our source estimation is given by inverting this equation such as 

ˆ( ) ( )Tt ts B x ,   (214) 

where 
T P NB is called the demixing or separating matrix. This is what we want to estimate in order 

to recover the sources from EEG21. 

  

A Suitable Class of BSS Solutions 

Tackling problem (214) assuming knowledge of sensor measurement only appears a little pretentious. 

The great achievement of BSS theory is to demonstrate that it is possible with some assumptions on 

the statistical properties of the sources, effectively reducing the number of admissible solutions. 

Particularly, we are interested in weak restrictions converging toward condition 

   ˆ t ts Φs    (215) 

where ( )ts  holds the time-course of the true (unknown) source processes, ˆ( )ts  our estimation and the 

system matrix 

T Φ B A DP    (216) 

approximates a signed scaling (a diagonal matrix D) and raw permutation (P). Equation (215) is 

obtained substituting (213) in (214). Whether condition (215) may be satisfied is a problem of 

identifiability, which establishes the theoretical ground of BSS theory (Tong, Inouye and Liu, 1993; 

Cardoso, 1998; Pham and Cardoso, 2001; Pham, 2002). The identification capability makes of BSS a 

much more useful method as compared to the linear transformations we have considered in chapter 

V22. Matching condition (215) implies that we can recover faithfully the source waveform, but only out 

of a scale (including sign) and permutation (order) indeterminacy, that is, the admissible solutions 

                                                      

21 We do not use anymore the symbol y(t) for transformed data to stress that BSS estimates the waveform of the 

actual sources. 

22 We will talk later on about how identifiability is sought in practice with the proposed BSS approaches. 
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cannot be constrained any further and we are left with a permutation matrix and a diagonalization 

matrix that are arbitrary. This limitation is not constraining for EEG, since it is indeed the waveform 

that bears meaningful physiological and clinical information. Notice the correspondence between the 

pth source, its separating vector (pth row of T
B ) and its scalp spatial pattern (mixing vector), given by 

the pth column of  

 T


A B ,            (217) 

where superscript + indicates the Moore-Penrose pseudo-inverse (79). The mono-dimensionality of 

those vectors and their sign/energy indeterminacy implies the explicit modeling of the orientation and 

localization parameters of the pth source, but not its energy. This is also the case of scalar-type inverse 

solutions we have encountered in chapter III, but not of the vector-type inverse solutions, which 

estimates current in three directions (111), with consequent lower spatial resolution. Notice that we are 

not placing a “hat” on A and on BT albeit they are both estimated from the data in order to keep 

notation clean. 

 

BSS Filtering 

Linearity allows switching back from the source space into the sensor space. Substituting (214) into 

(213) yields BSS filtering 

     ˆ Tt t t x AZs AZB x ,   (218)
 

where we have interposed a diagonal matrix Z with pth diagonal element equal to 1 if the pth 

component is to be retained and equal to 0 if it is to be removed. BSS filtering is common practice to 

remove artifacts from the EEG data (e.g., Vigário, 1997; Jung et al., 2000).  

 

Localization of BSS Components 

The vectors ap of the mixing matrix A are the spatial patters associated to the pth source. Taken one by 

one these vectors may be used to create topographic maps or may be fed to inverse solutions, as if they 

were single EEG samples. Note that for inverse solutions treated in chapter III input data must be in 
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common average reference (107), therefore we actually need to feed the inverse solution of chapter III 

with Hap, where H is the centering matrix (89). 

 

Different Approaches for Solving BSS 

It has been known for a long time that in general the BSS problem cannot be solved for sources that 

are Gaussian, independent and identically distributed (iid) (Darmois, 1953). The iid condition implies 

that each sample of the source components is statistically independent from the others and that they all 

follow the same probability distribution. Therefore, in order to solve the BSS problem the sources 

must be either (a) possibly iid, but non-Gaussian or (b) possibly Gaussian but not iid.  

In case (a), one assumes that at most one source is Gaussian and that they are all mutually statistically 

independent. The mutual independence assumption (spatial independence of all pair-wise sources) 

should not be confused with the iid condition (temporal independence of successive samples within 

each source process). Actually, the iid condition implies that no temporal information is used, thus the 

method is efficient regardless the temporal dependence of sources and outputs the same mixing and 

demixing matrix estimation on the data as on any shuffled version of the data. Those methods are 

known as independent component analysis (ICA) (Cardoso, 1989; Comon, 1994; Hyvärinen, 1999; 

Jutten and Hérault, 1991). ICA requires higher order statistics (HOS), explaining why it may succeed 

only if at most one source has Gaussian distribution: in fact Gaussian distributions are fully defined by 

their statistics up to the second order (SOS). The idea of (b) is to break the non-Gaussianity 

assumption. This can be done using SOS statistics only by assuming that source components are all 

pair-wise uncorrelated and that they are not iid, that is, that they possess a temporal structure.  

If these assumptions are fulfilled the separating matrix can be identified uniquely, thus source can be 

recovered regardless the true mixing process (uniform performance property: see for example 

Cardoso, 1998) and regardless the distribution of sources, which is a remarkable theoretical advantage. 

The fundamental question is therefore whether or not the above statistical assumptions fit the EEG 

data. In Congedo, Jutten and Gouy-Pailler (2008) we have reported statistical and neurophysiological 

considerations about the choice of SOS vs. HOS statistics considering the most common kinds of EEG 

data, namely spontaneous, induced and evoked EEG. We have contended that several EEG phenomena 
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are strongly colored23 and/or, since they are episodic or appears in more or less short bursts, their 

energy over time is never constant24 (Lopes da Silva, 2005b; Niedermeyer, 2005 a,b,c;  Steriade, 2005; 

Buzsáki, 2006, Ch. 6, 7). These phenomena include, among others,  

- several kinds of EEG artefacts such as eye-blinks and facial muscular electromyography, 

- several episodic spontaneous EEG phenomena such as sleep spindles (7-14 Hz) (Niedermeyer, 

2005 b; Steriade, 2005), frontal Theta (4-7 Hz) and Beta (13-35 Hz) waves (Niedermeyer, 2005 a),  

- several sustained spontaneous EEG phenomena such as slow Delta (1-2 Hz) waves during deep 

sleep stages III and IV (Niedermeyer, 2005 b), the Rolandic Mu rhythms (around 10 Hz and 20 Hz) 

and the posterior dominant rhythms (in the Alpha range: 8-12 Hz) (Niedermeyer, 2005 a),  

- induced EEG such as ERD/ERS (Pfurtscheller and Lopes da Silva, 2004; Steriade, 2005)  

- evoked activity (ERP: Lopes Da Silva, 2005 b).  

Therefore we have concluded that SOS statistics are appropriate for capturing the relevant information 

contained in most observable EEG phenomena25. Based on these conclusions in the reminder of this 

and next chapter we will focus exclusively on SOS time-frequency approaches, which are well 

established in other technical fields (Belouchrani and Amin, 1998; Pham 2002; Choi et al., 2002; 

Bousbia-Salah et al., 2003). In order to work with SOS statistics we proceed assuming that source 

components are all pair-wise uncorrelated and that either  

 

SOS BSS Assumption 1 (Coloration) 

Within each source component the successive samples are temporally correlated, (Féty and Uffelen, 

1988; Tong et al., 1990, 1991 b; Molgedey and Schuster, 1994; Belouchrani et al., 1997)  

 

and/or 

                                                      

23 “Colored” signals, as opposed to “white” signals, display a non-flat power spectrum. 

24 Signals which energy changes over time are said “non-stationary” 

25 On the other hand HOS are more adapted to capture spikes, sharp waves and spike-wave complexes in 

epileptic disorder (Niedermeyer, 2005 c), vertex waves during sleep (Niedermeyer, 2005 b), and similar 

transient activity with abrupt potential changes. 
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SOS Assumption 2 (Non-stationarity) 

Samples in successive time intervals do not have the same energy (Matsuoka et al., 1995; Souloumiac, 

1995; Choi and Cichocki, 2000; Pham and Cardoso, 2001; Choi et al., 2002).  

 

Identifiability (215) according to these assumption is achieved when all sources taken pair-wise have 

non-proportional power spectrum under assumption 1 (coloration) or when the changes in energy over 

data windows for all sources taken pair-wise is different under assumption 2 (non-stationarity).   

 

BSS Based on the Joint Diagonalization of Two Matrices. 

If sources are uncorrelated and assumption 1 or assumption 2 is verified the model is identifiable in 

closed form. Algebraic solutions to the BSS problem share the same conceptual scheme (Parra and 

Saida, 2003): they are all achieved by a generalized eigenvalue-eigenvector decomposition (GEVD) of 

two square matrices (82), of which one is always the covariance matrix of the sensor measurement 

(95) and the other is a covariance matrix embedding information about the chosen assumption. The 

covariance matrix of the sensor measurement is common to all methods, while the other makes every 

method different.  

 

Closed Form BSS Solutions for Colored Processes 

Molgedey and Shuster (1994) specified the model given by SOS assumption 1. Their algorithm 

consists in jointly diagonalizing the covariance matrix and a lagged covariance matrix with lag τ. 

Alternatively, the same result is achieved by a two-step process analogous to the one used in (83): first 

we find a whitening matrix W (197) such that, for the whitened data Y=WTX it holds true Cy=I. Then, 

by singular value decomposition (SVD) we diagonalize the lagged covariance matrix of the whitened 

data Cy(t-τ)

 
(Chicochi and Amari, 2002, p. 146), or by EVD its symmetric part (24) (Thong et al., 

1991b), or, more, the covariance matrix 
 y t

C , where      t t t   y y y  (Chicochi and Amari, 

2002, p. 120), all leadings to results practically identical under assumption 1. This family of two-step 

algorithms is known as AMUSE (algorithm for multiple source extraction).  
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Closed Form BSS Solutions for Non-Stationary Processes 

To comply with SOS assumption 2, the data is split in two non-overlapping windows X1 and X2. Then 

we compute their covariance matrices, denoted C1 and C2  and the BSS problem is solved as above by 

the GEVD of C1 and C2. Importantly, if the source is active in one interval and completely inactive in 

the other, the obtained filter is optimal (Souloumiac, 1995). Along these lines see the discussion on 

super-efficiency in Pham and Cardoso (2001). In the same fashion, the time intervals X1 and X2  may 

pertain to two different experimental conditions or two different classes in BCI. In this latter case this 

procedure is equivalent to the CSP. It should be noted however that in general the CSP is not a BSS 

(waveform-preserving) decomposition. In order to extract physiological sources the appropriate choice 

of X1 and X2  is crucial; EEG data within each window must be stationary, which for EEG implies the 

choice of short windows. For the CSP usually a large amount of data is included in X1 and X2 in order 

to obtain good generalization to unsees data. This ensures that the ratio of the variance between the 

classes is maximized in general, but does not necessarily succeed in recovering the sources. 

 

BSS by Approximate Joint Diagonalization of a Matrix Set 

More recent research has generalized and extended the GEVD methods by Approximate Joint 

Diagonalization (AJD) of several matrices (Cardoso and Souloumiac, 1993; Pham, 2001b; Pham and 

Congedo, 2009; Ziehe et al., 2004; Vollgraf and Obermayer, 2006; Dégerine and Kane, 2007; Theis 

and Inouye (2006); Tichavsky and Yeredor, 2009), which we have considered in chapter IV. In this 

chapter we treat the reduced problem (167). Given a set of covariance matrices  1, ,k KC C C , the 

AJD seeks a matrix T
B such that the products 

T
kB C B  are as diagonal as possible k{1,…,K}. 

Given an appropriate choice of the diagonalization set kC , such matrix B  is indeed an estimation of 

the demixing matrix in (214) and one obtain an estimate of the mixing matrix as per (217).  The joint 

diagonalization is applied on matrices that change according to the assumptions about the source, 

exactly as in the case of the diagonalization of two matrices. However adopting AJD the changes are 

more likely to be detected. These extensions have better performance because they make use of more 

available sample statistics of the data. Hence, the estimation of the mixing process is more robust. 

Also, the AJD extensions are more robust to noise as none of the matrices in the diagonalization set is 

diagonalized exactly, so different noise structures in different matrices do not distort as much the 
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solution. Nonetheless, the additional assumption remains essentially the same and each method in turn 

fails whenever its peculiar additional assumption is not matched.  

 

The SOBI AJD Methods 

The SOBI method of Belouchrani et co-workers (1997) is an extension of the AMUSE algorithm 

obtained by AJD of several autocorrelation matrices with several τ estimated on whitened data. Very 

similar, the method of Ziehe and Müller (1998) seeks a non-orthogonal AJD of several autocorrelation 

matrices with several τ estimated on raw data.  

 

The Fundamental Theorem of AJD-based BSS 

In order to make purposeful use of SOS-based AJD methods let us consider precisely the necessary 

and sufficient conditions for source identifiability (215).  They are described by the fundamental AJD-

based BSS theorem (Afsari, 2008; see also Aïssa-El-Bey et al., 2008): let matrix set {S1,…,Sk} hold 

the K (unknown) covariance matrices of sources corresponding to the covariance matrices included in 

the diagonalization set {C1,…,Ck}. Denote by src,k the (r,c) element of Sk (entry at the rth row and cth 

column). The diagonal elements of these matrices src,k ,r=c, hold the source variance. The off-diagonal 

elements src,k ,rc, are null as sources are assumed to be uncorrelated. Let 

 
11,1 11,

1

,1 ,

, ,

K
T

P

PP PP K

s s

s s

 
 

   
 
 

Ψ ψ ψ    (219) 

be the matrix formed by stacking one below the other the P row vectors 1 , ,T T
Pψ ψ  constructed as 

shown in fig. 6.1. Each row vector of Ψ is 

 ,1 ,, ,T
p pp pp Ks sψ  ,          (220) 

thus it holds the profile along the diagonalization set for each source, with p{1,…,P} and P the 

number of estimated sources. For instance, if the matrix in the diagonalization set are lagged 

covariances the profile is the autocorrelation of the sources. If the matrices are Fourier cospectra the 
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profile is the source power spectrum, etc. The fundamental AJD-based BSS theorem says that the pth 

source can be separated as long as its profile vector ψp is not collinear with any other vector in Ψ 26. 

Said differently, the wider the angle between ψp and any other vector in Ψ, the greater the chance to 

separate the pth source. Importantly, Even if two vectors are collinear, the other sources can still be 

identified. The theorem says that sources will be identified if their profile is non-proportional to the 

profile of any other source. Therefore, to succeed with AJD-based method we have to create 

diagonalization set with this characteristic. In order to do so we first specify a general framework 

combining the two SOS assumptions. 

 

 

 

Figure 6.1: Graphical illustration of the construction of the source energy profile vectors ψp. 

 

The AJD of Fourier Cospectra (AJDC) Algorithm 

The model imposed by the statistical assumptions often is too restrictive for practical purposes. For 

instance, whether several sources may well have different power spectra, often they do not have all 

different power spectra. This is the case for example of the several occipital dominant rhythms that 

can be found, which have very close spectral profile (Nunez, Wingeier and Silberstein, 2001). 

Similarly, non-stationarity may be present or not and sometimes it is difficult, if not arbitrary, to select 

                                                      

26 Two vectors are collinear if they are equal out of a scaling factor, that is, if the profile is proportional. 
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time windows for which the energy is different. To overcome these difficulties we may want to 

combine the two basic theoretical frameworks for working in a SOS framework, the coloration and the 

non-stationary in such a way that identifiability is reached whenever either assumption is respected 

for a given source to be extracted. Actually, the AJD can be easily and conveniently transposed in the 

frequency or time-frequency domain, whether we perform the frequency expansion for several time 

segments. In fact, applying to (213) any invertible and linearity-preserving transform T leads to 

(Congedo, Gouy-Pailler and Jutten, 2008)  

   ( ) ( )t tx A sT T ,   (221) 

which preserves the mixing model. The basic idea is to estimate several Fourier cospectral matrices 

(85) on several time windows, classes or experimental conditions in order to capture both the source 

spectra and non-stationarity profile. We will use Fourier cospectral matrices for a range f{1,…,F} of 

discrete frequencies and for a range i{1,…,I} of temporal windows, classes and/or experimental 

conditions. The epochs on which the cospectra are estimated should be short enough to capture the 

energy variations over time and wide enough to allow satisfactory estimations for each of them 

separately.  

Notice that working in the frequency domain is advantageous for several reasons: first, covariance 

statistical estimations in the time domain are distorted for temporally correlated processes like EEG 

(Beran, 1994). Second, estimating cospectral matrices in the frequency domain is computationally 

more efficient than estimating delayed covariance matrices in the time domain27. Finally, the AJD of 

cospectra has been connected to the Gaussian mutual information criterion (Pham 2001a, 2002). This 

places the ensuing method at the heart of the BSS theory and steers toward the Cramér-Rao bound 

(Pham, 2001a; Pham and Cardoso, 2001) when the sources are Gaussian, a working assumption that 

we will make also in chapter VIII in the framework of Riemann geometry. An example of applying the 

AJD of several cospectral matrices to the continuous stream of EEG is shown in fig. 6.2. 

 

                                                      

27 Fourier cospectra estimations may take advantage of efficient split-radix fast Fourier transform (FFT: Cooley 

and Tukey, 1965) algorithms such as FFTW3 (Frigo and Johnson, 2005);  in typical situations we may expect 

the computation complexity of Fourier cospectral matrices be 20 to 100 times smaller as compared to lagged 

covariance matrices. 
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Figure 6.2: On the top about 10s of EEG continuous  recording obtained on a 

26 y.o. male healthy individual with 19 electrodes placed according to the 

international 10/20 system (Jasper, 1958). On the bottom the sources obtained 

by AJDC. Matrix B is found as the approximate joint diagonalizer of all 1 -Hz 

spaced cospectral matrices in the frequency range 1-28 Hz. With this setting 

the AJDC is exploiting only the coloration assumption.  Cospectra are 

estimated with a 50% overlapping sliding window according to the classical 

method attributed to Welch (1967). Next to each traces there is the 

corresponding power spectrum in the range 1-32 Hz and the autocorrelation 

function with lags 0 to 1s. One may notice the first source, capturing the eye 

blinks (notice that the amplitude and the sign of the BSS solution is arbitrary, 

see (215)), sources 8 and 9 holding alpha rhythms and sources 16 and 17 

holding EMG activity visible in the EEG recording at electrodes T3 and T4.  
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The implementation of AJDC 

Let us see how to implement the AJDC algorithm (Approximate Joint Diagonalization of Cospectra) 

in practice. One can obtain a solution by simply finding the AJD matrix of the cospectral matrix set 

 1, ,k KC C C , as  

 T

kAJDB C    (222) 

Such a one-step procedure performs well when the number of electrodes is not large (say, < 20). 

Otherwise the covariance matrix being ill-conditioned, that is, with several eigenvalues close to zero, 

the AJD algorithm may not converge appropriately. For this reason we always adopt a two-step 

procedure, as in general it is done in BSS methods:  

 

Algorithm (223): AJDC (AJD of Cospectral Matrices). Optimization (167). 

Given diagonalization set  1, ,k KC C C  indexed by k{1,…,K}, let  

TOT kk
C C

           (224) 

And  

1
2T

TOT



W C   

its whitening matrix (197). Now partition the whitening matrix such as  

 
TT W F N

,           (225) 

where FTPxN holds the first P rows of WT (signal subspace) and NT the remaining rows (noise 
subspace). The AJD problem on the reduced and whitened data is now  

 T T
kAJDE F C F

.          (226) 

The solution (demixing matrix) is 
T T TB F E PxN       (227)  

and its inverse (mixing matrix) is    
1

T T
 

A E F NxP       (228) 
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Things to know working with AJDC 

 

The choice of the AJD algorithm 

Note that TOTC  (224) is the sum of cospectral matrices at several frequencies, time intervals, classes, 

experimental conditions, etc., thus WT it is a “global” whitening matrix. One thing should be noticed at 

this time; it is known that pre-whitening and then constraining the ensuing AJD solution ET (226) to be 

orthogonal jeopardizes the separation performance due to the estimation error of the data covariance 

matrix and noise (Cardoso, 1994; Yeredor, 2000; Pham, 2001a). Exact diagonalization of the 

covariance matrix is required for the orthogonal constraint on ET to be valid; however it implies the 

diagonalization of the estimation errors as well, which distorts the solution. The problem is solved 

simply by not constraining the ensuing AJD solution (226) to be orthogonal. Whereas orthogonal AJD 

solutions are favorable in term of convergence and stability, non-orthogonal AJD algorithms performs 

well when the covariance matrices are well conditioned and when the solution is close to the 

orthogonal form, which is the case after whitening. This is the reason why this two-step procedure is 

always preferable. 

 

Size and Content of the diagonalization set 

The key for succeeding with BSS by AJD is the definition of an adequate size and content of the 

diagonalization set; it should include matrices estimated on data as homogeneous as possible for each 

matrix, with enough samples to allow a proper estimation, in frequency regions and time blocks when 

the signal-to-noise ratio is high and with an high probability to uncover unique source profiles. Table 

6.1 reports useful information to define an appropriate diagonalization set so as to ensure 

identifiability of sources. 

It is also important to consider that the number of matrices in the diagonalization set should be high 

enough to help non-collinearity of source profiles (219). One may want to have at least as many 

matrices in the diagonalization set as sources to be estimated, but this is not strictly necessary. On the 

other hand one should not try to increase the number of matrices indefinitely to the detriment of the 

goodness of their estimation, i.e., selecting too many discrete frequencies or blocks of data that are too 

shorts. 
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Table 6.1: Criteria to achieve identifiability of sources in BSS methods based o n AJD of SOS. 

Assumption 

on the 

sources 

Covariance Matrices 

(CM) Estimation 

What is the source 

profile 

Sufficient 

condition for 

Identifiability 

Examples of data 

Coloration i. Lagged Covariance 

matrices, 

ii. Fourier Cospectral 

Matrices, 

iii. CM estimated with a 

filter bank 

i. The source 

autocorrelation, 

ii. The source power 

spectrum  

iii. as in ii. 

The power 

spectrum of the 

source is non-

proportional to the 

power spectrum of 

any other sources 

Spontaneous oscillation with 

characteristic power spectrum 

such as posterior dominant 

rhythms (Alpha), 

Somatosensory Mu rhythms, 

frontal midline Theta, Beta 

bursts, etc. 

Non-

Stationarity 

CM estimated on 

 

j. Different blocks of 

data 

jj.Different 

experimental conditions 

jjj. Different classes 

The variation of the 

source energy along 

the  

j. Blocks or 

jj. Experimental 

conditions or 

jjj. Classes 

The variation of the 

source energy along  

the  

j. Blocks or  

jj. Experimental 

conditions or 

jjj. classes do not 

correlate with the 

same variation of 

any other sources 

- Blocks of data according to 

physiological reactivity of EEG 

oscillations (e.g., eyes-close vs. 

eyes-open) 

- CM estimated before and 

after the event in ERD/ERS  

- CM estimated on different 

peaks in ERP (after averaging 

the ERP) 

- Active vs. Control condition, 

… 

 

 

Weighting matrices in the diagonalization set 

Particularly unproductive is the inclusion in the set of matrices with small signal-to-noise ratio. Such 

matrices are nearly diagonal, as in general the noise is little spatially correlated. For continuous 

recording EEG, matrices at high frequencies are nearly diagonal. Above 20 Hz the EMG becomes 

predominant (Whitham et al. 2007) and EMG is little spatially correlated. However the higher 

informative frequency depends very much on the data and instrumentation at hand. To make sure that 

we diagonalize matrices holding relevant information we normalize all cospectra in the 

diagonalization set to unit trace and we weight them by a non-diagonality function (Congedo, Jutten 

and Gouy-Pailler, 2008) such as  

2

,

2

,

1
( )

1

rc k

r c
k

rc k

r c

c

N c
 









C    (229) 

where 
,rc kc  is the entry of matrix 

kC  at row r and column c and N is the size of the matrix (number of 

channels). For a positive definite matrix, non-diagonality measure (229) is bounded inferiorly by zero, 
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for a diagonal matrix, and superiorly by 1.0, for a uniform matrix. Thus the higher the non-diagonality 

function the higher the weight. Noise-suppression may be promoted by zeroing the weights above a 

cut-off frequency. According to our experience, such a weighting function generally allows 

satisfactory source estimation with EEG. We have observed that the non-diagonality function (229) is 

highly correlated with the overall energy (trace of the cospectral matrices), but is not as much 

influenced by the dominant occipital rhythms (8-12 Hz). Using a non-diagonality weighting function 

is in line with previous works in time-frequency BSS where the diagonalization effort is concentrated 

on high-energy time-frequency regions (Belouchrani and Amin, 1998). 

 

Dimensionality reduction 

Finally, notice that dimensionality reduction by truncated pre-whitening (226) loses some of the 

variance of the data. If 
1 1

2 2T T

TOT

 

 W C UΛ U
 
is the complete whitening matrix and TOT nn

   the 

total variance of the data, the truncated whitening matrix T
F  (226) retains exactly p TOTp

   of 

the variance and the representation error is 
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 
 .          (230) 

This is the amount of variance (with respect to the total) that will be lost by truncated pre-whitening. 

In general, loosing up to 1% of the variance is a safe strategy, as only noise is removed, whereas the 

reduced dimension ensures that the reduced covariance matrix is well-conditioned. 

 

Discussion on SOS-based BSS Methods 

The possibility of recovering both the waveform and the spatial pattern of EEG unknown source in a 

blind fashion is with no doubt a seducing ability of BSS. Nonetheless, besides the correct modeling of 

the fundamental assumptions and the correct algorithmic implementation, which is never completely 

automatic (e.g., the definition of proper weighting for continuously recorded EEG), the linear BSS 

instantaneous model (212) makes a number of restrictive general assumptions that are rarely checked 

or investigated. We here discuss them: 

 One general assumption is that the number of sources is not greater than the number of 

sensors. When this is not the case (undetermined case) it is not possible to solve the BSS problem 

unless other constrains on the sources are introduced (e.g., sparsity: Gribonval and Lesage, 2006). In 
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practice, with truncated pre-whitening chosen so as to yield a small representation error (230) we limit 

the estimation to P sources, to which the remaining sources, all at noise level, will be mixed. 

 

 A related assumption for the exactly determined model is that the mixing matrix A in model 

(213) is full-column rank. With truncated pre-whitening we assume that it has rank P. The columns of 

A are scalp spatial pattern vectors of the source components and the more the electrodes are close to 

each other, the more those vectors will be collinear. Consequently, it is always better to space the 

electrodes as much as possible on the scalp28.  

  

 One may also wonder if during the analyzed time interval the number of active dipoles is 

stable (Li et al., 2006). In practice, brain electrical “source components” are macroscopic electric 

dipole with relatively high SNR formed by the synchronous activity of pyramidal cells over large 

cortical areas (Nunez and Silberstein, 2000; Nunez and Srinivasan, 2006). For sufficiently small time 

intervals one may assume that such high-SNR layers are limited in number. Other concurrently active 

cortical columns may be ignored if their current is comparatively negligible and it does not matter if 

the dipoles are active throughout the time interval or intermittently (actually such non stationarity 

signature can be explicitly exploited). Henceforth, assuming at least as many sensors as relevant 

sources does not appear problematic if we consider a sufficiently small time interval. 

  

 No definitive solution exists to the problem of estimating the number of source components in 

the overdetermined case (more sensor than source components). Whereas correct dimensionality 

reduction by pre-whitening (226) allows exact determination, the amount of dimensionality reduction 

is somehow arbitrary and over-reduction must be avoided since in this case identifiability is lost and 

several generators are extracted mixed in one component. A safe strategy is to identify a few 

meaningful components and keep reducing the dimension until those components are not distorted 

(step-down).  

 

 Several restrictive assumptions are made by model (213) also on the nature of brain electric 

fields. One may ask whether it is reasonable to assume that dipoles keep fixed orientation and location 

in the analyzed time interval. For a fixed spatial sensor configuration with respect to the brain, which 

                                                      

28 This suggests that placing many electrodes closely spaced above the brain region of interest, as it is sometimes 

done, is not a convenient strategy if multivariate statistical methods are to be employed. This is true for all 

source analysis methods considered in this manuscript. 
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is the case of a single EEG recording session, the orientation and location of electric dipoles are fixed 

by the anatomy and physiology of the cortical convolution forming the dipole. However, the dipole 

approximation becomes untenable for sources distributed over large areas (Malmivuo and Plonsey, 

1995; Nunez and Srinivasan 2006). Also, there is evidence of traveling waves phenomena in the brain; 

long wavelength waves originating in a region and propagating via cortico-cortical connections to 

other regions  (Lopes da Silva and Van Rotterdam, 2005; Srinivasan et al., 2006; Thorpe et al., 2007).  

 

 Also, the longer the time interval under analysis the less tenable is the stationarity assumption, 

which is basic to SOS estimations (Hyvärinen et al., 2001, p. 49). At the same time one must take care 

to retain enough data points for analysis in order to avoid overfitting (Müller et al., 2004). Särelä and 

Vigário (2003) reported that using small time intervals the output may contain artefacts that are not 

present in the data. For HOS methods artifacts takes the form of artificial spikes and bumps, whereas 

for SOS methods they take the form of artificial sinusoid waves. This should be kept in mind while 

checking and validating the BSS output. Meinecke et al. (2002) and Müller et al. (2004) addressed the 

problem of obtaining robust and reliable source estimates. They proposed a resampling-based methods 

consisting in running the algorithms on different time intervals and retain only the source processes 

that can be found consistently.  

 

In conclusion, although statistical estimations improve with the number of samples we advocate the 

use of multiple time intervals as short as possible (enough to avoid overfitting while justifying the BSS 

method assumptions, say, 8 to 40 seconds, depending on the data), modeling appropriately the 

stationarity within intervals while exploiting explicitly the non stationarity between intervals. In this 

sense an efficient time-frequency approach appears a precious option. 
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EXAMPLE STUDIES USING AJDC 

 

We have presented a general framework to address a multitude of experimental EEG data by means of 

an unique algorithm: AJDC. In this section we show several examples of the use of AJDC for EEG 

data analysis and classification. Aim of this section is on one hand to show the power and flexibility of 

the method, on the other to present some of the research that we have been carried out. 

 

Spontaneous activity 

Typically, SOS BSS methods are used on continuously recorded EEG (spontaneous activity). As an 

example in Van der Loo et al. (2007) we have checked the validity of source extraction thanks to a 

joint EEG and ECoG (Electrocorticogram) recording. A 27 y.o. female patient suffering from right 

unilateral white noise tinnitus was implanted with two arrays of eight extra-dural ECoG electrodes 

posed on the secondary auditory cortex. The exact location was established by means of fMRI BOLD 

signal change associated with the tinnitus pitch. A neuronavigation system crossing fMRI and MRI 

information was used during surgery. The standard 19 EEG electrodes according to the 10/20 system 

(Jaspers, 1958) were recorded synchronously. Importantly, all leads, both EEG and ECoG, were 

referenced at the same location (vertex).  

The AJDC BSS algorithm was applied on 184 seconds artifact free EEG data29. Since no information 

was available about the presence and absence of the target rhythm during recording, only assumption 1 

(coloration) is exploited. As suggested by the non-diagonality function (229), the non-diagonality of 

Fourier cospectra for scalp EEG data dropped significantly after 28 Hz. Accordingly, AJDC consisted 

in the AJD of all 1Hz-spaces cospectral matrices in the range 1-28 Hz. As many sources as sensors 

were extracted (P=N=19). 

Figure 6.3 show the main results. This result has recently been replicated on six more Tinnitus patients 

with ECoG electrodes placed in various locations. The bigger study with these six further subjects is 

currently under submission (Van Der Loo et al., submitted).  

 

                                                      

29 Typically 20 to 40 seconds of data suffice to AJDC.  
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Figure 6.3: On the left the computerized tomography (CT) scan showing the 

emplacement of the ECoG electrode arrays and the reference on the vertex. On the 

right, about seven seconds of ECoG recording at the top 8-electrode array (e1-e8) and 

below the synchronous estimations of four of the sources obtained by AJDC. The first 

source clearly correlates very strongly with all 8 ECoG recordings. Source localization 

by means of model-driven sLORETA (121) pointed to the left temporal lobe as the 

location of this source. Results using the bottom ECoG array were very similar. 

 

Induced activity 

Since it can model both coloration and non-stationarity, the AJDC method is particularly suited to 

analyze induced activity like event-related de/synchronization (ERD/ERS). We have used it for motor 

imagery-based brain-computer interfaces (BCI). Motor imagery engenders frequency-specific ERD of 

the mu/beta rhythm over delimited areas of the sensory-motor cortex, corresponding to the body part 

interested by movement imagination, followed by a beta ERS, named “beta rebound” (Pfurtscheller 

and Neuper, 2001; Pfurtscheller et al., 2006). The spatial specificity of the ERD and ERS for different 

body parts is usually exploited by a common spatial pattern filter (200). This is still today considered a 

state of the art approach since it performs pretty well against competitors and is relatively simple 

(Lotte et al., 2007). In order to capture the source energy diversity in ERD and ERS (non-stationarity 

framework) in Gouy-Pailler et al. (2010) we have partition the 1s trials of motor imagery in four 

250ms intervals estimating cospectral matrices in the mu and beta frequency range separately for these 

intervals. The AJD of these eight matrices was performed to extract P=N sources. A mutual-

information criterion between the source and the classes (Grosse-Wentrup and Buss, 2008) was used 

to select eight sources related to the ERD/ERS and the log-power of these sources was used in a 

logistic regression classifier. The method was applied to dataset 2a of BCI Competition IV (2008), 

provided by our collaborators working at the Institute for Knowledge Discovery (Laboratory of Brain-
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Computer Interfaces), Graz University of Technology. In the data set nine subjects were involved in a 

four-class two-session motor imagery-based BCI experiment. The four classes were right and left 

hand, feet, tongue. EEG data was acquired at 22 electrodes concentrated on and around the sensory-

motor areas. The performance of the method was tested against the CSP using a cross-validation 

procedure on the two sessions separately. No difference between sessions was found, suggesting that 

the data were homogeneous in the two sessions. However, the AJD method proved superior to the CSP 

aggregating the data of the two sessions (t(17) = 2.87; p = 0.027). We then analyzed the session-to-

session transfer ability of the filters. Training was performed on each one of the session and the test on 

the other session. In this case also the AJD method proved superior to the CSP (t(17) = 2.98, p = 0.022). 

Importantly, we have shown that randomizing the indices of the data intervals before computing the 

averages, effectively disrupting the estimation of the changes in source energy, the advantage of the 

BSS method disappeared, proving that the superiority we have found springs indeed from the correct 

exploitation of ERD/ERS non-stationarity, which the CSP cannot do. 

 

Evoked activity 

We here report an unpublished study recently submitted for publication as a book chapter (Congedo, 

Jutten and Rousseau, in press). The study demonstrates the use of AJDC for the simultaneous 

extraction and analysis of an event-related potential and an event-related synchronization related to 

error detection. This study is provided as a practical example of BSS analysis for the general AJD-

based BSS framework. This study is reported in several details, so as to illustrate the actual 

involvement in this kind of experimentation and data analysis. Also, by reporting in addition the 

analysis in the sensor space we can illustrate the advantage of EEG source analysis. 

 

Introduction 

ErrPs are a family of event-related potential (ERP) that can be elicited after the commission of an 

error, firstly reported in Miltner, Braun and Coles (1997) as associated to receiving external negative 

feedback after error commission. This feedback error-related potential (ErrPf) is characterized by a 

negative deflection peaking between 250 and 400 ms with a fronto-central scalp distribution. The 

authors named it the feedback-related negativity (FRN) and put it in relation with the response error 

related negativity (ERN) that had been previously reported (Felkenstein et al., 1991; Gehring et al., 

1993), also characterized by a negative deflection. Initially the ErrPf has been studied prevalently in 
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the case of gambling tasks with monetary gain and loss. More recently it has attracted much attention 

in the brain-computer interface (BCI) community because its on-line detection provides a unique 

opportunity to automatically correct erroneous BCI operations, effectively increasing the consistency 

and transfer rate of a BCI system (Farquhar and Hill, 2013). In order to do so accurate on-line single-

trial ErrP detection is necessary.  

 

Experimental design  

We study the feedback related potential in the case of a memory task, with no monetary gain or loss. 

The feedback is returned when the subject gives the answer and no reward is given to the subject 

except a score, thus our participants have no other interest besides their own performance. Such an 

experimental protocol allows to study the ErrPf in a real "error versus correct" condition. The protocol 

we use is a memory task inducing a high cognitive load. The subject is continuously engaged in a 

demanding task (and not only on the feedback presentation), mimicking the actual conditions of a BCI 

use, where focus, concentration and attention are essential requisite for successful BCI operation. 

Then, in this study the feedback corresponds to the actual performance achieved in the task, again 

approximating the actual operation of a BCI. Finally, the memory task continuously adapts to the 

ability of the participants during the whole experiment. This ensures that the cognitive load is 

approximately constant across the duration of the experiment, that it is comparable across individuals 

regardless their memory span and that the error rate across subjects is approximately equal. This latter 

point is particularly important in ErrP studies since it is known that he error rate affects the ErrP ([8]). 

In this study the adaptive algorithm is tuned to engender an error rate of about 20%, which amount 

approximately to the reasonable accuracy of a reactive BCI operation in real-world situations. 

 

AJDC analysis 

Some of the previous studies on single trial ErrP classification (correct vs. error) have reached 

encouraging results (around 70% of overall accuracy) using only little a-priori knowledge on this 

potential. As usual, electrophysiological knowledge about the investigated phenomena can be used to 

select more relevant and robust features for the purpose of single-trial on line detection. Previous 

studies showed that the ErrP can be characterized both in the temporal domain as an ERP (time and 

phase-locked event) and as an event-related synchronization, or ERS (time but non-phase-locked 

event). The ERP is characterized by a negative deflection, named Ne, sometimes followed by a 

positive one named Pe (Gentsch, Ullsperger and Ullsperger, 2009; Steinhauser and Kiesel, 2011). The 
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ERS is characterized by an increased oscillatory activity in the theta frequency (4-7.5 Hz) occurring 

approximately in the same time window and spatial location as the Ne (Trujillo and Allen, 2007).  

Source localization of the FRN using dipole analysis has suggested generators in the anterior cingulate 

cortex (ACC) and the supplementary motor area (Gehring and Willoughby, 2002; Miltner, Braun and 

Coles, 1997). Similar results have been obtained for the ErrPr.  

Hereby we apply a sharp BSS approach with the aim to disentangling the sources responsible for the 

ERP and the ERS; if this proves feasible, then the ERP and ERS components will yield independent 

features to feed the classifier, hence potentially increasing the on-line accuracy. 

As a first objective we identify the different components of the ErrP along dimensions time, space and 

frequency by means of a multivariate analysis both in the sensor space and in the source space. We 

jointly estimate the brain sources at the origin of the ERP and ERS components and assess their 

different role in error reaction.  

Finally, we look at how these results impact on ErrP single-trial classification, which is the essential 

step in integrating ErrPs in BCI systems. 

 

Method 

Participants 

22 healthy volunteers participated to this experiment. All subjects were BCI-naive at the time of the 

experiment and none of them reported neurological or psychiatric disorders in their lifetime. Due to 

the presence of excessive artifacts in the EEG data, three subjects were subsequently excluded from all 

analyses, leaving M=19 participants, of which 9 female and 10 male, with age ranging from 20 to 30 

with a mean and a standard deviation of 24 and 2.52, respectively. All data was acquired in our 

laboratory in Grenoble. 

 

Trials 

The experiment involved two sessions lasting altogether approximately half an hour. Each session 

consisted of six blocks of six trials, for a total of 6x6x2=72 trials. Participants seated comfortably 

80cm in front of a 21-inch computer screen. Nine square boxes were arranged in a circle on the screen. 

Each trial consisted of the same memory retrieval task: the trial started with the display of the current 
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score for 3000ms (initialized at zero) followed by a fixation cross, also displayed for 3000 ms (fig 

6.4a). Then the memorization sequence started; each memorization comprised a random sequence of 

two to nine digits appearing sequentially in random positions, with each digit of the sequence 

randomly assigned to a different box for each sequence (fig 6.4b). Subjects were instructed to retain 

positions of all digits. At the end of the sequence the target digit (always contained in the previous 

sequence) was displayed (fig 6.4c) and subjects had to click with the aid of a mouse on the box where 

it had appeared. Once the subject had answered, the interface waited for 1500 ms in order to avoid any 

contamination of ErrP by beta rebound motor phenomena linked to mouse clicking (Pfurtscheller and 

Lopes da Silva, 1999). Then, if the answer was correct, the chosen box background color turned into 

green ("correct" feedback), otherwise it turned into red ("error" feedback). Subjects were then asked to 

report if the feedback (error/correct) matched their expectation by a mouse click (“yes”/ “no”) (fig 

6.4d). Following this answer a random break of 1000 to 1500ms preceded the beginning of the new 

trial.  

 

 

Figure 6.4: Screen shots from the experiment representing different steps of the trials. 

a): Fixation cross. b): One digit appearing in the memorization sequence. c): Target 

digit appearing. d): Feedback report question: 'Vous attendiez-vous à ce resultat' = 

'Did you expect this result?', 'Oui'='Yes' and 'Non'='No'.  
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In order to keep the subjects motivated throughout the experiment, the accumulated score was 

computed at the beginning of each trial. When subjects localized correctly the target digits their score 

increased, otherwise, it remained unchanged. The number of digits in the sequence was always 

between two and nine, fixed within blocks and updated, at the beginning of each block, according to 

the change in performance from the block just finished and the previous one, as assessed on-line by 

statistical t-tests. The first block started always with four digits for all subjects. The parameters of the 

adaptation were set thanks to a pilot study and a computer simulation and were chosen to yield about 

20% of errors, regardless the working memory ability. Moreover, our learning approach is capable of 

adapting to fatigue as well as other possible nuisance intervening during the experiment. A random 

rest break was allowed between blocks, during which the boxes performed a colorful animation 

chosen each time at random among four preset animations. Between the two sessions the screen was 

shut down to allow a rest break of 2 - 3 minutes. 

 

Data acquisition 

EEG recordings were acquired from N=31 silver/chloride electrodes positioned according to the 

extended 10/20 system (FP1, FPz, FP2, F7, F3, Fz, F4, F8, FT7, FC3, FCz, FC4, FT8, T7, C3, Cz, C4, 

T8, TP7, CP3, CPz, CP4, TP8, P7, P3, Pz, P4, P8, O1, Oz, O2) with the aid of a standard elastic cap. 

Both earlobes, digitally linked, were used as electrical reference. The ground sensor was positioned on 

the forehead. The impedance of each sensor was kept below 5k. The EEG was band-pass filtered in 

the range 0.1-70 Hz and digitized at 500 Hz using the Mitsar 202 DC EEG acquisition system (Mitsar 

Co. Ltd., Saint Petersburg, Russia). During recording, the stimulation program continuously sent to the 

Mitsar system triggers to track precisely all event onsets for each trial.  

 

Preprocessing 

Data were filtered in the 1-40 Hz band-pass region using an order four Butterworth FIR filter with 

linear phase response in the band-pass region. Ocular artifacts were extracted using the SOBI 

algorithm (Belouchrani et al., 1993) available in the EEGLAB toolbox (Delorme and Makeig, 2004). 

One EOG source corresponding to eye-blinks was suppressed for each subject. It was manually 

selected using both the temporal shape of the source and its topography. All other artifacts were left 

into the signal, so as to approximate the conditions of on-line analysis of EEG data acquired during 

BCI operation. 
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Analysis in the sensor space 

ERPs were analyzed contrasting the average potential obtained from each subject at each electrode and 

time-sample. ERS were analyzed contrasting the average time-frequency map obtained on each trial 

from each subject at each electrode. In order to compute ERS we employed a multi-tapering Hanning 

sliding window (frequency dependent, with the taper equal to 4 cycles for each frequency) over the 2-

32 Hz band-pass region using a 1-Hz step, as implemented in the Fieldtrip software (Oostenveld et al., 

2011). ERS were computed on time window [-0,5s 1,2s] using a time step of 0,03s and a baseline 

defined as [-1s 0s] pre-stimulus.  

The statistical analysis in the sensor space for contrasting “error” vs. “correct” trials needs to be 

performed for each electrode, discrete frequency and time segment in the case of ERS and for each 

electrode and time segment for ERP data. In order to account for the extreme multiple-comparison 

nature of the test we employed a permutation strategy. The test chosen is a slight modification of the 

supra-threshold cluster size permutation test originally proposed for neuroimaging data by Holmes et 

al. (1996). Here the statistic is not the supra-threshold cluster size, but the supra-threshold cluster 

intensity, defined as the sum of the t-values within the supra-threshold clusters. As compared to the 

test described by Holmes et al. (1996) such a statistic is influenced not only by the spatial extent of the 

clusters, but also by the strength of the effect. The test is sensitive to effects that are contiguous in 

space (adjacent electrodes), frequency and time, in line with physiological considerations. The family-

wise error rate for multiple comparisons was set to 0.05, meaning that the probability of falsely 

rejecting even only one hypothesis is less than 0.05. All permutation tests were approximated by the 

use of 5000 random permutations. 

  

Analysis in the source space 

As we have seen BSS computes a weighted sum (linear combination) of the signal obtained at each 

electrode, isolating delimited dipolar sources from each other. We apply here the AJDC method 

introduced in this chapter adapting it to ERP data. Our goal is to separate the source of the Ne (ERP) 

and the source for the theta ERS. We need to separate them one from the other, but also from 

background EEG activity. For our purpose we need to include in the diagonalization set matrices 

holding  

a) the spatial structure of the ERP component,  

b) the spatial structure of the ERS component, as well as  
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c) the spatial structure of the spontaneous EEG oscillations and persistent artifacts such as lateral and 

horizontal eye movements, jaw muscle contractions, etc.  

We then put into practice the guidelines provided in table 6.1.  

For (a) and (b) we compute the relevant covariance matrices both on error trials and correct trials so to 

exploit variations of source energy between the two conditions. For the ERP components (a) we 

estimate the covariance matrix of the average ERP in the three time windows were the ERP analysis in 

the sensor space revealed significant results (see “result” section). Covariance matrices were 

separately computed for error and correct conditions, providing 3x2=6 matrices. These six matrices 

provide unique source energy profile about ERP that have different potential in error vs. correct 

trials.  

For the ERS component (b) we estimate the averaged covariance matrix in the time-frequency region 

were the sensor space analysis revealed significant results (see “result” section). These matrices were 

computed as the covariance matrices of the EEG filtered in the frequency band of interest. Again, 

matrices were computed separately for error and correct conditions, providing two additional matrices. 

These two matrices provide unique source energy profile about ERS that display different power in the 

theta band in error vs. correct trials30.  

To separate possible sources of ERP and ERS from spontaneous EEG oscillations and artifacts (c) we 

include in the set all co-spectral matrices (Bloomfield, 2000) of the signal during the fixation cross 

sequence in the frequency range 2-20 Hz using a frequency step of 2 Hz, providing 10 additional 

matrices. These latter 10 matrices provide unique source energy profile to separate all spontaneous 

sources having non-proportional power spectrum.  

In summary, our BSS algorithm jointly diagonalizes a total of 18 matrices. We define an exactly 

determined BSS model, that is to say, we estimate as many sources as electrodes (N=P=31). For 

solving the approximate joint diagonalization we employ the iterative algorithm proposed by 

Tichavsky and Yeredor (2009), which is fast and in our long-lasting practice has proven robust.  

                                                      

30 Notice that matrices for the ERP and the ERS components are substantially different: for the ERP components 

EEG trials are averaged before computing the covariance matrix (thus only both time-locked and phase-locked 

signals are preserved), while for the ERS components trials are averaged only after computing covariance 

matrices on single-trial data (thus non-phase-locked nor time-locked signal are preserved). 
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Once estimated the 31 sources, they were inspected analyzing their ERP, ERS, topographies and the 

mutual information criterion between the source and the error class (Grosse-Wentrup and Buss, 2008). 

Meaningful sources were localized in a standard brain using the model driven sLORETA inverse 

solution (120). Source localization was conducted on each participant separately, normalized to unit 

global current density (the input of the inverse solution is a vector estimated by BSS up to a scale 

indeterminacy) and summed up over participants in the brain space. 

 

Classification of single trials 

For classifying single trials, data were band-pass filtered using an order four Butterworth FIR filter 

with linear phase response between 1-10 Hz for the ERP component and 4-8 Hz for the ERS 

component. Data were then spatially filtered using the results of the BSS analysis. Only samples 

corresponding to 250-750ms were kept. For the ERP component we used the temporal signal down-

sampled at 32 Hz, providing 16 samples (features) for the classification. For the ERS component we 

used the square of the temporal signal (power) dawn-sampled at 32 Hz, providing 16 samples 

(features) for the classification as well. This procedure assigns to each component equal chance for 

classification. As a classifier we employed a LDA (linear discriminant analysis). One hundred random 

cross-validations were performed with the classifier trained on a randomly selected set containing 80% 

of the data (both errors and corrects) and then tested on the remaining data. 

 

Results 

Behavioral results 

All subjects performed the task with a convenient error-rate, with mean (sd) = 22.2 (4)% and a quasi-

equal repartition of expected and unexpected errors, with mean (sd) = 10.4 (4.3)% and 11.8(3)%, 

respectively. Reaction time was higher for error trials as compared to correct trials in 80% of the 

subjects (all t-tests with p<0.05). The maximum number of digits to memorize for each subject was 

highly variable, ranging from 4 to 10, with mean (sd) = 6.5 (1.37). These results demonstrate that our 

presentation software succeeded in equalizing the cognitive load across subjects, despite the great 

inter-subject variability of digit memory span. 
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Sensor space analysis 

The ERP in the error trials differed from the correct trials in three time windows with different timing 

and/or electrode location (fig. 6.5). A significant positivity for errors was found at time window 

[320ms 400ms] at electrode Cz (p<0.01), a significant negativity for errors at time window [450ms 

550ms] at clustered electrodes Fz, FCz, Cz (p <0.01) and a significant positivity for errors at time 

[650ms 775ms] at clustered electrodes Fz, FCz (p = 0.025). 

 

 

Figure 6.5: a): grand average (M=19) ERP for correct (pointed line) and error (solid 

line) trials. Time windows where the difference in amplitude between the two conditions 

is significant (grey panels) and (b) scalp topographies of t -values computed within the 

three significant windows. White disks show the significant clustered electrodes.  

 

An ERS (power increase as compared to baseline) could be seen in the theta band in both correct and 

error feedback at fronto-midline locations. This synchronization unfolds from around 250ms to 600ms 

post-stimulus. In some subject it goes up to more than 200% of power increase for error trials. Albeit 

present in both conditions, this ERS is significantly more intense for error trials as compared to correct 

ones (fig. 6.6) in the frequency band pass region 5-8 Hz and time window [350ms 600ms] post-

stimulus over the clustered electrodes Fz and FCz (p = 0.015). 
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Figure 6.6: Grand average (M=19) ERS averaged at electrodes (Fz, FCz, Cz, CPz) for 

error (a) and correct (b) trials. (c): topographic maps of t -values averaged over the 

theta band and time window [350ms  600ms]. White disks show the significant clustered 

electrodes. 

 

Source analysis 

BSS analysis revealed two uncorrelated sources with variable sensitivity and specificity, however 

clearly responsible one for the ERP findings and one for the ERS findings. The source responsible for 

the ERP differences between error and correct trials, to which hereafter we will refer to as the “Ne 

source”, was significantly different in error vs. correct trials in two time windows, with a first negative 

peak at time window [460ms 540ms] (p < 0.01) and a positive peak at time [750ms 830ms] (p = 

0.015). The grand-average ERP of this source computed separately for error and correct trials is 

displayed in fig. 6.7a. In fig. 6.7b it is displayed the same grand average ERP when computed using 

the spatial filter of the source responsible of the ERS differences between error and correct trials, to 

which hereafter we will refer to as the “theta source”; although differences in amplitude exist also for 

this latter source, they are not significant.  
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Figure 6.7: Grand averaged (M=19) of the ERP generated by the Ne source (a) and by 

the theta source (b) for error (solid line) and correct (pointed line) trials. Time 

windows were the difference in amplitude between the two conditions is significant are 

highlighted by grey panels.  

 

On the other hand the theta source power increase was significant in frequency band-pass region 5-8 

Hz for time window [300ms 600ms] (p<0.01). The ERS generated by this source is shown in fig. 6.8b. 

In fig. 6.8a it is displayed the same ERS when computed using the spatial filter of the Ne source 

instead; the ERS in this case disappears. These results suggest that the Ne source and the theta source 

correspond to separate phenomena generated by different brain structures with different dynamics. 

The source responsible for the ERS (theta source) appears more specific.  

We can now illustrate the advantage brought upon from the BSS analysis with these data. Compare 

fig. 6.7 to fig. 6.5 and fig. 6.8 to fig. 6.6. Although in both cases results in the sensor space are 

computed for the optimal cluster of electrodes, it is clear that working in the source space allows a 

better sensitivity and specificity: in both cases the difference between the error and correct trials is 

highlighted. 

 

Figure 6.8: Grand average (N=19) of the ERS generated by the Ne source (a) and by 

the theta source (b) for error trials.  
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Source localization 

The BSS source responsible for the ERP (Ne source) difference between correct vs. error trials was 

localized by sLORETA in the anterior cingulate gyrus (BA 24). The BSS source responsible for the 

ERS (theta source) was localized close to the supplementary motor area (BA 6) (fig. 6.9). Keeping in 

mind the approximation of a source localization method applied on a standard head model, these 

anatomical results are perfectly in line with results reported by previous studies (Gehring and 

Willoughby, 2002; Herrmann et al., 2004; Nieuwenhuis et al., 2003). 

 

 

Figure 6.9: (a) Ne source sLORETA localization. The source is localized in BA 32. (b) 

Theta source sLORETA localization. The source is localized in BA 6. For each image, 

from left to right are the axial, sagittal and coronal views across the maximum. The 

images (a) and (b) are scaled to their own maximum. The activity is color -coded with 

black representing the maximum and transparent representing zero. Legend: 

A=Anterior; P=Posterior; S=Superior; I=Inferior; L=Left; R=Right. 

 

Classification of single trials 

The Ne source alone leads to better accuracy in classifying error trials as compared to the theta source 

alone (p < 0.01). The theta source leads to better accuracy for classifying correct trials (p = 0.028). 

These corroborate the conclusion that the ERP and ERS represent different phenomena of the ErrP. 
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When looking at the average classification rate (Te+Tc)/2, with Te the classification rate of error trials 

and Tc the classification rate of correct trials, one see that the use of both components leads to better 

results for 14 subjects out of 19. The use of both components increases the mean classification rate on 

the 19 subjects from 67% up to 71%. We performed a repeated measure two-way ANOVA with factor 

“type” (2 levems: error vs. correct) and “feature” (3 levels: Ne source ERP, theta source ERS, both). It 

revealed a main effect on the “type” factor (p < 0.01) with correct trials being better classified than 

error trials and a “type” x “feature” interaction (p = 0.013), demonstrating that the use of both the ERP 

and the ERS feature in the source space improves the performance of single trial classification. It 

should be noticed that with a total of 72 trials per subject, training set included only a mean of 17 

single trials for the error condition, thus the classification task for this data set is hard since the 

training sets include very few examples of error trials. Better results are expected applying the method 

adopted in this study to larger data sets. 
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CHAPTER VII 

GROUP AND JOINT BLIND SOURCE SEPARATION 
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Introduction 

The BSS methods described in chapter VI target single individuals. The analysis of group data is 

necessary to generalize findings to the population of interest, may it be clinical or healthy, but also to 

construct EEG norms on large healthy populations so as to assess the deviance of single individuals 

(Ahn et al., 1980; John et al., 1980a,b,c). In neuroimaging, interest toward group BSS analysis has 

started with fMRI data (e.g., Calhoun et al., 2001) and has appeared in EEG literature only later 

(Congedo et al., 2010; Eiclele et al., 2011; Mueller et al., 2011; Ponomarev et al., 2013). There are 

many ways in which it is possible to extend BSS methods to group data. One major difficulty is that 

BSS methods estimate sources with arbitrary sign, energy and order. Therefore performing BSS for 

each individual and average the results is problematic. We do not consider here methods consisting in 

the clustering of results obtained at the individual level, as this is not a true group BSS approach.  

Among true group BSS approaches, early attempts have aimed at estimating a single demixing matrix 

for all individuals (e.g., Calhoun, Liu et Adali, 2009). If there are M individuals in the sample, the 

extension of the linear instantaneous model (213) is then 

   m mt tx As , m{1,…,M}.        (231) 

Since the mixing matrix, hence the demixing matrix, may be substantially different from one 

individual to another (fig. 2.4) such model in practice is useful only when large groups are analyzed; 

an average demixing matrix in this case represents gross directions and locations of dipolar current 

and the corresponding spatial patterns (mixing matrix) are very smeared and smoothed. Nonetheless, 

useful results can be found when the database is very large (Kropotov, personal communication). We 

will refer to the approaches tackling model (231) as gBSS (group BSS).  

More recently, approaches inferring group sources capable of finding a specific demixing matrix for 

each individual in the group has appeared. They include extension of the CCA (208), independent 

vector analysis (Anderson et al., 2013), which we do not treat here and joint blind source separation 

(JBSS). Here we consider the JBSS approach, which is a natural extension of the AJD-based BSS 

methods considered so far for single-individuals. The underlying model is in this case 

   m m mt tx A s , m{1,…,M}.        (232) 

In addition to the individual BSS assumptions, we assume that sources are correlated between 

subjects, that is 
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     T

j iji
t t s s D , i,j{1,…,M},        (233) 

where Dij is diagonal and different from 0.  As we have seen in chapter IV, given (233) true, model 

(232) is very different from a simple collection of M BSS, to which it reduces only iff  Dij = 0 for all 

i,j. JBSS modeling is a very powerful tool, however we may use it only for data for which sample-by-

sample correlations between subjects can be estimated. This is possible, for instance, in hyperscanning 

studies, a new paradigm for the neuroscience of social interaction (Adolphs, 2006, 2010; De Jaegher, 

Di Paolo and Gallagher, 2010; Frith and Frith, 1999, 2010; Hari and Kujala, 2009) where EEG is 

acquired synchronously and simultaneously on several subjects or for time and phase locked data, 

where a time “zero” can be established and sample-by-sample correspondence for different individuals 

(or different classes, experimental conditions, etc) is established. When this is not possible, the only 

available group BSS approach is the gBSS approach. We now turn to the presentation of our 

contribution to both approaches.  
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GROUP BLIND SOURCE SEPARATION (GBSS) 

 

Introduction 

We are concerned here with group model (231). In Congedo et al. (2010) we have presented a 

straightforward extension of the AJDC method to treat group EEG data (cognitive studies) and 

normative EEG of resting-states (Raichle and Snyder, 2007) for clinical studies. Many research groups 

have tackled model (231) by concatenating the group data in one single data matrix (Calhoun, Liu et 

Adali, 2009; Eichele et al., 2011; Mueller et al., 2011; Ponomarev et al., 2013; Schmithorst and 

Holland, 2004). Given finite EEG observations for the M subjects X1,…,XM, where the observations 

may be spontaneous, induced or evoked activities, this entails constructing a big data matrix 

concatenating all observations such as (horizontal stacking) 

 1, , MX X X           (234) 

and performing BSS with the chosen method on these data. Algorithmically, there is no difference 

from the single-subject BSS methods. In order to extend the AJDC framework to group data in 

Congedo et al. (2010) we simply diagonalize by AJD the grand-average cospectral matrices computed 

as the average of the cospectra obtained on the M Xm data observations. Having averaged the 

cospectra, we can use the two-step algorithm described in (223) as it is. The method is analogous to 

the gBSS method used for fMRI and presented in Schmithorst and Holland (2004). Furthermore, it is 

evidently equivalent to the methods performing BSS on concatenated data if the EEG observations Xm 

are of equal length. If they are not of equal length, averaging the cospectra is a preferable procedure in 

order to weight each subject equally. Actually, since the EEG is affected by an individual scaling 

factor, due to scalp thickness and other individual variables (Hernández et al. 1994; Goncalves et al. 

2006), we also normalize the cospectra of each subject at each frequency to unit trace before 

computing the grand average. After normalization the contribution of each subject at each frequency is 

weighted exactly in the same way. Then the cospectra are weighted according to non-diagonality 

function (229). We now present our study on gBSS. 
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Method of Our Study 

Databases 

We applied the method on continuously recording eyes-closed resting state EEG employing a test-

retest strategy in two independent large-sample normative databases (M=57 and M=84). One was a 

subset of the normative database of the Brain Research Laboratory (BRL), New York University 

School of Medicine (M=57; age range 17-30) and the other the normative database of Nova Tech EEG 

(NTE), Inc., Mesa, AZ (M=84; age range 18-30), which has been built by the author and Dr. Leslie 

Sherlin while at University of Tennessee. Exclusion criteria for the BRL database were known 

psychiatric or neurological illness, history of drug/alcohol abuse, current psychotropic/CNS active 

medications, history of head injury (with loss of consciousness) or seizure disorder. Exclusion criteria 

for the NTE database were a psychiatric history in any relative and participant of drug/alcohol abuse, 

head injury (at any age, even very mild), headache, physical disability and epilepsy.  

 

Recording procedures 

Recording procedures and settings were very similar for the two databases. In both cases 3 to 20 

minutes of EEG data was continuously recorded while the participant sat with the eye-closed on a 

comfortable chair in a quiet and dimly lit room. EEG data were acquired from the 19 standard 

locations prescribed by the 10-20 international system (Jasper, 1958) using linked ear reference and 

enabling a 60 Hz notch filter to suppress power line contamination. The impedance of all electrodes 

was kept below 5K Ohms. Data of the NTE database were acquired using the 12-bit A/D 

NeuroSearch-24 acquisition system (Lexicor Medical technology, Inc., Boulder, CO) and sampled at 

128 Hz, whereas data of the BRL database were acquired using the 12-bit A/D BSA acquisition 

system (Neurometrics, Inc., New York, NY) and sampled at 100 Hz. For consistency, we subsequently 

up-sampled the BRL database to 128 Hz using a natural cubic spline interpolation routine (Congedo, 

Ozen and Sherlin, 2002). 

  

Pre-Processing 

In order to minimize inter-subject variability we removed from all data any biological, instrumental 

and environmental artifacts, paying particular attention to biological artifacts generated by the eyes, 

the hearth and the muscles of the neck, face and jaw. All recordings included in this study were 
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artifact-free and featured high overall SNR. This is important for gBSS analysis as the inter-individual 

variability of the artifacts and noise may influence negatively the solution. The mean length and 

standard deviation of artifact-free data in the BRL and NTE database were 102.9 (27.5) and 92.5 

(29.79) seconds, respectively. 

 

Results 

Using the proposed gBSS method and the sLORETA (model-driven) inverse solution (123) we could 

closely replicate in the two databases both the spatial distribution and spectral pattern of seven source 

components. That is to say, for the truncated pre-whitening in (225) we fixed the dimension of F to 

P=7. The source localizations of the seven components along with their absolute and normal power 

spectrum for the two databases are shown in fig. 7.1. Table 6.2 reports the main cortical structure 

involved in each component. For the physiological interpretation of these components, awaiting 

confirmation by experimental and clinical data, we refer the reader to Congedo et al. (2010). 

 

Table 6.2: Anatomical structures and Brodmann areas (BAs) where high-power (more 

than 50% of the maximum) current source is located for the seven gBSS components 

in the two databases (leftmost column). BAs with top 10% current density power are 

highlighted in bold. When the side is not specified labels and corresponding BAs 

apply bilaterally. 

 Anatomical Structures and Brodmann Areas 

1 Anterior Cingulate (BA 23/24/32/33/25), Insula (BA 13), Middle/Superior Frontal Gyrus and 

Paracentral Lobule (BA 4/5/6), Parahippocampal/Subcallosal Gyrus (BA 28/34/35/36) 

2 Cuneus/Precuneus/ (BA 7/31/18/19/), Post-central gyrus (BA 3/4/5), Superior Parietal and Paracentral 

Lobule (BA 5/7), Posterior Cingulate Gyrus (BA 23/31) 

3 Cuneus/Precuneus/ (BA 30/31/7), Right superior parietal lobule (BA 7), Posterior Cingulate (BA 30), 

Lingual/Parahippocampal Gyrus (BA 18/19/30), Right Fusiform Gyrus (BA 19) 

4 Cuneus/Precuneus/Posterior Cingulate (BA 23/30/31), Lingual Gyrus/Fusiform Gyrus/Middle and 

Inferior Occipital Gyrus (Occipital Pole) (BA 17/18/19) 

5 Anterior Cingulate (BA 24/25/32), Medial Frontal Gyrus (BA 32/9/10/11), Rectal/Orbital Gyrus (BA 

11/47), Inferior Frontal Gyrus (BA 47), Parahippocampal Gyrus (BA 28/34) 

6 Medial Frontal/Rectal Gyrus/Anterior Cingulate (BA 11, 25), Middle Frontal Gyrus (BA 11), Inferior 

Frontal Gyrus (BA 47), Parahippocampal Gyrus (BA 28/34), Insula (BA 13) 

7 Post-central Gyrus (BA 1/2/3), Supramarginal Gyrus/Inferior Parietal Lobule (BA 40), Precentral 

Gyrus (BA 6), Cuneus/ Precuneus (BA 17/18/19/31), Middle Occipital Gyrus (BA 18), Superior and 

Middle temporal Gyrus (BA 21/22/39/41), Insula (BA 13), Angular Gyrus (BA 39) 
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Figure 7.1: sLORETA cortical current density images and associated frequency 

spectrum of the seven independent components for the BRL (top)  and NTE (bottom) 

database. From left to right: 

- the sLORETA cortical image medial and lateral views of the left and right 

hemisphere. The current density is thresholded at half the maximum.  

- the mean (solid line) and 95% confidence interval (dotted lin e) of the grand-average 

frequency spectrum in the range 0.5-40 Hz for absolute and normal power. The vertical 

axis is adjusted individually in each plot. The absolute power for the m th individual and 

fth frequency is given by bp
TCmf bp. The normal power is obtained by normalizing each 

Cmf to unit trace (energy) before computing the power. Such normalization eliminates 

the dominance of frequencies in the range 8-12 Hz and shows the relative involvement 

of each frequency with respect to the others. Cortical images have been produced by 

the sLORETA-Key software (see chapter III). 
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Explained variance 

The reader may wonder why we have found seven replicable components and not a higher number. 

We have used an empirical approach; starting with a small number of components we have increased 

the number until the output components had close spatial localization and power spectrum in the two 

databases; fixing the dimensionality reduction to more than seven resulted in components no more 

replicable in the two databases. This is understandable if we study the explained variance of the 

components, introduced in Congedo et al. (2008). Figure 7.2 shows the proportion of variance 

explained by each component with respect to the total as obtained on the two databases. Note that not 

only the output components are sorted identically for the two databases, but also that each component 

individually contributes a similar increase of explained variance in the two databases. Note also that 

component 7, which spatial distribution in the two databases matches only roughly (fig 7.1), explains 

less than 5% of the variance. This suggests that increasing P over seven would require the estimation 

of components with very low SNR, which explains why it is hard with these data to closely replicate 

more than seven components.  

 

 

Figure 7.2: Proportion of the grand-average explained variance (Congedo et al., 2008) 

for the seven gBSS components found independently on the NTE and BRL databases.  
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Deriving group norms 

Norms were then constructed for the spectral power of the seven components so as to allow testing 

patients against the norms. This work update the seminal work of Ahn et al. (1980) and John et al. 

(1980a,b,c; 1987) from the sensor space to the source space. Norms are defined as the empirical 

distribution of the power across the normative database (Congedo and Lubar, 2004). When an 

individual is to be tested against the norm its source power spectra are compared to these distributions; 

for each feature to be tested the probability to deviate from the norms is given by a function of the 

position of the individual within the sorted normative empirical distribution (percentiles). The reader is 

referred to Congedo and Lubar (2004) and to Congedo et al. (2010) for details on how to derive norms 

and test the deviance of individuals against the norms. 

Note that as compared to existing normative databases based on scalp spectral features, the gBSS tool 

defines a smaller number of features with very little inter-correlation. Furthermore, these features may 

be physiological meaningful as they relate the activity of several brain regions, forming a total of 

seven patterns, each with a peculiar spatial distribution and spectral profile. On the other hand, having 

reduced considerably the number of extracted sources, very likely several sources are mixed together 

in each component. In order to obtain more specific and replicable components, the method should be 

applied on very large databases (M>1000). 

 

Experimental Studies with gBSS 

In this section we illustrate the gBSS methods at work with real data. We present a cognitive study and 

two clinical studies, carried out in collaboration with some of my PhD students and their principal 

supervisors. 

  

Clinical gBSS studies 

In a well-controlled clinical study on obsessive-compulsive disorder (OCD) by Kopřivová et al. 

(2011) we have replicated one more time the seven normative components on a third independent 

database (M=50). Only one component was found to display differences of power in the OCD sample 

(M=50) as compared to matched controls (M =50). The source localization and power spectrum of this 

normative component is shown in fig. 7.3. The component corresponds very closely to component 1 in 

fig. 7.1. Notice that both the spatial distribution of current density and the power spectrum found by 
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Kopřivová et al. (2011) are very similar to those found by Congedo et al. (2010). The relative and 

normal power of the OCD sample were significantly higher as compared to the controls in the 

frequency range 3-6 Hz (multiple-comparison permutation test (Holmes et al., 2006; Westfall and 

Young, 1993), p<0.05 corrected). The difference remained similar and significant at the 0.1 level 

when SSRI-medicated (M=30) and medication-free (M=20) patients were tested separately against the 

controls. This finding has been used in Kopřivová et al. (2013) to train selectively this component 

yielding the first gBSS-based spatially filtered neurofeedback study.  

 

 

Figure 7.3: Left: axial (top of the picture is front of the head), sagittal (left of the 

picture is front of the head) and coronal (top of the picture is top of the head) view of 

the normative component displaying significant power differences between OCD 

patients and controls. The intensity of the red color indicates the intensity of the signal 

contributing to the component. This component is the same we have previously found in 

Congedo et al. (2010), see component 1 in fig. 7.1. Right: The solid (dashed) line(s) is 

the mean (5% and 95% percentile) power spectrum of the component for the control 

group (M=50). The disks indicate the mean for the OCD sample (M=50). Filled disks 

indicate a significant difference between OCD and controls (p<0.05, corrected for 

multiple comparison). 

 

Cognitive gBSS studies 

The gBSS approach is not limited to clinical studies. For example, we have used it in a cognitive study 

on spatial navigation (White et al., 2012). Using 64 EEG electrodes, 26 subjects performed a spatial 

navigation task in a 3D virtual city. The gBSS method was applied to the EEG data acquired during 

the spatial navigation so as to extract source components related to the task. For the AJDC algorithm a 

subspace reduction by truncated whitening limited the estimation to 36 components, allowing more 

than 99% of explained variance to be preserved in the solution (Representation Error = 0.0093, see 
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(230)). Once estimated the group demixing matrix, it was used to extract source power in both the 

spatial navigation and a control condition. Power for all 36 sources extracted was estimated in all 1-Hz 

spaced discrete frequencies in the range 1-44 Hz in all subjects and compared between the baseline 

and navigation condition. Permutation t-max tests (Holmes et al., 2006; Westfall and Young, 1993) 

were employed to correct for multiplicity of frequencies, whilst a Bonferroni adjusted significance 

threshold of p=0.05/36=0.00139 was used to control for multiple comparisons across the 36 

components.  

Two sources were found to exhibit significant spectral power differences during navigation with 

respect to the control condition and were subject to source localization using model-driven sLORETA 

(120). These two sources were localized as a right parietal component with gamma activation and a 

right medial-temporal–parietal component with activation in theta and gamma bandwidths. The power 

in the theta band for the latter source was significantly higher in the navigation condition as compared 

to the baseline condition. The source localization and its grand average power spectrum in the baseline 

and navigation condition are shown in fig. 7.4. 

 

 

Figure 7.4: (A) sLORETA source maps for the right medial-temporal–parietal 

component. From left to right: axial, sagittal, and coronal sections. A = posterior, P = 

posterior, L = left, R = right. (B) Grand average (M=64) power spectra for the 

component during navigation and baseline conditions.  
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Furthermore, the theta activity on the medial-temporal/parietal source was positively correlated with 

more efficient navigation performance (fig. 7.5), measured with the navigation latency, in seconds, 

where a shorter latency indicates higher efficiency in reaching the landmarks. 

These findings are intriguing, as it is usually very difficult to extract deep medio-temporal activity by 

means of EEG. Nonetheless, gamma and theta oscillations have been linked with numerous aspects of 

human spatial navigation using intracranial EEG (Caplan et al., 2001; Ekstrom et al., 2005; Jacobs et 

al., 2009) and MEG (Cornwell et al., 2008, 2010). Our study suggests that the gBSS approach 

successfully visualized medio-temporal (possibly parahippocampal) theta oscillations related with 

spatial navigation and that this activity is related to parietal activation, which is in line with current 

knowledge. However, a replication of this study is needed to support this claim. 

 

 

Figure 7.5: Scatter plot of navigation latency against the right medial -temporal–

parietal component theta (3–6 Hz) power during navigation (M=24, two outliers were 

removed from the analysis; r=-.659, p=.001). 

 

Limitations of the gBSS Approach 

To end up the gBSS section we here present unpublished data inspecting the extent to which group 

components fit appropriately individual data. For more details on the gBSS method we refer the reader 

to Congedo et al. (2010). For a similar approach on ERP data see Mueller et al. (2011) and Ponomarev 

et al. (2013).  



 182 

 An important question is whether the gBSS method is a valid instrument, that is, how 

precisely the components extracted by gBSS on each individual of the database match the 

corresponding group components. We have studied the similarity between the individual and group 

component power spectra. We have done that for each individual and for each one of the seven 

components. We computed the group spectra in between 2 Hz and 40 Hz for each gBSS component 

and then all individual spectra in between 2 Hz and 40 Hz for the same gBSS components. We then 

tested the hypothesis that the individual spectra are the same as the group spectra, repeating the test for 

all components and for all individuals31. The p-values for each component are shown as box-plots in 

fig. 7.6. As it can be seen, the minimum p-value is larger than 0.5, thus for no individual and for no 

component the spectra significantly differs from the corresponding group spectra. This result 

demonstrates that the gBSS spatial filters extract activity with similar power spectrum in all 

individuals. Particularly consistent appear the results for component 1.  

 

 

Figure 7.6: Box plots of the p-values of the Kolmogorov-Smirnov test for equality of the 

power spectrum of the gBSS components and of the individual components derived with 

the gBSS demixing matrix, for all components (C1 to C7) and the two databases 

analyzed in Congedo et al. (2010).  

 

                                                      

31 The test we used is the Kolmogorov-Smirnov test for uniformity of the absolute difference between the two 

spectra. That is, after normalizing the spectra so as to have total power equal to 1, we compute the difference 

between the individual and group spectra and take the absolute value of this difference. If the resulting spectrum 

is uniform (white), then there is no difference between the two spectra. 
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 Another limitation of the gBSS approach is that the seven gBSS filters are “grand-average” 

filters and the resulting individual sources (the sources extracted by applying such filter to individual 

data) cannot be very well decorrelated. As a consequence the gBSS demixing matrix is a sub-optimal 

spatial filter to derive individual components. This is due to the fact that the grand-average filters 

cannot take into consideration the individual physical head model and individual source distribution. 

In fig. 7.7 we report the correlations between individual sources in the range 2-40 Hz. As it can be 

seen, for the majority of source pairs and frequencies the correlation is low (<abs(0.2)), whereas only 

for some of them the correlation is high (>abs(0.4)). 

This result is not surprising as approximate decorrelation for all source pairs and all frequencies can be 

obtained only if we apply blind source separation (BSS) to individual data or by JBSS; in other terms, 

if we want to work at the individual level the grand-average demixing matrix can be regarded only as a 

rough approximation. Whenever individual component issued from a gBSS analysis are needed with 

precision, as for example to train selectively gBSS components by means of neurofeedback, we 

propose here a solution:  

 

Algorithm (235): Individually Refining gBSS Components  

Referring to model (231), let xm(t) be the individual data and let A , T
B  be the gBSS (grand-average) 

mixing and demixing matrix, respectively.  

First project the individual data in the gBSS space as 

   T
m mt ty B x

,          (236) 

Second extract individual sources as  

   T
m m mt ts F y ,          (237)  

where T
mF  is the demixing matrix obtained running again the BSS algorithm on individual projected 

data.  

The solution (individual demixing matrix) is T T
mF B  and its inverse  T

m



A F . 
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Figure 7.7: Correlations between the gBSS sources as extracted on all individuals in 

the data bases studied in Congedo et al. (2010). Each line in the plot corresponds to 

one subject in the database. Each line traces the correlation between all pair -wise 

sources (21 pairs for seven sources) times 77 frequencies (from 2 to 40 Hz in 0.5-Hz 

increment), that is, a total of 21x77=1617 points, which are sorted in ascending order 

for all subjects in order to make the plot readable.  

 

The rationale for this double BSS procedure is this: the first projection filters out data that is far away 

from the gBSS components. This will result in a set of seven components that are still somehow 

correlated. The second refines the source estimation applying a BSS on the individual projected data. 

The resulting sources will be well decorrelated and most probably well correlated to the gBSS sources. 

The process is illustrated in fig. 7.8. In the figure:  
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a) shows 10 seconds of EEG data of one subject of the NTE database. Next to the EEG traces there is 

the corresponding power spectrum in between 1 and 32 Hz (red plot), the autocorrelation function 

(blue plot) and the Hurst exponent32 (green bar).  

b) shows the corresponding (time locked) seven time-courses of the gBSS components, that is ym(t) of 

(236). These are the gBSS projected data.  

c) shows the sources found by applying the BSS algorithm on the projected data in b), that is, sm(t) in 

(237).  

d) shows the 7x7 correlation matrix (all correlations are computed in the time domain and using the 

whole recording, not just the visible data) of b) (top-left square), the 7x7 correlation matrix of the data 

in c) (bottom right square) and the cross-correlation between data in b) and data in c) (top-right 

square). In the bottom-left square you see its transpose, that is, the cross-correlation between data in c) 

and in b). In all this plots the correlation is color coded, with red coding positive correlation and blue 

coding negative correlation. In BSS models the sign of the source cannot be recovered, thus only the 

absolute magnitude of the correlation is relevant. Note that the diagonal elements in the figure are the 

autocorrelations, thus corresponding to a correlation=1.0. As it can be seen the gBSS sources in b) are 

only approximately decorrelated (top-left 7x7 square), whilst the individual sources are decorrelated 

very well (bottom-right 7x7 square). Now, suppose we are interested in training by neurofeedback 

gBSS component 3. From the top-right 7x7 matrix one can see that the gBSS component 3 in b) 

correlates very highly (r= 0.98) with the first refined individual BSS component in c). Thus, we can 

use the filter of the refined BSS and be sure that we have found optimal coefficients to train indeed 

gBSS component 3. If component 4 was the component of interest, then we would use the fifth spatial 

filter of the refined BSS, which correlates very well. Note the similarity of the time courses, power 

spectrum and autocorrelation function for the gBSS “group” sources 3 and 4 in b) with the 

“individually refined” BSS sources 1 and 5 in c), respectively. In other circumstances the process does 

not issue conclusive results. For example component 2 correlates moderately with at least four of the 

individually refined BSS sources, so the group source cannot be found uniquely on this subject.  

                                                      

32 The Hurst Exponent (HE) is an index of the “memory” of a time series related to the fractal dimension and it 

is comprised between 0 and 1. Roughly speaking an HE<0.6 is characteristic of EEG signals contaminated by 

EMG, 0.5<HE<0.82 is characteristic of clean normal EEG and 0.8<HE<1.0 is characteristic of EEG signals 

contaminated by eye-movements. It is sometimes used to select independent components for artifact removal 

(e.g., Vorobyov and Cichocki, 2002). 
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a)  

b)  

c)  

d)  

 

Figure 7.8: Illustration of the individualization of  gBSS components (235) obtained by 

refining gBSS components by an individual BSS. See text for details.   
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JOINT BLIND SOURCE SEPARATION (JBSS) 

 

Introduction 

Extensions of the AJD BSS methods to the analysis of simultaneous multiple-subject EEG data is 

currently an active line of research in our laboratory (Chatel-Goldman, Congedo and Phlypo, 2013; 

Congedo, Phlypo and Pham, 2011; Congedo, Phlypo and Chatel-Goldman, 2012). In chapter IV we 

have presented two algorithms that can solve the joint blind source separation (JBSS) problem. We 

here precise the JBSS model in light of the theory of BSS. We also present unpublished material on an 

extension of the OJLSD and IJLSD algorithms presented in chapter IV allowing more flexibilities on 

the JBSS modeling. 

 

The JBSS Framework 

Suppose we are given M datasets, e.g., M subjects, with m{1,…,M}. As usual, we suppose that each 

data set is multidimensional, such as          1
,...,

T
N

m m mt x t x t 
 

x , wherein N random variables as before 

indexed by n{1,…,N}, unfold over the discrete dimension t{1,…,T}. Note that n and t may refer to, 

for instance, space (EEG channels) and time, respectively, as it is the case for EEG, but this is not 

important for the sequel. As for the single subject BSS framework, suppose further that K observations 

are available for each dataset, indexed by k{1,…,K}, yielding KM groups of N variables. As in the 

SOS framework presented for single-subject BSS in chapter VI, the K observations may refer to K 

experimental conditions, to recordings in K different times (or trials), or to an expansion of the original 

data in K discrete frequencies or K time-frequency regions. We are concerned here with model (232) 

   m m mt tx A s , where AmℝNxP is a (t, k)-invariant full column rank mixing matrix specific to each 

set and sm,k(t) ℝP (with P≤N) holds the source components over the t dimension. So, contrary to the 

gBSS approach, each one of the M EEG observations has its own mixing matrix and sources, however 

as usual the mixing matrix is the same for each dataset along the K observations. The M set of sources 

are assumed decorrelated within sets as in single-subject BSS, but also correlated between data sets as 

per (233). In symbols, while for single subject BSS model    t tx As  we assume that the matrix set 

of statistics  1, ,k KC C C  is generated theoretically by process 
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T
k kC AS A ,           (238) 

where the Sk matrices are (unknown) source covariance matrices and are assumed diagonal because of 

the fundamental decorrelation assumption, for the JBSS model we assume that the matrix set of 

statistics ,ij kC , with k{1,…,K} as before and i,j{1,…,M}, is generated theoretically by process 

, ,
T

ij k i ij k jC A S A .          (239) 

In addition to the single-subject BSS framework we assume that the sources are correlated between 

data sets, that is, that each matrix Sij,k, ij, is diagonal and different from 0 i,j{1,…,M}. Important 

for exploiting cross data sets SOS statistics, as we do in this framework, the data samples over 

dimension t must reflect the same metric for all data sets. For example, if t is time, as per EEG, the 

samples must be taken synchronously in all data sets or a reference sample must be identified and 

relative intervals between samples across data sets must be equal (for instance, relative to a stimulus 

presentation). This is essential to estimate correctly the cross-statistics between data sets, which is the 

core of the JBSS approach. This model has been proposed already several times also by others 

(Anderson, Adali and Li, 2012; Vía et al. 2011; Li, Adali and Anderson, 2011; Li et al., 2009) and is 

currently attracting much attention because of its generality and its ability to exploit dependencies 

between data set. The framework is similar to the one presented for MCA and CCA (203), however 

there are substantial advantages working in the JBSS framework, namely, we may allow M>2, we may 

allow K>1 and the JBSS is a waveform-preserving (source estimation) framework.  

In JBSS we require to find the M matrices BmℝNxP, m{1,…,M}, yielding source estimates  

   ˆ T
m m mt ts B x  ,          (240) 

where the demixing matrices can be estimated up to a sign, scale and permutation indeterminacy, as in 

the BSS case. However in JBSS we require the permutation be the same for all M datasets, otherwise 

the analysis of the corresponding sources in the M datasets becomes difficult. We say that the output 

sources are aligned across data sets. This key advantage of the JBSS approach is made possible thanks 

to additional assumption on the diagonality and non-vanishing cross-statistics. Notice that for the sake 

of simplicity we suppose hereafter that N=P, this quantity being the same across datasets, i.e., we 

consider the exactly determined case, however the OJLSD and IJLSD algorithms presented in chapter 

IV apply equally well for the case P<N. The JBSS model generation (239) can be written in matrix 

form as 
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11, 1 , 1 11, 1 , 1

1, , 1, ,

0 0

0 0

T

k M k k M k

M k MM k M k MM kM M

      
      

       
      

      

C C A S S A

C C S SA A

   (241) 

and its inverse equation is 

11, 1 , 1 11, 1 , 1

1, , 1, ,

0 0

0 0

T

k M k k M k

M k MM k M k MM kM M

      
      

       
      

      

S S B C C B

S S C CB B

.   (242) 

The JBSS framework is illustrated graphically in fig. 7.9. 

 

 

Figure 7.9: Illustration of the JBSS framework for the case M=2. On the left are the K 

slices of observed statistics (241) and on the right the estimated source statistics  (242). 

The diagonal blocks on the right are the source auto -statistics  

11, 1 11, 1
T

k kS B C B and 22, 2 22, 2
T

k kS B C B   

and on the off-diagonal blocks the source cross-statistics   

12, 1 12, 2 21, 2 21, 1
T T

k k k k  S B C B S B C B , 

with the last two equalities due to the diagonality of these matrices. All blocks are 

assumed diagonal, yielding for the whole source covariance structure (242) what we 

name a strip-diagonal form. This implies that the source statistics within datasets are 

diagonalized (for i=j), as in the BSS framework. In addition, the output cross -statistics 

between datasets are also diagonalized, thus corresponding sources across datasets 

may be correlated. The sources in the two data sets are extracted with the same 

permutation, meaning that the n th source for the first data set correspond to the n th 

source for the second data set. This is illustrated with putative source localizations 

shown on the right of the figure; we expect that each source extracted corresponds to a 

dipole or dipole cluster with corresponding localization in the brain of the M 

individuals. Nonetheless, the mixing and demixing matrix are allowed to vary across 

individuals, so that the optimal spatial filter to recover the source can be estimated in 

each individual, contrary to gBSS. 
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The Extended AJDC Algorithm 

Since ,
T
i ij k jB C B  is the transpose of ,

T
j ji k iB C B , in order to apply JBSS we do not need to estimate all 

the KM2 blocks of (241) from the data; it suffice to estimate the K[M(M+1)/2] blocks on whatever 

triangular part. Once we have estimated these statistics we may apply the IJLSD algorithm (191). As 

for the BSS case, we adopt a two-step procedure, which is particularly useful when N is large. It helps 

also the algorithm because the ensuing AJD matrix to be found is close to orthogonal form, hence 

well-conditioned  (see results in fig. 4.2). The two-step algorithm is: 

 

Algorithm (243): JAJDC (Joint AJD of Cospectral Matrices). Optimization (163). 

Given diagonalization set  , ,1 ,, ,ij k ij ij KC C C  indexed by i,j{1,…,M} and k{1,…,K}, do  

For m=1 to M do 

,,

TOT
m ii ki k

C C  (auto-statistics only)       (244) 

 
 

1
2T TOT

m m



W C

 

Partition the whitening matrix such as  

 
 ,

TT

m m mW F N
,         (245) 

where T

mF PxN holds the first P rows of T

mW  (signal subspace) and T

mN the remaining rows  

(noise subspace).  

End For m 

The joint AJD problem on the reduced and whitened data is now solved by IJLSD (191) as 

 1 ,,...,T T T
M i ij k jJAJDE E F C F

.        (246) 

The solutions (demixing matrices) are T T T
m m mB F E PxN      (247)  

and their inverses (mixing matrices) are    
1

T T
m m m

 

A E F NxP     (248) 
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JBSS Model Order 

So far in the JBSS section we have summarized our published contributions. This section contains a 

recent development, still unpublished. We have moved from the realization that in many real-world 

situations only a small number of sources can be assumed dependent among data sets. For instance, in 

an EEG experiment where two or more subjects watch together the same movie we may expect that 

one or a few sources in the visual cortex are synchronized across individuals as a consequence of the 

simultaneous processing of the same visual stream. Maybe we may expect some other sources to be 

synchronized, for example those involved in the analysis of the emotional content of the movie. In all 

cases we may expect there exist some sources that are not synchronized across individuals. In this 

case, which is realistic, neither a full BSS nor a full JBSS model is optimal. We hereby introduce 

incomplete JBSS models, a general model under which only partial dependence between the datasets is 

accounted for, and which has full BSS (no source is correlated among datasets) or full JBSS model (all 

sources are correlated among data sets) as particular cases. Hence the framework presented here is 

even more general than the JBSS approach. The incomplete approach follows the same least-squares 

framework presented in chapter IV. More precisely, given N electrodes and P sources for each data 

set, we assume that there are L≤P≤N correlated sources among data sets. Consider the partition of the 

functional of interest in (170) and let us write it for the sake of clarity as 

  

| | |i i i i j i

off BSS off JBSS off  


 
B B B B B B

,         (249) 

where  

 
2

 
,|

1
i i

M
BSS off

ii kk F
i

off


B B
Q          (250) 

and 

 
2

 
,|

1

2
i j i

M
JBSS off

ij kk F
i j

off


 

 B B
Q .        (251) 

The JBSS partition (for i≠j) corresponds to the pure JBSS cost function and the BSS partition (for i=j) 

the pure BSS cost function. Typical works in the JBSS literature have considered the “equally mixed” 

model given by the non-weighted sum of the two terms as in (249). In all previous work so far the 

same combination of the two terms applies to every source to be extracted. However, we may optimize 

whatever linear combination of the two terms. Furthermore, the linear combination may be different 
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for each source. This is what we do here; given that L≤N sources may be assumed correlated among 

data sets, we intend to solve for the first L sources according to the JBSS separation criterion only and 

for the remaining P-L sources according to the BSS separation criterion only. When L=P we obtain a 

full JBSS model and when L=0 we obtain a full BSS model. Diversifying the separation criteria in the 

whole search is straightforward in a least-squares framework, wherein the total cost function of the 

JBSS algorithms can be easily decomposed as the sum of a “pure” BSS part and a “pure” JBSS part as 

per (249) and moreover the search for each demixing matrix can be carried out independently for each 

of its vectors. In order to do so, let us partition further the cost function in (249), defining the variance 

explained by each column vector of the Bi matrices as taken separately. We have the following 

 

Proposition (252). 

We assume that among the P sources to be extracted there are L of them that are dependent between 

data sets and independent within data sets, and the remaining P-L of them that are independent within 

data sets, but not dependent between data sets, with 0≤L≤P Then, for any Bi matrix to be estimated, 

with i{1,…,M}, we search separately for each bn(i) vectors of Bi, with n{1,…,N}. Any incomplete 

JBSS model can be solved by using the JBSS term only (251) when n≤L and the BSS term only (250) 

when n>L. 

 

The OJLSD algorithm makes use at each iterations of matrices (182). The IJLSD algorithm makes use 

of these matrices and also of their sum (189). To comply with our proposition all we need is to define 

the matrices R(i)(n) differently, such as 

  

      

      

, ,( )

, ,( )

 if 

 if 

JBSS T
ij k ij ki n n j n jk i j

i n
BSS T

ii k ii ki n n j n jk

n L

n L



  


 
 



 



R C b b C

R

R C b b C
 ,     (253) 

After which algorithms OJLSD and IJLSD can be applied with the exact same algorithms (184) and 

(191) for any L{0,…,N} using (253) to compute matrices R(i)(n) and from there obtaining their sum 

Γ(i). We name the incomplete version of the algorithms iOJLSD and iIJLSD, where “i” stands for 

incomplete. 
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RIEMANN GEOMETRY: A UNIVERSAL BCI 

CLASSIFICATION FRAMEWORK 
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Introduction 

Over the past 25 years the field of brain-computer interfaces (BCI) has grown considerably and has 

become the most prominent applied research area for electroencephalography (EEG). Thanks to 

substantial granting by the EC in Europe and by the NIH and NSF in the USA, among others, recently 

there has been a striking acceleration of BCI research and applications, both for healthy users and for 

clinical populations (Allison et al., 2012; Kübler et al., 2001; Tan and Nijholt, 2010; Wolpaw and 

Wolpaw, 2012). Yet, still today it has to be admitted that “efforts to commercialize research findings 

have been tiepid, hampered by a general lack of robustness when translating technologies to 

uncontrolled environments beyond the research laboratory” (Obeid and Picone, 2013). While trying to 

combine advances from different projects it has become evident that efforts toward the standardization 

of EEG data format, BCI interfaces and processing tools are of paramount importance (see the 

roadmap of the coordination “Future BNCI” project, 2012). Since the inception about 20 years ago of 

inverse solutions (see Chapter III) and of diagonalization methods (see chapter IV to VII) such as the 

common spatial pattern, canonical correlation analysis, independent component analysis, with the 

many variants of each and possible combinations, we may say there has been no further major 

innovation in the signal processing of BCI data; new methods based on these tools effectively bring 

only moderate improvement and do not in general increase reliability in a significant way. 

Each of the three main BCI paradigms, namely, motor-imagery (MI), steady-state evoked potentials 

(SSEP) and P300 are currently treated with dedicated pre-processing, signal processing and 

classification tools. The number of papers presenting improvements for each one of these steps is very 

large and contributes to the fragmentation of the field. Traditionally and still today we can divide 

existing BCI in two categories: those that follow a “hard machine learning” approach, and those that 

use “spatial filtering” to increase the signal to noise ratio followed by a simple classification 

algorithm. The “hard machine-learning” kind generalizes fairly well across sessions and across 

subjects, but require a substantial amount of training data. Furthermore, it is often computationally 

intensive. The opposite happens for the “spatial filtering” kind, where bad generalization capabilities 

are compensated by a fast training and lower computational cost. In light of this situation it has been 

stated that “the field would benefit from a new paradigm in research development that focuses on 

robust algorithm development” (Obeid and Picone, 2013). 

In this chapter we focus on the standardization of the core of a BCI, that is, the processing and 

classification algorithm. We propose a new paradigm for signal processing and classification in BCI 

capable of supporting a completely new BCI mode of operation. To proceed in this direction we have 
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moved from the trends currently followed by the BCI community and by the specification of the 

characteristics a BCI should possess. Among recent trends in BCI research we find: 

1. The conception, analysis and testing of generic model classifiers, allowing the so-called 

transfer learning, whereas data from other sessions and/or other subjects is used to increase the 

performance of low-performance users and to initialize a BCI so as to start using it without calibration 

(Colwell et al., 2013; Herweg, Kaufmann and Kübler, 2013; Kindermans and Schrauwen, 2013; Jin et 

al., 2012). In this direction is also relevant the use of unsupervised classifiers (Kindermans, 

Verstraeten and Schrauwen, 2012). 

 

2. The conception, development and maintenance of world-wide massive databases (e.g., Obeid 

and Picone, 2013). Such a resource is necessary to boost research by allowing massive testing of 

algorithms. It also enables the systematic study of the source of variation in individual EEG pattern 

and their relation to BCI capabilities and individual attainable performances. Finally, it yields a smart 

initialization of a BCI (by specific transfer learning), which is necessary to use effectively a BCI 

without calibration. 

 

3. The continuous on-line adaptation of the classifier, which combines the smart initialization 

mentioned above, in that the adaptation ensures that optimal performance is achieved regardless how 

good the initialization is. It also allows keeping optimal performance by adapting to mental and 

environmental changes during the session, achieving the sought reliability (Barachant and Congedo, 

submitted; Panicker, Puthusserypady and Sun, 2010; Schettini et al., 2013). 

Other current lines of research that should be taken into consideration in designing a new generation of 

BCIs include:  

 

I) The improvement of the performance by dynamic stopping, that is, minimizing the amount of 

data necessary to send a command (the duration of a BCI trial, e.g., the number of repetitions in the 

P300 speller) while keeping the same performance (Mainsah et al., 2013; Kindermans and Schrauwen, 

2013; Schettini et al, 2013).  

II) The improvement of the BCI interface, e.g., the introduction of language models in BCI 

spellers (for example, letter and word prediction: Mainsah et al., 2013; Kaufmann et al., 2012; 

Kindermans and Schrauwen, 2013).  
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III) The improvement of the BCI paradigm itself, e.g., for P300-based BCI, the use of faces for 

flashing to improve the accuracy (Kaufmann et al., 2012), the use of random or pseudo-random 

flashing instead of row-column flashing (Congedo et al., 2011; Jin et al., 2011; Townsend et al., 

2010), the use of inter-stimulus intervals randomly drawn from an exponential distribution and not 

constant (Congedo et al., 2011), etc. For SSVEP-based BCI improvements of the paradigm include the 

use of precise tagging of the flickering so as to use phase information (e.g., Jia et al., 2011), the use of 

random flickering sequences (code modulation: e.g., Bin et al., 2011), etc. 

IV) Multi-subject BCIs, that is, BCI systems controlled by several users, in proximity one to the 

other or remotely connected (Bonnet, Lotte and Lécuyer, 2013; Yuan et al., 2013; Schultze-Kraft et 

al., 2013). Besides allowing remote social operation, this functioning has potential to achieve perfect 

accuracy on single trials, by combining the data of several users. 

V) BCI Hybridization, that is, the combination of several BCI paradigms on the same interface to 

increase the bit rate, the ergonomy, usability and the accuracy (e.g., Lee and Park, 2013). 

A proposition for a BCI realizing characteristics 1-3, while keeping in mind points I-V, is presented 

schematically in fig. 8.1. See the caption of the figure for a generic description of such a BCI. In order 

to achieve this BCI functioning, the BCI processing and classification core should possess the 

following characteristics: 

 

a) It should be accurate in general, as compared to existing approaches. 

b) It should be reliable, that is, it should maintain as much constant as possible its functions and  

accuracy in routine circumstances, as well as in hostile or unexpected circumstances. 

c) It should perform generally well as initialized with generic parameter, even for a naïve user,  

that is, it should possess good generalization abilities both cross-subject and cross-session. 

d) It should learn fast the individual characteristics and then maintains optimality, adapting fast  

to the mental state of the user and to environmental changes. 

e) It should be universal, that is, applicable to all BCI paradigms (hence to hybrid systems). 

f) It should be algorithmically simple, so as to be robust and usable in unsupervised on-line  

operation. 

g) It should be computationally efficient, so as to work on small portable devices in line with the  

current trend in portability of micro-electronic devices. 
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In this chapter we present a BCI signal processing and classification framework possessing all 

characteristics a)-g), that is, a candidate to the sought standardization effort for the processing and 

classification core of a BCI. The framework, based on recent advances in Riemann geometry, allows 

the conception of a simple BCI core that can be applied with minor changes to all the main three BCI 

paradigms. We show by means of real offline and online data that an effective “traditional” BCI can 

be obtained with a simple classification algorithm and very little pre-processing, regardless the chosen 

paradigm. Then we briefly delineate strategies to evolve the framework so as to work as in the concept 

illustrated in fig. 8.1. These claims are supported with experimental data. The material here presented 

is today still largely unknown to colleagues involved in EEG analysis and BCI, yet, we predict that 

Riemann geometry will play shortly a prominent role in BCI classification, forming the core 

methodology for new BCIs. The theory of Riemann geometry will be presented in next chapter 

(chapter IX).  

 

 

 

Figure 8.1: Concept for a “new generation” of BCIs. At start-up a BCI queries a 

database to obtain an initialization, possibly sending minimal EEG da ta of the user so 

that the database can elaborate a smart initialization that fits appropriately even a 

naive user. The BCI is operational straightaway, albeit suboptimal at the very 

beginning. While being used the BCI adapts to the user and  send back the data to the 

database, along user information, so as to enrich the database and to allow smarter 

initializations in future sessions of the same user. Multiple subjects may use at the same 

time the same BCI, in which case the core of the BCI may be located on t he server, so 

to exploit the multitude of data to increase performance.  
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EEG Data Modeling 

Let x(t)N be the zero-mean EEG data vector for N electrodes at discrete time sample t and let Xz 

N.T be a finite time-interval realization (a trial for BCI) comprised of T samples belonging to class 

z{1,…,Z}. The classification method we propose in this section applies to the multi-class situations, 

that is, it applies in the same way it does not matter how big is Z. Note also that in this chapter most of 

the time we do not need to index the trial as well, so usually the trial has the class index when it is 

labeled (training data: Xz) and no index at all when it is unlabeled (test trial: X). The data is always 

assumed having zero mean, therefore the sample covariance matrix of a given trial Xz in a wide-sense 

stationary (Yeredor, 2000, 2010)  belonging to class z as in (95) is given by 

  1 1 T
z z zT C X X .          (254) 

Assuming a multivariate Gaussian distribution the Wishart matrix zΣ  is the unique parameter of the 

data distribution, assumed unique for each class, such as 

 z tx ~N
 
 ,  z0 Σ ,          (255) 

and (254) is a sample covariance matrix estimation of the Wishart matrix.  

 

The Classification Framework 

First of all we shall describe a classification algorithm that can be applied universally with an 

appropriate definition of the “covariance matrix”, so as to capture the relevant information of the 

trials. The relevant information, hence the band-pass filtering and the form of the covariance matrix, 

depends on the paradigm at hand, however we require the rest of the signal processing chain be the 

same for all paradigms. Note that in this chapter we employ the term “covariance matrix” referring to 

a generic structured covariance matrix, depending on the paradigm and of which the sample 

covariance matrix (254) typically is just a block. We assume data modeling (255) for an extended 

definition of data, allowing well separated associated Wishart matrices and covariance matrices 

estimated on single-trials. 

In BCI we face the problem of classifying single trials. It does not matter if we deal with motor 

imagery (MI) trials, steady-state evoked potentials (SSEP) trials, or event-related potentials (ERP) 
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trials, we have a number of training trials Xz for each class z{1,…,Z}. The classification task consists 

in assigning an unlabeled trial X, from which a special form of covariance matrix C is computed, to 

one of the Z classes. Using training data we may compute a “mean” for each covariance matrix of the 

Z classes M1 ,…, MZ and then simply assign the unlabeled trials to the class which mean is the closest. 

In order to do so we need an appropriate metric to estimate the class means and to assess the distance 

between the unlabeled trials and the means  R z C M . This is what we obtain thanks to the 

Riemann framework. Our universal classification algorithm is summarized such as:  

 

Universal MDM BCI Classifier (256) 

- Given a number of training trials Xz for each class z{1,…,Z} do appropriate preprocessing, estimate 

an appropriate form of covariance matrix Cz and estimate their Z class means M1 ,…, MZ. 

- For unknown trial X do the same preprocessing, estimate the same form of covariance matrix C and 

assign to class k as per  

  R z
z

argmin  C M
, 

 that is, to the class which mean is the closest to the covariance matrix, according to distance R  . 

 

This is the simplest classification method one can think of and is known as minimum distance 

classifier (MDM). The classification algorithm is illustrated in fig. 8.2 for the case of a two-class BCI 

(Z=2). It works exactly in the same way for whatever number of classes. As it is well known, defining 

the mean as the arithmetic mean and the distance as the Euclidean distance gives very poor 

classification results (see for example Li and Wong, 2013). However, the message we want to convey 

here is that we do not need to complexify the classification algorithm or to apply sophisticated pre-

processing and sophisticated spatial filtering or machine learning. It turns out that an appropriate 

definition of the covariance matrix, of the mean and of the distances performs as well as most 

sophisticated methods presented in chapter III, IV, V, VI and VII. To make a metaphor, it appears that 

we have started a long time ago measuring distances with a biased ruler. Then we have developed 

complex instruments in order to replace the malfunctioning ruler. Finally, we have found a valid ruler, 

so that the complex instruments are no more necessary. Providing the valid ruler to measure distances 

is the main achievement of the Riemann framework. Defining appropriate covariance matrices 

embedding relevant information depending on the data is our job. We will treat the appropriate 
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mathematical definition of mean and distance later in chapter IX. Let us now consider in details how 

the universal MDM framework applies to different BCI paradigm and let as evaluate its performance.  

 

 

Figure 8.2: The Minimum Distance to Classifier Algorithm. For covariance matrices of 

dimension 2x2, given two geometric means M1 and M2 on and unlabeled trial with 

covariance matrix C, the algorithm assigns the trial to the class given by the closer 

mean according to an appropriate distance measure R. The distance measure is not 

linear, as we will see in chapter IX.  This is represented by curved lines in the figure.  

 

Smart Initialization (Cross-Subject and Cross-Session Generalization) 

We have said that a BCI processing chain should possess both fast adaptation abilities and good 

generalization across-session and across-subject. This is where the Riemann framework proves 

advantageous as compared to the state of the art methods, which in general possess one but not the 

other. The initialization of the classificator state by previous data, either coming from other individuals 

(cross-subject) or from previous sessions (cross-session) is sometimes named in the literature as 

transfer learning. Cross-subject transfer learning is the only option for a naïve user. From the second 

use of the same BCI on we can use cross-session transfer learning as well. When an optimal subset of 

available data is used to specifically initialize the system for a given user we say the system is smartly 

initialized. For instance, how to optimally blend the cross-subject and cross-session initialization after 

the first session and what part of the database should be used to initialize the classifier for a given user 

are largely unexplored topics (see for example Schettini et al., 2013).   
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Adaptation 

Given an initialization we want to learn individual classification parameters to achieve optimal 

performance and adapt to environmental changes, mental state changes and any other intervening 

condition that may affect the classification performance. We also want to do this as fast as possible. In 

order to do so we actually set up two parallel classification MDM algorithms, a generic one and an 

individual one, the latter being supervised. The classifier output will be given by a weighted sum of 

the two classifiers, say, with the two weights summing up to 1. The generic classifier will have weight 

1 at the beginning of the session and smaller and smaller weight as the session progresses. The 

individual classifier will have weight zero at the beginning of the session for a naïve user. For a user 

for which data from previous sessions is available the initial weight can be raised proportionally to the 

amount of training data. In any case the weight of the individual classifier will rise along the session 

and will approach 1 by the end of the session. How these two parallel classifiers should evolve over 

time without supervision is an intriguing and non-trivial research topic. 

 

Classification of Motor Imagery 

The form of covariance matrices for motor imagery BCI data 

The sample covariance matrix as defined in (254) contains only spatial information. The diagonal 

elements hold the variance of the signal at each electrode and the off-diagonal elements hold the 

covariance between all electrode pairs. As such it suffices for classifying motor imagery (MI) trials 

because MI trials for different classes do indeed produce a different scalp pattern, but not necessarily a 

different frequency pattern or temporal pattern (Pfurtscheller and Lopes da Silva,1999). We then set 

MI

z zX X .           (257) 

In case of MI-based BCIs there are as many classes (with associated training trials) as motor imagery 

tasks. A no motor imagery class can be added if sought. The only pre-processing step requested is 

filtering the data in the frequency band pass regions involved in motor imagery (e.g., 8-30 Hz).  Then 

algorithm (256) applies using the regular form of covariance matrix as per (254). Extensive testing has 

proven that the MDM method is reliable and accurate for motor imagery data (Barachant, Bonnet, 

Congedo and Jutten 2010a, 2010b; 2011a, b; 2012a, b; Barachant et al., 2012a). 
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Analysis of motor imagery BCI data 

 

Method 

We have applied the MDM method to dataset 2a of BCI Competition IV (2008), provided by the 

Institute for Knowledge Discovery (Laboratory of Brain-Computer Interfaces), Graz University of 

Technology. The data set includes nine subjects involved in a four-class (Z=4) two-session motor 

imagery-based BCI experiment. The four classes were right hand, left hand, feet, tongue. EEG data 

was acquired by means of 22 electrodes concentrated on and around the sensorymotor areas. The trials 

were band-pass filtered in the range 8-30 Hz. Two seconds of data in each trial were used for the 

analysis. We consider both binary classification of each class against the others - this is what the CSP 

(common spatial pattern, see (200)) does better – and the true multiclass case, where the four classes 

are treated altogether. The MDM handles equally well and in the same way both the binary and the 

multiclass case.  

We present results of the offline analysis to compare MDM to state of the art competitors. For binary 

classification we compare the MDM against CSP + LDA (linear discriminant analysis) classification 

algorithm (Lotte and Guan, 2011)33. Three pairs of CSP filters were retained. This is the unique 

parameter to be set with this approach. For multiclass classification we compare the MDM with the 

BSS approach proposed by Grosse-Wentrup and Buss (2008). Their method consists in the 

approximate joint diagonalization (AJD) of the four class covariance matrices, selection of the eight 

best filters using a mutual information criterion and a sparse logistic regression classifier34. For this 

approach also, the number of filters must be set. On the other hand, the MDM approach is fully 

automatic. The results concern the cross-session performance, that is, the algorithms are trained on 

one session and tested on the other. This is a more difficult test-bed as compared to cross-validation 

within the same session.  

 

Results and Conclusions 

Results in term of accuracy (percent of correctly classified trials) for all subjects, the two sessions, one 

against the other, and for all methods are given in table 8.1. The chance level is 25%. We compared 

                                                      

33 For the CSP + LDA we used the code of Dr. Lotte, available under request by e-mail. 

34 For the BSS + LG we have used the code available at http://people.kyb.tuebingen.mpg.de/moritzgw/MulticlassCSP.zip. 

Notice that this AJD approach is a specific instance of the AJDC framework we have described in (223). 

http://people.kyb.tuebingen.mpg.de/moritzgw/MulticlassCSP.zip
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statistically the average performance in term of percent correct classified trial (accuracy) of the MDM 

and the state of the art competitors. For the multiclass classification the MDM proved marginally 

superior on the average of the 18 sessions as compared to the BSS + LG method (paired t-test(17)=1.9, 

p=0.074, two-tailed). For the average of all the binary classification there was no difference between 

the MDM and the CSP+LDA method.  

In Gouy-Pailler et al. (2010) we have developed a BSS method for motor imagery classification 

exploiting the non-stationarity of the ERD/ERS during the trial. The method proposed by Grosse-

Wentrup and Buss (2008) was the starting point of our investigation. We have shown (see chapter VI) 

that the non-stationarity BSS method performs better as compared to the BSS method of Grosse-

Wentrup and Buss (2008). The basic BSS + LG method implemented in Gouy-Pailler et al. (2010) was 

virtually identical to the BSS method of Grosse-Wentrup and Buss (2008). The only difference was 

the AJD algorithm employed; we used the algorithm by Pham (2001b) and they used the algorithm of 

Ziehe et al. (2004). The non-stationarity extension developed in Gouy-Pailler et al. (2010) is obtained 

estimating several covariance matrices in successive time intervals within the trial and diagonalizing 

all these matrices for all classes simultaneously. We therein also implemented a CSP + LDA “one 

class vs. all” for comparison. The means (sd) obtained by the three methods implemented in Gouy-

Pailler et al. (2010) for the cross-session accuracy were, in the order, 63.3 (13.48), 63.8 (12.28) and 

60.5 (11.09). These means are directly comparable to the means reported in table 8.1. None of these 

methods are on the average significantly superior to the MDM multiclass. We conclude that the MDM 

for MI data performs as well as the most sophisticated method found in the literature, but is fully 

automatic (no parameter to be set) and respect the requirements of a next generation of BCI.  

To take a closer look at the results we plotted the accuracy of the MDM against its competitor (fig. 

8.3). It appears then the result we have observed consistently when comparing the Riemann MDM 

approach with state of the art approaches: the performance of the MDM approach is more or less 

equivalent for subjects performing well, while it is better for subjects performing poorly (see the 

position of the dots in the lower-bottom corner of the plots). This behavior springs from the robustness 

of the Riemann distance (chapter IX).  
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Table 8.1: Accuracy results for each subject using as training data session 1 and test 

data session 2 (rows “Session 1->Session 2”) and vice versa (rows “Session 2-

>Session 1”), for the binary classification of all pairs of classes (numbered 1 to 4), the 

average of all binary classifications (columns “Ave”) and for the multiclass 

classification (columns “4-class”). The MDM method applies to both the binary and 

multiclass classification. As state of the art competitors we used the CSP+LDA for 

binary classification and the BSS+LG for multiclass classification.  

BSS + LR

Subject 1 / 2 1 / 3 1 / 4 2 / 3 2 / 4 3 / 4 Ave 4-class 1 / 2 1 / 3 1 / 4 2 / 3 2 / 4 3 / 4 Ave 4-class

1 93.75 96.53 98.61 97.22 99.31 70.14 92.59 78.82 93.06 98.61 98.61 97.22 100.00 69.44 92.82 76.74

2 63.19 78.47 68.06 74.31 72.22 74.31 71.76 46.88 50.69 68.75 67.36 81.25 63.89 69.44 66.90 43.40

3 94.44 89.58 86.81 95.14 97.92 66.67 88.43 70.83 96.53 94.44 94.44 93.06 96.53 69.44 90.74 76.04

4 75.00 88.89 88.19 92.36 84.72 62.50 81.94 61.81 70.14 78.47 86.81 88.89 85.42 56.94 77.78 55.21

5 63.19 73.61 72.22 72.22 76.39 70.14 71.30 50.00 59.03 63.19 68.75 68.75 65.28 70.83 65.97 35.07

6 71.53 71.53 64.58 65.28 63.89 72.92 68.29 47.57 68.06 59.03 71.53 63.19 65.97 67.36 65.86 44.44

7 72.92 91.67 88.19 90.97 85.42 78.47 84.61 66.32 79.86 97.92 95.14 99.31 97.22 81.25 91.78 63.19

8 96.53 85.42 82.64 90.28 76.39 70.83 83.68 72.57 93.75 87.50 90.97 86.81 91.67 82.64 88.89 69.44

9 91.67 93.06 97.22 72.22 81.94 90.28 87.73 74.31 92.36 95.14 95.14 84.72 81.94 88.89 89.70 79.17

1 74.31 94.44 95.14 92.36 98.61 79.86 89.12 71.18 77.78 95.14 95.83 91.67 99.31 80.56 90.05 73.61

2 50.00 76.39 53.47 77.08 74.31 77.78 68.17 50.00 50.00 74.31 59.03 59.72 60.42 77.78 63.54 29.51

3 88.89 82.64 92.36 85.42 94.44 81.25 87.50 74.65 91.67 86.81 96.53 90.97 93.75 85.42 90.86 78.47

4 65.28 72.22 78.47 70.83 72.92 68.75 71.41 49.65 66.67 72.92 81.25 79.17 71.53 71.53 73.84 42.01

5 63.89 65.28 72.22 66.67 72.22 59.03 66.55 37.85 61.11 51.39 70.83 54.17 67.36 53.47 59.72 26.39

6 61.81 70.14 59.72 68.06 61.11 63.19 64.00 42.71 70.83 76.39 61.11 66.67 65.97 68.06 68.17 38.19

7 73.61 87.50 85.42 87.50 87.50 77.78 83.22 65.97 66.67 91.67 95.83 98.61 97.22 86.11 89.35 67.71

8 94.44 79.17 87.50 88.89 87.50 79.86 86.23 71.53 97.92 83.33 96.53 93.06 92.36 86.11 91.55 75.35

9 81.25 88.19 98.61 83.33 89.58 88.89 88.31 72.92 91.67 93.75 100.00 81.25 92.36 84.03 90.51 74.65

mean 76.43 82.48 81.64 81.67 82.02 74.04 79.71 61.42 76.54 81.60 84.76 82.14 82.68 74.96 80.45 58.26

sd 14.06 9.43 13.75 10.75 11.58 8.58 9.44 13.15 16.09 14.33 14.27 14.03 14.67 10.24 12.30 18.80
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Figure 8.3: Performance in terms of percent correctly classified trials (accuracy), for 

the binary classification and for the multiclass classification. Each dot represents a 

subject and a session and has coordinates given by the accuracy of the MDM method 

against the state of the art competitor.  
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Classification of Event-Related Potentials 

The form of covariance Matrices for of P300 BCI data 

For ERP-based BCI the standard covariance matrices (254) are not efficient as the ERP features 

amplitude much smaller as compared to the background EEG, thus the spatial structure contained in 

the covariance matrix of a single trial does not hold sufficient information for classification. As a 

matter of fact the covariance matrix does not contain any temporal information at all, which is easily 

seen if we consider that shuffling at random the samples of trial Xz the covariance matrix (254) is 

unchanged. However ERPs have a specific time signature; it is this signature that differentiates an 

ERP from another or an ERP from the absence of the ERP, so this is the information we need to 

extract and embed in a “covariance matrix”. In order to do so let us consider again a number of 

training trials Xz, for z{1,…,Z} classes. In this case each class corresponds to a different ERP and a 

no-ERP class is usually added. For example, in P300-based BCI, one class is the target class, 

containing a P300, and the other is the non-target class (Z=2). Let us now construct the super-trial 

 

 

1

 

 

ERP
z

Z

z

 
 
 

  
 
  
 

X

X
X

X

N(Z+1)xT,         (258) 

where    1
,   ,T T

Z
X X  are the grand average ERPs obtained on the training data, previous sessions of 

the user or even on a database of other users (transfer learning) for each class; we call these grand-

average ERP the temporal prototype. We specify a prototype for each class. Note that we have 

introduced index (z) in parenthesis to highlight the difference with the zth training class of the trial. 

Now, for a training trial Xz the covariance matrix of the super-trial has the following block structure: 

 
    

 . . .1 1

1 1 .

T
T T

T zERP ERP
z z z

T T
z z z
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 
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N(Z+1)x N(Z+1),   (259) 

where 
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and      1
.  , ,  T T T

z z z Z
X X X X X X NxNZ.        (261) 

Let us take a close look to the structure of this covariance matrix: 

The NxN diagonal blocks of . .TX X hold the covariance matrix of the Z temporal prototypes and its 

NxN off-diagonal blocks their cross covariance. All these blocks are not useful for classification as 

they do not change from trial to trial.  

The NxN block
T

z zX X holds the covariance matrix (254) of the trial Xz, which contains the spatial 

information of the trial and will be little useful for classification, as we have said.  

The NxN blocks of .T
zX X  contains the cross-covariances between the trial and the Z prototypes, that 

is, these blocks contain the temporal covariances. Notice that shuffling the samples of the trial now 

does disrupt these covariances. These blocks contain the relevant information for classification as the 

cross-covariance will be large only in the blocks where the class of the trial coincides with the class of 

the prototype. The means of the “super” covariance matrices zC  constructed as per (259) on training 

data, which we denote by 1, , zM M  for the Z classes, have the same structure as zC . With an 

unlabeled trial X we then construct the super-trial as per (258), where X replaces Xz, and the 

corresponding covariance matrix C as per (259). Then, the classification is obtained as before using 

MDM (256). The only pre-processing required is to filter the data in the frequency band pass region 

containing the ERPs, typically 1-16 Hz. The exact choice of the band-pass region is not crucial for 

ERP classification. Extensive testing has shown that the method is reliable and robust, generalizes 

better than state of the art methods both across-session and across-subject and is prone to fast 

adaptation (Barachant et al., 2013; Barachant and Congedo, submitted). We report here below new 

results corroborating this conclusion. 

Notice that the temporal prototypes may be defined in any plausible way, that is, they may be given by 

models, expectations as we do here, guesses, etc. This way to construct covariance matrices 

embedding both spatial and temporal information is very flexible thus we believe it will be useful in 

other domains of research. Notice also that as compared to the classification chain proposed for the 

MI, only the band-pass region and the form of the covariance matrix is different; anything else stays 

the same. Finally, it is worth mentioning that often we deal only with the presence and absence of an 

ERP, as it is the case of P300-bases BCIs, where there are only two classes, a target (P300 present) 

and non-target (P300 non-present) class. In this case one can use a simplified version of super-trial 

(258) given by 
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 300
 

P
z

z


 
 
 
 

X
X

X
2NxT,         (262) 

where    
T


X is the temporal prototype of the P300 (target class) and z{+,-}, with “+” indicating the 

target class and “– “ indicating the non-target class. For a training trial Xz the covariance matrix of the 

super-trial has now the simpler block structure: 

 
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 

     

 

300 3001 1

1 1

T T
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    
     

 

X X X X
C X X

X X X X
 2Nx2N.    (263)  

As in (259) the covariance of the prototype    
T

 
X X  does not change from trial to trial and is useless 

for classification.  

The covariance of the trial 
T

z zX X  will be little useful for classification, as we have seen.  

The temporal covariance between the prototype and the trial    
T
z

X X will be large if the trial pertains 

to a target and small if it does not, so (263) suffices to classify efficiently target and non-target trials, 

as we will show.  

Equation (263) is the super-trial we have been using in Barachant et al. (2013) and Barachant and 

Congedo (submitted) and we have found it equivalent to the more general form (258) for a two-class 

P300-based BCI. This is also the super-trial we have used for the results presented here below. 

  

Analysis of P300 BCI data 

 

Method 

We present several results issued from an extensive experiment performed in our laboratory in 

Grenoble. 24 subjects performed one session of the P300-based BCI video-game Brain Invaders 

(Congedo et al., 2011, see chapter I). Seven of these subjects performed seven more sessions, twice a 

week, for a total of eight sessions.  Each session consisted of two runs of the Brain Invaders, one using 

the typical training-test procedure (non-adaptive mode) and the other without any training using an 

initialization and an adaptation scheme (adaptive mode), as discussed. The two runs looked exactly 

identical to the subjects, in that in both cases a training session preceded a test session. However, the 
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BCI classification was different in the two runs. For the non-adaptive mode the universal MDM 

classification algorithm (256) was trained in the training run and applied in the test run.  For the 

adaptive mode the classification was initialized using a database for the first session and then with the 

cumulated data of previous sessions of the user, so that training data was simply discarded for the 

adaptive mode. The order of the two runs was randomized and the design was double-blinded; at any 

time neither the subject nor the experimenter could know in what mode the BCI was running. For the 

MDM algorithm we use as definition of the trial (262) and the corresponding covariance matrices 

obtained by equation  (263). 

Data was acquired with a g.USBamp amplifier (g.Tec, Graz, Austria) using 16 active wet electrodes 

positioned at Fp1, Fp2, Afz, F5, F6, T7, Cz, T8, P7, P3, Pz, P4, P8, O1, Oz, O2, referenced at the right 

earlobe with a cephalic ground and sampled at 512 Hz. In online operation and for offline analysis 

EEG data were band-pass filtered in the range 1-16 Hz and downsampled to 128 Hz.   

We present both online results and offline results, the latter in order to compare the MDM algorithm 

with two popular state of the art algorithms: XDAWN (Rivet et al., 2009, 2011) and the stepwise 

linear discriminant analysis (SWLDA, Farwell and Donchin, 1988). For XDAWN the two most 

discriminant spatial filters were retained. EEG data was then spatially filtered, decimated to 32 Hz and 

vectorized so as to classify the obtained 32x2 features with a regularized linear discriminant analysis 

(LDA), using an automatic setting of the regularization parameter (Ledoit and Wolf, 2004; Vidaurre at 

al., 2009). For the SWLDA EEG data were decimated to 32 Hz and vectorized so as to feed the 

classifier with the obtained 32x16 features. 

 

Results and Conclusions 

We present several offline results of the performance pertaining to the non-adaptive mode, including 

the classic training-test setting and the cross-subject and cross-session initialization comparing several 

classifiers. We also present the online results obtained in the adaptive and non-adaptive mode. These 

latter results are the most relevant as they report the actual performance achieved by the universal 

MDM algorithm in real operation. All performance results for this experiment are reported in terms of 

AUC (area under the curve). Before we detail the performance results, let us visualize the structure of 

the covariance matrix (263) for one subject. This illustrates well the rationale behind the choice of this 

form of the covariance matrix for ERP-based BCI. See Fig. 8.4 and its caption for details. 
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Figure 8.4: Covariance matrix with form (263) computed on one subject using the 

Brain Invaders P300-based BCI. The matrix is divided in four 16x16 blocks. The upper -

left diagonal block is the grand-average sample covariance matrix of the target 

prototype computed on the other six subjects (cross-subject initialization). This block is 

the same on the left (target) and right (non-target) part of the figure. The lower-right 

diagonal block is the sample covariance matrix of  the average ERPs obtained on the 

subject with 106 flashes for target (left) and 530 for non-target (right). The off-

diagonal blocks are the temporal covariances between the prototype and the average 

ERPs; this covariance is high only for the target class since only in this case the signal 

produced by target flashes correlates with the prototype. Al l covariance matrices are 

computed on the ERPs recorded 1s after the flash. The diagonal blocks are scaled so as 

to make the plot readable.  

 

Offline results: the “classic” training-test mode.  

Fig. 8.5 shows the grand average (7 subjects x 8 sessions) AUC accuracy criterion for the three 

classification methods, obtained training the classifiers on the training run and testing on the test run 

(“Classic” column). Table 8.2 reports the detailed results for each subject and session. Paired t-tests 

revealed that the mean AUC obtained by the MDM is significantly superior to the mean AUC obtained 

by the SWLDA method (t(55)= 3.377, p=0.001), and equivalent to the mean AUC obtained by 

XDAWN.  

 

Offline results: the cross-subject initialization. 

These results are obtained using a leave-one-out method. Fig. 8.5 shows the grand average (7 subjects 

x 8 sessions) AUC accuracy criterion for the three classification methods obtained training the 

classifiers on the test data of all subjects excluding the one on which the performance are computed 
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(“Cross-subject” column). Table 8.2 reports the detailed cross-subject results for each subject and 

session. As compared to the classic mode the average AUC with cross-subject transfer learning is 

significantly lower for all classification methods (p<0.002 for all of them). This is an expected result 

as no information at all about the subject actually using the BCI is provided to the classifiers. Paired t-

tests comparing the average performance of the three classification methods in the cross-subject mode 

reveal that the average AUC obtained by the MDM is marginally superior to the average AUC 

obtained by the SWLDA (t(55)= 1.676, p=0.099) and by XDAWN (t(55)= 1.755, p=0.085).  

 

Offline results: the cross-session initialization. 

These results are also shown in Fig. 8.5 (“Cross-session” column). The mean AUC is obtained 

initializing the classifier with any possible combination of S number of sessions among the eight 

available sessions and testing on the remaining 8-S sessions. The results are given for S in the range 

1,…,7 and correspond to the average of all subjects and all combinations (which number depends on 

S). The MDM algorithm proves superior both in the rapidity of learning from previous subject’s data 

and in the performance attained for all values of S. Note that XDAWN, which is a spatial filter 

approach, performs fairly well even when only one session is available for training, but its 

performance grows slowly as more data is available for training. This is because the spatial filter is 

influenced negatively by the difference in electrode placements across sessions and, in general, by all 

factors that may change from one session to the other. On the other hand the SWLDA classifier 

performs poorly when only one session is available for training, however it learn fast as the number of 

available sessions increase. This is because the SWLDA, being an “hard machine learning” approach, 

tends to perform well only when a lot of training data is available. So, XDAWN possesses fast 

learning capabilities, but lacks good transfer learning, whilst the opposite holds for SWLDA. The 

MDM algorithm possesses both desirable properties.  
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Figure 8.5: Classic (training-test), cross-subject and cross-session offline AUC 

performance for the P300-based Brain Invaders BCI experiment. Results are the grand 

average of 7 subjects playing 8 sessions of the Brain Invaders. See text for details.  

 

Table 8.2: Classic (training-test) and cross-subject AUC performance for the P300-

based BCI experiment. AUC performance is given separately for each one of the seven 

subjects (SS) and of the eight sessions (Sess) of the Brain Invaders. See text for details.  

    Classic Cross-Subject   Classic Cross-Subject 

Sess SS MDM SWLDA XDAWN MDM SWLDA XDAWN SS MDM SWLDA XDAWN MDM SWLDA XDAWN 

1 1 0.96 0.93 0.94 0.94 0.94 0.94 5 0.98 0.96 0.99 0.85 0.88 0.89 

2 1 0.91 0.88 0.91 0.89 0.90 0.94 5 0.97 0.96 0.95 0.90 0.92 0.89 

3 1 0.79 0.74 0.75 0.86 0.90 0.88 5 0.87 0.85 0.84 0.85 0.87 0.85 
4 1 0.90 0.94 0.89 0.89 0.75 0.69 5 0.94 0.94 0.97 0.88 0.91 0.88 

5 1 0.94 0.85 0.91 0.91 0.95 0.94 5 0.73 0.83 0.84 0.83 0.93 0.88 

6 1 0.96 0.93 0.95 0.95 0.98 0.98 5 0.91 0.83 0.77 0.88 0.89 0.87 
7 1 0.90 0.87 0.89 0.87 0.95 0.94 5 0.87 0.84 0.87 0.88 0.91 0.88 

8 1 0.90 0.96 0.90 0.97 0.98 0.97 5 0.92 0.89 0.87 0.81 0.83 0.84 

1 2 0.87 0.89 0.94 0.77 0.82 0.85 6 0.99 0.93 0.96 0.89 0.86 0.92 
2 2 0.85 0.74 0.80 0.79 0.85 0.83 6 0.87 0.83 0.85 0.91 0.93 0.91 

3 2 0.87 0.84 0.87 0.75 0.69 0.69 6 0.80 0.91 0.95 0.97 0.94 0.95 

4 2 0.94 0.91 0.93 0.85 0.84 0.85 6 0.96 0.91 0.96 0.92 0.94 0.97 
5 2 0.99 0.98 0.99 0.74 0.80 0.78 6 0.95 0.91 0.92 0.82 0.87 0.91 

6 2 0.86 0.79 0.84 0.77 0.76 0.74 6 0.85 0.76 0.83 0.91 0.92 0.92 

7 2 0.86 0.90 0.88 0.77 0.82 0.80 6 0.94 0.96 0.97 0.77 0.70 0.76 
8 2 0.93 0.95 0.98 0.68 0.68 0.75 6 0.99 0.97 0.96 0.89 0.85 0.89 

1 3 0.85 0.78 0.89 0.68 0.60 0.59 7 0.84 0.74 0.77 0.85 0.86 0.86 

2 3 0.90 0.85 0.88 0.80 0.73 0.72 7 0.96 0.97 0.97 0.87 0.78 0.83 

3 3 0.92 0.91 0.94 0.80 0.70 0.66 7 0.88 0.90 0.94 0.83 0.80 0.76 

4 3 0.97 0.96 0.93 0.87 0.82 0.79 7 0.83 0.78 0.75 0.77 0.80 0.80 

5 3 0.82 0.73 0.86 0.79 0.65 0.68 7 0.86 0.88 0.75 0.88 0.84 0.80 

6 3 0.89 0.92 0.96 0.82 0.69 0.71 7 0.91 0.91 0.87 0.82 0.76 0.82 
7 3 0.99 0.97 0.99 0.88 0.77 0.77 7 0.98 0.97 0.98 0.79 0.78 0.76 

8 3 0.94 0.83 0.86 0.77 0.73 0.75 7 0.73 0.75 0.78 0.82 0.80 0.84 

1 4 0.87 0.83 0.87 0.94 0.88 0.83 M 0.90 0.88 0.89 0.84 0.83 0.83 

2 4 0.95 0.96 0.94 0.86 0.85 0.85 SD 0.06 0.07 0.07 0.06 0.09 0.09 

3 4 0.94 0.94 0.90 0.87 0.86 0.82 
       4 4 0.82 0.79 0.84 0.86 0.81 0.78 

       5 4 0.94 0.91 0.99 0.83 0.84 0.81 

       6 4 0.90 0.88 0.92 0.86 0.84 0.82 
       7 4 0.83 0.78 0.81 0.79 0.79 0.82 

       8 4 0.85 0.85 0.85 0.80 0.80 0.81 
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Online results: adaptation. 

Finally, we show the actual online results for the adaptive and non-adaptive mode of functioning. Let 

us remind that the adaptive and non-adaptive runs were performed in a double-blinded fashion and 

randomized order. At the beginning of each of its 12 levels the game Brain Invaders shows to the 

subject a target alien, chosen randomly among 36 aliens. After each repetition of random flashing of 

each alien, in such a way that each alien is flashed two times (Congedo et al., 2011), the classification 

algorithm destroys the alien with the highest probability of being the target based on the MDM output. 

If the destroyed alien is the target the subject wins the level and goes to the next level, otherwise 

another repetition of flashes is done. Starting from the second repetition the MDM used the cumulated 

distance of all repetitions to select the alien with the highest probability. Hence, the number of 

repetitions to destroy the target (NRD) is a direct measure of performance: the lower the NRD the 

higher the performance.  

Figure 8.6 shows the mean and standard deviation NRD as a function of levels for the first session 

performed by all 24 subjects. As we can see, the non-adaptive MDM features a non-significant 

negative slope (p=0.142), meaning constant performance across levels, whereas the adaptive MDM 

features a significantly negative slope (p=0.02), meaning that the performance increases as the 

algorithm learns from the data of the subject. On the other hand, the slope of difference of the means 

between adaptive and non-adaptive mode is not significant. This result shows that the adaptation is 

effective in leading the user toward good performances already at the first session. 

Figure 8.7 shows the histogram and percent cumulative distribution of the NRD for all 24 subjects and 

all 12 levels of the Brain Invaders game. The cumulative distribution at the third level is 94.44% for 

the non-adaptive mode and 95.49% for the adaptive mode, that is to say, on the average of all levels 

and subjects about 95% of the times three or less repetitions suffice to destroy the target. These results 

demonstrate that our adaptive system without calibration yields performances equivalent to the 

traditional system with calibration, already at the first session.  

 

 



 214 

 

Figure 8.6: Mean (disks) and standard deviation (bars) number of repetitions 

necessary for destroying the target (NRD) for the 24 subjects across the 12 levels of the  

first session of Brain Invaders, for the adaptive run (left) and the non-adaptive run 

(right). On top of the plots is printed the slope of the means and its p-value for the two-

tailed test of the slope being significantly different from zero.  

 

 
 
 

 

Figure 8.7: Raw histogram (left) and percent cumulative distribution (right) of the 

number of repetitions necessary to destroy the  target (NRD) for all 24 subjects and all 

12 levels of the first session of the Brain Invaders game.  

 

Figure 8.8 shows the means and standard deviations of the NRD for the 7 subjects across the 8 

sessions of the Brain Invaders, for the adaptive runs and the non-adaptive runs. Neither slope is 
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significantly different from zero, however the slope of the difference of the means between adaptive 

and non-adaptive mode is significantly smaller than zero (slope=-0.0304; p=0.047, one-tailed), 

demonstrating that over session the performances in the adaptive mode becomes better as compared to 

the non-adaptive mode. We can also appreciate the smaller standard deviation of the NRD in the 

adaptive mode, in all sessions. This result is striking since in non-adaptive mode the system is 

calibrated with data recorded just before the test.   

Figure 8.9a and 8.9b shows the histogram and percent cumulative distribution of the NRD for all 12 

levels of the Brain Invaders game for the seven subjects performing eight sessions. These figures show 

the data separately for each session. We see that while the distribution for the non-adaptive 

classification algorithm is constant across sessions, for the adaptive classification algorithm the 

performance increases sharply starting at the third session. 

 

 

Figure 8.8: Means (disks) and standard deviations (bars) of the number of repetitions 

necessary for destroying the target (NRD) for the 7 subjects across the 8 sessions of the 

Brain Invaders, for the adaptive runs (left) and the non-adaptive runs (right). On top of 

the plots is printed the slope of the means and its p -value for the two-tailed test of the 

slope being significantly different from zero.  
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Figure 8.9a: Raw histogram (left) and percent cumulative distribution (right) of the 

number of repetitions necessary to destroy the target (NRD) for all 12 levels of the 

Brain Invaders game and for the seven subjects performing eight sessions. Each row is 

the data of one session. Session 1 to 4. 
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Figure 8.9b: as in figure 8.9a, but for session 5 to 8.  
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Classification of Steady-State Evoked Potentials 

The form of covariance Matrices for Steady-Stade Evoked Potentials 

The same MDM method can be used for SSEP data classification as well. We make here the example 

of steady-stade visually evoked potentials (SSVEP). The Z classes here represent F different flickering 

frequencies and a no-flickering class can be added as well if sought. In this case the relevant 

information is the diversity of the frequencies engendering oscillations in the visual cortex, while the 

spatial pattern may be the same for different frequencies. In order to exploit the frequency diversity we 

construct super trial 

 

 
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 
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where 
 
T

f
X is the trial filtered in the band-pass region for flickering frequency f{1,…,F}. More 

simply, one may use the Fourier cospectra (85) for the exact flickering frequencies. The covariance 

matrix of super-trial (264) has the following block structure: 
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The NxN diagonal blocks holds the covariance matrices of the F frequencies. When comparing an 

unlabeled trial with the mean of the different classes, only the mean with the block indexing the 

frequency corresponding to the frequency of the trial will have large values. Thus the diagonal blocks 

will be useful for classification. On the other hand the off-diagonal blocks hold the cross-covariance 

between frequencies, thus are not very meaningful. We can put them to zero since the resulting matrix  
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is still symmetric positive definite. Given training data we estimate the class means 1, , zM M . For an 

unlabeled trail X we compute the super trail with (264), where X replaces Xz, then covariance matrix 
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C  using (266). Finally, we use again algorithm (256) to assign the unlabeled trial. The only pre-

processing required is to filter the data in the frequencies corresponding to the SSVEP flickering 

frequencies or, equivalently, estimating the Fourier cospectra at the F flickering frequencies. Note that 

if the phase of the SSVEP is known thanks to precise data tagging, as it is done in Jia et al. (2011), or 

code modulation is used (Bin et al., 2011) one can exploit both the frequential and the temporal 

information, constructing a super trial mixing the strategy used here for ERP (258) and for SSVEP 

(264).  

 

Analysis of Steady-State Visually Evoked Potential BCI data 

 

Method 

Just as an example on the use of MDM for classifying SSEP data, we have applied the MDM 

algorithm using form of covariance matrix given by (266) to a steady-state visually evoked potential 

(SSVEP) dataset distributed with the OpenViBE software (Renard et al., 2010). The dataset is from 

one subject performing 32 SSVEP trials lasting six seconds. There were four classes (Z=4); no SSVEP 

(rest), 12, 15 and 20 Hz. Data was acquired by a g.tec amplifier at 512 Hz with six electrodes (CPz, 

O1, Oz, O2, POz, Iz). Preprocessing consisted in a 5th order Batterworth 2-Hz large band-pass filter 

centered at the three flickering frequencies.  

 

Results and Conclusions 

Let us visualize the structure of the covariance matrix (266) for one subject. This illustrates well the 

rationale behind the choice of this form of the covariance matrix for SSEP-based BCI. See fig. 8.10 

and its caption for details. 

We applied the MDM using a 8-fold cross-validation procedure and using as data segment duration  

1s, 2s, 3s, 4s, 5s and 6s. Accuracy results in term of average percent correctly classified trials are 

shown in table 8.3. 
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Figure 8.10: Covariance matrix of form (266) computed on the subject performing the 

SSVEP experiment. Data were acquired at six electrodes. Each diagonal block of the 

matrices is the 6x6 covariance matrix of the data sharply band-pass filtered around the 

three flickering frequencies used for stimulation: 12, 15 and 20 Hz. The four matrices 

represented in the figure are the grand-average obtained for the “rest” class (no 

flickering) and for the trials with the three flickering frequencies. Notice that  for each 

class only the block corresponding to the actual flickering frequency has high values. 

For the no-SSVEP (rest) data none of the blocks features high vales; this is suffici ent to 

classify well trials belonging to any of the four classes.   

 

Table 8.3: Eight-fold cross-validation offline accuracy performance for the SSVEP data 

using a window size ranging from one to six seconds. There were four classes, so the 

chance level for classification is 25%.  

Windows Size (s) 1 2 3 4 5 6 

Accuracy (%) 53.125 75.000 87.500 93.750 100.000 100.000 
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Conclusion and Discussion 

Based on the presented results we conclude that the MDM classification algorithm do indeed possess 

fast learning capabilities and that it is apt to exploit transfer learning. The adaptive classification 

scheme we have tested has proved effective; once the subject arrives at the twelfth level of the Brain 

Invaders less than two repetitions on the average suffice to destroy the target (fig. 8.6), which is a very 

good result as compared to the state of the art. 

It does not matter how the covariance matrices are defined, the classification algorithms we have 

proposed using the Riemannian framework remains the same for all the three BCI paradigms we have 

considered. Furthermore, it remains astonishing simple. Note that at no point there is a parameter to be 

tuned; it is all deterministic and completely parameter-free. This is in contrast with sophisticated 

machine learning approach such as SVM, where one or more parameter must be learned, for example, 

by cross-validation. For this reason we claim that the strategy we have delineated is truly universal. In 

fact, taken together the simplicity of the MDM classification, its ability to learn rapidly (with little 

training data) and its good across-subject and across-session generalization, make of this strategy a 

very good candidate for building a new generation of BCIs. Such BCIs will be smartly initialized 

using remote massive databases and will adapt to the user fast and effectively in the first minute of 

use. They will be reliable, robust and will maintain good performances. Having analyzed and tried 

several among the strategies that can be found in the literature, we believe that the Riemannian 

framework is the ideal candidate, in that it is the only one possessing all necessary properties a)-g) we 

have listed in the introduction. 

In Barachant et al. (2012a) we have shown that motor imagery classification can be improved 

significantly over the results shown in table 8.1 in a Riemannian framework mapping the covariance 

matrices in the tangent space and applying a feature selection + LDA in the tangent space (see chapter 

IX). In Barachant et al. (2012b) a support vector machine embedded with a Riemann kernel was used.  

These two methods outperform the state of the art but they require tuning parameters. In Barachant et 

al. (2010b) we have mapped the covariance matrices in the tangent space, applied a supervised 

projection of the points (regularized LDA with automatic regularization) in order to increase the class 

separability and then remapped the data in the Riemann manifold where the MDM applies. This 

method does not require tuning parameters, but it still is more involving as compared to the simple 

MDM. Thus, using more sophisticated classification methods in the Riemannian framework one may 

find a way to outperform the state of the art, but only at the expenses of the ergonomic requirements of 

the BCI. Similar results apply to other BCI modalities. In our view the simple MDM method is a good 
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trade-off between accuracy, robustness and ergonomy, therefore could be considered as a starting 

point for the sake of a new standard suiting a large spectrum of BCI applications. Further research will 

find the optimal trade-off between sophistication of classification methods based on Riemann 

geometry and the effectiveness/usability of the method in actual online operation. The method 

candidating to become a standard for BCI data should work without tuning parameters as MDM does 

and should keep the fast learning and good transfer learning capabilities. 

We will see in next chapter that, given N sensors, classifying sensor covariance matrices in the 

Riemannian framework is equivalent to classifying in the optimal N-dimensional source space, 

establishing a connection between the MDM method and spatial filtering/blind source separation 

approaches. We obtain this result without having to estimate the sources, which is cumbersome, prone 

to errors and does not generalize well across subjects. This is a very strong result, making the 

Riemannian framework simple as the most simple classification methods based on sensor data (e.g., 

Laplacian log-power in motor imagery), but as powerful as the most sophisticated spatial 

filtering/blind source separation. It is in this property that resides the flexibility and usability of the 

Riemann framework.  
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CHAPTER IX 

RIEMANN GEOMETRY: A THEORETICAL PRIME 

 



EEG Source Analysis – HDR presented at University of Grenoble, October 2013 

Marco Congedo, Senior Researcher - Centre National de la Recherche Sientifique (CNRS) 225 

Introduction 

The Riemann framework establishes appropriate tools to manipulate the covariance matrices we have 

defined in chapter VIII for motor imagery, ERP-based and SSEP-based BCI. Covariance matrices are 

summetric positive definite (SPD). The study of operators for SPD matrices such as distance and 

geometric mean has recently grown very fast, driven by practical problems in radar data processing, 

image processing, medical imaging (especially diffusion MRI), elasticity, mechanics and machine 

learning. Interestingly, in this endeavor disparate perspectives from matrix analysis, operator theory, 

differential geometry, probability and numerical analysis have converged to the same results. 

However, Riemann geometry as a tool in EEG analysis has appeared only very recently, essentially 

with the parallel work of a group in Canada focusing on sleep stage classification (Li, Wong and 

Debruin, 2009, 2012; Li and Wong, 2013) and our own group focusing on BCI (Barachant et al., 

2010a,b; 2011a,b; 2012a,b; 2013; Barachant and Congedo, 2013, 2014; Congedo, Barachant and 

Andreev, submitted) and automatic artifact detection (Barachant, Andreev and Congedo, 2013). In this 

chapter we provide a clear account of useful knowledge accumulated in this field. We skip proof and 

derivations, referring the reader to the appropriate references. Instead we focus on concepts and useful 

results. We also present some results on preliminary theoretical investigations we have started 

recently.  

Covariance matrices are symmetric positive definite (SPD) matrices. SPD matrices of dimension N 

live in a ½N(N+1)-dimensional hyper cone. Their topology in the Euclidian space is shown in fig. 9.1. 

Up until recently in EEG analysis we have treated SPD matrices in the normal vector (Euclidian) 

space of general symmetric matrices created by the metric  

 1 2
Ttr Q Q

           
(267)  

and associated Frobenius norm 1 F
Q , however, the native space of SPD is not the Euclidean vector 

space. We introduce here the use of an exponential map for symmetric matrices, which is always SPD 

and induces on the space of SPD matrices an affine-invariant metric in a Riemann manifold.  Such 

operation replaces the convex pointed cone in the vector space of fig. 9.1 with a regular manifold of 

constant curvature without boundaries, developing instead infinitely in all of its ½N(N+1) dimensions. 

This is a curved space, but appropriate operations allow treating it as a vector space, ensuring to 

remain in the space of SPD matrices. While at first the Riemann framework appears unusual and odd, 

we provide here a comprehensible account. For our exposition we follow the account given by Bathia 

(2013), Moakher (2005) and Pennec et al. (2004) integrating the exposition with other articles and 
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books. It is interesting to notice that we can arrive at exactly the same mathematical formalism and we 

end up with the very same Riemann metric from a pure differential geometry 35 point of view (Bhatia, 

2003, 2013; Bhatia and Holbrook, 2006; Fillard et al., 2005; Förstner and Moonen, 1999; Moakher 

and Batchelor, 2006; Pennec et al., 2004) as we do here, or from a statistical point of view, assuming 

the multivariate Normal distribution of the data (255) and adopting the Fisher Information metric 36 

(Goh and Vidal, 2008; Skovgaard, 1984), tracing back to the seminal works of Rao (1945) and Amari 

(1985). We prefer the former approach because we believe it is more intuitive. 

 

The Riemannian Manifold  

In differential geometry, a differentiable manifold is a topological space that is locally similar to the 

Euclidean space and has a globally defined differential structure. One can endow a manifold M with a 

Riemannian Metric. A (smooth) Riemannian manifold or (smooth) Riemannian space M37 is a real 

smooth manifold equipped with an inner product on the tangent space TΩM defined at each point Ω 

that varies smoothly from point to point. In the SPD manifold, for any two points v1 and v2 in the 

tangent space the inner product through point Ω  is given by  

 1 1
1 2tr  

Ω v Ω v .           (268) 

Notice that in this chapter we use the term point, covariance matrix or simply matrix to designate a 

point on the manifold, whereas we use the term vector (and associated lower-case italic and bold letter 

notation as v) to designate a point on the tangent space. In all cases, all these quantities in reality are 

matrices.  

                                                      

35 The theory of plane and space curves and of surfaces in the three-dimensional Euclidean space formed the 

basis for development of differential geometry during the 18th century and the 19th century. Since the late 19th 

century, differential geometry has grown into a field concerned more generally with the geometric structures on 

differentiable manifolds. 

36  In information geometry, the Fisher information metric is a particular Riemannian metric which can be 

defined on a smooth statistical manifold. It can be used to calculate the informational difference between 

measurements. The metric is interesting in several respects. It can be understood to be the infinitesimal form of 

the relative entropy or Kullback–Leibler divergence; specifically, it is the Hessian of this divergence. 

37 So named after the German mathematician Bernhard Riemann. 
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If we consider a curve on the manifold, we can compute at each point its instantaneous velocity 

(derivative) and its norm. The tangent space TΩM at point Ω is the Euclidean vector space containing 

the tangent vectors to all curves on M passing through Ω. A Riemannian metric makes it possible to 

define various useful geometric notions on a Riemannian manifold, such as distances, means, 

deviations from the mean, lengths of curves, areas (or volumes), curvature, gradients of functions, etc. 

As usual for geometric mathematical concepts, it is useful to visualize these concepts with the aid of 

figures (fig. 9.2). 

 

 

Figure 9.1: Covariance matrices are constrained by their symmetry, the strict positivity  

of the diagonal elements (variance) and the Cauchy-Schwarz inequalities bounding the 

absolute value of the off-diagonal elements: |Cov(x ixj)|(Var(x j)Var(x j))1/2, for all 

i,j{1,…,N}. This topology is easily visualized in case of 2x2 matrices; any 2x2 

covariance matrix can be seen as point in 3D Euclidean space, with two coordinates 

given by the two variances (diagonal elements) and the third coordinate given b y the 

covariance (either one of the off-diagonal element). By construction a covariance 

matrix must stay within the cone boundaries. As soon as the point touches the boundary 

of the cone, the matrix is no more positive definite; at the boundary anywhere it  has a 

null eigenvalue, while only at the vertex it has two null eigenvalues. Notice that a 

matrix inside the cone may be very close in Euclidian space to the boundary. This is in 

contrast with the Riemannian manifold that we introduce in this chapter. Not e also that 

if the point lies on the horizontal plane with Cov(x ixj)=0, the covariance matrix is 

diagonal.  
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Figure 9.2: The Manifold and the tangent space at a point . Consider a point Ω on M 

and construct the tangent space TΩM on it. Now take a tangent vector v departing from 

Ω, which is our reference point. There exists one and only one geodesic on the manifold 

starting at Ω that corresponds to v; think at rolling the plane (tangent space) on the 

surface (manifold) in such a way that the vector always touches  the surface. The end 

point on M is . We see that the geodesics on M through Ω are transformed into 

straight lines and the distances along all geodesics are preserved (this is true  in the 

neighborhood of Ω). (Rearranged from Goh and Vidal, 2008).  

 

The geodesic between two points of M is the curve joining the two points with minimum length. Such 

curve, indicated by   Ω Φ  in the figure, is unique for a given metric. The length of the geodesic 

between these two points is their distance. Since these points are SPD matrices, the half-point on this 

curve, according to the chosen metric, is the mean of the two matrices. Here and hereafter the mean 

should be understood as a geometric concept, not as an arithmetic concept. 

 

The Exponential and Logarithmic Map  

The exponential and logarithmic maps are shown graphically in fig. 9.2. The function that maps a 

vector vTΩM  onto the point   of the manifold M following the geodesic starting at Ω, is named the 

exponential map and denoted  = EmapΩ(v). This is the map from the tangent space to the manifold, 

TΩM  M. The map is defined in the whole tangent space, but is generally one-to-one only locally 

around the point 0 in TΩM, which corresponds to Ω in the manifold M. The exponential map is defined 

such as 

   
1 1 1 1

2 2 2 2Emap exp
 

 ΩΦ v Ω Ω vΩ Ω .       (269) 
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The inverse operation is the function mapping the geodesic starting at the reference point Ω and going 

to a point  of the manifold M onto the shortest tangent vector vTΩM. It is named the logarithmic 

map and denoted v = LmapΩ( ). The logarithmic map is defined such as 

   
1 1 1 1

2 2 2 2Lmap ln
 

 Ωv Φ Ω Ω ΦΩ Ω .       (270) 

See the definition of matrix symmetric square root (51) and its inverse (52), the matrix exponential 

(53) and its inverse the matrix logarithm (54).  

We can already see a crucial difference between working in a Riemannian manifold and working in an 

Euclidean vector space: every operation on the manifold is made with respect to a reference point. The 

same operation with respect to another point yields a different result. The operations in the 

Riemannian manifold are always local. Said differently, the quantities we compute can be conceived 

as proportions with respect to a reference point.  

 

The Geodesic 

Given two points Ω and  on their native space M, the unique Riemannian geodesic is the curve with 

minimum length joining them, given by 

   1 1 1 1
2 2 2 2,R



 
 

 Ω Φ Ω Ω ΦΩ Ω ,
 

 0,1  ,      (271) 

where beta is the step size. With =1/2 we obtain the mean of the two points. 

 

The Distance  

Given two points Ω and  on their native space M, the Riemannian distance between them is the 

length of the geodesic. It is given by (Bhatia, 2013; Moakher and Batchelor, 2006; Pennec et al., 2004) 

     
1 1

2 2 2 2ln ln lnR nnF
tr 

 

    Ω Φ Φ ΩΦ Λ ,      (272) 

where  
22 lnn nln       and  holds in diagonal the eigenvalues of any of the following four 

expressions, 
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1 1 1 1
2 2 2 21 1;  ;  ;   

    
Φ Ω Ω Φ Φ ΩΦ Ω ΦΩ ,        (273) 

showing that such distance is symmetric. This distance has a remarkable number of properties, some 

of which are reported in table 9.1 (Förstener and Moonen, 1999; Sra, 2012; Moakher, 2005). For more 

inequalities see Sra (2012) and Bhatia (2007).  

These properties have a number of interesting consequences, to which we will come back later on. 

Notice that other possible Riemannian distances can be used as well (for example see Li and Wong, 

2013). Notice also that eq. (272) is used in the universal MDM BCI classifier (256) throughout chapter 

VIII. 

 

Table 9.1: Some important properties and inequalities of the Riemannian Affine-

Invariant Distance. * Products 
1

B ΩB  and 
1

B ΦB  are not necessarily symmetric.  

Fundamental Properties of the Riemannian metric (distance)  

(274) Postivity      0R  Ω Φ ,   with equality iff Ω =  

(275) Symmetry       R R   Ω Φ Φ Ω  

(276) Congruence-Invariance     T T
R R   Ω Φ B ΩB B ΦB , for any invertible B 

(277) Invariance under Inversion     1 1
R R     Ω Φ Ω Φ

 

(278) Proportionality       ,R R R      Ω Ω Φ Ω Φ
 

Some inequalities of the Riemannian metric (distance) 

(279)           , ,R R R R         Ω Φ Ω Ξ Φ Ξ   

(280)   R F
log log   Ω Φ Ω Φ , with equality iff Ω and  commute  
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The Norm 

 

Since the distance is congruence-invariant (see (276) in Table 9.1), we can equate the distance 

between two matrices Ω and   with the distance from a matrix to the identity matrix; after 

congruence transformation by matrix 
1

2


Ω and since 
1 1

2 2
 

Ω ΩΩ I  we have 

     
1 1 1 1

2 2 2 22
R R nn

ln  
   

   Ω Φ I Ω ΦΩ Ω ΦΩ ,      (281) 

where  
1 1

2 2

n
 

Ω ΦΩ
 
are the eigenvalues of 

1 1
2 2

 

Ω ΦΩ . 

We define then the Riemannian norm as the Riemannian distance from the matrix to the identity, 

hence as the distance of its logarithm to the zero point: 

   
1 1 1 1 1 1

2 2 2 2 2 2

R
R F

ln
     

  Ω ΦΩ I Ω ΦΩ Ω ΦΩ .      (282) 

Notice that, if zM  is the Riemannian mean of given trials  1 , ,kz z KzC C C  pertaining to class z, the 

distance of each trial to the mean is    
1 1

2 22 2 1
n k kz k n k kzn

ln ln 
   M C M M C , i.e., it is a non-linear 

function of the eigenvalues of the whitened trials. 

The Riemannian norm is zero only for the identity matrix (while the Frobenius norm is zero only for 

the null matrix). Either eigenvalues smaller and greater than 1 increase the norm and the norm goes to 

infinity as any eigenvalue goes to either infinity or zero. Importantly, because of the square of the log, 

an eigenvalue  increases the norm as much as an eigenvalue 1/ does (from which the invariance 

under inversion (277)). The way this metric works is illustrated in fig. 9.3. 

We have also the following result: 

   
1 1

2 22 2 1
n nn n

ln ln 
   Ω ΦΩ Ω Φ ,       (283) 

that is, the Riemannian norms of 
1 1

2 2
 

Ω ΦΩ  and 1
Ω Φ  are equal, hence the fact that any of the 

expressions in (273) can be used to compute the distance. Notice that 
1 1

2 2 1  Ω ΦΩ Ω Φ  only if 

1
2



Ω and
 
Φ  commute in multiplication, which is not true in general. If they commute 1

Ω Φ
 
is 

symmetric. Hence, neither the trace (sum of the eigenvalues), nor the determinant (product of the 
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eigenvalues), nor the Frobenius norm of these two quantities are equal, but the sum of the squares of 

the log of the eigenvalues is the same. Also, since 1
Φ Ω  and 1

Ω Φ  are not necessarily symmetric, 

their EVD has a form different from (35).  Note that one has to use the appropriate eigenvalue-

eigenvector decomposition algorithms if these two expressions are used to compute the distance or the 

norm, or, just use either 
1 1

2 2
 

Φ ΩΦ  or 
1 1

2 2  
 

Ω ΦΩ , which are always symmetric. 

 

 

Figure 9.3: The ellipsoids in the figure are isolines of constant  density of bivariate 

Gaussian distributions. The semiaxes are proportional to the square root of the 

eigenvalues of the covariance matrix. If we ask how far the ellipsoid is from the circle, 

which is the definition of the Riemannian norm (282), we see that an eigenvalue = 2 

contribute to the distance from the identity as much as an eigenvalue =1/2, as one 

would expect, since the eigenvalues are squared quantit ies. Neither the sum nor the sum 

of the logarithm of the eigenvalue has this property.  

 

The Geometric Mean of Points on the Manifold 

It is very useful to compute means of two or more points in the manifold. For instance, such a mean 

may be used to represent a class in BCI experiment, as we have seen in (256), or more in general to 

obtain a prototype for a cloud of points (a matrix set). Among the many means proposed by the 

ancient Greeks, three of them, the arithmetic, harmonic and geometric mean are widely used still 

today. For K samples of a univariate random variable x the arithmetic mean is 

1x kk
a K x  ,          (284) 

the harmonic mean is 

 
1

11x kk
h K x


            (285) 

and the geometric mean is 
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  1K
x k kk k

g x exp K ln x   .        (286) 

When working with matrices, a straightforward definition of the matrix arithmetic mean in analogy 

with (284) is 

1 kk
K C            (287) 

and a straightforward definition of the harmonic mean in analogy with (285) is 

 
1

11 kk
K


 C ,          (288) 

however a straightforward definition of geometric mean does not exist. To see this, it suffices to 

realize that the matrices in the cloud do not necessarily commute in multiplication, so in analogy with 

(286) one would obtain different means depending on the permutation of the index. Hence, one may 

define the geometric mean as the Kth square root of the matrix product, in analogy with (286), only if 

the matrices all pair-wise commute.  

It turns out that there are infinite ways to define a geometric mean for the general case K > 2 (Bhatia, 

2013). Researchers have begun by listing a number of desirable properties a mean should possess. Ten 

such properties are known in the literature as the ALM properties, from the seminal paper of Ando, Li 

and Mathias (2004). When doing so, one finds out that the arithmetic and harmonic mean do not 

possess all desirable properties of a mean. For example, we require that the inverse of the mean of the 

inverse of several matrices be the mean of these matrices, but this is not true for the arithmetic, nor for 

the harmonic mean. Such a property, as we will see, is possessed by the geometric mean. Another 

simple example will provide motivation to investigate the geometric mean of SPD matrices; ask 

yourself, what should be the “mean” of C and 1
C ? Their arithmetic mean is  

 11
2

C C  and their harmonic mean is  
1

11
2


 

 
C C .  

Only their geometric mean gives us the intuitive answer: the “mean” of C and 1
C  is the identity 

matrix. Another reason to praise the geometric mean is that it considers proportional (relative) 

variations, which is meaningful when working with variances and covariances, while the arithmetic 

mean considers absolute variations. Nonetheless, the main reason to discard the arithmetic mean of 

SPD matrices as representation of a matrix cloud is that it performs poorly as a representation of 

several points. For example, in a study of Li and Wong (2013) performances in classification of sleep 



 234 

stages using an Euclidean distance proved way inferior as compared to a Riemannian distance. For all 

these reasons in the last 25 years there has been an intense effort to define and estimate a geometric 

mean of several PSD matrices. For K=2 the problem has been solved soon. For the case K > 2 it has 

proven elusive for a quarter of century (see Bhatia, 2013, for an historical perspective).  

In the Riemann framework it is convenient to use the definition of Fréchet means and the ensuing 

variational approach: in a univariate context, while the arithmetic mean (284) minimizes the sum of 

the squared Euclidean distances to K given positive scalars, such as 

 
2

x

x x kk
a

a argmin a x  ,         (289) 

the geometric mean (286)  minimizes the sum of the squared hyperbolic distances to K given positive 

numbers, such as 

 
2

x

x x kk
g

g argmin ln g ln x  .        (290) 

In analogy, we define the (least-squares) mean M of K SPD matrices Ωk such as (Bhatia and Holbrook, 

2006; Moakher, 2005) 

 2
R kk

argmin  
M

M M Ω .        (291) 

In words, the geometric mean is the matrix minimizing the sum of the squared Riemannian distances 

of all elements from itself. M is the unique SPD geometric mean38 satisfying non-linear matrix 

equation (Moakher, 2005) 

  1
kk

ln   Ω M 0  or, equivalently,  
1 1

2 2

kk
ln

 

 M ΩM 0  .    (292) 

Notice that if the matrices are covariance matrices of trials belonging to a given class, the second 

expression here above says that the sum of the log of the whitened trials equals the null matrix. We 

will come back to this later on. 

                                                      

38 This least-squares geometric mean is also referred to as the barycenter, the center of mass or the Karcher 

mean. 
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Given two points Ω1 and Ω2 on their native space M, the Geometric Mean between them, indicated in 

the literature by 1 2#Ω Ω , is given by (Bhatia, 2003, 2007; Bathia and Karandikar, 2011; Bini and 

Iannazzo, 2011; Moakher, 2005) 

     
1 1 1

1 1 1 12 2 2
2 2 2 2 1 1

1 2 1 1 2 1 1 1 1 2 2 1 1#
     Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ,    (293) 

or 

     1 1 1 1
2 2 2 2 11 1

2 21 2 1 1 2 1 1 1 1 2# exp log exp log
   Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω ,    (294) 

which, as one should expect, is the midpoint of the geodesic in (271). In the above the indexes 1 and 2 

can be switched to obtain as many more expressions. This geometric mean of two matrices turns out to 

be the unique solution of a quadratic Ricatti equation (Bhatia, 2007; Nakamura, 2009), yielding 

       1 1
1 2 2 1 2 1 1 2 1 1 2 2# # ; # #  Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω Ω      (295) 

Given a set  :{1,…,K} of K >2 points (e.g., covariance matrices), there is no closed form solution 

for computing their geometric mean. Several iterative algorithms have been proposed. We use the 

following (Pennec et al., 2004; Manton, 2004; see also Bini and Iannazzo, 2011)  algorithm. 

 

Algorithm (296): Geometric Mean M of K SPD matrices k{1,…,K}. 

Initialize M by a smart guess (e.g., the cheap mean of Bini and Iannazzo, 2011) or with the arithmetic 
mean.  

Repeat 

 
1 1 1 1

2 2 2 21
K kk

exp ln
  

 M M M Ω M M ,       

Until Convergence  

(  
1 1

2 2

kk F
ln 

 

 M Ω M , according to (292)). 

 

These iterations have linear convergence. In simulations with high-dimensional matrices it has been 

found that they do not converge if the matrices are very distant one from the others (Bini and 
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Iannazzo, 2011). With real EEG data and up to 32-electrode data we have always seen this algorithm 

converging reliably, thus the problem thus not apply for real BCI applications. For EEG in general, a 

principal component analysis (196) can be applied to reduce the dimension if many electrodes are 

available. Numerical simulations and an analysis of the complexity reveal that this algorithm, 

compared to others, is also convenient in term of speed of computations (Jeuris et al., 2012). Notice 

that, in essence, this algorithm iteratively maps the points in the tangent space through the current 

estimation of the mean, computes the algebraic mean in the tangent space (where the arithmetic mean 

makes sense) and maps back the updated mean estimation on the manifold, until convergence (fig. 

9.4).  

The research of algorithms for estimating the geometric mean of three or more matrices is currently a 

very active field (Bhatia, 2013; Jeuris et al., 2012; Nakamura, 2009; Poloni, 2010). For recent 

developments see Bini and Iannazzo (2011, 2013) and Moakher (2012). For a matrix cloud (set)  

:{1,…, K} of K>2 points with geometric mean M(), we have listed important properties of the 

geometric mean in table 9.2 (Moakher, 2005; Nakamura, 2009).  

 

 

Figure 9.4: Zoom on the manifold as it is represented in fig. 9.2. Consider two points 

Ω1 and Ω2 on M and construct the tangent space TΩM through their current estimation 

of the mean M, initialized as the arithmetic mean. At each iteration, the algorithm maps 

the points on the tangent space, computes the mean vector and maps back the point o n 

the manifold. At each iteration the estimation of the mean is updated, thus the point of 

transition into the tangent space changes, until convergence, that is, until this 

transition point will not change anymore, coinciding with the geometric mean, that is, 

satisfying (292).  
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Table 9.2: Some important properties of the geometric mean 

Properties of the Geometric Mean 

(297) Invariance by reordering   The GM of K SPD matrices is the same in any order 

(298) Invariance under congruence transformation     1 , ,T T T
KΩ B M B M B ΩB B Ω B   

(299) Self-Duality        
1

1 1
1 , , KΩ


  

 
M M Ω Ω

 

(300) Joint Homogeneity     1 1, , K K M Ω Ω =    
1

K

kk
Ω M , 0 

 

(301) Determinant Identity       
1

K

kk
det Ω det M Ω   

 
 

(302)  for any PSD                    2 2 21 , ,KR R k R kk
Ω Ω     

 M Φ Ω M Ω Φ   

(303) iff  all matrices Ωk pair-wise commute      
1

K

kk
Ω  M Ω     
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RECENT INVESTIGATIONS 

 

Introduction 

Some of the properties of the geometric mean, particularly (298) (table 9.2), which is analogous to 

(276) (table 9.1) for the distance between two SPD matrices, have important consequences for the use 

of these tools with EEG data. In this section we present some of our recent investigations in this sense. 

In particular, we have very recently inquired about the connection between these tools and the 

diagonalization methods presented in chapter IV to VII. We also propose a standardized measure of 

distance, a distance matrix quantity and an index of cloud entropy. 

 

Connections with Diagonalization Methods 

 

Blind Source Separation 

Consider the typical linear instantaneous mixing model for EEG we have used over and over again in 

chapter VI: 

   t tx As ,           (304) 

where A is the unknown mixing matrix and s(t) the unknown source process. Model (304) is the base 

of practically all single-subject blind source separation signal processing approaches used in EEG, 

including independent component analysis. Take the covariance matrix of trial X, which using (304) 

can be expressed as a function of the source sample covariance matrix S such as 

T ASA C .           (305) 

From the congruence invariance property of the distance (276) we see that, given two realizations C1 

and C2, with associated source covariance matrix S1 and S2, the distance between C1 and C2 equals the 

distance between S1 and S2. That is to say, working with the Riemannian distance with sensor 

covariance matrices is equivalent to working in the source space with an optimal estimation of the 

sources. This is true whenever A is invertible, that is, in the ½N(N+1) dimensional Riemannian space.  
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Joint Blind Source Separation 

Consider multi-subject BCIs, in which multiple users interact at the same time with the same interface 

(Bonnet, Lotte and Lécuyer; Yuan et al., 2013; Schultze-Kraft et al., 2013). The interesting point of 

such set up is that we can in theory obtain a BCI with 100% accuracy on single-trial given a sufficient 

number of subjects; instead of averaging data or classification scores across trials, we can do the same 

across subjects on a single-trial39 We can actually go a little further and exploit not only the multitude 

of trials, but also their theoretical synchronization between subjects. Let us make the example of P300-

based BCIs. For other paradigms the development is similar. As we have seen, for single-subject using 

a P300-based BCI the super-trials have form (262). Referring to notation introduced in chapter VIII, 

for the multi-subject case (MS) the trial for class z{1,…,Z} is given by  

 

 300 1

 

 

T

T
MS P z
z

T
Mz


 
 
 

  
 
 
 

X

X
X

X

 (N(M+1)N,         (306) 

where M is the number of subjects and N the number of sensors. Notice that the temporal prototype is 

still just one, as for the single-subject case in (262), as it applies to all subjects. The covariance matrix 

of (306) for the example case M=2 has form 

 
 

 

       

 

 

1 2

 300  300
1 1 1 1 2

2 2 1 2 2

1 1

1 1

T T T
z z

T
MS P MS P T T T

z z z z z z z z

T T T
z z z z z

T T

   





 
 

    
     

 
 

X X X X X X

C X X X X X X X X

X X X X X X

.   (307) 

Block    
T

 
X X NxN is again the covariance matrix of the temporal prototype. This does not change 

across trials and has no value for classification.  

The off-diagonal blocks   1
T

z 
X X  and   2

T
z 

X X NxN (or their transpose   1
T
z

X X  and   2
T
z

X X ) 

hold the covariances between the trial of the subjects and the prototype and are relevant for 

                                                      

39 ! 
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classification just as in (259); the only difference is that instead of having only one of such covariance, 

now we have two of them, increasing accordingly the classification power.  

Moreover, consider now off-diagonal block 2 1
T

z zX X . This (or its transpose 1 2
T

z zX X ) holds the 

covariance between the trial of the two subjects; since the P300 response is synchronized, this 

covariance will be large for the target trials only, thus it hold some information useful for 

classification.  

Notice that classifying based on (307) does not amount to simply add the data of each individual. This 

is what we would obtain putting to zero the off-diagonal blocks 2 1
T

z zX X  and 1 2
T

z zX X of (307). Here we 

are actually exploiting also the synchronization of the ERP response and the covariance of the 

synchronized response of the two subjects.  The same goes with more than two subjects, wherein all 

pair-wise cross-subject covariances may be exploited. This is the same endeavor of the joint blind 

source separation (JBSS) approach encountered in chapter VII. The JBSS aims at finding M demixing 

matrices simultaneously, maximizing the covariances among individuals. The sample covariance 

matrix in this case has form (extending (305)) 

1 1 1 1

1

0 0

0 0

T

M

M MM M

    
    

    
    
    

A S S A

C

S SA A

,      (308) 

where Am is the mixing matrix for the mth subject, Sm is the source covariance matrix of the mth subject 

and Sij is the cross-covariance between the sources of the ith and jth subject, with i,j{1,…,M}; thus, 

once again, due to the congruence-invariance of the mean and the distance, using the Riemann 

framework we are classifying in the sensor space as if we were estimating the optimal JBSS filtering. 

 

A Diagonality Function 

Cosider the Riemannian distance of a matrix to is diagonal part   R diag C C , where diag(.) 

nullifies the off-diagonal elements of the argument. Using the congruence invariance of the 

Riemannian distance we have that 

        
1 1

2 2, ln  R
F

diag diag diag
 

C C C C C ,      (309) 
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that is, the Riemannian distance of a covariance matrix from its diagonal part is the Riemannian norm  

(282) of the correlation matrix. We can then use this definition to obtain a diagonality function to 

weight matrices in AJDC and replace the Euclidean measure (229). 

 

AJD and the geometric mean of a matrix set 

The following proposition establishes the relation between the Riemannian geometric mean and the 

approximate joint diagonalization (AJD) of a matrix set. 

 

Proposition (310) 

Let matrix set C ={C1,…,CK} be composed by SOS statistics of data generated under instantaneous 

linear mixing model (213) x(t)=As(t), where A is the mixing matrix and its inverse BT is the demixing 

matrix, and let M be the least-squares geometric mean of set C. Then 

  
1

K
T T

kk
diag 

 M A B C B A ,         (311) 

with equality iff 
T

kB C B  is diagonal for all k{1,…,K}.  

Proof: 

Since diagonal matrices commutes in multiplication, it follows directly from the fact that the geometric 

mean of a set {Ω1,…,ΩK} of matrices that all pair-wise commute in multiplication after congruent 

transformation 
T

kF Ω F  is  
1

1KT T
kk

  
 F F Ω F F  (Bhatia and Holbrook, 2006, Proposition 18). 

If the set can be diagonalized exactly, that is if  T T
k kdiag B C B B C B , for all kC , equality (311) 

holds exactly.  

 

Corollary (312) 

Since the scaling of the columns of B is arbitrary, let us scale B such that 

  
1

K
T

kk
diag  

  B C B I .         (313)
 

After such scaling, using (311) one can estimate approximately the geometric mean with the scaled 

approximate joint diagonalizer or its inverse as 
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 
1

T T


 M BB AA .  
        

(314) 

Again, this estimate is the true geometric mean M iff 
T

kB C B  is diagonal for all k{1,…,K}. Equation 

(314) also says that the mixing matrix is equal to MB  and the demixing matrix equal to 
1T 

A M  

after such scaling.  

 

Corollary (315) 

Using the properties of matrix exponential and logarithm and assuming that the off-diagonal elements 

of the sum  T
kk

ln B C B  vanish as K goes to infinity we have asymptotic result 

  1lim T T
K kkk

exp ln


 
 M A B C B A

       
(316) 

or use instead approximation 

  1 T T
K kk

diag exp ln 
 M A B C B A        (317) 

 

Corollary (318) 

For sets composed of two matrices only both 1
T

B C B  and 2
T

B C B
 
are exactly diagonal, so in this 

case 

   
1

2

1 2 1 2
T T T T

n n n nn
d d M A B C BB C B A a a ,      (319) 

where  1nd  and 2nd  are the N diagonal elements of 1
T

B C B  and 2
T

B C B , respectively. 

 

Corollary (318) is the strongest result as it shows the exact relation between the geometric mean of  

two matrices to be diagonalized and the joint diagonalizer. This result applies to all spatial filtering 

and BSS methods based on the diagonalization of two matrices presented in chapter V and VI. 

In case of more then two matrices, note that these approximations may be used to initialize iterative 

algorithms for the geometric mean or for estimating a “pseudo” geometric mean of non positive-
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definite symmetric matrices whether the matrices in the set share a common eigen-structure (i.e., they 

can be approximately jointly diagonalized). 

 

Standardized Distances to Geometric mean.  

Riemann distances to geometric mean do not have a symmetric distribution. To make their distribution 

symmetric we may use the standardized distances to the geometric mean, which we here define using 

the definition of geometric mean and standard deviation of random variables. Given training points Ωzk 

of K covariance matrices (trials) with k{1,..,K} for class z, we use the distances of the Ωzk from their 

class geometric mean Mz  given by  zk zk z Ω M . Then we have for the class trials: 

the geometric mean of the δzk distances:     1expz zkK k
ln  

  
(320) 

the geometric standard deviation of the δzk distances:  

2

1 zk
z k k z

exp ln





 
      

   
 


 

(321) 

the geometric z-score (standardized) of the deviations:    zk
zk z

z

z ln ln


 


   
    

(322) 

The z-score of the deviation can be used instead of the raw distance in MDM (see chapter VIII). It can 

also be used to improve a method we have developed to detect automatically artifacts (Barachant 

Andreev and Congedo, 2013). 

 

The Distance Matrix  

For any given point Ωk in the set Ωk{ Ω1,…, ΩK} we define the distance matrix from the geometric 

mean matrix M as 

 
1 1

2 2

k k

 

 Δ Ω M M Ω M .          (323)
 

Contrary to the Riemannian distance, this matrix holds directional information in the Manifold. 

Moreover, it is easy to show that the distance between the point Ωk and the geometric mean is the 

same as the distance between the distance matrix and the identity matrix, therefore it is comparable for 

different geometric means. Note that the distance matrix is the whitened trial, since M-1/2 is the 
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whitening matrix, that is, it holds true M-1/2MM-1/2 =I.  Since the distance matrices hold directional 

information, the geometric mean of iid distance matrices approaches the identity very fast, regardless 

the magnitude of the deviations. This fact can be used for classification: for instance in the P300-based 

BCI at each repetition one observes an unknown trial C. So far we have been summing along 

repetitions the distances of each C to the target and non-target geometric means M+ (target) and M- 

(non-target) and applied the MDM. Instead, one can compute the cumulating distance matrices 

 Δ C M  and  Δ C M         (324)
 

obtained along repetitions such as  

 
  1 1

2 2
#

1
#

rep

z i zrep i
exp ln

 

 M C M
        

(325)
 

for class z{+, -} and then apply the MDM algorithm taking the minimum distance from these 

cumulated matrices to the identity matrix. The cumulated distance (325) provides us with 

physiological information to interpret the data. In fact the expected form of the cumulated distance 

matrix is the identity; any deviation from this form can be mapped to understand source of variations 

in the actual sample. 

 

Wiener Entropy: an Index of Cloud Entropy 

For a given cloud of points, besides its central location, we may want to characterize its spread. For 

instance we may want to know if the training data for two classes have similar spread or not. For doing 

this we borrow the little-known Wiener Entropy index. For a power spectrum at f{1,…,F} discrete 

frequencies, the spectral flatness or Wiener entropy is the ratio between the geometric mean of the 

power spectra and their arithmetic mean. It is a dimensionless measure bounded in between 0 (a pure 

sine tome) and 1 (white noise, flat spectrum). The more colored is the signal, the lower the Wiener 

entropy. Usually it is expressed in decibels to increase the dynamic range.  

When used on Riemann distances the Wiener entropy expresses the cloud compactness: the Wiener 

entropy is 1 when the geometric mean equals the arithmetic mean, that is, when all points are at the 

same distance from the geometric mean. We have thus the following  
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Conjecture  (326) 

In a set Ω of N-dimensional SPD matrices the cloud compactness may equal 1 iff there are at most  

½(N(N-1)) points, otherwise it will smaller than 1. 

 

Since the Riemann distance is a multiplicative operation of strictly positive quantities, it is reasonable 

to model its distribution as a log-normal distribution. Furthermore, location and scale parameter for 

data distributed log-normally are usually treated in term of geometric mean and geometric standard 

deviation, which suits perfectly the Riemannian framework. The geometric mean and standard 

deviation of a log-normal distribution are eμ and eσ, respectively, where μ and σ are the mean and 

standard deviation of a normal distribution.  

For a log-normal distribution the harmonic (h), geometric (g), and arithmetic (a) means are related 

such as 

2h g a , 
2a g h  and g ah

        
(327) 

Using this and starting from the definition of Wiener entropy as the ratio between the geometric and 

arithmetic mean we obtain 

 Wiener entropy h g g a  .         (328) 

We see that the three means, which are always in relation a  g  h (Bhatia, 2007), for a log-normal 

distribution are in logarithmic relation with stretch factor a / g = g / h. Therefore, given a set of K 

points Ωk, k{1,..,K}, if we express the Wiener entropy in minus decibel we obtain a dimensionless 

additive measure of cloud entropy, equal to zero when a = g = h  and going to + as the stretch factor 

grows: 

 1010log Ω Ωe g a   .          (329) 

We predict that the higher the cloud entropy the more valuable the contribution of treating covariance 

matrices in their native space (Riemannian) instead of approximating with Euclidian geometry.  
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CHAPTER X 

CONCLUSIONS AND PERSPECTIVES 
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The leitmotiv of this manuscript is the EEG source analysis, that is, the study of latent variables 

hidden in EEG scalp recordings. We have described several families of methods. They follows 

different paths and have different aims, but all allows to disclose a considerably amount of information 

to which we do not have access in the sensor space.  

In chapter III we have presented distributed linear inverse solutions. The eLORETA method is a true 

weighted linear inverse solution respecting the sensor measurement and achieving zero-localization 

error in point spread function. Its use with real data is rather straightforward; the only free parameter 

to be set is the regularization parameter. We have provided a solution to this choice that is effective in 

practice. One can hardly imagine a significant improvement over eLORETA in the search of a 

distributed linear inverse solution, respecting the constraints of linearity, fit to sensor measurement 

and no-localization error in point spread function. Nonetheles other solutions with specific properties 

may be deviced dropping one or more of these constraints. All inverse solutions make use of the 

leadfield matrix. The goodness of the head model chosen for a given subject is crucial for the accuracy 

of the results. Therefore, it is important to spend effort in the precision of head modeling. This is in 

contrast with diagonalization methods that rely only on statistics of the data. As for EEG source 

analysis tools in general, it is hard to check the validity of inverse solutions. For this purpose one may 

want to use different neuroimaging modalities and replicate the experiments several times. 

In chapter IV-VII we have presented a wide family of statistical methods based on diagonalization of 

matrices holding second-order statistics of the data. These methods serve many purposes. The use of 

spatial filters (chapter V) is straightforward and well established in EEG and many other research 

fields. They do not output data to be interpreted physiologically, so their use in practice does not pose 

critical questions. The use of blind source separation (BSS) is more cumbersome, since BSS is meant 

to provide physiologically plausible information, but much more arbitrariness is left to the researcher; 

for example in AJDC a different definition of the diagonalization set may lead to sources that are 

significantly different. Different normalization and weighting of the matrices in the diagonalization set 

also may give results that are quiet different. So, the actual solution retained tends to be biased by the 

expectation of the researcher. As for inverse solutions, it is difficult to check the validity of the BSS 

output; the BSS will always output something, even if the assumptions are not respected at all. Still, 

when used carefully striving to respecting the assumptions of the BSS method and exploiting 

physiological knowledge about the data submitted to analysis, BSS is a very powerful tool allowing 

the study of spatial, temporal and frequential EEG dynamics with high precision. The good news in 

BSS methods based on approximate joint diagonalization (AJD) is that research on AJD algorithms is 

now mature and several algorithms with good performance are available. As compared to single-
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subject BSS, group BSS and joint BSS makes use of even stronger assumptions and inherit all the 

difficulties of the BSS method, hence, while representing possibly the most powerful multivariate and 

multi-subject signal processing tool we know to date, even more care should be applied. 

In chapter VIII, accompanied by the theoretical chapter IX, we have delineated a new universal 

strategy for brain-computer interface (BCI) classification based on Riemann geometry. We have 

proposed a very simple and fully automated classification framework, leaving to the researcher only 

the definition of the right form of the “covariance matrix” to be extracted from the data. Everything 

else is automatic and parameter-free. This is in contrast with the methods presented in previous 

chapters and represents a decisive advantage. We have shown that the framework is flexible and 

powerful, despite its simplicity. Riemann geometry has an important advantage over the other sorce 

analysis methods we have presented in this manuscript; both inverse solutions and diagonaliation 

methods are very sensitive to noise and are useful only for high SNR data, whereas Riemann geometry 

is robust to noise. The drawback of Riemannian tools is that the data is difficult to interpret. We can 

visualize the geometric mean of covariance matrices and make scalp topographical maps (or source 

localization by inverse solutions) with that, but in this space (sensor space) the data is still mixed, so 

such analysis is not very useful; while inverse solutions and BSS disclose the hidden variable, 

Riemann geometry keeps them hidden. We have started to address this limitation with the introduction 

of the distance matrix in chapter IX. It should be kept in mind that Riemann geometry is proposed here 

as a tool for classification, but we are very far from being able to analyze explicitly the hidden 

variables. If the purpose of a study is the analysis of the source dynamics and localization, Riamann 

geometry is not, at least to date, well adapted. On the other hand Riemannian geometry is our method 

of choice for classification and brain decoding. Also, while inverse solutions and diagonalization 

methods are very sensitive to noise and are useful only on high SNR data, Riemann geometry is robust 

to noise and can be used purposefully also on low SNR data (e.g., real conditions). 

In the next years we will continue our investigation in multi-variate multi-subject EEG analysis. While 

we have given in this manuscript several developments in this direction, much is left to do. We believe 

that the analysis of data recorded on several subject simultaneously, either in close contact or at a 

distance, is a topic that will acquire more and more importance in the years to come, both in 

neuroimaging research and in brain-computer interface. This will call for the construction, expoitation 

and maintenance of massive databases and multiple-client/server operations, paving the way for a new 

conception of neuroimaging and brain-computer interfaces. After all, the interaction with other 

individuals is a fundamental ingredient of our existence not only in our ontogeny, but also in our 

phylogeny. The exponential technological progress in mobility and communication of our society is 
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intensifying the occurrence of both face to face and distant interactions. Today the expressions of 

humanity in a natural or technological environment is conceived more and more as social, that is, 

embedded in a situated framework in which in order to achieve efficient communication the reciprocal 

understanding of the emotional and cognitive state is considered as of paramount importance. While 

neuroimaging studies have traditionally focused on the study of one individual while performing 

simple, often non-ecological, tasks in isolation, there is growing interest in analyzing groups of 

individuals simultaneously in ecological experimental settings. Starting with the new millennium, the 

field of social neuroscience has been defined, aiming at discovering those brain mechanisms 

supporting close coupling and attunement between the self and other (Hari and Kujala, 2009). There is 

no doubt that such understanding will be capital for the well being of human society. The analysis of 

the data gathered in these realistic situations will be the object of our further investigations. 
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