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Abstract

This thesis aims at exploring the potentialities of a powerful optimization technique, namely Semidefinite
Programming, for addressing some difficult problems of energy management. This relatively young area
of convex and conic optimization has undergone a rapid development in the last decades, partly thanks
to the design of efficient algorithms for their resolution, and because numerous NP-hard problems can
be approached using semidefinite programming.

In the present thesis, we pursue two main objectives. The first one consists of exploring the
potentiality of semidefinite programming to provide tight relaxations of combinatorial and quadratic
problems. This line of research was motivated both by the promising results obtained in this direction
[108, 186, 245] and by the combinatorial and quadratic features presented by energy management
problems. The second one deals with the treatment of uncertainty, an issue that is also of paramount
importance in energy management problems. Indeed, due to its versatility, SDP is well-known for
providing numerous possibilities of dealing with uncertainty. In particular, it offers a way of modelling
the deterministic counterpart of robust optimization problems, or more originally, of distributionnally
robust optimization problems.

The first part of this thesis contains the theoretical results related to SDP, starting by the
underlying theory of convex and conic optimization, followed by a focus on semidefinite programming
and its most famous applications. In particular, we provide a comprehensive and unified framework of
the different methods proposed in the literature to design SDP relaxations of QCQP

The second part is composed of the last three chapters and presents the application of SDP
to energy management. Chapter 4 provides an introduction to energy management problems, with
a special emphasis on one of the most challenging energy management problem, namely the Nuclear
Outages Scheduling Problems. This problem was selected both for being a hard combinatorial problem
and for requiring the consideration of uncertainty. We present at the end of this chapter the different
models that we elaborated for this problem.

The next chapter reports the work related to the first objective of the thesis, i.e., the design of
semidefinite programming relaxations of combinatorial and quadratic programs. On certain problems,
these relaxations are provably tight, but generally it is desirable to reinforce them, by means of tailor-
made tools or in a systematic fashion. We apply this paradigm to different models of the Nuclear
Outages Scheduling Problem. Firstly, we consider a complete model that takes the form of a MIQP.
We apply the semidefinite relaxation and reinforce it by addition of appropriate constraints. Then,
we take a step further by developing a method that automatically generates such constraints, called
cutting planes. For the design of this method, we start by providing a framework for unification of many
seemingly disparate cutting planes that are proposed in the literature by noting that all these constraints
are linear combinations of the initial quadratic constraints of the problem and of the pair-wise product
of the linear constraints of the problem (including bounds constraints).

Subsequently, we focus on specific part of the problem, namely the maximal lapping constraint,
which takes the form of aTx /∈ [b, c], where x are binary variables. This constraint presents modelling
difficulty due to its disjunctive nature. We aim at comparing three possible modelisations and for each
of them, computing different relaxations based on semidefinite programming and linear programming.
Finally, we conclude this chapter by an experiment of the Lasserre’s hierarchy, a very powerful tool
dedicated to polynomial optimization that builds a sequence of semidefinite relaxations whose optimal
values tends to the optimal value of the considered problem.

Thus, we fulfilled the first objective of this thesis, namely exploring the potentiality of semidef-
inite programming to provide tight relaxations of combinatorial and quadratic problems. The second
objective is to examine how semidefinite programming can be used to tackle uncertainty. To this end,
three different works are carried out. First, we investigate a version of the nuclear outages scheduling



problem where uncertainty is described in the form of equiprobable scenarios and the constraints in-
volving uncertain parameters have to be satisfied up to a given level of probability. It is well-known that
this model admits a deterministic formulation by adding binary variables. Then the obtained problem
is a combinatorial problem and we apply semidefinite programming to compute tight bounds of the
optimal value.

We have also implemented a more original way of dealing with uncertainty, which admits a
deterministic counterpart, or a conservative approximation, under the form of a semidefinite program.
This method, that has received much attention recently, is called distributionnally robust optimization
and can be seen as a compromise between stochastic optimization, where the probability distribution
is required, and robust optimization, where only the support is required. Indeed, in distributionnally
robust optimization, the support and some moments of the probability distribution are required. In our
case, we assume that the support, the expected value and the covariance are known and we compare
the benefits of this method w.r.t other existing approaches, based on Second-Order Cone Program, that
rely on the application of the Boole’s inequality, to convert the joint constraint into individual ones,
combined to the Hoeffding’s inequality, in order to get a tractable conservative approximation of the
chance constraints.

Finally, we carried out a last experiment that combines both uncertainty and combinatorial
aspects. Indeed, many deterministic counterpart or conservative approximation of Linear Program
(LP) subject to uncertainty give rise to a Second-Order Cone Program (SOCP). In the case of a Mixed-
Integer Linear Program, we obtain a MISOCP, for which there is no reference resolution method. Then
we investigate the strength of the SDP relaxation for such problems. Central to our approach is the
reformulation as a non convex Quadratically Constrained Quadratic Program (QCQP), which brings
us in the framework of binary quadratically constrained quadratic program. This allows to apply the
well-known semidefinite relaxation for such problems. When necessary, this relaxation is tightened by
adding constraints of the initial problem. We report promising computational results indicating that
the semidefinite relaxation improves significantly the continuous relaxation (112% on average) and often
provides a lower bound very close to the optimal value. In addition, computational time for obtaining
these results remains reasonable.

In conclusion, despite practical difficulties mainly due to the fact that SDP is not a mature
technology yet, it is nonetheless a very promising optimization method, that combines all the strengths
of conic programming and offers great opportunities for innovation at EDF R&D, both in energy
management and engineering or financial issues.



Résumé

Cette thèse se propose d’explorer les potentialités qu’offre une méthode prometteuse de l’op-
timisation convexe et conique, la programmation semi-définie positive (SDP), pour les problèmes de
management d’énergie.

La programmation semi-définie positive est en effet l’une des méthodes ayant le plus attiré l’atten-
tion de la communauté scientifique ces dernières années, du fait d’une part de la possibilité de pouvoir
résoudre ses instances en temps polynomial grâce à des solveurs performants. D’autre part, il s’est avéré
que de nombreux problèmes d’optimisation NP-difficiles peuvent être approximés au moyen d’un SDP.

Ce rapport débute par un résumé des principaux résultats relatifs à ce domaine de l’optimisation.
Le chapitre 1 contient un rappel des fondamentaux de l’optimisation convexe et conique, puis nous
présentons les bases théoriques et les algorithmes de la SDP dans le chapitre 2. Enfin, dans le chapitre 3
nous décrivons les applications de la SDP qui présentent le plus d’intérêt dans ce contexte. En particulier,
nous proposons une vision claire et unifiée des différentes méthodes recensées dans la littérature pour
construire les relaxations SDP de problèmes quadratiques et combinatoires.

Les applications de la SDP au management d’énergie constituent la seconde partie de ce rapport.
Le management d’énergie est pr’esent’e au chapitre 4, avec une attention particulière portée au problème
de planification des arrêts nucléaires. Le chapitre 5 est consacré au premier axe de cette thèse, visant
à utiliser la SDP pour produire des relaxations de problèmes combinatoires et quadratiques, comme
suggéré par de nombreux résultats prometteurs dans ce domaine. Si une première relaxation SDP,
dénommée relaxation SDP standard, peut-être obtenue très simplement, il est généralement souhaitable
de renforcer cette dernière par un ajout de contraintes valides, pouvant être déterminées par l’étude de
la structure du problème ou à l’aide de méthodes plus systématiques.

En particulier, nous expérimentons la relaxation SDP sur différentes modélisations du problème
de planification des arrêts nucléaires, réputé pour sa difficulté combinatoire. Nous commençons par
étudier une modélisation proche de celle utilisée à l’opérationnel, donnant lieu à un MIQP, sur lequel
la relaxation SDP standard est appliquée , puis renforcée au moyen d’un procédé classique. Puis nous
proposons une méthode plus systématique permettant de déterminer automatiquement une contrainte
appropriée à ajouter au problème afin de renforcer la relaxation SDP. Cette méthode repose sur le
constat que toutes les contraintes proposées dans la littérature pour renforcer la relaxation SDP peuvent
être vues comme des combinaisons linéaires de contraintes quadratiques et de produits deux à deux des
contraintes linéaires du problème, y compris les contraintes de borne. Alors, parmi toutes ces contraintes,
il suffit de sélectionner la plus violée par la relaxation SDP courante.

Dans la suite, nous nous intéressons à une contrainte particulière du problème de planification
des arrêts nucléaires, à savoir la contrainte de recouvrement maximal entre arrêts, pouvant être formulée
de la façon suivante : aTx /∈ [b, c], avec x un vecteur de variables binaires. Cette contrainte disjonctive
admet plusieurs modélisations. Nous avons donc comparé pour chacune d’entre elles, un ensemble de
relaxations, à la fois linéaires et SDP. Enfin, nous concluons ce chapitre par une expérimentation de la
hiérarchie de Lasserre. Cette théorie très puissante considère un problème d’optimisation polynomial
quelconque et construit une suite de SDP dont la valeur optimale tend vers la solution du problème
initial.

Le second axe de la thèse, portant sur l’application de la SDP à la prise en compte de l’in-
certitude, donne lieu à 3 études. Dans la première, nous travaillons sur une version du problème des
arrêts nucléaires dans laquelle l’incertitude se présente sous la forme de scénarios équiprobables et les
contraintes concernées par les incertitudes sont à satisfaire en probabilité. Il est alors classique de for-
muler ce problème de façon déterministe en ajoutant une variable binaire par contrainte et par scénario,
ce qui donne lieu à un grand problème combinatoire. Nous pouvons alors appliquer la relaxation SDP
à ce problème, selon l’approche présentée dans le premier axe de cette thèse.



Nous avons également mis en oeuvre une méthode plus originale pour la prise en compte de
l’incertitude, permettant de reformuler le problème, ou d’en donner une approximation conservative,
sous la forme d’un SDP. Cette méthode, qui a fait l’objet de nombreux travaux récemment, est connue
sous le nom d’optimisation distributionnellement robuste. Il s’agit en fait d’un compromis entre l’op-
timisation stochastique, qui nécessite une connaissance parfaite des lois de probabilités utilisées, et
l’optimisation robuste, qui ne requiert que la connaissance du support des variables aléatoires. En effet,
l’optimisation distributionnellement robuste ne nécessite pas de connaître la distribution de probabilité,
mais uniquement son support et certains de ses moments. Nous appliquons donc cette méthode à un
problème d’équilibre offre-demande dans lequel la demande et la disponibilité des moyens de production
sont soumis à des aléas, dont on connaît le support, l’espérance et la covariance. Nous nous appliquons
donc à estimer l’apport de cette méthode par rapport à une méthode de type robuste basée sur la
connaissance du support et de l’espérance, permettant de formuler une approximation conservative du
problème comme un SOCP par l’application des inégalités de Boole et de Hoeffding.

En dernier lieu, nous procédons à une expérimentation combinant les deux approches explorés
dans ce rapport. En effet, de nombreux problèmes à données aléatoires admettent un équivalent, ou une
approximation, pouvant s’écrire sous la forme d’un SOCP. Dans le cas où le problème initial contient des
variables entières, le problème obtenu est alors un MISOCP, pour lesquels il n’existe pas de méthodes
de résolution de référence. Nous nous intéressons ici à l’utilisation de relaxations SDP pour ce type de
problème. Le principe est de convertir le MISOCP en MIQCQP, puis d’appliquer la relaxation SDP
standard, qui est ensuite renforcée par l’ajout de contraintes du problème initial mises au format SDP.
Cette approche donne des résultats encourageants, avec une relaxation SDP nettement meilleure que
la relaxation continue. Les solutions obtenues sont même très proches de l’optimal sur de nombreuses
instances tout en conservant un temps de calcul raisonnable.

En conclusion, en dépit de nombreuses difficultés pratiques, imputables au fait que cette tech-
nologie n’est pas encore tout à fait mature, la SDP n’en reste pas moins une méthode extrêmement
prometteuse, combinant toute la puissance de l’optimisation conique. Elle offre de nombreuses opportu-
nités d’innovation, aussi bien en management d’énergie que dans d’autres domaines tels que l’ingénierie
ou la gestion de portefeuille d’actifs financiers.
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Synthèse

Cette thèse a pour objet d’évaluer l’apport de la programmation semi-définie positive (SDP), méthode
prometteuse de l’optimisation conique, pour la résolution pratique des problèmes d’optimisation ren-
contrés en management d’énergie. Elle est motivée par les résultats récents reportés dans la littérature
exhibant un fort potentiel de la SDP pour le traitement des problèmes à caractère combinatoire et/ou
aléatoire marqué tels que ceux fréquemment rencontrés management d’énergie, et pour lesquels les
méthodes classiques de résolution sont limitées. La thèse a pour ambition d’évaluer ce qu’une méthode
alternative comme la SDP pourrait apporter quant à la résolution de ces problèmes en général, avec
une attention particulière portée au problème de la planification des arrêts des centrales nucléaires pour
rechargement du combustible et maintenance.

Le travail a consisté à identifier les problèmes concernés par notre démarche, à les modéliser de
façon appropriée et à expérimenter la mise en oeuvre numérique de leur résolution à l’aide de la SDP.
Il est décliné selon deux axes. Concernant le premier, nous investiguons, d’un point de vue théorique et
numérique, les potentialités de la SDP pour l’élaboration de relaxations performantes de problèmes NP-
difficiles présentant un caractère combinatoire et/ou quadratique. Concernant le second, nous exploitons
la puissance de modélisation de la SDP pour la prise en compte de la nature aléatoire des problèmes
d’optimisation. Afin de préciser le contexte scientifique de la thèse, nous rappelons préalablement
quelques éléments d’introduction à la programmation conique et plus particulièrement à la SDP. Puis
nous présentons les caractéristiques des problèmes d’optimisation rencontrés en management d’énergie
et développons différentes approches pour leur traitement par la SDP.

Introduction à l’optimisation conique et à la SDP

L’optimisation conique peut être vue comme une extension naturelle de la programmation linéaire
dans laquelle l’orthant positif de R

n est remplacé par un cône convexe K. Ce formalisme présente de
nombreux avantages, en particulier le problème dual admet également une formulation conique faisant
intervenir K∗, le cône dual de K, ce qui confère au problème d’intéressantes propriétés de symétrie et
une extension des théorèmes de dualité faible et forte de la programmation linéaire.

Si K ⊂ R
n, alors un problème conique (PP ) et son dual (PD) sont définis par la donnée d’un

vecteur c ∈ R
n et d’une matrice (A, b) ∈ R

m,n+1, de la façon suivante :

(PP )







inf cTx
s.t. Ax = b

x ∈ K
(PD)







sup bT z
s.t. y = c−AT z

y ∈ K∗

L’optimisation conique bénéficie des bonnes propriétés de l’optimisation convexe, notamment
concernant sa complexité. Ainsi, par une application directe du résultat de Grötschel et al. [118],
la solution optimale peut être approchée aussi finement que voulu en temps polynomial à condition
qu’il existe un oracle de séparation polynomial pour K. La méthode utilisée, dite des ellipsoïdes,
est donc fondamentale sur le plan théorique. En pratique, elle s’est révélée peu performante et a
rapidement été supplantée par d’autres méthodes polynomiales plus efficaces. En particulier, selon le
résultat fondamental de Nesterov et Nemirovski [206], il est possible d’étendre les méthodes de points-
intérieurs, initialement conçues pour la programmation linéaire, à n’importe quel problème convexe du
moment qu’il existe une fonction barrière pour l’ensemble réalisable exhibant une propriété de régularité
spécifique dite d’auto-concordance.

La programmation semi-définie positive (SDP) est le cas particulier de la programmation conique
dans lequel le cône K est S

n
+, c’est-à-dire l’ensemble des matrices semi-définies positives. Rappelons

qu’une matrice X est semi-définie positive, ce qui est noté X < 0, si elle est symétrique et si toutes
ses valeurs propres sont positives ou nulles. Une autre définition fréquemment utilisée est la suivante :
X ∈ S

n
+ ⇔ uTXu ≥ 0, ∀u ∈ R

n.
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Un SDP primal (SDPP ) et son dual (SDPD) se présentent donc de la façon suivante :

(SDPP )







inf A0 •X
s.t. Aj •X = bj , j = 1, ...,m

X < 0
(SDPD)







sup bT z

s.t. A0 −
m
∑

j=1

Ajzj < 0

où • désigne le produit scalaire sur les matrices symétriques, à savoir M • N =
n
∑

i=1

n
∑

j=1

MijNij , pour

M,N ∈ S
n.

Parmi les méthodes de l’optimisation conique, la SDP se positionne comme la méthode polynomi-
ale possédant la plus grande puissance de modélisation. En particulier, elle subsume d’autres méthodes
connues de l’optimisation conique telles que la programmation linéaire (LP) et l’optimisation conique
du second-ordre (SOCP). Ces caractéristiques attrayantes ont suscité un grand intérêt parmi la com-
munauté scientifique ces dernières années. Il en résulte de nombreux travaux portant aussi bien sur la
théorie sous-jacente à ces problèmes que sur leurs méthodes de résolution et leur applicabilité.

Concernant l’aspect théorique, de nombreux résultats ont été établis sur la géométrie des SDP,
c’est-à-dire sur la caractérisation de leurs ensembles réalisables primal et dual. Il en ressort des résultats
sur la caractérisation des points extrêmes de ces ensembles (en particulier, leur rang) [211], sur l’unicité
des solutions optimales [10] ou encore sur la dimension de leurs faces et facettes [25]. Des travaux
poussés ont également été menés sur la dualité des problèmes SDP [29], débouchant sur l’identification
de 11 configurations possibles, différant par la présence ou non de la dualité forte et par le fait que les
valeurs optimales primale et duale existent ou non, et sont atteintes ou non.

Les méthodes de résolution ont également fait l’objet de nombreux travaux. Les algorithmes de
points-intérieurs restent à ce jour les plus étudiés et les plus usités pour leur efficacité et leur applicabilité
à n’importe quel SDP. Initiés par Alizadeh en 1991 [7], ces méthodes ont donné lieu aux deux solveurs
SDP les plus réputés, à savoir CSDP [53] et DSDP [34]. D’autres méthodes issues de la programmation
non linéaire ont également été testées. Parmi elles, citons les méthodes de relaxation lagrangienne [158]
et les méthodes de faisceaux [129].

L’intérêt pour la SDP s’est encore accru ces dernières années lorsque de nombreuses applications
ont été identifiées dans des domaines variés tels que le contrôle, les statistiques, la finance, la localisa-
tion, l’optimisation robuste et l’ingénierie. Parmi toutes ces applications, l’utilisation de la SDP pour
approximer le célèbre problème des moments généralisés (GPM), a particulièrement attiré l’attention
de la communauté scientifique, de par la généricité de ce problème et son applicabilité à l’optimisation
quadratique et combinatoire. Considérons par exemple le problème quadratique suivant :

(QCQP )

{

min xTP0x+ 2pT0 x+ π0

s.t. xTPjx+ 2pTj x+ πj ≤ 0, j = 1, ...,m
avec Pj ∈ S

n, pj ∈ R
n, πj ∈ R, j = 0, ...,m

(1)

Ce problème à objectif et contraintes quadratiques (QCQP) est convexe si et seulement Pj <

0, j = 0, ...,m. Autrement, il appartient à la classe des problèmes NP-difficiles. Il suffit pour le
comprendre de remarquer que de nombreux problèmes difficiles peuvent se mettre sous cette forme,
en particulier les problèmes combinatoires à variables binaires puisque xi ∈ {0, 1} est équivalent à la
contrainte quadratique x2

i−xi = 0. On peut établir très simplement une relaxation SDP de ce problème,
dite standard, de la façon suivante :















inf Q0 • Y
s.t. Qj • Y ≤ 0, i = 1, ...,m

Y1,1 = 1
Y < 0

avec Qj =

(

πj pTj
pj Pj

)

, j = 0, ...,m (2)

Cette relaxation peut être obtenue et interprétée de nombreuses façons, la plus simple d’entre elles
consistant à introduire une nouvelle variable Y = x̃x̃T , à remplacer les formes quadratiques xTPjx +
2pTj x+ πj par leur équivalent Qj • Y , puis à relaxer la contrainte Y = x̃x̃T en Y1,1 = 1 et Y < 0.
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L’idée d’une relaxation SDP est attribuée à Lovász [186] et à Shor [245], mais ce sont les travaux
de Goemans et Williamsons [108] offrant une garantie sur l’optimalité de la borne ainsi obtenue dans
le cas d’un {−1, 1}-QP, qui ont déclenché le véritable engouement que l’on connaît pour la SDP.

Cependant, dans le cas d’un QCQP quelconque, il est généralement nécessaire de renforcer cette
relaxation standard pour la rendre véritablement efficace. Pour cela, il suffit d’ajouter des contraintes
valides au problème quadratique initial, puis d’appliquer la relaxation SDP standard à ce nouveau
QCQP. Toute la difficulté réside donc dans l’identification des contraintes valides (ou coupes) les plus
efficaces. Cette façon de voir unifie de nombreux travaux recensés dans la littérature, voir par exemple
[7, 127, 176, 177, 230].

Une autre source importante d’application pour la SDP provient de sa capacité à approximer le
problème des moments généralisés (GPM). Ce problème (GPMP ) et son dual (GPMD) se définissent
de la façon suivante :

(GPMP )











min
∫

S h(ω)P(ω)dω

s.t.
∫

S fi(ω)P(ω)dω = bi, i = 1, ...,m

P ∈M(S)
(GPMD)















max
m
∑

i=1

bizi

s.t.
m
∑

i=1

fi(ω)zi ≤ h(ω), ∀ω ∈ S

Dans le primal, la variable d’optimisation n’est pas un vecteur euclidien comme c’est le cas
généralement, mais P, une mesure positive ou nulle sur B(S), la σ-algèbre de Borel de S ⊂ R

n. Il
est cependant possible de la considérer comme un vecteur de dimension infinie, dans lequel chaque
composante correspond à une valeur de P(ω) pour tout ω ∈ S. Le problème devient alors linéaire et
le dual se déduit simplement comme le dual d’un programme linéaire, le nombre infini de variables
induisant un nombre infini de contraintes. Prises ensemble, ces contraintes prennent la forme de la

positivité sur S de la fonction fz(ω) = h(ω) −
m
∑

i=1

fi(ω)zi dont les coefficient dépendent de la variable

duale z ∈ R
m.

De nombreux problèmes peuvent se modéliser comme des instances particulières de ce problème,
mais l’intérêt n’en est que purement théorique car il n’existe pas de méthode de résolution générale
connue pour ce problème. Toutefois, deux restrictions se révèlent très intéressantes puisqu’il existe
alors une suite d’approximations SDP dont la valeur optimale tend vers la valeur initiale du (GPM).
Ces restrictions sont les suivantes : on suppose premièrement que P(S) est borné et on va prendre
P (S) = 1, ce qui revient à supposer que P est une mesure de probabilité. Deuxièmement, on se place
dans un cadre polynômial, où les fonctions h, fi, i = 1, ...,m sont des polynômes et où S est un ensemble
semi-algébrique.

C’est de ces restrictions que le problème tire son nom, puisque le primal se formule alors via des
combinaisons linéaires de moments de P et toute la difficulté du problème se retrouve dans la dernière
contrainte de la formulation ci-dessous, imposant à y d’être le vecteur des moments associés à P :



































min
∑

κ∈Nn
d

hκyκ

s.t.
∑

κ∈Nn
d

fiκyκ = bi, i = 1, ...,m

yκ = EP (ωκ) , κ ∈ N
n
d ( signifie que y est le vecteur des moments de P)

P ∈M(S)

où N
n
d = {κ ∈ N

n :
∑n

i=1 κi ≤ d} et pour tout polynôme f de degré d sur R
n, f est le vecteur de ses

coefficients, c’est-à-dire f(x) =
∑

κ∈Nn
d
fκx

κ où xκ =
∏n

i=1 x
κi

i est un monôme.

Or il existe une relaxation SDP de la contrainte imposant à y d’être un vecteur de moment sur
S, via la semi-définie positivité d’une matrice dépendant de y et de S. Il s’avère que le dual de ce
SDP peut également être interprété comme une approximation (conservative cette fois) de (GPMD),
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en appliquant le théorème de Putinar. En effet, ce dernier établit des conditions suffisantes pour la
positivité d’un polynôme sur un ensemble semi-algébrique, qui font appel à des matrices semi-définie
positives. De plus, ces relaxations dépendent d’un paramètre entier r, dit le rang, qui lorsqu’il tend
vers l’infini, fait tendre la valeur optimal des SDP ainsi obtenus vers la valeur optimale du problème
initial. Cette séquence de SDP est connue sous le nom de hiérarchie de Lasserre [171].

Parmi les instances que nous pourrons ainsi approximer, se trouve le problème classique des
moments (CPM), dans lequel les fonctions fi sont les monômes de degré inférieur à d et h est la
fonction indicatrice d’un certain ensemble K. Ce problème revient à minimiser la probabilité P[ω ∈ K]
connaissant les moments d’ordre inférieur à d et le support de P. De nombreuses variantes de ce
problème ont été étudiés par le passé, donnant lieu à des inégalités célèbres telles que les inégalités de
Chebyshev ou de Markov.

En conclusion, même si les applications de la SDP sont légions, elles sont difficiles à identifier car
la contrainte d’imposer à une matrice d’être semi-définie positive n’apparaît pas naturellement. Afin de
prendre du recul sur la façon dont ces applications émergent, nous proposons une classification de ces
processus en 3 catégories :

− identification d’une matrice SDP : lorsque l’une des définitions possibles d’une matrice SDP se
retrouve clairement dans le problème. C’est le cas par exemple si l’on requiert d’une fonction
quadratique en x d’être positive ou nulle pour tout x : f(x, y) = x̃TP (y)x̃ ≥ 0, ∀x ∈ R

n ⇔
P (y) < 0 ;

− relaxation : lorsqu’on relaxe la contrainte Y ∈ S, avec S ⊂ S
n
+, par Y < 0. Exemple :

S = {xxT : x ∈ R
n} ;

− exploitation d’un résultat reposant sur l’existence d’une matrice SDP. Exemple : f convexe
⇔ ∇2f < 0.

Parmi les résultats reposant sur l’existence d’une matrice SDP se trouve le S-Lemma [212],
d’importance cruciale pour notre étude. Ce lemme donne en effet une condition suffisante, parfois
nécessaire, pour qu’une contrainte quadratique soit valide sur un ensemble défini par des contraintes
quadratiques. Plus concrètement, si l’on cherche une matrice Q telle que la contrainte x̃Qx̃ ≥ 0 soit
valide sur K = {x ∈ R

n : x̃Qj x̃ ≥ 0, j = 1, ...,m}, on peut approximer cette condition de façon
conservative par l’application du S-Lemma, c’est-à-dire par la condition qu’il existe λj ≥ 0, j = 1, ...,m
tels que Q −∑m

j=1 λjQj < 0. Cette approximation conservative est au coeur de la relaxation SDP de
problèmes quadratiques et d’approximation des problèmes de moments d’ordre 2.

Présentation des problèmes de management d’énergie

Ce paragraphe vise à introduire le management d’énergie, avec une attention particulière portée
au problème de planification des arrêts des centrales nucléaires.

Le management d’énergie regroupe l’ensemble des problèmes relatifs à la production, à l’appro-
visionnement, au transport et à la consommation d’énergie, plus particulièrement l’électricité et le gaz
naturel. De façon très simplifiée, on s’attache à satisfaire l’équilibre offre-demande à tout moment et sur
tout point du réseau, à moindre coût. Du fait de l’importance stratégique de l’énergie dans notre société,
les enjeux associés à ces problèmes sont colossaux, aussi bien sur le plan économique qu’industriel, social
et écologique. De par sa taille, le problème d’optimisation sous-jacent est un problème difficile. A ceci
s’ajoute un contexte géo-économico-politique très changeant, pour ne pas dire aléatoire, la nécessité
de prendre en compte de nombreuses subtilités technologiques sur le fonctionnement des moyens de
production et de transport, la modélisation de mécanismes de marché complexes, soumis à une demande
très inélastique, et l’importance de l’impact climatique à la fois sur la consommation et sur les moyens de
productions. Concernant la gestion de l’électricité, à laquelle nous nous limiterons désormais, le levier
de gestion que constitue habituellement la constitution de réserve est très contraint. En effet, il n’est pas
rentable de stocker l’énergie directement sous forme électrique (batteries, ...). En revanche, les stocks
d’eau des barrages constituent une réserve d’électricité puisqu’on peut facilement (et gratuitement) les
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convertir sous cette forme. La difficulté est que la majeure partie de cette réserve provient des apports
climatiques et est donc soumise à des aléas.

Le respect de l’équilibre offre-demande donne lieu à un gigantesque problème d’optimisation.
Afin de le pouvoir traiter, une première décomposition consiste à regrouper les variables de décisions
par horizon de temps :

− Sur le long-terme (de 10 à 20 ans) sont prises les décisions d’investissement qui déterminent la
structure du portefeuille;

− Au moyen-terme (de 1 à 5 ans), il est nécessaire de planifier l’utilisation de certains actifs,
comme les centrales nucléaires, et en particulier leurs arrêts pour rechargement et maintenance
(ce problème sera détaillé par la suite), les stratégies d’utilisation des barrages, ou encore de
souscrire certains contrats d’approvisionnement;

− A court-terme se réalise l’équilibre offre-demande proprement dit, via l’élaboration des pro-
grammes de fonctionnement de chaque centrale, complétés par des achats/ventes sur les marchés
de l’électricité.

Cette décomposition donne lieu à un grand nombre de sous-problèmes d’optimisation, chacun se distin-
guant par une finesse de modélisation différente et des difficultés variées.

Parmi elles, et ce d’autant plus que le problème se situe à long-terme, se trouve la prise en compte
des incertitudes pouvant affecter les données d’entrées, comme les aléas climatiques, les indisponibilités
des moyens de production ou les prix sur les différents marchés de l’énergie. Ces données sont autant
de variables aléatoires à prendre en compte dans les modèles, dont il est difficile de déterminer pré-
cisément la distribution de probabilité du fait de la complexité des processus impliqués. Cependant,
les observations historiques de ces processus nous fournissent une connaissance partielle de ces lois de
distributions, menant aux représentations suivantes :

− Une approximation déterministe utilisant la valeur moyenne ou la valeur dans le pire cas;

− Une représentation robuste établissant que la variable évolue dans un ensemble donnée;

− Une représentation "distributionnellement robuste" dans laquelle on suppose connus le support
et les k premiers moments de la distribution de probabilité;

− Une représentation stochastique dans laquelle on suppose connue la distribution de probabilité.
En particulier, c’est le cas lorsqu’on utilise des scénarios de réalisations de la variable, issus par
exemple des observations historiques.

Parmi les différents problèmes de management d’énergie, nous nous intéressons particulièrement
au problème de la planification des arrêts des centrales nucléaires.

L’objectif de ce problème est de déterminer, sur un horizon de temps à moyen-terme (1 à 5 ans), le
meilleur moment pour arrêter les réacteurs afin d’y effectuer les opérations nécessaires de rechargement
en combustible et de maintenance, de façon à perturber le moins possible la satisfaction de l’équilibre
offre-demande. De par l’importance de la production nucléaire en France, ce problème présente des
enjeux financiers importants. Il est difficile à résoudre du fait de sa nature combinatoire, liée à la
modélisation de l’état "en marche" ou "en arrêt" des centrales.

L’horizon de temps considéré comporte Nt pas de temps et un parc nucléaire de Nν réacteurs.
La vie d’un réacteur i ∈ Nν , avec Nν = {1, ..., Nν} se décompose en cycles indicés par j = 1, ..., Ji
sur l’horizon de temps, chaque cycle étant constitué d’une campagne de production suivi d’un arrêt
de durée δi,j . L’arrêt du cycle j peut débuter à toute date de l’ensemble E(i,j) ⊂ {1, ..., Nt} et pour
chaque date possible, on définit une variable binaire xi,j,t, valant 1 si et seulement si l’arrêt débute
effectivement à cette date. On doit alors satisfaire une contrainte dite d’affectation imposant à chaque
cycle (i, j) une et une seule date d’arrêt :

∑

t∈E(i,j)
xi,j,t = 1. On déduit de ces variables deux grandeurs

essentielles pour notre modèle. Tout d’abord la date effective du début de l’arrêt du cycle (i, j) qui
vaut ti,j =

∑

t∈E(i,j)
txi,j,t. Puis la disponibilité nucléaire, c’est-à-dire la puissance totale des tranches

n’étant pas arrêtée au pas de temps t, qui s’exprime également comme une fonction affine de x.
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Figure 1: Un exemple de planning et de disponibilité nucléaire

La contrainte d’équilibre offre-demande n’est pas prise en compte explicitement dans le modèle.
En fait, on suppose qu’il existe toujours suffisamment de moyens de productions alternatifs et d’offre de
vente sur le marché pour satisfaire la demande, mais que leur utilisation se traduit par un coût croissant
de satisfaction de l’équilibre offre-demande. Ce coût est à l’objectif que l’on cherche à minimiser. Il
prend la forme d’une fonction convexe, linéaire par morceaux, de la disponibilité nucléaire. Dans
un objectif de concision du modèle, cette fonction pourra être approximée par une fonction convexe
quadratique.

Les nombreuses contraintes du problème sont liées principalement aux exigences de sûreté et à la
disponibilité des ressources utilisées pendant les arrêts. Ces contraintes peuvent nécessiter l’introduction
de variables continues, modélisant par exemple la production de la tranche pendant le cycle. Elles sont
généralement linéaires, sauf la contrainte dite de recouvrement maximal, qui impose à certaines paires
d’arrêts (i, j) et (i′, j′) de ne pas dépasser une certaine valeur N de recouvrement. Cette contrainte
peut être vue comme une disjonction : ti,j − ti′,j′ < N − δi,j ou ti,j − ti′,j′ > −N + δi′,j′ . Elle admet 3
modélisations, dont une l’une est quadratique :

− l’exclusion 2 à 2, qui interdit toutes les paires d’instanciation menant à une violation de cette
contrainte : xi,j,t + xi′,j′,t′ ≤ 1 pour tout t, t′ tels que t− t′ ∈ ]N − δi,j , −N + δi′,j′ [;

− la formulation "bigM", qui repose sur l’introduction d’une variable binaire z ∈ {0, 1}, valant
0 ou 1 selon la partie de la disjonction qui est satisfaite : ti,j − ti′,j′ ≤ N − δi′,j′ + M1z et
ti,j − ti′,j′ ≥ −N + δi,j −M2(1− z)

− la formulation quadratique (ti,j − ti′,j′ −N + δi,j)(ti,j − ti′,j′ +N − δi′,j′) ≥ 0.

Enfin, nous verrons que les différentes variantes de ce problème étudiées dans cette thèse varient
également dans la façon dont sont pris en compte les aléas qui affectent la demande et la disponibilité
des centrales nucléaires.

Ce problème est donc une application de choix pour notre étude, puisqu’il présente un caractère
combinatoire et est soumis à des incertitudes. Nous commencerons par prendre en compte l’aspect
combinatoire dans l’axe 1, avant de traiter l’incertitude dans l’axe 2.

Axe 1 : la SDP pour la relaxation de problèmes combinatoires et quadratiques
Le premier axe de cette thèse vise à utiliser la SDP pour produire des relaxations de problèmes com-
binatoires et quadratiques, comme suggéré par les nombreux résultats prometteurs dans ce domaine.
L’obtention de ces relaxations commence généralement par l’implémentation de la relaxation SDP stan-
dard, qui doit ensuite être renforcée au moyen de coupes. Celles-ci peuvent être déterminées par l’étude
de la structure du problème ou à l’aide de méthodes plus systématiques. Cette approche sera expéri-
mentée sur différentes versions du problème de planification des arrêts nucléaires décrit ci-dessus, choisi
pour sa nature combinatoire et ses possibles composantes quadratiques.
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Nous commençons par utiliser une modélisation relativement complète, proche de celle utilisée
en exploitation, donnant lieu à un problème quadratique à variables mixtes (MIQP pour Mixed Integer
Quadratic Program) de grande taille auquel nous allons appliquer une relaxation SDP. Plus précisément,
le modèle étudié correspond à une version déterministe du problème, pour laquelle l’objectif est une
fonction quadratique de la disponibilité nucléaire et la formulation de la contrainte de recouvrement
maximale est linéaire, correspondant à la formulation "bigM". Parmi les contraintes, la contrainte
d’affectation est utilisée pour générer des contraintes quadratiques valides permettant de renforcer la
relaxation SDP. Suivant le principe de Sherali-Adams [240], on la multiplie par l’une des variables
binaires impliquées, ce qui donne lieu à la contrainte quadratique suivante :

∑

t′∈Ei,j , t′ 6=t

xi,j,txi,j,t′ = 0,

que l’on ajoute à la relaxation SDP.

On fait suivre la relaxation SDP d’une procédure d’arrondi randomisé permettant d’obtenir une
solution entière. Le principe de cet arrondi est d’interpréter la valeur d’une variable dans la solution
relaxée comme la probabilité que la variable vaille 1. On tire alors des solutions entières suivant la loi
de probabilité ainsi obtenue, jusqu’à obtenir une solution qui satisfasse toutes les contraintes.

Supposons que la relaxation produise une valeur optimale pr et que la valeur optimale du problème
initial soit p∗. Alors la qualité de la relaxation se mesure à son gap, égal à (p∗ − pr)/pr, qui doit être
le plus faible possible.

Sur la figure 2, on reporte le gap et la valeur de la solution arrondie obtenue, pour la relaxation
SDP standard (SDP), la relaxation SDP renforcée (SDP-R) et la relaxation obtenue en relaxant la
contrainte d’intégrité des variables binaires (QP), pour des jeux de données avec Nt = 156 et Nν ≤ 20,
menant à des problèmes d’environ 200 à 1300 variables binaires. On observe donc que les relaxations
SDP donnent des gaps plus faibles, donc meilleurs, que la relaxation QP.

Figure 2: Résultats de la relaxation SDP et de l’arrondi randomisé sur le problème des arrets nucléaire

En conclusion, le gap moyen est réduit de 1.80% à 1.71% pour la relaxation SDP standard, et
jusqu’à 1.56% pour la relaxation SDP renforcée, tout en conservant des temps de calculs raisonnables
(≤ 1030s pour SDP et ≤ 2231s pour SDP-R). Ces améliorations peuvent sembler faibles, mais elles
sont à comparer aux gaps, eux-mêmes faibles, du fait d’une importante part constante dans la fonction
objectif. Le gain sur l’arrondi randomisé est également significatif puisqu’il permet de ramener la perte
d’optimalité de 7.75% à 6.41% et 5.59% pour les relaxations QP, SDP et SDP-R respectivement.

Suite à cette première expérimentation, nous proposons une méthode systématique permettant
de déterminer une relaxation SDP renforcée d’un QCQP à variables bornées. Puis nous appliquons
cette méthode à une version allégée du problème de planification des arrêts nucléaires, donnant lieu
à un 0/1-QCQP, incluant un objectif quadratique, des contraintes quadratiques correspondant à la
formulation quadratique de la contrainte de recouvrement maximal et des contraintes linéaires d’égalité
et d’inégalité.

La méthode utilisée pour obtenir la relaxation SDP repose sur le constat que toutes les contraintes
quadratiques valides proposées dans la littérature pour renforcer la relaxation SDP peuvent être vues
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comme des combinaisons linéaires de contraintes quadratiques et de produits deux à deux des contraintes
linéaires du problème, y compris les contraintes de borne. Alors, parmi toutes ces contraintes, il reste
à sélectionner la contrainte la plus violée par la relaxation SDP courante, dans l’esprit d’un algorithme
de séparation classique. Les différentes étapes de la méthode sont représentées sur la Figure 3.

Figure 3: Algorithme de renforcement automatique d’une relaxation SDP

Nous testons également une version alternative de cette phase de séparation, visant à imposer à
la contrainte obtenue d’être convexe. Dans ce cas, au lieu de sélectionner une contrainte valide parmi
tous les produits deux à deux de contraintes linéaires, on considère toutes les combinaisons positives de
ces contraintes et des contraintes initiales du problème. Le problème de séparation étant alors un SDP,
cette méthode se révèle trop coûteuse en temps de calcul par rapport au gain obtenu sur les relaxations.

Au-delà du principe même de la méthode, notre contribution sur ce point a consisté à établir un
certain nombre de preuves visant à écarter d’office des contraintes valides qui n’apportent rien pour le
renforcement de la relaxation SDP. L’exemple le plus typique est la contrainte (aTx + b)2 ≥ 0, valide
pour n’importe quelles valeurs de a et b, mais inutile pour la relaxation SDP. Nous avons également
montré que notre approche unifie un grand nombre de contraintes valides proposées dans la littérature
pour le renforcement de la relaxation SDP [14, 127, 177, 213, 230].

Cette approche est également mise en oeuvre numériquement sur des jeux de données du problème
des arrêts nucléaires possédant entre 200 et 1000 variables binaires et de 100 à 500 contraintes, en
limitant à 100 le nombre de contraintes quadratiques valides ajoutées. Il en ressort que le gap moyen
obtenu est de 6.88% pour la relaxation SDP renforcée, contre 6.97% pour la relaxation SDP standard et
25.76% pour la relaxation linéaire. L’avantage de la méthode est qu’elle permet également d’identifier
les contraintes quadratiques les plus intéressantes pour le renforcement de la relaxation SDP. Ainsi on
observe que les contraintes choisies en priorité sont celles issues du produit de deux contraintes linéaires
qui partagent un grand nombre de variables. Plus précisément, pour une contrainte construite comme le
produit des deux contraintes linéaires C1 et C2, on définit son ratio de recouvrement comme le rapport
entre le nombre de variables impliqué dans C1 et C2 et le nombre de variables impliqué dans C1 ou C2.
La décroissance des ratios des contraintes sélectionnées au cours des itérations est représentée sur la
Figure 4.
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Figure 4: Ratio de recouvrement des contraintes sélectionnées

Pour poursuivre sur cet axe d’étude, nous nous attachons à comparer les différentes modélisations
de la contrainte de recouvrement maximal du point de vue de la performance des relaxations obtenues. Il
nous a également semblé important d’expérimenter la hiérarchie de Lasserre, une théorie très puissante
considérant un problème d’optimisation polynomial quelconque et construisant une suite de SDP dont
la valeur optimale tend vers la solution du problème initial. Pour ce faire, nous travaillons sur une
version simplifiée du problème de planification des arrêts, dans laquelle ne sont considérées que les
contraintes de recouvrement maximal et d’affection, et dans laquelle l’objectif est une fonction linéaire
de la disponibilité nucléaire. 12 relaxations SDP sont testées, différant par :

− la mise au carré des contraintes linéaires;

− l’ajout des contraintes dite de type RLT (Reformulation Linearization Technique) (xixj ≥ 0,
xixj ≤ xi,xixj ≤ xj et xixj ≥ 1− xi − xj);

− l’ajout de contraintes de type Sherali-Adams;

− l’ajout de contraintes triangulaires.

Pour chacune de ces relaxations SDP, nous construisons la relaxation linéaire équivalente, en
linéarisant le QCQP intermédiaire ayant mené à l’obtention de la relaxation SDP. Puis une expérimen-
tation est réalisée sur un ensemble de jeux de données regroupés en classe "i-j", dans lequel i correspond
à la taille de l’instance et j à la modélisation utilisées pour la contrainte de recouvrement maximal (j = 1
pour la formulation "bigM", j = 2 pour l’exclusion 2 à 2 et j = 3 pour la formulation quadratique). Les
résultats sont calculés en moyenne sur les 100 instances de chaque taille. Parmi toutes les relaxations
SDP testées, les trois ci-dessous se démarquent, dont les gaps sont reportés sur la figure 5.5 :

− SDP-4, obtenues en élevant au carré toutes les contraintes linéaires ;

− SDP-7, obtenues en ajoutant à SDP-4 le produit de toutes les contraintes linéaires par toutes
les contraintes de borne, dans l’esprit de Sherali-Adams;

− SDP-10, obtenues en ajoutant à SDP-7 les contraintes RLT.

Il ressort de cette expérimentation les constats suivants : pour les 3 modélisations, la meilleure
relaxation SDP est obtenue tout d’abord en élevant les contraintes linéaires au carré, puis en ajoutant
les produits de toutes les contraintes linéaires par toutes les contraintes de borne, puis les contraintes
RLT. Parmi les 3 modélisations, l’exclusion 2 à 2 offre le meilleur potentiel pour la relaxation SDP par
rapport à la relaxation LP, ce qui s’explique par le fait que le nombre de contraintes linéaires est très
grand et que le renforcement est d’autant plus efficace que le nombre de contraintes linéaires est élevé.

Une dernière expérimentation consiste à mettre en oeuvre la hiérarchie de Lasserre sur ce prob-
lème. Le lecteur est renvoyé à l’article [171] pour davantage de détails sur cette séquence de problème
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Figure 5: Comparaison des gaps des relaxations SDP-4, SDP-7 et SDP-10

Figure 6: Comparaison des gaps SDP et LP pour les relaxations 4, 7 et 10

SDP menant à la solution optimale. Le rang 1 de cette hiérarchie correspond à la relaxation SDP
standard et on s’attelle donc à résoudre le rang 2 pour les instances de taille 1. On observe alors que sur
toutes les instances, le gap vaut 0.0%, ou autrement dit, le SDP fournit la valeur optimale du problème
entier, et ceci avec des temps de calculs inférieurs à 10 s. Cette hiérarchie tient donc ses promesses en
ce qui concerne la qualité de la borne mais il demeure une difficulté majeure quant à son applicabilité
à des problèmes de plus grande taille, puisqu’en l’état des solveurs, il n’est pas possible de dépasser un
nombre de variables de l’ordre de 30.

Axe 2 : la SDP pour la prise en compte de l’incertitude

Le second axe de la thèse, portant sur l’application de la SDP à la prise en compte de l’incertitude,
se décline en trois études. Dans la première étude, nous travaillons sur une version du problème des
arrêts nucléaires dans laquelle l’incertitude se présente sous la forme de scénarios équiprobables et les
contraintes concernées par les incertitudes sont à satisfaire en probabilité. Il est alors classique de
formuler un équivalent déterministe de ce problème comme un problème combinatoire de grande taille
en ajoutant une variable binaire par contrainte et par scénario. Nous appliquons alors la relaxation
SDP standard à ce problème et la faisons suivre d’un arrondi randomisé.

Le problème considéré correspond au modèle décrit ci-dessus, dans lequel l’objectif et les con-
traintes de recouvrement maximal sont quadratiques. Les expérimentations sont menées avec 10 scé-
narios, sur des jeux de données comportant de 700 à 2400 variables binaires. Les résultats sont illustrés
sur la courbe de la figure 7, dans laquelle la solution entière représente l’écart entre la solution de
l’arrondi randomisé et la meilleure solution entière trouvée par CPLEX en 1800 s. Ces résultats sont
très prometteurs, avec un gap moyen de 2.76% avec la relaxation SDP contre 53.35% pour la relaxation
linéaire, et ceci sans le moindre renforcement.
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Figure 7: Résultats de la relaxation SDP et de l’arrondi randomisé sur le problème des arrêts des
centrales nucléaire stochastique

La deuxième étude met en oeuvre une méthode plus ambitieuse pour la prise en compte de
l’incertitude, permettant de reformuler le problème, ou d’en donner une approximation conservative,
sous la forme d’un SDP. Cette méthode, qui a fait l’objet de nombreux travaux récemment, est con-
nue sous le nom d’optimisation distributionnellement robuste. Il s’agit en fait d’un compromis entre
l’optimisation stochastique, qui nécessite une connaissance parfaite des lois de probabilités utilisées, et
l’optimisation robuste, qui ne requiert que la connaissance du support des variables aléatoires. En effet,
l’optimisation distributionnellement robuste ne nécessite pas de connaître la distribution de probabilité,
mais uniquement son support et certains de ses moments. Nous appliquons cette méthode à un prob-
lème d’équilibre offre-demande dans lequel la demande et la disponibilité des moyens de production sont
soumis à des aléas, dont on connaît le support, l’espérance et la covariance. Notre objectif est d’estimer
l’apport de cette méthode par rapport à une méthode de type robuste basée sur la connaissance du
support et de l’espérance, permettant d’obtenir une approximation conservative du problème sous forme
d’un SOCP.

Le problème d’équilibre offre-demande considéré peut se mettre sous la forme d’un problème à
contrainte en probabilité jointe linéaire :

min
x∈F
{cTx : P[g(x, ξ) ≤ 0] ≥ 1− ε}

avec :

− c un vecteur de R. et F ⊂ R
n un polyèdre;

− g : Rn × R
m → R

T une fonction affine de x et de ξ telle que g(x, ξ)t = x̃TAtx̃;

− ξ un vecteur aléatoire de Rm dont on connaît le support S = {ξ ∈ R
m : ai ≤ ξi ≤ bi}, l’espérance

µ et la covariance Σ ;

− ε le niveau de probabilité requis quant à la satisfaction de la contrainte.

On définit P(S) comme l’ensemble des distributions de probabilités de support S, d’espérance µ

et de covariance Σ. Plus précisément P(S) = {P ∈ M(S) : ΩP(ξ) = Ω} avec Ω =

(

1 µT

µ µµT +Σ

)

. On

cherche alors à satisfaire la contrainte pour toute les distributions de P(S), c’est-à-dire :

(C1)min
x∈F
{cTx : P[g(x, ξ) ≤ 0] ≥ 1− ε, ∀P ∈ P} ou (C2)min

x∈F
{cTx : inf

P∈P(S)
P[g(x, ξ) ≤ 0] ≥ 1− ε}

La formulation (C2) fait intervenir le problème de moments infP∈P(S) P[g(x, ξ) ≤ 0], auquel
s’applique la hiérarchie de Lasserre. Notre contribution se décline alors en trois points. Tout d’abord,
nous montrons que le SDP obtenu en appliquant la hiérarchie de Lasserre peut également être obtenu très
simplement en utilisant le S-Lemma et qu’il unifie un grand nombre d’approximations SDP proposées
dans la littérature, en particulier celle de Zymler et al. [270] mais aussi [40, 41, 68, 257], ainsi que
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d’inégalités célèbres sur les probabilités, à savoir les inégalités de Markov et de Cantelli. Puis nous
donnons des conditions suffisantes pour que cette approximation soit exacte. Enfin nous comparons
les bornes obtenues à des méthodes plus classiques, sur des problèmes académiques et d’équilibre offre-
demande.

Nous commençons par montrer grâce au S-Lemma qu’une condition suffisante pour que la con-
trainte en probabilité P[g(x, ξ) ≤ 0] ≥ 1 − ε soit respectée pour tout P ∈ P(S) est qu’il existe une
matrice M qui satisfasse le système SDP suivant :


























Ω •M ≤ ε

M −
m
∑

i=1

λ0,sW
i < 0

M −M0 −
m
∑

i=1

λt,sW
i + τtY

t(x) < 0, t = 1, ..., T

λ ≥ 0, τ ≥ 0

où































W i = 1
2

(

−2aibi ai + bi
ai + bi −2

)

Y t(x) = 1
2

(

2x̃TA∗,1 x̃TA∗,2...m+1

AT
∗,2...m+1x̃ 0

)

M0 =

(

1 0
0 0

)

Nous montrons que cette approximation est exacte dès lors que T = 1, c’est-à-dire lorsque la
contrainte en probabilité est individuelle. Puis nous procédons à des comparaisons numériques pour le
cas particulier où aucune variable de commande x n’est présente (n = 0). Il s’agit alors de déterminer
une borne inférieure d’une probabilité, avec ou non prise en compte de la covariance, sachant qu’une
borne inférieure est meilleure lorsqu’elle est élevée puisque l’approximation associée sera d’autant moins
conservative.

Nous nous intéressons en premier lieu au cas m = 1 et g(x, ξ) = ξ. Alors, sans la prise en
compte de la covariance, l’optimisation distributionnellement robuste mène à la borne de Markov, à
savoir µ/a, si [a, b] est le support de ξ. Cette borne est comparée aux valeurs obtenues par optimisation
distributionnellement robuste avec covariance et à la borne dite "robuste", basée sur la connaissance
du support et de l’espérance, permettant de formuler une approximation conservative du problème sous
la forme d’un SOCP via l’application de l’inégalité de Hoeffding [68, 269]. Les résultats sont transcrit
sur la courbe de la figure 6.1. Pour chaque jeu de données sont indiquées la borne de Markov, la borne
robuste valant 1− exp(−2µ2)(‖b− a‖2), ainsi que la plus petite (Min var) et la plus grande (Max var)
borne obtenue par optimisation distributionnellement robuste avec covariance.

Figure 8: Comparaison de différentes bornes inférieurs de minP∈P P[ξ ≤ 0]

Nous considérons ensuite le cas où m ≥ 1 et g(x, ξ) = eT ξ. Les jeux de données sont construits
aléatoirement, en tirant les valeurs de ai, bi, µi et de la matrice de covariance. La figure 6.3 illustre
la comparaison entre la borne robuste (1 − exp(−2(eTµ)2/ ‖b− a‖2)), la borne de Markov (eTµ/eTa)
obtenue en considérant eT ξ comme une variable aléatoire de moyenne eTµ et de support [eTa, eT b], et
les résultats de l’optimisation distributionnellement robuste avec et sans covariance.

Enfin, il reste à étudier le cas où T ≥ 1, avec gt(x, ξ) = dTt ξ̃. Pour ce problème, on compare la
borne robuste, qui s’avère être négative donc inutile, et les bornes distributionnellement robustes. Les
résultats sont représentés sur la courbe 6.4.
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Figure 9: Comparaison de différentes bornes inférieures de minP∈P P[eT ξ ≤ 0] pour m ≥ 1

Figure 10: Comparaison de différentes bornes inférieures de minP∈P P[dTt ξ̃ ≤ 0, t = 1, ..., T ]

Il ressort de ces comparaisons que les bornes distributionnellement robuste avec covariance sont
clairement les plus performantes. Il reste à les appliquer à un véritable problème d’optimisation avec
des variables de commandes. Pour cela, on considère le problème d’équilibre offre-demande suivant,
dans lequel on minimise un coût de production linéaire, tout en satisfaisant en probabilité l’équilibre
offre-demande à chaque pas de temps :































min cTx

s.t. P

[

N
∑

i=1

Di,txt,i ≥ D0,t, t = 1, ..., T

]

≥ 1− ε

T
∑

t=1
xt,i ≤ ri, i = 1, ..., N

xt,i ∈ [0, 1], i = 1, ..., N, t = 1, ..., T

où :

− T est le nombre de pas de temps considérés;

− N est le nombre d’unité de production;

− ct,i est le coût unitaire de production de l’unité de production i au pas de temps t;

− xt,i représente la production de l’unité de production i au pas de temps t;

− D0,t est une variable aléatoire représentant la demande au pas de temps t ;

− Di,t est une variable aléatoire représentant le coefficient de disponibilité de l’unité de production
i au pas de temps t;

− ri représente la production maximale de l’unité de production i sur l’horizon de temps.
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Figure 11: Comparaison du ratio p∗w/p
∗ pour ε = 0.8

T ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2
p∗s p∗

dri
loss p∗s p∗

dri
loss p∗s p∗

dri
loss p∗s p∗

dri
loss

1 262.9 261.3 -0.59% 267.0 265.6 -0.53% 271.8 271.2 -0.23% 277.5 279.4 0.69%
2 512.9 538.6 5.02% 521.2 548.6 5.26% 530.8 562.5 5.98% 542.5 582.1 7.31%
3 782.3 848.6 8.47% 794.5 866.5 9.06% 808.9 886.8 9.63% 826.5 895.2 8.32%
4 1040.1 1162.7 11.79% 1056.6 1182.8 11.95% 1076.0 1191.1 10.70% 1099.9 1192.7 8.44%
5 1290.6 1473.8 14.19% 1311.4 1483.9 13.15% 1336.0 1484.3 11.10% 1366.3 1489.1 8.99%
6 1538.3 1762.4 14.57% 1563.3 - - 1592.8 - - 1629.4 - -
7 1780.2 2040.6 14.63% 1810.5 - - 1846.0 - - 1889.4 - -
8 2021.3 2325.5 15.05% 2057.1 - - 2098.9 - - 2149.9 - -
9 2263.9 - - 2305.7 - - 2354.1 - - 2412.9 - -
10 2513.0 - - 2560.1 - - 2614.8 - - 2681.1 - -

Table 1: Comparaison avec l’approche stochastique

Les données sont calculées sur la base des observations historiques. Pour chaque jeu de données
sont comparées :

− p∗m, la valeur optimale du LP obtenu en remplaçant l’aléa par sa valeur moyenne;

− p∗dr, la valeur optimale obtenue par optimisation distributionnellement robuste;

− p∗dr, la valeur optimale obtenue par optimisation distributionnellement robuste, avec approxi-
mation de la probabilité jointe par une somme de probabilités individuelles, via l’inégalité de
Boole;

− p∗r , la valeur optimale obtenue par approche robuste;

− p∗w, la valeur optimale du LP obtenu en remplaçant l’aléa par sa valeur dans le pire cas.

Pour ε = 0.8, les résultats obtenus sont reportés sur la figure 6.5.

Nous constatons que la perte liée à l’approximation de la probabilité jointe par une somme
de probabilité individuelle est faible. De plus, la borne distributionnellement robuste est nettement
meilleure que la borne robuste, ce qui peut s’expliquer par le fait qu’elle exploite une information
supplémentaire, à savoir la covariance.

Nous procédons finalement à une comparaison avec une approche stochastique, basée sur l’hypothèse
que g(x, ξ) suit une loi normale. La probabilité jointe est approximée par une probabilité individuelle,
comme déjà évoqué. Nous observons que la perte d’optimalité liée à l’approche distributionnellement
robuste n’est pas aussi grande qu’on aurait pu le craindre. En particulier, pour T = 1, cette approche
est même meilleure que l’approche stochastique, du fait sans doute qu’on y exploite une information
supplémentaire : le support.

Cet axe d’étude se termine par une troisième étude combinant les axes combinatoires et stochas-
tiques explorés préalablement. Il s’avère que de nombreux problèmes aléatoires admettent un équivalent
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Figure 12: Amélioration de la relaxation SDP par rapport à la relaxation continue

déterministe, ou une approximation, sous forme d’un SOCP et dans le cas où le problème initial com-
porte des variables entières, le problème obtenu est alors un MISOCP, pour lesquels il n’existe pas de
méthodes de résolution de référence. Nous nous intéressons ici à l’utilisation de relaxations SDP pour ce
type de problème. Le principe est de convertir le MISOCP en MIQCQP, puis d’appliquer la relaxation
SDP standard, qui est ensuite renforcée par l’ajout de contraintes du problème initial mises au format
SDP.

Cet ajout de contraintes est rendu nécessaire par le fait que la formulation d’un SOCP comme
un QCQP est généralement synonyme d’une perte de convexité. En effet, cette reformulation suit le
principe suivant :

‖Ax+ b‖ ≤ cTx+ d ⇔
{

xT (ATA− ccT )x+ 2(bTAx− dcTx) + bT b− d2 ≤ 0
cTx+ d ≥ 0

Or la matrice ATA − ccT n’est généralement pas semi-définie positive. On montre le résultat
suivant :

Proposition Soit A ∈ R
m,n une matrice de rang plein et c ∈ R

n,1. Alors la matrice symétrique
ATA−ccT est semi-définie positive si et seulement si il existe u ∈ R

m,1, avec ‖u‖ ≤ 1, tel que c = ATu.

Cette conversion d’un SOCP en QCQP illustre parfaitement la différence entre convexité et
convexité abstraite. En effet, l’ensemble réalisable du QCQP est nécessairement convexe, puisqu’il est
équivalent à l’ensemble réalisable du SOCP donc le QCQP est convexe au sens abstrait. Cependant,
cet ensemble n’est pas décrit à l’aide de contraintes convexes, donc le problème n’est pas convexe.

Afin d’exploiter la structure particulière du QCQP ainsi obtenue, et de restaurer sa convexité,
nous renforçons la relaxation SDP standard au moyen des contraintes SDP obtenues en écrivant les
contraintes SOCP directement sous forme SDP, suivant l’équivalence bien connue :

‖Ax+ b‖ ≤ cTx+ d⇔
(

(cTx+ d)I Ax+ b
(Ax+ b)T cTx+ d

)

< 0

On obtient ainsi la borne une relaxation SDP standard et une relaxation SDP renforcée. Pour
chacune d’entre elle, on calcule l’amélioration par rapport à la relaxation continue, comme suit : r =
ps−pc

pc
, où ps est la borne SDP et pc la borne continue. On trace ces deux indicateurs sur la figure 12.

Cette approche donne des résultats encourageants, avec une relaxation SDP nettement plus
performante que la relaxation continue. Les solutions obtenues sont même très proches de l’optimal
sur de nombreuses instances tout en conservant un temps de calcul raisonnable, de l’ordre de quelques
minutes pour des instances à quelques centaines de variables binaires.
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Conclusions et perspectives

Cette thèse avait pour objet d’évaluer les potentialités de la programmation semi-définie positive
(SDP) pour les problèmes d’optimisation issus du management d’énergie. Nous avons montré qu’il
existe de nombreuses opportunités d’innovation pour le traitement de ces problèmes par la SDP, en
particulier pour les problèmes présentant un caractère combinatoire ou quadratique, ou pour la prise
en compte de l’aléa.

Concernant l’axe quadratique et combinatoire, la SDP fournit des relaxations convexes de ces
problèmes NP-difficiles. La difficulté est alors de déterminer le bon niveau de compromis entre taille
du SDP obtenu et qualité de la relaxation. A un extrême se situe la relaxation SDP standard, simple à
obtenir et présentant quasiment le même nombre de contraintes que le problème initial. Cette relaxation
n’est généralement pas très performante. A l’autre extrême se trouve les relaxations SDP obtenues en
appliquant la hiérarchie de Lasserre. Celles-ci sont extrêmement performantes mais sont malheureuse-
ment de trop grande taille pour être résolues pour des problèmes de plus de 30 variables binaires. Enfin,
des relaxations intermédiaires peuvent être construites en ajoutant des contraintes quadratiques valides
au problème initial, obtenues par exemple en multipliant des contraintes linéaires valides entre elles.

Du côté de la prise en compte de l’aléa, la SDP se prête plutôt aux approches robustes et
distributionnellement robuste. En effet, certains résultats bien connus de la littérature montrent que
des problèmes robustes peuvent s’écrire sous forme de problème conique du second-ordre, qui est un
cas particulier de SDP. Nous avons étendu cette équivalence à des problèmes possédant des variables
binaires, pour lesquels l’équivalent robuste est donc un problème conique du second-ordre à variables
binaires et nous avons montré que la SDP produit de très bonnes relaxations de ces problèmes difficiles.
Dans le cadre de l’optimisation distributionnellement robuste, de nombreux travaux proposent des
approximations conservatrices de contraintes en probabilité sous forme d’inégalités linéaires matricielles.
Afin d’offrir une vision claire sur ces approches, nous les avons unifié et présentons un certain nombre
d’expérimentations numériques illustrant la pertinence de cette façon de prendre en compte l’aléa.

Ainsi, en dépit de nombreuses difficultés pratiques imputables au fait que cette technologie n’est
pas encore tout à fait mature, la SDP n’en reste pas moins une méthode extrêmement prometteuse, com-
binant toute la puissance de l’optimisation conique. De nombreuses applications méritent encore d’être
explorées, aussi aussi bien en management d’énergie que dans d’autres domaines tels que l’ingénierie ou
la gestion de portefeuille d’actifs financiers.
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Introduction

As is suggested by its title "Semidefinite Programming : Methods and Algorithms for Energy Man-
agement", the present thesis aims at identifying potential applications of Semidefinite Programming
(SDP), a promising optimization technique, to the problems related to the management of electricity
production. This encompasses various optimization problems that share the requirement of satisfying
the equilibrium between the electricity demand and the production of several types of units, while
respecting various technical constraints.

These global optimization problems, also known as Unit Commitment Problems, differ in the
considered electricity board, horizon time and time steps and by the way of addressing uncertainty. A
good conduct of all these issues is crucial for the economic performance of the company, its environmental
impact and the social welfare of its customers, but presents several difficulties.

Firstly, from a modelling point of view, deciding the adequate level of simplification of the
complex phenomenon that are involved is not an easy task, which is complicated by the necessity
of being consistent with the precision of the input data. Furthermore, the French power mix includes
hydraulic, nuclear, and classical thermal power plants, with each generation unit having its own technical
constraints. Therefore, the adopted model shall vary in accordance with the considered production units
and with the time horizon, from a few hours to a few decades.

Secondly, from an optimization point of view, these problems lead to severe challenges, mainly
due to their large size, the presence of non-linearities and the uncertainty that affects the data. Even
on small time horizon, they are intractable with a direct frontal approach and it is therefore necessary
to proceed to many approximations and decompositions to solve them.

Among the variety of optimization techniques that are employed, two of them can be distin-
guished. Firstly, Mixed-Integer Linear Programming is generally used for tackling combinatorial prob-
lems. Secondly, some Conic Programming approaches are investigated, in particular for addressing
uncertainty. This thesis follows this research line since Semidefinite Programming is currently the most
sophisticated area of Conic Programming that is polynomially solvable.

More precisely, SDP is the optimization over the cone of positive semidefinite matrices of a linear
objective function subject to linear equality constraints. It can also be viewed as a generalization of
Linear Programming where the nonnegativity constraints on vector variables are replaced by positive
semidefinite constraints on symmetric matrix variables.

The past few decades have witnessed an enormous interest for SDP due to the identification of
many theoretical and practical applications, e.g., combinatorial optimization (graph theory), spectral
optimization, polynomial optimization, engineering (systems and control), probability and statistics,
financial mathematics, etc... In parallel, the development of efficient SDP solvers, based on interior-
point algorithms, also contributed to the success of this method.

In the present thesis, we pursue two main objectives. The first one consists of exploring the
potentiality of semidefinite programming to provide tight relaxations of combinatorial and quadratic
problems. This line of research was motivated both by the promising results obtained in this direction
[108, 186, 245] and by the combinatorial and quadratic features presented by energy management
problems. The second one deals with the treatment of uncertainty, an issue that is also of paramount
importance in energy management problems. Indeed, due to its versatility, SDP is well-known for
providing numerous possibilities of dealing with uncertainty. In particular, it offers a way of modelling
the deterministic counterpart of robust optimization problems, or more originally, of distributionnally
robust optimization problems.

This thesis is organized as follows. The first part is composed of the first three chapters and
provides an overview of the main results concerning SDP, starting by the first chapter that contains the
theory of convex and conic optimization. This is followed by a focus on SDP : its underlying theory is
presented in the second chapter and its most famous applications are discussed in the third chapter.
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The second part is composed of the last three chapters and presents the application of SDP
to energy management. Chapter 4 provides an introduction to energy management problems, with
a special emphasis on one of the most challenging energy management problem, namely the Nuclear
Outages Scheduling Problems. This problem was selected both for being a hard combinatorial problem
and for requiring the consideration of uncertainty. We present at the end of this chapter the different
models that we elaborated for this problem.

The next chapter reports the work related to the first objective of the thesis, i.e., the design of
semidefinite programming relaxations of combinatorial and quadratic programs. On certain problems,
these relaxations are provably tight, but generally it is desirable to reinforce them, by means of tailor-
made tools or in a systematic fashion. We apply this paradigm to different models of the Nuclear
Outages Scheduling Problem. Firstly, we consider a complete model that takes the form of a MIQP.
We apply the semidefinite relaxation and reinforce it by addition of appropriate constraints. Then,
we take a step further by developing a method that automatically generates such constraints, called
cutting planes. For the design of this method, we start by providing a framework for unification of many
seemingly disparate cutting planes that are proposed in the literature by noting that all these constraints
are linear combinations of the initial quadratic constraints of the problem and of the pair-wise product
of the linear constraints of the problem (including bounds constraints).

Subsequently, we focus on specific part of the problem, namely the maximal lapping constraint,
which takes the form of aTx /∈ [b, c], where x are binary variables. This constraint presents modelling
difficulty due to its disjunctive nature. We aim at comparing three possible modelisations and for each
of them, computing different relaxations based on semidefinite programming and linear programming.
Finally, we conclude this chapter by an experiment of the Lasserre’s hierarchy, a very powerful tool
dedicated to polynomial optimization that builds a sequence of semidefinite relaxations whose optimal
values tends to the optimal value of the considered problem.

In the last chapter, we cope with the second objective of this thesis, i.e., to examine how semidef-
inite programming can be used to tackle uncertainty. To this end, three different works are carried out.
First, we investigate a version of the nuclear outages scheduling problem where the random variables
have a discrete probability distribution that takes the form of equiprobable scenarios and the constraints
involving uncertain parameters have to be satisfied up to a given level of probability. It is well-known
that this model admits a deterministic formulation by the addition of binary variables. Then the ob-
tained problem is a combinatorial problem and we apply semidefinite programming to compute tight
bounds of the optimal value.

We have also implemented a more original way of dealing with uncertainty, which admits a
deterministic counterpart, or a conservative approximation, under the form of a semidefinite program.
This method, that has received much attention recently, is called distributionnally robust optimization
and can be seen as a compromise between stochastic optimization, where the probability distribution
is required, and robust optimization, where only the support is required. Indeed, in distributionnally
robust optimization, the support and some moments of the probability distribution are required. In our
case, we assume that the support, the expected value and the covariance are known and we compare the
benefits of this method w.r.t other existing approaches. In particular, we compare to an approach that
relies on the combined application of the Boole’s and Hoeffding’s inequalities to provide a conservative
approximation of the problem in the form of a Second-Order Cone Program.

Finally, we carried out a last experiment that combines both uncertainty and combinatorial
aspects. Indeed, many deterministic counterpart or conservative approximation of Linear Program
(LP) subject to uncertainty give rise to a Second-Order Cone Program (SOCP). In the case of a Mixed-
Integer Linear Program, we obtain a MISOCP, for which there is few reference methods in the literature.
Then we investigate the strength of the relaxation SDP for such problems. Central to our approach
is the reformulation as a non convex Quadratically Constrained Quadratic Program (QCQP), which
brings us in the framework of binary quadratically constrained quadratic programs. This allows to
derive a semidefinite relaxation of the problem. When necessary, this relaxation is tightened by valid
quadratic constraints derived from the initial problem. We report encouraging computational results
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indicating that the semidefinite relaxation improves significantly the continuous relaxation (112% on
average) and often provides a lower bound very close to the optimal value. In addition, computational
time for obtaining these results remains reasonable.

In brief, our contribution can be outlined as follows. First, we provide a comprehensive and
unified framework of the different methods proposed in the literature to design SDP relaxations of
QCQP. This framework relies on the definition of a standard SDP relaxation that can be obtained in
a systematic fashion. It is generally necessary to reinforce this relaxation by adding valid constraints
to the initial QCQP. In particular, we proved that for 0/1-LP, the standard SDP relaxations yields the
same optimal value than the linear relaxation. In this case, it is essential to reinforce the standard SDP
relaxation to justify the use of SDP. To the best of our knowledge, this equivalence had not been clearly
highlighted in the literature. In order to apply the semidefinite relaxation to the NOSP, we designed
several models that emphasize one or another aspects of this problem. Then we study and analyse
different possibilities to reinforce the semidefinite relaxation : on the one hand, we applied some recipes
proposed in the literature and on the other hand, we designed and applied an automatic method based
on a separation algorithm. Regarding the treatment of uncertainty, we applied the distributionnally
robust approach to the NOSP and derived SDP conservative approximation of the obtained problem.
We emphasize the connection existing between this approach, the Generalized Problem of Moments and
other famous works exploiting the knowledge of moments for optimizing under uncertainty. Finally,
our last contribution concerns the area of MISOCP, for which we propose a simple method to derive a
semidefinite relaxation, which turns out to be tight.

This thesis ends with three appendices. The first ones summarizes the notations that are used
along the thesis. The latter two are provided in order to keep this document self-contained. They
contain respectively the mathematical and optimization backgrounds that are required to address the
concepts covered in this thesis.
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Introduction

Semidefinite programming is a relatively young area of optimization, dating back to the late seventies.
However, it has since received a great deal of attention in the optimization literature. This interest
arose to a peak in the nineties, with the development of efficient algorithms to solve them [206] in 1994
and the milestone application of SDP to combinatorial optimization [108] in 1995.

The purpose of this chapter is to describe the theory of Semidefinite Programming by providing
definitions and theoretical facts in order to yield insight into how defining, solving and applying such
optimization problem in multiple contexts. A particular emphasis is placed on how using SDP to get
relaxation of NP-hard problem, such as quadratic or combinatorial, and how this relaxation can lead to
the design of efficient approximation algorithms. We also review some applications of SDP to stochastic
and robust optimization. Finally, we describe the Generalized Problem of Moment, another application
of SDP that has attracted major interest recently.

As a subfield of convex and conic optimization, Semidefinite Programming benefits from all the
theoretical and practical results of these areas, that are summarized in Chapter 1. In Chapter 2, we
formally define Semidefinite Programming and review the main related works. In Chapter 3, we discuss
several applications and special cases of Semidefinite Programming with an emphasis on applications
potentially valuable for energy management.

Throughout this document, we focus on pointing out the difficulties pertaining to a practical
implementation of Semidefinite Programming and we discuss the current issues associated with this area.
This state of the art review, associated with the appendices containing mathematical and optimization
backgrounds, serves as a reference to keep this thesis self-contained. The material in this chapter is, for
the most part, based on the handbook of Semidefinite Programming [259] and on the following surveys
[57, 58, 208, 252].
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Chapter 1

Convex and conic optimization

«But we all know that the world is not linear ! »

(H. Hotelling)

Convex optimization is an important class of optimization problems that subsumes linear and
semidefinite programming. Such problems are of central importance in optimization since convexity
is generally considered as the true discriminant between "easy" and "hard" problems in optimization.
In the famous Rockafellar’s terms [229] "the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity."

Indeed, a fundamental result of convex analysis states that any locally optimal solution of a
convex optimization problem is then guaranteed globally optimal (see Theorem 2.4.45). In practice,
this means that a local optimality guarantee is sufficient for global optimality, and can serve for instance
for an algorithmic termination test.

Furthermore, there is an elegant duality theory for these problems, that satisfies a weak duality
property, even strong duality under a Slater-type condition. These properties are detailed in Paragraph
1.1.3.

Finally, convex optimization problem can be solved efficiently. From a theoretical point of view,
it follows then from the Ellipsoid method and from the results of [118] than any linear function can
be optimized over a convex set in polynomial time as long as we can design a separation oracle that
runs in polynomial time. The existence of this procedure is guaranteed by the Separating Hyperplane
Theorem (see Theorem 2.2.23) but it might be computationally expensive, especially when the feasible
set is not specified explicitly.

However, it is well known that the Ellipsoid method is of limited practical value. Fortunately,
the development of efficient, reliable numerical algorithms was made possible by the results of Nesterov
and Nemirovski [206] about the applicability of interior-point methods to convex optimization problem.
This extension relies on the definition of a barrier function for the feasible set, i.e., a function that tends
to infinity when approaching its boundary. It was shown in [206] that these methods reach the optimal
solution within a given accuracy in a polynomial time as long as the barrier function exhibits a certain
regularity property : the self-concordance. These methods have been sucessfully implemented and are
employed by various solvers for linear, quadratic and semidefinite optimization.

These attractive characteristics justify why a key method in global optimization consists of deter-
mining a sequence of convex problems that solve or approximate the original problem, as for instance :

− an equivalent reformulation, for instance, by means of the convex hull of the feasible set;

− a conservative approximation;

31



− a relaxation, for instance, through the use of a convex underestimator of the objective function;

− a decomposition into subproblems, for instance by partitioning the feasible set into convex
pieces.

Thus, convexity permeates all field of optimization. Besides, problems that are natively convex
arise in a variety of applications such as control systems, data analysis, statistics , finance, chemistry or
localization problems. However, recognizing a convex problem can be a very challenging task. Indeed,
more often than not, the most natural formulation is not convex and it may be a hard work to determine
its expression in a convex way. For an exhaustive discussion on convex optimization, see the following
references [59, 104].

1.1 Definitions and duality

In this section, we define two subfields of optimization, namely conic and convex optimization. For the
latter, two definitions can be found in the literature. In this thesis, we make the choice to consider
the more restrictive one, that do not include conic optimization. On the other hand, we show that
any convex optimization problem can be converted into a conic optimization and therefore, convex
optimization is a subfield of conic optimization.

The main sources for this section are the excellent discussion of Glineur about Conic Optimization
[105] and the reference book of Boyd and Vandenberghe about Convex Optimization [59].

1.1.1 Definitions

Definition 1.1.1 Conic optimization problem
Let K be a proper cone (see Def. 2.2.34) of R

n. Then the following optimization problem is a conic
optimization problem :







inf cTx
s.t. Ax = b

x ∈ K
for any c ∈ R

n and (A, b) ∈ R
m,n+1.

Thus, the feasible set of a conic optimization problem is the intersection of the proper cone K
with the hyperplane {x ∈ R

n : Ax = b}.
In particular, this framework includes the following famous optimization area :

− K = R
n
+ (nonnegative orthant) → Linear Programming (LP) ;

− K = {
(

x0 xT
)

: ‖x‖ ≤ x0} (second-order cone)→ Second-Order Conic Programming (SOCP);

− K = S
n
+ (cone of positive semidefinite matrices) → Semidefinite Programming (SDP).

These optimization areas are listed in such a way that each area includes the previous one. For
example, any SOCP problem can be put under the form of a SDP.

Definition 1.1.2 Convex optimization problem
The following optimization problem is convex if the functions fi, i = 0, ...,m are convex (see Def.
2.4.33).







inf f0(x)
s.t. fi(x) ≤ 0, i = 1, ...,m

x ∈ R
n
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Remark that equality constraint are allowed since fi(x) = 0 is equivalent to fi(x) ≤ 0 and
−fi(x) ≤ 0, provided that the function fi be both convex and concave, or equivalently, linear. Without
loss of generality, we might consider that the objective function is also linear. If it is not the case, it
suffices to convert the problem into the following convex optimization problem :















inf x0

s.t. f0(x) ≤ x0

fi(x) ≤ 0, i = 1, ...,m
x ∈ R

n

The above definition implies that the feasible set F = {x ∈ R
n : fi(x) ≤ 0, i = 1, ...,m} of an

optimization problem is convex (see Def. 2.2.8). The converse is not true, which means that with this
definition, there exists optimization problem with a convex objective function and a convex feasible set,
that are not convex optimization problem.

Example 1.1.3 Consider for instance the set : F = {x ∈ R
n : ‖Ax+ b‖ ≤ dTx + e}. This set

is convex, since it is the intersection of the second-order cone and of an hyperplane. However, the
following formulation as a QCQP, obtained by squaring the inequality, involves potentially non-convex
function,

x ∈ F ⇔
{

dTx+ e ≥ 0
xT (ATA− ddT )x+ 2(bA− edT )x+ b2 − e2 ≤ 0

The matrix ATA − ddT might be not positive semidefinite, for instance if A = 0, in which case
the optimization problem is not convex.

More generally, for an arbitrary QCQP, determining if there exists an equivalent convex formu-
lation is a NP-hard problem.

An optimization problem consisting of optimizing a convex objective function over a convex set
is called abstract convex optimization problem in the literature. It was shown in [205] that any abstract
convex optimization problem (and therefore, any convex optimization problem), can be written as
a conic optimization problem. A very comprehensive proof can be found in [105]. Clearly a conic
optimization problem is an abstract convex problem and these two classes of problem are therefore
equivalent.

These problems are more prevalent in practice that it is a priori thought, either directly or by
means of an approximation. Recognizing such a problem has significant advantages :

− If a local minimum exists, then it is a global minimum ;

− There is an underlying fairly complete theory, which induces strong duality under certain con-
ditions ;

− Under mild computability and boundedness assumptions, these problem are polynomially solv-
able.

The polynomial solvability is proved by applying the Ellipsoid method, that can be viewed
as an algorithmic realization of the separation theorem for convex sets. This method requires the
computation in polynomial time of a separating hyperplane, also called separation oracle, for some non
feasible solutions x. For a convex optimization problem, the subgradients of the functions fi such that
fi(x) > 0 are used. For the most widespread conic programs, it is also possible to compute such an
hyperplane. But in general, for abstract convex optimization problems, determining a separation oracle
might be impossible in polynomial time.

Note that for those both problems, we use the terminology inf instead of min since it may happen
that the infimum of cTx on F is not attained. Indeed, the feasible set is necessarily closed but it might
be unbounded, and then not compact, which prevents from applying the Weierstrass’ theorem 2.1.27.
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Definition 1.1.4 The problem is said :

− infeasible if F = ∅. We write this p∗ = +∞. Otherwise, the problem is said feasible ;

− asymptotically solvable if there exists a sequence of points of F whose objective values tend to
p∗ but whose limit is not feasible;

− solvable if there exists x∗ ∈ F such that cTx∗ ≤ cTx, ∀x ∈ F ;

− unbounded if for all real C, there exists x ∈ F such that cTx ≤ C. Then the infimum is
p∗ = −∞.

1.1.2 Convex duality

We consider the following convex problem in the standard form :






p∗ = inf cTx
s.t. fi(x) ≤ 0, i = 1, ...,m

x ∈ R
n

(1.1)

The Lagrangian of this problem, obtained by augmenting the objective function with a weighted
sum of the constraint functions, is as follows :

L : R
n × R

m → R

(x, y) 7→ L(x, y) = cTx+
∑m

i=1 yifi(x)
(1.2)

Then p∗ = infx∈Rn supy∈Rm
+
L(x, y). The dual problem is obtained by switching inf and sup, i.e.,

d∗ = supy∈Rm
+
infx∈Rn L(x, y). By defining the Lagrange dual function l : Rm × R

p → R as follows :
l(y) = infx∈Rn L(x, y), it comes that the dual problem is :







d∗ = sup l(y)
s.t. y ≥ 0

y ∈ R
m

(1.3)

For any y ≥ 0, l(y) is a lower bound of p∗ and therefore the weak duality, i.e., d∗ ≤ p∗, holds,
and this is valid for any optimization problem, as discussed in Paragraph 3.1.5.1.

Sufficient conditions for strong duality are given by the Slater’s theorem. They involve the
property of strict feasibility of an optimization problem, which means that rint(F) 6= ∅ if F is the
feasible set. In the case of the problem (1.1), by expliciting the equality constraints Ax = b, it comes
to require that there exists x such that Ax = b and fi(x) < 0, i = 1, ...,m.

Theorem 1.1.5 Slater’s theorem
Let us consider (P ) a convex optimization problem and its dual (D). F and F∗ denote the feasible set
of (P ) and (D) respectively. Then,

− If F and rint(F∗) are not empty, then (P ) has a non-empty compact set of solutions and p∗ = d∗

− If rint(F) and F∗ are not empty, then (D) has a non-empty compact set of solutions and p∗ = d∗

− If rint(F) and rint(F∗) are not empty, then both (P ) and (D) have a non-empty compact set of
solutions and p∗ = d∗

In short, the existence of a strictly feasible solution for one problem guarantees that the other
problem attains its optimum. Furthermore, it suffices that at least one problem be strictly feasible for
strong duality to hold. Having one problem strictly feasible is known as Slater’s condition, which is one
particular case of constraints qualification (see Paragraph 3.1.5.3).
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In the case where the functions fi, i = 1, ...,m are differentiable, we can apply the KKT necessary
conditions for optimality (see Paragraph 3.1.5.2), provided that the constraints satisfy the constraints
qualification, which is the case if the primal is strictly feasible (Slater’s condition). Furthermore, if the
problem is convex, even if the constraint are not qualified, then the KKT conditions are sufficient for
local optimality and therefore, for global optimality. We deduce from this the following theorem :

Theorem 1.1.6 KKT for convex optimization problems
Consider the problem (1.1) and assume that there exists x̄ ∈ R

n such that Ax̄ = b and fi(x̄) < 0, i =
1, ...,m. Then x∗ is an optimal solution of the problem if and only if the exists y∗, z∗ ∈ R

m × R
p such

that :














Ax∗ = b, fi(x
∗) ≤ 0, i = 1, ...,m (primal feasibility)

y∗i ≥ 0, i = 1, ...,m (dual feasibility)
y∗i fi(x

∗) = 0, i = 1, ...,m (complementary slackness)

c+
∑m

i=1 y
∗
i∇fi(x∗)− z∗TA = 0 (Lagrangian stationarity)

(1.4)

1.1.3 Conic duality

Consider the following conic optimization problem, with K a proper cone of Rn, c ∈ R
n and (A, b) ∈

R
m,n+1 :







p∗ = inf cTx
s.t. Ax = b

x ∈ K
(1.5)

The conic formulation provides a very elegant formulation of the dual problem by means of the
dual cone K∗ of K (see Def. 2.2.40). Let us begin by defining the Lagrangian involving the equality
constraints :

L : R
n × R

m → R

(x, y) 7→ L(x, y, z) = cTx− yTx+ zT (b−Ax)

Then p∗ = infx supy∈K∗ L(x, y, z). Indeed, supy∈K∗ −yTx = 0 if x ∈ K, +∞ otherwise. Then the
dual problem is obtained by switching sup and inf : d∗ = supy∈K∗ infx L(x, y, z) :

inf
x

L(x, y, z) = inf
x

bT z + (c− y −AT z)Tx =

{

bT z if c− y −AT z = 0
−∞ otherwise

Therefore we conclude :






d∗ = sup bT z
s.t. y = c−AT z

y ∈ K∗

We note that it has the same structure as the primal, that is the intersection of a cone with an
affine subspace. Furthermore, from Proposition 2.2.43, we know that the dual cone of a proper cone is
also a proper cone. With this formulation, in virtue of Prop. 2.2.42, it is easy to show that the dual of
the dual is the primal.

As for any optimization problem, the weak duality holds. The convexity of the feasible set brings
additional properties, involving the strict feasibility, i.e. the existence of strictly feasible solution :
x ∈ rint(K) such that Ax = b.

Theorem 1.1.7 Slater’s theorem for conic optimization
Let us consider (P ) a conic optimization problem and its dual (D). Then,

− If (P ) is feasible and (D) is strictly feasible, then (P ) has a non-empty compact set of solutions
and p∗ = d∗
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− If (P ) is strictly feasible and (D) is feasible, then (D) has a non-empty compact set of solutions
and p∗ = d∗

− If (P ) and (D) are strictly feasible, then both (P ) and (D) have a non-empty compact set of
solutions and p∗ = d∗

For more complete results on duality of conic programs, we refer the reader to the reference [29]
and to [120] for a very comprehensive summary.

To conclude this paragraph, we derive the KKT conditions for a conic optimization problem.
Under the assumptions of constraints qualifications, for instance if there exists a primal strictly feasible
point, then the following conditions are both sufficient and necessary for the optimality of x∗ :

Theorem 1.1.8 KKT for conic optimization problems
Consider the conic optimization problem (1.5) and assume that there exists x̄ ∈ int(K) such that Ax̄ = b.
Then x∗ is an optimal solution of the problem if and only if the exists y∗, z∗ ∈ R

n × R
p such that :















Ax∗ = b, x∗ ∈ K (primal feasibility)
y∗ ∈ K∗ (dual feasibility)

y∗Tx∗ = 0 (complementary slackness)
c− y∗ +AT z∗ = 0 (Lagrangian stationarity)

1.2 Complexity and algorithms

Since the claim by Klee and Minty [157] that the simplex method is not polynomial, the question of
the complexity of a linear program, and more generally, of any mathematical program, was raised. It
was partly answered by Khachiyan [153] in 1979, when he adapted the Ellipsoid method to Linear
Programming and proved its polynomial complexity. Then this work was extended to the optimization
of a linear objective over a convex set, under the existence of a polynomial time separation oracle for
this convex set [118]. This allows to classify as polynomial a large part of the convex optimization
problem.

However, it is worth noticing that all abstract convex optimization problems are not polynomial
(unless P=NP), the most famous example being the problem of minimizing a linear function over the
cone of co-positive (or completely positive) matrices.

In practice, the Ellipsoid method does not work very well, especially when compared to the
simplex, which gives an excellent example that theory can not always be relied upon for predicting
applicability. But some other methods, called Interior-point method and sparked by the seminal work
of Karmarkar [150], proved to be numerically very efficient, provided that there exists barrier functions
for the feasible set satisfying the property of self-concordance.

1.2.1 Ellipsoid method

Complexity of Linear Programs was an open problem until 1979, with the discovery of the first worst-
case polynomial-time algorithm for Linear Programming. Sprouted from the iterative methods of Shor
(1977) and the approximation algorithms of A. Nemirovski and D. Yudin (1976), this so-called Ellipsoid
method is due to L. Khachiyan [153] who designed the method and proved its polynomiality. Thus,
to solve a problem with n variables that can be encoded in L input bits, the algorithm uses O(n4L)
pseudo-arithmetic operations on numbers with O(L) digits.

However, it turns out the method performs poorly compared to the simplex method (even though
not polynomial). But the Ellipsoid method is nevertheless of great theoretical value, since it proved
that LP is in class P and this result was extended in [118, 119] to any problem with a linear objective
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for which there exists a separation oracle, i.e., a polynomial way of checking whether a given vector
belongs to the feasible set, and if not, exhibiting a violated linear inequality.

Note that the fundamental version of Ellipsoid method applies to feasibility problem , i.e., given
a set K, find x ∈ int(K). However, it is possible to transform an optimization problem into a feasibility
problem for instance through a binary search on the value of the objective function. For example, for
a minimization problem with a linear objective cTx, the feasibility of {x ∈ K : cTx ≤ γk} is tested at
each step k, with γk the sequence determined by the binary search.

Finally, this pioneering method opened the door to numerous interior point methods because,
unlike the simplex, the solution is reached by iterating on interior-point of the feasible set. However, in
the literature, it is not considered as being part of the interior-point methods. For details and further
references on this topic, the reader is directed to [15, 220].

1.2.1.1 Basic idea

The original version of the Ellipsoid method applies to the case where K is a polyhedron. More precisely,
K = {x ∈ R

n : Ax ≤ b}, with (A, b) ∈ R
m,n+1. The method aims at finding x in the interior of K,

i.e., such that Ax < b (strict feasibility). The original version of Khachiyan also requires that K be
bounded and assume that the input data are integer or rational numbers and L is the length of their
binary encoding.

The basic idea is to generate a sequence of ellipsoids containing K, that can be viewed as bounding
volumes used to locate K. If a center of any ellipsoid in this sequence belongs to K, then it is discovered.
Otherwise the process stops when the volume of the current ellipsoid is too small to contain K, which
implies that K is empty.

The algorithm proceeds as follows :
1: Find an ellipsoid E0 ⊃ K and its center x0 ;
2: while x0 /∈ K do
3: Find an inequality (=separation oracle) (π0, π) such that πTx ≤ π0, ∀x ∈ K and πTx0 > π0 ;
4: Push the (π0, π) until it hits x0, giving you a half-ellipsoid HE that contains K ;
5: Find a new ellipsoid E1 ⊃ HE, such that : volume(E1)

volume(E0)
≤ e−1/2n < 1 ;

6: E0 ← E1 ;
7: end while

We do not get into the details of the construction of the ellipsoid E1 and the volume formula,
see [119, 220] for a whole explanation of these elements.

At each iteration, the ellipsoid containing K is shrunk by factor at least f = exp(− 1
2(n+1) ) < 1.

Consequently, within a number O((n + 1)2L) of iterations, the incumbent ellipsoid reaches a volume
less than twice the volume of K, which guarantees that the center of the ellipsoid belongs to K.

This algorithm can be applied to determine a solution of the system Ax ≤ b, as stated by the
following equivalence :

Ax ≤ b is feasible ⇔ Ax < b+ ǫ is feasible for all ǫ > 0 (1.6)

The "if" part is clear. Conversely, the theorem of the alternatives (Theorem 2.3.50) states that
Ax ≤ b has no solution if and only if there exists y ∈ R

m such that y ≥ 0, AT y = 0 and bT y < 0. Then,
for any ǫ > 0, (b+ ǫ)T y = bT y+ ǫT y < 0 for sufficiently small ǫ. This is in contradiction with Ax < b+ ǫ
since y ≥ 0 implies that 0 = (Ax)T y < (b+ ǫ)T y.

Moreover, the following equivalence states that it is sufficient to take one value ǫ < 1/n22L for
deciding if Ax ≤ b is feasible or not :

Ax ≤ b is feasible ⇔ for any 0 < ǫ < 1/n22L, Ax < b+ ǫ is feasible (1.7)

Consequently, it suffices to pick any ǫ ∈]0, 1/n22L[ and to apply the ellipsoid method to Ax < b+ǫ.
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1.2.1.2 Extension to convex optimization

The beauty of the Ellipsoid method is that it does not require a complete and explicit description of
K. It suffices to be able to test whether a given x0 ∈ K (so-called membership testing), and if not,
to provide a separating hyperplane. This constitutes a so-called separation oracle. Thus, as presented
by Grotschel,Lovász and Schrijver in [118], the Ellipsoid method can be extended to the problem of
finding a point in the interior of an arbitrary convex set K. Indeed, it can be viewed as an algorithmic
realization of the separation theorem for convex sets (see Theorem 2.2.23).

The fundamental result of convex optimization is that, if the separation oracle runs in polynomial
time and returns a separating hyperplane of polynomial size, so does the algorithm and the associated
problem is then proved to belong to the class P.

As the set K is convex, then the separation oracle exists necessarily but might be impossible
to compute in polynomial-time. For example, the problem of optimizing a linear objective over the
cone of co-positive (or completely positive) matrices is convex but is NP-hard because of the lack of
polynomial-time separation oracle.

Recall that to apply the Ellipsoid method to an optimization problem, we have to resort to a
binary search on the optimal value. The question that arises is when to stop the binary search. With
a linear program, the optimal is known to be a rational of bounded repesentation size, and therefore
it is necessary attained within a finite number of steps. But for a general set K, it is possible that the
optimal can not be attained in a finite number of steps, for example if it is irrational.

This issue is not specific to binary search. In fact, there are some convex sets for which feasibility
can not be determined via the Ellipsoid method. An extreme example is the case where the convex set
is a single point.

For this reason, besides the initial notion of separation oracle, which is subsequently denoted
strong separation oracle, we define a relaxed notion, the weak separation oracle, that allows for approx-
imations.

Definition 1.2.1 Strong separation oracle
A strong separation oracle for K, when given as input x0 ∈ R

n, either returns the assertion that x0 ∈ K,
or c ∈ R

n such that cTx < cTx0 for all x ∈ K.

Definition 1.2.2 Weak separation oracle
A weak separation oracle for K, when given as input x0 ∈ R

n and a rational ǫ > 0, either returns the
assertion that x0 ∈ K+ǫ, or c ∈ R

n such that ‖c‖∞ ≥ 1, cTx < cTx0 + ǫ for all x ∈ K−ǫ, where

− K+ǫ = {y : ‖y − x‖ ≤ ǫ, for some x ∈ K} the set of points "almost" in K ;

− K−ǫ = {x ∈ K : B(x, ǫ) ⊂ K} the set of points "deep" in K.

The constraint ‖c‖∞ ≥ 1 is required to prevent c = 0 to be solution.

This leads to the following theorem [118], a fundamental result of convex optimization :

Theorem 1.2.3
Consider the optimization problem - min cTx : x ∈ K - with K a convex set. Assume that there exists
a weak separation oracle for K and a rational R such that K ⊂ B(0, R). Then, the so-called ǫ-weak
optimization over K, i.e.,

− either asserts that K−ǫ is empty;

− or returns y ∈ K+ǫ such that cTx ≤ cT y + ǫ, ∀x ∈ K−ǫ.

can be solved in polynomial time of (n,R, ǫ).
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1.2.1.3 Optimization versus Separation

Definition 1.2.4 Separation algorithm
For a given class of inequalities, a separation algorithm is a procedure which, given a vector x as input,
either finds an inequality in the class which is violated by x, or proves that none exists (see [118]).

Given a convex optimization problem of the form minx∈C cTx, its associated Separation Problem
consists of deciding whether a given x0 belongs to C and if not, return a certificate, i.e. a linear constraint
valid for C that is violated by x0.

Then, it is equivalent to solve the separation problem in polynomial time or to solve the opti-
mization problem in polynomial time. Indeed, by using Ellipsoid method (see 1.2.1) it is clear that if
you can separate in polynomial time, then you can solve the optimization problem in polynomial time.
Conversely, if we can optimize any linear objective over a polyhedron P , then for any

(

π0 πT
)T

, we

can compute π∗ = maxx∈P πTx and compare it to π0. If π∗ ≤ π0 then
(

π0 πT
)T

belongs to P •,
otherwise, there exists x∗ ∈ P such that πTx∗ = p∗ > π0 , which serves as a certificate that π /∈ P •.

Consequently, if we are able to optimize over P , then we are able to solve the separation problem
over P •. Then, we deduce that we are able to solve the separation problem over P as illustrated on the
following diagram :

Figure 1.1: Equivalence between optimization and separation

1.2.2 Subgradient and bundle methods

Subgradient method are an extension of the Gradient Descent method (see Paragraph 3.2.2), for han-
dling non-differentiable functions. Their main advantages are their simple implementation and the fact
that they can easily be applied to large-scale problems, combined with decomposition techniques. In
addition, there require little storage. In the case of differentiable problems, these first-order methods
converge to a KKT solution and therefore they are particularly appropriate for convex optimization
problem.

During the 1970s, a new motivation for this class of methods was triggered by the work of
Lemaréchal, that proposed a new method called Bundle Method, for the unconstrained minimization
of a non-differentiable convex function. The basic idea is to store the successive generated subgradient
and to use this bundle of supporting hyperplane to define a piecewise linear underestimator of the
function to minimize. Then, the problem can be solved by Linear Programming. This method can be
applied to constrained optimization by minimizing the Lagrangian of the problem, for fixed Lagrangian
multipliers.

Bundle method is today the reference method for non-differentiable convex optimization prob-
lems. In particular, it can be well applied to the case where the variables set can be decomposed into
subset, almost independent one from the others. We refer the reader to [137] for a good overview on
these methods.
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1.2.3 Interior-point methods

Interior-points methods are so called because their main idea is to iterate into the interior of the
feasible set of the considered problem. They were introduced by Karmarkar in 1984 [150] and played
a key role in the development of mathematical programming. In 1996, Freund and Mizuno [97] wrote
"Interior-point methods have permanently changed the landscape of mathematical programming theory,
practice and computation". In particular, they was one triggering factor of the major development of
semidefinite programming even if they were initially designed for linear programming. Indeed, in 1988,
a major breakthrough was achieved by Nesterov and Nemirovski [206], who extended this interior-point
approach to general convex problems, while conserving the polynomiality under relevant conditions.
For this reason, these methods are crucial for convex optimization.

In more practical terms, interior-point methods are an extension of the Newton’s method to
constrained optimization problem. The Newton’s method and its possible application to optimization
problem involving equality constraint are briefly described at Appendix 3.2.3. Furthermore, a first
glimpse on interior-point methods for linear programming is provided at Appendix 3.3.2.

In this paragraph, we complete these preliminaries by considering a problem involving convex
inequalities or conic constraints. To do this, we get rid off these constraints by adding to the objective
a barrier function of that goes to infinity at the boundaries of the feasible region. Then, reducing the
strength of this barrier at each iteration allows to arbitrarily approach the solution of the problem.

In the case where the whole objective function (original objective augmented by the barrier
function), exhibits the property of self-concordance, then the method reaches any desired precision in a
polynomial number of iterations, which makes the method polynomial.

Due to their efficiency and popularity, studies on that topic have flourished, which yield a wide
range of algorithms that shares the same basic principles but whose individual features may vary a lot.
At first, the iterate space can vary : a method is said to be primal, dual or primal-dual when its
iterate belong respectively to the primal space, the dual space or the Cartesian product of these spaces.

Further, the methods are called feasible when the iterates are necessarily feasible, that is they
satisfy both the equality and nonnegativity constraints. In the case of infeasible method, the iterates
may not satisfy the equality constraints, but are still required to satisfy the nonnegativity conditions.
That’s the type of iterate criteria.

Besides that, the type of step can vary : some algorithms, called short-stem methods uses a
very short step at each iteration, leading to a high number of iteration. The long-step methods, which
are prevalent in practice, are allowed to take much longer steps.

Finally, interior-point methods can be classified into three major categories depending on the
type of algorithm :

− Affine-scaling algorithms ;

− Projective methods with a potential function ;

− Path-following algorithms.

This paragraph is organized as follows : first, we introduce the requirements necessary to the
acquaintance of the methods. Then, we will give the key idea of each type of algorithms, in order to
highlight their underlying principles. Finally, we will describe in detail the path-following primal-dual
method for linear programming. Indeed, it is very popular and implemented in many currently available
codes.

1.2.3.1 Preliminaries

Barrier function
Let us consider the following problem : min cTx : Ax = b, x ∈ K, where K is either a proper cone, or a
set defined by means of convex inequalities : K = {x ∈ R

n : fi(x) ≤ 0, i = 1, ...,m}.
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This problem is equivalent to min f0(x) + IK(x) : Ax = b if IK(x) is a function that returns 0 if
x ∈ K, +∞ otherwise. But this function is not differentiable, which makes impossible the application
of the Newton’s method. The idea is to approximate it by a differentiable function, defined on int(K),
that tends to +∞ as x approaches the boundary of K. Such a function is called a barrier function for
K. In the convex optimization case, we can take for instance φ(x) = −∑m

i=1 log(fi(x)).

Then, the problem becomes :

(Pµ)

{

min cTx+ µφ(x)
s.t. Ax = b

(1.8)

where µ is a positive parameter. Intuitively, we understand that adding µφ(x) to the objective
exerts a repelling force from the boundary of K and therefore prevents the constraint x ∈ K to be
violated.

Central path
In the case of a convex optimization problem, applying KKT conditions to the problem (1.8) yields the
following system :

(KKTµ)















Ax = b, fi(x) ≤ 0, i = 1, ...,m
y ≥ 0
−yifi(x) = µ, i = 1, ...,m
c+

∑m
i=1 yi∇fi(x) +AT z = 0

Thus, this problem is similar to the KKT system of the original problem (see Theorem 1.1.6)
except that the right-hand term complementarity condition equals µ instead of 0. Thus, if µ tends to
0, then the solution of the system (KKTµ) tends to the solution of the original KKT system, which is
an optimal solution for the considered problem.

Then the central path is defined as the set of the solution of (KKTµ) as µ varies. By analogy,
this definition is extended to conic optimization problems :

(KKTµ)















Ax = b, x ∈ K
y = c−AT z, y ∈ K∗

yixi = µ, i = 1, ..., n
c− y + zTA = 0

If (x, y, z) belongs to the central path, then the duality gap equals cTx − bT y = xT y = nµ. For
this reason, µ is called the duality measure.

Self-concordance
Analysing the Newton’s method for the unconstrained minimization of a convex, twice differentiable,
function f suffers from the drawback of depending on three unknown constant, that are dependent on
affine change of coordinates.

One significant result of Nesterov and Nemirovski in [206] is to show that this is not the case any
more whenever the function f has the property of self-concordance, which is affine-invariant.

Definition 1.2.5 Self-concordance
A convex function f : R→ R is self-concordant if |f ′′′(x)| ≤ 2f ′′(x)3/2. A convex function f : Rn → R

is self-concordant if the function f̂(t) = f(x+ tv) is self-concordant for all direction v.

In particular, the linear and quadratic convex functions are self-concordant.
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1.2.3.2 Path-following algorithms

As suggested by their denomination, the main idea behind these methods is to follow the central path
up to a limit point. Very roughly, the principle is the following : given an initial iterate v0 and a
sequence of positive number real numbers decreasing to zero µk, use Newton’s method to compute vk+1

from vk such that vk+1 belongs to the central path with the duality measure µk+1.

The difficulty is that to find a point which is exactly on the central path may require a high
number of Newton’s iterations. By limiting this number, we compute points that are approximatively
on the central path, and thus, only loosely follow the central path.

Let us give some elements on each stage of the method :

1. µk+1 = σµk where σ is a constant strictly between 0 and 1

2. the next iterate vk+1 is computed by applying one single Newton step ∆vk

3. in order to ensure that vk+1 is feasible, the Newton’s step is damped : vk+1 = vk +αk∆vk, where
αk is maximal.

The Newton’s step is computed as the solution of a system, which depends on the space of iterate :

− Primal-dual system : ∆vk =
(

∆xk ∆yk ∆sk
)

such that :




0 AT I
A 0 0
Sk 0 Xk









∆xk

∆yk
∆sk



 =





0
0

−XkSke+ σµke





This system is actually obtained as the application of the Newton’s method to the resolution
of the KKT conditions.

− Primal system : ∆vk =
(

∆xk

)

. We cannot deduce the Newton’s step from the KKT conditions
anymore since they involve both primal and dual variables. We apply instead a single minimizing
Newton’s step to the (Pµ) barrier problem, as described in paragraph3.2.3.

(

µkX
−2
k AT

A 0

)(

∆xk

−yk

)

=

(

−c+ σµkX
−1
k e

0

)

− Dual system : ∆vk =
(

∆yk ∆sk
)

. As for the primal, we apply a single minimizing Newton’s
step to the (Dµ) :

(

AT I
AS−2

k AT 0

)(

∆yk
∆sk

)

=

(

0
b

σµk
−AS−1

k e

)

where Xk = Diag(xk) and Sk = Diag(sk).

1.2.3.3 Affine scaling algorithms

Affine scaling methods are a variant of Karmarkar’s original method. This method used projective
transformations and was not described in terms of central path or Newton’s method. Later, researchers
simplified this algorithm, removing the need for projective transformations and obtained a class of
method called affine scaling algorithms. It was later discovered that these methods have been previously
proposed by Dikin [85], 17 years before Karmarkar.

Let us illustrate the basic idea of these methods on the primal linear problem :

(P )







min cTx
s.t. Ax = b

x ≥ 0
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This problem is hard to solve because of the nonnegativity constraints, which give the feasible
region a polyhedral shape. Let us consider the current iterate xk and replace the polyhedral feasible
region by an inscribed ellipsoid centered at xk. The idea is that minimizing the objective function on
this ellipsoid is easier that on a polyhedron. The obtained solution will be taken as next iterate.

The first step is to scale the data of the problem in order to map the current iterate xk to e, by
using the matrix D = Diag(xk). That’s how the method gets its denomination.

(P )







min (Dc)Tw
s.t. ADw = b

w ≥ 0

Thus, the current iterate for w is e. We replace the constraint w ≥ 0 by the ‖w − e‖ ≤ 1, which
is a restriction of the feasible set. Then, the solution can be analytically computed via a linear system,
which leads to the next iterate xk+1.

1.2.3.4 Potential-reduction algorithms

Instead of targeting a decreasing sequence of duality measures, the method of Karmarkar made use of
a potential function to monitor the progress of its iterate. A potential function is a way to measure the
worth of an iterate. Its main two properties are the following :

− it tends to −∞ if and only if the iterates tends to optimality

− it tends to +∞ when the iterates tends to the boundary of the feasible region without tending
to an optimal solution

The main goal of a potential reduction algorithm is simply to reduce the potential function by a
fixed amount δ at each step, hence its name.

In practical terms, once the Newton’s step ∆vk has been computed (as in the path-following
method), the potential function is used to determine αk so that vk + αk∆vk minimizes this function
over αk.

An example of such a potential function for primal-dual method is given by Tanabe-Todd-Ye :

φρ(x, s) = ρ log(xts)−
∑

i

log(xisi)

1.2.3.5 Enhancements

Infeasible algorithms
The algorithms we have described above rely on the assumption that there exists a strictly feasible
solution that can be used as starting point. However, such a point is not always available. In some
cases, such a solution doesn’t exist, otherwise it exists but finding it is quite as difficult as solving the
whole linear program.

Two strategies can be adopted to handle such cases : embed the problem into a larger one that
admits a strictly feasible solution (that is the object of the next paragraph), or modify the algorithm
to make it work with infeasible iterates. Therefore, we will have iterates that respect the positivity
constraint ((x, s) > 0) but not necessarily the equality constraints Axk = b and AT yk + sk − c = 0.

The idea is simply to target a next iterate that respect the equality constraints. For this, it
suffices not to suppose that A∆xk = 0, but A∆xk = Axk − b, and the same for the other equality
constraint. This leads to the following system :
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



0 AT I
A 0 0
Sk 0 Xk









∆xk

∆yk
∆sk



 =





c−AT yk − sk
b−Axk

−XkSke+ σµke−∆Xa
k∆Sa

ke





Thereby, Newton’s step will tend to reduce both the duality gap and the infeasibility at the same
time.

Homogeneous self-dual embeddding
As mentioned below, another way to handle infeasibility is to embed our problem in a larger linear
program that admits a known strictly feasible solution.

Let (x0, y0, s0) be a point that respect the positivity constraint, that is (x0, s0) > 0. We define
the following variables :

b̂ = b−Ax0

ĉ = c−AT y0 − s0
ĝ = bT y0 − cTx0 − 1

ĥ = xT
0 s0 + 1

Then we consider the following problem :































min ĥθ

s.t. Ax− bτ + b̂θ = 0
−AT y + cτ − ĉθ − s = 0
bT y − cTx− ĝθ − κ = 0

−bT y + cTx+ ĝτ = −ĥ
x ≥ 0, s ≥ 0, θ ≥ 0, κ ≥ 0

The point (x, y, s, τ, κ, θ) = (x0, y0, s0, 1, 1, 1) is a strictly feasible solution for this problem. Here
is a brief description of the new variables :

− τ is the homogenizing variable ;

− κ is measuring infeasibility ;

− θ refers to the duality gap in the original problem.

This program have the following properties :

− It is homogeneous, that is its right-hand side is the zero vector (except for the last equality that
is a homogenizing constraint)

− It is self-dual

− The optimal value is 0 and θ∗ = 0

− Given a solution (x∗, y∗, s∗, τ∗, κ∗, 0), either τ∗ > 0, or κ∗ > 0

− if τ∗ > 0 then (x∗/τ∗, y∗/τ∗, s∗/τ∗) is an optimal solution to the original problem
− if κ∗ > 0 then the original problem has no finite optimal solution.

Since this problem have strictly feasible starting point, we can apply the path-following method,
then, using the above-mentioned properties, we can readily obtain the optimal solution of the original
problem or to detect its infeasibility.

The difficulty is that it is twice as large as the original problem. However, it is possible to take
advantage of its self-duality to solve it with nearly the same computational cost as the original problem.
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The Mehrotra predictor-corrector algorithm
This algorithm is an enhancement of the primal-dual path-following method. We have seen previously
that one crucial point for this kind of method is the choice of the constant σ. The idea here is to adapt
this constant to the current iterate. Moreover, once σk has been determined, the method re-uses some
computational work to improve the current iterate.

About the constant σ, usually two choices are possible :

− Choosing σ nearly equal to 1, which means not reducing much the duality measure between
two iterations. The advantage is that the current iterate will be close to the central path, so
it allows to take almost full Newton’s step without violating constraints. The disadvantage is
that this step is usually short, and an iteration does not do much progress toward the solution.

− Choosing a small value for σ produces a large Newton’s step which provides a good progress
toward optimality, but the associated iterate is usually infeasible, so the step has to be damped.
Moreover, this kind of step tends to move the iterate away from the central path.

This first idea of the Mehrotra’s algorithm is to adapt σ to the current iterate. If the latter is
not far from the central path and there is a far target easy to attain, a small value of σ is appropriate,
in order to capitalize on this positive situation. On the other hand, if the current iterate is far from
the central path, a small σ will have the effect of moving it closer, so that progress may be done at the
next iteration.

For this, we carry out a first stage, called predictor stage, where a Newton’s step (∆xa
k,∆yak ,∆sak)

is computed with σ = 0. That comes to move straigth toward the optimal solution. Then the maximum
length of step are computed separately for the primal and the dual variables :

αa
p = arg max{α ∈ [0, 1] : xa

k + α∆xa
k ≥ 0}

αa
d = arg max{α ∈ [0, 1] : sak + α∆sak ≥ 0}

The associated duality measure can be computed as following :

µa
k+1 =

(xa
k + αa

p∆xa
k)

T (sak + αa
d∆sak)

n

If µa
k+1 is much smaller than µk it means that much progress can be done toward the optimality,

so σ has to be small. Otherwise a centrality correction is needed. This is put into practice by the
following heuristic, which have proved to be very efficient in practice :

σ =

(

µa
k+1

µk

)3

Now, we can carry out the corrector stage by computing the Newton’s step (∆xk,∆yk,∆sk)
using this value of σ. Then we take the maximal feasible step lengths separately for the primal and the
dual spaces.

The second idea of this algorithm is to improve the current iterate by using the computationnal
work of the predictor stage. In this stage, since σ = 0, we target a zero value for each xisj product.
After applying the full predictor step :

xisj = (xa
k,i + αa

p∆xa
k,i)(s

a
k,j + αa

d∆sak,j)

= ∆xa
k,i∆sak,j

since the equation of the Newton’s system, as a first-order approximation, leads to :

xa
k,i∆sak,j + sak,j∆xa

k,i = −xa
k,is

a
k,j

45



Consequently, xisj measures the error due to the first-order approximation. The idea is to
consider it as an approximation of the same error in the corrector stage, by using it in the right-hand
term of the system :





0 AT I
A 0 0
Sk 0 Xk









∆xk

∆yk
∆sk



 =





c−AT yk − sk
b−Axk

−XkSke+ σµke−∆Xa
k∆Sa

ke





Let us point out that this correction is equivalent to compute a Newton’s step from vk+∆vk toward the
solution of Fµ(v) = 0. If we define the function Gµ(∆v) = Fµ(vk+∆v), it comes to apply the Newton’s
method to the equation Gµ(∆v) = 0. Let ∆2v be the obtained Newton’s step for this equation, finally
the whole step is the sum ∆v + ∆2v. In our case, it can be proved that it would be the same as the
Newton’s step obtained by adding the second-order term in the right-hand size of the equation, if both
corrector and predictor step were computed with the same value of σ.

Although there is no theoretical complexity bound on it yet, Mehrotra’s predictor-corrector method is
widely used in practice. If each iteration is marginally more expensive than a standard interior point
algorithm, the additional overhead is usually paid off by a reduction in the number of iterations needed
to reach an optimal solution. It also appears to converge very fast when close to the optimum.

1.3 Special cases of convex optimization

The most widespread subfield of convex optimization is Linear Programming, which is covered in Ap-
pendix 3.3. The main topic of this thesis, i.e., Semidefinite Programming, is also a subfield of conic
programming, and will be discussed in the details in Chapter 2. Finally, we are interested here in a
well-known subfield of conic programming, namely Second-Order Conic Programming (SOCP), and in
a special convex optimization problem, when all the involved function are quadratic.

1.3.1 Second-Order Conic Programming

Second-order conic programming, as the name suggests, is a special case of conic programming where
the cone is the second-order cone KL, also called Lorentz cone or ice-cream cone. This cone is the set
of vectors of Rn such that the euclidian norm of the n− 1 first components is less than or equal to the
n-th component :

KL =

{(

x0

x

)

∈ R
n : ‖x‖ ≤ x0

}

A second-order conic program is therefore a problem of the form :

(PSOCP )







min cT1 x1 + cT2 x2 + · · ·+ cTr xr

s.t. A1x1 +A2x2 + · · ·+Arxr = b
xi ∈ KL, i = 1, · · · , r

Proposition 1.3.1 The second-order cone KL is self-dual.

Therefore, the dual problem of (PSOCP ) is the following :

(DSOCP )

{

min bT y
s.t. ci −AT

i y ∈ KL, i = 1, · · · , r
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Figure 1.2: The Lorentz cone of R3

The second-order constraint of this problem is usually encountered in the following form :
∥

∥−ĀT
i y + c̄i

∥

∥ ≤ Âiy + ĉi

where
(

Āi Âi

)

= Ai and
(

c̄i ĉi
)

= ci.

These problems have many applications in various areas of engineering, in robust optimization,
or for problems involving sums or maxima of norms. The general results on self-concordance barriers
can be applied to SOCP, yielding several efficient primal-dual methods for solving such problems, which
make them very useful in practice.

Least-square
A particular SOCP that is very famous in optimization is the problem of Least-Square, an uncontrained
problem where the objective is to minimize the norme of a linear form :

min ‖Ax− b‖

where A ∈ R
p×n and b ∈ R

n. Ai are the rows of A. These problems are often used to determine the
parameters of a system so as to minimize the error with respect to a set of measure. They are convex
because the objective function, as the composition of a norm and a linear function, is convex.

The specificity here is that the solution of this problem can be expressed analytically, as the
solution of the system (ATA)x = AT b. If the matrix A is full rank, then so is ATA and x = (ATA)−1AT b.
Relying on these results, some very efficient algorithms have been designed. They solve the problem in
a time approximatively proportional to n2p, which can be reduced by exploiting some special structure
in the matrix A. Considering these features, the resolution of least-square problems is said to be a
mature technology, that can be used by people who do not need to know the details, with a sufficiently
high level of reliability for permitting, for example, their use in embedded systems.

1.3.2 Convex Quadratically Constrained Quadratic Program (CQCQP)

A Quadratically Constrained Quadratic Program (QCQP) is an optimization defined as the minimiza-
tion of a quadratic function over a feasible set defined through quadratic function :
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{

min xTP0x+ 2pT0 x+ π0

s.t. xTPix+ 2pTi x+ πi ≤ 0, i = 1, ...,m

This problem is convex and is called a Convex QCQP (CQCQP) if and only if Pi < 0, i = 0, ...,m,
in which case there exists efficient solvers, such as CPLEX [143], Gurobi [121] or MOSEK [11].

It turns out that a CQCQP can be expressed as a SOCP. This is straightforward thanks to the
following equivalence :

xTPPx+ pTx+ π ≤ 0 ⇔
∥

∥

∥

∥

(

1/2(1 + pTx+ π)
Px

)

≤ 1/2(1− pTx− π)

∥

∥

∥

∥

The converse is generally not true. Indeed, if it is easy to convert a SOCP into a QCQP, there
is no reason that the latter be convex, which illustrate the difference between a convex optimization
problem and an abstract convex optimization problem (see Example 1.1.3). Indeed,

‖Ax+ b‖ ≤ dTx+ e⇔
{

xT (ATA− ddT )x+ 2(bA− edT )x+ b2 − e2 ≤ 0
dTx+ e ≥ 0

Generally, the matrix ATA− ddT is not psd, unless d = Au with ‖u‖ ≤ 1.

1.4 Conclusion

In this chapter, we introduce the notion of convex and conic optimization, starting by the basic defini-
tions. Regarding convex optimization, two definitions can be found in the literature. As in the reference
in convex optimization [59], we consider the more restrictive one, that states that a convex optimization
problem is the minimization of a convex function on R

n subject to constraints of the form fi(x) ≤ 0
with fi : R

n → R a convex function.

A less restrictive definition can sometimes be found, that consider the minimization of a convex
function on a convex set. Such a problem is said to be an abstract convex optimization problem. Clearly
a convex problem is an abstract convex problem.

Conic optimization deals with the optimization of a linear function over the intersection of an
hyperplane with a proper cone. It is worth noticing than any abstract convex problem can be written
as a conic program and conversely. These notions are therefore equivalent and we can use these terms
interchangeably. However, the formulation as a conic program is preferable since the notion of dual
cone enables very elegant formulations of the dual problem and of the Karush-Kuhn-Tucker (KKT)
conditions of optimality.

Conic programs exhibit very interesting properties. First, it can be seen from the "abstract
convex" definition that any local optimum is also a global optimum. As the KKT conditions for
optimality are generally sufficient for local optimality, they are in this case sufficient for global optimality.
Regarding duality, there exists sufficient conditions for strong duality. These conditions also guarantee
the necessity of the Karush-Kuhn-Tucker conditions for global optimality.

Finally, from a complexity and resolution point of view, it was shown that they are polynomially
solvable as soon as there exists a polynomially computable separation oracle for their feasible set.
More practically, there exists efficient solvers based on interior-point methods for several kinds of conic
programs.

In conclusion, even if convex and conic programming may appear to be quite restrictive, they
are of central importance in optimization. Furthermore they subsume numerous interesting special
mathematical programs. In particular, in the next chapter we focus on semidefinite programming, a
special case of conic programming where the cone K is the cone of the positive semidefinite matrices,
which can be solved efficiently with interior-point methods.
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Chapter 2

Semidefinite Programming : Theory

and Algorithms

This chapter provides the reader with a first look at Semidefinite Programming (SDP) and introduces
the theoretical basis of this relatively young area of optimization.

SDP can be phrased as follows : it consists of the minimization or maximization of a linear
function of a matrix variable X subject to linear constraints on X and to the constraint that X be
positive semidefinite. As the set of n-dimensional positive semidefinite is a convex cone, semidefinite
programming is clearly a special case of conic programming and therefore we can apply all the notions
and results presented in Chapter 1. It can also be understood as an extension of Linear Programming
(LP), where the nonnegative orthant constraint in the latter is replaced instead by the cone of positive
semidefinite matrices. Similarly to LP, SDP has an elegant duality theory and presents interesting
results on the geometry of the associated feasible set, the so-called spectrahedron and of the optimal set
,i.e., the set containing the optimal solutions. In particular, it is interesting to characterize whether the
optimal set is unique.

These works led to the extension of several algorithms of LP to SDP. In LP, the fact that all the
optimal solution are vertices of the feasible set gave rise to the simplex method. This result also holds
for SDP, which leads to the extension of the simplex to SDP. However the most effective methods for
solving a SDP, also an extension of an algorithm designed for LP, are the interior-point methods.

SDP has been one of the most developed topics in optimization during the last decades. Among
this huge amount of literature, we propose the following outline. The first section supplies the funda-
mental definitions for addressing SDP, in particular how defining and identifying a positive semidefinite
matrix, as well as the fundamental properties of the cones containing these matrices. To make this thesis
self-contained, some complementary definitions are provided in Appendix 2.3, in particular background
regarding symmetric matrices in Appendix 2.3.4. The second section further examines the duality the-
ory of SDP and its consequences on the geometry of the related sets. Finally, the last section is a little
guide to the different ways of solving a SDP. First, we provide theoretical results on the complexity of
a SDP. Then we present the different various versions of interior-point methods for SDP, before briefly
discussing some other approaches, such as bundle methods, augmented Lagrangian methods, cutting
planes algorithms and simplex. Finally, we review the different available solvers for SDP.
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2.1 Definitions

2.1.1 Positive definite and semidefinite matrices

Recall that the set of symmetric matrix of order n is denoted by Sn and when needed, this set can
be regarded an Euclidean space, since it is isomorphic to R

t(n). The associated inner product is the
Frobenius inner product defined at Definition 2.3.8.

Definition 2.1.1 A symmetric matrix A ∈ S
n is positive semidefinite (psd), denoted A < 0 if A

satisfies any one of the following equivalent conditions :

− xTAx ≥ 0 for all x ∈ R
n ;

− All its eigenvalues are nonnegative ;

− All the principal minors of A are non-negative ;

− There exists a symmetric matrix B such that A = BBT .

By requiring that B be psd, B is unique and is called square root of A, which is denoted by A1/2.
Furthermore, rank(A1/2) = rank(A).

Definition 2.1.2 A symmetric matrix A ∈ S
n is positive definite (pd), denoted A ≻ 0 if A satisfies

any one of the following equivalent conditions :

− A < 0 and A is nonsingular;

− xTAx > 0 for all x ∈ R
n
∗ ;

− All its eigenvalues are positive ;

− All the leading principal minors of A are positive;

− There exists a nonsingular symmetric matrix B such that A = BBT .

By requiring that B be positive definite, B is unique and is called square root of A, which is
denoted by A1/2.

As an illustration,
(

x z
z y

)

< 0⇔ x ≥ 0, y ≥ 0 and xy ≥ z2

(

x z
z y

)

≻ 0⇔ x > 0, y > 0 and xy > z2

Definition 2.1.3 The set of positive (resp. semi)definite matrices of Sn is denoted by S
n
+ (resp. S

n
++).

Definition 2.1.4 A matrix A ∈ S
n is negative semidefinite (resp. definite), which is denoted by A 4 0

(resp. A ≺ 0) if −A is positive semidefinite (resp. definite).

Proposition 2.1.5 Properties of positive (semi)definite matrices
Let A ∈ S

n be positive (resp. semi)definite, then the following properties are satisfied :

− det(A) > (resp. ≥) 0 ;

− The diagonal entries of A are positive (resp. nonnegative) ;

− Any principal submatrix of A is positive (resp. semi)definite ;

− Aii = 0⇒ Aij = 0, for all i, j = 1, ..., n. ;

Proposition 2.1.6 Operations over positive (resp. semi)definite matrices
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Figure 2.1: Boundary of the set of psd matrices in S
2

− Any nonnegative (resp. positive) combination of positive (resp. semi)definite matrices is positive
(resp. semi)definite ;

− For A,B < 0, A⊗B < 0 ;

− A⊕B < 0 (resp. ≻ 0) if and only A,B < 0 (resp. ≻ 0);

− For A,B < 0 (resp. ≻ 0 ) such that AB = BA, then AB is positive (resp. semi) definite.

Proposition 2.1.7 Let us consider a psd matrix A ∈ S
n
+. Then for any x ∈ R

n

xTAx = 0⇔ Ax = 0

Clearly, this result is also valid for negative semidefinite matrices.

Proposition 2.1.8 Let us consider a set of m psd matrices Ai, i = 1, ...,m. Then rank(
∑m

i=1 Ai) ≥
maxi rank(Ai).

Proposition 2.1.9 Let us consider a symmetric matrix with block form X =

(

A B
BT C

)

such that

rank(X) = rank(A). Then X < 0⇔ A < 0.

In this case, one says that X is a flat extension of A.

Theorem 2.1.10 Fejer Theorem
A matrix A ∈ S

n is psd if and only if A •X ≥ 0 for any X ∈ S
n
+.

A matrix A ∈ S
n is positive definite if and only if A •X > 0 for any nonzero X ∈ S

n
+.

Corollary 2.1.11 A matrix A ∈ S
n is psd if and only if

(

1
x

)T

A

(

1
x

)

≥ 0 for any x ∈ R
n−1.

Corollary 2.1.12 Let A,B be psd matrices. Then A •B = 0⇔ AB = 0.

Corollary 2.1.13
A < 0, B ≻ 0 ⇒ A •B > 0 (2.1)
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Proposition 2.1.14 Gram matrix

A ∈ S
n with rank(A) = r is psd if and only if A arises as the Gram matrix of some collection of

n-vectors W = {w1, · · · , wn} containing exactly r independent vectors, i.e.,

Aij = wT
i wj , for all i, j = 1, ..., n

In particular, if A ∈ S
n is positive definite, the vectors wi have to be linearly independent (r = n).

To see this, it suffices to use the rows of A1/2 as elements of W .

Proposition 2.1.15 Cholesky factorization

A ∈ S
n is pd if and only if there exists an unique nonsingular lower triangular matrix L ∈ R

n,n

with positive diagonal entries such that A = LLT .

A ∈ S
n is psd if and only if there exists a lower triangular matrix L ∈ R

n,n with such that
A = LLT . Such a matrix L is not unique in general.

When available, the Cholesky decomposition is a powerful tool for solving linear system, roughly
twice as efficient as the LU decomposition.

Theorem 2.1.16 Schur complement

Let us consider a symmetric matrix M with the following block definition M =

(

A B
BT C

)

. If A ≻ 0,

the following equivalences hold :
M < 0 ⇔ C −BTA−1B < 0
M ≻ 0 ⇔ C −BTA−1B ≻ 0

The matrix C −BTA−1B is called Schur complement of M .

In particular, this result is used to check whether a matrix M ∈ S
n is psd in O(n3) arithmetic

operations. With n > 1, M can be written in the form M =

(

β bT

b B

)

, with β ∈ R, b ∈ R
n−1 and

B ∈ S
n−1. If β < 0 or (β = 0 and b 6= 0), it comes that A is not psd. Otherwise,

− if β = 0 and b = 0, {M < 0⇔ B < 0}.
− if β > 0, {M < 0⇔ βB − bbT < 0}
Thus, at each iteration, the dimension of the considered matrix decreases of one. In at most n

iterations, we get a 1-dimensional matrix, which is psd if and only if its component is nonnegative.

In the view of exploiting this procedure within an optimization context, it is desirable to determine
x such that xTMx < 0 if M is not psd. If β < 0 or (β = 0 and b 6= 0), computing such an x is
straightforward. Otherwise, if such an x is known for the Schur’s complement : xT (βB − bbT )x < 0,

then the augmented vector
(

bT x
β x

)

works for M . Finally, we conclude this topic by mentioning that
this algorithm can be extended to compute the Cholesky factorization.

2.1.2 The positive semidefinite cone

Proposition 2.1.17 S
n
+ is a full-dimensional proper cone, called the psd cone.

This non-polyhedral cone can be seen has the intersection of the halfspaces Hz = {X ∈ S
n :

zTXz ≥ 0}, for any z ∈ R
n, and is therefore closed and convex. It is solid since the positive definite

matrices comprise the cone interior, while all singular psd matrices reside on the cone boundary.

The following proposition is a direct application of the Fejer’s theorem (Theorem 2.1.10).
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Proposition 2.1.18 The cone S
n
+ is self-dual.

Proposition 2.1.19 The extreme rays of Sn+ are given by {αuuT : α ≥ 0}, where u is a nonzero vector
in R

n. In other words, all extreme rays of Sn+ are generated by rank-1 matrices.

We provide classical results about the facial structure of the cone S
n
+.

Proposition 2.1.20
Let A ∈ S

n
+ a rank-r matrix, with n > 0. The smallest face of Sn+ containing A, denoted F (A), has the

following expression :
F (A) = {X ∈ S

n
+ : N (A) ⊂ N (X)}

If A = UΛUT is the eigenvalue factorization of A, in virtue of Corollary 2.3.45, it comes that
N (A) = N (U) As a consequence, all the matrices of the form F (A) = {UV UT : V ∈ S

r
+} and therefore,

dim(F (A)) = r(r+1)
2 .

For instance, dim(F (A)) = 0 if and only if A = 0. Furthermore, not all dimensions are repre-
sented, in particular the psd cone has no facet.

Example 2.1.21 Consider S
2
+. If A is a full rank matrix, then N (A) = ∅ and F (A) = S

2
+. If A is a

rank-1 matrix uvT , with u, v ∈ R
2, then N (A) = {x ∈ R

2 : vTx = 0} and F (A) = {xvT , ∀x ∈ R
2}.

Finally, by continuity of the eigenvalues, we get the following statement, which will be useful to
define the notion of strict feasibility of a semidefinite program :

Proposition 2.1.22 Interior and boundary of Sn+

bnd(Sn+) = {X ∈ S
n
+ : rank(X) < n}

int(Sn+) = {X ∈ S
n
+ : rank(X) = n} = S

n
++

Theorem 2.1.23 The set S = {X ∈ S
n : I < X < 0,Tr(X) = k} for an integer 1 ≤ k ≤ n, is the

convex hull of the set T = {Y Y T : Y ∈ R
n,k, Y TY = Ik}. Furthermore, T is the set of extreme points

of S.

2.1.3 Semidefinite Programming

Semidefinite programming is the exact implementation of conic programming with the psd cone :






p∗ = inf A0 •X
s.t Ai •X = bi, i = 1, ...,m

X < 0
(2.2)

By applying duality for conic programming (see 1.1.3), with the self-duality of Sn+ in mind, the
dual problem in the so-called standard dual form reads :







d∗ = sup bT y

s.t A0 −
m
∑

i=1

Aiyi < 0
(2.3)

The resultant constraint is called a Linear Matrix Inequality (LMI).
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We use inf and sup instead of min and max since the infimum might not be attained. A very
famous example is :























p∗ = inf

(

1 0
0 0

)

•X

s.t
(

0 1
1 0

)

•X = 2

X < 0

X =

(

x1 1
1 x2

)

< 0 if and only if x1x2 ≥ 1. Thus, p∗ = 0 but there is no feasible solution that

attains this value, since
(

0 1
1 x2

)

cannot be psd, in virtue of Proposition 2.1.5.

Generally, we assume that the matrices Ai, i = 1, ...,m are linearly independent. Otherwise,
either the system Ai •X = bi, i = 1, ...,m has no solution, either it has an infinity of solution, or we
can replace it by an equivalent but smaller system which involves linearly independent matrices.

It is possible to involve several variable matrices Xk, k = 1, ..., l since it suffices to consider the
whole variable X = X1⊕ ...⊕Xl, which is psd if and only if Xk < 0, k = 1, ..., l, and

∑l
k=1 Ai,k •Xk =

⊕l
k=1Ai,k •X. Then the problem can be written as follows :























p∗ = inf
l
∑

k=1

A0,k •Xk

s.t
l
∑

k=1

Ai,k •Xk = bi, i = 1, ...,m

Xk < 0, k = 1, ..., l

(2.4)

Several primal variables Xk leads to several LMI in the dual :






d∗ = sup bT y

s.t A0,k −
m
∑

i=1

Ai,kyi < 0, k = 1, ..., l
(2.5)

Thus, it is possible to use 1-dimensional variables to play the role of slack variables, which allow
to consider inequality constraints instead of equality constraint in the primal. The consequences for the
dual are non-positivity constraints on the corresponding variables :















inf A0 •X
s.t Ai •X ≤ bi, i = 1, ...,mi

Ai •X = bi, i = mi + 1, ...,mi +me

X < 0

dual with















sup bT y

s.t A0,k −
m
∑

i=1

Ai,kyi < 0, k = 1, ..., l

yi ≤ 0, i = 1, ...,mi

The notion of strict feasibility of a SDP results directly from the definition for conic programming
(Definition 1.1.4) and from the fact that the interior of Sn+ is S

n
++ :

− X is a primal strictly feasible solution if X is primal feasible and X ≻ 0;

− y is a dual strictly feasible solution if y is dual feasible and A0 −
∑m

i=1 Aiyi ≻ 0;

Remark that another way of obtaining this dual is to consider the semidefinite constraint X < 0
as an infinite number of linear constraint : X • uuT ≥ 0, for any u ∈ R

n. Then the dual of this
infinite-dimensional LP involve an infinite number of variables, one for each vector u, and by denoting
vu this variable, we get the following constraint :

A0 −
m
∑

i=1

Aiyi =
∑

u∈Rn

vuuu
T (2.6)
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As vu ≥ 0, this means that A0 −
∑m

i=1 Aiyi is a nonnegative combination of rank 1 matrices, which is
equivalent to have A0 −

∑m
i=1 Aiyi < 0 by Theorem 2.3.40.

As for any optimization problem, the weak duality d∗ ≤ p∗ holds. Conditions for strong duality
are detailed in the next paragraph.

In the sequel, we generally consider the following SDP :







p∗ = inf A0 •X
s.t Ai •X = bi, i = 1, ...,m

X < 0
dual with















d∗ = sup bT y

s.t Z = A0 −
m
∑

i=1

Aiyi

Z < 0

(2.7)

where the matrix Ai, i = 1, ...,m are linearly independent matrices, i.e., Ai, i = 1, ...,m span an m
dimensional linear space in S

n. F and F∗ denote the primal and dual feasible set respectively. Such
sets, defined as the intersection of the semidefinite cone with an affine space, are called spectrahedron.

2.2 Duality and geometry

The dual problem can be easily formulated by applying the dual theory for conic programming. In this
section, we further examine this duality theory and its consequences in terms of characterisation of the
set of optimal solutions.

2.2.1 Strong duality

We consider the primal and dual formulation provided at (2.7). As for conic duality, strong duality
does not hold in general. This is a fundamental difference with Linear Programming, illustrated on the
following examples (from Lovász) :















sup −X3,3

s.t X1,2 +X2,1 +X3,3 = 1
X2,2 = 0
X < 0

dual with















inf y1

s.t





0 y1 0
y1 y2 0
0 0 y1 + 1



 < 0

The optimal value of the primal is −1 whereas the dual optimum is 0. This example is also
enlightening since it illustrates the non-continuity of the optimal value w.r.t the coefficient of the
problem. Indeed, if one sets the top left entry of the dual matrix to ǫ > 0, then the dual optimum drops
from 0 to −1

Another difference comes from the fact that there are some instances where a finite optimal value
is not attained. Here is an example of this phenomenon :







inf y1

s.t
(

y1 1
1 y2

)

< 0

The positive semidefiniteness is equivalent to require y1 ≥ 0, y2 ≥ 0, y1y2 ≥ 1. Having y1 ≥ 0
and for any ǫ > 0, y1 = ǫ, y2 = 1/ǫ feasible, imply that the optimal value is 0. However, y1 = 0 is not
feasible, therefore this optimal value is not achieved.

This was never an issue with LP : whenever the LP was feasible and its optimal value was
bounded, then there was a feasible point that achieved this value.

Fortunately, Theorem 1.1.7 states that under Slater’s conditions, i.e., the existence of a strictly
feasible solution for the primal or/and for the dual, the strong duality holds. Another version of this
theorem is given below :
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Theorem 2.2.1 Consider the primal-dual SDP pair (2.7). If both problems are feasible and if either
one problem is strictly feasible, then p∗ = d∗, the other problem attains its optimal value and for every
ǫ > 0, there exist feasible solutions X, y such that C •X − bT y < ǫ.

Thus, if the primal problem is strictly feasible, then the dual attains its optimum and conversely.
Furthermore, if both problems are strictly feasible, then the optimal solutions are achieved in both
problems.

As a direct application of KKT conditions for conic programming (see Theorem 1.1.8), when
a strictly feasible solution exists for the primal, KKT conditions becomes necessary and sufficient
conditions for optimality. The only difference with conic programming comes from the complementarity
condition which is slightly modified. Indeed, for a primal and dual solutions X and (y, Z), its initial
form is X • Z = 0, which is equivalent to have XZ = 0 in virtue of Corollary 2.1.12.

Theorem 2.2.2 KKT for Semidefinite Programming
Consider the semidefinite problem (2.7) and assume that there exists X ≻ 0 such that Ai •X = bi, i =
1, ...,m. Then X is an optimal solution of the problem if and only if the exists (y, Z) ∈ R

m × S
n such

that :






















AiX = bi, i = 1, ...,m, X < 0 (primal feasibility)
Z < 0 (dual feasibility)
XZ = 0 (complementary slackness)

A0 − Z +
m
∑

i=1

Aiyi = 0 (Lagrangian stationarity)

It is worth noticing than the Slater’s condition for the dual is easily satisfied. It suffices that the
primal contains a constraint of the form I •X ≤ R, which is equivalent to bounding the trace of X.

Indeed, in this case, the dual of the problem (2.7) becomes :














sup bT y −Ry0

s.t. A0 −
m
∑

i=1

yiAi + y0I < 0

y0 ≥ 0

and this problem admits a strictly feasible solution for sufficiently large value of y0, for instance
any y0 > −λmin(A

0). This trick is commonly used by the SDP solvers for being in the scope of strong
duality.

Note that the primal strict feasibility is not as easy to recover. In particular, the presence of
constraint Ai •X = 0, with Ai < 0, prevents the feasibility of X ≻ 0 in virtue of Corollary 2.1.13.

We refer the reader to [120] for an excellent and detailed overview of the duality theory for SDP,
following the presentation in [29]. It turns out that 11 case of duality are identified and described.

To conclude this paragraph, we mention a alternative dual problem, obtained through another
kind of duality, i.e., not by Lagrangian duality, whose associated dual problem always satisfies strong
duality. The main reference on the subject is the seminal paper of Ramana, Tüncel, and Wolkowicz
[222].

2.2.2 Conversion of a primal standard form into a dual standard form and
conversely

For a practical use of SDP, it is sometimes necessary to convert a primal form into a dual one and
conversely. In theoretical terms, this conversion is simple. Indeed, the space of n-dimensional symmetric
matrices is isomorphic to an Euclidean space of dimension t(n) and A : Sn → R

m such that A(X) =
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(Ai •X)i=1,...,m is a linear operator. Since F 6= ∅, we can assume that there exists X0 ∈ S
n such that

A(X0) = b. Then the primal and dual feasibility can be formulated as :

{

X ∈ F ⇔ X −X0 ∈ N (A)
Z −A0 ∈ R(A)

Then, it suffices to consider the linear operator A⊥ to invert the representation, A⊥ : Sn → R
m′

with m+m′ = t(n) with A⊥(X) = (Bi •X)i=1,...,m′ such that the matrices Bi form a basis of N (A).
Then

{

X ∈ F ⇔ X −X0 ∈ R(A⊥)
Z −A0 ∈ N (A⊥)

In practice, A⊥ can be determined by solving t(n)−m linear systems.

2.2.3 Geometry

The objective of a study of SDP from a geometric point of view is to characterize the set of primal and
dual optimal solutions. In particular, we are interested in characterizing the uniqueness of the optimal
solutions and by deriving bound on their ranks. This entails studying the facial structure of the primal
and dual feasible sets and involves three fundamentals notions :

− Faces, dual faces and extreme points of F and F∗ ;

− Nondegeneracy of a primal or a dual solution ;

− Strict complementarity.

The considered SDP is (2.7). For convenience we define the linear operator A : Sn → R
m such

that A(X) =







A1 •X
...

Am •X






and its adjoint : A∗ : Rm → S

n, i.e., A(y) =
∑m

i=1 yiAi. We assume that

m ≤ t(n) and since the matrices Ai, i = 1, ...,m are assumed to be linearly independent, we have
rank(Ai, i = 1, ...,m) = m.

The main references for geometry of semidefinite programs are [10, 25, 211] but comprehensive
summary can be found in the standard references [176, 259].

2.2.3.1 Nondegeneracy and strict complementarity

In the sequel, we denote by F (x, S) the smallest face of the set S that contains x ∈ S. Then, in virtue
of Theorem 2.2.28 and Prop. 2.1.20, we have the following characterization of F (X,F) :

Proposition 2.2.3 Let F be the primal feasible set of the SDP (2.7) and X ∈ F . Then F (X,F) =
{M ∈ S

n
+ : Ai •M = bi i = 1, ...,m, N (X) ⊂ N (M)}.

Recall that X is an extreme point of F if F (X,F) = {X}. In the sequel, we call such an X a
basic solution of the SDP.

Proposition 2.2.4 X is a basic solution if and only if N (A) ∩ lin(F (X, Sn+)) = {0}.

A strongly related property that might characterize the elements of F is the nondegeneracy. It
requires the definition of complementary face.
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Definition 2.2.5 Complementary face
Let F be a face of Sn+. Then the complementary face F△ is defined as :

F△ = {Z ∈ S
n
+ : X • Z = 0, ∀X ∈ F} (2.8)

Definition 2.2.6 X ∈ F is nondegenerate if R(A∗) ∩ lin(F (X, Sn+)
△) = {0}.

More generally, for an optimization program defined through constraints : min f(x) : fi(x) ≤
0, i = 1, ...,m, the degeneracy of a feasible point is defined as follows :

Definition 2.2.7 Degeneracy
A feasible solution x̄ is called degenerate if all the gradients of the active constraints at x̄ are linearly
dependent.

The difficulty of applying this to SDP is that the concept of active constraint is not well-defined.
However, by considering the gradient as the orthogonal complement of the level set of the constraint
at x̄, it can be extended to SDP by replacing the level set by the smallest face of Sn+ that contains x̄.
Then, we replace the gradient by the orthogonal complement of this face. This set is called tangent
space and is defined as follows :

Definition 2.2.8 Tangent space
Let X ∈ S

n, with r its rank and X = UΛUT its eigenvalue factorization. Then the tangent space at X
is :

TX =

{

U

(

V W
WT 0

)

UT , V ∈ S
r,W ∈ R

r,n−r

}

(2.9)

Definition 2.2.9 Primal degeneracy
Let X ∈ F , with r its rank and X = UΛUT its eigenvalue factorization. Then X is primal nondegenerate
if TX +N = S

n, with N = {Y ∈ S
n : Ai • Y = 0, i = 1, ...,m}.

The major advantages of nondegeneracy property is that it ensures that the optimal solution are
unique.

Theorem 2.2.10 If X ∈ F is optimal and nondegenerate, then the associated dual optimal solution
(y, Z) is basic and is therefore unique.

The converse is generally not true, except when strict complementarity holds. Recall that if
X ∈ F and (y, Z) ∈ F∗ are complementary primal and dual solutions, then XZ = 0. This implies
that X and Z commutes (see Proposition 2.3.39) and therefore that they share a common system of
eigenvectors : X = UΛUT and Z = UMUT , with diagonal matrices Λ,M such that ΛiMi = 0, i =
1, ..., n. As a consequence, rank(X) + rank(Z) ≤ n.

We say that the strict complementarity holds when rank(X) + rank(Z) = n, which means that
for i = 1, ..., n, Λi = 0 or (but not and) Mi = 0. This is also equivalent to require that X + Z ≻ 0.

Theorem 2.2.11 Let us consider an optimal solution X ∈ F . If X admits an unique complementary
solution (y, Z) ∈ F∗ such that strict complementary holds, then X is nondegenerate.

In other words, if strict complementary holds, then the primal (resp. dual) nondegeneracy is a
necessary and sufficient condition for a dual (resp. primal) optimal solution to be unique.

Example 2.2.12 Let us consider a SDP obtained as the reformulation of a SOCP (see Paragraph
3.2.4). Then the strict complementarity holds if and only if the gradient of the objective function is a
strictly positive combination of the gradient of the tight constraints.
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2.2.3.2 Solutions rank

In this paragraph, we aim at characterizing the rank of the optimal solution of the SDP (2.7). First of
all, a bound on the maximal rank can be simply derived from the complementarity slackness, for primal
and dual optimal solution X∗ and (y∗, Z∗) :

rank(X∗) + rank(Z∗) ≤ n (2.10)

However, we are mostly interested by deriving bound on the minimal rank of optimal solutions.
Indeed, in a large number of applications (see for instance Paragraph 3.3), it is desirable to get a solution
of smallest rank possible. To this end, we use the result from [25] stating that, if Ai, i = 0, ...,m are
sufficiently generic, then the optimal is attained on a basic solution, or equivalently, on a face of F with
dimension 0. For this reason, we study the relationship between the dimension of the faces of F and
the rank of the matrices within these faces.

Theorem 2.2.13 Let X ∈ F , with rank(X) = r and such that X = QQT with Q ∈ R
n,r. Then,

dim(F (X,F)) = t(r)− rank(QTAiQ, i = 1, ...,m)

where rank(QTAiQ, i = 1, ...,m) = dim{∑m
i=1 yiQ

TAiQ}.

Since rank(QTAiQ, i = 1, ...,m) ≤ m, it comes that any face F of F that contains X has
dimension dim(F ) ≥ t(r)−m.

Corollary 2.2.14 The following statements hold :

X is a basic solution ⇔ t(r) = rank(QTAiQ, i = 1, ...,m)
X is a basic solution ⇒ t(r) ≤ m

A fundamental result from Barvinok [25] states that there exists a basic solution X ∈ F with
rank(X) ≤ r such that t(r+1) > m. Let d the smallest positive integer that satisfies this inequality. It
is remarkable that d is independent on n. The variation of d as a function of m is plotted on the Figure
2.2.3.2 :

Figure 2.2: d as a function of m

In particular, we see that for m = 2, a rank-1 solution exists, which proves the tightness of the
SDP relaxation of a QCQP with one constraint (see Paragraph 3.3).

A refinement of this result was given in [26] for the case where F is a nonempty and bounded set.
Then if m = t(r+1) for some 1 ≤ r ≤ n−2, then there exists a basic solution X ∈ F with rank(X) ≤ r.

The proof of Barvinok is not constructive but a simplex type algorithm for determining such a
matrix was proposed in [210].

In conclusion, we mention that in general, finding the lowest-rank SDP solution is a NP-hard
problem, whereas finding the highest-rank solution is a polynomial problem. Moreover, proving the
uniqueness of a SDP solution can be done in polynomial time.
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2.3 Complexity and algorithms

The wide applicability of SDP has entailed increasing demand for efficient and reliable solvers. In
response to this need, a range of sophisticated algorithms have been proposed in the literature and
several solvers are now available. For the main part, they are based on a primal-dual interior-point
method, as an application of the breakthrough achieved by Nesterov & Nemirovski in 1988 [206]. This
result, presented at Paragraph 1.2.3, states that a conic program can be solved in polynomial time
by interior-point methods provided that the cone admits a barrier function with the property of self-
concordance. In the case of SDP, such a function exists and is given by − log det(X). Indeed, for
X ∈ int(X), i.e., X ≻ 0, we have det(X) > 0. When X approaches the boundary of the cone, formed
by the singular positive semidefinite matrices, then det(X) tends to 0.

In this section, we begin by presenting the theoretical results on the complexity of a SDP. Then we
present the different various versions of interior-point methods for SDP, before briefly discussing some
other approaches, such as bundle methods, augmented Lagrangian methods, cutting planes algorithms
and simplex. Finally, we review the different available solvers for SDP.

2.3.1 Complexity

Let us consider the SDP (2.7), whose matrices Ai are assumed to be of full rank. The most general
result on its complexity is given by the following claim : the problem (2.7) can be solved up to any
desired accuracy with interior-point algorithms that are polynomial in the RAM model.

This statement reveals two drawbacks in the complexity of a semidefinite program : the algo-
rithms are not polynomial in the bit number model and they don’t tackle the exact resolution of the
problem but only an approximation.

Through this section, we address this difficult question as follows. First, we relate the above
statement to the Ellipsoid method and explain why the bit model polynomiality is not guaranteed,
except when some suitable conditions are provided. Finally, we discuss the problem of the exact
resolution of a semidefinite program.

Application of the Ellipsoid method to a SDP
The first question that naturally arises in this context is whether their exists a weak separation oracle
for SDP and whether it can be computed in polynomial time w.r.t. the input binary size of the problem
L and the desired accuracy ε. For this, we assume of course that the coefficients of (2.7) are rational.

Thus, given a matrix X that satisfies the linear equalities, it suffices to check if X is "almost"
psd, or find an hyperplane that "almost" separates X from S

n
+ :

∃Y ∈ S
n : ‖Y −X‖F ≤ ε or ∃v : vTXv < ε (2.11)

This can be done by means of the outer product Cholesky factorization methods (see Appendix
2.1.15 for the definition of the Cholesky factorization), combined with the error analysis of Higham
[134]. Given a matrix X ∈ S

n, this method runs in O(n3) iterations and proceeds as follows. If X is
"almost" psd, then a matrix U such that

∥

∥UUT −X
∥

∥

F
< ‖X‖F 2−l is computed by encoding each real

on l bits. If it fails, the appropriate vector v can be constructed.

The difficulty lies in the fact that the error is relative : ‖X‖F 2−l where we would like an absolute
bound ε. Let R be an integer such that ‖X‖F ≤ R holds for any feasible solution of the problem. Then
it suffices to take l = log(R/ε).

Then the direct application of the Ellipsoid method results in the following theorem :

Theorem 2.3.1 Let us consider the problem (2.7) with rational coefficients of maximum bitlength L.
Assume that the bowl {X ∈ S

n : ‖X‖F ≤ R} contains the feasible set F of (P ) and let ε > 0 be a
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rational number. Then there is an algorithm that runs in polynomial time w.r.t. L and log(R/ε) that
produces one of the two following outputs :

− A matrix X∗ ∈ S
n satisfying the equality constraints such that

‖Y −X∗‖F ≤ ε for some Y ∈ F
A0 •X∗ ≥ sup{A0 •X : X ∈ Fε} − ε

(2.12)

− a certificate that there is no solution X ∈ Fε.

where Fε = {X ∈ F :
Ai • Y = bi, i = 1, ...,m
‖X − Y ‖F ≤ ε

}

Y < 0 is the set of the ε-deep feasible solution

of the problem (2.7).

From this theorem, it is clear that if R has polynomially many digits w.r.t. L, then the bit model
complexity is polynomial. However, there are some pathological instances where this is not the case.

See for instance (taken from [176]) the following matrices Q1(x) = x1 − 2 and Qi(x) =

(

1 xi−1

xi−1 xi

)

for i = 2, ..., n. Then xi ≥ 22
i−1 is required for Q1 ⊕ ...⊕Qn(x) < 0 and the solution has therefore an

exponential bitlength.

Note that the validity of ‖X‖F ≤ R implies that I • X ≤ R is also valid, which ensures that
the strong validity holds as stressed at the end of the section 2.2.1. This is a key assumption for the
interior-point methods described at Section 2.3.2 to work.

Exact resolution of a SDP
As explained at Appendix 3.1.2, an optimization problem can be solved into a decision problem thanks
to the binary search on the optimal value. The difficulty here is that this value may have a bit size not
polynomially bounded w.r.t; L (see example above) or irrational, as illustrated below :

maxx :

(

1 x
x 2

)

< 0→ p∗ =
√
2 (2.13)

Consequently, the binary search might take exponential time to reach the optimal value.

Furthermore, let us consider the feasibility problem ∃y : A(y) = A0 +
∑

i yiAi < 0. It turns out
that its complexity is an open problem. Indeed, testing whether a matrix is psd is polynomial (O(n3) in
the RAM model using Cholesky factorization, but it is not known whether this holds for the bit model
of computation.

In [221], Ramana showed that it belongs to coNP in the RAM model and it lies either in the
intersection of NP and coNP, or outside the union of NP and coNP. Finally, Porkolab and Khachiyan
[152] show that this problem can be solved in O(nm4) + nO(min{m,n2}) arithmetic operations involving
LnO(min{m,n2})-bit numbers.

2.3.2 Interiors-points methods

Interior-points methods for SDP have sprouted from the seminal work of Nesteror & Nemirovksi [206]
who stated the theoretical basis for an extension of interior-methods to conic programming and proposed
three extensions of IPM to SDP : the Karmarkar’s algorithm, a projective method and Ye’s potential
reduction method. In parallel, in 1991, Alizadeh [7] also proposed a potential reduction projective
method for SDP. Then in 1994, Boyd and Vandenberghe presented an extension of Gonzaga & Todd
algorithm for LP that uses approximated search direction and able to exploit the structure of the matrix.

Subsequently, many attempts have been made to apply interior-point methods to SDP. It appears
that the most widely used methods belong to the class of primal-dual path following with predictor-
corrector, that leads to implementation of practically efficient solvers [53, 248, 254, 263]. Among them,
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we discuss in more details the software CSDP [53], based on a method proposed in [130], since we used
this solver for our numerical experiments. For the same reason, we also describe the solver DSDP [34],
which implements a potential reduction algorithm for SDP.

2.3.2.1 Prerequisites

Very roughly, interior-point methods for a cone K are Newton-type methods applied to the minimization
of f(x)+µF (x), where f is the objective function and F a barrier function of K. Then, at each iteration,
the current solution moves along a determined search direction and µ is decreased in order to come
as close as desired to the optimal solution. Two notions are fundamental to evaluate the quality of
the current solution : the optimality, i.e., the distance to optimal solution which is measured through
the duality measure µ and the centrality, i.e., the distance from the boundary of K. Indeed, the more
central is the current solution, the larger may be the size of the next step.

We apply to the particular case of SDP, where K = S
n
+. We consider the primal and dual

SDP defined at 2.7, for which we assume that strong duality holds, for instance by means of Slater’s
constraints qualification. Then, KKT provides necessary and sufficient conditions for optimality :















X < 0, AiX = bi, i = 1, ...,m (primal feasibility)

Z < 0, Z = A0 +
m
∑

i=1

Aiyi (dual feasibility)

XZ = 0 (complementary slackness)

If the complementarity condition is perturbed by the introduction of a parameter µ > 0 : XZ =
µI, then we can show that the obtained system has an unique solution. The set of such solution when
µ varies : (X, y, Z)µ∈R+

constitutes the central path.

As a matter of fact, with F (X) = − log det(X), as ∂F
∂X (X) = −X−1 this perturbed system

corresponds to the KKT conditions of the following problem :






inf A0 •X + µF (X)
s.t. Ai •X = bi, i = 1, ...,m

X ≻ 0

Combined to the fact that this function is convex and self-concordante (see for instance [59] for
a proof), we recover that F is a barrier function for S

n
+.

XZ = µI implies that X and Z commute and therefore they share a common basis of eigenvectors.
As a consequence, XZ = µI if and only if λi(X)λi(Z) = µ, i = 1, ..., n where λi(X) and λi(S) are the
eigenvalues corresponding to the same eigenvectors.

One of the main difficulty in the implementation of interior-point methods to SDP lies in the
necessity to make symmetric the feasible direction obtained by solving the Newton’s system. Consider
for instance the following system :























Ai •∆X = 0
m
∑

i=1

∆yiAi +∆Z = 0

Z∆X +X∆Z = µI −XZ
X < 0, Z < 0

Clearly, the second equation imposes that ∆Z is symmetric. On the other hand, unless (X, y, Z)
belongs to the central path, XZ is generally not symmetric and neither is ∆X. Imposing that ∆X
be symmetric leads to a system with more equations than unknowns and therefore, there may be no
feasible solution :
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Ai •∆X = 0 → m equations ∆y ∈ R
n → m variables

∑

i ∆yiAi +∆Z = 0 → n(n+1)
2 equations ∆Z ∈ S

n → n(n+1)
2 variables

Z∆X +X∆Z = τI −XZ → n2 equations ∆X ∈ S
n → n(n+1)

2 variables

A first possibility, called a-posteriori symmetrization, is to solve the system with ∆X ∈ R
n×n

then to keep only the symmetric part of ∆X : ∆X ← ∆X+∆XT

2 .

Another possibility is to make symmetric the last equation, which reduces its dimension. To this
end, we use a symmetrizing operator HP paramterized by a singular matrix P : HP (M) = 1

2 (PMP−1+
(PMP−1)T ). This can be seen as the composition of the classical symmetrizing operator M → (1/2(M+
MT ) and of the scaling M → PMP−1. Then, the last equation becomes HP (Z∆X) + HP (X∆Z) =
τI −HP (XZ) and yields ∆X symmetric.

This idea was introduced by [265] and tested with various matrices P , whose most famous are :

− P = I : direction AHO (Alizadeh, Haeberly, Overton [9] )

− P = X−1/2 or P = Z1/2 ([265])

− PTP = X−1 or Z ([198])

− P = W−1/2 with W = X1/2(X1/2ZX1/2)−1/2X1/2, direction NT (Nesterov et Todd [207]). W
is called scale matrix.

Currently, there is no clear consensus about the best choice for P , which remains an open question.
The benefits and shortcomings of about 20 possible search directions are discussed by Todd in [254].

2.3.2.2 Primal-dual path following with predictor-corrector technique

In this paragraph, we report the algorithm proposed in [130] and implemented in the solver CSDP [53].
This primal-dual path following method uses the predictor-corrector technique of Mehrotra and has the
advantage of not requiring any specific structure of the problem matrices. For the problem 2.7, the
method involves the following steps :

1. Let S = (X, y, Z) the incumbent solution;

2. Compute the barrier parameter τ as a function of S and deduce the corresponding barrier problem
(Pτ ) ;

3. Compute ∆S = (∆X,∆y,∆S) as the sum of the predictor ∆Ŝ (Newton’s method) and of the
corrector ∆Z̄ (second-order method), so as to make S +∆S the closer possible of the solution of
(Pτ ) ;

4. Compute αp and αd such that Z = (X+αp∆X, y+αd∆y, Z+αd∆Z) be the best feasible solution
w.r.t. αp and αd ;

5. Go back to stage 1 until the solution reaches the desired precision.

We provide some more details on the steps 2, 3, 4.

Step 2 τ is computed as half the duality measure Z•X
n . This choice is justified by good practical

results obtained with this simple heuristic for LP.
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Step 3 There are several possibilities for the linearisation of the optimality condition XZ = τI. For
instance

X − τZ−1 = 0 ⇔ τI − Z1/2XZ1/2 = 0
⇔ τI −X1/2ZX1/2 = 0
⇔ ZX − τI = 0
⇔ XZ − τI = 0
⇔ XZ + ZX − 2τI = 0

In the present method, the chosen condition is ZX − τI = 0. It does not preserve symmetry and
therefore, only the symmetric part of the obtained search direction is kept.

Step 4 αp and αd are computed as the solution of the following problems :






max αp

s.t. A(X + αp∆X) = b
X + αp∆X < 0







max αd

s.t. AT (y + αd∆y)−A0 = Z + αd∆Z
Z + αd∆Z < 0

Results on various instances of SDP have proved the practical efficiency of this method.

2.3.2.3 Potential reduction

This method was proposed by [34] and implemented in the solver DSDP. The basic principle of the
potential reduction methods is to define a potential function that measures the quality of the current
solution and the maximize the decrease of this function at each iteration. In the case of SDP, this
function is as follows : Φρ(X,Z) = ρ log(X • Z) − log det(XZ) with ρ > n. The first term is the
duality measure that expresses the optimality of the current solution, while log det(XZ) is a measure
of centrality. This function is used in the algorithm of DSDP. By defining the scalar z = A0 •X, the
dual form becomes :

Φρ(z, y) = ρ log(z − bT y)− log det(A0 −
m
∑

i=1

yiAi)

We define the linear operator A∗ : Rm → S
n such that A∗(y) =

∑m
i=1 yiAi and the matrix norm :

‖M‖∞ = max
i=1,...,n

{|λi(A)|} ≤ ‖M‖F . If (Xk, Zk, yk) is the current solution with zk = A0 •Xk, then :

Φρ(zk, y)− Φρ(zk, yk) ≤ ∇Φρ(zk, yk)
T (y − yk) +

∥

∥(Zk)
−1/2AT (y − yk)(Zk)

−1/2
∥

∥

F

2(1−
∥

∥(Zk)−1/2AT (y − yk)(Zk)−1/2
∥

∥

∞)

Thus, if (yk, Zk, vk) is the current solution, we aim at solving the following problem,where α < 1
is a constant.

{

min ∇Φρ(zk, yk)
T (y − yk)

s.t.
∥

∥(Zk)
−1/2AT (y − yk)(Zk)

−1/2
∥

∥

F
≤ α

This problem is the minimization of a linear function in an ellipsoid. Hence, the optimal solution
yk+1 has an analytic form :

yk+1 = yk + βd(zk) with
{

d(zk) = −(Mk)
−1∇Φρ(zk, yk)

β = α(−∇Φρ(zk, yk)d(zk))
−1/2

where Mk = {Mk}i,j∈[m] with Mki,j = Ai(Zk)
−1•(Zk)

−1Aj and ∇Φρ(z, y) = − ρ
z−b•y b+A(Z−1).

From a computational point of view, the difficulty lies in the computation of d(zk), since it requires
to compute (Mk)

−1 and A(Z−1
k ). However, the authors showed that this stage can be simplified in the

case when Ai are rank-1 matrices : Ai = aia
T
i with ai ∈ R

n. Then, Mki,j = (aTi (Zk)
−1aj)

2 and it
suffices to factorize Zk = LLT , then to solve Lwi = ai, ∀i = 1, · · · ,m to get aTi (Zk)

−1aj = wiwj . Other
variants of the method exist, in particular to exploit the sparsity of Z.
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2.3.3 Other algorithms for SDP

Interior-points methods are the most famous methods for SDP but a variety of alternative approaches
have been proposed and implemented. Some of them comes from nonlinear optimization (Augmented
Lagrangian), from eigenvalue optimization (Spectral Bundle), or from linear programming (Cutting
Planes). Finally, the simplex method was extended from LP to conic programming and was applied
specifically to SDP.

2.3.3.1 Spectral Bundle

The spectral bundle method for SDP was proposed in 2000 by Rendl and Helmberg in [129] and was
implemented in the software SBmethod, that later became ConicBundle. The specificity is that it
adresses a special case of SDP, where the trace of the primal matrix is equal to a known constant
value : Tr(X) = a. This might seem a little restrictive at first sight however it includes all the problem
generated as relaxation of combinatorial problem. It offers the advantage of addressing large instances
of SDP.

The main idea is to cast the problem into a eigenvalue optimization problem. We consider the
SDP 2.7 and we assume that there exists α ∈ R

m such that
∑m

i=1 Aiαi = I, in which case the trace of
any primal solution is equal to a = αT b. Clearly, the optimal primal solution is not X = 0 and, from
complementarity slackness, it comes that necessarily the optimal dual solution is singular. Consequently,
Z < 0 can be replaced by λmax(A0 −

∑m
i=1 Aiyi) = 0.

Then, we built the Lagrangian using b0 as multiplier of this constraint, which is optimal : f(y) =
bT y+aλmax(A0−

∑m
i=1 Aiyi). Thus, we are interested in minimizing this convex, non-smooth function,

and therefore we can apply the bunde method (see Paragraph 1.2.2).

2.3.3.2 Augmented Lagrangian

An augmented Lagrangian method was implemented in the software PENSDP [158]. The main idea is
that Z < 0⇔ Φρ(Z) < 0, with

Φρ : Z = U Diag(λ1, ..., λn) U
T 7→ U Diag(ρφ(λ1/ρ), ..., ρφ(λn/ρ)) U

T

where φ : R → R is a strictly convex and strictly increasing function. Then the dual of the
SDP (2.7) is equivalent to min bT y : Φρ(A0 −

∑m
i=1 yiAi) < 0, whose Lagrangian is : L(y, U) =

bT y +B • Φρ(A0 −
∑m

i=1 yiAi).

Then, the algorithm consists of 3 steps :

1. yk+1 = argminL(yk, Uk) ;

2. Uk+1 = Dφ(A0 −
∑m

i=1 y
k
i Ai, U

k);

3. ρk+1 < ρk.

where Dφ(Z,U) is the directional derivative of φ at Z in the direction U . Then it remains to
define the penalty function φ. Let just say that this function has to satisfy a number of properties
and is chosen as a compromise between computational efficiency and impact on the convergence of the
method.
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2.3.3.3 Cutting planes algorithm

A SDP can be viewed a LP with an infinite number of constraints and turns out that a finite number
of these constraints suffices to ensure the feasibility of the solution. Thus, a SDP can be solved by a
sequence of LP, in the vein of a cutting planes algorithm.

More precisely,
X < 0 ⇔ X • uuT ≥ 0, u ∈ R

n

⇔ X • uuT ≥ 0, u ∈ R
n : ‖u‖ = 1

⇔ X • uiu
T
i ≥ 0, i = 1, ..., k

Then, the number of constraints is finite, but might be arbitrarily large. In the case of the
solution of a dual SDP (2.7), it comes that k ≤ m. Then the difficulty lies in identifying the collection
{ui}i=1,...,m. The algorithms based on this approach are actually a direct implementation of the ellipsoid
method : a linear relaxation is solved at each iteration and a separation oracle return a linear cutting
planes of the incumbent solution. Then, the key of this method lies in the design of an efficient separation
oracle.

This approach was investigated by Mitchell and Krishnan in [163] and an unifying framework for
all approaches involving cutting planes were provided in [164].

2.3.3.4 Simplex

The extension of the simplex to conic programming relies on a thorough geometric analysis of conic
programs and by the following outline of the simplex algorithm [210] : given a basic feasible solution,
i.e., a feasible solution which is an extreme point of the feasible set,

− Constructs a complementary dual solution;

− If this solution is dual feasible, declares optimality;

− If not, constructs an improving extreme ray of the cone of feasible direction;

− After a linesearch in this direction, reaches a new basic solution.

Each iteration is carried out in O(n3) arithmetic operations. This method is primal and an open
question is whether it could be extended to dual space, in order to perform warm-start after addition
of cutting planes.

2.3.4 Solvers

Although many solvers have been developed in the last twenty years to handle semidefinite programming,
this area, unlike LP, is still in its infancy, and most codes are offered by researcher to the community
for free use and can handle moderate sized problems. The table 2.1 identifies the different software and
their associated programming language :

Let us mention the fact that SDPA, SDSP, CSDP and SBMethod have parallel version, called
SDPARA, SDSPP, Parallel CSDP and Parallel SBMethod respectively. Besides, two frontend tools are
available for interfacing the problems with different solvers :

− CVX Matlab based modeling system for convex optimization, using standard Matlab expression
syntax. It supports two solvers (SeDuMi and SDPT3).

− YALMIP, a free MATLAB Toolbox for rapid optimization modeling with support for typical
problems. It interfaces about 20 solvers, including most famous SDP solvers.

Another simple possibility for comparing several solvers is to use the standard file format SDPA,
which corresponds to the SDP (2.5), where several LMI constraints are possible. This format is accepted
by most of the SDP solvers.
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Software Availability Algorithm Interface Reference
CSDP Public IPM (Primal-Dual path) C [53]
DSDP Public IPM (Potential reduction) C, Matlab [34]

MOSEK Commercial IPM (Primal-Dual path) Matlab [11]
PENSDP Commercial Augmented Lagrangian C, Fortran, Matlab [158]
SeDuMi Public IPM (Self-dual method) Matlab [248]

SB Public Bundle method C/C++ [129]
SDPA Public IPM (Primal-dual path) C [263]

SDPLR Public Augmented Lagrangian C, Matlab [63]
SDPNAL Public Augmented Lagrangian Matlab [266]
SDPT3 Public IPM (Primal-dual path) Matlab [254]

Table 2.1: The different SDP solvers

This non-exhaustive list shows the increasing interest for semidefinite programming. However,
and this is one of the most serious difficulties for using SDP, the best solver choice is very dependent on
the structure of the problem (sparsity and rank of the matrices Ai, presence of a constraint Tr(X) = 1,
strict feasibility, degeneracy,... ). A detailed comparison of 8 SDP solvers can be found at [197], which
reveals this fickleness.

2.4 Conclusion

SDP is characterized by a powerful underlying theory based on the properties of the semidefinite ma-
trices. These theoretical results led to the development of efficient resolution methods, in particular
the interior-point methods. This is generally considered as the first reason of the interest for this opti-
mization area. The second one is its versatility, i.e., its ability to model, embed or approximate a wide
range of optimization problems. This topic is the subject of the next chapter of this thesis.

In conclusion, an interesting side effect of this line of research is that it has brought various
areas of research into contact, such as numerical issues for solving large linear systems, convex analysis
and all the domains concerned by its broad applicability. The next chapter presents the most famous
of these applications, with a special focus on how SDP can be used to derive relaxations of NP-hard
combinatorial problems or of particular instances of the Generalized Problem of Moments.
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Chapter 3

Special cases and selected applications

of Semidefinite Programming

A large part of the interest for SDP stems from the applicability of such problems to various areas of
optimization. Some problems can be solved exactly by SDP, for instance in control and system theory
where the existence of a certain semidefinite matrix is a necessary condition for the system stability,
according to the theory of Lyapunov. This specific constraint is actually a Linear Matrix Inequality
(LMI), which makes SDP appear as a tool tool tailored specifically for control optimization.

However, SDP has many other applications. It arises in a number of approximations algorithms
for NP-hard problems, in particular for quadratic and combinatorial optimization problems. These
algorithms are based on the design of tight relaxations of the problem that take the form of a SDP and
are therefore solvable in polynomial time. A famous problem that admits such a so-called semidefinite
relaxation is the Generalized Problem of Moments, a very versatile optimization problem that subsumes
various problems in global optimization, related for instance to algebra, probability and statistics or
financial mathematics.

In practice, it seems peculiar to need that a matrix variable X be positive semidefinite. Indeed,
this notion is not very intuitive and may seem quite far from real-life constraints. In order to understand
and take a global view on the processes that lead to the emergence of a semidefinite constraint, we
classified them into three main mechanisms :

− by requiring that the variable have one of the properties that define semidefiniteness;

− by applying results relying on the existence of a psd matrix ;

− by requiring that the variable have a very specific structure which induces semidefiniteness.

This brings up the question of how SDP encompasses various optimization problem. Generally,
this is done by converting one constraint of the problem into the requirement that a matrix defined as
a linear function of the problem variables be positive semidefinite. This is the subject of the second
section of this chapter.

The third section provides an overview of the use of SDP for relaxing combinatorial and quadratic
problems, that are gathered in the framework of Quadratically Constrained Quadratic Programs (QCQP).

The next section is devoted to a central problem of optimization, namely the Generalized Prob-
lem of Moments (GPM) and presents how SDP can be applied to this problem. It is interesting to
note the the dual of the GPM subsumes polynomial optimization (which itself subsumes combinatorial
optimization), while the primal deals with the optimization of a function of the moments of a random
variable, subject to various requirements of the moments of this random variable. Thus, this problem
establishes a bridge between the two objectives of the thesis, namely combinatorial aspect and uncer-
tainty in optimization. The fifth section describes other applications of SDP to optimization under
uncertainty, in particular the seminal results of SDP for robust optimization.
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Finally, in the sixth section, we discuss other well-known applications of SDP. We start by the
most famous of them, namely the use of SDP for control theory. Then we discuss the application of
SDP to the problem consisting of recovering a low rank matrix given a sampling of its entries. Then,
we briefly review how SDP can be used to tackle the trust region subproblem, i.e., the minimization
of a quadratic function subject to one quadratic constraint, a problem that is widely used in global
optimization. We are also interested in how SDP is used for the sensor-network localization problem
and we conclude this section by the recent application of SDP to data analysis problems.

3.1 Three mechanisms for identifying a semidefinite constraint

By contrast to Linear Programming, recognizing the underlying structure of a SDP is not intuitive and
often requires an advanced analysis of the problem. In this section, we identify three main mechanisms
that get a semidefinite constraint :

− by requiring that the variable have one of the properties that define semidefiniteness;

− by applying results relying on the existence of a psd matrix ;

− by requiring that the variable have a very specific structure which induces semidefiniteness.

3.1.1 Properties defining semidefiniteness

3.1.1.1 Nonnegative eigenvalues

One possible definition for a matrix X being psd is that all its eigenvalue are nonnegative, or equiv-
alently λmin(X) ≥ 0. As a consequence, there are some close connections between SDP and spectral
optimization : a simple example is given here, where the following SDP delivers the largest eigenvalue
of A : min t : tI −A < 0.

Another famous example is the maximization over x of the sum of the r largest eigenvalue of the
linear combination

∑

i Aixi, which comes to solve the following SDP :







min rt+ I •X
s.t. tI +X −∑i Aixi < 0

X < 0

3.1.1.2 Infinite number of constraints

The most commonly used definition of the positive semidefiniteness of a matrix M ∈ S
n is that xTMx ≥

0, ∀x ∈ R
n, or equivalently xxT •M ≥ 0, ∀x ∈ R

n. For fixed x, xxT •M ≥ 0 is a linear constraint, and
therefore M < 0 can be interpreted as infinite number of linear constraints. Moreover, from Corollary
2.1.11, M < 0 can also be used to replace the infinite number of constraints : x̃x̃T •M ≥ 0, ∀x ∈ R

n−1.

This process is typically used for obtaining a necessary and sufficient conditions for the nonneg-
ativeness of a quadratic function on R

n. Assume that z is a command variable and that the matrix
M(z) ∈ S

n defines the following quadratic function : f(z, x) = x̃M(z)x̃. Then, f(z, x) ≥ 0, ∀x ∈ R
n ⇔

M(z) < 0. In the same vein,

xTM(z)x ≥ max
k=1,...l

{cTk x}, ∀x ∈ R
n ⇔ M(z)−

(

0 1/2cTk
1/2ck 0

)

< 0, k = 1, ..., l
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3.1.1.3 Existence of a square-root

The existence of a square root, or equivalently, of a Gram decomposition, allows to model linear com-
bination of terms xT

i xj where x0, ..., xn are m-dimensional vectors and x0 =
(

1 ... 1
)

. Then, if
f(x0, .., xn) =

∑n
i,j=0 Ai,jx

T
i xj , then f(x0, .., xn)) = b can be replaced by A •X = b with X < 0. This

comes to replace xT
i xj by Xij . This substitution is an equivalence if rank(X) ≤ m, in particular if

m = n+ 1, otherwise it is only a relaxation.

3.1.2 Results relying on the existence of semidefinite matrix

3.1.2.1 Hessian of convex function

It is well-known that a differentiable function is convex if and only if its Hessian is everywhere psd.
This applies particularly to quadratic function since their Hessian is constant.

For example, assume that we aim at approximating a function f by a convex quadratic function
f̂ = xTPx + 2pTx + π in order to minimize the distance to a certain number of noisy estimates of

f : φi = f(xi) + ǫi, i = 1, ..., N . Then we aim at minimizing

∥

∥

∥

∥

∥

∥

∥







xT
1 Px1 + 2pTx1 + π − φ1

...
xT
NPxN + 2pTxN + π − φN







∥

∥

∥

∥

∥

∥

∥

k

while

satisfying P < 0. For k = 1, 2 or +∞, the resulting problem can be formulated as a SDP. This problem
is known as the convex quadratic regression problem and is often encountered in optimization, when we
aim at approaching a "black box" function by a convex quadratic function.

3.1.2.2 Schur’s complement

Recognizing Schur complements in a nonlinear expression may lead to the reformulation of the expression
as a LMI : let f, g : Rn → R and v : Rn → R

m some functions. Then,
{

‖v(x)‖2 ≤ f(x)g(x)
f(x) > 0

⇔
(

g(x) v(x)T

v(x) f(x)I

)

< 0

The right-hand term of the equivalence is a LMI whenever the functions v, f, g are linear. Remark
that the requirement f(x) > 0 can be reduced to f(x) ≥ 0 if g(x) ≥ 0 holds. Indeed, f(x) > 0 is required
since the equivalence does not hold for f(x) = 0 and g(x) < 0.

This process is widely used for reformulating problem as SDP, as discussed at Paragraph 3.2.
The general form corresponds to the rational optimization problem, whereas the case f(x) = 1 leads
to the reformulation of a QCQCP, and f(x) = g(x) corresponds to a SOCP. In this latter case f(x) ≥
0⇒ g(x) ≥ 0 and the requirement f(x) > 0 is therefore not necessary.

3.1.2.3 S-Lemma

S-Lemma is a special cases of the so-called S-procedure that aims at finding necessary and sufficient
conditions for the following implication to hold : qj(x) ≥ 0, j = 1, ...,m⇒ q0(x) ≥ 0, for some functions
qj : R

n → R, j = 0, ...,m.

An obvious sufficient condition for this implication to hold is the existence of λ ≥ 0 such that
L(x, λ) = q0(x) −

∑m
j=1 λjqj(x) ≥ 0, ∀x ∈ R

n. When this condition is also necessary, the S-procedure
is said to be lossless and this happens in two important special cases. The first one is treated within
the Farkas’ theorem 2.3.49 and concerns the case when q0 is convex and qj , j = 1, ...,m are concave.

In the special case where the functions qj are quadratic : qj(x) = x̃Qj x̃, the condition L(x, λ) ≥
0 ∀x ∈ R

n is equivalent to the LMI Q0−
∑m

j=1 λjQj < 0. Then the S-Lemma states that this condition
is necessary for m = 1.
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Lemma 3.1.1 S-Lemma
Let qj(x) = x̃TQj x̃, j = 0, 1 be quadratic functions such that q1(x̄) > 0 for some x̄ ∈ R

n. Then

[q1(x) ≥ 0⇒ q0(x) ≥ 0]⇔ [Q0 − λQ1 < 0 for some real λ ≥ 0]

The implication q1(x) ≥ 0 ⇒ q0(x) ≥ 0 is equivalent to yTQ1y ≥ 0 ⇒ yTQ0y ≥ 0. Indeed, if
y = (x0, x), with x0 6= 0, then yTQjy = x2

0qi(x/x0). If y = (0, x), the same holds by continuity. This
leads to the matrix form of the S-Lemma :

Theorem 3.1.2 S-Lemma
Let Q1 and Q0 be two symmetric n-matrices and assume that yTQ1y > 0 for some vector y ∈ R

n. Then
the implication yTQ1y ≥ 0⇒ yTQ0y ≥ 0 is valid if and only if Q0 − λQ1 < 0 for some real λ ≥ 0.

In conclusion, let us remark that assessing the lossless of the S-procedure is worthwhile, since
it means that any constraint valid over the set S = {x ∈ R

n : qj(x) ≥ 0, j = 1, ...,m} dominates a
positive combination of qj(x) ≥ 0, j = 1, ...,m. Consequently, if we are looking for "tight" constraint
over S, i.e., valid constraints that are not dominated by another valid constraint, it suffices to restrict
the search to the positive combination of qj(x) ≥ 0, j = 1, ...,m.

There is also a close connexion with the Lagrangian duality. Indeed, consider the problem
(P ) p∗ = min q0(x) : x ∈ S. Clearly, p∗ = max p : [x ∈ S ⇒ q0(x)− p ≥ 0]. Then the lossless of the S-
procedure guarantees the strong duality, since the problem becomes equivalent to max p : minx L(x, λ) ≥
p, λ ≥ 0, or equivalently maxλ≥0 minx L(x, λ), which is exactly the Lagrangian dual of (P ). Thus, the
lossless of the S-procedure is equivalent to strong duality.

3.1.2.4 S.o.s polynomials

Another way of introducing a semidefinite constraint is related to the possibility of formulating a
polynomial as a sum of squares of polynomials. A polynomial p of Pn,2d is said to be sum of squares
representable (s.o.s.) if there exists r polynomials pi of degree at most d such that p =

∑r
i=1 p

2
i .

This property is equivalent to the existence of an appropriate semidefinite matrix, as stated by
the following theorem :

Theorem 3.1.3
p s.o.s. ⇔ ∃M < 0 : p(x) = pn,d(x)

TMpn,d(x)

where M ∈ S
bn(d) and pn,d : Rn → R

bn(d) is a basis of Pn,d.

We refer the reader to Appendix 2.5 for the notations and definitions related to polynomials. In
particular, an example of basis of Pn,d is given in Appendix 2.5.3.

Relying on the fact that two polynomials are equal if and only if their coefficients are equal, the
latter condition can be formulated as follows :

∃M ∈ S
bn(d)
+ : Bd,κ •M = pκ, ∀κ ∈ N

n
2d

where the matrices Bd,κ are defined at Definition 3.1.4 and pκ is the coefficient of the polynomial p
corresponding to the monomial xκ. This typically corresponds to the feasible set of a semidefinite
program.

Definition 3.1.4 Bd,κ

For κ in N
n
2d, we define the matrices Bd,κ ∈ S

bn(d) such that

Bd,κ
κ1,κ2

=

{

1 if κ1 + κ2 = κ
0 otherwise
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3.1.3 Particular semidefinite matrices

3.1.3.1 The matrices xxT and x̃x̃T

For a given vector x ∈ R
n, the matrix xxT , as well as its augmented form x̃x̃T , are semidefinite matrices.

But the converse does not hold, as claimed by the following equivalences :

X = xxT ⇔ {X < 0, rank(X) = 1}
X = x̃x̃T ⇔ {X ∈ S

n, rank(X) = 1, X1,1 = 1}
X = x̃x̃T ⇔ {X < 0, rank(X) = 1, X1,1 = 1}

Such rank-1 matrices are frequently encountered, in particular in the representation of quadratic
forms.

3.1.3.2 Laplacian matrices

We consider a weighted graph G(V,E) as defined in Appendix 2.7, with V = [n], E = [m] and Wij(ij)∈E
the weights of the edges. Then its Laplacien matrix L, defined as the n-symmetric matrix in which
Lij =

∑

j Wij if i = j, −Wij otherwise, is positive semidefinite. This follows immediately from the
factorization L = BBT with B ∈ R

n,m indexed by V and E, such that Bve = We if v is an end of e, 0
otherwise.

3.1.3.3 Covariance matrices

The covariance matrix of a random vector (see Example 2.6.31) is necessarily psd. The converse also
holds, i.e., any psd matrix is the covariance matrix of a random vector. Let us consider a random vector
X : Ω→ R

n of probability distribution P and mean µ ∈ R
n. Then, Σ is psd since :

Σ =

∫

Ω

(X(ω)− µ)(X(ω)− µ)TP(ω)dω ⇒ uTΣu =

∫

Ω

(uT (X(ω)− µ))2P(ω)dω ≥ 0

3.1.3.4 Moment matrices

For a random vector X : Ω→ R
n, the truncated moment vector of order 2r is defined as (yκ)κ∈Nn

2r
where

yκ = E[Xκ] is the moment of X associated to κ (see Appendix Definition 2.6.30). The components of
this vector can be dispatched within a specific matrix, called moment matrix.

Definition 3.1.5 Moment matrix
The moment matrix of y is a symmetric matrix indexed by N

n
r and defined in the following way :

Mr(y) = {Mr(y)κ1,κ2
}κ1,κ2∈Nn

r
with Mr(y)κ1,κ2

= yκ1+κ2

Proposition 3.1.6 For any truncated moment vector y ∈ R
bn(2r), Mr(y) < 0.

Proof 3.1.7
uTMr(y)u =

∑

κ1,κ2

uκ1uκ2yκ1+κ2

=
∑

κ1,κ2

uκ1uκ2E[X
κ1+κ2 ]

= E[
∑

κ1,κ2

uκ1uκ2X
κ1Xκ2 ]

= E[(uTX)2] ≥ 0 �
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The question that arises is whether the converse also holds. Indeed, we generally use this matrix
in order to certify that a given y is a truncated moment vector, i.e., that there exists a random vector
X such that y be the truncated moment vector of X.

Then, Mr(y) < 0 is only a relaxation of this requirement, since Mr(y) < 0 is necessary but
generally not sufficient for y being a truncated moment vector. Combined to the condition Mr(y)0,0 = 1,
the sufficiency holds for n = 1, which corresponds to the Hamburger moment problem.

Finally, we remark that the constraint Mr(y) < 0 is a LMI since Mr(y) =
∑

κ∈∈Nn
2r
Bd,κyκ, where

the matrices Bd,κ are defined at Definition 3.1.4.

3.1.3.5 Localizing matrices

We extend the results of the previous paragraph by considering a random vector with a support S :
X : Ω→ S ⊂ R

n.

Assume that y is the truncated moment vector of order 2r of X. In the same spirit as for the
moment matrix, we define a matrix that involves y and and a polynomial p, which is called localizing
matrix associated with y and p.

Definition 3.1.8 Localizing matrix
The localizing matrix associated with y ∈ R

bn(2r) and p ∈ Pn,2d, is the matrix indexed by N
n
r−d and

defined as follows :

Mr−d(p, y)κ1,κ2
=
∑

κ∈Nn
2d

pκyκ+κ1+κ2

Mr−d(p, y) can also be seen as the moment matrix of the vector p∗y ∈ R
bn(2(r−d) where (p∗y)κ =

∑

κ′∈Nn
2d
pκ′yκ′+κ.

Proposition 3.1.9 For any truncated moment vector y ∈ R
bn(2r) supported on S, for any polynomial

p ∈ Pn,2d non-negative on S, Mr−d(p, y) < 0.

Proof 3.1.10 For any vector u ∈ R
bn(r−d),

uTMr−d(p, y)u =
∑

κ1,κ2∈Nn
r−d

∑

κ′∈Nn
2d

pκ′E(Xκ′+κ1+κ2)uκ1
uκ2

= E

(

∑

κ1,κ2∈Nn
r−d

(

∑

κ′∈Nn
2d
pκ′Xκ′

)

Xκ1Xκ2uκ1
uκ2

)

= E
(

p(X)(uTX)2
)

≥ 0 �

In particular, if S is a semi-algebraic set : S = {x ∈ R
n : pi(x) ≥ 0, i = 1, ...,m} where

pi ∈ Pn,2d, i = 1, ...,m, then Mr−d(pi, y) < 0 holds for i = 1, ...,m.

Remark 3.1.11 If p(x) = 1, Md(p, y) = Md(y) and Mr−d(p, y)(0,...,0),(0,...,0) = pT y.

Observe that Mr−d(p, y) can be expressed as a linear combination of y :
∑

κ∈Nn
2r

Br−v,κ(p) yκ with

the matrices Bκ
r−v(p) defined as follows.

Definition 3.1.12 Consider a polynomial p ∈ Pn,2v. We define the matrices Br−v,κ(p) ∈ S
bn(d) for

r ≥ v and κ ∈ N
n
d :

Br−v,κ(p)κ1,κ2
=

{

pκ−κ1−κ2
if κ ≥ κ1 + κ2

0 otherwise
for κ1, κ2 ∈ N

n
r−v

In particular, if p(x) = 1, Br,κ(p) = Br,κ, the matrix defined at Definition 3.1.4.
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3.2 Special cases of Semidefinite Programming

In this section, we show how some particular convex optimization problems can be embedded in a SDP
framework. The objective here is not to solve these problems as SDP, since a tailor-made algorithm is
generally more efficient, but to propose a unification framework for these problems in order to highlight
an underlying hierarchy in convex optimization problems : LP ⊂ CQCQP ⊂ SOCP ⊂ SDP.

3.2.1 Linear Programming

The formulation of a Linear Program in the form a SDP comes from the equivalence between the
componentwise nonnegativity of a vector v and Diag(v) being psd :

(LP ) =

{

min cTx
s.t. aTi x ≤ bi, i = 1, ...,m

≡







min cTx

s.t. Diag(b)−
m
∑

i=1

Diag(ai)xi < 0

3.2.2 Rational optimization

SDP can also be used to formulate some rational optimization problem, as for instance :

(P ) =

{

min (cT x)2

dT x

s.t. Ax ≤ b

and it is assumed that Ax ≤ b⇒ dTx > 0. Then

(P ) ≡







min t

s.t. t ≥ (cT x)2

dT x
Ax ≤ b

≡















min t

s.t.
(

t cTx
cTx dTx

)

< 0

Diag(b−Ax) < 0

The equivalence between these two formulations comes from the application of the Schur’s theo-
rem (Theorem 2.1.16), which is possible since dTx > 0 on the feasible set.

3.2.3 Convex Quadratically Constrained Quadratic Programming

We consider the following CQCQP, whose convexity is ensured by Pi < 0, i = 0, ...,m :

{

min xTP0x+ 2pT0 x+ π0

s.t. xTPix+ 2pTi x+ πi ≤ 0, i = 1, ...,m
≡







min t
s.t. xTP0x+ 2pT0 x+ π0 ≤ t

xTPix+ 2pTi x+ πi ≤ 0, i = 1, ...,m

There are two possibilities for formulating this problem as a SDP. The first one relies on the
equality : xTPix+2pTi x+πi = (Aix+ bi)

T (Aix+ bi)− cTi x− di, where Ai is the square root of Pi, and
bi, ci, di follow. Then, by applying Schur’s theorem (Theorem 2.1.16), the corresponding constraint can
be formulated as a LMI :

(Aix+ bi)
T (Aix+ bi)− cTi x− di ≤ 0⇔

(

I (Aix+ bi)
(Aix+ bi)

T cTi x+ di

)

< 0
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Another possibility is to apply the SDP relaxation of a QCQP (see Paragraph 3.3.2), which is
exact in the convex case. Then, the problem becomes :







































min

(

π0 pT0
p0 P0

)

•X

s.t.
(

πi pTi
pi Pi

)

•X ≤ 0, i = 1, ...,m
(

1 0
0 0

)

•X = 1

X < 0

The optimal value of this problem equals the optimal value of the corresponding CQCQP. How-
ever, the difficulty lies in the fact that the optimal solution of the SDP is not necessarily a rank-1 matrix
and therefore it might be difficult to recover an optimal solution of the CQCQP.

3.2.4 Second-Order Conic Programming

Let us consider the following SOCP :

(SOCP )

{

min cTx
s.t. ‖Ax+ b‖ ≤ cTx+ d

Again, the Schur’s complement is used to convert the SOCP constraint into the following LMI :

‖Ax+ b‖ ≤ cTx+ d⇔
(

cTx+ d (Ax+ b)T

Ax+ b (cTx+ d)I

)

< 0

For the case cTx + d = 0, we can not apply the Schur’s complement but then the Prop. 2.1.5 ensures
that Ax+ b = 0.

3.3 SDP for combinatorial and quadratic optimization

This section provides an overview of the use of SDP for relaxing combinatorial and quadratic problems,
that are gathered in the framework of Quadratically Constrained Quadratic Programs (QCQP). A
QCQP is an optimization problem with a quadratic objective function and quadratic constraints :

(QCQP )

{

minx∈Rn xTP0x+ 2pT0 x+ π0

s.t. xTPjx+ 2pTj x+ πj ≤ 0, j = 1, ...,m
(3.1)

for Pj ∈ S
n, pj ∈ R

n, πj ∈ R for j = 0, ...,m.

This problem is convex if and only if all the matrices Pj , ij = 0, ...,m are psd. Otherwise it is
NP-hard [141]. Indeed, it generalizes many difficult problems such as 0/1 linear programming, fractional
programming, bilinear programming or polynomial programming.

This field includes all the combinatorial problems that can be written as quadratic problem
with bivalent variables. Indeed, a bivalent constraint can be considered as a special case of quadratic
constraints, by formulating it as following :

xi ∈ {0, 1} ⇔ x2
i − xi = 0

xi ∈ {−1, 1} ⇔ x2
i − 1 = 0

xi ∈ {a, b} ⇔ (xi − a)(xi − b) = 0
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This kind of combinatorial problem is very widespread since it any bounded integer variable
x ≤ N can be written as a weighted sum of ⌊log(N)⌋+ 1 binary variables. It also includes polynomial
problems since any polynomial problems can be reduced to a quadratic problem at the expense of
additional variables. Thus, the application of these problems is therefore larger that it appears at first
glance, which explains why it is of primary importance in optimization.

A detailed review of this key problem is given in Appendix 3.5. We just recall that, because
of the complexity, this problem is generally solved via an enumerative approach such as a Branch &
Bound scheme and that obtaining a lower bound of the optimal solution is crucial for these procedures.
For this, two main approaches are available : RLT (see 3.5.3), which yields a linear program, or the
semidefinite relaxation described below. Those relaxations are not incompatible and can be combined
together, as shown by Anstreicher in its comparison [14].

The growing interest of researchers for semidefinite relaxation can be traced back to the milestone
result of Lovász [186] regarding the Theta function of a graph. Then a first semidefinite relaxation of
QCQP was proposed by Shor in 1987 [245]. However, the real breakthrough was arguably achieved by
Goemans & Williamsons [108] who opened the door on the application of the semidefinite relaxation to
approximation algorithm by giving an assessment of the potential of this relaxation.

This section is structured as follows. In a first part, we give a brief overview of the fundamental
results regarding semidefinite relaxation of combinatorial problems. Then, we present the standard
semidefinite relaxation of QCQP and some related theoretical considerations. In the third part, we
explain how the standard semidefinite relaxation can be reinforced and we expose some hierarchies of
semidefinite relaxation for 0/1-LP that reach optimality.

There are a number of references on this subject within the related literature. We refer the reader
to the most famous [107, 127, 176, 177, 259], with a special emphasis on [176] which is relatively recent,
very complete and comprehensive.

3.3.1 Seminal works

3.3.1.1 The theta function of Lovász

The first use of SDP to relax difficult combinatorial problem can be attributed to Lovász in its seminal
paper [186] published in 1979. This work addresses the problem of computing the stability number
α(G) of a graph G, i.e., the size of the maximal stable set of G. We recall that a set of vertices of G is
stable if none of its elements are joined by an edge of G. This problem is known to be NP-hard and is
of interest in graph theory.

A natural upper bound α(G) is given by χ(G), the minimum cardinality of a collection of cliques
Ci that together include all the nodes of G : minn : G ⊂ ∪ni=1Ci. Clearly, since each node in a stable
set must be in a different clique in a clique cover : α(G) ≤ χ(G). Moreover, for a perfect graph,
α(G) = χ(G).

In his paper, Lovász shows that a quantity called theta number θ(G), computed as the result of
a SDP, is such that α(G) ≤ θ(G) ≤ χ(G).















θ(G) = max eeT •X
s.t. I •X = 1

Xij = 0 for (ij) ∈ E
X < 0

(3.2)

To see that this problem produces an upper bound of α(G), it suffices to consider a maximum
stable set of G of cardinality α(G) and its indicator vector x ∈ {0, 1}|V |. As α(G) ≥ 1 (since any single
vertex is a stable set), we have eTx = α(G) > 0. Then we can define the matrix X = 1

eT x
xxT which

is a feasible solution of the problem (3.2) with an objective eeT •X = eTx = α(G). Consequently, the
optimal solution of the problem (3.2) is necessarily greater than α(G).
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Therefore, θ(G) is an upper bound of α(G) that coincides with α(G) in the case of a perfect
graph. Thus, SDP enables Lovász to develop the only known polynomial algorithm for the stability
problem in a perfect graph.

3.3.1.2 A polynomial approximation for MAX-CUT by Goemans & Williamson

In 1995, another connection between SDP and graph theory was established by Goemans & Williamsons
[108]. In this work, they introduced the use of SDP for approximation algorithms with a scheme that
has been taken up by several authors since then.

This work applies to the problem MAX-CUT : given a graph G = (V,E) with a weight we for
each edge e ∈ E, the objective is to find a 2-partition of V such that the edges across the partition, or
in the cut δ, have maximum total weight.

This problem can be formulated as a −1/1-QP : max 1
4x

TLx : x ∈ {−1, 1}, where L is the
weighted Laplacian of the graph (see Def. 3.1.3.2). This problem is a famous NP-hard problem [151].
Moreover, any unconstrained −1/1-QP can be reduced to a MAX-CUT problem up to a constant K
since any matrix P ∈ S

n can be written as the sum of a Laplacian matrix and of a diagonal matrix :

P = L+Diag((Mii −
∑

j∈[n],j 6=i

Pij)i∈[n])

Consequently, for any x ∈ {−1, 1}n, xTPx = xTPx +K, with K =
∑n

i=1 Pii −
∑

i 6=j,i,j∈[n] Pij .
More generally, in [128], the authors show how any 0/1-QP, with possibly linear term in the objective,
can be transformed into a MAX-CUT instance.

Goemans and Williamson showed that SDP yields a strong relaxation of this problem. The
distinguishing feature of their work was to offer a guarantee on the quality of the obtained bound,
stemming from the construction of a feasible solution via a randomized rounding procedure. Thus, by
denoting pSDP the optimal value of the semidefinite relaxation, pSOL the expected cost of the obtained
feasible solution and pOPT the MAX-CUT optimal value, we have :

0.87856. pSDP ≤ pSOL ≤ pOPT

This guarantee was outstanding since an example of graph 5-cycles was given in [83], with a ratio
pOPT /pSDP = 0.88445.., which indicates that the best possible ratio for is less than this value. These
values are represented on the diagram of the Figure 3.3.1.2.

Figure 3.1: Ratios of the MAX-CUT SDP relaxation

Since then, a theoretical bound established by Håstad in 2001, stating that approximating MAX-
CUT to within 16/17 = 0.941.. is NP-hard [126]. Moreover, it has been shown by Khot et al. [155]
that, if the unique games conjecture is true, then 0.87856 is the best possible approximation ratio for
MAX-CUT.
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In the sequel, we briefly recall how obtaining the semidefinite relaxation. We do not give much
details since this is similar to the standard semidefinite relaxation scheme, described at Paragraph 3.3.2.
The idea is to lift the problem to the space of symmetric matrices of size n by introducing the new
variable X = xxT . As xTLx = L • xxT , MAX-CUT is equivalent to :







max L •X
s.t. Xii = 1, i = 1, ..., n

X = xxT

Having X = xxT is strictly equivalent to requiring that X < 0 and rank(X) = 1. The rank
constraint being not convex, it is dropped and the semidefinite relaxation follows :







max L •X
s.t. Xii = 1, i = 1, ..., n

X < 0

The advantage of this relaxation is that it yields not only a bound but also a value for X, which
is exploited in order to derive a feasible solution via a randomized rounding procedure. To do so, a
Gram representation of X is determined, i.e., a collection of vectors V such that :

V = {v(1), · · · , v(n)} such that Xij = vTi vj , ∀i, j = 1, ..., n

Such a representation exists if and only if X is psd (see 2.1.14). Furthermore, ∀i,Xii = 1 implies
that ‖vi‖ = 1, so vi belongs to the unit sphere.

The next step, based on random hyperplane technique consists of rounding the value of vi into
{−1, 1}. For this, we draw h as a uniformly generated vector of the unit sphere, and we cut the unit
sphere by the hyperplane {x : hTx = 0} normal to h. Then, the feasible solution is built by assigning
the value 1 or −1 to xi according to whether vi lies on one side or the other of the hyperplane, as
illustrated on figure 3.3.1.2.

Figure 3.2: Randomized rounding procedure

Let us denote by vi △h vj the fact that vi and vj be separated by h. Then, the cost of the
obtained cut equals C(h) =

∑

(ij)∈E,vi△hvj
wij . As h is uniformly distributed over the sphere, the

probability of having vi △h vj is equal to θij/π, where θij is the angle between the vectors vi and vj :
cos(θij) = vTi vj = Xij . Then the expected value of the cost of the obtained feasible solution is :

E(C(h)) =
∑

(ij)∈E

wijP[vi △h vj ] =
∑

(ij)∈E

wij
θij
π
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Dividing it by the optimal value of the semidefinite relaxation, we get :

pSOL

pSDP
=

∑

(ij)∈E wij
θij
π

1/4L • cos(θ) =

∑

(ij)∈E wij2θij
∑

(ij)∈E wijπ(1− cos(θij))

The function θ 7→ 2θ
π(1−cos(θ) admits a minimal value equal to 0.87856... With nonnegative weights,

wij ≥ 0 enables to deduce the desired bound for pSOL

pSDP
. This result was extended to graph with negative

weights in [108].

In conclusion, this work has played a crucial role in the development of SDP-based applications.
It has been shown subsequently [127, 175] that the SDP relaxation can be embedded in the general
scheme of SDP standard relaxation of QCQP detailed at paragraph 3.3.2.

3.3.2 The standard SDP relaxation of QCQP

The standard SDP relaxation of a QCQP was introduced by Shor in [245]. Since then, it was proposed
by several authors for particular cases of QCQP. In particular, this relaxation was used in the seminal
work of Goemans & Williamson (see Paragraph 3.3.1.2) and forms the first rank of the Lovász-Schrijver
and Lasserre hierarchies of semidefinite relaxation for 0/1-LP.

This relaxation is very simple, but has a strong theoretical basis and gives rise to a variety of
possible interpretations. Its weak point is the treatment of purely linear terms and in particular, the
standard SDP relaxation of a 0/1-LP turns out to be strictly equivalent to its linear relaxation. For this
reason, we will see that a better way to handle linear constraints is to reformulate them as quadratic
constraints, as discussed in Section 3.3.3.

3.3.2.1 Definition

Let us consider the QCQP (3.1) and define Qj =

(

πj pTj
pj Pj

)

. Then the standard SDP relaxation of

QCQP is as follows :














inf Q0 • Y
s.t. Qj • Y ≤ 0, i = 1, ...,m

Qm+1 • Y = 1
Y < 0

dual with















sup ym+1

s.t. Q0 −
m+1
∑

j=1

yjQj < 0

yj ≤ 0, j = 1, ...,m

(3.3)

with Qm+1 =

(

1 0
0 0

)

, so that Qm+1 • Y = Y1,1.

3.3.2.2 Interpretation

Both the primal and the dual forms can be interpreted. Regarding the primal, the key point is the
reformulation of a quadratic form x̃TQx̃ into Q • x̃x̃T . Then the problem reads :







inf Q0 • Y
s.t. Qj • Y ≤ 0, j = 1, ...,m

Y = x̃x̃T

The constraint Y = x̃x̃T is non convex and captures all the difficulty of the problem. As stated in
Paragraph 3.1.3.1, this constraint is equivalent to Y < 0, Y1,1 = 1 and rank(Y ) = 1. Thus, the standard
SDP relaxation is obtained by dropping the rank-1 constraint.

79



Another way of viewing this relaxation is to observe that if Y =

(

1 xT

x X

)

, then Y < 0 is

equivalent to X < xxT by applying Schur’s complement, where the equivalence would require X = xxT .

An interpretation of the dual can be obtained by reformulating the QCQP into :
{

max p
s.t. x̃TQj x̃ ≤ 0, j = 1, ...,m ⇒ x̃TQ0x̃− p ≥ 0

Under this form, it is a direct application of the S-Lemma (see Paragraph 3.1.2.3). A sufficient
condition for the constraint to hold is that there exists nonpositive scalars yj , j = 1, ...,m such that
Q0−pQm+1−

∑m
j=1 yjQj < 0. The condition is sufficient but not necessary, which leads to a conservative

approximation of the dual, and therefore to a relaxation of the primal.

This condition is necessary for m = 1 (according to S-Lemma 3.1.1) and for Qj < 0 (according to
Farkas’ Lemma 2.3.49), provided that a strictly primal feasible solution exists, which comes to require
that strong duality holds.

In the convex case, i.e. Pj < 0, j = 0, ...,m, even when strong duality does not hold, we can
easily prove that the primal standard SDP relaxation is tight.

Proof 3.3.1 Let p∗ and p∗S denote the optimal values of the QCQP and of the standard SDP relaxation
respectively, and assume that p∗S < p∗.

Let Y =

(

1 xT

x X

)

be the optimal SDP solution, then x is feasible for the QCQP. Indeed, from

Fejer’s theorem (2.1.10), X − xxT < 0 and Pj < 0 imply that xTPjx ≤ Pj •X and therefore xTPjx+
2pTj x+ πj ≤ Pj •X +2pTj x+ πj ≤ 0. Using the same rational, it comes that the objective associated to
x is smaller to p∗S < p∗ which is a contradiction. �

Generally, if at least one matrix Pj , j = 0, ...,m is not psd, then the standard semidefinite
relaxation only provides a lower bound of the optimal solution of (3.1). It may even happen that this
relaxation be unbounded, even when all the original variables have finite bounds. An example of this
phenomenon is the minimization of a concave function over a bounded polyhedra. Here is this problem
and its standard SDP relaxation :











min xTP0x+ 2pT0 x

s.t. Ax ≤ b

0 ≤ xi ≤ 1, i = 1, ..., n

→



























inf P0 •X + 2pT0 x

s.t. Ax ≤ b

0 ≤ xi ≤ 1, i = 1, ..., n
(

1 xT

x X

)

< 0

with P0 4 0.

If the feasible set of the original problem is not empty and contains a solution x, then (x, xxT )
is a feasible solution of the semidefinite relaxation. Moreover, for any feasible solution (x,X) of the
semidefinite relaxation, (x,X ′) with X ′ − X ≻ 0 is also feasible and, according to Fejer’s theorem,
P0 •X ′ < P0 •X, so the minimum value goes to negative infinity.

This example points out an important shortcoming of the standard SDP relaxation which is the
treatment of the linear constraints. We will see that transforming the linear constraint into equivalent
quadratic constraints is a key tool to strengthen this relaxation.

3.3.2.3 Tightness of the standard SDP relaxation

In this section, we focus on the feasibility problem associated to a QCQP : ∃x ∈ R
n : q(x) = 0, where

q : Rn → R
m is a multi-dimensional quadratic mapping such that qj(x) = Qj • x̃x̃T . The restriction
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to equality constraint is not a loss of generality, since any quadratic inequality can be converted into a
quadratic equality by adding the square of a slack variable : qj(x) ≤ 0⇔ qj(x) + z2j = 0.

The problem is therefore equivalent to the question whether 0 ∈ q(Rn). The following theorem
[220] gives a new highlight on this statement :

Theorem 3.3.2

0 ∈ conv(q(Rn)) ⇔ 0 ∈ {y ∈ R
m : yj = Qj • Y, j = 1, ...,m for some Y ∈ S

n+1
+ , Y1,1 = 1}

In particular, if q(Rn) is convex, the semidefinite feasibility problem is equivalent to the quadratic
feasibility problem. But the question whether the image of a quadratic mapping is convex or not is
NP-hard [219]. The theorem 3.3.2 was established by using the following Lemma [220]:

Lemma 3.3.3 Let φ : Rn → S
n × R

n such that φ(x) = (xxT , x). Then conv(φ(Rn)) = {(X,x) ∈
S
n × R

n : X − xxT < 0}.

Going back to an arbitrary QCQP, this provides a new perspective on the standard SDP relax-
ation :







min P0 •X + 2pTj x+ π0

s.t. P0 •X + 2pTj x+ π0

(X,x) ∈ φ(Rn)
→







min P0 •X + 2pTj x+ π0

s.t. P0 •X + 2pTj x+ π0

(X,x) ∈ conv(φ(Rn))

Observe that conv({x ∈ F : Ax = b}) ⊂ {x ∈ conv(F) : Ax = b} and the inclusion is generally
strict. This explains the difference between the SDP relaxation and the relaxation that would be
obtained by replacing the whole feasible set by its convex hull.

3.3.2.4 Connection with Lagrangian relaxation

In this section, we recall the connection between the semidefinite and the Lagrangian relaxation of
QCQP [55, 91, 98, 177]. We form the Lagrangian of the problem 3.1 by associating a non-negative
variable yj , j = 1, ...,m to each constraints :

L(x, y) = xTP (y)x+ 2p(y)Tx+ π(y)

with P (y) = P0 +
∑m

j=1 yjPj , p(y) = p0 +
∑m

j=1 yjpj and π(y) =
∑m

j=1 yjπj . Then, the Lagrangian
dual of the problem is supy∈Rm

+
infx∈Rn L(x, y). For fixed y, this problem deals with the minimization

of the quadratic function qy(x) = xTP (y)x+ 2p(y)Tx+ π(y).

In appendix 2.5.3, we discuss the properties of quadratic functions and in particular we have the
following result : qy admits a minimum value on R

n if and only if there exists a real ym+1 such that
(

π(y)− ym+1 p(y)T

p(y) P (y)

)

< 0 and the minimal value is then larger than ym+1. Hence, the dual problem

is equivalent to sup ym+1 :

(

π(y)− ym+1 p(y)T

p(y) P (y)

)

< 0. This is exactly the dual form of the standard

SDP relaxation (3.3).

3.3.2.5 Another interpretation of the standard SDP relaxation

This section covers the work of Fujie and Kojima in [98], who proposed an original perspective on the
standard SDP relaxation. We consider the problem (3.1) and denote F its feasible set. The parametric
notations q(.;P, p, π) is used to denote q : x 7→ xTPx + 2pTx + π and therefore F = {x ∈ R

n :
q(x;Pj , pj , πj) ≤ 0, j = 1, ...,m}. We continue to denote by Qj the symmetric matrices such that
q(x;Pj , pj , πj) = x̃TQj x̃.
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We say that a constraint is valid for F if it holds for any points of F . We denote by Q the set of
all the convex quadratic inequalities that are valid for F : Q = {q(.;P, p, π) : P < 0, xTPx+2pTx+π ≤
0, ∀x ∈ F}. Then, the convex hull of F is completely determined by all the convex valid inequalities
(or all the linear valid inequalities) for F , i.e.,

conv(F) = {x ∈ R
n : q(x) ≤ 0, ∀q ∈ Q}

The difficulty is that it is generally not possible to determine completely Q. But there is a subset
of Q which is very simple to determine, that comprises all the non-negative combinations of the original
constraints : R = {q(.;P, p, π) : q(.;P, p, π) =

∑m
j=1 q(.;Pj , pj , πj) for some λ ∈ R

m
+ , P < 0} ⊂ Q.

Then Fujie and Kojima proved in [98] that for a QCQP with a linear objective cTx, the standard SDP
relaxation is equivalent to min cTx : q(x) ≤ 0, ∀q ∈ R.

More precisely, with FQ = {x ∈ R
n : q(x) ≤ 0, ∀q ∈ R} and FS = {x ∈ R

n : ∃X < xxT :

Qj •
(

1 xT

x X

)

≤ 0, j = 1, ...,m}, i.e, the projection on R
n of the standard SDP relaxation feasible set,

then the fundamental result of [98] is that FQ = cl(FS).

3.3.2.6 Application to 0/1 LP

In the particular case of a mixed 0/1 Linear Program, i.e. a problem where the only non-linear con-
straints are the binary constraints : x2

i = xi, the standard semidefinite relaxation is equivalent to the
continuous relaxation, i.e., the relaxation obtained by replacing xi ∈ {0, 1} by xi ∈ [0, 1].







min aT0 x− b0
s.t. aTj x ≤ bj , j = 1, ...,m

xi ∈ {0, 1}, i = 1, ..., n
(3.4)







min aT0 x− b0
s.t. aTj x ≤ bj , j = 1, ...,m

xi ∈ [0, 1], i = 1, ..., n
(3.5)

The standard SDP relaxations of the problems (3.4) and (3.5) are as follows :























min Q0 • Y
s.t. Qj • Y ≤ 0, j = 1, ...,m

Qm+1 • Y = 1
Di • Y = 0, i = 1, ..., n
Y < 0

(3.6)























min Q0 • Y
s.t. Qj • Y ≤ 0, j = 1, ...,m

Qm+1 • Y = 1
Di • Y ≤ 0, i = 1, ..., n
Y < 0

(3.7)

where Qj =

(

bj 1/2aTj
1/2aj 0

)

, j = 0, ...,m, Qm+1 =

(

1 0
0 0

)

and Di =

(

0 1/2eTi
1/2ei eie

T
i

)

.

With Y =

(

1 xT

x X

)

, Di • Y ≤ 0 is equivalent to Xii = xi. As a principal submatrix of Y ,
(

1 xi

xi Xii

)

< 0 which is equivalent to xi = Xii ≤ x2
i and therefore xi ∈ [0, 1]. Consequently, the SDP

relaxation is at least as tight as the continuous relaxation. We go further by proving their equivalence.

The proof follows the principle illustrated on Figure 3.3.2.6. Both the problems (3.4) and (3.5) are
QCQP and therefore we can apply the standard SDP relaxation. In the case of the continuous problem
(3.5), the latter is tight since the problem is convex. Then it suffices to show that both standard SDP
relaxation are equivalent.

Proof 3.3.4 Clearly, (3.7) is a relaxation of (3.6). Conversely, if Y ∗ is an optimal solution of the
problem (3.7), we show that there exists a feasible solution of the problem (3.6) that has the same
objective value.

Let v ∈ R
n+1 such that v1 = 0, vi+1 = Y ∗

1,i+1−Y ∗
i+1,i+1 for i = 1, ..., n. Observe that Di •Y ∗ ≤ 0

implies that v ≥ 0 and therefore Y ∗ +Diag(v) < 0 is a feasible solution of (3.6). The objective function
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Figure 3.3: Relationship between a 0/1 LP, its linear relaxation and their semidefinite relaxations

is not impacted by adding those diagonal terms, since the objective diagonal coefficients are zero, so the
optimal value of this solution equals Q0 • Y ∗. �

3.3.3 Divers way of reinforcing the standard semidefinite relaxation

A very general manner of tightening the standard SDP relaxation is to reformulate the considered
QCQP into an equivalent one, by adding valid quadratic constraints, then to apply the standard SDP
relaxation on the QCQP so obtained.

Several recipes have been proposed to generate such valid constraints. Generally, they exploit
particularly properties of the problem, such as linear constraints (and in particular, bounding con-
straints), or binary constraints. A very general recipe to generate valid quadratic constraints involves
two stages. First, generate quadratic constraints by multiplying all the linear constraints together.
Second, generate new valid constraints as non-negative combinations of the constraints thus obtained
and of the initial quadratic constraints.

As stated by the result of Fujie and Kojima (see Paragraph 3.3.2.5), it is useless to consider
the convex quadratic constraints that can be generate as a non-negative combination of the original
constraints, since all these constraints are implicitly considered by the standard SDP relaxation.

Let us consider the quadratic problem obtained by adding all the pairwise product of linear
constraints. From S-Lemma, we know that there may exist valid quadratic constraints that do not
formulate as a non-negative combination of quadratic constraints. This is for instance the case of the
well-known hypermetric constraints for 0/1 problems [128]. This motivates the investigation of other
methods for generating valid constraints. In the particular case of 0/1-LP, such a method, based on
the Lift & Project principle, was proposed by Lovász & Schrijver [187]. This method yields a hierarchy
of semidefinite relaxations that converges to the convex hull of the feasible set in a finite number of
iterations, and is presented in the second paragraph of this section. An experimentation and comparison
of the different methods for reinforcing the standard SDP relaxation can be found in Section 5.

3.3.3.1 Exploiting the linear constraints

As already mentioned, there is a systematic way of exploiting the linear constraint to generate valid
quadratic constraints :

− multiply all the linear constraints together ;

− make non-negative combinations of the constraints so obtained and of the initial quadratic
constraints of the problem.

However, this leads to an infinite number of constraints. Among them, we identify those which
was pointed out in the literature. We start by considering a linear equality constraint : aTx − b = 0.
Two possibilities were suggested in [91]. The first one is the square one : (aTx − b)2 = 0. Aside from

83



its conciseness, it offers the advantage of making useless the linear constraints. In other words, it is not
only valid, but its semidefinite relaxation is sufficient for the satisfaction of aTx− b = 0. Indeed,

aaT •X − 2baTx+ b2 = 0
aaT • (X − xxT ) ≥ 0

}

⇒ aaT • xxT − 2baTx+ b2 = (aTx− b)2 ≤ 0

On the other hand, this approach leads to a constraint Qi •X = 0 with Qi < 0, which prevents
the existence of primal strictly feasible solution, as explained in 2.2.1. For this reason, the second
possibility, inspired from RLT [241] (see Appendix 3.4.3.2), is preferable :

aTx = b⇔
{

aTx = b
(aTx− b)xi = 0, i = 1, ..., n

Another valid but not sufficient formulation was proposed in [213] : (aTx)2 − b2 = 0. This
constraint is included in our method since it can be viewed as (aTx−b)2+2b(aTx−b) = 0. Having 2b ≥ 0
is not necessary since for equality constraints, any linear (and no more non-negative) combinations of
constraints is valid.

Regarding inequality constraints, we start by making a key assumption, stating that the feasible
set is bounded and therefore there exists u, l ∈ R

n such that the constraints li ≤ xi ≤ ui, i = 1, ..., n
hold. If this is not the case in the original problem, this might be derived from an educated guess about
the solution. This allows to formulate any linear inequality aTx ≥ b as a range inequality b ≤ aTx ≤ c
and therefore we consider that all the linear inequality constraints are under this form. Then, the
following quadratic formulation proposed in [127, 177, 213, 230] immediately follows :

b ≤ aTx ≤ c⇔ (aTx− b)(aTx− c) ≤ 0⇔ xTaaTx− (b+ c)aTx+ bc = 0

Those constraints are convex since aaT < 0. Consequently, in the same way as for the equality square
reformulation, this reformulation makes the original constraint useless in the SDP relaxation.

In particular, the bounding constraint li ≤ xi ≤ ui becomes (xi − ui)(xi − li) ≤ 0. Combining
these constraints with the two linear constraints leads to the following valid constraint :

(xi − ui)(xi − li) + max{0, ui + li}(xi − ui)−min{0, ui + li}(li − xi) = x2
i −max{u2

i , l
2
i }

This is exactly what is suggested in [14] to bound the diagonal of X, in order to avoid that the
SDP relaxation be unbounded.

Furthermore, multiplying together the bounding constraints leads to the well-known RLT con-
straints [241], that form the first lifting of the three hierarchies of 0/1-LP [21, 187, 240]:

(ui − xi)(uj − xj) ≥ 0 ⇒ −Xij + uixj + ujxi − uiuj ≤ 0
(ui − xi)(xj − lj) ≥ 0 ⇒ Xij − uixj − ljxi + uilj ≤ 0
(xi − li)(uj − xj) ≥ 0 ⇒ Xij − lixj − ujxi + uj li ≤ 0
(xi − li)(xj − lj) ≥ 0 ⇒ −Xij + lixj + ljxi − lilj ≤ 0

In the same vein, a constraint aTx ≥ b with b ≥ 0 gives rises to the following valid constraints
(see [131, 176, 178]) :

− (i) (aTx)2 − baTx ≥ 0 (extended squared representation);

− (ii) baTx− b2 ≥ 0;

− (iii) (aTx)2 − b2 ≥ 0 (squared representation)

These constraints are embedded in our approach :

(i) (aTx)2 − baTx = (aTx− b)2 + b(aTx− b)
(ii) baTx− b2 = b(aTx− b)
(iii) (aTx)2 − b2 = (aTx− b)2 + 2b(aTx− b)
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Finally, multiplying aTx − b ≥ 0 by the bound constraints ui − xi ≥ 0 or xi − lj ≥ 0 also leads
to valid quadratic constraints. In particular, in the case of binary variables, we recover the lift step of
the rank 1 of the Sherali-Adams hierarchy.

In conclusion, we note that the treatment of equality constraints differs significantly from the
treatment of inequality constraint. Then the question that naturally arises is whether it is pertinent
to convert equalities into inequalities (by duplication) and vice-versa (by means of slack variables). To
the best of our knowledge, this question remains open and has not yet been thoroughly studied, neither
from the practical or theoretical point of view.

3.3.3.2 The Lovász-Schrijver hierarchy of semidefinite relaxation for 0/1 Linear Programs

In [187], Lovász and Schrijver opened the door to the use of SDP to relax arbitrary 0/1-LP. More
precisely, by applying a finite sequence of Lift & Project operations, their approach leads to a hierarchy
of semidefinite relaxation that attains the convex hull of the feasible set within at most n steps, with n
the number of binary variables. This approach admits a linear and a semidefinite variants.

We consider a polyhedron K = {x ∈ R
n : Ax ≤ b} and the polytope P = conv(K ∩ {0, 1}n).

Necessarily P ⊂ K and the Lovász-Schrijver hierarchy (or LS-hierarchy) consists of building some sets
Nr(K) such that :

P̃ ⊂ Nn(K) ⊂ ... ⊂ N1(K) ⊂ K̃

where K̃ and P̃ are respectively the homogenization of K and P .

N(K)r is built as follows. First we lift the set P from R
n to S

n+1 by introducing some product
variables {Yij}i,j=0,...,n such that Y0,i = Yi,0 = xi and Yi,j = xixj for i, j > 0. x ∈ P implies that
x2
i = xi, then Yii = xi = Yi,0.

These variables are gathered within a matrix Y ∈ S
n+1 indexed by {0, ..., n}. Then Yi,∗ =

xi

(

1 x
)

. As xi ≥ 0, necessarily Yi,∗ ∈ K. In the same way, Y0,∗−Yi,∗ = (1− xi)
(

1 x
)

∈ K. Finally,
such a matrix is psd and has rank 1. By relaxing these two latter conditions, we get the following set
M1(K) :

M1(K) = {Y ∈ S
n+1 : Diag(Y ) = Y0,∗, Yi,∗ ∈ K, Y0,∗ − Yi,∗ ∈ K, for i = 1, ..., n}

Then, N1(K) is the projection of M1(K) onto R
n+1 :

N1(K) = {y ∈ R
n+1 : y = Y0,∗ for some Y ∈M1(K)}

M+
1 (K) is a reinforcement of M1(K) obtained by requiring that the matrices be psd and N+

1 (K)
is its projection onto R

n+1 :

M+
1 (K) = {Y ∈ S

n+1
+ : Y ∈M1(K)}

N+
1 (K) = {y ∈ R

n+1 : y = Y0,∗ for some Y ∈M+
1 (K)}

This process is applied recursively, with Mr+1(K) = M1(Nr(K)) and similarly for the semidefinite
variant. From a theoretical point of view, two results are fundamental. First, it was shown in [187] that
this hierarchy attains P in less than n iterations. Furthermore, if a separation oracle is polynomially
available for K, then it can be used to determine such a separation oracle for M1(K) or M+

1 (K).
Then, by applying a result of [119], the projections N1(K) and N+

1 (K) also admit a separation oracle
polynomially computable.

Thus, in theory it is possible to optimize over any N+
r (K) or Nr(K) by using the ellipsoid method,

but this is not feasible in practice since this method is computationally prohibitive. Consequently, we
would like to compute a polyhedral description of Nr(K) or N+

r (K) in order to apply any method of
linear programming to optimize over it. The difficulty is that such a description is not easy to compute
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and may require a huge number of constraints. Furthermore, to determine the set N+
r (K), it is necessary

to determine all the previous set N+
r′ (K), for t′ = 1, ..., t− 1.

For this reason, these relaxation are said to be implicit. Instead of providing an explicit descrip-
tion of the convex hull, there are rather used to provide a valid constraint , violated by an incumbent
solution, in order to reinforce the linear relaxation K.

We remark that the set M+
1 (K) could be obtained by applying the standard SDP relaxation

to the QCQP obtained by multiplying all the linear constraints by xi and 1 − xi and we conclude
this paragraph by noticing that there exists three other hierarchies of linear relaxation for 0/1-LP,
based on integer rounding ([111], see Appendix 3.4.2.1) or on Lift & Project ([21, 240], see Appendix
3.4.3). Regarding SDP hierarchies, apart the Lovász-Schrijver one, one finds only the Lasserre hierarchy,
presented in another paragraph 3.4.3 due to its closeness to the Generalized Moment Problem. It was
proved in [173] that the Lasserre’s hierarchy can be viewed as a generalization of the Lovász-Schrijver
semidefinite hierarchy.

3.3.3.3 Cutting planes

In this section, we discuss some cutting planes that have been proposed to strengthen the standard
semidefinite relaxation. To a large extent, such works concern a more restrictive part of QCQP, mainly
MIQCQP, where the cuts exploits the fact the variables are integer. In the interest of concision, we
restrict ourselves to the cuts for pure MIQCQP, i.e., not MILP. We just mention that a large number
of cutting planes for MILP can be generated by applying the Lift & Project method, in particular by 3
hierarchies [21, 187, 240] that yields the convex hull of the feasible set in a finite number of iterations .

Another classical way to generate cutting planes for semidefinite relaxation comes from linear
disjunctions based on the integrity of the variables. Having aTx ≤ b or cTx ≤ d such that those both
constraints are incompatible can be expressed exactly by the quadratic constraint (aTx−b)(cTx−d) ≤ 0.

In [84], Deza and Laurent introduced an automatic method to generate such valid disjunctions
by exploiting integrity. For any integer vector b ∈ Z

n such that bT e is odd, 2bTx ≤ bT e − 1 or
2bTx ≥ bT e+1. These cuts, called hypermetric inequality are applied to semidefinite relaxation in [128].
The most famous of them are the so-called triangle inequalities, obtained for any indices i 6= j 6= k by
picking successively b = −ei − ej − ek, b = −ei + ej + ek, b = ei − ej + ek and b = ei + ej − ek :

(i) xi + xj + xk ≤ xij + xik + xjk + 1
(ii) xik + xjk ≤ xk + xij

(iii) xij + xik ≤ xi + xjk

(iv) xij + xjk ≤ xj + xik

Another contribution in this vein was made in [131]. The constraint aTx − b ≥ 0, with a and b
integer leads to the valid disjunction aTx− b ≤ 0 or aTx− b ≥ 1, i.e., (aTx− b)(aTx− b− 1) ≤ 0.

Some other disjunctions can be used to generate valid constraints. In [146], the authors discussed
the generation of valid quadratic cuts for 0/1 convex QCQP, i.e., a special case of QCQP where the
non-convexity is due exclusively to the binary constraints. Then, the generation of the cut follows the
well-known principle of a cutting plane algorithm [21], where a separation problem is solved at each
iteration in order to determine a cut that is both valid and violated by the current relaxed solution. The
relaxation solved at each iteration is a convex QCQP, and the cut generation is based on disjunctive
programming.

In [235], the authors proposed valid disjunctions based on the constraint A • (X − xxT ) ≤ 0 that
holds for any matrix A whenever X − xxT = 0 is valid. By picking A < 0, such a constraint may
improve the semidefinite relaxation, since the latter implies that A • (X − xxT ) ≥ 0. The difficulty is
that the quadratic term xTAx do not appear in the semidefinite relaxation. To overcome this difficulty,
this term is replaced by a valid linear disjunction, for a rank 1 matrix : A = ccT . The vector c is
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built as the best positive combination of eigenvectors of the incumbent solution X −xxT . Remark that
the disjunction generated here is not exclusive, which means that both parts of the disjunction may
be satisfied. In this case, multiplying the linear constraints to get a valid quadratic constraints in not
possible. Instead, a valid linear constraint is derived by applying Balas’ technique [18]. Finally, another
work from the same authors [236] uses a semidefinite program to compute valid quadratic convex cuts,
by getting rid of the lifted variables (projection).

3.3.4 Using SDP to convexify a Mixed-Integer QCQP

A recent approach to deal with MIQCQP is to use SDP to convexify the quadratic functions. Thus the
SDP is not used to relax the problem but to reformulate it.

The first work in this sense was carried out by Hammer & Rubin in 1970 [124], for a 0/1-QP with
linear constraints. Let f(x) = xTPx + 2pTx + π be the objective to minimize and define v the vector
with every components equal to λmin(P ). Since the variables are binary : x2

i = xi and it follows that
f ′(x) = xT (P −Diag(v))x+ 2(p+ v)Tx+ π is convex and reaches the same value that f over {0, 1}n.

This basic principle inspired Billionnet [49] which developed it in a more sophisticated way. The
idea is still to perturb the objective function but the semidefiniteness of the matrix P ′ so obtained is
ensured by a SDP, devised in order to keep the same objective values on {0, 1}n and to maximize the
tightness of the continuous relaxation of the problem. The motivation behind this method is to cast
the problem into a 0/1-CQCQP for which efficient solvers are available.

This method, called Convex Quadratic Reformulation, has since then been extended to larger
classes of problem. The problem addressed in [49] was a 0/1-QP with equality linear constraint and
it was extended by the same authors [46] to general MIQP with equality and inequality constraints.
Finally Letchford & Galli [179] developed the method for the very general case of MIQCQP.

3.4 Semidefinite relaxations of the Generalized Problem of Mo-
ments

3.4.1 Introduction

3.4.1.1 Definition of the Generalized Problem of Moments

The Generalized Problem of Moments (GPM) is an optimization problem where the optimization vari-
able is not a vector of an Euclidean space as usual, but a non-negative measure P on B(S), the Borel
σ-algebra on S ⊂ R

n :










min
∫

S f0(ω)P (ω)dω

s.t.
∫

S fi(ω)P (ω)dω = bi, i = 1, ...,m

P ∈M(S)

where M(S) denotes the set of non negative measures over B(S) (see Def. 2.6.3) and fi : S →
R, i = 0, ...,m are measurable functions. By considering each value P(ω), ω ∈ S as a variable, this
problem can be seen as a linear program with an infinite number of variable, or equivalently a semi-
infinite linear program.

As such, this problem is intractable and is essentially used as a theoretical modelling tool. How-
ever, there is a slight restriction of this problem that admits a hierarchy of SDP relaxation, i.e., a
sequence of SDP whose optimal values approaches the optimal value of the GPM as closely as desired,
although the problem remains NP-hard. This restriction consists of assuming that P is a probability
measure (or equivalently, that

∫

S P (ω)dω is bounded), that the functions fi, i = 0, ...,m are polynomials
and S is a semi-algebraic set (see Def. 2.5.5).
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This is the origin of the name of the problem, since in this case, the problem involves linear
combination of the moments yκ (see Def. 2.6.30) of the random variable associated to the probability
measure P :















































min EP





∑

κ∈Nn
d

f0κω
κ





s.t. EP





∑

κ∈Nn
d

fiκω
κ



 = bi, i = 1, ...,m

P(S) = 1

P ∈M(S)

≡











































min
∑

κ∈Nn
d

f0κyκ

s.t.
∑

κ∈Nn
d

fiκyκ = bi, i = 1, ...,m

yκ = EP (ωκ) , κ ∈ N
n
d

y(0,...,0) = 1

P ∈M(S)

(3.8)

where fi are of d-degree polynomials such that fi(ω) =
∑

κ∈Nn
d
fiκω

κ.

Remark that y is a vector indexed by the element of Nn
d = {κ ∈ N

n :
∑n

i=1 κi ≤ d} and has
dimension bn(d) =

(

n+d
d

)

, that might get very large.

The key concept to be defined is that of S-truncated moment vector, i.e, for a finite sequence y,
is their a probability measure P supported on S such that y be the sequence of moments associated to
P. Indeed, this characterization captures all the difficulty of the problem, which does not involves the
probability measure P any more :



































min
∑

κ∈Nn
d

f0κyκ

s.t.
∑

κ∈Nn
d

fiκyκ = bi, i = 1, ...,m

y(0,...,0) = 1

y is a S-truncated moment vector

Subsequently, the constraint imposing the support S are referred to as support constraints,
whereas the other constraints are denoted moments constraints.

The connection with SDP comes from the moment matrix and localizing matrices associated to
y (see Def. 3.1.5 and Def. 3.1.8) since their semidefiniteness are necessary for y to be a S-truncated
moment vector. It turns out that a connection can also be established between SDP and the dual of
the GPM, which involves polynomial non negativity condition. This connection relies on the fact that
a sufficient condition for the non negativity of a polynomial is the existence of a s.o.s. representation,
which can be formulated as a LMI (see 3.1.2.4).

The GPM proved to be a powerful tool for modelling some complex problems and enabled for
instance the emergence of the distributionnally robust optimization framework [270]. Polynomial opti-
mization, and more specifically 0/1 polynomial optimization, can be modeled as particular instance of
the GPM, and we will see some specificity of the Lasserre’s hierarchy for these problems. For a more
detailed discussion on this problem, we refer the reader to the handbook [12] and the references therein
[171, 174, 193, 209].

3.4.1.2 Historical overview

This problem has sprouted from an attempt of unification of the works of famous mathematicians like
Chebyshev, Markov or Hoeffding, on the existence and uniqueness of a probability measure having
specified moments and support, and on how deriving a bound, tighter as possible, on the expected
value of such probability measures. This problem can be cast in a particular instance of the GPM
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called Classical Problem of Moment (CPM) by taking f0(ω) = ω and fi the monomials of degree up to
d :







min EP[ω]
s.t. EP[ω

κ] = bκ, ∀κ ∈ N
n
d

P[ω ∈ S] = 1

The origin of this problem can be traced back to the early work of Stieltjes that defined the
Moment Problem, as the above problem with n = 1 and S = R+. Then, the problem was extended to
S = R by Hamburger in 1921 and to a bounded interval (S = [0, 1]) by Hausdorff in 1923.

The fundamental connection with psd matrices was established by Hamburger with the key
result stating that a sequence is feasible for its problem if and only if its moment matrix is positive
semidefinite :

Theorem 3.4.1 Hamburger’s theorem
Let us consider a vector y ∈ R

2d+1 indexed by 0, ..., 2d with y0 = 1. Then y is a R-truncated moment
vector if and only if the moment matrix associated to y, Md(y), is positive semidefinite.

In this particular case, Md(y) ∈ S
d+1 with Md(y)i,j = yi+j for i, j = 0, ..., d. In the same vein,

for S = R+, a similar result involves both the moment and localizing matrices :

Theorem 3.4.2
Let us consider a vector y ∈ R

2d+1 indexed by 0, ..., 2d with y0 = 1 and define the polynomial p ∈ P1,1

such that p(x) = x. Then y is a R-truncated moment vector if and only if Md(y) < 0 and Md(p, y) < 0,

where Md(p, y) =











y1 y2 · · · yd
y2 y3 · · · yd+1

...
...

. . .
...

yd yd+1 · · · y2d−1











is the localizing matrix associated to the polynomial p.

Finally, a similar result holds for the case where S = R
n and d = 1 :

Theorem 3.4.3
Let y be a sequence indexed by the elements of Nn

2 with y(0,...,0) = 1. Then R
n-truncated moment vector

if and only if M1(y) < 0, with

M1(y) =











y(0,...,0) y(1,...,0) · · · y(0,...,1)
y(1,...,0) y(2,0,..,0) · · · y1,...,1

...
...

. . .
...

y(0,...,1) y(0,...,1,1) · · · y(0,...,2)











Motivated by the earlier work of Curto and Fialkow [77] about moment matrices, Lasserre ex-
tended the connection between truncated moment vectors and semidefinite matrices to the polynomial
restriction of the GPM.

3.4.1.3 Duality

In this section, we establish the duality between the GPM and a problem whose constraints consists of
the non negativity of some polynomials over S. We consider a "linear" formulation of the polynomial
restriction of the GPM (3.8) obtained by considering each value P(ω), ω ∈ S as a variable. Then the
problem is a semi-infinite LP with non-negative variables and its dual is therefore a Linear Program
with a finite number of variables but infinitely many constraints :















max
m
∑

i=1

bizi

s.t.
m
∑

i=1

fi(ω)zi ≤ f0(ω), ∀ω ∈ S
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The whole constraints are equivalent to the non-negativity of the polynomial fz on S, where
fz(ω) = f0(ω)−

∑m
i=1 zifi(ω) is a polynomial whose coefficients are linear functions of z. We refer the

reader to [174] for a more theoretical vision of the duality between moment vectors and non-negative
polynomials.

The weak duality can be easily established. Let p∗, d∗ and and P∗, z∗ be the optimal values and
the optimal solutions of the primal and dual GPM respectively :

d∗ =

m
∑

i=1

z∗i bi =
m
∑

i=1

z∗i

∫

S
fi(ω)P

∗(ω)dω =

∫

S

m
∑

i=1

z∗i fi(x)P
∗(ω)dω ≤

∫

S

f0(ω)P
∗(ω)dω = p∗

In [145], Isii proved the following theorem that provides Slater’s type sufficient conditions for
strong duality.

Theorem 3.4.4 The combination of the three following conditions is sufficient for the strong duality
to hold.

(i) the functions fj , j = 0, ..., l are linearly independent;

(ii) b is an interior-point of the closure of the moment space, defined as {b ∈ R
l+1 : ∃P ∈ M(S) :

bj = EP(fj(ξ)), j = 0, ..., l} ;

(iii) both the primal and dual problem have feasible solutions.

In particular, in the case of the CPM, strong duality holds if b is an interior-point of the set of
the moment vectors.

3.4.2 Non-negative polynomials and sum of squares

As mentioned before, there is a duality relation between the constraint that a vector be a S-feasible
moment sequence and the constraint that a polynomial be non-negative over S. This leads to the study
of such polynomials.

3.4.2.1 Non-negativity of a polynomial on R
n

Definition 3.4.5 Positive and nonnegative polynomial
A polynomial p is positive (resp. nonnegative) on S if p(x) > 0 (resp. p(x) ≥ 0) for all x ∈ S.

We denote by Pn,d
+ and Pn,d

++ the set of d-degree polynomials that are nonnegative and positive over
R

n respectively. Note that these sets are empty when d is odd. We are interested in characterizing the
fact that p ∈ Pn,d

+ , that is finding necessary and/or sufficient checkable conditions on the coefficients of
p so that this property be satisfied. Such conditions are called nichtnegativstellensatz and the equivalent
for characterizing the positivity of a polynomial are called positivstellensatz.

To this end, the property that a polynomial be s.o.s. (see Paragraph 3.1.2.4), which implies the
non-negativity on R

n, is crucial. Let denote Σn,d the polynomials in Pn,d that are s.o.s. : Σn,d ⊂ Pn,d
+ .

This relationship was made more precise by Hilbert in 1888.

Theorem 3.4.6 Hilbert’s theorem

Σn,d = Pn,d
+ ⇔ n = 1, d = 2 or (n, d) = (2, 4)
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Thus, apart three special cases ((n, 2d) = (1, 2d), (n, 2), (2, 4)), there exists some non-negative
polynomials that do not admit a s.o.s representation, the most famous example being the Motzkin
polynomial x2y4 + x4y2 − 3x2y2 + 1. The argument used to show that this polynomial is not a sum of
square can be extended when one adds a constant to the polynomial. This yields an example of positive
polynomial that is not a sum of square and show that the inclusion Σn,d ⊂ Pn,d

++ is also strict.

Thus the s.o.s. property is generally not stronger than the non-negativity. However it is very
interesting from a computational viewpoint. Indeed, while the problem of testing the nonnegativity of
a polynomial of degree greater than four is NP-hard, one can test efficiently whether a polynomial is
s.o.s. by solving a SDP, as discussed in Paragraph 3.1.2.4 :

Theorem 3.4.7 Sum of square representation
Let us consider a polynomial p of even degree 2d. Then p ∈ Σn,2d if and only is s.o.s. if and only there

exists a matrix Q ∈ S
bn(d)
+ such that

∑

κ1+κ2=κ
Qκ1,κ2 = pκ, ∀κ ∈ N

n
d .

Proof 3.4.8 First observe that the equalities
∑

κ1+κ2=κ Qκ1,κ2 = pκ means that p(x) = z(x)TQz(x)

with z(x) the vector of d-degree monomials z(x) = (1, x1, ..., xn, x
2
1, x1x2, ...x

d
n).

Then, if Q = UΛUT is the eigenvalue factorization of Q : p(x) =
∑

i λi(Uz(x))2i and Q < 0
implies that λi ≥ 0 and therefore p is s.o.s.

Conversely, if p(x) =
∑

i ui(x)
2, then the polynomials u are at most of degree d and ui(x) = uTi z.

Then Q = UUT where U is the matrix with column vectors ui. �

Then the s.o.s condition can be formulated as :
{

Bd,κ •Q = pκ, ∀κ ∈ N
n
d

Q < 0
with the matrices

Bd,κ from Def. 3.1.4. Thus, deciding whether a polynomial admits a s.o.s. representation can be settled
by solving a SDP whose variable Q has size bn(d) and with bn(2d) equations.

In the three particular cases of Hilbert’s theorem 3.4.6, this s.o.s. condition is equivalent to
the non-negativity of the polynomial. In particular, d = 2 corresponds to the very interesting case of
quadratic functions that are studied at Appendix 2.5.3. Very briefly, we recover the fact that p(x) =

xTPx+ 2pTx+ π is non negative over R
n if and only if Q =

(

π pT

p P

)

< 0.

3.4.2.2 Non-negativity of a polynomial over a semi-algebraic set S

The univariate case : n = 1
With n = 1, the Theorem 3.4.6 states that a polynomial p is nonnegative over R if and only if it is a
sum of square. We have just seen that this is equivalent to require that a certain matrix made of the
coefficient of p be psd. This result can be extended to the nonnegativity of p over some smaller sets S,
by applying the Theorem 3.4.6 to p(f(t)) ∀t ∈ R with f such that f(R) = S. This method was applied
in [41] which leads to semidefinite conditions for a polynomial being non-negative on the following set :

− S = R;

− S = R+ ;

− S = [0, a], a > 0 ;

− S = [a,+∞[ ;

− S =]−∞, a] ;

− S = [a, b], a < b ;

In the case where S is an union of such sets, it suffices to impose these conditions over all the
subsets that constitute S.
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General case
Clearly, the non-negativity of a d-degree polynomial p over a semi-algebraic set S = {x ∈ R

n : gk(x) ≥
0, k = 1, ..., l} can be conservatively approximated by the following condition :

p = u0 +

l
∑

k=1

ukgk for some uk ∈ Pn,d
+ , k = 0, ..., l

A sufficient condition for uk ∈ Pn,d
+ is uk ∈ Σn,d, and therefore another conservative approximation is :

p = u0 +

l
∑

k=1

ukgk for some uk ∈ Σn,d, k = 0, ..., l

Under suitable conditions on S, the Putinar’s theorem 2.5.13 states that the latter conservative
approximation is in fact equivalent to the positivity of p on S. This allows to reduce the conservativeness
of the approximation as much as desired. Indeed, the following condition : p(x) ≥ 0, ∀x ∈ S implies
that ∀ε > 0, p(x) + ε > 0, ∀x ∈ S. This polynomial approximates p within ε and its positivity can be
determined by a SDP. Thus, we are able to asymptotically solve the problem of the nonnegativity of p
over S by a sequence of SDP.

3.4.3 Semidefinite relaxation of the GPM : the Lasserre’s hierarchy

3.4.3.1 Definition

The previous sections provide all the necessary elements to build the hierarchy of semidefinite relaxations
of the GPM and of its dual. This hierarchy was proposed by Lasserre that proved its convergence to
the optimal value of the GPM without assuming strong duality but provided that S satisfies certain
conditions (in particular, compactness). We consider the following polynomial instance of the GPM
and its dual :







inf
∫

S f0(ω)µ(ω)dω
s.t.

∫

S fi(ω)µ(ω)dω = bi, i = 1, ...,m
µ ∈M(S)







sup bT z
s.t. f0(ω)−

∑m
i=1 zifi(ω) ≥ 0, ∀ω ∈ S

z ∈ R
m

with S = {x ∈ R
n : gk(x) ≥ 0, k = 1, ..., l}. fj , j = 0, ...,m and gk, k = 1, ..., l are polynomials of

degree at most d and f0(0) = 0. Furthermore, we assume here that the constraint indexed by i = 1
corresponds to P being a probability distribution, i.e., f1(ω) = 1 and b1 = 1.

Then, the primal problem is equivalent to


























min
∑

κ∈Nn
d

f0κyκ

s.t.
∑

κ∈Nn
d

fiκyκ = bi, i = 1, ...,m

y is a S-truncated moment vector

As discussed in paragraph 3.1.3.4, a necessary condition for y to be a truncated moment vector
is that its moment matrix be positive semidefinite. This matrix can be expressed as a LMI, by means
of the matrices Bκ,d defined at Def. 3.1.4 :

y ∈ R
bn(2d) is a truncated moment vector⇒

∑

κ∈Nn
2d

yκB
κ,d < 0
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It was also noticed in the paragraph 3.1.3.5 that for any 2v-degree polynomial p that is non nega-
tive over S, then the localizing matrix Mr−d(p, y) associated to y and p is positive semidefinite. In partic-
ular, as S is defined through the nonnegativity of the polynomials gk, k = 1, ..., l, then Mr−vk

(gk, y) < 0
holds for k = 1, ..., l, with vk such that deg(gk) = 2vk or deg(gk) + 1 = 2vk depending on the parity of
deg(gk).

Let g0 be the 0-degree polynomial such that g0(x) = 1. We observed that Mr(g0, y) = Mr(y).
Thus, we have necessary conditions expressed as LMI for y to be a S-truncated moment vector, which
leads to the following semidefinite relaxation of the GPM :

(Qr)



















q∗r = inf f0
T y

s.t. fi
T y = bi, i = 1, ...,m
∑

κ∈Nn
2r

Br−vk,κ(gk)yκ < 0, k = 0, ..., l

y ∈ R
N

n
2r

(3.9)

Similarly to vk, let wj be such that deg(fj) = 2wj or deg(fj)+1 = 2wj . If p∗ denotes the optimal
value of the GPM, then q∗r ≤ p∗ for r ≥ r0 = max{{vk}k=0,...l, {wj}j=0,...m}.

Note that Mr−v(p, y) is a principal submatrix of Mr+1−v(p ∗ y) and therefore Mr+1−v(p, y) <

0 ⇒ Mr−v(p, y) < 0. As a consequence, any feasible solution of (Qr+1) leads (by truncation) to a
feasible solution of (Qr) with the same objective value and therefore q∗r ≤ q∗r+1.

It turns out that the dual of the obtained SDP can be interpreted as a conservative approximation
of the dual of the GPM. Recall that the unique constraint of the dual GPM is the constraint of non-
negativity of the polynomial fz = f0 −

∑m
i=1 zifi on S. According to Putinar’s theorem, (Theorem

2.5.13), under certain conditions on S, fz(ω) > 0 on S is equivalent to the existence of l + 1 s.o.s.
polynomials uk, k = 0, ..., l such that fz =

∑

k=0,...,l ukgk.

Replacing fz(x) ≥ 0 on S by fz(x) > 0 on S and assuming that the polynomials uk, k = 0, ..., l
are at most of degree 2(r − vk) leads to the following conservative approximation of the dual GPM :

(Q∗
r)







































sup bT z

s.t.
l
∑

k=0

ukgk = f0 −
∑m

i=1 zifi

Br−vk,κ •Xk = ukκ, ∀κ ∈ N
n
2(r−vk)

, k = 0, ..., l

Xk < 0, k = 0, ..., l
z ∈ R

m, uk ∈ R
bn(2(r−vk))

Xk ∈ S
r−vk , k = 0, ..., l

The equivalence between the requirement that the polynomials uk, k = 0, .., l be s.o.s. and the
semidefinite constraint results from Theorem 3.4.7.

Thus, a relation of duality between these two problems begins to take shape. It remains to replace
l
∑

k=0

ukgk by its expression in function of Xk. For κ ∈ N
n
r :

{

l
∑

k=0

ukgk

}

κ

=
l
∑

k=0

[

∑

κ1+κ2=κ
gkκ1

ukκ2

]

=
l
∑

k=0

[

∑

κ1+κ2=κ
gkκ1

(Br−vk,κ2 •Xk)

]

=
l
∑

k=0

[(

∑

κ1+κ2=κ
gkκ1

Br−vk,κ2

)

•Xk

]

=
l
∑

k=0

Br−vk,κ(gk) •Xk
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This makes the relation of duality to appear :

(Q∗
r)



























sup bT z

s.t. f0κ −
m
∑

i=1

zifiκ =
l
∑

k=0

Br−vk,κ(gk) •Xk, ∀κ ∈ N
n
2(r−r0)

Xk < 0, k = 0, ..., l

z ∈ R
m, Xk ∈ S

r−vk , k = 0, ..., l

If we assume that strong duality holds between (Qr) and (Q∗
r), we can easily deduce the conver-

gence of this hierarchy of relaxation. Indeed, under appropriate conditions on S, namely the Putinar’s
conditions (see Def. 2.5.12), the Putinar’s theorem states that there exists r ≥ r0 such that the
semidefinite conditions of (Q∗

r) are sufficient for the strict positivity of fz on S. From this, Lasserre
[171] deduced that ∀ǫ, ∃r(ǫ) : d∗ − ǫ ≤ d∗r for any r ≥ r(ǫ). Combining this with weak duality, it comes
that d∗ − ǫ ≤ d∗r ≤ p∗r ≤ p∗. From the construction of (Qr) it comes that p∗r ≤ p∗r+1 ≤ p∗. Then it
follows immediately from strong duality that limr→+∞ p∗r = p∗. This result was also proved without
the strong duality assumption, see [171].

3.4.3.2 Application to polynomial optimization

Let us consider a polynomial optimization problem :






p∗ = min f0(x)
s.t. gk(x) ≥ 0, k = 1, ..., l

x ∈ R
n

or equivalently, p∗ = minx∈S f0(x) where S = {x ∈ R
n : gk(x) ≥ 0, k = 1, ..., l}.

Then the relation between this problem and the GPM is double-sided. Indeed, this problem can
be formulated either as a moment problem or as a polynomial non-negativity problem. This latter
formulation is obvious : p∗ = max z : f0(x)− z ≥ 0, ∀x ∈ S, whereas the moment formulation relies on
the following proposition (see [174] for the proof) :

Proposition 3.4.9 minx∈S f0(x) =

{

min
∫

S f0(ω)P(ω)dω
s.t. P ∈M(S)

Consequently, any polynomial optimization problem can benefit from the GPM results. For
instance in the case of a QCQP, i.e., a polynomial problem where all the involved polynomials are
of degree 2, the rank 1 of the Lasserre’s hierarchy corresponds to the standard SDP relaxation (see
paragraph 3.3.2).

Another famous kind of polynomial problems are the 0/1-polynomial problems, whose feasible
set are included in {0, 1}n. This implies automatically that S satisfies the Putinar’s conditions and
the convergence of the hierarchy is ensured. Furthermore, the corresponding SDP are simplified to a
specific form with at most 2n primal variables, regardless of the rank in the hierarchy. To see this, it
suffices to recall that the primal variable yκ represents the moment associated to κ, i.e.,

∫

S ωκP(ω)dω.
If ω ∈ {0, 1}n, then ωκ = ωκ′

for any κ′ with κ′
i ≥ 1 if κi = 1, 0 otherwise. Consequently, it suffices to

define the variable yκ for κ ∈ {κ ∈ N
n : κ1 ≤ 1, i = 1, ..., n}, a set that contains only 2n elements.

Finally, Lasserre proved in [170] that in the case of 0/1 programs, the feasible set of the SDP
relaxations reaches the convex hull of the feasible set of the original problem in at most n iterations.
As a consequence, the optimal value is attained in at most n iterations. We refer the reader to [132,
168, 169, 172] for complementary reading on this subject.
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3.4.3.3 Comparison with other hierarchies of relaxation for 0/1-LP

Embedding of the Sherali-Adams hierarchy of linear relaxations
The Sherali-Adams hierarchy of relaxations for 0/1-LP is a sequence of Linear Programs that leads to
the full representation of the convex hull of the original problem. This process is described at Appendix
3.4.3.2, following the original paper [240].

An alternate view of this hierarchy is proposed in [173], that makes it to appear as a subcase of the
Lasserre’s hierarchy. A crucial element for this reformulation lies in an equivalence between a set of linear
constraints (since the Sherali-Adams relaxations are linear programs) and a semidefinite constraint, that
can roughly be understood as the equivalence between a matrix being psd and all its eigenvalues being
nonnegative. Thus, it appears that all the linear constraints of the Sherali-Adams relaxation can be
gathered within some semidefinite constraints, that concern some principal submatrices of the matrices
Mn(y) and Mn−vk

(gk, y) of the Lasserre’s hierarchy.

Comparison with the Lovász-Schrijver hierarchy of semidefinite relaxations
The comparison with the Lovász-Schrijver hierarchy of semidefinite relaxations, described at paragraph
3.3.3.2, was also presented in [173]. It reveals that at a same rank r, the Lasserre relaxation is tighter
than the Lovász-Schrijver relaxation. But the latter involves O(nr−1) matrices of order n + 1, i.e.,
O(nr+1) variables, instead of one matrix of order O(nr), i.e., O(n2r) variables.

3.4.4 Applications

The moment paradigm was exploited in a variety of applications by Bertsimas and al. which are
summarized in the Chapter 16 of [259]. They include porfolio management, queuing network and
probability bounding, as detailed below.

3.4.4.1 Probability

The problem of finding the best possible bound on the probability that the random vector X belongs
to a set S ∈ R can be modeled as a (CMP ), by taking for f0 the indicator of S denoted ✶S :

P[X ∈ S] =

∫

S

P(ω)dω =

∫

R
✶S(ω)P(ω)dω

For example, in the electricity generation context, we are able to determine the minimal and
maximal probability that some may satisfy a given demand, whereas these means of production are
subject to random failures, whose mean is known.

The probability bounding problem deals with the minimization of a probability P[ξ ∈ K] on a
set of probability distribution with known moments, where K is a semi-algebraic set. It is an instance
of the GPM where the function fj are some monomials and the objective function h is a piecewise
polynomial, namely the indicator function of K. If K = {ξ ∈ R

n : hk(ξ) ≥ 0, k = 1, ..., l}, then the
considered probability is equivalent to the following joint probability :

P[ξ ∈ K] = P[hk(ξ) ≥ 0, k = 1, ..., l]

3.4.4.2 Portfolio management

We consider here a problem that concerns European Call option, that is the right, but not the obligation,
to buy an agreed quantity of a particular asset at a certain time (the maturity T ) for a certain price
(the strike s). The buyer pays a fee for this right and he hopes that the price of the asset will rise in
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the future so that he makes a gain up to the strike price. Thus, if ω is the price of the asset at time T ,
the payoff of such an option is max{0, ω − s}.

It has been shown that under the non-arbitrage assumption, the price of such an option is given
by q(s) = EP [max{0, ω − s}], where the expectation is taken over the martingale measure P . Suppose
that we are interested in obtaining an upper bound on q(s), given that we have estimated the mean µ
and the variance σ of the price ω. Then we solve the following problem :







sup E[max{0, ω − s}]
s.t. EP [ω] = µ

EP [ω
2] = µ2 + σ2

More generally, this can be extended to multivariate case, by considering n options, with the
knowledge of the first and second moments of the random vector ω of the options prices. We still want
to determine a bound over the price of the first option :

{

sup E[max{0, ω1 − s}]
s.t. EP [ω

κ] = qκ, ∀κ ∈ N
n
2

This can easily be reduced to the previously studied layout. Indeed, the dual constraint
∑

κ∈Nn
2
ωκyκ ≥

Φ(ω), ∀ω ∈ R is indeed equivalent here to the non-negativity of the two polynomials :










∑

κ∈Nn
2

ωκyκ − ω1 + s ≥ 0, ∀ω ∈ R
∑

κ∈Nn
2

ωκyκ ≥ 0, ∀ω ∈ R

3.4.4.3 Queuing system

A very prominent and substantial example of application of the moment paradigm was provided by
Bertsimas and Mora in [38] and concerns the study of queuing network.

Very roughly, the underlying idea is to characterise the state of a dynamic system by a set of
time-dependent random vectors Lt, which are functions of uncertain parameters (ξ0, ..., ξt) and of a
scheduling policy, i.e., a set of command variables that depends on the state of the system.

The objective is not to optimize explicitly this policy, which is a very hard problem, but to
compute bounds on a certain criteria, for any policy that satisfies the following conditions :

− stationarity, i.e., the probability distribution (and hence the moments) of Lt, is independent of
the time ;

− stability, i.e., the mean of the Lt is finite ;

These properties, associated to other characteristics and relationship between component of Lt,
induce linear constraints that restrict the moments of Lt. Given that the optimization criteria is a linear
combination of the moments of Lt, we are typically in the framework of the GPM and the moment
matrices have to be psd.

Two points deserve a particular attention. First, some of the random variables describing the
state of the system are required to be binary. Then the second-order moment of such a variable equals
its means and the corresponding equality constraint can be imposed to the moment matrix. This makes
an interesting connexion with semidefinite relaxation of combinatorial problems.

Second, the scheduling policy is expressed via the the value given to the probability of the
conditional variables, for instance Li = 1|Lj = 1. Indeed, these probability can be interpreted as a
measure of the consequences of the decision made for the case when Lj equals 1.
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3.5 SDP for facing uncertainty

3.5.1 Semidefinite programming for robust optimization

As explained in the paragraph 3.7.3, Robust Optimization is a distribution-free methodology consisting
in optimizing the worst-case on a given uncertainty set U , so that the solution be feasible for any
realization of uncertainty. See [31] for a complete account on the subject. In this section, we show that
semidefinite programming is a powerful tool for dealing with such problems, as established by several
authors [32, 89].

3.5.1.1 Robust least-squares

In this section, we review the work presented in [89]. A least-square problem consists of minimizing the
distance (Euclidean norm) between a vector of observations b and the result of linear transformation
A ∈ R

n×m, for an input x to determine.

We consider such a problem where the input data A and b are unknown but are bounded and
presumed to belong to the following ellipsoids (see Def. 2.2.65) :

A ∈ {A(ω) = A0 +
p
∑

i=1

ωiA
i : ‖ω‖ ≤ 1, ω ∈ R

p}

b ∈ {b(ω) = b0 +
p
∑

i=1

ωib
i : ‖ω‖ ≤ 1, ω ∈ R

p}

with (Ai, bi) ∈ R
n×m × R

n, i = 0, ..., p. Thus the robust version of the problem is :

min
x

max
‖ω‖≤1

‖A(ω)x+ b(ω)‖

Equivalently, we can minimize the square of the distance f(x) = max‖ω‖≤1 ‖A(ω)x+ b(ω)‖2.
Then, by defining some appropriate matrices : M0(x) = A0x+ b0 M(x) =

∑p
i=1 A

ix+ bi :

f(x) = max
‖ω‖≤1

∥

∥M0(x) +M(x)ω
∥

∥

2
= max

‖ω‖≤1
ω̃T

(

M0(x)TM0(x) M0(x)TM(x)
M(x)TM0(x) M(x)TM(x)

)

ω̃

Thus, we aim at maximizing a quadratic function while satisfying the constraint ‖ω‖ ≤ 1, which
has a quadratic form : ωTω ≤ 1. The problem is therefore a QCQP and by applying the S-Lemma
3.1.2.3, it is equivalent to the following SDP :















minx,y,λ y

s.t.
(

y −M0(x)TM0(x)− λ −M0(x)TM(x)
−M(x)TM0(x) λI −M(x)TM(x)

)

< 0

λ ≥ 0

Finally, the linearity w.r.t x is recovered by applying the Schur’s complement :














minx,y,λ y

s.t.





y − λ 0 M0(x)T

0 λI M(x)T

M0(x) M(x) I



 < 0

97



3.5.1.2 Robust problems with ellipsoidal uncertainty set

It was shown in [32, 90] that certain classes of robust optimization problems with ellipsoidal uncertainty
set can be reformulated as SDP or SOCP :

− If the initial problem is a robust LP, there exists an exact formulation of the robust counterpart
as a SOCP ;

− If the initial problem is a robust CQCQP (Convex Quadratically Constrainted Quadratic Pro-
gram), there exists an exact formulation of the robust counterpart as a SDP ;

− If the initial problem is a robust SOCP, under certain conditions on the uncertainty, there exists
an exact formulation of the robust counterpart as a SDP.

We illustrate this principle on the case of a simple CQCQP :

(P )







min cTx

s.t. xTATAx ≤ 1, ∀A ∈ {A0 +
k
∑

j=1

ujA
j | ‖u‖2 ≤ 1}

The idea is to replace the variable A, for which the constraint of belonging to U is quite complicated,
by u, for which the constraint is simple : ‖u‖2 ≤ 1. By applying the following equivalence :

‖u‖2 ≤ 1⇔ 1− uTu =

(

1
u

)T (
1 0
0 −I

)(

1
u

)

≥ 0

The problem can be written as following :

(P )























min cTx

s.t.
(

1
u

)T ((
1 0
0 0

)

− F (x)TF (x)

)(

1
u

)

≥ 0

∀
(

1
u

)T (
1 0
0 −I

)(

1
u

)

≥ 0

with F (x) = (A0x, ..., Akx)

The S-lemma (see paragraph 3.1.2.3) enables us to transform this into a SDP. The constraint becomes :
there exists λ ≥ 0 such that :

(

1 0
0 0

)

− F (x)TF (x)− λ

(

1 0
0 −I

)

< 0⇔
(

1− λ 0
0 λI

)

− F (x)TF (x) < 0

By recognizing the Schur complement, this is equivalent to :




(

1− λ 0
0 λI

)

F (x)T

F (x) I



 < 0

Finally, the robust counterpart of the problem is :

(P )















min qTx

s.t.





(

1− λ 0
0 λI

)

F (x)T

F (x) I



 < 0

Another approach was proposed by Bertsimas and Sim [43], that is not a reformulation but an
approximation and that preserves complexity of the original problem, i.e., a LP remains a LP, and so on.
On the other hand, the obtained solution is not robust any more, but under appropriate assumptions,
a guarantee on the probability of feasibility can be provided.
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3.5.2 Semidefinite programming for distributionnally robust optimization

The term of distributionally robust optimization was coined by Calafiore and El-Ghaoui in [68]. It deals
with optimization facing incompletely specified uncertainty. This means that only partial information
is available on the probability distribution of the uncertain parameters. Such a framework is widespread
in the real-world, since evaluating precisely a probability distribution is generally a challenging task.
Then the aim is to overcome the ambiguity on probability distribution that prevents from applying the
classical stochastic programming methods.

This relatively recent way to deal with uncertainty appears as a compromise between stochastic
programming, where the probability distribution is supposed to be perfectly known, and the robust
optimization, where only information on the support is required. Thus, in the distributionally approach,
the probability distribution is partially specified though certain characteristics, such as support and
order up to k moments, or properties such as symmetry, independence or radiality. In the case where
information concerns only moments and support, the problem is strongly related to the GPM (see 3.4)
which establishes a bridge with semidefinite programming. This approach was exploited in [40, 41, 259].

The available information on the probability distribution is used to define the class P of matching
distributions and the optimization is made on the worst probability distribution of this class, in a
robust perspective. This leads for instance to a distributionally robust treatment of chance-constraints,
as studied in [270] : maxP∈P P[f(x, ξ) ≥ 0] ≥ 1 − ε. It turns out that for a class P characterized
with mean and second moment matrix, the obtained problem corresponds to the well-known CVaR
approximation of chance-constraints [201].

The distributionnally robust approach coincides with the minimax problem, a very classical
approach used in decision theory, where the problem to solve is : minx∈X maxEP(U(f(x, ξ)), with U is
an utility function that reflects the risk aversion of the decision makers. In this context, the incomplete
description of the probability distribution is called ambiguity. This approach has received a great deal of
attention since the pionneering work of [237] and its application to the newsvendor problem. Recently,
Delage and Ye [82] proved that this problem can be solved in polynomial time by the ellipsoid method
in the case where X is convex with a separation oracle, U is concave piecewise linear, f(ξ, x) is concave
in ξ and convex in x and one can find subgradients of f in polynomial time, even when the moments
are themselves subject to uncertainty.

3.5.3 Semidefinite programming for two-stages optimization

In this section based on the work of Terlaky et al. [81], we present an application of the convex quadratic
regression problem, detailled in paragraph 3.1.2.1, to two-stages stochastic programming. This kind of
problem, also called problem with recourse, has been introduced in Appendix 3.7.1. We consider here a
particular case of such problems, linear with a second stage problem where only the right-hand term is
random :































min cTx+ E[Q(x, ω)]
s.t. Ax ≤ b

x ≥ 0

Q(x, ω) =







min qT y
s.t. Tx+Wy = ω

y ≥ 0

(3.10)

We assume that any linear program involved (first-stage and second-stage, for any value of x
and ω) has finite optimal solution. We denote by Q(x) = E[Q(x, ω)] and the idea here is to replace
Q by a quadratic approximation, optimised on a set of value (xi, φi), where φi is the result of the
optimization of the second-stage problem for x = xi and for ω approximated by a discrete sampling
(Monte-Carlo method). The convex quadratic approximation is made regarding the process described
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at §3.1.2.1. According to the choice of the norm L1, L2 or L∞ for the distance to minimize between
the set of points (xi, φi) and the approximation, this process comes down to solving a SDP or a mixed
SOCP-SDP.

Let us denote xTQx+pTx+r the quadratic approximation thus obtained, then the approximated
problem is the following Quadratic Program :







min xTQx+ (c+ p)Tx+ r
s.t. Ax ≤ b

x ≥ 0

As the objective function is convex, this problem can be solved by any quadratic solver.

The authors proposed to improve iteratively the quadratic approximation by adding successively
some new points to the set (xi, φi), as summarized in the following algorithm :

1. Determine a set S of N pairs (xi, φi) ;

2. Compute (by semidefinite optimization) a quadratic convex approximation of Q base on S ;

3. Solve the Quadratic Program thus obtained. Let us denote x∗ the corresponding solution ;

4. Determine the optimal value φ∗ of the second-stage problem for x∗, with a discrete approximation
of ω;

5. If x∗ is not "good enough", add (x∗, φ∗) to S and return to 2.

In [81], the authors conducted some numerical experiments, up to N = 3000 point in an n = 50
dimension space. The results indicate that this algorithm is more efficient that the classical least-square
method, especially by using the L2-approximation.

Another use of SDP for two-stages optimization was proposed by Bertsimas et al. in [37]. The
considered problem is quite similar to the problem (3.10) except that the cost q of the second-stage
problem is also uncertain. Furthermore, the probability distribution of the random parameters is not
known exactly, but in distributionnally robust spirit, it is chosen from a set of distributions with known
mean and second moment matrix. If P denotes this class, then we aim at minimizing the worst-case
over these distribution : min cTx+maxP∈P EP[Q(x, ω)]. For this reason, it is named minimax stochastic
optimization problem. In [37], the authors also considered the possibility of incorporating a risk measure
into the objective, by means of an utility function. Then, for some particular utility function, when
only the objective of the second-stage problem is uncertain, then a SDP formulation is provided. For
uncertainty in the right-hand side of the second-stage problem, it is shown that the problem is NP-hard.
However, a SDP formulation is given for the particular case when the extreme points of the second-stage
dual feasible region are explicitly known.

On the same topic, another approach was proposed by Lisser et al. [100]. The key idea is to
convert a stochastic program with a discrete distribution of probability into a deterministic one by
addition of binary variables. Then the problem becomes a large combinatorial problem, whom the SDP
relaxation can be applied to.

3.6 Other applications of interest of SDP

3.6.1 Control theory

There are many applications in control theory that arises naturally as SDP since their constraints can
be expressed as LMI. We describe here a very simple case. Suppose that the variable x = x(t) satisfies
the following system :
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dx

dt
(t) = Ax(t) +Bu(t), y(t) = Cx(t),

∣

∣ui(t)
∣

∣ ≤
∣

∣yi(t)
∣

∣ , i = 1, · · · , p

We want to determine whether x(t) necessarily remains bounded. This holds if and only if there
is some P such that v(x) := xTPx remains uniformly bounded. A sufficient condition for that is that
the function v is nonincreasing for any x and u that satisfy the initial system. Such a function is called
a Lyapunov function.

We want a matrix P such that :

∣

∣ui(t)
∣

∣ ≤
∣

∣Cix(t)
∣

∣ , ∀i⇒ dV

dt
(t) =

(

x(t)
u(t)

)T (
ATP + PA PB

BTP 0

)(

x(t)
u(t)

)

≤ 0

By denoting z =

(

x(t)
u(t)

)

and defining the appropriate Ti, this inclusion can be written :

∀z, ztTiz ≤ 0, ∀i⇒ ztT0z ≤ 0

This is exactly the scope of the S-lemma (Theorem 3.1.2) and therefore a sufficient condition for
the validity of this implication is the following :

∃τ1, · · · , τp such that
∑

i=1

τiTi − T0 < 0

3.6.2 Minimum rank matrix completion

We are interested in the following problem :






min rank(X)
s.t. Xi,j = ai,j , ∀(i, j) ∈ Ω

X ∈ R
m,n

The motivation for this problem is to recover a low rank matrix X given a sampling of its entries. It is
of great interest in various fields, such as control, statistics and signal processing. Indeed, it frequently
happens that the data entries are incomplete, because of errors or noise, or because they are too large
to be stored or transmitted entirely.

This problem is nonconvex, NP-hard and might therefore be extremly hard to solve exactly.
However, some approximations are tractable, and in particular the most famous of them, based on the
nuclear norm approximation reduces to a SDP.

Let denote σ(X) the vector of singular values of X (see Def. 2.3.14) and consider the approxi-
mation consisting of replacing rank(X) = ‖σ(X)‖0 by ‖σ(X)‖1, the sum of the singular values of X,
also denoted nuclear norm of X.







min ‖σ(X)‖1
s.t. Xi,j = ai,j , ∀(i, j) ∈ Ω

X ∈ R
m,n

(3.11)

Generally it is also intractable, excepts in the case where X is psd, since in this case, the singular
values are the eigenvalues of X and ‖σ(X)‖1 =

∑n
i=1 σ(X)i = Tr(X) = I • X. The following lemma

enables to consider a psd matrix instead of an arbitrary matrix X :

Lemma 3.6.1 Let us consider a matrix X ∈ R
m,n : rank(X) ≤ r ⇔ ∃Y, Z :







rank(Y ) + rank(Z) ≤ 2r
(

Y X
XT Z

)

< 0
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By combining these two tricks, we get the following SDP :














min 1/2(I • Y + I • Z)
s.t. Xi,j = ai,j , ∀(i, j) ∈ Ω

(

Y X
XT Z

)

< 0

Then the optimal value of this SDP is equal to the optimal value of the problem (3.11). For a
more detailed discussion on this topic, see for instance [70].

3.6.3 Trust region subproblem

The trust region subproblem concerns the minimization of a possibility non convex quadratic function
subject to a norm constraint. This problem is important in non linear programming, for which some
algorithms are based on sequential quadratic approximations that are minimized within a trust region,
i.e., an hypersphere around the current solution, defined by the norm constraint.

A generalization of this problem gives rise to the following problem : min q0(x) : q1(x) ≤ 0, with
q0 and q1 two quadratic functions. Then the SDP relaxation of this problem yields the optimal solution,
as stated by the S-lemma, provided that q1(x̄) < 0 for some x̄ [225]. Another way of understanding
why the SDP relaxation is exact comes from the application of the Pataki’s rank theorem (see 2.2.14),
stating that the extreme points of the feasible set have rank 1. Therefore, X = xxT , which implies that
optimal value of the SDP relaxation is feasible for the quadratic program.

In conclusion, the SDP formulation provides a tool for easily solving this problem and the many
extensions that arise from the consideration of additional linear or quadratic constraints.

3.6.4 The sensor-network localization problem

The sensor-network localization problem consists of determining the position of a set of sensors that have
are deployed in a given area and whose distance toward a certain number of their neighbours is known.
The position of a subset of sensors, the so-called anchors, is assumed to be known. Let xi ∈ R

d, i =
1, ..., n and ai ∈ R

d, i = 1, ...,m the position of the sensors and anchors respectively. We know the
distance dij between sensors i and j for all the pairs of sensors inN , and for all the pair of sensors-anchors
in M. Then the objective is to minimize

∑

(i,j)∈N | ‖xi − xj‖2 − d2ij |+
∑

(i,j)∈M | ‖xi − aj‖2 − d2ij |.
By defining the matrix X = (x1, ..., xn) ∈ R

d,n, the problem can be rewritten as following by
introducing the convenient matrix Hij ∈ S

d+n :

min







∑

(i,j)∈M∪N

∣

∣

∣

∣

Hij •
(

Id X
XT Y

)

− d2ij

∣

∣

∣

∣

: Y = XTX







This problem is not convex but the relaxation of Y = XTX into
(

Id X
XT Y

)

< 0 leads to a SDP [56].

A more complicated variant of this problem exists when the distance are not assumed to be
known exactly, but perturbed with random noises, see for instance [50].

3.6.5 Data analysis

A recent and attractive application of SDP is the field of data analysis and more particularly principal
component analysis (PCA), which aims at reducing the dimension of a data set by finding the principal

102



components. This allows to make the data less redundant in order to reveal underlying structure and
to facilitate analysis.

More specifically, consider a matrix X ∈ R
m,n containing the value of n attributes on a sample

of m individuals. Then a component is a linear combination of the column of X : C =
∑

j = 1nujX∗,j =
Xu and the principal component is the component that maximize the variance of the sample : maxuTΣu :
‖u‖ = 1 with Σ ∈ S

n such that Σij =
1
mXTX − X̄X̄T , with X̄ = 1

mXT e the sample mean of X.

This problem is easy to solve by SDP, as a direct application of the trust region subproblem. It
becomes more difficult when ones aims at finding sparse vector u, i.e., a vector u with many components
equal to 0 : ‖u‖0 ≤ k with ‖u‖0 = |{i ∈ [n] : ui 6= 0}|. Then it suffices to apply the same approximation
as in paragraph 3.6.2, i.e., relax ‖u‖0 ≤ k into ‖u‖1 ≤ k which is convex. This leads to the following
SDP relaxation :















min Σ • U
s.t. I • U = 1

eeT • |U | ≤ k
U < 0

We refer the reader to [79] for more details on this problem and to [69, 166] for more applications
of SDP in the same vein.

3.7 Conclusion

In this chapter, we presented numerous applications of SDP that illustrate its versatility. In order to
emphasize the underlying processes that make a SDP to emerge, we started by identifying three main
mechanisms for obtaining a SDP constraint :

− by requiring that the variable have one of the properties that define semidefiniteness;

− by applying results relying on the existence of a psd matrix ;

− by requiring that the variable have a very specific structure which induces semidefiniteness.

With this in mind, it comes easily that several classical optimization problems can be written
in the form of a SDP. It is also very simple to present how obtaining the standard SDP relaxation
of a QCQP and the possible reinforcement of this relaxation comes simply from the addition of valid
constraint to the initial QCQP.

We also made a particular focus on the relationship between SDP and the Generalized Problem
of Moment (GPM). In particular, the polynomial instances of the GPM can be approximated as closely
as desired by the Lasserre hierarchy of SDP relaxations. This is very interesting since this problem
subsumes polynomial optimization, combinatorial optimization and some optimization problems under
uncertainty.

In the next chapters, we apply these recipes to energy management problems, with a particular
emphasis on problems facing uncertainty or combinatorial issues.
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Part II

Application of Semidefinite

Programming to energy management
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« In theory, theory and practice are the same. In practice, they are differ-
ent. »

(A. Einstein)
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Chapter 4

Introduction to energy management

Energy management is an umbrella term for management problems related to the production and
consumption of energy. Due to the central importance of energy in our modern industrialised economy,
the implications of this subject are considerable, simultaneously of ecological, economic, industrial and
social nature. Indeed, the main objective is to save costs, which allows the suppliers to propose energy
at best price, in order to enable access to all users and to improve firms’ competitiveness. Furthermore,
energy management deals with the way energy is produced, transmitted, stored, distributed, transported
and consumed, and therefore has impact on the environment and climate via the consumption of non-
renewable resource, emission of greenhouse gas, production of nuclar waste, etc... Last but not least, it
shall ensure the permanence of the supply, since serious breakdowns have enormous consequences for
all the users and must be avoided.

In the expression "energy management", the term "energy" generally refers to electricity and gas.
The management of these both commodities shares several characteristics, in particular the objective
of satisfying the match between supply and demand by making the best use of an asset portfolio. For
EDF R&D, the major difference between these two subjects comes from the fact that the gas portfolio
only contains financial assets, whereas electricity portfolio also contains physical assets. Furthermore,
gas supply is subject to transportation and storage constraints that are not considered in electricity
models. In the sequel, we restrict our attention to problems related to electricity management, even if
we may continue to use the term of energy management.

Energy management problems for electricity generally take the form of Unit Commitment Prob-
lems, where one aims at deciding which generation units should be running at each period so as to
satisfy the demand at least cost, in coordination with optimal management of the financial assets. The
specificity of electricity over other commodities is that it does not lend itself well to storage, which
induces the constraint of matching the demand at each time step. As the more efficient generation
units are generally the less flexible, a very simple strategy for satisfying this constraint consists of turn-
ing on in priority these generators, then, when the demand increases, turning on the other generators
which can start easily. By efficiency, we mean that the marginal cost, i.e., the cost of producing one
additional unit, which generally includes fuel and maintenance costs, is low and therefore, this strategy
allows to minimize the overall cost of production. However, it is confronted with the fact that certain
means of production can only produce a finite amount of energy, called reserve. In this case, it is
necessary to consider this constraint in the strategy, and one possibility is to replace its marginal cost
by a value-in-use, that captures the future profit earned by the saving of one reserve unit.

Energy management problems for electricity differ mainly in the size and sample of the time
horizon, the uncertainty representation and how are modelled the generations units. These choices
are made according to the targeted decision variables and to operational constraints (availability of
the relevant data, upper limit on the resolution time,..) and leads to various optimization problems,
depending on the nature of the variables (real, integer, binary/logical) and of the constraints (linear,

108



piecewise linear, non-linear, non-convex, quadratic,...).

In order to reduce the complexity, a decision process was established at EDF R&D that consists
of optimizing from long-term (several years) to short-term (a few hours), in order to exploit the de-
cisions made at larger time horizons, as well as economical and physical indicators computed by the
optimization. Three main time horizons are considered, whose associated decisions and modelling are
as follows :

− At long-term (the next ten to twenty years), some investment decisions are made, based on
long-term impact surveys in which different investment scenarios are simulated and analysed.
We deduce from this the main characteristics of the production portfolio: type of power plants,
capacity, emission of green house gases...

− At mid-term (the next one to five years), the objective is to schedule the outages of nuclear
power plants for refuelling and maintenance, to manage hydro stock and supply contracts, to
evaluate and to master physical risk of supply shortage and financial risk on markets.

− At short-term (two weeks to half an hour), it remains to schedule the outages of thermal power
plants for maintenance, to evaluate risks, to decide which interruption contracts options are
exercised, to schedule the daily generation scheduling satisfying the day ahead forecasted load
and respecting all constraints of production units (which thermal and hydraulic power units
should be activated and at which level of production) and finally to adapt online the generation
schedules at the real load.

Thus, this strategy of time decomposition gives rise to a number of optimization problems, that comply
with a wide variety of difficulties and challenges.

In this chapter, we provide a brief overview of the modelling components that are used in the
problem that will be considered hereafter. We start by describing the main characteristic of the gen-
eration units in the first section, before discussing about the demand in the second section and the
demand/supply equilibrium in the third section. Then, we discuss the different ways of representing
and handling uncertainty. Finally, in the last section, we describe one of the most challenging energy
management problem, namely the nuclear outages scheduling problem (NOSP).

4.1 The demand/supply equilibrium

4.1.1 The supply

In 2012, the physical assets of EDF represented a combined production capacity of 128.7 GW and
generated 541 TWh. This global amount breaks down as follows (figures from 2012):

− nuclear power stations (63.1 GW, 74.8% generation ) ;

− fossil-fired power stations : coal,fuel-oil and gas (27.8 GW, 8.8% generation) ;

− hydroelectric power stations (25.4 GW, 11.8% generation) ;

− wind, photovoltaic and other renewable power systems (12.4 GW, 4.6% generation).

This physical offer is completed by a financial offer. Indeed, since the opening of the electricity
market in 2007, EDF has the possibility of buying and selling electricity on the market. More precisely,
this offer takes the form of 3 possible contracts : Futures, Exchange and Interruption Option Contracts
(IOC). Futures are standard electricity market contracts, such as day-ahead, week-ahead and week-end-
ahead contracts. Exchange contracts define conditions of exchange of electricity: quantity, prices and
period. Interruption Option Contracts allow to strongly incite certain customers to interrupt their load
charge for the next day in exchange of preferential tariffs for the rest of the year. In addition, EDF has
also the possibility of buying and selling electricity on the spot market. The difficulty associated to the
optimization of this additional lever stems mainly from the volatility of the spot price, due to the fact
that the market depth is limited and the demand inelastic.
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Among the physical assets, the thermal generation units are the nuclear and fossil-fired power
stations. Their production must satisfy various requirements, related to their maximal capacity of
production, their fuel stock or their authorized levels of production and is characterized by costs of
production (starting cost, fix and proportional costs, fuel costs ...).

Compared to other thermal generation units, these plants are subject to very specific technical
constraints. In particular, maintenance and refueling operations shall be carried out regularly, which
leads to frequent shutdowns of the plants. Furthermore, their marginal cost is low but the starting
cost is high and it takes a long time to bring it to full power. At the other extreme, fossil-fired power
stations can be started up rapidly but their marginal cost is higher. Therefore, nuclear plants operate as
baseload, whereas fossil-fuel power plants are used rather for satisfying the peaks of demand. However,
one specificity of the French electricity board is that the high proportion of the nuclear generation leads
to the necessity of using it also for peak production, which is unique in the world.

The hydraulic park is made up of valleys, i.e., a coherent set of connected hydro reservoirs and
production units, characterized by its topology describing connected reservoirs and hydro production
units and by a wide variety of constraints such as capacity of turbines, levels of production, bounds
constraints issued from policies of exploitation of reservoirs, ... Hydro power offers many advantages
over the other energy sources. First of all it is fueled by water. It is therefore a clean renewable power
source and its marginal cost is equal to 0. Furthermore, it is very flexible and can be viewed as a
storage of power, that is supplied by hydraulic inflows and by a few pump stations. On the other
hand, it is renewable but not infinite and shall adapt to water inflows. The key point is therefore to
keep this unknown quantity of power for the moment when it is needed the most. This is done by
means of an adequate computation of the value-in-use of these reserves, also called water value, which
is subsequently used instead of the marginal cost. Finally, the water reserve is also a living, recreational,
natural and economic space, which induces several constraints in their management.

The technique for managing reserves is extended to other generation units which are subject to
stock constraints, such as nuclear power plants and IOC. Regarding nuclear power, the stock constraint
stems from the fact that at short-term, the fuel remaining in the reactor must last until the next outage,
which is fixed. Regarding IOC, the number of days concerned by these contracts is finite and stipulated.
As with the water reserve, the management of such stocks is made by computing value-in-use that
allow to decide the use of these stocks in the present or in the future. This computation is actually the
expression of a strategy, that depends on the considered time horizon and shall take uncertainties into
account, while optimizing an economic criterion. For one stock, the problem is complex but tractable by
dynamic programming. When, we have to define a strategy for the whole stocks, the problem becomes
very challenging.

Finally, the production of other sources of renewable energy, such as wind farm or photovoltaic
stations, is imposed by the climatic conditions and does not give rise to a short-term management.
Related issues concern rather its predictability and the deployment of new power stations.

4.1.2 The demand

The demand or load charge is a time series, expressed in MW, that contains the consumption of all the
EDF consumers along the time. Satisfying this demand faces a number of difficulties. First, it fluctuates
wildly within the day, the week and the year in response to variation of economic and domestic activities,
and of climatic factors such as temperature and nebulosity. This variability gives rise to peak of demand,
for which almost all the generation units are requested. On the other hand, during off-peak periods,
some generation units, generally the ones with high marginal costs and high flexibility, are cycled down.

The other major difficulty regarding the demand lies in its non predictability in the long or mid-
term and in a precise manner in the short-term. Indeed, it is strongly related to economic activities and
climatic factors that are difficult to predict on the long term. Furthermore, a part of the production is
dedicated for sale on the market and is related to the supply/offer equilibrium of the other European
country. Then, predicting the EDF demand requires the forecast of the 3 following elements :
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− the French electricity consumption;

− EDF market share;

− the sales volume at interconnections.

Regarding French consumption, it is modelled as a function of various explanatory variables, such
as the date or climate parameters. A long term, we consider additional variables of political, economic
or technological nature.

In practical terms, over a short-term horizon, the demand is assumed to be known, by combining
an inertia effect and weather forecasts. At medium-term, we generally use a finite set of scenarios,
elaborated on historical realizations. The time-variability is managed by discretizing the time-horizon
in a finite number of time-step on which the demand is assumed to be constant.

4.1.3 Satisfying the demand/supply equilibrium

The specificity of electricity is that it does not lend itself well to storage, which prevents from efficient
way of banking energy against a time of sudden demand. As a consequence, it is necessary to produce
continuously the amount of electricity that is delivered from the grid.

However, one cannot avoid major incidents due to climatic conditions or failures. These break-
downs can be considered in several ways. In stochastic models, it can be modelled as a probability that
the constraint of demand/supply equilibrium is not satisfied. In a Lagrangian penalization spirit, it can
also be considered as a generation unit, with a large production capacity and a very high production
cost, in order to penalize any resort to this virtual mean of production.

Regarding the management of the demand/supply equilibrium, a very challenging issue is cur-
rently emerging. In order to satisfy this requirement, the network manager now has the possibility of
inflecting the demand. This is made possible by the installation of a new technology of meter, which
allows a real-time adjustment of the peak/off-peak periods. These periods are notified to consumers via
different frequency signals, which control the use of certain servo systems, such as hot water tanks and
convector heaters. This process allows the postponement of a part of the demand over periods of lowest
load, and thus making less use of expensive peak means of production. At the present time, it suffers
from the rigidity of the definition of the peak/off-peak periods but the arrival of the new meters, which
make this definition flexible, is a lever for improvement and gives rise to new optimization challenges.

4.2 Representing and handling uncertainty

One key difficulty of energy management stems from the fact that a large portion of the data involved
in these problems are subject to some degree of uncertainty. This includes the following data :

− the demand and the hydraulic inflows which are very climate sensitive, particularly for temper-
ature and cloud cover ;

− the availability of the production units, subject to random failure and to environmental limita-
tions ;

− the duration of the nuclear outages, that may vary according to various technical incidents ;

− fuel and electricity markets prices;

− wind generation.

Due to the complexity of the underlying processes, the probability distribution of these random
variables is generally not available. However, from historical observations, we deduce an estimate of
their moments and support. This leads to the following possible representations of uncertainty :

− A deterministic approximation that uses the expected value or the worst-case value;
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− A robust representation where the uncertain parameters belongs to a given uncertainty set;

− A distributionnally robust representation where the support and the first k moments of the
probability distribution are known;

− A stochastic representation, by considering historical observations or Monte-Carlo simulation
as equiprobable scenarios.

Ideally, when the system is dynamic, which means that the realization of uncertain parameters
are known over time, the results of the optimization should be a strategy, i.e., a set of decisions which
are functions of the past randomness outcomes. This mode is also called closed-loop strategy, by contrast
to open-loop strategy where the optimization outputs is independent of the uncertain outcomes and
therefore correspond to concrete decisions. Closed-loop strategies are clearly preferable but much more
difficult to model and solve.

In conclusion, solving energy management problems in an uncertain setting is a very challeng-
ing task. The objective are then threefold : to define the most appropriate formulations, to design
computationally tractable algorithms, and finally, to qualify the obtained solutions.

4.3 The Nuclear Outages Scheduling Problem (NOSP)

«Essentially, all models are wrong, but some are useful. »

(G. Box)

In our thesis we focus on one of the most challenging energy management problem, namely the
nuclear outages scheduling problem (NOSP). This problem consists, for a horizon of time of two to five
years, of determining the best scheduling for the nuclear outages, i.e., for shutting down the nuclear
power plants to proceed to refuelling and maintenance operations, while satisfying the offer-demand
equilibrium and the technical constraints at minimal cost. This problem is of the highest importance
for EDF because of the major economical stakes that are associated to the nuclear production in France.
Furthermore, the cost of an outage may vary considerably according to its scheduling : during winter,
an outage may cost twice as much as the same outage during summer. This scheduling is also very
important since it has a huge impact on the risk of failure which is strictly controlled.

NOSP can be seen as a variant of the Unit Commitment Problem where a part of the technical
constraints follow from the outages. Modelling these constraints requires the use of binary variables,
to represent whether the plant is online or offline. This problem is therefore a huge combinatorial
problem. The difficulty is compounded by constraints arising from the limitation of resources used for
refuelling operations, which strongly constraint the outages scheduling.

This problem can also be seen as the allocation of the nuclear availability, i.e., the maximal
capacity of production of the nuclear park, at the time when it is most needed for the respect the
offer-demand equilibrium. On Figure 4.1 is given a small example of nuclear outages scheduling with
the corresponding nuclear availability.

This optimization problem is under uncertainty since the demand and certain features of the
production facilities are random. The consequences on the design of the model are twofold : first, the
question of how is represented the uncertain parameters arises. Second, how precisely shall we model
how a nuclear power plant operates. Indeed, it is useless to be very precise in the modelling if the
relevant accuracy data is not available. At the present time, this problem is solved by the expectancy
method, where the random parameters are replaced by their expected values. The resulting optimization
problem is then easy to solve but yields solutions with poor robustness properties.

This section is organized as follows. First we provide a detailed description of the key features of
the problem. The Section 2 is devoted to a summary of the different notations, for a better readability.
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Figure 4.1: A small example of nuclear outages scheduling

Then, the Section 3 proposes different models of this problem, that rely on different simplifications and
assumptions, in order to focus on some particular aspects of the problem.

This problem has been studied extensively and we refer the reader to [95, 96, 154, 214] for other
references dealing with this problem.

4.3.1 Description of the problem

In this section, we start by describing the considered production facilities, namely the nuclear and the
fossil-fuel power plants since the other facilities are not considered in our models. Then we introduce
the demand constraint and explicit the notions of peak/off-peak periods. Finally we figure out how to
cope with the dynamic nature of the problem.

For easy readability, we start by introducing few notations : the index i stands for the production
facilities and we denote by Nν , Nθ the sets of indices of the nuclear and fossil-fuel power plants re-
spectively. The number of nuclear and fossil-fuel power plants is Nν and Nθ respectively. t indexes the
time and Nt is the number of time steps in the time horizon. In our models, one time step corresponds
to one week. Finally, the unit JEPP, used for measuring nuclear generated energy, corresponds to the
production of a plant at full power during a whole day. In French it means "Day Equivalent Full Power"
and it can be converted in MWh if the maximal power Wi of the plant is known : 1 JEPP equals 24Wi

MWh. Thus, this amount depends on the concerned plant and therefore we can not combine some
quantities of JEPP coming from different plants. The JEPP is also used for the fuel stock, which is
measured as the amount of energy that can be produce by the remaining fuel in storage. The other
notations are introduced progressively and summarized in Paragraph 4.3.2.

4.3.1.1 Nuclear power plants

The life of a nuclear power plant can be decomposed into cycles. Each cycle consists of a so-called
production campaign, followed by an outage, during which the plant is not able to produce. Each
outage lasts a given number of weeks denoted δi,j−1.

The j-th cycle of the plant i is denoted by the pair (i, j), with j lying from 1 to Ji. We denote
Cν = {(i, j) : i ∈ Nν , j = 1, ..., Ji}. Indeed, we assume that the number of cycles of the time horizon Ji
is constant, which means that an outage can not be thrown out of the time horizon.

Note that the last cycle starts during the horizon time but its end (which corresponds to the
outage) occurs beyond the horizon time. By convenience we denote C∗ν = {(i, j) : i ∈ Nν , j = 1, ..., Ji−1}
the set of cycles that have an outage within the time horizon.
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Outages The beginning date of the outage (i, j) shall belong to the set E(i,j) ⊂ {1, ..., Nt}. We assume
that these sets are mutually disjoint : E(i,j) ∩ E(i,j′) = ∅, for any (i, j), (i, j′) ∈ Cν , j 6= j′. In the sequel,
we call these sets the search spaces.

To each possible beginning date t ∈ E(i,j) of each outages (i, j) ∈ C∗ν , we associate a binary
variable xi,j,t that is equal to 1 if and only if the outage actually starts at t. Then, as only one date is
assigned to each outage, a so-called assignment constraint has to be satisfied :

∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

Thus, we are able to give an expression of the outages beginning dates ti,j =
∑

t∈E(i,j)
txi,j,t, ∀(i, j) ∈

C∗ν . For convenience, we also define ti,0 = 1 and ti,Ji
= Nt.

In the sequel, we may use the notation xi,j,t without specifying t ∈ E(i,j), in which case, we simply
consider that xi,j,t = 0 for any t /∈ E(i,j).

Modulation The ideal operating level of a nuclear power plant is at its maximal capacity. Reducing
its production may alter the state of the plant, which requires more maintenance afterwards. For this
reason, the time when the plant does not produce at full power shall be limited. In practice, a maximal
quantity of non-production, called modulation is imposed at each cycle. This value is denoted by Mi,j

and is homogeneous to an amount of energy. If mi,j is the modulation of the cycle (i, j), we have the
constraints :

mi,j ≤Mi,j , (i, j) ∈ Cν (4.2)

The notions of cycles, production campaign and modulation are illustrated on Figure 4.2.

Figure 4.2: Notions of cycles, production campaign and modulation

Availability During their campaigns, nuclear plants can produce up to their maximal power Wi

multiplied by a dimensionless stochastic coefficient Ai,t(ξ
ν) ∈ [0, 1], where ξνi is the stochastic process

related to random failures affecting the production of the nuclear power plants. Thus, at each time step
t, the production can not exceed Ai,t(ξ

ν)Wi.

Besides, the production of the plants vanishes during the outages. The outages variables are used
to determine if a plant i is offline or online at time step t, i.e.,

∑

j:t∈E(i,j)
xi,j,t = 1 if and only if the

plant is offline at t. We are therefore able to determine the nuclear availability at time step t, i.e., the
maximal capacity of production of the nuclear park. It depends both on the outages scheduling and on
Ai,t(ξ

ν) and is therefore a random state variable :

ct(ξ
ν) =

∑

(i,j)∈Cν

Ai,t(ξ
ν)Wi





t
∑

t′=t−δi,j+1

xi,j,t′



 (4.3)
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We also define Ct(ξ
ν) =

∑

i∈Nν
Ai,t(ξ

ν)Wi, the maximal nuclear availability of the nuclear park
at time step t.

Reload At each cycle (i, j) is associated an amount of reload ri,j , expressed in JEPP, that lies within
the interval [Ri,j , Ri,j ]. By convention the reload of the cycle (i, j) is carried out during the outage at
the end of the cycle and is therefore used for the production of the cycle (i, j + 1)

Stock The fuel stock of a nuclear plant decreases when the plant produces and rises at each outage
as illustrated on Figure 4.3.

Figure 4.3: Variation of the stock of a plant along the cycles

A specificity of the nuclear power plants is that only a part (usually a third or a quarter) of the
nuclear fuel is unloaded at each outage. We denote βi,j the part that is not unloaded at outage (i, j),
i.e.,the part that stays in the reactor during the reloading operations. As a consequence, the beginning
stock of a cycle is equal to the amount of the reload plus the part βi,j−1 of the ending stock of the
previous cycle.

Another specificity of the nuclear fuel stock is that the energy that it contains tends to zero but
never vanishes. Therefore, we decide by convention that a given level of stock is zero, which implies that
the stock becomes negative when the plant continues to produce beyond this level. This also means
that as soon as the stock passes through this level, we consider that we consume a part of the stock of
the following cycle.

To compute the ending stock of the cycle (i, j), we use a flow equation, stating that it is equal to
the beginning stock minus the stock used for production. By definition of a JEPP, if a plant i produces
at full power (Wi) during all its cycle, then the stock used for production, is equal to the duration of
the cycle in days. During the campaign of the cycle (i, j +1), the plant produces at Ai,t(ξ

ν)Wi at time
t and by subtracting the modulation achieved throughout the cycle, it comes that the stock used for
production equals 7

∑ti,j+1

t=ti,j+δi,j
Ai,t(ξ

ν)−mi,j+1

Regarding the beginning stock, it can be computed as the sum of amount of reload of the previous
cycle and of the part of the final stock of the previous cycle that is not unloaded. Finally, the ending
stock, a random variable that it depends of the availability of the plant anddenoted by fi,j(ξν), can be
computed as follows :

f(i,j+1)(ξν) = 7

ti,j+1
∑

t=ti,j+δi,j

Ai,t(ξ
ν)−mi,j+1 + ri,j + βi,jfi,j , ∀(i, j + 1) ∈ C∗ν (4.4)

115



For j = 0, we replace ri,j+βi,jfi,j by the initial stock of the plant, which is a data of the problem.

For safety reasons, reloading operations can not occur when the reactivity of the core is too high.
This yields an upper bound F i,j on the ending stock of a cycle. A lower bound F i,j is also given :

f(i,j)(ξν) ∈ [F i,j , F i,j ], ∀(i, j) ∈ C∗ν (4.5)

Resources constraint The nuclear power plants are scattered over Ng geographical sites and we
denote Jk the set of plants of the site k.

On each of these sites, some resources required for maintenance and reloading operations are
shared among the plants, which imposes constraints between the different outages. First, it is impossible
to have more than Np

k ongoing outages over Jk at each time step t :

∑

i∈Jk

Ji
∑

j=1

t
∑

t′=t−δi,j+1

xi,j,t′ ≤ Np
k , t = 1, ..., Nt, k = 1, ..., Ng (4.6)

Furthermore, the outages of Jk have to preserve a minimal space N l
k between them, or a maximal

lapping if N l
k < 0, which can be formulated as follows :

ti,j − ti′,j′ /∈ ]−N l
k − δi,j , N l

k + δi′,j′ [, (i, j), (i′, j′) with i, i′ ∈ Jk, k = 1, ..., Ng (4.7)

Indeed, let us consider two outages 1 = (i, j) and 2 = (i′, j′) of Jk such that δ1 ≤ δ2. Then the lapping
∆ = max{t1, t2} − min{t1 + δ1, t2 + δ2} and three configurations are possible, as illustrated on the
Figure 4.4 :

− t1 ≤ t2 and t1 + δ1 ≤ t2 + δ2 , then ∆ = t2 − t1 − δ1 ;

− t1 ≥ t2 and t1 + δ1 ≥ t2 + δ2, then ∆ = t1 − t2 − δ2 ;

− t1 ≥ t2 and t1 + δ1 ≤ t2 + δ2, then ∆ = −δ1 ;

Figure 4.4: 3 possibles configurations for computing the lapping between 2 outages

Since δ1 ≤ δ2, t1 ≤ t2 ⇒ t1 + δ1 ≤ t2 + δ2 and t1 ≤ t2 is sufficient for the first case. In the same
way, t1+δ1 ≥ t2+δ2 is sufficient for the third case. As a consequence, the three configurations become :

− t1 ≤ t2, then ∆ = t2 − t1 − δ1 ;

− t1 ≥ t2 and t1 + δ1 ≤ t2 + δ2, then ∆ = −δ1 ;

− t1 + δ1 ≥ t2 + δ2, then ∆ = t1 − t2 − δ2 ;

This leads to variation of ∆ represented on Figure 4.5.

From examining this curve, we observe that if N l
k ≤ −δ1, then the constraint is necessarily

satisfied. Otherwise, we recover the formulation proposed in (4.7).

This constraint presents modelling difficulty due to its nonconvex and disjunctive nature. A first
possibility for modelling it relies on the fact that the number of combinations of dates that violates this
constraint is finite, and therefore, it suffices to forbid all these combinations :

x1,t + x2,t′ ≤ 1 for all t, t′ such that t− t′ ∈ ]−N l
k − δ2, N l

k + δ1[ (4.8)

116



Figure 4.5: The ∆ variation as a function of t1 − t2

This formulation, referred to as pairwise exclusion, is efficient but leads to a possibly very large number
of constraints.

Another possibility, called "big M" formulation, requires the introduction of a new binary variable,
that equals 0 if t1 − t2 ≤ −N l

k − δ2 and 1 if t1 − t2 ≥ N l
k + δ1. Let z be this variable :







t1 − t2 ≤ −N l
k − δ2 +M1z

t1 − t2 ≥ N l
k + δ1 −M2(1− z)

z ∈ {0, 1}
(4.9)

The best values for M1 and M2 can easily be computed by using the maximal and minimal values of
t1 − t2.

The third formulation is quadratic. Indeed, since it is impossible to have both t1− t2 < −N l
k−δ1

and t1 − t2 > N l
k − δ2, the constraints is equivalent to :

(t1 − t2 +N l
k + δ1)(t1 − t2 −N l

k − δ2) ≥ 0 (4.10)

In conclusion, let us remark that for some pairs of cycles (i, j) and (i′, j′), the sets E(i,j) and
E(i′,j′) are such that only one part of the disjunction is possible. In this case, the constraint is a simple
linear constraint, for instance if ti′,j′ − ti,j ≤ −N l

k − δi′,j′ can not happen, then the constraint becomes
ti′,j′ − ti,j ≥ N l

k + δi,j .

Production cost The production cost of the nuclear power plants is proportional to the amount of
fuel reloaded, with a proportionality coefficient γi,j . We deduce from this the cost associated to the
stock remaining at the end of the time horizon, that has not been consumed and therefore shall not be
paid. Overall, the nuclear production cost equals

∑

(i,j)∈C∗

ν
γi,jri,j +

∑Nν

i=1 γi,Ji−1fi,Ji
(ξν).

4.3.1.2 Fossil-fuel power plants

The only constraint imposed on the production of the fossil-fuel power plants is the constraint of
maximal production. In the same way as for the nuclear power plants, the production of the plant i is
characterized by a maximal production Wi and a stochastic availability coefficient Ai,t(ξ

θ). Therefore,
it shall not exceed the quantity Ai,t(ξ

θ)Wi.

The fossil-fuel production carries a cost that is proportional to the amount of production, with
a proportionality coefficient γθ

i,t. To minimize the global cost, as there is not any constraint imposed
on these facilities, we give priority to the less expensive one. Consequently, the cost of a fossil-fuel
production pt follows a convex piecewise linear curve as shown at Figure 4.6.
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Figure 4.6: Fossil-fuel production cost

4.3.1.3 The demand

In reality, the demand to satisfy is a continuous function of the time, but for simulation purpose, we
discretize each time step t into several periods and we assume that the demand is constant over each
period. These periods can be grouped in two categories :

− Off-peak periods, when the demand is low (for example, during the night)

− Peak periods, when the demand is high (for example, during the evening)

For each time step, the peak and off-peak time step are gathered, so that each time steps contains
only two periods, a peak and an off-peak one. Consequently, the demand constraint is twofold : the
peak and the off-peak one, as illustrated on Figure 4.7.

Figure 4.7: The demand for the Nuclear Outages Scheduling Problem

On the one hand, on peak periods, the production have to satisfy the peak load denoted by
Dt(ξ

δ). Two simplifications are made concerning these periods : we assume that this demand is larger
than the nuclear availability and that the nuclear production is maximal. Consequently, we do not need
a variable for the nuclear production since we can use the nuclear availability ct(ξ

ν) instead. The peak
demand constraint can therefore be formulated as follows :

ct(ξ
ν) +

∑

i∈Nθ

WiAi,t(ξ
θ)yi,t ≥ Dt(ξ

δ), t = 1, ..., Nt (4.11)

where yi,t ∈ [0, 1] is the production of the fossil-fuel plant i at time t.

On the other hand, during off-peak periods, the off-peak demand has to be satisfied. In the same
way as for peak time step, we make the following assumption : the off-peak demand is lower than the
nuclear availability, and the fossil-fuel production vanishes. It is tantamount to assuming that the only
production during off-peak period is nuclear.
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Thus, at each off-peak period, the nuclear power plants have to satisfy a given level of demand.
Another way of expressing this is as follows : given the nuclear availability, a certain level of non-
production is allowed. As mentioned below, this amount is called modulation. The fact that the system
aims at minimizing its production cost guarantees that the whole modulation will be used.

We make an additional simplification : instead of having an authorized amount of modulation per
time step, we gather them in a global amount of modulation to use throughout the time horizon. This
value, M(ξµ), is a random variable expressed in MWh (not in JEPP since it concerns all the plants),
which we assume is independent on the problem variables. Then, the off-peak constraint writes :

24
∑

(i,j)∈Cν

Wimi,j ≤M(ξµ) (4.12)

where the multiplication by 24Wi is required to convert the modulation mi,j in JEPP into MWh.

4.3.1.4 A dynamic problem

A key difficulty of the nuclear outages scheduling problem comes from its dynamic nature, which means
that certain decisions can be made once uncertainty is removed. It is typically the case of the fossil-fuel
production yi,t since in practice this quantity is determined once the demand and the availability of
the production facilities are known, so that the supply meet the demand. On the other hand, the other
decisions variables are static, i.e., they are made once and for all at the beginning of the time horizon.
This context would require a closed-loop optimization but unfortunately, this may not be possible to
model, depending on which representation of uncertainty is chosen.

With a discrete representation of uncertainties (multi-scenario), it suffices to define one dynamic
variable per scenario, which can be very costly in terms of number of variables. With a stochastic
representation of uncertainty, the problem falls in the framework of multi-stages programming, a well-
defined paradigm but very hard to solve. Extensions to robust representation also exist. However, in our
problem, we have the possibility to proceed differently, by removing the fossil-fuel production variables
y from the model. Indeed, these variables y are involved only in the peak-demand constraint and in
the objective function, and we will see that for these two terms, there are equivalent or approximated
formulations that do not involve y.

Regarding the peak-demand constraint, it is strictly equivalent to replace the fossil-fuel produc-
tion by the fossil-fuel maximal production, because the maximal production of the plants is the only
constraint that the variables y must satisfy. Indeed, the peak demand constraint is satisfied if and only
if the availability of the various production facilities is greater than the demand. This allows us to
remove the fossil-fuel production variable from this constraint, as expressed below :

ct(ξ
ν) +

Nθ
∑

i=1

yi,tAi,t(ξ
θ)Wi ≥ Dt(ξ

δ) for some yi,t ∈ [0, 1]⇔ ct ≥ Dt(ξ
δ)−

Nθ
∑

i=1

Ai,t(ξ
θ)Wi

It remains to express the cost of this production. Recall that if pt is the fossil-fuel production
at time t, then its cost is f(pt), with f a convex piecewise linear function. The difficulty is that the
function f depends on the stochastic parameters Ai(ξ

θ. Furthermore, implementing such a function in
our model requires the definition of one continuous variable by pieces, which brings back to the starting
point.

A way to overcome this difficulty is to approximate f by a deterministic quadratic function qt be
this function, then the objective becomes :

min qt(Dt(ξ
δ)− ct(ξ

ν)) (4.13)

Thus, the objective function does not involve the variables y any more.
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4.3.2 Notations summary

In the above table (Table 4.1), we summarize all the notations used to present the NOSP. The first part
of the table contains the variables while the second lists the notations related to the data :

xi,j,t binary variable, equal to 1 if and only if the outage (i, j) starts at t
ct(ξ

ν) nuclear availability at time t
mi,j modulation of the cycle (i, j)
ri,j reload of the cycle (i, j)
pt fossil-fuel production at time t
ti,j beginning date of the outage of the cycle (i, j)
fi,j(ξν) ending stock of the cycle (i, j)

Nt number of time steps during the time horizon
Nν number of nuclear units
Nθ number of fossil-fuel units
Ng number of nuclear geographical sites
Ns number of scenarios
Cν set of nuclear cycles
C∗ν set of nuclear cycles with outage inside the time horizon
Ji index of the last cycle of the nuclear unit i
E(i,j) set of possible beginning dates of the outage (i, j)
δi,j duration of the outage (i, j)
Wi maximal power of the (nuclear or fossil-fuel) power plant i
Ai,t(ξ

ν) stochastic coefficient of failure of the nuclear power plant i at time t
Ct(ξ

ν) maximal availability of the nuclear park at time step t
Ai,t(ξ

θ) stochastic coefficient of failure of the fossil-fuel power plant i at time t
Mi,j maximal modulation of cycle (i, j)
[Ri,j , Ri,j ] interval of possible reload for the cycle (i, j)
βi,j the part of the fuel that is unload at each outage
[F i,j , F i,j ] interval of the possible ending stock of the cycle (i, j)
Jk set of nuclear power plants located on the site k
N l

k maximal number of parallel outages on the site k
Np

k minimal space between two outages on the site k
γi,j proportional cost of the reload of the cycle (i, j)
γθ
i,t proportional cost of the fossil-fuel power plant i at time t

Dt(ξ
δ) peak load at time t

M(ξµ) global amount of modulation to achieve
qt quadratic function that associates a cost to the amount of fossil-fuel

production at time t

Table 4.1: Notations used for the Nuclear Outages Scheduling Problem

4.3.3 The models

In order to emphasize the combinatorial and stochastic nature of the problem, some additional simpli-
fications are introduced, which leads to different models. We present them in order of how close to the
real problem they are.
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4.3.3.1 Model 1

This model is a direct application of the description given at Section 4.3.1 with the quadratic objective
function and the quadratic formulation of the maximal lapping constraint. Regarding uncertainty, we
use a stochastic approach and we require that the constraints involving uncertain parameters be satisfied
up to a given level of probability (chance-constraints). This leads to the following stochastic problem :

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
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











min E[
Nt
∑

t=1
qt(Dt(ξ

δ)− ct(ξ
ν))−

Nν
∑

i=1

γi,Ji−1fi,Ji
(ξν)] +

∑

(i,j)∈C∗

ν

γi,jri,j (4.13)

s.t. P[F i,j ≤ fi,j(ξν) ≤ F i,j ] ≥ 1− ε, ∀(i, j) ∈ C∗ν (4.5)

P[24
∑

(i,j)∈Cν

Wimi,j ≤M(ξµ)] ≥ 1− ε (4.12)

∑

i∈Jk

Ji
∑

j=1

t
∑

t′=t−δi,j+1

xi,j,t′ ≤ Np
k , t ∈ [Nt], k ∈ [Ng] (4.6)

∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

(ti,j − ti′,j′ +N l
k + δi,j)(ti,j − ti′,j′ −N l

k − δi′,j′) ≥ 0,
∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.10)

f(i,j+1)(ξν) = 7
ti,j+1
∑

t=ti,j+δi,j

Ai,t(ξ
ν)−mi,j+1 + ri,j + βi,jfi,j , ∀(i, j + 1) ∈ C∗ν (4.4)

ct(ξ
ν) =

∑

(i,j)∈Cν

Ai,t(ξ
ν)Wi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
mi,j ∈ [0,Mi,j ], ∀(i, j) ∈ Cν (4.2)

ri,j ∈ [Ri,j , Ri,j ], ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν

(4.14)

We assume that the probability distributions of ξδ, ξθ and ξν are concentrated on a finite number
of scenarios s = 1, ..., Ns, obtained from historical observation. We assume that all these scenarios
have the same probability 1/Ns of occurrence. Then we can derive a deterministic formulation of the
constraints related to the ending stock (4.5) and to the off-peak constraint (4.12). Recall that the peak
demand constraint is implicit since the fossil-fuel production variables have been removed.

This formulation is very classical in stochastic programming and is obtained as follows : for each
considered constraint and each scenario, we introduce a binary variable that must be equal to 0 if the
constraint is satisfied. Then, it suffices to impose that a minimal number of these variables are equal
to 0. More precisely, let us consider the following joint chance-constraint :

P[ai(ξ)
Tx ≤ bi(ξ), i = 1, ...,m] ≥ 1− ε

where ai(ξ) and bi(ξ) are random vectors and variable for i = 1, ...,m, represented by their respective
Ns scenarios {ai,s}s=1,··· ,Ns

and {bi,s}s=1,··· ,Ns
. πs is the probability of occurrence of the scenario s

and x is the decision vector. Then the constraint can be formulated as :






aTi,sx−Mzs ≤ bi,s, s = 1, ..., Ns, i = 1, ...,m
∑Ns

s=1 πs(1− zs) ≥ 1− ε
zs ∈ {0, 1}, s = 1, ..., Ns

where M is a positive scalar, large enough to guarantee that the inequalities aTi,sx ≤ bi,s + M, s =
1, ..., Ns, i = 1, ...,m hold for any feasible x.
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In our model, the off-peak demand constraint leads to an individual chance-constraint and the
ending stock constraints give rise to one range chance-constraints (i.e., m = 2 and a1(ξ) = −a2(ξ) ) for
each cycle (i, j) ∈ C∗ν .

Regarding the objective, we aim at minimizing its expected value, computed as follows the sum
of the objective value of each scenario, multiplied by 1/Ns. With this formulation, the fact that the
coefficient of the quadratic function vary according to the scenario is not problematic since it suffices
to use the relevant coefficients for each scenario.

Finally, we obtain a MIQCQP, with a large number of binary variables and linear constraint,
where the quadratic term involves only binary variables.

4.3.3.2 Model 2

This model is the deterministic version of the problem described at Section 4.3.1, with the quadratic
objective function and the "big M" formulation of the maximal lapping constraint.

Thus, it is almost similar to the model (4.14), by replacing the constraint (4.10 ) by the constraint
(4.9) and by considering the deterministic version of the stochastic parameters :
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min
Nt
∑

t=1
qt(Dt − ct)−

Nν
∑

i=1

γi,Ji−1fi,Ji
+

∑

(i,j)∈C∗

ν

γi,jri,j (4.13)

s.t. F i,j ≤ fi,j ≤ F i,j , ∀(i, j) ∈ C∗ν (4.5)

24
∑

(i,j)∈Cν

Wimi,j ≤M (4.12)

∑

i∈Jk

Ji
∑

j=1

t
∑

t′=t−δi,j+1

xi,j,t′ ≤ Np
k , t ∈ [Nt], k ∈ [Ng] (4.6)

∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

ti,j − ti′,j′ ≤ −N l
k − δi′,j′ +Mi,jzi,j,i′,j′ , ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.9)

ti,j − ti′,j′ ≥ N l
k + δi,j −Mi′,j′(1− zi,j,i′,j′), ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.9)

f(i,j+1) = 7
ti,j+1
∑

t=ti,j+δi,j

Ai,t −mi,j+1 + ri,j + βi,jfi,j , ∀(i, j + 1) ∈ C∗ν (4.4)

ct =
∑

(i,j)∈Cν

Ai,tWi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
mi,j ∈ [0,Mi,j ], ∀(i, j) ∈ Cν (4.2)

ri,j ∈ [Ri,j , Ri,j ], ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν
zi,j,i′,j′ ∈ {0, 1}, ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng]

(4.15)

This model is dedicated to study the combinatorial aspect of the problem. The obtained problem
has mixed variables (binary and continuous), linear constraints and a convex quadratic objective. A
key point is that the quadratic terms involves only binary variables.

4.3.3.3 Model 3

We elaborated this model in order to test sophisticated SDP relaxations. To this end, we need to reduce
the size of the problem and in particular, we aim at removing the continuous variables in order to focus
on the combinatorial aspect of the problem.
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The major simplification that we make then is to replace the constraint on the ending stock and
the constraint on maximal modulation by a constraint that imposes a time interval between successive
outages of the same plant :

T (i,j) ≤ ti,j − ti,j−1 ≤ T̄(i,j), ∀(i, j) ∈ Cν (4.16)

As a consequence, the definition of the final stock fi,j is not required any more. Furthermore, we
neglect the reload ri,j and the associated cost, as well as the modulation mi,j and the off-peak demand
constraint (4.12 ).

The rest is similar to the description given at Section 4.3.1, with the following precisions : we are
in a deterministic framework and the objective is quadratic, as well as the formulation of the maximal
lapping constraint.

Finally, we obtain a pure binary problem, with quadratic objective and constraints, whose linear
constraints are both equality and inequality constraints. We summarize it as follows :
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min
Nt
∑

t=1
qt(Dt − ct) (4.13)

s.t. T (i,j) ≤ ti,j − ti,j−1 ≤ T̄(i,j), ∀(i, j) ∈ Cν (4.16)

∑

i∈Jk

Ji
∑

j=1

t
∑

t′=t−δi,j+1

xi,j,t′ ≤ Np
k , t ∈ [Nt], k ∈ [Ng] (4.6)

∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

(ti,j − ti′,j′ +N l
k + δi,j)(ti,j − ti′,j′ −N l

k − δi′,j′) ≥ 0,
∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.10)

ct =
∑

(i,j)∈Cν

Ai,tWi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν

(4.17)

4.3.3.4 Model 4

The model we describe in this section is not really a simplification, rather a focus on a very precise
part of the nuclear outages scheduling problem, namely the maximal lapping constraint. To this end,
we consider only one outage per nuclear power plants and the only constraints to satisfy are :

− the assignment constraint (4.1 );

− the maximal lapping constraint (4.7).

Regarding the maximal lapping constraint, the three possible formulations will be considered,
i.e., "big M", pairwise exclusion and quadratic formulations.

Finally, the objective is defined via a bunch of functions qt, as follows :
∑Nt

t=1 qt(Dt − ct). In
concert with the other models, the functions qt should be quadratic, however for this study, we consider
that it is linear. Indeed, the quadratic objective reduces the tightness of the maximal lapping constraints
since it tends to spread the outages all over the time horizon. Furthermore, a large part of the gap
comes from the linearization of the objective function. Consequently, we obtain the same gap for the 3
models of the maximal lapping constraints, which is not interesting for our study. By contrast, using a
linear objective yields gaps that differ significantly among the different models.

123



We start with the model 4−1 that consider the "big M" version of the maximal lapping constraint :

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min
Nt
∑

t=1
qt(Dt − ct) (4.13)

s.t.
∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

ti,j − ti′,j′ ≤ −N l
k − δi′,j′ +Mi,jzi,j,i′,j′ , ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.9)

ti,j − ti′,j′ ≥ N l
k + δi,j −Mi′,j′(1− zi,j,i′,j′), ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.9)

ct =
∑

(i,j)∈Cν

Ai,tWi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν
zi,j,i′,j′ ∈ {0, 1}, ∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng]

(4.18)

Then, the model 4−2 uses the pairwise exclusion formulation of the maximal lapping constraint :
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min
Nt
∑

t=1
qt(Dt − ct) (4.13)

s.t.
∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

xi,j,t + xi′,j′,t′ ≤ 1, ∀t, t′ : t− t′ ∈ ]−N l
k − δi′,j′ , N l

k + δi,j [,
∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.8)

ct =
∑

(i,j)∈Cν

Ai,tWi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν

(4.19)

Finally, with the quadratic formulation of the maximal lapping constraint, we obtain the model
4− 3 :











































































min
Nt
∑

t=1
qt(Dt − ct) (4.13)

s.t.
∑

t∈E(i,j)

xi,j,t = 1, ∀(i, j) ∈ C∗ν (4.1)

(ti,j − ti′,j′ +N l
k + δi,j)(ti,j − ti′,j′ −N l

k − δi′,j′) ≥ 0,
∀i, j, i′, j′ : i 6= i′ ∈ Jk, k ∈ [Ng] (4.10)

ct =
∑

(i,j)∈Cν

Ai,tWi

(

t
∑

t′=t−δi,j+1

xi,j,t′

)

(4.3)

ti,j =
∑

t∈E(i,j)

txi,j,t, ∀(i, j) ∈ C∗ν
xi,j,t ∈ {0, 1}, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν

(4.20)

4.3.3.5 Model 5

With this model, we aim at investigating a new way of handling uncertainty, namely the distributionnally
robust approach. To this end, in order not to compound the difficulties, we put aside the combinatorial
nature of the problem and we tackle a continuous version of the problem, that can now be considered
as a classical problem of supply/demand equilibrium.
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More specifically, we consider a system of Nθ production units, characterized by a deterministic
time-dependent production cost γt,i for the plant i at time step t. The essence of the problem is to
determine the production of the plants i at each time step t : xt,i ∈ [0, 1], in order to meet the uncertain
demand Dt(ξ

δ) at each time step. The power plants are subject to random failure, represented by the
coefficient Ai,t(ξ

θ)

Furthermore, some technical constraints state that the prescribed production of a plant i over the
time-horizon shall not exceed a given amount ri. More precisely, these constraints stand for the necessity
of shutting down the plants to proceed to maintenance operations, and is therefore independent of the
uncertain availability of the plants.

These requirements are summarized in the following concise formulation :
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min γTx

s.t. P

[

N
∑

i=1

Ai,t(ξ
θ)xt,i ≥ Dt(ξ

δ), t = 1, ..., Nt

]

≥ 1− ε

T
∑

t=1
xt,i ≤ ri, i = 1, ..., Nθ

xt,i ∈ [0, 1], i = 1, ..., Nθ, t = 1, ..., Nt

(4.21)

This problem is therefore a linear problem with a joint chance-constraint. At paragraph 6.2,
we compare the results obtained by exploiting two different levels of knowledge about the uncertain
parameters ξ. First, we assume that only the support and the expected value are known, in which case
we approximate the problem in a robust way by combining Boole’s and Hoeffding’s inequalities, which
leads to a SOCP. Second, we consider the additional information provided by the second-order moment
and exploit it in the spirit of distributionnally robust optimization.

4.3.4 Comparison of the different models

The table 4.2 gives a comparaison of the main features of the different models.

Models Uncertainty Objective Max. Lapping Nature of the problem
1 Scenarios Quadratic Quadratic MIQCQP
2 Deterministic Quadratic Big M MIQP
3 Deterministic Quadratic Quadratic IQCQP

4-1 Deterministic Linear Big M ILP
4-2 Deterministic Linear Pairwise exclusion ILP
4-3 Deterministic Linear Quadratic IQCQP
5 Dist. Robust Linear - LP

Table 4.2: Comparison of the different models

This Table clearly shows that the models 2,3 and 4 are dedicated to the study of the combinatorial
aspect in chapter 5, whereas the models 1 and 5 are intended to treatment of uncertainty in chapter 6.

4.4 Conclusion

Energy management is the combination of the managements of huge and heterogeneous portfolio of
production units, in coordination with management of financial assets, that range from a short term
in a few hours to a long term in many years. Resulting optimization problems have to comply with
various difficulties and can be formulated as linear or fully quadratic stochastic optimization programs
of huge size with mixed variables. Their resolution is therefore extremely hard, especially since the time
required for their resolution is constrained by operational processes. Finally, the permanent changes
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and evolutions of the energy sector pose new problems with specific difficulties and require a constant
scalability of the implemented tools.

In this chapter, we provide the main elements to get acquainted with this domain, starting by
the components of the demand/supply equilibrium, i.e., the different production units and financial
assets, the demand and specific details regarding this constraint. We also discuss different manners of
accounting with uncertainty into energy management problems.

Then, we focused on the Nuclear Outages Scheduling Problem (NOSP), an energy management
problem famous for its combinatorial feature, that involves major economic stakes. We describe the
problem in detail and propose 5 models of this problem, with varying degrees of precision, that emphasize
different features of the problem. We compared these models in Table 4.2 in order to point out the
differences and similarities between them, in particular regarding the way of considering uncertainty.

Thanks to all these elements, we can move on to the next chapters, where SDP is applied to the
different models described here. The chapter 5 focus on combinatorial features and involves the models
2, 3 and 4, whereas the models 1 and 5 are intended to treatment of uncertainty in chapter 6.
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Chapter 5

SDP for combinatorial problems of

energy management

In spite of all the promising results obtained with SDP for approximating hard combinatorial problems,
only few people have embarked on practically attacking such problems.

In this section, we are interested in confronting this theory with practice. Indeed, in energy
management, we are faced with problems presenting combinatorial features, due to the fact that certain
decisions corresponds to indivisible quantity, or for modelling certain "all or nothing" behaviours. It is
also useful for taking piecewise phenomenon into account.

More precisely, we are interested in assessing the quality of the semidefinite relaxation for three of
the combinatorial problems described in Chapter 4. All the theoretical elements necessary to acquaint
oneself with this relaxation are provided in the Section 3.3. In particular, in the paragraph 3.3.2,
we present in detail a systematic way of obtaining a semidefinite relaxation of a QCQP, the so-called
standard semidefinite relaxation. We explain how this relaxation applies to 0/1-LP but need to be
reinforced in order to outperform linear relaxation.

The first section of this chapter is taken from the paper [115] and presents a first approach
to build a semidefinite relaxation of the nuclear outages scheduling problem modelled as described in
Paragraph 4.3.3.2. This relaxation scheme is completed by a randomized rounding procedure allowing
to recover a feasible solution from the optimal solution of the semidefinite program.

The second section is the restitution of the work reported in the submitted paper [113]. It
presents a generic scheme for deriving and tightening the semidefinite relaxation of a QCQP and report
an application of this method to the nuclear outages scheduling problem, more specifically, to the model
described in paragraph 4.3.3.3.

For these two chapters, we chose not to provide the papers [115, 113] in their entirety in order
to avoid the duplications. Regarding the methodology, we put aside the elements regarding the SDP
theory since they are given in Chapter 2. Furthermore, we do not explicit the way we build the standard
SDP relaxation of a QCQP since the latter is described in detail in Paragraph 3.3.2. Finally, as regards
energy management and application problems, we refer the reader to the Chapter 4.

The third section contains complementary works dealing with the application of SDP to the model
4 of the NOSP, presented in Paragraph 4.3.3.4. This model is quite simple, in order to consider small
instances, and focus on a very difficult constraint arising in NOSP : the maximal lapping constraint.
A part of the work consists of comparing three possible models of this constraint, that can be seen as
a linear disjunction : aTx ≤ b or aTx ≥ c, where x are binary variables. In the fourth section, we
compare several classical reinforcement of the standard semidefinite relaxations for this problem. We
go a step further at the end of the section, by experimenting the hierarchy of semidefinite relaxation
proposed by Lasserre for polynomial problems.
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5.1 A first attempt of SDP relaxation for the nuclear outages
scheduling problem

This section reports the work presented in the paper [115] which investigates semidefinite relaxation
for the NOSP modelled as described in Paragraph 4.3.3.2. This relaxation scheme is completed by a
randomized rounding procedure allowing to recover a feasible solution from the optimal solution of the
semidefinite program.

The considered problem is a deterministic version of the NOSP that is described in detail in
Paragraph 4.3.3.2. With respect to the other models proposed for this problem, it is rather complete.
In particular, we optimize both the scheduling of outages, which induces binary decision variables, and
the amount of supplied fuel and the nuclear power plants production planning, which corresponds to
bounded continuous decision variables.

This problem is therefore a huge M-0/1-QP (Mixed 0/1 Quadratic Program). The quadratic
feature comes from the objective function. Its compact formulation is as follows :

(P )















minx,y xtQx+ ptx+ qty
subject to Ax+By ≤ c

y ≤ ȳ

x ∈ {0, 1}Nx , y ∈ R
Ny

+

(5.1)

It is worth noticing that the quadratic terms involve only binary variables, which enables to solve
the exact problem with CPLEX. However, this is not the primary objective of this work, which aims
rather at comparing the strength of two possible relaxations for this problem.

First, we apply the standard semidefinite relaxation described at Paragraph 3.3.2 to the QCQP
obtained by formulating the binary constraints as quadratic equalities x2

i = xi. In a second step, we
reinforce the SDP relaxation by adding some cuts based on the Sherali-Adams approach. We describe
this process at Paragraph 5.1.1.

Then, we compare it to the relaxation in the form of a Quadratic Program that is obtained by
relaxing xi ∈ {0, 1} into xi ∈ [0, 1]. This so-called continuous relaxation can be solved with CPLEX
since the objective function is convex.

Finally, the solutions of these relaxations are then used to compute a feasible solution, by using
a randomized rounding scheme, described in the paragraph 5.1.2. Numerical results are reported in
paragraph 5.1.3.

5.1.1 Reinforcing the standard semidefinite Relaxation

At this point, we consider that the standard SDP relaxation described in Paragraph 3.3.2 is implemented
for the problem 5.1. We explained in Paragraph 3.3.3.1 that the standard SDP relaxation is generally
not the most appropriate. In particular, adding some valid quadratic constraints may improve its
bound. In this section, we apply the Sherali-Adams [240] principle described in detail in Appendix
3.4.3.2. Briefly, let Ax = b be a set of linear constraints and xi a binary variable, the constraints
Axxi = bxi is valid. We apply this idea to the uniqueness constraint (4.1), with all the variables xi that
appear in the constraint. By using x2

i = xi it comes :

∑

t′∈Ei,j , t′ 6=t

xν
i,j,tx

ν
i,j,t′ = 0, ∀t ∈ Ei,j , ∀(i, j) ∈ C∗ν (5.2)
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5.1.2 Randomized rounding procedure

Randomization has proved to be a powerful resource to yield a feasible binary solution from a fractional
one. The basic idea is to interpret the fractional value as the probability of the variable to take the
value 1. Then the values of the binary variables are drawn according to this law and this process is
iterated until the solution satisfies the constraints.

Here, we slightly change this principle, in order to find more easily a feasible solution : instead of
deciding successively if a binary variable is 0 or 1, for each cycle, we choose one date among the possible
beginning date for the associate outage, by using the fractional value as probability, since their sum is
equal to one from the assignment constraint. Thus, the assignment constraint is necessarily respected
by the integer solution.

Then, the values of the lapping variables xλ follow. About the continuous variables, for the
modulation xµ, we keep the value of the relaxation and for the reload xρ, we take the minimal values
that respects the ending stock constraint.

5.1.3 Numerical experiments

Data Nb of Opt RelaxQP RelaxSDP RelaxSDP-Q
set bin. var. Obj Time Gap Time RR Gap Time RR Gap Time RR

D-1 215 3 343 1 0.73 0.02 2.35 0.54 12 2.35 0.26 12 0.70
D-2 278 3 254 21 0.80 0.00 3.88 0.64 19 1.49 0.46 21 1.70
D-3 341 3 174 183 0.94 0.02 4.86 0.82 31 2.43 0.65 36 3.25
D-4 406 3 110 1 286 1.10 0.02 4.23 0.97 44 5.04 0.83 54 5.14
D-5 469 3 051 7 200 1.18 0.02 11.70 1.08 63 3.72 0.96 79 4.04
D-6 530 2 994 5 780 1.17 0.03 14.56 1.09 81 3.35 1.00 108 4.73
D-7 215 3 297 2 1.24 0.02 3.31 1.03 5 2.82 0.68 6 0.82
D-8 278 3 223 8 1.89 0.03 10.28 1.72 8 7.15 1.38 11 3.35
D-9 341 3 176 39 2.94 0.08 11.31 2.81 15 9.95 2.49 64 2.11
D-10 406 3 133 169 3.91 0.13 14.69 3.80 26 11.94 3.52 98 8.98
D-11 469 3 070 76 3.87 0.18 13.56 3.78 38 13.81 3.53 147 11.79
D-12 530 3 024 232 4.25 0.20 14.47 4.17 53 17.98 3.95 236 16.20
D-13 539 12 580 7 200 0.85 0.05 3.16 0.77 154 3.28 0.61 171 2.08
D-14 698 12 431 7 200 0.95 0.10 3.47 0.89 252 3.76 0.76 286 4.06
D-15 852 12 290 7 200 1.13 0.14 5.78 1.08 373 4.58 0.99 436 4.83
D-16 1 011 12 156 7 200 1.14 0.14 6.16 1.09 578 5.19 1.02 750 5.29
D-17 1 170 12 034 7 200 1.15 0.22 5.72 1.12 791 5.77 1.08 1008 6.36
D-18 1 322 11 939 7 200 1.35 0.27 6.47 1.32 1030 5.67 1.30 1308 7.00
D-19 537 12 679 7 200 1.21 0.16 2.80 1.16 68 2.95 1.07 310 4.48
D-20 695 12 464 7 200 1.57 0.54 5.96 1.52 137 6.56 1.44 447 6.31
D-21 853 12 289 7 200 1.98 0.94 9.28 1.94 242 8.91 1.85 805 6.74
D-22 1 008 12 159 7 200 2.37 1.90 9.15 2.33 382 7.47 2.27 1113 8.80
D-23 1 165 12 034 7 200 2.65 2.95 7.87 2.62 628 7.70 2.58 2106 6.86
D-24 1 316 11 915 7 200 2.87 3.65 10.93 2.84 823 9.89 2.80 2231 8.52
Av. 651.83 7700.85 4224.91 1.80 0.49 7.75 1.71 243.88 6.41 1.56 493.46 5.59

Table 5.1: Results of exact search, relaxations and randomized rounding

Numerical experiments have been performed on a three years time horizon (156 weeks), with
one outage per year for each plant and two nuclear parks (respectively 10 and 20 nuclear power plants
for the data set 1 to 12, and 13 to 24). Each park is declined into two versions which differ from the
maximum amount of reload (R̄i,j) and modulation (Mi,j). Finally, six instances have been tested for
each data set, varying by the size of the search spaces associated to the outages dates variables (7 to
17 possibles dates).

All the computations was made on an Intel(R) Core(TM) i7 processor with a clock speed of
2.13 GHz. In order to compare the solutions in the same conditions, the CPLEX results are obtained
without activating the preprocessing. For each data set we computed :
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− Opt : the best solution found within the time limit (2 hours) by using CPLEX-Quadratic 12.1.
The time value 7200 means that the time limit has been reached, so the obtained integer solution
is not optimal ;

− RelaxQP : the continuous relaxation solved with CPLEX-Quadratic 12.1;

− RelaxSDP : the standard SDP relaxation solved with the SDP solver CSDP 6.1.1 (cf [53]);

− RelaxSDP-Q : the reinforced SDP relaxation solved computed with CSDP 6.1.1 ;

For each data set, the table 5.1 reports the number of binary variables, the value of the objective
function (in currency unit), the computational time in second and, for each kind of relaxation, the
associated gap (Gap) and the relative gap of the randomized rouding (RR), whose formula are given
below. The last line (Av.) gives the average of the previous lines.

Gap =
popt − prelax

prelax
RR =

pRR − popt
popt

Analysis of the results
First we observe that CPLEX reaches the limited time for relatively small instances (e.g. 469 binary
variables). This is in line with our expectations that this kind of problem is very hard for CPLEX,
despite a quite small gap attained with continuous relaxation.

This may be related to the fact that, due to the demand constraint, the variable part of the
objective function is very small w.r.t the absolute value of the cost. In other words, the optimal value
is high, even with a "perfect" outages scheduling. Let us denote P the best possible objective value
for a given data set, computed by considering the largest possible search space, and let’s consider the
variable part of the objective function, that is p − P , if p is the objective value. Then, the gap would
increase, as shown in the following formula :

popt − prelax
prelax − P

>
popt − prelax

prelax

This illustrates the importance of considering the relative improvement of the gap achieved by
semidefinite relaxation, rather that its absolute value.

For example, on the data set D-1, the gap is almost divided by three. Unfortunately, this ratio
decreases as the number of binary variables raises, whereas the gap increases. This can be explained by
the fact that the integer solution provided here is not optimal, considered that the computational time
of CPLEX is limited. Let us denote by p′opt > popt this value : then the ratio computed with this value
is greater than the ratio computed with p :

popt − prelaxCPLEX

popt − prelaxSDP
>

p′opt − prelaxCPLEX

p′opt − prelaxSDP

On average, the gap improves from 1.80% to 1.71% with the standard SDP relaxation and to
1.56% with the addition of valid equalities. This latter improvement is promising, even though it comes
at high additional computational cost, particularly on the larger instances. This can be ascribed to the
fact that SDP solvers are only in their infancy, especially compared to a commercial solver like CPLEX.

Finally, the randomized rounding yields satisfying results : due to the random aspect of the
procedure, there are still some data set where the continuous relaxation gives better results than the
semidefinite relaxation, but on average the loss of optimality reduces from 7.75% to 6.41% and 5.59%,
which is significant when considering the huge amount at stake.
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5.1.4 Conclusion

We investigated semidefinite relaxations for a MIQP (Mixed-Integer Quadratic Program) version of the
scheduling of nuclear power plants outages. Comparison of the results obtained on significant data sets
shows the following main results. First, our MIQP is extremely hard to solve with CPLEX. Second,
semidefinite relaxations provide a tighter convex relaxation than the continuous relaxation. In our
experiments the gap between the optimal solution and the continuous relaxation is on average equal to
1.80% whereas the semidefinite relaxation yields an average gap of 1.56%. Third, the computational
time for computing these semidefinite relaxations is reasonable. Exploiting those results in a randomized
rounding procedure instead of the result of the continuous relaxation leads to a significant improvement
of the feasible solution.

In the view of these preliminary results, additional investigations will concern i) introduction of
more valid inequalities, ii) evaluation of others SDP resolution techniques, for instance Conic Bundle
for facing problems of huge size.

5.2 Generating cutting planes for the semidefinite relaxation of
quadratic programs

The purpose of this section is to present a generic scheme for tightening the semidefinite relaxation
of a QCQP and to report an application of this method to the NOSP, more precisely, to the model 3
described in paragraph 4.3.3.3. This work corresponds to the submitted paper [113].

This scheme can be described as follows. For a given QCQP, we start by deriving the standard
SDP relaxation as described in Paragraph 3.3.2. In parallel we built a set of valid quadratic constraints
for this QCQP, by multiplying all the linear constraints of the QCQP, including the bound constraints,
between them. We denote PS this set of constraints completed by the initial constraints of the considered
QCQP.

Then, similarly to a separation algorithm, we select iteratively the most violated constraint
among PS and we add it to the semidefinite relaxation, where they act as cutting planes. In order to
generate more efficient cutting planes, we investigates another version of the separation problem, where
the constraint is selected among all the suitable combinations of elements of PS and is required to be
convex. In this case, the separation problem is a SDP.

We apply this method to the model 3 of NOSP (see Paragraph 4.3.3.3), which is a 0/1-QCQP. In
order not to immediately restrict ourself to a particular 0/1-QCQP, we start by testing it on randomly
generated instances of 0/1-QCQP, called working instances.

In short, our contribution is threefold. First, we design an automatic method to tighten the
standard SDP relaxation of a QCQP, based on the pairwise products of the linear constraints of the
problem. Besides, we provide a set of proofs that some products of linear constraints do not need to
be considered. Finally, we show that our framework unify many seemingly disparate constraints for
tightening semidefinite relaxation that are proposed in the literature.

This section is organized as follows. First, we introduce QCQP and present how SDP applies to
this area. Our main contribution is given in the next paragraph by describing the elaboration of the
set P2 and the design of the separation algorithm. We also discuss how our approach relates to prior
works on cutting planes generation for semidefinite relaxation. Finally, we report experimental results
and give a conclusion.

In all the section, we consider the following QCQP :






minx∈Rn xTP0x+ 2pT0 x+ π0

subject to xTPjx+ 2pTj x+ πj ≤ 0, j = 1, ...,mq

bj ≤ aTj x ≤ cj , j = 1, ...,ml

(5.3)
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where Pj ∈ S
n×n, pj ∈ R

n, πj ∈ R, j = 0, ...,mq and aj ∈ R
n, bj ∈ R, cj ∈ R, j = 1, ...,ml are the

problem parameters. The feasible set of this problem is denoted F and p∗ is its optimal value. With
this formulation, we emphasize the linear constraints because of their key role in the process of building
the semidefinite relaxation. Writing them as range constraints is a mild loss of generality. It suffices for
instance to assume that all the variables are bounded for getting easily such a formulation. We make
this assumption and suppose that these bounds are included within the linear constraints. Without loss
of generality, we assume that these bounds are [0, 1], by means of an affine transformation.

5.2.1 State of the art of the semidefinite relaxation of QCQP

The problem (5.3) is convex if and only if all the matrices Pj are positive semidefinite. Otherwise it may
harbor many local minimal and is NP-hard [141]. To see this, one only need to notice that it generalizes
many difficult problems as Polynomial Programming or Mixed 0-1 Linear Programming, since the binary
constraints can be treated as two quadratic inequalities : xi ∈ {0, 1} ⇔ {x2

i ≤ xi, x
2
i ≥ xi}.

Finally, QCQP arises directly in a wide range of practical applications [125, 59], partly due to
their ability to model Euclidean distances. Moreover, this optimization problem is central to well-known
iterative methods such as trust-region sequential quadratic programming. For all these reasons, it is
now considered as one of the most challenging optimization problems and an important work has been
carried out to solve this general problem and its special cases.

Generally, methods for solving a QCQP are derived from nonlinear programming. In particular,
the Branch & Bound procedure is appropriate since two convex relaxations are available, based on a
linear relaxation called Reformulation-Linearization Technique (RLT) [17, 241, 183] or on semidefinite
relaxation [224, 65]. A comparison of these relaxations can be found in [14] that shows that combining
those approaches leads to an enhancement of their respective bounds.

Another possibility for relaxing a QCQP into a convex problem was proposed by Kim and Kojima
in [156]. This relaxation produces a Second-Order Cone Program and can be considered as a compromise
between the semidefinite and the linear relaxation.

In the particular case of a convex QCQP, previously studied by Hao [125] under theoretical
and computational aspects, an interior-point method was proposed in [4] to solve this polynomial-time
solvable problem and the connection with Second-Order Conic Programming was established in [185].

Finally, a QCQP can also be viewed as a particular polynomial program, with all the polynomials
of degree 2. As such, we can apply the Lasserre’s hierarchy of SDP relaxations, whose optimal value
approximate the optimal value of the original problem as closely as desired. However, the size of the
SDP increases rapidly, which makes it difficult to use in practice. We refer the reader to the new
handbook [12] and to the seminal papers of Lasserre on this hierarchy [169, 172].

5.2.1.1 Relaxing a QCQP into a SDP

We recall hereafter the classical way for deriving the standard semidefinite relaxation of the problem
(5.3), i.e., a relaxation that can be written as a Semidefinite Program. This approach was initially
proposed for linear integer programs by Lovász and Schrijver in [187] and extended to QCQP by Fujie
and Kojima in [98]. It turns out that this relaxation is the dual of the so-called Shor relaxation, i.e.,
another semidefinite relaxation for QCQP in the form of Linear Matrix Inequalities introduced in [245].
For an extensive discussion on the use of the semidefinite relaxation for QCQP, we refer the reader to
the recent survey [23].

For a purely quadratic program, i.e., the problem (5.3) with ml = 0, obtaining the semidefi-
nite relaxation is straightforward. First, we reformulate equivalently the problem by introducing an
augmented matrix of variables Y and the convenient matrices Qj :
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













min Q0 • Y
subject to Qj • Y ≤ 0, j = 1, ...,mq

Y =

(

1 xT

x xxT

) (5.4)

where Qj =

(

πj pTj
pj PT

j

)

, j = 0, ...mq.

With this formulation, all the non-linearity is pushed into the last constraint, which comes to
impose to the matrix Y to be of rank 1, positive semidefinite and with Y00 = 1, if Y indices start at
zero. Then, the semidefinite relaxation is obtained by relaxing the rank-1 constraint and requiring only
that Y be positive semidefinite and Y00 = 1.

(PS)















min Q0 • Y
subject to Qj • Y ≤ 0, j = 1, ...,m

Qmq+1 • Y = 1
Y < 0

(5.5)

where Qmq+1 = e0e
T
0 . We denote x and X the elements of Y defined as follows :

Y =

(

1 xT

x X

)

(5.6)

Then, by applying Schur’s complement, Y < 0 is equivalent to X−xxT < 0 and the semidefinite
relaxation comes to relax X = xxT into X − xxT < 0.

A connection with Lift & Project [21, 240, 187] can be established here. In these methods, the
first step denoted lifting consists of extending the variable space to a higher dimensional space, by
introducing new variables. This is exactly what is done by introducing the variable X, that lifts the
problem from the space of the n-vectors to the space of the n symmetric matrices. The difference
between our approach and the classical Lift & Project is that, instead of projecting it to get valid
inequalities in the original space, we solve the problem in the lifted space and project the obtained
solution by picking the vector x.

Note that any convex constraint, i.e., with Pj < 0, of the original problem is necessarily respected
by the projected solution, since X−xxT < 0 implies in this case that Pj •(X−xxT ) ≥ 0. Consequently,
when the problem (5.3) is convex, the semidefinite relaxation yields the optimal solution. See for instance
Proposition 1.4.1 in [86] or [161].

In [98], Fujie & Kojima took step further by showing the equivalence of this relaxation with a
relaxation obtained by considering all the convex inequalities generated as nonnegative combination of
the constraints. They also established the equivalence with the Lagrangian relaxation of the quadratic
constraints, as noticed subsequently by several authors [177, 55, 91].

By considering the linear constraints as particular quadratic constraints, where the quadratic
term is null : aTj x − bj = xTPjx + 2pTj x + πj , with Pj = 0, pj = 1/2bj , πj = −bj , we apply the latter
scheme to the problem (5.3) with ml > 0. We refer to this relaxation as the standard semidefinite
relaxation because of its simplicity. On the downside, it has two major drawbacks. First, in the case of
a Mixed 0/1 LP, it provides the same bound as the continuous relaxation, which is much easier to solve.
It may also happen that the semidefinite relaxation is unbounded, even when all the original variables
have finite bounds, due to the fact that the connection between x and X - i.e., X < xxT - is too weak.
Such a situation occurs for instance whenever Q0 is not psd and diag(X) is not bounded.

As detailed in the next section, this connection can be reinforced by adding redundant quadratic
constraints, called seminal constraints, to the original problem and applying the standard semidefinite
relaxation to this reinforced problem.
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In this paper, we push further in this direction by developping a method for automatically de-
signing these seminal constraints. The tools that are used, i.e., the identification of the best convex
combination of a set of constraints, is well-known and was already used in particular in the convexi-
fication approach of Billionnet et al. [45, 46, 47, 48]. However, the philosophy is very different. The
approach of Billionnet proposes a method to get a convex QCQP reformulation of the problem, whereas
we build a SDP relaxation of the problem that is tightened iteratively. Furthermore, by constrast with
convexification, our approach does not require that the variables be integer.

Finally, the convexification approach was extended to MIQCQP by [179], to convexify the con-
tinuous relaxation and to use it within a Branch and Bound procedure. A comprehensive overview for
this field can be found in [64].

5.2.1.2 Handling the linear constraints

The treatment of the linear constraints and their transformation into quadratic constraints plays a key
role in the design of the semidefinite relaxation. The most natural quadratic formulation, with a null
quadratic term, for linear constraints leads to the standard semidefinite relaxation. A tighter relaxation,
referred to as initial semidefinite relaxation, is produced by following the recipes of [213, 177, 127, 230].
Let us consider a range inequality :

b ≤ aTx ≤ c⇔ (aTx− b)(aTx− c) ≤ 0⇔ xTaaTx− (b+ c)aTx+ bc ≤ 0 (5.7)

Those constraints are convex since aaT < 0. Consequently, the projected solution of the semidefi-
nite relaxation necessarily respects the quadratic constraints and therefore the original linear constraints
are useless.

Regarding the equality constraints, as suggested in [91], we keep the standard formulation as well
as the products of the constraint by each variable of the problem :

aTx = b⇔
{

aTx = b
(aTx− b)xi = 0, i = 1, ..., n

(5.8)

Note that is necessary to keep the linear constraint, otherwise there is no guarantee that the
constraint be satisfied by the projected solution of the semidefinite relaxation. On the other hand,
this formulation ensures that there is no duality gap, as opposed to the more concise formulation
(aTx− b)2 = 0.

Finally, the so-called initial semidefinite relaxation is built as the standard semidefinite relaxation
of the QCQP obtained by setting all the quadratic constraints and the above quadratic formulation of
the linear constraints.

5.2.1.3 Addition of cutting planes to strengthen the relaxation

In this section, we discuss some cutting planes that have been proposed to strengthen the standard
semidefinite relaxation. To a large extent, such works concern a more restrictive part of QCQP, mainly
MIQCQP, where the cuts exploits the fact the variables are integer. In the interests of concision, we
restrict ourselves to the cuts for pure MIQCQP, i.e., not MILP. We just mention that a large number
of cutting planes for MILP can be generated by applying the Lift & Project method, in particular by 3
hierarchies [21, 240, 187] that yields the convex hull of the feasible set in a finite number of iterations .

In [14], it is suggested to bound the diagonal of X : Xii ≤ max{u2
i , l

2
i }, where li and ui are the

bounds of xi, in order to avoid that the SDP relaxation be unbounded.

Another classical way to generate valid quadratic constraints stems from a particular case of
linear disjunction. Indeed, the disjunction (aTx ≤ b) ∨ (aTx ≥ c) with b < c, can be formulated as the
quadratic constraint (aTx− b)(aTx− c) ≤ 0.
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In [84], Deza and Laurent introduced an automatic method to generate such valid disjunctions
by exploiting the integrity of the variables. For any integer vector b ∈ Z

n such that bT e is odd,
2bTx ≤ bT e− 1 or 2bTx ≥ bT e+1. These cuts, called hypermetric inequality are applied to semidefinite
relaxation in [128]. The most famous of them are the so-called triangle inequalities, obtained for any
indices i 6= j 6= k by picking successively b = −ei − ej − ek, b = −ei + ej + ek, b = ei − ej + ek and
b = ei + ej − ek :

(i) xi + xj + xk ≤ Xij +Xik +Xjk + 1
(ii) Xik +Xjk ≤ xk +Xij

(iii) Xij +Xik ≤ xi +Xjk

(iv) Xij +Xjk ≤ xj +Xik

(5.9)

Another contribution in this vein was made in [131]. The constraint aTx − b ≥ 0, with a and b
integer leads to the valid disjunction aTx− b ≤ 0 or aTx− b ≥ 1, i.e., (aTx− b)(aTx− b− 1) ≤ 0.

Some other disjunctions can be used to generate valid constraints. In [146], the authors discussed
the generation of valid quadratic cuts for 0/1 convex QCQP, i.e., a special case of QCQP where the
non-convexity is due exclusively to the binary constraints. Then, the generation of the cut follows the
well-known principle of a cutting plane algorithm [21], where a separation problem is solved at each
iteration in order to determine a cut that is both valid and violated by the current relaxed solution. The
relaxation solved at each iteration is a convex QCQP, and the cut generation is based on disjunctive
programming.

In [235], the authors proposed valid disjunctions based on the constraint A • (X − xxT ) ≤ 0 that
holds for any matrix A whenever X − xxT = 0 is valid. By picking A < 0, such a constraint may
improve the semidefinite relaxation, since the latter implies that A • (X − xxT ) ≥ 0. The difficulty is
that the quadratic term xTAx do not appear in the semidefinite relaxation. To overcome this difficulty,
this term is replaced by a valid linear disjunction, for a rank 1 matrix : A = ccT . The vector c is
built as the best positive combination of eigenvectors of the incumbent solution X −xxT . Remark that
the disjunction generated here is not exclusive, which means that both parts of the disjunction may
be satisfied. In this case, multiplying the linear constraints to get a valid quadratic constraints in not
possible. Instead, a valid linear constraint is derived by applying Balas’ technique [18].

Finally, an other paper from the same authors [236] share many techniques with our paper,
but these techniques are used differently. They also use a semidefinite program to compute valid
quadratic convex cuts but the objective of the separation are different. They aim at getting rid of the
lifted variables (projection), whereas we aim at selecting the best constraint among a set of generated
constraints. Note that both approaches could easily be combined.

5.2.2 A separation problem for generating cutting planes for the semidefi-
nite relaxation

For the QCQP (5.3), we aim at strengthening the standard semidefinite relaxation described at Para-
graph 3.3.2 by adding valid quadratic constraints to the original problem. These seminal constraints
are built following two steps, according to the principle presented at Paragraph 3.3.3.1 :

(i) valid quadratic constraints are generated as pairwise product of the linear constraints, including
the bound constraints ;

(ii) suitable combination of these constraints and of the initial constraints of the problem are taken.

Let us denote by PS the set of the initial constraints of the problem augmented by all the
constraints built at the step (i) and assume that PS = {qj(x) ≤ 0, j = 1, ...,mi; qj(x) = 0, j =
mi + 1, ...,mi +me}, then a suitable combination of elements of PS is defined as follows :

mi+me
∑

j=1

λjqj(x) ≤ 0 for λj ≥ 0, j = 1, ...,mi and λj ∈ R, j = mi + 1, ...,mi +me
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Such a constraint is necessarily valid for (5.3). Our approach consists of selecting the most
appropriate constraint among the suitable combination of PS and adding it to the problem in order
to reinforce the semidefinite relaxation. The selection constitutes the separation problem. Notice that,
even if the selected constraint is quadratic, the associated constraint that is added to the semidefinite
relaxation is linear and is therefore denoted a cutting plane.

This approach is motivated by some earlier works. The notion of surrogate constraints, generated
as suitable combination of constraints, was introduced by Glover [106]. Balas exploited this notion to
compute projections of polyhedra [22] and to characterize the convex hull of a disjunction of polyhedra
[19]. In [243], Sherali introduced the idea of multiplying linear constraints to generate valid quadratic
constraints, in order to reinforce the RLT relaxation of QCQP. Our approach is also based on the work
of Kojima and Tunçel [161] that proposed a SDP-based iterative procedure to reach the convex hull of a
compact set represented by quadratic inequalities. Finally, a recent development of Saxena et al. [235]
on MIQCQP serve our work as an inspiration. In this work, a set of valid disjunctions is generated,
then the most appropriate combination of them is selected through a linear or a semidefinite program.

5.2.2.1 Separation algorithm

The scheme of the method is to add successively some valid quadratic constraints to the original problem
in order to strengthen the semidefinite relaxation. The algorithm is given below :
1: PC = P
2: (PC) : min{q0(x) : qj(x) ≤ 0, ∀qj ∈ PC}
3: Ỹ =

(

1 x̃T

x̃ X̃

)

← Solution of the standard semidefinite relaxation of (PC).

4: if x̃ is feasible for the original problem then
5: STOP
6: else
7: solve the problem (SX̃,x̃). Let q∗ be the optimal value and q the optimal solution.
8: end if
9: if q∗ > t then

10: PC ← PC ∪ {q}. Go to 2.
11: else
12: STOP
13: end if

The set P contains the quadratic constraints corresponding to the initial semidefinite relaxation,
as detailed in paragraph 3.3.3.1. The set PS is the union of P and of the pairwise products of the linear
constraints. Its design is central to our approach and is discussed in paragraph 5.2.2.2. For sake of
simplicity, we assume that all the constraints of PS are inequalities, by splitting the equalities. t is the
violation threshold, i.e., a non-negative value close to 0, that represents the minimum violation required
to add a cut.

The separation problem (SX̃,x̃) is the key element of the method. It aims at determining the
best suitable combination of elements of PS , so as to maximise a given criteria, namely the violation of
the obtained constraint by the incumbent solution (X̃, x̃). This optimization problem is as follows :

(SX̃,x̃)















max
∑r

i=1 λi[Pi • X̃ + 2pTi x̃+ πi]
subject to

∑r
i=1 λiPi < 0

∑m
i=1 λi ≤ 1

λ ∈ R
m
+

where PS := {q(.;Pi, pi, πi), i = 1, ..., r}.
This problem is therefore a semidefinite program. The constraint

∑m
i=1 λi ≤ 1, denoted normal-

ization conditions, is necessary to truncate the feasible set, otherwise the problem is unbounded.
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Besides, by imposing that
∑r

i=1 λiPi < 0, we restrict our research to the convex constraints.
Indeed, this property ensures that the corresponding constraints are satisfied by the projected solution.
This might seem useless by the result of [98] that states precisely that all the convex combinations of
constraints of P are satisfied by the semidefinite relaxation. The difference here is that we consider
the convex combinations of PS which is larger than P. Thus, at each iteration, we get closer to the
semidefinite relaxation of the huge QCQP obtained by adding all the constraints of PS .

To conclude this section, we make the connection with the S-procedure [262]. We are seeking for
a quadratic inequality q(x) ≤ 0 that is valid over a set F , defined through a set of quadratic constraints :
F = {x ∈ R

n : qj(x) ≤ 0, j = 1, ...,m}. Formally, q is such that :

qj(x) ≤ 0, j = 1, ...,m ⇒ q(x) ≤ 0

The S-procedure states that a sufficient condition for a function q to be valid is that q(x) −
∑m

j=1 λjqj(x) ≤ 0, ∀x ∈ R
n for some λ ≥ 0. In the case where m = 1, it is said to be lossless,

which means that any valid constraints over F admits such a representation, or in other words, the
sufficient condition is also necessary. But generally, this is not the case and this procedure is only a
conservative approximation. This is precisely what we are doing in our approach. In order to limit the
conservativeness of the approximation we extend the set P to a larger set PS .

5.2.2.2 Designing PS

A key issue of our method lies in designing the set PS , that shall contain appropriate valid quadratic
constraints. We start by adding to PS the quadratic constraint of the initial problem. Then, we build
all the pairwise products of its linear constraints, including the bound constraints. Only one-sided
linear constraints are considered, by splitting the range inequalities bi ≤ aTi x ≤ ci into two one-sided
constraints.

Among all the valid quadratic constraints that are generated as a pairwise product of linear
constraints, the following ones stand out :

− (aTx− b)2 ≥ 0 ;

− (aTx− b)(cTx− d) = 0, for any valid equality cTx = d ;

− (aTx− b)(cTx− d) ≥ 0, for any valid inequality cTx− d ≥ 0 and b ≤∑n
i=1 min{0, ai}.

The latter inequalities are valid since (aTx − b) ≥ 0 holds for any b ≤ ∑n
i=1 min{0, ai}, as x ∈ [0, 1]n.

We show that these infinite number of constraints, and some others, are useless for our approach.

We denote PS = {qi, i = 1, ...,m}. If (X̃, x̃) is the solution of the incumbent semidefinite
relaxation, we compute γi = Pi • X̃ +2pTi x̃+ πi for each element qi(Pi, pi, πi) of PS . Then a constraint
is violated by (X̃, x̃) if γi > 0 and necessarily γi ≤ 0 for each constraint qi ∈ PC .

The constraint associated with the quadratic function q(.;P, p, π) is convex (resp. concave) if
P < 0 (resp. P 4 0). It is linear if it is both convex and concave (P = 0). The following result allows
to remove the concave constraints (including the linear ones) from PS .

Proposition 5.2.1 Removing from PS the concave constraints does not change the optimal solution of
the separation problem.

Proof 5.2.2 We start by proving that for any concave qi(.;Pi, pi, πi) ∈ PS,γi ≤ 0. Indeed, by construc-
tion of PS, either qi is a quadratic constraint of the initial problem, and then it also belongs to PC ,
which implies that its semidefinite relaxation γi = Pi • X̃ + 2pTi x̃+ πi ≤ 0 is satisfied.

Otherwise, qi is a product of linear constraint. As P is built so as to guarantee that the projected
solution x̃ satisfies all the linear constraints. Consequently, qi(x̃) ≤ 0. As Pi 4 0⇒ Pi • (X̃− x̃x̃T ) ≤ 0,
then γi = Pi • X̃ + 2pTi x̃+ πi ≤ qi(x) ≤ 0.
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Let us consider the optimal solution q∗(.;P, p, π) and the optimal value q∗ of the separation
problem. We denote by Ic ⊂ [r] the set of indices of elements of PS such that qi is concave. Then
P =

∑

[r]\Ic λiPi +
∑

Ic
λiPi. P < 0 and

∑

Ic
λiPi 4 0 imply that

∑

[r]\Ic λiPi < 0. Consequently the

solution obtained by setting λi = 0, i ∈ Ic is feasible. Its cost is q∗ −∑i∈Ic
λiγi ≥ q∗, and necessarily

the variables λi associated to such constraints are equal to zero. �

In particular, the constraints (aTx − b)2 ≥ 0 are concave and therefore useless. More generally,
a constraint made as a product of linear constraints is concave or convex if and only if its quadratic
term has rank 1. To see this, we consider two linear inequalities : aTx− b ≥ 0 and cTx− d ≥ 0. After
symmetrization, the quadratic term of their product is xT (1/2acT + caT )x.

Proposition 5.2.3 A matrix M of the form M = acT + caT is positive (resp. negative) semidefinite
if and only if a and c are colinear, i.e., a = 0 or c = 0 or there exists a real ρ > 0 (resp. ρ < 0) such
that c = ρa.

Proof 5.2.4 Suppose that c = ρa with ρ > 0: it is clear that M = 2ρaaT < 0. As well, if a = 0 or
c = 0, M = 0 < 0. Conversely, if a and c are not colinear, then a 6= 0 and c 6= 0 and we can define the
vector u = a

‖a‖ − c
‖c‖ 6= 0. Then aTu > 0, cTu < 0 and uTMu = uTacTu+ uT caTu = 2(aTu)(cTu) < 0

and the matrix M is not positive semidefinite. For the case where ρ < 0, the proof is similar.�

Consequently, the only possibility for a constraint (aTx−b)(cTx−d) ≤ 0, with a 6= 0, c 6= 0 to be convex
is that c = ρa, with ρ > 0. By defining b′ = d/ρ, we have (aTx − b)(aTx − b′) ≤ 0 which corresponds
to min{b, b′} ≤ aTx ≤ max{b, b′}.

Proposition 5.2.5 Removing from PS the suitable normalized combinations of other elements of PS

does not change the optimal solution of the separation problem.

Proof 5.2.6 Let us consider the optimal solution q∗ =
∑r

i=1 λiqi and assume that qr =
∑r−1

i=1 µiqi
with

∑r−1
i=1 µi ≤ 1. Then, q∗ =

∑r−1
i=1 (λi + λrµi)qi and

∑r−1
i=1 λi + λrµi ≤ 1 so the optimal solution

remains feasible by removing qr. �

In our algorithm, we make the choice of removing all the constraints that are suitable combi-
nation of other elements of PS , even if not normalized, since these constraints can be viewed as the
multiplication of a suitable normalized combination of elements of PS by a nonnegative constant. As a
consequence, the following constraints are not placed in PS :

(i) For an equality constraint cTx− d = 0, all the constraints (aTx− b)(cTx− d) = 0;

(ii) For an inequality cTx − d ≥ 0, all the constraints (aTx − b)(cTx − d) ≥ 0 with a and b such
that b ≤∑n

i=1 min{0, ai}.
Indeed, these constraints are already suitable combinations of elements of PS :

(i) (aTx− b)(cTx− d) =
∑

ai(c
Tx− d)xi− b(cTx− d) is a suitable combination of (cTx− d)xi = 0

and cTx− d = 0 which belongs to PS ;

(ii) (aTx−b)(cTx−d) ≥ 0 is a suitable combination of (cTx−d), (cTx−d)xi and (cTx−d)(1−xi), i =
1, ..., n :

(aTx− b)(cTx− d) =
n
∑

i=1

max{0, ai}(cTx− d)xi

−
n
∑

i=1

min{0, ai}(cTx− d)(1− xi)

+(
n
∑

i=1

min{0, ai} − b)(cTx− d)

138



In summary, we discussed how to build PS and how to eliminate some useless constraints. More
formally, the notion of domination of a quadratic constraint by another is assessed by the S-lemma
[212]. Thus, a constraint qj(.;Qj) with Qj not positive semidefinite, dominates another one qk(.;Qk)
if and only if there exists λ ≥ 0 such that Qk − λQj 4 0. One could think of detecting in this way the
pair-wise dominance but in practice this is computationally prohibitive.

Finally, some valid constraints proposed in the literature, such as the hypermetric inequalities,
are a priori not included in our approach. In order to measure the impact of this lack, we will consider
the possibility of adding them directly into our set PS .

5.2.3 Application to the Nuclear Outages Problem

In this section, we report on computational experiments conducted to analyse the performance of our
approach on two classes of instances of the NOSP : some small randomly generated instances, called
working instances and some real-life instances.

This section is organized as follows. We first explain in detail the benchmark of instances em-
ployed. The second paragraph gives much practical informations about the computational experiments.
Then, we report the numerical results and we discuss further considerations about them. Finally, we
analyse the generated cuts and we experiment to add some of them directly to some new instances.

5.2.3.1 Model summary

We propose here a formulation of the model that emphasizes the structure of the problem. The indices
of the constraints have been omitted for sake of clarity. Thus, we have a 0/1 QCQP with linear
constraints :































min xTP0x+ 2pT0 x (4.13)
subject to A1x = b1 (4.1)

b2 ≤ A2x ≤ b′2 (4.16)
A3x ≤ b3 (4.6)
xTP4x+ pT4 x+ π4 ≤ 0 (4.10)
x ∈ {0, 1}n

(5.10)

5.2.3.2 The benchmark of instances

The first class of instances are randomly generated instances of 0/1-QCQP. In order to get close of
NOSP, these instances contain linear assignment-type equality constraints and linear two-way inequality
constraints. Furthermore, all the variables are required to be binary.

Instead of restricting ourself to the case of a convex objective function and non-convex quadratic
constraints, as in the NOSP, we allow ourselves a slight generalization, leading to the nine following
classes of instances described in the Table 5.2. For each class, we specify whether the objective and con-
straints are linear, convex quadratic or nonconvex quadratic, in which case we simply write "quadratic".
50 instances of each class are generated, differing in their number of binary variables, that varies from
11 up to 60.

The real-life instances are extracted from actual real-life data sets. Their size varies with the
number of nuclear power plants (10 or 20), with the time-horizon (3 or 4 outages per plant) and with the
size of the search space of each outages (7, 9, 11, 13 or 15 possible beginning dates). This is summarized
in Table 5.3, that contains the following columns :

− Column 1 : the class ;

− Column 2 : the number of nuclear power plants ;
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Class Objective Constraint

1 linear linear
2 convex linear
3 quadratic linear
4 linear convex
5 convex convex
6 quadratic convex
7 linear quadratic
8 convex quadratic
9 quadratic quadratic

Table 5.2: Classification of the working instances

− Column 3 : the number of considered outages in the time horizon ;

− Column 4 : the size of the search space of each outages ;

− Column 5 : the number of binary variables of the resulting problem ;

− Column 6 : the number of linear constraints of the resulting problem ;

− Column 7 : the number of quadratic constraints of the resulting problem.

For each class of instance, we built 25 instances, that differ in the demand (5 scenarios) and in the
search spaces (5 possibilities).

Class # nuclear # outages Size of search # binary # linear # quadratic
plants per plant spaces variables constraints constraints

1 10 3 7 259 104 7
2 10 3 9 332 122 14
3 10 3 11 405 143 24
4 10 3 13 478 157 34
5 10 3 15 551 166 42
6 10 4 7 322 128 9
7 10 4 9 413 150 18
8 10 4 11 504 176 31
9 10 4 13 595 193 43
10 10 4 15 686 205 53
11 20 3 7 497 183 7
12 20 3 9 638 205 16
13 20 3 11 779 235 27
14 20 3 13 920 255 42
15 20 3 15 1061 268 55
16 20 4 7 623 228 9
17 20 4 9 800 258 20
18 20 4 11 977 295 34
19 20 4 13 1154 319 53
20 20 4 15 1331 338 68

Table 5.3: Size of the real-life instances

5.2.3.3 Description of the computational experiments

We compare the gap obtained with the following relaxations :
− LR : the linear relaxation;

− SDP0 : the initial semidefinite relaxation;

− SDP1 : the reinforced semidefinite relaxation, with a classical separation;

− SDP2 : the reinforced semidefinite relaxation, with the semidefinite separation problem;
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Figure 5.1: Outline of the different relaxations

− SDP3 : the reinforced semidefinite relaxation, by adding all the violated constraints of the set
PS .

The classical separation that is used for the relaxation SDP1 consists of selecting the most violated
constraint among PS at each iteration. For sake of clarity, these relaxation are illustrated in the diagram
of Figure 5.1. The last relaxation (v3) is obtained by adding all the valid quadratic constraints to our
problem. The aim is to measure the potentiality of our method, by providing a bound on its gain. The
linear relaxation is obtained by linearizing the quadratic terms with the RLT approach and replacing
xi ∈ {0, 1} by xi ∈ [0, 1].

Regarding the semidefinite relaxation, the initial one (v0) is defined in paragraph 3.3.3.1, whereas
(v2) correspond to the reinforced versions defined in paragraph 5.2.2.

To compute the gap, we start by solving exactly the problem, which is possible on small instances
by using the commercial solver CPLEX 12.1. For larger instances, we compute a feasible solution by
setting a maximal running time of two hours per computation. This solver is also used to solve the
linear relaxation. As a SDP solver, we use DSDP 5.8. All our experiments were performed on a 2.5
GHz Intel x86 with 16 GB memory. Finally, we compute the gap using the following formula :

GR =
p∗ − pR

p∗
(5.11)

where p∗ is the value of the best feasible solution computed within 2 hours by CPLEX and pR is
the result of the relaxation R at hand.

5.2.3.4 Numerical results

In Table 5.4, we provide the gap GR obtained on the working instances, on average on the 50 instances
of each class, where R is one on the five studied relaxations. In order to evaluate more precisely the
tightness of the relaxations, we also report in column entitled TR, the number of instances where the
gap is less than 1%.

On instances of classes 1 to 3, where the constraints are linear, the gap of the linear relaxation
is quite small. Consequently, there is no room for progress for other relaxations. On the other hand,
when this gap becomes larger, the semidefinite relaxation is much more efficient than the linear one.
With convex constraints (instances of classes 4 to 6), the initial semidefinite relaxation closes the gap
from roughly 80% to 15%, so there is no need for reinforcement. Finally, when non convex quadratic
constraints are added to the problem, adding some cuts is necessary to improve the performance of the
semidefinite relaxation.
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Class GLR TLR GSDP0 TSDP0 GSDP1 TSDP1 GSDP2 TSDP2 GSDP3 TSDP3

1 6.24% 0 6.18% 0 5.64% 0 5.84% 0 4.74% 1
2 6.36% 0 6.21% 0 5.62% 1 5.94% 0 4.83% 3
3 5.47% 1 6.16% 0 3.87% 5 4.41% 2 3.30% 7
4 37.27% 0 10.97% 1 9.64% 2 10.43% 1 8.90% 3
5 40.51% 0 10.69% 4 8.08% 6 9.44% 4 6.79% 6
6 40.62% 0 13.50% 0 10.24% 1 11.43% 1 9.26% 1
7 17.49% 0 18.21% 0 13.53% 0 14.24% 0 11.16% 1
8 19.31% 0 19.42% 0 14.99% 0 16.11% 0 13.05% 1
9 20.90% 0 20.93% 0 14.04% 1 14.99% 1 11.14% 2

Table 5.4: Gap of the different relaxations on working instances

Not surprisingly, obtaining such a gap has a cost in terms of running time. In Table 5.5, we report
this value in seconds (RTR), except for the linear relaxation and the initial semidefinite relaxation, since
the latter are computed almost instantaneously. For the reinforced version v1 and v2, we also provide
the number of iterations (NR).

Class RTSDP1 NSDP1 RTSDP2 NSDP2 RTSDP3

1 2.0 11.41 3 278.3 5.59 649.7
2 4.8 17.26 4 432.5 4.40 862.6
3 16.2 48.60 33 147.3 26.94 542.8
4 6.3 29.00 7 547.3 8.00 749.9
5 7.1 30.00 8 803.6 9.92 830.1
6 21.1 57.72 39 077.8 25.48 813.9
7 20.7 52.62 60 626.0 38.22 617.1
8 27.1 62.02 59 947.5 40.00 936.5
9 24.8 65.76 71 973.3 50.12 792.1

Table 5.5: Running time and number of iterations of the different procedures

Thus, we observe that the relaxation SDP2 is not efficient compared to SDP1, even if it reaches
almost the same gap in a much smaller number of iterations. But the additional running time of each
iteration does not justify that we continue in that direction and in the sequel, we consider only the
semidefinite relaxation SDP1.

Before that, we carry out an analysis of the selected constraint at the first iteration of SDP1 and
SDP2, in 3 cases :

− when these separations problems leads exactly to the same result;

− when SDP1 yields a better constraint than SDP2;

− when SDP2 yields a better constraint than SDP1.

In the first case, the most violated constraint of PS is the product of two upper bounds con-
straints : (1 − xi)(1 − xj) ≥ 0. The semidefinite separation chooses this constraint with a coefficient
λi = 0.5 and makes it semidefinite by adding the constraint x2

i − xi ≤ 0 and x2
j − xj ≤ 0 with coeffi-

cients 0.25. It is therefore normal that the semidefinite relaxations yields the same bounds, since the
x2
i − xi ≤ 0 and x2

j − xj ≤ 0 belongs to PC and the semidefinite relaxation satisfies all the convex
combination of constraints of PC .

In the second case, the most violated constraint of PS is the product of two lower bounds con-
straints, which is also found in the semidefinite separation solution, combined with two other products of
bound constraints and three binary constraints. Finally, in the third case, the most violated constraint
of PS is the product of a bound constraint and of a weight constraint. Once again, this constraint is
used in the semidefinite separation and combined with a large number of products of bound constraint
and binary constraint to get a convex constraint.

Thus, we observe that the binary constraints are always used to make the solution convex. This
motivates us to experiment a set PS without the binary constraints, in order to force the semidefinite
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separation to be more "creative", without penalizing the obtained SDP relaxation since the binary
constraints belong to PC , but the results were inconclusive.

Finally, we proceeded to a complementary experiment with the working instances. As mentioned
earlier, the triangular inequalities are not natively included in the set PS , so we added them in order
to assess the impact of this lack. Then we observe an increase in the number of iterations (N) and of
the running time (RT), without significantly improving the gap. Consequently, we keep our initial set
PS without these inequalities.

At this point, we have all the elements to proceed to numerical experiments on real-life instances
of the Nuclear Outages Problems, as reported in Table 5.6. Whenever possible, i.e., when a feasible
integer solution has been found by CPLEX in less than 2 hours, we compute the gap (GR) of each
relaxation R. The first column (#0/1 OK) gives the number of instances over 25 that are in this case.
Besides, for each semidefinite relaxation, we compute a relative enhancement E of the relaxation R
w.r.t. the linear relaxation, whose corresponding formula is as follows :

ER =
pR − pLR

pLR
(5.12)

Class # 0/1 OK GLR GSDP0 GSDP1 ESDP0 ESDP1

1 25 14.68% 2.57% 2.36% 14.22% 14.46%
2 23 16.87% 4.24% 4.08% 15.28% 15.47%
3 23 19.94% 6.89% 6.72% 16.31% 16.52%
4 19 28.79% 8.66% 8.58% 17.17% 17.27%
5 24 25.20% 11.87% 11.81% 17.92% 18.00%
6 22 15.24% 2.76% 2.62% 14.70% 14.91%
7 22 18.11% 4.73% 4.57% 16.28% 16.49%
8 22 22.62% 7.66% 7.52% 17.75% 17.94%
9 18 31.28% 11.56% 11.50% 18.65% 18.73%
10 23 32.74% 15.41% 15.36% 20.08% 20.15%
11 25 22.59% 1.77% 1.69% 26.94% 27.04%
12 21 24.69% 2.98% 2.92% 28.87% 28.95%
13 22 27.47% 5.16% 5.09% 31.03% 31.13%
14 24 30.22% 7.05% 6.99% 33.33% 33.42%
15 21 34.97% 12.24% 12.21% 35.14% 35.19%
16 21 23.47% 1.76% 1.70% 28.14% 28.22%
17 20 26.09% 3.28% 3.23% 30.76% 30.83%
18 19 28.70% 5.34% 5.29% 32.98% 33.06%
19 22 33.26% 8.73% 8.67% 36.63% 36.72%
20 16 38.31% 14.66% 14.63% 38.20% 38.24%

Table 5.6: Comparison of the semidefinite relaxations to the linear relaxation on real-life instances

Note that the reinforced relaxation SDP1 is computed with a maximum of 100 additional cuts.
This reinforcement produces on average an enhancement of 0.27% of the semidefinite relaxation SDP1
w.r.t. the initial semidefinite relaxation SDP0. On the whole, this yields an average improvement of
24.64% w.r.t the linear relaxation. This might seem not very significant but let us mention that the
variable part of the cost is very small over the feasible set of solutions. By denoting F the feasible set
and ǫ = maxx∈F f0(x)−minx∈F f0(x) , we have ǫ that is very small w.r.t minx∈F f0(x). Consequently,
the variation on the gap are also very small.

5.2.3.5 Analysis of the selected cutting planes

One may also think of our approach as a tool for identifying the most useful cutting planes. Thus,
we may add directly these constraints in our semidefinite relaxation. In order to proceed to such an
analysis, we group the constraints into classes, depending on the linear constraints that are involved :

− Bound means that the constraints is initially a bound constraint;
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− Lapping concerns the maximal lapping constraints (4.7), which is linear when Ei,j is such that
only one part of the disjunction is feasible ;

− MaxTime and MinTime are the constraints linking two successive outages (4.16) ;

− Parall are the constraints on the maximum number of parallel outages (4.6).

These 5 categories of linear constraints yields 15 categories for the products. In Table 5.7, we
report the class of linear constraints (Cst1 and Cst2 ) that yields the category at hand. The fourth
column is the percentage of these categories, on average on all the instances. Finally, the last column
gives the number of selected constraints of each categories on all the instances.

Class Cst1 Cst2 Repartition # selected csts
1 Bound Bound 80.27% 0
2 Lapping Lapping 0.15% 16142
3 MaxTime MaxTime 0.06% 3215
4 MinTime MinTime 0.00% 312
5 Parall Parall 0.13% 0
6 Bound Lapping 6.46% 653
7 Bound MaxTime 4.22% 52
8 Bound MinTime 0.82% 31
9 Lapping MaxTime 0.19% 14203
10 Lapping MinTime 0.03% 6033
11 MinTime MaxTime 0.02% 1797
12 Bound Parall 5.71% 0
13 Lapping Parall 0.20% 173
14 MaxTime Parall 0.13% 10
15 MinTime Parall 0.03% 7

Table 5.7: 15 categories of additional constraints

We observe that the classes 2 and 9 are selected a large number of times w.r.t the other classes,
whereas they represent a low proportion of the whole constraints. There are also a significant number
of constraints belonging to classes 10, 3 and 11. Surprinsingly, RLT-type constraints, i.e., class 1 are
never selected, whereas they represent 80% of the whole contraints. The constraints involving a Parall
constraint are also rarely used.

This suggests that the most relevant constraints are those made of linear constraints that involve
a high number of variables and with high coefficients. Indeed, the time and lapping constraints involves
the variables of two outages, with the value of the time step as coefficient (t ∈ {1, ..., Nt}, whereas the
constraint on the maximum number of parallel outages and the bound constraint use 1 as coefficient.

Indeed, it is clear that the more ‖Q‖F , the Frobenius norm of Q, is large, the more the constraint
q(x;Q) ≤ 0 is violated. To avoid this, we experimented to normalize the violation γi associated to the
constraints qi(x;Qi) ≤ 0 by dividing it by ‖Qi‖F , but the results were inconclusive.

In addition to this categorization, we are interested in an other indicator, that reflects if some
variables are shared by the two linear constraints. Let q be a quadratic constraint obtained as the
product of the two linear constraints aTx ≤ b and cTx ≤ d :

tq =
#{i : ai 6= 0, ci 6= 0}

#{i : ai 6= 0}+#{i : ci 6= 0} (5.13)

The curve of the Figure 5.2 gives this ratio at each iteration on average on all the instances.
We observe that this ratio decreases through iterations. Furthermore, over all the selected constraints,
28.4% of them have a non-nul ratio, whereas over all the built constraints, only 0.98% of the built
constraints have this property. We deduce from this that the more the initial linear constraints share
some variables, the more the quadratic constraints are efficient.

This comes from the fact that, the more the variables are shared between the two linear con-
straints, the more there are some squares in the obtained constraints, which are constrained to be equal
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Figure 5.2: The overlapping ratio of the selected constraints

to the projected variable. On the other hand, most of the non-square variables are not constrained at
all and can therefore take any value.

Following these elements, we build a new semidefinite relaxation similarly to the initial semidef-
inite relaxation but with the additional constraints of class 2 and 9 with an overlapping ratio greater
than 0.1. We denote SDP4 this new relaxation and report corresponding numerical results in Table
5.8, where the second column gives the average number of additional constraints. For each class given
in the first column and for each relaxation R = SDP4, R = SDP0 or R = SDP1, we provide ER

the enhancement w.r.t. to the linear relaxation, computed using the formula (5.12). For R = SDP4,
R = SDP0, we also provide the running time RTR. We do not provide the running time of RTSDP1

since this value includes several iterations and is therefore not comparable to the running time of a
single relaxation.

Class # additional csts ESDP4 RTSDP4 ESDP0 RTSDP0 ESDP1

1 161.60 14.39% 25.88 14.22% 9.64 14.46%
2 167.20 15.41% 63.92 15.28% 22.40 15.47%
3 146.60 17.26% 108.28 17.10% 49.96 17.32%
4 114.80 21.45% 165.04 21.40% 76.52 21.52%
5 82.40 17.94% 213.8 17.92% 107.96 18.00%
6 192.40 14.85% 53.4 14.70% 18.84 14.91%
7 205.40 16.43% 124.08 16.28% 45.80 16.49%
8 173.60 18.71% 216.52 18.57% 89.36 18.76%
9 133.00 22.40% 286.12 22.35% 145.96 22.45%
10 95.60 21.72% 418.12 21.70% 222.68 21.78%
11 255.00 27.00% 143.28 26.94% 58.80 27.04%
12 278.40 28.92% 313.2 28.87% 157.60 28.95%
13 264.00 31.10% 544 31.03% 290.00 31.13%
14 220.60 33.36% 834.72 33.33% 491.08 33.42%
15 161.40 35.15% 1366.84 35.14% 787.64 35.19%
16 304.80 28.20% 271.8 28.14% 103.20 28.22%
17 340.80 30.81% 607.76 30.76% 233.12 30.83%
18 312.40 33.05% 1097.6 32.98% 483.72 33.06%
19 252.40 36.65% 1930.44 36.63% 953.64 36.72%
20 191.00 38.21% 3288.08 38.20% 1650.36 38.24%

Table 5.8: Reinforcement of the initial semidefinite relaxation

Remark that when the search spaces spread (instances of classes 5, 10, 15 and 20), the number
of linear lapping constraints decreases and so does the corresponding quadratic constraints. For this
reason, the gain on the gap is quite small on these instances, w.r.t the gain on the other instances.
Finally, on average, we get a enhancement of 25.15% w.r.t the linear relaxation.

To overcome the problem of the small number of linear lapping constraints, additional constraints
may be selected rather in the classes involving MinTime and MaxTime constraints. Finally, in order
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to reduce the computational time on large instances, it might be worthwhile to be more restrictive on
the overlapping ratio, in order to reduce the number of additional constraints.

5.2.4 Conclusion

In this section, we propose a tool for generating and analysing valid cuts to reinforce the semidefinite
relaxation of a QCQP. These cuts are generated as pairwise products of the linear constraint of the
problem and added to the QCQP, before applying the semidefinite relaxation. At each iteration, the
constraint that is the most violated by the incumbent solution, is thus selected.

We experimented several variants of this basic idea. First, we try to select the most violated con-
vex quadratic constraints, in order to be more efficient in the semidefinite relaxation. Indeed, a convex
quadratic constraint is necessarily satisfied by the projected solution of the semidefinite relaxation. We
obtain a reinforcement of the semidefinite relaxation but the computational cost is too high compared
to the improvement of the bound. We also try to consider the triangular inequalities into our initial set
of constraints but the impact on the bound was very low.

We applied this scheme to a real-life QCQP, the Nuclear Outages Problem, a problem character-
ized by assignement constraints, non convex quadratic constraints that model some disjunctions and a
convex objective function. On this problem, the semidefinite relaxation improve by 25.15% the gap of
the linear relaxation. This enhancement, combined to a Branch & Bound or to another enumerative
approach, could contribute to tackle the problem even if a hard work on computational time would
be necessary for this. Indeed, the current resolution with CPLEX is not satisfying, since there are a
number of instances where, after two hours, CPLEX is very far from the optimal solution. On 12.4%
of instances, CPLEX can not even produce a feasible solution within this time limit.

In conclusion, the main advantage of our approach is that it is not sensitive to structural properties
of the problem. In an real-world framework, this method can be used to determine the most relevant
cuts on working instances. Then, these cuts can be added directly to operational instances to provide
an efficient semidefinite relaxation.

5.3 SDP relaxations for three possible formulations of the max-
imal lapping constraint

In this section, we aim at comparing some classical reinforcements of the standard SDP relaxation in
order to determine the most appropriate for each of the three versions of the model 4 of the NOSP. These
models varies in their formulations of the minimal lapping constraint. We recall that these constraint
is a disjunctive constraint of the form aTx /∈]b, c[, where x is a binary vector. Then the three models
are as follows :

− The model 4-1 uses the "big M" formulation : aTx−My ≤ b, aTx+M(1−y) ≥ c, y ∈ {0, 1};
− The model 4-2 uses the pairwise exclusion formulation : xi + xj ≤ 1 for all (i, j) such that

ai + aj ∈ [b, c] ;

− The model 4-3 uses the quadratic formulation : (aTx− b)(aTx− c) ≥ 0.

5.3.1 Various SDP relaxations

The main objective of this section is to compare various possible SDP relaxations that were proposed
in the literature. They are constructed over two steps. First we built a QCQP equivalent to the initial
QCQP by adding valid quadratic constraints and removing redundant constraints. Then we apply the
standard SDP relaxation (see Paragraph 3.3.2). Thus, we compare the following relaxations :

− SDP-1 : the standard SDP relaxation ;
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− SDP-2 : the standard SDP relaxation with squared equalities (replace aTi x− bi = 0 by (aTi x−
bi)

2 = 0) ;

− SDP-3 : the standard SDP relaxation with squared inequalities (replace bi ≤ aTi x ≤ ci by their
square (aTi x− bi)(a

T
i x− ci) ≤ 0) ;

− SDP-4 : the standard SDP relaxation with squared equalities and inequalities ;

− SDP-5 : the standard SDP relaxation with positivity constraints (corresponding to xixj ≥ 0);

− SDP-6 : the standard SDP relaxation with the 4 classes of RLT constraints (corresponding to
xixj ≥ 0, xixj ≤ xi,xixj ≤ xj and xixj ≥ 1− xi − xj );

− SDP-7 : the standard SDP relaxation with Sherali-Adams constraints (multiply all the linear
equalities and inequalities by xi and 1− xi);

− SDP-8 : the standard SDP relaxations with the triangle inequalities (see Paragraph 3.3.3.3);

− SDP-9 : the combination of the relaxations 4 and 7 ;

− SDP-10 : the combination of the relaxations 6 and 7;

− SDP-11 : the combination of the relaxations 4 and 6;

− SDP-12 : the combination of the relaxations 4, 6 and 7;

For each relaxation SDP-i, we also compute the equivalent linear relaxation LP-i, obtained by
applying the Reformulation-Linearization Technique (see Appendix 3.5) to the QCQP to which we
apply the standard SDP relaxation.

We remark that having bounded variables allows us to assume that all the linear inequalities are
range constraints. Indeed, if it is not the case, the complementary bound can easily be computed from
the variables bounds.

Regarding inequalities, one also might think of converting them into equalities : b ≤ aTx ≤ c
is equivalent to aTx − y = 0, with y a bounded variable : y ∈ [b, c]. If the equality remains under its
linear form, then it is strictly equivalent to write the bound constraint under its linear or quadratic
form. Indeed, the only quadratic term is y2 and therefore we can constraint the associated component
of the SDP variable without impacting the final solution. In either case, this is of no interest since it
is strictly equivalent to the standard relaxation, except that an additional variable is added. Then, it
remains two possibilities :

− square equality (aTx− y)2 = 0 and linear inequality b ≤ y ≤ c;

− square equality (aTx− y)2 = 0 and square inequality (b− y)(c− y) ≤ 0.

The second one is exactly equivalent to the square formulation of the original constraint, but leads to
several solver failures, and the first one is less tight. Consequently, it seems more appropriate not to
convert inequalities into equalities.

5.3.2 Numerical results and analysis

This section presents an analysis of the obtained results from three different angles. First we provide
a description of the data set. Then, we compare the SDP relaxations to each other in order to find
the best compromise between quality of the bounds and computation time. Second, a comparison with
the equivalent LP relaxation is provided so as to assess the adequacy of SDP. Finally, we compare the
relaxations obtained for the three formulations of the maximal lapping constraint.

5.3.2.1 Elaboration of the data sets

In the experiment below, we use 600 data sets of 6 different sizes. The data sets of a same size differ
only by the production cost and the maximal power of the plants. The table 5.9 summarizes the
characteristics of the different sizes of instances. For each size given in the first column, we provide :
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− Column 2 : the number of time steps of the time horizon (Nt) ;

− Column 3 : the number of power plants (Nν) ;

− Column 4 : the number of sites (Ng ) ;

− Column 5 : the minimal space between outages, the same for each site (−N l
k) ;

− Column 6 : the duration of the outages, the same for each outages (δi,j).

Size # time steps # power plants # sites Minimal space Outage duration
1 6 2 1 1 2
2 10 3 1 2 2
3 14 4 1 2 2
4 18 5 2 3 2
5 22 6 2 3 2
6 26 8 3 4 2

Table 5.9: Gap of the different relaxations on working instances

The search spaces, i.e., the set Ei,j where the beginning outages dates may lie, are defined as
{1, ..., Nt − δi,j}, which corresponds to all the possible dates in the period with the exception of the
dates for which a part of the outage is beyond the horizon time.

The 100 instances of the same size differ by the production cost. For each time step, this cost
is defined through a coefficient γt such that qt(x) = γtx. In order to simulate the seasonality of the
marginal costs, for each instance, the coefficients γt are drawn from a Gaussian distribution with mean
µt = 0.144(t−Nt/2)

2+10 and covariance µt/5.0. This has been chosen in order to attain 100 for t = 50
and Nt = 50. Regarding the maximal powers, there are also drawn from a Gaussian distribution, with
mean 1.0 and covariance 0.1.

5.3.2.2 Comparison of the SDP relaxations to each other

We start by reporting in Table 5.10 the robustness of the different SDP relaxations SDP-i, i.e., the
number on instances that succeeded out of a total of 100. We also report the size of the instances in
terms of number of variables (# var) and constraints (# cst), of the original PLNE to give an idea of
the size of the instances. The first column indicates the class of instances where "i-j" is the class of
instances of size "i" with the model 4− j of the maximal lapping constraint. Note that this experiment
was performed by using CPLEX 12.1 [143] and CSDP 6.1 [53] as solvers for LP and SDP respectively.
SDP was solved on a 2.5 GHz Intel x86 and LP on an Intel Core i7 at 2.13 GHz.

The reason for failure lies in memory storage problems since the SDP is too large to be stored in
memory. In the light of these elements, we abandon the relaxation SDP-8 (with the triangle inequalities),
that involves too many constraints. This is confirmed by the results that we obtained on classes 1-1
and 1-2 since these relaxations barely improve the obtained bound.

In Table 5.11 and 5.12, for each relaxation SDP-i, we provide the size of the obtained SDP, under
the form "v|c". If the SDP is under the form 2.4, v equals the sum of the sizes (in number of rows) of
the primal variables Xk and c is the number of primal constraints.

We report in Tables 5.13 and 5.14 the gaps of the SDP and LP relaxations, calculated as the
average of the gaps of the 100 instances of each class. The gaps are calculated using the formula
(p∗r − p∗)/p∗ where p∗r is bound obtained with the relaxation and p∗ the optimal value of the integer
problem.

Remark that the average that are computed on less than 100 instances can not be compared to
each other. For instance, the average gap obtained with SDP-11 might be less than the average gap
of SDP-12 whereas, for each instance where those both relaxation succeeded, SDP-12 is tighter than
SDP-11.

We make the following observations :
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Class # var # cst SDP-1 SDP-2 SDP-3 SDP-4 SDP-5 SDP-6 SDP-7 SDP-8 SDP-9 SDP-10 SDP-11 SDP-12
1-1 11 4 100 100 100 100 100 100 100 100 100 100 100 100
1-2 10 21 100 100 100 100 100 100 100 100 100 100 100 100
1-3 55 183 100 100 100 100 100 100 100 100 100 100 100 100
2-1 30 9 100 100 100 100 100 100 100 100 100 100 33 100
2-2 27 156 100 100 100 100 100 100 100 100 100 100 100 100
2-3 378 1410 100 100 100 100 100 100 100 100 100 100 23 100
3-1 58 16 100 100 100 100 100 100 100 0 100 100 0 100
3-2 52 478 100 100 100 100 100 100 0 0 0 0 100 0
3-3 1378 5314 100 100 100 100 100 100 100 0 100 100 0 100
4-1 89 13 100 100 100 100 100 100 0 0 0 0 0 0
4-2 85 537 100 100 100 100 100 100 0 0 0 0 0 0
4-3 1921 7353 100 100 100 100 100 100 0 0 0 0 0 0
5-1 132 18 100 100 100 100 100 0 0 0 0 0 0 0
5-2 126 1020 100 100 100 100 100 0 0 0 0 0 0 0
5-3 4032 15636 100 100 100 100 100 0 0 0 0 0 0 0
6-1 208 24 100 100 100 100 0 0 0 0 0 0 0 0
6-2 200 1968 71 72 72 100 0 0 0 0 0 0 0 0
6-3 7600 29616 72 76 72 100 0 0 0 0 0 0 0 0

Table 5.10: Robustness of the different SDP relaxations

Class SDP-1 SDP-2 SDP-3 SDP-4 SDP-5 SDP-6
1-1 14|16 14|16 13|15 13|15 69|71 234|236
1-2 30|32 30|32 30|32 30|32 75|77 210|212
1-3 12|14 12|14 12|14 12|14 57|59 192|194
2-1 37|40 37|40 34|37 34|37 472|475 1777|1780
2-2 181|184 181|184 181|184 181|184 532|535 1585|1588
2-3 31|34 31|34 31|34 31|34 382|385 1435|1438
3-1 71|75 71|75 65|69 65|69 1724|1728 6683|6687
3-2 527|531 527|531 527|531 527|531 1853|1857 5831|5835
3-3 59|63 59|63 59|63 59|63 1385|1389 5363|5367
4-1 98|103 98|103 94|99 94|99 4014|4019 15762|15767
4-2 618|623 618|623 618|623 618|623 4188|4193 14898|14903
4-3 90|95 90|95 90|95 90|95 3660|3665 14370|14375
5-1 145|151 145|151 139|145 139|145 8791|8797 34729|34735
5-2 1141|1147 1141|1147 1141|1147 1141|1147 9016|9022 32641|32647
5-3 133|139 133|139 133|139 133|139 8008|8014 31633|31639
6-1 225|233 225|233 217|225 217|225 21753|21761 86337|86345
6-2 2161|2169 2161|2169 2161|2169 2161|2169 22061|22069 81761|81769
6-3 209|217 209|217 209|217 209|217 20109|20117 79809|79817

Table 5.11: Sizes of the different SDP relaxations (1)

− On the linear models (4−1 and 4−2) SDP-1 is equivalent to the linear relaxation LP-1 whereas
on the quadratic model (4− 3), SDP-1 is worth than LP-1 ;

− SDP-2 and SDP-3 yield very little improvement w.r.t. SDP-1;

− SDP-4 has almost the same size than SDP-1 and yields a significantly better gap, especially
with the model 4− 2;

− SDP-5 and SDP-6 do not improve SDP-1 and are less robust;

− SDP-9 does not improve SDP-4;

− SDP-12 does not improve SDP-10;

− SDP-11 suffers from a lack of robustness and is not more effective than SDP-10.

From these observations, we draw the following conclusions. First the standard SDP relaxation
is not satisfactory and the SDP-4 relaxation is to be preferred in any case. Indeed, for a same size of
SDP and a computational time of the same order of magnitude, the gap yielded by SDP-4 is on average
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Class SDP-7 SDP-8 SDP-10 SDP-11 SDP-12
1-1 58|104 57|103 278|324 233|235 277|323
1-2 410|452 410|452 590|632 210|212 590|632
1-3 12|54 12|54 192|234 192|194 192|234
2-1 397|580 394|577 2137|2320 1774|1777 2134|2317
2-2 8443|8608 8443|8608 9847|10012 1585|1588 9847|10012
2-3 31|196 31|196 1435|1600 1435|1438 1435|1600
3-1 1463|1931 1457|1925 8075|8543 6677|6681 8069|8537
3-2 49823|50243 49823|50243 55127|55547 5831|5835 55127|55547
3-3 59|479 59|479 5363|5783 5363|5367 5363|5783
4-1 1522|2417 1518|2413 17186|18081 15758|15763 17182|18077
4-2 91058|91913 91058|91913 > 105|> 105 14898|14903 > 105|> 105

4-3 90|945 90|945 14370|15225 14370|14375 14370|15225
5-1 3313|4903 3307|4897 37897|39487 34723|34729 37891|39481
5-2 > 105|> 105 > 105|> 105 > 105|> 105 32641|32647 > 105|> 105

5-3 133|1651 133|1651 31633|33151 31633|31639 31633|33151
6-1 6881|10217 6873|10209 92993|96329 86329|86337 92985|96321
6-2 > 105|> 105 > 105|> 105 > 105|> 105 81761|81769 > 105|> 105

6-3 209|3417 209|3417 79809|83017 79809|79817 79809|83017

Table 5.12: Sizes of the different SDP relaxations (2)

19.1%, compared with 22.5% with SDP-1. The figure 5.3 compares the gaps and running times of the
first four SDP relaxations.

Figure 5.3: Comparison of the gaps and running time of the relaxations SDP-1, SDP-2, SDP-3 and
SDP-4

It is interesting to note that SDP-2 and SDP-3 are rather ineffective w.r.t SDP-4 whereas SDP-4
is a combination of those both relaxations. Regarding the LP relaxations, these transformations do
not bring anything, as illustrated on Figure 5.4. The SDP relaxations that retains some interest are
therefore :

− SDP-4, obtained by "squaring" all the linear constraints ;

− SDP-7, obtained by adding the product of the linear constraints (except bounds constraints)
by the bounds constraints, called Sherali-Adams constraints;

− SDP-10, obtained by adding the Sherali-Adams and the RLT contraints.

The fact that SDP-12 is not more effective than SDP-10 show that once all the product of linear
constraint have been added, it is useless to consider the square form of the linear constraints. For equality
constraints, this is explained by the fact that the square of the equality is a suitable combination of the
Sherali-Adams and RLT constraints (see Paragraph 5.2.2.2) and is therefore necessarily satisfied. On
the other hand, the square of inequality constraints (except bound constraints), may not be included
in SDP-10, which explains the tiny difference between SDP-10 and SDP-12 gaps. The gaps of the three
selected relaxations are illustrated on Figure 5.5.
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Class SDP-1 SDP-2 SDP-3 SDP-4 SDP-5 SDP-6 SDP-7 SDP-8 SDP-10 SDP-11 SDP-12
1-1 9.7% 9.7% 9.4% 6.9% 9.7% 9.7% 6.5% 6.1% 0.7% 0.6% 0.6%
1-2 6.0% 6.0% 6.0% 0.2% 6.0% 6.0% 0.0% 0.0% 0.0% 0.0% 0.0%
1-3 9.4% 6.9% 9.4% 6.9% 9.1% 8.9% 6.9% 6.9% 1.9% 1.9% 1.9%
2-1 25.3% 25.3% 25.1% 23.7% 25.3% 25.3% 23.0% 22.4% 16.5% 15.7% 16.4%
2-2 22.0% 22.0% 19.3% 13.2% 22.0% 22.0% 10.0% 10.0% 0.0% 0.0% 0.0%
2-3 25.1% 23.7% 25.1% 23.7% 25.0% 24.9% 23.7% 23.7% 18.3% 15.8% 18.3%
3-1 31.1% 31.1% 31.0% 30.4% 31.1% 31.1% 29.7% 29.2% 24.9% 0.0% 24.8%
3-2 28.6% 28.6% 24.5% 19.9% 28.6% 28.6% 0.0%
3-3 31.0% 30.3% 31.0% 30.3% 31.0% 30.9% 30.3% 30.3% 26.9% 0.0% 26.9%
4-1 21.2% 21.2% 21.1% 20.3% 21.2% 21.2%
4-2 17.7% 17.7% 16.0% 10.2% 17.7% 17.7%
4-3 21.1% 20.3% 21.1% 20.3% 21.0% 20.9%
5-1 22.9% 22.9% 22.8% 22.3% 22.9%
5-2 19.9% 19.9% 17.5% 12.2% 19.9%
5-3 22.8% 22.3% 22.8% 22.3% 22.8%
6-1 31.0% 31.0% 31.0% 30.4%
6-2 29.1% 29.4% 27.1% 20.2%
6-3 31.6% 31.0% 31.6% 30.4%

Table 5.13: Gap of the SDP relaxations

Class LP-1 LP-2 LP-3 LP-4 LP-5 LP-6 LP-7 LP-8 LP-10 LP-11 LP-12
1-1 9.7% 9.7% 9.0% 9.0% 9.7% 9.7% 0.7% 0.6% 0.7% 9.0% 0.6%
1-2 6.0% 6.0% 6.0% 6.0% 6.0% 6.0% 0.0% 0.0% 0.0% 6.0% 0.0%
1-3 8.9% 7.7% 8.9% 7.7% 8.9% 8.9% 1.9% 1.9% 1.9% 7.7% 1.9%
2-1 25.3% 25.3% 24.7% 24.7% 25.3% 25.3% 17.4% 17.3% 17.4% 24.7% 17.3%
2-2 22.0% 22.0% 22.0% 22.0% 22.0% 22.0% 9.9% 9.9% 9.9% 22.0% 9.9%
2-3 24.9% 24.1% 24.9% 24.1% 24.9% 24.9% 19.4% 19.4% 19.4% 24.1% 19.4%
3-1 31.1% 31.1% 30.7% 30.7% 31.1% 31.1% 25.6% 25.5% 25.6% 30.7% 25.5%
3-2 28.6% 28.6% 28.6% 28.6% 28.6% 28.6% 28.6%
3-3 30.9% 30.6% 30.9% 30.6% 30.9% 30.9% 27.8% 27.8% 27.8% 30.6% 27.8%
4-1 21.2% 21.2% 20.7% 20.7% 21.2% 21.2%
4-2 17.7% 17.7% 17.7% 17.7% 17.7% 17.7%
4-3 20.9% 20.6% 20.9% 20.6% 20.9% 20.9%
5-1 22.9% 22.9% 22.5% 22.5% 22.9%
5-2 19.9% 19.9% 19.9% 19.9% 19.9%
5-3 22.8% 22.6% 22.8% 22.6% 22.8%
6-1 31.0% 31.0% 30.7% 30.7%
6-2 28.8% 28.8% 28.8% 28.8%
6-3 30.9% 30.8% 30.9% 30.8%

Table 5.14: Gap of the LP relaxations

Regarding running time, SDP-4 is significantly faster than the two others : on average on the
800 common instances, it runs in 0.1s, compared with 354.1 s for SDP-7 and 1018.4 s for SDP-10.
Furthermore, SDP-7 and SDP-10 can be used only on very small instances, as show the systematic
failure on the instances of class 3-2, for which the original problem involves 52 variables and 478
constraints.

5.3.2.3 Comparison of the three formulations of the maximal lapping constraint

As illustrated on the Figures 5.6 and 5.7, the SDP and LP gaps are * smaller with the pairwise exclusion
formulation. This can be explained by the fact that the associated problem involves a larger number
of linear constraints and therefore offers a better potential for reinforcement. On the other hand, the
quadratic formulation has the worst gaps, for reasons that are similar.
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Figure 5.4: Comparison of the gaps of the relaxations LP-1, LP-2, LP-3 and LP-4

Figure 5.5: Comparison of the gaps of the relaxations SDP-4, SDP-7 and SDP-10

5.3.2.4 Comparison of the SDP relaxations with the LP relaxations

Moving on to SDP versus LP comparison, we show the gaps of the LP and SDP retained relaxations
on Figure 5.8. Clearly, SDP is worthwhile only with the model 4 − 2. The question that remains is
whether this holds because the model 4− 2 involves a larger number of linear constraints, or because of
the nature of these constraints. It is remarkable that on instances of class 2-2, the average SDP-10 gap
is zero, which implies that SDP-10 closes the gap on all the instances of this class. On the same class,
the average LP-10 relaxation has a gap of 9.85%. This leads to the comparison of the three models. As
depicted on Figure 5.6, from a SDP relaxation point of view, it is equivalent to consider the "big M"
formulation or the quadratic one.

We note that we do not raise the issue of computational time. Indeed, this comparison, which
is clearly in favour of LP, is biased since the LP solver is CPLEX, a very powerful commercial solver,
which benefited from years of research, whereas the SDP solver is CSDP, a free tool proposed in 1999
by a researcher.

In view of all these observations, we draw the following conclusions : for the three models, the
best SDP relaxation is obtained by first of all, squaring the linear constraints (including the bound
constraints), then adding the products of the linear constraints by the bound constraints.

Among the three models, the pairwise exclusion model offers the best improvement of SDP
w.r.t. LP and the quadratic model the worst. Indeed, this model is less suitable for reinforcement
since it involves a smallest number of linear constraints. Furthermore, as shown on Figure 5.9, the
linear relaxation is generally as tight as the SDP one for this model. Actually, compared to the linear
relaxation, the SDP relaxation is worthwhile only with the model 4−2 that corresponds to the pairwise
exclusion formulation of the maximal lapping constraint.
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Figure 5.6: Comparison of the gaps of the SDP relaxations for the models 4− 1, 4− 2 and 4− 3

Figure 5.7: Comparison of the gaps of the LP relaxations for the models 4− 1, 4− 2 and 4− 3

Figure 5.8: Comparison of the gaps of the SDP and LP relaxations for the reinforcement 4, 7 and 10

Figure 5.9: Comparison of the gaps of the SDP and LP relaxations for the model 3

5.3.3 Reaching optimality via Lasserre’s hierarchy

A systematic and very powerful way of deriving SDP relaxations of combinatorial problems, and more
generally, of polynomial problems, is proposed by the Lasserre’s hierarchy of SDP relaxations, described
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in Paragraph 3.4.3.

In this paragraph, we apply this technique to the three models of the nuclear outages scheduling
problem described in Paragraph 4.3.3.4. Recall that the rank 1 of this hierarchy is equivalent to the
standard SDP relaxation, which has already been covered in the section above. For memory storage
reasons, the rank 2 of the hierarchy could not be tested on instances that are not of class 1, and the
same applies for the rank > 2 on all the instances.

Then, on average on the 100 instances described in Paragraph 5.3.2.1, the rank 2 of the Lasserre’s
hierarchy gives the following gaps :

Class Gap Running time
Lasserre-rank 1 Lasserre-rank 2 Lasserre-rank 1 Lasserre-rank 2

1-1 9.74% 0.00% 0.01 2.42
1-2 6.03% 0.00% 0.01 1.06
1-3 9.39% 0.00% 0.02 4.72

Table 5.15: Gap and running time of the Lasserre rank-1 and rank-2 relaxations

The gaps are calculated with the formula (p∗r − p∗)/p∗ where p∗r is bound obtained with the
relaxation and p∗ the optimal value of the integer problem. Thus, having an average gap that vanishes
indicates that the relaxation gives the integer optimal value on all the instances. Furthermore, the
resolution of the rank-2 relaxation takes from 1s to 9s which remains very reasonable.

In conclusion, the Lasserre’s hierarchy therefore keeps its promises regarding the tightness of the
obtained bound. Unfortunately, in practice, it obviously suffers from the size of the generated SDP
since it can not be applied to problems of size more than 2, i.e, with a number of variables of the order
of thirty.

5.4 Conclusion

In this chapter, we investigated the potential of SDP for real-life combinatorial problems. First, we
derived a SDP relaxation of the MIQP corresponding to the model 2 of the NOSP, described in paragraph
4.3.3.2. This problem is extremely hard to solve with CPLEX and SDP yiels a bound that outperforms
the linear bounds, with an average gap that decreases from 1.80% to 1.56%. To reach this bound, it was
necessary to reinforce the standard SDP relaxation by means of valid quadratic constraints obtained by
applying the Sherali-Adams principle to the assignment constraint. The latter was chosen as the most
efficient among all the quadratic constraint obtained by applying the Sherali-Adams principle to all the
constraints of the problem.

In the second section, we proposed a more systematic method to generate and select the most
appropriate valid quadratic constraints to reinforce the SDP relaxation. To this end, we consider all
the pairwise products of the linear constraints of the problem, then we add the most violated of these
constraints to the SDP relaxation. We experimented several variants of this basic idea. First, we try to
select the most violated convex quadratic constraints, in order to be more efficient in the semidefinite
relaxation. Indeed, a convex quadratic constraint is necessarily satisfied by the projected solution of the
semidefinite relaxation. We obtain a reinforcement of the semidefinite relaxation but the computational
cost is too high compared to the improvement of the bound. We also try to consider the triangular
inequalities into our initial set of constraints but the impact on the bound was very low.

By applying this method to the NOSP, it comes that our SDP relaxation improves by 25.15% the
gap of the linear relaxation. Thus the advantages of this method are twofold. First, it can be used to
enhance the Branch & Bound resolution of the problem, especially on difficult instances where CPLEX
fails to produce a feasible solution within two hours. Second, this method can be used to determine
the most relevant cuts on working instances. Then, these cuts can be added directly to operational
instances to provide directly an efficient semidefinite relaxation.
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Finally, in the last section, we implemented numerous possible reinforcements of the SDP relax-
ations to the three equivalents models 4 − 1, 4 − 2 and 4 − 3 (see Paragraph 4.3.3.4). The objective
is to make a comparison between the possible reinforcements and between the models. We also aim
at comparing the SDP relaxation with the linear relaxation reinforced in the same way than the SDP
relaxation.

In conclusion, we experimentally observed that, for the three models, the best SDP relaxation is
obtained by first of all, squaring the linear constraints (including the bound constraints), then adding
the products of the linear constraints by the bound constraints. Among the three models, the pairwise
exclusion model offers the best improvement of SDP w.r.t. LP and the quadratic model the worst.
Indeed, this model is less suitable for reinforcement since it involves a smallest number of linear con-
straints. Furthermore, as shown on Figure 5.9, the linear relaxation is generally as tight as the SDP
one for this model. Actually, compared to the linear relaxation, the SDP relaxation is worthwhile only
with the model 4 − 2 that corresponds to the pairwise exclusion formulation of the maximal lapping
constraint.
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Chapter 6

Applying SDP to optimization under

uncertainty

Optimization under uncertainty faces several challenges. First it is necessary to formalize the available
knowledge about random data. At best, their probability distribution is perfectly known, but gener-
ally, only a partial knowledge of this distribution is available. Besides, it is necessary to select the
optimization criteria and to determine how to consider the constraints that involve random data.

Assuming that the probability distribution is perfectly known enables to optimize the expected
value of the deterministic objective and to satisfy the constraints up to a given level of probability, called
chance-constraints. This brings us in the framework of Stochastic Programming, that was introduced
in the 1950s and is so far the most commonly used way of accounting for uncertainty. In particular,
when it is difficult to describe precisely the probability distribution, the latter is approximated via a
discrete probability distribution made of a finite set of scenarios, obtained for instance by a Monte-Carlo
sampling or by historical observations.

However, this approach makes sense only when the optimization is repeated many times, since
probability can be therefore interpreted as a frequency. This becomes much more problematical when
the optimization occurs only a few times. In this case, it can be interesting to consider an alternative
way of accounting for uncertainty, namely the robust optimization that adopts a worst-case perspective.
To this end, only the knowledge of the support of the random data is required.

Recently, a compromise between these two approaches, called distributionnally robust optimiza-
tion was proposed, that requires to know the support of the random data as well as some of their
moments. We refer the reader to the Appendix 3.7 for the most famous results in optimization under
uncertainty.

Historically, the first connection between SDP and uncertainty can be attributed to Ben-Tal
and Nemirovksi [32] and El-Ghaoui [89] that show that the robust counterpart of certain optimization
problems can be formulated as SDP. A new step was taken with the establishment of the connection
between SDP and the Generalized Moment Problem [171], that allows to use SDP for distributionnally
robust optimization. Finally, SDP was also exploited for Stochastic Programming, as see for instance
[100, 81].

In this chapter, we investigate some of these approaches. The first section consists of the pa-
per [116] where we apply the standard SDP relaxation to a stochastic version of the NOSP with a
scenario-based representation of random data (see Paragraph 4.3.3.1). This computation is followed by
a randomized rounding procedure in order to derive a feasible solution of the problem.

The second section, that constitutes the submitted paper [112], investigates the use of SDP for
dealing with the distributionnally robust optimization of the problem of supply/demand presented at
Paragraph 4.3.3.5.
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Finally, the last section relates the work presented in [114]. We investigate SDP relaxations
for mixed 0-1 Second-Order Cone Program, i.e. Second-Order Cone Program (SOCP) (see Paragraph
1.3.1) in which a specified subset of the variables are required to take on binary values. The reasons
for our interest in these problems lie in the fact that SOCP are famous for providing formulations or
conservative approximations of robust Linear Programs, see for instance [32, 185, 269]. By a natural
extension, MISOCP can be used to reformulate or approximate robust MILP.

Thus, each section of this chapter corresponds to a published or submitted paper. Similarly to
the choice made in the previous chapter, we chose not to provide the papers in their entirety in order
to avoid the duplications. Instead, we refer the reader to the papers [116, 114, 112], to the Chapter
4 for energy management problems and models, to the Chapter 2 for the an overview of SDP and to
Paragraph 3.3.2 for a detailed explanation of the standard SDP relaxation.

6.1 SDP for optimizing with a discrete representation of uncer-
tainty

In this section, as presented in the paper [116], we apply the standard SDP relaxation to the model 1
of the nuclear outages scheduling problem (see Paragraph 4.3.3.1). This computation is followed by a
randomized rounding procedure in order to derive a feasible solution of the problem.

We recall that the model 1 is a direct application of the description of the NOSP given at Section
4.3.1 with the quadratic objective function and the quadratic formulation of the maximal lapping
constraint. Regarding uncertainty, we use a stochastic approach and we require that the constraints
involving uncertain parameters be satisfied up to a given level of probability (chance-constraints).

We assume that the probability distributions of the uncertain parameters are discrete and con-
centrated on a finite number of scenarios s = 1, ..., Ns obtained from historical observation. Then, as
explained in Paragraph 4.3.3.1, the joint chance-constraints can be expressed in a deterministic fashion
by introducing binary variables.

The objective is to minimize the expected value of the production cost, that can be easily com-
puted as the sum of the production cost of each scenario, weighted by their probability. Finally, we
obtain a MIQCQP, with a large number of binary variables and linear constraint, where the quadratic
term involves only binary variables.

Then, we apply the standard SDP relaxation (see Paragraph 3.3.2) to this problem. Experiments
have been carried out on 10 data sets, built from a real-life problem describing the 58 french nuclear
power plants on a five years time horizon. For each of the data set, 10 scenarios are considered. This
choice is made in order to keep a reasonable number of binary variables and to focus on the combinatorial
aspect coming from the outages.

For each of the 10 considered data set, the horizon time contains 156 weeks, also called time steps
and corresponds to 4 cycles and 3 outages for each plant. The other features are presented in Table
6.1. For each data set, denoted by their number in the first column, this table contains the number
of nuclear power plants in the column 2 and the number of outages in the column 3. The column 4
indicates the number of possible beginning date for each outage i.e., the size of the search spaces Ei,j .
These sets are built as the symmetric space around an initial date of outage, which corresponds to a
feasible solution. The last column of Table 6.1 indicates the number of binary variables of the instances,
without considering the binary variables resulting from the linearization since they are not used in the
semidefinite relaxation.

6.1.1 Semidefinite Relaxation Lower Bounds

Results are presented in Table 6.2. We compare our semidefinite relaxation to the Integer Linear
program described in Paragraph and to its continuous relaxation, denoted herein Exact resolution and
Linear relaxation respectively.
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Data set Number of nuclear Number of Size of the Number of binary
power plants outages search spaces variables

1 10 30 7 701
2 10 30 9 776
3 10 30 11 870
4 10 30 13 965
5 10 30 15 1 047
6 10 30 17 1 123
7 20 60 7 1 846
8 20 60 9 2 034
9 20 60 11 2 226
10 20 60 13 2 409

Table 6.1: Description of the data sets

All numerical test were performed with an Intel(R) Core(TM) i7 processor with a clock speed of
2.13 GHz. The semidefinite relaxation is solved using DSDP 5.8 solver [34]. The exact formulation and
its associated linear relaxation have been solved with the CPLEX 12.1 solver.

Data Exact resolution Linear relaxation SDP relaxation
set Value Time Value Time Gap Value Time Gap

1 5 031 1 800 3 578 0,06 40,59% 4 988 298 0,85%
2 4 931 1 800 3 397 0,08 45,15% 4 875 448 1,15%
3 4 836 1 800 3 262 0,16 48,27% 4 775 633 1,27%
4 4 782 1 800 3 134 0,28 52,59% 4 691 957 1,94%
5 4 723 1 800 3 026 0,58 56,08% 4 613 1329 2,36%
6 4 670 1 800 2 913 0,80 60,34% 4 512 1682 3,52%
7 20 547 1 800 13 677 0,33 50,23% 20 051 4048 2,47%
8 20 443 1 800 13 159 0,71 55,36% 19 736 6216 3,58%
9 20 392 1 800 12 740 1,07 60,07% 19 506 9251 4,55%
10 20 417 1 800 12 384 1,71 64,87% 19 279 11520 5,9%

Table 6.2: Results of the relaxations

In Table 6.2, the data set is given in the first column, which refers to Table 6.1. The “Value" columns
indicate the result of the resolutions and the columns “Time" indicate the computational time in second.
In the case of the exact resolution, this time is limited to 1800s and is attained for all the data set.
Consequently, the associated result is not the exact optimal value, but an upper bound.

Let p∗ be the optimal value or an upper bound and pr be the result of a relaxation, the gap g in
columns 6 and 9 is computed as follows :

g =
p ∗ −pr

pr
(6.1)

These results show that the semidefinite relaxation is definitely more powerful that the continuous
one. Indeed, the average gap is 53.35% for the continuous relaxation and 2.76% for the semidefinite
relaxation. We can see that both gaps increase as the size of the data set goes up, but this rise is more
important for the continuous relaxation gap. This suggests that our semidefinite relaxation could be
even more useful on larger instance.
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6.1.2 Deriving Feasible Solutions from the Relaxed Solutions

Results of the randomized rounding procedure, obtained from the continuous relaxation and from the
semidefinite relaxation are presented by columns 3, 4, 5, 6 of Table 6.3:

Data Exact LP relaxation SDP relaxation
set resolution

Value Gap Value Gap

1 5 031 5 475 8,11% 5 122 1,77%
2 4 931 5 366 8,1% 5 021 1,78%
3 4 836 5 428 10,91% 4 962 2,54%
4 4 782 5 336 10,37% 5 041 5,13%
5 4 723 5 661 16,58% 4 997 5,5%
6 4 670 5 669 17,61% 4 885 4,38%
7 20 547 † † † †
8 20 443 † † 20 335 -0,53%
9 20 392 21 574 5,48% 20 459 0,33%
10 20 417 21 686 5,85% 20 205 -1,05%

Table 6.3: Using a randomized rounding procedure to derive a feasible solution

† indicates that no feasible solution has been found after 1000 iterations. This occurs when none of the
outages variables with a positive value yield a feasible solution. We observe that the SDP relaxations
induces a better robustness of the randomized rounding procedure since the infeasible case occurs less
frequently.

For each of the data set denoted by their index in the first column, the column 2 gives the value of
the reference solution, as in the second column of Table 6.2. Then, for each of the considered relaxation
(linear and semidefinite), we give the values of the obtained feasible solutions in columns 3 and 5. The
associated gap g given in columns 4 and 6 is computed as follows:

g =
pa − p∗

pa
(6.2)

where p∗ is the reference solution and pa is the result of the randomized rounding.

We can see that our results become closer from the upper bound of the solution found by CPLEX
within 1800s when the size of the instances goes up, since this upper bound differs more and more
from the optimal value. We even improve this solution on data sets 8 and 10. More generally, the
solutions obtained from the semidefinite relaxation are clearly better than those obtained from the LP
relaxation, with a minimal difference of 5.15% of gap between them. On average, the gap is 10.38%
with the continuous relaxation, whilst the SDP relaxation leads to 2.20% gap only.

6.1.3 Conclusion

In electrical industry, optimizing the nuclear outages scheduling is a key factor for safety and economic
efficiency. In order to take into account uncertainties on the production and the demand and focusing
on the main constraints, we propose a probabilistic formulation of this challenging large-size stochastic
mixed nonlinear problem. By using individual chance constraints, we obtain a large mixed-integer
Quadratically Constrained Quadratic Program.

Transforming it into an Integer Linear Program by using Fortet linearization leads to a large-scale
problem very difficult to solve with commercial solvers. We propose an alternative approach involving
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semidefinite relaxation. This relaxation gives lower bounds that are very close to the optimal value,
with a gap equal to 2.76% on average, whereas the continuous relaxation has on average a gap of
53.35%. Then these bounds are used to build feasible solutions by the mean of a randomized rounding
procedure. Our approach performs well since the optimality gap is 2.20% for the SDP relaxation versus
10.38% for the continuous relaxation.

These promising results suggest future work to refine the semidefinite bounds. In particular, we
aim at investigating the use of valid inequalities. Another perspective for this work is to embed the
bound computation within a Branch & Bound procedure.

6.2 Handling a chance-constraint with a distributionnally robust
approach

In this section, we investigate the use of SDP for dealing with the distributionnally robust optimization of
the problem of supply/demand presented at Paragraph 4.3.3.5. This work is reported in the submitted
paper [112]. The reasons for our interest in this approach is twofold. Firstly, the distributionnally
robust optimization does not require the knowledge of the probability distribution of the uncertain
parameters, as this is the case for stochastic optimization. However, it exploits some characteristics of
the probability distribution, namely its moments of order up to k and its support, which makes this
approach less conservative than the robust approach, which exploits only the support.

Secondly, SDP provides a very elegant way of dealing with these problems, as presented at
Paragraph 3.5.2. Generally, the obtained SDP is a conservative approximation of the problem and in
some particular cases, it may even be an exact reformulation of the problem.

The supply/demand equilibrium problem under uncertainty that we consider can be formulated
as the following jointly chance-constrained linear program :

min
x∈F
{cTx : P[g(x, ξ) ≤ 0] ≥ 1− ε} (6.3)

where x ∈ R
n is the command vector, cTx its deterministic linear cost and F ⊂ R

n a deterministic
polyhedron. Uncertain parameters are represented by the m-dimensional random vector ξ and g is a
measurable function from R

n × R
m to R

T , whose components gt are affine w.r.t x and ξ. For T = 1,
the constraints reduces to a so-called individual chance-constraint. Otherwise, this is a joint chance-
constraint which requires that the T inequalities be jointly satisfied with a probability at least 1 − ε,
with ε a given probability threshold. In this case, we call sub-constraints the inequalities gt(x, ξ) ≤
0, t = 1, ..., T .

Even when the probability distribution of the random vector is known, solving a chance-constrained
problem is a highly challenging task. First, checking the feasibility of a given candidate solution is com-
plicated since it requires the computation of a T -dimensional integral. For instance, it was shown in
[201] that it is NP-hard to compute the probability of a weighted sum of uniformly distributed variables
being nonpositive. Second, the feasible region defined by a chance-constraint is generally non convex,
even disconnected.

In our case, only a partial knowledge about the probability distribution is available. More pre-
cisely, we assume that the support of ξ as well as some of its moments are known. Then, we optimize
over all the probability distributions that match these characteristics. By denoting P(S) this set, the
problem can be formulated as :







min cTx
s.t. P[g(x, ξ) ≤ 0] ≥ 1− ε, ∀P ∈ P(S)

x ∈ F
(6.4)
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In other words, we obtain a guarantee on the feasibility of the solution by replacing the unknown
quantity P[g(x, ξ) ≤ 0] by its lower bound minP∈P(S) P[g(x, ξ) ≤ 0], computed by making the best
possible use of the available information.

A recent approach to this problem, proposed in [270], approximates the obtained constraint
under the form of a Linear Matrix Inequality (LMI). Thus, the obtained problem takes the form of a
Semidefinite Program (SDP), a convex optimization problem for which efficient solvers are available.

In this paper, we aim at investigating more in depth in this direction for the particular quadratic
case, defined as follows :

− g is affine in x and ξ, but the same rationale would apply to g quadratic in ξ ;

− S is defined through a set of quadratic constraints;

− the first and second-order moments of ξ are given.

Our main contribution is to unify this approach with the works of Calafiore and El-Ghaoui [68],
Lasserre [171], Bertsimas et al. [38, 40, 41] and Comanor et al. [257], for this particular case. We provide
a simple way to recover all these results by applying the well-known S-Lemma, which is possible due to
our restriction to the quadratic case.

Furthermore, we apply this so-called distributionnally robust approach to the supply-demand
equilibrium problem and we aim at comparing this method to existing approaches in order to measure
its efficiency. To this end, we set aside the covariance information and consider only the support
and expected values in a robust approach, as proposed in [68, 269]. This approximation relies on the
application of the Boole’s inequality, to convert the joint constraint into individual ones, combined to
the Hoeffding’s inequality, in order to get a tractable conservative approximation of the constraints.
The obtained problem takes the form of a Second-Order Cone Program (SOCP), a special case of conic
programming which has received significant attention in the literature [8], and for which numerous
efficient solvers are available [248].

We also aim at measuring the potential loss w.r.t the case where the uncertainty would be
perfectly known. As an illustration, we consider the case where g(x, ξ) follows a Gaussian distribution.
To solve the problem, we resort to the approximation proposed in [73], which also gives rise to a SOCP.

In short, we compare three ways of dealing with uncertainty that goes hand in hand with a level
of knowledge :

− a robust approach, where nothing is known about the probability distribution apart its support
and expected value;

− a distributionnally robust approach, where the support and the two first moments of the prob-
ability distribution are known;

− a stochastic approach where the probability distribution is perfectly known.

Naturally, the more precise is our knowledge about the uncertainty, the smaller the set P(S)
is and the more accurate is the solution. However the distributionnally robust approach appears as a
good compromise between the robust approach, which might be over conservative and the stochastic
approach which require a high level of knowledge, generally not available.

This paper is organized as follows. In section 6.2.1, we review briefly the approaches proposed
in the literature to tackle such joint chance-constraints. We also provide background on the distribu-
tionnally robust framework, its connexion with Semidefinite Programming and with the Generalized
Problem of Moment. We present our main contribution in section 6.2.2, by detailing several particular
cases of the considered problem and for each of them, making the link with other works of the literature.
Then, in section 6.2.3, we report and analyse numerical results arising from the comparison with the
robust and the stochastic approaches. Finally, we conclude and discuss future work in section 6.2.4.

Notations The problem (6.3) uses the following notations :

− x ∈ R
n is the command variable ;
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− c ∈ R
n is the cost vector ;

− F ⊂ R
n is a polyhedron defined by a set of linear inequalities ;

− ξ ∈ R
m is a random vector, of mean µ ∈ R

m, covariance Σ ∈ S
m and support S = {ξ ∈ R

m :
ai ≤ ξi ≤ bi, i = 1, ...,m};

− P(S) = {P ∈M(S) : ΩP(ξ) = Ω} with Ω =

(

1 µT

µ µµT +Σ

)

;

− M(S) denotes the set of the probability distributions supported on S;

− g : Rn × R
m → R

T a measurable function such that gt(x, ξ) = x̃Atξ̃, t = 1, ..., T ;

− At ∈ R
n+1,m+1 whose indices starts at zero ;

− At
i,∗ and At∗,j denotes the i-th row and j-th column of At respectively ;

− ∃x ∈ F : g(x, µ) ≤ 0 ;

− 1− ε is the prescribed probability level, with 0 < ε < 1 ;

− the variable ξ involved in a same subconstraint gt(x, ξ) ≤ 0 are independent one from another.

Clearly, Ω < 0. Moreover, unless one components of ξ is an exact affine combination of the
others, Σ ≻ 0 holds and therefore we assume in the sequel that Σ ≻ 0, which is equivalent to Ω ≻ 0 by
applying Schur’s complement.

Finally, S is defined above as a box but, when possible, we extend this notion to define S through
a set of quadratic constraints : S = {ξ ∈ R

m : ξ̃TW sξ̃ ≥ 0, s = 1, ..., S}. Two possible representation
of a box in this form are discussed at the end of the Paragraph 6.2.2.3.

For any P ∈ M(S), EP(ξ̃
TW sξ̃) ≥ 0, which is equivalent to EP(W

s • (ξ̃ξ̃T )) ≥ 0 and therefore
W s • Ω ≥ 0. We assume in the sequel that this condition holds for s = 1, ..., S.

Throughout this section, we use the following notations. If v is a n-dimensional vector, M(v)
denotes the matrix in S

n such that M1,1 = v1, M1,i = Mi,1 = 1/2vi, i = 2, ..., n and Mi,j = 0 otherwise.

In particular, e0 =

(

1
0

)

∈ R
n+1 and therefore M(e0) =

(

1 0
0 0

)

∈ S
n+1.

Furthermore, if ξ is a random vector of probability distribution P, ΩP(ξ) = E(ξ̃ξ̃T ) denotes its
second-order moment matrix. This matrix is indexed by i, j = 0, ...,m such that ΩP(ξ)0,0 = 1 and for
i, j = 1, ...,m, ΩP(ξ)0,j = EP(ξj) and ΩP(ξ)i,j = EP(ξiξj).

6.2.1 Literature review

6.2.1.1 Handling a joint chance-constraint

In this section, we give a brief overview for dealing with a general joint chance-constraint P[g(x, ξ) ≤
0] ≥ 1 − ε, according to the nature of the function g : Rn × S → R

T and to the knowledge available
about the random vector ξ.

Incorporating such constraints into an optimization problem leads to a so-called chance-constrained
programs. They were introduced by Charnes and Cooper [71] in the late fifties and has since been stud-
ied extensively, see for instance [201, 216, 227]. These constraints are a very valuable modelling tool,
especially when the optimization repeats many time, since they can be viewed as a way to ensure a
certain stability of performance.

A classical way to handle chance-constraints is based on the Monte-Carlo method and consists
of approximating the probability distribution by a discrete distribution generated by random sampling.
A major advantage of this method is that it can be done for an arbitrary probability distribution of
ξ and function g, as long as g is affine in x. Unfortunately, it was shown in [66] that a minimum
of O(n/ε) samples were required to guarantee the feasibility of the approximated solution, which is
computationally prohibitive for small value of ε.
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In the particular case of an individual chance-constraint (T = 1) where ε ≤ 0.5, g(x, ξ) =
ξTx− v and ξ has a multivariate normal distribution, the chance-constraint admits a tractable convex
formulation in the form of a deterministic second-order cone program [256]. This reformulation forms
the basis of the stochastic approach described at Paragraph 6.2.3.6.

However, in general, individual chance-constraints are very hard to enforce numerically. The
question that naturally arises is how the properties of f : x 7→ P[g(x, ξ) ≤ 0] can be derived from
those of g. A common difficulty, for instance, is that convexity of g with respect to x may not lead to
convexity of f with respect to x.

Hence, a natural way to overcome this difficulty is to look for a convex conservative approximation
of the constraint. It was shown by Nemirovski and Shapiro [201] that, for T = 1, the least conservative
convex approximation is based on the CVaR, a risk measure defined by Rockafellar and Uryasev in [227],
that, for any 0 < η < 1, associates to a random variable X the mean of its γ-quantile on γ ∈ [1− η, 1].
Then, P[X ≤ CVaRη(X)] ≥ 1−η. By applying this to the random variable g(x, ξ), we get the following
implication : CVaRε(g(x, ξ)) ≤ 0⇒ P[g(x, ξ) ≤ 0] ≥ 1− ε and therefore, CVaRε(g(x, ξ)) ≤ 0, which is
convex, is a conservative approximation of our chance-constraint.

Regarding joint chance-constraints, the Boole’s inequality proved to be very useful in order to
approximate a T -joint chance-constraint by T individual chance-constraint. Indeed, it states that :

P[gt(x, ξ) ≤ 0, t = 1, ..., T ] ≥
T
∑

t=1

P[gt(x, ξ) ≤ 0] + 1− T

Consequently, it suffices that the sum of the individual probability be greater than T−ε to ensure
the satisfaction of the constraint. By distributing equally this probability among the T constraints, we
get the following conservative approximation :

P[gt(x, ξ) ≤ 0] ≥ 1− ε/T, t = 1, ..., T ⇒ P[gt(x, ξ) ≤ 0, t = 1, ..., T ] ≥ 1− ε

However, this conservative approximation suffers from its potential lack of tightness, especially
when the constraints involves a large number of correlated constraints as pointed out in [72], that also
proposed a new scheme to address this problem. It is based on the following statement, that holds for
any strictly positive α ∈ R

T and that allows to convert a joint chance-constraint into an individual one :

gt(x, ξ) ≤ 0, t = 1, ..., T ⇔ gα(x, ξ) = max
t=1,...,T

αtgt(x, ξ) ≤ 0 (6.5)

Hence, in [72], the authors propose to replace the joint chance-constraint by the following in-
dividual one : P[gα(x, ξ) ≤ 0] ≥ 1 − ε and to apply the CVaR approximation to this constraint.
Unfortunately, there is little guidance on how to choose the scaling parameters α, although the impact
on the tightness of the approximation is significant. Optimizing the choice of α leads to a non convex
problem and is therefore intractable.

6.2.1.2 SDP and the Generalized Problem of Moments

We give some key definitions and results to recall the connexion existing between Semidefinite Pro-
gramming (SDP) and the Generalized Problem of Moments (GPM). We refer the reader to the section
3.4 for more details.

We recall that the Generalized Problem of Moments (GPM) is an optimization problem defined
as follows :

(GPMP )











p∗ = min EP[h(ξ)]

s.t. EP[fj(ξ)] = bj , j = 0, ..., l

P ∈M(S)
(GPMD)







d∗ = max bT z

s.t.
l
∑

j=0

zjfj(ξ) ≤ h(ξ), ∀ξ ∈ S

(6.6)
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where M(S) is the set of probability measure supported on S ⊂ R
m and fj : S → R, i = 0, ..., l

are measurable functions. We assume that the constraint
∫

S P(ξ)dξ = 1, due to P being a probability
measure, is explicitly present with f0(ξ) = 1 and b0 = 1.

The dual relationship between (GPMP ) and (GPMD) can be understood by considering the
primal as a linear program with an infinite number of non-negative variable, i.e., P(ξ) for each value
ξ ∈ S. The dual follows and has an infinite number of linear constraint, that can be interpreted
together as the non-negativity on S of the function fz(ξ) = h(ξ)−∑l

j=0 zjfj(ξ). There exists Slater’s
type sufficient conditions for the strong duality of this problem (see Theorem 3.4.4).

Lasserre’s hierarchy of semidefinite relaxation
The GPM subsumes a variety of optimization problem, including polynomial optimization, and is
therefore NP-hard. However, in the polynomial case, i.e., when fj , i = 1, ..., l are polynomials and S is
a semi-algebraic set : S = {x ∈ R

n : gs(x) ≥ 0, s = 1, ..., S}, with gs, s = 1, ..., S also polynomials of
degree ds, Lasserre designed a hierarchy of SDP whose optimal value converges to the optimal value of
the GPM.

The key ingredient for interpreting these SDP is the notion of moment vector associated to a
random vector ξ of probability distribution P, which denotes the vector y indexed by κ ∈ N

n
d such

that yκ = EP[ξ
κ]. Conversely, y ∈ R

N
n
d is said to be a moment vector if there exists a corresponding

probability distribution P.

Defining the notion of moment vector enables to reformulate the GPM. Indeed, for any polynomial
fj of degree d with coefficients fjκ, EP[fj(ξ)] =

∑

κ∈Nn
d
fjκyκ and the constraint is therefore linear in y.

All the difficulty is now pushed back in the constraint that y be effectively a moment vector. This is
where the SDP comes in, as pointed out in [77, 145]. Indeed, some necessary conditions for y to be a
moment vector on S takes the form of a LMI.

More precisely, if g is a polynomial non-negative over S then the localizing matrix associated
with g and y has to be positive semidefinite, and this matrix, indexed by the elements of Nn

d is defined
as follows, for any rank r ≥ v =

⌊

d+1
2

⌋

:

Mr−v(g, y)κ1,κ2
=
∑

κ∈Nn
2v

gκyκ1+κ2+κ, ∀κ1, κ2 ∈ N
n
r−v

This matrix can be formulated as a linear combination of the suitably defined matrices Bκ(g)
and of y :

Mr−v(g, y) =
∑

κ∈Nn
2r

Bκ(g) yκ with Bκ(g)κ1,κ2
=

{

gκ−κ1−κ2
if κ ≥ κ1 + κ2

0 otherwise
, ∀κ1, κ2 ∈ N

n
r−v

In particular, for g0(x) = 1, Mr(g0, y) corresponds to the so-called moment matrix of y and its
positive semidefiniteness holds for any moment vector y.

The r-th rank of the Lasserre hierarchy is built by deriving these constraints for all the poly-
nomials gs defining S and for the polynomial g0(x) = 1. The relaxation is defined for all integer
r ≥ vs =

⌊

ds+1
2

⌋

, s = 0, ..., S and it was proved in [171] that limr→+∞ p∗r = p∗ :

(LHr
P )



















p∗r = min hT y

s.t. fj
T y = bj , j = 0, ..., l

Mr−vs(gs, y) < 0, s = 0, ..., S

y ∈ R
N

n
2r

(6.7)
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The dual of this SDP writes as follows :

(LHr
D)



























d∗r = max bT z

s.t.
S
∑

s=0
Bκ(gs) •Ns = hκ −

l
∑

j=0

zjfjκ, ∀κ ∈ N
n
2(r−vs)

Ns < 0, s = 0, ..., S

z ∈ R
l+1, Ns ∈ S

N
n
r−vs , s = 0, ..., S

(6.8)

It is remarkable that (LHr
D) can directly be derived as a conservative approximation of (GPMD).

Indeed, the constraints of this problem are a direct application of the Putinar’s theorem (see for instance
[171]) that provides a sufficient condition for the non-negativity of the polynomial fz(ξ) = h(ξ) −
∑l

j=0 zjfj(ξ) on the semi-algebraic set S. This insight allows to deploy an extension regarding the
nature of the objective function h. More specifically, when h is piecewise polynomial, i.e., h(ξ) = hk(ξ)
if ξ ∈ Sk where {Sk}k=1,...,K is a partition of semi-algebraic sets of Rn, then the dual moment problem
becomes :

(GPMD)







max bT z

s.t.
l
∑

j=0

zjfj(ξ) ≤ hk(ξ), ∀ξ ∈ S ∩ Sk, k = 1, ...,K

Thus, the constraint still concerns the non-negativity of one or more polynomials over one or
more semi-algebraic sets and therefore the corresponding problem can still be approximated as a SDP.
As an illustration, let us consider the case where h(ξ) = h1(ξ) if gS+1(ξ) ≥ 0 and h(ξ) = h2(ξ) otherwise,
with h1(ξ) ≤ h2(ξ) everywhere. Then, the obtained SDP is as follows :

(LHr
D)























































d∗r = max bT z

s.t.
S+1
∑

s=0
Bκ(gs) •N1

s = h1κ −
l
∑

j=0

zjfjκ, ∀κ ∈ N
n
2(r−vs)

S
∑

s=0
Bκ(gs) •N2

s = h2κ −
l
∑

j=0

zjfjκ, ∀κ ∈ N
n
2(r−vs)

N1
s < 0, s = 0, ..., S + 1

N2
s < 0, s = 0, ..., S

z ∈ R
l+1, Ns ∈ S

N
n
r−vs , s = 0, ..., S

(6.9)

Finally, in the case where h, fj , j = 1, ..., l and gs, s = 1, ..., S are degree-2 polynomials, i.e.,
h(ξ) = ξ̃TP0ξ̃, fj(ξ) = ξ̃TPj ξ̃ and gs(ξ) = ξ̃TQsξ̃, the semidefinite rank 1 relaxation of Lasserre is exact
for S ≤ 1. This comes from the fact that in this case, the non-negativity constraint of fz on S is a
direct application of the well-known S-lemma [212] that we recall hereafter :

Lemma 6.2.1 S-Lemma
Let P,Qs, s = 1, ..., S be m+ 1-dimensional symmetric matrices. Then

P −
S
∑

s=1
λsQs < 0

λ ≥ 0







⇒ ξ̃TP ξ̃ ≥ 0, ∀ξ ∈ {ξ ∈ R
m : ξ̃ Qs ξ̃ ≥ 0, s = 1, ..., S}

The converse holds for S = 0 and for S = 1 whenever Q1 is not negative semidefinite. In these cases,
the S-Lemma is said to be lossless.

Then it suffices to apply this to the non-negativity of fz(ξ) = ξ̃P ξ̃ with P = P0 −
∑l

j=0 zjPj to

recover (LH1
D), by taking N0 = P −

S
∑

s=1
λsQs and Ns = λs, s = 1, ..., S.
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6.2.1.3 Distributionally robust optimization

Distributionally robust optimization deals with optimization facing incompletely specified uncertainty,
meaning that only a partial knowledge of the probability distribution of the uncertain parameters is
available.

Such a framework is widespread in the real-world, since evaluating precisely a probability dis-
tribution is generally a challenging task. Then the aim of distributionnally robust optimization is to
overcome this ambiguity, that prevents from applying the classical stochastic programming methods,
by considering the worst-case on all the matching probability distribution.

This relatively recent way to deal with uncertainty appears as a compromise between stochastic
programming, where the probability distribution is supposed to be perfectly known, and the robust
optimization, where only information on the support is required. Thus, in the distributionally ro-
bust approach, the probability distribution is partially specified though certain characteristics, such as
support and order up to k moments. We could think to exploit other properties of the probability
distribution, such as symmetry, independence or being radial, but it is beyong the scope of this paper.

The available information on the probability distribution is used to define the class P of matching
distributions and we perform a worst-case optimization by requiring that the chance-constraint be
satisfied for all the distributions of P. Hence, the distributionally robust variant of the constraint (6.3)
is :

P[g(x, ξ) ≤ 0] ≥ 1− ε, ∀P ∈ P or equivalently min
P∈P

{P[g(x, ξ) ≤ 0]} ≥ 1− ε

The underlying paradigm of distributionnally robust optimization has first been introduced in
the economics literature under the name of ambiguity and min-max stochastic programming, applied
for instance by Scarf to the newsvendor problem in [237].

Regarding optimization, the term of distributionally robust optimization was coined by Calafiore
and El-Ghaoui in [68] where it was shows that the satisfaction of an individual affine chance-constraint
over a distribution class defined by the first two moments yields a second-order conic constraint. Iyen-
gar and Erdogan [148] proposed to approximate the problem by satisfying the chance-constraint on a
sample of the distribution class. Several works very close to our framework concern the problem of the
minimization of an expected value under ambiguity, without considering chance-constraints. See for
instance [82, 30].

In this paper, we implement the approach proposed by Zymler, Kuhn and Rustem in [270]. The
objective is to approximate a joint chance-constraint by Worst-Case CVaR in a distributionally robust
framework where the support and the two first moments are known. The key point is that the obtained
problem admits a formulation in the form of a semidefinite program. More precisely, similarly to the
process proposed in [72] and described at Paragraph 6.5, the joint constraints are converted into an
individual one and the CVaR approximation is applied. An exact formulation of the worst-case over
the considered class of distribution is found as a semidefinite program.

What is outstanding in this method is that, in the individual case, it appears that the obtained
semidefinite constraint is exactly equivalent to the original chance-constraint, i.e., the loss attributable
to the CVaR approximation vanishes. In the case of a joint chance-constraint, the original constraint is
equivalent to considering the approximated constraint for all the value of the scaling parameters α. In
the next section, we show that we obtain the same result by considering the problem from a moment
problem perspective.
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6.2.2 Unification of the distributionally robust approach for chance-constraint
with the moment approach

The considered problem (6.4) is equivalent to minx∈F cTx : p∗(x) ≥ 1 − ε, where p∗(x) is the optimal
value of the following moment problem :
{

p∗(x) = min P[gt(x, ξ) ≤ 0, t = 1, ..., T ]

s.t. P ∈ P(S) with P(S) = {P ∈M(S) : ΩP(ξ) = Ω}
(6.10)

In this section, we propose a very simple process, based on the dual of the problem (6.10) and
on the S-Lemma, to derive a conservative approximation of the constraint p∗(x) ≥ 1− ε in the form of
a semidefinite constraint. Very roughly, we replace p∗(x) ≥ 1 − ε by d∗(x) ≥ 1 − ε. As a consequence
of weak duality, this is sufficient to guarantee the feasibility of the solution, and when strong duality
holds (which we assume is the case here), this is also necessary. As the dual moment problem is a
maximization problem, the constraint holds if and only if there exists a dual solution with an objective
value greater or equal to 1− ε. In some particular cases, it follows directly from our rationale that the
obtained approximation is exact.

Then we show that the obtained SDP is similar both to the one established in [270] and to the
first rank of the Lasserre’s hierarchy of the moment problem (6.10). This problem can also be seen as
an instance of the probability bounding problem defined by Bertsimas and described in the Paragraph
3.4.4.1. It suffices to consider the T -dimensional random vector ω = −g(x, ξ) and the probability
P[ω ∈ R

T
+]. Finally, in the individual case without support requirement (S = R

m), the semidefinite
formulation reduces to a Second-Order Conic constraint, as pointed out by Calafiore and El-Ghaoui in
[68].

Table 6.4 contains a summary of the different cases studied in this section. For each paragraph,
we provide m, n, T , S that correspond to the notations defined at the end of the introduction. D denotes
the order of moments considered to define the class P. More practically, D = 1 if we consider only the
expected value µ of ξ, whereas D = 2 if we consider both its expected value µ and the covariance Σ.
The other columns are as follows :

− Bound : indicates the bound that is obtained or a reference to the equation at hand;

− Num. Study : the paragraph where a numerical study of the particular case at hand can be
found;

− Reference : papers containing a SDP approximation that is subsumed in the paragraph ;

− Exact ? : Yes if the approximation is exact, No otherwise.

Paragraph m n T S D Bound Num. Study References Exact ?
6.2.2.1 ≥ 1 0 1 ≥ 0 1 (6.13) § 6.2.3.3 No
6.2.2.1 ≥ 1 0 1 ≥ 0 2 (6.12) § 6.2.3.3 No
6.2.2.2 1 0 1 0 1 = 1 Yes
6.2.2.2 1 0 1 0 2 Cantelli’s bound § 6.2.3.3 [41, 68] Yes
6.2.2.2 1 0 1 ≥ 1 2 (6.15) § 6.2.3.3 [41] Yes
6.2.2.2 1 0 1 ≥ 1 1 Markov’s bound Yes
6.2.2.3 ≥ 1 ≥ 0 1 ≥ 0 2 (6.17) No
6.2.2.4 ≥ 1 ≥ 0 ≥ 1 ≥ 0 2 (6.18) § 6.2.3.3 [257] No

Table 6.4: Summary of the considered cases

6.2.2.1 Case of an individual chance-constraint (T = 1) without command variables (n =
0)

In this section, we consider the individual case (T = 1) of the chance-constraint involved in the problem
(6.3), without dependency to the command variable x (n = 0). By calling d the first row of A1, the
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constraint becomes :

P[dT ξ̃ ≤ 0] ≥ 1− ε, ∀P ∈ P = {P ∈M(S) : ΩP(ξ) = Ω}

with S = {ξ ∈ R
m : ξ̃TW sξ̃ ≤ 0}. The use of the matrix Ω =

(

1 µT

µ µµT +Σ

)

implicitly supposes that

the expected value µ and covariance Σ of ξ are available but for comparison, we also consider the case
where only µ is available.

By considering the dual of this moment problem and applying the S-Lemma (Lemma 6.2.1), we
derive a conservative approximation of this moment problem in the form of a semidefinite system. In
the case where S ≤ 1, it follows from the S-Lemma that this conservative approximation is exact. We
show that the obtained SDP is equivalent to the SDP proposed by Zymler in [270] and to the rank 1 of
the Lasserre hierarchy [171].

Let us first consider the case that involves covariance. With n = 0, T = 1 and g(x, ξ) = dT ξ̃, the
subproblem (6.10) reduces to the following instance of the GPM, for which we provide the dual problem
obtained by applying the duality relationship of (6.6) :







p∗ = min P[dT ξ̃ ≤ 0]
s.t. ΩP = Ω

P ∈M(S)
dual with







d∗ = max 1− Ω •M
s.t. ξ̃Mξ̃ ≥ 1, ∀ξ ∈ S : dT ξ̃ ≥ 0

ξ̃Mξ̃ ≥ 0, ∀ξ ∈ S
(6.11)

Proof 6.2.2 We define K = {ξ ∈ R
m : dT ξ̃ ≤ 0}. Then, we recover the problem (6.6) with h = ✶K and

fj the monomials of degree 0,1 and 2. Consequently, the dual problem writes :















max z0,0 +
m
∑

i=1

Ω0,iz0,i +
∑

i≤j

Ωi,jzi,j

s.t. z0,0 +
m
∑

i=1

z0,iξi +
∑

i≤j

zi,jξ
iξj ≤ ✶K(ξ), ∀ξ ∈ S

We define M ′ ∈ S
m+1 the matrix indexed by i, j = 0, ...,m such that M ′

i,i = zi,i for i = 0, ...,m,
M ′

i,j = zi,j/2 for i, j = 1, ...,m, i 6= j and we develop the constraint depending on whether ξ ∈ K or
not :







max Ω •M ′

s.t. ξ̃M ′ξ̃ ≤ 0, ∀ξ ∈ S ∩ KC

ξ̃M ′ξ̃ ≤ 1, ∀ξ ∈ S ∩ K
By a change of variable : M = M(e0)−M ′, the problem becomes :







max 1− Ω •M
s.t. ξ̃Mξ̃ ≥ 1, ∀ξ ∈ S ∩ KC

ξ̃Mξ̃ ≥ 0, ∀ξ ∈ S ∩ K

As ξ̃Mξ̃ ≥ 1⇒ ξ̃Mξ̃ ≥ 0, we can replace ∀ξ ∈ S∩K by ∀ξ ∈ S . Furthermore, KC = {ξ ∈ R
m : dT ξ̃ > 0}

but by continuity of the polynomial ξ̃Mξ̃, the associated constraint is equivalent by considering the closure
of KC . Thus we recover the dual form of (6.11). �

Remark 6.2.3 We can express the dual of the moment problem maxP∈P(Rm) P[d
T ξ̃ ≥ 0] in the same

way. Then, we observe that d∗ ≥ 1 − ε is equivalent to maxP∈P(Rm) P[d
T ξ̃ ≥ 0] ≤ ε. This proves that

it is equivalent to consider P[dT ξ̃ ≤ 0] ≥ 1− ε or P[dT ξ̃ ≥ 0] ≤ ε whenever strong duality holds.

Then, it suffices to apply the S-lemma (Lemma 6.2.1) to the two constraints of this problem to
get a conservative approximation of the dual problem under the form of a SDP :
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





























d∗ = max 1− Ω •M
s.t. M −M(e0)−

S
∑

s=1
λ1,sW

s − τM(d) < 0

M −
S
∑

s=1
λ0,sW

s < 0

λ0 ≥ 0, λ1 ≥ 0, τ ≥ 0

This problem is equivalent to the rank 1 of semidefinite relaxations of Lasserre (6.9). To see
this, it suffices to recall that the matrix M contains the variables z and therefore bT z = 1 − Ω •M .
Furthermore the two LMI correspond to the matrices N1

0 and N2
0 respectively. λ0,s and λ1,s corresponds

to N1
s and N2

s respectively for s = 1, ..., S and τ corresponds to N1
S+1.

Finally, a sufficient condition for d∗ ≥ 1− ε to hold is that the following system be feasible :






























Ω •M ≤ ε

M −
S
∑

s=1
λ0,sW

s < 0

M −M(e0)−
S
∑

s=1
λ1,sW

s − τM(d) < 0

λ0 ≥ 0, λ1 ≥ 0, τ ≥ 0

(6.12)

The approximation of the problem (6.11) proposed by Zymler et al. in [270], which is as follows,
is equivalent to (6.12) :































Ω •M ≤ εβ

M −
S
∑

s=1
λ0,sW

s < 0

M − βM(e0)−
S
∑

s=1
λ1,sW

s −M(d) < 0

λ0 ≥ 0, λ1 ≥ 0

Proof 6.2.4 According to Fejer’s theorem, Ω ≻ 0 and M < 0 implies that Ω •M ≥ 0 and therefore
β ≥ 0. Furthermore, β = 0 implies M = 0 which is impossible since the first semidefinite constraint
can not be satisfied. Consequently, β > 0 and we obtain the problem (6.12) by substituting 1/β with τ ,
M/β with M , λ0/β with λ0 and λ1/β with λ1. �

In the case where the covariance is not known, i.e., P = {P ∈M(S) : EP(ξ) = µ}, the problem can
be approximated with the same rationale. The constraint corresponding to the second-order moments
are removed in the primal, which corresponds to variables imposed to 0 in the dual, i.e., Mi,j = 0, i, j =
1, ...,m. Then, by noting z ∈ R

m+1 the remaining variables, the problem becomes :































µ̃T z ≤ ε

M(z)−
S
∑

s=1
λ0,sW

s < 0

M(z)−M(e0)−
S
∑

s=1
λ1,sW

s − τM(d) < 0

λ0 ≥ 0, λ1 ≥ 0, τ ≥ 0

(6.13)

In summary, we derived a SDP approximation of the moment problem that lies implicitly in the
problem (6.4). The obtained SDP is similar to those obtained by Lasserre in [171] and Zymler et al. in
[270], however the underlying rationale are quite different. For our part, we place ourself in a setting
where all the functions of ξ are polynomials of degree less than 2. Thanks to this restriction, we can
apply the S-Lemma, which provides a very simple way of obtaining the SDP.
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The Lasserre’s approach is much more general since the considered polynomials can be of any
degrees. Furthermore, he obtains a hierarchy of SDP approximation whose optimal values tends to the
optimal value of the initial problem, whereas we only design the approximation corresponding to the
rank 1 of this hierarchy. One benefit of this formulation is that it allows to maximize the probability
that dT ξ̃ ≤ 0 by minimizing the value of ε. On the downside, the extension for involving a command
variable x is not compatible with the Lasserre’s formulation. Thus, we have to choose between the
maximization of the probability and the consideration of a command variable.

The rationale given in the paper of Zymler et al. [270] is different too. Indeed, the SDP is obtained
by first considering the classical CVaR approximation of the probability and using the formulation of the
CVaR as the optimal value of a minimization problem. Then, exploiting the existence of a convenient
saddle point and applying the S-Lemma, leads to the SDP at hand.

In the next paragraph, we apply this result to the particular case when m = 1 and g(x, ξ) = ξ.

6.2.2.2 Case of the individual chance-constraint P[ξ ≤ 0] ≥ 1− ε

In this paragraph, we apply the results of the previous paragraph to the case when m = 1, n = 0, T = 1
and g(x, ξ) = ξ. This leads to the study of the problem minP∈P P[ξ ≤ 0]. We study three cases
depending on whether we consider the variance Σ or not and if we consider that the support is known
or not. For these cases, we show that that the obtained approximation is exact. This is obvious when
the support is not considered since S = 0 and S ∩ K = R

m
+ has a concise quadratic representation. We

will see that this is still the case by injecting support information, even for S > 1.

Without variance and support
We start to study the case where no assumption is made about the support of ξ and the information
about the covariance is neglected. It suffices to apply the problem (6.13) which becomes :







z0 + µz ≤ ε
z0 + ξz ≥ 0, ∀ξ
z0 + ξz ≥ 1, ∀ξ ≥ 0

The optimal value of this problems equals 1.

Proof 6.2.5 z0 + ξz ≥ 0, ∀ξ ⇒ z = 0, z0 + ξz ≥ 1, ∀ξ ≥ 0 ⇒ z0 ≥ 1 so the optimal value is greater
than 1. As z0 = 1, z0 is feasible, the optimal value equals 1. �

Indeed, for any value of µ, we can build a probability distribution such that P[ξ > 0] = p, for
any value of 0 < p < 1. It suffices for instance to consider the distribution such that P[ξ = v1] = p and
P[ξ = (µ− pv1)/(1− p)] = 1− p.

With variance but without support
By contrast, considering the variance Σ leads to an interesting bound on P[ξ ≥ 0]. Indeed, deriving the
problem (6.12) leads to the following system :















Ω •M ≤ ε

M −
(

1 τ
τ 0

)

< 0

M < 0, τ ≥ 0

Minimizing ε so that the system be feasible leads to the following primal and dual SDP that
yields an upper bound of P[ξ ≥ 0] :















min Ω •M
s.t. M −

(

1 τ
τ 0

)

< 0

M < 0, τ ≥ 0

dual with















max x

s.t. Ω <

(

x y
y z

)

< 0

y ≥ 0

(6.14)
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Then, the dual optimal value is Σ
µ2+Σ if µ < 0 and 1 otherwise.

Proof 6.2.6 The constraint Ω <

(

x y
y z

)

implies that 1− x ≥ 0 so the dual optimal value is less than

1. If µ ≥ 0,

(

x y
y z

)

=

(

1 µ
µ µ2 +Σ

)

is feasible and therefore the optimal value equals 1. If µ < 0,

Ω <

(

x y
y z

)

implies that x ≤ 1− (µ−y)2

µ2+Σ−z . The right-hand side is a decreasing function of y and z, so

we take for y and z the smallest feasible value, i.e., y = 0 and z = 0, which leads to the optimal value

1− µ2

µ2+Σ = Σ
µ2+Σ . �

Remark 6.2.7 This bound is stated by the Cantelli’s inequality, a generalization of the Chebyshev’s
inequality that states that

P[X − µ ≥ λ]

{

≤ Σ
Σ+λ2 if λ > 0

≥ λ2

Σ+λ2 if λ < 0

This bound leads to the following equivalence, if µ < 0 :

P[ξ ≥ 0] ≤ ε ⇔ Σ
µ2+Σ ≤ ε

⇔ Σ ≤ ε
1−ε µ2

⇔
√
Σ ≤ −

√

ε
1−ε µ

Then it suffices to replace the single random variable ξ by x̃T ξ, with ξ ∈ R
m, x ∈ R

m−1, to
recover the SOCP formulation proposed in [68] for the chance-constraint P[x̃T ξ ≥ 0] ≤ ε, given the

mean µ′ and covariance Σ′ of ξ, namely
√
x̃TΣ′x̃+

√

ε
1−ε x̃Tµ′ ≤ 0.

Proof 6.2.8 The result follows immediately be replacing Σ by x̃TΣ′x̃, and µ by x̃Tµ′. �

In conclusion, we make the connection with the work of Bertsimas and Popescu presented in
[41]. They provide SDP formulation for bounding the probability P[ξ ∈ K] (m = 1) given the first k
moments of ξ, for different forms of set K. We recover the problem at hand in this paragraph by taking
K = R+ and k = 2.

Then, the SDP proposed in [41] is :














































min Ω •
(

z0 z1
z1 z2

)

s.t.





z0 0 ν1
0 z1 − ν2 0
ν1 0 z2



 < 0

(

z0 z1
z1 z2

)

< 0

ν1, ν2 ∈ R

By permuting the columns and rows 2 and 3 of the 3×3 matrix and taking ν1 = z1 and ν2 = z1−τ ,

it becomes





z0 z1 0
z1 z2 0
0 0 τ



. Then it suffices to define M =

(

z0 z1
z1 z2

)

to recover the problem (6.14).
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With variance and support

This paragraph focuses on the case where the variance and the support are considered. We start
by proving the following lemma :

Lemma 6.2.9 Let S = {ξ ∈ R : ξ̃W sξ̃ ≥ 0, s = 1, ..., S}. Then, S admits a concise quadratic
representation, i.e., there exists a matrix W such that S = {ξ ∈ R : ξ̃W ξ̃ ≥ 0}.

Proof 6.2.10 We define Ss = {ξ ∈ R : ξ̃W sξ̃ ≥ 0} for s = 1, ..., S. Then Ss can be either :

− the empty set (if W s ≺ 0);

− a bounded interval (if W s
2,2 ≤ 0) ;

− a half-bounded interval (in the linear case, i.e., W s
2,2 = 0) ;

− the union of two half-bounded intervals (if W s
2,2 ≥ 0) ;

− R (if W s < 0) ;

For each of this kind of set, it is easy to determine a matrix W such that the set be represented in
the form {ξ ∈ R : ξ̃W ξ̃ ≥ 0}. Furthermore, the intersection of such sets takes necessarily one of these 5
forms. To see this, it suffices to consider all the possible kinds of intersection of two of these sets, then
to proceed recursively. It follows that S admits a concise quadratic representation. �

Consequently, with m = 1, the problem boils down to a problem for which the SDP approximation
is exact. If S = {ξ ∈ R

m : ξ̃TWξ̃ ≥ 0} and S ∩ K = {ξ ∈ R
m : ξ̃TY ξ̃ ≥ 0}, then the constraint

P[ξ ≤ 0] ≤ 1− ε, ∀P ∈ P is equivalent to :














Ω •M ≤ ε
M − λW < 0
M −M(e0)− τY < 0
λ ≥ 0, τ ≥ 0

(6.15)

In particular, if S = [a, b] with a < 0 < b, then S ∩ K = [0, b] and it suffices to take W =
(

−ab (a+ b)/2
(a+ b)/2 −1

)

and Y =

(

0 b/2
(b/2 −1

)

.

In conclusion, by using the same rationale as in the previous paragraph, we show that the obtained
SDP is equivalent to the SDP proposed by Bertsimas et al. in [41] for the different form of support.

With support but without variance

In this paragraph, we consider the case where P = {P ∈M(S) : EP(ξ) = µ}.We show that in this
case, we recover the Markov’s inequality : for any variable ξ of expected value µ such that P[ξ ≥ a] = 1,
P[ξ ≥ 0] ≤ 1− µ/a. By taking the complement, it follows that P[ξ ≤ 0] ≥ µ/a.

To this end, we assume that S is bounded below, i.e., that there exists a ∈ R such that a =
min ξ : ξ ∈ S. We also assume that a < 0, µ ≤ 0 and S ∩R+ 6= ∅ otherwise the bound minP∈P P[ξ ≤ 0]
is trivial.

As explained in the previous paragraph, the S-Lemma is lossless in this case and therefore, it
is equivalent to consider directly the dual of the moment problem, as presented in (6.11). Then the
problem becomes :







max 1− z0 − µz
s.t. z0 + ξz ≥ 1, ∀ξ ∈ S ∩ R+

z0 + ξz ≥ 0, ∀ξ ∈ S

Then, the optimal value of this problem is the Markov’s bound µ/a.
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Proof 6.2.11 We consider the two cases z ≤ 0 and z ≥ 0 successively.

(1) if z ≤ 0, as S ∩ R+ 6= ∅, the second constraint implies that z0 ≥ 1. Then (z0, z) = (1, 0) is
optimal, since taking z0 > 1 or z < 0 would decrease the objective. Consequently the associated optimal
value is 0.

(2) if z ≥ 0, then the affine function z0 + ξz is an increasing function in ξ and takes its minimal
value on the left side of the considered set. Then the constraints becomes : z0 ≥ 1 and z ≤ −z0/a. The
optimal value of µ/a is then attained for z0 = 1 and z = −1/a. �

6.2.2.3 Injecting dependence to a command variable x (n ≥ 1)

We consider an additional level of complexity by assuming that the probability depends of a command
variable x through the function g : Rn×R

m → R, affine in (x, ξ) : g(x, ξ) = x̃ A ξ̃. Thus, the individual
chance-constraint is as following :

min
P∈P(S)

P[g(x, ξ) ≤ 0] ≥ 1− ε (6.16)

A first way of handling this constraint is to consider g(x, ξ) as a single random variable with

moment matrix Ω(x) =

(

1 xTAµ
xTAµ (AxxTA) • Σ

)

. However the problem involves a quadratic function

of x and is therefore difficult to handle. The only case where this is done is discussed at the end of the
paragraph 6.2.2.2 and leads to the SOCP formulation proposed in [68].

Another possibility is to consider the probability from a different perspective, as P[ξ ∈ K(x)],
with K(x) = {ξ ∈ R

m : g(x, ξ) ≤ 0}. This set takes the form of a semi-algebraic set : K(x) = {ξ ∈
R

m : ξ̃Y (x)ξ̃ ≥ 0} with Y (x) = M(ATx). Note that a more general form of Y (x) allows to consider
any function g that is quadratic, nor linear, w.r.t. ξ, provided that Y (x) is not negative definite.

Then, we obtain the following SDP approximation. The right-hand side problem is its reformu-
lation according to the formalism of Zymler et al. [270] :






























Ω •M ≤ ε

M −
S
∑

s=1
λ0,sW

s < 0

M −
S
∑

s=1
λ1,sW

s −M(e0)− τY (x) < 0

λ0 ≥ 0, λ1 ≥ 0, τ ≥ 0

or































Ω •M ≤ εβ

M −
S
∑

s=1
λ0,sW

s < 0

M −
S
∑

s=1
λ1,sW

s − βM(e0)− Y (x) < 0

λ0 ≥ 0, λ1 ≥ 0

(6.17)

The Zymler’s formulation offers the major advantage of not multiplying the matrix Y (x) by
a variable τ , which makes it tractable, contrarily to the Lasserre’s formulation. On the other hand,
the Lasserre’s formulation can be applied to the minimization of a probability and is therefore more
desirable when there is no command variable x.

We observe that this system is not feasible for ε < 1 unless Y (x) • Ω ≤ 0, which is equivalent to
require that EP(g(x, ξ) ≤ 0). Indeed, by Fejer’s theorem :

Ω ≻ 0

M −
S
∑

s=1
λ1,sW

s −M(e0)− τY (x) < 0







⇒ Ω •M − 1 ≥
S
∑

s=1

λ1,sΩ •W s + τΩ • Y (x) ≥ 0

From a probabilistic point of view, this means that if the constraint is not satisfied on average,
then there exists a probability distribution such that P[g(x, ξ) ≤ 0] = 0.

In what follows, we discuss the exactness of the obtained SDP approximation (6.17). We recall
that this approximation is based on two transformations : the switch to the dual moment problem and
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the S-Lemma. The resulting condition is always sufficient and let us discuss successively the case when
it is also necessary, or in other words, when it is lossless.

Regarding the duality switch, its lossless is equivalent to strong duality, for which Theorem
3.4.4 provides sufficient conditions. However, checking whether the conditions (ii) and (iii) holds is a
challenging task, even in the quadratic case, and we only assume here that strong duality holds. Let
us just mention that in the case where S = R

m, the primal feasibility is equivalent to Ω < 0 (see for
instance [41]) and Ω lies in the interior of the moment space if and only if Ω ≻ 0.

Regarding the S-Lemma, it is lossless if both S and S∩cl(KC) admits a so-called concise quadratic
representation, i.e., S = {ξ ∈ R

m : ξ̃W ξ̃ ≥ 0} and S ∩ cl(KC) = {ξ ∈ R
m : ξ̃Y ξ̃ ≥ 0}. Regarding the

support, this is equivalent to require that S ≤ 1.

Remark 6.2.12 In this case, by applying the S-Lemma, ξ ∈ S∩cl(KC)⇒ ξ ∈ S implies that W−νY <

0 for some real ν ≥ 0.

Another case for which the S-Lemma is lossless is the linear case, for which the S-Lemma boils
down to the Farkas Lemma :

Lemma 6.2.13 Let p, qs, s = 1, ..., S be m+ 1-dimensional symmetric vectors. Then

p−
S
∑

s=1
λsqs ≥ 0

λ ≥ 0







⇔ pT ξ̃ ≥ 0, ∀ξ ∈ {ξ ∈ R
m : qTs ξ̃ ≥ 0, s = 1, ..., S}

Consequently, if S is a polyhedron, as K is also defined linearly since g(x, ξ) is affine in ξ, the
S-Lemma is lossless as soon as there exists a vector v such that M = M(v) is solution of the system
(6.17).

We deduce from this that if S is a polytope and for ε = 1, the SDP approximation is equivalent
to the deterministic constraint obtained by replacing ξ by its mean µ : x̃TAµ̃ ≤ 0.

Proof 6.2.14 We define Fm = {x ∈ R
n : x̃TAµ̃ ≤ 0} and Fε the subset of Rn for which the Zymler’s

formulation of the system 6.17 is feasible. Then we show that Fm = F1.

(1) We prove that for any ε ∈ [0, 1], Fε ⊂ Fm. This is straightforward by applying Fejer’s theorem

to Ω < 0 and M−βM(e0)−
∑S

s=1 λ1,sW
s−Y (x) < 0. Hence, Ω•M−∑S

s=1 λ1,sΩ•W s−β−Ω•Y (x) ≥ 0.

As Ω •M ≤ εβ and Ω • Y (x) = x̃TAµ̃, it comes that x̃TAµ̃ ≤ −[(1− ε)β +
∑S

s=1 λ1,sΩ •W s]. Then the
result can be deduce from β ≥ 0 and Ω •W s ≥ 0, s = 1, ..., S.

(2) We prove that Fm ⊂ F1. Let us consider x0 ∈ Fm. As S is compact, the function ξ̃TY (x0)ξ̃
necessarily admits a minimum value γ over S. Then, we define M = Y (x0) − γM(e0), which implies
that ξ̃TMξ̃ ≥ 0, ∀ξ ∈ S. Thus, we are in position to apply the "linear" form of the S-Lemma and it
follows that there exists λ0,s ≥ 0 such that M −∑S

s=1 λ0,sW
s < 0.

Then, if ε = 1, M is feasible for β = −γ. Indeed,























Ω •M − β = Y (x0) •M = x̃TAµ̃ ≤ 0 since x ∈ Fm

M −
S
∑

s=1
λ0,sW

s < 0 by definition of M

M −
S
∑

s=1
λ1,sW

s − βM(e0)− Y (x) = 0 with λ1,s = 0, s = 1, ..., S

This proves that x0 ∈ F1. �
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Finally, we show that this result can be applied to the case where S is a box, even when it is
represented through quadratic constraints. Let us recall that there are two possible representations for
a box S = {ξ ∈ R

m : ai ≤ ξi ≤ bi} : the linear one {ξ ∈ R
m : ξ̃TZiξ̃ ≥ 0, i = 1, ..., 2m} and the

quadratic one {ξ ∈ R
m : ξ̃TW iξ̃ ≥ 0, i = 1, ...,m} with

Z2i−1 =

(

−a 1/2
1/2 0

)

Z2i =

(

b −1/2
−1/2 0

)

W i =

(

−aibi (ai + bi)/2
(ai + bi)/2 −1

)

, i = 1, ..,m

The above result can be applied by using the linear representation since a box is then a particular
polytope. The result still holds by using the quadratic representation of S. Indeed, the S-Lemma is
lossless for one of these representations if and only if it is lossless for the other one. This can be
easily seen from the fact that there exists πi ≥ 0, i = 1, ..., 2m such that Z2i−1 − π2i−1W

i < 0
and Z2i − π2iW

i < 0 for i = 1, ...,m as a direct application of the S-lemma. Conversely, there exists
ρi ≥ 0, i = 1, ...,m such that W i−ρi(Z2i−1+Z2i) < 0 by taking ρi = (bi−ai)/2. Then Q−∑2m

i=1 λiZ
i <

0⇒ Q−∑m
i=1(λ2i−1π2i−1+λ2iπ2i)W

i < 0 and Q−∑m
i=1 λiW

i < 0⇒ Q−∑m
i=1 λiρi(Z

2i−1+Z2i) < 0.

This indicates that the quadratic representation is preferable since it gives rise to an equivalent
SDP approximation of smaller size.

In summary, we proved that in the case where S is a box, even quadratically represented, and
g(x, ξ) is affine in ξ then the SDP approximation proposed both by Lasserre [171] and Zymler [270] to
handle the distributionnally robust version of the individual chance-constraint (6.16) is exact.

6.2.2.4 Handling a joint chance-constraint

The previous problem can be extended naturally to the case of joint chance-constraints, by defining
K(x) through several constraints : K(x) = {ξ ∈ Rm : ξ̃ Y t(x) ξ̃ ≤ 0, t = 1, ..., T}. We define the sets
Kt(x) = {ξ ∈ Rm : ξ̃ Y t(x) ξ̃ ≥ 0} for t = 1, ..., T , hence the closure of K(x) is

⋃T
t=1Kt(x) and the dual

problem becomes :










Ω •M ≤ ε

ξ̃Mξ̃ ≥ 0, ∀ξ ∈ S
ξ̃Mξ̃ ≥ 1, ∀ξ ∈ S ∩ Kt(x), t = 1, ..., T

The following semidefinite program is therefore a conservative approximation of this constraint :






























Ω •M ≤ ε

M −
S
∑

s=1
λ0,sW

s < 0

M −M(e0)−
S
∑

s=1
λt,sW

s + τtY
t(x) < 0, t = 1, ..., T

λ ≥ 0, τ ≥ 0

(6.18)

The difficulty here is that we can not get rid of the non-linearity with the same trick as used
above, since this trick work for only one non-linearity, or more precisely if there is only one variable τ to
"hide". Generally, τt 6= τt′ so this is impossible. But there exists a scaling α ∈ R

T
++ of the constraints

that induces the situation where τ1 = ... = τT is feasible. This means that we are now interested in the
following chance-constraint, which is equivalent to the original one : minP∈P(S) P[αjgj(x, ξ) ≤ 0, j =
1, ..., T ] ≥ 1− ε}.

For instance, if τ is feasible, the scaling αj = 1/τj works. In this case, the problem is equivalent
to :
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





























Ω •M ≤ εβ

M −
S
∑

s=1
λ0,sW

s < 0

M −
S
∑

s=1
λt,sW

s − βM(e0)− αtY
t(x) < 0, t = 1, ..., T

λ ≥ 0

(6.19)

This is the result of Zymler, saying that, for s = 0, there exists a scaling α for which this
semidefinite system is equivalent to the original chance-constraint. Otherwise, for an arbitrary of α,
this reformulation is equivalent to impose τ1 = ... = τT = 1/β and is the obtained problem is therefore
a conservative approximation of the original chance-constraint.

Note that we recover the problem studied in [257] : minP[ξ ∈ K] with K = {ξ ∈ R
m : ξ̃TY tξ̃ <

0, t = 1, ..., S}. This is actually a particular case of joint chance-constraint without support information
and without command variables. The obtained SDP approximation, which was proved exact in [257],
is as follows :











p∗ = max Ω •M
s.t. M −M(e0) + τtY

t < 0, t = 1, ..., T

M < 0, τ ≥ 0

Finally, we investigate the SDP approximation obtained by converting the joint chance-constraint
into several individual chance-constraint by means of the Boole’s inequality. Instead of requiring that
the joint probability be greater than 1 − ε, we impose that the sum of the individual probability be
greater than 1− ε and the corresponding semidefinite program is as follows :







































T
∑

t=1
Ω •Mt ≤ ε

Mt −
S
∑

s=1
λ0,sW

s < 0, t = 1, ..., T

Mt −M(e0)−
S
∑

s=1
λt,sW

s + τtY
t(x) < 0, t = 1, ..., T

λ ≥ 0, τ ≥ 0

In order to "hide" the variables τt, we impose the probability level for each constraint, generally
ε/T . Then, the problem becomes :































Ω •Mt ≤ ε
T βt, t = 1, ..., T

Mt −
S
∑

s=1
λ0,sW

s < 0, t = 1, ..., T

Mt − βtM(e0)−
S
∑

s=1
λt,sW

s − Y t(x) < 0, t = 1, ..., T

λ ≥ 0

(6.20)

The advantages of this approximation are twofold : first, there is no loss due to the necessity
of having τ1 = ... = τT . Second, if the constraint t involves only mt ≥ m components of ξ, then the
matrix Mt can be of size (mt+1)(mt+2)/2 instead of (m+1)(m+2)/2, which can lead to a significant
reduction of the problem size. This implies to define the appropriate matrices W s,t for defining the
projection of the support on the concerned set of variables, as well as the corresponding matrix Ωt. The
major drawback of this process is that it comes to neglect the correlation existing between the variables
that are not involved in a same constraint.
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6.2.3 Numerical studies

In this section, we consider the uncertain optimization problem minx∈F cTx : ξ̃Atx̃ ≤ 0, t = 1, ..., T
where x is the command vector and ξ a random vector of probability distribution P, expected value
µ and covariance Σ. We experiment the following approaches to deal with the problem the that goes
hand in hand with a level of knowledge :

1. the mean optimization, which exploits only the mean of ξ;

2. the worst-case optimization, which exploits only the support of ξ;

3. the robust approach, which exploits the mean and the support of ξ;

4. the distributionnally robust approach or DR approach, which exploits the mean, the support and
the covariance of ξ;

5. the stochastic approach where the probability distribution of ξ is available.

The first two approaches are deterministic approximations of the problem that gives rise to
linear programs. They are detailed in the paragraph 6.2.3.1. The last three approaches consider that
the constraints must be satisfied up to a given level of probability. Approaches 3 and 5 are described in
Paragraph 6.2.3.2 and 6.2.3.6 respectively, whereas the fourth approach constitutes the main subject of
this paper and is discussed in Section 6.2.2.

All our numerical experiments were performed on a 2.5 GHz Intel x86 with 16 GB memory. The
solvers used are CSDP 6.1.0 for SDP, SeDuMi 1.3 for SOCP and CPLEX 12.1 for LP.

6.2.3.1 Mean and worst-case approaches

The mean optimization consists of solving the uncertain optimization problem by replacing the uncertain
parameter ξ by its expected value µ, which gives rise to the following Linear Program min cTxx∈F :
µ̃TAtξ̃ ≥ 0, t = 1, ..., T .

The worst-case optimization follows the same principle except that the worst-case value of ξ is
used instead of its expected value. This value is generally difficult to determine but in the particular
problem that we consider (the supply/demand equilibrium problem), it is a trivial task.

6.2.3.2 Robust approach

In this paper, we compare the distributionnally robust approach with the method proposed in [68, 269]
to handle a chance-constraint for which only the support and the expected value of the uncertain data
are known. In a slight abuse of language, we call robust such an approach, even if this term refers
generally to the case where only the support is available.

In this section, we provide a short description of this approach. We saw in paragraph 6.2.1.1
that the Boole’s inequality can be used to safely approximate a joint chance-constraint into a set of
individual chance-constraints. This approximation can be combined to the Hoeffding’s inequality to
provide a conservative approximation of the indivdual chance-constraints, as soon as the following
hypothesis are satisfied :

− the support of ξ is a closed box : S = {ξ ∈ R
m : ai ≤ ξi ≤ bi} ;

− the component of the function g are affine w.r.t x and ξ : gt(x, ξ) = x̃Atξ̃ ;

− the components of ξ involved in a same sub-constraint are independent one to another;

− the expected value of ξ, denoted µ, is known.
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In contrast to the distributionnally robust approach, the knowledge of the covariance of ξ is not
required.

By applying the Boole’s inequality, we obtain the following individual chance-constraints :

P[x̃TAtξ̃ ≥ 0] ≤ ε/T, t = 1, ..., T

In the sequel, we consider any one of these constraints and drop the superscript t for sake of
clarity. Based on the principle described in [68] and applied in [269], the Hoeffding’s inequality is used
to derive a conservative approximation of this constraint in the form of a second-order conic constraint.
The Hoeffding’s theorem is as follows :

Theorem 6.2.15 Let consider a sequence of m independent real random variables Xi supported on the
intervals [Xi, Xi] and let S =

∑m
i=1 Xi. Then for any real τ ≥ 0,

P[S ≥ E(S) + τ ] ≤ exp(
−2τ2

∥

∥X −X
∥

∥

2 )

As a consequence, P[S ≤ E(S)+τ ] ≥ 1−exp(−2τ2/
∥

∥X −X
∥

∥

2
) and therefore exp(−2τ2/

∥

∥X −X
∥

∥

2
) ≤

ε/T is a conservative approximation of P[S ≤ E(S) + τ ] ≥ 1− ε/T .

exp(−2τ2/
∥

∥X −X
∥

∥

2
) ≤ ε/T ⇔ −2τ2 ≤ ln(ε/T )

∥

∥X −X
∥

∥

2

⇔
∥

∥X −X
∥

∥

2 ≤ δ2τ2 with δ =
√

−1/2 ln(ε/T )
⇔
∥

∥X −X
∥

∥ ≤ δτ since τ ≥ 0

It is possible to apply this approximation to x̃TAξ̃ ≤ 0 since the variables ξ̃i used within a same
subconstraint are supposed to be independent of one another. To this end, we isolate the term that
does not depend on ξ : x̃TAξ̃ = S + h(x) with h(x) = AT

0 x̃ and S = x̃TA1ξ, with A =
(

A0 A1

)

,
A0 ∈ R

n+1,1 and A1 ∈ R
n+1,m. Then,

x̃TAξ̃ ≤ 0 ⇔ S ≤ −h(x)
⇔ S ≤ τ + E(S) with τ = −E(S)− h(x) = −(x̃TA1µ+AT

0 x̃) = −x̃TAµ̃

This choice implicitly implies that the constraint x̃TAµ̃ ≤ 0 holds. Otherwise, the only possible
lower bound of P[x̃TAµ̃ ≤ 0] would be zero since P[x̃TAξ̃ ≤ 0] = 0 by taking for P the Dirac distribution
of value µ.

Then, it suffices to express
∥

∥X −X
∥

∥ as a function of x. With [ai, bi] the support of ξi,
∥

∥X −X
∥

∥ =
∥

∥x̃TA1(b− a)
∥

∥ and the obtained second-order constraint is therefore :
∥

∥x̃TA1(b− a)
∥

∥ ≤ −δ x̃TAµ̃

Thus, we obtain a conservative approximation of the problem in the form of a SOCP. In the rest
of the paper, this approach is referred to as the robust approach.

6.2.3.3 Comparison of the bounds obtained without command variables

In this paragraph, we put aside the dependence to the command variable x by considering the case
where n = 0. Then, by denoting by dt the first row of the matrix At, we are interested in the following
moment problem :







min P[dTt ξ̃ ≤ 0, t = 1, ..., T ]
s.t. ΩP(ξ) = Ω

P ∈M(S)
where S = {ξ ∈ R

m : ai ≤ ξi ≤ bi, i = 1, ...,m}.
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With m = 1 and T = 1
We start by studying the most simple class of instances of this problem, i.e., m = 1 and T = 1.
For sake of simplicity and without loss of generality, we pick d =

(

0 1
)T

. Thus, the probability at
hand is P[ξ ≤ 0] and we aim at determining a lower bound of minP∈P P[ξ ≤ 0], i.e., B such that
B ≤ minP∈P P[ξ ≤ 0], or equivalently, B ≤ P[ξ ≤ 0], ∀P ∈ P. Thus, we aim at obtaining the largest
bound possible.

We pick a = −1 everywhere. The other coefficients b, µ and Σ vary as indicated in Table 6.5.
We restrict ourselves to the following values so the instance be feasible :

− µ ∈ [a, b] since the expected value necessarily lies in the support ;

− µ ≤ 0 since EP(g(x, ξ)) ≤ 0 is required ;

− Σ ∈ [0,Σmax] with Σmax = −(µ− a)(µ− b) so that W s • Ω ≥ 0.

Regarding the covariance Σ, five possible values are computed, corresponding to 20%, 40%, 60%
and 80% of Σmax. For each data set, we report 7 values :

− in the column labelled Robust, the bound 1 − exp(−2µ2)(‖b− a‖2), following the the robust
approach described in paragraph 6.2.3.2;

− in the column labelled Markov, the bound computed via the Markov’s inequality (µ/a), that
corresponds to the DR approach without considering the variance (see Paragraph 6.2.2.2), in
order to make the comparison with the robust approach that neither consider the variance ;

− in the columns labelled Dist. Robust, the bound computed via the DR approach with consid-
eration of the variance. Each of these five columns corresponds to a different value of Σ : the
label p% means that Σ = p%Σmax.

Without Σ Dist. Robust with Σ
µ b Robust Markov 20% 40% 60% 80%

-0.9 0.50 0.513 0.9 0.967 0.935 0.906 0.915
-0.9 1.00 0.333 0.9 0.955 0.914 0.912 0.931
-0.9 1.50 0.228 0.9 0.944 0.902 0.922 0.941
-0.9 2.00 0.165 0.9 0.933 0.909 0.928 0.947
-0.7 0.50 0.353 0.7 0.872 0.773 0.704 0.752
-0.7 1.00 0.217 0.7 0.828 0.706 0.748 0.799
-0.7 1.50 0.145 0.7 0.788 0.722 0.774 0.827
-0.7 2.00 0.103 0.7 0.752 0.738 0.792 0.846
-0.5 0.50 0.199 0.5 0.714 0.556 0.533 0.600
-0.5 1.00 0.118 0.5 0.625 0.525 0.600 0.675
-0.5 1.50 0.077 0.5 0.556 0.560 0.640 0.720
-0.5 2.00 0.054 0.5 0.500 0.583 0.667 0.750
-0.3 0.50 0.077 0.3 0.446 0.309 0.384 0.459
-0.3 1.00 0.044 0.3 0.331 0.377 0.468 0.559
-0.3 1.50 0.028 0.3 0.317 0.418 0.518 0.619
-0.3 2.00 0.020 0.3 0.337 0.445 0.552 0.659
-0.1 0.50 0.009 0.1 0.112 0.184 0.256 0.328
-0.1 1.00 0.005 0.1 0.154 0.253 0.352 0.451
-0.1 1.50 0.003 0.1 0.179 0.294 0.410 0.525
-0.1 2.00 0.002 0.1 0.196 0.322 0.448 0.574

Table 6.5: Different lower bounds of minP∈P P[ξ ≤ 0]

The Figure 6.1 presents the robust and Markov bounds as well as the best (Min var) and worst
(Max var) bounds obtained by considering different values of covariance.

These curves suggest several remarks. First, the robust bound is very conservative and depends
to a large extent of the value of b. Not surprinsingly, the smallest b is, the better it is. Even for the
smallest possible value of b, i.e., b = 0, the Markov’s bound is better. Indeed, by noting x = µ/a, the
difference between these bounds is x− (1−exp(−2x2)), which is nonnegative for x ∈ [0, 1] as illustrated
on Figure 6.2.
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Figure 6.1: Comparison of different lower bounds of minP∈P P[ξ ≤ 0]

Figure 6.2: Variation of the robust and Markov bounds w.r.t. x = µ/a for b = 0

Finally and not surprisingly, the knowledge of the covariance considerably improves the DR
bound, and not knowing the covariance is equivalent to the worst-case of all the possible covariance.

With m ≥ 1 and T = 1
We are interested in the study of the probability P[eT ξ ≤ 0] with m ≥ 1. The value of ai, bi and µi are
drawn uniformly at random, in such a way that µi ∈ [ai, bi], 0 ∈ [eTa, eT b] and eTµ ≤ 0. For each value
of m, 100 instances are generated and we provide in the Table 6.6 the mean of the different bounds,
i.e. :

− The robust bound, equal to 1− exp(−2(eTµ)2/ ‖b− a‖2) in column 2;

− The Markov bound, equal to eTµ/eTa in column 3, obtained by considering eT ξ as one random
variable of expected value eTµ and minimal value eTa ;

− The DR bound obtained without considering covariance in column 4;

− The DR bound obtained by considering different values of covariance, in the columns labelled
by "With Σ".

By coherence with the robust approach, we assume that the variable ξ are independent, and
therefore the covariance matrix Σ is diagonal. As previously, the diagonal values are chosen to be

180



Figure 6.3: Comparison of the obtained lower bounds of minP∈P P[eT ξ ≤ 0] for m ≥ 1

10%, 30%, 50%, 70% and 90% of Σmax
i = −(µi − ai)(µi − bi). Thus, the label "p%" means that the

covariance is taken as Σ = p%Σmax.

Without Σ Dist. Robust with Σ
m Markov Hoeffding Dist. Robust 20% 40% 60% 80%
1 0.481 0.197 0.481 0.618 0.555 0.569 0.616
2 0.336 0.157 0.311 0.571 0.464 0.434 0.451
5 0.189 0.121 0.109 0.468 0.358 0.299 0.268
10 0.138 0.117 0.053 0.470 0.352 0.287 0.246
20 0.105 0.138 0.031 0.492 0.373 0.307 0.264
50 0.055 0.097 0.008 0.409 0.301 0.244 0.206

Table 6.6: Different lower bounds of minP∈P P[eT ξ ≤ 0]

The Figure 6.3 represents the three obtained bounds (Robust, Markov and DR) obtained without
covariance, as well as the best (Min cov) and worst (Max cov) DR bounds obtained with the covariance.

Clearly, exploiting the covariance within the DR approach yields the best bounds. Without con-
sidering the covariance, the Hoeffding’s bound becomes the best one as the number of involved random
variables increases. This comes from the fact that Hoeffding’s inequality relies on the assumption that
the variables are independent, which is not the case for the two other bounds. Markov’s bound and DR
bounds are often similar, but the DR is always better, since it exploits all the available information,
whereas Markov exploits only eTµ and eTa.

Remark 6.2.16 The Markov’s bound may appear as very efficient and easy to compute but the difficulty
arises when trying to optimise this bound, since the function is not convex whenever a depends linearly
of a command variable x.

With m > 1 and T > 1
Finally, we compare the bounds for a joint chance-constraint with T = 2 to 10. Here again, the values
of ai, bi and µi are drawn randomly for m = 20. We also draw the vectors dt and bound the probability
P[dTt ξ̃ ≤ 0, t = 1, ..., T ] on 100 instances for each size of problems.

To compute the Hoeffding’s bound, we sum the bounds obtained for each individual chance-
constraint, according to Boole’s inequality :

P[dTt ξ̃ ≤ 0, t = 1, ..., T ] ≥
T
∑

t=1

P[dTt ξ̃ ≤ 0] + 1− T ≥ 1−
T
∑

t=1

exp

(

−2(dTt µ)2
∥

∥dTt (b− a)
∥

∥

2

)

We report the results in the Table 6.7 and Figure 6.4 in the same way than in the Table 6.5 and
Figure 6.1. On Figure 6.4, the Hoeffding’s bound does not appear since it is negative. This illustrates
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Figure 6.4: Comparison of the obtained lower bounds of minP∈P P[dTt ξ̃ ≤ 0, t = 1, ..., T ] for different
values of T

the fact that using the Boole’s inequality highly reduces the tightness of the Hoeffding’s bound. Finally,
in this context, the DR bound with covariance is the only method that yields workable outcomes.

Without Σ Dist. Robust with Σ
T Robust Dist. Robust 20% 40% 60% 80%
2 -0.616 0.006 0.381 0.259 0.194 0.153
3 -1.392 0.001 0.315 0.188 0.125 0.089
4 -2.135 0.000 0.241 0.126 0.074 0.047
5 -2.886 0.001 0.211 0.112 0.070 0.048
6 -3.737 0.001 0.131 0.053 0.028 0.018
7 -4.446 0.000 0.136 0.055 0.026 0.013
8 -5.058 0.000 0.130 0.051 0.024 0.013
9 -5.927 0.000 0.097 0.029 0.012 0.006
10 -6.987 0.000 0.064 0.015 0.005 0.002

Table 6.7: Different lower bounds of minP∈P P[dTt ξ̃ ≤ 0, t = 1, ..., T ]

6.2.3.4 The problem of supply/demand equilibrium under uncertainty

The problem addressed hereafter is taken from electrical industry and is a sub-problem of the Unit
Commitment Problem (UCP) which aim at minimizing a global production cost while satisfying offer-
demand equilibrium and operational constraints of a mix of power generation units (hydraulic valleys,
nuclear plants and classical thermal units - coal, fuel and gas-) on a discrete time horizon.

More specifically, we consider a time horizon of T time steps and a system of N production
units, characterized by a deterministic time-dependent production cost ct,i for the plant i at time step
t. The essence of the problem is to determine the production of the plants i at each time step t :
xt,i ∈ [0, 1], in order to meet the uncertain demand D0,t at each time step. The power plants are
subject to random failure and their availability Di,t is therefore uncertain. This random vector results
from the combination of many complex phenomena, such as climate conditions, consumer behaviour or
unit failures and its distribution is therefore very difficult to determine precisely. However it is possible
to estimate its expected values, covariance matrix and support S, which is assumed to be a closed box,
from historical data.

Some technical constraints state that the prescribed production of a plant i over the time-horizon
shall not exceed a given amount ri. More precisely, these constraints stand for the necessity of shutting
down the plants to proceed to maintenance operations, and is therefore independent of the uncertain

182



availability of the plants. These requirements are summarized in the following formulation :






























min cTx

s.t. P

[

D0,t −
N
∑

i=1

Di,txt,i ≤ 0, t = 1, ..., T

]

≥ 1− ε

T
∑

t=1
xt,i ≤ ri, i = 1, ..., N

xt,i ∈ [0, 1], i = 1, ..., N, t = 1, ..., T

This problem falls within the considered scope (6.3) with m = T (N + 1), n = TN and F =

{x ∈ [0, 1]n :
T
∑

t=1
xt,i ≤ ri, i = 1, ..., N}, since the functions involved in the probability are affine.

The random vector ξ contains Di,t, for i = 0, ..., N and t = 1, ..., T . Each component of g represent
the supply/demand equilibrium at one time step and therefore the assumption that the components of
ξ involved in a same sub-constraint are independent one to another corresponds to the independence
of Di,t and Dj,t for any i 6= j. However, there may be some correlation between the components
involved in different sub-constraints. From a modelling point of view, this is justified by the fact that
the availability of the power plants is independent of the demand and from the availability of the other
means of production, but there is a strong correlation between these values over time.

In the above numerical experiments, the considered park is composed of N = 18 power plants.
The support, mean and covariance of the random variables δt and Di,t are deduced from a set of 100
historical observations.

6.2.3.5 Numerical results for the problem of supply/demand equilibrium

Applying the distributionnally robust approach to the supply/demand equilibrium problem leads to the
results reported in Table 6.2.3.5. More precisely, for a varying number of time steps T , we compare :

− p∗m, the optimal value of the LP obtained by the mean approach (see Paragraph 6.2.3.1) ;

− p∗dr, the optimal value of the SDP obtained using the distributionnally robust paradigm (see
Paragraph 6.2.2.4);

− p∗dri, the optimal value of the SDP obtained using the distributionnally robust paradigm with
converting the joint-chance into T individual chance-constraint (see Paragraph 6.2.2.4) ;

− p∗r , the optimal value of the SOCP obtained using applying the Hoeffding’s inequality (see
Paragraph 6.2.3.2);

− p∗w, the optimal value of the LP obtained by the worst-case approach (see Paragraph 6.2.3.1).

Finally, p∗dr, p
∗
dri and p∗r are computed for three different values of ε : 0.8, 0.5 and 0.1.

We observe that the computation failures are always due to a non convergence of the solver.
Clearly, the occurrence of this phenomenon is related to the size of the problems. The latter are
reported in Table 6.2.3.5 in terms of number of variables (# var) and constraints (# cst). This table
also shows the computation time in seconds in the columns labeled time. When the problem was solved
for several values of ε, the reported value corresponds to the largest computation time.

The columns SOCP, SDP and SDP-indiv corresponds the computation of p∗r , p
∗
dr and p∗dri respec-

tively. The columns LP corresponds to both the computation of p∗m and p∗w. Indeed the corresponding
LP have the same size and the running time reported here corresponds to the largest of the two running
time, even if in practice these two values are very close.

Figure 6.5 shows the variation of the ratios p∗w/p
∗ for p∗ = p∗m (mean), p∗ = p∗dr (Dist. Robust),

p∗ = p∗dri (Dist. Robust Indiv. ) and p∗ = p∗r (Robust) w.r.t T for ε = 0.8.

The immediate conclusion that can be drawn from these results is that for the particular prob-
lem of offer/demand equilibrium, there is few loss in splitting the joint chance-constraint into several
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T p∗m ε = 0.8 ε = 0.5 ε = 0.1 p∗w
p∗
dr

p∗
dri

p∗r p∗
dr

p∗
dri

p∗r p∗
dr

p∗
dri

p∗r
1 241.9 251.8 251.8 274.4 261.3 261.3 297.2 293.4 293.4 338.9 296.1
2 471.6 514.6 519.3 609.2 536.7 538.6 639.8 590.6 590.6 715.1 594.7
3 716.2 809.3 815.2 967.5 846.5 848.6 1007.7 † 897.3 1113.9 902.2
4 948.3 1104.7 1111.4 1335.4 1160.3 1162.7 1387.2 † 1195.6 1529.1 1200.9
5 1174.1 1403.3 1715.3 1702.4 † 1762.4 1765.2 † † 1940.8 1498.3
6 1397.6 1707.0 2016.7 2057.0 † 2040.6 2128.7 † † 2332.4 1780.1
7 1617.2 2011.2 2314.6 2420.5 † 2325.5 2501.7 † † 2734.6 2059.7
8 1835.4 † 2589.8 2796.9 † 2158.8 2888.5 † † 3153.7 2347.2
9 2055.5 † 2873.2 3154.8 † † 3254.6 † † 3545.2 2618.1
10 2279.9 † 3138.7 3539.0 † † 3649.0 † † 3971.0 2900.8

† : the computation failed

Table 6.8: Solving the distributionnally robust supply/demand equilibrium

T LP SOCP SDP SDP-indiv
# var # cst time # var # cst time # var # cst time # var # cst time

1 18 37 0.001 74 38 0.30 267 115 0.58 267 115 0.58
2 36 92 0.001 204 114 0.44 931 322 14.11 534 248 2.78
3 54 129 0.001 354 228 0.36 1994 587 98.63 801 363 8.73
4 72 166 0.001 542 380 0.27 3456 928 550.63 1068 478 17.42
5 90 203 0.001 768 570 0.48 5317 1345 1713.18 1335 593 297.763
6 108 240 0.001 1032 798 0.31 7577 1838 4179 1602 708 49.89
7 126 277 0.002 1334 1064 0.42 10236 2407 16312 1869 823 79.25
8 144 314 0.002 1674 1368 0.51 13294 3052 † 2136 938 107.6
9 162 351 0.001 2052 1710 0.62 16751 3773 † 2403 1053 174.13
10 180 388 0.002 2468 2090 1.72 20607 4570 † 2670 1168 221.14

† : the computation failed

Table 6.9: Size of the obtained problem and computational time

Figure 6.5: Comparison of the ratio p∗w/p
∗ for ε = 0.8
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Figure 6.6: Variation of p∗ w.r.t. ε for T = 2

individual ones. Consequently, the relatively poor performance of the robust approach is not due to this
approximation, but to the Hoeffding’s inequality, which is overly conservative and that do not involve
the covariance of the random variables. This illustrates the importance of considering at least E(ξ2i ) for
obtaining a reasonably conservative approximation.

Figure 6.6 illustrates the variation of p∗dr (Dist. Robust) , p∗dri (Dist. Robust Indiv. ) and p∗r
(Robust) w.r.t ε for T = 2.

Clearly, the robust bound is very bad, and becomes as worst as ε decreases. One possible
explanation is that the robust bound, based on Hoeffding’s inequality, does not exploit the knowledge
of the interval [ai, bi], but only the value of bi−ai, which means that it considers all the random variable
with support [µi − λ(bi − ai), µi + (1− λ)(bi − ai)] for all λ ∈ [0, 1]. In our data set, the mean is rather
at the center of the interval (λ = 0.42 on average on the 10 time step) and this may explain why the
Hoeffding’s approach yields such poor results, even worse than the "worst-case" optimization.

6.2.3.6 Comparison with a stochastic approach

This section provides a comparison of the distributionnally robust approach with a stochastic approach.
In both case, we neglect the dependency between the different terms of the joint chance-constraint, which
comes to consider that all the random variables are independent from each other. By coherence, we use
the same assumption in the distributionnally robust approach, which allows to split the joint chance
constraint into several individual ones, as described in Paragraph 6.2.2.4.

Regarding the stochastic approach, with idea of the central limit theorem, we approximate the
random variable gt(x, ξ) = x̃Atξ̃ by a normally distributed variable. The mean and variance of this
variable can be computed as a function of x :

mt(x) = x̃Atµ̃ vt(x) =
m
∑

i=1

(x̃TAt
∗,i)

2Σi,i

By assuming that the rows are independent, we have the equivalent deterministic formulation:

P [gt(x, ξ) ≤ 0, t = 1, ..., T ] ≥ 1− ε ⇔ P [gt(x, ξ) ≤ 0] ≥ (1− ε)yt ,

T
∑

t=1

yt = 1; yt ≥ 0

Then, for ε ≤ 0.5, by using F the cumulative function of the Gaussian distribution, and F−1 its
inverse, we have : P [gt(x, ξ) ≤ 0] = F (mt(x)/

√

vt(x)) and therefore :

P [gt(x, ξ) ≤ 0] ≥ (1− ε)yt ⇔ mt(x) ≥ F−1((1− ε)yt)
√

vt(x)
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T ε = 0.5 ε = 0.4 ε = 0.3 ε = 0.2 ε = 0.1
p∗

s p∗

dri loss p∗

s p∗

dri loss p∗

s p∗

dri loss p∗

s p∗

dri loss p∗

s p∗

dri loss

1 263 261 -0.6% 267 266 -0.5% 272 271 -0.2% 278 279 0.7% 285 293 2.8%

2 513 539 5.0% 521 549 5.3% 531 563 6.0% 542 582 7.3% 559 591 5.7%

3 782 849 8.5% 795 867 9.1% 809 887 9.6% 826 895 8.3% 852 897 5.4%

4 1040 1163 11.8% 1057 1183 11.9% 1076 1191 10.7% 1100 1193 8.4% 1134 1196 5.4%

5 1291 1474 14.2% 1311 1484 13.2% 1336 1484 11.1% 1366 1489 9.0% 1410 1487 5.5%

6 1538 1762 14.6% 1563 - - 1593 - - 1629 - - 1682 - -

7 1780 2041 14.6% 1810 - - 1846 - - 1889 - - 1951 - -

8 2021 2326 15.1% 2057 - - 2099 - - 2150 - - 2221 - -

9 2264 - - 2306 - - 2354 - - 2413 - - 2495 - -

10 2513 - - 2560 - - 2615 - - 2681 - - 2773 - -

Table 6.10: Comparison with a stochastic approach

Finally, we apply the piecewise tangent approximation of F−1(·) proposed in [73] and report the
obtained results in Table 6.10. For each value of ε, we report p∗s the optimal value obtained by the
stochastic approach, as well as p∗dri and the loss computed as (p∗dri − p∗s)/p

∗
s.

We should make two important remarks about the stochastic approach. First, it does not make
use of the support of the probability distribution. Furthermore, it does not require any assumption
regarding the probability distribution of ξ. Finally, it is only an approximation, which can not said
to be conservative, but which is more precise when the number of random variables involved in each
sub-constraint is large.

It is interesting that for T = 1 the distributionnally robust approach yields a cheaper solution
than the stochastic one. This can be explained by the fact that the stochastic approach do not take
the support into account. This illustrates how tight is the conservative approximation made by the
distributionnally robust approach in the particular case of a individual chance-constraint.

Not surprisingly, for T > 1, we observe that the stochastic approach is more effective than the
distributionnally robust one. This is due to the additional assumption that we make in the stochastic
approach, stating than gt(x, ξ) is a Gaussian variable. However, the result is not as affected as one
might have thought, since the loss does not exceed 16%. Clearly, the loss increases depending on the
number of time steps T . In particular, there is a huge difference between T = 1 and T = 2. This can be
explained by the fact that for T = 1, i.e., for individual chance-constraints, the distributionnally robust
approach is less conservative than for joint chance-constraints, as explained in Paragraph 6.2.2.4.

6.2.4 Conclusion

In this section, we investigate the distributionnally robust paradigm for addressing a joint chance-
constraint that leads to a very elegant use of Semidefinite Programming. We apply this approach to
a problem where the uncertain parameters are characterized by their mean, covariance and support,
which is a box. This framework allows a comparison with the robust approach that uses the Hoeffding’s
inequality to establish a conservative approximation in the form of a SOCP.

Our main contributions consists of exhibiting the relationship between the distributionnally ro-
bust paradigm described in [270] and the SDP relaxation of the Generalized Problem of Moments
designed by Lasserre in [171]. This allows a new interpretation of the SDP proposed in [270] and pro-
vides a new insight on the different levels of loss w.r.t. the original problem. We also proposed a simple
way to exploit the sparsity of the constraint matrices in order to reduce the size of the obtained SDP.

Finally, numerical comparisons are presented on a supply/demand equilibrium problem. These
results confirms that the distributionnally robust approach appears as a compromise between the mean
and worst-case optimization. Furthermore, exploiting the covariance of the random variables gives to
this method a significant advantages w.r.t the robust method that uses only the mean and the support.
Finally we observe that the approximation exploiting the sparsity of the constraint matrices is accurate
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for this problem, whereas it induces a sharp decrease of the size of the obtained SDP and of the
computational time.

The distributionnally robust paradigm offers a new insight on optimization under uncertainty.
Much remains to be done in this line of research, in particular we can think of using this approach to
maximize a probability, instead of setting it into a constraint. This could be done for instance by means
of a binary search on the desired level of probability. We also could think of a method for optimizing
the coefficient α, in order to improve further the obtained bound.

6.3 Combining uncertainty and combinatorial aspects

This section contains the work presented in the paper [114]. We investigate SDP relaxations for mixed
0-1 Second-Order Cone Program, i.e. Second-Order Cone Program (SOCP) (see Paragraph 1.3.1) in
which a specified subset of the variables are required to take on binary values.

The reasons for our interest in these problems lie in the fact that SOCP are famous for providing
formulations or conservative approximations of robust Linear Programs, see for instance [32, 185, 269].
By a natural extension, MISOCP can be used to reformulate or approximate robust MILP.

MISOCP can be viewed as a combination between MILP and second-order cone programming.
They just started to benefit from the great advances made in both areas. Thus, until recently, the
only method for solving them was a basic Branch and Bound, i.e. a succession of continuous relaxation
followed by rounding of the fractional solution. A first attempt to improve this algorithm was proposed
by Çezik and Iyengar ([147]). In 2005, they extended Gomory cuts [111] and some other hierarchies of
relaxations from Mixed-Integer Linear Programming to Mixed-Integer Cone Programming (SOCP and
SDP). They also proposed linear valid inequality based on elements of the dual cone. This approach
were promising but suffered from a lack of implementation, in particular, no instructions were given
explaining how to pick up the most relevant inequalities among all the discussed ones.

In 2009, Drewes and Ulbrich [87] extended this work, with Lift & Project based linear and convex
quadratic cuts and integrated it into a Branch and Cut. They also proposed a Branch and Bound based
on a linear outer approximation of MISOCP. Another contribution on this topic was made by Atamturk
and Narayanan ([16]) in 2010. By lifting the problem into a higher dimensional space, there generated
some strong cutting planes and incorporated them within a Branch and Bound.

In this section, we propose an original approach for these problems, by exploiting the effectiveness
of semidefinite relaxation for combinatorial optimization problems. Central to our approach is the
reformulation of a MISOCP as a non convex quadratic program, where the non convexity stems both
from the binary constraints and from the quadratic formulation of the second-order cone constraints.
This brings us in the framework of binary quadratically constrained quadratic program (MIQCQP),
which admits a relaxation as a semidefinite program. Actually, this relaxation, which is a generalization
of the semidefinite relaxation for 0-1 linear program, has been extensively studied, see for instance [230]
or [128] for a more detailed presentation.

The present work consists of defining such a semidefinite relaxation for MISOCP and in deter-
mining whether and how much it may improve the continuous relaxation. To the best of our knowledge,
such a study has not been done so far. Our approach is depicted on the following diagram :

The initial problem to solve is the MISOCP at the root. On the right side is our contribution,
with at first the reformulation of the MISOCP as a MIQCQP, followed by a relaxation as a SDP. Down
right, the SDP relaxation is tightened by adding some constraint of the initial problem, which leads to
problem (PR). On the left side, we compute the continuous relaxation, which is a standard SOCP.
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Figure 6.7: The different relaxation and reformulation of a MISOCP

6.3.1 Reformulation of a MISCOP as a MIQCQP

6.3.1.1 Definition of the Initial MISOCP

The problem we consider is a particular second-order cone program, where the objective function is an
euclidean norm and a subset of the variables are binary :

(P )







minx∈Rn ‖A0x+ b0‖
subject to ‖Aix+ bi‖ ≤ cTi x+ di, i = 1, · · · ,m

xj ∈ {0, 1}, j = 1, · · · , r
(6.21)

where r ≤ n is the number of binary variables, Ai ∈ R
mi,n, bi ∈ R

mi , cTi ∈ R
n, di ∈ R, for i = 0, · · · ,m.

Except for the binary variables, this problem may be reduced to a standard second-order cone program,
by linearizing the objective function as follows :

(P 1)















mint∈R, x∈Rn t
subject to ‖A0x+ b0‖ ≤ t

‖Aix+ bi‖ ≤ cTi x+ di, i = 1, · · · ,m
xj ∈ {0, 1}, j = 1, · · · , r

(6.22)

Adding a superscript to the name of a problem denotes a reformulation of this problem, whereas a
subscript means that the problem is transformed. For instance, (PC) denotes the continuous relaxation
of (P ). (PC) is a standard SOCP that can be easily solved with a SOCP solver (see for instance see
[248]) :

(PC)















mint∈R, x∈Rn t
subject to ‖A0x+ b0‖ ≤ t

‖Aix+ bi‖ ≤ cTi x+ di, i = 1, · · · ,m
0 ≤ xj ≤ 1, j = 1, · · · , r

(6.23)

The choice of a norm as objective function has been made to fully exploit the potentiality of the
semidefinite relaxation. Any linear objective function can be written under this form provided that a
lower bound of its optimal value is known.

6.3.1.2 Formulation as a (Non Convex) Quadratically Constrained Quadratic Program

The MISOCP (P ) presented above can be formulated as a non-convex QCQP. Specifically, given a
second-order cone constraint : ‖Ax+ b‖ ≤ cTx+d and squaring it, we obtain the following equivalence :
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Proposition 6.3.1

‖Ax+ b‖ ≤ cTx+ d ⇔
{

xT (ATA− ccT )x+ 2(bTAx− dcTx) + bT b− d2 ≤ 0
cTx+ d ≥ 0

(6.24)

Proof 6.3.2 It appears immediately that the first inequality implies cTx+d ≥ 0. The inequality involves
two non-negative values and can be lifted to the square. �

Consequently, by noting that minimizing a positive quantity is equivalent to minimize its square,
we have the following MIQCQP formulation for (P ) :

(PQ)















minx∈Rn xTQ0x+ pT0 x+ r0
subject to xTQix+ pTi x+ ri ≤ 0, i = 1, · · · ,m

cTi x+ di ≥ 0, i = 1, · · · ,m
xj ∈ {0, 1}, j = 1, · · · , r

(6.25)

with
Q0 = AT

0 A0, p0 = 2AT
0 b0, r0 = bT0 b0

Qi = AT
i Ai − cic

T
i , pi = 2(AT

i bi − dici), ri = bTi bi − d2i , i = 1, · · · ,m (6.26)

This problem is generally not tractable by standard commercial solvers since it is not convex.
However, in some particular cases described below, a resolution can be performed, which allows us to
evaluate more accurately the quality of our relaxation :

• When all the variables are binary, it is therefore possible to reduce the problem to a linear one,
by using for instance the well-known Fortet linearization;

• Or when all the matrices Qi are positive semidefinite.

For a standard SOCP (without binary variable), the formulation (PQ) is not worthwhile since it
may induce a loss of convexity. Indeed, the matrices Qi = AT

i Ai−cicTi may not be positive semidefinite.
More precisely,

Proposition 6.3.3 Let A ∈ R
m,n be a full rank matrix and c ∈ R

n,1. The symmetric matrix ATA−ccT
is positive semidefinite if and only if there exists u ∈ R

m,1, with ‖u‖ ≤ 1, such that c = ATu.

In order to prove this proposition, we need the following lemma :

Lemma 6.3.4 Let A ∈ R
m,n and B ∈ R

l,n be two full rank matrices. Then we have the following
equivalence :

N (A) ⊂ N (B)⇔ ∃M ∈ R
l,m such that B = MA (6.27)

Proof 6.3.5 If B = MA, then Ax = 0⇒ Bx = 0 so N (A) ⊂ N (B). Conversely, according to the rank
theorem, there exists a base of Rn, (e1, · · · , en), such that (Ae1, · · · , Aek) is a base of the range-space
of A, denoted RA and (ek+1, · · · , en) is a base of N (A). Then, according to the theorem of existence
of linear application, there exists a unique linear application f such that :

f(A(ei)) = B(ei), i = 1, · · · k
For i = k+1, · · · , n, Aei = 0 and Bei = 0 since N (A) ⊂ N (B). So, if M is the matrix associated with
the application f , then MA = B. �

We are now in position to prove proposition 6.3.3.
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Proof 6.3.6 If c = ATu with ‖u‖ ≤ 1, it is clear that ATA− ccT is positive semidefinite. Indeed, for
any x 6= 0 :

xT (ATA− ccT )x = xTATAx− xT ccTx

= ‖Ax‖2 −
∥

∥cTx
∥

∥

2

= ‖Ax‖2 −
∥

∥uTAx
∥

∥

2

≥ ‖Ax‖2 −
∥

∥uT
∥

∥ . ‖Ax‖2
≥ ‖Ax‖2 − ‖Ax‖2 = 0

(6.28)

Conversely, a necessary condition for ATA − ccT < 0 is that KerA ⊂ Ker cT . Otherwise, if x ∈
KerA, x /∈ Ker cT : x(ATA− ccT )x = −

∥

∥cTx
∥

∥

2 ≤ 0.

By applying the previous proposition, with l = 1, it comes that there is a vector u ∈ R
m such that

cT = uTA. If m ≤ n there is x0 ∈ R
n such that u = Ax0. Then,

x0(A
TA− ccT )x0 = ‖Ax0‖2 −

∥

∥uTAx0

∥

∥

2

= ‖Ax0‖2 − ‖u‖2 . ‖Ax0‖2
(6.29)

So ‖u‖ ≤ 1 is required for the positive semidefiniteness of the matrix. If m > n, we pick u0 in
the image of A such that c = ATu0. This means that the same conclusion holds. �

6.3.2 The Semidefinite Relaxation

We apply to the MIQCQP (PQ) the standard semidefinite relaxation described at Paragraph 3.3.2 :

(P 1
Q)























minx∈Rn,X∈Sn Q0 •X + pT0 x+ r0
subject to Qi •X + pTi x+ ri ≤, i = 1, · · · ,m

cTi x+ di ≥ 0, i = 1, · · · ,m
Diag(X)j = xj , j = 1, · · · , r
X = xxT

(6.30)

where S
n denotes the set of symmetric matrices of dimension n and Diag(X) stands for the vector made

up with diagonal components of X.

The last constraint is non convex and captures all the difficulty of the problem. By relaxing it
into the convex constraint X − xxT < 0, we obtain the semidefinite relaxation of the problem :

(PS)























minx∈Rn,X∈Sn Q0 •X + pT0 x+ r0
subject to Qi •X + pTi x+ ri ≤ 0, i = 1, · · · ,m

cTi x+ di ≥ 0, i = 1, · · · ,m
Diag(X)j = xj , j = 1, · · · , r
X < xxT

(6.31)

Under this notation, the continuous relaxation of (P ) can be formulated as following :

(P 1
C)























minx∈Rn,X∈Sn Q0 •X + pT0 x+ r0
subject to Qi •X + pTi x+ ri ≤ 0, i = 1, · · · ,m

cTi x+ di ≥ 0, i = 1, · · · ,m
0 ≤ xj ≤ 1, j = 1, · · · , r
X = xxT

(6.32)

Subsequently, we discuss properties of the semidefinite relaxation and compare it to the continu-
ous relaxation. First we prove that if all the matrices Qi are positive semidefinite, then the semidefinite
relaxation necessarily outperforms the continuous one. Then, we explain how one can extend this result
to the general case, by reinforcing the semidefinite relaxation with constraints of the initial problem.
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6.3.2.1 Semidefinite Case

If all the matrices Qi are positive semidefinite, the semidefinite relaxation is necessarily better than the
continuous one.

Proposition 6.3.7 Let p∗c and p∗s denote the optimal values of (PC) and (PS) respectively. If all the
matrices Qi, i = 1, · · · , r are positive semidefinite, then p∗c ≤ p∗s.

Proof 6.3.8 Let us consider a feasible solution (Xs, xs) of (PS). The constraint Xs < xsx
T
s is equiv-

alent, by using Schur complement, to X ′ =

(

Xs xs

xT
s 1

)

< 0, which implies that any submatrices of X ′,

and in particular

(

(xs)j (xs)j
(xs)j 1

)

must be positive semidefinite. This is true if and only if 0 ≤ (xs)j ≤ 1.

Moreover, Qi < 0 and Xs − xsx
T
s < 0 implies that Qi • (Xs − xsx

T
s ) ≥ 0. So (xsx

T
s , xs) is a feasible

solution of (P 1
C) and the associated objective value Q0 • xsx

T
s + pT0 xs + r0 is therefore bigger than p∗c .

Likewise we have Q0 • (Xs − xsx
T
s ) ≥ 0, so

p∗c ≤ Q0 • xsx
T
s + pT0 xs + r0 ≤ Q0 •Xs + pT0 xs + r0 = p∗s (6.33)

�

6.3.2.2 General Case

In the general case, the continuous relaxation (PC) may be better than the semidefinite relaxation (PS).
In order to overcome this problem, we take benefit of the structure of the initial problem. We rely on the
fact that a second-order cone constraint can be formulated as a semidefinite constraint, in the following
way :

∥

∥Aix+ bi
∥

∥ ≤ cTi x+ di ⇔ Y =

[

(cTi x+ di)I Aix+ bi
(Aix+ bi)

T cTi x+ di

]

< 0 (6.34)

where I is the identity matrix of appropriate dimension. Adding these constraints to (PS) guarantees
the feasibility of (xsx

T
s , xs) for (P 1

C), if (Xs, xs) is a feasible solution of (PS). Consequently, we can
extend the proof presented in section 6.3.2.1 to the general case. The addition is necessary only if Qi is
not positive semidefinite, since the feasibility is already guaranteed otherwise. From a practical point of
view, it is easier to formulate the constraints in their original form if the solver used for the resolution
allows it, which is the case for us.

The problem thus obtained is denoted by (PR). Subsequently, (PS) and (PR) are referred to as
basic and reinforced semidefinite relaxation respectively.

6.3.3 Numerical Experiments

In this section, we report numerical results showing the validity of the relaxation we propose. For this,
instances of MISOCP are randomly generated, according to the number of variables n. The number
of constraint m is half the number of variables and the number of binary variables r is 0, n/2 or
n. The coefficients of the elements Ai, bi, ci are drawn from uniform distribution within the interval
[−10.0, 10.0] and di is computed in order to ensure the existence of a feasible solution. More precisely,
a binary solution x0 is drawn and di = ‖Aix0 + bi‖− cTi x0. 20 instances are considered for each size of
the problem.

Integer optimal solution are provided whenever CPLEX can solve MIQCQP formulation (PQ)
to optimality. In this case we use CPLEX 11.2 on an Intel x86 processor (1.99 GHz). Otherwise, only
lower bounds obtained by both continuous relaxation and semidefinite relaxation (basic and reinforced)
are given. These computations are performed with the software SeDuMi 1.3 (see [248]), on a Intel
Core(TM) i7 processor (2.13 GHz).

191



6.3.3.1 General Case

The integer optimal solution of the problem (P ) is generally not available and it is therefore impossible
to compute the gap between optimal value and lower bounds obtained through relaxation. For this
reason, we define the following indicators rs and rr as the relative difference between semidefinite
bounds ps or pr (for the basic and reinforced relaxation respectively) and the continuous bound pc :

rs =
ps − pc

pc
rr =

pr − pc
pc

(6.35)

Then, semidefinite bounds become better as rs or rr increase. Furthermore, a positive value for
these indicators means that the semidefinite bound is tighter than the continuous one. In table 6.11,
we report the indicators rs and rr and the CPU time in seconds, for each resolution. Each result is
the mean value computed on the 20 instances. The last line of the table contains the average of the
previous lines. We also report the size of the considered instances in terms of number of variables and
number of binary variables, in the columns 2 and 3.

Data Nb of Nb of CPU time CPU time CPU time rs rr
set var bin. var. (PC) (PS) (PR)

P1 20 10 0.6 0.9 1.1 33.2% 45.6%
P2 40 20 1.0 1.9 3.0 17.5% 52.2%
P3 60 30 1.8 4.3 7.2 34.6% 58.5%
P4 80 40 3.1 8.4 12.2 36.5% 71.3%
P5 100 50 4.8 13.1 23.6 34.9% 71.9%
P6 150 75 9.8 41.1 63.3 45.3% 89.2%
P7 200 100 18.4 108.1 157.9 51.3% 81.3%
P8 250 125 32.2 242.3 351.4 77.3% 108%
P9 20 20 0.6 0.7 1.0 49.6% 76.1%
P10 40 40 1.1 1.7 2.4 70.2% 104.5%
P11 60 60 2.0 4.6 6.4 70.2% 106.9%
P12 80 80 3.0 7.5 11.6 90.9% 143.9%
P13 100 100 4.7 12.7 20.7 105.7% 148.8%
P14 150 150 9.7 39.2 54.6 126% 181.2%
P15 200 200 18.4 101.0 140.8 166.9% 210.3%
P16 250 250 32.1 216.1 318.0 205% 247.7%
Av. 113 84 9.0 50.2 73.4 75.9% 112.3%

Table 6.11: Comparison of the relaxations (PC), (PS) and (PR)

We observe on this table that both semidefinite relaxations improve significantly the continuous
one. The basic semidefinite relaxation improves the tightness of the bound of 75.9% on average w.r.t.
the continuous relaxation. However, this result is negative for 4.7% of the instance, which means that
the semidefinite relaxation is weaker than the continuous one.

This drawback can be overcome through the reinforcement of the semidefinite relaxation. In this
way, the obtained bound is always tighter than the continuous one. Furthermore, on average, it achieves
an improvement of about 112% of the continuous relaxation, for a running time that remains reasonable
(73.4 s versus 9.0 s for the continuous relaxation and 50.2 s for the basic semidefinite relaxation). We
observe that the difference between semidefinite and continuous relaxation increases as the size of the
instances increases. Indeed, on average, the continuous relaxation is less tight on larger instances, so
there is a larger possibility of improvement for the semidefinite relaxation.

6.3.3.2 Special Cases

In this section, we examine experimental results for some particular cases of the initial MISOCP where
the integer optimal solution can be found. This allows us to measure precisely the loss of optimality
due to the relaxations.
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Semidefinite Case
We are interested in the special case where all the matrices Qi are positive semidefinite. Then, (PS)
and (PR) are equivalent.

Data Nb of Nb of CPU time CPU time CPU time rs gc gs
set var bin. var. (P ) (PC) (PS)

P17 20 10 2.2 0.6 0.9 25.4% 15.3% 2.3%
P18 40 20 67.7 1.0 1.9 42.3% 24.6% 2.4%
P19 60 30 506.2 1.7 4.2 30.6% 15.4% 0.1%
P20 80 40 1863.5 3.0 8.9 35.2% 17.7% 0%
P21 100 50 2007.1 4.6 13.9 39.1% 18.2% 0%
P22 20 20 2.0 0.5 0.8 63.2% 58.2% 17.9%
P23 40 40 225.8 1.0 1.7 76.5% 77.9% 28%
P24 60 60 969.7 1.7 3.7 66.5% 48.9% 10.3%
P25 80 80 2037.0 3.0 8.0 63.8% 30.2% 0%
P26 100 100 † 4.6 12.5 71.9% † †

Av. 60 45 853.4 2.2 5.6 51.4% 34% 6.8%

Table 6.12: Comparison of the relaxations (PC) and (PS) in the semidefinite case

† : no integer solution found within the time limit

In Table 6.12, we report results obtained on such instances, generated by drawing, for each
constraint i, a vector u ∈ R

mi such that ||u|| ≤ 1. Then the associated vector ci is computed as AT
i u.

By using the optimal value p∗, we compute the following gap :

gc =
p∗ − pc

pc
gs =

p∗ − ps
ps

(6.36)

We observe that the semidefinite relaxation improves the continuous relation up to 51.4% on
average. This improvement reaches 182% for some instances. Furthermore, the value of the semidefinite
relaxation almost achieves the integral solution (gap less than 0.5%) for 72.8% of the instances for which
the integer solution is available. On another hand, the instances with a still large semidefinite gap (more
than 5%), are those with a very large continuous gap : 113% on average, versus 49% for the semidefinite
gap.

Briefly, in instances with a reasonable continuous gap, the semidefinite relaxation provides a
bound close to the integral solution. Otherwise, this gap is divided by more than two.

Fully Binary Case
In the case where all the variables are binary, the integer solution can be computed by CPLEX, which
allows us to compute the gap. However, the computational time for solving such 0-1 linear program
is extremely high, with little improvement of the solution over time. Therefore the running time of
CPLEX was limited to 3600 s, and the gap computed with formula (6.36), is therefore an upper bound
of the true gap. The instances for which an integer solution has been reached within the time limit are
reported in Table 6.13.

Data Nb of CPU time gc gs gr
set bin. var. (P )

P10 20 224.9 88.3% 55.3% 34.4%
P11 40 1667.6 105.9% 51.1% 39.6%
P12 60 2567.7 37.6% 0.6% 0.6%
P13 80 3335.3 30.6% 0.1% 0.1%

Table 6.13: Comparison of the gap of the relaxations (PC), (PS) and (PR) in the full binary case

Thus, we see that the semidefinite relaxation gives almost the integer solution on largest instances
(P12 and P13). More precisely, about a third of the concerned instances have a semidefinite gap less
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Figure 6.8: gr as a function of gc

than 0.5%. This is illustrated on figure 6.8 that represents the gap of the relaxation (PR) as a function
of the gap of the relaxation (PC). One point represents one instance, either a fully binary one or a
semidefinite one, as described in the previous subsection 6.3.3.2.

Thus, we observe that the semidefinite gap gr is by and large very close to 0% whenever gc is
less than 50%. Furthermore, for a gap gc less than 80%, the semidefinite gap remains small : less than
7%. Otherwise, we have improvements in the order of factor 2.

6.3.3.3 Unconstrained Case

When no constraints are imposed, the problem we addressed is the well-known least-squares estimation
problem with binary variables. We aim at minimizing ||A0x+ b0|| where (A0)i and (b0)i can be inter-
preted as biased inputs and outputs of simulation i, i = 1, · · · ,m0. To built the data set, a n-dimension
binary vector x and a 5n-dimension vector Ã0 are drawn, and b̃0 = Ã0x is computed. Then A0 and b0
are built as Ã and b̃ perturbed by a Gaussian noise. The associated numerical results are reported in
Table 6.14.

Data Nb of Nb of CPU time CPU time CPU time rs gc gs
set var bin. var. (P ) (PC) (PS)

P27 20 10 0.0 0.4 0.3 62.9% 33.3% 1.4%
P28 40 20 0.0 0.5 0.6 65.8% 35.3% 1.8%
P29 60 30 0.4 0.6 0.8 64.9% 35.2% 2.1%
P30 80 40 2.6 1.0 1.3 63.8% 34.8% 2.2%
P31 100 50 36.2 1.5 2.0 64.4% 35.2% 2.2%
P32 20 20 0.0 0.4 0.3 99.4% 55.6% 3.9%
P33 40 40 0.2 0.5 0.6 94.8% 57% 6.4%
P34 60 60 1.7 0.6 0.9 98% 59.4% 7%
P35 80 80 20.0 1.0 1.4 88% 53.8% 6.8%
P36 100 100 176.7 1.5 2.1 93.7% 56% 7.1%
Av. 60 45 23.8 0.8 1.0 79.6% 45.6% 4.1%

Table 6.14: Comparison of the relaxations (PC) and (PS) in the unconstrained case

In this framework, the semidefinite relaxation is very efficient : whereas the continuous gap
provides an average gap of 45.6%, the semidefinite relaxation is very close to the optimal solution,
as the average gap reaches less than 5%. The high quality of these results can be explained by the
fact that, when all the variables are binary, the quadratic formulation (PQ) is an unconstrained binary
quadratic problem, which is well-known (see for example [128, 175]) to be equivalent to the MAX-CUT
problem up to an additive constant. For the MAX-CUT problem, it has been shown by Goemans and
Williamson (cf [109]) that the gap provided by the SDP relaxation is guaranteed to reach at most 12.2%.
In our context, this result can not be applied directly, because of the additive constant, but we still
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observe that the maximal gap obtained is 10.24%. Finally, the running time for solving the semidefinite
relaxation is very small, an average of 1.0 s. This is hardly larger than the running time of (PC), i.e.,
0.8 s on average. This is very small compared to the time required for finding the integral solution, that
is 23.8 s on average.

6.3.4 Conclusion

This section introduces a semidefinite relaxation for MISOCP through a reformulation as a MIQCQP.
When all the constraints of the MIQCQP are convex, this semidefinite relaxation is necessarily better
than the continuous relaxation. This result can be extended to the general case by adding some con-
straints of the initial problem to the semidefinite relaxation. This approach provides lower bounds that
are very satisfying. Firstly, on general instances, it improves significantly the continuous relaxation.
For instances with a small continuous gap, it almost gives the integral solution. Otherwise, the im-
provement is of an order of magnitude 2. The results are even better for unconstrained instances that
correspond to a least-square estimation. For these instances, the gap is on average divided by 10 w.r.t.
the continuous relaxation. Finally, all these results are obtained within a reasonable amount of time.

In conclusion, the study of MISOCP is of great interest in the context of optimization under
uncertainty since several uncertain optimization programs admits reformulation in the form of a SOCP,
and by extension, MISOCP can be used to reformulate such programs with integer variables. It turns out
that semidefinite programming offers an efficient framework for dealing with MISOCP. These promising
results suggest interesting prospects for using semidefinite relaxation in a Branch & Bound procedure,
in complementarity with existing works about generation of cutting planes for MIQCQP. One may also
apply a rounding procedure to recover a feasible solution.

6.4 Conclusion

This chapter is devoted to the question of how SDP can be used to handle uncertainty in optimization
problems. To this end, we conducted three studies, each one requiring a different knowledge of the
random parameters.

The first section examines a stochastic paradigm where the probability distribution is discrete
and takes the form of equiprobable scenarios taken from the historically observed realizations. In this
way, the constraints that must be satisfied up to a given level of probability (chance-constraints) admit a
deterministic formulation that involves an additional binary variable. Then, the whole problem becomes
a large Mixed-Integer Quadratically Constrained Quadratic Program (MIQCQP). It is therefore possible
to apply the SDP relaxation to this problem, which yields an average gap of 2.76%, to compare to
53.35%, the average gap of the linear relaxation. Combined to a randomized rounding approach, the
SDP approach provide feasible solution with an average optimality gap of 2.20%, versus 10.38% for the
linear relaxation.

In the second section, we investigated a more original paradigm for addressing uncertainty, namely
the distributionnally robust paradigm. This approach offers two main advantages. First, a perfect
knowledge of the probability distribution of the random data is not required. It suffices to know its
support and its first moments and the optimization is made on the worst case w.r.t. all the probability
distribution that share these characteristics. Second, the obtained problem can be reformulated, or at
least conservatively approximated, by a SDP. This process is closely related to the use of SDP for the
Generalized Problem of Moment (GPM). We compared this paradigm with a robust approach based
on Hoeffding’s inequality, that establishes a conservative approximation of the problem in the form
of a SOCP, on the supply/demand equilibrium problem presented in paragraph 4.3.3.5. These results
confirms that the distributionnally robust approach appears as a compromise between the mean and
worst-case optimization. Furthermore, exploiting the covariance of the random variables gives to this
method a significant advantages w.r.t the robust method that uses only the mean and the support.
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Finally, in the third section, we turn our attention to MISOCP problems. These problems are
very little studied whereas they are prevalent for addressing uncertainty since they emerge for instance
as the robust counterpart of MILPs. A reformulation of these problems as QCQP enables to apply the
standard SDP relaxation. In order to recover the convexity lost by this reformulation, it is interesting
to convert certain SOCP constraint into SDP constraints in a manner that preserves convexity and add
them to the SDP relaxation. Thus, we obtain very satisfying lower bounds compared to the continuous
relaxation.

In conclusion, SDP is an elegant and powerful tool for addressing uncertainty, that is appropriate
for various representations of the random data.
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Conclusions and perspectives

As already mentioned, our objective in this thesis was to assess the interest of Semidefinite Programming
for the problems of energy management. Two lines of research were identified : the first one aimed at
exploiting a well-known strength of SDP : its ability to provide tight relaxations of combinatorial or
quadratic programs. The second one was dedicated to study the potentiality of SDP for addressing
uncertainty in optimization problems.

The first one is studied in chapter 5. This part of the work was well-defined since the use of
SDP for deriving relaxations of QCQP has been extensively studied. Indeed, obtaining tight convex
relaxations is a key issue in optimization since these relaxations are at the core of iterative methods for
non-convex programming, such as Branch & Bound or Branch & Cut. Then the challenge was to :

− select an interesting problem to handle and model it in an appropriate fashion;

− among the extensive literature on SDP relaxations, select the best recipe to apply to get a tight
SDP relaxations;

− apply this to instances that are both difficult to solve with the commercial solver CPLEX and
tractable but the SDP solver ;

− get a step further w.r.t. existing approaches by proposing new theoretic results or ideas on this
topic that has been covered in-depth before.

We briefly recall that for any QCQP there exists a systematic procedure for building a SDP
relaxation, called standard SDP relaxations (see Paragraph 3.3.2). Generally, it is desirable to convert
the original QCQP into a more complex one, by adding valid quadratic constraints, then to apply the
standard SDP relaxation to this latter QCQP, in order to make the relaxation tighter. For instance,
on a 0/1-LP, which can be viewed as a particular QCQP, the standard SDP relaxation yields the same
bound than the linear relaxation. This illustrates that the combinatorial aspect is not sufficient for
exhibiting interest in SDP relaxations. Quadratic features are also necessary and therefore, the key
problem is QCQP. Then, we have two options :

− working on a 0/1-LP and converting it into an equivalent QCQP ;

− working directly on QCQP;

The second option is more interesting for us since very efficient solvers already exist for 0/1-LP,
that are difficult to compete. For this reason, we opted for problems with native quadratic features.
These problems also contains linear constraint, in particular the bounds constraints, and their combi-
nations is a key element for generating valid quadratic constraints.

The determination of the most appropriate valid quadratic constraints is a well-studied problem,
very close to the combinatorics, where one aims at determining the linear constraints that describe the
convex hull of a polytope.

Inspired by all the works in this vein and by the fact that almost all the valid quadratic constraints
proposed in the literature can be formulated as suitable combination of the initial quadratic constraints
of the problem and of the pair-wise product of the linear constraints of the problem (including bounds
constraints), we proposed a separation method, aiming at selecting the best one among all the constraints
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that can be generated in this way. Thus, on the model 3 of the Nuclear Outages Scheduling Problem,
we reduced by 25.15% the gap of the linear relaxation.

We also experimented several standard recipe for reinforcing the standard SDP relaxations. What
emerges from this study is that the first thing to be done is to square the linear constraints. Then, adding
some products of linear constraints enables to effectively tighten the relaxation, but the addition of all
these constraints quickly renders the problem intractable. This study also provided the opportunity to
compare three possibles models for a class of disjunctive constraint of the form aTx /∈]b, c[, where x is
a binary vector. Among these models, 2 are linear and one is quadratic. Clearly, one of the two linear
models leads to relaxations that are largely tighter than with the other models, for all the considered
SDP relaxations. We also consider LP relaxations, built from Reformulation-Linearization Technique
and reinforced in the same fashion than the SDP relaxations.

An alternative way of exploiting the potential of SDP for combinatorial problems is to address
MISOCP problems, that appear for instance when taking the robust counterpart of a MILP. The
MISOCP can be converted into a QCQP at the cost of a loss of convexity. Then we apply the SDP
relaxation to this QCQP, and we restore the lost convexity by converting the SOCP constraint into
SDP ones. This approach delivers lower bounds that are very encouraging, since they consistently
outperform the continuous relaxation in a reasonable amount of time.

A last work on this subject was proposed in Section 5.3.3. We implemented the Lasserre hierarchy
on small instances of the Nuclear Outages Scheduling Problems. The obtained results are quite impres-
sive : the integer solution is recovered at the rank 2 of the Lasserre’s hierarchy on all the considered
instances, that include both 0/1-LP and 0/1-QCQP.

Even if overall SDP provides tighter relaxations than LP, this technique faces numerous practical
difficulties, that are not encountered with LP, due to the fact that SDP solvers are still in their infancy.
In particular, we encountered the following problem :

− storage memory problems that make the SDP intractable, by and large for problems with primal
matrices variables dimension and number of primal constraints of the order of 104;

− the computational time grows quickly and can amount to a number of hours for problems with
primal matrices variables dimension and number of primal constraints of the order of 103;

− even all smaller instances, all the SDP solvers that we experimented (CSDP, DSDP, SeDuMi)
encountered difficulties during the resolution, such as not attaining the full accuracy, a lack of
progress along the iteration which prevents from providing the solution, or the returned solution
which is not optimal;

− when an error occurs in the design of the SDP, it is very difficult to trace back its origin;

− there is no direct way of handling inequality primal constraints. To do so, we have to add slack
variables, which increases the size of the problem;

− the choice of the best SDP solvers depends on the considered instance.

Thus, in spite of strong theoretical results and a significant work on resolution methods, the use
of SDP for real-life combinatorial problems is not yet fully operational. However, in a bigger picture
prospective, SDP may reveal another part of its potential for relaxation of QCQP with non convex
terms that involves continuous variables. Indeed, on these problems, the resolution methods are not as
advanced as for convex QCQP, or for QCQP with binary variables. Thus, the SDP relaxation, with all
its possible reinforcement, is a real asset compared to the other available convex relaxations.

The second objective of the thesis deals with uncertainty, and more specifically, with the con-
sideration of of chance-constraints. To this end, we first used a discrete representation of uncertainties
with scenarios approximation which leads to obtaining a large mixed-integer Quadratically Constrained
Quadratic Program. Then, we applied SDP relaxations on this problem and exploited the obtained
bounds to build a good feasible solution by means of a randomized rounding procedure.

The second work touching on this topic concerns distributionnally robust optimization. This
recent approach consists of the worst-case optimization on a set of probability distribution, defined
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via their support and moment sequence. This approach, that can be seen as a compromise between
robust and stochastic optimization, is very beneficial in our case. First, it is highly relevant from a
modelling point of view, since it does not require to make assumption on a probability distribution that
we generally ignore, but it exploits some available knowledge about the moment and support of the
probability distribution. Second, SDP provides elegant approximation framework for these problems,
that gives the optimal solution in certain cases.

In our study, we established a relationship between this approach, based on the paper of Zymler
et al. [270] and the use of SDP for handling the Generalized Problem of Moments, mainly carried
out by Calafiore and El Ghaoui [68], Bertsimas et al. [38, 40, 41] and Lasserre [171]. Furthermore,
we applied this approach to an energy management problem, namely the supply-demand equilibrium
problem. Finally, we compared the results to those obtained via robust and stochastic approaches.

This work opens perspectives for other applications in energy management and more generally,
for other optimization issues at EDF R&D. First, we may think of applying the strength of SDP
for combinatorial and quadratic optimization to certain subproblems of the hydro power management
problems. Indeed, these problems have a strong combinatorial flavor, because of the discretization of
operating power. Furthermore, these subproblems are part of an augmented Lagrangian decomposition,
which make quadratic terms to appear in the objective function. These problems are therefore very
good candidate for the SDP relaxation, even if their huge size will certainly pose a serious problem.

Besides energy management, there are other promising applications of SDP at EDF R&D. In
particular, all the problems related to asset portfolio management from a financial point of view or to risk
management on the energy market. For instance, it would be interesting to assess if the distributionnally
robust paradigm is relevant for these problems.

One also may think of applying SDP to a current engineering problem encountered on mainte-
nance of nuclear power systems that leads to a Binary Least-Square problem. We refer the reader to
[268] for a detailed description of this problem. Very briefly, it concerns the non destructive evalua-
tion of steam generator tubes of nuclear power plants, which appears within the framework of inverse
problems. These problems aims at estimating a large number of input parameters of a model, linear
or not, with a small amount of potentially noisy output data, which can not be observed directly but
only indirectly by the computation of a deterministic model. Methods used for tackling these problems
covers a wide field, from the classical method of least squares to Bayesian methods.

In the present case, the problem is cast into a Least-Square problem, where a part of the variable
is required to be binary. Then the SDP relaxation could be applied to this both combinatorial and
quadratic problem.

Finally, the application of SDP to MISOCP is very promising and there is work to be done in
that direction. First, from an algorithmic point of view, it could be interesting to implement a MISOCP
solvers based on the integration of the SDP relaxation into an enumerative method such as Branch &
Bound. We could also think of applying this method for tackling real-life MISOCP, such as the robust
counterpart of a 0/1-LP under uncertainty.

To conclude, this thesis was above all an applicative work, whose actual purpose is a solid
groundwork and a practical experimentation on real-life problems of SDP, rather than new theoretical
results. To this end, we endeavoured to build a very practical "user manual" for SDP, both for obtaining
relaxations of NP-hard problem and for facing uncertainty. We also identified the key issues associated
to these two axis in an operational perspective, based on a detailed study of the existing literature on
these subjects.

With this work, we identified a bunch of applications that reveals the potential of SDP as a
modelling tool. Despite practical difficulties mainly due to the fact that SDP is not a mature technology
yet, it is nonetheless a very promising optimization method, that combines all the strengths of conic
programming and offers great opportunities for innovation.

199



Bibliography

[1] Xpress Optimization Suite, 2012.

[2] W. Adams and H. Sherali. A tight linearization and an algorithm for 0-1 quadratic programming
problems. Management Science, 32(10):1274–1290, 1986.

[3] P. Adasme, A. Lisser, and I. Soto. A quadratic semidefinite relaxation approach for OFDMA
resource allocation. Networks, 59(1):3–12, 2012.

[4] I. Adler and F. Alizadeh. Primal-dual interior point algorithms for convex quadratically con-
strained and semidefinite optimization problem. Technical report, Rutger Center for Operations
Research, 1994.

[5] A. A. Ahmadi, A. Olshevsky, P. A. Parrilo, and J. N. Tsitsiklis. Np-hardness of deciding convexity
of quartic polynomials and related problems. Mathematical Programming, 2011.

[6] F. A. Al-Khayyal and J. E. Falk. Jointly constrained biconvex programming. Mathematics of
Operation Research, 8(2):273–286, 1983.

[7] F. Alizadeh. Interior point methods in semidefinite programming with applications to combina-
torial optimization. SIAM Journal on Optimization, 5:13–51, 1993.

[8] F. Alizadeh and D. Goldfarb. Second-order cone programming. Mathematical Programming,
95(1):3–51, 2003.

[9] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Primal-dual interior-point methods for semidef-
inite programming: Convergence rates, stability and numerical results. SIAM Journal on Opti-
mization, 5:13–51, 1994.

[10] F. Alizadeh, J.-P. A. Haeberly, and M. L. Overton. Complementarity and nondegeneracy in
semidefinite programming. Mathematical Programming, 77(2):111–128, 1997.

[11] E. D. Andersen, C. Roos, and T. Terlaky. On implementing a primal-dual interior-point method
for conic quadratic optimization. Mathematical Programming, 95(2):249–277, 2003.

[12] M. Anjos and J. Lasserre, editors. Handbook of Semidefinite, Conic and Polynomial Optimization:
Theory, Algorithms, Software and Applications. International Series in Operational Research and
Management Science, 2012.

[13] M. F. Anjos. An improved semidefinite programming relaxation for the satisfiability problem.
Technical report, Department of Electrical & Computer Engineering, University of Waterloo,
Canada, 2002.

[14] K. M. Anstreicher. Semidefinite programming versus the reformulation-linearization technique
for nonconvex quadratically constrained quadratic programming. Journal of Global Optimization,
43(2–3):471–484, 2009.

200



[15] A. Arbel. Exploring Interior-Point Linear Programming: Algorithms and Software. Foundations
of Computing Series. MIT Press, 1993.

[16] A. Atamtürk and V. Narayanan. Conic mixed-integer rounding cuts. 2010.

[17] C. Audet, P. Hansen, B. Jaumard, and G. Savard. A branch and cut algorithm for nonconvex
quadratically constrained quadratic programming. Mathematical Programming, 87(1):131–152,
2000.

[18] E. Balas. Annals of Discrete Mathematics 5 : Discrete Optimization, chapter Disjunctive Pro-
gramming, pages 3–51. Springer-Verlag, 1979.

[19] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points. Discrete
Applied Mathematics, 89(1–3):3–44, 1998.

[20] E. Balas. Projection, lifting and extended formulation in integer and combinatorial optimization.
Annals of Operations Research, 140:125–161, 2005.

[21] E. Balas, S. Ceria, and G. Cornuejols. A lift-and-project cutting plane algorithm for mixed 0-1
programs. Mathematical Programming, 58:295–323, 1993.

[22] E. Balas and W. Pulleyblank. The perfectly matchable subgraph polytope of a bipartite graph.
Networks, 13(4):495–516, 1983.

[23] X. Bao, N. V. Sahinidis, and M. Tawarmalani. Semidefinite relaxations for quadratically
constrained quadratic programming: A review and comparisons. Mathematical Programming,
129(1):129–157, 2011.

[24] G. P. Barker and D. Carlson. Cones of diagonally dominant matrices. Pacific J. Math., 57(1):15–
32, 1975.

[25] A. Barvinok. Problems of distance geometry and convex properties of quadratic maps. Discrete
and Computational Geometry, 13:189–202, 1995.

[26] A. Barvinok. A remark on the rank of positive semidefinite matrices subject to affine constraints.
Discrete and Computational Geometry, 25:23–31, 2001.

[27] R. Bellman. Dynamic Programming. Princeton University Press, Princeton, NJ, USA, 1957.

[28] R. Bellman and K. Fan. On systems of linear inequalities in hermitian matrix variables. Proceed-
ings of the Symposium on Pure Mathematics, 7, 1963.

[29] A. Ben-Israel, A. Charnes, and K. Kortanek. Duality and asymptotic solvability over cones.
Bulletin of American Mathematical Society, 75(2):318–324, 1969.

[30] A. Ben-Tal, D. Bertsimas, and D. B. Brown. A soft robust model for optimization under ambiguity.
Operations research, 58(2–2):1220–1234, 2010.

[31] A. Ben-Tal, L. El-Ghaoui, and A. Nemirovski. Robust Optimization. Princeton Series in Applied
Mathematics, 2009.

[32] A. Ben-Tal and A. Nemirovski. Robust solutions of uncertain linear programs. Operations Research
Letters, 25(1):1–13, 1999.

[33] A. Ben-Tal and A. Nemirovski. Analysis, algorithms, and engineering applications, chapter Lec-
tures on modern convex optimization. Society for Industrial and Applied Mathematics (SIAM),
2001.

[34] S. J. Benson, Y. Ye, and X. Zhang. Solving large-scale sparse semidefinite programs for combi-
natorial optimization. SIAM Journal on Optimization, 10(2):443–461, 2000.

201



[35] D. P. Bertsekas. Constrained Optimization and Lagrange Multipliers. Athena scientific, 1996. first
published 1982.

[36] D. Bertsimas, D. B. Brown, , and C. Caramanis. Theory and applications of robust optimization.
SIAM Review, 53(3):464–501, 2011.

[37] D. Bertsimas, X. V. Doan, K. Natarajan, and C.-P. Teo. Models for minimax stochastic linear
optimization problems with risk aversion. Mathematics of Operations Research, 35(3):580–602,
2010.

[38] D. Bertsimas and J. Niño Mora. Optimization of multiclass queuing networks with changeover
times via the achievable region approach: Part ii, the multi-station case. Mathematics of Opera-
tions Research, 24(2):331–361, 1999.

[39] D. Bertsimas and I. Popescu. Moment problems via semidefinite programming: Applications in
probability and finance. 2000.

[40] D. Bertsimas and I. Popescu. On the relation between option and stock prices: A convex opti-
mization approach. Operations Research, 50(2):358–374, 2002.

[41] D. Bertsimas and I. Popescu. Optimal inequalities in probability theory: a convex optimization
approach. SIAM Journal on Optimization, 15(3):780–804, 2005.

[42] D. Bertsimas and M. Sim. Price of robustness. Operations Research, 52:35–53, 2004.

[43] D. Bertsimas and M. Sim. Tractable approximations to robust conic optimization problems.
Mathematical Programming Serie B, 107:5–36, 2006.

[44] D. Bertsimas and J. N. Tsitsiklis. Introduction to Linear Optimization. Series in Optimization
and Neural Computation. Athena Scientific, 1997.

[45] A. Billionnet and S. Elloumi. Using a mixed integer quadratic programming solver for the uncon-
strained quadratic 0-1 problem. Mathematical Programming, 109:55–68, 2007.

[46] A. Billionnet, S. Elloumi, and A. Lambert. Extending the QCR method to general mixed integer
programs. Mathematical Programming, 131:381–401, 2012.

[47] A. Billionnet, S. Elloumi, and M.-C. Plateau. Convex quadratic programming for exact solution
of 0-1 quadratic programs. Technical report, CEDRIC laboratory, CNAM-Paris, France, 2005.

[48] A. Billionnet, S. Elloumi, and M.-C. Plateau. Quadratic 0-1 programming : tightening linear or
quadratic convex reformulation by use of relaxations. RAIRO, 42(2):103–121, 2008.

[49] A. Billionnet, S. Elloumi, and M.-C. Plateau. Improving the performance of standard solvers
for quadratic 0-1 programs by a tight convex reformulation: the QCR method. Discrete Applied
Mathematics, 157:1185–1197, 2009.

[50] P. Biswas, T.-C. Liang, K.-C. Toh, T.-C. Wang, and Y. Ye. Semidefinite programming approaches
for sensor network localization with noisy distance measurements. IEEE Transactions on Automa-
tion Science and Engineering, 3, 2006.

[51] P. Bonami. Lift-and-project cuts for mixed integer convex programs. Lecture Notes in Computer
Science, 6655:52–64, 2011.

[52] P. Bonami, J. Lee, S. Leyffer, and A. Wachter. More branch-and-bound experiments in convex
nonlinear integer programming. Preprint ANL/MCS-P1949-0911, Argonne National Laboratory,
Mathematics and Computer Science Division.

202



[53] B. Borchers. CSDP, a C library for semidefinite programming. Optimization Methods and Soft-
ware, 11, 1999.

[54] B. Borchers and J. Mitchell. An improved branch and bound algorithm for mixed integer nonlinear
programming. Computers and Operations Research, 21:359–367, 1994.

[55] S. Boyd and A. d’Aspremont. Relaxations and randomized methods for nonconvex qcqps. Tech-
nical report, Stanford University, 2003.

[56] S. Boyd, L. E. Ghaoui, E. Feron, and V. Balakrishnan. Linear matrix inequalities in system and
control theory. SIAM, 1994.

[57] S. Boyd and L. Vandenberghe. Semidefinite programming. SIAM Review, 38:49–95, 1996.

[58] S. Boyd and L. Vandenberghe. Applications of semidefinite programming. Applied Numerical
Mathematics, 29:283–299, 1999.

[59] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

[60] F. Brouaye. La modélisation des incertitudes. Eyrolles, 1990.

[61] C. Buchheim, A. Caprara, and A. Lodi. An effective branch-and-bound algorithm for convex
quadratic integer programming. Mathematical Programming, pages 1–27, 2011.

[62] S. Burer and A. N. Letchford. Non-convex mixed-integer nonlinear programming: A survey.
Surveys in Operations Research and Management Science, 17(2):97–106, 2012.

[63] S. Burer and R. D. C. Monteiro. A nonlinear programming algorithm for solving semidefinite
programs via low-rank factorization. Math. Program., 95(2):329–357, 2003.

[64] S. Burer and A. Saxena. Old wine in a new bottle: The MILP road to MIQCP. Technical report,
Dept of Management Sciences, University of Iowa, 2009.

[65] S. Burer and D. Vandenbussche. A finite branch-and-bound algorithm for nonconvex quadratic
programming via semidefinite relaxations. Mathematical Programming, 113(2):259–282, 2008.

[66] G. Calafiore and M. Campi. Multiple Participant Decision Making, chapter Decision making in
an uncertain environment: the scenario-based optimization approach, pages 99–111. Advanced
Knowledge International, 2004.

[67] G. Calafiore and M. Campi. The scenario approach to robust control design. IEEE Transactions
on Automatic Contro, 51(5):742–753, 2006.

[68] G. Calafiore and L. El Ghaoui. On distributionally robust chance-constrained linear programs.
Journal of Optimization Theory and Applications, 130(1):1–22, 2006.

[69] E. Candès, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Technical report,
Department of Statistics, Stanford University, 2009.

[70] E. Candès and B. Recht. Exact matrix completion via convex optimization. Foundations of
Computational Mathematics, 9:717–772, 2009.

[71] A. Charnes and W. Cooper. Chance-constrained programming. Management Science, 6:73–89,
1959.

[72] W. Chen, M. Sim, J. Sun, and C. Teo. From CVaR to uncertainty set : Implications in a joint
chance-constrained optimization. Operations research, 58(2):470–485, 2010.

[73] J. Cheng and A. Lisser. A second-order cone programming approach for linear programs with
joint probabilistic constraints. Operations Research Letters, 40(5):325–328, 2012.

203



[74] V. Chvátal. Edmonds polytopes and a hierarchy of combinatorial problems. Discrete Mathematics,
4:305–337, 1973.

[75] V. Chvátal. Linear Programming. Series of Books in the Mathematical Sciences. W.H. Freeman,
1983.

[76] S. Cook. The complexity of theorem proving procedures. Proceedings of the Third Annual ACM
Symposium on Theory of Computing, pages 151–158, 1971.

[77] R. Curto and L. A. Fialkow. The truncated complex k-moment problem. Trans. Amer. Math.
Soc., 352:2825–2855, 2000.

[78] R. Dakin. A tree search algorithm for mixed integer programming problems. Computer Journal,
8:250–255, 1965.

[79] A. D’Aspremont, L. El-Ghaoui, M. I. Jordan, and G. R. G. Lanckriet. A direct formulation for
sparse pca using semidefinite programming. SIAM Review, 49(3):434–448, 2007.

[80] E. De Klerk, H. Van Maaren, and J. Warners. Relaxations of the satisfiability problem using
semidefinite programming. Journal of Automated Reasoning, 24(1–2):37–65, 2000.

[81] I. Deák, I. Pólik, A. Prékopa, and T. Terlaky. Convex approximations in stochastic programming
by semidefinite programming. Annals of Operations Research, pages 1–12, Oct. 2011.

[82] E. Delage and Y. Ye. Distributionally robust optimization under moment uncertainty with appli-
cation to data-driven problems. Operations research, 58(3):595–612, 2010.

[83] C. Delorme and S. Poljak. Laplacian eigenvalues and the maximum cut problem. Mathematical
Programming, 62(3 Serie 1):557–574, 1993.

[84] M. Deza and M. Laurent. Applications of cut polyhedra. 1992.

[85] I. Dikin. Iterative solution of problems of linear and quadratic programming. Soviet Math. Dokl,
8, 1967.

[86] Y. Ding. On Efficient Semidefinite Relaxations for Quadratically Constrained Quadratic Program-
ming. PhD thesis, University of Waterloo, Canada, 2007.

[87] S. Drewes and S. Ulbrich. Mixed integer second order cone programming. PhD thesis, Technische
Universität Darmstadt, 2009.

[88] M. A. Duran and I. E. Grossmann. An outer-approximation algorithm for a class of mixed-integer
nonlinear programs. Mathematical Programming, 36:307–339, 1986.

[89] L. El Ghaoui. Robust solutions to least-square problems to uncertain data matrices. SIAM
Journal of Matrix Analysis and Applications, 18:1035–1064, 1997.

[90] L. El Ghaoui, F. Oustry, and H. Lebret. Robust solutions to uncertain semidefinite programs.
SIAM Journal of optimization, 9(1):33–52, 1998.

[91] A. Faye and F. Roupin. Partial lagrangian relaxation for general quadratic programming. 4’OR,
A Quarterly J. of Operations Research, 5(1):75–88, 2007.

[92] R. Fletcher and S. Leyffer. Solving mixed integer programs by outer approximation. Mathematical
Programming, 66:327–349, 1994.

[93] C. A. Floudas. Nonconvex Optimization And Its Applications series, volume 37, chapter Deter-
ministic Global Optimization: Theory, Methods and Applications. Kluwer Academic Publishers,
Boston, 2000.

204



[94] R. Fortet. Applications de l’algebre de boole en recherche opérationnelle. Revue Francaise de
Recherche Operationnelle, 4:17–26, 1960.

[95] F. Fourcade, T. Eve, and T. Socroun. Improving lagrangian relaxation: an application to the
scheduling of pressurized water reactor outages. IEEE transactions on power systems, 12(2):919–
925, 1997.

[96] F. Fourcade, E. Johnson, M. Bara, and P. Cortey-Dumont. Optimizing nuclear power plant
refueling with mixed-integer programming. European Journal of Operational Research, pages
269–280, 1997.

[97] R. Freund. Introduction to semidefinite programming (SDP). MIT OpenCourseWare (Mas-
sachusetts Institute of Technology -OpenCourseWare), 2004.

[98] T. Fujie and M. Kojima. Semidefinite programming relaxation for nonconvex quadratic programs.
Journal of Global Optimization, 10:367–380, 1997.

[99] K. Fukuda, T. M. Liebling, and F. Margot. Analysis of backtrack algorithms for listing all vertices
and all faces of a convex polyhedron. Computational Geometry, 8:1–12, 1997.

[100] A. Gaivoronski, A. Lisser, and R. Lopez. Knapsack problem with probability constraints. Journal
of Global Optimization, 49(3):397–413, 2011.

[101] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-
Completeness. W. H. Freeman, 1979.

[102] A. M. Geoffrion. A generalized benders decomposition. Journal of Optimization Theory and
Applications, 10(4):237–260, 1972.

[103] P. E. Gill, W. Murray, M. A. Saunders, J. A. Tomlin, and M. H. Wright. On projected newton
barrier methods for linear programming and an equivalence to karmarkar’s projective method.
Mathematical Programming, 36:183–209, 1986.

[104] F. Glineur. Topics in convex optimization: Interior-point methods, conic duality and approxima-
tions. PhD thesis, Polytechnic Faculty of Mons, 2000.

[105] F. Glineur. Conic optimization: an elegant framework for convex optimization. Belgian Journal
of Operations Research, Statistics and Computer Science, 41:5–28, 2001.

[106] F. Glover. Surrogate contraints. Operations Research, 16:741–749, 1968.

[107] M. X. Goemans. Semidefinite programming and combinatorial optimization. Documenta Mathe-
matica, 3:657–666, 1998.

[108] M. X. Goemans and D. P. Williamson. Improved approximation algorithms for maximum cut and
satisfiability problems using semidefinite programming. Journal of the ACM, 42(6):1115–1145,
1995.

[109] M. X. Goemans and D. P. Williamson. Approximation algorithms for max-3-cut and other
problems via complex semidefinite programming. Journal of Computer and System Sciences,
68(2):442–470, 2004.

[110] J. Goh and M. Sim. Distributionally robust optimization and its tractable approximations. Op-
erations research, 58(4):902–917, 2010.

[111] R. E. Gomory. Outline of an algorithm for integer solutions to linear programs. Bulletin of the
American Mathematics Society, 64(5):275–278, 1958.

205



[112] A. Gorge, J. Cheng, A. Lisser, and R. Zorgati. Investigating a distributionnally robust approach
for handling a joint chance-constraint. Submitted to SIAM.

[113] A. Gorge, A. Lisser, and R. Zorgati. Generating cutting planes for the semidefinite relaxation of
quadratic programs. Submitted to COR.

[114] A. Gorge, A. Lisser, and R. Zorgati. Semidefinite relaxations for mixed 0-1 second-order cone
program. Lecture Notes in Computer Science, 7422:81–92, 2012.

[115] A. Gorge, A. Lisser, and R. Zorgati. Semidefinite relaxations for the scheduling nuclear out-
ages problem. In Proceedings of the 1st International Conference on Operations Research and
Enterprise Systems, pages 386–391, 2012.

[116] A. Gorge, A. Lisser, and R. Zorgati. Stochastic nuclear outages semidefinite relaxations. Compu-
tational Management Science, 9(3):363–379, 2012.

[117] I. E. Grossmann, J. Viswanathan, and A. Vecchietti. Dicopt : A discrete continuous optimization
package. Technical report, Carnegie Mellon University, Pittsburgh, USA, 2001.

[118] L. S. A. Grötschel, Martin; Lovász. The ellipsoid method and its consequences in combinatorial
optimization. Combinatorica, 1(2):169–197, 1981.

[119] L. S. A. Grotschel, Martin; Lovász, editor. Geometric Algorithms and Combinatorial Optimization.
Springer, 1988.

[120] G. Gruber. On semidefinite programming and applications in combinatorial optimization. Shaker
Verlag, department of mathematics, university of klagenfurt edition, 2000.

[121] Z. Gu, E. Rothberg, and R. Bixby. Gurobi. www.gurobi.com.

[122] O. K. Gupta and A. Ravindran. Branch and bound experiments in convex nonlinear integer
programming. Management Science, 31(12):1533–1546, 1985.

[123] P. Hammad. Cours de probabilités. Cujas, 1984.

[124] P. Hammer and A. Rubin. Some remarks on quadratic programming with 0-1 variables. RAIRO,
3(67–79), 1970.

[125] E. P.-H. Hao. Quadratically constrained quadratic programming: some applications and a method
for solution. Mathematical Methods of Operations Research, 26:105–119, 1982.
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This appendix, and particularly the mathematical and optimization backgrounds part, serves as
a reference to keep this document self-contained. To this end, the mathematical concepts and results
that are used throughout this thesis are stated briefly, without proof.
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Chapter 1

Notations and abbreviations

1.1 General remarks and abbreviations

First we make a very general comment on the term SDP, which denotes the field of Semidefinite
Programming, or a Semidefinite Program, depending on the context. We use the acronym psd to
indicate that a matrix is positive semidefinite matrix.

Furthermore, an optimization problem is formulated as follows : (P ) minx∈R{f0(x) : fi(x) ≤
0, i = 1, ...,m} or :

(P )

{

p∗ = minx∈R f0(x)
s.t. fi(x) ≤ 0, i = 1, ...,m

This means that we are interested in finding the minimal value p∗ of f0 over F = {x ∈ R : fi(x) ≤
0, i = 1, ...,m} as well as a minimizer, referred to as the optimal solution. This notation implicitly
assumes that a minimum of f0 exists and is attained. When this is possibly not the case, we use inf
and sup instead.

The term s.t. is an abbreviation for subject to and the inequalities fi(x) ≤ 0 are called the
constraints of the problem, whereas f0 is the objective function. This formulation serves as a reference
but we will also consider maximization problems, equality constraints and constraints of the form
x ∈ S ⊂ R

n. The latter will be noted maxx∈S f(x) or max{f(x) : x ∈ S}.
Below is the list of the abbreviations denoting the various optimization area :

LP Linear Programming
ILP Integer Linear Programming
MILP Mixed Integer Linear Programming
0/1-LP Binary Linear Programming
M0/1-LP Mixed Binary Linear Programming
SDP Semidefinite Programming
QP Quadratic Programming
QCQP Quadratically Constrained Quadratic Programming
CQCQP Convex Quadratically Constrained Quadratic Programming
0/1-QCQP Binary Quadratically Constrained Quadratic Programming
MIQCQP Mixed Integer Quadratically Constrained Quadratic Programming
SOCP Second-Order Conic Programming

In our terminology, a bivalent variable denote a variable that belong to a set of two elements.
Among them are the binary variables ({0, 1}) and the boolean variables (1, 1}).
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1.2 Notations

1.2.1 Spaces

R the real numbers
R

n vector space of real n-vectors
R

n
∗ R

n \ {0}
R

n
+ {x ∈ R : x ≥ 0}

R
n
++ {x ∈ R : x > 0}

R
n,m vector space of real n-by-m matrices

S
n vector space of real n-by-n symmetric matrices

S
n
+ vector space of real n-by-n positive semidefinite matrices Def. 2.1.3

S
n
++ vector space of real n-by-n positive definite matrices Def. 2.1.3

R̄ the extended real numbers : R ∪ ±∞
N

n set of integer n-vectors
N

n
d subset of Nn such that

∑n
i=1 κi ≤ d Def 2.5.1

N
n
∗,d N

n
d \ (0, ..., 0)

Pn,d set of polynomials from R
n to R of degree at most d

1.2.2 Algebra

Here, we assume that the dimension of the following vectors and matrices will be made clear by the
context. Note that ui denotes the i-th component of a vector whereas u(i) will be used to denote the
i-th element of a collection {u(i)}i∈[n].

1.2.2.1 Vectors

uT v standard (Euclidian) inner product of the vectors u and v
‖u‖ Euclidean norm of u ∈ R

n

‖u‖k lk-norm of u Def. 2.1.12
e all one vector in R

n (usually)
ei ith standard basis vector in R

n (usually)
0 all zero vector in R

n (usually)
u ≥ v component-wise inequality of the vectors u and v
u = v component-wise equality of the vectors u and v
u 6= v holds if u = v does not hold, or ui 6= vi for some i

ũ the augmented vector of u ∈ R
n : ũ =

(

1 uT
)T
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1.2.2.2 Matrices

Aij (i, j)-th component of the matrix A (i-th row, j-th column)
Ai∗ i-th row of the matrix A
A∗j j-th column of the matrix A
I identity matrix of Rn,n (usually)
Di Di = eie

T
i ∈ S

n (usually)
‖A‖ Frobenius norm of A ∈ R

n,m Def. 2.3.1
AT transpose of A ∈ R

m,n

A−1 inverse of a nonsingular matrix A ∈ R
n,n

Tr(A) trace of A ∈ R
n,n, i.e. Tr(A) =

∑n
i=1 Aii

A •B Frobenius inner product of A,B ∈ R
m,n Def. 2.3.1

Diag(u) diagonal matrix of Sn made of the components of u ∈ R
n

diag(A) vector of Rn made of the diagonal elements of A ∈ R
n,n

rank(A) rank of a matrix A ∈ R
n,n

det(A) determinant of the matrix A
λk(A) k-th eigenvalue of the matrix X in the increasing order, λ1(A) =

λmin(A) and λn(A) = λmax(A)
A ≻ 0 A is positive definite (pd) Def. 2.1.2
A < 0 A is positive semidefinite (psd) Def. 2.1.1
A < B if A−B is positive semidefinite (Löwner partial order)
A1/2 positive semidefinite square root of A
A⊗B Kronecker product Def. 2.3.7

A⊕B The block-diagonal matrix made of A and B :
(

A 0
0 B

)

N (A) null-space of the matrix A Def. 2.3.18
R(A) range-space of the matrix A Def. 2.3.18

1.2.2.3 Polynomials

R[x] set of polynomials in x1, ..., xn variables with real coefficients Def. 2.5.4
Rd[x] set of polynomials of R[x1, ..., xn] of degree at most d Def. 2.5.4
deg(p) degree of the polynomial p Def. 2.5.3
p ∈ R

bn(d) vector of Rbn(d) containing the coefficients of the d-degree polynomial p Def. 2.5.3
p ≥ 0 on S p(x) ≥ 0, ∀x ∈ S : p is non-negative on S Def. 2.5.7
p > 0 on S p(x) > 0, ∀x ∈ S : p is positive on S Def. 2.5.7
p s.o.s. p is a sum of square Def. 2.5.8
p(.;P, p, π) 2-degree polynomial such that p(x) = xTPx+ 2pTx+ π §2.5.3
p(.;Q) 2-degree polynomial such that p(x) = x̃TQx̃ §2.5.3

1.2.3 Functions and sequences

domf domain of the function f
epif epigraph of the function f Def 2.4.32
∇f(x) Gradient of the function f at x Def 2.4.12
∇2f(x) Hessian of the function f at x Def 2.4.19
∂∇f(x0) Subgradient of the function f at x Def 2.4.21
Jf (x) The Jacobian matrix of the function f Def 2.4.20
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1.2.4 Sets

conv(S) convex hull of the set S ⊂ R Def 2.1.2
cone(S) conic hull of the set S ⊂ R Def 2.1.2
aff(S) affine hull of the set S ⊂ R Def 2.1.2
lin(S) affine hull of the set S ⊂ R Def 2.1.2
int(S) interior of the set S ⊂ R Def 2.1.28
rint(S) relative interior of the set S ⊂ R Def 2.1.31
cl(S) closure of the set S ⊂ R Def 2.1.29
bnd(S) boundary of the set S ⊂ R Def 2.1.30
dim(S) dimension of the set S ⊂ R Def 2.1.5
S⊥ orthogonal set of S ⊂ R Def 2.1.10
S∗ dual cone of the set S Def. 2.2.40
S◦ polar of the set S Def. 2.2.62
SC complement of the set S
|S| cardinal of the set S

S̃ homogenization of S, i.e., {λ
(

1 xT
)T

: λ ∈ R, x ∈ S}
S1 + S2 set of all the sum of vectors from S1 and S2

S1 × S2 Cartesian product of S1 and S2

−S set of all the vectors whose negative lie in S
S⊥ set of all the vectors that are orthogonal to all the vectors of S Def. 2.1.10
✶S indicator function of S Def. 2.1.18
B(x, r) B(x, r) = {y : ‖y − x‖2 ≤ r} : the ball of radius r with center x

1.2.5 Uncertainties

M(Ω) Set of non negative measure over the Borel σ-algebra of Ω Def. 2.6.3
N (µ, σ) Gaussian distribution of mean µ and variance σ2 Def. 2.6.14
P[A] Probability of an event A Def. 2.6.9
E(X) Expected value of a random variable X Def. 2.6.27
var(X) Variance of X Def. 2.6.31
σ(X) Standard deviation of X Def. 2.6.31
VaRε(X) ε-Value at Risk of the real random variable X Def. 2.6.42
CVaRε(X) ε-Conditional Value at Risk of the real random variable X Def. 2.6.44

1.2.6 Miscellaneous

[n] the set of integer from 1 to n, [n] = {1, ..., n}
n! factorial of n
(

n
k

)

binomial coefficient of n and k, equal to n!/k!(n− k)!

bn(d) binomial coefficient of n+ d and d, equal to
(

n+d
d

)

t(n) t(n) = n(n+ 1)/2, i.e., the n-th triangular number
s1
∨

s2 a statement that is true if and only if at least one of the two statements
s1 or s2 is true
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Chapter 2

Mathematical Background

The objective of this section is to state briefly, without proof, the mathematical concepts and results
that are used throughout this thesis, in order to keep it self-contained. It is mainly based on [59, 229]
for convex analysis and on [139, 259] for linear algebra.

Unless otherwise stated, we work in an Euclidean space R. Generally, R = R
n or R = S

n. By
default, we use notations valid for R

n, i.e., xi to designate the i-th component of x and xT y for the
inner product. Remark that there is a canonical mapping from S

n to R
t(n) and therefore, if needed, Sn

can be considered in the same way as the Euclidean space R
t(n).

2.1 Basic concepts

2.1.1 Vector spaces

Definition 2.1.1 Combinations
Given a collection of vectors {x(i)}i=1,..,m of R and a scalar coefficient vector λ ∈ R

m, the combination
∑m

i=1 λix
(i) is said to be :

− positive if λ > 0 ;

− affine combination if
∑

i λi = 1 ;

− convex if λ ≥ 0 and
∑

i λi = 1.

− linear otherwise ;

For example, the set of convex combinations of two points is the line segment connecting these
two points.

For each of this four adjectives, we define a corresponding hull :

Definition 2.1.2 Hull
Given a subset S ⊂ R :

− cone(S) is the set of the positive combination of elements of S;

− aff(S) is the set of the affine combination of elements of S;

− conv(S) is the set of the convex combination of elements of S;

− lin(S) is the set of the linear combination of elements of S;

These set can be viewed as the smallest cone, affine set, convex set, linear set that contains S
respectively.
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Definition 2.1.3 Linear independence
A collection of vectors {x(i)}i=1,...m of R are linearly independent if there exists no vector of scalars
λ ∈ R

m
∗ such that

∑m
i=1 λix

(i) = 0.

Definition 2.1.4 Affine independence
A collection of vectors {x(i)}i=1,...,m of R are affinely independent if

∑m
i=1 λix

(i) = 0 and
∑m

i=1 λi = 0
together imply that λi = 0 for all i = 1, ...,m.

Definition 2.1.5 Dimension
The dimension of a set S, denoted dim(S), is the maximal number of affinely independent vectors in S
minus 1.

Definition 2.1.6 Span
The span of a collection of vectors V = {e(i)}i=1,...,m is the set of linear combination of elements of V :

span(V ) =

{

m
∑

i=1

λie
(i) : λ ∈ R

m

}

Definition 2.1.7 Basis
A basis of the vector space R is a collection of linearly independent vectors V such that span(V ) = R.

Definition 2.1.8 Dual vector space
Let R be a real vector space. Its dual vector space, denoted R∗, consists of all linear maps L : A→ R.

2.1.2 Hilbert space, inner product and norms

Definition 2.1.9 Hilbert space
A Hilbert space is a vector space over the field of the real or complex numbers endowed with an inner
product.

Definition 2.1.10 Orthogonal sets
Two vectors x, y ∈ R are orthogonal if xT y = 0.

Let S ⊂ R. A vector y ∈ R is orthogonal to S if it is orthogonal to any vectors of S. Finally,
S⊥ denotes the set of all the orthogonal vectors to S, called orthogonal set of S.

Definition 2.1.11 Norm
A norm ‖.‖ on R is a function R → R+ that satisfies the following properties for any x, y ∈ R :
‖x‖ = 0 if and only if x = 0 (positivity)
‖λx‖ = |λ|‖x‖ for any scalar λ (homogeneous)
‖x+ y‖ ≤ x+ y (triangle inequalities)

Definition 2.1.12 lk-norm
For k ∈ [1,+∞[, the lk-norm of a vector x ∈ R

n is defined by ‖x‖k = (
∑n

i=1 |xi|k)1/k.

The max-norm, or l∞-norm is defined as ‖x‖∞ = maxi∈[n] |xi|. By abuse of terminology, the
cardinal of x, i.e.,

∑

i:xi 6=0 1 is sometimes called the norm 0 of x and written ‖x‖0. However this is not
a norm since it is not homogeneous.

Definition 2.1.13 Dual norm
Let ‖.‖ be a norm. Its dual norm, denoted ‖.‖∗ is defined as ‖y‖∗ = sup{xT y : ∀x such that ‖x‖ ≤ 1}.
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If p, q ∈ [1,+∞[ satisfy 1
p + 1

q = 1, then lp and lq are dual to each other. In particular, the
Euclidean norm l2 is self-dual. In the sequel, ‖.‖ denotes the Euclidean norm.

Theorem 2.1.14 Cauchy-Schwarz inequality
The Cauchy-Schwarz inequality states that xT y ≤ ‖x‖‖y|‖ and the equality holds if and only if x and y
are dependent.

Definition 2.1.15 Orthonormal basis
A basis {e(i)i=1,...,n of a Hilbert space H is orthonormal if ‖e(i)‖ = 1, i = 1, ..., n and e(i)

T
e(j) = 0 for all

i 6= j.

Definition 2.1.16 Euclidean space
An Euclidean space is a finite-dimensional real Hilbert space.

Definition 2.1.17 Incidence vector
Let U be a finite set with n elements. The incidence vector of S ⊂ U is a vector v ∈ {0, 1}n whose
entries are labeled with the elements of U : vu = 1 if u ∈ S, otherwise vu = 0.

Definition 2.1.18 Indicator function
The indicator function of S ⊂ R, denoted ✶S : R → {0, 1} is such that ✶S(x) = 1 if x ∈ S, ✶S(x) = 0
otherwise.

2.1.3 Topology

Definition 2.1.19 Open and closed ball
An open (resp.closed) ball around a point a ∈ R is a subset of R of the form {x ∈ R : ‖x − a‖ < r}
(resp. {x ∈ R : ‖x− a‖ ≤ r}).

Definition 2.1.20 Open set
A set S ⊂ R is open if it contains an open ball around each of its point.

Definition 2.1.21 Closed set
A set S ⊂ R is closed if its complement is open.

Example 2.1.22 ]a, b[ is open. If f is continuous function over R : {x ∈ R : f(x) ≤ a} is closed.

Proposition 2.1.23 In an Euclidean space, a set S is closed if and only if S contains the limit point
of each convergent sequence of points in S.

Definition 2.1.24 Bounded set
A set S ⊂ R is bounded if there exists M ∈ R such that ‖x‖ ≤M for all x ∈ S.

Definition 2.1.25 Compact set
A set S is said compact if for every arbitrary collection of subset {S(i)}i∈I such that ∪iinIS(i) = S,
there exists J , a finite subset of I such that ∪iinJS(i) = S.

Theorem 2.1.26 Bolzano-Weierstrass theorem
In an Euclidean space, a set is compact if and only if it is closed and bounded.

Theorem 2.1.27 Weierstrass’ theorem
The image of a compact set by a continuous real-valued function is compact.
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In other words, a continuous real-valued function f of a compact set S into R attains its maximum
and minimum in S, i.e., there are points x1, x2 ∈ S such that f(x1) ≤ f(x) ≤ f(x2), ∀x ∈ S.

As a consequence, if S is a closed set of R then it is possible to define the function dS : R → R,
that measure the distance from x to S :

dS(x) = min{‖x− s‖ : s ∈ S}

Indeed, for any point of s0 ∈ S, dS(x) is the infimum of ‖x− s‖ over S ∩{s : ‖s−x‖ ≤ ‖s0−x‖} which
is compact. Consequently, the infimum is necessarily attained. If s̄ ∈ S is such that ‖x − s̄‖ = dS(x),
then s̄ is said to be a nearest point of S to x. Such a point may not be unique.

Definition 2.1.28 Interior
The interior of a set S, denoted int(S), is the union of all open set contained in S.

Definition 2.1.29 Closure
The closure of a set S, denoted cl(S), is the intersection of all closed set contained in S.

int(S) is open since the union of any family of open sets is open and cl(S) is closed since the
intersection of any family of closed set is closed.

Definition 2.1.30 Boundary
The boundary of a set S, denoted bnd(S), is cl(S) \ int(S).

Let present the concept of relative topology, which involves the notion of affine hull of a set S
(see Def. 2.1.2). Indeed, dim(S) = dim(aff(S)) and it is interesting to study S as a subset of aff(S). In
particular, the notion of relative interior will be very useful in optimization :

Definition 2.1.31 Relative interior
Let S be a subset of R and x0 ∈ S. We say that x0 is a relative interior point of S, denoted x0 ∈ rint(S)
if there is r > 0 such that {x ∈ aff(S) : ||x− x0|| < r} ⊆ S.

Loosely speaking, rint(S) would be the interior of S if R = aff(S). For example, let us consider
a segment in R

2 : S = {
(

x1x2

)T
: 0 ≤ x1 ≤ 1, x2 = 0}. Then dim(S) = 1 and int(S) = ∅. However, the

relative interior is not empty : rint(S) = {
(

x1x2

)T
: 0 < x1 < 1, x2 = 0}.

2.2 Geometry

2.2.1 Halfspaces and hyperplanes

Definition 2.2.1 Halfspace
A set H ⊂ R is an halfspace if it is of the form H = {x ∈ R : aTx ≤ α} for some nonzero a ∈ R and
scalar α.

Definition 2.2.2 Hyperplane
An set H ⊂ R is an hyperplane if it is of the form H = {x ∈ R : aTx = α} for some nonzero a ∈ R
and scalar α. a is called the normal vector of the hyperplane H.

An hyperplane is therefore an affine set of dimension n − 1 that divides R in two halfspace :
H− = {x ∈ R : aTx ≤ α} and H+ = {x ∈ R : aTx ≥ α}. It has dimension n− 1.
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Definition 2.2.3 Supporting hyperplane
An hyperplane H is a supporting hyperplane of an arbitrary set S if S ∩H 6= ∅ and S is contained in
one of the two halfspaces generated by H : S ⊂ H− or S ⊂ H+.

S ∩H 6= ∅ implies that there exists x0 ∈ S such that aTx0 = α. Then a is said to support C at
x0. The support is proper if aTx > α for some x ∈ S.

Definition 2.2.4 Separating hyperplane
Let us consider two sets S, T ⊂ R. The hyperplane H is a separating hyperplane for S and T if S ⊂ H−

and T ⊂ H+.

Definition 2.2.5 Strongly separating hyperplane
Let us consider two sets S, T ⊂ R. The hyperplane H = {x ∈ R : aTx = α} is said to strongly separates
S and T if there is an ε > 0 such that aTx ≤ α− ǫ, ∀x ∈ S and aTx ≥ α+ ε, ∀x ∈ T .

Definition 2.2.6 Valid inequality
An inequality f(x) ≤ 0 is said to be valid for a set S if it holds over S.

Definition 2.2.7 Dominated inequality
A linear inequality aTx ≤ b dominates another linear inequality cTx ≤ d if there exists λ > 0 such that
a = λc and λb ≤ d. If λb = d the constraints are said to be equivalent.

2.2.2 Convex sets

Definition 2.2.8 Convex set
A set C of R is said convex if it is closed under convex combination, i.e., if λx+(1−λ)y ∈ C whenever
x, y ∈ C and 0 ≤ λ ≤ 1.

Geometrically, the set of the convex combination of x and y makes up the line segment connecting
x to y. This implies that C contains all the line segments connecting two points of C.

Figure 2.1: Convex and non-convex set

Example 2.2.9 The set {
(

x0 x
)

∈ R
n+1 : ‖x‖k ≤ x0} is convex. The proof is straightforward by

using the triangle inequality for the norm ‖.‖k.
An ellipsoid (see Def. 2.2.65) is a convex set.

Let S1 and S2 be two convex sets such that S1 ∩ S2 = ∅. Then S1 ∪ S2 is not convex.

Proposition 2.2.10 The intersection of a collection of convex sets is itself convex.
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Remark : as illustrated in Example 2.2.9, the union of a collection of convex sets might be not
convex.

Proposition 2.2.11 The projection of a convex set onto some of its coordinates is convex. More
precisely, if S ⊂ R

n × R
m is convex, then {x ∈ R

n : (x, y) ∈ S} is convex.

Example 2.2.12 If S is convex, then its convex hull is himself.

Definition 2.2.13 Extreme point
Let C be a convex subset of R. An extreme point of C is a point x ∈ C such that

x = λy + (1− λ)z for λ ∈ [0, 1], y, z ∈ C ⇒ x = y or/and x = z

In other words, an extreme point is a point that does not belong to the interior of any segment
lying entirely in C.

Theorem 2.2.14 Carathéodory’s theorem
Let C be a compact convex subset of Rn. Then there exists an integer m ≤ n+ 1 such that every point
x of C may be written as a convex combination of m extreme points of C.

Corollary 2.2.15 Let S ⊂ R
n. There exists an integer m ≤ n+ 1 such that each x ∈ conv(S) may be

written as a convex combination of m elements of affinely independent points in S.

This theorem facilitates the characterization of conv(S) since each point can be written as a
convex combination of a given number of the points of S. This enables the following "explicit" charac-
terization of conv(S) :

x ∈ conv(S) ⇔















n+1
∑

i=1

λixi = x

xi ∈ S, i = 1, ..., n+ 1

λi ∈ [0, 1], i = 1, ..., n+ 1

has a solution

This Carathéodory’s theorem is also used to prove the following proposition :

Proposition 2.2.16 In R
n, the convex hull of a compact set is compact.

Proposition 2.2.17 Let C be a nonempty closed convex set, then for all x ∈ R, x admits an unique
nearest point x0 in C. Moreover, x0 is the solution of the inequality

(x− x0)(y − x0) ≤ 0, ∀y ∈ C(

Consequently, for any nonempty closed convex set C, we are able to define the function pC : R → C
such that pC(x) = x0. This function is called projection over C.

Definition 2.2.18 Projection over a convex set
Let us consider a convex set C ⊂ Rn and an element x of R. The projection of x over C is the unique
minimizer of minx0∈C ‖x− x0‖.

We can extend this definition to the notion of projection onto a subspace of R.

Definition 2.2.19 Projection onto a subspace
Let us consider two subspaces of R such that R = R1 × R2. Then the projection of an element
x = (x1, x2) of R onto R1 yields x2.
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Indeed, there is an isomorphism between the image of this projection and the image of the
projection of R onto its subset {(x1, x2) ∈ R : x2 = x̄2}, for any x̄2 ∈ R2.

Definition 2.2.20 Projection of a set onto a subspace
Let us consider two subspaces of R such that R = R1 × R2. Then the projection of a subset S ⊂ R
onto R1 is

{x1 ∈ R1 : (x1, x2) ∈ S for some x2 ∈ R2}

Moreover, the following theorem shows that the unicity of the nearest point is a sufficient condition
for convexity :

Theorem 2.2.21 Motzkin’s characterization of convex sets
Let C be a nonempty closed set. Assume that for all x ∈ R, x has an unique nearest point in C, then C
is convex.

Proposition 2.2.22 If a properly supports the convex set C at x0, then the relative interior of C does
not meet the supporting hyperplane. That is, aTx > aTx0 for all x ∈ rint(C).

Theorem 2.2.23 Strong Separating Hyperplane Theorem Let C a nonempty closed convex subset of R
and x ∈ R \ C. Then there exists an hyperplane H that strongly separates C and x.

This theorem is crucial for convex optimization since it is used to guarantee the existence of a
separation oracle within the Ellipsoid method. As a consequence, any convex optimization problem can
be solved in polynomial time as soon as such a separation oracle can be computed in polynomial time.

Corollary 2.2.24
Let C1 and C2 be disjoint nonempty closed convex subsets of R. Then C1 and C2 can be separated. If,
moreover, C1 is compact, then C1 and C2 can be strongly separated.

Definition 2.2.25 Faces of a convex set
Let C be a convex subset of R. A convex subset F of C is a face of C whenever the following condition
holds :

λx+ (1− λ)y ∈ F for some λ ∈]0, 1[, x, y ∈ C ⇒ x, y ∈ F

In other words, if a relative interior of the line segment between x and y lies in F , then the whole
line segment lies in F . C and ∅ are called the trivial faces of C and faces of dimension 1 are the extreme
points of F .

Definition 2.2.26 Exposed face
A face is exposed if it is a set of the form H ∩ C where H is a non trivial supporting plane of C.

What makes these set interesting for optimization is the following theorem :

Theorem 2.2.27 Let C be a convex set and f a linear function. Then the minimum of f over C are
attained on exposed faces of C, i.e.

{x ∈ C : f(x) = min
x∈C

f(x)} is an exposed face of C (2.1)

The same holds for the maximum.

Theorem 2.2.28 Faces of intersection Theorem Let C1, C2 be convex subsets of R. Then

F is a face of C1 ∩ C2 ⇔ F = F1 ∩ F2 for some Fi faces ofCi
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2.2.3 Cones

Definition 2.2.29 Cone
K ⊂ R is a cone if it is closed under positive scalar multiplication :

∀λ > 0, x ∈ K ⇒ λx ∈ K

Note that many authors define a cone as a nonempty set, closed under non-negative scalar
multiplication, instead of positive scalar multiplication. This is the same as assuming that any cone
contains the origin, which is not what we do here.

Theorem 2.2.30
K is a convex cone, i.e., a cone that is convex, if and only if it is closed under addition and positive
scalar multiplication.

Example 2.2.31 The following sets are famous convex cones :

− The non-negative orthant : {x ∈ R
n : xi ≥ 0, i = 1, ..., n} ;

− The positive orthant : {x ∈ R
n : xi ≥ 0, i = 1, ..., n} ;

− The second-order cone or Lorentz cone or ice-cream cone : {(x0, x) ∈ R
n+1 : ‖x‖ ≤ x0}.

Definition 2.2.32 Pointed cone
A cone K is pointed if K ∩ {x : −x ∈ K} = {0}.

This definition implies that a pointed cone contains the origin but does not contain any straight
line passing through the origin.

Definition 2.2.33 Solid cone
A cone K is said to be solid if int(K) 6= ∅.

In other words, a cone K is solid if it is full dimensional.

Definition 2.2.34 Proper cone
A cone is said proper if it is convex, closed, pointed and solid.

Example 2.2.35 R
n
+ is a proper cone.

Definition 2.2.36 Ray
The ray generated by a non-zero vector x ∈ R is the set {λx : λ ≥ 0}.

Clearly, every cone contains the whole ray Rx together with any of its non-zero elements x.

Definition 2.2.37 Extreme ray in K

Given a closed convex cone K, a ray R is called extreme (in K) if ∀x, y ∈ K, x+y ∈ R⇒ x, y ∈ R

Proposition 2.2.38 Every closed pointed cone can be generated by a positive combination of its extreme
rays.

By a slight abuse of language, we say that a cone K is generated by some vectors if it is the set
of positive combination of these vectors.
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Theorem 2.2.39 Carathéodory’s theorem for cones
Let S ⊂ R. There exists an integer m ≤ n such that each x ∈ cone(S) may be written as a nonnegative
combination of m elements of affinely independent elements of S. In particular, m ≤ n+ 1.

Definition 2.2.40 Dual cone

Let S be a subset of R. Then S∗ = {y ∈ R : yTx ≥ 0, ∀x ∈ S} denotes its dual cone.

Example 2.2.41 The dual of the cone Cp = {x ∈ R
n : ‖x1, ..., xn−1‖p ≤ xn} is the cone Cq with

1/p+ 1/q = 1.

Proposition 2.2.42 Let S be a subset of R. Then S∗∗ is the closure of the smallest convex cone
containing S.

Theorem 2.2.43 Properties of the dual cone Let S be a nonempty subset of R. Then

(i) S∗ is a closed convex cone ;

(ii) If S is a closed convex cone, then S∗∗ = S

(iii) If S is solid (int(S) 6= ∅), then S∗ is pointed;

(iv) S is a proper cone if and only if S∗ is a proper cone.

Proposition 2.2.44 With C1, C2 ⊂ R two convex cones, the following properties holds :

− C∗∗1 = cl(C1) ;

− C1 ⊂ C2 ⇒ C∗2 ⊂ C∗1 ;

− (C1 + C2)∗ = C∗1 ∩ C∗2 ;

Furthermore, if C1, C2 are closed, such that rint(C1) ∩ rint(C2) 6= ∅, then (C1 ∩ C2)∗ = C∗1 + C∗2

Definition 2.2.45 Recession cone
Let S be a subset of R and x a point of S. Then SR(x) = {d ∈ R : x+λd ∈ P, ∀λ ≥ 0} is the recession
cone of S at x. The nonzero elements of SR(x) are called the rays of S.

The recession cone is the set of all directions along which we can move indefinitely from x and
still be in S.

Proposition 2.2.46 A set is bounded if and only if its recession cone at any point is trivial, i.e., it
contains only 0.

Definition 2.2.47 Simplicial cone
A cone K ⊂ R

n is called a simplicial cone if it is generated by a finite number of linearly independent
vectors.

Clearly, dim(K) equals the number of the generating vectors.
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2.2.4 Polyhedra and polytopes

Polyhedra and polytopes play a key role in optimization as they are the geometrical representation of
a feasible region expressed by linear constraints.

Definition 2.2.48 Polyhedron
A set P ⊂ R is a polyhedron if it can be expressed as P = {x ∈ R : aTi x ≤ bi, i = 1, ...,m}.

A polyhedron can be viewed as the intersection of of a finite number of halfspace of R and is
therefore convex. As such, it admits some extreme points, that are also called vertices.

Definition 2.2.49 Polytope
A set P is called a polytope if it is the convex hull of a finite number of elements of R.

We will see later that a set is a polytope if and only if it is a bounded polyhedron.

Example 2.2.50 A simplex S in R is the convex hull of a set of d affinely independent vectors of R.
It is a polytope of dimension n. In particular, the standard simplex S = {x ∈ R

n
+ : eTx = 1} is the

convex hull of the vectors {ei}i=1,..,n.

Definition 2.2.51 Polyhedral cone
A set that is both a cone and a polyhedron is called a polyhedral cone. It can be represented in the form
P = {x ∈ R : aTi x ≥ 0, i = 1, ...,m}.

Proposition 2.2.52 Let P = {x ∈ R : aTi x ≤ bi, i = 1, ...,m} a polyhedron of R and x a point of P.
Then the recession cone of P at x can be formulated as following :

PR(x) = {d ∈ R : aTi d ≤ 0, i = 1, ...,m}

The recession cone of a polyhedron is therefore a polyhedral cone and is independent of the
considered point x. Therefore, it is denoted by PR and its elements are called the rays of P. For a
polytope, the recession cone is trivial, by applying Prop. 2.2.46.

Proposition 2.2.53 r ∈ PR is an extreme ray of the polyhedron P ⊂ P if it is nonzero and if there
are n− 1 linearly independent constraints binding at r.

The following theorem is the basis for polyhedral combinatorics :

Theorem 2.2.54 Minkowski-Weyl main theorem for polyhedra
A polyhedron P ⊂ R

n can be represented as

P = conv(V ) + cone(R)

for finite set V,R ⊂ R
n. In particular, if P is pointed, V is the set of extreme points (vertices) of P

and R is the set of extreme rays of P .

Conversely, if V and R are finite subsets of Rn, then there exists a matrix A ∈ R
m,n and a vector

b ∈ R
m for some m such that :

conv(V ) + cone(R)

Such a representation of a polyhedron is called canonical representation.

This theorem gives rise to two corollaries, with V = {0} or R = {0}. With R = {0}, which is
equivalent to impose that the polyhedra be bounded, then it is a polytope :
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Corollary 2.2.55 A set is a polytope if and only if it is a bounded polyhedra.

In other words, a polytope can be represented in two ways : either as the convex hull of a set of
vertices (V-representation), or as the intersection of half-spaces (H-representation). In theory, we can
always convert from one representation to another. In particular, being able to determine the polyhedral
representation of a polytope is very desirable for discrete optimization.

In practice, some algorithms were designed to perform this conversion. The most famous is
maybe the double description method, initially proposed in 1953 [199], that can also be considered as a
constructive proof of the Minkowski-Weyl theorem. Let us cite also the Fourier-Motzkin elimination that
can be used in this framework but not very efficiently, and a more recent algorithm, called backtrack
[99], easier to implement. These algorithms have resulted in numerous software such as PORTA or
Polymake.

This may be very useful for discrete optimization but we must bear in mind that a "small" V-
representation can lead to a H-representation involving a huge number of inequalities and vice-versa.
For example, a d-cube have 2d facets and 2d vertices.

Corollary 2.2.56 Every pointed polyhedral cone is the conic hull of its (finitely many) extreme rays.

In other words, a cone C is polyhedral, i.e., ∃A ∈ R
n,m : C = {x : Ax ≥ 0} ) if and only if it is

finitely generated, i.e., ∃B ∈ R
k,n :: C = {λB : λ ∈ R

k
+}.

Proposition 2.2.57 A face of a polyhedron P is of the form {x ∈ P : aTx = b} where aTx ≤ b is some
valid inequality of P.

For a polyhedron P, faces of dimension 1 are called edges and face of dimension dim(P)− 1 are
called facets.

The following theorem plays a central role in linear programming.

Theorem 2.2.58 Let us consider a polyhedron P ⊂ R.

If max{cTx : x ∈ P} is finite then there is an optimal solution that is an extreme point of P.

If max{cTx : x ∈ P} is unbounded then P has an extreme ray r∗ such that cT r∗ > 0.

Proposition 2.2.59 An inequality is valid for a polyhedron P if and only if it is either equivalent or
dominated by a conic combination of inequalities defining P .

2.2.4.1 Projection

We consider a polyhedron P = {(x, y) ∈ R
p+q : Ax + By ≤ c}. Let recall that its projection onto the

x-space is :
Projx(P ) = {x ∈ R

p : (x, y) ∈ P for some y ∈ R
q}

The objective is to find a polyhedral representation of Projx(P ). Two methods can be used for
this :

− The Fourier-Motzkin elimination, a mathematical algorithm for eliminating variables from a
system of linear inequalities. Here, we aim at eliminating the variables y.

− The Balas-Pulleyblank elimination [22], where several variables are eliminated at a time.

To proceed to the Balas-Pulleyblank elimination, we define the so-called projection cone.
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Definition 2.2.60 Projection cone
Let us consider a polyhedron P = {(x, y) ∈ R

p+q : Ax+By ≤ c}. Its projection cone associated with x
is the following polyhedral cone :

W = {u : uB = 0, u ≥ 0}

In other words, W contains all the positive combinations of the rows of B that vanish. This
allows to state the following theorem, which is fundamental for Lift & Project.

Theorem 2.2.61
Projx(P ) = {x ∈ R

p : uAx ≤ uc, y ∈ ext(W )}
where ext(W ) denotes the set of extreme rays of W .

2.2.4.2 Polarity

The following notion of polar set is closely related to the dual cone.

Definition 2.2.62 Polar
Let S be a subset of Rn. Then its polar is the set S◦ = {

(

π0, π
T
)T ∈ R

n+1 : πTx ≤ π0, ∀x ∈ S}.

In other words, the elements of the polar corresponds to all the valid linear inequality over S.
This set is closed by nonnegative combination, consequently S◦ is a convex cone. Furthermore, it is
clear that S◦ = (conv(S))◦.

Proposition 2.2.63 Given a nonempty polyhedron P = {x ∈ R
n : Ax ≤ b} with rank(A) = n, P ◦ is a

polyhedral cone described by :
πxk − π0 ≤ 0, for k ∈ K
πrj ≤ 0, for j ∈ J

where {xk}k∈K and rjj∈J are the extreme points and extreme rays of P .

The following theorem is the major result on polarity.

Theorem 2.2.64
Given a nonempty polyhedron P = {x ∈ R

n : Ax ≤ b} with rank(A) = n and dim(P ) = n, then
(

π0 πT
)T

with π 6= 0 is an extreme ray of P ◦ if and only if it defines a facet of P .

2.2.5 Ellipsoid

Let us consider the unit sphere {x ∈ R
n : xTx ≤ 1} and its image by the affine transformation

x 7→ y = Ax+ a with A a positive definite matrix of Sn. This leads to the definition of an ellipsoid.

Definition 2.2.65 Ellipsoid
Given a positive real ρ, an affine mapping Π : Rn → R

m and a matrix Q ∈ R
l,n, the ellipsoid EΠ,Q,ρ ⊂

R
m is defined as EΠ,Q,ρ = {Π(x) : ‖Qx‖ ≤ ρ}.

In particular, if A is a positive definite matrix and a ∈ R
m, {y ∈ R

m : (y − a)TA−1(y − a) ≤
1} = {Ax+ a : xTx ≤ 1} is an ellipsoid and a is its center.

Proposition 2.2.66 The volume of the ellipsoid E(a,A) is proportional to det(A).

233



2.3 Linear Algebra

2.3.1 Matrices

Definition 2.3.1 Matrix
A matrix A ∈ R

m,n is an m-byn array of real numbers. If n = m the matrix is said to be square.

Definition 2.3.2 Submatrix
A submatrix of a given matrix A is a matrix obtained by deleting rows and columns of A.

Definition 2.3.3 Transpose
The transpose of the matrix A ∈ R

m,n, denoted AT , is a matrix of Rn,m such that AT
i,j = Aj,i.

Adding two matrices is straightforward with a component-wise addition. Likewise is defined the
scalar multiplication. Regarding the product of two matrices, things are a little more complicated and
there are three possibilities. The first one is the most usual one, denote matrix multiplication.

Definition 2.3.4 Matrix multiplication
Let A ∈ R

k,m and B ∈ R
m,n. Then AB ∈ R

k,n is defined as (AB)i,j =
∑m

l=1 Ai,lBl,j.

Note that this product is not commutative, even if k = n. However it has some other good
properties.

Proposition 2.3.5 The matrix multiplication is :

− Associative : (AB)C = A(BC) ;

− Distributive over matrix addition : A(B + C) = AB +AC ;

− Scalar multiplication : λ(AB) = (λA)B = A(λB) ;

− Commutative by transpose : (AB)T = BTAT .

The Hadamard product of two matrices of the same dimension is the component wise product.

Definition 2.3.6 Hadamard product
Let A ∈ R

m,n and B ∈ R
m,n. Then the Hadamard product of A and B, denoted A◦B ∈ R

m,n is defined
as (A ◦B)i,j = Ai,jBi,j.

Finally, the Kronecker product applies to matrices of any dimension :

Definition 2.3.7 Kronecker product
Let A ∈ R

k,l and B ∈ R
m,n. Then the Kronecker product of A and B, denoted A ⊗ B ∈ R

km,ln is
defined as (A⊗B)m(i−1)+i′,n(j−1)+j′ = Ai,jBi′,j′ .

We are interested in the vector space R
n,m of real n × m matrices. Any element of R

n,m can
be viewed as an element of Rnm and consequently, Rn,m is canonically embedded with an Euclidean
structure, by importing the Euclidean structure of Rnm. In particular it is endowed with the so-called
Frobenius inner product.

Definition 2.3.8 Frobenius inner product and Frobenius norm
The Frobenius inner product is defined as following :A•B = Tr(ATB) = Tr(BTA) =

∑n
i=1

∑m
j=1 AijBij

for any A,B ∈ R
n,m. For a matrix A ∈ R

n,m, its associated Frobenius norm is ‖A‖F =
√
A •A.
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Proposition 2.3.9 For A ∈ R
n,m, u ∈ R

n, v ∈ R
m we have uTAv = A • uvT .

Definition 2.3.10 Rank
Let us consider a matrix A ∈ R

n,m. Its rank, denoted rank(A) is a nonnegative integer defined as the
largest number of columns of A that constitutes a linearly independent set.

Proposition 2.3.11 rank(AT ) = rank(A)

Consequently, the rank may equivalently be defined in terms of linearly independent rows.

Proposition 2.3.12 For two matrices A,B ∈ R
n,m, rank(AB) ≤ min{rank(A), rank(B)} and rank(A+

B) ≤ rank(A) + rank(B).

Theorem 2.3.13
Let us consider a matrix A ∈ R

n,m. There exists a factorization of the form A = UΣV T where U and
V are n × n and m × m unitary matrix (see Def. 2.3.37), and Σ is an n × m diagonal matrix with
nonnegative real numbers on the diagonal. Such a factorization is called the singular value decomposition
of A.

Definition 2.3.14 Singular values of a matrix
Let us consider a matrix A ∈ R

n,m and A = UΣV T its singular value decomposition. The diagonal
entries σi of Σ are called the singular values of A.

Proposition 2.3.15 The rank of a matrix A ∈ R
n,m equals the number of its non-zero singular values.

2.3.2 Linear mapping

Definition 2.3.16 Linear mapping
A mapping f : Rn → R

m is linear if it satisfies the condition of additivity ; f(x)+f(y) = f(x+y), ∀x, y ∈
R

n and homogeneity : f(λx) = λf(x), ∀x ∈ R
n, λ ∈ R.

Proposition 2.3.17 Let f be a mapping from R
n to R

m. Then there exists a matrix A ∈ R
m,n such

that f(x) = Ax, ∀x ∈ R
n.

We will see that the properties of this mapping are closely linked with the properties of the matrix
A.

Definition 2.3.18 Null-space and range-space
Let f be a linear mapping from R

n to R
m. The null-space or kernel of f is the set N (f) = {x ∈ R

n :
f(x) = 0} and the range-space or image of f is the set R(f) = {y ∈ R

m : y = f(x) for some x ∈ R
n}.

By analogy, we denote by N (A) = {x ∈ R
n : Ax = 0} the null-space of A and R(A) = {y ∈ R

m :
y = Ax for some x ∈ R

n} the range-space of A, for any matrix A ∈ R
m,n.

Proposition 2.3.19 Let us consider a matrix A ∈ R
m,n. Then dim(R(A)) = rank(A)

Theorem 2.3.20 Rank theorem
Let us consider a matrix A ∈ R

m,n. The range-space of AT and the null-space of A form a direct sum
decomposition of Rn : ∀x ∈ R

n, x = x1 + x2 for some x1 ∈ N (A), x2 ∈ R(AT ).

Furthermore dim(N (A)) + rank(A) = n.
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This theorem leads to the following fundamental results.

Corollary 2.3.21 Let us consider a matrix A ∈ R
n,m: (R(AT ))⊥ = N (A)

Corollary 2.3.22 Let us consider two matrices A ∈ R
l,n, B ∈ R

m,n. We have the following equiva-
lence :

N (A) ⊂ N (B)⇔ ∃M ∈ R
m,l such that B = MA

Let us consider a m× n matrix M of rank n. The QR-factorization of M finds an orthonormal
m-by-m matrix Q and upper triangular m-by-n matrix R such that M = QR. If we define Q = [Q1 Q2],
where Q1 is m-by-n and Q2 is m-by-(m−n), then the columns of Q2 form an orthonormal basis of the
null space of AT .

2.3.3 Square matrices

From now on, we restrict our attention to square matrices.

Definition 2.3.23 Nonsingular matrix
A matrix A ∈ R

n,n is said nonsingular or invertible if there exists a matrix in R
n,n, denoted A−1 such

that AA−1 = A−1A = I, where I denotes the identity matrix of Rn,n.

Proposition 2.3.24 Let us consider a matrix A ∈ R
n,n. A is nonsingular if and only if its rank is

equal to n. Otherwise it is said to be singular.

Proposition 2.3.25 A matrix A ∈ R
n,n is singular if and only if there exists x ∈ R

n
∗ such that Ax = 0.

Definition 2.3.26 Determinant
Let A be a square matrix of Rn,n. Then the determinant of A, denoted det(A) is defined as :

det(A) =
∑

σ∈Σ

(−1)σ
∏

i

Aiσ(i)

where Σ is the set of the permutation of the indices {1, ..., n}. (−1)σ = 1 or −1 depending on the
permutation σ being odd or even.

Generally, when n exceeds 3, the calculation of A from the definition is impractical, so we use a
more practical method based on matrix decomposition.

Proposition 2.3.27 Let us consider matrices A,B ∈ R
n,n. Their determinants present the following

characteristics

− det(λA) = λdet(AT )

− det(AB) = det(A)det(B) ;

− Rows and columns can be interchanged without affecting the absolute value (but affecting the
sign) of the determinant. In particular det(A) = det(AT ).

− The determinant of a triangular matrix is the product of its diagonal entries ;

− The matrix A is nonsingular if and only if det(A) 6= 0 ;

The following matrices are of great interest for Integer Linear Programming.
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Definition 2.3.28 Totally unimodular matrix
A (possibly not square) matrix A ∈ Rn,m is totally unimodular if every square submatrix has determi-
nant 0, 1 or −1.

From the definition, it follows that any totally unimodular matrix has only 0, 1 or −1 entries.
The interest for Integer Linear Programming comes from the following theorem.

Theorem 2.3.29 Let A ∈ R
n,m be a totally unimodular matrix and b ∈ Z

m an integer vector. Then
all the vertices of the polyhedron {x : Ax ≤ b} are integer.

Definition 2.3.30 Principal submatrix
Let A ∈ R

n,n be a square matrix. Its principal submatrices are the submatrices obtained by removing
k rows and the same k columns. Its leading submatrices are the principal submatrices obtained by
removing the k last rows and columns.

Definition 2.3.31 Minor
A minor of a matrix A ∈ R

n,m is the determinant of a square submatrix of A. If A is square, its
principal minors are the determinants of its principal submatrices and its leading principal minors are
the determinants of its leading submatrices.

Proposition 2.3.32 Factorization LU
Let us consider a square nonsingular matrix A ∈ R

n,n. Then there exists a unit lower triangular matrix
L ∈ R

n,n and an upper triangular matrix U ∈ R
n,n such that A = LU .

Computing L and U can been carried out in O(n3) floating point operations.

Definition 2.3.33 Eigenvalues and eigenvectors
Let A ∈ R

n,n. If x ∈ R
n and λ ∈ C satisfy Ax = λx then λ is called eigenvalues of A and x is called

an eigenvector of A associated with λ.

Remark that A is nonsingular if and only if it does not admit 0 as eigenvalue.

Proposition 2.3.34 Let us consider a square matrix A ∈ R
n,n. The set of eigenvalues of A coincides

with the root of the characteristic polynomial of A, defined by p(x) = det(xI −A).

Definition 2.3.35 Multiplicity
The multiplicity of an eigenvalue of a matrix A ∈ R

n,n is the multiplicity of the eigenvalue as a zero of
the characteristic polynomial of A.

This definition of multiplicity is also known as the algebraic multiplicity. It is equal or larger than
the geometric multiplicity of an eigenvalue λ defined as the maximal number of linearly independent
eigenvectors associated with λ.

Each matrix A ∈ R
n,n has, among the complex numbers, exactly n eigenvalues, counting multi-

plicities. Consequently, we denote by {λk(A)}k=1,...,n the set of eigenvalues ranked in increasing order.

Proposition 2.3.36 Let us consider a square matrix of A ∈ R
n,n. Then

n
∑

i=1

λi(A) = Tr(A)

n
∏

i=1

λi(A) = det(A)

Definition 2.3.37 Unitary matrix
Let us consider a square matrix of A ∈ R

n,n. Then A is unitary if ATA = AAT = I.
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2.3.4 Symmetric matrices

We provide here some famous results of linear algebra concerning symmetric matrices or, more generally,
Hermitian matrices. For sake of clarity, we restrict ourselves to real matrices here but we refer the reader
to [139] for a more general exposure.

Definition 2.3.38 Symmetric matrix
A square matrix A ∈ R

n×n is symmetric if AT = A.

The set of symmetric matrices of Rn×n is a vector space denoted S
n.

Proposition 2.3.39 For A,B ∈ S
n, the following statements holds :

− λA+ µB ∈ S
n for any real scalars λ, µ, i.e., Sn is closed under linear combination ;

− AB is symmetric if and only if A and B commute and S
n is not closed under matrix product ;

− AAT = ATA = (AAT )T ∈ mathbbSn;

− If A is nonsingular, A−1 ∈ S
n ;

− For any matrix M ∈ R
n,n, 1

2 (M +MT ) ∈ S
n is known as the symmetric part of M .

The following theorem and its corollaries are fundamental for the acquaintance of the area.

Theorem 2.3.40 Spectral theorem for symmetric matrices
A square matrix A ∈ R

n,n is symmetric if and only if there exists orthonormal matrix U ∈ R
n×n

(U−1 = UT ) such that :
A = UΛUT

where Λ is a real diagonal matrix containing the eigenvalues of A and the column-vectors {U∗,j}j=1,...,n

of U are the eigenvectors of A : AU∗,j = ΛjjU∗,j.

This decomposition is known as the eigenvalue factorization of A.

Corollary 2.3.41 All the eigenvalues of a symmetric matrix are real.

Corollary 2.3.42 Let A a square matrix of Rn,n. If A is symmetric, then A has a set of n eigenvectors
that forms an orthonormal basis of Rn.

Corollary 2.3.43 A can be written as a linear combination of the rank 1 matrices viv
T
i :

A =
∑

i = 1nΛiiUi,∗Ui,∗
T

Corollary 2.3.44 A symmetric matrix A ∈ S
n has rank 1 if and only if there exists a vector v ∈ R

n

and a real λ such that A = λvvT .

Corollary 2.3.45 Let A be a symmetric matrix and A = UΛUT its eigenvalue factorization. Then
N (A) = N (U).

The following results are known as the variational characterization of the eigenvalues of a sym-
metric matrix. There are crucial for the relationship between Semidefinite Programming and eigenvalue
optimization.
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Theorem 2.3.46 Rayleigh-Ritz Theorem
Let A ∈ S

n be a symmetric matrix. Then

λ1(A)xTx ≤ xTAx ≤ λn(A)

λ1 = minx 6=0
xTAx
xT x

= minxT x=1 x
TAx

λn = maxx 6=0
xTAx
xT x

= maxxT x=1 x
TAx

Theorem 2.3.47 Courant-Fisher Theorem
Let A ∈ S

n be a symmetric matrix and k an integer such that 1 ≤ k ≤ n. Then

min
u1,··· ,un−k∈Rn

max
x∈Rn,x 6=0,x⊥u1,··· ,un−k

xTAx
xT x

= λk(A)

max
u1,··· ,uk−1∈Rn

min
x∈Rn,x 6=0,x⊥u1,··· ,uk−1

xTAx
xT x

= λk(A)

Theorem 2.3.48 Weyl Theorem
Let A and B be symmetric matrices of Sn and k an integer such that 1 ≤ k ≤ n. Then

λk(A) + λ1(B) ≤ λk(A+B) ≤ λk(A) + λn(B)

2.3.5 Farkas’ lemma

This section was inspired by [212] that contains a in-depth review of the Farkas’ Lemma. Its most
general form is the following theorem for convex functions :

Theorem 2.3.49 Farkas’ theorem
Let g0, g1, ..., gm : Rn → R be convex functions, C ⊂ R

n a convex set and let us assume that there exists
x̄ ∈ rint(C) such that g1(x̄) < 0, ..., gm(x̄) < 0. Then one and only one of the following system has a
solution :

(S1)







g0(x) < 0
gi(x) ≤ 0, i = 1, ...,m
x ∈ C

(S2)

{

g0(x) +
∑m

i=1 yigi(x) ≥ 0, ∀x ∈ C
y1, ..., ym ≥ 0

Applying this theorem to linear function yields the following theorem.

Theorem 2.3.50 Theorem of the alternatives
Let A be a real n×m-matrix and b a real n-vector. Then one and only one of the following system has
a solution :

(S1) Ax ≤ b (S2)







AT y = 0
bT y < 0
y ≥ 0

We provide some other "alternatives" that can be derived from this theorem :

Corollary 2.3.51 Let A be a real n×m-matrix and b a real n-vector. Then, for the following pairs of
system, one and only one system has a solution :

− (S1)

{

x ≥ 0
Ax ≤ b

(S2)







AT y ≤ 0
bT y > 0
y ≤ 0

− (S1)

{

x ≥ 0
Ax = b

(S2)

{

AT y ≤ 0
bT y > 0

239



− (S1)

{

x > 0
Ax ≤ 0

(S2)

{

AT y < 0
y ≤ 0

− (S1)

{

cTx > d
Ax ≤ b

(S2)















AT y = c
d− bT y ≥ 0

y ≥ 0

This lemma is very useful for getting necessary and sufficient conditions for a linear constraint
cTx ≤ d being valid on the polyhedron P = {x ∈ R

m : Ax ≤ b}. Indeed, this constraint is valid if and
only if the system {Ax ≤ b; −cTx < −d} admits no solution, and therefore it is valid if and only if
c is a positive combination of rows of A, and d is greater than the corresponding combination of the
components of b. Another formulation for these alternatives is given by means of implication and render
this interpretation more comprehensive :

(

AT
i x− bi ≤ 0, i = 1, ..., n ⇒ cTx− d ≤ 0

)

⇔
(

cTx− d = y0 +
∑n

i=1 yi(A
T
i x− bi) for some yi ≥ 0, i = 0, ..., n

)

Applying this result with (S2) = Ad ≤ 0, eTi d > 0 for all indices i = 1, ..., n leads to the following
corollary :

Corollary 2.3.52 The polyhedron P = {x ≥ 0 : Ax ≤ b}, with A ∈ R
n×m and b ∈ R

n is unbounded if
and only if there exists d > 0 such that Ad ≤ 0.

The Farkas theorem can also be applied to convex quadratic function. With C = R
n and gi(x) = x̃TQix̃,

such that x̃0
TQix̃0 < 0, i = 1, ...m for some x0 ∈ R

n, then

[

∀x ∈ R
n, x̃TQix̃ ≤ 0, i = 1, ...,m⇒ x̃TQ0x̃ ≥ 0

]

⇔
[

Q0 +

m
∑

i=1

yiQi < 0 for some y ∈ R
m
+

]

However, whenever one of the function is not convex, only the left part (⇐) remains true. The
S-lemma (see 3.1.2.3) re-establish the equivalence for m = 1.

Finally, the Farkas’ lemma was extended to a linear system involving matrix.

Lemma 2.3.53 Semidefinite version of Farkas’ lemma Let us consider a collection of n+1 symmetric
matrices A1, ..., Am ∈ S

n. Then one and only one of the following systems has a solution :

(S1)

{

Ai •X = 0, i = 1, ...,m
X < 0, X 6= 0

(S2)
n
∑

i=1

yiAi ≻ 0

2.4 Multivariate functions

2.4.1 Continuity

We are interested here in multivariate functions, that is functions from R
n 7→ R

m, determined by its m
real-valued components fi : R

n 7→ R. For this reason, we will often restrict our attention to real-valued
functions.
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Definition 2.4.1 Image
Let us consider a function f : Ω ⊂ R

n → R
m and a set S ⊂ Ω. The image of S under f , denoted f(S),

is the set of output of f over S, i.e.,

f(S) = {y ∈ R
m : y = f(x) for some x ∈ S}

Definition 2.4.2 Limit of a function
Let us consider a function f : Ω ⊂ R

n 7→ R
m and x0 ∈ Ω, y0 ∈ R

m. The limit of f at x0 equals y0,
denoted lim

x→x0

f(x) = y0 if for every ε > 0, there exists δ > 0 such that :

‖x− x0‖ < δ ⇒ ‖f(x)− y0‖ < ε

Definition 2.4.3 Continuous function
A function f : Ω ⊂ R

n 7→ R
m is said continuous at a point x0 ∈ Ω if lim

x→x0

f(x) = f(x0).

It can be easily proved that sums, differences, products, quotients (under non-zero conditions),
and compositions of continuous multivariate functions are continuous.

Let recall that continuity is required in the Theorem 2.1.27, which is central in optimization since
it gives condition for attaining minimum and maximum of a real-valued function over a compact set.

A weaker property, called semi-continuity (or semicontinuity) may sometimes be sufficient.

Definition 2.4.4 Semi-continuity
Let us consider a function f : Ω ⊂ R

n 7→ R̄ and x0 ∈ Ω. f is upper (resp. lower) semi-continuous at x0

if for every ε > 0, there exists a neighborood S of x0 such that f(x) ≤ f(x0)+ ε (resp. f(x) ≤ f(x0)− ε
) ∀x ∈ S.

f is upper (resp. lower) semi-continuous if it is (resp. lower) semi-continuous at every point of
its domain.

Proposition 2.4.5 Let us consider a function f : Ω ⊂ R
n 7→ R. f is continuous at x0 if and only if it

is lower and upper semi-continuous at x0.

The semi-continuity is sufficient for a weaker variant of the Weierstrass theorem.

Proposition 2.4.6 A lower semi-continuous function on a compact set attains its minimum and an
upper semi-continuous function on a compact set attains its maximum.

Definition 2.4.7 Coercive function
Let us consider a function f : Ω ⊂ R

n → R. f is coercive if lim‖x‖→+∞ f(x) = +∞.

2.4.2 Differentiability

Definition 2.4.8 Directional derivative
Let us consider a function f : Ω ⊂ R

n 7→ R, x0 ∈ Ω and u a vector of Rn. The directional derivative of
f along the direction u at x0 is :

∇uf(x0) = lim
h→0

f(x0 + hu)− f(x0)

h
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Definition 2.4.9 Partial derivative
Let us consider a function f : Ω ⊂ R

n 7→ R, x0 ∈ Ω and i an integer in [n]. The partial derivative of f
with respect to xi at the point x0 is :

∂f

∂xi
(x0) = lim

h→0

f(x0 + hei)− f(x0)

h

Thus, the partial derivative w.r.t. index i is the directional derivative along ei.

Proposition 2.4.10 Let us consider a function f : Ω ⊂ R
n 7→ R, x0 ∈ Ω and i, j two integers in [n].

Let denote g the function defined as the partial derivative of f w.r.t xi : g(x) = ∂f
∂xi

(x). Then

∂f2

∂xi∂xj
(x0) =

∂g

∂xj
(x0) =

∂f2

∂xj∂xi
(x0)

By taking i = j we get the twice partial derivative, also denoted ∂f2

∂x2
i

(x0).

Definition 2.4.11 Jacobian

Let us consider a function f : Ω ⊂ R
n 7→ R

m and x0 ∈ Ω. The Jacobian of f at x0 is the matrix
J ∈ R

n,m such that Ji,j =
∂fj
∂xi

(x0).

With directional derivative, one require that the function admits a derivative along the directions
u but there is not any requirement regarding the relationship between these derivatives. By requiring
such a relationship, we get the notion of Gâteaux-differentiability.

Definition 2.4.12 Gâteaux-differentiability

Let us consider a function f : Ω ⊂ R
n 7→ R

m and x0 ∈ Ω. f is Gâteaux-differentiable, or G-
differentiable at x0 if it admits a directional derivative along any direction u ∈ R

n and if the following
application :

R
n → R

m

u 7→ ∇uf(x0)

is continuous and linear.

By denoting ∇f this mapping, we get ∇uf(x0) = ∇f(x0)
Tu, ∀u ∈ R

n. Then ∇f(x0) is the
gradient of f at x0.

The function f is called G-differentiable on Ω if it is G-differentiable at every x ∈ Ω.

Definition 2.4.13 Fréchet-differentiability

Let us consider a function f : Ω ⊂ R
n 7→ R

m and x0 ∈ Ω. f is said to be Fréchet-differentiable
or F-differentiable at x0 if there exists a linear function L : Rn 7→ R

m, a function Φ : Rn 7→ R
n and

ε > 0 such that

lim
h→0

Φ(h) = 0 f(x0 + h) = f(x0) + L(h) + Φ(h)Th, for ‖h‖ ≤ ε

When all of these things are so, the linear function L is called the derivative of f at x0, written
Dfx0.

The function f is called F-differentiable on Ω if it is F-differentiable at every x ∈ Ω.
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The Fréchet-differentiability is stronger than the Gâteaux-differentiability, as shown in the fol-
lowing proposition.

Proposition 2.4.14 Let us consider a function f : Ω ⊂ R
n 7→ R

m. If f is F-differentiable at x0 ∈ Ω
with a derivative Dfx0, then f is G-differentiable at x0 and ∇f(x0)

T = Dfx0.

Definition 2.4.15 Continuously differentiable function

Let us consider a function f : Ω ⊂ R
n 7→ R

m. If f is G-differentiable and its gradient is a
continuous function, then f is said to be continuously differentiable.

Proposition 2.4.16 If f is continuously differentiable, then f is F-differentiable.

Consequently, for a continuously differentiable function, Fréchet and Gâteaux differentiabilities
are equivalent and therefore, we don’t need to distinguish these concepts.

Definition 2.4.17 Partial derivative of order k
Let us consider a function f : Ω ⊂ R

n 7→ R
m and k ∈ N

n. The partial derivative of f at x0 ∈ Ω has
the i-th component :

∂kfi

∂xk1
1 ...∂xkn

n

(x0)

Definition 2.4.18 Smooth function
Let us consider a function f : Ω ⊂ R

n 7→ R
m. For k ∈ N

n, f is of class Ck if its partial derivative of
order k′ ∈ N

n exists and are continuous for each k′ such that
∑n

i=1 k
′
i ≤ k.

f is smooth, or of class C∞ if it is of class Ck for any k ∈ N
n.

Definition 2.4.19 Hessian
Let us consider a function f : Ω ⊂ R

n 7→ R of class C2. Then the Hessian of f at x0 ∈ Ω, denoted
∇2f(x0), is a matrix of Sn such that

∇2f(x0)ij =
∂2f

∂xi∂xj
(x0)

Definition 2.4.20 Hessian
Let us consider a function f : Ω ⊂ R

n 7→ R
m. Its Jacobian matrix is the matrix Jf (x) ∈ R

m,n such

that Jf (x)i,j =
∂fj
∂xi

(x).

Definition 2.4.21 Sub-gradient
Let us consider a function f : Ω ⊂ R

n 7→ R and x0 ∈ Ω. A vector v ∈ R
n is a subgradient of f at x0 if

there exists a open convex set S ⊂ Ω containing x0 such that :

f(x)− f(x0) ≥ vT (x− x0)

The set of all subgradients at x0 is called subdifferential at x0 and denoted ∂∇f(x0).

∂f(x0) contains only one point if and only if f is G-differentiable at x0.
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2.4.3 Optimality

In this section, we restrict our attention to real-value functions : f : Ω ⊂ R
n → R.

Definition 2.4.22 Infimum and supremum
Let us consider a function f : Ω ⊂ R

n → R. The infimum (resp. supremum) of f over Ω is the least
upper (resp. most lower) bound of the image of Ω under f . More formally, supx∈Ω f (resp. infx∈Ω f)
is the smallest (resp. largest) y0 ∈ R̄ such that y0 ≥ y (resp. y0 ≥ y) , ∀y ∈ f(Ω).

Definition 2.4.23 Extremum
Let us consider a function f : Ω ⊂ R

n → R and a point x∗ ∈ Ω. f admits a minimum (resp. maximium)
over Ω at x∗ if f(x∗) ≤ f(x) (resp.f(x∗) ≤ f(x)) for all x ∈ Ω.

An extremum is either a minimum or a maximum. By analogy with the infimum and supremum,
we denote by f(x∗) = maxx∈Ω f or f(x∗) = minx∈Ω f .

Definition 2.4.24 Neighbourhood
Let us consider a set S ⊂ R

n and x ∈ S. S is a neighbourhood of x if it includes an open set U that
contains x : x ∈ U ⊂ S.

Definition 2.4.25 Local minimum and maximum
Let us consider a function f : Ω ⊂ R

n → R and a point x∗ ∈ Ω. f admits a local minimum (resp.
maximum) at x∗ if there exists a neighbourhood U of x∗ such that the restriction of f to U admits a
minimum (resp. maximum) at x∗.

Definition 2.4.26 Bouligand Tangent cone
Let us consider a closed set X ⊂ R. Its Bouligand tangent cone at x , denoted TX(x) is defined as
follows :

TX(x) = { lim
i→∞

xi − x

ti
: xi → x, ti → 0}

This set contains all the direction d such that there exists a sequence dk lim d and yk = {y ∈ X :
y = x+ λdk} tends to x when k →∞.

In the case where X is defined through a set of functional equality and inequality constraints, and
if these constraints satisfy the so-called constraints qualifications, then this cone can be easily computed
by using the gradient of the constraints active at x. In particular, if X = {x ∈ R

n : Ax = b} then
TX(x) = N (A).

Theorem 2.4.27 First-order optimality conditions Let us consider the following optimization problem
: (P )min f(x) : x ∈ X where X ⊂ R

n is closed and f : Rn → R.

If x∗ is a local minimum of (P ) and if f is differentiable in x∗, then

∀d ∈ TX(x∗), dT∇f(x∗) ≥ 0

with TX(x∗) is the Bouligand tangent cone of X at x∗.

The following theorem is an application to the case where X = R
n.

Theorem 2.4.28 Let us consider a continuously differentiable function f : Ω → R with Ω an open
subset of Rn. If f admits a local extremum at x∗ ∈ Ω then ∇f(x∗) = 0.
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Note that this condition is necessary but not sufficient for local optimality. In the case when S
is not open, the condition applies to int(Ω) but there might be some local optima on the boundary of
Ω that may not satisfy this condition.

Definition 2.4.29 Stationary point
Let us consider a continuously differentiable function f : Ω ⊂ R

n → R. x∗ ∈ Ω is a stationary point of
f if ∇f(x∗) = 0.

Definition 2.4.30 Saddle-point
Let us consider a continuously differentiable function f : Ω ⊂ R

n → R. A stationary point x∗ ∈ Ω that
is not a local extremum is called a saddle-point of f .

In particular, if f : Ω1 × Ω2 → R, (x∗, y∗) ∈ Ω1 × Ω2 is such that f(x, y∗) ≤ f(x∗, y∗) ≤ f(x∗, y)
for any x ∈ Ω1, y ∈ Ω2, then (x∗, y∗) is a saddle-point.

The name derives from the fact that in two dimensions the surface resembles a saddle that curves
up in one direction and curves down in a different direction :

Figure 2.2: A saddle-point on the graph of f(x, y) = x2 − y2

Theorem 2.4.31 Second-order conditions Let us consider a twice continuously differentiable function
f : Ω ⊂ R

n → R and a stationary point x∗ ∈ Ω. If x∗ is a local minimum of f , then ∇2f(x∗) < 0.

Combined with the first-order condition ∇f(x∗) = 0, ∇2f(x∗) ≻ 0 is sufficient for x∗ to be a
local minimum.

2.4.4 Convexity

Definition 2.4.32 Epigraph
The epigraph of a function f : Ω ⊂ R

n → R, denoted epif , is the subset of Rn+1 of points lying on or
above its graph, i.e. :

epif = {(x, t) : x ∈ Ω, f(x) ≤ t}
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Definition 2.4.33 Convex function
A function f : Ω ⊂ R

n → R is convex if its epigraph is convex.

This implies that domf is convex and that for all x, y ∈ domf , for all λ ∈ [0, 1],

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

Proposition 2.4.34 A function f : Ω ⊂ R
n → R is convex if and only if it is convex when restricted

to any line that intersects its domain. In other words, if for any x, y ∈ domf , the function g : R → R

with g(t) = f(x+ ty) is convex.

Example 2.4.35 A norm is a convex function. Indeed,

||λx+ (1− λ)y|| ≤ ||λx||+ ||(1− λ)y||( by the triangular inequality)
= |λ|||x||+ |(1− λ)|||y||
= λ||x||+ (1− λ)||y||

Pictorially, the graph of a convex function "bends upward". More formallly, it lies below or on
the straight line segment connecting two points, for any two points in the interval, as illustrated in the
figure below :

Figure 2.3: Convex function

Definition 2.4.36 Concave function
A function f is concave if the function −f is convex.

Example 2.4.37 A function f is affine : f(x) = a0 +
∑n

i=1 aixi if and only if it is both convex and
concave.

2.4.4.1 Conditions for convexity

Proposition 2.4.38 Pointwise maximum If fii=1,...,k are convex functions of Ω to R then their point-
wise maximum f , defined above, is also convex :

f : Ω→ R

x 7→ maxi=1,..,k fi(x)

Consequently, by noting that −f = mini=1,..,k −fi(x) is concave, the pointwise minimum of a set
of concave functions is also concave.
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Proposition 2.4.39 Minimization Let us consider a fonction f : Ω1 × Ω2 → R which is convex w.r.t
(x, y) ∈ Ω1 × Ω2. Then, for any convex set C ⊂ Ω1, g(y) = infx∈C f(x, y) is convex w.r.t. y.

Proposition 2.4.40 Composition by affine mapping Let us consider a function f : Ω → R. If f is
convex (resp. concave), then the composition of f with the affine mapping x 7→ Ax+b : g : x 7→ f(Ax+b)
is convex (resp. concave).

Proposition 2.4.41 A set S = {x ∈ R
n : fi(x) ≤ 0, i = 1, · · · ,m} is convex if all the functions fi are

convex.

The converse is not true. For example, the set {x ∈ R
n : −x2 + 1 ≤ 0, x ≤ 0} is convex although

the function that associates −x2 + 1 to x is not convex. Let provide another example crucial for
optimization.

Example 2.4.42 Let f(x) = ‖Ax + b‖ − cTx − d, f is convex, by sum and composition of the norm
with an affine mapping. Consequently, the set S = {x ∈ R

n : f(x) ≤ 0} is convex. It is clear that an
equivalent definition of S is :

S = {x ∈ R
n : ‖Ax+ b‖ ≤ cTx+ d}

= {x ∈ R
n : ‖Ax+ b‖2 ≤ (cTx+ d)2, cTx+ d ≥ 0}

= {x ∈ R
n : xT (ATA− ccT )x+ 2(bTA− dcT )x+ b2 − d2 ≤ 0, cTx+ d ≥ 0}

Generally, the function x 7→ xT (ATA − ccT )x + 2(bTA − dcT )x + b2 − d2 is not convex and yet
S is always convex.

Proposition 2.4.43 A convex function f : Ω → R is differentiable at x0 ∈ Ω if and only if its
subdifferential is made up of only one vector, which is the derivative of f at x0.

Proposition 2.4.44 Let us consider a function f : Ω → R twice differentiable, i.e. such that its
Hessian exists at each point of Ω. Then, f is convex if and only if domf is convex and its Hessian is
positive semidefinite at each x ∈ domf .

The following theorem accounts for convexity being so important within optimization. It states
that a local minimum of a convex function over a convex set is necessary a global minimum :

Theorem 2.4.45
Let us consider a convex function f : Ω → R and a convex set S ⊂ Ω. Given a point x∗ ∈ S, suppose
there is a ball B ⊂ S such that f(x∗) ≤ f(x), ∀x ∈ B. Then f(x∗) ≤ f(x), ∀x ∈ S.

In the case of a continuously differentiable function, the first-order optimality conditions are
therefore sufficient.

Theorem 2.4.46 Optimality condition of convex functions Let us consider a convex function f : Ω→ R

continuously differentiable. Then x∗ is a global optimum of f if and only if ∇f(x∗) = 0.

In particular, quadratic functions x 7→ xTAx + bTx + c have a constant Hessian A, so their
convexity follows immediately from the positive semidefinitess of A. Otherwise, convexity may be very
hard to recognize. Even for multivariable polynomials, deciding if the function is convex is NP-hard [5].
However, the weaker property of quasi-convexity is easier to recognize.
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Definition 2.4.47 Quasi-convexity and quasi-concavity
Let us consider a function f : Ω ⊂ R

n → R. f is quasi-convex if its domain and all its sublevel set
{x ∈ domf : f(x) ≤ α} for α ∈ R are convex.

A function f is quasi-concave if −f is quasi-convexe.

Example 2.4.48 Let us consider an interval [a, b] of R. The indicator function ✶[a,b] is quasi-concave
on R but it is not concave.

It is essential to note that the sum of two quasi-convex (or quasi-concave) functions is not nec-
essarily quasi-convex (or quasi-concave). For instance ✶[a,b] + ✶[c,d] = ✶[a,b]∪[c,d] is not quasi-convex as
soon as [a, b] are [c, d] disjoint.

Proposition 2.4.49 f : Ω ⊂ R
n → R is quasi convex if and only if domf is convex and for any

x, y ∈ Ω and any scalar 0 < λ1

f(λx+ (1λ)y) ≤ max{f(x), f(y)}

Proposition 2.4.50 Convex functions are quasi-convex.

Proposition 2.4.51 Let us consider a subset S of R defined through m functions gi : S = {x ∈ R :
gi(x) ≤ 0, i = 1, ...,m}. If all the functions gi are quasi-convex, S is convex.

Definition 2.4.52 Convex lower envelope
Let us consider a function f : Ω ⊂ R

n → R. Its convex lower envelope is the function f̂(x) = inf{t :
(x, t) ∈ conv(epif)}.

f̂ is an underestimator of f over Ω, that is f̂(x) ≤ f(x), ∀x ∈ Ω. The convex lower envelope is
therefore the pointwise supremum of all the convex underestimator of f over Ω.

In the same way, we define an overestimator and the concave upper envelope which is the pointwise
infimum of concave overestimator of f .

Example 2.4.53 If f is the bilinear function f(x, y) = xy over the rectangle R = {(x, y) : lx ≤ x ≤
ux, ly ≤ y ≤ uy}, then its convex lower envelope is max{lyx + lxy − lxly, uyx + uxy − uxuy} and its
concave upper envelope is max{uyx+ lxy − lxuy, lyx+ uxy − lyux}.

Together, these two functions constitutes the so-called McCormick relaxation.

Proposition 2.4.54 Let us consider a function f : Ω ⊂ R
n → R and its convex lower envelope f̂ .

Then
f̂(x) = max

v
{vTx : vT x̂ ≤ f(x̂), ∀x̂ ∈ Ω}

Example 2.4.55 α-BB convex underestimator
Let us consider a function f : Ω ⊂ R

n and a rectangle R of Ω : R = {x ∈ Ω : li ≤ xi ≤ ui}. An
underestimator of f can be constructed by substracting a positive quadratic term from f : f≤(x) =
f(x) −∑n

i=1 αi(ui − xi)(xi − li). A necessary and sufficient condition for f≤ to be convex is that its
Hessian, i.e., ∇2f(x) +Diag(α) be positive semidefinite, for any x ∈ Ω. This convex underestimator is
very classical in the literature and is called α-BB convex underestimator.

Definition 2.4.56 Log-concave function
A function f : R → R is log-concave if its domain is a convex set and if it satisfies the inequality
f(λx+ (1− λ)y) ≥ f(x)λf(y)1−λ, for any x, y ∈ domf and 0 < λ < 1.
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If f is strictly positive over domf , then this definition is equivalent to requiring that the natural
logarithm of f , ln(f), be concave. Note that any concave function that is nonnegative on its domain is
log-concave, since ln is concave.

Proposition 2.4.57 Let us consider a subset S ⊂ R. If S is convex, then its indicator function ✶S is
log-concave.

Proposition 2.4.58 If f : Rn × R
m → R is log-concave, then the following function g is log-concave.

g(x) =

∫

f(x, y)dy

The following theorem results from a strong connexion between two-person zero-sum games and
linear programming.

Theorem 2.4.59 Von Neumann’s theorem
Let A be a n×m matrix, X = {x ∈ R

n : eTx = 1, x ≥ 0} and Y = {y ∈ R
n : eT y = 1, y ≥ 0}. Then

the quadratic function xTAy admits a saddle-point over X × Y , i.e.,

min
x∈X

max
y∈Y

xTAy = max
y∈Y

min
x∈X

xTAy

Its generalization leads to the following theorem.

Theorem 2.4.60 Sion’s minimax theorem Let us consider a function f : X × Y → R with

− X be a compact convex subset of a linear topological space ;

− Y a convex subset of a linear topological space ;

− f(x, ·) upper semicontinuous and quasiconcave w.r.t. y on Y, ∀x ∈ X ;

− f(·, y) is lower semicontinuous and quasi-convex w.r.t. x on X, ∀y ∈ Y .

then,
min
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

min
x∈X

f(x, y)

The extension of the inequality in the basic definition of a convex function to integral leads to
the so-called Jensen’s inequality :

Theorem 2.4.61 Let µ be a probability measure over the probability space (Ω,A, µ), f a convex function
that is µ-integrable and φ a convex function on the real line :

φ(

∫

Ω

gµ(x)dx) ≤
∫

Ω

φ • fµ(x)dx (2.2)

In particular, for a random variable X, this implies that φ(E[X]) ≤ E[φ(X)] for any convex
function φ.

2.5 Polynomials

There is a strong relationship between SDP and polynomials. Within this section, we provide the
necessary theoretical background to acquaint oneself with this area. In this context, we restrict ourselves
to real multivariable polynomials, i.e. polynomials from R

n to R.
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2.5.1 Definition and notations

Definition 2.5.1
N

n
d = {κ ∈ N

n :
∑n

i=1 κi ≤ d} contains bn(d) =
(

n+d
d

)

different elements.

Definition 2.5.2 Monomial
The monomial associated to κ ∈ N

n
d is the function R

n → R defined as xκ =
∏n

i=1 x
κi

i . Its degree is
∑n

i=1 κi.

Definition 2.5.3 Polynomial
A polynomial is a function R

n → R defined as a weighted sum of monomials : p(x) =
∑

κ pκx
κ. Its

degree, denoted deg(p) is the largest degree of all its monomial and p is its coefficients vector.

Note that polynomials are continuous and smooth functions.

Definition 2.5.4
The set of all polynomials in x1, ..., xn with real coefficients is written as R[x1, ..., xn]. Rd[x1, ..., xn]
contains the polynomials of R[x1, ..., xn] with degree at most d.

Rd[x1, ..., xn] may be abbreviated as Rd[x] where x stands for the n-tuples (x1, ..., xn) when the
dimension n is clear by the context. Rd[x1, ..., xn] is isomorphic to R

bn(d) and is therefore a vector space
of dimension bn(d). For example, a typical basis for Rd[x1, ..., xn], called standard monomial basis is :

ud(x) = (1, x1, · · · , xn, x
2
1, x1x2, · · · , xn−1xn, x

2
n, x

3
1, · · · , xd

n)
T

and any polynomial p ∈ Rd[x] is represented by its coefficient vector in this basis.

Definition 2.5.5 Semi-algebraic set
A semi-algebraic set S is a subset of Rn defined by a finite sequence of polynomial inequalities :

S = {x ∈ R
n : pi(x) ≤ 0, i = 1, ...,m}

where pi, i = 1, · · · ,m are polynomials.

Such a set is closed. For example, intervals, half-space or half-plane are some particular semi-
algebraic sets.

Example 2.5.6 An ellipsoid is a semi-algebraic set defined via one convex quadratic function.

2.5.2 Positivity of polynomials over semi-algebraic sets

In this section, we provide theorems that give some conditions over the structure of a polynomial so that
it satisfies a positive, nullity or non-negativity conditions over a semi-algebraic set. This theorems are
known under the name of positivstellensatz, nullstellensatz,nichtnegativstellensatz respectively, from the
German words Stellen (places) and Satz (theorem). The first such result was the Hilbert’s nullstellensatz
for complex numbers. In this section, we restrict out attention to results for real numbers, concerning
rather positivity and nonnegativity.

Definition 2.5.7 Positive and nonnegative polynomial
A polynomial p is positive (resp. nonnegative) on a semi-algebraic set S if p(x) > 0 (resp. p(x) ≥ 0)
for all x ∈ S.
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A sufficient condition for p(x) ≥ 0 on R
n is that p be a sum of square.

Definition 2.5.8 Sum of square
A polynomial p is a sum of square, denoted s.o.s. if there exists some polynomials {uj}j=1,...,m such
that p =

∑m
j=1 u

2
j .

Lemma 2.5.9 If p ∈ R[x] is s.o.s. then deg(p) is even and any decomposition p =
∑m

j=1 u
2
j satisfies

deg(uj) ≤ deg(p)/2, j = 1, ...,m.

The most general condition for non-negativity of a polynomial is the Sengle’s Positivstellensatz.
It can be seen as a generalization of Farkas lemma. It states that, for a system of polynomial equations
and inequalities, either there exists a solution,or we can exhibit a polynomial identity ensuring that
no solution exists. For sake of brevity, we only give the corollary of this theorem that is relative to
non-negativity of polynomials.

Corollary 2.5.10 Stengle’s Positivstellensatz
Let F = {fj}j=1,...,m be a finite family of polynomials in R[x] and S = {x ∈ R

n : fj(x) ≥ 0, j =
1, · · · ,m} its associated semi-algebraic set. P denotes a set of polynomials built as combination of
product of elements of F and s.o.s polynomials : P = { ∑

J⊂[m]

pJfJ : pJ ∈ R[x], pJ s.o.s, fJ =
∏

j∈J

fj}.

Then, for any polynomial f0,

f0(x) ≤ 0 on S ⇔ ∃p, q ∈ P and k ∈ N such that f0p+ f2k
0 + q = 0

Thus, this theorem provides necessary conditions for a polynomial being positive or nonnegative
over an arbitrary semi-algebraic set. However, these conditions involves a product (f0p) which render
it impossible to exploit in practice.

For this reason, we present two other positivstellensatz, namely the Schmüdgen’s and the Puti-
nar’s positivstellensatz, that give necessary conditions for a polynomial to be positive over a semi-
algebraic set S provided that the latter satisfies certain conditions, in particular compacity.

Theorem 2.5.11 Schmüdgen’s positivstellensatz

Let us consider a polynomial p ∈ R[x], a compact semi-algebraic set S = {x ∈ R
n : fj(x) ≥ 0, j =

1, · · · ,m} and the set P defined in Theorem 2.5.10. Then, we have the following implication :

p(x) > 0 on S ⇒ p ∈ P

The necessary conditions provided by the Putinar’s positivstellensatz are easier to verify, but on
the other hand, it is more restrictive about S, that has to satisfy the following Putinar’s conditions :

Definition 2.5.12 Putinar’s conditions
A semi-algebraic set S = {x ∈ R

n : fj(x) ≥ 0, j = 1, · · · ,m} satisfies the Putinar’s conditions if :

− S is compact ;

− There exists d ∈ N and u ∈ Rd[x] such that

− {x ∈ R
n : u(x) ≥ 0} is compact ;

− u = u0 +
∑m

j=1 ujfj for some s.o.s. polynomials uj , j = 0, ...,m.

These conditions are easily verified. It suffices for example that one set {x ∈ R
n : fj(x) ≥ 0} be

compact. It is also verified if S is a bounded polyhedron. Anyhow, it is always possible to ensure its
validity by adding the constraint ‖x‖2 ≤ a2 for a sufficiently large value of a.
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Theorem 2.5.13 Putinar’s positivstellensatz
Let us consider a polynomial p ∈ Rd[x] and a semi-algebraic set S = {x ∈ R

n : fj(x) ≥ 0, j = 1, · · · ,m}
that satisfies the above Putinar’s conditions (Def. 2.5.12). Then we have the following equivalence :

p(x) > 0 on S ⇔ p = p0 +

m
∑

j=1

fjpj for some s.o.s. polynomials pi, i = 0, ...,m

This result is fundamental for polynomial optimization since it provides a "linear" sufficient
condition for p ≥ 0 on S.

+

2.5.3 Quadratic functions

A quadratic function is a 2-degree polynomial. Specific notations are used for these polynomials. The
most usual is p(x) = xTPx+ 2pTx+ π with P ∈ S

n, p ∈ R
n and π ∈ R. Note that requiring that P be

symmetric is not a loss of generality.

A polynomial can also be represented in a parametric fashion by p(.;P, p, π) or p(.;Q) where Q

is the augmented matrix Q =

(

π pT

p P

)

:

p(x) = xTPx+ 2pTx+ π = x̃TQx̃ (2.3)

where x̃ =
(

1 xT
)T

is the homogenization of x.

Thus, a quadratic function over Rn can be entirely represented by a n+1-dimensional symmetric
matrix. Not surprinsingly, its property are therefore strongly related to the properties of this matrix.

As any polynomial, a quadratic function p(.;P, p, π) is twice differentiable, its gradient at x is
equal to 2(Px+ p) and its Hessian is equal to 2P . From this follows the following proposition :

Proposition 2.5.14 Let us consider a quadratic function p(.;P, p, π) = p(.;Q). Then

− (i) p is convex if and only if P < 0 ;

− (ii) p admits a minimum if and only if P < 0 et p ∈ R(P ) ;

− (iii) p is nonnegative over R
n if and only if Q < 0.

Moreover, when the statement (ii) holds, argmin p = {x ∈ R
n : Px = −p}.

If p admits a minimum p∗, then p(x) ≥ p∗, ∀x ∈ R
n, which is equivalent to the positivity of

p(x)− p∗ over R
n. We deduce from this the following proposition.

Proposition 2.5.15 Let us consider a matrix P ∈ S
n
+, a vector p ∈ R

n and a real π. Then we have
the following equivalence :

p ∈ R(P )⇔ ∃p∗ such that

(

π − p∗ pT

p P

)

< 0

2.6 Uncertainty

This section is based for main part on the lectures [60, 123].
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2.6.1 Probability measure

Intuitively speaking, a measure on a set S is a way to assign a non-negative real number to each subset
of S so that this number can be interpreted as the size of the subset. To qualify such a function as a
measure, some conditions must be satisfied, in particular countable additivity, that states that the size
of the union of a sequence of disjoint subsets is equal to the sum of the sizes of the subsets. However
it is generally impossible to satisfy these conditions on all the subset of S. To settle this problem, a
measure is defined only on certain subsets, called measurable, that forms a σ-algebra.

Definition 2.6.1 σ-algebra
Let Ω be a set and 2Ω the set of all the subset of Ω. Then Σ ⊂ 2Ω is a σ-algebra on Ω if it satisfies the
following properties :

− Σ is non empty ;

− Σ is closed under complementation : if A ∈ Σ then AC := Ω \A ∈ Σ

− Σ is closed under countable unions : If {Ai}i∈I is a countable collections of elements of Σ, then
∪i∈IAi ∈ Σ.

As a consequence, a σ-algebra is closed under countable intersection. If Σ is a σ-algebra over Ω,
then (Ω,Σ) is a measurable space.

Example 2.6.2 If Ω is a topological space, then the Borel σ-algebra on Ω is the smallest σ-algebra
containing all open sets (or, equivalently, all closed sets). For example, the Borel algebra on the real,
denoted BR is the smallest σ-algebra on R that contains all the intervals.

A measure on Ω is a way to assign to each element of a σ-algebra on Ω a real nonnegative number,
intuitively interpreted as the size of the subset.

Definition 2.6.3 Measure
Let us consider a set Ω and Σ a σ-algebra over Ω. A function µ : Σ → R̄ is called a measure if it
satisfies the following properties :

− Non-negativity : µ(E) ≥ 0, ∀E ∈ Σ ;

− Countable additivity : µ(∪i∈IEi) =
∑

i∈I µ(Ei) for all countable collections {Ei}i∈I of pairwise
disjoint elements of Σ ;

− Null emptyset : µ(∅) = 0.

Example 2.6.4 Lebesgue measure
If Ω = R and Σ is its Borel σ-algrebra, then a possible measure over Ω is the Lebesgue measure that
associates to any interval [a, b] the value b− a.

Definition 2.6.5 Measure space
Let us consider a set Ω, Σ a σ-algebra over Ω and a measure µ over Ω. Then the triplet (Ω,Σ, µ) is
called a measure space.

Definition 2.6.6 Finite signed measure
Let Σ be a σ-algebra over a set Ω. A function µ : Σ → R is a finite signed measure if it satisfies the
properties of countable additivity and null emptyset.

Thus, the difference with a measure is that negative values are allowed, but not infinite values.
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Definition 2.6.7 Finite measure
Let Σ be a σ-algebra over a set Ω. A function µ : Σ→ R is a finite measure if it satisfies the properties
of non-negativity, countable additivity and null emptyset.

Thus, the only difference with a measure is that infinite values are not allowed.

Proposition 2.6.8 The set of finite measure is a convex cone.

We are particularly interested in a special class of measure, where measuring the whole space
yields 1.

Definition 2.6.9 Probability measure
Let (Ω,Σ, µ) be a measure space. Then µ is a probability measure if µ(Ω) = 1. Then (Ω,Σ, µ) is called
a probability space.

In this case, the elements of Σ are called events and µ(S) for S ∈ Σ is the probability of the
event S.

Definition 2.6.10 Measurable application
Let us consider two measurable spaces (Ω,Σ) and (Ω′,Σ′). An application X : Σ→ Σ′ is said measurable
if it is inversible and if ∀S′ ∈ Σ′, X−1(S′) ∈ Σ, where X−1 is the inverse application of X.

2.6.2 Random variables

Definition 2.6.11 Random variable
Let us consider a probability space P = (Ω,Σ, µ). A real random variable on P is a measurable appli-
cation X : Σ→ BR.

If the set {X(ω) : ω ∈ Σ} is finite or countable, the random variable is said discrete.

Example 2.6.12 For example, Ω is a sequence of n die rolls and X is the occurrence of one face among
n, or X is the sum of the rolls.

Definition 2.6.13 Probability distribution
Let us consider a random variable on a probability space (Ω,Σ, µ). Its probability distribution is the
image of µ by X, that is the function P such that :

P : BR → [0, 1]
B 7→ µ(X−1(B))

Traditionally, P(B) is rather written P[X ∈ B].

Having a random variable X of probability distribution P is denoted by X ≡ P.

Example 2.6.14 A famous example of law of probability for a real random variable is the Gaussian
or Normal distribution, denoted N (µ, σ2), where µ, σ are parameters that are sufficient to characterize
the distribution.

For discrete random variable on {0, ..., n}, a possible law is the Binomial distribution, where

P[X = k] =
(

n
k

)

qn−k(1− q)k. Another one is the Poisson distribution on N with P[X = k] = exp−λλk

k! .

Definition 2.6.15 Random vectors
Let us consider a probability space P = (Ω,Σ, µ) be a probability space. A real random vector on P is
a measurable application X : Σ→ BRn .
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Generally, X1, ..., Xn are function of a same probability space. By considering Ω of the above
example 2.6.12, we could have X1 the occurrence of a given face, and X2 the sum of the rolls. Thus,
X1 and X2 are correlated. However, this also includes the case when X1, ..., Xn is a sequence of n
independent variables. This is the case for instance if Xi is the result of the i-th roll for i = 1, ..., n.

In the sequel, we use Rn and the term n-random variable to embrace real random variable (n = 1)
and real random vector (n > 1). The case of the discrete random variable is not treated here.

Definition 2.6.16 Independent random variables
Let us consider a n1-random variables X1 and a n2-random variables X2. Then X1 and X2 are inde-
pendent if for all S1 ∈ BRn1 and S2 ∈ BRn2 , we have P[(X1 ∈ S1)∩(X2 ∈ S2)] = P[X1 ∈ S1]P[X2 ∈ S2].

A sequence of random variables is independent and identically distributed (i.i.d.) if each random
variable has the same probability distribution as the others and all are mutually independent.

Definition 2.6.17 Support
The support S of a n-random variable X is the smallest subset of Rn such that P[X ∈ S] = 1.

Definition 2.6.18 Cumulative distribution function
Let us consider a n-random variable X. The cumulative distribution function F of X is defined as
following :

F : R
n → [0, 1]

x 7→ F (x) = P[∩ni=1Xi ≤ xi]

Example 2.6.19 Let us consider a Gaussian real random variable X ≡ N (µ, σ). Its cumulative distri-
bution function is F (x) = Φ(x−µ

σ ) where Φ is a symmetric function whose numerical values are known,
as well as those of its inverse Φ−1.

Definition 2.6.20 Probability density
Let us consider a n-random variable X and its repartition function F . The function f is called probability
density of f if it is an integrable function f : Rn → [0, 1] such that

F (x) =

∫ x1

−∞
...

∫ xn

−∞
f(t1, ..., tn) dt1...dtn ∀x ∈ R

n

In this case, X is said to be a continuous random variable.

Example 2.6.21 The probability density of N (µ, σ) is equal to f(x) = 1
σ
√
2π

exp− (x−µ)2

2σ2 .

Proposition 2.6.22 Let us consider a continuous n-random variable X with repartition function F
and density f and a, b ∈ R

n. Then,

P[a < X ≤ b] = F (b)− F (a) =

∫ b1

a1

...

∫ bn

an

f(t1, ..., tn) dt1...dtn

Proposition 2.6.23 If X is a continuous n-random variable and S ⊂ R
n is a countable union of

single-valued sets, then P[X ∈ S] = 0.

In particular, for any vector x0 ∈ R
n, P[X = x0] = 0.

The following property plays a key role in the treatment of chance-constraints.

Definition 2.6.24 Log-concave random variable
A random variable is said to be log-concave if it admits a log-concave density function.

Example 2.6.25 Many famous distribution have the property of log-concavity, in particular the uni-
form, normal, beta, exponential, and extreme value distributions
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2.6.3 Moments

Definition 2.6.26 Integral of a finite random variable
Let us consider a discrete random variable on the probability space (Ω,Σ, µ) that takes its value into
the finite subset {xi}i=1,...,m of R with probability P[X = xi]. Then, the integral of X over Ω, denoted
∫

Ω
X(ω)µ(ω)dω or more simply

∫

Ω
XdP(X) is defined as following :

∫

Ω

X(ω)µ(ω)dω =

m
∑

i=1

xiµ(Ei) =

m
∑

i=1

xiP[X = xi]

where Ei = {ω ∈ Ω : X(ω) = xi}.

This definition is extended to any n-random variable X on the probability space (Ω,Σ, µ) via a
mechanism that we will not detail here.

Definition 2.6.27 Expected value
Let us consider a real random variable defined on the probability space (Ω,Σ, µ). Then its expected value,
denoted E(X) is the value of

∫

Ω
XdP(X).

If X is a n-random variable, its expected vector is the vector of the expected values of its compo-
nents.

Example 2.6.28 Let us consider a n-random variable X, a set S ⊂ R
n and ✶S its indicator function.

Then ✶S(X) is a real random variable and its expected value is E(✶S(X)) = P[X ∈ S]. Indeed,

∫

Ω

✶S(X)(ω)µ(ω)dω =

∫

X−1(S)

µ(ω)dω = µ(X−1(S)) = P(S)

Definition 2.6.29 Integrability
A random variable X is integrable if E(|X|) < +∞.

Definition 2.6.30 Moments
Let us consider a n-random variable and an integer vector κ ∈ N

n
k such that

∑n
i=1 κi = k′. Then, the

moment of X associated to κ is said to be of order k′ and is defined as E(Xκ).

Consequently, E(Xκ) =
∫

ω∈Ω
Xκ(ω)µ(ω)dω.

Example 2.6.31 In particular, moments of order 1 form the expected vector of X (E(X)) and moments
of order 2 form a matrix M such that C = M − E(X)E(X)T is the covariance matrix of X :

Cij = E(XiXj)− E(Xi)E(Xj)
= E((Xi − E(Xi))(Xj − E(Xj)))

In the case when n = 1, var(X) = E((X − E(X))2) is the variance of X and σ(X) =
√

var(X)
is the standard deviation.

2.6.4 Laws and inequalities

The following theorem is fundamental for the connection between probability and statistic. It expresses
the fact that the statistical average of a sample converges to the expected value of the underlying
distribution when the size of the sample increases :
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Theorem 2.6.32 Law of large numbers
Let us consider an infinite sequence of i.i.d. integrable random variables with expected value E(X1) =
E(X2) = ... = µ. Then the average of these variables X̄n = 1

n

∑n
i=1 Xi converges almost surely to µ

when n tends to +∞,i.e.,
P[ lim

n→+∞
X̄n = µ] = 1

An application of this theorem is that by repeating the same random experiment an infinite
number of times, the relative frequencies of occurrence of each of the events will coincide with their
probabilities.

The following theorem states that, given certain conditions, the average of a sufficiently large
number of independent random variables will be approximately normally distributed.

Theorem 2.6.33 Central limit theorem
Let us consider an infinite sequence of i.i.d. integrable random variables with expected value µ and
variance σ2 < +∞. Let X̄n = 1

n

∑n
i=1 Xi. Then the random variable Zn =

√
n(X̄n − µ) converges in

distribution to N (0, σ), i.e., for any real number β :

lim
n→+∞

P[Zn ≤ z] = Φ(z/σ)

where Φ is the cumulative distribution function of the standard Gaussian distribution.

The following inequality, discovered by Boole in 1854, approximates the probability of a composite

event
n
⋃

i=1

Ai by the sum of the probability of its simple events Ai. It was shown by Frechet in 1940

than no better approximation can be obtained without additional information.

Theorem 2.6.34 Boole inequality
Let us consider a n-random variable with a probability law P and a sequence of arbitrary event Ai ∈ BRn

for i = 1, ..., n. Then

P[

n
⋃

i=1

Ai] ≤
n
∑

i=1

P[Ai]

It is important to note that this result does not require that the events Ai, ..., An be independent.

Corollary 2.6.35

P[
n
⋂

i=1

Ai] ≥
n
∑

i=1

P[Ai] + 1− n

With additionnal information, such as the knowledge of P[Ai ∪ Aj ], the approximation can be
refined, as stated by the following so-called textitBonferroni’s inequality.

Theorem 2.6.36 Bonferroni’s inequality

Let Sk =
∑

1≤i1<...<ik≥n

P[Ai1 ∪ ... ∪Aik ]. Then fork ∈ {1, ..., n} :

(−1)k−1P[

n
⋂

i=1

Ai] ≤ (−1)k−1
k
∑

j=1

(−1)j−1Sj

When k = n the equality holds and the resulting identity is the inclusion-exclusion principle.
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At this point, we provide some inequalities connecting moments and probability.

Let X be a nonnegative real random variable on (Ω,Σ, µ), t > 0 a real. Then ✶[t,+∞[(X) is also
a random variable and X(ω) ≥ t✶[t,+∞[(X(ω)), ∀ω ∈ Ω.

Consequently, E(X) ≥ E(t✶[t,+∞[(X)) = tP[X ≥ t] and we deduce from this the Markov’s
inequality.

Theorem 2.6.37 Markov’s inequality
Let us consider a real random variable X and a real t > 0 :

P[|X| ≥ t] ≤ E(|X|)
t

By applying this to the real random variable (X − E(X))2, we get the Bienaymé-Chebyshev’s
inequality.

Theorem 2.6.38 Bienaymé-Chebyshev’s inequality
Let us consider a real random variable X with finite expected value E(X) and finite non-zero variance
var(X). Then for any real t > 0 :

P[|X − E(X)| ≥ t] ≤ var(X)

t2

We are now interested in inequalities that give bounds on the probability that the sum of ran-
dom variables deviates from its mean. These inequalities are included among the famous Bernstein’s
inequalities.

Theorem 2.6.39 Azuma-Hoeffding’s inequality
Let us consider n independent real random variables X1, ..., Xn with support [ai, bi], meaning that P[Xi ∈
[ai, bi]] = 1 for i = 1, ..., n. Let X̄ be the mean of these variables, i.e. the random variable defined as
X̄ = 1

n

∑n
i=1 Xi. Then for any real number t ≥ 0 :

P[X̄ − E(X̄) ≥ t] ≤ exp

(

− 2t2n2

‖b− a‖2
)

2.6.5 Risk measure

In this section, we introduce the notion of risk measure, stemming from the financial literature. This
term is a slight abuse of terminology since it is not a measure in the sense of Definition 2.6.3. Note that
the literature does not reach a consensus on the precise definition of a risk measure.

Definition 2.6.40 Risk measure
Let us consider a probability space P = (Ω,Σ, µ) and a set R of random variable over P. A mapping
ρ : R → R̄ such that

− For X ∈ R and a real number λ ≥ 0, ρ(λX) = λρ(X) (positive homogeneous) ;

− For a ∈ R, ρ(X + a) = ρ(X)− a (translative) ;

− For X,X ′ ∈ R, X ≤ X ′ ⇒ ρ(X) ≥ ρ(X ′) (monotone).

Definition 2.6.41 Coherent risk measure
A risk measure ρ is said to be coherent it it has so so-called subadditivity property, i.e., for X,X ′ two
real random variable on a probability space P, ρ(X +X ′) ≤ ρ(X) + ρ(X ′).
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Two risk measures are particularly useful : the Value at Risk (VaR) and the Conditional Value
at Risk (CVaR), also called Expected shortfall.

Definition 2.6.42 VaR
Let us consider a real random variable X with probability law P and a real number ε > 0. The, the
ε-VaR of X is defined as following :

VaRε(X) = inf{β ∈ R : P[X ≤ β] ≥ ε}

Proposition 2.6.43 Let us consider a real random variable X with probability distribution P and a
real number ε > 0. Then, we have the following equivalence :

P[X ≤ β] ≥ ε⇔ β ≥ VaRε(X)

Definition 2.6.44 CVaR
Let us consider a real random variable X with probability law P and a real number ε > 0. The, the
ε-CVaR of X is defined as following :

CVaRε(X) = inf
β∈R

{

β +
1

ε
E[(X − β)+]

}

Thus CVaRε evaluates the conditional expectation of X above the ε)-VaR. This risk measure is
widely used since it is both coherent and convex.

Proposition 2.6.45 Let us consider a real random variable X with probability law P and a real number
ε > 0. Then,

P[X ≤ CVaRε(X)] ≥ 1− ε

2.7 Graph

In this section, we give a brief introduction to graph theory, largely inspired by [200] and mainly defining
the notions that are used within some famous combinatorial optimization problem.

Definition 2.7.1 Graph
A graph G = (V,E) consists of a finite, nonempty set V = {v1, ..., vn} and a set E = {e1, ..., em} whose
elements are subset of V of size 2, that is ek = {vi, vj} where vi, vj ∈ V . The elements of E are called
nodes and the element of E are called edges. If ek = {vi, vj}, then we say that ek is incident to vi and
vj.

Unless other specified, we will assume that a graph G = (V,E) is simple, i.e. that its edges are
distinct and if e = (vi, vj) then vi 6= vj .

Definition 2.7.2 Incidence matrix
Let us consider a graph G = (V,E) with |V | = n and |E| = m. Then the incidence matrix is the matrix
A of {0, 1}n,m indexed by V and E such that Avi,ek = 1 if and only if ek is incident to vi.

Definition 2.7.3 Incidence set
Let us consider a graph G = (V,E) and a node vi ∈ V . The incidence set of vi, denoted δ(vi) ⊂ E is
the set of edges incident to vi.
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Definition 2.7.4 Adjacency matrix
Let us consider a graph G = (V,E) with |V | = n. Then the incidence matrix is the matrix A′ of {0, 1}n,n
indexed by V such that Avi,vj = 1 if and only if (vi, vj) ∈ E.

Definition 2.7.5 Complete graph
A graph G = (V,E) is called complete if it contains all the possible edges, i.e. |δ(vi)| = |V | − 1 for all
vi ∈ V .

Definition 2.7.6 Complement
Let us consider a graph G = (V,E). Then the complement of G is a simple graph Ḡ = (V, Ē) where
Ē = {(vi, vj) : (vi, vj) /∈ E, vi, vj ∈ V }.

Definition 2.7.7 Subgraph
Let us consider a graph G = (V,E), V ′ ⊂ V and E(V ′) = {{vi, vj} ∈ E : vi ∈ U, vj ∈ U}. If E′ ⊂ E(V ′)
then G′ = (V ′, E′) is a subgraph of G. If V = V ′ then G′ is a spanning subgraph. If E′ = E(V ′) then
G′ is the subgraph induced by V ′.

Definition 2.7.8 Cut
Let us consider a graph G = (V,E). A cut is a partition of V into two disjoints subsets V1 and V2 and
the cut-set is the set of edges whose end points are in different subsets of the partition. Edges are said
to be crossing the cut if they are in its cut-set.

In other words, a cut-set is a subset of edges F ⊂ E such that the subgraph (V, F ) is bipartite.

Definition 2.7.9 Stable set
Let us consider a graph G = (V,E) and a subset of nodes V ′ ⊂ V . V ′ is a stable set if there exists no
(vi, vj) ∈ E with vi, vj ∈ V ′.

Definition 2.7.10 Clique
Let us consider a graph G = (V,E) and a subset of nodes V ′ ⊂ V . V ′ is a clique if for all distinct pair
of nodes vi, vj ∈ V ′, (vi, vj) ∈ E.

The chromatic number of a graph G is defined as the minimum number of colors required to
color the nodes of G so that no adjacent nodes have the same color. More formally,

Definition 2.7.11 Chromatic number
The chromatic number of a graph G is the minimum number k so that there exists a partition V1, ..., Vk

of V where each Vi does not contain any element of E.

Definition 2.7.12 Perfect graph
A graph G is called perfect if the chromatic number of every induced subgraph of G equals the size of
the largest clique of that subgraph.
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Chapter 3

Optimization Background

The mathematical discipline of Optimization, also known as Mathematical Programming, can be defined
as the selection of a best element w.r.t a given criteria f(x), among a set of available alternative F .
This paradigm is represented under the following form :

{

min f(x)
s.t. x ∈ F

Solving such a problem mainly consists of determining one minimizer, or optimal solution, x∗,
and the optimal value p∗ = f(x∗). For arbitrary f and F , this value has no analytical expression and
must be calculated through a "black box" process, i.e., through an algorithm. In full generality, this
process can take an infinite time, but there are some special cases where efficient algorithms exist.

In particular, in the case where f is linear and F is a polyhedron, the simplex algorithm, designed
by Dantzig in 1947, solves the problem very efficiently. This milestone is generally considered as the
official inception of optimization, even if some all-important works were carried out since the 18th
century by forerunners such as Lagrange, Newton or Cauchy. Indeed, the methods designed to solve
such problems require large amount of computational effort and their practical implementation were
therefore carried out in parallel with the development of computer technology. It is currently one of the
most active areas of applied mathematics.

This appendix aims at collecting together the definition and results related to optimization that
are mentioned in the thesis. The particular case of convex optimization is treated in the main part of
the thesis 1.

3.1 Generalities on optimization

3.1.1 Definition

Definition 3.1.1 Optimization problem
An optimization problem (P ) consists of a set F ⊂ R

n, (the so-called feasible set) and a real-valued
function f0 : F → R, (the so-called objective function), to minimize or to maximize over F .

When F is defined through inequalities involving functions, i.e., F = {x ∈ R
n : fi(x) ≤ 0, i =

1, ...,m}, then the optimization problem can be written in the following form :

(P )

{

minx∈Rn f0(x)
s.t. fi(x) ≤ 0, i = 1, ...,m
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In this case, we say that F is defined explicitly.

In the sequel, unless stated otherwise, we restrict ourself to the minimization case where the
functions fi, i = 0, ...,m are continuous and F is a closed non-empty set embedded in a n-dimensional
Euclidian space. This excludes, for example, optimization over the set of the probability distribution.

Remark that this framework includes maximization problems by replacing f0 by its opposite.
Equality constraints are supported by splitting them into two inequalities. Finally, if f0 is not contin-
uous, it can be replaced by an additional variable t, related to f0 by the constraint f0(x)− t ≤ 0. For
the same reason, when needed, we may consider without loss of generality that the objective function
is linear.

In the case where the number of variables and (resp. or) the number of constraints is infinite,
the problem is said to be (resp. semi) infinite dimensional. These problems, that are more challenging
than finite-dimensional ones, won’t be considered here, unless explicitly stated.

We are interested both in getting the optimal value, denoted p∗, and a minimizer x∗. In general,
f0 may fail to have an minimum over F . For this reason, using min is somewhat inappropriate and
should be replace by inf. Nevertheless, we allow ourselves this abuse of language since we consider that
f0 has an optimum over F in R̄ = R ∪ {−∞,+∞}, even if it may be not attained. Moreover, if F is
bounded or if f0 is coercive, then necessarily a minimum exists and is attained.

Definition 3.1.2 Equivalent problems
We say that two problems are equivalent, which is denoted by (P1) ≡ (P2), if they have the same optimal
value and if the optimal solution of one leads to the optimal solution of the other in polynomial time.

For example, the following problems are equivalent :

(P )
min f0(x)
subject to x ∈ D (P 1)

min t
subject to f0(x) ≤ t

x ∈ D
t ∈ R

This allows to consider problems with linear objective without loss of generality.

Definition 3.1.3 Relaxation and conservative approximation

The relaxation (Pr) of a problem (P ) is a problem with the same function to minimize and whose feasible
set of solution is included in the feasible set of (P ). Conversely, (Pc) is a conservative approximation
of the problem (P ) if (P ) is a relaxation of (Pc).

A simple way to obtain a relaxation of a problem is to remove one of its constraint. Another
possibility is to embed F in a broader set. For example, an outer approximation is a technique that
relaxes a problem by embedding F into a linear set.

Definition 3.1.4 Outer Approximation
An outer approximation is a special case of relaxation applied to problem with convex feasible set,
obtained by replacing the feasible set by a larger polyhedron computed through the tangents at suitable
boundary points.

Definition 3.1.5 Projection
A projection(PP ) of a problem (P ) is an equivalent problem to (P ) such that the solution of (PP ) is a
projection of the solution of (P ) on a less-dimensional space. Conversely, (PL) is a lift of the problem
(P ) if (P ) is a projection of (PL).
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Finally, we define the homogenization of an optimization problem as the embedding of its feasible
set into a +1 dimensional space :

Definition 3.1.6 Homogenization
Let us consider an optimization problem (P ) min cTx : x ∈ F . Its homogenization is defined as

(P ′) min f

(

y

y0

)

:

(

y0
y

)

∈ F̃

where F̃ is the homogenization of F̃ .

(P ) and (P ′) are closely related but are not equivalent since 0 ∈ F̃ even if 0 /∈ F .

3.1.2 Complexity

The content of this paragraph is mainly taken from [60, 101].

Definition 3.1.7 Decision problem
A decision problem associates to an input a bivalent ("yes-or-no") answer.

For example, the input is an integer number and the decision problem is to decide whether this
number is a prime number or not. Another famous example is the problem SAT that is presented in
Paragraph 3.1.4.2.

In 1936, Turing developped a conceptual machine, the so-called Turing machine and thereby laid
the fundations of the computational complexity theory. This machine is an abstract model of how works
any calculation machine and the Church-Turing hypothesis claims that any computable function can
be carried out on such a machine.

The Turing machine provides a way to measure the amount of spatial and temporal resources used
by an algorithm in the worst-case, as a function of the size of the problem. The latter is traditionally
expressed in the number of bits (bit length) used to represent the data, but some other, simpler, measures
are also possible, like for instance the number of items involved in the problem. This is associated with
the assumption that each elementary arithmetic operation takes one unit time, instead of the number of
bit operations, and both constitutes the RAM model (in contrast to the Turing, or bit number model).

The comparison of these two concepts is relevant if and only if all the input of the algorithm
consist of integers. Indeed, computers cannot represent real numbers precisely since the number of bits
for storing is finite.

The amount of resources used by an algorithm obviously depend on the considered instance. In
order to eliminate this dependency, three indicators are considered :

− The worst-case performance, used for instance for real time programming ;

− The average-case performance, that gives a general idea of running time but it often difficult to
establish ;

− The best-case performance. It can be very useful to identify which are the instances that are
concerned with these cases.

Definition 3.1.8 Reduction
A decision problem (PR) is the reduction of a problem (P ) if there exists a polynomial way of converting
the input of (P ) into input of (PR). Equivalently, we say that (P ) reduces to (PR).
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Figure 3.1: Relationship between a 0/1 LP, its linear relaxation and their semidefinite relaxations

In other words, (P ) is, up to a polynomial conversion, a particular case of (PR). Then the
following theorem state the intuitive fact that if (PR) is polynomially solvable, the same holds for (P ).

This allows for the definition of complexity classes to classify the decision problems according
to the amount of spatial and temporal resources that their resolution requires on a Turing machine.
More generally, a complexity class is is a set of problems of related resource-based complexity and has
a typical definition of the form: the set of problems that can be solved by an abstract machine M using
O(f(n)) of resource R, where n is the size of the input. In particular, a problem of input size n is
said to be of complexity class DTIME(f(n)) (or TIME(f(n))), if it can be solved on a deterministic
Turing machine in O(f(n)) computation steps. This means that there exists an algorithm that solve this
problem on a "normal" machine in O(f(n)) computation time, without any restriction on the amount
of memory space used. This is the most common complexity measure used, because computational time
is often prohibitive for large problems. In this thesis, we restrict ourselves to this temporal complexity,
with the following complexity classes, to cite only the most important :

− P is the set of all decision problems which can be solved in polynomial time by a Turing machine;

− NP is the set of all decision problems for which the input where the answer is "yes" admit
proofs of the fact that the answer is indeed "yes" and these proofs are verifiable in polynomial
time by a Turing machine;

− co-NP is the set of all decision problems whose complement, i.e. the problem that answers
"yes" if the answer is "no" and vice versa) belongs to NP ;

− NP-hard are the problems for which there exists a NP-complete problem that reduces to them;

− NP-complete are the problems both NP and NP-hard.

Remark that the definition of NP-hard and NP-complete may seem going round in circles. This
difficulty is overcome by the following theorem [76] :

Theorem 3.1.9 Cook’s theorem SAT is NP-complete.

Subsequently, Karp [151] showed that 21 famous combinatorial problems were NP-complete. The
complexity class P is contained in NP, as illustrated on the Euler diagram above :

Proving whether P = NP or not is currently one of the most famous open problem in computer
science, even it is widely believed that this is not the case. This is a key question since it comes to ask
whether polynomial time algorithms actually exist for NP-complete problems.

This theory can be easily extended to optimization problems. Such problems don’t belong to
NP since NP contains only decision problems but they are naturally associated with a decision problem
(D) in the following manner :

(P )min
x∈F

f(x) (D) Is there x ∈ F such thatx ≤ K
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If (P ) is solved, then (D) is solved. Namely, (P ) reduces to (D). Consequently, having (D)
NP-hard implies that (P ) is NP-hard.

Furthermore, by doing a binary search on K (see Paragraph 3.2.1) which is polynomial, one can
embedd the resolution of (D) into a polynomial time algorithm for (P ), which implies that (D) also
reduces to (P ).

Another more efficient possibility for converting an optimization problem into a decision problem
comes about when sufficient and necessary optimality conditions are available for the problem, but this
is not always the case.

In the case of 0-1 Linear Program, the associated decision problem is NP-complete. This can be
proven with a reduction from SAT to 0-1LP, where SAT is the satisfiability problem, the first problem
to be proven NP-complete. In this reduction, a binary variables is assigned to each positive literal and
each clause is rewritten as a linear constraint, e.g. (x1 ∨ x̄2) becomes y1 + (1− y2) ≥ 1.

ILP reduces to 0-1LP and MILP reduces to ILP, so both are NP-hard. More generally, any Mixed-
Integer Program can be reduced to MILP and is therefore NP-hard. In contrast, Khachiyan [153] proved
the polynomiality of Linear Programming (LP) by using the ellipsoid method (see Paragraph 1.2.1).
This result was extended to the optimization of a linear objective over a convex set, under the existence
of a polynomial time separation oracle for this convex set [118].

3.1.3 Classification of optimization problems

Depending on the characteristics of the feasible set and of the objective function, some properties can
be attributed to (P ), impacting significantly the scope of (P ) and the method for its resolution. These
properties are generally non-exclusive and are given above by order of importance. Indeed the key
property of an optimization problem lies in its convexity, since its guarantees that the problem be
polynomially solvable.

We consider the problem :

(P )

{

minx∈Rn f0(x)
s.t. x ∈ F

When needed, F = {x ∈ R
n : fi(x) ≤ 0, i = 1, ...,m}.

Table 3.1: Properties of an optimization problem

Property Definition

Convex if all the functions fi, i = 0, ...,m are convex

Linear if all the functions fi, i = 0, ...,m are linear

Quadratic if all the functions fi, i = 0, ...,m are quadratic

Polynomial if all the functions fi, i = 0, ...,m are polynomial

Combinatorial if the set F is finite

Differentiable if the functions fi, i = 0, ...,m are differentiable

Uncertain if the functions fi, i = 0, ...,m depends on random variables

Multi-stage if a part of the decisions can be made once the uncertainty is released

Semi-infinite dimensional if the number of variables or constraints is infinite
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3.1.4 Focus on combinatorial optimization

Combinatorial (or discrete) optimization deals with all the optimization problems that have a finite
(or possibly countable infinite) number of feasible solutions. The difficulty for handling them comes
from the possibly very large number of elements of the feasible set. This area of optimization includes
famous problems as Traveling Salesman Problem or Multidimensional Knapsack. More generally, it has
a widespread range of application due to the following possibilities that it offers :

− managing indivisible resources ;

− Modeling "yes-or-no" decisions ;

− Enforcing logical conditions ;

− Modeling fixed costs ;

− Modeling piecewise linear functions.

See [200] for an excellent survey on the topic and examples of applications.

The majority of combinatorial optimization can be formulated as Mixed-Integer Programs, i.e.
optimization problems with integrality restrictions on some of the variables :







min f0(x, y)
s.t. fi(x, y) ≤ 0, i = 1, ...,m,

x ∈ Z
n

When all the variables are required to be integer, the problem is said to be a pure integer program.
Otherwise, the term mixed refers to the presence of continuous variables. A natural relaxation for these
problem is the continuous relaxation, which is obtained by relaxing the integrality constraints :

{

min f0(x, y)
s.t. fi(x, y) ≤ 0, i = 1, ...,m

Some problems in the area are polynomial. A famous example is the problem of determining the
shortest path in a weighted graph, whose a particular polynomial algorithm, the so-called Bellman-Ford
algorithm, laid the fundation for dynamic programming. In the case of Integer Linear Program, if the
feasible set is defined by linear systems with totally unimodular matrices, then the optimal solution of
its linear relaxation is integer and the problem is therefore polynomial.

But majority of the combinatorial problem share the property of being NP-hard. Indeed, the
discrete property make them loose some useful properties for optimization such as continuity, convexity
or duality. In this case, three kind of resolution methods are possible :

− Enumerative method, i.e. exploring the whole set of feasible solutions. Lead to the optimal
solution in exponential time.

− Approximation algorithms, i.e. polynomial-time algorithms that computes for every instance
of the problem a solution with some guaranteed quality.

− Heuristic, i.e., a method that provide a feasible solution without any guarantee in terms of
solution quality or running time.

For mixed-integer programs, enumerative methods include Branch & Bound and Branch & Cut
methods, that are detailled for MILP in Paragraph 3.4.1 and BandCforMILP. These methods rely on the
computation of lower bounds, which accounts for the motivation of solving efficiently tight relaxations
of the problem.

To conclude this section and as an illustration, we briefly describe the MAX-CUT problem, that
played a key role in arousing interest for semidefinite relaxation of combinatorial problems.
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3.1.4.1 MAX-CUT

Given a graph G = (V,E) with a weight we for each edge e ∈ E, the objective is to find a subset W ⊂ V
such that the edge cut, i.e., the set of edges with exactly one extremity in W , have maximum total weight.
Let M is the symmetric matrix indexed by the elements of E that contains the weight of the edges :
Mij = w(i,j) and for each vertices of i ∈ G, we define a bivalent variable xi that equals 1 if i ∈ W , −1
otherwise. Then the problem is : max

∑

(ij)∈V
1−xixj

2 : x ∈ {−1, 1}|V | = max 1
4x

TLx : x ∈ {−1, 1}|V |

where L is the weighted Laplacian of the graph, that is Lii =
∑

j:(i,j)∈E wij , Lij = −wij for (i, j) ∈ E,
Lij = 0 otherwise.

This problem is therefore a quadratic program with the sole constraint that the constraint be
bivalent. It was shown (see for instance [128, 175]) that any unconstrained bivalent quadratic problem,
can be converted, up to an additive constant, into an instance of MAX-CUT.

A very interesting result related to MAX-CUT involves the Unique Game Conjecture, that states
that the following decision problem is NP-hard. Given a weight graph G = (V,E), with the weights
we, e ∈ E and a real 0 < ε < 1, does there exist an affectation of real xi to the elements of V such that
xi + xj = w(i,j)modk for at least (1− ε)|E| elements of E ?

Several inapproxability results rely on this conjecture and in particular, the following one concerns
MAX-CUT :

Theorem 3.1.10 [155]
Suppose the Unique Game Conjecture. Then it is NP-hard to find an approximation algorithm for
MAX-CUT with a guarantee better than 0.878.

3.1.4.2 SAT and MAX-SAT

The satisfiability problem, commonly abbreviated SAT, is a decision problem consisting of deciding
whether there exists an assignment for a set of bivalent variables (x1, ..., xn) taking the value true or
false, such that a set of clause be satisfied. A clause is a disjunction of literals and a literal is either a
variable xi or its negation x̄i. For instance the clause x1

∨

x̄2 is satisfied if x1 = true or x2 = false,
where the "or" is not exclusive.

The MAX-SAT problem is an optimization problem related to SAT. Instead of requiring that
all the clauses be satisfied, we aim at maximizing the number of satisfied clauses, or the sum of the
weight of the satisfied clauses if such a weight is attributed to the clauses. Another variant of this
problem is MAX-kSAT, where each clause is of length at most k. In particular, it was shown in [101]
that MAX-2SAT is NP-hard.

3.1.4.3 Disjunctive Programming

Disjunctive Programming is a special case of Mathematical Programming where the feasible set of the
problem is defined as the union of several sets. It is therefore an example of nonconvex optimization.

The following formalism is used : min f(x) : x ∈ F1

∨

...
∨

x ∈ Fm or equivalently min f(x) :
∨m

i=1 x ∈ Fi.

In particular, it includes 0/1 programming since the constraints xi ∈ {0, 1} can be formulated as
xi = 0

∨

xi = 1. We can even consider that it includes any combinatorial problem with a finite number
of feasible solutions.

In the case of Disjunctive Linear Programming, the objective is to minimize a linear function
while satisfying a system of conjunctive and disjunctive linear constraints :

min cTx :

m
∨

i=1

ki
∧

j=1

aijx ≤ bij
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The feasible set is therefore the union of individual polyhedra.

From a modelling point of view, the disjunctive formulation is very powerful. It is the most
natural way of stating many problems involving logical conditions. It can also be useful for modeling
piecewise defined functions.

A classical way of modeling exclusive disjunction, i.e. disjunction that can not be satisfied
simultaneously, is to convert it into a 0/1 program, through the use of a "big M" binary variable. Thus,
we recover a special case of combinatorial optimization.

3.1.5 Lagrangian of an optimization problem

Let us consider the following optimization problem :














minx f0(x)
fj(x) ≤ 0, j = 1, ...,m
gj(x) = 0, j = 1, ..., p
x ∈ K

(3.1)

where fj , j = 0, ...,m and gj , j = 1, ...p are functions from R
n to R and K is a subset of Rn.

To the optimization problem (3.1), whose optimal value is denoted by p∗, we associate a function
L : Rn×R

m+p → R, called Lagrangian, that combines the objective and the violation of the constraints
:

L(x, λ, µ) = f0(x) +

m
∑

j=1

λjfj(x) +

p
∑

j=1

µjgj(x)

The λj and µj are called Lagrangian multipliers and the Lagrange dual function l : Rm+p → R

is defined as following :

l(λ, µ) = inf
xinK

L(x, λ, µ)

Two important observations have to be mentioned about the function l. First it is concave as
the infimum of a family of affine function. Second, if λ ≥ 0 then l(λ, µ) ≤ p∗.

The fundamental statement regarding the Lagrangian is that it has the same optimal value as
the original problem. Indeed, it takes the same value as the objective for all values of x that satisfies
the primal constraints, and is positive infinity if the constraints are violated :

inf
x∈K

sup
λ≥0
L(x, λ, µ) = inf

x∈K

{

f0(x) if fj(x) ≤ 0, j = 1, ...,m; gj(x) = 0, j = 1, ..., p
+∞ otherwise

= p∗

This leads to the first utilization of the Lagrangian, by defining another optimization problem, the
dual problem, closely related to the original problem. Under some regularity conditions, the Lagrangian
can be used to derive some necessary (sometimes sufficient) first-order optimality conditions, namely
the Karush-Kuhn-Tucker (KKT) conditions.

3.1.5.1 Lagrangian duality

The Lagrangian dual of the problem is obtained by permuting the minimization and the maximization
in the previous formulation 3.2 :
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d∗ = supλ≥0 infx∈K L(x, λ, µ)
= sup l(λ, µ) : λ ≥ 0

This problem, called dual problem by opposition to the primal problem (3.1), is necessarily convex,
as the maximization on a convex set (Rm

+ ×Rp) of the concave function l.

It can be interpreted as the selection of the best lower bound among the set of lower bounds
{l(λ, µ) : λ ≥ 0}. Thus, d∗ ≤ p∗, which is constitutes the weak duality. The strong duality holds
whenever d∗ = p∗ but this is generally not the case. The strong duality can also be interpreted in terms
of the existence of a saddle-point of the Lagrangian.

The primal and dual problems are intimately connected "as the two faces of the same coin"
following the standard expression.

In the particular case of convex (or conic) programming, we will see that an elegant theory yields
an explicit formulation for this problem. However, this is not the case in general. Furthermore, it is
generally not differentiable, even when all the function fj and gj are differentiable.

3.1.5.2 Karush-Kuhn-Tucker (KKT) conditions

Under some regularity conditions, the Lagrangian can be employed to derive necessary first-order op-
timality conditions for the following optimization problem, a special case of the problem (3.1) with
K = R

n.

First, we discuss the case where m = 0, i.e., the only constraints are equality constraints. We
define X = {x ∈ R

n : g(x) = 0} with g : Rn → R
p and we assume that these constraints satisfy the

constraints qualification, which comes to state the following equality :

TX(x) = NJg(x)

with TX(x) the Bouligand Tangent cone of X at x and Jg(x) the Jacobian matrix of g at x.

Thanks to this assumption and by applying the first-order condition of optimality 2.4.27, we
derive the following theorem :

Theorem 3.1.11 Lagrange theorem Let x∗ be a local solution of the optimization problem : minx f0(x) :
gj(x) = 0, j = 1, ..., p. Assume that f0 and gj , j = 1, ..., p be differentiable at x∗ and that the constraints
satisfy the constraints qualification. Then, there exists a vector µ∗ such that :

∇f0(x∗) +
p
∑

j=1

µ∗
j∇gj(x∗) = 0

By assessing the feasibility of x∗, we obtain the following system of necessary conditions :

∇f0(x∗) + Jg(x
∗)Tµ∗ = 0

g(x∗) = 0

This is equivalent to require that the gradient of the Lagrangian vanishes : ∇(x,µ)L(x∗, µ∗) = 0.

By extending this process to an optimization with inequality constraints, we obtain the following
Karush-Kuhn-Tucker (KKT) conditions.

Theorem 3.1.12 Let x∗ be a local solution of the following optimization problem :






minx f0(x)
fj(x) ≤ 0, j = 1, ...,m
gj(x) = 0, j = 1, ..., p
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Assume that f0 and fj , j = 1, ...,m and gj , j = 1, ..., p be differentiable at x∗ and that the
constraints satisfy the constraints qualification. Then, there exists vectors λ∗ and µ∗ such that :

∇f0(x∗) +
∑m

j=1 λ
∗
j∇fj(x∗) +

∑p
j=1 µ

∗
j∇gj(x∗) = 0

f(x) ≤ 0
g(x) = 0
λ∗ ≥ 0
λ∗
i fi(x

∗) = 0, i = 1, ...,m

Thus, the first constraint is obtained by setting the Lagrangian partial derivative to zero. The
following ones are necessary to ensure the primal feasibility of x∗ and the dual feasibility of (λ∗, µ∗).
The last constraint, referred to as complementary slackness, can be seen as a consequence of a zero
duality gap. Indeed,

f0(x
∗) = l(λ∗, µ∗)

= infx f0(x) +
∑m

j=1 λ
∗
jfj(x) +

∑p
j=1 µ

∗
jgj(x)

≤ f0(x
∗) +

∑m
j=1 λ

∗
jfj(x

∗) +
∑p

j=1 µ
∗
jgj(x

∗)

Hence, as gj(x
∗) = 0, j = 1, ..., p, we have

∑m
j=1 λjfj(x

∗) ≥ 0. As gj(x
∗) ≤ 0, j = 1, ...,m and

λ∗
j ≥ 0, necessarily λjfj(x

∗) = 0, j = 1, ...,m.

These constraints can be interpreted as requiring that the Lagrange multipliers associated to an
inactive constraints (fi(x∗) < 0) is zero. The complementarity is strict if

(fi(x
∗) < 0⇔ λi = 0) , i = 1, ...,m

In the case when the strong duality holds, the Lagrangian admits a saddle-point, which is then
a solution of the KKT system. In particular, a saddle-point is a stationary point, which is consistent
with the first constraint which makes the gradient of the Lagrangian to vanish.

3.1.5.3 Constraints qualification

The KKT conditions hold only under the constraint qualification assumption, which rules out certain
irregularities on the boundary of the feasible set.

Some well-known sufficient conditions to constraints qualification are appended below :

− if fj , j = 1, ...,m and gj , j = 1, ..., p are affine (Linearity) ;

− if the problem is convex and if there exists a strictly feasible point, i.e. x0 such that fj(x0) <
0, j = 1, ...,m and gj(x0) = 0, j = 1, ..., p (Slater’s condition) ;

− if the gradients of the active inequality constraints and the gradients of the equality constraints
are linearly independent at x∗ ( Linear independence constraint qualification);

− if the gradients of the active inequality constraints and the gradients of the equality constraints
are positive-linearly independent at x∗ (Mangasarian - Fromovitz constraint qualification).

3.1.6 Optimization over the convex hull

This section yields some fundamental results regarding the relaxation of a problem over its convex hull.
More precisely, let us consider the following optimization problem : (P )minx∈F f(x) and its relaxation
(PC)minx∈conv(F) f(x).

conv(F) is the convex hull of F , the smallest convex set such that F ⊆ conv(F) (see Def. 2.1.2).
Consequently, (PC) is a convex relaxation of (P ) and is theoretically easier to solve than (P ), provided
that the representation of conv(F) be tractable.
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With p∗C and p∗ the optimal values of (P ) and (PC) respectively, it is clear that p∗C ≤ p∗. In the
case where f is concave and conv(F) is compact, it is straightforward that (P ) and (PC) have the same
optimal value.

Proof 3.1.13 Assume that p∗C < p∗. There exists x0 ∈ conv(F), x0 /∈ F such that f(x0) < f(x), ∀x ∈
F . As x0 ∈ conv(F), there exists x1, x2 ∈ F and λ ∈ [0, 1] such that x0 = λx1 + (1 − λ)x2, and from
the concavity of f : λf(x1) + (1− λ)f(x2) < f(x), ∀x ∈ F which is a contradiction. �

Nevertheless, (P ) and (PC) do not have necessarily the same minimizers, since there may be
some minimizer of (PC) that do not belong to F [140].

This equivalence is widely used in particular for Integer Linear Programming since F is finite
and f is linear. The difficulty in this case is to compute an description of conv(F) in the form of a
polyhedron, in order to write this relaxation in the form of a Linear Program.

3.2 Algorithms of particular interest for optimization

In this section,largely based on the book of Minoux [194], we define some general properties of algorithm,
before describing in detail some particular algorithms that play a special role in optimization.

An algorithm is a step-by-step process for computing a function of arbitrary inputs. It is said
to be exact if it computes the exact solution. Otherwise, it is said to be an heuristic. The term
meta-heuristic refers to heuristics that are not dedicated to a special problem. In the case where the
algorithm is not exact, but is a polynomial-time algorithms with a guarantee on the obtained solution,
then it is an approximation algorithm. If p∗ is the exact solution of the problem, and p̃ the solution of
the approximation algorithm with

ρp∗ ≤ p̃ ≤ p∗

then the algorithm is a ρ-approximation algorithm and the factor ρ is the relative performance guarantee
of the algorithm.

When an algorithm involves random data, it is said to be a randomized algorithm. In the case of
a randomized approximation algorithm, the quality measure is assessed through the expected value of
the relative performance guarantee.

Finally, in the case of an optimization problem, where the function to compute is an optimum
over a given set, we distinguish the exact algorithms from algorithms that compute a local optimum,
that we call local optimization algorithm.

3.2.1 Binary search

This algorithm aims at determining the smallest element of a discrete and sorted set of values S =
{s1, ..., sn} that satisfies a certain statement f(s) = 1, with the following property :

f(s̄) = 1⇒ f(s) = 1, ∀s ≥ s̄
f(s̄) = 0⇒ f(s) = 0, ∀s ≤ s̄

Then the binary search, described below, converges to the solution, i.e., si such that f(si) = 0
and f(si+1) = 1, in at most log(n) iterations.
1: Let i =

⌊

n
2

⌋

2: while f(si) = 1 OR f(si+1) = 0 do
3: if i = n then
4: return "Not found"
5: else
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6: if f(si) = 1 then
7: i← i−

⌊

i
2

⌋

8: else
9: i← i+

⌊

i
2

⌋

10: end if
11: end if
12: end while
13: return si

This algorithm is used to convert an optimization problem (P )min f(x) : x ∈ F into a decision
problem ∃t, x ∈ F : t ≥ f(x). Indeed, the smallest value of t that results in a "yes" answer of this
decision problem is the optimal value of (P ) and his

3.2.2 Gradient descent

This method aims at determining a local minima of a differentiable multivariate function f : Rn → R.

This method is also known as the method of the steepest descent. It is based on the fact that
the function f decreases fastest by moving in the direction of the negative gradient and is therefore a
first-order method. Thus, at each iteration, move from xk to xk+1 = xk−γk∇f(xk). The method stops
when ‖∇f(xk)‖ < ε for a given tolerance threshold ε.

γk > 0 is a small real value called step size and can be chosen in different ways :

− define g(γ) = f(xk − γ∇f(xk)) and solve g′(γ) = 0 ;

− determine a value of γ that satisfies Wolfe conditions, for example with a backtracking line
search

The first method for determining γ leads to the so-called conjugate gradient method. One of the
characteristic of this method is that two successive directions are orthogonal to each other : dTk dk+1 = 0,
which may cause bad convergence properties for ill-conditioned functions.

Under relevant conditions, convergence to a local minimum can be guaranteed and the number
of iterations required to obtain ‖f(xk)‖ ≤ ε is at most O(ε−2).

This method can be extended to constrained optimization. Let us consider for instance the
constraints fi(x) ≤ 0, i = 1, ...,m, with fi differentiable functions. We denote J(xk) the set of the
indices of the active constraints at xk. Then d is a feasible descent direction if dT∇fi(xk) ≤ 0, i ∈ J(xk)
and dT∇f(xk) ≤ 0. Such a direction can be computed by projecting the negative gradient of f onto
the tangent plane to the active constraint surfaces. With an appropriate choice of the step length, this
method converges to a KKT solution.

The main advantages of this method lies in its simplicity, but its convergence may be very slow,
even for problem that are quite well conditioned.

3.2.3 Newton’s method

The Newton’s method, also called Newton-Raphson method, was originally designed to find the root of
a system of equations S(x) = 0, with S : Rn → R

m. The underlying idea is to solve at each iteration
the linear equation obtained by equating to zero the first-order approximation of the function. With
JS(x) the Jacobian matrix of S :

xk+1 = xk + δk such that J(xk)δk + f(xk) = 0

It remains to solve the linear system JS(xk)δk = −f(xk). Thus, we obtain a sequence of xk that
converges to a root of S.
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Figure 3.2: Newton’s method

This method can easily be extended to unconstrained optimization of a function f : Rn → R by
solving the first-order optimality condition : ∇f(x∗) = 0 if x∗ is a local minimizer of f for any function
f twice differentiable. In this case, S = ∇f and therefore JS(x) = ∇2f(x). The system to solve at each
iteration is therefore :

∇2f(xk)
T δk = −∇f(xk)

If f is strictly convex, then ∇2f(xk) ≻ 0, which ensures that the system has a unique solution.

Remark that this method is equivalent to minimize the second-order approximation of the func-
tion at each iteration. This is therefore a second-order methods.

The Newton’s method can also be applied to an optimization problem with equality constraint :
min f(x) : Ax = b, with A a full rank matrix of size p. Indeed, it suffices to solve the KKT system :

(KKT )

{

∇f(x) +ATλ = 0
Ax = b

By assuming that Axk = b and by denoting w the dual variables for the equality constraints, the
system to solve at each iteration is as following :

(KKTk)

(

∇2f(xk) AT

A 0

)(

δk
w

)

=

(

−∇f(xk)
0

)

The determination of an initial feasible point may sometimes be a challenging task. In this case,
there exists a version of the algorithm that includes the necessity of computing such a feasible point.

From a computational point of view, the main difficulty comes from the resolution at each itera-
tion, of the system (KKTk). An efficient way to do this is based on the variable elimination technique,
which requires O(p2n+ p3) elementary operations.

In conclusion, let us mention the Quasi-Newton method. As its name suggest, it is very close
to the Newton’s method but, in order to avoid the repeated computation of the Hessian, the latter is
replaced by an estimate based on successive gradients.

3.2.4 Lagrangian methods

Consider the following constrained optimization problem :

{

min f(x)
s.t. gi(x) ≤ 0, i = 1, ...,m
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Recall that the Lagrangian of this problem L(x, λ) = f(x) +
∑m

i=1 λigi(x) is defined for λ ≥ 0
and the dual function of the problem is l(λ) = infx L(x, λ). This function is always concave.

The underlying idea of the classical Lagrangian method is to exploit the concavity of the dual
function l and the fact that it is relatively easy to compute a sub-gradient (or a gradient when l is
differentiable) of l.

When a saddle-point exists (no duality gap), the algorithm yields an optimal solution of the
original problem. Otherwise, it provides only approximate solution of the optimal solution, as well as
lower bounds of the optimal value. One of the most famous of these algorithm is the so-called Uzawa
algorithm.

Combining this approach with the penalty approaches leads to the Augmented Lagrangian method.
The idea of the penalty approaches consists of converting a constrained optimization problem into an
unconstrained one by means of a penalty function that to penalize the violation of the constraints. A
classical penalty of an equality constraint g(x) = 0 being g(x)2, the augmented Lagrangian approach
consists of solving a sequence of problem of the form :

min
x,s≥0

f(x) +
m
∑

i=1

λi(gi(x) + si) + r
m
∑

i=1

(gi(x) + si)
2

3.3 Linear Programming

The definition of Linear Programming and the design of the simplex method in 1948 by Dantzig are
generally considered as the milestone that sparked off Mathematical Programming. Since that time,
Linear Programming has been the most widely used technique of Mathematical Programming, with a
variety of scientific and technical applications, such as logistics, scheduling, network or finance. The ap-
plication of Linear Programming to economic planification even brought the Nobel Prize to Kantorovich
in 1975.

In this thesis, this technique is often used as a reference since it offers a relaxation framework for
a variety of problems, in particular for Quadratically Constrained Quadratic Programs (QCQP).

3.3.1 Basic results in Linear Programming

Linear Programming can be viewed as the the special case of Conic Programming using the nonnegative
orthant Rn

+ as cone. This cone being self-dual, we can easily formulate its dual by applying the duality
for Conic Programs 1.1.3:







minx∈Rn cTx
s.t Ax = b

x ≥ 0

dual←→
{

maxy∈Rm bT y
s.t c−AT y ≥ 0

(3.2)

The strong duality holds whenever both problems are feasible. Otherwise, if the primal is not
feasible, then the dual is unbounded and conversely.

Regarding the complexity, Renegar [226] proved in 1995 that Linear Programming can be solved
in at most O(nk, L) computational steps, where n is the number of variables, k a small constant (3.5 is
known with the Karmarkar’s interior-point method and 4 for the Ellipsoid method) and L measure the
bit-length of the input. In practice, these algorithms perform generally much better that predicted by
this bound.

Two major classes of algorithms are available for Linear Programming. The first ones follow the
line of the Simplex method devised by Dantzig. This method relies on the fact that the optimal solution
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(or at least one of them) is an extreme point of the feasible polyhedra. This algorithm explores these
extreme points successively in order to improve the objective at each iteration.

Following the original tabular variant, numerous variants of this algorithm have been proposed,
starting with the revised primal and dual simplex, then for instance, versions that handle bound con-
straints natively within the algorithm. The advantages of this algorithm are its high practical efficiency,
although it has been proved to be not polynomial on pathological instances [157], and its warm-start
capability.

The second class of methods for Linear Programming gathers the broad range of methods, which,
by constrast with the Simplex, reach the optimum by progressing through the interior of the feasible
domain. These so-called Interior-points methods, are described in detail hereafter.

A synthetic comparison of these methods is difficult. It is generally admitted that the dual simplex
method is best on arbitrary instances, but there are some instances where the primal simplex may work
best. On degenerate or very large-scale instances, the interior-point methods perform generally better
than simplex method.

On the whole the dual simplex method is best for most LP problems, there are some instances
where the primal simplex may work best. The barrier method typically should be used for very large
sparse models or models that are experiencing numerical difficulties.

Most of the solver make automatically the choice of the algorithm, although it may also be
parameterized by the user. Among the numerous commercial solvers available on the market for Linear
Programming, we distinguish IBM ILOG CPLEX [143] and Xpress [1], as the most popular. There
are also freely-available solvers that perform well, although their efficiency is not comparable yet with
above mentioned commercial solvers. Among them are CLP [234] or GLPK [188], to cite only those
that performs the best on the recent benchmark [196].

Thus, very large-scale linear programs, with up to millions of variables, constraints, and non-
zeros, can be solved. For such problems, it can be convenient to apply decomposition methods. For
instance, is the Benders decomposition, that requires the following specific structure :







min C0x0 + C1x1 + C2x2

s.t.A1
0x0 +A1

1x1 = b1

A2
0x0 +A2

2x2 = b2

In other words, there exists a partition of the constraints such that only a subset of variables (x0)
are involved into several subsets of constraints. The Benders methods consists of solving the dual by
adding successive violated valid cutting planes. So the approach is called "row generation". In contrast,
DantzigâĂŞWolfe decomposition uses "column generation". This approach is based on the following
structure :















min C1x1 + C2x2

s.t.A1x1 = b1
A2x2 = b2
B1x1 +B2x2 = b3

Thus, this structure is based on a decomposition of the variables, with only a part of the con-
straints that is shared. The idea is to use the extreme-point representation of the polytopes Aixi = bi
and to replace the variables xi by a convex combination of these extreme points, that are successively
introduced.

It is beyond the scope of this thesis to provide an exhaustive review of this broad topic. We
restrict ourselves to a brief review of the interior-point methods, since they were subsequently extended
to Conic Programming, and in particular Semidefinite Programming. For more detailed information on
this well-studied area, we refer the reader to the references [44, 75, 200].
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3.3.2 Interior-point methods for Linear Programming

In contrast to the simplex algorithm, interior-point methods reach the optimal solution by traversing
the interior of the feasible set. Interior-point methods for Linear Programming is per se a standalone
topic and we restrict ourselves to the most celebrated of these methods, namely the seminal projective
method of Karmarkar, the primal-dual path-following and the potential reduction methods. We also give
insight to some common tools, namely the Mehrotra’s predictor-corrector technique, the consideration
of infeasibility and the crossover procedure. The content of this section is mainly based on the following
references [15, 192, 238, 260] and for a complete and comprehensive review on this, we point the reader
to [215].

Figure 3.3: Reaching the optimal solution via Interior-Points methods

Let us consider the following Linear Program, written under its standard form and its dual :






min cTx
s.t. Ax = b

x ∈ K
dual←→







max bT y
s.t. c−AT y = s

s ∈ K∗

where K is the nonnegative orthant of Rn and (A, b) ∈ R
m,n+1, with rank(A) = m. For sake of

clarity, we denote by K∗ the dual cone of K, even if this cone is self-dual, i.e., K∗ = K).

The interior-point methods are also referred to as barrier methods since they are based on the
use of a barrier function of the cones K and K∗. Such a function has the property of tending to infinity
when the its argument tends to the boundary ofK from inside. More formally,

Definition 3.3.1 Barrier function
F is a barrier function of K if it is defined over int(K) and

lim
x→bnd(K)

F (x) = +∞

The umbrella term "interior-point method" covers a variety of methods. First was the ellipsoid
method, initially proposed for convex minimization problem by Shor [244]. Then it was adapted to Linear
Programming by Khachiyan [153], which proved its worst-case polynomiality (O(n4L) and thereby the
polynomiality of Linear Programming, which were still an open problem.

In practice, this algorithm performs very poorly, in particular compared to the simplex. However
it is nowadays a very important theoretical tool for developing polynomial-time algorithms for a large
class of convex optimization problems, as detailed at paragraph 1.2.1.

With this work, Khachiyan spurred a new wave of research in linear programming, the most
famous of them being the projective scaling algorithm designed by Karmarkar in 1984 [150]. This
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breakthrough has not only improved on Khachiyan’s method with a worst-case polynomial bound of
O(n3.5L)), but has outperformed the simplex method on fairly large-scale problems.

The affine scaling method, a variant of Karmarkar’s algorithm was proposed independently by
several researchers. Later it was discovered that this algorithm had already been proposed by Dikin
[85] in the 1960s. This method is not very interesting, both from theoretical point of view, since it has
not been proved that it converges in polynomial time, and from practical point of view, since it is not
competitive with other methods. Furthermore, it has been shown that it coincides with a particular
case of the path following method, by targeting directly the limit point of the central path (i.e., τ = 0).
For these reasons, we do not get into more details about this method and move on directly to the path
following methods.

The underlying idea of the path following methods is to aim at each iteration a point of the
central path, i.e., a point of the following set :

{(x ∈ R
n, s ∈ R

n, y ∈ R
m) :















Ax = b
c−AT y = s
xisi = τ, i = 1, ..., n
x ∈ K, s ∈ K∗

for some τ ≥ 0}

Note that for a given value of τ , the associated solution (x, y) are the solution of the perturbed
KKT system : instead of requiring xT c − xTAT y = 0 as in the original KKT system, we allow a
relaxation of this equality parameterized by τ .

At this point, a connection have to be made with the barrier functions, which allows to extend
the definition of central path to any conic optimization problem, provided that their cone admits a
barrier function F . Then an intuitive way of relaxing the conic constraint, is to add this function, up
to a parameter τ , in the objective. In the case of Linear Programming, we show that this yiels the
perturbed KKT system. Indeed, a simple barrier function for the nonnegative orthant is the negative
logarithm : F (x) = − ln(x). Thus, we consider the following optimization problems :







min cTx− τ
n
∑

i=1

log xi

s.t. Ax = b







max b • y + τ
n
∑

i=1

log si

s.t. c−AT y = s

These two problems are not dual to each other but by expressing the KKT optimality conditions
for both problems yields the same system, corresponding to the central path system for the accurate
value of τ . τ is called the complementary gap.

When τ tends to 0, the central path converges to an optimal solution of the problem, to the
analytic center to be exact, i.e., the unique optimal solution that satisfies the strict complementarity
condition : x∗ + s∗ > 0. The underlying of the path-following method is to use the central path as
a guideline to reach the optimal solution while remaining in the feasible region. At each iteration k,
the method choose a target on the central path, corresponding to a updated complementary gap τk,
and moves towards it by stepping along Newton’s direction while staying in the feasible region. Global
convergence of the algorithm to the strict complementary solution is ensured by a proper choice of the
shrinking sequence τk and of the step size of the Newton line-search.

The potential reduction methods offer an alternative way to compute this step size. They rely on
the definition of a function measuring the quality (or potential) of a solution by combining proximity
to the set of optimal solutions and centrality within the feasible region. Then, it suffices to establish a
guarantee on the reduction of this potential function at each iteration to obtain a bound on the number
of iterations required to reach the optimal solution at the desired precision.

To conclude, we discuss some generalities about interior-point methods. In the classical variant,
the successive solutions are all strictly feasible. Consequently, since the optimal solution lies on the
frontier of the feasible set, it will never be attained. However, beyond a given proximity, we may
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consider that the obtained precision is sufficient. We may also apply a rounding procedure yielding the
exact optimal solution.

However there is also a class of interior-point method than handle infeasible incombent solutions.
In particular, it avoids the necessity of computing a feasible solution for initialization, which might be
problematic. Indeed, an infeasible interior-point method can start from any interior point of the positive
orthant. Another way to circumvent the initialization problem is to resort to the self-dual embedding
technique.

Moreover, each variant may work in three spaces : the primal space, the dual or their cartesian
product : the primal-dual space.

Among all the possible approaches, the primal-dual path-following method including a number
of enhancements such as Mehrotra’s predictor-corrector technique, has been the most popular since the
1990s. For practical purpose, since it has proven to be the most effective and for theoretical purpose,
since it can be readily extended to general conic programs whenever the cone in question admits a
self-concordant barrier function.

As a last remark, we point out that the time complexity of the interior-point methods is measured
with respect to the length of the binary encoding of the input, which requires that the data are integer or
rational numbers. It is not known at present whether or not there are algorithms for LPs whose running
time is polynomial and depends solely on the number of variables and constraints of the problem.

3.3.2.1 Projective algorithm of Karmarkar

In 1984, Karmarkar [150] introduced a new interior-point algorithm for Linear Programming, which, in
constrast to the Ellipsoid method, seemed to be competitive with the simplex method. This triggered a
revolution in the field of Linear Programming and led researchers to reconsider this family of methods.

One of the novelty brought by this method was the notion of potential function, that does not in-
terfere directly within the algorithm but is a tool for analysing the algorithm and proving its convergence
and its polynomiality.

This algorithm works on problem of the form :

min cTx
s.t. Ax = 0

eTx = 1
x ≥ 0

where A ∈ R
n×m is a rank m matrix and c ∈ R

n. Without loss of generality, it is assumed that
Ae = 0 and the optimal value of the problem equals 0.

The basic idea is transform the problem via a projective affine scaling map, so that the current
solution is transformed into the "central point" e, then to take a step along the projected steepest-descent
direction in the transformed space, and finally to map the resulting point back to its corresponding
position in the original space.

Given the current solution xk, the transformation maps a vector x ∈ R
n to a vector p(x) =

Diag(xk)−1x
eTDiag(xk)−1x

.

It can be viewed as the combination of two operations : the first scale the variables so that
the current point goes to e, the second scales each resulting point by the sum of its variables so that
∑n

i=1 p(x)i = 1, which comes to project the feasible set onto the simplex S = {x ∈ R
n : eTx = 1}.

This algorithm runs in O(nL) iterations, which has been superseded since then by other interior-
point methods, as detailed below. It is very close to the primal affine scaling algorithm, where the
transformation made at each iteration is defined by p(x)j =

xj

xk
j

, but this algorithm is not believed to

be polynomial in the worst-case. It has also been shown [103] that Karmarkar’s algorithm is equivalent
to the path following method with a particular choice of the barrier parameter.
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3.3.2.2 Primal-dual path-following algorithm

The underlying idea of path following algorithm is attributed to Meggido [191], Kojima, Mizuno and
Yoshise [160] and Adler and Monteiro [144]. It consists of solving the perturbed KKT system by
Newton’s method and shrinking the perturbation in order to tend to the original KKT system.

{(x ∈ R
n, s ∈ R

n, y ∈ R
m) :















Ax = b
c−AT y = s
xisi = τ, i = 1, ..., n
x ∈ K, s ∈ K∗

for some τ ≥ 0}

We recall that the set of solution of these perturbed KKT systems is called central path and that
the level of perturbation is the complementary gap.

From a current iterate xk and a targeted complementary gap τk, the algorithm works as following
:

− The search direction is computed by performing a Newton’s step ;

− The new iterate is computed by moving along this direction, with a step size αk ;

− The new targeted complementary gap τk+1 is computed from the duality measure µk of the new
iterated : τk+1 = σkµk

Note that only one Newton step is made at each iteration. Thus, the central path is not attained,
the aim being only not to deviate too far from it.

The duality measure of a primal-dual solution (x, y) equals (xT s)/n. It vanishes at optimal and
is equal to τ on the corresponding point of the central path. Then two parameters, αk and σk have to
be settled at each iteration. They are correlated, since large values of σk implies potentially a loss of
centrality and the necessity of taking small values for αk in order to keep the current solution in the
neighborhood of the central path. These choices are usually made on a heuristic basis.

Regarding the complexity, these methods have been proved to require O(
√
nL) iterations, with

at most O(n3) arithmetic operations at each iteration, which brings the whole complexity to O(n3.5L).
There are some special case where this can be reduce, as for instance [144] with a whole complexity of
O(n3L).

3.3.2.3 Potential-reduction methods

This section is mainly based on the excellent survey of Todd on the potential-reduction methods [253].
These methods are based on the idea of reducing a so-called potential function at each iteration. This
function combines the objective function with a measure of distance from the constraints boundaries,
or, equivalently, a measure of the centrality of the solution. The rational for this being that the more
a solution is central, the more it can be improved at the next iteration.

This potential function is used both to measure the quality of the current solution and to deter-
mine how to improve it to generate the next iterate. This choice is guided solely by the objective of
minimizing this function. Furthermore, if you can compute a guarantee on the decrease of this function
at each iteration, then we obtain a guarantee on the number of iterations required to attain the optimal
solution within a given accuracy.

We consider the linear program in standard form defined at 3.2.

The centrality is measured by using barrier function, as defined above. For example the function
F (x) = −∑n

i=1 ln(xi) is a barrier function for the nonnegative orthant, since it tends to +∞ when x
approaches its boundary. This is not the only barrier function for this set, think for instance to the
inverse function

∑

i 1/xi. But the advantage of the logarithmic function lies in its self-concordance
property, a property that allows to bound the errors on the Taylor approximation of F and ∇F .
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Incorporating the minimization of the objective leads to the potential function φ, parameterized
by ρ ≥ n and ξ a lower bound of the optimal value :

φ(x) = ρ ln(cTx− ξ) + F (x)

The key point is that φ automatically increases the importance of the objective part as optimality
is approached. This is to compare with the equivalent of the path-following method :

φ(x) = (cTx− ξ) + µF (x)

where the parameter µ has to be reduced "by hand", otherwise the importance of objective part would
vanishes when cTx− ξ shrinks.

A primal-dual potential function is :

φ(x, s) = ρ ln(xT s) + F (x) + F (s)

The first symmetric pure potential-reduction algorithm was proposed by Kojima, Mizuno and
Yoshise in [159]. The idea is to apply the steepest descent to the minimization of the function φ.

In conclusion, for the primal-dual potential reduction with ρ = N + O(
√
n) is reduced at each

iteration of a positive absolute constante δ, then the ǫ accuracy is attained within O(
√
n ln(1/ǫ)) itera-

tions.

3.4 Mixed-Integer Linear Programming

As earlier mentioned, most of the combinatorial problems can formulated as optimization problem with
integer variables. Among them are the Mixed-Integer Linear Programs (MILP) :







p∗ = minx∈Rn cTx
s.t. Ax ≤ b

xi ∈ Z, i ∈ I ⊂ [n]
(3.3)

One main reason for the success of MILP is its huge modelling flexibility, that allow to model
a wide range of applications [200].Another one is the existence of effective solvers [143, 1] that handle
problems with hundreds of thousands of variables and constraints in a matter of minutes.

These problems are obviously non convex, since their feasible set is not even connected. As for
general nonlinear programs, most of the methods to solve these problems rely on convex relaxations,
the most natural being the following linear relaxation :

{

p∗ = minx∈Rn cTx
s.t. Ax ≤ b

If the matrix A is totally unimodular, then the solution of this relaxation is integer and therefore,
is the optimal solution of the problem (3.3). Apart from this case, the problem is generally NP-hard.

Most MILP can be formulated in several ways. Moreover, the choice of this formulation is of
crucial importance to solving the model. Indeed, efficiency of enumerative methods are highly dependent
on the sharpness of the linear relaxation, which varies w.r.t the formulation.

We illustrate the versatility of the formulation on the following example. We consider a binary
vector x ∈ {0, 1} connected by a disjunctive constraint, i.e., a constraint x ∈ P1 ∪ P2), with P1 = {x ∈
R

n : A1x ≤ b1}, P2 = {x ∈ R
n : A2x ≤ b2} two polyhedra.

A first formulation require the introduction of two auxiliary binary variables yi, i = 1, 2, that
codes 0 if x ∈ Pi. Then a possible formulation is :
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





A1x−M1y1 ≤ b1
A2x−M2y2 ≤ b2
y1 + y2 ≥ 1

The second formulation exploits the fact that x can take only a finite number of values. Indeed,
we may enumerate all the values of x, x̃, that do not satisfy the constraint and impose x 6= x̃ :

{ ∑n
i=1(x̃i + (−1)x̃ixi ≥ 1, ∀x̃ ∈ {0, 1}n, x̃ /∈ P1 ∪ P2)

Clearly, this formulation contains a larger number of constraints, but its linear relaxation is
sharper.

More generally, there are usually several polyhedra P such that F = P ∪ Z
I . The choice of P is

decisive for getting a tight bound on the optimal value since the smaller is P , the tighter is the linear
relaxation. Ideally, P = conv(F) because in this case, the linear relaxation yields the optimal value of
the MILP. A fundamental line of research for solving MILP aims at determining some valid constraints,
called cutting planes, that reduce P . However, describing totally the convex hull of F is generally too
complicated to determine and may involve an exponential number of constraints. In this case, we have
to work with a "relaxed" description of the convex hull and it is necessary to combine this approach
with an enumerative method to get the optimal solution.

In the sequel, we start by presenting the basic enumerative method, namely the Branch & Bound
method. Then, we provide some theoretical insights about polyhedra and generic methods to determine
cutting planes. We provide a comparison of these methods. Finally, we show how combining these two
approaches within a Branch & Cut method.

3.4.1 Branch & Bound for MILP

First proposed by Land and Doig [167] in 1960, this algorithm is the most widely used tool for solving
discrete optimization problems : minx∈F f(x) where F is a finite discrete set. This algorithm applies
thus in a more general framework than MILP.

The above problem necessarily admits a solution, since F is finite, but finding it by enumerating
all the elements of F is generally irrelevant since F may contain a high number of elements that it might
be time-consuming to identify and evaluate. The Branch & Bound algorithm is a general paradigm
that consists of a generic strategy for exploring the feasible set and of a way to discard massively some
fruitless solutions, in order avoid the systematic enumeration of all the solutions. It relies on two key
procedures :

− Branching : splits the feasible set F into two or more smaller set whose union covers F . Its
recursive application generates a tree structure of subsets of F .

− Bounding : computes upper and lower bounds for the optimal solution on a given subset of
F . The lower bound can differ per subset whereas the upper bound holds for all the subsets
since it is the cost of the best known solution.

Then the key idea is to eliminate a feasible subset whenever its lower bound is equal or larger
than the current upper bound. This step is called pruning and allow to fathom the subproblem without
solving it. The recursion stops when the current subset is reduced to a single element, or when the
upper bound match the lower bound. Either way, a minimum over F is attained.

A simple branching operation for MILP is to pick a variable and to split its definition set into
two subset :

xi ∈ [a, b] ∪ Z→
{

xi ∈ [a, s] ∪ Z

xi ∈ [s+ 1, b] ∪ Z
for any s ∈ [a, b] ∪ Z

Generally xi is chosen as the most fractional components of the current solution. By denoting x̃i its
value, then s = ⌊x̃i⌋.
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Regarding the lower bound, it is generally computed by linear relaxation, but some other relax-
ation techniques (Lagrangian, ... ) are possible. In the case where the objective function is not convex,
a relaxation can be obtained by replacing f by a lower function g such that g(x) ≤ f(x), ∀x ∈ F .

Once the branching is done, that subdivided the current subset into two or more subset (or node)
to be investigate, two strategies, eager or lazy, are possible for selecting the node to explore. In the
eager strategy, bounds are calculated as soon as nodes are available, then each non discarded subset is
stored in a pool of live nodes together with its bound. The lazy strategy consists of chosing one node,
computing its lower bound and exploring it if it is not discarded.

3.4.2 Polyhedral combinatorics and cutting planes

We consider the minimization of a linear objective cTx over a finite discrete set F . As already noticed,
this problem is equivalent to the minimization of cTx over conv(F). The objective of the polyhedral
combinatorics is to describe the polytope P = conv(F) in terms of linear inequalities : conv(F) = {x ∈
R

n : Fx ≤ h}.
Such a representation necessarily exists. Indeed, any polytope P can be specified in two ways :

as the convex hull of its vertex set V (V-representation, see Corollary 2.2.55) , or as the intersection of
the set H of its facet-inducing halfspaces (H-representation). In theory, we can always convert from one
representation to another. This would be very useful to find the H-representation of the convex hull of
a set of points. In practice, determining this representation might not be efficient from a computational
point of view. For that reason, we generally only determine some valid inequalities that strengthen the
linear relaxation. Such inequalities are called cutting planes.

3.4.2.1 Chvatal-Gomory hierarchy

The umbrella term of cutting planes was introduced by Gomory in [111]. For the first time, he proposed
a general method to determine cutting planes, i.e., that does not depend on the particular problem
structure.

This method applies to Integer Linear Programs, i.e., F = {x ∈ Z
n : Ax ≤ b}, and relies on the

fact that an integer linear combination of integer is integer. Consequently, if the inequality dTx ≤ e is
valid, with d integer, then dTx ≤ ⌊e⌋ is also valid for F .

By adding all the inequalities obtainable this way, we obtain a new polytope P 1, the so-called
elementary closure of P , such that :

conv(F) ⊂ P 1 ⊂ P = {x ∈ R
n : Ax ≤ b}

A recursive iteration of this process, i.e., P 2 = (P 1)1, provides a hierarchy of relaxation of F . In
[74], Chvátal proved that this hierarchy converges to conv(F) in a finite number of steps.

This method is remarkable since it has opened the door to cutting planes based approach but
it suffers from two major shortcomings. First the number of iterations required for attaining conv(F)
might be very large and depends not only on the size of the problem but also on the coefficients of the
system Ax ≤ b.

The other difficulty comes from the fact that the separation problem is NP-hard. In other words,
for an incumbent solution x̃, finding a violated inequality or showing that there are not, can not be
done in polynomial time, because there is an exponential number of such inequalities. Consequently,
there is no known way to implement this method in polynomial time.

However, these cuts are used in one way or another in most of the commercial MILP solvers. In
particular, the simplex tableau is easily suitable for generating such cuts. Despite this fact, these cuts
are dominated by other general cuts for MILP, among them the cuts generated from the well-known
Lift & Project scheme.

282



3.4.3 Hierarchies of relaxation for MILP : the Lift & Project approach

We consider the minimization of a linear objective cTx over a discrete set defined as the intersection of
a polyhedron P with the integer lattice : F = P ∪ Z

n = {x ∈ Z
n : Ax ≤ b}.

A hierarchy of relaxation is a succession of set P r such that P r+1 ⊆ P r and F = P r ∪ZI for any
rank r :

P r ⊆ P r−1 ⊆ ... ⊆ P 1 ⊆ P

Five hierarchies of relaxation, all converging to conv(F), are described in this thesis. We already
presented the seminal Gomory-Chvatal hierarchy (GC-hierarchy) in the previous paragraph, and in this
paragraph we describe the purely linear hierarchies, i.e., the Balas-Ceria-Cornuejols hierarchy (BCC-
hierarchy) and the Sherali-Adams hierarchy (SA-hierarchy), as well as the Lift & Project scheme that
underlies these hierarchies.

The linear and semidefinite version of the Lovász-Schrijver hierarchy (LS and LS+ hierarchy),
as well as the Lasserre hierarchy, also a semidefinite one, are described in paragraph 3.3.3.2 and 3.4.3
respectively. A comparison of SA-hierarchy, LS and LS+-hierarchy and Lasserre hierarchy is provided
in paragraph 3.4.3.3.

3.4.3.1 Lift & Project scheme

The idea of Lift & Project for 0/1-LP was introduced by Sherali and Adams in [240]. The overarching
idea is that the projection of a polytope may have more facets than the polytope itself. Even if the
polytope P has exponentially many facets, we may be able to represent it as the projection of a polytope
Q in higher (but still polynomial) dimension, having only a polynomial number of facets.

This approach tends to describe the convex hull of the feasible set in two steps. The first step
consists of converting the 0/1-LP into an equivalent problem that involve additional variables and
constraints. We say that the problem is lifted into a higher dimensional space. The constraints that
are added have to exploit the integer nature of the original variables.

In a second step, the problem is projected back on to the original space in order to get rid of
the new variables. Generally, the whole polyhedral representation of the projection is not computed,
it suffices to solve the separation problem, i.e., find a valid constraint violated by the current relaxed
solution. In theory, if we are able to compute such a constraint in polynomial time, then in virtue of
the equivalence between separation and optimization, we are also able to optimize in polynomial time.
In practice, this constraint are used as cutting planes to reinforce the linear relaxation.

Regarding the projection step, we recall (see also paragraph 2.2.4.1) that the projection of the
polyhedron P = {(x, y) ∈ R

n+n′

: Ax+By ≤ c} onto the x-space is the set

Projx(P ) = {x ∈ R
n : (x, y) ∈ P for some y ∈ R

n′}

and the projection cone of P associated with x is the following polyhedral cone :

W = {u : uB = 0, u ≥ 0}

Then, any element of W defines a valid constraint for Projx(P ) : uAx ≤ uc. This comes to
make positive combination of the inequalities of P so that the coefficients of y vanish. Not only these
constraints are valid, but the Balas theorem states that considering only the constraints generated by
extreme rays of W is sufficient to describe Projx(P ).

In practice, we rather solve the separation problem. If x̃ is the current solution :






max u(Ax̃− c)
s.t. uB = 0
u ≥ 0
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The extension of this projection scheme to any set defined as the intersection of a cone with
hyperplanes is described at paragraph 3.3.3.2.

3.4.3.2 Sherali-Adams hierarchy

In the Sherali-Adams Lift & Project, the lift step relies on the idea of multiplying some linear inequalities
between them, in order to make some quadratic terms appear. At rank 1 of the Sherali-Adams Lift &
Project, the linear constraints are multiplied by all the bound constraints : xi ≥ 0 and 1 − xi ≥ 0 for
all variables xi.

Then, replacing the square of the binary variables by themselves reinforces the continuous relax-
ation. This is illustrated on a very simple example. We aim at minimizing x over F0 = {x ∈ {0, 1} :
x ≥ 1

2}. The continuous relaxation gives x∗ = 1/2. By multiplying 1− x ≥ 0 and x ≥ 1/2, we get :

x(1− x) ≥ 1/2(1− x)⇔ 0 ≥ 1− x⇔ x ≥ 1⇒ x = 1

To handle the obtained nonlinearities, some new variables yij are introduced to replace the
product xixj , except for x2

i which is replaced by xi. The constraint yij = xixj is relaxed but, by
assuming that the system Ax ≤ b include explicitly the bound constraints 0 ≤ xi ≤ 1, we get the
following relaxation :

− yij ≥ 0 ;

− yij ≤ xi ;

− yij ≤ xj ;

− yij ≥ xi + xj − 1.

These are well-known inequalities, introduced by Fortet [94] for binary variables and generalized
by McCormick [190] for bounded variables.

With binary variables, this relaxation is sufficient to impose yij = xixj . Consequently, these
problems are strictly equivalent to the original problem. The difference comes from their linear relax-
ation. One could think of solving directly this "lifted" relaxation before projecting back the obtained
solution. This is possible but not necessarily efficient since the problem size increases tremendously.
The projection step, based on the idea of combining the constraints so as to generate a valid constraint
that does not involve the additional variables, allows to overcome this difficulty.

Consider the following 0/1-LP : min cTx : aTj x − bj ≤ 0, j = 1, ...,m, x ∈ {0, 1}n. Briefly, the
Sherali-Adams relaxation of rank r ≤ n is obtained through the following steps :

1. define the set Kr = {(I, J) ⊂ [n] × [n] : I ∩ J = ∅, |I| + |J | = r} and the factors fI,J(x) =
∏

i∈I xi

∏

i∈J(1− xi) for all (I, J) ∈ Kr ;

2. relax the feasible set of the problem into {x ∈ [0, 1] : fI,J(x)(a
T
j x− bj) ≤ 0, j = 1, ...,m, ∀(I, J) ∈

Kr} ;

3. exploit the binarity of the variables xi by replacing all xk
i by xi for k ≥ 1 ;

4. linearize the obtained feasible set by introducing some new variables : yH =
∏

i∈H xi, ∀H ⊂ [n],
with y{i} = xi ;

At this point, the problem can either be solved in the lifted space, or being projected to derive
some valid inequalities in order to tighten the original problem. In practice, the projection consists of
getting rid off the variable y and therefore the constraints are determined as valid combination of the
lifted constraints that do not involves the variables y. This method was initially called Reformulation-
Linearization Technique(RLT) [2, 241] since the Lift step can be seen as a reformulation followed by a
linearization.
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3.4.3.3 The BCC hierarchy and its connection with the disjunctive cuts of Balas

In its seminal paper [18], Balas designed a systematic method based on disjunctive programming to
find valid inequalities for any generic MILP, in order to separate a given point from the feasible set. In
[21], this work was embedded in the more general framework of Lift & Project.

We consider the following ILP (for the sake of simplicity we don’t consider the "mixed-integer"
case here, but the results can be easily extended to MILP) :

(P )







min cTx
subject to Ax ≤ b

x ∈ Z
n

(3.4)

We note F = {x ∈ Z
n : Ax ≤ b}, K = {x ∈ R

n : Ax ≤ b} and (Pr) the relaxation minx∈K cTx.
Solving the relaxation (Pr) generally leads to a fractionary solution xr, i.e. such that xr

i ∈]k, k+1[ for at
least one index i. Then a possibility to eliminate this solution is to consider the following disjunction :

(Pd)







min cTx
subject to x ∈ K

xi ≤ k
∨

xi ≥ k + 1

Some other linear disjunctions are possible, for instance in the case of a 0/1-LP with a constraint
of the form

∑

i∈I xi = 1, with I ⊂ [n], the following disjunction is valid :
∨

i∈I xi = 1. Another
possibility for a 0/1-LP is (αx ≤ β − 1)

∨

αx ≥ β for any (α, β) ∈ Z
n+1.

Such a disjunctive problem is not tractable by a linear solver. Furthermore its feasible set is
disjoint and therefore nonconvex. The major contribution of Balas is to provide a method to optimize
over the convex hull of this set, or more precisely, to determine an inequality valid over the convex hull
of this set, that maximize the violation of xr. This constitutes the so-called separation step.

This principle is illustrated on the following figure :

Figure 3.4: Illustration of the disjunctive cuts principle : (1) 0/1 LP, (2) Feasible set of the continuous
relaxation K, (3) Convex hull of the feasible set, (4) Convex hull of the feasible set of the disjunctive
cut on x1

It remains to explain how we obtain a polyhedral description, at least partial, of this convex hull.
In other words, we seek for linear inequalities valid over the following set :

conv({
m
∨

i=1

Dix ≤ di})

By definition of the convex hull, xr belongs to this set if and only if there exists a vector λ and
some vectors xi such that :
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∑

λix
i = xr

Dixi ≤ di, i = 1, ...,m
∑m

i=1 λi = 1
λi ≥ 0, i = 1, ...,m

As such, these conditions are not tractable by a linear solver since they involve some products of
variables in the first equality : xiλi. The idea of Balas was to replace this product by a new variable yi

:

∑

yi = xr

Diyi − diλi ≤ 0, i = 1, ...,m
∑m

i=1 λi = 1
λi ≥ 0, i = 1, ...,m

Consequently, any feasible solution of the problem (3.4) must belong to the projection of following
polyhedra onto the x-space :































Ax ≤ b
Ayi ≤ bλi, i = 1, ...,m
∑

yi = x
Diyi − diλi ≤ 0, i = 1, ...,m
∑m

i=1 λi = 1
λi ≥ 0, i = 1, ...,m

(3.5)

Consequently, we aim at finding a valid linear inequality for the projection of this polyhedra,
that is violated by xr. We apply the Theorem 2.2.61 that comes to search for a valid combination of the
constraints where the coefficient of the variables y and λ be equal to zero, so as to maximize its violation
of xr. We recall that a valid combination of constraints is a weighted sum, where the coefficient are
non-negative or non-positive according of the sens of the inequality. Coefficients associated to equality
constraints are unconstrained, since multiplying a equality by any scalar does not alter its validity. The
coefficients that allow such a projection belongs to the so-called projection cone, see [18, 20].

Note that the polyhedral description obtained by this projection method is not facet-inducing
and may even have redundant inequalities.

In 1993, Balas, Ceria and Cornuejols published a paper [21] where they embedded this approach
in the more general framework of Lift & Project. Regarding the lift step, instead of multiplying the
linear constraints by all the binary variables and their complement, as in the SA-hierarchy, the linear
constraints are multiplied by one single binary variable xi0 and its complement 1− xi0 .

Then the process is reiterated by recursion, i.e. the MILP resulting of an iteration is used as
original problem of the next iteration and the procedure is re-applied with another choice for i0. This
leads to the obtention of the so-called BCC hierarchy of relaxation that attains the convex hull in at
most n iterations, where n is the number of binary variables.

The connection with disjunctive programming is made through the following theorem. By de-
noting Fi0 the feasible set of the reformulated problem of Balas for the index i0, we have :

Theorem 3.4.1 The projection of Fi0 onto the x-space is equal to

conv{F ∪ {x : xj ∈ {0, 1}}

3.4.4 Combining enumerative and cutting planes approach : the Branch &
Cut algorithm

Combining enumerative algorithms and cutting planes approaches leads to the so-called Branch & Cut
hybrid approaches. In this algorithm, at each node, the current linear relaxation is strengthen iteratively

286



by adding cutting planes until the relaxed solution be integer. Otherwise it continues with the Branch
& Bound exploration once no more cutting planes are found. The efficiency of this method largely
depends upon the quality of the cutting planes used, that can roughly be divided into two strands : the
general purpose techniques, that we just described, and techniques dedicated to the problem structure.

Note that the generated cutting planes may be either global cuts, i.e., valid for all feasible integer
solutions, or local cuts, meaning that they are valid only for the currently considered subset of the
original feasible set.

3.5 Quadratically Constrained Quadratic Programming

A Quadratically Constrained Quadratic Programming (QCQP) is an optimization problem where the
objective and constraints functions are quadratic :

(P )

{

minx∈Rn xTP0x+ 2pT0 x+ π0

subject to xTPjx+ 2pTj x+ πj ≤ 0, j = 1, ...,m
(3.6)

where Pj ∈ S
n×n, pj ∈ R

n, πj ∈ R, j = 0, ...,mq are the problem parameters. The feasible set of
this problem is denoted by F and p∗ is its optimal value.

When all the matrices Pi are psd, (P ) is convex. Otherwise it may harbor many local minimal
and is NP-hard [141]. To see this, one only need to notice that it generalizes many difficult problems
as Polynomial Programming or Mixed 0-1 Linear Programming, since the binary constraints can be
treated as two quadratic inequalities : xi ∈ {0, 1} ⇔ {x2

i ≤ xi, x
2
i ≥ xi}.

QCQP arises directly in a wide range of practical applications [59, 125], partly due to their ability
to model Euclidean distances. Moreover, this optimization problem is central to well-known iterative
methods such as trust-region sequential quadratic programming. Finally, it is worth noticing that any
polynomial can be reformulate into a quadratic function by adding new variables and constraints, and
therefore QCQP can be extended to all the polynomial optimization. For all these reasons, it is now
considered as one of the most challenging optimization problems and an important work has been
carried out to solve this general problem and its special cases.

Methods for solving such problems, for instance Branch & Bound [183] or Branch & Cut [17],
generally need to solve convex relaxations of restricted variants, or approximations, of the problem.
The main strength of QCQP w.r.t to general NLP, is that there exists two easily computable way
of computing convex relaxations. The first one relies on SDP and is discussed in Paragraph 3.3.2.
The second one is the reformulation-linearization technique (RLT) detailed in Paragraph 3.5.3. These
relaxations are compared by Anstreicher in [14].

Although not detailed here for sake of brevity, the Generalized Bender’s decomposition also
provide an interesting framework for solving such problems [102].

3.5.1 Duality

The Lagrangian of the problem (3.6 ) is L(x, λ) = xT (P (λ)x + 2p(λ)Tx + π(λ) with P (λ) = P0 +
∑m

i=1 λiPi, p(λ) = p0 +
∑m

i=1 λipi and π(λ) = π0 +
∑m

i=1 λiπi. It is a quadratic function w.r.t. x.
Consequently, the dual problem can be written :

max
λ≥0

min
x

xT (P (λ)x+ 2p(λ)Tx+ π(λ)

This problem can be written as the following SDP :

maxλ≥0 d

s.t.
(

π(λ)− d p(λ)T

p(λ) P (λ)

)

< 0
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Strong duality holds if the problem is convex or if there is only one quadratic constraints. To see
this, consider the following reformulation of the problem (3.6) :

max p
s.t. xTPjx+ 2pTj x+ πj ≤ 0, j = 1, ...,m⇒ xTP0x+ 2pT0 x+ π0 ≥ p

Thus, we are exactly in position to apply the S-Lemma (Lemma 3.1.1). Indeed, it provides a
sufficient condition for the primal "implication" constraint to hold and this condition is exactly the dual
LMI constraint. This condition is also necessary if m = 1 or if the functions f, g1, ..., gm are convex,
since we are therefore in the situation of applying the Farkas’ Theorem (Theorem 2.3.49).

3.5.2 Convex case

The case of a convex QCQP, i.e. where all the matrices Pi are psd, was studied by Hao [125] un-
der theoretical and computational aspects, an interior-point method was proposed in [4] to solve this
polynomial-time solvable problem and the conversion into Second-Order Conic Programming (see Para-
graph 1.3.1) was established in [185]. Thus, methods for solving such problems are well managed and
available in several solvers.

3.5.3 Reformulation-Linearization Technique

This technique, widely used to get linear relaxations of quadratic problems, consists of replacing the
bilinear terms xy by its convex or concave envelope over a rectangular region :

Theorem 3.5.1 McCormick [6, 190] The convex lower envelope and concave upper envelope of the
function f(x, y) = xy over the rectangular region {(x, y) : lx ≤ x ≤ ux, ly ≤ y ≤ uy} are given by the
expressions :

max{ lyx+ lxy − lxly, uyx+ uxy − uxuy}
min{ uyx+ lxy − lxuy, lyx+ uxy − uxly}

Then it suffices to replace each product xixj by a new variable yij and approximate the equality
yij = xixj by imposing that yij lies between the convex lower envelope and concave upper envelope of
xy. This leads to the so-called McCormick inequalities :

yij ≥ ujxi + uixj − uiuj

yij ≥ ljxi + lixj − lilj
yij ≤ ujxi + lixj − liuj

yij ≤ ljxi + uixj − uilj

This step is called linearization whereas the introduction of yij is the reformulation step.

Applying this scheme to a 0/1-LP leads to the Fortet inequalities.

yij ≥ xi + xj − 1
yij ≥ 0
yij ≤ xi

yij ≤ xj

Indeed, it suffices to consider that lx = ly = 0, ux = uy = 1. Furthermore, in this case, we have
yii = xi.

This relaxation is the basis for the Lift & Project Sherali-Adams hierarchies of relaxation of
0/1-LP (see Paragraph 3.4.3) [241].
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3.5.4 Quadratic programming

The particular case of Quadratic Programming deals with the following problems :

(P )

{

minx∈Rn xTP0x+ 2pT0 x+ π0

subject to aTj x ≤ bj , j = 1, ...,m
(3.7)

Having P0 psd places us in the afore mentionned convex case. Otherwise, the problem may harbor
several local minima and is NP-hard. Existing algorithms for such a problem are based on Branch &
Bound by dividing the feasible set into several subregions and to compute lower bounds by means of
linear or semidefinite relaxations. A possibility for branching strategy is to exploit the first-order KKT
conditions. See [65, 243] for seminal works on this topic.

3.5.5 Algorithms

Generally, methods for solving a QCQP are derived from nonlinear programming (see Paragraph 3.6.2).
The specificity is that two convex relaxations are available, based on the Reformulation-Linearization
Technique (see Paragraph 3.5.3 ) and on SDP (see Paragraph 3.3.2 ). A comparison of these relaxations
can be found in [14] that shows that combining those approaches leads to an enhancement of their
respective bounds.

Branch & Bound based approaches based on these relaxations lead to several implementation
depending on the subdivision of the space (rectangular, triangular, simplicial ), as well summarized in
[183].

Another possibility for relaxing a QCQP into a convex problem was proposed by Kim and Kojima
in [156]. This relaxation produces a Second-Order Cone Program and can be considered as a compromise
between the semidefinite and the linear relaxation. The BARON solver [232] ha been designed and
implemented on the basis of these algorithms.

It is worth noticing that the hypothesis of a compact feasible set is very common and useful for
this kind of problem. In particular, if allows to reduce Mixed-Integer QCQP into QCQP, by means of
a base two reformulation : y ∈ Z, ly ≤ y ≤ uy ⇔ y =

∑⌊log2(uy−ly+1)⌋
i=0 2ixi with xi ∈ {0, 1}.

Nevertheless, there exists some dedicated algorithms for MIQCQP. In particular, a convexification
of the continuous relaxation of the problem [179] allows to use this relaxation within a Branch and Bound
procedure. A comprehensive overview for this field can be found in [64].

3.6 (Mixed-Integer) Nonlinear Programming

This section, without any claim of being exhaustive, is supplied as a resource for the reader to develop
a better understanding of Nonlinear Programming (NLP) and Mixed-Integer Nonlinear Programming
(MINLP). The class of problem to be considered here is :







min f0(x, y)
s.t. x ∈ F

x ∈ R
l, y ∈ Z

n
with F = {(x, y) : fi(x, y) ≤ 0, i = 1, ...,m} (3.8)

A natural approach consists of solving the continuous relaxation of the problem, obtained by
dropping the integer constraint, and round off the minimizer to the nearest integer. In the case where
this is not appropriate, alternate methods must be investigated.

To address this paradigm, we will first focus on two subcases. Firstly, we consider the case where
no variable is required to be integer (n = 0) and present the methods for addressing local optimization
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of such a nonconvex problem. Then we give a cursory review of the prominent methods for solving a
global optimization problem, when the sole local optimization is insufficient. Secondly, we explore the
case where the continuous relaxation of the problem is convex. Finally, these three parts are used as
tools in the fourth paragraph to treat the problem (3.8) in its full generality.

Note that the particular case of the continuous (n = 0) convex optimization is treated in detail
in the main part of this thesis (see 1.2).

We refer the reader to the classical book on global optimization [141] and to the excellent survey
[182], from which this section is largely derived.

3.6.1 Local optimization

Determining a local optimum of a nonconvex optimization problem is NP-hard. The methods for local
optimization of nonconvex problems are mainly based on the general optimization algorithms described
at section 3.2

3.6.1.1 Sequential Quadratic Programming

When the functions involves in the problem are twice continuously differentiable, a possibility comes
from the extension of Newton’s method to constrained problem. This iterative method, called Sequential
Quadratic Programming, solve a sequence of optimization subproblems, each of which optimizes a
quadratic approximation of the objective subject to linearization of the constraints. In order to maintain
the validity of the approximations, the optimization is limited to a so-called trust region, typically a
convex set defined as a box around the current point {x : −1 ≤ eTi x ≤ 1}. This leads to the addition of
two linear constraints.

As a consequence, a quadratic optimization problem withonly constraints is known as the trust
region problem.

Thus, this approach comes to solve a possibly nonconvex quadratic problem at each step. It
yields very good results for medium size problems and have been implemented in many NLP packages,
including NPSOL, NLPQL, OPSYC, OPTIMA, MATLAB, and SQP.

3.6.2 Global optimization

In full generality, solving such a Non Linear Programm is NP-hard and this problem constitutes one of
the most challenging area of optimization. In a very general setting, the methods are typically based on
two separate phases, exploiting the "divide-and-conquer principle. This paragraph aims at describing
in more details some implementation of this basic principle.

First, the global phase consists of an exploration of the exhaustive search space, while the local
phase determines a locally optimal point, relying on a convex relaxation of a subproblem of the original
problem, as described in the previous paragraph 3.6.1. Regarding the global phase, the challenge
consists of avoiding the multiple computation of the same local optimum. Some algorithms resort to
uncertain parameters for this phase and two main approaches emerge in this framework : the sampling
and the escaping approach. In the sampling, the starting points are determined a priori, whereas in
the escaping approach, the starting points are determined recursively by exploiting the previous local
search. The most expedient of the meta-heuristics relying on these principles are simulated annealing,
tabu search and variable neighbourhood.

In the case of deterministic algorithm, the first phase is referred to as the Branch & Select
method. This method, covered in the first part of this section, is the most widely used approach for
global optimization since it does not rely on particular structure of the problem. In fact, they can be
used even without analytic description of the objective and constraints function. In this case, the values
are provided by black-box procedures.
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Finally, an alternate approach called Branch & Infer, consists of using constraint propagation
techniques in order to tighten bounds on variables.

3.6.2.1 Branch & Select

Branch & Select include well-known method inspired from MILP such as Branch & Bound, Branch &
Cut and Branch & Reduce. Very roughly, it operates as the following steps :

1. Produce a partition P of F ;

2. Solve local optimization problem for each M ∈ P . Denote xM the optimizer ;

3. x∗ = min{x∗} ∪ {xM : M ∈ P};

4. Remove from F the elements of P that that can be shown not to contain the global solution;

5. Refine the partition of F .

The 4th step is crucial and rely generally on the knowledge of an upper bound γ of the optimal
solution and of a lower bound of the optimal solution over a restricted region M of F . Thus, if
min f(x) : x ∈ M ≥ γ then the global optimizer is known not to belong to M . Consequently, the
efficiency of this process, known as fathoming, is intimately tied to the quality, or tightness of the upper
and lower bounds.

In the more specific case of the spatial Branch & Bound algorithm, the lower bound is obtained
by solving a convex relaxation of the problem. This relaxation is obtained in two stages. First, the
nonlinear term are replaced by an additional variable and the corresponding equality constraint is
added. In the second stage, the nonlinear terms are replaced by the corresponding convex under and
overestimators.

In another variant of Branch & Select, the so-called α Branch & Bound, the functions are assumed
to be twice differentiable and the convex underestimators can therefore be constructed automatically.

To complete this section, we mention two other variant of the Branch & Select algorithm. First
is the Branch & Reduce, where special attention is paid on reducing the range of the variables. Finally,
by similarity to MILP are the Branch & Cut methods, that aims at tightening the convex relaxation
by adding valid cuts, in order to get a better lower bounds of the local optima.

3.6.3 Convexification

When the problem is non-convex, a possible approach consists of approximation the problem by a
convex one. To this end, each non convex function fi is replaced by a convex under-estimate gi such that
gi(x) ≤ fi(x), ∀x. Therefore replacing fi by gi for all non convex fi leads to a convex approximation of
the problem. This is equivalent to add a new variable zi and approximate zi = fi(x) by the inequality
gi(x) ≤ zi. The advantage with this approach is that it can benefit from other approximation, for
example the one using hi, a concave over-estimate of fi : zi ≤ hi(x).

In some particular case, such as the quadratic ones (see Paragraph 3.5.3), one can characterise
the so-called convex lower envelope and concave upper envelopes, which are the tightest possible convex
under-estimator and concave over-estimator.

In full generality, we resort to less tight estimators. A famous convex under-estimator is the
α-estimator. It applies to twice-differentiable function over a rectangular region and is parameterized
by a non-negative vector α. For example, on the region R = {x ∈ R

n : 0 ≤ x ≤ e}, it takes the form
fα(x) = f(x)+xTDiag(α)x−αTx. This function is necessarily convex for sufficiently large values of α.
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3.6.4 Mixed-Integer Convex Programming

The definition of MINLP generally includes the assumption that the continuous relaxation of the prob-
lem is convex, which places us in the field of Mixed-Integer Convex Programming (MICP). Approaches
for solving these problems are mainly based on Branch & Bound with potentially addition of cutting
planes, and Outer Approximation for which there exists a guarantee of convergence to global optimal
solution.

3.6.4.1 Branch & Bound

The idea of extending Branch & Bound to MICP can be attributed to Dakin in 1965. This can be
done in a very natural manner by solving the continuous relaxation of the problem at each node. The
problem were successively studied in [122] regarding to the branching choices. Other works on this topic
are [54, 180, 218]. Recently, all the results related to this approach were summarized in [52].

In conclusion, Branch & Bound for MICP is outperformed by approaches based on outer approx-
imation. But there can be useful on instances where OA based methods fails. Furthermore, they can be
improved by combination with a cutting planes approaches. See for instance [51, 247, 258] that rely on
disjunctive programming and on Lift & Project. The challenge is that the problem defined to compute
these cuts is very complex and often more difficult than the continuous relaxation of the problem. The
special case of Mixed Integer Conic Programming was the subject of dedicated development, such as
[16, 147].

3.6.4.2 Outer Approximation Algorithm

In 1986 Duran and Grossman [88] proposed an algorithm for a particular class of MICP where the
involved functions are linear w.r.t. the integer variables. This algorithm, based on the concept of Outer
Approximation, can be described in words as follows:

1. Solve the (convex) continuous relaxation of the problem and denote x0 the optimizer;

2. Determine a tangent of F at x0;

3. Add this tangent to a set of linear constraints. The obtained MILP is referred to as the master
problem;

4. Solve the master problem;

5. Fix the integer variable to the master problem integer solution and solve the continuous relaxation;

6. Go to step 2. To prevent cycling, add constraints to cut off the previously found integer solution;

7. Stop when the master problem becomes infeasible or when one termination criteria is satisfied.

Thus, an outer approximation of F , i.e. an inclusion F into a linear set, is built and improved
iteratively and the corresponding MILP is solved. More precisely, Outer Approximation refers to the
linear approximation of a convex set defined through the tangent hyperplane at boundary points. The
convexity of the set ensures that the original set lies inside the outer approximation, as suggested by
its name. The more tangent hyperplane are accumulated, the more precise is the approximation. See
for instance [92] for a extension of this algorithm to consider nonlinearities w.r.t. the integer variables.
This algorithm has proved to be very successful in practice and is implemented for instance in the codes
AlphaECP, DICOPT or FilMINT.
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3.6.5 Mixed-Integer NonLinear Programming

Algorithms for solving general MINLP are mostly based on extension of approaches developed for
MICP, i.e. Branch & Bound and Outer Approximation. These extensions relies on the construction
of a convex relaxation of the original problem, for instance by using the convex lower envelope of the
function involved in the problem [93, 250].

For the special case of MIQCQP, the convexification approach is based on SDP and is addressed
further in Paragraph 3.3.4.

This allowed to develop general-purpose MINLP solvers. In particular, the most commonly used
off-the-shelf general solvers, i.e., BARON and Couenne, implement a spatial Branch & Bound algo-
rithm based on a separable reformulation of the problem which enables a convexification of univariate
functions.

Application specific approaches, based on piecewise linear approximations of nonlinearities, are
also frequently employed. For an exhaustive overview on this topic, we refer the reader to the excellent
and very recent survey [62].

3.7 Optimization under uncertainty

In this section, we provide an introduction to optimization under uncertainty. This is by no means
exhaustive but aim at helping the reader to acquaint himself with the tools used in the main part of
this thesis. The main sources of this section are [217, 228, 233].

The whole optimization process (modelling and resolution) is based on the assumption that
suitable data are well-defined and available at decision time. This is generally not the case and then
decisions must be taken in the face of uncertainty.

Broadly speaking, an optimization problem with uncertain data can be written as :

minx∈Rn f0(x)
s.t. fi(x, ξ) ≤ 0, i = 1, ..., l

(3.9)

where ξ is a m-dimensional random vector on the probability space {Ω,Σ,P) and fi, i = 1, ..., l some
functions from R

n × R
m to R. Without loss of generality, we assume that the objective function is

deterministic : f0 : Rn → R.

As such, this problem does not make any sense. Indeed f0 can be viewed as a set of functions,
parameterized by the value of ξ and therefore minx f0(x, ξ) is not well-defined.

As a consequence, this problem has to be reduced to a deterministic one to be solvable. For
this, one defines some mapping Li that associates to the random variable fi(x, ξ) a deterministic value
Li(fi(x, ξ)) = gi(x). In the sequel, we will refer to such a mapping Li as an indicator.

Then the problem becomes deterministic :

minx∈Rn g0(x)
s.t. gi(x) ≤ 0

Choosing adequate indicators Li is crucial for both the tractability and the meaning of the
optimization problem.

However, not all the indicators are possible, depending on the information available on the
probability distribution of the random vector ξ. Indeed, a crucial distinction must be made between
the case when the probability distribution of ξ is perfectly known, which brings us in the framework of
Stochastic Programming (SP) and the case when only partial information is available.

Within Stochastic Programming, by considering a real random vector ξ, an indicator L can be
any mapping that associates a deterministic value to ξ, for instance :
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− the expected value operator : L(ξ) = E(ξ) ;

− a probability guarantee : L(ξ) = min{u ∈ R : P[ξ ≤ u] ≥ 1− ε} ;

− a worst-case value : L(ξ) = min{u : P[ξ ≤ u] = 1} ;

− any risk measure as defined at Subsection 2.6.5.

Computing these indicators requires the knowledge of the probability distribution µ. When only
a partial information over µ is available, i.e., µ ∈ P where P is a family of possible distributions, then
a possibility is to optimize the worst case of the indicator L over P :

− the worst-case expected value operator : L(ξ) = maxµ∈P{Eµ(ξ)} ;

− a worst-case probability guarantee : L(ξ) = maxµ∈P min{u ∈ R : Pµ[ξ ≤ u] ≥ 1− ε} ;

− a worst-case value : L(ξ) = maxµ∈P min{u : Pµ[ξ ≤ u] = 1} ;

− the worst-case of any risk measures as defined at Subsection 2.6.5.

The most widespread application of this principle is the robust optimization where P is the set of
all the random vectors with a given support S : P = {µ : Pµ[ξ ∈ S] = 1}. Furthemore, the indicators
are the worst-case value : L(ξ) = max{u : u ∈ S}.

A more general framework that has attracted the focus of recent research is the distributionally
robust optimization, where P is defined via the support and the moments of order less than a given
integer k.

3.7.1 Stochastic programming

3.7.1.1 Optimization with recourse

In many problems with uncertainty, the uncertainty will be resolved at some known time in the future.
In this case, a key modeling concept lies in the ability to take into account the fact that some decisions do
not have to be taken "here and now", but can be made on a ’wait and see’ basis, after the uncertainty is
resolved. This leads to the classical approach of stochastic programming : the two-stages optimization.
The decision variables are partitioned in two subsets, the first containing the decision that have to
be made before the actual realization of the uncertainty (static variables), the other one (dynamic
variables) are the decisions that can be adjusted after the veil of uncertainty.

Another terminology in the literature for dynamic variables is recourse variables and optimization
with recourse for the associated optimization subfield. This terminology suggests that the dynamic
variables are used to fine-tune the decisions made in the first stage, based on the specific outcome of
the uncertain parameters.

By similarity with control theory, this kind of optimization is called closed loop. This means that
the dynamic variables are function of the realization of the random variable ξ. IN this case, y(ξ) is
referred to as a decision rule, strategy, or policy, i.e, a rule for determining the value of y under all
possible circumstances. For instance, in the discrete case, y can be a table of values.

Such a problem can be written under the following form so as to emphasize that y is a function
of ξ and of the static variables x :















min E[f(x, y(x, ξ), ξ)]

s.t.
{

y(x, ξ) = argminy g(x, y, ξ)
s.t. (x, y) ∈ Y (ξ)

x ∈ X
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Generally, f has an additive structure : f(x, y, ξ) = h(x)+g(x, y, ξ) and the problem can therefore
be formulated as :















min h(x) + E[l(x, ξ)]

s.t.
{

l(x, ξ) = miny g(x, y, ξ)
s.t. (x, y) ∈ Y (ξ)

x ∈ X

This is in contrast with the open loop optimization where all the variables are assumed to be
static and the problem is optimized by considering indicator over the distribution of ξ, such as its
expected value.

In the case where the uncertain parameters has a finite number N of realizations, we can always
form the full deterministic equivalent linear program by introducing one variable y by realization of ξ.







min h(x) +
∑N

k=1 g(x, yk, ξk)
s.t. (x, yk) ∈ Y (ξk), k = 1, ..., N

x ∈ X

With a large number of realizations, this problems becomes quite large. Nevertheless, in the case
where it is linear, an implementation of the Benders decomposition known as L-shaped method was
designed to solve this problem.

The two-stage optimization can be readily extended to multi-stage optimization by modeling the
uncertainty as a random process. In this case, the static variables corresponds to the decision that have
to be taken "a priori" and some dynamic variables are used at each stage. This draws the connection
with the field of Dynamic stochastic programming. A system is said dynamic when it changes over time.
This evolution may be affected by decisions but also by uncertain parameters. Dynamic optimization
is concerned with optimization of such systems over time.

It is generally assumed that the uncertainty is stochastic and in particular, that the system forms
a Markov chain. Then, the problem can be modeled as finding the best path in the corresponding graph,
which enable to apply the well-known Principle of Optimality of Bellman [27].

3.7.1.2 Discrete probability distribution (scenarios) : the Monte-Carlo approximation

The stochastic programming framework relies on the assumption that the uncertain parameters are
random variable whose probability distribution are known. In practice, such distribution can be very
difficult to estimate and a very common technique to overcome this difficulty is to approximate them
by means of a sampling of independent realizations.

Such a sampling can be obtained either as a sample drawn from the distribution or from historical
data. In the latter case, this means assuming that the sequence of past demands represents a sample
drawn from the same distribution that governs the future demands and is more often than not "an act
of faith rather than a solid inference from the experimental data" ([228]).

In the case where the obtained sample is representative, i.e., drawn from the relevant distribution,
this approximation is justified on the following theoretical ground of the law of large numbers, that states
that the average of the samples is an approximation of the expected value of the random variable.

At the end, the probability distribution is assumed to be discrete. This makes easier to in-
corporate them into the problem, as explained for the case of the multi-stages optimization or chance-
constraints. This can also be used within simulation based approaches, allowing for instance to estimate
the gradient of the function E(fi(x, ξ)) and to use it within a descent method.

It is worth noticing that in the case where the optimization is performed separately for each
scenario, there is no theoretical guidance about the compromise between the obtained solutions that
should actually be adopted. Indeed, these solutions may be inconsistent with each other and very
risk-sensitive.
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3.7.2 Chance-constraints

We are interested in the case when the indicator L is a given level of probability 1 − ε, in a SP
perspective, i.e. when the probability distribution P is known. Then a constraint f(x, ξ) ≤ 0 becomes
a chance-constraint or probabilistic constraints, a notion introduced for the first time in [71] :

P[f(x, ξ) ≤ 0] ≥ 1− ε (3.10)

where f : Rn × R
m → R

l is the function whose component the functions fi of the problem (3.9)
and P is the probability distribution associated to the random variable f(x, ξ).

This leads to a very intuitive and meaningful deterministic version of the problem (3.9) since
it means that we authorise a certain probability of violation of the feasibility. Generally, this implies
that l > 1 and the chance-constraint is then a joint constraint. We could also think of defining one
chance-constraint for each constraint of the problem. Then, the constraints are said to be individual
and are much easier to tackle. It makes less sense from a modeling point of view, but we will see that
it is possible to approximate a joint constraint into a bunch of individual constraints.

Such constraints offer the benefit of ignoring the severe consequences of rare events, which makes
them less conservative than the worst-case approach. Their probabilistic guarantee may be satisfactory
for the decision-makers whenever the situation repeats itself many times. Such a guarantee becomes
much more problematic when applied to a unique action.

However, some difficulties are associated with this modelization. Firstly, as already mentioned,
such a constraint makes sense only if the uncertain data are of stochastic nature and if their underlying
distribution is known. Secondly, determining which value of ε to use is far from obvious. Last but not
least, in most cases, chance-constraint are computationally intractable. Even in a simple individual
case, it may be difficult to evaluate the probability. A famous example can be found in [201] where
Shapiro and Nemirovski point out that computing the left-hand side of 3.10 with f linear w.r.t. x and
some uniformly distributed random variables ξ is already NP-hard. Another major difficulty stems from
the fact that generally the feasible set of a chance-constraint is not convex.

A possibility to overcome these difficulty is to resort to the Monte-Carlo simulation and replace
the chance-constraint by the requirement that the inner constraint must hold on at least N(1−ε) sample
points, if N is the sample size. The major advantage of this approach is that no structural assumption
about the distribution is required. On the other hand, this approximation must be made over O(n/ε)
samples to guarantee the feasibility of the solution, which becomes too computationally costly when ε
is small [67].

Generally, the way to overcome these difficulties is to resort to approximations. In order to stay
"on the safe side", we must restrict ourselves to conservative or safe approximations, i.e. approximations
that guarantees the satisfaction of the original constraint. Obviously, this generally results in a loss of
optimality.

However, there are some particular cases that are exactly tractable. We start by presenting them
before tackling harder constraints and their related approximations.

For an extensive discussion on chance-constraints, we refer the reader to the standard references
[133, 201, 216, 217, 231].

3.7.2.1 Individual linear constraint with Gaussian distribution

The simplest possible case of chance-constraint is obtained by taking m = 1, g an affine function w.r.t x :
g(ω, x) = ξ0(ω) +

∑n
i=1 ξi(ω)xi and ξ is a Gaussian (n+ 1)-dimensional random vector : ξ ≡ N (µ,M).

Then, for ε < 0.5, the corresponding probabilistic constraint can be exactly formulated as a second-order
conic constraint (SOC), as firstly established in [256].
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Indeed, for a fixed x and its homogenisation x̃ =
(

1 xT
)T

, g(ω, x) = ξT x̃, is also a Gaussian
random variable :

ξT x̃ ≡ N (µT x̃, x̃TMx̃)

Consequently,

P[ξT x̃ ≤ 0] = Φ(
µT x̃√
x̃TMx̃

)

and the constraint becomes

P[ξT x̃ ≤ 0] ≥ 1− ε ⇔ Φ( µT x̃√
x̃TMx̃

) ≥ 1− ε

⇔ µT x̃√
x̃TMx̃

≥ Φ−1(1− ε)

⇔ µT x̃ ≥ Φ−1(1− ε)‖M1/2x̃‖

As a consequence, with ε < 0.5, then Φ−1(1− ε) ≥ 0 and the constraint is a typical second-order
constraint.

3.7.2.2 Convexity of the feasible set

Let denote F the feasible set associate with the chance-constraint (3.10) :

F = {x ∈ R
n : P[f(x, ξ) ≤ 0] ≥ 1− ε}

The convexity of F is established in the following case :

− if f(x, ξ) = Ax− ξ with A a deterministic matrix and ξ a log-concave random variable [216];

− more generally, the set defined by the constraint P[(x, ξ) ∈ X] ≥ 1− ε is convex whenever X is
a deterministic convex set and ξ is log-concave ;

− if m = 1 and f(x, ξ) = ξT x̃, with ξ symmetric log-concave and ε < 1/2.

− if ξ is log-concave and if the components of f are quasi-concave as functions of x and ξ simul-
taneously.

Unfortunately, having F is not sufficient for solving efficiently the problem. The existence of a
poly-time separation oracle is also necessary. This implies being able to compute the probability in
polynomial time. The only case where both requirements are satisfied is a subcase of the third item,
where the random vector is governed by a radial distribution. Indeed, in this case, the chance constraint
can be converted into second-order constraints.

3.7.2.3 Computationally tractable safe approximations of individual chance constraints

This paragraph is mainly derived from [201] that provides an original paradigm for dealing with linear
individual chance constraints of the form :

P[f(x, ξ) ≤ 0] ≥ 1− ε with f(x, ξ) = x̃TAξ̃, A ∈ R
n,m (3.11)

As such, this constraint is in full generality neither convex nor tractable and the aim is therefore
to find a computationally tractable safe approximations , i.e., an approximation which is both

− safe, i.e., is sufficient to guarantee the feasibility of the original constraint
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− computationally tractable, i.e., both convex and efficiently computable.

With a variable substitution w = Ax̃, the constraint becomes p(w) = P[wT ξ̃ > 0] ≤ ε. An
explicit formulation for p is :

p(w) =

∫

Rm

✶R++(w
T ξ̃)P(ξ)dξ

The key trick consists of replacing ✶R++
by a convex overestimator γ such that γ(z) ≥ ✶R++

(z), ∀z ∈
R. Indeed q(w) =

∫

γ(wT ξ̃)P(ξ)dξ is convex whenever γ is convex, since wTx is affine. Furthermore,
the safeness of the approximation is guaranteed by p(w) ≤ q(w). Consequently, q(w) ≤ ε is a convex
safe approximation of the constraint (3.11).

Exploiting the invariance of ✶R++
by positive scaling : ✶R++

(z) = ✶R++
( z
α , ∀α > 0, leads to the

following convex overestimator : γ( z
α ) ≥ ✶R++

(z), ∀z ∈ R and a safe convex approximation is therefore :

G(w) = inf
α>0
{αq(w

α
)− αε} ≤ 0

The safeness comes from the lower semicontinuity of q and the convexity is ensured by Proposition
2.4.39.

Among the possible function γ, we restrict our attention to the ones that satisfy the following
properties, by similarity with ✶R++

:

− γ is a nonnegative monotone function;

− γ(0) ≥ 1 ;

− γ(z)→ 0 as z → −∞.

Such functions are referred to as generators. A typical example is the function γ(z) = exp(z).

For a given generator γ, some other safe approximations can be established, by replacing q by
any convex overestimator q+ of q, i.e., q+(w) ≥ q(w), ∀w. This leads to the following safe convex
approximation :

G+(w) = inf
α>0
{αq+(w

α
)− αε} ≤ 0 (3.12)

Choosing q+ efficiently computable makes this approximation tractable. Furthermore, this addi-
tional level of approximation enables to consider the case where the chance constraint has to be satisfied
for a set of probability distribution P ∈ P. To see this, we add the notation P to q(w) : qP(w) to underlie
that q(w) depends of P.

Then, having q+such that : q+(w) ≥ qP(w), ∀P ∈ P is sufficient for the final approximation to
hold. Thus, we reduce a set of constraint : one for each element of P into a single constraint.

As an illustration, we show that this approach enables to recover the Azuma-Hoeffding inequality
(2.6.39). We are interested in p(w) = P[wT ξ > 0] ≤ ε, ∀P ∈ P, with P the set of zero mean probability
distribution supported on [−1, 1]m such that the random variables are independent from each other.

Then, by taking γ(z) = exp(z) and q+(w) = exp{ 12
∑m

i=1 w
2
i }, we get the approximation at hand.

Indeed,
P[P[wT ξ > 0] ≤ E[expwT ξ] (introduction of the generator)

=
∏m

i=1 E[expwiξi] (independence)
≤∏m

i=1 exp(
wi

2 )
= q+(w)

The last inequality is detailed in [201] Lemma 2.1 and relies on the assumption regarding the
support and the mean of the elements of P.
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Among this scheme of approximation, we aim at finding the best one, i.e., the one that minimize
the deviation from the original constraint. Clearly, for any generator γ, the best q+ is supP∈P EP

(

γ(wT ξ̃)
)

.

Moreover, it is proved in [201] that the best generator is γ∗(z) = max{0, 1 + z}. Then, a funda-
mental result is that in this case, the corresponding approximation (3.12) is the CVaR approximation :

G+(w) = inf
β

{

β +
1

ε
E((wT ξ̃)+)

}

= CVaRε(w
T ξ̃)

As a consequence, the CVaR approximation is the least conservative convex approximation of a
chance constraint.

3.7.2.4 Approximation of joint chance constraint by individual chance constraints

There are basically two approaches to approximate a joint chance constraint into individual chance
constraints. The first one is a conservative approximation based on the Boole inequality 2.6.34. The
second one convert the joint chance constraint into an equivalent individual chance-constraint. But, in
line with the "no free lunch" principle, the obtained chance-constraint is much harder to handle.

We consider the following joint chance-constraint : P[fi(x, ξ) ≤ 0, i = 1, ...,m] ≥ 1 − ε where
fi : R

n × R
k → R.

By applying Boole inequality, it comes that for any sequence of {εi}i=1,...,m such that
∑m

i=1 εi ≤ ε,
requiring that P[fi(x, ξ) ≤ 0] ≥ 1 − εi, i = 1, ...,m is sufficient for the satisfaction of the joint chance
constraint. In particular, it suffices to divide ε equally among the constraint : εi = ε/m. This
approximation is simple but generally not tight, in particular when the individual events fi(x, ξ) are
not independent.

Another possibility, introduced recently in [72], comes from the following trick : fi(x, ξ) ≤ 0, i =
1, ...,m ⇔ g(x, ξ) = maxi fi(x, ξ) ≤ 0. The same occurs by scaling the functions fi via a vector α > 0
: fi(x, ξ) ≤ 0, i = 1, ...,m ⇔ gα(x, ξ) = maxi αifi(x, ξ) ≤ 0. Consequently, the joint chance-constraint
can be converted into the following individual chance constraint :

P[gα(x, ξ) ≤ 0, i = 1, ...,m] ≥ 1− ε

3.7.3 Robust optimization

Robust optimization consists of optimizing what may happen in the worst case w.r.t a given set of
uncertain data. It traces back to the early 70s with the work of Soyster on robust linear optimization
but the interest for robust optimization really started with the work of Ben-Tal and Nemirovski [32]
and El Ghaoui et al. [89] in the late 90s. We refer the reader to the survey [36] for a complete review
on the subject.

A robust problem can be formulated as following :

(P )

{

minx∈K f0(x)
s.t. fi(x, ξ) ≤ 0, ∀ξ ∈ U , i = 1, ...,m

where U is the (closed) uncertainty set. If U has an infinite number of elements, then the problem
has an infinite number of constraints and is therefore a so-called semi-infinite optimization program.

This approach has two major advantages w.r.t stochastic optimization. Firstly, it is not necessary
that the probability distribution be available, only the support, then referred to as the uncertainty set
has to be specified. Secondly -and very importantly - the solutions generated by this approach are
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immune to any realizations of the uncertain parameters in the uncertainty set. Thus, in constrast to
stochastic programming, these solutions make sense even in a single-outcome situation.

On the downside, it may be difficult to specify the uncertainty set since it represents a tradeoff
between robustness and performance. A large uncertainty set leads to a conservative optimization and
may affect severely the optimal value reached by the objective. A possible remedy is to restrict ourselves
to a smaller uncertainty set. But there are no free lunch since it weakens the guarantee on the feasibility
of the solution.

Generally speaking, due to its infinite number of constraints, a robust problem is computation-
nally intractable. However, in some particular cases, it can be formulated as a "standard" optimization
problem, i.e., with a finite number of constraints. In fact, a sufficient condition for the problem to be
tractable is that the feasible set be convex with an efficiently computable separation oracle. When such
a formulation exists, it is referred to as the robust counterpart of the original problem.

Equivalently, the robust problem (P ) reads :

(P )

{

minx∈K f0(x)
s.t. maxξ∈U fi(x, ξ) ≤ 0, i = 1, ...,m

Then the structure of the subproblems maxξ∈U fi(x, ξ), and in particular the shape of the un-
certainty set, is determinant for the complexity of solving (P ). Specifying U as an ellipsoid (see Def.
2.2.65) is both interesting from the tractability point of view, as illustrated above on the robust linear
programming example, and from a modeling point of view since numerous sets are encompassed within
this framework, for example polyhedra.

Let us consider the example of robust linear programming with ellipsoidal uncertainty set, pro-
posed by Ben-Tal and Nemirovksi in [32]. Without loss of generality, it can be written as :

(P )







minx∈Rn cTx
s.t. AT

i x ≤ 0, i = 1, ...,m, ∀Ai ∈ Ui
bTi x ≤ 0, i = 1, ..., p

where Ai, i = 1, ...,m are uncertain parameters. The uncertainty set is the union of ellipsoidal
regions, one for each constraints : Ui = {A0

i +Biu : ‖u‖ ≤ ρ}.
Then the robust counterpart is :

(P )







minx∈Rn cTx
s.t. A0

ix ≤ −ρ‖Bix‖, i = 1, ...,m
bTi x ≤ 0, i = 1, ..., p

Indeed, maxAi∈Ui
AT

i x = max‖u‖≤ρ(A
0
i +Biu)

Tx = A0
i
T
x+ ρ‖BT

i x‖.
It was also shown in [32] that if the uncertainty sets Ui are polyhedral, then the robust counterpart

is a linear program and that the robust counterpart of a SOCP with ellipsoidal uncertainty sets is a
semidefinite program, as detailed at paragraph 3.5.1. Another major contribution on this topic was
provided by El-Ghaoui and Lebret [89] that showed that the robust least square problem admits a
SOCP robust counterpart when the uncertainty set is ellipsoidal.

As a conclusion are given some elements about how to build the uncertainty set and how it allows
to choose the corresponding level of probabilistic protection. As a first key, if it can be asserted that
the probability for the uncertain parameters not to belong to the uncertainty set is less than ε, then the
robust solution is guaranteed to satisfy the 1−ε associated chance constraint. Second, when considering
U is too expensive or lead to no feasible solution, a possible remedy is to consider a smaller uncertainty
set N ⊂ U and to authorize violations of the constraint for u ∈ U \ S, in a controlled manner so that
larger violations are allowed as the distance of u from N increases. A distance function was proposed
in [42] for linear program, based on the number of parameter by constraints that do not belong to the
corresponding subset of N .
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