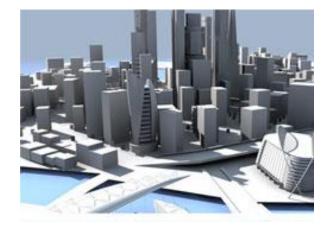
Urban scene modeling from airborne data

Yannick VERDIE

Thesis Advisors: Florent Lafarge and Josiane Zerubia
INRIA Sophia Antipolis, Titane/Ayin Teams

Geometry

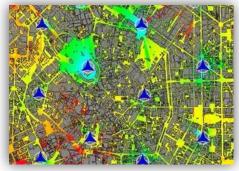


- Geometry
- Radiometry

- Geometry
- Radiometry
- Semantics

Applications

Applications for 3D urban reconstruction



Radio planning

Movie

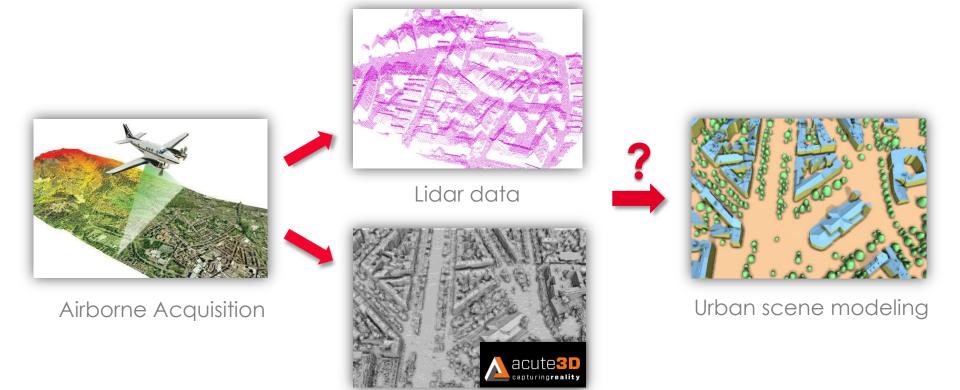
Computer game

Online services

Urban planning

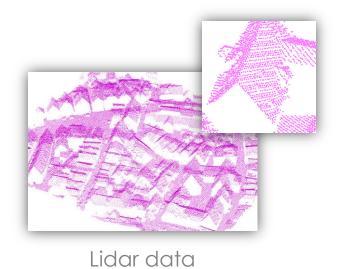
Drone planning

Problem statement



Meshes from Multi-View Stereo

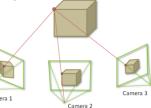
Airborne data



- Accurate
- Not dense
- Incomplete

Meshes from Multi-View Stereo

- Mesh with triangular facets
- Complete surface
- Dense
- Potential defects

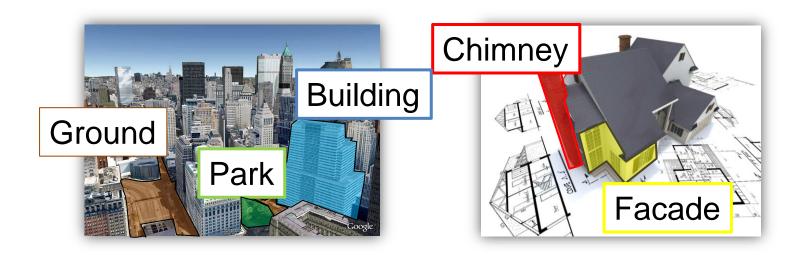


5 criteria:

Geometric accuracy

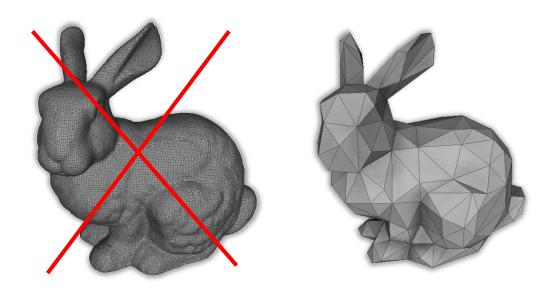
5 criteria:

- Geometric accuracy
- Semantic-aware



5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity



5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity
- Scalability

Size of the scene

small large

5 criteria:

- Geometric accuracy
- Semantic-aware
- Low complexity
- Scalability
- Automatic

3 major surveys:

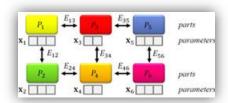
Modeling the Appearance and Behavior of Urban Spaces

[Vanegas et al. Eurographics 09]

A survey of Urban Reconstruction

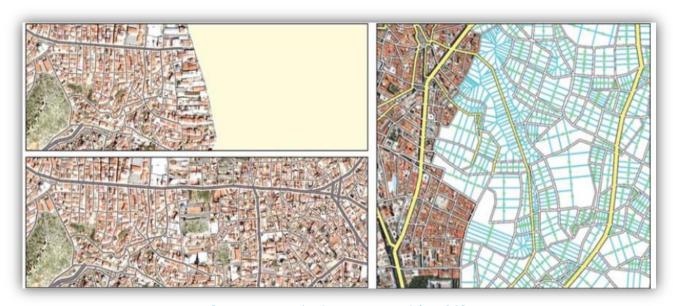
[Musialski et al. Eurographics 12]

Structure-Aware Shape Processing



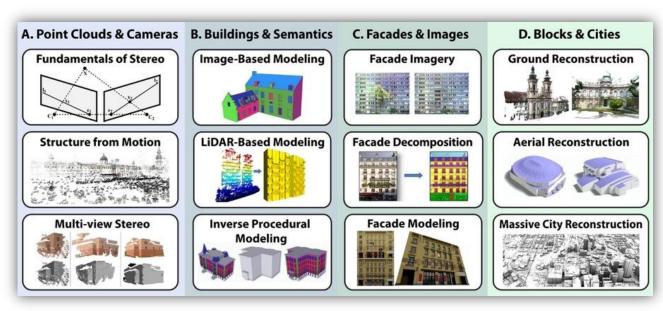
[Mitra et al. Eurographics 13]

"Modeling the Appearance and Behavior of Urban Spaces"



[Vanegas et al., Eurographics 09]

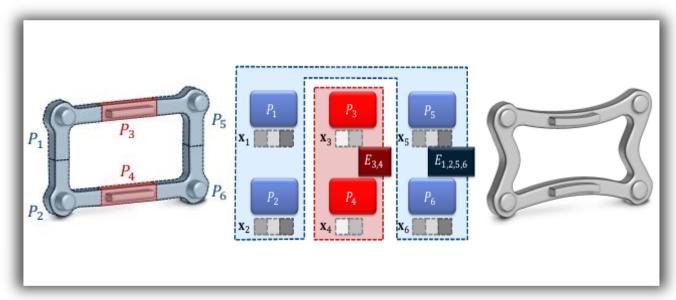
"A survey of Urban Reconstruction"



[Musialski et al., Eurographics 12]

broad overview of the literature on urban reconstruction

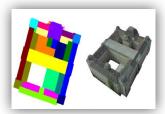
"Structure-Aware Shape Processing"



[Mitra et al., Eurographics 13]

structures to enhance, regularize and manipulate existing meshes

Overview of existing methods



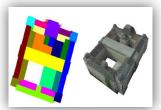
[Zebedin et al., ECCV 08]

[Toshev et al., CVPR 09]

[Chauve et al., CVPR 10]

Primitive-based building reconstruction

Overview of existing methods



[Zebedin et al., ECCV 08]

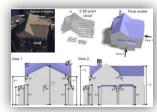
[Toshev et al., CVPR 09]

[Chauve et al., CVPR 10]

Primitive-based building reconstruction

[Pauly et al., Siggraph 08]

[Mehra et al., Siggraph Asia 09]



Zhou and Neumann, CVPR12]

Structure-aware building modeling

Overview of existing methods

[Zebedin et al., ECCV 08]

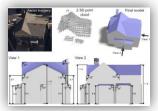
[Toshev et al., CVPR 09]

[Chauve et al., CVPR 10]

Primitive-based building reconstruction

[Pauly et al., Siggraph 08]

[Mehra et al., Siggraph Asia 09]



[Zhou and Neumann, CVPR12]

Structure-aware building modeling

[Poullis and You, CVPR09]

[Zhou and Neumann, CVPR09]

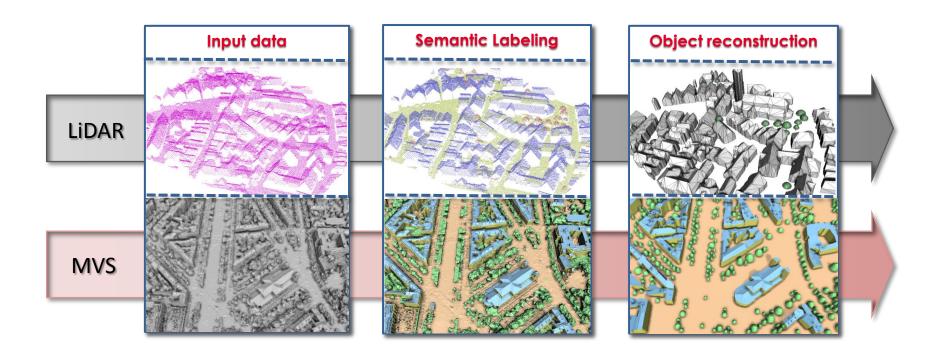
[Lafarge and Mallet, IJCV11]

Automatic large scale urban reconstruction

still many unsolved problems

Contribution

General pipelines for MVS and LiDAR data



Outline

- (1) Introduction
- ② Semantic labeling
- 3 Object Reconstruction: parametric-based object detection
- 4 Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

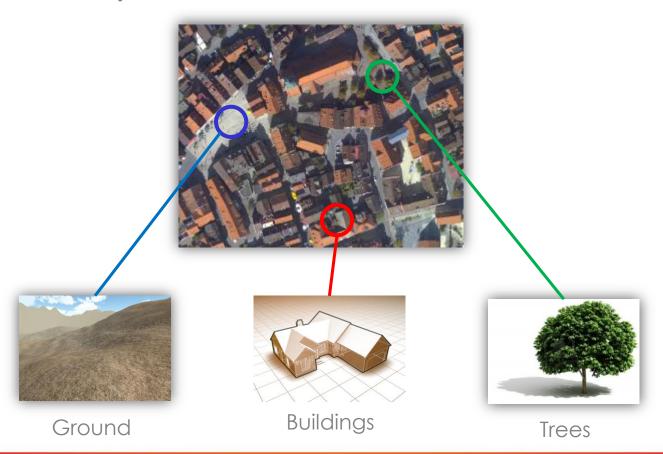
Outline

- 1 Introduction
- 2 Semantic labeling
- 3 Object Reconstruction: parametric-based object detection
- 4 Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

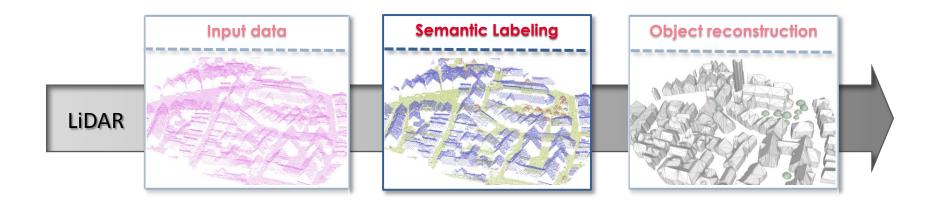
Semantic labeling

What is important?

In many cases, majority of urban scenes can be explained by 3 classes of objects

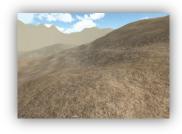


Semantic labeling for Lidar



Semantic labeling for Lidar

Classes for Lidar data



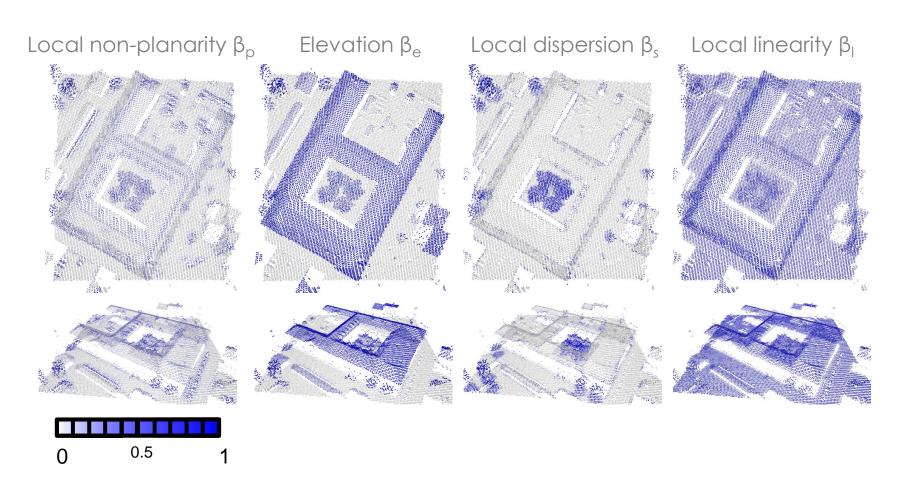
Trees

Buildings

Clutters

need for geometric features that discriminate the classes

Discriminative geometric features for Lidar



Combine the features to discriminate the classes

Confidence functions for Lidar

Trees

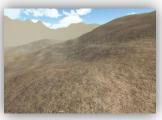
High non-planarity β_p

High elevation β_e

High local dispersion β_s

Local linearity B

Ground



Low non-planarity β_p

Low local dispersion β_s

Low elevation β_e

Local linearity B

Buildings

Low non-planarity β_p

Low local dispersion β_s

High elevation β_e

Local linearity B

Clutters

High non-planarity β_p

High local dispersion β_s

Flevation β_e

Low local linearity β₁

Confidence functions for Lidar

Trees

Ground

Buildings

Clutters

 $\operatorname{arg\,min}_{x} \sum D(x_i)$

$$D(x_i) = \begin{cases} D_{tree}(x_i) & \text{if } x_i = tree \\ D_{ground}(x_i) & \text{if } x_i = ground \\ D_{building}(x_i) & \text{if } x_i = building \\ D_{clutter}(x_i) & \text{if } x_i = clutter \end{cases}$$

Need for spatial consistency

Energy minimization over a Markov Random Field

$$U(x) = \sum D(x_i) + \lambda \sum_{\{i,j\} \in E} V_{ij}(x_i, x_j)$$

$$D(x_i) = \begin{cases} D_{tree}(x_i) & \text{if } x_i = tree \\ D_{ground}(x_i) & \text{if } x_i = ground \\ D_{building}(x_i) & \text{if } x_i = building \\ D_{clutter}(x_i) & \text{if } x_i = clutter \end{cases}$$

Potts model:

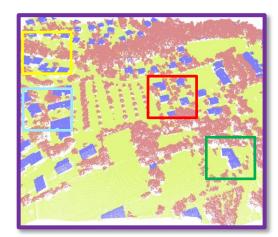
$$V_{ij}(x_i, x_j) = \delta(x_i \neq x_j)$$

Spherical neighborhood such as

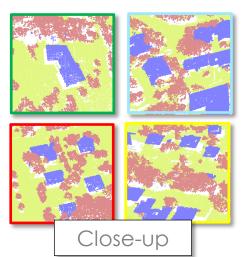
$${i,j} \in E \Leftrightarrow ||i-j||_2 < r$$

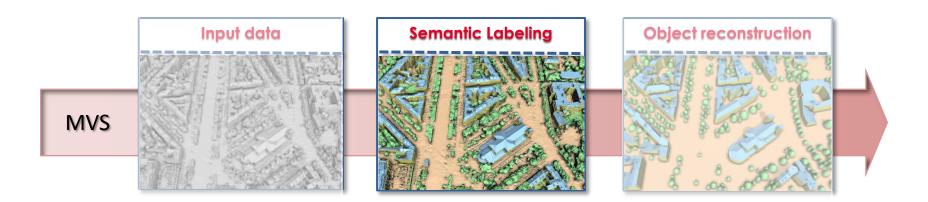
Optimisation with graph-cut and alpha-beta swap [Boykov et al, PAMI 2001]

Semantic labeling for Lidar data



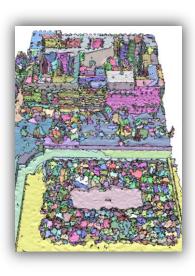
Visual reference from Google map





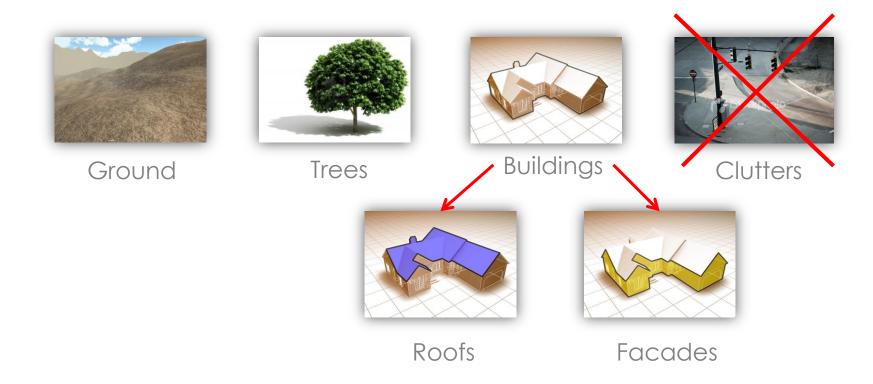
Difference with semantic labeling for Lidar data

- Regroup facets into "f-clusters"
 - Tractable
 - Enforce local coherency



Difference with semantic labeling for Lidar data

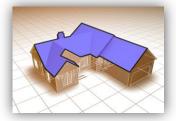
- Compute f-clusters
- Building class splits in two sub-classes



Difference with semantic labeling for Lidar data

- Compute f-clusters
- Building class splits in two sub-classes

Roofs

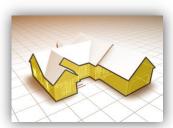


Low non-planarity β_p

High elevation β_e

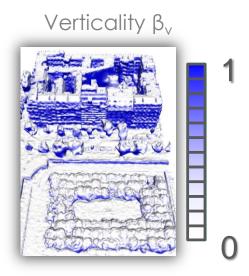
Low verticality β_{v}

Facades



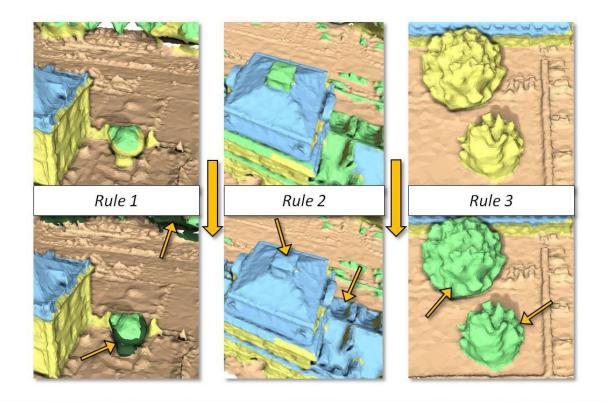
Low non-planarity β_p

High verticality β_v

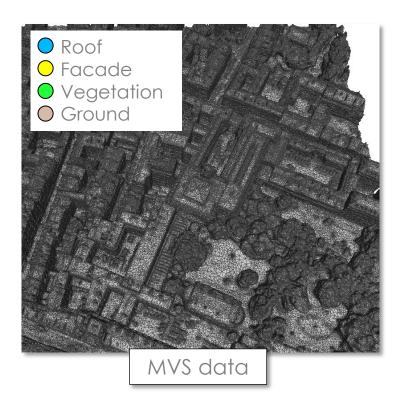


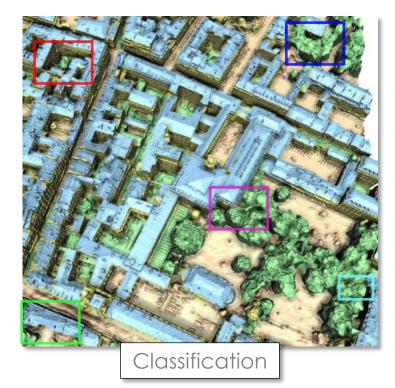
Difference with semantic labeling for Lidar data

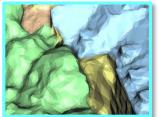
- Compute f-clusters
- Building class splits in two sub-classes
- Correction rules

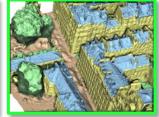


Semantic labeling









Outline

- 1 Introduction
- 2 Semantic labeling
- 3 Object Reconstruction: parametric-based object detection
- 4 Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

Object Reconstruction for Lidar

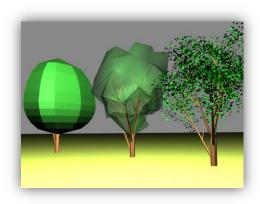
Focus on tree detection and reconstruction from Lidar

Parametric-based object detection

Objective:

Localize and reconstruct simple objects

Buildings are too complex structures



Trees can be approximated by simple shapes

Parametric-based object detection

Objective:

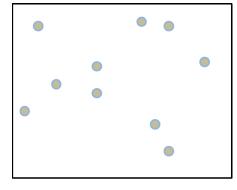
- Localize and reconstruct simple objects
- Detection in large scenes

Thousands of simple objects (e.g. trees) are in the scene

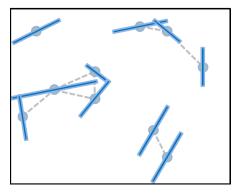
Use Marked Point Processes (MPP)

Preliminary:

- A point process describes random configurations of points (of unknown size) in a continuous bounded set K.
- A marked point process is a point process where each point is associated with a parametric objects.

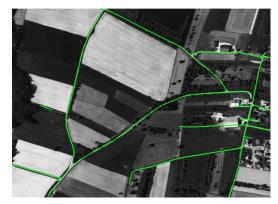


Point process

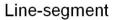


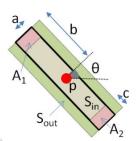
Marked Point Process of 2D segments

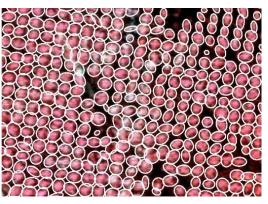
Previous work:



[Lacoste et al.,PAMI05]

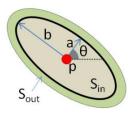


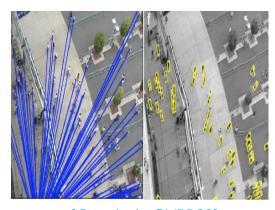




[Perrin et al., EMMCVPR05]

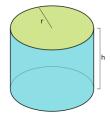
Ellipse





[Ge et al., CVPR09]

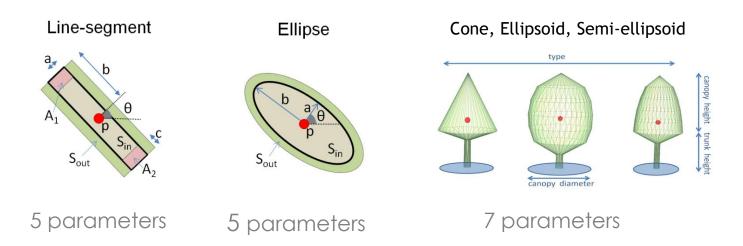
Cylinder



Requirements:

1) Simple parametric objects

Object characterized by a limited number of parameters



Requirements:

- 1) Simple parametric objects
- 2) Energy measuring the quality of a configuration of objects

Standard form of energy:

$$\forall \mathbf{x} \in \mathcal{S}, U(\mathbf{x}) = \sum_{p_i \in \mathbf{x}} D(p_i) + \sum_{p_i \sim p_j} V(p_i, p_j)$$

with \sim the symmetric neighborhood relationship such as:

$$p_i \sim p_j = \{(p_i, p_j) \in \mathbf{x}^2 : i > j, ||p_i - p_j||_2 < \epsilon\}$$

Requirements:

- 1) Simple parametric objects
- 2) Energy
- 3) Minimization method
 - Unknown number of objects
 - Minimize non-convex energy

Use Reversible-Jump Monte Carlo Markov Chain (RJ-MCMC) [Green 1995]

Optimization method

RJ-MCMC:

- Sequential algorithm with a two-step update mechanism
 - a) Proposition step
 - New configuration is proposed from a proposal density (kernel)
 - New configuration must be close to the current one
 - b) Acceptance step depending on
 - Random variable
 - Energy variation
 - Stochastic relaxation

Optimization method

RJ-MCMC:

- <u>Sequential</u> algorithm with a two-step update mechanism
 - a) Proposition step
 - New configuration is proposed from a proposal density (kernel)
 - New configuration must be close to the current one (local perturbation)

Slow in practice

- b) Acceptance step depending on
 - Random variable
 - Energy variation
 - Stochastic relaxation
- Focus on improving performance of RJ-MCMC

Requirements:

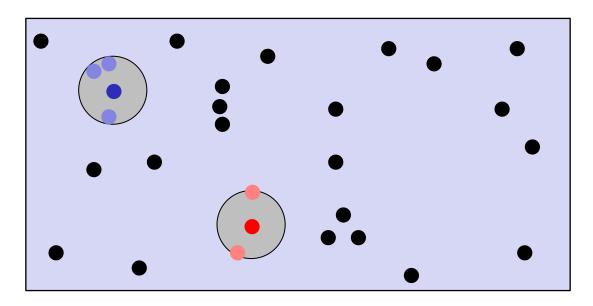
- 1) Simple parametric objects
- 2) Energy
- 3) Minimization method
 - unknown number of objects
 - minimize non-convex energy

Novel optimization method based on RJ-MCMC

- Exploit two properties for a faster optimization
- Exploit GPU capability

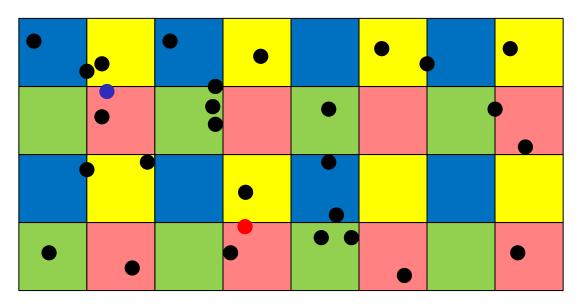
(1) Parallelization

The Markovian property in the energy: $Pr(x_i \mid x) = Pr(x_i \mid x_{N(i)})$



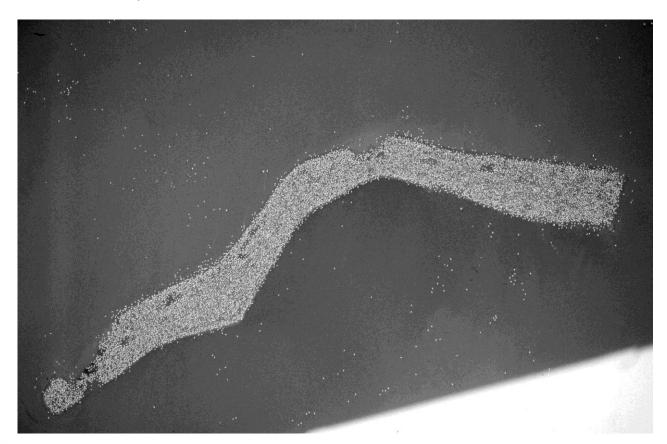
the blue object and the red object can be updated by MCMC at the same time.

(1) Parallelization



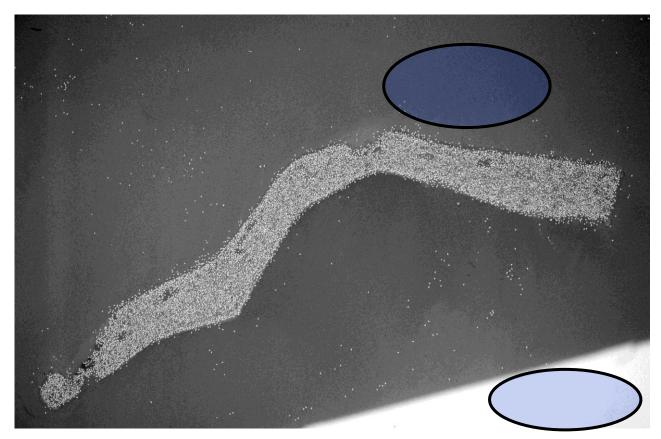
Mic-Set: a set of Mutually Independent Cells

How many Birds?



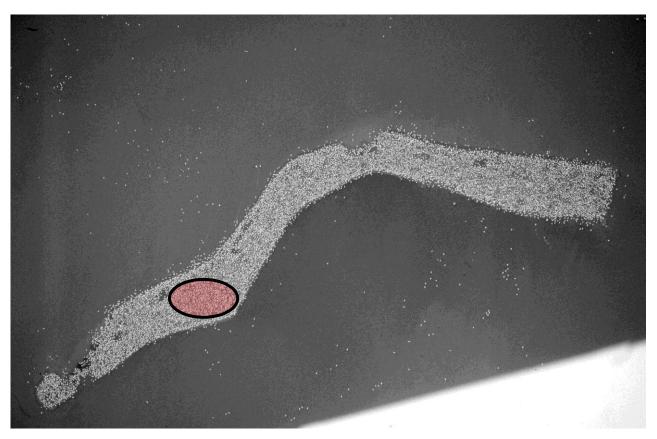
How many Birds?

Low probability



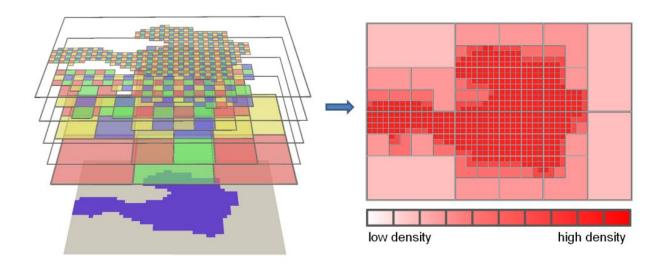
How many Birds?

High probability



We proposed

- quadtree data partitioning for 2D space.
- octree data partitioning for 3D space.



Compatible with the parallelization scheme (1)

Novel optimization method

- 1-Initialize $X_0 = \mathbf{x}_0$ and T_0 at t = 0;
- 2-Compute a space-partitioning tree K;
- 3-At iteration t, with $X_t = x$,
 - ▶ Choose a mic-set $S_{mic} \in \mathcal{K}$ and a kernel type $t \in \mathcal{T}$ according to probability $\sum_{c \in S_{mic}} p_{c,t}$
 - ▶ For each cell $c \in S_{mic}$,
 - Perturb x in the cell c to a configuration y according to $Q_{c,t}(x \to .)$
 - Calculate the Green ratio

$$R = \frac{\mathcal{Q}_{c,t}(\mathbf{y} \to \mathbf{x})}{\mathcal{Q}_{c,t}(\mathbf{x} \to \mathbf{y})} \exp\left(\frac{U(\mathbf{x}) - U(\mathbf{y})}{T_t}\right)$$

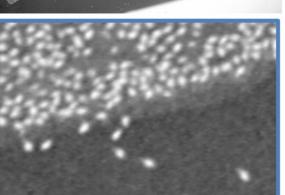
▶ Choose $X_{t+1} = \mathbf{y}$ with probability min(1, R), and $X_{t+1} = \mathbf{x}$ otherwise

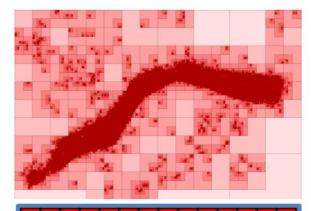
Proposition step

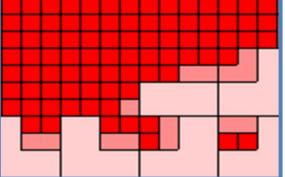
Acceptance step

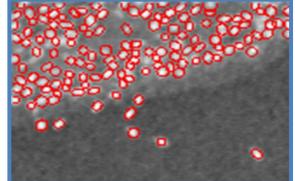
2D Ellipsoidal objects

10800 objects detected, 269 sec (image size: 8Mpixels)





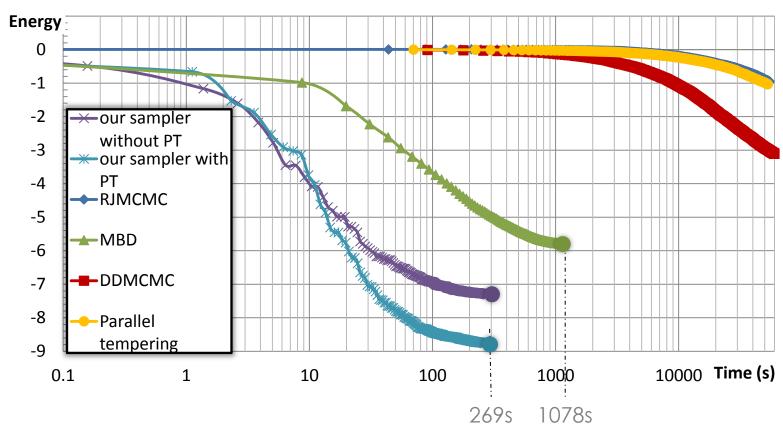




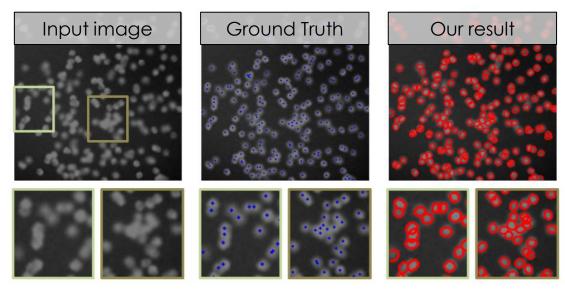
Ellipse

2D Ellipsoidal objects

Time to converge

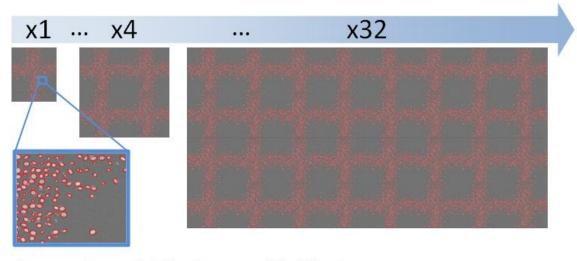


[Lempitsky and Zisserman, NIPS2010]

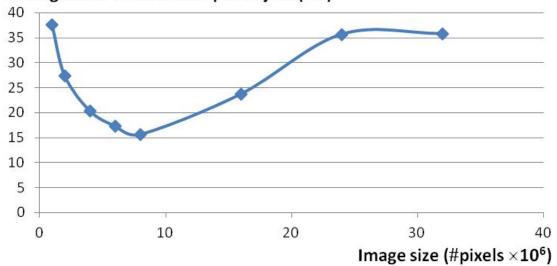


	our	Lempitsky	Lempitsky	Ground
	method	(L1-reg.)	(Tikhonov-reg.)	Truth
cell17	209	202.9	194.1	213
cell18	184	184.6	175.9	185
cell19	187	192.2	180.1	188
cell20	169	174.1	170.4	169
cell21	147	148.6	144.4	149
cell22	184	182.6	176.5	184
cell23	159	158.3	157.6	161
RMSE	1.93	4.71	9.21	-

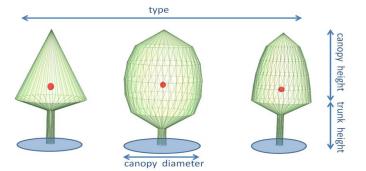
GPU occupancy



Average time of detection per object (ms)

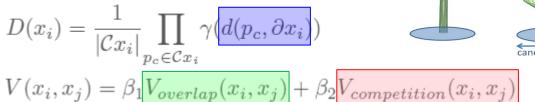


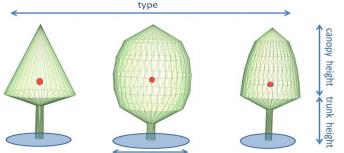
- Three parametric objects
 - 7 parameters



- Three parametric objects
- New energy formulation

$$D(x_i) = \frac{1}{|\mathcal{C}x_i|} \prod_{p_c \in \mathcal{C}x_i} \gamma(\underline{d(p_c, \partial x_i)})$$



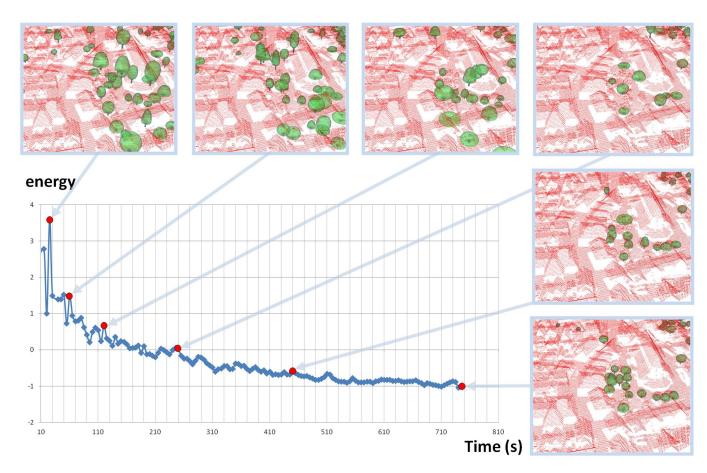


 $d(p_c, \partial x_i)$ is a distance measuring the coherence of the point p_c with respect to the object surface ∂x_i

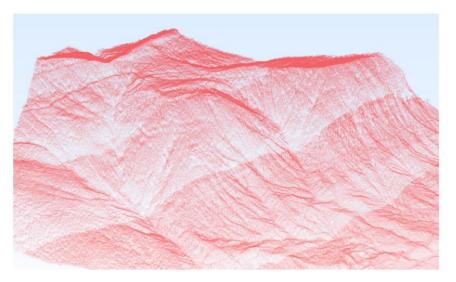
penalizes the overlapping between objects

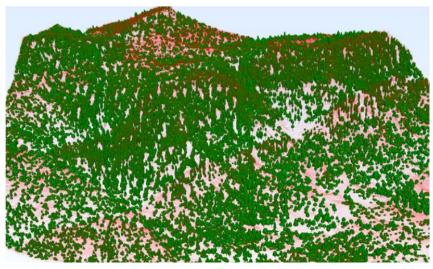
favors area with similar type of objects

Evolution of the configuration

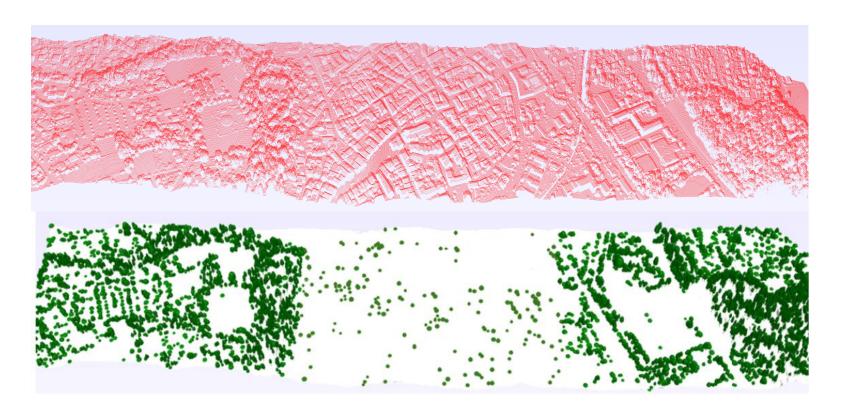


30k trees in 96min (3.7km2 / 12.8M points)

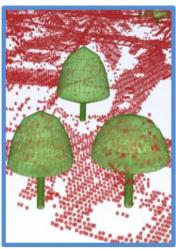




5.4k trees in 53min (1km2 / 2.3M points)



Details on cropped area

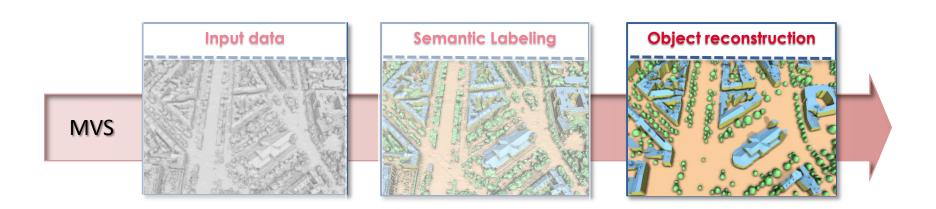


Visual reference from Google map

Outline

- 1 Introduction
- 2 Semantic labeling
- 3 Object Reconstruction: parametric-based object detection
- 4 Object Reconstruction: mesh-based object reconstruction
- (5) Conclusion and future work

Mesh-based object reconstruction



Focus on the building reconstruction from MVS

Roofs

We propose

- Multiple Level of Details (LOD)
 - Definition of the City Geography Markup Language

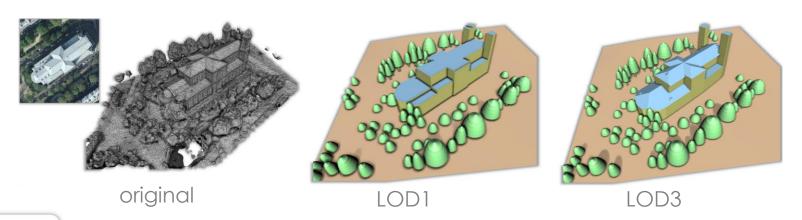
LOD1 – Building as "blocks model, without any roof structures or textures"

LOD2 – Building with "differentiated roof structures"

[Kolbe et al., 2005]

LOD3 – Building as "architectural model with detailed wall and roof structures"

- Visually more appealing
- More adapted to certain urban applications

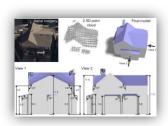


We propose

- Multiple Level of Details (LOD)
- Efficient plane regularization
 - Predominant in urban environment
 - Support the LOD scheme
 - Efficient on large scale

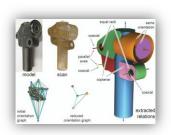
Existing solutions un-adapted: accurate but too slow for our application

Global regularities



[Zhou and Neumann, CVPR12]

GLOBFIT



[Li et al., Siggraph11]

We propose

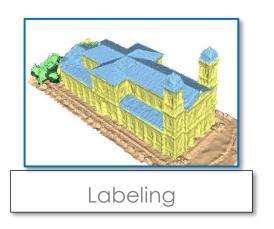
- Multiple Level of Details (LOD)
- Efficient plane regularization
- Efficient Binary Space Partitioning (BSP)
 - Exact geometry for BSP is costly (slow)

[Chauve et al., CVPR 10]

use a new discrete formulation

We propose

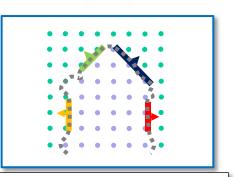
- Multiple Level of Details (LOD)
- Efficient plane regularization
- Efficient Binary Space Partitioning (BSP)
 - Advantages:
 - reconstruct with exact geometry only a subset of cells
 - the plane regularization limits the number of different planes (lower BSP complexity)



Surface extraction

Plane hypothesis from roof and facade f-clusters

Plane regularization



Discrete space partitioning

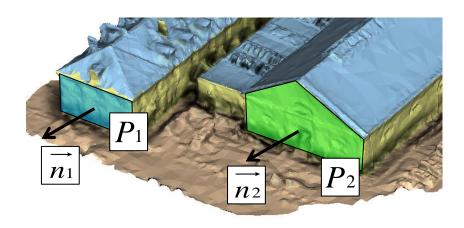
Plane regularization:

• 4 pairwise relationships controlled with two parameters ε and d

Plane regularization:

- 4 pairwise relationships controlled with two parameters arepsilon and $oldsymbol{d}$
 - Parallelism

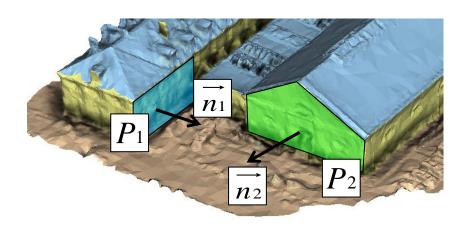
 P_1 and P_2 are ε -parallel if $|\mathbf{n}_1 \cdot \mathbf{n}_2| \geq 1 - \varepsilon$



Plane regularization:

- 4 pairwise relationships controlled with two parameters arepsilon and $oldsymbol{d}$
 - Parallelism
 - Orthogonality

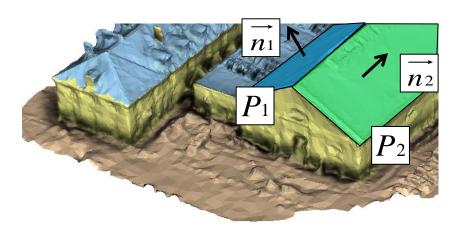
 P_1 and P_2 are ε -parallel if $|\mathbf{n}_1 \cdot \mathbf{n}_2| \geq 1 - \varepsilon$



Plane regularization:

- 4 pairwise relationships controlled with two parameters arepsilon and $oldsymbol{d}$
 - Parallelism
 - Orthogonality
 - Z-symmetry

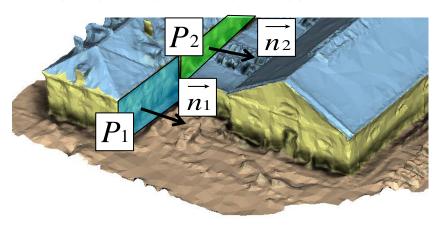
 P_1 and P_2 are ε -Z-symmetric if $||\mathbf{n}_1 \cdot \mathbf{n}_z| - |\mathbf{n}_2 \cdot \mathbf{n}_z|| \leq \varepsilon$,



Plane regularization:

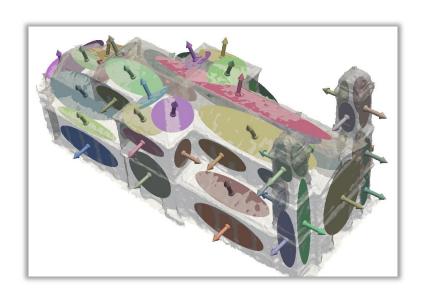
- 4 pairwise relationships controlled with two parameters arepsilon and $oldsymbol{d}$
 - Parallelism
 - Orthogonality
 - Z-symmetry
 - Coplanarity

 P_1 and P_2 are d- ε -coplanar if they are ε -parallel and $|d_{\perp}(c_1, P_2) + d_{\perp}(c_2, P_1)| < 2d,$



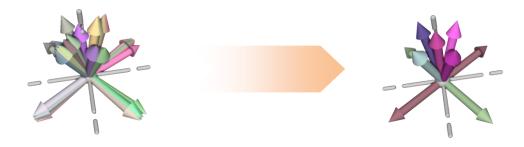
Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes



Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller
 - the barycenter of each group is fixed

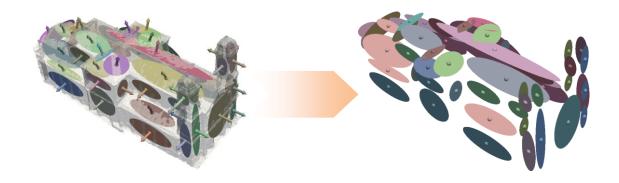


Before orientation correction

After orientation correction

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller
 - 2) Position correction: merge co-planar groups



Before position correction

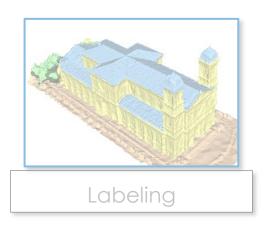
After position correction

Plane regularization:

- 4 pairwise relationships
- Groups of parallel planes
- 2-step strategy:
 - 1) Orientation correction: propagate orthogonality and z-symmetry relationships from large groups to smaller
 - 2) Position correction: merge co-planar groups

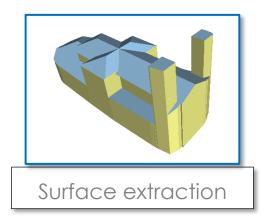
Converge very fast (no data refitting)

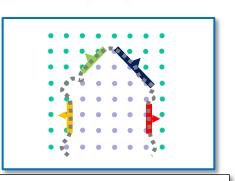
Thousand of planes in few seconds



Plane hypothesis from roof and facade f-clusters

Plane regularization

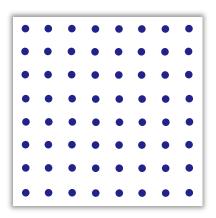




Discrete space partitioning

Discrete space partitioning:

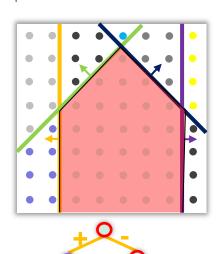
Volumetric occupancy grid



Discrete space partitioning:

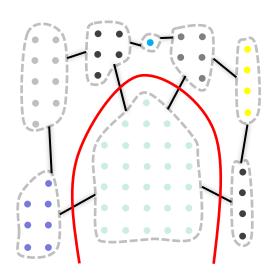
- Volumetric occupancy grid
- Binary Space Partitioning (BSP)

Red volume = a path in the BSP



Surface extraction:

 The targeted surface is at the boundary between inside and outside volumes



Surface extraction:

- The targeted surface is at the boundary between inside and outside volumes
- Min-cut formulation:

$$C(\mathcal{S}) = \sum_{c_k \in \mathcal{C}_{out}} \boxed{V_{c_k}} \boxed{g(c_k)} + \sum_{c_k \in \mathcal{C}_{in}} \boxed{V_{c_k}} (1 - \boxed{g(c_k)}) + \beta \sum_{e_i \in \mathcal{S}} A_{e_i}$$

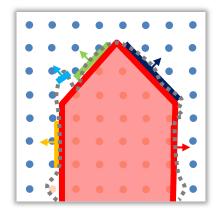
 V_{c_k} is the discrete volume of cell ck

 $g(c_k)$ is function of the ratio of inside anchors of cell ck

 $\sum_{e_i \in \mathcal{S}} A_{e_i}$ is the discrete area of the resulting surface

Surface extraction:

- The targeted surface is at the boundary between inside and outside volumes
- Min-cut formulation:

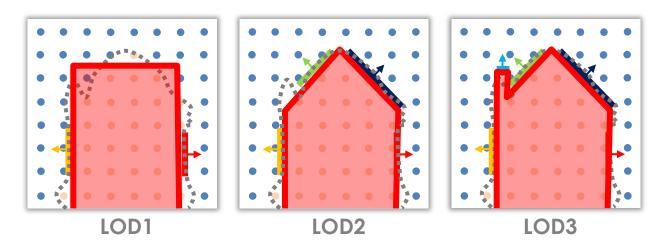


- ···· input surface
- detected plane
- interior anchor
- exterior anchor

Surface extraction:

The targeted surface is at the boundary between inside and outside volumes

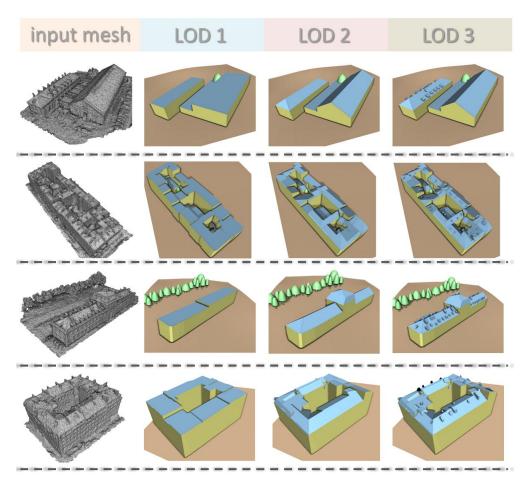
Min-cut formulation:



The boundary of the inside volume represents the targeted surface

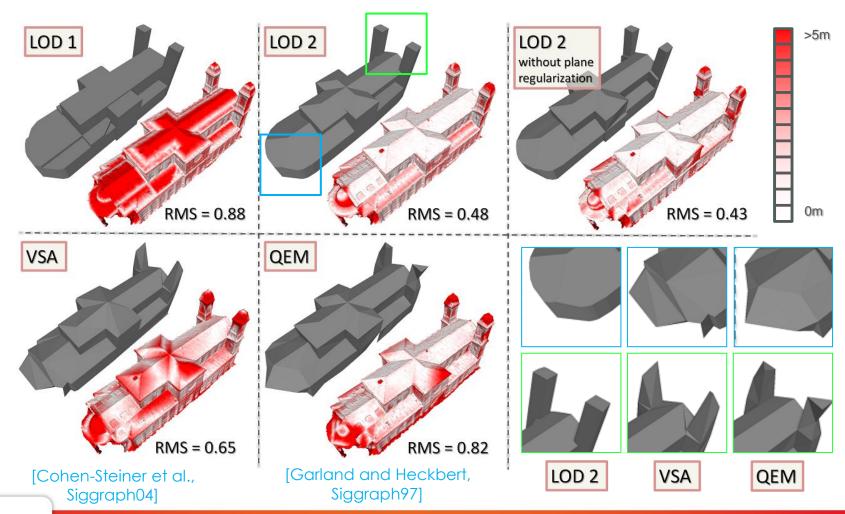
A control on the sets of planes composing the BSP gives different LODs

Various buildings: (LOD)

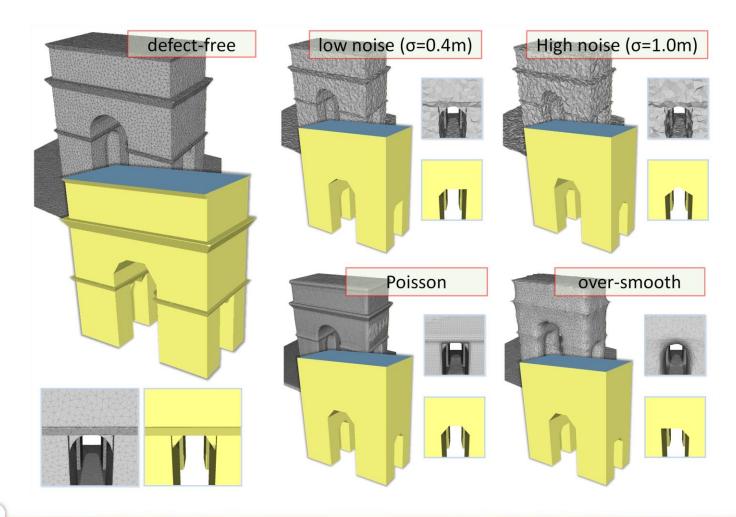


Various buildings: 170k facets, ~3min

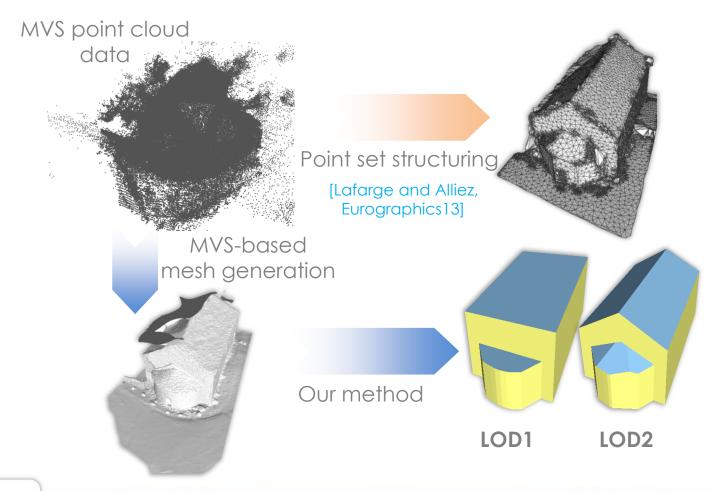
Geometric accuracy (Hausdorff distance) and structure awareness



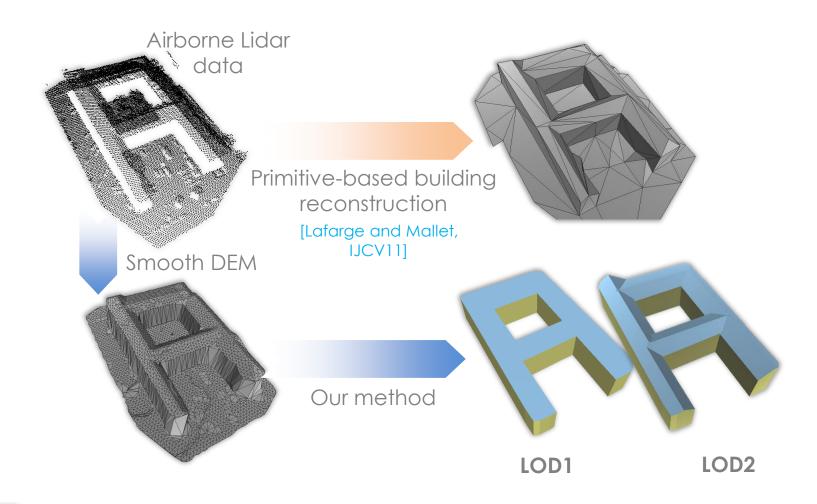
Robustness assessment



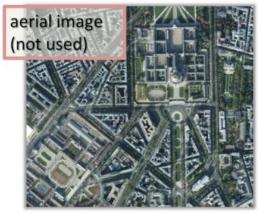
Robustness assessment

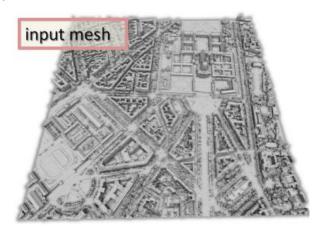


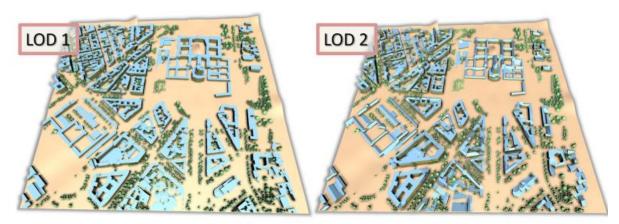
Choice of the input: mesh or point cloud



Large scale experiments (scalability)







Paris, 7th district: 11M facets, ~2hours

Outline

- 1 Introduction
- 2 Semantic labeling
- 3 Object Reconstruction: parametric-based object detection
- 4 Object Reconstruction: mesh-based object reconstruction
- **5** Conclusion and future work

Contribution summary

Applicative contributions

- Two pipelines for Lidar and MVS data
 - Semantical and structural enhancement of purely-geometric meshes
 - Geometrically accurate reconstruction and visually convincing
 - Scalable and adapted to wide range of applications

Contribution summary

Methodological contributions

- Sampler for Marked Point Processes (MPP) using a parallel scheme
 - Exploit GPU architecture
 - Outperforms current samplers for MPP
- Efficient Binary Space Partitioning (BSP)
 - Rely on a discrete energy formulation for fast approximation

Limitations

Urban labeling

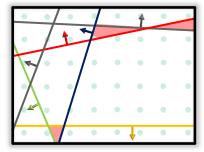
Classes of objects limited

Sampler for Marked Point Processes

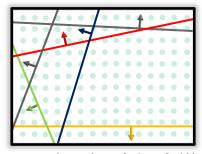
Efficient only when performed on large scenes for small objects

Building reconstruction

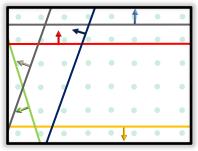
- Piecewise-planar buildings
- Primitive dependant
- Discrete formulation misses details (empty cells)



large grid width no plane regularization



H short grid width no plane regularization



■ large grid width with plane regularization

Future Work

Extensions:

Urban labeling

Add more classes of interest for a better labeling (bridge, water,...)

Building reconstruction

- Generalize the BSP for other primitives (spheres, cylinder,...)
- Complete LOD3 representation with facade modeling
 - Use data regularization
 - Grammar rules for façade

Future Work

Future directions:

Multiple source of data

 Use multiple source of data together (terrestrial and aerial Lidar, MVS, images,...)

Functional analysis

 Combine structure-aware techniques with semantic understanding of urban scenes

THANK YOU

Acknowledgment:

Acute3D, IGN, Tour du valat ,Victor Lempitsky, Roger W. Ehrich, Qian-Yi Zhou

