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sous le sceau de l’Université Européenne de Bretagne
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Chargé de Recherche, Inria Rennes, France /

directeur de thèse
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Resume in French

Introduction

Description générale

La sensibilité des structures aux vibrations est un problème de base en mécanique, partic-
ulièrement dans l’aérospatiale, l’automobile, le maritime, les chemins de fer, etc. C’est aussi
d’importance croissante en génie civil, car non seulement la minceur des structures et des
composants structurels augmentent continuellement, mais aussi leur chargement dynamique
dû au traffic.

La vérification expérimentale des valeurs de design, utilisant les paramètres modaux, est
essentielle pour le design et la validation de modèle pour garantir la sécurité et la sûreté de
fonctionnement de la structure. Elle est aussi fréquemment employée pour le contrôle de
qualité et la santé structurelle. L’amortissement et les conditions aux frontières dépendent
de l’amplitude des vibrations et si la structure a des parties rotatives, les paramètres modaux
dépendent de la vitesse de rotation de ces parties. Donc, il est important que la détermination
expérimentale des paramètres modaux de la structure soit exécutée dans des conditions
opérationnelles normales, c’est-à-dire, autour du point d’exploitation. Ceci appartient au
domaine d’Operational Modal Analysis (OMA), où les paramètres modaux sont extraits de
la réponse dynamique aux forces opérationnelles non mesurées.

En génie civil, OMA est devenue la méthode principale d’identification modale et le
nombre d’études de cas rapportées est abondant. Ceci est particulièrement vrai pour la
chaussée et des ponts de chemin de fer, mais les applications rapportées incluent aussi des
passerelles [RDDRM10], silos [DDDRR06], toits suspendus [MCC08], tours de maçonnerie
[GS07], plates-formes offshores [BAMT96], bâtiments [Bro05], parmi d’autres.

La recherche récente sur OMA s’est concentrée sur le fait de surmonter quelques défauts
importants. Un premier est que les mesures output-only ne permettent pas de déterminer
un modèle modal complet, puisque les formes de mode ne peuvent pas être mesurées dans
un sens absolu, par exemple, à l’unité de la masse modale. Une des solutions possibles est
d’executer une deuxième mesure après l’addition ou l’enlèvement d’une quantité significative
de masse à ou de la structure [PVGVO02], mais ceci est souvent compliqué en pratique
[PCB+05]. Deuxièmement, l’excitation ambiante peut être limitée a une bande de fréquence
étroite et en conséquence seulement un nombre limité de modes peut être extrait avec grande
précision. Finalement, un défaut général de la plupart des algorithmes d’analyse modale
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expérimentaux et opérationnels est qu’ils rapportent seulement des évaluations de point pour
les paramètres modaux, c’est-à-dire, ils ne fournissent pas des informations sur leur incertitude
quand l’estimation se fait à partir d’un test simple.

Essentiellement, l’OMA consiste en trois étapes: acquisition de données, analyse de
données et évaluation des résultats. Cependant, dans le contexte OMA les caractéristiques
inhabituelles suivantes doivent être prises en compte:

(a) Le nombre de capteurs peut être très grand (jusqu’à des centaines, ou des milliers dans
l’avenir avec de nouvelles technologies). Les capteurs peuvent même être déplacés d’une
campagne de mesure à une autre;

(b) Le nombre des modes d’intérêt peut être tout à fait grand (jusqu’à 100 ou au-delà),
appelant ainsi à des méthodes qui peuvent traiter des grands ordres de modèle dans un
temps de calcul raisonnable;

(c) L’excitation appliquée à la structure est d’habitude non mesurée, non contrôlée et na-
turelle, donc turbulente et non-stationnaire.

En raison de la nature inconnue des données acquises, l’identification de systèmes dans
OMA est devenue un défi. L’identification du systèmes linéaires comme une discipline de
recherche de l’ingénierie de contrôle est née à la fin des années 1960 et s’est développée
au long de deux axes qui sont toujours dominants aujourd’hui. Le premièr axe est le cadre
d’erreur de prédiction, où un modèle de système est identifié en minimisant la différence entre
la réponse de système mesurée et la réponse prévue par le modèle, le plus souvent utilisant le
principe du Maximum Likelihood (ML) [AB65, AE71]. Des développements importants dans
cette direction incluent l’identification de systèmes comme un problème d’approximation qui
a culminé dans le travail de référence par [Lju99], et le développement d’un cadre de ML
pour données du domaine fréquentiel [SP91].

Le deuxième axe commencé en même temps avec le travail séminal de Ho et Kalman sur la
réalisation de système [HK66], a été prolongé par Akaike vers l’identification output-only de
systèmes excités par des processus stochastiques blancs [Aka74]. Plus tard, les méthodes plus
générales que les méthodes dites Instrumental Variable (IV) ont été proposées, et sont basées
sur des techniques de corrélation [SS83]. Dans les années 1990, les méthodes d’identification
sous-espaces ont été développées [Vib95, VODM96]. Elles sont fortement reliées aux méthodes
IV.

Les deux approches ont des avantages distincts: les méthodes ML ont des propriétés
statistiques asymptotiques optimales conformément aux suppositions assez générales, tandis
que des méthodes sous-espaces sont très robustes et beaucoup moins exigentes en termes de
calcul. Les propriétés statistiques d’algorithmes sous-espaces ne sont pas faciles à dériver
et pendant la décennie dernière, beaucoup d’efforts de recherche ont été consacrés là-dessus
[Bau05].

Aujourd’hui, les systèmes Linear Time-Invariant (LTI) sont considérés comme un champ
mûr [PS01, Gev06]. Du système LTI, la caractérisation de dommages peut être déduite.
Puisque la caractérisation de dommages n’est pas directe, la même procédure peut être
améliorée si la caractérisation est séparée en trois parties: la détection, l’isolement et la
quantification de faute.
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L’isolement de faute est un champ dans l’ingénierie de contrôle concernant l’isolation
du sous-système d’un système dans des conditions anormales, indiquant où la faute arrive.
Appliqué aux données de vibration de structures dynamiques, ceci correspond à la localisation
de dommages et est fait en détectant des changements dans les caractéristiques de vibration
ou dans les paramètres structurels d’une structure. La localisation de dommages appartient
au Structural Health Monitoring (SHM) dans le contexte OMA et permet d’identifier des
dommages dans un état précce.

L’identification de système et la probleématique de détection de faute sont actuellement
mûrs. Pour la localisation de dommages, des techniques différentes comme notamment le
recalage de modèle ont été développées. Malgré tous les efforts, la localisation de dommages
reste un champ ouvert en raison des incertitudes inhérentes dans le système identifié et
constitue un champ intéressant à être exploré. Cette thèse est développée en lien avec le
problème de localisation de dommages dans les structures civiles et la prise en compte des
incertitudes venant des données mesurées.

Motivations

L’identification de système LTI est faite après la mesure des données de structures où des
capteurs, placés dans l’espace, rassemblent des données suffisantes au long d’une période
de temps. Bien que les capteurs soient de plus en plus sophistiqués, ils ne peuvent pas
éviter la perturbation inhérente dans les données rassemblées (c’est-à-dire le bruit ou d’autres
influences externes). Lorsque des données réelles ne sont pas disponibles, la simulation est
exécutée et une perturbation est ajoutée. La situation est pire quand l’identification est
soumise aux scénarios stochastiques ou l’input est inconnu. Dans ce contexte, les incertitudes
dans les données rassemblées exigent de l’analyse supplémentaire pour le SHM.

Quelques travaux récents ont abordé ces questions. Reynders and De Roeck [RDR10]
et, plus récemment Pintelon, Guillaume and Schoukens [PGS07], fournissant des directives
importantes pour surmonter les incertitudes inhérentes pour le SHM. Dans le contexte du
SHM, la caractérisation de dommages est d’habitude partagée entre la détection de faute,
l’isolement (la localisation) et la quantification. Récemment, Bernal a publié des articles dans
le champ de localisation de dommages [Ber10, Ber13] où la décision est barre au seuil defini
empiriquement pour définir l’élément ou la position endommagé. Donc, la nécessité est de
fournir des méthodes de prise de décision statistique qui surpassent des approches empiriques
pour trouver l’emplacement de dommages en environnement stochastique.

Contributions

Les méthodes d’identification de système sous-espace ont montré leur efficacité pour
l’identification de systèmes LTI pour des données mesurées sous des suppositions d’excitation
réalistes. Pour OMA, l’eigenstructure (eigenvalues et eigenvectors) du système linéaire sous-
jacent devra être identifiée. Donc, les matrices du système et des nouvelles informations
importantes peuvent être extraites pour la localisation de dommages dans des structures.

Les méthodes suivantes sont les contributions développées dans cette thèse :

(1) Prise de décisions statistique pour localisation de dommages avec vecteurs
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de charge stochastiques : Des systèmes mécaniques sous l’excitation de vibration
sont les candidats principaux à être modelisés par des systèmes LTI. La détection de
dommages dans de tels systèmes touche au contrôle des changements de l’eigenstructure
du système linéaire correspondant et reflète ainsi des changements de paramètres
modaux et finalement dans le modèle aux eléments finis de la structure. La local-
isation de dommages utilisant tant les éléments finis que les données modales es-
timées de données de vibration ambiantes mesurées par des capteurs est possible par
le Stochastic Dynamic Damage Location Vector SDDLV [Ber10]. Les dommages sont
reliés à un certain résidu obtenu à partir de la différence entre les matrices de trans-
fert tant en référence qu’en états de dommage ainsi qu’avec un modèle de l’état de
référence. La décision que ce résidu est nul est jusqu’ici fait utilisant un seuil empirique-
ment défini. Dans cette première contribution, nous montrons comment l’incertitude
dans les évaluations du système spatial d’état peut être utilisée pour tirer des limites
d’incertitude sur les résidus de localisation de dommages pour décider de l’emplacement
de dommages avec un test d’hypothèse.

(2) Localisation de dommages statistique robuste avec vecteurs de charge
stochastiques : La première contribution (1) est consacrée au cas où le résultat
d’emplacement de dommages est basé sur le choix d’une variable de Laplace. Les choix
de différents variables de Laplace mènent aux résultats de localisation différents en rai-
son d’un impact différent de la troncature modale. En prenant en compte que les incer-
titudes améliorent non seulement la robustesse statistique de l’approche, cela vise aussi
à diminuer le nombre de fausse alertes potentielles. L’utilisation de différentes variables
de Laplace devrait plus loin augmenter la robustesse de l’approche et aider la décision.
Cette seconde contribution prolonge la contribution précédente (1) en se concentrant
sur une approche statistique robuste, où des résultats de localisation de dommages mul-
tiples calculés aux variables de Laplace différentes seront agrégés en prenant en compte
leur pertinence statistique. Aussi, l’étape d’identification des systèmes nécessaire ainsi
que la construction des matrices du système paramétrique à partir des modes identifiés
sera expliqué et la nouvelle méthode est appliquée sur des simulations numériques et
des structures réelles.

(3) Prise de décisions statistique robuste appliquée à la localisation de dom-
mages avec des lignes de influence: Le théorème de l’Influence Lines Damage
Location (ILDL) [Ber13] démontre que l’utilisation de l’image des matrices de transfert
tant en référence que dans les états endommagés plus un modèle de l’état de référence
est utile pour les influence lines (IL) pour définir l’emplacement des dommages. Les
dommages sont ainsi localisés aux points où l’angle sous-espace entre l’image et l’IL cal-
culé du modèle d’éléments finis est près du zéro. Basé sur les contributions précédentes
(1, 2), cette dernière contribution a pour but de remplacer les seuils empiriques qui sont
utilisés dans l’approche d’ILDL pour décider où les dommages d’éléments sont localisés
(c’est-à-dire où des angles sous-espaces sont près du zéro).

Ces contributions sont développées en détail et des propriétés importantes sont prouvées.
Elles sont validées sur des données de vibration structurelles d’exemples numériques et réels,
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le dernier cas quand les données étaient disponibles.

Chapitre 1 – L’état de L’art

Le processus de mettre en oeuvre la détection et la caractérisation de dommages, dans le
domaine du contrôle et de l’ingénierie civil, est le SHM [Daw76]. Dans ce contexte, les dom-
mages sont définis comme des changements dans les propriétés matérielles et-ou géométriques
d’un système structurel, y compris des changements aux conditions de frontière et dans la
connectivité du système, qui affecte défavorablement la performance du système.

Le problème de fault detection and isolation (FDI) consiste, dans la détection de change-
ments, des paramètres d’un système dynamique (la détection) et la distinction entre les
paramètres changés et les paramètres inchangés (l’isolement). En général, ces problèmes sont
divisés dans deux étapes: la génération de résidus, qui sont idéalement près de zéro donc
sans faute resultés aux bruits et des perturbations et au maximum sensibles aux fautes; et
évaluation résiduelle, à savoir le design de règles de décision basées sur ces résidus [Bas98].

Dans beaucoup d’applications, le problèmes FDI est de détecter et diagnostiquer des
changements de l’eigenstructure d’un système dynamique linéaire. Un exemple important
est le SHM, où les dommages de structures civiles, mécaniques ou aéronautiques mènent
à un changement de l’eigenstructure du système mécanique sous-jacent et donc dans les
paramètres modaux. Rytter [Ryt93] a défini une classification de ces méthodes à quatre
niveaux: détection de dommages, localisation de dommages, quantification de dommages, et
prédiction de la durée d’utilisation restante de la structure examinée.

Les contributions de cette thèse sont concentrées sur la localisation de dommages, après
l’étape où la détection de dommages est réalisée et quelques dommages sont détectés.

Chapitre 2 et 3 – Théorie de fond

La caractérisation de dommages dans quelques applications peut être réalisée de deux façons:
vérification en ligne (a aussi appelé vérification de temps réel) ou interrogation a poste-
riori. Les algorithmes de vérification en ligne sont plus souvent basés sur l’analyse des
résidus qui reflètent des contradictions entre les prédictions qu’un modèle prévoit et les
prédictions mesurées. La localisation est abordée en concevant des observateurs où chaque
résidu pour chaque faute possible ont des caractéristiques directionnelles particulières [Fra90].
Les stratégies a posteriori opèrent avec des données rassemblées à deux moments différents
et offrent des informations sur les changements de la condition structurelle dans l’intervalle
entre les mesures [DFP+96, Fri05]. Dans la situation a posteriori, un modèle mis à jour est
conceptuellement applicable mais le succès s’est avéré difficile dans des problèmes réalistes
en taille en raison d’un conditionnement pauvre [MF93, Fri07]. Les difficultés dans la car-
actérisation de dommages peuvent être améliorées si le problème est séparé entre la détection,
la localisation et la quantification [Ber13].

Plusieurs méthodes de localisation de dommages ont été décrites dans la littérature [Ber02,
Ber06, Ber07, Ber10, Ber13]. Ces méthodes peuvent être classés comme les input/output
(c’est-à-dire, quand on connâıt l’excitation externe) ou comme les output-only. [Ber13]. Dans
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le output-only cas, deux méthodes ont été utilisées avec succès: l’approche Stochastic Dynamic
Damage Location Vector (SDDLV) [Ber10] et l’approche de l’Influence Line Damage Location
(ILDL) [Ber13]. Le comportement d’une structure mécanique est décrite par un système LTI,
oú le modèle d’état-spatial en temps continu correspondant est{

dx(t)
dt = Acx+Bce
y(t) = Ccx+Dce

,

où les matrices de système Ac et Cc peuvent être obtenues par la méthode covariance-
driven subspace identification et les matrices Bc et Dc sont seulement pertinentes pour des
dérivations mathématiques. En fait, la méthode covariance-driven subspace identification est
utilisée pour fournir les matrices de système puisqu’elles sont inconnues et soumises aux in-
certitudes. La localisation de dommages est ensuite exécute avec les approaches SDDLV et
ILDL.

Chapitre 4 – Prise de décisions statistique pour localisation de
dommages avec vecteurs de charge stochastiques

L’approche de SDDLV [Ber10] est une technique output-only de localisation de dommages qui
utilise tant éléments finis qui paramètres modaux, supposant que quelques dommages sont
arrivés. L’espace nul de la diférence entre les matrices de transfert respectives est obtenu des
évaluations des matrices de système tant en référence que en états endommagés. Alors, les
dommages sont reliés à un résidu tiré de cet espace nul et localisés où le résidu est près du
zéro.

D’une part, ces SDDLV ne prennent pas en compte l’incertitude intrinsèque du problème
en raison du bruit inconnu excitant le système. Le manque de considération d’incertitude
s’avère être critique parce qu’aucune information n’est pas disponible sur le choix de seuil
pour se décider si le résidu est le zéro ou pas dans des situations pratiques. Des seuils em-
piriques sont actuellement utilisés pour la décision. D’autre part, l’identification de matrices
de système est affligée par l’incertitude, en raison du bruit et de la taille limitée de données.
Des méthodes comme présentées en [PGS07] et en [RPDR08] fournissent quelques directives
pour tirer des évaluations d’incertitude pour des paramètres modaux. Ce Chapitre a pour
but de remplacer des règles empiriques selon des règles à base de sensibilité appliquées sur
un certain critère de localisation de dommages.

La nouvelle méthode est validée dans beaucoup d’applications, y compris une treillis
numériquement simulé (Figure 1). Dans la Figure 2 les résultats sont présentés avec 4 capteurs
(le nombre 1,3,4,6 dans la Figure 1), où seulement 3 mode pairs sont utilisées de l’identification
de système. L’utilisation de moins de capteurs et moins de modes mène évidemment à moins
de contraste entre les valeurs χ2 des éléments intacts et endommagés.

La théorie montre que comme le nombre de barres endommagées augmente, du même
la dimension de l’espace nul, l’évaluation de vecteurs dans l’espace nul dans des conditions
bruilée devient plus difficile. Dans ce cas, une évaluation plus précise est nécessaire. Dans la
Figure 3, les résultats sont présentés pour deux dommages des barres 3 et 18, où maintenant
12 mode pairs et 12 capteurs ont été utilisés. Il devrait être noté que les tensions évaluées
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dans les éléments endommagés sont petites, mais différentes du zéro en raison de la troncature
modale et de bruit, qui devient plus important quand des dommages multiples sont présents.

Chapitre 5 – Localisation de dommages statistique robuste avec
vecteurs de charge stochastiques

L’approche SDDLV [Ber10], décrite dans les Chapitres 2 et 4, garantie seulement que les
éléments dont l’index de dommage n’est pas zéro ne sont pas affligés avec des dommages. En
prenant en compte que les incertitudes améliorent non seulement la robustesse statistique de
l’approche, cela vise aussi à diminuer le nombre de fausse alertes potentielles. Néanmoins,
cela peut arriver qu’à cause de bruit, la réduction de modèle, l’instrumentation clairsemée ou
d’autres limitations l’ensemble d’éléments près de l’index de dommages zéro est trop grand
pour aider la prise de décision dans des applications réelles. Le Chapitre 4 a démontré que
l’utilisation d’aides d’informations d’incertitude augmente le contraste entre les éléments.
L’utilisation de différentes variables de Laplace devrait plus loin augmenter la robustesse de
l’approche et aider la décision, qui est une extension importante du Chapitre 4 où juste une
variable de Laplace est utilisée.

1 2 3 4 5 6 7 

8 9 10 11 12 

13 14 15 16 17 18 19 

20 21 22 23 24 25 

Figure 1 – Structure de une treillis avec six capteurs.
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Figure 2 – Resultats χ2 – 5% de bruit au output, 4
capteurs, 20% de déduction de rigidité de la barre 16.

5 10 15 20 25
0

20

40

60

80

100

120

140

160

180

200

element number j

χ̂
2 j
(2

)

Figure 3 – Resultats χ2 – 5% de bruit au output, 12
capteurs, 20% de déduction de rigidité de la barres 3
et 18.
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Le Chapitre actuel prolonge le Chapitre 4 en se concentrant sur une approche statistique
robuste, où des résultats de localisation de dommages multiples calculés aux différentes vari-
ables de Laplace seront agrégés en ce qui concerne leur pertinence statistique. Ceci enlèvera
une partie des erreurs et de l’incertitude liée au choix de la variable de domaine Laplace.
L’approche de SDDLV sous-jacente utilisant l’identification sous-espace et la méthodologie
statistique sont expliqués, avant que l’approche statistique robuste sont derivée.

Entre plusieurs applications utilisées, la nouvelle méthode est validée dans une expérience
de laboratoire où les tests de vibration ont été conduits sur une barre (Figure 4). Les
expériences ont été conduites par Brüel & Kjær comme un banc d’essai pour la localisa-
tion de dommages. Ce barre est équipée avec 27 capteurs situés en haut et en bas.

Figure 4 – Configuration exprimentale de la barre.

Les résultats (Figure 5) montrent que la procédure de localisation de dommages avec la
nouvelle aggregation statistique (Figures (a), (c)) indique fortement des dommages et parfois
dans les éléments directement adjacents, tandis que la localisation basée sur l’aggregation
deterministe des résultats de stress (Figures (b), (d)) n’a pas du succès. Le changement de la
position du “shaker” entre les états de référence et endommagés est clairement visible comme
des dommages au milieu du bar, qui devraitent être négligés.

Chapitre 6 – Prise de décisions statistique robuste appliquée a
la localisation de endommage avec lignes de influence

Le théorème ILDL, récemment présenté en [Ber13], montre que l’image des diférences entre
les matrices de transfert de système tant en référence que dans les états endommagés, est
une base pour les influence lines (IL) pour les résultantes d’emplacement de dommages. Les
dommages sont ainsi localisés aux points où l’angle sous-espace entre l’image et l’IL calculé
du FEM est près du zéro. Actuellement, des seuils empiriques sont utilisés dans l’approche
ILDL pour décider ou les dommages sont localisés et aucune approche stochastique n’est prise
en compte.
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(a) Aggregation statistique, trois trous. (b) Aggregation deterministique, trois trous.

(c) Aggregation statistique, cinq trous. (d) Aggregation deterministique, cinq trous.

Figure 5 – Localisation de dommages utilisant dix valeurs de Laplace, avec la comparaison de la nouvelle aggregation
statistique (gauche) et l’aggregation deterministique (droite) et des niveaux de dommages différents.

Dans ce Chapitre 6, le calcul de l’angle sous-espace est étendu au cas stochastique et
aussi à l’évaluation d’incertitude produite par les données de mesure avec la méthode de base
de la sensibilité [RPDR08]. Alors, la prise de décision statistique sur les emplacements de
dommages remplace des seuils empiriques.

La même expérience avec le vrai barre conduit par Brüel & Kjær (Figure 4) comme un
banc d’essai pour la localisation de dommages dans une expérience de laboratoire est utilisée
dans ce Chapitre. Les deux résultats avec l’aggregation statistique présentent les dommages
bien placés tandis que l’aggregation deterministe devrait être adandonée (Figure 6). En
comparant seulement les résultats statistiques, l’ILDL présente une meilleure localisation de
dommages que le SDDLV.

Conclusions

Les approches de localisation de dommages utilisées dans cette thèse, le SDDLV et l’ILDL,
sont des méthodes complémentaires basées sur les changements dans la matrice de flexibilité
d’un modèle structurel prédéfini. D’une part, le SDDLV utilise dans l’espace nul obtenu
à partir de données output-only comme les charges appliquées un modèle aux éléments finis
pour souligner des résultantes pour l’emplacement de dommages. D’autre part, l’ILDL utilise
l’image obtenue à partir de données output-only et les dommages sont localisés aux points
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(a) Aggregation deterministique avec le SDDLV.

2 4 6 8 10 12 14 16 18
1

1.5

2

2.5

3

3.5

4  

 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(b) Aggregation statistique avec le SDDLV.
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(c) Aggregation deterministique avec le ILDL.
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(d) Aggregation statistique avec le ILDL.

Figure 6 – Localisation de dommages dans la structure de la bar comparant les résultats statistique (droit) et
deterministiques (gauches).

au l’angle entre l’image et l’IL calculé sur le modèle aux éléments finis sont près zero. De la
dérivation des incertitudes intrinsèques tant dans SDDLV que par les méthodes ILDL cette
thèse a fourni un cadre de prise de décision statistique complet, où les résultats d’application
dans chaque contribution renforcent leur importance complémentaire.

Dans toutes les contributions, la méthode d’identification sous-espace a été utilisée et
les matrices de système ont été construites des paramètres identifiés. Toutes les méthodes
de localisation de dommages utilisées dans cette thèse sont dependentes du modèle, qui est
cruciale pour le succès de la localisation de dommages. Ainsi, des modèles structurels bien
cônçus mènent aux meilleurs résultats d’emplacement tandis que l’on ne recommande pas
l’opposé. Toutes les contributions ont avec succès amélioré les approches de localisation de
dommages liées en surmontant leurs incertitudes dans des nouvelles méthodes de prise de
décisions statistiques.



Introduction

General framework

The susceptibility of structures to vibrations is a prime design issue in mechanics, especially
in the aerospace, automotive, maritime, railway, and heavy equipment industries. It is also
of growing importance in civil engineering, as not only the slenderness of structures and
structural members is continuously increasing, but also their dynamic loading, e.g., when
due to traffic.

The experimental verification of design values, in particular modal parameters (eigenfre-
quencies, damping ratios, mode shapes, and modal scaling factors), is essential for design and
model validation, so for guaranteeing the safety and serviceability of the structure. It is also
frequently employed for quality control and structural health monitoring purposes. Damping
and boundary conditions depend on the vibration amplitude and, if the structure moves as
a whole or contains rotating parts, the modal parameters depend on the (rotation) speed
(of the parts). Therefore, it is important that the experimental determination of the modal
parameters of the structure is performed in normal operational conditions, i.e., around the
operating point. This belongs to the domain of Operational Modal Analysis (OMA), were
modal parameters are extracted from the dynamic response to unmeasured operational forces.

One of the first successful applications of OMA in mechanics was for determining the
modal parameters of wind turbines at different rotation rates [CI10]. Later applications in-
clude on-the-road modal analysis of cars and in-flight modal analysis of airplanes [HdAH99],
modal testing of spacecraft during launch [Jam03], and modal testing of engines during
startup and shutdown [CSC11], amongst others. In civil engineering, OMA has become
the primary modal testing method, and the number of reported case studies is abundant.
This is particularly true for roadway and railway bridges, but reported applications also in-
clude footbridges [RDDRM10], silos [DDDRR06], suspended roofs [MCC08], masonry towers
[GS07], offshore platforms [BAMT96], highrise buildings [Bro05], grandstands [PVdAVG07],
tall industrial chimneys [BEGG10] and dams [DdSCK00], amongst others.

Recent fundamental research on OMA has focused on overcoming some important short-
comings. A first one is that output-only measurements do not allow to determine a complete
modal model, since the mode shapes can not be scaled in an absolute sense, e.g., to unit
modal mass. One of the possible solutions is performing a second measurement after adding
or removing a significant amount of mass to or from the structure [PVGVO02], but this is
often cumbersome in practice [PCB+05]. Secondly, the ambient excitation may be confined



24 Introduction

to a narrow frequency band, and as a result only a limited number of modes may be extracted
with high quality. Finally, a general shortcoming of most experimental and operational modal
analysis algorithms is that they only yield point estimates for the modal parameters, i.e., they
do not provide information on their uncertainty when estimated from a single test.

Basically, OMA consists of three steps: data acquisition, data analysis and evaluation of
the results. However, in the OMA context the following unusual features must be taken into
account:

(a) The number of sensors can be very large (up to hundreds, or thousands in the future
with new technologies). Sensors can even be moved from one measurement campaign to
another;

(b) The number of modes of interest can be quite large (up to 100 or beyond), thus calling
for methods that can deal with large model orders at a reasonable computation time;

(c) The excitation applied to the structure is usually unmeasured, uncontrolled and natural,
thus turbulent and non-stationary.

Due to the unknown nature of the acquired data, system identification in OMA became
a challenge. Linear system identification as a research discipline of control engineering orig-
inated in the late 1960s, and developed along two lines that are still dominant today. The
first line is the prediction error framework, where a system model is identified by minimiz-
ing the difference between the measured system response and the response predicted by the
model, most often using the Maximum Likelihood (ML) principle [AB65, AE71]. Important
developments in this direction include the view of system identification as an approximation
problem which culminated in the reference work by [Lju99], and the development of a ML
framework for frequency-domain data [SP91].

The second line started around the same time with the seminal work of Ho and Kalman on
system realization [HK66], which was extended by Akaike towards output-only identification
of systems driven by white stochastic processes [Aka74]. Later, more general Instrumental
Variable (IV) methods, which are based on correlation techniques, were proposed [SS83].
In the 1990s, subspace identification methods were developed [Vib95, VODM96]. They are
strongly related to both the realization and the more general IV methods.

Both approaches have distinct advantages: maximum likelihood methods have optimal
asymptotic statistical properties under fairly general assumptions, while subspace methods
are very robust and computationally much less demanding. The statistical properties of
subspace algorithms are not easy to derive, and during the last decade, a lot of research
effort has been spent hereon [Bau05].

Identification of Linear Time-Invariant (LTI) systems can by now be considered as a
mature field [PS01, Gev06]. Important recent developments include the identification of
nonlinear system models, such as Hammerstein and Wiener models and their combinations
[GPSDM05, SPE08], as well as the estimation of nonlinear distortions in the measurement
data and their impact on the estimates of linear system models [SPDR05]. From LTI system,
damage characterization can be inferred. Since damage characterization is not straightfor-
ward, the same procedure can be ameliorated if the characterization can be decoupled into
fault detection, isolation, and quantification.
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Fault isolation is a field in control engineering concerning to isolate the subsystem from
a system with abnormal conditions, pointing to where the fault occurs. Applied to vibration
data of dynamic structures, this corresponds to damage localization and is done by detecting
changes in the vibration characteristics or in structural parameters of a structure. Damage
localization belongs to the Structural Health Monitoring (SHM) field in the OMA context
and holes an important paper since it allows to identify damage in an early state.

SHM has become an important emerging field, in which non-intrusive damage detection
techniques are used to monitor structures. As such, SHM technologies have a large commercial
and economic potential. They can help to identify damages at an early stage, where relatively
minor corrective actions can be taken at the structure before the deterioration or damage
grows to a state where major actions are required. Another example for SHM applications
is post-earthquake damage assessment. There, they could ensure prompt reoccupation of
safe civil infrastructure and transport networks, which would mitigate the huge economic
losses associated with major seismic events. Also, and equally important, monitoring the
infrastructure that is approaching or exceeding their initial design life would assure their
reliability and support economically sensible condition-based maintenance. In general, it is
desirable to detect damage in an automated way without the need of visual inspections, which
would require manpower and is difficult to realize in hazardous or remote environments. SHM
systems also allow engineers to learn from previous designs to improve the performance of
future structures.

System identification and fault detection fields are currently mature fields. For the damage
localization, developments with different techniques such as model updating (i.e. structural
aspects are changed and verified) and changes in the modal parameters have been produced.
Despite all efforts, damage localization remains an open field due to the inherent uncertainties
in the identified system and constitutes and interesting field to be explored. This thesis is
related to the field of damage localization of civil structures and the uncertainties from the
measured data, where the above features (a)–(c) are taken into account.

Motivations

The identification of LTI system is done after gathering data from structures where sensors,
spatially positioned, collect sufficient data along a period of time. Although sensors are more
and more sophisticated, they cannot avoid the inherent disturbance in the collected data (i.e.
noise or other external influences). When real data is not available, some simulation can be
performed and some disturbance is added. The situation is even worst when the identification
is subject to stochastic scenarios and the input is unknown. In this context, the uncertainties
in the collected data demand additional analysis for the SHM.

Some recent works have been tackling these issues. Reynders and De Roeck [PGS07] and,
more recently Pintelon, Guillaume and Schoukens [RDR10], provided important guidelines
to overcome the inherent uncertainties for the SHM. In the SHM context, damage charac-
terization is usually decoupled in fault detection, isolation (localization) and quantification.
Recently, Bernal has published works in the damage localization field [Ber10, Ber13] where
empirical decision is made to define the damaged place or position. Then, the necessity



26 Introduction

to provide robust statistical decision making methods that overcome empirical decisions on
damage location that are subject to stochastic environments becomes evident.

Contributions

Subspace-based system identification methods have been shown efficient for the identification
of LTI systems from measured data under realistic excitation assumptions. There are meth-
ods that deal with input/output data as well as output-only data, where the unmeasured
excitation is assumed as a stochastic process. For Operational Modal Analysis of vibrating
structures, the eigenstructure (eigenvalues and eigenvectors) of the underlying linear system
needs to be identified. Then, system matrices and further important information can be
extracted for the damage localization in structures.

The following methods are the contributions developed in this thesis:

(1) Statistical decision making for damage localization with stochastic load vec-
tors: Mechanical systems under vibration excitation are prime candidate for being
modeled by LTI systems. Damage detection in such systems relates to the monitoring
of the changes in the eigenstructure of the corresponding linear system, and thus reflects
changes in modal parameters (frequencies, damping, mode shapes) and finally in the
finite element model of the structure. Damage localization using both finite element
information and modal parameters estimated from ambient vibration data collected
from sensors is possible by the Stochastic Dynamic Damage Location Vector (SDDLV)
approach [Ber10]. Damage is related to some residual derived from the kernel of the
difference between transfer matrices in both reference and damage states and a model
of the reference state. Deciding that this residual is zero is up to now done using an
empirically defined threshold. In this first contribution, we show how the uncertainty in
the estimates of the state space system can be used to derive uncertainty bounds on the
damage localization residuals to decide about the damage location with a hypothesis
test.

(2) Robust statistical damage localization with stochastic load vectors: The first
contribution in item (1) is dedicated to case where the damage location result is based
on the choice of just one chosen Laplace variable. Different choices of Laplace variables
lead to different localization results due to a different impact of the modal truncation.
Taking into account that uncertainties not only improves the statistical robustness of
the approach, it also aims at decreasing the number of potential false alarms. Using
different Laplace variables should further increase the robustness of the approach and
help the decision. This second contribution extends the previous contribution in item
(1) by focusing on a robust statistical approach, where multiple damage localization
results computed at different Laplace variables will be aggregated with respect to their
statistical relevance. Also, the necessary system identification step with the construc-
tion of parametric system matrices from identified modes is explained and the new
method is applied on numerical simulations and real structures.
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(3) Robust statistical decision making applied to influence lines damage local-
ization: The Influence Lines Damage Location (ILDL) theorem [Ber13] shows that the
image from the transfer matrices in both reference and damage states and a model of
the reference state is a basis for the influence lines (IL) for the damage location resul-
tants. Damage is thus located at points where the subspace angle between the image
and the IL computed from the finite element model is near zero. Although the kernel
and the image contain the same complementary information in theory, in practice only
an estimate of this matrix is available. Based on the previous contributions (item (2)),
this last contribution aims to replace empirical thresholds that are used in the ILDL
approach for deciding at which elements damage is located (i.e. where subspace angles
are close to zero).

These contributions are derived in depth and important properties are proven. They are
validated on structural vibration data from numerical and real examples, the last case when
data was available.

Outline

This thesis is organized in four parts and contains seven chapters.
Part I comprises the state of the art, which is described in Chapter 1. There, baselines

on structural health monitoring, damage assessment as well as fault detection and isolation
(localization) are described. Also, some of the current fault localization approaches are
introduced.

Part II comprises the background theory that was necessary for the development of this
thesis and is organized in two Chapters. Chapter 2 provides the theoretical background on
dynamic models of structures as well as the baselines of the damage localization approaches
used in this thesis. Then, in Chapter 3, the background of subspace-based system identifica-
tion and uncertainty quantification is explained in detail from the literature.

Part III comprises the contributions of this thesis in three Chapters. Chapter 4 introduces
in details the development and the replacement of empirical rules that are currently used
in a specific fault localization approach by sensitivity-based rules. Then, in Chapter 5, the
previous contribution (Chapter 4) is extended into a robust statistical decision making method
where multiple damage localization results are aggregated with respect to their statistical
relevance. Finally, Chapter 6 describes a damage localization approach based in subspace
angles that is extended to the stochastic case and sensitivity-based rules are applied to the
uncertainty estimation originated from the measurement data for statistical decision making.

The thesis concludes with an assessment of the developed methods and perspectives for
future research.
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Notation

Symbols

AT Transposed matrix of A

A∗ Transposed conjugated complex matrix of A

A−1 Inverse of A

A−T Transposed inverse of A

A† Pseudoinverse of A
def
= Definition

i Imaginary unit, i2 = −1

Re(a) Real part of variable a

Im(a) Imaginary part of variable a

A, a Complex conjugate

kerA Kernel, right null space of A

vecA Column-wise vectorization of matrix A

A⊗B Kronecker product of matrices or vectors A and B

X̂ Estimate of variable X

E(X) Expected value of variable X

Eθ(X(Y)) Expected value of variable X, where data Y corresponds to parameter θ

N (M,V ) Normal distribution with mean M and (co-)variance V

N, R, C Set of natural, real, complex numbers

Im Identity matrix of size m×m
0m,n Matrix of size m× n containing zeros

Variables

n System order

r Number of sensors

r(ref), r0 Number of reference sensors

xk System state at index k

yk System output at index k

A State transition matrix

C Output mapping matrix

H Subspace matrix

J Jacobian matrix

O Observability matrix
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O↑, O↓ Matrices, where the last resp. first block row (usually containing r rows) of
O are deleted

Σ Covariance matrix

Y Data matrix or vector

N Number of samples

Ns Number of setups

Abbreviations

DOF Degree of freedom

FEM Finite element model

ILDL Influence lines damage localization

OMA Operational modal analysis

OMAX Operational modal analysis with exogenous inputs

SHM Structural health monitoring

SDDLV Stochastic dynamic damage locating vector

SSI Stochastic subspace identification

SVD Singular value decomposition

UPC Unweighted principal component algorithm (for data-driven SSI)
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Chapter 1

State of the art

1.1 Introduction

Structure health monitoring techniques have been widely used in the damage assessment
of beams, plates, bridges, buildings, etc, and is usually performed in two kinds of evalua-
tion: destructive and nondestructive. Destructive evaluation of structures have usually high
costs and is hard to be tacked. However, nondestructive evaluation of structures have been
significantly increasing since it overcomes the problems of cost and due to its easy-of-use
procedure. In this sense, nondestructive evaluation of structure is basically performed in four
step [DFP+96, Ryt93]: fault detection and isolation, damage quantification and time-life
prediction of the structure.

This chapter is dedicated to the field of structural health monitoring and to the state
of the art of some of the most used fault isolation (damage localization) approaches in the
nondestructive evaluation paradigm.

1.2 Structural health monitoring and damage assessment

The process of implementing a damage detection and characterization strategy, in the field
of control and civil engineering, is referred as Structural Health Monitoring (SHM) [Daw76].
In this context, damage is defined as changes to the material and/or geometric properties of
a structural system, including changes to the boundary conditions and system connectivity,
which adversely affect the systems performance. After extreme events, such as earthquakes
or blast loading, SHM is used for rapid condition screening and aims to provide reliable
information regarding the integrity of the structure.

The field of damage assessment for structures has a particularly extensive body of liter-
ature. As a critical component of the SHM process, damage detection methodologies have
been subject of research for several decades both for mechanical and structural systems. In
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the case of civil engineering, the process initially involves the observation of a structure over
time using periodically spaced measurements. Subsequently, it requires the extraction of
damage sensitive features from these measurements, and finally, the statistical analysis of
these features to determine the current state of the structural system [FW07]. During this
process, global and local structural properties are assessed on the basis of measured variables.
Then, the structures are periodically supervised with the aim of minimizing the safety risk
and of keeping the maintenance cost as low as possible. Farrar and Worden [FW07] presented
a general discussion on the challenges related to damage identification and provided a his-
torical overview for the SHM technology development including a variety of disciplines. The
authors referred to SHM as the “big challenge” for the engineering community since signifi-
cant developments implies multi disciplinary research efforts amongst fields such as structural
dynamics, signal processing, computational hardware and statistical pattern recognition.

Another important reference in the SHM literature was presented in a series of reports by
Los Alamos National Laboratory [DFP+96, SFH+04]. The first report includes an exhaus-
tive survey of technical literature until the late 1990’s, classifying the methods according to
required measured data and analysis technique. It also categorizes the applications according
to the type of structure analyzed (beams, trusses, plates, bridges etc.). The second report
was presented as an update of the previous version and reviews the publications appearing in
the technical literature between 1996 and 2001. It is organized following the definition of the
statistical pattern recognition paradigm, namely as a four part process, which includes: Op-
erational evaluation, data acquisition, feature extraction and statistical model development.
The latest report contains a comparison of SHM algorithms applied to standard data sets
obtained for an aluminum frame structure. It focuses mostly in the feature extraction/system
identification techniques, namely the process of finding or identifying the modal parameters
from vibration data.

1.3 Fault detection and isolation

The problem of fault detection and isolation (FDI) consists in detecting changes in the pa-
rameters of a dynamical system (detection) and distinguishing the changed parameters from
the unchanged parameters (isolation). There are many FDI techniques originating from con-
trol. An overview can be found, for example, in the survey papers [Wil76, Fra90] or in the
books [PFC89, BN93]. In general, these FDI problems are split in two steps: generation of
residuals, which are ideally close to zero under no-fault conditions, minimally sensitive to
noises and disturbances, and maximally sensitive to faults; and residual evaluation, namely
design of decision rules based on these residuals [Bas98].

In many applications, the FDI problem is to detect and diagnose changes in the eigen-
structure of a linear dynamical system. An important example is in SHM, where damages of
civil, mechanical or aeronautical structures lead to a change in the eigenstructure of the un-
derlying mechanical system and thus in the modal parameters. For example, Kirmser [Kir44]
demonstrated that a crack in a beam has an influence on its natural frequencies. Rytter
[Ryt93] defined a classification of these methods into four levels:

1. Damage detection,
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2. Damage localization,

3. Damage quantification,

4. Prediction of the remaining service life of the investigated structure.

An overview of damage identification methods can be found in [DFP98, CF04]. Amongst them
are the necessity of a comparison between two system states for the assessment of damage,
or the necessity of feature extraction through signal processing and statistical classification
to convert sensor data into damage information.

Since the aim of this thesis is focused in the damage localization field, which necessarily
demands the damage detection, in the following section some of the most popular and current
damage detection and localization approaches are introduced.

1.4 Damage localization approaches

1.4.1 Flexibility methods

In structural engineering, the flexibility method is the traditional procedure for computing
member forces and displacements in structural systems. Its modern version formulated in
terms of the members’ flexibility matrices also has the name the matrix force method due to
its use of member forces as the primary unknowns [Hib09].

A class of methods exploits changes in the flexibility matrix, which is the inverse of the
stiffness matrix, for damage detection, localization and quantification. Pandey and Biswas
[PB94] have shown that changes in the flexibility matrix can indicate the presence and location
of damage, where the flexibility matrix is estimated from modal parameters of only a few
lower frequency modes. Yan and Golinval [YG05] consider both changes in the flexibility
and the stiffness for damage localization, where mass-normalized mode shapes are needed.
Output-only localization methods based on the null space of the subspace-based data matrices
have been investigated in [BMG04, BBM+08].

Assuming that damage occurs, Bernal [Ber10] presents a damage localization technique
using both finite element information and modal parameters, namely the Stochastic Dynamic
Damage Location Vector (SDDLV) approach. This approach has evolved over the years
from being restricted to input/output deterministic systems to handle output-only stochastic
systems [Ber02, Ber06, Ber07, Ber10]. From estimates of the system matrices in both reference
and damaged states, the null space of the difference between the respective transfer matrices
is obtained. Then, damage is related to a residual derived from this null space and located
where the residual is close to zero. A similar approach is also considered in [RDR10].

A complementary approach to the SDDLV is the Influence Lines Damage Localization
(ILDL) [Ber13]. There, damage location is determined from the subspace angle of each
position in the structure by computing the column space of the change in flexibility and a
known FEM.

This thesis is focused in the works of Bernal [Ber10, Ber13], described above, as the basis
for the damage localization development.
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1.4.2 Genetic algorithms

In the field of Artificial Intelligence (AI), a Genetic Algorithm (GA) is a search heuristic that
mimics the process of natural evolution. This heuristic (also called a metaheuristic) is rou-
tinely used to generate useful solutions to optimization and search problems [BNKF97]. In
fact, GA belong to the larger class of evolutionary algorithms (EA), which generate solutions
to optimization problems using techniques inspired by natural evolution, such as inheritance,
mutation, selection, and crossover [RN09]. Among many application fields, GA find applica-
tion in bioinformatics, computational science and engineering.

GA was first introduced in the 1960s by John Holland [Hol92] and developed in the engi-
neering are by Goldberg’s work [Gol89] for diverse optimization problems in civil engineering
and structural identification [CPH03, KCL03]. Friswell and Penny [FP97] stated that GA
have been seen as a promising choice for the solution of hard problems in damage identifica-
tion. The great advantage in using GA is the ability in finding global minimum on a difficult
optimization problem where there are many local minima as happens in damage location.

Sazonov et al. [CA79] used the GA to produce a sufficiently optimized amplitude char-
acteristic filter to extract damage information from the strain energy mode shapes. There, a
FEM was used to generate training data set with the known location. More recently, Gomes
and Silva [GS08] developed a method using GA and a modal sensitivity to identify and eval-
uate damage cases in a parametric numerical finite element model, where GA is used as an
optimization tool. Perera et al. [PRM07] developed a model updating method based on GA
to locate damage and estimate its severity.

1.4.3 Modal strain energy

Strain is a description of deformation in terms of relative displacement of particles in the body
[Bow09] and strain energy is released when the constituent atoms are allowed to rearrange
themselves in a chemical reaction or a change of chemical conformation [TN04]. There, the
deformation (also known as torsion strain) is the transformation of a body from a reference
configuration (set containing the positions of all particles of the body) to a current configu-
ration [TN04]. A deformation may be caused by external loads, body forces (such as gravity
or electromagnetic forces), or temperature changes within the body [Wu04].

Modal strain energy has been widely used to quantify the participation of each element
in particular vibrating mode and in the selection of a candidate set of elements for damage
localization [LK94]. Hearn and Testa [Lin90] have illustrated that the ratio of the elemental
strain energy to the total kinetic energy of the whole system is a fraction of the eigenvalue,
and the ratio of this fraction for two different modes is dependent only on the location of the
damage.

The change of modal strain energy in each structural element before and after the occur-
rence of damage can also be used for damage localization. In [SL98], the ratio of change in
the modal strain energy is proposed for detecting the damage location. This parameter is
based on the estimation of the change of modal strain energy in each element after the occur-
rence of damage. Information required in the identification are the measured mode shapes
and elemental stiffness matrix only without knowledge of the complete stiffness and mass
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matrices of the structure. A priori, no other information about the structure is required.

1.4.4 Neural networks

The research on Artificial Neural Networks (ANN) is considered to have started in 1943
with the paper written by Warren McCulloch and Walter Pitts [MP43]. They created a
computational model for neural networks based on mathematics and algorithms. Since then,
a rich literature in the field has risen with a strong concentration in the 80s and 90s. Several
books, journals, articles and applied works have been dedicated to the development of the NN
in different fields such as engineering, biology, pattern recognition, theoretical physics, applied
mathematics, statistics, etc. Basically, an ANN is an interconnected group of natural or
artificial neurons that uses a mathematical or computational model for information processing
based on a connectionistic approach to computation [Hay98].

ANN offers capabilities such as self-adaptiveness, generalization, abstraction and suit-
ability for applications in cases where algorithmic solutions are too complicated to be found
and handled [BJ90, Meh97]. Sahin and Shenoi [SS03] developed an ANN combining global
(changes in natural frequencies) and local (curvature mode shapes) vibration-based analysis
data as inputs for an ANN for location and severity prediction of damage in a beam-like struc-
tures. There, artificial random noise has been generated numerically and added to noise-free
data during the training of a trained feed-forward backpropagation ANN. Another damage
localization approach was developed by González and Zapico [GZ08] where the inputs of the
ANN are the first flexural modes (frequencies and mode shapes) at each principal direction
of the structure and the outputs are the spatial variables (mass and stiffness).

1.4.5 Shape curvature

Mode shapes describe the configurations into which a structure will naturally displace. Typi-
cally, displacement patterns are of primary concern. Mode shapes of low-order mathematical
expression tend to provide the greatest contribution to structural response. A normal mode
of an oscillating (vibrating) system is a pattern of motion in which all parts of the system
move sinusoidally with the same frequency and with a fixed phase relation. The frequencies
of the normal modes of a system are known as its natural frequencies or resonant frequencies.
Physical object, such as a building, bridge or molecule, has a set of normal modes that depend
on its structure, materials and boundary conditions.

According to the process to treat the measured modal parameters, the vibration-based
damage identification methods can be classified as model based and non-model based. The
model-based methods identify damage by correlating an analytical model, which is usually
based on the FEM, with test modal data of the damaged structure [HF95, ZK94, Doe96].
To detect the damage other than the artificial errors from the model construction, a good
quality finite element model that could accurately depict the intact structure is required but
is often difficult to achieve.

Non-model-based damage detection methods, also named as damage index methods, are
relatively straightforward. The changes of modal parameters between the intact and damaged
states of the structure are directly used, or correlated with other relevant information, to
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develop the damage indicators for localizing damage in the structure [WL04]. Pandey et
al. [PBS91] further demonstrated that changes in mode shape curvature could be a good
indicator of damage for beam structures.

Some researchers found that the modal flexibility can be a more sensitive parameter
than natural frequencies or mode shapes alone for structural damage on detection. Zhao
and Dewolf [ZD99] presented a theoretical sensitivity study comparing the use of natural
frequencies, mode shapes, and model flexibility for structural damage detection. Pandey
and Biswas [PB94] proposed a damage localization method based on directly examining the
changes in the measured modal flexibility of a beam structure. Lu et al. [LRZ02] pointed
out that Pandeys method is difficult to locate multiple damages, and they recommended
the modal flexibility curvature for multiple damage localization due to its high sensitivity to
closely distributed structural damages.

Zhang and Aktan [ZA98] comparatively studied the modal flexibility and its derivative,
called uniform load surface (ULS), for their truncation effect and sensitivity to experimental
errors. They suggested that the ULS has much less truncation effect and is least sensitive to
experimental errors. Wu and Law [WL04] describe a damage localization method based on
changes in ULS curvature was developed. The proposed method requires only the frequencies
and mode shapes of the first few modes of the plate before and after damage. When integrated
with other techniques, such as the gapped-smoothing technique [Rat00], the proposed method
does not require any prior information of the intact structure.

1.4.6 Wavelets

The development of wavelets can be linked to several separate trains of thought [Dau92,
Add02, Kai10]. Historically, wavelets have started with Haar’s work in the early 20th cen-
tury. Later work by Dennis Gabor yielded Gabor atoms in 1946, which are constructed
similarly to wavelets, and applied to similar purposes. Notable contributions to wavelet the-
ory can be attributed to Zweigs discovery of the continuous wavelet transform in 1975, Pierre
Goupillaud, Grossmann and Morlet’s formulation of what is now known as the continuous
wavelet transform (CWT) in 1982, Jan-Olov Strömberg’s early work on discrete wavelets in
1983, Daubechies’ orthogonal wavelets with compact support in 1988, Mallat’s multiresolu-
tion framework in 1989, Akansu’s binomial quadrature mirror filter (QMF) in 1990, Nathalie
Delprat’s time-frequency interpretation of the CWT in 1991, Newland’s harmonic wavelet
transform in 1993 and many others since.

The applicability of various wavelets for the detection and localization of damage in
structures has been studied by Douka et al. [DLT03], Quek et al. [QWZA01] as well as
Gentile and Messina [GM03] and Ovanesova and Suarez [OS04]. Hong et al. [HKLL02] and
Douka et al. [DLT03] showed that the effectiveness of wavelets for damage localization is
limited by the measurements precision and the sampling distances. They used the dynamic
mode shapes extracted from the acceleration measurements.

In Rucka and Wilde [RW06] the estimated mode shapes of the beam structure are analysed
by one-dimensional and two-dimensional continuous wavelet transform, where the location
of the damage is indicated by a peak in the spatial variation of the transformed response.
There, the proposed wavelet analysis can effectively identify the damage position without
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knowledge of neither the structure characteristics nor its mathematical model.
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Chapter 2

Dynamic models of structures and
damage localization approaches

2.1 Introduction

The susceptibility of structures to vibrations is a prime design issue in mechanics, especially
in the aerospace, automotive, maritime, railway, and heavy equipment industries. It is also
of growing importance in civil engineering, as not only the slenderness of structures and
structural members is continuously increasing, but also their dynamic loading, e.g., when
due to traffic. The experimental verification of design values, in particular modal parameters
(eigenfrequencies, damping ratios, mode shapes, and modal scaling factors), is essential for
design and model validation, so for guaranteeing the safety and serviceability of the structure.
It is also frequently employed for quality control and structural health monitoring (SHM)
purposes. Damping and boundary conditions depend on the vibration amplitude and, if
the structure moves as a whole or contains rotating parts, the modal parameters depend
on the (rotation) speed (of the parts). Therefore, it is important that the experimental
determination of the modal parameters of the structure is performed in normal operational
conditions, i.e., around the operating point. This belongs to the domain of Operational Modal
Analysis (OMA), were modal parameters are extracted from the dynamic response to (partly)
unmeasured operational forces.

The damage characterization in some applications can be realized in two ways: either as
an online verification (also called real time verification) or as an offline interrogation. Online
verification algorithms are most often based on the analysis of residuals that reflect discrep-
ancies between the outputs that a model predicts and the measured outputs. Localization is
addressed by designing observers where the gain is selected to make the residual for each pos-
sible fault have particular directional characteristics [Fra90]. Offline strategies operate with
data collected at two different times and offer information about changes in the structural
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condition in the interval between the measurements [DFP+96, Fri05]. In the offline situation,
a model updating solution is conceptually straightforward but success has proven difficult
in realistically sized problems due to poor conditioning [MF93, Fri07]. The difficulties in
damage characterization can be ameliorated if the problem can be decoupled into detection,
localization, and quantification [Ber13].

Several damage localization methods have been described in the literature [Ber02, Ber06,
Ber07, Ber10, Ber13]. These methods can be applied in both input/output (i.e., when ex-
ternal excitation is known) or output-only cases. In the output-only case, two methods have
been sucessfully used: the Stochastic Dynamic Damage Location Vector (SDDLV) approach
[Ber10] and the Influence Line Damage Location (ILDL) approach [Ber13].

This chapter provides the theoretical background on dynamic models of structures in
section 2.2 as well as the baselines of the SDDLV and ILDL approaches in sections 2.3 and
2.4.

2.2 Dynamic models of structures

Constructing a model of a dynamic system can be viewed as defining its behavior, i.e., restrict-
ing its time trajectories to a subset of a set of a priori possible trajectories by mathematical
equations. The models that are studied in this section all define a Linear and Time-Invariant
(LTI) behavior of the described vibrating structure. In reality, however, all structures are to
some extent nonlinear and non-stationary. It should therefore be kept in mind that the LTI
assumption, as well as any other modeling assumption, creates a misfit between the system
and the model.

Excitation and response signals are almost never stored as continuous-time signals, but
rather as sequences of sampled values. Sampling a continuous function f(t) with time step
T at t = kT , k ∈ (0, 1, ..., N − 1), boils down to selecting the image of kT under f .
Mathematically, this process can be described by multiplying f(t) by a series of Dirac impulses
δ(t− kT )

N−1∑
k=0

f(t) δ(t− kT ) =

N−1∑
k=0

f(kT ) δ(t− kT ).

The discretization is defined by a function that maps each term f(kT ) δ(t−kT ) of the sampled
function onto an element of the sequence of sampled values (fk) : f(kT ) δ(t− kT ) 7→ fk =
f(kT ). Conversely, if a sequence of discrete-time samples fk is available, the inverse function
may be used to construct an equivalent continuous-time sampled function

N−1∑
k=0

f(t) δ(t− kT ) =

N−1∑
k=0

fk δ(t− kT ). (2.1)

Suppose the signal f(t) is integrable. Its double-sided Laplace transform f(s) is then defined
as the image under

R → C : f(t) 7→ f(s)
def
=

∫
R
f(t)e−stdt, (2.2)
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where
∫
R denote the Lebesgue integral over R. The Fourier transform f(ω) [Fou22] of the

integrable function f(t) is defined as the image under

R → C : f(t) 7→ f(ω)
def
=

∫
R
f(t)e−iωtdt,

It follows immediately that the Fourier transform equals the Laplace transform restricted
to the imaginary axis: f(ω) = f(s)|s=iω. To construct the Laplace transform fd(s) of a
discrete-time sequence (fk), the equivalent continuous-time sampled function (2.1) is used:

fd(s)
def
=

∫
R

N−1∑
k=0

fk δ(t− kT )e−stdt =
N−1∑
k=0

fke
−kTsdt.

The substitution z = eTs yields the z-transform [Jur64] of the sequence (fk):

f(z)
def
=

N−1∑
k=0

fk z
−k.

As a result, the Laplace transform of a sampled continuous-time function equals the z-
transform of the equivalent discrete-time sequence (fk). The Fourier transform fd(ω) of
(fk) or its equivalent sampled function

∑N−1
k=0 fk δ(t−kT ) is obtained by restricting z to the

unit circle or s to the imaginary axis, respectively:

fd(ω)
def
=

N−1∑
k=0

fke
−iωkT , (2.3)

where fd(ω) is a continuous periodic function in ω with period 2π/T .

Since fd(ω) is periodic, its discrete counterpart can be obtained by sampling one period
only. If again N samples are used, one has

N−1∑
k=0

fd(lΩ) δ(ω − lΩ) =
N−1∑
k=0

N−1∑
l=0

fke
−ilΩkT δ(ω − lΩ),

where Ω = 2π/(NT ). Discretization yields fDl , the Discrete Fourier Transform (DFT) [BH95]
of (fk):

fDl
def
=

N−1∑
k=0

fke
−ilΩkT =

N−1∑
k=0

fke
−i 2πkl

N . (2.4)

The Fast Fourier Transform (FFT) algorithm [CT65] offers a numerically efficient computa-
tion of the DFT.

The relation between the Fourier transform f(ω) of a continuous, integrable function f(t)
that is nonzero only for t ∈ [0, (N − 1)T ] and the Fourier transform fd(ω) of its sampled
version is given by f(ω) = fd(ω)T , T 7→ 0. So for small T , one has f(lΩ) ≈ fDl T .
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If both a function f(t) and its Fourier transform f(ω) are integrable, their inverse rela-
tionship is given by

f(t) =
1

2π

∫
R
f(ω)eiωtdω.

For the time sequence (fk) and its DFT fDl , the inverse relationship is

fk =
1

N

N−1∑
l=0

fDl e
i 2πkl
N .

Very often, expressions in the Laplace domain for continuous-time system descriptions will
be found to be very similar to expressions in the z-domain for the corresponding discrete-time
system descriptions, with the only formal difference being the variable s or z. The symbol ζ
will be used to denote either s or z.

Impulse response: Consider a structure with r output Degrees of Freedom (DOFs)
and m input DOFs of interest. The element hlb(t) of its Impulse Response Function (IRF)
H(t) ∈ Rr×m is defined as the response at DOF l due to an impulsive input along DOF
b, applied at t = 0 under zero initial conditions on the outputs. Once H(t) is determined,
the response y(t) at the outputs due to any input vector u(t) ∈ Rm can be computed by
convolution, since any u(t) can be written as

u(t) =

∫
R
δ(t− τ)u(τ)dτ,

so that, using the LTI assumption,

y(t) =

∫
R
H(t− τ)u(τ)dτ =

∫
R
H(τ)u(t− τ)dτ = H(t) ? u(t). (2.5)

Because sampling an impulse is both physically and mathematically is undefined and thus
impossible [Rey12], the impulse response Hk ∈ Rr×m of a discrete system is defined as its
response to the following input:

uk =

{
1, k = 0,

0, k 6= 0.

Using the LTI assumption, it follows immediately that the response to an arbitrary input
obeys

yk =

∞∑
l=−∞

Hk−lul =

k∑
l=0

Hk−lul.

Transfer Function: Consider a damped harmonic input at DOF b, ub = est with s ∈ C.
Using (2.5), the response at DOF l can be computed as

yl(t) =

∫
R
Hlb(t− τ)esτdτ =

∫
R
Hlb(t− τ)e−s(t−τ)dτest = Hlb(s)e

st,

where, using (2.2), H(s) ∈ Cr×m is the Laplace transform of H(t). The Laplace transform of
the impulse response is called the transfer function. From the above analysis, it is clear that
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H(s) equals the systems response due to est, divided by est. Since the Laplace transform of
a convolution equals the product of the Laplace transforms, it follows from (2.5) that

y(s) = H(s)u(s).

Similarly, the transfer function of a discrete system is defined as the z-transform H(z) of its
discrete impulse response (Hk), and the relationship y(z) = H(z)u(z) holds. The zeros and
poles of a continuous-time (discrete-time) system are defined as the values of ζ for which
det(H(ζ)) equals zero or goes to infinity, respectively [Kai80].

Linear equations of motion:
When a linear time-invariant (LTI) vibrating structure with general viscous damping can

be described or approximated by a finite number of DOFs, its behavior is governed by the
following system of second-order ordinary differential equations:

M
d2v(t)

dt2
+ Cv

dv(t)

dt
+Kv(t) = B3u(t), (2.6)

where v(t) ∈ Rn/2 is the vector with nodal displacements, M ∈ Rn/2×n/2, Cv ∈ Rn/2×n/2
and K ∈ Rn/2×n/2 are the mass, viscous damping, and stiffness matrices, respectively, and
B3 ∈ Rn/2×nf is a selection matrix such that the vector with externally applied forces,
u(t) ∈ Rm , has only elements that are not identically zero. Equation (2.6) is obtained
when the structure consists of localized masses, springs and dampers, when the behavior of
a continuum is approximated with a finite number of displacements and rotations as in the
finite element method [Bat96, ZTZ05], or when the behavior of a continuum is approximated
with a finite number of eigenmodes [Mei75]. Damping models other than viscous, such as
hysteretic (structural) damping, or Coulomb (friction) damping, could also be considered.
They fall outside the scope of this work, however.

Continuous-time state-space model: By rearranging (2.6) and assuming that M has
full rank, a continuous-time state-space model

dx(t)

dt
= Acx(t) +Bcu(t), (2.7)

where

x(t) =

[
v(t)
dv(t)
dt

]
, Ac =

[
0 I

−M−1K −M−1Cv

]
, Bc =

[
0

M−1B3

]
are obtained with the state vector of the structure x(t) ∈ Rn, the state transition matrix
Ac ∈ Rn×n and the input influence matrix Bc ∈ Rn×m, where n is the system order and m is
the number of inputs. The number of elements “n” of x(t) is called the model order. When
the state at t = 0 is known, the system of ordinary differential equations (2.7) can be solved
for x(t):

x(t) = eActx(0) +

∫
[0,t]

eAc(t−τ)Bcu(τ)dτ. (2.8)

If the output quantities of interest are linear combinations of displacement, velocity, or
acceleration DOFs, one has

y(t) = Cv̈
d2v(t)

dt2
+ Cv̇

dv(t)

dt
+ Cvv(t)
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which can be expressed as

y(t) = [Cv − Cv̈M−1K
... Cv̇ − Cv̈M−1Cv]x(t) + Cv̈M

−1B3u(t)

and finally
y(t) = Ccx(t) +Dcu(t), (2.9)

where Cv̈ ∈ Rr×n, Cv̇ ∈ Rr×n and Cv ∈ Rr×n are selection matrices, y(t) ∈ Rr is the output
vector, Cc ∈ Rr×n is the output mapping matrix and Dc ∈ Rr×r is the direct transmis-
sion matrix. Finite strains can be included in y(t), since they can be obtained by dividing
the difference between two displacement DOFs by the initial distance between their nodes
[RDRBS07].

Using (2.7)–(2.9), a state-space parametrization of the impulse response is obtained:

H(t) = Cce
ActBc +Dcδ(t).

A Laplace transform of both sides of (2.7) and (2.9) leads to a parametrization of a transfer
function:

y(s) = (Cc(sI −Ac)−1Bc +Dc)u(s) = H(s)u(s)

and following the Cramer’s rule

(sI −Ac)−1 =
adj(sI −Ac)
det(sI −Ac)

,

where det(•) denotes the determinant and adj(•) the adjoint matrix of a square matrix. Since
det(sI − Ac) is the characteristic polynomial of Ac, one has that, if all modes are observed
in the output, det(H(s))→∞ when s approaches an eigenvalue of Ac. Hence, the poles are
the eigenvalues of Ac.

When the state is transformed to a new basis, x 7→ T−1x with T ∈ Cn×n nonsin-
gular, the input-output map provided by the state-space description is preserved when
(Ac, Bc, Cc, Dc) 7→ (T−1AcT, T

−1Bc, CcT,Dc), as follows from (2.7), (2.9). In particular,
when Ac has a similarity transform,

Ac = ΨcΛcΨ
−1
c ,

with Λc a diagonal matrix, (2.7), (2.9) is decoupled by putting T = Ψc:

dxm(t)

dt
= Λcxm(t) +Bcu(t)

y(t) = Φcxm(t) +Dcu(t)

where the subscript m denotes modal and Λc, Φc are the matrices containing the eigenvalues
and mode shapes from Ac and Cc, respectively [PDR99].

Discrete-time state-space model: Since for a given input u(t), solving (2.6) or (2.8)
analytically is usually impossible in the time domain, it seems natural to convert these models
to discrete time. The discrete-time state-space model is considered as

xk+1 = Axk +Buk (2.10)
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yk = Cxk +Duk. (2.11)

Different discretization strategies exist for converting (2.7), (2.9) into (2.10), (2.11), including
numerical integration of the right-hand side of (2.7) using a forward, backward, or trapezoid
rule, zero-pole matching, or assuming that the input is constant (i.e., equal to u(kT )) or
linear in [kT, (k+ 1)T ), known as the zero-order-hold (ZOH) or first-order-hold assumptions,
respectively [FPW98]. These discretization schemes generally do not preserve the state-space
basis, and the direct transmission term is not preserved either: D 6= Dc.

However, when the inputs are identically zero, the system of equations (2.7), (2.9) is easily
solved using (2.8):

x((k + 1)T ) = eAcTx(kT )

y(kt) = Ccx(kT ).

This leads to an exact discretization, where (A,C) = (eAcT , Cc), and where the state-space
basis is preserved. When solving the inverse modal analysis problem by fitting a discrete-time
state-space model (2.10)–(2.11) to measured sampled data, the inverse map therefore allows
computing exact continuous-time equivalents of the discrete poles and mode shapes [Rey12].

In this context, it is tempting to make a zero-order hold (ZOH) assumption, since it
follows from (2.8) that, when u(t) = u(kT ) in [kT, (k + 1)T ), the following map is obtained:

A = eAcT ,

B =

∫ (k+1)T

kT
eAc((k+1)T−τ)dτBc = (A− I)A−1

c Bc,

C = Cc, D = Dc.

A proof for the second equality in the expression for B can be found in [Jua94]. The map
is exact when u(t) = 0, and the direct transmission term D is preserved. However, due to
the ZOH assumption, the input matrix Bc, that is computed through the inverse map, is not
a good approximation of the true Bc when the sampling frequency is not much larger than
twice the largest important frequency that is present in the spectra of the input and output
signals.

The state equations (2.10)–(2.11) can be solved as

yk = CAkx0 +
k∑
l=1

CAl−1Buk−l +Duk.

from where the impulse response is then readily obtained as

H0 = D, Hk = CAk−1B, k > 1.

By taking the z-transform of both sides of (2.10)–(2.11), a parametrization of the transfer
function is obtained:

y(z) = (C(zI −A)−1B +D)u(z) = H(z)u(z)
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and then, similarly to the continuous-time state-space model, it follows from Cramer’s rule
that the poles are the eigenvalues of A.

As in the continuous-time case, one has that the input-output map pro-
vided by the discrete-time state-space description is preserved when (A,B,C,D) 7→
(T−1AT, T−1B,CT,D). When A has a similarity transform,

A = ΨdΛdΨ
−1
d (2.12)

where Λd is a diagonal matrix, (2.10), (2.11) is decoupled by putting T = Ψd

xm,k+1 = Λdxm,k +Buk,

yk = Φdxm,k +Duk.

Measurement noise: To obtain a more realistic description for the measured input-
output behavior of real structures, the electronic noise generated by the measurement system
should be considered. Then, the excitation u(t) previously described is splitted into two
parts: a part that can be measured in an operational vibration test, and a part that can
not be measured. Loads that can not be measured have to be identified together with the
system, from the measured response. The concerned discipline is called output-only system
identification, blind system identification or blind deconvolution [Rey12]. When identifying
the input and the system at the same time, a problem of identifiability occurs: the system de-
scription cannot be determined unambiguously unless extra assumptions are made concerning
the unknown inputs.

When a system is driven by a unmeasured and stochastic inputs that need to be identified,
an assumption is to consider this system stationary, ergodic and with zero mean. Wide sense
stationarity, which means that the covariance between two time samples depends only on the
time difference, not on the time instances at which the samples were taken, and quadratic
mean ergodicity, (i.e., ensemble averaging can be replaced by time averaging, are common
assumptions) [Dou99]. The zero mean assumption holds exactly when the constant trend is
removed from the outputs (hence also from the unmeasured inputs) and from the measured
inputs. In this case, the covariance functions of the inputs and outputs equal their correlation
functions.

A common assumption is that the stochastic unobserved input us(t) is a white noise
vector. Continuous-time White Noise (CWN) means that its correlation function is of the
form [Dou99]

Rusus(τ) = Iδ(τ) (2.13)

with I the intensity of the CWN. When us(t) is a force in N , I has dimensions N2/Hz. Two
samples of a CWN process are not correlated when they are taken at different time instances;
and when they are taken at the same time instance, their variance is infinite. When us(t) is
a CWN process (i.e., (2.13) holds) its Power Spectral Density (PSD) equals

Suu(s) = I.

This means that the PSD of a CWN process is real and constant, and has an infinite band-
width. The latter property is clearly not feasible for describing most physical processes.
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Therefore, a Band-limited Continuous-time White Noise (BCWN) sequence us(t) is defined
as a random process that has a real and constant PSD within a finite frequency bandwidth
[−fB, fB] [Å70]:

Suu(ω) =

{
Ĩ

2fB
, |f | ≤ fB

0 , |f | > fB
.

When us(t) is a force in N , Ĩ has dimensions N2. The corresponding correlation function is
found with the inverse Fourier transform:

Rusus(τ) = Ĩsinc(2πfBτ),

then

Rusus(0) = Ĩ.

The sampled, stationary stochastic input sequence (usk) is said to be a zero-mean Discrete-
time White Noise (DWN) sequence when its correlation function obeys [Dou99]

Rusus,j = ε(usk+ju
sT
k ) =

{
cov(usk), j = 0

0 , j 6= 0
,

where cov denotes the covariance operator. From (2.4), one has that the discrete PSD of
(usk), which is defined as the DFT of Rusus,j , obeys

Susus,j = Rusus,0.

Using (2.3), it follows that the discrete and continuous PSD of (usk) are equal, even for a non-
infinitesimal sampling period T . Therefore, if CWN is filtered with an ideal anti-alias filter
with cut-off frequency 2/T and then sampled with sampling frequency 1/T , the resulting
sequence is a DWN sequence.

Based on this fact, it was shown in [PSG08] that if the unmeasured forces are indeed
BCWN, a continuous-time model should preferably be identified, since then the measured
output DFT is exactly related to the unmeasured force DFT by a continuous-time model, i.e.,
no discretization error is made despite the data sampling. However, most system identification
algorithms identify discrete-time models.

Continuous combined deterministic-stochastic state-space model: When the
observed outputs y(t) are corrupted by additive sensor noise, denoted as yn(t) ∈ Rr, and
when unobserved stochastic inputs us(t) ∈ Rnsu are present, the state-space model (2.7), (2.9)
can be extended to

dx(t)

dt
= Acx(t) +Bcu(t) + w(t), (2.14)

y(t) = Ccx(t) +Dcu(t) + v(t), (2.15)

where

w(t)
def
= Bs

cu
s(t),

v(t)
def
= Ds

cu
s(t) + yn(t),
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Bs
c =

[
0

M−1B4

]
and

Ds
c = Cv̈M

−1B4

with B4 ∈ Rn/2×nsu a selection matrix.
Discrete combined deterministic-stochastic state-space model: Applying for in-

stance one of the discretization schemes listed in the beginning of this chapter, (2.14)–(2.15)
can be converted to

xk+1 = Axk +Buk + wk, (2.16)

yk = Cxk +Duk + vk, (2.17)

When it is assumed that the samples of yn(t), and us(t) make up discrete-time white noise
sequences, wk and vk are DWN sequences as well:

ε

[wk+l

vk+l

][
wk

vk

]T =

[
Q S

ST R

]
δ1(l)

where δ1(•) is the unit impulse function, i.e., δ1(0) = 1 and δ1(•) = 0 if • 6= 0. With the
decomposition of the states and outputs in a deterministic and a stochastic part,

xk = xdk + xsk,

yk = ydk + ysk,

and (2.16)–(2.17) is decomposed in a deterministic system

xdk+1 = Axdk +Buk,

ydk = Cxdk +Duk,

and a stochastic subsystem
xsk+1 = Axsk + wk, (2.18)

ysk = Cxsk + vk. (2.19)

Just as for the deterministic subsystem, the eigenvalue decomposition of A, (2.12), decouples
the stochastic subsystem:

xsm,k+1 = Λdx
s
m,k + wm,k,

ysk = Φdx
s
m,k + vm,k,

where wm,k = Ψ−1
d wk.

Correlation matrices: The following definitions of correlation matrices of the stochastic
subsystem (2.18)–(2.19) and the relationships between them are very frequently used, both
in solving forward and inverse problems:

Σs def
= ε(xsk+1 x

sT
k+1) = AΣsAT +Q,
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G
def
= ε(xsk+1y

sT
k ) = AΣsCT + S,

Λl
def
= ε(ysk+ly

sT
k ),

=


CΣsCT +R, l = 0

CAl−1G, l > 0

GT (Al−1)TCT , l < 0

,

where, as before, stationarity and ergodicity of all stochastic sequences was assumed as well
as the fact that xk is independent of wk and vk, which follows immediately from (2.16)–(2.17)
[Rey12].

2.3 The Stochastic Dynamic Damage Location Vector (SD-
DLV) approach

The SDDLV approach [Ber10] is an output-only damage localization method based on inter-
rogating changes δG(s) in the transfer matrix G(s) of a system, performed between two data
sets: one from the undamaged (reference) state and another from the damaged state. Vectors
in the null space of δG(s) are obtained from system identification results using output-only
measurements of both states. Then, they are applied as load vectors to a FEM for the com-
putation of a stress field over the structure in order to indicate the damage location, since
it has been shown that damaged elements induce zero stress (or close to zero in practice)
[Ber02, Ber06, Ber07, Ber10]. To gain robustness in this localization approach, the stress
field is computed for different values of the Laplace variable s of the transfer matrix, and the
results are aggregated. This section summarizes the deterministic computation of the stress
field and the aggregation of the results.

2.3.1 Models and parameters

First, vectors in the null space of δG(s) are computed using output-only measurements of
the structure. The behavior of a mechanical structure is assumed to be described by a linear
time-invariant (LTI) dynamical system as in (2.6) with M,C,K ∈ Rd×d as the mass, damping
and stiffness matrices respectively collected by the displacements of the d degrees of freedom
(DOF) of the structure, where the external force u(t) is unmeasured and modeled as white
noise.

Then, let the system (2.6) be observed at r coordinates (the outputs). As u(t) is unmea-
sured, it can be replaced with a fictive force e(t) ∈ Rr acting only in the measured coordinates
and that re-produce the measured output. The corresponding continuous-time state-space
model from equations (2.7) and (2.9) is{

dx(t)
dt = Acx+Bce

y(t) = Ccx+Dce
, (2.20)

where only system matrices Ac and Cc can be obtained from output-only system identification.
Matrices Bc and Dc in model (2.20) are only relevant for the following developments.
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2.3.2 Influence matrix derivation

Matrices Ac and Cc can be obtained from output measurements, as outlined previously.
However, input influence matrix Bc is related to noise inputs e, and is consequently unknown.
An expression for Bc as a function of the direct transmission matrix is derived in the following
lines using matrices that are known in the output-only identification.

Consider the output equation of model (2.20), where y(t) is the output. Depending

on the used sensors, y can be measured displacements η(t), velocities dy(t)
dt or accelerations

d2y(t)
dt2

, which makes a difference for the following derivations. Then, the output equations for
displacement (dis), velocity (vel) or acceleration (acc) measurements are

y(t) = Cdis
c x, (2.21)

dy(t)

dt
= Cvel

c x, (2.22)

d2y(t)

dt2
= Cacc

c x+Dce, (2.23)

where Cdis
c , Cvel

c , and Cacc
c ∈ Rr×n are the respective output mapping matrices. Differentiat-

ing (2.21) and (2.22) and combining the result with dx(t)
dt from (2.20) leads to [Ber10]

CcA
−b
c Bc = 0, (2.24)

CcA
1−b
c Bc = Dc, (2.25)

where Cc is the output mapping matrix for either displacement, velocity, or acceleration and
b = 0, 1 or 2 depending on whether the measured output y is displacement, velocity, or
acceleration. Equations (2.24) and (2.25) can be combined as

HBc = LDc,

where H ∈ R2r×n and L ∈ R2r×r are given by

H
def
=

[
CcA

1−b
c

CcA
−b
c

]
, L

def
=

[
I

0

]
. (2.26)

Then, it follows
Bc = H†LDc,

where † denotes the Moore-Penrose pseudoinverse. To ensure that the pseudoinverse provides
a unique solution in a least square sense it is necessary to ensure that 2r ≥ n. Note that in
practice this is often an inactive constraint since the number of identified modes n is, in fact,
less than 2 times the number of measurements.

2.3.3 Damage localization strategy

Depending on the kind of output measurements y(t) (displacements, velocities, or acceler-

ations; b
def
= 0, 1, 2, respectively), the transfer matrix G(s) ∈ Cr×r of system (2.20) can be

expressed without the input influence matrix Bc for 2r ≥ n as

G(s)
def
= R(s)Dc, with R(s)

def
= CcA

−b
c (sI −Ac)−1H†L (2.27)
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as derived in detail in [Ber06, Ber10], where I denotes the identity matrix and H and L are
defined in (2.26). With the property (A−b)† = Ab and the relation A−bc (sI − Ac)

−1Abc =
(sI −Ac)−1, the expression for R(s) in (2.27) is equivalent to

R(s) = Cc(sI −Ac)−1

[
CcAc

Cc

]† [
I

0

]
, (2.28)

which is a helpful simplification and generalization. Equation (2.28) holds for displacement,
velocity and acceleration measurements at the same time.

Let the variables in (2.27) be given in the damaged (variables with tilde) and reference
states, respectively. The difference in the transfer matrices between both states is δG(s) =
G̃(s)−G(s). Then, assuming δDc = D̃c−Dc = 0 (corresponding to no mass change) and Dc

being invertible, the matrices δG(s) and δR(s)T = R̃(s)T − R(s)T have the same null space
[Ber10]. Thus, the desired load vector can be equivalently found in the null space of δR(s)T ,
which can be obtained from the Singular Value Decomposition (SVD)

δR(s)T = UΣV H =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]H
, (2.29)

where U,Σ, V ∈ Cr×r, Σ2 ≈ 0 and H denotes the conjugate transpose. The desired load
vector v(s) in the null space of δR(s)T can be chosen as any linear combination of the vectors
in V2, in particular as the vector corresponding to the smallest singular value. Note that only
output-only measurement data is necessary for the computation of an estimate of v(s).

The computation of the stress from the (dynamic) load vector v(s) implies knowledge of
FEM of the structure. Let d be the number of its DOFs let e be the number of stresses
that are computed at the elements of the FEM. First, define the sensor mapping matrix
P ∈ Rd×r, containing zeros and ones, where the column and the row of an entry 1 relate to
a sensor position and its corresponding degree of freedom (DOF) in the model, respectively.
From the load Pv(s) at all DOF’s the displacement Gmodel(s)Pv(s) can be computed, where

Gmodel(s)
def
= (Ms2 + Cs + K)−1 is the transfer matrix from the FEM in the reference

state. Finally, stress (or stress resultants) are computed at the elements of the FEM from
the displacements. The function corresponding to this operation is linear and denoted by the
matrix Q ∈ Re×d, which is usually obtained from a FEM software. Combining the operations,
the stress vector S(s) ∈ Ce that is computed from the load vector v(s) can be expressed as
[Ber10]

S(s) = Lmodel(s)v(s) (2.30)

where Lmodel(s)
def
= Q Gmodel(s) P ∈ Ce×r is entirely obtained from the FEM of the structure.

Theoretically, the components of the stress vector S(s) corresponding to a damaged element
are zero [Ber02, Ber10] and hence entries in S(s) close to zero indicate potentially (but not
necessarily) damaged elements. In practice these stresses are not exactly zero but small due
to modal truncation, model errors and uncertainties from the measurement data. Note that
while the load vector v(s) is only defined at the sensor coordinates, damage can be localized
at any element of the structure because the stress vector generated from v(s) covers the full
domain.
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2.3.4 Multiple stress vectors and aggregation

Since damaged elements lead to stress values that are (close to) zero, but zero stress does
not necessarily indicate damage [Ber02] on one side, and due to truncation and model errors
on the other side, it is recommended to compute the load vector v(s) and subsequently the
stress vector S(s) for several values of the Laplace variable s. Robustness of the damage
localization approach is then achieved by aggregating the results.

Let the Laplace variables si, i = 1, . . . , κ, be given. To minimize modal truncation errors,
they should be chosen within a vicinity of the identified poles of the structure in the complex
plane, but not too close to them [Ber10]. After the identification of the system matrices Ac
and Cc in the reference and Ãc and C̃c in the damaged states, the computations (2.28)–(2.30)
are repeated for each value si to obtain the respective stress vectors S(si).

To decide if an element is damaged, the information of the corresponding entries in the
stress vector S(si) for all i = 1, . . . , κ can be used now. In [Ber10] the aggregation

S̄j =
κ∑
i=1

|Sj(si)| (2.31)

for each entry j was suggested.

2.4 The Influence Lines Damage Localization (ILDL) ap-
proach

An influence line (IL) is a function that graphs the variation at a specific point on a mechanical
structure in a predefined direction caused by a unit load [Hib09]. Any discontinuity in that
predefined direction represents a potential damaged location in the displacement field. In
this sense, the difference in the displacement field between the reference (undamaged) and
damaged states can be viewed as a discontinuity, leading to potentially damaged locations
[Ber13].

It is shown in [Ber13] that if a structure is loaded by some arbitrary static distribution
and damage appears, while the load remains constant, then the change in the deformation
field, given some assumptions on the nature of the damage, will be identical to that due to
the action of a stress resultant acting on a discontinuity at the damage location. From this
result and the previous argument it is concluded that the change in the deformation field due
to the damage has the shape of the IL for the stress resultant at the location of the damage,
and the deformation field is in the span of the ILs for multiple damage locations.

The step that completes the logical sequence in ILDL is to note that the image of the
change in flexibility matrix δF = F̃ − F between damaged and reference states (variables
with and without tilde) is the span for all possible differences in the displacement field due to
damage. Thus the image of δF is identical to the span of the influence lines associated with
all the damaged locations. In the implementation of the ILDL strategy δF and the influence
lines only need to be evaluated at the sensor coordinates of the structure.

Therefore, damage localization based on the ILDL theorem consists of computing the ILs
of stress resultants at the sensor coordinates for all elements from a finite element model
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(FEM) that will be checked for damage, and computing the image of δF from output-only
measurement data. The localization itself is performed by checking each element of the FEM
if its respective IL lies in the image of δF . The ILDL does not directly specify the position of
the damage. Instead, it provides a scheme to decide, given any postulated damage position,
if it is correct or not.

Note that the ILDL approach is complementary to the Stochastic Dynamic Damage Lo-
cation Vector (SDDLV) approach [Ber10], as detailed in 2.3, where loads in the kernel of δF
are applied to a FEM to compute the stress field and damage is localized where the stress is
(close to) zero.

2.4.1 Models, parameters and flexibility matrix

Similarly to subsection 2.3, the behavior of a structure is assumed to be described by a linear
time-invariant (LTI) dynamical system (2.6) and the equivalent continuous-time state-space
model is such as in (2.20), where the state vector of the structure is x(t) ∈ Rn, y(t) ∈ Rr
is the output vector, the state transition matrix is Ac ∈ Rn×n and Cc ∈ Rr×n is the output
mapping matrix. The parameter n is the system order and parameter r is the number of
outputs. Remember that only matrices Ac and Cc can be obtained from output-only system
identification. The input influence matrix Bc ∈ Rn×r and the direct transmission matrix
Dc ∈ Rr×r are used for theoretical purposes.

The flexibility matrix F cannot be obtained from output-only data since system matrices
Bc and Dc are not available. However, not the change in flexibility δF itself is needed for the
ILDL, but only the image of δF , which can be obtained only from Ac and Cc in the damaged
and reference states as follows [Ber13]. By applying the same transfer matrix in (2.28)

R(s) = Cc(sI −Ac)−1

[
CcAc

Cc

]† [
I

0

]

and assuming that damage does not change the mass of the system (D = D̃) and that D is
invertible, it follows that δF = δRD (with δR = R̃ − R) and thus that the image of δF is
the same as the image of δR.

Then, the image of δR is obtained from the Singular Value Decomposition (SVD)

δR = UΣV H =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]H
, (2.32)

where U,Σ, V ∈ Cr×r, Σ1 > 0 and U = (u1, . . . , ur) = [U1 U2] the left singular vec-
tors. Note that U1: (u1, u2, ..., ut) correspond to the nonzero singular values Σ1, and U2:
(ut+1, ut+2, ..., ur) correspond to the zero singular values (in practice small) Σ2, where a de-
sired image of δR is the matrix (or vector depending on the rank of Σ) in U1. For any chosen
value s, matrix U1 in the image of δF (s) can be computed as described above, where only
model (2.20) has been used without information about the geometry of the structure.
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2.4.2 Influence line computation and damage localization

Although either the ILDL or the SDDLV methods suffice to extract all the information for
the damage locations computation in theory, in real situations the flexibility change δR is
approximated and the use of both methods can prove advantageous [Ber13]. In fact, practical
implementation of the SDDLV method demands decision on the effective dimension of the null
space and specific guidelines for this and other implementation issues appear in the [Ber10].
The desired load vector in the null space of (2.32) for the SDDLV is any linear combination
of vectors in V2. Since the rank is usually low, U1 is related to less noisy information and the
image in the ILDL method can provide more precise information to find damaged locations
in the structure [Ber13].

Such as in 2.3.3, let v(s) be any load vector at the sensor coordinates of the structure.
From such a load stress resultants can be computed from a FEM. The relation between
loads v(s) and the vector of stress resultants S(s) at the desired elements is linear and
can be described by a matrix model Lmodel(s) obtained from the FEM, such that model
S(s) = Lmodel(s)v(s).

For the ILDL approach the IL of each stress resultant in S(s) is required at the sensor
coordinates. Thus, applying the respective unit loads at the sensor coordinates to obtain the
influence for an element j (corresponding to an entry Sj(s) in vector S(s)), it is clear that
the jth row lTj(s) of model Lmodel(s) is the IL of the stress resultant for element j, which is

denoted by the column vector lj(s).
Damage localization with the ILDL approach consists then of checking if an IL lj (com-

puted from the FEM) is contained in the subspace U1 (computed from the data in [Ber13])
for each element. The quantity used in [Ber13] that measures how well lj(s) fits into the
image U1 is the subspace angle

θj = cos−1

∥∥∥∥((lj(s))
HU1

‖lj(s)‖

)∥∥∥∥ (2.33)

where θj = 0 indicates the perfect fit. If j is a damaged element, θj will be close to zero.
Since the subspace angle is not derivable at θj = 0 for the subsequent sensitivity analysis for
uncertainty quantification, the alternative quantity

Γj(s) =
‖(lj(s))H U1‖2

‖lj(s)‖2
(2.34)

is proposed as an indicator of a fit. Note that 0 ≤ Γj(s) ≤ 1, where Γj(s) = 0 indicates
orthogonality between the subspaces and Γj(s) = 1 indicates the perfect fit.

2.4.3 Multiple aggregation

As an extension from [Ber13] to aggregate multiple quantities Γj(s) in (2.34), consider that
different Laplace variables si, i = 1, . . . , κ, be given. To minimize modal truncation errors,
they should be chosen within a vicinity of the identified poles of the structure in the complex
plane, but not too close to them [Ber10]. After the identification of the system matrices
Ac and Cc in the reference and Ãc and C̃c in the damaged states, the computations (2.28),
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(2.32) and (2.34) are repeated for each value si to obtain the respective vectors Γ(si). Fol-
lowing the instructions in [Ber10] to decide if an element is damaged, the information of
the corresponding entries in the stress vector Γ(si) for all i = 1, . . . , κ can be used in the
aggregation

Γ̄j =

κ∑
i=1

Γj(si) (2.35)

for each element j.
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Chapter 3

System identification and
uncertainty quantification

3.1 Introduction

Early research in modal testing resulted in an approach later described as Experimental
Modal Analysis (EMA). In EMA, the structure is excited by one or several measured dy-
namic forces. Then, the response of the structure to these forces is recorded and the modal
parameters in the frequency range of interest are extracted from the measurements. The first
EMA techniques were Single Degree Of Freedom (SDOF) methods like Peak Picking (PP)
or Circle Fitting [KP47]. An early review of SDOF techniques is presented in [BG63]. It is
assumed in these methods that each mode can be estimated independently from the other
modes, and consequently they are not useful when some modes of interest are closely spaced.
This disadvantage was later removed with the introduction of Multiple Degree Of Freedom
(MDOF) methods for EMA. Nowadays EMA is a well-established and often-used approach
in mechanical engineering [HLS97, MS97, Ewi00].

EMA methods are in general not suitable for large structures as these are often inher-
ently tested in operational rather that in laboratory conditions and the contribution of the
measured excitation to the total structural response is usually low (e.g. A bridge cannot be
isolated from its environment and tested in the laboratory, and it can only be excited to a
limited vibration level when compact, practical actuators are used). This implies that the
ever-present ambient excitation, also called operational loading, due to for example wind or
traffic, can most often not be neglected. Output-only or Operational Modal Analysis (OMA)
techniques have therefore been developed where the modal parameters are extracted from
the dynamic response to operational forces [RHDR12]. There, ambient forces are usually
modeled as stochastic quantities with unknown parameters but with known behavior, for
instance, as white noise time series with zero mean and unknown covariance.
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The OMA approach has two disadvantages when compared to EMA: the mode shapes
can not be scaled in an absolute way and the frequency content of the excitation is usually
narrow-banded. For these reasons, there has been an increasing interest during the last few
years towards combined modal testing techniques, also called hybrid vibration testing or Op-
erational Modal Analysis with eXogenous inputs (OMAX) [GDTDDS06], where an artificial
force is used in operational conditions. The main difference between OMAX and the tra-
ditional EMA approach is that the operational forces are included in the identified system
model: they are not considered as noise but as useful excitation. As a consequence, the
amplitude of the artificial forces can be equal to, or even lower than the amplitude of the
operational forces. This is of crucial importance for the modal testing of large structures. It
allows to use actuators that are small and practical when compared to the ones needed for
EMA testing of such structures, which are heavy and difficult to transport.

The modal analysis process consists of three distinct steps: data collection; system iden-
tification; and extracting and validating a set of modal parameters. The collection and
preprocessing of the data are not treated explicitly herean overview of standard techniques
is given in [HLS97, MS97, Ewi00]. System Identification can be defined as the field where
mathematical models are estimated from measured data. The identified model can be para-
metric, in which case it contains a limited number of parameters like the matrix entries of
a state-space model, or nonparametric, in which case the system is described in tabulated
form, for instance as numerical Frequency Response Function (FRF) data.

System identification and modal analysis developed mainly along different paths. Modal
analysis has its roots in mechanical engineering and focused originally on the identification
of SDOF systems, which contain one mode only, but which can have multiple outputs or
even multiple inputs while system identification has its roots in electrical and mathematical
engineering and focused originally on the identification of systems that have a single input
and a single output, but that can have multiple modes. Control of dynamic “systems” in the
broad sense was historically the first motive for developing system identification algorithms,
because of the need for an accurate model of the system to be controlled.

With the exception of realization algorithms [JP85], the interaction between the research
fields of system identification and modal testing remained limited, chiefly because the main
concern in modal testing was computational efficiency, as tens to hundreds of outputs need
to be processed at the same time, while the main concern in system identification was the
statistical performance of the methods. This changed gradually from the late 1980s on, partly
due to the increasing computational power that became available, and partly because OMA,
where a structure is tested in operational rather than in laboratory conditions, became an
active field of research. With the development of operational modal analysis, the advantages
of using system identification methods that can deal well with the high “noise” levels that
are met in operational conditions, became clear [PDR01]. However, the interaction between
both research domains remains rather low.

In the context of system identification, the stochastic subspace-based system identification
methods are efficient tools for the identification of linear time-invariant systems (LTI), fitting
a linear model to input/output or output-only measurements taken from a system. The exci-
tation of the system is assumed to be noise with certain properties. In 1985, Benveniste and
Fuchs [BF85] proved that the Instrumental Variable (IV) method and what was called the
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Balanced Realization method for linear system eigenstructure identification are consistent
under (unmeasured) non-stationary excitation. This result was obtained before Van Over-
schee and De Moor [VODM96] introduced their own formalism and popularized subspace
methods in their data-driven form. Since then, the family of subspace algorithms is growing
in size and popularity [Lar83, VODM94, Ver94, Vib95, MAL96], mostly for its capacity to
deal with problems of large scale under realistic excitation assumptions. In [BM07], many
subspace algorithms from literature are put in a common framework and their non-stationary
consistency for eigenstructure identification is proven.

Concerning the theoretical properties of subspace methods, there are a number of con-
vergence studies in a stationary context in the literature, see [DPS95, BDS99, BL02, Pin02,
CP04b, CP04c, Bau05] to mention just a few of them. These papers provide deep and tech-
nically difficult results including convergence rates. They typically address the problem of
identifying the system matrices or the transfer matrix, i.e. both the pole and zero parts of
the system.

There is a broad range of applications of subspace algorithms in the identification of pro-
cesses in automatic control, see e.g. [BNSR98, JSL01, SPG03, Pan08]. During the last decade,
subspace methods found a special interest in mechanical, civil and aeronautical engineering
for the identification of vibration modes (eigenvalues) and mode shapes (corresponding eigen-
vectors) of structures. Therefore, identifying an LTI from measurements is a basic service in
vibration monitoring, see e.g. [HdAH99, MBG03, MBB+06].

In this chapter, the theoretical background of subspace-based system identification is
introduced from literature, on which the subsequent chapters are based. This chapter is
organized as follows. In section 3.2, the general subspace identification algorithm is presented
and examples of popular identification algorithms are given in section 3.3. In section 3.4,
derivations for subspace identification algorithms under uncertainties is explained.

3.2 The general Stochastic Subspace Identification (SSI) al-
gorithm

Consider LTI systems described by a discrete-time state-space model such as in (2.16) and
(2.17) {

xk+1 = Axk +Buk + wk+1

yk = Cxk +Duk + vk
(3.1)

with the state x ∈ Rn, the observed input u ∈ Rm, the output y ∈ Rr and the unobserved
input and output disturbances w and v. The matrices A ∈ Rn×n and C ∈ Rr×n are the state
transition and observation matrices, respectively. The parameter n denotes the system order
and r the number of observed outputs, which is usually the number of sensors.

Throughout this work, we are interested in identifying only the system matrices A and C.
In many cases, e.g. in Operational Modal Analysis, no observed inputs are available (B = 0,
D = 0) and identification is done using the output-only data (yk). When some inputs (uk)
are observed, combined deterministic-stochastic subspace identification algorithms can be
used. There exist many Stochastic Subspace Identification algorithms in the literature, see
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e.g. [VODM96, PDR99, BM07] and the related references for an overview. They all fit in
the following general framework for the identification of the system matrices A and C of
system (2.20) and its eigenstructure.

Denote a matrix Hp+1,q as subspace matrix, whose estimate Ĥp+1,q is built from the
output or input/output data of the system (3.1) according to a chosen subspace algorithm.
The subspace matrix enjoys the factorization property

Hp+1,q = WOp+1Zq (3.2)

into the matrix of observability

Op+1
def
=


C

CA
...

CAp

 ∈ R(p+1)r×n,

and a matrix Zq, with an invertible weighting matrix W depending on the selected subspace
algorithm. However, W is the identity matrix for many subspace algorithms.

Note that a subset of the r sensors can be used for reducing the size of the matrices in the
identification process, see e.g. [PDR99, RDR08]. These sensors are called projection channels
or reference sensors. Let r0 be the number of reference sensors (r0 ≤ r). The parameters p
and q are chosen such that pr ≥ qr0 ≥ n. The subspace matrix has (p + 1)r rows and in
many cases qr0 columns.

The observation matrix C is then found in the first block-row of the observability ma-
trix Op+1. The state transition matrix A is obtained from the shift invariance property
of Op+1, namely as the least squares solution of

O↑p+1A = O↓p+1, where O↑p+1
def
=


C

CA
...

CAp−1

 , O↓p+1
def
=


CA

CA2

...

CAp

 (3.3)

and O↑p+1,O
↓
p+1 ∈ Rpr×n.

Let the pairs (λ, φλ) be the eigenvalues and eigenvectors of matrix A and define the mode
shape ϕλ with

det(A− λI) = 0, Aφλ = λφλ, ϕλ = Cφλ. (3.4)

Assume that the system has no multiple eigenvalues and, thus, that the λ’s and ϕλ’s are
pairwise complex conjugate. In particular, 0 is not an eigenvalue of state transition ma-
trix A. The collection of pairs (λ, ϕλ) form a canonical parameterization (invariant w.r.t.
changes in the state basis) of the pole part of system (3.1), which is referred to as the system
eigenstructure.

The actual implementation of this generic subspace identification algorithm uses a consis-
tent estimate Ĥp+1,q obtained from the output or input/output data according to the selected
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subspace identification algorithm. The SVD

Ĥp+1,q =
[
Û1 Û0

] [∆̂1 0

0 ∆̂0

][
V̂ T

1

V̂ T
0

]
(3.5)

and its truncation at the model order n yields an estimate

Ôp+1 = Ŵ−1Û1∆̂
1/2
1 (3.6)

for the observability matrix, from which (Ĉ, Â) and (λ̂, ϕ̂λ) are recovered as sketched above.

Also, the estimate Ẑq = ∆̂
1/2
1 V̂ T

1 can be obtained. Note that the singular values in ∆̂1 are

non-zero and Ôp+1 is of full column rank.

3.3 Popular SSI algorithms

Two well-known output-only subspace identification algorithms are covariance-driven sub-
space identification [BF85] and the data-driven Unweighted Principal Component algorithm
[VODM96]. Here, they are defined using a subset of the recorded sensors at some point in the
computation, so-called reference sensors or projection channels [PDR99], in order to reduce
the computation effort.

Let N + p + q be the number of available samples and let y
(ref)
k ∈ Rr0 (r0 ≤ r) be the

vector containing the reference sensor data, which is a subset of yk for all samples. Then,
define the data matrices

Y+ def
=

1√
N


yq+1 yq+2

... yN+q

yq+2 yq+3
... yN+q+1

...
...

...
...

yq+p+1 yq+p+2
... yN+p+q

 , Y− def
=

1√
N


y

(ref)
q y

(ref)
q+1

... y
(ref)
N+q−1

y
(ref)
q−1 y

(ref)
q

... y
(ref)
N+q−2

...
...

...
...

y
(ref)
1 y

(ref)
2

... y
(ref)
N

 . (3.7)

For covariance-driven subspace identification, let Ri
def
= E(yky

(ref)T
k−i ) and the block Hankel

matrix

Hcov
p+1,q

def
=


R0 R1 . . . Rq−1

R1 R2 . . . Rq
...

...
. . .

...

Rp Rp+1 . . . Rp+q−1

 def
= Hank(Ri) (3.8)

be the theoretical output-correlation and subspace matrices for some parameters p and q.

Then, introducing the cross-correlation between the state and the outputs G
def
= E(xky

(ref)T
k ),

the correlations Ri yield Ri = CAiG. In factorization property (3.2) W is the identity matrix
and

Zq = Cq(A,G)
def
=
[
G AG . . . Aq−1G

]
(3.9)
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is the well-known controllability matrix. From the output data (yk), the empirical correlations
can be estimated from

R̂i =
1

N − i

N∑
k=i+1

yky
(ref)T
k−i , (3.10)

which are used to fill the estimate of the subspace matrix Ĥcov
p+1,q

def
= Hank(R̂i) as in (3.8).

Another variant of this algorithm uses the subspace matrix

Ĥcovdat
p+1,q

def
= Y+Y−T (3.11)

instead of Ĥcov
p+1,q [BM07].

For the Unweighted Principal Component (UPC) algorithm, the estimate of the subspace
matrix is defined as

ĤUPC
p+1,q

def
= Y+Y−T (Y−Y−T )†Y−, (3.12)

where † denotes the pseudoinverse. Then, factorization property (3.2) holds asymptoti-
cally for N → ∞ where W is the identity matrix and Z the Kalman filter state matrix
[GVL96, KSH99]. A numerically efficient and stable way to obtain an estimate of the ob-
servability matrix avoids the explicit computation of ĤUPC

p+1,q. Instead, the partitioning of the
LQ decomposition [GVL96] of [

Y−

Y+

]
=

[
R11 0

R21 R22

][
Q1

Q2

]
(3.13)

is used, from which the relation ĤUPC
p+1,q = R21Q1 follows. As Q1 is an orthogonal matrix,

the estimate of the observability matrix Ôp+1 can be obtained directly from R21 in the
implementation of the algorithm. In this sense, the subspace matrix can also be defined by

ĤUPC,R
p+1,q

def
= R21,

where R21 is obtained from (3.13).

3.4 Uncertainty Quantification

As explained in Sections 2.3 and 2.4, Chapter 2, the system matrices Ac and Cc are needed
for the damage localization in both the reference and damaged state of the system. When
estimated from a finite number of data samples (e.g. using Stochastic Subspace Identification
(SSI) methods [VODM96, PDR99]), not the “true” system matrices Ac and Cc are obtained,
but estimates Âc and Ĉc of the matrices of the reduced order model that represents the
identified bandwidth. As the input of system (2.20) is unmeasured noise, Âc and Ĉc are
naturally subject to variance errors depending on the data and the estimation method. A
variance analysis of the system matrices obtained from Stochastic Subspace Identification
is made e.g. in [CP04a] and expressions for their computation in the context of structural
vibration analysis are given in [RPDR08, DLM11].

There are number of reasons why the SSI does not yield the exact system matrices (Ac, Cc),
but only estimates (Âc, Ĉc). From the statistical point of view, there are three types of errors:
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1. Bias of the model: The identified system may contain not only modes of the system
under test, but also spurious modes.

2. Bias of the modes: The identified modes of the true system might be biased.

3. Variance of the modes: The modes of the identified system may be subject to variance
errors.

While some procedures exist to remove part of the bias errors, the variance errors can
only be estimated, but not removed. In the following, the uncertainty propagation is done
by a sensitivity analysis of the covariances of the system matrices, based on the works of
[PGS07, RPDR08]. The latter depend on the used system identification method and are
assumed to be provided for the system matrices Ac and Cc of the continuous-time system
(2.20).

3.4.1 Definitions

The following notation and properties are defined and will be used in the following sections.
The operator ⊗ denotes the Kronecker product, having the property vec(AXB) = (BT ⊗
A)vec(X). Ia denotes the identity matrix of size a × a, and 0a,b denotes the zero matrix of
size a × b. eaj ∈ Ra denotes the j-th unit vector (being column j of Ia). The permutation

matrix Pa,b
def
=
[
Ia ⊗ eb1 Ia ⊗ eb2 . . . Ia ⊗ ebb

]
∈ Rab×ab is defined with the property

vec(XT ) = Pa,b vec(X) (3.14)

for any matrix X ∈ Ra×b [DM13]. Finally, for dealing with the uncertainties of complex-
valued matrices we introduce an equivalent real-valued notation by defining

MRe
def
=

[
Re(M) −Im(M)

Im(M) Re(M)

]
, Mre

def
=

[
Re(M)

Im(M)

]
(3.15)

for any matrix M as in [PGS07]. Then, for example, a complex-valued equation Ax = b is
equivalent to ARe xre = bre, and the sensitivities of the real-valued matrices can be derived.

3.4.2 Sensitivities on singular values and singular vectors

The perturbation propagation to singular values and singular vectors for real and complex
numbers are presented here, based in [PGS07].

Real case: Let σi > 0, ui and vi be the i-th singular value, left and right singular vector
of some real matrix X ∈ Ra,b and ∆X a small perturbation on X. For the same X, then

∆σi = (vi ⊗ ui)Tvec(∆X),

[
∆ui

∆vi

]
= B†iCivec(∆X),

where

Bi
def
=

[
Ia

−X
σi

−XT

σi
Ib

]
, Ci

def
=

1

σi

[
vTi ⊗ (Ia − uiuTi )

(uTi ⊗ (Ib − vivTi ))Pa,b

]
,
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In is identity matrix of size n× n and Pa,b is defined in Definition 3.4.1.

Complex case: Let σi > 0, ũi and ṽi be the i-th singular value, left and right singular
vector of some complex matrix X ∈ Ca,b with t = rank(X), and ∆X a small perturbation.
In the SVD

X = UΣV H =
r∑
i=1

σiũiṽ
H
i =

r∑
i=1

σi(e
iφi ũi)(e

iφi ṽi)
H ,

let the phase φi be chosen such that the imaginary part of the first entry of eiφi ṽi is zero
and denote the respective left and right singular vectors by ui = eiφi ũi, vi = eiφi ṽi. Then,
perturbations on the singular vectors yield[

∆(ui)re

∆(vi)re

]
= B†iCi (vec(∆X))re,

where

Bi
def
=

[
I2a

(−X)Re

σi
(−XT )Re

σi
I2b

]
(I4r − E4r,4r

3r+1,3r+1),

Ci
def
=

1

σi

[
(vTi ⊗ Ia)Re − (ui)re((vi ⊗ ui)re)

T

((uTi ⊗ Ib)Re − (vi)re((ui ⊗ vi)re)
T )P1

]
,

P1
def
=

[
Pa,b 0

0 −Pa,b

]
.

Note that the multiplication by (I4r − E4r,4r
3r+1,3r+1) sets the column in Bi to zero that corre-

sponds to the imaginary part of the first entry of vi.

3.4.3 Covariance estimation of identified discrete-time system matrices

The covariance estimation of the matrices A and C is done in three steps: First, a perturbation
∆H of the subspace matrix in (3.8) is propagated to a perturbation ∆O of the observability
matrix, and second, a perturbation ∆O is propagated to perturbations ∆A and ∆C in the
system matrices. Finally, the covariances of the vectorized system matrices are computed. In
order to obtain ∆O, the sensitivities of the singular values and vectors in (3.5) are necessary.
They have been derived in [PGS07] and are detailed in [DM13].

The sensitivity of the observability matrix is derived in [RPDR08] and the perturbation

∆O = U1∆Σ
1/2
1 + ∆U1Σ

1/2
1 . Let Bi and Ci be given like in Section 3.4.2. Then,

vec(∆O) = JO,Hvec(∆H)
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where JO,H ∈ R(p+1)rn×(p+1)rqr with

JO,H
def
=

1

2

(
In ⊗ U1Σ

−1/2
1

)
S4


(v1 ⊗ u1)T

...

(vn ⊗ un)T

+
(

Σ
1/2
1 ⊗

[
I(p+1)r 0(p+1)r×qr

])
B†1C1

...

B†nCn

 ,
S4

def
=

n∑
k=1

En
2,n

(k−1)n+k,k, (3.16)

Now, let the system matrix A be obtained from O in (3.3) and C from the first block row
of O from Section 3.2. Then, a perturbation in O is propagated to A and C where sensitivity
of the system matrices are collected by [RPDR08]

vec(∆A) = JA,O vec(∆O), vec(∆C) = JC,O vec(∆O),

with JA,O ∈ Rn2×(p+1)rn, JC,O ∈ Rrn×(p+1)rn, and

JA,O
def
= (In ⊗O↑

†
S2)− (AT ⊗O↑†S1) + ((O↓TS2 −ATO↑

T
S2)⊗ (O↑TO↑)−1)P(p+1)r,n,

JC,O
def
= In ⊗

[
Ir 0r,pr

]
.

(3.17)

Note that the product rule for the sensitivity of A = O↑†O↓ = (O↑TO↑)−1O↑TO↓ and
Kronecker algebra leads to the assertion. Note also that JA,O = A1 and JC,O = A2 in
[RPDR08].

Finally, the covariances of the estimated system matrices (Â, Ĉ) are obtained from

Σ
Â,Ĉ

def
= cov

([
vec(Â)

vec(Ĉ)

])
=

[
J
Â,O

J
Ĉ,O

]
JO,H Σ̂H J TO,H

[
J T
Â,O

J T
Ĉ,O

]
, (3.18)

where Σ̂H is the covariance of (3.8) such that

Σ̂H =
1

n− 1

n∑
j=1

vec
(
Ĥ(j) − Ĥ

)
vec
(
Ĥ(j) − Ĥ

)T
.

An efficient covariance estimation Σ̂H of the subspace matrix can be obtained like in
[DM13].

3.4.4 Covariance of the identified modal parameters

The sensitivity derivations for the eigenvalues and eigenvectors of a matrix and subsequently
for the modal parameters are stated in [RPDR08] and its detailed derivations are in [GVL96,
PGS07].

Let λi, φi and χi be the i-th eigenvalue, left eigenvector and right eigenvector of A with

Aφi = λiφi, χ∗iA = λiχ
∗
i , (3.19)
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where ∗ denotes the complex conjugate transpose. Their respective sensitivities are

∆λi = Jλi,Avec(∆A), ∆φi = Jφi,Avec(∆A),

where Jλi,A ∈ C1×n2
and Jφi,A ∈ Cn×n2

are described as

Jλi,A
def
=

1

χ∗iφi
(φTi ⊗ χ∗i ), Jφi,A

def
= (λiIn −A)†

(
φTi ⊗

(
In −

φiχ
∗
i

χ∗iφi

))
. (3.20)

Now, let λi and φi be the i-th eigenvalue and left eigenvector of A be transformed into

their equivalent continuous-time eigenvalue that λci
def
= ln(λi)/τ (τ as the time step). Then,

the i-th eigenvalue sensitivity ∆λci is described as

∆λ̃ci = Jλci ,A∆λi

where

Jλci ,A =
1

∆t |λi|2

[
Re(Jλi) Im(Jλi)
−Im(Jλi) Re(Jλi)

]
. (3.21)

Now, suppose that the element k of the mode shape ϕi is scaled to unity (i.e. ϕi =
Cφi/(Cφi)k). Then, its sensitivity is described as

∆ϕi = Jϕi,A,C

[
vec(∆A)

vec(∆C)

]
,

where Jϕi,A,C ∈ Cr×(n2+rn) is

Jϕi,A,C
def
=

1

(Cφi)k

(
Ir −

[
0r,k−1 ϕi 0r,r−k

]) [
CJφi,A φTi ⊗ Ir

]
. (3.22)

Finally, the covariances of the eigenvalues and the mode shapes can be obtained, respec-
tivelly, using (3.18), (3.20), (3.21) and (3.22) as

Σ̂λci
= (JλciJλi,A)Re Σ̂A ((JλciJλi,A)Re)

T ,

Σ̂ϕi,A,C = (Jϕi,A,C)re Σ̂A,C ((Jϕj ,A,C)re)
T .

(3.23)
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Chapter 4

Statistical decision making for
damage localization with stochastic

load vectors

This Chapter is dedicated to the first contribution of this thesis, consisting on the innova-
tive development of a new statistical decision making method for damage localization in civil
structures, based on the sensitivity-based rules (Chapter 3, Section 3.4) to overcome the in-
herent uncertainties in the Stochastic Dynamic Damage Location Vector (SDDLV) approach
(Chapter 2, Section 2.3) and restricted for only one chosen Laplace variable. The new method
is validated in a numerical simulation of a truss experiment.

4.1 Introduction

The SDDLV approach [Ber10] is an output-only damage localization technique that uses both
finite element information and modal parameters, assuming that some damage has occurred.
From estimates of the system matrices in both reference and damaged states, the null space of
the difference between the respective transfer matrices is obtained. Then, damage is related
to a residual derived from this null space and located where the residual is close to zero.

On one hand, these SDDLV does not take into account the intrinsic uncertainty of the
problem due to the unknown noise exciting the system. The lack of uncertainty consideration
proves to be critical considering no information is available on the choice of threshold for
deciding whether the lowest residual is zero or not in practical situations. Empirical thresholds
are currently used for decision. On the other hand, the identification of system matrices is
afflicted by uncertainty, due to noise and limited data length. Sensitivity based methods
such as presented in [PGS07] and [RPDR08] provide some guidelines to derive uncertainty
estimates for modal parameters. An efficient sensitivity computation of these quantities has
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been derived in [DM11, DLM11].
The current Chapter aims to replace empirical rules by sensitivity-based rules for ap-

plying some damage localization criterion, and is organized as follows. In Section 4.2 the
SDDLV approach is introduced as a method for stochastic damage localization of mechanical
structures from output-only signals. In Section 4.3, the covariance of the system matrices
is propagated to the damage localization residuals and a hypothesis test is derived to test if
an element is potentially damaged or not. In Section 4.4, numerical examples are provided.
Finally, some conclusions of this work are presented in Section 4.5.

4.2 The SDDLV approach

The considered damage localization strategy, described in details in Chapter 2 (Section 2.3),
is based on the works of [Ber06, Ber10] and is performed by interrogating changes in the
transfer matrix G of a system. These changes δG are linked to physical properties of the
structure. A structural failure is indicated by losses of stiffness (resistance of deformation
of an elastic body to an applied force) and the consequent damage in some part (specific
element or region) of the structure, affecting the flexibility of the system, which is linked to
δG.

The change δG in the transfer matrix cannot be obtained experimentally using ambient
vibration data recorded at the monitored structure. However, the null space of δG can be
computed. Load vectors in this null space are then used for the computation of a stress
field over the structure in order to indicate the damage location: Stresses are measures of
internal reactions to external forces applied on a deformable body, where (in the method
to be described) zero stress over elements of a structure indicates changes in the flexibility
and consequently damage. The resulting damage localization method is the SDDLV method
[Ber06, Ber10]. In this section, the underlying models and the basic principles of the SDDLV
are introduced.

4.2.1 Dynamical equation and state-space model

The behavior of a mechanical structure is assumed to be described by a linear time-invariant
(LTI) system and represented by the corresponding continuous-time state-space model (2.20){

dx(t)
dt = Acx+Bce

y = Ccx+Dce
, (4.1)

where dx(t)
dt ∈ Rn is the state, y ∈ Rr is the output, Ac ∈ Rn×n is the state transition matrix,

Bc ∈ Rn×r is the input influence matrix, Cc ∈ Rr×n is the output mapping matrix, Dc ∈ Rr×r
is the direct transmission matrix. The fictive force e(t) acts only in the measured coordinates
and that re-produce the measured output, n is the system order and r is the observed outputs
coordinates. If all the modes of the LTI system were identified then n = 2d. In practice this
is seldom the case, so what one gets from identification is a reduced model order n � 2d.
Since SDDLV is an output-only method, the non-identified matrices Bc and Dc are used in
order to derive properties of the transfer matrix [Ber10].
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4.2.2 Damage localization procedure

The damage localization in mechanical structures with output-only data can be determined
with the null space vectors for the SDDLV technique. Like this, damage localization infor-
mation from structural changes (stress over elements) is extracted with the underlying idea
of detecting changes in the flexibility. Note that while the transfer matrix is defined at the
coordinates defined by the sensors, damage can be localized at any point of the structure
because the stress field generated from the sensor coordinate loads covers the full domain.

Consider now the transfer matrix of model (4.1), which is given by

G(s)
def
= R(s)Dc, (4.2)

where

R(s)
def
= CcA

−b
c [sI −Ac]−1

[
CcA

1−b
c

CcA
−b
c

]† [
I

0

]
(4.3)

with G(s) ∈ Cr×r, b = 0, 1, 2 the output measurements (displacements, velocities, or acceler-
ations respectively) and I the identity matrix.

Using (4.2) for the damaged (variables with tilde) and reference states, respectively, and
dropping the Laplace variables s for simplicity, gives the difference in the transfer matrices
δG = G̃ − G. Neglecting Dc in (4.2) in both damaged and reference states (see [Ber10] for
more details), the desired null space of δG has the same null space of δRT = R̃T −RT . Then,
the null space of δRT is finally obtained from the Singular Value Decomposition (SVD)

δRT =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]H
, (4.4)

where U,Σ, V ∈ Cr×r, Σ2 ≈ 0 and V = (v1, . . . , vr) = [V(1) V(2)] the right singular vectors.
Note that V(1): (v1, v2, ..., vt) is the nonzero singular vectors and V(2): (vt+1, vt+2, ..., vr) is
the ideally zero singular vectors (in practice small), where a desired load vector v in the null
space of δRT is then any linear combination of the vectors in V(2), e.g. v = vr. For any chosen
value s, the load vector v = v(s) in the null space of δG(s) can be computed as described
above, where only model (4.1) has been used without using information about the geometry
of the structure.

The computation of the stress implies knowledge of the model of the structure (coming
e.g. from a FEM) and is a linear function of displacement. The function that maps the
displacement to the stress resultant is denoted as matrix Q ∈ Rd×d, the transfer matrix

is Gmodel(s)
def
= (Ms2 + Cs + K)−1 of model of LTI system in the reference state, and

the sensors mapping matrix P ∈ Nd×r with 1’s where each line (position in the structure)
and each column (sensor number) agree and zeros elsewhere. Let this function be given by
Lmodel(s) = QGmodel(s)P , such that the stresses S(s) ∈ Cd for a chosen value s write as
[Ber10]

S(s) = Lmodel(s)v(s). (4.5)
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If an element at some degree of freedom j is completely damaged, the resulting stress Sj(s)
at coordinate j from the load v(s) is zero [Ber10]. Thus, the stresses in S(s) are considered
as damage localization residuals, where the entries close to zero correspond to elements that
are potentially (but not necessarily) damaged. In this Chapter, the following derivations and
details are described considering the case where just one Laplace variable (s) is used.

4.3 Uncertainties on damage localization residuals

The system matrices Ac and Cc are needed for the damage localization both in the refer-
ence and damaged state of the system as explained in the previous section. When estimated
from a finite number of data samples e.g. using Stochastic Subspace Identification methods
[VODM96, PDR99], not the “true” system matrices Ac and Cc are obtained, but estimates
Âc and Ĉc of the matrices of the reduced order model that represents the identified band-
width. As the input of system (4.1) is unmeasured noise, Âc and Ĉc are naturally subject to
variance errors depending on the data and the estimation method. A variance analysis of the
system matrices obtained from Stochastic Subspace Identification is made e.g. in [CP04a] and
expressions for their computation in the context of structural vibration analysis are given in
[RPDR08, DLM11].

When estimating the load vectors in the null space of δG and the related stress field, the
uncertainty of the system matrices is propagated to the uncertainty in the damage localization
results. In this section, the variances of damage localization results are evaluated in order
to support the decision between undamaged and damaged elements: In theory, the stress
over a damaged element is zero, but it will be non-zero when computed on noisy data with
an approximate reduced order model and an empirical threshold needs to be set. Then, the
decision if the stress Sj(s) at element j is zero or not – and thus if the corresponding element
j is potentially damaged or not – is facilitated when knowing the variance of the estimate.

In the following, the uncertainty propagation to the damage localization results is done
by a sensitivity analysis, starting from the covariances of the system matrices. The latter
depend on the used system identification method and are assumed to be provided for the
system matrices Ac and Cc of the continuous-time system (4.1).

4.3.1 Definitions

First, the notation of perturbations is defined. Let θ be some parameter vector and θ̂N its

estimate based on N data samples, whose expected value θ̄N
def
= Eθ̂N tends to θ∗ as N goes

to infinity. Define the estimated covariance cov(θ̂N ) = E
(

(θ̂N − θ̄N )(θ̂N − θ̄N )T
)

and let θ̂N

fulfill the Central Limit Theorem

√
N(θ̂N − θ∗)

d−→ N (0,Σ) (4.6)

for N → ∞, where Σ is the asymptotic covariance. As the number of data samples N is
usually large, the distribution of θ̂N is approximated to be Gaussian with cov(θ̂N ) ≈ 1

N Σ.
Property (4.6) is fulfilled for estimates e.g. from subspace methods, maximum likelihood or
prediction error methods [CP04a, Lju99, BBM00, PGS07].
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Let f(θ) ∈ Rk be a vector-valued function of the parameter. Suppose that its first

derivative Jf
def
= Jf (θ∗) = [∇f1(θ∗) ∇f2(θ∗) . . . ∇fk(θ∗)]T exists in θ∗ and that ∇fj(θ∗) 6= 0

for all j. Using the Taylor approximation

f(θ̂N ) = f(θ∗) + Jf (θ̂N − θ∗) +O(||θ̂N − θ∗||2),

it follows √
N(f(θ̂N )− f(θ∗))

d−→ N (0,Jf ΣJ Tf ), (4.7)

which is known as the delta method [CB02], and the covariance of f(θ̂N ) can be approximated
by

cov(f(θ̂N )) ≈ Jf cov(θ̂N )J Tf . (4.8)

Note that Jf = Jf (θ∗) in the derivation above. A consistent estimate of the sensitivity is

then obtained from Jf (θ̂N ).

We assume the covariances of the system matrices to be known from the used system
identification procedure, and

θ̂N =

[
vec(Âc)

vec(Ĉc)

]
, θ∗ =

[
vec(Ac)

vec(Cc)

]
,

where vec is the vectorization operator stacking the columns of a matrix into a vector. Then
it is the objective to compute the sensitivities of the stress vector S(s) with respect to vec(Ac)

and vec(Cc) to obtain cov(Ŝ(s)) from cov

([
vec(Âc)

vec(Ĉc)

])
as in (4.8).

A first-order perturbation ∆f of the function f (at the true parameter θ∗) is defined from

the Taylor approximation for some θ close to θ∗ as ∆f
def
= Jf ∆θ, where ∆θ = θ − θ∗.

The following definitions are needed for the derivation of the sensitivities. First, some
properties of the vectorization operator are stated.

Definition 1 For a, b ∈ N define the permutation

Pa,b =

a∑
k=1

b∑
l=1

Ea,bk,l ⊗ E
b,a
l,k ,

where Ea,bk,l is a matrix of size a × b that is equal to 1 at position (k, l) and zero elsewhere,
and ⊗ denotes the Kronecker product.

Then, for any matrix X ∈ Ra,b it holds [PGS07]

vec(XT ) = Pa,b vec(X). (4.9)

Related to the vectorization operator, Kronecker products are used [Bre78], particularly the
relation vec(EFG) = (GT ⊗ E) vec(F ) for compatible matrices E, F and G.
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Notice that some of the involved matrices and vectors, e.g. δRT in (4.4) or the null space
vector v, are complex-valued variables. In order to use derivations for real matrices, we
introduce the notation similar to [PGS07] as

MRe
def
=

[
Re(M) −Im(M)

Im(M) Re(M)

]
, Mre

def
=

[
Re(M)

Im(M)

]
(4.10)

for any matrix M . Then, for example, the relation δRT v = 0 is equivalent to (δRT )Re vre = 0,
and the sensitivities for the real-valued matrices will be derived.

Now, results from [PGS07] are presented on the perturbation propagation to singular
values and vectors for real matrices in Lemma 2 and complex matrices in Lemma 3, before
deriving the sensitivities for the pseudoinverse in Lemma 4.

Lemma 2 ([PGS07]) Let σi > 0, ui and vi be the i-th singular value, left and right singular
vector of some real matrix X ∈ Ra,b and ∆X a small perturbation on X. For the same X,
then

∆σi = (vi ⊗ ui)Tvec(∆X),

[
∆ui

∆vi

]
= B†iCivec(∆X),

where

Bi
def
=

[
Ia

−X
σi

−XT

σi
Ib

]
, Ci

def
=

1

σi

[
vTi ⊗ (Ia − uiuTi )

(uTi ⊗ (Ib − vivTi ))Pa,b

]
,

In is identity matrix of size n× n and Pa,b is defined in Definition 3.4.1.

Lemma 3 ([PGS07]) Let σi > 0, ũi and ṽi be the i-th singular value, left and right singular
vector of some complex matrix X ∈ Ca,b with t = rank(X), and ∆X a small perturbation. In
the SVD

X = UΣV H =
r∑
i=1

σiũiṽ
H
i =

r∑
i=1

σi(e
iφi ũi)(e

iφi ṽi)
H ,

let the phase φi be chosen such that the imaginary part of the first entry of eiφi ṽi is zero
and denote the respective left and right singular vectors by ui = eiφi ũi, vi = eiφi ṽi. Then,
perturbations on the singular vectors yield[

∆(ui)re

∆(vi)re

]
= B†iCi (vec(∆X))re,

where

Bi
def
=

[
I2a

(−X)Re

σi
(−XT )Re

σi
I2b

]
(I4r − E4r,4r

3r+1,3r+1),

Ci
def
=

1

σi

[
(vTi ⊗ Ia)Re − (ui)re((vi ⊗ ui)re)

T

((uTi ⊗ Ib)Re − (vi)re((ui ⊗ vi)re)
T )P1

]
,
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P1
def
=

[
Pa,b 0

0 −Pa,b

]
.

Note that the multiplication by (I4r−E4r,4r
3r+1,3r+1) sets the column in Bi to zero that corresponds

to the imaginary part of the first entry of vi.

In the following lemma, the sensitivities of the pseudoinverse computation are derived.

Lemma 4 Let X ∈ Ra,b, c = rank(X) and ∆X a small perturbation on X. Let the SVD
X = UΣV T be given with

U =
[
u1 . . . uc

]
, V =

[
v1 . . . vc

]
,Σ = diag{σ1, . . . , σc},

where Σ is invertible. Then,

vec(∆X†) = JX†vec(∆X),

where

JX† = B + (UΣ−1 ⊗
[
0b,a Ib

]
)C + (Ia ⊗ V Σ−1)Pa,c(Ic ⊗

[
Ia 0a,b

]
)C,

B def
= −

c∑
i=1

σ−2
i (uiv

T
i ⊗ viuTi ), C def

=


B†1C1

...

B†cCc

 ,
Pa,c as in Definition 3.4.1 and Bi, Ci as in Lemma 2.

Proof: The pseudoinverse of X is given by X† = V Σ−1UT and thus

∆(X†) = ∆(V )Σ−1UT − V Σ−1∆(Σ)Σ−1UT + V Σ−1∆(UT ).

The assertion follows from vectorizing this equation, using Definition 3.4.1, Lemma 2 and
Kronecker algebra.

4.3.2 Covariance of system matrices

In this section, the sensitivity of the matrix R in (4.3) with respect to the system matrices
Ac and Cc is derived, which is needed for the damage localization in (4.4).

For simplicity, assume that the data is given by acceleration sensors (b = 2). Derivations
for displacement and velocity data (b = 0, 1) follow analogously. Then, R is defined in (4.3)
as R = ZH†L with

Z = CcA
−2
c (sI −Ac)−1, H =

[
CcA

−1
c

CcA
−2
c

]
. (4.11)
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Lemma 5 A perturbation of R = ZH†L is linked to a perturbation of Ac and Cc by the
relation

vec(∆R) =
[
JAc JCc

] [vec(∆Ac)

vec(∆Cc)

]
, (4.12)

where

JAc
def
= −

(
(A−2

c M)T ⊗ CcA−1
c

)
−
(
(A−1

c M)T ⊗ CcA−2
c

)
+
(
MT ⊗ Z

)
−(LT ⊗ Z)

[
JH†,1(A−Tc ⊗ CcA−1

c ) + JH†,2

(
((A−2

c )T ⊗ CcA−1
c ) + (A−Tc ⊗ CcA−2

c )
)]
,

JCc
def
=
(
(A−2

c M)T ⊗ Ir
)

+ (LT ⊗ Z)
[
JH†,1(A−Tc ⊗ Ir) + JH†,2((A−2

c )T ⊗ Ir)
]
,

M
def
= (sI −Ac)−1H†L, (4.13)

with the sensitivities JH†,1, JH†,2 related to the pseudoinverse of H defined in (4.17).

Proof:
Deriving the first-order perturbation ∆R using the product rule yields

∆R = ∆(Z)H†L+ Z∆(H†)L, (4.14)

where

Z = CcA
−2
c (sI −Ac)−1, H =

[
CcA

−1
c

CcA
−2
c

]
for b = 2. Now, ∆Z and ∆(H†) are derived as a function of ∆Ac and ∆Cc. Using the relation

∆X−1 = −X−1∆(X)X−1

for an arbitrary invertible matrix X, we derive

∆(CcA
−1
c ) = ∆(Cc)A

−1
c − CcA−1

c ∆(Ac)A
−1
c , (4.15)

and
∆(CcA

−2
c ) = ∆(Cc)A

−2
c − CcA−1

c ∆(Ac)A
−2
c − CcA−2

c ∆(Ac)A
−1
c . (4.16)

Then, the perturbation ∆Z is obtained as

∆Z = ∆(CcA
−2
c )(sI −Ac)−1 − (CcA

−2
c )(sI −Ac)−1∆(Ac)(sI −Ac)−1

= ∆(CcA
−2
c )(sI −Ac)−1 − Z∆(Ac)(sI −Ac)−1.

The perturbation of the pseudoinverse H† in (4.14) yields

vec(∆H†) = JH†vec(∆H),

where the sensitivity JH† is derived in Lemma 4. Define the selection matrices

S1
def
= In ⊗ [Ir 0r,r], S2

def
= In ⊗ [0r,r Ir],
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where In is the identity matrix of size n and 0r,r is the zero matrix of size r × r. Then,[
S1

S2

]
vec(∆H) =

[
vec(∆(CcA

−1
c ))

vec(∆(CcA
−2
c ))

]
and define

JH†,1
def
= JH†ST1 , JH†,2

def
= JH†ST2 , (4.17)

such that
vec(∆H†) = JH†,1vec(∆(CcA

−1
c )) + JH†,2vec(∆(CcA

−2
c )), (4.18)

where ∆(CcA
−1
c ) and ∆(CcA

−2
c ) are given in (4.15) and (4.16).

In order to obtain relations for the vectorized perturbation vec(∆R), (4.14) is vectorized
and Equations (4.15)–(4.18) are plugged in. Collecting the terms for ∆Ac and ∆Cc then
leads to

vec(∆R) = JAcvec(∆Ac) + JCcvec(∆Cc)

and thus to the assertion, where JAc and JCc are defined in (4.13).

Corollary 6 With the notations of Lemma 5 and of (4.10), the relation

cov
(
(vec(RT ))re

)
= JR cov

([
vec(Ac)

vec(Cc)

])
J TR

holds for the asymptotic covariance of the real and imaginary parts of RT , where JR is defined
as

JR =

[
Pr,r 0r2,r2

0r2,r2 Pr,r

][
Re(JAc) Re(JCc)
Im(JAc) Im(JCc)

]
.

Proof: From (4.9) it follows vec(∆RT ) = Pr,r vec(∆R). Stacking the real and the
imaginary part of this relation and plugging in (4.12) leads to the assertion.

4.3.3 Covariance of damage localization residuals

In order to compute the covariance of the damage localization residual – the stresses S(s)
from (4.5) for a chosen value s –, the covariance of the load vector v is needed, which is a
singular vector in the null space of δRT = R̃T −RT in (4.4). In the following proposition the
first-order perturbation of right singular vectors v in the null space is provided in order to
obtain the covariance of the stresses S(s)re in Theorem 8.

Proposition 7 Let t be the rank of δRT and let v be a vector in the null space of δRT .
Suppose that the complex singular vectors uj and vj, j = 1, . . . , t, are defined such that the
imaginary part of the first entry of each vj is zero. Then, the sensitivity Jv of v yields

Jv = −((vre)
T ⊗ V(1)Re)P1

(
It ⊗

[
02r,2r I2r

])
B†1C1

...

B†tCt

 , (4.19)
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such that ∆vre = Jv (vec ∆(δRT ))re, where for j = 1, . . . , t

Bj
def
=

 I2r − 1
σj

(δRT )Re

− 1
σj

(δRT )TRe I2r

 (I4r − E4r,4r
3r+1,3r+1),

Cj
def
=

1

σj

[
(vTj ⊗ Ir)Re − (uj)re((vj ⊗ uj)T )re

[(uTj ⊗ Ir)Re − (vj)re((uj ⊗ vj)T )re]P2

]
,

and

P1
def
= P2r,2t

 I2rt

It ⊗

[
0r,r − Ir
Ir 0r,r

] , P2
def
=

[
Pr,r 0r2,r2

0r2,r2 −Pr,r

]
.

Proof: Recall that the right singular vectors in V ∈ Cr×r of (δRT ) are considered as

V =
[
V(1) V(2)

]
, where V(1) contains the right singular vectors (v1, v2, ..., vt) corresponding

to the nonzero singular values, and V(2) contains the right singular vectors (vt+1, vt+2, ..., vr)
corresponding to the singular values that are considered as zero. The sensitivity computation
for ∆V(1) for non-zeros singular values can be obtained from Lemma 3 as

vec(∆(V(1))re) =
(
It ⊗

[
02r,2r I2r

])
B†1C1

...

B†tCt

 (vec ∆(δRT ))re, (4.20)

but a relation for ∆vre is needed, where v is a vector in the null space of (δRT ). Such a vector
is a linear combination of the vectors in V(2), where

v =
r∑

k=t+1

αkvk (4.21)

with some coefficients αk ∈ C. In the following, sensitivities for vk ∈ V(2) are derived. It holds

V H
(1)V(2) = 0t,r−t, V H

(2)V(2) = Ir−t

and consequently

(V H
(1))ReV(2)re = 02t,r−t, (V H

(2))ReV(2)re =

[
Ir−t

0r−t,r−t

]
. (4.22)

A first-order perturbation on the first equation in (4.22) yields

(V H
(1))Re ∆V(2)re + ∆(V H

(1))Re V(2)re = 02t,r−t,

which leads to

(Ir−t ⊗ (V H
(1))Re) vec(∆V(2)re) = −((V(2)re)

T ⊗ I2t) vec(∆(V H
(1))Re). (4.23)
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using the properties of the vectorization operator. Now, vec(∆(V H
(1))Re) is expressed in terms

of vec(∆V(1)re), which is given in (4.20). It holds

∆(V H
(1))Re =

[
Re ∆(V T

(1)) Im ∆(V T
(1))

−Im ∆(V T
(1)) Re ∆(V T

(1))

]
=

[
Re ∆(V(1)) −Im ∆(V(1))

Im ∆(V(1)) Re ∆(V(1))

]T
= (∆(V(1))Re)

T ,

and after vectorizing and using (4.9),

vec(∆(V H
(1))Re) = vec((∆(V(1))Re)

T ) = P2r,2t vec(∆V(1)Re).

From the definition of the operators (·)Re and (·)re in (4.10) follows then

vec(∆(V H
(1))Re) = P2r,2t

 I2rt

It ⊗

[
0r,r − Ir
Ir 0r,r

] vec(∆V(1)re) = P1 vec(∆V(1)re),

where P1 is defined in Proposition 7. Plugging this into the right part of (4.23) leads to

(Ir−t ⊗ (V H
(1))Re) vec(∆V(2)re) = −((V(2)re)

T ⊗ I2t)P1 vec(∆V(1)re). (4.24)

Now, repeating the steps (4.23)–(4.24) for a first-order perturbation of the second equation
in (4.22) yields analogously

(Ir−t ⊗ (V H
(2))Re) vec(∆V(2)re) + ((V(2)re)

T ⊗ I2(r−t))P3 vec(∆V(2)re) = 0, (4.25)

where

P3
def
= P2r,2(r−t)

 I2r(r−t)

Ir−t ⊗

[
0r,r − Ir
Ir 0r,r

] .
Consider the term ((V(2)re)

T ⊗ I2(r−t))P3 separately. Using the properties of the Kronecker

product [Fac05, D1̈1] it follows

((V(2)re)
T ⊗ I2(r−t))P3 = Pr−t,2(r−t) (I2(r−t) ⊗ (V(2)re)

T )

 Ir−t ⊗ I2r

Ir−t ⊗

[
0r,r − Ir
Ir 0r,r

]

= Pr−t,2(r−t)

 Ir−t ⊗ (V(2)re)
T

Ir−t ⊗ (V(2)re)
T

[
0r,r − Ir
Ir 0r,r

]
= Pr−t,2(r−t) (P T4 P4)

 Ir−t ⊗
[
Re(V T

(2)) Im(V T
(2))
]

Ir−t ⊗
[
−Im(V T

(2)) Re(V T
(2))
]

= Pr−t,2(r−t) P
T
4 (Ir−t ⊗ (V H

(2))Re), (4.26)
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where P4 is the permutation matrix

P4
def
=

[
Ir−t ⊗

[
Ir−t

0r−t,r−t

]
... Ir−t ⊗

[
0r−t,r−t

Ir−t

]]
.

Plugging (4.26) into (4.25) yields

(I2(r−t)2 + Pr−t,2(r−t) P
T
4 ) (Ir−t ⊗ (V H

(2))Re) vec(∆V(2)re) = 0.

Finally, assembling (4.24) and (4.25) gives[
I2(r−t)2 0

0 I2(r−t)2 + Pr−t,2(r−t) P
T
4

][
(Ir−t ⊗ (V H

(1))Re)

(Ir−t ⊗ (V H
(2))Re)

]
vec(∆V(2)re) =

[
−((V(2)re)

T ⊗ I2t)P1

0

]
vec(∆V(1)re). (4.27)

The solution for vec(∆V(2)re) may not be unique, as the matrix (I2(r−t)2 + Pr−t,2(r−t) P
T
4 ) is

in general rank deficient for t ≤ r − 2. One solution is given by

vec(∆V(2)re) = −(Ir−t ⊗ V(1)Re)((V(2)re)
T ⊗ I2t)P1 vec(∆V(1)re), (4.28)

as can be verified by plugging it in (4.27). Note that (V H
(1))ReV(1)Re = I and (V H

(1))ReV(2)Re = 0.

Then, from comparing the blocks in the solution (4.28) it follows

∆(vk)re = −(((vk)re)
T ⊗ V(1)Re)P1 vec(∆V(1)re)

for any singular vector vk ∈ V(2), and for an arbitrary vector v in the null space it follows

∆vre = −((vre)
T ⊗ V(1)Re)P1 vec(∆V(1)re)

from (4.21). The assertion follows by substituting vec(∆V(1)re) from (4.20).

Theorem 8 Let cov((vecRT )re) and cov((vec R̃T )re) from the reference and damaged state
be given in Corollary 6 and Jv in Proposition 7. Then,

ΣS
def
= cov(S(s)re) = JS(s)

(
cov((vec R̃T )re) + cov((vecRT )re)

)
J TS(s),

where

JS(s) = (Lmodel(s))Re Jv

with Lmodel(s) defined in Section 4.2.2.
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Proof: As R and R̃ are computed on two different data sets from the reference and
damaged states, they are statistically independent and it follows

cov
(
(vec δRT )re

)
= cov((vec R̃T )re) + cov((vecRT )re) (4.29)

From Proposition 7 follows

cov(vre) = Jv cov
(
(vec δRT )re

)
J Tv , (4.30)

and from (4.5) follows

cov(S(s)re) = (Lmodel(s))Re cov(vre) (Lmodel(s))
T
Re. (4.31)

Plugging (4.29) and (4.30) in (4.31) leads to the assertion.

4.3.4 Hypothesis testing for damage localization

If the stress Ŝj(s) over a finite element j is close to zero, the element is a candidate for being
classified as damaged. The values in the stress vector Ŝ(s) are complex values, whose real
and imaginary parts can have different signs. One could for example test if the real parts are
close to 0 (neglecting the imaginary part if it is small), or, more general, if both the real and
imaginary parts are close to 0 for an element. For each element j, this corresponds to the
hypotheses H0 : Ŝj(s) 6= 0 (element is undamaged)

H1 : Ŝj(s) = 0 (element is potentially damaged)
(4.32)

The elements in the vector Ŝ(s)re are asymptotically Gaussian distributed with non-zero
mean under H0 and zero mean under H1. A consistent estimate of the covariance Σ̂S of Ŝ(s)re

can be obtained from Theorem 8. Then, testing H0 against H1 can be done by computing
the variables

χ̂2
j (1)

def
=

(Re(Ŝj(s)))
2

σ̂2
j

or χ̂2
j (2)

def
=

[
Re(Ŝj(s))

Im(Ŝj(s))

]T
Σ̂−1
j

[
Re(Ŝj(s))

Im(Ŝj(s))

]
, (4.33)

where σ̂2
j = Σ̂S(j, j) is the entry (j, j) of Σ̂S and Σ̂j is the covariance of[

Re(Ŝj(s)) Im(Ŝj(s))
]T

consisting in the elements

Σ̂j =

[
Σ̂S(j, j) Σ̂S(j, j + r)

Σ̂S(j + r, j) Σ̂S(j + r, j + r)

]

of the matrix Σ̂S . The variables χ̂2
j (1) and χ̂2

j (2) are asymptotically χ2-distributed with one
and two degrees of freedom, respectively, and non-centrality parameter zero under H1. Some
thresholds t1 and t2 are defined, such that∫ ti

0
fχ2(i)(x)dx = 1− β,
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where fχ2(i)(x) is the probability density function of the central χ2 distribution with i degrees
of freedom (i = 1, 2) and β is the desired type II error of the hypothesis test (4.32), i.e. the
probability of deciding that an element is undamaged while it is potentially damaged. Note
that the type I error, i.e. the probability of deciding that an element is potentially damaged
while it is in fact undamaged, cannot be assigned a priori as the distribution under H0 is
unknown, but it is desired to be small. To obtain a small type I error (and to avoid that
elements are falsely classified as potentially damaged) β cannot be chosen too small, e.g.
β = 1

3 .

Then, using the test χ̂2
j (1), H0 is rejected and H1 is accepted for an element j (damage

occurred), if χ̂2
j (1) ≤ t1. Using test χ̂2

j (2), H0 is rejected and H1 is accepted for an element

j, if χ̂2
j (2) ≤ t2.

4.4 Numerical application

A numerical applications using a simulated 25 DOF truss structure in Figure 4.1 was used to
validate the damage localization algorithm with the hypothesis test. Recall that the residual
(the stress) is close to zero for damaged elements. Damage was simulated by a stiffness
reduction in one or two of the elements. For both the undamaged and the damaged state,
a data sample of length N = 25,000 of acceleration data (b = 2) was generated with added
output noise using Gaussian white noise excitation. From the output-only data, first the
system matrices and their covariances were estimated of the discrete-time state-space system
corresponding to (4.1), using SSI and the uncertainty quantification in [RPDR08]. In order to
obtain the matrices Âc and Ĉc of the continuous-time system and their respective covariances,
a discrete to continuous transformation was made. The Laplace variable s was empirically
chosen near a pole of Âc to compute the stress Ŝ(s) in (4.5). The covariance Σ̂S of Ŝ(s)re

was computed from Theorem 8.

First, the output was generated at six sensor positions in vertical direction at the lower
chord (see Figure 4.1) with added 5% output noise. Damage was simulated by decreasing the
stiffness of element 16 by 20%. From system identification, not all of the 25 theoretical modes
could be identified at model order n = 50. Four well-estimated modes were chosen in both the
undamaged and the damaged state using a stabilization diagram procedure [RPDR08], from
where the matrices Âc and Ĉc and their covariances are obtained in both states. From these
system matrices, the real and imaginary parts of the stress values and their covariance are
computed for s = 2i. Once the identified modes are selected from the system identification

1 2 3 4 5 6 7 

8 9 10 11 12 

13 14 15 16 17 18 19 

20 21 22 23 24 25 

Figure 4.1 – Truss structure with six sensors.
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Figure 4.2 – Real parts (left) and imaginary parts (right) of localization residuals and their standard deviations.
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Figure 4.3 – χ2-test values of the localization residuals with threshold to decide between both hypotheses – 6
sensors, 5% output noise, 20% stiffness reduction in bar 16.

for Âc and Ĉc, the method is automated. Computational time was a few seconds after the
uncertainty compuation of the system identification results is done. For the considered sub-
space identification method an efficient uncertainty computation procedure was used [DM13].
The overall computational time was around 30 seconds in this case.

In Figure 4.2, the real and imaginary parts of each of the stress values are shown with
their standard deviation. Note that the imaginary parts of the stress are not negligible in this
example. In Figure 4.3, the values χ̂2

j (2) in (4.33) are computed on the real and imaginary
parts of the stress and their covariance. In order to decide if an element is potentially damaged
or not, the threshold t2 = 2.16 is computed at β = 0.34 (the horizontal line in Figure 4.3).
Two elements are below this threshold: the damaged element 16 as well as the undamaged
element 23 that is a neighboring element of 16 (see Figure 4.1). It can be shown, in fact, that
for the used sensor set element 23 is inseparable from element 16 at s = 0 [Ber02], i.e. if the
stress in 16 is zero, so it must be in 23. Although s = 2i (used here) is not zero, it is small
and the noted behavior is clearly manifested. The corresponding χ2-values are χ̂2

16 = 0.30 for
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Figure 4.4 – χ2-test values with different measure-
ment noise – 10% measurement noise, 6 sensors, 20%
stiffness reduction in bar 16.
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Figure 4.5 – χ2-test values with different damage ex-
tent – 5% measurement noise, 6 sensors, 10% stiffness
reduction in bar 16.

element 16 and χ̂2
23 = 1.26 for element 23. Thus, the lowest χ2-value corresponds correctly

to the damaged element. The elements 1–15, 17–22 and 24–25 are correctly classified as
undamaged. In Figure 4.3, the χ2-values are only displayed until the value 300, while some
of them were at more than 105.

Several variations of this test case are examined with different levels of noise, sensor
positions and damages in the following.

4.4.1 Measurement noise

With higher measurement noise and constant data length the variance of the identified modal
parameters increases, leading to a higher variance of the localization residual and thus to a
reduction of the contrast between the χ2 values of the undamaged and damaged elements.
This can be observed in Figure 4.4 where the previous simulation was repeated with 10%
added output noise.

4.4.2 Damage extent

A smaller damage extent leads to a smaller difference between the transfer functions of
the reference and the damaged states and thus to a smaller damage localization residual.
However, its covariance is hardly dependent of the magnitude of the difference, but is the
sum of covariances corresponding to both states as shown in Theorem 8. Hence, smaller
damage leads to higher variation in the residual and thus to less contrast between the χ2

values. Results with 10% stiffness reduction in bar 16 are shown in Figure 4.5. This damage
can still be reliably localized. Note that the minimum damage that in general can be localized
depends on many different factors, like the level of the noise, the length of the signals, the
position of the damage and the sensors, the value of s etc., and that the presented result
holds only for the particular setting.



4.4 Numerical application 89

4.4.3 Number of sensors and multiple damages

In the SDDLV the system order n is limited by 2r, i.e. the number of mode pairs that are
considered in the system matrices Ac and Cc must be smaller than the number of sensors.
Thus, less sensors demand more modal truncation, which leads to more bias on the damage
detection residuals, if the truncated higher modes are influenced by the damage. In Figure
4.6 results are presented with 4 sensors (number 1,3,4,6 from the left of the sensors in Figure
4.1), where only 3 mode pairs are used from the system identification. Using less sensors
and less modes leads obviously to less contrast between the χ2 values of the undamaged and
damaged elements.

The theory shows that as the number of damaged bars increases the dimension of the
theoretical null space decreases and thus the estimation of vectors in the null space under
noisy conditions becomes more difficult. In this case, a more precise estimation of δRT is
necessary, which requires more modes to be estimated from the system identification and
thus more sensors due to the constraint 2r ≥ n. In Figure 4.7, results are presented for two
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Figure 4.6 – χ2-test values with different number of
sensors – 5% output noise, 4 sensors, 20% stiffness
reduction in bar 16.
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Figure 4.7 – χ2-test values with multiple damages –
5% output noise, 12 sensors, 20% stiffness reduction
in bars 3 and 18.
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Figure 4.8 – χ2-test values with model errors – 5% output noise, 6 sensors, 20% stiffness reduction in bar 16.
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damages in bars 3 and 18, where now 12 mode pairs and 12 sensors (the present 6 sensors
plus 6 sensors on the upper cord) were used. It should be noted that the estimated stresses in
the damaged elements are small but different from zero due to modal truncation and noise,
which become more important when multiple damages are present. While the resulting χ2

values of the damaged elements are the lowest and the value of bar 3 is correctly under the
threshold, the values of bar 18 exceeds it slightly.

4.4.4 Model errors

The considered structure is statically determinate. At s = 0 the stress field is entirely
independent of the structural properties (other than the topology which is known with high
precision). As s 6= 0, model errors play a role but their influence remains moderate in this
case as can be observed in Figure 4.8. There, the model was created for a truss with a 5%
perturbation of the area of the bars for the computation of Lmodel(s), compared to the model
that was used for the data generation.

4.5 Conclusion

Deciding whether a damage localization residual is zero or not is no more based on empirical
thresholds, but on uncertainty bounds, which are now obtained for each element that is
tested for damage separately, unlike in [Ber10]. Thus, the intrinsic uncertainty from the data
is propagated properly for each evaluated element in the damage localization residual S(s).
Then, it can be decided if an element is potentially damaged or undamaged using a hypothesis
test that takes into account the uncertainties. This statistical test was successfully performed
in a numerical application, where subspace identification was chosen as the underlying system
identification method. Choosing a different identification method could yield a different
performance.

The presented statistical framework for the SDDLV method is based on the uncertainty
computation of the system identification results, which has been proven feasible in several
case studies using field data [RPDR08, DHL+11, DM13]. Also, the DLV framework has been
used in real applications [GSJB07]. Hence, the proposed damage localization test appears
to be a promising foundation for the application on field data. Future work includes the
aggregation of the damage localization residual at different values of the Laplace variable
s for the hypothesis test and the validation of the method on a real large-scale application
example.

4.6 Dissemination

Parts of this chapter have been published in:

[MDBM12] L. Marin, M. Döhler, D. Bernal, and L. Mevel. Uncertainty quantification
for stochastic damage localization for mechanical system. In Proccedings of
the 8th IFAC Safeprocess, Mexico City, Mexico, 2012.
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[DMBM13b] M. Döhler, L. Marin, D. Bernal, and L. Mevel. Statistical decision making
for damage localization with stochastic load vectors. Mechanical Systems and
Signal Processing, 37, 2013.

[MDBM13a] L. Marin, M. Döhler, D. Bernal, and L. Mevel. Damage localization using a
statistical test on residuals from the sddlv approach. Society for Experimental
Mechanics Series, 41:143–152, 2013.

[DMBM13a] M. Döhler, L. Marin, D. Bernal, and L. Mevel. Comparison of two statisti-
cal damage localization approaches. In Proccedings of the 5th International
Operational Modal Analysis Conference, 2013.
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Chapter 5

Robust statistical damage
localization with stochastic load

vectors

The contribution of the previous Chapter 4 is extended into a robust fashion in this current
Chapter, consisting in the development of a statistical decision making method for damage
localization in civil structures, based on the sensitivity-based rules (Chapter 3, Section 3.4)
for the inherent uncertainties in the SDDLV approach (Chapter 2, Section 2.3) for different
chosen Laplace variable. The constitution of real system matrices for the sensitivity-based
rules is explained in details and the whole method is validated into numerical simulations and
a real experiment of structures.

5.1 Introduction

The Stochastic Dynamic Damage Location Vector (SDDLV) approach [Ber10] is a damage
localization technique using both finite element information and modal parameters from
output-only vibration measurements. From estimates of the modes in both reference and
damaged states, the null space of the difference between surrogates of the transfer matrices
at the sensor positions for some Laplace variable s in the complex plane is obtained. Then,
a vector in this null space is applied as a load to the FEM of the structure to compute the
stress field, where only the FEM of the structure in its reference state is used. Damage is
related to this stress field and is potentially located at elements where the stress is close to
zero. A full description of the SDDLV is available in Chapter 2, Section 2.3.

The estimates from the output-only measurements that are used for damage localization
are naturally subject to variance errors [PGS07, RPDR08, CM11]. Taking into account these
uncertainties proves to be important for structural damage diagnosis [SM11, SM13]. Based
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Minimum Damage Minimum Damage 

Figure 5.1 – Representation of damage test values for two different s-values on a simulated plate.

Minimum Damage Minimum Damage 

Figure 5.2 – Representation of damage test values for two different s-values on a real beam.

on these considerations, a statistical extension of the SDDLV method was developed for the
actual decision if an element is damaged, which depends on very few parameters and takes the
intrinsic uncertainty of the stress computation associated to the measurements into account.
Still, one input to the algorithm is the Laplace domain variable s where the transfer function
matrix difference is evaluated. Heuristic rules have been derived in [Ber10] for the optimal
choice of this Laplace variable and the aggregation of results for different Laplace variables
was suggested to increase the robustness of the approach. Different choices of s lead to
different localization results due to a different impact of the modal truncation. As illustrated
by the localization examples in Figures 5.1 and 5.2, bad choices of s provide erroneous results
and consequently a wrong damage location at the minimum test values close to zero.

Taking into account uncertainties not only improves the statistical robustness of the ap-
proach, it also aims at decreasing the number of potential false alarms. Indeed, the SDDLV
approach of [Ber10] only guarantees that elements whose damage index is significantly non
zero are not afflicted with damage. Nonetheless, it can happen that because of noise, model
reduction, sparse instrumentation or other limitations the ensemble of elements with close
to zero damage index is too large to help decision making in real applications. It was seen
in the previous Chapter 4 that using uncertainty information helps increasing the contrast
between both ensembles. Using different Laplace variables s as explained above should fur-
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ther increase the robustness of the approach and help the decision, which is an important
extension of the previous Chapter 4 where just one Laplace variable is used.

The current Chapter extends the previous Chapter 4 by focusing on a robust statistical
approach, where multiple damage localization results computed at different Laplace variables
will be aggregated with respect to their statistical relevance. This will remove a part of the
errors and uncertainty related to the choice of the Laplace domain variable. The underlying
SDDLV approach using subspace identification and the statistical methodology are explained,
before the robust statistical approach is derived. First, the SDDLV approach is introduced as
an output-only method for damage localization in Section 5.2. In Section 5.3 the necessary
system identification step with the construction of parametric system matrices from identified
modes is explained. Then, the robust statistical approach for the aggregation of damage
localization results is derived in Section 5.4. In Section 5.5 the new method is successfully
applied on numerical and real cases. Finally, some conclusions of this work are presented in
Section 5.6.

5.2 The SDDLV approach

The behavior of a mechanical structure is assumed to be described by a linear time-invariant
(LTI) system and represented by the corresponding continuous-time state-space model (2.20){

dx(t)
dt = Acx+Bce

y = Ccx+Dce
, (5.1)

where dx(t)
dt ∈ Rn is the state, y ∈ Rr is the output, Ac ∈ Rn×n is the state transition matrix,

Bc ∈ Rn×r is the input influence matrix, Cc ∈ Rr×n is the output mapping matrix, Dc ∈ Rr×r
is the direct transmission matrix. The fictive force e(t) acts only in the measured coordinates
and that re-produce the measured output, n is the system order and r is the observed outputs
coordinates. If all the modes of the LTI system were identified then n = 2d. In practice this
is seldom the case, so what one gets from identification is a reduced model order n � 2d.
Since SDDLV is an output-only method, the non-identified matrices Bc and Dc are used in
order to derive properties of the transfer matrix [Ber10].

Consider now the transfer matrix of model (5.1), which is given by

G(s)
def
= R(s)Dc, (5.2)

where

R(s) = Cc(sI −Ac)−1

[
CcAc

Cc

]† [
I

0

]
(5.3)

with G(s) ∈ Cr×r and I the identity matrix.

Using (5.2) for the damaged (variables with tilde) and reference states, respectively, and
dropping the Laplace variables s for simplicity, gives the difference in the transfer matrices
δG = G̃ − G. Neglecting Dc in (5.2) in both damaged and reference states (see [Ber10] for
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more details), the desired null space of δG has the same null space of δRT = R̃T −RT . Then,
the null space of δRT is finally obtained from the Singular Value Decomposition (SVD)

δRT =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]H
, (5.4)

where U,Σ, V ∈ Cr×r, Σ2 ≈ 0 and V = (v1, . . . , vr) = [V(1) V(2)] the right singular vectors.
Note that V(1): (v1, v2, ..., vt) is the nonzero singular vectors and V(2): (vt+1, vt+2, ..., vr) is
the ideally zero singular vectors (in practice small), where a desired load vector v in the null
space of δRT is then any linear combination of the vectors in V(2), e.g. v = vr. For any chosen
value s, the load vector v = v(s) in the null space of δG(s) can be computed as described
above, where only model (5.1) has been used without using information about the geometry
of the structure.

The computation of the stress implies knowledge of the model of the structure (coming
e.g. from a FEM) and is a linear function of displacement. The function that maps the
displacement to the stress resultant is denoted as matrix Q ∈ Rd×d, the transfer matrix

is Gmodel(s)
def
= (Ms2 + Cs + K)−1 of model of LTI system in the reference state, and

the sensors mapping matrix P ∈ Nd×r with 1’s where each line (position in the structure)
and each column (sensor number) agree and zeros elsewhere. Let this function be given by
Lmodel(s) = QGmodel(s)P , such that the stresses S(s) ∈ Cd for a chosen value s write as
[Ber10]

S(s) = Lmodel(s)v(s). (5.5)

If an element at some degree of freedom j is completely damaged, the resulting stress Sj(s)
at coordinate j from the load v(s) is zero [Ber10]. Thus, the stresses in S(s) are considered
as damage localization residuals, where the entries close to zero correspond to elements that
are potentially (but not necessarily) damaged.

Since damaged elements lead to stress values that are (close to) zero, but zero stress does
not necessarily indicate damage [Ber02] on one side, and due to truncation and model errors
on the other side, it is recommended to compute the load vector v(s) and subsequently the
stress vector S(s) for several values of the Laplace variable s. Robustness of the damage
localization approach is then achieved by aggregating the results.

Let the Laplace variables si, i = 1, . . . , κ, be given. To minimize modal truncation errors,
they should be chosen within a vicinity of the identified poles of the structure in the complex
plane, but not too close to them [Ber10]. After the identification of the system matrices Ac
and Cc in the reference and Ãc and C̃c in the damaged states, the computations (5.3)–(5.5)
are repeated for each value si to obtain the respective stress vectors S(si).

To decide if an element is damaged, the information of the corresponding entries in the
stress vector S(si) for all i = 1, . . . , κ can be used now. In [Ber10] the aggregation

S̄j =

κ∑
i=1

|Sj(si)| (5.6)

for each entry j was suggested. In Section 5.4.5 we propose a new aggregation scheme based
on the uncertainties of the system identification results.
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5.3 SSI and system modes selection

This Section is developed using baselines on the background theory of Chapter 3 where
procedures for the system identification and uncertainty quantification are described.

Estimates of the system matrices Ac and Cc from output-only measurements of the
continuous-time system (5.1) are required for the damage localization strategy from the pre-
vious section. Stochastic subspace-based system identification methods are efficient tools for
this task, identifying the discrete-time state-space model{

xk+1 = Adxk + vk

yk = Cdxk + wk,

where Ad = exp(Acτ), Cd = Cc, τ is the time step and vk and wk are process and measurement
noise, respectively. In the first step, we identify estimates Âd and Ĉd of the system matrices at
different model orders from the measurements using covariance-driven subspace identification
[BF85, PDR99, DM12]. Due to noise, these model orders need to be relatively high and
furthermore noise modes appear in the results. From these results at most r mode pairs
are selected in a so-called stabilization diagram in the second step, such that the condition
2r ≥ n is fulfilled. Finally, the corresponding eigenvalues of the continuous-time system and
the mode shapes are used to build the desired estimates Âc and Ĉc in the last step, rejecting
the noise modes.

5.3.1 Step 1: System identification

For reference-based subspace identification a subset of the sensors can be selected in order to
reduce the computation effort, the so-called reference sensors or projection channels [PDR99]
indicated by (ref). Define the theoretical cross-correlation between the state and the outputs

G
def
= E(xk+1y

(ref)T
k ), the output correlation Ri

def
= E(yky

(ref)T
k−i ) = CdA

i−1
d G and the block

Hankel matrix

H def
=


R1 R2 . . . Rq

R2 R3 . . . Rq+1
...

...
. . .

...

Rp+1 Rp+2 . . . Rp+q

 def
= Hank(Ri), (5.7)

where the parameters p and q are given such that pr ≥ qr(ref) ≥ n with usually p = q.
Then, matrix H possesses the well-known factorization property H = OC into the matrices
of observability and controllability

O def
=


Cd

CdAd
...

CdA
p
d

 and C def
=
[
G AdG . . . Aq−1

d G
]
,
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respectively. From O, the observation matrix Cd is obtained in its first block row. Matrix
Ad is obtained from the shift invariance property of O as the least squares solution

Ad = O↑†O↓, where O↑ def
=


Cd

CdAd
...

CdA
p−1
d

 , O↓ def
=


CdAd

CdA
2
d

...

CdA
p
d

 . (5.8)

and † denotes the Moore-Penrose pseudoinverse.

Using measurement data, the correlation estimates R̂i = 1/N
∑N

k=1 yky
(ref)T
k−i , i =

1, . . . , p + q, are computed to fill the Hankel matrix estimate Ĥ = Hank(R̂i) in (5.7). The
observability matrix estimate Ô is obtained from a thin SVD of Ĥ and its truncation at the
desired model order as

Ĥ =
[
E1 E2

] [S1 0

0 S2

][
F T1
F T2

]
, Ô = E1S

1/2
1 . (5.9)

Then, the system matrix estimates Âd and Ĉd are obtained from (5.8). For simplicity, Sections
5.3.2 and 5.3.3 are written for the true parameters without ,̂ but hold in the same way for
the estimates.

5.3.2 Step 2: Mode selection

From the system matrices Ad and Cd, the eigenvalues λdi and mode shapes ϕi for each mode
i are retrieved from

det(Ad − λdi I) = 0, Adφi = λdi φ, ϕi = Cdφi. (5.10)

The eigenvalues λci of the system matrix Ac of the respective continuous-time system are then

λci =
1

τ
ln(λdi ) (5.11)

and the natural frequencies fi and damping ratios ξi are obtained from

fi =
|λci |
2πτ

, ξi =
−Re(λci )

|λci |
. (5.12)

The set of identified modes does not contain only physical (true) modes of the structure
in practice, but also spurious modes due to non-white noise and non-stationary excitation, a
low signal-to-noise ratio, or a wrong selection of the model order. The standard technique for
discriminating spurious from physical modes is the use of a stabilization diagram, where the
modes are computed at multiple subsequent over-estimated model orders and the identified
frequencies are plotted versus the model order [PDR99, DM12]. This multi-order computation
is done by truncating at the desired model orders in (5.9) and the subsequent computation
of the modes at these orders in (5.8), (5.10)–(5.12) [PDR99]. A fast multi-order computation
was described in [DM12]. Finally, under the premise that the true system modes remain quite
constant at different model orders, while spurious modes vary, the true structural modes can
be chosen in the stabilization diagram based on user-defined stabilization criteria [RHDR12].
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5.3.3 Step 3: Final system matrices

The system modes appear in conjugated complex pairs. Let m be the number of mode pairs
identified from the stabilization diagram, where r ≥ m to satisfy the constraint 2r ≥ n = 2m.
Let (λci , ϕi) and (λci , ϕi), i = 1, . . . ,m, be the identified modes. Then, the system matrices in
the modal basis write as Ac = diag(λc1, . . . , λ

c
m, λ

c
1, . . . , λ

c
m) and Cc = [ϕ1 . . . ϕm ϕ1 . . . ϕm].

Since the system matrices (Ac, Cc) are defined up to a change of basis (T−1AcT,CcT ), we
can equivalently define the real-valued system matrices

Ac =

[
Re(Λc) −Im(Λc)

Im(Λc) Re(Λc)

]
, Cc =

[
Re(Φ) Im(Φ)

]
, (5.13)

where Λc = diag(λc1, . . . , λ
c
m) and Φ = [ϕ1 . . . ϕm], obtained from the chosen modes.

5.4 Uncertainties and SDDLV robust statistical testing

For the SDDLV damage localization algorithm, estimates of the system matrices Ac and Cc
are obtained in the reference and damaged states from a finite number of data samples. The
identification of these matrices is subject to uncertainties due to the unknown excitation
(being modeled as white noise), measurement noise and finite data length. Methods for
the uncertainty quantification of the estimates from stochastic subspace identification in the
context of structural vibration analysis are given in [RPDR08, DLM13, DM13].

Since the stress vector estimate Ŝ(si) is computed from the estimates Âc and Ĉc in both
reference and damaged states, the uncertainties from the system identification are propagated
to uncertainties in the stress vector. These uncertainties may be crucial in deciding whether
an element is potentially damaged, i.e. whether the stress of an element is in fact zero or
not, while the computed stress value is just close to zero. The uncertainty propagation from
system identification results in general to the stress Ŝ(si) for a single value of the Laplace
variable si was analyzed. In this section, the uncertainty propagation is made explicit for
the chosen subspace identification algorithm from Section 5.3. Furthermore, expressions
for the uncertainty propagation to the stress vector Ŝ(si) computed at multiple values si,
i = 1, . . . , κ, are derived. With these means, the aggregation of the results and the test for
damaged elements can be performed based on statistical criteria. Finally, the respective test
is derived.

5.4.1 Principles of covariance computation and uncertainty propagation

The uncertainties in the measurement data are propagated to the damage localization re-
sults. The former can be quantified by a covariance estimate Σ̂H = cov(vec(Ĥ)) of the
Hankel matrix, where vec(·) denotes the column stacking vectorization operator. The es-
timate Σ̂H can be directly estimated from the data as described in [RPDR08, DM13] by
separating the available data of length N into nb blocks of length Nb, such that N = nbNb.

Then, the Hankel matrix Ĥ(j) = Hank(R̂
(j)
i ) in (5.7) is computed on the correlations

R̂
(j)
i = 1/Nb

∑jNb
k=1+(j−1)Nb

yky
(ref)T
k−i on each block. The Hankel matrix on the entire dataset
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hence yields Ĥ = 1
nb

∑nb
j=1 Ĥ(j), and the covariance estimate

Σ̂H =
1

nb − 1

nb∑
j=1

vec
(
Ĥ(j) − Ĥ

)
vec
(
Ĥ(j) − Ĥ

)T
.

is obtained.
All computed quantities in Sections 5.2 and 5.3 are ultimately functions of the Hankel

matrix. Let f be such a vector valued function of Ĥ. Its covariance can be calculated using
the Taylor approximation as

f(Ĥ) ≈ f(H) + Jf,H vec(Ĥ − H) ⇒ cov(f(Ĥ)) ≈ Jf,H Σ̂H J Tf,H (5.14)

with the sensitivity matrix Jf,H
def
= ∂f(H)/∂vec(H), which can be obtained analytically

[PGS07, RPDR08, DM13]. A consistent estimate is obtained by replacing the theoretical
variables (such as H) with consistent estimates obtained from the data (such as Ĥ) in the
computation of the sensitivity matrix. With the operator ∆ we define (theoretical) first-order
perturbations, yielding ∆f = Jf,H vec(∆H). Using this relationship, the desired sensitivity
matrix can be obtained and used for the covariance computation in (5.14). Like this, the
covariance of the Hankel matrix can be propagated to any parameters that are dependent on
the data, in particular to the modal parameters and the stress estimate Ŝ(si).

In the following, the sensitivity and covariance computation is done for the theoretical
values (like H, Ac, Cc, S(si)). Estimates of the sensitivities and covariances are then obtained
by plugging in the estimates obtained from the data (like Ĥ, Âc, Ĉc, Ŝ(si)).

The following notation and properties will be used. ⊗ denotes the Kronecker product,
having the property vec(AXB) = (BT ⊗ A)vec(X). Ia denotes the identity matrix of size
a×a, and 0a,b denotes the zero matrix of size a×b. eaj ∈ Ra denotes the j-th unit vector (being

column j of Ia). The permutation matrix Pa,b
def
=
[
Ia ⊗ eb1 Ia ⊗ eb2 . . . Ia ⊗ ebb

]
∈ Rab×ab

is defined with the property
vec(XT ) = Pa,b vec(X) (5.15)

for any matrix X ∈ Ra×b. Finally, for dealing with the uncertainties of complex-valued
matrices we introduce an equivalent real-valued notation by defining

MRe
def
=

[
Re(M) −Im(M)

Im(M) Re(M)

]
, Mre

def
=

[
Re(M)

Im(M)

]
(5.16)

for any matrix M as in [PGS07]. Then, for example, a complex-valued equation Ax = b is
equivalent to ARe xre = bre, and the sensitivities of the real-valued matrices can be derived.

5.4.2 Covariance of system matrices from subspace identification

For the covariance computation of Ac and Cc, a perturbation ∆H of the Hankel matrix in
(5.7) is propagated to a perturbation ∆λci and ∆ϕi in the selected modes i = 1, . . . ,m (see
Section 5.3.2), yielding

∆λci = Jλci ,H vec(∆H), ∆ϕi = Jϕi,H vec(∆H),
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where the sensitivities Jλci ,H ∈ C
1×h and Jϕi,H ∈ Cr×h with h = (p + 1)qrr(ref) have been

derived in detail in [RPDR08, DM13]. Plugging these expressions into (5.13) and vectorizing
the system matrices leads to

vec(∆Ac) = JAc,H vec(∆H), vec(∆Cc) = JCc,H vec(∆H), (5.17)

where

JAc,H = P1



Re(Jλc1,H)
...

Re(Jλcm,H)

Im(Jλc1,H)
...

Im(Jλcm,H)


, JCc,H =



Re(Jϕ1,H)
...

Re(Jϕm,H)

Im(Jϕ1,H)
...

Im(Jϕm,H)


, P1 =



E1
...

Em

F1
...

Fm


,

and the selection matrix P1 is composed of the matrices

Ej =

[
emj e

mT
j 0m,m

0m,m emj e
mT
j

]
, Fj =

[
0m,m −emj emT

j

emj e
mT
j 0m,m

]
.

Then, the covariance of the system matrices can be obtained from (5.17) as

ΣAc,Cc
def
= cov

([
vec(Ac)

vec(Cc)

])
=

[
JAc,H
JCc,H

]
ΣH

[
JAc,H
JCc,H

]T
. (5.18)

5.4.3 Covariance of system matrices

In the next step, the sensitivity JR(s),Ac,Cc of the matrix R(s) with respect to the system
matrices Ac and Cc is derived, which is needed for the stress computation in (5.4)–(5.6). In
the following we generalize the sensitivity computation for acceleration data to the simplified
and more general formula of R(s) in (5.3). Define

Z(s) = Cc(sI −Ac)−1, H =

[
CcAc

Cc

]
, L =

[
I

0

]
,

such that R(s) = Z(s)H†L. Applying the product rule, a first-order perturbation of R(s)
yields

∆R(s) = [∆Z(s)]H†L+ Z(s)[∆(H†)]L. (5.19)

Both terms ∆Z(s) and ∆(H†) are now developed as functions of ∆Ac and ∆Cc, which are
already given in (5.17).

Using the relation ∆(X−1) = −X−1[∆X]X−1, the first term yields

∆Z(s) = [∆Cc](sI −Ac)−1 − Cc(sI −Ac)−1[∆(sI −Ac)](sI −Ac)−1

= [∆Cc](sI −Ac)−1 + Z(s)[∆Ac](sI −Ac)−1. (5.20)
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For the second term, the perturbation of the pseudoinverse H† yields

vec(∆(H†)) = JH†vec(∆H), (5.21)

where the sensitivity JH† is given in Chapter 4. Define the selection matrices S1
def
= In ⊗

[Ir 0r,r], S2
def
= In ⊗ [0r,r Ir] such that

vec(∆H) =
[
ST1 ST2

] [vec(∆(CcAc))

vec(∆Cc)

]
= ST1 vec(∆(CcAc)) + ST2 vec(∆Cc),

and together with (5.21)

vec(∆(H†)) = JH†ST1 vec(∆(CcAc)) + JH†ST2 vec(∆Cc),

where ∆(CcAc) = [∆Cc]Ac + Cc[∆Ac]. Combining this result with (5.19) and (5.20) yields
subsequently

vec(∆R(s)) =
[
JR(s),Ac JR(s),Cc

] [vec(∆Ac)

vec(∆Cc)

]
,

where

JR(s),Ac
def
=
(
M(s)T ⊗ Z(s)

)
+ (LT ⊗ Z(s))JH†ST1 (In ⊗ Cc),

JR(s),Cc
def
=
(
M(s)T ⊗ Ir

)
+ (LT ⊗ Z(s))JH†

(
ST1 (ATc ⊗ Ir) + ST2

)
,

with M(s)
def
= (sI − Ac)−1H†L. Stacking the real and imaginary parts of vec(∆R(s)T ), it

follows from (5.15) and (5.16)

(vec(∆R(s)T ))re = JR(s)

[
vec(∆Ac)

vec(∆Cc)

]
, (5.22)

where

JR(s) =

[
Pr,r 0r2,r2

0r2,r2 Pr,r

][
Re(JR(s),Ac) Re(JR(s),Cc)

Im(JR(s),Ac) Im(JR(s),Cc)

]
,

and finally with (5.18)

cov
(
(vec(R(s)T ))re

)
= JR(s) ΣAc,Cc J TR(s).

5.4.4 Covariance of stress vector

With the computations in the previous section, the covariance associated to the matrices
R(s) and R̃(s) can be obtained in the reference and damaged states of the structure for a
chosen value s. In the next step, these covariances are propagated to the load vector v(s) in
the null space of δR(s)T = R̃(s)T −R(s)T and finally to the stress vector S(s), as computed
in (5.4)–(5.5).
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The covariance propagation to the null space vector v(s) is based on the relation ∆v(s)re =
Jv(s) (vec(∆δR(s)T ))re, where Jv(s) is derived in Chapter 4. Then, from (5.5) it follows

∆S(s)re = JS(s) (vec(∆δR(s)T ))re,

where
JS(s) = Lmodel(s)Re Jv(s),

and together with (5.22) it follows

∆S(s)re = JS(s) JR̃(s)

[
vec(∆Ãc)

vec(∆C̃c)

]
− JS(s) JR(s)

[
vec(∆Ac)

vec(∆Cc)

]
. (5.23)

Since the system matrices from the damaged and reference states are obtained on different
statistically independent measurements, the covariance expression

ΣS(s)
def
= cov(S(s)re) = JS(s) JR̃(s) ΣÃc,C̃c

J T
R̃(s)
J TS(s) + JS(s) JR(s) ΣAc,Cc J TR(s) J

T
S(s) (5.24)

follows.

5.4.5 Statistical aggregation and evaluation of stress results

Since the computation of the stress S(si) at multiple Laplace variables si, i = 1, . . . , κ,
increases the information content on the damage location (see Section 5.2), a joint evaluation
of these stresses increases the robustness of the statistical approach, where only one Laplace
variable s was considered. The joint statistical evaluation requires the covariance computation
of the stacked (real-valued) stress results

S
def
=


S(s1)re

...

S(sκ)re

 . (5.25)

Stacking (5.23) for each si accordingly leads to

∆S =


JS(s1)JR̃(s1)

...

JS(sκ)JR̃(sκ)


[

vec(∆Ãc)

vec(∆C̃c)

]
−


JS(s1)JR(s1)

...

JS(sκ)JR(sκ)


[

vec(∆Ac)

vec(∆Cc)

]
,

and, analogously to (5.24), to the covariance ΣS
def
= cov(S) with

ΣS =


JS(s1)JR̃(s1)

...

JS(sκ)JR̃(sκ)

 ΣÃc,C̃c


JS(s1)JR̃(s1)

...

JS(sκ)JR̃(sκ)


T

+


JS(s1)JR(s1)

...

JS(sκ)JR(sκ)

 ΣAc,Cc


JS(s1)JR(s1)

...

JS(sκ)JR(sκ)


T

.

(5.26)
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While in previous works [Ber10] the stress values S(si) at multiple Laplace variables were
aggregated empirically as in (5.6), the covariance expression (5.26) allows a new statistical
aggregation scheme for damage localization based on a statistical test for each element j of
the structure. In this scheme, all stress values at the different Laplace variables in S corre-
sponding to an element j are tested for being 0 (and thus possibly damaged) in a hypothesis
test, where the computed stress values are pondered individually by their covariance. A scalar
test variable χ2

j is computed for each element j in such a test as follows.

First, the selection matrix for retrieving all entries in vector S corresponding to an element
j is described. Let Tj ∈ Rnj×e be the matrix that selects all entries computed for an element
j in the stress vector S(s). The number nj of these stress resultants for an element j depends
on the kind of the element and the way of the computation of the stress resultant(s), which
is up to the user. Accounting for the real and imaginary parts of the stress vector, and
the stacking for all Laplace variables in (5.25), the vector Sj containing all stress values
corresponding to an element j is

Sj = Pj S ∈ R2κnj where Pj = Iκ ⊗

[
Tj 0nj ,e

0nj ,e Tj

]
.

Second, the covariance of vector Sj is selected from ΣS accordingly as

Σj = Pj ΣS P
T
j .

Since an estimate of vector Sj is asymptotically Gaussian distributed, it can finally be tested
for being 0 and thus potentially damaged with the χ2-test variable

χ2
j = S

T
j Σ−1

j Sj , (5.27)

which has 2κnj degrees of freedom and non-centrality parameter 0 in the damaged case.
Thus, the scalar variable χ2

j contains a statistically meaningful aggregation of all stress results

computed for an element j, and it can be decided if an element j is potentially damaged if χ2
j

is below a threshold. Such a threshold can be theoretically obtained from the properties of
the χ2-distribution for a desired type I or type II error, but for practical purposes it is often
sufficient to announce potential damage locations in the elements j with the lowest values of
χ2
j .

5.5 Applications

The damage localization algorithm with the statistical aggregation of the SDDLV results from
Section 5.4.5 has been applied on two applications of increasing difficulty, first on a numerical
simulation of a plate and second on measurements of a real beam in a lab experiment. For
each application, the statistical aggregation of the computed stresses in Equation (5.27) from
Section 5.4.5 is compared to the previously suggested deterministic aggregation in Equation
(5.6) from Section 5.2. Stresses close to zero correspond to potentially damaged elements.

The different Laplace variables (s-values) considered in theses applications are empirically
chosen within the range of the identified poles as suggested in [Ber10] and no criterion is
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available for the pertinence of the choice of such values. For both applications, the presented
results include the information coming from SDDLV at all different s-values mixed with the
respective aggregations. Since damage localization with these methods corresponds to finding
the elements with the lowest aggregated stress values, the absolute values of (5.6) and (5.27)
are limited to some level to increase the scale contrast on the potentially damaged elements.
All stress results are then normalized to a scale between 0 (possibly damaged, red) and 1
(not damaged, blue) for a visual presentation. The results were obtained in Matlab 2011b,
where the entire computation time of the algorithms was less than a minute, and only a few
seconds after the uncertainty computation of the system identification results.

5.5.1 Simulated plate

The considered plate model has the dimensions 150 cm × 100 cm × 1 cm. Its edges are fixed
and it consists of 100 plate elements as depicted in Figure 5.3. Damage in the plate was
simulated by decreasing the stiffness in element “P66” by 50%. For both the undamaged and
the damaged states, acceleration data of length N = 24,000 with a sampling frequency of
400 Hz was generated at the ten sensor positions shown in Figure 5.3. The data was generated
from band limited white noise excitation until 150 Hz, and 5% white measurement noise were
added on the outputs.
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Figure 5.3 – Geometry of the plate with ten sensor positions.

From the system identification as described in Section 5.3, five well-estimated modes were
chosen based on the frequencies in a stabilization diagram for both the undamaged and the
damaged state, which are shown in Table 5.1. Then, matrices Âc and Ĉc in both states
are filled and their uncertainty is obtained from the same dataset as described in Sections
5.4.1–5.4.2. The matrix Lmodel(s) in (5.5) is obtained from the FEM of the plate model, such
that the moments mxx and myy are computed as the stress resultants for each of the 100
plate elements from a load vector at the sensor coordinates. Then, the real and imaginary
parts of the stress vector S(si) containing these moments and their covariance is computed
for the Laplace variables s1 = 1 + 40i, s2 = 1 + 140i, s3 = 1 + 200i, s4 = 1 + 250i. Thus,
16 stress related values are computed for each plate element j (real and imaginary parts of
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Table 5.1 – Identified frequencies [Hz] of simulated plate in reference and damaged states.

Mode 1 2 3 4 5

Mode description Bending Bending Torsion Bending Bending

Reference state 34.44 65.77 105.8 117.8 134.9

Damaged state 34.25 65.68 105.4 117.4 134.7

2 moments at 4 Laplace variables). These values are aggregated statistically in the variable
χ2
j in (5.27) for each element j with the new method described in this Chapter. Also, the

previous deterministic aggregation of these values in (5.6) is performed for a comparison.
Both results are normalized and presented in Figures 5.4(a) and 5.4(b), respectively.

While the damage localization fails with deterministic aggregation in Figure 5.4(b), the
damage is successfully localized with the statistical aggregation in Figure 5.4(a). Element
P66 is well classified as damaged and indeed has the lowest χ2 indicator value, close in the
scale to 0. Also, elements in the vicinity of P66 have relatively low values, since close elements
in the plate are hardly separable. Comparing the results of the statistical and deterministic
aggregation in Figures 5.4(a) and 5.4(b), respectively, shows the importance of the statistical
evaluation of the computed stress results, which leads to a significant improvement of the
damage localization procedure.

(a) Statistical aggregation – damage is found. (b) Deterministic aggregation – damage is not found.

Figure 5.4 – Damage localization in simulated plate. The black box contains the damaged element.

5.5.2 Real beam experiment

In a lab experiment, vibration tests were conducted on a beam (Figure 5.5) that was artifi-
cially damaged. The experiments were conducted by Brüel & Kjær as a benchmark for dam-
age localization. The considered beam is made of PVC. Its dimensions are 50 cm×8 cm×1 cm
and it is fixed on one side. For both the undamaged and the damaged states, acceleration
data of length N = 295,936 with a sampling frequency of 8192 Hz was recorded under white
noise excitation by a shaker. The available data was downsampled and decimated by factor
6. The beam is equipped with 27 sensors on the top and on the bottom (see Figure 5.5) as
follows:
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• Sensors 1, 4, 7, ..., 25 are installed on the top of the beam and are vertical accelerome-
ters.

• Sensors 2, 5, 8, ..., 26 are installed on the top of the beam and are horizontal accelerom-
eters.

• Sensors 3, 6, 9, ..., 27 are installed on the bottom of the beam and are horizontal
accelerometers.

Since the shaker acts in the horizontal direction, the vertical accelerometers are dismissed
and only the 18 accelerometers in horizontal direction are used for the following damage
localization.

Figure 5.5 – Experimental setup of the beam.

A FEM of the beam in the reference state was made consisting of 72 plate elements as
depicted in Figure 5.6, from which matrix Lmodel(s) is obtained. The computation of the
stress resultant using the model is performed analogously to the previous section. Note that
the beam from Figure 5.5 is rotated for convenience in the model in Figure 5.6, where the
sensors on the top are now on the bottom and vice versa.

The beam was damaged by drilling holes, which are located around positions P02 and P20
in the model (see Figure 5.6). In a first scenario, three holes were drilled, and the damaged
was increased to 5 holes in a second scenario around the same location. For drilling each new
hole, the beam was removed and repositioned, where the the shaker position was also changed.
Note that in the experiments the shaker influences the properties of the beam since it may
change the mass at the shaker position, which is slightly different between the undamaged
and the damaged states. Therefore, damage may also be localized in the vicinity of the shaker
position and should be discarded. This effect would not appear in real operational cases.

From the measurement data, eight well-estimated modes were chosen in the undamaged
and the two damaged states with the procedure described in Section 5.3. The corresponding
frequencies for each chosen mode are presented in Table 5.2. Then, the matrices Âc and Ĉc
and their covariances are obtained in the different states. The stress resultants and their
covariances are computed for two different sets of Laplace variables si of different size, one
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 (9)  (12)  (15)  (18)  (21)  (24)  (27) 

(8) (11) (14) (17) (20) (23) (26) 

Damaged 
Region Figure 5.6 – Model of the beam with 18 sensors and the damage location.

Table 5.2 – Identified frequencies [Hz] of beam in reference and damaged states.

Mode 1 2 3 4 5 6 7 8

Mode description Bending Bending Torsion Torsion Bending Bending Bending Bending

Reference state 16.52 84.17 173.3 206.5 286.3 326.6 529.7 561.8

Damaged state: three holes 16.17 83.99 172.1 204.4 284.7 326.6 526.9 555.9

Damaged state: five holes 15.79 83.80 168.5 203.5 265.0 322.5 523.7 550.8

with four values si ∈ {1 + 3i, 1 + 110i, 1 + 520i, 1 + 1600i} and another one with ten values
si ∈ {1 + 3i; 1 + 50i; 1 + 110i; 1 + 530i; 1 + 560i; 1 + 700i; 1 + 855i; 1 + 900i; 1 + 940i; 1 + 1600i}.
Then, the aggregation for the localization is performed with the new statistical method in
(5.27) and compared to the deterministic aggregation in (5.6). The results are visualized in
Figures 5.7 and 5.8 for both sets of Laplace variables, respectively.

In both figures it can be seen that the damage localization procedure with the new statis-
tical aggregation (Figures (a), (c)) indicates strongly damage in the damaged elements P02
and P20, and sometimes in the directly adjacent elements, while the localization based on
the deterministic aggregation of the stress results (Figures (b), (d)) is not successful. The
aggregated results that are visualized in both figures often spread within the vertical direction
of the beam, since damages at the same horizontal, but at different vertical coordinates are
hard to distinguish with the used sensor and shaker layout. Note that the minimal test values
are still found in the lower part of the beam, correctly indicating the damage location with
the new procedure, while the small extent of the damage, its proximity to the fixed part of
the beam and the lack of sensors on the vertical axis impose difficulties for the localization
approach. Note also that change in the position of the shaker between the reference and
damaged states is clearly visible as a damage in the middle of the beam (corresponding to
elements in the vicinity of P23 and P41), which should be discarded.

An increase in the damage extent leads to localization results with a better contrast, as
can be observed when comparing Figures 5.7(a) and (c), as well as Figures 5.8(a) and (c).
The use of more Laplace variables for the statistical aggregation of the stress results leads
also to clearer localization results in Figures 5.8(a) and 5.8(c), compared to Figures 5.7(a)
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(a) Statistical aggregation, three holes. (b) Deterministic aggregation, three holes.

(c) Statistical aggregation, five holes. (d) Deterministic aggregation, five holes.

Figure 5.7 – Damage localization in beam using four s-values, with comparison of the new statistical aggregation
(left) and the deterministic (right) aggregation, and different damage levels (top: three holes, bottom: five holes
within the oval).

and 5.7(c), respectively.

Summarizing the results, it is found that the deterministic aggregation of the stress vectors
from the SDDLV approach could not provide sufficient resolution for damage localization in
this experiment, while the statistical evaluation and aggregation of the same stress vectors
with the new method described here made a correct damage localization possible.

5.6 Conclusion

In this Chapter, we have formalized a damage localization approach combining structural
model information and data driven uncertainties computation. The approach has been ap-
plied on some relevant examples, both numerical and measured in a real case study in the lab.
The main focus of the Chapter has been the robustness of the method with respect to the
fusion of damage localization results computed at different Laplace variables in the complex
plane. The selection of these Laplace variables itself is not addressed here. It has been shown
that the statistical aggregation of many values leads to a better localization information than
a purely heuristic summation of values as previously done. Future works will focus on the
testing of the method on structures in the field, where the FEM size and the identification
parameterization are largely different.
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(a) Statistical aggregation, three holes. (b) Deterministic aggregation, three holes.

(c) Statistical aggregation, five holes. (d) Deterministic aggregation, five holes.

Figure 5.8 – Damage localization in beam using ten s-values, with comparison of the new statistical aggregation
(left) and the deterministic (right) aggregation, and different damage levels (top: three holes, bottom: five holes
within the oval).

5.7 Dissemination

Parts of this chapter have been submitted to:

[MDBM13b] L. Marin, M. Döhler, D. Bernal, and L. Mevel. Robust statistical damage
localization with stochastic load vectors. Structural Control and Health Mon-
itoring, 00:1–29, 2013. Under revision.



Chapter 6

Robust statistical decision making
applied to influence lines damage

localization

This Chapter is dedicated to the last contribution of this thesis, consisting on the development
of a robust statistical decision making method for damage localization in civil structures based
on the sensitivity-based rules (Chapter 3, Section 3.4) to overcome the inherent uncertainties
in the Influence Lines Damage Localization (ILDL) approach (Chapter 2, Section 2.4) for
different chosen Laplace variable. The whole method is validated in numerical simulations
and real experiment of structures.

6.1 Introduction

Based on changes in the flexibility matrices δG between the reference and damaged states,
a systematic approach for damage localization that interrogates these changes using output-
only data is the Stochastic Dynamic Damage Location Vector (SDDLV) approach [Ber10].
Vectors in the kernel of δG, which can be obtained from the output-only data, are applied
as loads to a finite element model (FEM) and lead to stress resultants that are zero over
closed regions that contain the damage. Since the image and the kernel are complementary
subspaces, the information on the damage location in the kernel is also contained in the image
of δG.

The Influence Line Damage Location (ILDL) theorem, recently presented in [Ber13],
shows that the image of δF is a basis for the influence lines (IL) for the damage location
resultants. Damage is thus located at points where the subspace angle between the image
and the IL computed from the FEM is zero (or small when δF is approximated). Although
the kernel and the image contain the same complementary information from δF in theory, in



112 Chapter 6

practice only an estimate of this matrix is available. Currently, empirical thresholds are used
in the ILDL approach for deciding at which elements damage is located (i.e. where subspace
angles are close to zero) and no stochastic approach is taken into account [Ber13].

In this chapter, the computation of the subspace angle is extended to the stochastic
case and also to the uncertainty estimation originated from the measurement data with
a sensitivity based method [RPDR08]. Then, statistical decision making on the damage
locations replaces empirical thresholds. The chapter is organized as follows. In Section 6.2 the
ILDL approach is introduced as a method for damage localization of mechanical structures
from output-only signal. Then, in Section 6.3, the covariance of the system matrices is
propagated to the damage localization residuals and a robust statistical approach for the
aggregation of damage localization results is derived. Numerical and practical applications
are provided in Section 6.4. Finally, in Section 6.5, some conclusions of this chapter are
presented.

6.2 The ILDL approach

An influence line (IL) is a function that graphs the variation at a specific point on a mechanical
structure in a predefined direction caused by a unit load [Hib09]. Any discontinuity in that
predefined direction represents a potential damaged location in the displacement field. In
this sense, the difference in the displacement field between the reference (undamaged) and
damaged states can be viewed as a discontinuity, leading to potentially damaged locations
[Ber13].

It is shown in [Ber13] that if a structure is loaded by some arbitrary static distribution
and damage appears, while the load remains constant, then the change in the deformation
field, given some assumptions on the nature of the damage, will be identical to that due to
the action of a stress resultant acting on a discontinuity at the damage location. From this
result and the previous argument it is concluded that the change in the deformation field due
to the damage has the shape of the IL for the stress resultant at the location of the damage,
and the deformation field is in the span of the ILs for multiple damage locations.

The step that completes the logical sequence in ILDL is to note that the image of the
change in flexibility matrix δF = F̃ − F between damaged and reference states (variables
with and without tilde) is the span for all possible differences in the displacement field due to
damage. Thus the image of δF is identical to the span of the influence lines associated with
all the damaged locations. In the implementation of the ILDL strategy δF and the influence
lines only need to be evaluated at the sensor coordinates of the structure.

Therefore, damage localization based on the ILDL theorem consists of computing the ILs
of stress resultants at the sensor coordinates for all elements from a finite element model
(FEM) that will be checked for damage, and computing the image of δF from output-only
measurement data. The localization itself is performed by checking each element of the FEM
if its respective IL lies in the image of δF . The ILDL does not directly specify the position of
the damage. Instead, it provides a scheme to decide, given any postulated damage position,
if it is correct or not.

Note that the ILDL approach is complementary to the Stochastic Dynamic Damage Lo-
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cation Vector (SDDLV) approach [Ber10], where loads in the kernel of δF are applied to a
FEM to compute the stress field and damage is localized where the stress is (close to) zero.

6.2.1 Models, parameters and flexibility matrix

The behavior of a structure is assumed to be described by a linear time-invariant (LTI)
dynamical system (2.6) and the equivalent continuous-time state-space model is such as in
(2.20), where the state vector of the structure is x(t) ∈ Rn, y(t) ∈ Rr is the output vector,
the state transition matrix is Ac ∈ Rn×n and Cc ∈ Rr×n is the output mapping matrix.
The parameter n is the system order and parameter r is the number of outputs. Remember
that only matrices Ac and Cc can be obtained from output-only system identification. The
input influence matrix Bc ∈ Rn×r and the direct transmission matrix Dc ∈ Rr×r are used for
theoretical purposes.

The flexibility matrix F cannot be obtained from output-only data since system matrices
Bc and Dc are not available. However, not the change in flexibility δF itself is needed for the
ILDL, but only the image of δF , which can be obtained only from Ac and Cc in the damaged
and reference states as follows [Ber13]. By applying the same transfer matrix in (2.28)

R(s) = Cc(sI −Ac)−1

[
CcAc

Cc

]† [
I

0

]

and assuming that damage does not change the mass of the system (D = D̃) and that D is
invertible, it follows that δF = δRD (with δR = R̃ − R) and thus that the image of δF is
the same as the image of δR.

Then, the image of δR is obtained from the Singular Value Decomposition (SVD)

δR = UΣV H =
[
U1 U2

] [Σ1 0

0 Σ2

] [
V1 V2

]H
, (6.1)

where U,Σ, V ∈ Cr×r, Σ1 > 0 and U = (u1, . . . , ur) = [U1 U2] the left singular vec-
tors. Note that U1: (u1, u2, ..., ut) correspond to the nonzero singular values Σ1, and U2:
(ut+1, ut+2, ..., ur) correspond to the zero singular values (in practice small) Σ2, where a de-
sired image of δR is the matrix (or vector depending on the rank of Σ) in U1. For any chosen
value s, matrix U1 in the image of δF (s) can be computed as described above, where only
model (2.20) has been used without information about the geometry of the structure.

6.2.2 Influence line computation and damage localization

Although either the ILDL or the SDDLV methods suffice to extract all the information for
the damage locations computation in theory, in real situations the flexibility change δR is
approximated and the use of both methods can prove advantageous [Ber13]. In fact, practical
implementation of the SDDLV method demands decision on the effective dimension of the null
space and specific guidelines for this and other implementation issues appear in the [Ber10].
The desired load vector in the null space of (6.1) for the SDDLV is any linear combination of



114 Chapter 6

vectors in V2 (see Chapters 2, Section 2.3). Since the rank is usually low, U1 is related to less
noisy information and the image in the ILDL method can provide more precise information
to find damaged locations in the structure [Ber13].

Such as in 2.3.3, let v(s) be any load vector at the sensor coordinates of the structure.
From such a load stress resultants can be computed from a FEM. The relation between
loads v(s) and the vector of stress resultants S(s) at the desired elements is linear and
can be described by a matrix model Lmodel(s) obtained from the FEM, such that model
S(s) = Lmodel(s)v(s).

For the ILDL approach the IL of each stress resultant in S(s) is required at the sensor
coordinates. Thus, applying the respective unit loads at the sensor coordinates to obtain the
influence for an element j (corresponding to an entry Sj(s) in vector S(s)), it is clear that
the jth row lTj(s) of model Lmodel(s) is the IL of the stress resultant for element j, which is

denoted by the column vector lj(s).
Damage localization with the ILDL approach consists then of checking if an IL lj (com-

puted from the FEM) is contained in the subspace U1 (computed from the data in [Ber13])
for each element. The quantity used in [Ber13] that measures how well lj(s) fits into the
image U1 is the subspace angle

θj = cos−1

∥∥∥∥((lj(s))
HU1

‖lj(s)‖

)∥∥∥∥ (6.2)

where θj = 0 indicates the perfect fit. If j is a damaged element, θj will be close to zero.
Since the subspace angle is not derivable at θj = 0 for the subsequent sensitivity analysis for
uncertainty quantification, the alternative quantity

Γj(s) =
‖(lj(s))H U1‖2

‖lj(s)‖2
(6.3)

is proposed as an indicator of a fit. Note that 0 ≤ Γj(s) ≤ 1, where Γj(s) = 0 indicates
orthogonality between the subspaces and Γj(s) = 1 indicates the perfect fit.

6.2.3 Multiple aggregation

As an extension from [Ber13] to aggregate multiple quantities Γj(s) in (6.3), consider that
different Laplace variables si, i = 1, . . . , κ, be given. To minimize modal truncation errors,
they should be chosen within a vicinity of the identified poles of the structure in the complex
plane, but not too close to them [Ber10]. After the identification of the system matrices
Ac and Cc in the reference and Ãc and C̃c in the damaged states, the computations (2.28),
(6.1) and (6.3) are repeated for each value si to obtain the respective vectors Γ(si). Fol-
lowing the instructions in [Ber10] to decide if an element is damaged, the information of
the corresponding entries in the stress vector Γ(si) for all i = 1, . . . , κ can be used in the
aggregation

Γ̄j =

κ∑
i=1

Γj(si) (6.4)

for each element j.
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6.3 Uncertainty quantification and robust statistical testing

As described in the previous section, system matrices Ac and Cc are necessary for the damage
localization both in the reference and damaged states. However, not the “true” system
matrices Ac and Cc are obtained, but estimates Âc and Ĉc of the matrices of the reduced order
model that represents the identified bandwidth from a finite number of data samples . The
estimated system matrices are obtained using the covariance-driven subspace identification
[BF85, PDR99, D1̈1]. As the input of system (2.20) is unmeasured noise, Âc and Ĉc are
naturally subject to variance errors depending on the data and the estimation method. A
variance analysis of the estimated system matrices and expressions for their computation in
the context of structural vibration analysis are given in [RPDR08, DLM11].

The uncertainties from the system identification are propagated to uncertainties in the
estimated generalized cosine Γ̂j(s) computed from the estimates Âc and Ĉc in both reference
and damaged states. These uncertainties may be crucial in deciding whether an element is
potentially damaged. In this section, the uncertainty propagation is made explicit for the
chosen subspace identification algorithm and expressions for the uncertainty propagation to
the generalized cosine Γ̂j(si) computed at multiple values si, i = 1, . . . , κ are derived, based
on Chapter 5. Then, the aggregation of the results and the test for damaged elements can
be performed based on statistical criteria.

6.3.1 Definitions

The following notation and properties are defined based in Chapter 4 and will be used in
the following sections. The operator ⊗ denotes the Kronecker product, having the property
vec(AXB) = (BT ⊗A)vec(X). Ia denotes the identity matrix of size a× a, and 0a,b denotes
the zero matrix of size a × b. eaj ∈ Ra denotes the j-th unit vector (being column j of Ia).

The permutation matrix Pa,b
def
=
[
Ia ⊗ eb1 Ia ⊗ eb2 . . . Ia ⊗ ebb

]
∈ Rab×ab is defined with

the property

vec(XT ) = Pa,b vec(X) (6.5)

for any matrix X ∈ Ra×b [DM13]. Finally, for dealing with the uncertainties of complex-
valued matrices we introduce an equivalent real-valued notation by defining

MRe
def
=

[
Re(M) −Im(M)

Im(M) Re(M)

]
, Mre

def
=

[
Re(M)

Im(M)

]
(6.6)

for any matrix M as in [PGS07]. Then, for example, a complex-valued equation Ax = b is
equivalent to ARe xre = bre, and the sensitivities of the real-valued matrices can be derived.

6.3.2 Covariance of the system matrices

The sensitivity JR(s),Ac,Cc of the matrix R(s) with respect to the system matrices Ac and
Cc is derived, which is needed for the generalized cosine computation in (6.1)–(6.4). In the
following we generalize the sensitivity computation for acceleration data to the simplified and
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more general formula of R(s) in (2.28). Define

Z(s) = Cc(sI −Ac)−1, H =

[
CcAc

Cc

]
, L =

[
I

0

]
,

such that R(s) = Z(s)H†L. Applying the product rule, a first-order perturbation of R(s)
yields

vec(∆R(s)) =
[
JR(s),Ac JR(s),Cc

] [vec(∆Ac)

vec(∆Cc)

]
,

where

JR(s),Ac
def
=
(
M(s)T ⊗ Z(s)

)
+ (LT ⊗ Z(s))JH†ST1 (In ⊗ Cc),

JR(s),Cc
def
=
(
M(s)T ⊗ Ir

)
+ (LT ⊗ Z(s))JH†

(
ST1 (ATc ⊗ Ir) + ST2

)
,

with M(s)
def
= (sI − Ac)−1H†L, the selection matrices S1

def
= In ⊗ [Ir 0r,r] and S2

def
= In ⊗

[0r,r Ir], and the sensitivity JH† given in Chapter 4. Stacking the real and imaginary parts
of vec(∆R(s)), it follows from (6.5) and (6.6)

(vec(∆R(s)))re = JR(s)

[
vec(∆Ac)

vec(∆Cc)

]
, (6.7)

where

JR(s) =

[
Re(JR(s),Ac) Re(JR(s),Cc)

Im(JR(s),Ac) Im(JR(s),Cc)

]
.

The covariance of (vec(∆R(s)))re from (6.7) is

cov ((vec(R(s)))re) = JR(s) ΣAc,Cc J TR(s).

6.3.3 Covariance of the damage quantification

To find the covariance of Γ(s), lets first recall (6.3) and split this equation in upper and
bottom parts, such that

Γj(s) =
Γj(s)

up

Γj(s)bot
=
‖(lj(s))H U1‖2

‖lj(s)‖2
. (6.8)

Note that lj(s) and U1 are composed by complex numbers which lead to the complex result
Γj(s). Since statistical derivations are not allowed for complex matrix, an equivalent equation
in real form is necessary. First, lets rewrite the upper part of (6.8) as

Γj(s)
up = (UH1 lj(s))

H (UH1 lj(s)).

Then, developing Γj(s)
up and considering the real-valued notation in (6.6)

Γj(s)
up = (UH1 lj(s))

T
re (UH1 lj(s))re
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which is the same as

Γj(s)
up = ((UH1 )Re (lj(s))re)

T ((UH1 )Re (lj(s))re)

and finally, using the relation (XH)Re = (XRe)
T (Chapter 4)

Γj(s)
up = ((U1 (Re))

T (lj(s))re)
T ((U1 (Re))

T (lj(s))re).

Considering also the bottom part of (6.8) in the real form ((lj(s))re)
T (lj(s))re the final

development of (6.8) is then

Γj(s) =
Γj(s)

up

Γj(s)bot
=

((U1 (Re))
T (lj(s))re)

T ((U1 (Re))
T (lj(s))re)

((lj(s))re)T (lj(s))re
.

Now, using the chain rule and the norm derivation such that ∆‖X‖2 = 2XT∆X, the sensi-
tivity of Γj(s) is

∆Γj(s) =
2 ((U1 (Re))

T (lj(s))re)
T

((lj(s))re)T (lj(s))re
∆(U1 (Re))

T lj(s))re)

and in the vectorized form defined in Section 6.3.1

∆Γj(s) =
2 ((U1 (Re))

T (lj(s))re)
T

((lj(s))re)T (lj(s))re
(((lj(s))re)

T ⊗ I2t) vec(∆(U1 (Re))
T ) (6.9)

where ∆Γj(s) is a scalar and, for this reason, the vectorized term (vec(∆Γj(s)))re is sup-
pressed.

The covariance associated to the matrices R(s) and R̃(s) can be obtained in the reference
and damaged states of the structure for a chosen Laplace value s. These covariances are
propagated to the matrix U1 in the image of δR(s) = R̃(s)−R(s) and finally to Γj(s), such
as in Section 6.2. Then, let t be the rank of δR and let U1 be a matrix in the column space
of δR. Suppose that the complex singular vectors uj and vj , j = 1, . . . , t. Thus, considering
property (6.5) the sensitivity JU1 with vec(∆(U1 (Re))

T ) = JU1 (vec(∆δR(s)))re yields

JU1 = P1

(
It ⊗

[
I2r 02r,2r

])
B†1C1

...

B†tCt

 , (6.10)

and

Bj
def
=

 I2r − 1
σj

(δRT )Re

− 1
σj

(δRT )TRe I2r

 (I4r − E4r,4r
3r+1,3r+1),

Cj
def
=

1

σj

[
(vTj ⊗ Ir)Re − (uj)re((vj ⊗ uj)T )re

[(uTj ⊗ Ir)Re − (vj)re((uj ⊗ vj)T )re]P2

]
,
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and

P1
def
= P2r,2t

 I2rt

It ⊗

[
0r,r − Ir
Ir 0r,r

] , P2
def
=

[
Pr,r 0r2,r2

0r2,r2 −Pr,r

]
.

Then, from (6.3) and (6.9) it follows

vec(∆Γj(s)) = JΓj(s) (vec(∆δR(s)))re,

where

JΓj(s)
def
=

2 ((U1 (Re))
T (lj(s))re)

T

((lj(s))re)T (lj(s))re
(((lj(s))re)

T ⊗ I2t) JU1 , (6.11)

and together with (6.7) it follows

∆Γj(s) = JΓj(s) JR̃(s)

[
vec(∆Ãc)

vec(∆C̃c)

]
− JΓj(s) JR(s)

[
vec(∆Ac)

vec(∆Cc)

]
. (6.12)

Since the system matrices from the damaged and reference states are obtained from different
statistically independent measurements, the covariance expression

ΣΓj(s)
def
= cov(Γj(s)re) = JΓj(s) JR̃(s) ΣÃc,C̃c

J T
R̃(s)
J TΓj(s) + JΓj(s) JR(s) ΣAc,Cc J TR(s) J

T
Γj(s)

(6.13)
follows.

6.3.4 Statistical aggregation and evaluation

Since the computation of Γ(si) at multiple Laplace variables si, i = 1, . . . , κ, increases the
information content on the damage location (see Section 6.2), a joint evaluation of these gen-
eralized cosines increases the robustness of the statistical approach, where only one Laplace
variable s was considered. The joint statistical evaluation requires the covariance computa-
tion of the stacked (real-valued) generalized cosine results

Γ
def
=


Γ(s1)re

...

Γ(sκ)re

 . (6.14)

Stacking (6.12) for each si accordingly leads to

∆Γ =


JΓ(s1)JR̃(s1)

...

JΓ(sκ)JR̃(sκ)


[

vec(∆Ãc)

vec(∆C̃c)

]
−


JΓ(s1)JR(s1)

...

JΓ(sκ)JR(sκ)


[

vec(∆Ac)

vec(∆Cc)

]
,
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and, analogously to (6.13), to the covariance ΣΓ
def
= cov(Γ) with

ΣΓ =


JΓ(s1)JR̃(s1)

...

JΓ(sκ)JR̃(sκ)

 ΣÃc,C̃c


JΓ(s1)JR̃(s1)

...

JΓ(sκ)JR̃(sκ)


T

+


JΓ(s1)JR(s1)

...

JΓ(sκ)JR(sκ)

 ΣAc,Cc


JΓ(s1)JR(s1)

...

JΓ(sκ)JR(sκ)


T

.

(6.15)
While in previous works [Ber13] the generalized cosine Γ(si) at multiple Laplace variables were
aggregated empirically as in (6.4), the covariance expression (6.15) allows a new statistical
aggregation scheme for damage localization based on a statistical test for each element j of
the structure. In this scheme, all generalized cosine values at the different Laplace variables in
Γ corresponding to an element j are tested for being the higher (and thus possibly damaged)
in a hypothesis test, where the computed generalized cosine values are pondered individually
by their covariance. A scalar test variable χ2

j is computed for each element j in such a test
as follows.

First, the selection matrix for retrieving all entries in vector Γ corresponding to an element
j is described. Let Tj ∈ Rnj×e be the matrix that selects all entries computed for an element j
in Γ(s). The number nj of these generalized cosine resultants for an element j depends on the
kind of the element and the way of the computation of the generalized cosine resultant(s),
which is up to the user. Accounting for the real and imaginary parts of the generalized
cosine vector, and the stacking for all Laplace variables in (6.14), the vector Γj containing
all generalized cosine values corresponding to an element j is

Γj = Pj Γ ∈ R2κnj where Pj = Iκ ⊗

[
Tj 0nj ,e

0nj ,e Tj

]
.

Second, the covariance of vector Γj is selected from ΣΓ accordingly as

Σj = Pj ΣΓ P
T
j .

Since an estimate of vector Γj is asymptotically Gaussian distributed, it can finally be tested
for being the higher and thus potentially damaged with the χ2-test variable

χ2
j = Γ

T
j Σ−1

j Γj , (6.16)

which has 2κnj degrees of freedom and non-centrality parameter 0 in the damaged case.
Thus, the scalar variable χ2

j contains a statistically meaningful aggregation of all generalized
cosine results computed for an element j, and it can be decided if an element j is potentially
damaged if χ2

j is above a threshold. Such a threshold can be theoretically obtained from

the properties of the χ2-distribution for a desired type I or type II error, but for practical
purposes it is often sufficient to announce potential damage locations in the elements j with
the higher values of χ2

j .
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6.4 Applications

Four applications of increasing difficulty are applied to the new damage localization algorithm
with robust statistical aggregation of the stochastic version of the ILDL method from Section
6.3.4. The first and the second numerical applications are on a spring-mass system and on a
truss system, respectively. The third application is a numerical simulation of a plate and the
last is based on measurements of a real beam in a lab experiment.

For each application, the robust statistical aggregation of the computed generalized cosine
in Equation (6.16) from Section 6.3.4 is compared to the previously suggested deterministic
aggregation in Equation (6.4) from Section 6.2. Moreover, the robust statistical aggregation
for the SDDLV method and SDDLV deterministic aggregation [Ber10] are also depicted and
compared. Note that while in the SDDLV method the “stresses” close to zero correspond to
potentially damaged elements, in the ILDL method potentially damaged elements from the
generalized cosine correspond to the higher elements resultants.

The different Laplace variables (s-values) considered in theses applications are empiri-
cally chosen within the range of the identified poles as suggested in [Ber10] and no criterion
is available for the pertinence of the choice of such values. In all applications, the presented
results include the information coming from ILDL and SDDLV at all different s-values mixed
with their respective aggregations. The plate and the real bean experiments are normalized
to a scale between 0 (possibly damaged, red) and 1 (not damaged, blue) for a visual presen-
tation. Note in the plate and the real beam results that the statistical and the deterministic
aggregated result corresponding to the SDDLV method have their results inverted to depict
damaged and undamaged zones comparable to the statistical and the deterministic aggre-
gated results corresponding to the ILDL method. The results were obtained in Matlab 2011b,
where the overall computation time of the algorithms was less than a minute after the choice
of modes.

6.4.1 Spring-mass

The considered structure is a 5 DOFs spring-mass chain (Figure 6.1). Damage was simulated
by a 10% stiffness decrease in spring 2. For both the undamaged and the damaged state, a
data sample of length N = 25,000 of acceleration data was generated with 5% added output
noise using Gaussian white noise excitation. Five sensors were positioned at the DOFs.

Figure 6.1 – Spring-mass system with 5 DOFs.

From the output-only data, first the system matrices and their covariances were estimated
corresponding to the discrete-time state-space system (2.20), using SSI and the uncertainty
quantification in [RPDR08] at system order n = 10. In order to obtain the matrices Âc and
Ĉc of the continuous-time system and their respective covariances, a discrete to continuous
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transformation was made with five well-estimated modes chosen for both the undamaged and
the damaged state using the system modes selection. The Laplace variables different from
zero (si > 0) were empirically chosen near to a pole of Âc. Results are displayed in two
different Laplace variables sets: the first with s1 = 0 + 0i, and the second with four Laplace
variables si = [1 + 10i, 1 + 15i, 1 + 21i, 1 + 30i].

Final results are displayed in Figures 6.2 and 6.3, organized as: only the stress result
Sj(s) from the SDDLV method [Ber10] in Figures 6.2(a) and 6.3(a); SDDLV and statistical
decision making method using χ2

j in Figures 6.2(b) and 6.3(b); only the generalized cosine
result Γj(s) from the ILDL method [Ber13] in Figures 6.2(c) and 6.3(c); the new method
linking the ILDL and statistical decision making method using χ2

j (6.16) in Figures 6.2(d)
and 6.3(d). Note that while methods related to SDDLV point to potentially damage locations
at the lower positions “j”, methods related to ILDL point to potentially damage locations as
the higher positions “j”.
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(a) Deterministic result with SDDLV.
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(b) Statistical result with SDDLV.
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(c) Deterministic result with ILDL.
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(d) Statistical result with ILDL.

Figure 6.2 – Damage localization in a spring-mass system using s = 0 + 0i comparing the statistical (right) and
the deterministic (left) results. Damage is on spring 2.

Damage on spring 2 was correctly found for the case where s = 0 + 0i shown in Figure
6.2. Statistical results (χ2

j ) show better accuracy on the damage location. Either the SDDLV
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method (Figure 6.2(a)) and the ILDL method (Figure 6.2(c)) display also the damage at
position 2. While the generalized cosine of the ILDL method show also positions 1 and 3
near to the damaged position 2, the new method connecting the ILDL and the statistical
decision making method using χ2

j (6.16) in Figure 6.2(d) is clearly distinguishable.
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.
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(d) Aggregated statistical result with ILDL.

Figure 6.3 – Damage localization in a spring-mass system using si = [1 + 10i, 1 + 15i, 1 + 21i, 1 + 30i] comparing
the statistical (right) and the deterministic (left) results. Damage is on spring 2.

For the case with different Laplace variables si, the damage on spring 2 was again correctly
found as demonstred in Figure 6.3. Now, all results show accuracy on the damage location
because more information is provided (aggregated results) in either the deterministic and the
statistical cases. Note that the difference between the undamaged and damaged positions are
better defined in the statistical aggregation in Figures 6.3(b) and 6.3(d) when compared to
the deterministic results in Figures 6.3(a) and 6.3(c).

6.4.2 Truss

A numerical application using a simulated 25 DOF truss structure (Figure 6.4) is also used
to validate the new damage localization method with statistical decision making and com-
pared with other methods. Damage was simulated by a stiffness reduction in the elements
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16. For both the undamaged and the damaged state, a data sample of length N = 25,000 of
acceleration data was generated with 5% added output noise using Gaussian white noise exci-
tation. From the output-only data the system matrices and their covariances were estimated
corresponding to the discrete-time state-space system (2.20), using SSI and the uncertainty
quantification in [RPDR08]. In order to obtain the matrices Âc and Ĉc of the continuous-time
system and their respective covariances the system modes selection was performed with four
well-estimated modes chosen for both the undamaged and the damaged state. The Laplace
variables different of zero (si > 0) were empirically chosen near to a pole of Âc.

The application is performed with three sets of Laplace variables “s”: the first with
s = 0 + 0i (Figure 6.5), the second (Figure 6.6) and the third (Figure 6.7) with six s-values.
Note that the Laplace variables near to the poles of Âc are empirically chosen for the cases
where s > 0 [Ber10]. Since there is no guarantee that these Laplace variables are well-chosen
for the damage localization procedure, the second and the third set of Laplace variables
applied to the methods have their results compared.

Results are organized on the left-top part for the SDDLV method [Ber10] (Figures 6.5(a),
6.6(a) and 6.7(a)), on the right-top part for the SDDLV with the statistical decision making
method (Figures 6.5(b), 6.6(b) and 6.7(b)), on the left-bottom part for the ILDL method
[Ber13] (Figures 6.5(c), 6.6(c) and 6.7(c)), and on the right-bottom part for the new method
connecting the ILDL with the statistical decision making 6.5(d), 6.6(d) and 6.7(d).

The first set of results with s = 0+0i are shown in Figure 6.5. They show two elements as
damaged: the damaged element 16 as well as the undamaged element 23 that is a neighboring
of element 16 (see Figure 6.4). In fact, for the considered sensors set, element 23 is inseparable
from element 16 at s = 0 + 0i [Ber02] (i.e. if the stress in 16 is zero, so it must be in 23).
The elements 1–15, 17–22 and 24–25 are correctly classified as undamaged and element 16
is correctly classified as damaged in all results. Note that the new method connecting the
ILDL with statistical decision making clearly highlights the damage in element 16 (and the
inseparable element 23).

The second set of results with si = [1 + 5i, 1 + 15i, 1 + 25i, 1 + 35i, 1 + 45i, 1 + 55i] are
displayed in Figure 6.6. Element 16 is correctly classified as damaged while elements 1–
15, 17–22 and 24–25 are correctly classified as undamaged. Note that element 23 is now
separable and not classified as damaged anymore. Although Figures 6.5(a) and 6.5(c) show
the damaged element 16 correctly, statistical decision making methods in Figures 6.5(b) and
6.5(d) highlight the damaged position. The new method demonstrates clearly the damaged
element.
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13 14 15 16 17 18 19 

20 21 22 23 24 25 

Figure 6.4 – Truss structure with six sensors.
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(a) Deterministic result with SDDLV.
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(c) Deterministic result with ILDL.
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(d) Statistical result with ILDL.

Figure 6.5 – Damage localization in the truss structure using s = 0 + 0i comparing the statistical (right) and the
deterministic (left) results. Damage is on element 16.

The third and last set of results with si = [10+5i, 10+15i, 10+25i, 10+35i, 10+45i, 10+55i]
are shown in Figure 6.7. The new method was capable to show correctly the damaged
on element 16 (Figure 6.7(d)) while others were not (Figures 6.7(a), 6.7(b) and 6.7(c)).
In comparison to the previous results with different Laplace variables, Figure 6.6 clearly
demonstrates that the choice of the s-values can change significantly the damage location
result depending on the chosen method. Both statistical decision making methods provide
complementary results and can be used together to localize the damaged element.

6.4.3 Plate

The considered plate structure (see Figure 6.8) is composed by 100 elements and has the
dimensions 150 cm width, 100 cm height and 1 cm of thickness. The edges of the plate
are fixed. Damage was simulated by stiffness reduction in element “P66”, decreased by
50%. For both the undamaged and the damaged states, acceleration data collection of length
N = 24,000 with a sampling frequency of 400 Hz was generated at the ten sensor positions
(circles in the nodes in the Figure 6.8). Data was generated from the band limited white noise
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.
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(d) Aggregated statistical result with ILDL.

Figure 6.6 – Damage localization in the truss structure using si = [1 + 5i, 1 + 15i, 1 + 25i, 1 + 35i, 1 + 45i, 1 + 55i]
comparing the statistical (right) and the deterministic (left) results. Damage is on element 16.

excitation until 150 Hz and 5% of Gaussian white noise excitation is added on the output.

From the SSI identification, five well-estimated modes were chosen based on the frequen-
cies in a stabilization diagram for both the undamaged and the damaged state, which are
shown in Table 6.1. Then, matrices Âc and Ĉc in both states are filled and their uncertainty is
obtained from the same dataset. The choice of modes and the procedure to build the system
matrices in continuous time is detailed previously in this Chapter. The matrix Lmodel(s) from
Section 6.2 is obtained from the FEM of the plate model, such that the moments mxx and
myy are computed as the generalized cosine resultants for each of the 100 plate elements from
U1 at the sensor coordinates. Then, the generalized cosine Γ(si) containing these moments
and their covariance are computed for the Laplace variables s1 = 1 + 40i, s2 = 1 + 140i,
s3 = 1 + 200i, s4 = 1 + 250i. Thus, 16 stress related values are computed for each plate
element j. These values are aggregated statistically in the variable χ2

j in (6.16) and shown
in Figure 6.9(d) for each element j with the new method as described. The previous deter-
ministic aggregation of these values in (6.4) is performed for comparison and displayed in
Figure 6.9(c). These results are also compared with the SDDLV method [Ber10] and the pre-
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.
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Figure 6.7 – Damage localization in the truss structure using si = [10+5i, 10+15i, 10+25i, 10+35i, 10+45i, 10+55i]
comparing the statistical (right) and the deterministic (left) results. Damage is on element 16.

vious method that connects the SDDLV to the statistical decision making in Figures 6.9(a)
and 6.9(b), respectively. All results are normalized and depicted in Figure 6.9. Statistical
and the deterministic aggregated result corresponding to the SDDLV method have their re-
sults inverted to depict damaged and undamaged zones comparable to the statistical and the
deterministic aggregated results corresponding to the ILDL method.

The damage localization fails with the SDDLV and ILDL deterministic aggregation in
Figures 6.9(a) and 6.9(c) but is successfully localized with the SDDLV statistical aggregation
in Figure 6.9(b) and the ILDL statistical aggregation in Figure 6.9(d). In the statistical
aggregation results the element P66 is well classified as damaged and indeed has the lowest
χ2 indicator value, close in the scale to 0. Note that elements in the vicinity of P66 have
relatively low values in Figure 6.9(b), since close elements in the plate are hardly separable.
However, the vicinity on the damage location P66 in Figure 6.9(d) is better separable and the
possible damage zone is reduced. Then, comparing the results of the statistical aggregations
in Figures 6.9(b) and 6.9(d) and deterministic aggregations in Figures 6.9(a) and 6.9(c), the
importance of the statistical evaluation in the computed damage location results is evident.
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Table 6.1 – Identified frequencies of the simulated plate in reference and damaged states

Mode 1 2 3 4 5

Description Bending Bending Torsion Bending Bending

Reference Frequencies 34.44 65.77 105.78 117.82 134.91

Damage Frequencies 34.25 65.68 105.38 117.41 134.73

Comparing the statistical decision making methods, the new method leads to a significant
improvement in the damage localization procedure.

6.4.4 Real beam experiment

The real beam experiment was conducted by Brüel & Kjær as a benchmark for damage
localization in a lab experiment. There, vibration test was conducted on a beam (Figure 6.10)
that was artificially damaged. The considered beam is made of PVC with 50 cm×8 cm×1 cm,
which is fixed on one side. For both the undamaged and the damaged states, acceleration
data of length N = 295,936 with a sampling frequency of 8192 Hz was recorded under white
noise excitation by a shaker. The available data was downsampled and decimated by factor
6. The beam has 27 sensors on the top and on the bottom (see Figure 6.10) as follows:

• Sensors 1, 4, 7, ..., 25 are installed on the top of the beam and are vertical accelerome-
ters.

• Sensors 2, 5, 8, ..., 26 are installed on the top of the beam and are horizontal accelerom-
eters.

• Sensors 3, 6, 9, ..., 27 are installed on the bottom of the beam and are horizontal
accelerometers.
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Figure 6.8 – Geometry description of the plate with ten sensors.
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9  

 1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

(d) Aggregated statistical result with ILDL.

Figure 6.9 – Damage localization in the plate structure using si = [1 + 40i, 1 + 140i, 1 + 200i, 1 + 250i] comparing
the statistical (right) and the deterministic (left) results. Damage is on element P66.

Since the shaker acts in the horizontal direction, the vertical accelerometers are dismissed
and only the 18 accelerometers in horizontal direction are used for the following damage
localization.

A FEM of the beam in the reference state was made consisting of 72 plate elements as
depicted in Figure 6.11, from which matrix Lmodel(s) is obtained. The computation of the
generalized angles using the model is performed analogously to the previous section. Note
that the beam from Figure 6.10 is rotated for convenience in the model in Figure 6.11, where
the sensors on the top are now on the bottom and vice versa.

The beam was damaged by drilling 5 holes located around positions P02 and P20 in the
model (see Figure 6.11). Note that in the experiment the shaker influences the properties
of the beam since it may change the mass at the shaker position, which is slightly different
between the undamaged and the damaged states. Therefore, damage may also be localized
in the vicinity of the shaker position and should be discarded. This effect would not appear
in real operational cases.
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From the measurement data, eight well-estimated modes were chosen in the undamaged
and the damaged states. The corresponding frequencies for each chosen mode are demonstred
in Table 6.2. Then, the matrices Âc and Ĉc and their covariances are obtained in the different
states. The generalized angle resultants and their covariances are computed for two different
sets of Laplace variables si of different size: the first with four values si ∈ {1+3i, 1+110i, 1+
520i, 1 + 1600i} and the second with ten values si ∈ {1 + 3i; 1 + 50i; 1 + 110i; 1 + 530i; 1 +
560i; 1+700i; 1+855i; 1+900i; 1+940i; 1+1600i}. Then, the deterministic aggregations with

Figure 6.10 – Experimental set of the beam.
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Figure 6.11 – Geometry description of the beam with 18 sensors.
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Table 6.2 – Modes description and eigenfrequencies in the reference and damage states – beam

Mode 1 2 3 4 5 6 7 8

Description Bending Bending Torsion Torsion Bending Bending Bending Bending

Reference Frequencies 16.52 84.17 173.27 206.52 286.32 326.62 529.69 561.83

Damage Frequencies for five holes 15.79 83.80 168.45 203.47 264.96 322.45 523.74 550.79

the ILDL [Ber13] and SDDLV [Ber10] methods for the damage localization are compared with
the SDDLV statistical method and the new ILDL statistical method in (6.16). The results
are visualized in Figures 6.12 and 6.13 for both sets of Laplace variables. The statistical and
the deterministic aggregated result corresponding to the SDDLV method have their results
inverted to depict damaged and undamaged zones comparable to the statistical and the
deterministic aggregated results corresponding to the ILDL method.
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.
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(d) Aggregated statistical result with ILDL.

Figure 6.12 – Damage localization in the beam structure using si = [1+3i; 1+110i; 1+520i; 1+1600i] comparing
the statistical (right) and the deterministic (left) results.

Figures 6.12 and 6.13 indicate the damage in element P02 for the SDDLV statistical
aggregation method in 6.12(b) and 6.13(b) and for the ILDL statistical aggregation method
in 6.12(d) and 6.13(d). The deterministic aggregation of the stress results (Figures 6.12(a) and
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(a) Aggregated deterministic result with SDDLV.
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(b) Aggregated statistical result with SDDLV.
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(c) Aggregated deterministic result with ILDL.
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(d) Aggregated statistical result with ILDL.

Figure 6.13 – Damage localization in the beam structure using si = [1 + 3i; 1 + 50i; 1 + 110i; 1 + 530i; 1 + 560i; 1 +
700i; 1 + 855i; 1 + 900i; 1 + 940i; 1 + 1600i] comparing the statistical (right) and the deterministic (left) results.

6.13(a)) and of the generalized cosine results (Figures 6.12(c) and 6.13(c)) are not successful.
Note that change in the position of the shaker between the reference and damaged states
is clearly visible as a damage in the middle of the beam (corresponding to elements in the
vicinity of P23 and P41), which should be discarded. Minimal test values found in the lower
part of the beam for the statistical methods correctly indicating the damage location with
the new procedure. The previous SDDLV statistical method indicate the damage spreaded
in the vertical axis. The proximity to the fixed part of the beam and the lack of sensors on
the vertical axis impose difficulties for the localization approach.

The use of more Laplace variables for the statistical aggregation results leads also to clearer
localization results. The deterministic aggregation of the stress vectors from the SDDLV and
of the generalized cosine from the ILDL approach could not provide sufficient resolution for
damage localization in this experiment. However, the SDDLV statistical aggregation of the
same stress vectors made a correct damage localization and the new ILDL statistical method
is even more exact to point the damage location.
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Shaker effect: In the considered experiment conducted by Brüel & Kjær in a lab, the
bean was attached to a shaker to produce the desired excitation (see Figure 6.10) and then
the output is collected by sensors. Figures 6.12 and 6.13 shown the shaker effect clearly
identified around positions P23 and P41, mainly in the statistical aggregation results. Since
the shaker effect points to a spurious damaged element, alternatives to reduce its effect is
desirable. Note that in real situations the excitation is produced by some environmental
effect (i.e. earthquake) and the artificial excitation from the shaker would not appear in real
operational cases.

An option to reduce the shaker effect is by increasing the mass around the positions where
the shaker is located. Then, in theory, the shaker effect starts to lose its influence as spurious
damaged element. Two examples were performed by reducing the shaker effect from the
ILDL statistical aggregation results shown in Figure 6.13(d). In the first example, depicted
in Figure 6.14(a), the elements around the shaker has the original mass of the FEM slightly
increased in two times. In the second example, depicted in Figure 6.14(b), the same original
mass of the FEM is highly increased in fifty times in the positions around the shaker. While
in the first example the shaker effect is lessened, the second example almost discards the
shaker effect and only the damaged zone is available.
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(a) FEM mass slightly increased by two times (Fig-
ure 6.13(d)).
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(b) FEM mass highly increased by fifty times (Figure
6.13(d)).

Figure 6.14 – The beam structure with modified mass around the shaker position.

6.5 Conclusion

In this chapter, an extension of the damage localization approach based on the ILDL method
into the stochastic case was developed as well as the combination of the structural model
information and data driven uncertainties computation. Then, a statistical decision making
framework of the stochastic ILDL method taking into account the inherent uncertainties from
the SSI was considered. Now, the decision on whether a location is damaged or not is no
more based on empirical thresholds. The selection of these Laplace variables itself was not
addressed. Numerical and real applications were depicted and compared between the new
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presented method in this chapter and other damage localization methods. The new method
has proved to be efficient to find the damage location in all applications. Future work will
focus on the optimal Laplace variable choice and on the use of larger real experiments.

6.6 Dissemination

Parts of this chapter have been submitted to:

[MDBM13c] L. Marin, M. Döhler, D. Bernal, and L. Mevel. Statistical based decision
making for damage localization with influence lines. In The 9th International
Workshop on Structural Health Monitoring, 2013.
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Conclusions and future works

The last decades have seen the growth of techniques for structural health monitoring proposes.
In this context, Operational Modal Analysis (OMA) techniques have therefore been devel-
oped where the modal parameters are extracted from the dynamic response to operational
forces. There, ambient forces are usually modeled as stochastic quantities with unknown
parameters but with known behavior, for instance, as white noise time series with zero mean
and unknown covariance. In the offline analysis situation, where data is collected at two
different times with information about changes in the structural condition in the interval
between the measurements, the damage characterization can be ameliorated by decoupling
as detection, localization, and quantification.

Damage localization methods based in the flexibility changes of structures were described
in this thesis. In theory, system matrices are plugged in models of structures (i.e. finite
element model) and results should present the exact information about the damage location.
However, these system matrices are afflicted by intrinsic uncertainties that exists in the system
identification. In this thesis, decision making methods based in the sensitivity based theory
to overcome these uncertainties were developed.

The first contribution is described in Chapter 4. There, the Stochastic Dynamic Damage
Location Vector (SDDLV) was introduced as an output-only damage localization method.
Damage is related to a residual derived from the null space of the difference between the
transfer matrices in both reference and damage states and a model of the reference state.
Deciding that this residual corresponds to a damage position is done using an empirically
defined threshold. Since the SDDLV does not take into account the intrinsic uncertain-
ties (i.e. noise and limited data length), the first contribution replaces empirical rules by
sensitivity-based rules as the damage localization criterion. The development of this contri-
bution considered the case were only one Laplace variable is available (the static case) for
the transfer matrix computation. Numerical examples were provided for the contribution
evaluation.

In second contribution, Chapter 5, the SDDLV method is again considered but with its
original features in a robust alternative. Different Laplace variables were considered (the
dynamic case) increasing the robustness and helping the decision making. The necessary sys-
tem identification steps with the construction of parametric system matrices from identified
modes was explained in details and the robust statistical approach for the aggregation of
damage localization results for different Laplace variables were derived. Numerical and real
applications were used for the contribution validation.
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The last contribution in Chapter 6 refers to a robust statistical decision making method
applied to the Influence Lines Damage Localization (ILDL) approach. Based on the image
(column space) from the difference between the transfer matrices in both reference and dam-
age states as the Influence Line (IL), the damage is thus located at points where the subspace
angle between the image and the IL computed from a model (i.e. finite element model) is
zero (in practice small). Similarly to the SDDLV, currently empirical thresholds are used in
the ILDL . Then, by first adapting the computation of the subspace angles into the stochas-
tic case, finally sensitivity based methods are applied for the derivation and the intrinsic
uncertainties are overcome. Numerical and real applications were used for the contribution
validation.

Note that both damage localization approaches, the SDDLV and the ILDL, are com-
plementary methods based in the changes of the flexibility matrix from some pre-defined
structural model. On one hand, the SDDLV uses the null space obtained from the output-
only data as the loads to a FEM and lead to stress resultants for the damage location. On
the other hand, the ILDL uses the image obtained from the output-only data and damage
is located at points from the subspace angle between the image and the IL computed from
the FEM. From the derivation of the intrinsic uncertainties in both SDDLV and ILDL meth-
ods this thesis also provided a complete statistical decision making framework, where the
application results depicted in each contribution reinforce their complementary importance.

In all contributions, the covariance-driven subspace identification method was used and
the system matrices were constructed from the identified parameters (eigenvalues and mode
shapes). All output-only damage localization methods used in this thesis are model de-
pendent, which is crucial for the success of the damage localization. Thus, well-designed
structural models lead to better location results while the opposite is not recommended. In
summary, all contributions successfully improved the related output-only damage localization
approaches by overcoming their uncertainties into new statistical decision making methods.

Future works would consider to substitute the covariance-driven subspace identification
method for other system identification methods in order to approve or reprove their efficacy
in the contributions of this thesis, include input data in applications when this is available
(i.e. real beam application in the contribution chapters), and apply the contributions of this
thesis in bigger structures, such as real bridges and buildings.
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[DLM13] M. Döhler, X.-B. Lam, and L. Mevel. Uncertainty quantification for modal pa-
rameters from stochastic subspace identificaiton on multi-setup measurements.
Mechanical Systems and Signal Processing, 36:562–581, 2013.

[DLT03] E. Douka, S. Loutridis, and A. Trochidis. Crack identification in beams using
wavelet analysis. International Journal of Solid and Structures, 40:3557–3569,
2003.



Bibliography 141
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Abstract

Mechanical systems under vibration excitation are prime candidate for being modeled by
linear time invariant systems. Damage localization using both finite element information and
modal parameters estimated from ambient vibration data collected from sensors is possible
by the Stochastic Dynamic Damage Location Vector (SDDLV) approach, where the dam-
age location is empirically related to positions where the stress is close to zero. The first
contribution in this thesis shows how the uncertainty in the estimates of the state space
system can be used to derive uncertainty bounds on the damage localization residuals to
decide about the damage location with a hypothesis test using one chosen Laplace value.
In the second contribution, the damage localization method is extended with a statistical
framework and robustness of the localization information is achieved by aggregating results
at different values in the Laplace domain. The Influence Line Damage Location (ILDL) is a
complementary approach of the SDDLV where the subspace angle is computed and damage is
empirically located at points near zero. The last contribution describes how robustness of the
localization information is achieved by aggregating results at different values in the Laplace
domain based on the previous two contributions. The proposed methods are validated and
successfully applied to damage localization of several applications in civil structures.

Résumé

Les systèmes mécaniques soumis et excités par vibrations sont les candidats naturels à être
modélisé par des systèmes linéaires invariables dans le temps. La localisation de dommages
utilisant les paramètres modaux évalués à partir de données de vibration ambiantes mesurées
grâce à de capteurs est possible notamment par l’approche nommée Stochastic Dynamic
Damage Location Vector (SDDLV), où l’emplacement des dommages est empiriquement relié
aux positions où le stress est proche de zéro. La premiere contribution dans cette thèse
montre comment l’incertitude sur les paramètres du système d’état peut être utilisée pour
déduire des bornes d’incertitude sur les résidus de localisation de dommages, ceci afin de
décider de l’emplacement de dommage utilisant un test d’hypothèse. Dans la deuxième
contribution, la méthode de localisation de dommages est étendue pour être robuste au
choix des variables de Laplace utilisées dans cette méthode. Ceci est obtenue en agrégeant
statistiquement les résultats à valeurs différentes dans le domaine de Laplace. L’Influence
Line Damage Location (ILDL) est une approche complémentaire du SDDLV où l’angle entre
les sous-espaces principaux est calculé et les dommages sont empiriquement localisés aux
points près du zéro. L’approche développée pour la SDDLV est étendue à cette nouvelle
approche, l’ILDL. Les méthodes proposées sont validées et appliquées avec succès pour la
localisation de dommages dans des structures civiles.




