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Résumé

L'estimation paramétrique de la fonction de covariance d'un processus Gaussien est étudiée, dans

le cadre du modèle de Krigeage. Les estimateurs par Maximum de Vraisemblance et Validation

Croisée sont considérés. Le cas correctement spéci�é, dans lequel la fonction de covariance du

processus Gaussien appartient à l'ensemble paramétrique de fonctions de covariance, est d'abord

traité dans un cadre asymptotique par expansion. Le plan d'expériences considéré est une grille

régulière multidimensionnelle perturbée aléatoirement. Un résultat de consistance et de normal-

ité asymptotique est montré pour les deux estimateurs. Il est ensuite mis en évidence que des

amplitudes de perturbation importantes sont toujours préférables pour l'estimation par Max-

imum de Vraisemblance. Le cas incorrectement spéci�é, dans lequel l'ensemble paramétrique

utilisé pour l'estimation ne contient pas la fonction de covariance du processus Gaussien, est

ensuite étudié. Il est montré que la Validation Croisée est alors plus robuste que le Maximum

de Vraisemblance. En�n, deux applications du modèle de Krigeage par processus Gaussiens

sont e�ectuées sur des données industrielles. Pour un problème de validation du modèle de

frottement pariétal du code de thermohydraulique FLICA 4, en présence de résultats expéri-

mentaux, il est montré que la modélisation par processus Gaussiens de l'erreur de modèle du

code FLICA 4 permet d'améliorer considérablement ses prédictions. En�n, pour un problème de

métamodélisation du code de thermomécanique GERMINAL, l'intérêt du modèle de Krigeage

par processus Gaussiens, par rapport à des méthodes par réseaux de neurones, est montré.

Abstract

The parametric estimation of the covariance function of a Gaussian process is studied, in the

framework of the Kriging model. Maximum Likelihood and Cross Validation estimators are

considered. The correctly speci�ed case, in which the covariance function of the Gaussian process

does belong to the parametric set used for estimation, is �rst studied in an increasing-domain

asymptotic framework. The sampling considered is a randomly perturbed multidimensional

regular grid. Consistency and asymptotic normality are proved for the two estimators. It

is then put into evidence that strong perturbations of the regular grid are always bene�cial

to Maximum Likelihood estimation. The incorrectly speci�ed case, in which the covariance

function of the Gaussian process does not belong to the parametric set used for estimation, is

then studied. It is shown that Cross Validation is more robust than Maximum Likelihood in

this case. Finally, two applications of the Kriging model with Gaussian processes are carried out

on industrial data. For a validation problem of the friction model of the thermal-hydraulic code

FLICA 4, where experimental results are available, it is shown that Gaussian process modeling

of the FLICA 4 code model error enables to considerably improve its predictions. Finally, for a

metamodeling problem of the GERMINAL thermal-mechanical code, the interest of the Kriging

model with Gaussian processes, compared to neural network methods, is shown.
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Chapter 1

Introduction

The analysis of computer experiments

In the past decades, a new �eld of statistics, the design and analysis of computer experiments

([SWMW89], [SWN03]), has gradually gained a lot of interest from the statistical community,

from both a theoretical and applied point of view. In this thesis, we de�ne a computer experiment

by the collection of an input point x, a computer model function fmod, and the output of the

simulation y = fmod(x). The term computer experiment means that the use of the computer

model fmod, for obtaining the simulated value of a given phenomenon of interest at x, shares

several characteristics with the classical notion of physical experiment.

The �rst point is that a computer simulation is potentially costly (in terms of time and

of hardware necessary for the simulation), so that it is already an issue in itself to select the

simulation input x that would give the maximal amount of information, for the minimal cost.

Shall this input point be speci�ed, recent computer simulators come with a large number of

optional parameters, that also have to be �xed. These parameters enable the computer model

to be a versatile and accurate representation of reality, but add more complexity for the simulator

user. Finally, since computer models address more and more complex physical phenomena (in

particular, multi-physics or multi-scale phenomena), it is not yet certain that their accuracies

are su�cient, for the considered applications.

We have hence, informally, listed three main problems related to computer experiments.

First, for computational cost reasons, the computer model function fmod(x) can not be calcu-

lated for arbitrarily many inputs x. This makes it computationally prohibitive to directly solve

the calibration and validation problems, that we present below, as well as to address other analy-

ses involving many calls to the fmod function (such as sensitivity analysis or global optimization).

The set of techniques for building a cheap and reasonably accurate approximation of this func-

tion constitutes the �eld of metamodeling. In this thesis, we study meta-modeling methods in

which the computer model function is treated as a black box, known only from its inputs and

outputs. Thus, a meta-model f̂mod(x) of fmod(x) is built from a set (x(1), y1), ..., (x(n), yn) of

input and output points.

Calibration corresponds, when an input point x is �xed for the computer model fmod, to �x

the optional parameters necessary to carry out the simulation. The computer model function

9



is thus denoted fmod(x,β), where β is the calibration parameter and has to be �xed prior to

carrying out a computer experiment for the input x. It may also be expected that an uncertainty

quanti�cation be associated to the selected value for β.

Validation is the problem of quantifying the discrepancy between the computer model, ideally

calibrated, and the true underlying physical system. More precisely, denoting freal(x) the

variable of interest of the physical system at x, we are interested in quantifying the residual

error freal(x)− fmod(x,β), when β is correctly calibrated.

Gaussian process models

The central probabilistic notion that we consider in this thesis, for addressing the calibration,

validation and meta-modeling problems presented above, is the notion of Gaussian process. In

this context, a Gaussian process is considered as a Bayesian a priori distribution on a determin-

istic function [RW06]. More precisely, the deterministic function is either the computer model,

for the meta-modeling problem, or possibly the deterministic error function between the physical

system and the correctly calibrated code, for the validation problem.

Gaussian processes have become popular for representing random functions, because of their

tractability (all linear functionals of a Gaussian process remain Gaussian variables), their con-

ceptual simplicity (they are de�ned only by a mean and a covariance function) and the fact that

they constitute a reasonable representation for a large class of deterministic continuous functions.

Furthermore, Gaussian process models yield con�dence intervals, for the value of a random func-

tion at particular input points, that are easily computable. Note here the parallelism between

the utilization of Gaussian processes for representing, say, a deterministic computer model, and,

since a longer time, the utilization of random processes to represent a deterministic geostatistical

function. This last paradigm is known as Kriging [Mat70].

The treatment of a Gaussian process model is most classically carried out in a two-step

approach. First, the mean and covariance functions of the Gaussian process are estimated from

a data set, that is a set of input and output points stemming from the same trajectory of the

Gaussian process. The estimation of the covariance function is generally carried out within a

�xed parametric family, so that it boils down to estimating a �nite number of hyper-parameters,

characterizing it. The mean function is most of the times selected in a linearly-parameterized set.

Second, the covariance function is �xed to the obtained estimate, so that, using simple matrix-

vector formulas the conditional distribution of any linear functional of the Gaussian process,

given the observed values, remains Gaussian and can be computed. The uncertainty resulting

from the estimation of the linearly-parameterized mean function is also taken into account with

explicit formula.

Concerning the covariance function estimation, the most widely used estimation method is

the Maximum Likelihood method [MM84]. The popularity of this method is notably justi�ed

by the attractive general properties of asymptotic consistency and normality for Maximum

Likelihood estimators. These general properties can indeed be veri�ed in the Gaussian process

framework [MM84].

Another estimation method is the Cross Validation method [Dub83], [ZW10]. This method

10



CHAPTER 1. INTRODUCTION

consists in de�ning an empirical, cross-validation based, prediction criterion on the data set of

the Gaussian process. Hence, an attractive feature is that Cross Validation selects a covariance

hyper-parameter directly according to its empirical prediction results on the data set, and that

the prediction criterion can be chosen. This shall make it possible, for the Cross Validation

method, to yield particularly robust estimations, according to the selected criterion. Particularly,

in this thesis, we show in chapter 6, that, for approximating the conditional mean function and

the pointwise conditional variances of the Gaussian process, a Cross Validation procedure is more

robust than Maximum Likelihood, to misspeci�cations of the parametric family of covariance

functions.

Both the Maximum Likelihood and Cross Validation estimators are de�ned as minimizing

criteria of the observed values, that have explicit matrix-vector expressions.

Notice that, while the criterion to minimize is well-de�ned for Maximum Likelihood, Cross

Validation is, as we have said, a general method yielding several possible criteria [ZW10], [RW06].

These criteria could be more or less appropriate, according to the objective of the Gaussian

process model (e.g. simply approximating the conditional mean function of the Gaussian process,

according to the observations, or approximating its full conditional distribution). We consider

the choice of the Cross Validation procedure as an open problem. In this thesis, we have chosen to

address the natural Cross Validation criterion that consists in the Leave-One-Out mean square

prediction error, which is associated to the objective of approximating the conditional mean

function of the Gaussian process.

Despite the conceptual simplicity of Gaussian process models, the problem of the covariance

function estimation (for example of which covariance function estimator to use), and of the

quanti�cation of the in�uence of estimation on prediction, is not fully understood yet. The main

obstacle for a complete mathematical treatment is the dependence between all the observations

that are made of a Gaussian process. Notice also that the estimators of covariance hyper-

parameters are only known as being statistical M-estimators, with an explicit criterion function.

Furthermore, for a �xed covariance function, even if the prediction formulas are explicit, it is

not easy to derive general conclusions from them, notably because they incorporate an inverse

matrix term.

As a consequence, most general theoretical results in the direction of covariance function

estimation and of its in�uence on prediction are asymptotic (in the sense that the number of

observation points goes to in�nity). The reader may refer to [MM84] and e.g. [Yin91], [Zha04]

for an asymptotic analysis of the Maximum Likelihood estimator. Concerning asymptotic results

for the prediction problem, we refer to [Ste99].

Contributions of the thesis

The thesis makes several signi�cant contributions to the �eld of Gaussian process modeling

for the analysis of computer experiments. First, the covariance function estimation problem is

investigated, from both a �nite sample and an asymptotic point of view. In particular, the Cross

Validation estimator is analyzed, and compared with Maximum Likelihood, and the impact of

the design of experiments on the quality of the covariance function estimation is studied.

11



Second, the utilization of Gaussian process models for calibration, validation and meta-

modeling of computer models is treated, from the methodological point of view, and in two

real-case studies on two industrial computer models.

Organization of the manuscript

The thesis is organized into three parts. Part I constitutes a review of the state of the art

regarding Gaussian process modeling.

In chapter 2, we review the �nite-sample treatment of Gaussian process models, when the

covariance function is �xed. We describe the in�uence of the covariance function on the nature

of the trajectories of the Gaussian process, and we review the classical covariance function

families, that we use in the thesis. We also review a variety of explicit formulas and methods

for prediction, conditional simulation and Cross Validation. For Cross Validation, we propose

practical and simple matrix-vector formulas, obtained form the virtual Cross Validation formulas

of [Dub83].

In chapter 3, we address covariance function estimation for Gaussian processes. The chapter

starts with an introduction to statistical parametric estimation. The most classical asymptotic

consistency and e�ciency results, for the Maximum Likelihood estimator with independent and

identically distributed observations, are presented. Then, the di�erent Maximum Likelihood and

Cross Validation methods for covariance function estimation are introduced. A large variety of

explicit formulas, including the gradients of the criteria, are gathered, which can be useful from

a practical point of view.

Chapter 4 constitutes an introduction to the existing asymptotic results for Gaussian process

models. First, the two classical �xed-domain and increasing-domain asymptotic frameworks

are presented. Then, �xed-domain asymptotic results are discussed for prediction with �xed

covariance function. These results concern the asymptotic consistency of Kriging predictions

and a quanti�cation of the asymptotic in�uence of the covariance function choice. Finally,

the existing asymptotic results on covariance function estimation by Maximum Likelihood are

presented.

Part II is dedicated to our contributions to the covariance function estimation problem for

Gaussian processes.

In chapter 5, we address an increasing-domain asymptotic framework, which yields three

main conclusions. First, we prove that, in this favorable context for estimation where Maximum

Likelihood is known to be consistent and asymptotically normal, Cross Validation is also consis-

tent and has the same convergence rate as Maximum Likelihood. This is a desirable theoretical

result, for Cross Validation to be considered in practice. Second, we con�rm that Maximum

Likelihood yields a smaller asymptotic variance than Cross Validation. Indeed, chapter 5 ad-

dresses what we call the well-speci�ed framework, where the true covariance function of the

Gaussian process does belong to the parametric family used for estimation. Maximum Like-

lihood estimators are classically preferable in this context. The third conclusion of chapter 5

concerns the impact of the spatial sampling on the covariance function estimation, for the Max-

imum Likelihood and Cross Validation estimators. An asymptotic con�rmation is given to the

12



CHAPTER 1. INTRODUCTION

commonly admitted fact that using groups of observation points with small spacing is bene�cial

to covariance function estimation. Finally, the prediction error, using a consistent estimator of

the covariance parameters, is analyzed in details.

In chapter 6, we carry out a �nite-sample comparison of Maximum Likelihood and Cross

Validation in what we call the misspeci�ed framework. This means that the true covariance

function of the Gaussian process does not belong to the parametric family of covariance func-

tions used for estimation. In this context, we show that Cross Validation is more robust than

Maximum Likelihood. We follow a two-step approach. In a �rst step, we address theoretically

the case of the estimation of a single variance hyper-parameter, where the correlation function

is �xed and misspeci�ed. Then, we numerically con�rm the results of the �rst step, in the case

where variance and correlation hyper-parameters are estimated from data.

In part III, we address the application of Gaussian process models to the calibration, vali-

dation and metamodeling of computer models.

In chapter 7, we review the existing methodologies for addressing calibration and validation.

These two problems can equivalently be considered as the problem of modeling the discrepancies

between a set of experimental results, and the associated set of computer-model results.

We distinguish two classes of methods. First, we review the methods considering the under-

lying physical system as intrinsically random. This randomness is governed by a randomness in

the calibration parameters of the computer model, so that the goal is to estimate their distri-

bution. We hence review the existing methods, relying or not on a linear approximation of the

computer model with respect to its calibration parameters.

The second class of methods for calibration and validation treats the physical system as

deterministic, and introduce the notion of model error. The model error is the bias between the

physical system and the perfectly calibrated computer model. It is represented by a trajectory

of a Gaussian process. We introduce the di�erent objectives associated to this statistical model,

and we review the methodology, in the case where no linear approximation of the computer model

is done. The most important feature of this methodology is that, eventually, the prediction of

the physical system for an input point x, where no experiments have been done, is composed of

the calibrated code, completed by an inference of the model error function at x.

We then present the simpli�cations of the method above when a linear approximation of the

computer model is done, with respect to its model parameters. This is the case we focus on in

this thesis.

In chapter 8, we apply the Gaussian process modeling of the model error, with the linear

approximation of the computer model with respect to its model parameters, to the thermal-

hydraulic code FLICA 4, for which a set of experimental results is available. We show that

taking the model error into account (that is to say, predicting an experimental result by the

calibrated FLICA 4 code completed by the model error inference) yields a signi�cantly smaller

prediction error than when using only the calibrated FLICA 4 code.

In chapter 9, we address the meta-modeling of the GERMINAL thermal-mechanical code.

The meta-modeling method consists in a classical Gaussian process model, in which the GER-

MINAL computer model is represented as a trajectory of a Gaussian process. We show that

the Gaussian process model yields good prediction results, compared to an alternative meta-
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modeling method based on an arti�cial neural network, that has also been applied to the GER-

MINAL thermal-mechanical code. Furthermore, the probabilistic model, underlying the Gaus-

sian process predictions, enables to select automatically outlier points in a base of results of

the GERMINAL thermal-mechanical code. This is an attractive practical feature of Gaussian

process models, since it is prohibitive to check manually the validity of all the GERMINAL

results. It is con�rmed that the output points that are selected by the Gaussian process model

do correspond to computation failures of the GERMINAL code.
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Part I

Kriging models
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Chapter 2

Kriging models with known

covariance function

In this chapter we present classical results on Kriging models, in the case when the covariance

function of the Gaussian process is assumed to be known. The mean function is either known,

or assumed in a linear, �nite-dimensional family of functions.

In section 2.1, we present the basic properties for Gaussian processes. These properties are

for instance stationarity and regularity. Then, we show how these properties are linked with

the covariance function of the Gaussian process. We conclude the section by presenting the

covariance function families we study in the thesis, and the associated properties of regularity.

In section 2.2, we address prediction and conditional simulation, when a set of observed

values is available for the Gaussian process. We present the simple, ordinary and universal

Kriging frameworks, and we review the most classical formulas of the literature for prediction

and conditional simulation. Then, we present the Cross Validation concepts, and we give the

associated virtual Cross Validation formulas. Finally, we give a few words on the parallelism

between Gaussian process prediction and ridge regression in Reproducing Kernel Hilbert Space.

2.1 Gaussian processes

2.1.1 De�nition and properties of Gaussian processes

Random processes

We give a short introduction to random processes. For further reference on random processes

(including the mathematical construction), we refer, e.g, to the chapter seven of the monograph

[Bil12].

In all the manuscript, we consider a domain of interest D ⊂ Rd. The main probabilistic

notion we use for Kriging models is the notion of random process, presented in de�nition 2.1.

De�nition 2.1. A real-valued random process (or random function) on D is an application Y ,

that associates a random variable Y (x) to each x ∈ D. All the random variables Y (x), for

x ∈ D, are de�ned respectively to a common probability space (Ω,F , P ).
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CHAPTER 2. KRIGING MODELS WITH KNOWN COVARIANCE FUNCTION

Remark 2.2. In the manuscript, mention to the probability space (Ω,F , P ) is generally omitted,

for concision. Nevertheless, the probability space is sometimes explicitly used, particularly in

chapter 5.

The fact that the probability space is common for the random variables Y (x), x ∈ D, is very
important. Indeed, it enables to talk about the trajectories of a random process, as presented

in de�nition 2.3.

De�nition 2.3. For each �xed ω ∈ Ω, the real-valued function x→ Y (ω,x) is called a trajectory

(or a realization or a sample function) of the random process Y .

Let us consider an example for de�nitions 2.1 and 2.3. With (Ω,F , P ) a probability space

and U a real random variable on (Ω,F , P ), following the uniform distribution on [−π, π], we

consider the random process Y (ω, x) = cos (U(ω) + x). The random process Y is a sinusoid

with deterministic period and random phase. Its trajectories are sinusoid with period 2π, and

the phase varies among the trajectories.

The notion of trajectory of a random function of de�nition 2.3 is at least as important as

the formal de�nition 2.1 from an interpretation point of view. Indeed, in the same way as a

random number is a number that can change according to a random phenomenon, a random

function is a function that can change according to a random phenomenon. In the manuscript,

we will essentially postulate that a deterministic function is actually a trajectory of a random

function. The interpretation is that a deterministic function can be seen as the result of a "past"

random phenomenon (which is unknown and now over). Hence it is conceivable that the random

phenomenon could have had di�erent results, which would have yielded di�erent deterministic

functions.

The fact that the probability space is common for the random variables Y (x), x ∈ D is also

important to de�ne the �nite-dimensional distributions of a random function, in de�nition 2.4.

De�nition 2.4. For any n points x(1), ...,x(n) ∈ D, the multidimensional probability distribu-

tion of the random vector Y (x(1)),...,Y (x(n)) is called a �nite-dimensional distribution of the

random function Y .

The notion of �nite-dimensional distribution is the basis of the predictions and conditional

simulations of section 2.2. Roughly speaking, the fact that there is a probability distribution

for the random vector
(
Y (x(1)), ..., Y (x(n)), Y (x)

)
enables us to predict the value of Y (x), after

observing the values of Y (x(1)), ..., Y (x(n)).

Introduction to the multidimensional Gaussian distribution

We give a short introduction to the Gaussian multidimensional distribution. For other introduc-

tions to the multidimensional Gaussian distribution, we refer e.g to appendix B.1 of [SWN03]

or appendix A.2 of [RW06].

Consider n > 1 and a real random vector y = (y1, ..., yn). This random vector is said to be

a Gaussian vector if the two following equivalent conditions are veri�ed.

• For any a1, ..., an ∈ R, the random variable
∑n
i=1 aiyi follows a Gaussian distribution.
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2.1. GAUSSIAN PROCESSES

• There exists a vector m of size n and a n× n non-negative matrix K so that the random

vector y has characteristic function u→ exp
(
iutm− 1

2u
tKu

)
If the two conditions are veri�ed, we will write it y ∼ N (m,K) and furthermore we have

m = E(y) and K = Cov(y).

When K is non-singular, the probability density function of y at x ∈ Rn is, with m = E(y)

and K = Cov(y)
1

(2π)
n
2

√
|K|

exp

(
−1

2
(x−m)tK−1(x−m)

)
, (2.1)

where |K| stands for the determinant of K.

When K is singular, there exists a hyperplane of Rn which is the support of y (meaning that

y almost surely belongs to this hyperplane) and so that, restricted on this hyperplane, y has a

probability density function of the form (2.1) (with respect to the Lebesgue measure over the

hyperplane).

We conclude the introduction to the multi-dimensional Gaussian distribution by stating the

Gaussian conditioning theorem.

Theorem 2.5. Consider a Gaussian vector of size n = n1 + n2 of the form(
y(1)

y(2)

)
∼ N

((
m(1)

m(2)

)
,

(
K1,1 K1,2

K2,1 K2,2

))
Then, when K1,1 is non-singular, conditionally to y(1) = v(1), y(2) follows a

N (m(2) + K2,1K
−1
1,1(v(1) −m(1)),K2,2 −K2,1K

−1
1,1K1,2)

distribution.

Roughly speaking, theorem 2.5 gives, from two Gaussian vectors, the distribution of the

second one conditionally to the �rst one. The fact that this conditional distribution remains

Gaussian is remarkable, and is one of the reasons for the popularity of Gaussian-based proba-

bilistic models.

Remark 2.6. In theorem 2.5, at �rst sight, it seems necessary that the n1 × n1 matrix K1,1

be non-singular. We now give a short discussion on how to proceed when K1,1 is singular. The

important point is that the mathematical de�nition of conditional distributions is still valid when

the conditioning random vector is redundant. For instance, for two random variables X,Z, the

conditional distribution of X according to the degenerate random vector (Z,Z) is well-de�ned

and is simply the conditional distribution of X according to Z.

In the case when K1,1 is singular, there exists n′1 < n1, a n
′
1 × n1 matrix P1 and a (n1 −

n′1)×n1 matrix P2 so that P1y
(1) has a non-singular covariance matrix and P2y

(1) = 0 almost

surely. Then the support of y is a hyperplane of dimension n′1 (meaning that y almost surely

belongs to this hyperplane), so that L(y(2)|y(1)) = L(y(2)|P1y
(1)).

Hence, with Cov(y(2),P1y
(1)) = K2,1P

t
1 and Cov(P1y

(1)) = P1K1,1P
t
1, we get from theorem

2.5

L
(
y(2)|y(1) = v(1)

)
=

N
[
m(2) + K2,1P

t
1(P1K1,1P

t
1)−1P1(v(1) −m(1)),K2,2 −K2,1P

t
1(P1K1,1P

t
1)−1P1K1,2

]
,
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CHAPTER 2. KRIGING MODELS WITH KNOWN COVARIANCE FUNCTION

so that there is also a matrix-vector formula in the case where K1,1 is singular.

Consider now a symmetric SVD (see e.g. [GL96]) K1,1 = UDUt with orthogonal n1 × n1

matrix U and diagonal matrix D with diagonal values λ1 > ... > λn′1 > λn′1+1 = ... = λn1
= 0.

Let, with n1 × n′1 matrix Un′1
and n1 × (n1 − n′1) matrix Un1−n′1 ,

U =
(

Un′1
, Un1−n′1

)
Then P1 and P2 can be Ut

n′1
and Ut

n1−n′1
. This yields, with K1,1 = Un′1

Dn′1
Ut
n′1
, with Dn′1

the

n′1 × n′1 diagonal matrix with diagonal values λ1, ..., λn′1 ,

E(y(2)|y(1) = v(1)) = m(2) + K2,1Un′1
(Ut

n′1
Un′1

Dn′1
Ut
n′1

Un′1
)−1Ut

n′1
(v(1) −m(1))

= m(2) + K2,1Un′1
D−1
n′1

Ut
n′1

(v(1) −m(1))

and

Cov(y(2)|y(1) = v(1)) = K2,2 −K2,1Un′1
(Ut

n′1
Un′1

Dn′1
Ut
n′1

Un′1
)−1Ut

n′1
K1,2

= K2,2 −K2,1Un′1
D−1
n′1

Ut
n′1

K1,2.

Hence, we see that we can compute L(y(2)|y(1) = V(1)) by using a SVD of the singular matrix

K1,1. Therefore, the computational cost is of the same order as in the non-singular case. Note

also that the matrix K−1,1 := Un′1
D−1
n′1

Ut
n′1

is a pseudo inverse of K1,1 that is to say, it veri�es

K1,1K
−
1,1K1,1 = K1,1 and K−1,1K1,1K

−
1,1 = K−1,1. Hence, remark 2.6 can be summarized by the

easy to remember rule: if K1,1 is singular, replace its inverse by the pseudo-inverse above in the

formulas for the Gaussian conditioning theorem.

Finally, when the matrix K1,1 is theoretically non-singular but ill-conditioned, it may be

advised to approximate its lowest eigenvalues by zero and to use the formulas of remark 2.6.

Gaussian processes

In the manuscript, we especially study a particular class of random processes: the Gaussian

processes. These processes are based on the multi-variable Gaussian distribution presented

above.

De�nition 2.7. A random process is a Gaussian process if its �nite-dimensional distributions

are multidimensional Gaussian distributions.

Assuming that a random process at hand is Gaussian is classical for several reasons. First,

the Gaussian distribution is generally an acceptable choice to model the statistical distribution

of a random variable which has a priori reasons to be symmetric, unimodal, and with probability

density function decreasing when one goes away from the mean value.

Second, as we see in section 2.2, using a Gaussian process considerably simpli�es the treat-

ment of a given problem at hand, both conceptually and in practice. Conceptually, it ensures

that the overall random process is easy to de�ne, and that is stays Gaussian after conditioning

to a set of observation points (theorem 2.5). In practice, linear �nite-dimensional treatments

boils down to classical vector-matrix formulas that have a relatively low computational cost.
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Finally, let us also mention that, among the di�erent classes of random processes, the Gaus-

sian processes are the ones for which the most theory has been done. For example, there exists

several monographs giving detailed results for Gaussian processes, for instance on the properties

of the trajectory functions ([Adl90]) and on the prediction problem ([Ste99]).

In the rest of the manuscript, we always consider Gaussian processes. Nevertheless, many

notions or results that are presented hold for general random processes.

Mean and covariance functions

A multidimensional Gaussian distribution is characterized by its mean vector and its covariance

matrix. In the same way, a Gaussian process is characterized by its mean and covariance

functions, that are de�ned below.

De�nition 2.8. The mean function of a Gaussian process Y is the application m: D → R,
de�ned by m(x) = E(Y (x)).

De�nition 2.9. The covariance function of a Gaussian process Y is the application K: D×D →
R, de�ned by K(x,y) = Cov(Y (x), Y (y)).

In de�nition 2.8 and 2.9, the mean function can be any function m: D → R. However there
is an important constraint on the covariance function K. Indeed, for any x(1), ...,x(n) ∈ D, the
n × n covariance matrix K, de�ned by Ki,j = K(x(i),x(j)), must be non-negative. Hence, the

covariance function K must be positive-de�nite, as de�ned in de�nition 2.10.

De�nition 2.10. A function K: D × D → R is positive de�nite if, for any x(1), ...,x(n) ∈ D,
the n× n covariance matrix K, de�ned by Ki,j = K(x(i),x(j)), is non-negative.

A positive-de�nite function is also called a kernel, and its application to the general �eld of

machine learning has yielded the denomination of kernel methods. There is a fair amount of

literature on studying the positive-de�niteness of bivariate functions K: D×D → R (e.g [SS02],

ch.13).

In subsection 2.1.2, we give a review of the covariance functions we consider in the manuscript.

Stationarity

The notion of stationarity corresponds to a random process which has the same behavior, re-

gardless of the location on the domain D. The precise de�nition is given below.

De�nition 2.11. A random process Y is stationary if, for all x(1), ...,x(n) ∈ D and h ∈ Rd, so
that x(1) + h, ...,x(n) + h remain in D, the �nite-dimensional distribution of Y at x(1), ...,x(n)

is the same as the �nite-dimensional distribution at x(1) + h, ...,x(n) + h.

When modeling a deterministic function as the trajectory of a Gaussian process, assuming

stationarity corresponds to considering that the deterministic function has the same nature (in

terms of regularity and variation scale) in all the domain. This is the most classical case, that we

consider in all the manuscript. Concerning non-stationary Gaussian processes, let us mention

that they start to be proposed in operational Kriging packages, like DiceKriging ([RGD12]).

For a Gaussian process, stationarity is characterized in terms of conditions on the mean and

covariance functions, presented in de�nition 2.12 and proposition 2.13.
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CHAPTER 2. KRIGING MODELS WITH KNOWN COVARIANCE FUNCTION

De�nition 2.12. Let Dd = {x(1)−x(2),x(1),x(2) ∈ D}. A covariance function K is stationary

if it can be written, for any x(1),x(2) ∈ D, K(x(1),x(2)) = K(x(1)−x(2)), where, for convenience

of notation, we use the same notation K for both a bivariable function K : D × D → R and a

monovariable function K : Dd → R.

Proposition 2.13. A Gaussian process is stationary if and only if its mean function is constant

and its covariance function is stationary.

Proof. If the mean function is constant and the covariance function is stationary, the Gaussian

vectors (Y (x(1)), ..., Y (x(n))) and (Y (x(1) +h), ..., Y (x(n) +h)) have the same mean vector and

covariance matrix. Hence, they have the same distribution.

Let m be the mean function. If there exists h so that m(x) 6= m(x + h), then the random

variables Y (x) and Y (x+h) do not have the same mean. Let K be the covariance function. If

there exists h,x(1),x(2) so that K(x(1),x(2)) 6= K(x(1) +h,x(2) +h), then the Gaussian vectors

(Y (x(1)), Y (x(2))) and (Y (x(1) + h), Y (x(2) + h)) do not have the same covariance matrix.

We conclude the discussion on stationarity by presenting the Bochner's theorem, which states

that any continuous stationary covariance function is the Fourier transform of a non-negative

measure.

Theorem 2.14. A continuous function K : Rd → R is positive de�nite if and only if it can be

written as K(x) =
∫
Rd µ(dω)eiω.x, where µ is a �nite non-negative measure.

A proof of theorem 2.14 is given in [GS74], p.208. Let us just mention that this result is

intuitive since, for any α1, ..., αn ∈ R, when K is positive de�nite

0 ≤
n∑

i,j=1

αiαjK(x(i),x(j)) =

∫
Rd
µ(dω)

∣∣∣∣∣
n∑
i=1

αie
(iω.x(i))

∣∣∣∣∣
2

,

so that it makes sense that the measure µ is non-negative.

Regularity

Since continuity and di�erentiability are important features of deterministic functions, and since

we aim at modeling deterministic functions as Gaussian process trajectories, the following no-

tions of regularity for a Gaussian process are important.

The two most used notions are mean square regularity, and almost sure regularity of the

trajectories. Roughly speaking, the former notion is the most convenient to handle mathemati-

cally, and the latter notion makes the most sense from an applied point of view. Indeed, as we

see in de�nition 2.18, almost sure regularity is an information related to the only trajectory of

a Gaussian process that the practitioner has at hand.

We now give the de�nitions of mean square continuity and mean square derivability.

De�nition 2.15. A Gaussian process Y is mean square continuous on D if, for any x(0) ∈ D,
Y (x) goes to Y (x(0)) in the mean square sense when x→ x(0).

De�nition 2.16. A Gaussian process Y is mean square di�erentiable on D if there exist d

Gaussian processes ∂
∂x1

Y, ..., ∂
∂xd

Y so that, for any k ∈ {1, ..., d},x(0) ∈ D, with e(k) the k-th
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2.1. GAUSSIAN PROCESSES

base vector, Y (x(0)+he(k))−Y (x(0))
h goes to ∂

∂xk
Y (x(0)), in the mean square sense, when the scalar

h goes to zero.

By induction, we then de�ne the notion of multiple di�erentiability.

De�nition 2.17. A Gaussian process Y is k times mean square di�erentiable on D if it

is k − 1 times mean square di�erentiable, and for any i1, ..., ik−1 ∈ {1, ..., d}, the Gaussian

process ∂
∂xik−1

... ∂
∂xi1

Y is mean square di�erentiable, with mean square derivative processes

∂
∂x1

∂
∂xik−1

... ∂
∂xi1

Y, ..., ∂
∂xd

∂
∂xik−1

... ∂
∂xi1

Y .

In subsection 2.1.2, we will see that there is a simple relationship between the mean square

regularity of the Gaussian Process and the regularity of its covariance function.

We now de�ne the notions of almost sure regularity.

De�nition 2.18. A Gaussian process Y is almost surely continuous (k times di�erentiable)

if, almost surely on the probability space (Ω,F , P ), the function x → Y (ω,x) is continuous (k

times di�erentiable).

Remark 2.19. In de�nition 2.18, unless stated otherwise, di�erentiability is de�ned in the

Frechet sense.

2.1.2 The relationship between the covariance function and the tra-

jectories of a Gaussian process

Relation between the regularity of the covariance function and the mean square

regularity

The two following propositions give simple relationships between the mean square regularity

and the regularity of the covariance function.

Proposition 2.20. Let D ⊂ Rd. A centered Gaussian process Y is mean square continuous if

and only if its covariance function is continuous at each pair (x,x), x ∈ D. Furthermore, if a

covariance function is continuous at each pair (x,x), x ∈ D, then it is continuous on D ×D.

Proof. The equivalence in proposition 2.20 is proved by writing E((Y (x+h)−Y (x))2) in terms

of the covariance function K. The second part is proved in [Adl81].

Proposition 2.21. Let D ⊂ Rd. For a centered Gaussian process Y , for any k ∈ N, i1, ..., ik ∈
{1, ..., d} if the derivative function ∂2

∂xi1∂yi1
... ∂2

∂xik∂yik
K exists and is �nite then ∂

∂xi1
... ∂
∂xik

Y

exists in the mean square sense and is a Gaussian process.

Proof. The proof for k = 1 can be found in [CL67] for instance. The proof for k > 1 is done by

induction on k by using

Cov

(
∂Y

∂xi
(x(1)),

∂Y

∂xi
(x(2))

)
=
∂2K(x(1),x(2))

∂xi∂yi
. (2.2)
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The relation (2.2) is shown by writing

Cov

(
Y (x(1) + he(i))− Y (x(1))

h
,
Y (x(2) + he(i))− Y (x(2))

h

)
=

1

h2
K(x(1) + he(i),x(2) + he(i)) +

1

h2
K(x(1),x(2))

− 1

h2
K(x(1) + he(i),x(2))− 1

h2
K(x(1),x(2) + he(i)).

Now, if two random variables X1 and X2 converge in the mean square sense, their covariance

converges to the covariance of their limits. Hence

Cov

(
∂

∂xi
Y (x(1)),

∂

∂xi
Y (x(2))

)
=

∂

∂xi

∂

∂yi
K(x(1),x(2)).

Concerning almost-sure regularity, we use the notion of a modi�cation of a stochastic process.

De�nition 2.22. Let Y1 and Y2 be two stochastic processes on D, with common probability

space (Ω,F , P ). Y2 is a modi�cation of Y1 if, for all x ∈ D, Y1(x) = Y2(x) almost surely.

Concerning almost sure regularity, the two following propositions give su�cient conditions on

the covariance function for a Gaussian process to be almost-surely continuous and almost-surely

k times continuously di�erentiable.

Proposition 2.23, addressing almost sure continuity is proved in [Adl81].

Proposition 2.23. Let Y be a Gaussian process on D ⊂ Rd, with covariance function K so

that there exists C < +∞ and ε > 0 so that, for |x(1) − x(2)| small enough,

K(x(1),x(1)) +K(x(2),x(2))− 2K(x(1),x(2)) ≤ C

| ln |x(1) − x(2)||1+ε
.

Then, there exists a Gaussian process Ỹ , that is a modi�cation of Y and that is almost surely

continuous.

Remark 2.24. In proposition 2.23, note that the Gaussian process at hand Y is not necessarily

almost surely continuous. Only a second Gaussian process Ỹ , that is a modi�cation of Y , is so.

This fact is illustrated in an elementary example in [Doo53]. The example is also presented in

[Vaz05], chapter 2.1.

Now in practice, for a Gaussian process verifying proposition 2.23, the almost surely contin-

uous modi�cation Ỹ always makes more sense than Y when Y is not almost surely continuous.

Hence, we will always consider that we work with a modi�cation of the Gaussian process Y

having the most almost sure regularity. We will no longer mention this.

Because the condition in proposition 2.23 is expressed in terms of 1
| ln |x(1)−x(2)||1+ε , which

vanishes very slowly when |x(1) − x(2)| goes to 0, it is argued in [Abr97] that all continuous

covariance functions can, in practice, be considered as yielding continuous trajectories almost

surely.

Proposition 2.25 addresses su�cient conditions for a Gaussian process to be almost-surely k

times di�erentiable. The interpretation is that it is su�cient that the covariance function be "a

bit more" than 2k times continuously di�erentiable.
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Proposition 2.25. Let k ∈ N. Let Y be a Gaussian process on Dx ⊂ Rd, with covariance

function K 2k times di�erentiable. Let, for any i1, ..., ik ∈ {1, ..., d},

∂2
i1,...,ik

K(x(1),x(2)) =
∂2

∂xi1∂yi1
...

∂2

∂xik∂yik
K(x(1),x(2)).

Assume that, for α > 3, and for |x(1) − x(2)| small enough,

∂2
i1,...,ik

K(x(1),x(1)) + ∂2
i1,...,ik

K(x(2),x(2))− 2∂2
i1,...,ik

K(x(1),x(2)) ≤ C

| ln |x(1) − x(2)||α
. (2.3)

Then the Gaussian process Y is almost-surely k times continuously di�erentiable.

Proof. The proposition, for d = 1 corresponds to [CL67], p185. We are not aware of a cor-

responding multi-dimensional formulation in the literature. Hence, we give a short proof for

consistency.

We show the proposition for k = 1, the case k > 1 is proved by induction using the same

technique. Let x,h ∈ D. The covariance function K̃ of the one-dimensional Gaussian process

t→ Y (x+ th), de�ned on [−a, a] for positive a small enough, veri�es

∂2

∂x∂y
K̃(t+ dt, t+ dt) +

∂2

∂x∂y
K̃(t, t)− 2

∂2

∂x∂y
K̃(t+ dt, t) ≤ C

| ln |dt||α
.

Hence, from [CL67], p185, the one-dimensional Gaussian process t→ Y (x+ th) is almost surely

C1 on [−t, t].
Repeating the argument over h and x, we show that Y is almost surely Gateaux di�eren-

tiable. We have also shown that the Gateaux derivatives are almost-surely continuous. The

Gateaux derivatives in the almost-sure sense and in the mean square sense are equal (they both

correspond to the same limits in probability). The Gateaux derivatives in the mean square sense

are linear, because K is two times Frechet di�erentiable. Hence, almost surely, Y is Gateaux

di�erentiable, with linear and continuous Gateaux derivatives. Hence, Y is almost surely Frechet

di�erentiable with continuous gradient.

For a stationary Gaussian process on R, the following proposition gives the simplest relation

for mean square regularity, that can also be characterized in terms of the Fourier transform of

the covariance function.

Proposition 2.26. For a stationary Gaussian process on R, the following assertions verify

i)⇒ ii)⇒ iii).

i) The Fourier transform K̂ of K (so that K(x) =
∫
R K̂(ω)eiωxdω) veri�es∫

R
ω2kK̂(ω)dω < +∞.

ii) The covariance function K of Y is 2k times di�erentiable.

iii) Y is k times mean square di�erentiable.

Proof. From proposition 2.21 and the relation Cov(∂Y∂x (x1), ∂Y∂x (x2)) = −∂
2K(x1−x2)

∂x2 .

Hence we have the rule of thumb "ω2kK̂(ω) is summable" implies "K(x) is 2k times di�er-

entiable" implies "Y is k times mean square di�erentiable".

24



CHAPTER 2. KRIGING MODELS WITH KNOWN COVARIANCE FUNCTION

Matérn model on R

Proposition 2.26 gives motivation for a covariance model where the regularity at zero is tunable,

or equivalently where the vanishing rate at +∞ of the Fourier transform of the covariance

function is tunable. The Matérn model satis�es this, and its systematical use to model stationary

Gaussian processes is hence recommended ([Ste99]). The Matérn model is parameterized by the

hyper-parameters σ2 > 0, ` > 0 and ν > 0 and de�ned by

K̂(ω) = σ2 Γ
(
ν + 1

2

)
(2
√
ν)2ν

`2ν
√
πΓ(ν)

1

(4 ν
`2 + ω2)

1
2 +ν

(2.4)

We see that ω2kK̂(ω) is summable whenever ν > k. Therefore, in view of propositions 2.25 and

2.26, ν is called the smoothness hyper-parameter and Y is k times mean square di�erentiable

and k times almost-surely di�erentiable whenever ν > k. The two other hyper-parameters σ2

and ` have, we �nd, a clearer interpretation after giving the temporal equivalent of (2.4),

K(x) =
σ2

Γ(ν)2ν−1

(
2
√
νx

`

)ν
Kν

(
2
√
νx

`

)
, (2.5)

where Kν is a modi�ed Bessel function ([AS65] p.374-379). In (2.5), the three hyper-parameters

are as follow.

• σ2 is the variance parameter. The parameterization is so that K(0) = σ2. The larger σ2

is, the larger the scale of the trajectories is, as illustrated in �gure 2.1.

• ` is the correlation length hyper-parameter. The larger ` is, the more Y is correlated

between two �xed points x1 and x2 and hence, the more the trajectories of Y vary slowly

with respect to x. In �gure 2.2, we illustrate this by plotting trajectories of centered

Gaussian processes with varying ` for the covariance function.

• ν is the smoothness hyper-parameter. Y is k times mean square and almost surely di�er-

entiable whenever ν > k. In �gure 2.3, we plot trajectories of centered Gaussian processes

with varying ν for the covariance function. It is clear that, the larger ν is, the smoother

the trajectories are.

We conclude the presentation of the Matérn model in R by mentioning that the covariance

has a simpler expression than in (2.5) when ν = k + 1
2 , with integer k ([Ste99], p31). The

limit ν → +∞ also gives a simpler Gaussian form for the covariance. The Matérn covariance

functions for ν = 1
2 , ν = 3

2 , ν = 5
2 and ν = +∞ are classical submodels, parameterized by σ2

and ` and are called the exponential, Matérn 3
2 , Matérn 5

2 and Gaussian correlation function.

In table 2.1, we give the expressions of these submodels.

Remark 2.27. ν = 1
2 actually corresponds to K(x) = σ2e−

√
2
|x|
` . Nevertheless, we de�ne the

exponential model by K(x) = σ2e−
|x|
` for convenience.

Remark 2.28. The fact that, when ν → +∞, the Matérn model with hyper-parameters (σ2, `, ν)

converges to the Gaussian model with hyper-parameters (σ2, `) is worth insisting on. Indeed, it

means that a given value of the hyper-parameter ` has the same impact (in terms of scale of

variation for the Gaussian process) regardless of the value of ν. Thus, in the Matérn model of
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Figure 2.1: In�uence of the variance hyper-parameter for the Matérn model of (2.5). Plot of

trajectories of Gaussian processes with the Matérn covariance function with correlation length

` = 1, smoothness parameter ν = 3
2 and variance σ2 = 1

2 , 1, 2 from left to right.
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Figure 2.2: In�uence of the correlation length for the Matérn model of (2.5). Plot of trajectories

of Gaussian processes with the Matérn covariance function with variance σ2 = 1, smoothness

parameter ν = 3
2 and correlation length ` = 1

2 , 1, 2 from left to right.
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Figure 2.3: In�uence of the smoothness parameter for the Matérn model of (2.5). Plot of

trajectories of Gaussian processes with the Matérn covariance function with variance σ2 = 1,

correlation length ` = 1 and smoothness parameter ν = 1
2 ,

3
2 ,

5
2 from left to right.
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submodel name corresponding ν expression

exponential 1
2 σ2e−

|x|
`

Matérn 3
2

3
2 σ2(1 +

√
6 |x|` )e−

√
6
|x|
`

Matérn 5
2

5
2 σ2(1 +

√
10 |x|` + 10

3
|x|2
`2 )e−

√
10
|x|
`

Gaussian +∞ σ2e−
x2

`2

Table 2.1: Expressions of the exponential, Matérn 3
2 , Matérn 5

2 and Gaussian covariance func-

tions on R and corresponding smoothness parameter ν of the Matérn model in (2.5). ν = 1
2 ac-

tually corresponds to K(x) = σ2e−
√

2
|x|
` but we de�ne the exponential model by K(x) = σ2e−

|x|
`

for convenience.

0.0 0.5 1.0 1.5 2.0

0.
0

0.
2

0.
4
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co
v
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ν=1.5
ν=2.5
ν=∞

Figure 2.4: Plot of the Matérn covariance function with σ2 = 1, ` = 1 and ν = 1
2 , ν = 3

2 , ν = 5
2

and ν =∞. Remark: for ν = 1
2 , we plot t→ σ2e(−

√
2
|t|
` ).

(2.5), the three hyper-parameters σ2, ` and ν impact respectively on the variance, the scale of

variation and the regularity of the Gaussian process and the three e�ects are rather independent.

We illustrate this in �gure 2.4, where we plot the Matérn covariance function with σ2 = 1, ` = 1

and ν = 1
2 , ν = 3

2 , ν = 5
2 and ν =∞. We see that only the regularity at zero of the covariance

function varies. Notably, the hyper-parameter ` = 1 has the same impact on the global decreasing

rate of the covariance function for all the values of ν.

Thus, although (2.5) seems rather complicated, the three hyper-parameters have simple in-

terpretations. Notice �nally that if in (2.5) we tried to "simplify" the covariance function by

using, say,
(
x
`

)ν
Kν

(
x
`

)
, a given value of the hyper-parameter ` would have a strongly di�erent

impact when ν is small and when ν is large. Thus, the interpretation of the hyper-parameters `

and ν would not be independent and would, therefore, be signi�cantly less intuitive.
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Multi-dimensional Matérn model

We now generalize the Matérn model for dimension d > 1. There are two methods for doing so,

de�ning two di�erent Matérn models in dimension d > 1. Both are parameterized by σ2 > 0,

`1, ..., `d > 0 and ν > 0.

The �rst model is the isotropic Matérn model. It is de�ned by

K(x) = σ2Km,ν


√√√√[ d∑

i=1

x2
i

`2i

] , (2.6)

where Km,ν is the one-dimensional Matérn covariance function of (2.5) with variance σ2 = 1,

correlation length ` = 1 and smoothness parameter ν. This model is called isotropic because the

Gaussian process parameterized by (x1

`1
, ..., xd`d ) is isotropic, as de�ned in de�nition 2.29 ([Ste99],

p17).

De�nition 2.29. A stationary Gaussian process Y is isotropic if, for any orthogonal matrix

M, the distribution of the Gaussian process x→ Y (Mx) is the same as the distribution of the

Gaussian process Y .

To see that, for a centered Gaussian process Y , with isotropic Matérn covariance function

with hyper-parameters `1, ..., `d, ν, the Gaussian process (x1

`1
, ..., xd`d )→ Y (x1, ..., xd) is isotropic,

note that its covariance function is K(h) = K̃(|h|)2, which is a su�cient condition for isotropy

because |h|2 = |Mh|2 for any orthogonal matrix M.

The second model is the tensorized Matérn model. It is de�ned by

K(x) = σ2
d∏
i=1

Km,ν

(
xi
`i

)
, (2.7)

where Km,ν is the one-dimensional Matérn covariance function of (2.5) with variance σ2 = 1,

correlation length ` = 1 and smoothness parameter ν.

For both versions of the multi-dimensional Matérn model, the hyper-parameters σ2 > 0,

`1, ..., `d > 0 and ν > 0 have the same interpretation.

• σ2 is the variance hyper-parameter. Its interpretation is the same as for the one-dimensional

case of (2.5).

• ν is the smoothness hyper-parameter. For ν > k, the covariance functions of (2.6) and

(2.7) are 2k times di�erentiable, so that because of propositions 2.21 and 2.25 the Gaussian

process Y is k times mean square and almost surely di�erentiable.

• `1, ..., `d are the correlation length hyper-parameters corresponding to the d components.

`k corresponds, similarly to the one-dimensional case of (2.5), to the scale of variation of

the Gaussian process Y relatively to the component xk. Consider that D = [0, 1]d, so that

the scale of the correlation lengths are comparable. If one of the correlation lengths `k

is signi�cantly larger than at least one of the others, then it boils down to considering

that the trajectories of the Gaussian process Y almost do not depend on xk. If all the

correlation lengths are signi�cantly larger than one, then this corresponds to a Gaussian

process that has the distribution of a constant function whose constant value follows a

Gaussian distribution.
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The two versions of the multi-dimensional Matérn model seem to appear rather equally in

the literature. In his monograph [Ste99] p55, Stein criticizes the use of the tensorized version

because of its strong dependence with respect to the system of axes. The choice of axes is indeed

rather arbitrary for natural data (whose case is the context of Stein's remark). Nevertheless,

they may have more meaning for the analysis of computer experiments, where they correspond

to quantities of di�erent nature. On the other hand, in the packages PErK ([SWN03], appendix

C) or DICE Kriging ( [RGD12]), tensorized Matérn covariance functions are proposed (where

they are called separable). In our work, we have used both versions of the multi-dimensional

Matérn model.

Other covariance models

The other covariance model we have used is the power-exponential model, parameterized by

σ2 > 0, `1, ..., `d > 0 and 0 < p ≤ 2. It is de�ned by

K(x) = σ2
d∏
i=1

e

(
−
∣∣∣ xi`i ∣∣∣p), (2.8)

The hyper-parameters σ2 and `1, ..., `d have the same interpretation as for the multidimensional

Matérn model. However, the power parameter p gives less �exibility concerning the smoothness

of the Gaussian process Y . Indeed Y is in�nitely mean square and almost surely di�erentiable

for p = 2 and only mean square and almost surely continuous for 0 < p < 2.

Other classical covariance functions exist in the literature, that we have not used in this

work. We refer e.g. to [Abr97] or section 4.2 of [RW06].

2.2 Prediction and conditional simulation for Gaussian pro-

cesses

2.2.1 Ordinary, simple and universal Kriging models

A Kriging model [Mat70] consists in inferring the values of a random �eld Y at unobserved

points given observations of Y at other points. Hence, in the manuscript, we work in a Kriging

framework, with the additional assumption that the random �eld Y is Gaussian.

Until now, we have focused our attention on the covariance function of the Gaussian process

Y . The assumptions made on the mean function can be important as well, although they are

generally less important than for the covariance function ([Ste99], p138).

There are three subcases of Kriging model, depending on the assumption made on the mean

function of Y .

In Simple Kriging, the mean function is assumed to be known. Equivalently, when working

in the simple Kriging framework, we will consider a centered Gaussian process Y .

In Ordinary Kriging, the mean function is assumed to be constant and unknown.

In Universal Kriging, the mean function at x ∈ D is assumed to be of the form∑m
i=1 βigi(x), with known functions gi and unknown scalar coe�cients βi.
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As we see in subsection 2.2.2, β = (β1, ..., βm)t can be estimated by Maximum Likelihood in

the case of simple Kriging, and by Maximum Likelihood or a Bayesian method with Gaussian

prior distribution in the cases of ordinary and universal Kriging.

2.2.2 Point-wise prediction

In this subsection, the Gaussian process Y is observed at x(1), ...,x(n), with observed values

y = (y1, ..., yn) = (Y (x(1)), ..., Y (x(n))). We want to predict the value of Y at a �xed point

x(new). We hence denote K as the n×n covariance matrix of Y at (x(1), ...,x(n)) and k(x(new))

as the n×1 covariance vector of Y between x(1), ...,x(n) and x(new). All the formulas presented

in this subsection 2.2.2 can be found, for instance in [SWN03].

Case of simple Kriging

In the case of simple Kriging, we call prediction, or predictive mean, the conditional mean of

Y (x(new)) according to y, given by theorem 2.5,

ŷ(x(new)) := E(Y (x(new))|y) = k(x(new))tK−1y. (2.9)

We call predictive variance the conditional variance (theorem 2.5),

σ̂2(x(new)) := V ar(Y (x(new))|y) = V ar(Y (x(new)))− k(x(new))tK−1k(x(new)). (2.10)

Remark 2.30. In the case where K is singular, we refer to remark 2.6 for the de�nition

and computation of (2.9) and (2.10). Roughly speaking it is su�cient to replace K−1 by a

pseudo-inverse of K, which is equivalent to obtaining, from the redundant Gaussian vector y, a

lower-dimensional non-degenerate Gaussian vector incorporating all the randomness of y. This

remark holds for (2.11)-(2.18). In the sequel, we do not make the remark anymore, and we

assume that K is non-singular.

We make the following remarks for (2.9) and (2.10).

• The prediction of (2.9) is a linear function of the Gaussian vector y. For Gaussian vectors,

the conditional mean indeed coincides with a linear prediction.

• The observations being �xed, the prediction of (2.9) can be written as

n∑
i=1

αiK(x(i),x(new)),

with K the covariance function of Y . As the classical covariance functions are decreas-

ing functions of the distance between x(i) and x(new), the prediction function x(new) →∑n
i=1 αiK(x(i),x(new)) vanishes when x(new) is far from the observation points x(1), ...,x(n).

Hence the prediction of (2.9) is essentially meant for interpolation.

• When x(new) = x(i) for a particular i, we can show that in (2.9) and (2.10), ŷ(x(i)) = yi

and σ̂2(x(i)) = 0. This is expected since, when predicting a value that we know, the

prediction is the value itself and the associated uncertainty (the predictive variance) is

zero.
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Figure 2.5: Illustration of the simple Kriging prediction of (2.9) and (2.10). The function sin(πx2 )

is assumed to be a trajectory of a Gaussian process with Gaussian covariance function with σ2 =

0.32 and ` = 1
2 . 95% con�dence intervals are of the form [ŷ(x(new))−1.96σ̂(x(new)), ŷ(x(new)) +

1.96σ̂(x(new))].

In fact, we have the stronger result L
(
Y (x(new))|y

)
= N (ŷ(x(new)), σ̂2(x(new))), where

N (m,σ2) is the Gaussian distribution with mean m and variance σ2. Thus, we can build

con�dence intervals for Y (x(new)), for instance 95% con�dence intervals of the form [ŷ(x(new))−
1.96σ̂(x(new)), ŷ(x(new)) + 1.96σ̂(x(new))].

In �gure 2.5, we give a one-dimensional illustration of (2.9) and (2.10). We observe that,

as discussed, the prediction interpolates the known values exactly, the con�dence intervals have

length zero at the known value points, their widths increase when going away from known value

points, and the prediction function goes to zero as we go in the extrapolation domain (away

from all the known value points).

Case of ordinary or universal Kriging

For the case of ordinary or universal Kriging, we denote by H the n×m matrix so that Hi,j =

gj(x
(i)), where the mean function is assumed to be of the form

∑m
i=1 βigi, with known functions

gi and unknown coe�cients βi. We also denote by h the m× 1 vector so that hj = gj(x
(new)).

We distinguish two cases for the coe�cient vector β. We call the frequentist case, or no

prior information case, the case where β is an unknown constant. We call Bayesian case, or

prior information case, the case where β ∼ N (βprior,Qprior), with known a priori mean vector

βprior and covariance matrix Qprior. We refer, e.g. to [Rob01] for an introduction to Bayesian

statistics.

In the frequentist case, the Maximum Likelihood estimator of β is, after writing a zero-

gradient condition,

β̂ = (HtK−1H)−1HtK−1y. (2.11)
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The estimator in (2.11) is unbiased and, after a direct calculation, has covariance matrix

Cov(β̂) = (HtK−1H)−1. (2.12)

Remark 2.31. In (2.11) and (2.12), the matrix (HtK−1H) is assumed to be well-de�ned and

non-singular.

We will discuss here the case where K is non-singular so that the matrix (HtK−1H) is well-

de�ned. Hence, (HtK−1H) is singular if and only if H does not have a full rank (we consider,

in the manuscript m < n, which corresponds to all our application cases).

If H is not of full-rank, let m′ be its rank. Then we can write Rm as E1

⊕
E2 (meaning that

each element of Rm is the sum of two unique elements of E1 and E2), where E1 has dimension

m′, E2 has dimension m − m′ and E1, E2 satisfy HE1 has dimension m′ and HE2 = {0}.
Roughly speaking E1 corresponds to the part of β that has an impact for the regression function

on the points x(1), ...,x(n) and E2 corresponds to the part of β that has no impact on the

regression function on the points x(1), ...,x(n). Hence the E1 part can be estimated while the E2

part can not. From this fact, two frameworks are possible.

First, if, for a prediction point x(new), the m×1 vector h(new) de�ned by h
(new)
i = gi(x

(new))

veri�es
(
h(new)

)t
E2 6= {0}, then the E2 component of β has a non-zero and totally non-

quanti�able impact on the value of Y (x(new)). In this case, it is impossible to predict Y (x(new))

because the design of experiments totally ignores some aspects of the regression function that

impact the prediction points. The only way to solve this �rst issue is to add well-chosen points

to the design of experiments. We will assume that this has been done in all the sequel. A typical

example for this �rst issue is when the regression model is of the form g(x, y) = β1x+β2y, when

all the observation points are of the form (x1, 0), ..., (xn, 0), and when we want to predict at the

(xnew, ynew) with non-zero ynew.

The second framework is when, for all prediction points x(new), h(new) does verify h(new)tE2 =

{0}. In this case, the E2 component of β is both inestimable and has no impact on prediction.

Hence, it shall simply be ignored. To do so, let E1, of dimension m′, be parameterized bijec-

tively by the linear application P : Rm′ → E1. Then we can set β̃ ∈ Rm′ and H̃ as the linear

application from Rm′ to Rn de�ned as H̃ = H ◦ P. For a new prediction point, we also use

(h̃
(new)

)t = (hnew)t ◦ P. This second case corresponds to an unidenti�ability, or to an over-

parameterization for β. A typical example for this second case is when the regression model is

of the form g(x) = β1x+ β2x.

We now explain, in practice, how to compute E1 and E2 for β, and how to proceed with the

reparameterization described above. Consider a SVD, H = USVt with n×m matrix U so that

UtU = Im, m ×m matrix V so that VtV = Im and diagonal matrix S with diagonal values

λ1 > ... > λm′ > λm′+1 = ... = λm = 0. Then, let, with m×m′ matrix Vm′ ,

V =
(

Vm′ Vm−m′
)
.

With 0a,b the a×b zero matrix, the spaces E1 := (Vm′ ,0m,m−m′)Rm and E2 := (0m,m′ ,Vm−m′)Rm

verify HE2 = {0} and HE1 has dimension m′. Now, if for a prediction point x(new), h(new)

veri�es h(new)t(0m,m′ ,Vm−m′) 6= 0, the design of experiments needs to be completed as ex-

plained above. If, for all prediction points x(new), h(new) veri�es h(new)t(0m,m′ ,Vm−m′) = 0,
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the solution is to use a m′-dimensional regression parameter β̃ that is non-redundant. For this,

note that for w ∈ E1 of the form w = (Vm′ ,0m,m−m′)v, v ∈ Rm,

Hw = H(Vm′ ,0m,m−m′)v = Um′Sm′vm′ ,

with Um′ the matrix of the m′ �rst columns of U, Sm′ the diagonal matrix of the m′ non-zero

diagonal elements of S and vm′ the vector of the m
′ �rst components of v. Said di�erently, with

H̃ = Um′Sm′

on the design of experiments, the regression function family (β → Hβ)β∈Rm is the same as

the regression function family (β̃ → H̃β̃)β̃∈Rm′ . For a new prediction point, the corresponding

reparameterization is

(h̃
(new)

)t = (h(new))t(Vm′ ,0m,m−m′).

Hence, we have shown, from a SVD of H, how to solve the case when H is singular. In

the case where H is non-singular but ill-conditioned, we can adopt the same techniques. As-

sume that the m −m′ last eigenvalues of S are very small compared to the other ones. Then,

if (h(new))t(0m,m′ ,Vm−m′) is much larger than the lines of H(0m,m′ ,Vm−m′), the design of

experiments is numerically incomplete, and the prediction task is strongly compromised. If

(h(new))t(0m,m′ ,Vm−m′) is not larger than the lines of H(0m,m′ ,Vm−m′), then we can set

the m−m′ last eigenvalues of S to zero and proceed as described above.

In the sequel, we will not discuss the singularity issues again. We will assume that K is

non-singular and that H has a full rank.

We see in (2.11) that if there is a β so that Hβ = y, then we have β̂ = β. This means

that, if we are in the favorable case when the mean function model can perfectly reproduce the

known values, then the estimation of the mean function will achieve this perfect reproduction,

as should be expected. Finally, as the random vector β̂ has Gaussian distribution, its covariance

matrix (2.12) is su�cient to yield con�dence ellipsoids for β.

In the Bayesian case, the posterior distribution of β given the known values y is Gaussian

with mean vector

βpost = βprior + (Q−1
prior + HtK−1H)−1HtK−1(y −Hβprior), (2.13)

and covariance matrix

Qpost = (Q−1
prior + HtK−1H)−1. (2.14)

We refer to [SWN03], section 4 for the proof of (2.13) and (2.14). We can note that, when

Q−1
prior → 0, then the Bayesian estimation of β tends to the frequentist one. This is an intuitive

fact, because Q−1
prior small corresponds to a small a priori knowledge of β and hence should, in

the limit case, correspond to an absence of knowledge.

We now present the formulas for the prediction at a new point x(new). We denote h(x(new))

the vector of the regression functions at x(new) de�ned by
(
h(x(new))

)
i

= hi(x
(new)). We denote

k(x(new)) the n× 1 covariance vector of Y between x(1), ...,x(n) and x(new).

In the frequentist case, the Best Linear Unbiased Predictor (BLUP) of Y (x(new)) with respect

to the vector of observations y (that we also call prediction) is
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ŷ(x(new)) = (h(x(new)))tβ̂ + (k(x(new)))tK−1(y −Hβ̂), (2.15)

with β̂ given by (2.11).

We refer to [SWMW89] for a detailed de�nition of the BLUP and the proof of (2.15). The

prediction can be interpreted as the conditional mean of (2.9), in which the true and unknown

value β is replaced by its estimation β̂. Otherwise, we can make the same remarks for (2.15) as

for (2.9).

The mean square error of the BLUP is (see section 4 of [SWN03] for a proof)

σ̂2(x(new)) := E
[(
Y (x(new))− ŷ(x(new))

)2]
(2.16)

= V ar(Y (x(new)))− k(x(new))tK−1k(x(new))

+(h(x(new))−HtK−1k(x(new)))t(HtK−1H)−1(h(x(new))−HtK−1k(x(new))).

Since only linear combinations have been used, the BLUP has Gaussian distribution and the

mean square error allows to build con�dence intervals. The predictive variance (2.16) can be

interpreted as the conditional variance in (2.10), plus a non-negative term due to the uncertainty

on the estimation of β.

In the Bayesian case, the posterior distribution of Y (x(new)) given the observations y is

Gaussian with mean

ŷ(x(new)) = (h(x(new)))tβpost + (k(x(new)))tK−1(y −Hβpost), (2.17)

and variance

σ̂2(x(new)) = V ar(Y (x(new)))− k(x(new))tK−1k(x(new)) (2.18)

+ (h(x(new))−HtK−1k(x(new)))t(HtK−1H + Q−1
prior)

−1(h−HtK−1k(x(new))).

Equations (2.17) and (2.18) are also proved in section 4 of [SWN03]. We can make the same

remarks for these equations as for (2.15) and (2.16). Similarly to the estimation of β, the limit

when Q−1
prior → 0 of the prediction in the Bayesian case is the prediction in the frequentist case.

In �gures 2.6 and 2.7, we give a one-dimensional illustrative example of the estimation of

β and the prediction and predictive variance. The function x → x2 on [0, 1] is assumed to be

the trajectory of a Gaussian process, with mean function of the form β0 + β1x and Gaussian

covariance function with σ = 0.3 and ` = 0.5. In the Bayesian case, the a priori distribution of

β is Gaussian with mean vector (0.2, 0.1)t and diagonal covariance matrix, with diagonal vector

(0.09, 0.09)t. The values of Y are known at the points 0.2, 0.5 and 0.8.

In �gure 2.6, we consider the frequentist case. We �rst see that there is a negative correlation

in the estimation of β. This correlation can be interpreted. Indeed if β0, the value at 0 of the line

x→ β0 +β1x is increased, then, for the line to remain close to the parabola x→ x2, the slope of

the line (β1) must be decreased. Furthermore, an important remark is that the estimated line

is above and does not go through the three known value points. This is surprising at �rst sight,

all the more so since a least square estimator of β would go through the three points. This is

because, as it is shown in (2.15), the estimated line is not intended to constitute a predictive

model of the parabola. Indeed it is completed by the inferred deviation from the mean function,
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Figure 2.6: Estimation of β and prediction in the frequentist case. The function x → x2 on

[0, 1] is assumed to be the trajectory of a Gaussian process, with mean function of the form

β0 + β1x and Gaussian covariance function with σ = 0.3 and ` = 0.5. Left: Iso-density curves

of the probability density function for the estimation of β, given by (2.11) and (2.12). Right:

Estimated line (2.11), real parabola, prediction (2.17) and 95% con�dence intervals (2.18) of the

form [ŷ(x(new))− 1.96σ̂(x(new)), ŷ(x(new)) + 1.96σ̂(x(new))].

from the three known value points. We see in �gure 2.6 that the prediction curve approximates

almost perfectly the parabola. Let us also note that in the extrapolation region ( 0 ≤ x ≤ 0.2

and 0.8 ≤ x ≤ 1 ), the estimated line approximates better the parabola than a line which would

go between the three observation points.

In �gure 2.7, we consider the Bayesian case. By looking at the right plot, we can see that,

from the prior β to the posterior β, the line goes substantially closer to the three observation

points. Nevertheless, it is not as close as in the frequentist case. This is a classical case in the

Bayesian case (as well as in Bayesian statistics in general), when the known value points and

the a priori distribution are in disagreement, the posterior mean of β is a compromise between

the frequentist estimate and the prior mean. Looking on the left plot, we see that a negative

correlation between the two components of β appears in the posterior distribution of β.

Finally, the conclusion concerning the prediction and the predictive variances are the same

as for �gure 2.5.

Case of noisy observations

Assume that the observations of the Gaussian process are noisy. Formally, this corresponds

to considering that the observation at x(i) is yi = Y (x(i)) + εi, where ε = (ε1, ..., εn)t is a

centered Gaussian vector with covariance matrix Kmes. In this case, the covariance matrix of

the observation vector y becomes Kobs := Cov(y) = K + Kmes, with K the covariance matrix

of Y at x(1), ...,x(n).

For estimation of β, one has the same formulas as (2.11), (2.12), (2.13) and (2.14), by

replacing K by Kobs. Similarly, for prediction of Y (x(new)), we have the same formulas as

(2.9), (2.10), (2.15), (2.16), (2.17) and (2.18), by replacing K by Kobs. This is shown by

noting that the proofs of (2.9)-(2.18) only use linear algebra so that they remain the same when

Cov(y) = K + Kmes and Cov(y, Y (x(new))) = r(x(new)) (because the measurement errors are
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Figure 2.7: Estimation of β and prediction in the Bayesian case. Same settings as in �gure

2.6, where the a priori distribution of β is Gaussian with mean vector (0.2, 0.1)t and diagonal

covariance matrix, with diagonal vector (0.09, 0.09)t. Top left: iso-density curves of the prior

probability density function of β. Bottom left: iso-density curves of the posterior probability

density function of β given by (2.13) and (2.14). Right: Estimated line with the prior (top)

and posterior (bottom, (2.13)) mean values for β, real parabola, prediction (2.17) and 95%

con�dence intervals (2.18) of the form [ŷ(x(new))− 1.96σ̂(x(new)), ŷ(x(new)) + 1.96σ̂(x(new))].
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uncorrelated with the Gaussian process Y ).

Note that, in the case of noisy observations, we can see that ŷ(x(i)) is not necessarily equal

to yi. Similarly, the predictive variance σ̂2(x(i)) is not zero at an observation point x(i). Indeed,

the exact value of Y (x(i)) remains unknown after the observations, because of the measurement

errors.

Even when there is no measurement error, it is common practice to use a matrix Kmes of

the form λIn, with small λ, because the matrix K + λIn is better-conditioned than the matrix

K. Although with this practice the Kriging prediction does not interpolate the observations

exactly, we call this practice a "numerical nugget e�ect" in this thesis. This denomination is

inspired by [AC12], where the term nugget parameter is used for the parameter λ above. We

give more details about the numerical nugget e�ect in chapter 6 when discussing the practical

estimation of the covariance function.

2.2.3 Conditional simulation of Gaussian processes

The formulas of subsection 2.2.2 allow to simulate one-dimensional trajectories Y (x(new)) con-

ditionally to the vector y of observed values of Y at x(1), ...,x(n). This one-dimensional simula-

tion might not be su�cient for certain tasks. For example, when modeling monotonic functions

([VM12]), one can not use the point-wise prediction formulas of subsection 2.2.2, because the

conditional mean function of (2.9) is not necessarily monotonic, even if the observations are.

Hence, we have to simulate trajectories of the Gaussian process, conditionally to the observa-

tion vector y, and to average only the ones that are monotonic. This is an example of a use

of trajectories of a Gaussian process, conditionally to the observation vector y. Other classical

uses, either conceptual or practical, of these conditional simulations are the multipoint E�-

cient Global Optimization algorithm (see e.g [CG13a]) and the Stepwise Uncertainty Reduction

methods ([BGL+12]).

The simulation of conditional trajectories of Gaussian processes can be obtained from the fol-

lowing proposition, giving the conditional mean and covariance functions of a Gaussian process,

according to a vector of observations.

Proposition 2.32. Let Y be a Gaussian process, observed at x(1), ...,x(n), with observation

vector y. Let K be the covariance matrix of y and k(x) the covariance vector of Y between

x(1), ...,x(n) and x. Then, according to y, the random process Y is Gaussian, with mean function

x→ m(x|y) and covariance function (x(1),x(2))→ K(x(1),x(2)|y).

In the simple Kriging case m and K are given by

m(x|y) = k(x)tK−1y,

and

K(x(1),x(2)|y) = K(x(1),x(2))− k(x(1))tKk(x(2)).

In the ordinary or universal Kriging case, in the frequentist framework, m and K are given

by, with β̂ and H as in (2.11),

m(x|y) = (h(x))tβ̂ + (r(x))tK−1(y −Hβ̂),
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and

K(x(1),x(2)|y)

= K(x(1),x(2))− r(x(1))tK−1r(x(2))

+(h(x(1))−HtK−1r(x(1)))t(HtK−1H)−1(h(x(2))−HtK−1r(x(2))).

In the ordinary or universal Kriging case, in the Bayesian framework, m and K are given

by, with βpost and H as in (2.13),

m(x|y) = (h(x))tβpost + (r(x))tK−1(y −Hβpost),

and

K(x(1),x(2)|y)

= K(x(1),x(2))− r(x(1))tK−1r(x(2))

+(h(x(1))−HtK−1r(x(1)))t(HtK−1H + Q−1
prior)

−1(h(x(2))−HtK−1r(x(2))).

Remark 2.33. In the universal Kriging case in the frequentist framework, m(x|y) and K(x(1),

x(2)|y) actually do not constitute the conditional distribution of Y (x) given y (notice that this

would be the case if we allowed β to have an improper and non-informative prior distribution

[SWN03], but we do not treat improper prior distributions in this thesis). This conditional dis-

tribution depends on the true and unknown regression parameter β and is hence uncomputable.

The "conditional mean function" we give in proposition 2.32 is actually the Best Linear Unbi-

ased Predictor (BLUP) function and the "conditional covariance function" is the unconditional

covariance function of the error process of this BLUP, x → m(x|y)− Y (x). Since these mean

and covariance functions are the most reasonable that we can compute, we make the classical

slight approximation of naming the distribution they yield the conditional distribution of Y .

From the mean and covariance functions of proposition 2.32, we are able to simulate condi-

tional trajectories. In �gure 2.8, we plot a one-dimensional example of conditional simulations

with �ve exact observation points. We see that all the conditional trajectories pass through

the �ve exact observation points. Furthermore, the conditional simulations have all the most

variability when we are away from the observation points.

There are di�erent kinds of methods in the literature for simulating trajectories of Gaussian

processes, like the ones in �gures 2.3 and 2.8. We refer to [CD99] for an introduction to the

subject, and we now present some classical methods. In the rest of subsection 2.2.3, we aim at

simulating trajectories of a Gaussian process Y on D. Y has an arbitrary covariance function

K (hence including the conditional covariance function of proposition 2.32).

Cholesky decomposition

In our work, we have always used the Cholesky decomposition method. This method aims at

simulating Y at n points x(1), ...,x(n) ∈ D. Consider a Cholesky decomposition K = CCt of

the covariance matrix K at x(1), ...,x(n), with a vector z following a N (0, In) distribution (easy

to simulate). Letm be the mean vector of y. Then the vector y := m+ Cz follows a N (m,K)

distribution. The advantage of the Cholesky decomposition is its simplicity, because there are no
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Figure 2.8: Illustration of the conditional simulations of proposition 2.32. A centered Gaussian

process, with Matérn 3
2 covariance function with σ2 = 1 and ` = 1, is observed at �ve observation

points (black circles). Conditional simulations are plotted. All the conditional trajectories pass

through the �ve observation points.
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conditions on the covariance function K and on the sample points where the Gaussian process

is simulated. The drawback of the Cholesky decomposition method is its computational cost:

0(n3) in time for computing the Cholesky decomposition, and O(n2) for storing the Cholesky

decomposition. Note however that, once the Cholesky decomposition is computed and stored,

the marginal cost of a simulation is reduced to O(n2).

Karhunen Loève expansion

Consider a Gaussian process Y on D = [0, 1]d with stationary covariance function K. The

Karhunen Loève expansion method is based on the following Mercer theorem.

Theorem 2.34. Consider a stationary covariance function K, continuous on D × D, with

D = [0, 1]d. Then there exists a sequence (λ2
i )i∈N∗ of non-negative scalars, and a sequence

(ei)i∈N∗ of continuous functions ei : D → R so that
∫
D eiej = δi,j, the (ei)i∈N∗ form a basis of

L2(D) (the Hilbert space of the square-summable functions on D), and∫
D
K(x(1),x(2))ei(x

(2))dx(2) = λ2
i ei(x

(1)).

Furthermore

K(x(1),x(2)) =

+∞∑
i=1

λ2
i ei(x

(1))ei(x
(2)).

Proof. See for instance [Aub00].

Assume that K is continuous. From theorem 2.34 on K, consider the Gaussian process

de�ned (in the mean square limit sense) by

Y (x) =

+∞∑
i=1

Ziλiei(x), (2.19)

where the Zi are iid standard Gaussian variables. We calculate

Cov(Y (x(1)), Y (x(2))) = Cov(

+∞∑
i=1

Ziλiei(x
(1)),

+∞∑
i=1

Ziλiei(x
(2)))

=

+∞∑
i=1

λ2
i ei(x

(1))ei(x
(2)).

= K(x(1),x(2)),

so that the Gaussian process in (2.19) does have covariance function K. Hence, (2.19) is called

the Karhunen Loève expansion of the Gaussian process Y . (2.19) can be used to simulate Y .

Note �rstly that, if the eigenfunctions ei and the eigenvalues λi in (2.19) have explicit

expressions, then Y can be simulated e�ciently. Indeed, on can truncate (2.19) and if the

number of remaining terms is small compared to the number of points n where the Gaussian

process is simulated, the computational cost is O(n) operations.

If the eigenfunctions are not explicit, (2.19) is �rst approximated for N large by

Y (x(N1,...,Nd)) =
∑

(n1,...,nd)∈{1,...,N}d
Zn1,...,ndλn1,...,nden1,...,nd(x(N1,...,Nd)), (2.20)
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where x(N1,...,Nd) = (N1

N , ..., NdN ), the Zn1,...,nd are iid standard Gaussian variables, the

(en1,...,nd)(n1,...,nd)∈{1,...,N}d

and the

(λ2
n1,...,nd

)(n1,...,nd)∈{1,...,N}d

are the Nd �rst eigenfunctions and eigenvalues of the operator K.

Then, let K be the Nd × Nd covariance matrix of K at the x(N1,...,Nd), for (N1, ..., Nd) ∈
{1, ..., N}d. Then, the vector of the en1,...,nd(x(N1,...,Nd)), for varying N1, ..., Nd, is approx-

imated by the eigenvector of K corresponding to the index n1, ..., nd. Similarly λn1,...,nd is

approximated by the eigenvalue of K corresponding to the index n1, ..., nd. These approxima-

tions amount to �rst diagonalizing K as K = PDPt, with PPt = In and D diagonal with

diagonal values the (λ2
n1,...,nd

)(n1,...,nd)∈{1,...,N}d . Then we can compute vY , the vector of Y at

the (x(N1,...,Nd))(N1,...,Nd)∈{1,...,N}d , as

vY = PD
1
2vz, (2.21)

where D
1
2 is the diagonal matrix with diagonal elements the square roots of the diagonal elements

of D and vz is a vector of iid standard Gaussian variables. Because of (2.21), the computational

simulation of Y using the Karhunen Loève representation is generally similar to the Cholesky

method, because both consist in computing a square-root matrix of the covariance matrix K.

Note �nally that, when K can be written as a tensor product K(x) = K1(x1)...Kd(xd), the

Nd × Nd covariance matrix K can be diagonalized by successively diagonalizing the N × N

matrices K1, ...,Kd, where Ki is the covariance matrix of Ki at the points 1
N , ...,

N
N . Indeed, let

λi1, ..., λ
i
N be the eigenvalues of Ki, with eigenvectors v(i,1), ...,v(i,N). Then the eigenvalue of K

for the index n1, ..., nd is λ1
n1
...λdnd . The component N1, ..., Nd of the corresponding eigenvector

is v(1,n1)
N1

, ..., v
(1,nd)
Nd

. Thus, when K is a tensor product, the computational cost of the Karhunen

Loève expansion method goes down from O((Nd)3) to O(dN3 + (Nd)2).

Spectral method

The spectral method aims at simulating Y when the covariance function K is stationary and

when D is a hyper-rectangle of Rd. For this specialized problem, the spectral method, as we

will see, is computationally e�cient. Indeed, for computing a simulated process at n points, the

computational cost is O(n ln (n)).

The method is based on the following spectral representation of the stationary Gaussian

process Y (similarly to [Ste99], p23)

Y (x) =

∫
Rd

cos (ωtx)M1(dω) +

∫
Rd

sin (ωtx)M2(dω), (2.22)

where M1 and M2 are random measures verifying, for k = 1, 2, for any disjoint Borel sets ∆1

and ∆2, Mk(∆1 ∪∆2) = Mk(∆1) +Mk(∆2) and Mk(∆1) is Gaussian with mean 0 and variance∫
∆1
K̂(ω)dω. Furthermore, for any Borel sets ∆3 and ∆4,M1(∆3) andM2(∆4) are independent.
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Informally, the computation of the covariance function of Y (x) in (2.22) is as follows (see

[Ste99], p23).

Cov (Y (x), Y (x′)) = Cov

(∫
Rd

cos (ωtx)M1(dω),

∫
Rd

cos (ωtx′)M1(dω)

)
+Cov

(∫
Rd

sin (ωtx)M2(dω),

∫
Rd

sin (ωtx′)M2(dω)

)
=

∫
Rd

cos (ωtx) cos (ωtx′)K̂(ω)dω

+

∫
Rd

sin (ωtx) sin (ωtx′)K̂(ω)dω

=

∫
Rd

cos
(
ωt(x− x′)

)
K̂(ω)dω

=

∫
Rd
eiωt(x−x′)K̂(ω)dω

= K(x− x′),

where the second to last line holds because
∫
Rd sin (ωt(x− x′))K̂(ω)dω is the imaginary part

of K(x− x′) and is 0.

The spectral representation (2.22) is the limit, in distribution, of the discrete representation

YN (x) = (2.23)

∑
(n1,...,nd)∈{1,...,N}d

(
2
√
N

N

)d
cos

(
i
(
ω(n1,...,nd)

)t
x

)√(
K̂(ω(n1,...,nd))

)
Zn1,...,nd

+
∑

(n1,...,nd)∈{1,...,N}d

(
2
√
N

N

)d
sin

(
i
(
ω(n1,...,nd)

)t
x

)√(
K̂(ω(n1,...,nd))

)
Z ′n1,...,nd

,

where ω(n1,...,nd) = (−
√
N + 2n1

√
N
N , ...,−

√
N + 2nd

√
N
N ), and the Zn1,...,nd , Z

′
n1,...,nd

are iid

standard Gaussian variables. (2.23) is just a random Riemann sum representation of the random

integral (2.22). More general forms are possible, but we will consider (2.23) for concision. Spec-

tral methods consist in computing (2.23) for N large. Because the points ω(n1,...,nd) constitute

a tensorized grid, (2.23) can be computed for x in a tensorized grid of the same dimension in

O(Nd ln (Nd)) using Fast Fourier Transform (FFT) techniques.

Circulant embedding

The circulant embedding method aims at simulating a centered and stationary Gaussian process

Y at n points x(1), ...,x(n) forming a regular grid of D = [0, 1]d. Compared to the spectral

method, which aims at simulating stationary processes on dense regular grids, the circulant

embedding method is not always feasible (depending on the covariance function K). However,

when this method is feasible, it yields simulated trajectories with the exact target distribution,

while the distribution of the trajectories obtained from the spectral method is an approximation

of the target distribution.

We now present the circulant embedding method in dimension d = 1, in a way inspired by

[Die97]. Let, for i = 1, ..., n, xi = i
n be the simulation points. The covariance matrix K of Y
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at these points has hence general term (K)i,j = K( i−jn ) and is hence a Toeplitz matrix ((K)i,j

only depends on i− j, see e.g. [Gra01]).

Let ki = K( in ). Consider now the matrix K̃, of size 2n − 2 de�ned so that K̃ is Toeplitz

and symmetric, with �rst row the vector k̃ = (k1, ..., kn−1, kn, kn−1, ..., k2). For instance, with

n = 4, K̃ is as follows

K̃ =



k1 k2 k3 k4 k3 k2

k2 k1 k2 k3 k4 k3

k3 k2 k1 k2 k3 k4

k4 k3 k2 k1 k2 k3

k3 k4 k3 k2 k1 k2

k2 k3 k4 k3 k2 k1


.

Notice that the matrix obtained from the n �rst rows and columns of K̃ is K.

Now, the applicability of the circulant embedding method depends on whether K̃ is a non-

negative matrix. If it is the case, then, as we will see, it is computationally e�cient to simulate

N (0, K̃) random vectors. By selecting their n �rst components, we obtain N (0,K) random

vectors.

We thus now show how to simulate N (0, K̃) random vectors. The matrix K̃ is circulant

([Bar90]), so it can be written as ([Bar90]) K̃ = P̃D̃P̃h, where P̃k,l = ei2π kl
2n−2 , P̃h

k,l = e−i2π kl
2n−2 ,

where i2 = −1, and D̃ is diagonal with diagonal term k equal to

1

2n− 2

2n−2∑
l=1

ei2π kl
2n−2 k̃l . (2.24)

Then, K̃ is non-negative if and only if all the terms (2.24) are non-negative. This means

that the applicability of the circulant embedding method can be checked at the cost of only one

FFT (to compute the terms (2.24)).

Once D̃ is computed, the simulation method consists in generating pairs of independent

random vectors ε(1), ε(2), with N (0, I2n−2) distribution, and in setting

ỹ = P̃D̃
1
2

(
ε(1) + iε(2)

)
.

The computation of ỹ is carried out by FFT, with a O(n ln (n)) computation cost. Then, the real

and imaginary parts of ỹ have a N (0, K̃) distribution, so by extracting their n �rst components,

we obtain vectors with a N (0,K) distribution.

As a summary, in dimension d = 1, the applicability of the circulant embedding method

is checked with a 0(n ln (n)) computation cost, and, in case of applicability, one simulation is

performed with a 0(n ln (n)) computation cost. The obtained simulation has exactly the target

distribution, contrary to the case of spectral methods.

This principle generalizes in dimension d > 1, for which we refer to [Die97]. The computa-

tional cost remains 0(n ln (n)) for checking the validity and 0(n ln (n)) per simulation.

Finally, we also refer to [Die97] for theoretical results ensuring that the terms in (2.24) are

non-negative, for particular covariance functions.
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Conditioning methods

Consider Y at any n points x(1), ...,x(n). One can always write the joint distribution of y1, ..., yn

with pdf

p(y1, ..., yn) = p(y1)p(y2|y1)...p(yn|y1, ..., yn−1) (2.25)

From (2.25), the random vector y1, ..., yn can be sampled by sampling y1, then sampling y2

conditionally to y1, and so on until sampling yn conditionally to y1, ..., yn−1. These iterative

samplings are based on the Kriging equations. It is worth mentioning that the computation of

p(yk+1|y1, ..., yk) can be e�ciently deduced from p(yk|y1, ..., yk−1) using

p(yk+1|y1, ..., yk) = p|y1,...,yk−1
(yk+1|yk),

where p|y1,...,yk−1
(yk+1|yk) is the conditional pdf of yk+1 given yk, when their joint pdf is

p(yk, yk+1|y1, ..., yk−1). This e�cient computation is used for Kriging, e.g in [CG13b].

Despite these computationally e�cient updates, the conditioning method above is not more

e�cient than, e.g, a Cholesky decomposition. It can become more e�cient if yk is conditioned

only by its nearest neighbors instead of all the previously simulated variables y1, ..., yk−1. Nev-

ertheless, this simpli�cation yields an error in the distribution of the simulated y1, ..., yn, which

needs to be quanti�ed.

A decomposition between unconditional simulation and conditional prediction

We conclude subsection 2.2.3 about conditional simulation by presenting how conditional sim-

ulations of a Gaussian process can be obtained from unconditional simulations and conditional

predictions. Consider the Gaussian process Y , observed at x(1), ...,x(n) with observation vector

y0. Let us de�ne the Gaussian process Z by,

Z(x) = E(Y (x)|y0) + Y (x)− E(Y (x)|y), (2.26)

where in (2.26), y = (Y (x(1)), ..., Y (x(n)))t) and Y follows its unconditional distribution. Then,

it can be veri�ed ([CD99]) that Z follows the distribution of Y conditionally to y0.

The relation (2.26) is of particular interest when simulating a stationary Gaussian process

on a grid, conditionally to a set of observations. Indeed, the unconditional simulation can be

carried out e�ciently using the spectral method, or the circulant embedding method when it is

valid, while the conditional prediction is computed in O(N), where N is the number of points

where the conditional prediction is computed.

This eventually gives a O(N ln (N)) method for simulating a Gaussian process at N points,

when its distribution is the one of a stationary Gaussian process conditioned by n� N observed

values.

2.2.4 Cross Validation formulas

In this subsection we start by discussing the Cross Validation principles, and then we give the

virtual Cross Validation formulas of [Dub83].
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Cross Validation principles

In the general framework of statistical prediction, the quality of a predictor should not be

evaluated on the data that helped to build it ([HTF08] chapter 7). This is particularly true for

the Gaussian process prediction of (2.9), (2.15) and (2.17), since in the noiseless case it yields

an interpolation of the observations. When a rather limited number of observations is available,

Cross Validation is a very natural method to assess the predictive capability of a prediction

model.

In Kriging models, we are particularly focused on the Leave-One-Out (LOO) technique. For

observed vales y = (y1, ..., yn)t of Y at x(1), ...,x(n), LOO is based on the LOO predictions and

predictive variances of yi according to y1, ..., yi−1, yi+1, ..., yn, for 1 ≤ i ≤ n. LOO predictions

ŷi are de�ned by (2.9), (2.15) and (2.17) for the simple Kriging, frequentist universal Kriging

and Bayesian universal Kriging cases. LOO predictive variances σ̂2
i are de�ned by (2.10), (2.16)

and (2.18) for the simple Kriging, frequentist universal Kriging and Bayesian universal Kriging

cases.

There are two main uses of the LOO prediction and predictive variance vectors (ŷi)i=1...n and

(σ̂2
i )i=1...n. First, we can make a veri�cation of a covariance function at hand, by checking that

it gives acceptable predictions and predictive variances. For prediction, the simplest criterion is

the LOO Mean Square Error (MSE)

MSELOO =
1

n

n∑
i=1

(yi − ŷi)2. (2.27)

This criterion should be as small as possible. For predictive variance, a classical criterion is

1

n

n∑
i=1

(yi − ŷi)2

σ̂2
i

. (2.28)

It is noted in [Cre93] p.102, that, if the covariance function is correctly speci�ed, then we should

expect (2.28) to be close to 1.

In the case when we have a new set of observation points x(n+1), ...,x(n+p), with observed

values yn+1, ..., yn+p, other criteria are proposed for the validation of the covariance function

([BO08]). Roughly speaking, these criteria are based on decorrelating the prediction errors

yn+i − ŷn+i, for 1 ≤ i ≤ p. Let us note that we can also decorrelate the LOO errors yi − ŷi, for
1 ≤ i ≤ n. Nevertheless, our opinion is that doing so (for instance by doing a Normality test

on the decorrelated LOO errors), is closer in spirit to classical statistical tests on a correlated

Gaussian vector than to LOO. Therefore, we rather use the criteria (2.27) and (2.28) when

validating a Gaussian process model explicitly by LOO.

The second use of the LOO predictions and predictive variances is for selecting a covariance

function, which is the subject of chapter 3.

Virtual Cross Validation formula

The following proposition gives explicit formulas that allow to calculate the ŷi, 1 ≤ i ≤ n and

the σ̂2
i , 1 ≤ i ≤ n, without solving n di�erent linear systems of size n− 1.
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Proposition 2.35. Let Y be a Gaussian process on D, with mean function of the form x →∑m
i=1 βigi(x), with known functions gi and unknown coe�cients βi, and with covariance function

K. Let x(1), ...,x(n) be observation points with observation vector y = (y1, ..., yn). Let K be

de�ned by Ki,j = K(x(i),x(j)) and H be de�ned by Hi,j = gj(x
(i)). Then we have

yi − ŷi =
1

(K̃−)i,i
(K̃−ỹ)i

and

σ̂2
i =

1

(K̃−)i,i
,

with K̃− being K−1 in the simple Kriging case, K−1 −K−1H(HtK−1H)−1HtK−1 in the fre-

quentist universal Kriging case and (HQpriorH
t+K)−1 in the Bayesian universal Kriging case.

In the simple Kriging case or the universal Kriging case in the frequentist framework for β,

denote ỹ = y, while in the Bayesian framework for β, denote ỹ = y −Hβprior.

The formulas leading to proposition 2.35 are classical in the simple Kriging case (see e.g

[Rip81], ch.5.2), and were proved by [Dub83] in the universal Kriging case.

The formulas of proposition 2.35 show that we can compute the LOO errors and predictive

variances by inverting a unique n× n matrix. Therefore, computing these errors and predictive

variances has the same computational complexity, O(n3), than calculating the likelihood of the

observation vector y. This is the basis of the covariance function estimation by LOO, as an

alternative to Maximum Likelihood (ML), presented in chapter 3.

Finally, let us note that it is shown in [Dub83] how to generalize the LOO formulas to the case

of k-fold cross validation. k-fold Cross Validation is when a given observation is predicted after

having removed k observations instead of one. Since we did not study k-fold Cross Validation,

we do not give more detail about the corresponding virtual Cross Validation formulas. We refer

to [Dub83] on this subject.

2.2.5 Alternative RKHS formulation

There is a parallelism between the simple Kriging conditional mean of (2.9) and Kernel ridge

regression ([SS02]). We refer to the PhD thesis [Vaz05] for a detailed analysis of this parallelism.

We will just give a basic interpretation of the link between the conditional mean in case of

noisy observations and the expression of the prediction in the Kernel ridge regression framework.

Let us �rst recall the prediction for Kriging with noisy observations. Assume that the

covariance matrix of the measurement error is Kmes = σ2
mesI. Then, the prediction of Y (x(new))

given the observation vector y is

ŷ(x(new)) = kt(K + σ2
mesI)−1y, (2.29)

with K the covariance matrix of y and k the covariance vector between y and Y (x(new)).

Let us now introduce the Kernel ridge regression framework. This framework is based on

considering the Hilbert space F ⊂ RD de�ned as the closure of the linear span of the functions

x(1) → K(x,x(1)), for x ∈ D. The closure is de�ned w.r.t the norm associated to the dot

product de�ned by 〈K(x(1), .)|K(x(2), .)〉RKHS = K(x(1),x(2)). This dot product is extended
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to F by continuity. This was just a sketch of the mathematical construction of F , and we refer

to [SS02] for the detailed mathematical construction.

The Hilbert space F is de�ned as a Reproducing Kernel Hilbert Space (RKHS) with repro-

ducing Kernel K because it veri�es, for any f ∈ F and x ∈ D

〈f |K(x, .)〉RKHS = f(x).

Given the RKHS F , we can de�ne the mappingM : D → F , so thatM(x) is the function

x(1) → K(x,x(1)). This allows to map data from an arbitrary space D to a Hilbert space F .

Remark 2.36. Note that it is not necessary that K : D × D → R be continuous for the

Hilbert space F to be constructed. RKHS methods are indeed classically used with inputs x

without continuous structure, such as mathematical representations of character string or of

DNA sequences ([STV04]).

Given the RKHS mathematical framework, kernel ridge regression consists in, from a set of

observations y1, ..., yn of Y at x(1), ...,x(n), �nding f ∈ F minimizing

1

n

n∑
i=1

(f(x(i))− yi)2 +
σ2
mes

n
||f ||2RKHS , (2.30)

where ||.||RKHS is the norm corresponding to the dot product 〈.|.〉RKHS , ||f ||RKHS is interpreted
as a measure of the complexity of the function f and σ2

mes

n is the regularization parameter. It is

shown by the representer theorem ([SS02]) that the function f minimizing (2.30) is of the form

ŷα with α ∈ Rn and ŷα(x(new)) =
∑n
i=1αiK(x(new),x(i)).

As in (2.30) ||ŷα||2RKHS = αtKα, one can show, from a straightforward zero-gradient con-

dition, that the solution of the minimization problem (2.30) is given by α̂ = (K + σ2
mesI)−1y,

thus giving the same prediction as in (2.29). This equivalence makes sense, because when the

variance σ2
mes of the measurement error is large, the observations are unreliable, so a twisted

form should not be imposed on the prediction function to reproduce them. Similarly, the weight

of the observation reproduction term in (2.30) should be small compared to the complexity

penalization term.

Note �nally that the virtual Cross Validation formulas are also known in the context of Kernel

methods ([Wah90]), and that they are recommended for selecting the regularization parameter

σ2
mes in (2.30).
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Chapter 3

Covariance function estimation for

Kriging models

In section 3.1, we give an introduction to parametric estimation. We �rst present the classical

properties for an estimator. Then we present the classical asymptotic results for Maximum

Likelihood with independent and identically distributed observations. In section 3.2 we present

the parametric estimation problem for the covariance function of a Gaussian process. We present

and discuss the Maximum Likelihood and Cross Validation estimators. We give the explicit

gradients of all the criteria, derived from Maximum Likelihood and Cross Validation, that have

to be optimized numerically. We conclude by considering the relatively open problem of taking

into account the uncertainty on the covariance function in the Kriging predictions.

3.1 Introduction to parametric estimation

In the whole section 3.1, we consider a vector y of n scalar random observations. In the two

following subsections, we �rst give the basic de�nitions and properties for the estimation of the

parameter characterizing the unknown distribution of y. Then we give some classical asymptotic

results when the number of observations n goes to +∞.

3.1.1 De�nition and properties for parametric estimation

The �rst notion is the notion of parametric family of distributions for y, presented in the

following de�nition.

De�nition 3.1. A parametric family of distributions for y is a parametric family of distributions

on Rn, de�ned by

P = {Pψ,ψ ∈ Ψ} ,

where Pψ is a distribution on Rn and Ψ is a subset of Rp. Unless explicitly stated otherwise,

there exists ψ(0) ∈ Ψ so that the distribution of y is Pψ(0) . We will sometimes emphasize this

by saying that the model P is well-speci�ed.
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The basic idea of de�nition 3.1 is that considering directly all the possible distributions

as candidates for the generation of y makes no sense. Indeed, we can always consider that

y = (y1, ..., yn) is generated by a tensor product of Dirac distribution at the yi, 1 ≤ i ≤ n. This
distribution will always be the best �t for y, but it will make no sense in any applied context.

Therefore, we �rst identify a reasonable set of distributions P, generally using knowledge of the

nature of the observations y1, ..., yn. After that, the corresponding parameter ψ is estimated,

generally by using methods that are more automatic, such as the Maximum Likelihood method

of de�nition 3.8.

In the theoretical analysis of parametric estimation, the assumption that the model P in

de�nition 3.1 is well-speci�ed is very classical. Nevertheless, this assumption is not always

done. The term misspeci�ed model has appeared in the literature, in the case where the true

distribution of y does not belong to P. In this case, we refer to [Whi82] for asymptotic results

for the Maximum Likelihood estimator.

We now give the de�nition of an estimator, which corresponds to selecting a distribution in

P.

De�nition 3.2. An estimator ψ̂ is a deterministic function from Rn to Ψ. ψ̂(y) is the estima-

tion of ψ, according to the vector of observations y.

Remark 3.3. We shall write ψ̂ for ψ̂(y) for concision.

We see in de�nition 3.2, that Pψ̂(y) is the distribution that is concluded to have generated

the observation vector y. Since the objective is that Pψ̂(y) is as close as possible to Pψ(0) , the

estimated parameter ψ̂ should be as close as possible to ψ(0) (in the well-speci�ed case). Since ψ̂

is a random vector, its distribution should be concentrated around ψ(0). The following notions

of bias and Mean Square Error (MSE) quantify this concentration.

De�nition 3.4. The bias of an estimator ψ̂ is the p×1 vector with ith component E(ψ̂i)−ψ
(0)
i .

An estimator is said to be unbiased when E(ψ̂i) = ψ
(0)
i for 1 ≤ i ≤ p.

De�nition 3.5. The Mean Square Error vector of an estimator ψ̂ is the p × 1 vector with ith

component E
{(
ψ̂i −ψ

(0)
i

)2
}
.

The Mean Square Error and the bias of the estimator ψ̂ are linked to its variance by the

classical identity, for 1 ≤ i ≤ p

E
{(
ψ̂i −ψ

(0)
i

)2
}

=
(
E(ψ̂i)−ψ

(0)
i

)2

+ V ar(ψ̂i). (3.1)

In (3.1), the MSE on the left term is the objective function to minimize for the estimator ψ̂.

Naturally, for the MSE to be small, both the bias and the variance of the estimator have to be

small. Nevertheless, reducing the bias and the variance can be antagonistic, so that a trade-o�

may have to be found between them, known as the bias-variance trade-o�. An example of this

trade-o� is the introduction of penalization in the Maximum Likelihood estimator for Kriging,

that reduces the variance, but at the cost of a small bias ([LS05]).

Finally, when the estimator is unbiased, there is a classical lower bound for its variance, the

Cramér Rao bound given in proposition 3.16.
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We conclude the subsection by presenting the most classical estimators. The �rst general

family of estimators are theM -estimators, which correspond to minimizing a criterion depending

on the observations (which is generally interpreted as a data reproduction criterion).

De�nition 3.6. A M -estimator is an estimator ψ̂ so that there exists a deterministic function

c : Ψ× Rn → R so that

ψ̂ ∈ argmin
ψ∈Ψ

c(ψ,y).

The second family of estimators are the Z estimators, which correspond to verifying a set

of equations. An example of Z-estimator is a M -estimator for which it is shown that the

minimization of the criterion implies the nullity of its gradient.

De�nition 3.7. A Z-estimator is an estimator ψ̂ so that there exists a deterministic function

g : Ψ× Rn → Rp so that

g(ψ̂,y) = 0.

Finally, we de�ne the Maximum Likelihood (ML) estimator.

De�nition 3.8. Assume all the distributions Pψ have a probability density function lψ on Rn.
Then the Maximum Likelihood (ML) estimator ψ̂ML of ψ is de�ned by

ψ̂ML ∈ argmax
ψ∈Ψ

lψ(y).

The ML estimator is both a M -estimator and a Z-estimator, under smoothness condition

on the family of probability density functions {lψ,ψ ∈ Ψ}.
The ML estimator is perhaps the most studied theoretically, and the most used in practice.

The main reason is that, as presented in subsection 3.1.2, there is an intrinsic relation be-

tween the Cramer-Rao bound and the likelihood function, allowing the ML estimator to reach

asymptotically the Cramer-Rao bound.

Before considering, in subsection 3.1.2, the asymptotic framework n → +∞, let us give a

simple example for the Maximum Likelihood estimator.

Example 3.9. Consider in de�nition 3.8, ψ ∈ R and lψ is the joint pdf of n iid Gaussian

variables with mean ψ and known variance 1. In this case, we can write

lψ(y1, ..., yn) =
1

(2π)
n
2

exp

(
−1

2

n∑
i=1

(yi − ψ)2

)
. (3.2)

Maximizing (3.2) with respect to ψ yields the ML estimator

ψ̂ML =
1

n

(
n∑
i=1

yi

)
.

Hence, in the iid Gaussian case with known variance, the ML estimator estimates the mean

parameter ψ by the empirical mean of the observation sample y1, ..., yn.

One can also calculate E(ψ̂ML) = E(y1) = ψ(0), so that ML estimator is unbiased here.

Finally, its variance is V ar(ψ̂ML) = 1
n .
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3.1.2 Classical asymptotic results for parametric estimation

To de�ne an asymptotic framework, it is �rst necessary to let the size n of the observation vector

vary. However, we shall keep in mind that the parametric family of distributions of de�nition

3.1 depends on the number of observations n. It is hence necessary to parameterize all these

di�erent distributions on Rn, for n varying, by a parameter ψ independent of n.

In subsection 3.2.1, we will see that the distribution of a random vector y, of size n, coming

from a centered Gaussian process Y at x(1), ...,x(n) ∈ D can be parameterized independently of

n, by a parameter ψ characterizing the covariance function of Y .

In this subsection 3.1.2, we will consider the case where y is composed of n iid random

variables, so that ψ is a parameter for their common distribution and is hence independent of

n.

In view of the discussion above, we will consider the framework of de�nition 3.10 in this

subsection 3.1.2.

De�nition 3.10. Let y be a random vector of size n, with n ∈ N∗ varying. Assume that the

components y1, ..., yn of y are iid. A parametric family of iid distributions for y, is a parametric

family of distributions on R, de�ned by

P = {Pψ,ψ ∈ Ψ} ,

where Pψ is a probability distribution on R and Ψ is a subset of Rp.
Unless explicitly stated otherwise, there exists ψ(0) ∈ Ψ so that the common distribution of

y1, ..., yn is Pψ(0) .

An example of parametric family of iid distributions is the example 3.9 of the iid Gaussian

variables, with unknown mean and known variance.

Once the iid case is settled, so that the parameter ψ to be estimated is independent of n,

the asymptotic framework n → +∞ has a double objective. The �rst objective is to answer

the question: If there is a very large number of iid observations, can we know for sure from

which common distribution they stem? The second objective of asymptotic theory is to give an

approximation of the distribution of an estimator ψ̂, in a given �nite-sample situation where n

is large.

Consistency

Let us address the question: If there is a very large number of iid observations, can we know

for sure from which common distribution they stem? This question corresponds to whether the

random vector ψ̂ goes to ψ(0) when n→ +∞. This corresponds to the notion of consistency of

de�nition 3.11.

De�nition 3.11. Consider the iid framework of de�nition 3.10. An estimator ψ̂ is consistent

if ψ̂ goes to ψ(0) in probability when n→ +∞. An estimator ψ̂ is strongly consistent if ψ̂ goes

almost surely to ψ(0) when n→ +∞.

For instance, we have seen, in the example 3.9 of the iid Gaussian variables with unknown

mean and known variance, that E(ψ̂ML) = ψ(0) and V ar(ψ̂ML) = 1
n . Hence, this ML estimator
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is consistent in the sense of de�nition 3.11, and even strongly consistent by the strong law of

large numbers.

The consistency in the simple example above can be generalized to the case of the ML

estimator, in the iid framework addressed in this subsection 3.1.2. Indeed, roughly speaking,

the iid framework is favorable for the estimation of ψ, because the information brought by

the observations y1, ..., yn on Pψ(0) will not be redundant. This is con�rmed by the following

proposition, showing that, under mild conditions the ML estimator is consistent in the iid

framework.

Proposition 3.12. Consider the iid framework of de�nition 3.10, where Pψ is a distribution

on R having a probability density function lψ with respect to the Lebesgue measure. Assume

that all parameters ψ give distinct distributions Pψ. Assume that Ψ is compact. Assume that

ψ → ln (lψ(y)) is continuously di�erentiable for any y ∈ R and that supψ∈Ψ | ln (lψ(y))| and
supψ∈Ψ | ∂∂ψ ln (lψ(y))| are summable (with respect to the distribution of y on R given by Pψ(0)).

Then the ML estimator ψ̂ML is consistent.

Proof. For any n,

ψ̂ML ∈ argmin
ψ∈Ψ

1

n

n∑
i=1

ln (lψ(yi))

Denoting Mn(ψ) = 1
n

∑n
i=1 ln (lψ(yi)) and using the strong law of large numbers, Mn(ψ) goes

in probability, for each ψ to

M(ψ) :=

∫
R

ln (lψ(z))lψ(0)(z)dz.

Furthermore, let t > 0 and, for ε > 0, let ψ(1), ...,ψ(N) so that supψ∈Ψ inf1≤i≤N |ψ −ψ(i)| ≤ ε.
Then, with a constant a < +∞, for all ψ ∈ Ψ

|Mn(ψ)−M(ψ)|

≤ min
1≤i≤N

(
|Mn(ψ)−Mn(ψ(i))|+ |Mn(ψ(i))−M(ψ(i))|+ |M(ψ(i))−M(ψ)|

)
≤ max

1≤i≤N
|Mn(ψ(i))−M(ψ(i))|+ aε

1

n
sup
ψ∈Ψ

∣∣∣∣∣ 1n
n∑
i=1

∂

∂ψ
ln (lψ(yi))

∣∣∣∣∣
+aε sup

ψ∈Ψ

∣∣∣∣∫
R

∂

∂ψ
ln (lψ(z))lψ(0)(z)dz

∣∣∣∣ .
Hence

sup
ψ∈Ψ
|Mn(ψ)−M(ψ)|

≤ max
1≤i≤N

|Mn(ψ(i))−M(ψ(i))|

+aε
1

n

n∑
i=1

sup
ψ∈Ψ
| ∂
∂ψ

ln (lψ(yi))|+ aε

∫
R

sup
ψ∈Ψ
| ∂
∂ψ

ln (lψ(z))|lψ(0)(z)dz

= op(1) + aε

(
2

∫
R

sup
ψ∈Ψ
| ∂
∂ψ

ln (lψ(z))|lψ(0)(z)dz + op(1)

)
= op(1) + εK,
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for a constant K < +∞. Hence, for any n larger than N large enough,

P

(
sup
ψ∈Ψ
|Mn(ψ)−M(ψ)| ≥ t

)
≤ ε+ 1εK≥ t2 .

Hence, supψ∈Ψ |Mn(ψ)−M(ψ)| goes to zero in probability.

Now the function M(ψ) is continuous by the dominated convergence theorem. It is proved

in theorem 5.35 of [Van98] that M(ψ(0)) > M(ψ) for any ψ 6= ψ(0). Because Ψ is compact, we

have then, for any α > 0

sup
|ψ−ψ(0)|≥α

M(ψ) < M(ψ(0)).

Hence, because of theorem 5.7 of [Van98], ψ̂ML is consistent.

Let us consider again the example 3.9 of the iid Gaussian observations. By taking two times

the opposite of the logarithm of their likelihood, we can write the ML estimator of the mean ψ

as

ψ̂ML ∈ argmin
ψ∈R

L(ψ) with L(ψ) :=
1

n

n∑
i=1

(yi − ψ)2. (3.3)

Although the framework here is so that L(ψ) can be minimized explicitly, it is worth noting

that it is composed of a sum of iid terms. Each term, in the mean sense, is minimized only

by the true ψ. Hence, it is intuitive that, using the law of large numbers, when the number of

observations is large, the modi�ed likelihood function ψ → L(ψ) is close to the mean likelihood

function ψ → E((Y − ψ)2) = 1 + (ψ0 − ψ)2, where Y follows the N (ψ0, 1
2) distribution. Since

this mean likelihood function is minimized only by the true ψ, the ML estimator ψ̂ML is close

to the true ψ when the number of observation is large. This discussion hence explains why

proposition 3.12 is intuitive.

We now illustrate the example in �gure 3.1. We set ψ0 = 1 as the true mean. We plot

realizations of ψ → L(ψ) in (3.3) for n = 5 and n = 30 observation points, and the mean

likelihood function ψ → 1+(ψ0−ψ)2. We see that for n = 30, the likelihood function realizations

are much closer to the mean likelihood function than for n = 5, and that the mean likelihood

function is minimized only by the true mean ψ0.

Asymptotic distribution

The second objective of asymptotic theory is to give approximation of the distribution of an

estimator ψ̂, in a given �nite-sample situation. Indeed, for instance if ψ̂ is a M -estimator, it

may not have an explicit expression, so that its �nite-sample distribution may not be explicit.

Generally, but not always, the estimator will be proved consistent �rst, so that the question is

to quantify its small deviation from the true parameter ψ(0). In the case ofM and Z-estimators,

since the deviations are small, the asymptotic distribution can be deduced from the derivatives

of the criterion, with respect to ψ, around the true parameter ψ(0). A result of this kind is

presented in more details in chapter 5 for the ML and CV M -estimators in the Kriging case.

Here, we will give details about this principle in the case of the Maximum Likelihood estima-

tor in the iid case. For this, let us �rst de�ne the �rst and second derivatives of the logarithm

of the likelihood.
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Figure 3.1: Illustration of convergence of the likelihood function in the iid case. Solid lines:

plot of realizations of the modi�ed log-likelihood function ψ → L(ψ) in (3.3) for iid Gaussian

variables with known variance 1 and unknown mean. The true mean is ψ0 = 1. Dashed lines:

plot of the mean likelihood function ψ → E((Y − ψ)2) = 1 + (ψ0 − ψ)2, where Y follows the

N (ψ0, 1
2) distribution. Left: n = 5 observation points. Right: n = 30 observation points.

In the two following de�nitions, and in the two following propositions, since n is �xed, we

do not consider necessarily the iid case of de�nition 3.10.

De�nition 3.13. Assume all the distributions Pψ in de�nition 3.1 have a probability density

function lψ on Rn. Then, the score vector is the p× 1 random vector de�ned by

(
∂

∂ψ
ln (lψ)

)
ψ(0)

.

De�nition 3.14. Assume all the distributions Pψ in de�nition 3.1 have a probability density

function lψ on Rn. Then, the random Fisher information matrix is the p × p random matrix

de�ned by

−
(
∂2

∂ψ2 ln (lψ)

)
ψ(0)

.

The moments of the score and of the random Fisher information de�ne the (deterministic)

Fisher information matrix, as presented in the following proposition.

Proposition 3.15. Assume that supψ∈Ψ | ∂∂ψ (lψ)| and supψ∈Ψ || ∂
2

∂ψ2 (lψ)||2 are summable with

respect to the Lebesque measure on Rn. Then the p×p covariance matrix of the score of de�nition

3.13 and the p × p mean value matrix of the random Fisher information of de�nition 3.14 are

equal. Their common value is denoted In and is called the (deterministic) Fisher information

matrix.
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Proof. Let 1 ≤ i, j ≤ p. Because of the dominated convergence theorem,

E
(

∂

∂ψi
ln (lψ(0))

)
=

∫
Rn

∂
∂ψi

(lψ(0)(z))

lψ(0)(z)
lψ(0)(z)z

=
∂

∂ψi

∫
Rn
lψ(0)(z)dz

=
∂

∂ψi
1

= 0.

We calculate
∂2

∂ψi∂ψj
ln (lψ(0)) =

∂2

∂ψi∂ψj
(lψ(0))

lψ(0)

−
∂
∂ψi

(lψ(0)) ∂
∂ψj

(lψ(0))

(lψ(0))2
.

Integrating this relation, we obtain∫
Rn

∂2

∂ψi∂ψj
ln (lψ(0)(z))lψ(0)(z)dz =

∫
Rn

∂2

∂ψi∂ψj
(lψ(0)(z))

lψ(0)(z)
lψ(0)(z)dz

−
∫
Rn

∂
∂ψi

(lψ(0)(z)) ∂
∂ψj

(lψ(0)(z))

(lψ(0)(z))2
lψ(0)(z)dz.

so that

E
{

∂2

∂ψi∂ψj
ln (lψ(0))

}
=

∫
Rn

∂2

∂ψi∂ψj
(lψ(0)(z))dz − E

{
∂

∂ψi
ln (lψ(0))

∂

∂ψj
ln (lψ(0))

}
.

Because of the dominated convergence theorem,∫
Rn

∂2

∂ψi∂ψj
(lψ(0)(z))dz =

∂2

∂ψi∂ψj
1 = 0,

which concludes the proof.

From proposition 3.15, the Fisher information matrix In is a p× p covariance matrix. It is

therefore a symmetric non-negative matrix.

Furthermore it can be written with both the expressions

(In)i,j =

∫
Rn

∂ ln (lψ(0)(y))

∂ψi

∂ ln (lψ(0)(y))

∂ψj
lψ(0)(y)

and

(In)i,j = −
∫
Rn

∂2 ln (lψ(0)(y))

∂2ψiψj
lψ(0)(y).

The deterministic Fisher information matrix de�nes a lower-bound for the mean square error

of all the unbiased estimators of ψ. This inequality is called the Cramér Rao inequality, and is

presented in the following proposition.

Proposition 3.16. Let ψ̂ be an unbiased estimator of ψ. Assume that for any j, v →
supψ∈Ψ |ψ̂(v) ∂

∂ψj
(lψ(v))| is summable with respect to the Lebesque measure on Rn. Let In

be the deterministic Fisher information matrix of proposition 3.15, and assume that the matrix

is positive. Then, for any α ∈ Rp, we have the following Cramer-Rao inequality

E(|αt(ψ̂ −ψ(0))|2) ≥ αt(I−1
n )α.
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Proof. For 1 ≤ i, j ≤ p,

E(ψ̂i
∂

∂ψj
ln (lψ(0))) =

∫
Rn
ψ̂i(v)

∂

∂ψj
(lψ(0)(v))dv.

Because ψ̂i(v) does not depend on ψ, by using the dominated convergence theorem,

E(ψ̂i
∂

∂ψj
ln (lψ(0))) =

∂

∂ψj

∫
Rn
ψ̂i(v)(lψ(0)(v))dv

=
∂

∂ψj
ψ0,i

= δi,j .

Hence, the covariance matrix of the size p+ 1 random vector
∑p
i=1 αiψ̂i

∂
∂ψ1

ln (lψ(0)))
...

∂
∂ψp

ln (lψ(0)))


is the matrix (

V ar(
∑p
i=1 αiψ̂i) αt

α In

)
.

Since this matrix is non-negative, for any t ∈ R, considering the vector(
t

−I−1
n α

)
,

we have

0 ≤ t2V ar(
p∑
i=1

αiψ̂i)− 2tαtI−1
n α+αtI−1

n InI−1
n α.

Since this last term is non-negative for every t we obtain

V ar

(
p∑
i=1

αiψ̂i

)
αtI−1

n α ≥ (αtI−1
n α)2,

which proves the proposition.

Let us consider the example 3.9 of the iid Gaussian variables with unknown mean and known

variance. The log-likelihood at ψ is

−n
2

ln (2π)− 1

2

(
n∑
i=1

(yi − ψ)2

)
Di�erentiating two times with respect to ψ, we obtain that the random Fisher information

matrix is in fact deterministic and is equal to the scalar n. Therefore, as we have seen that

E(ψ̂ML) = ψ(0) and V ar(ψ̂ML) = 1
n , we have shown that the ML estimator reaches the Cramér-

Rao bound.

This is in fact a general result, as the following proposition shows: in the iid framework, the

ML estimator is asymptotically normal, with mean vector zero and covariance matrix equal to

the Cramér-Rao bound.
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Proposition 3.17. Consider the iid framework of de�nition 3.10, where Pψ is a distribu-

tion on R having a probability density function lψ with respect to the Lebesgue measure. As-

sume that all parameters ψ give distinct distributions Pψ. Assume that Ψ is compact. Assume

that, for any j, k, l, supψ∈Ψ | ln (lψ(y))|, supψ∈Ψ | ∂∂ψj ln (lψ(y))|, supψ∈Ψ | ∂2

∂ψjψk
ln (lψ(y))| and

supψ∈Ψ | ∂3

∂ψjψkψl
ln (lψ(y))| are summable with respect to the true probability density function

lψ(0) for y.

Then the (deterministic) Fisher information matrix In is

nE

{
−
(
∂2

∂ψ2 ln (lψ)

)
ψ(0)

}
:= nI1.

Assuming that the matrix I1 is positive, the Maximum Likelihood estimator Ψ̂ML veri�es as

n→ +∞
√
n(ψ̂ML −ψ

(0))→L N (0, I−1
1 ).

Proof. As the observations are iid, the equality In = nI1 is obtained by writing ln (
∏n
i=1 lψ(yi))

as a sum, deriving it twice with respect to ψi and ψj and taking the mean value.

We verify the hypothesis of proposition 3.12 so the ML estimator is consistent.

Let us now address asymptotic normality. For all 1 ≤ j ≤ p,

0 =

n∑
i=1

∂

∂ψj
ln
(
lψ̂ML

(yi)
)

=

n∑
i=1

∂

∂ψj
ln
(
lψ(0)(yi)

)
+

(
n∑
i=1

∂

∂ψ

∂

∂ψj
ln
(
lψ(0)(yi)

))t (
ψ̂ML −ψ

(0)
)

+ r,

with random r, so that |r| ≤
∑n
i=1 supψ̃,j,k,l

∣∣∣ ∂3

∂ψjψkψl
ln
(
lψ̃(yi)

)∣∣∣ × |ψ̂ML − ψ
(0)|2. Hence

r = op

(
|ψ̂ML −ψ

(0)|
)
. We then have

−
n∑
i=1

∂

∂ψj
ln
(
lψ(0)(yi)

)
=

( n∑
i=1

∂

∂ψ

∂

∂ψj
ln
(
lψ(0)(yi)

))t
+ op (1)

(ψ̂ML −ψ
(0)
)
,

and so

(
ψ̂ML −ψ

(0)
)

= −

{
n∑
i=1

∂2

∂ψ2 ln
(
lψ(0)(yi)

)
+ op (1)

}−1( n∑
i=1

∂

∂ψ
ln
(
lψ(0)(yi)

))
.

Now, thanks to the strong law of large numbers, the central limit theorem and proposition 3.15,
1
n

∑n
i=1

∂2

∂ψ2 ln
(
lψ(0)(yi)

)
converges in probability to I1 and 1√

n

∑n
i=1

∂
∂ψ ln

(
lψ(0)(yi)

)
converges

in distribution to a N (0, I1) distribution. We conclude using Slutsky lemma.

Proposition 3.17 is a justi�cation of the use of the ML estimator, by showing that it is

asymptotically unbiased, and that its asymptotic covariance matrix is equal to the Cramér-Rao

lower-bound (in the convergence in distribution sense).

Looking back at the example 3.9 of the iid Gaussian variables with unknown mean and known

variance, we see that ψ̂ML − ψ(0) ∼ N (0, 1
n ). Hence, in this simple example, the asymptotic

distribution of proposition 3.17 is in fact the exact distribution for any n.
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The results of propositions 3.12 and 3.17 can not be used directly, in the Kriging framework,

for the Maximum Likelihood estimator of section 3.2, because, as we will see, we are not in

the iid framework. The existence, or the impossibility, of these kinds of asymptotic results for

Kriging is the object of chapters 4 and 5. Before that, in the next section 3.2, we present the

�nite sample framework for the estimation of the covariance function for Kriging.

3.2 Estimation of the covariance function for Gaussian pro-

cesses

In this section, we present the parametric estimation of the covariance function of a Gaussian

process Y , from an observation vector y. In subsection 3.2.1, we detail the framework for

the covariance function estimation. In subsections 3.2.2 and 3.2.3, we present the Maximum

Likelihood (ML) and Cross Validation (CV) estimators. In subsection 3.2.4, we provide the

explicit gradients of the criteria for the ML and CV estimators. Finally, in subsection 3.2.5, we

discuss the rather open problem of taking the covariance function estimation error into account

in the Kriging predictions.

3.2.1 Parametric estimation of the covariance function

As discussed in section 3.1, it is unreasonable to consider all possible covariance functions as

possible candidates for the Gaussian process at hand. Hence, similarly to de�nition 3.1, it

is classical to assume a parametric family for the covariance function of a Gaussian process

Y . Furthermore, in the present manuscript, we especially study the classical case of a family

of stationary covariance functions. These two remarks motivate the following de�nition of a

parametric family of stationary covariance functions.

De�nition 3.18. A parametric family of stationary covariance functions is of the form

{Kψ,ψ ∈ Ψ},

where Kψ is a stationary covariance function, and Ψ is a subset of Rp.

In de�nition 3.18, since Kψ is a stationary covariance function for all ψ, we have Kψ(x) ≤
Kψ(0). We make the reasonable hypothesis that we have the strict inequality Kψ(x) < Kψ(0)

for x 6= 0. Without this hypothesis, for Y a centered Gaussian process with covariance function

Kψ, we can have x(1) 6= x(2) so that Y (x(1)) = Y (x(2)) almost-surely, which only holds in very

particular situations.

Since the variance Kψ(0) of the stationary Gaussian process is constant, it usually makes

sense to consider it as an explicit parameter. Therefore, we shall consider the alternative pa-

rameterization of Kψ in de�nition 3.18,

{σ2Rθ, σ
2 > 0,θ ∈ Θ}, (3.4)

where Rθ is a correlation function and Θ is a subset of Rp−1. The explicit separation of the

variance hyper-parameter σ2 and the correlation hyper-parameter θ in (3.4) turns out to be

useful when we address their estimation in subsections 3.2.2 and 3.2.3.
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Similarly to de�nition 3.18, we assume Rθ(x) < Rθ(0) for x 6= 0.

Remark 3.19. In the manuscript, when the separation of the variance and correlation hyper-

parameters is explicitly used, we will consider the parameterization (3.4). When this separation

is not used, we will rather consider the parameterization of de�nition 3.18.

3.2.2 Maximum Likelihood for estimation

In all the subsection, y is the vector of observations of the Gaussian process Y at x(1), ...,x(n).

Kψ is the covariance matrix of y under covariance function Kψ and Rθ is the correlation matrix

of y under correlation function Rθ.

Kψ and Rθ are de�ned by (Kψ)i,j = Kψ(x(i) − x(j)) and (Rθ)i,j = Rθ(x(i) − x(j)). We

assume that, when the points x(1), ...,x(n) are distinct, the matrices Kψ and Rθ are invert-

ible. This assumption is classical. For example, it is veri�ed by all the covariance functions of

subsection 2.1.2.

Maximum Likelihood

In the case of simple Kriging, the likelihood criterion of the observation vector y depends only

on ψ in 3.18 and is,

L(ψ) :=
1

n

[
ln |Kψ|+ ytK−1

ψ y
]

(3.5)

Remark 3.20. The criterion in 3.5 is not the likelihood, but it is a monotone transformation

of it (it is − 2
n ln l(ψ) − ln (2π), where l(ψ) is the likelihood). Hence, the Maximum Likelihood

estimator is of course preserved. The criterion in (3.5) gives the simplest expressions for the

theoretical and practical development regarding Maximum Likelihood. Notice that, in (3.5), we

have changed the sign of the logarithm of the likelihood, so that the criterion (3.5) is to be

minimized.

In the case of simple Kriging, the Maximum Likelihood estimator of the covariance hyper-

parameter ψ in de�nition 3.18 is

ψ̂ML ∈ argmin
ψ∈Ψ

L(ψ). (3.6)

Now, in the case of the separation of the variance and correlation hyper-parameters in (3.4),

the likelihood criterion becomes

L(σ2, θ) :=
1

n
ln |σ2Rθ|+

1

n

1

σ2
ytR−1

θ y, (3.7)

Hence, the optimization with respect to σ2, for �xed θ can be carried out explicitly. This

removes one dimension in the numerical optimization problem. This is summarized in the

following proposition.

Proposition 3.21. The Maximum Likelihood estimator of (σ2,θ) is (σ̂2
ML, θ̂ML), with

θ̂ML ∈ argmin
θ∈Θ

L(θ),

with

L(θ) = ln
(
σ̂2
ML(θ)

)
+

1

n
ln |Rθ|,
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σ̂2
ML(θ) =

1

n
ytR−1

θ y

and

σ̂2
ML = σ̂2

ML(θ̂ML).

Proof. We show, by a simple zero-derivative condition that the minimizer of L(σ2,θ), for �xed

θ, is σ̂2
ML(θ). We conclude from minσ2,θ L(σ2,θ) = minθ

(
minσ2 L(σ2,θ)

)
.

Consider now the case of ordinary or universal Kriging. In the case of ordinary or universal

Kriging, we always use explicitly the decomposition σ2, θ. Hence, we will present the Maximum

Likelihood equations only in this case.

We denote by H the n ×m regression matrix of subsection 2.2.2. The likelihood criterion

now depends on β, σ2 and θ and is

L(β, σ2,θ) :=
1

n
ln |σ2Rθ|+

1

nσ2
(y −Hβ)tR−1

θ (y −Hβ), (3.8)

Similarly to the case of simple Kriging, the likelihood criterion of (3.8) can be minimized

explicitly with respect to β and σ2, removing m+ 1 = dim(β) + 1 dimensions in the numerical

optimization problem. This is summarized in the following proposition.

Proposition 3.22. The Maximum Likelihood estimator of (β, σ2,θ) is (β̂ML, σ̂
2
ML, θ̂ML), with

θ̂ML ∈ argmin
θ∈Θ

L(θ),

with

L(θ) = ln
(
σ̂2
ML(θ))

)
+

1

n
ln |Rθ|,

σ̂2
ML(θ) =

1

n
(y −Hβ̂ML(θ))tR−1

θ (y −Hβ̂ML(θ))t,

β̂ML(θ) = (HtR−1
θ H)−1HtR−1

θ y

and

β̂ML = β̂ML(θ̂ML),

σ̂2
ML = σ̂2

ML(θ̂ML).

Furthermore, we can also write

σ̂2
ML(θ) =

1

n
ytΠθy,

with

Πθ = R−1
θ −R−1

θ H(HtR−1
θ H)−1HtR−1

θ

Proof. Similar to the proof of proposition 3.21.

Remark 3.23. In proposition 3.22, if the matrix H is ill-conditioned, numerical issues can

be avoided for the computation of θ̂ML and σ̂2
ML. Indeed, let U,S,V be a Singular Value

Decomposition of H, with U of size n ×m so that UtU = Im,m, S a diagonal matrix of size

m, with nonnegative numbers on the diagonal, and V an orthogonal matrix of size m, so that

H = USVt. Then, we can show that the value of L(θ) and σ̂2
ML(θ) are unchanged by replacing

the matrix H by the matrix U. The matrix U is of course perfectly conditioned.

60



CHAPTER 3. COVARIANCE FUNCTION ESTIMATION FOR KRIGING MODELS

However, when the condition number of H is large, there is an irreducible numerical im-

precision when computing β̂ML. We refer to the discussion of remark 2.31 on this subject.

Roughly speaking, if H is ill-conditioned, the design of experiments is either incomplete, or the

regression model is over-parameterized. If the design of experiments is incomplete, it has to be

extended before considering using the Kriging model for prediction. If the regression model is

over-parameterized, a minimal regression model can be obtained from it.

Restricted Maximum Likelihood

The principle of Restricted Maximum Likelihood (REML) is to make the estimations of the

regression coe�cient vector β and of the covariance function hyper-parameters σ2,θ totally

independent. This is of special interest when the Bayesian prior on β of subsection 2.2.2 is

considered. Indeed, the estimation of σ2 and θ is independent of this prior. In the FLICA IV

application case of chapter 8, we use the Restricted Maximum Likelihood technique.

First consider the parameterization Kψ of the covariance function in de�nition 3.18.

Let W be a (n−m× n) matrix of full rank so that WH = 0. Note that if H is not of full

rank, then m must be replaced by the rank of H. Then

w := Wy ∼ N (0,WKψWt).

The law of w is independent of the value of β. Hence the Restricted Maximum Likelihood

Estimator ψ̂REML is the Maximum Likelihood estimator on the transformed observations w.

Hence, the restricted likelihood criterion is

LR(ψ) :=
1

n
ln |WKψWt|+ 1

n
wt(WKψWt)−1w. (3.9)

It is shown in [Har74] that changing W only adds a constant (with respect to ψ) term to

(3.9). It is also shown in [Har74] how we can avoid a matrix product with W. Indeed let W

so that WWt = In−m and WtW = In −H(HtH)−1Ht. Such a matrix W can be obtained as

follows.

Consider a SVD decomposition of H: H = ŨS̃Ṽt, with Ũ an n × n orthogonal matrix, Ṽ

an m×m orthogonal matrix and

S̃ =

(
D

0n−m,m

)
,

with D a m×m diagonal matrix. Then, with ui the i-th column of Ũ, with

W =


utm+1

...

utn

 ,

we have

WŨ =
(

0n−m,m In−m

)
,

so that WH = 0. Furthermore we verify WWt = In−m.

With a matrix W verifying the conditions above, we have ([Har74])
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LR(ψ) = − 1

n
ln |HtH|+ 1

n
ln |Kψ|+

1

n
ln |HtK−1

ψ H|+ 1

n
ytΠψy, (3.10)

with

Πψ = K−1
ψ −K−1

ψ H(HtK−1
ψ H)−1HtK−1

ψ .

The REML estimator ψ̂REML is hence

ψ̂REML ∈ argmin
ψ∈Ψ

LR(ψ). (3.11)

Remark 3.24. Similarly to remark 3.23, it is not an issue for Restricted Maximum Likelihood

if H is ill-conditioned. Let U,S,V be a Singular Value Decomposition of H, with U of size

n ×m so that UtU = Im,m, S a diagonal matrix of size m, with nonnegative numbers on the

diagonal, and V an orthogonal matrix of size m, so that H = USVt. Then, we can show

that, when replacing H by U, LR(ψ) in (3.10) is unchanged. One can indeed see that, when H

becomes ill-conditioned the two diverging terms - ln |HtH| and ln |HtK−1
ψ H| in (3.10) actually

compensate one another. Also, if H is singular, so that the m−m′ last diagonal values of S are

zero, one can replace H in (3.10) by the n×m′ matrix Um′ , composed of the m′ �rst columns

of U, similarly to remark 2.31.

For the case of the decomposition σ2, θ, once again, the optimization problem with respect

to σ2 for �xed θ has an explicit solution, as shown in the following proposition.

Proposition 3.25. The REML estimator of (σ2,θ) is (σ̂2
REML, θ̂REML), with

θ̂REML ∈ argmin
θ∈Θ

LR(θ),

with

LR(θ) =
n−m
n

ln
(
σ̂2
REML(θ)

)
+

1

n
ln |Rθ|+

1

n
ln |HtR−1

θ H|,

σ̂2
REML(θ) =

1

n−m
ytΠθy,

Πθ = R−1
θ −R−1

θ H(HtR−1
θ H)−1HtR−1

θ

and

σ̂2
REML = σ̂2

REML(θ̂REML).

Proof. From (3.10) and similar to the proof of proposition 3.21.

Remark 3.26. Similarly to remark 3.23, it is not an issue for Restricted Maximum Likelihood

if H is ill-conditioned. Let U,S,V be a Singular Value Decomposition of H, with U of size

n ×m so that UtU = Im,m, S a diagonal matrix of size m, with nonnegative numbers on the

diagonal, and V an orthogonal matrix of size m, so that H = USVt. Then, we can show

that, when replacing H by U, σ̂2
REML(θ) in proposition 3.25 is unchanged. Furthermore, the

marginal restricted likelihood function LR in proposition 3.25 is changed only by an additive

constant (with respect to θ).

Let us discuss brie�y the comparison between ML and REML. Both have the same compu-

tational cost and essentially require to compute |Rθ| and solve the linear systems R−1
θ H and

R−1
θ y. It is argued in [CL93] that ML has a larger small-sample bias than REML. Indeed, one

can see, in the explicit case where θ is known and σ2 is estimated, that σ̂2
REML is unbiased while

σ̂2
ML is biased.
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3.2.3 Cross Validation for estimation

For this subsection on the Cross Validation estimation, we will make an explicit use of the (σ2,θ)

decomposition. Furthermore, we will not consider Cross Validation estimation for the Bayesian

case on the regression coe�cient vector β.

Leave-One-Out Mean Square error

The Cross Validation procedure we study in the manuscript is based on the Leave-One-Out

(LOO) Mean Square Error (MSE) criterion,

LOO(θ) :=
1

n

n∑
i=1

{yi − ŷi,θ}2, (3.12)

where, for 1 ≤ i ≤ n, ŷi,θ is the prediction, in (2.9) and (2.15), of yi according to y1, ..., yi−1, yi+1,

..., yn, given the covariance function σ2Rθ. One sees that the predictions (2.9) and (2.15) do

not depend on the variance hyper-parameter σ2. This is emphasized by the notation LOO(θ),

where the LOO MSE criterion explicitly does not depend on σ2.

θ is estimated by minimizing the LOO MSE criterion,

θ̂LOO ∈ argmin
θ∈Θ

LOO(θ). (3.13)

Leave-One-Out Predictive variance criterion

The variance hyper-parameter σ2 can not be estimated using the LOO MSE criterion. This

criterion re�ects the quality of the point wise prediction of (2.9) and (2.15). The other intuitive

criterion for a Kriging model would be a criterion re�ecting the quality of the predictive variances

for these pointwise predictions. We study the criterion based on

1

n

n∑
i=1

(yi − ŷi,θ̂LOO )2

σ2ĉ2
i,θ̂LOO

, (3.14)

where ĉ2i,θ and σ
2ĉ2i,θ are the predictive variances of yi according to y1, ..., yi−1, yi+1, ..., yn, given

the covariance functions Rθ and σ2Rθ. It is noted in [Cre93] p.102 that if σ2 is a correct estimate

of the variance parameter, then we should expect (3.14) to be close to 1. The principle of the

CV estimation of σ2 is to set this criterion equal to 1 exactly. Thus, the CV estimation of σ2 is

σ̂2
LOO =

1

n

n∑
i=1

(yi − ŷi,θ̂LOO )2

ĉ2
i,θ̂LOO

, (3.15)

with θ̂LOO as in (3.13).

To summarize, the general CV procedure we study is a two-step procedure. In a �rst step,

the correlation hyper-parameters are selected according to a mean square error criterion. In a

second step, the global variance hyper-parameter is selected, so that the predictive variances are

adapted to the Leave-One-Out prediction errors.

Matrix form criteria

Using the virtual Cross Validation formulas of proposition 2.35, we can write the estimators

θ̂LOO and σ̂2
LOO of (3.13) and (3.15) with explicit quadratic forms.
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First, the LOO MSE criterion for θ̂LOO can be written as

LOOθ =
1

n
ytR̃−θDiag(R̃−θ )−2R̃−θ y, (3.16)

with R̃−θ being R−1
θ in the simple Kriging case and R−1

θ − R−1
θ H(HtR−1

θ H)−1HtR−1
θ in the

(frequentist) ordinary or universal Kriging cases. The expression (3.16) allows to estimate θ by

CV by minimizing a criterion that has the same computational complexity of O(n3) as ML.

The explicit estimation of σ2 by CV in (3.15) also has the explicit quadratic form expression

σ̂2
LOO =

1

n
ytR̃−

θ̂LOO
Diag(R̃−

θ̂LOO
)−1R̃−

θ̂LOO
y. (3.17)

Remark 3.27. Consider the universal Kriging case. Similarly to the ML and REML estimators,

if the matrix H is ill-conditioned, numerical issues can be avoided for the computation of θ̂LOO

and σ̂2
LOO. Indeed, let U,S,V be a Singular Value Decomposition of H, with U of size n ×m

so that UtU = Im,m, S a diagonal matrix of size m, with nonnegative numbers on the diagonal,

and V an orthogonal matrix of size m, so that H = USVt. Then, we can show that the values

of (3.16) and (3.17) are unchanged by replacing the matrix H by the matrix U.

Discussion on the Leave-One-Out criteria studied

The CV procedure of (3.12) and (3.15) gives the priority �rst to the point wise prediction at a

new point, and second to the predictive variance for this new point. Furthermore, it addresses

this double objective by using criteria that are the direct empirical counterpart of this double

objective.

The double remark above may raise two interrogations on the CV estimation. First, on can

argue that the predictive means and variances may not always be the priority for a Kriging

model. For instance, we can be more interested in the estimation of the conditional correlation

between Y (x(new,1)) and Y (x(new,2)) at two di�erent new points. We will not discuss this point

any longer, since it is intrinsically dependent on the particular application of the Kriging model

at hand. We will just mention that, in many application cases, priority is given to pointwise

predictive means and variances.

Second, when established that the priority is given to having accurate point-wise predictive

means and variances, the procedure of (3.12) and (3.15) also constitutes a particular strategy for

this priority. More precisely, the LOO criterion (3.12) is interpreted as a direct approximation

of an underlying integrated prediction Mean Square Error. Another criterion that appears

frequently in the literature ([RW06], chapter 5, [ZW10], [SK01]) is the LOO log predictive

probability, which is
1

n

n∑
i=1

{
ln (σ2ĉ2i,θ) +

(yi − ŷi,θ)2

σ2ĉ2i,θ

}
, (3.18)

and is minimized jointly w.r.t σ2 and θ. The LOO log predictive probability criterion consists in

maximizing the product of the conditional likelihoods of each of the LOO observations according

to the remaining ones. It could be argued that doing so can also improve the accuracy of the

predictions ŷi,θ̂. Indeed, for instance, in (3.18), large prediction errors are divided by predictive

variances that are more likely to be large as well. This results in homogenizing the terms in

(3.18), thus potentially reducing the variance of the LOO log predictive probability estimator
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minimizing their sum. Furthermore, let us note that the criterion in (3.18) is minimized jointly

with respect to σ2 and θ and hence does not need this separation, contrary to the procedure

based on (3.12) and (3.15).

We essentially believe that the choice of the LOO procedure to be used is still an open

problem. In chapter 6, we show that the LOO procedure of (3.12) and (3.15) is more robust

than ML, when the family of covariance functions in which the selection is carried out is far from

the true covariance function of the Gaussian process. It is unclear yet whether the procedure

based on (3.18) would be as robust. Finally, the questions related to the choice of the LOO

procedure are further discussed in the perspectives in chapter 10.

3.2.4 Gradients of the di�erent criteria

In this subsection 3.2.4, we give the expressions of the gradients of the criteria that need to be

minimized numerically. Explicit expressions of the gradient are indeed useful for gradient-based

optimization algorithms.

In all subsection 3.2.4, let ψi , i ∈ {1, ..., p} be a component of ψ. Let also, depending on

the situation, θi, i ∈ {1, ..., p− 1} be a component of θ.

Proposition 3.28 gives the gradient of the likelihood criterion in the simple Kriging case.

Proposition 3.28. Let L(ψ) be the likelihood criterion of (3.5). Then

∂

∂ψi
L(ψ) =

1

n
Tr

(
K−1
ψ

∂Kψ

∂ψi

)
− 1

n
ytK−1

ψ

∂Kψ

∂ψi
K−1
ψ y.

Proof. The proof can be found in [MM84]. It is a straightforward calculation based on ∂
∂ψi

ln |Mψ|

= Tr
(
M−1
ψ

∂Mψ

∂ψi

)
and ∂

∂ψi
M−1
ψ = −M−1

ψ
∂Mψ

∂ψi
M−1
ψ .

For all the criteria in the universal Kriging case, expressions are simpli�ed by making use of

the following lemma.

Lemma 3.29. Let

Πθ = R−1
θ −R−1

θ H(HtR−1
θ H)−1HtR−1

θ .

Then,
∂Πθ

∂θi
= −Πθ

∂Rθ

∂θi
Πθ

Proof. Straightforward calculation based on ∂
∂θi

M−1
θ = −M−1

θ
∂Mθ

∂θi
M−1
θ .

Proposition 3.30 gives the gradient of the marginal likelihood criterion in the simple and

universal Kriging cases.

Proposition 3.30. Let L(θ) be the marginal likelihood criterion of proposition 3.21 for the

simple Kriging case and proposition 3.22 in the universal Kriging case. Then

∂

∂θi
L(θ) =

1

n
Tr

(
R−1
θ

∂Rθ

∂θi

)
−
ytR−1

θ
∂Rθ
∂θi

R−1
θ y

ytR−1
θ y

,

in the simple Kriging case, and

∂

∂θi
Lθ =

1

n
Tr

(
R−1
θ

∂Rθ

∂θi

)
−
ytΠθ

∂Rθ
∂θi

Πθy

ytΠθy
,
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with

Πθ = R−1
θ −R−1

θ H(HtR−1
θ H)−1HtR−1

θ ,

in the universal Kriging case.

Proof. Straightforward calculation based on lemma 3.29, ∂
∂θi

M−1
θ = −M−1

θ
∂Mθ

∂θi
M−1
θ and ∂

∂θi

ln |Mθ| = Tr
(
M−1
θ

∂Mθ

∂θi

)
.

Proposition 3.31 gives the gradient of the restricted likelihood criterion.

Proposition 3.31. Let LR(ψ) be the restricted likelihood criterion of (3.10). Then

∂

∂ψi
LR(ψ) =

1

n
Tr

(
∂Kψ

∂ψi
Πψ

)
− 1

n
ytΠψ

∂Kψ

∂ψi
Πψy,

with

Πψ = K−1
ψ −K−1

ψ H(HtK−1
ψ H)−1HtK−1

ψ .

Proof. Straightforward calculation based on lemma 3.29, ∂
∂ψi

M−1
ψ = −M−1

ψ
∂Mψ

∂ψi
M−1
ψ and ∂

∂ψi

ln |Mψ| = Tr
(
M−1
ψ

∂Mψ

∂ψi

)
.

Proposition 3.32 gives the gradient of the marginal restricted likelihood criterion.

Proposition 3.32. Let LR(θ) be the marginal restricted likelihood criterion of proposition 3.25.

Then

∂

∂θi
LR(θ) =

1

n
Tr

(
∂Rθ

∂θi
Πθ

)
− n−m

n

ytΠθ
∂Rθ
∂θi

Πθy

ytΠθy
,

with

Πθ = R−1
θ −R−1

θ H(HtR−1
θ H)−1HtR−1

θ .

Proof. Straightforward calculation based on lemma 3.29, ∂
∂θi

M−1
θ = −M−1

θ
∂Mθ

∂θi
M−1
θ and ∂

∂θi

ln |Mθ| = Tr
(
M−1
θ

∂Mθ

∂θi

)
.

Proposition 3.33 gives the gradient of the CV criterion for the simple and universal Kriging

cases.

Proposition 3.33. Let LOO(θ) be the LOO criterion of (3.16). Then,

∂

∂θi
LOO(θ) = − 2

ny
tR̃−θDiag(R̃−θ )−2R̃−θ

∂Rθ
∂θi

R̃−θ y

+ 2
ny

tR̃−θDiag(R̃−θ )−2Diag
(
R̃−θ

∂Rθ
∂θi

R̃−θ

)
Diag(R̃−θ )−1R̃−θ y,

with R̃−θ being R−1
θ in the simple Kriging case and R−1

θ − R−1
θ H(HtR−1

θ H)−1HtR−1
θ in the

universal Kriging case.

Proof. The proof for the simple Kriging case can be found in [Bac13]. The proof for the universal

Kriging case is a straightforward but rather long calculation based on lemma 3.29, ∂
∂θi

M−1
θ =

−M−1
θ

∂Mθ

∂θi
M−1
θ and ∂

∂θi
Diag (Mθ) = Diag

(
∂Mθ

∂θi

)
.
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Let us discuss brie�y the computational costs of the explicit gradients above. In the universal

Kriging case, we consider the case where m is small compared to n, which holds for all the appli-

cations treated in the manuscript. For all the likelihood-oriented criteria, if the inverse of the co-

variance, or correlation, matrix is calculated and stored, then computing the gradient can be done

with O(n2) operations. Indeed, a term like Tr
(
K−1
ψ

∂Kψ
∂ψi

)
=
∑n
j=1

∑n
k=1

(
K−1
ψ

)
j,k

(
∂Kψ
∂ψi

)
k,j

can be calculated in O(n2) if K−1
ψ is already calculated. Hence the computational cost for cal-

culating a likelihood criterion and its gradient is a O(n3), and is independent of the dimension

of θ or ψ. However, for CV, we have to compute e.g. Diag
(
R−1
θ

∂Rθ
∂θi

R−1
θ

)
for each component

of θ. Hence, the computational cost for calculating a CV criterion and its gradient is O(n3),

like ML, but is proportional to the dimension of θ or ψ.

3.2.5 The challenge of taking into account the uncertainty on the co-

variance function

The Kriging equations of subsection 2.2.2 assume that the covariance function of the Gaus-

sian process Y is known. In practice, this function is estimated beforehand, yielding plug-in

([Ste99], chapter 6.8) prediction equations. The plug-in approach does not take into account

the randomness of the covariance function estimator. Let ψ̂ be an estimator of the covariance

hyper-parameter ψ that veri�es, for any two m× 1 vectors v and w, ψ̂(v) = ψ̂(v + Hw), with

H the regression matrix. In the simple Kriging case, this conventionally adds no condition on

the estimator ψ̂. In [Ste99] p.201, the estimator ψ̂ is said to depend only on the contrasts of

y. Note that all the estimators studied in the manuscript do depend only on the contrasts of

y. Indeed, for example, the likelihood criterion in proposition 3.22 is written as a function of

y − Hβ̂(y), with β̂(y + Hv) = β̂(y) + v. Similarly, for CV in (3.16), the LOO criterion is

written ytMy, with M a matrix so that MH = 0. It is shown in [ZC92], and discussed in

[Ste99] p.201 that, in this case, the estimator ψ̂ is independent of the prediction error, with the

true covariance hyper-parameter, ŷψ(0),0 − y0 at a new point x(0). As a result, we have that

ŷψ(0),0 − y0 is independent of ŷψ(0),0 − ŷψ̂,0. Hence

E((ŷψ̂,0 − y0)2) = E((ŷψ(0),0 − y0)2) + E((ŷψ(0),0 − ŷψ̂,0)2), (3.19)

so that the prediction MSE is always larger when using an estimated covariance hyper-parameter

than when using the true hyper-parameter. As a result, the predictive variances obtained from

the plug-in approach may be overoptimistic.

This issue is well known in Kriging models, and is di�cult to address. Until now, the majority

of the research on Kriging models adopt the plug-in approach, unless being explicitly oriented

toward, for instance, computing predictive variances explicitly taking the uncertainty on the

covariance function into account. In this manuscript, we also adopt the plug-in approach.

We now mention some alternatives to the plug-in approach, to be found in the literature.

In [ZZ06], the distribution of the estimation error is approximated by a centered Gaussian

distribution with covariance matrix equal to the inverse of the Fisher information matrix. Then,

this approximated distribution is propagated in (3.19), by using a �rst order Taylor series ex-

pansion, yielding an estimated predictive variance that is larger than the plug-in one.
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Using a Bayesian prior on the covariance hyper-parameters will, in nature, yield predictive

means and variances taking the posterior distribution of the covariance hyper-parameter into

account (in fact the conditional distribution of Y (x(new)) will not be Gaussian anymore). This

is done for instance in [BBV11] in a Kriging-based optimization context. Nevertheless, it is

worth mentioning that the Bayesian approach yields an increased computational cost.

A parametric bootstrap approach is also presented in [Ste99], p.202. In essence, it consists

in exploiting the independence between the two random variables on the right-hand side of

(3.19). The principle is to assume that the estimator ψ̂ obtained is the true one, to sample

nb new observation vectors with the distribution obtained from it, and to obtain from them

a sample (ψ̂
(i)

)1≤i≤nb of estimated covariance hyper-parameters. Then, the distribution of

(ŷψ(0),0 − y0), obtained from the Kriging equations with hyper-parameter ψ̂, is convolved with

the bootstrap empirical distribution of (ŷψ(0),0− ŷψ̂(i)
,0

)1≤i≤nb . From the independence between

the two random variables on the right-hand side of (3.19), this procedure yields an approximate

distribution of (ŷψ̂,0 − y0).
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Chapter 4

Asymptotic results for Kriging

In this chapter 4, we review some existing asymptotic results for Kriging. We �rst present in

section 4.1 the two classical asymptotic frameworks: increasing-domain asymptotics and �xed-

domain asymptotics. Then, in subsection 4.2.1 we review the existing �xed-domain asymptotic

results for the consistency of the Kriging predictions, in both the cases where the Gaussian

process assumption is well-speci�ed or misspeci�ed. In subsection 4.2.2, we review the results of

[Ste99] for asymptotic optimality of Kriging predictions with misspeci�ed mean and covariance

functions. In section 4.3, we present the asymptotic results for estimation, in both asymp-

totic frameworks. Subsection 4.3.1 is dedicated to ML in the increasing-domain asymptotics

framework. Subsection 4.3.2 addresses various estimators in �xed-domain asymptotics.

4.1 Two asymptotic frameworks

There is a fundamental di�erence between the asymptotic framework in the iid case of subsection

3.1.2 and the asymptotic framework for Kriging. In the iid case, letting n → +∞ de�nes the

asymptotic framework without ambiguity. However, for Kriging, when letting the number of

observation points x(1), ...,x(n) grow to +∞, the position of the points x(1), ...,x(n) still remains

to be set.

Remark 4.1. In an asymptotic framework for Kriging, it is not necessary that the observation

points x(1), ...,x(n) be part of a sequence (x(i))i∈N∗ . For instance, we may consider, for each n ∈
N∗, observing Y on [0, 1] at the regular grid { in , 1 ≤ i ≤ n}. Hence, we can write the observation

points at step n {x(1,n), ...,x(n,n)}. Nevertheless, for concision, we write the observation points

at step n {x(1), ...,x(n)}, even when there is no sequence (x(i))i∈N∗ .

In an asymptotic framework for Kriging, even the observation domain D may depend on n.

We may emphasize it by writing it Dn. Informally, the domain Dn, for a �xed n, corresponds

to the region of Rd where we are interested in predicting the Gaussian process Y . Hence, the

observation points x(1), ...,x(n) should cover all the domain Dn and only the domain Dn.
Two main asymptotic frameworks exist, characterized by the variation of Dn with respect

to n. In the �xed-domain asymptotic framework ([Ste99], p62), Dn is independent of n and

corresponds to a compact set D. Because the goal is to predict Y in all D, it is assumed
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Figure 4.1: Illustration of �xed and increasing-domain asymptotics. Top: plot of 3 × 3, 5 × 5

and 7× 7 regular grids in the �xed-domain asymptotic framework. Bottom: plot of 3× 3, 5× 5

and 7× 7 regular grids in the increasing-domain asymptotic framework.

that the observation points become dense in D. If the observation points are not taken from a

sequence, we mean by dense that, with dn the maximum over x ∈ D of the distance between

x and {x(1,n), ...,x(n,n)}, dn vanishes to zero when n → +∞. One classical example of �xed-

domain asymptotic framework is a dense regular grid for the observation points on D = [0, 1],

i.e. x(i,n) = i
n .

In the increasing-domain asymptotic framework, Dn ⊂ Dn+p for n, p ∈ N∗, and
⋃
n∈N∗ Dn =

Rd or
⋃
n∈N∗ Dn = (R+)d. Furthermore, it is mentioned in [Ste99] p62 that, in increasing-

domain asymptotics, the ratio of n on the volume of Dn is bounded. This implies that the

observation points do not become dense in Dn. This is the case when it is assumed that there

exists a positive minimal distance between two di�erent points x(i) and x(j). In the manuscript,

we make this assumption for increasing-domain asymptotics. An example of increasing-domain

asymptotic framework, that we treat in chapter 5, is when for all N ∈ N∗, DNd = [0, N ]d and

the (x(n))n∈N∗ constitute a sequence so that for all N ∈ N∗ {x(i), 1 ≤ i ≤ Nd} = {1, ..., N}d.
Roughly speaking, this is a tensorized regular grid, with inter-point spacing 1.

In �gure 4.1, we plot three regular grids with n = 32, n = 52 and n = 72 observation points,

in both the �xed-domain and increasing-domain asymptotic frameworks. We clearly see the two

di�erent asymptotic behaviors: in �xed-domain asymptotics, the �rst 3× 3 regular grid already

covers all the prediction domain, and the two other regular grids cover it more densely. In

increasing-domain asymptotics, the size of the prediction domain, covered by the regular grid,

increases, but the density of the prediction points is constant.

Finally, let us mention that we can also study an asymptotic framework when the domain

Dn grows to Rd, but more slowly, so that the set of observation points {x(1), ...,x(n)} becomes
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dense in Dn. For instance, consider Dn = [−
√
n,
√
n] and x(i,n) = −

√
n+ 2i√

n
. This asymptotic

framework is called hybrid asymptotics in [Ste99] and mixed increasing-domain asymptotics in

[LM04]. We will not treat it in the manuscript.

4.2 Asymptotic results for prediction with �xed covariance

function

4.2.1 Consistency

Consider the �xed-domain asymptotic framework and consider a �xed point x ∈ D. The goal

of this subsection 4.2.1 is to answer the question: when n → +∞ does the prediction error of

Y (x) given y1, ..., yn at x(1), ...,x(n) go to zero?

Note that Kriging predictions are not expected to be consistent in the increasing-domain

asymptotic framework. Indeed, the interpoint distance is bounded away from zero when n →
+∞, so that most of the points in the prediction domain remain isolated.

Naturally, in the �xed-domain asymptotic framework, it is desirable that Kriging predictions

are consistent. Indeed, when predicting a continuous function on a �xed bounded domain D,
many simple approximation methods have their prediction error vanishing when the number of

observations goes to +∞.

We will �rst answer the question when Y is a Gaussian process with known mean structure

and covariance function. This corresponds to the question of the consistency of Kriging, when

the Gaussian process assumption is correct and the mean structure and the covariance function

are well-speci�ed.

Second, we will consider the question when the observations stem from a deterministic con-

tinuous function f , which is modeled as a trajectory of a Gaussian process Y with �xed mean

structure and covariance function. This second case can include the case of a misspeci�cation

of the mean structure or covariance function of the Gaussian process Y , when this Gaussian

process does yield continuous trajectories. This second question corresponds to the robustness

of Kriging in the case where the Gaussian process assumption is wrong. This has an important

practical in�uence, since Kriging models are often applied, for instance, to approximate deter-

ministic computer models. We will review some results in the literature, but we will also see

that this question is not fully solved yet, to the best of our knowledge.

Consistency when the Gaussian process assumption is correct

Consistency is proved in proposition 4.2, in the case where the Gaussian process is observed

without measurement error.

Proposition 4.2. Consider the universal Kriging framework with a Gaussian process Y on

D ⊂ Rd. Assume that the mean function and the covariance function of Y are continuous.

Consider a �xed point x ∈ D. Assume that Y is observed exactly at x(1,n), ...,x(n,n) and that

the distance between {x(1,n), ...,x(n,n)} and x goes to zero. Then

E((ŷ(x)− Y (x))2)→n→+∞ 0,
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where ŷ(x) is the universal Kriging prediction of (2.15).

Proof. Consider a sequence pn so that x(pn,n) goes to x as n→ +∞. Then, because the mean

and covariance functions of Y are continuous, the linear predictor ỹ(x) = Y (x(pn,n)) veri�es

(proposition 2.20)

E((ỹ(x)− Y (x))2)→n→+∞ 0.

Since ŷ(x) minimizes the MSE among all linear predictors, it also veri�es

E((ŷ(x)− Y (x))2)→n→+∞ 0.

Remark 4.3. The condition that the distance between {x(1,n), ...,x(n,n)} and x goes to zero is

meant naturally to hold for all x ∈ D. Hence, proposition 4.2 does hold only in the �xed-domain

asymptotic framework, as discussed above.

Proposition 4.4 consider the case where noisy observations of the Gaussian process are made.

The proposition assesses that, in the �xed-domain asymptotic framework, the prediction will be

consistent despite the measurement errors.

Proposition 4.4. Consider the universal Kriging framework with a Gaussian process Y on

D ⊂ Rd. Assume that the mean function and the covariance function of Y are continuous.

Assume that Y is observed at x(1,n), ...,x(n,n) with observed value yi,n = Y (xi,n) + εi,n where

the εi,n are iid and follow a N (0, σ2
mes) distribution. Consider a �xed point x ∈ D. Assume that,

for any open ball with center x and positive radius, the number of points in {x(1,n), ...,x(n,n)}
belonging to the ball goes to +∞ when n goes to +∞. Then

E((ŷ(x)− Y (x))2)→n→+∞ 0,

where ŷ(x) is the Kriging prediction of (2.15), in the noisy case.

Proof. There exists a sequence of radius rn → 0 so that the number nb,n of points of {x(1,n), ...,

x(n,n)} belonging to the ball with center x and radius rn goes to +∞. Consider the linear

predictor

ỹ(x) =
1

nb,n

∑
i||x(i,n)−x|≤rn

yi,n.

Basically this predictor is the empirical mean of a large enough number of observations whose
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observation points are close enough to the prediction point. Then

E
(

(Y (x)− ỹ(x))
2
)

= E


Y (x)− 1

nb,n

∑
i||x(i,n)−x|≤rn

yi,n

2


= E


Y (x)− 1

nb,n

∑
i||x(i,n)−x|≤rn

Y (x(i,n))− 1

nb,n

∑
i||x(i,n)−x|≤rn

εi,n

2


= E


Y (x)− 1

nb,n

∑
i||x(i,n)−x|≤rn

Y (x(i,n))

2
+

σ2
mes

nb,n

→n→+∞ 0.

We conclude by mentioning that the MSE of ŷ(x) is smaller than the MSE of ỹ(x).

Note that in proposition 4.4 the condition that for any open ball with center x and positive

radius, the number of points in {x(1,n), ...,x(n,n)}, belonging to the ball, goes to +∞ holds in

the �xed-domain asymptotic framework.

Consistency when the Gaussian process assumption is incorrect

The following proposition shows that the universal Kriging equation (2.15) gives a consistent

prediction, when the observations stem from a deterministic smooth function. This determin-

istic smooth function can be the trajectory of a random process with almost surely smooth

trajectories. In practice it can also be a deterministic computer model with a smooth relation

between its inputs and its output.

Thus, proposition 4.5 assesses the robustness of Kriging to the misspeci�cations of the Gaus-

sian process assumption. It is hence complementary to propositions 4.2 and 4.4, which assess

the e�ciency of Kriging in the "favorable" case when the Gaussian process assumption holds.

Proposition 4.5. Consider the universal Kriging framework with a Gaussian process Y on

a compact D ⊂ Rd, with a �xed continuous mean structure and continuous stationary covari-

ance function K. Assume that there exists k < +∞ so that the Fourier transform K̂ of K is

positive-valued and veri�es K̂(ω)|ω|k → +∞ when |ω| → +∞. Consider a �xed point x ∈ D.
Assume that an in�nitely di�erentiable function f is observed exactly at x(1,n), ...,x(n,n) ∈ D.
Assume that, for any open ball with center x and positive radius, the number of points in

{x(1,n), ...,x(n,n)} belonging to the ball goes to +∞ when n goes to +∞. Let ŷ(x) be the Kriging

prediction (2.15), with possibly an inappropriately assumed iid measurement error with variance

σ2
mes ≥ 0, of f(x) with observations y1 = f(x(1)),..., yn = f(x(n)). Then ŷ(x) → f(x) when

n→ +∞.

Proof. In [YS85], it is claimed that the proposition holds with the signi�cantly less restrictive

condition that f is continuous. However, the proof given is �awed, as explained in [VB10],

and as we discuss below. Nevertheless, the �rst step of the proof given in [YS85] proves the
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proposition for smooth functions f , as stated here. We �nd this part of the proof instructive

and hence we reproduce it. Note also, in our case, the slight modi�cation of taking into account

an inappropriate measurement error assumption.

Let y denote the observations, yi = f(x(i,n)). The Kriging prediction with the mean struc-

ture and covariance K as described in the proposition is ŷ(x) = λty, with (see (2.15)),

λ = (h(x))t(HtK−1
obsH)−1HtK−1

obs (4.1)

+(r(x))t
(
K−1
obs −K−1

obsH(HtK−1
obsH)−1HtK−1

obs

)
,

where Kobs = (K + σ2
mesIn)−1.

The proof is based on considering �rst the abstract case of a Gaussian process Y with the

mean structure and covariance K as described in the proposition. This will enable us to derive

a property of the λ vector sequence only, that can be used also in the case of the proposition,

where the observations stem from a smooth function.

Thus, consider a Gaussian process Y with the mean structure and covariance K as described

in the proposition. We have shown in proposition 4.4 that the Kriging prediction is consistent

and

0 = lim
n→+∞

E
((

(Y (x)− λty)2
)2)

= lim
n→+∞

E

((Y (x)−
n∑
i=1

λiY (x(i,n))−
n∑
i=1

λiεi

)2


= lim
n→+∞

E

((Y (x)−
n∑
i=1

λiY (x(i,n))

)2
+ σ2

mes

n∑
i=1

λ2
i .

Let λ0 = 1 and x(0,n) = x. We have

0 = lim
n→+∞

E

((λ0Y (x)−
n∑
i=1

λiY (x(i,n))

)2


= lim
n→+∞

n∑
i=0

n∑
j=0

λiλjK(x(i,n),x(j,n))

= lim
n→+∞

∫
Rd
K̂(ω)

∣∣∣∣∣
n∑
i=0

λie
iω.x(i,n)

∣∣∣∣∣
2

dω.

Let us now adopt a distribution framework. We consider Fλ as the distribution
∑n
i=0 λiδx(i,n)

with δx(i,n) the Dirac distribution at x(i,n). Then, in the distribution sense, F̂λ(ω) =
∑n
i=0 λi

eiω.x(i,n)

. Hence, we have ∫
Rd
K̂(ω)|F̂λ(ω)|2dω →n→+∞ 0.

Now, consider a rapidly decaying test function g, that is a C∞ function so that, for any k > 0,

|g(ω)||ω|k →|ω|→+∞ 0. Then, there exists C > 0 so that K̂(ω) ≥ C|g(ω)| for any ω. Hence, we
have shown that for any rapidly decaying test function∫

Rd
|g(ω)||F̂λ(ω)|2dω →n→+∞ 0,
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so that (using Cauchy Schwartz) for any rapidly decaying test function g̃,∫
Rd
g̃(ω)F̂λ(ω)dω →n→+∞ 0.

Hence, because of a continuity theorem for the inverse of the Fourier transform ([Zem65] p187),

we have, for any test function g, ∫
Rd
g(x)Fλ(x)dx→n→+∞ 0. (4.2)

The relation (4.2) only depends on the λ sequence, and not on the values of the abstract

Gaussian process Y . It can hence be used in the case in which the observations are yi = f(x(i,n)).

We consider this case in the rest of the proof.

The true function f , being in�nitely di�erentiable and de�ned on the compact D, is a rapidly
decaying test function. Hence, ∫

Rd
f(x)Fλ(x)dx→n→+∞ 0,

which is exactly
n∑
i=0

λif(x(i,n))→n→+∞ 0,

so that

ŷ(x)→n→+∞ f(x).

As we have said in the proof above, proposition 4.5 is proved only for smooth functions f .

As noted in [VB10], the generalization of proposition 4.5 to continuous functions f , proposed

in [YS85], is not valid. The question of this generalization is of strong practical interest, since

many simple prediction methods (e.g., a nearest neighbor method) are consistent for predicting

continuous functions. To the best of our knowledge this question remains an open problem.

In [VB10], an equivalent formulation of it is given, in term of the Lebesgue constant, but the

equivalent formulation is unsolved either.

In proposition 4.5, note that the Kriging prediction is consistent even if a measurement error

is inappropriately assumed.

In proposition 4.5, note also the important condition K̂(ω)|ω|k → +∞. This means that

the assumed Gaussian process is not in�nitely di�erentiable (proposition 2.21). Looking at the

Matérn model of subsection 2.1.2, the covariance functions of this model verify proposition 4.5

for �nite smoothness parameter ν. However the Gaussian covariance function (ν = +∞) does

not verify proposition 4.5. We are not aware of results in the literature on the consistency of

Kriging with a Gaussian covariance function, with a dense sequence of observation points on a

bounded domain and when a smooth function is predicted.

The Gaussian covariance function gives a.s analytic trajectories, so that, for instance, the

associated Gaussian process Y on [0, 1] can be predicted exactly from observing Y only on [0, ε]

with ε > 0 ([Ste99], p30). Similarly, it is shown in [VB10] that the Gaussian covariance function

can yield a conditional variance going to zero, when there exists a positive minimum distance

between the prediction points and all the observation points. These two facts may seem counter
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intuitive when applying Kriging models in practical situations. Hence, it is recommended in sev-

eral references (e.g. [Ste99]) not to use the Gaussian covariance function. An alternative to the

Gaussian covariance function is the Matérn covariance function, whose smoothness parameter

can be estimated from data.

In proposition 4.6, the case of a smooth function observed with measurement errors is ad-

dressed. Kriging is consistent in this case when the prediction incorporates an assumed measure-

ment error with positive variance. The condition that the covariance function is not in�nitely

di�erentiable remains present.

Proposition 4.6. Consider the universal Kriging framework with a Gaussian process Y on a

compact D ⊂ Rd, with �xed continuous mean structure and continuous stationary covariance

function K. Assume that there exists k < +∞ so that the Fourier transform K̂ of K is positive-

valued and veri�es K̂(ω)|ω|k → +∞ when |ω| → +∞. Consider a �xed point x ∈ D. Assume

that an in�nitely di�erentiable function f is observed at x(1,n), ...,x(n,n) ∈ D, with observed

values yi,n = f(x(i,n)) + εi,n, for 1 ≤ i ≤ n, where the εi,n are iid and follow a N (0, σ2
mes,1)

distribution. Assume that, for any open ball with center x and positive radius, the number of

points in {x(1,n), ...,x(n,n)} belonging to the ball goes to +∞ when n goes to +∞. Let ŷ(x)

be the Kriging prediction (2.15) of f(x) with observations at x(1,n), ...,x(n,n), where an iid

Gaussian measurement error is assumed, with mean zero and variance σ2
mes,2 > 0. Then, as

n→ +∞, ŷ(x) goes to f(x) in the mean square sense (w.r.t the measurement errors εi,n of the

true function).

Proof. The Kriging prediction is ŷ(x) = λty where λ = (λ1, ..., λn)t and yi = f(x(i,n)) + εi,n.

In the proof of proposition 4.5, we have shown that, under assumed covariance function K and

assumed measurement error variance σ2
mes,2,

σ2
mes,2

n∑
i=1

λ2
i →n→+∞ 0. (4.3)

Furthermore, under the distribution of the true measurement error, with variance σ2
mes,1, we get

E
(

(f(x)− ŷ(x))
2
)

=

(
f(x)−

n∑
i=1

λif(x(i,n))

)2

+ σ2
mes,1

n∑
i=1

λ2
i .

From (4.3), since σmes,2 > 0,
∑n
i=1 λ

2
i → 0. We have seen in the proof of proposition 4.5 that∑n

i=1 λif(x(i,n))→ f(x). This concludes the proof.

Looking at propositions 4.5 and 4.6, we see that the Kriging prediction with an assumed

measurement error is consistent, whether or not the observations of the smooth function ac-

tually come with measurement errors. On the contrary, Kriging prediction without assumed

measurement error would not be consistent in the case where the observations of the smooth

function would come with measurement errors.

To see this, consider the prediction of f(1), based on noisy observations at {f( in ), 0 ≤ i ≤
n − 1}, using an exponential covariance function with σ2 = 1 and ` = 1. A Gaussian process

Y on R, with the exponential covariance function, is a Markov process: for any x1 < ... <
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xn < x, L(Y (x)|Y (x1), ..., Y (xn)) = L(Y (x)|Y (xn)) (see e.g. [Yin91]). Hence, f(1) would be

inconsistently predicted, using the single observation at n−1
n , by

ŷ(1) = e−
1
n yn,

with yn = Y (n−1
n ) + εn, with εn the measurement error at xn.

The discussion above is an argument in favor of systematically incorporating a positive nugget

e�ect (we talk of numerical nugget e�ect) in the Kriging prediction (2.15).

Finally, in this subsection 4.2.1, we have addressed consistency qualitatively. Quantitative

results for a rate of convergence of the Kriging prediction do not exist, to the best of our

knowledge, in a general framework when Y is observed exactly, even when the prediction is

done with the true distribution of Y . In the case of measurement errors, [GG12] recently

provided results for the rate of convergence of Kriging prediction, with the true distribution of

Y .

4.2.2 Asymptotic in�uence of a misspeci�ed covariance function

In the previous subsection 4.2.1, we have studied the consistency of the Kriging predictions,

with a well-speci�ed or ill-speci�ed Gaussian process model.

When the Gaussian process model is ill-speci�ed, but the observations still stem from a

Gaussian process, with a di�erent covariance function, we have seen than the question of Kriging-

prediction consistency is still open. Another relevant question in this case is also: if the Kriging

prediction is consistent, can we quantify the loss compared to the prediction with the correct

Gaussian process model. The present subsection 4.2.2 gives some elements on this question.

The asymptotic framework followed is the �xed-domain asymptotic framework.

Orthogonal and equivalent Gaussian measures

In this subsection 4.2.2, we consider a Gaussian process Y , on a compact set D ⊂ Rd. Y has

mean function m1 and has covariance function K1. We assume that the Kriging predictions are

carried out with the Kriging formulas obtained when considering that Y is a Gaussian process

with mean function m2 and covariance function K2.

To compare (m1,K1) and (m2,K2), we �rst de�ne the two Gaussian measures yielded by

(m1,K1) and (m2,K2) in de�nition 4.7.

De�nition 4.7. Consider a measurable space (Ω,F), equipped with two probability measures

P1 and P2. Assume that there exist two stochastic processes Y1 and Y2 on D, where Yi has
probability space (Ω,F , Pi). Assume also that Yi is a Gaussian process with mean function

mi and covariance function Ki. Then P1 and P2 are called two Gaussian measures yielded by

(m1,K1) and (m2,K2).

Remark 4.8. In de�nition 4.7, consider two mean and covariance functions (m1,K1) and

(m2,K2). In order to de�ne two Gaussian measures they yield, it is necessary to de�ne two

Gaussian processes Y1, Y2 which have the same measurable space (Ω,F) with two di�erent

probability measures. This is in fact always possible, because the probability space of a stochastic

process on D can always be de�ned as (Ω̃, F̃ , P ), where Ω̃ and F̃ only depend on D and P only
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depends on the �nite-dimensional distributions of the stochastic process. We refer to e.g. chapter

2.1.1 of [Vaz05] or chapter I.2 of [IR78] for details on this point.

From de�nition 4.7, we see that we can compare pairs (m1,K1) and (m2,K2) of mean and

covariance functions, for a Gaussian process Y , by comparing the two probability measures P1

and P2 that they yield on the abstract probability space Ω.

The criterion for comparing P1 and P2, used in [Ste99], is the criterion of their equivalence

or their orthogonality, as presented in the following de�nition.

De�nition 4.9. Consider the framework of de�nition 4.7. P1 and P2 are equivalent if, for any

E ⊂ F , P1(E) = 0 if and only if P2(E) = 0. P1 and P2 are orthogonal if there exists E ⊂ F ,
so that P1(E) = 0 and P2(E) = 1.

It is shown in [Ste99] p.117, following [IR78], p.74-77, that two Gaussian measures yielded

by two pairs (m1,K1) and (m2,K2) are either equivalent or orthogonal. This is stated in the

following proposition.

Proposition 4.10. Consider two pairs of mean and covariance functions (mi,Ki), i = 1, 2 for

a Gaussian process Y on a compact set D ⊂ Rd. Assume that, for i = 1, 2, the mean function

mi is continuous on D and that the covariance function Ki is continuous and positive de�nite on

D×D. Then, in the context of de�nition 4.7, the two measures P1 and P2 are either equivalent

or orthogonal.

In subsection 4.3.2, we give some explicit relations between the covariance hyper-parameters

in the Matérn family of subsection 2.1.2 and the equivalence or orthogonality of the obtained

covariance functions.

Proposition 4.10 shows that we can compare Gaussian process measures in a binary way,

because they are either equivalent or orthogonal. We will see that this binary distinction has a

great impact, for Kriging prediction in the sequel of subsection 4.2.2, and for covariance function

estimation in subsection 4.3.2 .

We will hence start by considering Kriging prediction and showing that if (m1,K1) and

(m2,K2) are equivalent, then there is asymptotically no loss in using incorrectly (m2,K2) for

prediction.

Case of a misspeci�ed but equivalent Gaussian measure

We consider now the case when P1 and P2 of de�nition 4.7 are equivalent. We will describe the

results in [Ste88, Ste90a, Ste90c], stating that, in the equivalence case, there is asymptotically

no loss using the incorrect pair (m2,K2) compared to using the correct pair (m1,K1). The

asymptotic optimality concerns predictions as well as correct assessments of prediction errors.

This result was �rst shown for a �xed predictand point in [Ste88], theorems 1 and 2. The

following theorem directly follows from the reference hereabove.

Theorem 4.11. Consider a dense sequence of observation points (x(i))i∈N∗ , in the compact

set D ⊂ Rd, where the Gaussian process Y is observed exactly. Let Ei, ŷi(x) and σ̂2
i (x) be

the mean value, the prediction (2.9) and the predictive variance (2.10) under Gaussian process
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structure (mi,Ki), i = 1, 2, for Y . Assume that (mi,Ki), i = 1, 2, are continuous and that P1

and P2 (of de�nition 4.7) are equivalent. Then, with x a �xed predictand in D, di�erent from
the (x(i))i∈N∗ ,

E1

(
(ŷ2(x)− Y (x))

2
)

E1

(
(ŷ1(x)− Y (x))

2
) →n→+∞ 1 (4.4)

and
σ̂2

2(x)

E1

(
(ŷ2(x)− Y (x))

2
) →n→+∞ 1. (4.5)

In theorem 4.11, the ratio in (4.4) is the ratio of the MSE of the sub-optimal prediction given

by (m2,K2) on the MSE of the optimal prediction given by (m1,K1). It is larger than 1, and

the fact that it goes to 1 is the mathematical translation of the sentence "no asymptotic loss for

the prediction MSE in using the incorrect mean and covariance functions".

The ratio in (4.5) is the ratio, for the sub-optimal prediction given by (m2,K2), of the

incorrect estimation of its MSE given by (m2,K2) on its true MSE given by (m1,K1). The

fact that it goes to 1 is the mathematical translation of the sentence "asymptotically correct

assessment of prediction errors".

The following theorem, obtained by [Ste90c], gives a uniform version of theorem 4.11.

Theorem 4.12. Consider a dense sequence of observation points (x(i))i∈N∗ , in the compact set

D ⊂ Rd, where the Gaussian process Y is observed exactly. Let Ei, ŷi(x) and σ̂2
i (x) be the mean

value, the prediction and the predictive variance under Gaussian process structure (mi,Ki),

i = 1, 2, for Y . Assume that (mi,Ki), i = 1, 2, are continuous and that P1 and P2 (of de�nition

4.7) are equivalent. De�ne, for i = 1, 2, Hi as the Hilbert space equal to the adherence of the

linear span of the Y (x), x ∈ D, with the norm induced by the dot product z1, z2 → Ei(z1, z2).

Then the Hilbert spaces H1 and H2 are the same and are denoted H. Furthermore, letting ŷi(h)

and σ̂2
i (h) be the predictions (2.9) and predictive variances (2.10), from (Y (x(1)), ..., Y (x(n))),

of each random variable h ∈ H, under mean and covariance function mi,Ki, we have

sup
h∈H

E1

(
(ŷ2(h)− h)

2
)
− E1

(
(ŷ1(h)− h)

2
)

E1

(
(ŷ1(h)− h)

2
) →n→+∞ 0 (4.6)

and

sup
h∈H

∣∣∣σ̂2
2(h)− E1

(
(ŷ2(h)− h)

2
)∣∣∣

E1

(
(ŷ2(h)− h)

2
) →n→+∞ 0, (4.7)

with the convention 0
0 = 0.

Remark 4.13. In theorem 4.12, the Hilbert space H is basically composed of all the linear

functionals of Y . It hence includes all the random variables Y (x), but also integral terms like∫
D Y (x)dx, or, in the case where Y is mean-square di�erentiable, derivative terms like ∂Y (x)

∂xi
.

In theorem 4.12, as in theorem 4.11, the ratios (4.4) and (4.6) correspond to the asymptotic

optimality (in terms of MSE) of the prediction using incorrectly (m1,K1) and the ratios (4.5) and

(4.7) correspond to the asymptotically correct assessment of the predictive variance. Theorem

4.11 can be seen as a particular case of theorem 4.12. Theorem 4.12 shows that the asymptotic
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optimality at x is actually uniform over all x ∈ D. Furthermore, the uniformity also holds for

the prediction of all linear functionals of Y , such as
∫
D Y (x)dx.

Let us also mention that the analysis of bounds for the asymptotic optimality in theorems

4.11 and 4.12 is performed in [Ste90a, Ste90c].

Finally, let us mention that, in theorems 4.11 and 4.12, it is assumed that there is a single

sequence (x(i))i∈N∗ of observation points. This excludes some cases when the sets of n observa-

tion points, n ∈ N∗, are not part of a single sequence (x(i))i∈N∗ . Consider for instance observing

Y , at step n, on { in , i ∈ {1, ..., n}}. [Ste99], p.132, theorem 10 gives the theorem corresponding

to theorem 4.12 in this case. [Ste99], p.132, theorem 10 also considers observing Y on non-

numerable subsets of D. For instance the theorem applies to the case, in dimension 1, of the

prediction of Y (1) from {Y (t), 0 ≤ t ≤ 1− ε}, for ε > 0 ([Ste99], p132).

In [Vaz05], numerical illustrations of theorems 4.11 and 4.12 are presented. It is con�rmed

numerically that using misspeci�ed but equivalent mean and covariance functions results in

almost optimal predictions when the number of observation points is large compared to the

dimension. However, in the complementary case where the number of points is not large com-

pared to the dimension, situations are presented where equivalent but misspeci�ed mean and

covariance functions yield considerably sub-optimal predictions. Hence, for moderate sample

size, or for high-dimensional cases, the question of the choice of the mean and the covariance

function goes beyond the question of equivalence or orthogonality.

A proof of theorem 4.12

We give a proof of theorem 4.12, that is also given in [Ste99] p 135. The objective is to give a

pedagogical proof, highlighting that theorem 4.12 can be seen as a particular case of a general

theorem treating asymptotic equivalence of conditional distributions. This is also underlined in

[Ste99], p135.

The general theorem on asymptotic equivalence of conditional distributions is the main

theorem in [BD62]. In the following theorem, we present an adaptation of this main theorem in

the context of theorem 4.12.

Theorem 4.14. Consider a compact set D ⊂ Rd. For i = 1, 2, let (Ω,F , Pi) be the probability

space associated to the Gaussian process Y on D, with mean function mi and covariance function

Ki. Assume that F is the smallest sigma-algebra on Ω for which the Y (x), x ∈ D, are measurable

functions from (Ω,F) to (R,B(R)), with R,B(R) the Borel sigma-algebra on R.
Consider a dense sequence of observation points (x(i))i∈N∗ , in D, where Y is observed exactly.

Assume that (mi,Ki), i = 1, 2, are continuous and that P1 and P2 are equivalent.

Let, for i = 1, 2, Pi|n be the distribution Pi on (Ω,F), conditionally to Y (x(1)), ..., Y (x(n)).

Let us de�ne the distance between two distributions P̃1 and P̃2 on (Ω,F) by |P̃1 − P̃2| =

supF∈F |(P̃1(F )− P̃2(F )|. Then, P1-almost surely,

|P1|n − P2|n|

goes to zero when n→ +∞.

In theorem 4.14, Pi|n is interpreted as the conditional distribution of Y , when Y (x(1)), ...,

Y (x(n)) are �xed (like in �gure 2.8), under mean and covariance functions mi,Ki.
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We recall that, for i = 1, 2, Hi is the Hilbert space equal to the adherence of the linear span

of the Y (x), x ∈ D, with the norm induced by the dot product z1, z2 → Ei(z1, z2) and that the

Hilbert spaces H1 and H2 are the same and are denoted H. All the random variables in H are

measurable functions from (Ω,F) to (R,B(R)).

Hence, the consequence of theorem 4.14 is that all the elements of the Hilbert space H

have asymptotically the same conditional distribution under P1 and P2. Let L̃1 and L̃2 be two

distributions on (R,B(R)) and de�ne their distance as |L̃1 − L̃2| = supA∈B(R) |L̃1(A)− L̃2(A)|,
where B(R) is the Borel sigma-algebra on R.

Let, for h ∈ H, Lhi|n be the distribution of h conditionally to (Y (x(1)), ..., Y (x(n))).

Then, we have, P1-almost surely,

sup
h∈H

∣∣∣Lh1|n − Lh2|n∣∣∣ (4.8)

goes to zero when n→ +∞.

If in (4.6) and (4.7), for some h ∈ H, one of the two denominators is zero, then, by the

equivalence between P1 and P2, the two numerators are also zero. This is because, if σ̂2
1(h) = 0,

then the event {ŷ1(h) = h} has probability 1 under P1. Since P1 and P2 are equivalent, it

has probability 1 under P2. Since ŷ1(h) minimizes the prediction MSE under P2 it also veri�es

P2 ({ŷ2(h) = h}) = 1 and hence P1 ({ŷ2(h) = h}) = 1, so that E1((ŷ2(h)− h)2) = 0. This is the

same for addressing the case E1((ŷ2(h)− h)2) = 0.

We hence consider the case where in (4.6) and (4.7), σ̂2
1(h) > 0. In this case, we have shown

σ̂2
2(h) > 0 and the last step of the proof is to show that (4.8) implies (4.6) and (4.7). This is

done using the two following lemmas, which are proved below.

Lemma 4.15. Let Φm,σ2 be the Gaussian cumulative distribution function on R with mean m

and variance σ2. Then there exists 0 < K < +∞ and 0 < ε < +∞ so that, for σ2
1 > 0,

sup
t∈R

(
Φm1,σ2

1
(t)− Φm2,σ2

2
(t)
)2

≥ min

(
ε,K max

(
|m1 −m2|

σ1
,
|σ1 − σ2|

σ1

)2
)
.

Lemma 4.16. Consider a family of sequences (Xh,n)n∈N∗,h∈H of real-valued Gaussian variables.

If for all 0 < t < +∞, suph∈H P (|Xh,n| ≥ t)→n→+∞ 0 then suph∈H E(X2
h,n)→n→+∞ 0.

Now, with H̃ := {h ∈ H|σ̂2
1(h) > 0} (4.8) implies

sup
h∈H̃

sup
t∈R

∣∣∣Φŷ1(h),σ̂2
1(h)(t)− Φŷ2(h),σ̂2

2(h)(t)
∣∣∣ (4.9)

goes to zero P1-almost surely.

Using lemma 4.15, we obtain that

sup
h∈H̃

|σ̂1(h)− σ̂2(h)|
σ̂1(h)

(4.10)

goes P1-almost surely to zero. Since it is actually non random (because is is composed of two

Gaussian conditional standard deviations, see (2.10)), it goes to zero.

Now, using lemma 4.15 again, we obtain that

sup
h∈H̃

(
ŷ1(h)

σ̂1(h)
− ŷ2(h)

σ̂1(h)

)2

(4.11)
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goes to zero P1-almost-surely. From, (4.11), we obtain, for all t > 0

sup
h∈H̃

P1

((
ŷ1(h)

σ̂1(h)
− ŷ2(h)

σ̂1(h)

)2

≥ t

)
(4.12)

goes to zero.

Finally, the variables
(
ŷ1(h)
σ̂1(h) −

ŷ2(h)
σ̂1(h)

)
, for h ∈ H so that σ̂2

1(h) > 0, are Gaussian, so that

applying lemma 4.16 to them yields

sup
h∈H̃

E1

((
ŷ1(h)

σ̂1(h)
− ŷ2(h)

σ̂1(h)

)2
)
, (4.13)

goes to 0.

Hence using the classical bias variance decomposition E1((ŷ2(h)−h)2) = σ̂2
1(h)+E1((ŷ2(h)−

ŷ1(h))2) with (4.13) shows (4.6). Using again E1((ŷ2(h)− h)2) = σ̂2
1(h) + E1((ŷ2(h)− ŷ1(h))2),

together with (4.13) and (4.10), shows (4.7).

Proof of lemma 4.15

sup
t∈R

(
Φm1,σ2

1
(t)− Φm2,σ2

2
(t)
)2

= sup
t∈R

(
Φ0,σ2

1
(t)− Φm2−m1,σ2

2
(t)
)2

= sup
t∈R

(
Φ0,1(t)− Φm2−m1

σ1
,
σ2

2
σ2

1

(t)

)2

Let m = m2−m1

σ1
and σ2 =

σ2
2

σ2
1
. Then,

sup
t∈R

(
Φ0,1(t)− Φm,σ2(t)

)2 ≥ 1

2

∫ 1

−1

(
Φ0,1(t)− Φm,σ2(t)

)2
dt (4.14)

Now, from the dominated convergence theorem, the bivariate function (m,σ) → f(m,σ) :=∫ 1

−1

(
Φ0,1(t)− Φm,σ2(t)

)2
dt is twice di�erentiable. Since it is non-negative, it has a zero gradient

at (m = 0, σ = 1). From the identi�ability of the Gaussian model on R, parameterized by (m,σ),

f(m,σ) has a positive Hessian matrix at (m = 0, σ = 1). Hence, with K being 1
2 times the

smallest eigenvalue of this Hessian, we have, for a positive ε

f(m,σ) ≥ K(m2 + (σ − 1)2) for m2 + (σ − 1)2 ≤ ε.

From the identi�ability of the Gaussian model, there exists α > 0 so that, for m2 + (σ−1)2 ≥ ε,
f(m,σ) ≥ α.

Hence, �nally, we have, from (4.14),

sup
t∈R

(
Φ0,1(t)− Φm,σ2(t)

)2 ≥ min(
α

2
,
K

2
(m2 + (σ − 1)2)),

which completes the proof of the lemma.

Proof of lemma 4.16 Assume that there exist ε > 0 and hn so that for all n, E(X2
hn,n

) ≥ ε.
Then (Xhn,n)n∈N∗ is a sequence of Gaussian variables that goes to zero in probability but that

does not go to zero in the mean square sense. This is in contradiction with lemma 1 of [IR78].
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4.3 Asymptotic results for Maximum Likelihood

The goal of this section 4.3 is to give some existing results regarding the consistency and asymp-

totic distribution of the ML estimator of subsection 3.2.2. We consider the two asymptotic frame-

works of subsection 4.1: �xed-domain and increasing-domain asymptotics. Roughly speaking,

we will see that ML is generally consistent with asymptotic normality in the increasing-domain

asymptotic framework. In the �xed-domain asymptotic framework, we will see that some hyper-

parameters, de�ning the covariance function within a parametric family (subsection 3.2.1), can

be consistently estimated, while it is proved that others can not be consistently estimated. For

the hyper-parameters that can be consistently estimated we will consider the cases of ML and

also of other estimators.

4.3.1 Expansion-domain asymptotic results

Consistency and asymptotic normality for ML in Kriging have been proved by [MM84]. The

proof in [MM84] is based on [Swe80], which gives a general su�cient condition for the consistency

and asymptotic normality of ML, based on continuity, growth and convergence conditions on the

random Fisher information matrix. Notably, it is not assumed in [Swe80] that the observations

are independent, which explains why the results are applicable in the Kriging framework.

Theorem 2 of [MM84] gives general conditions that imply the conditions in [Swe80], and are

therefore su�cient conditions for consistency and asymptotic normality for ML in Kriging. In

theorem 4.17, we state these su�cient conditions.

Theorem 4.17. Consider ML in an universal Kriging case (subsection 3.2.2). Let β ∈ Rm

be the mean parameter and ψ ∈ Ψ ⊂ Rp be the covariance hyper-parameter. Let ψ(0) and

β(0) be the correct mean and covariance parameters. Consider a sequence of observation points

(x(i))i∈N∗ . For each n, let Kψ be the covariance matrix under covariance function Kψ and H

be the regression matrix. Assume that ψ → Kψ is twice di�erentiable.

The parameters to be estimated are β,ψ and the (m + p) × (m + p) Fisher information

matrix (proposition 3.15), denoted by In, is thus de�ned by, with l(β,ψ) the Gaussian likelihood

function at x(1), ...,x(n),−E{ ∂2

∂β∂β ln
(
l(ψ(0),β(0))

)}
, −E

{
∂2

∂ψ∂β ln
(
l(ψ(0),β(0))

)}
−E

{
∂2

∂β∂ψ ln
(
l(ψ(0),β(0))

)}
, −E

{
∂2

∂ψ∂ψ ln
(
l(ψ(0),β(0))

)} :=

(
Iβ Iβ,ψ
Iψ,β Iψ

)
.

Then, the m × p matrix Iβ,ψ is the zero matrix, the p × m matrix Iψ,β is the zero ma-

trix, the m × m matrix Iβ is HtK−1
ψ H and the p × p matrix Iψ has (i, j)-th term equal to

1
2Tr

(
K−1
ψ

∂Kψ
∂ψi

K−1
ψ

∂Kψ
∂ψj

)
.

Assume the following, as n→ +∞ and for all ψ ∈ Ψ.

i) For 1 ≤ i, j ≤ p, the largest (in absolute value) eigenvalues of the matrices Kψ,
∂Kψ
∂ψi

and
∂2Kψ
∂ψi∂ψj

converge to �nite constants.

ii) There exist δ > 0 and A > 0 so that
∑n
k,l=1

(
∂Kψ
∂ψi

)2

k,l
≥ An 1

2 +δ.

iii) The p× p matrix with term i, j equal to
{Iψ}i,j√

{Iψ}i,i{Iψ}j,j
converges to a positive matrix.

83



4.3. ASYMPTOTIC RESULTS FOR MAXIMUM LIKELIHOOD

iv) (HtH)−1 goes to the zero matrix.

Then, β̂ML and ψ̂ML go in probability to β(0) and ψ(0). Furthermore

I
1
2
n

(
β̂ML − β

(0)

ψ̂ML −ψ
(0)

)
→L N (0, Im+p)

Theorem 4.17 is not meant yet to be applied directly in the increasing-domain asymptotic

framework. Theorem 4.18, obtained from theorem 3 in [MM84], is. Nevertheless, we can already

comment the four conditions i), ..., iv) in theorem 4.17. Condition i) means that the observations

at the points x(1), ...,x(n) are not too correlated, so that the information they give is not redun-

dant. In the �xed-domain asymptotic framework, for instance, condition i) would fail. Indeed,

for sample for the Matérn model, for any x,x′ in a compact set, Kψ(x−x′) is larger in absolute

value than a positive term depending only on the diameter of the compact set. As a result, all

the elements of the matrix Kψ would be larger in absolute value than a positive constant, so

that its largest eigenvalue would go to in�nity. On the contrary, because classical covariance

models verify
∣∣∣ ∂
∂ψi

Kψ(x− x′)
∣∣∣→|x−x′|→+∞ 0, condition ii) means that the observation points

are not too far away from one another, so that they can still give information on the correlation

structure. Condition iii) and iv) are identi�ability assumptions for the covariance model, and

for the regression model. In particular, when a minimum distance exists between two di�erent

observation points, as is classical in increasing-domain asymptotics, condition iv) requires that

the functions hj(x) of the regression model have unbounded supports.

We now present, in theorem 4.18, the theorem 3 in [MM84], which is dedicated to the most

classical increasing-domain asymptotic framework: the case where the observation points form

a regular lattice on Rd.

Theorem 4.18. Consider the framework of theorem 4.17.

Assume that the covariance function family {Kψ,ψ ∈ Ψ} is stationary.
Assume that the observation point sequence (x(i))i∈N∗ is so that, for all N ∈ N∗, {x(i), 1 ≤

i ≤ Nd} = {i1v(1)+...+idv
(d), 1 ≤ i1, ..., id ≤ N}, for d linearly independent vectors v(1), ...,v(d).

Let ψ(0) and β(0) be the correct hyper-parameters. Assume that, for all ψ ∈ Ψ, 1 ≤ i, j ≤ d,
the functions Kψ,

∂Kψ
∂ψi

and
∂2Kψ
∂ψi∂ψj

are summable on the in�nite regular lattice of the observation

point sequence.

Then, if conditions iii) and iv) of theorem 4.17 hold, the conclusion of theorem 4.17 holds.

Theorem 4.18 gives su�cient conditions, for consistency and asymptotic normality, for ob-

servation points forming an in�nite regular lattice, that are veri�able in practice. Notably, the

summability of Kψ,
∂Kψ
∂ψi

and ∂2Kψ
∂ψi∂ψj

holds for the Matérn model of subsection 2.1.2. The only

di�culty we �nd in practice is the identi�ability condition iii) of theorem 4.17 for the covari-

ance function family. Indeed, this condition is de�ned in terms of the limit of a rather complex

matrix.

In chapter 5, we give ourselves a consistency and asymptotic normality result for ML, in

an increasing-domain asymptotic framework, where we study a regular lattice, and randomly

perturbed regular lattices. We �nd that our main improvement, relatively to theorem 4.18, is to

give an identi�ability condition in terms of only the covariance function family, without requiring
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to study the limit of matrix sequences. Note, also, that we show that the Fisher information

matrix behaves asymptotically like n times a constant matrix, thus we explicit that we have a

classical
√
n rate of convergence for estimation.

Finally, note that the consistency and asymptotic normality for REML has been proved, in

a framework similar to [MM84], in [CL93].

4.3.2 Fixed-domain asymptotic results

In the whole subsection 4.3.2, consider the �xed-domain asymptotic framework where the Gaus-

sian process Y is considered on the compact set D ⊂ Rd.
To clarify the content, we consider that Y is centered, as it is generally done in [Ste99]

chapter 6 on covariance function estimation, and in the references presented in this subsection

4.3.2.

Like in de�nition 3.18, we consider a covariance function model

{Kψ,ψ ∈ Ψ},

where Kψ is not necessarily stationary, unless speci�ed otherwise.

Microergodic and non-microergodic covariance hyper-parameters

We have seen in subsection 4.2.2 that a fruitful way to compare two covariance functions, in

the �xed-domain asymptotic framework, is to study the equivalence or orthogonality of the two

Gaussian measures they yield.

The point of view of this equivalence or orthogonality has also a strong impact on estima-

tion. Hence, it is useful to distinguish two kinds of hyper-parameters. Those that, when vary-

ing, yield orthogonal Gaussian measures are called microergodic hyper-parameters and those

that, when varying, yield equivalent Gaussian measures are called non-microergodic hyper-

parameters. These two notions (presented in [Ste99], p163) are detailed in the following de�ni-

tion.

De�nition 4.19. Consider a hyper-parameter h(ψ) for h : Ψ → Rp′ . This hyper-parameter

is microergodic if, for all ψ(1),ψ(2) ∈ Ψ, h(ψ(1)) 6= h(ψ(2)) implies that the two Gaussian

measures Pψ(1) and Pψ(2) (de�nition 4.7) are orthogonal. A hyper-parameter h(ψ) is called

non-microergodic if it is not microergodic.

Remark 4.20. We make a slight extension of the de�nition of a hyper-parameter in the context

of de�nition 3.18. Indeed, we name hyper-parameter not only the ψ1, ..., ψp but also any function

of them, such as, say, (ψ1

ψ2
, ψ2 + ψ3).

Remark 4.21. Because of proposition 4.10, non-microergodic hyper-parameters yield Gaussian

measures that are equivalent to one another.

Non-microergodic hyper-parameters can not be consistently estimated, as shown by the

following proposition.
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Figure 4.2: Illustration of non-microergodicity. Left: trajectories of a Gaussian process with

exponential covariance function with σ2 = 1 and ` = 4. Right: trajectories of a Gaussian process

with exponential covariance function with σ2 = 1
10 and ` = 4

10 .

Proposition 4.22. Consider a non-microergodic hyper-parameter h(ψ). There does not exist

an estimator h(ψ̂) : Rn → Rp′ so that, for all ψ(0) ∈ Ψ, when ψ(0) is the true covariance

hyper-parameter, h(ψ̂) goes in probability to h(ψ(0)).

Proof. Assume that such an estimator exists and write it (h(ψ̂)n)n∈N∗ . Consider ψ
(1) and ψ(2)

so that h(ψ(1)) 6= h(ψ(2)). Let Pψ(1) and Pψ(2) be the two Gaussian measures associated to ψ(1)

and ψ(2). Then, for i = 1, 2, in Pψ(i) -probability, h(ψ̂)n goes to h(ψ(i)). Thus, we can extract

a subsequence (Nn)n∈N∗ in N, with Nn →n→+∞ +∞, so that, for i = 1, 2, Pψ(i)-almost surely,

h(ψ̂)Nn goes to h(ψ(i)) when n → +∞. Thus, the event A := {h(ψ̂)Nn →n→+∞ h(ψ(1))}
veri�es Pψ(1)(A) = 1 and Pψ(2)(A) = 0. This is a contradiction.

In �gure 4.2, we illustrate non-microergodicity and proposition 4.22. We plot trajectories of

two Gaussian processes in dimension 1. Both have an exponential covariance function, with for

the �rst one, σ2 = 1, ` = 4 and for the second one σ2 = 1
10 , ` = 4

10 . We will see below that

the two associated Gaussian measures are equivalent, that is to say, the hyper-parameters σ2

and ` are non-microergodic. We see in �gure 4.2 that the trajectories are similar, notably in

the sense that their local variations are of the same amplitude. Hence, a trajectory of, say, the

�rst covariance function could have been obtained with the second covariance function. This

implies that, even when observing a continuous trajectory on a bounded set (which is an in�nite,

non-countable, number of observations), it is still not possible to know, with probability one,

the values of σ2 and ` separately. Notice, in this context, that [ZZ05] shows that if a continuous

trajectory is observed on a bounded set, the ML estimator of ` can be de�ned as a functional

of this continuous trajectory. It is thus a random variable with non-degenerate distribution.

Thus, as shown in [ZZ05], the (�nite-sample) ML estimator of ` converges, when the number n

of observations goes to in�nity, to a non-degenerate random variable, and is hence inconsistent,

in agreement with proposition 4.22.

However, we will see below that, for the exponential model, the hyper-parameter σ2

` is

microergodic. For �gure 4.2, this hyper-parameter was indeed the same for the two covariance

functions. In �gure 4.3, we illustrate this microergodicity. We plot trajectories of two Gaussian

processes in dimension 1. Both have an exponential covariance function, with for the �rst one,
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Figure 4.3: Illustration of microergodicity. Left: trajectories of a Gaussian process with expo-

nential covariance function with σ2 = 1 and ` = 4. Right: trajectories of a Gaussian process

with exponential covariance function with σ2 = 1 and ` = 4
10 .

σ2 = 1, ` = 4 and for the second one σ2 = 1, ` = 4
10 . The two associated Gaussian measures

are orthogonal. We see in �gure 4.3 that the trajectories are of di�erent nature, still in the

sense of their local variations: we clearly see that the local variations of the right trajectories

are consistently larger than the local variations of the left trajectories. This illustrates that it

can be distinguished from the left covariance function to the right one, with probability one,

when observing a complete trajectory.

Contrarily to proposition 4.22, and as illustrated in �gure 4.3, it is at least possible that

microergodic hyper-parameters can be estimated consistently ([Ste99], p163). It is nevertheless

di�cult to exhibit consistent estimators for microergodic hyper-parameters. No results with the

same degree of generality of, say, theorem 4.18 for the increasing-domain asymptotic framework,

are yet available in the literature. Instead, consistency of estimators, like the ML estimators,

are proved for particular covariance function families.

In the sequel, we will review these results, for the Matérn model of subsection 2.1.2. This

review will simultaneously present the existing results on which hyper-parameters are microer-

godic and which hyper-parameters are non-microergodic. We would like to mention that this

kind of review has also been carried out in the PhD thesis [Bet09].

Microergodicity, non-microergodicity and estimation for the Matérn model

We consider the Matérn model of subsection 2.1.2, with either the tensor product version or the

isotropic version.

The most important point is that, as shown in proposition 4.23, the smoothness parameter

is microergodic. This is not a surprise, since this hyper-parameter governs the regularity of the

Gaussian process. Even on a �xed domain, it is conceivable that enough information can be

gathered on the regularity of a Gaussian process to make it possible to distinguish between two

di�erent smoothness parameters.

Proposition 4.23. Consider, in any dimension d, the Matérn model, with either the tensorized

or isotropic version. Then the smoothness parameter ν is microergodic.
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Proof. Consider �rst the case d = 1. Let K1 be Matérn (σ2
1 , `1, ν1) and K2 be Matérn (σ2

2 , `2, ν2)

and assume ν1 < ν2.

If ν2 is in�nite, the two covariance functions are orthogonal, because they yield Gaussian

process trajectories with di�erent a.s. regularities. Hence, we now consider the case where ν1

and ν2 are �nite.

Then, with, for i = 1, 2, αi =
2
√
νi
`i

and φi =
σ2
i Γ(νi+

1
2 )α

2νi
i

π
1
2

Γ(νi)
, the Fourier transform of K1,K2

are, for i = 1, 2,

K̂i = φi
1

(α2
i + ω2)

1
2 +νi

.

It is thoroughly discussed in [Ste99] that the behavior at ω → +∞ of K̂ is the key concept for

equivalence and orthogonality of Gaussian measures. This is con�rmed in [IR78], p107, where

it is shown that, in the present context,

lim
ω→+∞

K̂1(ω)− K̂2(ω)

K̂1(ω)

√
ω = +∞ (4.15)

is a su�cient condition for the orthogonality between the Gaussian measures yielded by K1 and

K2. Since ν1 < ν2, limω→+∞
K̂1(ω)−K̂2(ω)

K̂1(ω)
= 1, so that (4.15) holds.

Consider now the case d > 1. Let Ki, i = 1, 2, be Matérn (σ2
i , `i,1, ..., `i,d, νi).

Consider the one-dimensional Gaussian process t → Ỹ (t) := Y (x + te(1)), on the compact

set {t,x + te(1) ∈ D}. Associate to this Gaussian process the measurable space (Ω, F̃), where

F̃ ⊂ F with (Ω,F) the measurable space associated to Y . The Gaussian process Ỹ has the

Matérn covariance function with hyper-parameters (σ2
i , `i,1, νi), for i = 1, 2. Thus, using the

proposition for d = 1, the two Gaussian measures P̃1, P̃2, yielded by Ỹ are orthogonal. These

two Gaussian measures are the projections of the two Gaussian measures P1, P2 from F to F̃ .
Thus, the two Gaussian measures P1 and P2 are also orthogonal (there exists A ∈ F̃ ⊂ F so

that P̃1(A) = P1(A) = 0 and P̃2(A) = P2(A) = 1).

In view of proposition 4.23, it is at least possible that the smoothness parameter ν can be

estimated consistently. However, we have no knowledge of a general consistent estimator of ν in

the literature. In the case of the isotropic version of the Matérn model, with ν < d
2 , [WLX13]

exhibits a consistent estimator of ν, when σ2 is unknown and the d correlation lengths are equal

to an unknown common correlation length. In [WLX13], asymptotic distribution is also shown,

when only ν is unknown, and a bound for the estimation error is shown when ν, σ2 and the

correlation length are unknown.

Proposition 4.23 allows us to consider now the case of a �xed and known ν. Indeed, in the case

when ν is not �xed, two di�erent ν for two Matérn covariance functions yield orthogonal Gaussian

measures regardless of the values of the other hyper-parameters. Hence, if ν is unknown, the

priority, with respect to the �xed-domain asymptotic theory, is to estimate it consistently.

We now, �rst, review the existing results for the isotropic version of the Matérn model.

For �xed and known ν < +∞, and for d ≤ 3, the d-dimensional hyper-parameter ( σ
2

`2ν1
, ..., σ

2

`2νd
)

is microergodic. A strongly consistent estimator of this hyper-parameter is given in [And10].

In the case where `1 = ... = `d = `, [Zha04] proves the strong consistency of ML for estimat-

ing σ2

`2ν . Any hyper-parameter h so that (h, σ
2

`2ν1
, ..., σ

2

`2νd
) is in one-to-one correspondence with

(σ2, `1, ..., `d), such as σ2, is non-microergodic. This non-microergodicity is proved in [Zha04].
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Concerning asymptotic distribution, for d = 1, asymptotic normality has been proved for

ML, for estimating σ2

`2ν ([DZM09]). This result had been proved before, in the particular case

ν = 1
2 , by [Yin91].

For ν < +∞, and for d ≥ 5, all hyper-parameters of the isotropic Matérn covariance function

are microergodic, as shown by [And10]. [And10] also presents a strongly consistent estimator.

Finally, the case d = 4 remains, to our knowledge open. It is not known whether all hyper-

parameters are microergodic or only the d hyper-parameters ( σ
2

`2ν1
, ..., σ

2

`2νd
) are. [And10] also

emphasizes that the case d = 4 is an open problem.

Consider now the tensor product Matérn model. The case d = 1 has actually been discussed

above, since the isotropic and tensor product Matérn models are the same in this case. Hence

consider now d > 1. For ν ∈ (0, 1
2 ), it is proved in [Daq10] that all the hyper-parameters

σ2, `1, ..., `d are microergodic. A consistent estimator is also presented.

For ν = 1
2 , [Yin93] proves that all hyper-parameters are also microergodic and that they

are consistently estimated by ML, with asymptotic normality. For ν = 3
2 and d ≥ 3, all the

hyper-parameters are microergodic and are consistently estimated by ML ([Loh05]).

For the Gaussian covariance function (ν = +∞), all the hyper-parameters σ2, `1, ..., `d are

microergodic. This follows for [Ste99] p120, where it is shown that, in dimension 1, two covari-

ance functions with Fourier transforms vanishing exponentially fast are orthogonal whenever

they are non identical on {t − s, t ∈ D, s ∈ D}. The argument for going from orthogonality in

dimension one to orthogonality in dimension larger than one is similar to the proof of propo-

sition 4.23. [LL00] proves that ML is consistent for estimating (`1, ..., `d). To our knowledge,

no consistency results are available for the ML estimation of σ2 for the Gaussian covariance

function.

Conclusion on estimation in the �xed-domain asymptotic context

As we have seen, the issue of microergodicity of the hyper-parameters needs to be solved before

studying consistent estimators in the �xed-domain asymptotic framework. This �rst question

is already di�cult in itself. Indeed, as we have seen, the problem is explicitly unsolved for

the isotropic Matérn covariance function for d = 4, and the proved results in other dimensions

yield two sharply di�erent regimes. For d = 1, 2, 3, not all hyper-parameters are microergodic,

while for d ≥ 5, all hyper-parameters are microergodic. For the tensor product version, in

dimension d ≥ 2, we are not aware of any non-microergodic hyper-parameters, but not all

hyper-parameters are proved microergodic. The presently available results, as we have seen,

depend on the smoothness parameter ν and of the dimension d.

Generally, when a hyper-parameter is proved microergodic, consistent estimators are ex-

hibited for it. In fact, as in [And10], exhibiting consistent estimators can be a way to prove

microergodicity. Studying explicitly ML is more di�cult than studying an estimator designed

for a particular situation. Therefore ML is not proved consistent for all hyper-parameters that

are proved to be microergodic. Studying asymptotic distribution, for ML or another estimator,

is even more di�cult than studying consistency. The number of results available on asymptotic

distribution is therefore relatively limited.

Nevertheless, all the particular results discussed above, are in agreement with the following
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qualitative statement: the hyper-parameters that do have an asymptotic in�uence on predictions

can be consistently estimated. This qualitative statement leads to the hope for a theory assessing

that, in a certain sense, one can, despite using estimated covariance hyper-parameters, obtain

asymptotically optimal predictions. This is discussed in the beginning of chapter 6 in [Ste99],

and some results supporting this statement are shown in [PY01]. Similarly, the estimation

results discussed above do not seem to contradict this kind of theory. Nevertheless, there is still

room for a more uni�ed theoretical work in this direction, which explains that hyper-parameter

estimation and prediction in �xed-domain asymptotics is an active research area.
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Chapter 5

Cross Validation and Maximum

Likelihood with well-speci�ed family

of covariance functions

This chapter is inspired by the manuscript [Bac], submitted to the Journal of Multivariate

Analysis.

5.1 Introduction

This chapter 5 addresses an asymptotic investigation of hyper-parameter estimation in Kriging.

Indeed, since exact �nite-sample results are generally not reachable and can be speci�c to the

situation, asymptotic theory is widely used to give approximations of the estimated hyper-

parameter distribution.

We follow a triple objective here. First, we aim at studying asymptotically the CV procedure

of (3.13). Indeed, while we have seen in chapter 4 that several results exist for ML, we are not

aware of similar results for CV. For CV to be relevant in practice, it is preferable that, in

the frameworks where ML is asymptotically consistent, it be asymptotically consistent as well.

Furthermore in the cases where a rate of convergence is proved for ML, such as in subsection

4.3.1, it is desirable that CV have the same rate of convergence. Thus, the �rst objective of

this chapter 5 is to study the consistency and asymptotic distribution of CV, in the frameworks

where it has been done for ML.

Following this idea, the asymptotic theory for ML in Kriging is essentially done in the well-

speci�ed framework, meaning that the true covariance function does belong to the parametric

set of covariance functions used for estimation. In this setting, we have seen in subsections

3.1.2 and 4.3.1 that the ML estimator is asymptotically unbiased, with asymptotic variance the

Cramér-Rao bound. It is thus expected that ML performs asymptotically better than CV in this

well-speci�ed framework. Our second objective in this chapter 5 is to con�rm this statement.

Finally, we are interested in studying the impact of the spatial sampling on the covariance

function estimation. This question of how the set of experiments should be designed arises in
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many areas of science involving measurements or data acquisition [Mon05]. Generally speaking,

it is known that in many situations, an irregular, or even random, spatial sampling is preferable to

a regular one. Examples of these situations are found in many �elds. For numerical integration,

Gaussian quadrature rules generally yield irregular grids [PTVF07, ch.4]. The best known low-

discrepancy sequences for quasi-Monte Carlo methods (van der Corput, Halton, Sobol, Faure,

Hammersley,...) are not regular either [Nie92]. In the compressed-sensing domain, it has been

shown that one can recover a signal very e�ciently, and at a small cost, by using random

measurements [CT06].

The spatial sampling, and particularly its degree of regularity, plays an important role for

the covariance function estimation. In chapter 6.9 of [Ste99], it is shown that adding three obser-

vation points with small spacing to a one-dimensional regular grid of twenty points dramatically

improves the estimation in two ways. First, it enables to detect without ambiguities that a

Gaussian covariance model is poorly adapted, when the true covariance function is Matérn 3
2 .

Second, when the Matérn model is used for estimation, it subsequently improves the estimation

of the smoothness parameter. It is shown in [ZZ06] that the optimal samplings, for maximizing

the log of the determinant of the Fisher information matrix, averaged over a Bayesian prior on

the true covariance hyper-parameters, contain closely spaced points. Similarly, in the geosta-

tistical community, it is acknowledged that adding sampling crosses, that are small crosses of

observation points making the di�erent input quantities vary slightly, enables a better identi�ca-

tion of the small scale behavior of the random �eld, and therefore a better overall estimation of

its covariance function [JDLI08]. The common conclusion of the three examples we have given

is that irregular samplings, in the sense that they contain at least pairs of observation points

with small spacing, compared to the average density of observation points in the domain, work

better for covariance function estimation than regular samplings, that is samplings with evenly

spaced points. This conclusion has become commonly admitted in the Kriging literature. Our

third objective is thus to address this conclusion, in an asymptotic framework.

Given these three objectives, the two main asymptotic frameworks that can be studied are

increasing and �xed-domain asymptotics, as discussed in chapter 4. Notice, for the comparison

between increasing and �xed-domain asymptotics, that in increasing-domain asymptotics, as

shown in subsection 5.5.1, all the hyper-parameters have strong asymptotic in�uences on pre-

dictions. Similarly all the hyper-parameters (satisfying a very general identi�ability assumption)

can be consistently estimated, see chapter 4. This is the contrary, we recall, in �xed-domain

asymptotics where (see chapter 4) non-microergodic hyper-parameters can not be consistently

estimated and do not have asymptotic in�uences on predictions.

We have decided to address increasing-domain asymptotics in this chapter 5. The �rst reason,

related to our two �rst goals, is that increasing-domain asymptotic results exist for ML (4.3.1)

in a fairly general way. This is because increasing-domain asymptotics is a favorable setting

for estimation, so that ML can be consistent and with asymptotic normality in a very general

setting. On the contrary, ML is not always consistent in �xed-domain asymptotic (subsection

4.3.2) and the existing results are very speci�c (for instance [Yin93] addresses the case of the

tensorized exponential model). Thus, despite the signi�cant insight �xed-domain asymptotics

brings on prediction and estimation (see chapter 4), studying increasing-domain asymptotics
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before �xed-domain asymptotics may yield more general results. Historically, this is how this

happened for ML estimation, increasing-domain asymptotics being treated in essentially the two

articles [MM84] and [CL93] in 84 and 93, while �xed-domain asymptotics has been studied in

many articles, from 91 ([Yin91]) onward.

The second reason for studying increasing-domain asymptotics is that we would like to com-

pare sampling techniques by inspection of the asymptotic distributions of the hyper-parameter

estimators. In �xed-domain asymptotics, when an asymptotic distribution is proved for ML

[Yin91, Yin93, DZM09], it turns out that it is independent of the dense sequence of observation

points. This makes it impossible to compare the e�ect of spatial sampling on hyper-parameter

estimation using �xed-domain asymptotics techniques. On the contrary, we show in this chap-

ter that, in increasing-domain asymptotics, the asymptotic variances of the hyper-parameter

estimators strongly depend on the spatial sampling.

Thus, this chapter 5 aims at studying an increasing-domain asymptotic framework. We

propose a sequence of random spatial samplings of size n ∈ N∗. The regularity of the spatial

sampling sequence is characterized by a regularity parameter ε ∈ (− 1
2 ,

1
2 ). ε = 0 corresponds to

a regular grid, and the irregularity increases with ε. We study the ML and CV estimators of

chapter 3. For CV, to the best of our knowledge, no asymptotic results are yet available in the

literature. For both estimators, we prove an asymptotic normality result for the estimation, with

a
√
n convergence, and an asymptotic covariance matrix which is a deterministic function of ε.

The asymptotic normality yields, classically, approximate con�dence intervals for �nite-sample

estimation. Then, carrying out an exhaustive analysis of the asymptotic covariance matrix,

for the one-dimensional Matérn model, we show that large values of the regularity parameter

ε always yield an improvement of the ML estimation. We also show that ML has a smaller

asymptotic variance than CV, which is expected since we address the well-speci�ed case here, in

which the true covariance function does belong to the parametric set used for estimation. Thus,

our general conclusion is a con�rmation of the aforementioned results in the literature: using

a large regularity parameter ε yields groups of observation points with small spacing, which

improve the ML estimation, which is the preferable method to use.

The rest of chapter 5 is organized as follows. In section 5.2, we introduce the random sequence

of observation points, that is parameterized by the regularity parameter ε. In subsection 5.3.1, we

give the asymptotic normality results. Some explicit expressions, for the asymptotic variances,

are given in subsection 5.3.2. In section 5.4, we carry out an exhaustive study of the asymptotic

variance. In section 5.5, we analyze the Kriging prediction for the asymptotic framework we

consider. In section 5.7, we give the proofs for chapter 5.

5.2 Expansion-domain asymptotic framework with randomly

perturbed regular grid

Stationary covariance function family

Let Y be a stationary Gaussian process on Rd. We consider two cases for the parameterization

of the covariance function of Y .
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In the case of the ML estimation, the full stationary covariance function of Y is parameter-

ized. We denote Ψ = [ψinf , ψsup]
p. The covariance function of Y is Kψ(0) with ψinf < ψ

(0)
i <

ψsup, for 1 ≤ i ≤ p. Kψ(0) belongs to a parametric model

{Kψ,ψ ∈ Ψ}, (5.1)

with Kψ a stationary covariance function. We use this parametric model because, except for

practical numerical optimization reasons that are not treated in this chapter 5, ML does not

make use of the variance/correlation separation of (3.4). This separation corresponds to selecting

the covariance function in the set

{σ2Rθ, σ
2 > 0,θ ∈ Θ}, (5.2)

with Rθ a stationary correlation function and Θ a compact subset of Rp−1.

In contrast, we have seen in chapter 3 that the CV estimation follows a two-step approach

based on (5.2), estimating the correlation hyper-parameter θ in a �st step and the variance hyper-

parameter σ2 in a second step. Basically, in this chapter 5, when addressing CV, we will focus

on the estimation of the correlation hyper-parameter in (5.2). The estimation of the correlation

hyper-parameter provides a su�cient insight on the impact of the spatial sampling, and on

the comparison of the asymptotic distributions of ML and CV. Furthermore, the asymptotic

distribution of the CV estimation of the variance hyper-parameter σ2 can be obtained more

easily, since the estimator of σ2 is explicit (see chapter 3).

For the correlation-only estimation case of CV, two frameworks are possible. First Y can be

assumed to have a known global variance hyper-parameter σ2
0 equal to 1, which can be restrictive.

Second, Y can be considered to have a constant global variance hyper-parameter σ2
0 (because it

is stationary). The value of this variance hyper-parameter does not interest us in this chapter

5, so that we can assume (incorrectly) that it is equal to σ2
1 6= σ2

0 . Now, since the distribution

of the CV estimator (3.13) does not depend on the assumed variance hyper-parameter σ2
1 , nor

on the true one σ2
0 , this second interpretation gives exactly the same development as the �rst

one. Since the �rst one simpli�es the notations, we adopt it in this chapter 5.

Thus, in the correlation-only estimation case of CV, we assume that Y has a known variance

1. We choose to write the correlation function of Y Kψ(0) instead of Rθ(0) , as would have been

done in the general framework of chapter 3. This is because many of the theoretical developments

are common between ML and CV. Using the notation Kψ for ML and Rθ for CV would make

it necessary to use two di�erent notations for quantities that have exactly the same meanings.

This would complicate the reading of the proofs.

Hence, in the rest of this chapter 5, Kψ denotes a stationary covariance function, and, in

the case of CV, we will always mention the additional condition Kψ(0) = 1 for all ψ, meaning

that Kψ is a correlation function.

We denote, for both ML and CV, Ψ = [ψinf , ψsup]
p. The covariance function of Y is Kψ(0)

with ψinf < ψ
(0)
i < ψsup, for 1 ≤ i ≤ p. Kψ(0) belongs to a parametric model {Kψ,ψ ∈ Ψ},

with Kψ a stationary covariance function.

We shall assume the following condition for the parametric model {Kψ,ψ ∈ Ψ}. This

condition is satis�ed in all classical cases, and especially for the Matérn model of chapter 2.
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Condition 5.1. i) For all ψ ∈ Ψ, the covariance function Kψ is stationary. The covariance

function Kψ is three times di�erentiable with respect to ψ. For all q ∈ {0, ..., 3}, i1, ..., iq ∈
{1, ..., p}, there exists Ci1,...,iq < +∞ so that for all ψ ∈ Ψ, t ∈ Rd,

∂

∂ψi1
...

∂

∂ψiq
Kψ (t) ≤

Ci1,...,iq
1 + |t|d+1

, (5.3)

where |t| is the Euclidian norm of t.

We de�ne the Fourier transform of a function h : Rd → R by

ĥ(f) =
1

(2π)d

∫
Rd
h(t)e−if ·tdt,

where i2 = −1. Then, for all ψ ∈ Ψ, the covariance function Kψ has a Fourier transform

K̂ψ that is continuous and bounded.

ii) For all ψ ∈ Ψ, Kψ satis�es

Kψ(t) =

∫
Rd
K̂ψ(f)eif ·tdf .

iii) (ψ,f)→ K̂ψ (f) is continuous and positive on Ψ× Rd.

Let us make some comments on condition 5.1. Condition i), as we will see, implies the

summability of the stationary covariance function over all the observation points. The same

summability assumption was present in theorem 4.18. Basically, it ensures a non-redundancy

of the observations between distant observation points. Let us remark also that condition i)

implies the summability over Rd of, say, Kψ, because, by a multidimensional spherical change

of variables, with 2 π
d
2

Γ( d2 )
the area of the the unit sphere in dimension d,

∫
Rd

1

1 + |t|d+1
dt = 2

π
d
2

Γ
(
d
2

) ∫ +∞

0

rd−1

1 + rd+1
dr < +∞.

Condition ii) is a separate assumption from condition i), because the latter does not give

information on the regularity of Kψ(t) w.r.t. t, or similarly, on the summability of K̂ψ(f) w.r.t.

f . Condition ii) is especially used in the proof of proposition 5.26.

Condition iii), the positivity of the Fourier transform, implies that all the covariance matrices

obtained from n di�erent observation points are invertible. To see this, write for n di�erent

observation points x(1), ...,x(n), and n scalar coe�cients α1, ..., αn,

0 ≤
n∑

i,j=1

αiαjKψ(x(i),x(j)) =

∫
Rd
K̂(ω)

∣∣∣∣∣∣
n∑
j=1

αje
(iω.x(j))

∣∣∣∣∣∣
2

dω,

and notice that the ω → e(iω.x(j)) are n linearly independent functions for di�erent observa-

tion points x(1), ...,x(n). We speak of non-degenerate covariance functions for the stationary

covariance functions verifying iii).
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Figure 5.1: Examples of three perturbed grids. The dimension is d = 2 and the number of

observation points is n = 82. From left to right, the values of the regularity parameter are 0,
1
8 and 3

8 . ε = 0 corresponds to a regular observation grid, while, when |ε| is close to 1
2 , the

observation set is highly irregular.

Randomly perturbed regular grid

We denote by
(
v(i)
)
i∈N∗ a sequence of deterministic points in Nd so that for all N ∈ N∗,{

v(i), 1 ≤ i ≤ Nd
}

= {1, ..., N}d. Basically the v(i) constitute a square regular grid on (N∗)d.
See �gure 5.1, left plot, for an example in dimension 2.

Y is observed at the points v(i) + εXi, 1 ≤ i ≤ n, n ∈ N∗, with − 1
2 < ε < 1

2 and Xi ∼iid LX .
LX is a symmetric probability distribution with support SX ⊂ [−1, 1]d, and with a positive

probability density function on SX . εXi is the random perturbation of the grid at the point

v(i). We denote, for n ∈ N∗, X = (X1, ..., Xn) as the perturbation vector, where we do not

write explicitly the dependence in n for clarity. X is a random variable with distribution L⊗nX .

Two remarks can be made on this sequence of observation points:

• This is indeed an increasing-domain asymptotic context. The condition − 1
2 < ε < 1

2

ensures a minimal spacing between two distinct observation points.

• The observation sequence we study is random, and the parameter ε is a regularity param-

eter. ε = 0 corresponds to a regular observation grid, while, when |ε| is close to 1
2 , the

observation set is highly irregular. Examples of observation sets are given in �gure 5.1,

with d = 2, n = 82, and di�erent values of ε.

Maximum Likelihood and Cross Validation

We recall L(ψ) := 1
n

{
ln (|Kψ|) + ytK−1

ψ y
}

the modi�ed opposite log-likelihood criterion of

chapter 3, where we do not write explicitly the dependence in X , Y , n and ε. We denote by

ψ̂ML the Maximum Likelihood estimator, de�ned by

ψ̂ML ∈ argmin
ψ∈Ψ

L(ψ), (5.4)

where we do not write explicitly the dependence of ψ̂ML with respect to X , Y , ε and n.

Remark 5.2. The ML estimator in (5.4) is actually not entirely de�ned, since the likelihood

function of (5.4) can have more than one global minimizer. Nevertheless, the convergence results
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of ψ̂ML, as n → +∞, hold when ψ̂ML is any random vector belonging to the set of the global

minimizers of the likelihood of (5.4), regardless of the value chosen in this set. Furthermore, it

can be shown that, with probability converging to one, as n→∞ (see remark 5.39 in subsection

5.7.1), the likelihood function has a unique global minimum. To de�ne a measurable function

ψ̂ML of Y and X , belonging to the set of the minimizers of the likelihood, one possibility is the

following. For a given realization of Y and X , let K be the set of the minimizers of the likelihood.

Let K0 = K and, for 0 ≤ k ≤ p− 1, Kk+1 is the subset of Kk whose elements have their k+ 1th

coordinates equal to min
{
ψ̃k+1, ψ̃ ∈ Kk

}
. Since, K is compact (because the likelihood function

is continuous with respect to ψ and de�ned on the compact set Ψ), the set Kp is composed of a

unique element, that we de�ne as ψ̂ML, which is a measurable function of X and Y . The same

remark can be made for the Cross Validation estimator of (5.5).

When the increasing-domain asymptotics sequence of observation points is deterministic,

we have seen in chapter 4 that ψ̂ML converges to a centered Gaussian random vector (under

suitable assumptions). The asymptotic covariance matrix is the inverse of the Fisher informa-

tion matrix. Since the literature has not addressed yet the asymptotic distribution of ψ̂ML in

increasing-domain asymptotics with random observation points, we give complete proofs about

it in subsection 5.7.1. Our techniques are original and not speci�cally oriented towards ML

contrary to the ones in chapter 4, so that they allow us to address the asymptotic distribution

of the CV estimator in the same fashion.

We recall the CV estimation of the correlation hyper-parameter ψ,

ψ̂LOO ∈ argmin
ψ∈Ψ

n∑
i=1

{yi − ŷi,ψ}2, (5.5)

where, for 1 ≤ i ≤ n, ŷi,ψ := Eψ|X (yi|y1, ..., yi−1, yi+1, ..., yn) is the Kriging Leave-One-Out

prediction of yi with covariance hyper-parameters ψ. Eψ|X denotes the expectation with respect

to the distribution of Y with the covariance function Kψ, given X .

Recall also that the criterion (5.5) can be computed with a single matrix inversion, by means

of the virtual LOO formulas, see chapter 3. These virtual LOO formulas yield

n∑
i=1

{yi − ŷi,ψ}2 = ytK−1
ψ Diag

(
K−1
ψ

)−2

K−1
ψ y,

which will also be useful in the proofs on CV. We hence de�ne

LOO(ψ) :=
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−2

K−1
ψ y

as the CV criterion, where we do not write explicitly the dependence in X , n, Y and ε. Hence

we have, equivalently to (5.5), ψ̂LOO ∈ argminψ∈Ψ LOO(ψ).

Identi�ability

A very important point is that, for a given ε > 0, the di�erence between two di�erent observation

points is

v(i) − v(j) + ε(Xi −Xj).

This di�erence is thus of the form

v + εt,
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with v ∈ (Z)d\0 and t ∈ CSX , where

CSX :=
{
t(1) − t(2), t(1) ∈ SX , t(2) ∈ SX

}
is the set of all possible di�erences between two points in SX . So, the set

Dε := ∪v∈Zd\0 (v + εCSX ) (5.6)

is the set of all the possible di�erence vectors between two di�erent observation points. We also

call this set the set of inter-point distances covered by the random sampling.

Two covariance functions that di�er only for points outside Dε in (5.6) can not be distin-

guished with the random sampling we study. Thus, the two following identi�ability conditions

are necessary for the ML and CV estimators to be consistent.

Condition 5.3. For ε = 0, there does not exist ψ 6= ψ(0) so that Kψ (v) = Kψ(0) (v) for all

v ∈ Zd.
For ε 6= 0, with Dε as in (5.6), there does not exist ψ 6= ψ(0) so that Kψ = Kψ(0) a.s. on

Dε, according to the Lebesgue measure on Dε, and Kψ (0) = Kψ(0) (0).

Condition 5.4. For ε = 0, there does not exist ψ 6= ψ(0) so that Kψ (v) = Kψ(0) (v) for all

v ∈ Zd\0.
For ε 6= 0, with Dε as in (5.6), there does not exist ψ 6= ψ(0) so that Kψ = Kψ(0) a.s. on

Dε, according to the Lebesgue measure on Dε.

Notice the slight di�erence between condition 5.3 for ML and 5.4 for CV. Since ML also aims

at estimating a variance hyper-parameter impacting on Kψ(0) only, its identi�ability condition

is slightly relaxed compared to that of CV.

We also state the two local identi�ability conditions 5.5 and 5.6. We call them local in

contrast with the identi�ability conditions 5.3 and 5.4 that are global.

Condition 5.5. For ε = 0, there does not exist λ = (λ1, ..., λp) ∈ Rp, λ di�erent from zero, so

that
∑p
k=1 λk

∂
∂ψk

Kψ(0) (v) = 0 for all v ∈ Zd.
For ε 6= 0, with Dε as in (5.6), there does not exist λ = (λ1, ..., λp) ∈ Rp, λ di�erent from

zero, so that t→
∑p
k=1 λk

∂
∂ψk

Kψ(0) (t) is almost surely zero on Dε, with respect to the Lebesgue

measure on Dε, and that
∑p
k=1 λk

∂
∂ψk

Kψ(0) (0) is null.

Condition 5.6. For ε = 0, there does not exist λ = (λ1, ..., λp) ∈ Rp, λ di�erent from zero, so

that
∑p
k=1 λk

∂
∂ψk

Kψ(0) (v) = 0 for all v ∈ Zd\0.
For ε 6= 0, with Dε as in (5.6), there does not exist λ = (λ1, ..., λp) ∈ Rp, λ di�erent from

zero, so that t→
∑p
k=1 λk

∂
∂ψk

Kψ(0) (t) is almost surely zero on Dε, with respect to the Lebesgue

measure on Dε.

We will see in propositions 5.10 and 5.14 that the conditions 5.5 and 5.6 are necessary for the

asymptotic distributions of ML and CV to exist with a "non-degenerate"
√
n rate of convergence.

For an immediate interpretation, for instance for condition 5.5 with ε = 0, assume that there

exists λ = (λ1, ..., λp) ∈ Rp, λ di�erent from zero, so that
∑p
k=1 λk

∂
∂ψk

Kψ(0) (v) = 0 for all
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v ∈ Zd. Then, for t small, the two hyper-parameters ψ(0) and ψ(t) = (ψ
(0)
1 + tλ1, ..., ψ

(0)
d + tλd)

verify, for all v ∈ Zd,
|Kψ(0)(v)−Kψ(t)(v)| = o(t).

Hence, two di�erent hyper-parameters ψ(0) and ψ(t), with a di�erence of the order t, gives, up to

a o(t), the same covariance function. We interpret this as a non-identi�ability of the covariance

model Kψ,ψ ∈ Ψ, locally around ψ(0).

Notation

We recall that, for n ∈ N∗, X = (X1, ..., Xn) is the perturbation vector, where we do not write

explicitly the dependence in n for clarity. X is a random variable with distribution L⊗nX . We

also denote x =
(
x(1), ...,x(n)

)
, an element of (SX)

n, as a realization of X .

We de�ne the n× n random covariance matrix Kψ by

(Kψ)i,j = Kψ

(
v(i) − v(j) + ε (Xi −Xj)

)
.

We do not write explicitly the dependence of Kψ with respect to X , ε and n. We shall denote,

as a simpli�cation, K := Kψ(0) .

We de�ne the random vector y of size n by yi = Y
(
v(i) + εXi

)
. We do not write explicitly

the dependence of y with respect to X , ε and n.

We denote, for a real n × n matrix A, ||A||22 = 1
n

∑n
ij,=1A

2
i,j and ||A|| the largest singular

value of A. ||.||2 and ||.|| are norms and ||.|| is a matrix norm. We denote by φi (M), 1 ≤ i ≤ n,
the eigenvalues of a symmetric matrix M. We denote, for two sequences of square matrices A

and B, depending on n ∈ N∗, A ∼ B if ||A −B||2 →n→+∞ 0 and ||A|| and ||B|| are bounded
with respect to n. Finally, for a square matrix A, we denote by Diag (A) the matrix obtained

by setting to 0 all non diagonal elements of A.

Finally, for a sequence of real random variables zn, we denote zn →p 0 and zn = op (1) when

zn converges to zero in probability.

5.3 Consistency and asymptotic normality for Maximum

Likelihood and Cross Validation

5.3.1 Consistency and asymptotic normality

Maximum Likelihood

Proposition 5.7 addresses the consistency of the ML estimator. The only assumptions on the

parametric family of covariance functions are the regularity and summability assumption 5.1

and the identi�ability assumption 5.3. This identi�ability assumption is necessary.

Proposition 5.7. Assume that conditions 5.1 and 5.3 are satis�ed. Then the ML estimator is

consistent.

In proposition 5.8, we address the asymptotic normality of ML. The convergence rate is
√
n, as in a classical iid framework, and we prove the existence of a deterministic asymptotic

covariance matrix of
√
nψ̂ML, which depends only on the regularity parameter ε.
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Proposition 5.8. Assume that condition 5.1 is satis�ed.

For all 1 ≤ i, j ≤ p, the random trace 1
nTr

(
K−1 ∂K

∂ψi
K−1 ∂K

∂ψj

)
converges a.s. to the element

(ΣML)i,j of a p× p deterministic matrix ΣML as n→ +∞.

If ψ̂ML is consistent and if ΣML is positive, then

√
n
(
ψ̂ML −ψ

(0)
)
→L N

(
0, 2Σ−1

ML

)
.

Remark 5.9. In proposition 5.8, we call 1
nTr

(
K−1 ∂K

∂ψi
K−1 ∂K

∂ψj

)
a random trace because, for

ε 6= 0, it is a function of the random perturbation vector X . When ε = 0, we still call this

quantity a random trace, although it is deterministic. This is still mathematically correct, and

it facilitates the discussions by avoiding to distinguish the two cases ε = 0 and ε 6= 0. We will

follow this principle for CV in proposition 5.12.

In proposition 5.10, we prove that the asymptotic Fisher information matrix ΣML is positive,

as long as the local identi�ability condition 5.5 holds.

Proposition 5.10. Assume that conditions 5.1 and 5.5 are satis�ed. Then ΣML is positive.

The condition 5.5 is necessary in proposition 5.10. To see this, assume, for instance with ε =

0, that there exists λ = (λ1, ..., λp) ∈ Rp, λ di�erent from zero, so that
∑p
k=1 λk

∂
∂ψk

Kψ(0) (v) = 0

for all v ∈ Zd. Then

λtΣMLλ = lim
n→+∞

1

n

p∑
i,j=1

λiλjTr

(
K−1 ∂K

∂ψi
K−1 ∂K

∂ψj

)

= lim
n→+∞

1

n
Tr

K−1

(
p∑
i=1

∂K

∂ψi

)
K−1

 p∑
j=1

∂K

∂ψj

 .

For all n, the matrix
∑p
j=1

∂K
∂ψj

is the zero matrix so that, by taking the limit as n → +∞,

λtΣMLλ = 0, meaning that the matrix ΣML is singular.

Cross Validation

Proposition 5.11 addresses the consistency of the CV estimator. The identi�ability assumption

is required, like in the ML case. Notice also that, as discussed above, the CV estimator (5.5) is

designed for estimating the correlation hyper-parameter.

Proposition 5.11. Assume that conditions 5.1 and 5.4 are satis�ed and that for all ψ ∈ Ψ,

Kψ (0) = 1. Then the CV estimator is consistent.

Proposition 5.12 gives the expression of the covariance matrix of the gradient of the CV

criterion LOO(ψ) and of the mean matrix of its Hessian. As we have seen in chapter 3, these

moments are classically used in statistics to prove asymptotic distributions of consistent esti-

mators. We also prove the convergence of these moments to p × p matrices ΣCV,1 and ΣCV,2,

of which we prove the existence. These matrices are deterministic and depend only on the

regularity parameter ε.

Proposition 5.12. Assume that condition 5.1 is satis�ed and that for all ψ ∈ Ψ, Kψ (0) = 1.
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With, for 1 ≤ i ≤ p,

Mi
ψ = K−1

ψ Diag
(
K−1
ψ

)−2
{
Diag

(
K−1
ψ

∂Kψ

∂ψi
K−1
ψ

)
Diag

(
K−1
ψ

)−1

−K−1
ψ

∂Kψ

∂ψi

}
K−1
ψ ,

we have, for all 1 ≤ i, j ≤ p,
∂

∂ψi
LOO(ψ) =

1

n
2ytMi

ψy,

and

Cov

(√
n
∂

∂ψi
LOO(ψ(0)),

√
n
∂

∂ψj
LOO(ψ(0))

∣∣∣∣X) = (5.7)

2
1

n
Tr

[{
Mi
ψ(0) +

(
Mi
ψ(0)

)t}
Kψ(0)

{
Mj

ψ(0) +
(
Mj

ψ(0)

)t}
Kψ(0)

]
.

Furthermore, the random trace in (5.7) converges a.s. to the element (ΣCV,1)i,j of a p × p

deterministic matrix ΣCV,1 as n→ +∞.

We also have

E
(

∂2

∂ψi∂ψj
LOO(ψ(0))|X

)
= (5.8)

− 8

n
Tr

{
Diag

(
K−1
ψ(0)

)−3

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

)
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

}
+

2

n
Tr

{
Diag

(
K−1
ψ(0)

)−2

K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

}
+

6

n
Tr

{
Diag

(
K−1
ψ(0)

)−4

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

)
Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
K−1
ψ(0)

}
.

Furthermore, the random trace in (5.8) converges a.s. to the element (ΣCV,2)i,j of a p × p
deterministic matrix ΣCV,2 as n→ +∞.

In proposition 5.13, we address the asymptotic normality of CV. The convergence rate is also
√
n, and we have the expression of the deterministic asymptotic covariance matrix of

√
nψ̂LOO,

depending only on the matrices ΣCV,1 and ΣCV,2 of proposition 5.12.

Proposition 5.13. Assume that condition 5.1 is satis�ed and that for all ψ ∈ Ψ, Kψ (0) = 1.

If ψ̂LOO is consistent and if ΣCV,2 is positive, then

√
n
(
ψ̂LOO −ψ

(0)
)
→L N

(
0,Σ−1

CV,2ΣCV,1Σ
−1
CV,2

)
as n→ +∞.

In proposition 5.14, we prove that the asymptotic Hessian matrix ΣCV,2 is positive as long

as the local identi�ability condition 5.6 holds.

Proposition 5.14. Assume that conditions 5.1 and 5.6 are satis�ed and that for all ψ ∈ Ψ,

Kψ (0) = 1. Then ΣCV,2 is positive.

The condition 5.6 is necessary in proposition 5.14. This can be seen the same way as for

proposition 5.10 for ML: if the condition does not hold, for each �xed n, the Hessian matrix of

the CV criterion has a non-empty kernel that is independent of n. Thus, the limit matrix ΣCV,2

is singular.
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The conclusion for ML and CV is that, for all the most classical parametric families of

covariance functions, consistency and asymptotic normality hold, with deterministic positive

asymptotic covariance matrices depending only on the regularity parameter ε. The rate of

convergence is
√
n in both cases. This result was the �rst objective of this chapter 5.

In section 5.4, we analyze the asymptotic covariance matrices of propositions 5.8 and 5.13.

We aim at comparing them to verify that, for p = 1, the asymptotic variance is smaller for

ML than for CV. We also aim at studying their dependence with respect to the regularity

parameter ε, to address the in�uence of the irregularity of the spatial sampling on the ML and

CV estimation.

In order to do so, we are interested in the derivatives of the asymptotic covariance matrices

with respect to ε. We hence now study this point.

Derivatives of the asymptotic covariance matrices

In proposition 5.16 we show that, under the mild conditions 5.15, the asymptotic covariance

matrices obtained from ΣML, ΣCV,1 and ΣCV,2, of propositions 5.8 and 5.12, are twice di�er-

entiable with respect to ε. This result is useful for the numerical study of the section 5.4.

Condition 5.15. • Condition 5.1 is satis�ed.

• Kψ(t) and ∂
∂ψi

Kψ (t), for 1 ≤ i ≤ p, are three times di�erentiable in t for t 6= 0.

• For all T > 0, 1 ≤ i ≤ p, k ∈ {1, 2, 3}, i1, ..., ik ∈ {1, ..., d}k, there exists CT < +∞ so

that for |t| ≥ T , ψ ∈ Ψ,

∂

∂ti1
...

∂

∂tik
Kψ (t) ≤ CT

1 + |t|d+1
, (5.9)

∂

∂ti1
...

∂

∂ik

∂

∂ψi
Kψ (t) ≤ CT

1 + |t|d+1
.

Proposition 5.16. Assume that condition 5.15 is satis�ed.

Let us �x 1 ≤ i, j ≤ p. The elements (ΣML)i,j, (ΣCV,1)i,j and (ΣCV,2)i,j (as de�ned in

propositions 5.8 and 5.12) are C2 in ε on [0, 1
2 ). Furthermore, let us de�ne the matrices M

(i,j)
ML ,

M
(i,j)
CV,1 and M

(i,j)
CV,2 by the relations 1

nE
{
Tr
(
M

(i,j)
ML

)}
→ (ΣML)i,j,

1
nE
{
Tr
(
M

(i,j)
CV,1

)}
→

(ΣCV,1)i,j and 1
nE
{
Tr
(
M

(i,j)
CV,2

)}
→ (ΣCV,2)i,j in propositions 5.8 and 5.12. We then have,

for (Σ)i,j being (ΣML)i,j, (ΣCV,1)i,j or (ΣCV,2)i,j and M(i,j) being M
(i,j)
ML , M

(i,j)
CV,1 or M

(i,j)
CV,2

∂2

∂ε2
(Σ)i,j = lim

n→+∞

1

n
E
{
∂2

∂ε2
Tr
(
M(i,j)

)}
.

Proposition 5.16 shows that we can compute numerically the derivatives of (ΣML)i,j , (ΣCV,k)i,j ,

k = 1, 2, with respect to ε by computing the derivatives of M
(i,j)
ML , M

(i,j)
CV,k, k = 1, 2, for n large.

The fact that it is possible to exchange the limit in n and the derivative in ε was not a priori

obvious.
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5.3.2 Closed form expressions of the asymptotic variances in dimen-

sion one

The asymptotic covariance matrices of propositions 5.8 and 5.13 are expressed as functions of

a.s. limits of traces of sums, products and inverses of random matrices. In the case ε = 0, for

d = 1, these matrices are deterministic Toeplitz matrices. A n×n Toeplitz matrix M is a matrix

for which there exist s−(n−1), ..., sn−1 so that

Mi,j = si−j . (5.10)

For d = 1 and ε = 0, (Kψ)i,j = Kψ(i− j), so that Kψ is a Toeplitz matrix.

There exist results for the limits as n → +∞ of traces of Toeplitz matrices. These limits

are based on Fourier transform techniques and we refer to [Gra01] for a further reading on this

subject. We will give a short overview about it in subsection 5.7.2.

Furthermore, for d = 1, the second derivatives with respect to ε, at ε = 0, of the asymptotic

variance for ML and CV are also expressed as almost sure limits of traces of random matrices

(proposition 5.16). In proposition 5.16, for d = 1, the random matrices M
(i,j)
ML , M

(i,j)
CV,1 and

M
(i,j)
CV,2 conserve some sort of a Toeplitz structure. This makes it possible, in the ML case, for

p = 1, to obtain an explicit expression of ∂2

∂ε2 (ΣML)i,j , at ε = 0, that we present in proposition

5.18. We believe that a similar result for CV may be possible, but the calculations seem much

more cumbersome compared to those for ML in subsection 5.7.2.

Hence, in the rest of subsection 5.3.2, we only address the case where d = 1, p = 1 and where

the observation points vi + εXi, 1 ≤ i ≤ n, n ∈ N∗, are the i + εXi, where Xi is uniform on

[−1, 1]. Since p = 1, we have Ψ = [ψinf , ψsup].

We de�ne the Fourier transform function ŝ (.) of a sequence sn of Z by ŝ (f) =
∑
n∈Z sne

inf

as in [Gra01]. This function is 2π periodic on [−π, π].

Then, with t representing the space argument of a stationary covariance function in the

notation ∂
∂t ,

• The sequence of the Kψ0
(i), i ∈ Z, has Fourier transform f which is even and non-negative

on [−π, π].

• The sequence of the ∂
∂ψKψ0

(i), i ∈ Z, has Fourier transform fψ which is even on [−π, π].

• The sequence of the ∂
∂tKψ0

(i) 1i 6=0, i ∈ Z, has Fourier transform ift which is odd and

imaginary on [−π, π].

• The sequence of the ∂
∂t

∂
∂ψKψ0 (i) 1i 6=0, i ∈ Z, has Fourier transform ift,ψ which is odd and

imaginary on [−π, π].

• The sequence of the ∂2

∂t2Kψ0
(i) 1i6=0, i ∈ Z, has Fourier transform ft,t which is even on

[−π, π].

• The sequence of the ∂2

∂t2
∂
∂ψKψ0 (i) 1i 6=0, i ∈ Z, has Fourier transform ft,t,ψ which is even

on [−π, π].
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In this section we assume in condition 5.17 that all these sequences are dominated by a

decreasing exponential function, so that the Fourier transforms are C∞. This condition could

be weakened, but it simpli�es the proofs, and it is satis�ed in our framework.

Condition 5.17. There exists C <∞ and a > 0 so that the sequences of general terms

Kψ0 (i) ,

∂

∂ψ
Kψ0

(i) ,

∂

∂t
Kψ0

(i) 1i6=0,

∂

∂t

∂

∂ψ
Kψ0

(i) 1i 6=0,

∂2

∂t2
Kψ0

(i) 1i 6=0

and

∂2

∂t2
∂

∂ψ
Kψ0

(i) 1i6=0,

i ∈ Z, are bounded by Ce−a|i|.

For a 2π-periodic function f on [−π, π], we denote by M (f) the mean value of f on [−π, π].

Then, proposition 5.18 gives the closed form expressions of ΣML, ΣCV,1, ΣCV,2 and ∂2

∂ε2 ΣML

∣∣∣
ε=0

.

Proposition 5.18. Assume that conditions 5.1 and 5.17 are veri�ed.

For ε = 0,

ΣML = M

(
f2
ψ

f2

)
,

ΣCV,1 = 8M

(
1

f

)−6

M

(
fψ
f2

)2

M

(
1

f2

)
+8M

(
1

f

)−4

M

(
f2
ψ

f4

)

−16M

(
1

f

)−5

M

(
fψ
f2

)
M

(
fψ
f3

)
,

ΣCV,2 = 2M

(
1

f

)−3
{
M

(
f2
ψ

f3

)
M

(
1

f

)
−M

(
fψ
f2

)2
}
,
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and

∂2

∂ε2
ΣML

∣∣∣∣
ε=0

=
4
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(
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)
M

(
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t fψ
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)
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3
M

(
1

f

)
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(
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)
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3
M

(
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)
M

(
ft,ψ ft
f

)
+

4

3
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(
1
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)
M

(
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2
ψ
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)
+

4

3
M

(
f2
ψ

f3

)
M

(
f2
t

f

)

−4

3
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(
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2
ψ

f3

)

+
4

3
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(
1

f

)
M

(
f2
t,ψ

f

)

+
4

3
M

(
ft,t,ψ fψ
f2

)
.

Proposition 5.18 is proved in subsection 5.7.2. Notice that there could be prospects for

extending this proposition for the regular grid in dimension d > 1, based on results similar to

those of proposition 5.41, but for multi-level Toeplitz matrices (see e.g. [Tyr96]).

An interesting remark can be made on ΣCV,2. Using Cauchy-Schwartz inequality, we obtain

ΣCV,2 = 2M

(
1

f

)−3
[
M

{(
fψ

f
3
2

)2
}
M

{(
1

f
1
2

)2
}
−M

{
fψ

f
3
2

1

f
1
2

}2
]
≥ 0,

so that the limit of the second derivative with respect to ψ of the CV criterion at ψ0 is indeed

non-negative. Furthermore, for the limit to be zero, it is necessary that fψ

f
3
2
be proportional to

1

f
1
2
, that is to say fψ be proportional to f . This is equivalent to

∂Kψ0

∂ψ being proportional to

Kψ0 on Z, which happens only when around ψ0, Kψ (i) = ψ
ψ0
Kψ0

(i), for i ∈ Z. Hence around
ψ0, ψ would be a global variance hyper-parameter. Therefore, for the regular grid in dimension

one, we have shown that the asymptotic variance is positive as long as ψ is not only a global

variance hyper-parameter.

5.4 Study of the asymptotic variance

The limit distributions of the ML and CV estimators only depend on the regularity parameter ε

through the asymptotic covariance matrices in propositions 5.8 and 5.13. The aim of this section

is to numerically study the in�uence of ε on these asymptotic covariance matrices. Furthermore,

we aim at con�rming numerically that the asymptotic variance is larger for CV than for ML.

In the rest of this section 5.4, we speci�cally address the cases where d = 1, p = 1 in

subsections 5.4.1 and 5.4.2, p = 2 in subsection 5.4.3, and the distribution of the Xi, 1 ≤ i ≤ n,
is uniform on [−1, 1]. Furthermore, in order to compare ML and CV, we will only address the

estimation of a correlation hyper-parameter. The variance is thus assumed to be known and

equal to 1.

We focus on the case of the Matérn correlation function presented in chapter 2. In dimension

one, we recall that this correlation model is parameterized by the correlation length ` and the
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smoothness parameter ν. The correlation function K`,ν is Matérn (`, ν) where

K`,ν (h) =
1

Γ (ν) 2ν−1

(
2
√
ν
|h|
`

)ν
Kν

(
2
√
ν
|h|
`

)
, (5.11)

with Γ the Gamma function and Kν the modi�ed Bessel function of second order.

5.4.1 Small random perturbations

In our study, the two true hyper-parameters (`0, ν0) vary over 0.3 ≤ `0 ≤ 3 and 0.5 ≤ ν0 ≤ 5.

We will successively address the two cases where ` is estimated and ν is known, and where

ν is estimated and ` is known. It is shown in subsection 5.3.1 that for both ML and CV,

the asymptotic variances are regular functions of ε. They are even functions of ε, because the

distribution of εXi is the same as the distribution of −εXi. Hence the quantity of interest we

study is the ratio of the second derivative with respect to ε at ε = 0 of the asymptotic variance

over its value at ε = 0. When this quantity is negative, this means that the asymptotic variance

of the hyper-parameter estimator decreases with ε, and therefore that an irregular sampling is

more favorable for hyper-parameter estimation than a regular one. The second derivative is

calculated exactly for ML, using the results of subsection 5.3.2, and is approximated by �nite

di�erences for n large for CV. Proposition 5.16 ensures that this approximation is numerically

consistent (because the limits in n and the derivatives in ε are exchangeable).

In �gure 5.2, we show the numerical results for the estimation of `. First we see that the

relative improvement of the estimation due to irregularity is maximum when the true correlation

length `0 is small. Indeed, the inter-observation distance being 1, a correlation length of approx-

imately 0.3 means that the observations are almost independent, making the estimation of the

covariance very hard. For instance, for ν0 = 3
2 , `0 = 0.3 and ε = 0, the maximum correlation

between two di�erent observation points is (1 +
√

6
0.3 ) exp

(
−
√

6
0.3

)
≈ 0.0026. Thus, the vector

of n observations looks like an iid vector, as we illustrate in �gure 5.3, making it di�cult to

distinguish between `0 = 0.3 and, say, `0 = 0.2, which would a fortiori also make the observation

vector look like an iid vector.

Hence, for `0 small the irregularity of the grid creates pairs of observations that are less

independent and makes the estimation possible. Indeed, for i < j, |i − j + ε(Xi −Xj)| can be

smaller than |i−j| when Xi > Xj . For instance, for ε = 0.25, ν0 = 3
2 and `0 = 0.3, the maximum

correlation between two di�erent observation points is (1 + 0.5
√

6
0.3 ) exp

(
− 0.5

√
6

0.3

)
≈ 0.08, to

compare to 0.0026 for ε = 0. As a conclusion, for `0 small, the bene�t obtained from perturbing

the regular grid is large.

For large `0, it is easier to estimate ` when ε = 0, because the observation vector does not

look like an iid vector, as illustrated in �gure 5.3. Thus the relative e�ect of the irregularity is

smaller.

Second, we observe in �gure 5.2 that for ML the irregularity is always an advantage for

estimation. This is not the case for CV, where the asymptotic variance can increase with ε.

Finally, we can see that the two particular points (`0 = 0.5, ν0 = 5) and (`0 = 2.7, ν0 = 1) are

particularly interesting and representative. Indeed `0 = 0.5 and ν0 = 5 correspond to hyper-

parameters for which the irregularity of the sampling has a strong and favorable impact on the

estimation for ML and CV, while `0 = 2.7 and ν0 = 1 correspond to hyper-parameters for which
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Figure 5.2: Local in�uence of ε for the estimation of the correlation length `. Plot of the ratio

of the second derivative of the asymptotic variance over its value at ε = 0, for ML (left) and

CV (right). The true covariance function is Matérn with varying `0 and ν0. The advantage

of perturbing the regular grid is maximum when the correlation length `0 small, i.e. when the

observations are almost independent. The asymptotic variance always locally decreases with ε

for ML (i.e. the second derivative at ε = 0 is always negative) but not for CV. We retain the two

particular points (`0 = 0.5, ν0 = 5) and (`0 = 2.7, ν0 = 1) for further investigation in subsection

5.4.2 (these are the black dots).
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Figure 5.3: Illustration that it is more di�cult to estimate ` when `0 is small than when `0 is

large. Plot of two realizations of the Gaussian process Y on the regular grid {1, ..., 30} with
Matérn covariance function with ν0 = 3

2 and `0 = 0.3 (left) and `0 = 3 (right). For `0 = 0.3 the

observation vector seems to follow an iid distribution. Thus it is hard to distinguish between

`0 = 0.3, and, say, `0 = 0.2, which would a fortiori make the observation vector seem to follow

an iid distribution. On the contrary, for `0 = 3, the observation vector does not seem to follow

an iid distribution.
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the irregularity of the sampling has an unfavorable impact on the estimation for CV. We retain

these two points for further global investigation for 0 ≤ ε ≤ 0.45 in subsection 5.4.2.

On �gure 5.4, we show the numerical results for the estimation of ν. We observe that for

`0 relatively small, the asymptotic variance is an increasing function of ε (for small ε). This

happens approximately in the band 0.4 ≤ `0 ≤ 0.6, and for both ML and CV. There is a plausible

explanation from this fact, which is not easy to interpret at �rst sight. It can be seen that for ` ≈
0.73, the value of the one-dimensional Matérn covariance function at t = 1 is almost independent

of ν for ν ∈ [1, 5] (see �gure 2.4). As an illustration, for ν = 2.5, the derivative of this value with

respect to ν is −3.7 × 10−5 for a value of 0.15. When 0.4 ≤ `0 ≤ 0.6, `0 is small so that most

of the information for estimating ν is obtained from the pairs of successive observation points.

Perturbing the regular grid creates pairs of successive observation points i + εxi, i + 1 + εxi+1

verifying |1+ε(xi+1−xi)|
`0

≈ 1
0.73 , so that the correlation of the two observations becomes almost

independent of ν. Thus, due to a speci�city of the Matérn covariance function, decreasing the

distance between two successive observation points unintuitively removes information on ν.

For 0.6 ≤ `0 ≤ 0.8 and ν0 ≥ 2, the relative improvement is maximum. This is explained the

same way as above, this time the case ε = 0 yields successive observation points for which the

correlation is independent of ν, and increasing ε changes the distance between two successive

observation points, making the correlation of the observations dependent of ν.

In the case `0 ≥ 0.8, there is no more impact of the speci�city of the case `0 ≈ 0.73 and the

improvement of the estimation when ε increases remains signi�cant, though smaller. Finally, we

see the three particular points (`0 = 0.5, ν0 = 2.5), (`0 = 0.7, ν0 = 2.5) and (`0 = 2.7, ν0 = 2.5)

as representative of the discussion above, and we retain them for further global investigation for

0 ≤ ε ≤ 0.45 in subsection 5.4.2.

5.4.2 Large random perturbations

On �gures 5.5 and 5.6, we plot the ratio of the asymptotic variance for ε = 0 over the asymptotic

variance for ε = 0.45, with varying `0 and ν0, for ML and CV and in the two cases where ` is

estimated and ν known and conversely. We observe that this ratio is always larger than one

for ML, that is strong perturbations of the regular grid are always bene�cial to ML estimation.

This is the most important numerical conclusion of this section 5.4. As ML is the preferable

method to use in the well-speci�ed case addressed here, we reformulate this conclusion by saying

that, in our experiments, using pairs of closely spaced observation points is always bene�cial for

covariance hyper-parameter estimation compared to evenly spaced observation points. This is

an important practical conclusion, that is in agreement with the references [Ste99] and [ZZ06]

discussed in section 5.1.

For CV, on the contrary, we exhibit cases for which strong perturbations of the regular grid

decrease the accuracy of the estimation of `. This can be due to the fact that the Leave-One-Out

errors in the CV functional (3.12) are unnormalized. Hence, when the regular grid is perturbed,

roughly speaking, error terms concerning observation points with close neighbors are small,

while error terms concerning observation points without close neighbors are large. Hence, the

CV functional mainly depends on the large error terms and hence has a larger variance. This

increases the variance of the CV estimator minimizing it.
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Figure 5.4: Same setting as �gure 5.2, but for the estimation of ν. For approximately 0.4 ≤
`0 ≤ 0.6, the estimation is damaged by locally perturbing the regular grid. This is because of a

particularity of the Matérn covariance function K`,ν(t) at t = 1, for ` ≈ 0.73. For 0.6 ≤ `0 ≤ 0.8,

the improvement of the estimation is maximum, and remains positive for larger `0. We retain

the three particular points (`0 = 0.5, ν0 = 2.5), (`0 = 0.7, ν0 = 2.5) and (`0 = 2.7, ν0 = 2.5) for

further investigation in subsection 5.4.2.
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Figure 5.5: Estimation of `. Plot of the ratio of the asymptotic variance for ε = 0 over the

asymptotic variance for ε = 0.45 for ML (left) and CV (right). The true covariance function

is Matérn with varying `0 and ν0. The ML estimation is always improved by perturbing the

regular grid, while the CV estimation can be damaged by perturbing the regular grid. We retain

the two particular points (`0 = 0.5, ν0 = 5) and (`0 = 2.7, ν0 = 1) for further investigation below

in this subsection 5.4 (these are the black dots).
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Figure 5.6: Same setting as in �gure 5.5, but for the estimation of ν. The ML and CV estimations

bene�t from an irregular sampling. We retain the three particular points (`0 = 0.5, ν0 = 2.5),

(`0 = 0.7, ν0 = 2.5) and (`0 = 2.7, ν0 = 2.5) for further investigation below in this subsection 5.4.

We now consider the �ve particular points that we have discussed in subsection 5.4.1:

(`0 = 0.5, ν0 = 5) and (`0 = 2.7, ν0 = 1) for the estimation of ` and (`0 = 0.5, ν0 = 2.5),

(`0 = 0.7, ν0 = 2.5) and (`0 = 2.7, ν0 = 2.5) for the estimation of ν. For these particular points,

we plot the asymptotic variances of propositions 5.8 and 5.13 as functions of ε for −0.45 ≤ ε ≤
0.45. The asymptotic variances are even functions of ε since (εXi)1≤i≤n has the same distribu-

tion as (−εXi)1≤i≤n. Nevertheless, they are approximated by empirical means of iid realizations

of the random traces in propositions 5.8 and 5.12, for n large enough. Hence, the functions we

plot are not exactly even. The fact that they are almost even is a graphical veri�cation that the

random �uctuations of the results of the calculations, for �nite (but large) n, are very small. We

also plot the second-order Taylor-series expansion given by the value at ε = 0 and the second

derivative at ε = 0.

In �gure 5.7, we show the numerical results for the estimation of ` with `0 = 0.5, ν0 = 5.

The �rst observation is that the asymptotic variance is slightly larger for CV than for ML. This

is a con�rmation of what we expected: we address a well-speci�ed case, so that the asymptotic

variance of ML is the almost sure limit of the Cramér-Rao bound. Therefore, this observation

turns out to be true in all the subsection, and we will not comment on it anymore. We see

that, for both ML and CV, the improvement of the estimation given by the irregularity of

the spatial sampling is true for all values of ε. One can indeed gain up to a factor six for the

asymptotic variances. This is explained by the reason mentioned in subsection 5.4.1, for `0 small,

increasing ε yields pairs of observations that become dependent, and hence give information on

the covariance structure.

In �gure 5.8, we show the numerical results for the estimation of ` with `0 = 2.7, ν0 = 1. For

ML, there is a slight improvement of the estimation with the irregularity of the spatial sampling.

However, for CV, there is a signi�cant degradation of the estimation. Hence the irregularity of

the spatial sampling has more relative in�uence on CV than on ML. Finally, the advantage of
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Figure 5.7: Global in�uence of ε for the estimation of the correlation length `. Plot of the

asymptotic variance for ML (left) and CV (right), calculated with varying n, and of the second

order Taylor series expansion given by the value at ε = 0 and the second derivative at ε = 0. The

true covariance function is Matérn with `0 = 0.5 and ν0 = 5. The asymptotic variance is larger

for CV than for ML. The irregularity of the spatial sampling globally improves the estimation

for both ML and CV.

ML over CV for the estimation is by a factor seven, contrary to the case `0 = 0.5, where this

factor was close to one.

On �gure 5.9, we show the numerical results for the estimation of ν with (`0 = 0.5, ν0 = 2.5).

The numerical results are similar for ML and CV. For ε small, the asymptotic variance is very

large, because, `0 being small, the observations are almost independent, as the observation points

are further apart than the correlation length, making inference on the dependence structure

very di�cult. We see that, for ε = 0, the asymptotic variance is several orders of magnitude

larger than for the estimation of ` in �gure 5.7, where `0 has the same value. Indeed, in the

Matérn model, ν is a smoothness parameter, and its estimation is very sensitive to the absence of

observation points with small spacing. We observe, as discussed in �gure 5.4, that for ε ∈ [0, 0.2],

the asymptotic variance increases with ε because pairs of observation points can reach the state

where the covariance of the two observations is almost independent of ν. For ε ∈ [0.2, 0.5), a

threshold is reached where pairs of subsequently dependent observations start to appear, greatly

reducing the asymptotic variance for the estimation of ν.

On �gure 5.10, we show the numerical results for the estimation of ν with (`0 = 0.7, ν0 = 2.5).

The numerical results are similar for ML and CV. Similarly to �gure 5.9, the asymptotic variance

is very large, because the observations are almost independent. For ε = 0, it is even larger than

in �gure 5.7 because we are in the state where the covariance between two successive observations

is almost independent of ν. As an illustration, for ` = 0.7 and ν = 2.5, the derivative of this

covariance with respect to ν is −1.3× 10−3 for a value of 0.13 (1% relative variation), while for

` = 0.5 and ν = 2.5, this derivative is −5 × 10−3 for a value of 0.037 (13% relative variation).

Hence, the asymptotic variance is globally decreasing with ε and the decrease is very strong for
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Figure 5.8: Same setting as in �gure 5.7 but with `0 = 2.7 and ν0 = 1. The irregularity of the

spatial sampling slightly improves ML estimation but degrades CV estimation.
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Figure 5.9: Same setting as in �gure 5.7 but for the estimation of ν and with `0 = 0.5 and

ν0 = 2.5. Results are similar for ML and CV. When ε = 0, the estimation is di�cult because

the observations are almost independent. For ε ∈ [0, 0.2], because of a speci�city of the Matérn

covariance model K`,ν(t) at t = 1, for ` ≈ 0.73, the asymptotic variance increases with ε, as we

have discussed in �gure 5.4. The asymptotic variance decreases with ε for ε ∈ [0.2, 0.5], because

pairs of dependent observations start to appear.
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Figure 5.10: Same setting as in �gure 5.7 but for the estimation of ν and with `0 = 0.7 and

ν0 = 2.5. Results are similar for ML and CV. When ε = 0, the estimation is di�cult because

the observations are almost independent. It is even more di�cult than for �gure 5.9, although

`0 is smaller in �gure 5.9, because of the speci�city of the Matérn covariance model K`,ν(t) at

t = 1, for ` ≈ 0.73, that we have discussed in �gure 5.4. The estimation is easier for ε large,

where pairs of dependent observations start to appear.

small ε. The variance is several orders of magnitude smaller for large ε, where pairs of dependent

observations start to appear.

In �gure 5.11, we show the numerical results for the estimation of ν with `0 = 2.7, ν0 = 2.5.

For both ML and CV, there is a global improvement of the estimation with the irregularity of

the spatial sampling. Moreover, the advantage of ML over CV for the estimation is by a factor

seven, contrary to �gures 5.9 and 5.10 where this factor was close to one.

5.4.3 Estimating both the correlation length and the smoothness pa-

rameter

In this subsection 5.4.3, the case of the joint estimation of ` and ν is addressed. We denote, for

ML and CV, V`, Vν and C`,ν , the asymptotic variances of
√
nˆ̀ and

√
nν̂ and the asymptotic

covariance of
√
nˆ̀ and

√
nν̂ (propositions 5.8 and 5.13).

Since we here address 2× 2 covariance matrices, the impact of the irregularity parameter ε

on the estimation is now more complex to assess. For instance, increasing ε could increase V`

and at the same time decrease Vν . Thus, it is desirable to build scalar criteria, de�ned in terms

of V`, Vν and C`,ν , measuring the quality of the estimation. In [ZZ06], the criterion used is the

average, over a prior distribution on (`0, ν0), of log (V`Vν − C2
`,ν), that is the averaged logarithm

of the determinant of the covariance matrix. This criterion corresponds to D-optimality in

standard linear regression with uncorrelated errors, as noted in [ZZ06]. In our case, we know

the true (`0, ν0), so that the Bayesian average is not needed. The �rst scalar criterion we study

is thus D`,ν := V`Vν − C2
`,ν . This criterion is interpreted as a general objective-free estimation
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Figure 5.11: Same setting as in �gure 5.7 but for the estimation of ν and with `0 = 2.7 and

ν0 = 2.5. For both ML and CV, there is a global improvement of the estimation with the

irregularity of the spatial sampling. ML has a substantial advantage over CV for the estimation.

criterion, in the sense that the impact of the estimation on Kriging predictions that would be

made afterward, on new input points, is not directly addressed in D`,ν .

One could build other scalar criteria, explicitly addressing the impact of the covariance

function estimation error, on the quality of the Kriging predictions that are made afterward. In

[ZZ06], the criterion studied for the prediction error is the integral over the prediction domain

of E
[(
ŷθ0(t)− ŷθ̂(t)

)2]
, where ŷθ(t) is the prediction (2.9) of Y (t), from the observation vector,

and under covariance function Kθ. This criterion is the di�erence of integrated prediction mean

square error, between the estimated and true covariance functions, see (3.19). In [Abt99] and

in [ZZ06], two di�erent asymptotic approximations of this criterion are studied. In [ZZ06],

another criterion, focusing on the accuracy of the Kriging predictive variances built from θ̂, is

also treated, together with a corresponding asymptotic approximation. In chapter 6, we will also

de�ne a criterion for the accuracy of the Kriging predictive variances, obtained from an estimator

of the variance hyper-parameter, when the correlation function is �xed and misspeci�ed. Since

we speci�cally address the case of Kriging prediction in the asymptotic framework addressed

here in section 5.5, we refer to [Abt99], [ZZ06] and chapter 6 for details on the aforementioned

criteria. In this subsection 5.4.3, we study the estimation criteria V`, Vν , C`,ν and D`,ν .

In �gure 5.12, we consider the ML estimation, with varying (`0, ν0). We study the ratio of

V`, Vν and D`,ν , between ε = 0 and ε = 0.45. We �rst observe that Vν is always smaller for

ε = 0.45 than for ε = 0, that is to say there is an improvement of the estimation of ν when using

a strongly irregular sampling. For V`, this is the same, except in a thin band around `0 ≈ 0.73.

Our explanation for this fact is the same as for a similar singularity in �gure 5.4. For `0 = 0.73

and ε = 0, the correlation between two successive points is approximately only a function of

`. For instance, the derivative of this correlation with respect to ν at ` = 0.73, ν = 2.5 is

−3.7 × 10−5 for a correlation of 0.15. Thus, the very large uncertainty on ν has no negative

impact on the information brought by the pairs of successive observation points on ` for ε = 0.
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These pairs of successive points bring most of the information on the covariance function, since

`0 is small. When ε = 0.45, this favorable case is broken by the random perturbations, and the

large uncertainty on ν has a negative impact on the estimation of `, even when considering the

pairs of successive observation points.

Nevertheless, in the band around `0 ≈ 0.73, when going from ε = 0 to ε = 0.45, the

improvement of the estimation of ν is much stronger than the degradation of the estimation

of `. This is con�rmed by the plot of D`,ν , which always decreases when going from ε = 0 to

ε = 0.45. Thus, we con�rm our global conclusion of subsection 5.4.2: strong perturbations of

the regular grid create pairs of observation points with small spacing, which is always bene�cial

for ML in the cases we address.

Finally, notice that we have discussed a case where the estimation of a covariance hyper-

parameter is degraded, while the estimation of the other one is improved. This justi�es the use

of scalar criteria of the estimation, such as D`,ν , or the ones related with prediction discussed

above.

We retain the particular point (`0 = 0.73, ν0 = 2.5), that corresponds to the case where going

from ε = 0 to ε = 0.45 decreases Vν and increases V`, for further global investigation in �gure

5.14.

In �gure 5.13, we address the same setting as in �gure 5.12, but for the CV estimation. We

observe that going from ε = 0 to ε = 0.45 can increase D`,ν . This is a con�rmation of what

was observed in �gure 5.5: strong irregularities of the spatial sampling can globally damage

the CV estimation. The justi�cation is the same as before: the LOO error variances become

heterogeneous when the regular grid is perturbed.

We also observe an hybrid case, in which the estimation of ` and ν is improved by the

irregularity, but the determinant of their asymptotic covariance matrix increases, because the

absolute value of their asymptotic covariance decreases. This case happens for instance around

the point (`0 = 1.7, ν0 = 5), that we retain for a further global investigation in �gure 5.15.

In �gure 5.14, for `0 = 0.73, ν0 = 2.5 and for ML, we plot V`, Vν and D`,ν with respect to

ε, for ε ∈ [0, 0.45]. We con�rm that when ε increases, the decrease of Vν is much stronger than

the increase of V`. As a result, there is a strong decrease of D`,ν . This is a con�rmation of our

main conclusion on the impact of the spatial sampling on the estimation: using pairs of closely

spaced observation points improves the ML estimation.

In �gure 5.15, for `0 = 1.7, ν0 = 5 and for CV, we plot V`, Vν , C`,ν and D`,ν with respect

to ε, for ε ∈ [0, 0.45]. We observe the particular case mentioned in �gure 5.13, in which the

estimation of ` and ν is improved by the irregularity, but the determinant of their asymptotic

covariance matrix increases, because the absolute value of their asymptotic covariance decreases.

This particular case is again a con�rmation that the criteria V` and Vν can be insu�cient for

evaluating the impact of the irregularity on the estimation, in a case of joint estimation.

5.4.4 Discussion

We have seen that local perturbations of the regular grid can damage both the ML and the

CV estimation (�gure 5.4). The CV estimation can even be damaged for strong perturbations

of the regular grid (�gure 5.5). This can be due to the fact that the Leave-One-Out errors
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Figure 5.12: For ML, plot of the ratio, between ε = 0 and ε = 0.45, of V` (top-left), Vν (top-

right) and D`,ν (bottom). The true covariance function is Matérn with varying `0 and ν0. We

jointly estimate ` and ν. The asymptotic variance V` increases with ε for `0 in a thin band,

because this thin bands correspond to the case when, for ε = 0, the large uncertainty on ν has

no negative impact for the estimation of `. The asymptotic variance Vν always decreases with ε.

Furthermore, when V` increases with ε, Vν decreases considerably more. As a consequence, D`,ν

always decreases with ε, meaning that the joint estimation of ` and ν always bene�ts from an

irregular sampling. We retain the particular point (`0 = 0.73, ν0 = 2.5) for further investigation

below in this subsection 5.4.3.
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Figure 5.13: Same setting as in �gure 5.12 but for CV. The CV estimation can be damaged

by the irregularity of the sampling. We retain the particular point (`0 = 1.7, ν0 = 5) for further

investigation below in this subsection 5.4.3.
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Figure 5.14: Joint estimation of ` and ν by ML. `0 = 0.73 and ν0 = 2.5. Plot of V` (top-left), Vν

(top-right) and D`,ν (bottom) with respect to ε. Increasing the irregularity parameter ε globally

improves the joint ML estimation of ` and ν.
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Figure 5.15: Joint estimation of ` and ν by CV. `0 = 1.7 and ν0 = 5. Plot of V` (top-left), Vν

(top-right), C`,ν (bottom-left) and D`,ν (bottom-right) with respect to ε. The CV estimation

of ` and ν is improved by the irregularity, but the determinant of their asymptotic covariance

matrix increases, because the absolute value of their asymptotic covariance decreases.
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in the CV functional (3.12) are unnormalized. Hence, with ε 6= 0, roughly speaking, error

terms concerning observation points with close neighbors are small, while error terms concerning

observation points without close neighbors are large. Hence, the CV functional mainly depends

on the large error terms and hence has a larger variance.

Our main conclusion is that strong perturbations of the regular grid (ε = 0.45) are bene�cial

to the ML estimation in all the cases we have addressed (�gures 5.5, 5.6, 5.12). Furthermore,

ML is shown to be the preferable estimator in the well-speci�ed case addressed here. This main

result is in agreement with the references [Ste99, ZZ06, JDLI08] discussed in section 5.1. The

global conclusion is that using groups of observation points with small spacing, compared to the

observation point density in the prediction domain, is bene�cial for estimation.

5.5 Analysis of the Kriging prediction

The asymptotic analysis of the in�uence of the spatial sampling on the covariance hyper-

parameter estimation being complete, we now address the case of the Kriging prediction error,

and its interaction with the covariance function estimation. In short words, we study Kriging

prediction with estimated covariance hyper-parameters [Ste99].

In subsection 5.5.1, we show that any �xed, constant, covariance function error has a non-

zero asymptotic impact on the prediction error. This fact is interesting in that the conclusion

is di�erent in a �xed-domain asymptotic context, for which we have discussed in chapter 4 that

there exist non-microergodic covariance hyper-parameters that have no asymptotic in�uence on

prediction.

In subsection 5.5.2, we show that, in the expansion-domain asymptotic context we address,

the covariance function estimation procedure has, however, no impact on the prediction error,

as long as it is consistent. Thus, the prediction error is a new criterion for the spatial sampling,

that is independent of the estimation criteria we address in section 5.4. In subsection 5.5.3,

we study numerically, still in the case of the Matérn covariance function, the impact of the

regularity parameter ε on the mean square prediction error on the prediction domain.

5.5.1 Asymptotic in�uence of covariance hyper-parameter misspeci�-

cation on prediction

In proposition 5.19, we show that the misspeci�cation of correlation hyper-parameters has an

asymptotic in�uence on the prediction errors. Indeed, the di�erence of the asymptotic Leave-

One-Out mean square errors, between incorrect and correct covariance hyper-parameters, is

lower and upper bounded by �nite positive constants times the integrated square di�erence

between the two correlation functions.

Proposition 5.19. Assume that condition 5.1 is satis�ed and that for all ψ ∈ Ψ, Kψ(0) = 1.

Let, for 1 ≤ i ≤ n, ŷi,ψ := Eψ|X (yi|y1, ..., yi−1, yi+1, ..., yn) be the Kriging Leave-One-Out

prediction of yi with covariance hyper-parameters ψ. We then denote

Dp(ψ,ψ
(0)) := E

[
1

n

n∑
i=1

{yi − ŷi,ψ}2
]
− E

[
1

n

n∑
i=1

{
yi − ŷi,ψ(0)

}2

]
.
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Then there exist constants 0 < A < B < +∞, independent of ψ, so that, for ε = 0

A
∑
v∈Zd

{
Kψ(v)−Kψ(0)(v)

}2 ≤ lim
n→+∞

Dp(ψ,ψ
(0))

and

lim
n→+∞

Dp(ψ,ψ
(0)) ≤ B

∑
v∈Zd

{
Kψ(v)−Kψ(0)(v)

}2
.

For ε 6= 0, with Dε as in (5.6),

A

∫
Dε

{
Kψ(t)−Kψ(0)(t)

}2
dt ≤ lim

n→+∞
Dp(ψ,ψ

(0))

and

lim
n→+∞

Dp(ψ,ψ
(0)) ≤ B

∫
Dε

{
Kψ(t)−Kψ(0)(t)

}2
dt.

Proof. The lower-bound is showed in the proof of proposition 5.11. The upper-bound is obtained

with similar techniques.

In proposition 5.20, we study the case of Nd points with uniform distribution on [0, N ]d, with

the constraint that there exists a minimum distance between two di�erent observation points.

We show that the asymptotic di�erence of integrated prediction MSE, between the incorrect

and true hyper-parameters, is lower-bounded by a �nite constant times the integrated square

di�erence between the two associated correlation functions.

Proposition 5.20. Consider the parameterization (5.1) of the Gaussian process Y . Assume

that for all ψ ∈ Ψ, Kψ(0) = 1.

Let δ > 0. Assume that for n ∈ N, the observation points are the X1, ..., XNd and follow

an iid uniform distribution on [0, N ]d, conditionally to the constraint that, for each i 6= j,

|Xi −Xj |∞ ≥ δ.
Let

MSEψ :=
1

Nd

∫
[0,N ]d

(Y (x)− ŷψ(x))
2
dx,

with ŷψ(x) the Kriging prediction of Y (x) according to the covariance function Kψ(x) and the

observation points Y (X1), ..., Y (XNd).

Then, there exists a constant A > 0 so that for any ψ ∈ Ψ,

A

∫
Rd\[−δ,δ]d

(
Kψ(x)−Kψ(0)(x)

)2
dx ≤ lim

N→+∞
E(MSEψ −MSEψ(0)).

Proposition 5.20 is proved in subsection 5.7.3.

5.5.2 In�uence of covariance hyper-parameter estimation on predic-

tion

In proposition 5.21, proved in subsection 5.7.3, we address the in�uence of covariance hyper-

parameter estimation on prediction.
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Proposition 5.21. Assume that condition 5.1 is satis�ed and that the Gaussian process Y , with

covariance function Kψ(0)(t), yields almost surely continuous trajectories. Assume also that for

every ψ ∈ Ψ, 1 ≤ i ≤ p, ∂
∂ψi

Kψ(t) is continuous with respect to t. Let, for n ∈ N, the observation
points x(1), ...,x(n) be obtained from the randomly perturbed regular grid of section 5.2. Let ŷψ(t)

be the Kriging prediction of the Gaussian process Y at t, under correlation function Kψ and

given the observations y1, ..., yn. For any n, let N1,n so that Nd
1,n ≤ n < (N1,n + 1)d. De�ne

Eε,ψ :=
1

Nd
1,n

∫
[0,N1,n]d

(ŷψ(t)− Y (t))
2
dt. (5.12)

Consider a consistent estimator ψ̂ of ψ(0). Then

|Eε,ψ(0) − Eε,ψ̂| = op(1). (5.13)

Furthermore, there exists a constant A > 0 so that for all n,

E
(
Eε,ψ(0)

)
≥ A. (5.14)

In proposition 5.21, the condition that the Gaussian process Y yields continuous trajecto-

ries is not restrictive, as we have seen in proposition 2.23. In proposition 5.21, we show that

the mean square prediction error, over the observation domain, with a consistently estimated

covariance hyper-parameter, is asymptotically equivalent to the corresponding error when the

true covariance hyper-parameter is known. Furthermore, the mean value of this prediction error

with the true covariance hyper-parameter does not vanish when n → +∞. This is intuitive

because the density of observation points in the domain is constant.

Hence, expansion-domain asymptotics yields a situation in which the estimation error goes

to zero, but the prediction error does not, because the prediction domain increases with the

number of observation points. Thus, increasing-domain asymptotic context enables us to ad-

dress the prediction and estimation problems separately, and the conclusions on the estimation

problem are fruitful, as we have seen in sections 5.3 and 5.4. However, this context does not

enable us to study theoretically all the practical aspects of the joint problem of prediction with

estimated covariance hyper-parameters. For instance, the impact of the estimation method on

the prediction error is asymptotically zero under this theoretical framework, and using a con-

stant proportion of the observation points for estimation rather than prediction cannot decrease

the asymptotic prediction error with estimated covariance hyper-parameters.

The two aforementioned practical problems would bene�t from an asymptotic framework

that would fully reproduce them, by giving a stronger impact to the estimation on the pre-

diction. Possible candidates for this framework are the mixed increasing-domain asymptotic

framework, presented in chapter 4, and addressed for instance in [Lah03] and [LM04], and �xed-

domain asymptotics. In both frameworks, the estimation error, with respect to the number

of observation points, is larger and the prediction error is smaller, thus giving hope for more

impact of the estimation on the prediction. Nevertheless, even in �xed-domain asymptotics,

notice that in [PY01] and referring to [dV96], it is shown that, for the particular case of the

tensor product exponential covariance function in two dimensions, the prediction error, under

covariance hyper-parameters estimated by ML, is asymptotically equal to the prediction error

under the true covariance hyper-parameters. This is a particular case in which estimation has

no impact on prediction, even under �xed-domain asymptotics.
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Figure 5.16: Ratio of the mean square prediction error E (Eε,`0,ν0) in proposition 5.21, between

ε = 0 and ε = 0.45, as a function of `0 and ν0, for n = 100. The mean square prediction error

increases with the irregularity of the sampling.

5.5.3 Analysis of the impact of the spatial sampling on the Kriging

prediction

In this subsection 5.5.3, we study the prediction mean square error E (Eε,`0,ν0) of proposition

5.21, as a function of ε, `0 and ν0, for the one-dimensional Matérn model, and for large n. The

distribution of the (Xi)1≤i≤n is still uniform on [−1, 1]. The function E (Eε,`0,ν0
) is independent

of the estimation, as we have seen, so there is now no point in distinguishing between ML and

CV. In the following �gures, this function is approximated by the average of iid realizations of

its conditional mean value given X = x,

1

n

∫ n

0

(
1− kt`0,ν0

(t)K−1
`0,ν0

k`0,ν0(t)
)
dt,

where (k`0,ν0
(t))i = K`0,ν0

(i+ εxi − t) and (K`0,ν0
)i,j = K`0,ν0

(i− j + ε[xi − xj ]).
On �gure 5.16, we plot the ratio of the mean square prediction error E (Eε,`0,ν0

), between

ε = 0 and ε = 0.45, as a function of `0 and ν0, for n = 100 (we observed the same results for

n = 50). We see that this ratio is always smaller than one, meaning that strongly perturbing

the regular grid always increases the prediction error. This result is in agreement with the

common practices of using regular, also called space �lling, samplings for optimizing the Kriging

predictions with known covariance hyper-parameters, as illustrated in �gure 3 of [ZZ06].

In �gure 5.17, we �x the true covariance hyper-parameters `0 = 0.5, ν0 = 2.5, and we study

the variations with respect to ε of the asymptotic variance of the ML estimation of ν, when

`0 is known (�gure 5.9), and of the prediction mean square error E (Eε,`0,ν0), for n = 50 and

n = 100. The results are the same for n = 50 and n = 100. We �rst observe that E (Eε,`0,ν0
) is

globally an increasing function of ε. In fact, we observe the same global increase of E (Eε,`0,ν0
),

for n = 50 and n = 100, with respect to ε, for all the values (0.5, 5), (2.7, 1), (0.5, 2.5), (0.7, 2.5),

(2.7, 2.5), (0.73, 2.5) and (1.7, 5), for (`0, ν0), that we have studied in section 5.4. This is again a
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Figure 5.17: `0 = 0.5, ν0 = 2.5. Left: asymptotic variance for the ML estimation of ν, when `

is known, as a function of ε (same setting as in �gure 5.9). Right: prediction mean square error

E (Eε,`0,ν0) in proposition 5.21 as a function of ε. There is no simple antagonistic relationship

between the impact of the irregularity of the spatial sampling on estimation and on prediction

con�rmation that, in the increasing-domain asymptotic framework treated here, evenly spaced

observations perform best for prediction.

The second conclusion than can be drawn for �gure 5.17 is that there is independence between

estimation (ML in this case) and prediction. Indeed, the estimation error �rst increases and

then decreases with respect to ε, while the prediction error globally decreases. Hence, in �gure

5.17, the regular grid still gives better prediction, although it leads to less asymptotic variance

than mildly irregular samplings. Therefore, there is no simple antagonistic relationship between

the impact of the irregularity of the spatial sampling on estimation and on prediction.

5.6 Conclusion

We have considered an increasing-domain asymptotic framework to study the consistency and

asymptotic normality of the CV estimator, to compare asymptotically CV and ML and to address

the in�uence of the irregularity of the spatial sampling on the estimation of the covariance hyper-

parameters. This asymptotic framework is based on a random sequence of observation points,

for which the deviation from the regular grid is controlled by a single scalar regularity parameter

ε.

We have proved consistency and asymptotic normality for the ML and CV estimators, under

rather minimal conditions. These results are dedicated to the randomly perturbed regular grid.

We believe that, for the proof methods we have used for consistency and asymptotic normality,

the most important feature of the randomly perturbed grid is the minimum distance between

two di�erent observation points. Hence, it may be possible to extend the proofs of this chapter,

for consistency and asymptotic normality, to other samplings verifying this minimum distance

assumption, with possibly more technicality.
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We have thus shown that CV is consistent and furthermore has the same rate of convergence

as ML. The asymptotic covariance matrices are deterministic functions of the regularity param-

eter only. By numerically investigating them, we point out that ML is more e�cient that CV,

in the well-speci�ed case of chapter 5. Furthermore the asymptotic covariance matrices are the

natural tool to assess the in�uence of the irregularity of the spatial sampling on the ML and CV

estimators.

This is carried out by means of an exhaustive study of the Matérn model. It is shown

that mildly perturbing the regular grid can damage both ML and CV estimation, and that

CV estimation can also be damaged when strongly perturbing the regular grid. However, we

put into evidence that strongly perturbing the regular grid always improves the ML estimation,

which is a more e�cient estimator than CV, in the well-speci�ed case addressed here. Hence,

we con�rm the conclusion of [Ste99] and [ZZ06] that using groups of observation points with

small spacing, compared to the observation density in the observation domain, improves the

covariance function estimation. In geostatistics, such groups of points are also added to regular

samplings in practice [JDLI08].

We have also studied the impact of the spatial sampling on the prediction error. Regular

samplings were shown to be the most e�cient as regards to this criterion. This is in agreement

with, e.g. [ZZ06] and with [PM12] where samplings for Kriging prediction with known covariance

hyper-parameters are selected by optimizing a space �lling criterion. An example of space �lling

criterion is the maximin criterion (6.21) presented in chapter 6.

The ultimate goal of a Kriging model is prediction with estimated covariance hyper-parameters.

Hence, e�cient samplings for this criterion must address two criteria that have been shown to

be antagonistic. In the literature, there seems to be a commonly admitted practice for solving

this issue [ZZ06, PM12]. Roughly speaking, for selecting an e�cient sampling for prediction

with estimated covariance hyper-parameters, one may select a regular sampling for prediction

with known covariance hyper-parameters and augment it with a sampling for estimation (with

closely spaced observation points). The proportion of points for the two samplings is optimized

in the two aforementioned references by optimizing a criterion for prediction with estimated

covariance hyper-parameters. This criterion is more expensive to compute, but is not optimized

in a large dimensional space. In [ZZ06, PM12], the majority of the observation points belong

to the regular sampling for prediction with known covariance function. This is similar in the

geostatistical community [JDLI08], where regular samplings, augmented with few closely spaced

observation points, making the inputs vary mildly, are used. In view of our theoretical and prac-

tical results of sections 5.4 and 5.5, we are in agreement with this method for building samplings

for prediction with estimated covariance hyper-parameters.

An important limitation we see, though, in the expansion-domain asymptotic framework

we address in this chapter, is that prediction with estimated covariance hyper-parameters cor-

responds asymptotically to prediction with known covariance function. Said di�erently, the

proportion of observation points addressing estimation, in the aforementioned trade-o�, would

go to zero. As we discuss after proposition 5.21, mixed increasing-domain or �xed-domain

asymptotics could give more importance to the estimation problem, compared to the problem

of predicting with known covariance function.
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Finally, in the well-speci�ed-framework addressed in this chapter, ML is more precise than

CV to estimate a correlation hyper-parameter. The practical interest of CV arises in the comple-

mentary framework, that we call the misspeci�ed framework, where the true correlation function

does not belong to the parametric set of correlation functions used for estimation. This is the

object of the next chapter 6.

5.7 Proofs

In the proofs, we distinguish three probability spaces.

(ΩX ,FX , PX) is the probability space associated with the random perturbation of the regular

grid. (Xi)i∈N∗ is a sequence of iid SX -valued random variables de�ned on (ΩX ,FX , PX), with

distribution LX . We denote by ωX an element of ΩX .

(ΩY ,FY , PY ) is the probability space associated with the Gaussian process. Y is a centered

Gaussian process with covariance function Kψ(0) de�ned on (ΩY ,FY , PY ). We denote by ωY an

element of ΩY .

(Ω,F ,P) is the product space (ΩX × ΩY ,FX ⊗ FY , PX × PY ). We denote by ω an element

of Ω.

All the random variables in the proofs can be de�ned relatively to the product space (Ω,F ,P).

Hence, all the probabilistic statements in the proofs hold with respect to this product space,

unless it is stated otherwise.

In the proofs, when (fn)n∈N∗ is a sequence of real functions of X = (Xi)
n
i=1, fn is also a

sequence of real random variables on (ΩX ,FX , PX). When we write that fn is bounded uniformly

in n and x , we mean that there exists a �nite constant T so that supn supx∈SnX |fn(x)| ≤ T . We

then have that fn is bounded PX -a.s., i.e supn fn ≤ T for a.e. ωX ∈ ΩX . We may also write that

fn is lower-bounded uniformly in n and x when there exists a > 0 so that infn infx∈SnX fn(x) ≥ a.
When fn also depends on ψ, we say that fn is bounded uniformly in n, x and ψ when supψ∈Ψ fn

is bounded uniformly in n and x . We also say that fn is lower-bounded uniformly in n, x and

ψ when infψ∈Ψ fn is lower-bounded uniformly in n and x .

When we write that fn converges to zero uniformly in x , we mean that

sup
x∈SnX

|fn(x)| →n→+∞ 0.

In this case, fn converges to zero PX -a.s. When fn also depends on ψ, we say that fn converges

to zero uniformly in n, x and ψ when supψ∈Ψ fn converges to zero uniformly in n and x .

When fn is a sequence of real functions of X and Y , fn is also a sequence of real ran-

dom variables on (Ω,F ,P). When we say that fn is bounded in probability conditionally

to X = x and uniformly in x , we mean that, for every ε > 0, there exist m, N so that

supn≥N supx∈SnX P(|fn| ≥ m|X = x) ≤ ε. In this case, fn is bounded in probability (de�ned on

the product space).

5.7.1 Proofs for subsection 5.3.1

Some matrix relations

In proposition 5.22, we give some matrix relations that are useful in the proofs below.
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Proposition 5.22. Let A, B be two n×n real symmetric positive matrices and let M,P,Q,R

be n× n real matrices. Let φ1(A) ≥ ... ≥ φn(A) > 0 be the eigenvalues of A.

Then,

||MN||2 ≤ ||M||.||N||2, (5.15)

φn(A)||M||2 ≤ ||AM||2 ≤ φ1(A)||M||2, (5.16)

||A−1 −B−1||2 ≤ ||A−1||.||B−1||.||A−B||2, (5.17)

1

n
|Tr(M)| ≤ ||M||2 (5.18)

and

||QM−PR||2 ≤ ||Q||.||M−R||2 + ||R||.||Q−P||2. (5.19)

For y ∼ N (0,A),

Cov(ytMy,ytPy) = Tr(AMAP) + Tr(AMAPt). (5.20)

Proof. The equation (5.15) is proved by lemma 2.3 in [Gra01].

The equation (5.16) is proved by lemma 2.1 in [Gra01].

The equations (5.17) and (5.19) are proved in the proof of theorem 2.1 in [Gra01].

The equation (5.18) is proved in the proof of lemma 2.4 in [Gra01].

For (5.20), E(ytPy) = Tr(AP) and E(ytMy) = Tr(AM). Let y = A
1
2 z, where z ∼

N (0, In).

E(ytMyytPy) = E(zt(A
1
2 MA

1
2 )zzt(A

1
2 PA

1
2 )z)

=

n∑
i,j,k,l=1

(A
1
2 MA

1
2 )i,j(A

1
2 MA

1
2 )k,lE(zizjzkzl).

From appendix A in [Ste99], E(zizjzkzl) = δi,jδk,l + δi,kδj,l + δi,lδj,k. Hence

E(ytMyytPy) =

n∑
i,k=1

(A
1
2 MA

1
2 )i,i(A

1
2 PA

1
2 )k,k +

n∑
i,j=1

(A
1
2 MA

1
2 )i,j(A

1
2 PA

1
2 )i,j

+

n∑
i,j=1

(A
1
2 MA

1
2 )i,j(A

1
2 PA

1
2 )j,i

= Tr
(
A

1
2 MA

1
2

)
Tr
(
A

1
2 PA

1
2

)
+ Tr

(
(A

1
2 MA

1
2 )(A

1
2 PA

1
2 )t
)

+Tr
(

(A
1
2 MA

1
2 )(A

1
2 PA

1
2 )
)

= Tr (AM)Tr (AP) + Tr
(
(AMAPt

)
+ Tr ((AMAP) .

This ends the proof.
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Eigenvalues control for random matrices

One of the key points of the proofs in this chapter 5 is that the eigenvalues of the matrices

Kψ, K−1
ψ and ∂qKψ

∂ψi1 ,...,∂ψiq
, 1 ≤ q ≤ 3, 1 ≤ i1, ..., iq ≤ p, are bounded regardless of n and the

perturbations X1, ..., Xn.

This would not hold in a �xed-domain asymptotic context, and is therefore essential for the

proofs in this chapter 5.

In lemma 5.23, we begin by controlling the eigenvalues of Kψ and ∂qKψ
∂ψi1 ,...,∂ψiq

, 1 ≤ q ≤ 3,

1 ≤ i1, ..., iq ≤ p

Lemma 5.23. Assume that condition 5.1 is satis�ed.

For all |ε| < 1
2 there exists Cε so that the eigenvalues of

∂qKψ
∂ψi1 ,...,∂ψiq

, 0 ≤ q ≤ 3, 1 ≤
i1, ..., iq ≤ p, are bounded by Cε, uniformly in n ∈ N, x ∈ (SX)

n
and ψ ∈ Ψ.

Proof of lemma 5.23. Bounding the eigenvalues of ∂qKψ
∂ψi1 ,...,∂ψiq

, 0 ≤ q ≤ 3, 1 ≤ i1, ..., iq ≤ p is

done by controlling the sums of the row elements of these matrices. Lemma 5.24 enables us

to do so, by showing how a summable function on Rd becomes a summable sequence on the(
v(i) − v(j) + ε(x(i) − x(j))

)
j 6=i, for each �xed i.

Lemma 5.24. Let f : Rd → R+, so that f (t) ≤ 1

1+|t|d+1
∞

. Then, for all i ∈ N∗, ε ∈ (− 1
2 ,

1
2 ) and(

x(i)
)
i∈N∗ ∈ S

N∗
X ,

∑
j∈N∗,j 6=i

f
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
≤ 2dd

∑
j∈N

(
j + 3

2

)d−1

1 + jd+1
.

Proof of lemma 5.24.∑
j∈N,j 6=i

f
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
≤

∑
v∈Zd,v 6=0

sup
δv∈[−1,1]d

f (v + δv)

=
∑
j∈N

∑
v∈{−j−1,...,j+1}d\{−j,j}d

sup
δv∈[−1,1]d

f (v + δv) .

For v ∈ {−j − 1, ..., j + 1}d\{−j, j}d, |v + δv|∞ ≥ j. The cardinality of the set {−j − 1, ..., j +

1}d\{−j, j}d is

(2j + 3)
d − (2j + 1)

d
=

∫ 2j+3

2j+1

d.td−1dt ≤ 2d (2j + 3)
d−1

= 2dd

(
j +

3

2

)d−1

.

Hence ∑
j∈N

f
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
≤
∑
j∈N

2dd

(
j +

3

2

)d−1
1

1 + jd+1
.

Going from a boundedness of the sums of the row elements of a symmetric matrix to a

boundedness of its eigenvalues is done by using the following Gershgorin circle theorem (see e.g.

[GL96]).
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Theorem 5.25 (Gershgorin circle theorem). Let A be a n×n symmetric matrix, and λ one of

its eigenvalues. Then, there exists i so that

|Ai,i − λ| ≤
∑
j 6=i

|Ai,j |.

Using Gershgorin theorem 5.25 together with lemma 5.24 and (5.3), we get to, with φmax

the largest eigenvalue of ∂qKψ
∂ψi1 ,...,∂ψiq

,∣∣∣∣ ∂qKψ

∂ψi1 , ..., ∂ψiq
(0)− φmax

∣∣∣∣ ≤ C,
for a constant C < +∞. Hence |φmax| ≤ C + | ∂qKψ

∂ψi1 ,...,∂ψiq
(0)| < +∞.

The next proposition 5.26 shows that the eigenvalues of K−1
ψ are upper-bounded, or equiva-

lently that the eigenvalues of Kψ are lower-bounded.

Proposition 5.26. Assume that condition 5.1 is satis�ed.

For all 0 ≤ δ < 1
2 , there exists Cδ > 0 so that for all |ε| ≤ δ, for all ψ ∈ Ψ, for all n ∈ N∗

and for all x ∈ (SX)
n
, the eigenvalues of Kψ are larger than Cδ.

Proof of proposition 5.26. We begin the proof of proposition 5.26 by stating lemma 5.27, which

is quite similar to lemma 5.24 and will allow to show that, roughly speaking, when a covariance

function has an arbitrarily small correlation length, the sum of the non-diagonal elements of the

rows of the matrix it yields is arbitrarily small, uniformly in n and x.

Lemma 5.27. Let f : Rd → R+, so that f (t) ≤ 1

1+|t|d+1
∞

. We consider δ < 1
2 . Then, for all

i ∈ N∗, a > 0, ε ∈ [−δ, δ] and
(
x(i)

)
i∈N∗ ∈ S

N∗
X ,

∑
j∈N∗,j 6=i

f
[
a
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}]
≤ 2dd

∑
j∈N

(
j + 3

2

)d−1

1 + ad+1 (j + 1− 2δ)
d+1

.

Proof of lemma 5.27. Similar to the proof of lemma 5.24.

Let h : Rd → R so that ĥ(f) =
∏d
i=1 ĥi(fi), with ĥi(fi) = 1f2

i ∈[0,1] exp
(
− 1

1−f2
i

)
. For 1 ≤

i ≤ d, ĥi : R→ R is C∞, with compact support, so there exists C > 0 so that |hi(ti)| ≤ C
1
d

1+|ti|d+1 .

Now, since the inverse Fourier transform of
∏d
i=1 ĥi(fi) is

∏d
i=1 hi(ti), we have

|h(t)| ≤ C
d∏
i=1

1

1 + |ti|d+1
≤ C

1 + |t|d+1
∞

.

Hence, from lemma 5.27, for all i ∈ N and a > 0,

∑
j∈N,j 6=i

∣∣∣h [a{v(i) − v(j) + ε
(
x(i) − x(j)

)}]∣∣∣ ≤ C2dd
∑
j∈N

(
j + 3

2

)d−1

1 + ad+1 (j + 1− 2δ)
d+1

. (5.21)

The right-hand term in (5.21) goes to zero when a → +∞. Also, h(0) is positive, because ĥ is

non-negative and is not almost surely zero on Rd with respect to the Lebesgue measure. Thus,

there exists 0 < a <∞ so that for all i ∈ N,∑
j∈N,j 6=i

∣∣∣h [a{v(i) − v(j) + ε
(
x(i) − x(j)

)}]∣∣∣ ≤ 1

2
h (0) . (5.22)
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Using theorem 5.25, for any n ∈ N∗, x(1), ...,x(n) ∈ SX , the eigenvalues of the symmetric

matrices
(
h
[
a
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}])
1≤i,j≤n belong to the balls with center h(0) and

radius
∑

1≤j≤n,j 6=i
∣∣h [a{v(i) − v(j) + ε

(
x(i) − x(j)

)}]∣∣. Thus, because of (5.22), these eigen-

values belong to the segment [h(0)− 1
2h(0), h(0) + 1

2h(0)] and are larger than 1
2h(0).

Hence, for all n, t1, ..., tn ∈ R, x(1), ...,x(n) ∈ SX ,

1

2
h (0)

n∑
i=1

t2i ≤
n∑

i,j=1

titjh
[
a
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}]
=

n∑
i,j=1

titj
1

ad

∫
Rd
ĥ

(
f

a

)
eif ·{v(i)−v(j)+ε(x(i)−x(j))}df

=
1

ad

∫
Rd
ĥ

(
f

a

) ∣∣∣∣∣
n∑
i=1

tie
if ·(v(i)+εx(i))

∣∣∣∣∣
2

df .

Hence, as K̂ψ (f) : (Ψ×Rd)→ R is continuous and positive, using a compacity argument, there

exists C2 > 0 so that for all ψ ∈ Ψ, f ∈ [−a, a]d, K̂ψ (f) ≥ C2ĥ
(
f
a

)
. Hence,

1

2
h (0)

n∑
i=1

t2i ≤ 1

adC2

∫
Rd
K̂ψ (f)

∣∣∣∣∣
n∑
i=1

tie
if ·(v(i)+εx(i))

∣∣∣∣∣
2

df ,

=
1

adC2

n∑
i,j=1

titjKψ

{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
.

Now, combining lemmas 5.23 and proposition 5.26, we obtain the following lemma 5.28,

summarizing the results on the boundedness of the eigenvalues of Kψ, K−1
ψ and ∂qKψ

∂ψi1 ,...,∂ψiq
,

1 ≤ q ≤ 3, 1 ≤ i1, ..., iq ≤ p.

Lemma 5.28. Assume that condition 5.1 is satis�ed.

For all |ε| < 1
2 there exists Cε so that the eigenvalues of K−1

ψ and of
∂qKψ

∂ψi1 ,...,∂ψiq
, 0 ≤ q ≤ 3,

1 ≤ i1, ..., iq ≤ p, are bounded by Cε, uniformly in n ∈ N, x ∈ (SX)
n
and ψ ∈ Ψ.

From lemma 5.28, the next proposition enables us to control the singular values of the

matrices that can be written using only matrix multiplications, the matrix K−1
ψ , the matrices

∂k

∂ψi1 ,...,∂ψik
Kψ, for i1, ..., ik ∈ {1, ..., p}, the Diag operator applied to the symmetric products

of matrices Kψ, K−1
ψ and ∂k

∂ψi1 ,...,∂ψik
Kψ, and the matrix Diag

(
K−1
ψ

)−1

. Examples of sums of

these matrices are the matrices ΣML, ΣCV,1 and ΣCV,2 of propositions 5.8 and 5.12.

Proposition 5.29. Assume that condition 5.1 is satis�ed.

Let ψ ∈ Ψ. We denote the set of multi-indexes Sp := ∪k∈{0,1,2,3} {1, ..., p}
k
. For I =

(i1, ..., ik) ∈ Sp, we denote n (I) = k. Then, we denote for I ∈ Sp ∪ {−1},

KI
ψ :=


∂n(I)

∂ψI1 ,...,∂ψIn(I)

Kψ if I ∈ Sp

K−1
ψ if I = −1

.

We then denote

• MI
nd = KI

ψ for I ∈ Snd := (Sp ∪ {−1})
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• M1
sd = Diag

(
K−1
ψ

)−1

• MI
bd = Diag

(
KI1
ψ ...K

In(I)

ψ

)
for I ∈ Sbd := ∪k∈N∗Sknd

For I = (I1, ..., Ik) ∈ Sbd, we also denote n(I) = k. We then de�ne Mψ as the set of

sequences of random matrices (de�ned on (ΩX ,FX , PX)), indexed by n ∈ N∗, dependent on
X , which can be written MI1

d1
...MIK

dK
with {d1, I1}, ..., {dK , IK} ∈ ({nd} × Snd)∪ ({sd} × {1})∪

({bd} × Sbd), and so that, for the matrices M
Ij
dj
, so that dj = bd, the matrix K

(Ij)1

ψ ...K
(Ij)n(Ij)
ψ

be symmetric.

Then, for every matrix MI1
d1
...MIK

dK
of Mψ, the singular values of MI1

d1
...MIK

dK
are bounded

uniformly in ψ, n and x ∈ (SX)
n
.

Proof of proposition 5.29. Let MI1
d1
...MIK

dK
∈Mψ be �xed in the proof.

The eigenvalues of KI
ψ, I ∈ Snd, are bounded uniformly with respect to n, ψ and x (lemma

5.28).

Next, lemma 5.30 enables us to treat the Diag operator.

Lemma 5.30. For M symmetric real non-negative matrix, infi φi(Diag(M)) ≥ infi φi(M) and

supi φi(Diag(M)) ≤ supi φi(M). Furthermore, if for two sequences of symmetric matrices Mn

and Nn, Mn ∼ Nn, then Diag (Mn) ∼ Diag (Nn).

Proof of lemma 5.30. We use Mi,i = etiMei, where (ei)i=1...n is the standard basis of Rn. Hence
infi φi(M) ≤ Mi,i ≤ supi φi(M) for a symmetric real non-negative matrix M. We also use

||Diag (M)||2 ≤ ||M||2.

Then, using lemma 5.30, we show that the eigenvalues of Diag
(
K−1
ψ

)−1

are bounded uni-

formly in x , n and ψ. Then, for MI
bd = Diag

(
KI1
ψ ...K

In(I)

ψ

)
, the eigenvalues of KI1

ψ ...K
In(I)

ψ

are bounded by the product of the eigenvalues of KI1
ψ , ...,K

In(I)

ψ . Hence we use lemma 5.30

to show that the eigenvalues of MI
bd are bounded uniformly in n, ψ and x . Finally we use

||A1...AK || ≤ ||A1||...||AK || to show that ||MI1
d1
...MIK

dK
|| is bounded uniformly in n, ψ and x

.

Almost sure convergence of traces of random matrices

To show that, say, the matrix ΣML in proposition 5.8, whose element i, j is de�ned as the almost

sure limit of the trace of the random matrices

1

n

(
K−1 ∂K

∂ψi
K−1 ∂K

∂ψj

)
, (5.23)

exists, we use the following proposition 5.31 on the almost sure convergence of random traces

of matrices similar to (5.23).

Proposition 5.31. Assume that condition 5.1 is satis�ed.

Consider the set of random matrix sequencesMψ of proposition 5.29.

Then, for every matrix MI1
d1
...MIK

dK
ofMψ, denoting Sn := 1

nTr
(
MI1

d1
...MIK

dK

)
, there exists

a deterministic limit S, which only depends on ε, ψ and (d1, I1) , ..., (dK , IK), so that Sn → S

PX-almost surely. Furthermore Sn → S in quadratic mean and V ar (Sn)→ 0 as n→ +∞
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Proof of proposition 5.31. Let MI1
d1
...MIK

dK
∈Mψ be �xed in the proof.

Because of proposition 5.29, ||MI1
d1
...MIK

dK
|| is bounded uniformly in n, ψ and x .

We decompose n into n = Nd
1n2 + r with N1, n2, r ∈ N and r < Nd

1 . We de�ne C
(
v(i)
)
as

the unique v ∈ Nd so that v(i) ∈ Ev :=
∏d
k=1{N1vk + 1, ..., N1 (vk + 1)}.

We then de�ne the sequence of matrices K̃ψ by
(
K̃ψ

)
i,j

= (Kψ)i,j 1C(v(i))=C(v(j)). Roughly

speaking, K̃ψ corresponds to the distribution of the Gaussian process Ỹ , which has the same

distribution as Y , except that its sub-processes over two sets Ev(1) and Ev(2) are independent

for v(1) 6= v(2). In lemma 5.32, we show that this approximation is asymptotically exact when

the volume and the number of the sets Ev containing observation points goes to +∞. This

can be interpreted because, when the volume of the sets Ev is large, two observation points in

two di�erent Ev(1) and Ev(2) do yield almost independent observations, except for the rare case

when both of the observation points are close to the borders of Ev(1) and Ev(2) .

We denote M̃I1
d1
...M̃IK

dK
the matrix built by replacing Kψ by K̃ψ in the expression of MI1

d1
...MIK

dK

(we also make the substitution for the inverse and the partial derivatives).

Lemma 5.32.

∣∣∣∣∣∣M̃I1
d1
...M̃IK

dK
−MI1

d1
...MIK

dK

∣∣∣∣∣∣2
2
→ 0, uniformly in x ∈ (SX)

n
, when N1, n2 →∞.

Proof of lemma 5.32. Let δ > 0 and N so that, with C0 as in (5.3),

TN := C2
022dd2

∑
j∈N,j≥N−1

(
j + 3

2

)2(d−1)

(1 + jd+1)
2 ≤ δ.

Then: ∣∣∣∣∣∣K̃ψ −Kψ

∣∣∣∣∣∣2
2

=
1

n

n∑
i,j=1

{
(Kψ)i,j −

(
K̃ψ

)
i,j

}2

=
1

n

∑
1≤i,j≤n,C(v(i))6=C(v(j))

K2
ψ

{
v(i) − v(j) + ε

(
x(i) − x(j)

)}

≤ 1

n

n∑
i=1

∑
j∈N∗,C(v(i))6=C(v(j))

K2
ψ

{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
.

There exists a unique a so that (aN1)
d ≤ n < {(a+ 1)N1}d. Among the n deterministic obser-

vation points v(1), ...,v(n), (aN1)
d are in the Ev, for v ∈ {1, ..., a}d. The number of remaining

points is less than {(a+ 1)N1}d − {(a)N1}d ≤ dN1 {(a+ 1)N1}d−1 which is a o((aN1)d) (be-

cause a→ +∞ when N1, n2 → +∞), hence a o(n). Therefore,

∣∣∣∣∣∣K̃ψ −Kψ

∣∣∣∣∣∣2
2
≤

1

n

∑
v∈{1,...,a}d

∑
1≤i≤n,v(i)∈Ev

∑
j∈N∗,C(v(j)) 6=C(v(i))

K2
ψ

{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
+

1

n
dN1 {(a+ 1)N1}d−1

T0

=
1

n

∑
v∈{1,...,a}d

∑
1≤i≤n,v(i)∈Ev

∑
j∈N∗,C(v(j))6=C(v(i))

K2
ψ

{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
+ o (1) . (5.24)
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Then, for �xed v, the cardinality of the set of the integers i ∈ {1, ..., n}, so that v(i) ∈ Ev
and there exists j ∈ N∗ so that C(v(j)) 6= C(v(i)) and |v(i) − v(j)|∞ ≤ N is Nd

1 − (N1 − 2N)
d

and is less than 2NdNd−1
1 .

Now, for the integers i so that for all j ∈ N∗ so that C(v(j)) 6= C(v(i)), |v(i) − v(j)|∞ ≥ N ,

we use the following lemma 5.33.

Lemma 5.33. Let f : Rd → R+, so that f (t) ≤ 1

1+|t|d+1
∞

. Then, for all i ∈ N∗, N ∈ N∗ and(
x(i)

)
i∈N∗ ∈ S

N∗
X ,

∑
j∈N∗,|v(i)−v(j)|∞≥N

f
{
v(i) − v(j) + ε

(
x(i) − x(j)

)}
≤ 2dd

∑
j∈N,j≥N−1

(
j + 3

2

)d−1

1 + jd+1
.

Proof of lemma 5.33. Similar to the proof of lemma 5.24.

Hence, using (5.3) and lemmas 5.24 and 5.33, we get from (5.24),∣∣∣∣∣∣K̃ψ −Kψ

∣∣∣∣∣∣2
2
≤ 1

n

∑
v∈{1,...,a}d

(
2NdNd−1

1 T0 +Nd
1 TN

)
+ o (1)

≤ 1

adNd
1

ad
{(

2NdNd−1
1 T0 +Nd

1 TN
)}

+ o (1) .

This last term is smaller than 2δ forN1 and n2 large enough. Hence we showed
∣∣∣∣∣∣K̃ψ −Kψ

∣∣∣∣∣∣
2
→

0 uniformly in x , when N1, n2 →∞. We can show the same result for ∂kKψ
∂ψi1 ...∂ψik

and ∂kK̃ψ
∂ψi1 ...∂ψik

.

Finally we use (5.17) to show that
∣∣∣∣∣∣K̃−1

ψ −K−1
ψ

∣∣∣∣∣∣
2
→ 0 uniformly in x , when N1, n2 →∞.

Using (5.19), together with lemma 5.30, we obtain that, for d ∈ {nd, sd, bd} and I ∈ Snd ∪
{1} ∪ Sbd, ||M̃I

d −MI
d||2 → 0 uniformly in x when N1, n2 → +∞. Thus, still using (5.19), we

obtain
∣∣∣∣∣∣M̃I1

d1
...M̃IK

dK
−MI1

d1
...MIK

dK

∣∣∣∣∣∣2
2
→ 0, uniformly in x ∈ (SX)

n, when N1, n2 →∞.

We denote, for every N1, n2 and r, with 0 ≤ r < Nd
1 , n = Nd

1n2 + r and SN1,n2
:=

1
nTr

(
M̃I1

d1
...M̃IK

dK

)
, which is a sequence of real random variables de�ned on (ΩX ,FX , PX) and

indexed by N1, n2 and r. Using (5.18) and lemma 5.32, |Sn − SN1,n2
| → 0 uniformly in x when

N1, n2 → ∞ (uniformly in r). As the matrices in the expression of SN1,n2
are block diagonal,

we can write SN1,n2
= 1

n2

∑n2

l=1 S
l
Nd1

+ o
(

1
n2

)
, where the Sl

Nd1
are iid random variables de�ned

on (ΩX ,FX , PX) with the distribution of SNd1 . We denote S̄Nd1 := EX

(
SNd1

)
. Then, using

the strong law of large numbers, for �xed N1, SN1,n2
→ S̄Nd1 PX -almost surely when n2 → ∞

(uniformly in r).

For every N1, pN1 , n2 ∈ N∗, there exists a unique (n′2, r), n
′
2 ∈ N∗, 0 < r ≤ Nd

1 so that

(N1 + pN1
)
d
n2 = Nd

1n
′
2 + r. Then we have

|S̄(N1)d − S̄(N1+pN1)
d | ≤ |S̄(N1)d − SN1,n′2

|+ |SN1,n′2
− SNd1 n′2+r| (5.25)

+|SNd1 n′2+r − S(N1+pN1)
d
n2
|+ |S

(N1+pN1)
d
n2
− SN1+pN1

,n2 |

+|SN1+pN1
,n2
− S̄

(N1+pN1)
d |

= A+B + C +D + E.

Because n′2 and r depend on N1, pN1 and n2, A, B, C, D and E are sequences of random

variables de�ned on (ΩX ,FX , PX) and indexed by N1, pN1
and n2. We have seen that there
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exists Ω̃X ⊂ ΩX , with PX(Ω̃X) = 1 so that for ωX ∈ Ω̃X , when N1, n2 → +∞, we also have

N1 + pN1
, n′2 → +∞, and so B and D converge to zero.

Now, for every N1 ∈ N∗, let ΩX,N1
be so that PX(ΩX,N1

) = 1 and for all ωX ∈ ΩX,N1
,

SN1,n2 →n2→+∞ S̄Nd1 . Let ˜̃ΩX = ∩N1∈N∗ΩX,N1 . Then PX( ˜̃ΩX) = 1 and for all ωX ∈ ˜̃ΩX , for

all N1 ∈ N∗, SN1,n2
→n2→+∞ S̄Nd1 .

We will now show that N1 → S̄Nd1 is a Cauchy sequence. Let δ > 0. PX( ˜̃Ω ∩ Ω̃) = 1 so this

set in non-empty. Let us �x ωX ∈ ˜̃Ω∩ Ω̃. In (5.25), C is null. There exist N̄1 and n̄2 so that for

every N1 ≥ N̄1, n2 ≥ n̄2, pN1
> 0, B and D are smaller than δ. Let us now �x any N1 ≥ N̄1.

Then, for every pN1
> 0, with n2 ≥ n̄2 large enough, A and E are smaller than δ.

Hence, we showed that, for the ωX ∈ ˜̃Ω ∩ Ω̃ we were considering, N1 → S̄(N1)d is a Cauchy

sequence and we denote its limit by S. Since N1 → S̄(N1)d is deterministic, S is deterministic

and S̄(N1)d →N1→+∞ S.

Finally, let n = Nd
1n2 + r with N1, n2 →∞. Then

|Sn − S| ≤ |Sn − SN1,n2 |+ |SN1,n2 − S̄Nd1 |+ |S̄Nd1 − S|.

Using the same arguments as before, we show that, PX -a.s., |Sn − S| → 0 as n→ +∞.

Now, because of proposition 5.29, the eigenvalues of MI1
d1
...MIK

dK
are uniformly bounded in

n and x ∈ SnX . Thus, from the dominated convergence theorem, Sn → S in the mean square

sense. Thus, V ar(Sn)→ 0.

Consistency

We now have gathered enough preliminary results to start addressing the consistency of ML and

CV. We start by the proof of proposition 5.7 which addresses the consistency of ML.

Proof of proposition 5.7. We show that there exist sequences of random variables, de�ned on

(ΩX ,FX , PX), Dψ,ψ(0) and D2,ψ,ψ(0) (functions of n and X ), so that

sup
ψ

∣∣∣(L(ψ)− L(ψ(0))
)
−Dψ,ψ(0)

∣∣∣→p 0

(in probability of the product space) and Dψ,ψ(0) ≥ BD2,ψ,ψ(0) PX -a.s. for a constant B > 0.

We then show that there exists D∞,ψ,ψ(0) , a deterministic function of ψ,ψ(0) only, so that

sup
ψ

∣∣D2,ψ,ψ(0) −D∞,ψ,ψ(0)

∣∣ = op (1)

and for any t > 0,

inf
|ψ−ψ(0)|≥t

D∞,ψ,ψ(0) > 0. (5.26)

This implies consistency. Indeed, assume that there exists a sequence Nn → +∞, α, t > 0

so that P (|ψ̂ML,Nn − ψ
(0)| ≥ t) ≥ α. Let us write the Likelihood at step n Ln to em-

phasize the dependence on n. Then, since, with probability larger than α, LNn(ψ̂ML,Nn) ≥
inf |ψ−ψ(0)|≥t LNn(ψ) and since LNn(ψ̂ML,Nn) ≤ LNn(ψ(0)), we get, with probability larger

than α,

inf
|ψ−ψ(0)|≥t

LNn(ψ) ≤ LNn(ψ(0)).
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Hence, with probability larger than α,

0 ≥ inf
|ψ−ψ(0)|≥t

(
LNn(ψ)− LNn(ψ(0))

)
≥ inf

|ψ−ψ(0)|≥t
Dψ,ψ(0) − sup

|ψ−ψ(0)|≥t

∣∣∣LNn(ψ)− LNn(ψ(0))−Dψ,ψ(0)

∣∣∣
= inf

|ψ−ψ(0)|≥t
Dψ,ψ(0) + op(1)

≥ B inf
|ψ−ψ(0)|≥t

D2,ψ,ψ(0) + op(1)

≥ B inf
|ψ−ψ(0)|≥t

D∞,ψ,ψ(0) −B sup
|ψ−ψ(0)|≥t

∣∣D2,ψ,ψ(0) −D∞,ψ,ψ(0)

∣∣+ op(1)

= B inf
|ψ−ψ(0)|≥t

D∞,ψ,ψ(0) + op(1).

Since inf |ψ−ψ(0)|≥tD∞,ψ,ψ(0) > 0, this is a contradiction.

We have L(ψ) = 1
n ln {|Kψ|}+ 1

ny
tK−1

ψ y. The eigenvalues of Kψ and K−1
ψ are bounded uni-

formly in n and x (lemma 5.28) and from (5.20), V ar (L(ψ)|X = x) = 2
n2Tr

(
Kψ(0)K−1

ψ Kψ(0)K−1
ψ

)
.

Thus V ar (L(ψ)|X = x) converges to 0 uniformly in x , and so L(ψ)− E (L(ψ)|X ) converges

in probability P to zero.

Then, with z = K
− 1

2

ψ(0)y,

sup
k∈{1,...,p},ψ∈Ψ

∣∣∣∣∂L(ψ)

∂ψk

∣∣∣∣ =

sup
k∈{1,...,p},ψ∈Ψ

1

n

{
Tr

(
K−1
ψ

∂Kψ

∂ψk

)
− ztK

1
2

ψ(0)K
−1
ψ

∂Kψ

∂ψk
K−1
ψ K

1
2

ψ(0)z

}
≤ sup
k∈{1,...,p},ψ

{
max

(∣∣∣∣∣∣K−1
ψ

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∂Kψ

∂ψk

∣∣∣∣∣∣∣∣ , ||Kψ(0) ||
∣∣∣∣∣∣K−2

ψ

∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣∂Kψ

∂ψk

∣∣∣∣∣∣∣∣)}(1 +
1

n
|z|2

)
,

and is hence bounded in probability conditionally to X = x, uniformly in x , because of lemma

5.28 and the fact that z ∼ N (0, In) given X = x (so 1
n |z|

2 is bounded in probability given

X = x).

Because of the simple convergence and the boundedness of the derivatives,

sup
ψ
|L(ψ)− E (L(ψ)|X ) | →p 0.

We then denote

Dψ,ψ(0) := E (L(ψ)|X )− E
(
L(ψ(0))|X

)
.

We then have supψ

∣∣∣(L(ψ)− L(ψ(0))
)
−Dψ,ψ(0)

∣∣∣→p 0.

We have E (L(ψ)|X ) = 1
n ln {|Kψ|}+ 1

nTr
(
K−1
ψ Kψ(0)

)
and hence, PX -a.s.

Dψ,ψ(0) =
1

n
ln {|Kψ|}+

1

n
Tr
(
K−1
ψ Kψ(0)

)
− 1

n
ln
{∣∣Kψ(0)

∣∣}− 1

=
1

n

n∑
i=1

[
− ln

{
φi

(
K

1
2

ψ(0)K
−1
ψ K

1
2

ψ(0)

)}
+ φi

(
K

1
2

ψ(0)K
−1
ψ K

1
2

ψ(0)

)
− 1
]
.
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Using lemma 5.28, there exists 0 < a < b < +∞ so that for all x , n, ψ, a < φi

(
K

1
2

ψ(0)K
−1
ψ K

1
2

ψ(0)

)
< b. We denote f (t) = − ln (t) + t − 1. As f is minimal in 1, f ′ (1) = 0 and f ′′ (1) = 1, there

exists A > 0 so that, for t ∈ [a, b], f (t) is larger than A (t− 1)
2. Then,

Dψ,ψ(0) ≥ A
1

n

n∑
i=1

{
1− φi

(
K

1
2

ψ(0)K
−1
ψ K

1
2

ψ(0)

)}2

= A
1

n
Tr

{(
I−K

1
2

ψ(0)K
−1
ψ K

1
2

ψ(0)

)2
}

= A
1

n

∣∣∣∣∣∣K− 1
2

ψ

(
Kψ −Kψ(0)

)
K
− 1

2

ψ

∣∣∣∣∣∣2
2
.

Then, as the eigenvalues of K
− 1

2

ψ are larger than c > 0, uniformly in n, x and ψ, and with

(5.16), we obtain, for some B > 0, and uniformly in n, x and ψ,

Dψ,ψ(0) ≥ B||Kψ −Kψ(0) ||22 := BD2,ψ,ψ(0) .

For ε = 0, D2,ψ,ψ(0) is deterministic and converges to

D∞,ψ,ψ(0) :=
∑
v∈Zd

{
Kψ (v)−Kψ(0) (v)

}2
. (5.27)

D∞,ψ,ψ(0) is continuous in ψ because the series of term supψ |Kψ (v) |2, v ∈ Zd is summable

using (5.3) and lemma 5.24. Hence, if there exists α > 0 so that inf |ψ−ψ(0)|≥αD∞,ψ,ψ(0) = 0, we

can, using a compacity and continuity argument, have ψ∞ 6= ψ(0) so that (5.27) is null. Hence

we showed (5.26) by contradiction, which shows the proposition for ε = 0.

For ε 6= 0, D2,ψ,ψ(0) = 1
nTr

{(
Kψ −Kψ(0)

)2}
. With �xed ψ, using proposition 5.31,

D2,ψ,ψ(0) converges in PX -probability to D∞,ψ,ψ(0) := limn→∞EX

(
D2,ψ,ψ(0)

)
. The eigenvalues

of the ∂Kψ
∂ψi

, 1 ≤ i ≤ n, being bounded uniformly in n, ψ, x , the partial derivatives with respect

to ψ of D2,ψ,ψ(0) are uniformly bounded in n, ψ and x . Hence supψ |D2,ψ,ψ(0) −D∞,ψ,ψ(0) | =
op (1). Then

D∞,ψ,ψ(0) =

lim
n→+∞

1

n

∑
1≤i,j≤n,i 6=j

[∫
εCSX

{
Kψ

(
v(i) − v(j) + t

)
−Kψ(0)

(
v(i) − v(j) + t

)}2

fT (t) dt

]
+
{
Kψ (0)−Kψ(0) (0)

}2
,

with fT (t) the probability density function of ε (Xi −Xj), i 6= j. We then show,

D∞,ψ,ψ(0) =
∑

v∈Zd\0

[∫
εCSX

{
Kψ (v + t)−Kψ(0) (v + t)

}2
fT (t) dt

]

+
{
Kψ (0)−Kψ(0) (0)

}2
(5.28)

=

∫
Dε

{
Kψ (t)−Kψ(0) (t)

}2
f̃T (t) dt+

{
Kψ (0)−Kψ(0) (0)

}2
,

where f̃T (t) is a positive-valued function, almost surely with respect to the Lebesgue measure

on Dε. As supψ |Kψ (t) |2 is summable on Dε, using (5.3), D∞,ψ,ψ(0) is continuous. Hence, if

there exists α > 0 so that inf |ψ−ψ(0)|≥αD∞,ψ,ψ(0) = 0, we can, using a compacity and continuity

argument, show that there exists ψ∞ 6= ψ(0) so that (5.28) is null. Hence we proved (5.26) by

contradiction which proves the proposition for ε 6= 0.
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We now prove proposition 5.11, addressing the consistency of CV.

Proof of proposition 5.11. We will show that there exists a sequence of random variablesDψ,ψ(0) ,

de�ned on (ΩX ,FX , PX), so that

sup
ψ

∣∣∣(LOO(ψ)− LOO(ψ(0))
)
−Dψ,ψ(0)

∣∣∣→p 0

and C > 0 so that PX -a.s.

Dψ,ψ(0) ≥ C||Kψ −Kψ(0) ||22. (5.29)

The proof of the proposition is then carried out similarly to the proof of proposition 5.7.

We �rstly show, similarly to the proof of proposition 5.7 that supψ |LOO(ψ)−E (LOO(ψ)|X ) |
→p 0. We then denote Dψ,ψ(0) = E (LOO(ψ)|X )− E

(
LOO(ψ(0))|X

)
. We decompose, for all

i ∈ {1, ..., n}, with Pi the matrix that exchanges lines 1 and i of a matrix,

PiKψPt
i =

(
1 kti,ψ

ki,ψ K−i,ψ

)
.

The conditional distributions being independent on the numbering of the observations, we have,

from the Kriging equations (2.9) and (2.10), denoting

y−i = (y1, ..., yi−1, yi+1, ..., yn)t

and using E((ŷi,ψ − yi)2|X ) = E((ŷi,ψ − ŷi,ψ(0))2|X ) + E((ŷi,ψ(0) − yi)2|X ),

Dψ,ψ(0)

=
1

n

n∑
i=1

E
{(
kti,ψK−1

−i,ψy−i − k
t
i,ψ(0)K

−1
−i,ψ(0)y−i

)2

|X
}

=
1

n

n∑
i=1

(
kti,ψK−1

−i,ψ − k
t
i,ψ(0)K

−1
−i,ψ(0)

)
K−i,ψ(0)

(
K−1
−i,ψki,ψ −K−1

−i,ψ(0)ki,ψ(0)

)
.

Similarly to lemma 5.28, it can be shown that the eigenvalues of K−i,ψ(0) are larger than a

constant A > 0, uniformly in n and x . Then

Dψ,ψ(0) ≥ A
1

n

n∑
i=1

∣∣∣(kti,ψK−1
−i,ψ − k

t
i,ψ(0)K

−1
−i,ψ(0)

)∣∣∣2 .
Using the virtual Cross Validation equations of proposition 2.35, the vector K−1

−i,ψki,ψ is the

vector of the
(K−1

ψ )
i,j

(K−1
ψ )

i,i

for 1 ≤ j ≤ n, j 6= i. Hence PX -a.s.

Dψ,ψ(0) ≥ A
1

n

n∑
i=1

∑
j 6=i


(
K−1
ψ

)
i,j(

K−1
ψ

)
i,i

−

(
K−1
ψ(0)

)
i,j(

K−1
ψ(0)

)
i,i


2

= A
1

n

∣∣∣∣∣∣∣∣Diag (K−1
ψ

)−1

K−1
ψ −Diag

(
K−1
ψ(0)

)−1

K−1
ψ(0)

∣∣∣∣∣∣∣∣2
2

≥ AB
1

n

∣∣∣∣∣∣∣∣Diag (K−1
ψ(0)

)
Diag

(
K−1
ψ

)−1

K−1
ψ −K−1

ψ(0)

∣∣∣∣∣∣∣∣2
2

,
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withB = infi,n,x φ
2
i

{
Diag

(
K−1
ψ(0)

)−1
}
, B > 0. The eigenvalues ofDiag

(
K−1
ψ(0)

)
Diag

(
K−1
ψ

)−1

are bounded between a > 0 and b < ∞ uniformly in n and x . Hence we have, with Dλ, the

diagonal matrix with values λ1, ..., λn,

Dψ,ψ(0) ≥ AB inf
a≤λ1,...,λn≤b

∣∣∣∣∣∣DλK−1
ψ −K−1

ψ(0)

∣∣∣∣∣∣2
2

≥ ABC inf
a≤λ1,...,λn≤b

||D−1
λ Kψ −Kψ(0) ||22, using (5.17),

≥ ABC inf
λ1,...,λn

||DλKψ −Kψ(0) ||22,

with C = 1
b infn,x,ψ

1
||Kψ||2

1
||K

ψ(0) ||2
, C > 0. Then

Dψ,ψ(0) ≥ ABC
1

n
inf

λ1,...,λn

n∑
i,j=1

(
λiKψ,i,j −Kψ(0),i,j

)2
= ABC

1

n

n∑
i=1

inf
λ

n∑
j=1

(
λKψ,i,j −Kψ(0),i,j

)2
= ABC

1

n

n∑
i=1

inf
λ

(λ− 1)
2

+
∑
j 6=i

(
λKψ,i,j −Kψ(0),i,j

)2 .

We show how to treat the in�mum over λ in the following lemma.

Lemma 5.34. For any a1, ..., an and b1, ..., bn ∈ R,

inf
λ

{
(λ− 1)

2
+

n∑
i=1

(ai − λbi)2

}
≥
∑n
i=1 (ai − bi)2

1 +
∑n
i=1 b

2
i

.

Proof.

(λ− 1)
2

+

n∑
i=1

(ai − λbi)2
= λ2

(
1 +

n∑
i=1

b2i

)
− 2λ

(
1 +

n∑
i=1

aibi

)
+

(
1 +

n∑
i=1

a2
i

)
.

The minimum in t of at2 − 2bt+ c, is − b
2

a + c, hence

(λ− 1)
2

+

n∑
i=1

(ai − λbi)2 ≥

(
1 +

n∑
i=1

a2
i

)
−

(1 +
∑n
i=1 aibi)

2

(1 +
∑n
i=1 b

2
i )

=

∑n
i=1 (ai − bi)2 − (

∑n
i=1 aibi)

2
+
(∑n

i=1 a
2
i

) (∑n
i=1 b

2
i

)
1 +

∑n
i=1 b

2
i

≥
∑n
i=1 (ai − bi)2

1 +
∑n
i=1 b

2
i

, using Cauchy-Schwartz inequality.

Using lemma 5.34, together with (5.3) and lemma 5.24 which ensure that∑
j 6=i

(Kψ,i,j)
2 ≤ c < +∞
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uniformly in i, ψ and x , we obtain

Dψ,ψ(0) ≥ ABC
1

1 + c

1

n

n∑
i=1

∑
j 6=i

(
Kψ,i,j −Kψ(0),i,j

)2
= ABC

1

1 + c
||Kψ −Kψ(0) ||22, because Kψ,i,i = 1 = Kψ(0),i,i,

which proves (5.29) and ends the proof.

Convergence of gradients and Hessians for ML and CV

Now, based notably on the preliminary results on the almost sure convergence of random traces,

we study the convergence in distribution of the gradients of ML and CV to normal distribution,

and the convergence in probability of the Hessian matrices to constant matrices.

We start by proving proposition 5.12 which gives the expressions and some convergence

results for the gradient and Hessian matrix for CV.

Proof of proposition 5.12. It is shown in proposition 3.33 that

∂

∂ψi
LOO(ψ) =

2

n
ytMi

ψy =
1

n
yt
{

Mi
ψ +

(
Mi
ψ

)t}
y.

From (5.20) we show (5.7). A straightforward but relatively long calculation then shows

∂2

∂ψi∂ψj
LOO(ψ) =

− 4
1

n
ytK−1

ψ

∂Kψ

∂ψj
K−1
ψ Diag

(
K−1
ψ

)−3

Diag

(
K−1
ψ

∂Kψ

∂ψi
K−1
ψ

)
K−1
ψ y

− 4
1

n
ytK−1

ψ

∂Kψ

∂ψi
K−1
ψ Diag

(
K−1
ψ

)−3

Diag

(
K−1
ψ

∂Kψ

∂ψj
K−1
ψ

)
K−1
ψ y

+ 2
1

n
ytK−1

ψ

∂Kψ

∂ψj
K−1
ψ Diag

(
K−1
ψ

)−2

K−1
ψ

∂Kψ

∂ψi
K−1
ψ y

+ 6
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−4

Diag

(
K−1
ψ

∂Kψ

∂ψj
K−1
ψ

)
Diag

(
K−1
ψ

∂Kψ

∂ψi
K−1
ψ

)
K−1
ψ y

− 4
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−3

Diag

(
K−1
ψ

∂Kψ

∂ψi
K−1
ψ

∂Kψ

∂ψj
K−1
ψ

)
K−1
ψ y

+ 2
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−3

Diag

(
K−1
ψ

∂2Kψ

∂ψi∂ψj
K−1
ψ

)
K−1
ψ y

+ 2
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−2

K−1
ψ

∂Kψ

∂ψj
K−1
ψ

∂Kψ

∂ψi
K−1
ψ y

+ 2
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−2

K−1
ψ

∂Kψ

∂ψi
K−1
ψ

∂Kψ

∂ψj
K−1
ψ y

− 2
1

n
ytK−1

ψ Diag
(
K−1
ψ

)−2

K−1
ψ

∂2Kψ

∂ψi∂ψj
K−1
ψ y.

We then have, using E (ytAy|X ) = Tr
(
AKψ(0)

)
and for matrices D, M1 and M2, with D

diagonal, Tr {M1DDiag (M2)} = Tr {M2DDiag (M1)} and Tr (DM1) = Tr (DMt
1),
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E
(

∂2

∂ψi∂ψj
LOO(ψ(0))|X

)
= (5.30)

− 8
1

n
Tr

{
∂Kψ(0)

∂ψj
K−1
ψ(0)Diag

(
K−1
ψ(0)

)−3

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

)
K−1
ψ(0)

}
+ 2

1

n
Tr

{
∂Kψ(0)

∂ψj
K−1
ψ(0)Diag

(
K−1
ψ(0)

)−2

K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

}
+

6

n
Tr

{
Diag

(
K−1
ψ(0)

)−4

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

)
K−1
ψ(0)

}
− 4

1

n
Tr

{
Diag

(
K−1
ψ(0)

)−3

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
K−1
ψ(0)

}
+ 2

1

n
Tr

{
Diag

(
K−1
ψ(0)

)−3

Diag

(
K−1
ψ(0)

∂2Kψ(0)

∂ψi∂ψj
K−1
ψ(0)

)
K−1
ψ(0)

}

+ 4
1

n
Tr

{
Diag

(
K−1
ψ(0)

)−2

K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

}
− 2

1

n
Tr

{
Diag

(
K−1
ψ(0)

)−2

K−1
ψ(0)

∂2Kψ(0)

∂ψi∂ψj
K−1
ψ(0)

}
.

The fourth and sixth terms of (5.30) are opposite and hence cancel each other. Indeed,

Tr

{
Diag

(
K−1
ψ(0)

)−3

Diag

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
K−1
ψ(0)

}
=

n∑
i=1

(
K−1
ψ(0)

)−3

i,i

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
i,i

(
K−1
ψ(0)

)
i,i

=

n∑
i=1

(
K−1
ψ(0)

)−2

i,i

(
K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

)
i,i

= Tr

{
Diag

(
K−1
ψ(0)

)−2

K−1
ψ(0)

∂Kψ(0)

∂ψi
K−1
ψ(0)

∂Kψ(0)

∂ψj
K−1
ψ(0)

}
.

Similarly the �fth and seventh terms of (5.30) cancel each other.

Hence, we show the expression of E
(

∂2

∂ψi∂ψj
LOO(ψ(0))|X

)
of the proposition.

We use proposition 5.31 to show the existence of ΣCV,1 and ΣCV,2.

The next proposition 5.35 enables us to prove the convergence in probability of quadratic

forms with random matrices.

Proposition 5.35. Assume that condition 5.1 is satis�ed.

Let M ∈Mψ (proposition 5.29). Then, 1
ny

tMy converges to

Σ := lim
n→+∞

1

n
Tr
(
MKψ(0)

)
,

in the mean square sense (on the product space).
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Proof of proposition 5.35.

E
(

1

n
ytMy

)
= E

{
E
(

1
ny

tMy|X
)}

= E
{

1
nTr

(
MKψ(0)

)}
→ Σ (proposition 5.31).

Furthermore

V ar

(
1

n
ytMy

)
= E

{
V ar

(
1

n
ytMy|X

)}
+ V ar

{
E
(

1

n
ytMy|X

)}
.

The quantity V ar
(

1
ny

tMy|X = x
)
is a O

(
1
n

)
, uniformly in x , using proposition 5.29 and

||A+B|| ≤ ||A||+ ||B||. Therefore V ar
(

1
ny

tMy|X
)
is bounded by O( 1

n ) PX -a.s. Furthermore,

V ar
{
E
(

1
ny

tMy|X
)}

= V ar
{

1
nTr

(
MKψ(0)

)}
→ 0, using proposition 5.31. Hence 1

ny
tMy

converges to Σ in the mean square sense.

Proposition 5.36 enables us to quantify the small deviations of random quadratic forms from

their limits by giving a convergence in distribution result.

Proposition 5.36. Assume that condition 5.1 is satis�ed.

We recall X ∼ L⊗nX and yi = Y
(
v(i) + εXi

)
, 1 ≤ i ≤ n. We consider symmetric matrix

sequences M1, ...,Mp and N1, ...,Np (de�ned on (ΩX ,FX , PX)), functions of X , so that the

eigenvalues of N1, ...,Np are bounded uniformly in n and x ∈ (SX)
n
, Tr (Mi + NiK) = 0

for 1 ≤ i ≤ p and there exists a p × p matrix Σ so that 1
nTr (NiKNjK) → (Σ)i,j PX-

almost surely. Then the sequence of p-dimensional random vectors (de�ned on the product

space)
(

1√
n
{Tr (Mi) + ytNiy}

)
i=1...p

converges in distribution to a Gaussian random vector

with mean zero and covariance matrix 2Σ.

Proof of proposition 5.36. Let λ = (λ1, ..., λp) ∈ Rp.

E

(
exp

[
i

p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

}])

= E

{
E

(
exp

[
i

p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

}]∣∣∣∣∣X
)}

.

For �xed x =
(
x(1), ...,x(n)

)
∈ (SX)

n, denoting
∑p
k=1 λkK

1
2 NkK

1
2 = PtDP, with PtP = In

and D diagonal, zx = PK−
1
2y (which is a vector of iid standard Gaussian variables, condition-

ally to X = x), we have

p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

}
=

1√
n

[
Tr

(
p∑
k=1

λkMk

)
+

n∑
i=1

φi

(
p∑
k=1

λkK
1
2 NkK

1
2

)
z2
x,i

]

=
1√
n

[
n∑
i=1

φi

(
p∑
k=1

λkK
1
2 NkK

1
2

){
z2
x,i − 1

}]
.
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Hence

V ar

[
p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

} ∣∣X] =
2

n

n∑
i=1

φ2
i

(
p∑
k=1

λkK
1
2 NkK

1
2

)

=
2

n

p∑
k=1

p∑
l=1

λkλlTr (KNkKNl)

→
n→+∞

λt (2Σ)λ for a.e. ωX .

Hence, for almost every ωX , we can apply Lindeberg-Feller criterion (theorem 5.37 below) to

the ΩY -measurable variables 1√
n
φi

(∑p
k=1 λkK

1
2 NkK

1
2

){
z2
x,i − 1

}
, 1 ≤ i ≤ n, to show that∑p

k=1 λk
1√
n
{Tr (Mk) + ytNky} converges in distribution to N

(
0,λt (2Σ)λ

)
. Hence, for al-

most every ωX ,

E

(
exp

[
i

p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

}]∣∣X)→n→+∞ exp

(
−1

2
λt (2Σ)λ

)
.

Using the dominated convergence theorem on (ΩX ,FX , PX),

E

(
exp

[
i

p∑
k=1

λk
1√
n

{
Tr (Mk) + ytNky

}])
→n→+∞ exp

{
−1

2
λt (2Σ)λ

}
.

Theorem 5.37 (Lindeberg-Feller: see e.g. proposition 2.27 in [Van98]). Let, for all n ∈ N∗,
yn,1, ..., yn,n be centered independent random variables with zero mean and �nite variances

σ2
n,1, ..., σ

2
n,n. Assume that for any ε > 0,

∑n
i=1 E

(
y2
i,n1|yi,n|>ε

)
goes to zero as n → +∞.

Assume also that
∑n
i=1 σ

2
i,n goes to a constant σ2 as n→ +∞. Then

n∑
i=1

yi,n →L N (0, σ2).

Asymptotic normality

We now show the asymptotic normality for ML and CV, based on the preliminary convergence

results for their gradients and Hessians.

Proposition 5.38 enables us, from such convergence results for the gradient and Hessian of

an estimator, to prove its asymptotic normality.

Proposition 5.38. We recall X ∼ L⊗nX and yi = Y
(
v(i) + εXi

)
, 1 ≤ i ≤ n. We consider a con-

sistent estimator ψ̂ ∈ Rp so that P
(
c
(
ψ̂
)

= 0
)
→ 1, for a function c : Ψ → Rp, dependent on

X and Y , and twice di�erentiable in ψ. We assume that
√
nc
(
ψ(0)

)
→L N (0,Σ1), for a p× p

matrix Σ1 and that the matrix
∂c(ψ(0))
∂ψ converges in probability to a p×p positive matrix Σ2 (con-

vergences are de�ned on the product space). Finally we assume that supψ̃,i,j,k

∣∣∣ ∂2

∂ψi∂ψj
ck

(
ψ̃
)∣∣∣ is

bounded in probability.

Then
√
n
(
ψ̂ −ψ(0)

)
→L N

(
0,Σ−1

2 Σ1Σ
−1
2

)
.
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Proof of proposition 5.38. It is enough to consider the case c
(
ψ̂
)

= 0, the case P
{
c
(
ψ̂
)

= 0
}
→

1 being deduced from it by modifying c on a set with vanishing probability measure, which does

not a�ect the convergence in distribution. Indeed, if a random vector v converges in distribution

to a distribution L, the random vector v1An + ṽ1An , where P (An) → 1 and ṽ is an arbitrary

random vector, also converges in distribution to L.
For all 1 ≤ k ≤ p,

0 = ck

(
ψ̂
)

= ck

(
ψ(0)

)
+

{
∂

∂ψ
ck

(
ψ(0)

)}t (
ψ̂ −ψ(0)

)
+ r,

with random r, so that |r| ≤ supψ̃,i,j,k

∣∣∣ ∂2

∂ψi∂ψj
ck

(
ψ̃
)∣∣∣×|ψ̂−ψ(0)|2. Hence r = op

(
|ψ̂ −ψ(0)|

)
.

We then have

−ck (ψ0) =

[{
∂

∂ψ
ck

(
ψ(0)

)}t
+ op (1)

](
ψ̂ −ψ(0)

)
,

and so (
ψ̂ −ψ(0)

)
= −

{
∂

∂ψ
c
(
ψ(0)

)
+ op (1)

}−1

c
(
ψ(0)

)
. (5.31)

We conclude using Slutsky lemma, with
(
∂
∂ψ c(ψ

(0)) + op(1)
)−1

converges in probability to Σ−1
2

and
√
nc(ψ(0)) converges in distribution to a N (0,Σ1) distribution.

Remark 5.39. One can show that, with probability going to one as n → +∞, the likelihood

has a unique global minimizer. Indeed, we �rst notice that the set of the minimizers is a subset

of any open ball of center ψ(0) with probability going to one. For a small enough open ball, the

probability that the likelihood function is strictly convex on this open ball converges to one. This

is because of the third-order regularity of the likelihood with respect to ψ, and because the limit

of the second derivative matrix of the Likelihood at ψ(0) is positive.

We now prove proposition 5.8, on the asymptotic normality of ML.

Proof of proposition 5.8. For 1 ≤ i, j ≤ p, we use proposition 5.31 to show that

1

n
Tr

(
K−1 ∂K

∂ψi
K−1 ∂K

∂ψj

)
has a PX -almost sure limit as n→ +∞.

We calculate ∂
∂ψi

L(ψ) = 1
n

{
Tr
(
K−1
ψ

∂Kψ
∂ψi

)
− ytK−1

ψ
∂Kψ
∂ψi

K−1
ψ y

}
. We use proposition 5.36

with Mi = K−1
ψ

∂Kψ
∂ψi

and Ni = −K−1
ψ

∂Kψ
∂ψi

K−1
ψ , together with proposition 5.31, to show that

√
n
∂

∂ψ
L(ψ(0))→L N (0, 2ΣML) .

We calculate

∂2

∂ψi∂ψj
L(ψ(0)) =

1

n
Tr

(
−K−1 ∂K

∂ψi
K−1 ∂K

∂ψj
+ K−1 ∂2K

∂ψi∂ψj

)
+

1

n
yt
(

2K−1 ∂K

∂ψi
K−1 ∂K

∂ψj
K−1 −K−1 ∂2K

∂ψi∂ψj
K−1

)
y.
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Hence, using proposition 5.35, ∂2

∂ψ2L(ψ(0)) converges to ΣML in the mean square sense (on

the product space).

Finally, ∂3

∂ψi∂ψj∂ψk
L(ψ̃) can be written as 1

n

{
Tr
(
Mψ̃

)
+ ztNψ̃z

}
, where Mψ̃ and Nψ̃ are

sums of matrices ofMψ̃ (proposition 5.29) and where z depends on X and Y and L (z|X ) =

N (0, In). Hence, the singular values of Mψ̃ and Nψ̃ are bounded uniformly in ψ̃, n and x , and

so supi,j,k,ψ̃
∂3

∂ψi∂ψj∂ψk
L(ψ̃) is bounded by a + b 1

n |z|
2, with constant a, b < +∞ and is hence

bounded in probability. Hence we apply proposition 5.38 to conclude.

Asymptotic normality for CV is now addressed by proving proposition 5.13.

Proof of proposition 5.13. We use proposition 5.36, with

Ni = −
{

Mi +
(
Mi
)t}

,

where Mi is the notation of proposition 5.12, together with propositions 5.29, 5.31 and 5.12 to

show that
√
n
∂

∂ψ
LOO(ψ(0))→L N (0,ΣCV,1) .

We have seen in the proof of proposition 5.12 that there exist matrices Pi,j inMψ(0) (proposition

5.29), so that ∂2

∂ψi∂ψj
LOO(ψ(0)) = 1

ny
tPi,jy, with 1

nTr (Pi,jK)→ (ΣCV,2)i,j PX -almost surely.

Hence, using proposition 5.35, ∂2

∂ψ2L(ψ(0)) converges to ΣCV,2 in the mean square sense (on the

product space).

Finally, ∂3

∂ψi∂ψj∂ψk
LOO(ψ̃) can be written as 1

n

(
ztNi,j,k

ψ̃
z
)
, where the Ni,j,k

ψ̃
are sums of ma-

trices ofMψ̃ (proposition 5.29) and z depending onX and Y with L (z|X ) = N (0, In). The sin-

gular values of Ni,j,k

ψ̃
are bounded uniformly in ψ̃, n and x and so supi,j,k,ψ̃

(
∂3

∂ψi∂ψj∂ψk
LOO(ψ̃)

)
is bounded by b 1

nz
tz, b < +∞, and is hence bounded in probability. We apply proposition 5.38

to conclude.

Positivity of the Hessians for ML and CV

We conclude the proofs for subsection 5.7.1 by showing that the asymptotic Hessian matrices of

propositions 5.8 and 5.13 for ML and CV are positive matrices.

Proposition 5.10 addresses ML.

Proof of proposition 5.10. We �rstly prove the proposition in the case p = 1, when ΣML is a

scalar. We then show how to generalize the proposition to the case p > 1.

For p = 1 we have seen that 1
nTr

(
K−1
ψ(0)

∂K
ψ(0)

∂ψ K−1
ψ(0)

∂K
ψ(0)

∂ψ

)
→PX ΣML. Then

1

n
Tr

(
K−1
ψ(0)

∂Kψ(0)

∂ψ
K−1
ψ(0)

∂Kψ(0)

∂ψ

)
=

1

n
Tr

(
K
− 1

2

ψ(0)

∂Kψ(0)

∂ψ
K
− 1

2

ψ(0)K
− 1

2

ψ(0)

∂Kψ(0)

∂ψ
K
− 1

2

ψ(0)

)
=

∣∣∣∣∣∣∣∣K− 1
2

ψ(0)

∂Kψ(0)

∂ψ
K
− 1

2

ψ(0)

∣∣∣∣∣∣∣∣2
2

≥ inf
i,n,x

φi

(
K
− 1

2

ψ(0)

)4
∣∣∣∣∣∣∣∣∂Kψ(0)

∂ψ

∣∣∣∣∣∣∣∣2
2

.
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By lemma 5.28, there exists a > 0 so that infi,n,x φi

(
K
− 1

2

ψ(0)

)4

≥ a. We then show, similarly to

the proof of proposition 5.7, that the limit of
∣∣∣∣∣∣∂K

ψ(0)

∂ψ

∣∣∣∣∣∣2
2
exists and is positive.

We now address the case p > 1. Let λ = (λ1, ..., λp) ∈ Rp, λ di�erent from zero. We de�ne

the model {Kδ, δ ∈ [δinf , δsup]}, with δinf < 0 < δsup by Kδ = K(ψ(0))
1
+δλ1,...,(ψ(0))

p
+δλp

. Then

Kδ=0 = Kψ(0) . We have

∂

∂δ
Kδ=0 (t) =

p∑
k=1

λk
∂

∂ψk
Kψ(0) (t) ,

so the model {Kδ, δ ∈ [δinf , δsup]} veri�es the hypotheses of proposition 5.10 for p = 1. Hence,

the P-mean square limit of ∂2

∂δ2L(δ = 0) is positive. We conclude with ∂2

∂δ2L(δ = 0) =

λt
(
∂2

∂ψ2L(ψ(0))
)
λ.

Proposition 5.14 now addresses the positivity of the Hessian for CV.

Proof of proposition 5.14. We show the proposition in the case p = 1, the generalization to the

case p > 1 being the same as in proposition 5.10.

Similarly to the proof of proposition 5.7, we show that∣∣∣∣ ∂2

∂ψ2
LOO(ψ0)− E

(
∂2

∂ψ2
LOO(ψ0)

∣∣∣∣X)∣∣∣∣→p 0.

We will then show that there exists C > 0 so that PX -a.s.,

E
(

∂2

∂ψ2
LOO(ψ0)

∣∣∣∣X) ≥ C ∣∣∣∣∣∣∣∣∂Kψ

∂ψ

∣∣∣∣∣∣∣∣2
2

. (5.32)

The proof of the proposition will hence be carried out similarly as in the proof of proposition

5.7.
∂2

∂ψ2LOO(ψ0) can be written as ztMz with z depending on X and Y and L (z|X ) =

N (0, In), and M a sum of matrices ofMψ0
(proposition 5.29). Hence, using proposition 5.29,

uniformly in n, supψ

∣∣∣ ∂2

∂ψ2LOO(ψ)
∣∣∣ ≤ a 1

nz
tz with a < +∞. Hence, for �xed n, we can exchange

derivatives and means conditionally to X and so

E
(
∂2

∂ψ2
LOO(ψ0)|X

)
=

∂2

∂ψ2
E (LOO(ψ0)|X ) .

Then, with ki,ψ, K−i,ψ and y−i the notation of the proof of proposition 5.11,

E (LOO(ψ)|X )

=
1

n

n∑
i=1

[
1− kti,ψ0

K−1
−i,ψ0

ki,ψ0 + E
{(
kti,ψ0

K−1
−i,ψ0

y−i − k
t
i,ψK−1

−i,ψy−i

)2

|X
}]

=
1

n

n∑
i=1

(
1− kti,ψ0

K−1
−i,ψ0

ki,ψ0

)
+

1

n

n∑
i=1

(
kti,ψK−1

−i,ψ − k
t
i,ψ0

K−1
−i,ψ0

)
K−i,ψ0

(
K−1
−i,ψki,ψ −K−1

−i,ψ0
ki,ψ0

)
.
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By di�erentiating twice with respect to ψ and taking the value at ψ0 we obtain

E
(
∂2

∂ψ2
LOO(ψ0)|X

)
=

1

n

n∑
i=1

{
∂

∂ψ

(
K−1
−i,ψ0

kti,ψ0

)}t
K−i,ψ0

{
∂

∂ψ

(
K−1
−i,ψ0

kti,ψ0

)}

≥ A
1

n

n∑
i=1

∣∣∣∣{ ∂

∂ψ

(
K−1
−i,ψ0

kti,ψ0

)}∣∣∣∣2 ,
with A = infn,i,x φ

2
i (K−i,ψ0), A > 0. Then, using the virtual CV formulas of proposition 2.35,

E
(
∂2

∂ψ2
LOO(ψ0)|X

)
≥ A 1

n

∑n
i=1

∑
j 6=i

[
∂
∂ψ

{(
K−1
ψ0

)
i,j(

K−1
ψ0

)
i,i

}]2

(5.33)

= A

∣∣∣∣∣∣∣∣ ∂∂ψ {Diag (K−1
ψ0

)−1

K−1
ψ0

}∣∣∣∣∣∣∣∣2
2

.

Now,

∂

∂ψ

{
Diag

(
K−1
ψ0

)−1

K−1
ψ0

}
(5.34)

= Diag
(
K−1
ψ0

)−1

Diag

(
K−1
ψ0

∂Kψ0

∂ψ
K−1
ψ0

)
Diag

(
K−1
ψ0

)−1

K−1
ψ0

−Diag
(
K−1
ψ0

)−1
(

K−1
ψ0

∂Kψ0

∂ψ
K−1
ψ0

)
.

Hence, from (5.33) and (5.34), and with B = infi,n,x φi

(
K−1
ψ0

)
, B > 0,

E
(
∂2

∂ψ2
LOO(ψ0)|X

)
≥ A2B

∣∣∣∣∣∣∣∣Diag(K−1
ψ0

∂Kψ0

∂ψ
K−1
ψ0

)
Diag

(
K−1
ψ0

)−1

−K−1
ψ0

∂Kψ0

∂ψ

∣∣∣∣∣∣∣∣2
2

≥ A2B inf
λ1,...,λn

∣∣∣∣∣∣∣∣Dλ −K−1
ψ0

∂Kψ0

∂ψ

∣∣∣∣∣∣∣∣2
2

≥ A2B2 inf
λ1,...,λn

∣∣∣∣∣∣∣∣Kψ0Dλ −
∂Kψ0

∂ψ

∣∣∣∣∣∣∣∣2
2

.

Then, as Kψ (0) = 1 for all ψ, and hence ∂
∂ψKψ0

(0) = 0,

E
(
∂2

∂ψ2
LOO(ψ0)|X

)

≥ A2B2 inf
λ1,...,λn

1

n

n∑
i=1

λ2
i +

∑
j 6=i

{
λi (Kψ0

)i,j −
(
∂Kψ0

∂ψ

)
i,j

}2


= A2B2 1

n

n∑
i=1

inf
λ

λ2 +
∑
j 6=i

{
λ (Kψ0)i,j −

(
∂Kψ0

∂ψ

)
i,j

}2
 .

We then show, similarly to lemma 5.34, that

λ2 +

n∑
i=1

(ai − λbi)2 ≥
∑n
i=1 a

2
i

1 +
∑n
i=1 b

2
i

. (5.35)
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Hence, with C ∈ [1,+∞), by using (5.3) and lemma 5.24,

E
(
∂2

∂ψ2
LOO(ψ0)|X

)
≥ A2B2

C

1

n

n∑
i=1

∑
j 6=i

{(
∂Kψ0

∂ψ

)
i,j

}2

=
A2B2

C

∣∣∣∣∣∣∣∣∂Kψ0

∂ψ

∣∣∣∣∣∣∣∣2
2

because ∂
∂ψKψ0(0) = 0.

We then showed (5.32), which concludes the proof in the case p = 1.

Proof for the second derivatives of the asymptotic covariance matrices

Proof of proposition 5.16. It is enough to show the proposition for ε ∈ [0, α] for all α < 1
2 . We

use the following lemma.

Lemma 5.40. Let fn be a sequence of C2 functions on a segment of R. We assume fn →unif f ,

f ′n →unif g, f
′′
n →unif h. Then, f is C2, f ′ = g, and f ′′ = h.

We denote fn (ε) = 1
nE
{
Tr
(
M(i,j)

)}
where (M(i,j))n∈N∗ is a random matrix sequence de-

�ned on (ΩX ,FX , PX) which belongs toMθ (proposition 5.29). We showed in proposition 5.31

that fn converges simply to Σi,j on [0, α]. We �rstly use the dominated convergence theorem

to show that fn is C2 and that f ′n and f ′′n are of the form

E
{

1

n
Tr
(
N(i,j)

)}
, (5.36)

with N(i,j) a sum of random matrix sequences of M̃θ0 . M̃θ0 is similar to Mθ0 (proposition

5.29), with the addition of the derivative matrices with respect to ε. We can then, using (5.9),

adapt proposition 5.31 to show that f ′n and f ′′n converge simply to some functions g and h on

[0, α].

Finally, adapting proposition 5.29, the singular values of N(i,j) are bounded uniformly in x

and n. Hence, using Tr (A) ≤ n||A||, for a symmetric matrix A, the derivatives of fn, f ′n and

f ′′n are bounded uniformly in n, so that the simple convergence implies the uniform convergence.

The conditions of lemma 5.40 are hence ful�lled.

5.7.2 Proofs for subsection 5.3.2

We denote ∂ψK = ∂
∂ψK, ∂εK = ∂

∂εK, ∂ε,ψK = ∂
∂ε

∂
∂ψK, ∂ε,εK = ∂2

∂ε2 K and ∂ε,ε,ψK = ∂2

∂ε2
∂
∂ψK.

These matrices have some sort of the Toeplitz structure of (5.10). For instance, ∂ψK is

Toeplitz because

(∂ψK)i,j =
∂

∂ψ
Kψ0

(i− j)

and ∂ε,ψK is the element-wise product of a Toeplitz matrix with a zero-mean matrix because

(∂ε,ψK)i,j = (Xi −Xj)
∂

∂t

∂

∂ψ
Kψ0

(i− j).

Thus, we will make use of the following classical results on the convergence of traces, products

and inverses of Toeplitz matrices.
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Proposition 5.41. Let k ∈ N∗ and f1, ..., fk be C∞ 2π-periodic complex functions on [−π, π]

so that f(−t) = f(t), where f(t) is the conjugate of f(t).

We de�ne their associated Fourier transform sequences by the unique sequences s(1), ..., s(k)

on RZ so that fi(t) =
∑
a∈Z s

(i)
a eiat for all t ∈ [−π, π].

De�ne the sequences of Toeplitz matrices T(f1), ...,T(fk), by, at step n, T(fi) is de�ned by

(T(fi))k,l = s
(i)
k−l.

Let I1, ..., Ik ∈ {−1, 1}, and assume that for Ij = −1, fj is positive-valued.

Then, 1
nTr(T(f1)I1 ...T(fk)Ik) converges to M(f I11 , ..., f Ikk ), with M(f) the mean value of f

on [−π, π].

Proof of proposition 5.41. The proposition naturally follows for the results given in [Gra01],

where the proofs are pedagogic.

As an example of the utilization of proposition 5.41, the trace

1

n
Tr((∂ψK)K−1)

converges, with the notations of subsection 5.3.2, to M(
fψ
f ).

Proof of proposition 5.18

Proof of proposition 5.18. We only give the proof of the expression of ∂2

∂ε2 ΣML

∣∣∣
ε=0

, since the

proofs of the expressions of ΣML, ΣCV,1 and ΣCV,2 are simpler and essentially follow from

proposition 5.41.

Using proposition 5.42 below,

1

n

{
∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)}
= 2

1

n
Tr
(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
−4

1

n
Tr
(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
+4

1

n
Tr
(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
−2

1

n
Tr
(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
+2

1

n
Tr
(
K−1 ∂ε,ψK K−1 ∂ε,ψK

)
−4

1

n
Tr
(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
+2

1

n
Tr
(
K−1 ∂ψK K−1 ∂ε,ε,ψK

)
.
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Hence,

1

n

{
∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)}
(5.37)

= 2
1

n
Tr
(
∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK K−1

)
−4

1

n
Tr
(
∂ε,ψK K−1 ∂εK K−1 ∂ψK K−1

)
+4

1

n
Tr
(
∂εK K−1 ∂εK K−1 ∂ψK K−1 ∂ψK K−1

)
−2

1

n
Tr
(
∂ε,εK K−1 ∂ψK K−1 ∂ψK K−1

)
+2

1

n
Tr
(
∂ε,ψK K−1 ∂ε,ψK K−1

)
−4

1

n
Tr
(
∂εK K−1 ∂ε,ψK K−1 ∂ψK K−1

)
+2

1

n
Tr
(
∂ε,ε,ψK K−1 ∂ψK K−1

)
.

Using proposition 5.41, we have K−1 ∂ψK K−1 = T (f)
−1

T (fψ) T (f)
−1 ∼n→∞ T

(
fψ
f2

)
because f and ψf are C∞ and f is positive. Hence, as the eigenvalues of ∂εK are uniformly

bounded, we obtain, using proposition 5.41 and (5.19),

∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK K−1 ∼n→∞ ∂εK T

(
fψ
f2

)
∂εK T

(
fψ
f2

)
, (5.38)

and hence

1

n
Tr
(
∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK K−1

)
(5.39)

=
1

n
Tr

{
∂εK T

(
fψ
f2

)
∂εK T

(
fψ
f2

)}
+ o (1) .

(5.38) is uniform in x = (x1, ..., xn) ∈ [−1, 1]n so that (5.39) is uniform in x = (x1, ..., xn) ∈
[−1, 1]n. Applying the method above for all the terms of (5.37), we obtain

1

n

{
∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)}
+ o (1)

= 2
1

n
Tr

{
∂εK T

(
fψ
f2

)
∂εK T

(
fψ
f2

)}
− 4

1

n
Tr

{
∂ε,ψK T

(
1

f

)
∂εK T

(
fψ
f2

)}
+4

1

n
Tr

{
∂εK T

(
1

f

)
∂εK T

(
f2
ψ

f3

)}
− 2

1

n
Tr

{
∂ε,εK T

(
f2
ψ

f3

)}

+2
1

n
Tr

{
∂ε,ψK T

(
1

f

)
∂ε,ψK T

(
1

f

)}
−4

1

n
Tr

{
∂εK T

(
1

f

)
∂ε,ψK T

(
fψ
f2

)}
+ 2

1

n
Tr

{
∂ε,ε,ψK T

(
fψ
f2

)}
+ o (1) .

For a matrix A, we de�ne Ax by (Ax)i,j = Ai,j (Xi −Xj) and Ax,x by (Ax,x)i,j =

Ai,j (Xi −Xj)
2, where the Xi are the random perturbations.
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We then have, since ε = 0,

K = T (f) ,

∂ψK = T (fψ) ,

∂εK = Tx (i ft) ,

∂ε,ψK = Tx (i ft,ψ) ,

∂ε,εK = Tx,x ( ft,t)

and

∂ε,ε,ψK = Tx,x ( ft,t,ψ) .

With these notations:

1

n

{
∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)}
= 2

1

n
Tr

{
Tx (ft) T

(
fψ
f2

)
Tx (ft) T

(
fψ
f2

)}
−4

1

n
Tr

{
Tx (ft,ψ) T

(
1

f

)
Tx (ft) T

(
fψ
f2

)}
+4

1

n
Tr

{
Tx (ft) T

(
1

f

)
Tx (ft) T

(
f2
ψ

f3

)}

−2
1

n
Tr

{
Tx,x (ft,t) T

(
f2
ψ

f3

)}

+2
1

n
Tr

{
Tx (ft,ψ) T

(
1

f

)
Tx (ft,ψ) T

(
1

f

)}
−4

1

n
Tr

{
Tx (ft) T

(
1

f

)
Tx (ft,ψ) T

(
fψ
f2

)}
+2

1

n
Tr

{
Tx,x (ft,t,ψ) T

(
fψ
f2

)}
+ o (1) .

Hence, using propositions 5.43 and 5.45 below, we obtain the following, where the mean

value E[.] is with respect to the perturbation vector X , and where we also use the notation E[.]

when ε = 0 to unify the cases ε = 0 and ε 6= 0.
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lim
n→+∞

E
[

1

n

{
∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)}]
= 2

{
1

3
M

(
fψ
f2

)
M

(
ft ft fψ
f2

)
+

1

3
M

(
fψ
f2

)
M

(
ft ft fψ
f2

)}
−4

{
1

3
M

(
1

f

)
M

(
ft,ψ ft fψ

f2

)
+

1

3
M

(
fψ
f2

)
M

(
ft,ψ ft
f

)}
+4

{
1

3
M

(
1

f

)
M

(
ft ft f

2
ψ

f3

)
+

1

3
M

(
f2
ψ

f3

)
M

(
ft ft
f

)}

−2
2

3
M

(
ft,t f

2
ψ

f3

)

+2

{
1

3
M

(
1

f

)
M

(
ft,ψ ft,ψ

f

)
+

1

3
M

(
1

f

)
M

(
ft,ψ ft,ψ

f

)}
−4

{
1

3
M

(
1

f

)
M

(
ft ft,ψ fψ

f2

)
+

1

3
M

(
fψ
f2

)
M

(
ft ft,ψ
f

)}
+2

2

3
M

(
ft,t,ψ fψ
f2

)
,

=
4

3
M

(
fψ
f2

)
M

(
f2
t fψ
f2

)
−8

3
M

(
1

f

)
M

(
ft,ψ ft fψ

f2

)
− 8

3
M

(
fψ
f2

)
M

(
ft,ψ ft
f

)
+

4

3
M

(
1

f

)
M

(
f2
t f

2
ψ

f3

)
+

4

3
M

(
f2
ψ

f3

)
M

(
f2
t

f

)

−4

3
M

(
ft,t f

2
ψ

f3

)

+
4

3
M

(
1

f

)
M

(
f2
t,ψ

f

)

+
4

3
M

(
ft,t,ψ fψ
f2

)
.

Expression of the second derivative of the Fisher information with respect to ε

In proposition 5.42 we give the expression of the second derivative w.r.t ε of the (modi�ed)

Fisher information Tr
(
K−1 ∂ψK K−1 ∂ψK

)
.

152



CHAPTER 5. CROSS VALIDATION AND MAXIMUM LIKELIHOOD WITH
WELL-SPECIFIED FAMILY OF COVARIANCE FUNCTIONS

Proposition 5.42.

∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)
= 2Tr

(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
−4Tr

(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
+4Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
−2Tr

(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
+2Tr

(
K−1 ∂ε,ψK K−1 ∂ε,ψK

)
−4Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
+2Tr

(
K−1 ∂ψK K−1 ∂ε,ε,ψK

)
.

Proof of proposition 5.42. We use ∂
∂εTr

(
M2
)

= 2Tr
(
M ∂

∂εM
)
. Then:

∂

∂ε
Tr
(
K−1 ∂ψK K−1 ∂ψK

)
(5.40)

= 2Tr
(
K−1 ∂ψK

(
−K−1 ∂εK K−1 ∂ψK + K−1 ∂ε,ψK

))
= −2Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
+2Tr

(
K−1 ∂ψK K−1 ∂ε,ψK

)
.

We use ∂
∂εTr (ABCDEF) = Tr

(
∂
∂εA B C D E F + ...+ A B C D E ∂

∂εF
)
. Then

∂

∂ε
Tr
(
K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
(5.41)

= −Tr
(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
+Tr

(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
−Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
+
(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
−Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
+
(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
= −Tr

(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
+Tr

(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
−2Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
+
(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
+
(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
and

∂

∂ε
Tr
(
K−1 ∂ψK K−1 ∂ε,ψK

)
(5.42)

= −Tr
(
K−1 ∂εK K−1 ∂ψK K−1 ∂ε,ψK

)
+ Tr

(
K−1 ∂ε,ψK K−1 ∂ε,ψK

)
−Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
+ Tr

(
K−1 ∂ψK K−1 ∂ε,ε,ψK

)
.
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Using (5.40), (5.41) and (5.42), and using Tr (AB) = Tr (BA) we obtain

∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)
= 2Tr

(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
−2Tr

(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
+4Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
−2Tr

(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
−2
{
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

}
−2Tr

(
K−1 ∂εK K−1 ∂ψK K−1 ∂ε,ψK

)
+2Tr

(
K−1 ∂ε,ψK K−1 ∂ε,ψK

)
−2Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
+2Tr

(
K−1 ∂ψK K−1 ∂ε,ε,ψK

)
,

so that,

∂2

∂ε2
Tr
(
K−1 ∂ψK K−1 ∂ψK

)
= 2Tr

(
K−1 ∂εK K−1 ∂ψK K−1 ∂εK K−1 ∂ψK

)
−4Tr

(
K−1 ∂ε,ψK K−1 ∂εK K−1 ∂ψK

)
+4Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂εK K−1 ∂ψK

)
−2Tr

(
K−1 ∂ψK K−1 ∂ε,εK K−1 ∂ψK

)
+2Tr

(
K−1 ∂ε,ψK K−1 ∂ε,ψK

)
−4Tr

(
K−1 ∂ψK K−1 ∂εK K−1 ∂ε,ψK

)
+2Tr

(
K−1 ∂ψK K−1 ∂ε,ε,ψK

)
.

Two convergence results

We state and prove two convergence results used in the proof of proposition 5.18.

Proposition 5.43. Let f1, f2, f3 and f4 be 2π-periodic and C∞ functions on [−π, π]. Further-

more we suppose that f1 and f3 are odd and that f2 and f4 are even. Then

E
[

1

n
Tr {Tx (if1) T (f2) Tx (if3) T (f4)}

]
→n→∞

1

3
M (f2)M (f1f3f4) +

1

3
M (f4)M (f1f2f3) .
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Proof of proposition 5.43. We calculate

Tr (ABCD) =

n∑
i,j=1

(AB)i,j (CD)j,i

=

n∑
i,j=1

(
n∑
k=1

Ai,kBk,i

)(
n∑
l=1

Cj,lDl,i

)

=

n∑
i,j,k,l=1

Ai,kBk,jCj,lDl,i.

Then we obtain the following, where, again, the mean value E[.] is with respect to the

perturbation vector X .

E [Tr {Tx (if1) T (f2) Tx (if3) T (f4)}] (5.43)

= E


n∑

i,j,k,l=1

(Xi −Xk)T (if1)i,k T (f2)k,j (Xj −Xl)T (if3)j,l T (f4)l,i


= E


n∑

i,j,k,l=1

T (if1)i,k T (f2)k,j T (if3)j,l T (f4)l,i (XiXj −XkXj −XiXl +XkXl)


=

1

3

n∑
i,k,l=1

T (if1)i,k T (f2)k,i T (if3)i,l T (f4)l,i

−1

3

n∑
i,j,l=1

T (if1)i,j T (f2)j,j T (if3)j,l T (f4)l,i

−1

3

n∑
i,j,k=1

T (if1)i,k T (f2)k,j T (if3)i,j T (f4)i,i

+
1

3

n∑
i,j,k=1

T (if1)i,k T (f2)k,j T (if3)j,k T (f4)k,i .

Then

1

n

n∑
i,k,l=1

T (if1)i,k T (f2)k,i T (if3)i,l T (f4)l,i

=
1

n

n∑
i,k=1

T (if1)i,k T (f2)k,i

{
n∑
l=1

T (if3)i,l T (f4)l,i

}

=
1

n

n∑
i,k=1

T (if1)i,k T (f2)k,i (T (if3)T (f4))i,i

=
1

n

n∑
i=1

{T (if3)T (f4)}i,i

{
n∑
k=1

T (if1)i,k T (f2)k,i

}

=
1

n

n∑
i=1

{T (if3)T (f4)}i,i {T (if1)T (f2)}i,i .

We use lemma 5.44 for the convergence of this last term.

Lemma 5.44. For ||A′n − An||2 → 0, ||B′n − Bn||2 → 0, supi,j,n

∣∣∣(An)i,j

∣∣∣ < ∞ and supi,j,n∣∣∣(B′n)i,j

∣∣∣ <∞,
∣∣∣ 1
n

∑n
i=1 (A′n)i,i (B′n)i,i −

1
n

∑n
i=1 (An)i,i (Bn)i,i

∣∣∣→ 0.
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Proof of lemma 5.44.

∣∣∣∣∣ 1n
n∑
i=1

(A′n)i,i (B′n)i,i −
1

n

n∑
i=1

(An)i,i (Bn)i,i

∣∣∣∣∣
2

≤ 1

n2
n

n∑
i=1

{
(A′n)i,i (B′n)i,i − (An)i,i (Bn)i,i

}2

, by Cauchy-Schwartz,

≤ 1

n

n∑
i,j=1

{
(A′n)i,j (B′n)i,j − (An)i,j (Bn)i,j

}2

≤ 2
1

n

n∑
i,j=1

{
(A′n)i,j (B′n)i,j − (An)i,j (B′n)i,j

}2

+2
1

n

n∑
i,j=1

{
(An)i,j (B′n)i,j − (An)i,j (Bn)i,j

}2

≤ 2 sup
i,j,n

∣∣∣(B′n)i,j

∣∣∣ 1

n

n∑
i,j=1

{
(A′n)i,j − (An)i,j

}2

+2 sup
i,j,n

∣∣∣(An)i,j

∣∣∣ 1

n

n∑
i,j=1

{
(B′n)i,j − (Bn)i,j

}2

≤ 2 sup
i,j,n

∣∣∣(B′n)i,j

∣∣∣ .||A′n −An||2

+2 sup
i,j,n

∣∣∣(An)i,j

∣∣∣ .||B′n −Bn||2.

We use lemma 5.44 with A′n = T (if1) T (f2), An = T (if1f2), B′n = T (if3) T (f4) and

Bn = T (if3f4). It is shown in proposition 5.41 that ||A′n−An||2 → 0 and ||B′n−Bn||2 → 0. As

if1f2 is C∞, the coe�cients of T (if1f2) are uniformly bounded. Finally {T (if1) T (f2)}i,j ≤
supi,j,n

∣∣∣T (if1)i,j

∣∣∣∑k∈Z

∣∣∣T (f2)k,j

∣∣∣ which is uniformly bounded because if1 and f2 are C∞.

Hence

1

n

n∑
i,k,l=1

T (if1)i,k T (f2)k,i T (if3)i,l T (f4)l,i (5.44)

=
1

n

n∑
i=1

{T (if3) T (f4)}i,i {T (if1) T (f2)}i,i

=
1

n

n∑
i=1

{T (if3f4)}i,i {T (if1f2)}i,i + o (1)

→
n→+∞

M (if3f4)M (if1f2)

= 0, because f3f4 is odd.

We show similarly

1

n

n∑
i,j,k=1

T (if1)i,k T (f2)k,j T (if3)j,k T (f4)k,i → 0. (5.45)
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Then

1

n

n∑
i,j,l=1

T (if1)i,j T (f2)j,j T (if3)j,l T (f4)l,i (5.46)

= M (f2)
1

n

n∑
i,j,l=1

T (if1)i,j T (if3)j,l T (f4)l,i

= M (f2)
1

n

n∑
i,j=1

T (if1)i,j

{
n∑
l=1

T (if3)j,l T (f4)l,i

}

= M (f2)
1

n

n∑
i,j=1

T (if1)i,j {T (if3)T (f4)}j,i

= M (f2)
1

n
Tr {T (if1) T (if3) T (f4)}

→ M (f2)M (if1if3f4) , using proposition 5.41,

= −M (f2)M (f1f3f4) .

We show similarly

1

n

n∑
i,j,k=1

T (if1)i,k T (f2)k,j T (if3)i,j T (f4)i,i → −M (f4)M (f1f2f3) . (5.47)

We conclude with (5.43), (5.44), (5.45), (5.46) and (5.47)

Proposition 5.45. Let f1 and f2 be 2π-periodic, C∞, functions on [−π, π], with f1 odd. Then

E
[

1

n
Tr {Tx,x (f1) T (f2)}

]
→ 2

3
M (f1f2) .

Proof of proposition 5.45.

E
[

1

n
Tr {Tx,x (f1) T (f2)}

]

= E

 1

n

n∑
i,j=1

T (f1)i,j (Xi −Xj)
2
T (f2)j,i


=

1

n

2

3

n∑
i,j=1

T (f1)i,j T (f2)j,i

=
2

3

1

n
Tr {T (f1) T (f2)}

→ 2

3
M (f1f2) , using proposition 5.41.
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5.7.3 Proofs for section 5.5

Proof of proposition 5.20. We show, rather similarly to the proof of proposition 5.11,

E
(
MSEψ −MSEψ(0)

)
= E

[
1

Nd

∫
[0,N ]d

(Y (x)− ŷψ(x))2dx− 1

Nd

∫
[0,N ]d

(Y (x)− ŷψ(0)(x))2dx

]

= E

[
1

Nd

∫
[0,N ]d

(ŷψ(x)− ŷψ(0)(x))2dx

]

= EX1,...,XNd

[
1

Nd

∫
[0,N ]d

EY |X1,...,XNd

[
(ŷψ(x)− ŷψ(0)(x))2

]
dx

]
,

where EY |X1,...,XNd
means that the mean value is calculated conditionally to X1, ..., XNd , and

where the notation Y emphasizes that the only random variable remaining is Y .

Then, with d(x, X1, ..., XNd) = min1≤i≤Nd |x−Xi|∞,

E
(
MSEψ −MSEψ(0)

)
≥ EX1,...,XNd

[
1

Nd

∫
[0,N ]d

1d(x,X1,...,XNd )≥δEY |X1,...,XNd

[
(ŷψ(x)− ŷψ(0)(x))2

]
dx

]
. (5.48)

Let LNd+1 be the distribution on (Rd)Nd+1 obtained by the following procedure. First,

generate independently X1, ..., XNd , uniformly on [0, N ]d, conditionally to the constraint that,

for i 6= j, |Xi −Xj |∞ ≥ δ. Second, conditionally to X1, ..., XNd , generate XNd+1 uniformly on

[0, N ]d, conditionally to the constraint that d(x, X1, ..., XNd) ≥ δ.
It can be shown that the distribution LNd+1 can be obtained equivalently by generating

independentlyX1, ..., XNd+1, uniformly on [0, N ]d, conditionally to the constraint that, for i 6= j,

|Xi − Xj |∞ ≥ δ. Thus, in (5.48), the integrand variable x can be seen as following the same

distribution as the X1, ..., XNd . Indeed, let PX1,...,XNd
be the probability, given X1, ..., XNd ,

that X, following an uniform distribution on [0, N ]d, verify d(X,X1, ..., XNd) ≥ δ. Then, with

X1, ..., XNd+1 ∼ LNd+1, the probability density function of XNd+1 conditionally to X1, ..., XNd

is x→ 1
Nd

1x∈[0,N ]d1d(x,X1,...,XNd )≥δ
1

PX1,...,XNd
. Hence we obtain,

E
(
MSEψ −MSEψ(0)

)
≥ EX1,...,XNd+1

∼L
Nd+1

PX1,...,XNd

[
EY |X1,...,XNd+1

(ŷψ(XNd+1)− ŷψ(0)(XNd+1))2
]
.

Next,

PX1,...,XNd+1
≥ Nd − (2δ)dNd

Nd
= 1− (2δ)d.

Hence

E
(
MSEψ −MSEψ(0)

)
≥
(
1− (2δ)d

)
EX1,...,XNd+1

∼L
Nd+1

[
EY |X1,...,XNd+1

(ŷψ(XNd+1)− ŷψ(0)(XNd+1))2
]
.

Now, in the distribution LX1,...,XNd+1
, the variables X1, ..., XNd+1 have symmetric roles. Hence
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E
(
MSEψ −MSEψ(0)

)
≥
(
1− (2δ)d

) 1

Nd + 1

Nd+1∑
i=1

E
[
(ŷi,ψ − ŷi,ψ(0))2

]
.

where ŷi,ψ is the LOO prediction of Y (Xi) according to the covariance hyper-parameter ψ and

the observations Y (X1), ..., Y (Xi−1), Y (Xi+1), ..., Y (XNd+1).

Let Kψ be the (Nd + 1) × (Nd + 1) covariance matrix of Y at X1, ..., XNd+1. With

X1, ..., XNd+1 ∼ LNd+1, the condition mini 6=j |Xi − Xj |∞ ≥ δ ensures that the singular val-

ues of the matrices Kψ, K−1
ψ and ∂Kψ

∂ψi1 ...∂ψik
can be upper-bounded uniformly in n, x and ψ

similarly to lemma 5.28. Thus, we can show, in the same way as in the proof of proposition

5.11, that there exists a constant B < +∞ so that

E
(
MSEψ −MSEψ(0)

)
≥ B

(
1− (2δ)d

) 1

Nd + 1

∑
i6=j

E
[(
Kψ(Xi −Xj)−Kψ(0)(Xi −Xj)

)2]
.

Now, with X,X ′ being two random variables on [0, N ]d, following independent uniform

distributions, conditionally to the constraint that |X −X ′|∞ ≥ δ, we obtain

E
(
MSEψ −MSEψ(0)

)
≥ B

(
1− (2δ)d

)
NdEX,X′

[(
Kψ(X −X ′)−Kψ(0)(X −X ′)

)2]
.

The probability density distribution of X −X ′ at t ∈ [−N,N ]d\[−δ, δ]d is

1

Nd

d∏
i=1

(
1− |ti|

N

)
1

P (|X −X ′|∞ ≥ δ)
≥ 1

Nd

d∏
i=1

(
1− |ti|

N

)
.

Hence,

E
(
MSEψ −MSEψ(0)

)
≥ B

(
1− (2δ)d

) ∫
[−N,N ]d\[−δ,δ]d

(
Kψ(t)−Kψ(0)(t)

)2 d∏
i=1

(
1− |ti|

N

)
dt

→N→+∞ B
(
1− (2δ)d

) ∫
Rd\[−δ,δ]d

(
Kψ(t)−Kψ(0)(t)

)2
dt,

using the dominated convergence theorem on Rd.

Proof of proposition 5.21. Let us �rst show (5.13). Consider a consistent estimator ψ̂ of ψ(0).

Since |ψ̂ −ψ(0)| = op(1), it is su�cient to show that sup1≤i≤p,ψ∈Ψ | ∂∂ψiEε,ψ| = Op(1).

Consider a �xed n. Because the trajectory Y (t) is almost surely continuous on [0, N1,n]d,

because for every ψ ∈ Ψ, 1 ≤ i ≤ p, ∂
∂ψi

Kψ(t) is continuous with respect to t and because,

from (5.3), supψ∈Ψ,1≤i≤p

∣∣∣ ∂
∂ψi

Kψ(t)
∣∣∣ is bounded, we can almost surely exchange integration and

derivation w.r.t. ψi in the expression of Eε,ψ. Thus, we have almost surely

∂

∂ψi
Eε,ψ =

1

Nd
1,n

∫
[0,N1,n]d

∂

∂ψi

(
(Y (t)− ŷψ(t))

2
)
dt

=
2

Nd
1,n

∫
[0,N1,n]d

(Y (t)− ŷψ(t))

(
−
∂ktψ(t)

∂ψi
K−1
ψ + ktψ(t)K−1

ψ

∂Kψ

∂ψi
K−1
ψ

)
ydt,
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with (kψ(t))j = Kψ(v(j) + εx(j) − t). Then

E

(
sup
ψ∈Ψ

∣∣∣∣ ∂∂ψiEε,ψ
∣∣∣∣
)

≤ 2

Nd
1,n

∫
[0,N1,n]d

E

(
sup
ψ∈Ψ

{
|Y (t)− ŷψ(t)|

∣∣∣∣∣
(
∂ktψ(t)

∂ψi
K−1
ψ − k

t
ψ(t)K−1

ψ

∂Kψ

∂ψi
K−1
ψ

)
y

∣∣∣∣∣
})

dt

≤ 2

Nd
1,n

√√√√∫
[0,N1,n]d

E

(
sup
ψ∈Ψ

{
(Y (t)− ŷψ(t))

2
})

×

√√√√√∫
[0,N1,n]d

E

 sup
ψ∈Ψ


((

∂ktψ(t)

∂ψi
K−1
ψ − k

t
ψ(t)K−1

ψ

∂Kψ

∂ψi
K−1
ψ

)
y

)2

 dt

≤ 2

Nd
1,n

√√√√2

∫
[0,N1,n]d

E ({Y (t)2}) + 2

∫
[0,N1,n]d

E

(
sup
ψ∈Ψ

{
(ŷψ(t))

2
})

×

√√√√√∫
[0,N1,n]d

E

 sup
ψ∈Ψ


((

∂ktψ(t)

∂ψi
K−1
ψ − k

t
ψ(t)K−1

ψ

∂Kψ

∂ψi
K−1
ψ

)
y

)2

 dt

=
2

Nd
1,n

√√√√2Kψ(0)(0)Nd
1,n + 2

∫
[0,N1,n]d

E

(
sup
ψ∈Ψ

{
(ŷψ(t))

2
})

×

√√√√√∫
[0,N1,n]d

E

 sup
ψ∈Ψ


((

∂ktψ(t)

∂ψi
K−1
ψ − k

t
ψ(t)K−1

ψ

∂Kψ

∂ψi
K−1
ψ

)
y

)2

 dt. (5.49)

In (5.49), the two supremums can be written

E

(
sup
ψ∈Ψ

{(
wψ(t)ty

)2})
,

with wψ(t) a column vector of size n, not depending on y.

Fix t ∈ [0, N1,n]d. We now use Sobolev embedding theorem (see e.g [Tar07]) on the space Ψ,

equipped with the Lebesgue measure. This theorem implies that for f : Ψ→ R, supψ∈Ψ |f(ψ)| ≤
Cp
∫

Ψ

(
|f(ψ)|p +

∑p
j=1

∣∣∣ ∂
∂ψj

f(ψ)
∣∣∣p) dψ, with Cp a �nite constant depending only on p and Ψ.

By applying this inequality to the C1 function of ψ, (wψ(t)ty)
2, we obtain

E

(
sup
ψ∈Ψ

{(
wψ(t)ty

)2})

≤ E

(
Cp

∫
Ψ

p∑
i=1

∣∣∣∣ ∂∂ψi ((wψ(t)ty
))2∣∣∣∣p dψ

)
+ E

(
Cp

∫
Ψ

∣∣∣((wψ(t)ty
))2∣∣∣p dψ)

= 2Cp

p∑
i=1

∫
Ψ

E
(∣∣∣∣(wψ(t)ty

)( ∂

∂ψi

(
wψ(t)t

)
y

)∣∣∣∣p) dψ + Cp

∫
Ψ

E
({
wψ(t)ty

}2p
)
dψ

≤ 2Cp

p∑
i=1

√∫
Ψ

E
(
{(wψ(t)ty)}2p

)
dψ

√√√√∫
Ψ

E

({(
∂

∂ψi
(wψ(t)t)y

)}2p
)
dψ

+ Cp

∫
Ψ

E
({
wψ(t)ty

}2p
)
dψ.
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There exists a constant C ′p, depending only on p so that, for Z a centered Gaussian variable,

E(Z2p) = C ′pV ar(Z)p. Thus, we obtain

E

(
sup
ψ∈Ψ

{(
wψ(t)ty

)2})

≤ 2CpC
′
p

p∑
i=1

√∫
Ψ

[
E
(
{wψ(t)ty}2

)]p
dψ

√√√√∫
Ψ

[
E

({
∂

∂ψi
(wψ(t)t)y

}2
)]p

dψ

+ CpC
′
p

∫
Ψ

[
E
({
wψ(t)ty

}2
)]p

dψ. (5.50)

Fix 1 ≤ i ≤ p in (5.50). By using (5.3), a slight modi�cation of lemma 5.24 and lemma 5.23,

supψ∈Ψ,t∈[0,N1,n]d |wψ(t)|2 ≤ A and supψ∈Ψ,t∈[0,N1,n]d | ∂∂ψiwψ(t)|2 ≤ A, independently of n and

x and for a constant A < +∞. Thus, in (5.50), E
(
{wψ(t)ty}2

)
= EX

(
wψ(t)tKψ(0)wψ(t)t

)
≤

AB, with B = supn,x ||Kψ(0) ||. We show in the same way E
({

∂
∂ψi

(wψ(t)t)y
}2
)
≤ AB.

Hence, from (5.49) and (5.50), we have shown that, for 1 ≤ i ≤ p,

E

(
sup
ψ∈Ψ

∣∣∣∣ ∂∂ψiEε,ψ
∣∣∣∣
)

is bounded independently of n. Hence supψ∈Ψ,1≤i≤p | ∂∂ψiEε,ψ| = Op(1), which proves (5.13).

Let us now prove (5.14).

E
(
Eε,ψ(0)

)
= E

(
1

(N1,n)d

∫
[0,N1,n]d

(
Y (t)− ŷψ(0)(t)

)2
dt

)

=
1

(N1,n)d

∫
[0,N1,n]d

EX

(
1− ktψ(0)(t)K

−1
ψ(0)kψ(0)(t)

)
dt.

Now, let K̃ψ(0)(t) be the covariance matrix of (Y (t), y1, ..., yn)t, under covariance functionKψ(0) .

Then, because of the virtual Leave-One-Out formulas of proposition 2.35,

E
(
Eε,ψ(0)

)
=

1

(N1,n)d

∫
[0,N1,n]d

EX

(
1

(K̃−1
ψ(0)(t))1,1

)
dt

≥ 1

Nd
1,n

n∑
i=1

∫
∏d
k=1[(v(i))

k
+ε+ 1

2 ( 1
2−ε),(v(i))

k
+1−ε− 1

2 ( 1
2−ε)]

EX

(
1

(K̃−1
ψ(0)(t))1,1

)
dt

Now, for t ∈
∏d
k=1[

(
v(i)
)
k

+ ε + 1
2 ( 1

2 − ε),
(
v(i)
)
k

+ 1 − ε − 1
2 ( 1

2 − ε)], infn,1≤j≤n,x∈SnX |t −
v(j)− εx(j)|∞ ≥ 1

2

(
1
2 − ε

)
. Thus, we can adapt proposition 5.26 to show that the eigenvalues of

K̃ψ(0)(t) are larger than A > 0, independently of n, x and t ∈ ∪1≤i≤n
∏d
k=1[

(
v(i)
)
k

+ ε+ 1
2 ( 1

2 −
ε),
(
v(i)
)
k

+ 1− ε− 1
2 ( 1

2 − ε)]. This yields

E
(
Eε,ψ(0)

)
≥ A

Nd
1,n

Nd
1,n

(
1

2
− ε
)d

,

which concludes the proof.

161



Chapter 6

Cross Validation and Maximum

Likelihood with misspeci�ed family

of covariance functions

This chapter is inspired by the article [Bac13].

6.1 Introduction

In this chapter 6, we aim at further comparing the ML and CV estimations of the covariance

hyper-parameters. The conclusion of chapter 5, addressing the increasing-domain asymptotic

framework, is that ML is preferable, in the well-speci�ed case, when the true covariance function

of the Gaussian process does belong to the parametric set used for estimation. Concerning �xed-

domain asymptotics, we have seen in chapter 4, that only microergodic hyper-parameters have

an asymptotic in�uence on the Kriging predictions, and that these hyper-parameters can be

consistently estimated by ML (although this is not proved yet for all the classical covariance

function families).

Further comparisons have been carried out between ML and CV in the well-speci�ed case.

Concerning theoretical results, [Ste90b] showed that for the estimation of a signal-to-noise ratio

parameter of a Brownian motion, CV has twice the asymptotic variance of ML. For the case of

the estimation of a smoothness and a signal-to-noise ratio parameter, of a covariance function

of a Gaussian process, [Ste93] shows that Modi�ed Maximum Likelihood (MML) yields smaller

asymptotic variances than Generalized Cross Validation (GCV). It is also shown that the two

corresponding prediction errors of the Gaussian process are asymptotically equal, but with a

smaller second-order term for MML than for GCV.

Several numerical results are also available, coming either from Monte Carlo studies as in

[SWN03, ch.3] or deterministic studies as in [MS04]. These numerical comparisons show an

advantage of ML over CV. In both the above numerical studies, the interpolated functions are

smooth, and the covariance structures are adapted, being Gaussian in [MS04] and having a free

smoothness parameter in [SWN03].
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We believe that a framework complementary to the well-speci�ed framework presented above

is also relevant in practice. This framework corresponds to the case when a parametric estimation

is carried out, within a covariance function set, and when the true underlying covariance function

does not belong to this set. We call this the model misspeci�cation case, or the misspeci�ed

framework.

In a context of spline approximation methods, situations similar to the misspeci�ed-framework

we propose here are studied in [Ste93] and [Kou03]. In [Ste93], in a numerical �nite-sample study,

GCV is more robust than MML, for selecting the order and smoothness parameters in a spline

approximation method, to changes in the predictand function when the spline model remains

the same. In [Kou03], an asymptotic comparison between a CV-similar and a Generalized Max-

imum Likelihood (GML) method is carried-out. The results obtained show that there is much

more loss of e�ciency in using inappropriately the GML method than the CV-similar method.

In �xed-domain asymptotics, the misspeci�ed framework is all the more relevant when the

true covariance function is orthogonal (in the sense of Gaussian measures, see chapter 4) to the

covariance functions of the misspeci�ed set. This orthogonality may arise in practice. Indeed, for

instance, for two covariance functions of the Matérn class to be equivalent, it is necessary that

their smoothness parameters are equal (see chapter 4). Yet, it is common practice, especially for

the analysis of computer experiment data, to enforce the smoothness parameter to an arbitrary

value (see e.g [MS04]). A misspeci�ed smoothness parameter can have dramatic consequences,

as observed in numerical experiments in [Vaz05] chapter 5.3.3. [Ste99], chapter 3 also studies the

negative impact of a misspeci�ed smoothness parameter, for a modi�ed version of the Matérn

model.

In view of the discussion above, this chapter 6 aims at comparing ML and CV in the mis-

speci�ed case. We use a two-step approach. In the �rst step, we consider a parametric family

of stationary covariance functions in which only the global variance hyper-parameter is free. In

this framework, we carry out a detailed and quantitative �nite-sample comparison, using the

closed-form expressions for the estimated variances for both the ML and CV methods. For the

second step we study the general case in which the global variance hyper-parameter and the

correlation hyper-parameters are free and estimated from data. We perform extensive numerical

experiments on analytical functions, with various misspeci�cations, and we compare the Kriging

models obtained with the ML and CV estimated hyper-parameters.

Chapter 6 is organized as follows. In section 6.2, we address the case of the estimation

of a single variance parameter. In subsection 6.2.1 we detail the statistical framework, we

introduce an original quality criterion for a variance estimator, and we give a closed-form formula

of this criterion for a large family of estimators. In subsection 6.2.2 we numerically apply

the closed-form formulas of subsection 6.2.1 and we study their dependences with respect to

model misspeci�cation and number of observation points. We highlight our main result that

when the correlation model is misspeci�ed, CV does better compared to ML. Finally in section

6.3 we illustrate this result on the Ishigami analytical function and then generalize it, on the

Ishigami and Morris analytical functions, to the case where the correlation hyper-parameters

are estimated as well.
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6.2 Estimation of a single variance parameter

6.2.1 Theoretical framework

Correlation function error and the Risk criterion

We consider a Gaussian process Y , indexed by a set D. Y is zero-mean, stationary, with unit

variance, and its correlation function is denoted by R1. A Kriging model is built for Y , for which

it is assumed that Y is centered and that its covariance function belongs to the set C, with

C =
{
σ2R2, σ

2 ∈ R+
}
, (6.1)

where R2(x) is a given stationary correlation function. Throughout this chapter, Ei, V ari, Covi
and ∼i, i ∈ {1, 2}, denote means, variances, covariances and probability distributions taken with

respect to the distribution of Y with mean zero, variance one, and the correlation function Ri.

We observe Y on the points x(1), ...,x(n) ∈ D. In this framework, the hyper-parameter σ2 is

estimated from the data y = (y1, ..., yn)t = (Y (x(1)), ..., Y (x(n)))t using an estimator σ̂2. This

estimation does not a�ect the Kriging prediction (2.9) of y0 = Y (x(0)), for a new point x(0),

which we denote by ŷ(x(0)):

ŷ(x(0)) := E2(y0|y) = rt2R
−1
2 y, (6.2)

where (ri)j = Ri(x
(j) − x(0)) and (Ri)j,k = Ri(x

(j) − x(k)), i ∈ {1, 2}, 1 ≤ j, k ≤ n. The

conditional mean square error of this non-optimal prediction is

E1

[
(ŷ(x(0))− y0)2|y

]
= (ŷ(x(0))− E1(y0|y))2 + V ar1(y0|y)

= (rt1R
−1
1 y − rt2R−1

2 y)2 + 1− rt1R−1
1 r1. (6.3)

However, using the covariance family C, we use the classical Kriging predictive variance expres-
sion σ̂2ĉ2(x(0)) in (2.10), that is

σ̂2ĉ2(x(0)) := σ̂2V ar2(y0|y) = σ̂2
(
1− rt2R−1

2 r2

)
. (6.4)

As we are interested in the accuracy of the predictive variances obtained from an estimator σ̂2,

the following notion of Risk can be formulated.

De�nition 6.1. For an estimator σ̂2 of σ2, we call Risk at x(0) and denote by Rσ̂2,x(0) the

quantity

Rσ̂2,x(0) = E1

[(
E1

[
(ŷ(x(0))− y0)2|y

]
− σ̂2ĉ2(x(0))

)2
]
.

If Rσ̂2,x(0) is small, then this means that the predictive variance σ̂2ĉ2(x(0)) is a correct

prediction of the conditional mean square error (6.3) of the prediction ŷ(x(0)). Note that when

R1 = R2 the minimizer of the Risk at every x(0) is σ̂2 = 1. When R1 6= R2, an estimate of

σ2 di�erent from 1 can improve the predictive variance, partly compensating for the correlation

function error.

To complete this section, we give the closed-form expression of the Risk of an estimator that can

be written as a quadratic form of the observations, which is the case for all classical estimators,

including the ML and CV estimators of σ2 in proposition 3.21 and (3.15).
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Proposition 6.2. Let σ̂2 be an estimator of σ2 of the form ytMy with M an n × n matrix.

Denoting

f(A,B) = Tr(A)Tr(B) + 2Tr(AB),

for A, B n× n real matrices,

M0 = (R−1
2 r2 −R−1

1 r1)(rt2R
−1
2 − rt1R

−1
1 )R1,

M1 = MR1,

c1 = 1− rt1R−1
1 r1

and

c2 = 1− rt2R−1
2 r2,

we have:

Rσ̂2,x(0) = f(M0,M0) + 2c1Tr(M0)− 2c2f(M0,M1)

+c21 − 2c1c2Tr(M1) + c22f(M1,M1).

Proof. Using the de�nition of the Risk, the expression of σ̂2, (6.3) and (6.4), we get:

Rσ̂2,x(0) = E1

[
(rt1R

−1
1 y − rt2R−1

2 y)2 + 1− rt1R−1
1 r1

−ytMy(1− rt2R−1
2 r2)

]2
= E1

[
yt(R−1

2 r2 −R−1
1 r1)(rt2R

−1
2 − rt1R

−1
1 )y

+1− rt1R−1
1 r1 − ytMy(1− rt2R−1

2 r2)
]2
.

Then, writing y = R
1
2
1 z with z ∼1 N (0, In), we get:

Rσ̂2,x(0) = E1

(
ztM̃0z + c1 − c2ztM̃1z

)2

, (6.5)

with

M̃0 = R
1
2
1 (R−1

2 r2 −R−1
1 r1)(rt2R

−1
2 − rt1R

−1
1 )R

1
2
1

and

M̃1 = R
1
2
1 MR

1
2
1 .

To compute this expression, we use the following lemma.

Lemma 6.3. Let z ∼1 N (0, In), and A and B be n× n real symmetric matrices. Then:

E1(ztAzztBz) = f(A,B).

Proof of lemma 6.3. This lemma corresponds to (5.20), since E(ztAz) = Tr(A).

Using the lemma and expanding (6.5) yields

Rσ̂2,x(0) = f(M̃0, M̃0) + 2c1Tr(M̃0)− 2c2f(M̃0, M̃1) (6.6)

+c21 − 2c1c2Tr(M̃1) + c22f(M̃1, M̃1).

Finally, based on Tr(AB) = Tr(BA), we can replace M̃0 and M̃1 by M0 and M1 in (6.6),

which completes the proof.
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It seems di�cult at �rst sight to conclude from proposition 6.2 whether one estimator is

better than another one, given a correlation function error and a set of observation points.

Therefore, in subsection 6.2.2, we numerically analyze the Risk for the ML and CV estimators

of the variance for several designs of experiments. Before that, we recall the ML and CV

estimators of σ2, and we con�rm that ML is more e�cient when there is no correlation function

error.

The ML and CV estimators of the variance parameter

In the framework of section 6.2, the ML estimator σ̂2
ML of σ2 (see proposition 3.21) is

σ̂2
ML =

1

n
ytR−1

2 y. (6.7)

Let us now recall the CV estimator of σ2. The principle is that, given a value σ2 spec-

ifying the covariance function used among the set C, we can, for 1 ≤ i ≤ n, compute ŷi :=

E2(yi|y1, ..., yi−1, yi+1, ..., yn) and σ2ĉ2i := σ2V ar2(yi|y1, ..., yi−1, yi+1, ..., yn). The Cross Valida-

tion estimate of σ2 is hence, from (3.15),

σ̂2
LOO =

1

n

n∑
i=1

(yi − ŷi)2

ĉ2i
. (6.8)

By means of the virtual LOO formulas of proposition 2.35, we obtain the following vector-

matrix closed-form expression of (6.8),

σ̂2
LOO =

1

n
ytR−1

2

[
Diag(R−1

2 )
]−1

R−1
2 y.

In chapter 5, we have not addressed the expansion-asymptotic results for σ̂2
LOO in the well-

speci�ed case. In proposition 6.4, we show that, when R1 = R2, this estimator is consistent.

This is expected, because we have seen in chapter 5 that, under mild conditions, all correlation

hyper-parameters are consistently estimated by CV.

Proposition 6.4. Assume D = Rd and that the observation points constitute a sequence

(x(i))i∈N∗ verifying, for a constant δ > 0, |x(i) − x(j)| ≥ δ for i 6= j. Assume R2 = R1

has a positive continuous Fourier transform and satis�es, for a constant c < +∞ and for all

t ∈ Rd,
|R2(t)| ≤ c

(1 + |t|)d+1
.

Then σ̂2
LOO converges in the mean square sense to one as n→ +∞.

Proof. Introducing z = R
− 1

2
2 y ∼2 N (0, In) yields:

σ̂2
LOO =

1

n
ztR

− 1
2

2

[
Diag(R−1

2 )
]−1

R
− 1

2
2 z,

Then,

E2(σ̂2
LOO) =

1

n
Tr
(
R
− 1

2
2

[
Diag(R−1

2 )
]−1

R
− 1

2
2

)
=

1

n

n∑
i=1

(R−1
2 )i,i

(R−1
2 )i,i

= 1.
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Furthermore,

V ar2(σ̂2
LOO) =

2

n2
Tr
(
R−1

2

[
Diag(R−1

2 )
]−1

R−1
2

[
Diag(R−1

2 )
]−1
)
. (6.9)

Then, with λmin(R) and λmax(R) the smallest and largest eigenvalues of a symmetric positive

matrix R,

λmax(
[
Diag(R−1

2 )
]−1

) = max
1≤i≤n

1

(R−1
2 )i,i

≤ 1

λmin(R−1
2 )

= λmax(R2). (6.10)

Hence, from (6.9) and (6.10),

2

n

(
λmin(R2)

λmax(R2)

)2

≤ V ar2(σ̂2
LOO) ≤ 2

n

(
λmax(R2)

λmin(R2)

)2

. (6.11)

Because there exists a positive minimum distance between two di�erent observation points, it can

be shown, similarly to the proof of lemma 5.28, that 0 < infn λmin(R2) ≤ supn λmax(R2) < +∞.

This implies the proposition because of (6.11).

ML is preferable when R2 = R1

When R1 = R2, we will show that ML is more e�cient than CV. Indeed, �rst notice that

Rσ̂2,x(0) = E1

(
(1− rt1R−1

1 r1)− σ̂2(1− rt1R−1
1 r1)

)2
(6.12)

= (1− rt1R−1
1 r1)2E1((σ̂2 − 1)2),

so that the Risk of de�nition 6.1 is proportional to the quadratic error in estimating the true

σ2 = 1. We calculate E1(σ̂2
ML) = E1(σ̂2

LOO) = 1, hence both estimators are unbiased.

Concerning their variances, let us �rst recall the Cramér-Rao bound (see chapter 3) for the

estimation of σ2. As we are in the case σ2 = 1, for an unbiased estimator σ̂2 of σ2:

V ar1(σ̂2) ≥ E−1
1

[(
∂

∂σ2

(
ln l(y, σ2)

)
σ2=1

)2
]
,

with, l(y, σ2) ∝ 1

(σ2)
n
2

exp
(
−y

tR−1
1 y

2σ2

)
, the likelihood of the observations. We then calculate the

Cramér-Rao bound:

E−1
1

[(
∂

∂σ2

(
ln l(y, σ2)

)
σ2=1

)2
]

= E−1
1

[(
∂

∂σ2

(
−n

2
lnσ2 − y

tR−1
1 y

2σ2

)
σ2=1

)2
]

= E−1
1

[
n2

4
+

1

4
(ytR−1

1 y)2 − n

2
ytR−1

1 y

]
=

(
n2

4
+
n2 + 2n

4
− n2

2

)−1

=
2

n
,

where we used lemma 6.3 with A = B = In to show E1

(
(ytR−1

1 y)2
)

= n2 + 2n. Hence, the

Cramér-Rao bound of the statistical model C is 2
n when σ2 = 1.
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Now, on the one hand the variance of the ML estimator is

V ar1(σ̂2
ML) = V ar1(

1

n
ytR−1

1 y)

=
1

n2
V ar1(

n∑
i=1

z2
i )

=
2

n
,

with z = R
− 1

2
1 y ∼1 N (0, In). Thus, the ML estimator reaches the Cramér-Rao bound.

On the other hand:

V ar1(σ̂2
LOO) =

2

n2
Tr(R−1

1

[
Diag(R−1

1 )
]−1

R−1
1

[
Diag(R−1

1 )
]−1

)

=
2

n2

n∑
i=1

n∑
j=1

(R−1
1 )2

i,j

(R−1
1 )i,i(R

−1
1 )j,j

.

Hence V ar1(σ̂2
LOO) ≥ 2

n2

∑n
i=1

(R−1
1 )2

i,i

(R−1
1 )i,i(R

−1
1 )i,i

= 2
n , the Cramér-Rao bound. Let us also notice

that, roughly speaking, when R−1
2 = R−1

1 becomes close to being diagonal, V ar1(σ̂2
LOO) becomes

closer to the Cramér-Rao bound 2
n .

However V ar1(σ̂2
LOO) is only upper-bounded by 2 (because R−1

1 is a covariance matrix).

Furthermore V ar1(σ̂2
LOO) can be arbitrarily close to 2. To see this, consider the following

statistical model where R1 = R2 are stationary covariance matrices:

R1 = R2 =
n− 1 + ε

n− 1
I− ε

n− 1
J,

where J is the n× n matrix with all coe�cients being 1 and ε ∈ [0, 1).

Using the formula (aI + bJ)−1 = 1
aI− b

a(a+nb)J (lemma B.3.3 in [SWN03]), we obtain

R−1
2 = (n− 1)

(
1

n− 1 + ε
I +

ε

(n− 1 + ε)(n− 1 + ε− nε)
J

)
.

Thus, we can calculate explicitly the variance of the CV estimator,

V ar1(σ̂2
LOO) =

2

n2

n∑
i=1

n∑
j=1

(R−1
2 )2

i,j

(R−1
2 )i,i(R

−1
2 )j,j

=
2

n
+

2(n− 1)

n

ε2

(n−1+ε)2(n−1+ε−nε)2(
1

n−1+ε + ε
(n−1+ε)(n−1+ε−nε)

)2

=
2

n
+

2(n− 1)

n

ε2

(n− 1 + ε− nε+ ε)2

=
2

n
+

2(n− 1)

n

ε2

(ε+ (n− 1)(1− ε))2
.

Hence, for ε arbitrarily close to 1, V ar1(σ̂2
LOO) is arbitrarily close to 2.

As a conclusion, when R1 = R2, ML is more e�cient to estimate the variance parameter.

The object of subsection 6.2.2 is to study the case R1 6= R2 numerically.

6.2.2 Numerical results

All the numerical experiments are carried out with the numerical software Scilab [GBC+99]. We

use the Mersenne Twister pseudo random number generator of M. Matsumoto and T. Nishimura,

which is the default pseudo random number generator in Scilab for large-size random simulations.
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Criteria for comparison

Pointwise criteria We de�ne two quantitative criteria that will be used to compare the ML

and CV assessments of the predictive variance at prediction point x(0).

The �rst criterion is the Risk on Target Ratio (RTR),

RTR(x(0)) =

√
Rσ̂2,x(0)

E1

[
(ŷ(x(0))− y0)2

] , (6.13)

with σ̂2 being either σ̂2
ML or σ̂2

LOO.

From de�nition 6.1 we obtain

RTR(x(0)) =

√
E1

[(
E1

[
(ŷ(x(0))− y0)2|y

]
− σ̂2ĉ2(x(0))

)2]
E1

[
(ŷ(x(0))− y0)2

] . (6.14)

The numerator of (6.14) is the root mean square error in predicting the random quantity

E1

[
(ŷ(x(0))− y0)2|y

]
(the target in the RTR acronym) with the predictor σ̂2ĉ2(x(0)). Using

E(E(X1|X2)) = E(X1) for two random variables X1 and X2, the denominator of (6.14) is the

mean of the predictand E1

[
(ŷ(x(0))− y0)2|y

]
. Hence, the RTR in (6.13) is a relative prediction

error, which can be easily interpreted.

We have the following bias-variance decomposition of the Risk,

Rσ̂2,x(0) =

E1

[
(ŷ(x(0))− y0)2

]
− E1

[
σ̂2ĉ2(x(0))

]
︸ ︷︷ ︸

bias


2

(6.15)

+V ar1

(
E1

[
(ŷ(x(0))− y0)2|y

]
− σ̂2ĉ2(x(0))

)
︸ ︷︷ ︸

variance

.

Hence the second criterion is the Bias on Target Ratio (BTR) and is the relative bias

BTR(x(0)) =
|E1

[
(ŷ(x(0))− y0)2

]
− E1

(
σ̂2ĉ2(x(0))

)
|

E1

[
(ŷ(x(0))− y0)2

] . (6.16)

The following equation summarizes the link between RTR and BTR: RTR︸ ︷︷ ︸
relative error

2

=

 BTR︸ ︷︷ ︸
relative bias

2

+
V ar1

(
E1

[
(ŷ(x(0))− y0)2|y

]
− σ̂2ĉ2(x(0))

)
E1

[
(ŷ(x(0))− y0)2

]2︸ ︷︷ ︸
relative variance

. (6.17)

Case of no correlation function misspeci�cation Let us now study more particularly the

RTR and BTR criteria in the case where R1 = R2. When R1 = R2, E1

[
(ŷ(x(0))− y0)2|y

]
does

not depend on y. Therefore, the RTR and BTR simplify into RTR(x(0)) =
√
E1 [(σ̂2 − 1)2] and

BTR(x(0)) = |1 − E1(σ̂2)|. Hence, the RTR and BTR are the mean square error and the bias

in the estimation of the true variance σ2 = 1, and RTR2 = BTR2 + V ar1(σ̂2).

Integrated criteria We now de�ne the two integrated versions of RTR and BTR over the

prediction space D. Assume D is equipped with a probability measure µ. Then we de�ne

IRTR =

√∫
D
RTR2(x(0))dµ(x(0)) (6.18)
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and

IBTR =

√∫
D
BTR2(x(0))dµ(x(0)). (6.19)

Hence we have the equivalent of (6.17) for IRTR and IBTR:

IRTR2 = IBTR2 +

∫
D

V ar1

(
E1

[
(ŷ(x(0))− y0)2|y

]
− σ̂2ĉ2(x(0))

)
E1

[
(ŷ(x(0))− y0)2

]2 dµ(x(0)). (6.20)

Designs of experiments studied

We consider three di�erent kinds of Designs Of Experiments (DOEs) of n observation points on

the prediction space D = [0, 1]d.

The �rst DOE is the Simple Random Sampling (SRS) design and consists of n independent

observation points with uniform distributions on [0, 1]d. This design may not be optimal from a

Kriging prediction point of view, as it is likely to contain relatively large areas without observa-

tion points. However, it is a convenient design for the estimation of covariance hyper-parameters

because it may contain some points with small spacing. It is noted in [Ste99], chapter 6.9 that

such points can dramatically improve the estimation of the covariance hyper-parameters. The

conclusion of chapter 5, on the impact of the spatial sampling on estimation, is also an argument

in favor of using some observation points with small spacing.

The second DOE is the Latin Hypercube Sampling Maximin (LHS-Maximin) design (see e.g

[SWN03]). This design is one of the most widespread non-iterative designs in Kriging. A LHS

design is a set of n points x(1), ...,x(n) so that, for 1 ≤ k ≤ d and 1 ≤ i ≤ n, there is exactly one

j so that x(j)
k ∈ [ i−1

n , in ]. Intuitively, the one-dimensional projections of a LHS design are rather

uniformly spread on [0, 1]. Then, a LHS-Maximin design is a LHS-design that maximizes

min
i6=j
|x(i) − x(j)|2, (6.21)

which has the advantage of avoiding almost equal observation points, which would give a redun-

dant information on the values of the Gaussian process Y .

(6.21) is di�cult to optimize numerically, because the input space is the set of the LHS

designs, which is a subset of [0, 1]nd. (6.21) is thus a very high dimensional optimization problem.

To address the optimization problem (6.21), we generate randomly 1000 LHS designs, and keep

the one that maximizes (6.21). To generate randomly a LHS design, we generate d random

permutations of {1, ..., n}: ik1 , ..., ikn, 1 ≤ k ≤ d. The LHS design we generate is then de�ned by,

for 1 ≤ j ≤ n and 1 ≤ k ≤ d, x(j)
k =

ikj−1

n + Xj,k where the nd Xj,k are iid random variables

following the uniform distribution on [0, 1
n ].

Let us notice that this method for generating LHS-Maximin DOEs is the method used by the

Matlab function lhsdesign(...,'maximin',k) which generates k LHS designs with default k = 5.

Notice also that other optimization methods can be used to address (6.21). We refer to table 1

of [VVB10] for a review.

The third DOE is a deterministic sparse regular grid. It is built according to the Smolyak's

construction ([Smo63] and see e.g. [GG98], [NR96]) of the family of one-dimensional regular

grids Gk = { 1
2k
, ..., 2k−1

2k
}, for k ∈ N∗ varying. For a given level l, the DOE obtained from the
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Figure 6.1: For d = 5 and n = 70, example of a SRS DOE (top-left), a LHS-Maximin DOE (top-

right) and the deterministic sparse grid (bottom, n = 71). Projection on the �rst 2 base vectors.

The SRS and LHS-Maximin DOEs are much less regular than the regular grid. Although the

projections of the SRS and LHS-Maximin DOEs are similar, the criterion (6.21) is 0.162 for the

SRS DOE and 0.262 for the LHS-Maximin DOE.

Smolyak's construction is as follows: ⋃
k1,...,kd∈N∗

k1+...+kd≤l+d−1

Gk1 × ...×Gkd . (6.22)

(6.22) is a sparse subset of the fully tensorized regular grid Gl× ...×Gl. (6.22) uses much fewer

observation points than the fully tensorized regular grid, and remains thus tractable for larger

dimension d. The Smolyak's construction is classically used for numerical interpolation and

integration. For integration of smooth functions, the decay rate of the error, as a function of the

number of observation points, is faster for the Smolyak's construction (6.22) than for the fully

tensorized regular grid (see e.g. [Nou09] for details). For dimension d = 5 and level l = 3, the

Smolyak's construction yields n = 71 observation points. We show in �gure 6.1 the projection

of this sparse grid on the �rst two base vectors.

The three DOEs are representative of the classical DOEs that can be used for interpolation

of functions, going from the most irregular ones (SRS) to the most regular ones (sparse grid).

In �gure 6.1, we plot, for n = 70 and d = 5, the projections on the two �rst base vectors of two

realizations of the SRS and LHS-Maximin DOEs and of the regular grid. The SRS and LHS-

Maximin DOEs are much less regular than the regular grid. The projections on the two �rst
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base vectors of the SRS and LHS-Maximin DOEs are similar. However, this can be misleading,

since this kind of projection is not representative of the distance between di�erent 5-dimensional

observation points. Inspecting the criterion (6.21), we see that its value is 0.162 for the SRS

DOE and 0.262 for the LHS-Maximin DOE.

Families of correlation functions studied

We �rst study the isotropic Matérn correlation function family of chapter 3, parameterized by

the vector of correlation lengths ` = (`1, ..., `d) and the smoothness parameter ν. We recall that

R is Matérn (`, ν) when

R(h) =
1

Γ(ν)2ν−1

(
2
√
ν|h|`

)ν
Kν

(
2
√
ν|h|`

)
, (6.23)

with |h|` =
√∑d

i=1
h2
i

`2i
, Γ the Gamma function and Kν the modi�ed Bessel function of second

order.

We also study the power-exponential correlation function family of chapter 3, parameterized

by the vector of correlation lengths ` = (`1, ..., `d) and the power p. We recall that R is power-

exponential (`, p) when

R(h) = exp

(
−

d∑
i=1

(
|hi|
`i

)p)
. (6.24)

Remark 6.5. In this chapter 6, we study an isotropic (up to a scaling of the axis) covariance

function (the isotropic Matérn model) and a tensor-product covariance function (the power-

exponential covariance model). While the main goal of chapter 6 is to compare ML and CV,

it could also be interesting, in future work, to compare tensority and isotropy more speci�cally.

Especially, the two tensor-product and isotropic versions of the Matérn model could be compared.

This distinction between the two versions could have a signi�cant impact for DOEs that rely

strongly on the choice of axis, such as the sparse regular grid.

In�uence of the model error

We study the in�uence of the model error, i.e. the di�erence between R1 and R2. For di�erent

pairs R1, R2, we generate np = 50 SRS and LHS learning samples, and the deterministic sparse

grid presented above. We compare the empirical means of the two integrated criteria IRTR and

IBTR for the di�erent DOEs and for ML and CV. IRTR and IBTR are calculated on a large

test sample of size 5000. We take n = 70 for the learning sample size (actually n = 71 for the

regular grid) and d = 5 for the dimension.

For the pairs R1, R2, we consider the three following cases. First, R1 is power-exponential

((1.2, ..., 1.2), 1.5) and R2 is power-exponential ((1.2, ..., 1.2), p2) with varying p2. Second, R1

is Matérn ((1.2, ..., 1.2), 1.5) and R2 is Matérn ((1.2, ..., 1.2), ν2) with varying ν2. Finally, R1 is

Matérn ((1.2, ..., 1.2), 1.5) and R2 is Matérn ((`2, ..., `2), 1.5) with varying `2.

In �gure 6.2, we plot the results for the SRS DOE. We clearly see that when the model

error becomes large, CV becomes more e�cient than ML in the sense of IRTR. Looking at

(6.20), one can see that the IRTR is composed of IBTR and of an integrated relative variance

term. When R2 becomes di�erent from R1, the IBTR contribution increases faster than the
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integrated relative variance contribution, especially for ML. Hence, the main reason why CV is

more robust than ML to model misspeci�cation is that its bias increases more slowly with the

model misspeci�cation.

In �gure 6.3 we plot the results for the LHS-Maximin DOE. The results are similar to those

of the SRS DOE. They also appear to be slightly more pronounced, the IRTR of CV being

smaller than the IRTR of ML for a smaller model error.

In �gure 6.4, we plot the results for the regular grid DOE. The results are radically di�erent

from the ones obtained with the SRS and LHS-Maximin designs. The �rst comment is that

the assessment of predictive variances is much more di�cult in case of model misspeci�cation

(the minimum, between ML and CV, of IRTR for the SRS and LHS-Maximin designs is smaller

than that of the regular grid and the di�erence is even stronger when considering the maximum).

This is especially true for misspeci�cations on the exponent for the power-exponential correlation

function and on the smoothness parameter for the Matérn function. The second comment is that

this time CV appears to be less robust than ML to model misspeci�cation. In particular, its bias

increases faster than ML bias with model misspeci�cation and can be very large. Indeed, having

observation points that are on a regular grid, CV estimates a σ2 hyper-parameter adapted only

to predictions on the regular grid. Because of the correlation function misspeci�cation, this

does not generalize at all to predictions outside the regular grid. Hence, CV is e�cient to assess

predictive variances at the points of the regular grid but not to assess predictive variances outside

the regular grid. This is less accentuated for ML because ML estimates a general-purpose σ2 and

not a σ2 for the purpose of assessing predictive variances at particular points. Furthermore, it

is noted in [IBFM10] that removing a point from a highly structured DOE breaks its structure,

which may yield overpessimistic CV results.

We conclude from these numerical results that, for the SRS and LHS-Maximin designs of

experiments, CV is more robust to model misspeci�cation. It is the contrary for the regular

grid, for the structural reasons presented above. This being said, we do not consider the regular

grid anymore in the following numerical results and only consider the SRS and LHS-Maximin

designs. Let us �nally notice that the regular grid is not particularly a Kriging-oriented DOE.

Indeed, for instance, for n = 71, it remains only 17 distinct points when projecting on the �rst

two base vectors (�gure 6.1).

In�uence of the number of points

Using the same procedure as for the in�uence of the model error presented above, we still set

d = 5 and we vary the learning sample size n. The pair R1, R2 is �xed in the three following

di�erent cases. First, R1 is power-exponential ((1.2, ..., 1.2), 1.5) and R2 is power-exponential

((1.2, ..., 1.2), 1.7). Second, R1 is Matérn ((1.2, ..., 1.2), 1.5) and R2 is Matérn ((1.2, ..., 1.2), 1.8).

Finally, R1 is Matérn ((1.2, ..., 1.2), 1.5) and R2 is Matérn ((1.8, ..., 1.8), 1.5). This time, we

do not consider integrated quantities of interest and focus on the prediction on the point x(0)

having all its components set to 1
2 (center of domain).

In �gure 6.5 we plot the results for the SRS DOE. The �rst comment is that, as n increases,

the BTR does not vanish, but seems to reach a limit value. This limit value is smaller for CV

for the three pairs R1, R2. Recalling from (6.17) that RTR is the sum of BTR and of a relative
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Figure 6.2: In�uence of the model error for the SRS DOE. Plot of the IRTR and IBTR integrated

criteria for ML and CV. Top-left: power-exponential correlation function with error on the

exponent, the true exponent is p1 = 1.5 and the model exponent p2 varies in [1.2, 1.9]. Top-

right: Matérn correlation function with error on the smoothness parameter, the true smoothness

parameter is ν1 = 1.5 and the model smoothness parameter ν2 varies in [0.5, 2.5]. Bottom:

Matérn correlation function with error on the correlation length, the true correlation length is

`1 = 1.2 and the model correlation length `2 varies in [0.6, 1.8]. ML is optimal when there is no

model error while CV is more robust to model misspeci�cations.
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Figure 6.3: Same setting as in �gure 6.2, but with the LHS-Maximin DOE. ML is optimal when

there is no model error while CV is more robust to model misspeci�cations.
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Figure 6.4: Same setting as in �gure 6.2 but with the regular sparse grid DOE. The results are

radically di�erent from the ones obtained with the SRS and LHS-Maximin DOEs. This time

CV is less robust to misspeci�cations of the correlation function.
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variance term, we observe that this relative variance term decreases and seems to vanish when

n increases (because BTR becomes closer to RTR). The decrease is much slower for the error on

the correlation length than for the two other errors on the correlation function. Furthermore,

the relative variance term decreases more slowly for CV than for ML. Finally, because CV is

better than ML for the BTR and worse than ML for the relative variance, and because the

contribution of BTR to RTR increases with n, the ratio of the RTR of ML over the RTR of

CV increases with n. This ratio can be smaller than 1 for very small n and eventually becomes

larger than 1 as n increases (meaning that CV does better than ML).

In �gure 6.6 we plot the results for the LHS-Maximin DOE. The results are similar to those

of the SRS DOE. The RTR of CV is smaller than the RTR of ML for a slightly smaller n. This

con�rms the results above on the in�uence of the model error, where the model error for which

the IRTR of ML reaches the IRTR of CV is smaller for LHS-Maximin than for SRS.

6.3 Estimation of variance and correlation hyper-parameters

The �rst goal of this section 6.3 is to illustrate the results of section 6.2 on the estimation of the

variance hyper-parameter on analytical functions, instead of realizations of Gaussian processes,

as was the case in section 6.2. Indeed, the study of section 6.2 is more related to the theory of

Kriging (we work on Gaussian processes) while this section is more related to the application of

Kriging (modeling of deterministic functions as realizations of Gaussian processes). The second

goal of this section 6.3 is to generalize section 6.2 to the case where correlation hyper-parameters

are estimated from data.

6.3.1 Procedure

ML and CV estimations of covariance hyper-parameters

We consider a set of observations (x(1), y1), ..., (x(n), yn) as in section 6.2, and the family{
σ2Rθ, σ

2 > 0,θ ∈ Θ
}
of stationary covariance functions, with Rθ a stationary correlation func-

tion, and Θ a �nite-dimensional set. We denote by Eθ and V arθ the means and variances with

respect to the distribution of a stationary Gaussian process with mean zero, variance one and

correlation function Rθ. We denote by Rθ the correlation matrix of the training sample with

correlation function Rθ, that is (Rθ)i,j = Rθ(x(i) − x(j)).

The ML estimate of (σ2,θ) is, as we have seen in chapter 3,

θ̂ML ∈ argmin
θ∈Θ

|Rθ|1/nσ̂2
ML(Rθ), (6.25)

with σ̂2
ML(Rθ) as in (6.7), and

σ̂2
ML = σ̂2

ML(Rθ̂ML
).

For CV we recall the estimation for the hyper-parameter θ:

θ̂LOO ∈ argmin
θ∈Θ

1

n

n∑
i=1

(yi − ŷi,θ)2, (6.26)

with ŷi,θ = Eθ(yi|y1, ..., yi−1, yi+1, ..., yn).

177



6.3. ESTIMATION OF VARIANCE AND CORRELATION HYPER-PARAMETERS

0.0

0.1

0.2

0.3

0.4

0.5

20 40 60 80 100 120 140 160 180 200
n

ra
ti

o

BTR ML
BTR CV
RTR ML
RTR CV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

20 40 60 80 100 120 140 160 180 200
n

ra
ti

o

BTR ML
BTR CV
RTR ML
RTR CV

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

100 200 300 400 500 600
n

ra
ti

o

BTR ML
BTR CV
RTR ML
RTR CV

Figure 6.5: In�uence of the number n of observation points for the SRS DOE. Plot of the

RTR and BTR criteria for prediction at the center of the domain and for ML and CV. Top-

left: power-exponential correlation function with error on the exponent, the true exponent is

p1 = 1.5 and the model exponent is p2 = 1.7. Top-right: Matérn correlation function with

error on the smoothness parameter, the true smoothness parameter is ν1 = 1.5 and the model

smoothness parameter is ν2 = 1.8. Bottom: Matérn correlation function (ν = 3
2 ) with error on

the correlation length, the true correlation length is `1 = 1.2 and the model correlation length

is `2 = 1.8.
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Figure 6.6: Same setting as in �gure 6.5, but with the LHS-Maximin DOE.
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We remember from chapter 3 that, notably after using proposition 2.35 for the estimator

θ̂LOO, the functions to minimize in (6.25) and (6.26) are respectively:

L(θ) =
1

n
log |Rθ|+ log

(
ytR−1

θ y
)

(6.27)

and

LOO(θ) =
1

n
ytR−1

θ Diag(R−1
θ )−2R−1

θ y. (6.28)

We have seen in chapter 3 that we dispose of the closed-form expressions of the gradients of

L(θ) and LOO(θ), as functions of the �rst-order derivatives of the correlation function. The

evaluations of the two functions and their gradients have similar computational complexities of

the order of O(n3).

Once we have the closed-form expressions of the gradients at hand, our optimization pro-

cedure is based on the Broyden-Fletcher-Goldfarb-Shanno (BFGS) quasi-Newton optimization

method (see e.g. chapter 6 of [NW06]), implemented in the Scilab function optim. Since the

functions L(θ) and LOO(θ) may have multiple local minima, the BFGS method is run several

times, by taking the initial points in a LHS-Maximin design. The presence of multiple local

minima is discussed e.g in [MS04]. An important point is that, when θ is a correlation length,

we recommend to use its logarithm to run the optimization. Indeed a correlation length acts as

a multiplier in the correlation, so that using its log ensures that a given perturbation has the

same importance, whether applied to a large or a small correlation length. Furthermore, when

one wants to explore the space of correlation lengths uniformly, as is the case with a LHS design,

directly using the correlation lengths may give too much emphasis on large correlation lengths,

which is avoided by using their log.

Another important issue is the numerical inversion of the correlation matrix. This issue is

even more signi�cant when the correlation matrix is ill-conditioned, which happens when the

correlation function is smooth (Gaussian or Matérn with a large smoothness parameter). To

tackle this issue we recommend to use the numerical nugget e�ect. More speci�cally, for a given

correlation matrix Rθ, we actually compute Rθ + τ2In, with τ2 = 10−8 in our simulations. A

detailed analysis of the in�uence of the nugget e�ect on the hyper-parameter estimation and

on the Kriging prediction is carried out in [AC12]. Notice also that we have seen in chapter 4

that the numerical nugget e�ect ensures a �xed-domain asymptotic consistency of the Kriging

predictions, for both the cases where the observations come with measurement errors or not.

However, for the CV estimation of θ, when the correlation function belongs to the Gaussian

family, or the Matérn family with large smoothness parameter, another structural problem

appears. For σ̂2
LOO very large, as the overall predictive variance term σ̂2

LOO(1 − rθR−1
θ rθ)

has the same order of magnitude as the squared observations, the term 1 − rθR−1
θ rθ is very

small. Hence, a �xed numerical error on the inversion of Rθ, however small it is, may cause the

term 1 − rθR−1
θ rθ to be negative. This is what we observe for the CV case when �tting e.g

the correlation lengths of a Gaussian correlation function. The heuristic scheme is that large

correlation lengths are estimated, which yields large σ̂2
LOO, which yields small (1 − rθR−1

θ rθ),

so possibly negative ones. Notice however that the relative errors of the Kriging prediction

terms rtθR
−1
θ y are correct. It is noted in [MS04] p.7 that CV may overestimate correlation

lengths. Hence, to have appropriate predictive variances, one has to ensure that the estimated

180



CHAPTER 6. CROSS VALIDATION AND MAXIMUM LIKELIHOOD WITH
MISSPECIFIED FAMILY OF COVARIANCE FUNCTIONS

correlation lengths are not too large. Two possible solutions are to penalize either too large

correlation lengths or too large σ̂2
LOO in the minimization of LOO(θ). We choose here the

second solution because our experience is that the ideal penalty on the correlation lengths,

both ensuring reliable predictive variance computation and having a minimal e�ect on the θ

estimation, depends on the DOE substantially. In practice, we use a penalty for σ̂2
LOO starting at

1000 times the empirical variance 1
ny

ty. This penalty is needed only for CV when the correlation

function is Gaussian or Matérn with free smoothness parameter.

Prediction criteria

We consider a deterministic function f on [0, 1]d. We generate np = 100 LHS-Maximin training

samples of the form x(a,1), f(x(a,1)), ...,x(a,n), f(x(a,n)). We denote y(a)
i = f(x(a,i)), i = 1, ..., np.

From each training sample, we estimate σ2 and θ with the ML and CV methods presented above.

We consider simple Kriging in this section 6.3, except in the end of subsection 6.3.2 where

we consider universal Kriging. We are interested in two criteria, based on the Kriging prediction

with estimated covariance parameters, on a large Monte Carlo test sample x(t,1), f(x(t,1)), ...,

x(t,nt), f(x(t,nt)) on [0, 1]d (nt = 10000). We denote yt,i = f(x(t,i)), ŷ(x(t,i)) = Eθ̂(yt,i|y(a)) and

σ̂2ĉ2(x(t,i)) = σ̂2V arθ̂(yt,i|y(a)), where σ̂2 and θ̂ come from either the ML or CV method.

The �rst criterion is the Mean Square Error (MSE). It evaluates the prediction capability of

the estimated correlation function Rθ̂:

1

nt

nt∑
i=1

(yt,i − ŷ(x(t,i)))2. (6.29)

The second criterion is the Predictive Variance Adequation (PVA):∣∣∣∣∣log

(
1

nt

nt∑
i=1

(yt,i − ŷ(x(t,i)))2

σ̂2ĉ2(x(t,i))

)∣∣∣∣∣ . (6.30)

This criterion evaluates the quality of the predictive variances given by the estimated covariance

hyper-parameters σ̂2, θ̂. The smaller the PVA is, the better it is because the predictive variances

are globally of the same order than the prediction errors, so that the con�dence intervals are

reliable. We use the logarithm in order to give the same weight to relative overestimation and

to relative underestimation of the prediction errors.

We �nally average the two criteria over the np training samples.

Analytical functions studied

We study the two following analytical functions. The �rst one, for d = 3, is the Ishigami

function:

f(x1, x2, x3) = (6.31)

sin(−π + 2πx1) + 7 sin((−π + 2πx2))2 + 0.1(−π + 2πx3)4 sin(−π + 2πx1).

181



6.3. ESTIMATION OF VARIANCE AND CORRELATION HYPER-PARAMETERS

The second one, for d = 10, is a simpli�ed version of the Morris function [Mor91],

f(x) =

10∑
i=1

wi(x) +
∑

1≤i<j≤6

wi(x)wj(x) +
∑

1≤i<j<k≤5

wi(x)wj(x)wk(x)

+w1(x)w2(x)w3(x)w4(x),

with wi(x) =

2
(

1.1xi
xi+0.1 − 0.5

)
, if i = 3, 5, 7

2(xi − 0.5) otherwise.

Both the Ishigami and Morris functions are smooth functions. For the Morris function, the

low-index components have the largest in�uence since they appear in most of the sums in the

expression of the Morris function. Furthermore, notice the two di�erent expressions for the

wi(x), depending on the index i. The Morris function is hence anisotropic.

6.3.2 Results and discussion

Results with enforced correlation lengths

We work with the Ishigami function, with n = 100 observation points. For the correlation

function family, we study the tensorized exponential and Gaussian families (power-exponential

family of (6.24) with enforced p = 1 for exponential and p = 2 for Gaussian).

For each of these two correlation models, we enforce three vectors ` of correlation lengths for

R: an arbitrary isotropic correlation length, a well-chosen isotropic correlation length and three

well-chosen correlation lengths along the three dimensions. To obtain a well-chosen isotropic

correlation length, we generate np = 100 LHS-Maximin DOEs, for which we estimate the cor-

relation length by ML and CV as described above. We calculate each time the MSE on a

test sample of size 10000 and the well-chosen correlation length is the one with the smallest

MSE among the 2np estimated correlation lengths. The three well-chosen correlation lengths

are obtained similarly. The three vectors of correlation lengths yield an increasing prediction

quality.

The results are presented in table 6.1. Comparing line 3 against line 6, we see that the

Gaussian family is more appropriate than the exponential one for the Ishigami function. Indeed,

it yields the smallest MSE among the cases when one uses three di�erent correlation lengths, and

the PVA is quite small as well. This could be anticipated since the Ishigami function is smooth,

so a Gaussian correlation model (smooth trajectories) is more adapted than an exponential one

(rough trajectories).

Notice, nevertheless, from lines 1, 2 and 4, 5, that the prediction results for the Gaussian

model appear signi�cantly more sensitive to non-optimal choices of the correlation lengths.

Indeed, the prediction error becomes larger than that of the exponential model for the cases of

the arbitrary and well-chosen isotropic correlation length.

Finally, we see that CV yields much smaller PVAs than ML in line 1, 2, 3 and 4, in the

cases when the correlation function is not appropriate. For line 6, which is the most appropriate

correlation function, ML yields a PVA comparable to CV and for line 5, ML PVA is smaller

than CV PVA. All these comments are in agreement with the main result of subsection 6.2.2:
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Correlation model Enforced hyper-parameters MSE PVA

exponential [1, 1, 1] 2.01 ML : 0.50 CV : 0.20

exponential [1.3, 1.3, 1.3] 1.94 ML : 0.46 CV : 0.23

exponential [1.20, 5.03, 2.60] 1.70 ML : 0.54 CV : 0.19

Gaussian [0.5, 0.5, 0.5] 4.19 ML : 0.98 CV : 0.35

Gaussian [0.31, 0.31, 0.31] 2.03 ML : 0.16 CV : 0.23

Gaussian [0.38, 0.32, 0.42] 1.32 ML : 0.28 CV : 0.29

Table 6.1: Mean of the MSE and PVA criteria for the Ishigami function for di�erent �xed

correlation models. The MSE is the same between ML and CV as the same correlation function

is used. When the correlation model is misspeci�ed, the MSE is large and CV does better than

ML for the PVA criterion.

The ML estimation of σ2 is more appropriate when the correlation function is well-speci�ed

while the CV estimation is more appropriate when the correlation function is misspeci�ed.

Results with estimated correlation lengths

We use the exponential and Gaussian models, as when the correlation lengths were enforced, as

well as the Matérn model of (6.23). We distinguish two subcases for the vector ` of correlation

lengths. In Case i we estimate a single isotropic correlation length, while in Case a we estimate

d correlation lengths for the d dimensions.

The numerical optimization problem We �rst discuss the optimization of L(θ) and LOO(θ)

in (6.27) and (6.28), in the case of the Ishigami function with n = 70 observation points and with

the Gaussian model for Case a. One of the np LHS-Maximin DOEs is thus randomly selected

and �xed. The dimension of the optimization problem is 3 and the variables are ln `1, ln `2, ln `3.

We restrict the optimization in the subset [ln 0.1, ln 100]3.

In �gure 6.7, we plot the level sets of (ln `1, ln `2)→ min`3 f(`1, `2, `3), where f is either L or

LOO. We �rst observe that the two criteria functions have several local minima (we distinguish

at least two for both functions). This observation is true in our general experience in optimizing

ML and CV criteria throughout the PhD thesis. As a consequence, it can not be overstated that

we recommend not to use an optimization method that is only local. Speci�cally, using a single

BFGS algorithm with arbitrary starting point can result in only reaching a local minimum of

the criterion to minimize. As we have discussed, we run nr BFGS methods, where the nr initial

points constitute a space-�lling design of experiment of [ln 0.1, ln 100]3. We use nr = 150 in the

present illustration.

The second comment for �gure 6.7 is that the ML criterion appears convex in a large area

around its global minimizer. This is not the case for CV, where we distinguish two other local

minimizers close to the global minimizer. The CV criterion is hence, somehow, more di�cult to

optimize than ML, using a local search-based optimization method. This fact is also general in

our experience.

In �gure 6.7, for the optimization of L and LOO, we also plot the localization of the 50
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Figure 6.7: Estimation of the correlation length vector ` for the Gaussian model for Case a.

Case of the Ishigami function where a LHS-Maximin DOE of n = 70 observation points is

considered. Plot of the level sets of the criteria (ln `1, ln `2) → min`3 L(`1, `2, `3) (left) and

(ln `1, ln `2) → min`3 ln (LOO(`1, `2, `3)) (right). The black stars are the 50 terminal points of

the 50 BFGS runs that yield the smallest criteria among 150 runs. The optimization is more

di�cult for CV than ML, with the BFGS method with multiple starting points that we use. For

ML, the 50 best runs all reach the global minimizer, while for CV they are distributed between

the global minimizer and 2 local minimizers.

terminal points of the 50 BFGS runs that yield the smallest criterion values, among the nr = 150

BFGS runs. For the ML case, the 50 terminal points are equal to the global minimizer. For the

CV case, they are distributed between 3 local minimizers (including the global one) that are

relatively close to one another. This is a con�rmation that the optimization for the CV criterion

is more di�cult than for ML.

When we observe all the 150 terminal points, they converge to local minimizers, converge to

boundary points of the optimization domain, or do not converge, in the case, for instance, when

the BFGS method reaches a determined maximum number of iteration and stops. Finally, for

the ML case, 57 of the 150 BFGS runs converge to the global minimizer, against 16 for the CV

case.

In �gure 6.8, we plot the equivalent of �gure 6.7, but for the exponential covariance model.

We see that, contrary to �gure 6.7, both the ML and CV criterion functions are strongly uni-

modal. As a consequence, we have also observed that all the BFGS runs converge to the global

minimizer. Generally speaking, we have noticed, throughout the PhD thesis, that the optimiza-

tion problem is more di�cult with the Gaussian model, than with the Matérn model with �xed

and relatively small smoothness parameter. See also [Ste99], p.173.

Prediction results of the estimated hyper-parameters The discussion on the numerical

optimization problem being concluded, in table 6.2 we now present the prediction results of the

estimated hyper-parameters for the Ishigami and Morris functions, with n = 100 observation

points. We address the exponential, Gaussian, and Matérn with free smoothness parameter

models. For both the Ishigami and Morris functions, the Gaussian model yields smaller MSEs

than the exponential model. Indeed, both functions are smooth. Over the di�erent DOEs, we

observe that the estimated Matérn smoothness hyper-parameters are large, so that the MSEs and
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Figure 6.8: Same setting as in �gure 6.7, but for the estimation of the correlation length vector `

for the exponential model for Case a. For both ML (left) and CV (right), the criterion functions

are strongly unimodal.

the PVAs for the Matérn model are similar to those of the Gaussian model. Let us notice that for

the Ishigami function, the relatively large number n = 100 of observation points is required for

the Gaussian correlation model to be more adapted than the exponential one. Indeed, in table

6.3, we show the same results with n = 70 where the Gaussian model yields relatively larger

MSEs and substantially larger PVAs. Our interpretation is that the linear interpolation yielded

by the exponential correlation function can be su�cient, even for a smooth function, if there are

not enough observation points. We also notice that, generally, estimating di�erent correlation

lengths (Case a) yields a smaller MSE than estimating one isotropic correlation length (Case

i). In our simulations this is always true except for the Ishigami function with the exponential

model. Indeed, we see in table 6.1 that we get a relatively small bene�t for the Ishigami function

from using di�erent correlation lengths. Here, this bene�t is compensated by an error in the

estimation of the 3 correlation lengths with n = 100 observation points. The overall conclusion

is that the Gaussian and Matérn correlation models are more adapted than the exponential

one, and that using di�erent correlation lengths is more adapted than using an isotropic one,

provided that there are enough data to estimate these correlation lengths.

In the exponential case, for both Cases i and a, CV always yields a smaller PVA than ML

and yields a MSE that is smaller or similar. In Case a, for the Gaussian and Matérn correlation

functions, the most adapted ones, ML always yields MSEs and PVAs smaller than CV or similar.

Furthermore, for the Morris function with Matérn and Gaussian correlation functions, going from

Case i to Case a enhances the advantage of ML over CV.

From the discussion above, we conclude that the numerical experiments yield results, for the

deterministic functions considered here, that are in agreement with the conclusion of section

6.2: ML is optimal for the best adapted correlation models, while CV is more robust in cases of

model misspeci�cation.

Case of universal Kriging

So far, the case of simple Kriging has been considered, for which the underlying Gaussian process

is considered centered. The case of universal Kriging, presented in chapter 2, can equally be

studied. We recall that, in the universal Kriging case, the Gaussian process is considered to
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Function Correlation model MSE PVA

Ishigami exponential Case i ML: 1.99 CV: 1.97 ML: 0.35 CV: 0.23

Ishigami exponential Case a ML: 2.01 CV: 1.77 ML: 0.36 CV: 0.24

Ishigami Gaussian Case i ML: 2.06 CV: 2.11 ML: 0.18 CV: 0.22

Ishigami Gaussian Case a ML: 1.50 CV: 1.53 ML: 0.53 CV: 0.50

Ishigami Matérn Case i ML: 2.19 CV: 2.29 ML: 0.18 CV: 0.23

Ishigami Matérn Case a ML: 1.69 CV: 1.67 ML: 0.38 CV: 0.41

Morris exponential Case i ML: 3.07 CV: 2.99 ML: 0.31 CV: 0.24

Morris exponential Case a ML: 2.03 CV: 1.99 ML: 0.29 CV: 0.21

Morris Gaussian Case i ML: 1.33 CV: 1.36 ML: 0.26 CV: 0.26

Morris Gaussian Case a ML: 0.86 CV: 1.21 ML: 0.79 CV: 1.56

Morris Matérn Case i ML: 1.26 CV: 1.28 ML: 0.24 CV: 0.25

Morris Matérn Case a ML: 0.75 CV: 1.06 ML: 0.65 CV: 1.43

Table 6.2: n = 100 observation points. Mean of the MSE and PVA criteria over np = 100

LHS-Maximin DOEs for the Ishigami (d = 3) and Morris (d = 10) functions for di�erent �xed

correlation models. When the model is misspeci�ed, the MSE is large and the CV does better

compared to ML for the MSE and PVA criterion.

Function Correlation model MSE PVA

Ishigami exponential Case a ML: 3.23 CV: 2.91 ML: 0.27 CV: 0.26

Ishigami Gaussian Case a ML: 3.15 CV: 4.13 ML: 0.72 CV: 0.76

Table 6.3: n = 70 observation points. Mean of the MSE and PVA criteria over np = 100

LHS-Maximin DOEs for the Ishigami (d = 3) and Morris (d = 10) functions for the exponential

correlation model. Contrary to the case n = 100 of table 6.2, the Gaussian correlation model

does not yield smaller MSEs than the exponential one.
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Function Mean function Correlation MSE PVA

model model

Ishigami constant exponential Case a ML: 1.96 CV: 1.74 ML: 0.39 CV: 0.24

Ishigami a�ne exponential Case a ML: 1.98 CV: 1.75 ML: 0.40 CV: 0.24

Ishigami constant Gaussian Case a ML: 1.54 CV: 1.63 ML: 0.54 CV: 0.54

Ishigami a�ne Gaussian Case a ML: 1.58 CV: 1.78 ML: 0.57 CV: 0.57

Table 6.4: n = 100 observation points. Mean of the MSE and PVA criteria over np = 100 LHS-

Maximin DOEs for the Ishigami (d = 3) function and the exponential and Gaussian correlation

models. The incorporation of the mean function does not change the conclusions of table 6.2.

have a mean at location x of the form
∑p
i=1 βigi(x), with known functions gi and unknown

coe�cients βi. For instance a closed-form formula similar to that of proposition 6.2 can be

obtained in the same fashion, and virtual LOO formulas are also available (proposition 2.35).

We have chosen to focus on the simple Kriging case because we are able to address as precisely as

possible the issue of the covariance function class misspeci�cation, the Kriging model depending

only on the covariance function choice. Furthermore it is shown in [Ste99] p.138 that the issue of

the mean function choice for the Kriging model is much less crucial than that of the covariance

function choice.

Nevertheless, for completeness, in table 6.4 we study, for the Ishigami function, the in�uence

of using a universal Kriging model with either a constant (x → β1) or a�ne (x → β1 +∑d
i=1 βixi) mean function. The process is the same as for table 6.2. We �rst see that using a

non-zero mean does not improve signi�cantly the Kriging model. It is possible to observe a slight

improvement only with the exponential covariance structure, which we can interpret because a

smooth mean function makes the Kriging model more adapted to the smooth Ishigami function.

On the contrary, for the Gaussian covariance structure, the mean function over-parameterizes

the Kriging model and slightly damages its performances. Let us also notice that CV appears

to be more sensitive to this over-parameterization, its MSE increasing with the complexity of

the mean function. This can be observed similarly in the numerical experiments in [MS04]. The

second overall conclusion is that the main �nding of section 6.2 and of table 6.2 is con�rmed:

CV has smaller MSE and PVA for the misspeci�ed exponential structure, while ML is optimal

for the Gaussian covariance structure which is the more adapted and yields the smallest MSE.

6.4 Discussion

In this chapter 6, we have carried out a detailed analysis of ML and CV for the estimation of

the covariance hyper-parameters of a Gaussian process, with a misspeci�ed parametric family

of covariance functions. This analysis has been carried out by using a two-step approach. We

have �rst studied the estimation of a global variance hyper-parameter, for which the correla-

tion function is misspeci�ed. In this framework, we can control precisely the degree of model

misspeci�cation and we obtain closed-form expressions for the mismatch indices that we have

introduced. We conclude from the numerical study of these formulas that where the model is
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misspeci�ed, CV performs better than ML. Second, we have studied the general case where the

correlation hyper-parameters are estimated from data, via numerical experiments on analytical

functions. We con�rm the results of the �rst step, and generalize them.

We have also noticed that the conclusion above does not hold for the case where the Design Of

Experiments is a regular grid. In this case, CV is less robust than ML to model misspeci�cation,

for structural reasons that we have pointed out.

Because of its practical interest shown in this chapter 6, the CV estimation method has been

implemented in the DiceKriging R package [RGD12].
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Chapter 7

Probabilistic modeling of

discrepancy between computer

model and experiments

In this chapter 7, we consider the case where observations of a physical system can be made, and

where a computer model can be used to predict these observations. This framework is part of

the �eld of statistics dedicated to the design and analysis of computer experiments ([SWMW89],

[SWN03]). In the analysis of computer experiments, three classical objectives can be formulated,

in the case where experimental data are available.

Validation corresponds to answering the question: how well does the computer model ap-

proximate the physical system underlying the experimental results? A reference book on model

validation is e.g. [Cac03]. In this chapter 7, the validation problem is related to the two following

problems: calibration and prediction.

Calibration corresponds to setting the optional parameters of the computer model, so that

it reproduces the physical system as well as possible. This can be done in two ways here. First,

we can be interested in associating a variability to these optional parameters, in order to model

the variability of the experimental results. Second, we can be interested in estimating a single

value for these optional parameters that is best adapted to the representation of the physical

system.

Prediction corresponds to improving the computer model predictions of the physical system,

and quantifying the uncertainty obtained, by assimilating experimental results. This point of

view is slightly di�erent from the point of view of validation, because the objective is less to

study the validity of the computer model than to complete it by incorporating the information

brought by the experimental results. A recent reference on demonstrating, or refuting, the

validity of the actual computer model would be [WCT09].

In this chapter 7, we address the calibration and validation problems. These two problems

can be summarized in a single objective: modeling the di�erences between the observations of

the physical system and the computer model results. Gaussian process models, that we have

thoroughly studied in parts I and II, play a central role in this context, because of their natural
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ability to provide a Bayesian a priori distribution on deterministic functions. We will have a

con�rmation of their importance in this chapter 7, and in the rest of part III.

Chapter 7 is organized as follows. In section 7.1, we detail the framework for computer

models and experiments. In section 7.2, we review some methods in the literature, in which the

discrepancy between the computer model and the experiments are modeled by a variability of

the physical system. In section 7.3, we consider the case where these discrepancies are explained

by a model error of the computer model. Subsection 7.3.2 presents the associated methods, in

the literature, that make no linear approximation for the computer model. In subsection 7.3.3,

we present the methods that rely on a linear approximation of the computer model with respect

to its model parameters. These are the methods we have retained, both from a methodology

point of view in this chapter 7, and for the application case on the FLICA 4 thermal-hydraulic

code in chapter 8.

7.1 Framework for computer models and experiments

In this manuscript, a computer model corresponds to a deterministic function fmod of the form

fmod(x,β) : Rd × Rm → R.

This computer model is a representation of a physical system, that is a map of the form

freal(x) : Rd → R.

The scalar output of the physical system is the physical variable of interest. It depends, via

the map freal, on a vector x of input quantities, that we call experimental conditions.

Remark 7.1. The map x → freal(x) of the physical system can be considered deterministic,

in which case it will be simply called a function. It can also be considered random, meaning

that exactly knowing the experimental conditions x is not su�cient to exactly know the physical

output freal(x). This randomness can notably occur when the physical output represented by

x→ freal(x) is actually (x,x′)→ f ′real(x,x
′), where x′ is a vector constituted of other physical

variables that are not taken into account in the representation x→ freal(x). In this case, among

di�erent observations of freal(x), for the same experimental condition x, the physical variables

x′ that are not taken into account vary, thus yielding di�erent observed values. This variability

can be modeled by a randomness when considering only the experimental conditions x in the

representation of the physical system.

In section 7.2, the physical system map x→ freal(x) is modeled as random, while in section

7.3 and chapter 8, it is modeled as deterministic.

The components of the vector x of the experimental conditions can be divided into two

categories. The �rst category contains the control variables. These variables de�ne the

physical system, independently of the environment in which the system is put. In engineering

for instance, geometric parameters of the system can often be placed in this category, since

they remain �xed regardless of what happens to the system. The second category contains the

environment variables. These variables are the inputs of the physical system whose values are
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not planned in the conception of the system. These variables are likely to be imposed beforehand

by other systems. The distinction of the experimental conditions into these two categories is

presented for instance in [SWN03] section 2.1. To give an illustration, in the system design

phase, the environment variables are set by the future use of the system, while the control

variables are the free parameters that may be set through an optimization phase.

The map freal of the physical system can not be known for all the experimental conditions.

Hence, this map is approximated by the computer model fmod. The function fmod shares the

same input vector x as the physical system and provides the same scalar output. Furthermore,

the function fmod can have a second kind of inputs, denoted by the vector β. The components of

this vector are called the model parameters. They are the �tting parameters of the computer

model fmod. These parameters are unnecessary to carry out an experiment of the physical

system, but they are needed to run the computer model. Hence, these quantities are seen as

degrees of freedom for the computer model, and allow it to give a good approximation of the

physical system. We will see that the term "good approximation" has two possible meanings.

If the physical system is random, a�ecting a probability distribution to the model parameters

enables to reproduce this randomness. If the physical system is a deterministic function, varying

the model parameter gives di�erent functions x → fmod(x,β), thus giving more �exibility for

the approximation of the physical system function.

Example 7.2. Let us consider a toy example of a physical system and of an associated computer

model (this toy example served as a pedagogic illustration for a training session on the CIRCE

method [dC96]). The physical system is a tank, which can move forward and shoot a cannon ball.

An experiment consists in making the tank move and shoot, and measuring the distance between

the tank position, and the point at which the cannon ball hits the ground. Thus, the variable of

interest is the distance P traveled by the cannon ball, and the two experimental conditions are

the speed V of the tank, and the angle t between the cannon of the tank and the horizontal line.

A schematic is provided in �gure 7.1. The two experimental conditions V and t would rather be

considered as environment variables, since they are likely to vary over the di�erent utilizations

of the tank.

Now, consider a physical modeling of the shoot, in which a supplementary variable is intro-

duced: the initial speed U of the cannon ball, relatively to the cannon, after the shoot (see �gure

7.1). Notice that this speed does not need to be speci�ed to carry out a real shoot. Thus, U is

the model parameter. The computer model, in this toy model, neglects air friction, and consider

gravitation as the only impacting force, with constant g = 9.8m.s−2. Thus, the computer model

is

(x, β) = (V, t, U)→ P =
1

g

(
U2 sin (2t) + 2UV sin (t)

)
. (7.1)

The idea is that, if the speed of the cannon ball U is appropriately speci�ed, (7.1) can provide a

good prediction of the measured distance P for real shoots of the tank.

We have n observations of the physical system of the form x(1), yobs,1, ...,x
(n), yobs,n, where

x(i) is an experimental condition and yobs,i is the observation of the physical system freal

obtained from it. The central question of this chapter 7 is to explain the discrepancies yobs,i −
fmod(x

(i),β).
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Figure 7.1: Toy example of the cannon ball. A tank can move forward and shoot a cannon ball.

The variable of interest is the distance P between the point of shoot, and the point at which

the cannon ball hits the ground. The experimental conditions are the speed V of the tank, and

the angle t between the cannon of the tank and the horizontal line. The computer model is

parameterized by the initial speed U of the cannon ball relatively to the cannon, and is de�ned

by P = 1
g

(
U2 sin (2t) + 2UV sin (t)

)
, with g the earth gravitation constant.

The most classical and simple explanation is to consider that these discrepancies only come

from a misspeci�cation of β and measurement errors. More precisely, this corresponds to the

case where two hypotheses are made. The �rst hypothesis is that the physical system freal is

a deterministic function and that the computer model is capable of perfectly reproducing it.

That is to say, there is a model parameter β(0) so that ∀x, freal(x) = fmod(x,β
(0)). The second

hypothesis is that the deviations yobs,i − fmod(x(i),β(0)) come from uncertainties related to the

experiments. These uncertainties have generally two sources. First, the observations are a�ected

by measurement errors. Second, although we do not treat this problem in this thesis, there can

be a replicate uncertainty, meaning that the experimental conditions can not be known exactly

for a given experiment.

The main limitation of this explanation is the assumption that there exists β(0) so that

the deviations fmod(x(i),β(0))− yobs,i come only from uncertainties related to the experiments.

Indeed the order of magnitude of these uncertainties is usually known. Hence, when mean error

indicators, such as minβ
1
n

∑n
i=1

(
yobs,i − fmod(x(i),β)

)2
, are too large compared to this order

of magnitude, it indicates that there is a problem with the two joint hypotheses discussed above

(this can be quanti�ed by Monte Carlo methods).

In this chapter 7, we will discuss two main frameworks to address deviations yobs,i−fmod(x(i),β)

that are too large to be explained only by uncertainties related to the experiments.

In section 7.2, it is assumed that, for 1 ≤ i ≤ n, yobs,i = fmod(x
(i),β(i)) + εi where the β

(i)

and the εi are iid and follow two given distributions. Therefore, the error terms fmod(x(i),β)−
yobs,i are jointly explained by a variability of the physical system (which is random) and by
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measurement errors.

In section 7.3, it is assumed that, for 1 ≤ i ≤ n, yobs,i = fmod(x
(i),β(0)) + Z(x(i)) + εi,

where β(0) is a �xed model parameter, x → Z(x) is a deterministic function and the εi are

iid and follow a given distribution. Z is called the model error function. Hence, in section

7.3, it is assumed that the physical system is a deterministic function and that the error terms

fmod(x
(i),β)− yobs,i are jointly explained by a model error of the computer model fmod and by

measurement errors.

7.2 Errors modeled by a variability of the physical system

7.2.1 The general probabilistic model

Based on the general framework of section 7.1, the probabilistic model that we follow in this

section 7.2 is the following one.

freal(x) = fmod(x,β), (7.2)

where x is the vector of the experimental conditions and β is the random vector of the model

parameters. The distribution Lβ of β, on Rm, is unknown.

Remark 7.3. Let us consider again the toy example 7.2. The model (7.2) corresponds to the

case where doing two shoots with the same angle t and tank speed V results in two di�erent

distances P for the cannon ball. This di�erence is explained by an intrinsic variability of the

shoot process in the cannon. (7.2) thus boils down to considering that this intrinsic variability

yields a random initial speed U of the cannon ball after the shoot, and that the trajectory of the

cannon ball is deterministic once t, V and U are �xed.

In (7.2), the physical system is random, and the objective is to estimate its distributions

x → Lx, where Lx is the distribution of freal(x). Once this distribution is estimated, it can

be used in any applied statistical analysis, such as, in a risk analysis, evaluating the probabil-

ity that, for a given experimental condition x, the physical system yield an undesirably large

value. Furthermore, in a design study, knowing the distributions Lx enables to carry out an

optimization under uncertainty of the system parameter part of x.

Since the computer model can be run for arbitrary inputs x,β, the distribution mapping

x → Lx, can be estimated if the distribution Lβ of the model parameters is known. This is

called uncertainty propagation ([dRDT08]), because the uncertainty on β is propagated in fmod

to yield the uncertainty on fmod(x,β). Thus, the objective associated to the framework (7.2) is

to estimate the distribution Lβ.
This is done by using the computer model fmod for chosen experimental conditions and model

parameters, and by using a set of experimental results. A set of experimental results is of the form

x(1), yobs,1, ...,x
(n), yobs,n, where x(i) is an experimental condition and yobs,i = freal(x

(i)) + εi is

an observation of the physical system for this experimental condition. It is assumed that the εi

are independent measure errors, following a centered Gaussian distribution with known variance

σ2
mes. Thus, we have

yobs,i = fmod(x
(i),β(i)) + εi (7.3)
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where the yobs,i are iid, the x(i) are deterministic and observed, the εi are iid with known

N(0, σ2
mes) distribution and the β(i) are iid, unobserved and follow an unknown distribution Lβ

which is to be estimated.

As in many distribution estimation problem, the question of whether using a parametric or

non-parametric estimation method arises. Classically, roughly speaking, using a non-parametric

method enables potentially to approximate the true distribution Lβ as accurately as possible.

However, due to the limited number of observations, a non-parametric estimation method is

much more subject to their variability than a parametric one, so that it can eventually yield a

more imprecise estimation. The two errors that we have described, the approximation error and

the prediction error, are hence antagonistic, so that a trade-o� has to be found between them.

In this section 7.2, we will discuss the parametric estimation of Lβ. The distribution Lβ is

assumed to be multidimensional Gaussian, with unknown mean vector m and unknown covari-

ance matrix Σ. Hence, the goal becomes to build estimators m̂(yobs) = m̂(yobs,1, ..., yobs,n) and

Σ̂(yobs) = Σ̂(yobs,1, ..., yobs,n) for the mean vector and the covariance matrix.

7.2.2 Non-linear methods

By non-linear methods, we mean that we do not make any approximation for the computer

model function (x,β)→ fmod(x,β).

Maximum Likelihood methods

For given m and Σ, yobs,i in (7.3) always follows a non-degenerate distribution on R when

σ2
mes > 0. Thus, Maximum Likelihood is feasible. The probability function of yobs,i is written

as, with pm,Σ(.) being a probability density function given m and Σ,

pm,Σ(yobs,i)

=

∫
Rm

pm,Σ(yobs,i,β)dβ

=

∫
Rm

pm,Σ(yobs,i|β)pm,Σ(β)dβ

=
1

(
√

2π)m+1σmes
√
|Σ|

(7.4)∫
Rm

exp

(
− (yobs,i − fmod(xi,β))2

2σ2
mes

)
exp

(
−1

2
(β −m)tΣ−1(β −m)

)
dβ.

Thus, by writing the log-Likelihood of each of the independent yobs,i, the Maximum Likelihood

estimation of m and Σ is

(m̂ML, Σ̂ML) ∈ argmin
m,Σ

L(m,Σ),

with

L(m,Σ) =

n∑
i=1

Li(m,Σ), (7.5)
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with

Li(m,Σ) = (7.6)

ln

(
1√
|Σ|

∫
Rm

exp

(
− (yobs,i − fmod(xi,β))2

2σ2
mes

)
exp

(
−1

2
(β −m)tΣ−1(β −m)

)
dβ

)

Because of the very general form of fmod, the integral terms in (7.5) and (7.6) are not

explicit. If the computer model fmod is cheap to run, they can be evaluated numerically, making

the ML estimation computationally feasible. Let us also mention the existence of the Stochastic

Expectation Maximization algorithm, that, roughly speaking, aims at optimizing (7.5) without

calculating it exactly. We refer to chapter 1 of the PhD thesis [Fu12] and to [Bar10] on this

subject.

If the computer model fmod is expensive, one non-prohibitive solution, as mentioned in

[Fu12], is to replace it by a cheaper metamodel f̂mod before optimizing (7.5) and (7.6).

Bayesian methods

In the thesis [Fu12], Bayesian methods are preferred to the ML method (7.5), because of their

ability to take into account expert knowledge, especially when the number n of observations is

small.

A Bayesian model considers m and Σ as random vector and matrix, where the randomness

corresponds to a lack of knowledge, and not to a variability. This randomness is hence di�erent

in nature from the randomness of β, which really varies among the di�erent observations yobs,i.

The a priori distribution ofm and Σ is chosen by the practitioner, according to available expert

knowledge, and is thus assumed �xed and known in all the mathematical developments. We

refer to [Rob01] for an introduction to Bayesian statistics.

Treatingm and Σ as random variables with known distribution makes it natural to consider

the conditional distribution

p(m,Σ|yobs) (7.7)

as gathering all the information relative to their estimation. For instance the mean of (7.7) can

be considered as their estimation, and the variance of (7.7) can be considered as an indicator of

the uncertainty of this estimation.

Considering the probability density function of a random symmetric matrix Σ is done by

bijectively mapping S, the set of the m × m symmetric matrices, with R
m(m+1)

2 . The bijec-

tive mapping corresponds to extracting the m(m+1)
2 upper-diagonal coe�cients of a symmetric

matrix.

Once the probability density functions for symmetric matrices in S are de�ned, the condi-

tional distribution (7.7) becomes,

p(m,Σ|yobs) =
1

Zyobs
p(yobs|m,Σ)p(m,Σ)

=
1

Zyobs

{
n∏
i=1

pm,Σ(yobs,i)

}
p(m,Σ), (7.8)
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with

Zyobs =
∫
Rm×S p(yobs|m,Σ)p(m,Σ)dmdΣ

=
∫
Rm×S {

∏n
i=1 pm,Σ(yobs,i)} p(m,Σ)dmdΣ

and with pm,Σ(yobs,i) as in (7.4).

Remark 7.4. In (7.8), we have a classical Bayes' rule, that is summarized in equation (2.5) of

[RW06] by the formulation

posterior =
likelihood×prior

marginal likelihood
,

where the likelihood term is the pdf of yobs given m and Σ, the prior term is the unconditional

pdf of m and Σ, the posterior term is the conditional pdf of m and Σ given yobs and the

marginal likelihood term is the intergral over m and Σ of the likelihood times the prior. Note

that the marginal likelihood term is also the unconditional pdf of yobs.

Similarly to ML, the conditional pdf (7.8) ofm and Σ depends on the non-explicit integrals

(7.4) involving the computer model fmod. If the function fmod is cheap, Monte Carlo Markov

Chains (MCMC) algorithms can compute a samplem(1),Σ(1), ...,m(mc),Σ(mc) whose empirical

distribution is approximately the conditional distribution (7.8). We refer to [RC99] for a general

introduction to MCMC algorithms and to the chapter 1 of [Fu12] for their utilization in the

present context.

Now, if the computer model fmod is time-costly, the approach followed in [Fu12] is to combine

MCMC algorithms with a Kriging approximation of fmod. We refer to [Fu12] for further details

on this approach.

7.2.3 Methods based on a linearization of the computer model

The advantage of linearization-based methods is to make explicit the terms pm,Σ(yobs,i) of

(7.4), which are interpreted as likelihood functions or as conditional distributions, depending on

whether we are in the frequentist of Bayesian framework.

The computer model is thus approximated linearly with respect to its model parameters

(within the range of values that is under consideration). Hence the computer model is considered

of the form fmod(x,β) = fmod(x,βnom) +
∑m
i=1 hi(x)(βi − βnom,i) where βnom is the nominal

vector around which the linear approximation is made. We choose, for simplicity reasons, to

remove the perfectly known quantities βnom and fmod(x,βnom). Indeed, up to a shift with

respect to β and fmod, we can consider that βnom = 0 and fmod(x,βnom) = 0. We then have

∀x : fmod(x,β) =

m∑
i=1

hi(x)βi. (7.9)

The linear approximation is justi�ed by a Taylor series expansion when the true covariance

matrix Σ of the model parameter β is small. If it is not the case, as stated in chapter 1 of

[Fu12], the estimation of m and Σ can be misleading.

Nevertheless, the linear approximation simpli�es the treatment, because, denoting h(x(i)) =

(h1(x(i)), ..., hm(x(i)))t, we have

yobs,i = h(x(i))tβ + εi,
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so that

L(yobs,i|m,Σ) = N
(
h(x(i))tm, Vi(Σ)

)
, (7.10)

with

Vi(Σ) = h(x(i))tΣh(x(i)) + σ2
mes. (7.11)

Thus, the ML estimator of subsection 7.2.2 becomes

(m̂ML, Σ̂ML) ∈ argmin
m,Σ

1

n

n∑
i=1

ln (Vi(Σ)) +
(yobs,i − h(x(i))tm)2

Vi(Σ)
, (7.12)

with Vi(Σ) as in (7.11). The Likelihood function requires to compute the gradients of fmod

w.r.t β for all the x(i). This is done prior to the optimization in (7.12), so that, naturally, the

linearization-based ML involves fewer evaluations of fmod than the non-linear ML of subsec-

tion 7.2.2. When the gradients are calculated, (7.12) could be numerically optimized directly,

since the likelihood criterion is evaluated with O(n) operations. In [dC96], an Expectation-

Maximization algorithm is proposed for optimizing (7.12). The obtained method for estimating

m and Σ is named the "CIRCE" method. It has been widely used in the system thermal-

hydraulic domain, and especially with the CATHARE computer model.

Finally, notice that, though we have presented the case where the measure error variance

σ2
mes is known, this parameter can be estimated as well by ML, thus yielding an optimization

problem similar to (7.12). In the CIRCE method, the parameter σ2
mes can similarly be estimated.

In the Bayesian framework, the conditional distribution (7.8) of the non-linear case becomes

p(m,Σ|yobs) = (7.13)

1

Zyobs

{
n∏
i=1

1√
2πVi(Σ)

exp

(
−
[
yobs,i − h(x(i))tm

]2
2Vi(Σ)

)}
p(m,Σ),

where

Zyobs =∫
Rm×S

{
n∏
i=1

1√
2πVi(Σ)

exp

(
−
[
yobs,i − h(x(i))tm

]2
2Vi(Σ)

)}
p(m,Σ)dmdΣ,

and with Vi(Σ) as in (7.11).

Similarly to (7.12), (7.13) requires to compute the gradients of fmod once and for all, before

the conditional distribution is computed. Thus, the conditional distribution is rather cheap

to compute, since the terms in the integrals in (7.13) can be computed with O(n) operations.

Hence, classical integral evaluation methods, or classical MCMC algorithms are likely to work

well.

7.3 Errors modeled by a model error process

7.3.1 The general probabilistic model

The statistical model of this section 7.3 is based on two main ideas:
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• The physical system x → freal(x) does not necessarily belong to the set of computer

model functions {x→ fmod(x,β)}. We model the di�erence between the physical system

and the correctly parameterized computer model by an error function that is called the

model error. The notion of correctly parameterized computer model is explained below.

• The model error function is not observable everywhere, and hence is unknown for the

majority of the experimental conditions. This lack of knowledge is modeled by the intro-

duction of a stochastic framework for this function, that is to say, it is represented by a

realization of a Gaussian process Z(x). Thus, as we have discussed in subsection 2.1.1, we

model an unknown deterministic function as a realization of a Gaussian process. Being

the sum of the correctly parameterized computer model and of the model error function,

the physical system itself is a realization of a Gaussian process. Hence, we do not use the

notation freal(x) anymore for the physical system. Instead, we denote it by the Gaussian

process Yreal(x).

Motivated by these two ideas, the Gaussian process statistical model of section 7.3 is de�ned

by the two following equations

Yreal(x) = fmod(x,β) + Z(x) (7.14)

and

Yobs(x) = Yreal(x) + ε(x). (7.15)

Where:

• Yreal(x) is the Gaussian process of the physical system.

• Z(x) is the model error process. It is assumed to be Gaussian and centered. Its covariance

function is generally not considered known, and will be estimated from data, similarly to

chapter 3.

• β is the correct parameter of the computer model. We call it the correct parameter

because, Z being centered, the computer model parameterized by β is the mean function

of the physical system.

• Yobs(x) is the observed output of the physical system for the experimental conditions x.

This observation is the sum of the variable of interest and of a measurement error ε(x).

ε(x) follows a Gaussian centered distribution, and is independent from one experiment to

another. The variance of ε is in general constant, in which case we denote it by σ2
mes, and

can be assumed known.

Remark 7.5. Let us consider the toy example 7.2. Assume that the computer model remains

the analytical function

(x, β) = (V, t, U)→ P =
1

g

(
U2 sin (2t) + 2UV sin (t)

)
,

which assumes that the only acting force is the gravitation. Assume that the air friction force is

actually non-negligible, and is of the form −γ−→v for a speed vector −→v . Assume also that a cannon
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shoot always yields the same initial speed U0 of the cannon ball. Then, the physical system is

still a deterministic function of V and t, which can correspond to the realization of a Gaussian

process. U0 can be interpreted as the correct model parameter, but the model obtained from it

is not a perfect representation of the physical system. The air friction coe�cient γ, that is not

taken into account by the computer model, causes a model error function, that, by di�erence,

is a deterministic function. This deterministic function can be modeled as the realization of a

Gaussian process.

For the model error Z in (7.14), we recommend to use a continuous covariance function,

such as the ones presented in chapter 2. These covariance functions make Z(x) and Z(x+ δx)

dependent for small δx. There are two reasons for doing so.

• The physical system is generally continuous with respect to the experimental conditions,

and so is the computer model. Hence, as a di�erence, the model error process Z must

be a process with continuous trajectories. This is generally the case when the covariance

function is continuous (see chapter 2).

• Similarly, it is expected that if the computer model makes a certain error for a given

experimental point, then it will do a similar error for a nearby experimental point. This

principle is taken into account by a continuous covariance function.

Concerning the correct model parameter β, we consider both a frequentist or Bayesian

framework. The Bayesian framework allows to take into account expert judgments for the model

parameter β. This is done by modeling the constant but unknown correct model parameter β

as a random vector. The distribution of this random vector is known, and chosen according to

the degree of knowledge one has about the model parameter β. We use a Gaussian distribution

for the Bayesian modeling of β. Hence, we distinguish two cases:

No prior information case: β is a vector of unknown constants.

Prior information case: β is a Gaussian vector, with known mean vector βprior and

covariance matrix Qprior.

From the Gaussian process modeling (7.14) and (7.15), we are interested in solving the two

following problems:

1. Calibration. It is the problem of estimating the correct model parameter β, or equiv-

alently �nding the most accurate computer model function x → fmod(x,β) to represent

the physical system.

2. Prediction. For a new experimental condition x(new), we want to predict the physical

system, and associate a measure of uncertainty to this prediction. The main idea is that

the physical system is not predicted solely by the calibrated computer model, because we

are also able to infer the value of the model error at x(new).

The calibration and prediction methods depend on the approximations made on the computer

model function. In subsection 7.3.2, no approximations are made. In subsection 7.3.3, a linear

approximation of the computer model, with respect to the model parameters, is made.
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7.3.2 Non-linear methods

Estimation of the covariance function of the model error

For the calibration and prediction tasks to be carried out, it is �rst necessary to estimate the

covariance function of the model error Z and the variance σ2
mes of the measurement error ε.

The variance σ2
mes of the measurement errors can generally be speci�ed from physical exper-

tise. This is the case we will consider here. If it is not the case, this function can, for example,

be estimated in the same way as the model error covariance function.

We denote by Kmod the covariance function of the model error. Generally there is no expert

judgment available concerning Kmod. Indeed, physical knowledge is used in the conception of

the computer model, and hence may not help to know the shape of the error of the computer

model. Therefore, Kmod has to be selected in the parametric set similar to de�nition 3.18,

Kmod = {Kmod,ψ,ψ ∈ Ψ},

with Kmod,ψ a stationary covariance function and Ψ ⊂ Rp. Kmod can be one of the classical

covariance function families that are presented in chapter 3.

We have n observations of the physical system of the form x(1), yobs,1, ...,x
(n), yobs,n, where

x(i) is an experimental condition and yobs,i = fobs(x
(i)). In the frequentist framework for β, the

likelihood function of yobs is a function of both β and ψ and is as follows.

l(β,ψ) =
1

(2π)
n
2

1√
|Kψ|

exp

(
−1

2
(yobs −m(β))tK−1

ψ (yobs −m(β))

)
, (7.16)

where m(β) is the n × 1 vector de�ned by m(β)
i = fmod(x

(i),β) and Kψ := Kmod,ψ + σ2
mesIn,

with Kmod,ψ the n× n matrix de�ned by (Kmod,ψ)i,j = Kmod,ψ(x(i) − x(j)).

Because of the general form of the computer model function fmod in (7.16), the likelihood

function l(β,ψ) must generally be maximized jointly with respect to β and ψ. This yields the

ML estimator ψ̂ML.

Similarly to section 7.2, two cases are considered, depending if the computer model is ex-

pensive to run or not. If the computer model is not expensive to run, (7.16) can be directly

maximized numerically. If the computer model is expensive to run, one possible solution is

to build a Kriging model of it, jointly with respect to x and β, from a limited number nm

of computer model results. Also, new computer model results could be added iteratively, with

well-chosen inputs x,β, in a spirit similar to Kriging-based optimization [JSW98]. To our knowl-

edge, this problem has not been much addressed in the literature. Indeed, classical references on

computer model calibration ([KO01], [HKC+04], [BBP+07]), when a model error is taken into

account, rather consider the Bayesian framework for β.

In the Bayesian framework for β, let p(β) be the probability density function of β, following a

N (βprior,Qprior) distribution. We consider the fully-Bayesian case where an a priori probability

distribution p(ψ) is also speci�ed for ψ. Indeed, this is the case in the references [KO01],

[HKC+04], [BBP+07]. Then, the conditional distribution of β,ψ given yobs has the pdf

l(β,ψ)p(β)p(ψ)∫
Rm+p l(β,ψ)p(β)p(ψ)dβdψ

, (7.17)
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with l(β,ψ) as in (7.16). Similarly to the frequentist case, if the computer model fmod is

cheap, then the numerator in (7.17) is rather cheap to compute, so that MCMC methods can be

carried out directly. These MCMC methods yield a sample (β(1),ψ(1), ...,β(mc),ψ(mc)) following

approximately the conditional distribution (7.17). The empirical mean of the ψ(i) is thus the

fully-Bayesian estimation of ψ.

Now, if the computer model is expensive to run, the aforementioned references [KO01],

[HKC+04], [BBP+07] propose to build a Kriging model for it. A Bayesian probability distribu-

tion is also associated to the covariance hyper-parameters of this second Kriging model. This

results in a rather complex fully Bayesian framework, for which, by using MCMC methods,

it is nevertheless tractable to compute an approximation of the conditional distribution of ψ

conditionally to the vector of experimental results yobs, and to a vector of results of the com-

puter model fmod. Again, the mean of this approximate conditional distribution constitutes the

Bayesian estimation of ψ. We refer to the aforementioned references for details of this treatment.

In the Bayesian framework for β and ψ, whether the computer model is expensive to run

or not, the MCMC method yields a sample ψ(1), ...,ψ(mc) from the distribution (7.17) for ψ.

This sample naturally enables us to quantify the uncertainty related to the estimation of ψ.

This uncertainty can also naturally be taken into account in the prediction and calibration (see

[KO01], [HKC+04], [BBP+07]).

Nevertheless, in section 5.2.1 of [BBP+07] and in section 4.5 of [KO01], it is recommended to

consider ψ as known and equal to its Bayesian estimate. We will follow this recommendation in

this subsection 7.3.2. Hence, in the sequel of subsection 7.3.2, ψ is considered known and equal

to its estimate. Notice that this is similar to chapter 3 where, most classically, the covariance

hyper-parameters of a Kriging model are �rst estimated, and then assumed known and equal to

their estimate when addressing Kriging predictions and predictive variances. Notice that this

may result in a slight underestimation of the uncertainty associated to the Kriging predictions.

Calibration when the covariance function of the model error is �xed

As we have previously discussed, we consider that the covariance function Kmod of the model

error process Z is known.

In the frequentist framework for β, the ML estimation of β corresponds to maximizing the

likelihood function

l(β) =
1

(2π)
n
2

1√
|K|

exp

(
−1

2
(yobs −m(β))tK−1(yobs −m(β))

)
, (7.18)

where m(β) is the n× 1 vector de�ned by m(β)
i = fmod(x

(i),β) and K = Kmod + σ2
mesIn, with

Kmod the n× n matrix de�ned by (Kmod)i,j = Kmod(x
(i)−x(j)). Maximizing (7.18) yields the

ML estimator β̂ML.

Remark 7.6. We see in (7.18) that the ML estimator β̂ML can be written

β̂ML ∈ argmin
β

(yobs −m(β))tK−1(yobs −m(β)).

Therefore, the ML estimator of β selects a model parameter yielding the best possible reproduction

of the experimental results by the computer model, which is intuitive.
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Remark 7.7. Quantifying the uncertainty of the ML estimator β̂ML in (7.18) is not simple

because of the general nature of the computer model function fmod. On the contrary, in the

Bayesian framework treated below for calibration, the conditional distribution of β naturally

yields this uncertainty. In this subsection 7.3.2, we will not discuss the uncertainty related to

the frequentist ML estimation of β, because we do not use this ML estimation elsewhere in the

manuscript (when the computer model is not assumed linear with respect to β). We are not

aware either of references on the frequentist estimation of β in the non linear case. On the

contrary, the references [KO01], [HKC+04] and [BBP+07] treat the Bayesian estimation of β.

We refer to the discussion following (7.16) for the optimization of (7.18): if the computer

model is cheap, the optimization can be carried out directly, if not, building a Kriging model of

the computer model is a possibility.

We now consider the Bayesian estimation of β, for which details can be found in the references

[KO01], [HKC+04] and [BBP+07]. Let p(β) be the probability density function of β following

a N (βprior,Qprior) distribution. Then the distribution of β, conditionally to the vector of

observation yobs is
l(β)p(β)∫

Rm l(β)p(β)dβ
, (7.19)

with l(β) as in (7.18). We refer to the discussion following (7.17) for the computation of

(7.19). If the computer model is cheap, MCMC methods can be carried out directly. Else, it

is proposed in [KO01], [HKC+04] and [BBP+07] to combine MCMC methods with a Kriging

model for the computer model. In both cases, MCMC methods yield a sample (β(1), ...,β(mc))

following approximately the conditional distribution (7.19). All the conditional distribution can

be considered for carrying out further uncertainty analysis on β. If more simple indicators

are preferable, the empirical mean of the ψ(i) is the fully-Bayesian estimation of ψ, and an

associated indicator of the estimation error is the empirical variance of the ψ(i).

Prediction when the covariance function of the model error is �xed

The goal of the prediction is to give the most probable value of the physical system, for a

new experimental condition, without doing a real experiment. This most probable value is not

necessarily given by the output of the calibrated computer model, because the model error is

inferred as well.

Consider a new point x(new), for which we aim at predicting the value of the physical

system Yreal(x
(new)), from the observed values at x(1), ...,x(n). We denote by k(x(new)) the

n× 1 covariance vector of the model error process Z between (x(1), ...,x(n)) and x(new), that is(
k(x(new))

)
i

:= Kmod(x
(i) − x(new)).

Consider �rst the frequentist case, with the ML estimator β̂ML of (7.18). The most natural

prediction method is to consider β �xed and equal to the estimate β̂ML. This being done, the ob-

servation vector yobs,1, ..., yobs,n has distributionN (m(β̂ML),K). Furthermore, since the measure

error is independent of the model error, the covariance vector between yobs and Yreal(x
(new))

is k(x(new)). Thus, we can directly use the simple Kriging equation (2.9), which yields the

prediction

ŷ(x(new)) = fmod(x
(new), β̂ML) + k(x(new))tK−1(yobs −m(β̂ML)). (7.20)
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The main idea in (7.20) is that Yreal(x(new)) is not predicted by the calibrated computer

model only, because we are able to infer the value of the model error at x(new). Thus, the

predictor (7.20) is composed of the calibrated computer model fmod(x(new), β̂ML) and of the

inferred model error k(x(new))tK−1(yobs−m(β̂ML)). By inspection of (7.20), the inferred model

error has the following properties:

• x(new) being �xed, this term is large when the errors yobs −m(β̂ML) between the experi-

mental results and the calibrated computer model are large.

• The observations being �xed, this term is a linear combination of the components of

k(x(new)). These elements are usually a decreasing function of the distance between

x(new) and the experimental conditions x(i). Hence, if x(new) is far from an experimental

condition x(i), then the weight of this experimental result is small in the combination.

Hence, the prediction of Yreal(x(new)) is almost only composed of the calibrated computer

model when x(new) is far from any available experimental condition, while the model

error inference term is signi�cant when x(new) is in the neighborhood of an available

experimental condition (the neighborhood is de�ned in terms of the correlation function

Kmod).

Neglecting the uncertainty related to β̂ML, the prediction mean square error of ŷ(x(new)) is

obtained from (2.10) and is

σ̂2(x(new)) = Kmod(x
(new),x(new))− k(x(new))tK−1k(x(new)).

Similarly to remark 7.7, we do not discuss methods for taking the uncertainty related to

β̂ML into account in the prediction mean square error. Indeed, the prediction in the frequentist

case (in the non-linear case of this subsection 7.3.2) is not treated in this manuscript, neither is

it (to our knowledge) in the literature.

We now consider the Bayesian case for β. The Bayesian framework computes, by nature, the

conditional distribution of Yreal(x(new)) given yobs, which also takes the uncertainty related to β

into account in the prediction error. Letting p(.) and p(.|.) denote probability density functions

and conditional probability density functions, we have

p(Yreal(x
(new))|yobs) =

∫
Rm

p(Yreal(x
(new))|yobs,β)p(β|yobs)dβ. (7.21)

Yreal(x
(new)) can be sampled easily conditionally to (yobs,β), because it follows a Gaussian

distribution with mean

fmod(x
(new),β) + k(x(new))tK−1(yobs −m(β)) (7.22)

and variance

Kmod(x
(new),x(new))− k(x(new))tK−1k(x(new)). (7.23)

Also, a sample β(1), ...,β(mc), following approximately the distribution of β conditionally to

yobs, can be obtained by using MCMC techniques, as we have discussed in (7.19). Thus,

sampling (Yreal(x
(new)))i conditionally to yobs,β

(i) for 1 ≤ i ≤ mc, we obtain the sam-

ple (Yreal(x
(new)))1, ..., (Yreal(x

(new)))mc following approximately the full-Bayesian distribution
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(7.21). Notice that (7.21) is similar to the �rst equation of appendix C in [BBP+07], and that

the sampling method we discuss is similar to the sampling method discussed there.

Notice also that the sampling method for (7.21) is intuitive because (Yreal(x
(new)))i is the

sum of fmod(x(new),β(i)) and of a conditional realization of the model error (see (7.22) and

(7.23)). A conditional realization of Yreal(x(new))) is thus composed of a conditional realization

of the calibrated code and of a conditional realization of the model error.

The sampling method following (7.21) has the advantage of separating the calibration part

and the prediction part. Indeed, when the sample β(1), ...,β(mc) is obtained, it can be stored

and used, afterwards, for sampling Yreal(x(new)) for a large number of experimental conditions

x(new). This second sample is done exactly and does not require MCMC methods. Furthermore,

the full process x(new) → Yreal(x
(new)) can also be sampled, from the same MCMC sample

β(1), ...,β(mc), based on subsection 2.2.3.

The question on whether the computer model is cheap to run or not impacts the generation of

β(1), ...,β(mc), as we have discussed after (7.19). Predicting Yreal(x(new)) for a large number of

experimental conditions x(new) is also impracticable directly if fmod is expensive to run, because

fmod has to be called mc times for each experimental condition x(new). We refer to [KO01],

[HKC+04] and [BBP+07] for methods based on a Kriging modeling of fmod to overcome this

issue.

7.3.3 Methods based on a linearization of the computer model

Linearization of the computer model

The methods described in subsection 7.3.2 are valid for any computer model function fmod.

However, they can be rather computationally expensive to use in practice. Indeed, we have seen

that these methods require, in the Bayesian case, to run a MCMC algorithm, and possibly to

approximate the computer model by a surrogate model in both the x and β domains. In the

frequentist case, the methods of subsection 7.3.2 require to numerically solve an optimization

problem, involving fmod, with respect to β, and we have seen that they do not provide natural

way to take the uncertainty related to β into account in further predictions.

In this subsection 7.3.3, we show that the treatment of the Gaussian process modeling of

the model error is much simpler when the computer model is assumed linear with respect to its

model parameter β (within the range of values that is under consideration).

Hence, in this subsection 7.3.3, and similarly to subsection 7.2.3, we consider computer

models of the form fmod(x,β) = fmod(x,βnom) +
∑m
i=1 hi(x)(βi − βnom,i) where βnom is the

nominal vector around which the linear approximation is made. βnom is generally chosen by

expert judgment or by previous calibration studies. Similarly to (7.9), we can equivalently have

the simpler equation

∀x : fmod(x,β) =

m∑
i=1

hi(x)βi. (7.24)

The linear approximation is justi�ed by a Taylor series expansion when the uncertainty

concerning the correct parameter β is small. This linear approximation is frequently made, for

example in thermal-hydraulics [dC01, PCD08], or in neutron transport [KHF+06]. A thorough
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discussion on the validity of using the linear approximation in the non-linear case is given at the

end of this subsection 7.3.3.

We now formulate the problem in vector-matrix form. Assume that n experiments are carried

out at x(1), ...,x(n). We denote the n×m matrix H of partial derivatives of the computer model

with respect to β = (β1, ..., βm). H is de�ned by

Hi,j = hj(x
(i)).

For the n experiments the equations (7.14) and (7.15) become

yobs = Hβ + z + ε, (7.25)

with zi = Z(x(i)) and εi = ε(x(i)). Hence we have a universal Kriging model (see chapter 2).

We denote by K the covariance matrix of the model and measurement error vector z + ε.

K := cov(z + ε) = Kmod + σ2
mesIn. (7.26)

Remark 7.8. In (7.26), the covariance matrix of the measure error vector ε is σ2
mesIn, because

the measure errors are independent. The case of dependent Gaussian measure errors can be

treated similarly, by replacing, in (7.26), σ2
mesIn by the covariance matrix Kmes of the measure

error vector ε. In this subsection 7.3.2, for concision, we address the case of iid measure errors

with variance σ2
mes.

When the matrix K is �xed, we can compute the a priori distribution of the vector of

observations. In the no prior information case we have, with β an unknown constant,

yobs ∼ N (Hβ,K). (7.27)

In the prior information case, we have, with β ∼ N (βprior,Qprior)

yobs ∼ N (Hβprior,HQpriorH
t + K). (7.28)

Thus, the linear approximation (7.24) yields the simple Gaussian distributions (7.27) and

(7.28) for yobs, contrary to subsection 7.3.2, where the distributions in the frequentist and

Bayesian case are general, because of the general nature of fmod.

Estimation of the covariance function of the model error

Similarly to subsection 7.3.2, we consider that the variance σ2
mes of the measure error is known

and that the covariance function of the model error Z is estimated from yobs in the parametric

family

Kmod = {Kmod,ψ,ψ ∈ Ψ},

with Kmod,ψ a stationary covariance function and Ψ ⊂ Rp.
Since we deal with a classical universal Kriging model for yobs, the estimation methods

presented in chapter 3 can be adapted to estimate ψ. We use preferably the REML method of

chapter 3. The advantage of REML is that the estimation of ψ is independent of the estimation

of β. Furthermore, this method enables us to have the same estimation of ψ in both the prior and
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no prior information case. Finally, let us notice that n > m is required for the REML method,

that is to say there are more experiments than model parameters. In thermal-hydraulics, the

�eld of the application case of chapter 8, this condition holds. Nevertheless, in other �elds of

Nuclear Engineering, typically in neutron transport [KHF+06], one may have m � n. In this

case, if one wants to address the present model error modeling anyway, it is recommended to

work in a fully Bayesian framework, both for the model parameters and the covariance hyper-

parameters as described in [SWN03] section 4.1.4, and in subsection 7.3.2 for the non-linear case

for fmod. Indeed, the very large number of model parameters makes the uncertainty related to

the hyper-parameters of the model error covariance function too large to be neglected, as it is

done when these hyper-parameters are �xed to their estimated values.

Let us denote Kψ = Kmod,ψ+σ2
mesIn and let U,S,V be a Singular Value Decomposition of

H, with U of size n×m so that UtU = Im,m, S a diagonal matrix of size m, with nonnegative

numbers on the diagonal, and V an orthogonal matrix of size m, so that H = USVt. Then,

the REML estimation of ψ is de�ned by (see chapter 3)

ψ̂ ∈ argmin
ψ

q(ψ), (7.29)

with

q(σ,θ) = ln
∣∣∣UtK−1

ψ U
∣∣∣+ ln |Kψ|+ ytobsK−1

ψ yobs

−ytobsK−1
ψ U(UtK−1

ψ U)−1UtK−1
ψ yobs. (7.30)

We recall (see chapter 3) that it does not matter if H is ill-conditioned, or even singular, since

its singular values are actually not used in the computation of the Restricted Likelihood.

Calibration and prediction

Throughout this subsection, we assume that the covariance function Kmod of Z is estimated

and �xed and we use the classical Kriging formulas of chapter 2 to solve the calibration and

prediction problems. Thus, let K = Kmod + σ2
mesIn be the �xed n × n matrix de�ned by

Ki,j = Cov(zi + εi, zj + εj).

In the no prior information case, the calibration problem is the frequentist problem of esti-

mating the unknown parameter β. From chapter 2, the maximum likelihood estimation of β

is

β̂ = (HtK−1H)−1HtK−1yobs. (7.31)

This estimator is unbiased and has covariance matrix

cov(β̂) = (HtK−1H)−1. (7.32)

We see that if there is a β so that Hβ = yobs, then we have β̂ = β. This means that, if we are

in the favorable case when the computer model can perfectly reproduce the experiments, then

the Gaussian process calibration of the computer model will achieve this perfect reproduction,

as should be expected. Finally, as the random vector β̂ has Gaussian distribution, its covariance

matrix is su�cient to yield con�dence ellipsoids for β.
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In the prior information case, from chapter 2, the posterior distribution of β given the

observations yobs is Gaussian with mean vector

βpost = βprior + (Q−1
prior + HtK−1H)−1HtK−1(yobs −Hβprior), (7.33)

and covariance matrix

Qpost = (Q−1
prior + HtK−1H)−1. (7.34)

We can notice that, similarly to chapter 2, when Q−1
prior → 0, then the prior information case

calibration tends to the no prior information case calibration. This is an intuitive fact, because

Q−1
prior small corresponds to a small a priori knowledge of β and hence should, in the limit case,

correspond to an absence of knowledge.

Remark 7.9. The prior information case calibration of (7.33) is classically used in neutron

transport [KHF+06], when the linear approximation (7.24) of the computer model is also made.

In the reference hereabove, no model error is assumed, so that the physical system is predicted

by the calibrated computer model only. In thermal-hydraulics, which is the �eld of the case of

application in chapter 8, this hypothesis is not justi�ed. Indeed, computer models can rely on

aggregation of correlation models that have no physical justi�cation. We will see in the prediction

formulas of (7.35) and (7.37), and in the FLICA 4 application case of chapter 8, that modeling

the model error allows to signi�cantly improve the predictions of a computer model that is only

partially representative of the physical system.

We now present the prediction formulas. For a new experimental condition x(new), we

denote by h(x(new)) the n × 1 vector of derivatives of the computer model with respect to

β1, ..., βm at x(new). Hence we have
(
h(x(new))

)
i

= hi(x
(new)). We also denote k(x(new)) the

covariance vector of the model error between (x(1), ...,x(n)) and x(new), that is
(
k(x(new))

)
i

:=

Kmod(x
(i) − x(new)).

Following (2.15), in the no prior information case, the Best Linear Unbiased Predictor

(BLUP) of Yreal(x(new)) with respect to the vector of observations yobs is

ŷ(x(new)) = (h(x(new)))tβ̂︸ ︷︷ ︸
calibrated computer model

+ (k(x(new)))tK−1(yobs −Hβ̂)︸ ︷︷ ︸
inferred model error

, (7.35)

with β̂ as in (7.31). As in (7.20), this predictor is composed of the calibrated computer model

and of the inferred model error. The inferred model error has the two following properties, as

we have discussed for (7.20). For �xed prediction point it is large when the di�erences between

the observations and the calibrated code are large, and for �xed observations, it decays when

one moves away from observation points, the distance being de�ned in terms of the covariance

function of the model error.

The mean square error of the BLUP of Yreal(x(new)) is, see (2.16),

σ̂2(x(new)) = Kmod(x
(new),x(new))− k(x(new))tK−1k(x(new)) (7.36)

+(h(x(new))−HtK−1k(x(new)))t(HtK−1H)−1(h(x(new))−HtK−1k(x(new))).

Since only linear combinations have been used, the BLUP has Gaussian distribution and the

mean square error allows to build con�dence intervals.
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In the prior information case, from chapter 2, the posterior distribution of Yreal(x(new))

given the observations yobs is Gaussian with mean

ŷ(x(new)) = (h(x(new)))tβpost︸ ︷︷ ︸
calibrated computer model

+ (k(x(new)))tK−1(yobs −Hβpost)︸ ︷︷ ︸
inferred model error

, (7.37)

with βpost from (7.33), and variance

σ̂2(x(new)) = (7.38)

Kmod(x
(new),x(new))− k(x(new))tK−1k(x(new))

+

(h(x(new))−HtK−1k(x(new)))t(HtK−1H + Q−1
prior)

−1(h(x(new))−HtK−1k(x(new))).

We can make the same remarks as for (7.35). Similarly to calibration, the limit when Q−1
prior → 0

of the prediction in the prior information case is the prediction in the no prior information case.

Let us conclude about the advantage of the linear approximation (7.24) from a simplicity

point of view. Once the model error function Kmod is �xed, the calibration and prediction,

and the quanti�cation of the resulting uncertainty, are carried out explicitly by (7.31)-(7.38).

In subsection 7.3.2, there is no explicit equivalent of (7.31)-(7.38). On the contrary, numerical

optimization or MCMC methods are necessary.

The analytical test case of �gures 2.6 and 2.7 revisited

The calibration and prediction equations (7.31)-(7.38) are those of a classical universal Kriging

model, in which the calibrated code plays the role of the estimated mean function, and the

inferred model error plays the role of the predicted deviation from the mean function. Hence,

the qualitative conclusions we had drawn from �gures 2.6 and 2.7 apply to them.

Let us summarize these conclusions from a computer model calibration and model error

modeling point of view. First, in �gures 2.6 and 2.7, the calibrated parameter β does not make

the code function reproduce the experiments as best as possible. Indeed, the calibrated code

alone does not constitute a predictive model of the physical system. When this calibrated code

is completed by the inference of the model error, this results in a very accurate prediction of

the physical system. Furthermore, in the framework of �gures 2.6 and 2.7, the calibrated code

predicts the physical system better in extrapolation (far from the experimental data) that a

code function that would reproduce the experiments as best as possible.

Second, in extrapolation, the model error cannot be precisely inferred from the available

observations and the inferred model error in (7.35) and (7.37) is hence very close to zero. Hence,

in extrapolation, the prediction is made using the calibrated computer model only. This is

expected, because when one cannot statistically improve the prediction of the computer model,

a conservative choice is to rely only on physical knowledge.

General recommendations for the Gaussian process modeling with the linearization

The Gaussian process modeling of the model error, with the linear approximation (7.24) of the

computer model with respect to the model parameters, is rather simple to carry out. We will
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see, in the case of the thermal-hydraulic code FLICA 4 in chapter 8, that it has the potential to

both improve the prediction capability of the computer model and correctly assess the resulting

uncertainty. Before that, we conclude chapter 7 by giving general practical recommendations

concerning the use of the Gaussian process modeling, with the linearization of the computer

model with respect to the model parameters.

The �rst important point is that, in chapters 7 and 8, we do not address the complex �eld of

code veri�cation. As a consequence, discretization or numerical parameters, such as the length

or volume of a cell in a numerical scheme, should not be considered as model parameters or

treated by the present method without further study.

Let us now discuss the linear approximation (7.24). If the main objective is to achieve a

precise enough prediction of the physical system, and not to calibrate the computer model, then

it does not matter if the computer model is not linear with respect to its model parameters.

Indeed, the linear approximation boils down to modeling the Gaussian process Z in (7.14) as the

model error of the linearized computer model in (7.24). In the prediction formulas (7.35) and

(7.37), we can see that the statistical correction can compensate for the linear approximation

error of the code. This fact is con�rmed in chapter 8 for the thermal-hydraulic code FLICA

4. Now, if calibration in itself is one of the main objectives, one should act with caution as

regards to the linear approximation. In this case, we advise to run a sensitivity analysis �rst

to check the linearity assumption (e.g the Morris method [Mor91]). If the linearity assumption

is in�rmed, then we recommend to proceed in two steps. First, a non-linear calibration should

be carried out, like the non-linear Bayesian calibration of (7.19). Then, the model parameters

should be �xed to their calibrated values, or a very narrow prior, centered around these values,

should be used, before using the linearization of the computer model.

Concerning the computation of the derivatives with respect to the model parameters β, two

cases are possible. First the code can already provide them, by means of the Adjoint Sensitivity

Method for instance [Cac03]. Similarly, automatic di�erentiation methods can be used on the

source �le of the code and yield a di�erentiated code [HP04]. If these kinds of methods are not

available, �nite di�erences are necessary to approximate the derivatives. Our main advice here is

not to use a too small variation step. Indeed, on the one hand, if the code is approximately linear

with respect to the model parameters, a too large variation step will provide a good estimate of

the derivatives anyway, whereas a too small variation step can yield numerical errors. On the

other hand, if the code is not approximately linear, the linear approximation should not be used

for calibration. For prediction, the model error compensates for the linear approximation error

as well as for the error in calculating the derivatives.

The fourth important point is that extrapolation is not recommended. This is a general

advice for all Kriging models. The experimental results should be obtained in the prediction

domain of interest. Hence, for example, Kriging methods are not advisable to address scaling

issues, that intrinsically ask to extrapolate experimental results from one scale to another.

When dealing with more complex systems than that of the application case of chapter 8,

such as system-thermal hydraulics, one may deal with high-dimensional problems, either with

respect to the number of experimental conditions (dimension of x) or to the number of model

parameters (dimension of β). The dimension of x is a potential problem. A common rule of
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thumb for Kriging models is that one should have n ≥ 10dim(x). Note that screening methods

exist and allow to select only the most impacting experimental conditions [MIDV08]. If the

number of experiments is really too small compared to the dimension of x, our opinion is that

it is not possible to take into account the model error correctly, so that only the calibration

should be carried out. If β is high-dimensional, we advise to use a Bayesian prior distribution

both on β and on the covariance hyper-parameters for the model error, as we have discussed

when presenting REML in (7.29). An alternative is to select only the most important model

parameters (from physical expertise), and to �x the other model parameters at their nominal

values. In this case the Gaussian process modeling of the model error also compensates for the

error made by freezing these parameters.

Implementation in the gpLib library

The Gaussian process modeling of the model error, with the linear approximation (7.24) of the

computer model with respect to the model parameters, has been implemented in the gpLib

library [MMGB12]. The gpLib library, written in C language, provides the elementary functions

for a universal Kriging model: prediction, conditional simulation, and criteria for estimation by

Maximum Likelihood and Cross Validation. It has been integrated in the URANIE uncertainty

platform, developed at CEA, in the objective of providing an autonomous and user-friendly

Kriging framework, that can be used for a large variety of computer experiment problems.
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Chapter 8

Calibration and improved

prediction of the thermal-hydraulic

code FLICA 4

This chapter is inspired by the article [BBGM]. We present an application case on the thermal-

hydraulic code FLICA 4, for the Gaussian process modeling of the model error of subsection

7.3.3. The thermal-hydraulic code FLICA 4 is mainly dedicated to core thermal-hydraulic

transient and steady state analysis [TBG+00]. In the present context, FLICA 4 is used as a

physical modeling of an experiment consisting in measuring the pressure drop in an ascending

pressurized �ow of liquid water through a tube that can be electrically heated. We focus on

the frictional pressure drop (∆Pfric) in a single phase �ow. Several experimental results are

available, giving the observed values of the variable of interest ∆Pfric, for di�erent experimental

conditions.

In section 8.1, we introduce the thermal-hydraulic code FLICA 4, and the associated experi-

mental results. In section 8.2, we discuss the practical aspects of the Gaussian process modeling

of the model error of subsection 7.3.3. We also introduce the Cross Validation procedure for

the evaluation of the predictions obtained from the Gaussian process model. In section 8.3, we

present and discuss the results of the Cross Validation procedure on the experimental results of

section 8.1.

8.1 Presentation of FLICA 4 and of the experimental re-

sults

8.1.1 The thermal-hydraulic code FLICA 4

In this chapter 8, we focus on the single phase regime, meaning that all the water is in the liquid

state during the experiment. The mathematical model for ∆Pfric, in the single phase regime,
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is given by the local equation

∆Pfric =
H

2ρDh
G2fisofh. (8.1)

In (8.1), each quantity implicitly depends on space and time. (8.1) is hence numerically inte-

grated in space and time by the thermal-hydraulic code FLICA 4. In (8.1), H is the friction

height, ρ is the density, Dh is the hydraulic diameter, and G is the �owrate. fiso and fh are

the friction coe�cients respectively in the isothermal and heated �ow regimes. The isothermal

regime is de�ned by the temperature of the liquid being uniformly equal to the wall temperature.

On the other hand, the heated �ow regime is characterized by a heat �ux imposed on the test

section and thus a varying liquid temperature.

The friction coe�cient in the isothermal regime is

fiso =


al
Re if Re < Rel

at
Rebt

if Ret < Re

al
Re

Ret−Re
Ret−Rel + at

Rebt
Re−Rel
Ret−Rel if Rel < Re < Ret

(8.2)

where Re = GDh
µ is the Reynolds number and µ is the viscosity. The limiting values Rel and

Ret for the Reynolds number are de�ned according to the literature and represent the limits

of the transition regime between laminar and turbulent �ows. al, at and bt are parts of the

model parameters of the thermal-hydraulic code FLICA 4. They are the three components of

the vector β of model parameters in the isothermal regime.

The friction coe�cient in the heated �ow regime is a correction factor expressed as

fh = 1− Ph
Pw

Cf (Tw − Tb)

1 + d
(
Tw+Tb

2T0

)n (8.3)

where Ph and Pw are the heated and wetted perimeters, Tw is the wall temperature, Tb is the

bulk temperature, and T0 = 100◦C is a normalization temperature. Cf , n and d are the three

components of the vector β of model parameters in the heated �ow case. Finally, note that

tests with no heat �ux (isothermal tests) result in Tw = Tb, therefore the correction factor fh is

equal to 1, as expected.

To summarize, in (8.1), the isothermal regime is de�ned by fh = 1, the heated �ow regime

is de�ned by fh 6= 1, and both regimes are subcases of the single phase regime.

Finally, the simulation time of the thermal-hydraulic code FLICA 4 is approximately one

minute, to reproduce one experiment with one calibration parameter value. Hence, the matrix

H of the derivatives of the code with respect to the model parameters, for all the experiments,

in (7.25) can be computed by �nite di�erence in a reasonable time.

8.1.2 The experimental results

Several experimental tests have been conducted in order to calibrate the FLICA 4 friction

model. These tests have been used in previous calibration studies. The database is composed

of ni measurements in the isothermal regime, and nh measurements in the heated �ow regime.

An experimental condition x consists in geometrical data (the channel width e, the hydraulic

diameterDh, and the friction heightHf ) and in thermal-hydraulic conditions (the outlet pressure
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Po, the �owrate Gi, the wall heat �ux φw, the inlet liquid enthalpy hli, the thermodynamic title

Xi
th, and the inlet temperature Ti). With respect to the nomenclature of section 7.1, the

geometric data e, Dh, and Hf are control variables and the thermal-hydraulic conditions Po,

Gi, φw, hli, X
i
th and Ti are environment variables. For each test the pressure drop due to friction

∆Pfric is measured.

8.2 Description of the procedure for the Gaussian process

modeling

8.2.1 Objectives for the universal Kriging procedure

We carry out the Gaussian process modeling method, with the linear approximation, of subsec-

tion 7.3.3, on the thermal-hydraulic code FLICA 4 in the isothermal and heated �ow regimes.

We limit the calibration part of the study to the parameters at and bt. That is to say, we enforce

the parameter al of the isothermal model, and the parameters Cf , n and d of the heat correction

model to their nominal values, computed in previous calibration studies. Indeed, the parameters

at and bt are the most in�uent parameters for the thermal-hydraulic code FLICA 4.

We work in the prior information case (calibration given by (7.33)). From previous calibration

studies, we have βprior = (0.22, 0.21)t. Qprior corresponds to a 50% uncertainty and is chosen

diagonal with diagonal vector (0.112, 0.1052)t. Hence, this prior is rather large, so that the

calibration essentially depends on the experimental results.

An important point is that the two categories of experimental conditions (control and envi-

ronment variables) are not equally represented in the experimental results. Indeed, the ni + nh

experiments are divided into eight campaigns. Within a campaign, the control variables remain

constant, while the environment variables are varying. Hence, we only dispose of eight di�erent

control variables triplet. This means that, from the point of view of the prediction (7.37) given

by the Gaussian process model, it is a very unlikely that the prediction of the calibrated code

is signi�cantly improved when considering new control variables. We experienced that, when

predicting for new control variables, the Gaussian process method does not damage the predic-

tions given by the nominal calibration of the thermal-hydraulic code FLICA 4 but it does not

signi�cantly improve it. However, as we see next, we can give signi�cantly improved predictions

for observed control variables and new environmental variables.

To summarize, this study follows the double objective of calibration and prediction, in the

prior information case for the parameters at and bt. Concerning the prediction, the objective is

to predict for experienced control variables and new environment variables.

8.2.2 Exponential, Matérn and Gaussian covariance functions consid-

ered

The environment and control variables listed above are not independent. Hence, it would be

redundant to incorporate all of them in the covariance function. One possible minimal set of

environment and control variables is the set (Gi, φω, h
l
i, Po, Hf , Dh). For this set, we will use

the covariance function Kmod for the model error, with Kmod being built from one of the four
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one-dimensional exponential, Matérn 3
2 , Matérn 5

2 or Gaussian covariance functions of table

2.1. From the one-dimensional exponential covariance function, we use the tensorized version

(2.7) to build the 6-dimensional covariance function Kmod. From the one-dimensional Matérn
3
2 , Matérn 5

2 and Gaussian covariance functions, we use the isotropic version (2.6).

To summarize, we represent the experimental conditions of an experiment by

x = (Gi, φw, h
l
i, Po, Hf , Dh).

The covariance function is Kmod(x
(1),x(2)) = σ2Rmod

(
x(1),x(2)

)
, with Rmod being either,

the tensorized exponential, the isotropic Matérn 3
2 , the isotropic Matérn 5

2 or the Gaussian

correlation function of table 2.1, (2.6) and (2.7). The hyper-parameters to be estimated are the

variance σ2 and the six correlation lengths `1, ..., `6. They are estimated by REML, as described

in subsection 7.3.3.

Finally, we consider that the covariance matrix of the measure error vector (ε1, ..., εni+nh) is

Kmes = σ2
mesIni+nh , with σmes = 150Pa provided by the experimentalists.

8.2.3 K-folds Cross Validation for Kriging model validation

We have seen in subsection 2.2.4 that the quality of a Kriging model should not be evaluated on

the data that helped to build it. Instead, Cross Validation is a very natural method to assess

the predictive capability of a Kriging model.

We use a K-fold Cross Validation procedure, with K = 10, to evaluate the quality of the

Gaussian process predictions (7.37) and (7.38). This Cross Validation procedure calculates the

two following quality criteria.

RMSE2 =
1

n

nc∑
ic=1

∑
x∈Cic

(ŷCic
(x)− Yobs(x))2 (8.4)

and

IC =
1

n

nc∑
ic=1

∑
x∈Cic

1|ŷCic (x)−Yobs(x)|≤1.64σ̂Cic
(x). (8.5)

In (8.4) and (8.5), we partition the set of n experiments into nc = 10 subsets C1, ..., Cnc , each

subset being well distributed in the experimental domain. To build these subsets, we start from

a numbering of the experiments for which two successive experiments are similar (for instance

the experiments for the same control variables have successive indices). Then the subset 1 gather

the experiments with indices 1, 11, ..., the subset 2 those with indices 2, 12, ... and so on. For x =

x(i) ∈ Cic , we denote Yobs(x) = yobs,i, with the notation (7.25). Cic is the set of experimental

conditions and observations that is the union of the subsets C1, ..., Cic−1, Cic+1, ..., Cnc . ŷCic (x)

and σ̂Cic
(x) are the posterior mean and standard deviation of the predicted output Yobs(x)

given the experimental data in Cic . [ŷCic
(x)− 1.64σ̂Cic

(x), ŷCic
(x) + 1.64σ̂Cic

(x)] corresponds

to a 90% con�dence interval. It is emphasized that at step ic of the Cross Validation, the

Gaussian process model is built without using the experimental results of the class Cic . Hence

the important point is that, in the computation of the posterior mean and variance of the

observed value Yobs(x) at x, this observed value is unused, for the estimation of the hyper-

parameters as well as for the prediction formula.
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Remark 8.1. In subsection 2.2.4, we have presented the virtual Cross Validation formulas in

the case where the covariance function is not reeestimated at each step of the cross validation.

In this chapter 8, we choose instead to reestimate the covariance hyper-parameters at each step

of the Cross Validation. This is indeed more precise, since we observe in table 8.2 that the

estimated values of these hyper-parameters vary among the di�erent CV steps. Furthermore,

the additional computational cost of the reestimation is not prohibitive, because of the moderate

number of observation points.

8.3 Results

8.3.1 Results in the isothermal regime

In a �rst step, we consider the results in the isothermal and turbulent �ow regime only. That

is to say, the regime when fh = 1 in (8.1), and when Re > Ret in (8.2). We have nit < ni

experimental results.

The isothermal regime is characterized by no wall heat �ux, φw = 0. Hence, it is useless

to include it in the covariance function, because it is uniformly zero for all the experimental

conditions. So, we only have �ve correlation lengths out of six to estimate, which are `1, `3, `4,

`5 and `6 corresponding to Gi, hli, Po, Hf and Dh.

On �gure 8.1, we plot, for the 10-fold Cross Validation, the nc = 10 posterior mean values

of at and bt for the four covariance functions of subsection 8.2.2. The conclusions are that

the Gaussian process calibration does not signi�cantly change the nominal values at = 0.22

and bt = 0.21. Furthermore we do not notice signi�cant di�erences concerning the choice of

the covariance function for the calibration. Finally, we can observe a high correlation in the

posterior means of at and bt. This is con�rmed in the nc posterior covariance matrix, where the

correlation coe�cient is larger than 0.95.

Concerning the prediction, we �rst compute the RMSE and IC criteria for the four covari-

ance functions. Results are presented in table 8.1. The �rst comment is that the predictive

variances of (7.38) are reliable, because they yield rather precise 90% con�dence intervals. This

is observed in a general way for Kriging, e.g in [LA12]. The second comment is that there is

no signi�cant di�erence between the di�erent covariance functions. This may be due to the

amplitude of the measurement error, which makes insigni�cant the problem of the regularity

of the covariance function. It is shown in [Ste99] section 3.7 that, in a particular asymptotic

context, even a small measurement error can have a signi�cant e�ect on prediction errors.

We now present more detailed results for the Matérn 3
2 covariance function. We �rst com-

pare the Gaussian process predictions with the predictions given by the calibrated code alone.

With the same Cross Validation procedure, the RMSE criterion for the calibrated code alone is

RMSE = 741Pa. This is to be compared with a RMSE around 300Pa for the Gaussian process

method. Hence the inference of the model error process signi�cantly improves the predictions

of the code. We illustrate this in �gure 8.2, where we plot, for each of the nit observations, the

predicted values and con�dence intervals with the 10-fold Cross Validation method. The plots

are done with respect to the experiment index. This index has physical meaning, because two

experiments with successive indices are similar, as we discuss after (8.5). We �rst see that the
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Figure 8.1: Calibration in the isothermal regime. 10-fold Cross Validation. Plot of the nc = 10

posterior means (7.33) of at and bt for the exponential, Matérn 3/2, Matérn 5/2 and Gaussian

covariance functions of subsection 8.2.2.

Covariance function RMSE (Pa) IC

exponential 289.5 0.93

Matérn 3
2 296.2 0.92

Matérn 5
2 302.7 0.89

Gaussian 310.8 0.88

Table 8.1: Prediction results in the isothermal regime. RMSE and IC criteria of (8.4) and (8.5)

obtained with a 10-fold Cross Validation procedure, for the covariance functions presented in

subsection 8.2.2.
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Figure 8.2: Prediction errors (observed values minus predicted values (7.37)) and 90% con�dence

intervals for these prediction errors, derived by the calibrated thermal-hydraulic code FLICA

4 (left), and the Gaussian process method (right). 90% con�dence intervals are of the form

[−1.65σ̂(x), 1.65σ̂(x)] with σ̂(x) given by (7.38). Plot with respect to the index of experiment.

Gaussian process modeling signi�cantly reduces the prediction errors, and that the con�dence

intervals are reliable. Then, we observe a regularity in the plot of the prediction error for the

calibrated code, especially for the largest indices. This regularity is not present anymore in the

error of the Gaussian process method. The conclusion is that the Gaussian process method

detects a regularity in the error of the calibrated code, and uses it to signi�cantly improve its

predictions.

Finally, in table 8.2, we show the nc = 10 di�erent estimations of σ2, `1, `3, `4, `5, `6, for the

di�erent steps of the Cross Validation. The �rst conclusion is the singularity at steps 5 and 6 of

the Cross Validation. The explanation is that, among the nit experimental results, there are two

singular points that have very similar experimental conditions but substantially di�erent values

for the quantity of interest. These two points are in CV classes 5 and 6. Hence the estimation

of the hyper-parameters in the CV steps 1, 2, 3, 4, 7, 8, 9, 10, where this singularity is present

in the data used for the estimation, is di�erent from the steps 5 and 6, where the singularity is

absent. On �gure 8.2, these two singular points yield the two largest prediction errors for the

Gaussian process method. Indeed, when one of them is in the test group, the other one is in

the learning group. As the Gaussian process modeling principle is to assume a correlated model

error, the quantity of interest of the singular point of the test group is (up to the measurement

error) predicted by the quantity of interest of the singular point of the learning group.

The correlation lengths in table 8.2 correspond to normalized experimental conditions varying

between 0 and 1. Hence, the second conclusion is that the estimated correlation lengths are

rather large, corresponding to rather large scales of variations of the model error, as discussed

for �gure 8.2. When an estimated correlation length is very large (larger than 10), it is equivalent

to assuming that the model error is independent of the corresponding experimental condition.

For instance, for all the CV steps, except step 6, the estimated correlation length `6, associated

to the hydraulic diameter Dh, is very large. Thus, the hydraulic diameter is estimated as a

non-in�uent input in nine CV steps out of ten. Similarly, the outlet pressure Po, associated to
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Cross Validation step σ `1 `3 `4 `5 `6

1 2220 2.3 4.0 100 0.40 53

2 2100 2.2 3.5 100 0.40 100

3 2088 2.1 3.8 100 0.39 100

4 2266 2.3 2.0 100 0.50 100

5 4491 3.4 100 24 1.36 100

6 1953 1.6 15 3.4 7.7 0.6

7 2385 2.4 4.6 100 0.44 100

8 2436 2.4 4.8 100 0.45 99

9 2331 2.4 4.2 100 0.43 100

10 2294 2.4 3.8 100 0.42 100

Table 8.2: Estimated hyper-parameters in the isothermal regime. Estimated correlation lengths

for the Matérn 3
2 covariance function of subsection 8.2.2, for the 10-fold Cross Validation pro-

cedure. For all the CV steps, except step 6, the estimated correlation length `6, associated

to the hydraulic diameter Dh, is very large. Thus, the hydraulic diameter is estimated as a

non-in�uent input in nine CV steps out of ten. Similarly, the outlet pressure Po, associated to

`4, is estimated as a non-in�uent input in eight CV steps out of ten.

`4, is estimated as a non-in�uent input in eight CV steps out of ten. The third conclusion is

that the estimations of the hyper-parameters can vary moderately among the Cross Validation

steps. This is an argument in favor of reestimating the hyper-parameters at each step of the

Cross Validation, because this takes these variations into account. Finally let us notice that, for

the Gaussian process model to be used for new experimental conditions, the hyper-parameters

are to be reestimated with all the observations.

8.3.2 Results in the single-phase regime

We now use all the experiments of the single phase regime (isothermal and heated �ow regimes),

that is to say n = ni + nh experiments. Hence, we estimate six correlation lengths for the six

environment and control variables Gi, φw, hli, Po, Hf and Dh.

Concerning the prediction, we �rst compute the RMSE and IC criteria for the four co-

variance functions. Results are presented in table 8.3. As in the isothermal case, we see that

the predictive variances are reliable and that there is no signi�cant di�erence between the four

covariance functions. As for the isothermal regime, we present the results for the the Matérn 3
2

covariance function in more details.

With the same Cross Validation procedure, the RMSE criterion for the calibrated code alone

is RMSE = 567Pa. This is to be compared with a RMSE around 200Pa of the Gaussian

process method. Hence, the inference of the model error process signi�cantly improves the

predictions of the code, in the same way as in the isothermal regime. We illustrate this in �gure

8.3, where we plot the same quantities as in �gure 8.2. We obtain the same conclusion: the

Gaussian process model detects a regularity in the error of the calibrated code, and uses it to
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Covariance function RMSE (Pa) IC

exponential 202.2 0.95

Matérn 3
2 196.2 0.95

Matérn 5
2 196.9 0.95

Gaussian 199.5 0.94

Table 8.3: Prediction results in the single phase regime. Same setting as in table 8.1.
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Figure 8.3: Same settings as in �gure 8.2 but in the single phase regime.

8.3.3 In�uence of the linear approximation

All the results above are obtained by using the linear approximation of the thermal-hydraulic

code FLICA 4 with respect to at and bt (subsection 7.3.3). We have implemented the calibration

and prediction methods of subsection 7.3.2, when the thermal-hydraulic code FLICA 4 is not

considered linear with respect to at and bt. Integrals in the at, bt domain were calculated on a

5 × 5 grid, which, to avoid bias, was also used when the linear approximation of the thermal-

hydraulic code FLICA 4 was used.

More precisely, let at,1, ..., at,5 and bt,1, ..., bt,5 de�ne the 5× 5 regular integration grid. The

posterior mean of β is approximated in the non-linear case, from (7.19), by∑5
i=1

∑5
j=1(at,i, bt,j)

tp(yobs|at,i, bt,j)p(at,i, bt,j)∑5
i=1

∑5
j=1 p(yobs|at,i, bt,j)p(at,i, bt,j)

, (8.6)

with

p(at,i, bt,j) =

1

(2π)
m
2

√
|Qprior|

exp

(
−1

2
(βi,j − βprior)tQ−1

prior(β
i,j − βprior)

)
,
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where βi,j = (at,i, bt,j)
t, and with

p(yobs|at,i, bt,j) =
1

(2π)
n
2

√
|K|

exp

(
−1

2
(yobs −mat,i,bt,j )tK−1(yobs −mat,i,bt,j )

)
,

where mat,i,bt,j
k = fmod(x

(k), at,i, bt,j) is the result of the FLICA 4 calculation, parameter-

ized by at,i, bt,j , for the experimental condition x(k). The matrix K is the covariance ma-

trix of the measure and error process at the experimental conditions x(1), ...,x(n), that is

Ki,j = Cov(Z(x(i)) + εi, Z(x(j)) + εj).

Remark 8.2. In (8.6), the 25 summation terms p(yobs|at,i, bt,j)p(at,i, bt,j), in the numerator

and the denominator, can be very small. For numerical reasons, we recommend to calculate their

logarithms separately, and to subtract the largest of the logarithms to each of the logarithms. The

equation (8.6) can then be computed with the 25 new summation terms, of which at least one is

equal to 1. We make the same remark for (8.7) below.

In the non-linear case, the conditional mean of the physical system, at a new point x(new),

is obtained from

E
(
Yreal(x

(new))|yobs
)

= E
(
E
(
Yreal(x

(new))|yobs,β
)
|yobs

)
,

and is approximated by∑5
i=1

∑5
j=1 E

(
Yreal(x

(new))|yobs, at,i, bt,j
)
p(yobs|at,i, bt,j)p(at,i, bt,j)∑5

i=1

∑5
j=1 p(yobs|at,i, bt,j)p(at,i, bt,j)

, (8.7)

with

E
(
Yreal(x

(new))|yobs, at,i, bt,j
)

=

fmod(x
(new), at,i, bt,j) + k(x(new))tK−1(yobs −mat,i,bt,j ),

where k(x(new)) is the correlation vector of the model error process, between x(new) and

x(1), ...,x(n), that is ki(x(new)) = Cov(Z(x(new)), Z(x(i))). When we say that we use the same

5 × 5 regular grid, when FLICA 4 is linearized, we mean that we calculate the posterior mean

of (at, bt)
t and the prediction of Yreal(x(new)) by using (8.6) and (8.7), where the FLICA 4 code

is replaced by its linear approximation (7.24).

We consider the single phase regime, and we use the same 10-fold CV procedure as before for

the formulas (8.6) and (8.7), in the linear and non-linear cases. We obtain RMSE = 197.8 with

the linear approximation and RMSE = 196.9 without the linear approximation (less than 1%

relative di�erence). The posterior means of at and bt, along the di�erent CV steps, have a Root

Mean Square Di�erence of 0.025 (more than 10% relative di�erence), between the cases where

the linear approximation was made or not. Hence, this is an illustration of the general remark

in the recommendations of subsection 7.3.3: if the computer model is non-linear with respect to

its calibration parameters, it is the model error with respect to the linearized computer model

that is inferred. Thus, the predictions of the physical system are similar, whether or not the

linear approximation is made.
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Chapter 9

Kriging meta-modeling of the

GERMINAL computer model

This chapter corresponds to an application case on the GERMINAL computer code, carried out

in collaboration with Karim Ammar, PhD student at the Service d' Etudes des Réacteurs et de

Mathématiques Appliquées, at CEA Saclay.

9.1 Introduction

This chapter aims at using Kriging as a metamodel (or response surface) of a complex computer

code. A metamodel of a computer code is a function which has the same inputs and outputs as

the code, which is much cheaper to use, and which is aimed to be a precise enough approximation

of the code. We refer e.g. to [BD87] for an introduction to metamodels.

In this chapter 9, we consider metamodels that do not use any knowledge of the computer

code (it is considered as a black box function). The construction of the metamodel only uses a

sample of input points and of corresponding code values. Two classical examples of black-box

metamodels are Kriging, as we have said, and arti�cial neural networks (see e.g. chapter 4 of

[Mit97] for an introduction to arti�cial neural networks).

The goal of this chapter is to illustrate the good properties of Kriging metamodels. We

will see that they give a precise approximation of the computer code, and that they also give

a reliable prediction of the approximation error. The illustration is done with the GERMINAL

thermal-mechanical code [MRPT92]. The GERMINAL code studies fuel pin thermal-mechanical

behavior during steady-state and incidental conditions. Its utilization is part of a multi-physic

and multi-objective optimal design problem of a reactor core. We work in this general framework,

and focus on the metamodelization of the GERMINAL code. In this context, arti�cial neural

networks have been used �rst, which enables us to compare the Kriging metamodelization results

with the arti�cial neural network metamodelization results. We conclude that the Kriging

prediction results are good compared to those of the arti�cial neural networks.

Furthermore, thanks to the Kriging predictive variance, Kriging models enable to give an

expected order of magnitude for the prediction errors. By using this predictive variance, we
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are able to automatically select the values, computed by the GERMINAL code, for which the

Kriging prediction squared error is signi�cantly larger than the predictive variance. By manu-

ally investigating these GERMINAL computations, the physicists are able to con�rm that they

do correspond to computation failures. We thus illustrate the strong interest of the probabilis-

tic modeling underlying the Kriging metamodel, from the point of view of automatic outlier

detection.

Chapter 9 is organized as follows. In section 9.2 we present the Kriging metamodeling of

the GERMINAL computer model. In subsection 9.2.1 we introduce the nuclear core optimal

design context underlying the utilization of the GERMINAL code. In subsection 9.2.2 we detail

the inputs and outputs that we consider for the metamodeling of the GERMINAL code. In

subsection 9.2.3, we present the settings we use for the Kriging model.

The results are presented in section 9.3. In subsection 9.3.1, we discuss the results of the

Maximum Likelihood estimation of the covariance hyper-parameters of the Kriging model. In

subsection 9.3.2, we consider the prediction results of the Kriging and arti�cial neural network

metamodels. In subsection 9.3.3, we present the Kriging Leave-One-Out detection of GERMI-

NAL output values that correspond to computation failures.

9.2 Presentation and context for the GERMINAL com-

puter model

9.2.1 A nuclear reactor core design problem

The GERMINAL computer model [MRPT92] is a thermal-mechanical code, which studies fuel

pin thermal-mechanical behavior during steady-state and incidental conditions. In a few words,

a fuel pin consists of a hollow fuel cylinder, surrounded by a protective clad. A gas-�lled gap

exists between the clad and the fuel cylinder. In the primary circuit of a nuclear reactor core,

a large number of fuel pins are embedded in fuel assemblies. Fuel assemblies are themselves

aggregated in the reactor core. On �gure 9.1, we give a schematic representation of a fuel pin

and of a fuel assembly. In a reactor core, the coolant (sodium in �gure 9.1) circulates in a fuel

assembly, in between the fuel pins.

The GERMINAL CODE aims at studying the thermal-mechanical impact of the nuclear �ux

and power on a fuel pin. The aim is to answer the question: will the fuel pin resist the irradiation?

The typical result of a GERMINAL calculation is a series of spatio-temporal functions giving

the values of variables of interests in the fuel pin, during the simulated time period.

In the context that motivated this chapter 9, the GERMINAL code is used in a more general

context of a nuclear core (multi-objective) optimal design. Thus, the GERMINAL elementary

calculations for fuel pins are aggregated and coupled with other computer models addressing

di�erent physical problems.

The optimization problem requires a large number of computer model evaluations. That is

why, in this general context, it has been decided to build metamodels for the computer mod-

els involved. Speci�cally, arti�cial neural networks (see e.g. chapter 4 of [Mit97]) have been

used extensively and we have investigated Kriging models later. The principle for address-
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Figure 9.1: A schematic representation (from above) of a nuclear fuel pin and of a fuel assembly.

A fuel assembly is composed of an aggregation of fuel pins, which consist in hollow fuel cylinders,

surrounded by protective clads. A gas-�lled gap exists between a clad and a fuel cylinder. Notice

that the fuel pins are separated by spacing wires in a fuel assembly.

ing the multi-objective optimization problem is thus to carry out multi-objective optimization

algorithms (notably genetic algorithms) on the metamodel functions, since it would be compu-

tationally prohibitive to do so on the computer models. The metamodels are then improved

iteratively, in the potentially interesting input areas obtained from the genetic algorithms, by

carrying out more code evaluations. The reader may refer to [HGA+10] for more details on this

general core design optimization context.

In this chapter 9, we focus on the practical problem of building a Kriging model of the

computer model GERMINAL. We are not speci�cally oriented toward optimization; instead the

Kriging model follows the general objective of a small mean prediction error, over the domain

of interest for the inputs of the GERMINAL code.

9.2.2 Inputs and outputs considered

The GERMINAL code has here 12 inputs, that we denote x1, ..., x12, and that are as follows.

• x1 and x2 concern the time aspect of the exploitation of the fuel pin. x1, also denoted

"l_cycle" is the cycle length. It is the time period between two maintenances of the fuel

pin. x2, also denoted "nb_c" is the number of cycle for the GERMINAL simulation.

• x3, ..., x9 concern the nature of the fuel pin. x3 ("Pu") is the plutonium concentration. x4

("DiamHoll_mm") is the diameter of the shadow of the fuel pin. x5("DiamExtClad_mm")

is the diameter of the protective clad of the fuel pin. x6 ("T_gap_mm") is the thickness

of the gap between the fuel and the protective clad. x7 ("T_Clad_mm") is the thickness

of the protective clad. We refer to �gure 9.1 for a visualization of x4, ..., x7. Finally, x8

("h_�ss_cm") is the height of the fuel pin.

• x9 ("Plmean_W_cm"), x10 ("Fz") and x11 ("ampl_var") characterize the power map in

the fuel pin. Notice that, in the multi-physics coupling presented in subsection 9.2.1, x9,

x10 and x11 are not �xed by the user. Instead, they are the output of calculations obtained

from other computer models.
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• x12, also denoted "VD_cm3" is the disposal volume for the �ssion gas produced in the

fuel pin (this disposal volume is located at the two extremities of the fuel pin).

The �rst output, denoted Y1 or "T_Core_0.5D", and called the initial temperature, is the

maximum temperature in the fuel pin at the initial time of the calculation. Because the temporal

aspect of the simulation is absent in the computation of Y1, the dependence of Y1 with respect

to x1, ..., x12 is rather simple, which will result, as we will see, in particularly good metamodel

prediction results.

The second output, denoted Y2 or "Fusion_Margin", and called the fusion margin, is the

di�erence between the fusion temperature of the fuel and the maximum temperature, in space

and time, of the fuel during the simulation. We make the following comments on this second

output.

• Fusion is a highly undesirable phenomenon for the fuel pin. Therefore, a positive Y2

indicates that, at least from the point of view of fusion, the fuel pin had a normal behavior

during the simulation. On the contrary, a negative Y2 is considered as an accident. We

can hence notice that, in the general multi-objective optimization problem mentioned in

subsection 9.2.1, Y2 is a criterion that should be maximized.

• Y2 is an output that uses all the temporal aspects of a GERMINAL simulation. Further-

more, since it is de�ned as a maximum in time, it is not expected to be very regular with

respect to the inputs x1, ..., x12. Thus, the metamodeling task is more di�cult for the

output Y2 than for the output Y1.

• The GERMINAL computer model is not designed to simulate phenomena where a signif-

icant proportion of the fuel melts down. Furthermore, the protective clad is not meant

to be impacted. Hence, little credit should be given to the values of strongly negative Y2

obtained from GERMINAL. Indeed, a strongly negative fusion margin implies that the

fuel temperature exceeds the fusion temperature for a signi�cant proportion of the fuel.

Furthermore, the clad may be impacted. Hence, the pin has reached a state that the

GERMINAL code is not meant to simulate. This is a strong additional di�culty for the

metamodelization problem. Hence, it was decided, in the general multi-objective optimiza-

tion context of subsection 9.2.1, to �lter out the input points yielding strongly negative

Y2 in the data bases. Similarly, the obtained metamodel is expected to be precise only for

new input points that do not yield strongly negative Y2. In this chapter 9, we follow this

approach, and we work with learning and validation samples that have been �ltered.

9.2.3 Setting for the Kriging model

We consider a simple Kriging framework (see chapter 2). Indeed, we also investigated a universal

Kriging framework, with an a�ne mean function, and essentially obtained the same results as

in the simple Kriging framework.
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Parameterization of the covariance function

We have noticed that there are some numerical instabilities in the GERMINAL code. These

instabilities create pairs of inputs that are very close to one another, but that yield non-negligibly

distant outputs. We address this instability by introducing a nugget e�ect in the Kriging model.

More precisely, we model the GERMINAL output function Y (Y1 or Y2) by a Gaussian process

of the form

Y = Yc + Yn. (9.1)

In (9.1), Yc is the continuous component of Y . It is a centered Gaussian process with isotropic

Matérn 3
2 covariance function of the form σ2R`, with σ2R` de�ned by table 2.1 and (2.6). σ2

and ` are the variance and correlation length hyper-parameters that are estimated from data.

In (9.1), Yn is the nugget component. It is a centered Gaussian process with covariance function

Kn(x,y) = σ2
n1x=y.

The incorporation of the nugget component does not contradict the fact that the GERMINAL

code is deterministic, and explains its very small scale numerical discontinuities. σ2
n is also a

hyper-parameter that is estimated from data.

We carry out the estimation by Maximum Likelihood (3.6). From a practical point of view,

it is interesting to use an alternative parameterization of the covariance function of Y in (9.1).

Denoting α =
σ2
n

σ2 , the covariance function of Y is

Kσ2,`,α(x,y) = σ2 (R`(x,y) + α1x=y) . (9.2)

(9.2) enables to use proposition 3.21 and thus to gain one dimension in the numerical optimiza-

tion problem.

Learning and test bases

Let Y denote one of the two outputs Y1, Y2. We possess a learning base x(l,1), yl,1, ...,x
(l,nl), yl,nl

and a test base x(t,1), yt,1, ...,x
(t,nt), yt,nt , where yl,i = Y (x(l,i)) and yt,i = Y (x(t,i)). We carry

out the Maximum Likelihood estimation on the learning base, and the points of the learning

base are also the observation points from which the Kriging model is built in (2.9) and (2.10)

(the support points).

We consider two criteria on the test base. The �rst one is the Root Mean Square Error, with

ŷ(x) the Kriging prediction at x,

RMSE2 =
1

nt

nt∑
i=1

(
ŷ(x(t,i))− Y (x(t,i))

)2

. (9.3)

The second one is the 90% Con�dence Intervals Ratio and is, with σ̂2(x) the Kriging predictive

variance at x,

CIR =
1

nt

nt∑
i=1

1|ŷ(x(t,i))−Y (x(t,i))|≤1.64σ̂(x(t,i)). (9.4)

The CIR criterion should be close to 0.9.
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The third criterion is the Mean Square Normalized Error and is

MSNE =
1

nt

nt∑
i=1

(
ŷ(x(t,i))− Y (x(t,i))

)2
σ̂2(x(t,i))

. (9.5)

The MSNE criterion should be close to 1.

Remark 9.1. A GERMINAL calculation takes approximately one minute. Thus, an important

point is that, in the GERMINAL application, the sizes of the learning and test bases are large.

More precisely, for the output Y1, the learning and test bases have 15722 and 6521 elements.

For the output Y2, they have 3807 and 1613 elements (because of the �ltering). These kinds of

base sizes start to be computationally problematic for ML. In our case, we have used a random

subsample of the learning base, of size 1000, to compute the ML estimator. This method is not

optimal, and in fact there exists several methods in the literature to address ML for Kriging

with large data sets. We refer, e.g., to the references [ACW12], [SCA12] and [SCA13] that

both provide competitive methods for addressing very large data sets, and a short review of

other existing methods. In a private communication with us, Michael Stein also recommends the

utilization of a simple Likelihood approximation ([Vec88]), consisting for example in partitioning

the observations into contiguous blocks of size, say, 1000, and in minimizing the sum of the

di�erent likelihood criteria of proposition 3.21, corresponding to the di�erent blocks. Indeed, this

solution is almost as simple to implement as the solution we used, and the computation time is

only 16 times larger, when it uses e.g. all the 15722 available observations for estimation.

Concerning the Kriging prediction, which still requires to carry out a matrix inversion, we

have used 7000 support points for Y1 (including the 1000 points that are used for the ML esti-

mation) and 3807 support points for Y2.

Remark 9.2. We normalize linearly each of the 12 inputs between 0 and 1. Therefore, in

subsection 9.3.1, the orders of magnitude of the estimated correlation lengths should be compared

with 1.

Normalized Leave-One-Out errors

For the case of the fusion margin output Y2, we have seen in subsection 9.2.2 that the learning

and test bases are �ltered, because a GERMINAL calculation can result in a computation failure

when addressing negative fusion margin phenomena. Despite this �ltering, the learning base

may still contain some observation points that actually correspond to computation failures.

These possible computation failures can not be studied manually for all the observation points

of the learning base. We show here that the computation of the Leave-One-Out errors and

predictive variances can be an automatic method to exhibit observation points that are likely

to be computation failures. Hence, a small number of observation points with high LOO errors,

compared to the LOO predictive variances, can have their GERMINAL calculations veri�ed

manually.

We study the normalized LOO criterion, for all the observation points x(l,1), yl,1, ...,x
(l,nl), yl,nl ,

that is

εn,LOO,i =
ŷl,i − yl,i
σ̂l,i

, (9.6)
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σ(◦) `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12 α

890 100 100 100 6.1 9.9 17 100 35 5.0 13 13 100 7.6× 10−5

Table 9.1: Estimated hyper-parameters (σ, `, α) for the output Y1 ("T_Core_0.5D") of the

GERMINAL code.

where ŷl,i and σ̂2
l,i are the Kriging LOO prediction and predictive variances of yl,i given yl,1, ...,

yl,i−1, yl,i+1, ..., yl,n (see subsection 2.2.4). The hyper-parameters σ2, `, α are kept to their ML

estimate of table 9.2. Notice that the computation of all the LOO errors and predictive variances

in (9.6) is fast, thanks to proposition 2.35.

The εn,LOO,i follow standard Gaussian distributions under the Kriging model (notice, though,

that they are not independent). We sort the |εn,LOO,i|, 1 ≤ i ≤ ln by decreasing order, and the

principle is to manually investigate the observation points corresponding to the largest values.

9.3 Results of the Kriging model

9.3.1 Interpretation of the estimated covariance hyper-parameters

For the initial temperature output Y1 ("T_Core_0.5D"), the estimated hyper-parameters are

given in table 9.1. Let us �rst consider the nugget e�ect. The standard deviation of the nugget

process in (9.1) is
√

8942 × 7.61× 10−5 = 7.8◦. This value is coherent with the numerical

behavior of the computer model GERMINAL. Furthermore, we will see below that the RMSE

criterion is around 9◦ for Y1. Thus, this RMSE is essentially composed of the standard deviation

of the nugget process. This is intuitive, because the output Y1 has a rather simple relationship

with respect to the inputs, so that when the number of learning points is large, as it is the case

here, the continuous component Yc,1 of Y1 in (9.1) is almost perfectly predicted, but the nugget

component Yn,2 cannot be predicted.

Let us now discuss the correlation lengths. They are found by the experts to make physical

sense. For example, it is known that, for our learning base, the input x2 ("nb_c") is actually

truncated by the GERMINAL code to the same integer value for all the learning and test points,

so that it has a zero impact on the outputs Y1 and Y2. We con�rm this fact with the Kriging

model, because the estimated correlation length is `2 = 100 (for normalized inputs in [0, 1]).

The smallest estimated correlation length, which intuitively corresponds to a very in�uent input,

is `9, for "Plmean_W_cm". This is also a fact that is anticipated by the physicists. Indeed,

"Plmean_W_cm" has a strong direct in�uence on the power map in the fuel pin, which is

basically related to the temperature in the fuel pin and so to Y1. Similarly, the inputs x10 and

x11 impact the power map, so that their estimated correlation lengths are not large. The inputs

x4 ("DiamHoll_mm") and x5 ("DiamExtClad_mm"), characterizing the geometry of the fuel

pin are also known to have a strong impact on Y1.

On table 9.2, we show the equivalent of table 9.1, but for the fusion margin output Y2. The

standard deviation of the nugget process is
√

14692 × 3.73× 10−4 = 28◦. This value also makes

sense from a numerical point of view, since the computation of Y2 involves the temporal aspect,

and is thus less stable than for Y1. Concerning the estimated correlation lengths, we still have
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σ(◦) `1 `2 `3 `4 `5 `6 `7 `8 `9 `10 `11 `12 α

1470 25 100 68 18 5.1 17 100 55 2.4 7.4 6.2 100 3.7× 10−4

Table 9.2: Estimated hyper-parameters (σ, `, α) for the output Y2 ("Fusion_Margin") of the

GERMINAL code.

`2 = 100, for the input x2 ("nb_c") that has a zero in�uence. The input x9 ("Plmean_W_cm")

remains the most in�uent. Overall, the hierarchy of the in�uences of the di�erent inputs re-

mains the same between Y1 and Y2. Finally, we observe that the estimated correlation lengths

are globally smaller for Y2 than for Y1. This is intuitive, because smaller correlation lengths

correspond to Gaussian processes that are predicted with more di�culty, which is the case for

Y2 compared to Y1 as we have discussed in subsection 9.2.2.

We now illustrate the estimated hyper-parameters, and especially the nugget e�ect of value

28◦. We choose two 12-dimensional input points x(1),x(2), for which the output Y2 is positive

and negative. We then evaluate the GERMINAL code on 97 points in the segment joining

the two points x(1),x(2). This enables us to consider a one-dimensional subfunction of the

12-dimensional GERMINAL code, which is useful for plotting and interpreting the Kriging

predictions.

On �gure 9.2, we plot the 97 observation points of the segment, and the Kriging prediction

and 90% con�dence intervals (for a Kriging model using only the 97 observation points as

support point). The estimated hyper-parameters of the Kriging model are those of table 9.2.

We observe that there is indeed a numerical instability, which can be represented by a nugget

e�ect with standard deviation 28◦. We also observe that the Kriging model appears to be

appropriate. More speci�cally, it interpolates the observations in the areas where there is no

numerical instability, and it does not interpolate the observations in the areas where there is

a numerical instability. The con�dence intervals appear to be of the right order of magnitude,

and their size is almost constant, because of the considerable value of the standard deviation of

the nugget process in (9.1). Finally, the numerical instability is stronger when Y2 is negative,

especially there is an outlier observation for which Y2 = −500. Because of the nugget e�ect,

and because of the relatively large correlation lengths, the Kriging prediction is not too much

impacted by this outlier point.

This is as previously discussed in subsection 9.2.2.

9.3.2 Prediction results

The prediction results for the output Y1 ("T_Core_0.5D") are given in table 9.3. The standard

deviation of the output on the test base is 344◦, and the RMSE (9.3) criterion for the Kriging

prediction is 9.03◦. Thus, the Kriging prediction has a 3% relative error, which con�rms, as

mentioned in subsection 9.2.2 that the output Y1 is a rather simple function of the inputs. We

recall, from table 9.1, that the estimated nugget standard deviation σn is (9.1) is 7.8◦. Hence,

we see that the most part of the prediction error comes from the numerical instability of the

GERMINAL calculations.

In table 9.3, we also see that the Kriging predictive variances have appropriate orders of
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Figure 9.2: One-dimensional plot of the Kriging prediction for the output Y2 of the GERMINAL

code. 97 observation points are taken on a segment joining two 12-dimensional observation

points on the input space of the x1, ..., x12. We index the points on the segment by their

x1 component (x-axis in the plot). The Kriging model is built with the estimated hyper-

parameters of table 9.2 and its support points are the 97 observation points. We observe a

general numerical instability which justi�es the presence of the nugget e�ect. We also observe

an outlier GERMINAL calculation point. Because of the nugget e�ect, and because of the

relatively large correlation lengths, the Kriging prediction is not too much impacted by this

outlier point.
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RMSE CIR MSNE

Kriging 9.03◦ 0.92 0.84

Neural networks 12.2◦

Table 9.3: Prediction results for the output Y1 ("T_Core_0.5D") of the GERMINAL code.

The standard deviation of the output on the test base is 344◦.

magnitude. Indeed, the criterion CIR is relatively close to 0.9 and the criterion MSNE is

relatively close to 1.

We have compared the Kriging RMSE with the RMSE obtained from an arti�cial neural

network. The arti�cial neural network method is the one used as a metamodel method in

the general optimization problem of subsection 9.2.1 and of [HGA+10]. The arti�cial neural

network method is implemented in the URANIE uncertainty platform, developed at CEA. In

a few words, the arti�cial neural networks have one hidden layer and the activation function is

a hyperbolic tangent. For a given number of hidden layer neurons, the weights of the arti�cial

neural network are selected by using an early stopping algorithm. More precisely, this early

stopping algorithm splits the learning base into two subbases. It carries out a gradient descent

method for optimizing the weights of the arti�cial neural network, based on the data for the

�rst subbase, but stops the gradient descent method earlier than at its convergence, when the

obtained prediction error on the second subbase starts to increase. Note that this method has

a random component, due to a random split of the learning base and a random initialization of

the weights in the gradient descent method.

When the RMSE value obtained from the arti�cial neural network method is presented in

table 9.3, a loop is actually carried out over the number of hidden layer neurons (from 15 to 30,

by a step of 3). For each number of hidden layer neurons, the weights are optimized twice on

the learning base, with the (random) early stopping method presented above. The RMSE value

presented is then that of the arti�cial neural network, characterized by the number of hidden

neurons and the weights, maximizing a score, on the test base, involving several prediction error

criteria, including RMSE, the mean absolute error and the maximum absolute error. Hence,

notice that the arti�cial neural network for which the RMSE value is presented in table 9.3 has

actually been computed using knowledge on the test base. This is an advantage given to the

arti�cial neural network method, in this comparison, because the Kriging model is only built

from the learning base.

On table 9.3, we observe that, despite this advantage given to the arti�cial neural network

method, the Kriging RMSE is smaller than that of the arti�cial neural network method (9.03◦

compared to 12.2◦).

The prediction results for the output Y2 ("Fusion_Margin") are given in table 9.4. The

standard deviation of the output on the test base is 342◦, and the RMSE (9.3) criterion for

the Kriging prediction is 35.9◦. The Kriging relative error is around 10%. For Y1 this relative

error is 3%. Hence, we have a con�rmation that the output Y2 is a more complex function of

the inputs than the output Y1. The reasons are given in subsection 9.2.2: the output Y1 only

involves the initial state of a GERMINAL simulation, while Y2 involves the simulation during
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RMSE CIR MSNE

Kriging 35.9◦ 0.89 1.03

Neural networks 39.7◦

Table 9.4: Prediction results for the output Y2 ("Fusion_Margin") of the GERMINAL code.

The standard deviation of the output on the test base is 342◦.

the whole time period. We recall, from table 9.2, that the estimated nugget standard deviation

σn in (9.1) is 28◦. Hence, similarly to Y1, we see that an important part of the prediction error

comes from this nugget e�ect.

Concerning the Kriging predictive variances, from CIR and MSNE in table 9.4 we see that

their order of magnitudes are appropriate, similarly to table 9.3 for Y1.

Finally, similarly to table 9.3, the RMSE of the arti�cial neural network method is larger

than that of Kriging (39.7◦ compared to 35.9◦). The arti�cial neural network is built by using

the same method as in 9.3.

As a conclusion, we have seen that a standard Kriging model (stationary Matérn 3
2 covariance

function) gives good prediction results, compared to arti�cial neural network methods.

Notice that we have also con�rmed other general facts, in the comparison between Kriging

and arti�cial neural network methods, that result from the intrinsic di�erence between the two

methods. This di�erence is that a Kriging metamodel function explicitly uses the data points

each time it is called for a new point, while the arti�cial neural network function, after being

built from the data base, does not use it when being called for new points. As a result, the

inline computation time may be larger for Kriging. By inline computation time, we mean the

computation time required for using the metamodel for a large number of new points, after it

has been built from the learning base. For Kriging, the standard prediction (2.9) at a new point

x(new) requires to loop over all the learning points x(1), ...,x(n). Thus, this standard Kriging

prediction method has a O(n) computational cost. Notice that there exists alternative to this

O(n) prediction method, such as screening methods. On the contrary, once the neural network

metamodel is built from the learning base, its complexity only scales with the number of hidden

layer neurons, which is generally much smaller than the number of data points. In the case of

the GERMINAL computer model, we have a con�rmation that the inline computation time is

signi�cantly larger for the Kriging metamodel than for the arti�cial neural network metamodel.

On the other hand, because the Kriging metamodel function explicitly uses the data points, it

is ensured that its prediction error on the data base is small and only caused by the nugget

e�ect. This has been a comforting fact, from the code user point of view, in the GERMINAL

application case.

For the Kriging model, the estimation of the nugget e�ect is important in the case of the

GERMINAL model, because we see that the value of this e�ect explains a large part of the

prediction error. In �gure 9.2, we also see that it would make no sense to interpolate the

observed values exactly. Furthermore, the Kriging provides a prediction of its prediction error,

that has been shown to be accurate. As an example of an utilization of this anticipation of

the prediction error, we now see an example of automatic detection of computation failures in
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subsection 9.3.3.

9.3.3 Detection of computation failures for the "Fusion_Margin" out-

put

We consider the detection of computation failures for the output Y2, since we have seen that its

computation is the most subject to numerical instability. The 10 largest normalized LOO errors

of (9.6) are 

14.2

7.8

−4.4

4.4

4.4

3.9

3.8

3.7

−3.6

3.6



. (9.7)

In (9.7), we see the two largest normalized LOO errors 14.2 and 7.8 as particularly large,

compared to a standard Gaussian distribution and compared to the eight remaining ones. We

then investigate them particularly. The next errors are large as well, but their investigation is

less of a priority.

Let us also notice that abnormally large LOO errors are not necessarily caused by a compu-

tation failure. They can be the consequence of a Kriging model that is not perfectly adapted.

For example, we have classically used a stationary covariance function. This is a rather strong

assumption, and can result in overoptimistic predictive variances, in areas of the input space

where the variations of the output are much more important than in the rest of the input space.

As a potential con�rmation of the limits of the Kriging model treated here, we have also

investigated the third largest LOO error in (9.7). Contrary to what we will see below for the

two largest ones, the physicists have not found indicators of computational problem in the

associated GERMINAL simulation. It can only be noted that the input point for this output is

rather marginal in the input domain, so that it can correspond to an area of the input domain

that has not been su�ciently explored. Nevertheless, the third largest LOO error in (9.7) is,

unless shown otherwise, an observation point that is badly predicted by the Kriging model.

When investigating the two largest normalized LOO errors in (9.7), we see that their GER-

MINAL fusion margin values are 217◦ and 211◦. This means that the two GERMINAL simula-

tions predict that there is no fusion phenomenon for these two points. Instead, the two Kriging

predictions are −304◦ and −182◦, so that the Kriging model predicts a fusion phenomenon.

As a standard component of physical research process, the GERMINAL code has been up-

dated since we carried out the study of this chapter 9. Note that some aspects of these updates

were directly motivated by the numerical instabilities that we exhibited in �gure 9.2, and by the

points with high normalized LOO errors that we pointed out. As a consequence, a later version

of the GERMINAL code predicts the fusion margin output Y2, for the two largest normalized
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LOO errors in (9.7), at −251 and −171. Hence the di�erences between the Kriging predictions

and the new GERMINAL values are now explained by the predictive variances. Furthermore,

the new GERMINAL calculations do con�rm that fusion phenomena took place.

To summarize, a Kriging model has been carried out on a data base corresponding to a

given version of the GERMINAL code. The normalized LOO errors have been sorted by de-

creasing order, and two of them are signi�cantly larger than the other ones. The interest of this

automatic outlier selection is that it is prohibitive to investigate each GERMINAL calculation

manually. It has been shown that the two LOO outliers do correspond to computational failures.

Furthermore, a later version of the GERMINAL code yield two new values for them, that are

close to the Kriging predictions.
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Chapter 10

Conclusion and perspectives

On the interest of Gaussian process models for the analysis

of computer experiments

In this thesis, we have con�rmed the strong interest of Gaussian process models for the analysis

of computer experiments. Indeed, from their intrinsic ability to approximate a deterministic

function and to associate a probability distribution to the resulting error, they can be used to

address a large variety of problems. In chapter 7, we have considered two rather di�erent frame-

works for the analysis of the discrepancies between a computer model and a set of experimental

results. In the �rst framework, the discrepancies are explained by an intrinsic variability of the

computer model, while in the second one, they are explained by a model error function. This

function is represented by a realization of a Gaussian process. In these two frameworks, the

treatment is possible when the computer model function is not expensive to run, or when a

linear approximation of it is carried out. In the remaining case, the treatment can notably be

made possible by building a Gaussian process model of the computer code.

We have focused on the Gaussian process modeling of the model error, in the case where a

linear approximation of the code with respect to its model parameters is done. This method

has the advantage of being simple, and we have seen in chapter 8 that the resulting prediction

of the physical system is similar to that of the non-linear method, even if the computer model

is actually non-linear. Indeed, in this case, the model error function is de�ned with respect to

the linearized model. We have also seen in chapter 8 that the prediction is composed of the

calibrated computer model, completed by a Gaussian process inference of the model error. This

complementarity between the physical model and the statistical model yields a prediction that

is signi�cantly more precise than the one of the calibrated code only.

We have also highlighted, in chapter 9 on the GERMINAL thermo-mechanical code, the

accuracy of the Gaussian process meta-modeling of a computer model, even in a relatively

high-dimensional case (12 input variables). The predictive variance is an additional bene�t of

Gaussian process models, that has been illustrated in the case of automatic computation failure

detection.
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An analysis of Maximum Likelihood and Cross Validation

for covariance hyper-parameter estimation

Another central point of the thesis is the comparison of Maximum Likelihood and Cross Vali-

dation, for the estimation of the covariance function of a Gaussian process.

We have con�rmed in chapter 5 that Maximum Likelihood is preferable over Cross Validation,

in the well-speci�ed case where the true covariance function of the Gaussian process does belong

to the parametric family used for estimation. This conclusion holds in an expansion-domain

asymptotic context, and is independent of the design of experiments. We have also shown that

Cross Validation has the same rate of convergence as Maximum Likelihood, so that, in the well-

speci�ed case, using it instead of Maximum Likelihood is sub-optimal but not too prejudicial.

In chapter 6, we have addressed the misspeci�ed case, that is the case where the true co-

variance function of the Gaussian process does not belong to the parametric family of functions

used for estimation. We have shown that, when the Design Of Experiments is not too regu-

lar, Cross Validation is preferable to Maximum Likelihood. Indeed, it is more robust to the

misspeci�cation of the covariance function family, in the sense that it has a smaller bias than

Maximum Likelihood. We interpret this by the fact that, in the misspeci�ed case, it is not pos-

sible to estimate an hyper-parameter yielding Kriging conditional distributions that are good

in all aspects (mean, variance, quantiles). The Maximum Likelihood estimator tries, in nature,

to do so. On the contrary, the Cross Validation estimator is goal-oriented, and only addresses

the punctual conditional means and the predictions of the associated prediction errors. This

enables it to obtain better results, in terms of mean square prediction error and of predictive

variance reliability, than Maximum Likelihood.

A joint conclusion of chapters 5 and 6 is that we have found that covariance function esti-

mation generally bene�ts from an irregular sampling. In the well-speci�ed case, where Maxi-

mum Likelihood is preferable, the asymptotic variance of the Maximum Likelihood estimator is

smaller when using an irregular sampling. In the misspeci�ed case, for Maximum Likelihood,

we have not found a signi�cant di�erence between an irregular or regular sampling. However,

for Cross Validation, there is a signi�cant degradation when using a regular sampling. Indeed,

when having observation points that are on a regular grid, Cross Validation estimates covariance

hyper-parameters adapted only to predictions on this regular grid. Because of the covariance

function family misspeci�cation, this does not generalize at all to predictions outside the regular

grid. This results in a large bias for Cross Validation, in the misspeci�ed case and when using

a regular grid of observation points, as we have shown in chapter 6.

The fact that an irregular sampling is pro�table to covariance function estimation has been

noted in the literature ([Ste99], chapter 6.9, [ZZ06], [JDLI08]). This is opposed to the case of

prediction with known covariance function, where regularly-spaced samplings appear as more

e�cient, as we con�rm in chapter 5. The references [ZZ06] and [PM12] notice that using space-

�lling samplings, augmented with closely spaced observation points, yield e�cient samplings for

Kriging prediction with estimated hyper-parameters. The results of chapter 5 are in agreement

with this conclusion.

Finally, we have observed in both the misspeci�ed and well-speci�ed cases that Cross Vali-
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dation has a larger variance than Maximum Likelihood. This conclusion holds for all the kinds

of samplings that we have investigated.

Other Cross Validation criteria in the literature

A natural perspective arises from our last conclusion: Cross Validation has a larger variance

than Maximum Likelihood. Furthermore, the variance of Cross Validation can increase when the

sampling becomes irregular. To interpret this fact, let us rewrite the Cross Validation criterion

for clarity,
1

n

n∑
i=1

{yi − ŷi,θ}2, (10.1)

where, for 1 ≤ i ≤ n, ŷi,θ is the prediction of yi according to y1, ..., yi−1, yi+1, ..., yn, and

according to the covariance function σ2Rθ. In (10.1), the LOO errors have heterogeneous

variances when the sampling is irregular. More speci�cally, the LOO errors for observation

points that are isolated have larger variances. This increases the variance of the Cross Validation

estimator minimizing (10.1).

Another criterion, that could avoid this heterogeneity problem is ([RW06], chapter 5, [ZW10],

[SK01]) the LOO log predictive probability,

1

n

n∑
i=1

{
ln (σ2ĉ2i,θ) +

(yi − ŷi,θ)2

σ2ĉ2i,θ

}
, (10.2)

that is minimized jointly w.r.t σ2 and θ. In (10.2), σ2ĉ2i,θ is the Kriging predictive variance

of yi according to y1, ..., yi−1, yi+1, ..., yn and given the covariance function σ2Rθ. In (10.2),

the n terms should have homogeneous variances, because the prediction error is divided by the

predictive variance. Hence, the Cross Validation estimator corresponding to the criterion (10.2)

could bene�t from an asymptotic study, like the one of chapter 5. It is possible that, in the

well-speci�ed case, it yields a smaller asymptotic variance than the criterion (10.1). However,

it is also possible that, in the framework of chapter 6, the criterion (10.2) be more sensitive to

the covariance function misspeci�cation. Indeed, similarly to Maximum Likelihood, it considers

the full conditional distribution, and not only the conditional mean.

Designing new Cross Validation criteria

It may be interesting to design new Cross Validation criteria, in light of the trade-o� we pointed

out, between robustness to misspeci�cation and small variance in the well-speci�ed case. One

possibility that arises, for numerical reasons, in chapter 6, is the penalization of large estimated

variance σ̂2
LOO. Indeed, we have observed that this penalization indirectly prevents Cross Val-

idation from estimating too large correlation lengths, which has been noticed as problematic

for the Cross Validation method [MS04]. It can hence be an interesting direction of research to

study a Cross Validation criterion of the form

1

n

n∑
i=1

{yi − ŷi,θ}2 + fp
(
σ̂2
LOO(θ)

)
, (10.3)
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with

σ̂2
LOO(θ) =

1

n

n∑
i=1

(yi − ŷi,θ)2

ĉ2i,θ
,

and where fp is an increasing penalty function. This function could also depend on data.

Another possibility for improving the Cross Validation criterion is to normalize the Cross

Validation errors of (10.1), but with normalization parameters that are �xed in the optimization

problem, contrary to (10.2). The correlation hyper-parameter θ can hence be estimated by

minimizing
1

n

n∑
i=1

(yi − ŷi,θ(y−i))
2

v2
i

, (10.4)

where the v2
i are normalization terms, independent of θ. One possibility is to use a �rst-step

estimation θ̂1, for example by Maximum Likelihood, to set the v2
i as functions of the Kriging

LOO conditional variances, with hyper-parameter θ̂1, and then estimate θ by minimizing (10.4).

Notice that this normalization can make the variance of the Cross Validation estimator less

sensitive to an irregular sampling, but it may not improve it in the framework of the regular

grid in chapter 5. Indeed, the LOO errors are already asymptotically homogeneous in this

framework. Thus, the principle of (10.4) can be extended, for instance by decorrelating the

LOO errors, before minimizing their square mean.

Fixed-domain asymptotic analysis of Cross Validation

In this thesis, we have addressed the expansion-domain asymptotic framework when addressing

the Cross Validation estimator in chapter 5. Indeed, as we have discussed, expansion-domain

asymptotics enables us to state a general asymptotic normality result for Cross Validation,

similarly to Maximum Likelihood [MM84]. Notably, these expansion-domain asymptotic results

for Maximum Likelihood and Cross Validation hold for a large class of covariance function

families. In the literature, the �xed-domain asymptotic results for Maximum Likelihood address

particular families of covariance functions (for instance the exponential family in [Yin91] and

[Yin93], or the isotropic Matérn family with �xed regularity parameter in [Zha04]). Furthermore,

the �xed-domain asymptotic analysis yields a large variety of results, notably according to

microergodicity (chapter 4, [Ste99], chapter 6.2) or non-microergodicity of the covariance hyper-

parameters.

Hence, the similar process for the Cross Validation estimator minimizing (10.1), would be to

address its �xed-domain asymptotic properties on particular covariance function families, now

that a general expansion-asymptotic result is available in chapter 5. Historically, the �rst covari-

ance structure for which �xed-domain asymptotic results were obtained for Maximum Likelihood

is the exponential covariance structure ([Yin91], [Yin93]), due to its Markovian properties. It is

hence a good candidate to start investigating the �xed-domain asymptotic properties of Cross

Validation.
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Appendix A

Notation

In general, scalars are written in italic, vectors are written in bold italic, and matrices are

written in simple bold. In general, there is no font distinction between deterministic quantities,

realizations of random quantities and random quantities.

Mathematical symbols

f̂ The Fourier transform of a multidimensional function f

In The identity matrix of size n

Jn The matrix of size n whose coe�cients are all 1

Tr(M) The trace of a matrix M

|M| The determinant of a matrix M

||M||2 For a n× n matrix M:
√

1
n

∑n
i,j=1M

2
i,j

||M|| The largest singular value of a matrix M

Diag(M) For a matrix M: (Diag(M))i,j = Mi,j1i=j

|v| The Euclidean norm of a vector v

|v|∞ For a vector v, |v|∞ = maxi |vi|
N (m,K) Gaussian distribution with mean vector m and covariance matrix K

GP (m,K) Gaussian process with mean function m and covariance function K

X 2(n) The X 2 distribution with n degrees of freedom

e(k) The k-th base vector

Φm,σ2 The cumulative distribution function of the Gaussian distribution

with mean m and variance σ2
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Ordinal variables

n Number of observation points

d Dimension of the input space of a Gaussian process

Number of experimental conditions for a physical system

p Number of covariance hyper-parameters of a parametric covariance function family

m Number of regression functions for an universal Kriging model

Number of computer model parameters

Kriging

x = (x1, ..., xd) d-dimensional input of a Gaussian process, or of a physical system

Y A real-valued Gaussian process

D The de�nition domain of a Gaussian process (D ⊂ Rd)
x(1), ...,x(n) n observation points in D
X The observation set

{
x(1), ...,x(n)

}
H The n×m matrix of the regression functions at x(1), ...,x(n)

R The correlation function of Y

R The n× n correlation matrix of Y at x(1), ...,x(n)

K The covariance function of Y

K The n× n covariance matrix of Y at x(1), ...,x(n)

y The random vector of Y at x(1), ...,x(n)

x A prediction point in D
ŷ(x) The prediction (BLUP or conditional expectation) of Y at x

σ̂2(x) The predictive variance of Y at x

h(x) The m-dimensional vector of the regression functions at x

r(x) The n-dimensional correlation vector of Y between x(1), ...,x(n) and x

k(x) The n-dimensional covariance vector of Y between x(1), ...,x(n) and x
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APPENDIX A. NOTATION

Misspeci�cation of covariance function

R1 The true correlation function of Y

K1 The true covariance function of Y

R2 The assumed correlation function of Y

K2 The assumed covariance function of Y

For model i, i = 1, 2:

Ri The n× n correlation matrix at x(1), ...,x(n) with Ri

Ki The n× n covariance matrix at x(1), ...,x(n) with Ki

ri(x) The n× 1 correlation vector between x(1), ...,x(n) and x with Ri

ki(x) The n× 1 covariance vector between x(1), ...,x(n) and x with Ki

ŷi(x) The prediction of Y at x with Ri

σ̂2
i (x) The predictive variance of Y at x with Ki

Ei, V ari, Covi, ∼i Mean value, variance, covariance and distribution

of a function of Y , when the covariance function of Y is Ki

Cross Validation

S A subset of X
ŷS(x) The prediction of Y at x according to the observation data in S
σ̂2
S(x) The predictive variance of Y at x according to the observation data in S
ŷi The prediction of Y at x(i) according to the observation data in

x(1), ...,x(i−1),x(i+1), ...,x(n)

σ̂2
i The predictive variance of Y at x(i) according to the observation data in

x(1), ...,x(i−1),x(i+1), ...,x(n)

Parametric families of covariance functions

σ2 A variance hyper-parameter

θ A correlation hyper-parameter

Rθ A correlation function

σ2Rθ A covariance function

R = {Rθ,θ ∈ Θ} A parametric set of correlation functions

K =
{
σ2Rθ, σ

2 > 0,θ ∈ Θ
}

A parametric set of covariance functions

Rθ The n× n correlation matrix of x(1), ...,x(n)

with correlation function Rθ

σ2Rθ The n× n covariance matrix of x(1), ...,x(n)

with covariance function σ2Rθ

ψ ψ := (σ2,θ)

Kψ Kψ := σ2Rθ

K = {Kψ,ψ ∈ Ψ} A parametric set of covariance functions

Kψ Kψ := σ2Rθ
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Criteria for estimation by Maximum Likelihood

L(β, σ2,θ) The modi�ed opposite log-likelihood of the observations at (σ2,θ)

L(θ) The marginal modi�ed opposite log-likelihood minβ,σ2 L(β, σ2,θ)

LR(σ2,θ) The modi�ed opposite restricted log-likelihood of the observations at (σ2,θ)

LR(θ) The marginal modi�ed opposite restricted log-likelihood minσ2 LR(σ2,θ)

L(ψ) The modi�ed opposite log-likelihood of the observations at ψ

LR(ψ) The modi�ed opposite restricted log-likelihood of the observations at ψ

Maximum Likelihood estimators

θ̂ML The Maximum Likelihood estimator of θ

σ̂2
ML The Maximum Likelihood estimator of σ2

ψ̂ML The Maximum Likelihood estimator of ψ

θ̂REML The REstricted Maximum Likelihood estimator of θ

σ̂2
REML The REstricted Maximum Likelihood estimator of σ2

ψ̂REML The REstricted Maximum Likelihood estimator of ψ

Estimation by Cross Validation

ŷi,θ The prediction of Y at x(i) according to the observation data in

x(1), ...,x(i−1),x(i+1), ...,x(n), with correlation hyper-parameters θ

σ2ĉ2i,θ The predictive variance of Y at x(i) according to the observation data in

x(1), ...,x(i−1),x(i+1), ...,x(n), with covariance hyper-parameters (σ2,θ)

LOO(θ) The Leave-One-Out Mean Square Error of the observations at θ

σ̂2
LOO(θ) The Leave-One-Out estimation of σ2 given θ

θ̂LOO The Leave-One-Out estimation of θ

σ̂2
LOO The LOO estimation of σ2: σ̂2

LOO := σ̂2
LOO(θ̂LOO)
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APPENDIX A. NOTATION

Computer model and experiments

x d-dimensional vector of experimental conditions / inputs of the physical system

β m-dimensional vector of computer model parameters

fmod(x,β) Computer model at x and β

fobs(x) Physical system observed at x

freal(x) Physical system at x

x(1), ...,x(n) n observation points for the physical system

ε n-dimensional vector of measure errors at x(1), ...,x(n)

yobs n-dimensional vector of observations of the physical system at x(1), ...,x(n)

H n×m matrix of the derivatives of fmod with respect to β at x(1), ...,x(n)

Yobs Gaussian process representation of the physical system

Z Gaussian process of the model error

Rmod The correlation function of Z

Kmod The covariance function of Z

Rmod The n× n correlation matrix of Z at x(1), ...,x(n)

Kmod The n× n covariance matrix of Z at x(1), ...,x(n)

Kmes The n× n covariance matrix of ε

K K := Kmod + Kmes

r(x) The n-dimensional correlation vector of Z between x(1), ...,x(n) and x

k(x) The n-dimensional covariance vector of Z between x(1), ...,x(n) and x

h(x) The m-dimensional vector of the derivatives of the computer model at x

Abbreviations

BLUP Best Linear Unbiased Predictor

GP Gaussian Process

ML Maximum Likelihood

REML REstricted Maximum Likelihood

CV Cross Validation

LOO Leave-One-Out

MSE Mean Square Error

RMSE Root Mean Square Error

pdf probability density function
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